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Introduction

En France, le cancer est devenu la première cause de mortalité. Malgré les efforts déployés, le
taux de survie à 5 ans après diagnostic tous cancers confondus est de 52%2, ce qui témoigne
de l’importance d’améliorer les thérapies anti-cancéreuses existantes (ce chiffre cache cependant
une grande disparité selon le type de cancer). Une explication de la difficulté à traiter le cancer
est donnée par R. Weinberg dans [Wei07] : “Les métastases sont la cause de décès principale
d’une maladie cancéreuse” (traduit de l’anglais). La classification duale du cancer en tant que
maladie localisée ou métastatique est un des points clé dans l’élaboration de la thérapie pour un
patient donné. Néanmoins, plusieurs études révèlent qu’une partie des pathologies diagnostiquées
localisées sont en fait déjà métastatiques. Il y a probablement un continuum entre ces deux états.

L’arsenal classique du clinicien dans sa lutte contre le cancer s’oriente principalement autour
de trois axes : chirurgie, chimiothérapie et radiothérapie. Suite à la découverte de l’angiogénèse
tumorale par J. Folkman dans les années 1970, processus par lequel une tumeur est capable de
stimuler le développement du réseau vasculaire environnant, une quatrième voie thérapeutique
s’est ajoutée : cibler l’angiogénèse pour priver la tumeur d’accès aux nutriments et ainsi l’étouf-
fer. Ce n’est cependant qu’au début du siècle actuel que sont arrivées les premières molécules
anti-angiogéniques. Malgré l’espoir que ces nouvelles thérapies (dites “ciblées”) suscitèrent, no-
tamment dû à leur faible toxicité comparée à celle des chimiothérapies, les résultats ne sont pas
à la hauteur et ces médicaments ne sont administrés qu’en combinaison avec un cytotoxique
classique. Notre conviction est qu’une meilleure conception des protocoles temporels d’adminis-
tration des traitements peut améliorer cette situation.

Face à ces constats, la modélisation mathématique peut apporter des éléments d’aide au
diagnostic ainsi qu’à la décision thérapeutique. En effet, l’évolution d’un cancer est un proces-
sus dynamique qu’une bonne description mathématique peut permettre d’aider à contrôler. Un
modèle mathématique peut permettre d’individualiser la thérapie en prenant en compte la varia-
bilité pharmacocinétique, pharmacodynamique et pharmacogénomique au sein de la population.
Par ailleurs, la modélisation mathématique peut permettre de mieux comprendre la répartition
spatiale du réseau vasculaire et ses interactions avec les différents agents thérapeutiques, par

2rapport d’avril 2010 de l’Institut National du Cancer, disponible à l’adresse http ://www.e-
cancer.fr/component/docman/doc_download/4890-survie-attendue-des-patients-atteints-de-cancers-en-france–
etat-des-lieux
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exemple dans le cadre des effets complexes de combinaison des anti-angiogéniques et des chi-
miothérapies. La modélisation en cancérologie est un domaine important des mathématiques
appliquées à l’heure actuelle au sein duquel on peut distinguer deux types d’approches, répon-
dant à deux problématiques différentes. L’approche mécanistique s’attache à décrire en détail
le cancer de manière à mieux comprendre la biologie de ce système complexe, faisant souvent
intervenir plusieurs échelles (moléculaire, cellulaire, tissulaire,...). L’approche phénoménologique
quant à elle cherche avant tout à décrire le phénomène à l’échelle globale de la tumeur, voire
du cancer. Son but est le contrôle de la maladie et elle est plus proche de la médecine et de la
clinique. Bien entendu, ces deux approches vont de pair et se nourrissent l’une de l’autre. En
2000, Iwata & al. proposèrent un modèle phénoménologique décrivant l’évolution métastatique
traduisant cette idée de continuum entre cancer localisé et métastatique. Ce modèle a ensuite
été repris et étudié dans [BBHV09, Ver10, DGL09], notamment en y intégrant l’effet d’un traite-
ment par chimiothérapie. Parallèlement, Hahnfeldt & al. proposèrent dans [HPFH99] un modèle
simple décrivant la croissance tumorale sous contrôle angiogénique. La présente thèse résulte
de la combinaison de ces deux modèles de manière à avoir un outil mathématique s’intéressant
à l’évolution métastatique capable de prendre en compte l’effet des deux principales thérapies
chimiques disponibles : cytotoxiques et anti-angiogéniques.

Notre modèle est une équation aux dérivées partielles de type transport munie d’une condition
aux limites non-locale, vérifiée par la densité ρ de métastases. Il s’écrit (voir chapitre 1 pour les
détails de la modélisation ainsi que les notations et l’expression des coefficients)8<:

∂tρ+ div(ρG) = 0 ]0, T [×Ω
−G · ν(t, σ)ρ(t, σ) = N(σ) {

R
Ω β(X)ρ(t,X)dX + β(Xp(t))} ]0, T [×∂Ω

ρ(0) = ρ0 Ω
(1)

Ce type de problème s’inscrit dans le domaine de la dynamique des populations structurées et le
type particulier d’équation tel que (1) est parfois nommé équation de renouvellement. La variable
de structure est ici bidimensionnelle X = (x, θ), x représentant la taille et θ la vascularisation
d’une tumeur donnée. La dynamique globale de la solution de (1) résulte de deux phénomènes :
croissance, représentée par le terme de transport avec vitesse G dans l’équation, et émission
(naissance) de nouvelles tumeurs, caractérisée par le coefficient β et la condition aux limites
faisant intervenir l’intégrale de la solution sur tout le domaine.

Dans le cas sans traitement, le champ G est autonome et s’annule en un coin de Ω, qui est un
carré. Ce fait entraîne des difficultés techniques dans l’analyse de l’équation, notamment pour
l’existence de trace pour une solution. La régularité naturelle de l’équation invite à considérer
l’espace

Wdiv(Ω) =
¦
V ∈ L1(Ω); div(GV ) ∈ L1(Ω)

©
dont une étude est faite au chapitre 3. Celle-ci repose principalement sur le redressement des
trajectoires du champ G de manière à formaliser le fait que G · ∇V représente la dériva-
tion le long de ces trajectoires. Nous prouvons un théorème de conjugaison de Wdiv(Ω) et de
W 1,1(]0,+∞[;L1(∂Ω)) exprimant ce fait.

L’analyse fonctionnelle du chapitre 3 donne les bases nécessaires pour envisager le problème
(1) (sans le terme source dans la condition aux limites) comme un problème d’évolution de la
forme ¨

d
dtρ = Aρ
ρ(0) = ρ0
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lié à un opérateur (A,D(A)) dont nous effectuons une étude systématique au chapitre 4. Nous
prouvons que (A,D(A)) engendre un semigroupe ce qui permet d’établir l’existence et l’unicité
de la solution au problème (1), ainsi que d’en préciser la régularité. Les propriétés spectrales de
(A,D(A)) sont aussi analysées et permettent de montrer que le comportement asymptotique de
la solution de (1) est donné par

ρ(t) ∼Ψ m0e
λ0tV (2)

dans le cas sans source (le comportement asymptotique du cas avec source est aussi établi).
Les fonctions V et Ψ sont respectivement les vecteurs propres direct et adjoint associés à la
première valeur propre λ0 > 0 de (A,D(A)), appelée paramètre de Malthus. Le comportement
asymptotique se prouve naturellement dans l’espace L1(Ω) muni du poids Ψ ce qui est traduit
dans (2) par le symbole ∼Ψ.

Dans le cas non-autonome (avec traitement), la même idée de redressement des caractéris-
tiques est appliquée pour discrétiser le problème (1). Le schéma numérique qui en résulte, de
type lagrangien car lié aux caractéristiques, est analysé au chapitre 5. Le passage à la limite sur
les pas de discrétisation permet d’établir l’existence de solutions au problème (1) dans le cas
non-autonome. Des estimations d’erreur établissent la précision du schéma.

Sous l’hypothèse biologique que toutes les métastases naissent avec la même vascularisation,
le terme N de (1) est une mesure de Dirac. Au chapitre 6, nous montrons que les solutions ρε
associées à des données N ε ∈ L1(∂Ω) convergent vers la solution mesure de (1) avec donnée
N = δσ=σ0 , lorsque ε tend vers 0 et Nε −−−→

ε→0
δσ=σ0 .

Le potentiel du modèle en terme d’applications cliniques est illustré par des simulations
numériques au chapitre 7. En particulier, notre attention se focalise sur l’effet de différents pro-
tocoles temporels d’administration pour les thérapies anti-cancéreuses, notamment dans le cas
des thérapies anti-angiogéniques, seules ou bien en combinaison avec une chimiothérapie. Nous
comparons les effets des thérapies sur la tumeur primaire et sur les métastases. Le phénomène
récemment mis en évidence d’accélération métastatique après traitement anti-angiogénique est
étudié en utilisant le modèle. Une approche thérapeutique apparue récemment, les chimiothé-
rapies métronomiques, consistant à administrer de faibles doses de la manière la plus dense
possible, est testée in silico.

Afin de donner des réponses effectives aux problématiques cliniques envisagées au chapitre
précédent, le chapitre 8 définit un problème de contrôle optimal intégrant la dynamique méta-
statique. Une étude théorique de ce problème établit l’existence d’un minimiseur et dérive un
système d’optimalité du premier ordre vérifié par celui-ci. Le problème est ensuite étudié numé-
riquement dans un cas plus simple, mettant en lumière une différence entre la stratégie optimale
de réduction de la tumeur primaire et celle assurant le meilleur contrôle des métastases.

Le chapitre 2, un peu excentré par rapport au barycentre de cette thèse (les métastases),
présente l’adaptation d’un modèle mécanisitique de croissance tumorale vasculaire, dans le but
d’étudier les interactions complexes entre anti-angiogéniques et cytotoxiques. Ce modèle multi-
échelle est composé d’un assez grand nombre d’équations aux dérivées partielles dont la simula-
tion permet de faire émerger des hypothèses quand aux possibles synergies entre les traitements.
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Part I

Modélisation

Despite the large amount of biological and clinical data about cancer published every year, as
noted by [GM03] : “Clinical oncologists and tumor biologists possess virtually no comprehensive
model to serve as a framework for understanding, organizing and applying their data”. But as
cited by [AM04] from [KSKK98] : “experimentalists and clinicians are becoming increasingly
aware of the role of mathematical modeling as a new way forward, recognizing that current
medical techniques and experimental approaches are often unable to distinguish between various
possible mechanisms underlying important aspects of tumor growth”.

Two approaches can be distinguished in cancer modeling : the mechanistic approach and the
descriptive (or phenomenological) one. The former develops relatively mathematically complex
models often comprising a large number of parameters and aims at integrating a lot of phe-
nomenons taking place at various scales, from the intra-cellular one to the cell population one.
It often describes the spatial evolution of cancer growth and invasion. The models are often
too complex to support mathematical analysis and suffer from a large number of parameters
limiting their clinical applicability. The second approach intends to establish models as simple
as possible, with a few parameters, in order to reproduce empirical observations, without taking
care of a thorough integration of all the relevant phenomenons, although without abandoning all
biological relevance. The objectives of both approaches are different : while the first one aims
at giving insights on the understanding of the complex biology of cancer by identifying crucial
parameters and providing insights in the understanding of complex processes, the second one
has for objective a direct clinical application, for instance in using the model to optimize the
administration of anti-cancerous treatments. The major part of this thesis is devoted to a model
belonging to the phenomenological approach, though the chapter 2 presents some work using a
mechanistic model.
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Chapter 1

Phenomenological modeling

This chapter is organized as follows : in the first section we give a few elements on clinical
oncology, with a focus on the actual open clinical problems. The second section presents a
brief state of the art of mechanistic modeling for tumoral growth and then describes some
phenomenological models. The third section describes the tumoral growth model including
angiogenesis from [HPFH99] which is the tumoral basis model of this thesis. Section 1.4 describes
the modeling of the therapy and introduces basics of pharmacokinetics. The model of metastatic
evolution, derived from [IKN00, BBHV09, DGL09] is described in the section 1.5.

7
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1 A few elements of clinical oncology

1.1 Cancer biology

The cancer. What is a cancer34? It is a disease characterized by abnormal proliferation of

Figure 1: A hepatocellular carcinoma (liver cancer).

cells within a normal tissue. Distinction is made between solid cancers : carcinomas (epithelium
cancers, i.e. of a tissue uniquely composed of cells) or sarcomas (cancer of a connective tissue,
like bones) and liquid cancers as blood cancers (leukemia). This abnormal proliferation is due
to one or more healthy cells which, after several successive genetic mutations, acquire various
specific characteristics and loses cellular cycle control mechanisms. Benign tumors (which remain
under the organism control) have to be distinguished from malign tumors. To do so, Hanahan
and Weinberg proposed in [HW00] the following six phenotypes to qualify a malign cancer cell :

1. Self sufficiency in growth signals (“accelerator is blocked”)

2. Insensitivity to anti-growth signals (“brakes don’t work”)

3. Evading apoptosis (= programmed cell death)

4. Limitless reproductive potential (infinite number of progeny)

5. Ability to provoke angiogenesis (see next paragraph)

6. Tissue invasion and metastasis

These mechanisms are regulated by various genes which are mutated in a cancerous cell : onco-
genes, which are positive regulators of cellular proliferation, tumor suppressor genes, which are
negative regulators of cellular proliferation (the “brakes”) and other genes able to detect and
repair DNA lesions affecting oncogenes or tumor suppressor genes.

3The word cancer comes from the latin cancer which means crab (by analogy with the fact that when a cancer
seized an organ, it doesn’t release it) itself derived from the greek καρκiνoζ, karkinos (crayfish) which gave the
word carcinoma

4Various of the following comes from wikipedia
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Tumoral angiogenesis. Tumoral growth is limited by access to nutrients (oxygen, glucose,...)
provided by the vascular network (blood vessels). This one becomes rapidly insufficient and
without constant development, a tumor can not grow beyond a diameter of 2-3 mm. In the
1970’s, thanks to the seminal work of Judah Folkman [Fol72], discovery is made that a tumor is
able to stimulate neo-angiogenesis. It is able to promote formation of a proper vascular network
providing supply of nutrients and ways of migration of cells outside of the tumor which can
then form metastases. The cancerous cells emit molecules such as Vascular Endothelial Growth
Factor (VEGF) which, by binding on specific receptors of surrounding endothelial cells (cells
composing blood vessels), induce their proliferation as well as migration toward the tumor (see
Figure 4).

Metastasis Cells can detach from the tumor and migrate in the organism through the vascular
network. They can settle in another organ and form secondary tumors called metastases (see
Figure 2). The metastatic process can be divided into various stages (see Figure 3) :

Figure 2: Liver metastases coming from a pancreatic adenocarcinoma.

1. Cells dissociate by losing cadherins (“Calcium dependent adhesions”) which are proteins
involved in cell-cell adhesion.

2. Migration inside the tumor and invasion of the surrounding tissue, in particular using
metalloproteinases attacking the basal lamina (the “barrier” surrounding the tissue)

3. Intravasation : entry in a blood vessel or lymphatic duct

4. Extravasation : exit from the blood vessel or lymphatic duct

5. Dormant phase

6. Avascular micrometastasis

7. Angiogenesis

We refer to [GM06] for a more detailed description of the metastatic process and to [CNM11]
for recent novel insights on metastasis.
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Figure 3: The metastatic process

1.2 Open clinical problems

In this section, we describe a few actual problematics in clinical oncology for which mathematical
modeling could yield answers. The present thesis is devoted to development of such a model.

Classical cancer therapy is mainly achieved by three means : primary tumor surgery, chemother-
apy and radiotherapy. We will not consider radiotherapy in this thesis although it represents
a non-negligible part of the treatments used in the clinic. Chemotherapy consists in adminis-
tration of cytotoxic agents which target dividing cells hence cancerous cells but not only, which
makes it very toxic. Beside loosing hair for example (which are proliferating cells), chemother-
apy present severe hematopoietic toxicities (i.e. on blood cells) which induce weakening of the
patient’s immunity system and can be lethal. Another major drawback of chemotherapies is
development of resistances due to genetic instability of cancerous cells which mutate more than
healthy ones.

Micrometastases In the case of a solid cancer, for instance breast cancer, the first therapy is
surgery of the primary tumor. After it, in general the clinician doesn’t see any lesion at imagery.
However, metastases have been emitted, partly from the primary tumor before excision but also
during the surgical operation which occasioned hemorrhages offering access to the central blood
system to the cancerous cells. This is why neo-adjuvant therapy is performed (adjuvant therapy
being the one performed before surgery). But the physician is blind since he doesn’t have data
on the state of the patient, a tumor being visible at imagery only when its size is bigger than
107 - 108 cells. Each patient being different therapy should be adapted as well as its duration
so as not to treat too much in order to avoid heavy toxicities, but sufficiently to avoid relapse.

Clinical problem 1.1. Predict the metastatic evolution of a given patient, especially the micro-
metastatic one (tumors of size ≤ 107), with and without treatment .

Anti-angiogenic (AA) treatments. Discovery of tumoral angiogenesis opened a new ther-
apeutic way [Fol72] : target the tumoral vasculature development in order to suffocate the
tumor by depriving it of access to nutrients. Biological research have been performed in order
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to elaborate AA molecules and lead to elaboration of two classes of them : monoclonal anti-
bodies which fix to molecules as VEGF and inactivate them and Tyrosine Kinase Inhibitors
(TKI) which, by binding on VEGF endothelial cells receptors avoid activation of intracellular
pathways of proliferation and migration. Encouraging preclinical studies (i.e. in vivo experi-
ments on animals such as mice) were performed and gave rise to great hope for this new kind of
therapies, named targeted therapies. In particular, the following arguments were advanced : a)
expected low toxicity of these treatments comparatively to chemotherapies, b) less resistances
since the targeted endothelial cells are genetically more stable. We had to wait until 2004 to
see a monoclonal antibody, bevacizumab (commercial name : Avastin) be recognized as having
anti-tumoral efficacy (see [GLFT05] for a synthesis of results of AA drugs). But efficacy is not
proven in monotherapy and bevacizumab is administrated in combination with chemotherapy
in the following cancers : colorectal, lung, breast and metastatic renal.

The results are quite disappointing : for example, results of a phase II5 trial given in [DFH00]
show an increase of only 10% of the response rate and of 3 months of progression free survival.
Other phase II results are gathered in Table 1.

Reference Cancer Previous Treatment n Result
therapy

Miller et al., Breast yes BV + capecitabine 462 RR : 19,8% VS 9,1%
PFS : 4,86 m VS 4,17 m

2005 [MCH+05] OS : 15,1 m VS 14,5 m
Hurwitz et al., Colorectal non BV + IFL 813 RR : 44,8% VS 34,8%

PFS : 10,6 m VS 6,2 m
2004 [HFN+04] OS : 20,3 m VS 15,6 m
Robert et al., Breast yes BV + capecitabine 615 RR : 23.6% VS 35.4%

PFS : 5.7 m VS 8.6 m
2009 [RDG+11] OS : 21.2 m VS 29 m

Table 1: Two phase II studies for bevacizumab in combination with chemotherapy (partially
reproduced from [JDCL05]). BV = Bevacizumab. IFL : Irinotecan, 5-fluorouracil et leucovorin
(chemotherapy). n = number of patients. RR : Response Rate7. PFS : Progression Free
Survival7. OS : Overall Survival7.

5Clinical trials are divided into four phases. Phase I determines the toxicity of the treatment on small groups
(20-100) of patients. Phase II evaluates efficacy on larger groups (20-300) in order to define the optimal dose. Phase
III is realized on wider groups of patients (300-3000) and aims at definitively assessing efficacy of the treatment
and its advantages on existing ones. If this phases positively concludes the drug is approved by regulation agencies
such as the EMA in Europe or the FDA in the United States. Phase IV consists in a security vigilance on long
term.

7Two criteria are principally used to assess the results of a clinical trial : survival and response rate. Survival
decompose into median Progression Free Survival and median overall survival. Since 2000, another criteria for
progression of the disease called RECIST (Response Evaluation Criteria in Solid Tumors) has been established
and is now used in all the trials. It is based on the sum of the biggest diameters of the patient’s lesions for which
progression is qualified in one of the four following class : CR (Complete Response) = disappearance of all the
lesions, PR (Partial Response) = decrease of at least 30%, SD (Stable Disease) = decrease of less than 30% or
increase of less than 20%, PD (Progressive Disease) = increase of at least 20%. The criterion Response Rate
(RR), also named Objective Response (OR or ORR) corresponds to the sum of CR and PR.
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Experimental studies [ELCM+09, PRAH+09] even obtained paradoxical results after AA
therapy. In [ELCM+09], the authors evidence metastatic acceleration after Sunitinib therapy on
mice. Despite a positive effect on the primary tumor, on metastases the treatment is deleterious.
Moreover, the temporal repartition of administration of the drug seems to play a role in the anti-
tumor efficacy. In the chapter 7 we shall study this phenomenon more precisely.

The matter of the scheduling of anti-cancerous therapies seems of prior importance, in par-
ticular for AA drugs for which it is an open question, as mentioned by [GLFT05] and confirmed
by [Rey10] in studying the Dose-Response curve of various AA drugs. This leads us to define
the following clinical problem.

Clinical problem 1.2. What is the best temporal administration protocol for AA drugs in
monotherapy?

Complex effects are expected in the combination between AA drugs and chemotherapies
(CT). For example a negative effect of the AA on the CT is that, by reducing vascular support,
the AA induces lower delivery of the CT. Besides, it has been discovered that AA would have
a normalization effect on the vasculature [Jai01], thus improving its quality and the CT supply,
which goes on the opposite direction than the previous argument. In a press review of January
2009, named “Tyrosin kinase inhibitors and chemotherapy : what if it was only a matter of
scheduling?” (translated from french), B. You8 gives another rational to explain the failure
of TKIs in association with CT in non small cells lung cancers (see Table 2 for some clinical
studies of combination of CT and TKIs in the case of this cancer) : “preclinical data suggest
that simultaneous administration of TKI and chemotherapy would be deleterious since TKIs
would stop cells in G1 phase, whereas chemotherapies would induce apoptosis preferentially in
phase G2 or M” (translated from french). This argument enhances the importance of the way of

Reference Treatment n % RR OS
Giaccone, Gemcitabin + cisplatin + gefitinib 365 50 9.9 m

2004 [GHM+04] Gemcitabin + cisplatin + placebo 365 47 10.9 m
Herbst, Paclitaxel + carboplatine + gefitinib 347 30 8.7 m

2004 [HPH+04] Paclitaxel + carboplatine + placebo 345 28.7 9.9 m
Herbst, Carboplatine + Paclitaxel 540 19.3 10.5 m

2005 [HGS+05] Carboplatine + Paclitaxel + erlotinib 539 21.5 10.6 m
Scagliotti, Carboplatine + paclitaxel + sorafenib 464 27 10.7 m

2010 [SNV+10] Carboplatine + paclitaxel + placebo 462 24 10.6 m

Table 2: A few randomized trials testing combination of a chemotherapy and a tyrosine kinase
inhibitor (TKI) in non small cells lung cancers. n = Number of patients. RR : Response Rate.
OS : Overall survival. Gemcitabin, cisplatin, paclitaxel and carboplatin : cytotoxic agents.
Molecules with "inib" : TKIs.

administrating AA in combination with CT. In Riely et al. [RRK+09], the authors assay three
combination protocols of CT (carboplatin, AUC (Area Under the Curve) =6) and paclitaxel
(200 mg/m−2) administrated every 3 weeks and erlotinib. The three protocols are :

8Medical oncology service, Hospital center of Lyon-Sud
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1. Erlotinib 150 mg/d at D1 and D2 (day 1 and day 2) then CT at D3

2. Erlotinib 1500 mg/d at D1 and D2 then CT at D3

3. CT at D1 then Erlotinib 1500 mg/d at D2 and D3

The results obtained show that the second protocol is more efficient than the others. Indeed,
the respective response rates are 18%, 34 % and 28 % and median survival are 10, 15 and 10
months. This proves the importance of the scheduling and that it should be rationally designed.
However, the current approach in clinical oncology is to determine an efficient and non-toxic dose
but few attention is given to determination of the optimal temporal administration protocol.

Clinical problem 1.3. What is the best scheduling for combination of CT and AA therapy?

Metronomic chemotherapies. Recently, a novel way of using CTs is being explored. The
classical way of administrating the CT is to give the Maximum Tolerate Dose (MTD), i.e. the
strongest possible dose which respects the toxicity constraints, at the beginning of the therapy
cycle (which lasts three weeks in general), and then let the patient recover during the rest of
the cycle. Since about ten years, a new approach consists in giving a much weaker dose than
the MTD, but in a more regular and continuous way, for example every day of the cycle. The
feasibility of this kind of protocols, named metronomic, has been studied in several preliminary
studies in children [ARC+08, BDH+06, KTR+05]. It seems that this way of giving the drug is
more efficient and one of the possible explanation would be an anti-angiogenic action of cytotoxic
agents [KK04]. Indeed, since the CT kills proliferative cells it also kills dividing endothelial
cells participating to angiogenesis. But these cells present the advantage that they are more
genetically stable than the cancerous ones and thus develop less resistances. Hence, even if less
malignant cells are directly killed by the treatment, on long term the effect is more important
since regression of the tumoral vasculature implies tumor suffocation, comprising eradication
of resistant cancerous cells. But then, why is this AA effect not present in classical MTD
protocols? The advanced argument is that the vasculature would recover rather quickly from
the assault, stimulated by angiogenesis. A rest time of more than two weeks in a MTD protocol
would give it time to reconstruct before the next assault. Another argument, supported by a
mathematical model is proposed in [HFH03] : the heterogeneity of the cancer cell population,
with subpopulations having different “resensibilization” rates to the treatment, would imply the
superiority of an evenly distributed protocol.

However, if the dose is too weak, then the therapy is not efficient anymore. Determine what
is the best repartition of doses in the framework of metronomic CTs is still an open problem.

Clinical problem 1.4. What is the optimal temporal administration protocol for metronomic
chemotherapies?

2 A few descriptive models of tumoral growth

The principle of descriptive models of tumoral growth is the following : denoting x(t) the
number of cancer cells, modeled as a continuous function of the time t, we write the following
conservation law :
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x(t+ dt) = x(t) + (new cells per time unit− dead cells per time unit) ∗ dt

and then let dt go to zero to obtain :

ẋ(t) = new cells per time unit− dead cells per time unit.

Remark 1.1 (Number of cells and volume). We will constantly do the amalgam between number
of cancerous cells and tumoral volume, assuming that all cells have the same volume which is
constant in time. We use the following proportionality conversion :

1mm3 = 106 cells.

Malthusian growth. The simplest model of population growth is due to Malthus (1766-1834)
and assumes that in a given population (in our case a cell population) the number of newborns
and the number of deaths are proportional to the number of individuals in the population.
Denoting respectively λ and µ these two proportionality rates we get

ẋ(t) = λx(t)− µx(t).

The parameter λ stands thus for the number of newborns per individual per unit time, its unit
as well as the one of µ is thus in time−1. One can interpret µdt as the probability for a given
individual to die during a small time dt. This model exhibits a very simple behavior : either
exponential growth or exponential decreasing depending on the sign of λ − µ and this scared
Malthus a lot when he applied this model to human population growth by arguing that the
resources growth is only arithmetic. He concluded predicting inevitable demographic disasters.
The doubling time (or dividing by half time) of the population is given by ln 2

|λ−µ| and is a useful
quantity for clinicians.

Logistic growth. To take into account the fact that resources are limited which tends to
slow the growth of a population via competition of the individuals for these, the Belgian math-
ematician Verhulst (1804- 1849) introduced in [Ver45] the logistic model which says that the
population growth rate ẋ(t)

x(t) is not constant but rather depends on the size of the population
in a non-increasing way and vanishing when the population reaches the maximal capacity of
the environment, the so-called carrying capacity. The easiest way to do this is to take this rate
equal to a(1− x(t)

θ ) with a a parameter controlling the velocity of the growth and θ the carrying
capacity. The equation writes

ẋ(t) = ax(t)
�

1− x(t)
θ

�
. (1)

This is a nonlinear ordinary differential equation which is used in a wide range of applications,
for example in ecology. The mathematical analysis reveals an unstable equilibrium state in 0
and a globally stable one in θ. The number of individuals goes to this carrying capacity θ for
large times. An explicit formula for the solution of (1) is given by :

x(t) = x0θ

(θ − x0)e−at + x0
.



16 Chapter 1. Phenomenological modeling

Gompertzian growth The model of Gompertz (1779-1865), dating from 1825 can be derived
from the logistic one in the following way. To introduce an additional degree of freedom in order
to obtain better fits to data, we consider the following model that we will call “logistic power” :

ẋ(t) = a

ν
x(t)

�
1−

�
x(t)
θ

�ν�
.

This model reveals particularly adequate for describing tumoral growth, for example in the
context of breast cancer [Ske86, SMS96] with ν = 1/4. In the limit ν → 0 (see figure 4) we
obtain the model of Gompertz given by

ẋ(t) = ax(t) ln
�

θ

x(t)

�
. (2)

This model is commonly used in the medical literature for describing tumoral growth where it

Figure 4: Convergence of the logistic power model toward the gompertzian one when ν → 0.
Values of the parameters (chosen for illustrative purpose) : a = 0.1, θ = 100.

was first introduced in [Lai64]( where it fits well several data) and we shall use it as a basis for
tumoral growth in this thesis. The equation can be solved explicitly :

x(t) = θeln(x0
θ )e−at

with x0 the initial size of the population. Benjamin Gompertz in [Gom25] invented this model
in the context of insurances and his idea was that the growth rate should decrease exponentially
in time. Indeed if we set λ = a ln θ

x0
, one can compute that we have

ẋ(t) = λe−atx(t). (3)

It is also possible to calculate the doubling time of the population which is an increasing function
and is given by τ(t) = − 1

a ln
�
1 +Aeat

�
where A = ln(2)

ln(x0
θ ) < 0 if x0 < θ. One of the critics to the

gompertzian model is that the growth rate tends to infinity when the size goes to zero (which
can be viewed in (2)) and it is hard to imagine a little tumor having an infinite growth rate
because it is bounded by the total cell cycle duration. However, this model is largely accepted
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to describe the tumoral growth because it is experimentally observed [Lai64] that the growth
rate of a tumor slows down as the size increases, which gives rise to curves well approached
by sigmoïdal (or S-shaped) functions as the one resulting from the Gompertz or the logistic
equation.

If we want to do the analogy between the logistic equation (1) and the Gompertz equation
(2), there are two possible ways to proceed : either we want the same growth rates when the
population is small and then we set alog ' agom ln(θ), where we denote alog the parameter a in
the logistic equation and agomp in the Gompertz one. This gives a very large alog if we think
that θ is big because it is the maximal reachable size. On the opposite, if we want to have the
same exponential decrease of the asymptotic growth rate, we calculate for the logistic equation
that :

ẋ(t)
x(t) = (θ − 1)aloge−at

1 + e−alogt(θ − 1) ∼t→∞ (θ − 1)aloge−alogt.

For the Gompertz, we get from (3) that the decrease of the growth rate is governed by agom and
we are thus driven to take alog = agom, which gives a slower initial growth for the logistic model.
The figure 5 illustrates the three growth models : malthusian, logistic and Gompertz. We chose
an intermediate situation for alog regarding to the preceding analysis and took the same value
for the carrying capacity θ.

Figure 5: Three tumoral growth models. Values of the parameters : agom = 0.1, alog = 0.2,
θ = 100. Malthus : λ = 0.2, µ = 0.

From a mathematical point of view, the equation (2) presents a singularity in 0. Indeed, the
function g(x) = ax ln

�
θ
x

�
is continuous at 0 but not locally Lipschitz. We thus cannot apply the

Cauchy-Lipschitz theorem to obtain the uniqueness of solutions passing through 0. However,
there is uniqueness because the time that would spend a solution being in 0 at time t0 to reach
a point x > 0 is given by

R x
0

dy
g(y) = +∞. In other words, a solution which passes by 0 doesn’t

get out in finite time . Thus the only solution passing by 0 is the constant function equal to 0.

Proposition 1.2 (Uniqueness in 0 for the Gompertz equation). The unique solution of the
equation (2) which cancels is the constant solution equal to zero for all time.

Proof. Let t 7→ x(t) be a solution of (2) which cancels, say in t0 and let t1 be a time such that
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0 < x(t) < θ for all t0 < t ≤ t1. Then x′(t) = g(x(t)) > 0 on this interval and t 7→ x(t) is thus a
C1-diffeomorphism there. One can do the following change of variables

+∞ > t1 − t0 =
Z t1

t0

ẋ(s)
g(x(s))ds =

Z x(t1)

0

dy

g(y) = +∞

which gives a contradiction.

Remark 1.3.

• The previous proof shows that is x(t) is a trajectory of the equation ẋ(t) = g(x(t)), with
constant sign, then the time needed to go from x1 to x2 is

R x2
x1

dy
g(y) , that is : if x(t1) = x1

and x(t2) = x2, then t2 − t1 =
R x2
x1

dy
g(y) . This can also be viewed by saying that the travel

time is the inverse function of the trajectory : if we denote by t(y) the travel time between
x0 and y, then x(t(y)) = y with x(t) being the solution of the differential equation being in
x0 at time t = 0. We then get ṫ(y) = 1

g(y) .

• In the classical case of ẋ(t) =
È
x(t), then

R x
0

dy√
y < +∞ for all x > 0, a solution can reach

0 in finite time and there is not uniqueness of the solution passing by 0.

Explanation of tumoral growth by quiescence : the model of Gyllenberg-Webb
[GW89] In an attempt to explain the slowdown of the tumoral growth rate empirically ob-
served and modeled by the logistic or Gompertz equations, Gyllenberg and Webb propose in
[GW89] a model dividing the cancerous population between two compartments : the prolifera-
tive cells, that is the ones in phase S, G2 or M, denoted by P (t) and contributing to the overall
growth of the population, and the quiescent cells, that is in the G0 phase of the cell cycle, which
don’t divide. We denote N(t) = P (t) + Q(t) the total number of malignant cells. The fact
that proliferative cells go to quiescence is a reported phenomenon due to various causes, for
example to overcrowd. Hence, the authors suppose that proliferative cells divide with a rate b
and become quiescent with a rate r0(N) depending on the total number of cells. The resulting
equations are ¨

Ṗ (t) = (b− r0(N(t)))P (t)
Q̇(t) = r0(N(t))Q(t). (4)

The authors recover either the logistic equation or the Gompertz one depending on particular
shapes of r0(N) : a linear rate r0(N) = N gives the logistic model while a logarithmic rate
r0(N) = 1 + ln(N) gives the Gompertz model. We detail here the argument.

• Logisitic case : we take b = 2, r0(N) = N et P (0) = Q(0) = 1. Then we get the following
system on N and P ¨

Ṅ = Ṗ + Q̇ = 2P
Ṗ = (2−N)P = Ṅ −NP.

We deduce that Ṗ = Ṅ− 1
2NṄ = ÿ̇(N− 1

4N
2), thus P = N− 1

4N
2+P (0)−(N(0)− 1

4N(0)2) =
N − 1

4N
2. Replacing in the first line if the preceding system, we obtain that N solves

Ṅ = 2N − 1
2N

2

that is the logistic equation (1) with a = 2 and θ = 4.
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• Gompertz case : with the same type of argument, in the case b = 1, P (0) = 1, Q(0) = 0
we obtain that N solves

Ṅ = (1− ln(N))N

which is the Gompertz equation (2) with a = 1 and θ = e.

In their article [GW89], the authors build a more complex model, authorizing for example the
quiescent cells to reintegrate the cellular cycle or to die, which we do not describe here.

The model of Simeoni et al. [SMC+04] In conclusion, all these phenomenological models
exhibit the same qualitative behavior : a slowdown of the tumora growth rate leading to satu-
ration of the growth and a plateau. This gives this S-shape to the resulting curves (sigmoïdal
curves). Noticing that the plateau inherent to the logistic and Gompertz models has never
been observed in practical situations, Simeoni et al. introduce in [SMC+04] a model fitting
remarkably well to the experimental data of the article. Considering that tumoral growth can
be divided between two phases : first exponential then linear, the authors consider that we must
have

ẋ(t) = λ0x(t), x(t) ≤ xth
˙x(t) = λ1, x(t) > xth

with λ0 and λ1 the respective parameters of exponential and linear growth and xth a critical size
for which the growth goes from exponential to linear. Expressing the continuity of the solution,
we must have xth = λ1

λ0
. Following these considerations, the authors propose the following

equation :
ẋ(t) = λ0x(t)h

1 +
�
λ0
λ1
x(t)

�ψi1/ψ
which gives rise to the desired dynamic for a large value of ψ by noticing that if x(t) � xth
then the growth rate is about λ0x(t) while if x(t) � xth we have ẋ(t) ' λ1. The authors take
then the therapy into account via pharmacokinetics and the resulting model fits very well their
data, reproducing with precision various therapies corresponding to various drugs administrated
according to various temporal schemes. They confront predictions of the model with data and
obtain a good accuracy. They thus conclude by recommending the use of their model in the
elaboration of performing therapeutic schedules in the clinic.

3 Tumoral growth under angiogenic control

3.1 The model of Hahnfeldt et al.

We describe now the tumoral growth model that will be used in the major part of this thesis.
It was introduced by P. Hahnfeldt, D. Panigraphy, J. Folkman and L. Hlatky in [HPFH99] and
consists in extending the Gompertz model and integrates the vasculature of the tumor and the
angiogenic process. Indeed, it is necessary to have a modelling of the evolution of the vascular
support in order to model the effect of anti-angiogenic drugs. The principal idea of Hahnfeldt et
al. is to consider the carrying capacity θ from the Gompertz equation (2) no more as a constant
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parameter but rather as a dynamic variable representing the vasculature of the tumor, since it
is defined as the maximal reachable size by the tumor limited by the nutrient’s supply from the
vasculature. We will use the term "vascular capacity" or "angiogenic capacity" to denote it. The
equation on the size x of the tumor is identical to the Gompertz equation

ẋ(t) = ax(t) ln
�
θ(t)
x(t)

�
. (5)

For the θ dynamics, three phenomenons are taken into account : natural vascular loss due
to natural endothelial cells death, stimulation by the tumor via molecules such as VEGF and
inhibition of the vasculature by the tumor. The parameter for vascular loss is a posteriori
estimated to zero in [HPFH99] by fitting the parameters to experimental data and we thus will
neglect this aspect. The equation on θ is

θ̇(t) = cS(x, θ)− dI(x, θ)

where S(x, θ) and I(x, θ) stand respectively for the stimulating and inhibiting effects and will
now be determined. The authors make the following assumptions, based on experimental data
(quoted here from [dG04]) : (i) the tumor is a spheroid, (ii) the secretion rates of the different
molecules are constant in space and time, (iii) the movement of molecules is due to diffusion only
(and diffusion is quasi-stationary), (iv) the elimination rate of inhibitor molecules is much smaller
than D

r2
0
, D being the diffusion coefficient and r0 the tumoral radius and (v) the elimination rate

of the stimulating molecules is much bigger than D
r2
0
. The two last hypotheses are the more

important and the authors derive the expressions for S and I based on them. They mean that
the inhibitor agents have much higher persistance than the stimulator ones. Denoting by n
the agent concentration (stimulator or inhibitor), s the secretion rate of the molecule (equal to
s0 inside the tumor and null at the exterior) and c its elimination rate, the authors write the
following reaction diffusion equation on the spatial evolution of n

∂tn−D2∆n = s− cn.

Considering the equation at a quasi-stationary state, making the polar coordinates change of
variable and using the spherical symmetry we get

n′′(r) + 2n′(r)
r
− cn

D2 + s

D2 = 0

(remark that there is a 2 in the expression of the laplacian operator in polar coordinates since
we place ourselves in dimension 3). Doing the change of variables u =

√
c
D r and z(u) = (n(r)− s

c )
we find

z′′ + 2z′

u
− z = 0

then, setting z(u) = u1/2z(u) (and not r1/2z as written in [HPFH99], as it seems) we find that
z solves the following modified Bessel equation

u2z′′(u) + uz′(u)− (u2 + 1
4)z = 0

for which we can check that two independent solutions are given by the functions z1(u) =
sinh(u)√

u
and z2(u) = e−u√

u
. Remarking that z2(u)√

u |u=0
= +∞, the component in z2 is null for the
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concentration inside the tumor, denoted by ninside. In the same way, since z1(u)√
u |u=+∞

= +∞
there can’t have any z1 component in the external concentration denoted by noutside. Thus there
exists two constants C1 and C2 such that

ninside(r) = s0
c

+ C1
z1(u)√
u

noutside(r) = C2
z2(u)√
u

Writing the equality of ninside and noutside in r0 as well as for their derivatives to preserve
continuous derivability of the solution allows to determine the values of C1 and C2 and we get

ninside(r) = s0
c

�
1− (1 + u0)e−u0 sinh(u)

u

�
noutside(r) = s0

c
[u0 cosh(u0)− sinh(u0)] e

−u

u

Now we consider two different cases fort the elimination rate, traducing hypotheses (iv) and (v).
For small c (inhibitor case), that is for c� D2

r0
, that is u0 � 1 a limited development gives

ninside(r, c small) ' s0
6D2

�
3r2

0 − r2� , noutside(r, c petit) '
s0r

3
0

3D2r

whereas for large c (stimulator case) we have

ninside(r, c big) ' s0
c
, noutside(r, c grand) ' 0.

From this analysis we deduce that the inhibitor concentration is proportional to the radius
of the tumor to the square, that is to the volume at the power 2/3 whereas the stimulator
concentration is independent from the tumoral volume. This suggests to take I(x, θ) = x2/3θ.
For the stimulatory term, a natural choice following the previous analysis would be S(x, θ) = θ
but the authors rather choose S(x, θ) = x which in the end shouldn’t influence too much the
qualitative behavior of the system since x and θ tend to move together, as illustrated in [dG04]
from which we reproduce the figure 1 on the figure 7. Eventually, we obtain the following ODE
system (

ẋ(t) = ax(t) ln
�
θ(t)
x(t)

�
θ̇(t) = cx(t)− dx(t)2/3θ(t).

(6)

Hahnfeldt et al. then fix the values of the parameters by fitting the model to experimental mice
data whom was transplanted a lung tumor. They find that the model is able to describe quite
precisely the tumoral dynamic, at least in mice and for this kind of tumor. The figure 3A from
[HPFH99] is reproduced here through a simulation, on the figure 6. We observe a sigmoïdal
shape of the curve, thus with the same qualitative behavior as the Gompertz model.

3.2 Qualitative analysis of the ODE system

We study now a few properties of the behavior of the ODE system (6) such as the well-
posedness and asymptotic behavior of the solutions. Let us mention that a similar study
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Figure 6: Simulation of the system (6). Parameter values are from [HPFH99] : a = 0.192 day−1,
c = 5.85 day−1, d = 0.00873 day−1mm−2. Initial conditions x0 = 200 mm3, θ0 = 625 mm3.

Figure 7: Comparison of tumoral growth for two modeling of S(x, θ). Solid line : S(x, θ) = x,
parameter values and initial condition from [HPFH99]. Broken line : S(x, θ) = θ, parameter
values from [dG04] a = 1.08 day−1, c = 0.243 day−1, d = 3.63 · 10−4 mm−2, same initial
condition.

has been performed by A. d’Onofrio and A. Gandolfi in [dG04]. Let X(t) =
�
x(t)
θ(t)

�
and

G(X) =
�

ax ln
�
θ
x

�
cx− dx2/3θ

�
, then the system endowed with initial condition becomes

8<:
dX
dt = G(X)

X(t0) =
�
x0
θ0

�
(7)

We define

b =
�
c

d

� 3
2
, 0 < xmin ≤ b ≤ xmax, Ω =]xmin, xmax[×]xmin, xmax[.
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Global existence of trajectories

Proposition 1.4 (Existence, uniqueness and boundedness of the solutions of (1)). The system
(1) has a unique solution for all initial condition x0 > 0, θ0 > 0, defined for all t ∈ R. Moreover
this solution verifies x(t), θ(t) ∈ Ω for all t≥ 0 if (x0, θ0) ∈ Ω.

Proof. The function G is C1 in R+×R+ so we can apply the Cauchy-Lipschitz theorem ensuring
local existence and uniqueness of solutions. We use then the following lemma to have bounds
on the solutions.

Lemma 1.5. Let (x(t), θ(t)) be a maximal solution of (1) such that (x0, θ0) ∈ Ω. Then
(x(t), θ(t)) ∈ Ω for all t ≥ t0.

Proof. Let us show only that x(t) ≥ xmin and θ(t) ≥ θmin for all t ≥ t0 since the other parts of
the demonstration can be proven in the same way.

∗ Step 1: There exists t∗ ≥ t0 such that x(t∗) > xmin and θ(t∗) > xmin
If x0 > xmin and θ0 > xmin, there is no problem. Else, three cases can happen :

– Either x0 = xmin and θ0 > xmin. Then G1(x0, θ0) = ax0 ln
�

θ0
xmin

�
> 0 so by conti-

nuity G1 remains positive in a neighborhood V of (x0, θ0). By continuity again, the
trajectory remains in this neighborhood for small times, say X(t) ∈ V, ∀ 0 ≤ t ≤ t∗

and then x(t∗) = xmin +
R t∗
0 G1(x(s), θ(s))ds > xmin. Taking a smaller V if needed,

we also have θ(t∗) > xmin.
– Either θ0 = xmin and x0 > xmin. The same argument can be applied for θ since
G2(x0, xmin) = cx0 − dx2/3

0 xmin > x
2/3
0 (cx1/3

min − dxmin) ≥ 0 because xmin ≤
�
c
d

� 3
2 .

– Either x0 = xmin and θ0 = xmin. Then we have G1(xmin, xmin) = 0 and we cannot
apply the same argument. Since G2(xmin, xmin) = cxmin − dx

5/3
min > 0 if xmin <�

c
d

�3/2 = b, then by the previous argument, there exists η > 0 such that θ(t) > xmin
for all 0 < t < η. Suppose that x(t) ≤ xmin ∀ 0 < t < η, then G1(x(t), θ(t)) =
ax(t) ln

�
θ(t)
x(t)

�
> 0, ∀ 0 < t < η which implies x(t) > xmin, ∀ 0 < t < η and a

contradiction. It remains he case xmin = b, x0 = θ0 = b for which G(b, b) = (0, 0),
but then the solution is constant equal to (b, b) so x(t) ≥ xmin.

∗ Step 2: For all t ≥ t∗, x(t) > xmin and θ(t) > θmin
By contradiction. We define Ω+ = {(x, θ) ∈ R2; x > xmin and θ > θmin}. Suppose that
their exists t > t∗ such that X(t) /∈ Ω+ and let t1 = inf{t > t∗;X(t) /∈ Ω+}. Then
X(t1) ∈ ∂Ω+, so x(t1) = xmin or θ(t1) = θmin .

– If x(t1) = xmin and θ(t1) > θmin, then G1(xmin, θ(t1)) > 0. Let U be a neighborhood
of (xmin, θ(t1)) such that G1 be positive. There exists an interval I = [t∗1, t1] such
that : ∀t ∈ I, (x(t), θ(t)) ∈ U , by continuity of the trajectories. The function t 7→ x(t)
is non-decreasing on this interval since G1 is positive in I but x(t∗1) > xmin because
t1 is the first reaching time of xmin, and x(t1) = xmin. Contradiction.

– If θ(t1) = xmin and x(t1) ≥ xmin, then G2(x(t1), θmin) > 0 and the same argument
holds.
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To end the proof of the lemma, it remains to show that θ(t) ≤ xmax and x(t) ≤ xmax. For
that, let us study the sign of G2 on the straight line θ = xmax and the sign of G1 along the
straight line x = xmax. A sign study shows that G2(x, xmax) < 0 and G1(xmax, x) > 0 except
for xmax = x = b, case for which the solution is stationary.

Remark 1.6.
• This lemma shows quite fastidiously what is easily understood visually by noticing that the field
G points inward all along the boundary of Ω.
• The proof shows that actually for (x0, θ0) ∈ Ω \ (b, b), (x(t), θ(t)) ∈ Ω for all t > 0.

To show that the solution doesn’t explode in finite time it suffices now to remark that the
trajectory are bounded thanks to the lemma. This implies global existence.

Remark 1.7 (Uniqueness along the line x = 0). Following the proposition 1.2 for the Gompertz
equation, it is natural to rise the question of uniqueness of the solutions going through a point
(0, θ0) with θ0 > 0 since the function G is then continuous but not locally Lipschitz. The function
G is not continuous in (0, 0) as a function defined in R+×R+, however if we restrict ourselves to
the open set {(x, θ); θ > x} there is a limit for G in (0, 0) which is 0 and permits to give a sense
to the differential equation (6). The following argument shows that there is indeed uniqueness.
Let X(t) be a solution passing through (x0, θ0) at t0 with x0 > 0 and θ0 ≤ xmax. We write

dx

dt
= ax ln

�
θ

x

�
≤ ax ln

�
xmax
x

�
so that

dx

ax ln(xmax)− ax ln(x) ≤ dt

which gives after integrationZ x(t)

x0

dy

ay ln(xmax)− ay ln(y)dy = −1
a

ln
� ln(xmax)

ln(x(t))

�
+ 1
a

ln
� ln(xmax)

ln(x0)

�
≤ t− t0.

Now, since the left hand side of this inequality tends to +∞ when x0 goes to 0, we see that
it is not possible for a solution coming from a point (0, θ0) to reach a point with positive first
component in finite time. Moreover, since G(0, θ) = (0, 0), the only solution is the stationary
solution.

Asymptotic behavior

The following proposition concerns the qualitative behavior of the system illustrated in the figure
8 where we observe global convergence to an equilibrium point.

Proposition 1.8. The system (1) possesses a unique critical point globally asymptotically stable
in Ω

X∗ =
 

( cd)
3
2

( cd)
3
2

!
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Figure 8: Phase plan of the system (6). The parameter values are the ones of [HPFH99].

Proof. Resolving the equation G(x, θ) = 0 we get a unique solution X∗ =
 

( cd)
3
2

( cd)
3
2

!
.

• Local stability The fixed point X∗ is locally asymptotically exponentially stable. Indeed, cal-

culating the jacobian matrix of G in X∗ gives
�
−a a
c
3 −c

�
whose eigenvalues are α1 = −(c+a)+

√
∆

2

and α2 = −(c+a)−
√

∆
2 , with ∆ = c2 + a2− 2

3ac and are both real since ∆ > (c− a)2 ≥ 0 and neg-
ative. The linearisation Lyapunov theorem implies that the point X∗ is locally asymptotically
exponentially stable.
• Global stability. We use successively two theorems : first the Poincaré-Bendixson theorem
which restrains the possibilities for the asymptotic behavior and then the Dulac criterion which
eliminates the other possibilities than a critical point for the ω-limit set. We state the theorems
here for the sake of completeness. They can be found in the book of Perko [Per01] and require
the following definitions, where we denote Φ the flow of an ODE equation defined in R2 :

Γx0 = {Φt(x0); t ∈ R}, Γ+
x0 = {Φt(x0); t ≥ 0}

ω(Γx0) = {p ∈ R2, ∃ tn → +∞, Φtn(x0)→ p}.

Theorem 1.9 (Poincaré-Bendixson theorem ([Per01] p.245)). Let Ẋ = f(X) a system of dif-
ferential equations with f ∈ C1(E), E being an open set of R2, which has a trajectory Γ such
that Γ+ is contained in a compact set of E, and with a finite number of critical points. Then
the limit set ω(Γ) is either a critical point, either a periodic orbit, either the union of a finite
number of critical points p1, ..., pm and of a countable number of orbits joining a point pi to a
point pj.

From the theorem 1.4 the positive half trajectories of the system (1) are contained in the
compact Ω. We can apply Poincaré-Bendixson theorem and the only possibilities for the asymp-
totic behavior of the system are thus convergence to the unique fix point X∗, a limit cycle, or
a homoclinic orbit (i.e. an orbit starting and ending at the same point) starting and ending in
X∗. The Dulac criterion eliminates the two last possibilities.

Theorem 1.10 (Dulac criterion ([Per01] p.265)). Let f ∈ C1(E) with E being simply connected.
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If the divergence of f is not identically zero and does not change sign in E, then the system
Ẋ = f(X) has no closed non-punctual orbit contained in E and no homoclinic orbit.

In our case we cannot apply this theorem directly since ∂xG1 = a(ln( θx)− 1), ∂θG2 = −dx
2
3 ,

and thus
divG = a ln

�
θ

x

�
− a− dx

2
3 ,

which changes sign in Ω. To deal with this, we apply the following transformation to the system
(1), taken from [dG04] :

t = at, (c, d) = 1
a

(c, d), x = ln
�
x

b

�
, θ = ln

�
θ

b

�
and we get the following system (still denoting x for x and θ for θ)¨ dx

dt = −x+ θ
dθ
dt = c(ex−θ − e

2
3x)

. (8)

The trajectories associated to this system are homeomorphic to the ones of system (1) but now
the divergence of the field is

−1− cex−θ < 0

We can thus apply the Dulac criterion which concludes to the impossibility of a limit cycle or a
homoclinic orbit. The only left possibility is convergence to the unique equilibrium point of the
system X∗.

Slow fast dynamic.

Observing the phase plan of Figure 8 drawn for Ω =]1, b[×]1, b[ with b =
�
c
d

�3/2 we have the
feeling that the trajectories concentrate on the nullcline G2(x, θ) = 0. Let us study more in
details the global aspect of the phase plan depending on the values of the parameters : what are
the parameters which govern the shape of the phase plan? What is the role of each parameter?

The equilibrium point is given by X∗ =
��

c
d

�3/2
,
�
c
d

�3/2
�
thus it doesn’t depend on the value

of a. Moreover, augmenting d makes it closer to (0, 0) and the opposite holds for c. What
controls the slope of the trajectories? Calculating dθ

dx = G1(x,θ)
G2(x,θ) = ax ln( θx)

cx−dx2/3θ
doesn’t concludes.

On the other side, if we renormalize to place ourselves at the scale of b we have the idea of the
following change of variables :

x = x

b
, θ = θ

b

which transforms the system (6) into8<: dx
dt = ax ln

�
θ
x

�
dθ
dt = c

�
x− θx2/3

� (9)

In this system, the slope of the tangent vector to a trajectory is given by dθ
dx = a

c

x ln
�
θ
x

�
x−θx2/3 and

thus is governed by the ratio a
c . The parameter d doesn’t appear anymore and we see that this
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parameter of the endogenous inhibition of the vasculature only impacts on the asymptotic value
b but not on the shape of the phase plan. This is illustrated in the figures 9.A and 9.B where
we only change d between both. We observe that the two phase plans are homotheticals.

a = 10, c = 10, d = 1

A

a = 10, c = 10, d = 0.01

B

a = 10, c = 100, d = 1
a
c � 1

C

a = 100, c = 1, d = 1
a
c � 1

D

Figure 9: Various phase plans of the system (6) for different values of the parameters. The thick
black curves represent the nullclines.

