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Introduction 
The “hunt” for the synthetic diamond in the 50s of the last century and corresponding 

development of the modern high pressure equipment permitting to reach extreme conditions, 

opened new horizons in inorganic chemistry and material science. Among a great number of 

completely new compounds synthesized at high pressure (HP) and high temperature (HT), the 

boron(-based) compounds possessing the outstanding properties should be emphasized. These 

compounds were found to be applicable in many fields of industry. For instance, one of the 

common features of the boron compounds is the high neutron capture cross-section of boron 10B 

isotope. The isotope enriched boron compounds (e.g. boron carbide, boron nitride, metal borides) 

are widely used as the materials for the control rods (in nuclear reactors) or the biological 

protection from the neutron irradiation. Due to this property boron compounds can be also used in 

boron neutron capture therapy, which is a binary type of tumor therapy utilizing the special 

properties of the 10B nucleus to capture thermal neutrons and undergo a nuclear disintegration. 

The metal borides were found to be rather hard and wear resistant, which allows to use these 

compounds, for example, as abrasive materials. It should be noticed that the boron compounds 

with non-metal light elements (like e.g. c-BN, B6O1-x, B4C, c-BC2N, β-B2O3, etc.) obtained at 

extreme conditions revealed the same or even higher hardness values. So, many compounds with 

the hardness values next after the diamond one contain boron and light elements. Ones of the most 

popular and widespread in the industry boron compounds are boron nitride (BN), boron carbide 

(B4C) and boron suboxide (B6O1-x). Hexagonal boron nitride is a soft, electrically nonconducting 

material of high chemical resistance, and a very good heat conductor. However its cubic phase is 

one of the hardest materials in the world and is used for specialized applications because of its 

excellent oxidation stability. Boron carbide (B4C) is also very hard and, at the same time, 

lightweight material. Its excellent mechanical properties even at high temperatures have resulted 

in it being used, as a grinding material, material in the bullet-proof vests, in the tools and 

mechanical parts exposed to high strain (turbine and rotor blades, sports equipment). The 

composite materials of aluminum and boron carbide have been investigated as high value 

construction materials (e.g. in airplane construction and the aerospace industry). Boron suboxide 

being the hardest known oxide is only slightly less hard than B4C. As well as boron carbide, B6O1-

x is a low dense material with high chemical inertness and resistance to wear. Thus, it can be 

applied for the same with B4C industrial applications. It should be noted, that despite hardness the 

boron compounds with non-metal elements revealed other interesting physical (electronic, optical, 

mechanical, etc.) and chemical (oxidation resistance, thermal stability, etc.) properties as well. 

Actually, apart from superhard boron suboxide there is one more compound in the B-O system 
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possessing the hardness comparable with one of WC-Co hard alloy (~16 GPa): high-pressure 

phase of boron (III) oxide (β-B2O3). Thus, one can deduce that investigation of B-O binary system 

or more generally, of the boron chalcogenides at extreme conditions is rather promising and 

interesting field/direction of the modern inorganic chemistry. However, the majority of the 

scientific studies on the boron chalcogenides under extreme conditions are devoted to B-O system 

(generally to B6O1-x). Until today only a few studies on B-S and B-Se systems under extreme 

conditions have been performed. 

Many researches have noticed that the prominent physical and chemical properties of the 

boron compounds can be explained by their particular electronic structure with different types of 

interatomic bonds which are defined by the complex hybridizations. So, for instance, the high 

hardness values of boron compounds with light elements (like C, O, N, etc.) can be explained by 

the fact that light elements do not possess the d- and f-electrons and form basically short covalent 

interatomic bonds. Thus, the three‐dimensional nets of the short and strong covalent bonds lead to 

very high melting temperatures and extreme hardness values. It should be also underlined that 

boron plays a major role in the formations of the interatomic bonds. Thus, the accurate 

investigation of the physical properties of already known boron compounds at ambient and under 

extreme conditions is no less important (and, many times, it is more important) than the discovery 

of new boron compounds. 

On other side, despite the high level of modern analytical equipment, one should always bear 

in mind that some of the physical properties of boron compounds have not in all cases been 

described beyond doubt until now. For example, even a small contaminations in boron compounds 

can have an influence on the electronic structure and cause considerable changes in such properties 

as electrical conductivity and hardness. The providing of the reproducible HP-HT synthesis even 

of already known compounds requires the high phase purity of the reagents, use of the appropriate 

high-pressure apparatus and other stuff, precise control of the synthesis conditions, etc. Due to low 

Z-number of B, the investigation of the boron compounds by means of conventional analytical 

techniques (powder X-ray diffraction (PXRD), X-ray absorption spectroscopy (EXAFS, XANES), 

etc.) is rather challenging and requires many specialized approaches, for instance in situ 

measurements using high brilliance synchrotron radiation. So, the investigation of the physical 

properties of the boron compounds (especially with light elements) is still rather challenging, 

complicated and time consuming. 

Thus, the present work has been devoted to the investigation of the boron chalcogenides under 

extreme conditions. We believe that detailed study of the known boron chalcogenides at ambient 

and high pressures using precise analytical equipment and synchrotron radiation will expand and 

refine already existing information about physical properties of these compounds. 
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Taking into account the time limits of this PhD work and the complexity of the investigation 

of the boron chalcogenides in each binary system (B-O, B-S and B-Se), the properties of only two 

known compounds in B-O and B-S systems have been accurately studied at ambient and under 

high pressures: high-pressure phase of B2O3 (β-B2O3) and rhombohedral BS (r-BS). We presume 

that these investigations will give an important and valuable information for the further studies 

and practical applications of β-B2O3 and r-BS. In this framework, the preliminary investigation of 

the poorly studied B-Se system under extreme conditions in order to explore the new binary 

compounds has been also performed. 

Thus, the basic aims of this thesis are: 

1) The clarification of the differences among literature results on the equation of state (EoS) 

of β-B2O3. In spite of the fact that there are a few reports proposing the different bulk 

modulus values, the latest and the most reliable study of β-B2O3 EoS misses the important 

low-pressure range. Thus, the β-B2O3 equation of state will be measured using synchrotron 

X-ray diffraction. The experimentally determined EoS parameters will be compared with 

those theoretically predicted from our ab initio calculations; 

2) The complete and detailed investigation of the phonon properties of β-B2O3 at ambient and 

high pressures (at room temperature). The results of ab initio calculations performed for 

the phonon properties of β-B2O3 will be compared with experimental ones. Based on these 

data the phonon modes assignment and the complete description of the modes under 

compression will be performed; 

3) The accurate measurements of r-BS equation of state and study of its phase stability in a 

wide pressure range using synchrotron radiation. X-ray diffraction will help to 

discriminate the probable phase transition and to obtain the information about the new 

high-pressure phase structure. The ab initio theoretical calculations of r-BS EoS and phase 

stability in a wide pressure range will be also provided. The obtained experimental and 

theoretical results will be compared with the structural analogs of r-BS; 

4) The complete and detailed study of the phonon properties of r-BS at ambient and high 

pressures (at room temperature). The results of ab initio calculations performed on the 

phonon properties of r-BS will be compared with experimental ones. Based on these data 

the phonon modes assignment and the complete description of the modes behavior under 

compression will be given; 

5) The preliminary HP-HT study of B-Se system. The bright synchrotron radiation will be 

used in order to follow the possible synthesis of new phases (eventually metastable). The 

Raman measurements of the recovered samples will be used to complete the XRD data of 

the recovered samples. 
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The body of the manuscript is subdivided in five chapters: 

Chapter I. This chapter provides a brief review of the different boron phases, boron-rich 

compounds and boron chalcogenides obtained at extreme (HP-HT) conditions. The descriptions 

of structural particularities, physical and chemical properties and of HP-HT synthesis are given. 

Chapter II. This chapter provides a brief description of the all high-pressure devices used in 

frames of this work for HP-HT synthesis and in situ measurements. The chapter also gives a short 

introduction to the synchrotron radiation, the PSICHE beamline of SOLEIL and the principles of 

the techniques (XRD (ADX and EDX), Raman and IR spectroscopy) used for the experimental 

work. The main principles of ab initio theoretical calculations are also described. 

Chapter III. This chapter contains the results of our studies on β-B2O3. In this chapter we 

present the results of equation of state obtained from in situ XRD measurements and compare them 

with literature data and our theoretical estimations. The XRD studies are followed by β-B2O3 

phonon measurements (Raman and IR) at ambient and under extreme conditions. Thanks to our 

ab initio calculations of the phonon frequencies at ambient and high pressures, the assignment of 

experimentally observed bands to the phonon modes has been done. The phonon modes behavior 

at high pressure is explained using the results of the theoretical calculations and information of β-

B2O3 structure changes during compression. 

Chapter IV. This chapter contains the results of our studies in B-S system on r-BS. The results 

of r-BS EoS measurements are presented and compared with those of other compounds 

structurally relative to r-BS. The formation of the new metastable high-pressure phase of BS is 

considered and discussed. Then the description and discussion of the results of r-BS phonon 

measurements (Raman and IR) at ambient and under extreme conditions is given. Again, thanks 

to ab initio calculations all observed phonon modes are assigned. The explanation of r-BS phonon 

modes behavior under compression based on the results of ab initio calculations and in situ XRD 

measurements is presented. 

Chapter V. This chapter presents the description of our preliminary studies of B-Se system. 

The first results obtained during our HP-HT synthesis coupled with synchrotron radiations are 

presented. The first suppositions on the chemical composition and structure of the synthesized new 

B-Se compounds based on the results of in situ XRD studies and Raman measurements of 

recovered sample at ambient conditions are made. 

Chapter VI. Finally, this chapter will present our conclusions and perspectives. 
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1 Chemistry of boron and boron-rich solids 

1.1 Boron: state of art 
Boron is the 5th chemical element of the Mendeleev periodic Table with the standard atomic 

weight 10.806÷10.821. It has 1s22s22p1 electron configuration and refers to the metalloid element 

category. Boron has the formal oxidation state III due to its electron configuration in the majority 

of familiar compounds. Boron can form stable covalently bonded molecular networks, as well as 

its nearest neighbor carbon. Nevertheless, chemical properties of boron are more similar to those 

of silicon ones. Boron has two naturally occurring and stable isotopes, 11B (80.1%) and 10B 

(19.9%). In spite of the fact that boron seems to be rather thoroughly studied, nowadays it still 

remains one of the most poorly understood chemical elements. Even the history of discovery and 

recovery of the pure element is rather intricate. Besides the fact that some glazes based on boron 

compounds (e.g. Na2[B4O5(OH)4]·8H2O) had been known since ancient times in China and in 

Arabic world, the element was explored almost simultaneously by two independent scientific 

groups only in XIX century: Humphry Davy [1] and Louis Joseph Gay-Lussac and Louis-Jacques 

Thénard [2]. It is a widespread assumption that the pure element (~90%) was obtained by W. 

Weintraub between 1909 and 1911 [3]. There were the works (for example [4]) declaring the 

investigation of a pure boron and even the boron structural modifications [5] before Weintraub’s 

work but in all of them the boron was contaminated by by-products, thus the boron content was 

less than 90%. For instance, in 1943 the so-called I-tetragonal phase (T-50 or t-I) was obtained [6] 

and its structure was refined in 1951 [7,8]. The structure established as pure boron (e.g. [9]) turned 

out to be a compound of composition B50C2 or B50N2 [10,11]. In fact, the first pure boron 

polymorph is documented only after 1957 [12,13]. 

The example cited above clearly shows the complexity of boron allotropes investigation. The 

main reason of these difficulties is that boron reveals extreme sensitivity to even small amount of 

impurities. Hence, different samples of the same polymorph might show significant structural and 

thermodynamic differences which in its turn leads to contradictions of the relative stability of the 

boron phase at ambient conditions [14]. Even modern chemical industry cannot always avoid 

undesired by-elements to the base element during boron’s preparation and conversion. 

Nowadays at least 16 crystalline allotropes have been described [15,16]. Some of them have 

not ever been reproduced as for example: β’- and β”-B4 [17], t-B50 [8], "HP form" of Wentorf [18], 

"HPHT form" of t-B192 [19], etc. Most of the reported phases are likely to be boron-rich borides 

rather than pure element [11,14,16]. So far only five allotropes are generally accepted: 

rhombohedral α-B12 (α-phase) [20], β-B106 (β-phase) [21], orthorhombic γ-B28 (γ-phase) [22], 
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tetragonal t-B192 [23] and t-B52 [10,24,25]. It has been recently proved, that t-B52 exists, although 

its crystal structure has not been unambiguously established so far. Two more phases have been 

predicted by using ab initio structural evolution algorithm [26], i.e. orthorhombic o-B52 [2726], 

closely related to t-B52, and metallic boron with α-Ga crystal structure [22]. Quite recently pseudo-

cubic t’-B52 of the t-B52 structural family has been discovered [28]. It was recovered after 

experiments at 20 GPa and 2500 K. The density of pseudo-cubic allotrope has been found to be 

quite close to the γ-B28 one, higher than the common low-density of t-B52 phase. t’-B52 seems to 

be a good candidate for a HP-HT allotrope, instead of reported strongly distorted “t-B192 structure”.  

Taking into account all the facts noticed above, in further literature review of the boron 

allotropes, only the three main boron allotropes: α-B12, β-B106 and γ-B28 will be considered. The 

regions of thermodynamic stability of these polymorphs were confidently established in Ref. 29. 

We will avoid the t-B192, t-B52 and t’-B52 allotropes in our review due to uncertainty of their 

thermodynamic stability regions [29]. However, in spite of the progress of the past few years in 

understanding and refinement of the phase diagram of boron, there are large uncertainties on the 

phase boundaries. 

1.1.1 α-rhombohedral boron (α-B12) 
α-rhombohedral boron is red or brown in color and non- or semiconducting at room 

temperature. It was obtained for the first time by the pyrolytic decomposition of BI3 on a surface 

(tantalum, tungsten or boron nitride) heated at 800-1000oC [30,31]. α-B can also be obtained by 

crystallizing amorphous boron in a platinum melt [32]. Amorphous boron itself can be obtained 

by the methods described in Ref. [1,2]: from chemical reaction between B2O3 (or B(OH)3) with 

potassium, or by electrolysis. It was investigated [20,30,31] that α form of boron is stable up to 

1200oC and above 1500oC it transforms into “rhombohedral form” obtained from boron melt [12]. 

The structure of this rhombohedral form was later worked out and defined as β-B106 [13]. The 

question of the thermodynamical stability of two boron allotrope modifications will be discussed 

in the next part devoted to β-B106. Herein it should be only noted that according to the latest 

investigations β-B106 is believed to be more thermodynamically stable at ambient pressure than α-

B12, while the latter is more stable at pressures above 2 GPa [22]. 

The Vickers hardness of α-B was found to be 42 GPa, which is lower than in case of β-B [33]. 

The theoretical estimations of bulk modulus are 208-218 GPa [34,35], whereas experimentally 

measured values are 213-224 GPa [36]. The density of α-B was estimated to be 2.46 g/cm3.The 

indirect and direct band gap values of α-rhombohedral boron are 1.5 eV and 1.9 eV respectively 

[35], the Debye temperature (θD) is 1430 K [36]. 
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It is well known, that structures of boron allotropes and majority of boron-rich compounds 

contain the octahedral and icosahedral subunits [37]. The α-boron allotrope has rhombohedral 

crystal system and R3̅m (№166) space group. There are 12 boron atoms in unit cell. The 

icosahedral units B12 are the building blocks located in the corners of a primitive rhombohedral 

unit cell. The unit cell of α-rhombohedral boron can be presented in a hexagonal (a) and 

rhombohedral (b) settings (Figure I.1). 

 
Figure I.1. Unit cells of α rhombohedral boron: a) in hexagonal setting; b) in rhombohedral 
setting. 

The icosahedral arrangement in α-B12 can be compared to the image of a cubic close packing of 

spheres with the layer sequence ABC. Thus each icosahedron is surrounded by 12 neighbor 

icosahedra. According to various reports, the packing density is given as 34% [22] or 41% [35]. 

The minimum bond length in α-boron occurs in the intericosahedral bonds, but not in the 

intraicosahedral bonds [20]. A B12 molecule has 36 valance electrons. 26 electrons are distributed 

among 13 intraicosahedral bonding orbitals. The 10 remaining electrons are distributed among 12 

intericosahedral orbitals [34]. Two electrons are deficient for fulfilling the bonding requirement of 

the B12. To supply the two deficient electrons, boron atoms tend to gather each other by forming 

triangles or polyhedra. This is an economical way for a small number of electrons to be shared by 

many atoms. In the cubic close packed motive, each icosahedron forms six two electron–two-

center bonds with the icosahedra of neighboring layers, and six closed two electron-three-center 

bonds with the neighboring icosahedra in its own layer [37]. Two electron–two-center bonds 

should be shorter than polycentric intraicosahedral bonds. Although B12 is a favorable unit for 

satisfying the bonding requirement of boron atoms, B12 itself is not stable. Consequently the 

presence of two electron-three-center bonds explain the thermodynamic stability of α-B12. This is 

a general rule for all the boron allotropes containing B12 icosahedra. It was noticed [34], that the 
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bonding requirement can also be satisfied by doping impurities, as for example, in compounds: 

B12P2, B12As2, and maybe B12C3. More recent results of IR spectroscopy studies have implicated 

the structural formula B12B2 for α-rhombohedral boron and proposed the substitutive mechanism 

of formation of derivative compounds [38]. 

1.1.2 β-rhombohedral boron (β-B106) 

β-rhombohedral boron is a grayish black semiconductor. It is a commercially available product 

and its purity can reach 99.99%. The first discovered pure boron phase was β-boron, obtained from 

boron melt at He atmosphere [12]. Later the method of β-B purifying was suggested [39]. As it 

has been described above, the β form could be obtained from α-B12 by heating above 1500oC at 

ambient pressure. This is not necessarily a direct transformation and it can go through metastable 

intermediate phases. Moreover, the boundary temperature (α-B12 ⇄ β-B106) depends on the way of 

α phase preparation: 1300 K in the hot filament [40], from 1300 to 1500 K in the reduction of 

boron chalcogenides [41], and 1500 K in the crystallization of amorphous boron [42]. 

Nevertheless, many papers in the literature show that the phase transformation from α- to β-form 

is still not well established [37]. 

β-boron has a rhombohedral Bravais lattice with the space group R3̅m in its perfect form. As 

well as in α-B12 the icosahedral units B12 are the building blocks of β-B106. The complex crystal 

structure of β-B106 is illustrated in Figure I.2 in rhombohedral and hexagonal settings. 

 
Figure I.2. Unit cells of β rhombohedral boron: a) in hexagonal setting, b) in rhombohedral 
setting, showing B12 icosahedra (green), two B28 clusters (triply-fused icosahedra, ochre), partially 
occupied interstitial sites (B13, dark blue) with an occupancy of 73.4% and partially occupied 
interstitial sites (B16, blue) with an occupancy of 24.8% [43]. 
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The first β-B structure description appeared in 1963 [21]. Since that time β-boron structure 

still remains discussible due to uncertainty of crystallographically independent positions (15 or 

16) per rhombohedral unit cell, presence of partially occupied boron atom positions and additional 

interstitial positions [37,43]. The latest report on structure refinement of β-B reports 2 partially 

occupied boron atom positions B13 and B16 with occupancy of 74.5% and 27.2% respectively; 

and 4 additional interstitial positions with partial occupations (≤ 8.5%), yielding about 106.5 atoms 

per rhombohedral unit cell [44,45]. Thus, β-boron might be called β-B106. 

The B12 icosahedra are placed in the corners and in the middle of the edges of rhombohedral 

unit cell. There are two B28 units on the body diagonal, each consisting of three condensed 

icosahedra and linked via an insulated B atom in the center of the rhombohedral unit cell. The 

single boron atom in the center of the unit cell is coordinated trigonal-antiprismatically by 6 boron 

atoms of the B28 units. The ~2/3 of the occupancy of B13 positions (dark blue in Figure I.2) leads 

to B27 units and results in a distorted tetrahedral coordination of the central boron atom. All 

icosahedra and B28 units were found [46] to be bonded by two electron-two center bonds, while 

the B16 interstitial atoms (blue in Figure I.2) are bonded to the surrounding icosahedra by two 

electron-three center bonds. It is now well understood, that all intrinsic structure defects in β-B106 

(imbalance of electron requirements between B12 and B28 units [47-51], intrinsic instability of B28 

[47,51] and conversion of two electron-two center bonds to two electron-three center bonds due 

to partial occupation of crystallographic sites and presence of self-interstitials) lead to a nearly 

perfect closed shell-electronic structure [47,52]. It turned out, that the defects are necessary for 

stabilization of β-B106, hence these defects have a negative formation energy [33,35,47,53,54]. 

This is a unique feature among known elements: macroscopic numbers of interstitial sites and 

vacancies are needed to form almost closed shell-electronic structure of β-boron. 

The partially occupied sites and additional interstitial positions in β-boron, significantly 

influence on electronic properties and physical properties. For example, the transport properties of 

β-B106 are similar to those of nearly closed shell-electronic structure of solid. The partially 

occupied sites generate localized electronic states in the band gap. They are split-off from valance 

band, which is left completely occupied. Consequently, β-B106 is a semiconductor of p-type [55-

57]. At temperatures lower than 700 K partially occupied sites more or less determine such 

properties, as for example, thermal expansion [58], electronic conductivity [44,56,57], Seebeck 

coefficient [56], optical absorption [59] and electron paramagnetic resonance [60,61]. An 

experimentally determined band gap is 1.6 eV [37], whereas the theoretically estimated one is 

1.4 eV [35]. According to [36] the Debye temperature (θD) is 1300 K. The bulk modulus were 

determined to be 185 GPa [36] and 210 GPa [62], whereas density is 2.33 g/cm3 [37]. β-boron has 

a Vickers hardness value of 45 GPa [33]. Hence, β-B106 is harder than corundum, but less dense 
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and harder than α-B12.The melting point at ambient pressure is stated to be between 2350 K and 

2370 K [28,63,64]. 

The question of the thermodynamical stability of β-B106 and α-B12 is still highly discussed in 

the scientific world and requires a special consideration. Herein we will just briefly note some of 

the latest findings. At ambient pressure, liquid boron solidifies into the β-rhombohedral phase, 

indicating that this phase is the thermodynamically stable one at high temperature [39,65]. Early 

works [17,21,66,67] reported that β-B is thermodynamically stable phase for all temperatures 

below melting to ~1400 K at ambient pressure. On the other hand, recent experimental 

investigation [29] of the α⇄β phase transformations in 2-6 GPa pressure range and at temperatures 

up to 2500 K has shown that α-B12 is more stable than β form at low temperatures and high 

pressures. The linear extrapolation of the P-T boundary indicated that α-boron would be more 

stable than β-boron at ambient conditions. The theoretical calculations [31] also supported these 

experimental observations, showing that α-B is the stable form at low temperature (0 K) and should 

transform to β-B only at 970 K. β phase cannot be considered thermodynamically stable at all 

temperatures and ambient pressure due to it does not have a closed-shell electronic structure and 

a perfect crystal structure, if the partially occupied sites and additional interstitial positions are not 

accounted [52]. 

At the same time according to another very recent study [46], β allotrope was found to be more 

stable than α-B12 for all temperatures up to 2000 K at ambient pressure. The latter becomes stable 

only at high pressures. It is also underlined that the ground-state energies of α and β-boron are 

nearly identical [46]. On the other hand, it has been shown [35,47] that including zero-point 

energies in the calculation of boron modifications stability by first-principles method and taking 

into consideration experimentally observed partial occupancies in β-B106 structure, makes the latter 

more stable than α-B by 3 eV. Without these zero-point energies and the partial occupancy, α-B 

appears to be a more stable modification by 1 eV. At ambient conditions, α-B12 and β-B106 should 

have similar static energies [33,35]. Now, it is well proved that β-B106 is the most favorable 

allotrope of boron at ambient pressure and at all temperatures below melting, when a macroscopic 

amount of defects is present [35,47,54,68]. 

A few structural transitions in β-B106 have been observed at low temperatures. The optical 

absorption of β-B exhibited a dramatic change at 150-200 K [69]. However, the X-ray 

measurements at these temperatures did not reveal some structure changes. The authors of [52] 

note that it could be a disorder-to-order phase transition. Another phase transition near 550 K based 

on calorimetric measurements has been recently observed [44]. According to these observations, 

only a limited number of boron atoms changed their sites by hopping. However, the nature of this 

transition is yet to be determined. 
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1.1.3 γ-orthorhombic “ionic” boron (γ-B28) 

The orthorhombic γ-boron phase has been recently discovered [22]. It can be synthesized from 

β-boron by applying high pressures (above 8.5 GPa) and at high temperatures (from 1800 to 

2000 K) [22,70]. The theoretical calculations USPEX [22] discovered for the first time the boron 

phase dynamically stable and thermodynamically more favorable than any other known or 

hypothetical form of boron between 19 GPa and 89 GPa at 0 K. This boron allotrope was possibly 

obtained already in 1965 [71]: the transformation of β-B106 and amorphous boron to another, 

“unknown phase” at pressures above 10 GPa and temperatures of 1800–2300 K was observed. 

However, the chemical composition was not analyzed and the data probably have not been used 

to propose a structural model. According to the boron phase diagrams [29],[72] (see Figure I.3), 

at pressures higher than 10 GPa and temperatures higher than 2500 K the phase transition from γ-

B28 to t’-B52 polymorph occurs. 

Figure I.3. The boron phase diagram [29]. The symbols show the experimental data: open and 
solid triangles refer to β-B106, squares refer to γ-B28 and circles refer to t’-B52. The solid lines 
represent the equilibria between different allotropes. 

The γ-B structure was confirmed by the ab initio crystal structures prediction, the XRD studies 

[22] and the single-crystal XRD studies [70]. The Figure I.4 presents the structure of γ-B28. The 

provided measurements showed that γ-B28 is the hardest known boron allotrope with Vickers 

hardness of 50(11) GPa, which agrees with the calculated hardness value of 48.8 GPa [33]. The 

best experimental estimates of γ-B28 hardness are 45 GPa, 42 GPa [73] and 58 GPa [69]. The 

density of 2.54 g/cm3 was determined based on XRD data [33]. The band gap is 1.5 eV at ambient 

conditions [37]. 
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Figure I.4. Unit cell of γ-orthorhombic boron, showing “negatively charged” B12 icosahedra 
(green) and “positively charged” boron pairs (B1, blue). 

As well as β-B106 and α-B12, γ-orthorhombic boron also contains the B12 icosahedra. The unit 

cell contains 28 atoms and belongs to the Pnnm space group. As one can note, this phase contains 

icosahedral B12 and B2 clusters. The centers of the icosahedra in γ-B28 form a slightly distorted 

cubic close packing as in α-B12. Nevertheless, unlike α-B12 structure, all octahedral voids in γ 

boron are occupied by B2 pairs (blue in Figure I.4), and the new phase is thus denser than α boron. 

Hence, B12 and B2 clusters are placed in a NaCl-type arrangement. Detailed investigations showed 

that these two clusters have very different electronic properties and there is a charge transfer 

(δ≈0.48) between them, leading to boron boride: (B2)δ+(B12)δ-. Thus, B2 clusters play the role of 

“cations”, meanwhile B12 icosahedra are “anions”. The exact magnitude of charge transfer depends 

on the definition of the atomic charge used. These observations also correlate well with the strong 

IR absorption and high dynamical charges on atoms [22]. The ionicity of γ-B28 was found to be 

1.16 [37]. The use of such terms as “ionic”, “cations”, “anions” can be explained by the wish to 

emphasize the polar nature of the high-pressure boron phase, but it should be noticed that the 

chemical bonding in γ-B28 is predominantly covalent [74]. 

The properties of all boron allotrope modifications are summed up in the Table 1. 

Table 1. Physical properties of the three main allotrope modifications of boron: α-B12, β-B106, γ-
B28. 
  

Physical properties α-B12 Ref. β-B106 Ref. γ-B28 Ref. 
Vickers hardness, GPa 42 [33] 45 [33] 58 [33,70] 

Bulk modulus, GPa 213-224 [36] 185, 210 [36,62] 237 [73] 
Density, g/cm3 2.46 [37] 2.33 [37] 2.54 [33] 
Band gap, eV 1.9 [35] 1.6 [37] 1.5 [37] 

Debye temperature, K 1430 [36] 1300 [36]   
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1.2 General review of boron-rich solids 
Boron-rich compounds (BRC) attract constantly increasing interest in the last decades. 

Physical properties such as hardness, thermoconductivity/thermoisolation, chemical inertness, 

superconductivity and others make these compounds rather promising for many application in the 

various fields of industry and interesting as model materials for fundamental researches. Boron 

carbide (B4C) is one of the good examples of wide using of BRC in different fields of industry as: 

an abrasive material, a component of abrasive blasting, a material for cutting tools, a scratch and 

a wear resistant coating, a material of brake linings of vehicles, an armor plating, a neutron 

absorbent and a material for neutron detectors [76-80]. 

As it has been mentioned in the review of boron and its polymorphs, the BRC have been 

synthesized as long ago as in the beginning of XIX century. For instance, the boron carbide B4C 

has been already known since 1864 [37]. But at that time, the great majority of BRC were taken 

by mistake for polymorphs of pure boron. All the reports about the extraction of pure boron until 

1957 seemed to be false. Indeed, the discovered “boron polymorphs” were found to be 

contaminated by other chemical elements (e.g. C, N, O, Mg, etc.), which have a stabilizing effect 

on the polymorph’s structure. Such delusions of the chemists can be explained by the lack of good 

analytical instrumentation at that time. Improvement of analytical and theoretical bases and 

discovery of the real pure boron allotropes in the middle of last century gave rise to intense start 

of investigations of born-rich compounds. 

In the very beginning of this BRC description, we must underline the fact that these 

compounds have not been described without a doubt [37]. BRC possess rather sophisticated 

structures with large unit cells and partial occupations. There are usually various types of chemical 

bonds in BRC: covalent, ionic and metallic. It is very well known that even a small amount of 

contamination in inorganic solids may cause considerable changes in electrical conductivity and 

hardness. Due to all of this, there are many controversial experimental and theoretical data about 

the physical properties and structural arrangement of BRC. 

The majority of the observed BRC unit cells can be referred to those of the elemental boron: 

α-B12 or β-B106. Carbon, silicon, nitrogen, phosphorous, arsenic, oxygen, sulfur and selenium react 

with boron at high temperatures (and high pressures) forming boron subcarbide (although usually 

it is called carbide), subsilicide, subnitride, subphosphide, subarsenide, suboxide, subsulfide and 

subselenide with the structures derived from α-B. These compounds crystallize in the space group 

R3̅m (№ 166). The BRC schematic unit cell is presented in Figure I.5. 
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Figure I.5. Generally presented unit cell of boron-rich compounds in rhombohedral setting, 
showing B12 icosahedra (green) on the corners of unit cell and non-boron atoms (grey) on the 
spatial {111} diagonal. 

As one can see in Figure I.5, the B12 icosahedra are situated on the corners of the rhombohedral 

unit cell as in α-B12. As we know from review of α-B12, there are three voids (two tetrahedral and 

one octahedral) formed by the shells of B12 icosahedra. These voids are situated along {111} axis 

in the unit cell. The tetrahedral voids have a coordination number 4, diameter of 1.14 Å and occupy 

the 6c sites. Meanwhile, the octahedral void has a coordination number 6, diameter of 2.09 Å and 

occupies 3b site [81]. It is assumed that non-boron atoms occupy these voids. When the interstitial 

atoms fit into the α-B structure, they change the volume of the unit cell, which triggers changes in 

crystal density and mechanical properties. Based on the great amount of experimental data, it could 

be concluded, that the central 3b site can be occupied only by Be, B and C atoms. One of the 

possible reasons is the small values of covalent radii of these atoms compared to 2.09 Å. Thus, the 

entrance of these atoms will not dramatically increase the unit cell volume. The 6c sites may host 

C, N, O, Si, P, S, As, Se and other non-boron atoms; and the occupation of these sites will 

determine the properties of the compound. But it could be called an ideal case. In fact, the boron 

and interstitial atoms can replace each other in the unit cell. For instance, one may think that bruto-

formula “B4C” means B12C3 and it means that there are three carbon atoms on the spatial diagonal. 

In fact, it was shown [82,83], that boron atom can replace carbon and occupies 3b site. The non-

boron atoms in BRC can also replace some of the boron atoms in icosahedra [84]. Even a small 

change of boron/non-boron atoms ratio can lead to the big variety of different structural units. For 

example, the B-C-B, B-B-C, B-□-B, B12 and B11C structural units have been observed in boron 

carbide at various compositions [85]. The electronic structure of BRC differs dramatically: the two 

electron-two-center bonds to non-boron atoms in BRC replace the two electron-three-center ones 
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in α-B, which lead to a significant reduction of the c/a ratio but not to a reduction of unit cell 

volume [37]. 

1.3 Boron suboxide B6O – the hardest oxide. Motivation of the present 

study 
A boron-rich oxide or boron suboxide B6O is one of the most well studied BRC as well as 

boron carbide. Such great interest to this compound can be explained by its physical properties, 

and first of all, by its high harnesses, low density, chemical inertness and high resistance to wear 

[86-88]. The reported B6O hardness of ~35 GPa [87,88] is a little less than that of B4C – 38 GPa 

[89] and 40-45 GPa [90]. There have even been the reports stating that boron suboxide scratched 

the softer {100} face of diamond [91]. However, it seems unlikely due to the absence of another 

reports about this phenomenon. Up to now, B6O is considered to be the hardest known oxide and 

one of the hardest materials. Such prominent hardness is believed to be due to the structural 

particularities of boron suboxide and electronic structure of oxygen and boron. Indeed, even a 

small doping of oxygen atoms into β-boron increases its hardness on 34% [92]. Apart from B6O, 

there are other compounds in B-O binary system, as for example B2O3, which possesses 

remarkable hardness and wear resistance [93]. 

We believe that overall investigation of binary systems of boron chalcogenides (O, S, Se and 

Te) in wide ranges of pressures and temperatures may result in discovery of new phases possessing 

outstanding properties and in expending and refinement of information about already known 

compounds. In the next sections a detailed review of binary systems B-O, B-S and B-Se will be 

presented. We will not take into consideration B-Te system, as the Te chemistry dramatically 

differs from those of O, S and Se due to its higher number of valance electrons. 

2 Boron chalcogenides systems 

2.1 General review of VIa group of Mendeleev Periodic Table of 

Elements 
The VIa group of Mendeleev Periodic Table includes oxygen (O), sulfur (S), selenium (Se) 

and tellurium (Te). These elements have s2p4 external electron shell structure. Increasing of Z-

number tends to decrease ionization energy, dissociation energy, electronegativity, while metallic 

properties, covalent and ionic radii increase. Nevertheless, these are no metals in this group. 

Selenium and tellurium exhibit pronounced semiconductor properties. 



17 
 

2.2 B-O system 
B-O system is the best studied one among boron-chalcogenides systems, first of all due to 

B6O. A great number of studies have been devoted to the research of crystal structure of boron 

suboxide [94-102]. The synthesis and investigation of various boron suboxides BxO with another 

stoichiometry (where x = 2, 4, 7, 8, 10, 12, 14, 16, 18, 20, 22, 26) have been also reported [103-

105]. A large number of studies have been done on B2O suboxide [103,106-111]. It was reported 

[103] that B2O with a graphite-like structure can be obtained as a result of the boron interaction 

with B2O3 at pressures to 7.5 GPa and temperatures to 2100 K. B2O diamond phase was observed 

during oxidation of BP with CrO3 at 4 GPa and 1500 K [106,107]. However, we agree with the 

suggested arguments [111], concluding that the synthesis of B2O was impossible. Besides the class 

of boron suboxides there are also three forms of boron (III) oxide: vitreous (g-B2O3) and two 

crystalline (α-B2O3 [112] and β-B2O3 [113]). 

In this section we will provide a review of all already known and proved solids in B-O system. 

We will avoid a description of gaseous compounds, as, for example, B2O2. We also will 

intentionally avoid a detailed description of the thermodynamical aspects, as it does not completely 

refer to the topic of this present work. The review of B-O system will be started with simple boron 

oxides (α-B2O3 and β-B2O3) and will be concluded by the description of boron suboxide (B6O). 

2.2.1 Low-pressure phase of boron trioxide α-B2O3 

Solid diboron trioxide B2O3 had been known only in the vitreous state until 1938, when α-

B2O3 (or I-B2O3) was synthesized as a fine powder during dehydration of metaboric acid HBO2 

under carefully controlled conditions [112]. In spite of the fact that the first structural study has 

been provided in 1954 [114], the first reliable XRD data are dated by 1964 [115] and its X-ray 

structure has been completely determined in 1970 [116]. Actually, the α-B2O3 can be obtained 

from vitreous form of boron trioxide at a wide range of temperatures (up to 1000oC) and pressures 

(up to 4 GPa) [112,115-117]. In its turn, the vitreous form can be obtained by decomposing of 

either HBO2 or H3BO3 at high temperatures (~1000oC) and ambient pressure. Meanwhile, the 

direct chemical reaction between elemental boron and oxygen at 7 GPa and above 1300 K have 

been recently reported [118]. Using this method, the α-B2O3 has been synthesized at 1500 K and 

6 GPa in a diamond anvil cell [111]. α-B2O3 has also been observed during the studies of B6O 

melting curve [119]: it can be obtained by rapid quench of B6O melt (~2710 K, ~6 GPa) by 

switching off the heating. 

At atmospheric pressure α-B2O3 was found to melt between 455oC and 475oC [115]. Low-

pressure phase of B2O3 has been found to be an insulator with a band gap of 6.2 eV and static 

dielectric constant of 2.3 [120]. The estimated density is 2.46 g/cm3 [115], 2.56 g/cm3 [116,121]. 



18 
 

The phase diagram of B2O3 established in Ref. 115,121,122 later revised in Ref. 123 is presented 

in the Figure I.6. 

 
Figure I.6. Equilibrium phase diagram of B2O3 presented in Ref. 123. The solid lines represent 
the calculated equilibrium curves, the solid and open symbols represent the experimental data. 

The structure of the α-modification has a hexagonal unit cell and P31 (№ 144) space group. 

Boron and oxygen atoms form the triangles, which are the building blocks of α-B2O3 (Figure I.7). 

It is evident that boron atoms coordination number is 3. According to the first-principle 

calculations using a local-density approximation, it was determined that sp2 planar bonding in α-

B2O3 is stronger than the sp3 tetrahedral bonding in β-B2O3 [120]. 

 
Figure I.7. Unit cells of α-B2O3 in hexagonal setting, consisting of BO3 structural units (B atoms 
are green, O atoms are red). 

