
HAL Id: tel-01661302
https://theses.hal.science/tel-01661302v1
Submitted on 11 Dec 2017 (v1), last revised 11 Dec 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information-Centric Networking, A natural design for
IoT applications?

Maroua Meddeb

To cite this version:
Maroua Meddeb. Information-Centric Networking, A natural design for IoT applications?. Other.
INSA de Toulouse, 2017. English. �NNT : 2017ISAT0013�. �tel-01661302v1�

https://theses.hal.science/tel-01661302v1
https://hal.archives-ouvertes.fr

Abstract

The Internet of Things (IoT) is commonly perceived as the extension of the current
Internet to our physical world. It interconnects an unprecedented number of sen-
sors/actuators, referred as things, to the Internet. Facing the important challenges
imposed by devices heterogeneity and the tremendous generated traffic, the current In-
ternet protocol suite has reached its limits. The Information-Centric Networking (ICN)
has recently received a lot of attention as a potential Internet architecture to be adopted
in an IoT ecosystem.

The ICN paradigm is shaping the foreseen future Internet architecture by focusing
on the data itself rather than its hosting location. It is a shift from a host-centric
communication model to a content-centric one supporting among others unique and
location-independent content names, in-network caching and name-based routing. By
leveraging the easy data access, and reducing both the retrieval delay and the load on the
data producer, the ICN can be a viable framework to support the IoT, interconnecting
billions of heterogeneous constrained objects. Among several ICN architectures, the
Named Data Networking (NDN) is considered as a suitable ICN architecture for IoT
systems.

Nevertheless, new issues have emerged slowing down the ambitions besides using the
ICN paradigm in IoT environments. In fact, we have identified three major challenges.
Since IoT devices are usually resource-constrained with harsh limitations on energy,
memory and processing power, the adopted in-network caching techniques should be
optimized. Furthermore, IoT data are transient and frequently updated by the producer
which imposes stringent requirements to maintain cached data freshness. Finally, in
IoT scenario, devices are frequently mobile and IoT applications require keeping data
continuity.

In this thesis, we propose a caching strategy that considers devices constraints. Then,
we introduce a novel cache freshness mechanism to monitor the validity of cached con-
tents in an IoT environment. Furthermore, to improve caching efficiency, we also propose
a cache replacement policy that targets to raise the system performances and maintain
data freshness. Finally, we introduce a novel name-based routing for NDN/IoT networks
to support the producer mobility.

We simulate and compare our proposals to several relevant schemes under a real
traffic IoT network. Our schemes exhibit good system performances in terms of hop re-
duction ratio, server hit reduction ratio, response latency and packet loss, yet it provides

2

a low cache cost and significantly improves the content validity.

Keywords: ICN, NDN, IoT, caching, cache freshness, cache replacement, routing, for-
warding, mobility

Résumé

L’Internet des Objets (IdO) est généralement perçu comme l’extension de l’Internet
actuel à notre monde physique. Il interreconnecte à l’Internet un très grand nombre
d’objects: essentiellement des capteurs et des actionneurs. Face aux importants défis
imposés par l’hétérogénéité des dispositifs et l’importance des trafics générés, la pile
protocolaire actuelle va atteindre ses limites. Le réseau centré sur l’information (ICN)
a récemment reçu beaucoup d’attention comme une nouvelle architecture Internet qui a
un grand potentiel pour être adoptée par l’IdO.

Le paradigme ICN pourrait former la future architecture Internet qui s’est centrée sur
les données elles-mêmes plutôt que sur leurs emplacements dans le réseau. Il s’agit d’un
passage d’un modèle de communication centré sur l’hôte vers un système centré sur le
contenu en se basant sur des noms de contenu uniques et indépendants de la localisation,
la mise en cache dans le réseau et le routage basé sur les noms. Grâce à ses avantages,
l’ICN peut être un framework viable pour l’IdO, interconnectant des milliards d’objets
contraints hétérogènes. En effet, l’ICN permet l’accès facile aux données et réduit à la
fois le délai de récupération et la charge des requêtes sur les producteurs de données.
Parmi plusieurs architectures ICN, le réseau de données nommées (NDN) est considéré
comme l’architecture ICN appropriée pour les systèmes IdO.

Néanmoins, de nouveaux problèmes ont apparu et s’opposent aux ambitions visées
par l’utilisation du paradigme ICN dans les environnements IdO. En fait, nous avons
identifié trois défis majeurs. Étant donné que les périphériques IdO ont habituellement
des contraintes de ressources avec des limitations sévères en terme d’énergie, de la mé-
moire et de la puissance de traitement, les techniques de mise en cache en réseau doivent
être optimisées. En outre, les données IdO sont transitoires et sont régulièrement mises
à jour par les producteurs, ce qui impose des exigences strictes pour maintenir la co-
hérence des données mises en cache. Enfin, dans un scénario IdO, les objets sont souvent
mobiles et nécessitent des stratégies pour maintenir leurs accessibilités.

Dans cette thèse, nous proposons une stratégie de mise en cache qui prend en compte
les contraintes des périphériques. Ensuite, nous présentons un nouveau mécanisme de
cohérence de cache pour surveiller la validité des contenus mis en cache dans un environ-
nement IdO. En outre, pour améliorer l’efficacité de la mise en cache, nous proposons
également une politique de remplacement du cache qui vise à améliorer les performances
du système et à maintenir la validité des données. Enfin, nous introduisons un nou-
veau routage basé sur les noms pour les réseaux NDN/IdO afin de prendre en charge la

4

mobilité des producteurs.
Nous simulons et comparons nos propositions à plusieurs propositions pertinentes

sous un réseau IdO de trafic réel. Nos contributions présentent de bonnes performances
du système en termes de taux de réduction du chemin parcouru par les requêtes, de taux
de réduction du nombre des requêtes satisfaites par les serveur, du délai de la réponse et
de perte des paquets, de plus, la stratégie de mise en cache offre un faible coût de cache
et finalement la validité du contenu est considérablement améliorée grâce au mécanisme
de cohérence.

Mots clés : ICN, NDN, IdO, la mise en cache, la cohérence des donnée, le remplacement
de cache, routage, transmission, mobilité

Contents

1 Introduction 15

I General context and state of the art 23

2 Information-Centric IoT Networks 25
2.1 Introduction . 25
2.2 The Internet evolution . 26
2.3 Information-Centric Networking . 27

2.3.1 Information Naming . 27
2.3.2 Routing . 28
2.3.3 Caching and storing . 30
2.3.4 Mobility . 31

2.4 The vision of Internet of Things (IoT) . 31
2.4.1 IoT under the TCP/IP stack . 32
2.4.2 IoT standardization effort . 32

2.5 Which ICN architecture for IoT? . 34
2.5.1 ICN architectures . 34

2.5.1.1 Data-Oriented Network Architecture (DONA) 35
2.5.1.2 Publish-Subscribe Internet Routing Paradigm (PSIRP) . 35
2.5.1.3 COntent Mediator architecture for content-aware nET-

working (COMET) . 36
2.5.1.4 Scalable and Adaptive Internet Solutions (SAIL) 36
2.5.1.5 Content Centric Networking (CCN) 37
2.5.1.6 CONVERGENCE . 37
2.5.1.7 Mobility First . 38

2.5.2 IoT fundamental requirements . 38
2.5.3 ICN in IoT environment: suitability analysis 40
2.5.4 NDN for IoT . 40

2.6 Conclusion . 43

3 State of the art 45
3.1 Introduction . 45

6 Contents

3.2 Information-Centric Networking for Internet of Things applications 45
3.3 In-network caching . 47
3.4 Cache freshness . 49
3.5 Cache replacement policies . 51
3.6 Mobility in ICN . 53

3.6.1 Mobility management in NDN . 53
3.6.2 Proposals for producer mobility issue in NDN 54

3.6.2.1 Location Resolution approach 54
3.6.2.2 Triangular approach . 55
3.6.2.3 Locator/identifier separation approach 56
3.6.2.4 Routing-based approach 57

3.7 Conclusion . 58

II Contributions and Results 59

4 Caching strategy for NDN-based IoT networks 61
4.1 Introduction . 61
4.2 A focus on NDN layer . 62
4.3 Caching techniques . 64

4.3.1 Cache placement selection . 64
4.3.2 Cache decision policies . 65

4.4 Caching strategy assumptions . 67
4.5 Consumer-cache caching strategy . 68
4.6 An example using the consumer-cache strategy under NDN/IoT networks 70
4.7 The cache cost . 70
4.8 Conclusion . 73

5 Freshness-aware in-network caching in NDN-based IoT networks 75
5.1 Introduction . 75
5.2 Analyze and prediction model . 76

5.2.1 The IoT traffic patterns . 76
5.2.2 Prediction model . 77
5.2.3 Autoregressive Moving Average model 78

5.2.3.1 Data collection . 79
5.2.3.2 Calculation of ARMA parameters 81

5.3 Event-based freshness mechanism . 83

Contents 7

5.3.1 Event-based freshness algorithm 83
5.3.2 Example with event-based freshness mechanism 85

5.4 Least Fresh First cache replacement policy 86
5.4.1 LFF algorithm . 86
5.4.2 Example with LFF policy . 87

5.5 Conclusion . 88

6 Adaptive Forwarding for Efficient Mobility Support in NDN-based IoT
networks 89
6.1 Introduction . 89
6.2 Which approach to handle producer mobility in NDN-based IoT networks? 90
6.3 Routing and Forwarding planes in NDN 92

6.3.1 Existing studies on routing plane 94
6.3.2 Existing studies on forwarding plane 95

6.4 AFIRM: Adaptive Forwarding based lInk Recovery for efficient Mobility
support . 96
6.4.1 FIBs construction . 96
6.4.2 Link recovery . 97
6.4.3 Example with AFIRM algorithm 100

6.5 Conclusion . 102

7 Performance Evaluation 103
7.1 Introduction . 103
7.2 Simulation setup . 103

7.2.1 Topology . 104
7.2.2 Content catalog . 106
7.2.3 Parameters configuration . 107

7.3 Evaluation metrics . 107
7.4 Simulation results . 109

7.4.1 Static scenario . 109
7.4.1.1 Consumer-cache caching strategy results 109
7.4.1.2 Event-based mechanism results 114
7.4.1.3 Least Fresh First cache replacement policy results 116

7.4.2 Dynamic scenario . 120
7.5 Conclusion . 122

8 Conclusion and perspectives 123

8 Contents

Bibliography 129

List of publications

International Journals

• M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, Named Data Network-
ing: A promising architecture for the Internet of things (IoT), Journal on Semantic
Web and Information Systems, 2017.

• M. Meddeb, A. Dhraief, A. Belghith, T. Monteil , K. Drira, Cache freshness in
Named Data Networking of Internet of things, The Computer Journal, 2017.(Minor
Revision)

• M. Meddeb, A. Dhraief, A. Belghith, T. Monteil , K. Drira, AFIRM: Adaptive
Forwarding based Link Recovery for Mobility Support in NDN/IoT networks, Sub-
mitted to Future Generation Computer Systems, 2017.

• M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, The Least Fresh First
Cache Replacement Policy for NDN/IoT Networks, Submitted to Transactions on
Emerging Telecommunications Technologies, 2017.

International Conferences

• M. Meddeb, M. Ben Alaya, T. Monteil, A. Dhraief, and K. Drira. M2m platform
with autonomic device management service. In ANT/SEIT-Procedia Computer
Science, volume 32, pages 1063-1070, Hasselt, Belgium, 2014. Elsevier.

• M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, Cache Coherence in
Machine-to-Machine Information Centric Networks, 40th Annual IEEE Conference
on Local Computer Networks, Florida, USA, 2015.

• M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, Producer Mobility sup-
port in Named Data Internet of Things Network. ANT/SEIT - Procedia Computer
Science, Madeira, Portugal, 2017. Elsevier.

• M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, How to cache in
ICN/IoT networks?. 14th ACS/IEEE International Conference on Computer Sys-
tems and Applications, Hammamat, Tunisie, 2017.

List of Figures

2.1 Routing approaches . 29
2.2 In-network caching in ICN . 30
2.3 IoT standardization effort . 33
2.4 Timeline of key ICN milestones . 34
2.5 Forwarding operations in NDN . 42

3.1 Mobility management in NDN/IoT . 54
3.2 Location Resolution approach . 55
3.3 Triangular approach . 56
3.4 Locator/identifier separation approach . 56
3.5 Routing-based approach . 57

4.1 NDN Layer . 63
4.2 Cache placement . 64
4.3 In-network caching strategies . 66
4.4 An example with a simple path . 70
4.5 An example with the NDN architecture using the consumer-cache caching

strategy . 71

5.1 The stationarity of the time series . 79
5.2 Time series model . 80
5.3 An example with the NDN architecture using the event-based freshness

mechanism . 86
5.4 An example with the NDN architecture using LFF policy 88

6.1 The NDN Layer . 93
6.2 AFIRM algorithm: FIBs construction phase 98
6.3 AFIRM algorithm: Link recovery after mobility 100
6.4 AFIRM example: FIBs construction phase 101
6.5 AFIRM example: Link recovery after mobility 102

7.1 Transit-Stub topology model . 105
7.2 Real Transit-Stub topology . 105
7.3 ADREAM building . 106

12 List of Figures

7.4 System performances for in-network caching 110
7.5 Number of evictions . 111
7.6 Global cache cost . 112
7.7 Validity % with freshness check mechanisms 115
7.8 System performances with freshness mechanisms 116
7.9 System performances for cache replacement policies 117
7.10 Validity % with cache replacement policies 119
7.11 Mobility support results . 121

List of Tables

2.1 Comparative table . 41
2.2 Main IoT requirements and native NDN support 43

3.1 Cache replacement policies . 52

6.1 Mobility producer management in NDN . 92

7.1 System parameters . 108

Chapter 1

Introduction

The Internet is one of the relevant innovations that have changed our lives. Its
history dates back to the 1960s with the development of the first telecommunication

networks with the aim to communicate two computers. Step by step, Internet services
began to spread with the emergence of the e-mail then the World Wide Web. This latter
is the most popular Internet application. For about twenty years, the Internet and
especially the Web did not cease to evolve passing through several distinct evolutionary
phases. All of them offer a network of networks providing a general infrastructure used
to exchange different information around the world. We cite, in chronological order, the
static Web as websites without interaction, the transactional Web as Amazon, eBay, etc.
and the social web which allows people to communicate and share information about
each other as Facebook, Twitter, etc. Then, the Internet has undergone the emergence
of the Internet of Things (IoT) by connecting small devices to the Internet to share
information with the consumer and with themselves without human intervention.

IoT is a quiet revolution that is changing the world. The connected world is becoming
a reality encompassing heterogeneous constrained devices belonging to heterogeneous
networks. With this evolution, everything is becoming smart able to make a decision
based on the current state of the environment. The IoT is integrated into our daily
lives, it now appears in various domains; Smart Home, Wearable, Retail, Smart Cities,
eHealth, Agriculture, Automotive/Transportation, Industrial Automation and Energy
Management.

Motivations

The IoT traffic is increasing every day due to the explosive growth of the number of
"things" connected to the Internet. Recent traffic statistics made by Cisco show that the
annual global IP traffic has surpassed the 1 ZB (1 zettabyte = 1000 exabytes) threshold
in 2016, and will reach 2.3 ZB by 2020 [Cisco 1999]. That said, the traffic will exceed six
times the world population. In other words, everyone will be connected on average to six
smart objects. On the other hand, the consumers have become increasingly demanding.

16 Chapter 1. Introduction

They require more services to facilitate their daily lives while ensuring the security of
their personal data. In addition, they desire an easy manipulation of their smart objects
and especially an optimal response time. According to Nick Jones, distinguished analyst
and vice president of Gartner, the world’s leading research and advisory company, IoT
will require a new approach. He said: "The IoT demands an extensive range of new
technologies and skills that many organizations have yet to master," he added "New
analytic tools and algorithms are needed now, but as data volumes increase through 2021,
the needs of the IoT may diverge further from traditional analytics".

Facing these distinct particularities of IoT systems, the research community, as well
as the industry, have been actively working on the adoption of new networking solutions
that effectively support IoT communications. As a first step, developers have started
with deploying many stand-alone IoT systems in different domains. A few time ago, they
aim to develop a common, de-fragmented IoT platform. To this goal, research commu-
nity has proposed several protocols and IP-based standards in order to build a unified
IoT platform [Meddeb 2014]. The current Internet Protocol (IP) is a well-defined stan-
dard and enables communication with entities in different domain. These advantages
make IP-based solutions reasonable and able to reach the goal. However, on a large scale,
IoT poses more strict challenges as devices heterogeneity, mobility, security and scala-
bility. Facing the inherent inefficiencies of the current Internet, such solutions become
inadequate. In fact, a host-centric IP paradigm requires additional resolution systems to
map application requests into IP addresses and additional protocols to support mobility.
Furthermore, the unified IoT platform makes physical objects accessible to applications
and often implies life safety which makes security a serious requirement. Nevertheless, IP
only maintains an end-to-end security. A unified IoT platform must support a tremen-
dous number of heterogeneous and mobile things communicating together from different
organizations and domains.

The cornerstone of the IoT is Data. A Data to express a hot day, a massive flow of
traffic on the road, to follow the market in real time, etc. This mass of data has value
only when it can be translated into insights and information. This latter can then be
converted into concrete actions. With such fast growth of contents and users simulta-
neously, the incremental changes or solutions to the current Internet architecture will
hardly resist to the Internet evolution. Fearing that the current Internet architecture
cannot support this evolution, many efforts have been given in recent years to develop
"Clean Slate" solutions for the architecture of the future Internet. To this end, numerous
researches were interested in proposing cutting-edge solutions in order to support nowa-
days challenges and improve the data dissemination efficiency. This issue has attracted

17

the attention of many researchers [Gubbi 2013]. For instance, Van Jacobson et al. have
taken the initiative in [Jacobson 2009] to address this subject. They have introduced a
novel paradigm, named Information-Centric Networking (ICN).

ICN proposes to shift the current complex Internet model to a simple and generic
one. This paradigm considers the content as the first class network citizen. In ICN,
contents are addressed and routed by their unique names and are decoupled from the
address of the node storing it. In this way, consumers ask for information by its name
rather than its locality address. In ICN, every content is identified by using a unique,
persistent and location-independent name. This paradigm natively includes in-network
caching, name-based routing, multicast, anycast, mobility and self-secured content. A
wide set of IoT applications is inherently information-centric. In fact, the majority of IoT
applications target data regardless of its source. For instance, environmental monitoring
applications are oblivious to the information origin. ICN is a promising candidate for IoT
environments. It can natively support IoT scenarios while improving data dissemination
and reducing network complexity. Many researchers have recently interested on the use
of ICN paradigm on the top of the Things layer to hide its complexity. This concept
has already been investigated by several studies [Heidemann 2001, Pentikousis 2015,
Baccelli 2014, Quevedo 2014a, Quevedo 2014b, Amadeo 2015, Hail 2015]. Thus, we can
assume that ICN has the potential to become a key technology for data dissemination
in IoT networks. Although ICN attracts manifold researches, it is still in its early stage.

Problem Statement

Despite the numerous benefits that we can obtain using ICN on the top of the IoT ecosys-
tem, it still has several aspects to be studied. In fact, the efficiency of this paradigm
strictly depends on the adopted ICN architecture, caching strategy and routing protocol
while considering IoT systems requirements and specificities. Several ICN architectures
have been proposed, such as DONA, NDN, NetInf, COMET, CONVERGENCE, Mobil-
ity First and PRISP [Xylomenos 2014]. All of them have proved to be a relevant solution
for the Future Internet. However, we need to identify which one is the most suitable for
IoT.

In order to alleviate the pressure on the network bandwidth caused by the tremen-
dous traffic growth, ICN provides in-network caching to distribute content in a scalable
and cost-efficient manner. Caching is an important component in ICN. Indeed, thanks
to this feature, consumer’s requests are most of the time satisfied by cache nodes rather
than the producer. Consequently, the traffic load is significantly reduced. In addition,

18 Chapter 1. Introduction

caching affords the reduction of the required distance for data retrieval and as a conse-
quence, the response latency diminishes. Furthermore, it increases the data availability
in the network since copies of the content are stored in different locations and it avoids
bottleneck caused by publishing data at a unique location. However, it is essential to
ensure that the in-network caching does not increase the content redundancy in the
network and that there is not useful caching nodes. The cache efficiency depends on
the adopted caching strategy and its cache replacement policy. The caching strategy
identifies the location of the cache nodes in the topology and the cache replacement
selects the content to be evicted from the cache once this latter is full. On the other
hand, the IoT is a heavily constrained environment. IoT devices are usually resource-
constrained with harsh limitations on energy, memory and processing power. Therefore,
the adopted in-network caching in IoT systems should minimize the access to producers
while performing optimal retrieval delay and minimizing the cache cost.

In an IoT context, data are transient and frequently updated by the producer. As
a consequence, copies stored in caching nodes may become out of date after a certain
period of time. Some IoT applications, as eHealth, have a stringent requirement in
term of data freshness. In fact, stale information retrieved from a caching node for
the monitoring process may risk patients lives. Therefore, it is primordial to check
the validity of the information before satisfying applications requests and furthermore,
invalid content must be identified and evicted from caching nodes.

The routing protocol can also impact the performance of ICN under IoT networks.
Indeed, routing and forwarding algorithms are used to redirect requests to the right
content location. With the use of the in-network caching, a content may reside in many
locations in the network. For that, it is necessary to be able to forward the request to the
closest node that can satisfy the request. In some cases, the request cannot be responded
by caching nodes due to the freshness requirement or that the content is evicted from
the cache. If so, it will be necessary to send the request to the producer. However, in
ICN, data objects are requested without any location information. Therefore, mobile
devices are no longer reachable during and after a handoff. As a consequence, routing
and forwarding algorithms should be able to support the producer mobility and redirect
requests to the new locations of mobile nodes.

Contributions

The main goal of this thesis is to study the performance of the IoT networks based on the
ICN concept. Our objective is to provide an efficient, performant and scalable IoT envi-

19

ronment by taking advantage of ICN features. Meanwhile, IoT imposes some challenges
that stay in front of the ICN benefits. In this thesis, we address these challenges with
the aim to improve data dissemination in IoT environments. We start by identifying an
adequate ICN architecture for IoT systems [Meddeb 2017e] and then we propose four
contributions.

Our first contribution addresses the in-network caching. We propose a caching strat-
egy called consumer-cache [Meddeb 2015, Meddeb 2017b]. Our introduced strategy aims
to increase the data availability by storing information near to the consumer. In addition,
it minimizes the number of caching nodes in order to reduce the cache cost. Consumer-
cache is designed in a way to satisfy the trade-off between the system performances in
terms of hop reduction ratio, server hit reduction ratio and response latency, and the
cache cost.

Our second and third contributions address the IoT data freshness requirement. We
start by proposing the event-based freshness mechanism [Meddeb 2017b]. This proposal
is responsible for checking the validity of cached items before sending them back to the
consumer. This mechanism is based on time series model forecasting to estimate the
validity delay of cached contents. Event-based freshness mechanism can successfully im-
prove the validity percentage of retrieved data, however, it slightly decreases the system
performances since it neglects near copies to find a fresh one. For this reason, in our third
contribution, we propose the Least Fresh First (LFF) cache replacement policy which is
also based on a prediction process [Meddeb 2017d, Meddeb 2017c]. LFF aims to make
the cache store more efficient by keeping useful information. This policy may improve the
system performance while maintaining a reasonable validity percentage. Coupling these
two contributions results in good system performances with a high validity percentage.

Finally, the fourth contribution addresses the producer mobility issue. We introduce
an Adaptive Forwarding based Link Recovery for Efficient Mobility support (AFIRM)
algorithm for ICN based IoT networks [Meddeb 2017a]. This contribution is twofold,
it includes a routing protocol designed to populate nodes with forwarding information
and an adaptive forwarding algorithm to update the routing tables after the producer
mobility. The objective of AFIRM is to be always able to reach the producer after a
handover in order to reduce packet loss. Furthermore, this algorithm does not result in
a high signaling overhead to support the mobility.

20 Chapter 1. Introduction

Manuscript outline

The rest of this thesis is organized as follows. Chapter 2 provides the background of
this thesis. We first detail different ICN features namely naming, caching, routing and
mobility. Then, we give an overview of the current state of the IoT and its evolution over
the time. This chapter presents different ICN architectures and it discusses the adequate
choice of architecture for IoT networks. Therefore, it gives the IoT requirements that
should be satisfied by the adopted ICN architecture and qualitatively selects and analyzes
the suitability of the Named Data Networking (NDN) architecture for IoT environment.
Finally, it details an IoT scenario to explain the operation of the chosen architecture.

Chapter 3 provides the state of the art of the ICN paradigm. It presents studies
that address the IoT based ICN networks idea. Then, it cites studies interested on in-
network caching, data freshness, cache replacement policies and the mobility support in
ICN architectures.

Chapter 4 introduces our first contribution. It first gives a focus on the NDN layer
to understand its different modules and identify the ones on which this thesis will focus.
This chapter addresses the in-network caching. It presents in detail caching techniques
differentiating cache placement selection and cache decision policies. It presents different
assumptions to satisfy fixed requirements and details our consumer-cache caching strat-
egy. For a better understanding, it explains an example under an IoT scenario. This
chapter finally gives the cache cost metric that will be used to evaluate the proposed
strategy.

Chapter 5 provides a freshness-aware efficient in-network caching in NDN-based IoT
networks. It introduces the second and the third contribution. This chapter first explains
the prediction model. It gives in detail different steps and algorithms to forecast the
validity delay. Then, it presents the event-based freshness mechanism and the LFF
policy. For each contribution, this chapter provides the algorithm and an example under
an IoT scenario to better explain the proposals.

Chapter 6 addresses the last contribution. It first identifies among different ap-
proaches that an adaptive routing is the most suitable approach to handle the producer
mobility issue in NDN-based IoT networks. Then, it gives a state of the art of the for-
warding and routing in NDN. This chapter introduces the AFIRM algorithm. It explains
both phases concerning the forwarding tables construction and the link recovery after
the mobility and as other contributions, it gives examples to better understand the two
phases.

Chapter 7 evaluates our contributions. It englobes all the results of our proposed

21

algorithms. It first gives the simulation setup by presenting the used topology, content
catalog and parameters configuration. Then, it details the evaluation metrics. To analyze
the findings, we differentiate two scenarios. A static scenario to evaluate consumer-cache,
event-based freshness and LFF policy and a dynamic scenario to evaluate the AFIRM
algorithm.

Chapter 8 concludes this thesis and all the work carried out. It gives a recapitulation
of the challenges as well as the proposed contributions and summarizes our findings. This
chapter finally presents perspectives to follow up this thesis work.

Part I

General context and state of the
art

Chapter 2

Information-Centric IoT
Networks

Contents
2.1 Introduction . 25

2.2 The Internet evolution . 26

2.3 Information-Centric Networking 27

2.3.1 Information Naming . 27

2.3.2 Routing . 28

2.3.3 Caching and storing . 30

2.3.4 Mobility . 31

2.4 The vision of Internet of Things (IoT) 31

2.4.1 IoT under the TCP/IP stack . 32

2.4.2 IoT standardization effort . 32

2.5 Which ICN architecture for IoT? 34

2.5.1 ICN architectures . 34

2.5.2 IoT fundamental requirements . 38

2.5.3 ICN in IoT environment: suitability analysis 40

2.5.4 NDN for IoT . 40

2.6 Conclusion . 43

2.1 Introduction

The Internet appeared, in the early 1970s, with the simple aim to connect two comput-
ers. A few years later, the usage of the Internet has evolved with the creation of new
services notably, the World Wide Web (1991), BitTorrent (2002); YouTube(2005) and

26 Chapter 2. Information-Centric IoT Networks

Dropbox (2008). Concomitantly, many new technologies have emerged such as multime-
dia compression as MPEG4 (1992), and the low cost RFIDs5 and wireless technologies
(1999). In addition, the number of users which access to the Web has increased, and
this worldwide communication tremendously raises the network traffic. Considering this
evolution, the whole concept of Internet is also evolving. Today, it is about connecting
data, objects and environments. In this process of communication, the machine itself
loses more and more its importance to make way to the data. This radical change is at
the origin of the data-oriented communication model [Feldmann 2007, Jacobson 2009].

