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Introduction

Cancer diseases are a major health concern in the modern society. Taken together, they repre-
sent the second leading cause of death worldwide (they were responsible for 8.8 million deaths
in 2015, which represents nearly 1 in 6 deaths) and the first cause of death in France! [Ferlay
et al., 2013, InVS and INCa, 2011]. In face of such a public health challenge and considering the
“unreasonable effectiveness of mathematics in natural sciences” [Wigner, 1960], one might wonder:

can mathematical models be of help in oncology?

Since a wide variety of mathematical tools could be considered, some — such as epidemiological
statistical models, stochastic evolutionary models or bioinformatics algorithms — being beyond the
scope of my research, I should start by defining what I mean by a “mathematical model”. In
the context of the work reported here it will be: a function, most often (but not necessarily),
deterministic, depending on the time and a set of parameters, intended to describe the dynamics

of a biological system and thus often defined by a set of ordinary or partial differential equations.

With the development of novel measurement methods (especially from molecular biology and
imaging), accumulation of biological and clinical data is currently driving oncology toward a quan-
titative science, which raises the question of inferring general patterns and structures behind the
data as well as extracting the most information from these. Meanwhile, the number of mathemat-
ical models developed by theoreticians in the field of so-called “mathematical oncology” [Gatenby
and Maini, 2003] has been exponentially growing in the last decades [Barbolosi et al., 2016, Al-
trock et al., 2015, Byrne, 2010, Anderson and Quaranta, 2008, Bellomo et al., 2008]. However,
these formal constructs have often remained confined to qualitative conclusions and rarely been
confronted to the observations. The driving force behind my work since my PhD has been to try to
bridge the gap between theories/models and empirical data. Crucially, my objectives have
always been to do so motivated by a specific biological or clinical question, thus not considering
the modeling process as an end in itself but rather as a mean. So far, my work has been focused

about two possible aims of mathematical modeling in oncology:

1. better understand the biology. Indeed, by allowing the simulation (or analysis) of the

implications of biological hypotheses, mathematical and computational models provide a way

'In France, cancer represents 27.3% of deaths, before cardio-vascular diseases (26% of deaths) [InVS and INCa,
2011]. Cumulative lifetime risk of death by cancer are 14.3% in males and and 9% in females in more developed
areas of the world versus respectively 12% and 8.1% in less developed areas (excluding nonmelanoma skin cancer)
[Torre et al., 2015]
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to test these hypotheses against experimental data. This improves our understanding of the
biology by discriminating theories that are able to describe the data and, perhaps even more

importantly, reject theories that are not.

2. predict the future of a cancer disease or the impact of a therapeutic strategy. In this
case, even if the model is only phenomenological (i.e., weakly connected to a mechanistic
description of the biological process), if its predictive power of the model is properly validated,
it can provide a powerful numerical tool for clinical applications. To this regard, I believe

applications can be divided into (at least) two subclasses:

(a) the rational design of treatment regimen in clinical trials

(b) patient-specific predictive tools of help for personalized medicine (personalized prog-
nosis of tumor growth, decrease or relapse and/or metastatic state or relapse in order

to plan the individualized intervention).

With this in mind, my research has been focused on specific problems concerning processes in
cancer that have a dynamical component, including tumor growth, metastasis and anti-cancer
systemic treatments. Although these biological, clinical and therapeutic problems shall be defined
at a later stage in this document, one canonical example is the prediction of the occult burden of
metastases at diagnosis in breast cancer, for personalized adaptation of peri-operative treatment.
To address these open problems, I consider fundamental to depart from the published knowl-
edge on the biological processes on one hand and from experimental or clinical data on the
other. Therefore, several of the studies reported here were done in collaboration with biologists
or clinicians, including people from the Center of Cancer and Systems Biology (Tufts University,
Boston, MA, USA), the Roswell Park Cancer Institute (Buffalo, NY, USA), the Laboratoire de
I’Angiogénése et du Microenvironnement des Cancers (LAMC, Inserm, Bordeaux, France) and the
“Simulation & Modelling: Adaptive Response for Therapeutics in Cancer" team (SMARTc, Inserm,

Marseille, France). My strategy in these integrative in vivo/in silico works has been the following:

1. define, from the current state of the art, a clinically or biologically relevant problem address-

able by mathematical modeling methods (not all of them are), given the obtainable data

2. design an experiment (this part having been sometimes performed by myself and other times
by others) or collect relevant existing data from the literature and/or collaborations with

biologists and clinicians
3. define mathematical models to be tested against the data
4. implement the models numerically

5. confront the models to the data using statistical tools (nonlinear mixed-effects), test their

relative likelihood and identify the ones that can be rejected

6. and most importantly, use this methodology to derive biologically or clinically mean-

ingful results.



As a whole, my research contributions have been done with the aim to be part of a quantitative
mathematical oncology approach rather than a purely theoretical and qualitative approach.
Specific details of the biological and clinical findings from my research are summarized below and
exposed in more details in the document. Although several of the models are applicable to a broad
range of solid cancer types, the experimental and clinical data employed in the research reported

here come from breast, lung and kidney cancers.
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Short summary of research

contributions since the PhD

As stated above, departing from a PhD where my research had focused on theoretical, numerical
and simulation aspects of a few mathematical models in oncology, my subsequent research efforts
have concentrated on confronting the models to the observations, in order to answer meaningful
clinical or biological problems. Reported below is a short summary of a selection of results that I

obtained, which are described in more details in the following chapters.

The driving force has been to establish mathematical models that would in fine have clinical use.
This often means a situation with metastatic patients, treated with systemic agents. However, as a
pre-requisite, I considered essential to further first my understanding of the biology of the processes
and thus started with experimental data on biological studies, which are often richer than what is
obtainable in the clinic. To build and validate the models step by step on solid ground, instead of

directly starting with the case of metastases under treatment, the path I followed was the following:

1. first, to assess the descriptive and predictive power of classical models of tumor growth
[Benzekry et al., 2014c]

2. then, model the natural history of metastasis, in the pre-surgical [Baratchart et al., 2015] or

post-surgical [Benzekry et al., 2016] settings (thus adding dissemination to growth)

3. study the organism-scale interactions between established tumors, mostly qualitatively
when considering the full tumor-metastases system [Benzekry et al., 2014b] but also quanti-

tatively in a two-tumors system [Benzekry et al., 2017]

4. and finally, investigate models of the effect of therapies (combination of chemotherapy and
anti-angiogenics) [Mollard et al., 2017, Imbs et al., 2017].

Of course, I don’t pretend to any exhaustivity since the topics mentioned above cover an extremely

wide range of processes. Rather, I followed a specific path, driven by the identification of concrete
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problems where mathematical modeling was of help. The publications mentioned above don’t cover
the entirety of my contributions but are the ones that I consider most meaningful. To enlighten
the reading, in this summary, no reference to the literature is given. We refer the reader to the

body of the document for this matter.

0 Methodological prerequisite: a software for fitting models
to data

To accomplish the research program stated above, one first key aspect was to dispose of a nu-
merical tool to fit models to data, i.e. to estimate the parameters, to quantify the uncertainty of
this estimation and to statistically compare the goodness-of-fit of the models. Therefore, I pro-
grammed a software for nonlinear regression of models in oncology and statistical inference named
CARCINOM (for Computer-Assisted Research about Cancer growth and INsights on Oncological

Mechanisms).

Given a data set of longitudinal measurements of in a population, it fits user-provided models,
computes several goodness-of-fit statistical metrics, identifies the parameters of the models and
estimates the uncertainty associated to their determination. It provides several graphical and nu-
merical outputs that I extensively use in my daily work (in the form of LaTeX tables). Three
options are available to the user: fitting the average population data, fitting each subject’s data
individually (and independently) or using a population approach (nonlinear mixed-effects model-
ing) to estimate a population distribution of the parameters from the pooled data of all subjects.
The latter is based on the SAEM? algorithm already implemented in Matlab.

The library of models implemented so far include models of tumor growth, metastatic development

and effect of specific therapies.

The software is developed in two versions, one written in Matlab and one in python. Currently,

the population parameter estimation is only available in the Matlab version.

1 Tumor growth

Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be ex-
pressed as mathematical models. To explore this further, I performed a quantitative analysis of the
most classical of these: exponential, exponential-linear, power law, Gompertz, logistic, generalized
logistic, von Bertalanffy and a model with dynamic carrying capacity. The models were assessed
against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung car-
cinoma) and an orthotopically xenografted human breast carcinoma. One biological problem that

I wanted to address was:

2Stochastic Approximation of Expectation-Maximization
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Biological problem 1. What are the general laws of macroscopic tumor growth? What are

minimal biological processes able to recover the kinetics of tumor growth curves?

The goals of the study were then threefold: 1) to determine a statistical model for description of
the measurement error of the tumor volumes, 2) to establish the descriptive power of each model,
using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the

models’ ability to forecast future tumor growth.

For point 1) we found that both a constant and a proportional error model had to be rejected.

Therefore, we designed and validated a specific error model.

1.1 Theories of tumor growth

The first finding was that the exponential model was not able to fit the tumor growth curves
during the entire measured period. Consistently with previous observations, this means that there
is a non-constant relative growth rate, with growth retardation (i.e. the larger the tumor the
slower the growth). For the breast data, the dynamics were best captured by the Gompertz and
exponential-linear models. For the lung data, the Gompertz and power law models provided the

most parsimonious and parametrically identifiable description.

Interestingly, although often pushed forward in the literature for description of tumor growth and
despite its attractive biological explanation of growth retardation as caused by competition for
space or nutrients, the logistic model exhibited substantially lower descriptive power,
suggesting rejection of this theory for explanation of tumor growth retardation. This finding was
consistently confirmed in several other data sets that I was given to analyze, including melanoma

and kidney experimental tumors.

In line with classical results, the Gompertz model (% = (a— BIn(V)) V) had excellent descriptive
power. However, its etiology is still unresolved and its parameters not all physiologically defined.
In contrast, I found that another simple and biologically grounded model was equally able to

describe the tumor growth curves, the power law model:

Cfi—‘t/ =aV"

This model has the interpretation that the proliferative tissue has a fractal dimension (equal
to 37), possibly not equal to 1. The origin of this fractal dimension might stem from the fractal
dimension of the tumor vasculature (since the proliferative cells are the one that have access to the
nutrients and thus are close to the blood vessels). Following this interpretation, a fully infiltrative
(and functional) vasculature would mean a value of v = 1 while blood vessels limited to the surface
of the tumor would imply v = 2/3. Supporting this model further, I found in the case of the
lung data a value of the parameter a close to the in witro proliferation rate, which would make
sense because a is the growth rate when V' = 1, corresponding to the initial tumor size at injection
(V =10° cells ~ 1 mm?).
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1.2 Predictive power of classical models of tumor growth

For the breast data, the exponential-linear model exhibited the highest predictive power, with
excellent prediction scores (80%) extending out as far as 12 days in the future and using only 3
data points with two days interval. In contrast, for the lung data, not one of the models was able
to achieve a substantial prediction rate (70%) beyond the next day data point even when using 5

data points (one or two days interval) to estimate the parameters.

In this context, a major result that I obtained was that adjunction of a priori information
on the parameter distribution led to considerable improvement. For instance, forecast
success rates went from 14.9% to 62.7% when using the power law model to predict the full future
tumor growth curves (i.e. up to 14 days in the future), using just three data points with one day

interval.

Together, my results not only have important implications for biological theories of tumor growth
and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may

assist in defining how mathematical models could serve as potential prognostic tools in the clinic.

This study is the subject of the publication [Benzekry et al., 2014c].

2 Metastasis

2.1 Modeling Spontaneous Metastasis following Surgery: An In Vivo-In
Silico Approach

Rapid improvements in the detection and tracking of earlystage tumor progression aim to guide
decisions regarding cancer treatments as well as predict metastatic recurrence in patients following
surgery. Mathematical models may have the potential to further assist in estimating metastatic
risk, particularly when paired with in vivo tumor data that faithfully represent all stages of disease

progression. One clinical problem associated with this can be stated as

Clinical problem 1. FEstimate the amount of occult distant metastases at diagnosis

In order to have data about metastatic development necessary to quantitatively investigate the
process — typically hard to obtain due to the intravital nature of the process — I collaborated
with a biologist (John Ebos, Roswell Park Cancer Institute, Buffalo, USA) who investigates mouse
experimental systems of spontaneous metastasis developing after surgical removal of orthotopically

implanted primary tumors. The particular biological problem that was investigated was:

Biological problem 2. What are the qualitative and quantitative differences among experimental
models of metastasis for different cancer types? Is the growth of secondary tumors identical to the
growth of the primary tumor, in a given experimental system? How does the dissemination process
depend on the size of the primary tumor? What is the impact of surgery on metastatic growth and

dissemination?
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To do so, the data were confronted to a previously established class of mathematical models for
the dissemination and growth of a population of secondary tumors. The models are written as
physiologically structured partial differential equations of transport type for the density p(¢,v) of

metastases with size v at time ¢. Considering that the primary tumor volume V,,(¢) follows a model

Wl = g, (Vo (1)) "
V,(0) = Vg ’

the equation on p then depends on two fundamental (functional) coefficients g and d both quan-

tifying the two main aspects of metastatic development: dissemination (d) and growth (g). It

writes
8tp(t,v)+6v(g(t,v)p(t,v)) =0 ]O,T[X]‘/O,—FOO[
9(Vo)p(t, Vo) = d(Vp(t) 10,71 (2)
p(O,’U) =0 ]VOv"_OO[

where V} is the minimal size of a lesion (typically, the size of one cell) and T is the final time.

Two models for the two experimental systems (breast and kidney) were able to fit and predict
pre/postsurgical data at the level of the individual as well as the population. These revealed

different metastatic dynamics for the two systems:

1. For the breast: same growth law (Gompertz-exp) and parameter values for the primary

and secondary tumors and metastatic burden dynamics mostly driven by proliferation

2. For the kidney: same growth law (exponential) but different values of the parameters
for the primary and secondary tumors and metastatic burden dynamics mostly driven by

dissemination

Our approach also enabled retrospective analysis of clinical data describing the probability of
metastatic relapse as a function of primary tumor size. In my data-based models, inter-individual
variability was quantified by a population distribution of one key parameter of intrinsic
metastatic potential. My analysis also identified a highly nonlinear relationship between
primary tumor size and postsurgical survival, suggesting possible threshold limits for the

utility of tumor size as a predictor of metastatic recurrence.

These findings validated the descriptive and predictive power of specific quantitative mathematical
models of total experimental metastatic burden growth, inter-patient variability of metastatic re-
lapse risk and may guide optimal timing of treatments in neoadjuvant (presurgical) and adjuvant

(postsurgical) settings to mazimize patient benefit.

This study is the subject of the publications [Benzekry et al., 2016, Benzekry and Ebos, 2015].
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2.2 Challenging the classical view of metastatic initiation and growth

The biology of the metastatic colonization process remains a poorly understood phenomenon. To
improve our knowledge of its dynamics further than the previous study that only involved data
from total metastatic burden, together with a PhD student that I co-supervised with Thierry
Colin and Olivier Saut (Etienne Baratchart), and in collaboration with a team of biologists at the
LAMC (Inserm, Bordeaux, France) and a team of magnetic resonance imaging specialists (RMSB,
CNRS, Bordeaux, France), we conducted a modeling study based on multi-modal data from an
orthotopic murine experimental system of metastatic renal cell carcinoma. These data allowed to
have access, in addition to the mere total number of metastatic cells, to the dynamics of the size

distribution of secondary lesions. The biological problem we addressed was:

Biological problem 3. Is the “standard” view of metastatic initiation and growth — that secondary
lesions once established grow without interactions with each other or with the primary tumor —

quantitatively valid for description of the dynamics of the number and size of metastases?

To quantitatively test this theory against the data, we used the same modeling framework as above
(equations (1) and (3)). Critically, when calibrated on the growth of the primary tumor and total
metastatic burden, the predicted theoretical size distributions were not in agreement with the MRI
observations. Specifically, in the size distribution predicted by the model, with a similar total mass,
there were more but smaller tumors than in the data. Moreover, tumor expansion only based on
proliferation was not able to explain the volume increase of the metastatic lesions. These findings
strongly suggested rejection of the standard theory, demonstrating that the time development
of the size distribution of metastases could not be explained by independent growth of metastatic
foci. This led us to propose two possible explanatory hypotheses that could reconcile the
theory with the data: 1) merging of existing metastatic foci (which we retrospectively observed
in our data) and 2) exchange of cells between established lesions (for instance, from the primary

tumor to secondary colonies).

Together, these results have implications for theories of the metastatic process and suggest that

global dynamics of metastasis development is dependent on interactions between metastatic lesions.

This study is the subject of the publication [Baratchart, 2016].

2.3 A theoretical model of “cancer without disease”

Autopsy studies of adults dying of non-cancer causes have shown that virtually all of us possess
occult, cancerous lesions. This suggests that, for most individuals, cancer will become dormant and
not progress, while only in some will it become symptomatic disease. Naming this phenomenon

global dormancy, I investigated the following problem:

Biological problem 4. What are the determinants of global dormancy of secondary tumors leading
to what has been referred as “cancer without disease”? Can systemic inhibition of angiogenesis

explain this phenomenon?
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To explain the autopsy findings in light of the preclinical research data, together with Philip
Hahnfeldt (Center of Cancer and Systems Biology, Tufts University, Boston, USA) and Alberto
Gandolfi (IASI, CNR, Roma, Italy), we used a mathematical model of cancer development at the
organism scale describing a growing population of metastases, which, together with the primary
tumor, can exert a progressively greater level of systemic angiogenesis-inhibitory influence that
eventually overcomes local angiogenesis stimulation to suppress the growth of all lesions. The
structure of the model was extended from the equations (1) and (3) in two ways: 1) consideration
of a two-dimensional variable for characterization of a tumor’s state (tumor size and carrying
capacity) and 2) growth interactions between the tumors, which translated into a velocity that

depended on p, thus making the transport equation non linear.

Based on parameters calibrated from literature data, this in silico study of the dynamics of
the tumor/metastasis system identified ranges of parameter values where mutual angio-
inhibitory interactions within a population of tumor lesions could yield global dor-

mancy, i.e., an organism-level homeostatic steady state in total tumor burden.

Additionally, numerical investigations of the dynamics of the model revealed interesting, non-trivial

patterns.

This study is the subject of the publications [Benzekry et al., 2014b, Benzekry et al., 2014a].

2.4 A combined in vivo/in silico study of tumor-tumor interactions

Interactions between different tumors within the same organism have major clinical implications,
especially in the context of surgery and metastatic disease. Indeed, the suppressive effect of a
primary tumor on secondary tumors’ growth (experimentally observed since more than a cen-
tury) might lead to post-surgery metastatic acceleration. Three main explanatory theories
(competition, angiogenesis inhibition and proliferation inhibition) have been proposed but precise
determinants of the phenomenon remain poorly understood. After the rather theoretical results
from the previous study, I wanted to have a better quantitative understanding of this phenomenon

and to address the following problem:

Biological problem 5. Among existing theories of concomitant resistance (i.e. tumor-tumor
cross inhibition of growth) all qualitatively valid for explanation of the phenomenon, which one(s)

have to be quantitatively rejected and which one(s) are valid?

To do so, I formalized these theories into mathematical models and designed biological experiments
(together with Philip Hahnfeldt and Lynn Hlatky and conducted together with Clare Lamont) to
test them with empirical data. The experimental findings were that in syngeneic mice bearing
two simultaneously implanted tumors, growth of only one of the tumors was significantly
suppressed (61% size reduction at day 15, p < 0.05 by Student’s t-test).

Turning to the results inferred from the modeling analysis (that confronted in total more than 40

models to the data), the competition theory had to be rejected while the angiogenesis
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inhibition and proliferation inhibition models were able to describe the data. Additional
models including a theory based on distant cytotoxic log-kill effects were unable to fit the data. The
model that I found more robust for description of the data — based on the proliferation inhibition
theory — was identifiable and minimal (4 parameters), and its descriptive power was validated
against the data, including consistency in predictions of single tumor growth when no secondary
tumor was present. This model may also shed new light on single cancer growth insofar as it offers
a biologically translatable picture of how local and global action may combine to control local

tumor growth, and in particular, the role of tumor-tumor inhibition.

This model offers a depiction of concomitant resistance that provides an improved theoretical basis
for tumor growth control and may also find utility in therapeutic planning to avoid post-surgery

metastatic acceleration.

This study is the subject of the publications [Benzekry, 2017].

3 Treatments

Investigating the role of mathematical modeling in theoretical thinking of therapeutic oncology,
I co-authored a review about historical theoretical concepts that were influential in the mode of
administration of anti-cancer agents, with a particular emphasis on the concept of metronomic
chemotherapies (frequent administration of low dose of cytotoxic agents with no prolonged drug-
free breaks) [Benzekry et al., 2015b].

Together with Joseph Ciccolini (SMARTc, Inserm, Marseille, France) who is a clinical pharmacolo-
gist and biologist in experimental therapeutics in oncology, I studied a specific problem concerning
the combination of an anti-angiogenic agent (the anti-VEGF? monoclonal antibody bevacizumab)
and cytotoxics. Indeed, in the clinic, bevacizumab has only been approved in combination with
these agents, which brings the questions of the scheduling and sequence of administration.
Currently, bevacizumab is given concomitantly with the cytotoxics. However, several biological
rationales lead to think that this might not be the best strategy (or not the best strategy for all
the patients). Mathematical modeling could be of help in order to determine improved sequences
of combination (delay between the administration of the drugs) and personalize the scheduling of

the combination. This led us to define the following problem:

Therapeutic problem 1. What is the optimal time gap between administration of an anti-

angiogenic agent such as bevacizumab and cytotozic chemotherapy?

There are nontrivial interactions between anti-angiogenics and cytotoxics from the very nature of
the functional role of the agents. Indeed, the drug delivery is ensured by the blood vasculature,
which is the aimed target of anti-angiogenic therapy. However, another seemingly counter-intuitive
effect of anti-VEGF therapy has been reported: vascular normalization. It consists in a tran-

sient improvement of the leaky, tortuous and functionally inefficient tumor vasculature following

3Vascular Endothelial Growth Factor
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administration of bevacizumab. In a series of iterative rounds between modeling and experiments,
we investigated who to capture the dynamics of this process in order to suggest an optimized delay

between the administration of the drugs.

Departing from an initially purely theoretical model (i.e., not confronted to experimental data),
I used experimental data from a breast cancer animal model obtained by the SMARTc team to
design a model that was able to reproduce the differences in tumor growth kinetics due
to modulation of the scheduling. This quantitative fit could generate interesting insights such
as an estimation of a 5-fold improvement of the quality of the vasculature when giving bevacizumab
and paclitaxel (a cytotoxic agent specific to the treatment of breast cancer) sequentially rather than
concomitantly. This study is the subject of the publication [Mollard et al., 2017].

Further on, using data from a more clinically relevant experimental system of non-small cell lung
carcinoma treated with bevacizumab and the cisplatin-pemetrexed doublet, I simplified the model
(due to identifiability issues) and used nonlinear mixed effects for calibration of the parameters in
order to predict an optimal delay between bevacizumab and chemotherapy. This prediction
(3 days) was subsequently confirmed experimentally, with reduced tumor growth of 38%
as compared to concomitant scheduling, and prolonged survival (70 vs. 74 days). Alternate
sequencing of 8 days failed in achieving similar increase in efficacy, thus suggesting that modeling

support is critical to identify optimal scheduling.

Together, this proof-of-concept study exemplified how mathematical modeling can help for the ratio-
nal design of treatment protocols. In addition, the experimentally validated model that was estab-
lished could reveal a precious tool for personalized adaptation of the scheduling of the combination

between anti-angiogenics and cytotoxics.

This study is the subject of the publication [Imbs et al., 2017].

4 Studies that are not included in this document

For the sake of conciseness, several of other published works are not included in this document,
either because I considered them of secondary relevance or because my contribution was minor as

compared to others.

These include a study about the topological structure of protein-protein interaction networks across
cancer types (performed together with Edward Rietman and Giannoula Klement from the Center
of Cancer and Systems Biology at Tufts University, Boston, USA) [Benzekry et al., 2015¢]. I found
that quantification of the topology using persistent Betti numbers correlated with epidemiolog-
ical survival, thus suggesting specific proteins to be prioritarily targeted in order to target the

intracellular regulatory network.

Another recent study — in collaboration with Raphaél Serre, Dominique Barbolosi, Fabrice Bar-
lési and Xavier Muracciole (SMARTc, Inserm UMR S_ 911, Marseille, France) — was devoted to

the establishment of a mathematical model for the combination of radiotherapy and novel immune
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checkpoint inhibitors (including both anti-CTLA-4 and anti-PD1/PDL1 agents) [Serre et al., 2016].
It also gave insights into the very interesting topic of the abscopal effect by which a local radiother-

apeutic intervention has distant implications, possibly through immune-mediated mechanisms.

On the matter of radiotherapy, in collaboration with Araceli Henares-Molina, Alicia Martinez-
Gonzalez and Victor Pérez-Garcia, we investigated how radiotherapy schemes impact on the time

to malignant progression from low grade to high grade in gliomas.



Statistical prelude: models versus

data and the population approach

When dealing with data in the natural sciences, it is necessary to invoke tools from statistics. Here,
I briefly introduce the regression tools that have been constantly used to confront simulations from
mathematical models to empirical data. The models I have considered are generally dynamical
models and thus naturally require longitudinal data to be compared to. Given such data in a
population of multiple subjects, three strategy are possible to identify the model’s parameters that
give the best fit to the data.

The first two consist in either considering the dynamics of each subject separately or the average
across all subjects at each time point. These two tasks fall within the classical theory of nonlinear
regression. The first approach is limited to situations where parameters of the model are identifiable
given the dynamics of only one subject and does not offer a structural framework for description
of the variability within the population. The second approach can take this last point into account
but is biased by the fact that it might not make sense to associate the average trajectory to a
trajectory itself, as soon as the model is nonlinear with respect to the parameters. For instance, if
A1 # Ag, then there is no X such that e =

for model fitting and parameters estimation is the framework of nonlinear mized-effect modeling

A1ty Aot .
el +e™ Tp this context, a very powerful framework

[Lavielle, 2014]. This method revealed to be particularly well adapted in the context of our studies
[Benzekry et al., 2014c¢, Benzekry et al., 2016, Mollard et al., 2016, Imbs et al., 2017, Baratchart
et al., 2015].

In the general theory of nonlinear regression [Seber and Wild, 2003], fitting a model to experimental
data is a problem that is often addressed by maximizing the likelihood of the data under the
hypothesis that the data has been generated by the model plus some error resulting from the model
misspecification (structural error) and the precision of the measures. More precisely, denoting by
(yghgigm the measurements (in a subject j, 1 < j < J) at the times ¢/ and M(t/;67) the
corresponding values of the model function (dependent on a vector of parameters 9 € RP), it is
considered that the yi ’s are realizations of random variables Yij , with

Y/ = Mt;07) +olel, €],...,eh, ~N(0,1), )

) 1710
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where A/(0, 1) denotes the standard gaussian probability law. The standard deviation of the Yij ’s,
denoted by O'g is therefore of great importance in the definition of the regression problem and
corresponds to the measurement error model. For instance, typical error models are the constant
error model (the measurement error does not depend on the measure itself), af = 0,Vi,j, or the

proportional error model 0’{ =oM (tf :09).

The mixed-effect approach consists in pooling all the subjects together and estimating a global
distribution of the model parameters in the population. More precisely, the individual parameter
vectors A1, ...,607 are assumed to be realizations of a random variable @ following a (parametric)
probability law that is then the object to be estimated (this law is often assumed to be log-normal
to preserve the positivity of the parameters). The statistical representation is then formula (3),
together with

07 = Opop +17, 1 ~N(0,9Q)

where 0,0, € RP and Q € RP*P are the new parameters to be estimated that characterize the
population. The Opop 1, kK =1...p are called the fized effects and the n? the random effects. Hence,
instead of the J parameter sets in the individual approach, resulting in a total number of parameters
of pJ, only p + p? parameters have to be estimated. Combined with an appropriate description of
the error variance, a population likelihood of all the data pooled together can be defined. Usually,
no explicit formula can be computed for its expression, making its maximization a more difficult
task than the individual approach (which, provided the error model is fixed, reduces to least
squares minization). This is implemented in several softwares such as Monolix [Lixoft, 2013], which
maximizes the likelihood using the stochastic approximation expectation maximization (SAEM)
algorithm [Kuhn and Lavielle, 2005]. This population approach, to the price of more structure on
the description of the dispersion on the parameters within the population, gains in robustness of
the estimation and potentiates the estimation by pooling all the data points of all subjects, thus

potentially resolving identifiability issues when only few data are available per subject.