It has been also noted that the structure of α-form is the closest to the local structure of vitreous 

B2O3 [93]. Due to this fact, low-pressure phase of boron oxide might evoke the interest and can be 

applied in the glass industry. On other hand, α-B2O3 does not possess any strengths in mechanical 
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properties compared to high-pressure phase (β-B2O3). Due to this fact, the α-B2O3 polymorph will 

not be studied in the present work. 

2.2.2 High-pressure phase of boron trioxide β-B2O3 

High-pressure phase of B2O3 is a light yellow compound and is formed at higher pressures 

than α-B2O3. First reports about β-B2O3 synthesis occurred in 1959 [113,117]. The high-pressure 

form was only slowly attacked by water and diluted by the hydrofluoric acid [117]. Its structure 

has been refined a few years later from XRD data of single crystals [124]. At pressures above 

2 GPa and temperatures above 700oC α-B2O3 undergoes a phase transition into β-B2O3 [115]. This 

is the easiest way for β-B2O3 synthesis and it is still being used nowadays [93]. As one can see 

from the phase diagram proposed in Ref. 123 (see Figure 6), B2O3 transformation under high 

pressure and high temperature undergoes the following sequence: g →α →β. However, a direct 

synthesis from the elemental boron and oxygen under high pressures and temperatures in diamond 

anvil cell is possible also [111,118,125]. Despite the considered β-B2O3 thermodynamic 

metastability at ambient conditions, the high-pressure phase was established [115] as a stable one 

and no β→α transformation has been observed up to α-B2O3 melting temperature at ambient 

pressure. At rather rapid heating rates high-pressure phase of B2O3 can be heated to 520oC before 

fusion occurs. Moreover the fusion sequence was suggested to be β→α→liquid [115]. 

The main interest to β-B2O3 is drawn due to its hardness and mechanical properties. It has 

been recently found out [93], that the hardness of the sintered β-B2O3 is of the same value 

(16±5 GPa) with that of tungsten carbide alloy WC-10%Co [126]. The bulk modulus value 

proposed in Ref. [121] is equal to 90±15 GPa. On other work, the bulk modulus measured in in 

situ experiments in diamond anvil cell after a direct reaction between elemental boron and oxygen 

was determined to be 169.9 GPa [111]. However, since β-B2O3 was formed from elemental boron 

and oxygen at ~40 GPa, V(P) dependence measured between 12 and 42 GPa and fitted by Vinet 

equation of state (EoS) misses the low pressure region, which makes entire bulk modulus value 

doubtful. The density of a high-pressure polymorph varies from 2.95 to 3.11 g/cm3 [113,115-

117,121]. The studies of the electronic structure and optical properties of both polymorphs of B2O3 

showed that β-B2O3 is more ionic than α-B2O3 [120]. According to the same studies β-B2O3 has 

been found to be an insulator with a band gap of 8.9 eV and a static dielectric constant of 2.4. 

The β-B2O3 unit cell is shown in Figure I.8. The unit cell has an orthorhombic syngony, Cmc21 

space group. 
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Figure I.8. Unit cells of β-B2O3 in orthorhombic setting, consisting of BO4 distorted tetrahedrons 
(B atoms are green, O atoms are red). 

As one can see in Figure I.8 the crystal structure of β-B2O3 is based on distorted BO4 

tetrahedrons [124]. As it was underlined in Ref. 93, the structure of high-pressure boron trioxide 

is not of maximal density and there could be an isotropic dense phase of B2O3 (γ-B2O3) with the 

structure of corundum and the highest hardness (30 GPa). In spite of rather big interest to the β-

B2O3 due to its mechanical properties, high-pressure phase is not still completely studied: no 

information about the hardness of the monocrystalline β-B2O3, very poor data on phonons and etc. 

In present work we provided in situ investigation of β-B2O3 phonon modes at ambient pressure 

and under compression. We also have measured the EoS of β-B2O3 from 0 up to 22 GPa in order 

to complete V(P) curve in low pressures range. 

2.2.3 Boron suboxide B6O 

Boron suboxide is a red-orange semiconductor and may even be obtained in grains up to 40µm 

from high temperature-high pressure (HT-HP) synthesis [99] (see Figure I.9.). 

 
Figure I.9. Reflected-light optical image of B6O icosahedral particles/grains [99]. 
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As it is seen in Figure I.9, these grains have an icosahedral shape. Such grains shape 

contradicts the classical theory of crystallography denying five-fold symmetry for the crystals and 

X-ray diffraction pattern, which is fully consistent with rhombohedral symmetry [99]. Such a 

strange and “impossible” morphology of B6O grains has been explained by “Mackay packing” 

[99,100], in which successive shells of icosahedral B12 units formed around a central icosahedral 

nucleus [127]. 

The first report about boron suboxide compound with presumable composition B7O occurred 

in 1909 [128]. The first proposed crystal structure was considered to be orthorhombic [129]. Then, 

in 1961 it has been simplified to a rhombohedral one [130], which turned out to be correct. Actually 

few ways of B6O synthesis are known at ambient conditions and at high temperatures (from 

1365 K to 2100 K) and pressures (up to 20 GPa [111]). These ways can be divided by the reaction 

type on three main groups: reduction of B2O3 [130,131], oxidation of a boron [98,105,132] and 

reactions of comproportionation of boron [89,90,95-97,99-102,111,119,133,135-137] as for 

example: B + B2O3 or B + H3BO3. The latter is the most popular and wide spread. It has been 

found that pressure of 4-5.5 GPa and temperature of 2000-2100 K are ideal conditions for the 

synthesis of a practically stoichiometric B6O of an icosahedral habit. The synthesis of the almost 

stoichiometric phase is possible even at pressures above 1 GPa if crystalline β-B106 is used instead 

of amorphous boron [133,134]. The authors of Ref. 110 notice that the molten B2O3 and the lower 

pressures (< 6 GPa) lead to the higher reaction ratio (the recovered sample is almost pure B6O 

instead of mixture of β-B2O3 and B6O). As one can note, the synthesis temperature of 2000 K does 

not exceed the melting point of β-boron. Consequently, during the synthesis of boron suboxide, 

oxygen atoms have to diffuse through solid boron in order to produce B6O. Recently, it has been 

suggested [81] that the key to obtain the stoichiometric boron suboxide is not the high pressures 

or high temperatures. After the examination of dozens of works on B6O and their own calculations 

it was assumed [81] that the synthesis duration (even at ambient conditions) plays a dramatic role 

in obtaining of stoichiometric compound. The high pressures cannot accelerate the oxygen 

diffusion through the solid boron and are probably necessary only to prevent B2O3 evaporation 

during the synthesis. 

B6O was found [89] to be very stable at atmospheric pressure and it starts to decompose into 

boron and oxygen at temperatures around 2000 K, therefore, the congruent melting of this phase 

can evidently be observed at high pressures only. B6O melts congruently at high pressures and 

forms two eutectic equilibria with α-B2O3 and β-B106, respectively [135,138]. The melting 

temperature at 4.3 GPa has been found to be 2620 K and ~2710±40 K at 5.8 GPa. Thus, boron 

suboxide melts at higher temperatures than β-rhombohedral boron. According to the recent 

theoretical work [139], B6O undergoes phase transition into β-B6O with monoclinic Cc structure 
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above 245 GPa. The theoretical polymorph exhibits metallic behavior and greater elastic and 

hardness anisotropy (Vickers hardness ~ 20.7 GPa). Experimentally no new polymorphs of B6O 

have been observed till now. 

The boron suboxide has a rhombohedral Bravais lattice and crystalizes in R3̅m space group. It 

is a typical BRC with eight icosahedra in the corners of rhombohedral unit cell and two oxygen 

atoms (in 6c sites) aligned along {111} diagonal. B6O unit cell can be presented in rhombohedral 

and hexagonal settings (Figure I.10). As it was marked in Ref. 80 the oxygen atoms are located 

1.53 Å away from rhombohedral cell unit center and are not exactly in the tetrahedral voids, 

formed by near located icosahedra. A long distance between oxygen atoms indicates no bonding. 

Thus, oxygen atoms are coordinated/bonded only with three icosahedra. Due to rather large 

covalent radius, the oxygen atoms move these three icosahedra aside, which leads to the increased 

unit cell volume compared to α-B12 one. However, B6O has the smallest unit cell volume among 

all the BRC derived from α-B. 

It should be also underlined that the structure presented in Figure I.10 is an ideal case, which 

is almost unreachable in real experiments. In fact, oxygen atoms occupy the 6c sites only partially. 

Many scientific groups, who have worked on this compound, have observed different occupation 

of 6c sites by interstitial oxygen atoms. The assumption, made in Ref. 133 suggests that all the 

oxygen atoms, which are absent in 6c sites are replaced by boron atoms. So, it is more correct to 

replace B12O2 formula by B12O2-xBx where x can change from 0 to 1. As boron atoms have a larger 

diameter than oxygen atoms, one can expect an expansion of unit cell volume with increasing of 

x value. The analysis of many studies of B6O supports the idea that the smallest unit cell volume 

is the stoichiometric one [81]. 

Figure I.10. Unit cells of B6O: 1) in hexagonal setting, 2) in rhombohedral setting, showing B12 
icosahedra (green), a pair of oxygen atoms (red) in interstitial sites 6c. 
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As it has been mentioned above there are two electron-two center bonds to non-boron atoms 

in BRC. This fact determines the chemical stability of stoichiometric BRC and of B6O in particular. 

The rhombohedral unit cell consists of 12 Boron atoms and 2 oxygen atoms. Each oxygen atom 

gives its three electrons for bonding with three boron atoms. Moreover, it donates one electron to 

adjacent B12 icosahedra. The B12 “sphere”, missing two valence electrons in α-B12, becomes 

saturated as there are two O atoms donating one electron each in boron suboxide. All of the 12 B 

atoms in each “sphere”, in their turn, give their three electrons to the bonding. During all of these 

processes, the electron shell structures of oxygen and boron atoms change: 1s22s22p4 → 1s22s2 and 

1s22s22p1 → 1s2 respectively. The latter electron structures are found to be essentially inert due to 

a high ionization energy of s electrons. Thus, the chemical stability of boron suboxide relates to s-

shell electrons stability [81]. It should be also pointed out that, due to a high affinity of boron for 

oxygen, B6O is one of the most frequently overlooked contaminations in boron and BRC [37]. 

Thus, it might be expected, that almost all the physical properties of boron suboxide will be 

influenced by oxygen content in B12O2-xBx. For instance, as far as B-O bonds are stronger than B-

B ones, the bulk modulus increases as B/O ratio increases (x→1). However, there is only one 

report on B0 value which is equal to 181 GPa [111]. The density also changes in a wide range: 

from 2.44 g/cm3 up to 2.67 g/cm3 [81,89,95-102,105,111,119,131-133,135-137]. Vickers hardness 

(HV) of boron suboxide is predicted to be 66.8 GPa [81]. The ratio of microhardness and bulk 

modulus (HV/B0) of B12O2-xBx should be constantly independent of x [140]. The band gap value of 

B12O2 is believed to be 2.0 eV [37]. All these properties make boron suboxide B12O2 one of the 

most outstanding BRC and oxides. 

2.3 B-S system 
Despite the fact that B-S system is less studied than B-O, there is a large number of 

publications on boron sulfides and other different compositions [141-147]. Nevertheless, among 

this great variety of boron sulfide forms only B4S, B2S3, B2S5, (BS2)n, B8S16 [148-150] have been 

characterized by means of single crystal X-ray structure determination. All the mentioned 

compounds can be prepared at ambient pressures and high temperatures. For example, (BS2)n can 

be prepared from the elements at temperatures of 1100 to 1300 K, meanwhile colorless B8S16 is a 

product of the B2S3 and S8 fusion. As far as the literature review of the present work is mainly 

dedicated to the boron chalcogenides obtained under extreme conditions, we will not provide the 

description of the simple compounds in B-S system, forming at ambient pressure. One can find a 

complete and detailed description of the boron-sulfur system at ambient pressure in Ref. 151,152. 

Apart from the boron sulfides which can be obtained at ambient pressure there are the reports 

on HP-HT syntheses of boron monosulfide [153,154] and boron trisulfide [155]. In Ref. [153] 
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boron monosulfide was synthesized at 6 GPa in two modifications: an orthorhombic phase (o-BS) 

obtained at 1400oC and a cubic phase (c-BS) obtained above 1500oC. The crystal structure of o-

BS has been revised and it was revealed to be rhombohedral [154]. r-BS is a AIIIBVI semiconductor. 

This compound is rather interesting, as far as it has a layered structure, and therefore physical 

properties of r-BS should be affected by its anisotropic structure. The synthesis of c-BS has not 

been repeated since 1967 as well as crystal structures of this phase has not been determined yet. 

That makes these compounds rather doubtful. In present work we provided a series in situ 

experiments with r-BS and obtained the new high-pressure phase of BS at high pressures 

(>30 GPa) and at room temperature. This phase is presumably of cubic syngony. 

B-S system also possesses its BRC. The work on B12S has been done as long ago as in 1962 

[156]. Later, the synthesis of series of BRC in B-S system with general formula B12S2-x (where 2 

˃ x ≥ 0.7) have been reported [97]. In spite of boron subsulfide can be regarded to the group of 

compounds synthesized at ambient pressure, its detailed description will be done further. 

Thus, in this section we will start a review of B-S system from B2S3, then it will be followed 

by boron monosulfide and ended by B12S2-x. 

2.3.1 Rhombohedral boron monosulfide r-BS 

Boron monosulfide does not have “ambient pressure” polymorphs and is formed only at high 

pressures. For the first time, it was synthesized in 1967 and called o-BS, which means 

orthorhombic phase [153]. It has been revised in 2001 and its real crystal structure has been 

determined as rhombohedral [154]. 

The conditions of HP-HT synthesis of r-BS are 3-6 GPa, 800-1200°C [154]. The P-T phase 

diagram has been also suggested in Ref. 154. According to this diagram, boron and sulfur do not 

react with each other at temperatures lower than 400oC. Above 800oC at 5 GPa a mixture of r-BS 

and B2S3 was observed. Only at temperatures ˃1100oC, r-BS was obtained as a bulk single phase. 

r-BS was revealed to be a semiconductor with an estimated band gap value of 3.4 eV [154]. 

The measured density of r-BS was measured to be 2.57 g/cm3 [154]. Its color varies from white to 

pale violet, which is assumed to be due to the presence of impurities and/or deficiencies. 

Unlike the results in Ref. 153, where boron monosulfide was determined as orthorhombic, it 

was shown that BS can be assigned to a hexagonal, moreover, rhombohedral lattice [154]. 

Nevertheless, it should be underlined here that the proper Rietveld refinement was not performed, 

because of low-Z number of boron and low quality of XRD data. 
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Figure I.11. Unit cells of r-BS in hexagonal setting, showing its layered structure (A-B-C motive). 
Each layer is composed from trigonal B2S6 antiprisms (boron atoms are green, oxygen atoms are 
yellow). 

Rhombohedral boron monosulfide has the structural model of γ-GaS [157], C3v point group, 

R3̅m space group (№166). The unit cell of r-BS in hexagonal setting is presented in Figure I.11. 

As one can see, r-BS has a layered structure with ABC alternation motive. One layer is built by 

B-B pairs aligned along the c-axis, placed between hexagonal layers of S atoms, rotated by /3 

relative to each other. If B-B bond is regarded as an M atom like in MX2-type transition metal 

chalcogenides, it corresponds to the octahedral coordination of M atoms, and not to the trigonal 

prism coordination. Consequently, the coordination number of boron atoms in r-BS is four. The 

bonding scheme is the same as that of the AIIIBVI layered compounds (GaS, GaSe, InSe, etc.), i.e. 

strong covalent intralayer bonds and weak van der Waals interlayer bonds. Hence, the physical 

properties of r-BS should be strongly affected by its anisotropic structure. Up to now r-BS remains 

a rather ill studied compound, as well as P-T phase diagram with nominal composition B:S = 1:1. 

In this work, we have provided HP-HT synthesis of r-BS in toroid type press, in situ measurements 

of equation of state and in situ measurements of phonon modes under compression at room 

temperature. The ab initio calculations also have been executed to estimate the phonon frequencies 

and such physical properties as bulk modulus (B0) and its first derivation (B0
′ ). 
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2.3.2 Boron trisulfide B2S3 

B2S3 has at least three crystalline polymorphs [148,155] and is also known in vitreous state 

[158]. B2S3-I is a normal boron sulfide (synthesized at ambient pressure) according to the 

valencies, and has a layered structure. The sheets consist of two structural units: interconnected 

B3S3 and B2S2 rings extend throughout the crystal. Each of the B3S3 rings is connected by sulfur 

bridges to two B3S3 rings and one B2S2 ring. In the structure exocyclic B-S bond lengths are longer 

than endocyclic ones [148]. 

The two high-pressure forms of B2S3 have been reported [155]: B2S3-II and B2S3-III. However, 

only crystal structure of B2S3-III has been determined by single crystal XRD. Both polymorphs 

were obtained in HP-HT syntheses (3-6 GPa, 400-1600oC) in belt-type high-pressure equipment. 

From the experimental data the first P-T diagram for nominal composition B:S = 2:3 was proposed 

[155]. According to this diagram B2S3-II starts to form at 3 GPa above 600oC, whereas B2S3-III 

above 1000oC at the same pressure. The pressure of 5 GPa and temperature range 1300-1400oC 

were found to be a transition region between two high-pressure forms of B2S3. 

B2S3-II has a white color, meanwhile B2S3-III forms the pale-yellow crystals. The densities of 

both high-pressure phases are higher than those of any other binary B-S compounds synthesized 

at ambient pressure. The measured density of B2S3-III is 2.48 g/cm3 while that of B2S3-I is 

1.95 g/cm3 [148]. The density of B2S3-II is almost the same as of B2S3-III, which corresponds to 

the author’s suggestion about the structural similarity between two polymorphs 

According to a XRD analysis B2S3-II is anticipated to be amorphous and to have rather a 

disordered structure. Unlike B2S3-II, B2S3-III has tetragonal crystal system and I41/a space group. 

(a = 16.086(2) Å, c = 30.488(4) Å and V = 7888(1) Å3). It consists of nearly regular BS4-tetrahedra 

and there are no B-B or S-S bonds in B2S3-III. In its turn, the BS4-tetrahedra build two kinds of 

macrotetrahedra: 20 BS4 and 34 BS4. These units are linked to each other by sharing BS4 tetrahedra 

at the corners. 20 BS4 units are tetrahedrally coordinated by four 34 BS4 units. Consequently, these 

units make an infinite three-dimensional network. The formation of such sophisticated structure 

would be impossible at ambient pressure but it seems to be easily organized under high pressure. 

On other hand, B2S3 is a highly complicated and challenging compound for investigation by 

Raman, IR spectroscopies or by various X-ray techniques (XRD, XRS, etc.), as according to 

structural refinement [155] there are 33 (!) independent atom positions in the unit cell. The single 

crystal XRD spectrum of B2S3 contains 4630 unique reflections. The Raman and IR spectra of 

B2S3-III are not still reported, but taking into account the structure complexity they are expected 

to be rather sophisticated. Thus, in the frames of this thesis B2S3-II,III have not been studied. 
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2.3.3 Boron subsulfide B12S2-x 

Among the great variety of boron sulfides there is a BRC in B-S system: boron subsulfide 

B12S2-x. It can be obtained as black powder in high-temperature and ambient pressure synthesis. 

Synthesis temperatures vary from 1200oC to 1700oC [97,156,159]. Elemental amorphous boron 

and crystalline sulfur can be used as starting materials. The stoichiometric quantities of reagents 

(with a little excess of sulfur) should be compacted into the pellets and placed into zirconia, BN 

or tantalum crucible and then in the high-frequency furnace. The reaction process undergoes under 

a flow of Ar. As it was mentioned in Ref. 156 the rate of heating is important, as the slow heating 

results in sublimation of S or B2S3, leaving boron as residue. 

Boron subsulfide structure does not differ from another BRC: it has rhombohedral unit cell 

with B12 icosahedra in the corners, R3̅m space group (№166). S atoms are in 6c sites, hence a S-S 

pair is placed on the {111} diagonal tending to the expansion of the a and b axes and shrinkage of 

the c axis of the lattice. The reported distance between two sulfur atoms varies from 2.191 Å [97] 

to 2.386 Å [159]. In any case these distances are larger than the typical S-S tetrahedral bond length 

of 2.08 Å [160], which indicates a weak bonding interaction between sulfur atoms (unlike, for 

example, B6O). The 6c sites occupancy also varies from one sample to another. For instance, there 

is a report on synthesis of stoichiometric B12S [156]. It is assumed, that the little deviations from 

this content can be caused by the presence of unreacted boron. Meanwhile the compounds of 

general formula B12S2-x (where 2 ˃ x ≥ 0.7) [97] and B6S1-x (where 0.4 ≥ x > 0.37) [159] have been 

obtained. It is very likely that some boron atoms replace sulfur atoms in 6c sites. The variation of 

sulfur atoms content could be explained by a notice made in Ref. 97: the longer heating time for 

sample in the furnace leads to “sulfur-poor” composition of boron subsulfide. In general, the 6c 

site occupancy in B12S2-x is smaller than that reported for other BRC (e.g. [161,162]). The 

formation of a new phase with an unknown structure in samples with high sulfur content (~70% 

B6S1-x, x=0.372 and ~30% of unknown phase) was also reported [159]. 

The difference between boron suboxide and boron subsulfide (and boron subselenide as well) 

should be underlined here. In atomic arrangement of BRC, each chalcogen atom at non-bonding 

distance from each other makes a contribution of six electrons. Three of these six electrons are 

required for bonding to equatorial boron atoms (in three different B12), two electrons constitute a 

lone electron pair and one electron from each chalcogen atom provides a stabilization of the 

icosahedra. In the case of the boron subselenide and the boron subsulfide, the size of the chalcogen 

atoms makes such arrangement impossible, as the distance between the chalcogen atoms and the 

equatorial boron atoms in the neighboring icosahedra would be too short. Thus, the stoichiometry 

for BRC of selenium and sulfur cannot have x≈2. 
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According to Ref. 159, the density of B12S2-x samples depends on x value: x = 0.38 ρ = 

0.73 g/cm3, x = 0.391 ρ = 1.12 g/cm3, x = 0.401 ρ = 0.96 g/cm3. Meanwhile, the density measured 

in Ref. 155 turned out to be about 2.40 g/cm3, which is higher than one predicted from XRD 

(2.33g/cm3). According to [159], B6S1-x samples possess p-type conductivity and the electrical 

resistivity decreasing with temperature, which is typical for semiconductor materials. As well as 

in another BRC, the electrical resistivity of boron subsulfide depends on the density of material. 

For instance, low-density samples possess high electrical resistivity. It has been also found, that 

the thermopower of B6S1-x is similar to B4C [159], with large Seebeck coefficients, which are 

increasing at higher temperatures. Thus, B12S2-x can become a concurrent to boron carbide as a 

promising candidate for high-temperature thermoelectric conversation. 

2.4 B-Se system 
The chemistry of B-Se system is similar to that of B-S system. There are the same difficulties 

in its study, as: tendency towards vitrification, sensitivity to hydrolysis, high-temperature synthesis 

conditions, leading to contamination by capsule or crucible material, etc. Due to the fact that the 

chemistries of B-S and B-Se are the same, there are the same binary compounds: boron selenides 

BSe2 [163] and B2Se3 [164], boron subselenides B2Se [152], and B12Se2-xBx [165]. All of these 

compounds have been synthesized at high temperatures and ambient pressures. The reviews 

[149,151,152] present the detailed and complete description of properties and synthesis 

particularities of binary compounds in B-Se system. 

Herein only B12Se2-xBx will be reviewed. This boron subselenide is formed at high 

temperatures and 1 atmosphere, but as well as boron subsulfide B12S2-x, being a structural analog 

of B6O it reveals a big interest in its mechanical properties and structural details investigation. 

2.4.1 Boron subselenide B12Se2-xBx 

Boron subselenide B12Se2-xBx regards to BRC compounds type. Up to now there is only one 

publication devoted to the synthesis and characterization of boron subselenide [165]. It was 

obtained in the same manner as boron subsulfide B12S2-x: a mixture of elemental selenium and 

amorphous boron was heated in the furnace to 1600oC in inert gas atmosphere. This experimental 

procedure gave a dark brown sample. 

Rietveld structure refinement showed that B12Se2-xBx has rhombohedral unit cell with R3̅m 

space group (№166). As well as in the other BRC interstitial atoms situate in 6c sites. To refine a 

structure of B12Se2-xBx the used Longuet-Higgins and Roberts electron counting (LHREC) was 

used [165]. According this method/counting a structure arrangement with two selenium atoms on 

the {111} diagonal, resulting in electron excess, is impossible, since BRC tend to be electron 
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deficient rather than containing an excess of electrons. A few different structural arrangements of 

boron subselenide were tried to conform with LHREC. It turned out, that if 67% of the positions 

are occupied by chalcogen atoms and the rest by boron, the required number of electrons is 

obtained and LHREC is satisfied. A distance between Se and B atoms in 6c sites is believed to be 

2.38 Å. The authors underlined that x value is always around 1. It cannot be dramatically less than 

1, which means the occupancy of the 6c sites by Se atoms ≥50%. 

As well as in case of boron subsulfide there is almost no information in the literature about 

B12Se2-xBx mechanical properties (Vickers hardness, bulk modulus, etc.) and electrical properties. 

However, the investigations in this filed may shed light on the question: how does the substitution 

of the chalcogenide in BRC influence on the physical properties? 
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3 High pressure techniques 
A majority of experimental work performed in the thesis has been done using various high 

pressure (HP) devices. In combination with modern analytical equipment these devices allow to 

provide various in situ experiments at temperatures up to 2500 K and pressures up to 100 GPa. 

Such incredible variation of the physical variables gives rise to the new approaches in the 

conventional chemistry, which in its turn leads to synthesis of new type compounds possessing the 

outstanding properties. 

3.1 Pressure generation techniques 
Historically, the development of HP techniques owes its existence to attempts to obtain 

artificial diamond. This work was successfully done in 1953 in Sweden [166] and in 1954 in USA 

[167], but even after achieving the main goal the HP devices have been continued to be developed 

as they opened the way for synthesis of many materials with outstanding properties, as for example 

c-BN [168]. 

The large number of modern high pressure devices can be traced to the principles laid out by 

P.W. Bridgeman, the pioneer of HP techniques, who awarded the 1946 Nobel prize for his work 

on the physics at high pressures. One of the main principles used starting from the Bridgeman’s 

works and onward is massive support principle, a laboratory analogue of the tapered foundation 

design, employed by civil engineers, since antiquity, to support the great loads of huge structures 

by the comparatively softer earth. That the taper reduces the large working stresses quickly to 

tolerable levels has been realized for a long time, thus even by applying a comparatively little 

loading forces on the base of truncated press anvil, very high pressures can be obtained on the 

opposite pressing side. The expression for the maximum pressure (Pmax) which can be generated 

at the center of the truncated anvil is: 

𝑃𝑚𝑎𝑥 =
1

2
𝐵2

𝑒𝐵𝑎

𝑒𝐵𝑎 − 𝐵𝑎 − 1
(𝑎 + 𝑍𝑏 𝑐𝑜𝑡𝛼)2𝑆𝐴, where 𝐵 =

2𝜇

ℎ
                    (𝐼𝐼. 1), 

where SA is compressive strength of the anvil, a is radius of anvils, h is thickness of gasket, µ is 

the coefficient of friction between the anvil and gasket, Zb is depth at which the tapered portion of 

anvil ends and α is the taper angle. As one can see from this formula, the higher maximum pressure 

(Pmax) depends on many factors: materials of anvil and gasket, shape and mechanical properties of 

the anvils. Various materials like steel, tungsten carbide, boron carbide, sapphire, cubic zirconia, 

sintered diamond, and single crystal diamond have been used for anvils production. Their use for 

a specific technique and pressure ranges is related to their strength, available sizes and shapes, 

optical clarity, X-ray transmission, and other mechanical, thermoelectric and magnetic properties. 
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Another important principle of HP apparatus work is a hydrostaticity of the compression. It is 

evident that only with nearly same pressure in all sample volume the confident experimental data 

can be retrieved. Pressure transmitting medium (PTM) and gaskets are crucial/necessary 

components of the hydrostatic or quasi-hydrostatic compression. The gaskets, prepared usually 

from the materials with low coefficient of internal friction, fill the space between two or more 

anvils. Under compression the gaskets deform in all directions, including the directions toward the 

assembly center, thereby transferring anvils pressure on the sample area. It should be noted that 

the gasket materials and shapes depend on the HP apparatus type and even on the concrete 

experimental conditions. PTM uniformly transmits external compression directly on the sample 

and thus it should have low internal friction coefficient value too. As far as it contacts with the 

sample it should be chemically inert. As well as in case of gaskets, for different types of HP 

apparatus and different HP measurements various PTM are applied. 

Nowadays there are a plenty of HP device types: the diamond anvil cell (DAC), the Paris-

Edinburg press (PEP), the supported anvil Drickamer cell, the toroid type press (TTP), Bridgman 

anvils, multi-anvil press (MAP), etc. But all of these HP devices could be divided onto two main 

groups: the HP apparatus with two opposed anvils (DAC, PEP, TTP) and with a few (4÷8) anvils 

(Bridgman anvils, MAP). The choice of a specific pressure device strictly depends on the 

measurements to carry out. In the next parts all types of HP devices used in present work will be 

reviewed. 

3.2 Diamond anvil cell (DAC) 
The diamond anvil cell (DAC) is currently the device that reaches the highest static pressure 

(~400 GPa [169]). One of the greatest advantages of DAC is transparency of its anvils. So a sample 

can be observed during compression and in situ studied by various techniques: X-ray diffraction, 

X-ray spectroscopy, Raman, IR, UV, etc. In case of the optical experiments it is very important to 

know the type of diamond, as a different stones has different impurities which might give rise to 

strong fluorescence. A special lettering system from D to Z is using to classify the diamonds by 

color and therefore by their experimental application. For example, the diamonds with D class are 

rare, totally colorless. Thus stones with color grades D or E, with low fluorescence, are suitable 

for Raman scattering experiments. A good "Raman" diamond should have a flat background. The 

essentially impurity-free synthetic diamonds are also available (little or no observable 

fluorescence), but they are still difficult to obtain and are expensive. In case of X-ray diffraction 

(XRD) experiments, diamond anvils do not cause the problems, except for the study of liquids 

where the Compton signal of diamonds becomes a problem. Diamond has a simple crystal 

structure, its diffraction pattern is simple and easily identified. Moreover, as the diamond anvils 
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are single crystals, their diffraction leads to few well-defined spots within the Laue zone that are 

easily identified in angle-dispersive (ADX) experiments. 

The DAC gasket is a thin sheet of metal that has a small hole about 1/2 diameter of the diamond 

anvil (cutlet face). Gaskets are typically prepared by indenting the diamonds into a thin metal sheet 

and then drilling a tiny hole through the indented portion of the gasket. The holes can be done 

either by electroerosion or by high-energy micro-focused laser. The indentation thickness also 

influences on the maximum reachable pressures. Rhenium is commonly used for the gasket, but 

tungsten, stainless steel 301, Kapton, c-BN, Cu, Be are also mentioned in the literature. 

The PTM for DACs are weak solids and liquids or fluids. The role of PTM is to transmit 

pressure to the sample while minimizing the shear stress transmitted to the sample. Common PTM 

are N2, Ar, He, Ne, ethanol, methanol and NaCl. "Gasses" such as He, Ne or Ar are a highly 

desirable PTM, due to their chemical inertness. They are loaded into the cell only in a fluid state. 

The liquid PTM provide true hydrostatic environment. However, many fluid media crystallize as 

pressure increases; thus a media that works well at lower pressure may crystallize and introduce 

error at high pressures. After the crystallization point of PTM the compression can be called only 

quasi-hydrostatic.  

The principle scheme of DAC construction is presented in Figure II.1. 

 

Figure II.1. DAC: a) general schematic construction; b) construction of Merrill-Bassett-type 
Diamond Cell, the main parts of the cell are marked. 

Cell designs are as diverse as the types of experiments that are conducted in them. There are cells 

specialized for room temperature, cryogenic or heated experiments, ultra-high pressure, radial or 

axial diffraction, spectroscopic studies, fluid studies, etc. 

3.2.1 Generating high pressures 

There are a plenty of pressurizing mechanisms and therefore a plenty kinds of DACs (see 

[170]). In our studies only membrane diamond anvil cells (MDAC) have been used. It means that 

metallic toroidal membrane inflated with helium pushes on the piston (see Figure II.2.). 
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Figure II.2. Schematic view of MDAC. 

Membrane generates axial force, which is therefore homogeneously extended over all the 

piston, permitting a precise control of the pressure. The membrane is linked by a metallic capillary 

to a He bottle through a pressure pneumatic drive system (PDS). By using MDAC, pressure on the 

sample can be easily tuned without touching or displacing the cell. This is a great advantage of the 

MDACs concerning to in situ synchrotron measurements. Using of micro-valves also permits to 

“keep” an obtained pressure and meanwhile to disconnect the cell from PDS for transportation or 

keeping it independently. 

In present study, only rhenium and stainless steel have been used as gasket materials (gasket 

thickness ≈ 200 µm). He and Ne have been used as PTM. 

3.2.2 Measuring high pressures 

Although in theory, one should be able to calculate the pressure in the DAC by knowing the 

force applied to the support side, the area of the support side and the area of the cutlet, nobody 

knows the amount of force which is dissipated by flow in the gasket and the sample. Thus, an 

internal pressure standard is required. 

The majority of DAC studies utilize one of two strategies for pressure measurement: 

 measuring the unit cell size of a material whose equation of state (EoS) is well known; 

 measuring the position of the fluorescence lines of ruby (Al2O3 doped by Cr+3) or 

YAG. The positions of these fluorescence lines are well known as a function of 

pressure. Ruby fluorescence is very commonly used for pressure measurement and 

actually has been generally used in present work. 

Ruby is chemically inert and has strong luminescence when hit with a green laser light. There 

are two peaks (R1 of 6942.48 Å and R2 of 6927.0 Å) in luminescence spectrum of ruby at ambient 

conditions. The shift of R1 with pressure has been calibrated several times [171-175]. Up to 

20 GPa it was found to be linear, whereas at higher pressure it can be determined from following 

equation [175]: 
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𝑃 =
0.274 ∙ 𝜆𝑅1(0)

𝐵
[(

𝜆𝑅1(𝑃)

𝜆𝑅1(0)
)

𝐵

− 1]                     (𝐼𝐼. 2), 

where B is a parameter related to the degree of hydrostaticity on the sample: B = 5 for non-

hydrostatic conditions and B = 7.665 for conditions close to hydrostaticity. As the pressure 

increases both components of the R1, R2 doublet broaden until there is a complete overlap at a 

pressure which depends on the quality of the hydrostatic conditions on the sample. The signal to 

noise ratio decreases with increasing pressure, making precise high pressure measurement more 

difficult. The position of the R1 peak is also dependent on temperature [176]. When ruby is heated, 

its luminescence peaks broaden and decrease in intensity to a point just above 400°C where their 

position can no longer be measured. Despite this, for HP experiments in DACs below 200oC ruby 

is the best pressure marker. 

Another strategy for pressure measurement is to use XRD to measure the lattice spacing of a 

material for which the EoS is known as a function both pressure and temperature. This technique 

can be used at high temperature as well as low temperature. It is potentially more precise than 

using fluorescence methods to determine pressure. The disadvantage of using an EoS is that it 

requires access to an X-ray source, and measurement time. 

3.3 Paris-Edinburgh press 
The Paris-Edinburgh press (PEP) is a large volume device with two opposed anvils. Its design 

is not fundamentally different from the DAC one. PEP was initially designed for high pressure 

neutron diffraction studies [177] being later adapted to synchrotron ADXRD experiments [178]. 

The general schematic view of PEP and its anvils one can find in Figure II.3 a. In present work we 

provided a few experimental sessions using PEP installed in PSICHE beamline at synchrotron 

SOLEIL (see Figure II.3 b). 

 
Figure II.3. a) Schematic view of PEP and its anvils; b) the PEP in PSICHE beamline and its 
anvils; all anvils parts are signed, the direction of the water cooling flow inside the copper cooling 
system is shown by the blue arrows. 
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As one can see from Figure II.3 PEP is easy to handle, its weight does not exceed 50-60 kg. It 

makes the press highly portable, which is one of the big advantages of this HP apparatus. The top 

part of PEP is fixed and compression is performed by means of movable bottom part (piston). The 

loading force of 250 tons is generated by a hydraulic jack. A hydraulic pressure of oil is exerted 

on a piston by means of a hand pump or an automatic one (up to ~250 MPa capacity), which is 

connected to the press by a flexible tube. 

The most important part of the PEP are the anvils. They can be replaced with another ones, 

permitting to provide HP-HT experiments in different pressure ranges. The anvil has a circular 

shape with a quasi-conical profile (with opening angle up to 15°) and consists of two parts: the 

harden steel outer rim and the anvil core made from some hard material (see Figure II.3 b). 

Usually, anvils core is prepared from WC-Co alloy, but for reaching the higher pressures a sintered 

diamond (SD) can be used. The anvil core has a special HP cavity dedicated for sample assembly. 

The surface of the HP cavity determines a pressure on the sample. The ratio of its surface to those 

of the piston is ~0.01, thus the hydraulic pressure is increased by a factor of 100 at the sample 

chamber. Consequently, by changing a HP cavity dimensions (in other words, x value in Figure II.3 

a) one can vary a maximum reachable pressure: the smaller HP cavity is (or the smaller x is), the 

higher pressure on the sample might be obtained. So, for instance, the x values of 5, 7, 10 and 

12 mm correspond to the possible maximum reachable pressures of 17, 10, 8 and 6 GPa 

respectively. In our work the anvils with only x = 7 and 10 mm have been used. The HP cavity 

shape is also of great importance, as it has to generate the conditions that are close to hydrostaticity 

and to minimize the gasket deformation, in order to keep the access to the sample for the X-rays. 

The sample assembly requires a special consideration. Basically it consists of: the gasket, 

sample capsule, heater and electrical current providers. Depending on the certain experiment needs 

these details can be prepared from different materials, moreover some details can be either 

eliminated or added. Herein we will provide the description of sample assemblies that have been 

used in our experiments (e.g. for the HP-HT studies of B-Se system). The detailed scheme of the 

sample assembly is presented in Figure II.4. 

 
Figure II.4. Arrangement of PEP assembly, the main parts are undersigned. 
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Gaskets. Pyrophyllite and special boron-epoxy (BE) ceramic have been used as materials for PEP 

gaskets. Pyrophyllite is very popular material for the gaskets in many types of LVPs due to its high 

deformability, high melting temperature, low thermal conductivity, etc. Nevertheless, its chemical 

bruto-formula is Al2[Si4O10] (OH)2, which can be rather “heavy” compound in terms of XRD, 

leading to decrease signal to background ratio. BE is a fortunate alternative to pyrophyllite for in 

situ XRD measurements of the samples with low Z-numbers. The main component of this ceramic 

is amorphous boron, which is almost “transparent” for X-rays. Sometimes an additional Teflon (or 

PEEK) rings can be placed around the gasket in order to reduce gasket flow under compression 

(see Figure II.3 b). 