In this chapter, we start by introducing the Internet evolution and the emergence
of the data-centric concept. Then, we define the ICN paradigm and its main features.
After that, we introduce the IoT networks and we reveal their inefficiencies in the cur-
rent Internet model. We provide motivations to support the ICN paradigm as a solution
that may replace the present overlay and host-centric networks. As many ICN architec-
tures have been introduced since 2007, we focus, in this chapter, on which one of these
architectures is more suitable for IoT environments.

2.2 The Internet evolution

The rapid traffic growth and users expectations have raised the need for a novel com-
munication model. This issue inspired both research community and industrial, so that
a few solutions to match the new traffic pattern have been proposed such as Content
Distribution Networks (CDN) and Peer-to-Peer (P2P) overlays.

Concerning P2P overlays, they allow multiple computers to communicate over a net-
work. The particularity of their architectures lies in the fact that the data can be trans-
ferred directly between two stations connected to the network without passing through
a central server. It allows all computers to play the role of client and server directly.
However, decentralized peer-to-peer systems have more difficulties than client-server sys-
tems in disseminating information and coordinating the interconnection of nodes, thus
ensuring low delays in requests. CDNs was the most solicited solution [Pathan 2007].
They provide content distribution functionalities built at the application layer on top
of the current Internet infrastructure. Some deductions extracted from the last Cisco
Visual Networking Index (VNI), which analyzes the traffic composition, affirm that the
Internet is shifting to an effective mobile Internet. Indeed, mobile data will represent
the 61% of the total traffic by 2018. According to Cisco, CDNs are identified as the most
suitable approaches for mobile data dissemination. They expect that 67% of all mobile
traffic will cross CDNs by 2018 [Cisco 1999]. Despite their importance, the CDNs have

2.3. Information-Centric Networking 27

shown some limitations. The main drawbacks are related to the generated cost. In fact,
CDNs are very expensive solutions especially if deployed at large scale. Moreover, they
give rise to a high cost in terms of resources (bandwidth, storage, nodes distribution).
The deployment of servers and the choice of their locations are not well controlled due
to a lack of collaboration between the different Internet access operators. In addition,
current CDNs are mono-specialized. They distribute content according to agreements
with the original data providers. Finally, there is no collaboration between the different
CDN suppliers and each operates individually.

Despite their advantages, CDN and P2P do not give a radical solution to deal with the
fundamental issues caused by the current Internet architecture. Indeed, these approaches
are overlaid on top of the current networking architecture. With such fast growth of
content and users simultaneously, the incremental changes or solutions to the current
Internet architecture will hardly resist to the Internet evolution. Therefore, many efforts
have been given in recent years to develop "Clean Slate" solutions for the architecture
of the Future Internet [Feldmann 2007, Jacobson 2009, Ahlgren 2012, Xylomenos 2014].
The ICN paradigm is the cornerstone of all proposed solutions.

2.3 Information-Centric Networking

ICN is a recent communication paradigm. Its main goal is to improve the data dis-
semination efficiency in the network to better adapt it to the current Internet’s usage.
The ICN consists of redesigning the Future Internet architecture, it constitutes a shift
from a host-centric view of the network to a content-centric one. In this concept, the
information or the content is considered as the primary entity rather than the host as in
current networks. Therefore, the focus is on WHAT to communicate rather that WHO
to communicate with. This section introduces the information-centric approach from a
generic perspective by describing the main common components to a specific view by
presenting the proposed architectures and their respective design choices. The staple key
concepts of ICN are the information naming, the information delivery, the in-network
caching and the mobility.

2.3.1 Information Naming

Naming data objects is an as important pillar for ICN as addressing hosts is for to-
day’s Internet. According to this new paradigm, the consumer requests a content by
its name instead of using its network localization. That being said, every content must
be identified by using a unique, persistent and location-independent name. Depending

28 Chapter 2. Information-Centric IoT Networks

on the architecture, names can be flat or hierarchical and may or may not be human-
readable [Detti 2013, Xylomenos 2014]. The hierarchical namespace has a structure
similar to current URLs and much like DNS names. Names are a sequence of strings sep-
arated by "/". For example, Foo.com/video1.mp3. The advantage of hierarchical names
is that they can contain other information as the version and the chunk number. In fact,
a content can be divided into many chunks. Foo.com/video1.mp3/s1 identifies the first
segment of the content. On the other hand, contents can be updated by the producer so
we can differentiate different versions using the name like Foo.com/video1.mp3/v1. A
requested content named Foo.com/video1.mp3 can be matched by an information object
named /Foo.com/video1.mp3/v1/s1, which means the first segment of the first version
of the requested data. After receiving this information object, the consumer can directly
ask for the next data segment or for a newer version. A flat name is represented by a
string as 0x3fb889fffa. As we can see, names can be human-readable, which facilitates
consumers requesting desired content. On the other hand, consumers can not under-
stand a non human-readable name. However, these names are self-certifying. In fact,
names can be encrypted with the data itself and its producer which make them non
human-readable. This group of namespace has the security advantage. Since requests
can be satisfied by nodes other than trusted origin producers, consumers should be able
to verify the integrity and the provenance of received data by means of "security" infor-
mation included in the data object. To recapitulate, there are four namespace classes
and the choice depends on the applications and consumers expectations. The decision
whether to use flat versus hierarchical names either human-readable or self-certifying
mainly impacts the scalability of the ICN routing plane.

2.3.2 Routing

The routing is a question of how requests are routed towards the producer through the
network and then how data are routed back to the consumer. There are two general ap-
proaches in ICNs to handle routing requests, both strongly depending on the properties
of the object namespace, in particular, the aggregability of object names [Ahlgren 2012].
ICN implements the name resolution routing and name-based routing depicted in Fig-
ure. 2.1.

With the name resolution method, the data retrieval is performed in two steps as
shown in Figure. 2.1a. First, the content name is translated in one or many locators
if exists. These latter are the current topological locators of the requested content in
the network, it can be the producer address or a cache node that maintain a copy of
the desired content. The entity that stores these locations information is called Name

2.3. Information-Centric Networking 29

NRS
NRS

GNRS

N
A
M
E

Lo
ca
tio
n

A
C
K

Lo
ca
ti
o
n

NAMELocation

AC
K

Loc
atio

n

N
AM
E

N
A
M
E

NAME

NA
ME

NA
ME

DA
TA

DATA D
ATA

D
ATA

(a) Name Resolution Routing

N
AM
E

N
A
M
E

NAME

NA
M
E

NA
ME

DA
TA

DA
TA

DATA D
A
TA

D
ATA

(b) Name-based Routing

Figure 2.1: Routing approaches

Resolution System (NRS). The NRS stores a binding between content names and their
current locators. NRSs are arranged in a hierarchical manner and each one covers a
specific area of the network, as a consequence, the consumer must redirect the request
to its dedicated NRS to retrieve the location information. If the NRS does not have the
location information, it redirects the request to the Global NRS of the upper level. Once
having this information, the consumer can then directly forward the requests towards
the optimal destination based on routing protocols. Different NRSs in the topology
are populated thanks to the signaling messages coming from producers to announce a
content availability. It is worth to note that each producer notifies only its dedicated
NRS.

Unlike named resolution routing, the name-based routing method, presented in Fig-
ure. 2.1b, relies on just one step to retrieve a content. This approach is based on the
name hierarchy to route requests and directly forward them to producers without requir-
ing to resolve names to locators in a previous step. At each node towards the producer,
the request is sent to the next interface that matches the longest prefix. This means
that each node should be aware of a part of the routing information. After the producer

30 Chapter 2. Information-Centric IoT Networks

has received the request, the data is routed back to the consumer through the request
reverse path.

2.3.3 Caching and storing

As information can be named independently from the location of the respective produc-
ers, data can be stored everywhere in the network. Therefore, copies of the same content
stored in different locations in the network, are considered as a unique content. It is
about the in-network caching, which is a major building block of ICN. It represents the
most common and important feature of ICN architectures. It was introduced to allevi-
ate the pressure on the network bandwidth and consequently improve the transmission
efficiency in content dissemination [Zhang 2013]. As shown in Figure. 2.2, consumer 2
sends a request to retrieve the content named X. While sending the response, node 2
and node 6 store a copy of the content. Then, when consumer 1 or 3 requests the same
content X, the request is satisfied by nodes 2 or 6 respectively.

21 3

Figure 2.2: In-network caching in ICN

The caching concept, which is not a revolutionary term, has been widely used on
the Web, P2P systems and CDNs. However, in ICN, the in-network caching is more
prominent and more challenging than in the already existing caching systems. First, it
is transparent and does not require any specific application to cache content. Second, it
is ubiquitous since any ICN nodes can be a cache [Zhang 2013].

On the other hand, it is worth to note that the cache size is limited and once the
cache is full, a cache eviction is performed to allow caching new items. Consequently, the

2.4. The vision of Internet of Things (IoT) 31

in-network caching imposes the establishment of a cache replacement policy. According
to the replacement policy, one of the cached contents is selected and deleted.

2.3.4 Mobility

Another immediate consequence of naming data objects is that even if contents change
their locations, they will be always reachable since their names are location-independent.
The mobility in ICN can be classified into Consumer mobility and Producer mobil-
ity [Zhou 2014]. The former can be easily handled. In fact, when a consumer moves, it
just needs to re-express its interest for a data object from the new location. Either with
name-based routing or NRS-routing, producer mobility may cause the loss of request
packets when the request is not satisfied by a cache node. In the case of name-based
routing, the request will be redirected hop by hop according to the routing information
in each node. When a mobility occurs, the routing information needs to be updated in
all nodes belonging to the request path. In the other case, the routing is based on the
location retrieved from the corresponding NRS. After a handover, NRS systems should
be updated to match names to new locations.

2.4 The vision of Internet of Things (IoT)

Despite the diversity of research on IoT, its definition remains fuzzy. Authors in [R. et
al., 2015] addressed this challenge by collecting most of the definitions and architectural
models proposed for IoT in the literature and they gave a definition that addresses all the
IoT’s features. IoT may refer to a transition state, an everyday object, a virtual identity,
an extension of the Internet, an enabling framework, or simply an interconnected world
as the definition changes with relation to the speaker point of view. In fact, Cisco admits
that IoT was born sometime between 2008 and 2009 when more "things" were connected
to the Internet than people. According to IoT Special Interest Group (SIG), IoT is a
transition state where things will have more and more information associated with them
and may have the ability to sense, communicate, network and produce new information,
becoming an integral part of the Internet. In the viewpoint of US National Intelligence
Council (NIC), IoT refers to everyday objects that are readable, recognizable, locatable,
addressable, and/or controllable via the Internet. It can focus on the virtual identity
of the smart objects and their capabilities to interact intelligently with other objects,
humans and the environment. According to the IETF, the IoT is an extension of Internet
technologies to constrained devices, moving away from proprietary architectures and
protocols. Most of these definitions agree with the fact that IoT is a new phenomenon

32 Chapter 2. Information-Centric IoT Networks

that is changing the world in which we live, trying to connect heterogeneous devices with
limited resources in terms of battery, memory and computing power. Managing and
analyzing data from such hyper-connected networks would require robust architecture
and protocols. In this section, we first analyze the applicability of the Internet protocol
in an IoT environment. Then, we present the IoT standardization effort.

2.4.1 IoT under the TCP/IP stack

IoT aims to extend the Internet to physical objects in order to allow connectivity and in-
teroperability between them. To this end, these IoT objects should embed an IP network
protocol stack. As we have already mentioned, IoT devices are heavily constrained and as
such embedding a regular TCP/IP stack, in such an environment, is a serious challenging
issue. First, IoT applications are able to generate a high throughput compared with the
low data rate and low power of IoT devices coupled with lossy wireless links. Second, the
tremendous number of heterogeneous IoT devices makes the management task very com-
plex since all devices need to be automatically managed. Moreover, the mobility require-
ment supported by IoT devices makes this task more and more arduous. Finally, TCP
acknowledges every received segment, which pushes the network to undergo an additional
signaling cost. For these reasons, the use of regular TCP/IP on IoT systems is imprac-
tical and problematic [Duquennoy 2011, Montavont 2014, Zhang 2016, Msadaa 2016].

2.4.2 IoT standardization effort

Until now and despite the numerous proposals, there is still no consistent common
architecture for the IoT. However, some protocols are believed to be part of a future
unified IoT architecture [Ishaq 2013]. In Figure. 2.3, we present a protocol stack that
covers prominent protocols. In the following, we detail these protocols, starting with the
application layer down to the physical layer.

Concerning the application layer, the Internet Engineering Task Force (IETF) work-
ing group, named COnstrained RESTful Environments (CORE), proposed the appli-
cation protocol Constrained Application Protocol (CoAP) to be used by constrained
devices (low power, low data rate) on constrained networks. CoAP can be embedded
on very constrained nodes since messages are characterized by a short 4-byte header.
For the transport layer, CoAP is by default used by the UDP transport protocol. Data-
gram Transport Layer Security (DTLS) is integrated to support security. Moving to the
network level, the IETF Routing Over Low power and Lossy networks (ROLL) working
group has proposed a routing protocol called Routing Protocol for Low-Power and Lossy

2.4. The vision of Internet of Things (IoT) 33

Figure 2.3: IoT standardization effort

Networks (RPL). RPL is adapted to IoT environment since it natively supports multi-
party communication pattern. On the network layer, the IPv6 is considered as a viable
addressing solution in the IoT. The IoT addressing scheme must support the huge num-
ber of IoT objects. Furthermore, with the heavily constrained environment, addressing
protocol should be the less complex possible. In addition to the addressing protocol, the
6LoWPAN protocol is used to encapsulate and compress the IPv6 header in order to
adapt its size to the IoT environment (from 40 bytes to 2 or 3 bytes). Finally, concerning
Link Layer and Physical Layer, the IEEE has proposed the IEEE 802.15.4 MAC and
the IEEE 802.15.4 Phy protocols with an ultra-low-power consumption [Msadaa 2016].

Although this stack was specifically designed for IoT systems, it has several weak-
nesses. The first gap is caused by IP addresses which have a dual semantic: they are
simultaneously used as a locator and as an identifier. However, in an IoT environ-
ment, an identifier does not necessarily refer to a particular device: it can refer to an
equipment, a content or a service. Consequently, this stack still requires a name resolu-
tion system which induces important additional IoT flows. Another significant problem
of this stack is the relatively large signalization generated: Baccelli et al. highlighted
in [Baccelli 2014] the heavy burden of the signalization generated by this stack for con-
strained equipment with a memory not exceeding 10 kilobytes. Finally, IoT devices
often provide sensors values that cover large areas. This stack does not allow access to
the optimal content: Get the nearest value or take advantage of the already requested
values. This is because the paths created by the stack do not take into account any
caching mechanism provided by IoT equipment.

Current IoT systems rely in general on a centralized communication model in which
the IoT servers are responsible for handling and relaying all distributed signaling within
the system. It is well known that centralized systems can surely yield strong optimization

34 Chapter 2. Information-Centric IoT Networks

but, at the same time, critical entities of the system that act as concentrators may
suddenly become single points of failure, thus lowering the fault tolerance of the entire
system. ICN has shown that it can enhance IoT networking and data dissemination.
Moreover, it can fill the gaps in the stack CoAP/RPL/6LowPan/802.15.4 and reduce its
complexity. In fact, the IoT applications are essentially centered on information since
they process data independently of equipment that generates them. In ICN, thanks to
the naming scheme and in-network caching, requested contents are addressed by their
unique name and can be satisfied by any cache holding it. As a consequence, caching
content will impact the lifetime of the IoT devices’ batteries: a request may be satisfied
by an active node while the information producer remains in its sleep mode. Finally,
security is paramount in an IoT context, as this is an extension of Internet technologies
to the physical world. ICN addresses this requirement and targets to secure the contents
themselves rather than securing the channels connecting the equipment with each other.
ICN is a promising candidate for IoT environment. It can natively support IoT scenarios
while improving data dissemination and reducing network complexity.

2.5 Which ICN architecture for IoT?

In this section, we first detail ICN approaches and then we qualitatively compare them
and investigate which solution can fully satisfy the IoT requirements.

2.5.1 ICN architectures

In the following subsections, we introduce and illustrate ICN approaches with the pur-
pose of general understanding them. We present ICN initiatives according to their
publication chronological order as shown in Figure. 2.4.

2007 2008 2009 2010

DONA PSIRP/PURSUIT
SAIL/NetInf Apr 2010

NDN Sep 2010

CONVERGENCE Sep 2010

Mobility First Sep 2010

Figure 2.4: Timeline of key ICN milestones

2.5. Which ICN architecture for IoT? 35

2.5.1.1 Data-Oriented Network Architecture (DONA)

Data-Oriented Network Architecture (DONA) [Koponen 2007] is one of the first com-
plete architectures. It radically changes naming from hierarchical URLs to flat names.
In DONA, contents are published in the network by the sources. Nodes that are autho-
rized to get data, register to the Resolution Handlers (RH). In this architecture, request
packets, named Find packets, are routed by name toward the appropriate RH. The Data
packet is sent back through the reverse path enabling caching. The data can also be
sent over a direct route. DONA supports the on-path caching. Cache nodes are RHs
that can decide whether to cache or not the content. For the mobility support, mobile
subscribers must issue new Find message from their current locations. Concerning pub-
lishers mobility, they can re-register their information when changing their locations.
Names in DONA are self-certifying; consumers receive in the Data packet the public key
of the owner and a signature of the data itself. They can verify that the received data
matches the requested name.

2.5.1.2 Publish-Subscribe Internet Routing Paradigm (PSIRP)

The Publish-Subscribe Internet Routing Paradigm (PSIRP) [Ain 2009] project and its
continuation, the Publish Subscribe Internet Technology (Pursuit) [FP7 2010c] project,
introduced a publish-subscribe protocol. This architecture is composed of three major
components; the rendezvous system, topology manager and forwarding mechanism. An
object in PURSUIT is identified by the pair (the scope ID and the rendezvous ID). They
both belong to a flat namespace. The publisher sends a Publish message to its Ren-
dezvous Node(RN) to announce an information. This Publish message will be routed
to the RN assigned with the corresponding scope ID. In the other part, the subscriber
issues a Subscribe message to its local RN that will be also routed to the RN assigned
with the corresponding scope ID. Publications and subscriptions are matched in the
rendezvous system. The matching procedure results in a Forwarding Identifier (FI) sent
to the source. The latter forwards the data to the subscriber. PURSUIT can support
the in-network caching. However, it may not be very effective. In fact, cache nodes
act as publishers; they must publish available information. Mobility is facilitated in
PURSUIT since both subscribers and publishers always send messages for each opera-
tion, so although they change their locations, the new location will be communicated
for future operations. PURSUIT greatly supports security. The use of flat names allows
self-certifying names. In addition, this approach uses the Packet Level Authentication
(PLA) technique to assure data integrity and confidentiality by encrypting and signing

36 Chapter 2. Information-Centric IoT Networks

individual packets.

2.5.1.3 COntent Mediator architecture for content-aware nETworking (COMET)

The COntent Mediator architecture for content-aware nETworking (COMET) [FP7 2010a]
considers a Content Mediation Plane (CMP) that is the core component of its architec-
ture. The CMP mediates between the network providers and information servers. It
has a global idea about information and infrastructure. For this approach, there is no
precise defined naming scheme. However, unlike other ICN approaches, COMET allows
the location preferences to be explicitly included in data. In COMET, publishers that
want to publish contents can send a Register message to the corresponding Content Res-
olution System (CRS). The CRS gives a name to the content, stores its actual location
(IP address) and sends Publish messages to propagate the content to its parent CRS.
Subscribers issue a Consume message to retrieve a content. This request is sent to its
local CRS and it will be propagated upwards in the CRS hierarchy until it reaches a
CRS that maintain information about the requested content. When a match is found,
the request follows the location stored in the CRS to reach the publisher. COMET
supports the in-network caching. This approach holds user mobility by using specialized
mobility-aware Content-aware Routers (CaRs), placed at the edge of the networks, to
track the mobility of users and information.

2.5.1.4 Scalable and Adaptive Internet Solutions (SAIL)

The Scalable and Adaptive Internet Solutions (SAIL) [FP7 2010d] has a very wide scope.
We will focus here on the Network of Information (NetInf) elaborated within this work
and introduced in [Ahlgren 2010]. The NetInf employs a flat name. This architecture
provides us with two models for retrieving data; name resolution or name-based routing.
Under the first model, sources publish data by registering it to the Name Resolution
Systems (NRS) by a name/locator binding. The receiver can send a Resolve packet
with the data name to the NRS to get the best available source. Then, it can get a
copy of data from this source. With name-based routing, the receiver directly sends a
Get message with the data name that will be routed by name toward a copy of data.
When a copy is found, the data will be returned to the receiver via the request reverse
path. This approach supports request and objects caching. When a node receives a Get
request, it can decide to store the request in a pending interest table. NetInf supports
both subscribers and publishers mobility. When a host changes location, it updates the
topological information in the NRS where it is registered. Then, a notification is sent

2.5. Which ICN architecture for IoT? 37

to all hosts that communicate with the mobile one. As in DONA, the NetInf can check
the name-data integrity using self-certifying names.

2.5.1.5 Content Centric Networking (CCN)

The Content-Centric Networking (CCN) [Jacobson 2009] architecture is one of the pi-
oneering ICN structures. The Named Data Networking (NDN) [NSF 2010b], funded
by the US Future Internet Architecture program, implements the CCN architecture.
In NDN, names are hierarchical and may be human-readable. NDN is based on three
system elements; Content Store (CS), Pending Interest Table (PIT) and Forwarding In-
formation Base (FIB) table. Consumers issue Interest messages to request information
objects. The request is routed by name. CS acts as a cache in which the received data
are cached. When a request hits a cache, a CS lookup is performed. In the case of a
cache miss, the Interest packet is sent to the next hop according to the FIB, and the
interface of the incoming Interest is appended to a set of interfaces interested by that
chunk in the PIT. The FIB contains, for each content, an entry that points to the right
output interface, the request is redirected to the interface with the Longest Prefix Match
(LPM). In the case of a cache hit, the corresponding data is sent back according to in-
terfaces stored in the PIT. When the request is satisfied, the corresponding entry in the
PIT is then removed. NDN approach natively supports in-network caching using the
CS. Like other architectures, NDN supports consumers mobility by sending new Interest
messages from the current location. However, when a producer moves, all FIBs must be
updated. Concerning the security, Data messages in NDN contain a signature and the
signer public key as a metadata. So, when a consumer receives a data, it can check its
integrity.

2.5.1.6 CONVERGENCE

The CONVERGENCE, introduced in [FP7 2010b], has many similarities with NDN.
In CONVERGENCE, objects are presented with a Versatile Digital Item (VDI). VDI
names can be flat or hierarchical. In this architecture, subscribers send Interest messages
to retrieve a VDI. The request is routed by name toward publishers. However, nodes
do not maintain name-based routing information for each name prefix. If there is no
routing information for a corresponding name, the node consults an NRS to find out how
to forward the Interest. Publishers respond with Data messages that follow the reverse
path. Obviously, CONVERGENCE allows caching. Subscriber mobility is supported by
sending new Interest messages from the new location. This approach proposes to check

38 Chapter 2. Information-Centric IoT Networks

the security at subscriber level when it receives a Data message. The security is checked
using the digital signature included in the data.

2.5.1.7 Mobility First

The Mobility First [NSF 2010a], introduced by the US Future Internet Architecture
program, proposes an ICN architecture that targets the devices mobility problem. The
aim of this architecture is to address host, information and entire network mobility.
The Global Name Resolution Service (GNRS) handles the host mobility by updating its
entries when an object changes its point of attachment. Objects in Mobility First are
identified with a Global Unique Identifier (GUID). GUIDs are flat. In this architecture,
a publisher, that wants to make information available, asks the GNRS for a GUID and
registers it with the given name. The subscriber issues a Get message that includes the
GUID to its Content Router (CR). The CR asks the GNRS for the network address
of the data. The GNRS replies with a set of addresses. The CR selects one address
to which it sends a Get message. The request is routed through the CRs. Each CR
can consult the GNRS to update the address of the data. The publisher follows the
reverse path to send its response. Mobility First supports caching via CRs. Security,
in this architecture, is maintained by self-certifying names. Furthermore, the user can
frequently request new GUID to avoid profiling.

2.5.2 IoT fundamental requirements

We start by presenting the stringent features that an IoT architecture requires from
ICN approaches. IoT contents describe the behavior of a smart object, or report the
state of an environment or a person. These contents are identified with URIs (Uniform
Resource Identifier) under a hierarchical form. In most cases, names are human-readable
to make them more easily identified by consumers. According to applications, names
can be logically or geographically aggregated.

IoT supports a receiver-driven protocol to disseminate the information. This routing
approach transmits data from a transmitter to many receivers. When a requested content
is routed to its requester, it can cross a router in which there is a pending request for
the same data. In this case, a copy of this data is redirected to the second requester,
and the content continues its way towards its destination and so on.

The IoT communication model is based on a pull paradigm. In the first phase, a node
requests a content. Then, in the second phase, the node should receive this content. In
some other cases, the IoT traffic pattern can include an observe/push paradigm whereby

2.5. Which ICN architecture for IoT? 39

a consumer can make a subscription to a specific content. In this way, this consumer
will receive a copy of the content after each update. In these two paradigms, it is the
consumer who solicits the producer for a content. There are systems other than IoT
where producers always publish their contents on the Internet without being asked for
any content.

Iot systems consider a multi-party communication pattern. This model can repre-
sent multi-consumer or multi-source communications. In multi-consumer communica-
tions, the server, that maintains an entire smart environment, can receive many different
requests from different consumers interested in this environment and the state of its ap-
pliances. Concerning the multi-source communications, it supports the transmission of
multiple separate requests from a consumer to retrieve data from different producers.

Currently, the used IoT link has a very small maximum frame size, such as IEEE
802.15.4, Bluetooth, etc. In addition, IoT devices have memory constraints. Con-
sequently, IoT scenarios should support data fragmentation. This latter consists in
splitting the data into segments in such a way that each segment satisfies the system
constraints.

The majority of IoT devices, such as smartphones, laptops, and embedded objects can
be mobile. Devices, such consumers or producers, may easily switch between networks.
To deal with this feature, the entire network should be notified when a device changes
its location. This modification must be considered in next configurations or tasks.

IoT was designed to operate in a completely trustworthy environment. User authen-
tication and data integrity and privacy are necessary for this kind of networks. Some
application domains in IoT, such as smart home or eHealth, concern users’ personal
private lives.