A great advantage of the statistical framework for estimation of the parameters, apart from giving
a rational basis to the criterion to be minimized when fitting a model to data, is that it views
the parameters estimates as random variables. As such, they have a distribution, which reflects
the uncertainty in the estimated values, itself linked to the uncertainty of the data. From the
combination of the error model and the sensitivity of the model to the parameters (i.e. the
jacobian matrix of the model with respect to the parameters) one can compute an asymptotically*
valid covariance matrix of this distribution [Seber and Wild, 2003]. This leads to the concept of
standard errors on the parameters’ estimates, defined as the squared roots of the diagonal entries
of the covariance matrix. This concept is very useful to quantify the “practical” identifiability of

the parameters from a model and some given data.

I have incorporated these concepts of statistical estimation of the parameters into a user-friendly
software (termed CARCINOM?®) dedicated to the modeling analysis of population longitudinal data

arising in my research (mostly, tumor and metastatic burden growth curves), together with libraries

4when the number of data points goes to infinity
5for Computer-Assisted Research about Cancer growth and INsights on Oncological Mechanisms
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of models for tumor growth, metastatic development and effect of therapies. From data provided
in excel files and either pre-existing or user-defined models, the software performs the regression,
computes several goodness-of-fit statistical metrics (such as the Akaike Information Criterion, the
Root Mean Squared Error or statistical tests for the normality of residuals) as well as the linearized
approximation of the standard errors of the parameters (from a finite-differences approximation
of the model’s jacobian matrix). Outputs from multiple models are exported as WTEX tables for
the model’s fit performances and the parameters values. A population mixed-effects approach
can also be performed®, relying on the already existing nlmefitsa function. However, population
estimations by Monolix are much less computationally expensive. I have developed two versions

of the software: one in Matlab and one in python.

Sonly in the Matlab version
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Abstract

In the intent to bridge the gap between mathematical models of increasing complexity and the
reality of experimental observations in oncology, the first step was to question established models
of macroscopic tumor growth. Indeed, the growth of a population of tumor cells is at the heart of
a large body of studies in mathematical oncology. However, few of these actually confronted the
models to experimental data, and even fewer compared several models among them. Therefore,
we first asked: what are the relative descriptive properties of classical models of tumor growth?
Of particular interest to us was the assessment of theoretical concepts and theories as able or not
to describe quantitative tumor growth data. Then, we wondered about the utility of such models
as predictive tools. Specifically, we investigated how bayesian estimation (i.e., combination of an
a priori population distribution on the parameters’ estimates and a small number of individual

initial time points) could improve the accuracy of predictions.
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Figure 1.1 — Haematoxylin and eosin staining of a tumor-bearing mouse kidney (the area with
higher density of nuclei on the left). Hematoxylin colors nuclei of cells in blue. FEosin stains
cytoplasmic proteins, collagen and muscle fibers. Image courtesy of Dr John Ebos.

1.1 Introduction

1.1.1 Biological considerations

Tumor growth recapitulates several levels of complexity concerning not only the tumor cells them-
selves (at the genetic, molecular and inter-cellular signaling levels) but also intricate relationships
with their environment through processes such as stromal recruitment, angiogenesis or escape from
immune surveillance. This results in a possibly complex organization of the cells at the tissue level
(Figure 1.1). However, a surprising regularity can be observed when looking at tumor growth from

a macroscopic point of view, with relatively smooth tumor volume growth curves (see below).

The process of tumor growth can classically be observed in three classes of natural systems: 1)
in vitro cultures (2D cell culture or more realistic 3D spheroid growth [Sutherland et al., 1971]),
2) experimental in vivo systems (tumor cells injected either subcutaneously or orthotopically” and
using either isografts® or xenografts?, or genetically engineered mouse models) or 3) clinical tumor
growth, usually observed by means of non invasive imaging techniques. These three empirical ways
have increasing level of measurement accuracy, inversely linked to their relevance for the study of

human cancer.

Extensive biological studies have been devoted to tumor volume growth kinetics. We refer the
reader to [Mayneord, 1932] and [Collins et al., 1956] for early studies on rodent and human data,
respectively, to [Steel, 1977] for an extensive review of experimental research using various prolif-
eration indices and to [Hart et al., 1998, Friberg and Mattson, 1997, Spratt et al., 1996, Heuser

Tat the natural tumor site, e.g. the mammalian fat pad for a breast tumor

8graft from cells of the same species, therefore possible in immune-competent animals (mice)

9graft from cells of a different species (typically human cells), therefore only possible in immune-deprived animals
(mice)
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et al., 1979] for later work on human tumor growth. One of the most common findings for animal
[Laird, 1965] and human [Steel and Lamerton, 1966, Spratt et al., 1993, Akanuma, 1978] tumors
alike is that their relative growth rates decrease with time [Wheldon, 1988]; or equivalently, that

their doubling times increase.

These observations suggest that principles of tumor growth might result from general growth laws,
often amenable to expression as ordinary differential equations [Gerlee, 2013]. The utility of these
models can be twofold: 1) testing growth hypotheses or theories by assessing their descriptive
power against experimental data and 2) estimating the prior or future course of tumor progression
[Laird, 1965, Norton et al., 1976] either as a personalized prognostic tool in a clinical context [Colin
et al., 2010, Baldock et al., 2013, Wang et al., 2009, Portz et al., 2012], or in order to determine
the efficacy of a therapy by determination of the deviation from the natural history of the disease
either in a preclinical [Bernard et al., 2012, Simeoni et al., 2004] or clinical [Ribba et al., 2012]
setting.

1.1.2 A brief state of the art of mathematical models of tumor growth

On the other hand, building on the tremendous amount of discoveries in cancer biology during the
20th century, numerous mathematical and computational models of tumor growth have flourished,
trying to integrate more and more parts of an extremely complex process. Without aiming at
any exhaustivity (a complete review of the field is far beyond the scope of this document), one
could cite evolutionary (often stochastic) models of clonal evolution that elaborate on several (epi)-
genetic alterations found to lead to carcinogenesis [Waclaw et al., 2015] (see the work of Franziska
Michor [Michor, 2008, Chmielecki et al., 2011, Altrock et al., 2015]). Cell-cell interactions can be
studied within the framework of cellular automata. For example, [Enderling et al., 2009] explores
implications of the concept of cancer stem cells (first discovered in the context of leukemia, then
also evidenced for solid tumors such as breast tumors [Al-Hajj et al., 2003]) and suggests to see
tumors as conglomerates of self-metastases. The authors identified different emergent patterns
of growth depending on values of cellular parameters (such as proliferation, death or migration).
This framework is also well adapted to the study of mechanical cell-cell interactions [Drasdo and
Hohme, 2005].

To describe spatial tumor growth at the tissue scale, models based on partial differential equa-
tions are more adapted, due to the computational limitations of agent-based models that require
simulation of the behavior of each cell. In a landmark study, Greenspan used a diffusion-based
model to offer insights on the development of a necrotic core within multicellular tumor spheroids
experimental systems [Greenspan, 1972]. Later on, culminating in the 1990’s with an important
body of literature, investigators proposed to use principles of continuum mechanics and the theory
of mixtures to model tumor growth. The populations of cells at play (for instance, tumor and
healthy) are viewed as different phases, which can coexist within a given delimited region of space
(in contrast with diffusion-limited models). This type of models allows for instance to account for

the effect of growth-induced mechanical stresses. We refer the reader to existing extensive reviews
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of these works for more information of all the processes that can be integrated in this approach (in-
teractions with the extra-cellular matrix, mechanical properties of the different phases,...) [Byrne,
2010, Lowengrub et al., 2010, Bellomo et al., 2008, Araujo and McElwain, 2004]. See in particular
[Araujo and McElwain, 2004] for an excellent review of the intermingled development of our un-
derstanding of tumor growth using both experimental and theoretical methods. Later examples of
the use of such models can also be found in the work of Ribba et al. for investigation of the effect
of radiotherapy schemes [Ribba et al., 2006a] or anti-invasive agents [Ribba et al., 2006b]. Another
approach, initiated in the early 2000’s by Kristin Swanson and James D Murray and intended for
description of invasive brain tumors proposes to use a reaction-diffusion equation where the (logis-
tic) reaction term corresponds to local proliferation and the diffusion term stands for the random
motility of the cells [Swanson et al., 2002, Neal et al., 2013].

Going further in complexity, several mathematical models were designed to bring insights on the
process of tumor neo-angiogenesis, which involves the coupling of dynamics of blood vessels for-
mation (stimulated by the release of growth factors by hypoxic cancer cells) and tumor growth
(dependent on the vasculature for the supply of nutrients). We refer the reader to [Anderson and
Chaplain, 1998] for one of the most influential paper in this field and [Chaplain et al., 2006] for a
review. Integration of the tumor vasculature and its dynamics into spatial models can also reveal
very useful when studying intra-tumor drug delivery and transport [van de Ven et al., 2012, Welter
and Rieger, 2013]. To cite one last illustrating example of the use of mathematical modeling to
improve our biological understanding, Anderson et al. used a hybrid discrete-continuum model to
investigate the role of the micro-environment on tumor growth. They observed distinct emergent

patterns of invasion depending on the extra-cellular matrix structure [Anderson et al., 2006].

All these models allow, to some extent, integration of the tumor growth complexity but they
have — to date — remained far from direct confrontation to empirical data. Indeed, the task is
hard as data sets, even in controlled experimental conditions, rarely have the level of granularity
of these spatial models (such as the spatial distribution of distinct clonal populations within the
tumor). It is the subject of current active research to bridge the gap between continuum-mechanics
based models of tumor growth and multi-dimensional data of tumor growth provided by clinical
images [Baratchart, 2016, Lefebvre et al., 2016, Raman et al., 2016, Colin et al., 2015, Weis et al.,
2015, Baratchart et al., 2015, Scribner et al., 2014, Cornelis et al., 2013, Yankeelov et al., 2013, Weis
et al., 2013, Colin et al., 2012, Colin et al., 2010].

1.2 Theories of tumor growth

In this context, my first effort when I had the chance to have access to experimental data of (scalar)
tumor volume growth was to take a step back and address the question of a quantitative comparison
of classical scalar models of tumor growth in two experimental systems: a syngeneic animal model
of Lewis Lung Carcinoma (LLC) cells grafted subcutaneously, and an exogenic animal model of
human breast cancer cells (MDA-MB-231) grafted orthotopically.
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The main variable of interest will be the tumor volume, denoted by V(¢) and assumed to be
proportional to the number of tumor cells, according to the well-established conversion rule 1 mm?

~ 10 cells [Spratt et al., 1995].

Exponential model The simplest conceivable theory of tumor growth is to consider proliferation
only (with constant length of the cell cycle). However, as expressed above, non-constant doubling
time have been reported in the literature. Accordingly, we also found in our data (for both animal

systems) that the exponential model was not able to fit the data (Figure 1.2).

Remark 1.1 (Measurement error). In our case, examination of the distribution of the measure-
ment error as a function of the caliper-measured volumes of subcutaneous tumors from 133 mea-
surements performed twice spanning a wide range of values (20.7 - 1429 mm?) led to the following
model for the standard deviation of the error (where M(t?;ﬂj) stands for the values of the model

M at times tg for the parameter set §7):

ol = oM(t50)*, if M(t567) > Vi
! oV2, if M(t;07) <V,

with o = 0.84, V,, = 83 mm? and o = 0.21 (see [Benzekry et al., 2014c] for details). This model
means that, above a given threshold V,,, the measurement error is sub-proportional and, below this

threshold, the error made is the same as when measuring Vo, .

Once the measurement error model fized and provided that o is known, likelihood mazimization

reduced to minimization of the sum of the weighted least squares.

Generally, we found that considerations of the measurement error model had an important impact

on model fits and therefore acceptance or rejection of theories as able or not to describe the data.

In all graphical representations of tumor volume within this chapter, the data presented are individ-
ual measurements and the error bar represents one standard deviation according to the measurement

error model described above.

Logistic model Going one parameter further than the exponential model, we considered a very
classical model in population dynamics that does exhibit a growth slowdown due to competition
among the individuals (for space, or food): the logistic model. Interestingly, this additional as-
sumption was not able to recapitulate tumor growth, in neither of the two experimental systems,
see Figure 1.3, nor additional in vivo tumor growth data that we were given to analyze, including
experimental melanoma and renal cell carcinoma tumor growth (data not shown). Even though
among the volume range studied the fits were visually not so inaccurate (but still less accurate
than other models), the value inferred for the maximally reachable volume was systemically bio-
logically unrealistically small (medians of 1297 mm? for the lung system and 1221 mm? for the
breast system). Indeed, for the LLC system for instance, much larger volumes are obtained when

tumors are allowed to grow larger (up to at least 10 000 mm3 in [Hahnfeldt et al., 1999] for in-
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Model Interpretation Equations
v — v
Exponential Proliferation of a constant fraction of dt
the tumor volume (growth fraction) V(it=0)=1
with constant cell cycle length
W { a)V, t<=r
4 =
ai, t<T
Exponential - linear | Biologically agnostic. Can be approxi-
mated by a model with competition be- Vit=0)=1
tween proliferative cells and presence of ) o . -
a non-proliferative compartment (sec- T= g n (aOVO) (e VI(r7)=V'(rT))
tion 1.3)
v 1%
o =aV(1-+%
Logistic Competition only dt ( K )
Vit=0)=1
= (- (1))
Gompertz Biologically agnostic. Exponential de- dt (ao Bln(v;
crease in time of the growth fraction. V(it=0)=1

V. = volume of one cell.

Power law Fractional (Hausdorff) dimension of the
proliferative tissue

Generalized logistic | Biologically agnostic

Table 1.1 — Classical models for single tumor growth.
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Figure 1.2 — Exponential growth. A. Scheme of tumor growth under proliferation only. B. Repre-
sentative fit of an exponential model (starting from the initial number of injected cells — 10° cells
~ 1 mm?® - at the time of injection) to experimental data of LLC tumor growth.

stance). Attempts of fitting the logistic model to data sets with volumes spanning ranges up to
larger volumes resulted in important visual inaccuracy of the fits (results not shown). Finally,
statistical goodness-of-fit metrics confirmed rejection of the logistic model in favor of others such

as the Gompertz or the power law model (Table 1.2).

Gompertz model While this model emerged first as a “survival" function describing the number
of living people as a function of age [Gompertz, 1825], as expressed above, the Gompertz function
(or more precisely an expression with parameters generating an increasing curve) has experienced
considerable success as a growth function, and specifically in the field of clinical oncology under
the impulsion of Larry Norton who employed this model to revisit the log-kill concept of Skipper,
Schabel and Wilcox for the effect of chemotherapies [Skipper, 1965] into the so-called Norton-
Simon hypothesis [Norton, 1988, Norton et al., 1976, Norton and Simon, 1977, Norton and Simon,
1986, Simon and Norton, 2006]. These ideas played then an important role in the design of a
pivotal large phase III trial for investigating densification of adjuvant chemotherapy protocols for

the treatment of breast cancer [Citron et al., 2003].

Consistently with previous studies in experimental in vivo systems [Laird, 1964, Laird, 1965,
Demicheli et al., 1989, Michelson et al., 1987], we also found excellent descriptive properties of
the Gompertz model (see Table 1.1 for its expression) in our data , for both experimental systems

(Figure 1.4 and Table 1.2). While still not fully explained up to our knowledge (despite several at-
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Figure 1.3 — Best-fit of the logistic model on two representative growth curves from the two exper-
imental systems.

tempts that recover approximative Gompertz growth from more fundamental principles of growth
such as the assumption of a maturation velocity that decreases as a function of the global size of
the cell population [Frenzen and Murray, 1986]), the dynamics of gompertzian growth state that
the growth fraction of the tumor volume (i.e. the portion of cycling tumor cells) is a decreasing
function of time. Parameters of the model were highly identifiable when the model is written in
the form considered here and reported in Table 1.1 (lower identifiability was obtained when con-
sidering the common parameterization %/ =aVln (%)), with median normalized standard errors
inferior to 12% (Table 1.3). In contrast to the logistic model, inferred values for the maximal tumor
volume were biologically consistent (median 12195 mm? and 2987 mm?® for the lung and breast

data, respectively).

Of note, several studies also found good agreement between the Gompertz model and empirical
data of clinical tumor growth (bening thyroid tumors [Parfitt and Fyhrie, 1997], lung metastases
from testicular tumors [Demicheli, 1980], IgG multiple myeloma [Sullivan and Salmon, 1972] or
breast tumors [Norton, 1988]).

Metabolic considerations and the power law model Von Bertalanfly [Bertalanffy, 1957],
followed later on by others [West et al., 2001], proposed to derive general laws of organic growth
from basic energetics principles. Stating that the net growth rate should result from the balance of
synthesis and destruction, observing that metabolic rates very often follow the law of allometry (i.e.

that they scale with a power of the total size) and assuming that catabolic rates are in proportion
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Figure 1.4 — Representative fits of the Gompertz and power law models for tumor growth curves
in the lung and breast experimental systems

to the total volume, he derived the following model for growth of biological processes:

% =aV7 - bV, (1)
which has already been successfully applied to describe tumor growth [Guiot et al., 2003, Herman
et al., 2011]. More elaborate considerations linking tumor growth, metabolic rate and vascular-
ization leading to equation (1) can be found in [Herman et al., 2011]. This study also provides
expressions of the coefficients in terms of measurable energetic quantities. From the observation
that our data does not exhibit a clear saturation phase, a qualitative feature of equation (1), we
also considered another model, derived from (1), by neglecting the loss term, i.e. taking b = 0.
This model will be termed the power law model. As can be seen in Figure 1.4 and Table 1.2, it

was able to give a very good description of our data.

Pushing further the reasoning of [Bertalanffy, 1957] and arguing that the rate of synthesis of new
material, in the context of tumor growth, should be proportional to the number of proliferative cells
(under the assumption of a constant cell cycle length), this model assumes that the proliferative

tissue is proportional to V7. This could be further interpreted as a possible fractional Hausdorff
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dimension of the proliferative tissue, when viewed as a metric subspace of the full tumor volume
(itself a three-dimensional subset of the three-dimensional Euclidean space). This dimension would
be equal to 3+ and could be less than 3 when v < 1. In this interpretation, the case v =2/3 (i.e.
dimension equal to 2) could correspond to a proliferative rim limited to the surface of the tumor,
a very well known phenomenon observed in tumor growth [Mayneord, 1932]. This implies that the
tumor radius — proportional to V'/3 — grows linearly in time. Such linear growth of the tumor
radius has been reported for tumor growth, for instance in the case of gliomas, thus confirming this
model prediction [Baldock et al., 2013]. At the other extreme, a three-dimensional proliferative
tissue (v = 1) represents proliferative cells uniformly distributed within the tumor and leads to
exponential growth. Any power 0 < v < 1 gives a tumor growth with decreasing growth fraction
(and thus decreasing relative growth rate), for which the power law model provides a description
in terms of a geometrical feature of the proliferative tissue. Interestingly, the values of v that we
inferred from fitting the tumor growth curves were highly identifiable and found to have small
inter-animal variability (especially in the LLC case). They suggested values of 2.37 and 1.74 for

the fractal dimensions of the proliferative tissues for the lung and breast tumors, respectively.

This model was first used (though without mention of the previous interpretation) for murine

tumor growth in [Dethlefsen et al., 1968] and was also applied to human data in [Hart et al., 1998].

Other growth models with more parameters We also tried to fit several other models with
more than two free parameters, including the generalized logistic model or a model with dynamic
carrying capacity. Descriptive properties were found excellent (Table 1.2). However, the major
drawback of these models was the lack of identifiability of their parameters, as can be observed in

the Table 1.3. This translated into poor utility in terms of predictive power (see below).



Lung data
Model SSE AIC RMSE R2 p>005 #
Generalized logistic  0.12(0.019 - 0.416)[1] -13(-30.4 - 0.978)[1]  0.398(0.174 - 0.816)[3]  0.982(0.94 - 0.997)[1] 100 3
Power law 0.155(0.0158 - 0.713)[2]  -13.4(-34.5 - 2.95)[2] 0.409(0.145 - 0.957)[2]  0.962(0.784 - 0.998)]3] 100 2
Gompertz 0.155(0.019 - 0.67)[3]  -13.4(-32.4 - 2.39)[3]  0.407(0.159 - 0.928)[1]  0.97(0.815 - 0.997)[2] 100 2
Logistic 0.232(0.0498 - 0.726)[4]  -8.34(-18.4 - 3.44)[4] 0.518(0.273 - 0.984)[4] 0.964(0.92 - 0.989)4] 100 2
Exponential-linear ~ 0.22(0.0481 - 0.76)[5] -8.51(-17.1 - 3.8)[5] 0.507(0.268 - 1.01)]5] 0.96(0.911 - 0.988)]5] 100 2
Exponential 1.36(0.31 - 2.36)[6] 6.01(-5.38 - 13.4)[6] 1.22(0.595 - 1.61)[6] 0.64(0.281 - 0.944)]6] 15 1

Table 1.2 — Fit performances of growth models. Models were ranked in ascending order of the means of the Root Mean Squared Error (RMSE),
defined from the sum of squared errors (SSE) by (for an animal j)

. 2
N I _ Mt i
j_ Yi — (ti79) g
SSE’ = E —aJ , RMSE’ = N —p

g

SSEj

i=1

with 67 the maximum likelihood estimate of the parameter vector for animal j (i.e., minimizer of SSE’) and p the number of free parameters
in the model. For each metric, indicated are the median values (among all animals) and in parenthesis the minimal and maximal values. When
reported, value inside brackets is the rank of the model for the underlying metric. The model ranking first is highlighted in bold. The Akaike
Information Criterion (AIC) is defined by [Burnham and Anderson, 2003]

. . J
AIC? = N’ In (SSE ) +2p

NiJ

(caption continued on next page).
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Breast data

Model SSE AIC RMSE R2 p>005 #
Gompertz 0.0976(0.0147 - 0.328)[3]  -11.3(-27.8 - -0.848)[1]  0.348(0.14 - 0.677)[2] 0.922(0.674 - 0.985)]3] 100 2
Exponential-linear ~ 0.0919(0.0159 - 0.49)[1]  -11.7(-24.9 - 1.01)[2]  0.336(0.163 - 0.828)[1]  0.915(0.664 - 0.989)[4] 100 2
Generalized logistic  0.0814(0.00366 - 0.328)[2] -10.7(-26.4 - 0.19)[3] 0.355(0.0956 - 0.757)[3]  0.94(0.803 - 0.988)]1] 100 3
Power law 0.102(0.0159 - 0.323)[4]  -10.9(-21.7 - -0.0172)[4]  0.356(0.163 - 0.707)[4] ~ 0.917(0.613 - 0.986)[2] 100 2
Logistic 0.145(0.00367 - 0.417)]5] -8.1(-22 - -0.129)[5] 0.429(0.0782 - 0.764)[5] ~ 0.863(0.648 - 0.988)]5] 100 2
Exponential 2.19(0.617 - 3.44)[6] 8.77(0.616 - 13.5)[6) 1.59(0.848 - 2)[6) -0.907(-5.94 - 0.875)[6] 53 1

Table 1.2 — (continued caption). The R? is informative of how good is the model fit compared to a completely agnostic one that would result
from assuming just the mean of the data and is defined by:

NI . N .
o dic1 (?JZ - M(t339]> . 1
R =1- N7 : ) yjzﬁzyf
21:1 (yf _gj) i=1

the resulting from the mixed-effect estimation (see Materials and Methods) and is defined in (14). Values reported in the column are percentages
of animals for which Kolmogorov-Smirnov test for normality of residuals was not rejected at the significance level of 0.05. # = number of
parameters.

73MOI3 Towny Jo SaLI0dy T, ‘g’
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Lung data
Model Par. Unit Median value (CV) NSE (%) (CV)
a - 2.55¢+03 (810) 4e+04 (162)
Generalized logistic =~ K - 4.38e+03 (7.37e+03) 57.9 (626)
o - 0.000141 (4.29¢+05) 4e+04 (162)
a  mm3-7. day~! 0.921 (41.9) 10.6 (55)
Power law p - 0.788 (9.35) 3.42 (62.4)
o day—? 1.84 (35.7) 9.28 (65.3)
Gompertz 3 day~! 0.0792 (43) 12 (74.4)
s a day—? 0.502 (17.5) 2.74 (54.1)
Logistic K mm? 1.3e-+03 (23.3) 15.3 (49)
. ag [day™!] 0.49 (19.5) 4.17 (58.1)
Exponential-linear ay [mm3 - day~'] 116 (24) 15.4 (63.3)
Exponential a day—! 0.399 (14.1) 2.95 (23.8)
Breast data
Model Par. Unit Median value (CV) NSE (%) (CV)
ap day—! 1.55 (22.5) 8.52 (66.2)
Gompertz B day~! 0.0719 (25) 9.73 (34.4)
A ap [day=] 0.31 (16.9) 5.61 (72.2)
Exponential-linear [mm3 - day ! 67.8 (34.8) 11.8 (87.4)
a - 2.75e+03 (264) 6.26e+04 (567)
Generalized logistic K - 1.96e+03 (1.5e+04) 25.2 (1.32e+03)
o - 2.67¢-05 (2.16e+06) 6.26e4-04 (567)
a  mm3-7. day~! 1.32 (92.2) 29.4 (51.7)
Power law 5 - 0.58 (23.4) 9.73 (77.5)
i a day ™ 0.305 (10.1) 3.18 (34.8)
Logistic K mm? 1.2264+03 (34) 10.9 (79.6)
Exponential a day—! 0.223 (5.88) 3.75 (21.1)

Table 1.3 — Values of the parameters estimates, associated inter-animal variability and standard

errors. CV = Coefficient of Variation = W x 100. NSE = Normalized Standard Error

— standard error Ogsi?gl;taerammr estimate - Gee [Benzekry et al., 2014c] or [Seber and Wild, 2003] for

methods of computation of the standard errors.
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1.3 A modeling-based explanation of biphasic exponential-
linear growth using bioluminescence data quantifying

the dynamics of proliferative cells

The human breast tumor experimental system consisted of MDA-MB-231 cells [Ebos et al., 2008]
orthotopically injected into the right inguinal mammary fat pads of severe combined immunodefi-
cient mice. For description, of this data, a model with initial exponential phase followed by a linear
phase (see Table 1.1 for its mathematical expression) was particularly adapted, both at the individ-
ual [Benzekry et al., 2014¢c] and population [Mollard et al., 2016] levels (Figure 1.5), as previously
introduced by others, although on data from ovarian and colorectal cancer [Simeoni et al., 2004].

In collaboration with experimentalists, I have had access to additional data about tumor growth
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Q (0]
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2 600} S 600
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200 200
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Days Days

Figure 1.5 — Examples of fits of the Exponential-linear model to orthotopically implanted breast
tumor growth

in the same experimental system. These consisted in quantification of bioluminescence emission
from tumor cells previously transfected with firefly luciferase (an enzyme capable of generating
light in the presence of luciferin). The particularity of this tumor growth assay is that it allowed to
distinguish the concurrently measured total tumor volume from the number of living tumor cells.
Indeed, only the latter is responsible for the bioluminescence signal (see [Mollard et al., 2016] for
materials and methods). As a general observation, it was found a saturation of this signal with

time, while tumor volume was keeping increasing.