Furnaces and electrical current providers. Only resistive heating of sample can be provided in 

case of LVP. Electrical current is provided to the furnace through the anvils and the electrical 

current contacts. As one can see from Figure II.4 the furnace is a simple sleeve with very thin wall. 

There are two main categories of the furnaces: high current-low voltage and low current-high 

voltage. The heaters of the first group include graphite and metal foils (Mo, Re). Low current-high 

voltage heaters include semiconductors, e.g. LaCrO3, which can also be used for thermal insulation 

around high current-low voltage heaters in low P range. In our work only graphite furnaces have 

been used taking into account simplicity of their preparation, using and price. They allow to reach 

the temperatures up to 2300 K. The graphite disks are usually placed on the top and the bottom of 

furnace in order to provide an uniform heating. 

Graphite is also the best heater for in situ XRD measurements due to its transparency for X-

rays. However, the conversion of graphite to diamond, or possibly to lonsdaleite usually takes 

place above 10 GPa and at temperatures >1500°C. Thus, a metal-insulator transition occurs along 

with mechanical collapse of the sample chamber area. 

Sample capsule. It is not necessarily to use. Usually capsule is used to prevent direct contact 

between sample and furnace material (in case of electrical conductive sample, it is of course a 

problem) and probable undesired chemical reaction. However, using of the sample capsule may 

cause of decrease of sample heating. Thus the sample capsule material must be good thermal 

conductor. Hexagonal BN (h-BN) is the most popular material, whereas Al2O3 or MgO might be 

used as alternatives to boron nitride. For the biggest assemblies the sample volume may reach 

80 mm3. 

3.3.1 Generating high pressures and temperatures 

As it has been written above HP in PEP is generated by the principle of hydraulic jack. The 

hand pump connected to the press could be complemented by automatic one. For our 

measurements an automatic pump of ST (Sanchez Technologies), delivering a stable oil pressure 
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up to 2000 bars, has been used. This kind of pump does not provide high compressing rates in the 

beginning of compression but ensures stability of the pressure value. For instance, in our 

measurements pressure deviations from the set pressure value did not exceed 2 bars. Each new 

pair of anvils requires individual calibration (sample pressure (GPa)-hydraulic oil pressure (bars)), 

as even a slight variations of anvil core diameter may lead to significant differences in final 

pressure. 

The high temperatures are generated by a power supply. Electrical cables are connected to the 

anvils. Thus anvils are the electrical contacts/providers. During HP-HT experiments the anvils 

might considerably warm up, which can lead to their breakage. To decrease the anvil’s heating a 

water cooling system is usually used. Basically the cooling system is presented by the coper tubes 

which go around the side of the anvils (see Figure II.3 b). 

3.3.2 Measuring high pressures and temperatures 

The pressure generated in HP cavity is rather reproducible, so it might be enough for rough 

estimation. An opaque PMT and sample assembly prevent using the rubis for in situ pressure 

determination. For more precise pressure determination a pressure standard/callibrant with well 

known EoS (e.g. NaCl [179,180], Au [181]) is needed. In case of very small assemblies (e.g. 

x=5 mm) and very little samples volumes, EoS of h-BN capsule can be used [182]. In present work 

we used the internal pressure markers (e.g. h-BN) in in situ XRD measurements. For ex situ 

experiments only sample pressure - oil pressure calibration can be exploited. 

Temperature measurements can be done using thermocouples, power-temperature calibration 

curves or internal calibrants. The thermocouples have a lot of drawbacks as for example: high risk 

of the assembly blow out, rupture of thermocouple wire, destruction of the furnace, temperature 

gradients, etc. Moreover the thermocouples do not guarantee reproducible temperature values. 

Thus we did not use them in our work. The power of power supply source can be regarded to phase 

transitions (including melting) of some etalon material. Thus a calibration curve power versus 

temperature can be plotted. Although this way of temperature determination is the easiest one and 

rather reproducible, it is not perfect. It happens because of variation of furnace dimensions and all 

other assembly details in general. 

The presence of standards inside the assembly is the most desirable and effective. Fortunately, 

the pressure internal standards mentioned above (NaCl, Au or h-BN) can be also applied for 

temperature determination. Obviously, an internal standard allows to calibrate only one of the two 

P,T variables, so that the second must be known. The measurement of volume variations of two 

internal standards was proposed in Ref. 183. Ideally the chosen materials should have well 

determined and contrasting thermoelastic properties. Good choices could be Au/NCl or h-BN/Pt 
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couples. It is important to choose materials whose Bragg peaks used for the determination of the 

volume variation do not overlap. 

However it should be underlined that the method of using only the thermoelastic properties of 

well characterized materials, is theoretically limited by the quality diffraction patterns. Also one 

should note that X-ray spot should have the smallest possible dimensions in order to reduce thermal 

and pressure gradient effects. 

3.4 Toroid type press 
A toroid type press (TTP) is one more representative of the group of HP devices with two 

opposed anvils and has a long history of application in HP science [184]. In present work the TTP 

has been employed as a basic device for HP-HT ex situ synthesis. The press is installed at LSPM-

CNRS, university Paris-Nord. 

TTP construction does not dramatically differ from one of PEP and is presented in Figure II.5. 

As well as PEP it consists of the ram with fixed top anvil and movable bottom anvil (piston). The 

loading force is around 1200 tons, which is almost three times higher than those of PEP. An electric 

compressor is employed for hydraulic pressure generation. 

There is almost no difference between TTP and PEP. However, traditionally, TTP anvils have 

WC-Co hard alloy anvil core with toroidal HP cavity. The toroidal HP cavities are also available 

for the PEP anvils, but are not so wide spread as in case of TTP. The schematic view of TTP anvils 

are presented in Figure II.5. The toroidal shape of the HP cavity is dedicated for additional 

supporting ring around the gasket, which permits to reach rather high pressures (up to 10 GPa) at 

considerably big sample volumes (30-500 mm3). The sample volumes up to 500 mm3 is the main 

advantage of this press, especially taking into account, that pressure and temperature gradients in 

the sample assembly were found to be very low. 

 
Figure II.5. TTP installed in LSPM-CNRS, university Paris-Nord. On the right, the TTP anvils 
with toroidal HP cavity are presented. 
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One may expect that decrease of the HP cavity diameter will lead to increase of the maximum 

reachable pressure. However, changing of the HP cavity requires recalculation of the supporting 

ring dimensions, which is rather sophisticated and expensive. The cheaper way to increase the 

highest pressure is to put an additional WC-Co harden alloy or steel tablet on the top and bottom 

of the assembly. 

The standard sample assembly of TTP is considerably bigger than that of PEP. Depending on 

the experiment aims an arrangement of the sample assembly can be varied. The scheme of the 

basic TTP sample assembly is shown in Figure II.6. 

 
Figure II.6. The arrangement of TTP assembly; the main parts are undersigned. 

Gaskets. A TTP gasket consists of two parts: container and supporting ring. The container material 

is limestone (CaCO3). As one can see from Figure II.6 the containers are rather big (diameter of 

the hole is either 11 or 12 mm). The supporting ring is made from limestone as well. Together 

these parts create a barrier layer during compression (see Figure II.7). This very barrier layer helps 

to compress the samples of large volumes up to 8 GPa and heat them up to ~2500 K. 

 
Figure II.7. A barrier layer of TTP assembly. 

Furnaces and electrical current providers. The resistive heating is applied in TTP. Electrical 

current generated by a power supply is provided through the anvils as well as in PEP. Graphite is 

an universal material for the furnace and electrical providers in TTP assembly (see Figure II.6). 

The furnace is a sleeve with a thicker walls than in PEP heater. In combination with graphite pellets 

which work both as heaters and electrical contacts the furnace provides rather uniform heating. 

Using of Re or LaCrO3 as the alternative materials for the furnace (however more expensive) is 
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also possible, taking into account the drawback of the graphite furnaces in P-T range of graphite-

diamond conversion. 

Sample capsule and sleeve. Sample capsule might have internal hole of the different diameters, 

depending on sample size, etc. The main purpose of the sample capsule (usually made from h-BN) 

is to preserve a sample from direct chemical interaction with the heater. In HP-HT experiments 

the isolation of CaCO3 container from furnace is also necessary. The basic material of this sleeve 

is pressed ZrO2-Y2O3, which is an excellent temperature insulator. The choice of the materials for 

sample capsule and sleeve can be explained by their thermal transporting properties, high chemical 

inertness and low cost. It should be also underlined, that sample capsule made from one piece of 

h-BN requires a special tooling, whereas the details pressed from powder of ZrO2-Y2O3 do not 

need any special equipment for their preparing. 

3.4.1 Generating high pressures and temperature 

The pressure generation in case of TTP is executed by electric compressor, which permits to 

reach high compression/decompression rates (initial rate up to 2 GPa/min). For instance, the 

compression up to 4.2 GPa takes only 2 min, whereas the decompression from 7.7 GPa takes 10 

min. This can be considered as an advantage of TTP. However, TTP does not ensure the pressure 

stability during long time experiments (oil pressure degradation up to 25 bars). Each pair of anvils 

needs a calibration (pressure (GPa)-hydraulic oil pressure (bars)) as well as for PEP anvils. 

High temperatures are generated by computerized direct-current IPM 30 Kempower heating 

system. Electrical cables are connected to the anvils. The temperature can be stepwise increased 

with a heating rate of 200 K/min. Duration of heating at required temperature is usually from 2-

3 min at 2500 K to 60 min at 1000 K. Then samples can be rapidly quenched (~500 K/s) by 

switching off the power. The problem of warming up of the anvils in TTP during the HP-HT 

experiments might be solved by using huge steel outer rims (see Figure II.5). Despite this in long 

HP-HT experiments the anvils can be considerably heated, which can lead to the WC harden alloy 

breakage. Another problem of the HP-HT experiments is a chemical interaction between WC-Co 

alloy and graphite heater at high temperatures. This interaction results in damage of HP cavity. To 

preserve WC-Co from graphite, a thin nickel foil is placed on the bottom of HP cavity. At very 

high temperatures (~2500 K) and pressures around 7 GPa nickel foil can catalyze a formation the 

diamond, leading to decrease of the sample heating. In such case, nickel foil should be replaced 

by a molybdenum’s one. 
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3.4.2 Measuring high pressures and temperature 

As it has been mentioned above TTP is used only for ex situ experiments. Consequently, only 

external pressure and temperature determinations are available. Sample pressure as a function of 

hydraulic oil pressure or press load can be calibrated using room-temperature phase transitions in 

Bi (Bi I-II at 2.55 GPa and Bi III-V at 7.7 GPa), PbSe (4.2 GPa) and PbTe (5.2 GPa). By measuring 

an electrical current through the pressure standard (or electrical resistance of the sample) one can 

precisely discriminate a phase transition. An example of the pressure calibration curves for 

different pairs of anvils of TTP installed in LSPM-CNRS is presented in Figure II.8. 

 
Figure II.8. Pressure calibrations curves of the different pairs of anvils of the TTP in LSPM-
CNRS. 

The temperature calibration under pressure can be done using Pt/Pt-10%Rh and chromel-

alumel thermocouples, as well as by using well-established reference points: melting of Si, NaCl, 

CsCl, Pt, Rh, Al2O3 and Ni-Mn-C ternary eutectic. In the case of Pt, Rh, and Al2O3, the melting 

points can be found in series of quenching experiments from the change of shape and 

microstructure of the reference material pressed into a cylinder of h-BN, while in the other cases 

the melting temperature can be fixed in situ from the electrical resistance jump in the cell. In this 

case, an important condition is that the reference material should be in a direct contact with a 

heater. It should be noted, that according to in situ T calibrations performed for the high-

temperature assembly presented in Figure II.6, the temperature gradients usually do not exceed the 

20 K/mm in the sample area. The use of thermocouples is not always suitable because of frequent 

blow outs. In the present work, the experimental temperature was determined only by previous 

power-temperature calibration curves. 
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3.5 Multi-anvil press 
A multi-anvil press (MAP) presents the next group of LVP – HP devices with another 

geometry of anvils. Among all of the LVPs the MAP can reach the highest pressures of ~30 GPa 

[185] and ~90-95 GPa [186] for WC-Co hard alloy and SD anvils respectively. Using of the several 

equivalent anvils results in significantly higher hydrostaticity of the compression compared to 

DAC, PEP and TTP. MAP can be divided on two stages: the 6 anvils of the first stage and 8 anvils 

of the second stage. Thanks to such two stages construction, the uniaxial compression of vertical 

hydraulic ram finally transforms to almost homogeneous compression of 8 anvils of second stage. 

The multi-anvil apparatus was first introduced by Kawai and Endo in 1970 [187]. They used 

a split steel sphere suspended in pressurized oil. Later the sphere was replaced by the hydraulic 

ram [188]. In 1990, Walker et al. [189] simplified the first compression stage by introducing the 

removable hatbox design, allowing ordinary machine presses to be converted into multi-anvil 

systems. Such type of MAP module is called Walker’s module. Apart from Walker’s module 

construction, there is another MAP module - DIA module, which was first designed in 1964 [190] 

and has been later modified. The difference between two MAP module types is shown in 

Figure II.9. For a history of LVP, please see the Ref. 191. 

 
Figure II.9. Schematic view of the MAP module types: a) Walker’s module; b) DIA module. The 
transformation of uniaxial hydraulic ram compression to homogeneous hydrostatic one is shown 
by the arrows. The photos in bottom row were taken from http://www.voggenreiter-gmbh.de. 
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In frames of current work, we used the Walker’s module at LSPM (University Paris Nord) for the 

HP-HT synthesis of r-BS. 

Three main parts of MAP should be distinguished: vertical hydraulic ram, MAP module 

(primary anvils and secondary anvils) and sample assembly. 

Hydraulic ram. The MAPs usually use the pumps to pressurize oil, which drives a vertical 

hydraulic ram to compress a module. Any vertical hydraulic ram with enough loading force (˃1000 

tons) might be used. The loading force should be rather high to provide effective compression of 

both anvil stages. 

MAP module. As it has been mentioned above there are two main designs of MAP modules: 

Walker’s and DIA modules (see Figure II.9). Both have double anvils stage arrangement: primary 

and secondary anvils. There are different ways to count the anvil stages in MAPs. Herein we will 

count the stages from “outside”, which means that the outer six steel anvils will be called primary 

anvils, whereas next eight cubes are secondary anvils. The Walker’s module has a cylindrical 

cavity (see Figure II.9 a), usually covered by Kapton sheet to reduce a friction between metallic 

parts. The cavity is filled with six steel primary anvils, three facing up and three facing down, 

which form a new cavity of cubic form. In its turn, this cubic cavity is dedicated for the secondary 

anvils. The primary anvils are driven by uniaxial compression of a piston. The 1st stage of DIA 

module consists of four independent moveable equatorial anvils and fixed bottom and top anvils. 

As well as in case of Walker’s module, in DIA module the uniaxial compression transforms to 

multiaxial due to construction of the top and bottom module parts. Nevertheless, the compression 

extent of the secondary anvils can be varied by using different lubricants (machine oil, molycot) 

and filling gaskets (Kapton, etc.) (see Figure II.10). 

 
Figure II.10. Pressure calibrations of DIA module at room temperature at PSICHE beamline, 
synchrotron SOLEIL. Pressure determined from MgO equation of state is related to press load. 
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DIA design seems to be a little bit more complicated than Walker’s one as it consists of two heavy 

module parts (the top is better to be fixed) and requires more precise alignment of the primary 

anvils (selection of the filling gaskets and lubricants). However in some cases, as for example, 

synchrotron in situ measurements DIA design is the most preferable: four equatorial anvils of the 

first stage can have a horizontal groove dedicated to incoming and outgoing X-ray beams. Due to 

differences in primary anvils location the geometry of the second stage anvils can be considered 

as (111) and (100) for Walker’s module and DIA module respectively. 

The secondary anvils are the set of eight cubes with truncated interior corners (see 

Figure II.11). These truncations form an octahedral HP assembly cavity. Usual material of the 

cubes is WC-Co hard alloy, although the use of c-BN or sintered diamond (SD) cubes is also 

possible, although more expensive. The harder secondary anvils are, the higher reachable pressure 

on the sample is. Evidently, the hardness of secondary anvils should be higher than that of primary 

anvils. In the present work, only WC-Co hard alloy secondary anvils have been used. The cube 

truncation edge length (TEL) is crucial characteristic of the secondary anvils. Evidently, the 

smaller TEMs result in higher attainable pressures. The standard TELs sizes are: 3 (up to ~30 GPa 

for WC-Co), 4 (up to ~24 GPa for WC-Co), 5 (up to ~19 GPa for WC-Co), 8 (up to ~14 GPa for 

WC-Co), 12, and 15 mm.  

 
Figure II.11. A view of the MAP secondary anvils: a) schematic arrangement of the secondary 
anvils; b) building of the secondary anvils “cubic” set; c) “cube” fixed by plastic-glass sheets, one 
of two coper electrical contacts/providers is marked. 

In present work, the secondary anvils with 2, 2.5, 3, 4, 5 and 8 mm of TEL have been employed. 

The secondary anvils are fixed by the plastic-glass sheets (see Figure II.11 c). The plastic-glass 

sheets may have various grooves intended for thermocouples wires and electrical providers in case 

of HP-HT experiments. The life rate of secondary anvils is sensitive to any distortions in the 

“cube”. Consequently, the secondary anvils preparation requires high accuracy of experimenter. 

Sample assembly. The sample assembly as well as secondary anvils is uniform for all types of 

MAP modules. It has an octahedral shape. The usual octahedron material is MgO with additions 

of Al2O3, Cr2O3, talk, etc. Before using the octahedron in HP experiments it is fired above 900oC 

during a few hours. This procedure results in harder octahedra, permitting to reach the higher 
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pressures. In case of octahedrons consisting of MgO and Al2O3, a HT treatment at 1500oC leads 

to partial formation of harder spinel [192]. The hole dedicated for the sample, furnace, 

thermocouple and other details usually passes through two opposite faces of octahedron. The 

octahedron body may have other additional notches intended for thermocouple wires, X-ray 

“windows”, etc. X-ray “windows” are the special holes placed perpendicular to the sample hole. 

These “windows” are filled by the pellets prepared from material which is more transparent for X-

rays than MgO. Usually, the B-epoxy ceramics (the same as for gaskets of PEP) is used. The 

octahedron edge lengths (ELs) are internationally uniformed characteristics. Each EL corresponds 

to the TEL and can be written in the form EL/TEL, e.g.: 8/3 (sample volume ≤ 1 mm3), 10/4 

(sample volume ~ 2 mm3), 10/5 (sample volume ~ 4 mm3), 14/8 (sample volume ~ 9 mm3), 18/12 

and 25/15. In present work only the 14/8 assembly has been used. 

The general schemes of a few MAP sample assemblies are presented in Figure II.12. 

 
Figure II.12. Two MAP assembly arrangements: a) the scheme of the assembly arrangement with 
use of foil type furnace; b) the scheme of the assembly arrangement with use of sleeve type furnace. 

The isolating ZrO2 sleeve over the entire length of the sample hole is usually used, in order to 

preserve the MgO octahedron from overheating at contact with a furnace (which may cause the 

heating of the gaskets and therefore blowout). Then, the ZrO2 sleeve is followed by the furnace. 

The furnace materials are the same as for PEP assembly: graphite, LaCrO3, Re foil, etc. To provide 

heating, the both furnace ends must be in contact with secondary anvils. Usually, the foil heaters 

do not need a special electrical contact/provider (see Figure II.12 a), whereas in case of sleeve 

furnaces the molybdenum (or other metal) rings or disks are applied (see Figure II.12 b). Graphite 

furnace is the most popular one, due to its low cost, transparency for X-rays and high attainable 

temperatures. However, the formation of diamond already at ≤ 12 GPa and ~2500 K [193] forces 

the experimenters to use LaCrO3 or Re for reaching the highest pressures and temperatures. On 

other hand, these furnaces absorb the X-rays, thus they pose the problems at in situ XRD 

measurements. One of the possible ways to solve this problem is to use a vanadium foil heater. V 

is more transparent for X-rays, than Re or LaCrO3, it does not undergo any phase transition in wide 
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pressure and temperature ranges and may be used as reliable pressure marker at the same time. 

Another possibility is the alternative geometry of the sample assembly presented in Figure II.13. 

 
Figure II.13. The “horizontal” geometry of the MAP assembly dedicated to in situ XRD 
measurements. 

In (100) geometry of DIA module the octahedron can be placed in manner to match the sample 

hole with a beam. Almost transparent for X-rays boron epoxy plugs are used to close the sample 

hole from both sides. The “horizontal” orientation of the sample along the beam has an evident 

advantage as compared to the conventional one: such large absorbing heater materials as Re or 

LaCrO3 can be used without any difficulties. On other hand, in case of “horizontal” sample hole 

the blowout is more likely, due to the fact, that sample hole is not “closed” by the secondary anvils 

as in case of conventional assembly geometry. 

The sample capsule is placed in the center and usually is made of h-BN, Al2O3 or MgO. These 

chemically inert materials provide the best thermal conduction. In terms of in situ XRD 

measurements the h-BN seems more preferable as it consists of the low Z elements. The sample 

capsule is sandwiched between two ZrO2 plugs on the top and bottom in order to keep the high 

temperatures only in a sample area. Using of these plugs also prevents the secondary anvils 

overheating. 

The gaskets in MAP assembly are glued around the truncations on the four out of eight 

secondary anvils (see Figure II.14 a). The gaskets situate along the octahedron edges. The gaskets 

in combination with MgO octahedron serve as PTM. During compression, the PMT squeezes out 

into the spaces between the anvils (Figure II.14 b). The friction between the pressure media and 

the secondary anvils should be equal to the pressure generated inside the sample assembly. To 

increase this friction a special paper sheets are glued behind the gaskets (Figure II.14 a). 
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Figure II.14. The gaskets of the MAP assembly: a) the gaskets and paper support glued around 
truncations of four out eight cubes of the second stage anvil; b) the PMT after HP experiment. 

Thus the PMT must be soft enough to flow at room temperature but not so soft that it completely 

squeezes out between the anvils. The most commonly used materials are boron epoxy, mullite 

(2Al2O3·SiO2) and pyrophyllite (Al2Si4O10(OH)2). Another function of the PMT is to provide 

electrical insulation between the secondary anvils and sample assembly details (thermocouple, 

heater and etc.). In present work only pyrophyllite gaskets have been used, as they revealed the 

best homogeneous flow under compression (for the HP-HT synthesis of r-BS). However, for some 

in situ XRD experiments, the B-epoxy “windows” or even the whole B-epoxy gaskets have been 

implemented. Naturally, the positions of B-epoxy “windows” in the gaskets and in the octahedron 

must coincide. 

3.5.1 Generating high pressures and temperature 

The MAP modules require rather high loading forces (~1200 tons), comparable with those of 

TTP. In this work, the loading forces of the hydraulic rams applied to the Walker’s and DIA 

modules are 1500 and 1200 tons respectively. Due to this only automated electric compressors can 

be applied for pressure generation. Unlike TTP and PEP, the MAP compression/decompression 

rate is considerably slower. Actually the secondary WC-Co or SD anvils are very sensitive to the 

heating and loading stresses. Thus, slow compression helps to avoid breakage of the secondary 

anvils. Thanks to use of automated compressors the high pressure stability during long HP-HT 

experiments can be guaranteed.  

The resistive heating in MAP significantly differs from one in PEP or in TTP. Herein the 

power supply is connected to the top and bottom parts of the module. Then the electrical current 

passes primary and secondary anvils. The plastic-glass sheets of “cubic” secondary anvils set 

isolate it from the primary anvils. Only two of eight cubes in the second stage anvils have electrical 

contacts with primary anvils (see Figure II.11). These cubes are located diagonally opposite to 

each other and are in contact with furnace ends or with the electrical providers of the assembly. 

They must be electrically insulated from each other, in order to ensure that the electrical current 

runs only through the furnace. In order to prevent some random contact between second stage 

anvils, the special scotch and paper are glued on the internal sides of the cubes. 
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3.5.2 Measuring high pressure and temperature 

Temperature and pressure measurements for MAP are fundamentally the same as for the PEP 

or TTP. Due to wide use of MAP in in situ XRD experiments, the pressure and the temperature 

can be easily determined with help of thermoelastic equation (TEE) and EoS of standard materials 

as, for instance h-BN, Al2O3, MgO, etc. An example of the temperature calibrations for MAP 

installed at PSICHE beamline with using of EoS of MgO, h-BN and thermocouples is shown in 

Figure II.15. 

 
Figure II.15. In situ temperature measurements in MAP at PSICHE beamline. Sample: MgO; 
standard 7/3 assemblies with “horizontal” sample hole geometry; Re heater, W/Re thermocouple, 
MgO sample capsule and B-epoxy plugs. 

The pressure in ex situ experiments can be estimated only with help of calibration curves: 

sample pressure as a function of applied loading force of the ram/hydraulic oil pressure. These 

calibration curves might be constructed in the same manner as for PEP or TTP, basing on the well-

studied phase transitions of the standard compounds. 

Unlike to other LVPs with opposed anvils design, the MAP allows more reliable using of 

thermocouples (TC) at high pressures (up to 30 GPa). The W5Re95-W26Re74 TCs (the indexes mean 

the percentage of the Re and W in TC wire) are usually applied. The TC insertion does not lead to 

the big number of blowouts, thanks to almost homogeneous compression of the sample assembly 

and consequently less pressure gradients. The TC must be as close as possible to the sample in 

order to make the reliable measurement of the temperature. There are a few ways to provide the 

TC inside the octahedron assembly; two of the most common ways are presented in the 

Figure II.16. 
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Figure II.16. Two the most common ways of TC providing into sample assembly; the paths of TC 
wires are marked by the arrows and numbers. 

The most popular and easy way is that marked by 1 in the Figure II.16 - from the top through the 

hole of the sample (see also Figure II.12). Inside the assembly the TC junction and the wires are 

protected by Al2O3 tubes. This material has a very high melting temperature and is very good heat 

conductor and electrical insulator. Then the Al2O3 tubes are followed by copper coils. This kind 

of protection ensures that even at slight tear of TC wire, there will be an electrical contact and TC 

will work. Of course, all these protections do not absolutely guarantee the TC safe and the TC 

tears happen rather often. However, TC remains very powerful and useful option in HP-HT 

experiments in MAPs and is widely used. 

4 Spectroscopy techniques 

Raman and infra-red (IR) spectroscopy techniques have been used in present work. The IR 

and Raman spectroscopies enable the compound characterization on the molecular scale (short and 

average distances). All of these spectroscopy techniques are well suited to the measurements of 

solids both at ambient and extreme conditions. Moreover, these analytical techniques are non-

destructive and are able to work with tiny samples (micro- or even nano-sample). In this part we 

will provide short review of the Raman and IR spectroscopies used in our experiments. 

4.1 Raman spectroscopy 
The Raman measurements have been executed on the basis of LSPM (Université Paris Nord) 

and IMPMC (UPMC). Both Raman installations were designed to allow measurements at normal 

and extreme conditions. At IMPMC, the Raman spectra were recorded in back-scattering geometry 

with a Horiba Jobin Yvon HR460 Raman spectrometer equipped with ×10 and ×20 objectives. 

The 514.5 nm line of a Ar+ laser (5 µm beam spot) has been used to measure the samples. At 

LSPM, back-scattering geometry Horiba Jobin Yvon HR800 Raman spectrometer equipped with 

×10 and ×20 objectives was used. Raman spectra were excited with the 632.8 nm line of a He-Ne 
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laser (10 µm beam spot). Both spectrometers were calibrated using the single crystal of cubic Si 

at room temperature. 

It should be noted that only DACs permit to provide in situ HP Raman measurements due to 

transparency of the diamond anvils. However, as it has been marked above, that not all the types 

of diamonds are suitable with Raman scattering. In present work, only the diamonds especially 

dedicated for Raman spectroscopy and related vibrational techniques (with N2 content of ~2·103 

ppm) have been used. Indeed the use of single-crystal diamonds of other classes in DACs for in 

situ Raman measurements are also possible. In case of ordinary diamond anvils a noisy background 

due to fluorescence is observed. There is also a strong first-order Raman band at 1332 cm-1. 

However, in some experiments it can be used for pressure determination instead of ruby. 

4.2 Infrared absorption spectroscopy 
IR absorption spectroscopy is a supplementary technique to the Raman one, which can be 

clearly demonstrated by example of CO2 molecule given in Figure II.17. 

 
Figure II.17. Comparison of the Raman and IR oscillations of the CO2 molecule. 

The IR installation used for measuring of IR spectra at ambient conditions included: emitter 

of IR radiation, few lenses for focusing and collecting of IR beams, sample holder and 

spectrometer. In this work the Fourier transform IR spectrometer Bruker IFS 125HR has been 

used. The main particularity of this type spectrometer is Michelson interferometer. This device 

divides the IR rays after the sample on two beams and makes them interfere with each other. The 

detector records interferogram where intensity is a function of the wavelength difference between 

two beams. Finally, the interferogram transforms in conventional IR spectrum (Int.(λ-1)) by means 

of Fourier transformation. The Fourier transform spectrometers revealed better quality of the IR 

spectra at less times of spectrum acquisition. 

In situ HP IR measurements as well as in situ Raman measurements can be provided only in 

DACs. However the type of diamonds suitable for HP Raman is not good for IR spectroscopy, as 

~1 ppm of N2 content is needed. Thus, in present work no HP IR measurements have been 

provided. 
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5 X-ray diffraction 

X-ray diffraction (XRD) is non-destructive analytical technique which reveals information 

about the crystal structure and some physical properties of the solids. XRD is schematically shown 

in the Figure II.18. 

 
Figure II.18. The scheme of diffraction of the monochromatic X-ray wave on the regular array of 
“scatters” in the crystal: a) reflected waves are in phase; b) reflected waves have opposite phase. 
The core of XRD phenomena is the elastic scattering of the electro-magnetic wave on the electron 

shells of the atoms in the crystal. The electric field of the incident electro-magnetic wave forces to 

oscillate shell electron with the same frequency, forcing them to emit a secondary electro-magnetic 

wave with the same frequency as that of incident one. A regular array of the atoms (or “scatters”) 

produces a regular array of secondary waves of the same frequency. The Bragg’s law (II.3) 

describes the interference of these waves and conditions of interference maximums: 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙sin𝜃                     (𝐼𝐼. 3), 

where λ is a wavelength of the X-ray wave, dhkl (further it will be marked only d) is a spacing 

between two planes of the scatters, θ is the angle of incidence and reflection, n is an integer 

number. 

There are few consequences from the formula (II.3): 

1) If someone adds new additional planes with the same “scatters” in the middle between 

already existing hkl planes in Figure II.18 a, there will be scattering and interference of 

the X-rays from the new planes but with the phase shift of π. This will lead to the total 

disappearing of the XRD due to interference between diffracted beams from the “old” and 

”new” atomic planes (see Figure II.18 b). 

2) If the d-spacing is less than λ/2, there won’t be any XRD on the crystal. It happens because 

sinθ cannot be more than 1. Thus there is a condition at which the XRD is still possible: 

dmin ≥ λ/2. 

3) At polychromatic radiation and fixed θ angle there might be the interference between the 

reflections not from the nearest atomic planes, but from the ones, which are located a few 

planes from each other. Such kind reflections concern to the higher reflection order n > 1. 
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They can be observed at wavelengths λ/n if these wavelengths are in the polychromatic 

spectrum. This is called the overlapping of the harmonics and leads to overlapping of the 

peaks (n order overlapping) in diffraction pattern, which therefore interferes to the precise 

determination of d value. 

The Bragg's law allows to determine the structure of the unit cell through the d value 

determination and the lattice planes relative position. However, this information is not sufficient 

to know the space group, i.e. the symmetrical relationship between atoms in the unit cell. This 

problem can be solved by looking at the relative intensity of the peaks. For the reflection, the 

diffracted wave amplitude is: 

𝐹ℎ𝑘𝑙(ℎ̅) = ∑ 𝑓𝑎𝑡,𝑖

𝑖

(ℎ̅)𝑒(−2𝑖𝜋 ℎ̅∙�̅�𝑖)                     (𝐼𝐼. 4𝑎), 

where 𝑓𝑎𝑡,𝑖(Q) = ∫ 𝑑𝑉

0

𝑉

𝜌𝑒(�̅�)𝑒(−2𝑖𝜋 Q∙�̅�𝑖)                     (𝐼𝐼. 4𝑏). 

Herein, vector ℎ̅ connects two nodes of the reciprocal lattice, 𝜌𝑒(𝑟�̅�) is the local electron density, 

𝐹ℎ𝑘𝑙 is structure factor, 𝑓𝑎𝑡,𝑖 is atomic form factor, Q = k−k’ is the momentum, k and k’ are the 

wave vectors of the incident and diffused radiation respectively. In its turn, the structure factor 

contains the information relative to the atomic positions and widely used for atomic position 

refinement. 

Basing on the law of interference maximums of the scattered X-rays on the crystal proposed 

by Bragg and Wulf two main XRD techniques have been developed in 20th century: angle-

dispersive XRD (ADXRD or ADX) and energy-dispersive XRD (EDXRD or EDX). Both these 

techniques will be described below. 

5.1 Angle-dispersive X-ray diffraction 
The ADX is an analytical technique for characterizing materials. Historically it arose the first. 

Herein we will use the Bragg’s law to consider the ADX. ADX can be used only at monochromatic 

incident X-ray beam. 
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Figure II.19. The scheme of ADX (on the left) and an example of ADX pattern of polycrystalline 
LaB6. 

Figure II.19 presents schematically the ADX installation: source of X-rays, the sample placed on 

the goniometer and flatpanel detector. As it has been mentioned above, the X-rays scatter on the 

arrays of atoms (scatters) in the crystal. The interference of the diffracted X-ray waves leads to 

mutual damping, except a few specific directions, which are defined by the formula (II.3). These 

specific directions are registered by the flatpanel detector and appear as spots on the diffraction 

pattern (reflections). Unlike monocrystal, the ADX of polycrystalline sample represents the 

“rings” consisting of reflections set from randomly orientated monocrystals (see Figure II.19). 

During ADX acquisition, the sample (usually crystalline or polycrystalline) is rotated and therefore 

the X-rays incident angle θ changes. At constant value of λ, the θ angle and d are the variables in 

the formula (II.3), and, thus the ADX pattern presents a diffraction intensity concerning different 

d as a function of θ angle. Thus, ADX in combination with flatpanel detector can be considered as 

2D ADX, as an experimenter sees the whole projection of cone of diffracted X-rays (see 

Figure II.19). 

The recorded series of ADX patterns, each corresponding to a different crystal orientation, is 

converted into a 3D model of the electron density by means of the mathematical technique of 

Fourier transforms. Each spot or reflection corresponds to a different type of variation in the 

electron density. It is necessary to determine which variation corresponds to which reflection, the 

relative strengths of the reflections in different images and how the variations should be combined 

to yield the total electron density. In present work, all the 2D ADX patterns have been converted 

in conventional form (intensity versus 2θ) by means of Fit2D software [194], whereas the data 

treatment have been done with help of FullProf software [195-197]. The ADX patterns usually 

employs the 2θ scale, although the d-spacing (d value) or Fhkl scales can also be used. 
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The high precision/quality crystallographic data (d-spacing, space group, coordinates of 

atoms, polycrystals preferential orientation, etc.) can be yielded from the 2D ADX measurements. 

Hence, the 2D ADX technique is the main tool of experimentalist for study sample structure. 

However, the 2D ADX has some drawbacks, which can limit its application, for instance: rather 

long time of acquisition (compared to EDX) and necessity of high spatial accessibility. 

5.2 Energy-dispersive X-ray diffraction 
A development of the X-rays sources (e.g. synchrotrons) and creation of the new 

semiconductor detectors with good energy resolution in the second part of 20th century gave rise 

to creation of the EDX technique, which has been proposed for the first time in 1968 [198]. EDX 

technique is used at polychromatic X-ray radiation of polycrystalline samples and is usually 

operated at a fixed angle (2θ0). Using the Plank’s equation λ = 12.398/ε, where λ in [Å] ε in [keV], 

the Bragg’s law can be converted in: 

휀 =
6.199

𝑑 ∙ 𝑠𝑖𝑛𝜃
                     (𝐼𝐼. 5). 

From the equation (II.5) one can conclude that for the given energy/or wavelength range (λ1… λi) 

there is a set of d values, giving a reflections, which can be observed at a fixed angle. During the 

EDX measurements, a white collimated X-ray beam is scattered by the sample through a 2θ0 angle 

and the energy distribution of the scattered photons is analyzed by an energy-dispersive detector 

(EDD). The measured energy distribution of the scattered X-rays shows distinct peaks, providing 

the required information for structural studies of materials. 

EDX technique dramatically differs from 2D ADX one. The first, it should be underlined, that 

unlike 2D ADX, in case of EDX only a part of cone of diffracted X-rays is observed through the 

fixed 2θ0 angle (the blue stripe in Figure II.20). 

 
Figure II.20. The schematic representation of diffraction patterns acquired by ADX and EDX 
techniques. 
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As one can see from Figure II.20, each monochromatic component of white beam (λi±dλ) refers to 

the d value. The summing of all (λi±dλ) gives the entire energy-dispersive spectrum. As far as 

height h of the “stripe” of energy-dispersive data is negligible with respect to the whole 2D pattern, 

the EDX technique presented in Figure II.20 can be considered as 1D. 1D EDX cannot provide the 

same data quality as angle-dispersive diffraction and is almost inconvenient for detailed sample 

structure refinement (Rietveld refinement). Another reasons of low 1D EDX data quality are: the 

presence of fluorescence peaks, limitation of input count rate by EDD, presence of the background 

in energy spectrum of incident X-ray radiation (especially at synchrotron) and few orders less peak 

resolution than in ADX. However the resolution can be slightly improved by reduction of h value 

(by closing of vertical collimating slits). On other side, diminution of h is limited by input count 

rate of EDD. 

However, energy-dispersive method has some advantages compared to 2D ADX technique. 

EDD is usually connected to multichannel pulse height analyzer (each channel refers to separate 

εi or λi). Hence, measurement of energies of all scattered photons happens simultaneously. The 

summing of all channels into whole EDX spectrum takes some µs or ps. It makes EDX the 

powerful tool for rapid structural analysis (e.g. the samples, which are unstable or exist for a short 

period of time) and allows to study structure changes over time. It should be also noted, that 2θ0 

angle variation may change the position of the diffraction peaks, distances between them and even 

change their quantity in the diffraction pattern. The important advantage of EDX is the opportunity 

to obtain diffraction patterns without the use of any goniometer. Fixed scattering angle permits to 

use the collimators for diffracted X-rays in order to define the detected area (see Figure II.21), 

leading to suppressing of the undesirable peaks in the sample EDX pattern. Hence, a large spatial 

accessibility to the sample is not required and EDX can be applied for in situ experiments with 

significantly limited access to the sample. 