Concerning the routing approach, we should focus on the two routing scenarios pro-
posed in ICN to select the most efficient for IoT networks. The name resolution method
presents some shortcomings that impact nodes memory. In fact, in addition to the clas-
sical IP routing table existing in each node, name matching tables have to be stored
in NRS nodes. Moreover, since these latter are organized following a hierarchy, the
NRSs volumes become more important with higher levels until storing the information
of all the content in the top layer. This approach also requires a heavy signaling process
to retrieve contents which increases the communication overhead. On the other hand,
assuming that routing updates should be flooded throughout the whole network, the
name-based routing raises the communication overhead. Nevertheless, by comparing
it to the name resolution method, this one is memory saving since it just requires to
store in nodes the mapping of content names to the network location. Furthermore, in

40 Chapter 2. Information-Centric IoT Networks

opposition to the name resolution routing, this approach improves the resilience against
request failure since the resolution process is distributed. In order to reduce the en-
ergy consumed by radio transmissions compared to basic routing approaches, it is more
efficient to consider the name-based routing using the hierarchical form of names.

2.5.3 ICN in IoT environment: suitability analysis

We discuss here the IoT requirements satisfied by each of the ICN architectures and we
summarize the comparative synthesis in table 2.1. Only NDN and CONVERGENCE
architectures use hierarchical human-readable names and allow data fragmentation. One
of the advantages of hierarchical names consists in easily allowing multi-source commu-
nication patterns. Since producers share a common name prefix, consumers can ask
different producers by sending a request with using just its prefix name. For instance,
a Get request with /homeID/ name is sent to get information about the entire house.
As a result, only NDN and CONVERGENCE can permit multi-part communication
patterns. However, in addition to the security treated by all initiatives expect COMET,
the mobility is supported by all ICN architectures. DONA, SAIL, PURSUIT, NDN and
Mobility First can support multicast channels by allowing Get messages to be cached
in intermediate hosts. When a Get message requesting the same name reaches a host,
the latter directly returns the data to the requester. Consequently, these architectures
are receiver-driven approaches. Routing in COMET, PURSUIT, CONVERGENCE and
Mobility First is based on a name resolution paradigm. All these architectures use the
Name Resolution Systems to forward packets in the network. DONA, SAIL and NDN
are the only architectures that define a name-based routing. In DONA, SAIL, NDN
and CONVERGENCE architectures, subscribers interested in some content, do so by
sending a Get message. The producer, or eventually a cache, replies to this request. As
such, these architectures follow a pull-based communication model. In summary, only
the NDN architecture satisfies all of the IoT requirements. We may then conclude that
the NDN approach is the most appropriate ICN architecture for IoT systems.

2.5.4 NDN for IoT

The features of the NDN architecture make it a promising solution to fit the pecu-
liarities and requirements of the IoT environment. For the sake of clarity, Figure.2.5
sketches the NDN architecture under IoT deployment. Consumer1 is interested in con-
tent /Home/room1/Tmp, so it sends an Interest packet towards n1. This latter, upon
receiving the Interest, checks its CS to verify if there is a copy of the asked content in

2.5. Which ICN architecture for IoT? 41

Table 2.1: Comparative table
DONA
[Koponen 2007]

PURSUIT
[FP7 2010c]

COMET
[FP7 2010a]

NetInf
[FP7 2010d]

NDN
[NSF 2010b]

CONVERGENCE
[FP7 2010b]

Mobility

First
[NSF 2010a]

Hierarchical/ (not
human-
readable

defined) X X

name

Receiver-
driven

X X X X X

Pull-based X X X X

paradigm

Multi-party
communication X X

pattern

Name-based X X X

routing

Fragmentation X X

Mobility X X X X X X X

Security X X X X X X

the cache. In the case of a cache hit, the data is sent back to Consumer1. In the case
of a cache miss, a PIT check is performed. When the content name is found as an entry
in the PIT, this means that there is a node other than n1 that already ask for the same
information. Then, the Interest packet is discarded and another entry is added in the
PIT with n1 as the node that sends this request. If there is not a match in the PIT,
the Interest is redirected to the next node as prescribed by its FIB. If the FIB does not
give any information about the next hop, that said there is a routing problem and the
Interest is deleted.

IoT promises to connect billions of objects to the Internet. To this end, a few pro-
posals built a unified host centric IoT platform. However, such solutions are inadequate
to address the heterogeneity and mobility challenges of the IoT environment. The NDN
philosophy is rather generic and can match any device or application specificities. This is
due to the variable namespace, so developers are free to conceive a naming scheme that
fits the constraints of their environment. By leveraging named contents and name-based
routing, NDN offers easy, robust and scalable data retrieval. This is due to the use of
hierarchical names and PIT and FIB structures that form a smart forwarding fabric.
Consequently, we will no longer need the IP address assignment procedures for content
search and retrieval which are a communication burden, especially in large networks.

42 Chapter 2. Information-Centric IoT Networks

Sensor2

Sensor1

/Home/room2/pre

/Home/room1/Tmp

n1

n2

n3

n4

n5

n6

Link
INTEREST
DATA

Consumer1

Consumer2

(1)

(2
)

(3)(4
)

(5)

(6)

(7
) (8)

(9
)

(10)

CS

Check

PIT

Check
FIB

Check

NO NO NO

YES YES YES

Figure 2.5: Forwarding operations in NDN

To deal with the problem of massive data access, NDN provides Interests aggregation
within the PIT structure and in-network caching. In fact, NDN offers the multicast
feature as the PITs can identify multiple requests for the same content and forward just
a single Interest. In addition, consumers can retrieve cached contents from intermediate
routers rather than from their sources. Moreover, with the native anycast feature, NDN
can avoid constrained nodes (as unavailable nodes or low battery routers, etc). Requests
are rather routed to more capable routers. In-network caching can also take into consid-
eration constrained devices by preventing caching to be performed at these constrained
devices. NDN also supports many providers to one consumer communications thanks to
the natural name aggregation. Coupled with the anycast, this communication model im-
proves significantly the energy efficiency of the overall network. To address the mobility
requirement in IoT environments, including things and users mobility, IP networks intro-
duced the mobile IP patches. Such a solution is not recommended because of its heavy
forwarding overhead and long induced delays. Thanks to the use of location-independent
names and receiver-driven communications, NDN natively supports consumer mobility.
Nevertheless, producer mobility requires the updating of the FIBs. However, in-network
caching can alleviate this updating process. We conclude that NDN functionalities as

2.6. Conclusion 43

Named Data, In-network caching, Name-based routing, Multicast and Anycast can na-
tively support IoT requirements. We summarize, in Table 2.2, which NDN functionality
can intrinsically satisfy which IoT requirement.

Table 2.2: Main IoT requirements and native NDN support
Named Data In-network caching Name-based routing Multicast Anycast

Scalability X X X X
Quality of service X X X X
Energy Efficiency X X
Heterogeneity X

Mobility X X X
security X

2.6 Conclusion

Chapter 2 was dedicated to defining the general concepts of this thesis, notably, the
ICN paradigm and IoT networks. We also showed, in this chapter, that ICN can be an
efficient network for IoT scenarios that can improve the data dissemination and deal with
current network limitations. We finally demonstrated that NDN is the most suitable ICN
architecture for IoT systems. In the next chapter, we will present the related research
close to our work. In particular, we will further detail studies that focus on in-network
caching, cache freshness, cache replacement policies and mobility in NDN IoT networks.

Chapter 3

State of the art

Contents
3.1 Introduction . 45

3.2 Information-Centric Networking for Internet of Things appli-
cations . 45

3.3 In-network caching . 47

3.4 Cache freshness . 49

3.5 Cache replacement policies . 51

3.6 Mobility in ICN . 53

3.6.1 Mobility management in NDN . 53

3.6.2 Proposals for producer mobility issue in NDN 54

3.7 Conclusion . 58

3.1 Introduction

This thesis, as mentioned in chapter 2, studies the use of ICN in the context of IoT
environment. This issue has attracted some researchers in the last few years. In this
chapter, we present the state of the art. We detail researches that highlight the general
benefits that ICN could provide to IoT networks. In a second party, we are particularly
interested in the in-network caching, the cache freshness, the cache replacement policies
and the mobility support.

3.2 Information-Centric Networking for Internet of Things
applications

The deployment of IoT systems enabling ICN features has started to gain momentum
within the research community. An interesting contribution in this field was proposed

46 Chapter 3. State of the art

by Pentikousis et al. in [Pentikousis 2015]. The authors presented several ICN baseline
scenarios including IoT applications.

Some studies have focused on IoT requirements that ICN architectures can natively
support without setting which architecture is the more appropriate for IoT scenarios. An
interesting contribution in this field was recently proposed in the Internet Draft by the
ICN Research Group in [Zhang 2016]. The authors discussed the main IoT requirements
and ICN challenges to realize a unified framework. Authors in [Xu 2014] argue that ICN
is the ideal candidate architecture for IoT systems. In [Amadeo 2016b], Authors detail
IoT requirements and present several possible motivations for the introduction of ICN
in the context of IoT.

The beneficial effect of the named data on IoT is identified in [Heidemann 2001] by
Heidemann et al. Authors discussed that content naming is considered as the building
block of the ICN by making the information easily and uniquely identified in the network.
Moreover, they proved that naming, as one of the ICN features, makes the deployment
of IoT in ICN more effective.

Lindgren et al. in [Lindgren 2016] describe which Internet architecture would de be
beneficial for a specific IoT context. They explain that for some IoT application a host-
based network is more efficient that an information-based one and they indicate potential
modifications of ICN in order to improve efficiency and scalability for IoT applications.

In conventional ICN, contents are requested by their names. That said, consumers
should know the exact identifiers beforehand. In [Kurita 2017], authors address this
issue and propose an ICN extension named Keyword-Based Content Retrieval (KBCR).
Requests are spread to multiple data related to the keywords. Then, all responses are
merged into one response.

As concluded in chapter 2, NDN is the most convenient ICN architecture for IoT
systems. Indeed, several studies have argued that NDN is the most convenient ap-
proach for IoT systems such as [Francois 2013, Amadeo 2014a, Baccelli 2014, Hail 2015,
Amadeo 2015, Amadeo 2016a, Amadeo 2014b]. So far, research that targets to use NDN
for IoT is still in its infancy.

Authors in [Francois 2013] aim to optimize the traffic within a CCN for IoT network.
In this article, François et al. promote the usage of CCN for IoT due to the advantage
of the hierarchical routing by leveraging a scalable hierarchical naming scheme and the
security mechanisms and caching provided by design. The simulations show that the
proposed optimization algorithm outperforms existing ones.

In [Amadeo 2014a], authors address the design of a high-level NDN architecture that
meets IoT challenges. In this paper, they present the main benefits of NDN and discuss

3.3. In-network caching 47

how this architecture can support IoT main requirements.
The work in [Baccelli 2014] constitutes the first study of ICN in a real IoT deploy-

ment. Bacceli et al. defended the NDN architecture that is very effective in IoT scenarios.
They also proved that this architecture satisfies IoT requirements.

Amadeo et al. in [Amadeo 2015], defined NDOMUS (Named Data netwOrking for
sMart home aUtomation) as a framework based on the NDN-IoT architecture tailored
to the smart home domain. This paper presents many use-cases. It also evaluates the
proposed framework by calculating the number of the transmitted packets.

The work presented in [Amadeo 2016a], proposes an ICN-based solution for resource-
constrained devices in M2M domains. For the design of the M2M-ICN Layer, authors
refer to NDN among several information-centric architectures. The proposal aims to
use the OM2M [Alaya 2014] open source implementation of the ETSI M2M standard to
deploy NDN Gateways.

There is also a study that considers the ICN approach in a specific IoT application
domain which is Wireless sensors networks [Amadeo 2014b]. Authors, in this paper,
present the main features of wireless sensors, mobile and vehicular ad hoc networks and
identify the benefits of CCN is such environment.

Other few studies considered the ICN approach in specific IoT application domains
as Vehicle-to-Vehicle (V2V) communications [Wang 2012b], Wireless sensors networks
[Dinh 2013, Ren 2013, Teubler 2013, Amadeo 2013], Smart Home [Amadeo 2015] and
Smart Grid [Katsaros 2014].

3.3 In-network caching

In-network caching is one of the inherent features in ICN paradigm treated in this
thesis. Caching is not a revolutionary concept; it has already been widely used in the
Web [Breslau 1999], P2P overlays [Saleh 2006] and CDN [Vleeschauwer 2011]. The com-
mon logic is to give to specific network entities the ability to store some Internet contents
and consequently satisfy corresponding requests. Though similar at their first glance,
there are many inconsistencies between the different approaches [Zhang 2013]. First, in
ICN, caches are application-independent which offers an open and unified framework for
caching. By against, traditional caching systems are application-dependent and caches
use proprietary protocols. Even if some studies have tried to build a transparent cache,
this issue remains harsh and expensive to achieve [Alimi 2013]. In addition, previous
caching technologies are designed for a specific traffic type, however, caching with ICN is
expected to deal with several types of traffic. There is another difference which concerns

48 Chapter 3. State of the art

the network topology. In fact, a cache element in traditional caching systems is usually
located in a well-known predetermined location, whereas, in ICN, every node can poten-
tially be a cache node for any content [Rosensweig 2010]. To recapitulate, in-network
caching in ICN, contrarily to traditional caching, may be low-complex, topology-aware
and adaptive to different and dynamic Internet traffic.

Despite the plenty existing studies that support traditional caching [Dahlin 1994,
Michel 1998, Fan 2000], in-network caching in ICN outperforms them [Katsaros 2011,
Dan 2011, Wang 2013a]. Indeed, Pavlou, in his keynote speech [Pavlou 2013], quotes
that the deployment of the ICN in-network caching exhibits significant improvement in
terms of less pressure on bandwidth and better delivery efficiency. However, in-network
caching can present some decision challenges: the cache placement, (where to cache),
content replacement (which content is to evict from the cache) and request routing (how
to redirect requests to an optimal cache). In this thesis, we address, in the context of
in-network caching, the cache placement and content replacement challenges. We start
by studying the cache placement and we present, in this section, the in-network caching
in ICN IoT networks.

Unlike traditional Internet hosts, IoT devices are resource-constrained in terms of
memory, energy and processing power. In addition, IoT data are usually small and
frequently transient compared to the Internet contents which are large and time-invariant
[Minerva 2015]. Furthermore, IoT equipment can be mobile. IoT applications impose
stringent requirements on some critical domain application as eHealth. They focus on
the freshest data. Facing these distinct particularities of IoT systems, some researches
have addressed the in-network caching challenge in ICN/IoT networks.

The work of [Vural 2014] is the first study addressing the in-network caching of IoT
data at content routers on the Internet. Authors of this work discussed the trade-off
between the cost of multi-hop communication and the freshness of a requested data. In
this context, they introduced a distributed probabilistic caching strategy in which cache
nodes dynamically update their caching probability. This probability depends on the
distance between the producer and the consumer as well as on the data freshness in a
way that the closer the caching location is to the producer, the fresher the retrieved
Data packet is. Two results were observed. First, the more popular the content is, the
higher the cost reduction will be. Second, when caching nodes are closer to consumers,
IoT data provide a lower workload on the network.

As discussed in [Quevedo 2014a], using the already existing ICN caching mechanisms
leads to a considerable reduction in the consumed energy and bandwidth. Authors
demonstrated that as the available caching storage capacity increases, the consumption

3.4. Cache freshness 49

of both energy and bandwidth decreases. They affirmed that due to the fact that IP-
based designs are becoming more complex and hard to achieve, the deployment of ICN
in several important fields makes a positive contribution.

Hail et al. in [Hail 2015] proposed a novel distributed probabilistic caching strategy
named probabilistic CAching STrategy for the INternet of thinGs (pCASTING) that
considers data freshness and potentially constrained capabilities of IoT devices. Among
several ICN instantiations, they refer to the NDN architecture since it leverages simple
and robust transmissions of requests and contents. Results show the effectiveness of the
proposed scheme in terms of energy consumption and content retrieval delays.

Vural et al. studied in [Vural 2016] the in-network caching of transient data in IoT
systems. This paper treats the cache freshness in ICN-IoT scenarios. Authors present
an analytical model that captures the trade-off between the communication cost and
the data freshness. They aim to quantify caching gains with transient items. Through
simulations, they verify caching benefits and demonstrate that caching transient data is
entirely possible.

Despite the efforts of the researchers to deal with IoT applications’ requirements, ob-
tained results are not sufficiently mature. In fact, concerning the IoT freshness, existing
solutions use a fixed or probabilistic lifetime for cached data. However, sensors events
are unpredictable. For this reason, we specifically focus, in the next section, on cache
freshness challenge.

3.4 Cache freshness

Cache freshness/coherence maintains the validity of the shared contents stored in multi-
ple caches. As an immediate consequence, consumers can trust copies in caches. A copy
is considered valid when it has the same version as the source, or when the difference
between the data in the source and its copy in the cache is not important. For example,
for a home automation usage, a cached temperature value of 23◦ is considered valid when
the ambient temperature is equal to 24◦.

In [Dingle 1996], Dingle et al. have focused on the web cache coherence. The prob-
lem of cache freshness on the Web or on ICN remains the same. This issue is also
addressed in the area of distributed systems. Maintaining freshness is easier in web
caches than in distributed files because these latter support distributed writes. Whereas,
updating web content is performed only by the content’s producer. In the sequel, we
introduce the representative freshness mechanisms used by popular distributed file sys-
tems. These mechanisms can be classified into two major classes. First, the Valida-

50 Chapter 3. State of the art

tion check [Sandberg 1985] mechanism in which the validity of the requested content is
checked with the time-stamp (caching time). The time-stamp is sent to the producer
to check if the data has not been modified since it was cached. Second, the Callback
mechanism [Kazar 1988], in which all cache nodes are notified by the producer whenever
an update occurs. So, the producer must have the list of all content’s caches, which is
unsuitable for constrained-devices.

Concerning the web-freshness mechanisms, there are four major approaches. First,
the HTTP Headers mechanism [W3C 2006], in which an If-Modified-Since header is ap-
pended to the request in order to check if the last modification time of the content is
greater than the If-Modified-Since time in the request header. This is called a conditional
Get. Second, the "Naive" coherence [W3C 2006] which is proposed for hierarchical topol-
ogy. This mechanism is a particular case of HTTP headers. In fact, to check the content
validity in a cache, the latter sends a conditional GET message only to the next higher
cache or server. Third, the Expiration-based freshness mechanism [W3C 1996]. In this
one, each content is marked with an expiration time. The content is assumed valid as long
as expiration time has not elapsed. Fourth, pre-fetching mechanism [Berners-Lee 1995]
consists in periodically refreshing the cached contents. This is performed by sending
conditional Get requests to check if the content is changed. The main disadvantage of
this mechanism is the decision of contents refreshment time. This decision depends on
the popularity of a content and its age. In some cases, it may be useless to refresh it.

Authors in [Quevedo 2014b] address the cache freshness issue in ICN. They proposed
a freshness parameter. Unlike the defined parameter in [Hail 2015], the suggested one
is not constant. It can be adjusted by consumers to specify their particular freshness
requirements. Even if simulation results show that the received data validity has been
improved, this solution remains inefficient in case of a scenario with very transient data.
This is because consumers expectations can not avoid receiving outdated data.

The cache freshness is an important challenge that threatens the in-network caching
advantages, especially with a high-dynamic environment in term of data updates. This
issue, despite its importance, is still in its infancy. The cache coherence will be treated
in this thesis.

Another point that can influence the in-network caching performance is the cache
replacement. Since the cache size is limited, once the cache is full, some stored content
must be deleted to allow caching new items. To this end, cache replacement policies
are used to choose the data object to be evicted. We present, in the following section,
proposed cache replacement policies.

3.5. Cache replacement policies 51

3.5 Cache replacement policies

Limited cache sizes require the use of content replacement policies. This can affect
the cache efficiency. In fact, one of the objectives of the in-network caching was the
requirement for low content delivery delays. So, if finally cached contents are evicted
without satisfying any request during their lifetime in a cache, this cache is inefficient. As
a consequence, in-network caching efficiency depends not only on the caching strategies
but the replacement policies as well. In addition, in some domains, we highlight the
need for low overhead implementations.

Traditional cache replacement policies were designed for computer architectures and
databases [Chankhunthod 1996]. The dominant cache replacement policy is First In
First Out (FIFO). FIFO is the default caching policy in NDN [Chiocchetti 2013b]. In
this caching policy, the oldest data object is replaced by the newly arriving content. The
FIFO policy has a slightly simpler implementation in comparison to the other strategies
because it follows the same policy to store contents in the cache.

With the appearance of P2P and CDN, cache replacement policies have begun to
be used in web caches [Podlipnig 2003, Wong 2006]. Existing policies in the web can be
classified into four categories; the recency-based policies, the frequency-based policies,
the size-based policies and the randomized policies. The rationale behind the recency-
based category is that recently requested contents are more likely to be requested again
in the near future. These policies are more efficient in the case of high temporal locality
of request streams. This means that there is an important number of consumers inter-
ested in a common set of data objects. The most known policy in this category is the
Least Recently Used (LRU). LRU has been adopted in a considerable number of caching
policies [Psaras 2012, Cho 2012, Sourlas 2014]. This eviction policy replaces the data
object that is not being used for the longest time. LRU is efficient for line speed op-
erations because both search and replacement tasks can be performed in constant time
(O(1)).

Frequency-based policies are based on objects’ popularity. The rationale behind this
category is to keep popular objects in the cache to satisfy a high number of requests.
For instance, this category is efficient with web pages that provide news or new films.
The least frequently used (LFU) policy is the simplest variant in this category. With
LFU, the cache node keeps track of the number of times a data object satisfies a request.
LFU purges the item with the lowest content frequency. However, unlike LRU, the
implementation of LFU is computationally expensive since it cannot be implemented in
such a way that both search and replacement tasks can be executed in constant time.

52 Chapter 3. State of the art

Table 3.1: Cache replacement policies
Category Description Existing Policies Representative

Policy
Recency-
based

Keeps the recently ref-
erenced objects

LRU, LRU-threshold,
LRU*, LRU-hot,
SLRU, HLRU, LRU-
LSC, SB-LRU

LRU

Frequency-
based

Keeps popular contents LFU, LFU-Aging, LFU-
DA, swLFU, Window-
LFU

LFU

Randomized
policy

A simple random choice
to avoid high computa-
tion overhead

RR, RAND, HAR-
MONIC

RR

Size-based Evicts large contents Size, PSS, CSS Size

LFU is sometimes combined with LRU and called LRFU. The drawback of LFU policy
is that popular contents which become unpopular remain in the cache for a long time.

The randomized policies are specifically designed for cache nodes with complex data
structures. The RR policy, the simplest randomized policy, is a Random Replacement
policy which replaces a randomly chosen cached item. Obviously, this strategy is not
complex in terms of search and replacement tasks.

Finally, the size-based category depends on object size as the primary factor. This
category comes with the logic to evict large object in order to provide room for many
small objects. This category works well with web sites that maintain more text file than
multimedia. The basic policy in this category is Size.

We conclude that FIFO, LRU, RR and Size replacement policies can perform both
operations in constant time, the complexity of LFU replacement operation is O(c) and
grows linearly with the cache size c.

We summarize in Table. 3.1 different categories of cache replacement.
LRU, LFU, FIFO, RR and Size are already used on the web since a long time.

Some other strategies are recently proposed in the context of ICN. In [Panigrahi 2014],
authors proposed a Universal Caching (UC) strategy designed for ICN. UC makes the
replacement decision depending on a parameter assigned to any incoming content. This
parameter includes the distance from the source, reachability of the router and the
frequency of the content access. Al-Turjman et al. in [Al-Turjman 2013] introduced the
Least-Value First (LVF) cache replacement policy which takes into account the delay for
retrieving content as well as the popularity and age of content experienced by a node.

It is worth noting that both content replacement policies and caching strategies are

3.6. Mobility in ICN 53

important to evaluate the in-network caching performance and may complement each
other. We address in the following section the mobility aspects of IoT devices.

3.6 Mobility in ICN

In ICN data objects are requested without any location information. Therefore, mobile
devices are no longer reachable during and after the handoff. The problem is more
serious in IoT scenarios, because, first, due to the advancement in IoT technology, the
mobility frequency is very important such as sensors deployed in eHealth applications and
intelligent transport systems. Second, IoT applications require keeping data continuity,
especially with real-time sessions.

To support the mobility in ICN, it’s important to specify the network architecture and
the packet transmissions. Since we have proved in chapter 2 that NDN architecture is the
most convenient architecture for IoT environment, we are interested, in the remainder
of this chapter, in the mobility challenge in NDN.

3.6.1 Mobility management in NDN

The mobility in NDN can be classified into Consumer mobility and Producer mobil-
ity [Zhou 2014]. The former can be easily handled since NDN is a receiver-driven ap-
proach. In fact, when a consumer moves, it just needs to resend unsatisfied Interest
packets from the new location. As shown in the IoT scenario in Figure. 3.1, the con-
sumer moves from router r2 to router r1. It just sends an Interest from r1. According
to FIB tables, the request is routed by name through path3 rather than path1 and the
requested data will be satisfied using the same request path. The only bad consequence
resulting from the consumer mobility is the loss of Data packets. This occurs when the
consumer moves after sending an Interest.

Concerning the producer mobility, it is more complex. This complexity is due to
the fact that in NDN, naming scheme does not include any location information. In
addition, routing the requests only depends on FIB entries. As a consequence, producer
mobility can cause the loss of Interest packets. In Figure. 3.1, the consumer has sent
an Interest packet along path1 to retrieve the content Person/health/Blood/Pressure.
When the producer maintaining this content moves from router r7 to r6, the consumer
can not be able to reach this content because the router r5 will redirect the request to
r7. To satisfy the request, the Interest packet should follow path2. To overcome this
problem, the FIBs should be updated with the new path to the producer. So, the router
r5 will match the entry Person/health/Blood/Pressure in its FIB with the right router.

54 Chapter 3. State of the art

Handoff

Person/health/Blood/Pressure

Person/health/Blood/Pressure

r1

r4

r2

r3

r6

r5

r7

Handoff

Consumer

Consumer

path1

path2

path3

Figure 3.1: Mobility management in NDN/IoT

NDN utilizes the flooding solution to support the producer mobility. After a han-
dover, the producer broadcasts its new path in order to update all the FIBs in the
network. This solution results in a heavy bandwidth cost and a large handover delay.
For this reason, some studies were interested in the producer mobility issue in NDN and
have proposed some solutions to deal with this problem. We review some studies in the
next subsection.

3.6.2 Proposals for producer mobility issue in NDN

In this subsection, we present existing producer mobility solutions in NDN. They can
be classified into four approaches; location resolution approach, triangular approach,
locator/identifier separation approach and routing-based approach.

3.6.2.1 Location Resolution approach

Mobility in this approach is handled by a home agent like entity that acts as relays
of Interest packets. This category, in general, requires a Location Resolution System
(LRS) to bind information between the name prefix of a content producer and its current
location.

The Figure. 3.2 shows the operation of this approach. When the producer changes
its location (arrow 3), it updates the entries of the contents attached to it in the LRS
(arrows 4-5). We assume that the producer name is Person/health/, then, all the entries
with this prefix will be updated. The LRS contains mapping information between the
content name Person/health/Blood/Pressure and the router /home/. The consumer asks
first for this location (arrows 6-7) then sends the Interest with this location information
(arrows 8-9).

3.6. Mobility in ICN 55

3:Handoff

Person/health/Blood/Pressure

Person/health/Blood/Pressure

r1

r4

r2

r3

r5

r7

Consumer

1:INTEREST

2: DATA

Person/health/Blood/Pressure

8:INTEREST

9:DATA

Person/health/Blood/Pressure

Prefix:/Home/

LRS

6:LRS Request

Person/health/Blood/Pressure

7:LRS Response

/Home/

r6 (/Home/)

Path after Handoff
Path before Handoff
LRS Req/Res

4:LRS Update

5: Ack

Figure 3.2: Location Resolution approach

Studies in [Lee 2012] and [Hermans 2011] relies on this concept. They use a specific
router as a tunnel which is called respectively home router and indirection point. Pro-
posals in [Kim 2012] and [Zhu 2013] also use a third entity which is a server to store the
current location of the content provider. Unlike the two first proposals, in [Kim 2012]
and [Zhu 2013] the prefix is set as a metadata in the Interest rather than the name itself.