To inform on the volume and bioluminescence combined kinetics, we investigated mathemati-
cal models that would be able to reproduced the data and proposed a biologically-based model
that would both reproduce the data and explain the exponential-linear growth pattern previously
observed. We divided the total volume into a proliferative compartment (as recorded by the bio-
luminescence and denoted P(t)) and another compartment (possibly composed of necrotic debris
and thus denoted by N(t)) that would not be proliferatively active but nevertheless contribute
to the caliper-measured volume while stopping to emit light signal (Figure 1.6.a). Growth of the

proliferative cells is assumed to be logistic, i.e. proliferation limited by competition (for space or
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_ In2

nutrients). Assuming a micro-environment carrying capacity K and a proliferation rate a (— - ),

with 7 the cell cycle length, the probability of cell division during a small time interval of length
dt is a (1 - %) dt and we have % = aP (1 — %t)) =aP — %PQ. When tumor cells are un-
able to proliferate, we assume that they enter the necrotic compartment. Writing a law of mass

conservation we have

42 —aP(1-52) =aP - £P* Pt=0)=F

dt K K
afl = & p? N(t=0)=0
V=P+N

where FPp is the number of cells injected, converted into a bioluminescence signal using a pre-

determined cell-to-light ratio.
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Figure 1.6 — Combined quantitative mathematical modeling of the bioluminescence emission and
the caliper-measured volume kinetics. (a) Model scheme. (b) Model fit of the proliferative com-
partment to the 3D bioluminescence signal, using a population approach (mixed-effects) for inter-
animal variability. Solid line = median. Dashed lines = 10th and 90th percentiles. Log scale.
(c) Resulting model prediction of the total tumor volume, up to a proportionality constant A and
to appropriate conversion into cm? (see text). (d) Simulation of the model dynamics with P =
proliferative tissue, N = necrotic tissue, V = total volume.
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The model was fit to the data using the nonlinear mixed-effects statistical framework for dealing
with the non-negligible inter-animal variability. It was fully able to describe the bioluminescence
data and quantified a plateau reached at 4.35 x 109 + 2.40 x 10° photons/second (Figure 1.6.b).
Identifiability of the parameters was excellent, as revealed by low standard errors [Mollard et al.,
2016]. Based on these parameters retrieved from the bioluminescence data, simulation of the
full model kinetics predicted a biphasic pattern for the tumor volume growth curve: first an
exponential phase, followed by a linear phase (Figure 1.6.c). Interestingly, this prediction was both
qualitatively and quantitatively in agreement with the caliper-measured volume experimental data
(Figure 1.6.d). Indeed, the model was able to accurately predict the volume growth kinetics up to
a proportionality constant A that was estimated to 2.25 4 0.23, after renormalization of the signal
into a cm? unit using the cell-to-signal ratio determined above. We hypothesize that this constant
A is associated to the reported fact that not the entire tumor volume is composed of tumor tissue
(i.e., alive plus necrotic) as it also comprises a non-negligible part of stroma (estimated here to 56%
of the total volume). Taken together, our results show that our simple mathematical model was
able to describe the dynamics of both the proliferative component and the entire tumor volume.
In doing so, it also provides a valid explanation of the exponential-linear pattern of the tumor
volume kinetics. In our theoretical framework, when the proliferative tissue reaches saturation,
this generates a constant growth rate of the volume (because % = aP), which in turn provokes
the transition to the linear phase.

1.4 Predictive power of classical models of tumor growth

1.4.1 Using individual data points only

We then addressed the problem of forecasting future tumor growth using a given number of initial
data points. As can be seen in a representative example in Figure 1.7 using n = 5 data points, the
predictive power of all the models was rather limited. Quantitatively, variable prediction error was
observed across the two tumor types and across the mice. Using n = 5 data points and predicting
at a depth of d = 2 days, the mean relative errors ranged 21 - 28 % for the LLC system and 13 -
18 % for the breast tumors (Table 1.4). As could have been expected, when using less data points,
the predictive power decreased. Using only three time points and predicting either the next data
point (LLC data) or at a depth of d = 2 days (breast data), the mean relative error was 29 - 31 %
for the LLC system (with the notable exception of the exponential-linear model at 21%) and 27 -
33% for the breast system (Table 1.4). Interestingly, the same setting (using three data points to
predict at depth d = 1 for the LLC data or d = 2 for the breast data) but in a different part of the
growth curve, namely in the last phase (starting volumes of 1245 + 254 mm? and 1383 + 211 mm3
for the LLC and breast data, respectively), led to improved predictive power, with relative errors
ranging 8- 14% (LLC data) and 14 - 17% (breast data), see Table 1.4. This last setting might be
the most clinically relevant since in this setting, diagnosis might occur when the tumor is already

quite large (typically, 1 g ~ 10° cells for a breast tumor). Notably, the exponential-linear model
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exhibited excellent predictive power for the breast data, in line with the previous findings of its
accurate descriptive power for this experimental model. In particular, even when using only one

data point (plus the initial condition V (¢t = 0) = 1 mm? ), the predictive power was excellent, even
at a depth of more than 10 days.
We refer the interested reader to [Benzekry et al., 2014c] for more details, including the descriptive

power of the models at larger depths.
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Figure 1.7 — Representative examples of the predictive power of 4 models of tumor growth when
using 5 data points (plus a fixed initial condition V (¢t = 0) = 1 mm?). LLC data.
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Figure 1.8 — Representative examples of the predictive power of the exponential-linear model when
using 1 data point (plus a fixed initial condition V(¢ = 0) = 1 mm?). Breast data.



Breast data

RE572

RE372

REf,

0.15 (0.03 - 0.57)

0.33 (0.09 - 0.97)

0.14 (0.00 - 0.41)

Lung data
Model RE572 RE371 REg,l
Power law 0.21 (0.02 - 0.52) 0.29 (0.01 - 1.08)  0.08 (0.01 - 0.29)
Gompertz 0.25 (0.07 - 0.57)  0.30 (0.03 - 1.08)  0.10 (0.00 - 0.30)

0.15 (0.00 - 0.54)

0.33 (0.08 - 0.97)

0.17 (0.00 - 0.61)

Exponential linear

0.22 (0.04 - 0.43)

0.21 (0.03 - 0.99)

0.10 (0.01 - 0.33)

0.13 (0.01 - 0.36)

0.27 (0.08 - 0.84)

0.10 (0.00 - 0.32)

Generalized logistic

0.28 (0.07 - 0.57)

0.31 (0.03 - 1.08)

0.14 (0.01 - 0.30)

0.18 (0.00 - 0.54)

0.27 (0.10 - 0.73)

0.15 (0.00 - 0.41)

Table 1.4 — Predictive power of selected models. RE, 4= relative error of the prediction using n data points and predicting d days in the
future. RE/ = final portion of the growth curve. Reported are the mean (min - max).
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1.4.2 Predictions improvement when employing bayesian estimation

When relatively fewer data points were used, for example with only three, individual predictions
based on individual fits were found to be globally limited for the lung tumor data, especially over
a large time frame. However, this situation is likely to be the clinically relevant since few clinical
examinations are performed before the beginning of therapy. On the other hand, large databases
might be available from previous examinations of other patients and this information could be
useful to predict future tumor growth in a particular patient. In a preclinical setting of drug
investigation, tumor growth curves of animals from a control group could be available and usable

when inferring information on the individual time course of one particular treated animal.

An interesting statistical method that could potentiate this is bayesian estimation. It consists
in using @ priori information, i.e. learning the population distribution of the model parameters
from a given pre-established database and to combine it with the individual parameter estimation
from the available restricted data points on a given animal. We investigated this method in order
to determine if it could improve the predictive performances of the models. Each dataset was
randomly divided into two groups. One was used to learn the parameter distribution (based on
the full time curves), while the other was dedicated to predictions (limited number of data points).
For a given animal of this last group, no information from his growth curve was used to estimate the
a priori distributions. The full procedure was replicated 100 times to ensure statistical significance,

resulting in respectively 2000 and 3400 fits performed for each model.

Let a dataset and a model M be given. Individual fits for the first group (the “learning" group) were
performed using all the available data, generating mean values (61, ... ,@) and standard deviations
(w1, ..., wp) of the parameters within the population. This information was subsequently used when
estimating the individual parameter set of a given animal from the second group (the “forecast"
group ). Indeed, assuming a gaussian distribution of each parameter within the population and

using Baye’s formula, the new likelihood of the data points y{, ceey yfvj in animal j writes:
P (yi . ,yfw,@j) =p(yls- - YN |07)p(67)

which leads to minimization of the following objective function for the log-likelihood:

(g o (-7
) =3 (UML) 5 (00 ®

i=1 2 k=1

Predictions obtained using this technique were significantly improved for the LLC subcutaneous
tumors. Prediction improvement was particularly high for models exhibiting a small dispersion of
the parameters within the population distribution, such as the power law model (see Figure 1.9).
Indeed, when using formula (2) above for estimation of the parameters, we see that adjunction
of the a priori information is only useful if the standard deviation of the parameters within the
population is not too important. This was indeed the case for the power law model with coefficients

of variation of 9% and 42 % for the parameters v and a, respectively. According to a success
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metrics defined (using the measurement error model established above) as the error being within
three standard deviations [Benzekry et al., 2014c|, the average prediction successes reached 90%
using the power law model at depth d = 1 day, it was only 57.1% using an individual approach.
Prediction success rates were improved even at large future depths. For instance, for d = 7 days, the
average success rate was 50.6% versus 6.07% using individual prediction. For the breast data, due
to already high prediction scores without adjunction of a priori information, the exponential-linear
model did not benefit from the method. For the next day data point of the breast tumor growth
curves, predictability was already almost maximal without adjunction of a priori information and

thus no important impact was observed.

Taken together, our results demonstrated that, for each experimental system, a prediction method
could be applied that ensures good predictions of future tumor growth using a minimal number of

data points.

For the orthotopic breast xenografts, the exponential-linear model generated excellent predictions,
even without the addition of population information. For the LLC ectopic subcutaneous tumors,
combination of bayesian estimation (a priori on the population distribution) and the power law
model was the best strategy. While encouraging, this last result however highly depends on the
large degree of homogeneity across the tumor growth curves in this animal model, which is well
captured by parameters with small population coefficients of variation. This feature comes from the
fact that the experimental conditions were actually controlled to ensure maximal reproducibility
and thus minimal heterogeneity. The tumor cells all come from the same cell line. They were
injected in mice from an inbred strain (C57BL/6) and thus the hosts are nearly all identical to

each other in genotype.

This makes the situation very different from clinical human cancers, which much more heteroge-
nous in their growth patterns, even within the same tumor type and histology. Indeed, when we
applied this bayesian methodology to a dataset meningiomas growth in 24 patients, no prediction
improvement was obtained (unpublished results). It is the subject of current active research to
bridge the gap between continuum-mechanics based models of tumor growth and multi-dimensional
data of tumor growth provided by clinical images [Colin et al., 2015, Colin et al., 2010, Colin
et al., 2012, Cornelis et al., 2013, Raman et al., 2016, Scribner et al., 2014, Baratchart et al.,
2015, Baratchart, 2016, Lefebvre et al., 2016, Yankeelov et al., 2013, Weis et al., 2013, Weis et al.,
2015].
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Abstract

While a large zoology of mathematical models exist for tumor growth as seen in the previous
chapter, few have been developed for description of the metastatic process, despite its fundamen-
tal clinical importance. Furthermore, mathematical models of invasion and metastasis are most
often confined to local determinants of these processes and seldom consider the systemic nature of
metastatic dynamics. Nevertheless, recent findings in cancer biology have uncovered nontrivial dy-
namics occurring at the organism scale. In the studies of this chapter, in collaboration with several
teams of biologists, we attached ourselves to gather experimental data obtainable for quantifica-
tion of the metastatic process and used a unified mathematical framework to interrogate several

biological questions.

First, in collaboration with John Ebos at the Roswell Park Cancer Institute (Buffalo, USA),
we investigated the relevance of quantitative laws of metastatic dissemination and growth for
description of pre-surgical primary tumor and post-surgical metastatic burden data (quantified by
bioluminescence), in two clinically relevant “ortho-surgical” animal models of metastasis (section
2.3 and [Benzekry et al., 2016]).

The second study was performed in the framework of the PhD thesis of Etienne Baratchart that
I co-supervised with Thierry Colin and Olivier Saut. It has been performed in collaboration
with a team of biologists led by Andreas Bikfalvi and composed also of Lin Cooley and Wilfried
Souleyreau (Laboratoire de I’Angiogénése et du Micro-Environnement des Cancers, Inserm U1029,
Bordeaux, FR) and a team specialized in in vivo animal magnetic resonance imaging led by Sylvain
Miraux with MRI observations performed by Emeline Ribot (Centre de Résonance Magnétique
des Systémes Biologiques, CNRS, Bordeaux, FR). It consisted in quantitatively challenging the
“classical” model of metastatic development where no interactions occur between established lesions

against the experimental data (section 2.4 and [Baratchart et al., 2015]).

During my postdoctoral stay at the Center of Cancer and Systems Biology (CCSB, Tufts Univer-
sity, Boston, USA), in collaboration with Philip Hahnfeldt (CCSB) and Alberto Gandolfi (Istituto
di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, Roma, IT), we investigated systemic
tumor-tumor interactions from a theoretical perspective to shed light on global metastatic dor-
mancy (section 2.5 and [Benzekry et al., 2014b, Benzekry et al., 2014a]). Finally, using a combined
experimental and modeling approach to address theories of tumor-tumor distant interactions (sec-
tion 2.6 and [Benzekry et al., 2017]). The experiments were designed by myself in concertation

with Lynn Hlatky and Philip Hahnfeldt but were mostly performed by Clare Lamont.
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2.1 Introduction

Metastasis (from the greek perd = beyond and ordoi( = place) is the colonization of one or
multiple distant site(s) from the primary tumor location. A wide heterogeneity of distant metastatic
locations is observed across cancer types, some of them not generating any metastasis at all (such
as gliomas), and others exhibiting preferential distant sites for establishment of secondary colonies
[Valastyan and Weinberg, 2011]. For instance, prostate cancer almost exclusively metastasizes
to the bones. While some locations have a natural explanation (the lungs are typical sites of
metastasis due to the small size of capillaries there, the liver as well due to its filtering role and
the portal vein directly effluxing into it), elucidating precise determinants of metastatic tropism
remains an open biological question in cancer biology. However, this is mentioned here just for the

curiosity of the reader as this problem cannot be addressed within the formalism developed here.

The metastatic process is complex and results from a cascade of several events (Figure 2.1). Briefly,
several bottlenecks have to be overcome before establishment of a distant metastasis. These in-
clude: detachment from the primary tumor, migration and invasion in the local micro-environment
(involving phenotypical changes of the tumor cell such as the epithelial-to-mesenchymal transition),
intravasation into blood vessels, survival in transit, extravasation at a distant site, possibly a dor-
mancy phase either as an isolated cell or as a micro-tumor [Chambers et al., 2002] for periods
lasting from months to decades [Nguyen et al., 2009], stromal recruitment at the distant site, an-
giogenesis and growth to a macroscopic size. In addition, new findings in the last three decades
about organism-scale phenomena rendered the picture even more complex and the relationship be-
tween primary tumor growth and eventual metastasis remains enigmatic [Klein, 2009]. Metastatic
seeding was initially thought to occur only during late stages of primary tumor growth and inva-
sion [Hanahan and Weinberg, 2000]; however, recent evidence suggests systemic dissemination is
a much earlier event [Hanahan and Weinberg, 2011]. Indeed, even the direction of tumor spread,
initially thought to occur unidirectionally from primary to secondary sites, has been replaced by
more complex and dynamic theories of interaction. These include models where primary and
secondary lesions grow (and evolve) in parallel [Klein, 2009] and the possibility that cell seeding
can be bidirectional, with metastasis potentially “re-seeding” back to original primary location
[Norton and Massagué, 2006, Comen et al., 2011, Kim et al., 2009]. Other examples of nonlinear
interactions at the systemic scale include: distant inhibition of angiogenesis, possibly leading to
post-surgical acceleration [O'Reilly et al., 1994, Demicheli et al., 2008], distant preparation of the
pre-metastatic niche through recruiting of bone marrow-derived hematopoietic progenitors [Kaplan
et al., 2005]. We refer the reader to [Valastyan and Weinberg, 2011] for an excellent review of the
current knowledge of metastatic biology, including details about the molecular players involved
in different steps of the metastatic cascade, as well as the estalished roles of several stromal cells.
This paper also reviews the current theoretical models of metastasis formation. For more historical

considerations of the study of cancer metastasis, see [Talmadge and Fidler, 2010].

To assist in understanding this complexity, mathematical modeling has been used to determine

the relationship between primary (localized) and secondary (metastatic) tumor dissemination and
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The Sequential Process of Metastasis
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Figure 2.1 — The metastatic cascade. Reproduced from [Talmadge and Fidler, 2010]

growth. A detailed review of all the mathematical modeling studies that addressed the questions
of metastatic dissemination and growth is beyond the scope of the present document (and can
be found, in part, elsewhere [Scott et al., 2013b, Clare et al., 2000]) but a few publications of
biological or clinical interest that the curious reader can consult are: [Slack et al., 1969, Liotta
et al., 1976a, Saidel et al., 1976, Guiguet et al., 1982, Koscielny et al., 1985, Klein and Bartoszynski,
1991, Kimmel and Flehinger, 1991, Yorke et al., 1993, Retsky et al., 1997, Koscielny and Tubiana,
1999, Iwata et al., 2000, Michor et al., 2006, Hanin et al., 2006, Barbolosi et al., 2009, Bethge
et al., 2012, Haeno et al., 2012, Newton et al., 2012, Newton et al., 2013, Scott et al., 2014, Scott
et al., 2013a, Mehrara et al., 2013, Coumans et al., 2013, Araujo et al., 2014, Bazhenova et al.,
2014, Brodbeck et al., 2014, Hanin and Bunimovich-Mendrazitsky, 2014, Hanin et al., 2015, Hanin
and Rose, 2016, Poleszczuk et al., 2016].

The mathematical formalism that we develop below has been employed to address the following bi-
ological questions about metastasis, which have the common characteristic of concerning dynamics

of the disease at the organism scale.

Biological problem 2. What are the qualitative and quantitative differences among experimental
models of metastasis for different cancer types? Is the growth of secondary tumors identical to the
growth of the primary tumor, in a given experimental system? How does the dissemination process
depend on the size of the primary tumor? What is the impact of surgery on metastatic growth and

dissemination?

Biological problem 3. Is the “standard” view of metastatic initiation and growth — that secondary
lesions once established grow without interactions with each other or with the primary tumor —

quantitatively valid for description of the dynamics of the number and size of metastases?
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Biological problem 4. What are the determinants of global dormancy of secondary tumors leading
to what has been referred as “cancer without disease” [Folkman and Kalluri, 2004]¢ Can systemic

inhibition of angiogenesis explain this phenomenon?

Biological problem 5. Among existing theories of concomitant resistance (i.e. tumor-tumor
cross inhibition of growth) all qualitatively valid for explanation of the phenomenon, which one(s)

have to be quantitatively rejected and which one(s) are valid?

We refer the reader to the introduction of each section for more precise biological background on

each of these questions.

2.2 A general mathematical formalism for metastatic devel-

opment

As in every modeling process, simplifications of the reality have to be made following ion order to
address the problematic for which the model is built or fit the type of data that is experimentally
or clinically obtainable. In our case, in accordance with the biological literature, we chose to divide
the metastatic process into two main phenomena: dissemination and colonization [Valastyan and
Weinberg, 2011, Chaffer and Weinberg, 2011, Nguyen et al., 2009]. This is also in line with the
clinically observable quantities (for stage IV disease, see Figure 2.2) and clinically relevant variables

of interest for the clinical problem (number and size of secondary tumors).

20/01/2015 06/11/2015

Figure 2.2 — Enhanced CT scan of the liver of a kidney cancer patient with multiple metastatic
tumors showing progression of the disease characterized by apparition of new lesions and growth
of existing ones. Images courtesy of Dr F. Cornelis (radiology unit, CHU Bordeaux)

The metastatic modeling approach we used mostly follows a formalism initiated by Iwata, Kawasaki

and Shigesada [Iwata et al., 2000]. The main idea is to describe the population of secondary tumors
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by means of a physiologically structured density p(t,v) where ¢ is the time and v is the volume
of the lesions. This means that for a small dv, the number of metastases having size comprised
in the interval (v,v + dv) is given by fvﬂlv

v

p(t,u)du ~ p(t,v)dv. The original model of Iwata et
al. was further expanded in three ways by our and others’ work: (i) effect of systemic therapies
[Benzekry et al., 2012a, Benzekry, 2012a], (ii) systemic growth interactions between established
lesions [Benzekry et al., 2014b, Benzekry et al., 2014a] and (iii) use in in vivo human xenograft
models involving orthotopic primary tumors (primary tumor) and metastasis both in nonsurgical
[Hartung et al., 2014] and surgical [Benzekry et al., 2016] systems. The two main components

(growth and dissemination) are modeled by:

1. Presurgical primary (g,) and secondary (g) tumor growth rates, defined as the infinitesimal
tumor size increase per time unit (expressed in [size] x [time] 1)
2. A dissemination rate (d), defined as the infinitesimal number of new metastases per time

unit (expressed in [time]~1).
A schematic description of the model is depicted in Figure 2.3.

Injection (or first cell) Surgery

l neo-adjuvant TX l adjuvant TX

PT growth law: gp(t, Vo, p)

Primary :
Tumor Iy » ‘ q
(PT)

Disseminjation law: a(\%,) .
: A
Secondary dissemmanon
Metastases 2 ﬁ ‘

Metastases growth law: g(t, V4, V. p) ot I“

Figure 2.3 — Model scheme for metastatic dynamics divided into growth and dissemination. The
grey area represents the pre-surgical phase, often equal to the indolent pre-diagnosis period. The
green dotted-line represents the possibility of metastases from metastases. TX = treatment.
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Growth Dynamics As in chapter 1, the primary tumor volume V,,(t) solves the following equa-

tions o
cltp = gp(tv ‘/;77 p)

(1)
Vp(t=0)=V;
The initial condition for the primary tumor, denoted by V;, was determined either by the number
of injected cells (for confrontation to in vivo experiments) or the initial tumor size at inception
(clinical cases, V; = 1 cell). Metastases were assumed to start from one cell (size denoted V). When
treatment is taken into account, this problem can become non-autonomous [Benzekry, 2012a]. We
also included a possible dependency of g, on p to account for possible non-trivial growth interactions
between the primary tumor and the mets [Benzekry et al., 2014b, Benzekry et al., 2017]. Note
also that for simplicity of the exposition here we considered a tumor state as represented by its
volume v only but this can be extended to a multi-dimensional state (such as volume and carrying
capacity, see section 2.5 and [Benzekry et al., 2012b, Benzekry, 2011a, Benzekry, 2012a, Benzekry
et al., 2014b, Benzekry et al., 2014a, Benzekry, 2012b]).

From our previous study quantifying the descriptive power of several growth kinetics models using
data from the same breast animal model (chapter 1), the Gompertz model accurately described
primary tumor growth curves. However, a limitation of this model is that the tumor doubling
time could become arbitrarily small for small volumes, a feature that we considered biologically
irrelevant for volumes at metastatic initiation (of the order of the cell). A lower bound to this
doubling time might be expressed by the in vitro doubling time of the cell line, which can be

experimentally determined. Consequently, we adopted the Gomp-Exp model [Wheldon, 1988],

defined by
6p(v) = g(v) = min (Av, <ao _fn (V)>)

Under this model, growth is divided between two phases: an initial exponential phase, followed by
a Gompertz growth phase. Parameter )\ is the maximal proliferation rate that can be comouted
from in vitro proliferation assays. The second term in the min function is the Gompertz growth
rate, defined by two parameters. Parameter oy is the intrinsic relative (also termed specific) growth
rate at the size Vj of one cell. Parameter 8 is the exponential decay rate of the relative growth

rate.

Metastatic dissemination The formation of new metastases was assumed to occur at a volume-

dependent rate d(v) having the following parametric expression [Iwata et al., 2000]:

d(v) = (2)

where parameter p is an intrinsic parameter of metastatic aggressiveness. This critical coefficient
is the daily probability for a given tumor cell to successfully establish a metastasis. Therefore, it
is the product of several probabilities: (i) the probability of having evolved the necessary genetic

mutations to ensure the phenotypic abilities required at each step of the metastatic process, (ii)
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the probability of surviving all adverse events occurring in transit including survival in the blood
or immune escape, among others, and (iii) the probability to generate a functional colony at the
distant site. Following reported observations [Steel and Lamerton, 1966], we assumed that all the
metastases were growing at the same volume-dependent rate g and that they all started from the
same volume corresponding to the volume of one cell. As for the primary tumor growth, we also
allowed g to depend on p to account for metastases-metastases growth interactions (note that this

transforms the transport equation into a nonlinear one).

Bup(t,v) + 8, (g(t,v, p)p(t,v)) = 0 0, T[x]Vo, 400
g(t, Vo, p)p(t. Vo) = d(Vy (1)) + [+ ™ d(v)p(t, v)dv 0, 77 (3)
p(O,’U) =0 ]V07+OO[

where T is the final time. The first equation is a continuity equation expressing conservation of the
number of metastases when they grow (equivalent to the transport in size). The second equation
is a Neumann boundary condition on the flux of entering metastases at size v = V{. Its right hand
side is composed of two terms. The first one is the rate of birth of new metastases from the primary
tumor. The second (integral term) represents the birth of metastases from metastases themselves,
a feature for which there is no clear consensus in the literature [Tait et al., 2004, Sugarbaker et al.,
1971, Bethge et al., 2012] and that was not always relevant to our studies but is included here for
generality. The third equation describes the initial condition (no metastases at the initial time).
From the solution of this problem, two main macroscopic quantities of interest can be derived, the
metastatic burden M (¢) and the number of metastases N (¢). Of note, these have simple expressions

when secondary dissemination and tumor-tumor interactions are neglected:

N - | ot v)dv = / (Y, (s))ds = / V() ds

Vo

—+o0

Mo = [ oty = /0 d(V, (t = $)V(s))ds

In the convolution formula for M (t), V (s) represents a solution to the Cauchy problem (1), with
g instead of g, and V; as initial condition. This formula allows fast simulation of the model
using the fast Fourier transform algorithm [Hartung, 2015], which is essential for estimation of the

parameters that requires a very large number of model evaluations.

Discrete and stochastic dynamics Although the formalism described above is very convenient
for confrontation to data of the total metastatic burden because of its fast computation formula,
a continuous rate of shedding of metastases (and thus, a continuous size distribution p) might be
debatable. Indeed, metastasis is a discrete event and we are not in the limit of a large number of
events that would justify approximation by a continuous rate. Moreover, typical clinical observa-
tions typically consist in a finite number of lesions, primarily characterized by their size (Figure
2.2).

Therefore, we also implemented a discrete and stochastic framework of the model (in the case of
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negligible secondary dissemination and tumor-tumor interactions). The stochasticity here refers to
intra-individual randomness in the metastatic dissemination. The formation of new metastatic foci
is assumed to be a sequence of random events exponentially distributed with rate d(V,(t)). The
number of metastases follows then a Poisson process N (t) with intensity d(V),(t)). The appearance

time of the i-th metastasis is defined by

Ty = inf {t > 0; N(t) > i}

Adapting the previous methodology to the case of randomly distributed dissemination times and
denoting p the resulting random size distribution of metastases, g is a sum of Dirac masses solving
the following problem:

O p(t,v) + 0,(p(t,v)g(v)) =0 ¢t €]0,+o0], v €]Vy, +oo|

g(Vo)p(t, Vo) = 57 6 (¢ =Ti) ¢ €]0,+00]

p(0,v) =0 v €]Vp, +00]

Equivalently, denoting by V; the volume of the i-th metastasis, we have

G = 9(Vi(t)

Vi(Ti) = Vo, Vi(t) =0, for t <T;

thus transforming the partial differential equation (3) into a set of differential equations. From
these considerations the stochastic total metastatic burden at time ¢, denoted by M(t) is defined

by the following expression

400 +o00
M(t) = / plt,v)dv = Y- Vilt)

Vo

The two approaches (deterministic and stochastic) are in fact closely and consistently linked.
Indeed, it can be shown [Hartung and Christophe, 2014] that the quantities M (¢) and N (¢) defined

above in the deterministic framework are the respective expectations of M(t) and N (¢).



66 Chapter 2. Metastasis: biological dynamics at the organism scale

2.3 Spontaneous metastasis following surgery in clinically

relevant animal systems

Introduction

The dearth in experimental metastatic data stems largely from the complexity of studying metas-
tasis itself. While clinical (retrospective) data have value [Klein, 2009, Slack et al., 1969, Yorke
et al., 1993, Coumans et al., 2013, Koscielny et al., 1984], mouse tumor models have typically
aimed to mimic (and distinguish between) several stages of the metastatic process. In certain
mouse models, metastasis can derive from a tumor that is implanted ectopically or orthotopically
into a primary or metastatic site (“ectopic”, “orthotopic”, or “ortho-metastatic” models, respec-
tively [McMillin et al., 2013]) and can involve various immune states (i.e., human xenograft or
mouse isograft). Although more rarely performed, models can also include surgical resection of the
primary tumor, which allows for progression of clinically relevant spontaneous metastatic disease.
These can include surgery following ectopic implantation (i.e., “ecto-surgical”, such as tumors
grown in the ear or limb that are later amputated), or orthotopic implantation and resection (i.e.,
“ortho-surgical”), which more faithfully represent patient disease. To date, no studies have utilized

data from ortho-surgical metastasis models for mathematical analysis.

Results

The data used in this study were obtained by the laboratory of J. Ebos at the Roswell Park Cancer
Institute by M. Mastri and A. Tracz. They are derived from two ortho-surgical metastasis models
representing competent and incompetent immune systems with luciferase-tagged human breast
(LM2-4%VC+) and mouse kidney (RENCAUCH) cell lines (Figure 2.4A). The luciferase tagging of
the cells allowed to longitudinally track the post-surgical growth of the total number of metastatic
cells within the mice organisms, together with the pre-surgical primary tumor size.