 
Figure II.21. The scheme of EDX technique. 
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The collimating system presented in Figure II.21 does not require very high flux of X-ray 

source, as the whole energy photon spectrum is used. Such a collimating system cannot be applied 

in monochromatic mode because of the 2-dimensional nature of the detection. In order to measure 

high quality diffraction data in in situ experiments with limited access to the sample, a collimator 

with multiple channels (Soller slits) can be used. The Soller slits system consists of two blocks of 

slits: inner and outer with a radial alignment. Although the Soller slits suppress effectively all 

waste peaks and strong background, it should be noted, that it loses about 80% of diffracted X-

rays. Hence, to provide high quality and express 2D ADX in situ measurements, the X-ray source 

with high flux is necessary. 

So we can conclude, that 2D ADX is powerful tool for providing XRD measurements of high 

data quality. However, in situ 2D ADX experiments require the X-ray sources of high brightness. 

Unlike 2D ADX, the quality of energy-dispersive data does not permit to provide Rietveld 

refinement, but is rather sufficient for in situ XRD measurements with use of X-ray sources with 

lower spectral brightness. Thus, EDX and ADX can be considered to be complimentary techniques 

and might be applied depending on the aims of experiment, type of X-ray source and the sample 

nature. In the present work we used the both techniques. 

6 Synchrotron radiation 

A photon radiation occurred in bending magnet of the synchrotron storage ring due to electrons 

deflecting is called synchrotron radiation. Classical synchrotron radiation is magnetic 

bremsstrahlung electromagnetic radiation. It can be obtained not only from the bending magnets 

but from other insertion devices as well (e.g. wigglers and undulators). It dramatically differs from 

conventional radiation from X-ray tube. The following features of synchrotron radiation compared 

to ordinary one can be underlined: 

 spectral continuity over a range from infrared to X-rays; 

 weak divergence of emission in the vertical plane; 

 flux and luminance billions of times greater than those of classic sources of X-rays; 

 polarization in the horizontal plane; 

 temporal structure in pulses; 

 certain spatial and temporal coherence. 

Thanks to these qualities the synchrotron radiation is particular useful tool for providing in situ 

experiments especially under extreme conditions. In present work a great part of scientific results 

has been obtained from in situ measurements under extreme conditions at PSICHE beamline at 
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synchrotron SOLEIL and at ID27 at ESRF. A high brilliance of the X-ray sources and modern 

synchrotron X-ray optics installed in these beamlines ensured high XRD data quality. Thus, in this 

part, first of all, the general description of synchrotron and comparison of ESRF and SOLEIL will 

be given. Then it will be followed by description of main synchrotron characteristics. Two 

different X-ray sources (wiggler and undulator) will be compared on the example of PSICHE and 

ID27 beamlines. Finally, the detailed description of PSICHE beamline as a fortunate example of 

modern beamline dedicated for various in situ experiments under extreme conditions will be done. 

6.1 General description of synchrotron 
Synchrotron is an accelerator of elementary particles, more often of electrons. The 

synchrotrons can be divided on several specialized types, but in this work we will review only a 

synchrotron light source type. Further, we will call it as “synchrotron” although this is technically 

incorrect. The general scheme of synchrotron construction is presented in Figure II.22. 

 
Figure II.22. General arrangement of synchrotron of 3d generation. 

A synchrotron can be divided on three main parts: Linear particle accelator (LINAC); booster 

and storage ring with beamlines. The electrons produced and initially accelerated in LINAC are 

injected to the booster where they are pre-accelerated up to GeV energy values in synchrotron 

mode. Finally the electrons are injected into storage ring where their circulation becomes stable in 

time and the electron energy reaches the “working value” (usually it is from 2 to 8 GeV). 

The synchrotrons SOLEIL and ESRF are the examples of the synchrotrons of the 3rd 

generation. Nonetheless, they are significantly different. Their main storage ring parameters are 

presented in Table 1. 
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Characteristic ESRF SOLEIL 
Storage ring circumference, m 844.4 354.1 

Bending magnets (BM) 64 22 
Insertion devices (ID) 65 25 

Energy, GeV 6.0 2.75 
Maximum curent, mA 200 ~500 

Horizontal emittance, nm 4.0 3.9 
Revolution frequency, MHz 0.36 0.85 

Number of bunches 1 - 992 1 - 516 
Table 1. The main storage ring parameters of ESRF and SOLEIL synchrotrons. 

6.2 Main characteristics of synchrotron radiation 

There is a plenty of various synchrotron sources which deliver the radiation of different 

quality. In order to compare the synchrotron radiation of the different sources some uniform 

international characteristics were proposed. Herein only a few of them (basically those, which will 

be used further) are listed. 

Spectral brightness, spectral brilliance and critical energy. 

A spectral brightness or photon flux per solid angle is defined as the number of photons 

emitted per second, in a spectral bandwidth Δλ/λ = 0.1%, into a unit solid angle. Spectral brightness 

standard unit is [photon/s/mrad2/0.1% δλ/λ]. From the brightness, the photon flux impinging on a 

sample may be easily evaluated using simple geometrical considerations. 

A spectral brilliance can be defined as the number of photons emitted per second, in a spectral 

bandwidth Δλ/λ = 0.1 by an unit source area and per unit of solid angle. Its standard unit is 

[photon/s/mrad2/mm2/0.1% δλ/λ]. This characteristic can be used for comparison of sources with 

same spectral brightness and other properties. The advantage of these characteristics is in their 

independence from distance between observer and the source, as well as from divergence of the 

beam. 

Another important synchrotron characteristic is a critical energy, which can be found from 

following expression: 

휀𝑐 = 𝐵𝐸2                     (𝐼𝐼. 6), 

where B is magnetic induction [T]; E – electron energy [GeV]. It should be noted, that knowledge 

of this characteristic permits to determine other ones, as for example critical wavelength, critical 

frequency, etc. 
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6.2.1 Insertion devices (ID). PSICHE and ID27 beamlines 

As it has been mentioned above, the great part of experimental work has been done at PSICHE 

and ID27 beamlines. The both beamlines are dedicated for in situ XRD measurements at ambient 

and extreme conditions. Nevertheless, it should be marked, that the beamlines deliver the beams 

from two different X-ray sources: wiggler (in case of PSICHE) and undulator (in case of ID27). 

Wiggler and undulator are insertion devices (ID) with periodic magnetic structures in the 

synchrotron storage ring. In fact their constructions are very close to each other. These magnetic 

structures, made up of a complex array of small magnets, force the electrons to follow an 

undulating, or wavy, trajectory (Figure II.23). The magnetic bremsstrahlung electromagnetic 

radiation is emitted at each consecutive bend. Consequently, the total quantity of emittances from 

one electron is significantly higher than in bending magnet. Thus, the both IDs deliver increased 

spectral brilliance with respect to that achievable with bending magnets (see Figure II.23). 

 
Figure II.23. Different synchrotron radiation features; where δω is a maximum deviation of 
electron bunch from main trajectory. 

Nevertheless, there is a difference between radiation emitted by wigglers and undulators. In 

the case of undulators, due to relatively weak magnet dipoles are used in ID periodic structure, the 

electrons are only slightly deviated from their trajectory (a small value of δω). An interference 

occurs between the radiations emitted by the same electron at different points along the trajectory. 

Due to interference at low δω value and overlapping of emitted light, the flux of undulator radiation 

is dramatically higher than in all other IDs. It should be noted, that the emitted photons are 

concentrated at certain energies (called harmonics, see Figure II.23). By varying the gap between 

the rows of magnets the quantity and relative intensities of harmonics can be changed. 
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The wigglers contain the less quantity of magnet dipoles but have considerably stronger 

periodic magnetic field. Because of this fact, the electron deviations are significantly larger (rather 

big δω value), the interference effects between the emissions from the different poles can be 

neglected and the overall intensity is obtained by summing the contribution of the individual poles. 

The flux of such radiation is lower than that from undulator. At big δω value, total harmonics 

number and their width increase, leading to continuous photon spectrum (the same as from bending 

magnet). Unlike undulator, wiggler delivers white beam. It should be marked, that wiggler 

radiation flux is few time higher than one from the bending magnet. 

Using of wiggler and undulator at PSICHE and ID27 respectively, leads to the different sets 

of experiments possible to provide at these beamlines. The in situ measurements at ID27 are 

available in 20-90 keV energy range with the high flux. The beamline provides the experimental 

techniques only for monochromatic beam mode: powder diffraction, XRD, X-ray fluorescence 

(XRF) and X-ray Raman scattering. Due to high beam flux, ID27 can easily use the Soller slits 

without any risk to lose data quality. PSICHE beamline proposes continuous photon spectrum 

from 15 to 80 keV with comparatively rather lower flux. Thus, the using of Soller slits is 

impossible. Thanks to wiggler source, a monochromatic, white beam and pink beam modes can 

be delivered. Unlike ID27, such experimental techniques as EDX and pink beam tomography are 

disposable. More detailed description of PSICHE beamline will be presented in the next part. 

7 PSICHE beamline 

7.1 Line description 
PSICHE (Pressure, Structure and Imaging by Contrast at High Energy) beamline is dedicated 

to tomography techniques and in situ material research under regular and high pressures using hard 

X-ray diffraction at room or high temperatures. 

High energy photons are produced by an in-vacuum multipole wiggler WS 50 (see 

Figure II.24). 

 
Figure II.24. Wiggler WS 50 of PSICHE beamline at synchrotron SOLEIL. 
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Due to the intrinsic properties of the wiggler as insertion device (Bmax = 2.1 T, period 50 mm, 

38 periods) and of X-ray optics installed, the beamline can deliver three different beam modes: 

white beam mode (15-80 keV), pink beam mode (filtered white; 25-70 keV) and monochromatic 

beam mode (20-50 keV). The PSICHE beamline has the highest photon energy spectrum of 

SOLEIL, a maximum flux close to 25-35 keV. The photon energy spectrum from WS 50 WS 50 

is presented below (see Figure II.25). The beam flux on the exit from the WS 50 is close to·1016 

photon/s/mrad2/0.1% δλ/λ. It should be noted that, when the wiggler operates at low energy (<10 

keV), an “undulator” structure of photon spectrum is observed (with distinct harmonics). At higher 

energies, harmonics overlap and spectrum looks like more like a continuous background 

(“wiggler” structure). 

 
Figure II.25. The flux of WS 50 wiggler of PSICHE beamline. 

After the Wiggler beam passes water cooled 300 µm CVD filter, which removes a radiation below 

5 keV. The diamond is ideal candidate for these purposes, as it has low Z-number, is a highly 

resistant material and good thermoconductor. Thus in combination with water cooling there is no 

risk to damage it by the beam. The beam flux after CVD filter is ~3.5·1014 photon/s/mrad2/0.1% 

δλ/λ. The CVD filter is followed by 100 µm CVD window, which is also used like a filter and 

closes the front end, which is kept under deep vacuum. As in case of CVD filter, CVD window is 

kept under water cooling. The beam flux after CVD window is almost equal to that after CVD 

filter. After CVD, the beam passes the cascade of SiC filters, which remove a radiation below 

15 keV. Due to SiC is less resistant and more sensitive to the heating than diamond, it must be 

installed only after CVD filters. It should be noted that initially the Al filters were intended to be 

used. The white beam brilliance values after Al filters of the thickness of 150, 200 and 400 µm 

have been calculated to be ~2.5·, ~2· and ~1.6·1014 photon/s/mrad2/0.1% δλ/λ respectively. Taking 

into account, that the absorption properties of the Al and SiC are rather close one can expect the 

same brilliance values after the SiC filters of the corresponding thicknesses. The power absorption 
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after CVD and SiC filters is around 66% of the total power [199]. The beam flux can be varied by 

changing of number of SiC filters. For instance, to protect the “sensitive” samples from high 

energetic white beam the additional SiC filter can be installed before the sample. 

The beamline can be changed especially for concrete experiment needs by removing/changing 

the settings of all X-ray optics and high pressure and tomography equipment. In Figure II.26 one 

can find a schematic plan of the PSICHE beamline. 

 
Figure II.26. The scheme of PSICHE beamline at synchrotron SOLEIL. The abbreviations 
meaning: F – CVD and SiC filters, VFM – vertical focusing mirror, DCM - Bragg-Bragg fixed 
exit double crystal monochromator, LVP – large volume presses, D1 – EDX Ge solid-state detector 
(SSD), Tomo – tomograph with rotation stage, C – camera/tomograph detector, KB - Kirkpatrick-
Baez micro-focusing optics, DAC – diamond anvil cell, D2 – PerkinElmer flatpanel detector or 
CCD rayonix 165 detector. 

The beamline is divided onto two hutches: optics hutch and experimental hutch. The main X-

ray optics features of the optics hutch are: the cascade of CVD and SiC filters, vertical focusing 

mirror (VFM) and Bragg-Bragg fixed exit double crystal monochromator (DCM). VFM can be 

applied for two purposes: to focus the beam in vertical direction (or to make it denser in order to 

control the vertical divergence) and to use it like a filter for rejection of high-energy photons [199]. 

The dimensions of profile of the beam coming to VFM are defined by the primary slits. Vertical 

beam condensing may lead to increase of flux density, as it has the effect of increasing the effective 

source size in vertical direction. Such beam condensation may increase the flux by the factor ~40 

[199]. From another side, VFM is an important part of combination of filters and scintillator 
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materials at pink beam mode creation. VFM is followed by DCM, which contains two sets of flat 

Si crystals: Si 111 and Si 311. One of the Si 311 crystals can bend in order to focus the beam. 

Actually only set of Si 111 crystals has been used. DCM energy resolution is ΔE/E ~ 10-3. The 

DCM is cryogenically cooled with a closed-loop circuit of nitrogen in order to absorb the beam 

power and to reduce thermal deformations. The experimental hutch contains only Kirkpatrick-

Baez micro-focusing mirrors on the 3rd experimental table. The maximum possible focusing of the 

monochromatic beam at micro-focusing is 6×6 µm2, although a focalization of 12×12 µm2 is more 

usual. The maximum beam size at the sample position is approximately 12×3.5 mm2 in the optics 

hutch, and 15×4.5 mm2 in the experimental hutch. If the VFM is used, the maximum beam height 

is 2.5 mm in the optics hutch, or 3 mm in the experimental hutch. Depending on beam mode and 

which X-ray optics is used, different beam flux on the sample can be obtained: 

 3×1015 Ph/s for 12×3.5 mm2 unfocused white beam mode (1st table, 26 m from Wiggler 

source); 

 4×1011 Ph/s in 0.1×0.1 mm2 spot at 30 keV for monochromatic beam mode using VFM 

and DCM (Si 311) (at 31 m from Wiggler source, 2nd table); 

 ~1013 Ph/s in a 16.8×5.9 mm2 spot at 30 keV for unfocused monochromatic beam 

mode using DCM (Si 111) (2nd table, 31 m from Wiggler source); 

 1010 Ph/s in 10×10 μm2 spot at 30 keV for monochromatic beam mode after VFM, 

DCM (Si 111) and KB mirrors (3rd table, 37 m from Wiggler source). 

PSICHE beamline permits to provide different experiments using various combinations of X-ray 

optics and HP and tomography equipment. All the possible experimental installations for each 

experimental table are listed below: 

1) The 1st experimental table. All beam modes (white, pink, monochromatic) are available. 

Basically, the setup of this table is intended for EDX measurements in LVPs: Paris-

Edinburgh press (PEP) and multi-anvil press (MAP). A white (or sometimes pink) beam 

might be either focused (50 µm in vertical direction) or not. For all EDX measurements 

rotating Ge solid-state detector as a part of CAESAR system is used (detector energy 

resolution ΔE/E of ~ 10-2 is a limiting resolution at this operating mode). There are also 

three collimating slits: one is installed before LVP and two others are placed between LVP 

and Ge SSD. Apart from EDX, the fast imaging tomography (FIT) is also available at white 

and pink beam modes. Other tomography techniques for phases or grains mapping are 

preferably to be used with monochromatic beam mode. However, in some particular cases, 

because the flux of monochromatic beam is low, the scan times become very long for small 

pixel sizes, and using a pink beam mode for such techniques as diffraction contrast 
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tomography (DCT) or 3D XRD is advantageous. Due to easy beamline adaptability for 

concrete experiment the tomograph can replace the LVP in optics hutch. 

2) The 2nd experimental table. Only monochromatic beam (parallel or focused by VFM) is 

available. Generally, this table is dedicated to various tomography techniques (which do 

not require very short scan times): DCT, 3D XRD, quantitative imaging, high quality phase 

contrast imaging, imaging with large pixel sizes and diffraction tomography. As the 

parallel monochromatic beams can be produced with sizes up to 15×3 mm2 the maximum 

sample dimension can be ~25 – 30 mm. The incident beam size can be easily changed by 

collimating slits which are installed before the tomograph. Some ADX measurements in 

diamond anvil cells (DACs) with use of PerkinElmer flatpanel detector and a CCD rayonix 

165 detector might be also provided. However, taking into account not enough focusing of 

the monochromatic beam, the 3d experimental table is more preferable for in situ 

measurements in DACs. 

3) The 3rd experimental table. The monochromatic micro-focused beam is available. 

Kirkpatrick-Baez micro-focusing mirrors (KB) and a pinhole (virtual point source of light) 

might deliver a high flux focused beam (~6×6 µm2). The experimental setup is perfectly 

suitable with in situ ADX measurements in DACs at different temperatures. On the 

detection side there are PerkinElmer flatpanel detector and a CCD rayonix 165 detector. 

At present time, only room temperature and low temperature (4.2 K, liquid He) 

experiments in DACs are available in PSICHE beamline. However, the 3rd experimental 

table is planned to be used for installation of laser heating setups, covering wide 

temperature ranges (up to 2000 K). 

7.2 Combined Angle- and Energy-dispersive Structural Analysis and Refinement 

(CAESAR) system 

PSICHE beamline (synchrotron SOLEIL) has been equipped with combined angle- and 

energy-dispersive structural analysis and refinement (CAESAR) in frames of the ANR Grant No. 

ANR-2011-BS08-018 (“Synthesis of Novel High-Pressure Phases in the B–C–N–O–P System”). 

The CAESAR system proposed by Wang et al. [200] is based on Ge solid-state rotating detector 

and is installed in optics hutch of PSICHE beamline. The detector is coupled to a multi-channel 

analyzer, allowing to count the number of events at a given energy. Based on ADX and EDX 

techniques, the CAESAR system is a highly powerful tool for in situ HP-HT experiments 

(Figure II.27). In combination with LVPs the CAESAR system is a unique installation in Europe. 
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Figure II.27. A combination of EDX and ADX techniques in CAESAR system. 

HP-HT in situ experiments in LVP imply some particularities in X-ray diffraction 

measurements, as for example: sample environment signal (gasket, heater, sleeves, etc.) or limited 

aperture. Hence, the EDX techniques are more preferable for in situ measurements in LVP, thanks 

to their high speed of signal acquisition, efficiency in removing background and waste signals and 

most importantly a possibility of working with limited volume of sample/limited aperture. On the 

other hand, as it has been mentioned above, there are significant drawbacks of EDX as low 

resolution of the Ge SSD, the detector artifacts and the complex corrections necessary for 

intensities determination to perform Rietveld powder diffraction refinement. 1D ADX technique 

usually used for in situ angle-dispersive measurements does not have these drawbacks, but requires 

comparatively long acquisition time. The combination of ADX and EDX in one system overcomes 

their drawbacks. 

Experimental 

A general view of CAESAR system in optics hutch in PSICHE beamline is presented in 

Figure II.28. 

 
Figure II.28. CAESAR system in PSICHE beamline. On the left: the general plan of optics hutch 
at PSICHE, the monochromator, input collimating slits, MAP and CEASAR system are indexed 
by 1, 2, 3 and 4 respectively. On the right: detailed scheme of CEASAR system. 

There are three pairs of collimating slits in CAESAR installation. One pair of slits is situated in 

front of LVP in order to define an incident beam profile size. This pair is called input slits. Other 

two pairs of slits placed behind LVP move together with Ge solid-state detector. These are output 
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slits. As it has been already noted, the change of vertical gap of output slits varies slightly beam 

flux and therefore diffraction peaks resolution. However it does not influence on the pattern quality 

dramatically, as effect of gap change in vertical direction is limited by the resolution of EDD. 

Unlike vertical gap, the horizontal gap of output slits plays an important role in CAESAR 

measurements. Change of the horizontal gap of output slits defines the 2θ angle as well as EDD 

angular resolution. As it has been noted in review of EDX technique, the system of input and 

output slits allows to define detected area (see Figure II.21), which therefore leads to suppressing 

of background signal. 

During CAESAR measurements mode the Ge SSD moves through the 2θ scan range and 

collects series of one dimensional energy-dispersive data (intensity versus energy) as function of 

2θ. The CAESAR system allows the diffraction angle to be varied between 0 and 30o. SSD rotation 

mechanism cannot be physically attached to the rotation axes, which leads to large circle of 

confusion on the position of this axes. To minimize the circle of confusion, the translation 

corrections has been done at each angle step. Finally, the circle of confusion has been reduced up 

to 3×6 µm2, allowing to provide studies of very small objects. At each 2θ step (up to 0.01o) an 

EDX pattern is acquired, consisting of several thousand channels covering a range of photon 

energies (up to ~100 keV; 1CH ~ 0.04 keV). The entire data set consists of all 2θ steps from 0o to 

30o and forms a two-dimensional array (2D diagram): Int.(E,2θ). These intensity data can be then 

regrouped according to photon energies, giving a great number of angle-dispersive (intensity 

versus 2θ) data sets, each of which corresponds to a given photon energy. An example of data 

presentation of CEASAR system is shown in Figure II.29. 

 
Figure II.29. Representation of the set of EDX patterns in the form of 2D diagram: the function 
of 2θ for angle range from 4o to 12o. 

Data treatment 

Such way of data presentation in CAESAR system provides various opportunities in further 

data treatment. The 2D diagram yields a great number of ADX patterns. The key point of this 

CAESAR particularity is that using considerably faster EDX acquisition mode a vast set of ADX 

patterns can be obtained in whole energy range (at PSICHE beamline it is from 15-80 keV). The 
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number of ADX patterns is actually equal to the number of channels. Thus the entire data set, 

selected subsets or composite scans can be used for multiple data set Rietveld refinement. 

Nonetheless, one should keep in mind, that data collected with the CAESAR system are sensitive 

to sample homogeneity and preferential orientation. It happens due to the data are acquired only 

in the horizontal plane and the volume, even if it is kept constant by adjusting the horizontal gap 

of input and output slits, changes in shape with the 2θ angle. 

One of the most outstanding features of the CAESAR system is binning of a set of ADX 

patterns in order to increase effective 2θ coverage and to improve counting statistics at chosen 

energy (channel). Hence angular scan steps can be significantly increased and thus this technique 

can be significantly less time consuming than a traditional step-scan monochromatic diffraction 

measurement. The idea of binning is based on Bragg’s law. By differentiating of Bragg’s formula 

and taking into account tiny change of energy, and therefore wavelength (λ), one can obtain: 

2𝑑 =
𝜕𝜆

𝑐𝑜𝑠𝜃𝜕𝜃
≅

∆𝜆

𝑐𝑜𝑠𝜃∆𝜃
                     (𝐼𝐼. 7). 

In combination with Bragg’s formula one can retrieve: 

∆𝜃 = 𝑡𝑔𝜃
∆𝜆

𝜆
                     (𝐼𝐼. 8). 

where Δλ is the difference between the two wavelengths. This equation can be used to convert 

observations at various energies to a specific wavelength. The Δλ/λ is a constant value for a certain 

channel, hence Δθ depends on and changes only with θ. The binning process is schematically 

presented in Figure II.30. 

 
Figure II.30. Schematic representation of CAESAR binning option, herein Δθi refers to Δθ in 
formula (II.17); b) ADX spectrum, showing increasing of data density after application of the 
binning option. 
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The Figure II.31 clearly demonstrates the gain with the binning option. Data from various EDX 

spectra perfectly fall into a smooth peak profile. It should be noted that increasing of the angle step 

of Ge SSD (e.g. from 0.1o to 0.2o) does not lead to deterioration of data quality, as can be 

compensated by taking wider energy range [200]. Actually, the energy binning limits can be up to 

ΔE/E ~ ±10% without significant affecting on data quality. On another hand, there is no sense to 

increase binning energy range as it does not result in considerable amelioration of counting 

statistics. On the contrary, at the larger ΔE/E values variations in background become more 

important. 

 
Figure II.31. ADX spectrum of CaB6 at 30 keV, showing increasing of data density after 
application of the binning option (the angle step 0.025°). The single ADX pattern is marked by 
blue dots, rebinned ADX spectrum is marked by the green crosses. 

As it has been already mentioned above, the whole data set can be used for Rietveld 

refinement. Nevertheless for these purposes, it is better to transform the energy axis (in keV) of a 

2D diagram to d-spacing one (in Å) (Int.(d,2θ)). From this transformed 2D diagram a classical 

diffraction spectrum can be retrieved (with d scale). Such spectrum gathers all of the data obtained 

at every angle and every energy from binning range (see Figure II.32). 
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Figure II.32. CAESAR scan of CaB6/B at 1400oC and ~5 GPa in 4o to 14o 2θ range (angular step 
= 0.025o; 401 images): a) 2D diagram Int.(E,2θ) in logarithmic scale, revealing waste signals as 
escape and fluorescence peaks; b) 2D diagram Int.(d,2θ) in logarithmic scale, for both diagrams 
the arrows show the diffraction peaks of CaB6, Ge fluorescence peaks and Ge escape peaks; c) 
diffraction spectrum of CaB6 Int.(d). 

As one can see from the Figure II.32 even on the level of 2D diagram Int.(d,2θ) all the 

“contaminations” in diffraction pattern, as detector material fluorescence and escape peaks can be 

discriminated: the sample diffraction peaks are the straight lines, whereas all other peaks are 

presented by bended lines. It can be easily explained: any diffraction line of the sample should 
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follow the Bragg’s law and consequently should become a straight at Int.(E,2θ)→Int.(d,2θ) 

transformation; the lines, which do not follow it concern to non-diffraction peaks. Using the 

general EDX pattern (see Figure II.32 c)), intensity dependence on the photon energy or beam 

spectrum could be considered and correction of background could be implemented. 

The CAESAR system is widely used by beamline users. For instance, very recently a chemical 

interaction between Mg and C at high temperatures (~1500 K) and high pressures (~8 GPa) has 

been provided in PEP [201]. The chemical interaction and formation of a new Mg2C3 polymorph 

was observed in rapid EDX measurements mode (θ = 8o), whereas after crystallization of a new 

phase, CAESAR system was used to collect structural data of high quality (ΔE/E <5%). Basing on 

this CAESAR measurements Rietveld refinement was implemented and the structure of new β-

Mg2C3 has been determined. 

Moreover the scientific group of J. Chantel et al. has provided successful in situ measurements 

of liquid basalt at 2.7 GPa and 1200 K. The data were obtained with help of CAESAR system 

which permitted to subtract background on each EDX. The background was estimated by 

integrating the whole dataset in angle. Due to this a profile of the wiggler emission, the various 

filtering and absorptions were obtained. After such treatment the liquid scattered signal became 

clearly visible. This work is still in progress but it showed the possibility of using CAESAR system 

for in situ study of liquids and melts under extreme conditions. 

8 Ab initio calculations 

The theoretical description of material helps to verify experimentally measured properties. 

Moreover, some properties might be difficult to obtain experimentally, so in this case the quantum 

mechanics (QM) has a great value. Thus, the QM calculations complement information about 

material under investigation. In this work we have used the theoretical calculations in order to 

estimate the properties of studied compounds. 

The time independent Schrödinger equation is used in QM to find eigenfunctions (Φ) and 

eigenvalues (E) of Hamiltonian (�̂�): 

�̂�Ф = 𝐸Φ                     (𝐼𝐼. 9). 

To solve this equation number of approximations should be applied. The first is Born-

Oppenheimer or adiabatic approximation. Due to large mass difference between electrons and 

nuclei, the motion of electrons can be considered separately from nuclei motion. The second 

approximation is one electron approximation. The N-electron wave function (Φ) is approximated 

by a Slater determinant constructed from the one-electron wave functions (φi). 
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To find one-electron functions (φi), the self-consistent field (SCF) or Hatree-Fock (HF) 

method is used. The one-electron wave functions are determined from variational principle. The 

one-electron wave functions should satisfy the system of equations: 

�̂�𝜑𝑖 = 𝜖𝑖𝜑𝑖                     (𝐼𝐼. 10), 

where �̂� is the HF operator: 

𝐹𝐻𝐹 = 𝑇 + 𝑈𝑐 + 𝐽 + 𝑋                     (𝐼𝐼. 11), 

which includes kinetic energy contribution (T), electron-nuclei Coulomb interaction (Uc), electron-

electron Coulomb interaction (J) and HF exchange operator (X). 

Another approach to the solution of the Schrödinger equation also exists and is called the 

density functional theory (DFT). It deals with electron densities and is based on the Hohenberg-

Kohn (HK) theorems [202,203] and Kohn-Sham equations [204]. The first HK theorem states that 

the one-to-one mapping between the ground state electron density, and the ground state wave 

function of a many particle system exist. The second HK theorem proves that the ground state 

density minimizes the total electronic energy of the system. 

The difference between HF and DFT approaches is that in DFT electronic exchange (X(ρ)) 

and correlation (C(ρ)) interactions are additionally taken into account. Therefore, the Fockian 

operator in the KS theory is: 

𝐹𝐾𝑆 = 𝑇 + 𝑈𝑐 + 𝐽 + 𝑋(ρ) + 𝐶(ρ)                     (𝐼𝐼. 12), 

However, the calculation of these interactions is not a trivial task, because the exact functional 

forms are not known within the KS DFT. 

The hybrid HF-DFT functionals, which include a part of the HF exchange were introduced 

and successfully applied in quantum mechanical calculations of solids [205]. The use of these 

functionals in the calculations allows one to increase accuracy for the obtained parameters such as 

optical band gap, atomic structure and vibrational frequencies [205]. 

For the heavy elements the number of basis functions necessary for their description is large 

due to large number of electrons. This leads to the high computational cost. The fact that the core 

electrons do not participate significantly in the chemical bonding allows one to separate 

description of core and valence electrons. The core electrons are described by one-particle 

potential (pseudopotential), and the valence electrons are described by effective core potential 

[205]. The division to the core and valence electrons should be chosen depending on concrete 

system and type of calculations. Large and small core approximations are available [206]. Usually, 

the small core approximation is used for compounds with d- and f-elements [205]. 

The CRYSTAL09 code [207] allows one to obtain many useful properties of the material such 

as the electronic band structure and the band gap value, the density of electronic states (DOS), 

charges on atoms and orbital occupancy, electronic density maps and atomization energy. The 
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relaxation of atomic structure following to the minimum energy criterion is also possible. Bulk 

modulus, phonon frequencies and phonon dispersion curves can be calculated as well. 

The bulk modules were calculated using the Murnaghan EoS [208]: 

𝐸(𝑉) = 𝐸0 + 𝐵0𝑉0 (
1

𝐵0
′(𝐵0

′ − 1)
(

𝑉

𝑉0
)

1−𝐵0
′

+
𝑉

𝐵0
′𝑉0

−
1

𝐵0
′ − 1

)                     (𝐼𝐼. 13), 

where V0 is the equilibrium volume, B0 is the zero-pressure bulk modulus, 𝐵0
′  is the pressure 

derivative of the bulk modulus at ambient pressure, and E0 is the equilibrium energy. The E(V) 

dependence is calculated by varying unit cell parameters for few percent close to the equilibrium 

structure, thus simulating the effect of hydrostatic pressure. Next, the E(V) dependence is fitted by 

Eq. (II.13), having four adjustable parameters (E0, V0, B0, 𝐵0
′ ). 

The vibrational frequencies were calculated in the harmonic approximation using the “frozen-

phonon” approach [209]. In the “frozen-phonon” approach [210] the phonon energy is determined 

as the difference in the energies of the distorted and equilibrium crystalline lattices for a particular 

atom displacement. 
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9 Studies in B-O binary system 

As it has been already mentioned in Chapter I, the B-O system is already well studied, first of 

all, due to the great interest drawn to boron suboxide B12O2-xBx (0 ≤ x ≤ 1) and boron oxide B2O3. 

According to the literature data [103,106-110], a vast number of attempts to investigate new phases 

in B-O system have been done so far; however, up to now, there are no confident and reproducible 

results. Thus, in our current work we rejected any attempts to obtain a new phase/phases under 

extreme conditions in binary B-O system. 

Although B-O system is considered to be well studied, some properties of its already known 

compounds have not been still entirely described. For instance, the phonon properties of the high-

pressure phase of B2O3 (β-B2O3) are still very poorly studied. On another hand, we have already 

shown that precise EoS of β-B2O3 (and therefore bulk modulus determination) requires an 

additional experiment due to an absence of complete confident results on it. 

In this chapter we will present a description of our XRD measurements of β-B2O3 under high 

pressure in order to refine its EoS. It will be followed by the phonon studies of β-B2O3 at ambient 

and under high pressures. Thanks to ab initio LCAO calculations performed on β-B2O3 the 

obtained experimental data have been verified and supplemented. 

9.1 Equation of state of β-B2O3 
9.1.1 Experimental techniques 

Synthesis details 

Polycrystalline β-B2O3 has been synthesized by the method described in Ref. [93]. Vitreous 

boron (III) oxide has been produced by decomposing metaboric acid HBO2 at ~670°C in a nickel 

crucible and subsequent re-melting in order to remove air bubbles. The diffraction pattern of g-

B2O3 sample exhibited two characteristic wide halos with d values around 2.0 and 3.5 Å. The high-

pressure phase of B2O3 has been synthesized from remelted g-B2O3 in TTP at 5.3 GPa and 

~1000°C. Boron nitride (grade AX05, Saint-Gobain) capsule was used to isolate the reaction 

mixture from the graphite heater. 

X-ray diffraction measurements at ambient conditions 

The X-ray diffraction provided with G3000 TEXT Inel diffractometer (Cu Kα1 radiation) at 

ambient conditions showed that the sample is highly crystalline β-B2O3 with small quantity of 

impurities of foreign phases (for instance, h-BN, the sample capsule material). The XRD pattern 

is presented in Figure III.1. 
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Figure III.1. XRD pattern (λ=1.5406 Å) of our synthesized β-B2O3 at ambient conditions. The 
most intensive peaks of β-B2O3 are marked by the hkl Miller indexes; the peaks of h-BN are also 
indicated. 

The lattice parameters of β-B2O3 (a = 4.611(5) Å, b = 7.804(5) Å, c = 4.132(3) Å) are close to 

those published in Ref. 124 (a = 4.613(1) Å, b = 7.803(2) Å, c = 4.129(1) Å). The β-B2O3 unit cell 

volume of 148.7 Å3 is also rather close to the values reported before: 148.6 Å3 [124] and 149.3 Å3 

[111]. 

High-pressure X-ray diffraction measurements 

High-pressure XRD experiments were carried out in a Chervin type membrane diamond anvil 

cell (MDAC) [211] of 300 µm culet anvils. The polycrystalline sample (55 µm) was loaded into a 

100 µm hole drilled in a rhenium gasket pre-indented down to ~25 µm. Neon gas was used as a 

pressure transmitting medium. Pressure in MDAC was in situ determined from the calibrated shift 

of the ruby R1 fluorescent line [171,212] and equation of state of neon [213,214]. The pressure 

values according to the both pressure gauges are presented in Table 1. Up to 22 GPa both pressure 

gauges (ruby, neon) indicated very close pressure values with less than 0.5 GPa difference, this 

fact indicates negligible strains and stresses and also very low pressure gradients all over the cell. 

Thus, one can suppose that there were the quasi-hydrostatic conditions during the measurement 

up to the highest pressure in MDAC. Further, only experimental data with the ruby pressure scale 

has been used, as they cover the whole pressure range. Pressure in the DAC was measured before 

and after each ADXRD measurement. Further we used the mean value of these two pressures. The 

pressure drift during measurement did not exceed 0.5 GPa in the 0-22 GPa pressure range. In order 
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to get rather dense data coverage in the whole pressure range, the intervals between the pressure 

points did not exceed ~2.2 GPa. 

HP XRD measurements were performed at ESRF ID27 beamline. The collection of XRD 

patterns was implemented in angle-dispersive mode with a focused monochromatic beam. The 

beam wavelength was selected to 0.3738 Å. Beamline X-ray optics delivered a pencil beam spot 

of 9 µm2. The XRD data acquisition was implemented by MAR 345 image plate detector with an 

exposure time of 10 seconds. Laue diffraction patterns obtained during the measurements were 

treated by fit2D software [194]. During the compression of the β-B2O3 the expected monotonous 

shift of the diffraction peaks towards the higher 2θ values was observed (see Figure III.2). 

 
Figure III.2. ADXRD patterns of β-B2O3 taken at different pressures; the beam wavelength is 
0.3738 Å. The shifts of each β-B2O3 peak under compression are traced by the dashed lines; the 
solid Ne peaks are marked by the blue stars. 
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The lattice parameters and unit cell volume at each pressure point were refined by using 

DICVOL04 and WinPLOTR packages in FullProf software [195-197] and are presented in 

Table 1. 

Pressure, GPa 
a, Å b, Å c, Å Volume, Å3 Ne scale Ruby scale 

- 0.0 4.611(5) 7.804(5) 4.132(3) 148.7 
- 0.3 4.607(1) 7.798(1) 4.129(1) 148.3 
- 0.5 4.606(1) 7.796(1) 4.128(1) 148.2 
- 1.2 4.599(1) 7.787(1) 4.122(1) 147.6 
- 2.1 4.589(1) 7.776(1) 4.117(1) 146.9 
- 3.2 4.577(1) 7.762(2) 4.112(1) 146.1 
- 4.5 4.561(1) 7.741(1) 4.101(1) 144.8 
- 5.7 4.548(1) 7.724(2) 4.097(2) 143.9 

7.2 7.3 4.532(1) 7.706(3) 4.088(2) 142.8 
8.7 8.9 4.514(2) 7.697(3) 4.081(1) 141.8 
10.5 10.5 4.496(1) 7.670(1) 4.072(1) 140.4 
11.3 11.4 4.486(1) 7.656(1) 4.067(1) 139.7 
12.7 12.8 4.473(1) 7.640(1) 4.059(1) 138.7 
14.6 14.6 4.455(1) 7.615(2) 4.048(2) 137.3 
16.5 16.8 4.431(1) 7.589(3) 4.036(3) 135.7 
18.8 18.6 4.418(2) 7.572(3) 4.029(2) 134.8 
20.3 20.2 4.398(5) 7.563(10) 4.025(5) 133.9 
22.3 21.6 4.394(2) 7.541(4) 4.022(3) 133.3 

Table 1. Lattice parameters and volume of the unit cell of β-B2O3 as a function of pressure to 
22 GPa at room temperature. The numbers in parentheses are the fitting standard deviations (95% 
confidence interval) on the last or last two digits. 