3.6.2.2 Triangular approach

The general principle of this approach is that Interest packets are routed by name nor-
mally to the old position, then they are redirected to the new one. This method uses
the FIB update mechanism to establish the redirection path. The approach operation is
shown in Figure. 3.3. When the producer moves to a new location (arrow 3), it sends a
notification in order to update FIBs in the intermediate routers (r5, r6 and r7) between
the old and the new location (arrows 4-5). The Interest packet sent by the consumer
will follow routers r2, r5, r7, r5 then r6 (arrows 6-7).

Proposals in [Kim 2015, Han 2014, Wang 2013b] are based on this approach. The
first one [Kim 2015] uses the Interest packet to update FIB tables, however the sec-
ond [Han 2014] uses the Data packet. Concerning the third proposal [Wang 2013b], it
implements the greedy routing to update the intermediate FIB tables.

56 Chapter 3. State of the art

3:Handoff

Person/health/Blood/Pressure

Person/health/Blood/Pressure

r1

r4

r2

r3

r5

r7

Consumer

1:INTEREST

2: DATA

Person/health/Blood/Pressure

6:INTEREST

7:DATA

Person/health/Blood/Pressure

r6

Path after Handoff
Path before Handoff
Location notification

4:FIB Update

5: Ack

Figure 3.3: Triangular approach

3.6.2.3 Locator/identifier separation approach

In this approach data objects have two names; an identifier which is used to send Interest
packets and a locator which is used in the routing protocol. The locator/identifier
mapping is done in a home router, then the locator is used to route the Interest packet
to the right router.

3:Handoff

Person/health/Blood/Pressure

Person/health/Blood/Pressure

r1

r4

r2

r3

r5(Home Router)

r7 (/Garden/)

Consumer

1:INTEREST

2: DATA

Person/health/Blood/Pressure

Prefix:/Garden/

6:INTEREST

7:DATA

Person/health/Blood/Pressure

Prefix:/Home/

r6 (/Home/)

Path after Handoff
Path before Handoff
Location notification

4:Location Update

5: Ack

Figure 3.4: Locator/identifier separation approach

The Figure. 3.4 shows the operation of the locator/identifier separation approach.
The content object managed by the producer has as an identifier Person/health/Blood
/Pressure and a locator /Garden/. When the producer changes location (arrow 3), the
identifier remains the same, however, the locator becomes /Home/. So, it notifies the

3.6. Mobility in ICN 57

home router about this mobility, in order to update its FIB (arrows 4-5). When Interest
packets pass through the home router, the locator is added and these modified Interest
packets are routed to the current location based on added information (arrows 6-7).

Studies in [Ravindran 2012, Hermans 2012, Rao 2014] are locator/identifier separation-
based. Two ways are proposed in this approach. The first way is to add an optional loca-
tion named field as in [Ravindran 2012]. The second way is that the name contains both
location and identifier as a prefix, for instance. Authors in [Rao 2014, Hermans 2012]
introduce schemes that use this way.

3.6.2.4 Routing-based approach

Proposals based on this approach admit that a dynamic routing approach can solve the
producer mobility problem. The concept of this category is to be able to reach the data
object using a good name-based routing strategy. Figure. 3.5 shows that it is easy to
retrieve the requested data (arrows 4-5) after handover. However, the complexity of
this approach depends strictly on the routing algorithm. In fact, a name-based routing
protocol should be able to discover temporary copies that may be cached outside the
ordinary paths towards original content producers.

3:Hando

Person/hea

Person/health/Blood/Pressure

r1

r4

r3

4:INTEREST

5:DATA

Person/health/Blood/Pressure

r6

Path after Hando
Path before Han
Location notifica

Figure 3.5: Routing-based approach

Authors in [Wang 2013b, Azgin 2014] introduce routing-based mobility management.
In [Wang 2013b] authors propose a routing protocol that considers distances from the
destination to the current router neighbors which is called Greedy routing protocol.
Concerning the proposed architecture in [Azgin 2014], it leverages a decentralized routing
strategy based on flooding.

58 Chapter 3. State of the art

3.7 Conclusion

The concept of ICN has been the object of several researches in the last few years. This
innovation coincided with the evolution of IoT environments in terms of the increased
amount of IoT devices and IoT traffic in the network, the heterogeneity of devices and
communication technologies, and the mobility of Things. Some studies argue that
ICN is a promising candidate for IoT systems. In this chapter, we cited studies that
supported this challenge. We especially focused on in-network caching and we presented
existing caching studies. Furthermore, we detailed cache replacement policies. Facing the
particularities of IoT systems in terms of data transient and mobility, we were interested
in studies that target cache freshness and mobility management. In the following part,
we will present our contributions within the in-network caching and the mobility support
in ICN/IoT systems.

Part II

Contributions and Results

Chapter 4

Caching strategy for NDN-based
IoT networks

Contents
4.1 Introduction . 61

4.2 A focus on NDN layer . 62

4.3 Caching techniques . 64

4.3.1 Cache placement selection . 64

4.3.2 Cache decision policies . 65

4.4 Caching strategy assumptions . 67

4.5 Consumer-cache caching strategy 68

4.6 An example using the consumer-cache strategy under NDN/IoT
networks . 70

4.7 The cache cost . 70

4.8 Conclusion . 73

4.1 Introduction

IoT networks originate traffic patterns very different from the popular Internet applica-
tions. In addition, they require specific procedures as discovery and management. Con-
comitantly, unlike high-performing Internet routers, IoT devices are mainly resource-
constrained nodes. As a consequence, packet transmission performance may be very
poor. Thereby, NDN modules must be optimized in order to support such limitations.

The in-network caching is one of the pillars of ICN which can significantly improve
the performances of IoT networks. It increases the data availability in the network
since consumer’s requests are most of the time satisfied by cache nodes rather than the
producer. Thanks to this feature, the traffic load is significantly reduced. In addition,

62 Chapter 4. Caching strategy for NDN-based IoT networks

caching affords the reduction of the required distance for data retrieval and as a conse-
quence, the response latency diminishes. Furthermore, it avoids bottleneck caused by
publishing data at a unique location.

Before going into the details of our contributions, we need first to understand the
IoT architecture. Until now, there is not yet a consensus on the physical model of the
IoT architecture to adopt. Two divergent visions are tacitly used in various experiments
of the IoT. The first considers the IoT as a collection of sensors/actuators interacting
with each other without any intermediate equipment. The second vision assumes that
actuators and sensors communicate through their respective gateways. In an IoT sce-
nario where actuators and sensors directly communicate with each other, an actuator
directly requests a sensor to get the measured value by the latter. This scenario as-
sumes that the actuators and sensors are provided with an operating system, software
applications and memory. In the second model, gateways play an important role. In
fact, actuators, as well as sensors, are directly connected thereto. Contrary to the first
view, the measured value by a sensor is no longer stored in the memory of the latter
but in the gateway to which it is attached. Starting from the premise that IoT devices
are resource-constrained, caching data, as small as they are, in a sensor memory, will
be the determinant of embedded applications and operating systems. In addition, the
caching decision is made by the CPU of the sensor which decreases the battery lifetime.
For these reasons, we propose to adopt, in this work, an NDN-based IoT architecture
where data are cached on the gateways and sensors represent the producers.

In this chapter, we aim to address the caching issue and we propose a caching strategy
which considers IoT ecosystem limitations. To this end, we detail caching techniques,
then we fix some caching strategy assumptions to propose a caching strategy suitable
for IoT environment. To evaluate our proposal, we finally analyze the cache cost. Just
prior to the caching study, we start this chapter by giving an overview of the NDN
architecture in order to position our contributions and precise the modules on which we
will act.

4.2 A focus on NDN layer

We portray in Figure. 4.1 the NDN architecture overview. In the under layer, we found
the Thing layer which includes a multitude of devices of the IoT ecosystem. IoT equip-
ment are heterogeneous and also equipped with heterogeneous communication interfaces.
In addition, they exhibit different mobility patterns and constraints (memory, battery,
processing power). Concerning the IoT applications, they are represented at the top of

4.2. A focus on NDN layer 63

the layers imposing requirements that should be satisfied. To cope with this challenge,
NDN layer is positioned in the middle and acts as a networking layer. This latter expects
to hide to Application layer the complexity and diversity of the underlying things by
adapting its modules to their features [Amadeo 2014a]. NDN modules are depicted in
the Core NDN Protocol offering two main services which are Caching and Routing. The
former includes Caching strategies, which is addressed in this chapter, and Cache Re-
placement Policies module which is detailed in chapter 5. The Routing module englobes
both the Data and the Interest packets routing. This module will be presented in chap-
ter 6. As we have mentioned in chapter 2, an NDN node is composed of three structures;
CS, PIT and FIB. We precise in Figure. 4.1 that only the CS structure participates in
the Caching module and all of them participate in the Routing module. In fact, each
step of the Interest forwarding process (red arrows) includes lookups to CS, PIT and
FIB. The Data forwarding is done according to PIT entries and requested Data can be
stored in the CS based on the adopted caching techniques (green arrows).

Application Layer

Thing Layer

Core NDN Protocol

CS

DATA

Figure 4.1: NDN Layer

64 Chapter 4. Caching strategy for NDN-based IoT networks

4.3 Caching techniques

The in-network caching is a matter of choosing the location of the different copies of a
given content and adapting it according to the geographical arrangement of the clients
and the nature of their requests. The caching is performed in two phases; the first phase
is the selection of nodes that will participate in the caching process which we call cache
placement selection. The second phase is the cache decision in which each cache node
decides to cache or not the content.

4.3.1 Cache placement selection

The cache placement selection is classified into two scenarios: On-path and Off-path
caching [Xylomenos 2012]. We detail in Figure. 4.2 the operation of the two scenarios and
we represent selected cache nodes by red nodes. With the On-path scenario, cache nodes
belong to the request path. In fact, as presented in Figure. 4.2a, when the requested
content is forwarded to the consumer following the request path (arrow 4-6), nodes
residing in the path choose either to cache the content or not according to their specific
cache decision policy.

By applying the Off-path caching scenario, cache nodes are fixed in the topology.
In fact, each consumer has one associated cache element known in advance as shown in
Figure. 4.2b. When the producer will send the response, it multicasts the content to
both the consumer (arrows 4-5-6a) and the associated cache (arrows 4-5-6b).

Producer

Consumer

(a) On-path Caching

Producer

Consumer

(b) Off-path Caching

Figure 4.2: Cache placement

From Figure. 4.2, we can trivially remark that, unlike on-path caching, off-path
caching requires additional overhead. Furthermore, the off-path caching only allows
serving local consumers by off-path caching points. Off-path caching is very hard to

4.3. Caching techniques 65

achieve on the Internet since it requires coordination between many application-level
caches.

4.3.2 Cache decision policies

The cache decision policy allows choosing for each cache node either to cache the content
or not. The decision is taken for each response and can change from a request to an-
other. Concerning the off-path caching scenario, the selected cache node depends on the
consumer. The decision is then always positive. However, with the on-path caching sce-
nario, a cache decision policy is essential. Generally, to optimize the use of the cache, the
participating nodes cooperate with each other. Information about the popularity of the
content will be exchanged to influence the choice of location. Several caching strategies
have been defined. They are classified according to the nature of the coordination be-
tween the participants in two categories: caching with explicit coordination and caching
with implicit coordination [Zhang 2013]. With the explicit coordination approach, the
nodes exchange information that describes the state of the different local caches, such
as the size occupied, the request frequency of the different objects and the distances
between replications. Then, each participant takes this information into account when
making decisions. This allows optimizing the overall performance of the entire archi-
tecture. According to nodes participating in this decision, we can define three levels of
explicit coordination; global coordination, path coordination or neighborhood coordina-
tion. In the global coordination, the placement decision involves all cache nodes, while
in the path and neighborhood coordination nodes used are respectively nodes belonging
to the request path and cache’s neighbors nodes. The explicit coordination requires a
periodic exchange of information between nodes to keep a consistent state. This reduces
the performance of this approach.

In implicit coordination, each participant node individually decides whether to cache
the data or not, without being informed of the decision of the others. This approach
avoids the exchange of information in the caching process which minimizes the bandwidth
consumption. However, by neglecting the decision of the other nodes, redundant and
near copies are possible.

Initially, in the ICNs, only one implicit cache decision policy is adopted. It is the
Leave Copy Everywhere (LCE) approach [Laoutaris 2004, Jacobson 2009, Zhang 2010].
According to this approach, the participating nodes systematically copy each received
data into their local space. This simple approach does not require any exchange be-
tween the nodes. Furthermore, it generates a high redundancy rate in the infras-
tructure, providing fast delivery and low bandwidth consumption. Several new stud-

66 Chapter 4. Caching strategy for NDN-based IoT networks

ies have shown that this approach is costly and infeasible and also inefficient to ac-
count for the exponential growth in the amount of data exchanged over the Inter-
net [Kutscher 2011, Rossini 2012, Chai 2012, Fricker 2012, Rossi 2012]. Thus, this result
has prompted the research community to deepen their research to propose specific ICN
cache techniques.

We present in Figure. 4.3 the widely used caching strategies. In this figure, green
nodes represent caches.

Consumer

Leave Copy Everywhere Betweenness-Centrality Caching

Leave Copy Down ProbCache Caching

 Edge-caching

Sensor
Consumer

Sensor

Consumer
Sensor

Consumer

Sensor

Consumer
Sensor

Figure 4.3: In-network caching strategies

The Leave Copy Down (LCD) strategy [Laoutaris 2006] leaves a copy in just one node
which is the gateway on one level down in the reverse path towards the consumer. The
betweenness-centrality strategy (Btw) [Chai 2012] depends on the betweenness-centrality
parameter which is calculated for each node in the topology. It measures the number
of times that a node belongs to a path between any two nodes in the topology. The
node with the highest betweenness-centrality parameter stores a copy of the data. The
Probabilistic Cache (ProbCache) caching strategy [Psaras 2012] decides to cache a copy
with a probability inversely proportional to the distance between the consumer and the
producer. As a consequence, this strategy privileges caching close to consumers. The
edge-caching (Edge) strategy [Fayazbakhsh 2013] is mainly conceived for hierarchical
topology. It also caches data in one node as with LCD, however, with this strategy, the
position of cache node is totally the opposite, it is the last gateway in the reverse path
towards the consumer.

We note that strategies presented above are not complex and do not need costly cal-
culations. Some other studies have proposed more complex in-network caching strategies
for ICN with the aim to increase the system performances in term of response latency, the
producer load and the required distance to satisfy a request. These advanced researches

4.4. Caching strategy assumptions 67

target more outcomes such caching redundancy [Wang 2013a, Psaras 2014], network
congestion [Badov 2014], supporting diverse traffic types [Tsilopoulos 2011], routing of
requests to the nearest cache [Eum 2012]. It is worth-noticing that in-network caching
efficiency can be strictly dependent on the context in which it is used. In fact, each
context has its specificity in terms of traffic volume and type, the frequency of con-
tent generation, consumers’ expectations and the ability of machines to support heavy
computation.

We assume that the location at which the caches are placed play a prime role in the
resulting traffic and load reduction. Thus, addressing the location problem of caches
is an important part of the campaign for in-network caching. We remind that, in this
thesis, we consider IoT environments. We then propose an IoT context-aware caching
strategy and we start by giving the assumptions of our proposal in the next section.

4.4 Caching strategy assumptions

In an IoT context, we believe that it is preferable to distribute caches on the network
topology (on-path) rather than centralizing them on fixed caching nodes (off-path). In
fact, with an important number of devices and large data flows, specifying particular
gateways to handle caching (even locally) would have as an immediate consequence the
creation of multiple congestions within the network. In addition, the off-path caching
increases the signaling overhead since it requires, in the caching process, additional
packet transmissions to the cache node. On the other hand, being in the case of the on-
path caching scenario, we admit that the implicit coordination is the most suitable cache
decision approach for IoT networks. In fact, being aware of the tremendous growth of
the IoT traffic, prompted us to avoid as much as possible extra packet transmission. To
recapitulate, the first assumption assumes to follow an on-path cache placement selection
combined with an implicit cache decision policy.

W.K.Chai et al. showed in [Chai 2012] that caching in fewer nodes can perform
better results in terms of producer hits and number of the traversed hops to reach a
content. Even caching in one randomly selected cache can be better than the LCE
strategy. In fact, with LCE, caches fill up very quickly because the cache size is very
limited compared to the number of the contents to be cached. Once the cache is full,
a replacement process is triggered to allow caching new items. The more frequent the
replacement process is the least efficient the caching is, because contents are cached then
deleted without being used and it just increases the caching cost. In addition, IoT nodes
are memory and energy-constrained, consequently, it is more advantageous to minimize

68 Chapter 4. Caching strategy for NDN-based IoT networks

the resource consumption. As a consequence, the second directive aims to reduce the
number of caches. It should be emphasized that this does not mean that lowering the
number of cache nodes provides a better strategy. Rather, it is a trade-off between the
number of evictions, the cache cost and the data availability.

From this point of view, we need to know what is the selection criterion of the place-
ment of cache nodes in a topology. Authors in [Fayazbakhsh 2013, Dabirmoghaddam 2014,
Imbrenda 2014] prove that the most efficient nodes for implicit caching are located in
the edges of the topology. This is due to the fact that generally consumers are connected
to edges, so cached copies will be easily reachable. Recall here that the edge-caching
strategy is originally conceived for hierarchical topologies, under this strategy, caches are
located at the leaves of the topology. Since, in IoT networks, consumers are generally
located at network edges and in other cases in the middle of paths, we aim to improve
in-network caching benefits and we propose as the third assumption to cache at nodes
close to consumers.

4.5 Consumer-cache caching strategy

Based on the three assumptions presented in the previous section, our caching strat-
egy, termed consumer-cache, proposes to store a copy of contents on the on-path nodes
which are connected to a consumer. We can say that if all nodes in the topology are con-
nected to consumers, consumer-cache strategy tends towards LCE strategy. Moreover,
if consumers are only connected to edges, our strategy will be similar to edge-caching
strategy. Our strategy strictly depends on the number of consumers and their locations.
We present below the algorithm of the consumer-cache strategy (Algorithm 1). It is as-
sumed that the request has already arrived at the producer, which will send the desired
content to the consumer.

As we can show in the presented algorithm, the decision to cache or not the content
is checked at each node vi from the producer to the consumer (Line 16). When vi is
connected to a consumer (Line 17), this cache node is added to Cache_nodes list (Line
18). Then, we verify if the Data is already stored in this cache (Line 19). If it is the
case, just an update of the existing item is occurred (Line 20), else the content is added
in the CS structure (Line 22).

Let us take the example of the topology presented in Figure. 4.4 where Consumer1
requests a content named (c). Initially, all caches are empty. So, the request is forwarded
to the producer. Producer1 holds the content (c). The latter sends the response via the
path from n11 to n0. While forwarding the response, each of the nodes in the response

4.5. Consumer-cache caching strategy 69

Algorithm 1 Consumer-cache strategy
1: Input: Data to cache
2: Output:The set of selected nodes as a cache
3: Data:
4: Prod = the producer node
5: Cons = the consumer node
6: G = (V,E) a graph that represent the network
7: Path = (v1, v2, ...vn) ∈ V ∗ V ∗ ... ∗ V s.a:
8: vi adjacent to vi+1 for 1 ≤ i ≤ n and
9: v1 ←− Prod

10: vn ←− Cons
11: Cache_nodes = (vc, ..., vp) ∈ V ∗ V ∗ ... ∗ V s.a:
12: 1 ≤ c ≤ p ≤ n
13: Cache = (c1, c2, ...cm) s.a: m ≤ cache_size
14: Begin
15: i = 1
16: while i ≤ n do
17: if ∃ a consumer connected to node vi then
18: Cache_nodes← vi

19: if DATA ∈ vi.c1..m then
20: ci.value = DATA.value
21: else
22: Cache(Data,vi)
23: i= i+1

path has to decide whether to cache or not a copy of (c) according to its own caching
strategy. With LCE, all the 10 nodes in the path store a copy. Other strategies require
that the content should be stored in only a single node. For LCD, only n11 retains
a copy; whereas with Btw, the cache is n6. However, under consumer-cache, caches
are n7 and n0. Concerning the edge-caching, n0 is the selected cache node. Also with
ProbCache, n0 has the greatest probability to be the cache. Let us now assume that
Consumer4 requests the same content (c). It sends a request towards Producer1. With
Btw and probably ProbCache, we have a cache miss. Under the ProbCache strategy,
the probability to find the content in n7 is very low as this node is far from Consumer 1.
Using consumer-cache and LCE the request is satisfied by n7. In the case of LCE, the
cached copies at n0, n3, n4, n5, n6, n8, n9, n10 and n11 are redundant. It is therefore
clear that caching the content close to consumers is sufficient to avoid redundancy in
other caches.

70 Chapter 4. Caching strategy for NDN-based IoT networks

n0

n1

n2

n3n4n5n6n7n8n9n10n11

Consumer4

n0

Consumer1

Consumer2

Consumer3

Producer1

Producer3

Producer2

Figure 4.4: An example with a simple path

4.6 An example using the consumer-cache strategy under
NDN/IoT networks

We describe in Figure. 4.5 a scenario under the Named Data IoT Networks using
consumer-cache caching strategy. In this scenario, Consumer1 sends an Interest packet
for the content named /Home/room1/Tmp (arrows 1-5). When the node n2 receives
the Interest message, it first performs a lookup in it CS. If there is no entry with this
name, the request is forwarded to the next hop according to the FIB of this node. This
base contains an entry which points to node n3. The router records the request’s in-
coming interface n1 in the PIT. Then, it sends the Interest to n3 and so on. In the
case of a cache miss, the producer satisfies the request. A Data message is then re-
turned. This packet is forwarded based on states stored in PITs (arrows 6-10). Under
the consumer-cache strategy, only n3 and n1 store the object in their CSs. Now, we
suppose that Consumer2 asks for the same content /Home/room1/Tmp (arrow 11).
When the Interest packet arrives to node n3, it matches the information object found
at the CS. Then, the Data is directly returned (arrow 12).

4.7 The cache cost

The cache cost is a compromise between data availability and caching overhead. It cap-
tures the trade-off between the average delay to receive a content and the corresponding
caching cost [Vasilakos 2012]. The delay to obtain information is considered as a cost
because, in the case of a cache miss, the delay to wait for the response by searching
the caches is longer than the delay of directly looking for the content from the remote
server. As we have already mentioned, the decision whether to cache a content or not
in each node depends on the adopted caching strategy. So, the caching cost is related
to this decision; the more we have "yes" decisions, the higher the global caching cost is.
Although caching improves content availability, it increases redundancy and causes net-
work overhead due to the existing content stored in the cache nodes. In addition, some

4.7. The cache cost 71

Sensor2

Sensor1

/Home/room2/pre

/Home/room1/Tmp

n1

n2

n3

n4

n5

n6

Link
INTEREST
DATA

n2
CS

PIT

FIB

ID

ID

ID

DATA

From

To

n3

FIB
ID To

/Home/room1

/Tmp
n1

/Home/ n3

CS
ID DATA

/Home/room1

/Tmp
23°

PIT
ID From

/Home/room1

/Tmp
consumer2

/Home/room1

/Home/room2

n4

n5

Consumer1

Consumer2

(1)

(2
)

(3)(4
)

(5)

(6)

(7
) (8)

(9
)

0)

(1
1)

(1
2)

Figure 4.5: An example with the NDN architecture using the consumer-cache caching
strategy

strategies, as LCE, come to fill up caches faster than other ones. In this case, we may
remove still valid contents. As a consequence, the number of cache misses increases, and
the cache is no longer effective. From this point of view, we consider the cache eviction
as a cost; the more we evict contents, the higher the global caching cost is.

To calculate the cache cost, we were inspired by the cache cost function (Eq. 4.1)
proposed in [Vasilakos 2012].

Totalcost = Phit ∗ Chit + (1− Phit) ∗ Cmiss +N(S) ∗ Ccache (4.1)

Where Phit is the probability to have a cache hit. It is calculated by the ratio of the
number of requests satisfied by caches over the total number of requests. Chit and
Cmiss are the average delays experienced by a consumer in order to receive its requested
information from a cache and the producer, respectively. N(S) is the number of caches
in the topology. Finally, Ccache is the cost to cache items which is defined by the equation
Eq. 4.2.

72 Chapter 4. Caching strategy for NDN-based IoT networks

Cj
cache = a

1− ρj
util

(4.2)

Where a is the cost coefficient that is set to 2 [Vasilakos 2012], and ρj
util is the cache

utilization. The cache utilization at a node j is the ratio of the number of times a
content is cached in j (Ncaching) over the number of times a content passes through j
(Ndecisions). Ccache calculates the average of Cj

cache over j cache nodes. The proposed
cost function (Eq. 4.1) captures the trade-off between the average delays for a consumer
to receive an information item, given by the first and second terms of the equation
Eq. 4.1, and the corresponding caching cost given by the third term of the equation
Eq. 4.1.

To calculate the eviction cost, we should add, to the equation Eq. 4.1, a fourth term
which is similar to the third one. However, the calculation of ρutil differs from that
calculated in the third term. In fact, in the cache eviction function, the utilization is the
ratio of the number of times an eviction is performed in node j (Nevictions) over the
number of time a content is cached in j (Ncaching). This is because the eviction takes
place when a new item will be cached and the cache is full.

To summarize, we define our cache cost metric in the equation Eq. 4.3.

Totalcost = Phit ∗ Chit + (1− Phit) ∗ Cmiss

+N(S) ∗ 2
1− Ncaching

Ndecisions

+N(S) ∗ 2
1− Nevictions

Ncaching

(4.3)

Collected values show that the sum of the third and fourth parts in the cost function
which represents caching and eviction cost is notably higher than the sum of the first
and the second parts which illustrate the delay. For this reason, we use normalization
method to adjust the two values. The normalization method, named "reduced-centred",
is calculated as shown in the equation Eq. 4.4, where µ is the average of the distribution,
and σ represents the standard deviation of the distribution.

Z = X − µ
σ

(4.4)

The findings of cache cost using different caching strategies will be given and analyzed
in the last chapter.

4.8. Conclusion 73

4.8 Conclusion

In this chapter, we addressed an important feature of the ICN paradigm which is the in-
network caching. We started by giving different caching techniques, notably the cache
placement selection and cache decision policies. In order to propose a new caching
strategy, we fixed three assumptions taking into account the specificities of the IoT
environments. Then, we detailed our consumer-cache caching strategy and we gave an
example under NDN-based IoT networks. The principal aim of this proposal is to deal
with the constraints of IoT devices, for this reason, we analyzed the cache cost. In
the next chapter, we will focus on the freshness requirement in IoT systems and we
will present our two contributions; a cache replacement policy and a freshness-check
mechanism.