In the system (9), we see that the speeds of the dynamics of x and θ are respectively driven
by the parameters a and c. Rescaling the time by u = at, we obtain8<: dx

du = x log
�
θ
x

�
a
c
dθ
du = [x− θx2/3]

.

Hence we have a slow-fast dynamic driven by the ratio a
c . Indeed, when a

c is very small, then
the dynamic in θ is much faster than the dynamic in x and goes much faster to the equilibrium.
The dynamic is then equivalent to the one of the equation(

dx
du = x log

�
θ
x

�
0 = [x− θx2/3]
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that is, the system evolves along the nullcline G2(x, θ) = 0. On the opposite case, when a
c >> 1,

the system will evolve along the nullcline G1 = 0. These two limit behaviors are illustrated in
the figures 9.C and 9.D.

3.3 Anti-angiogenic therapy

The interest of the model of Hahnfeldt et al. is to enable integration of an anti-angiogenic (AA)
treatment so as to be able to simulate in silico various AA drugs as well as various schedules
for a given drug. The therapy is integrated in the model through a death term in the equation
for θ in the system (6) which becomes

θ̇(t) = cx(t)− dx(t)2/3θ(t)− eg(t)θ(t)| {z }
Treatment

with g(t) a function describing the effective concentration of the drug and e an efficacity param-
eter. The function g(t) is given by a one-compartmental pharmacokinetic model (see section 1.4
for more details on pharmacokinetics) : ġ(t) = −clr g(t) + u(t), with clr the elimination rate of
the drug and u(t) the entrance debit of the drug. Considering that the drug is injected by bolus
(very fast injection of the whole dose of the drug) with the same dose D at each administration,
we take u(t) =

PN
i=1Dδt=ti where N is the total number of administrations and δ is the Dirac

measure. We then get

g(t) = D
NX
i=1

e−clr(t−ti)1t≥ti .

It is now possible to simulate the effect of various treatments and to compare with experimental
data, which is done by the authors for three AA drugs : endostatin and angiostatin which are
endogenous inhibitors and TNP-470 (exogenous inhibitor). These three molecules inhibit the
proliferation of endothelial cells. The authors estimate the values of the parameters e and clr
for each drug by fitting the model to the data, keeping the estimated values for the growth
without treatment for the other parameters. The values are given in the table 3. In the figure

TNP-470 Endostatin Angiostatin
e (day−1conc−1) 1.3 0.66 0.15

clr (day−1) 10.1 1.7 0.38

Table 3: Estimated values of the treatments parameters from [HPFH99]

10 we compare the three treatments and we observe that angiostatin and endostatin are able to
contain the tumoral growth but not TNP-470. The fitting of the parameters gives informations
on proper characteristics for each drug : for example TNP-470 seems to exhibit a high clear-
ance. The authors then use the model to make predictions for different temporal administration
protocols for endostatin and angiostatin which reveal to be in excellent agreement with their
data.

Although this model has been confronted only to mice data and not human ones, and
that its ability to reproduce the data has been verified only in [HPFH99], these results are very
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A B

C D

Figure 10: The different treatments from Hahnfeldt et al., with x0 = 200mm3. The therapy is
administrated from days 5 to 10 (11 for TNP-470). A : without treatment. B : Endostatin, 20
mg/day. C : TNP-470, 30 mg/2 days. D : Angiostatin, 20 mg/day.

interesting and motivate the use of this model as a basis for describing tumoral growth in the
perspective of the study of AA therapies.

4 Modeling of the therapy. PK - PD

This section is devoted to the modeling of the therapy and will present the basic concepts of
pharmacokinetics and pharmacodynamics.

4.1 Short introduction to the principles of pharmacokinetics (PK)

The pharmacokinetics can be defined as “what the body does to the drug", compared to the
pharmacodynamics dealing with “what the drug does to the body". It is the science of the
elimination and distribution kinetics of drugs in the organism. Some history of the pharmacoki-
netics can be found in [Wag81] where we learn that the term pharmacokinetics first appeared
in the literature in 1953 in the text "Der blütspiegel-Kinetic der Konzentrationsablaüfe in der
Frieslaufflüssigkeit" [Dos53], but some insights of the subject appeared years before, with the
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Michaelis-Menten [MM13] equation in 1913 for describing the enzyme kinetics, which is now
used for drugs effect under the name of "Emax model". It says that the effect E([c]) depends on
the concentration [c] via the following law :

E = Emax[c]
c1/2 + [c] , (10)

with Emax and c1/2 two constants describing respectively the maximum effect of the drug and
the concentration needed to have half of the maximum effect. The birth of what is called now
the one-compartmental model dates from 1924 and is due to Widmark and Tandberg [WT24].
We cite now J. Wagner in [Wag81] : “The word [pharmakocinetics] means the application of
kinetics to pharmakon, the greek word for drugs and poison. Kinetics is that branch of knowledge
which involves the change of one or more variables as a function of time. The purpose of
pharmacokinetics is to study the time course of drug and metabolite concentrations or amounts
in biological fluids, tissues and excreta, and also of pharmacological response, and to construct
suitable models to interpret such data. In pharmacokinetics, the data are analyzed using a
mathematical representation of the part or the whole of an organism".

Most of the PK models are constructed by schematically dividing the organism between
compartments supposed to represent for example the blood system (central compartment),
the kidney (elimination compartment), the targeted organ (effect compartment), the absorption
mechanism, but they don’t necessarily have a biological sense and can be just fictive if the
resulting models fits better the data. Each compartment has a virtual distribution volume and
various exchange rates between the compartments are defined (see figure 11).

k20

c2

k10

k12

k21

V1 V2
u(t)

c1

Figure 11: Schematic representation of a 2 compartmental PK model.

Population pharmacokinetics. This discursive model is then translated into differential
equations (most often linear ones), the structural model which depends on parameters. These
parameters can vary between the patients and it is then of great importance to study statistically
the distribution of the parameters in the population, the inter-individual variability. This is done
by the branch of population pharmacokinetics which develops both parametric and nonparamet-
ric approaches. In the parametric approach, a statistical model is set a priori, like for instance
the gaussian one, which depends on parameters (mean and covariance matrix in the gaussian
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case). The objective is then to choose the parametric statistical model which permits the best
fitting of the data and to estimate its parameters. Most of the common statistical methods used
in practice are implemented in the open source software MONOLIX9. In the nonparametric ap-
proach, no structure is imposed on the shape of the distribution of the parameters and the goal
is to directly estimate this distribution function. The mathematical difference between both is
that the first one mostly reduces to finite-dimensional optimization whereas the second one has
to optimize in infinite dimension. Bayesian estimation techniques permit then to use the global
information of the parameters distribution in the population in order to infer the parameters of
a given patient from just a few data (dosing of the concentration of the drug in the blood at a
small number of times).

These statistical tools can help to identify physiological covariates (like the weight for in-
stance) which impact on the circulating concentration of the drug, and thus to better determine
the dosage which has to be used for a given patient.

We refer to [Ver10] for further details in pharmacology, in particular about the mechanisms
of action of the chemotherapies, and about PKs.

4.2 Some PK models used in the sequel

In this thesis we only use linear PK models. We will now describe these models. The first one is
the one used for endostatin, angiostatin and TNP-470 in [HPFH99] and was already described
in the section 1.3.1. It is a simple one-comportmental model which leads to an exponential
elimination of the drug.

For the Bevacizumab, we based ourselves on the publication [LBE+08] which shows that the
PK can be described by a two-compartmental model as the one of figure 11, in which c1 and c2
stand for the concentrations in the first and second compartments whose fictive volumes are V1
and V2. The term u(t) stands for the entrance flow of drug, assumed to be injected intravenously,
the exchange rates between the compartments are denoted by k12, k21 and the elimination rate
from the central compartment by k10. To translate this discursive picture into equations, we
use the principle of conservation of matter to write, on the quantities of matter q1 = c1V1 and
q2 = c2V2 : (

dq1(t)
dt = −(k10 + k12)q1(t) + k21q2(t) + u(t)

dq2(t)
dt = −(k20 + k21)q2(t) + k12q1(t)

which can be rewritten on the concentrations as(
dc1(t)
dt = −(k10 + k12)c1(t) + k21

V2
V1
c2(t) + u(t)

V1
dc2(t)
dt = −(k20 + k21)c2(t) + k12

V1
V2
c1(t).

We then use c2(t) as being the effective concentration on the vasculature.

The parameters values can be found in the table 4 as well as PK models and parameters of
a few cytotoxic drugs.

9http://software.monolix.org/sdoms/software/
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Figure 12: Time-concentration profile for the Bevacizumab according to a two-compartmental
PK model. Values of the parameters are given in the table 4. We used a dose of 7,5 mg/kg
(with a patient of 70 kg), injected by a 90-min intravenous injection, every three weeks (one of
the protocols used in practice described in [LBE+08]).

Drug PK model Parameters Reference
Bevacizumab 2 comp. V1=2.66= V2, k10=0.0779,

k20=0, k12=0.223, k21=0.215
Lu et al., 2008 [LBE+08]

Etoposide 2 comp. V1=25, V2=15, k10=1,6,
k20=0,8, k12=0,4, k21=0

Barbolosi et al., 2003 [BFCI03]

Temozolomide 2 comp. V1=1, V2=14, k10 = 0, k20 =
9,36, k12=57,6, k21=0

Panetta et al., 2003 [PKG+03]

Docetaxel 3 comp. V1 = V2 = V3=7,4, k10=123,8,
k20 = k30 = 0, k12=25,44,
k13=30,24, k2136,24, k23 =
k32=0, k31=2,016

Meille et al., 2008 [MIB+08]

Table 4: PK models and parameters for various drugs. Units : volumes in liters, elimination
rates in day−1.

4.3 Pharmacodynamics. Interface model

In practice, the effect of the drug is not necessarily proportional to its concentration in situ.
The aim of pharmacodynamics is to study the relation between the effect and the concentra-
tion. We already presented the so-called “Emax model" (see equation (10)). In the context of
hematotoxicity (= toxicity on white blood cells) induced by the chemotherapies, C. Meille, A.
Iliadis, D. Barbolosi, N. Frances and G. Freyer developed in [MIB+08] an interface model which
connects the concentrations given by PK models to hematotoxicity of the drugs. It is designed
to define an exposure variable y(t) more precise and more flexible than just the AUC (Area
Under the Curve) or the time spent by the drug above a threshold concentration. If c(t) is the
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concentration output of the PK model, the equation on y(t) is given by

ẏ(t) = −αe−βy(t)y(t) + (c(t)− γ)+

and depends on three positive parameters α, β and γ. When α = 0 we retrieve the area under
the curve over a given threshold γ. With β = 0 we get a traditional effect-compartment model.

5 Metastatic evolution

Despite the large number of models available for the tumoral growth, no consequent modeling
effort has been performed for the metastatic process. As far as we know, other models besides
the approach that we use in this thesis which follows directly the work of Iwata, Kawasaki and
Shigesada in [IKN00] and has then been studied further mathematically by Barbolosi, Benab-
dallah, Hubert, Verga [BBHV09] and by Devys, Goudon and Laffitte in [DGL09], are rather
few. In [SLK76], Saidel, Liotta and Kleinerman introduce a deterministic phenomenological
model with a few parameters for the dynamics of the metastatic process. They use it to yield
a better understanding of mouse data obtained in their laboratory and published in [LKS74].
The model takes into account the different stages of the metastatic process, namely tumor vas-
cularization, vessel wall penetration, circulatory transport, target organ arrest and metastases
formation by assigning to each stage a compartment for which a differential equation is derived.
The model is able to fit the data and the authors then use it to investigate the effects of tumor
external massage (reported as provoking an increase of cells release in the circulation) and tu-
mor removal. They also investigate theoretically the effect of inhibition of the vascularization,
precessing the development of anti-angiogenic drugs. The same authors also introduced another
model in [LSK76], with stochastic basis. However, in both models, we remark that the authors
take into account the emission of metastasis by the primary tumor but not by the metastases
themselves.

We will now describe our approach (based on [IKN00, BBHV09, DGL09]) for the modeling
of the metastatic evolution and how do we integrate the two-dimensional tumoral growth of the
previous section in this context. The figure 13 shows a schematic description of the model in
the 1D case. The resulting model is the following partial differential equation with boundary
and initial conditions8<:

∂tρ(t,X) + div(ρ(t,X)G(X)) = 0 ∀(t,X) ∈]0, T [×Ω
−G · ν(σ)ρ(t, σ) = N(σ) {

R
Ω β(X)ρ(t,X)dX + β (Xp(t))} ∀(t, σ) ∈]0, T [×∂Ω

ρ(0, X) = ρ0(X) ∀X ∈ Ω.
(11)

where T > 0 is an arbitrary final time. It is a linear two-dimensional transport equation with
the particularity of having a nonlocal boundary condition. This type of equations, arising quite
often in mathematical biology, is sometimes called “renewal equations”. We refer to [MD86] for
more details on the modeling philosophy in structured population dynamics and also to [Per07].

5.1 Conservation law

The main idea of [IKN00] is to consider the metastases as a population structured in size,
modeled by a distribution function ρ. Here since we introduce the vascular capacity as a variable
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Primary Tumor

Growth g(x)

β(x)

Secondary Tumors
xp

β(x)

(Metastases)

xβ(x)

Figure 13: Schematic representation of the metastatic model in 1D.Notations : g(x)=growth
rate. β(x) = emission rate.

describing the state of a growing tumor, the population will be structured both in size x ( =
Volume, expressed either in number of cells or in mm3 using the conversion 1 mm3 = 106 cells)
and vascular capacity θ (same unit as x). We consider the metastases as particles evolving
according to the law of the previous section’s model, that is, the trajectory X(t) = (x(t), θ(t))
of each metastasis solves the following differential equation :

dX

dt
= G(X), G(X) = G(x, θ) =

�
ax ln

�
θ
x

�
cx− dx2/3θ

�
=
�
G1(x, θ)
G2(x, θ)

�
. (12)

We assume that each metastasis has size bigger than xmin = the size of one cell and less than
b =

�
c
d

�3/2 as it is the maximal reachable size (see proposition 1.8). We also assume that
xmin ≤ θ ≤ b. Thus, the metastases evolve in the following trait space

Ω =]xmin, b[×]xmin, b[

which is proved to be stable under the flow of (12) in the proposition 1.4. The evolution of
the population of metastases is now ruled by a density ρ(t, x, θ), or ρ(t,X) with X = (x, θ)
which, for all t is a function in L1(Ω) and has unit Number of metastases/Size2 (notice that the
vascular capacity θ has the unit of a size). This means that, if ω is a measurable subset of Ω

Number of metastases in ω at time t =
Z
ω
ρ(t,X)dX.

Remark 1.11 (Density). To precise the notion of density, the number of metastases at time t
can be viewed as a measure µ(t) on Ω, through : Number of metastases in ω at time t = µ(t)(ω).
We are thus implicitly assuming that this measure is absolutely continuous regarding to the
Lebesgue measure which thanks to the Radon-Nykodim theorem implies that there exists a L1(Ω)
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function ρ(t) such that µ(t) = ρ(t)λ, where λ stands for the Lebesgue measure in R2. This
assumption does not seem biologically obvious but a lot of what follows could be done considering
ρ as a measure.

To describe the time evolution of the population, we use the transport theorem allowing to
pass from the Lagrangian description of the evolution of the system (which follows each particle
according to (12)) to the Eulerian one describing the evolution of the density ρ.

Theorem 1.12 (Transport theorem). Let X(t; y) be the flow of the equation (12) and ω a
measurable subset of Ω. Denote by ωt = X(t;ω). For all ρ ∈ C1(R× Ω),

d

dt

Z
ωt
ρdX =

Z
ωt

(∂tρ+ div(ρG)) dX.

Proof. The proof is based on the change of variables formula and the fact that if we denote
J(t, y) = det (DyX(t; y)), we have

∂t |J(t, y)| = div(G)|J | (13)

(see the proof below). Thus we can compute

d

dt

Z
ωt
ρ(t,X)dX = d

dt

Z
ω
ρ(t,X(t, y))J(t, y)dy

=
Z
ω
∂tρ(t,X(t, y)) +G(X(t, y)) · ∇ρ(t,X(t, Y ))J(t, y) + ρ(t,X(t, y))∂tJ(t, y)dy

=
Z
ωt

(∂tρ(t,X) + div(ρG)) dX

which proves the result. To prove the identity (13), we use that DyX(t; y) solves the following
problem ¨

∂
dtDyX(t; y) = DG(X(t; y))DyX(t; y)
X(0; y) = Id

to compute, using the fact that the determinant is an alternating multilinear form and denoting
X1, X2 the components of X

∂tJ = ∂t det (∇yX1,∇yX2) = det (∇G1 ·DyX,∇yX2) + det (∇yX1,∇G2 ·DyX)
= det (∂y1G1∇yX1 + ∂y2G1∇yX2,∇yX2) + det (∇yX1, ∂y1G2∇yX1 + ∂y2G2∇yX2)
= div(G)J

Then, since X(t; ·) is a C1-diffeomorphism for all t, it has a sign and thus |J | is differentiable
and we have ∂t|J(t, y)| = sgn(J(t, y))div(G(X(t; y)))J(t, y) = div(G(X(t; y)))|J(t, y)|.

This theorem allows us, thanks to the following conservation law : for all ω ⊂ Ω
d

dt

Z
ωt
ρ dX = 0,

to obtain the transport equation on the density

∂tρ+ div(ρG) = 0. (14)
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5.2 Boundary condition. Renewal equation

So far, we have modeled the growth process of the metastases and now we integrate the emission
process of new metastasis, which has two sources : emission by the primary tumor and emission
by the metastasis themselves. The rate of new metastases arriving in the system is given by,
using the Stokes theorem

d

dt

Z
Ω
ρ(t,X)dX = −

Z
Ω

div(ρ(t,X)G(X))dX = −
Z
∂Ω
ρ(t, σ)G(σ) · ν(σ)dσ

where we denoted by ν the external unit normal vector to the boundary ∂Ω which exists almost
everywhere since Ω is a square. Notice that the last term is non-negative since G(σ) · ν(σ) ≤
0, ∀t > 0, a.e. σ ∈ ∂Ω from expressions (12), expressing the fact that there are no metastase
leaving the system. We also assumed that ρ is regular enough to have a trace on the boundary.
We denote by b(σ, x, θ) the birth rate of new metastasis with size and angiogenic capacity
σ ∈ ∂Ω by metastasis of size x and angiogenic capacity θ per unit time, and by f(t, σ) the term
corresponding to metastases produced by the primary tumor. Expressing the equality between
the number of metastasis arriving in Ω per unit time and the total rate of new metastasis created
by both the primary tumor and metastasis themselves, we should have for all t > 0

−
Z
∂Ω
ρ(t, σ)G(σ) · νdσ =

Z
∂Ω

Z
Ω

b(σ,X)ρ(t,X)dX + f(t, σ)dσ. (15)

We assume that the emission rates of the primary and secondary tumors are equal and thus take
f(t, σ) = b(σ,Xp(t)) where Xp(t) represents the primary tumor and solves the ODE system
(12) endowed with initial conditions. An important feature of the model is to assume that the
vasculature of the neo-metastasis is independent from the one which emitted it.
The assumption is that the newly created metastases settle in a new environment which has
no link with the one of the metastasis which emitted it. There is no apparent reason for a cell
which detach from a tumor to carry with it some vasculature of this tumor. The place where
the neo-metastasis settles is independent from the place it comes from. Though, there is no
experimental data which support this hypothesis, up to our knowledge. Mathematically, this
means that there exists a function N : ∂Ω→ R and a function β : Ω→ R such that

b(σ,X) = N(σ)β(x, θ).

The function β is the emission rate of new metastasis per tumour per unit time and N is their
distribution at birth.
We also assume that newly created metastases have size x = 1 cell, in view of the following
remarks

1. The passing vascular holes by which a metastasis pass to escape from the tumor have
diameter of order 100 nanometers. It is hard to imagine that more than one cell (whose
typical size is the micrometer) could pass through such a small hole.

2. If the cells detach from the tumor, it means that the cadherin (transmembrane proteins
responsible for cell-cell adhesion) rate falls. Thus it seems unlikely that the cells lose
cadherins from one side and keep sufficient to form a cluster on the other side.
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3. Even in the assumption of the detachment of a cluster of cells, it would be composed of
at most a dozen of cells since 1 and the hypothesis of size 1 cell for the neo-metastasis
would stay in a convenient approximation. We also assume that there is no metastasis
of maximal size b nor maximal or minimal angiogenic capacity because they should come
from metastasis outside of Ω since G points inward all along ∂Ω.

This implies that the support of N is included in {σ ∈ ∂Ω; σ = (xmin, θ), xmin ≤ θ ≤ b}.
Although we have no reference to provide about the shape of the angiogenic birth distribution
of the metastases, we assume it to be uniformly centered around a mean value θ0, thus we take

N(xmin, θ) = 1
2∆θ1θ∈[θ0−∆θ,θ0+∆θ],

with ∆θ a dispersion parameter of the new metastasis around θ0. However, any other expression
could be considered forN (for example a gaussian distribution) provided it has integral 1 without
affecting the analysis of part II. Using that equation (15) should be verified for each subset of
the boundary, we obtain the boundary condition of (11), namely

−G · ν(σ)ρ(t, σ) = N(σ)
§Z

Ω
β(X)ρ(t,X)dX + β (Xp(t))

ª
which, coupled with the transport equation (14) and an arbitrary initial condition gives the
problem (11).

Following the modeling of [IKN00] for the colonization rate β we take

β(x, θ) = mxα.

This colonization rate only accounts for the detaching cells which effectively give rise to a
metastase, i.e. which were able to escape the tumor and to survive all the adverse events along
the metastatic process. The parameterm is the colonization coefficient and α the so-called fractal
dimension of blood vessels infiltrating the tumor. The parameter α expresses the geometrical
distribution of the vessels in the tumor. For example, if the vasculature is superficial then α is
assigned to 2/3 thus making xα proportional to the area of the surface of the tumor (assumed
to be spheroidal). Else if the tumor is homogeneously vascularized, then α is supposed to be
close to 1. The parameter m can be interpreted as an intrinsic metastatic aggressiveness of the
cancer. These two parameters are of fundamental importance as they are expected to capture
the metastatic behavior of a given patient.

Remark 1.13.

• We have assumed that both metastases and primary tumor grow with the same velocity G.
This is arguable, for example by the fact that metastases could have the tendency to be more
aggressive and grow faster since their cells have underwent more mutations than the initial
cell of the primary tumor. Moreover the velocity growth of a metastase can differ depending
on its location (lung, brain, skeleton...). Changing the velocity for the primary tumor can
be easily done by modifying the source term f(t, σ) and we could consider different growth
velocities by compartmenting the metastatic population.
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• We have chosen to take β independent of θ meaning that the emission rate of a tumor
depends only on its size and not on its vasculature. We are aware that this is not biologically
true since the vasculature plays a fundamental role in escaping the tumor area for detaching
cells. Though, we made this assumption in order to keep the model as simple as possible
and do the following remarks :

a) with this approach, angiogenesis does impact on metastatisation but indirectly, via
accelerating the growth. Thus, in the perspective of anti-angiogenic treatment, the
treatment would also reduce the number of emitted metastases.

b) Choosing an expression of β involving θ would not affect the following mathematical
analysis.

c) Taking β dependent on θ would certainly require the addition of a parameter to the
model, which we want to avoid as most as possible.

d) We performed simulations with a θ-dependent β and they didn’t conclude to a better
flexibility of the model.

• Unlike the previous point, the assumption that b(σ,X) = N(σ)β(X) is crucial in the
mathematical analysis that we perform in the following part. Up to now, we don’t know if
the theory could be adapted to a general b(σ,X).

5.3 Integration of a treatment in the metastatic model

In order to take into account for an anti-cancer therapy and more particularly for anti-angiogenic
(AA) treatments, we modify the growth function G(X) in adding a killing term on the vascula-
ture as done by Hahnfeldt et al. in [HPFH99]. This deals with the AA drug and we also put a
killing term on the tumoral cells to model the action of a cytotoxic drug. The evolution of each
tumor is then described by the differential system(

dx
dt = G1(t, x, θ) = ax ln

�
θ
x

�
− hγC(t)(x− xmin)+

dθ
dt = G2(t, x, θ) = cx− dθx

2
3 − eγA(t)(θ − θmin)+,

(16)

where h and e are efficacy parameters of the cytotoxic and AA drugs respectively, γC(t) and
γA(t) are functions describing the time evolution of the effective concentration of the drugs on
their respective targets (see the section 1.4 for details on their expressions). The parameters
xmin and θmin are minimal values for the drug to be active (we consider that if the tumor is
too small, then the drug is not effective) and y+ = 1

2(|y|+ y) or a regularization of this function
if needed to avoid regularity issues (for example y 7→ y (1/2 + 1/2 tanh(y/K)) with K being a
parameter controlling the slope in zero). In practice, we think about xmin = θmin = 1 which
is the minimal biologically relevant value in terms of number of cells (or xmin = θmin= the
minimal size of a tumor = the size of one cell). From a mathematical point of view, this ensures
that the solutions of (16) stay in Ω for all time. We will still denote G(t,X) the vector field
(G1(t,X), G2(t,X)) in the following, indicating through the time dependence that the growth
dynamic is perturbed by the action of a therapy. The equation on the evolution of the density
of metastases then becomes8<:

∂tρ(t,X) + div(ρ(t,X)G(t,X)) = 0 ∀(t,X) ∈]0, T [×Ω
−G · ν(t, σ)ρ(t, σ) = N(σ) {

R
Ω β(X)ρ(t,X)dX + β (Xp(t))} ∀(t, σ) ∈]0, T [×∂Ω

ρ(0, X) = ρ0(X) ∀X ∈ Ω
(17)
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and the action of the treatment is taken into account in the velocity field of this transport
equation, which still points inward all along the boundary using the assumption that the therapy
is ineffective for tumors with size x = 1 or vascular capacity θ = 1. Notice that in particular,
the treatment does not appear as a killing term in this equation. In view of the mathematical
analysis, the difference between the equation (17) and (11) is the fact that the latter is an
autonomous equation, whose analysis is performed in the chapter 4 while the former is a
non-autonomous one (mathematical and numerical analysis in the chapter 5).
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Chapter 2

An example of a mechanistic model
for vascular tumoral growth

In this chapter, we describe some work in collaboration with Floriane Lignet, Benjamin
Ribba, F. Billy, Thierry Colin and Olivier Saut initiated during the CEMRACS (Centre d’Eté
Mathématique de Recherche Avancée en Calcul Scientifique) at the summer of 2009, as part of
the Angio project. The objectives of the project were to couple a multiscale mecanistic spatial
model of vascular tumor growth previously developed in [RCS10, RSC+06, BRS+09] with a
molecular model of intracellular pathways intervening in angiogenesis established by Floriane
Lignet during her Master 2’s practice, and to use then the model to investigate the problem of
combination of a chemotherapy and an anti-angiogenic drug.

We will first very briefly review mechanistic modeling in the section 2.1, then present the
model that we take from Billy et al. [BRS+09] as well as the improvements that we did in the
section 2.2, shortly describe the simulation techniques used to numerically solve the model in
the section 2.3 and then present interesting simulation results regarding to the combination of
chemotherapy and anti-angiogenic drugs in the section 2.4.

41
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1 A very short review of mechanistic modeling

We begin with a very short description of the extensive literature on mechanistic models of
tumoral growth. A history of the mathematical modeling of solid tumor growth is presented
by Araujo and McElwain in [AM04], where it is stated that the first models of cancer growth
appeared in the 1930’s, but were really impulsed by the seminal work of Greenspan in the 1970’s
(see for example [Gre72]). Two problems that drive the development of mathematical approaches
are :

1. Explain the empirically observed slowdown of the tumoral growth. Indeed, the growth
typically starts with an exponential phase which then goes to a linear one.

2. Understand the passing from non-growing, stable, benign tumor (adenoma, or carcinoma
in situ) to an invasive, growing, malignant tumor.

Models of multicellular spheroids were developed, splitting the malignant cells between two (or
more) types : proliferative and non-proliferative cells. The development of a necrotic core in the
tumor was then advanced as an explanation for the problem 1 (for recent work on necrosis, see for
example [FGG11]). Mechanistic modeling of cancer became a very active field in the 1990s, with
more publication in this decade than in the previous years combined according to [AM04]. The
models started to integrate cell migration within the tumor and more complex structures where
modeled such as “tumor cords” (accumulation of cancerous cells around a blood vessel implying
change from spherical to cylindrical symmetry) [BG00, BFGS08] to go beyond spheroid models
which are valid as experimental in vitro models but fail for in vivo situations where vascular
growth has to be more deeply described. A novel approach appeared, describing the neoplastic
tissue as a continuum medium composed of various phases, with analogy to multiphasic fluids.
The velocity of each phase is then retrieved by mechanical considerations, for example deriving
from a pressure gradient (Darcy’s law).

Another approach consists in using reaction-diffusion equations to describe tumoral invasion
of healthy tissue as a propagating front. A good example of such a model is provided by
Gatenby and Gawlinski in [GG96] where the model investigates a novel biological hypothesis,
namely that invasion is mediated by a bigger acidity of the tumoral tissue. The authors then
perform experiments to confirm their hypothesis and propose the use of a critical parameter
of the model as a prognostic tool for aggressiveness of a given patient’s cancer. On the value
of this parameter depends the type of the tumor, from benign to malignant, thus providing an
answer to problem 2, driven by the mathematical approach. It is worth noting that this model is
relatively simple, with only few parameters which the authors could find either in the literature
or obtain through fitting to data.

In [Fri04], Friedman proposes a unification of various models of cancer growth and their
mathematical challenges. The models assume spherical symmetry and consist eventually in free
boundary problems where evolution of the tumor is reduced to evolution of the boundaries be-
tween the phases and the boundary of the tumor itself. These boundaries result principally from
level-sets of the nutrient concentration (most often reduced to oxygen only) which diffuses from
the external environment and is consumed by the cells. The principal mathematical problem
beyond establishing the well-posedness of the model is to investigate the stability of an equi-
librium point which represents a dormant state of the tumor. The dependency of this stability
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on critical parameters of the system offers an answer to problem 2 : if the equilibrium is stable
then the tumor will not grow beyond this size whereas if there is no nontrivial stable equilibrium
point the tumor will show unlimited growth.

The integration of the cell-cycle dynamic is also taken into account, through age-structured
models (see for example [BBCRP08]).

While all these models are often concerned only with avascular tumor growth, recent models
take into account the angiogenesis process, offering new insights to the problem 1 (see [MWO04]
for a review). In [OAMB09], Owen, Alarcon, Maini and Byrne develop a complex model of an-
giogenesis which takes into account for the normalisation process of the vasculature described by
[Jai01]. The model is hybrid since it integrates continuous variables as well as discrete stochastic
rules for the evolution of the cells (cellular automaton). They perform simulations giving rise
to various situations depending on the balance between angiogenesis and vessel pruning.

A particular feature of cancer modeling explaining the large interest of the mathematical
modeling community for this topic is the fact that the cancer is a perfect example of a biologic
complex system, requiring systemic analysis and thus a multiscale approach, with various inter-
actions between the involved levels (molecular, cellular, tissular, ...). In this context, the work of
H. Byrne and coworkers has to be mentioned (see for example [BvLO+08]). Other mechanistic
models of tumoral growth can be found in [BCG+10, RSC+06, RCS10, BRS+09, HGM+09]. See
also [LFJ+10] for a recent impressive review of continuous models as well as discrete and hybrid
ones, focusing on the morphology (spatial shape) of tumor development. Although it represents
an important part of mechanistic models, we have not mentioned the cellular automaton ap-
proach since we did not study this part of cancer modeling. Let us only mention [EAC+09] for
an interesting application of such a model on the cancer stem cell hypothesis.

2 Model

The model originally designed by B. Ribba, T. Colin and S. Schnell in [RCS10] included
three scales : genetic, cellular and tissular and was used for application to analysis of irra-
diation therapies, with the aim to rationalize the comprehension of avascular tumor growth
and to help designing more efficient radiotherapy protocols. In [RSC+06], the genetic level is
dropped. The model is designed to investigate in silico the clinical failure of metalloproteinases10

inhibitors, through identifying critical parameters in the efficacy of cytostatic inhibitors of met-
alloproteinases. In the PhD thesis of Frederique Billy [Bil09] (see also [BRS+09]), the model
is enriched to take into account for angiogenesis and vascular growth in order to investigate
anti-angiogenic treatments (endostatin in this case). The model is able to reproduce a so-called
rebound effect after anti-angiogenic therapy which shows the complexity of determining the best
dose and time administration protocol. We will use this model as a basis : most of the feature
that we use are taken from it. Our aim is twofold :

1. Integrate an intra-cellular scale in the model for the VEGF pathways (F. Lignet master’s
thesis work).

10Metalloproteinases are enzymes produced by cancer cells which degrade the basal membrane and the extra-
cellular matrix allowing cancer invasion
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2. Investigate the combination of anti-angiogenic (AA) therapy and chemotherapy (CT), in
particular the balance between the decrease of delivery of the drug due to vessel disruption
and the “normalization effect” (also called “vascular pruning”) of the vasculature after AA
therapy.

We present now the modeling as well as some interesting simulation results.
Two scales are involved here : molecular (intra-cellular pathways activated by the VEGF)

and tissular (spatio-temporal dynamic of tumoral and endothelial cells densities). The main
improvement of the model and novelty of our work compared to the one of [BRS+09], besides
the coupling with the molecular model, is to introduce a quality of the vasculature, in order
to take into account for the normalization process described in [Jai01]. A schematic description
of the model can be find in the figure 1, a summary of the macroscopic model equations in the
table 1 and of the macroscopic parameters in the table 2. The following is organized as follows :
we first describe the mechanistic model of tumor growth in 2.2.1, then the model for angiogenesis
in 2.2.2 and the integration of treatments in 2.2.3. The main novelties in the modeling with
respect to Billy et al. [BRS+09] are the paragraphs on the molecular model and the quality of
the vasculature in the angiogenesis section.

Figure 1: Schematic description of the model

The variables involved are densities (volumic fractions) of cells, and concentrations of
chemical entities. For most of them, the dynamic will be modeled by partial differential equations
written in the plan R2 and thus will most often not be endowed with boundary conditions.

2.1 Model of tumor growth

The tissue is considered as a multiphasic fluid, each phase corresponding to a phase of the
cellular cycle. The densities of proliferating cells (phase G1 or G2) are structured in age a to
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take into account for the progression during the cell cycle. The different variables involved and
their corresponding equations are :

• The density P1 = P1(t, a, x, y) of cells in phase G1. The cells are advected with a
velocity vP1 in space and evolve in age inside G1 phase with constant speed 1. Writing
the conservation of the mass we obtain the equation :

∂tP1 + ∂aP1 + div(vP1P1) = 0 (1)

• The density P2 = P2(t, a, x, y) grouping cells in phases S,G2 et M . The cells are
advected with a velocity vP2 in space and evolve in age in phase G2 with constant speed
1. The equation is :

∂tP2 + ∂aP2 + div(vP2P2) = 0 (2)

• The density Q = Q(t, x, y) of cells in the quiescent phase G0, not structured in age
since cells in this phase are blocked in the cycle. The cells are advected with a velocity
vQ in space. The entrance and exit of the phase G0 depend on two external conditions :
overcrowding (local excess of cells) and hypoxia (lack of oxygen), which are modeled by two
functions : f representing low-hypoxia and overcrowd, and g representing high-hypoxia.
The expressions of these two functions are :

f(x, y, t) =

8<:
1 if

R amax,P1
0 P1(t, a, x, y)da+ 2

R amax,P2
0 P2(t, a, x, y)da+Q(t, x, y) ≤ τ0

and [O2](t, x, y) ≥ τ1,h
0 else

,

where amax,P1 and amax,P2 are the durations of phase G1 and phases S,G2 and M respec-
tively, [O2] is the local concentration of oxygen and τ1,h is the threshold of low hypoxia.
The function g is given by

g(x, y, t) =
¨

1 si [O2] ≥ τ2,h
0 else

with τ2,h ≤ τ1,h is the threshold of high-hypoxia. The density Q receives the cells from the
end of the phase G1 if external conditions quite bad (overcrowd and moderate hypoxia, ie
f ≥ 1). These cells all go to the beginning of phase SG2M when external conditions im-
prove, regarding to the criteria represented by function f (the [∂tf ]+ term in the equation),
and go to apoptosis if the hypoxia becomes too high (the [∂tg]− term in the equation).
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The equation is 11 :

∂tQ+ div(vQQ) = g(1− f)P1(a = amax,P1)− [∂tf ]+Q(t−) + [∂tg]−Q(t−) (3)

• The density A = A(t, x, y) of cells in the apoptotic phase, neither age-structured. The
cells are advected with a velocity vA in space. When hypoxia is high, the cells in the end
of phase G1 go directly to apoptosis, at the exact moment when this high-hypoxia occurs.
The equation is :

∂tA+ div(vAA) = (1− g)P1(a = amax,P1)− [∂tg]−Q(t−) (4)

• The boundary condition in age for P1 reflects mitosis and for P2 the passing through
the check point at the end of P1 : if external conditions are satisfactory cells at then end
of phase P1 go to phase P2. It also models reentering in the cycle of quiescent cells at the
moment where conditions go to unfavorable to favorable. These boundary conditions are
given by : ¨

P1(a = 0) = 2P2(a = amax,P2)
P2(a = 0) = fP1(a = amax,P1) + [∂tf ]+Q(t−) (5)

• Equation of the spatial velocity v. In order to complete the system, we need to describe
the velocity fields that we have in equations (1), (2), (3) and (4). The velocity here is
the velocity resulting from the fact that cells push each other. To derive the equation, we
follow the approach of [AP02] and formulate four hypothesis:

1. The velocities are the same in each phase :

vφ = v ∀φ, φ = P1, P2, Q, A

2. Darcy’s Law, which is the fact that the velocity is derived from a potential which we
assimilate to a pressure p. We have :

v = −k∇p, (6)

with k = k(x, y) a permeability coefficient.

11This equation might seem a bit astonishing due to the terms [∂tf ]+ and [∂tg]− which are not regular functions
but rather measures as they are the derivatives of piecewise constant functions. To understand better what does
the equation means and that it models what we want, forget the spatial dependence and consider just a case for
which f(t) = 1t≥t∗ , meaning that the external conditions go from the unfavorable to the favorable situation at
time t∗. Then [∂tf ]+ = δt=t∗ , the Dirac mass at time t∗. Consider then the Cauchy problem§

∂tQ = −δt=t∗Q(t−)
Q(0) = 0

in the sense of distributions, with Q(t−) = lim
s→ t
s < t

Q(s), which exists since Q is a BV function. Then Q(t) =

Q01t≤t∗ solves the Cauchy problem, which is adequate since we want that all the quiescent cells reenter the cell
cycle at the moment where the conditions go from unfavorable to favorable.
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3. Saturation of the medium. We take into account some healthy tissues H that includes
all the non-cancerous tissues. So, the space not filled by cancer cells is filled by H
: there is saturation of each infinitesimal control volume. The healthy tissue is
advected at the same velocity v and the equation is then :

∂tH + div(vH) = 0 (7)

4. The volume occupied by the endothelial cells is negligible.

Using the last two hypothesis, we getZ amax,P1

0
P1da+

Z amax,P2

0
P2da+Q+A+H = Nmax (8)

with Nmax being a constant, the maximal number of cells per volume unit. Eventually,
we sum the equations (1) (2) (3) (4) and (7), then by integrating in age and using (8), we
get :

div(v) = P2(a = amax,P2).
And with the second hypothesis, the equation on the pressure :

−div(k∇p) = P2(a = amax,P2) (9)

Remark 2.1. Assumption 4 is arguable. If we don’t take it into account, the calculus
are changed. Setting N =

R amax,P1
0 P1da +

R amax,P2
0 P2da + Q + A + H, Source(E) =

τE(1 − E
Nmax

) − aE and vE = χ(1 − E
Nmax

)(1 −
P

nφ
Nmax

) (see below the equations on the
endothelial cells), we get

v · ∇N +Ndiv(v) = −div(vEE) + Source(E) + P2(a = amax,P2),

and the equation on the pressure becomes :

−div(k∇p)N − k∇p · ∇N = −div(vEE) + Source(E) + P2(a = amax,P2).

2.2 Model of angiogenesis

Molecular model

This part of the model is the result of the master 2’s work of Floriane Lignet and is reproduced
here for sake of completeness. A summary of the model equations is in the table 3 and the param-
eters values can be found in table 4. The molecular model describes the mechanism activated by
binding of VEGF to its receptor, the VEGFR-2, at the surface of endothelial cells. This binding
leads to the phosphorylation of tyrosine residues on the intracellular part of the receptor. This
can activate cytoplasmic proteins, and triggers signaling pathways. The PLCy1/PKC/MAPK
pathway stimulates the cell proliferation, the p38/MAPKAPK/Hsp27 pathway activates the cell
migration and the PI3K/Akt pathway improves the resistance to apoptotic signals, enhances
the vessels permeability and stimulates the cell growth.

The dynamic of the molecular system in translated by a system of ordinary differential equa-
tions, with the following hypothesis :
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Figure 2: Schematic representation of the molecular model

• the molecular concentration are continuous,

• reactions happen in a homogenous medium, in a volume large enough

• reactions are deterministic.

We associate to each molecule a differential equation that describes the dynamic of its concen-
tration over the time :

dci
dt

=
X

vprod,ci −
X

vcons,ci

with vprod,ci and vcons,ci the speed of reaction producing and consuming the molecule ci, the
sum being taken over all reactions where ci is involved. For each reaction, we define its speed
according to the reaction type, and consider it either as a production or consumption speed for
each molecule involved.

• For reversible reactions, like complexes formation A+B ↔ AB the velocity is given by :

v = k1[A][B]− k−1[AB]

• For irreversible reaction, like formation of new products A → B the velocity is described
by a sigmoidal equation :

v = Vmax[A]
K + [A] ,

with Vmax the maximal speed of the reaction, and K the amount of molecule A needed to
have half of the maximal speed.
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Theoretical outputs are associated to this model that represent the effect of the stimulation
by VEGF of several cell mechanisms. We define outputs for proliferation (pr), migration (χ)
and resistance to apoptotic signals (a) as functions of the VEGF concentration [V ] which is the
input of the molecular model. They are all taken as sigmoidal functions of the concentration of
the end molecule in the pathway :

pr ([V ]) = Sigmo(ERK), χ ([V ]) = Sigmo(Hsp27), a ([V ]) = Sigmo(BAD + Casp9).

The values of these outputs are taken at the equilibrium, considering that the molecular dynamics
are faster than the tissular ones. An example of explicit expression for the sigmoidal function
can be :

Sigmo(z) = k0 + k1
2 − k0 − k1

2 tanh
�
z −N50
K50

�
with k0 and k1 the values in −∞ and +∞ respectively, N50 the threshold value and K50 con-
trolling the slope of the curve at this threshold.

Endothelial cells dynamics

To reproduce the angiogenic process, we use the model of F. Billy et al. [BRS+09] and divide
the endothelial population into two different kinds of cells. The first one, called unstable
endothelial cells which density is denoted by E has the following properties :

• Due to VEGF stimulation, it proliferates with a rate pr([V ]) that depends on the con-
centration of VEGF in a way given by the molecular model. Moreover, this proliferation is
limited by the environmental conditions with a logistic law with parameter NE as carrying
capacity.

• The unstable endothelial cells are sensitive to apoptotic signals with a rate aE([V ])
computed from the molecular model.

• They undergo a chemotaxis process resulting in migration up along the gradient of
VEGF. The migration coefficient χ([V ]) is also given by the molecular model. This coeffi-
cient is limited in a logistic way (carrying capacity Nmax) when the number of endothelial
cells is two high, thus expressing the affinity of endothelial cells one to each other.

• They maturate to become stable endothelial cells, when the total number of endothe-
lial cells is bigger than a given threshold τE , with a rate µ. This models the formation of
efficient vessels when the number is large enough.

The equation resulting from all these assumptions is :

∂tE + div(χ([V ])E(1− E

Nmax
)∇[V ])| {z }

chemotaxis

= pr([V ])E(1− E + Es

NE
)| {z }

proliferation

− a([V ])E| {z }
apoptosis

− µ([V ])1(E+Es≥τE)E| {z }
maturation

(10)

Then we have the stable endothelial cells, denoted by Es which are created by matura-
tion of the unstable ones. They are able to supply oxygen to the tumor, and are more resistant
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to apoptotic signals (meaning aEs ≥ a). The equation describing the time evolution of their
density is the following EDO :

d

dt
Es = µ1(E+Es≥τE)E| {z }

maturation

− aEsEs| {z }
apoptosis

(11)

Quality of the vasculature

Here we introduce one of the main novelty comparing to [BRS+09] : the introduction of a
so-called quality of the vasculature. To describe the fact that the neovasculature is not well
organized, we modulate the permeability of stable endothelial cells by the total density of the
unstable endothelial cells inside the tumor, assumed to be a global criteria to describe the quality
(efficiency) of the vasculature. We note

R(t) =
R
E(t, x, y)dxdy
V ol(Tumor) (12)

the total density of unstable endothelial cells inside the tumor, where

V ol(Tumor) =
Z
R2

1P1+P2+Q+A>0

and we apply a sigmoid law to define a quality coefficient

Π = 1− Rγn

Rγn + (R0.5)γn (13)

which we will refer as the “quality of the vasculature" and is close to 1 if there is little unstable
blood vessels (good vasculature) and close to zero if the number of unstable vessels is large (bad
vasculature). This coefficient is of fundamental importance in our model since it will permit
to take into account the normalization effect of the anti-angiogenic drugs on the vasculature.
It will appear in the boundary conditions of the diffusion equations on the oxygen, AA and
CT drugs, modulating the amount of the delivered entity by the vascular support composed of
stable endothelial cells.

Remark 2.2. The definition (12), that we use for R is arguable. We could also choose R as being
the proportion of unstable endothelial cells in the vasculature and set R =

R
E(t,x,y)dxdyR

(E(t,x,y)+Es(t,x,y)) .
This was our first choice but we dropped it for the following reason : with R defined this way, in
an angiogenesis scenario, E starts to grow and Es is close to zero thus leading to a bad quality,
so this is what is expected. But when the situation is stabilized, Es� E and this would lead to
a good quality (R close to 0). But we are trying to model a situation where angiogenesis leads
to a situation with poor quality of the vasculature. With our choice of R given by (12), since
angiogenesis is always occurring to supply vascular support to the newly formed cancerous tissue,
there is always unstable endothelial cells if the tumor is growing and thus angiogenesis leads to
a bad-quality vasculature. Our definition makes Π being a global quantity of the vasculature.
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Chemical entities. Coupling of the tumor growth and angiogenesis models

The chemical entities interfering in the model are : the VEGF concentration and the oxygen
concentration.

• The VEGF concentration [V ]. The VEGF is produced by the tumoral cells in quiescent
phase (phase Q) if there is hypoxia, with a rate α[V ]. It is consumed by unstable endothelial
cells with a constant rate δ[V ], and is degraded by the organism with a constant rate ξ[V ].
It undergoes a diffusion process in space, with a diffusion coefficient K[V ](x, y) which is
higher in the healthy region than in the tumoral region.We assume that the diffusion
process happens at a lower time scale and take the equation at its equilibrium state :

−div(K[V ]∇[V ]) = α[V ]Q1[02]≤τ1,h − δ[V ]E[V ]− ξ[V ][V ]. (14)

• The oxygen concentration [O2]. Its dynamic is modeled the same way as VEGF. It
diffuses with a rate K[O2](x, y) = K[V ](x, y), is consumed by the cells in phase φ with a
rate α[O2],φ and is produced by the stable vessels, composed of stable EC (note that only
the stable vessels are able to deliver oxygen). We assume the diffusion dynamic is faster
than the ones of the cellular movements and growth in age, so we take the equation at
equilibrium :

¨
−div(K[O2]∇[O2]) = −

P
φ α[O2],φφ

[O2] = ΠCmax where Es ≥ τv
(15)

where τv is a threshold representing the necessary amount of stable endothelial cells to
have a blood vessel, and Cmax the oxygen concentration in blood. The oxygen supply by
the vessels is taken into account in the boundary condition of this equation. Notice the
presence of the quality coefficient Π in the boundary condition expressing the modulation
of oxygen delivered by the stable vessels regarding to the quality of the vasculature.

For both the equation on the oxygen and the VEGF, we use the same diffusion coefficient
that we model as being medium-dependent : the diffusion is slower in tumoral tissue than
in healthy tissue.

K[V ] = K[O2] = K = Sigmo(CellNumber)

where Sigmo is a sigmoïdal function (hyperbolic tangent for example), and

CellNumber(x, y) =
Z
R2
P1 + P2 +Q+Adxdy

is the total amount of tumoral cells located on (x, y).

2.3 Treatments

We will investigate the effect of anti-angiogenic drugs on the tumor growth and on the for-
mation and persistence of the tumor vasculature. The drugs diffuse from the vasculature and



2. Model 53

spread in the tissue in a similar way than oxygen or VEGF. The diffusing amount depends
on the vessel permeability Π, which depends on the density of unstable cells. We denote the
concentration of the antiangiogenic drug by [AA] and the equation we use is :

8>>>><>>>>:
−div(K∇[AA])| {z }

Diffusion

= − [V ]EmaxAA[AA]
AA50 + [AA]| {z }

Annihilationwhen contactwith V EGF

[AA] = ΠConc[AA](t)Es| {z }
Source

where Es ≥ τv
(16)

where Conc[AA](t) is the concentration of the drug coming from its pharmacokinetic and is
delivered to the tumour by the stable vessels Es (boundary condition of the equation). By now,
we just consider an monoclonal anti-body that inhibit the free VEGF, with a sigmoidal law.

As the VEGF is inhibited by the drug, its dynamic become :

−div(K[V ]∇[V ]) = α[V ]Q1[02]≤τ1,h − δ[V ]E[V ]− ξ[V ][V ]− [V ]EmaxAA[AA]
AA50 + [AA]| {z }

Effect of the drug

(17)

where [AA] is the anti-angiogenic concentration, EmaxAA is the maximal effect of the drug
and AA50 is the amount of drug required to produce half of the maximal effect.

As we aim to investigate the coupling between anti-angiogenic drugs and chimiotherapies, we
also integrate a cytotoxic drug, which we denote by [C]. Its concentration is also dependent on
the quality of the vasculature Π. The equation is similar to the one on the anti-angiogenic
drug, without the annihilation term due to contact with VEGF but with an elimination term of
parameter ξC .

8>><>>:
−div(K∇[C])| {z }

Diffusion

= −ξC [C]

[C] = ΠConc[C](t)Es| {z }
Source

where Es ≥ τv
(18)

Its effect is integrated by killing a fraction of the mitotic cells in the last stage of the phase
SG2M , the effect being modulated by an Emax law with Emax,C and C5. The equation on P2
becomes

∂tP2 + ∂aP2 + div(vP2) = −P2δa=amax
Emax,C [C]
C50 + [C] . (19)
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3 Simulation techniques

To simulate the model, we mainly inspired from and used a previously existing numerical code,
developed by B. Ribba, F. Billy, T. Colin and O. Saut. Since we cannot simulate in the whole
plan, we restrict ourselves to a (large) square that we uniformly discretize.

3.1 Initial conditions

To initiate the model, we place in the grid a circular tumour composed mainly by P1 and P2
proliferative cells and a small part of quiescent cells. Then we randomly place EC in the tumour
area, mainly stable EC and a small fraction of unstable EC. Depending on the density of cells
over the domain, we compute the diffusion coefficient for VEGF, oxygen, cytotoxic and AA
drugs. We compute the diffusion of VEGF secreted by the EC. From the distribution of VEGF,
we calculate the values of angiogenesis parameters with the molecular model. Then, we evaluate
the quality of the vasculature depending on the distribution of unstable EC. This permits us
to simulate the delivery of oxygen by the vasculature. Once all the variables of the system are
initialized,we can simulate the cell cycle.

3.2 Cellular loop

The simulation is based on a recursive loop with a time step which corresponds to the passage of
tumour cells from one age to the next. Computations of the advection equations are performed
using a splitting technique, meaning that to solve an equation of the type

∂tφ+ ∂aφ+ div(vφφ) = S, (20)

we solve first the equation ∂tφ+∂aφ = S, then the equation ∂tφ+div(vφφ) = 0. More precisely,
if we write the equation (20) as ∂tφ = Aφ + Bφ + S, with Aφ = ∂aφ and Bφ = div(vφ), we
discretize it in time in the following way¨

ψn+1 = φn +Ahφ
ndt+ Sndt

φn+1 = ψn+1 +Bhψ
n+1dt

with Ah and Bh and Sn being suitable discrete versions of A, B and S.

At each step, we first compute the passage of the cells in age, depending on the environ-
mental conditions (oxygen and local density of cells) of the previous step. We can extract the
variation in mass due to proliferation P2(a = amax,P2). We retrieve the pressure by solving the
elliptic equation (9) with zero-boundary condition, using a finite-volume scheme. The velocity
is computed using Darcy’s Law presented in eq. (6). We compute then the transport part,
again by splitting between a pure transport part and an amplification one due to the non-zero
divergence of the velocity. The pure transport part is solved using an explicit upwind-scheme,
corresponding to the equation :

∂φ

∂t
+ v · ∇φ = 0, (21)

with suitable sub time steps in order to respect stability conditions, namely ||vx||∞dt < dx
and ||vy||∞dt < dy, with vx and vy being respectively the x and y components of the velocity.
Finally, the amplification part is computed through an explicit Euler scheme.
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Then we compute the proliferation and the migration of the endothelial cells depending on the
local amount of cells, VEGF repartition and the angiogenesis parameters describing proliferation,
migration and apoptosis rate taken at the equilibrium and all computed at the previous time
step. The computation technique used is similar to the one used to compute the dynamics of
tumour cells (splitting and upwind scheme for the transport).

The diffusion equations (pressure, VEGF, Oxygen, drugs) are solved using a finite-volume
scheme and with homogeneous Dirichlet boundary conditions. A penalization method is used
to deal with the complex boundary conditions appearing in the equation for the oxygen and the
drugs, transforming it into a penalized right-hand side.

From the distribution of VEGF, we retrieve the angiogenesis parameters at each location,
at the steady state of the molecular model. To save computation time, we calculate a priori
a database of values of the angiogenesis functions pr([V ]), a([V ]) and χ([V ]) for a large and
small-discretized range of possible VEGF values. At each time step, angiogenesis parameters
are extracted from this base, depending on the local amount of VEGF. But our numerical scheme
also allows a simultaneous computation of these parameters for a precise quantity of angiogenic
factor.