Calculations details 

In the present work, β-B2O3 has been studied with first principles LCAO calculations 

performed using the CRYSTAL09 code [207]. The optimized (in earlier calculations) all-electron 

basis sets for boron [215] and oxygen [216] atoms have been used. In the CRYSTAL09 code [207], 

the accuracy in evaluating the Coulomb series and the exchange series is controlled by a set of 

tolerances, which were taken to be (10-8, 10-8, 10-8, 10-8, 10-16). The Monkhorst-Pack scheme [217] 

for an 8 x 8 x 8 k-point mesh in the Brillouin zone was applied. Self-consistent field calculations 

were performed for hybrid DFT–HF WCGGA–PBE-16% [218] functional. The percentages 16% 

define the Hartree–Fock admixture in the exchange part of DFT functional. 

We performed the full β-B2O3 structure optimization procedure according to the energy 

minima criterion. The lattice parameters (a, b, and c) and the unit cell volume (V0) are 4.645(12) Å, 

7.873(8) Å, 4.139(6) Å and 151.4 Å3 respectively. The theoretically calculated lattice parameters 
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have been found to be slightly larger than experimentally determined ones. The deviations of the 

calculated a, b, c parameters from the experimental ones are 0.74%, 0.88% and 0.17% respectively. 

The unit cell volume deviation does not exceed 2%. Although the boron isotope content in β-B2O3 

is 20% 10B - 80% 11B, all ab initio calculations have been performed for boron isotope content of 

100% 11B (further it will be marked as β-11B2O3*). 

The β-11B2O3* equation of state parameters (bulk modulus B0 and its first pressure derivative 

B0´) have been estimated using routine implemented in the CRYSTAL09 code. In order to obtain 

E(V) dependence, the unit cell volume was varied from 89.9% to 109.9% of the equilibrium 

volume (V0). The structure optimization was performed at each volume. Obtained E(V) 

dependence has been fitted to the Murnaghan equation of state [208] taking V0 = 151.4 Å3 and E0 

= -29.9 keV (Eq. II.13). In order to estimate the P(V) dependence the Murnaghan equation 

(Eq. III.1) has been used: 

𝑃(𝑉) =  
𝐵0

𝐵0
′ [(

𝑉

𝑉0
)

𝐵0
′

− 1]                    (𝐼𝐼𝐼. 1). 

It should be noted here, that electron structure optimization did not converge at highly reduced 

unit cell volume (P > 22 GPa). Hence, all the pressure dependencies of β-11B2O3* unit cell 

parameters (a, b, c, V0, etc.) will be given only up to 21 GPa. The possible reason of this divergence 

might be noticeable changes of the electronic structure for the unit cell with reduced volume. 

Therefore the chosen set of the calculation parameters and all-electron basis sets might become 

not optimal at the highly deformed unit cell. 
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9.1.2 Results and discussion 

The lattice parameters of β-B2O3 have been determined over the whole pressure range and 

their pressure dependencies are plotted in Figure III.3. 

 
Figure III.3. Normalized lattice parameters of β-B2O3 versus pressure. Open circles and solid 
squares represent experimental and theoretical data respectively. The dashed and dotted lines 
represent the fit of one-dimensional analog of the Murnaghan equation of state to the experimental 
and theoretical data respectively; the pressure values are given by the ruby gauge. 

According to Figure III.3 the most significant compression undergoes along a axis. We used the 

one-dimensional analog of the Murnaghan equation of state (Eq. III.2), to approximate the 

relationship between the lattice parameters and pressure, as well as it has been done in Ref. 219: 

𝑟 =  𝑟0 [1 + 𝑃 (
β0

′

β0
)]

−
1

β0
′

                  (𝐼𝐼𝐼. 2). 
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Here r is the lattice parameter (index 0 refers to ambient pressure); β0 is the axial modulus and β0´ 

is the pressure derivative of β0. The β0,𝑎, β0,𝑏 and β0,𝑐 axis moduli values are 398.6±6.7, 

562.4±13.2 and 627.7±18.6 GPa respectively. Using the (Eq. III.3) and the axial modulus values, 

the linear compressibility (kr) along each direction in the unit cell can be determined: 

𝑘𝑟 = β0,𝑟
−1 = (

𝑑 ln (𝑟)

𝑑 𝑃
)

𝑃=0
                  (𝐼𝐼𝐼. 3). 

The kr values found for a, b and c directions are (2.51±0.05)×10-3, (1.78±0.04)×10-3 and 

(1.59±0.05)×10-3 GPa-1 respectively. The ratios ka/kb and kb/kc > 1 clearly indicate, that β-B2O3 is 

more compressible along the b axis than along the c axis, whereas the compression along the a 

axis is maximal. According to theoretical data also illustrated in Figure III.3, the pressure 

dependency of a parameter perfectly fits with experimental one, while the compression along c 

axis is bigger than one along the b axis. The β0,𝑎
∗ , β0,𝑏

∗  and β0,𝑐
∗  parameters concerning the one-

dimensional analog of the Murnaghan equation of state approximation of the LCAO data are 

414.6±6.7, 671.2±3.3 and 519.3±9.7 GPa respectively. Hence, using (Eq. III.3) the kr* values 

found for a, b and c directions are (2.41±0.05)×10-3, (1.49±0.01)×10-3 and (1.93±0.04)×10-3 GPa-

1 respectively. All β0 and kr values calculated for theoretical and experimental data, as well as 

lattice parameters are collected in Table 2. 

 Experimental data Theoretical calculations 
a, Å 4.611(5) 4.645(12) 
b, Å 7.804(5) 7.873(8) 
c, Å 4.132(3) 4.139(6) 

β0,a, GPa 398.6±6.7 414.6±6.7 
β0,b, GPa 562.4±13.2 671.2±3.3 
β0,c, GPa 627.7±18.6 519.3±9.7 

ka ×10-3 GPa-1 2.51±0.05 2.41±0.05 
kb ×10-3 GPa-1 1.78±0.02 1.49±0.01 
kc ×10-3 GPa-1 1.59±0.05 1.93±0.04 

Table 2. Lattice parameters at ambient conditions, axial moduli and linear compressibility 
obtained from theoretical and experimental studies. 

As one can see, the experimentally measured linear compressibility values reduce in the following 

row: β0,𝑎< β0,𝑏< β0,𝑐. Basing on the simple logic one might expect the same order of the calculated 

compressibility values. However, according to theoretical calculations the row of the linear 

compressibility values is: β0,𝑎
∗ < β0,𝑐

∗ < β0,𝑏
∗ . Thus, one can see that the ab initio prediction of the 

unit cell compression along a, b and c axis is not the perfect. On other hand the maximum deviation 

of the theoretically estimated lattice parameters at high pressure from the corresponding 

experimental values is lower than 1.5%. Hence, the ab initio calculations performed using 
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CRYSTAL09 revealed rather reasonable values and hence can be used for quick and coarse 

estimations. 

The parameters of β-11B2O3* equation of state have been estimated using the E(V) dependence 

obtained from LCAO calculations (Figure III.4 a). The isothermal bulk modulus value (B0) has 

been found to be 175.3±1 GPa. Its first pressure derivative B0` is 1.4±0.3. 

 
Figure III.4. a) Energy of the β-11B2O3* unit cell versus volume (Murnaghan fit – solid line). The 
position of V0 is indicated by dashed line; b) equation of state of β-11B2O3*. The dashed line 
presents the Murnaghan fit to the theoretical data. 

This bulk modulus value is close to that (B0 = 169.9 GPa) obtained in [111] by fitting the 

experimental data by Vinet equation of state [220]. Volume dependence V(P) of the theoretical 

data fitted by the Murnaghan equation of state is shown in Figure III.4 b. 

The experimentally observed unit cell volume change under compression is plotted in 

Figure III.5. 

 
Figure III.5. Equation of state of β-B2O3. The solid line presents the Vinet fit to the experimental 
dataset; the pressure values are given by the ruby gauge. 
  



83 
 

We implemented the Murnaghan (Eq. III.1) [208], third order Birch-Murnaghan (Eq. III.4) 

and Vinet (Eq. III.5) [219] formulations of equation of state for data fitting: 

𝑃(𝑉) =  
3𝐵0

2
[(

𝑉0

𝑉
)

7
3

− (
𝑉0

𝑉
)

5
3

] {1 +  
3

4
(𝐵0

′ − 4) [(
𝑉0

𝑉
)

2
3

− 1]}              (𝐼𝐼𝐼. 4), 

𝑃(𝑉) = 3𝐵0

(1 − 𝑋)

𝑋2
𝑒(1.5(𝐵0

′−1)(1−𝑋))              (𝐼𝐼𝐼. 5), 

where 𝑋 = √𝑉
𝑉0

⁄
3 , V0 is unit cell volume at ambient pressure. 

The obtained bulk modulus B0 and its first pressure derivative B0´ values are presented in Table 3. 

EoS Parameters [111] χ2 Current study χ2 Total dataset χ2 

V 
B0, GPa 169.5±10 

0.55 
169.9±3 

0.06 
168.7±4 

0.86 
B0´ 2.6±0.7 2.4±0.4 2.6±0.3 

B-M 
B0, GPa 167.4±8 

0.41 
169.4±3 

0.07 
167.5±3 

0.48 
B0´ 2.8±0.5 2.6±0.3 2.8±0.2 

M 
B0, GPa 172.1±8 

0.39 
170.6±3 

0.06 
170.6±3 

0.48 
B0´ 2.3±0.6 2.3±0.3 2.3±0.3 

Table 3. Parameters for the equation of state of β-B2O3. Murnaghan (M) and Vinet (V) 
formulations have been used for fitting the current experimental data, data of Nieto-Sanz et al [111] 
and combined total dataset based on the both datasets. χ2 is an indication of the quality of the fit 
(lower for a better fit). 

As one can see from the Table 3 the B0 values calculated using Vinet, Birch-Murnaghan, 

Murnaghan EoS formulations and our experimental data are very close to those of [111] and to 

our theoretical estimation (175.3 GPa, 1.4). Such close B0 values for three independent datasets 

are a strong ground to state that B0 value reported in [121] (90±15 GPa) is incorrect. The lower χ2 

parameters for dataset in our experiment indicate the better accuracy of our measurements 

compared to [111]. 

In the Figure III.6 we plotted the combined data on β-B2O3 equation of state obtained in 

Ref. 111 and in our study. One can note that P(V) curves plotted on the basis of two independent 

experimental datasets match almost perfectly (except one point at 19.6 GPa in the study [111]). 

Consequently, we supposed, that all the points in Figure III.6 might be reviewed as the whole 

dataset and be fitted by the same formulations of equation of state. The results of this fitting are 

listed in Table 3. 
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Figure III.6. Equation of state of β-B2O3. The open squares and circles represent the current 
experimental data and experimental data of [111] respectively. The solid squares represent 
theoretical data. The solid and dotted lines present the Vinet fit to the current study experimental 
dataset and to dataset of [111] respectively; the dashed line presents the Murnaghan fit to the 
theoretical data; the pressure values are given by the ruby gauge. 

The B0
𝑡  values of total dataset are slightly lower than ones determined on basis of our study 

and study of Nieto-Sanz et al [111], meanwhile B0
𝑡 ´ values are very close to those obtained in our 

study and in Ref. 111. In spite of the fact that the χ2 values for total dataset are higher than those 

found for separate datasets, they are still rather low. Thus, the obtained B0
𝑡  and B0

𝑡 ´ values can be 

considered as rather precise and confident ones. According to χ2 values found for both formulations 

of equation of state, the Murnaghan formulation has been found to be a better choice for fitting the 

experimental P(V) data. Summing up all the facts stated above, there are strong grounds to suppose 

that the experimental points of the present research complement those of Ref. 111 and the whole 

dataset might be considered. 

One should note, that the differences between bulk modulus values of total and two separate 

datasets (ΔB0 = B0 - B0
𝑡 ) vary from 0.5 to 1.9 GPa for different formulations of equation of state. 

This fact demonstrates the importance of the low-pressure range in equation of state 

measurements. 
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As it has been written in Chapter I, β-B2O3 is constructed from BO4 tetrahedra, which form 

the 6- and 8-membered rings (see Figure III.7). Due to this, we put in Table 4 the β-B2O3 lattice 

parameters, the B-O bond lengths and B-O-B angles values of the distorted BO4 tetrahedron 

obtained in our research. Since there is a perfect coincidence of the lattice parameters found in our 

work with those reported before [124] we used the atoms positions determined in [124]. It should 

be underlined that Table 4 contains the structure information about β-B2O3 enriched by 10B isotope 

(enrichment ≈95%). For convenience the isotope enriched boron (III) oxide will be further marked 

as β-10B2O3. The details of its synthesis, phase purity and etc. will be given in the next part. 

 
Figure III.7. The structural fragment of β-B2O3: six- and eight-membered rings (the superscript 
index defines atom number, the number in brackets defines coordination of O atom: two- or three-
coordinated). 

Parameter β-B2O3 β-10B2O3 β-B2O3 [124] β-11B2O3* 
a, Å 4.611(3) 4.626(3) 4.613(2) 4.645(12) 
b, Å 7.804(4) 7.824(3) 7.803(4) 7.873(8) 
c, Å 4.132(3) 4.147(4) 4.129(4) 4.139(6) 

V0, Å3 148.66 150.11 148.62 151.37 
B3-O2(II), Å 1.373(3) 1.377(4) 1.373(3) 1.385(2) 
B3-O1(III), Å 1.512(4) 1.517(3) 1.512(2) 1.522(2) 
B3-O3(III), Å 1.508(2) 1.512(5) 1.507(2) 1.518(4) 
B3-O6(III), Å 1.507(5) 1.512(6) 1.506(3) 1.510(4) 

O2(II)-B3-O1(III), ° 113.110 113.104 113.125 113.199 
O2(II)-B3-O3(III), ° 110.204 110.167 110.194 110.347 
O2(II)-B3-O6(III), ° 115.824 115.822 115.825 115.840 
O1(III)-B3-O3(III), ° 104.868 104.881 104.910 104.970 
O1(III)-B3-O6(III), ° 104.686 104.699 104.656 104.508 
O3(III)-B3-O6(III), ° 107.389 107.415 107.373 107.199 

Table 4. Cell parameters, bond lengths and angles of β-B2O3, β-10B2O3, β-B2O3 [124] and β-
11B2O3* (theoretically calculated) at ambient conditions. 
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According to the structural data presented in Table 4 the BO4 tetrahedra in β-B2O3 are 

significantly distorted. As it has been mentioned before [124], the structure of β-B2O3 consists of 

a network of corner-linked BO4 tetrahedra. Three corners of BO4 are connected to two other BO4, 

whereas the fourth corner is linked with only one tetrahedron. Consequently there are two types 

of oxygen atoms in β-B2O3 structure: two- and three-coordinated (in Figure III.7 they are marked 

O(II) and O(III) respectively). As one can see from Table 4, the oxygen atoms shared between 

only two tetrahedra relate to the shortest B-O distance, while the other three oxygen atoms shared 

between three BO4 tetrahedra relate to the longer B-O distances. 

The EXAFS and XANES in situ measurements could be used for the determination of the 

interatomic distances and angles changes under compression. However, in the case of β-B2O3 the 

low energy edges of boron (0.2 keV) and oxygen (0.5 keV) are not compatible with direct high 

pressure experiments in the DACs as the soft X-rays would be absorbed by the diamond anvils. 

The direct HP measurements in DACs are only possible by inelastic X-ray Raman scattering 

(XRS) using hard X-rays [221], but the available energy range would rather limited to draw some 

information/conclusions about the interatomic distances and angles. That is why in present work 

in order to show the pressure dependencies of the all four B-O bonds in distorted BO4 tetrahedron 

up to 22 GPa we used the structural data obtained in our HP XRD measurements (Figure III.8), 

assuming that the atoms positions are fixed. Actually we employed the B and O positions refined 

before [124]. 

 x y z 

B 0.1606(4) 0.1646(3) 0.4335(9) 

O(1) 0.2475(3) 0 0.5 

O(2) 0.3698(3) 0.2911(1) 0.5802(8) 

The error bars of the obtained interatomic distances and angles are determined by the 

corresponding error bars of the lattice parameters (<0.3%) and atoms positions (<0.2%). The 

pressure dependencies of the interatomic distances estimated using the data obtained from LCAO 

ab initio calculations are also plotted in Figure III.8. It should be underlined that in LCAO structure 

optimization according to energy minima criterion the lattice parameters as well as atoms 

coordinates (in the given space group) have been varied. 

During β-B2O3 compression, a significant change of B-O bonds was observed. For instance, 

the most long B3-O1(III) bond becomes the most short among all B-O(III) bonds, hence B3-O1(III) 

bond has been found to be the most compressible. The compressibility values of all B-O bonds are 

collected in Table 5. According to Figure III.8 and Table 5 the B-O bonds compressibilities in 0-



87 
 

22 GPa pressure range reduces in the following order: B3-O1(III) > B3-O3(III) > B3-O2(II) > B3-

O6(III). The decreasing order of B-O(III) compressibilities has been found to be the same to 

decreasing order of B-O(III) bond lengths (see Table 4). 

 Parameters B3-O2(II) B3-O1(III) B3-O3(III) B3-O6(III) 

exp. 
β0, GPa 559.6±11.6 419.5±6.4 469.4±7.2 594.0±18.5 

kr ×10-3, GPa-1 1.79±0.04 2.38±0.04 2.13±0.03 1.68±0.05 

theor. 
β0, GPa 648.5±4.2 428.7±3.3 533.5±3.7 527.4±9.2 

kr ×10-3, GPa-1 1.54±0.01 2.33±0.02 1.87±0.01 1.90±0.03 

Table 5. The axial moduli and linear compressibilities of the B-O bonds in β-B2O3 obtained from 
theoretical and experimental data. 

It should be also noted, that in pressure range from 13 to 22 GPa the relative changes of B-O 

distances (l/l0) are very close to each other and, hence, the compressibility of all B-O bonds can 

be considered as uniform. However one should note, that BO4 tetrahedron remains distorted in 

whole pressure range. The experimental data were compared with theoretical ones. In spite of the 

fact that theoretically predicted B-O bonds compressions follow the main tendencies of the 

experimental ones (see Figure III.8), the bonds compressibility values are rather different and 

reduce in the following row: B3-O1(III) > B3-O6(III) > B3-O3(III) > B3-O2(II)). Thus, according to 

ab initio calculations B3-O2(II) bond is the least compressible in BO4 unit. The decreasing order 

of B-O(III) compressibilities has been found to be not the same to decreasing order of B-O(III) 

bond lengths estimated from the calculations (see Table 4). The difference between experimentally 

determined and theoretically estimated compressibilities of the B-O bonds in β-B2O3 is not a 

surprising, since, as it has been marked above, the theoretical prediction of the compression along 

b and c directions differs from experimental observations. 
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Figure III.8. Normalized changes of B-O distances in BO4 (l/l0) versus pressure. The open circles 
indicate experimental data, dashed lines indicate theoretical data. 
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We also plotted the pressure dependencies of all O-B-O angles in BO4 unit up to 22 GPa (see 

Figure III.9). 

 
Figure III.9. Relative O-B-O angle changes versus pressure. 

As one can see from Figure III.9 the O-B-O angles have not changed a lot during compression (the 

maximum angle change is 0.8% for O1(III)-B3-O3(III)). The smallest angle change of 0.02% has 

been observed for O1(II)-B3-O6(III). Based on the Figure III.8 and Figure III.9 one can conclude 

that a B-O bond compressibility influences on the O-B-O angle change. So, the angles between 

the less compressible B-O bonds reveal the less change under compression. On the contrary, the 

biggest O-B-O angle changes correspond to the most compressible B-O bonds. 

According to the data presented in Figure III.3, 8 and 9 one can conclude that the compression 

of β-B2O3 is not identical/monotonous. The lattice parameters, B-O distances and O-B-O angles 

change in a different way. It should be noted, that during compression the structure of β-B2O3 does 

not become less distorted. This fact will further contribute to the understanding of the β-B2O3 

phonons behavior under compression. 
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9.2 Phonon study of β-B2O3 
9.2.1 Experimental techniques 

Synthesis details 

The synthesis of polycrystalline β-B2O3 has been described in details in a previous section of 

this chapter. However, in order to investigate an isotope substitution effect in Raman spectra of β-

B2O3, we synthesized β-B2O3 enriched by 10B isotope, by consequent thermal decompression of 

commercial 10H3BO3 (Aldrich Chem. Co., 99.9%, enrichment by 10B ≈ 95%) to HBO2 and then to 

B2O3. As it has been marked above, for convenience, we will mark the boron (III) oxide with 

natural B isotope distribution (80% 11B and 20% 10B) as β-B2O3 and the enriched by 10B isotope 

as β-10B2O3. Waterless 10B2O3 melt was obtained during annealing inside graphite heater cup in a 

closed corundum crucible. β-10B2O3 was obtained by compressing up to 7.7 GPa at 800oC during 

5 min in TTP, followed by a decrease of the temperature down to 400oC during 5 min and 

subsequent quenching. 

XRD measurements 

The X-ray diffraction of β-10B2O3 has been provided with G3000 TEXT Inel diffractometer 

(Cu Kα1 radiation) at ambient conditions. The sample was found to be highly crystalline with 

some quantity of impurities (as in case of synthesis of β-B2O3, h-BN, the sample capsule material). 

The XRD pattern of β-10B2O3 is presented in Figure III.10. 

 
Figure III.10. XRD pattern (λ=1.5406 Å) of β-10B2O3 at ambient conditions. The most intensive 
peaks of β-B2O3 are marked by the hkl Miller indexes; the peaks of h-BN are signed. 
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The lattice parameters and unit cell volume of β-10B2O3 have been obtained from the structure 

refinement using Le Bail method (see Table 4). The β-10B2O3 lattice parameters are rather close to 

those obtained for β-B2O3 in our work and in Ref. 124. Taking this into account we used the 

interatomic distances found previously [124] and the β-10B2O3 lattice parameters to find the B-O 

distances and B-O-B angles. They are listed in Table 4 and compared with those of β-B2O3. 

Raman and IR measurements at ambient conditions 

Raman spectra of β-B2O3 and β-10B2O3 at ambient pressure have been measured using Horiba 

Jobin Yvon HR800 Raman spectrometer (in the 200-2000 cm-1 range). The 632.8 nm line of a He-

Ne laser (10 µm beam spot) has been used for excitation (the laser power is less than 30 mW). A 

single crystal of cubic Si has been used for spectrometer calibration at room temperature. The 

Raman study of β-10B2O3 has been performed only at ambient conditions in order to observe the 

phonons influenced by the isotopic substitution. 

The Fourier transform infrared (FTIR) absorption spectra in mid-infrared (450-4000 cm-1) and 

far-infrared (10-600 cm-1) ranges were recorded using a Bruker IFS 125HR spectrometer. The β-

B2O3 was uniformly mixed with KBr (for mid-infrared range) and polyethylene (for far-infrared 

range) powders and pressed in pellets. 

High pressure Raman measurements 

High-pressure Raman measurements have been performed in a MDAC [222] with 300 µm 

culets. β-B2O3 sample has been placed into a 50 µm hole drilled in a rhenium gasket pre-indented 

down to 20 µm thickness. In these measurements neon pressure transmitting medium has been 

used. Pressure in the DAC was determined by the ruby luminescence technique [171] using the 

calibration proposed in [212]. The pressure has been measured before and after each run and the 

mean value has been used; drift during single run did not exceed 0.4 GPa in the whole studied 

pressure range. 

The 514.5 nm line of Ar+ laser (5 µm beam spot) has been used to measure β-B2O3 Raman 

spectra. Raman spectra have been recorded in the 200-2000 cm-1 range using Horiba Jobin Yvon 

HR460 Raman spectrometer. The spectrometer was calibrated using a single crystal of cubic Si at 

room temperature. The laser power at the sample was estimated to be less than 10 mW. No effect 

due to laser heating of the sample has been observed. Raman spectra of β-B2O3 have been 

measured within 19 pressure points from 0.25 to 46.4 GPa at room temperature. 

Calculation details 

The β-B2O3 phonon properties at ambient pressure and under compression (up to 20 GPa) have 

been studied using first principles LCAO calculations performed using the CRYSTAL09 code 

[207]. The phonon frequencies for β-B2O3 containing 100% 10B (β-10B2O3*) and 100% 11B (β-
11B2O3*) have been calculated using the direct (frozen-phonon) method [207,223]. For the phonon 
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modes calculations under compression we employed already performed calculations of β-B2O3 

equation of state. The phonon frequencies at selected pressure points up to 21 GPa have been 

calculated using optimized geometries for corresponding reduced volume unit cells. As it has been 

already noted above, all the pressure dependencies of the phonon frequencies of β-11B2O3* are 

available only up to 21 GPa, because of divergence of the parameters of electron structure 

optimization at highly reduced unit cell volume (P > 22 GPa). 

9.2.2 Results and discussion 

A careful analysis of structural data presented in Table 4 has revealed that the isotope 

substitution content affects the bond nature (and therefore the interatomic angles). In our study we 

observed, that a, b and c lattice parameters of β-10B2O3 are larger than those of β-B2O3 on 0.32, 

0.26 and 0.36% respectively (the deviations of a, b and c of β-10B2O3 and β-B2O3 are larger than 

the error bars of the corresponding lattice parameters of β-10B2O3 and β-B2O3). The B-O-B angles 

in BO4 tetrahedron in β-10B2O3 differ as well. Actually the same effect isotope substitution in 

H2O/D2O was observed by A.K. Soper et al. [224]. However, it should be marked that according 

to our ab initio calculations there is no difference between structure optimization procedures and 

therefore for the obtained lattice parameters and interatomic distances of β-10B2O3* and β-11B2O3*. 

β-B2O3 has 10 atoms in the unit cell, thus, 30 normal modes of vibration at the Brillouin zone 

center. They are described by the irreducible representation of the C2v point group: 

Г = 8A1 + 7A2 + 7B1 + 8B2              (𝐼𝐼𝐼. 6) 

Three modes among 30 are acoustic: A1 + B1 + B2. The 20 optical modes 7A1 + 6B1 + 7B2 are both 

IR and Raman active, whereas 7A2 are only Raman active, thus one can expect the 27 non-

degenerate Raman active modes in Raman spectrum. 

Raman spectrum of β-B2O3 at ambient conditions has been measured previously [225]. 

However only the phonon frequencies of the observed Raman bands has been described. In current 

work we provided more detailed and complete investigation of β-B2O3 Raman spectrum at ambient 

conditions. Raman spectrum was investigated in the 100-2500 cm-1 frequency range, however all 

bands were observed in 200-1200 cm-1 range. For β-B2O3 only 12 bands were observed, whereas 

the Raman spectrum of β-10B2O3 contains 6 (repeating the bands of β-B2O3) (Figure III.11). The 

frequencies of all phonon modes for β-B2O3 and β-10B2O3 are collected in Table 5. According to 

relative intensity, the Raman bands can be divided on three main groups: strong, medium and weak 

(are marked as superscripts to the wavenumbers). 
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Figure III.11. Experimentally observed Raman bands in β-B2O3 (red) and β-10B2O3 (blue) at 
ambient conditions. The positions of the phonons predicted by LCAO calculations are marked by 
the lines: the black dashed lines correspond to the phonons observed in the measurements, the 
green dot lines correspond to the non-experimentally observed phonons. Inset: magnification of 
the 670-990 cm-1 region. The arrow indicates the Raman peak presumably concerning to the metal 
borate contamination. 

It is well known, that the atomic oscillations can be described with harmonic and anharmonic 

oscillator models. At the consideration of the simplest model of the harmonic oscillator for two-

atomic molecule (m1, m2 are atoms masses), in which atoms are connected by the no weight elastic 

spring with the force constant K, one can obtain the following expression for frequency: 

𝜔 =
1

2𝜋
√𝐾

𝑚1𝑚2

𝑚1 + 𝑚2
                     (𝐼𝐼𝐼. 7), 

where ω is frequency. One can see from the (Eq. III.7), that the resonant frequency is related to 

the strength of the bond and the mass of the atoms at either end of it. Consequently, the isotope 

substitution influences on the ω value. As far as the 10B isotope is lighter than 11B, the isotope 

substitution in β-B2O3 must lead to Raman bands shift toward high frequencies. 

One can easily observe such isotope shift in Figure III.11. We evaluated it using the following 

expression: 
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Δω = ω (β-10B2O3) - ω (β-B2O3)                     (𝐼𝐼𝐼. 8). 

The isotope shifts vary in 0.3-15.8 cm-1 range (Table 6). The theoretically predicted isotope shifts 

vary in 0.1-4.6 cm-1 range (Table 6). As one can see the order of magnitude of the experimentally 

observed and the theoretically predicted isotope shifts is the same. However, the quality of the 

theoretical prediction still remains not perfect. Taking into account that there are less observed 

bands and they have low signal-to-noise ratio in β-10B2O3 Raman spectrum, in the discussion 

below we will basically consider the Raman spectra of β-B2O3, keeping in mind that all 

conclusions will be true for β-10B2O3 too. For more convenience we will number all the observed 

Raman bands: #1, #2, #3, etc. 

Table 6. The phonon frequencies of β-B2O3 and β-10B2O3 (ω0) experimentally observed by Raman 
spectroscopy in current study and in [225] and β-11B2O3* and β-10B2O3* phonon frequencies (ωt) 
theoretically predicted by LCAO calculations. The superscripts to the experimental wavenumbers 
(w, m, s) indicate the relative intensity of the Raman bands. Isotope shifts of observed Raman bands 
are presented. 

IR spectra of β-B2O3 (Figure III.12) have been also observed for a first time. They were 

recorded in the 10-600 cm-1 and 450-4000 cm-1 frequency ranges and contain a vast quantity of 

bands and shoulders. The most intense bands in the 1300-4000 cm-1 range can be explained by the 

presence of organic impurities (two bands at ~2850 cm-1 and ~2920 cm-1 referring to C-H 

stretching oscillations) and adsorbed water (broad band and shoulder at ~3210 cm-1 and ~3380 cm-

1). On the basis of LCAO theoretical prediction we referred 6 bands (or shoulders) in far-infrared 

region and 10 bands in mid infrared region to β-B2O3 (see Table 7). As well as in case of Raman 

bands, we marked the observed IR bands by the numbers: #1, #2, #3, etc. 

№ Modes 

Wavenumber (cm-1) 

Experiment LCAO 

ω0 (β-B2O3) 
[225] ω0 (β-B2O3) ω0 (β-10B2O3) Δω ωt (β-11B2O3*) ωt (β-10B2O3*) Δω 

(#1) A1 - 275.9m - - 259.4 259.6 0.2 
(#2) B1 288 288.6s 289.3s 0.7 283.2 283.3 0.1 
(#3) A1 333 333.5m 334.1s 0.6 338.9 339.3 0.4 
(#4) A2 385 385.7m - - 397.8 398.9 1.1 
(#5) B1 454 454.6w - - 429.4 429.5 0.1 
(#6) A1 525 525.3m 527.5s 2.2 524.7 525.6 0.9 
(#7) A2 557 555.7w - - 562.8 565.2 2.4 
(#8) A1 704 706.2w 722.0w 15.8 709.2 713.8 4.6 
(#9) A1 784 786.0m 786.3w 0.3 801.5 803.7 2.2 

(#10) B2 817 816.7w - - 830.3 833.9 3.6 
(#11) A2 879 879.5s 885.9m 6.4 890.1 894.4 4.3 
(#12) B1 952 952.7w - - 934.4 935.9 1.5 
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Figure III.12. Experimentally observed phonons of β-B2O3 in: a) far-infrared and b) mid-infrared 
regions (inset: magnification of the 640-1350 cm-1 region) at ambient conditions. The positions of 
the phonons predicted by LCAO calculations are marked by the lines: the black dashed lines 
correspond to the phonons observed in the measurements, the green dashed lines correspond to the 
non-experimentally observed phonons. 

№ Modes 
Wavenumber (cm-1) 

№ Modes 
Wavenumber (cm-1) 

Experiment LCAO Experiment LCAO 
ω0 (β-B2O3) ωt (β-11B2O3*) ω0 (β-B2O3) ωt (β-11B2O3*) 

(#1) B1 297.6 283.2 (#9) A1 783.9 801.5 
(#2) A1 333.9 338.9 (#10) B2 819.9 830.3 
(#3) B1 454.5 429.4 (#11) A1 901.9 905.4 
(#4) A1 527.4 524.7 (#12) B1 939.2 934.4 
(#5) B1 588.2 600.7 (#13) B2 1017.6 1035.9 
(#6) B2 603.9 604.2 (#14) B1 1059.1 1088.4 
(#7) A1 704.2 709.2 (#15) B1 1119.5 1134.4 
(#8) B2 714.8 729.9 (#16) A1 1193.7 1221.7 

Table 7. The phonon frequencies of β-B2O3 experimentally (ω0) observed by IR spectroscopy and 
theoretically predicted (ωt) by LCAO calculations. 

The assignment of the experimentally observed phonon modes has been performed basing on 

LCAO calculations for β-B2O3. The calculated phonon frequencies of β-B2O3 have been found to 

be in good agreement with the experimentally observed bands positions (Table 6,7). The deviation 

of calculated Raman and IR modes from experimentally observed ones did not exceed 6% and 5% 

respectively. As one can see from Table 6 the Raman band at ~499 cm-1 (marked by the arrow in 

Figure III.11) cannot be attributed to B2O3 high pressure form. However, according to the literature 
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review of the Raman studies on different metals borates, this Raman mode is a ”typical” band for 

metal borates [226-235]. 

The results obtained from LCAO ab initio calculations have been further used for computer 

modeling and visualization of the vibrational modes by means of MolDraw software. Thus it 

became possible to link the Raman and IR bands to the oscillations/vibrations in β-B2O3 structure 

fragment presented in Figure III.7. One should note that the superscript index defines an atom 

number, whereas the number in brackets defines a coordination of oxygen atoms: two- (II) or three-

coordinated (III). The Tables 8 and 9 present the description of the oscillations assigned to the all 

phonon modes observed in Raman and IR spectra respectively. We used the following 

abbreviations: oscillation – osc., stretching – str., scissoring – sci., torsion – tor., wagging – wag., 

rocking – roc., twisting – twi., parasol – par. So, for example the “in phase scissoring oscillation” 

will be marked as “in phase sci. osc.”. 

№ Modes Wavenumbers, cm-1 Assignment 

(#1) A1 275.9 in phase B-O(II)-B sci. osc. 

(#2) B1 288.6 in phase tetrahedra tor. osc. 

(#3) A1 333.5 in phase B1-O1(III)-B3, B2-O2(III)-B4 sci. osc. 
and out of phase O(II) wag. osc. 

(#4) A2 385.7 in phase O1(III)-O2(III) and O5(III)-O6(III) 
wag. osc. 

(#5) B1 454.6 out of phase B-O(II)-B sci. osc. 

(#6) A1 525.3 in phase O1(II)-B1-O1(III), O1(II)-B2-O2(III) 
and O(II) sci./wag. osc. 

(#7) A2 555.7 out of phase O1(III)-B1-O1(II)-B2-O2(III) and 
O6(III)-B3-O2(II)-B4-O5(III) sci./wag./str. osc. 

(#8) A1 706.2 in phase B3O1(III)O2(II)O6(III) and 
B4O2(III)O2(II)O5(III) par. osc. 

(#9) A1 786.0 in phase B3-O1(III) and B4-O2(III) str. osc. 

(#10) B2 816.7 out of phase B3-O1(III) and B4-O2(III) str. 
osc. 

(#11) A2 879.5 out of phase O6(III)-B3-O1(III)-B1 and 
O5(III)-B4-O2(III)-B2 str. osc. 

(#12) A2 952.7 out of phase B1-O1(III)-B3, B2-O2(III)-B4 and 
B3-O6(III), B4-O5(III) str. osc. 

Table 8. An assignment of the phonon modes observed in β-B2O3 Raman spectrum at ambient 
conditions. 
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№ Modes Wavenumbers, cm-1 Assignment 

(#1) B1 297.6 in phase tetrahedra tor. osc. 

(#2) A1 333.9 in phase B1-O1(III)-B3, B2-O2(III)-B4 sci. osc. 
and out of phase O(II) wag. osc. 

(#3) B1 454.5 out of phase B-O(II)-B sci. osc. 

(#4) A1 527.4 in phase O1(II)-B1-O1(III), O1(II)-B2-O2(III) 
sci. osc. and O(II) wag. osc. 

(#5) B1 588.2 in phase O2(II)-B3-O1(III) and O2(II)-B4-
O2(III) sci. osc. 

(#6) B2 603.9 in phase O1(III)-B1-O1(II)-B2-O2(III) and 
O6(III)-B3-O2(II)-B4-O5(III) roc./str. osc. 

(#7) A1 704.2 in phase B3O1(III)O2(II)O6(III) and 
B4O2(III)O2(II)O5(III) par. osc. 

(#8) B2 714.82 in phase O1(III), O2(III),O5(III), O6(III) wag. 
osc. 

(#9) A1 783.92 in phase B3-O1(III) and B4-O2(III) str. osc. 

(#10) B2 819.9 out of phase B3-O1(III) and B4-O2(III) str. 
osc. 

(#11) A1 901.9 in phase B1-O1(III), B2-O2(III), B3-O6(III), 
B4-O5(III) str. osc. 

(#12) B1 939.2 in phase O1(III)-B3-O6(III), O2(III)-B4-O5(III) 
sci. osc. and B1-O1(III), B2-O2(III) str. osc. 

(#13) B2 1017.6 out of phase B3O1(III)O2(II)O6(III) & 
B4O2(III)O2(II)O5(III) par. osc. 

(#14) B1 1059.1 out of phase B1-O1(III)-B3, B2-O2(III)-B4 sci. 
osc. 

(#15) B1 1119.5 out of phase B-O(II)-B str. osc. 

(#16) A1 1193.7 in phase B-O(II)-B and B1-O1(III)-B3-O6(III), 
B2-O2(III)-B4-O5(III) str. osc. 

Table 9. An assignment of the phonon modes observed in β-B2O3 IR spectra at ambient conditions. 