Chapter 5

Freshness-aware in-network
caching in NDN-based IoT

networks

Contents
5.1 Introduction . 75

5.2 Analyze and prediction model . 76

5.2.1 The IoT traffic patterns . 76

5.2.2 Prediction model . 77

5.2.3 Autoregressive Moving Average model 78

5.3 Event-based freshness mechanism 83

5.3.1 Event-based freshness algorithm 83

5.3.2 Example with event-based freshness mechanism 85

5.4 Least Fresh First cache replacement policy 86

5.4.1 LFF algorithm . 86

5.4.2 Example with LFF policy . 87

5.5 Conclusion . 88

5.1 Introduction

In-network caching is a pertinent feature in NDN. In fact, satisfying requests by cache
nodes can significantly improve the network performance in terms of response latency
and producer load. However, to take full advantage of caching benefits, cache nodes
should be efficient. The term efficient refers to two points. First, an efficient cache is a
cache in which each stored content is useful by the consumers, so the data is not stored

76
Chapter 5. Freshness-aware in-network caching in NDN-based IoT

networks

then evicted without satisfying any request. Second, an efficient cache should provide
consumers with valid and not out of date contents.

In an IoT context, data are transient and frequently updated by the producer. As
a consequence, copies stored in caching nodes may become out of date after a certain
period of time. Facing this stringent freshness requirement, we aim to consider the data
freshness to privilege the eviction of stale contents from the cache and to check the
validity of retrieved contents.

We address, in this chapter, this issue and we propose two contributions. We in-
troduce a cache replacement policy named Least Fresh First (LFF) to manage the data
eviction while considering the nature of the IoT environments. In fact, it is better to
eliminate the invalid contents from the cache since anyway they are unusable. Then, we
present a freshness mechanism called event-based freshness mechanism that checks the
data validity before its retrieval from a cache node. In order to solve the freshness issue,
we are based in the two contributions on a prediction mechanism according to the IoT
traffic patterns.

This chapter is organized as follows, we first detail our prediction model, then we
introduce the LFF cache replacement policy and the event-based freshness mechanism.

5.2 Analyze and prediction model

To identify non-fresh cached contents, we are based on the calculation of an expiration
time for each item in the cache. In fact, a cached content is supposed to be fresh when
the data has not been updated in the source after the last data retrieval. The basic idea
of our approach is to calculate for how long the retrieved content will remain valid. We
give the name Tfresh to this parameter. In order to calculate Tfresh, it is essential to
study the sensors behavior to know the time of the next event of a sensor. To this end,
we analyze and classify the flows of data generated by the sensors. We present, in the
following subsection, the IoT traffic patterns.

5.2.1 The IoT traffic patterns

IoT traffic is usually classified into four categories: continuous, periodic, OnOff and
request-response transmissions [Liu 2011]. With the continuous transmission, the data
are transmitted in a continuous manner like video streaming. Under periodic trans-
mission, the source sends a data at every fixed period of time T. For example, with a
temperature sensor, after the elapse of each period (e.g: 1 hour), a new value is recorded.
The OnOff transmission mode stipulates that the content is updated as soon as a new

5.2. Analyze and prediction model 77

event occurs. Let us consider the example of a presence sensor. The value 0 of the sensor
indicates the absence of persons. Once someone is in the room, the value is updated
to 1. Finally, in the request-response transmission, as its name indicates, the consumer
sends directly a request to get the current value of the sensor. By considering these
transmission modes, we can assume that sensors can be passive and do not follow any
behavior as it is the case in request-response transmission. Otherwise, sensors can be
active with a periodic, OnOff or continuous behavior. Considering continuous transmis-
sion as a periodic one with a tiny period (ε), IoT events are summed up to periodic
and OnOff mode. Concerning the periodic transmission, when the period T elapses, the
content is no longer valid. However, with the OnOff transmission, the sensor behavior
can not be predicted and the updates of values can be performed at any time. For this
reason, the prediction process is used with this mode. We differentiate in Algorithm. 2
the two modes of transmission in the calculation of Tfresh. In the case of a periodic
sensor, Tfresh is the remaining time of the period since the last update (Line 8). With
an OnOff sensor, Tfresh will be estimated using forecasting tools.

Algorithm 2 Calculation of Tfresh

1: Input: Received request
2: Output:Tfresh

3: Data:
4: Sensors will receive requests from different consumers to retrieve the sensor’s value
5: Begin
6: for each received request do
7: if Data.flow = ”Periodic” then
8: Tfresh = (update_time+ T)− current_time
9: else

10: Estimate Tfresh

5.2.2 Prediction model

For the prediction process, we use time series. With this latter, data is analyzed in
order to extract a meaningful statistic model used to predict future values based on the
previously-observed ones. There are several forms to model a time series. The exponen-
tial smoothing, the machine learning and the Autoregressive Moving Average (ARMA)
models are the most widely-used approaches to time series forecasting [Hyndman 2014].
ARMA which is also called the Box and Jenkins approach can be regarded as a spe-
cial case of the most general and most powerfull algorithm of the Kalman filter algo-
rithm [Caines 1972]. Both are applied only to the processes which satisfy the linear

78
Chapter 5. Freshness-aware in-network caching in NDN-based IoT

networks

models with a finite number of parameters. The Kalman filter algorithm carries addi-
tional strength, differently from Box and Jenkins approach. One of the main advantages
is handling of missing data. In our case, ARMA will be sufficient since all the events
will be recorded. The machine learning technique works better if we are dealing with
huge amount of data and enough training data is available, while ARMA is better for
smaller datasets. The exponential smoothing is suitable for forecasting data which does
not display any clear trending behavior or any seasonality. However, the ARMA time
series is designed for stationary time series. These latter do not depend on the time at
which the series is observed. To understand this point, we depict in Figure. 5.1 a sample
of the IoT traffic over the time. In this study, we used real IoT data extracted from
ADREAM [LAAS-CNRS 2013] building in LAAS-CNRS laboratory which is a smart
building. The building hosts our smart apartment equipped with different sensors (tem-
perature, humidity, luminescence, presence, etc.) as well as actuators such as electric
plugs attached to different elements: lamps, fans, humidifier, etc. Figure. 5.1 plots a
sensors data flow extracted from ADREAM between 8 am and 11:30 am. As we can
show, the figure portrays a time series without trend and we can also note the low vari-
ability of the data around their average value. Consequently, we can assume that the
time series is stationary.

As a consequence, we choose to use the ARMA model [Makridakis 1997] as a tool
for forecasting.

5.2.3 Autoregressive Moving Average model

ARMA model was introduced by Box and Jenkinsis in [Box 1970]. This model is a very
large family of stationary processes which has two advantages: on the one hand, these
processes are excellent and precise forecasting tools. The forecasting error is proved to
be less than or equal to 5% [Brockwell 1991]. On the other hand, methods are perfectly
developed to estimate their parameters. The prediction operation in ARMA is based
not only on the past events but also on some unexpected recent events. In fact, it
consists in eliminating obvious trends as periodicity and growth and then focusing on
residue. This latter is modeled and the forecast relied on this model. This model needs
a maximum of 30 past values to predict a new one. The size of this set depends on the
values themselves [Brockwell 1991]. A process ARMA(p,q) with the notation {Xi}n, is
presented in equation Eq. 5.1. The different parameters of this equation will be explained
later.

5.2. Analyze and prediction model 79

Time (s)

ts
_
le
a
rn
in
g

Figure 5.1: The stationarity of the time series

Xn + φ1Xn−1 + φ2Xn−2 + · · ·+ φpXn−p

= εn + θ1εn−1 + θ2εn−2 + · · ·+ θqεn−q

(5.1)

Forecasting Tfresh amounts to calculate Xn+1. To this end, it is necessary to start
by collecting the data {Xi}n, then, we calculate ARMA parameters (p, q, φi, θi, εi). The
learning phase is indispensable in the forecasting process. It is a primordial step to collect
a sufficient set of data and to analyze the followed process in terms of stationarity, trends
and seasonality.

5.2.3.1 Data collection

We remind that we want to estimate how long the last recorded value by a sensor will
still valid. As a consequence, {Xi}n will be the different time intervals between two
consecutive events as portrayed in Figure. 5.2.

We present the data collection in Algorithm 3. We use the queue as a container for
{Xi}n. In this way, the new values will overwrite the old ones. The size of the queue is

80
Chapter 5. Freshness-aware in-network caching in NDN-based IoT

networks

t
...

fresh
T

event event

...

event
n n+11 event i

X
n+1

X
1

X
n

Figure 5.2: Time series model

Algorithm 3 Data collection
1: Input: A set of sensors
2: Output:{Xi}n
3: Data:
4: Each sensor has its past_events container
5: past_events: a queue in a FIFO context which contains {Xi}n
6: Begin
7: for each sensor do
8: time_interval = 0
9: last_event = 0

10: for each event do
11: if last_event 6= 0 then
12: time_interval = current_time− last_event
13: past_events.push_back(time_interval)
14: last_event = current_time

5.2. Analyze and prediction model 81

set to 30 as we have mentioned previously. Each gateway maintains the queues of the
sensors connected to it. For each occurred event in a sensor, we calculate time_interval
which is the delay between the new event (current_time) and the last one (last_event)
(line 12). Then time_interval is pushed into the back of the queue past_events (line
13) and we update the last_event time with the new event time (line 14).

5.2.3.2 Calculation of ARMA parameters

We remind that ARMA parameters are p, q, φi, θi, εi. ARMA process is the sum of the
AR process and the MA process. Xn is an autoregressive process of order p, ARp. It
is therefore determined by the variance εn of the white noise as well as its canonical
polynomial Eq. 5.2, where φ1, . . . , φp are the parameters of the model.

Xn = εn − φ1Xn−1 − φ2Xn−2 − · · · − φpXn−p (5.2)

The autoregressive model specifies that the future value estimated (Xn) depends
linearly on its own previous valuesX1, . . . , Xp and on a stochastic term εn which presents
the imperfectly predictable term. εn is the white noise which measures the variance σ2

given in equation Eq. 5.3.

εn = σ2 = 1/n
n∑

i=1
X2

i − X̄2 (5.3)

The vector φ = (φ1, . . . , φp) is the solution of the Yule-Walker equation presented
in equation Eq. 5.4 where C(n)

X,p = (Cn
X(1), . . . , Cn

X(p)) are the empirical covariances
(Eq. 5.5) and Rp is the Toeplitz matrix of the covariances to the order p.

R(n)
p φ(n) = C

(n)
X,p

⇔ φ(n) = C
(n)
X,p(R(n)

p)−1
(5.4)

Cn
X(k) = 1/n

n−k∑
j=1

Xj+kXj (5.5)

R
(n)
p =

82
Chapter 5. Freshness-aware in-network caching in NDN-based IoT

networks

1 Cn
X(1) Cn

X(2) · · · Cn
X(p− 1)

Cn
X(1) 1 Cn

X(1) · · · Cn
X(p− 2)

Cn
X(2) Cn

X(1) 1 · · · Cn
X(p− 3)

...
...

...
Cn

X(p− 1) Cn
X(p− 2) Cn

X(p− 3) · · · 1

We solve the ARp equation in Algorithm 4. As we can see from line 11 to line 21, p

is set according to the calculated φp. It is a question of choosing the best value of p for
the given distribution {Xi}n that will be sufficient for a precise estimation. A corollary
used in AR provides a tool for finding the right value of p when we want to model a
series with an AR process. We can, in fact, calculate one by one the empirical partial
correlations φp. If we compare the quantile to the 0.975 order of the Gaussian (Z.975),
divided by

√
n, we can see from which value of p, the value of φp remains smaller in

module (line 15). We can then admit that p−1 is the best value (line 17) since p pushes
the process in the rejection region.

Algorithm 4 Calculation of the ARp process parameters
1: Input: {Xi}n
2: Output:Xn+1
3: Data:
4: Sensors with full past_event container
5: Sensors with an OnOff transmission mode
6: Begin
7: for each sensor do
8: Calculate εn (Eq. 5.3)
9: for each received request do

10: p=1
11: while p ≤ n do
12: Calculate C(n)

X,p (Eq. 5.5)
13: Calculate (R(n)

p)−1

14: Calculate φp (Eq. 5.4)
15: if | φp |≥ Z.975/

√
n then

16: if p ≥ 1 then
17: p - -
18: break
19: else
20: p++
21: Calculate Xn+1 (Eq. 5.2)

The Xn+1(Tfresh) obtained with the AR process is already sufficient especially with

5.3. Event-based freshness mechanism 83

perfectly stationary series. However, for better precision, the Moving Average process
is used to readjust Tfresh. We call the MA process of order q (also called MAq), the
process defined by the equation Eq. 5.6 where θ1, . . . , θq are the parameters of the model.

Xn = θ1εn−1 + θ2εn−2 + · · ·+ θqεn−q (5.6)

The MA process is combined to the AR one in order to adjust results by taking
into account the errors of previous predictions. In fact, εi is the error between the past
predicted values and the real ones (εi =| Xreal

i −Xforecast
i |). To solve the MA process,

we calculate θi with the innovation algorithm. This latter represents what Xn+1 brings
of something really new to what has been observed until moment n. It is for this reason
that we speak about innovation. θi is given in equation Eq. 5.7.

θi = Cov(Xn, εt−n)/σ2 (5.7)

As the same way with the AR process, we calculate the MA process according to the
equation Eq. 5.6, using εi and θi. It is worth noticing that p and q can have different
values. After the calculation of the MA process, we can finally deduce the adjusted value
of Xn+1. The calculated Tfresh is then appended to the requested data and sent back
to the consumer. As a consequence, all cached contents will contain the freshness delay
information. In this thesis, we have implemented all the algorithms and the ARMA
model calculations presented above.

We remind that the added metadata Tfresh in all the contents in the network, will
be used in two contributions in order to support the data freshness requirement in IoT
environments.

5.3 Event-based freshness mechanism

To address the cache coherence problem related to different in-network caching strategies,
we conceive a freshness mechanism which we call event-based freshness. The role of this
coherence mechanism is to check the freshness of a requested data found in a cache node
before to send it back to the consumer.

5.3.1 Event-based freshness algorithm

The event-based freshness mechanism is an expiration-based freshness with a variable
expiration time. It depends on producer behaviors, the time of storing a content in a
cache called cache-time, the period in the case of periodic mode, and past events in the

84
Chapter 5. Freshness-aware in-network caching in NDN-based IoT

networks

case of OnOff mode. The pseudo-code for forwarding the request and checking the data
freshness is given in Algorithm 5.

Algorithm 5 Event-based freshness mechanism
1: Input: Request from a consumer
2: Output: Fresh Data
3: Data:
4: Data to retrieve
5: Prod = the producer node
6: Cons = the consumer node
7: G = (V,E) a graph that represent the network
8: Path = (v1, v2, ...vn) ∈ V ∗ V ∗ ... ∗ V s.a:
9: vi adjacent to vi+1 for 1 ≤ i ≤ n and

10: v1 ←− Cons
11: vn ←− Prod
12: Begin
13: i = 1
14: Found = False
15: while NOT Found AND i < n do
16: if Data ∈ vi then
17: if current_time− cache_time < Tfresh then
18: Found = True
19: Get(Data)
20: else
21: i = i+ 1
22: Delete(Data)
23: else
24: i = i+ 1
25: if NOT Found then
26: Get(Data) (Data is retrieved from the Prod)

As we can see in the algorithm, the check process is performed when a request reaches
a cache that contains the requested Data (Line 16). To verify the content validity, we
compare the lifetime of the content in the cache with its lifetime in the producer to
check if the cached content has been modified in its source. To calculate the lifetime of
a cached content, we use the cache_time value stored in the cache node and the Tfresh

parameter appended to the data. The difference between the current time current_time
and the cache_time measures how long a content was cached. If this latter is less than
the freshness delay Tfresh then the content is returned to the consumer (Line 17-19). If
not, the Data is considered non-fresh and it is deleted from the cache and the request
is forwarded to the next hop (Line 20-22). If none of the cache nodes belonging to the

5.3. Event-based freshness mechanism 85

request path maintains a copy of Data, the request is satisfied by the producer without
a validity check process (Line 26).

5.3.2 Example with event-based freshness mechanism

We describe in Figure. 5.3 a scenario under the Named Data IoT Networks using event-
based freshness mechanism. We remind that the event-based mechanism introduces new
parameters which are cache_time and Tfresh. The cache_time parameter is stored in
the cache structure in the gateway when a new item is cached, however, Tfresh is sent as
metadata with the content and then stored in the CS structure as shown in Figure. 5.3. In
the presented scenario, we consider two producers; a temperature sensor and a presence
sensor. This scenario is executed in two phases. The first one is the calculation of
Tfresh which is performed when a request reaches the producer. The second phase is
the validity check which is performed when a copy of the requested content is found in
a cache node. At 10:30 am, Consumer1 sends a request to retrieve the content named
/Home/room1/Tmp. The data is satisfied by the producer. This latter is a periodic
sensor with a period T = 1h and its last update has occurred at 10 am recording 23◦ of
temperature. As a consequence, the next update will be at 11 am. Since it is 10:30 am,
the data will remain valid for 30min which is the value of Tfresh. When the consumers
ask for a content generated by an OnOff sensor, Tfresh is calculated using ARMA model.
According to Figure. 5.3, the content /Home/room2/pre is retrieved at 10:55 am with
Tfresh = 2h and its value is 1.

For the second phase, we suppose that Consumer2 is interested in content /Home/
room1/Tmp, so it sends an Interest packet towards n3. When the Interest packet
reaches node n3, a cache lookup is performed. Then, the content is found in the CS.
The use of the event-based freshness consists in verifying cached object before returning
it. It is assumed to be 11:30 am. The requested content is cached at 10:30 am with a
freshness delay Tfresh = 30min. That means, after 11 am, the temperature value 23◦

is considered invalid. Consequently, this entry is removed from the CS, and the request
is forwarded to the next hop to look for a valid data. If Consumer2 is interested in
content /Home/room2/pre, the cached copy in n3 will remain valid since 12:55 am. We
supposed that it is 11:30 am, then we admit that the data is fresh since it is supposed
that the next event has not yet occurred. The data is then returned to the consumer.

86
Chapter 5. Freshness-aware in-network caching in NDN-based IoT

networks
Sensor2

Sensor1

/Home/room2/pre = 1

at 10:45am

/Home/room1/Tmp = 52°

Period T=1h

n1

n2

n3

n4

n5

n6

Consumer1

Consumer2
Arma Model:Input
lastEvents

1h21min

Arma Model:Output
T_fresh

T_freshId
\Home\room1\tmp 10:30 am

Data
23°

cache_time

\Home\room2\pre 1 10:55 am

CS

2h

2h

2h36min
56min

...

30m

10h

11h

23°

52°

Update_time Value

Figure 5.3: An example with the NDN architecture using the event-based freshness
mechanism

5.4 Least Fresh First cache replacement policy

Since the cache size is limited, once the cache is full, some stored content must be deleted
to allow caching new items. To this end, cache replacement policies are used to select the
data object to be evicted. The cache efficiency is strictly related to the adopted policy.
In fact, if cached contents are evicted without satisfying any request during their lifetime
in a cache or if the cache provides out of date contents, this cache is inefficient. However,
in-network caching is basically supported to improve data dissemination efficiency. In
order to enhance the cache efficiency, we aim to avoid the eviction of the items that
can satisfy future requests and choose to delete already invalid items. To this end, we
propose in this thesis a cache replacement policy named the Least Fresh First policy.
LFF algorithm selects the least fresh data item as the candidate to be evicted from the
cache.

5.4.1 LFF algorithm

The approach, presented in Algorithm 6, is invoked at each time when there is a new
Data to cache. As a first step, a check process is mandatory to see if the content
already exists in the cache (line 11). If it is the case, just an update of the version,
the cache_time and Tfresh is occurred (line 15-18). If not, it is necessary to verify if
the cache is full or not (line 20). If there is a place to add the content, this latter is

5.4. Least Fresh First cache replacement policy 87

stacked above the Cache (line 21). In the other case, one data item ci has to be ejected.
Therefore, a look over the Cache is performed in order to select the ci with the least
Tfresh + cache_time and evict it (line 23-25).

Algorithm 6 Least Fresh First
1: Input: A new data item to cache
2: Output: A data item to evict from the cache
3: Data:
4: Data to cache
5: Cache = (c1, c2, ...cn) s.a: n ≤ cache_size
6: ci the position of the data item to be evicted s.a: 1 ≤ i ≤ n
7: Begin
8: i = 1
9: Found = False

10: while NOT Found AND i ≤ n do
11: if ci.name = Data.name then
12: Found = True
13: else
14: i = i+ 1
15: if Found then
16: ci.version = Data.version
17: ci.cache_time = current_time
18: ci.Tfresh = Data.Tfresh

19: else
20: if n 6= cache_size then
21: cn+1 = DATA
22: else
23: for each Ci ∈ C1..n do
24: cevict = min(ci.Tfresh + ci.cache_time)
25: Evict(cevict)

5.4.2 Example with LFF policy

We detail in Figure. 5.4 the operation of the LFF cache replacement policy. We suppose
that the cache size is equal to 5. Consumer1 is interested in content /Home/room2 /pre.
Since there is no entry in cache nodes that can satisfy this request, the data is retrieved
from the producer. When the response reaches node n3, according to our adopted
consumer-cache caching strategy, a copy of the content will be stored in the cache.
However, the cache is full, so one item must be evicted to allow the caching of the new
one. The candidate to be ejected is the one with the least value of Tfresh + cache_time
which measures the time from which the content is considered invalid. In our scenario,

88
Chapter 5. Freshness-aware in-network caching in NDN-based IoT

networks
Sensor2

Sensor1

n1

n2

n3

n4

n5

n6

Consumer1

Consumer2

Data cache_time

CS

2h

30m

15min

\Home\room1\hum 26min

3h

\Home\kitchen\flame

\Home\kitchen\gas

\Home\room2\sound

\Home\room1\Tmp

\Home\room2\pre

T_freshId

10:55am

08:05am

08:52am

09:11am

09:36am

10:30am23°

1

0

50

0

620 1h30

cache_time

CS

2h

30m

\Home\room1\hum 26min

\Home\room2\sound

\Home\room1\Tmp

\Home\room2\pre

T_freshData

10:55am

08:52am

09:36am

10:30am23°

1

50

620 1h30

Id

Figure 5.4: An example with the NDN architecture using LFF policy

the content /Home/room1/hum is deleted (red line) and the new item is added to the
head on the stack (green line). The CS structure maintained by node n1 is not full,
then the new item is directly added above the stack. We remark that the cache in n3
filled up faster than the cache in n1. This is because n3 stored the requested content by
both Consumer1 and Consumer2, while n1 caches the content of requests from only
Consumer1.

5.5 Conclusion

In this chapter, we addressed the freshness requirement and we proposed two novel
schemes. Our two proposals are based on the prediction model, so we started this
chapter by detailing our forecasting tool. Then, we proposed our event-based freshness
mechanism which targets to check the data freshness before the retrieval. Finally, we
presented our LFF cache replacement policy which is responsible for selecting the least
fresh item to delete in a full cache. In the next section, we will address the mobility
issue.

Chapter 6

Adaptive Forwarding for Efficient
Mobility Support in NDN-based

IoT networks

Contents
6.1 Introduction . 89

6.2 Which approach to handle producer mobility in NDN-based
IoT networks? . 90

6.3 Routing and Forwarding planes in NDN 92

6.3.1 Existing studies on routing plane 94

6.3.2 Existing studies on forwarding plane 95

6.4 AFIRM: Adaptive Forwarding based lInk Recovery for efficient
Mobility support . 96

6.4.1 FIBs construction . 96

6.4.2 Link recovery . 97

6.4.3 Example with AFIRM algorithm 100

6.5 Conclusion . 102

6.1 Introduction

In the NDN architecture, data objects are requested without any location information
and requests are routed to the producer hop by hop according to the forwarding infor-
mation previously stored in the FIB structure at each node. The producer mobility can
cause packets loss due to the impossibility to forward the request to the new location
of the content. Therefore, mobile devices are no longer reachable during and after a
handoff and FIBs need to be updated.

90
Chapter 6. Adaptive Forwarding for Efficient Mobility Support in

NDN-based IoT networks

In this chapter, we focus on data availability requirements threatened by the high
IoT network dynamics. We propose a novel and efficient forwarding algorithm in order
to support producer mobility. We start this chapter by identifying among different mo-
bility approaches presented in section 3.6.2, the most suitable one for NDN-based IoT
networks. We justify that the name-based routing approach can efficiently resolve the
producer mobility issue. Therefore, we give an overview about routing and forward-
ing processes in the NDN architecture. Finally, we introduce our adaptive forwarding
algorithm for efficient mobility support.

6.2 Which approach to handle producer mobility in NDN-
based IoT networks?

To the best of our knowledge, the support of producer mobility in NDN, in an IoT
context, has not been investigated as yet. However, in the web context, as we could see
in section 3.6.2, it has started to gain momentum within the research community. The
issue is more serious for IoT scenarios because IoT devices are frequently mobile and
applications require data to keep continuity. Apart from this specificity, the problem
remains the same. Studies referenced in section 3.6.2 could successfully handle producer
mobility in NDN. However, in an IoT environment, some of them still remain inefficient
in term of the number of exchanged packets in the network, packet delivery path and
handover latency. Usually, all approaches require extra exchanged packets to support
producer mobility. As a consequence, the objective is to minimize this cost under various
system constraints as in IoT networks. In this section, we discuss approaches presented
in section 3.6.2, in order to identify which one is adequate to IoT systems.

We remind that NDN is a name-based routing architecture. It uses hierarchical names
which can be aggregated to enable the execution of LPM operations. Every node may not
have all the information about the content location, however, it limits wrong forwarding
decisions in the network. Content names can follow logical or geographical aggregation
and in both cases, they do not reflect topological information. Geographical aggregation
is usually used for contents stored in the permanent location. For instance, the name
/Home/floor1/room2/tmp is given to a temperature sensor located at the room number
2 on the first floor. On the other hand, content with logically aggregated names may be
stored in a mobile node. We take the example of an electrocardiogram sensor used to
measure the heartbeat of a person with the name /Bob/health/heart/beat.

One of the NDN pillars is the unique, persistent and location-independent naming
scheme; the consumers are no longer interested in where the content is located. The

6.2. Which approach to handle producer mobility in NDN-based IoT
networks? 91

locator/identifier separation approach is based on renaming content after the producer
mobility and the addition of extra information concerning the location. On the other
hand, the location resolution approach is based on the name resolution routing method
which also translates names to IP addresses. These two approaches require extra infor-
mation about the topology included in content objects either in their names or in their
payload. Moreover, since this information is topology-dependent, the content object
will change when a mobility occurs. As a consequence, handling mobility with the loca-
tion resolution approach or the locator/identifier separation approach will contradict the
NDN nature and would undo its basic strength especially the in-network caching which
requires names to be permanent, location-independent and meaningful by themselves.
However, the main idea was to deploy IoT under NDN in order to improve the IoT
data dissemination efficiency benefiting from NDN features. We then admit that these
approaches are not suitable for NDN-based IoT networks.

Concerning the triangular approach, it suffers from a very long packet delivery path,
that said, a high response latency. In addition, it requires the update of the intermediate
nodes between the old and the new location which increase the processing cost in terms
of power and resources consumption.

The routing-based approach is the least investigated approach in the literature to
handle mobility. Existing studies use to discover the topology state either at the time
of request, or response or both of them.

We summarize in Table. 6.1 the main differences between the four approaches in
terms of the routing protocol, the packet delivery cost and the routing path length. We
conclude that the name-based routing is the most suitable approach in NDN-based IoT
networks. In fact, it respects, as the triangular approach, the name-based routing aspect
of the NDN architecture and does not use the location information to forward requests.
However, the triangular approach uses a very long routing path. By against, under the
routing-based approach, requests are satisfied with an optimal routing path length, as
with the location resolution approach. However, this latter undergoes a high packet
delivery cost since it requires many exchanged packets to handle the producer mobility.
Name-based routing approach can also reduce the number of exchanged packets in the
network because it involves Interest and Data packet in routing handling.