The equations are solved in the following order : age transport for the cancerous cell densities,
pressure, velocity, spatial transport for the cancerous cell densities, amplification, endothelial
cells densities, chemotherapy, anti-angiogenic drug, oxygen, VEGF, VEGF parameters. At each
new time step tn+1, in an equation on some quantity X involving another quantity Y , we use
the value Y n+1 if it has been computed before, according to the previous order, and the value
Y n else.

3.3 Values of the parameters

Most of the parameters of the model are not available in the literature and we fixed their values
arbitrarily, for the major part, on the basis of reasonable expected values (the values used in the
simulations are summarized in the table 2). As a consequence, we don’t precise the time unit
since it has no relevance. It can be fixed by assigning a unit to the value of the time-length of
the cell-cycle phases. For example, if we assume that the total length of the cell cycle is 13h,
then we get that 1 time unit = 1 hour, since amax,P1 + amax,P2 = 13. We could fix the value of
one time unit by considering a particular cancer (breast, lung, liver, etc...).

4 Results

We use now the model to perform various simulations to investigate qualitatively the behavior of
vascular tumoral growth. We first look at the untreated case, then the effect of an anti-angiogenic
(AA) drug and finally the combination of a cytotoxic and an AA.
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4.1 Vascular tumoral growth

The figures 3 and 4 present two-dimensional simulations of the tumoral growth in a vascular
context, that is with the ability of the tumor to induce neo-angiogenesis in the surrounding
endothelium. First, the tumor grows and formation of a quiescent core due to hypoxia and
overcrowd appears in the center. The proliferative phase is mostly located at the periphery
(see fig. 3). The total growth of the tumor is slowed down until angiogenesis occurs. This
angiogenesis is due to emission of VEGF by the quiescent cells which induces proliferation and
migration of first the unstable endothelial cells which then mature into stable endothelial cells
able to deliver oxygen (see fig. 4). Thanks to this, quiescent cells can reenter the cell cycle and
proliferation induces an accelerated growth of the tumor.

Proliferative cells P2 Quiescent cells Q

Total cancerous cells

Figure 3: Two-dimensional growth of the tumor. On each figure, the starting time is up left and
time evolves from left to right and downward.
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Unstable endothelial cells Stable endothelial cells

Oxygen

Figure 4: Angiogenesis

4.2 Anti-angiogenic treatment

Two antagonist effects are expected from the application of an AA treatment in our modeling.
First, by inhibiting the VEGF we expect angiogenesis to be stopped and the tumor to be suffo-
cated, being deprived from access to the nutrients (oxygen here). On the opposite, by stopping
the proliferation of unstable endothelial cells and inhibiting their VEGF-induced mechanisms
of resistance to apoptosis, we expect an amelioration of the quality of the vasculature, as it is
proportional to the amount of unstable endothelial cells in our model . This should lead to a
better supply of the oxygen and thus a paradoxical effect of the AA to improve tumor growth
instead of deteriorating it. Though, this effect should not last long, being compensated by the
long-term loss of vasculature. To investigate these two effects, we simulated two types of ad-
ministration the AA drug : a long one, designed to check that the AA effect is able to induce
tumor regression (see figure 5) and a short one (see figure 6) aimed at observing the effect of
the so-called normalisation of the vasculature [Jai01].
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Remark 2.3. In the simulations of this model, we don’t integrate the pharmacokinetics of the
drugs, as we first wanted to investigate qualitatively and theoretically the effects. Thus we take
the concentrations of the drugs in the blood as being constant in time.

In the figure 5 a long lasting AA treatment is applied from times 60 to 120. After a positive
effect on the tumor growth due to the normalisation of the vasculature (fig. 5.D), the loss of
vasculature expressed by the diminution of stable endothelial cells in the figure 5.C induces high
hypoxia in the tumoral cells, leading to apoptosis.

The figure 6 describes the effect of a short AA treatment (time 60 to 65) on tumoral growth
and the quality of the vasculature. We observe the normalization effect during the application of
the treatment (fig. 6.B), leading to a transient faster growth of the tumor (fig. 6.A). But after
this phase, tumor growth is finally slower than without treatment due to the loss of vasculature
induced by the AA treatment, even for a short time.

4.3 Combination of a chemotherapy and an anti-angiogenic treatment

We want now to theoretically simulate the combination of an AA drug and a chemotherapy
(CT) and address the problem of the best combination of the two drugs. Indeed, the balance of
two phenomena makes the combination non-trivial. On one hand, by reducing the vasculature,
the AA reduces the supply of the CT drug to the tumor. On the other hand, by improving the
quality of the vasculature in cleaning it from the inefficients unstable endothelial cells, one may
expect a better delivery of the CT on a short term after the AA. Though, this better delivery
of the CT comes with a better delivery of oxygen... First we simulate the effect of a CT alone,
delivered between times 60 and 65 on a total simulation time of 100 (figure 7).

We observe that the tumor growth is slowed down during the treatment and then starts
back with the same velocity as without treatment. Then, we investigate in the figure 8 the
combination of an AA drug applied first from times 60 to 65, as in the figure 6 and of a CT
from times 69 to 74, since we identified a delay of 9 between the beginning of the AA and
the beginning of the CT as being optimal (see below). We observe a synergistic effect : the
combination treatment is better than both the AA and the CT alone. The tumor is reduced
significantly during the CT treatment and on a larger time-scale, its growth rate is also reduced.

To investigate the question of the optimal combination of an AA and a CT, we fix the
application of the AA during times 60 and 65 and vary the starting time of the CT. We then
observe various indicators to determine whether the combination is beneficial or harmful and,
in the first situation, to determine heuristically the optimal delay D between the AA and the
CT. The results are shown in the figure 9, where are plotted the situation of a CT alone given
at time 60+D and the combination of an AA during t=60 and t=65 and a CT during t=60+D
and t=65+D (same duration of the AA and CT treatments, though realistic protocols don’t do
so).

In the figure 9.A, we plotted the tumor size at the end of simulation as a function of the
delay. The effect of the combination is always beneficial with this indicator and the best delay
seems to be 8 or 9. Though, this indicator might be biased from the fact that the larger the
delay, the shorter the time between the end of the CT and the end of the simulation.
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Figure 5: Effect of a long anti-angiogenic treatment on tumour behavior. The AA is applied
from time 60 to 120 (times indicated by the horizontal line). A total number of tumour cells, B
total number of cells killed at each time, C quantities of stable endothelial cells, divided by 10,
in continuous lines, and unstable endothelial cells in dashed lines, D quality of the vasculature.

The figure 9.B shows another indicator, called Time Efficacy Index (TEI). It is defined as
the time needed for the tumor growth curve to reach the size at t=90 of an untreated tumor.
We subtract then 90 to this time. We observe that it is almost always negative, meaning that
the tumor growth is faster than when the CT is applied alone and thus a harmful effect of the
combination occurs.This is due to the acceleration of the growth provoked by the amelioration
of the quality of the vasculature following the administration of the AA. Though, for 4 delays
(namely 6, 7, 8 and 9) the combination is beneficial and the TEI is improved.
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Figure 6: Effect of a short anti-angiogenic treatment on tumour behavior. The AA is applied
from time 60 to 65 (times indicated by the horizontal line). A tumoral growth and B quality of
the vasculature.

Figure 7: Effect of a short chemotherapy on tumour behaviour. The treatment is applied between
times 60 and 65 (horizontal line): A tumoral growth, and B number of killed cells.

Another interesting quantity is the total amount of CT delivered, that is
R T

0
R
R2 [C](t, x, y)dxdydt

(fig. 9.C). As expected, in the situation of a CT alone, it goes better and better due to angiogen-
esis. In the context of the combination however, it is first improved thanks to the normalisation
of the vasculature, but then decreases and is lower than in the CT alone situation, because of
the negative effect of the AA on the vasculature. The best delay for this indicator is 6.

The figure 9.D presents another indicator : the relative variation of tumor size during the
chemotherapy, that is between the start time and the end time of the CT. In the administration
of a CT alone, this indicator stays close to 0, since the CT stops the growth in our simulation,
consistently with figure 7. When the AA is administrated alone, we retrieve the acceleration
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Figure 8: Effect of the combination of an AA drug and a chemotherapy. Tumour behaviour with-
out treatment (continuous line), with AA drug alone (small dashes), with CT alone (alternate
dashes) and with a combination of the two treatments (large dashes), the times of application
of AA and CT are indicated with the grey lines (respectively 60-65 and 69-74).

effect inducing a sharp increase in the tumor burden. Interestingly, almost for the same delays
the effect of the combination is maximized, inducing a reduction in the tumor mass up to 25.84%
for the best delay 9 (which we use for the simulation of the figure 8). Notice that this best delay
is not the same as the best delay regarding to the amount of CT delivered. Quite surprisingly,
for the delay 11, the effect is deleterious, exhibiting an increase of 29.53%. How can this be
explained?

It is due to the following synergistic effect between the AA and the CT, that we did not
expect : the CT kills the cells in the last age of the proliferative phase, which is a problem since
a large part of the tumor is composed of quiescent cells thus unreachable for the CT. When the
AA is administrated, the normalisation effect and thus the better supply of oxygen induces that
quiescent cells go back to the proliferative phase, massively from the modeling. But why such a
difference between delays 9 and 11? Because, since proliferative cells are killed by the CT only
in the last age, we have to wait the time of the P2 phase (8 in our case) for the new arrived
quiescent cells to reach the last age and to be killed. This is why the delay 9 is the best. If
the CT waits too long then all these former quiescent cells have passed the end of the P2 phase,
have divided and provoked a sharp increase of the tumor burden.

5 Conclusion

This model is the example of a mechanistic one, integrating multiple phenomenas happening at
various time scales. We defined a theoretical notion of quality of the vasculature allowing to take
into account for the normalization action of the AA drugs, which seems to play an important
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Figure 9: Outputs describing treatments effects, when the chemotherapy is applied alone (empty
dots), in combination with an AA treatment (full dots) or for the AA alone (dashed line),
depending on the delay of application of the chemotherapy after the beginning of the cure at
time 60 : A size of the tumour at the end of the simulation ; B Time Efficacy Index : time
needed by the tumour to reach the size of an untreated tumour at t=90, the green line represent
the TEI for the AA alone ; C total amount of chemotherapy delivered to the tumour ; D effect
of the chemotherapy, during its application.

role for the administration of the therapies. The coupling with an intracellular model allows to
test different situations where one or several molecular pathways are altered, like in the case of
the mutation of the RAS gene, though we didn’t investigate this aspect of the model.

The model has been used as a theoretical tool to simulate different scenarii for AA therapy,
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as well as for the combination of an AA and a CT therapy. In particular, we identified a
theoretical optimal value for the delay between the starting times of the AA and CT therapies.
This value seems to be highly dependent on the parameters values, especially on the total length
of the phases S, G2 and M of the cell cycle; it also depends on the assumption we made that
the CT kills cells only during the M phase (end of the P2 phase). The results are based on
the quality of vasculature Π whose value depends also strongly on the parameters used for its
definition and which have no real biological meaning. In the context of practical application,
they would have to be estimated through confrontation with datas. These results emphasize
the fundamental importance of the scheduling in the administration of the drugs, especially in
CT-AA combined therapies. They suggest the existence of an optimal therapeutic window
in the delay between administration of the AA and of the CT.

As a first step, we only considered a single administration of each drug and did not investigate
the global scheduling. This is an important question for which it is necessary to take into account
more deeply the pharmacokinetics/pharmacodynamics of the drugs. Also, in the context of the
normalization hypothesis, we investigated the combination in the sense of the influence of the
AA on the delivery and effectiveness of the CT, implicitly choosing to give the AA before the
CT. We notice that, in this modeling framework, the beneficial effect of vascular pruning can
only be obtained administrating the drugs in this order.

The major issue of this model is its parametrization. Indeed, there is often not enough
biological data to give values for the large number of parameters and even if it would be the
case, for clinical application it seems hardly possible to run all the biological tests for each
patient. Moreover, a lot of simplification hypothesis have been done, for instance relatively to
mechanics of the tumoral tissue (by assuming Darcy’s law for instance, or neglecting mechanical
interactions between the endothelium and the neoplastic tissue). Hence, this model has to be
thought as a theoretical tool, useful to give qualitative intuitions and to rationalize a complex
underlying biology.

6 Appendix. Equations and parameters of the molecular model
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reaction rate equation
V EGF + V EGFR↔ V EGF.V EGFR k1 ∗ V EGF ∗ V EGFR− km1 ∗ V EGF.V EGFR
V EGF.V EGFR↔ V EGFR.P k2 ∗ V EGF.V EGFR− km2 ∗ V EGFR.P
V EGFR.P → Cdc42 k3 ∗ V EGFR.P
V EGFR.P + PLCy1↔ V EGFR.PLCy1 k4 ∗ V EGFR.P ∗ PLC − km4 ∗ V EGFR.PLC
V EGFR.PLCy1↔ V EGFR.PLCy1.P k5 ∗ V EGFR.PLC − km5 ∗ V EGFR.PLC.P
V EGFR.PLCy1.P ↔ V EGFR.P + PLCy1.P k6 ∗ V EGFR.PLC.P − km6 ∗ V EGFR.P ∗ PLC.P
PLCy1.P + PIP2→ DAG+ IP3 k7 ∗ PLC.P ∗ PIP2
DAG→ PKC k8 ∗DAG
PKC → SPK k9 ∗ PKC
PKC → RAF k10 ∗ PKC
SPK → RasGTP k11 ∗ SPK
RasGTP +Raf → Raf.P k12 ∗RASGTP ∗ RAF

(K12+RAF )
Raf.P → Raf k13 ∗ RAF.P

(K13+RAF.P )
Raf.P +MEK →MEK.P k14 ∗RAF.P ∗ MEK

K14∗(1+MEK.P
K16 )+MEK

MEK.P + PP2A→MEK k15 ∗MEK.P ∗ PP2A
K15∗(1+MEK.PP

K17 +AKT.PI.P
K30 +AKT.PI.PP

K32 )+MEK.P

MEK.P +Raf.P →MEK.PP k16 ∗RAF.P ∗ MEK.P

K16∗(1+MEK
K14 )+MEK.P

MEK.PP + PP2A→MEK.P k17 ∗MEK.PP ∗ PP2A
K17∗(1+MEK.P

K15 +AKT.PI.P
K30 +AKT.PI.PP

K32 )+MEK.PP

MEK.PP + ERK → ERK.P k18 ∗MEK.PP ∗ ERK

K18∗(1+ERK.P
K20 )+ERK

ERK.P +MKP3→ ERK k19 ∗ ERK.P ∗ MKP3
K19∗(1+ERK.PP

K21 )+ERK.P
MEK.PP + ERK.P → ERK.PP k20 ∗MEK.PP ∗ ERK.P

k20(1+ERK
K18 )+ERK.P

ERK.PP +MKP3→ ERK.P k21 ∗ ERK.PP

K21∗(1+ERK.P
K19 )+ERK.PP

V EGFR.P + PI3K ↔ V EGFR.PI3K k22 ∗ V EGFR.P ∗ PI3K − km22 ∗ V EGF.PI3K
V EGFR.PI3K ↔ V EGFR.PI3K.P k23 ∗ V EGFR.PI3K − km23 ∗ V EGF.PI3K.P
V EGFR.PI3K.P ↔ V EGFR.P + PI3K.P k24 ∗ V EGFR.PI3K.P − km24 ∗ V EGFR.P ∗ PI3K.P
PI3K.P → PI3K k25 ∗ PI3K.P

K25+PI3K.P
PI3K.P + PIP2→ PIP3 k26 ∗ PIP2 ∗ PI3K.P

K26+PIP2
PIP3→ PIP2 k27 ∗ PIP3

K27+PIP3
PIP3 +Akt↔ PIP3.AKT k28 ∗ PIP3 ∗AKT − km28 ∗AKT.PIP3
Akt.PIP3(+PDK)→ Akt.PI.P k29 ∗ AKT.PIP3

K29∗(1+AKT.PI.P
K31 )+AKT.PIP3)

Akt.PI.P + PP2A→ Akt.PIP3 k30 ∗AKT.PI.P ∗ PP2A
K30(1+MEK.P

K15 +MEK.PP
K18 +AKT.PI.PP

K32 )+AKT.PI.P
Akt.PI.P (+PDK)→ Akt.PI.PP k31 ∗ AKT.PI.P

K31∗(1+AKT.PIP3
K29 )+AKT.PI.P

Akt.PI.PP + PP2A→ Akt.PI.P k32 ∗AKT.PI.PP ∗ PP2A
K32(1+MEK.P

K15 +MEK.PP
K18 +AKT.PI.P

K30 )+AKT.PI.PP
Akt.PI.PP +mTOR↔ Akt.PI.PP.mTOR k33 ∗AKT.PI.PP ∗MTOR− km33 ∗AKT.PI.PP.MTOR
Akt.PI.PP +BAD ↔ Akt.PI.PP.BAD k34 ∗AKT.PI.PP ∗BAD − km34 ∗AKT.PI.PP.BAD
Akt.PI.PP + Casp9↔ Akt.PI.PP.Casp9 k35 ∗AKT.PI.PP ∗ CASP − km35 ∗AKT.PI.PP.CASP
Akt.PI.PP + eNOS ↔ Akt.PI.PP.eNOS k36 ∗AKT.PI.PP ∗ ENOS − km36 ∗AKT.PI.PP.ENOS
Akt.PI.PP.mTOR↔ Akt.PI.PP.mTOR.P k37 ∗AKT.PI.PP.MTOR− km37 ∗AKT.PI.PP.MTOR.P
Akt.PI.PP.BAD ↔ Akt.PI.PP.BAD.P k38 ∗AKT.PI.PP.BAD − km38 ∗AKT.PI.PP.BAD.P
Akt.PI.PP.Casp9↔ Akt.PI.PP.Casp.P k39 ∗AKT.PI.PP.CASP − km39 ∗AKT.PI.PP.CASP.P
Akt.PI.PP.BAD ↔ Akt.PI.PP.BAD.P k40 ∗AKT.PI.PP.ENOS − km40 ∗AKT.PI.PP.ENOS.P
Akt.PI.PP.mTOR.P ↔ Akt.PI.PP +mTOR.P k41 ∗AKT.PI.PP.MTOR.P − km41 ∗AKT.PI.PP ∗MTOR.P
Akt.PI.PP.BAD.P ↔ Akt.PI.PP +BAD.P k42 ∗AKT.PI.PP.BAD.P − km42 ∗AKT.PI.PP ∗BAD.P
Akt.PI.PP.Casp9.P ↔ Akt.PI.PP + Casp9.P k43 ∗AKT.PI.PP.CASP.P − km43 ∗AKT.PI.PP ∗ CASP.P
Akt.PI.PP.eNOS.P ↔ Akt.PI.PP + eNOS.P k44 ∗AKT.PI.PP.ENOS.P − km44 ∗AKT.PI.PP ∗ ENOS.P
cdc42 + p38↔ cdc42.p38 k45 ∗ CDC42 ∗ P38− km45 ∗ CDC42.P38
cdc42.p38→ p38.P k46 ∗ CDC42.P38
p38.P +MAPKAPK ↔ p38.P.MAPKAPK k47 ∗ P38.P ∗MAPKAPK − km47 ∗ P38.P.MAPKAPK
p38.P.MAPKAPK →MAPKAPK.P k48 ∗ P38.P.MAPKAPK
MAPKAPK.P +Hsp27↔MAPKAPK.P.Hsp27 k49 ∗HSP27 ∗MAPKAPK.P − km49 ∗MAPKAPK.P.HSP27
MAPKAPK.P.Hsp27→ Hsp.P k50 ∗MAPKAPK.P.HSP27
PLCy1.P → PLCy1 k51 ∗ PLC.P

K51+PLC.P
ERK.PP −→ proliferation(p) k52∗ERKPPg

km52g+ERKPPg

BAD.P + CASP.PB25 −→ resistance to apoptosis(a) k53 ∗ km53g
km53g+(BADP+CASPP )g

HSP27.P + ENOS.P −→ migration(χ) k54 ∗ (HSP27P+ENOSP )g
km54g+(HSP27P+ENOSP )g

Table 3: Table of the molecular model equations



68 Chapter 2. An example of a mechanistic model for vascular tumoral growth

parameter value reference parameter value reference
k1 0.01 est km1 1 est
k2 0.1 est km2 1 est
k3 1 est
k4 0.1 est km4 1 est
k5 1 est km5 0.1 est
k6 10 est km6 0.1 est
k7 1 est K7 100
k8 0.1 est
k9 0.1 est
k10 0.1 est
k11 0.01 est
k12 1.53 [HKN+03] K12 11.7 [HKN+03]
k13 0.25 [Kho00] K13 8 [Kho00]
k14 3.5 [HKN+03] K14 317 [HKN+03]
k15 0.06 [HKN+03] K15 2200 [HKN+03]
k16 2.9 [HKN+03] K16 317 [HKN+03]
k17 0.06 [HKN+03] K17 60 [HKN+03]
k18 9.5 [HKN+03] K18 146000 [HKN+03]
k19 0.3 [HKN+03] K19 160 [HKN+03]
k20 16 [HKN+03] K20 146000 [HKN+03]
k21 0.27 [HKN+03] K21 60 [HKN+03]
k22 0.001 est km22 4 est
k23 9.85 est km23 0.1 est
k24 45.8 est km24 0.05 est
k25 2620 [HKN+03] K25 3680 [HKN+03]
k26 16.9 [HKN+03] K26 39.1 [HKN+03]
k27 170 [HKN+03] K27 9.02 [HKN+03]
k28 507 [HKN+03] km28 234 [HKN+03]
k29 20000 [HKN+03] K29 80000 [HKN+03]
k30 0.11 [HKN+03] K30 4.35 [HKN+03]
k31 20000 [HKN+03] K31 80000 [HKN+03]
k32 0.21 [HKN+03] K32 12 [HKN+03]
k33 1 est km33 0.5 est
k34 1 est km34 0.5 est
k35 1 est km35 0.5 est
k36 1 est km36 0.5 est
k37 1 est km37 0.5 est
k38 1 est km38 0.5 est
k39 1 est km39 0.5 est
k40 1 est km40 0.5 est
k41 1 est km41 0.5 est
k42 1 est km42 0.5 est
k43 1 est km43 0.5 est
k44 1 est km44 0.5 est
k45 1 est km45 0.4 est
k46 1 est
k47 1 est km47 0.5 est
k48 1 est
k49 1 est km49 0.5 est
k50 1 est
k51 10 est K51 10 est
k52 1 est km52 25 est
k53 1 est km53 1.8 est
k54 1 est km54 20 est

Table 4: Values of the parameters of the molecular model.



Part II

Analyse mathématique et numérique

This part is devoted to mathematical analysis of the model for metastatic evolution intro-
duced in section 1.5. Turning first our interest to the autonomous case (i.e. without therapy),
functional analysis of a particular Sobolev space is required to rigorously establish the properties
of the operator corresponding to the evolution equation. This is performed in the chapter 3,
allowing chapter 4 to establish well-posedness of the model, regularity of the solutions and their
asymptotic behavior. Introduction and numerical analysis of a Lagrangian scheme in the chapter
5 proves existence to the non-autonomous case. An error estimate is also provided. Eventually
the effect of concentrating into a Dirac mass the boundary distribution of the metastases is
investigating in chapter 6.

Part of the chapter 4 (without the numerical illustrations) gave rise to the publication
[Ben11a] and chapters 5 and 6 have been accepted for publication (respectively [Ben11b] and
[Ben11c]).

All along this part, the main idea used to prove the results is to straighten the trajectories
of the growth rate, i.e. the method of characteristics.
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Chapter 3

Study of the space W p
div(Ω)

Let Ω be an open set in Rd, G ∈ C1(Ω)d a regular vector field. For 1 ≤ p ≤ ∞, we define the
space

W p
div(Ω) := {V ∈ Lp(Ω) | ∃g ∈ Lp(Ω) s. t.

Z
Ω
V G · ∇φ = −

Z
Ω
gφ, ∀φ ∈ C1

c (Ω)}

The function g of this definition is denoted div(GV ). We endow this space with the norm

||V ||W p
div

= ||V ||Lp + ||div(GV )||Lp .

Functional analysis of this space is required for the theoretical analysis of our model’s evolution
equation.

Remark 3.1. Since div(G) ∈ L∞, for V ∈W p
div(Ω), we can define

G · ∇V := div(GV )− V div(G) ∈ Lp(Ω)

and the spaceW p
div(Ω) is also the space of Lp functions such that there exists a function g ∈ Lp(Ω)

verifying Z
Ω
V div(Gφ) = −

Z
Ω
gφ, ∀φ ∈ C1

c (Ω).

This space already appeared for the study of the boundary problem for the transport equation
in [Bar70, Ces84, Ces85]. We turn our interest on two problems :

1. Density of regular functions up to the boundary C1(Ω) in W p
div(Ω)

2. Traces and integration by part formula

and describe the approach we use to deal with these issues in the case of our model, with a
particular focus on the second one which is our main need in the study of the space W p

div(Ω),
consisting in straightening the integral curves of the field G and proving a conjugation theorem
between W 1,1(]0,+∞[ ; L1(∂Ω))(Ω) and W 1,1(]0,+∞[;L1(∂Ω)). We prove a similar result for
W∞div(Ω). We also describe two classical approaches : by regularization and by duality techniques.
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Lemma 3.2. (W p
div(Ω) , || · ||W p

div
) is a Banach space.

Proof. Let Vn be a Cauchy sequence inW p
div(Ω). By completeness of Lp(Ω), there exists V, W ∈

Lp(Ω) such that Vn
Lp−→ V , and div(GVn) Lp−→W . Then, for every φ ∈ C1

c (Ω)R
div(GVn)φ −→

R
Wφ

‖ ‖
−
R
VnG · ∇φ −→ −

R
V G · ∇φ

Thus W ∈Wdiv(Ω) and W = div(GV ).

1 Conjugation approach

For this section, we place ourselves in the framework of our model, with

Ω =]1, b[×]1, b[, G(X) = G(x, θ) =
�

ax ln
�
θ
x

�
cx− dx2/3θ

�
=
�
G1(x, θ)
G2(x, θ)

�
. (1)

We will prove a so-called conjugation theorem between W p
div(Ω) and W 1,1(]0,+∞[;L1(∂Ω)) for

p = 1, ∞ consisting in straightening the characteristics (integral curves of G), as illustrated in
the figure 1.

τ
∂Ω∗

0

X∗

Φ

Φ−1

∂Ω∗ σ

Ω

Figure 1: Φ is a locally bilipschitz homeomorphism.

1.1 Change of variables

We will now turn our interest to the flow defined by the solutions of the system of ODE¨
d
dtX(t) = G(X(t))
X(0) = σ

(2)
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as it will play a fundamental role in the sequel. We define the application

Φ : [0,∞[×∂Ω → Ω
(τ, σ) 7→ Φτ (σ)

as being the solution of the system (2) at time τ with the initial condition σ ∈ ∂Ω. We will
show that

Φ : [0,∞[×∂Ω∗ → Ω∗

is an homeomorphism locally bilipschitz, ∂Ω∗ = ∂Ω\{(b, b)} and Ω∗ = Ω\{(b, b)}. We also define
X∗ = (b, b). In order to have a candidate for the inverse of Φ, we define for (x, θ) ∈ Ω

τ(x, θ) = inf{τ ≥ 0| Φ−τ (x, θ) ∈ ∂Ω∗}, σ(x, θ) = Φ−τ(x,θ)(x, θ). (3)

Lemma 3.3. For all (x, θ) ∈ Ω there exists 0 ≤ τ <∞ such that Φ−τ (x, θ) ∈ ∂Ω.

Proof. Let X = (x, θ) ∈ Ω. We will argue by contradiction. Suppose that for all τ ≥
0, Φ−τ (X) ∈ Ω which is compact. The Poincaré-Bendixson theorem (see section 1.3.2 of chap-
ter 1) then implies that the only possibilities for the asymptotic behavior of the trajectory are
either convergence to the only critical point of −G : (b, b) or convergence to a closed orbit (limit
cycle or homoclinic orbit starting and ending in (b, b)). The second point is prohibited as it is
established that G has no closed orbit in Ω (proposition 1.8 of chapter 1) and thus neither has
−G. The first possibility leads also to a contradiction for the same argument since it would
imply the existence of a homoclinic orbit from the convergence in positive time of Φτ (X) to
(b, b).

The time τ(x, θ) is the time spent in Ω and σ(x, θ) is the entrance point of the characteristic
passing through the point (x, θ). From the Lipschitz regularity of Ω we can’t expect Φ to be
globally C1, this is why we introduce the following open sets :

Ωi = {Φτ (σ); σ ∈ ∂Ωi, τ ∈]0,∞[}, i = 1, 2, 3, 4

where

∂Ω1 =](1, 1), (1, b)[, ∂Ω2 =](1, b), (b, b)[, ∂Ω3 =](b, b), (b, 1)[, ∂Ω4 =](b, 1), (1, 1)[.

The restriction of Φ to ]0,∞[×∂Ωi is a diffeomorphism, as established in the following proposition
and illustrated in the figure 1.

Proposition 3.4 (Properties of the flow).
(i) The application Φ is a diffeomorphism ]0,∞[×∂Ωi → Ωi and for every τ ≥ 0 and almost
every σ ∈ ∂Ω

JΦ(τ, σ) = G · ν(σ)e
R τ

0 div(G(Φs(σ)))ds (4)

where JΦ(τ, σ) = det(DΦ) is the Jacobian determinant of Φ.
(ii) Globally, Φ is an homeomorphism [0,∞[×∂Ω∗ → Ω∗ locally bilipschitz with inverse (x, θ) 7→
(τ(x, θ), σ(x, θ)).

Remark 3.5. The regularity proven here on Φ validates the use of Φ as a change of variables
(see [Dro01b] for locally Lipschitz changes of variables).
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Proof.
• Φ is one-to-one and onto [0,∞[×∂Ω∗ → Ω∗. LetX = (x, θ) ∈ Ω. We have Φ(τ(X), σ(X)) =

X because Φ−τ(X)(X) = σ(X) implies X = Φτ(X)(σ(X)) (indeed Φ−τ is the inverse of Φτ when
τ is fixed from the semigroup property of the flow coming from the Cauchy-Lipschitz theorem).
For the injectivity, if there exists (τ, σ), (τ ′, σ′) ∈ [0,∞[×∂Ω∗ such that Φτ (σ) = Φτ ′(σ′), with
for instance τ < τ ′, then Φτ ′−τ (σ) = σ′ which is impossible since, following remark 1.6 after the
lemma 1.5 in the chapter 1, we have Φτ ′−τ (σ) ∈ Ω. Hence (τ, σ) 7→ Φτ (σ) is one-to-one and
from

Φτ(Φτ (σ))(σ(Φτ (σ))) = Φτ(Φτ (σ))(Φ−τ(Φτ (σ))(Φτ (σ)) = Φτ (σ),

we get (τ(Φτ (σ)), σ(Φτ (σ))) = (τ, σ). Thus Φ is one-to-one and onto and Φ−1(x, θ) = (τ(x, θ), σ(x, θ)).
• Φ is a diffeomorphism on ]0,∞[×∂Ωi. Using the general theorem of dependency on the

initial conditions for ODEs, Φ is C1(]0,∞[×∂Ωi) and if we call σ(s) a parametrization of ∂Ωi, we
have ∂Φ

∂s (τ, σ(s)) = DyΦτ (σ(s)) ◦ σ′(s), and the following characterization of ∂Φ
∂s (τ, σ(s)) stands

: for each s, it is the solution of the differential equation¨
dZ
dτ = DG(Φ) ◦ Z
Z(0) = σ′(s)

Using this characterization, we can derive the formula (4) for the Jacobian JΦ(τ, σ). We have
JΦ(τ, σ) = ∂Φ

∂s ∧
∂Φ
∂τ = ∂Φ

∂s ∧G(Φ), and differentiating in τ we get

∂

∂τ
JΦ(t, σ) = DG ◦ ∂Φ

∂s
∧G(Φ) + ∂Φ

∂s
∧DG ◦G(Φ)

= trace(DG)JΦ(t, σ) = div(G)JΦ(t, σ).

Hence, for all σ(s), using that JΦ(0, σ(s)) = σ′(s) ∧ G(σ(s)) = |σ′(s)|G · −→ν (σ(s)) 6= 0 on
]0,∞[×∂Ωi, we obtain the formula

JΦ(t, σ(s)) = |σ′(s)|G · −→ν (σ(s)) exp
�Z t

0
div(G(Φ(τ, σ(s))))dτ

�
6= 0. (5)

We get (4) by choosing a parametrization with velocity equal to one. In the sequel, we fix
this parametrization. We can then apply the global inversion theorem to conclude that Φ is a
C1-diffeomorphism ]0,∞[×∂Ωi → Ωi.
• Globally. From the given properties of the vector field G, we can extend the flow to a

neighborhood V of Ω, and we have that it is C1([0,∞[×V ) (see [Dem96], XI p.305). Hence Φ,
which is the restriction of this application to [0,∞[×∂Ω∗ with ∂Ω∗ being Lipschitz, is locally
Lipschitz. Remark here that it is not globally Lipschitz since ∂

∂σΦτ (σ) can blow up when τ goes
to infinity, due to the singularity at X∗.

To show that Φ−1 is also locally Lipschitz on Ω∗ we consider some compact set K ⊂ Ω∗ and
show that Φ−1 is Lipschitz on K. We define Ki = Ωi ∩K, and ÝKi := Φ−1(Ki) ⊂ [0,∞[×∂Ωi.
Now since Φ is the restriction of a globally C1 application, we have Φ ∈ C1(ÝKi), meaning that its
differential DΦ is continuous up to the boundary of ÝKi. Moreover using the formula (5), we see
that the value of DΦ on ∂ÝKi is invertible since we avoid the singularity at X∗. Hence, using the
continuity of the inverse application we obtain that DΦ−1 = (DΦ)−1 is continuous on Ki. Thus
Φ−1 ∈ C1(Ki) and so it is Lipschitz on each Ki. It remains to see that Φ−1 is globally continuous
in order to conclude. This is based on the following lemma, which we do not demonstrate here.
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Lemma 3.6. The mapping Ω → ]0,∞[
X 7→ τ(X) is continuous.

With this lemma, we also get the continuity of σ(X) = Φ−τ(X)(X). Finally Φ−1 is globally
continuous on Ω∗ and Lipschitz on each Ki, so it is Lipschitz on K.

1.2 Conjugation of W p
div(Ω) and W 1,p(]0,+∞[ ; Lp(∂Ω))

For a function V ∈ L1(Ω), belonging to W 1
div(Ω) means that it is weakly differentiable along the

characteristics. The next theorem of this section makes this more precise. We recall first the
definition of Banach-valued Sobolev spaces (see [Dro01a] for more details about this question).

Definition 3.7 (Banach-valued Sobolev spaces). Let I be a real interval, X a Banach space
and A a measurable space. We define

W 1,1(I ; X) :=
§
u ∈ L1(I ; X); ∃v ∈ L1(I ; X) s.t. ∀φ ∈ C1

c (I),
Z
I
u(t)φ′(t)dt = −

Z
I
v(t)φ(t)dt

ª
W 1,∞
τ (I ×A) :=

§
u ∈ L∞(I ×A); ∃v ∈ L∞(I ×A) s.t.∀φ ∈ C1

c (I),
Z
I
u(t)φ′(t)dt = −

Z
I
v(t)φ(t)dt

ª
Remark 3.8. We distinguish the definition for p = 1 and p = ∞ to avoid troubles caused by
the fact that in general L∞(I ×A) 6= L∞(I; L∞(A)) (see [Dro01a], p. 28).

Theorem 3.9 (Conjugation of W 1
div(Ω) and W 1,1(]0,+∞[ ; L1(∂Ω))). The spaces W 1

div(Ω) and
W 1,1(]0,+∞[ ; L1(∂Ω)) are conjugated via Φ in the following sense :

V ∈W 1
div(Ω)⇔ (V ◦ Φ)|JΦ| ∈W 1,1(]0,+∞[ ; L1(∂Ω)).

For functions in W∞div(Ω), we have

V ∈W∞div(Ω)⇔ (V ◦ Φ) ∈W 1,∞
τ (]0,+∞[×∂Ω).

Moreover, for p = 1,∞ and V ∈W p
div(Ω) we have almost everywhere

∂τ (V ◦ Φ|JΦ|1/p) =
¨

(div(GV ) ◦ Φ)|JΦ| if p = 1
(G · ∇V ) ◦ Φ if p =∞

where we use the notation 1/∞ = 0. The applications

W 1
div(Ω) → W 1,1((0,+∞); L1(∂Ω))
V 7→ V ◦ Φ|JΦ|

and W∞div(Ω) → W 1,∞
τ (]0,+∞[×∂Ω)

V 7→ V ◦ Φ

are isometries.

Remark 3.10.
• In particular, we deduce from the theorem applied to the function V = 1 that |JΦ| ∈

W 1,1(]0,+∞[ ; L1(∂Ω)) and we recognize the well-known formula

∂τ |JΦ|(τ, σ) = div(G(Φτ (σ)))|JΦ|(τ, σ), a.e. (τ, σ) ∈]0,+∞[×∂Ω.
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• Since by proposition 3.4, we have |JΦ|−1 ∈ W 1,∞
loc ([0,∞[×∂Ω∗) we deduce that for V ∈

W 1
div(Ω)

V (Φτ (σ)) = V (Φτ (σ))|JΦ| × |JΦ|−1 ∈W 1,1
loc ([0,∞[ ; L1

loc(∂Ω∗))

with
∂τV (Φτ (σ)) = G · ∇V (Φτ (σ))

Proof. We first show the theorem on W 1
div(Ω) and then for W∞div(Ω)

• We prove now (V ∈ W 1
div(Ω)) ⇒ (ÜV := (V ◦ Φ)|JΦ| ∈ W 1,1(]0,+∞[ ; L1(∂Ω))). Let

V ∈ Wdiv(Ω) and remark that ÜV ∈ L1(]0,∞[×∂Ω) since |JΦ| is the Jacobian of the change
of variable between Ω and ]0,∞[×∂Ω∗. Then, using the definition of W 1,1(]0,+∞[ ; L1(∂Ω))
we have to prove that there exists a function g ∈ L1(]0,∞[×∂Ω) such that for every functioneψ ∈ C∞c (]0,∞[) Z ∞

0
ÜV (τ, σ) eψ′(τ)dτ = −

Z ∞
0

g(τ, σ) eψ(τ)dτ, a.e. σ ∈ ∂Ω.

As we aim to use the change of variable Φ which lives in ]0,∞[×∂Ω, we will rather prove that
for every function ζ ∈ Lip(∂Ω) (the Lipschitz functions on ∂Ω)Z

∂Ω

§Z ∞
0
ÜV (τ, σ) eψ′(τ)dτ

ª
ζ(σ)dσ = (6)Z

∂Ω

§
−
Z ∞

0
div(GV )(Φτ (σ))|JΦ| eψ(τ)dτ

ª
ζ(σ)dσ

which is sufficient to prove the result. Let now fix eψ ∈ C∞c (]0,∞[) and define the function

ψ(x, θ) := eψ(τ(x, θ))

with τ(x, θ) the time spent in Ω defined in the section 3.1.1. Then ψ has compact support in Ω
and is Lipschitz as the composition of a regular function and a locally Lipschitz function (see
prop. 3.4 for the locally Lipschitz regularity of the function (x, θ) 7→ τ(x, θ)), thus differentiable
almost everywhere and the reverse formula eψ(τ) = ψ(Φτ (σ)) (for any σ ∈ ∂Ω since the function
ψ depends only on the time spent in Ω) yields

eψ′(τ) = G(Φτ (σ)) · ∇ψ(Φτ (σ)), a.e. τ ∈]0,∞[, ∀σ ∈ ∂Ω

since τ 7→ Φτ (σ) is C1. Hence eψ′(τ(x, θ)) = G(Φτ(x,θ)(σ(x, θ))) · ∇ψ(Φτ(x,θ)(σ(x, θ))) = G(x, θ) ·
∇ψ(x, θ) and doing now the change of variables in the left hand side of (6) yieldsZ

∂Ω

§Z ∞
0
ÜV (τ, σ) eψ′(τ)dτ

ª
ζ(σ)dσ =

Z
Ω
V (x, θ)ζ(σ(x, θ))G(x, θ) · ∇ψ(x, θ)dxdθ (7)

Still denoting ζ(x, θ) the function ζ(σ(x, θ)), we remark that this function only depends on the
entrance point σ(x, θ) and thus we have

(G · ∇ζ)(Φτ (σ)) = ∂τ (ζ(Φτ (σ))) = ∂τ (ζ(σ)) = 0, ∀τ ≥ 0, a.e σ

To pursue the calculation, we need to regularize the Lipschitz functions ζ and ψ in order to use
them in the distributional definition of div(GV ). We use the following lemma, whose proof can
be found in [Tar07], p.60.
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Lemma 3.11. Let f ∈ W 1,∞(Ω) with Ω a Lipschitz domain. Then there exists a sequence
fn ∈ C∞(Ω) such that

fn
W 1,p
−−−→ f ∀ 1 ≤ p <∞, fn → f L∞ weak − ∗, ∇fn → ∇f L∞ weak − ∗.

Now let ψn → ψ and ζm → ζ as in the lemma. From the demonstration of the lemma which
is done by convolution with a mollifier, since ψ has compact support, so does ψn for n large
enough. Now remark that for each n and m

G · ∇(ψnζm) = ζmG · ∇ψn + ψnG · ∇ζm.

The test function ψnζm is now valid in the distributional definition of div(GV ) and we haveZ
Ω
V ζmG · ∇ψndxdθ =

Z
Ω
V G · ∇(ψnζm)dxdθ −

Z
Ω
V ψnG · ∇ζm

= −
Z

Ω
div(GV )ψnζmdxdθ −

Z
Ω
V ψnG · ∇ζmdxdθ

Letting first n going to infinity, then m and remembering that G · ∇ζ = 0 yieldsZ
Ω
V ζG · ∇ψdxdθ = −

Z
Ω

div(GV )ψζdxdθ.

Now doing back the change of variables Φ−1 gives the identity (6).
• We show now the reverse implication. Let ÜV ∈ W 1,1(]0,+∞[ ; L1(∂Ω)) and ψ ∈ C∞c (Ω).

Define V (x, θ) := (ÜV ◦Φ−1)|JΦ−1 | and eψ(τ, σ) := ψ(Φτ (σ)). Hence eψ is C1
c in the variable τ and

we have ∂τ eψ = (G · ∇ψ) ◦ Φ. NowZ
Ω
V G · ∇ψdxdθ =

Z
∂Ω

Z ∞
0
ÜV (τ, σ)∂τ eψ(τ, σ)dτdσ = −

Z
∂Ω

Z ∞
0

∂τÜV eψdτdσ
= −

Z
Ω
∂τÜV ◦ Φ−1ψdxdθ

Hence we have proved that V ∈Wdiv(Ω) and that div(GV ) = ∂τÜV ◦ Φ−1.
• We prove now the part of the theorem on W∞div(Ω). Let U ∈ W∞div(Ω) ⊂ W 1

div(Ω). Then
U ◦ Φ ∈ L∞(]0,∞[×∂Ω). Moreover, applying the second point of the remark following the
theorem, we have

∂τU(Φτ (σ)) = G · ∇U(Φτ (σ)) ∈ L∞(]0,∞[×∂Ω).

Using that for ÜU ∈W 1,∞((0,+∞);L∞(∂Ω)) we have locally G ·∇U := ∂τÜU ◦Φ−1 ∈ L∞(Ω) with
U = ÜU ◦ Φ−1 gives the reverse implication.

1.3 Generalization. Limits of the method

Our method is able to manage situations where G · ν vanishes but not changes sign. It should
adapt to the case of an open set Ω and a field G such that an analogous to proposition 3.4
holds, that is when all the trajectories remain in Ω for all time and hit the boundary. In general
situations, this may be not the case since : 1) trajectories can never hit the boundary and 2)
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trajectories can enter and leave Ω. Then we don’t have anymore Ω ']0,∞[×∂Ω. To deal with
these issues, we should introduce, as done in Bardos [Bar70]

∂Ω− := {σ ∈ ∂Ω; G · ν < 0}, ∂Ω+ := {σ ∈ ∂Ω; G · ν > 0}, ∂Ω0 := {σ ∈ ∂Ω; G · ν = 0}.

Using then the entrance time defined in (3) and the convention inf(∅) = +∞ we could define
the set

Ω− = {X ∈ Ω; τ(X) <∞ and σ(X) ∈ ∂Ω−}

and could try to apply our approach to this set. The first problem arising is that Φ−1(Ω−) is
not anymore a rectangle. Introducing the total time spent in Ω by

T (σ) = inf {τ > 0; Φτ (σ) /∈ Ω} .

We have
Φ−1(Ω−) = {(τ, σ) ∈ [0,∞[×∂Ω−; 0 ≤ τ ≤ T (σ)}

and everything depends on the shape of this set. If T (σ) ≥ T , ∀σ ∈ ∂Ω−, then [0, T ]× ∂Ω− ⊂
Φ−1(Ω−) and a similar proposition as proposition 3.4 could be established for Ω− locally near
the boundary, which would then be sufficient to have a trace theorem. The same approach
can be done for the set Ω+ of trajectories which go out of Ω by ∂Ω+. The set of trajectories
remaining in Ω for ever will never hit the boundary and are thus not to be considered and as
proved in Bardos [Bar70] using the Sard theorem, the set of trajectories hitting ∂Ω0 has measure
zero in Ω.
The main difficulty arises thus when the life time T (σ) is not bounded from below which appears
if G · ν changes sign on ∂Ω (see section 3.3.2 for more details on this case).

2 Density of C1(Ω) of W p
div(Ω)

Two classical approaches can be used to address this problem : by duality or by direct regulariza-
tion. In this section, we will describe what gives our approach concerning the problem and then
we will describe how to treat the problem by the two approaches aforementioned. The proofs are
mainly inspired from Brezis [Bre83] or Adams [AF03] in the case of classical Sobolev spaces for
the regularization approach and from Girault-Raviart [GR79] and Boyer-Fabrie [BF06] for the
duality one. We will not deal with the density of C1(Ω) in W p

div(Ω), that is of regular functions
but not up to the boundary (Meyers Serrin theorem in the case of classical Sobolev spaces, see
[AF03]).

2.1 Conjugation approach

In the case of (1), for p = 1 the conjugation theorem should allow to transport the density
result known for W 1,1(]0,+∞[ ; L1(∂Ω)) into W p

div(Ω). However it doesn’t achieve this aim for
the following reasons : the regularity of the change of variable depends on the regularity of
the boundary of Ω (Lipschitz in the case of a square) and thus we can’t expect density of C1

functions. Yet, we could be satisfied with the density of Lipschitz functions. This is neither
achieved because the singularity of the field in the upper corner implies that Φ is only locally
bilipschitz. The only theorem which is straightforward from the theorem 3.9 is the following.
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Theorem 3.12. Let Ω and G be given by (1), and p = 1. The set Liploc(Ω
∗) is dense in

W p
div(Ω), where Liploc(Ω

∗) is the set of locally Lipschitz functions of Ω∗ = Ω \ (b, b).

2.2 Regularization approach

A classical technique to prove the result (as in Brezis [Bre83] or Adams [AF03] for instance) is
to argue by regularization. Let

ρ ∈ C∞c (Rd), ρ ≥ 0,
Z
Rd
ρ(x)dx = 1, suppρ ⊂ B(0, 1), ρε(x) = 1

εd
ρ(x
ε

) ∈ C∞c (Rd)

be a mollifier (notice that suppρε ⊂ B(0, ε)). The problem is that the derivation along G doesn’t
behave so well with convolution than in the case of standard Sobolev spaces since we have

G · ∇(v ∗ ρε) 6= (G · ∇v) ∗ ρε.

Moreover, the convolution written don’t have a sense since the involved functions are defined
on Rd. To deal with these issue we will use a commutation lemma (see also [DL89] or [Per07],
p.157) as well as adapted definitions of the convolution. We follow the standard way which
begins by proving the density on each compact subset of Ω, without assuming any regularity on
the boundary of the domain.

Proposition 3.13. Let Ω be an open set in Rd and v ∈ W p
div(Ω). There exists a sequence

vn ∈ C1
c (Ω) such that for all open set ω ⊂⊂ Ω12 :

vn −→ v, in W p
div(ω).

Proof. Let v ∈ W p
div(Ω), ω ⊂⊂, α ∈ C1

c (Ω) a truncature function such that α = 1 on ω and
u = αv. We define the convolution on Ω of u and ρε by, for ε small enough (such that supp(α)+
B(0, ε) ⊂ Ω)

uε(x) = u ∗Ω ρε(x) :=
Z

Ω
u(y)ρε(x− y)dy =

Z
B(x,ε)

u(y)ρε(x− y), ∀x ∈ ω.

Remark that this convolution shares the same property of the usual one and in particular we
have

u ∗Ω ρε
Lp(ω)−−−→ u = v, in Lp(ω)

(G · ∇u) ∗Ω ρε
Lp(ω)−−−→ G · ∇u = G · ∇v, in Lp(ω).

As noticed above we don’t have G · ∇(v ∗ ρε) = (G · ∇v) ∗ ρε but the following commutation
lemma allows to conclude.

Lemma 3.14. Let G ∈ C1(Ω) and u ∈W p
div(Ω). Then

Rε = G · ∇(u ∗Ω ρε)− (G · ∇u) ∗Ω ρε
Lp(ω)−−−→ 0.

12This notation means : there exists a compact set K such that ω ⊂ K ⊂ Ω
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Remark 3.15. This lemma is also true under weaker assumptions on the regularity of G, for
example G ∈W 1,1(Ω)d and is in the heart of the theory of renormalized solutions for the transport
equation (see [DL89] and [Per07], p. 157)

Proof. Let x ∈ ω. One one hand we have

G · ∇(u ∗Ω ρε) = G(x) · ∇
Z

Ω
u(y)ρε(x− y)dy =

Z
Ω
u(y)G(x)

εd+1 · ∇ρ
�
x− y
ε

�
dy

whereas on the other hand, noticing that for x ∈ ω, y 7→ ρε(x − y) ∈ C1
c (Ω) and using the

distribution definition of G · ∇u we have

(G · ∇u) ∗Ω ρε(x) =
Z

Ω
G · ∇u(y)ρε(x− y)dy = −

Z
Ω
u(y)divy

�
G(y) 1

εd
ρ
�
x− y
ε

��
dy

=
Z

Ω
u(y)G(y)

εd+1 · ∇ρ
�
x− y
ε

�
dy −

Z
Ω
u(y)div(G(y))ρε(x− y)dy.

Hence we have

Rε(x) = R1
ε(x) +R2

ε(x) =
Z

Ω
u(y)G(x)−G(y)

εd+1 · ∇ρ
�
x− y
ε

�
dy + (udiv(G)) ∗Ω ρε(x)

The term R2
ε tends to u(x)div(G(x)) in Lp(Ω). For the first term, we do the change of variables

z = x−y
ε to get

Rε1(x) = −
Z
|z|≤1

u(x− εz)G(x)−G(x− εz)
ε

· ∇ρ (z) dz.

Now, since

u(x− εz) Lp(ω×B(0,1))−−−−−−−−−→
ε→0

u(x)

G(x)−G(x− εz)
ε

· ∇ρ (z) L∞(ω×B(0,1))−−−−−−−−−→
ε→0

DG(x) · z

we obtain, since ω is bounded that

Rε1(x) Lp(ω)−−−→ −u(x)
Z
|z|≤1

DG(x) · z · ∇ρ(z)dz = −u(x)div(G(x))

where the last identity is obtained after integration by part. This yields the result.

We want now to prove the density of regular functions up to the boundary. This can be
done only under regularity hypothesis on the open set Ω that we need to precise. Brezis’ approach
for classical Sobolev spaces consists in defining an extension operator : W 1,p(Ω)→W 1,p(Rd) and
then regularize. This seems more delicate to do in our case in particular if the tangential part
of the field G vanishes on the boundary. However, the approach of Adams [AF03] does extend
word for word to our case, with a regularity condition for Ω given by the segment condition.
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Definition 3.16 (Segment condition, Adams [AF03] p.68). We say that a domain Ω satisfies
the segment condition if every x ∈ ∂Ω has a neighborhood Ux and a nonzero vector yx such that
if z ∈ Ω ∩ Ux, then z + tyx ∈ Ω for 0 < t < 1.

Theorem 3.17. Let Ω be an open set satisfying the segment condition. Then the set C1(Ω) :=
{φ|Ω; φ ∈ C1(Rd)} is dense in W p

div(Ω) for 1 ≤ p <∞.

Proof. The proof of Adams [AF03] p.68-70 works identical in our case, using the proposition
3.13. We don’t give details here, but rather the main arguments. Let u ∈ W p

div(Ω). First
use a truncation function to be reduced to the case with boundary support. Then introduce
a partition of unity {ψj} associated with a finite covering extracted from the covering of the
support of u by the open sets Ux given by the segment condition, plus an "interior" open set.
Then, approximate uj = ψju by a function uj,t(x) = uj(x + ty) with y given by the segment
condition. This last function gets out of Ω and can be approximated thanks to the proposition
3.13. The only thing that remains to be checked is that uj,t

W p
div(Ω)
−−−−−→ uj as t → 0 which works

the same in our case than in the classical Sobolev one.

2.3 Duality approach

Definition 3.18. Let W p
div,0(Ω) be the completion for the norm of W p

div(Ω) of regular functions
with bounded support in Ω

W p
div,0(Ω) = C1

c (Ω)
||||
W
p
div .

We will need the following proposition.

Proposition 3.19. Let Ω be an open set satisfying the segment condition and u ∈ Lp(Ω) such
that there exists v ∈ Lp(Ω) such thatZ

Ω
udiv(Gφ) +

Z
Ω
vφ = 0, ∀φ ∈ C1(Ω). (8)

Then u ∈W p
div,0(Ω).

Proof. First notice that u ∈W p
div(Ω) and v = G ·∇u, by taking φ ∈ C1

c (Ω) in (8). The argument
of the proof is to remark that u, defined as the extension by zero outside Ω is in W p

div(Ω1) where
Ω1 is such that Ω ⊂⊂ Ω1 and G ∈ C1(Ω1). This implies that u ∈ W p

div,0(Ω), using the same
proof as Adams, p. 159, that we don’t detail here and which works the same way as the proof
of theorem 3.17, only using a function uj,t(x) = uj(x − ty) in order to push the support of uj
strictly inside Ω and then using the following lemma (same proof as Brezis, p. 171) to conclude.

Lemma 3.20. Let u ∈W p
div(Ω) with suppu ⊂⊂ Ω. Then u ∈W p

div,0(Ω).