First, it should be underlined that an assignment of the phonon modes to the concrete type of 

vibrations is rather nominal due to the complicated structure of β-B2O3 part presented in 

Figure III.7. We distinguished the most pronounced vibrations. For instance, the mode referred to 

scissoring vibrations may have a little contribution of stretching oscillation, but in the Tables 8 

and 9 it will be referred only to scissoring oscillation. As it has been expected, there are almost no 

separate oscillations of B-O bonds. Due to the fact that boron and oxygen atoms in β-B2O3 are 



98 
 

linked by strong ionic-covalent bonds, almost every phonon is referred to a vibration of structural 

part or to the group of structural parts, for instance: BO3, BO4, B-O-B, B-O-B-O, B-O-B-O-B, etc. 

The same observations have been done in Raman studies of some metal borates [228-231]. 

According to (Eq. III.7) the phonon mode frequencies (ω) depends on the force of the 

interatomic interaction (in terms of (Eq. III.7) on K values). The stronger interatomic interaction 

result in bigger ω values. On other hand the stronger interatomic forces usually correspond to the 

shorter interatomic distances. In case of β-B2O3 one might expect, that the vibrations of the 

structural parts containing the shortest B-O(II) bond will correspond to the higher frequencies, 

than those without B-O(II). However, in Table 8 and 9 there are a lot of phonon modes in the low 

frequency range, which can be attributed to the vibrations containing B-O(II) oscillation, for 

example: A1 (~275 cm-1), B1 (~455 cm-1), A1 (~525 cm-1), A2 (~555 cm-1), etc. Thus, one can 

conclude that presence of B-O(II) in structural part does not influence dramatically on the 

oscillation frequency. 

The distribution of the vibration types should be also noticed. The majority of stretching 

oscillations have been expectedly turned out to be in the high frequency range. This phenomenon 

can be easily explained, considering the influence of the bond length on Raman shift given above. 

During the stretching vibration the oscillations happen along the bonds and two atoms come near 

each other. The bond length changes, which in its turn results in the higher phonon frequency 

values. At scissoring vibrations the interatomic distances do not change as much as at stretching 

ones, so majority of corresponding Raman bands are placed in low frequency range. Unlike 

scissoring oscillations, the parasol vibrations can be referred to the simultaneous movements of 

the bigger number of atoms in one direction, leading to the comparatively higher phonon 

frequencies. 

One can note, that there is also a slight difference between in phase and out of phase 

oscillations. For example, the modes referring to in phase vibrations are tending to be in low 

frequency range, whereas the ones concerning out of phase vibrations are in high frequency range 

(e.g. the parasol oscillations of B3O1(III)O2(II)O6(III) see Table 7). One of the possible reasons of 

such “symmetry division” of the phonon modes may be that the non-symmetric vibrations lead to 

the greater structure distortion, which, therefore, results in the higher frequency values. 

The pressure dependence of the vibrational modes has been measured in β-B2O3 up to 46 GPa. 

Some of the observed Raman spectra are presented in Figure III.13. 
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Figure III.13. Raman spectra of β-B2O3 at different pressures and room temperature. 

During compression all Raman bands expectedly shifted toward higher frequencies and revealed 

rather strong phonon shift (Figure III.14). For more convenience we also numbered all observed 

Raman bands. However, it should be noted that numbering herein differs from that in Table 8 due 

to three bands which appeared at higher pressures. 
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Figure III.14. Pressure dependencies of the phonon mode frequencies experimentally observed 
(open circles) and theoretically calculated (solid squares). The lines are quadratic least squares fits 
(R2 > 0.95) to the experimental data (black) and to the theoretical data (red); the ω1 parameters of 
(Eq. III.9) are listed. 

Three new bands appeared during compression: (#8) 608.6 cm-1 at 11.3 GPa, (#9) 644.6 at 

25.8 GPa and (#10) 701.4 cm-1 at 26.9 GPa. It should be also noted, that Raman band related to 

the metal borate contamination of β-B2O3 was observable only up to 11.3 GPa. Moreover, (#1) 

and (#5) Raman bands of β-B2O3 observed at 275.9 cm-1 and 455.1 cm-1 in spectrum at ambient 

conditions disappeared during compression at 11.3 GPa and 37.0 GPa respectively. We exclude 

the possibility of any phase transition, as according to the previous reports on phase stability of 

the high-pressure form of B2O3: there has not been observed any phase transition in 0-42 GPa 

pressure range at room temperature [111,115,236]. Taking into account the modes assignment 
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made on the basis of LCAO calculations, all the new peaks appeared during compression can be 

attributed to the β-B2O3 phase. So (#8), (#9) and (#10) might be assigned to B1, B2 and A2 

respectively. It should be also noted, that these phonon modes have not been observed before 

[225]. We assume, that the possible reason of the appearance of the new modes might be the 

change of orientation of the micro-monocrystals of B2O3 polycrystalline sample due to non-

hydrostatic compression and the pressure gradients in the DAC. However, we should note that the 

assignment of (#8), (#9) and (#10) to the phonon modes is suppositional and in order support it an 

additional high-pressure in situ phonon measurement of the β-B2O3 monocrystal is needed. 

One of the important characteristics of the solid materials is the Grüneisen parameter. This 

parameter describes the effect that changing the volume of the crystal lattice has on its vibrational 

properties, and, as consequence, the effect that changing temperature has on the size of or 

dynamics of the lattice. As one can see from the definition given above, the Grüneisen parameter 

can be found from in situ HP measurements of vibrational properties, and, hence, from in situ HP 

Raman measurements. 

In order to calculate the Grüneisen parameters of observed Raman modes the fitting of Raman 

modes pressure dependencies by the same equation as in [237] has been performed: 

𝜔 =  𝜔0 ∙ (1 + 𝑃 ∙
𝛿0

𝛿′)
𝛿′

, where 𝛿0 =  (
𝑑 𝑙𝑛𝜔

𝑑𝑃
)

𝑃=0
 and 𝛿′ =  𝛿0

2 (
𝑑2 𝑙𝑛𝜔

𝑑 𝑃2 )
𝑃=0

                     (𝐼𝐼𝐼. 9). 

A least-squares fit of (Eq. III.9) to the experimental data yields the values of first-order parameters 

(δ0) for all 12 observed Raman modes. We defined the Grüneisen parameters γG = B0×δ0 for the 

bulk modulus value (B0 = 165.4 GPa) obtained from in situ HP XRD measurements described in 

previous part. All γG values are collected in Table 10. 

№ 
ω1, cm-1GPa-1 

γG № 
ω1, cm-1GPa-1 

γG 
Experimental LCAO Experimental LCAO 

(#1) - 3.88 - (#9) 3.25 - - 
(#2) 2.69 2.21 3.887 (#10) 1.08 - - 
(#3) -1.82 -0.76 1.392 (#11) 4.70 4.13 1.628 
(#4) -1.00 -0.58 0.577 (#12) 5.30 8.42 1.813 
(#5) 3.62 3.22 1.388 (#13) 3.00 4.38 0.656 
(#6) 1.55 1.39 0.504 (#14) 3.19 5.72 0.599 
(#7) 1.94 1.93 0.618 (#15) 3.90 4.82 0.742 
(#8) 1.69 - -     

Table 10. The Grüneisen parameters (γG) and ω1 values determined for theoretical and 
experimental data presented in Figure III.14. 
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It should be underlined that as the modes (#8), (#9) and (#10) have not been observed at ambient 

pressure (and thus their frequencies are unknown), it is impossible to know their ω0 values and 

hence to determine their Grüneisen parameters. 

As one can see from Figure III.14, a majority of ab initio calculated phonon frequencies under 

compression are close to experimentally obtained data. In order to express the extension of the 

phonons shifts toward high frequency range, the quadratic equation has been employed for fitting 

of experimental and theoretical data (Figure III.14): 

𝜔 =  𝜔0 + 𝜔1 ∙ 𝑃 + 𝜔2 ∙ 𝑃2                     (𝐼𝐼𝐼. 10). 

The parameters ω1 used in (Eq. III.10) are listed in Table 9. It should be noted that the pressure 

dependency of (#3) Raman mode could be satisfactorily fitted only by the polynomial of the 4th 

order. The ω1, ω2 and ω3 are presented in Figure III.14, meanwhile the ω4 parameter has not been 

listed because of its negligible value (<10-4). The big variation of the ω1 values might be explained 

by the fact that compression of the distorted BO4 tetrahedron (the building block of β-B2O3) 

undergoes not uniformly. It should be also underlined that the ω1 values well correlate with the 

extent of bonds shrinking under compression: the higher ω1 values are observed at larger bonds 

compression. 

A careful analysis of data presented in Table 8 and 10 permitted us to make some general 

notes. Looking on Table 8 one can roughly divided it onto two parts: the top part containing the 

phonon modes concerning the angular oscillations (scissoring and parasol) and the bottom part 

with the stretching oscillations (along the B-O bond). The out of phase scissoring oscillation (#5) 

has been found to be rather more pressure dependent (higher ω1 value), than in phase scissoring 

vibrations. However, the in phase stretching vibration (#12) (ω1 value is 5.30 cm-1GPa-1) is much 

more pressure dependent than out of phase stretching vibration (#13) (ω1 value is 3.00 cm-1GPa-

1). It should be noted, that (#12) and (#13) modes are related to the stretching vibration of the same 

structural fragment, B3-O1(III). This observation clearly demonstrates that in phase and out of 

phase oscillations of the same structure parts depend on compression differently. 

There are also two unexpected phonon mode pressure dependencies in Figure III.14: (#3) and 

(#4). The (#3) curve has two bends and the phonon mode does not significantly depend on pressure 

in 0-5 and 25-46 GPa pressure ranges. According to modes assignment this mode is referred to 

angular oscillations of 8-membered ring (see Figure III.7). There is no explanation yet for so 

strange mode behavior under compression. The (#4) mode completely differs from other modes. 

In 0-15 GPa pressure range its Raman band slightly moves towards low frequencies. The LCAO 

ab initio calculations predict the same mode behavior in this pressure range. However, after 
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15 GPa the Raman band reveals a constant positive Raman shift. As well as in case of (#3) mode, 

we cannot yet explain the phenomenon observed for (#4) mode. 

Figure III.14 presents a nice coincidence of the slopes and the shapes of the frequency versus 

pressure curves for theoretical and experimental datasets. Nonetheless, the theoretical and 

experimental ω1 values of last four high frequency phonon modes (#12,#13,#14,#15) significantly 

differ. Taking this into account, for the further consideration of the frequency pressure 

dependences only the experimentally determined ω1 values will be employed. 

Using of data of B-O bonds and O-B-O angles changes under compression presented in 

Figure III.8 and 9, the behavior of some phonon modes under high pressure (and therefore 

explanation of ω1 values) can be explained. We will use a simple assumption model of harmonic 

oscillator. According to this model we can assume that the greater B-O distance and O-B-O angle 

changes during compression lead to the higher ω1 values. We also supposed that complicated 

oscillation of the huge structure fragment can be considered in first approximation as a 

combination of the more simple vibrations, corresponding to the smaller structure parts. 

According to Table 8, the (#7) mode is referred to the out of phase O6(III)-B3-O2(II)-B4-O5(III) 

vibration. As one can note it contains O6(III)-B3-O2(II) fragment. As it is known from Figure III.8, 

the B3-O2(II) and B3-O6(III) bonds are the most resistant to compression, leading to the low ω1 

values. Due to the O6(III)-B3-O2(II) fragment is rather huge, it significantly influences on the 

vibration of the whole structural part. We suppose that it can be the main reason of low ω1 value 

of (#7) mode, 1.94 cm-1GPa-1. 

Unlike the mode (#7), the modes (#12), (#13) and (#14) have the bigger ω1 values. All of these 

modes are attributed to the oscillations containing the B3-O1(III) vibration. As it follows from 

Figure III.8, the B3-O1(III) is the most pressure dependent bond, that is why the large ω1 values 

for (#12), (#13) and (#14) are rather expected. However, the ω1 value of mode (#12) is significantly 

bigger than those of (#13) and (#14). It mostly happens due to the oscillation corresponding to 

(#12) mode does not have a contribution of B3-O6(III) vibration, whereas the modes (#13) and 

(#14) do. 

The mode (#15) referring to the stretching oscillations of B3-O6(III) and B1-O1(III)-B3 

structural parts, has ω1 value of 3.90 cm-1GPa-1. Herein we assume, that rather big ω1 value is a 

result of two contributions: a positive one coming from the “easy compressible” B3-O1(III) 

fragment, and a negative one coming from “resistant” B3-O6(III) fragment. 

According to Table 8, the mode (#11) can be assigned to the parasol oscillation of 

B3O1(III)O2(II)O6(III) part. Assuming that O3(III) atom does not move, one may divide the 

“parasol” oscillation of B3O1(III)O2(II)O6(III) part on three scissoring oscillations: O2(II)-B3-

O3(III), O1(III)-B3-O3(III) and O6(III)-B3-O3(III). As one can see from Figure III.9, all of these 
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three O-B-O angles are highly pressure dependent, which leads to the high ω1 value (4.70 cm-

1GPa-1). 

9.3 Conclusions 
As it has been underlined in the introduction of this chapter, an investigation of binary 

compounds of B-O system is very difficult because of low Z numbers of boron and oxygen, 

necessity of high brilliance X-ray sources, modern analytical equipment of high precision, etc. The 

high pressure phase of B2O3 has been chosen as subject of our investigations due to its outstanding 

mechanical properties (first of all, the hardness) and poor information about other properties. In 

this chapter we measured the equation of state of β-B2O3 in the pressure range from 0 to 22 GPa 

and studied the phonon modes at ambient and under high pressures (up to 46 GPa). 

Thanks to our studies on equation of state we obtained a new bulk modulus (B0) and its first 

pressure derivative (B0`) values, which slightly differed from ones reported before [111]. The 

advantage of our EOS measurements towards those done in Ref. 111 consists in the following: in 

our work we provided the direct XRD measurements of powder of β-B2O3, meanwhile in Ref. 111 

the HP phase of boron (III) oxide was obtained during HP-HT reaction and EOS was measured 

during DAC decompression. It should be emphasized that according to the obtained χ2 parameter 

our measurements have been found to be significantly more precise than in Ref. 111. The B0 and 

B0` values estimated by means of ab initio LCAO calculations are rather close to the experimental 

values (the bulk modulus deviation < 3%). Despite a slight deviation between bulk modulus and 

its first pressure derivative values obtained in our work and in Ref. 111, the experimental datasets 

of our study and of [111] are rather close. By using of these two datasets as the whole one, we 

calculated the bulk modulus value of β-B2O3 in 0-42 GPa pressure range. Also, the pressure 

dependencies of the lattice parameters have been plotted and discussed. 

In order to get the pressure dependencies of the B-O interatomic distances and O-B-O angles 

in β-B2O3 the following hypothesis has been applied: we assumed that the atoms do not change 

dramatically their positions during the unit cell compression. Thus, in order to describe the changes 

of the interatomic distances and angles, the atoms positions of B and O can be considered to be 

fixed (herein we used the atoms positions at ambient conditions refined in Ref. 124) and hence 

only the pressure dependencies of the lattice parameter of β-B2O3 are required. Thanks to this 

hypothesis the bonds compressibility values have been obtained. 

A phonon study of β-B2O3 by means of Raman and IR spectroscopies at ambient pressure and 

room temperature have been done for the first time. Thanks to the ab initio calculations of the 

phonon mode frequencies and modes visualization, the assignment of all experimentally observed 

bands to the phonon modes has been provided for the first time. The isotope substitution effect of 
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10B in β-B2O3 Raman spectrum has been observed for the first time and discussed. The phonon 

properties of β-B2O3 have been also studied at room temperature and under high pressure up to 

46 GPa by means of Raman spectroscopy. Basing on the ab initio calculations of the phonon 

frequencies for the reduced unit cell volumes, modes assignment and pressure dependencies of the 

B-O bonds and O-B-O angles, some explanations of the phonon modes behavior under 

compression have been proposed. As a result, the Grüneisen parameters of all Raman-active 

phonon modes have been calculated for the first time. 
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10 Studies in B-S binary system 

Since the chemical properties of sulfur and oxygen are not the same, the number and properties 

of binary compounds in B-S and B-O systems consequently differ. Actually, the sulfur can form a 

larger number of binary compounds with boron than oxygen does. Unlike B-O system, the binary 

compounds of B-S system have not revealed the unusual hardness, mechanical resistance, etc. 

However these compounds possess other interesting physical properties, like semiconductivity, 

high thermal conductivity, etc. As it has been mentioned in Chapter I, there were not detailed 

studies on these compounds under extreme conditions. The regions of phase stability of already 

discovered compounds have not been studied neither. 

Rhombohedral boron monosulfide (r-BS) is one of the best known representatives of the B-S 

system with promising physical properties (e.g. the influence of the anisotropic layered structure 

on the physical properties and therefore the possibility to vary them by applying for example the 

pressure). r-BS belongs to the AIIIBVI layered semiconductors family. It should be noted that the 

main representatives of the AIIIBVI semiconductors (GaS, GaSe, InS and InSe) were found to be 

promising materials for solar cells, nonlinear optics, photovoltaic energy converters, radiation 

detectors, photoresistors and solid-state batteries [238-240], due, among other things, to the high 

anisotropy of their physical properties. Although r-BS has been obtained a decade ago as in 2001 

[154], it still remains very poorly studied due to the low Z number of boron and therefore 

difficulties of studying it by conventional laboratory XRD measurements. 

In this chapter we will describe our in situ HP XRD measurements of r-BS with high brilliance 

synchrotron radiation. The equation of state of r-BS has been measured for the first time and the 

bulk modulus and its first pressure derivative have been obtained. A phase transition of r-BS was 

observed around 42 GPa at room temperature. A new high-pressure phase of BS has been obtained 

and studied. This part will be followed by a description of our phonon studies of r-BS at ambient 

and under high pressures. The r-BS phonons have been assigned to the vibrational modes for the 

first time thanks to ab initio LCAO calculations. 

10.1 Equation of state of r-BS 
10.1.1 Experimental techniques 

Synthesis details 

r-BS was synthesized at 7.5 GPa and ~1900°C from amorphous boron (Johnson Matthey, 

99%) and sulfur (Johnson Matthey, spectrographic grade) powders mixed in the 1:1 molar ratio 

using a toroid-type press (TTP) with specially designed high-temperature cell (see Chapter II 
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(Figure II.6) and [241]). Boron nitride (grade AX05, Saint-Gobain) capsules were used to isolate 

the reaction mixture from the graphite heater. Finally, a yellow-green polycrystalline sample (with 

rather strong H2S smell) was obtained. 

r-BS was also synthesized using MAP installed at LSPM-CNRS, university Paris-Nord. In 

Figure II.12 one can find the scheme of the MAP assembly used in HP-HT synthesis. The uniform 

compression of eight secondary WC-Co anvils have been provided in the Walker’s module. MgO 

octahedron with EL of 14 mm and WC-Co secondary anvils with TEL of 8 mm have been used. 

The mixture of fine powders of B and S was placed into h-BN sample capsule. The graphite heater 

provided the resistive heating. During the synthesis the temperature was controlled in situ with 

help of W5%Re/W26%Re thermocouple. Experiment has been conducted at pressure of 3 GPa 

and temperatures ranging ∼1200-1800°C with reaction time of ∼25 min, after which the sample 

was quenched by the switching off the power and decompressed. The recovered polycrystalline 

sample was identical to that obtained from the HP-HT synthesis in TTP. 

X-ray diffraction measurements at ambient conditions 

The X-ray diffraction provided with G3000 TEXT Inel diffractometer (Cu Kα1 radiation) at 

ambient conditions confirmed high phase purity of polycrystalline sample of r-BS, however with 

some amounts of h-BN capsule. The XRD pattern is presented in Figure IV.1. 

 
Figure IV.1. XRD pattern (λ=1.5406 Å) of r-BS at ambient conditions. The most intensive peaks 
of r-BS are marked by the hkl Miller indexes. 

The lattice parameters of r-BS (a,b = 3.054(1) Å, c = 20.482(2) Å) are close to those published 

previously (a,b = 3.052(2) Å, c = 20.411(9) Å) [154]. 



109 
 

High pressure X-ray diffraction measurements 

High-pressure XRD measurements were carried out at room temperature in a Le Toullec type 

MDAC [242] with 300 µm culet anvils. r-BS powder was loaded into a 110 µm hole drilled in a 

rhenium gasket pre-indented down to ~30 µm. Neon pressure transmitting medium was used. 

Pressure determination was implemented by the ruby luminescence technique using the calibration 

of Mao et al. [212]. The pressure values are presented in Table 1. The pressures were measured 

before and after each ADXRD measurement; further the mean pressure value was used. The 

pressure drift during measurement did not exceed 1 GPa in the 0-42 GPa pressure range. 

Pressure,
GPa a=b, Å c, Å Volume, Å3 Pressure,

GPa a=b, Å c, Å Volume, Å3 

0.0 3.054(1) 20.482(2) 165.5 20.6 2.943(1) 17.689(10) 132.7 
2.6 3.033(1) 19.512(5) 155.5 21.4 2.944(2) 17.630(4) 132.3 
3.8 3.028(0) 19.340(1) 153.6 22.1 2.936(2) 17.592(13) 131.3 
4.4 3.024(1) 19.186(1) 151.9 24.1 2.929(1) 17.516(12) 130.1 
6.7 3.009(2) 18.854(3) 147.9 25.3 2.924(1) 17.442(11) 129.2 
8.4 3.002(1) 18.681(2) 145.8 26.0 2.922(1) 17.407(11) 128.7 
10.2 2.991(1) 18.487(3) 143.4 26.1 2.921(3) 17.323(4) 128.0 
11.5 2.986(1) 18.384(1) 141.9 27.9 2.910(2) 17.292(13) 126.8 
12.4 2.980(1) 18.295(4) 140.7 29.4 2.899(1) 17.241(11) 125.5 
13.1 2.977(1) 18.247(2) 140.1 31.1 2.899(1) 17.138(5) 124.8 
14.2 2.971(1) 18.141(6) 138.7 31.4 2.894(1) 17.215(7) 124.8 
16.1 2.965(1) 17.979(6) 136.9 38.0 2.873(2) 17.005(16) 121.6 
16.5 2.962(1) 17.954(5) 136.4 38.3 2.876(3) 16.948(11) 121.4 
17.2 2.957(1) 17.909(9) 135.6 42.0 2.858(6) 16.940(17) 119.8 
18.0 2.955(1) 17.838(13) 134.9     

Table 1. Lattice parameters and volume of the unit cell of r-BS versus pressure up to 42 GPa at 
room temperature measured at ID27 and PSICHE beamline. The numbers in brackets are the fitting 
standard deviations (95% confidence interval) on the last or last two digits. 

HP XRD measurements were performed at ESRF ID27 beamline and at synchrotron SOLEIL 

PSICHE beamline. At both beamlines the collection of XRD patterns was measured in angle-

dispersive mode with a focused monochromatic beam. The selected beam wavelength was equal 

to 0.3738 Å. The X-ray optics of ID27 and PSICHE beamline delivered a focused beam spot of 

9 µm2 and 15 µm2 respectively. The XRD data were acquired using a MAR 345 image plate 

detector with an exposure time of 10 seconds (at ID27) and a PerkinElmer XRD 1621 image plate 

detector with an exposure time of 15 seconds (at PSICHE beamline). Laue diffraction patterns 

obtained during the measurements were treated by fit2D software [194]. The lattice parameters 
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and unit cell volume at each pressure point were refined by using DICVOL04 and WinPLOTR 

packages in FullProf software [195-197] and are presented in Table 1. 

Calculation details 

As well as for β-B2O3, first principles LCAO calculations have been made for study of r-BS. 

The calculations were performed using the CRYSTAL09 code [207]. For the boron atoms, we 

used the all-electron basis set, which was optimized in earlier calculations [215]. The core 

electrons of the sulfur atom were excluded from consideration using the effective small-core 

pseudopotential (ECP) and the corresponding atomic basis set [243], which excludes any diffuse 

Gaussian-type orbitals with the exponents less than 0.1. In the CRYSTAL09 code [207], the 

accuracy in evaluating the Coulomb series and the exchange series is controlled by a set of 

tolerances, which were taken to be (10-8, 10-8, 10-8, 10-8, 10-16). The Monkhorst-Pack scheme [217] 

for an 8 x 8 x 8 k-point mesh in the Brillouin zone was applied. Self-consistent field calculations 

were performed for hybrid DFT–HF WCGGA–PBE-16% [218] functional. The percentages 16% 

define the Hartree–Fock admixture in the exchange part of DFT functional. 

The full r-BS structure optimization procedure was performed according to the energy minima 

criterion. The lattice parameters (a and c) and the unit cell volume (V0) for the primitive hexagonal 

cell are 3.114(7) Å, 20.749(6) Å and 174.3 Å3, respectively. Like in ab initio calculations for β-

B2O3, the calculated lattice parameters of r-BS are slightly larger than experimentally determined 

values. The deviations of the calculated lattice parameters from the experimental ones are 1.96% 

and 1.30% respectively. The unit cell volume deviation is equal to 5.36%. In spite of the fact that 

the boron isotope content of r-BS used in experiments is 20% 10B - 80% 11B, all ab initio 

calculations have been performed for boron isotope content of 100% 11B (which will be further 

marked as r-11BS*). 

The equation of state parameters of r-11BS* (bulk modulus B0 and its first pressure derivative 

B0´) have been estimated by the same routine implemented in the CRYSTAL09 code as for β-
11B2O3*. In order to obtain the E(V) dependence, the unit cell volume was varied from 76% to 

100% of the equilibrium volume (V0). The structure optimization was performed at each volume. 

Obtained E(V) dependence has been fitted to the Murnaghan equation of state [208] taking V0 = 

174.3 Å3 and E0 = -5.7 keV (Eq. II.13). In order to estimate the P(V) dependence the (Eq. III.1) 

has been used.  

The electron structure optimization did not converge at highly reduced unit cell volume (P > 

34 GPa). Like for ab initio calculations for β-B2O3 in Chapter III the possible reasons of this 

divergence might be noticeable changes of the electronic structure for the unit cell with reduced 

volume. Therefore the chosen set of the calculation parameters and all-electron basis sets might 
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become not optimal at the highly deformed unit cell. Hence, all the pressure dependencies of r-
11BS* unit cell parameters (a, c, V0, etc.) will be given only up to 34 GPa. 

10.1.2 Results and discussion 

During the compression the diffraction peaks of the r-BS monotonously moved towards the 

larger 2θ values. For instance, the ADXRD spectra of r-BS at intermediate pressures (2.6, 14.2 

and 26.2 GPa) are presented in the Fig. IV.2. 

 

Figure IV.2. X-ray diffraction patterns of r-BS taken at different pressures (ID27, ESRF; 
λ = 0.3738 Å). The most intense r-BS reflections are marked by Miller indexes; the diffraction 
peaks of Re (gasket) and solid Ne (pressure medium) are indicated. 
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Figure IV.3. Relative lattice parameters changes of r-BS versus pressure. Open circles represent 
experimental data obtained at ID27 (black circles) and at PSICHE beamline (red circles). Blue 
solid squares represent theoretical data. The solid red and dashed blue lines represent the fit of 
one-dimensional analog of the Murnaghan equation of state to the experimental and theoretical 
data respectively. 

As mentioned in Chapter I, r-BS has a layered structure with two types of bonds: weak interlayer 

van-der-Waals and strong intralayer ionic-covalent bonds. The Figure IV.3 presents the obtained 

results of r-BS lattice compression along the different unit cell axis. One can see that the 

compression along the c axis is more significant than along the a axis. In other words, the 

compressibility in the layer is dramatically lower compared to the compressibility between the 

layers. In order to approximate the pressure dependence of the lattice parameters and to determine 
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the axial modulus values, we used the one-dimensional analog of the Murnaghan equation of state 

(Eq. III.2). The β0,𝑎 and β0,𝑐 axial moduli values are 476.9±8.6 GPa and 49.4±1.2 GPa 

respectively. Similarly to boron (III) oxide, we calculated the linear compressibility (kr) values 

using the (Eq. III.3). The kr values found for a and c directions are (2.09±0.04)×10-3 GPa-1 and 

(2.02±0.05)×10-2 GPa-1respectively differing by one order of magnitude, which clearly 

demonstrates and proves the layered character of r-BS, and its similarity to the other compounds 

of the III-VI family. 

According to Figure IV.3, the theoretical pressure dependence of the a parameter almost 

perfectly fits with experimental one. On the contrary, there is a deviation between the experimental 

and theoretical values along the c axis. Applying the one-dimensional analog of the Murnaghan 

equation of state to the LCAO data, we found β0,𝑎
∗  and β0,𝑐

∗  parameters equal to 388.4±6.9 GPa 

and 30.1±1.1 GPa respectively. Hence, using (Eq. III.3) the kr* values found for a and c directions 

are (2.58±0.05)×10-3 GPa-1 and (3.32±0.12)×10-2 GPa-1 respectively. All β0 and kr values 

calculated for theoretical and experimental data, as well as lattice parameters are presented in 

Table 2. 

 Experimental data Theoretical data 
a, Å 3.054(1) 3.114(7) 
c, Å 20.482(2) 20.749(7) 

β0,a, GPa 476.9±8.6 388.4±6.9 
β0,c, GPa 49.4±1.2 30.1±1.1 

ka ×10-3, GPa-1 2.09±0.04 2.58±0.05 
kc ×10-2, GPa-1 2.02±0.05 3.32±0.12 

Table 2. Lattice parameters, axial moduli and linear compressibilities obtained from theoretical 
and experimental data. 

In spite of the fact that the order of β0
∗  and kr* values match with experimental ones, there is a 

considerable difference between experimental and theoretical compressibilities along a and c axis 

(see Table 2). We assume that the observed difference between LCAO and experimental ka values 

can be due to a slight theoretical overestimation of the a lattice parameter. On other hand, a 

dramatic difference between theoretical and experimental kc values can be due to the lack by 

CRYSTAL09 of some part of interlayer interactions. According to the reports on the other AIIIBVI 

layered semiconductors (GaSe, GaS, InSe) which can be considered as structural analogs of r-BS, 

the nature of interlayer interaction is rather complicated and apart from van-der-Waals bonds there 

is a ionic-covalent contribution [238,240]. 

We compared the kr values of r-BS with the linear compressibility values of GaS, GaSe and 

InSe determined previously (see Table 3). 
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Compound ka ×10-3, GPa-1 kc ×10-2, GPa-1 Reference 
r-BS 2.09±0.04 2.02±0.05 Current study 

GaS 
3.27 2.52 [244] 

4.5±1.3 2.30±0.36 [245] 
5.1±0.1 2.39±0.04 [247] 

GaSe 
5.2±0.5 2.56±0.18 [245] 

5.73±0.04 2.70±0.06 [246] 
5.05±0.25 2.27±0.11 [248] 

InSe 
3.3±1.9 2.22±0.71 [245] 

3.85 2.31 [249] 
6.74±1.14 2.86±0.12 [250] 

Table 3. Linear compressibilities (kr) of r-BS, GaS, GaSe and InSe. 

According to Table 3 r-BS has the smallest ka value among all AIIIBVI compounds, and the largest 

ratio between ka and kc. We assume that this phenomenon can be simply explained by the fact that 

the B-B and B-S bonds are significantly shorter and therefore more rigid than Ga-Ga, In-In, Ga-

S(Se) and In-Se (due to small radii of electron shells of boron and sulfur atoms). Thus, the smallest 

ka value of r-BS compared to other AIIIBVI compounds seems logical and predictable. 

The linear compressibilities of AIIIBVI semiconductors along the c axis are one order of 

magnitude greater than those along the a axis. It should be noted, that unlike ka values, all kc values 

are rather close to each other. It is not also an unexpected result, as the large compressibility along 

c is mainly due to the weak van-der-Waals interlayer interactions. However, the linear 

compressibility along the c axis increases in r-BS < GaS ≤ GaSe < InSe row if the kc value of InSe 

reported in Ref. 250 is considered as correct. The higher kc value of InSe results in more 

remarkable volume diminution during compression. This observation matches with one made in 

Ref. 251, stating that InSe is less ionic than GaS and therefore the interlayer interaction in InSe is 

closer to the van-der-Waals type, which leads to the bigger initial compressibility along c axis. 

Thus, one can conclude that the kc values of InSe reported in Ref. 245,249 have been measured 

not precisely. Using the statement, that the contribution of the forces/interactions different from 

van-der-Waals one to the interlayer interactions in the AIIIBVI compounds leads to the smaller kc 

values one can draw a rather surprising conclusion. Based on the kr values presented in Table 3, 

one can say that the contributions of forces different from van-der-Waals one to the interlayer 

interaction (and consequently, according to [251] the ionicity of AIIIBVI compounds) decrease in 

following row: r-BS > GaS ≥ GaSe > InSe. Thus, according this simple logic r-BS have been 

concluded to be the most ionic AIIIBVI layered compound. This conclusion does not contradict the 

well-known empirical rule that the AB compounds with the bigger electron shells are considered 
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to be more ionic, as herein the term “ionicity” regards to the whole compound, including intralayer 

and interlayer interactions. 

 
Figure IV.4. S3B-BS3 structural fragment of r-BS. 

As previously mentioned in Chapter I one layer of r-BS consists of the B-B pairs aligned along 

the c axis and sandwiched between two hexagonal layers of S atoms. Thus, one can consider the 

S3B-BS3 trigonal antiprism (see Figure IV.4) as the main “building block” of one layer in r-BS. It 

should be underlined that according to our XRD data and that in Ref. 154, the S3B-BS3 unit is 

slightly distorted. The B1-S1 bond lengths are not equal to the B2-S2 ones, as well as S1-B1-S1, S2-

B2-S2, B2-B1-S1 and B1-B2-S2 angles values. The lattice parameters, bond lengths, angles of S3B-

BS3 structure and interlayer and intralayer distances (dinter and dintra respectively) are listed in 

Table 4. 

Parameter r-BS r-10BS r-11BS* r-BS [154] 
a=b, Å 3.054(1) 3.055(5) 3.114(7) 3.052(2) 

c, Å 20.482(2) 20.348(4) 20.749(7) 20.411(9) 
V0, Å3 165.5 164.5 174.3 164.7 

B1-B2, Å 1.700(3) 1.689(5) 1.722(2) 1.694(2) 
B1-S1, Å 1.993(4) 1.990(3) 2.029(4) 1.990(3) 
B2-S2, Å 1.913(3) 1.912(3) 1.949(3) 1.911(3) 
dintra, Å 3.384(2) 3.359(2) 3.366(2) 3.372(2) 
dinter, Å 3.433(1) 3.433(1) 3.535(3) 3.433(3) 

S1-B1-S1, ° 100.041 100.244 100.233 100.125 
S2-B2-S2, ° 105.918 106.075 106.066 105.983 
B1-B2-S2, ° 117.771 117.609 117.618 117.704 
B2-B1-S1, ° 112.826 112.685 112.693 112.768 

Table 4. Cell parameters, bond lengths and angles in S3B-BS3 structure fragment of r-BS, r-10BS, 
r-BS [154] and r-11BS*. 
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As one can see from Table 4, ab initio calculations give almost the same parameters for the 

S3B-BS3 unit as the measured ones. However, like in the case of the lattice parameters, the 

theoretical B-B and B-S distances and B-B-S and S-B-S angles are larger than experimental ones. 

It should be marked that the Rietveld structure refinement of r-BS performed in Ref. 154 did not 

give the confident results due to the preferred orientation and the small charge density of boron. 

Due to this fact, in the present we employed the atoms positions refined previously [154]. 

 x y z 

B(1) 0 0 0.538(4) 

B(2) 0 0 0.455(4) 

S(1) 0 0 0.2500 

S(2) 0 0 0.7521(8) 

The description of the interatomic distances and angles changes in AIIIBVI layered compounds 

(e.g. GaSe, InSe and GaS) was performed using EXAFS, XANES measurements [240,252] or 

XRD single crystal measurements [253]. However, the application of these techniques for the 

description of the S3B-BS3 unit structure under compression is almost impossible. The HT-HP 

synthesis of r-BS monocrystal is rather challenging due to the possible presence of stacking faults 

and other structural defects. Due to this fact the HP XRD measurements of r-BS single crystal 

were not practiced in our work. The HP XAFS measurements of sulfur at the S Kα edge is still 

under development [254].The direct HP XAFS measurements of boron are on other hand 

impossible due to its low energy edge (0.2 keV). The direct HP measurements of r-BS in DACs 

are only possible by XRS technique using hard X-rays [221]. However, the available energy range 

would rather limited to draw some information/conclusions about the interatomic distances and 

angles. 

Regarding all the facts given above, for the description of interatomic distances under high 

pressure we used only the data on the lattice parameters at the different pressures, assuming that 

the atoms positions are constant during compression. The error bars of the obtained interatomic 

distances and angles can be estimated by means of the corresponding error bars of the lattice 

parameters (<0.4%) and atoms positions (<0.9%). 

The changes of normalized bond lengths (B1-B2, B1-S1, B2-S2) and the B-B-S and S-B-S angles 

in S3B-BS3 unit up to 42 GPa are presented Figure IV.5 and IV.6 respectively. In Figure IV.5 we 

employed the same analog of Murnaghan equation of state, which has been used previously in 

Ref. 240,252 for the data approximation fitting (the solid lines). The local isothermal bulk moduli 
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B0,𝐵1−𝐵2, B0,𝐵1−𝑆1 and B0,𝐵2−𝑆2 obtained from this fit are 16.0±0.4, 87.0±1.1 and 101.5±1.0 GPa 

respectively (B0´ was fixed to 5, as well as in Ref. 240). The linear compressibility values 

(kr=1/3B0,r=1/β0,r) for B1-B2, B1-S1 and B2-S2 are (2.08±0.05)×10-2, (3.83±0.05)×10-3 and 

(3.28±0.04)×10-3 GPa-1 respectively. 

The B-B bond in the layer of r-BS has been found to be significantly more compressible than 

B-S ones, like for example, in γ-InSe where the change of In-In under compression is bigger 

compared to the change of In-Se [252]. One can also notice that the linear compressibility of the 

B-S bonds is greater than that of the a axis in contrast to other AIIIBVI layered compounds 

[240,252]. Moreover, unlike other AIIIBVI compounds the compressibilities of the B-S bonds in 

the “top” and in the “bottom” of the layer have been found to be different. Based on the 

compressibility values of the B1-S1 and B2-S2 bonds, one can conclude that the “bottom” part of 

S3B-BS3 unit is less compressible than the “top” part. 

Considering the more rigid “bottom” part of S3B-BS3 one can find that the axial module of B-

S bond is slightly larger compared to those of Ga-Se (92±6 GPa) and In-Se (116±20 GPa) reported 

in Ref 240 (herein it should be underlined that we consider B0,𝐵2−𝑆2 > B0,In-Se taking into account 

the big error bar of local bulk modulus of InSe). This observation proves our suggestion that the 

high relative rigidity of r-BS perpendicular to the c-axis can be explained by the short and stiff B-

S bonds. 