As a conclusion, we assume that a dynamic routing protocol can be an efficient
solution that can indirectly handle producer mobility with the respect to the NDN
architecture. In addition, it performs a less handover latency and an optimal packet
delivery path since packets are routed to nearest copies. However, it also needs a deep
study in order to reduce the complexity cost. Therefore, we begin by studying in the

92
Chapter 6. Adaptive Forwarding for Efficient Mobility Support in

NDN-based IoT networks

Table 6.1: Mobility producer management in NDN
Location Resolution Triangular Identifier/Location

separation
Routing-based

Interest routing NRS Named-based hybrid Name-based
Packet delivery cost High Medium Medium Medium
Routing path length Optimal Very long Normal Optimal

next section the routing and forwarding in NDN.

6.3 Routing and Forwarding planes in NDN

Since the emergence of NDN as a new Internet architecture, routing has experienced a
resurgence within the research activities. These studies result in a variety of interesting
solutions to deal with routing challenges.

Expect a few restrictions, routing scheme in NDN and IP has the same semantic.
In fact, NDN nodes handle a FIB which serves as the forwarding table rather than IP
routers and FIBs are indexed by content names instead of IP addresses. Furthermore,
during the forwarding process, FIBs propose multiple interfaces for a given entry since
requests can be satisfied also by temporary cached copies, however, IP routers just
propose a unique interface which is supposed to be the best interface.

The routing task in both NDN or IP is divided into two planes, a control plane and
a data plane. The former principal role is to populate forwarding tables by disseminat-
ing topology information. In addition, it detects and recovers failures due to network
changes. By against, the data plane has a passive role and does not expect any calcula-
tions. In fact, this plane is just responsible for redirecting receiving requests to the right
interface according to the information stored in the forwarding tables [Yi 2014].

In current IP networks, the control plane is maintained by the routing protocol and
the data plane is ensured by the passive forwarding process. Due to the peculiarities of
the NDN architecture, such as the support for multipath communications and the pres-
ence of a strategy layer allowing nodes to make forwarding decisions on their owns, new
questions are raised by research community that prompt the rethink of routing planes
role in NDN. Authors in [Yi 2013] have discussed this issue. They affirm that in NDN,
the forwarding plane role may not be limited to a passive forwarding but it can stand
up with the central role of control plane since it has an active role in making forwarding
decisions. As a consequence, new challenges appeared about the interaction of the rout-
ing protocol and the intelligent and adaptive forwarding process in managing the control
plane in NDN. To this end, the routing protocol is only responsible for disseminating

6.3. Routing and Forwarding planes in NDN 93

initial topology and policy information as well as long-term computes the routing table
to guide the forwarding process. Concerning the forwarding plane, in addition to its
basic role of forwarding requests, it is also tuned for detecting failures and fast recover-
ing them by handling short-term churns in the network [Yi 2012]. As a conclusion, the
routing protocol assumes henceforth a bootstrapping role for the forwarding process. It
gives a reasonable forwarding information as a starting point for the forwarding plane.
This latter can then, in turn, improve the forwarding choices by effectively exploring
different interfaces. Authors have proved that exempting routing protocols from failure
detection and recovering significantly improves their scalability and stability.

To recapitulate, we present in Figure. 6.1 both planes in the high-level architecture
for NDN IoT systems presented before. As we can show, the control and data plane
are depicted in the Core NDN Protocol. The naming and forwarding process encompass
cross-plane functionalities. However, caching and routing strictly belong respectively to
the data plane and the control plane.

Application Layer

Thing Layer

Core NDN Protocol

Naming

Figure 6.1: The NDN Layer

At this stage, we have presented the different role of routing and forwarding planes
in NDN. We report is the following the limits of existing studies for both planes.

94
Chapter 6. Adaptive Forwarding for Efficient Mobility Support in

NDN-based IoT networks

6.3.1 Existing studies on routing plane

A few works have explicitly considered the routing protocol targeting to design a pro-
tocol to populate FIBs in order to route requests to permanent copies [Wang 2012a,
Hoque 2013].

Authors in [Wang 2012a] introduced OSPFN. It is the first study that addresses a
routing algorithm designed for NDN and it is based on the well-known Open Shortest
Path First (OSPF) protocol. In this protocol, nodes forward Opaque Link State Ad-
vertisements (OLSAs) messages with a standard header to build their knowledge of the
network topology. Based on OLSAs, the best next hop for each content name can be
calculated and added to the FIBs. The same authors have then proposed the Named-
data Link State Routing Protocol (NLRS) in [Hoque 2013] in order to improve OSPFN.
In fact, this latter still relies on IP while NLRS is entirely based on NDN. The NLRS
protocol uses Interest and Data packets for routing. Furthermore, unlike the current-
IP based protocols, routers do not constantly push the routing updates, by against,
routers interested on these updates collects topology information with OLSAs based on
a receiver-driven model of NDN. Despite the considerable efforts provided by these au-
thors to propose a routing protocol for NDN with the aim to disseminate permanent
content locators, they could not avoid the exchange of explicit signaling message to keep
location information updates. This can inflate the overhead especially with very dynamic
networks as IoT.

Some others studies are focused on how to efficiently forward request towards tem-
porary copies [Wang 2012c, Chiocchetti 2013a, Lee 2011, Liu 2012, Tortelli 2014]. That
means, these studies have addressed both planes. Mechanisms presented in [Wang 2012c,
Lee 2011, Liu 2012] are based on IP routing as a starting point to populate FIBs. By
against, [Tortelli 2014, Chiocchetti 2013a] adopts a pure name-based routing. Some
works have proposed to represent the FIB structure with the Bloom filters. Studies
in [Wang 2012c, Lee 2011, Liu 2012] use the simple Bloom filter, instead [Tortelli 2014]
uses Stable Bloom filter which is also a variety of filters that provides the concept of
stability after a certain number of operations (insertion/suppression).

Tortelli. M et al. addressed in [Tortelli 2014] the issue identified with NLRS and they
proposed a COntent-driven Bloom filter based Routing Algorithm (COBRA), an intra-
domain routing protocol based on a distributed and content-driven approach. COBRA
adopts the concept of leaving Data traces in NDN nodes to populate FIBs. Authors
propose to replace the classical structure of a FIB in each node by SBFs for each interface
of the node. As we have already mentioned, Data packets in NDN follow the request
path to forward back the requested contents to the consumers. When a node receives a

6.3. Routing and Forwarding planes in NDN 95

Data packet of a content hierarchically named /A/B/C/D, this information is inserted
in the SBF of the incoming interface. The Data information is recorded in SBFs as
footprints of the whole name as well as its prefixes by progressively eliminating the last
component of the name. That means the footprint of /A/B/C/D, A/B/C, /A/B and
/A are added. As a consequence, these entries can be used to satisfy future requests
sharing the same name or a part of the name using the LPM. It is worth to note that
at the starting point all SBFs are empty and consequently no match is found for the
first requests. Therefore, in this case, Interest packets are forwarded by flooding until
founding a match or reaching the producer.

Results have proved that the routing plane in COBRA succeeded at forwarding
requests to the right destination. However, this routing algorithm presents some short-
comings. In fact, it is worth to note that the flooding mechanism may result in many
response paths, as a consequence, it will be pertinent to consider all paths in order to
select the best one, for instance in term of the number of hops. Then, only optimal
paths should be stored in SBFs. On the other hand, COBRA substitutes FIB structure
by bloom filters for each interface. With bloom filters, we can be certain that an entry
does not exist in a list but when we assume that an entry belongs to that list there is
a probability of false positive. SBFs also require extra operation of hashing different
names and their prefixes for each interface which also undo the human-readability fea-
ture in FIBs. FIBs entry may be useful in the analysis of traffic. Furthermore, adding
all name prefixes in SBFs can give wrong forwarding decision. In fact, an interface that
can satisfy the content /A/B/C/D does not necessarily satisfy the content /A/B/E/F,
however, /A/B will be found as an LPM and the request will follow the wrong interface
without exploring other interfaces.

6.3.2 Existing studies on forwarding plane

The studies in [Wang 2012c, Chiocchetti 2013a, Lee 2011, Liu 2012, Tortelli 2014] are
based on collected information about the existence of different copies in the network and
a cost assigned to each incoming interface. For instance, the interfaces cost can be based
on retrieval delay [Chiocchetti 2013a] or on the presence of an LPM [Tortelli 2014]. The
specific adopted information is gathered using different mechanisms.

Works that have studied efficient forwarding, have proposed a similar idea for link
recovery. The main rationale behind these studies is to delete from the FIB the entry
related to a content in case of failed transmission in order to explore again different
interfaces. For instance, with COBRA, in the case when the request is not satisfied,
after a period of time, the consumer will retransmit the same Interest, so the node will

96
Chapter 6. Adaptive Forwarding for Efficient Mobility Support in

NDN-based IoT networks

detect a retransmission. When a node receives a retransmitted Interest, it forwards
the received Interest towards both the wrong path (in order to delete the entire name
along the previous path) and another interface with the LPM. The common drawback
in these studies is that proposed link recovery algorithms intervene after the failure to
cover it rather than trying to anticipate it to avoid as much as possible the packet loss.
In addition, they reuse partially the flooding process to found a new copy. This makes
them suffering from a high signaling overhead, due to the high refresh rates of the caches
in dynamic networks.

6.4 AFIRM: Adaptive Forwarding based lInk Recovery for
efficient Mobility support

In this thesis, we address both routing and forwarding modules and we introduce AFRIM
our adaptive routing and forwarding strategies to support the producer mobility. We
separately detail, in this section, the FIBs construction phase and the link recovery phase
after the producer mobility.

6.4.1 FIBs construction

Facing the limits of existing studies, we propose in this section a routing algorithm to
populate FIBs based on the same concept of leaving traces used in COBRA, nevertheless,
the implementation details and the complexity are very different. In our proposal, we
keep the classical FIB structure for each node and we store entries with their hierarchical
human-readable names. We fix a network setup phase in which only flooding is used to
forward requests in order to explore all the network. However, in this phase, the tracing
process is started and all the data traffic is stored in FIBs. That is, even if there is a
match in the FIBs, the requests are flooded during this phase. When a node receives a
data packet, it stores in its FIB the entire name and its prefixes as with COBRA. With
every entry, it also inserts the incoming and outgoing interface according to the PIT,
as well as, the number of hops that the data has crossed from the producer/cache to
this node. Since a node can receive the same content from different paths due to the
flooding, the number of hops is considered to keep in the FIB the entry coming from
the shortest path. In the case when a name prefix is common with all the interfaces,
this entry is deleted. For instance, a node that receives the content /A/B/C/D and
/A/B/E/F, /A/B and /A/ will be deleted because they are not specific to a unique
interface.

6.4. AFIRM: Adaptive Forwarding based lInk Recovery for efficient
Mobility support 97

We present in Figure. 6.2 the flow chart of the FIBs construction phase. When a
node receives a data packet, it first checks if the name already exists in its FIB. We start
by checking the entire name then for each iteration the last component is eliminated.
If the name does not exist, it is added in the FIB. In the other case, we check if the
existing entry is coming from a different interface. In this case, the entry is updated
if needed with the least number of hops. If the data comes from a different interface
other than that of the existing entry, we differentiate the case if it is about the first
iteration. If so the entire name will be inserted with the correspondent interface and
the number of hops. If not, this means that the forwarding decision can not be taken
since both interfaces have the same probability of satisfying contents with this prefix. In
this case, the entry is deleted to allow network exploration. This case is usually reached
with the last component because the majority of names in a subnetwork have the same
first prefix. Afterward, the last component is eliminated and we start again with the
resulting name until it becomes NULL. Once the name is NULL, the number of hops
carried by the content is incremented and the data packet is forwarded to the next hop
according to the PIT.

After the setup phase, FIBs are populated with information about requests forward-
ing. Requests can then be forwarded to the optimal destination based on the number
of hops. However, contents availability is not static. In fact, link failure or contents
mobility, as well as cache replacement, can lead to packet loss. Therefore, FIBs should
be updated to redirect requests through right paths. We consider, in the next section,
the producer mobility.

6.4.2 Link recovery

We remind that, in our study, we aim to support the producer mobility. In our proposal,
we propose to restore the path in case of content mobility to make it reachable by
new Interests. We detail in the following our design scheme. AFIRM targets to avoid
transmission failure caused by producer mobility. That’s why we propose to detect
within the optimal time the producer mobility and update the old and the new path.
To be aware of the producer mobility, we use keep-alive movement detection method. It
is worth to note that not all the sensors allow this method, some sensors just support
sending the captured values and do not allow packets reception. With this method,
gateways periodically send a ping message to check if the sensor is always attached to
it. With the absence of an answer, the gateway affirms that the sensor has changed his
point of attachment. Therefore, the forwarding information which leads to this node
must be deleted. To this end, a Recovery packet is sent by the gateway with the name of

98
Chapter 6. Adaptive Forwarding for Efficient Mobility Support in

NDN-based IoT networks

Data

received

Name

exists

in FIB?

Add entry

Update number

of hops

Same

incoming

interface?
Delete entry

hop_new<

hop_old

?

Eliminate the

last component

of the name

Name

NULL?

Entire

name?

NO

NO NO

YES

YES

YES

NO

YES

YES

NO

hop = hop + 1

Forward

Data

Figure 6.2: AFIRM algorithm: FIBs construction phase

the content(s) handled by this sensor. The Recovery packet will follow the corresponding
outgoing interface stored in the FIB with this entry and all entries with the entire name
will be deleted from the path nodes. On the other hand, the sensor will be attached
to a new gateway. This latter will, in turn, send a Recovery packet with a positive flag
this time to add the new forwarding information based on the LPM and the outgoing

6.4. AFIRM: Adaptive Forwarding based lInk Recovery for efficient
Mobility support 99

interfaces.

We present in Figure. 6.3 the link recovery algorithm after producer mobility. The
figure portrays three flow charts which detail different operation from the point of view
of the old location, the new location and other nodes in the topology. We present, in
the left diagram, the executed operations when the gateway in the old location detects
the disconnection of the sensor. First, a FIB check is performed to be certain that the
content has been requested before. If not, nothing is done because in any way there is
not a path previously built. In the other case, a Recovery packet in created and the flag
is set to 0. This Recovery packet is then forwarded towards all the outgoing interfaces
already stored with the entry. After that this entry will be deleted from the gateway.
The diagram in the middle presents the executed operations in the gateway in the new
location. When this gateway detects a connexion of a new sensor, it creates a Recovery
packet with flag = 1 and hop = 0. A new entry with the entire name is added in
the FIB maintained by the gateway. Then, the Recovery packet is forwarded to the
next hop with the LPM. The last diagram on the right presents the executed operations
when a node receives a Recovery packet. First, a flag check is performed to know if it is
a recovery to delete wrong forwarding information or to create a new forwarding path.
When flag = 0, this means that the corresponding entry must be deleted. Therefore, we
verify if it already exists. The absence of the entry means that the same Recovery packet
has already passed through this node. In this case, the Recovery packet is discarded. If
the entry exists, the Recovery packet is forwarded towards the interface with the LPM
then the entry will be deleted from the node. When flag = 1, this means that the
corresponding entry must be added. Therefore, the number of hops appended to the
packet is incremented and the Recovery is redirected to the interface with the LPM then
a new entry in added with the entire name, the number of hops and the incoming and
outgoing interfaces.

In an IoT context, for better results, we propose to push the last recorded data by
the sensor to the gateway to which it is connected and we set the period of the keep-alive
movement detection as the updating period T of the sensor or the estimated validity
delay Tfresh. In this manner, even if the producer moves, requests will be satisfied by
the gateway which maintain still valid data and when the period elapses the keep-alive
message is sent to check if the sensor is always connected. If not, the recovery process is
launched and in the other case, the sensor value is updated in the gateway. The setup
phase delay is related to the number of requests. We need to have sufficiently of requests
to populate FIBs. We call that the stabilization_time.

100
Chapter 6. Adaptive Forwarding for Efficient Mobility Support in

NDN-based IoT networks

hop = hop + 1

RECOVERY

received

Flag

= 0

NO

YES

Detect sensor

disconnection

Name

exists

in FIB?

NO

YES

Create RECOVERY

Flag = 0

Forward the

RECOVERY to all

the outgoing interfaces

of the entire name

Delete the

entire name

entry

Name

exists

in FIB?

NO

YES

Forward the

RECOVERY to all

the outgoing interfaces

of the entire name

Delete the

entire name

entry

Add the entire

name entry with the

incoming interface

Forward the

RECOVERY with

the LPM

Detect a new

sensor connexion

Create RECOVERY

Flag = 1

Hop = 0

Add the

entire name

entry

Forward the

RECOVERY with

the LPM

Delete the

RECOVERY

packet

Figure 6.3: AFIRM algorithm: Link recovery after mobility

6.4.3 Example with AFIRM algorithm

For a better understanding, we give in the following section a detailed example of our
AFIRM algorithm. We detail, in Figure. 6.4, the FIBs construction phase. Note that
red entries are entries to be deleted and green entries are the ones to be added. In
this scenario, we suppose that Consumer1 is interested in content /A/B/C/D. In this
phase, Interest packets are flooded. When the corresponding Data is sent, FIBs in the
request path are populated with the name prefixes as shown in nodes n4 and n3. We
can remark that, in n3, entries that correspond to prefixes /A and /A/B will be deleted.
This is due to the request of Consumer2. In fact, when the Data packet of the content
/A/B/E/F reaches n3, according to our algorithm, the common prefixes /A and /A/B
will be deleted. This to avoid wrong forwarding after the setup phase. Otherwise, if
Consumer2 sends an Interest packet to retrieve content /A/G/H/I, when the request

6.4. AFIRM: Adaptive Forwarding based lInk Recovery for efficient
Mobility support 101

reaches n3, it will be redirected to interface 1 since it has the least number of hops for
the entry /A (2 rather than 3). We can trivially note that this is a wrong decision.

n1

n2

n3

n4

n5
n6

Consumer1

Consumer2

 Hop In

FIB

2

2

2\A\B\C\D

\A\B\C

\A\B

\A

 OutId

1

1

1

1 2

n7

1
2

1

1

1

1

Hop In

FIB

3

3

2\A\B\C\D

\A\B\C

\A\B\E\F

\A\B\E

OutId

3

3

2

2 2

4

4

1

1

2

34

1

Hop In

FIB

\A\B\E\F

\A\B\E

\A\B

OutId

4

4

4

1
2

2

2

2

1

1

1

\A\B\C\D

\A\B\E\F

INTEREST \A\B\E\F

INTEREST \A\B\C\D

n9

\A\G\H\I

n8

INTEREST \A\G\H\I
\A\G\H\I

\A\G\H

\A\G 5

5

5

2

2

2

1

1

1

\A\G\H\I

\A\G\H

\A\G 4

4

4

3

3

3

4

4

4

2

2\A\B

\A

2

2

1

1

Figure 6.4: AFIRM example: FIBs construction phase

Figure. 6.5 detail the link recovery phase. When the validity delay of a content has
elapsed, the direct gateway checks if the sensor is still connected or not. We suppose
in this scenario, that sensor A/B/C/D moves from n4 to n7. In this case, n4 deletes
the entry corresponding to this sensor and sends a Recovery packet with a null flag
to the outgoing interface stored with the entire name. On the other hand, when the
sensor connects to n7, a new entry is added with the entire name. Then, the Recovery is
transmitted to the interface 2 which has the LPM and so on until reaching Consumer1.
In this example, we present the case when the deletion on the wrong paths are done
before the adding of the right one. However, it is worth to note that the Recovery
packet with flag = 1 can reach node n3 before the Recovery packet with flag=0. In this
case, the new entry is also added and we will have two entries with the entire name.
For this reason, it is essential to identify new entries added by Recovery packets with a
positive flag when there are two entries with the same name, so that they will not be
deleted by the Recovery packet with flag = 0. This latter will only discard the oldest

102
Chapter 6. Adaptive Forwarding for Efficient Mobility Support in

NDN-based IoT networks

entry and keep the newest one.

n1

n2

n3

n4

n5
n6

Consumer1

Consumer2

Hop In

FIB

2

2

2\A\B\C\D

\A\B\C

\A\B

\A

OutId

1

1

1

1 2

n7

1
2

1

1

1

1

Hop In

FIB

3

3

2\A\B\C\D

\A\B\C

\A\B\E\F

\A\B\E

OutId

3

3

RECOVERY (ag=1) \A\B\C\D

RECOVERY (ag=0) \A\B\C\D

2

2 2

4

4

1

1

2

34

1

1
2

\A\B\E\F

2\A\B\C\D 3 4

n9

\A\G\H\I

n8

\A\G\H\I

\A\G\H

\A\G 4

4

4

3

3

3

4

4

4

Handoff

\A\B\C\D

In

FIB

2

2

2\A\B\E\F

\A\B\E

\A\B

\A

OutId

1

1

1

1 2

1

1

1

1

Hop

1

2
3

2\A\B\C\D 1 3

\A\B\C\D

Figure 6.5: AFIRM example: Link recovery after mobility

6.5 Conclusion

In this chapter, we focused on the producer mobility issue in NDN-based IoT networks.
We proposed the AFIRM algorithm as a solution to keep data availability in dynamic
IoT networks. AFIRM is a content-driven, adaptive forwarding, fully distributed based
algorithm for NDN architecture. Our proposal is composed by two phases a FIB’s
construction phase which is a setup phase used to populate FIB’s structures. This first
step has a bootstrapping role for the link recovery phase launched after a movement
detection.

The next chapter is the last one in this thesis. It is devoted to the evaluation of
different contributions. Before analyzing and comparing the results, we will present the
simulation setup and the different metrics used to validate our proposals.

Chapter 7

Performance Evaluation

Contents
7.1 Introduction . 103
7.2 Simulation setup . 103

7.2.1 Topology . 104
7.2.2 Content catalog . 106
7.2.3 Parameters configuration . 107

7.3 Evaluation metrics . 107
7.4 Simulation results . 109

7.4.1 Static scenario . 109
7.4.2 Dynamic scenario . 120

7.5 Conclusion . 122

7.1 Introduction

We evaluate and validate in this chapter our contributions. We compare our proposals
against the most dominant and widely used approaches in the literature in terms of in-
network caching strategies, validity check mechanisms, cache replacement policies and
name-based routing strategies. In the following, all the basic aspects involved in defining
the simulated scenarios, such as the network topology, the content catalog and all the
fixed parameters are described in detail. Then, we present the metrics on which we are
based to evaluate our proposals. Finally, obtained results are thoroughly analyzed and
commented.

7.2 Simulation setup

For our simulations, we use the ccnSim simulator [Chiocchetti 2013c]. It is a C++
framework under the OMNeT++ discrete-event simulator that implements the routine

104 Chapter 7. Performance Evaluation

to simulate the NDN architecture. Every node implements the three NDN structures
in form of layers. The first one, called "Core layer" is responsible for both the PIT
management and the communication with the different layers. The second one, cache
layer, represents the CS parts in the NDN structure. It acts according to a caching and
replacement strategies. The third element is the strategy layer that takes the decision
about Interest forwarding. We start the evaluation chapter by this simulation setup
section. We will detail the used topology. Then, we present the set of IoT data generated
during the simulation as well as the choice of the configuration parameters.

7.2.1 Topology

Concerning the topology, authors in [Pentikousis 2016] affirm that there is not a single
topology that can be used to evaluate ICN aspects and this choice depends on the focus
of evaluation. In our simulations, we present results with Transit-Stub (TS) topology
whose properties imitate closely the IoT topology. The TS graph is a 3-level hierarchical
topology presented in [Calvert 1997]. This model is composed of interconnected stub and
transit domains and LANs connected to stub nodes. The first level presents the backbone
which connects the transit domains. A stub domain carries only the traffic that originates
or terminates in the domain. However, transit domains consider all transmissions and
their role consist of efficiently interconnecting stub domains. The TS parameters are T ,
which is the total number of transit domains in the backbone, S is the total number of
stub domains per transit node. NT and Ns are the average numbers of nodes per transit
and stub domain respectively. L is the average number of LANs per stub node, and
NL is the average number of hosts per LAN. We set T = 2 with NT = 10, S = 2 with
Ns = 6, L = 1 and NL = 1. The total number of nodes is N = TNT (1 + SNS) = 260
nodes and the total number of hosts NH = TNTSNSLNL = 240 hosts. Figure. 7.1
presents the model of our TS topology.

Figure. 7.2 portrays the real topology captured from our simulator. As it is presented,
producers and consumers can be connected to 240 hosts. We choose to distribute them
in such a way the producer and its consumer do not belong to the same transit domain,
however, a host can connect a consumer and a producer at the same time. We generate
the topology with GT-ITM1 (Georgia Tech Internetwork Topology Models) using the
parameters fixed above. GT-ITM is a complete set of tools for the conversion of network
topologies that support NED language used in OMNET++.

Transmission delays are set by GT-ITM. Values are in the range of [2; 78]ms. They
are set so that transmissions in the third level are faster than the second level and the

1http://www.cc.gatech.edu/projects/gtitm/

7.2. Simulation setup 105

Backbone/ level0

Transit Domain/ level1 Transit Domain/ level1

Stub Domain/ level2

Stub Domain/ level2

Stub Domain/ level2

Stub Domain/ level2

..
..
..

Stub Domain/ level2

Backbone domain

Transit Domain

Stub Domain

Backbone node

Transit Node

Stub Node

..
..
..

Figure 7.1: Transit-Stub topology model

Figure 7.2: Real Transit-Stub topology

same with the second and the first level.

106 Chapter 7. Performance Evaluation

Figure 7.3: ADREAM building

7.2.2 Content catalog

Our simulations were carried out with a real IoT data extracted from the ADREAM
[LAAS-CNRS 2013] building in LAAS-CNRS laboratory which is a smart building.
ADREAM is a complex cyber-physical environment. As shown in Figure. 7.3, it is
composed of many devices including heating, ventilating, and air conditioning (HVAC)
devices, heat pump system, photovoltaic cells, weather station, robots, cameras, lumi-
naries, smart meters and many other specific sensors and actuators. The building hosts
our smart apartment equipped with different sensors (temperature, humidity, lumines-
cence, presence, etc.) as well as actuators such as electric plugs attached to different
elements: lamps, fans, humidifier, etc.

We choose periodic sensors with different periods T varying from 1min to 1h. We
used smart meters such as temperature, humidity and luminescence. Concerning the

7.3. Evaluation metrics 107

OnOff sensors, we used devices having different variance, for example, a presence de-
tection sensor injected in a corridor has not the same update frequency as a presence
detection sensor injected in a bedroom. We used presence, vibration, fall and smoke
detection sensors.

7.2.3 Parameters configuration

We summarize in table 7.1 the system parameters used in our simulations. Analyzing
the request popularity distribution in different geographical locations, S. K. Fayazbakhsh
et al. deduced, in [Fayazbakhsh 2013], that the web distribution, used by all works on
ICN, behaves as a Zipfian distribution. Indeed, the majority of ICN studies use the
Zipf distribution which stipulates that some popular contents have a high probability
to be requested (e.g., new films, news, today’s weather, etc.). However, under IoT, we
do not refer to this distribution since it is devised for web-based contents and Inter-
net applications. In fact, in an IoT scenario, contents have close probabilities to be
requested. Therefore, in our case, Interest packets are uniformly distributed. Studies
in [Quevedo 2014b, Hail 2015] which consider IoT environment also used the uniform
distribution.