This proposition allows us to prove the theorem, by a density argument. The idea of the
proof is inspired of Girault-Raviart [GR79] and Boyer-Fabrie [BF06], p. 127.
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Theorem 3.21. Let 1 ≤ p < ∞ and Ω satisfying the segment property. The space C1(Ω) is
dense in W p

div(Ω).

Proof. Let L be an element of the dual of W p
div(Ω) vanishing on C1(Ω). We will show that L

is zero which will imply the result by a corollary of the Hahn-Banach theorem. We need the
following lemma for the representation of linear forms on W p

div, whose proof can be done in the
same way than the proposition VIII.13 of Brezis [Bre83], p. 135.

Lemma 3.22. Let L be a continuous linear form on W p
div. There exist f ∈ Lp′ and g ∈ Lp′

(with p′ = p
p−1 such that

L(u) =
Z

Ω
fu+

Z
Ω
g div(Gu), ∀u ∈W p

div.

Thus we have f, g ∈ Lp′ such that

L(u) =
Z

Ω
fu+

Z
Ω
g div(Gu) = 0, ∀u ∈ C1(Ω).

This implies that g ∈ W p′

div and that f = G · ∇g. Moreover, the proposition 3.19 implies that

g ∈ W p
div,0 and thus that there exists a sequence gn ∈ C1

c (Ω) such that gn
||·||

W
p′
div−−−−−→ 0. Hence we

have, by definition of u ∈W p
divZ

Ω
gndiv(Gu) +

Z
Ω
G · ∇gnu = 0, ∀u ∈W p

div

and passing to the limit we obtainZ
Ω
g div(Gu) +

Z
Ω
G · ∇gu = 0, ∀u ∈W p

div

which concludes.

3 Traces

We address now the second problem which was our main objective in the study of W p
div(Ω) for

our model, since it is necessary to define the domain of the operator as well as for proving its
dissipativity. We seek now to define a trace for a function in W p

div(Ω), which is in principle
defined almost everywhere in Ω and thus not defined on the d − 1-dimensional boundary of Ω.
Let us first briefly recall what is the approach used to prove trace results in the case of W 1,1(Ω)
(which extends to the case W 1,p(Ω) but we explain here with p = 1 for keeping simplicity). In
[Bre83], p.196 it is done first for the case of Rd+ = {x ∈ Rd; xd > 0} by writing, first for a regular
function

φ(σ, 0) = −
Z ∞

0
∂τφ(σ, s)ds

thus Z
Rd−1

|φ(σ, 0)|dσ ≤
Z
Rd+
|∂τφ(σ, s)|dsdσ
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which gives the continuity of the trace operator γ : C1(Ω) ⊂ W 1,1(Rd+) → L1(R). Then use the
density of C1(Ω) to extend this operator. For a regular open set (see [AF03, Tar07]) we use a
partition of unity and the change of maps as new coordinates to be reduced to the case of Rd+.

3.1 Conjugation approach for our model

In the case of assumptions (1) and p = 1 or ∞, thanks to the theorem 3.9, we can transport
the theory of vector-valued Sobolev spaces (for which we refer to [Dro01b]) to W p

div(Ω). We first
recall the following proposition.

Proposition 3.23 (Properties of W 1,1([0,∞[;L1(∂Ω∗))). The following stands

1. W 1,1([0,∞[;L1(∂Ω∗)) ↪→ C([0,∞);L1(∂Ω∗))

2. Integration by part formula : for all function u ∈ W 1,1([0,∞[;L1(∂Ω∗)) and all v ∈
W 1,∞([0,∞[;L∞(∂Ω∗)), for almost every σ ∈ ∂ΩZ ∞

0
u(τ, σ)∂τv(τ, σ)dτ +

Z ∞
0

∂τu(τ, σ)v(τ, σ)dt = −u(0, σ)v(0, σ).

As a direct corollary using theorem 3.9, we get

Proposition 3.24 (Trace and integration by part). Let p = 1 or ∞ and V ∈W p
div(Ω). We call

trace of V the following function

γ(V )(σ) = (V ◦ Φ)(0, σ), ∀σ ∈ ∂Ω

We have γ(V )G · ν ∈ Lp(∂Ω) and there exists C > 0 such that

||γ(V )G · ν||Lp(∂Ω) ≤ C||V ||W p
div(Ω), ∀V ∈W p

div(Ω)

Moreover, if V ∈W p
div(Ω) and U ∈W∞div(Ω). ThenZ Z

Ω
Udiv(GV ) +

Z Z
Ω
V G · ∇U = −

Z
∂Ω
γ(V )γ(U)G · ν

Remark 3.25. Notice that within our framework of the conjugation theorem, we didn’t need to
prove the density of C1(Ω) in W p

div(Ω) in order to construct the traces and have the integration
by part formula.

3.2 Extensions to more general situations

If G · ν doesn’t vanish on ∂Ω.

Assume that Ω is regular and that G · ν doesn’t vanish on ∂Ω (see figure 2), then there should
be no obstacle to use the classical approach : reduce the problem to the case of Rd+ and then
straighten the trajectories of the field by using the change of variables x = Φτ (σ) which should
be at least Lipschitz in that case.
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Figure 2: Non-vanishing field on the boundary

If G · ν vanishes

Then two things : by following the characteristics we can’t expect defining a trace where the
field vanishes. To the best, we can hope to have a trace living in Lp(∂Ω; |G · ν|dσ), for example
by using a change of variables and a theorem similar to the theorem 3.9. First, away from
points where G · ν vanishes we can do as previously and define a trace in L1

loc(∂Ω∗) where
∂Ω∗ := ∂Ω \ {points where G · ν vanishes}. But the method fails in points where G · ν vanishes
because Φ is not anymore bilipschitz, see the Figure 3 and the formula (4).

Figure 3: The normal component of the field vanishes.

Actually we have to be even more careful. What has to be taken into account if the life time
in Ω, defined by

T (σ) = inf {τ > 0; Φτ (σ) /∈ Ω} .

If the lifetime is uniformly bounded from below

If T (σ) ≥ T > 0 for almost every σ ∈ ∂Ω, then a similar conjugation theorem as theorem 3.9
should work to define a trace on

∂Ω− := {σ ∈ ∂Ω; G · ν(σ) < 0} and ∂Ω+ := {σ ∈ ∂Ω; G · ν(σ) > 0}.

Indeed, for ∂Ω− for example, we have Φ−1(Ω) ⊃]0, T [×∂Ω− and thus for V ∈W 1
div(Ω) we would

have ÜV ∈ W 1,1(]0, T [×∂Ω−) which would give a trace γ−V ∈ L1(∂Ω−;G · ν). The same would
work for ∂Ω+ by considering −G instead of G.
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If the lifetime is not uniformly bounded from below

We are in the situation where G · ν changes sign on ∂Ω, see Figure 4.

Figure 4: G · ν changes sign

Things complicate : the trace L1
loc(∂Ω−) ∩ L1

loc(∂Ω+) is not in L1(∂Ω;G · ν). Bardos gives
the following counter example in [Bar70], p.206 (see Figure 5) :

Ω =]− 1, 1[×]0, 1[, G(x1, x2) = (−1, x1), u(x1, x2) = (x2 + x2
1

2 )−α

Figure 5: Counter example from Bardos.
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Then

Z 1

−1
dx1

Z 1

0

dx2

(x2 + x2
1

2 )α
= 1
−α+ 1

Z 1

−1

24 1
(1 + x2

1
2 )α−1

− 2α−1 1
x

2(α−1)
1

35 dx1

thus, u ∈ L1(Ω)⇔ 2(α− 1) < 1⇔ α < 3/2 and to integrate in x2 we supposed α 6= 1. Thus we
take

1 < α < 3/2

On the other hand

G · ∇u = −x1(x2 + x2
1

2 )−α−1 + x1(x2 + x2
1

2 )−α−1 = 0

thus u is constant along the trajectories and u ∈ W 1
div(Ω). But u|x2=0 = 2α

x2α
1

is in L1(] − 1, 1[)
only if α < 1

2 . Thus, u /∈ L
1(∂Ω) if 1 < α < 3/2. And even more : by noticing that |G ·ν| = |x1|,

we have u|x2 = 0 ∈ L1(∂Ω;G · ν)⇔ α < 1. Thus

u|∂Ω /∈ L1(∂Ω+;G · ν), u|∂Ω /∈ L1(∂Ω−;G · ν).

The appropriate trace space is

L1(∂Ω;T1(σ)G · νdσ)

where T1(σ) = min(1, T (σ)). The demonstration can be found in [Ces84, Ces85]. In the context
of low regularity of the field, Boyer [Boy05] also proves the result.

Remark 3.26. In the case of our model (assumptions (1)), we have T (σ) = +∞ for all σ ∈ ∂Ω
and thus L1(∂Ω;T1(σ)G · νdσ) = L1(∂Ω;G · νdσ), consistently with the proposition 3.24.

3.3 Duality approach. Normal trace in H−1/2(Ω).

The duality approach furnishes an alternative way to define a trace, via the integration by part
formula. For simplicity, we explain the method in the case p = 2, that we take from Boyer-
Fabrie [BF06], p. 128. We denote by γ0 the trace operator on H1(Ω) and recall that the image
of H1(Ω) by this operator is the space H1/2(∂Ω) on which the norm can be defined by

||φ||H1/2 = inf{||φ||H1 ; γ0φ = φ}.

We denote by H−1/2(∂Ω) the dual space of H1/2(∂Ω).The proposition is the following

Proposition 3.27. Let Ω be a Lipschitz open set. The application γν which associates to
u ∈ C1(Ω) the trace uG · ν|∂Ω extends to a continuous linear application from W 2

div(Ω) into
H−1/2(∂Ω) and we haveZ

Ω
div(Gv)w +

Z
Ω
v G · ∇w =< γνv, γ0w >H−1/2(∂Ω), H1/2(∂Ω), ∀ v ∈W 2

div(Ω), ∀w ∈ H1(Ω).
(9)
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Proof. There exists a continuous operator R : H1/2(∂Ω)→ H1(∂Ω) such that γ0Rφ = φ, ∀φ ∈
H1/2(∂Ω). For v ∈W 2

div(Ω) we define

Lv : H1/2(∂Ω) −→ R
φ 7−→

R
Ω div(vG)Rφ+

R
Ω vG · ∇Rφ

.

Now

|Lv(φ)| ≤ ||Rφ||L2 ||div(Gv)||L2 + ||G||L∞ ||∇Rφ||L2 ||v||L2

≤ C||v||W 2
div
||φ||H1/2(∂Ω)

which shows that for each v, Lv is continuous and that v 7→ Lv is also continuous. We denote
Lv by γνv and to prove (9) we argue by density : for u ∈ C1(Ω), the classical integration by part
formula valid in H1(Ω) tells us that, for w ∈ H1(Ω)Z

Ω
div(Gu)w +

Z
Ω
uG · ∇w =

Z
∂Ω
uγ0wG · ν =

Z
Ω

div(uG)Rγ0w +
Z

Ω
uG · ∇Rγ0w

=< γνu, γ0w >H−1/2(∂Ω) .

this identity being true for every u ∈ C1(Ω), the density of this space in W 2
div(Ω) established in

the theorem 3.21 allows to conclude that it is true for all u ∈W 2
div(Ω) and ends the proof.

Remark 3.28.
• This proof uses the density of C1(Ω) in W 2

div(Ω), which was not the case of the conjugation
approach.
• The normal trace constructed lives in H−1/2(∂Ω) ⊃ L2(∂Ω) whereas it is known that the trace
is more regular, for example in L2(∂Ω) under some conditions on G (namely, that the life time
in Ω is bounded from below).
• The above proposition should extend to the case 1 ≤ p <∞.

4 Calculus with functions in W p
div(Ω)

4.1 A few notions on absolute continuity

We give now a few notions about absolute continuity which will be useful in the following
subsection. Absolute continuity is a necessary and sufficient condition for an almost everywhere
differentiable function in the classical sense to have its derivative coinciding with its derivative in
the distribution sense (the indicator function of R+ gives a counter example). It also character-
izes the function with derivative in L1 which are integral of this derivative and permits to avoid
the devil’s staircase type pathologies (this function is continuous on [0, 1], almost everywhere
derivable with null derivative and takes values 0 in 0 and to 1 in 1).

Definition 3.29 (Absolute continuity). Let I be a real interval, X a Banach space and f : I →
X. The three following definitions are equivalent and if f satisfies one of them one says that f
is absolutely continuous.

(1) ∃ g ∈ L1(I ; X) such that

f(x)− f(y) =
Z x

y
g(t)dt ∀x, y ∈ I
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(2) ∀ ε > 0, ∃ δ > 0 such that for all sequence (an, bn) ∈ I2,X
|bn − an| < δ ⇒

X
||f(bn)− f(an)|| < ε

(3) For a real-valued function f : if A is a borelian set with λ(A) = 0, then λ(f(A)) = 0,
where λ stands for the Lebesgue measure.

The useful proposition for our purpose is the following :

Proposition 3.30. Let f : I → X be an absolutely continuous function such that f ∈ L1(I ; X),
then

f ∈W 1,1(I;X)

Remark 3.31. The result of this proposition could almost seem trivial since from the first defi-
nition above, f has a classical derivative almost everywhere, which is in L1. What is important
here is that the a.e. derivative and the distribution one are equal (which is not a priori obvious,
think again to the Heaviside function).

Proof. Let f satisfying the hypotheses.
• First we have f ∈ L1(I ; X)
• From the above definition of absolute continuity, since almost every point of an L1 function

are Lebesgue points, f is differentiable almost everywhere , with f ′ = g ∈ L1(I ; X). It remains
to check that the distributional derivative of f coincides with g. Let thus I = (a, b), φ ∈ C∞c (I),
[a0, b0] the support of φ and x0 such that a < x0 < a0. We have, using the Fubini theorem at
the second line :Z b

a
f(x)φ′(x) dx =

Z b

x0
f(x)φ′(x) dx =

Z b

x0
f(x0)φ′(x) dx+

Z b

x0
(
Z x

x0
g(t) dt)φ′(x) dx

=
Z b

x0
g(t)

Z b

t
φ′(x) dxdt

= −
Z b

x0
g(t)φ(t) dt = −

Z b

a
g(t)φ(t) dt

and hence the result.

4.2 Composition of a W 1
div(Ω) function with a Lipschitz function

We place ourselves in the context of our model (assumptions (1)) and show now a chain rule
result for the composition of a Lipschitz function H with a function V ∈ W 1

div(Ω) by using our
conjugation approach.

Proposition 3.32.
(i) Let V ∈W 1

div(Ω) and U ∈W∞div(Ω). Then UV ∈W 1
div(Ω) and

div(GV U) = V (G · ∇U) + Udiv(GV )

(ii) Let H : R→ R a Lipschitz function and V ∈W 1
div(Ω). Then

H(V ) ∈Wdiv(Ω)
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and, almost everywhere

div(GH(V )) = H ′(V )G · ∇V +H(V )div(V )

Remark 3.33. In particular for V ∈W 1
div(Ω), |V | ∈W 1

div(Ω) and, almost everywhere

G · ∇|V | = sgn(V)G · ∇V

with sgn(V) = 1V>0 − 1V<0.

Proof. Using the conjugation theorem 3.9, (i) is a consequence of the theorem on the product
of a function in W 1,1(]0,+∞[ ; L1(∂Ω)) and a function in W 1,∞

τ (]0,+∞[×∂Ω) (see [DD07], p.66
adapting the proof to the case of Banach-valued Sobolev spaces).
(ii) Let H and V satisfying the hypothesis. First remark that H being Lipschitz and Ω bounded,
the function H(V ) is in L1(Ω). Now define V (τ, σ) = V (Φτ (σ)). We will show that H(V )|JΦ| ∈
W 1,1(]0,+∞[ ; L1(∂Ω)), in order to apply theorem 3.9. Following remark 3.10, the function V
is in W 1,1

loc ([0,∞[ ; L1
loc(∂Ω∗)). Thus it is absolutely continuous in τ and bounded and H being

Lipschitz yieldsH(V ) absolutely continuous (from the second point of the definition 3.29). Hence
H(V ) ∈W 1,1

loc ([0,∞[ ; L1
loc(∂Ω∗)). We conclude the proof by using that

∂τ (H(V )|JΦ|) = ∂τ (H(V ))|JΦ|+ div(G)H(V )|JΦ|

= H ′(V )∂τÜV |JΦ|+ div(G)H(V )|JΦ| ∈ L1(]0,∞[×∂Ω)

which requires the following proposition (see also [SV69]) to have ∂τ (H(V )) = H ′(V )∂τV .

Proposition 3.34. Let H be a Lipschitz function and u ∈W 1,1([0, T ] ; L1(∂Ω)). Then H ◦ u ∈
W 1,1([0, T ] ; L1(∂Ω)), and

∂τ (H ◦ u)(τ, σ) = H ′(u(τ, σ))∂τu(τ, σ), a.e. τ ∈ [0, T ], σ ∈ ∂Ω.

Proof. Using absolute continuity, we have that H(u) ∈ W 1,1([0, T ] ; L1(∂Ω)). From the def-
inition of Banach-valued Sobolev spaces, we have that for almost every σ ∈ ∂Ω, u(·, σ) ∈
W 1,1([0, T ]). We require now the following lemma.

Lemma 3.35. Let u be an absolutely continuous real function defined on an interval I and A
a borelian set. Then

λ(u(A)) = 0⇔ u′ = 0, a.e. inA

Remark 3.36. A corollary of this result is that if u ∈W 1,1, then u′ = 0 on its level sets.

Proof.
⇒ Let B = {x ∈ A; |u′(x)| > 0} and Bn = {x ∈ B : |u(y) − u(x)| ≥ |x−y|

n for |x − y| < 1
n}.

B = ∪nBn. Let E = I ∩ Bn with I an interval with length less than 1/n. Since λ(u(A)) = 0,
for all ε there exists a sequence of intervals (Ik) covering u(A) and such that

P
k λ(Ik) ≤ ε. Let

Ek = u−1(Ik) ∩ E, ∪Ek covers E. Hence

λ(E) ≤
X
k

λ(Ek) ≤
X
k

supx,y∈Ek |x− y| ≤
X
k

nsupx,y∈Ek |u(x)− u(y)|.
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But supx,y∈Ek |u(x)− u(y)| ≤ λ(Ik), since u(Ek) ⊂ Ik. Thus

λ(E) ≤ nε.

As n is fixed and ε arbitrary, we deduce that λ(E) = 0, thus λ(Bn) = 0 and λ(B) = 0.
⇐ : Let A such that u′ = 0, a.e. in A. We define Ak = {x ∈ A; 0 < |u′(x)| ≤ k}. We have
λ(u(A)) ≤

P
k λ(u(Ak)). As the measure of Ak is the infimum of the sums of lengths of intervals

covering Ak, and since on each interval there exists α, β such that u(α, β) =
R β
α u
′(x)dx ≤,

by covering Ak by an union of intervals, we deduce that λ(u(Ak)) ≤
R
∪iui(αi,βi) u

′(x)dx. As
u′ is in L1, by continuity of the integral with respect to the measure, we obtain that for all ε,R
∪i(αi,βi) u

′(x)dx =
R
Ak
u′(x)dx+ε ≤ kλ(Ak)+ε. We deduce λ(u(Ak)) ≤ kλ(Ak). By hypothesis,

λ(Ak) = 0 for all k, hence the result.

Let Z = {z ∈ R; H is not derivable} and S = u−1(Z) ⊂ [0, T ]× ∂Ω.
• In [0, T ]× ∂Ω \S, for almost every σ ∈ ∂Ω, τ 7→ u(τ, σ) is derivable almost everywhere and

the usual chain rule can be applied giving the required formula.
• In S, since from the definition of Banach-valued Sobolev spaces, we have that for almost

every σ, u(·, σ) ∈ W 1,1([0, T ]). Denoting Sτ = {τ ∈ [0, T ]; ∃σ ∈ ∂Ω s.t. (τ, σ) ∈ S}, u(Sτ , σ) ⊂
u(S) = Z and λ(u(Sτ , σ)) = 0. Hence from the lemma 3.35, ∂τu(τ, σ) = 0 for almost every
(τ, σ) ∈ S. On the other hand we can apply the same argument to H ◦ u since λ(H(u(S))) =
λ(H(Z)) = 0 fromH being absolutely continuous and λ(Z) = 0. We obtain thus 0 = ∂τ (H◦u) =
H ′(u)∂τu almost everywhere in S which ends the proof.

Remark 3.37. The proof of the theorem should extend to the case of a locally Lipschitz function
H such that H(V ) ∈ L1(Ω) and H ′(V ) ∈ L∞(Ω).
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Chapter 4

Autonomous case. Model without
treatment

In this chapter we will focus on the mathematical study of the model established in the
modeling part for the evolution of the metastatic population represented by its density ρ, in the
case without treatment which corresponds to an autonomous growth rate.

93
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The problem is the following partial differential equation endowed with a nonlocal boundary
condition :

8<:
∂tρ(t,X) + div(ρ(t,X)G(X)) = 0 in Q
−G · ν(σ)ρ(t, σ) = N(σ)

R
Ω β(X)ρ(t,X)dX + f(t, σ) in Σ

ρ(0, X) = ρ0(X) in Ω.
(1)

with the following definitions

G(X) = G(x, θ) =
�

ax ln
�
θ
x

�
cx− dx2/3θ

�
, b =

�
c
d

� 3
2 , Ω =]1, b[×]1, b[, Ω∗ = Ω \ (b, b)

Q =]0,+∞[×Ω, Σ =]0,+∞[×∂Ω ∂Ω∗ = ∂Ω \ (b, b)

and the following hypotheses on the data

β ∈ L∞(Ω), β ≥ 0 a.e., f ∈ L1(]0,+∞[×∂Ω)

N ∈ Lip(∂Ω) with compact support in ∂Ω∗, N ≥ 0,
R
∂ ΩN = 1.

(2)

This type of problem is often called renewal equations and can be classified as part of the so-
called structured population equations arising in mathematical biology which have the following
general expression8<:

∂tρ+ div(F (t,X, ρ)) = −µ(t,X, ρ) Q
−G · νρ(t, σ) = B(t, σ, ρ) σ ∈ ∂Ω s.t. G · ν(σ) < 0
ρ(0, X) = ρ0(X) Ω

. (3)

The introduction of such equations in the linear case is due to Sharpe and Lotka in 1911 [SL11]
and McKendrick in 1926 [McK26]. Three major approaches can be distinguished in attacking
theoretically this type of problems :

1. By transforming the problem into an integral equation (see the book of M. Ianelli [Ian95])

2. By typical partial differential equations tools inherited from the kinetic theory like entropy
methods (see the book of B. Perthame [Per07] and [MMP05])

3. By using semigroup techniques (see the book of G. Webb [Web85] and also Diekmann and
Metz [MD86]).

Although these equations have been widely studied both in the linear and nonlinear cases (see
[PT08] for a survey in the nonlinear case), a complete general theory has not been achieved
yet, even in the linear case. Indeed, most of the models have the so called structuring variable
X being one-dimensional and often representing the age, thus evolving with F (t, a, ρ) = ρ. A
difficulty on the regularity of solutions is introduced when the velocity is non-constant and
vanishes (see [BBHV09, DGL09]). Dealing with situations in dimensions higher than one is not
a common thing.

In our case, the model is a linear equation, with

F (t,X, ρ) = G(X)ρ
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structured in two variables : X = (x, θ) with x the size of metastasis and θ the so-called “vascular
capacity”. The velocity field G vanishes on the boundary of the domain, which is a square.
Moreover, we have an additional source term in the boundary condition of the equation. As far
as we now, the mathematical analysis for multi-dimensional models is done only in situations
where one of the structured variables is the age and thus with the first component of G being
constant (see for instance [TZ88, AC03, Dou07]). In the context of the follicular control during
the ovarian process, a nonlinear model structured in dimension two with both components of
the velocity field G being non-constant is introduced in [EMSC05] but no mathematical analysis
is performed due to the complexity of the model.

In the present chapter, we address the problem of the mathematical analysis of our model,
namely : existence, uniqueness, regularity and asymptotic behavior of the solutions. Following
the method used in [BK89] and [BBHV09], we use a semigroup approach to deal with existence
and regularity of the solutions. The main difficulties we have to deal with in this two dimensional
problem come from the singularity of the velocity field, as well as the presence of a time-
dependent source term in the boundary condition. During the study, we take a particular
attention on the problems of regularity of the solutions and approximation of weak solutions by
regular ones, which led us to study the space

Wdiv(Ω) =
¦
V ∈ L1(Ω); div(GV ) ∈ L1(Ω)

©
in the previous chapter (chapter 3). The chapter is organized as follows : in the section 4.1 we
present the definition of weak solutions, introduce the semigroup formulation of the problem
and establish equivalence between weak and mild solutions. The section 4.2 is devoted to the
study of the properties of the underlying operator and in the section 4.3 we apply our study to
the evolution equation from our model.

1 Formalization of the problem

We start by precising the notion of solution that we use for functions in C([0,+∞[;L1(Ω)).

Definition 4.1 (Weak solution). Let ρ0 ∈ L1(Ω) and f ∈ L1(]0,∞[×∂Ω). We call weak solution
of the problem (1) any function ρ ∈ C([0,∞[;L1(Ω)) which verifies : for every T > 0 and every
function φ ∈ C1

c ([0, T ]× Ω∗)Z T

0

Z
Ω
ρ[∂tφ+G · ∇φ]dtdxdθ +

Z
Ω
ρ0(x, θ)φ(0, x, θ)dxdθ (4)

−
Z

Ω
ρ(T, x, θ)φ(T, x, θ)dxdθ −

Z T

0

Z
∂Ω
N(σ)

�Z
Ω
β(x, θ)ρ(t, x, θ)dxdθ

�
φ(t, σ)dσdt = 0

Analyzing the equation (1) indicates that the solution is the sum of two terms : an homoge-
neous one associated to the initial condition, which solves the equation without the source term
f (which we will refer to as the homogeneous equation)8<:

∂tρ+ div(Gρ) = 0 ∀ (t, x, θ) ∈ Q
−G · νρ(t, σ) = N(σ)

R
Ω βρ(t)dxdθ ∀ (t, σ) ∈ Σ

ρ(0, x, θ) = ρ0(x, θ) ∀ (x, θ) ∈ Ω
(5)
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and a non-homogeneous term associated to the contribution of the source term f(t, σ) and
solution to the equation (which will be refered as the non-homogeneous equation)8<:

∂tρ+ div(Gρ) = 0 ∀ (t, x, θ) ∈ Q
−G · νρ(t, σ) = N(σ)

R
Ω βρ(t)dxdθ + f(t, σ) ∀ (t, σ) ∈ Σ

ρ(0, x, θ) = 0 ∀ (x, θ) ∈ Ω
(6)

For existence and uniqueness of solutions, we will deal with the homogeneous problem using the
semigroup theory and with the non-homogeneous one via a fixed point argument.

We reformulate (5) as a Cauchy problem¨
∂tρ(t) = Aρ(t)
ρ(0) = ρ0 . (7)

To do so, we use the space :

Wdiv(Ω) = {V ∈ L1(Ω)| div(GV ) ∈ L1(Ω)},

whose study has been performed in the chapter 3 and the following operator

A : D(A) ⊂ L1(Ω) → L1(Ω)
V 7→ −div(GV ) ,

where

D(A) = {V ∈Wdiv(Ω); −G.ν · γ(V )(σ) = N(σ)
Z

Ω
β(x, θ)V (x, θ)dxdθ, ∀σ ∈ ∂Ω}. (8)

where γ(V ) is the trace application well defined for functions in Wdiv(Ω) from proposition 3.24.

There are three definitions of solutions : the classical (or regular) solutions, the mild solutions
and the distributional solutions (definition 4.1 with the source term f = 0), the second and third
ones being two a priori different types of weak solutions. We give the definition of classical and
mild solutions from [EN00] II.6, p.145 and will prove in the section 4.3 that they are the same
ones (proposition 4.20).

Definition 4.2 (Classical solution). A function ρ : [0,+∞[→ L1(Ω) is called a classical solution
of (7) if

(i) ρ ∈ C1([0,+∞[;L1(Ω))

(ii) ρ(t) ∈ D(A) for all t ≥ 0

(iii) ρ solves (7)

Remark 4.3. • The boundary condition is integrated in the fact that ρ(t) ∈ D(A)
• Hypothesis (i) and (ii) allow equation (7) to have a sense.

We define now the mild solutions ([EN00], II.6, p.146).
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Definition 4.4 (Mild solution). A continuous function ρ : [0,+∞[→ L1(Ω) is called a mild
solution of (7) if

(i)
R t
0 ρ(s)ds ∈ D(A), for all t ≥ 0

(ii) ρ(t) = A
R t

0 ρ(s)ds+ ρ0

Remark 4.5. • Notice that we only impose to the function ρ(t) to be continuous and not
anymore differentiable as in the previous definition
• If ρ0 /∈ D(A), we don’t have ρ(t) ∈ D(A) and thus even the boundary condition is solved in a
weak sense.

Definition 4.6 (Mild solution). A function ρ ∈ C([0,+∞[;L1(Ω)) is a called a mild solution of
the equation (7) if

R t
0 ρ(s)ds ∈ D(A) for all t ≥ 0 and

ρ(t) = A
Z t

0
ρ(s)ds+ ρ0.

2 Properties of the operator

We will now establish some properties of the operator (A,D(A)). The first one is its closedness.

Lemma 4.7. The operator (A,D(A)) is closed.

Proof. Let Vn ∈ D(A) be a sequence of functions converging in L1 to a function V , and assume
that AVn

L1
−→W . Then, for every φ ∈ C1

c (Ω)R
AVnφ →

R
Wφ

‖ ‖R
VnG · ∇φ →

R
V G · ∇φ,

Thus W ∈Wdiv(Ω) and W = AV . It remains to check that V satisfies the boundary condition.
This comes from the continuity of the trace application (prop. 3.24) and the fact that now
Vn

Wdiv(Ω)−−−−−→ V .

2.1 Density of D(A) in L1(Ω)

Proposition 4.8. The space D(A) is dense in L1(Ω)

Proof. The proof follows the one done in [BK89] in dimension 1, although some technical dif-
ficulties appear in dimension 2. Since C1

c (Ω) is dense in L1(Ω), it is sufficient to approximate
any function f ∈ C1

c (Ω) by functions of D(A), for the L1 norm. Thus let f ∈ C1
c (Ω) be a fixed

function. The proof is divided in two steps :
• First step Assume that there exists a sequence hn : Ω→ R such that :

(i)−G · ν(σ)hn(σ) = N(σ), ∀σ ∈ ∂Ω
(ii) hn

L1
−−−→
n→∞

0
(iii) hn ∈W 1,∞(Ω)

(9)
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We will prove the existence of such functions in the second step. Then let

fn = f + anhn

with an ∈ R chosen to have the boundary condition required to have fn ∈ D(A). More precisely,
in order to have fn ∈ D(A), an should verify :

−G · ν(σ)fn(σ) = anN(σ) = N(σ)
Z

Ω
βfndxdθ

= N(σ)
§Z

Ω
βfdxdθ + an

Z
Ω
βhndxdθ

ª
So it suffices to take

an =
R

Ω βfdxdθ

1−
R

Ω βhndxdθ
.

Then we remark that, since ||hn||L1(Ω) → 0 and β is in L∞, for n sufficiently large, |
R
βhn| ≤ 1/2,

so |1−
R

Ω βhndxdθ| ≥ 1−|
R

Ω βhndxdθ| ≥ 1/2 and |an| ≤ 2||β||L∞ ||f ||L1 . The sequence an being
now proved to be bounded, we have fn

L1
−→ f . Furthermore, since hn ∈ W 1,∞(Ω) ⊂ W 1,1(Ω) ⊂

Wdiv(Ω), we have fn ∈ D(A) which concludes the proof.
• Second step It remains to find a sequence hn verifying (9). Let Γ ⊂⊂ ∂Ω∗ = ∂Ω\(b, b) be the
support of N(σ) and for each n ∈ N let Vn be an open neighborhood of Γ such that

mes(Vn)→ 0, (b, b) /∈ Vn

where mes stands for the two-dimensional Lebesgue measure. There exists a function φn ∈
C1
c (R2) such that

φn(x, θ) =
¨

1 if (x, θ) ∈ Γ
0 if (x, θ) ∈ V c

n
0 ≤ φn ≤ 1

Then, we extend the function H(σ) = N(σ)
−G·ν(σ) : ∂Ω∗ → R to a function H : Vn ∩ Ω → R by

following the characteristics :

H(x, θ) = H(σ(x, θ)) ∀(x, θ) ∈ Vn ∩ Ω

where we recall that σ(x, θ) is the entrance point in Ω of the characteristic passing by (x, θ),
defined in the section 3.1.1. We showed that the function σ : Ω∗ → ∂Ω∗ is locally Lipschitz
(prop. 3.4). Since (b, b) /∈ Vn, the function σ is Lipschitz on Vn ∩ Ω. Now H is Lipschitz on ∂Ω
(meaning that the composition of H and a parametrization of ∂Ω is Lipschitz), so in the end
the function H is Lipschitz. Eventually, the function

hn(x, θ) =
¨

(Hφn)(x, θ) if (x, θ) ∈ Vn ∩ Ω
0 if (x, θ)Ω\Vn

has the required properties. Indeed, hn ∈W 1,∞(Ω) since hn is Lipschitz. Moreover, the facts
that supp(hn) ⊂ Vn ∩ Ω and ||hn||L∞(Ω) ≤ ||H||L∞(∂Ω) < ∞ (since N has compact support in

∂Ω∗) imply that hn
L1
−→ 0.



100 Chapter 4. Autonomous case. Model without treatment

We are now interested in characterizing the adjoint of the operator (A,D(A)). We will see
that the first eigenvector of (A∗, D(A∗)) plays an important role in the structure of the equation
in the asymptotic behavior (see theorem 4.23). First we recall the definition of the adjoint of A
(see [Bre83], chap.2 p. 27).

Definition 4.9 (Adjoint of A). The domain of A∗ is defined by

D(A∗) = {U ∈ L∞(Ω); ∃c > 0 s.t. |L∞ < U,AV >L1 | ≤ c||V ||, ∀V ∈ D(A)}

and for U ∈ D(A∗), A∗U is the unique element in L∞(Ω) such that

L∞ < U,AV >L1=L∞< A∗U, V >L1 , ∀V ∈ D(A).

Proposition 4.10 (Domain and expression of A∗).

D(A∗) = {U ∈ L∞; G · ∇U ∈ L∞} = W∞div(Ω) (10)

A∗U = G · ∇U + β
Z
∂Ω
U(σ)N(σ)dσ.

Proof. • The inclusionW∞div(Ω) ⊂ D(A∗) follows from the proposition 3.24. The second inclusion
D(A∗) ⊂ W∞div(Ω) requires a little much of work. For a function U ∈ D(A∗), we will show that
φ 7→< U,div(Gφ) > can be extended in a continuous linear form on L1, which will allow us to
conclude using the Riesz theorem that U ∈ W∞div. To do this, it is sufficient to show that there
exists a constant c ≥ 0 such that

| < U,Aφ >D′,D | ≤ c||φ||L1 ∀φ ∈ D(Ω), (11)

where D(Ω) = C∞c (Ω). This is almost done by the definition of the domain D(A∗) except the
fact that D(Ω) is not a subset of D(A). We are driven to use the following trick. Define the
space :

D0(Ω) = {φ ∈ D(Ω);
Z

Ω
βφ = 0}

which is a subspace of D(A). We will project a given function in D(Ω) on D0(Ω). Let φ1 ∈ D(Ω)
be a fixed function such that

Z
Ω
βφ1 = 1. Then

φ = φ−
�Z

βφ
�
φ1| {z }

∈D0(Ω)⊂D(A)

+
�Z

βφ
�
φ1| {z }

∈Rφ1

.

So eventually, denoting as c1 the constant given by the belonging of U to D(A∗)

| < U,Aφ >D′,D | = | < U,A(φ−
�Z

βφ
�
φ1) > + < U,

�Z
βφ
�
Aφ1 > |

≤ (c1 + c1||β||L∞ ||φ1||L1 + ||β||L∞ ||U ||L∞ ||Aφ1||L1)||φ||L1

which shows (11) and thus yields the result.
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2.2 Spectral properties and dissipativity

In order to have a candidate for a stable asymptotic distribution of the solutions of our equation,
we are interested in the stationary eigenvalue problem :8<:

(λ, V,Ψ) ∈ R∗+ ×D(A)×D(A∗)
AV = λV, A∗Ψ = λΨR

Ω VΨdxdθ = 1, Ψ ≥ 0,
R
∂ΩNΨdσ = 1

(12)

Proposition 4.11 (Existence of solutions to the eigenproblem). Under the assumptionZ ∞
0

Z
∂Ω
β(Φτ (σ))N(σ)dτdσ > 1, (13)

there exists a unique solution (λ0, V,Ψ) to the eigenproblem (12). Moreover, we have the follow-
ing spectral equation on λ0 :Z +∞

0

Z
∂Ω
β(Φτ (σ))N(σ)e−λ0τdτdσ = 1 (14)

The direct eienvector is given by

V (Φτ (σ)) = Cλ0N(σ)e−λ0τ |JΦ|−1, ∀τ > 0, a.e σ ∈ ∂Ω (15)

where Cλ0 is a positive constant and |JΦ| is the jacobian of Φ from section 3.1.1. The adjoint
eigenvector Ψ is given by :

Ψ(Φτ (σ)) = eλ0τ
Z ∞
τ

β(Φs(σ))e−λ0sds ∀τ > 0, a.e σ ∈ ∂Ω. (16)

Hence we have
inf β
λ0
≤ Ψ(x, θ) ≤ supβ

λ0
∀(x, θ) ∈ Ω

Remark 4.12. In the model we use in practice, where β(x, θ) = mxα the condition (13) is
fulfilled since

Z ∞
0

Z
∂Ω
β(Φτ (σ))N(σ)dτdσ =∞, and the inequalities on Ψ write

m

λ0
≤ Ψ(x, θ) ≤ mbα

λ0
∀(x, θ) ∈ Ω.

Proof. • Direct eigenproblem.
� We use the following change of variable, which consists in transforming a function of Wdiv(Ω)
into a function of W 1,1(]0,+∞[ ; L1(∂Ω)) :

ÜV (τ, σ) = −V (Φτ (σ))|JΦ|, ∀τ ∈ [0,+∞[, σ ∈ ∂Ω

where we recall that |JΦ| = −G · ν(σ)e
R τ

0 div(G(Φs(σ)))ds is the jacobian of the application Φ :
(τ, σ) 7→ Φτ (σ) (see section 3.1.1).
Rewriting the problem on ÜV and denoting eβ(τ, σ) = β(Φτ (σ)), we get¨

∂τÜV + λÜV = 0ÜV (0, σ) = N(σ)
R eβÜV dτdσ′ (17)
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Direct computations show that Problem 17 has a solution if

1 =
Z ∞

0

Z
∂Ω
N(σ)eβ(τ, σ)e−λτdσdτ (18)

and conversely, if λ0 is a solution of the equation (18), we get solutions to the problem (17)
given by ÜV (τ, σ) = Cλ0N(σ)e−λ0τ (19)

and we can then fix the constant Cλ0 > 0 in order to have the normalization condition 1 =R
Ω VΨdxdθ with Ψ the dual eigenvector defined below.
� We now prove that there exists a unique solution to equation (18) under the hypothesis (13).
Indeed, let us define the function F : R→ R by

F (λ) =
Z ∞

0

�Z
∂Ω
N(σ)eβ(τ, σ)

�
e−λτdσdτ (20)

It is the Laplace transform of the function τ 7→
R
∂ΩN(σ)eβ(τ, σ)dσ. The condition (13) means

that F (0) > 1 and F being strictly decreasing on R and continuous on ]0,+∞[, the equation
(18) has a unique solution in R, λ0 ∈]0,+∞[.

� From (19), we obtain that ÜV ∈ W 1,1(]0,+∞[ ; L1(∂Ω)). Using the theorem 3.9 we deduce
that V ∈Wdiv(Ω).

Remark 4.13. Here the theorem 3.9 takes its interest since it is not completely obvious that
the composition of ÜV by Φ−1 would give a function in Wdiv(Ω), due to the fact that the change
of variable Φ (and Φ−1) is not globally Lipschitz.

• Adjoint eigenproblem.
� Expression of Ψ. Using the expression of the adjoint operator (A∗, D(A∗)) from the proposition
4.10, the adjoint spectral problem reads, along the characteristics : find Ψ ∈W∞div(Ω) such that

∂τΨ(Φτ (σ)) = λ0Ψ(Φτ (σ))− β(Φτ (σ))
Z
∂Ω

Ψ(σ′)N(σ′)dσ′ (21)

from which we get, for each function Ψ(σ) defined on the boundary, a solution to the equation
given by

Ψ(Φτ (σ)) = Ψ(σ)eλ0τ −
Z
∂Ω

Ψ(σ′)N(σ′)dσ′
Z τ

0
β(Φs(σ))eλ0(τ−s) (22)

� Non-negative solution. To get a non-negative solution we are driven to the following condition

Ψ(σ) ≥
Z
∂Ω

Ψ(σ′)N(σ′)dσ′
Z ∞

0
β(Φs(σ))e−λ0sds, a.e σ ∈ ∂Ω

Now, if the inequality is strict, multiplying by N(σ) and integrating on ∂Ω gives

1 >
Z
∂Ω

Z ∞
0

β(Φs(σ))e−λ0sdsdσ

which belies the spectral equation (18). We are thus driven to choose

Ψ(σ) =
Z
∂Ω

Ψ(σ′)N(σ′)dσ′
Z ∞

0
β(Φs(σ))e−λ0sds, ∀σ ∈ ∂Ω (23)
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Defining g(σ) =
R∞

0 β(Φs(σ))e−λ0sds, this means that Ψ(σ) is in the vector space generated by
g(σ). Then it remains to have the suitable normalization constant. Remembering the spectral
equation (18) verified by λ0 shows that the function Ψ(σ) = g(σ) is appropriate. We finally get
(16) from (22), which gives Ψ ∈ L∞ and ||Ψ||L∞ ≤ ||β||L∞λ0

.
� Regularity of Ψ. Using the equation (21) verified by Ψ we get ∂τΨ(Φτ (σ)) ∈ L∞ and so using
the conjugation theorem ofW∞div(Ω) andW 1,∞

τ (]0,∞[×∂Ω) (theorem 3.9, where this last space is
the Sobolev space with only the derivative with respect to the first variable is in L∞(]0,∞[×∂Ω)),
we have Ψ ∈W∞div(Ω).

Remark 4.14. The previous proof takes advantage of the particular structure that the birth rate
b(σ,X) is written as the product of a distribution function for neo-metastases at birth N(σ)
and a function β(X). This corresponds to the biological hypothesis of independence between the
vascular capacity of the progeny and the vascular capacity of the seeding tumor. In the case of a
coupling between these, or in another model having an arbitrary birth rate b(σ,X), the previous
proof cannot adapt. Maybe use of the Krein-Rutman theorem should then be considered, as done
in [Dou07].

We end this paragraph with the proof of the maximality of the operator (A,D(A)) which
permits to control the norm of the resolvent of A and, combined to the property of dissipativity
which is proven below, permits to prove that the spectrum of (A,D(A)) is included in a left half
plane. These properties are the basis of the proof of the Hille-Yosida theorem which basically
consists in approximating the unbounded operator (A,D(A)) by the resolvents (λI −A) which
are bounded, and thus permits to build a semigroup whose generator is (A,D(A)). See the
reference [EN00], paragraph II.3 for details.

Proposition 4.15 (Maximality of A). For Re(λ) > λ0, we have Im(λI−A) = L1(Ω). In other
words, for every λ ∈ C such that Re(λ) > λ0 and for each f ∈ L1(Ω), the equation

λV + div(GV ) = f (24)

has a solution V ∈ D(A).

Remark 4.16. The following proof gives also the uniqueness of the solution but this is not
strictly required at this point for our purpose. Anyway, the dissipativity of the operator that we
prove hereafter implies also the uniqueness.

Proof. • Using the same technique as in the proof of the existence of a direct eigenvector just
before (proposition 4.11), we write the equation along the characteristics and obtain the following
equation on ÜV (τ, σ) = V (Φτ (σ))|JΦ| :¨

λÜV + ∂τÜV = ef, ∀τ ∈]0,+∞[, a.e σ ∈ ∂ΩÜV (0, σ) = N(σ)
R

Ω
eβÜV dτdσ′, a.e σ ∈ ∂Ω

(25)

where ef(τ, σ) = f(Φτ (σ)) and eβ(τ, σ) = β(Φτ (σ)). For a regular function ÜV ∈W 1,1(]0,+∞[ ; L1(∂Ω))
the solution is given by

ÜV (τ, σ) = ÜV (0, σ)e−λτ +
Z τ

0
e−λ(τ−s) ef(s, σ)ds, a.e σ ∈ ∂Ω (26)
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and the boundary condition gives

ÜV (0, σ) = N(σ)
§Z ∞

0

Z
∂Ω
eβ(τ, σ′)ÜV (τ, σ′)e−λτdσ′dτ +

Z ∞
0

Z
∂Ω
eβ(τ, σ′)

Z τ

0
e−λ(τ−s) ef(s, σ′)dsdσ′dτ

ª
.

(27)
So we have a solution to (25) if we have a function ÜV (0, σ) verifying (27) which implies that
there exists a constant Cλ ∈ R such that :ÜV (0, σ) = CλN(σ)

Re-injecting in (27) we have

CλN(σ) = N(σ)
§
CλF (λ) +

Z ∞
0

Z
∂Ω
eβ(τ, σ′)

Z τ

0
e−λ(τ−s) ef(s, σ′)dsdσ′dτ

ª
with the function F (λ) being defined in (20). Dividing by N(σ) in some σ for which N(σ) 6= 0,
we have

Cλ = CλF (λ) +
Z ∞

0

Z
∂Ω
eβ(τ, σ′)

Z τ

0
e−λ(τ−s) ef(s, σ′)dsdσ′dτ| {z }

:=Bλ=constant

Using now the main argument, given in the proof of proposition 4.11, which is that

F (λ) 6= 1 ∀ Re(λ) > λ0

we can choose
Cλ = Bλ

1− F (λ)
to get a function ÜV (0, σ) = CλN(σ) which, through formula (26), yields a solution of (25).
• Now we want to use our usual theorem of conjugation (theorem 3.9) to see that the function

V = ÜV (Φ−1)|JΦ−1 | (28)

is a solution of the equation (24) which belongs to D(A). To this purpose, we have to check
that ÜV ∈W 1,1(]0,+∞[ ; L1(∂Ω))
� ÜV ∈ L1((0,+∞)× ∂Ω) : we can write the expression of ÜV

ÜV (τ, σ) = CλN(σ)e−λτ +
Z τ

0
e−λ(τ−s) ef(s, σ)ds = D(τ, σ) + E(τ, σ)

When integrating, using that
R
N = 1 we have

||ÜV ||L1 ≤
Cλ
λ

+
Z ∞

0
e−λτ

§Z τ

0
eλs

Z
∂Ω
| ef(s, σ)|dσds

ª
dτ

then, integrating by part the second term we obtain

||ÜV ||L1 ≤
Cλ
λ

+ ||f ||L1

λ
<∞

� Then, the first term D is in W 1,1(]0,+∞[ ; L1(∂Ω)) as it is the product of a function in
W 1,∞(∂Ω) with a function in C1([0,+∞[) with derivative in L1(0,+∞). The second term E(τ, σ)
is also in W 1,1(]0,+∞[ ; L1(∂Ω)) as it can be written as the product of e−λτ and

R τ
0 g(s, σ)ds

with g ∈ L1(]0,+∞[×∂Ω).
Finally, using the theorem 3.9, the function V given by (28) is in D(A) and is a solution of
(24).
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2.3 Dissipativity of (A,D(A))

The last property that we need to establish for our operator (A,D(A)) in order to apply the
Lumer-Philips theorem is its dissipativity. We first recall the definition.

Definition 4.17. An operator (A,D(A)), with D(A) ⊂ X, X being a Banach space, is said to
be dissipative if for every x ∈ D(A) and every j(x) ∈ J(x) := {x′ ∈ X ′; ||x||2X = ||x′||2X′ =X′<
x, x′ >X}, we have

X′ < Ax, j(x) >X≤ 0

We prove now that the operator (A− ωI,D(A)) possesses this property for ω large enough.

Proposition 4.18. The operator (A− ωI,D(A)) is dissipative for every ω ≥ ||β||L∞(Ω)

Proof. Let V ∈ D(A) and define j(V ) = V
|V |1V 6=0||V ||L1 ∈ J(V ). We have

L1 < AV, j(V ) >L∞= −
Z

Ω
div(GV )j(V ) (29)

Now let us notice that using the proposition 3.32 from our study of Wdiv with the function
H = | · | we have

|V | ∈Wdiv(Ω) and div(G|V |) = sgn(V)div(GV),

with sgn(V) = V
|V|1V 6=0. Furthermore the formula of integration by part (proposition 3.24)

legitimates the following calculation

−
Z

Ω
div(GV )j(V ) = −||V ||L1

Z
Ω

div(GV )sgn(V) = −||V||L1

Z
Ω

div(G|V|)

= −||V ||L1

Z
∂Ω
γ(|V |)G · ν

We then remark that since the very definition of the trace of a function of Wdiv(Ω) (definition
3.24), we have

γ(|V |) = |γ(V )|

Now using the boundary condition

−γ(V )G · ν(σ) = N(σ)
Z

Ω
βV,

and reminding that G · ν(σ) ≤ 0 and ||N ||L1(∂Ω) = 1, we get

L1 < AV, j(V ) >L∞ = ||V ||L1

Z
∂Ω
|γ(V )G · ν| = ||V ||L1

Z
∂Ω
N(σ)|

Z
Ω
βV |

≤ ||V ||2L1 ||β||L∞

So
L1 < AV − ωV, j(V ) >L∞≤ ||V ||2L1(Ω)(||β||L∞(Ω) − ω) ≤ 0,

for ω ≥ ||β||L∞ . This concludes the demonstration of the proposition.
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Corollary 4.19. Under the assumptions (2) the operator (A,D(A)) generates a semigroup on
L1(Ω) denoted by etA and we have

|||etA||| ≤ et||β||L∞

Proof. Let us denote ÜA = A − ωI with some ω ≥ ||β||L∞(Ω), in order to move back the spec-
trum of A to the left. Then the operator (ÜA,D(A)) is closed (lemma 4.7), densely defined
(proposition 4.8), dissipative (proposition 4.18), and for eλ > λ0 − ω, Im(eλI − ÜA) = L1(Ω)
(proposition 4.15). Thus, applying the Lumer-Philips theorem (see [EN00] II.3, p. 83), the op-
erator (ÜA,D(A)) generates a contraction semigroup which we denote by eteA. By rescaling this
contraction semigroup we define etA := eωteteA to obtain a quasi-contractive semigroup whose
generator is (A,D(A)).

3 Existence and asymptotic behavior

First, we establish equivalence between mild and weak solutions of the homogeneous problem.

Proposition 4.20. Let ρ ∈ C([0,∞[;L1(Ω)), then

(ρ is a mild solution of (5))⇔ (ρ is a weak solution of (5))

Proof. • First implication ⇒ : It comes from the fact that mild solutions are limit of classical
ones. Indeed, it will be proved in the section 4.2 that A is the generator of a semigroup etA.
Thus, by density of the domain, there is a sequence ρ0

n ∈ D(A) such that ρ0
n

L1
−→ ρ0. Then there

exists M > 0 and ω > 0 such that for all T > 0

||ρn − ρ||C([0,T ];L1(Ω)) = ||etA(ρ0
n − ρ0)||C([0,T ];L1(Ω)) ≤MeωT ||ρ0

n − ρ0||L1(Ω).

Classical solutions are weak solutions and passing to the limit in the identity (4) gives the result.
• Second implication ⇐ : Let ρ ∈ C([0,∞[;L1(Ω)) be a weak solution in the sense of definition
4.1 with f = 0. Define the function R(t) =

R t
0 ρ(s)ds. We verify now that R(t) ∈ Wdiv(Ω) by

using the definition. Fix t ≥ 0 and a function φ ∈ C1
c (Ω). Using the function φ(t, x, θ) ≡ φ(x, θ)

in (4), we haveZ
Ω

Z t

0
ρ(s)ds(G · ∇φ)dxdθ = −

Z
Ω
ρ0(x, θ)φ(x, θ)dxdθ +

Z
Ω
ρ(t, x, θ)φ(x, θ)dxdθ

Therefore R(t) ∈Wdiv(Ω) and ρ(t) = A
R t
0 ρ(s)ds+ ρ0.

We now prove the boundary condition part in order to have R(t) ∈ D(A). Let φ(σ) be
a continuous function on ∂Ω, with compact support in ∂Ω∗. We can extend it to a function
of Cc(Ω

∗), still denoted by φ. Now, using the density of C1
c (Ω∗) in Cc(Ω

∗), choose a family
φε ∈ C1

c (Ω∗) such that φε
L∞−−→ φ. For each ε, using the test function φε(t, x, θ) ≡ φε(x, θ) in (4),

we have for every t ≥ 0Z
Ω
R(t)G · ∇φε +

Z
Ω
ρ0(x, θ)φε(x, θ)dxdθ−

Z
Ω
ρ(t, x, θ)φε(x, θ)dxdθ =Z

∂Ω
N(σ)φε(σ)dσ

Z
Ω
β(x, θ)R(t)dxdθ
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As R(t) ∈Wdiv(Ω), and −div(GR) = ρ− ρ0 by passing to the limit in ε, we obtainZ
∂Ω
γ(R(t))G · νφ =

Z
∂Ω
Nφ

Z
Ω
βR, ∀t ≥ 0.

This identity being true for any function φ ∈ Cc(∂Ω∗), we have the required boundary condition
on R(t). This ends the proof.

3.1 Well-posedness of the equation

Existence for the non-homogeneous problem

Proposition 4.21.
(i) Let f ∈ L1(]0,∞[;L1(∂Ω)) and assume (2). There exists a unique solution of the non-
homogeneous problem (6), denoted by T f and we have

T f ∈ C([0,∞[;L1(Ω)).

(ii) If f ∈ C1([0,∞[;L1(∂Ω)) and f(0) = 0 then

T f ∈ C1([0,∞[;L1(Ω)) ∩ C([0,∞[;Wdiv(Ω)).

Moreover, we have the positivity property

(f ≥ 0)⇒ (T f ≥ 0).