We also estimated the B-B and B-S pressure dependencies obtained from our ab initio 

calculations. The results of this estimation are presented in Figure IV.5. One can see that the 

theoretically estimated bonds compressions are rather close to the experimental values. The local 

isothermal bulk moduli of B1-B2, B1-S1 and B2-S2 are 10.0±0.4, 68.9±2.4 and 83.4±2.4 GPa (again 

B0´ was fixed to 5). The deviation of the calculated B0
∗  values of B-S bonds from experimentally 

determined ones are similar to the deviation of β0,𝑎
∗  from β0,𝑎 ~20%. 
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Figure IV.5. Relative changes of B-B and B-S distances (l/l0) in S3B-BS3 unit versus pressure. 
The open circles indicate experimental data, the solid black lines indicate the fit of analog of 
Murnaghan equation of state to the experimental data, the blue dashed lines represent the 
theoretical estimations. 

Thus one can conclude that CRYSTAL09 estimates r-BS intralayer structure changes with 

some nearly constant error. However, based on the similarity of the shapes of the pressure 

dependence curves presented in Figure IV.5 and the same orders of magnitude of B0
∗  values, one 

can conclude that our model/approach proposed above for the r-BS intralayer structural description 

matches with the ab initio predictions. It should be underlined that during LCAO structure 

optimization according to energy minima criterion the lattice parameters as well as atoms 

coordinates (in the given space group) have been varied, whereas in our model of interpretation of 



119 
 

the experimental XRD data the atoms positions have been fixed. Thus, we can conclude that the 

atoms position change in the layer during compression is negligible, which makes our model of 

r-BS layer compression more confident, but still not completely correct. 

According to the proposed model of intralayer compression we estimated the changes of 

angles in S3B-BS3 (see Figure IV.6). As expected, the B1B2S2 and B2B1S1 angles slightly decrease 

(~2.5%) under high pressures. On the contrary, the S1B1S1 and S2B2S2 angles increase during 

compression. A few remarks can be made concerning Figure IV.6. First of all, the angles become 

simultaneously less pressure dependent above ~27 GPa. We supposed that the further small change 

of the angles and therefore a stop of moving of the atoms might be an indirect evidence of r-BS 

structure transformation (which has been further confirmed). 

 
Figure IV.6. Relative changes of B-B-S and S-B-S angles in S3B-BS3 unit under compression. 

One can note that the smaller change of B1B2S2 angle expectedly corresponds to the bigger 

S1B1S1 change and vice versa for B2B1S1 and S2B2S2. Moreover, the difference between changes 

of S1B1S1 and S2B2S2 is more significant than for B1B2S2 and B2B1S1. A change of S1B1S1 angle 

of the more compressible “top” part of S3B-BS3 is greater than that of S2B2S2 of the stiffer 

“bottom” part. However, we do not have an explanation of this phenomenon. 
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Of course the changes of the angles in S3B-BS3 during compression influence on the 

compressibility values in the layer perpendicular to c axis. In Ref. 240, the angle φ (see 

Figure IV.4) was proposed to reconcile the compressibilities of the B-S bonds and a lattice 

parameters: 
𝑎

2
= 𝑑𝐵−𝑆𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠30°              (𝐼𝑉. 1). 

In the case of GaSe [240] and InSe [252] the φ angles increased during compression up to 16 GPa 

by 1.4° and up to 10 GPa by 2.7° respectively. Unlike these compounds, r-BS revealed the constant 

decrease of the φ angle at high pressures. Due to the difference of the “top” and “bottom” parts of 

S3B-BS3 the corresponding φ angles (φ1 and φ2) are different too. In 0-42 GPa pressure range the 

φ1 angle decreases from 22.83° to 20.41°, meanwhile the φ2 angle changes from 27.77° to 24.96°. 

Using simple geometric considerations, φ1 and φ2 angles, B1-B2, B1-S1 and B2-S2 bonds 

lengths (l) the height (H) and the width (W) of the S3B-BS3 unit can be easily determined:  

𝐻 = 𝑙(B1 − B2) + 𝑙(B1 − S1) ∙ 𝑠𝑖𝑛φ1 + 𝑙(B2 − S2) ∙ 𝑠𝑖𝑛φ2              (𝐼𝑉. 2), 

𝑊 = 𝑙(B1 − S1) ∙ 𝑐𝑜𝑠φ1 + 𝑙(B2 − S2) ∙ 𝑐𝑜𝑠φ2              (𝐼𝑉. 3). 

The pressure dependencies of the H and W are presented in Figure IV.7. 

 
Figure IV.7. The changes of the width (W) (red circles) and the height (H) (black squares) of S3B-
BS3 unit under compression. 

Thus, we can conclude that r-BS layer compression is not isotropic, which is typical for other 

AIIIBVI layered semiconductors. 
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The isothermal bulk modulus of r-11BS* B0 = 31.2 GPa and its first derivative B0` = 8.4 have 

been estimated using the E(V) dependence obtained from the LCAO calculations (Figure IV.8 a). 

Unlike β-11B2O3*, the E(V) dependence of r-11BS* was obtained by varying the equilibrium unit 

cell volume (V0) from 100 to 76%. In other words, the parabola of E(V) curve in Figure IV.8 a 

misses the right part. Indeed, in the 100-130% range of V0 the unit cell energy remains almost 

constant. In terms of the real structure, this can be interpreted as moving away of the S-B-B-S 

layers from each other without (almost without) changing their intralayer distances. This makes 

the determination of the local minimum energy (E0) rather uncertain, leading to the big dispersion 

of the B0 and B0` values. Due to the impossibility of the accurate energy minimum determination 

we considered the E0 at 100% of V0 (see Figure IV.8 a). 

The pressure dependence of normalized volume V/V0 fitted to the Murnaghan equation of 

state is shown in Figure IV.8 b. The band gap value Eg = 3.5 eV found from LCAO calculations is 

in good agreement with the estimation made in Ref. 154 (~3.4 eV). 

 
Figure IV.8. a) Energy variation of the r-11BS* unit cell versus volume (Murnaghan fit – solid 
line). The position of V0 is indicated by dashed line; b) equation of state of r-11BS*. The red line 
presents the Murnaghan fit to the theoretical data. 

The pressure dependence of the normalized unit cell volume up to 42 GPa measured by XRD 

at ID27 and PSICHE beamlines is presented in Figure IV.9. One can see that the experimental data 

obtained in two different runs match very well. Hence we provided a fitting of the whole dataset 

by a Murnaghan equation of state [208]. The bulk modulus B0 value was found to be 48.4±1 GPa, 

whereas its first derivative B0´ is 5.5±0.2. The χ2 is 0.54. We also approximated the experimental 

data by a Vinet and Birch-Murnaghan equations of state (Eq. III.4, Eq. III.5). The obtained bulk 

modulus and its first pressure derivative are 46.7±1 GPa and 6.7±0.2 with χ2=0.42 for Vinet EoS 

formulation and 47.1±1 GPa and 6.6±0.2 with χ2=0.44 for Birch-Murnaghan EoS formulation. So, 
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all of the formulations of equation of state give rather close B0 and B0´ values. The low χ2 

parameters obtained using Vinet and Birch-Murnaghan equations of state indicate that these EoS 

formulations are more suitable for the fitting of the experimental data than Murnaghan equation 

of state. The rather high value of B0´ is evidently due to the huge anisotropy of the r-BS structure 

similarly to graphite (for which B0´ = 8.9) [255], hexagonal graphite-like boron nitride (B0´ = 5.6) 

[256] and turbostratic BN (B0´ = 11.4) [257]. 

It should be noted that B0 and B0´ values obtained from our theoretical estimations differ from 

the experimental ones. We suppose that the main reason of this discrepancy is due to the deviation 

of the theoretical and experimental compressibilities along the c axis. As it has been mentioned 

above, the CRYSTAL09 code does not take into account some contributions to the interlayer 

interactions, which make r-BS stiffer along the c axis. To avoid this calculation imperfection, we 

used B0´= 5.5 for the fitting of the theoretically calculated points to the Murnaghan equation. The 

new B0 value is 42.1±1 GPa, which is rather close to the experimentally obtained one. 

 
Figure IV.9. Equation of state of r-BS. The open circles and squares represent high-pressure 
experimental data obtained at ID27 (ESRF) and at PSICHÉ beamline (SOLEIL) respectively. The 
solid red line represents the Murnaghan fit to the whole experimental data set; the blue dashed line 
represents the theoretical estimation of equation of state of r-11BS*. 
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According to the literature, r-BS has the highest experimentally measured bulk modulus value 

among AIIIBVI layered compounds (see Table 5). 

Compound B0, GPa B0´ Ref. 
β-GaS 37.2(2) (exp.) 5.2 [251] 
ε-GaSe 34(2) (exp.) 6.4(5) [248] 
β-GaSe 48.9 (theor.) 4.60 

[239] 
ε-GaSe 49.6 (theor.) 4.55 

ε-GaSe 
28.6 (exp.) - 

[258] 
28.4 (theor.) - 

ε-GaSe 
27.1 (theor.) - 

[238] 
26.9 (theor.) - 

ε-GaSe 26.4 (theor). - [259] 
ε-GaSe 28.3 (theor.) - [260] 
ε-GaSe 27.7 (exp.) - [245] 
ε-GaSe 28.7 (exp.) - [261] 
γ-InSe 24(3) (exp.) 8.6(8) [251,240] 

Table 5. Bulk modulus and its first pressure derivative of some AIIIBVI compounds obtained from 
experimental (exp.) and theoretical (theor.) studies. 

One can see that like r-BS, other AIIIBVI compounds present rather considerable difference 

between theoretical and experimental B0 values. Also, the general conclusion is that the selenides 

are less hard than the sulfides. It has been already mentioned that the most important part of the 

unit cell diminution in AIIIBVI compound under compression derives from the interlayer space 

diminution (due to the weak van-der-Waals interactions). As it has been found that r-BS has the 

largest ionic-covalent contribution to the interlayer interactions among the III-VI compounds, its 

high B0 values was rather expected and reasonable. 

Thanks to our in situ XRD measurements the compression of r-BS has been found to be highly 

anisotropic due to presence of the different types of bonds: intralayer ionic-covalent bonds and 

interlayer van-der-Waals bonds. Among all AIIIBVI semiconductors r-BS has been turned out to be 

the most rigid in all directions (a, c) and hence with the highest B0 value. The detailed investigation 

of the r-BS layer structure under high pressure showed that its compression is not isotropic. In 

spite of the fact that under compression r-BS generally behaves like other AIIIBVI compounds, it 

however has some particularities, e.g. decreasing φ angle. 

10.2 New high pressure phase of BS 
10.2.1 Results and discussion 

The new high pressure phase of BS has been observed during XRD measurements in MDACs 

at ID27 (ESRF) and at PSICHE beamline (SOLEIL). New diffraction peaks appeared around 

28 GPa (stars in Figure IV.10). 
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Figure IV.10. XRD patterns (λ=0.3738 Å) of r-BS at room temperature and in pressure range 
27.9-42 GPa. The shifts of the most intense diffraction peaks under compression are traced by 
dashed lines; the Re and solid Ne peaks are indicated; the blue arrows indicate the r-BS peaks; the 
peaks of the new BS high pressure phase marked by the red stars (their first appearance by the 
orange stars) the peaks which might be attributed to the new BS high pressure phase are marked 
by the question marks. 
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As shown in Figure IV.10, at pressure of 42 GPa there remain very weak diffraction peaks of r-BS 

and four/five (?) intense peaks of the new high pressure (HP) phase. Figure IV.11 presents an 

example of the 2D ADX diffraction pattern acquired at 42 GPa using flatpanel detector. The 

reflections of r-BS are almost invisible, whereas the reflections of the new phase are apparent. The 

HP phase turned out to be unstable during the decompression. The phase transformation is hence 

reversible. 

** 

Figure IV.11. 2D ADX diffraction pattern (λ=0.3738 Å) of r-BS acquired at room temperature 
and 42 GPa. The reflections of diamond anvils and beamstop are “masked” by red areas. The 
colored logarithmic intensity gauge is given below. The reflections of BS (rhombohedral and new 
high-pressure phases) are presented by white dots (circles). 

Structure of HP BS phase 

Due to the fact that the new BS phase has been observed only at high pressures, its diffraction 

peaks were rather broaden. The number and the quality of the peaks make a structure refinement 

(e.g. Rietveld refinement) impossible. However, according to the refinement of the crystal 

symmetry and the lattice parameters, we can say that the HP phase structure likely belongs to the 
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cubic symmetry. There are two most probable structure motives: rock-salt or CsCl with a lattice 

parameter of 5.086(1) Å (at pressure of 29.4 GPa). However, considering the Fm3̅m (225) space 

group, the second and the fourth diffraction peaks present in the diffraction pattern (Figure IV.10) 

are not expected. Unlike NaCl structure motive, an assignment of all new observed diffraction 

peaks by the hkl indexes can be done (200, 210, 220(?), 222 and 322) in the case of CsCl (Pm3̅m 

(221)). Nonetheless, rather intense 111 peak is expected for the NaCl structure, whereas CsCl 

structure implies 100, 110 and 111 diffraction peaks, which have not been observed in our XRD 

measurements (Figure IV.12). 

 
Figure IV.12. The simulations of NaCl and CsCl structural motives applied to the new BS high 
pressure phase XRD pattern acquired at 42 GPa. The peaks of the new BS high pressure phase 
marked by the red stars, the peaks which might be attributed to the new BS high pressure phase 
are marked by the question marks. 
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We also considered the volume change at the phase transition. It is well known that during HP 

phase transition the unit cell volume per structure unit (in our case it is BS) should become smaller. 

In the case of CsCl structure the volume per structure unit becomes larger than that of r-BS at 

29.4 GPa, which is not probable. Unlike CsCl structure, the rock-salt structure completely reveals 

an expected volume per structure unit diminution (~50%, which is close to the data presented in 

Ref. 248). 

According to the literature data, the phase transition over 20 GPa is rather typical for AIIIBVI 

layered compounds. However, it should be noted that different polytypes of AIIIBVI compounds 

have phase transitions at different pressures. For instance, for four known polytypes of GaSe (β-, 

γ-, δ- and ε-; different number and sequence of the layers [239]) only for two (β- and ε-) HP phase 

transitions have been reported (see Table 6). 

Compound P(phase transition), GPa HP phase structure Reference 

β-GaS 19-75 NaCl [262] 

GaS-II 21 ? [251] 

γ-InSe 7.5-13.2 ? [251] 

γ-InSe 7.1-12.6 NaCl [252] 

ε-GaSe 16-25 ? [240] 

ε-GaSe 22.8-27.8 NaCl [248] 

β-GaSe 17.06 
NaCl [239] 

ε-GaSe 17.74 

ε-GaSe 25 NaCl [263] 

ε-GaSe 29.2 NaCl [264] 

Table 6. The pressures of the phase transitions of different AIIIBVI compounds. The most probable 
structure is indicated. 

However, there are no experimental study in which the structure of the new HP phase of GaSe 

has been well refined [248,263,264]. According to the authors of these reports the quality of the 

obtained X-ray diffraction patterns did not permit to perform a refinement. The ab initio 

calculations seem to be the only way to confidently sort out the structure of the new HP phase. In 

Ref. 239 four possible HP structures of GaSe have been tested: NaCl, CsCl, zinc blende and 

wurtzite. However, only the NaCl-like structure was found to be suitable as it nicely matches with 

experimental data. The results of Ref. 239 are in good agreement with Ref. 240. The authors of 

Ref. 240 provided the detailed and accurate HP XAFS study of GaSe. According to this study, 

during the phase transition Ga changes its coordination from 4 to 6 and only NaCl-like structure 

satisfies to this new coordination number. On other hand, it contradicts an empirical rule, that a 

high pressure stable phase structure for a two elements compound (of general formula AB) has 
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usually a CsCl structure [262]. It should be also noticed that according to Ref. 263, a diffraction 

pattern of HP phase of GaSe looks like those of HP phases of Ga2Se3. Thus, based on the example 

of ε-GaSe we can conclude that the structures of HP phases of AIIIBVI compounds have presumably 

a cubic unit cell, however they are not well refined and raise the doubts. 

In order to interpret the r-BS phase transition, one can mention an idea proposed previously 

[240,252]: from ~28 GPa on, the interlayer distance in r-BS is rather small, leading to more active 

interaction of the S atoms of adjacent layers. At the same time, the B-B bonds weaken, which 

results in a whole structure destabilization. Then the B-B bond breaks and one B “jumps” to the 

interlayer space, where it has an octahedral coordination. Thus, the S-B-B-S layer sequence 

transforms to S-B-S-B one. 

Equation of state of HP BS phase 

A change of the unit cell volume of the HP phase of BS in 29.4-42 GPa pressure range has 

been observed. We calculated the B (where B is a bulk modulus at a given pressure) and B0´ values 

(389.718 GPa and 7.80±1.22) at 29.4 GPa from fitting of the six experimental points to a 

Murnaghan equation of state. As it follows from the formulation of Murnaghan equation of state, 

the B0´ value is a constant for the whole pressure range. We used the formula for bulk modulus 

definition (Eq. IV.4) in order to estimate the B0 of the new HP phase at ambient pressure. 

B = B0 + PB0
′               (𝐼𝑉. 4). 

Thus, B0 value (the bulk modulus at zero pressure) of HP BS is equal to 160.7±18 GPa. Taking 

this B0 value into account, the V0 at ambient pressure has been estimated to be 156.3±2.2 Å3. The 

obtained HP BS bulk modulus value at 29.4 GPa is of same order of magnitude as bulk modulus 

of NaCl-like GaSe 380(30) GPa [248]. Based on the similarity of the r-BS and ε-GaSe, the same 

order of the bulk moduli (B) of HP phases and theoretically predicted physical properties of NaCl-

like GaSe, one can suppose that the same physical properties might be expected for HP BS as well, 

for example a metallic behavior [239]. 

10.3 Phonon study of r-BS 
10.3.1 Experimental techniques 

Synthesis details 

We synthesized r-BS enriched by 10B-isotope in order to investigate an isotope substitution 

effect in Raman spectra. Amorphous 10B (enrichment > 95%) and S (Johnson Matthey, 

spectrographic grade) powders have been mixed in 1:1 molar ratio and compressed up to 7.5 GPa 

at ~1900ºC in the TTP high-temperature cell described above. For convenience, further we will 

indicate the rhombohedral boron monosulfide enriched by 10B isotope as r-10BS. 
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X-Ray Diffraction measurements at ambient conditions 

The X-ray diffraction of r-10BS has been provided again with G3000 TEXT Inel diffractometer 

(Cu Kα1 radiation) at ambient conditions. The sample was found to be highly crystalline with 

negligible admixtures of the h-BN. The XRD pattern of r-10BS is presented in Figure IV.13. 

 
Figure IV.13. XRD pattern (λ=1.5406 Å) of r-10BS at ambient conditions. The most intensive 
peaks of r-10BS are marked by the hkl Miller indexes. 

The lattice parameters, unit cell volume, bond lengths and bond angles of r-10BS have been 

refined and are listed in Table 4. Like in the case of β-10B2O3, we observed a difference between 

the unit cell volumes of r-BS and r-10BS (deviation of ~0.56%). 

Raman and IR measurements at ambient conditions 

Raman spectra of r-BS and r-10BS at ambient pressure have been measured using Horiba Jobin 

Yvon HR800 Raman spectrometer (in the 200-2000 cm-1 range). The 632.8 nm line of a He-Ne 

laser (10 µm beam spot) has been used for excitation (the laser power is less than 30 mW). A 

single crystal of cubic Si has been used for spectrometer calibration at room temperature. The 

Raman study of r-10BS has been performed at ambient conditions in order to observe the isotope 

substitution effect in phonon modes. 

Fourier transform infrared (FTIR) absorption spectra in mid-infrared range (450-4000 cm-1) 

were recorded using a Bruker IFS 125HR spectrometer. Samples were uniformly mixed with KBr 

powder and pressed into pellets. It should be noted, that r-10BS has not been studied by IR 

spectroscopy. 
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High pressure Raman measurements 

High-pressure Raman measurements have been performed in a MDAC [265] with 300 µm 

culets. r-BS sample has been putted into a 50 µm hole drilled in a rhenium gasket pre-indented 

down to 25 µm thickness. In these measurements neon pressure transmitting medium has been 

used. Pressure in the MDAC was determined by the ruby luminescence technique [171] using the 

calibration proposed in Ref. 212. The pressure has been measured before and after each run; drift 

during single run did not exceed 0.4 GPa in the 0-34 GPa pressure range. 

Raman spectra were excited with the 632.8 nm line of a He-Ne laser (10 µm beam spot) and 

recorded in the 200-2000 cm-1 range using Horiba Jobin Yvon HR800 Raman spectrometer. The 

spectrometer was calibrated using a single crystal of cubic Si at room temperature. A laser power 

at the sample was estimated to be less than 30 mW. No effect due to laser heating of the sample 

was observed. Raman spectra of r-BS were measured in 23 pressure points from 1.8 to 34.0 GPa 

at room temperature. 

Calculation details 

The phonon properties of r-BS at ambient conditions and under pressure (up to 34 GPa) have 

been studied using first principles LCAO calculations performed using the CRYSTAL09 code 

[207]. The phonon frequencies of r-11BS* and r-10BS*at ambient conditions have been calculated 

using the direct (frozen-phonon) method [207,223]. For the phonon calculation under 

compression, we employed already performed calculations of r-11BS* equation of state. The 

phonon frequencies at selected pressures up to 34 GPa have been calculated using optimized 

geometries for corresponding reduced volume unit cells. The pressure dependence of the phonon 

frequencies of r-11BS* are available only up to 34 GPa, because of divergence of the parameters 

of electron structure optimization at highly reduced unit cell volume (P > 34 GPa). 

10.3.2 Results and discussion 

According to the structural data presented in Table 5, lattice parameters of r-BS enriched by 
10B isotope differ from those of r-BS: r-10BS has the smaller unit cell volume as compared to that 

of r-BS. Nonetheless, it should be also underlined that a lattice parameter of r-10BS is equal to that 

of r-BS. Hence, the main contribution to the volume difference of r-BS and r-10BS is due to the 

difference between the c lattice parameters. As shown in Table 5, in spite of the fact that the bond 

lengths in S3B-BS3 unit of r-10BS (herein the atoms positions refined in Ref. 154 have been used) 

and r-BS are very close to each other, the layer thicknesses are different by 0.025 Å. On other 

hand, the interlayer distances are the same. Thus, we can conclude, that the isotope substitution 

does not change the interlayer interactions (it does not affect the Van-der-Waals bonds), while it 

influences the intralayer ionic-covalent bonds. 
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r-BS can be considered in both rhombohedral and hexagonal primitive cells (or in other words 

in rhombohedral and hexagonal settings). In hexagonal setting it has three layers with A-B-C 

stacking motive, whereas in rhombohedral setting there is only one layer. 

In layered crystals, the vibration modes may be separated in the modes of the isolated layer 

(internal modes in molecular crystals), and the whole crystal modes. Thus, considering the 

hexagonal primitive cell, since each layer contains the same number of atoms, the number of 

modes from isolated layer should be multiplied by the number of layers in the primitive unit cell. 

That gives rise to “rigid layer modes” (similar to the external modes in molecular crystals) and 

”Davydov multiplets”. However, the Raman studies on the AIIIBVI polytypes [247,265-270] have 

proved that the layer modes are not dependent on the number of layers. 

r-BS has 4 atoms in the unit cell in rhombohedral setting. Thus, 12 normal modes of vibration 

at the zone center are described by the irreducible representation of the C3v point group: 

Г = 4A1 + 4E              (𝐼𝑉. 5) 

where the E modes are doubly degenerate. All the optic modes are both infrared and Raman active 

and thus there should be 6 non-degenerate Raman active modes, since A1(1) and E(1) modes are 

the acoustic ones. Speaking about the phonon properties of r-BS we should stress that, as in γ-

InSe, the vibrational spectra and all corresponding discussion will concern the vibrations in one 

layer. 

At ambient conditions r-BS Raman spectra have been investigated in the 200-2500 cm-1 

frequency range. Five Raman active modes have been observed in the 200-1200 cm-1 range 

(Figure IV.14). In the case of isotope enriched r-10BS, only four bands have been observed in the 

same frequency domain. No peak was observed above 1200 cm-1 for both compounds. 



132 
 

 
Figure IV.14. Experimentally observed Raman bands in r-BS (red) and r-10BS (blue) at ambient 
conditions. The positions of the phonons predicted for r-11BS* and r-10BS* by LCAO calculations 
are marked by the red and blue dotted lines respectively. Inset: magnification of the 200-330 cm-1 
region. Frequency values of experimentally observed modes and the isotope shift values 
(Δω = ω (r-10BS) - ω (r-BS)) are indicated. 

As one can easily see from the Figure IV.14 the Raman spectra of r-BS and r-10BS contain less 

than the six bands predicted from the irreducible representation of non-degenerate Raman modes. 

The frequencies of all modes for r-10BS and r-BS are presented in Table 7. 

Modes 
Wavenumber (cm-1) 

[268] LCAO Experiment LCAO 
ω0(γ-GaSe) ωt(γ-GaSe*) ω0(r-BS) ω0(r-10BS) Δω ωt(r-11BS*) ωt(r-10BS*) Δω 

E(3) 59.4 62 209.4 210.9 1.5 215.3 216.8 1.5 
A1(3) 135 143 319.3 320.7 1.4 313.7 314.1 0.4 

E(4) 211 236 686.5 708 21.5 671.7 699.8 28.1 

? - - 1037.9 - - - - - 

A1(4) 309.5 338 1046.6 1071.7 25.1 1083.2 1135.3 52.1 

Table 7. The phonon frequencies of r-BS, r-10BS and γ-GaSe (ω0) experimentally observed by 
Raman spectroscopy and r-10BS*, r-11BS* and γ-GaSe* phonon frequencies (ωt) theoretically 
predicted by LCAO calculations. Isotope shifts (Δω) of observed Raman bands are presented. 
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Like in the case of the isotope effect in β-B2O3 we used the simplest model of harmonic 

oscillator. The Raman bands of isotope enriched sample are expectedly shifted towards high 

frequencies. However, unlike β-B2O3, we observed an increase of the isotope shift values for the 

high frequency Raman bands. Isotope shift exceeds 20 cm-1 for the pair of high-frequency phonons 

while it does not exceed 2 cm-1 for the low-frequency ones. 

 
Figure IV.15. Experimentally observed phonons of r-BS in mid-infrared region at ambient 
conditions. The positions of the phonons predicted by LCAO calculations are marked by the 
dashed lines. 

IR spectrum of r-BS (Figure IV.15) in the 200-4000 cm-1 frequency range shows many bands. 

Most of them can be explained by the presence of impurities and adsorbed water. However, based 

on the shape and relative intensities of IR spectrum of one of GaS polymorphs [271] we have 

characterized two bands at 656.6 cm-1 and 702.9 cm-1, which can be supposed to be the vibrational 

modes of r-BS. Our suggestion has been later supported by the LCAO calculations (see Table 8). 

It should be noted that we could observe only TO vibrational modes due to the experimental 

conditions (use of transmission IR spectroscopy). 

Modes 

Wavenumber (cm-1) 

Experiment LCAO 

ω0 (r-BS) ωt (r-11BS*) 

E(2) 656.6 622.5 

A1(2) 702.9 672.2 

Table 8. The phonon frequencies of r-BS experimentally (ω0) observed by IR spectroscopy and 
theoretically predicted (ωt) by LCAO calculations. 
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The results of our LCAO calculations of the phonon modes corresponding to the lowest 

temperature limit (T = 0 K) agree with the experimentally observed bands wavenumbers at 

ambient conditions (Table 7,8). Based on LCAO calculations performed for r-11BS* and r-10BS*, 

the Raman and IR modes assignment has been performed. The deviation of calculated Raman 

modes from experimentally observed ones does not exceed 3.4% and 5.6% for r-BS and r-10BS 

respectively. The deviation of the calculated IR modes from the experimentally observed bands 

for r-BS is less than 5.5%. To confirm the obtained results, we provided test calculation of phonon 

frequencies of γ-GaSe, which is the closest structural analog of r-BS with reported Raman spectra 

[268]. Results of these calculations presented in Table 7 indicate that the LCAO calculations in 

our work give rather confident data. One can see that the sequence of the modes found in Raman 

spectra (E(3), A1(3), E(4), A1(4)) of γ-GaSe is the same as for r-BS. This fact makes it clear that 

compounds of the same symmetry and almost similar structure exhibit the common sequence of 

the phonons. 

The LCAO calculations have also shown that the IR intensities of the E(2) and A1(2) modes 

are much higher than those of the other modes. In spite of the fact that all modes are considered to 

be both Raman and IR active, the modes with the highest IR intensities have not been observed in 

Raman spectra. Taking into account this fact, we suppose that those modes, which have not been 

observed in Raman spectra are observed in IR spectra. 

The rather intense band at 1037.9 cm-1 observed in Raman spectrum of r-BS is not predicted 

by LCAO calculations. It has been observed only in the Raman spectra of r-BS with the natural 

boron isotope content. The coincidence of XRD patterns of r-10BS and r-BS excludes any 

possibility of structural difference or systematic alternating defects. Moreover, it has been noted 

[268] that the vibrational frequencies are dominated by the intralayer forces and that changes in 

stacking sequence has no influence on the frequency of the "internal" layer modes. However, 

invisible for XRD technique random structural defects may occur in the polycrystalline sample 

and thus could lead to unpredictable bands arrangement and relative intensities or even appearance 

of band splitting in Raman and IR spectra. Moreover, one can notice that Raman spectra of GaSe 

and GaS polymorphs (structural analogs of r-BS) have the same doublet at high-frequency 

wavenumbers [268,269]. Hoff et al. [268] showed that some of the bands can appear as a result of 

combination of A(LO) – E(LO) and A(TO) – E(TO) modes. This could be an explanation of the 

doublet appearance, but proving this assumption requires techniques that are not available in the 

present work. 

An irreducible representation (Eq. IV.1) has been assigned to the set of atomic displacement 

patterns in Figure IV.16, in a manner similar to that previously used [268]. We determined the 

directions and amplitudes of the atoms oscillations from the ab initio LCAO data using the 
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MolDraw visualizing software. In this Figure IV.16 the bracketed numbers associated with the 

group representations have no physical meaning and are used only as labels, whereas the arrows 

lengths indicate the relative amplitudes of B and S atoms. 

 
Figure IV.16. Normal vibration modes of r-BS. The arrows length reflects relative amplitudes of 
B and S atoms oscillations in the mode. The amplitudes have been estimated from LCAO 
calculations. 

Taking into account the information presented in Table 7 and in Figure IV.16 the different 

isotope shift values of r-BS Raman bands can be explained. According to Figure IV.16, among all 

observed Raman bands the A1(4) and E(4) modes have the largest boron atoms displacements. 

Thus, considering the simplest harmonic oscillation model, it has been concluded that the 

frequencies of E(4) and A1(4) modes are significantly influenced by the oscillation frequencies of 

the boron atoms, and therefore by boron atoms mass (pure isotopic crystals). 

As mentioned in Chapter III, the stronger interatomic interaction leads to the shorter bonds 

and greater Raman shifts. We also supposed that an oscillation of the structural part, like S-B-B-

S, can be roughly divided and considered as a set of its smaller parts: S-B, B-B and B-S. Using 

this supposition and the information about the atoms displacements in S-B-B-S unit presented in 

Figure IV.16 the Raman bands arrangement in Figure IV.14 can be explained. 

As described in previous part, the B-S bonds have been found to be more rigid as compared 

to the B-B one. In Figure IV.16 the modes A1(4) and E(4) are referred to the S-B-B-S oscillations, 

in which the B and S atoms are moving in opposite directions. Moreover the boron atoms 

displacements are the maximum among all Raman modes. Thus at these mode vibrations the rigid 

B-S bonds are considerably distorted and consequently have the highest frequencies. Unlike A1(4) 

and E(4) modes, in case of A1(3) and E(3) modes the B and S atoms move in the same directions, 

leading to the less B-S bonds dependent and hence resulting in lower frequencies. It should be also 
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noted, that in low- (A1(3) and E(3)) and high frequency (A1(4) and E(4)) mode pairs the A1 modes 

have the highest frequencies. 

The pressure dependence of the five vibrational modes has been measured up to 34 GPa. 

Raman spectra at different pressures are shown in Figure IV.17, indicating rather strong phonon's 

shift. 

 
Figure IV.17. Raman spectra of r-BS under compression up to 34 GPa and at room temperature. 

During the compression, all the lines shift monotonically toward high frequencies and no new line 

appeared. The LCAO ab initio calculations provided for the phonon modes at selected pressure 

points up to 34 GPa match nicely with the experimental observations and support them 

(Figure IV.18). Taking into account the fact that r-BS transforms to the HP phase already around 
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30 GPa at room temperature one can conclude that BS HP phase does not have the Raman bands 

(at least at high pressure). The absence of new Raman bands at high pressure corresponding to the 

new BS HP phase supports our supposition about its probable structure motives: CsCl or NaCl 

(which are, according to the selection rules, Raman inactive). Unlike the formation of HP phase 

of GaS followed by rapid disappearing of β-GaS Raman bands [270], in our HP Raman 

measurements we did not observe any dramatic drop of the bands intensities. It can be explained 

by the coexistence of the both r-BS and HP phases up to the highest pressures of our Raman study 

(see Figure IV.10). 

A broad band in the 500-625 cm-1 range was observed, but no correlation between band 

intensities, frequency shifts and pressure applied to the system could be found. Thereby we have 

supposed that the origin of this band is connected with the non-homogeneity of the powder sample 

under study. Simultaneous growing of the background and bands broadening has been observed 

at high pressure. So, high-frequency bands at 1037.9 and 1046.6 cm-1 became indistinguishable 

above 29 GPa. It should be also noted that a monotonic pressure dependence of full width at half 

maximum (FWHM) of the second (~320 cm-1) and third (~700 cm-1) bands have been observed. 

 
Figure IV.18. Pressure dependencies of the phonon mode frequencies experimentally observed 
(open circles) and theoretically calculated (solid squares). Dashed lines are quadratic least squares 
fits (R2 > 0.999); the ω1 parameters of (Eq. III.9) are listed. 

We calculated the Grüneisen parameters for r-BS using the (Eq. III.8) for approximation of 

the phonon modes pressure dependencies. A least-squares fit of (Eq. III.8) to the experimental data 

yields the values of first-order parameters (δ0) (see Chapter III) for all five observed Raman bands. 
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We defined the Grüneisen parameters γG = B0×δ0 for the B0 = 48.4 GPa (Murnaghan formulation), 

47.1 GPa (Birch-Murnaghan formulation) and 46.7 GPa (Vinet formulation) obtained from in situ 

HP XRD measurements. All γG values are collected in Table 9. 

Modes 
ω1, cm-1GPa-1 γG 

Experimental LCAO M B-M V 

E(3) 1.11 1.24 0.243 0.236 0.234 
A1(3) 3.85 4.42 0.515 0.501 0.497 
E(4) 4.46 5.15 0.269 0.262 0.260 

? 4.92 - 0.182 0.177 0.176 
A1(4) 4.93 5.07 0.182 0.177 0.176 

Table 9 The Grüneisen parameters (γG) calculated for bulk modulus values obtained from 
Murnaghan (M) and Vinet (V) equation of state approximations and ω1 values determined for 
theoretical and experimental data presented in Figure IV.17. 

As already mentioned, all experimentally observed Raman bands shift to the high frequencies 

under compression, but the extension of these shifts was different. We used a quadratic equation 

(Eq. III.9) in order to fit these pressure dependencies. The ω1 parameters used in (Eq. III.9) are 

given in Figure IV.18 and listed in Table 9. We also employed (Eq. III.9) for an approximation of 

the calculated phonons under compression. The ω1 parameters obtained from theoretical data 

fitting are also listed in Table 9. Observed coefficients ω1 and ω2 have values typical for boron-

rich compounds [272-274]: ω1 values are not exceeding 5 cm-1GPa-1, while ω2 values are slightly 

negative tending to zero. Besides, these coefficients are of the same order of magnitude as those 

of the corresponding modes in GaSe [275] and GaS [270]. 

Based on the information presented in Table 9 and in Figure IV.16 the different ω1 values of 

A1(3), E(4) and A1(4) can be explained. As already suggested the E(4) and A1(4) phonon modes 

frequencies are situated in the high frequency range due to maximum boron atoms displacements 

in opposite directions relative to the sulfur atoms and therefore big changes/deformations of the 

rigid B-S bonds. There are strong grounds to expect that these large atoms displacements will be 

dramatically influenced by the compression, especially along c axis (because of high van-der-

Waals bonds compressibility), and consequently the corresponding phonon modes will reveal the 

maximum ω1 values. The A1(3) mode is referred to the smaller B-S bond deformations (the B-S 

sublayers oscillate against each other), which makes the ω1 value lower or, in other words, has a 

slightly negative effect on the ω1 value. On other side, according to Figure IV.5 the B-B pair is 

rather compressible, so that it is strongly affected by the compression, giving a positive effect on 

ω1 value. So, the final ω1 value of A1(3) mode is a result of summing of the negative and positive 

effects. 
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Due to anisotropic compression of r-BS (a high compression of interlayer space and low 

compression of intralayer space), one can assume that the atoms oscillations along the c axis are 

strongly influenced by HP than in case of oscillations in the layer plane. This assumption is 

supported by the experimental observations: the A1(3) and A1(4) modes (concerning the 

oscillations along c direction) have the higher ω1 values in both low-frequency and high-frequency 

phonon mode pairs. 

Unlike A1(3), E(4) and A1(4) modes, the low-frequency mode E(3) revealed unusual behavior 

under compression (see Table 9). According to Figure IV.16 only E(3) mode reveals the same 

amplitude of vibration for boron and sulfur atoms. Summing up, we can conclude the particularity 

of the E(3) mode with respect to the other observed modes. This mode is similar to the E mode 

(60 cm-1) of γ-GaSe, E" mode (60 cm-1) in -GaSe and E1g mode (74 cm-1) in -GaS, because all 

these modes have the same displacement pattern (rigid half layer shear modes). Moreover, in these 

compounds, these modes have low pressure coefficients, in contrast to the other modes. In 

Ref. 270, the peculiar pressure coefficient of the E1g mode was explained by the similarity of its 

displacement pattern with an edge-of-the-zone TA mode as regards the destabilizing effect of 

pressure upon electronic contributions to restoring forces. The pressure coefficient of the E(3) 

mode can be explained in the same way. It is a rigid half-layer shear mode, involving mainly B-B 

restoring forces, as far as vibration amplitudes for B and S atoms are the same in this mode. Since 

this mode does not change much the B-S distance within the same half-layer, this vibration will 

be viewed as a transverse acoustical (TA) mode of BS molecules, on a chain along the c axis. 