We note that each producer provides a single content as a single chunk with a unique
replica in the network. The number of producers is then equal to the number of contents
| F | in the network and the file size F is equal to 1 chunk. In [Rossi 2011], D. Rossi and
G. Rossini show that in existing studies the ratio of the cache size C over the catalogue
size F | F |, C

F |F | ∈
[
10−5; 10−1]. In our simulation, we set C

F |F | = 10−3.
Taking into consideration this ratio, we set the file number | F |= 4000 files and

the cache size C = 4 chunks. The 4000 sensors are connected to 40 Gateways. We
consider a variable number of consumers ranging from 20 to 30 and we suppose that all
consumers are already connected at the beginning of the simulation. Consumers ask for
files following the arrival rate of the Poisson process with λ = 1.

7.3 Evaluation metrics

We have previously introduced the cache cost metric to address IoT requirements. How-
ever, it is primordial to maintain the system performances while improving the cost and
the data freshness. In order to validate our contributions, we consider the hop reduction
ratio, the server hit reduction ratio and the response latency metrics.

The hop reduction ratio α measures the reduction of the number of hops traversed to
satisfy a request compared to the number of hops required to retrieve the content from

108 Chapter 7. Performance Evaluation

Table 7.1: System parameters
Parameter Meaning Values
C Cache size 4 chunks
| F | Producers 4000 sensors
F File size 1 chunk

C
F |F | Cache size and

Catalogue size ra-
tio

10−3

Cons Consumers [20; 30] consumers
λ Arrival rate 1
R Replicas 1
transmission
_delay

Transmission De-
lay

[2; 78]ms

simulation _time Simulation Time 200s
Events Content Catalog ADREAM DATA

the server. α is analytically represented by the equation Eq. 7.1

α = 1−
∑N

i=1

∑R

r=1
hir
Hir

R

N
(7.1)

Where N is the number of consumers, and R is the number of requests created per
consumer. α represents the average over N consumers of averages over R requests per
consumer of the hop reduction ratio of the request r sent by consumer i; hir

Hir
. The hir

parameter is the number of hops from the consumer to the cache that satisfies r, and
Hir is the number of hops from the consumer to the producer.

β represents the server hit reduction ratio, the second metric that measures the
reduction of the rate of access to the server. In other words, the alleviation rate of the
server load. The equation Eq. 7.2 calculates this metric, where serverhiti is the number
of requests sent by i and satisfied by the server (producer) and totalReqi is the total
number of requests, satisfied by both the server and the cache, sent by i.

β = 1−
∑N

i=1 serverhiti∑N
i=1 totalReqi

(7.2)

The third metric is the response latency. It is the duration between the delivery of a
request and its response. In equation Eq. 7.3, we calculate γ, the average of the response
latency Tir over N consumers and each one sends R requests.

7.4. Simulation results 109

γ =
∑N

i=1

∑R

r=1 Tir

R

N
(ms) (7.3)

7.4 Simulation results

This section details the performance evaluation of our contributions. Our findings are
given in two sets; static scenario and dynamic scenario. The first set considers the
contributions that are not impacted by the network dynamicity. By against, the dynamic
scenario concerns the contribution designed for mobile nodes.

7.4.1 Static scenario

Concerning the static scenario, we evaluate consumer-cache caching strategy, event-based
freshness mechanism and LFF cache replacement policy.

7.4.1.1 Consumer-cache caching strategy results

We start with evaluating different caching strategies and compare them to our consumer-
cache strategy in term of system performances. CcnSim is distributed with native sup-
port of LCE, LCD and ProbCache caching strategies. We have enhanced the simulator
and we have implemented Btw, Edge and consumer-caching strategies.

Figure. 7.4 portrays the system performances: the Server hit reduction ratio (Fig-
ure. 7.4a) and the hop reduction ratio (Figure. 7.4b) using 25 consumers and Figure. 7.4c
portrays the response latency as a function of the number of consumers (varying from 20
to 30). From the latter, we notice that the response latency gets better as the number of
consumers increases. Indeed, increasing the number of consumers leads to an increase in
the number of requests, which in turn raises the contents availability inside the topology.

Without a caching strategy the Server hit Reduction Ratio and the Hop Reduction
Ratio are equal to zero as all requests are satisfied by the producers.

The LCE strategy stores copies everywhere, which make content available at every
node. However, caches fill up quickly and consequently, old contents are rapidly evicted
which increases the number of evictions and leads to cache misses. This explains the
fact that this strategy performs the worst results in this scenario. To clarify the Server
hit reduction ratio results, we plot in Figure. 7.5 the average number of evictions for
each caching strategy.

We notice that the increase in the number of evictions diminishes the cache efficiency.
The LCE strategy has the highest number of evictions as it was expected. Figure. 7.5

110 Chapter 7. Performance Evaluation

0

0.2

0.4

0.6

0.8

1

NoCaching LCE LCD ProbCache Btw EdgeConsumer−cache

S
e

rv
e

r
h

it
 R

e
d

u
c
ti
o

n
 R

a
ti
o

(a) Server hit reduction ratio

0

0.2

0.4

0.6

0.8

1

NoCaching LCE LCD ProbCache Btw Edge Consumer−cache

H
o

p
 R

e
d

u
c
ti
o

n
 R

a
ti
o

(b) Hop reduction ratio

 100

 120

 140

 160

 180

 200

 220

 240

 20 22 24 26 28 30

R
es

po
ns

e
La

te
nc

y
(m

s)

Number of consumers

No Caching
LCE
LCD

ProbCache
Btw

Edge
Consumer−cache

(c) Response latency

Figure 7.4: System performances for in-network caching

shows that the closer the cache nodes are to the producer the higher the number of
evictions is. This is because nodes close to the producers belong to many request paths
by against nodes close to consumers belongs only to request paths starting from this
consumer. Since the LCD strategy selects the cache nodes at one level down from the
producer, it has a high number of evictions. With ProbCache, contents can be cached on
more than one node within the request path probably near to the consumer. However,
with Btw, there is one cache node in each request path and generally in the middle of the
path. ProbCache and Btw have a very close number of evictions. This latter is slightly
lower under Btw. Finally, the edge-caching and Consumer-cache have almost the same
number of evictions.

With LCE caching strategy, The Server Hit Reduction Ratio (Figure. 7.4a) is 0.43.
This value means that only 43% of requests are satisfied from cache nodes. The Hop
Reduction ratio (Figure. 7.4b) for this strategy is about 0.61. Which means that paths

7.4. Simulation results 111

0

50

100

150

200

LCE LCD ProbCache Btw Edge Consumer−cache

N
u

m
b

e
r

o
f

e
v
ic

ti
o

n
s

Figure 7.5: Number of evictions

are reduced by 61% in term of the number of hops. Concerning the third metric, the
response latency (Figure. 7.4c) is about 182ms to 210ms.

The caching strategy LCD decides to cache contents at the node on one level down
from the response source (Producer/cache node). After a certain number of requests, it
tends to LCE and all path nodes become caches. For this reason, LCD results, are not
so good like with LCE. The Figure. 7.4b shows that LCD records 69% of hop reduction,
and requests take about 164ms to 188ms of response latency (Figure. 7.4c). Its server
hit reduction is about 0.59.

Concerning ProbCache and Btw, cache nodes are selected in the middle of the request
path and probably more close to consumers, in the case of ProbCache. Simulation results
of these two strategies are medium comparing to other caching strategies. The hop
reduction ratio using ProbCache and Btw is respectively about 0.73 and 0.75. The same
for response latency, ProbCache and Btw report respectively about 137ms to 157ms and
135ms to 151ms. Figure. 7.4a shows 0.73 of server hit reduction under ProbCache and
0.75 for Btw.

We remind that the third assumption on which we are based was that the edge
nodes are the best placement for cache nodes. Our findings confirm the results presented
in [Fayazbakhsh 2013]. In fact, edge-caching reports good results. Under this strategy,
we measured 0.83 in server hit reduction, 0.80 of hop reduction ratio, and 126ms to
144ms as response latency.

We detail now the results of our consumer-cache strategy. This latter stores copies
in nodes attached to consumers which allow these consumers to easily reach requested
contents. Consumer-cache has the best simulation results because requests are, in most
cases, satisfied by the first hop node. We report for our strategy 0.89 of the server hit

112 Chapter 7. Performance Evaluation

reduction. The hop reduction ratio is about 0.89, this implies that requests only cross
11% of hops on the path towards the producer. Finally, with our strategy, the response
latency varies from 112ms to 126ms. The minor difference between consumer-cache
and edge-caching strategies stems from the fact that consumer-cache strategy makes
contents more close to consumers and requests generated by consumers not located in
the topology leaves are satisfied by the producer under edge-caching.

As it was shown previously, in-network caching efficiency strictly depends on the
number of cache evictions. In fact, this parameter impacts the system performances since
the cache replacement may cause cache misses. However, the impact of the number of
evictions on the performance results is not proportional. For instance, edge-caching and
consumer-cache have the same number of evictions but consumer-cache outperforms
edge-caching. In fact, under edge-caching, Interest packets sent by consumers in the
middle of paths will be satisfied by the producer since there is no cache node within the
request path. In this case, we have a cache miss without any cache eviction. However,
consumer-cache makes contents available to consumers, just in one hop.

Furthermore, we may assert that, in high traffic environment like IoT, we should
minimize packets transmission within the first (backbone) and the second topology levels.
Our proposed consumer-cache strategy, as well as the edge-caching strategy, significantly
relieve these two levels as most of the requests are satisfied within the stub domain.

Since caching strategies can be quite costly in term of used resources, we calculate the
cache cost introduced in chapter 4 of all caching strategies. The Figure. 7.6 illustrates
the cache cost function.

−3

−2

−1

 0

 1

 2

 3

 20 22 24 26 28 30

C
ac

he
 C

os
t

Number of consumers

LCE
LCD

ProbCache
Btw

Edge
Consumer−cache

(a) Cache cost

0

1

2

3

4

5

LCE LCD ProbCache Btw Edge Consumer−cache

C
a
c
h
e
 c

o
s
t

Global cost
Caching and eviction cost

Delay Cost

(b) Caching cost and delay cost

Figure 7.6: Global cache cost

Figure. 7.6a plots values of the reduced centered normal distribution Z for the cal-

7.4. Simulation results 113

culated values of the cache cost function X (Eq. 4.4). Negative values are the result of
the normalization method. Simulation results are obviously positive.

We illustrate, in Figure. 7.6a, the cache cost with different caching strategies. We
notice that the increase of the number of consumers leads to a slight decrease in the cache
cost. The same curve was depicted in Figure. 7.4c and this is because the cache cost
also includes the system performances in term of delays as shown in equation Eq. 4.3.

Caching strategies have different cache costs. In fact, we expect that LCE has the
higher caching and eviction costs seen that it stores copies everywhere and cache nodes
are more numerous. In addition, LCE has the worst system performances. From this
view, LCE will have the worst global cache cost. In our previous results, LCD strategy
doesn’t perform good system performances. Furthermore, this strategy has many cache
nodes because for each request the content is solved at one level down. As a conse-
quence, LCD, in our scenario, is a costly strategy. Also with the ProbCache strategy,
the cache cost is assumed to be high. This is due to the fact that system performances
are medium and content can probably be cached in different nodes for each request. Un-
der Btw strategy, the caching and eviction costs are expected to be minimal, because,
always it is the same node, with higher betweenness centrality, that keeps a copy of a
content. In the other hand, system performances with Btw strategy are medium. This
makes its cache cost medium. The edge-caching strategy had good system performance
results as consumer-cache, in addition, the number of cache nodes in the topology are
constant and not very high. Consequently, the cache cost under this strategy is not
very high. Concerning, our caching strategy, consumer-cache performs the best system
performances, and moreover, cache nodes are limited as with edge-caching, which makes
it the least costly strategy.

As we have discussed, we report, in Figure. 7.6a, from 2 to 1.4 cache cost as the
highest cost with LCE. The minimum cost is calculated with our consumer-cache strategy
with −2.4 to −2.1. The second least costly strategy, edge-cache, reports −2.1 to −1.7.
Then, Btw, has −1 to −0.5 of global cache cost. At the last, we found that ProbCache
and LCD have similar results with 1 to 0.25.

For better understand of the trade-off between the caching cost and delay cost, we
separately depict in Figure. 7.6b the delay cost and the caching and eviction cost with
25 consumers. The objective is to show which of the different components building up
the Global Cost metric dominate.

The Figure. 7.6b shows that the delay cost is less than the caching and eviction cost.
Furthermore, we remark that with LCE, the cache cost is very important. In the other
side, the edge-caching strategy has the least caching and eviction cost since it has the

114 Chapter 7. Performance Evaluation

least number of cache nodes. Consumer-cache strategy has also a very low caching and
eviction cost and its low delay cost makes it the least costly caching strategy. We can
also remark that although ProbCache system performance results were better than LCD
results, these two strategies have similar cache cost results. With Figure. 7.6b, we can
understand that ProbCache has well a low delay cost, however its caching and eviction
cost is higher than the LCD one which makes them equal in term of global cost.

In an IoT environment, system performances, as well as cache cost, need to be closely
considered. Our proposed consumer-cache performs the best trade-off between content
availability and caching cost. As such, consumer-cache strategy stands out as a viable
solution in a such IoT environment. In the following section, we evaluate our second
contribution, which is the event-based freshness mechanism.

7.4.1.2 Event-based mechanism results

To evaluate the freshness mechanism, we use the following metric presented in the equa-
tion Eq. 7.4. Validity is the percentage of the valid contents received by N consumers
and satisfied by cache nodes against the total number of received content including valid
and invalid ones. In the equation Eq. 7.4, we respectively note validi and invalidi as
the number of valid and invalid content received by consumer i and satisfied by a cache
node.

V alidity(%) =
∑N

i=1 validi ∗ 100∑N
i=1 validi + invalidi

(7.4)

With the aim of maximizing the content validity percentage to meet the IoT data co-
herence requirement, we propose to integrate our freshness mechanism to several caching
strategies. Event-based freshness mechanism tries to predict the times of updates in or-
der to eliminate copies supposed to be invalid. Figure. 7.7 depicts the percentage of
fresh content with or without freshness mechanisms using different caching strategies.

Without freshness mechanism, cached copies are never checked before being sent.
After a certain amount of time, all copies will be deprecated. As it is shown in Fig-
ure. 7.7, the percentage of content validity for all caching strategies, without the use of
freshness mechanism, do not exceed 20%. We report, 2% using the LCE, LCD, Btw and
ProbCache strategies, 9% with edge-caching and 19% under consumer-cache. We notice
that the consumer-cache strategy inherently maintains data validity compared to other
caching strategies. This result depends on the number of evictions (Figure. 7.5). In
fact, strategies that have a high number of evictions may remove from caches still valid
contents. In addition, thanks to the high performance, especially the response latency,

7.4. Simulation results 115

0

20

40

60

80

100

120

LCE LCD ProbCache Btw Edge Consumer-cache

V
a
lid
it
y
%

Event based freshness
Expiration based freshness

Without freshness mechanism

Figure 7.7: Validity % with freshness check mechanisms

with the consumer-cache the number of retrieved content is greater than other strategies
during the simulation time.

Expiration-based freshness mechanism comes to deal with this problem, but it is
difficult to fix the right expiration_time. We propose to put the average of events period
in order to cover the maximum of content updates. We choose expiration_time = 20s.
Under Expiration-based freshness mechanism, the improvements are not very impressive.
The graph portrays 9% using LCE, LCD and Btw, 5% with ProbCache, 34% under edge-
caching and 40% using consumer-cache.

Our freshness mechanism has proven that it can significantly improve the content
validity percentage. Figure. 7.7 shows that this percentage can reach 98% with different
strategies. We conclude, from this figure, that event prediction is a good solution to
increase the content validity, especially with steady systems.

We infer that even if the expiration-based freshness mechanism combined with our
consumer-cache strategy improved the validity percentage, the event-based freshness still
performs better results. Without any freshness mechanism, the eviction influences the
data freshness due essentially to adopted replacement strategy which may delete still
fresh contents near to consumers and keep non-fresh ones in the network.

To validate our proposal, it is essential to look at the impact of the freshness check
mechanism on the system performances. We report in Figure. 7.8 the system perfor-
mances with and without the freshness check mechanisms under LCE and consumer-
cache strategies.

We plot in Figure. 7.8 the server hit reduction ratio and the hop reduction ratio. The
results report a slight degradation in the system performances when we use a freshness
check mechanism. This is because, with freshness mechanism, more nodes are traversed

116 Chapter 7. Performance Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

LCE Consumer−cache

S
e
rv

e
r

h
it
 R

e
d
u
c
ti
o
n
 R

a
ti
o

Event−based freshness
Expiration−based freshness

Without freshness mechanism

(a) Server hit reduction ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

LCE Consumer−cache

H
o
p
 R

e
d
u
c
ti
o
n
 R

a
ti
o

Event−based freshness
Expiration−based freshness

Without freshness mechanism

(b) Hop reduction ratio

Figure 7.8: System performances with freshness mechanisms

to look for a valid content while without the freshness check the first found content is
retrieved. We can also remark that the impact of the freshness check is more important
under the consumer-cache. In fact, this latter has fewer cache nodes in the topology. If
the first CS does not match the requested data, probably the content will be retrieved
from the producer. By against, LCE has many cache nodes in the topology. Fur-
thermore, the expiration-based mechanism performs better results than the event-based
mechanism. This comes back to the precision of the prediction using ARMA. In many
cases, the expiration-based mechanism admits that the data is valid while it is not.

With the event-based freshness mechanism, we measured in Figure. 7.8a about 0.52
under LCE and 0.71 under consumer-cache of server hit reduction ratio. Concerning the
hop reduction ratio, our proposal reports 0.38 using LCE and 0.69 with consumer-cache
(Figure. 7.8b).

Facing this degradation in the system performances while trying to satisfy the fresh-
ness requirement, we propose the LFF cache replacement policy in order to make the
cache more efficient. We will detail in the next subsection our LFF results.

7.4.1.3 Least Fresh First cache replacement policy results

We aim, in this subsection, to evaluate our proposed cache replacement policy LFF.
Therefore, we ran experiments with different combinations of caching strategies and
cache replacement policies. In our scenario, we suppose that all contents have the same
size. In addition, in IoT networks, contents are generally small since they represent
sensors’ values. So, we will not consider the SIZE cache replacement policy. CcnSim is

7.4. Simulation results 117

0

0.2

0.4

0.6

0.8

1

LCE LCD ProbCache Btw Edge Consumer�cache

S
e
rv

e
r
h
it
 R

e
d
u
c
ti
o
n
 R

a
ti
o

LFF
RR

LRU
LFU

FIFO

(a) Server hit reduction ratio

0

0.2

0.4

0.6

0.8

1

LCE LCD ProbCache Btw Edge Consumer�cache

H
o
p
 R

e
d
u
c
ti
o
n
 R

a
ti
o

LFF
RR

LRU
LFU

FIFO

(b) Hop reduction ratio

0

50

100

150

200

250

LCE LCD ProbCache Btw Edge Consumer�cache

R
e
s
p
o
n
s
e
 L

a
te

n
c
y
 (
m

s
)

LFF
RR

LRU
LFU

FIFO

(c) Response latency

Figure 7.9: System performances for cache replacement policies

distributed with native support of LRU cache replacement policy. We have enhanced
the simulator to support RR, LFU and FIFO cache replacement policies.

Figure. 7.9 plots the system performances, namely, the Server hit Reduction Ratio
in Figure. 7.9a, the Hop Reduction Ratio in Figure. 7.9b and the Response Latency
in Figure. 7.9c. The first impression one might have by looking at these figures is
that different cache replacement policies have the same behavior under different caching
strategies.

Based on the values of system performances previously depicted with LCE and
Consumer-cache, we can also note that the difference calculated using various cache re-
placement policies is much larger with LCE than with consumer-cache. In other words,
we note that the impact of different cache replacement policies is much more noticeable
with LCE than Consumer-cache. This point is explained by referring to Figure. 7.5
which stipulates that when the number of evictions, under a specific caching strategy

118 Chapter 7. Performance Evaluation

is not very important, the choice of the used cache replacement policy does not signif-
icantly impact the results. In fact, with the consumer-cache caching strategy and the
edge-caching strategy, the number of evictions is very low. Since the replacement process
is invoked at the eviction time, the cache replacement policy is not frequently used.

In the following, we evaluate the impact of different cache replacement policies inde-
pendently of caching strategies. Figure. 7.9 shows that LFF and RR policies outperform
LRU, LFU and FIFO policies. It is worth noticing that these findings are strictly depen-
dent on the request distribution. In fact, as we have already mentioned in the simulation
scenario, web applications use a Zipfian distribution in which requests privilege popular
contents. As a consequence, it is more advantageous to keep in caching nodes the most
requested contents. In this sense, LRU and LFU were designed. These policies may per-
form better results in the web environment. By against, in an IoT environment, requests
are uniformly distributed and all sensors have close probabilities of being solicited. In
other words, contents are randomly requested. This explains why, in our scenario, the
RR policy outperforms LRU and LFU. The FIFO policy aims to keep each content as
long as possible in the cache node regardless of the frequency with which each content
is requested and the evicted item is not uniformly selected. This policy may be suitable
for closed queue-based request distribution. In our scenario, FIFO presents the worst
results. Concerning our proposed cache replacement policy LFF, the selection process of
the content to be evicted is not related to the incoming requests but to the data fresh-
ness. For this reason, our policy does not contradict a uniform request distribution. This
explains why RR and LFF findings are very close to each other. The minor difference
between these two policies is due to the fact that the RR policy does not follow any
logic. It can delete a content which has just been stored or rather the opposite, keep in
the cache a content for a long time. The LFF is more coherent vis-a-vis the contents
lifetimes.

Figure. 7.9a reports from 0.65 to 0.93 of server hit reduction under LFF and from
0.56 to 0.92 with RR policy. Under LRU policy, from 43% to 89% of requests are satisfied
by cache nodes. This figure portrays between 0.38 and 0.87 of server hit reduction using
LFU. Finally, with FIFO policy, results are almost from 0.32 to 0.84. Figure. 7.9b gives
the same performance results. LFF policy outperforms other replacement policies with
0.75 to 0.89 for hop reduction ratio. RR performs close results, about 0.67 to 0.86. This
ratio is about 0.58 to 0.83 and between 0.53 and 0.80 under LRU and LFU respectively.
With FIFO policy, requests traverse from 24% to 56% of the path towards the producer.
The response latency, depicted in Figure. 7.9c, is the lowest with LFF policy with 83ms to
115ms. It is about 93ms to 135ms under RR policy. With LRU and LFU, it respectively

7.4. Simulation results 119

 0

 20

 40

 60

 80

 100

LCE Consumer−cache

V
al

id
ity

 %

LFF
RR

LRU
LFU

FIFO

Figure 7.10: Validity % with cache replacement policies

varies from 108ms to 170ms and from 113ms to 185ms. The FIFO policy reports the
longest response latency with 121ms to 221ms.

The system performances results have validated our proposed cache replacement
policy since it respects ICN goals and in-network caching efficiency. On the other hand,
we remind that our policy was designed with the aim of maximizing the content validity
percentage to meet the IoT freshness requirement. LFF policy tries to predict the exact
delays of updates in order to eliminate copies supposed to be invalid. Figure. 7.10 depicts
the percentage of fresh content with different cache replacement policies under LCE and
consumer-cache strategies.

As it is shown in Figure. 7.10, LRU, LFU and FIFO have almost the same percentage
of content validity, about 52% with consumer-cache and 45% with LCE. In fact, LRU
and LFU policies usually keep in the cache for a long time more solicited contents until
they become invalid. The same with FIFO, it follows the logic to keep in the cache all
the contents for the longest time. The RR policy has slightly better results by comparing
it to LRU, LFU and FIFO, about 61% with consumer-cache and 52% with LCE. This
policy is random and does not follow any law to manage the lifetime of a content in a
cache. Concerning our proposed LFF cache replacement policy, it calculates the required
lifetime for which the content is supposed to be valid. Then, at the eviction time, if all
the contents are valid, it selects the one who has the least lifetime remaining and if many
contents are already invalid, it selects the one who was invalid for the longest time. Our
proposal has proven that it can significantly improve the content validity percentage.
Figure. 7.10 shows that this percentage can reach 96% with consumer-cache and 81%
under LCE. We notice that the consumer-cache strategy better maintains data validity
than LCE. This result comes down to the inefficiency of caching with LCE. We infer that

120 Chapter 7. Performance Evaluation

LFF is a good solution as a cache replacement policy for NDN-based IoT environment
which targets data freshness.

To recapitulate, we proved that our both proposals namely the event-based mech-
anism and LFF cache replacement policy can perfectly maintain the data freshness of
IoT data. We have reported 98% of the percentage of content validity using the event-
based freshness mechanism to check the data validity before the retrieval. The 2% of
invalid contents are due to the prediction error of the ARMA model. Under LFF, the
validity percentage is about 96%. With this cache replacement policy, invalid contents
are evicted one by one, which can keep in the cache invalid data since the cache can
maintain more than one invalid content. As a consequence, the 4% of invalid contents
are due to the prediction error but also to the remaining invalid contents after the evic-
tion. However, the event-based mechanism slightly degrades the system performances
since requests are not satisfied by the first found content but needs to cross more hops
to found a valid content. By against the LFF improves the system performances since it
makes the cache more efficient. We deduce that the combination of these two proposals
may give good results. The event-based algorithm will increase the data freshness to
reach 98% and the LFF cache replacement will improve the system performances by
providing valid content near to the consumer.

7.4.2 Dynamic scenario

In order to evaluate our proposal to handle the mobility, we need to consider a dy-
namic scenario that model producer mobility. Therefore, we consider the Random Walk
model [Camp 2002]. Based on this model, mobile producers move randomly and freely
without restrictions. We set the stabilization_time = 20s which is a sufficient time in
our scenario to populate FIBs with forwarding information.

To assess the performance of AFRIM algorithm, we measure the number of packet
loss and the cost of handling producers mobility. The number of packet loss is translated
by the number of retransmitted Interest packets over the total number of Interest packets
sent by all the consumers in the topology. Concerning the mobility cost, it represents
the extra amount of traffic generated to support the mobility over the total traffic. For
instance, with AFIRM, the mobility cost is the ratio of the number of Recovery packets
over the total number of NDN packets (Interest, Data and Recovery).

Figure. 7.11 portrays the results of our simulations. This figure presents the packet
loss ratio (Fig. 7.11a) and the communication cost due to mobility support (Fig. 7.11b).