Proof. The proof is based on a fixed point argument. It is divided in three steps : first we prove
the point (ii) using the Banach fixed point theorem following the method of [Per07], then thanks
to an estimate in C([0,∞[, L1(Ω)) we construct weak solutions as limits of regular solutions, and
finally we prove uniqueness.
• Step 1. � As usual now, we first simplify the problem using the conjugation theorem (theorem
3.9). We use the change of variable eρ = ρ(Φτ (σ))|JΦ| and still denoting ρ for eρ and β for eβ =
β(Φτ (σ)), we consider the following non-homogeneous problem with nonzero initial condition8<:

∂tρ+ ∂τρ = 0
ρ(t, σ) = N(σ)

R
βw + f(t, σ)

ρ(0) = ρ0
(30)

Let ρ0 ∈ D(A) and f ∈ C1([0,∞[;L1(∂Ω)) with f(0) = 0. For T > 0 we define the space

XT = {w ∈ C1([0, T ];L1(]0,∞[×∂Ω); w(0, ·) = ρ0}.

It is a complete metric space. To w ∈ XT we associate the solution ρ of the equation (30),
namely

ρ(t, τ, σ) =
§
N(σ)

Z ∞
0

Z
∂Ω
βw(t− τ, τ ′, σ′)dτ ′dσ′ + f(t− τ, σ)

ª
| {z }

:=H(t−τ,σ)

1t>τ + ρ0(τ − t, σ)1t<τ
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and define the linear operator Tρ0,f by Tρ0,fw := ρ. Note here that w ≥ 0 implies ρ ≥ 0 if ρ0 ≥ 0
and f ≥ 0, and that H ∈ C1([0, T ];L1(∂Ω)).
� Regularity of ρ. We now show that ρ ∈ XT and that ρ ∈ C([0, T ];W 1,1(]0,+∞[ ; L1(∂Ω))).
Indeed we have

ρ(t, τ, σ)1t>τ = H(t− τ, σ)1t>τ , ρ(t, τ, σ)1t<τ = ρ0(τ − t, σ)1t<τ . (31)

From these expressions we get that ρ ∈ C([0, T ];L1(]0,∞[×∂Ω)) since the two functions H and
ρ0 are in L1.

Moreover, H(0, σ) = N(σ)
R
βρ0 = ρ0(0) from the compatibility conditions contained in

the facts that w ∈ XT , f(0) = 0 and ρ0 ∈ D(A). This allows to conclude that ρ(t, · ) ∈
C([0,∞[;L1(∂Ω)). Furthermore, from the expressions (31), we see that for each t, ρ(t, ·) ∈
W 1,1((0, t), L1(∂Ω)) ∩W 1,1((t,∞), L1(∂Ω)) since ρ0 ∈ D(A) and H ∈ C1([0, T ];L1(∂Ω)). Com-
bining this with the continuity in τ gives ρ(t, ·) ∈ W 1,1(]0,+∞[ ; L1(∂Ω)). Finally from the
expression of ∂τρ obtained differentiating in τ the expressions (31) we get

ρ ∈ C([0, T ],W 1,1(]0,+∞[ ; L1(∂Ω))).

It remains to show that ρ ∈ C1([0, T ];L1(]0,∞[×∂Ω)). For the sake of simplicity we forget
the dependency on σ since everything can be done the same way replacing L1(·) by L1(·;L1(∂Ω))
in the following. We define for almost every t and τ

∂tρ(t, τ) := ∂tH(t− τ)1t>τ − ∂tρ0(τ − t)1t<τ

and compute

1
h
||ρ(t+ h)− ρ(t)− h∂tρ(t)||L1([0,∞[) = 1

h
||H(t+ h− ·)−H(t− ·)− h∂tH(t− ·)||L1([0,t[)

+ 1
h
||H(t+ h− ·)− ρ0(· − t)− h∂tρ0(τ − t)||L1(]t,t+h[)| {z }

A

+ 1
h
||ρ0(· − t− h)− ρ0(· − t)− h∂tρ0(· − t)||L1([t+h,∞[)

The first and the last terms go to zero when h tends to zero since H is in C1([0, T ];L1(]0,∞[))
and ρ0 is in D(A). To deal with the last term A, we write

A ≤ 1
h

Z t+h

t
|H(t+ h− τ)− ρ0(τ − t)|dτ +

Z t+h

t
∂tρ

0(τ − t)dτ

The first term goes to zero because of the compatibility condition H(0) = ρ0(0) and also the
last one because ∂tρ0 ∈ L1. We can then conclude ρ ∈ C1([0, T ];L1(]0,∞[)).
� The previous considerations show that the operator Tρ0,f has values in XT . Now, if w1 and
w2 are in XT we have

Tρ0,fw1 − Tρ0,fw2 = N
Z ∞

0

Z
∂Ω
β(w1 − w2)dτdσ1t>τ

and
∂tTρ0,fw1 − ∂tTρ0,fw2 = N

Z ∞
0

Z
∂Ω
β(∂tw1 − ∂tw2)dτdσ1t>τ
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Thus
||Tρ0,fw1 − Tρ0,fw2||XT ≤ T ||β||L∞ ||w1 − w2||XT

Now we choose T < 1/||β||L∞ , hence the operator Tρ0,f is a contraction and the Banach fixed
point theorem gives existence of a fixed point for Tρ0,f which is then a solution on [0, T ] of
the equation (30). Remark that this fixed point is non-negative if the source term f is, since
it is obtained as the limit of the iterates of the operator applied to any non-negative function
w. Now since T does not depend on ρ0 we can iterate the process and obtain a solution on
[T, 2T ], [2T, 3T ], etc... to finally get a solution on [0,∞[. Transporting the regularity facts back
to Ω by using the conjugation theorem 3.9 ends the point (ii).
• Step 2. Denote by T f the fixed point of the operator T0,f , defined up to now only when f is
regular and satisfies the compatibility condition f(0) = 0, one has

Lemma 4.22. Let f ∈ C1([0,∞[;L1(∂Ω)) with f(0) = 0 and T f be the solution of the equation
(30) with a zero initial condition. Then for all T > 0

||T f ||C([0,T ];L1(Ω)) ≤ eT ||β||∞
Z T

0
|f(s)|e−||β||∞sds

Proof. The solution T f = ρ being regular, the function |ρ| also verifies the equation and inte-
grating on Ω yields

d

dt

Z
Ω
|ρ|(t)dτdσ = |

Z
Ω
βρ(t)dxdθ +

Z
∂Ω
f(t, σ)dσ| ≤ ||β||∞

Z
Ω
|ρ|(t)dxdθ +

Z
∂Ω
|f(t, σ)|dσ

and a Gronwall lemma gives the result.

Now let f ∈ L1(]0,∞[;L1(∂Ω)) and choose a sequence fn ∈ C1([0,∞[, L1(∂Ω)) with
fn(0) = 0 such that fn

L1
−→ f . The previous lemma shows that the sequence (T fn)n∈N is a

Cauchy sequence in C([0, T ];L1(Ω)) for all T > 0. So it converges to a function denoted by T f
which is in C([0, T ];L1(Ω)). Since we can do this for each T > 0, we thus construct a function
T f in C([0,∞[;L1(Ω)). Using the definition of weak solutions (definition 4.1), we can pass to the
limit in the expression (4) written on T fn to see that the function T f is a weak solution of the
non-homogeneous problem with zero initial data. The non-negativity of T f for a positive data f
is ensured because we can choose the sequence fn to be non-negative and extract a subsequence
such that T fn converges almost everywhere.
• Step 3. It remains to show the uniqueness of the solution. If ρ1 and ρ2 are two solutions of the
non-homogeneous equation (30), then ρ1 − ρ2 is a weak solution of the homogeneous equation
(5) with zero initial condition. From the proposition 4.20 the weak solutions in the sense of the
distributions are the same than the mild solutions and thus ρ1 − ρ2 is a mild solution of the
homogeneous equation and hence is zero by uniqueness of the mild solutions since A generates
a semigroup (proposition 4.19).

Existence for the global problem

Theorem 4.23 (Existence, uniqueness and regularity).
(i) Let ρ0 ∈ L1(Ω) and f ∈ L1(]0,∞[×∂Ω), and assume (2). There exists a unique weak solution
of the equation (1), given by

ρ = etAρ0 + T f
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with T f being a weak solution of the non-homogeneous equation (6) and etA the semigroup
generated by A.
(ii) If ρ0 ∈ D(A) and f ∈ C1([0,∞[;L1(∂Ω)) and verifies f(0) = 0, then we have

ρ ∈ C1([0,∞[;L1(Ω)) ∩ C([0,∞[;Wdiv(Ω)).

3.2 Properties of the solutions and asymptotic behavior

In the next proposition, we prove some useful properties of the solutions, which naturally appear
in the L1

Ψ norm defined by
||V ||L1

Ψ
=
Z

Ω
|V |Ψdxdθ, (32)

with Ψ the dual eigenvector from proposition 4.11. We should notice that when β ∈ L∞(Ω)
and β ≥ δ > 0, by the inequalities from proposition 4.11, the L1

Ψ norm is equivalent to the L1

norm. Hence the solutions have finite L1
Ψ norm. The main idea in the proof of the following

proposition is to use various entropies in the space L1
Ψ, and is based on ideas from [Per07] and

[MMP05]

Proposition 4.24. Let ρ0 ∈ L1(Ω) and ρ the solution of the equation (1). The following
properties hold :

(i) Z
Ω
|ρ(t)|Ψ ≤ eλ0t

�Z
Ω
|ρ0|Ψ +

Z t

0

Z
∂Ω

Ψ(σ)e−λ0s|f |(s, σ)dσds
�
, ∀t ≥ 0 (33)

(ii) (Evolution of the mean-value in L1
Ψ)Z

Ω
ρ(t)Ψ = eλ0t

�Z
Ω
ρ0Ψ +

Z t

0

Z
∂Ω

Ψ(σ)e−λ0sf(s, σ)dσds
�
, ∀t ≥ 0

(iii) (Comparison principle) If f ≥ 0

ρ0
1 ≤ ρ0

2 ⇒ ρ1(t) ≤ ρ2(t) ∀t ≥ 0

Remark 4.25. The property (iii) implies the positivity of the semigroup etA.

Proof. Each time we aim to prove something on weak solutions, we will start proving it for
classical solutions and then use the density of D(A) to conclude. So, let do the calculations
with a strong solution ρ associated to an initial condition ρ0 in D(A) and a function f ∈
C1(]0,∞[;L1(∂Ω)) with f(0) = 0, for which the calculations can be justified. We first recall that
the dual eigenvector Ψ which belongs to W∞div(Ω) verifies the following equation :

G · ∇Ψ− λ0Ψ = −β (34)

since by the construction of Ψ and the spectral equation
R
∂Ω Ψ(σ)N(σ)dσ = 1. Defining

eρ(t, x, θ) = e−λ0tρ(t, x, θ)
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we have the following equation on eρ :

∂teρ+ div(Geρ) + λ0eρ = 0, (35)

with the same initial condition as for ρ and a suitable boundary condition. Using that eρ ∈
Wdiv(Ω) and Ψ ∈ W∞div(Ω) and the proposition on the product of functions (proposition 3.32),
we have the following equation on eρΨ :

∂t(eρΨ) + div(GeρΨ) = −βeρ. (36)

Property (i). Let us first state the following lemma.

Lemma 4.26. Assume that ρ0 ∈ L1(Ω), f ∈ L1(]0,∞[×∂Ω) and let ρ be the associated weak
solution of the equation (1). Then the function |ρ| solves the same equation, with the initial
condition |ρ0| and the boundary condition

−G · ν(σ)|ρ(t, σ)| =
����N(σ)

Z
Ω
βρdxdθ + f(t, σ)

����
Proof. For a regular solution of the equation ρ associated to a regular initial condition ρ0 ∈ D(A)
and a regular data f , we can use the proposition 3.32 with the function H(·) = | · | to have that
|ρ(t)| ∈Wdiv(Ω) and

div(G|ρ|) = sgn(ρ)G · ∇ρ+ |ρ|div(G)

Since ρ is regular in time, by multiplying the equation by sgn(ρ) we get the result. For a solution
ρ ∈ C([0,∞[;L1(Ω)) we obtain the result by density of the strong solutions.

Thanks to this lemma, in the same way that the equation (36), we have the following equation
for |eρ|:

∂t(|eρ|Ψ) + div(G|eρ|Ψ) = −β|eρ|
From this we get that

d

dt

Z
Ω
|eρ|Ψdxdθ = −

Z
∂Ω
γ(|eρ|)ΨG · νdσ − Z

Ω
β(x, θ)|eρ(t, x, θ)|dxdθ

=
Z
∂Ω

Ψ(σ)
����N(σ)

Z
Ω
β(x, θ)eρ(t, x, θ)dxdθ + e−λ0tf(t, σ)

����− ZΩ
β(x, θ)|eρ|(t, x, θ)|dxdθ

≤
Z
∂Ω
|f(t, σ)|e−λ0tΨ(σ)

from which we deduce the first property after integrating in time. To deal with weak solutions
we again use the density of regular solutions.
Property (ii). For the evolution of the mean value, we integrate the identity (36) to obtain

d

dt

Z
Ω
eρΨdxdθ −

Z
∂Ω
N(σ)Ψ(σ)dσ

Z
Ω
βeρdxdθ − Z

∂Ω
e−λ0tf(t, σ)Ψ(σ)dσ = −

Z
Ω
βeρdxdθ

Now remember that by construction
R
∂ΩN(σ)Ψ(σ)dσ = 1 to get

d

dt

Z
Ω
eρΨdxdθ = e−λ0t

Z
∂Ω
f(t, σ)Ψ(σ)dσ
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and thus the conclusion for a regular solution. To conclude for a weak solution, use again a
density argument.
(iii) Writing the solution of the global problem as ρ = etAρ0 + T f , we only have to prove the
positivity for the homogeneous part since the positivity of the non-homogeneous one has been
established in the proposition 4.21. It can be proved in the same way as the contraction principle
(first property) but using the negative part function instead of the absolute value. We take a non-
negative initial condition ρ0 ≥ 0 and will show that the associated solution of the homogeneous
equation ρ(t) = etAρ0 is non-negative for all time. Let denote by (x)− = max(−x, 0) and use
this function in the equation. Indeed it is a Lipschitz function which is valid for the use of
the proposition 3.32, and proceeding exactly as in the lemma 4.26, we get that (eρ)− satisfies
equation (36) :

∂t((eρ)−Ψ) + div(G(eρ)−Ψ) = −β(eρ)−

Then, integrating in space gives

d

dt

Z
Ω

(eρ)−Ψdxdθ =
�Z

Ω
βeρdxdθ�− − Z

Ω
β(eρ)−dxdθ ≤ 0,

by using the Jensen inequality. Hence we have, using the positivity of Ψ

0 ≤
Z

Ω
(eρ)−Ψdxdθ ≤

Z
Ω

(ρ0)−Ψdxdθ = 0

So (ρ)− = 0 which means that ρ ≥ 0. The density of D(A) again gives the result for weak
solutions.

Proposition 4.27 (Asymptotic behavior). Assume thatZ ∞
0

Z
∂Ω
β(Φτ (σ))N(σ)dτdσ > 1,

and that there exists µ > 0 such that β − µΨ ≥ 0. Let ρ0 ∈ L1(Ω), f ∈ L1(]0,∞[×∂Ω), ρ the
associated solution to the global problem and (λ0, V,Ψ) ∈ R∗+ × D(A) × D(A∗) be solutions to
the direct and adjoint eigenproblems. We have :

||ρ(t)e−λ0t −m(t)V ||L1
Ψ
≤ e−µt

�
||ρ0 −m0V ||L1

Ψ
+ 2

Z t

0
e−(λ0−µ)s

Z
∂Ω
|f |(s, σ)Ψ(σ)ds

�
,

where ||f ||L1
Ψ

=
Z

Ω
|f |Ψ, and m(t) = e−λ0t

Z
Ω
ρ(t)Ψ =

Z
Ω
ρ0Ψ +

Z t

0
e−λ0s

Z
∂Ω
f(s, σ)Ψ(σ)dσds.

Remark 4.28. Notice that choosing µ < λ0 gives the convergence of the integralZ ∞
0

e−(λ0−µ)s
Z
∂Ω
|f |(s, σ)Ψ(σ)ds

and thus the exponential convergence to zero of the right hand side of the inequality.

Remark 4.29. The hypothesis of the theorem are fulfilled in the case of biological applications
where β(x, θ) = mxα, because we have then β ≥ m > 0 and Ψ ∈ L∞(Ω).
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Proof. Again we start with a regular solution ρ(t, x, θ). We then follow the calculation done in
[Per07] III.7 pp.66-67, adapting the method to take into account the contribution of the source
term. Define the function

h(t, x, θ) = ρ(t, x, θ)e−λ0t −m(t)V (x, θ)

which satisfies
R

Ω h(t)Ψ = 0 for all non-negative t, by the property of evolution of the mean
value and since

R
Ω VΨ = 1. As the direct eigenvector V solves the equation (35), h solves the

equation
∂th+ div(hG) + λ0h = −e−λ0tFV

where F (t) :=
Z
∂Ω
f(t, σ)Ψ(σ). Multiplying the equation by the function sgn(h) gives the

following equation on |h|

∂t|h|+ div(|h|G) + λ0|h| = −e−λ0tFV sgn(h)

Multiplying this equation by Ψ, the equation on Ψ by |h| and then summing the both gives

∂t(|h|Ψ) + div(G|h|Ψ) = −β|h| − e−λ0tFVΨsgn(h)

Now integrating in (x, θ) yields :

d

dt

Z
Ω
|h|Ψdxdθ =

Z
∂Ω

Ψ(σ)
����N(σ)

Z
Ω
βhdxdθ + e−λ0tf(t, σ)

���� dσ − ZΩ
β|h|dxdθ

− e−λ0tF
Z

Ω
VΨsgn(h)dxdθ

≤
����ZΩ

βhdxdθ

����− ZΩ
β|h|dxdθ| {z }

A

+ 2e−λ0tF (t)

where F (t) :=
Z
∂Ω
|f(t, σ)|Ψ(σ), using the positivity of the eigenvectors V and Ψ and the facts

that
Z

Ω
VΨ = 1 and

R
∂ΩNΨ = 1. We compute

A ≤
����ZΩ

βhdxdθ − µ
Z

Ω
Ψhdxdθ

����− ZΩ
β|h|dxdθ ≤

Z
Ω

(β − µΨ)|h|dxdθ −
Z

Ω
β|h|dxdθ

≤ −µ
Z

Ω
Ψ|h|dxdθ

where we used that β − µΨ ≥ 0.
A Gronwall lemma finally givesZ

Ω
|h(t)|Ψ ≤ e−µt

�Z
Ω
|h(0)|Ψ + 2

Z t

0
e−(λ0−µ)sF (s)ds

�
which is the required result. For an initial data in L1(Ω), remark that it is possible to pass to
the limit in the previous expression and thus to use the density of regular solutions.



114 Chapter 4. Autonomous case. Model without treatment

4 Numerical illustrations of the asymptotic behavior

For investigation of the asymptotic behavior, since the eigenelements after change of variables
are decoupled in the product of a function along the boundary and a function depending on
the time τ along the characteristic (see formula (37) below), we consider the simulation of the
system along only one characteristic, taking N(σ) = δσ=σ0 , the Dirac mass centered on the
point σ0 = (1, θ0) (see the chapter 6 for further considerations on this point). We recall the
expressions of the direct and dual eigenvectors V and Ψ, from proposition 4.11.

V (τ) = V (Φτ (σ0)) = Cλ0e
−λ0τ |JΦ|−1, ∀τ > 0 (37)

Ψ(τ) = Ψ(Φτ (σ0)) = eλ0τ
Z ∞
τ

β(Φs(σ))e−λ0sds, ∀τ > 0.

with the malthus exponent λ0 solving the following spectral equationZ +∞

0
β(Φτ (σ0))e−λ0τdτ = 1. (38)

4.1 Asymptotic behavior for realistic parameters

We first look at the asymptotic behavior of the model with the fitted growth parameters from
[HPFH99] and some reasonable values of m and α as well as initial conditions. The parameters
values are given by :

a = 0.192, c = 5.85, d = 0.00873,
m = 10−3, α = 2

3 , x0 = x0,p = 10−6, θ0 = θ0,p = 10−5.
(39)

We estimate then the value of λ0 by numerically computing the asymptotic slope of the total
number of metastases and check its relevance by computing also the value of the spectral equation
(38). This is illustrated in the figure 1.

λ0 = 0.05

Z +∞

0
β(Φτ (σ0))e−λ0τdτ = 1.00067

Figure 1: Number of metastases for large times in log-scale and computation of the value of λ0
as well as

R+∞
0 β(Φτ (σ0))e−λ0τdτ .
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We then look at the eigenelements and compare our computed solution at the final time
with eλ0TV (τ) as well as the shape of the dual eigenvector which for technical reasons we don’t
compute on the whole interval, since its computation for each τ requires the computation of an
integral until infinity. This is illustrated in the Figure 2.

A B C

Figure 2: Eigenelements. The figures represent the x-projection of functions defined on the curve
{Φτ (σ0), 0 ≤ τ <∞} A. Asymptotic distribution ρ(T,X) B. eλ0TV (X). B. Dual eigenvector

4.2 Influence of the parameters on the Malhus value λ0

In order to investigate further the asymptotic behavior of the system, we consider numerically
more convenient parameters and initial conditions, which we will refer to as “base parameters"
and are given by

a = 1, c = 1, d = 0.22
m = 1.5, α = 1

x0 = x0,p = 1, θ0 = θ0,p = 5
(40)

and first investigate the effect of varying parameters around this position on the malthus pa-
rameter λ0 that we numerically compute. We also numerically compute an approximation ofR+∞

0 β (Φτ (σ0)) e−λ0τdτ which should be equal to 1 according to the theory (proposition 4.11).
Some results are given in the table 1.

Parameter Base m = 1 α = 0.1 a = 10 d = 0.01 c = 10
λ0 2.52289 1.90673 1.58651 5.13798 2.61644 3.06971R+∞

0 β (Φτ (σ0)) e−λ0τdτ 1.00708 1.00184 1.01002 0.950986 1.00765 1.01014

Table 1: Value of the malthus exponent λ0 for different values of the parameters. The base
parameters are used, changing only one value each time.

4.3 Shape of the direct eigenvector

When looking at the Figure 2 we remark that the direct eigenvector seems not to belong to L∞
and a legitimate question arises : what governs the shape of the eigenvector?

From its expression (37), remembering the formula |JΦ| (τ, σ0) = G1(1, θ0)e
R τ

0 div(G(Φs(σ0)))ds
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(see proposition 3.4 of chapter 3), we have

V (τ) = eh(τ), h(τ) = −λ0τ −
Z τ

0
div(G(Φs(σ0)))ds.

We can compute that

div(G(Φs(σ0))) −−−−→
s→+∞

div(G)
��

c

d

�3/2
,
�
c

d

�3/2�
= c− a− 2

3

�
c

d

�3/2

and derive that asymptotically

h(τ) ∼
�
a+ 2

3

�
c

d

�3/2
− c− λ0

�
τ. (41)

From this we can predict that, since basic considerations show that λ0 is increasing with respect
to m, for large values of m, then V should be in L∞ (and even going to zero at X∗). Indeed,
with the growth parameters given by (39), for large values of m this is the case, as shown in
the Figure 3.A (the same parameters with m = 10−3 exhibit an unbounded direct eignevector,
see Figure 2). Interestingly and in connection with the fact that increasing α does not always
increase λ0 (see Figure 5 of chapter 7), especially for large values of m, we observe in Figure 3.B
that for α = 1, with the same value of m, then the eigenvector does not belong to L∞ anymore.
This indicates that in the expression (41), the balance between the growth parameters and λ0
is in favor of the first ones. Indeed the respective values of λ0 for α = 0.6 and α = 1 are 10.7805
and 2.67727. This behavior is the opposite than the one depicted in the paper of Iwata et al.
[IKN00] in the one-dimensional case, where the size is expressed in number of cells and thus is
bigger than 1. Expressing the size in mm3 as we did and considering a large value of m exhibits
thus a different behavior. However, in the following results below of the table 2 we have the same
qualitative behavior as in Iwata et al., namely a bounded eigenvector for α = 1 and unbounded
for α = 0.1.

α = 0.6

A

α = 1

B

Figure 3: Two different shapes of the direct eigenvector (multiplied here by eλ0T ) depending on
the value of α, with m = 105.
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To investigate further this fact, we start from the base parameters given by (40), for which
the eigenvector is bounded and we vary each parameter one by one, guided by formula (41),
to obtain a non-bounded eigenvector. We were able to obtain such a fact for each parameter
except for d for which we stopped investigate because we were reaching too small numerical
values (until d = 10−12) without obtaining an unbounded eigenvector, whereas formula (41)
predicts that small values of d should do so. However, the overall behavior suggested that
smaller values could produce such a fact. For the other parameters, everything happens as
predicted by (41) namely we can pass from a bounded eigenvector to an unbounded one by :
increasing a, increasing c, decreasing m or decreasing α. The results are reported in the table 2.

Parameter a d c m α

V ∈ L∞ 1 0.22 1 1.5 1
V /∈ L∞ 10 ∗ 10 0.5 0.1

Table 2: Investigation of the boundedness of the direct eigenvector with respect to the parameter
values (see text for the specifity of d).
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Chapter 5

Non autonomous case. Theoretical
and numerical analysis

In this chapter, we present some mathematical and numerical analysis of the model estab-
lished in the chapter 1, section 1.5 in the non-autonomous case that is, when both cytotoxic and
AA treatments are present and with a general growth field G (i.e. the growth law of the tumours)
satisfying the hypothesis that there exists a positive constant δ such that −G(t, σ) ·ν(σ) ≥ δ > 0
for all t > 0 and almost every σ ∈ ∂Ω where ν is the normal to the boundary ∂Ω of the domain Ω
where metastases live, meaning that G points inward the domain. We first simplify the problem
by straightening the characteristics of the equation, in the same way as we did in the study
of W p

div(Ω) (see chapter 3). We perform some theoretical analysis first at the continuous level
(uniqueness and a priori estimates). Then we introduce an approximation scheme which follows
the characteristics of the equation (lagrangian scheme). The introduction of such schemes in
the area of size-structured population equations can be found in [ALM99] for one-dimensional
models. Here, we go further in the lagrangian approach by doing the change of variables straight-
ening the characteristics and discretizing the simple resulting equation, in the case of a general
class of two-dimensional non-autonomous models. We prove existence of the weak solution to
the continuous problem through the convergence of this scheme via discrete a priori L∞ bounds
and establish an error estimate in the case of more regular data, that we illustrate numerically.
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We recall that the problem we consider is given by8<:
∂tρ(t,X) + div(ρ(t,X)G(t,X)) = 0 ∀(t,X) ∈]0, T [×Ω
−G · ν(t, σ)ρ(t, σ) = N(σ)

R
Ω β(X)ρ(t,X)dX + f(t, σ) ∀(t, σ) ∈]0, T [×∂Ω

ρ(0, X) = ρ0(X) ∀X ∈ Ω.
(1)

where, in the case of the model from section 1.5 of chapter 1, G(t, x, θ) = (G1(t, x, θ), G2(t, x, θ))
is given by (

G1(t, x, θ) = ax ln
�
θ
x

�
− hγC(t)(x− xmin)+

G2(t, x, θ) = cx− dθx
2
3 − eγA(t)(θ − θmin)+ (2)

1 Analysis at the continuous level

In the autonomous case, that is when G depends only on X and there is no treatment, the
analysis of the equation (1) has been performed in the chapter 4. It was proven existence,
uniqueness, regularity and asymptotic behavior of solutions. We present now some analysis on
the equation (1) with a more general growth field G than the one from our model given by (2).

Let Ω =]1, b[2 and G : R× Ω → R2 be a C1 vector field. We make the following assumption
on G :

∃ δ > 0, −G(t, σ) · ν(σ) ≥ δ > 0 ∀ 0 ≤ t ≤ T, a.e. σ ∈ ∂Ω, (3)
which means that G points inward all along the boundary for all times and that the metastases
can’t go out of Ω (and thus are never removed from the system). We do the following assumptions
on the data :

ρ0 ∈ L∞(Ω), β ∈ L∞(Ω), N ∈ L∞(∂Ω), N ≥ 0,
Z
∂Ω
N(σ)dσ = 1, f ∈ L∞(]0, T [×∂Ω). (4)

Remark 5.1.
• In the case of G being given by (2) if there is no treatment (that is, if e = h = 0, or t ≤ t1)
then we don’t have −G(t, σ) · ν(σ) ≥ δ > 0 all along the boundary since G vanishes at the point
(b, b). But since the problem was solved in this case (see chapter 4) we consider that the time 0 is
the starting time of the treatment and that either e or h is positive, which makes the assumption
(3) true. Notice that this assumption implies that the treatment is ineffective on metastases with
minimal size or angiogenic capacity, which is true in our case (see the expressions (2)).
• The following analysis at the continuous level extends to the case where Ω has a boundary
which is piecewise C1 except in a finite number of points.
Definition 5.2 (Weak solution). We say that ρ ∈ L∞(]0, T [×Ω) is a weak solution of the
problem (1) if for all test function φ in C1([0, T ]× Ω) with φ(T, ·) = 0Z T

0

Z
Ω
ρ(t,X) [∂tφ(t,X) +G(t,X) · ∇φ(t,X)] dXdt+

Z
Ω
ρ0(X)φ(0, X)dX

+
Z T

0

Z
∂Ω
{N(σ)B(t, ρ) + f(t, σ)}φ(t, σ) = 0

(5)
where we denoted B(t, ρ) :=

R
Ω β(X)ρ(t,X)dX.

Remark 5.3. By approximating a Lipschitz function by C1 ones, it is possible to prove that the
definition of weak solutions would be equivalent with test functions in W 1,∞([0, T ]×Ω) vanishing
at time T .
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1.1 Change of variables

Our approach is based on the method of characteristics and consists in straightening the char-
acteristics to simplify the problem through a change of variables. Let Φ(t; τ, σ) be the solution
of the differential equation ¨

d
dtΦ(t; τ, σ) = G(t,Φ(t; τ, σ))

Φ(τ ; τ, σ) = σ
.

For each time t > 0, we define the entrance time τ t(X) and entrance point σt(X) for a point
X ∈ Ω :

τ t(X) := inf{0 ≤ τ ≤ t; Φ(τ ; t,X) ∈ Ω}, σt(X) := Φ(τ t(X); t,X).

We consider the sets

Ωt
1 = {X ∈ Ω; τ t(X) > 0}, Ωt

2 = {X ∈ Ω; τ t(X) = 0}

and
Q1 := {(t,X) ∈ [0, T ]× Ω; X ∈ Ωt

1}, Q2 := {(t,X) ∈ [0, T ]× Ω; X ∈ Ωt
2}.

We also define ÝQ1 := {(t, τ, σ); 0 ≤ τ ≤ t ≤ T, σ ∈ ∂Ω} = Φ−1(Q1) and notice that

Σ1 := [0, T ]×∂Ω = {(t,X); τ t(X) = 0}, and Σ2 = {(t,Φ(t; 0, σ)); 0 ≤ t ≤ T, σ ∈ ∂Ω} = {(t,X); τ t(X) = 0}.

See figure 1 for an illustration. We can now introduce the changes of variables that we will
constantly use in the sequel. The proof of the following proposition is very similar to the one of
proposition 3.4 and is postponed to the section 5.4.

Proposition 5.4 (Change of variables). The maps

Φ1 :
ÜQ1 → Q1

(t, τ, σ) 7→ (t,Φ(t; τ, σ)) and Φ2 : [0, T ]× Ω → Q2
(t, Y ) 7→ (t,Φ(t; 0, Y ))

are bilipschitz. The inverse of Φ1 is (t,X) 7→ (t, τ t(X), σt(X)) and the inverse of Φ2 is (t,X) 7→
(t, Y (X)) with Y (X) = Φ(0; t,X). Denoting J1(t; τ, σ) = |det(DΦ1)| and J2(t;Y ) = |det(DΦ2)|,
where DΦi stands for the differential of Φi, we have :

J1(t; τ, σ) = |G(τ, σ) · ν(σ)|e
R t
τ

divG(u,Φ(u;τ,σ))du and J2(t;Y ) = e
R t

0 divG(u,Φ(u;0,Y ))du (6)

We refer to the appendix of this chapter for the proof of this result and to the figure 1 for an
illustration.

Using these changes of variables we can write for a function f ∈ L1(]0, T [×Ω)Z T

0

Z
Ω
f(X)dX =

Z T

0

Z t

0

Z
∂Ω
f(Φ1(t; τ, σ))J1(t; τ, σ)dσdτ +

Z T

0

Z
Ω
f(Φ2(t; 0, Y ))J2(t;Y )dY.

We want to decompose the equation (1) into two subequations : one for the contribution of the
boundary term and one for the contribution of the initial condition. Defining

eρ1(t, τ, σ) := ρ(t,Φ(t; τ, σ))J1(t; τ, σ) and eρ2(t, Y ) := ρ(t,Φ(t; 0, Y ))J2(t;Y ) (7)
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θ

Figure 1: The two changes of variables Φ1 and Φ2 (represented only on the plane θ = 1).
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we have, when the solution is regular : ∂teρ1 = (∂tρ+ div (ρG)) J1 = 0 and the same for eρ2. It is
thus natural to introduce the following equations¨

∂teρ1(t, τ, σ) = 0 0 < τ ≤ t < T, σ ∈ ∂Ωeρ1(τ, τ, σ) = N(σ)ÜB(τ, eρ1, eρ2) + f(τ, σ) 0 < τ < T, σ ∈ ∂Ω (8)

where we denoted

ÜB(τ, eρ1, eρ2) =
Z τ

0

Z
∂Ω
β(Φ(τ ; s, σ))eρ1(τ, s, σ)dσds+

Z
Ω
β(Φ(τ ; 0, Y ))eρ2(τ, Y )dY,

and ¨
∂teρ2 = 0 t > 0, Y ∈ Ωeρ2(0;Y ) = ρ0(Y ) Y ∈ Ω. (9)

We precise the definition of weak solutions to these equations.

Definition 5.5. We say that a couple (eρ1, eρ2) ∈ L∞(ÜQ1)× L∞(]0, T [×Ω) is a weak solution of
the equations (8)-(9) if for all eφ1 ∈ C1(ÜQ1) with eφ1(T, ·) = 0 we have :Z T

0

Z t

0

Z
∂Ω
eρ1(t, τ, σ)∂t eφ1(t, τ, σ)dσdτdt+

Z T

0

Z
∂Ω

¦
N(σ)ÜB(t, eρ1, eρ2) + f(t, σ)

© eφ1(t, t, σ) = 0,

(10)

and for all eφ2 ∈ C1([0, T ]× Ω) with eφ2(T, ·) = 0 we haveZ T

0

Z
Ω
eρ2(t, Y )∂t eφ2(t, Y )dt+

Z
Ω
ρ0(Y )eφ2(0, Y )dY = 0. (11)

Remark 5.6. If eρ1 is a regular function which solves (8), then the weak formulation is satisfied
since we have :Z T

0

Z t

0

Z
∂Ω
eρ1(t, τ, σ)∂t eφ1(t, τ, σ)dσdτdt =

Z T

0

Z
∂Ω
eφ1(T, τ, σ)eρ1(T, τ, σ)dτdσ| {z }

=0

−
Z T

0

Z t

0
eφ1(t, τ, σ)∂teρ1(t, τ, σ)dσdτdt−

Z T

0

Z
∂Ω
eφ1(t, t, σ)eρ1(t, t, σ)dσdt.

We prove now the following theorem, establishing the equivalence between the problem (1)
and the problem (8)-(9).

Theorem 5.7 (Equivalence between problem (1) and problem (8)-(9)). Let ρ ∈ L∞(]0, T [×Ω)
be a weak solution of the equation (1). Then (eρ1, eρ2) given by (7) is a weak solution of (8)-(9).
Conversely, if eρ1 and eρ2 are weak solutions of (8) and (9), then the function defined by

ρ(t,X) := eρ1(t, τ t(X), σt(X))J−1
1 (t, τ t(X), σt(X))1X∈Ωt1+eρ2(t, Y (X))J−1

2 (t, Y (X))1X∈Ωt2 (12)

is a weak solution of (1).
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Proof.
• Direct implication. Let ρ be a weak solution of the equation (1). We will prove that eρ2

defined by (7) solves (9). Let eφ2 ∈ C1([0, T ] × Ω) with eφ2(T, ·) = 0. We define, for X ∈ Q2,
φ2(t,X) := eφ2(t, Y (X)) ∈ W 1,∞(Q2) and we intend to extend it in a Lipschitz function of
[0, T ]×Ω so that we can use it as a test function in the weak formulation for ρ (see remark 5.3).
We define, for (t, τ, σ) ∈ ÜQ1, eφε1(t, τ, σ) = eφ2(t, σ)ζε(τ) with ζε(τ) being a truncature function in
C1([0,+∞[) such that 0 ≤ ζε ≤ 1, ζε(0) = 1, ζε(τ) = 0 for τ ≥ ε. Then eφε1 ∈ W 1,∞(ÜQ1) and
we set φε1(t,X) := eφε1(t, τ t(X), σt(X)) ∈ W 1,∞(Q1) since τ t(X) and σt(X) are Lipschitz from
proposition 5.4. We define then

φε :=
¨
φε1 on Q1
φ2 on Q2

.

The function φε is Lipschitz on Q1, Lipschitz on Q2 and φε ∈ C([0, T ] × Ω) since Q1 ∩ Q2 =
{(t,X); τ t(X) = 0}. Thus φε ∈W 1,∞([0, T ]× Ω) with φε(T, ·) = 0. Using φε as a test function
in (5), we haveZ

Q1
ρ[∂tφε1 +G · ∇φε1]dXdt+

Z T

0

Z
∂Ω
{N(σ)B(t, ρ) + f(t, σ)}φε1(t, σ)dtdσ

+
Z
Q2
ρ[∂tφ2 +G · ∇φ2]dXdt+

Z
Ω
ρ0(X)φ2(0, X)dX = 0 = I1

ε + I2.

By doing the change of variables Φ1 in the term Iε1 and noticing that φε1(t, σ) = eφε1(t, t, σ) =eφ2(t, σ)ζε(t), we obtain

Iε1 =
Z T

0

Z t

0
eρ1(t, τ, σ)∂t eφ1(t, σ)ζε(τ)dσdτdt+

Z T

0

Z
∂Ω
B(t, ρ)eφ2(t, σ)ζε(t)dσ −−−→

ε→0
0.

Now doing the change of variables Φ2 in the second term I2 and noticing that ∂t eφ2(t, Y ) =
∂t(φ2(t,Φ(t; 0, Y ))) = ∂tφ2(t,Φ(t; 0, Y )) + G(t,Φ(t; 0, Y )) · ∇φ2(t,Φ(t; 0, Y )) gives the result.
The equation on eρ1 is proved in the same way.
• Reverse implication. Let eρ1 and eρ2 be solutions of (8) and (9) respectively. Define ρ(t,X) by

(12), and consider a test function φ ∈ C1([0, T ]×Ω) with φ(T, ·) = 0. Then φ1 := φ|Q1 ∈ C1(Q1),
with φ1(T, ·) = 0, thus eφ1(t, τ, σ) := φ1(t,Φ1(τ, σ)) is valid as a test function in the weak
formulation of (8). In the same way eφ2(t, Y ) := φ2(t,Φ2(Y )) with φ2 := φ|Q2 is valid as a test
function for (9). Thus we haveZ

eQ1
eρ1(t, τ, σ)∂t eφ1(t, τ, σ)dσdτdt+

Z T

0

Z
∂Ω
ÜB(t, eρ1, eρ2)eφ1(t, t, σ)dσdt

+
Z T

0

Z
Ω
eρ2(t, y)∂t eφ2(t, y)dtdy +

Z
Ω
ρ0(y)eφ2(0, y)dy = 0

Doing the changes of variables gives the weak formulation of (1).

This theorem simplifies the structure of the problem (1). In some sense, it formalizes the
method of characteristics in the framework of weak solutions for our problem. The characteristics
are straightened (see figure 1) and the directional derivative along the field (t, G) is transformed
in only a time derivative. Moreover, integrating the jacobians (which contains the transformation
of areas) in the definitions of eρ1 and eρ2, these functions are constant in time. The continuous
analysis and discrete approximation of the problem (1) is thus simplified.
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1.2 Uniqueness

We will present two different methods to establish uniqueness of weak solutions to the problem
(1), the second one being known from us by B. Perthame :

1. By a priori L1 and L∞ estimates obtained directly on weak solutions

2. By proving existence of regular solutions to the adjoint problem

A priori continuous estimates

To obtain a priori estimates on the solutions of the equation in order to prove uniqueness, we
need a trace for a solution to the transport equation as well as the fact that |ρ| also solves
the equation. These issues are treated in the papers of Bardos [Bar70] and Beals-Protopopescu
[BP87]. We will use a result well adapted for our aim from Boyer [Boy05].

Theorem 3.1 from [Boy05] . Let ρ ∈ L∞(]0, T [×Ω) be a solution, in the distribution sense,
to the equation :

∂tρ+ div(ρG) = 0. (13)

(i) The function ρ lies in C([0, T ];Lp(Ω)), for any 1 ≤ p <∞. Furthermore, ρ is continuous
in time with values in L∞(Ω) weak-∗.

(ii) There exists a function γρ ∈ L∞(]0, T [×∂Ω; |dµG|), with dµG = (G · ν)dtdσ, such that for
any h ∈ C1(R), for any test function φ ∈ C1([0, T ] × Ω), and for any [t0, t1] ⊂ [0, T ], we
haveZ t1

t0

Z
Ω
h(ρ)(∂tφ+ div(Gφ))dtdX +

Z
Ω
h(ρ(t0))φ(t0)dX −

Z
Ω
h(ρ(t1))φ(t1)dX

−
Z t1

t0

Z
∂Ω
h(γρ)φG · νdtdσ −

Z t1

t0

Z
Ω
h′(ρ)ρdiv(G)φdtdX = 0 (14)

Remark 5.8.
• By approximating the function s 7→ |s| by C1 functions, it is possible to show that the

formula (14) stands with h(s) = |s|.
• The second point of the proposition implies in particular that h(ρ) has a trace which is

h(γρ).
• In [Boy05], this proposition is proved in the case of a much less regular field G but with

the technical assumption that div(G) = 0, which is not the case here. Though, the proof can be
extended to our case.

Thanks to this result, we can prove the following proposition.

Proposition 5.9 (Continuous a priori estimates). Let ρ ∈ L∞(]0, T [×Ω) be a weak solution of
the equation (1). The following estimates hold

||ρ(t, ·)||L1(Ω) ≤ et||β||L∞ ||ρ0||L1(Ω) +
Z t

0
e(t−s)||β||L∞

Z
∂Ω
|f(s, σ)|dσds (15)
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and

||ρ||L∞(]0,T [×Ω) ≤ C∞ (16)

with

C∞ =
�
||N ||L∞ ||β||L∞ ||ρ||L∞(L1) + ||f ||L∞

�
||G||L∞eT ||divG||L∞ + ||ρ0||L∞eT ||divG||L∞

Proof.
• Estimate in L1. Let ρ be a weak solution of the equation (1). Then in particular it

solves (13) in the sense of distributions. Thus the proposition 5.1.2.0 applies and gives a trace
γρ ∈ L∞(]0, T [×∂Ω; |dµG|). Now, by using (14) with h(s) = s and the definition of weak
solutions to the equation (1) we have that for all φ ∈ C1

c ([0, T [×Ω)Z T

0

Z
∂Ω
γρ(t, σ)φ(t, σ)G(t, σ) · νdσdt =

Z T

0

Z
∂Ω

§
N(σ)

Z
Ω
β(X)ρ(t,X)dX + f(t, σ)

ª
φ(t, σ)dσdt

which gives

−γρ(t, σ)G(t, σ) · ν = N(σ)
Z

Ω
β(X)ρ(t,X)dX + f(t, σ), a.e. (17)

In view of the remark 5.8, we know that |ρ| is also a weak solution to the equation (1), with
initial data |ρ0| and boundary data |N(σ)B(t, ρ) + f(t, σ)|. By integrating this equation on Ω
and using the divergence formula, we obtain in the distribution sense :

d

dt

Z
Ω
|ρ(t,X)|dX = −

Z
∂Ω
G(t, σ) · ν|γρ(t, σ)|dσ =

Z
∂Ω
|N(σ)B(t, ρ) + f(t, σ)| dσ

and thus
d

dt

Z
Ω
|ρ(t,X)|dX ≤ ||β||∞

Z
Ω
|ρ(t,X)|dX + |f(t, σ)|.

A Gronwall lemma concludes.
• Estimate in L∞. Using the proposition 5.7, we have eρ1 and eρ2 solving (8) and (9). By

doing the changes of variables, using the definitions of eρ1 and eρ2 and the formulas (6), we see
that

||ρ(t, ·)||L1(Ω) = ||eρ1(t, ·)||L1(]0,t[×∂Ω) + ||eρ2(t, ·)||L1(Ω), ∀ t > 0

||ρ||L∞(]0,T [×Ω) ≤ ||eρ1||L∞(eQ1)||G||L∞(∂Ω)e
T ||divG||∞ + ||eρ2||L∞(]0,T [×Ω)e

T ||divG||∞

But solving explicitely the equation (8), we have

|eρ1(t, τ, σ)| = |eρ1(τ, τ, σ)| =
���N(σ)ÜB(t, eρ1, eρ2) + f(t, σ)

���
≤ ||N ||∞||β||∞(||eρ1(τ, ·)||L1 + ||eρ2(τ, ·)||L1) + ||f ||L∞
≤ ||N ||∞||β||∞||ρ(τ, ·)||L1 + ||f ||L∞

On the other hand, for eρ2 we have ||eρ2||L∞(]0,T [×Ω) = ||eρ2(0)||L∞(Ω) = ||ρ0||L∞(Ω).

Remark 5.10. The expression (17) shows that in the case of a zero boundary data f , the trace
γρ has some extra regularity, namely it is C([0, T ];L1(∂Ω)).

Corollary 5.11 (Uniqueness). If ρ and ρ′ are two weak solutions of the problem (1), then ρ = ρ′

almost everywhere.
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Formal adjoint problem

We place ourselves in a slightly more general framework with

N ∈M(∂Ω), f ∈ L∞(]0, T [;M(∂Ω)).

where the space measures we use will be denoted byM and design the dual spaces of bounded
continuous functions on the underlying set. We will denote by <,> the corresponding duality
products. We want to prove uniqueness of weak solutions ρ ∈ L∞(]0, T [;M(Ω)) for the following
equation, which is the weak formulation of solution to problem (1) for measure data N and f :
for all ψ ∈ C1([0, T ]× Ω) with ψ(T, ·) = 0Z T

0
< ρ, ∂tψ +G(t, x, θ) · ∇ψ+β < N,ψ|∂Ω(t, ·) > dxdθ > + < ρ0, ψ(0, ·) > + (18)

< f(t, ·), ψ|∂Ω(t, ·) > dt = 0.

Since the equation is linear, we have to prove that if ρ satisfies the problem with zero initial and
boundary data, that is : for all ψ ∈ C1([0, T ]× Ω) with ψ(T, ·) = 0Z T

0
< ρ, ∂tψ +G · ∇ψ + β < N,ψ|∂Ω(t, ·) >> dt = 0, (19)

then ρ = 0. It will result from the existence of regular solutions to the adjoint problem, proven
in the following proposition.

Proposition 5.12. Let S ∈ C1
c (]0, T [×Ω). We assume that β ∈ C1(Ω). Then there exists

ψ ∈ C1([0, T ]× Ω) with ψ(T, ·) = 0 such that¨
∂tψ +G(t, x, θ) · ∇ψ + β(x, θ) < N,ψ|∂Ω(t, ·) >= S, t > 0, (x, θ) ∈ Ω
ψ(T, x, θ) = 0 . (20)

Proof. Using the method of characteristics to solve explicitly the problem if we assume that
there exists a solution, we obtain

ψ(t,Φ(t;T, y)) = −
Z t

T
β(Φ(s;T, y)) < N,ψ|∂Ω(s, ·) > ds+

Z t

T
S(s,Φ(s;T, y))ds.

If we set eψ(t, y) = ψ(t,Φ(t;T, y)), eβ(y) = β(Φ(s;T, y)) and eS(t, y) = S(t,Φ(t;T, y)), we can
rewrite it eψ(t, y) =

Z t

T

eS(s, y)− eβ(s, y) < N,ψ|∂Ω(s, ·) > ds. (21)

We have the following regularities : eβ, eS ∈ C1([0, T ]×Ω) since the change of variables we use here
is a diffeomorphism. We need the following compatibility condition on ψ(t, σ) for σ ∈ ∂Ω, using
that σ = Φ(t;T, y) ⇔ y = Φ(T ; t, σ) and defining y(t, σ) = Φ(T ; t, σ), f(t, σ) := eψ(t,Φ(T ; t, σ))
:

f(t, σ) = −
Z t

T

eβ(s, y(t, σ)) < N, f(s, ·)) > ds+
Z t

T

eS(s, y(t, σ))ds. (22)

Concerning regularity, notice that y(t, σ) ∈ C1([0, T ]; C(∂Ω)) since ∂t(Φ(T ; t, σ)) = −DyΦ(T ; t, σ)◦
G(t, σ).
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Lemma 5.13. Let S ∈ C1
c (]0, T [×Ω) and β ∈ C1(Ω). Then there exists a solution f ∈

C1([0, T ]; C(∂Ω)) to the integral equation (25) and there exists two constants A(S, T ) and B(S, T )
such that

||f ||L∞(]0,T [×∂Ω) ≤ T ||S||L∞(]0,T [×Ω)e
T ||N ||M(∂Ω)||β||L∞(Ω) . (23)

Proof. Let T1 ∈ [0, T [ and define the following operator :

T : C([T1, T ]× ∂Ω) → C([T1, T ]× ∂Ω)
f 7→ −

R t
T
eβ(s, y(t, σ)) < N, f(s, ·)) > ds+

R t
T
eS(s, y(t, σ))ds

Then T is well defined in the claimed spaces and is a contraction if (T−T1)||β||∞||N ||M < 1. We
use then the Banach fixed point theorem and a bootstrap argument. The announced regularity
comes from formula (25). Indeed, we can compute

∂tf(t, σ) = eS(t, y(t, σ)) +
Z t

T
∂y eS(s, y(t, σ))∂ty(t, σ)ds

− eβ(t, y(t, σ)) < N, f(t, ·) > −
Z t

T
∂y eβ(s, y(t, σ))∂ty(t, σ) < N, f(s, ·) > ds.

For the σ derivative, we have

∂σf(t, σ) = −
Z t

T
∂y eβ(s, y(t, σ))∂σy(t, σ) < N, f(s, ·) > ds+

Z t

T
∂y eS(s, y(t, σ))∂σy(t, σ)ds.

� To establish (23), we use (25) to obtain, setting f(t) = f(T − t) :

||f(t)||L∞(∂Ω) ≤ ||β||L∞ ||N ||M
Z t

0
||f(s)||L∞(∂Ω)ds+ T ||S||L∞

from which we get (23), using a Gronwall lemma.

Thanks to this lemma, the formula (21) gives the function eψ and we also see that we haveeψ(T, ·) = 0 and eψ ∈ C1([0, T ] × Ω). Now, using the inverse change of variables ψ(t,X) =eψ(t,Φ(T ; t,X)), we get the regularity on ψ since for each t > 0, X 7→ Φ(T ; t,X) is a diffeomor-
phism.

Corollary 5.14. The weak solution of the equation (18) is unique.

Proof. Let ρ ∈ L∞(]0, T [;M(Ω)) solving (19) and S ∈ C1
c (]0, T [×Ω). Suppose first that β ∈

C1(Ω). The previous proposition ensures thatZ T

0
< ρ, S > dt = 0.

The function S being arbitrary this implies ρ = 0.
For β ∈ Cb(Ω) by regularization there exists a sequence βn ∈ C1(Ω) converging to β in Cb(Ω).
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Let then S ∈ C1
c (]0, T [×Ω). The resolution of the problem (20) with data βn gives a function ψn

that we put in the definition of weak solutions (18) (with data β). We getZ T

0
< ρ(t, ·), S > dt+

Z T

0
< ρ(t, ·), (β − βn) >< N,ψ|∂Ω(t, ·) > dt

Using the L∞ estimate (23) for n large enough we have |ψn(t, σ)| ≤ C for all (t, σ) ∈]0, T [×∂Ω,
with C a constant independent of n. We conclude by passing to the limit in n.

Remark 5.15. For a data β ∈ L∞(Ω) (in the case N ∈ L1(∂Ω) and ρ ∈ L∞(]0, T [;L1(Ω)))
the previous proof applies : by regularization we approach β by a sequence βn ∈ C1(Ω) which
converges to β for the weak-∗ topology of L∞(Ω). Hence the uniqueness result also stands.

2 Approximated solutions and application to the existence

As can be seen in the figure 2, for the parameters taken from the literature, the area where the
solution is positive (characteristics coming from a part of the left edge of the square, represented
in red) is very small compared to the area of the domain. A finite differences or finite volume

Figure 2: Phase plan of the velocity field given by (2) without treatment, i.e. with e = h = 0
with the parameters from [HPFH99] : a = 0.192, c = 5.85, d = 8.73× 10−3. B. a = 0.192, c =
0.1, d = 1.4923× 10−4

scheme written on a cartesian mesh of the square would not exploit this feature of the model
and would loose a lot of time calculating the solution in areas where it is zero. Therefore, we
rather use a lagrangian scheme based on discretizing the characteristics of the equation which
in our framework consists in discretizing the equations (8)-(9), in view of proposition 5.7.

In this section, we build a weak solution to the equation (1). We will achieve the existence by
convergence of an approximation scheme to the problem (8)-(9) where the difficulty is restricted
to approximation of the boundary condition. Then we establish an error estimate in the case of
more regular data and numerically illustrate the result. In order to avoid heavy notations, we
forget about the tilda when referring to the problem (8)-(9).
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2.1 Construction of approximated solutions of the problem (8)-(9)

Let 0 = t0 < ... < tk < .. < tK+1 = T be a uniform subdivision of [0, T ] with tk+1 − tk = δt.
For the equation (9), let the uniform subdivisions 1 = x1 < ... < xl < ... < xL+1 = b and
1 = θ1 < ... < θm < ... < θL+1 = b, with xl+1 − xl = θm+1 − θm = δx. The scheme for the
equation (9) is then given by :(

ρ0
2(l,m) = 1

(δx)2
R xl+1
xl

R θm+1
θm

ρ0(x, θ)dxdθ 1 ≤ l,m ≤ L
ρk+1

2 (l,m) = ρk2(l,m) 0 ≤ k ≤ K, 1 ≤ l,m ≤ L
. (24)

That is, ρk2(l,m) = ρ0
2(l,m) for all k, l,m.