Edge-of-the-zone TA modes in 3D crystals are known to exhibit negative coefficients of the 

pressure dependence. Under pressure the electronic charges involved in the first neighbors bonds 

delocalize towards interlayer space, which soften the total restoring spring, and results in a 

negative pressure coefficient. We assumed that explanation given in Ref. 270 can be used also for 

E(3) mode. Low coefficient of the pressure dependence of E(3) mode is a result of two 

contributions: a positive one coming from the increase with pressure of the interlayer interaction 

and therefore distance decrease between the atoms, and a negative one coming from the shear 

motion and the TA-like character in this mode. The total may be slightly positive, zero, or slightly 

negative i.e. much less than for other intralayer modes. 

The same explanation concerning weak pressure dependence of the low-frequency Raman 

band was proposed in [275]. Very small pressure coefficient of such mode can be explained by the 

compensation of the decrease in the B-B bond length, which leads to the frequency increase under 

pressure, and the charge delocalization, which tends to depopulate the B2 radical environment and 

thus decrease the B-B bond strength. The same effect can be observed in diatomic molecules under 

the pressure (I2, H2 etc.), where the charge transfer occurs between the space towards to the 



140 
 

intermolecular region, tending to symmetrization of the bonds and eventually leading to the same 

intensity of intra- and intermolecular ones. In other words, the charge density between the layers 

increases with the pressure because of interlayer space decrease and also of the total effective 

number of electrons squeezed out from intralayer space. 

10.4 Conclusions 
Like in the case of B-O system, an X-ray investigation of binary compounds in B-S system is 

rather difficult due to the low Z number of boron and related problems of detection and 

characterizations of these compounds. The r-BS has been chosen as subject of our investigations 

due to very poor data on the physical properties of this promising AIIIBVI layered semiconductor. 

In this chapter we measured the equation of state and explored the stability range of r-BS between 

0 to 42 GPa at room temperature and studied the phonon modes at ambient and under high 

pressures (up to 34 GPa). 

As a result of our HP XRD studies, the equation of state of r-BS has been measured for the 

first time. The bulk modulus and its first pressure derivative are 46.7 GPa and 6.7 respectively 

(according to the Vinet formulation, revealed the lowest χ2 value). The B0 and B0` values have 

been also estimated by ab initio LCAO calculations. The obtained theoretical values differ from 

the experimental ones, due to the calculation error in estimation of interlayer interactions. This 

calculation problem of the layered structures is well known and has been expected. However, the 

using of the experimentally determined first pressure derivative for the fitting of the theoretical 

E(V) data gave us the B0 value rather close to the experimental one. The pressure dependences of 

the lattice parameters of r-BS has been plotted and compared with those of other AIIIBVI layered 

compounds (GaSe, GaS, InSe). According to the comparative analysis of these pressure 

dependencies r-BS has been found to be the most rigid (or “resistant” to the compression in all 

directions) AIIIBVI compound.  

Taking into account the difficulties and the time required for the special XAFS and XRS 

measurements in order to estimate the changes of the B-B and B-S distances and angles between 

the atoms in one layer during compression the special hypothesis/approach has been engaged. We 

supposed that the atoms in the layer do not dramatically change their positions during compression. 

Thus, they can be considered fixed. This hypothesis allowed us to completely describe the layer 

structure change under compression, using our HP XRD data and the B and S atoms positions 

refined previously [154]. The interatomic distances under compression in the layer of r-BS have 

been also estimated with help of ab initio calculations (in which the atoms positions variations was 

permitted). Theoretically estimated bonds pressure dependencies were found to be close to the 

experimental ones, which leads one to the conclusion that the approach/hypothesis proposed above 
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is rather confident. It should be noticed that the linear compressibility of the B-S bonds in r-BS is 

greater than that of the a axis in contrast to other AIIIBVI layered compounds [240,252]. Moreover, 

unlike other AIIIBVI compounds the compressibilities of the B-S bonds in the “top” and in the 

“bottom” of the layer have been found to be different. 

The formation of the HP BS phase around 30 GPa has been observed and described. Due to 

the low quality of the diffraction pattern of the HP phase, only the preliminary refinement of the 

crystal symmetry and lattice parameters has been done. The unit cell of new BS phase has been 

proposed to be cubic with NaCl or CsCl structure (a = 5.086(1) Å at pressure of 29.4 GPa). 

According to arrangement of the diffraction peaks in XRD pattern the CsCl structure seems to be 

the most probable. On other side, only NaCl structure satisfies the condition that the unit cell 

volume per structure unit (in our case it is BS) must decrease at HP phase transition. The HP BS 

equation of state and its parameters have been estimated in 30-42 GPa pressure range. The bulk 

modulus value at 29.4 GPa has been found to be 389.718 GPa. This value has the same order of 

magnitude as bulk modulus values of the high pressure phases of other AIIIBVI layered 

semiconductors studied previously. The estimated B0 value (at zero pressure) is equal to 

160.4 GPa, whereas the estimated V0 is ~156 Å3. 

A phonon study of r-BS by means of Raman and IR spectroscopy techniques at ambient 

pressure and room temperature have been performed for the first time. Thanks to the ab initio 

calculations of the phonon mode frequencies and modes visualization, the assignment of all 

experimentally observed bands to the phonon modes has been provided. The 10B isotope 

substitution effect has been studied in r-BS Raman spectrum. The isotope Raman shifts have been 

explained. The phonon properties of r-BS have been also studied at room temperature and under 

HP up to 34 GPa by means of Raman spectroscopy. Based on the ab initio calculations of the 

phonon frequencies for the reduced unit cell volumes, modes assignment and pressure 

dependencies of the B-S and B-B bonds, the explanation of the phonon modes under compression 

have been proposed. The Grüneisen parameters of all Raman-active phonon modes have been 

calculated. The information retrieved from the study of r-BS phonon properties might be a good 

base for the further optical r-BS studies. 
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11 Studies in B-Se binary system 

According to the literature review presented in Chapter I, the B-Se system resembles the B-S 

system. However all the binary compounds of B-Se system have been synthesized only at ambient 

pressure. Taking into account the similarity of B-S and B-Se systems one might expect the same 

physical properties of the binary compounds of both systems synthesized under extreme 

conditions. 

In this chapter we will provide a description of our preliminary studies of the new compounds 

in B-Se system. From our ex situ HP-HT studies of different ratios of boron and selenium (1:1, 

2:1, 3:1, 6:1, 3:2, 13:1 respectively) in the wide pressure and temperature ranges (up to 15 GPa 

and 2000 K) we did not extract any reliable and confident data about new B-Se compounds. Taking 

this into account, the HP-HT synthesis in LVP in combination with the synchrotron radiation have 

been provided in order to immediately observe in situ the possible metastable phases. Thus, in this 

chapter only our in situ experiments and the obtained results will be described and discussed. 

Different B:Se stoichiometries have been studied: 1:1, 6:1 and 13:1. Based on the results of in situ 

XRD measurements and XRD and Raman measurements at ambient conditions it will be shown 

that we can suppose the formation of a new metastable compound with general formula B1-xSe1-y 

(x < 1, y < 1). However, further detailed in situ and ex situ studies in B-Se system are necessary. 

11.1 Synthesis of the new compounds in B-Se binary system 
11.1.1 Experimental techniques 

Synthesis details 

The HP-HT synthesis of the new compounds in B-Se binary system have been implemented 

using PEP in 3-4 GPa pressure range and at temperatures above 1200°C from amorphous boron 

(Johnson Matthey, 99%) and selenium (Johnson Matthey, spectrographic grade) powders mixed 

in the 1:1, 6:1 and 13:1 molar ratios. Four in situ runs (Run 01, Run 02, Run 03 and Run 04 

correspond to 1:1, 6:1 and 13:1 molar ratios respectively) have been performed at synchrotron 

SOLEIL PSICHE beamline. 

The scheme of the PEP assembly used in our studies is presented in Figure II.4. The mixture 

of fine powders of the amorphous boron and selenium were placed in h-BN capsules and almost 

transparent for X-rays graphite heaters provided a resistive heating (up to 1800°C) of the sample 

area. Taking into account the low Z-number of boron, the special X-ray transparent 10 mm BE 

gaskets have been used. The experiments have been conducted at pressure of 3-4 GPa and 

temperatures ∼1200-1800°C with reaction time of ∼10 min. In Run 01, Run 02 and Run 03 the 
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samples were cooled down by the slow switching off the power and decompressed, whereas in 

Run 04 the sample was thermally quenched and decompressed. 

High pressure X-ray diffraction measurements 

The in situ HP-HT XRD measurements have been implemented at synchrotron SOLEIL 

PSICHE beamline in energy-dispersive mode (white beam with energy spectrum from 15 to 

80 keV) with the fixed angle between the X-ray beam and Ge solid-state detector (SSD). The 

selected angle was equal to 8.041°. The set of beam collimators installed in optic hutch of PSICHE 

beamline (see Figure II.21 and Figure II.26) delivered a required beam profile size and allowed to 

define the detected area and effectively remove the diffraction peaks of PTM and heater. 

 
Figure V.1. The transformation of the EDX pattern (Int.(d-spacing)) in Run 01 to ADX pattern 
(Int.(2θ)) for Cu Kα1 radiation. 

The pressure determination was implemented with help of oil pressure versus sample pressure 

calibration curve. The pressure values obtained from this “external” pressure gauge nicely matched 

with those determined during the experiment using h-BN EoS. The pressure deviation from the set 

pressure value did not exceed 0.05 GPa in the whole pressure range thanks to stable oil pressure 

of automatic pump (Sanchez Technologies). The temperature measurements have been provided 

using the power versus temperature calibration curve. Selenium has been also used as internal 

standard in these measurements as its melting point under compression is well known [276,277]. 

The XRD data acquisition was implemented by SSD with an exposure time of 60 seconds. 

The EDX patterns obtained during the measurements were converted (from Int.(E or d-spacing)) 

to the conventional Int.(2θ) form (for Cu Kα1 radiation) and treated by Powder Cell software. The 

example of such transformation of EDX to ADX pattern is presented in Figure V.1. The lattice 
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parameters and unit cell volume of suppositional “goal” compound were determined by means of 

DICVOL04 and WinPLOTR packages in FullProf software [195-197]. 

Raman measurements at ambient conditions 

Raman spectra of the obtained samples at ambient pressure have been measured using Horiba 

Jobin Yvon HR800 Raman spectrometer (in the 200-2000 cm-1 range). The 632.8 nm line of a He-

Ne laser (10 µm beam spot) has been used for excitation (the laser power is less than 30 mW). A 

single crystal of cubic Si has been used for spectrometer calibration at room temperature. 

11.1.2 Results and discussion 

The in situ experiments in B-Se binary system provided at PSICHE beamline can be roughly 

divided on five main steps: (1) the compression at room temperature, (2) the heating, (3) melting 

of Se, (4) the chemical reaction between B and melted Se at the continuing heating and (5) finally 

slow decrease of temperature (except of Run 04) and pressure. For instance, the steps (1)-(4) in 

Run 01 are presented in Figure V.2. Due to the fact that amorphous boron is almost “invisible” for 

X-rays, only diffraction peaks of Se (and sometimes the peaks of some contaminations, e.g. h-BN) 

have been observed. In Figure V.2 one can see, that initial compression at room temperature led 

to the broadening of the Se diffraction peaks due to crystal lattice distortion (micro-strain of the 

Se grains). However, the further heating releases this micro-strain between the grains and the 

diffraction peaks become narrower and reach almost the same width right before Se melting. After 

melting of Se, at the continuing heating, new diffraction peaks appeared which clearly indicates 

that a chemical reaction underwent. Based on data presented in Ref. 277 no transitions of trigonal 

Se to the tetragonal or monoclinic high-pressure phases (both at > 10 GPa) should be expected at 

the P,T conditions reached in our experiments. Nonetheless, the synthesis conditions allowed us 

to expect β-B formation [29]. 

In Figure V.2 the new peaks which can be presumably attributed to the possible new B-Se 

compounds are marked by the red stars. However, except of the chemical reaction between B and 

Se, the processes of B and Se oxidation happened as well (due to the fact that the sample assembly 

was not isolated from the environment). During the measurements we registered the B2O3 and 

SeO2 formations. According to the phase diagram of B2O3 and SeO2 [123,278], orthorhombic γ-

SeO2 (Pmc21) and hexagonal α-B2O3 (P31) are the most probable phases at these P,T conditions. 

Taking this fact into account, the deviations of stoichiometric ratios of boron and selenium in 

synthesized new B-Se compounds from initial molar ratios (1:1, 6:1, 13:1) should be expected. It 

should be also marked that the formation of the new ternary B-Se-O compounds cannot be 

excluded. 
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Figure V.2. X-ray diffraction patterns acquired in Run 01. The diffraction peaks of Se, β-B, h-BN, 
α-B2O3 and γ-SeO2 are singed. The new peaks appeared after Se melting are marked by the red 
stars. 
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The XRD patterns acquired in all four runs at almost the same conditions are presented in 

Figure V.3. Apart from the diffraction peaks of the by-products, contaminations and initial 

reagents (α-B2O3, γ-SeO2, h-BN, β-B and Se), there are a lot of “new” peaks. The 2θ values of all 

observed “new” peaks in all runs are listed in Table 1. 

Run 01 Run 02 Run 03 Run 04 

 31.24 31.38 31.37 

 32.76 32.88 32.75 

  34.40  

 37.33 37.49 37.59 

   39.01 

46.25    

 48.48 48.53 48.58 

  52.11  

53.54 53.56   

55.11    

57.43 57.36   

58.37 58.65 58.59  

61.22 61.41  61.73 

  62.20  

62.64 62.91   

  64.69  

  66.15  

 67.17 67.41  

   67.99 

 68.81 68.87 68.79 

 71.56   

 73.23   

   73.95 

Table 1. The 2θ values of the “new” peaks appeared after Se melting in XRD patterns of Run 01-
Run 04 presented in Figure V.2. The common “new” peaks for the different runs are marked by 
bold font. 
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Figure V.3. XRD patterns acquired in all runs (Run 01-04) at HP-HT. The diffraction peaks of Se, 
β-B, h-BN, α-B2O3 and γ-SeO2 are singed. The “new” peaks appeared after Se melting are marked 
by the red stars. The common peaks of XRD patterns from different experiments are highlighted 
by the yellow lines. 
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As one can see from Figure V.3 and Table 1, in spite of the fact that the XRD patterns presented 

in Figure V.3 are referred to the different B:Se molar ratios, some of the observed “new” peaks 

are common. In Table 1 and Figure V.3 they are highlighted by the bold font and yellow stripes 

respectively. 

As it has been noted in experimental part, the samples in Run 01-Run 03 have been recovered 

by the slow cooling and pressure release. Unlike these experiments, in Run 04 the sample has been 

quenched by switching off the power, which led to the amorphization of the sample. It should be 

noted that the XRD spectra of the recovered samples in Run 01-Run 03 completely differ from 

ones acquired at HP-HT (see Figure V.4,5,6.). The XRD spectra measured at the ambient 

conditions also contain the diffraction peaks of α-B2O3, γ-SeO2, h-BN, β-B and Se, but the 

positions and the relative intensities of the “new” peaks are different from those observed in XRD 

patterns presented in Figure V.3. Thus, we can do the rough supposition that the “new” diffraction 

peaks observed at ambient and under extreme conditions correspond to the different phases or even 

to the different compounds. 

 
Figure V.4. XRD patterns acquired under extreme and ambient conditions (AP,RT) in Run 01. 
The diffraction peaks of Se, β-B, h-BN, α-B2O3 and γ-SeO2 are singed. The “new” peaks appeared 
after Se melting are marked by the red stars. 
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Figure V.5. XRD patterns acquired under extreme and ambient conditions (AP,RT) in Run 02. 
The diffraction peaks of Se, β-B, h-BN, α-B2O3 and γ-SeO2 are singed. The “new” peaks appeared 
after Se melting are marked by the red stars. 

 
Figure V.6. XRD patterns acquired under extreme and ambient conditions (AP,RT) in Run 03. 
The diffraction peaks of Se, β-B, h-BN, α-B2O3 and γ-SeO2 are singed. The “new” peaks appeared 
after Se melting are marked by the red stars. 
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We also compared the XRD patterns measured at ambient conditions in order to find the common 

“new” peaks (see Figure V.7). 

 
Figure V.7. XRD patterns acquired in Run 01-03 at ambient conditions. The diffraction peaks of 
Se, β-B, h-BN, α-B2O3 and γ-SeO2 are singed. The “new” peaks appeared after Se melting are 
marked by the red stars. The common peaks of XRD patterns from different experiments are 
highlighted by the yellow lines. The hkl indexes of common “new“ peaks for orthorhombic unit 
cell have been proposed by primary/rough unit cell refinement/search. 
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As one can see from Figure V.7, the 2θ values (or positions) of almost all of the “new” peaks, 

which can be supposedly attributed to the new B-Se or B-Se-O compound, nicely coincide (see 

Table 2). 

Run 01 Run 02 Run 03 Proposed hkl 
indexes 

32.66 32.40 32.65 310 
 38.70   
 39.75   

40.44    
41.79  41.72  
44.07  44.63  
52.78 52.78 52.83 140 
56.85 56.91 56.87 430 
60.49 60.27 60.49 202 (or 511) 
62.68 63.32 62.61 241 
64.23 64.32 64.31 431 
76.34    

Table 2. The 2θ values of the “new” peaks in XRD patterns of the recovered samples in Run 01-
Run 03. The common “new” peaks for all three runs are marked by bold font. The hkl indexes of 
common “new“ peaks for orthorhombic unit cell have been proposed by primary/rough unit cell 
refinement/search. 

The recovered samples have been also studied by Raman spectroscopy in 200-2500 cm-1 

frequency range at room temperature. For example, the Raman spectra of Run 02 and Run 03 are 

presented in Figure V.8. It should be noticed that the Raman spectra have been measured two 

weeks after the synthesis (Figure V.8 a) and then after ~11 months (Figure V.8 b). 
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Figure V.8. The Raman spectra of the samples of Run 02 (red) and Run 03 (black) at ambient 
conditions: a) measured 2 weeks after experiments; b) measured 11 months after experiments. The 
phonon frequencies of the most intensive bands are signed. The Raman bands of Se, β-B, SeO2 
and β-B2O3 are signed. 

As one can see in Figure V.8 a the Raman spectrum of the sample recovered from Run 02 contains 

three bands at 235.83, 1367.91 and 1596.67 cm-1. According to Ref. 279 the Raman band at 

235.83 cm-1 should be referred to α-Se. Thus the presumable B-Se or B-Se-O compound obtained 

in Run 02 has only two Raman bands. In the Raman spectrum of the sample recovered from Run 03 

one can find six bands at 279.05, 301.95, 1083.55, 1366.59, 1582.94 and 1619.27 cm-1. Unlike the 

Raman spectrum of the sample of Run 02 no bands regarding to α-Se have been found. On other 

hand, according to the literature review the bands at 279.05, 301.95, 1083.55 and 1582.94 cm-1 

can be attributed to the Raman bands of β-B [72], SeO2 [278] and α-B2O3 [225]. Thus, as well as 

in Run 02 only two bands at 1366.59 and 1619.27 cm-1 might refer to the possible B-Se or B-Se-

O compound. It should be noticed that the comparison of two Raman spectra reveals the common 

bands at ~1367 and ~1600 cm-1. Also it should be marked that in both spectra the Raman band at 

~1367 cm-1 is the most intensive. The Raman spectra measured 11 months after the experiments 

(see Figure V.8 b) did not reveal any peaks around 1367 and ~1600 cm-1 and on the contrary 

contain the bands of Se and β-B. This fact indicates that assumed B-Se or B-Se-O compound is 

probably metastable and decomposes at ambient conditions. 

Thus, taking into account all observations described above the following 

suppositions/conclusions can be made: 

1) In spite of the fact that in Figure V.3 some of the common “new” peaks have been 

observed, it seems very likely that in Run 01-04 (with the different starting B:Se ratios) at 
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almost the same HP-HT conditions the different products (presumably the new B-Se or B-

Se-O compounds) have been synthesized; 

2) Based on the similar common “new” peaks which cannot be attributed to the by products 

(h-BN, B2O3, SeO2) or to the starting reagents (B or Se) in the XRD patterns measured at 

ambient conditions right after temperature and pressure release (in all runs except of 

Run 04) we can suppose that these “new” peaks might be referred to the presumable new 

B-Se or B-Se-O compound. This supposition is supported by the similarity of the Raman 

spectra of the recovered samples. Thus, we can conclude that the different presumable new 

compounds (or the mixture of them) observed at HP-HT are highly metastable and during 

decompression and cooling rapidly transformed to the common phase/compound; 

3) According to the Raman measurements have been made during the year after the 

experiments, the obtained presumably new B-Se or B-Se-O compound is metastable at 

ambient conditions. 

The question of the stoichiometry of the presumable B-Se or B-Se-O compound obtained at 

downstroke and temperature release is still open. In order to investigate its chemical composition 

all of the recovered samples were analyzed with help of scanning electron microscope (SEM) 

permitting to provide the energy-dispersive X-ray spectroscopy (EDS). EDS is one of the most 

powerful techniques of the elemental analysis. In order to obtain the reasonable data the recovered 

samples have been specially polished. Nonetheless, according to these measurements no B-Se or 

B-Se-O compounds have not been found (only the separate B and Se have been observed), which 

nicely matches with the observations made in Raman studies. Hence, it can be rather confidently 

deduced that the probable new compound registered right after decompression is also metastable 

and decomposes after into B and Se. Herein it should be noticed that the SEM measurements have 

been performed four months after the HP-HT experiments. 

In spite of the fact that elemental analysis did not give us any information about the chemical 

composition of the presumable new compound obtained after HP-HT synthesis, some suppositions 

about its stoichiometry can be done. Herein it should be emphasized that all our suppositions have 

been done for the presumably new binary B-Se compound. As it has been mentioned above the 

molar ratios of B and Se in starting mixtures varied from 1:1 to 13:1. Hence, we might assume, 

that there is no dramatic correlation between boron content in the starting mixture and in the 

product of HP-HT synthesis, which leads us to the supposition about 1:1 stoichiometry of B and 

Se in final product. On other hand, the formation of the by-products as, for example α-B2O3 and 

γ-SeO2, have been observed as well. Moreover almost all of the XRD patterns (see Figure V.3÷7) 

revealed the presence of unreacted Se and β-B. Taking this into account we can expect the 

deviation from the 1:1 stoichiometry. Thus, based on all suppositions and observations stated 
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above, we might suppose that the general formula of obtained new B-Se compound can be B1-xSe1-

y, where 0<x,y<1. 

As far as we supposed that the stable phase of presumably new B-Se or B-Se-O compound 

forms only at downstroke and slow temperature decrease we provided the primary/rough unit cell 

refinement/search using the XRD spectra (and only common “new” diffraction peaks) presented 

in Figure V.7 using DICVOL04 and WinPLOTR packages in FullProf software. The search have 

been implemented for all crystal symmetries except of triclinic one. According these coarse 

estimations the observed “new” peaks can be attributed to the hexagonal, tetragonal, orthorhombic 

and monoclinic crystal symmetries. However in case of orthorhombic crystal symmetry rather 

close lattice parameters have been obtained for the samples of all runs (see Table 3). 

Experiment a, Å b, Å c, Å V, Å3 
Run 01 8.9(2) 7.1(1) 3.1(2) 200.1 
Run 02 8.7(2) 7.1(1) 3.3(1) 202.5 
Run 03 8.9(1) 7.1(1) 3.2(1) 203.7 

Table 3. The lattice parameters and the unit cell volumes of the samples recovered from Run 01-
Run 03 assumed for orthorhombic crystal symmetry. 

The unit cell of the presumable orthorhombic B-Se or B-Se-O compound is less than the sum of 

the unit cell volumes of β-B (~262.2 Å3) and trigonal Se (~78.3 Å3). 

11.2 Conclusions 
As it has been noticed in Chapter I, the B-Se system is rather poorly studied, especially under 

extreme conditions, first of all due to such difficulties in its study, as: tendency towards 

vitrification, sensitivity to hydrolysis, high-temperature synthesis conditions, leading to 

contamination by capsule or crucible material, etc. Thus, the synthesis and characterization of the 

new binary compounds in B-Se system is rather difficult and time consuming. 

In this chapter we described our preliminary studies in B-Se system. The in situ HP-HT 

synthesis have been provided in PEP at synchrotron SOLEIL PSICHE beamline, using the B and 

Se powders mixed in different ratios (1:1, 6:1 and 13:1). The results of XRD measurements and 

Raman studies of samples obtained in these synthesis clearly indicate the new binary B-Se or 

ternary B-Se-O compound formation. However, it should be underlined here, that the obtained 

results are not enough to firmly state the structure and the composition/stoichiometry of this 

compound. The elemental analysis provided four months later did not reveal any B-Se or B-Se-O 

compound. The Raman measurements performed 11 months later also did not reveal the bands 

which can be attributed to the new compound. Thus, the conclusion about the metastability at 

ambient conditions of the obtained probable new compound can be done. The similar XRD and 

Raman data of the samples obtained from the HP-HT synthesis with different B:Se molar ratios 
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indicate the absence of the direct connection between the reagents and the product stoichiometries. 

Considering only the probable new binary B-Se compound we assumed the possible formula of 

the new compound: B1-xSe1-y, where 0<x,y<1. According to the coarse structure fitting/search, the 

structure of the presumably new compound might possibly belong to the orthorhombic syngony. 

In order to confidently clarify chemical composition (consequently the stoichiometry), 

stability, structure and physical properties of the possible new compound obtained in this work the 

further more deep and detailed investigations are needed. 
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12 Conclusions and perspectives 

As it was mentioned in the introduction of this thesis, the boron compounds synthesized under 

extreme conditions (HP-HT) have raised the interest of the researches from various scientific fields 

due to their chemical inertness, extreme mechanical (wear resistance, hardness, etc.) and physical 

(thermosconductivity/ thermoelectricity, conductivity/semiconductivity, neutron scattering length, 

etc.) properties and the opportunity for various applications in industry. In spite of the constantly 

growing interest, there are still many ill-studied groups/systems of boron compounds which seem 

rather promising and requiring a deeper and detailed investigation, as for example boron 

chalcogenides. The synthesis and investigation of boron chalcogenides at ambient and extreme 

conditions is rather challenging due to diverse chemistry of boron and therefore a big number of 

possible contaminations, low Z number of boron and hence the need of precise and powerful 

analytical equipment (as for example the high brilliant synchrotron radiation), etc. 

Presented in this thesis is a detailed experimental study of the boron chalcogenides properties 

at ambient and under extreme conditions. Due to the time constraints of the present work we chose 

one boron chalcogenide from each binary system (B-O and B-S) with the most promising 

properties: β-B2O3 and r-BS. These compounds have been studied using different experimental 

analytical techniques like XRD (including in situ synchrotron HP XRD measurements), Raman 

scattering and IR transmission spectroscopy coupled with ab initio LCAO calculations. It should 

be noted that various high pressure apparatus (PEP, TTP, MAP, MDAC) have been employed for 

β-B2O3 and r-BS synthesis and in situ properties investigations. In this framework, the preliminary 

synthesis of a new compound in B-Se system at extreme conditions have been performed at 

PSICHE beamline of synchrotron SOLEIL. 

B-O system 

The high-pressure phase of boron (II) oxide (β-B2O3) has been obtained from HP-HT synthesis 

in LVP (TTP). The structure and phase purity of β-B2O3 have been confirmed using powder XRD. 

In spite of the fact that, due to the outstanding hardness (~16 GPa) β-B2O3 has been studied before 

[93,111,113,115-117,121,123-125], the following additional studies on its properties have been 

performed: 

1) The refinement of the EoS of β-B2O3, as the previous report [111] presented the EoS data 

of downstroke in pressure range from 42 to 12 GPa, lacking the low pressure range; 

2) The detailed investigation of β-B2O3 phonon nature at ambient and under extreme 

conditions. 
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Thanks to our studies on equation of state we obtained a new bulk modulus (B0) and its first 

pressure derivative (B0`) values, which slightly differed from ones reported before [111]. The 

measurements accuracy provided in our research are significantly more accurate than those done 

Nieto-Sanz et all. The ab initio LCAO calculations performed for β-B2O3 at zero temperature gave 

rather close B0 and B0` values to the experimental ones. The close B0 and B0` parameters obtained 

in us and Nieto-Sanz et all. allowed us to assume that two datasets of these studies can be 

considered as the common/whole one. Thus, we calculated the bulk modulus value of β-B2O3 in 

0-42 GPa pressure range. The pressure dependencies of the lattice parameters, B-O distances and 

O-B-O angles in β-B2O3 have been also studied and described. 

A complete phonon study of β-B2O3 by means of Raman and IR spectroscopies at ambient 

pressure and room temperature has been performed. The implemented ab initio calculations of the 

phonon mode frequencies and modes visualization permitted us to assign the experimentally 

observed bands to the phonon modes for the first time. Moreover, the effect of 10B isotope 

substitution in β-B2O3 Raman spectrum has been studied and described. In situ HP Raman 

measurements coupled with ab initio calculations of the phonon frequencies for the reduced unit 

cell volumes permitted us to completely describe the phonon properties of β-B2O3 up to 46 GPa. 

Thus, in our work, new data, essential for the further optical and phonon studies information about 

structure and phonon properties of β-B2O3 at ambient and under high pressures have been obtained. 

Concerning some future perspectives for β-B2O3 investigations, the following 

experiments/studies shedding more light on the compound properties might be proposed: 

1) The hardness measurements in monocrystal β-B2O3 along a, b and c directions; 

2) The Brillouin spectroscopy measurements, permitting to determine the elastic constants, 

which are very important characteristics, especially for hard materials; 

3) The electronic structure and optical properties studies at ambient and under high pressures 

should be performed, as so far there is only one theoretical work [120] devoted to this 

important theme; 

4) More generally, an attempt for the synthesis of the hypothetical γ-B2O3 [93] at HP-HT 

conditions should be made. 

There is no doubt that the further scientific work according to the directions listed above will be 

performed. 

B-S system 

Rhombohedral boron monosulfide (r-BS) has been synthesized by us at HP-HT conditions 

using different LVPs (MAP and TTP). The structure and phase purity of r-BS have been confirmed 

using powder XRD. Rhombohedral BS belongs to the AIIIBVI layered semiconductors family. The 

many AIIIBVI compounds (e.g. InS, InSe, GaSe, etc.) have been already widely studied and some 
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variants of technical application, as materials of solid state batteries, non-linear optics or solar cells 

have been proposed [238-240]. Unlike these materials, r-BS is rather ill studied and there is only 

one work [154] devoted to the synthesis of r-BS and the phase diagram of B-S system. Thus, we 

have concluded that complete and detailed studies on the following directions were needed: 

1) The exploring of the r-BS phase stability in a wide pressure range; 

2) The study of phonon properties of r-BS at ambient and under high pressures. 

As a result of our HP XRD studies, the parameters of EoS parameters of r-BS have been 

obtained for the first time. The bulk modulus has been determined to be equal to 48.4 GPa, which 

is the highest B0 value among all AIIIBVI layered semiconductors. The B0 and B0` values have been 

also estimated by the ab initio LCAO calculations. However, the provided ab initio calculations 

were not highly precise due to the complicated nature of the interlayer interactions. The anisotropy 

of the r-BS unit cell compression and even of the one layer compression has been observed and 

described in details. According to our work relatively high bulk modulus of r-BS can be explained 

by the more rigid layers and intralayer space compared to the other AIIIBVI compounds. 

We observed the formation of the HP BS phase around 30 GPa. The new BS phase likely 

belongs to the cubic syngony with two most probable structure motives: NaCl (Fm3̅m) or CsCl 

(Pm3̅m). However, due to the low quality of the XRD data only the lattice parameters of the 

hypothetical BS cubic phase have been refined. The EoS parameters of the new phase have been 

estimated in 30-42 GPa pressure range. The B0 value has been estimated to be 204.4 GPa. 

In our work, the phonon study of r-BS using Raman and IR spectroscopy techniques at 

ambient pressure and room temperature have been performed for the first time. Based on the results 

of ab initio calculations of the phonon mode frequencies and modes visualization, the modes 

assignment has been provided. The isotope substitution effect of 10B in r-BS Raman spectrum has 

been studied and described. The phonon properties of r-BS have been also studied at room 

temperature and under HP up to 34 GPa by means of Raman spectroscopy. Using the ab initio 

calculations of the phonon frequencies for the reduced unit cell volumes, modes assignment and 

pressure dependencies of the B-S and B-B bonds, an explanation of the phonon modes behavior 

under compression has been proposed. 

The experiments performed in this work might be further continued with the following studies 

on: 

1) Investigation of the phase stability of the new “pseudo-cubic” BS phase in a wide pressure 

and temperature ranges; 

2) In situ investigations of the physical properties of the “pseudo-cubic” BS phase combined 

with the theoretical predictions; 
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3) The electronic structure studies of r-BS at ambient and under high pressures, coupled with 

theoretical prediction. It would be quite interesting to find out the way of manipulation of 

the electrical properties (thanks to high structural anisotropy) by applying the pressure and 

temperature; 

4) Investigation of r-BS by XRD and Raman techniques at low temperatures in order to 

completely study the nature of the interlayer interactions and possibly to explore the low-

temperature phase transitions. 

As well as in case of boron (II) oxide the further more detailed investigations of the r-BS and new 

high-pressure phase properties and structure particularities will be continued. 

B-Se system 

According to the literature review in the Chapter I devoted to B-Se system there are no binary 

compounds obtained at high pressures. Thus, in current work we have done the primary attempts 

of HP-HT synthesis of new compounds in B-Se system. The in situ XRD measurements have been 

provided at PSICHE beamline of synchrotron SOLEIL. The 1:1, 6:1 and 13:1 molar ratios of boron 

and selenium have been tested. The diffraction patterns measured in situ at HP-HT and on the 

sample recovery revealed common new “unattributed” peaks indicating about the presumably new 

B-Se or B-Se-O compound formation. The common bands observed in the Raman spectra of the 

recovered samples are also indicating about one general compound formation. Thus we deduced 

that there is no distinct correlation between reagent molar ratios and the products of HP-HT 

reaction. The elemental analysis (using SEM) provided few months after experiments did not 

reveal any B-Se or B-Se-O compound. The Raman measurements of the recovered samples 

performed almost one year after experiments also did not reveal any “unattributed” bands, which 

have been observed before. Based on these facts, we deduced that the obtained presumably new 

B-Se or B-Se-O compound is metastable at ambient conditions. Considering only the probable 

binary B-Se compound, in attempts to propose its general formula we assumed the possible 

formula: B1-xSe1-y, where 0<x,y<1. According to the coarse structure fitting/search, the structure 

of presumably new compound might possibly belong to the orthorhombic syngony. 

There is no doubt that these primary results require further complete and detailed 

investigations. The next steps in investigation of B-Se should be: 

1) Preparation of the PEP assembly in the inert atmosphere (e.g. under Ar or Ne flow using 

a glove box) in order to eliminate oxygen from the starting reagents (B and Se powders); 

2) In situ HT-HP studies of the same molar ratios of B and Se in a wider pressure range 

(possibly using a MAP); 

3) Investigation of the P,T conditions of the phase stability of the compound synthesized in 

our experiments; 
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4) The full structure refinement (Rietveld refinement) of this compound and the chemical 

analysis (SEM, STEM) right after recovering; 

5) Providing that there are the P,T conditions of stability of the new compound obtained in 

our preliminary experiments, investigation of its electronic and mechanical properties. 

The detailed in situ and ex situ investigation of the B-Se system under extreme conditions is 

planned in 2016. 
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Résumé 

Cette thèse porte sur l'étude des chalcogénures de bore sous conditions extrêmes. Après un 

bref examen de la littérature (Chapitre I) sur le bore et ses composés sous haute pression (HP), la 

partie expérimentale (Chapitre II) donne une description des appareils HP utilisés dans ce travail 

de thèse. Les techniques d'analyses employées sont décrites ainsi que les grands principes des 

calculs théoriques ab initio utilisés. 

La partie suivante est consacrée à β-B2O3 et r-BS. Le chapitre III présente les résultats de 

diffraction X in situ à HP et les mesures de phonons (Raman et IR) de β-B2O3 à température 

ambiante. Les données expérimentales ont été examinées et complétées par des calculs ab initio. 

Avec le jeu de données obtenues, les descriptions complètes des modifications sous pression de la 

structure de β-B2O3 et du comportement des phonons en compression à température ambiante ont 

été faites. 

Le chapitre IV présente les résultats de diffraction X in situ à HP et de spectroscopie 

vibrationnelle sur r-BS à température ambiante. En combinaison avec les calculs théoriques, la 

structure et la nature des phonons de r-BS sur une large plage de pression à température ambiante 

sont décrites. En outre, la formation d'une nouvelle phase HP métastable de BS est présentée et sa 

structure probable ainsi que son équation d’état sont discutés. 

Le chapitre V concerne la première étude in situ de diffraction X sous HP-HT du système B-

Se. Selon les résultats de diffraction X et des mesures Raman effectuées sur les échantillons 

récupérés, un nouveau composé a été synthétisé. Ce composé est métastable à l’ambiante. Sa 

composition chimique et sa structure probable sont discutées. 

 

Mots clés: chalcogénures de bore, conditions extrêmes, haute pression, diffraction X. 

  



Cherednichenko Kirill – Thèse de doctorat - 2015 

 
 

Abstract 

This thesis deals with the study of the boron chalcogenides under extreme conditions. After a 

short review of boron and boron compounds under extreme conditions (Chapter I), the 

experimental part (Chapter II) provides a brief description of the high-pressure devices used in this 

PhD work. The employed analytical techniques are described as well as the main principles of the 

performed ab initio theoretical calculations. 

The following part is devoted to our experimental and theoretical studies of β-B2O3 and r-BS. 

Chapter III presents the results of in situ high pressure XRD and phonon measurements (Raman 

and IR) of β-B2O3 at room temperature. The experimental data were considered and completed 

with results of ab initio calculations. Based on the total obtained dataset the complete description 

of β-B2O3 structure change and phonon behavior under compression at room temperature are done. 

Chapter IV contains the results of in situ high pressure XRD and vibrational spectroscopy 

studies on r-BS at room temperature. In combination with results of theoretical calculations the 

structure and phonon nature of r-BS in a wide pressure range at ambient temperature are described. 

Also, the formation of a new metastable high-pressure phase of BS is described and its probable 

structure and EoS are discussed. 

The last part (Chapter V) concerns the primary in situ XRD HP-HT studies in B-Se system. 

Based on the results of XRD and Raman measurements of the recovered samples, a new compound 

was synthesized. This compound was found to be metastable at ambient conditions. Its probable 

chemical composition and structure are discussed. 

 

Keywords: boron chalcogenides, extreme conditions, high pressure, X-ray diffraction. 