The objective was to confront the mathematical formalism from the previous section to experiment

10 models of the metastatic dynamics for each experimental

in order to establish parsimonious
system. To do so, we combined our mechanistic model of metastatic development with the nonlinear
mixed effects framework for parameters estimation (see the statistical prelude). A lognormal
distribution of the parameters and a proportional error model were assumed. This allowed us
to test different model assumptions, such as the functional expression of the primary tumor and
metastases growth laws (exponential or Gomp-Exp) and the relationships between them (same or
different growth law, same or different growth parameters). For each case, the optimal structure
resulting from our investigations was to assume the same structural growth law for the primary

tumor and the metastases, although with possibly different parameter values.

For the human breast (LM2-4"Y¢+) metastasis system, the best identifiable!! description model

10 e., minimally parameterized

11in the sense of “acceptable” standard errors on the parameters estimation, i.e. inferior to 50%
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included growth dynamics defined by the Gomp-Exp growth model and growth parameters for

primary tumor and metastases treated identically (g = gp).

For the kidney (RENCAMVUC+) metastasis system, the optimal model considered growth dynamics
defined by an exponential growth model and growth parameters for primary tumor and metastases
treated differently.

In each case, we could fit our data equally well with various values of the parameter v from the dis-
semination coefficient (2), and thus concluded that it cannot be identified from combined primary
tumor growth and metastatic burden dynamics data alone [Benzekry et al., 2016]. Future studies
would require more data, especially on the number and size distribution of the secondary lesions, to
precisely determine the shape of the dissemination coefficient. Adopting thus the simplest theory,

we assumed that all the cells within the tumor had equal metastatic potential and took v = 1.

Importantly, combinations of the mechanistic model and the mixed-effects framework could quan-
tify the dynamics of the process as well as the inter-animal variability. The latter was better
characterized by the metastatic potential parameter p (large coefficients of variation [Benzekry
et al., 2016]). Resulting population and individual fits of the best models to the data are shown
in Figure 2.4B and C, and Figure 2.5, respectively. Notably, the models were able to accurately
predict metastatic dynamics in independent data sets where surgery was performed on a different

day, and that were not used during the parameters estimation process (Figures 2.4.C and E).

Our quantitative modeling study allowed us to better understand the metastatic process and iden-
tify differences between the two experimental systems. For the breast model, inference of p revealed

I with considerable inter-animal

small metastatic potential (median value 4.43 x 10711 cell~!- day~
variability (coefficient of variation of 176%)), which translated into late development of metastases
following xenograft and growth of the metastatic burden mostly dominated by proliferation (Fig-
ures 2.4B and 2.5A-C). In contrast, the kidney model metastatic burden growth curves exhibited
a different behavior, with a marked change of regimen at the time of surgery. In the context
of the model, this means that most of the presurgical increase was driven by the dissemination
process, and not by proliferation of the metastases themselves. This was reflected by a very large
value of p (median value 4.15 x1072 cell™!- day~!), with nine orders of magnitude of difference
compared with the breast model. This feature was not directly visible, nor quantifiable, by direct
examination of the data, and reflects the large metastatic aggressiveness of isograft spontaneous
metastasis animal models, because overpassing the immune surveillance is a major challenge in
the metastatic process [Hanahan and Weinberg, 2011]. When the primary tumor was removed,
dissemination stopped and only proliferation remained for further metastatic growth, which hap-
pened at a slower rate than at the primary site (Figures 2.4C and 2.5D-F). In some cases, growth
of the metastatic burden remained constant or even decreased after surgery. This result reflects
the fact that the competent immune status of the mice might have an important impact on the
establishment of durable, fast-growing metastatic colonies at the secondary sites [Milsom et al.,
2013].

Together, our data-based quantitative modeling analysis of presurgical primary tumor and postsur-
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gical metastatic burden growth kinetics demonstrated the descriptive and predictive power of
the models, unraveled distinct growth patterns between the two animal models, and empha-
sized the critical role of the parameter u for quantification of the inter-animal variability in
metastatic aggressiveness.
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Figure 2.4 — Population fits and predictive power using perioperative data from ortho-surgical
metastasis models. A, spontaneous metastasis were generated following orthotopic tumor cell im-
plantation and then primary tumor resection ("ortho-surgical") in two models: (i) human xenograft
model: intramammary fat pad implantation of 1 x 106 LM2-4"Y¢+ human metastatic breast car-
cinoma cells followed by surgical excision after 34 and 38 days (two separate experiments, N =
22 mice total) and (ii) mouse isograft model: subcapsular implantation of 4 x 10* RENCAVC+
mouse kidney carcinoma cells followed by full surgical nephrectomy 23, 26, and 30 days after
implantation (N = 19 mice total). Representative examples of presurgical (primary tumor) and
postsurgical (MB) bioluminescence. B and C, using a nonlinear mixed-effects modeling approach,
a distribution of the parameters was estimated from the data, which, in turn, generated a distri-
bution of model outputs (pre- and postsurgical growth curves). The solid lines depict the median
of these distributions and the dashed lines the 10th and 90th percentiles. The population fit of
the kidney data was established using two datasets with two resection times, only one of which is
presented here for the sake of clarity. D and E, from the population fits obtained, the predictive
power of the models was assessed against independent datasets with different resection times.
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Figure 2.5 — Individual fits of perioperative primary and secondary disease in breast and kidney
ortho-surgical metastasis systems. A—C, xenograft breast case. Gomp-Exp growth model for both
primary and secondary tumors, with same growth parameters (3 degrees of freedom in total). D-F,
isograft kidney case. Exponential growth for both primary and secondary tumors with different
growth parameters (3 degrees of freedom total). For each animal, the fit was performed on the
primary tumor first and then the metastatic burden. We only show here three representative

examples for each dataset. All the individual fits can be found in the supplementary material of
[Benzekry et al., 2016]
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2.4 Challenging the classical view of metastatic initiation

and growth

In a subsequent biological study of the metastatic process usin the same kidney cancer animal
model as above (renal adenocarcinoma cell line RENCA orthotopically injected in the subcapsular
space of Balb/c mice), although without surgery of the primary tumor, we had access to more
precise multi-modal data about the metastatic development, including magnetic resonance images
(MRI) quantifying the number and size of macroscopic vascularized lesions in a non-invasive and
longitudinal fashion. This allowed to question the “standard” model of metastatic dissemination
and growth as classically considered in the literature and so far in our mathematical modeling

framework, formulated in the biological problem 3 that we recall here:

Biological problem 3. Is the “standard” view of metastatic initiation and growth — that secondary
lesions once established grow without interactions with each other or with the primary tumor — valid

for description of the dynamics of the number and size of metastases?

This study was performed in collaboration with a team of biologists at the “Laboratoire de
I’Angiogénése et du Micro-environnement des Cancers” led by A. Bikfalvi (Inserm, Bordeaux, FR)
and composed of W. Souleyreau and L. Cooley on one hand, and a team specialized in magnetic
resonance imaging for in vivo experiments in small animals (E. Ribot and S. Miraux, magnetic
resonance of biological systems center, Bordeaux, FR). The modeling work was performed in the
framework of E. Baratchart’s PhD that I co-supervised with T. Colin and O. Saut [Baratchart,
2016].

Two sources of quantitative data were available for analysis. First, cells were tagged with a green
fluorescent protein (GFP), which allowed quantification of the number of cells in a given sample by
means of quantitative real-time polymerase chain reaction (see [Baratchart et al., 2015] for exper-
imental details). This also permitted detection of single cells in a lung tissue slice through optical
microscopy, thus estimating the appearance of the first metastatic cells in the lungs approximately
14 days after inoculation of the RENCA cells in the kidney (Figure 2.6). However, a drawback of
this experimental technique was that sacrifice of the animal was required for quantifications and
thus no longitudinal data within the same animal could be extracted. Therefore, GFP data points
presented here represent each a given animal (n = 31 animals in total). Second, MRI data al-
lowed detection of metastases but only when larger than a visibility threshold (of the order of 0.05
mm?). A great advantage of this technique was its non-invasiveness, thus allowing longitudinal
observations in the same animal (n = 6 mice in total were repeatedly imaged). At MRI, the first

macro-metastases were observed at day 18-19 (Figure 2.6).

2.4.1 Data-driven modeling of metastatic development

Growth rates of individual metastatic tumours Assuming that each metastasis originates

from one cell would imply that some metastases grow from the volume of one cell (~ 1075 mm?), to
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first GFP+ tumor cells in the lung

Day 18

Day 14
RENCA cells

orthotopic injection

vascularized macrometastases

Figure 2.6 — The animal model. At day 14 after GFP+ RENCA cells injection, the first tumor cells
were observed in the lungs (in green). At days 18-19, the first macro-metastases were observed by
MRI.

a volume of few mm? (between 0.022 and 12 mm? in our measurements) in five days at most. This
would give tumor doubling times comprised between 5 and 8 hours, which represents less than one
third of the doubling time observed in vitro (24.5 hours [Miyake et al., 1999]). Even if considering
that the metastases arose from a few cells (2-50) instead of one [Liotta et al., 1976b, Aceto et al.,
2014], this would imply doubling times between 5.5 and 13.5 hours. These would also have to
remain constant during 5 days. Such a fast growth is highly improbable since no mammalian cell
has a cell cycle length smaller than 10 hours [Steel and Lamerton, 1966]. Moreover, as expressed
in chapter 1 the doubling time has been reported to be non-constant and to increase during in
vivo growth. Hence, growth at initiation would have to be even faster in order to fit the data.
Therefore, the theory consisting in describing each metastasis with a tumour expansion only based

on cell proliferation seemed unlikely.

Primary kidney tumor and the dynamics of lung metastasis The standard theory of
metastatic development assumes that secondary tumors are seeded from the primary tumor and
that, once established at the distant sites (the lungs in our case), they grow independently from
each other and from the rest of the organism [Gupta and Massagué, 2006, Talmadge and Fidler,
2010, Fidler and Paget, 2003, Talmadge et al., 1982, Fidler and Talmadge, 1986, Klein, 2009],

as distinct foci initiated by single or few cells. To test this theory, we used our mathematical
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formalism as described above, and the following strategy. First the model was fitted to the GFP
data quantifying primary tumor and total metastatic burden growths, thus allowing inference
of the growth and dissemination parameters (with quantification of their inter-animal variability
and estimation uncertainty). Second, the resulting predictions in terms of number and size of
macroscopic metastases were compared to the MRI data. In contrast to the previous findings,
for this non-surgical experimental study, we found that the model best adapted was a Gomp-Exp
growth model for both the primary and secondary tumors, with same growth parameters (see
[Baratchart et al., 2015] for details).

Data from the primary tumour and the metastatic burden were fitted together, and the model

demonstrated satisfactorily descriptive power for the total metastatic burden (Figure 2.7).
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Figure 2.7 — The standard theory: Primary tumor and metastatic burden dynamics fit. (A) Fits
of the primary tumor and metastatic burden dynamics, under a mathematical model assuming
independent growth of each secondary tumour and using mixed-effects modeling for statistical
representation of the population distribution of the parameters and measurement error. (B) Fit on
the metastatic burden. In panels (A) and (B), each data point corresponds to one distinct mouse
(n = 31 animals in total). PT = Primary Tumor. Met = Metastatic burden. Prct = 10% and
90% percentiles

The calibrated model was further used to predict the distribution of macro-metastases visible in
the MRI images, and to confront this prediction to the observations. Among the MRI data, images
of only one mouse (over 6) were eligible for reliable assessment of the complete size distribution of
macro-metastases, which was performed by manual segmentation of metastatic lesions in each of
the 142 coronal slices of the MRI (resolution 156 pm x 155 pm x 155 pum), for each time point. In
the other mice, the images had no sufficiently defined contours to properly establish a complete size
distribution of the metastases. In the mouse where number and size of the lesions could properly

be assessed, the smallest detectable metastasis had a volume of 0.05 mm?, which was taken as the
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minimal visibility threshold. Results of the model simulation for the metastatic size distribution
are reported in Figure 2.8A, together with the experimental data. Inter-animal variability was
simulated using the population (lognormal) distribution of the parameters distribution retrieved
from the population mixed-effects fit. The maximal volumes predicted by the model/standard
theory were considerably smaller than those observed by MRI. For example, at T = 19 days, while
the total metastatic burden was similar in the data and in the model (Figure 2.7), the macro-
metastatic burden was three-fold larger in the data than in the model’s average prediction (Figure
2.8B), and the largest metastasis five-fold larger. At T = 26 days, although macro-metastatic
burdens were similar in the data and in the model, the standard theory predicted that the largest
tumor would have a volume of only 1.14 mm? in average (standard deviation = 0.755 mm?), while
the largest observed metastasis had a volume more than 10 fold larger (13.6 mm?®). This was
compensated by a considerably larger number of metastatic lesions in the model (95.4 + 47 versus
11 in the data). For each of these quantities, the p-value (probability to obtain the data value
— or larger — under the null hypothesis that the data would have been generated by the model,

evaluated numerically) was statistically significant (p < 107°).
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Figure 2.8 — Time course of the macro-metastases size distribution: standard model versus ob-
servations. (A) Top row: Simulation of the mathematical formalism of the standard theory (i.e.
dissemination and independent growth of the resulting tumour foci), using the parameter values
inferred from the data of the total metastatic burden (total GFP signal in the lungs). Only tumors
larger than the visible threshold at MRI (0.05 mm3) are plotted. Shown are the results of 1000
simulations, mean + standard deviation. Bottom row: Observations of macro-metastases num-
bers and sizes in one mouse on MRI data. (B) Comparison of several metrics derived from the
metastatic size distributions. For the model, numbers are represented as mean value and standard
deviation in parenthesis. The data corresponds to the mouse presented in the upper histogram.

These conclusions were limited by the fact that the entire time course of metastatic size distribution
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of only one mouse was available for reliable comparison with the model. However, in all the 6 mice,
the size of the largest metastasis at day 19 could be measured and ranged 0.45 - 12 mm?, which
was significantly larger than the model predictions (p < 107°, z- test). The largest metastases
predicted by the model ranged 9.5 x 10~% — 0.3 mm?. This strongly suggested that the standard
theory was not able to describe the volumes of individual foci. Moreover, even without statistical
comparison of the model’s predictions to the empirical data, the numbers predicted by the model
(in particular the number of macro-metastatic lesions at day 26) seem highly unrealistic. To assess
the robustness of our results regarding several assumptions of the model, we investigated varying
several parameters, including the initial size of metastatic foci and the power in the dissemination

coefficient (see [Baratchart et al., 2015] for details). The results confirmed our conclusions.

Our findings strongly indicated that the standard theory of metastatic progression, as described by
the model employed here (i.e., dissemination and independent growth), when calibrated to data of to-
tal metastatic burden, was in contradiction with experimental observations of number of metastatic

foci and their size distributions.

For the same total metastatic burden, the model predicted much more lesions with smaller size than
present in the data. It was beyond the scope of our study to elaborate (and validate) a unified
model able to recapitulate the behavior of metastatic tumors during the colonization process.
However, as a first step toward this objective, we put forward two possible hypotheses to correct
the inconsistency of the standard theory: 1) non-trivial interactions between metastases and 2)
interactions between the metastatic foci and the circulating tumor cells (cells attraction). The
plausibility of the first point was actually retrospectively demonstrated by observations of two
metastases merging in our data (between days 21 and 24, see Figure 2.9) and therefore decided
to investigate this further. More specifically, we wanted to address the following questions: do
spatial interactions have an impact on the dynamics of the total metastatic burden? To what
extent could this correct the theoretical predictions of the unlikely fast growth rates? Answers to

these questions have implications on future theoretical models of metastatic development.

/

Day 19 Day 21 Day 24 Day 26

Figure 2.9 — Metastases merging. From left to right: Sagittal slices of the lungs from day 19 until
day 26 for the same mouse. Two tumors are growing close to each other and merge between days
21 and 24.
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2.4.2 Spatial interactions between metastatic tumors

The possibility of merging for two neighboring metastases introduces a spatial aspect of metastatic
colonization and, therefore, requires a spatial modeling approach. During his PhD work, E.
Baratchart derived such a model which had to full-fill the following requirements: 1) it should
be based on biological knowledge of macroscopic tumor growth (retrieved from the literature), 2)
it should remain as parsimonious as possible (minimal number of parameters) and 3) it should be

able to fit our spatial growth data.

The model that was developed belongs to the class of continuum mechanics-based mixture models.
It describes a saturated flow in a porous medium comprising two entities, the tumor tissue and
the healthy tissue, with P denoting the tumor cell density and S the healthy cell density. The
third variable is a pressure field II. The model describes, on a domain 2, the passive motion of
the tissues due to the increase in volume caused by proliferation. Following others [Ambrosi and
Preziosi, 2002] in using Darcy’s law for description of the velocity field v and writing mass-balance

equations for the tissue densities, we have:
OtP + div(vP) = vP
S + div(vS) = S

v =—kVII

Writing the saturation condition P + S = 1, summing the two first equations leads and using the

third one leads to
—kAIl =~P

H|6Q = ch

where Dirichlet boundary conditions were considered to represent the homeostatic pressure of the
body Il.q. The main characteristic of the model was to consider, following works of others on tumor
tissue biophysical properties [Montel et al., 2012, Stylianopoulos et al., 2013, Stylianopoulos et al.,
2012], that the growth rate v was a decreasing function of II. This was modeled by a decreasing

exponential law [Montel et al., 2012]:

Under the assumption of a constant porosity, the value of k£ has no impact. Indeed, as long as
the product kIly remains constant, the solution remains unchanged. That is why we fixed k = 1.
Moreover, the boundary condition was taken homogeneous: Il.q = 0. Therefore, in fine, the
model depended only on two parameters, consistently with our previous results that demonstrated

(chapter 1) that two degrees of freedom are sufficient to describe tumor growth curves. Indeed, the
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model was able to fit longitudinal growth of four metastases observed by MRI (Figure 2.10'?). The
fits were performed on the volume only and considering the metastases as spherical, which allowed
to derive explicit formula useful to establish bounds on the parameter space (see [Baratchart, 2016]
for details).

’ ga;alra! rowth model *  Data
patial gr ‘Spatial growth model

Tumor volume (mn)
B

Tumor volume (mrf)

0.15!

0 1 2 5 6 7 (] 1 4 5

3 4 2 3
Time (Days) Time (Days)

Data - Data
Spatial growth model ‘Spatial growth model

Tumor volume (me)

Tumor volume (mr)

3 4
Time (Days)

Figure 2.10 — Spatial model fitting. (A) Top: Coronal MRI data of the lungs at days 19 and 26.
Bottom: the simulated growth by the model using the fitted parameters and starting from the real
shape of the observed metastasis at day 19 on the coronal MRI slice. (B) Volumes compared to
simulations by the fitted model for the growth of four individual metastasis.

Endowed with this calibrated model of pressure-mediated tumor growth, we studied the quanti-
tative impact of tumor merging on growth and found in simulations that the growth of two close
tumors (initial distance of 0.2 mm) would result in a 31% =+ 1.5% smaller total size after 7 days
compared with a situation with two independent, non-merging tumors [Baratchart et al., 2015]
(see also https://www.youtube.com/watch?v=hTEy-0-oMMU for a movie of the spatial growth of
two mechanically interacting tumors). We also investigated whether the merging of metastatic
foci could have generated the formation of macro-metastases in the observed timeframe (from one
cell at day 14 to a macroscopic size at day 19) with biologically realistic growth rates. We inves-
tigated the two situations: without spatial interactions (i.e., assuming the volume resulting from
the merging as equal to the sum of the metastatic foci volumes), and with spatial interactions. To
do so, we performed four simulations with the four fitted parameter sets, starting from one cell,
to estimate the number of merging metastatic foci required to obtain the respective observed vol-
umes (of 0.022, 0.046, 0.085 and 0.67 mm?) seven days after initiation (day nineteen). Indeed, we
chose day twelve and not day fourteen (which was the time at which the first metastatic cells were
observed by direct examination of lung tissues) as the starting day because the GFP signal started
to rise at day twelve (Figure 2.7). As can be seen in Table 2.1, since spatial interactions reduce the

growth velocity, the number of metastases was higher when interactions were taken into account.

123ee also a movie of the simulation at the following url: https://www.youtube.com/watch?v=FbATGHFjj3s
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Because of potential variability (error measurements during the segmentation, differences between
the MRI signal and the real lesion, especially for the small metastases, modeling assumptions),
the estimated numbers of required metastatic foci may give only a rough estimate. For two of the
metastases (Meta 2 and Meta 4), the estimated numbers appear to be reasonable. On the other
hand, for the two other ones, the required number ranged respectively between 301 and 375 and

between 1300 and 2100, which were probably too large to be biologically realistic.

Without spatial interactions | With spatial interactions
Meta 1 1337 2127
Meta 2 20 65
Meta 3 301 375
Meta 4 40 70

Table 2.1 — Number of required merging foci to grow from one cell to a macro-metastasis in 7 days

The inability of the merging theory to fully explain all of the observed volumes may indicate
that besides merging by passive motion due to proliferation, other mechanisms such as chemokine-
mediated cells attraction occur [Kaplan et al., 2005, Hiratsuka et al., 2006]. Circulating tumor cells
may be attracted by some established niches and explain the abnormally fast volume expansions
that we observed. Indeed, such chemokine-mediated attractions are presumed to play an important
role for the pre-metastatic and metastatic niches establishment, in mediating myeloid and tumor
cells attraction [Kaplan et al., 2005, Hiratsuka et al., 2006, Psaila and Lyden, 2009]. Moreover,
chemo-attractants may play a role in tissue tropism of metastatic cells [Joyce and Pollard, 2009].
Chemotactic gradients can attract metastatic cells that express the chemokine receptor to specific
locations. In subsequent work, additional phenomena such as aggregation and recruitment of
cells during the metastatic process from the circulation have been integrated in a more elaborate
mathematical model [Baratchart, 2016]. Another phenomenon that could possibly explain the
observed volumes would be the presence of circulating tumour cell clusters that would give rise
to metastases [Aceto et al., 2014]. Indeed, the authors of this study recently showed in a breast
cancer animal model that metastases do not originate from single cells only but also from tumor
cells clusters that have a higher metastatic potential than single cells. However, they did not show
evidence of this phenomenon for kidney cancer and in their experiments, clusters were formed by
at most 50 cells. As shown in our study [Baratchart et al., 2015], this order of magnitude of the
initial cell numbers that colonizes the lung was not able to describe the dynamics of metastasis

formation in our model and experimental data.

Taken together, although spatial interactions might play an important role for the dynamics of
metastasis development in the lung and probably also in other organs., it is unlikely that they alone
control metastasis expansion. Other mechanisms are probably also involved such as recruitment of
additional cells from the blood stream and micro-environmental cues such as nutrient depletion or

responses to environmental stress.
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2.5 A theoretical model of “cancer without disease”

While we studied contact interactions between two tumors in close vicinity in the previous section,
distant systemic interactions between tumors possibly in distinct organs have also been evidenced
since more than one century [Demicheli et al., 2008]. From a modeling point of view, we published
two studies on these phenomena [Benzekry et al., 2014b, Benzekry et al., 2017]. The first was
focused on secondary tumors dormancy and investigated the possibility of global dormancy (also
called “cancer without disease” [Folkman and Kalluri, 2004]). The second took a step back and
—instead of directly considering a primary tumor and a population of metastases — focused as a
first step on the dynamics of two tumors growing simultaneously in the same organism, with the
objectives of quantitatively interrogating classical theories of concomitant resistance and validate

a mathematical model of tumor-tumor growth interactions.

2.5.1 Introduction

Almost all of us carry small tumor lesions that for many will not progress to symptomatic disease.
Indeed, as evidenced in autopsy studies for adults without pre-established cancer such as [Welch
and Black, 2010, Black and Welch, 1993], occult lesions are present in most healthy adults. Nielsen
et al. [Nielsen et al., 1987] found that, out of 110 women cases, among which only one had been
previously treated for breast cancer, 22% had at least one malignant lesion. Moreover, 45% of these
had multicentric lesions. Similar results have been reported for prostate cancer in men [Sanchez-
Chapado et al., 2003]. For thyroid cancer, autopsy results [Black and Welch, 1993] showed a
prevalence rate of 99.9% for occult carcinomas, while incidence of thyroid cancer is only 0.1%
[Folkman and Kalluri, 2004].

To explain these results, it is necessary to understand the tumor dormancy phenomenon. Tumor
dormancy [Aguirre-Ghiso, 2007, Almog, 2010] is defined by stable or very slow tumor growth. It
can happen at the cellular level as a malignant cell remaining quiescent for a long period before
awakening, but here we focused on the mm-scale lesions such as have surfaced in the several
remarkable autopsy studies discussed, i.e., tissue-level tumor dormancy. Although the sizes of
these dormant tumors remain almost constant, it is not due to a cessation in cell proliferation, but
rather to increased apoptosis that leads to a near zero net growth rate [Holmgren et al., 1995].
Clinically, tumor dormancy has been observed in breast cancer [Nielsen et al., 1987, Retsky et al.,
2008, Retsky et al., 2010, Brackstone et al., 2007], melanoma [Ossowski et al., 2010] and prostate
cancer [Sdnchez-Chapado et al., 2003], among many others [Aguirre-Ghiso, 2007]. Dormancy
is particularly relevant to the situation where secondary tumors (metastases) remain small and

undetectable for extended periods.

Various explanations have been proposed for tumor dormancy, among these being the achieve-
ment of a balance between stimulation and inhibition of angiogenesis [Almog et al., 2006, Almog,
2010, Hahnfeldt et al., 1999]. This mechanism offers one explanation for how secondary tumors

may be suppressed to a near-dormant state by the primary; a phenomenon known as ‘concomitant
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resistance’ [Prehn, 1993, Chiarella et al., 2012]. In fact, a number of explanations for the concomi-
tant resistance phenomenon have been suggested, and were investigated in a subsequent study
(see below). Because of evidence that concomitant resistance happens in immune-deficient mice
[Gorelik, 1983] and considering the large and unequivocal body of support for the role angiogenesis
inhibition plays in the maintenance of tumor dormancy [Holmgren et al., 1995, O’Reilly et al.,
1994, O’Reilly et al., 1997, Rofstad and Graff, 2001, Volpert et al., 1998, Sckell et al., 1998] and
the “angiogenic switch” [Hanahan and Folkman, 1996] in escape from dormancy, our focus here
will be on the last theory. Angiogenesis, the process of creating new blood vessels and developing
a supporting vascular network, was put forward by J. Folkman [Folkman, 1971] to be critical for
tumor growth. Indeed, without development of new blood vessels, a malignant neoplasm cannot
grow further than about 2 to 3 mm in diameter, due to nutrient supply limitations [Folkman, 1971].
This process is regulated by the release from cancer cells of stimulatory growth factors, such as
vascular endothelial growth factor (VEGF), that induce proliferation, migration and maturation
of surrounding endothelial cells, as well as the production of angiogenesis inhibitory factors that
act to curtail endothelial expansion [Folkman, 2007]. As an example, in 1994 when examining
the growth of Lewis lung carcinoma in a syngeneic murine tumor model, O'Reilly et al. [O’Reilly
et al., 1994] discovered an endogenous molecule having an inhibitory effect on angiogenesis, which
they called ‘angiostatin’, followed soon by the discovery of ‘endostatin’ [O’Reilly et al., 1997].
Endogenous anti-angiogenic molecules were also evidenced in human cancer, an example being
thrombospondin-1 [Volpert et al., 1998]. Overlaying the ability of tumors to stimulate vasculature,
the discovery of their ability to also inhibit it [Folkman, 1995b] allows for the possibility that
tumors may indirectly control their own growth [Hahnfeldt et al., 1999, Folkman, 2007, Folkman,
1995a], perhaps as a vestige of normal organ growth control. Further, inherent to this self-control
notion, if the inhibitors were longer-lived and thus more persistent in the circulation, they could
have the collateral effect of suppressing angiogenesis and growth at distant metastatic sites as the
tumor mass gets large [Hahnfeldt et al., 1999]. Indeed, the half-life of angiogenesis stimulators has
been reported to be on the order of minutes for VEGF [Folkman, 1995a], while that for angiogenesis
inhibitors is on the order of hours [O’Reilly et al., 1994, Volpert et al., 1998].