For the discretization of the equation (8), for each k let 0 = τ0 < ... < τi < ... < τk = tk

with τi+1 − τi = δt. Let σ : [0, 4b] → ∂Ω be defined by σ(s) =

8>><>>:
(1, 1 + s) s ∈ [0, b]
(1 + s− b, b) s ∈ [b, 2b]
(b, 3b− s) s ∈ [2b, 3b]
(4b− s, b) s ∈ [3b, 4b]

be a parametrization of ∂Ω with |σ′(s)| = 1 a.e., so that for g ∈ L1(∂Ω) we have
R
∂Ω g(σ)dσ =R 4b

0 g(σ(s))ds. Let 0 = s1 < ... < sj < ... < sM+1 = 4b be an uniform subdivision with
sj+1 − sj = δσ. The scheme is given by8><>:

ρ0
1(0, j) = NjB

0((ρ0
2)l,m) + f0

j 1 ≤ j ≤M
ρk+1

1 (i, j) = ρk1(i, j) 0 ≤ k ≤ K, 0 ≤ i ≤ k, 1 ≤ j ≤M
ρk+1

1 (k + 1, j) = NjB
k+1(ρk+1

1 , ρk+1
2 ) + fk+1

j 0 ≤ k ≤ K, 1 ≤ j ≤M
(25)

with

Bk(ρk1, ρk2) =
k−1X
i=1

MX
j=1

β1
i,jρ

k
1(i, j)δtδσ +

LX
l,m=1

β2
l,mρ

k
2(l,m) (δx)2

meant to approximateZ tk

0

Z
∂Ω
β(Φ(tk; τ, σ))ρ1(tk, τ, σ)dτdσ +

Z
Ω
β(Φ(tk; 0, Y ))ρ2(tk, Y )dY

and

β1
i,j := 1

δtδσ

R τi+1
τi

R σj+1
σj

β(Φ(tk; τ, σ))dσdτ, β2
l,m :=

R xl+1
xl

R θm+1
θm

β(Φ(tk; 0, (x, θ)))dxdθ
fkj := 1

δtδσ

R tk+1
tk

R σj+1
σj

f(t, σ)dσdt, Nj := 1
δσ

R σj+1
σj

N(σ)dσ.
(26)

Notice that the schemes (24) and (25) are well-posed since the definition of ρk+1
1 (k+1, j) involves

values of ρk+1
1 (i, j) only with 0 ≤ i ≤ k. We denote by h = δt+δσ+δx and define now piecewise

constant functions ρ1,h and ρ2,h on ÜQ1 and [0, T [×Ω by, for 0 ≤ k ≤ K, 1 ≤ i ≤ k, 1 ≤ j ≤ M
and 1 ≤ l,m ≤ L

ρ1,h(t, τ, σ(s)) = ρk1(i, j) for t ∈ [tk, tk+1[, τ ∈]τi−1, τi], s ∈ [sj , sj+1[
ρ1,h(t, τ, σ(s)) = 0 for t ∈ [tk, tk+1[, τ ∈]tk, t], s ∈ [sj , sj+1[
ρ2,h(t, x, θ) = ρk2(l,m) for t ∈ [tk, tk+1[, x ∈ [xl, xl+1[, θ ∈ [θm, θm+1[.

(27)

See the figure 3 for an illustration. Notice that we have
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t ÜQ1

0

0

0

0
Tk = K + 1

k = 0

k = 1

tk

i = 0 i = 1
τi−1 τi

i = K + 1
τ

σ

tk+1

Figure 3: Description of the discretization grid for ÜQ1, only in the (τ, t) plane. The arrows
indicate the index used in assigning values to ρ1,h in each mesh (formula (27)).

||ρ1,h(tk, ·)||L1(]0,tk[×∂Ω) =
kX
i=1

MX
j=1

���ρk1(i, j)
��� δtδσ, ||ρ2,h(tk, ·)||L1(Ω) =

MX
l,m=1

���ρk2(l,m)
��� (δx)2. (28)

Remark 5.16.
• We take the same discretization step in x and θ for ρ2 but it would work the same with two

different steps.
• For more regular data, we could take point values instead of (26).
• It will be clear from the following that the scheme would converge the same regardless to

the value that we give to ρ0
1(0, j).

2.2 Discrete a priori estimates

We prove the equivalent of the proposition 5.9 in the discrete case. Notice that there ex-
ists a constant Cσ such that

PM
j=1Njδσ ≤

R
∂ΩN(σ)dσ + Cσδσ = 1 + Cσδσ := ||N ||h andPM

j=1 f
k+1
j δσ ≤ ||f ||L∞(]0,T [;L1(∂Ω)) + Cσδσ := ||f ||h.

Proposition 5.17 (Discrete a priori estimates). Let
�
ρk1(i, j)

�
k,i,j

and
�
ρk2(l,m)

�
k,l,m

be given
by (24) and (25) respectively. Then for all k

||ρ2,h(tk, ·)||L1(Ω) = ||ρ0||L1(Ω), ||ρ2,h||L∞(]0,T [×Ω) = ||ρ0||L∞(Ω)

||ρ1,h(tk, ·)||L1(]0,tk[×∂Ω) ≤ etk||β||L∞ ||N ||h
�
||ρ0||L1(Ω) + ||f ||h

||β||L∞ ||N ||h

�
, (29)

||ρ1,h||L∞(eQ1) ≤ ||N ||L∞ ||β||L∞max
k

�
||ρ1,h(tk, ·)||L1 + ||ρ0||L1

�
+ ||f ||L∞ . (30)

Moreover, if ρ0 ≥ 0 then ρk1(i, j), ρk2(l,m) ≥ 0 for all k, i, j, l,m.
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Proof. The non-negativity of the scheme is straightforward from the definition. The estimate
for ρ2,h follows directly from the scheme (25). For the L1 estimate on ρ1,h we compute, using
the scheme (24)

||ρ1,h(tk+1, ·)||L1(]0,tk+1[×∂Ω) =
k+1X
i=1

MX
j=1

���ρk+1(i, j)
��� δtδσ

=
kX
i=1

MX
j=1

���ρk(i, j)��� δtδσ +
���Bk+1(ρk+1

1 , ρk+1
2 )

��� δt MX
j=1

Njδσ + δt
MX
j=1

���fk+1
j

��� δσ
≤ ||ρ1,h(tk)||L1(]0,tk[×∂Ω) +

���Bk+1(ρk+1
1 , ρk+1

2 )
��� δt||N ||h + δt||f ||h

Now from the expression of Bk+1(ρk+1
1 , ρk+1

2 )���Bk+1(ρk+1
1 , ρk+1

2 )
��� ≤ ||β||L∞ ||ρ1,h(tk, ·)||L1 + ||β||L∞ ||ρ2,h(tk, ·)||L1 .

Thus we obtain

||ρ1,h(tk+1, ·)||L1 ≤ (1 + ||β||L∞δt||N ||h) ||ρ1,h(tk, ·)||L1 + ||β||L∞δt||N ||h||ρ2,h(tk, ·)||L1 + δt||f ||h

Now using a discrete Gronwall lemma we obtain

||ρ1,h(tk+1, ·)||L1 ≤ e||β||L∞ ||N ||htk
�
||ρ1,h(t0, ·)||L1 + ||β||L

∞ ||N ||h||ρ2,h(tk, ·)||L1 + ||f ||h
||β||L∞ ||N ||h

�
Using ||ρ1,h(t0, ·)||L1 = 0 and ||ρ2,h(tk, ·)||L1(Ω) = ||ρ0||L1(Ω) ends the proof of the L1 estimate.
For the L∞ estimate, we remark that

||ρ1,h||L∞(eQ1) = max
k

max
i,j
|ρk1(i, j)| = max

k
max
j

����Bk(ρk1, ρk2)Nj + fkj

���� ≤ ||N ||L∞max
k

���Bk(ρk1, ρk2)
���+ ||f ||L∞

≤ ||N ||L∞ ||β||L∞max
k

(||ρ1,h(tk, ·)||L1 + ||ρ2,h(tk, ·)||L1) + ||f ||L∞ .

2.3 Application to existence of solutions to the continuous problem (8)-(9)

Theorem 5.18 (Existence). Under the assumptions (4), there exists ρ1 ∈ L∞(ÜQ1) and ρ2 ∈
L∞(]0, T [×Ω) such that ρ1,h ⇀

h→0
ρ1 and ρ2,h ⇀

h→0
ρ2 for the weak-∗ topology of L∞. Furthermore,

(ρ1, ρ2) is the unique weak solution of (8)-(9).

Proof. Uniqueness of the solution is straightforward for the problem (9) and for the problem
(8) it follows from the L1 estimate on ρ1 which can be derived following the proof of the
proposition 5.9. The proof for the existence is rather classical and consists in passing to the
limit in discrete weak formulations of (8) and (9). From the previous proposition, we obtain that
the families {ρ1,h}δt, δσ and {ρ2,h}δt, δx are bounded in L∞ and thus there exist ρ1 ∈ L∞(ÜQ1),
ρ2 ∈ L∞(]0, T [×Ω) and some subsequences ρ1,hn and ρ2,hn such that ρ1,hn ⇀

hn→0
ρ1 and ρ2,hn ⇀

hn→0
ρ2 for the weak-∗ topology of L∞. We have to prove now that (ρ1, ρ2) is a weak solution of
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(8)-(9). The uniqueness of solutions to the equation implies then by a standard argument that
the whole sequence converges. It remains to prove that (ρ1, ρ2) solves (8)-(9).
•The function ρ2 is a weak solution of (9). Let φ2 be a test function for (9). We haveZ T

0

Z
Ω
ρ2,hn(t, Y )∂tφ2(t, Y )dY dt =

KX
k=0

LX
l,m=1

ρk2(l,m)
Z tk+1

tk

Z xl+1

xl

Z θm+1

θm
∂tφ2(t, x, θ)dθdxdt

=
KX
k=0

LX
l,m=1

ρk2(l,m)Φ2(tk+1, l,m)(δx)2 −
KX
k=0

LX
l,m=1

ρk2(l,m)Φ2(tk, l,m)(δx)2

where we denoted Φ2(tk, l,m) := 1
(δx)2

R xl+1
xl

R θm+1
θm

φ2(tk, x, θ)dθdx. Using the scheme (ρk2(l,m)
is constant in k) and Φ2(tK+1, l,m) = 0 since tK+1 = T , we obtainZ T

0

Z
Ω
ρ2,hn(t, Y )∂tφ2(t, Y )dY dt =

LX
l,m=1

ρK2 (l,m)Φ2(T, l,m)(δx)2 −
LX

l,m=1
ρ0

2(l,m)Φ2(0, l,m)(δx)2

= −
LX

l,m=1
ρ0

2(l,m)Φ2(0, l,m)(δx)2 = −
Z

Ω
ρ0

2,hn(Y )φ(0, Y ) −−−−→
hn→0

−
Z

Ω
ρ0(Y )φ(0, Y )dY

since ρ0
2,hn

L1
−−−−→
hn→0

ρ0. Observing that the left hand side converges to
R T
0
R

Ω ρ2∂tφ2(t, Y )dY dt
gives the result.
•The function ρ1 is a weak solution of (8). Let φ1 be a test function for (8). Then the same

calculation as above shows, with Φ1(tk, i, j) := 1
δtδσ

R τi
τi−1

R σj+1
σj

φ1(tk, τ, σ)dσdτ and using that
Φ1(tK+1, i, j) = 0 as well as ρk+1

1 (i, j) = ρk1(i, j) for 1 ≤ i ≤ k and 1 ≤ j ≤MZ
eQ1
ρ1,hn(t, τ, σ)∂tφ1(t, τ, σ)dσdτdt =

KX
k=1

kX
i=1

MX
j=1

ρk1(i, j)Φ1(tk+1, i, j)δtδσ −
KX
k=1

kX
i=1

MX
j=1

ρk1(i, j)Φ1(tk, i, j)δtδσ

=
KX
i=1

MX
j=1

ρK1 (i, j)Φ1(tK+1, i, j)δtδσ +
K−1X
k=1

kX
i=1

MX
j=1

ρk1(i, j)Φ1(tk+1, i, j)δtδσ

−
K−1X
k=1

k+1X
i=1

MX
j=1

ρk+1
1 (i, j)Φ1(tk+1, i, j)δtδσ −

MX
j=1

ρ1
1(1, j)Φ1(t1, 1, j)δtδσ

= −
K−1X
k=1

MX
j=1

ρk+1
1 (k + 1, j)Φ1(tk+1, k + 1, j)δtδσ −

MX
j=1

ρ1
1(1, j)Φ1(t1, 1, j)δtδσ

= −
KX
k=1

MX
j=1

�
NjB

k(ρk1, ρk2) + fkj
�

Φ1(tk, k, j)δtδσ

Defining the following piecewise constant functions : Bh(t, ρ1,h, ρ2,h) = Bk(ρk1, ρk2), Nh(σ(s)) =
Nj , fh(t, σ(s)) = fkj and Φ1,h(t, σ(s)) = Φ1(tk, k, j) on [tk, tk+1[×[sj , sj+1[, the previous equality
readsZ
eQ1
ρ1,hn(t, τ, σ)∂tφ1(t, τ, σ)dσdτdt =

Z T

δt

Z
∂Ω

(Bhn(t, ρ1,hn , ρ2,hn)Nhn(σ)+fhn(t, σ))Φ1,hn(t, σ)dσdt.

We need the following lemma in order to conclude.
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Lemma 5.19. We have

Bhn(t, ρ1,hn , ρ2,hn) ⇀
hn→0

ÜB(t, ρ1, ρ2) ∗ −L∞(]0, T [).

Proof. We define the piecewise constant function β1
h(τ, σ) as for Nh and fh and β2

h(X) = β2
l,m

for X ∈ [xl, xl+1[×[θm, θm+1[. Let t ∈ [tk, tk+1[, then

Bh(t, ρ1,h, ρ2,h) = Bk(ρk1, ρk2) =
Z t

0

Z
∂Ω
β1
h(τ, σ)ρ1,h(t, τ, σ)dτdσ−

MX
j=1

β1
k,jρ

k
1(k, j)δtδσ+

LX
l,m=1

β2
l,mρ

k
2(l,m)(δx)2

since we defined ρh(t, τ, σ) = 0 for τ ∈]tk, t]. Thus, for ψ ∈ L1(]0, T [) we haveZ T

0
Bh(t, ρ1,h, ρ2,h)ψ(t)dt =

Z T

0

Z t

0

Z
∂Ω
β1
h(τ, σ)ρ1,h(t, τ, σ)ψ(t)dσdτdt

− δt
KX
k=0

MX
j=1

β1
k,jρ

k
1(k, j)

Z tk+1

tk
ψ(t)dtδσ

+
Z T

0

Z
Ω
β2
h(X)ρ2,h(t,X)ψ(t)dXdt

and we obtain the result by using ρ1,hn ⇀
hn→0

ρ1 ∗ −L∞, ρ2,hn ⇀
hn→0

ρ2 ∗ −L∞, βhn
L1
−−−−→
hn→0

β,
||βhn ||L∞ ≤ C and noticing that the second term goes to zero in view of the L∞ bounds on ρ1,h
(proposition 5.17) and β.

Using the lemma as well as Nhn , fhn ⇀
hn→0

N, f ∗−L∞, ||Nhn ||L∞ ≤ C and Φ1,hn
C([0,T ]×∂Ω)−−−−−−−→

hn→0
φ(t, t, σ), the previous calculations giveZ
eQ1
ρ1,hn(t, τ, σ)∂tφ1(t, τ, σ)dσdτdt −−−→

h→0
−
Z T

0

Z
∂Ω

¦
N(σ)ÜB(t, ρ1, ρ2) + f(t, σ)

©
φ(t, t, σ)dσdt.

On the other hand the left hand side also goes to
ReQ1

eρ1(t, τ, σ)∂tφ1(t, τ, σ)dσdτdt. This proves
that ρ1 verifies the definition 5.5 and ends the proof.

3 Error estimate

3.1 Error estimate for the problem (8)-(9)

We establish now an error estimate for the approximation of the equations (8)-(9). For this
section, we make the following assumptions on the data :

ρ0 ∈W 1,∞(Ω), β ∈W 1,∞(Ω), N ∈W 1,∞(∂Ω), N ≥ 0,
Z
∂Ω
N(σ)dσ = 1, f ∈W 1,∞(]0, T [×∂Ω).

(31)
It can be noticed that in order to perform the weak convergence of the approximated solutions
and establish theoretical existence to the continuous problem, we did not need to approximate
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the characteristics Φ(t; τ, σ) of the equation. In view of the error estimate though, we need to
use another approximation of β(Φ(t; τ, σ)) than (26). We introduce an approximation Φh(t; τ, σ)
of the characteristics given by a numerical integrator of the ODE system (2) and define

β1
i,j := β(Φh(tk; τi, σj)), β2

l,m := β(Φh(tk; 0, (xl, θm))
fkj := f(tk, σj), Nj := N(σj).

(32)

For g1 and g2 being two continuous functions on ÜQ1 and ]0, T [×Ω respectively, we define

P1g1(t, τ, σ(s)) = g1(tk, τi, σj) for t ∈ [tk, tk+1[, τ ∈]τi−1, τi], s ∈ [sj , sj+1[
P1g1(t, τ, σ(s)) = 0 for t ∈ [tk, tk+1[, τ ∈]tk, t], s ∈ [sj , sj+1[
P2g2(t, x, θ) = g2(tk, xl, θm) for t ∈ [tk, tk+1[, x ∈]xl, xl+1], θ ∈ [θm, θm+1[

.

Lemma 5.20 (Projection error). Let (g1, g2) ∈W 1,∞(ÜQ1)×W 1,∞(]0, T [×Ω). Then there exists
CP1 and CP2 such that

||g1(tk, ·)− P1g1(tk, ·)||L∞(]0,tk[) ≤ CP1h, ||g2(tk, ·)− P2g2(tk, ·)||L∞(Ω) ≤ CP2h. (33)

The proof of this lemma is straightforward from the fact that g1 and g2 are Lipschitz contin-
uous. We define

e1,h := ρ1,h − P1eρ1 and e2,h := ρ2,h − P2eρ2 (34)

the errors of the schemes, with (eρ1, eρ2) solving the problem (8)-(9). From the equation (9) we
have¨ eρ1(tk+1, τi, σj) = eρ1(tk, τi, σj) 0 ≤ k ≤ K, 0 ≤ i ≤ k, 1 ≤ j ≤Meρ1(τk+1, τk+1, σj) = N(σj)ÜB(τk+1, eρ1, eρ2) + f(τk+1, σj) 0 ≤ k ≤ K, 1 ≤ j ≤M

and thus, subtracting this to (24) and denoting ek1(i, j) = e1,h(tk, τi, σj) we obtain¨
ek+1

1 (i, j) = ek1(i, j), 0 ≤ k ≤ K, 0 ≤ i ≤ k, 1 ≤ j ≤M
ek+1

1 (k + 1, j) = NjE
k+1 + rk+1

j

(35)

with

Ek+1 =
kX
i=1

MX
j=1

β1
i,je

k+1
1 (i, j)δtδσ +

LX
l,m=1

β2
l,me

k+1
2 (l,m)(δx)2

rk+1
j = Nj

�
Bk+1 �(eρ1(tk+1, τi, σj))i,j , (eρ2(tk+1, xl, θm))

l,m

�
− ÜB(tk+1, eρ1, eρ2)

�
.

Hence the truncation error of the scheme rk+1
j only comes from the quadrature error of the

approximation of the integral in ÜB(tk, eρ1, eρ2).

Lemma 5.21 (Truncation error). Assume (31), that (β ◦ Φ1)eρ1 ∈ W 1,∞(ÜQ1), (β ◦ Φ2)eρ2 ∈
W 1,∞(]0, T [×Ω) and that the numerical integrator for the ODE system (2) is of order at least
1. Then there exists Cr such that

max
k,j
|rkj | ≤ Crh.
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Proof. We have

rkj = Nj [
k−1X
i=1

MX
j=1

�
β1
i,j − β(Φ1(tk; τi, σj))

� eρ1(tk, τi, σj)δtδσ +
LX

l,m=1

�
β2
l,m − β(Φ2(tk;xl, θm))

� eρ2(tk, xl, θm) (δx)2

+
k−1X
i=1

MX
j=1

β(Φ1(tk; τi, σj))eρ1(tk, τ, σ)δtδσ +
LX

l,m=1
β(Φ2(tk;xl, θm))eρ2(tk, xl, θm) (δx)2

−
Z tk−1

0

Z
∂Ω
β(Φ1(tk; τ, σ))eρ1(tk, τ, σ)dτdσ −

Z
Ω
β(Φ2(tk, Y ))eρ2(tk, Y )dY

−
Z tk

tk−1

Z
∂Ω
β(Φ1(tk; τ, σ))eρ1(tk, τ, σ)dτdσ].

Thus���rkj ��� ≤||N ||L∞{||β||W 1,∞ (||Φ1,h − P1Φ1||L∞ ||P1eρ1||L1 + ||Φ2,h − P2Φ2||L∞ ||P2eρ2||L1)

+
k−1X
i=1

MX
j=1

Z τi

τi−1

Z σj+1

σj
|P1 [(β ◦ Φ1) eρ1] (tk, τ, σ)− (β ◦ Φ1) eρ1(tk, τ, σ)| dτdσ

+
LX

l,m=1

Z xl+1

xl

Z xm+1

xm
|P2 [(β ◦ Φ2) eρ2] (tk, Y )− (β ◦ Φ2) eρ2(tk, x, θ)| dxdθ + ||(β ◦ Φ1) eρ1||L∞ h}.

Using the lemma 5.20 and the L1 a priori estimate of proposition 5.9 gives the result.

Remark 5.22 (Order of the truncation error). In order to have a better order for the truncation
error we could use a more sophisticated quadrature method like for instance the trapezoid method
on Ω for eρ2 and on [0, tk−1[×∂Ω for eρ1 (completed by a left rectangle method on [tk−1, tk[×∂Ω).
Adapting the previous proof shows that if the numerical integrator used for the characteristics
has order larger than 2, then the truncation error would have order 2 (order of the trapezoid
method).

Proposition 5.23 (Error estimate). Assume (31) and that (eρ1, eρ2) ∈W 1,∞(ÜQ1)×W 1,∞(]0, T [×Ω)
is a regular solution of (8)-(9). Let ρ1,h and ρ2,h solve (24) and (25). Then there exists some
constants ÜC1 and ÜC2 such that

||ρ1,h(tk, ·)− eρ1(tk, ·)||L1(]0,tk[×∂Ω) ≤ ÜC1h, ||ρ2,h(tk, ·)− eρ2(tk, ·)||L1(Ω) ≤ ÜC2h (36)

Proof. In view of the lemma 5.20, it is sufficient to prove the proposition with Pseρs(tk, ·) instead
of eρs(tk, ·) (with s = 1, 2). For the second estimate, we notice that

||ρ2,h(tk, ·)−P2eρ2(tk, ·)||L1(Ω) = ||e2,h(tk, ·)||L1(Ω) =
X
l,m

���ek2(l,m)
��� (δx)2 =

X
l,m

���ρ0
2(l,m)− ρ0(xl, θm)

��� (δx)2

and the result follows from the definition of ρ0
2(l,m). For the first one, we have

||ρ1,h(tk, ·)− P1eρ1(tk, ·)||L1(]0,tk[×∂Ω) = ||e1,h(tk, ·)||L1(]0,tk[×∂Ω) =
kX
i=1

MX
j=1

���ek1(i, j)
��� δtδσ.
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We can compute, using (35)

||e1,h(tk+1, ·)||L1 ≤
kX
i=1

MX
j=1

���ek+1
1 (i, j)

��� δtδσ +
���Ek+1

��� δt MX
j=1

Njδσ + δt
MX
j=1

���rk+1
j

��� δσ
≤ ||e1,h(tk, ·)||L1 + δt||β||∞||N ||h {||e1,h(tk, ·)||L1 + ||e2,h(tk+1, ·)||L1}+ Crhδt

≤ (1 + δt||β||∞||N ||h)||e1,h(tk, ·)||L1 + ÜC2||β||∞||N ||hhδt+ Crhδt

and conclude using a discrete Gronwall lemma.

Remark 5.24 (Order of the error).
• By looking more carefully at the propagation of errors in the proof, we see that if we set

ρ0
2(l,m) = ρ0(l,m) (which is valid under (31)), the error on eρ2 only comes from the projection

error.
• If in addition, we follow the remark 5.22 for the approximation of the data, then the error

between ρ1,h and P1eρ1 would be of order 2 if we had used a trapezoid method for the integral
term in ÜB(tk, eρ1, eρ2).

3.2 Application to approximation of problem (1)

We explain now how we approximate the solution of (1) from the approximation of the solutions
of problems (8)-(9) given by the schemes (24)-(25). We translate formula (12) at the discrete
level thanks to eρ1,h, eρ2,h given by (27) and the solutions eρk1(i, j), eρk2(i, j) of the schemes (24) and
(25) to define

ρh(t,X) := eρ1,h(t, τ t(X), σt(X))J−1
1,h(t, τ t(X), σt(X))1X∈Ωt1| {z }

:=ρ1,h

+ eρ2,h(t, Y (X))J−1
2,h(t, Y (X))1X∈Ωt2| {z }

:=ρ2,h

.

(37)

The jacobians of the changes of variables J1(t; τ, σ) = |G(τ, σ)·ν(σ)|e
R t
τ

divG(u,Φ(u;τ,σ))du and J2(t;Y ) =
e
R t

0 divG(u,Φ(u;0,Y ))du are approximated respectively by J1,h and J2,h, piecewise constant functions
constructed similarly as in (27) through Jk1 (i, j) := eT1(k,i,j) and Jk2 (l,m) := eT2(k,l,m), where T1
and T2 are one-dimensional quadrature methods such that T1(k, i, j) '

R tk
τi

divG(Φ(s; τi, σj))ds
and T2(k, l,m) '

R tk
0 divG(Φ(s; 0, (xl, θm)))ds. The errors of these quadrature methods are

denoted by r1, r2 and are assumed to be of order α1, α2 :

r1 := max
k,i,j

|r1(k, i, j)| ≤ Cq(δt)α1 , r2 := max
k,l,m

|r2(k, l,m)| ≤ Cq(δt)α2 .

We have

Jk1 (i, j) = J1(tk, τi, σj)e−r1(k,i,j), Jk2 (l,m) := eT2(k,l,m) = J2(tk, xl, θm)e−r2(k,l,m). (38)

We define the following meshes :

V1(k, i, j) = {(t,Φ(t; τ, σ(s))); t ∈ [tk, tk+1[, τ ∈]τi−1, τi], s ∈ [sj , sj+1[}
V2(k, l,m) = {(t,Φ(t; 0, (xl, θm))); t ∈ [tk, tk+1[, x ∈ [xl, xl+1[, θ ∈ [θm, θm+1[}

and, for a function g ∈ C([0, T ]× Ω)

Pg(t,X) = g(tk,Φ(tk; τi, σj))1(t,X)∈V1(k,i,j) + g(tk,Φ(tk; 0, (xl, θm)))1(t,X)∈V2(k,l,m). (39)
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Remark 5.25. In the same way as the lemma 5.20, there exists a constant CP such that for all
function g ∈W 1,∞(]0, T [×Ω)

||g − Pg||L1(]0,T [×Ω) ≤ CPh.

Theorem 5.26. Suppose that ρ ∈W 1,∞(]0, T [×Ω) solves the problem (1) and let ρh be defined
by (37). Then there exists a constant C such that

sup
t∈[0,T ]

||ρh(t, ·)− ρ(t, ·)||L1(Ω) ≤ Ch.

Proof. In view of the remark 5.25, it is again sufficient to prove the proposition with Pρ instead of
ρ. Let t ∈ [tk, tk+1[, then ||ρh(t, ·)−Pρ(t, ·)||L1(Ω) = ||ρ1,h(tk, ·)−Pρ1(tk, ·)||L1(Ωtk1 ) + ||ρ2,h(tk, ·)−
Pρ2(tk, ·)||L1(Ωtk2 ) with ρs(t,X) := ρ(t,X)1X∈Ωts (s = 1, 2). We do the proof only for ρ1 since it
is similar for ρ2. We also don’t write the dependency in σ in order to avoid heavy notations. To
obtain the complete proof it suffices to add integrals with respect to σ in the following and σ
in all the functions. Doing the change of variables Φ1 we have, noticing that Pρ1(tk,Φ(tk; τ)) =
P1eρ1(tk, τ)P1J

−1
1 (tk, τ)

||ρ1,h(tk, ·)− Pρ1(tk, ·)||L1(Ωtk1 ) =
Z tk

0

���eρ1,h(tk, τ)J−1
1,h(tk, τ)− P1eρ1(tk, τ)P1J

−1
1 (tk, τ)

��� J1(tk, τ)dτ

≤
Z tk

0
|eρ1,h(tk, τ)|

���J−1
1,h(tk, τ)J1(tk, τ)− 1

��� dτ +
Z tk

0
|eρ1,h(tk, τ)− P1eρ1(tk, τ)| dτ+

+
Z tk

0
|P1eρ1(tk, τ)|

���1− P1J
−1
1 (tk, τ)J1(tk, τ)

��� dτ.
Now we have, using the definition (38)���J−1

1,hJ1 − 1
��� =

���PJ−1
1 e−r1J1 − 1

��� ≤ ���er1��� 1
|PJ1|

|J1 − PJ1|+
��e−r1 − 1

��
Thus, since

������ 1
J1

������
L∞

< ∞ from formula (6) and the fact that −G · ν ≥ δ > 0, and using
|e−r1 − 1| ≤ 2r1, there exists CJ such that

||J−1
1,h(tk, τ)J1(tk, τ)− 1||L∞ ≤ CJh, and ||1− P1J

−1
1 (tk, τ)J1(tk, τ)||L∞ ≤ CJh.

The last inequality comes from the lemma 5.20 since J1 ∈W 1,∞ from the formula (6). Using then
the continuous and discrete a priori L1 estimates and the proposition 5.23 gives the result.

Remark 5.27. In the case of less regularity on the solution, we still have ρh ⇀
h→0

ρ, ∗ −

L∞(]0, T [×Ω). Indeed, we write ρh = eρ1,hJ
−1
1,h + eρ2,hJ

−1
2,h = eρ1,hJ

−1
1 + eρ2,hJ

−1
2 + eρ1,h(J1,h− J1) +eρ2,h(J2,h − J2). Then we use that for s = 1, 2 J−1

s,h
L1
−−−→
h→0

J−1
s as well as

������J−1
s,h

������
L∞
≤ Cers with

C a constant. Using the theorem 5.18 for the convergence of eρ1,h and eρ2,h gives the result.

Remark 5.28. In practical situations we are often only interested in the number of metastases
and not in the density ρ itself. Thanks to the formula

R
Ω ρ(t,X)dX =

R t
0
R
∂Ω eρ1(t, τ, σ)dσdτ +R

Ω ρ
0(X)dX, we don’t have to compute the jacobians J1, J2 to get the number of metastases.

Yet, we still have to compute the characteristics since they are requested in the computation of
the boundary condition (see formula (32)).
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3.3 Numerical illustration of the accuracy of the scheme

Analytical solution

The computational cost of a reference solution on a very fine grid is very high. Therefore, since
we don’t have an analytical expression of the characteristics associated to the vector field G of
our model defined by (2), we illustrate the accuracy of our scheme for G given by

Ga(x, θ) =
 

ax ln
�
θ
x

�
aθ
�
1− θ

K

� !

with a and K two parameters whose values are fixed to a = 0.192, K = 5000. This field has
a similar phase plan to the one of our model (see Figure 4, considering that we only consider
characteristics starting in the left edge of the square) and we can derive an analytical expression
for the associated characteristics, given by

θ(t) = σθK

(K − σθ)e−at + σθ
(40)

x(t) = ey(t), y(t) = eat
�
σy + ln(θ(t))

�
eat + K

σθ
− 1

�
+ at

�
1− K

σθ

�
− K

σθ
ln(σθ)

�
with σ = (σx, σθ) the starting point of the trajectory at time 0 and σy = ln(σx). See the Figure
4 for a numerical illsutration of the ODE associated to Ga.

A B

Figure 4: A. Phase plan of the vector field Ga. In blue, exact trajectories computed by formula
(40) and in red trajectories numerically computed by a Runge Kutta scheme of order 4 (the
curves are mingled). x-axis : size x and y-axis : vascular capacity θ. B. Time evolution of the
tumoral size. Initial condition : x0 = 1, tt0 = 2000

The nonlocal term of the boundary condition can be handled by taking β constant equal to
1 and so is taken the source term f(t). We take a null initial condition and thus consider the
following problem 8<:

∂tρ+ div(ρGa) = 0
−Ga · ν(σ)ρ(t, σ) = N(σ) {

R
Ω ρ(t,X)dX + 1}

ρ(0) = 0
(41)
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We can compute explicitly the integral of the solution, given by
R

Ω ρ(t,X) = et−1 so that we are
able to derive an analytical expression for eρa(t, τ, σ) = ρa(t,Φ(t; τ, σ))Ja(t, τ, σ), with ρa solving
(41), Φa the change of variable defined explicitly from (40) corresponding to Φ1 from section
5.1.1 and its associated jacobian Ja(t, τ, σ) = −Ga · ν(σ)e

R t
τ

divG(u,Φa(u;τ,σ))du. This expression is
given by eρa(t, τ, σ) = N(σ)eτ1τ≤t

so that to get the reference solution ρa(t,Φ(t; τ, σ)) = eρaJ−1
a (t, τ, σ) we only need to finely

approximate the jacobian, which is numerically tractable since it involves only the approximation
of a 1D integral and that we have an exact expression for Φa. We use a trapezoid method and
a timestep dt = 5 · 10−4 to achieve this.

Accuracy of the scheme

From the proof of the error estimates (proposition 5.23 and theorem 5.26) we see that the error
on eρ can be split into : a) an error associated to the discretization of the nonlocal boundary
condition, b) an error coming from the numerical integrator used for the characteristics and c) a
projection error, whereas the error on ρ has an additional term coming from the approximation
of the jacobian (see section 5.3.2). We will not consider the projection error and are aware that
taking β constant will cancel the error of the numerical integrator impacting on the boundary
condition. However, this error is still present in the approximation of the jacobian and thus in the
error on ρ and we are more focused on the error deriving from the approximation of the nonlocal
boundary condition. In the figure 5 are presented various illustrations of the convergence of the
scheme for the following errors, with T = 1 :

L1 error on eρ = ||eρh(T, ·)− eρa(T, ·)||L1(]0,T [×∂Ω), L
∞ error on ρ = ||ρh(T, ·)− ρa(T, ·)||L∞(Ω).

Following remark 5.24, we use a trapezoid method (completed by a left rectangle method on
[tk−1, tk[×∂Ω) for the approximation of the integral in the boundary condition and also for the
integral intervening in the jacobian. We consider a Runge-Kutta method of order 4 for the
discretization of the characteristics. In the figure 5.A, we observe that varying M (number of
discretization points of the boundary) with fixed δt does not affect the error. Indeed, this comes
from the facts that N(σ) is a constant function and that we don’t consider the projection error.
Considering a nonconstant function for N(σ) (like a gaussian one for instance) does produce an
impact of M on the error in L1 norm (data not shown), but since we approximate the solution
along each characteristic, the L∞ error resulting from the discretization of the boundary can
only be seen between the exact solution and its projection on the mesh, that we don’t consider
here. In view of these consideration, we investigate the order of convergence keeping only one
characteristic and varying δt.

As shown in the figure 5.B we obtain convergence of order two for both the L1 error on eρ
and the L∞ error on ρ, in agreement with remark 5.24. The use of an Euler scheme for the
characteristics is also investigated and leads to an order 1 on the L∞ error on ρ, in concordance
with the fact that the numerical integrator is used in the approximation of ρ via approximation
of the jacobian. Concerning L1 error on eρ with Euler we have order 2 (data not shown).
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A B

Figure 5: Numerical illustration of the convergence of the scheme. A. L∞ error on ρ plotted
versus M , for different values of δt. B. Various errors plotted versus δt, with M = 1.

4 Proof of the proposition 5.4

The result for the second map is classical. For the first one, we have to deal with irregular points
of the boundary ∂Ω. We denote by χ the set of such points and set χt := {Φ(t; τ, ξ); ξ ∈ χ, 0 ≤
τ ≤ t}. In order to prove the result, it is sufficient to prove that for each fixed t the map

Φt
1 : ]0, t[×∂Ω \ χ → Ωt

1 \ χt
(τ, σ) 7→ Φ(t; τ, σ)

is a diffeomorphism, that globally the map Φt
1 : [0, t] × ∂Ω → Ωt

1 is bilipschitz and that its
inverse is X 7→ (τ t(X), σt(X)). For the first point, since we avoid the irregular points of the
boundary by excluding the set χ, we have the C1 regularity. It remains to prove that Φt

1(τ, σ)
is one-to-one and onto, and that its inverse is C1.
• The map Φt

1 is one-to-one and onto. Let t > 0 and X ∈ Ωt
1. We have Φt

1(τ t(X), σt(X)) =
Φ(t; τ t(X), σt(X)) = Φ(t; τ t(X),Φ(τ t(X); t,X)) = Φ(t; t,X) = X.
For the injectivity, we remark that if we have Φ(t; τ, σ) = Φ(t; τ ′, σ′) with for instance τ ′ < τ ,
then σ = Φ(τ ; τ ′, σ′) which is prohibited by the assumption that G · ν(τ, σ) < 0. Thus Φt

1 is
one-to-one and we have, for (τ, σ) ∈ [0, t]×∂Ω : Φ(t; τ t(Φt

1(τ, σ)), σ(Φt
1(τ, σ))) = Φ(t; τ, σ) which

implies τ t(Φt
1(τ, σ)) = τ . Thus, we have proven that the inverse of Φt

1 is X 7→ (τ t(X), σt(X)).
• The map Φt

1 is a diffeomorphism. We will prove the formula (6) for J1 which will conclude
the proof by using the local inversion theorem. We have J1(t; τ, σ) = |∂τΦt

1 ∧ ∂σΦt
1|, with

∂σΦt
1 := DY Φ ◦ σ′ for σ being a parametrization of ∂Ω and DY Φ ∈ M2(R) the derivative in Y

of Φ(t; τ, Y ) viewed as the flow on Ω. We compute

∂t(∂τΦt
1 ∧ ∂σΦt

1) = ∂τ∂tΦt
1 ∧ ∂σΦt

1 + ∂τΦt
1 ∧ ∂t(DY Φt

1 ◦ σ′) = ∂τ (G ◦ Φt
1) ∧ ∂σΦt

1 + ∂τΦt
1 ∧DG ◦DY Φt

1 ◦ σ′

= DG ◦ ∂τΦt
1 ∧ ∂σΦt

1 + ∂τΦt
1 ∧DG ◦ ∂σΦt

1 = div(G)(∂τΦt
1 ∧ ∂σΦt

1).

We compute now directly the value of J1(t; t, σ). We define

T (h) = Φt
1(t; t+ h, σ)− Φt

1(t; t, σ)
h
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and now notice that we can write

Φt
1(t; t, σ) = Φt

1(t; t+ h,Φt
1(t+ h; t, σ))

= Φt
1(t; t+ h, σ) +DY Φt

1(t; t+ h, σ)(Φt
1(t+ h; t, σ)− Φt

1(t; t, σ)) + o(h)
= Φt

1(t; t+ h, σ) + hDY Φt
1(t; t+ h, σ) ◦G(t, σ) + o(h).

Now when h goes to zero DY Φt
1(t; t+ h, σ)→ DY Φt

1(t; t, σ) = Id since Φt
1(t; t, Y ) = Y . Finally,

we have T (h)→ −G(t, σ), thus ∂τΦt
1(t; t, σ) = −G(t, σ) and ∂τΦt

1∧∂σΦt
1(t; t, σ) = −G(t, σ)∧σ′ =

G(t, σ) · ν(σ). Solving the differential equation between times τ and t and taking the absolute
value then gives the formula (6).
• Globally, Φt

1 is bilipschitz. It is possible to show that |||DΦt
1|||L∞([0,t]×∂Ω) ≤ e

t|||DG|||
L∞([0,T ]×Ω .

Using the formula (DΦt
1)−1 = J−1

1
tCom(DΦt

1) and the fact that from (6) J−1
1 is bounded on

Ωt
1 thanks to the assumption (3) we have |||(DΦt

1)−1|||
L∞(Ωt1) < ∞. Thus Φt

1 and (Φt
1)−1 are

Lipschitz on [0, t] × ∂Ω \ χ and Ωt
1 \ χt respectively, and they are both globally continuous on

[0, t]× ∂Ω and Ωt
1. Hence they are globally Lipschitz.

Remark 5.29. Using the same technique than in the previous proof, we can calculate the deriva-
tive of Φ1(t; τ, σ) in the τ direction. Indeed we compute, for all t, τ, σ

Φ1(t; τ, σ) = Φ1(t; τ + h,Φ1(τ + h; τ, σ))
= Φ1(t; τ + h, σ) +DY Φ1(t; τ + h, σ)(Φ1(τ + h; τ, σ)− Φ1(τ ; τ, σ)) + o(h)
= Φ1(t; τ + h, σ) + hDY Φ1(t; τ + h, σ) ◦G(τ, σ) + o(h)

which gives

∂τΦ1(t; τ, σ) = lim
h→0

Φ1(t; τ + h, σ)− Φ1(t; τ, σ)
h

= −DY Φ1(t; τ, σ) ◦G(τ, σ). (42)



144 Chapter 5. Non autonomous case. Theoretical and numerical analysis



Chapter 6

2D-1D Limit

In this chapter, we prove the convergence of a family of solutions to our model for the
evolution of a population of metastases. We show that when the data of the repartition along
the boundary tends to a dirac mass then the solution of the associated problem converges and
we derive a simple expression for the limit in term of the solution of a 1D equation. This result
permits to improve the computational time needed to simulate the model.

145
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We formulate the biological assumption that the metastases are all born with size 1 and an
angiogenic capacity close to a given value θ0. This is a simplification hypothesis which reduces
the complexity of the model and thus its computational cost (see the section 6.2 for numerical
illustrations) and we hope that it doesn’t impoverishes too much the model and that this one
will still be able to describe the metastatic process. In this case, we would like to know if we can
replace the function N by a Dirac mass centered in σ0, in the equation (2). This is translated
in the model by considering a density N (repartition along the boundary) very concentrated
around the value (1, θ0), for instance

N ε(σ) = 1
2ε1{σ=(1,θ); θ∈[θ0−ε,θ0+ε]} (1)

with ε being a small parameter. The model then writes

8<:
∂tρ

ε(t,X) + div(ρε(t,X)G(X)) = 0, (t,X) ∈]0, T [×Ω
−G · ν(σ)ρε(t, σ) = N ε(σ) {

R
Ω β(X)ρε(t,X)dX + f(t)} , (t, σ) ∈]0, T [×∂Ω

ρε(0, X) = 0, X ∈ Ω.
(2)

In this chapter, we demonstrate that the family of solutions {ρε}ε to the problem (2) converges
when ε goes to zero, to the measure solution ρ(t, dX) of the equation

8<:
∂tρ(t,X) + div(ρ(t,X)G(X)) = 0, (t,X) ∈]0, T [×Ω
−G · ν(σ)ρ(t, σ) = δσ=(1,θ0) {

R
Ω β(X)ρ(t,X)dX + f(t)} , (t, σ) ∈]0, T [×∂Ω

ρ(0, X) = 0, X ∈ Ω.
(3)

Moreover, we derive a simple expression for ρ(t, dX) involving the solution of a one-dimensional
renewal equation. This permits to simulate in practice only the 1D equation rather than the 2D
one and greatly improves the computational times.

1 Statement and proof of the theorem
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0

0
Ω

Time
2ε

Figure 1: Trajectories for the growth field G(X). The solution of (2) is zero out of the stared
characteristics coming from points of the boundary (1, θ) with θ ∈ [θ0 − ε, θ0 + ε]. The values
of the parameters are chosen for illustrative purposes and are not realistic ones : a = 2, c =
5.85, d = 0.1, θ0 = 200, ε = 100.

For O = Ω, ∂Ω or ]0, T [×∂Ω, we will denoteM(O) := C′b(O) the set of continuous linear forms
on the Banach space of bounded continuous functions on O. We denote C([0, T ]; ∗−M(O)) the
set of continuous functions with values inM(O), the continuity being taken in the sense of the
weak-∗ topology. We give now the definition of weak solution to the problem8<:

∂tρ(t,X) + div(ρ(t,X)G(X)) = 0, (t,X) ∈]0, T [×Ω
−G · ν(σ)ρ(t, σ) = N(σ) {

R
Ω β(X)ρ(t,X)dX + f(t)} , (t, σ) ∈]0, T [×∂Ω

ρ(0, X) = 0, X ∈ Ω.
(4)

when N is a measure on ∂Ω.

Definition 6.1. (Weak solution) Let N(dσ) ∈M(∂Ω). We say that ρ(t, dX) ∈ C([0, T ];M(Ω))
is a weak solution of the problem (4) if for all ψ ∈ C1([0, T ]× Ω) with ψ(T, ·) = 0Z T

0
< ρ(t, ·), ∂tψ +G · ∇ψ > dt+

Z T

0
< N, {B(t, ρ) + f(t)}ψ|∂Ω(t, ·) > dt = 0 (5)

where B(t, ρ) =< ρ(t, ·), β > and < ·, · > denote the duality brackets between a measure space
and its associated space of continuous functions.

The proof of the theorem requires the following technical lemma.

Lemma 6.2. Let {εk}k∈N be a sequence going to zero, Nk(σ) = N εk(σ) and
¦
nk(t, τ)

©
k∈N be a

sequence of functions of C([0, T ];L1(]0, T [) such that nk C([0,T ];L1(]0,T [)−−−−−−−−−−→
k→∞

n. Then

Nknk ⇀ δσ=σ0 ⊗ n(t, τ)dτ, in C([0, T ]; ∗ −M(]0, T [×∂Ω)).
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Proof. We compute, for t ∈ [0, T ] and ψ ∈ Cb(]0, T [×∂Ω) :����Z T

0
nk(t, τ)

Z
∂Ω
Nk(σ)ψ(τ, σ)dσ − n(t, τ)ψ(τ, σ0)dτdt

���� ≤Z T

0

Z
∂Ω

���Nk(σ)ψ(τ, σ)dσ
��� ���nk(t, τ)− n(t, τ)

��� dτ
+
Z T

0
|n(t, τ)|

����Z
∂Ω
Nk(σ)(ψ(τ, σ)− ψ(τ, σ0))dσ

���� dτ
≤ ||ψ||L∞(]0,T [×∂Ω)||nk(t, ·)− n(t, ·)||L1(]0,T [)

+ ||n(t, ·)||L1(]0,T [) sup
τ∈[0,T ]

sup
σ∈[σ0−εk,σ0+εk]

|ψ(τ, σ)− ψ(τ, σ0)| .

Taking the supremum in t and passing to the limit k →∞ gives the result.

We can now state the theorem.

Theorem 6.3. (Convergence) Let G(x, θ) =
�

ax ln
�
θ
x

�
cx− dx2/3θ

�
, β ∈ C(Ω), f ∈ L1(]0, T [) and

N ε given by (1). Let ρε be the weak solution of the equation (2). Then

ρε ⇀ ρ ∈ C([0, T ];M(Ω)),

the convergence being in C([0, T ]; ∗−M(Ω)) for all T > 0. The expression of ρ is given by : for
all ψ ∈ Cb(Ω)

< ρ(t, ·), ψ >=
Z ∞

0
ψ(Φτ (σ0))n(t, τ)dτ (6)

with Φτ (σ) the solution of the differential equation dX
dτ = G(X) with initial condition σ and n

the solution of the following 1D problem8<:
∂tn+ ∂τn = 0, t > 0, τ > 0
n(t, 0) =

R∞
0 β(Φτ (σ0))n(t, τ) + f(t), t ≥ 0

n(0, τ) = 0, τ ≥ 0
(7)

Moreover, the measure ρ is the weak solution of (3).

Proof.
• Step 1. Simplification of the problem. Let {εk}k∈N be a sequence going to zero, T > 0
and let ρk := ρεk . We suppose for now that f ∈ C1 and f(0) = 0 in order to have regular
solutions ρk ∈ C1([0,∞[;L1(Ω)) ∩ C([0,∞[;Wdiv(Ω)) to the problem (2) (see chapter 4), where
Wdiv(Ω) =

¦
V ∈ L1(Ω); div(GV ) ∈ L1(Ω)

©
. We define

eρk(t, τ, σ) = ρk(t,Φτ (σ))|JΦ|

where Φτ (σ) is the solution of the differential equation dX
dτ = G(X) with initial condition σ. As

proved in the chapter 4, this application is a locally bilipschitz homeomorphism between Ω and
]0, T [×∂Ω \ (b, b) and hence can be used as a change of variable. We denote JΦ = det(DΦ) the
jacobian of Φ which verifies ∂τ |JΦ| = div(G)|JΦ|. Then eρk solves the equation8<:

∂teρk + ∂τ eρk = 0eρk(t, 0, σ) = Nk(σ)
¦R∞

0
R
∂Ω
eβ(τ, σ)eρk(t, τ, σ)dτdσ + f(t)

©
eρk(0) = 0

(8)



150 Chapter 6. 2D-1D Limit

set for (t, τ, σ) ∈ R+ × R+ × ∂Ω and where eβ(τ, σ) = β(Φτ (σ)).
• Step 2. Convergence for the sequence eρk. From the expression of the solutions given by the
method of characteristics we have :

eρk(t, τ, σ) = Nk(σ)
§Z ∞

0

Z
∂Ω
eβ(τ ′, σ′)eρk(t− τ, τ ′, σ′)dτ ′dσ′ + f(t− τ)

ª
, (9)

where Nk = N εk . Now we define

nk(t, τ) =
Z ∞

0

Z
∂Ω
eβ(τ ′, σ′)eρk(t− τ, τ ′, σ′)dτ ′dσ′ + f(t− τ) (10)

which we recognize being the solution of the following 1D problem :8<:
∂tn

k + ∂τn
k = 0 t > 0, τ > 0

nk(t, 0) =
R∞

0 Bk(τ)nk(t, τ)dτ + f(t) t ≥ 0
nk(0, τ) = 0 τ ≥ 0

, (11)

with Bk(τ) =
R
∂ΩN

k(σ)eβ(τ, σ)dσ. Indeed, the partial differential equation comes from differen-
tiating the expression of nk and the boundary condition follows from

nk(t, 0) =
Z ∞

0

Z
∂Ω
eβ(τ ′, σ′)eρk(t, τ ′, σ′)dτ ′dσ′ + f(t)

=
Z ∞

0

Z
∂Ω
eβ(τ ′, σ′)Nk(σ′)nk(t, τ ′)dτ ′dσ′ + f(t)

where we used eρk(t, τ ′, σ′) = Nk(σ′)nk(t, τ ′) from (9). Now we have that since the data f is reg-
ular and satisfies the compatibility condition, nk ∈ C1([0, T ];L1(]0, T [)) ∩ C([0, T ];W 1,1(]0, T [)),
and the following bound stands :

||nk(t, ·)||L1 ≤ et||Bk||∞
Z t

0
e−s||B

k||∞ |f(s)|ds ≤ et||β||∞
Z t

0
|f(s)|ds, ∀k (12)

where we used that ||Bk||∞ ≤ ||β||∞ for all k. Differentiating in time the equation (legitimate
since the solution is regular), we also have bounds on the derivatives :

||∂tnk(t, ·)||L1 ≤ et||β||∞
Z t

0
|f ′(s)|ds, ||∂τnk(t, ·)||L1 ≤ et||β||∞

Z t

0
|f ′(s)|ds.

Using the compact embedding of W 1,1(]0, T [) into L1(]0, T [), we obtain that for each t, the se-
quence nk(t, ·) is relatively compact in L1(]0, T [) and then, since ∂tnk is bounded in C([0, T ];L1(]0, T [))
the Ascoli theorem proves that there exists a subsequence which converges in C([0, T ];L1(]0, T [))
to a function n. Now we pass to the limit in the expression nk(t, τ) =

R t
0 B

k(τ ′)nk(t− τ, τ ′)dτ ′+
f(t− τ) to see that n satisfies

n(t, τ) =
Z t

0
β(Φτ ′(σ0))n(t− τ, τ ′)dτ ′ + f(t− τ)

that is, n ∈ C([0, T ];L1(]0, T [)) is the solution of8<:
∂tn+ ∂τn = 0 t > 0, τ > 0
n(t, 0) =

R∞
0 β(Φτ (σ0))n(t, τ)dτ + f(t) t ≥ 0

n(0, τ) = 0 τ ≥ 0
(13)
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By uniqueness of the solution to this equation, we obtain that the whole sequence nk converges
to n. Now, from eρk(t, τ, σ) = Nk(σ)nk(t, τ), using the lemma 6.2, we get

eρk(t, τ, σ) ⇀ eρ(t, τ, dσ) = δσ=σ0 ⊗ n(t, τ)dτ, in C([0, T ], ∗ −M(]0, T [×∂Ω)). (14)

We remark from its expression that we have eρ ∈ C([0, T ];M(]0, T [×∂Ω)) as well as the following
bound :

||eρ(t, ·)||M(]0,T [×∂Ω) ≤ et||β||∞
Z t

0
|f(s)|ds. (15)

• Step 3. Back to weak solutions. For a general data f ∈ L1(]0, T [), we consider a regularized
sequence fm ∈ C1([0, T ]) with fm(0) = 0 which converges to f in L1(]0, T [), and define eρkm the
associated solution. For each m, the previous step gives a measure eρm = δσ=σ0 ⊗ nm(t, τ)dτ ,
with nm the solution of the problem (13) with data fm. The bound (15) shows that the se-
quence eρm is a Cauchy one, thus it converges in C([0, T ];M(]0, T [×∂Ω)) to a measure eρ ∈
C([0, T ];M(]0, T [×∂Ω)). Then we can write, for ψ ∈ Cb(]0, T [×∂Ω) :

|| < eρk − eρ, ψ > ||∞ ≤ || < eρk − eρkm, ψ > ||∞ + || < eρkm − eρm, ψ > ||∞ + || < eρm − eρ, ψ > ||∞.
Thus for all m we have, using that ||eρk(t, ·)− eρkm(t, ·)||L1 ≤ C||f − fm||L1 (see proposition 5.9 of
chapter 5 for a similar bound as (12) in the two-dimensional case of the equation (2))

lim sup
k→∞

|| < eρk − eρ, ψ > ||∞ ≤ C||f − fm||L1 ||ψ||∞ + || < eρm − eρ, ψ > ||∞.
Choosing now m large enough shows that eρk ⇀ eρ in C([0, T ]; ∗−M(]0, T [×∂Ω)). Passing to the
limit in the expression of eρm, we see that the expression (14) is still valid.
• Step 4. Back to ρk. Denoting also ρk the measure on Ω with density ρk and in the same wayeρk the measure on ]0,∞[×∂Ω with density eρk, we observe from the following identity, where Φ
is the map ]0,+∞[×∂Ω→ Ω, (τ, σ) 7→ Φτ (σ)Z

A
ρk =

Z
A
ρk(t, x, θ)dxdθ =

Z
Φ−1(A)

ρk(t,Φτ (σ))|JΦ|dτdσ =
Z

Φ−1(A)
eρk, ∀A ⊂ Ω

that ρk is the push-forward of the measure eρk by Φ, that we denote eρk]Φ. Thus we have ρk =eρk]Φ ⇀
k→∞

eρ]Φ := ρ, the convergence being in C([0, T ]; ∗ −M(Ω)). The measure ρ(t, dX) is given
by : for all t > 0 and all ψ ∈ Cb(Ω)

< ρ(t, ·), ψ >=
Z ∞

0
ψ(Φτ (σ0))n(t, τ)dτ.

Direct computations with this expression in the weak formulation of solutions to the equation
(3) (or passing to the limit in the weak formulation of solutions to the equation (2)) shows that
ρ solves the problem (3).

Remark 6.4. (Uniqueness for (3)) In the proof of the previous theorem, we didn’t need to
address the question of uniqueness of solutions to the problem (3). However, there is uniqueness
and it can be proved by the standard method of establishing existence of regular solutions to the
adjoint problem. Indeed here the adjoint problem for a measure data N ∈ M(∂Ω) and a source
term in S ∈ C1

c (]0, T [×Ω) writes

∂tψ +G · ∇ψ + β < N,ψ|∂Ω(t, ·) >= S.
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It can be shown using the method of characteristics and a fixed point argument that this equation
admits a regular solution ψ ∈ C1([0, T ] × Ω), with ψ(T, ·) = 0. Using this solution in the weak
formulation (5) for a null boundary data gives that

R T
0 < ρ(t, ·), S > dt = 0. This identity being

true for all S ∈ C1
c (]0, T [×Ω) gives the result.

Remark 6.5. (Linear density) To model directly the situation where all the metastases are
born with the same angiogenic capacity θ0, we could consider that the metastases evolve on
the one-dimensional curve γ := {Φτ (σ0); τ ≥ 0} and model the number of metastases via a
linear density ρ1 : [0, T ] × γ → R. Then the number of metastases on the curve between the
points X1 = Φτ1(σ0) and X2 = Φτ2(σ0) would be given by

R τ2
τ1 ρ1(t,Φτ (σ0))|G(Φτ (σ0))|dτ , since

∂τΦτ (σ0) = G(Φτ (σ0)). Comparing this approach to the previous one where, after passing to the
limit ε → 0, the number of metastases between X1 and X2 is

R τ2
τ1 n(t, τ)dτ (from formula (6)),

the analogy would be to identify n(t, τ) = ρ1(t,Φτ (σ0))|G(Φτ (σ0))| and thus this last quantity
would solve the problem (13). In the linear density approach, it would yet not be possible to
derive a simple equation on ρ1 since ∂τ |G(Φτ (σ0))| has not a simple expression comparing to
∂τ |JΦ| = div(G)|JΦ| which gives the equation (2) in the 2D modeling approach.

2 Numerical illustration

In the chapter 5, we developed a numerical scheme to simulate the problem (2). It is a Lagrangian
scheme based on the method of characteristics which consists in discretizing the boundary with
M points and simulating the equation along each characteristic curve coming from the boundary,
after having straightened it. Remark that since the initial condition is zero, the solution only
lives in the red part of the figure 1 and we only have to discretize the red part of the boundary
[θ0 − ε, θ0 + ε]. We choose as a good approximation the values dt = 0.1 and M = 10 for the
discretization parameters (see the section 5.3.3 for numerical illustrations of the convergence of
the scheme).

Because the equation is two-dimensional simulating it can have an elevated computational
cost, especially for large times (see table 1). Thanks to the theorem 6.3 if we make the biological
assumption that all the metastases are born with an angiogenic capacity close to the value θ0,
then the metastasis density ρε is close to ρ and the total number of metastases at time t is
close to

R
Ω ρ(t, dX) =

R t
0 n(t, τ)dτ , with n being the solution of (7), by applying the formula

(6) with the test function ψ = 1 to obtain the total mass of the measure ρ(t, ·). Thus we
only have to simulate the equation (7), which with our scheme consists in simulating along the
only characteristic coming from the point (1, θ0). The convergence stated in theorem (6.3) is
illustrated in the figure 2. It is plotted the relative difference for the total number of metastases
at the end of the simulation, between the simulation in 1D and the one in 2D for various values
of ε. That is, if T is the end time of the simulation :

Relative Error =
�����
R T
0 n(T, τ)dτ −

R
Ω ρ

ε(T,X)dXR T
0 n(T, τ)dτ

����� .
We see that it decreases to zero as ε goes to zero. In the figure 2.A, we observe that, as can
be expected, the convergence deteriorates when T is bigger. The figure 2.B shows that the
convergence in ε does not depend on the number of discretization points of the boundary M ,
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A B

Figure 2: Relative difference between the 1D simulation and the 2D one, for 5 values of ε
: 100, 50, 10, 1 and 0.1. The values of the parameters for the growth velocity field G are
from [HPFH99] and correspond to mice data : a = 0.192, c = 5.85, d = 0.00873, θ0 = 625.
For the metastases parameters, we used : m = 0.001 and α = 2/3. The used timestep is
dt = 0.1. A. Convergence when ε goes to zero, for T = 15 and T = 100. The value of M used
for the 2D simulations is M = 10. B. Convergence when ε goes to zero, with respect to M
(M = 10, 50, 100), for T = 50. The three curves are almost all the same.

for M ≥ 10. This is coherent with the fact that the convergence of the scheme does not depend
a lot on M , as explained and illustrated in the chapter 5, section 5.3.3.

In the table 1 are given various computational times on a personal computer for the simulation
in 2D and in 1D. The simulations were performed with the same parameters as in the figure 2
and for the 2D simulations we used ε = 0.1 andM = 10 points of discretization of the boundary.

2D 1D
T=15 days, dt=0.1 67 sec 10.69 sec
T=15 days, dt=0.01 1h42 min 11 min
T=100 days, dt=0.1 46 min 4.7 min

Table 1: Computational times on a personal computer of various simulations in 1D and 2D.

We observe that simulating in 1D improves greatly the computational times, especially for the
large time simulations. Since the evolution of a cancer disease can be very slow, it is important
to be able to simulate the model for large times (say, more than a year in the human case).
Here the times are in days and we see that thanks to the convergence of the theorem 6.3, the
numerical method for simulating the model is improved in terms of the computational cost,
which was necessary when looking at the prohibitive costs in 2D.
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Chapter 7

Simulation results

In this chapter, we illustrate by numerical simulations of the model the potential use of the
model as an helpful tool for sharper diagnosis and therapy decision in the clinic. All along, we
try to use as much as possible parameters coming from data fits and will focus on the impact of
the scheduling of the drugs.

We first present simulations without treatment and study the dependance on the metastatic
parameters m and α, showing that identifying these parameters in a clinical setting could lead
to a more precise classification of the cancer disease than the existing ones like TNM (Tumor
Nodule Metastases), by describing more accurately the metastatic state of the patient, especially
the micrometastases.

As our model was build up to integrate the effect of anti-angiogenic (AA) therapy, we inves-
tigate in silico the effect of these drugs with a particular focus on the difference of the effect on
primary tumor evolution and metastases.

Then, we interest ourselves to a surprising phenomenon of metastatic acceleration after AA
therapy recently reported in the literature. We adapt the model based on a biological hypothesis,
in order to qualitatively reproduce these results, investigate the impact of scheduling in this
framework and perform some predictions with the model.

As AA drugs are neither administrated alone in the clinic but rather in combination with
cytotoxic (CT) drugs (usually refered as chemotherapies), we integrate the combination of these
two drugs in the model and turn our interest on the order of administration.

Eventually, we use the model to perform interesting simulations about the emerging con-
cept of metronomic chemotherapies which consists in administrating CT agents at low dose as
continuously as possible. We integrate resistances to the CT in the model and show that the
hypothesis of an AA action of the CT drug could explain the large-time benefit of these new
ways of administrating the chemotherapy.

All the simulations are performed using the scheme developed in chapter 5, in the 1D ap-
proximation explained in the chapter 6. This work was accepted for publication [BAB+12].
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1 Without treatment

An interesting application of the model would be to help designing a predictive tool for the total
number of metastases present in the organism of the patient. In this perspective, in the same
way as what is done in [BBHV09] we define a metastatic index as the integral of ρ on Ω :

MI(t) :=
Z

Ω
ρ(t,X)dX.

We will also focus on two other quantities of interest

Visible metastases =
Z

Ω
1x≥xvis(x, θ)ρ(t, x, θ)dx dθ, Metastatic mass =

Z
Ω
xρ(t, x, θ)dx dθ.

with xvis being the minimal visible size at imagery for a tumor (107 - 108 cells). The size (=
volume) is expressed in mm3 though until now it was thought as the number of cells. The
conversion rule we use is 1 mm3 ' 106 cells.

1.1 Parameter values

Mice The values of the parameters for the tumoral growth in the mice case are taken from
[HPFH99], where they were fitted from mice data bearing Lewis lung carcinoma. Following
[IKN00] and [BBHV09], we take α = 2/3 and fix the value of m arbitrarily. The values of the
parameters (without the treatment) are gathered in the table 1, where (x0, θ0) are the initial
traits of a metastasis.

a c d x0 θ0 m α

(day−1) (day−1) (day−1vol−2/3) (vol) (vol) (Nb of meta)(day−1)(vol−α)
0.192 5.85 8.73× 10−3 10−6 625 10−3 2/3

Table 1: Values of the growth and metastatic parameters for mice. Parameters a, c and d where
fitted on mice data in [HPFH99].

Human In the paper of Iwata et al. [IKN00] where the growth rate was a Gompertz, parame-
ters where identified from data on a hepatocellular carcinoma. To determine realistic parameters
for human situations, we fix values of the parameters for the model of Hahnfeldt et al. reproduc-
ing the gompertzian growth curve of Iwata et al., keeping the carrying capacity from [IKN00]
equal to

�
c
d

�3/2 and fixing θ0 as being rescaled from the value of [HPFH99] by the ratio of the
maximal reachable sizes from the two papers. We use the same value for α and adapt the value
of m to a size unit in mm3 : in [IKN00] m = 5.3 · 10−8(Number of metastases)·(cell−α)·day−1

gives m = 5.3 · 10−8 · 106α·(Number of metastases)·(mm−3α)·day−1. Comparison of the tumoral
growth between the Gompertz with parameters from [IKN00] and the model of Hahnfeldt et al.
with the parameters from table 2 is given in the Figure 1.
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a c d θ0 m α

0.0042 1 5.7251· 10−4 2630.14 5.3 ·10−4 2/3
day−1 day−1 day−1mm−2 mm3 Nb of meta·day−1· mm−3α

Table 2: Values of the growth and metastatic parameters for human. a, m and α are from
[IKN00].

A B C

Figure 1: A. Tumoral evolution. Comparison between the Gompertz used in [IKN00] (parame-
ters a = 0.00286 day−1, θ = 7.3 · 1010 cells = 7.3 · 104 mm3) and the model of Hahnfeldt et al.
with the growth parameters from table 2. B. Total number of metastases. C. Visible metastases
(xvis = 107).

1.2 Visible metastases. Metastases emitted by the primary tumor

A very important issue for clinicians is to determine the number of metastases which are not
visible with medical imaging techniques (micro-metastases). Having a model for the density
of metastases structured in size allows us to compute the number of visible and non-visible
metastases. We take as threshold for a metastasis to be visible a size of 108 cells, that is
100 mm3. In the Figure 2, we plotted the result of a simulation showing both the total number
of metastases as well as only the visible ones.

Figure 2: Evolution of the total number of metastases and of the number of visible metastases,
that is whose size is bigger than 100mm3(' 108 cells).

We observe that at day 20 the model predicts approximately one metastasis though it is not
visible. At the end of the simulation, the total number of metastases is much bigger than the
number of visible ones.
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In the Figure 3, we compare the influence of the metastases emitted by the primary tumor
(first generation) and the number of metastases emitted by the metastases themselves (secondary
generations).

A B

Figure 3: Number of metastases emitted by the primary tumour and by the metastases them-
selves. A. T=50. B. T=100

We observe that times less than 50 the first generation is the most important in the total
number, while for larger times the secondary generations haver greater importance. Indeed, in
the model this last quantity is exponential in time whereas the first one results from a source
term. The life time of a mice is of the order of 50 days and thus, with the metastatic parameters
that we arbitrarily fixed, the metastases at death of the animal are composed of about two thirds
of first generation tumors and one third of secondary tumors.

1.3 Dependance on the metastatic parameters m and α

Dependance on m

The metastatic index dependance relatively to the metastatic aggressiveness parameter m is
shown in the table 3. Of course, the larger m, the larger the metastatic index. The values of
the growth parameters are those from [HPFH99], that is

a = 0.192, c = 5.85, d = 0.00873 (1)

the value of α is constant equal to 2
3 , the initial values for the primary tumor are (xp,0, θp,0) =

(10−6, 625) and the same for the metastases. In this table, we remark that at least for times less

MI(1.5) MI(7.5) MI(15)
m = 10−4 5.80× 10−3 6.60× 10−2 2.79× 10−1

m = 10−3 5.80× 10−2 6.60× 10−1 2.81
m = 10−2 5.80× 10−1 6.62 30.1

Table 3: Variation of the number of metastases with respect to m.

than 15 days, it seems that the metastatic index is linear in m. Indeed, this can be explained
by the fact that at the beginning, most of the metastases come from the primary tumour and
not by the metastases themselves. This means that the renewal term in the boundary condition
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of the equation could be neglected for small times and that the solution of this problem is close
to the one of 8<:

∂tρ+ div(ρG) = 0
−G · νρ(t, σ) = N(σ)β(Xp(t))
ρ0(X) = 0.

But then, integrating the equation on Ω gives MI(t) =
R t

0 β(Xp(s))ds = m
R t

0 xp(s)αds, where
Xp(s) = (xp(s), θp(s)) represents the primary tumour and solves the system Ẋp(s) = G(Xp(s))
with initial condition (x0,p, θ0,p). For larger times, the metastatic index for large time is then
not anymore linear in m, neither exponential nor following a power law, as illustrated in the
figure 4 where is the plotted the number of metastases at time T = 100 versus m.

A B

Figure 4: Number of metastases at the end of the simulation with T = 100 in log and log-log
scales.

Dependance on α

For the dependance in α, things are more intricate. Indeed, if we think as x being bigger than
1 (for instance if x is expressed in number of cells), then α 7→ mxα is an increasing function
and we expect the total number of metastases being increasing relatively to α. But if we rather
think to x as a volume (expressed in mm3 for instance) and allow its value to be lower than 1,
by taking as initial values for the size of the metastases x0 = 10−6mm3 ' 1 cell, the other initial
values being θ0 = 10−5mm3, (xp,0, θp,0) = (1, 10−5), then the dependance in α is not so clear,
resulting from a balance between small tumors for which decreasing α raises their importance
and bigger ones which have the opposite behavior. The simulation results presented in the figure
5 indeed prove that we can have two opposite behaviors of the total number of metastases versus
α, depending on the value of m : a small (and more realistic) value of m (m = 10−3) exhibits
an increasing curve of MI(T ) versus α whereas the opposite happends with m = 104. We also
notice that for m small, the dependance of MI(T ) on α looks exponential, but we have no
theoretical explanation to provide for this fact.
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m = 10−3

A

m = 104

B

Figure 5: Total number of metastases at T = 10 versus the parameter α (in log scale) for two
different values of m. The values of the growth parameters are those of [HPFH99] .

2 Anti-angiogenic therapy

2.1 Mice parameters

We present various simulations of anti-angiogenic (AA) treatments, in order to investigate the
difference in effectiveness of various drugs regarding to their pharmacokinetic/pharmacodynamic
parameters. The first result shown in Figure 6 takes the three drugs which were used in [HPFH99]
where only the effect on tumor growth was investigated, and simulates the effect on the metas-
tases. The three drugs are TNP-470, endostatin and angiostatin and each drug is characterized
by two parameters in the model : its efficacy e and its clearance rate clrA. The first one appears
in the growth rate of each tumor, that we recall here

G(t, x, θ) =
�

ax ln
�
θ
x

�
cx− dx2/3 − eA(t)(θ − x0)+

�
where we took the size of one cell as minimal vascular capacity for the therapy to be active.
The second parameter appears in the one-compartmental pharmacokinetics model for the con-
centration A(t) :

A(t) = D
NX
i=1

e−clr(t−ti)1t≥ti , (2)

where D is the administrated dose which is given at times ti. These parameters were retrieved
in [HPFH99] by fitting the model to mice data under AA therapy. The administration protocols
are the same for endostatin and angiostatin (20 mg every day) but for TNP-470 the drug is
administrated with a dose of 30 mg every two days.

We observe that TNP-470 seems to have the poorest efficacy, both on tumoral growth, vascu-
lar capacity and total number of metastases, due to its large clearance. As noticed in [HPFH99],
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A B

C

Figure 6: Effect of the three drugs from [HPFH99]. The treatment is administrated from days
5 to 10. Endostatin (e = 0.66, clrA = 1.7) 20 mg every day, TNP-470 (e = 1.3, clrA = 10.1) 30
mg every two days and Angiostatine (e = 0.15, clrA = 0.38) 20 mg every day. A : tumor size.
B : Angiogenic capacity. C : Number of metastases.

the ratio e/clrA should govern the efficacy of the drug and its value is 0.13 for TNP-470 and 0.39
for both endostatin and angiostatin. The model we developed is now able to simulate efficacy
of the drugs on the metastatic evolution (figure 6.C). Interestingly, the drug which seems to be
more efficient regarding to the tumor size at the end of the simulation (day 15), namely angio-
statin, is not the one which gives the best result on the metastases. Indeed, the lower efficacy
of endostatin regarding to ultimate size is due to a relatively high clearance provoking a quite
fast rebound of the angiogenic capacity once the treatment stops. But since the tumor size was
lower for longer time, the metastatic evolution was better contained. This shows that the model
could be a helpful tool for the clinician since the response to a treatment can differ from the
primary tumor to metastases, but the clinician has no data about micro-metastases which are
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not visible with imagery techniques.

In the figure 7, we investigate the influence of the AA dose (parameter D) on tumoral,
vascular and metastatic evolution. We observe that the model is consistent since it exhibits a
monotonous response to variation of the dose.

A B

C

Figure 7: Effect of the variation of the dose for endostatin. A : tumor size. B : Angiogenic
capacity. C : Number of metastases.

Influence of the scheduling

One of our main postulate in the treatment of cancer is that for a given drug, the effect can vary
regarding to the temporal administration protocol of the drug, due to the combination of the
pharmacokinetic of the drug and the intrinsic dynamic of tumoral and metastatic growth. To
investigate the effect of varying the administration schedule of the drug, we simulated various
administration protocols for the same drug (endostatin). The results are presented in figure
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8. We gave the same dose and the same number of administrations of the drug but either
uniformly distributed during 10 days (endostatin 2), concentrated in 5 days (endostatin 1) or in
2 days and a half (endostatin 3). We observe that the tumor is better stabilized with a uniform

A B

C

Figure 8: Three different temporal administration protocols for the same drug (Endostatin).
Same dose (20 mg) and number of administrations (6) but more or less concentrated at the
beginning of the treatment. Endostatin 1 : each day from day 5 to 10. Endostatin 2 : every
two days from day 5 to 15. Endostatin 3 : twice a day from day 5 to 7.5. A : tumor size. B :
Angiogenic capacity. C : Number of metastases.

administration of the drug (endostatin 2) but the number of metastases is better reduced with
the intermediate protocol (endostatin 1). It is interesting to notice that again if we look at
the effects at the end of the simulation, the results are different for the tumor size and for the
metastases. The two protocols endostatin 1 and endostatin 2 give the same size at the end,
but not the same number of metastases. Moreover, the best protocol regarding to minimization
of the final number of metastases (endostatin 1) is neither the one which provoked the largest
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regression of the tumor during the treatment (endostatin 3) nor the one with the most stable
tumor dynamic (endostatin 2).

To investigate further the scheduling dependance of the administration of AA drugs such
as endostatin, and motivated by various preclinical studies [KBP+01, DBRR+00] as well as
phase I studies [HBvdH+05, ESC+02], A. d’Onofrio, A. Gandolfi and A. Rocca used in [dGR09]
the Hahnfeldt - Folkman model of tumoral growth to assay low-dose, time-dense protocols in
comparison with high-dose, time-sparse protocols. In Figure 9.A, we reproduce one of the result
obtained in [dGR09] (Figure 5 of this paper, where the differences with our simulation are
the values of e, changed from 0.66 to 1.3 in [dGR09] and the values of the doses), and then
observe what happens on the total number of metastases and the metastatic mass, this last one
being defined by

R
Ω xρ(t, x, θ)dxdθ, on Figures 9.B and 9.C. Two schedulings are considered for

endostatin (noticed that the same global dose is administrated in both cases) :

Protocol 1 : 15 mg/kg, every day, Protocol 2 : 30 mg/kg, every two days.

and simulations are run to compare their effects on the disease’s evolution. We observe that in

A

B C

Figure 9: Two different schedulings for endostatin. Protocol 1 : 15 mg/kg, every day and
Protocol 2 : 30 mg/kg, every two days. A. Tumor size. B. Number of metastases. C. Metastatic
mass.

the case of protocol 1, the tumoral evolution is contained and eventually the therapy achieves
tumor eradication whereas protocol 2 does not induce tumor reduction and leads to unbounded
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growth. The same happens on the number of metastases and the metastatic mass. Notice that,
if the tumoral growth model would have been linear with a log-kill term due to the therapy,
both protocols would give the same results. This result emphasizes the good sensitivity of the
Hahnfeldt-Folkman model which is able to distinguish between different schedulings of the same
drug, with constant total administrated dose. According to this result and consistently with the
aforementioned preclinical studies, endostatin would achieve better efficacy when administrated
as continuous as possible.

2.2 Human parameters. Bevacizumab

Despite the great hope which succeeded the discovery of tumoral neo-angiogenesis process in the
1970’s and the achievement of AA drugs in the 1990’s and the beginning of the 21st century,
only a few AA drugs obtained a full market approval for clinical use. One of the most famous
is a monoclonal antibody, Bevacizumab (commercial name : Avastin). For the the PK of this
drug, we base ourselves on the publication [LBE+08] which shows that the PK can be described
by a two-compartmental model :(

dc1(t)
dt = −(k10 + k12)c1(t) + k21

V2
V1
A(t) + IA(t)

V1
dA(t)
dt = −(k20 + k21)A(t) + k12

V1
V2
c1(t).

(3)

with IA(t) having the same expression as in (12) with injection duration τA. The parameters
were estimated from patients data in [LBE+08] and their values can be found in the table 4.
In the Figure 10, we compare three protocols used in clinical situations [LBE+08] : 5 mg/kg/2

Parameter V1 V2 k10 k20 k12 k21 τA e
Value 2.66 2.66 0.0779 0 0.223 0.215 90 0.01
Unit L L day−1 day−1 day−1 day−1 min L·mg−1· day−1

Table 4: Parameter values for the PK model for Bevacizumab. All parameters except e are from
[LBE+08].

weeks, 7.5 mg/kg/3 weeks and an additional one : 2.5 mg/kg/week. See also [OB08] for other
examples of protocols (15mg/kg/week). We consider that injections of the drug last 90 minutes.
We take as non-zero initial condition the traits (x0,p, θ0,p) = (17112, 44849) corresponding to
the values reached after 1000 days when starting with one cell and the parameters from table 2,
except m = 1. We also take the corresponding value of ρ(600) as ρ0.

We observe that the response of the model again differs for the three considered schedulings,
the best one being 7.5 mg/3 weeks for all the quantities plotted. Hence, according to these
simulations and probably due to the large half-life of Bevacizumab it appears better to give
a strong dose of the drug, with large periods without administration. These results contrast
with the previous ones on mice data for endostatin, which advocate small dose/ time dense
administration of the drug in this case, due to higher clearance of the drug. These results
enhance the importance of pharmacokinetics in deciding the scheduling of a given drug. We
also remark in Figure 10 that the overall behavior of the number of visible metastases is quite
similar to the one of the primary tumor size. Indeed, large tumors are stabilized and thus the
number of visible ones remains almost constant.
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A B

C D

Figure 10: Comparison of clinically used protocols for Bevacizumab. A. Primary tumor size. B.
Visible metastases. C. Vascular capacity. D. Total number of metastases.

3 Metastatic acceleration after anti-angiogenic therapy

In a recent paper [ELCM+09], Ebos et al. obtained surprising results after AA therapy with
Sunitinib (a tyrosine kinase inhibitor of VEGFR, a VEGF receptor) : the treatment could induce
metastatic acceleration in mice, while substantially inhibiting primary tumor growth. They
used two different experimental protocols to assay this phenomenon, on mice : by intravenous
injection of cancerous cells or by orthotopic implantation of a tumor in the mammary fat pad and
then removal of the primary tumor. In both cases, they obtained acceleration of the metastatic
mass in groups treated by the AA drug, compared to an untreated group. In the Figure 11, we
reproduce the Figure 2A from [ELCM+09].

However, on the primary tumor, the effect of the treatment was beneficial, as shown in the
Figure 12 which is Figure 4A from [ELCM+09]. Moreover, sustained therapy at 60 mg/kg/day
exhibited better tumor slowdown than a temporal protocol of 120 mg/kg/day during 7 days,
starting the day after tumor implantation.
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Figure 11: Figure 2A from Ebos et al. [ELCM+09]. Both groups had orthotopically grown
tumors which were surgically removed and then Group A were treated by Sunitinib therapy
whereas Group B received only the vehicle.

Figure 12: Figure 4A from Ebos et al. [ELCM+09] showing the effect of the AA therapy on
the primary tumor evolution, for two different schedules of the drug : Group B received 60
mg/kg/day when tumor size reached 200 mm3 and Group C 120 mg/kg/day during 7 days,
starting the first day after tumor implantation.

These results were corroborated by another paper of Paez-Ribes et. al [PRAH+09] in the
same issue of the journal.
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3.1 Model

In this section, we modify our model in order to qualitatively reproduce these results, in a first
attempt to have a theoretical tool aiming at controlling this paradoxical metastatic acceleration
effect. In [ELCM+09], the authors propose as possible explanation for the phenomenon an
upregulation of proangiogenic factors :

« Our results present a [..] possibility [...] that involves microenvironmental changes in mouse
organs. [...] A number of potential mechanisms alone or in combination could play a role. One is
the [...] induced upregulation of multiple circulating proangiogenic cytokines and growth factors
in response to treatment, including osteopontin, G-CSF, and SDF1α (Ebos et al., 2007) - all
of which have been implicated in angiogenesis and/or metastasis (McAllister et al., 2008; Ben
Baruch, 2008; Wai and Kuo, 2008; Natori et al., 2002; Zhang et al., 2000). Second, and likely
related to such molecular changes, the mobilization of bone marrow-derived cells may facilitate
an enhanced “premetastatic niche," including circulating endothelial (Okazaki et al., 2006) and
myeloid progenitors (Shojaei et al., 2008), CXCR4+ recruited bone marrow circulating cells
(Grunewald et al., 2006), and circulating VEGFR1+ bone marrow cells (Kaplan et al., 2005).»

To integrate this feature in the model, we propose to modify the angiogenesis stimulation
parameter c of the tumoral growth model of Hahnfeldt - Folkman, only for the growth of metas-
tases, by making it dependent of the AA drug concentration A(t), with an increased value
cM � c when the AA concentration is above a threshold Aτ :

c(A(t)) =
¨
cM if A(t) ≥ Aτ
c if A(t) < Aτ

See Figure 13 for an illustration. Our model is thus designed to take into account for the possible

Figure 13: Illustration of the activation of the “boost" effect.

counter-attack of tumor cells towards AA therapy, as suggested by [ELCM+09] and shown in
[CFF+10]. Indeed, in this last paper the authors demonstrate an increase of VEGF tumoral
expression after erlotinib therapy in an in vitro experiment.
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The equation for the dynamics of the vasculature of the metastases during the therapy thus
becomes

dθ

dt
= c(A(t))x− dx2/3θ − eA(t)(θ − θmin)+. (4)

and we see that the effect of the treatment is balanced between this “boost" effect and the
natural anti-angiogenic effect of the drug.

We justify the fact that this angiogenic “boost" effect only occurs on the metastases and not
on the primary tumor in view of the following arguments :

1. The primary tumor is big and relatively stable regarding to angiogenesis, having already
established a vascular network and thus it is less active regarding to this process. On
the contrary, metastases are small and fully active, passing through the angiogenic switch.
Hence they are more reactive to an external assault. We could be more accurate by making
cM dependent on the size of the tumor. In first approximation though, we don’t do so.

2. Metastases are known to be genetically more aggressive, as the detaching cells which
give rise to a malignant secondary tumor must have survived to various adverse events
(intravasation into blood vessels, extravasation, settling in a new environment...). Thus
they could have a stronger phenotype regarding to the AA drug injury.

In absence of pharmacokinetics data for the Sunitinib, we perform the simulations in the
case of one-compartmental PK model (equation (2)), with clearance equal to 1.7 (endostatin in
[HPFH99]).

3.2 Simulations

Metastatic acceleration

To perform the simulations, we used the tumoral growth parameters of table 1 (except for θ0).
For the other parameters, we used

e = 0.2, clrA = 1.7, cM = 50, θ0 = 10−5. (5)

Of course, to obtain metastatic acceleration, we have to consider small value of the threshold Aτ ,
which can be approximated by taking Aτ = 0 (immediate “boost" effect). In the Figure 14 are
presented simulation results in this situation, which qualitatively reproduce the results of Figure
11. We simulated the model without therapy, with initial primary tumor values (x0,p, θ0,p) =
(1, 10−5), virtually performed resection of the primary tumor on day 14.5 (which consists in
removing the source term in the PDE for the metastatic density) and then administrated the
AA drug starting day 15, during 6 days. The temporal administration protocol that we used
for the drug is 20mg/day.

This result shows that for the parameter values (5), the model is able to reproduce metastatic
acceleration, the balance between the anti-angiogenic effect and the “boost" effect in equation
(4) being in favor of the second one.
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A B

Figure 14: Metastatic acceleration for Aτ = 0. A. Total number of metastases, only from day
15 to day 30. B. Metastatic mass

In the Figure 15, we reproduced in silico the situation of Figure 12 by not performing resection
of the primary tumor and testing two different temporal protocols for the AA drug : protocol 1
consists in giving the drug at 20mg/day during 7 days and protocol 2 administrates half of the
dose, 10mg/kg, but during a larger time, from day 13 (which is the time for which the tumor
reaches 200mm3 in the model) until the end. We also used Aτ = 0 in this simulation.

We observe good qualitative agreement between Figure 15.A, showing the primary tumor
growth, and the Figure 12. Indeed, since the primary tumor is not subjected to the “boost”
effect in the model, the AA drug induces inhibition of the growth. We also retrieve the fact
that better results are obtained with sustained therapy (protocol 2). In the Figures 15.B, C
and D we show some metastatic quantities, respectively the total number of metastases, the
metastatic mass and the number of visible metastases (size exceeding 108 cells = 100 mm3)
. It is interesting to notice that for both protocol, the total number of metastases is reduced
compared to the situation without treatment whereas for the metastatic mass and the visible
metastases, the effect depends on the protocol. While protocol 1 induces increased metastatic
mass and number of visible metastases, protocol 2 has a positive effect, being even able to avoid
apparition of visible metastases whereas protocol 1 provokes the presence of almost two visible
metastases at the end of the simulation. It would be interesting to compare these in silico
predictions to the metastatic data corresponding to Figure 12 from [ELCM+09] (unfortunately
not available in the paper).

We could imagine that the threshold value Aτ is a parameter which depends on the AA drug
considered, or on the patient. Identification of its value would then be of fundamental importance
since metastatic acceleration can occur or not depending on this value, as illustrated in Figure
16 where we performed the same numerical experiment as in Figure 14, but with Aτ = 20, and
observe reduction of the total number of metastases and of the metastatic mass.

Influence of the scheduling

In the Figure 17 we compare two protocols regarding to the metastatic acceleration phenomenon.
Protocol 1 consists in giving the drug every day at dose 20 mg and Protocol 2 administrates the
double dose every two days, each one being administrated from day 15 to 42 and with Aτ = 7.
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A B

C D

Figure 15: Without resection. Protocol 1 : 20mg/day from day 15 to day 21. 10mg/day from
day 13 until the end A. Primary tumor. B. Total number of metastases, from day 15 until the
end. C. Metastatic mass (log scale). D. Visible metastases

A B

Figure 16: No metastatic acceleration for Aτ = 20. A. Total number of metastases, only from
day 15 to day 30. B. Metastatic mass
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A B C

Figure 17: Influence of the scheduling. Aτ = 7. Protocol 1 : 20 mg/day. Protocol 2 : 40 mg/2
days. A. Total number of metastases. B. Metastatic mass. C. Visible metastases

The two protocols have different implications : protocol 1 implies metastatic acceleration
while protocol 2 results in deceleration of metastatic growth. These results are to be compared
with the Figure 9.A from section 7.2.1.0 concerning primary tumor evolution, where the equiv-
alent protocols give the opposite qualitative results, namely a better effect of protocol 1. Of
course, what we observe here in the metastatic acceleration context (i.e., using equation (4) for
the vascular dynamics of the metastases) is totally related to the PK of the drug. In comparing
two schedulings, the one resulting in larger “boost” effect will be the one for which the total
time above Aτ in the drug concentration time profile will be the largest (see Figure 13).

Again, the result depends on the value of the parameter Aτ , as shown in Figure 18 where we
performed the same simulation with Aτ = 20 and obtained the opposite result : protocol 1 is
better than protocol 2.

A B C

Figure 18: Influence of the scheduling. Aτ = 20. Protocol 1 : 20 mg/day. Protocol 2 : 40 mg/2
days. A. Total number of metastases. B. Metastatic mass. C. Visible metastases

3.3 Perspectives

In this section, we proposed a modeling for describing metastatic acceleration after Sunitinib
therapy observed in [ELCM+09]. We based ourselves on a biological assumption these authors
formulate. This assumption is an upregulation of pro-angiogenic factors which we translated
in the model by an increase of the angiogenesis stimulation parameter c in response to the
treatment, thus in the tumoral growth part of the model. However, other biological hypotheses
can be formulated to explain this phenomenon :
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1. In [PRAH+09], mice experiments show an increased invasive phenotype and increased
metastasis after AA therapy. One of their hypothesis is that this phenotypic change would
be driven by hypoxia (lack of oxygen). The primary tumor cells, lacking of oxygen due
to the action of the AA drug, would change their phenotype in order to escape the tumor
area, which could enhance metastasis.

2. In another paper of Qu & al. [QGML10], entitled : “Antiangiogenesis therapy might
have the unintended effect of promoting tumor metastasis by increasing an alternative
circulatory system", the authors propose an hypothesis also related to hypoxia. When
tumoral cells lack of oxygen, they would provoke formation of a parallel circulatory system
through a phenomenon called vasculogenic mimicry [GCL+07, LAL+07].

These hypotheses of adaptive response of cancer cells to the treatment suggest to model the
phenomenon by modification of the metastatic parameter m. An idea for a future work is to
make this parameter depend on the vascular density of the tumor represented by δ = θ

x , thus
changing β into

β(x, θ) = m

�
θ

x

�
.

The shape to give to the function δ 7→ m(δ) is still to be defined. We can think to a unimodal
function having one maximal value in δ∗. A very low value of δ should imply low metastasis since
when there are no blood vessels detaching cells cannot escape. When δ is too high, vasculature
is known not to be efficient and hence metastatic aggressiveness is not zero, but lower than in a
hypoxia situation where it is enhanced due to development of vasculogenic mimicry. But other
arguments may lead to a different shape for δ 7→ m(δ) as high vascular density seems to lead
also to higher permeability of the vessels, more permissive for intravasation of cancerous cells.

Simulations of this model with anti-angiogenic therapy seems very interesting to perform.

4 Cytotoxic and anti-angiogenic drugs combination

An important problem in clinical oncology is to determine how to combine a cytotoxic drug
(CT) that kills the proliferative cells and an anti-angiogenic (AA) drug which acts on the angio-
genic process, either by blocking the angiogenic factors like VEGF (monoclonal antibodies, e.g.
Bevacizumab) or by inhibiting the receptors to this molecule. The AA drugs are classified as
part of the cytostatic drugs as they aim at stabilizing the disease. Two questions are still open
: which drug should come before the other and then what is the best temporal repartition for
each drug? Here, we perform a brief in silico study of the first question.

The treatments impact by reducing the tumoral growth rate. Following the log-kill assump-
tion for chemotherapy which says that cytotoxic drugs kill a constant fraction of the tumoral
cells (and not a constant number of them), the growth rate has the following expression

G(t, x, θ) =
�

ax ln
�
θ
x

�
− fC(t)(x− x0)+

cx− dx2/3 − eA(t)(θ − x0)+

�
.
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4.1 Mice parameters

Since we don’t have real parameters for the cytotoxic drug we consider a one-compartmental
PK model with expression (2), but with parameters clrC and DC that we arbitrarily fix to 1,
as well as f . For the AA drug, we take the endostatin parameters from [HPFH99]. We perform
simulations of the model to investigate combination of the CT and the AA. In Figure 19, we
present the results of two simulations : one giving the AA before the CT (Fig. 19.A) and the
other one doing the opposite (Fig. 19.B).

A B

C D

Figure 19: Combination of an anti-angiogenic drug (AA) : endostatin, with dose 20 mg and a
cytotoxic one (CT). A. AA from day 5 to 10 then CT from day 10 to 15, every day. Tumor
growth and vascular capacity. B. CT from day 5 to 10 then AA from day 10 to 15, every day.
Tumor growth and vascular capacity. C : Comparison between both combinations on the tumor
growth. D : Comparison between both combinations on the metastatic evolution.

Although in both cases the effect on the metastases is very good since the growth seems
stopped (Fig. 19.D), it appears that the qualitative behaviors of the tumoral and metastatic
responses are different regarding to the order of administration of the drugs (Fig. 19.C and
19.D). According to the model, it would be better to administrate first the CT in order to
reduce the tumor burden and then use the AA to stabilize the disease. Indeed, the number of
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metastasis at the end of the simulation is lower when the CT is applied first than in the opposite
case. Of course, this conclusion depends on the tumoral growth and drugs parameters but this
simulation shows that the model is able to exhibit different responses regarding to the order of
administration between CT and AA drugs.

4.2 Human parameters. Etoposide + Bevacizumab

IConsidering a clinical setting, we evaluate the combination between Etoposide, which is a CT
agent used in wide variety of cancers (lung, testicle cancers, lymphoma, leukemia...) and Beva-
cizumab (monoclonal antibody targeting Vascular Endothelial Growth Factor, used mainly in
colorectal and breast cancers). Several recent clinical trials have been evaluating the combination
of both drugs in lung cancers and glioblastoma, with mixed results [CBB+11, STW+11, RDP+11,
JWV+10, FDM+10]. The PK model and parameters for the CT drug are from [BFCI03] and
for Bevacizumab we use the same values as in section 7.2.2. The PK model for Etoposide is
two-compartmental with equations similar to (3) and parameter values are in table 5, with τC
the infusion duration. As in section 7.2.2 we consider non-zero initial condition corresponding

Parameter V1 V2 k10 k20 k12 k21 τC f
Value 25 15 1.6 9.36 0.4 0 24 25
Unit L L day−1 day−1 day−1 day−1 h L·g−1· day−1

Table 5: Parameter values for the PK model for Etoposide. All parameters except f are from
[BFCI03].

to the final state of the untreated system at time 1000 days.

In the Figure 20 we compare each monotherapy case to the combined treatment with the
two drugs. The administration protocol for Bevacizumab is 5 mg/kg/2 weeks [LBE+08] (with
a virtual patient of 70 kg) and the Etoposide one is 0.5 g/m2 at day 1 of the cycle [BFCI03]
(virtual patient with a Body Surface Area of 1.75 m2). We observe that, with the efficacity
parameter e and f that we chose, the effect of the AA drug is to stabilize tumoral growth as well
as the number of visible metastases. The CT has an important reduction effect and combination
of both is strictly better than the two monotherapy cases since it allows to reduce the tumor
burden and then stabilize it to a low level.

We ask now the question whether administrating the CT drug before or after the AA one.
In the Figure 21 we simulated the two situations with one administration of each drug : either
Bevacizumab at day 0 and Etoposide at day 8 or the opposite.

An interesting fact to observe is that the best way of combining both regarding to the tumor
size, namely AA first and then CT is not the best for the total number of metastases, which rather
suggests that the best is the CT first and then the AA. Although the difference between both
is very low we still have qualitatively different answers for primary tumor size and metastases,
for the problem of the order of administration.

4.3 Perspectives
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A B

C D

Figure 20: Comparison between the two monotherapy cases and the combined therapy. A :
Primary tumor size. B : Visible metastases. C : Angiogenic capacity. D : Total number of
metastases.

As expressed several times all along this thesis, an actual important clinical problem is to know
how to administrate anti-angiogenic (AA) and chemotherapies (CT) in combination. In sec-
tion 7.4 we performed simulations about this problem without integrating complex interactions
between the AA and the CT (although interactions still are present, but implicitly). In partic-
ular, we did not explicitly take into account for the fact that delivery of the drug is achieved
through the vascular system and thus the amount of drug reaching the tumor should depend on
its vasculature. Moreover, the normalization effect of AA therapy [Jai01], also called “vascular
pruning", which says that AA therapy is able to improve quality of the vasculature, should be
taken into account.

In the publication [dG10a], d’Onofrio and Gandolfi enriched the Hahnfeldt - Folkman model
by adding a term γ

�
θ
x

�
in front of the log-kill term for action of the CT. When using a unimodal

function for γ in order to take into account for vascular pruning, it is possible to generate multi-
stability under therapy in the ODE system. This could phenomenologically explain synergistic
effects between the two drugs and also why therapy is ineffective in some cases. Furthermore,
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A B

C D

Figure 21: Administer the CT before or after the AA? A : Primary tumor size. B : Visible
metastases. C : Angiogenic capacity. D : Total number of metastases. These figures are part of
the submitted publication [BBB+11].

introducing stochastic effects yields to noise-induced transitions, studied in [dG10b], where the
authors propose these transitions as explanation for fast relapse of the cancer disease. In the
chapter 2 of this thesis, we used a mechanistic model of vascular tumor growth in order to inte-
grate this feature of angiogenesis through definition of a quality of the vasculature. We obtained
numerical results suggesting an optimal delay between administration of the AA and the CT.

We present now some current work on this problem, at intermediate level between the mech-
anistic model of chapter 2 and the complete phenomenological one from [dG10a].

Idea : model the biological fact that during angiogenesis, there is a maturation process of
the vessels. They go from sprouts which are not effective to mature vessels able to deliver

nutrients and drugs to the tumor.
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Discrete structure of maturation

This subsection is some current work in collaboration with G. Chapuisat, J. Ciccolini, A. Erlinger
and F. Hubert. We divide the carrying capacity K from the model of Hahnfeldt - Folkman,
supposed to be related to the tumoral vasculature, between two compartments : immature and
mature vessels. We denote :

• V = tumoral volume (number of cells)

• I = immature vessels

• M = mature vessels

• A = effective concentration of anti-angiogenic (AA) agent

• C = effective concentration of chemotherapy (CT) agent

For the dynamics of the vasculature, we assume

1. Only mature vessels supply nutrients

2. Only immature vessels are subjected to stimulatory and inhibitory signals coming from
the tumoral compartment, which are taken to be the one of Hahnfeldt - Folkman

3. Immature vessels maturate with a constant rate denoted by χ and mature vessels are
subjected to natural apoptosis (rate τ).

For the dynamics of the therapy we assume :

4. The AA acts as a vessel-disruptive agent, only on the immature vessels.

5. The cytotoxic action of the chemotherapy is a modification of the classical log-kill term to
take into account the balance of the two following effects :

• When the effective vasculature (M) is low there is less delivery of the drug.

• The "quality" of the tumor induced neo-vasculature is bad due to misorganisation of
the vessels, resulting in a worse supply of the drug. This misorganisation is partially
reolved by the "normalisation" effect/ vascular pruning of the AA drug.

These considerations lead to model the effect of the drug as

f

�
I

V

�
g(M)C(t) (6)

with f a decreasing function of the immature vessels density and g an increasing function, such
that g(0) = 0.
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Remark 7.1. Another possibility would be to take the function g depending on the mature
vascular density M

V since a very large tumor weakly vascularized should be less affected by the
drug than a smaller one with the same amount of vessels. But this point remains unclear
since in the log-kill assumption that an amount of drug kills a constant fraction of cells what is
important is the total amount present at the tumor site. Assuming to be uniformly distributed
gives expression (6).

The complete set of equations writes

V̇ = aV ln
�
M

V

�
− f

�
I

V

�
g(M)C (7)

İ = bV − cV
2
3 I − χI − ηA (8)

Ṁ = χI − τM (9)

Remark 7.2. What we model for the delivery of the CT should also apply to the delivery of
nutrients and thus maybe we should also modify the equation on the tumor evolution and replace
M by f

�
I
V

�
g(M) in ln

�
M
V

�
.

Simulations of this ODE model under action of Etoposide (CT) and Bevacizumab (AA) reveal
an optimal delay between administration of the AA and the CT, as shown in Figure 22 (where,
however, relative variation is quite low). The simulation corresponding to this Figure consists
in one administration of first Bevacizumab, then Etoposide after some delay and to observe the
size of the tumor at the end of the simulation, plotted against the delay.

Figure 22: Final size of the tumor plotted against the delay between administration of the AA
and the CT

Interesting questions to be investigated can be

1. Theoretical study the behavior of the dynamical system in the case of constant infusion
therapy. In particular, is there multistability?

2. In the case of multistability, investigate the possible effects of noise induce transitions.
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3. Introduce a delay in the death of the vessels and study the resulting dynamical behavior
in the parameter space.

4. More generally, look further at the various timescales involved.

5. Study an optimal control problem with this model and compare the structure of optimal
solutions to previous study of CT/AA combination [dLMS09] which did not integrate for
vascular pruning.

Continuous structure of maturation

This idea of possible future work is in collaboration with A. Gandolfi. In order to model more
deeply the maturation process of the vessels, the idea is to structure the vessel population by
maturity thus considering n(t, x) the density of vessels with maturity x ∈ [0, 1]. Given some
weighting functions w1(x) ≤ 1 and w2(x) ≤ 1 we define

ν1(t) =
Z
w1(x)n(t, x)dx

and
ν2(t) =

Z
w2(x)n(t, x)dx

representing respectively the inefficient and efficient (“immature” and “mature”) vasculature.
Note that ν1 + ν2 is not necessarily equal to

R
n(t, x)dx, the sum can be greater due to some

overlapping.

The equations write8><>:
V̇ = aV ln

�
ν2
V

�
− f

�
ν1
V

�
g (ν2)C

∂tn(t, x) + ∂x(G(
R 1

0 n(t, x)dx)n(t, x)) = δ(x, n)
G(0,

R 1
0 n(t, x)dx)n(t, 0) = b1V (t) + b2(V )

R
w3(x)n(t, x)dx

with the maturity velocity G(x,
R 1

0 n(t, x)dx) possibly depending on the total number of vessels,
making the PDE nonlinear. An idea for the shape of G could be

G = 1
Tm(

R
n)

with Tm the time needed to maturate given by

Tm = r + α

R
n

V
.

The boundary condition expresses that the input of endothelial cells results from stimulation
by the primary tumor and proliferation, with w3(x) ≤ w1(x). In first approximation, b2(V )
can be simply constant. Some biological insights about the maturation process have to be
further studied, starting with the work of Yenkopoulos (in particular about angiopoïetins Ang1
- Ang2).
The death term d(x, n) has to be clarified and should be inspired from the inhibition term
of Hahnfeldt-Folkman. An expression which would allow to recover the model of Hahnfeldt
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- Folkman as a particular case is δ(x, n) = −dV
2
3M(t)1x∈]0.5,1[ but it seems irrelevant that

inhibition acts on mature vessels. It should more probably act on immature vessels.

Interesting questions/problems in this framework could be

1. Perform simulations and look at the shape of the maturity distribution, without drug.

2. Perform mathematical analysis of the equations

5 Metronomic chemotherapy

During the last decade, a novel therapeutic approach called metronomic chemotherapy (also
named low dose antiangiogenic therapy [BBK+00]) appeared. Various Phase I studies have
been performed [ARC+08, BDH+06, CFB+04, SGH+06, CRK+08, KTR+05, SVM+06] using
this new way of administrating cytotoxic agents which consists in giving the drug at low dose
but as continuously as possible, whereas classical protocols administrate the Maximum Tolerate
Dose (MTD) at the beginning of the therapy cycle, during a short time period followed by a
large period without treatment dedicated to patient’s recovery from severe toxicities, especially
hematologial ones. Indeed, this scheduling of the drug is believed to have better efficacy, one
argument being that it would generate less resistances in the cancerous cells population. How-
ever, metronomic schedules are now thought to be potentially more efficient while reducing the
toxicities according to the paradigm that this low dose/time dense scheduling of the drug would
have important anti-angiogenic effect [KK04, HFH03]. Indeed, the endothelial cells which are
proliferating during tumoral neo-angiogenesis are also targeted by the cytotoxic agent, while
developping less resistances as they are genetically more stable than malignant cells. Moreover,
the dynamical effect of metronomic schedules would be higher than the one of MTD protocoles.
In this context, the open clinical problematic that physicians are facing is :

What is the best metronomic scheduling for chemotherapeutic agents?

In this section, we aim at using the Hahnfeldt - Folkman model to give insights on this issue,
and observe the effect of metronomic schedules on the metastases population. As expressed
above, one of the main ingredients explaining the benefit of metronomic schedules compared to
MTD ones are the resistances, which we shall thus introduce in the model. We place ourselves
in the context of breast cancer and will first consider a monotherapy situation with Docetaxel
as the CT drug, and then combination of Docetaxel with Bevacizumab (monoclonal antibody
targeting Vascular Endothelial Growth Factor).

5.1 Model

The main assumptions underlying our modeling of the metronomic paradigm are the following :

1. The CT has an anti-angiogenic effect by killing proliferative endothelial cells.

2. Cancerous cells develop resistances to the CT whereas endothelial cells don’t.
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3. The killing action of the drug is stronger on the endothelial compartment than on the
tumoral one.

We start from the Hahnfeldt - Folkman, in which we integrate anti-angiogenic effect of a
chemotherapy (assumption 1). We consider that the CT drug acts in both compartment : on
the tumoral compartment x (classical cytotoxic effect) and on the vasculature θ (anti-angiogenic
effect due to the killing of proliferative endothelial cells). The expression of the growth rate G
is

G(t,X) =
�
ax ln

�
θ
x

�
− C1(t)(x− xmin)+

cx− dx2/3θ − (eA(t) + C2(t))(θ − θmin)+

�
(10)

where C1 and C2 are the exposures of the drug respectively on the tumoral cells and on the
vascular compartment, defined from the output C(t) of the PK model for Docetaxel expressed
in mg· L−1.

The PK model for Docetaxel is a three-compartmental model, coming from [BVV+96]. Al-
though it was initially designed as a model for hematotoxicity, we use the interface model from
[MIB+08] as PD model. All together, the equations are8>><>>:

ċ1(t) = −kec1(t) + k12(c1(t)− c2(t))− k13(c1(t)− c3(t)) + I(t)
V

ċ2(t) = k21(c1(t)− c2(t))
ċ3(t) = k31(c1(t)− c3(t))
Ċ(t) = −αIe−βIC(t)C(t) + c1(t)

(11)

The last equation is the interface model introduced in [MIB+08] to model the effect (exposure)
of the drug. It is intended to have more flexibility than just considering the area under the curve
(which is obtained by taking αI = 0) or an effect compartment (βI = 0). The term I stands for
the drug input and writes

I(t) =
MX
i=1

Di1ti≤t≤ti+τ (12)

where {ti; i = 1, ..,M} are the administration times of the drug, {Di; i = 1, ..,M} the adminis-
trated doses and τ the injection duration. The parameter values used for the PK model can be
found in table 6.

Parameter V k12 k13 ke k21 k31
Value 7.4 25.44 30.24 123.8 36.24 2.016
Unit L day−1 day−1 day−1 day−1 day−1

Table 6: Parameter values of the PK model for Docetaxel [BVV+96].

We take into account for the resistances (assumption 2) by assuming that each cell has
probability RC(t) to become resistant at time t. The probability of being resistant at time t is
then exponentially distributed and we set

C1(t) = α1e
−R
R t

0 C(s)dsC(t), C2(t) = α2C(t).
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Parameter αI βI α1 α2 R τ

Value 0.75 25 0.5 5 5 60
Unit day−1 L·mg−1 L·mg−1·day−1 L·mg−1·day−1 L·mg−1·day−1 min

Table 7: Parameter values for the PD model for Docetaxel. Values αI and βI come from
[MIB+08]. Parameters α1, α2 and R were fixed arbitrarily.

We transpose assumption 3 by taking α2 > α1. The parameter values for the PD model are in
Table 7.

The tumoral growth and metastatic parameters used in the simulations are those in table 2,
coming from [IKN00] where they were fitted to data of a hepatocellular carcinoma. We take
as non-zero initial condition the traits (x0,p, θ0,p) = (902.28, 15401) corresponding to the values
reached by the primary tumor after 600 days when starting with one cell and the parameters
from Table 2. We also take the corresponding value of ρ(600) as ρ0.

5.2 Simulation results

Metronomic Docetaxel In the publication [BDH+06], for pediatric brain cancers, the au-
thors compared a classical and a metronomic protocol. During 49-days therapy cycles, the
classical protocol delivers 200 mg/m2 of Temozolomide per day during the first 5 days whereas
the metronomic protocol gives 85 mg/m2 per day during 42 days followed by a 7-day rest pe-
riod. The total amount of drug delivered during a cycle are respectively 1000 mg/m2 and 3570
mg/m2, the second one being thus able to give more than 3.5 fold the total dose of the first one.
We wish now to mimic this situation in the case of breast cancer with Docetaxel as CT and
compare the two following schedules, based on a 21-day long therapy cycle :

1. MTD schedule : 100 mg at day 0, as considered in [MIB+08].

2. Metronomic schedule : 10 mg/day every day, without resting period.

The total dose administrated during one cycle are respectively 100 mg and 210 mg. The simu-
lation results for the tumoral evolution and the metastases are presented in Figure 23.