2.5.2 Mathematics of systemic inhibition of angiogenesis

To describe the time dynamics of a metastatic population under systemic inhibition of angiogenesis
(SIA), we employed a similar framework as previously introduced (section 2.2), although extended
to a bi-dimensional “trait” for the state of a tumor. Tracking of tumors not only through their
size/volume (one-dimensional model) but also with their vascular-dependent carrying capacity K
(two-dimensional) had been previously developed by us to extend the initial Iwata, Kawasaki and
Shigesada model [Iwata et al., 2000] in order to account for the angiogenic process in tumor growth
[Benzekry, 2011b, Benzekry et al., 2014a, Benzekry, 2011a, Benzekry, 2012b]. The density p is now
a function p(t,V, K), the physiologically structured density of metastases having volume V' and
carrying capacity K at time ¢. Denoting by G(V, K,V,, p) the tumors’ growth rate, the model
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writes:
Orp + div(Gp) =0 10, T[xQ
G(be K07 ‘/p) p)p(t’ ‘/07 KO) = 5(V,K):(VO,K0) (d(Vp(t)) + fQ d(’U)p(t, v, k)dvdk) ]07 T[X89+
p(0,V,K) =0 Q

(4)
where Q = (Vj, +00) x (0, +00) is the physiological domain of possible sizes and carrying capacities,
4 is the Dirac mass (see [Benzekry, 2012b] for details about the measure nature of the solution of
this equation, in the linear case) and 92T stands for the subset of the boundary where the flux is

pointing inward.

The main modeling effort consisted then in defining a biologically relevant value of the growth rate
G. Following the approach of [Hahnfeldt et al., 1999] we assumed

aV In (%)

G(V.K,Vy,p) =
Stim(V, K) — Inhib(V, K, V,, p)

In the previous expression, the first line is the rate of change of the tumor volume V' (where a is
a constant parameter driving the proliferation kinetics of the cancer tissue) and the second line
is the rate of change of the carrying capacity K. The main idea of this tumor growth model was
to start from a gompertzian growth of the tumor volume (or any carrying capacity-like growth
model [d’Onofrio and Gandolfi, 2004]) and to assume that the carrying capacity K is a dynamical
variable representing the tumor environment limitations (here limited to the vascular support)
changing over time. The balance between a stimulation term Stim(V, K) and an inhibition term
Inhib(V, K,V,(t), p(t,V, K)) governs the dynamics of the carrying capacity. For the stimulation
term we followed [Hahnfeldt et al., 1999] and assumed

Stim(V, K) = bV

where the parameter b is related to the concentration of angiogenic stimulating factors such as
VEGF. This last quantity was derived to be constant in [Hahnfeldt et al., 1999] from the consid-

eration of very fast clearance of angiogenic stimulators [Folkman, 1995a).

For the inhibition term, Hahnfeldt et al. [Hahnfeldt et al., 1999] only considered a local inhibition
coming from the tumor itself. Our main modeling novelty was to consider in addition a global
inhibition coming from the release in the circulation of angiogenic inhibitors by the total (primary
+ secondary) population of tumors. Writing a diffusion equation for the local production of
inhibitors, solving it and computing the average spatial amount of these factors, we finally obtained
(see [Benzekry et al., 2014b)] for details of the calculations)

aVIn (%)
GV K V) = ( bV — dV23K — el K
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where e is an inhibition efficacy coefficient and I is the amount of circulating inhibitors, given by
4L = pV,, + [, pvp(t,v, k)dvdk — kI
(5)

with p the inhibitor production rate and k an elimination rate. The expression of d was also

established to depend on the diffusion coefficient of inhibitors D, pharmacokinetics volume of

d=eVy-—2 (3>2/3 (6)

distribution Vg, e and p:

15D2 \ 47

For the primary tumor, we assumed the same structural growth model. The dynamics of (V,, Kp)
was thus given by

d V,
a ( Kpp ) :Gp(vpava‘/pvp)

where G, had the same expression as G, except that the parameters a, and b, (the values of ¢ and
b that are associated with the function G for the primary) may be different from a and b associated
with metastases. The inhibitor production rate p and effect of the inhibitor e were assumed to be
the same for the primary and secondary tumors, which implied same value also for d in view of

formula (6).

2.5.3 Biological results

At the time of this study, we did not dispose of quantitative experimental data sets about metastatic
development allowing the inference of biologically relevant parameters. Therefore, for estimation of
the growth and dissemination parameters, we employed published data on primary tumor growth as
well as number and mean size of metastases [Huang et al., 2002]. For the determinant parameter
p of inhibitor production, we derived its value from observations of [O'Reilly et al., 1994] that
demonstrated that injection of 12.5png per day of recombinant human angiostatin reproduced the
systemic inhibition due to the presence of a primary tumor removed when it reached the size of
1500 mm?®. We refer the interested reader to [Benzekry et al., 2014b] for methodological details.

Simulation of the cancer history from the first cancer cell predicted uncontrolled

metastatic burden

Using our model and based on the parameters estimated from literature data, we were able to
extrapolate to a totally new setting where the primary tumor starts with one cell instead of an
already large number of cells (approximately 10%). In so doing, we were able to simulate the whole
cancer natural history, starting from one initial cancerous cell (and initial carrying capacity of 1
mm?) until the metastatic burden reached 5000 mm?, a burden we considered potentially lethal

for a mouse. The simulation predicted this would happen 62.7 days after the first primary tumor
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cancer cell. Time development of the primary tumor volume, metastatic burden, total number and

mean size of metastases as well as inhibitor amount in the host are plotted in Figure 2.11.

Interestingly, the model simulation predicted that the metastatic burden would overcome the
primary tumor mass, implying that the mouse would probably die from growth of its secondary
lesions rather than from the initial tumor. This is consistent with the metastatically aggressive
phenotype of the 4T1 cell line. Quantification of the number of metastases revealed a final number
of about 217 tumors, lots of them being small (Figure 2.11A) and probably undetectable in an
experimental setting. Simulation with the same set of parameters but neglecting the effect of SIA
(I = 0) showed no detectable difference on this time frame. Significant changes were observed later
on, for volumes that were not considered to be physiologically relevant. This confirms that for the
4T1 cell line, metastases do develop and do not exhibit global dormancy, even when SIA is present

with the inhibitor production parameter value extracted from [O’Reilly et al., 1994].
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Figure 2.11 — Simulation of the natural cancer history from the first cancer cell. Size expressed in
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Higher production of systemic angiogenesis inhibitor could result in long-term stable

global dormancy in a population of self-inhibiting metastases

The previous simulations used parameter values derived from experimental data of a situation were
metastases do develop and grow, because this is the only case where metastases are measurable and

data are available. However we are interested here in global dormancy and situations where the
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metastatic population could remain ultimately small. We postulated that this could happen when
production of the angiogenesis inhibitor, represented by parameter p in our model, is significantly
higher. Simulation results plotted in Figure 2.12 were obtained using a value of p a value about 30
times that extracted from [O’Reilly et al., 1994]. In this context, the first cancer cell initiated the
disease by growing and generating a first pool of metastases, but the metastatic burden then quickly
overshadowed the growth of the primary lesion (Figure 2.12A). The primary tumor reaches a small
maximal size of 21.2mm? at time 82.9 days (Figure 2.12A) and then shrunk due to inhibition of
angiogenesis provoked by the distant metastases. There was a slowdown and eventual stabilization

3. The burden was composed

of the metastatic burden, with a plateau value of about 2200 mm
of a large number of metastases (Figure 2.12B), most of them being occult micro-metastases as
can be seen in the final size distribution (Figure 2.12C). This interesting feature of the model
simulation could be an in silico replicate of the aforementioned situations of cancer without disease
[Folkman and Kalluri, 2004]. In our model it translates into an asymptotical steady state for the
metastatic burden while still composed of small lesions. The general dynamics of the metastatic
burden results from the balance of two stimulating forces; growth and spread of new individuals,
competing with systemic inhibition of angiogenesis. Stimulation depends on the parameters a and
b, which capture the growth process, and p and ~, which capture spreading. Inhibition depends
on e and k, as well as on p, which controls the value of d. The present values of the parameters
generated long-term stabilization of the mass. The size distribution of the population of secondary
tumors at time 7' = 350 days was revealed to be non trivial, with different numbers in the various

size ranges. By this time, all the metastases had volume lower than 10 mm?.

In sum, assuming substantial systemic inhibition of angiogenesis, we theoretically obtained an
in silico replicate of a situation in which an important population of dormant micro-metastases
inhibiting each others’ growths is present, with a possibly non-lethal final total metastatic bur-
den. This situation was seen to result when a 30-fold higher value for the inhibitor production
compared to the case of growth of a breast cancer line 4T1 extracted from the literature, where
unlimited expansion of the total metastatic burden was forecast. Our analysis showed that STA
could conceivably create such a situation, although it would require a very high value of the in-
hibitor production rate, which does not appear to be physiological. This suggests that STA alone is
probably not sufficient to induce spontaneous global dormancy and that other processes (such as
immune effects) are probably significantly involved. This motivated us to study this phenomenon
further and design a study of interactions among multiple tumor implants in controlled immune

contexts (see below and [Benzekry et al., 2017]).

2.5.4 Mathematically intriguing nonlinear dynamics

In a subsequent study, we focused on the variety of dynamical behaviors possibly generated by the
model [Benzekry et al., 2014a]. After nondimensionalization, we explored the growth/dissemina-
tion/inhibition balance by varying the values of parameters b (for growth), u (for dissemination)
and e (for inhibition). Simulation results of individual increase of each parameter from a baseline

value are reported in Figure 2.13. As appears, disruption of the base regime of parameters (where
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Figure 2.12 — Simulation of the cancer history from the first cancer cell.

all the forces in presence were in relative equilibrium, generating a bounded oscillatory regime for
the total metastatic burden) towards more pronounced impact of either of the constitutive pro-
cesses of our model generated more complex dynamics. Different parameters had different impacts
on the global behavior. Potentiation of the growth velocity (as well as resistance to the inhibition
pressure) through increase of b resulted in an asymptotic behavior of the global metastatic burden
which, while still being periodic, repeated a much more complex pattern, revealing interesting un-
derlying dynamics. In particular, observation that the same value of the metastatic burden did not
always yield the same future evolution implies that no autonomous ordinary differential equation
can be derived for the dynamics of M(t), since same values of M at different times lead to different
future evolutions. Indeed, when M (t) returns to a previous value, the state of the global dynamical
system is different because the composition of the tumors population (represented by p) itself is
not the same. Interestingly, this happens despite the fact that the growth rate depends on p only
through M.

Increase of u resulted in densification of the oscillations and amplitude increase, yielding sharp
repeated peaks of metastatic growth. Violent increases of the total metastatic burden were followed
by similarly violent decreases that made the system reach almost-zero values. Stronger inhibition
pressure delayed the stabilization of the system to an oscillatory regimen, intensified the oscillations
frequency and lowered their amplitude. Note that in this situation, as well as in the base situation,
the total metastatic volume remained away from zero, suggesting a non-negligible amount of long-

lasting residual disease.
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Figure 2.13 — Dynamics of the metastatic burden under 10 fold increase of representative parame-

ters. Size expressed in mm?.

Turning our interest to the opposite situation, i.e. 10 fold decrease of the individual parameters,
showed yet other interesting behaviors, for which we refer the interested reader to [Benzekry et al.,
2014a]. These included the possibility of an homeostatic state of the system where all the forces in
presence equilibrate to give a stable state where metastases don’t grow while still remaining present
in the organism, possibly with small volumes that would make the micro-metastases undetectable.
We also observed bounded non-periodic dynamics as well as periodic but tormented patterns,
underlining the complexity of the dynamics of the density (Figure 2.14). On the opposite to this
widely varying behavior, the model numerically exhibited convergence to a steady state for the
total metastatic burden when initial conditions (for both primary tumor and metastases) were set
to (Vo, Ko) = (107%,1073). Same apparent convergence also occured for the number of metastases
N(t) and the amount of inhibitor I(¢). Looking closer to the volume distribution of metastases
at the end of the simulation revealed concentration of the density to the smallest possible volume,

suggesting convergence to a Dirac mass located in (Vp, Kj).
2.6 A combined in vivo/in silico study of tumor-tumor in-
teractions

Motivated by the previous theoretical considerations and by the clinical problem of post-surgical

metastatic acceleration due to an inhibitory growth pressure from the primary tumor, we decided to
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Figure 2.14 — Examples of other interesting dynamics.

conduct an experimental study of the phenomenon of tumor-tumor interactions [Benzekry et al.,
2017]. To build on solid ground, instead of directly studying the tumor-metastases system, we
decided to investigate first the interactions of two tumors growing distantly in the same organism
(a phenomenon also termed “concomitant resistance”). The objectives were to: 1) investigate the
relative likelihood of existing theories of this phenomenon (retrieved from a thorough review of the
literature) and 2) establish and validate a minimal mathematical model, biologically grounded and

with identifiable parameters.
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2.6.1 Introduction

Concomitant tumor resistance (CR) is a phenomenon by which the presence of a tumor in an
organism negatively influences the appearance and growth of another implant (see [Chiarella et al.,
2012] for a review). It has been reported in numerous experimental studies spanning over a
century, and implementing a large variety of animal models [Marie and Clunet, 1910, Gershon
et al., 1967, Dewys, 1972, Gunduz et al., 1979, Gorelik et al., 1981, Gorelik, 1983, Ruggiero
et al., 1985, Fisher et al., 1983, Sckell et al., 1998, Li et al., 2001, Demicheli et al., 2008]. These
studies investigated either the concomitant or subsequent implantation of a second graft after a
primary injection [Gershon et al., 1967, Simpson-Herren et al., 1976, Gunduz et al., 1979, Gorelik,
1983, Ruggiero et al., 1985, Li et al., 2001], or the inhibition of secondary tumors arising from
the primary (metastases) [Marie and Clunet, 1910, Dewys, 1972, Gorelik et al., 1978, O'Reilly
et al., 1994, Rofstad and Graff, 2001]. They consistently evidenced a systemic growth suppression
effect, demonstrated by the occurrence of post-removal growth acceleration [Marie and Clunet,
1910, Ketcham et al., 1961, Simpson-Herren et al., 1976, Gorelik et al., 1978, Gunduz et al.,
1979, Fisher et al., 1983, Fisher et al., 1989, O'Reilly et al., 1994, Peeters et al., 2008]. In the
clinic, suppression of the growth of metastases by the presence of the primary tumor has yet to be
appreciated in general therapeutic planning, although it has been reported in patients [Coffey et al.,
2003, Peeters et al., 2006, Peeters et al., 2008, Ceelen et al., 2014]. However, despite the abundance
of reports of this phenomenon, the precise determinants of CR remain poorly understood and only

qualitative theories have been advanced.

CR is of direct clinical relevance insofar as it implies that removal of a primary tumor, with the
resultant release of its inhibitory pressure on occult secondary sites, could be followed by post-
surgery metastatic acceleration (PSMA). PSMA has been demonstrated to occur in numerous
animal experiments [Marie and Clunet, 1910, Simpson-Herren et al., 1976, Gorelik et al., 1978,
Gunduz et al., 1979, Fisher et al., 1989], as well as in clinical case reports [Coffey et al., 2003, Peeters
et al., 2006, Ceelen et al., 2014]. Further support for the occurrence of PSMA in a notable fraction
of patients was also provided by the observation of two peaks in the hazard relapse rate of a
large cohort of breast cancer patients [Demicheli et al., 1996, Coffey et al., 2003, Demicheli et al.,
2007, Retsky and Demicheli, 2014].

Several hypotheses have historically been proposed for the explanation of the underlying mechanism
of CR. The first was due to P. Ehrlich and consisted in athrepsia, i.e. that two (or more) tumors in
the same organism would compete for nutrients and that the growth of one tumor would leave less
nutrients available for the other ([Ehrlich, 1906], cited by [Gorelik et al., 1981]). However, this was
challenged by the observations that CR was decreased when the number of inoculated cells was
increased [Ruggiero et al., 1985]. Another popular theory, first introduced by Bashford in 1908, was
based on immunologic mechanisms and stipulated that the presence of a first tumor would activate
an immune response preventing the second graft to take or grow [Gershon et al., 1967, Gorelik
et al., 1981]. However, several studies demonstrated the occurrence of CR in tumor models with no

or weak immunogenicity, or in immune-deprived mice, thus challenging this explanation [Dewys,
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1972, Gorelik et al., 1981, Gorelik, 1983, Ruggiero et al., 1985]. This implies that, although

immunologic factors might contribute to CR, they cannot explain it entirely.

As explained previously, in the 1990’s, a team led by J. Folkman discovered endogenous inhibitors
of angiogenesis by demonstrating that injection of these factors could substitute for the suppressive
effect on lung metastases exerted by the primary tumor [O’Reilly et al., 1994, O’Reilly et al., 1997].

This led the investigators to link CR to distant systemic inhibition of angiogenesis.

The idea of circulating inhibiting factors due to the presence of a primary tumor had been proposed
and confirmed in earlier studies [Dewys, 1972, Gorelik et al., 1981], but their precise mode of action
has remained elusive. Distinct from the angiogenesis inhibitors previously mentioned, another
research group identified other blood-borne factors with direct anti-proliferative action, namely
meta- and ortho-tyrosine, that would reduce proliferation by driving tumor cells into a GO-phase

state of dormancy or induce an S-phase arrest [Ruggiero et al., 2011, Ruggiero et al., 2012].

So far, arguments and theories about CR have remained qualitative in nature. In the study pub-
lished in [Benzekry et al., 2017], comparing alternative mathematical formalisms, we demonstrated
that a simplified model with well-motivated parameters that addresses concomitant resistance
specifically was able to capture features of coupled tumor growth and may shed more light on the
understudied subject of systemic controls in cancer, a potentially critical step toward eventually

understanding metastatic control.

2.6.2 Mathematical modeling of concomitant resistance

More than 40 models in total were constructed and tested against our data. They were based on
different structural expressions formalizing the three main theories of CR considered here: distant

inhibition of proliferation, distant inhibition of angiogenesis and competition.

Volumes of the two tumors at time ¢ were denoted Vi (t) and V5(t) and differential equations were
derived for the rate of change of these quantities. For biological relevance, we required that the
models comply with the following conditions: 1) in the absence of a second tumor, the models
had to be able to fit single-tumor growth curves, 2) the shape of the inhibition effect had to be
identical from tumor 1 on tumor 2 as from tumor 2 to tumor 1 (structural symmetry) and 3) the

parameters had to be identical for the two tumors (parametrical symmetry).

The source of the observed difference between the two growing tumors was assumed to result from
an initial (small) discrepancy in the number of cells that took during the tumors grafts, respectively
denoted V1 and Vj 2. After investigation of the sensitivity of several models to these quantities
and their ratio, we considered more relevant for robustness of the results to fix their ratio for all
the animals (25% percent higher cell loss in the inhibited tumor as compared to the non-inhibited

one).

The model that was ultimately considered as giving the most robust and identifiable description
of our data was based on the proliferation-inhibition theory and relied on experimental evidence

from [Ruggiero et al., 2011, Ruggiero et al., 2012] demonstrating that a tumor produces inhibitory
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factors (IF'), such as meta- and ortho-tyrosines, that induce a cell cycle arrest (Figure 2.15).

Tumor 1 Tumor 2
Q1 _ Q2
. Systemic _
quiescent CirCUlation quiescent

P

proliferative proliferative

Figure 2.15 — Scheme of the proliferation-inhibition model

The model assumptions are:

e Proportionality between volume and number of cells, using the conversion rule 1 mm? ~ 109

cells.

e Each tumor volume is divided into two compartments: proliferative cells (P; with ¢ the tumor

index) and non-proliferative tissue (Q;).

e Proliferative cells have a constant length of the cell cycle 7. The proliferation rate (: lnf))
is denoted « (day~—1!).

e Proliferative cells release IFs with a rate proportional to their number. The proportionality
coefficient is denoted 3y and is expressed in mol-mm—2-day~!. There is a local elimination

of IFs with rate ki, (day~!) and the concentration is assumed to be at steady state.
e A fraction ¢ of these factors is released into the systemic circulation.

e In the blood, IFs are subject to a first order elimination process with rate & (day~!). We
assume that the time scale of the blood distribution is faster than the tumor growth and
thus consider the blood concentration at steady-state. Assuming that a fraction v reaches
the distant site, the concentration of IFs at the distant site is therefore wﬁ%fPi. At the local

Bol(czl;¢)P

7

site it is

e At each local site, the IFs induce a proliferation arrest, making cells go from a proliferative

state to a quiescent state. A given amount of these molecules provokes cell cycle arrest of
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a constant number of proliferative cells (in contrast to a constant fraction usually employed
log-kill law valid for cytotoxic agents on leukemic cells [Skipper, 1965]), with rate 3; (mol~!-
mm3- day~!). Denoting 3 = %61 (day~!) and v = w%—‘ﬁﬁl (day~1) the number of cells
going from a proliferative state to a quiescent state within the tumor ¢ is thus SP;+~(P;+ F;).
Note that this includes both local inhibition and global inhibition, which accounts for factors

released by the other tumor (tumor j) but also tumor 4 itself.

The model then writes:

P =Py — (BPL+ 7 (PL+ P2))1p~o Pi(t=0)= "V,

91 — (BPL+7(PL+ P2)) Lp, >0 Q:1(t=0)=0

Vi=Pi+@

L = aPy — (BPy + 7 (P1+ P2)) 1p,n0  Pa(t =0) =V

192 — (BPy + 7 (Py + P2)) 1p,0 Qa(t=0) =0

Vo=Po+ Qo

The Heaviside functions 1p,~¢ (equal to one if P; > 0 and zero elsewhere) stand for the fact that
when factors are present but no proliferative cells exist, no cells go to quiescence. In particular,
they ensure that the solutions (understood in the weak sense due to the discontinuous nature of

the Heaviside function) remain positive.

The equations of the other 4 models reported in our study, including those formalizing competition

for nutrients and distant inhibition of angiogenesis, are shown in the Table 2.2.

2.6.3 Results

We studied the phenomenon of CR by combining experiments and mathematical modeling, in-
formed by pre-existing theories in the literature. For the experiments, two groups were considered.
The first group (control) consisted of twenty mice in which single implants were performed. In the
second group (double tumors, abbreviated as DT) consisting of ten mice, two grafts with identical
load (106 cells) were performed on day 0, at the same locations on opposite flanks of the mice. We

refer the reader to [Benzekry et al., 2017] for a complete description of the materials and methods.

In a mouse bearing two tumors, one has normal kinetics and the growth of the other

is suppressed

We first performed a direct (i.e., not model-based) statistical analysis of the data. We compared
control tumor growth kinetics in mice bearing single implants with the growth curves of tumors

in a double-tumor bearing host (Figure 2.16). Observations of the kinetics of each tumor in the
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DT group suggested that in each mouse, one tumor was growing faster than the other, possibly
inhibiting the second one (Figure 2.16A). This behavior was observed consistently in all the animals
of the DT group except in two of them (animals 2 and 9 in Figure 2.16A), and did not seem to
result from the lateral location (left or right) of the tumors. Intriguingly, the two mice where
the phenomenon was not observable were found to have a connecting blood vessel joining the
two tumors and were the only ones to exhibit this macroscopic vascular structure. Direct sharing
of same vasculature seemed to equilibrate tumor expansions. One possible explanation for the
absence of cross growth suppression in these mice could be that the production of inhibitors was
negligible in these tumor-host systems. This could also explain the formation of the connecting
blood vessel due to increased neo-angiogenesis (under the theory of angiogenesis inhibition-driven

growth suppression).

In order to statistically confirm that this observation was not purely due to intrinsic randomness
in experimental conditions (such as the number of initial cells that “take” from the injection) that
would by themselves generate different growth curves for the two implants in the same mice, we
performed a statistical analysis. It aimed at testing the null hypothesis that both tumors would be
identically and independently growing (i.i.g.). We artificially generated 10 couples of i.i.g. tumors
by subdividing the control group of 20 animals into two groups of 10, randomly picking tumors
from each subgroup and pairing them together. We then picked each small tumor from these pairs
(and similarly, each large tumor), by choosing the one with smallest final volume. This yielded two
samples of 10 “control small” and “control large” tumors that can be considered as what would
have emerged from randomness only in initiation and growth. These two samples could then be
statistically compared to the experimental samples of small and large tumors from the DT group.
We observed significant differences between the small tumors from the DT group and the “control
small” tumors from day 12 until the end, with the exception of days 18 and 19 where differences
were not significant due to large variability (Figures 2.16B and 2.16C). On the other hand, no
statistical difference was observed between the large tumors from the DT group and their control

counterparts.

These results demonstrated that in a mouse where two tumors were simultaneously growing, the
larger tumor was growing at the same speed as would a single tumor, while the other had significantly

slower kinetics.

A dynamical benchmark of models of concomitant resistance

After studying what could be extracted from single tumor growth models [Benzekry et al., 2017],
we investigated models of simultaneous growth of two tumors in the same organisms in order to
study and quantify the possible underlying mechanisms of tumor-tumor interactions leading to the
observed growth kinetics differences that were observed. A virtually infinite number of models can
be conceived for description of CR, both in terms of structural shape (equations) and values of the
parameters. We report here only on the results from analysis of 5 informative models (Table 2.2).

Interestingly, several models were found unable to fit the data, suggesting rejection of (at least one
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Figure 2.16 — Data of dynamics of simultaneous tumor growth. A. Dynamics of the left and right
tumors from mice inoculated with 1x 108 LLC cells on the two lateral sides at day 0. B. Comparison
of large and small tumors with large and small tumors extracted from artificially paired control
tumor growth curves (see text for details). Mean £ standard error. Circles indicate statistically
significant differences between the small tumors from the simultaneous group and the small control
tumors (Student’s t-test with unequal variance, p < 0.05). C. Tumor sizes at day 15. Mean +
standard error. * = p < 0.05, Student’s t-test with equal variance.

of) the hypotheses that they rely on. These include a model for the athrepsis theory (competition
for nutrients) [Benzekry et al., 2017]. The other models were based on either systemic inhibition of
angiogenesis (STA) — formalized using a model of interaction between tumor growth and vascular
support [d’Onofrio and Gandolfi, 2004] — or induction of quiescence due to a cytostatic seric factor.
We termed the models based on this last theory proliferation inhibition (PI) models. The SIA

model was able to give a reasonably accurate description of our data. For PI models, which have
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similar structures as equation (7), three hypotheses were investigated: 1) direct effect (a given
quantity of IFs induces a given number of cells going to quiescence) (equation (7)), 2) log-kill effect
(a given quantity of IFs induces a given fraction of cells going to quiescence) and 3) total number of
cells (P; 4+ Q;) as a source of IFs. Notably, models 2) and 3) were unable to fit the data and had to
be rejected [Benzekry et al., 2017]. On the other hand, the model 1) gave a particularly good fit to
the data (Figures 2.17A and B). Table 2.3 summarizes statistical quantitative metrics of goodness-
of-fit the models that allow comparison of their descriptive power, while Figure 2.17C shows the
distribution of the residuals. Table 2.4 reports the parameter values of all the models estimated
from the best fits, together with their inter-animal variability (parameters were individually fitted
for each mouse) and standard errors for the estimates. These tables were obtained using the

software Carcinom that we developed for fitting models to data.
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Figure 2.17 — Individual fits of the two-tumors proliferation-inhibition model. A. Fits of all the
animals. In each mouse the only difference between the two tumors lies in the number of tumor
cells that take, i.e. parameter Vj 2. Dashed lines are simulations of the model with no interactions
between the two tumors (i.e. without terms containing P; in the equations on P; (i # j). B. Fitted
values versus data points for all the two-tumors growth curves of A. The solid line is the identity
function. C. Distribution of the residuals for the best-fits of the three two-tumors models.
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Model name Equations
N dV1 —aV11n< +v2> Vi(t=0)=Vpa1
Competition
de =aVsln <V1+V2> Vot =0) =Vpo

dvl—avlln( ) Vi(t=0)= Vo,
Ay — Ky — dVYPK — Vol sk,  Ki(t=0) = K

Angiogenesis inhibition
o —aVzln( ) Va(t=0)=Vp2
e — Ky — dVy P Ky — eVilgysr, Ki(t=0) = K
P =Py — (BPL+ 7 (PL+ P2)) 1pso Pi(t=0)=Vy,
1% — (BPL+7(P1 + P2)) 1p,59 Q1(t=0)=0
Vi=P +

Proliferation inhibition 1=h+6
9P 0Py — (BPy+7 (P + Py)) Lpyan Pot = 0) = Vs
G = (BP+7 (P + P2)) Lo Qx(t=0)=0
Vo =P+ Q2
P — oPy — (BPL+7 (P + P2)) P Pi(t=0) = Vo,
L — (BPL+7(PL+ Py)) Q:1t=0)=0
Vi=P +

Proliferation inhibition (log-kill) 1= P+
AL =Py — (BPy+ v (Pr+ P2)) P Pa(t=10) = Vp
192 = (BP2 +7 (P + P)) Q2(t=0)=0
Vo =P+ Q2
P = aPy— BV +7 (Vi + Vo)) Ips0  Pi(t=0) = Vou
dc%l =(BVi+v(Vi+V2)) Lp >0 Q:1(t=0)=0
Vi=P +

Proliferation inhibition (P+Q) ! 1+
P2 — Py — (BVa +7 (Vi + Vo)) Lp,so  Pa(t=0) = Vo
992 = (BVa +7 (Vi + V2)) Lp0 Qs(t=0)=0

Vo =P+ Q2

Table 2.2 — Two-tumors models’ equations



Model SSE AIC RMSE R2 p<005 #
Proliferation inhibition 0.194(0.0319 - 0.713)[1] -12(-54 - 2.26)[1] 0.453(0.182 - 0.845)[1]  0.964(0.87 - 0.987)[2] 1/10 3
Angiogenesis inhibition 0.296(0.121 - 0.693)[2]  -4.28(-32.2-2.31)[2]  0.557(0.355 - 0.844)[2]  0.965(0.924 - 0.985)[1]  1/10 4
Proliferation inhibition (P+Q) 0.328(0.144 - 0.822)[3] -3.86(-30.8 - 5.4)[3] 0.59(0.388 - 0.909)[3] 0.956(0.72 - 0.987)[3] 5/10 3
Competition 0.666(0.141 - 2.2)[4] 0.71(-33.2 - 13.1)[4] 0.828(0.383 - 1.5)[4] 0.694(-0.0757 - 0.964)[4] 9/10 2
Proliferation inhibition (log-kill) 0.721(0.308 - 2.04)[5] 2.92(-13.2 - 14.4)[5]  0.863(0.558 - 1.45)[5] 0.594(-0.135 - 0.937)]5] 9/10 3

Table 2.3 — SSE = Sum of Square Errors, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion, R2 = coefficient of
determination. # = number of parameters. The numbers in parentheses indicate the (min - max) range of the values and the numbers inside
the brackets are ranks of the models relatively to the criterion. The “p<0.05" column contains number of animals for which the null hypothesis
of a gaussian distribution of the residuals was rejected for either the large or the small tumor (Kolmogorov-Smirnov goodness-of-fit test).
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Model Par. Unit Median value (CV) RSE (%)
a day~! 3.63 (58) 21.7
Proliferation inhibition B day~! 3.29 (64.6) 25.9
v day~! 0.0405 (61.2) 3.94
a day~? 3.06 (1.06e+03) 47.4
. e b day~? 0.57 (24.8) 3.02
Angiogenesis inhibition d mm=2- day~1 0.00368 (35.3) 20.4
e day~! 0.119 (43.5) 1.72
a day~! 0.701 (26.9) 3.61
Proliferation inhibition (P+Q) B day~? 0.187 (50.1) 5.31
~ day~? 0.00754 (253) 9.45
. a day~? 0.085 (30.9) 3.45
Competition K mm® 8.360-+03 (2.176-+06) 15
o day~! 0.531 (33.8) 7.45

Proliferation inhibition (log-kill) B day~! 7.72e-09 (1.1e+07) 9.41e4-07
~ day~? 0.00168 (254) 13.4

Table 2.4 — Two-tumors models’ inferred parameters from fits to the data. CV = coefficient of
variation. RSE = relative standard error.

These results demonstrate that a mathematical modeling approach was able, by confrontation of the
best-fits of the model, to discriminate among qualitatively equally likely theories of CR and suggest

a PI model, having attributes that may explain (or at least describe) this particular phenomenon.

Validation of a simple and biologically-based mathematical model of CR

Double tumor growth The PI model 1), formalized by equations (7), consists in assuming a
direct and mutual growth rate decrease between the two tumors, due to passage to quiescence
(Figure 2.15). Goodness of fit was found excellent (Figure 2.17), as well as identifiability of the
parameters (see standard errors in Table 2.4). Notably, while being fitted directly on the two
tumors growths, the predicted behavior when simulating no interactions was in full agreement
with the control growth curves. Indeed, the dashed lines in Figure 2.17A are close to the growth
curves of the large tumors, which were found to be not significantly different from “naturally
happening” large tumors. Hence the model was able to learn and identify the unaltered growth

part from altered growth curves, highlighting its reliability.
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In mouse number two (second plot in the top row of Figure 2.17A), consistently with the observation
of identical growth kinetics between the two tumors, the model identified a value of parameter v not
significantly different from zero. On the other hand, the model did identify interactions between the
two tumors in the other animals, as emphasized by 95% confidence intervals of parameter v inferred
from the parameter estimation process that did not contain 0 ((0.0374,0.0436) in our estimation).
In turn, this translated into substantial differences in the kinetics (see Figure 2.17A where growth
curves are plotted with or without interactions). Of important note, these differences in the kinetics
were mostly due to the interaction between the two tumors, rather than the initial difference in cell
loss. This is demonstrated in Figure 2.17A where it can be observed that the growth curves of the
small tumors with only a different initial volume (dashed curves) were considerably higher than
the curves where interaction was taken into account. Moreover, these curves were both close to
the large tumor growth curves, indicating that the difference in Vj had only a negligible impact on
the difference between the two growth curves, the major determinant being the tumor-tumor cross
inhibition effect. Critically, the differences for the large tumor curves were much smaller than for
the small tumor curves (while the interaction parameter was the same for both tumors), indicating

that the model gives a valid quantitative theory of why only one tumor was affected by CR.

Together, our results provide a biologically-based and minimally parameterized mathematical model
for tumor growth kinetics interactions in a two-tumors bearing host. The model confirmed a sig-
nificative non-zero value for the interaction parameter in 9/10 mice, which gave a quantitative
measure of the phenomenon. Asymmetry between the two tumors was explained by an initial dif-

ference in the take between the two tmplants.

Single tumor growth In addition to being able to describe double tumor growth and CR,
the elementary model that we proposed also offered a simple formalism for single tumor volume
growth. The model consists in the division of the cancer cells into two sub-populations: proliferative
and quiescent cells (which could also account for necrotic tissue still present in the total volume

measurement). In the absence of a secondary tumor, the model (7) becomes:

{ P = (a—B—~)P, P(t=0)="V
G =B+7)P. Qt=0)=0

This provides a valid and simple linear mathematical construct able to describe the growth of
single tumors [Benzekry et al., 2017]. It sheds new lights on general tumor growth laws as it
demonstrates that classical Gompertzian growth — which is able to describe accurately Lewis
Lung tumor growth curves (chapter 1 and [Benzekry et al., 2014c]) — can be reproduced by these
equations, with no significant differences (i.e. a difference in Akaike Information Criterion less
than 2, see [Benzekry et al., 2017]). Indeed, it had remained elusive why the Gompertzian curve,
which was originally designed not even for growth processes [Gompertz, 1825], describes tumor
growth curves and their consistent relative growth rate decrease with such important accuracy,
while being only phenomenological and not biologically grounded. Interestingly, we obtained that

a model where growth deceleration was assumed to result (only) from passage to quiescence due
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to the production of factors by the proliferative tumor cells themselves was able to explain single
tumor growth curves as accurately as the Gompertz model, or other models such as the power law.

Parameters identifiability of this new model was also excellent.

2.6.4 Discussion

Arguments disregarding the competition theory had already been put forward by others [Gershon
et al., 1967, Gorelik et al., 1981, Prehn, 1993]. For example, Gorelik had argued that under this
theory, the intensity of CR should be an increasing function of the amount of cells implanted
in a subsequent graft, in contradiction with experimental findings, thus disqualifying the theory
[Gorelik et al., 1981]. However, these arguments had remained qualitative. Our formal study adds
a quantitative basis to these considerations by showing that, under the modeling assumptions we

operated, this theory was unable to accurately describe our data [Benzekry et al., 2017].

More elusive in the literature had remained the question to discriminate between angiogenesis
inhibition, as evidenced by the work of Folkman and colleagues [Holmgren et al., 1995, O'Reilly
et al., 1994], and direct induction of quiescence by seric factors, as proposed by Ruggiero and
colleagues [Ruggiero et al., 1985, Ruggiero et al., 2011, Ruggiero et al., 2012]. Our results suggested
that the latter theory, when considered alone, could be sufficient to drive CR, insofar as it exhibited
good match to the data. However, this does not preclude systemic inhibition of angiogenesis (SIA)
to occur, since an SIA-based model was able to describe the data almost as well. Furthermore, the
two theories are not mutually exclusive. This last remark also applies to the competition theory:
it cannot be completely disregarded that a combination of the three phenomena happens in the
occurrence of CR. However, it was beyond the scope of this study to be able to disentangle between

a combination of the phenomena and one phenomenon alone.

Our findings not only shed light on the dynamics of CR but also proposed a simple and biologically-
based model of (double and) single tumor growth able to describe the ubiquitously observed growth
retardation with larger volumes already mentioned in the first chapter of this thesis and usually
modeled by means of the Gompertz equation [Laird, 1964, Norton, 1988]. Although several at-
tempts of deriving the Gompertz equation from basic principles have been performed in the lit-
erature [Bajzer and Vuk-Pavlovié, 2000, Frenzen and Murray, 1986], the model we propose here
benefits from its simplicity. It has only two (aggregated) parameters, which quantify two phenom-
ena: 1) proliferation of the active cancer cells and 2) production by these active cells themselves of
factors that drive them to quiescence. Interestingly, this model brings new light on the so-called
paradox of CR, [Prehn, 1993], which can be expressed as follows: if distant inhibition occurs, po-
tentially driving other tumors to dormancy, then why does the primary tumor continue growing?
Our general model gives a way to quantitatively formalize this. Indeed, the same factors act as
local and distant inhibitors and we showed that, under appropriate values of the parameters (but
identical for the two tumors), one could obtain at the same time almost unaltered growth of the
large (primary) tumor and significant suppression of the growth of the small (secondary) tumor.

The presence of endogenous molecules with inhibitory activity thus challenges a naive view where
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growth retardation would only be due to interactions dictated by competition (for space or nutri-
ents). Consistently, such a model (logistic growth), had already been shown unable to adequately
fit experimental tumor growth curves in the first part of this thesis. Considering the implications,
the mere fact a tumor would produce both angiogenesis stimulators and inhibitors at the same
time, with near and far ranges, does not readily reconcile with a purely localized purpose, but
instead speaks to tumor control being manifestly a systemic phenomenon, quite distinct from the
naive concept of an entity governed by local conditions alone, independent of other tumor sites.
Tmplicit in this, and as proposed by others [Prehn, 1991, Prehn, 1993], a vision of tumor growth

as an integrated, organ-like development could bring sense to this seeming paradox.
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Abstract

While experimental data on the natural course of metastasis are hard to obtain, it is even harder
to get access to clinical data, mainly because: 1) metastasis can only be diagnosed and measured
once they have reached a substantial size (diameter of about 5-10 mm on clinical images, which
corresponds to approximately 10® cells) and 2) when patients are diagnosed with advanced stage
they usually benefit from therapy with a systemic drug. Nevertheless, for the cases of breast and
lung cancers, we could find in the literature two useful data sets of the probability of metastatic
relapse as a function of the size of the primary tumor [Koscielny et al., 1984, Mujoomdar et al.,
2007], which were used to test our modeling framework in a clinical setting. For the breast data set,
we demonstrated the ability of our mathematical model to describe the inter-individual variability
in the probability of metastatic relapse in terms of the only parameter p (additionally to the primary
tumor size), thus emphasizing its critical role and clinical usefulness. Further on, leveraging this
quantitative calibration for description of metastatic aggressiveness, we conducted a simulation
study that was able to simulate relevant survival curves and revealed a nonlinear dependence
between the size of the primary tumor at diagnosis and the survival benefit from surgery. These

results were published in [Benzekry et al., 2016].

In parallel, we had access to clinical images of a patient with apparition and longitudinal follow
up of cerebral metastases from an EGFR-mutated lung adenocarcinoma (6 time points and 47
metastatic size measurements, data from the Bergonié Institute (Dr F. Chomy)), which provided a
unique opportunity to further study the kinetics of metastatic dynamics in a human cancer disease.
We found that the model was able to describe accurately the data with only three free parameters,
thus bringing hope to a clinical identification of these from data at diagnosis. Moreover, the model
made interesting predictions such as the time of initiation of the first brain metastasis (predicted

here to have occurred before diagnosis).

Finally, conclusions and perspectives of future work are drawn.
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3.1 Introduction

Metastasis remains a major challenge as 90% of solid cancer patients die from this process and
associated complications [Steeg, 2016, Chaffer and Weinberg, 2011]. Five-year survival rates dras-
tically drop when the disease has spread to other sites of the organism (Figure 3.1). For instance,
the 5-year survival rate of kidney cancer goes from 91.8% for a localized disease to 12.1% when
metastases are present at diagnosis [Howlader et al., 2014]. Surgical removal of an early-stage
localized tumor remains one of the most effective strategies in reducing the probability of systemic
metastatic disease spread [Gupta and Massagué, 2006]. Improved technologies of early cancer de-
tection aim to classify primary tumor stage to identify whether potential treatment modalities —
such as presurgical “neoadjuvant” or postsurgical “adjuvant”—should be considered to complement

surgery and reduce metastatic potential.
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Figure 3.1 — Five-year survival rates of several cancer types according to the disease’s state (local,
regional or distant). Adapted from [Steeg, 2016]

In this context, several clinical problems can be addressed by mathematical methods. The first

that we identified is the following.

Clinical problem 1. FEstimate the amount of occult distant metastases at diagnosis

This problem is of critical relevance to better personalize adjuvant (i.e. post-surgical) chemother-
apy, which is particularly salient for breast cancer. In this disease, the 5-year survival rate is 88%
[Howlader et al., 2014] but the 20-year overall survival rate is not as good (39-45% reported in
[Litiére et al., 2012]). Indeed, while 93% of breast cancers are diagnosed with a local or regional
disease [Howlader et al., 2014], metastasis is now thought to be an early event and it has been
estimated that 90% of these early stage patients have already undergone distant dissemination,
although still at the indolent and invisible stage [Fisher, 1980, Retsky et al., 2010]. This realiza-
tion in the 1970’s opened the era of adjuvant chemotherapy in the clinic in the 1980’s, but still
metastatic relapse occurs in approximately 30% of patients diagnosed with localized disease [Pol-
lard, 2016]. This observation as well as the severe toxicities associated with cytotoxic drugs call

for a better classification of patients at diagnosis, predictive of the benefit from adjuvant therapy.
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The standard WHO classification for breast cancer is based on morphological features [Lakhani
et al., 2012], but molecular markers (such as hormonal receptors and HER2 status or Ki67 level)
have also fundamental and increasing importance. Indeed, the hormonal receptors status are
critical to determine the suitability of patients to hormonal therapy (Tamoxifen or aromatase in-
hibitors), and the HER2 status to targeted therapy (trastuzumab). These have generated a new
classification of breast tumors that includes the following groups: luminal A (hormone-receptor
positive, HER2-, low Ki-67 with good prognosis), luminal B (hormone-receptor positive, HER2+
or HER2-, high Ki-67, slightly worse prognosis), HER2 enriched (hormone-receptors negative,
HER2+) and triple negative (also called basal-like, hormone-receptors negative, HER2-, bad prog-
nosis). Going further in using methods from molecular biology — shown to be related to the
receptors expression [Perou et al., 2000] — gene expression signatures comprising either 70 genes
[van 't Veer et al., 2002, van de Vijver et al., 2002] or 21 genes [Paik et al., 2004] have been
established as prognostic of 5-years metastatic relapse [Chibon, 2013]. These have yielded DNA-
microarray-based diagnostic tests such as Oncotype DX or Mammaprint with predictive value of
the response to adjuvant chemotherapy and/or hormonotherapy. A prospective trial validated the
usefulness of the Oncotype DX 21 genes expression signature for identification of patients to treat
with hormonotherapy only (as opposed to combination with chemotherapy) and thus reducing the
burden of unnecessary toxicities. In addition, factors derived from immuno-histochemistry more
easily available at diagnosis in clinical routine from tissue micro-arrays — including for instance
levels of adhesion proteins such as cadherins — have been reported as impacting the chance of

metastatic relapse [de Mascarel et al., 2015].

However, there is a lack of a comprehensive framework to potentiate theses factors into personalized
predictions of the risk of and time to metastatic relapse. Statistical softwares such as the Adjuvant!
online!® (based on US cohorts) [Ravdin et al., 2001] and Predict'* tools (for british patients
and which additionally considers HER2 and Ki67 status) [Wishart et al., 2010] provide estimates
for the 5 and 10-year survival rates as well as benefits from adjuvant therapy given particular
entries. However, they do not consider any biological mechanism and are based on classical survival
statistical analysis. As such, they might not take the best advantage of the increasing number of
routinely available biological markers such as the aforementioned Ki67 level (linked to proliferation
and growth fraction), E-cadherin or TRIO levels (adhesion proteins), or stem cells markers. In
this context, a mathematical model of metastasis that would account for the biology of the process
might yield more accurate estimations and personalized predictions of clinically relevant quantities
such as the time to relapse or the amount of occult disease (number and size of distant lesions)

present at diagnosis.

The other cancer that we focused on in clinical results reported in this manuscript is lung cancer,
and more precisely non-small cell lung cancer (NSCLC). Lung cancer is still a rising concern in
oncology as it is the first leading cause of death by cancer, with more than 1.5 million deaths in
2012 worldwide (World Health Organization). Nearly 80% of lung cancers are of the NSCLC type,

and, in contrast with breast cancer, 50% of them are diagnosed at the metastatic stage. Brain

Bhttps://www.adjuvantonline.com/#
http://waw.predict.nhs.uk/index.html
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metastases (BM) affect more than 20% of patients with NSCLC [Barnholtz-Sloan et al., 2004].
Despite recent advances in this field, BMs remain a major concern as they are associated with
a poor prognosis [Oh et al., 2009]. In addition, BMs are responsible for debilitating symptoms
(asthenia, nausea, etc...) decreasing the patients’ quality of life. Lung cancer is known to be the
most deleterious in terms of brain metastases [Barlesi et al., 2013, Métellus et al., 2013, Tabouret
et al., 2013]. In addition to the clinical problem 1, also relevant for early stage NSCLC (i.e. locally

diagnosed disease), another one might be stated.

Clinical problem 2. For patients with a limited number (typically, one to three) of BMs, decide
what therapeutic strategy to follow, in particular regarding the use of whole-brain radiotherapy

(WBRT).

Indeed, as of today, the utility of WBRT in the management of BMs from NSCLC is still contro-
versial, in particular due to important neuro-cognitive toxicities [Barlesi et al., 2013, Owonikoko
et al., 2014, Tallet et al., 2012]. Several phase III trials were conducted but no firm conclusion that
would be valid for all patients could be drawn [Mulvenna et al., 2016, Pechoux et al., 2016]. This
points to the need of rational tools to decide therapeutic action in a patient-specific way. Simi-
larly, the clinical follow-up and planning of cerebral MRI could highly benefit from individualized
predictions of the probability of relapse.

3.2 Primary tumor size-dependent probability of metastatic

relapse

Our methodology for fitting clinical data of metastatic relapse probability followed the same format
as in [Barbolosi et al., 2011]. For the two datasets that we considered, we made the assumption
that the probability of developing a metastasis in the future was to have already one present
(but possibly invisible) at diagnosis. This assumption is particularly relevant for breast cancer
where, following diagnosis, surgery was performed, thus leaving no possibility for the origin of the
metastases than before diagnosis. It is more debatable for lung adenocarcinomas but we considered

it reasonable as a first attempt.

To avoid over-parameterization, parameters for the growth of the primary and secondary tumors
were fixed (not subject to optimization) and corresponded to a maximal volume of 10'? cells (~ 1
kg) [Retsky et al., 1997] and doubling times taken from the literature (7.5 months at 1 gram for
breast cancer [Koscielny et al., 1985, Coumans et al., 2013] and 169 days for lung ADK [Detterbeck
and Gibson, 2008]). The parameter v was considered identical for all the patients. For the breast
study, following our preclinical findings where v = 1 was able to describe the data, we kept also

this value in the clinical case. For the lung study, several values were investigated (see below).

We considered thus that the parameter p alone was responsible for inter-patient variability in
metastatic relapse, and assumed that it followed a lognormal distribution with mean u™ and

standard deviation p?. From a given size V;,l at diagnosis, the unobserved time period Tl(Vpl) can
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be computed by:
(V) = —%m (1 - 5111(1/1))

p - P
where o and 3 are the two Gompertz parameters. The probability of having at least one metastasis

at diagnosis was then given by
(V)
P(Mets) =P (N (71 (V) > 1) =P u/ Vp(t)7dt > 1] .
0

This last quantity can be computed by Monte Carlo simulations for a given (u™, u?). Additionally,
when the data was given as a range of primary tumor sizes, we considered a uniform distribution

within each range for the size at diagnosis (see [Benzekry et al., 2016] for details).

3.3 Breast cancer

3.3.1 Clinical data of metastatic relapse probability

Before the generalization of adjuvant therapy for breast cancer, Koscielny and colleagues [Koscielny
et al., 1984] reported data from a cohort of 2 648 patients followed for 20 years after surgery of the
primary tumor, without additional treatment. Their data (reproduced in Table 3.1) demonstrated
that, despite a clear association between primary tumor size at diagnosis and the probability of
metastatic relapse, not all the patients having a given primary tumor size were relapsing. For
instance, only 42% of patients with a primary tumor diameter at diagnosis between 2.5 and 3.5
cm developed metastasis. Using a lognormal population distribution of parameter u, we were
able to obtain a good fit to the data of metastatic relapse for all size ranges (Table 3.1). These
results demonstrated that, within our semi-mechanistic modeling approach, parameter u was able
to capture the inter-individual metastatic variability, not only in animal models but also for patient
data.

Diameter of Proportion of
prlma.ry tUII.IOI‘ Num.ber of patleni.:s Model fit
at diagnosis patients developing
(cm) metastasis (%)
1<D<25 317 27.1 25.5
25 <D <35 496 42.0 424
35<D <45 544 56.7 56.3
45 <D <55 422 66.5 65.9
5.5 <D <6.5 329 72.8 74.3
6.5 <D <75 192 83.8 80.8
75<D <85 136 81.3 85.7

Table 3.1 — Fit of clinical data of metastatic relapse probability in breast cancer (data from [Ko-
scielny et al., 1984])
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3.3.2 Assessing the impact of surgery on metastasis and survival

When diagnosis detects only a localized primary tumor, distant occult disease might already be
present. In our model, the extent of this invisible metastatic burden depends on: (i) the primary
tumor size at diagnosis and (ii) the patient’s metastatic potential p. For instance, if the primary
tumor size (or u) is small, then the occult metastatic burden might be negligible and surgery would
substantially benefit to the patient in terms of metastatic reduction, by stopping further spread of
new foci. Conversely, if the primary tumor size (or u) is large, then the occult metastatic burden

might already be consequent and removing the primary tumor might only have a marginal impact.

Virtual simulation of two breast cancer patients

We simulated the quantitative impact of primary tumor surgery in two virtual breast cancer pa-
tients having a primary tumor diagnosed at 4.32 cm and two values of j (median and 90th percentile
within a population lognormally distributed according to our fit to the data from [Koscielny et al.,
1984]). Results are reported in Figure 3.215. A discrete and stochastic version of the metastatic
dissemination process was used here for the simulations. Interestingly, our simulation revealed
that at the time of diagnosis, no metastasis was detectable (i.e., below the imaging detection limit,
taken here to 10® cells) in both cases (Figure 3.2A and B). In clinical terms, this means that both
patients would have been diagnosed with a localized disease, which is in line with the aforemen-
tioned clinical reports. However, the two size distributions were very different, with a much larger
residual burden in the “large u” case, illustrative of the increased metastatic potential. For the
“median p” case, our model predicted the presence of two small metastases, with respective sizes
of 6 and 278 cells. Not surprisingly, when no surgery was simulated, this number continued to
increase, reaching 160 secondary lesions after 15 years (Fig. 3.2C). However, most of the metastatic
burden (126 tumors, i.e., 78.8% of the total burden) was composed of lesions smaller than 10° cells
(~ 1g). Figures 3.2E and G demonstrate that a substantial relative benefit (larger than 10%) in
metastatic burden reduction was eventually obtained, but only after 7.8 years. Nevertheless, at
the end of the simulation (15 years after surgery), the predicted two occult metastases at diagnosis
had reached substantial sizes (1.41 x 101" and 1.89 x 10! cells). Therefore, for this patient with
median metastatic potential, the model indicates an important benefit in using surgery and adju-
vant therapy. For a patient with higher metastatic potential (at the level of the 90th percentile, see
Figure 3.2B, D, F, and H), even with a primary tumor diagnosed at the same size, the predicted
metastatic burden at diagnosis was considerably more important, with 76 lesions and the largest
comprising 6.23 x 10 cells. This consequent occult burden translated into poor outcome and the
metastatic mass would have reached a lethal burden of 10'2 cells 9.3 years after the initial diagnosis

if no therapy would have been administrated.

These results illustrate the potential of the model as a diagnostic and prognostic numerical tool

for assessment of the occult metastatic burden and postsurgery growth. In this, it could help to

15see also https://wuw.youtube.com/watch?v=C2LwnGISfug&index=3&1list=PLnuDkx_

YTHSxvPMI2QBbKXSoFsD9BU8cI for a movie of the simulated natural history of the disease


https://www.youtube.com/watch?v=C2LwnGISfug&index=3&list=PLnuDkx_YTHSxvPMI2QBbKXSoFsD9BU8cI
https://www.youtube.com/watch?v=C2LwnGISfug&index=3&list=PLnuDkx_YTHSxvPMI2QBbKXSoFsD9BU8cI
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determine the extent of adjuvant therapy necessary to achieve a long-term control of the disease.
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Figure 3.2 — Comparison of surgical/nonsurgical intervention outcomes using the clinical dataset.
Simulations were performed using the calibration of the parameter u from the clinical dataset for
the median value and the value of the level of the upper 90th percentile within the population
distribution. The primary tumor size at detection was assumed to be 4.32 cm. Simulations were
performed using a stochastic version of the model. A and B, size distribution of the metastases
at detection. The dashed line corresponds to the detection limit by imaging devices (assumed
to be 10% cells). C and D, time dynamics of the total number of metastases with and without
resection of the primary tumor. The horizontal solid line represents a lethal burden threshold of
102 cells. E and F, time dynamics of the metastatic burden with and without resection of the
primary tumor. G and H, surgery metastatic burden benefit as a function of the future, defined
by % x 100, where B,..s and Bj,ocs stand for the simulated metastatic burdens with and

nor

without resection of the primary tumor, respectively. The dashed line represents a 10% relative
benefit.

Impact of tumor size on postsurgical survival

To further examine the relationship between the primary tumor size at surgery and survival, we
performed simulations for (i) an individual with fixed value of p (the population median, see Figure
3.3A) or (ii) an entire population (simulated survival curves in Figure 3.3B) for three primary
tumor sizes. Numerical survival was defined by the time to reach a lethal burden of 1 kg [Klein,
2009] from the time of cancer initiation. Interestingly, we observed a highly nonlinear relationship
between the primary tumor size and the survival, which suggested three size ranges delimited by
two thresholds (Figure 3.3A). The lower threshold—termed “recurrence” threshold (4 cm in Figure
3.3A)—was defined as the maximal limit whereupon no metastasis was present at surgery (number
of metastases lower than 1). The upper size threshold—termed “benefit” threshold (5.2 cm in
Figure 3.3A)—was defined as the size above which surgery had a negligible (<10%) impact on
survival time. Above and below these “recurrence” and “benefit” thresholds, primary tumor size
had no important correlative value. Conversely, within the primary tumor size range delimited by
these two bounds, the relationship between pre-surgical primary tumor and post-surgical metastatic
burden/survival was highly correlative, with a large value of the derivative and a sharp transition

between the two extremes. The same qualitative primary tumor size/survival relationship was
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obtained for any value of p sampled within the population distribution, although with substantial

quantitative differences [Benzekry et al., 2016].

In Figure 3.3C, we present quantitative estimates of the recurrence and benefit thresholds for
various percentiles of p within the population distribution. Our simulations predicted that for the
first half of the population, surgery was almost always leading to negligible metastatic recurrence
risk, with large values of the recurrence threshold (larger than the usual detection levels). On the
other hand, the patients with large metastatic potential were predicted not to substantially benefit
from the surgery, as far as reduction of future metastatic burden was concerned. For instance, a
patient with u at the level of the 90th percentile and a primary tumor diagnosed at 4 cm would

have an increase in absolute survival time of only 1.9% following surgery (Figure 3.3C).

3.4 Mathematical modeling of cerebral metastatic appari-
tion and growth for EGFR mutated NSCLC patients

3.4.1 Clinical data of metastatic relapse probability

We performed a review of clinical studies of both the qualitative (growth function) and quantitative
(doubling time) features of unperturbed growth of primary lung tumors. A total of 20 publications
were found to contain such information, spanning from 1961 to current days. Doubling times (DT)
were reviewed from different types of studies, including large screening trials where the tumors
were only detected retrospectively, allowing calculation of a doubling time from at least two data
points of the tumor size. A few empirical studies with more than 2 time points supported the
exponential model during the visible phase of growth of the primary tumor [Friberg and Mattson,
1997, Mizuno et al., 1984]. The Gompertz model was also considered by others [Detterbeck and
Gibson, 2008].