We observe in Figure 23 that, at the beginning, the MTD schedule induces better tumoral
reduction than the metronomic one, which exhibits only limited regression and even regrowth
of the tumor. This could be misleading in practical situations since one could decide to stop
the therapy when observing the regrowth. However, due to resistances the MTD schedule gets
worse and eventually doesn’t contain regrowth of the primary tumor. On the opposite, for
large times the metronomic schedule gives better results, being able to overcome the resistance
phenomenon, and eventually leading to stable tumoral reduction, which still persists for times
bigger than 220 days (simulation not shown). The explanation of this fact can be understood
by looking at Figure 23.B representing the effect of the drug on the vascular capacity. While
the MTD schedule doesn’t provoke overall decrease of the vascular capacity on large time scale,
the metronomic one ensures more deep and stable effect on the vasculature, which in the end
explains the large time tumor decrease. Hence, the overall superiority of the metronomic schedule
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Figure 23: Comparison between MTD and metronomic schedules for Docetaxel. A. Primary
tumor size. B. Primary tumor vascular capacity. C. Number of visible metastases.

is explained in the model by the anti-angiogenic action of the drug. The MTD schedule does
also exhibit anti-angiogenic effect but, combined with the intrinsic dynamic of the vasculature,
it is not asymptotically efficient because the large rest period lets time for the vasculature to
recover. The metronomic schedule on the contrary does not let time for vascular recovery and,
since endothelial cells are not subjected to resistances to the drug, it is more efficient on large
time scale.

On the metastases, we observe the same behavior on the number of visible metastases (Figure
23.D). While the untreated curve leads to apparition of one visible metastasis at the end of the
simulation, both protocols don’t. But the MTD schedule asymptotically has growing number of
visible tumors whereas the metronomic one is able to decrease it and keep it under control. On
the total number of metastases the MTD schedule is slightly better but we can suspect that for
larger times both curves will cross since, according to Figure 23.A, all tumors will eventually
decrease, thus leading to less emission of neo-metastases.

If the dose used in the metronomic schedule is too low, then it is not efficient, as shown in
Figure 24 where the same metronomic schedule is simulated, but using a dose of 8 mg/day.



188 Chapter 7. Simulation results

A B

Figure 24: Metronomic schedule for Docetaxel with dose 8 mg/day. A. Tumor size. B. Vascular
capacity

This result suggests that there is an optimal dose to use for metronomic schedules, and a
mathematical model can be helpful in determining this optimum (see [BB11] for an optimal
control problem for the scheduling). Integrating the toxicity issue in the model should help to
further optimize the optimization of metronomic scheduling.

Metronomic Docetaxel + Bevacizumab We perform now the same comparison between
metronomic schedule and classical one, but we add action of Bevacizumab. The scheduling that
we use for this last drug comes from [LBE+08] and is 7.5 mg/kg every three weeks (Bevacizumab
has a large half-life). We consider a virtual patient of 70 kg. The simulation results are plotted
in Figure 25.

We observe that the two scheduling efficiently reduce the tumor size and control explosion of
the total number of metastases and of the visible ones. If we look at evolution during the whole
simulation time interval, the classical schedule is better than the metronomic one. Indeed, as
shown in Figure 25.B when comparing it with Figure 23.B, addition of the AA drug ensures
large reduction of the vasculature leading to tumor suffocation. This happens independently
from the temporal administration protocol of the CT drug. Our model suggests thus no benefit
of the metronomic schedule on the classical one in the case of combination therapy with AA
drugs.
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Figure 25: Comparison between MTD and metronomic schedules for Docetaxel in combination
with Bevacizumab. A. Primary tumor size. B. Primary tumor vascular capacity. C. Total
number of metastases. D. Number of visible metastases (log scale).
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Chapter 8

An optimal control problem for the
metastases

Although optimal control theory has been used for optimizing administration of anti-cancerous
drugs with the aim of reducing primary tumor size, as far as we know metastases are never
taken into account. In this chapter, we use our model for metastatic evolution to define optimal
control problems at the scale of the entire organism of the patient. A theoretical study of the op-
timization problem written on the partial differential equation proves existence of a solution and
derives a first order optimality system. Then we compare numerically in a simplified situation
minimization criteria defined on the primary tumor and criteria on the metastases.

191
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1 Optimal control of tumoral growth and metastases

1.1 Tumoral growth

Optimal control of tumoral growth by therapies has been the subject of various investigation,
starting with administration of the chemotherapy (CT) (see for instance the work of Swan
[Swa90, Swa88] and more recently the papers of Ledzewicz and Schättler [LS05, LS06]). The
Model 1 project [BFCI03, MIB+08, BI01, IB00, IB94] drove a Phase I study by a mathematical
model focused on hematotoxicity of the chemotherapies. The optimization schedule computed
by the model allowed densification of a standard protocol while dynamically controlling the
toxicities.

In the case of the tumoral growth described by the model of Hahnfeldt - Folkman [HPFH99]
(see also section 1.3), optimal control problems have also been widely investigated, since the
model allows for integration of anti-angiogenic (AA) therapy. Optimal schedules for AA treat-
ments alone have been studied by Ledzewicz and Schättler in [LMS09, LMMS10, LS07, LLS09].
The combination of radiotherapy and AA treatment is studied in [ECW03], using a simplifica-
tion of the Hahnfeldt - Folkman model. Recently, combination of CT and AA therapy has been
considered in [dLMS09]. However, these model do not integrate the metastatic process.

Concerning the primary tumor, we will assume that its dynamics is given by the Hahnfeldt
- Folkman model modified by the action of a therapy : denoting Xp(t) = (xp(t), θp(t)) the

primary tumor state, u(t) =
�
u1(t)
u2(t)

�
with u1(t) and u2(t) the dose rates of CT and AA drugs

respectively, we have

Ẋp = G(Xp;u), G(X;u) = G(X)−B(X)u(t), G(X) = G(x, θ) =
�

ax ln
�
θ
x

�
cx− dx2/3θ

�
, (1)

with B(X) ∈ L(R2,R2), B(X) ≥ 0 describing how does the treatment acts on the tumor. For

example B(X) =
�

0 0
0 eθ

�
for an AA drug alone.

Remark 8.1. We assume in a first approximation that the input flow of the drug is the same
than the efficient concentration acting on the tumor, thus neglecting the (important) role of
pharmacokinetics and pharmacodynamics. This could be integrated by replacing u(t) by c(t, u(t))
with c being a (possibly nonlinear) function describing the efficient concentration in function of
the dose rate u.

We will consider two criterions to be minimized for tumoral growth : the tumor size at the
end time T and the maximal tumor reduction during the time interval [0, T ] and we denote

JT (u) = xp(T ;u) and Jm(u) = min
t∈[0T ]

xp(t;u). (2)

A minimization problem on the primary tumor (studied in [dLMS09]) then writes

Optimal control problem 1. Find u ∈ Uad such that

JT (u) = min
u∈Uad

JT (u) (3)
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with Uad being the space of admissible controls integrating toxicity constraints (see below for
its expression). Changing JT for Jm leads to the

Optimal control problem 2. Find u ∈ Uad such that

Jm(u) = min
u∈Uad

Jm(u). (4)

The same kind of criteria is used in the Model 1 project.

1.2 Formulation of an optimal control problem for the metastases.

Although the problem of best reduction of the primary tumor size is of great relevance for
clinicians, the metastatic state cannot be neglected due to its importance in a cancer disease
and its implication in the possibility of relapse. Two practical examples of clinical problematics
that can lead to formulation of an optimal control problem for the metastases are given by :

1. In the case of metastatic breast cancer, after primary tumor resection. The clinician wants
to control the number of metastases above a given size, for large time. He wants to give a
combined CT - AA treatment such that in the next 20 years no visible metastasis appears.

2. In the context of metronomic CT (see section 7.5) that have the advantage to induce
weaker hematological toxicities and thus don’t require intricate modeling for this matter
as in Model 1 [BFCI03]. The time horizon is then of the order of one year and resistances
developed by cancerous cells have to be taken into account. The number of metastases
and their sizes have to be kept under control.

However, in a first attempt to theoretically study the involved dynamics and for computational
commodity as well as comparison with previous work on the primary tumor (in particular
[LMMS10]), we will rather place ourselves in a framework where the time span is thought as
being a therapy cycle, thus of the order of weeks.

The evolution of the metastases density ρ(t,X;u) is given by8<:
∂tρ(t,X;u) + div(ρ(t,X;u)G(X;u)) = 0
−G(t, σ;u) · ν(σ)ρ(t, σ;u) = N(σ) {

R
Ω β(X)ρ(t,X;u)dX + β(Xp(t;u))}

ρ(0, X;u) = ρ0(X)
(5)

Toxicity is now dealt by imposing constraints on u. We don’t include a precise description of
hematological toxicities. The common toxicities (like renal ones, for instance) are integrated by
imposing, similarly as [dLMS09] :

1. Maximal local values for u1(t) and u2(t) denoted by umax and vmax, respectively, which
are non-negative constants.

2. Maximal total amounts of drug delivered (corresponding to the clinical Area Under the
Curve (AUC)) : Amax for the AA and Cmax for the CT, Amax and Cmax being non-negative
constants.
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We consider thus the following space of admissible controls :

Uad =
¨
u ∈ (L∞(0, T ))2;

�
0
0

�
≤ u(t) ≤

�
vmax
umax

�
∀t and

Z T

0
u(t)dt ≤

�
Cmax
Amax

�«
.

Remark 8.2. An easy way to integrate the resistances in the model would be to impose an
exponential decrease of the effectiveness of the CT treatment and thus replacing the constraint
on u1 by : 0 ≤ u1(t) ≤ e−Rtvmax, with R > 0.

We will consider two criteria subjected to minimization for the metastases, given by

J(u) =
Z

Ω
a(X)ρ(T,X;u)dX and j(u) =

Z T

0

Z
Ω
a(X)ρ(t,X;u)dXdt (6)

with a ≥ 0. Three examples of interest for a correspond to :

• the total number of metastases : a1(x, θ) = 1.

• the number of visible metastases : a2(x, θ) = 1{x≥xmin}, with xmin the minimal visible size
(about 107 cells).

• the metastatic mass : a3(x, θ) = x.

The optimal control problem that we will consider is the following

Optimal control problem 3. Find u ∈ Uad such that

J(u) = min
u∈Uad

J(u)

with possibly considering j instead of J .

2 Theoretical study

We define Q :=]0, T [×Ω and do the following assumptions on the data 0

β ∈W 1,∞(Ω), ρ0 ∈W 1,∞(Q), ρ0 ≥ 0, N ∈W 1,∞(∂Ω), N ≥ 0,
Z
∂Ω
N(σ)dσ = 1, a ∈ C∞(Ω).

(7)
In the case of a2(x, θ) = 1{x≥xmin}(x, θ) /∈ C∞(Ω) we take a as being a regularization of this
function. Defining Σ = {(1, θ); 1 < θ < b} we also assume that there exists δ > 0 such that

suppN ⊂ Σ, −G(t, σ) · ν(σ) ≥ δ > 0, a.e.(t, σ) ∈ [0, T ]× Σ. (8)

Finally, we assume the following compatibility condition for regularity issues, although in the
case of our model it is not true

−G(t, σ) · ν(σ)ρ0(σ) = N(σ)
§Z

Ω
β(X)ρ0(X)dX + β(Xp(0))

ª
. (9)
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2.1 Existence of an optimal solution

We first prove existence of a solution to the optimal control problem 3 (the following proposition
as well as its proof still holds verbatim for j).

Theorem 8.3. Under the assumptions (7), (8) and (9) there exists u∗ ∈ Uad such that

J(u∗) ≤ J(u), ∀u ∈ Uad.

The proof of the theorem is based on the following proposition establishing W 1,∞ bounds on
the solution ρ of (5).

Proposition 8.4. Under the assumptions (7), (8) and (9) if ρ(u) is the solution of (5), then
ρ(u) ∈ W 1,∞(Q) and there exists a continuous function C which can be explicited in terms of
||β||W 1,∞(Ω), ||N ||W 1,∞(∂Ω), ||G||L∞(Ω) and ||B||L∞(Ω) such that, for all u ∈ Uad

||ρ(u)||W 1,∞(Q) ≤ C(||u||L∞(Q)). (10)

Proof. For u ∈ Uad, let ρ(u) = ρ(t,X;u) be the solution of (5). Following the method of the
chapter 5, we use the flow Φ(t, τ, σ;u) associated to the EDO d

dtΦ = G(Φ;u), that is Φ(t, τ, σ;u)
is the solution of this ODE being in σ at time τ . We consider the entrance time τ t(X) and
entrance point σt(X) for a point X ∈ Ω given by

τ t(X) := inf{0 ≤ τ ≤ t; Φ(τ ; t,X) ∈ Ω}, σt(X) := Φ(τ t(X); t,X).

and introduce the sets

Ωt
1 = {X ∈ Ω; τ t(X) > 0}, Ωt

2 = {X ∈ Ω; τ t(X) = 0}

as well as

Q1 := {(t,X) ∈ [0, T ]× Ω; X ∈ Ωt
1}, Q2 := {(t,X) ∈ [0, T ]× Ω; X ∈ Ωt

2}

and also define ÝQ1 := {(t, τ, σ); 0 ≤ τ ≤ t ≤ T, σ ∈ ∂Ω} = Φ−1(Q1). We define the two
following changes of variables

Φ1 :
ÜQ1 → Q1

(t, τ, σ) 7→ (t,Φ(t; τ, σ;u)) and Φ2 : [0, T ]× Ω → Q2
(t, Y ) 7→ (t,Φ(t; 0, Y ;u))

and set

eρ1(t, τ, σ;u) := ρ(Φ1(t; τ, σ;u))J1(t; τ, σ;u) and eρ2(t, Y ;u) := ρ(Φ2(t, 0, Y ;u))J2(t, Y ;u) (11)

with

J1(t, τ, σ;u) = |G(τ, σ) · ν(σ)|e
R t
τ

divG(s,Φ(s,τ,σ;u))ds and J2(t, Y ;u) = e
R t

0 divG(Φ(s,0,Y ;u))ds. (12)

We have

ρ(t,X;u) := eρ1(Φ−1
1 (t,X;u))J−1

1 (Φ−1
1 (t,X;u))1(t,X)∈Q1+eρ2(Φ−1

2 (t,X;u))J−1
2 (Φ−1

2 (t,X;u))1(t,X)∈Q2
(13)
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with (eρ1, eρ2) solving the problems¨
∂teρ1(t, τ, σ;u) = 0 0 < τ ≤ t < T, σ ∈ ∂Ωeρ1(τ, τ, σ;u) = N(σ)

¦ÜB(τ, eρ1, eρ2) + β(Xp(τ ;u))
©

0 < τ < T, σ ∈ ∂Ω (14)

where we denotedÜB(τ, eρ1, eρ2) =
Z τ

0

Z
∂Ω
β(Φ(τ ; s, σ;u))eρ1(τ, s, σ;u)dσds+

Z
Ω
β(Φ(τ ; 0, Y ;u))eρ2(τ, Y ;u)dY,

and ¨
∂teρ2(t, Y ;u) = 0 t > 0, Y ∈ Ωeρ2(0, Y ;u) = ρ0(Y ) Y ∈ Ω. (15)

We have the following lemma on the regularity of eρ1 solving (14).

Lemma 8.5. Let F, β ∈W 1,∞(ÜQ1), N ∈W 1,∞(∂Ω), T > 0 and ρ ∈ L∞(ÜQ1) be the solution of
the following problem¨

∂tρ = 0 ÜQ
ρ(τ, τ, σ) = N(σ)

R τ
0
R
∂Ω β(τ, τ ′, σ′)ρ(τ, τ ′, σ′)dτdσ′ + F (τ, σ) [0, T ]× ∂Ω (16)

We also assume suppN, suppσF ⊂ Σ. Then ρ ∈ W 1,∞(ÜQ1), with support in R := {(t, τ, σ) ∈ÜQ; σ ∈ Σ} and
||ρ||W 1,∞ ≤ C(||β||L∞ , ||∂tβ||L∞ , ||N ||W 1,∞ , ||F ||W 1,∞)

with C being a continuous function which can be explicited.

Proof. From the equation, we have ∂tρ ∈ L∞(ÜQ1). Then, the solution of (16) is given by, for
almost every (t, τ, σ) ∈ ÜQ1

ρ(t, τ, σ) = N(σ)
Z τ

0

Z
∂Ω
β(τ, s, σ′)ρ(τ, s, σ′)dsdσ′ + F (τ, σ) (17)

from which we get, in the distribution sense

∂τρ(t, τ, σ) = N(σ){
Z
∂Ω
β(τ, τ, σ′)N(σ′)

Z τ

0

Z
∂Ω
β(τ, s, σ′′)ρ(τ, s, σ′′)dsdσ′′ + F (τ, σ′)

+
Z τ

0

Z
∂Ω
∂τβ(τ, s, σ′)ρ(τ, s, σ′) + β(τ, s, σ′)∂tρ(τ, s, σ′)dsdσ′}+ ∂τF (τ, σ)

as well as
∂σρ(t, τ, σ) = ∂σN(σ)

Z τ

0

Z
∂Ω
β(τ, s, σ′)ρ(τ, s, σ′)dsdσ′ + ∂σF (τ, σ)

and prove that ρ ∈W 1,∞(ÜQ1). Formula (17) also proves the assertion on the support of ρ.

The W 1,∞ bound (10) comes from the above explicit expressions and the following L1 bound
: for all t ∈ [0, T ] Z t

0

Z
∂Ω
|ρ(t, s, σ)| dsdσ ≤

Z t

0
e(t−s)||β||L∞

Z
∂Ω
|F (s, σ)| dsdσ.

It is derived by applying a Gronwall lemma to the following inequality, obtained from equation
(16)

d

dt

Z t

0

Z
∂Ω
|ρ(t, τ, σ)| dσdτ ≤ ||β||L∞

Z t

0

Z
∂Ω
|ρ(t, τ, σ)| dσdτ +

Z
∂Ω
|F (t, σ)| dσ.
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We apply the previous lemma to eρ1 solving (14) by using eβ(t, τ, σ) = β(Φ(t, τ, σ;u)) and

F (τ, σ) = N(σ)
§Z

Ω
β(Φ(τ, 0, Y ;u)eρ2(τ, Y )dY + β(Xp(τ))

ª
= N(σ)

§Z
Ω
β(Φ(τ, 0, Y ;u)ρ0(τ, Y )dY + β(Xp(τ))

ª
.

We observe that ||eβ||
L∞(eQ) = ||β||L∞(Ω) and

∂t eβ = ∇β · ∂tΦ = ∇β ·G(X)−∇β ·Bu

so
||∂tβ||L∞(eQ) ≤ ||∇β||L∞(Ω)

¦
||G||L∞(Ω) + ||B||L∞(Ω)||u||L∞(0,T )

©
.

Thus we have, since the W 1,∞ norm of F is controlled by the W 1,∞ norms of N , β and ρ0 that

||eρ1(u)||
W 1,∞(eQ1) ≤ C(||u||L∞(0,T ))

with C a continuous function.

We wish now to end the proof by recovering regularity on ρ using formula (13).

• From the assumption (8), we have that Φ1 is an homeomorphism bilipschitz on R. Hence
the chain rule applies on R and eρ1 ◦ Φ−1

1 ∈W 1,∞(Φ1(R)) and also

ρ1 := eρ1 ◦ Φ−1
1 J−1

1 ∈W 1,∞(Φ1(R)).

• Since suppeρ1 ⊂ R, then eρ1 ◦ Φ−1
1 J−1

1 = eρ1 ◦ Φ−1
1 J−1

1 1{Φ1(R)} ∈W 1,∞(Q1)

• Φ2 is always bilipschitz thus ρ2 := eρ2 ◦ Φ−1
2 J−1

2 ∈W 1,∞(Q2).

Now we rewrite formula (13) as ρ = ρ11{Q1} + ρ21{Q2}. Since Q1 ∩ Q2 = {Φ(t, 0, σ;u), ; t ∈
[0, T ], σ ∈ ∂Ω}, we compute

ρ1(t,Φ(t, 0, σ;u)) = −
�
G(0, σ) · ν(σ)

�−1 eρ1(t, 0, σ)e−
R t

0 divG(s,Φ(s,τ,σ;u))ds

=
�
G(0, σ) · ν(σ)

�−1
N(σ)

§Z
Ω
β(Φ(τ, 0, Y ;u)ρ0(τ, Y )dY + β(Xp(τ))

ª
e−
R t

0 divG(s,Φ(s,τ,σ;u))ds

and

ρ2(t,Φ(t, 0, σ;u)) = eρ2(t, σ)e−
R t

0 divG(s,Φ(s,τ,σ;u))ds = ρ0(σ)e−
R t

0 divG(s,Φ(s,τ,σ;u))ds.

Hence, using the compatibility condition (9) we obtain that ρ ∈ C(Q) which, combined with
ρ|Q1 ∈W 1,∞(Q1) and ρ|Q2 ∈W 1,∞(Q2) gives ρ ∈W 1,∞(Q). The W 1,∞ bound (10) follows from
formula (13), the W 1,∞ bounds on eρ1 and on eρ2 (this last one coming from explicit solution of
(15)), the chain rule and W 1,∞ estimates on Φ−1

1 |Φ(R) (using assumption (8)) as well as on Φ−1
2 ,

J−1
1 and J−1

2 .



2. Theoretical study 199

Since {J(u); u ∈ Uad} is bounded by zero by below from the positivity of the solution it has
a finite lower bound and there exists a sequence un in Uad such that

J(un) −−−→
n→∞

inf
u∈Uad

J(u). (18)

Since Uad is bounded, from the estimate (10) we obtain that the family ρ(un) is bounded in
W 1,∞(Q). Using Ascoli-Arzela theorem there exists ρ∗ ∈ C(Q) and a subsequence still denoted
ρ(un) such that ρ(un) C(Q)−−−→

n→∞
ρ∗. The weak formulation of the problem (5) writes : for all

φ ∈ C1
c ([0, T [×Ω)Z T

0

Z
Ω
ρ(t,X;un) [∂tφ(t,X) +G(X) · ∇φ(t,X)− un(t)B(X) · ∇φ(t,X)] dtdX+Z

Ω
ρ0(X)φ(0, X)dX +

Z T

0

Z
∂Ω
φ(t, σ)N(σ)

§Z
Ω
β(X)ρ(t,X;un)dX + β(Xp(t;un))

ª
dσdt = 0

and thus the convergence of ρ(un) in C(Q) and the ∗- weak L∞ convergence of un are sufficient
to pass to the limit in order to obtain, using uniqueness of the solution to the problem (5) (see
section 5.1.2), that ρ∗ = ρ(u∗). Now

J(un) =
Z

Ω
a(X)ρ(T,X;un)dX −−−→

n→∞

Z
Ω
a(X)ρ(T,X;u∗)dX = J(u∗)

Using (18) we get J(u∗) = inf
u∈Uad

J(u), which ends the proof of the theorem.

2.2 Optimality system

In this section, we neglect the source term in the boundary condition of (5) and take it equal
to zero.

Case J(u) =
R
Q a(X)ρ(t,X;u)dtdX.

If u∗ is a solution of the optimal control problem 3, we have

J ′(u∗) · (v − u∗) ≥ 0, ∀v ∈ Uad.

Here we have, for all u, v ∈ L2(Q)

J ′(u) · (v − u) =
Z
Q
a(X)z(t,X; ρ∗, u∗, v) dX dt.

where z = z(ρ∗, u∗, v) = Duρ(u∗) · (v − u∗) and ρ∗ = ρ(u∗). ThusZ
Q
a z(ρ∗, u∗, v) dX dt ≥ 0, ∀v ∈ Uad, (19)

Notice that z ∈ X and that it satisfies8<:
∂tz + div(zG(X,u∗)) = div(ρ∗B(X) · (v − u∗))

−G · ν(t, σ;u∗)z(t, σ;u∗) = N(σ) {
R

Ω β(X)z(t,X;u∗)dX +∇β(Xp(t;u∗)) ·DuXp(t;u∗) · (v − u∗)}
z(0, X;u∗) = 0.

(20)
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We will also need the Cauchy problem solved by Y (t;u∗) := DuXp(t;u∗) · (v − u∗) ∈ R2 which
is ¨

Ẏ (t;u∗) = DXG(Xp(t;u∗))Y (t;u∗)−B(Xp(t;u∗))(v − u∗)
Y (0;u∗) = 0 (21)

In order to simplify the optimality condition (19), we introduce the adjoint problem of (20). Let
p∗ ∈ H1(Q) solving¨

−∂tp∗(t,X;u∗)−G(X;u∗)∇p∗(t,X;u∗)− β(X)
R
∂ΩN(σ)p∗(t, σ)dσ = −a

p∗(T ) = 0. (22)

Such a p∗ exists thanks to the following proposition 8.6. We introduce also the adjoint ξ∗(t;u) ∈
R2 of the problem (21) with a particular source term(

˙ξ(t;u∗) = −
�
DXG

�T (t,X∗p (t;u∗))ξ(t;u∗)−∇β(X∗p (t;u∗))
R
∂ΩN(σ)p∗(t, σ;u∗)dσ

ξ(T ) = 0

We replace a from the first equation of (22) into (19) to obtainZ
Q

(−∂tp∗(t,X;u∗)−G(X;u∗)∇p∗(t,X;u∗)− β(X)
Z
∂Ω
N(σ)p(t, σ)dσ)z dx dt ≤ 0, ∀v ∈ Uad.

By integration by part (valid since p∗ is in a suitable space and z ∈ X ) we haveZ T

0

Z
Ω
p∗ div(ρ∗B(v − u∗)) dX −

h
ξ̇ +

�
DXG

�T
ξ
i
· Y dt ≤ 0 ∀v ∈ Uad

and another integration by part in time yieldsZ T

0

Z
Ω
p∗ div(ρ∗B(v − u∗)) dX − ξB(Xp(u∗))(v − u∗)dt ≤ 0 ∀v ∈ Uad

We deduce the following optimality system :8>>>>>>>>>>>><>>>>>>>>>>>>:

∂tρ
∗ + div(ρ∗G(u∗)) = 0

−G · ν(t, σ;u∗)ρ∗(t, σ;u∗) = N(σ) {
R

Ω β(X)ρ∗(t,X;u∗)dX + β(Xp(t;u∗)}
ρ∗(0, X;u∗) = ρ0

Ẋp(t;u∗) = G(t,Xp(t;u∗);u∗)
Xp(0;u∗) = 0

−∂tp∗(t,X;u∗)−G(X;u∗)∇p∗(t,X;u∗)− β(X)
R
∂ΩN(σ)p∗(t, σ)dσ = −a

p∗(T ) = 0
˙ξ(t;u∗) = −

�
DXG

�T (t,X∗p (t;u∗))ξ(t;u∗)−∇β(X∗p (t;u∗))
R
∂ΩN(σ)p∗(t, σ;u∗)dσ

ξ(T ) = 0
<
R

Ω div(Bρ∗)p∗ dX − ξB(Xp(u∗)), (v − u∗) >L2(0,T )2≤ 0, ∀ v ∈ Uad.

(23)

where div(ρ∗B) stands for the vector
�
div(ρ∗B1),div(ρ∗B2)

�
with B1, B2 being the columns of

B. We prove now the well-posedness, regularity and negativity of the adjoint problem (22).

Proposition 8.6. Assume that β ∈ C2(Ω). There exists a unique solution p ∈ C2(Q) to the
problem (22). Moreover, if β(X) > 0 for all X ∈ Ω then

p(t,X) < 0, ∀ (t,X) ∈ Q.
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Proof. Using the method of characteristics, if a solution exists we have the following formula :

p(t,Φ(t;T, z)) =
Z T

t
β(Φ(s;T, z))

Z
∂Ω
N(σ)p(t, σ)dσds−

Z T

t
a(Φ(s;T, y))ds,

where Φ(t;T, z) = Φ(t, T, z;u∗) is the characteristic being in z at time T , namely it is the solution
of

d

dt
Φ(t;T, z) = G(Φ(t;T, z), u∗) Φ(T ;T, z) = z.

If we set ep(t, z) = p(t,Φ(t;T, z)), eβ(z) = β(Φ(s;T, z)) and ea(t, z) = a(Φ(t;T, z)), we can rewrite
it ep(t, z) = −

Z T

t
ea(s, z)ds+

Z T

t

eβ(s, z)
Z
∂Ω
N(σ)p|∂Ω(s, σ)dσ, ∀z ∈ Ω. (24)

We need the following compatibility condition on p(t, σ) for σ ∈ ∂Ω, using that σ = Φ(t;T, z)⇔
z = Φ(T ; t, σ) and defining z(t, σ) = Φ(T ; t, σ), f(t, σ) := p(t,Φ(T ; t, σ)) :

f(t, σ) = −
Z T

t
ea(s, z(t, σ))ds+

Z T

t

eβ(s, z(t, σ))
Z
∂Ω
N(σ)f(s, σ)dσds. (25)

The following lemma solves this fixed point problem.

Lemma 8.7. Let β ∈ C1(Ω). There exists a unique solution f ∈ C1([0, T ]; C(∂Ω)) to the integral
equation (25). Moreover

f(t, σ) < 0, ∀ t ∈ [0, T ], σ ∈ ∂Ω.

Proof. Let T1 ∈ [0, T [ and define the following operator :

T : C([T1, T ]× ∂Ω) → C([T1, T ]× ∂Ω)
f 7→

R T
t
eβ(s, z(t, σ))

R
∂ΩN(σ)f(s, σ)dσds−

R T
t ea(s, z)ds

Then T is well defined in the claimed spaces and is a contraction if (T − T1)||β||∞||N ||L1 < 1.
A Banach fixed point theorem and a bootstrap argument prove existence and uniqueness of a
solution f to (25). Moreover, let 0 < ε < T − T1 be fixed. On [T1, T − ε], f = lim

n→∞
T nf0, for

any f0 in C([T1, T − ε] × ∂Ω). Direct computations, using the non-negativity of a, show that
the set {f ∈ C([T1, T − ε]× ∂Ω); f(t, σ) ≤ −ε, ∀t, σ} is stable by T and since it is also closed,
the unique fixed point belongs to it. The same argument can be applied on each interval used
for the bootstrapp and thus we have proven that f(t, σ) < 0. The announced regularity comes
from formula (25). Indeed, we can compute

∂tf(t, σ) = ea(t, z(t, σ))−
Z T

t
∂zea(s, z(t, σ))∂tz(t, σ)ds− eβ(t, z(t, σ))

Z
∂Ω
N(σ)f(t, σ)dσ

+
Z T

t
∂z eβ(s, z(t, σ))∂tz(t, σ)

Z
∂Ω
N(σ)f(s, σ)dσds. (26)

The formula (24) gives the function ep and we also see that we have ep(T, ·) = 0 and ep ∈
C2([0, T ]× Ω). Now, using the reverse change of variables p(t,X) = ep(t,Φ(T ; t,X)), we get the
regularity on p since for each t > 0, X 7→ Φ(T ; t,X) is a diffeomorphism. We also deduce from
formula (24) and the non-negativity of a that if β > 0 then, since p(t, σ) < 0 for all (t, σ) from
lemma 8.7, we have p(t,X) < 0 for all (t,X) ∈ Q.
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Case j(u) =
R

Ω ρ(T,X;u)dX.

Here we consider the following functional

j(u) =
Z

Ω
a(X)ρ(T,X;u)dX.

In a minimum u∗ we still haveZ
Ω
a(X)z(T ; ρ∗, u∗, v) dx dθ ≥ 0, ∀v ∈ Uad.

Let p∗ ∈ H1(Q) solving¨
−∂tp∗(t,X;u∗)−G(X;u∗)∇p∗(t,X;u∗) + β(X)

R
∂ΩN(σ)p(t, σ)dσ = 0

p∗(T ) = −a(X). (27)

The same calculations as above lead to8>>>>><>>>>>:

∂tρ
∗ + div(ρ∗G(u∗)) = F

−G · ν(t, σ;u∗)ρ∗(t, σ;u∗) = N(σ)
R

Ω β(X)ρ∗(t,X;u∗)dX
ρ∗(0, X;u∗) = ρ0

−∂tp∗(t,X;u∗)−G(X;u∗)∇p∗(t,X;u∗) + β(X)
R
∂ΩN(σ)p(t, σ)dσ = 0

p∗(T ) = −a
−(
R
Ω div(B(X))ρ∗)p∗ dX, (v − u∗))L2(0,T )2 ≥ 0, ∀ v ∈ Uad.

(28)

Remark 8.8. The proposition 8.6 still holds in this case, its proof being adaptable to the new
adjoint problem.

3 Numerical simulations in a two-dimensional case

A natural question is to know if the optimal control problems 3 (with a(X) = 1) and 1 or 2 are
really different, that is :

Is the best control for tumor reduction, the best one for metastases reduction?

The answer to this question seems to be no, as illustrated by numerical simulations in this
section. Heuristically it makes sense since one can imagine a scenario having different effects
on the growth of each tumor and on the total number of metastases at the end : if we let
tumoral growth being important during a large time and give a large amount of drug at the
end, the tumors can be largely reduced whereas the total number of metastases is still high since
during the whole time where growth is important there is more metastases emission and the
final decrease of tumors sizes doesn’t impact a lot.

For example, in the Figure 6 of the chapter 7 where three AA drugs and protocols are
compared, we observe that results differ on the primary tumor and on the metastases. For
criterion JT , the best drug is angiostatin whereas criterion J would recommend endostatin.
Notice that this last one corresponds to the best drug regarding to the primary tumor criterion
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Jm. On the Figure 21 concerning comparison of two schedulings for combination of AA and CT,
although the difference of the total number of metastases is weak, J recommends to administrate
the CT before the AA whereas JT and Jm suggest the opposite. We also remark that on these
two examples, the best control for J seems to correlate with the control presenting the smallest
area under the curve of the primary tumor evolution curves, in agreement that the number of
secondary tumors emitted by the primary one at time t is m

R t
0 xp(s)αds. However, depending

on the influence of metastases emitted by metastases, it is not clear whether this will always be
the case (see in particular Figure 6 below).

As suggested in Ledzewicz et al. [LMMS10], an easy-to-handle but nevertheless clinically
interesting question is to look at optimality in a two-dimensional framework where the problem
is to administrate total given amounts of agents (Cmax, Amax) from time 0 to times (tv, tu) at
constant rates V = Cmax

tv
and U = Amax

tu
. This means that the set of admissible controls is

Uad = {u ∈ (L∞(0, T ))2;u1(t) = V 1[0,tv ](t), u2(t) = U1[0,tu](t),

(V,U) =
�
Cmax
tv

,
Amax
tu

�
≤ (vmax, umax)}. (29)

In this context, we will slightly abuse the notation and write J(tv, tu), JT (tv, tu) and Jm(tv, tu)
for J(v, u), JT (v, u) and Jm(v, u) and, in the monotherapy cases, forget the dependence on the
other drug. We consider J as being the total number of metastases and thus take a(X) = 1 in
the expression (6). The metastatic mass (a(x, θ) = x for J in (6)) is also investigated and will
be denoted by JM . The problem is the following

Is the best anti-cancer efficacy achieved by the most brief but intense protocol or rather by the
longer but weaker delivery of the drug? Is there a non-trivial optimum between these two

situations?

We place ourselves in the context of Ledzewicz et al. [LMMS10] which was for an AA therapy
alone (i.e. vmax = 0). Our aim here is to extend this approach by looking at the behavior on
the metastases and also in the context of combination of CT and AA therapy. The values of the
parameters that we use are the same as [LMMS10] for the tumoral growth

a = 0.0084, λ = −0.02, c = 5.85, d = 0.00873

and for the effect of the treatments we take

B(X) =
�
γ(x− x0) 0

0 φ(θ − x0)

�
, γ = 0.15, φ = 0.1.

For the emission parameters we use most often m = 10−3 and α = 2/3. Concerning the initial
conditions, except for the Figure 2 where we use values from [LMMS10], we take the ones
corresponding to the simulation of the model after 40 days starting with an initial tumor of size
10−6mm3 (= 1 cell) and vascular capacity 625 (value taken from [HPFH99]). This gives, for the
primary tumor, (x0,p, θ0,p) = (1015, 6142) and some non-zero initial condition ρ0. For the newly
created metastases we take (x0, θ0) = (10−6, 625). We run the simulations during a total time
T = 10 days and take Amax = 300 (consistently with the order of the total doses administrated
in [HPFH99]) as well as Cmax = 30.

In all the presented Figures, the scale is only valid for one criterion (most of the time, Jm)
and the other curves have been rescaled.
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Anti-angiogenic therapy alone

We first investigate the case of AA monotherapy and so take vmax = 0. For comparison with the
results of [LMMS10], we first investigate the case (x0,p, θ0,p) = (12000, 15000) and zero-initial
condition for the metastatic density. We first look at the two extreme situations of giving the
whole dose during a small time (tu = 4) or rather during a large time (tu = 10), on the tumoral
evolution. The results are plotted in the Figure 1 and we observe that the two strategies have
a complete different result concerning the tumor size at the end of the simulation. One of the

A B

Figure 1: Two extreme examples of delivery of the AA drug on the tumor evolution. A. Drug
profile. B. Tumor size

interesting results obtained in [LMMS10] is that the function tu 7→ Jm(tu) is convex on the
interval [4, 10], having thus a nontrivial minimum. This result is reproduced in the Figure 2 as
well as the graphs of JT , J and J . We observe that J is also a convex function but interestingly
it does not have the same minimizer than Jm, indicating that the best therapeutic strategy
is not the same for the primary tumor than for the number of metastases. A possible way of
comnbining reduction of tumors burdens and number of metastases is to use the metastatic
mass JM as a criterion. This index as well as JT suggests that the best strategy for AA
drug is to deliver it at low doses during a long time, consistently with the results obtained in
[dGR09, HBvdH+05, KBP+01, ESC+02].

In the Figure 3 are plotted the same simulation results, but with initial conditions (x0,p, θ0,p) =
(1015, 6142) and non-zero ρ0, corresponding to a 40 days old tumor. The qualitative behavior of
JT and JM are almost the same than in the previous case, but Jm is now an increasing function
(with a plateau at the end, meaning that for the last values of tu there was no tumoral reduction
during the simulation time) and the optimal value minimizing J has deplaced to the right.

Cytotoxic therapy alone

We investigate now the problem in the case of a CT therapy alone (that is, umax = 0 in (29)).
We deliver a total dose Cmax during a time tv. We first illustrate the behavior for the two
extreme situations on the tumor size, in the Figure 4. Regarding to the tumor size at the end
of the simulation, delivering the CT drug during a large time at low dose is better. We notice
that with the criteria of the minimal value reached during [0, T ], the other way is better. The
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Figure 2: For (x0,p, θ0,p) = (12000, 15000). Two functionals on metastases : total number of
metastases J , the metastatic mass JM and two functionals on the primary tumor : tumor size
at the end JT and minimal tumor size Jm, in function of tu (the scale is valid only for Jm).

question, again is : is there a monotonic behavior with respect to tv? Is it the same behavior
on the tumor size and on the metastases?

In the Figure 5 are plotted the total number of metastases J(tv), the primary tumor size at
the end time JT (tv), the minimal tumor size Jm(tv) and the metastatic mass JM (tv).

We observe the following :

• The curve for Jm is increasing whereas JT is almost monotonous but with opposite mono-
tonicity.

• The curve for J has a nontrivial minimum.

• The curve of the metastatic mass is non-monotonous and concave.

Thus, it seems that to reduce the best the tumor it is better to give a low-dose but continuous
infusion of the drug, the opposite (a bolus of the whole dose at the beginning) if the obejctive is
minimizing the minimal tumor size and for the metastases a nontrivial minimum exists for tv.
Again, a way to synthetize tumoral and metastatic evolution in a unique criterion could be the
metastatic mass JM for which the low-dose/large time appears to be the best strategy.

With the value of m chosen here and such a small end time, almost all the metastases were
emitted by the primary tumor, this amount being given by

R T
0 β(xp(t))dt = m

R T
0 xp(t)αdt. In

Figure 6, we compare the metastatic criteria as well as this last integral for two different values of
m. For these simulations, we did not consider any initial condition for the metastases and took
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Figure 3: For (x0,p, θ0,p) = (1015, 6142). Two functionals on metastases : total number of
metastases J , the metastatic mass JM and two functionals on the primary tumor : tumor size
at the end JT and minimal tumor size Jm, in function of tu (the scale is valid only for Jm).

A B

Figure 4: Two extreme examples of delivery of the CT drug on the tumor evolution. A. Drug
profile. B. Tumor size

ρ0 = 0. In Figure 6.A, we observe that the curves for J and
R T

0 β(xp(t))dt are almost identical
and could conclude that the scheduling reducing the best the metastases is the one reducing
the best m

R T
0 xp(t)αdt. But for large values of m this is not so clear since the metastases curve

has a different shape, as illustrated in the Figure 6.B (however, the two curves have the same
minimizer).

We observe that changing the value of m, while changing the shape of the curve for J , did
not affect much the one of the metastatic mass.
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Figure 5: Cytotoxic drug alone. Total dose Cmax = 30. Scale only valid for minimal tumor size.

m = 0.001

A

m = 100

B

Figure 6: Variation of the parameter m. For theses simulations, we took ρ0 = 0. For m = 0.001,
the curves for J and m

R T
0 xp(t)αdt are identical.

CT-AA combination

We address now the problem in the case of combination of an AA and a CT drug. The opti-
mization problem is two-dimensional and the corresponding surfaces are shown in the Figure
7.
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A B

C D

Figure 7: Combination of a CT and an AA drug. A. Primary tumor size at the end JT . B.
Number of metastases J . C. Minimal tumor size Jm. D. Metastatic mass JM .

The optimal minimizer (t∗v, t∗u) as well as the optimal values for the various criteria are given
in the table 1.

Criterion End tumor size JT Minimal tumor size Jm Nb of meta J Metast. mass JM
(t∗v, t∗u) (9.5, 9.5) (1, 4) (1, 5.5) (10, 9)

Optimal value 62.7 40.8 3478 0.015

Table 1: Minimizer (t∗u, t∗v) and optimal values for various criterions.

We observe two opposite behaviors for the tumoral criteria JT and Jm and also opposite
behaviors on the metastatic criteria J and JM . Concerning the values of the optima, we notice
that for each criterion, almost the same strategy is best for the AA and the CT. For example,
in the case of Jm, the best would be to deliver shortly the whole dose at the beginning for both
the AA and the CT drugs, consistently with what happens in the Figures 4 and 5. The two
opposite strategies appear as optima and we can regroup criteria Jm and J under the strong
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dose/short time strategy whereas JT and JM have the opposite low dose/large time strategy as
optimum.

However, looking more precisely at what happens shows a large variability in the optimal
solutions. The evolution of the minimizer on tu for a fixed value of tv and conversely are plotted
in the Figure 8.

A B

Figure 8: A. Graphs of the applications tv 7→ argmin
tu

J(tu, tv), tv 7→ argmin
tu

JT (tu, tv), tv 7→

argmin
tu

Jm(tu, tv) and tv 7→ argmin
tu

JM (tu, tv). B. Graphs of the applications tu 7→

argmin
tv

J(tu, tv), tu 7→ argmin
tv

JT (tu, tv), tu 7→ argmin
tv

Jm(tu, tv) and tu 7→ argmin
tv

JM (tu, tv).

In this Figure, we observe a relative small variability of the optima t∗v and t∗u when respectively
tu and tv vary, for the criteria JT , J and JM whereas the criterion for the Jm the optimal value
tends to increase. This interesting fact suggests that both drugs should be “synchronised” in
the sense that they should be given in the same way. If the protocol is strong dose/short time
for one drug, then so should be the protocol for the other drug and similarly in the opposite
case.

The projection of the surfaces in Figure 7 on the planes tv = 1 and tv = 10 are plotted in the
Figure 9.

In the Figures 9.A and B, we observe that the qualitative shape of the criteria J , JT and
JM are almost identical in the two opposite cases for tv and the same as Figure 3. Only the
criterion Jm drastically changes, passing from an increasing function to a decreasing one (notice
that the curves for JT and Jm are identical in Figure 9.B, indicating that the minimal size on
[0T ] is reached at the end time) , in coherence with Figure 8.

Surprisingly, things are much more tumultuous concerning evolution of the dependance in
tv as illustrated in Figure 9.C and D. All the criteria are deeply affected by the adjunction of
an AA drug, since the behaviors differ to the monotherapy situation of Figure 3. For example,
the number of metastases J becomes an increasing function and does not present any interior
minimum anymore. The monotinicity if JT and JM is also greatly affected. Variation of the
administration protocol from tu = 4 to tu = 10 implies important changes in the shape of JT
and JM .
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tv = 1

A

tv = 10

B

tu = 4

C

tu = 10

D

Figure 9: Projections of the surface in the Figure 7 on the extremal planes.

4 Conclusion - Future work

The problem of optimizing the scheduling of the drugs in an anti-cancer therapy is of funda-
mental importance in the clinic. While reduction of the primary tumor size is the first main
target of therapy, the number and size of the metastases have to be taken into account. Using
our phenomenological model for evolution of the metastases population, we have set an opti-
mal control problem, proved existence of a solution to this problem and derived a first order
optimality system for the optimal control. We then have numerically studied the problem in a
subsequently simplified case which is two-dimensional, but still relevant.

We compared two criteria on the primary tumor size JT and Jm and two criteria on the
metastases J and JM in the AA and CT monotherapy cases, as well as in combination. We
obtained a great difference of the qualitative behavior of the criteria, passing through a wide
range of possibilities : increasing function, decreasing one, non-monotonous convex function,
non-monotonous concave function... In the monotherapy cases, the criterion J was never found
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to correlate with JT nor Jm, thus emphasizing the relevance of adding a metastatic component
in the optimal control problem of the drugs scheduling. Since all the criteria have different (and
sometimes even opposite) behaviors, the natural question that raises is : which one has to be
chosen? Maybe some suitable weighting of the criteria can be done. Another way of integrating
both tumoral size and number of metastases is to consider the metastatic mass JM . For most
of the cases, this criterion has the same minimizer than JT : in the monotherapy cases, for both
the AA and the CT drug, it suggests to deliver the drug at low level for a large time.

In the combined therapy case, the qualitative behavior of the criteria are all different again,
but we can regroup J and Jm together, as well as JT and JM , regarding to the optimal value
that they generate. The first ones advocate a strong and short delivery of the two drugs whereas
the second ones suggest the opposite. In some cases, the minimizer value is different for JT and
JM (see for example Figure 9.C).

Although the two-dimensional situation studied here is already rich and complex, we should
now address the numerical resolution of the complete infinite-dimensional optimal control prob-
lem on the number of metastases. The problem (3) is not linear but rather bilinear in (u, ρ).
Hence, resolution of the minimization problem is not standard. The first thing we could do is
to implement a gradient method, since the derivative of ρ(u) in some direction solves a partial
differential that we can compute. A question that arises in this approach is : should we first
take the gradient in the continuous formulation and then discretize or rather consider from the
beginning the discretized version of equation (5) from the numerical scheme developed in chapter
5 and take the gradient in the scheme?

Without resolving the complete problem, we could also investigate situations slightly more
elaborated than the one of section 8.3 but still simple to compute, for example by dividing the
time interval in two and applying what we did on the whole interval to each sub interval.

On the modeling part, the optimal control problem that we defined is not completely clinically
relevant since the metastatic problem typically arises on larger time scales, for example in
determining the best way to avoid relapse after surgery. Since it is not numerically neither
clinically tractable to compute/administrate a continuous control on a large time interval, we
should impose some periodic structure which remains to be precise. If we still focus on optimizing
metastatic emission and growth on the time scale of a therapy cycle (for example, 28 days), then
we should integrate more complex modeling of hematotoxicities of the chemotherapy, as done
in the MODEL I project [BFCI03, MIB+08].
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Conclusion et perspectives

We elaborated and mathematically analyzed a model for metastatic evolution, able to take into
account for the effect of chemotherapies and anti-angiogenic treatments. An adapted numerical
scheme was also introduced. This allowed us to study in silico clinically open problems in
cancer therapy. An optimal control problem was also formulated for which a first study was
performed. Four axes of further research seem interesting to perform : validation of the model by
comparison with experiments, biological understanding and quantification of metastatic emission
from primary tumor informations, further optimal control and systemic modeling of a cancer
disease.

Validation of the model A crucial step on the way to concrete application of the model is
confrontation to data. Indeed, in this thesis we established well-posedness of the mathematical
problem and illustrated the potential of the model but all of this is now conditioned to compar-
ison with in vivo data. Both models from Iwata & al. and Hahnfeldt & al., the combination of
which gave birth to our model, were compared to data and exhibited good agreement. In the
ANR project MEMOREX-PK, we are currently performing mice experiments in order to assess
the validity of our metastatic model. Confrontation of these to the upcoming data promise
to be very interesting. On the mathematical part, this raises problems of identifiability of the
parameters which consists in establishing (or prove false) uniqueness of the parameters resulting
in a given observation.

Biological understanding and quantification of metastatic emission from primary
tumor informations A necessary further step on the way to concrete clinical application of
the model developed in this thesis consists in being able to estimate the metastatic parameters,
especially metastatic aggressiveness m, from data on the primary tumor. Indeed, as tumors in
patients are visible with imaging techniques only with large size (≥ 107 - 108 cells), it is not
possible to wait for data on the metastatic colonies to identify the parameters of the model
and decide a therapeutic strategy, since war against the patient’s cancer would already be lost.
Hence, within our model’s framework, we are forced to find a way to estimate m and α from :
images on the primary tumor coming from imaging devices and histological data.

Optimal control The study of an optimal control problem involving the metastatic state
of the patient raised questions about the minimization criteria to use for optimizing the drug
scheduling. We want to follow in this direction, by a further study of implications of the primer
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order optimality system and development of a numerical method to solve the infinite-dimensional
optimal control problem.

Systemic modeling of cancer The model that we developed in this thesis considers the
cancer at the scale of the organism. This systemic approach of the disease is able to integrate
primary tumor/metastasis interactions and metastasis/metastasis interactions. Chemical agents
such as chemotherapies and anti-angiogenic drugs act systemically, as the blood network conveys
them in the whole organism. We believe that our model could could give insights about the
clinical observation of metastatic acceleration after resection of the primary tumor. This work is
in collaboration with Alberto Gandolfi from the Instituto di Analisi dei Sistemi ed Informatica
“Antonio Ruberti” of the Consiglio Nazionale delle Ricerche in Rome and Alberto d’Onofrio
from the European Institute of Oncology in Milan.

The idea is to integrate in the model a systemic angiogenesis inhibition. Indeed, vasculature
inhibitors produced by the various tumors (both the primary and the metastases) are released
in the central blood circulation and affect the neo-angiogenesis of all the metastatic population.
One of the rational to assume so is the claimed slow elimination rate of these molecules in the
paper of Hahnfeldt & al., together with references [Pre93, OHS+94] (which have to be checked
and whose validity has to be confirmed regarding to their age). In the equation that they derive
for the concentration of the inhibitor outside the tumor, this concentration is proportional to
the tumoral volume. We assume that the contribution of each tumor to the rate of production in
some central compartment is proportional to its volume. Regarding to each tumor’s behavior,
the angiogenesis inhibition term is the sum of a local term and a “systemic" term which we
denote by s(t). The equations write(

ẋ = axF
�
θ
x

�
θ̇ = bx−

�
γs+ dx2/3

�
θ

where F is the tumoral growth rate, together with

ṡ = c
�
xp +

Z
Ω
xρ(t,X)dX

�
− δs

and the population of metastases has now a velocity G(X, s)8<:
∂tρ+ div(G(X, s)ρ) = 0
−G · νρ(σ, t) = N(σ) {

R
Ω β(X)ρ(t,X)dX + β(Xp(t))}

ρ(X, 0) = ρ0(X)
In this model, surgery removing the primary tumor would thus remove an important source of
angiogenic inhibitors which could lead to accelerated growth of metastases.

Mathematical analysis of this new model seems challenging since it presents an original
nonlinear term which stands in the velocity coefficient of the transport equation. In particular,
well-posedness of the problem should be established and analysis of the regularity of the solutions
seems an interesting problem. Also, observing the resulting dynamics by numerical simulations
is an interesting perspective. Interactions of this model with various therapies could lead to
valuable clinical applications. In particular, the following problematics could be investigated :

When to perform surgery? How to efficiently combine surgery with anti-angiogenic and
cytotoxic therapies in order to avoid accelerated growth of the secondary tumors?
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Résumé

Nous introduisons un modèle mathématique d’évolution d’une maladie cancéreuse à l’échelle de
l’organisme, prenant en compte les métastases ainsi que leur taille et permettant de simuler
l’action de plusieurs thérapies telles que la chirurgie, la chimiothérapie ou les traitements anti-
angiogéniques.

Le problème mathématique est une équation de renouvellement structurée en dimension deux.
Son analyse mathématique ainsi que l’analyse fonctionnelle d’un espace de Sobolev sous-jacent
sont effectuées. Existence, unicité, régularité et comportement asymptotique des solutions sont
établis dans le cas autonome. Un schéma numérique lagrangien est introduit et analysé, perme-
ttant de prouver l’existence de solutions dans le cas non-autonome. L’effet de la concentration
de la donnée au bord en une masse de Dirac est aussi envisagé.

Le potentiel du modèle est ensuite illustré pour des problématiques cliniques telles que l’échec
des anti-angiogéniques, les protocoles temporels d’administration pour la combinaison d’une
chimiothérapie et d’un anti-angiogénique et les chimiothérapies métronomiques. Pour tenter
d’apporter des réponses mathématiques à ces problèmes cliniques, un problème de contrôle
optimal est formulé, analysé et simulé.

Mots-clés : Métastases, Modélisation du cancer, Anti-angiogéniques, Dynamique de popula-
tions structurées, Contrôle optimal.

Abstract

We introduce a mathematical model for the evolution of a cancer disease at the organism
scale, taking into account for the metastases and their sizes as well as action of several therapies
such as primary tumor surgery, chemotherapy and anti-angiogenic therapy.

The mathematical problem is a renewal equation with bi-dimensional structuring variable.
Mathematical analysis and functional analysis of an underlying Sobolev space are performed.
Existence, uniqueness, regularity and asymptotic behavior of the solutions are proven in the
autonomous case. A lagrangian numerical scheme is introduced and analyzed. Convergence of
this scheme proves existence in the non-autonomous case. The effect of concentration of the
boundary data into a Dirac mass is also investigated.

Possible applications of the model are numerically illustrated for clinical issues such as the
failure of anti-angiogenic monotherapies, scheduling of combined cytotoxic and anti-angiogenic
therapies and metronomic chemotherapies. In order to give mathematical answers to these
clinical problems an optimal control problem is formulated, analyzed and simulated.

Keywords: Metastases, Cancer modeling, Anti-angiogenic therapy, Structured population dy-
namics, Optimal control.
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