In the patient case that we investigated, for a primary tumor (adenocarcinoma) diagnosed at a
diameter of about 3.6 cm, the pre-detection time (time elapsed between the first cancer cell and
clinical detection) was estimated to 16 years with the exponential model and the assumption of
a doubling time of 169 days [Detterbeck and Gibson, 2008]. In contrast, the Gompertz model
led to a more reasonable estimate of 4.5 years of undetected history. Thus, we further assumed

Gompertzian growth for the pre-treatment phase of the primary tumor.

A published clinical study reported the primary tumor size-stratified frequency of BM, either
present at diagnosis or developed during monitoring of the disease, for NSCLC patients (n = 264),
including descrition of the ADK patients subgroup (n = 136) [Mujoomdar et al., 2007]. For various
values of v (but constant within the population), we could obtain fits of this data (see Figure 3.4).
However, in contrast with our results on breast cancer, the fits that we obtained were rejected by

a Pearson x? test.
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Figure 3.3 — Impact of surgery on survival as a function of primary tumor size. A, simulations
of absolute survival time and corresponding relative survival benefit as functions of the primary
tumor size at surgery. The relative survival benefit is defined by RSB = % % 100, where
AS,cs and AS,,res stand for the simulated absolute survival times with and ‘without surgery of
the primary tumor, respectively. * the recurrence threshold was defined as the maximal size below
which the patient had no metastasis at diagnosis in the simulation. ** the benefit threshold was
defined by a 10% improvement of the absolute survival time due to surgery (horizontal dashed
line). The plain line at the bottom corresponds to survival without resection of the primary
tumor. Parameter values are those of a virtual patient from with median value of u. B, survival
curves for a simulated population with inter-individual variability on the metastatic potential
inferred from the fit to the clinical data (see [Benzekry et al., 2016] for values of the parameters).
Three representative primary tumor sizes at resection were considered. RS, resection size; HR,
hazard ratio using Cox proportional hazard regression analysis. C, surgical survival benefit, cure,
and benefit thresholds as functions of the inter-individual variability in metastatic potential p.
Displayed in the first row are the relative surgical benefits for simulations of a virtual patient with
a primary tumor diagnosed at a diameter of 4 cm and values of parameter p at the indicated
percentiles. oo, the metastatic burden never reached the lethal value of 10'2 cells during the total
simulation time (70 years). RSB, relative survival benefit. Recurrence and benefit thresholds
defined as in A. When no value is reported, the value was larger than the larger size considered in
the simulations (9 cm). D, schematic of the mutual relationship between primary tumor growth
and post-surgery overall survival.
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Figure 3.4 — Brain metastasis probability as a function of primary tumor size at diagnosis for ADK
(n = 136), with v = 0.5 (left) or v = 1. Circles = data from [Mujoomdar et al., 2007]. Plain line
= fit from the model. Simulation performed over 1000 virtual patients.

3.4.2 Individual description and prediction of cerebral metastases ap-

parition and growth

Data and statement of the problem

We dispose of measurements of the primary tumor and brain metastases (BM) sizes at the times
T1,...,T7. From this data, we are interested in: 1) finding an appropriate, minimal, semi-
mechanistic model of the time dynamics of the metastatic population (description of the data)
and 2) predict the BM data from data at previous time point(s): either T} alone and possibly only
the primary tumor (ultimate goal), 77 and T3 or T3, T5 and additional metastatic time point(s).

We will only report results regarding point 1) here.

One patient from the Bergoni¢é EGFR mutated patients has been investigated in details. This
patient had a lung adenocarcinoma (ADK) with primary tumor first detected on 08/19/2009, and
no overt metastasis at this time. A treatment with erlotinib (tyrosine kinase inhibitor specifically
suitable for EGFR-mutated patients) was initiated, which induced an initial decrease of the pri-
mary tumor size, followed by a regrowth (Figure 3.5A). At this time, the therapy was changed to
cytotoxic chemotherapy. Of note, size variations were small (see the scale in Figure 3.5A). About
20 months after diagnosis, one large (7.5 mm) BM was detected, which kept growing uncontrolled
(Figure 3.5B). After a one-year interval without brain imaging examination, five additional BM
were detected. These continued to grow and new secondary lesions appeared, reaching a total of
20 BMs on 07/15/2013. We dispose thus of a rich data set for this patient with complete follow-up
of the kinetics of BMs at 6 time points (see Figure 3.5B for the growth of the 20 BMs and Figure
3.5C for the longitudinal evolution of the number of visible BMs). Figure 3.5D is an example of a
CT image of the brain of the patient with the largest BM apparent, on 07/15/2013. Figure 3.5E

depicts the cumulative size distribution of the 20 metastases at this date.
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Figure 3.5 — Data on a patient with an EGFR+ lung adenocarcinoma. A. Primary tumor kinetics
under erlotinib. B. BMs curves. C. Number of visible BMs. D. CT scan of the brain on 07/15/2013.
E. Cumulative size distribution of the BMs on 07/15/2013. primary tumor = Primary Tumor. BM
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Mathematical formalism

The post-diagnosis kinetics of the primary tumor were simply assumed to be bi-exponential and
thus determined by: 1) an exponential decrease rate during efficacy of the treatment, 2) a duration
of treatment effectiveness before regrowth and 3) an exponential growth rate during relapse. See
simulations below (Figure 3.6A). In a first attempt, the effect of therapy on the metastases was
ignored, arguing that the observed growth of the metastases did not seem to be impacted by the
therapy (this was confirmed by direct fits of the metastases growth showing kinetics not substan-
tially different than the one assumed for the primary tumor from its histological type). Under our

formalism (section 2.2), the total number of metastases at time ¢ can be computed by:

N = [ uvis)as 1)

In order to use all the data of the size distributions at all time points, since the continuous
distribution p cannot be directly compared to the data (which would correspond to a sum of Dirac

masses), we fitted the cumulative density functions (cdf), defined by:
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+oo
F(t,s) = / p(t, u)du.

In a discrete version of the model, if we denote Xi(t),..., Xy (t) the sizes of the metastases at

time ¢ then

(t)
F(t, S) = Z ]an(t)ZS‘
n=1

These cdfs were to be compared and fitted to their empirical equivalent (Figure 3.5E). In order to

do so, it is useful to notice that the number of metastases of size larger than s at time ¢ is the total

number of metastases at time ¢ — 7(s) with 7(s) the time needed to reach the size s under the mets
20

growth law. For a Gompertz growth with parameters o and (s(t) =e7 (1_67&)), this time is
given by

(s) = _% In (1 _8 ln(s)> .

Therefore, we have, for all ¢

F(t,s) = N(t —71(s)),

which allows to easily compute the cdfs in view of (1). The fits were then performed by classical
likelihood maximization leading to a least squares optimization problem solved with the Matlab

function fminsearch.
Results

Not all the primary tumor cells have the same metastatic ability When trying to fit the
data with v = 1, the best-fit of the model predicted a number of metastases (visible + invisible)
of 6.2 x 10° at T (diagnosis time) and even 4.8 x 10® metastases at the last time T7. These values

are highly unrealistic and suggest rejection of the v = 1 theory.

The model was able to describe the dynamics of the data with (only) three free pa-
rameters As expressed above, the primary tumor growth parameters were set from the histologic
type and its size at detection. This leaves four free parameters in the model: «g, 8, and . A
reasonable hypothesis would be to assume the same growth parameters for the BMs as for the pri-
mary tumor, thus setting og = g, and 8 = 3,. However, this model was not able to accurately
fit the data. This suggested a growth difference between the primary tumor and the BMs (which,
among themselves, seemed to behave similarly, see Figure 3.5B). Allowing «q to differ generated a

good fit, for both the dynamics of the number and sizes of the lesions (see Figure 3.6). Therefore,
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only three parameters were required to reproduce the BM dynamics over 6 points, with a total of

47 data points.
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Figure 3.6 — Fit of the model with «ag,x and ~ as free parameters. A. cumulative distribution
functions. time expressed in months. Red circles = data. Line = model fit. B. Comparison of the
size distributions at 7. C. number of visible metastases. The two vertical dashed lines correspond
to the diagnosis time and the time of first detection of BM. Circles = data. Curve = fit

Clinically meaningful inferences from the model Once the parameters of the model de-
termined (here from an a posteriori fit of the longitudinal measurements of visible BMs), several
quantities of clinical interest could be derived. First, the sub-clinical phase of the cancer history
was estimated to be about 4.5 years (Figure 3.7A). At the time of diagnosis, while no BM was
detected, the model predicted that some of the further emerging BMs were already present, with a
size distribution plotted in Figure 3.7B. Specifically, 12 out of the 20 BMs that have become visible
before death of the patient were predicted to be already present. The largest one was predicted
to contain 1.21 x 10° cells (~ 0.61 mm in diameter) at diagnosis. Its inception was calculated to
have occurred 1.8 years before diagnosis (corresponding to 2.7 years after the first primary tumor
cancer cell), see Figure 3.7C. The growth curves of all the metastases that were visible on the last

patient’s exam are plotted in Figure 3.7D.
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Figure 3.7 — Inference from the model. A. Reconstruction of the primary tumor growth curve. B.
Predicted size distribution of metastases at diagnosis. C. Prediction of the birth times of the BMs.
D. Prediction of the growth curves of the BMs

3.5 Conclusion

Our modeling philosophy elaborates on Fisher’s theory [Fisher, 1977] of cancer as a systemic
disease and relates also to the parallel progression model [Klein, 2009]. The dissemination rate
d, characterized by the parameters i and -y, quantifies the metastatic potential and allows for a
continuum of possibilities between early and late dissemination. Our results seem to parallel clinical
evidence of the impact (and importance) of early surgery—particularly in the case of breast cancer.
For example, in a retrospective study of 2 838 breast cancer patients, the postsurgical residual risk
of recurrence at 5 years for stage I disease was 7% [Brewster et al., 2008]. Consistently, our
quantitative analysis demonstrates that in this case, for most patients, metastases that could have
been shed before diagnosis would not develop into overt clinical disease during the remaining life
history of the patient. For stage IV breast cancer (that would correspond, in our formalism, to a
large value of i), our analysis predicts only negligible benefit of the surgery (if only considering

reduction of metastatic shedding), in accordance with preliminary results of a recent clinical trial
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[Badwe et al., 2013].

Clinically, our methodology could be used to refine/optimize therapeutic strategies for patients
diagnosed with a localized cancer and inform on the timing of surgery, extent of occult metastatic
disease, and probability of recurrence. In turn, this may affect decisions on duration and intensity
of presurgical neoadjuvant or postsurgical adjuvant treatments [Early Breast Cancer Trialists’
Collaborative Group (EBCTCG), 2005].
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Abstract

After having investigated problems regarding the natural history of tumor growth and metastasis
(from both the biological and clinical point of views) in the previous chapters, we report now our

contributions regarding quantitative modeling of the effect of systemic therapies.

In the introduction, we perform a short and non-exhaustive review of historical successes of math-
ematical modeling as underlying theoretical concepts for the administration of systemic therapies
(mostly cytotoxic chemotherapies). This review was written mostly in collaboration with Eddy

Pasquier, Nicolas André and Joseph Ciccolini and published in [Benzekry et al., 2015b].

So far, we have identified two general classes of therapeutic applications of mathematical modeling.
The first concerns the rational design of the scheduling of anti-cancer agents in clinical trials.
Given the increasingly diverse arsenal of systemic agents in oncology (from targeted therapies to
immune checkpoint inhibitors passing by classical cytotoxic agents and anti-angiogenic drugs), we
believe mathematical modeling has the potential to guide rational combinations and sequences of
administration and improve on the empirical trial-and-error current practice. This is the sense of
the combined modeling and experimental studies reported in the second section of this chapter
that were the topic of several publications [Imbs et al., 2017, Mollard et al., 2017, Ciccolini et al.,
2015]. These were performed in strong interaction with the experimental side of the SMARTc team
led by Joseph Ciccolini (Inserm UMR S_ 911, Marseille, France), who conducted the experiments
of the studies of the second section together with Séverine Mollard and Arnaud Boyer. I also
co-supervised Diane-Charlotte Imbs and Raouf El Cheikh who performed part of the population
fits of the models.

A second class of applications of mathematical modeling that we identified concerns the person-
alized adaptation of the dosing and timing of the drugs’ administrations, given accessible clinical
data accessible (e.g. imaging, circulating biomarkers or biopsies). Although this is a trend that
has been present in the proceedings of our studies and that we are engaged in in current and future

projects, we have not achieved yet any significant contribution in this area.
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4.1 Introduction

Innovative technologies have dramatically changed the way we treat cancer. From crude surgery
for centuries, to the introduction of radiotherapy in the 1930’s and that of chemotherapy in the
1950’s [Mukherjee, 2011], we can now envision the development of personalized treatments for
cancer patients, thanks to the advances made in biology, chemistry, physics, mathematics and
engineering. Immune checkpoint inhibitors, anti-angiogenics and targeted therapies have already
entered the clinic with various level of success, and innovative technologies in imaging, PK/PD
modeling and the -omics are helping clinicians in their decision making on a daily basis. Yet,
chemotherapy is still administered today almost the exact same way it was fifty years ago. In
[Benzekry et al., 2015b] we reviewed some of the theoretical concepts that were most influential

for the administration of anti-cancer agents.

4.1.1 Historical concepts of chemotherapy

Skipper-Schabel-Wilcox and the log-kill model

Fifty years ago, Skipper, Schabel and Wilcox were the first to introduce theoretical concepts
for the optimal design of chemotherapy schedules [Skipper et al., 1964]. Based on experimental
studies involving L1210 leukemic cells — which exhibit exponential growth when left untreated
—, they introduced and demonstrated the log-kill effect for several cytotoxic agents, including 6-
mercaptopurine, 5- fluoruracil and vinblastine [Skipper et al., 1964]. This principle, based on an
analogy with the law of mass action for kinetic reactions in chemistry, states that exposure to a
given amount of drug kills a constant fraction of a cancer cell population, hence reducing it of a
constant amount in logarithmic scale (Figure 4.1). Further on, based on their experimental work
that demonstrated that the presence of as little as one single leukemic cell was sufficient to lead
to the host death, they argued that the goal of the therapy should be to achieve complete cure of
the disease, i.e. eradication of all malignant cells. In this context, they demonstrated that a large-
dose/short-time (single administration) schedule was superior to a chronic (daily) low-dose schedule
(with similar or larger total dose), thus leading to the maximum tolerated dose (MTD) paradigm
[Skipper, 1965]. However, when this view (that was involved in the calculation of the number of
cycles required for cure) was applied to the adjuvant systemic treatment of micrometastases (for
breast cancer for instance), it did not lead to the expected results [Early Breast Cancer Trialists’
Collaborative Group (EBCTCG), 1992]. Two major criticisms were addressed to the work of
Skipper et al.: (1) they considered a homogeneously sensitive population of cancer cells (i.e. no
resistance was explicitly taken into account) and (2) the experimental system they employed was

limited to a single leukemic cell line and their conclusions might not extend to solid tumors.
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Figure 4.1 — Left: Skipper—Schabel-Wilcox log-kill model. Tumor growth is exponential (linear in
log-scale) and each cycle of chemotherapy results in removal of a constant fraction of the tumor
volume (as opposed to a constant amount of cells). The dashed line represents the size of one cell,
that classical MTD chemotherapy approaches consider as the goal to achieve for eradication of
the disease. Right: Norton—Simon model. Untreated tumor growth is Gompertzian and exhibits a
decreasing specific growth rate. The Norton—Simon hypothesis implies a larger log-kill for smaller
tumors and suggests to densify the chemotherapy administration protocol. This is illustrated by
comparison of a three-weeks regimen (black curve) and a densified two-weeks regimen (gray curve).
The latter exhibits deeper drop of the tumor burden and thus larger probability of “cure”. However,
note that when tumor regrows, both schedules have the same time to recurrence.

Clonal resistance and the Goldie-Coldman model

Regarding point (1), substantial efforts in the modeling of resistance to cytotoxic agents have been
provided by the work of Goldie and Coldman [Goldie and Coldman, 1979]. The Goldie-Coldman
model states that mutation rates toward resistance are relatively high within a population of tumor
cells and that mutations develop spontaneously during the natural course of the disease (innate
resistance). This implies that the treatment should start as soon as possible in order to avoid the
natural tumor progression leading to the presence of more resistant cells. It also implies that if sev-
eral drugs are to be administered and cannot be given simultaneously for toxicity constraints, they
should be delivered alternatively in order to avoid resistance to drug B to develop during therapy
with drug A. However, predictions of this model were ruled out by several trials, in breast cancer
patients for instance, where strategies that delayed therapy or did not respect strict alternation of
combination regimen were proven to perform at least as well as the Goldie-Coldman recommended
strategy [Frei et al., 1961]. One of the main hypotheses underlying the Goldie-Coldman model
is the concept of absolute resistance, which is discussable. Indeed, there is some evidence that

tumors can exhibit various levels of relative drug resistance [Kern et al., 1997].

Kinetic resistance and the Norton-Simon hypothesis

In the 1960s, thorough study of tumor kinetics led to the realization that the specific tumor growth

rate for solid tumors, instead of being constant (exponential growth), was rather a decreasing
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function of the volume, provided tumor growth is observed long enough [Steel and Lamerton,
1966, Spratt et al., 1993] (see also chapter 1). In mathematical terms, tumor growth can be

formalized by means of the following differential equation:

av
=V (1)

In the 1970s, Norton and Simon [Norton and Simon, 1977] revisited the Skipper— Schabel-Wilcox
log-kill hypothesis, in order to extend it to growing tumors with non-constant specific growth rate.
They suggested that since chemotherapy is mostly based on anti-mitotic agents, it should only be
active against these cells that are actively proliferating, i.e. precisely the ones that contribute to
the volume increase in (1) [Norton and Simon, 1977]. Moreover, the current view of the effect of
chemotherapy (log-kill) was in contradiction with clinical observations such as: (a) the effect on
small tumors in an adjuvant setting not as pronounced as expected and (b) decreased sensitivity to
therapy observed also for very large tumors. Instead of a killing term proportional to the volume

of the tumor, they proposed a killing term proportional to the tumor growth rate, i.e.:

= JVa - )

They demonstrated that their model was consistent with clinical observations, able to fit preclinical
experiments and superior to the log-kill model in predicting the future course of an experimental
treated growth curve from a few initial measurements [Norton and Simon, 1977]. This model has
profound clinical implications. First, it predicts a superiority of densified dosing regimens. Indeed,
if less inter-cycle time is allowed to the tumor to regrow, it reaches a smaller size at the beginning
of the next cycle, thus a larger growth rate (Gompertzian growth) and consequently a larger
amount of cells killed by the drug. This prediction was confirmed by clinical trials that densified
administration drug schedules from every 21 days to every 14 days and showed benefit of applying
the second regimen [Held et al., 2006]. Second, extending these concepts to drug combinations,
the Norton—Simon model advocates for sequential administration of the drugs (in order to densify
the treatment for each drug separately), as opposed to the strict alternation supported by the
Goldie-Coldman model. Clinical trials (for the treatment of breast cancer for instance) again
confirmed this prediction of the Norton—Simon model [Bonadonna et al., 2004, Citron et al., 2003].
This example demonstrates how rational thinking and mathematical methods, based on pheno-
menological theories, can help to successfully guide clinical trials [Norton and Simon, 1986, Simon
and Norton, 2006]. Under the Norton—Simon hypothesis, larger absolute kill of cancer cells resulting
from early chemotherapy, as opposed to late chemotherapy, might be counter-balanced by faster
regrowth due to high growth rates of small tumors (see Figure 4.1), thus leading to similar overall

survival in both cases, despite significantly different times to relapse [Dang et al., 2003].
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4.1.2 Modern cancer biology and metronomics

During the early phases of the development of chemotherapy, the ultimate goal of therapy was
always complete cure from the disease. As stated by Skipper et al.: “(...) it appears that high-

IR

level, short-term schedules offer considerably greater potential for obtaining “cures [Skipper
et al., 1964]. Interestingly, even if these investigators were pleading for this option, they already
had noticed that this might not be the best strategy to achieve best long-term control of the
disease. Indeed, the previous quote continues with “This preference does not necessarily hold with
regards to achieving maximum increase in life span of animals which die in spite of therapy”. Since
several years, there is an increasing trend toward a paradigm shift in clinical oncology: in view of
the failure to cure patients using conventional approaches, investigators proposed to change the
goal of therapy from complete eradication of the tumor to a long-term management of the disease
[Gatenby, 2009]. This suggests that instead of waiting for “magic bullets” that would provide
an absolute and complete solution, one might instead look into optimization of already existing
therapeutic tools. In order to improve current cancer treatments, historical concepts need to be
revised to better take into account the complexity of the disease, including the toxicities of anti-
cancer agents, impact of the tumor microenvironment (e.g. vasculature and immune system) and
clonal heterogeneity on the efficacy of chemotherapy protocols. While an exhaustive review of the
concepts underlying modern anti-cancer biology, even if only from the scope of the contribution of
mathematical modeling, is beyond the aim of this review, we mention hereafter specific examples
that we believe are illustrative and inspirational for the usefulness of mathematical constructs to

counteract cancer dynamics.

Toxicities of cytotoxic agents

Following the implications from the Norton-Simon hypothesis, densification of the cytotoxic treat-
ment protocols in the treatment of breast cancer led to agressive schedules that induced severe
toxicities. Of particular importance are hematological toxicities such as neutropenia potentially
leading to toxic death of the patients. In an effort of controlling these toxicities, Barbolosi and
Tliadis developed a pharmacokinetics/pharmacodynamics model for white blood cell counts and
defined an optimal control problem for minimization of the tumor burden under clinically rele-
vant toxicity constraints [Iliadis and Barbolosi, 2000, Barbolosi and Iliadis, 2001, Barbolosi et al.,
2003]. This model was further enhanced with an interface model for description of the exposure
as a function of the circulating concentration [Meille et al., 2008]. Importantly, these investigators
were the first (up to our knowledge) to use such a mathematical model for the design of a phase
I/II clinical trial [Meille et al., 2016, Hénin et al., 2016]. The MODEL1 trial was designed for
dose-escalation and dose-densification of the combined administration of docetaxel and epirubicin
in the treatment of metastatic breast cancer. Not only could the model-based regimen control
otherwise life-threatening toxicities, but efficacy was also improved [Hénin et al., 2016]. Extension
of this model for the treatment of small cell lung cancer has been considered recently in [Faivre
et al., 2017].
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Tumor heterogeneity and (epi)-genetic resistances

In a very elegant, simple and conceptually powerful theoretical study, Hahnfeldt, Folkman and
Hlatky [Hahnfeldt et al., 2003] re-analyzed the problem of dose repartition in light of tumor het-
erogeneity. They considered two subpopulations of cancer cells with two distinct sensitivities to
a given drug, with transition rates between the two populations. Importantly, the transition rate
from the less sensitive population to the most sensitive one was assumed to be positive, thus al-
lowing for a resensitization effect. Under their minimal framework that allows to perform explicit
computations, they demonstrated that more regularly spaced dosing of the drug yields better final
tumor reduction when compared to irregular spacing, for both single and multiple cycles therapies.
Eventually, based on the assumption that the endothelium is more subject to resensitization than
the tumor compartment, they also proposed their model as an explanation for the anti-angiogenic

basis of metronomic chemotherapy [Kerbel and Kamen, 2004].

Inspired by the example of invasive species in ecology and the use of pesticides, a situation where
complete eradication is usually impossible due to high phenotypic diversity that leaves resistant
individuals after intervention, Gatenby [Gatenby, 2009] proposes to see a tumor as an ecosystem
ruled by evolutionary laws. In this context, high dose chemotherapy might have the deleterious
effect of selecting for the most resistant cells, by eliminating the sensitive competitors. On the
other hand, a low-dose continuous therapy, by keeping a positive amount of sensitive cells, might
provide a better long-term control of the total population [Gatenby, 2009]. In a study using
both mathematical and experimental approaches, Gatenby and colleagues further developed this
concept and introduced the idea of adaptive therapy. It consists in modulating the dose and
frequency of therapeutic administrations in order to maintain a constant tumor volume, as opposed
to the conventional approach that administers a fixed dosing regimen repeated over several cycles
[Enriquez-Navas et al., 2016, Gatenby et al., 2009].

Applying the same evolutionary concepts to population dynamics of cancer cells, Clairambault et
al. developed a modeling framework that revisited the concepts underlying the Delbriick—Luria /
Goldie-Coldman model of spontaneous development of resistance [Chisholm et al., 2015]. In their
work, they made two major hypotheses: (1) reversible, drug-induced (rather than irreversible and
spontaneous) development of resistance, based on a recent experimental study and (2) varying
levels of resistance (instead of the classic sensitive/resistant dichotomy). Point (2) was elegantly
formalized in mathematical terms within the context of structured evolutionary population dynam-
ics, by means of one (or more) continuous variable representing a phenotyping trait [Lorz et al.,
2013, Lorz et al., 2015]. Full implications of these recent studies in terms of optimal scheduling
have recently been published and generate non-trivial insights on optimal administration schedules

emerging from the complex dynamics due to tumor heterogeneity [Pouchol et al., 2016].

Anti-angiogenesis

In 1999, Hahnfeldt et al. [Hahnfeldt et al., 1999] derived a biologically-based (yet technically

simple) mathematical model for tumor growth under endogenous angiogenic signaling that was
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able to describe the effect of several anti-angiogenic molecules. Based on this model, Ledzewicz and
Schéttler performed a full optimal control analysis for theoretical optimization of the scheduling of
a drug with anti-angiogenic properties [Ledzewicz and Schéttler, 2007]. Interestingly, they found
that the optimal control, instead of having a bang-bang expression (constant full-dose sections
separated by breaks — i.e. conventional chemotherapy), could exhibit singular arc portions where
the drug is administered at a lower dose than the MTD, with varying rates. This is the expression
in mathematical terms of the concept of a biologically optimal dose, which might differ from the
MTD.

Metronomic chemotherapy

Using the Hahnfeldt model further, d’Onofrio et al. [d’Onofrio et al., 2009] studied the effect of
scheduling variations and obtained that a drug targeting the vasculature would have a better effect
if administered more frequently at lower doses (assuming constant total dose). When the drug
effect was further assumed to depend on the vascular density, a nontrivial optimal metronomic
inter-administration time was found [d’Onofrio and Gandolfi, 2010a]. Interestingly, metronomic
scheduling additionally exhibited enhanced robustness toward noise-induced transitions (i.e. escape

from therapeutic control) in response to stochasticity in the clearance rate [d’Onofrio and Gandolfi,
2010b].

Recently, mathematical models specifically tailored for the analysis of the anti-angiogenic effect of
metronomic chemotherapy in various concrete clinical settings were introduced [Benzekry et al.,
2012a, Faivre et al., 2013, Barbolosi et al., 2016]. All these rely on the same assumptions: (a)
chemotherapy has an anti-angiogenic effect by killing endothelial cells in addition to its cytotoxic
effect on cancer cells [Browder et al., 2000, Klement et al., 2000], (b) cancer cells develop resistance
whereas endothelial cells do not (due to larger genetic stability) and (c¢) drug action is stronger
on endothelial cells than on tumor cells [Klement et al., 2000]. Using realistic pharmacokinetic
models and an interface model for description of the efficacy from the concentration of the drug
in the central compartment, MTD and metronomic schedules were compared in silico for the
administration of docetaxel [Benzekry et al., 2012a] or temozolomide [Faivre et al., 2013]. A
model-designed regimen employing of an adapted version of this model for the use of gemcitabine
in the treatment of neuroblastoma was recently shown to be superior to the standard schedule in
preclinical experiments [Ciccolini et al., 2017]. In parallel, this model was also used to design the
metronomic schedule in a phase Ta/Ib clinical trial of oral vinorelbine in metastatic non-small cell

lung cancer [Elharrar et al., 2016].

In the clinic, most cancer-related deaths are not due to the primary tumor, but rather to the
metastases [Chaffer and Weinberg, 2011]. To address the issue of treatment on a population
of tumors (rather than a single tumor), as well as the effect on the dissemination process, we
defined an optimal control problem written for an organism-scale model of metastatic development
[Benzekry and Hahnfeldt, 2013]. Although complete mathematical analysis was too complicated to

be achieved, we could perform a simulation study and found that the overall efficacy of cytotoxic
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agents, either alone or in combination with anti-angiogenic drugs, was generally maximized when
employing a metronomic schedule rather than the MTD. Interestingly, in some instances (e.g.
values of the parameters, objective function considered), differences in the best strategy occurred
between the treatment of the (isolated) primary tumor and the treatment of the (systemic) cancer
at the organism scale. These theoretical predictions were independently confirmed in pre-clinical

studies using mouse models of spontaneous metastases [Ebos et al., 2014].

4.2 Model-driven optimization of antiangiogenics + cyto-

toxics

In the previous section, we described how mathematical modeling could be used to improve treat-
ment regimen of single anti-cancer drugs or combination of drugs with similar (cytotoxic) action.
However, given the current wide scope of possible anti-cancer therapeutic action, even with only
chemical weapons, mathematical modeling has also relevance for the matter of the sequence of
administration of several agents with different modes of action. Of particular relevance is the com-
bination of chemotherapy and anti-angiogenics, in view of the intrinsic link between the vasculature
extent and functionality and the drugs’ delivery. Relevant to this matter is the phenomenon of
vascular normalization, a counter-intuitive effect of anti-VEGF agents that transiently improves
the functional properties of the vasculature and thus the delivery of cytotoxic compounds. Based
on previous theoretical modeling work [Benzekry et al., 2012b], in collaboration with the SMARTc
team (Inserm S_ 911, Marseille, France), we conducted a series of experimental and modeling stud-
ies to investigate the utility of mathematical modeling in finding an optimal therapeutic window for
sequential administration of bevacizumab and cytotoxic agents [Ciccolini et al., 2015]. These were
published in two papers, one for breast cancer [Mollard et al., 2017] and the other for non-small cell
lung cancer [Imbs et al., 2017]. Experiments were conducted by Joseph Ciccolini, Arnaud Boyer
and Séverine Mollard. Part of the modeling analysis of the second study was conducted during
the postdoctoral contracts of Diane-Charlotte Imbs and Raouf El Cheikh, who I supervised on this
part.

4.2.1 Introduction: vascular normalization and implications for combi-

nation of antiangiogenic and cytotoxic agents

Launched in 2004, bevacizumab has been approved since then in a variety of settings in solid
tumors such as colorectal, breast, lung or ovarian cancers, with mixed and sometimes still ques-
tioned impact on survival [Keating, 2014]. Of note, bevacizumab has always only been approved
as a concomitant administration with associated cytotoxics. Several studies from independent aca-
demic groups have suggested that anti-angiogenics could induce a transient phase of vasculature
normalization with increased tumor blood perfusion, prior to exerting its antiangiogenics proper-
ties [Jain, 2001, Jain, 2005, Dickson et al., 2007, Jain, 2014, Arjaans et al., 2016]. Indeed, while
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the unaltered tumor vasculature is tortuous, chaotic and poorly functional (Figure 4.2) [Carmeliet
and Jain, 2000], bevacizumab prunes and remodels tumor vessels to make them resemble normal

tissues in terms of structure and function [Carmeliet and Jain, 2011, Jain, 2013].

Figure 4.2 — Whole brain vasculature of a mouse bearing a xenografted U87 glioma tumor showing
abnormal organization of the tumor vasculature. Reproduced from [Vakoc et al., 2009].

This paradoxical action has been considered as possibly generating a time-window to administrate
chemotherapeutic agents, thus suggesting a paradigm shift from concomitant to sequential dosing.
Indeed, delaying chemotherapy could allow higher quantities of drugs to reach the tumor, provided
that their administration coincides with this normalization phase. This led us to define the following

problem, for which we believe mathematical modeling can be of help.

Therapeutic problem 1. What is the optimal time gap between administration of an anti-

angiogenic agent such as bevacizumab and cytotozic chemotherapy?

As early as 2004, it has been shown that blocking VEGFR2 could decrease tumor hypoxia at
the beginning of the treatment, thus demonstrating that transient normalization of tumor neo-

vessels happens indeed with antiangiogenics [Tong et al., 2004, Winkler et al., 2004]. This was
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already associated with improved efficacy of combined radiotherapy or chemotherapy. Indeed,
because disrupted tumor vasculature may lead to resistance to chemotherapy and radiotherapy
due to subsequent higher interstitial fluid pressure, and reduced blood flow lowering drug delivery
[Tejpar et al., 2012], alternate scheduling with antiangiogenics could overcome these resistances.
Ever since, several groups have worked on this issue, mostly as part of experimental therapeutics
[Arjaans et al., 2016, Cesca et al., 2016, Dickson et al., 2007].

Only few clinical trials have investigated on alternate scheduling with bevacizumab. The BRANCH
study evaluated bevacizumab in rectal cancer patients after standard concomitant dosing or alter-
native sequential administration. Whereas concomitant dosing was little effective, the sequential
administration led to 50% of tumor regression rate with 85% of 5-years survival and better tol-
erance [Avallone et al., 2015]. These promising results supported the ongoing OBELICS study
(Optimization of BEvacizumab scheduLIng within Chemotherapy Scheme), a phase-3 trial that
will compare different sequences of bevacizumab associated with chemotherapy [Avallone et al.,
2016]. Despite these encouraging findings, the need for identifying proper biomarkers to forecast
bevacizumab impact on neovessels remains critical [Tredan et al., 2015] and until they are made

available, in silico tools could be helpful to optimize alternate schedules.

In contrast to the many pharmacodynamic models describing the action of cytotoxics on tumor
growth [Barbolosi et al., 2016], and despite substantial theoretical efforts in the field of cancer
modeling to simulate angiogenesis and tumor-vasculature interactions [Anderson and Chaplain,
1998, Chaplain et al., 2006, Billy, 2009, Lignet et al., 2013], relatively few mathematical models
of anti-angiogenic therapy have been actually confronted to experimental data [Hahnfeldt et al.,
1999, Rocchetti et al., 2013], and even less have investigated combined effects of cytotoxics with
antiangiogenics [Rocchetti et al., 2013, Wilson et al., 2015]. To address this issue, we developed a
phenomenological model describing the effect of antiangiogenics on vasculature quality throughout
time, thus potentially forecasting when the normalization phase occurs (see Figure 4.3) [Benzekry,
2012a). When coupled with an efficacy component, this model should allow to compare in silico
differences in efficacy depending on the lag-time between cytotoxics and antiangiogenics, thus

helping in decision-making prior to start the actual experiments.

4.2.2 Mathematical modeling of vascular normalization

Semi-mechanistic model

In our studies, we used several models with several purposes. The main idea of all of them was to
depart from the Hahnfeldt model which accounts for the effect of anti-angiogenic agents by means of
a dynamic carrying capacity K (t) [Hahnfeldt et al., 1999]. While associating the carrying capacity
with the vascular supply, this model by itself does not allow for a description of the quality of the
vasculature. Therefore, we first extended it in a minimal way to account for a description of this

feature.

For all drugs, appropriate pharmacokinetic models (often one-compartmental with absorption)
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and parameters have been described previously in the literature and were employed to describe
the concentrations of the cytotoxic and antiangiogenic drugs , respectively denoted C(t) and A(t)
(see [Mollard et al., 2017, Imbs et al., 2017] and references therein) .

The effects of the cytotoxic drugs (paclitaxel for the breast study, cisplatin and pemetrexed for
the lung study) were modeled similarly as in [Simeoni et al., 2004] where the authors considered a
delay in the effect the drug(s), due to the fact that the cells are not directly removed after cytotoxic
administration because they only die when reaching a specific step of the cell cycle. After being
affected by the drug(s), the tumor cells thus stop proliferating and go through three compart-
ments 7y, Zs and Z3 before being removed from the system. Following reported observations, we

considered that paclitaxel also had an anti-angiogenic effect [Pasquier et al., 2010].

Following biological rationales [Tong et al., 2004] and previous theoretical work [Lignet et al.,
2013], our idea for the definition of a dynamical quality of the vasculature was to divide K(t)
into two compartments: a stable one S(¢) (mature vessels) and an unstable one U(t) (immature
vessels), see Figure 4.3. The anti-angiogenic action of the drugs was then further assumed to occur
on U (rather than §), because it represents the component of the vasculature directly affected
by VEGF stimulation, which is the target of bevacizumab. Then, the (macroscopic) quality of
the vasculature was defined as the ratio of the stable component of the vasculature over the total
amount of blood vessels. The drugs delivery was assumed to be modulated by the mature vascular

capacity, represented in the model by the variable S(t). The equations write:

¥ = aVin(2) — ecrQSCH)V V(t=0)=V
40 — bN — dN?/3U — XU — (eaa + 5ecryQSAMU Ut =0) = Uy
%sz—TS S(t=0) =5
2 = ecrQSC()V — kZ, Zi(t=0)=0
2 — k7, — kZs Zy(t=0)=0
s _ 7, — kZs Z3(t=0)=Vo

N=V+Z + 2+ Z3

_ __8S®)
Qt) = U+

with V) denoting the number of cells injected in the experiments and Uy and Sy the initial conditions
of the vasculature subject to fit to the data. The variable N(¢) denoted the total number of tumor

cells alive at time ¢.

In [Mollard et al., 2017] we demonstrated that this model was able to reproduce experimental data
that demonstrated the superiority of a sequential scheme where bevacizumab was administrated
before paclitaxel (48% reduction in tumor size at study conclusion compared with concomitant

dosing). However, due to the high number of variables and parameters in the model in comparison
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Figure 4.3 — Scheme of the semi-mechanistic mathematical model of vascular normalization

to the relative scarcity of the data obtained in the experiments (only the tumor growth curves),
the model was highly unidentifiable with very large standard errors on the parameters estimates
[Mollard et al., 2017]. Thus, only moderate confidence can be attributed to the optimal interval
predicted by the model (of 2.4 days). To address the identifiability issue, we also built a simpler
model with fixed, schedule-dependent quality of the vasculature. While this model was by definition
not able to address the therapeutic problem 1, it was nevertheless useful in quantitative inference
for the effect of a sequential administration of the two drugs with bevacizumab first, for which it

estimated (under our model assumptions) an approximate 5-fold increase in drug delivery.

Simpler model
To address the identifiability issue of the previous model, we :

1. investigated iteratively simpler models that would nevertheless still keep a dynamic quality of
the vasculature. This last feature was indeed essential to keep in the model in order to capture
the trade-off between vascular normalization and disruption following the administration of

anti-angiogenic agents and thus predict the best delay between administration of the two
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drugs.

2. employed mixed-effects modeling for fitting population distribution of the parameters to the
pooled data of all animals. This reduces the number of parameters to be estimated from

N x p to p> + p where N is the number of animals and p the number of parameters.

This new model writes:

& =aVin (£) — ecrQC(HV Vit =0) =V,
U — pN — AN?PK — eaaQAK  K(t = 0) = K
G = Alt) = 9(Q — Qo) Q(t=0) = Qo
Y — eorQC)Y — k2, Zi(t=0)=0

%:kZQ—kZ3 Zg(t:O):O

N=V+7Z + 2+ Z3

In comparison with the previous one, we abandoned the semi-mechanistic description of the quality
of the vasculature as deriving from the division into mature and immature blood vessels. We also
removed the dependence of the drugs’ delivery on the vasculature (S in the previous model, K in the
current one) since simulations showed that this feature had only little impact. The parameter Qg
corresponds to a baseline value of vascular efficiency, hence thought to be small in view of the poor
functionality of untreated tumor blood vessels [Carmeliet and Jain, 2000]. In this simpler model,
the dynamics of @) are thus assumed to be stimulated by the presence of the anti-angiogenic agent,
whose circulating concentration follows its own pharmacokinetics. The latter has long half-life of

the order of ten days for bevacizumab [Lin et al., 1999].

4.2.3 Calibration, predictions and validation of the model in experimen-

tal non-small cell lung carcinoma

To investigate the usability of our model and verify its predictions, we employed the following

strategy:

1. A first set of experiments (experiment-1) was performed with three arms: a control arm (no
treatment), a concomitant arm and a sequential arm, with a delay of 4 days (determined
arbitrarily) between bevacizumab and the two cytotoxics (cisplatin and pemetrexed). It
demonstrated the superiority of the sequential regimen for both tumor growth and survival
(Figure 4.4).

2. Data from experiment-1 were used to calibrate the parameters of the model (Figure 4.5).
Simulation of the median behavior from the estimated population parameters confirmed the

superiority of the sequential schedule (Figure 4.6A).
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3. This calibration allowed to test in silico a wide range of possible gaps between the adminis-
tration of the drugs and predicted an optimal delay of 3 days (Figure 4.6B-C). At the same
time, a delay of 8 days was predicted to perform substantially worse. Of note, the model was
also able to quantitatively predict inter-animal variability of this optimal delay, which was

found to be small but non zero (Figure 4.6D).

4. These predictions were subsequently tested in a second round of experiments (experiment-2)
involving two sequential arms (3 days and 8 days). The experiments confirmed the superiority

of the 3 days sequential arm over the 8 days one (Figure 4.7).

We refer the interested reader to [Imbs et al., 2017] for materials and methods details.

Together, this proof-of-concept study demonstrated the validity of a simple semi-mechanistic mathe-
matical model for description of tumor growth curves under the action of combined antiangiogenics
+ cytotozics therapy with different sequences of administration of the drugs. Moreover, predictions
of the model in terms of improved delay between the administration of the two types of drugs were
confirmed experimentally, thus emphasizing the utility of mathematical modeling for a rational

design of anti-cancer treatment regimen, instead of the empirical, costly, trial-and-error approach.

In addition, our model could be used in a biomarker-based strategy for improving anti-angiogenic
therapy. No predictive biomarker has been clearly validated yet with anti-angiogenics [Collinson
et al., 2014]. Our model parameters could be quantitatively linked to imaging and predictive
circulating biomarkers with bevacizumab [Heist et al., 2015, Lassau et al., 2016]. Consequently,
this would provide personalized simulations of tumor growth allowing to predict early the patient’s
response and to adapt the dose and timing of the treatment in order to maximize the treatment

efficacy.
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Figure 4.4 — Efficacy and Kaplan-Meier survival curves of experiment-1 A: Mean tumor growth
curves for the 4 treatment arms of experiment-1. Signs above curves indicate statistically significant
difference with the control arm (Student’s t-test, p < 0.05). Sequential 4 days versus concomitant:
36% tumor growth reduction at study conclusion. B: Kaplan Meier plot of the overall survival
for the 4 treatment arms of experiment-1. Median survival times: 39 days (control), 49 days
(concomitant) and 67 days (sequential 4 days). Sequential 4 days was significantly superior to the
concomitant group (p = 0.0485, log-rank test).
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Figure 4.5 — Visual predictive check for experiment-1 population analysis. Circles: experimental
data, solid lines: tumor growth simulated curves using median parameter values, dashed lines: 95%
intervals for inter-animal variability, generated from the simulation of 1000 virtual animals with
parameters distributed according to the distribution estimated by the mixed-effects fit (performed

with Monolix)
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Figure 4.6 — Data-informed modeling simulations of various gaps between bevacizumab and
pemetrexed-cisplatin administrations A: Median tumor growth curves. B: Simulations of the tu-
mor growth using different time lags between the administration of bevacizumab and pemetrexed-
cisplatin (“Beva then Chemo”). The red curve corresponds to a time lag of 3 days. C: Area under
the tumor growth curve as a function of the time lag. D: Inter-animal variability on the optimal
lag time between bevacizumab and chemotherapy (median = 2.9 days, standard deviation = 0.45
days).
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Abstract

After having performed several research projects about cancer biology biological that deepened my
understanding of the mechanisms of several processes involved in cancer, my current and future
projects are now more directed towards a concrete clinical application of the models and methods
that I have developed. I still keep a strong interest in the theoretical biology of metastasis and
want to continue part of my activity in this area since the results that I obtained have led to opened
questions (see below). Nevertheless, the majority of my research projects are within the scope of

clinical and therapeutic applications, in line with the aims that I expressed in the introduction.

5.1 Theoretical biology of the metastatic process

In recent years, using sequencing data investigating phylogeny of clones within primary tumors
and across metastases, several studies have brought new lights on systemic-scale metastatic
dynamics [Gundem et al., 2015, Hong et al., 2015, Yachida et al., 2010]. In particular, several
of the results from these studies have relevance regarding our own findings about the origin of
metastases and the possibility of cells’ exchanges between established tumors [Baratchart et al.,
2015]. This brings back to the self-seeding theory proposed by Larry Norton and Joan Massagué
who put forward the hypothesis that metastatic cells from distant lesions might seed back the
original tumor [Norton and Massagué, 2006]. While the quantitative contribution of self-seeding
to the growth of the primary tumor has been debated (of note, by means of mathematical methods
[Scott et al., 2013a]), experimental proof of exchange of cells between artificially implanted tumors
was established in [Kim et al., 2009]. Nevertheless, exchange of cells between the primary and
the metastases remains to be studied, especially from the quantitative point of view. To this
end, our biological collaborators at the LAMC obtained interesting preliminary results supporting
the recruitment of circulating cells by established metastatic colonies (Figure 5.1). We want to
further pursue these investigations and use modeling for example to quantify the relative amounts
of disseminated cells that join established colonies as compared to the ones generating new lesions.
Modeling can also be used to compare alternative hypothesis concerning the still open debate
of metastases from metastases [Bethge et al., 2012, Tait et al., 2004, Sugarbaker et al., 1971]
challenged by the previously cited recent reports [Gundem et al., 2015, Hong et al., 2015].

5.2 Clinical metastasis

In order to transfer the modeling framework for metastasis that I have contributed to develop into
a practical diagnosis and prognosis tool that could help to refine and individualize adjuvant

therapy, the critical next step is to find a way to estimate the parameter p (for breast cancer) and
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Figure 5.1 — Orthotopic injection of red-tagged (m-cherry) RENCA cells followed 15 days later
by intra-caudal intra-veinous injection of green-tagged (GFP) RENCA cells demonstrating that
secondary injected cells join already established colonies. Experiments performed by Wilfried
Souleyreau and Lin Cooley within the LAMC (Inserm U1029, Bordeaux) led by Andreas Bikfalvi

w, v and g (for BMs from lung cancer) in a patient-specific manner. One of the main challenges
will be to do so using data derived from the primary tumor only, because metastases are
often undetectable at the time of diagnosis. Although the value of p might very likely depend on
the combination of several phenomena (including some genetic alterations or the immune status of
the patient, which could be linked to different biomarkers [Di Gioia et al., 2015]), recent successes
of genetic signatures as prognosis factors for metastasis might allow for patient-specific estimation
of p [Reis-Filho and Pusztai, 2011].

For both breast and lung cancers, our objective now is to up-scale the number of patients and
amount of individual information from clinical databases in order to develop the model as a pre-

dictive tool that could reach clinical use.

5.2.1 Mechanistic-based prediction of the time to metastatic relapse in

breast cancer

I have recently initiated a collaboration with the Bergonié institute in Bordeaux (Véronique Brouste
and Carine Bellera) and a team of biostatisticians (Mélanie Prague and Rodolphe Thiebaut, Inria
team SISTM) in order to use the breast cancer clinical database of the Bergonié institute to develop
the project. This large data set (1070 patients) is particularly interesting because more than half
of the patients (642) did not receive adjuvant therapy (the Bergonié Institute was still protecting
its patients from toxic chemotherapies several years after the generalization of adjuvant therapy in

breast cancer), thus providing data on the natural history of the disease.

The purpose of the project is to further investigate the validity of our model in order to refine
the existing classifications and provide quantitative individualized predictions of the prob-
ability of relapse, time to recurrence and survival. Using machine learning techniques, I

want to build a map between the clinical and biological factors present in the database and the
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parameters of the model determinant of metastatic relapse and its ocurrence time. In addition to
well-established classification variables such as the hormonal and HER2 statuses, quantitative con-
tinuous variables reported in the database have the potential to offer a more precise classification
through our biologically-based model. Indeed, kinetic parameters such as the Ki-67 level are likely
to be related to proliferation rates naturally occurring in the mechanistic model (as part of the
growth parameters). Similarly, levels of E-cadherin (a cell-cell transmembrane adhesion protein)
or the Trio protein are likely to be related to a cell-scale parameter of the mathematical model of
intrinsic metastatatic (disseminative) agressiveness. Cancer stem cells markers (CD44 and CD24),
informative on the proportion of tumor-initiating cells, will be integrated in a specific parameter
of the model quantifying the proportion of tumor cells susceptible to generate metastases. These
factors are all present in the database which thus appears to contain variables ideally suited to be

linked to the parameters of our mathematical model.

5.2.2 Brain metastases from lung cancer

In collaboration with several medical teams in Marseille (Fabrice Barlési and Pascale Tomasini from
the Multidisciplinary Oncology and Therapeutic Innovations Service, AP-HM and Xavier Murac-
ciole from the radiotherapy unit of the AP-HM), we have started to build a devoted database
reporting several clinical entries of interest including molecular data (mutation status of EGFR,
KRAS, BRAF, PI3KA, HER2, ALK, ROS1 and TTF1) as well as information on the brain metas-
tases. Moreover, in collaboration with Jean-Luc Mari (Laboratoire des Sciences de I'Information et
des Systémes, Marseille) we also plan to apply computational geometry tools to clinical images
of the lung primary tumors in order to infer and quantify topological and geometrical metrics.
While we plan to link the molecular data to the cell-scale parameter u, the latter geometrical

indices will be linked to the tumor-scale parameter 7 (see Figure 5.2).

5.3 Tumor-tumor interactions in metastasis from thyroid

cancers

In a recent publication, Terroir et al. reported unexpected findings of an absence of correlation
between 8fluorodeoxyglucose (FDG) uptake measured by positron emission tomography (PET)
and the growth rate of individual tumors [Terroir et al., 2017]. Indeed, this functional imaging
metric — supposedly correlated with the metabolic activity of the lesion — is classically thought to
be linked to the aggressiveness of the cancer disease, which is in contradiction with the results of
[Terroir et al., 2017]. However, these authors considered the tumors independently from each
other, even if they originated from the same patient. As suggested by and in collaboration with
David Taieb (MCU-PH in nuclear medicine, AP-HM, Marseille), we want to reassess the findings of
[Terroir et al., 2017] in light of possible tumor-tumor interactions that could act as confounding
factors and bias the absence of correlations reported. In this context, our tumor-tumor interactions

model [Benzekry et al., 2017] could be particularly relevant since: 1) it is minimally parameterized
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(four parameters) and 2) it includes two populations of cells within a tumor which are well suited
to be inferred from the two information given by the functional PET imaging and morphometric

CT imaging both routinely performed in patients with metastatic thyroid cancer.

In addition, the case of metastatic thyroid cancer is particularly well suited for our model because
there is a wait-and-see strategy for some of the patients, thus making the data adapted to be
confronted to our model where no validation of the effect of treatments has yet been established.
Finally, there is a systemic biomarker measured in the blood (the thyroglobulin) that is produced
by each of the cancer cell, thus allowing access to the invisible disseminated burden. A modeling
study of the dynamics of thyroglobulin has recently been published and can be used as a starting
point [Barbolosi et al., 2017).

In collaboration with David Taieb and Dominique Barbolosi (both authors of the previous study),
we want to apply our model to be able to predict, on an per-patient and per-lesion basis, the future

evolution of the disease in order to help clinical decision about therapeutic intervention.

5.4 Differential effects of therapies on primary tumor and

metastases

Our mathematical methodology for modeling data of metastatic development provides a quanti-
tative in silico framework that could be of valuable help for therapeutic preclinical aims. One of
my current projects is to address the differential effects of systemic therapies on primary tumor
growth and metastases, including possible acceleration following anti-angiogenic treatment
[Ebos et al., 2009, Ebos et al., 2014]. In collaboration with John Ebos we have access to a large
database containing longitudinal data for more than 400 animals treated in the neo-adjuvant set-
ting by two drugs with anti-angiogenic activity (Suntinib and Axitinib), with multiple schemes of
administration. These include not only data on primary tumor growth curves but, crucially, also
longitudinal measurements of the post-surgical metastatic burden by bioluminescence as well as
survival. In addition, quantification of several biomarkers such as the CTCs'® or myeloid-derived
suppressor cells counts and stromal and tumor immuno-histochemistry data (CD31'7 and Ki67'®)

are also available and could be of interest as meaningful covariates in the model.

We will start by establishing a validated model for the treatment of renal cell carcinoma. The
current standard of care for this cancer in the metastatic setting is sunitinib, an anti-angiogenic
drug [Motzer et al., 2007]. However, development of resistance almost inevitably occurs, eventually
leading to the patient’s death. In 2016, a novel immunotherapy (nivolumab) has been approved
as second line treatment [Motzer et al., 2015]. Our model could address several currently open

questions, including;:

1. What is the best scheduling in the neo-adjuvant (i.e. pre-surgical) setting, considering the

16¢circulating tumor cells

17endothelial cells marker
18 proliferation marker
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impact of the “rebound” effect?
2. What are the precise mechanisms of resistance to sunitinib and how to delay them?

3. What is the best sequence of administration for combination of sunitinib and nivolumab?

In the context of this project, I have supervised several master’s internships about the modeling
of the effect of Sunitinib on tumor growth (Aristoteles Camillo [Camillo, 2014] and Simon Evain
[Evain and Benzekry, 2016]) and I am co-supervising (together with Olivier Saut) a PhD student,
Chiara Nicolo (Inria grant, started October 2016).

5.5 Mathematical models for combinations in immunother-

apy

Following an ongoing collaboration with Raphaél Serre, Dominique Barbolosi, Xavier Muracciole
and Fabrice Barlési about mathematical models of the effect of immune-checkpoint inhibitors [Serre
et al., 2016], we plan to use the model to guide the sequence and scheduling of the combination
between radiotherapy, chemotherapy and immunotherapy. In order to do so, we will first
investigate several treatment regimen in experimental systems to validate the applicability of the
model. Moreover, dedicated toxicity models remain to be established as this topic is the first
limiting concern when it comes to clinical anti-cancer therapeutics. This is even more relevant
for immune-checkpoint inhibitors which, by their mode of action consisting in releasing immune
“brakes” also restores cytotoxicity of lymphocytes against healthy cells, thus increasing the risk of

auto-immune diseases.

5.6 Mathematical modeling of anti-cancer nanoparticles

In collaboration with Raphaélle Fanciullino and Joseph Ciccolini from the SMARTc team (In-
serm, Marseille, France) and Clair Poignard from the MONC team (Inria Bordeaux Sud-Ouest,
France), we are starting a project about the optimization of the design and scheduling of anticancer

nanodrugs using an integrative in vitro/in vivo/in silico approach.

One of the major challenge in anti-cancer chemotherapy is the very high toxicity associated with
cytotoxic agents (such as the folfirinox triplet in the treatment of colorectal cancer). To overcome
this issue, nanoparticles conjugated with cancer cell specific antibodies are being developed that
ensure delivery of the drug to the therapeutic target only. However, intra-tumor penetration of
antibody nanoconjugates (ANC) properties are not fully understood and could be improved. The
goal of this project is to establish and to validate a mathematical model of of the biophysics
of these ANC drugs intra-tumor transport (continuum mechanics partial differential equa-

tions) in order to inform on the parameters (size, antibody graft rate, etc...) that will ensure
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maximal delivery and cytotoxicity, based on previous research efforts that developed relevant

mathematical models for poroelastic description of 3D tissue [Deville et al., 2017].

We also want to perform organism-scale modeling of the pharmacokinetics and pharmacodynamics
of the drug. This will allow the in silico determination of improved schedules of the drugs that will
ensure optimization of the efficacy/toxicity balance. See Figure 5.3 for a general scheme of

this project.

We have recently obtained an Inria-Inserm PhD grant for a student from the Politecnico di Milano
(Cristina Vaghi) who will start her PhD in the fall of 2017.
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Abstract

Accumulation of new biological and clinical data thanks to the development and generalization
of novel measurement techniques (especially in imaging or molecular biology) is currently driving
oncology towards a quantitative science. Meanwhile, mathematical models developed by theoreti-
cians have often remained confined to qualitative conclusions and rarely been confronted to the

observations. The work presented here aims to bridge this gap.

Motivated by concrete biological or clinical questions, I have conducted combined experimental
and theoretical studies with two main objectives: 1) better understand and 2) better predict.
The contributions belong to three axis of research: tumor growth, metastasis and scheduling
of anti-cancer treatments. The mathematical tools are mostly ordinary differential equations or
physiologically structured partial differential equations. Statistical tools were also largely employed
to fit the models to the data and test the hypotheses, with a major focus on nonlinear mixed-effects

models.

Together, these contributions represent a step forward towards the development of quantitative
methods in cancer biology. They also set the basis for computational tools of clinical value to
help defining the design of clinical trials (at the population level) but also to better assess the
diagnosis and prognosis of a cancer disease in a personalized way, in order to individually tailor

the therapeutic intervention.

Keywords: Mathematical modeling, Cancer, Metastasis, Pharmacometrics, Nonlinear mixed-

effect models, Personalized oncology
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