The results of AFIRM is compared against the flooding solution and the COBRA
algorithm. We have also considered the results when the mobility is not supported and

7.4. Simulation results 121

0

0.2

0.4

0.6

0.8

1

P
a
c
k
e
t
L
o
s
s

NDN No Caching
NDN With Caching

Flooding
COBRA
AFIRM

(a) Packet Loss
0

0.2

0.4

0.6

0.8

1

M
o
b
ili

ty
 C

o
s
t

NDN No Caching
NDN With Caching

Flooding
COBRA
AFIRM

(b) Mobility Cost

Figure 7.11: Mobility support results

we report the findings while considering the two cases with and without the in-network
caching. In fact, caching can partially solve the producer mobility issue since requests
can be satisfied by copies stored in cache nodes rather than the mobile producer. As
we can show in Figure. 7.11a, with the default NDN architecture, the number of packet
loss is very high, almost 0.98. This is because, after the handover, contents are no
longer reachable and only the first requests before the mobility are satisfied. However,
when caching is enabled, cache nodes found in the request path can respond with data
previously retrieved. The packet loss is about 0.3. It is worth to note that this result is
strictly dependent on the adopted caching strategy as well as the freshness requirement
of the consumer. After a certain period of time, cached data can be out of date or can
be evicted from the cache, consequently, caches can become useless and results will be
similar to those without caching. The mobility cost is, of course, null with these two
approaches. The flooding is the basic solution to handle the mobility and it is very
efficient. In fact, it represents a naive forwarding strategy which aims to explore the
topology for each Interest packet. Each node automatically forward received Interest
to all other interfaces. As consequence, requests are always satisfied. The packet loss
with the flooding approach is almost null (0.02). The few retransmitted Interest packets
are due to other network problems as the link failure. On the other hand, as it is
expected, the flooding solution reports a very high communication cost which is about
0.8. Our findings have confirmed that the name-based routing solution COBRA can
solve the mobility issue. COBRA can significantly reduce the packet loss. Only 20%
of the transmitted Interest packet are lost. This loss is due to the fact that COBRA
launches the failure recovery after the Interest packet loss. The signaling packets used to

122 Chapter 7. Performance Evaluation

update the forwarding information represent 40% of the total exchanged packets. These
packets include packets used to delete the wrong information and packets used to found
a new path towards the content. Our proposal outperforms other approaches. Under
AFIRM, the packet loss ratio is almost null as with the flooding solution. In fact, AFIRM
anticipates the failure and recover it before any received packet. In addition, the recovery
cost value is about 0.2. AFIRM is less costly than COBRA. In fact, these two solutions
have nearly the same cost to delete the wrong forwarding information. However, to add
the new one, AFRIM proceeds on upstream with the LPM, by against COBRA add the
information on downstream taking into account more than one interface to explore the
network. In addition, with AFIRM, by going up towards consumers, intermediate nodes
give more precise forwarding decision which avoids the flooding. We conclude that our
proposal can significantly support the producer mobility by reducing the packet loss.
Furthermore, the signaling overhead is reasonable.

7.5 Conclusion

This chapter covered all the simulations results. We first validated our consumer-cache
caching strategy. We proved that this latter improves the system performances in terms
of hop reduction ratio, server hit reduction ratio and response latency. In addition,
the consumer-cache strategy is a non-costly caching strategy which makes it suitable
for IoT ecosystem. Then, we evaluated our event-based freshness mechanism and we
proved that it can satisfy IoT data freshness requirement. The same for the LFF cache
replacement policy, it succeeds to maintain the percentage of validity and furthermore
it was proved that LFF can improve the caching efficiency since it improves the system
performances. Finally, we analyzed the performance of our adaptive forwarding algo-
rithm named AFIRM, designed to support the producer mobility. We demonstrated that
AFIRM is a good solution for dynamic IoT networks. It almost eliminates the packet
loss while significantly reducing the signaling overhead.

Chapter 8

Conclusion and perspectives

The ICN paradigm promises to be the architecture of the Future Internet to handle its
evolution towards a vast, heterogeneous and infinite world of equipment, consumers and
services. The rationale behind this concept is to address contents by their names rather
than their hosts addresses. As the father of ICN, Van Jacobson, said: "The direct, unified
way to solve these problems is to replace where with what". Thanks to the native support
of multicast, in-network caching, name-based routing and easy data access, the research
community argues that named data is a better abstraction for today’s communication
problems than named hosts.

IoT is the Internet infrastructure which most suffers from the massive traffic and the
communication complexity. This is due to the increasing number of smart things and the
stringent requirements imposed by their applications. Therefore, ICN has attracted the
attention of the IoT community inciting the use of the information-based concept in IoT
networks. This thesis showcased the potential of ICN as a solution to support IoT sys-
tems. Among several proposals of ICN architectures, the so-called NDN architecture has
proved to be the most suitable information-centred architecture for IoT environments.
NDN defines a receiver-driven, pull-based, robust connection-less communication model,
providing an easy and scalable data access, energy efficiency and mobility support.

Despite the numerous benefits reaped from the use of NDN in IoT networks, the
requirements set by IoT applications slow down the emergence of the information-centric
paradigm in the world of IoT. Indeed, this latter is firstly a heavily resource-constrained
environment. On the other hand, it requires a very high data availability and a low
response latency. The in-network caching is the most important feature that can deal
with the IoT applications expectations. However, the caching strategy should make
content always available to the consumers without increasing the amount of data and
the redundancy in the network. Furthermore, since IoT data are transient and frequently
updated, contents residing in cache nodes will eventually become out of date. Moreover,
some critical IoT applications impose a stringent requirement of data freshness. In
addition, it is worth to note that IoT devices are usually mobile. As a consequence,
producers are no longer reachable after a handover. This specificity requires a dynamic

124 Chapter 8. Conclusion and perspectives

and adaptive routing approach to be always able to reach mobile producers.

Summary of our contributions

The main objective of this thesis is to improve the data dissemination in IoT networks.
We primarily gave an overview of the ICN paradigm and its different building blocks
and we detailed the evolution of the IoT and its requirements. Afterward, we presented
different ICN architectures in order to prove that the NDN approach is the adequate
architecture for the IoT environment. In this thesis, all our contributions are carried out
on an NDN-based IoT network.

In the first contribution, we focused on the in-network caching strategy. We pro-
posed the consumer-cache caching strategy with the aim to make contents available and
promptly accessed by the consumers while reducing the number of caches in the topol-
ogy. Results proved that our proposal can improve the system performances in term
of response latency, hop reduction ratio and server hit reduction ratio. In addition, it
results in significantly lower cache cost comparing to existing caching strategies.

Our second and third contributions addressed the freshness requirement. We started
by proposing a validity check mechanism before the data retrieval. This mechanism
called event-based freshness mechanism is based on time series for event prediction model.
This latter is used to check if the cached content has been updated in their sources or
not. Findings showed that our proposal leads to a notable improvement in content
freshness. We reported about 98% of data validity, however, it has slightly degraded
the system performances in order to found valid data to satisfy requests. Facing this
degradation, we introduced LFF cache replacement policy with the aim to make the
content stores more efficient. To this end, we decided to avoid evicting still valid content
and delete non-fresh ones. The LFF policy is also based on time series analysis as a tool
to predict future events. Findings showed that our proposal exhibits superior results
in term of system performances and about 96% of freshness percentage of the retrieved
contents compared to existing cache replacement policies. The combination of these two
contributions maintains both the system performances and the data validity.

The fourth contribution addressed the producer mobility issue. We proposed the for-
warding AFRIM algorithm to efficiently populate routing tables and adaptively update
forwarding information after a producer mobility. The obtained results proved that our
proposal can support the mobility feature of IoT environments. Furthermore, it out-
performed other solutions as flooding and the COBRA algorithm. Our findings showed
that AFIRM can significantly reduce the packet loss due to the mobile sensors with the

125

respect to the signaling communication cost.

Perspectives

Despite the ICN-based solutions proposed in this work to deal with IoT challenges, there
is still room for improvement of our contributions and still challenges to address. We
list, in the following, short and long-term perspectives to give potential enhancements
of our study and future research directions in ICN-based IoT networks.

The short-term improvements of our work are related to the evaluation methods
of our contributions. To evaluate the cost of our proposed caching strategy, we were
based on an analytical expression that measures the tradeoff between the caching and
eviction cost and the data availability. This evaluation can be improved to assess the
real impact on the IoT devices. For instance, the decrease of the charge level of the
device battery. In addition, contributions that address the freshness requirements are
based on the calculation of the prediction model. The cost of these calculations is not
considered in this study. To validate this method it will be interesting to quantify the
forecast cost in the gateways directly connected to the sensors. Finally, the dynamic
scenario is modeled by the random walk mobility model. A real mobile traffic for a
specific application domain as the vehicular transport will give more realistic results.

Concerning the long-term perspectives, we propose some points. First, the caching
strategy in ICN can also be context-aware. In fact, considering the name semantic of
retrieved data, we can make a decision to cache or not a copy of the content according
to the interest of the consumers near to this cache node in this content. Second, IoT
applications impose another important requirement, which is the data security. Security
in ICN is handled by the content itself rather than point to point channels. The majority
of solutions proposed in the ICN context use self-certifying names to ensure security by
adding the hash of the content and the key in the retrieved data itself. These methods
make the content name non-human readable which contradicts some IoT requirements.
We argue that the security is a very interesting direction in the ICN context. Finally,
studies revolving around the NDN-based IoT networks are left with implementation
lack. In fact, the majority of the researches focusing on this context are evaluated
based on simulations. Real platforms implementation direction is still in its infancy.
This important step may change the history of ICN, especially in IoT networks. All
researchers in the ICN community are aware that the establishment of an information-
centric Internet is a very harsh task since it demands to rebuild the Internet from scratch.
Nevertheless, all the important innovations that the history has known have started from

126 Chapter 8. Conclusion and perspectives

a simple idea and followed a slow evolution to reach their success.

Glossary

AFRIM Adaptive Forwarding based Link Recovery for Efficient Mobility support. 96

ARMA Autoregressive Moving Average. 77

Btw Betweenness centrality. 66

CDN Content Distribution Networks. 26

COBRA COntent-driven Bloom filter based Routing Algorithm. 94

CS Content Store. 37

Edge Edge Caching. 66

FIB Forwarding Interest Base. 37

FIFO First In First Out. 51

ICN Information-Centric Networking. 17

IoT Internet of Things. 15

LCD Leave Copy Down. 66

LCE Leave Copy Everywhere. 65

LFF Least Fresh First. 85

LFU Least Frequently Used. 51

LPM Longest Prefix Match. 37

LRU Least Recently Used. 51

NDN Named Data Networking. 37

NRS Name Resolution System. 29

P2P Peep-to-Peer. 26

128 Glossary

PIT Pending Interest Table. 37

ProbCache Probabilistic Cache. 66

RR Random Replacement. 52

Bibliography

[Ahlgren 2010] B. Ahlgren, C. Dannewitz M. D’Ambrosio, A. Eriksson, J. Golic,
B. Gronvall, D. Horne, A. Lindgren, O. Mammela, M. Marchisio, J. Makela,
S. Nechifor, B. Ohlman, K. Pentikousis, S. Randriamasy, T. Rautio, E. Re-
nault, P. Seittenranta, O. Strandberg, B. Tarnauca, V. Vercellone and D. Zegh-
lache. Second NetInf Architecture Description, April 2010. Deliverable D-6.2
v2.0, 4WARD EU FP7 Project. (Cited on page 36.)

[Ahlgren 2012] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher and B. Ohlman.
A survey of information-centric networking. IEEE Communications Magazine,
vol. 50, no. 7, pages 26–36, July 2012. (Cited on pages 27 and 28.)

[Ain 2009] M. Ain, D. Trossen, P. Nikander, S. Tarkoma, K. Visala, K. Rimey, T. Bur-
bridge, J. Rajahalme, J. Tuononen, P. Jokela, J. Kjallman, J. Ylitalo, J. Ri-
ihijarvi, B. Gajic, G. Xylomenos, P. Savolainen and D. Lagutin. Architecture
Definition, Component Descriptions, and Requirements, Feb 2009. Deliverable
D2.3, PSIRP EU FP7 Project. (Cited on page 35.)

[Al-Turjman 2013] F. M. Al-Turjman, A. E. Al-Fagih and H. S. Hassanein. A value-based
cache replacement approach for Information-Centric Networks. In 38th Annual
IEEE Conference on Local Computer Networks - Workshops, pages 874–881, Oct
2013. (Cited on page 52.)

[Alaya 2014] M. Ben Alaya, Y. Banouar, T. Monteil, C. Chassot and K. Drira. OM2M:
Extensible ETSI-compliant M2M Service Platform with Self-configuration Capa-
bility. In Proceedings of the 5th International Conference on Ambient Systems,
Networks and Technologies (ANT 2014), the 4th International Conference on
Sustainable Energy Information Technology (SEIT-2014), Hasselt, Belgium, June
2-5, 2014, pages 1079–1086, 2014. (Cited on page 47.)

[Alimi 2013] R. Alimi, A. Rahman, D. Kutscher, Y. Yang, H. Song and K. Pentikousis.
DECoupled Application Data Enroute (DECADE). RFC 7069, November 2013.
(Cited on page 47.)

[Amadeo 2013] M. Amadeo, C. Campolo, A. Molinaro and N. Mitton. Named Data
Networking: A natural design for data collection in Wireless Sensor Networks.
In 2013 IFIP Wireless Days (WD), pages 1–6, Nov 2013. (Cited on page 47.)

130 Bibliography

[Amadeo 2014a] M. Amadeo, C. Campolo, A. Iera and A. Molinaro. Named data net-
working for IoT: An architectural perspective. In Networks and Communica-
tions (EuCNC), 2014 European Conference on, pages 1–5, June 2014. (Cited on
pages 46 and 63.)

[Amadeo 2014b] M. Amadeo, C. Campolo, A. Molinaro and G. Ruggeri. Content-centric
wireless networking: A survey. Computer Networks, vol. 72, pages 1 – 13, 2014.
(Cited on pages 46 and 47.)

[Amadeo 2015] M. Amadeo, C. Campolo, A. Iera and A. Molinaro. Information Centric
Networking in IoT scenarios: The case of a smart home. In Communications
(ICC), 2015 IEEE International Conference on, pages 648–653, June 2015. (Cited
on pages 17, 46 and 47.)

[Amadeo 2016a] M. Amadeo, O. Briante, C. Campolo, A. Molinaro and G. Ruggeri.
Information-centric networking for {M2M} communications: Design and deploy-
ment. Computer Communications, pages –, 2016. (Cited on pages 46 and 47.)

[Amadeo 2016b] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A. Molinaro, A. Iera,
R. L. Aguiar and A. V. Vasilakos. Information-centric networking for the internet
of things: challenges and opportunities. IEEE Network, vol. 30, no. 2, pages 92–
100, March 2016. (Cited on page 46.)

[Azgin 2014] A. Azgin, R. Ravindran and G. Wang. A Scalable Mobility-Centric Archi-
tecture for Named Data Networking. CoRR, vol. abs/1406.7049, 2014. (Cited on
page 57.)

[Baccelli 2014] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt and M. Wählisch. In-
formation Centric Networking in the IoT: Experiments with NDN in the Wild.
CoRR, vol. abs/1406.6608, 2014. (Cited on pages 17, 33, 46 and 47.)

[Badov 2014] M. Badov, A. Seetharam, J. Kurose, V. Firoiu and S. Nanda. Congestion-
aware Caching and Search in Information-centric Networks. In Proceedings of the
1st ACM Conference on Information-Centric Networking, ACM-ICN ’14, pages
37–46, New York, NY, USA, 2014. ACM. (Cited on page 67.)

[Berners-Lee 1995] T. Berners-Lee. Propagation, replication and caching on the web.
http://www.w3.org/pub/WWW/Propagation/Activity.html, 1995. (Cited on
page 50.)

Bibliography 131

[Box 1970] G. Box and G. M. Jenkins. Time series analysis: Forecasting and control.
Holden-Day Inc., San Francisco, 1st édition, 1970. (Cited on page 78.)

[Breslau 1999] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker. Web caching and
Zipf-like distributions: evidence and implications. In INFOCOM ’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 1, pages 126–134 vol.1, Mar 1999. (Cited on page 47.)

[Brockwell 1991] P. J. Brockwell and R. A. Davis. Time series: Theory and methods.
Springer New York, 1991. (Cited on page 78.)

[Caines 1972] P. E. Caines. Relationship between Box-Jenkins-ÃÂstrÃÂ¶m control and
Kalman linear regulator. Electrical Engineers, Proceedings of the Institution of,
vol. 119, no. 5, pages 615–620, May 1972. (Cited on page 77.)

[Calvert 1997] K. L. Calvert, M. B. Doar and E. W. Zegura. Modeling Internet topology.
IEEE Communications Magazine, vol. 35, no. 6, pages 160–163, June 1997. (Cited
on page 104.)

[Camp 2002] T. Camp, J. Boleng and V. Davies. A Survey of Mobility Models for Ad Hoc
Network Research. Wireless Communications and Mobile Computing (WCMC):
Special issue on Mobile ad hoc networking: research, trends and applications,
vol. 2, pages 483–502, 2002. (Cited on page 120.)

[Chai 2012] W. K. Chai, D. He, I. Psaras and G. Pavlou. Cache "Less for More" in
Information-centric Networks. In Proceedings of the 11th International IFIP TC
6 Conference on Networking - Volume Part I, IFIP’12, pages 27–40. Springer-
Verlag, 2012. (Cited on pages 66 and 67.)

[Chankhunthod 1996] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz
and K. J. Worrell. A Hierarchical Internet Object Cache. In Proceedings of the
1996 Annual Conference on USENIX Annual Technical Conference, ATEC ’96,
pages 13–13, Berkeley, CA, USA, 1996. USENIX Association. (Cited on page 51.)

[Chiocchetti 2013a] R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi and G. Rossini.
INFORM: A Dynamic Interest Forwarding Mechanism for Information Cen-
tric Networking. In Proceedings of the 3rd ACM SIGCOMM Workshop on
Information-centric Networking, ICN ’13, pages 9–14, New York, NY, USA, 2013.
ACM. (Cited on pages 94 and 95.)

132 Bibliography

[Chiocchetti 2013b] R. Chiocchetti, D. Rossi and G. Rossini. ccnSim: An highly scalable
CCN simulator. In Communications (ICC), 2013 IEEE International Conference
on, pages 2309–2314, June 2013. (Cited on page 51.)

[Chiocchetti 2013c] R. Chiocchetti, D. Rossi and G. Rossini. ccnSim: An highly scalable
CCN simulator. In Communications (ICC), 2013 IEEE International Conference
on, pages 2309–2314, June 2013. (Cited on page 103.)

[Cho 2012] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi and S. Pack. WAVE:
Popularity-based and collaborative in-network caching for content-oriented net-
works. In 2012 Proceedings IEEE INFOCOM Workshops, pages 316–321, March
2012. (Cited on page 51.)

[Cisco 1999] Cisco. Cisco VNI Forecast and Methodology, 2015-2020.
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/complete-white-paper-c11-481360.html, 1999. (Cited on
pages 15 and 26.)

[Dabirmoghaddam 2014] A. Dabirmoghaddam and J.J. Barijough M. M.and Garcia-
Luna-Aceves. Understanding Optimal Caching and Opportunistic Caching at
"the Edge" of Information-centric Networks. In Proceedings of the 1st ACM
Conference on Information-Centric Networking, ACM-ICN ’14, pages 47–56, New
York, NY, USA, 2014. ACM. (Cited on page 68.)

[Dahlin 1994] M. D. Dahlin, R. Y. Wang, T. E. Anderson and D. A. Patterson. Co-
operative Caching: Using Remote Client Memory to Improve File System Per-
formance. In Proceedings of the 1st USENIX Conference on Operating Systems
Design and Implementation, OSDI ’94, Berkeley, CA, USA, 1994. USENIX As-
sociation. (Cited on page 48.)

[Dan 2011] G. Dan. Cache-to-Cache: Could ISPs Cooperate to Decrease Peer-to-Peer
Content Distribution Costs. IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 22, no. 9, pages 1469–1482, Sept 2011. (Cited on page 48.)

[Detti 2013] A. Detti, A. Caponi, G. Tropea, G. Bianchi and N. Blefari-Melazzi. On the
interplay among naming, content validity and caching in Information Centric
Networks. In 2013 IEEE Global Communications Conference (GLOBECOM),
pages 2108–2113, Dec 2013. (Cited on page 28.)

[Dingle 1996] A. Dingle and T. Pártl. Web Cache Coherence. Comput. Netw. ISDN
Syst., vol. 28, no. 7-11, pages 907–920, May 1996. (Cited on page 49.)

Bibliography 133

[Dinh 2013] N. Dinh and Y. Kim. Potential of information-centric wireless sensor and
actor networking. In Computing, Management and Telecommunications (Com-
ManTel), 2013 International Conference on, pages 163–168. IEEE, January 2013.
(Cited on page 47.)

[Duquennoy 2011] S. Duquennoy, F. Österlind and A. Dunkels. Lossy Links, Low Power,
High Throughput. In Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’11, pages 12–25, New York, NY, USA, 2011.
ACM. (Cited on page 32.)

[Eum 2012] S. Eum, K. Nakauchi, M. Murata, Y. Shoji and N. Nishinaga. CATT:
Potential Based Routing with Content Caching for ICN. In Proceedings of the
Second Edition of the ICN Workshop on Information-centric Networking, ICN
’12, pages 49–54, New York, NY, USA, 2012. ACM. (Cited on page 67.)

[Fan 2000] L. Fan, P. Cao, J. Almeida and A. Z. Broder. Summary Cache: A Scalable
Wide-area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw., vol. 8, no. 3,
pages 281–293, June 2000. (Cited on page 48.)

[Fayazbakhsh 2013] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Kopo-
nen, B. Maggs, K.C. Ng, V. Sekar and S. Shenker. Less Pain, Most of the Gain:
Incrementally Deployable ICN. SIGCOMM Comput. Commun. Rev., vol. 43,
no. 4, pages 147–158, August 2013. (Cited on pages 66, 68, 107 and 111.)

[Feldmann 2007] A. Feldmann. Internet Clean-slate Design: What and Why? SIG-
COMM Comput. Commun. Rev., vol. 37, no. 3, pages 59–64, July 2007. (Cited
on pages 26 and 27.)

[FP7 2010a] FP7. COMET project. http://www.comet-project.org/, 2010. (Cited on
pages 36 and 41.)

[FP7 2010b] FP7. CONVERGENCE project. http://www.ict-convergence.eu/, 2010.
(Cited on pages 37 and 41.)

[FP7 2010c] FP7. PURSUIT project. http://www.fp7-pursuit.eu/PursuitWeb/, 2010.
(Cited on pages 35 and 41.)

[FP7 2010d] FP7. SAIL project. http://www.sail-project.eu/, 2010. (Cited on pages 36
and 41.)

134 Bibliography

[Francois 2013] J. Francois, T. Cholez and T. Engel. CCN traffic optimization for IoT.
In Network of the Future (NOF), 2013 Fourth International Conference on the,
pages 1–5, Oct 2013. (Cited on page 46.)

[Fricker 2012] C. Fricker, P. Robert, J. Roberts and N. Sbihi. Impact of traffic mix
on caching performance in a content-centric network. In IEEE NOMEN 2012,
Workshop on Emerging Design Choices in Name-Oriented Networking, Orlando,
USA, March 2012. (Cited on page 66.)

[Gubbi 2013] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami. Internet of Things
(IoT): A vision, architectural elements, and future directions. Future Generation
Computer Systems, vol. 29, no. 7, pages 1645 – 1660, 2013. (Cited on page 17.)

[Hail 2015] M.A. Hail, M. Amadeo, A. Molinaro and S. Fischer. Caching in Named Data
Networking for the wireless Internet of Things. In Recent Advances in Internet of
Things (RIoT), 2015 International Conference on, pages 1–6, April 2015. (Cited
on pages 17, 46, 49, 50 and 107.)

[Han 2014] D. Han, M. Lee, K. Cho, T. Kwon and Y. Choi. Publisher mobility support
in content centric networks. In The International Conference on Information
Networking 2014 (ICOIN2014), pages 214–219, Feb 2014. (Cited on page 55.)

[Heidemann 2001] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin
and D. Ganesan. Building Efficient Wireless Sensor Networks with Low-level
Naming. SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pages 146–159, October 2001.
(Cited on pages 17 and 46.)

[Hermans 2011] F. Hermans, E. Ngai and P. Gunningberg. Mobile sources in an
information-centric network with hierarchical names: An indirection approach.
In in SNCNW, 2011. (Cited on page 55.)

[Hermans 2012] F. Hermans, E. Ngai and P. Gunningberg. Global Source Mobility in
the Content-centric Networking Architecture. In Proceedings of the 1st ACM
Workshop on Emerging Name-Oriented Mobile Networking Design - Architecture,
Algorithms, and Applications, NoM ’12, pages 13–18, New York, NY, USA, 2012.
ACM. (Cited on page 57.)

[Hoque 2013] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang and
L. Wang. NLSR: Named-data Link State Routing Protocol. In Proceedings of the
3rd ACM SIGCOMM Workshop on Information-centric Networking, ICN ’13,
pages 15–20, New York, NY, USA, 2013. ACM. (Cited on page 94.)

Bibliography 135

[Hyndman 2014] R.J. Hyndman and G. Athanasopoulos. Forecasting: principles and
practice:. OTexts, 2014. (Cited on page 77.)

[Imbrenda 2014] C. Imbrenda, L. Muscariello and D. Rossi. Analyzing Cacheable Traffic
in Isp Access Networks for Micro Cdn Applications via Content-centric Network-
ing. In Proceedings of the 1st ACM Conference on Information-Centric Network-
ing, ACM-ICN ’14, pages 57–66, New York, NY, USA, 2014. ACM. (Cited on
page 68.)

[Ishaq 2013] I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. V. d. Abeele, E. D.
Poorter, I. Moerman and P. Demeester. IETF Standardization in the Field of the
Internet of Things (IoT): A Survey. Journal of Sensor and Actuator Networks,
vol. 2, no. 2, pages 235–287, 2013. (Cited on page 32.)

[Jacobson 2009] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs
and R. L. Braynard. Networking Named Content. In Proceedings of the 5th In-
ternational Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’09, pages 1–12. ACM, 2009. (Cited on pages 17, 26, 27, 37 and 65.)

[Katsaros 2011] K. Katsaros, G. Xylomenos and G. C. Polyzos. MultiCache: An overlay
architecture for information-centric networking. Computer Networks, vol. 55,
no. 4, pages 936 – 947, 2011. Special Issue on Architectures and Protocols for
the Future Internet. (Cited on page 48.)

[Katsaros 2014] K. Katsaros, W. Chai, N. Wang, G. Pavlou, H. Bontius and M. Paolone.
Information-centric networking for machine-to-machine data delivery: a case
study in smart grid applications. Network, IEEE, vol. 28, no. 3, pages 58–64,
May 2014. (Cited on page 47.)

[Kazar 1988] M. L. Kazar. Synchronization and caching issues in the Andrew file system.
In USENIX, pages 27–36, 1988. (Cited on page 50.)

[Kim 2012] D. Kim, J. Kim, Y. Kim, H. Yoon and I. Yeom. Mobility Support in Content
Centric Networks. In Proceedings of the Second Edition of the ICN Workshop
on Information-centric Networking, ICN ’12, pages 13–18, New York, NY, USA,
2012. ACM. (Cited on page 55.)

[Kim 2015] D. Kim, J. Kim, Y. Kim, H. Yoon and I. Yeom. End-to-end Mobility Support
in Content Centric Networks. Int. J. Commun. Syst., vol. 28, no. 6, pages 1151–
1167, April 2015. (Cited on page 55.)

136 Bibliography

[Koponen 2007] T. Koponen, A. Ermolinskiy, M. Chawla, K. H. Kim, I. Stoica, B. Chun
and S. Shenker. A data-oriented (and beyond) network architecture. In In SIG-
COMM, 2007. (Cited on pages 35 and 41.)

[Kurita 2017] T. Kurita, I. Sato, K. Fukuda and T. Tsuda. An extension of Information-
Centric Networking for IoT applications. In 2017 International Conference on
Computing, Networking and Communications (ICNC), pages 237–243, Jan 2017.
(Cited on page 46.)

[Kutscher 2011] D. Kutscher, G. Morabito, I. Solis, B. Ohlman, G. C. Polyzos and
L. Zhang, editeurs. 2011 ACM SIGCOMM workshop on information-centric
networking, ICN 2011, toronto, on, canada, august 19, 2011. ACM, 2011. (Cited
on page 66.)

[LAAS-CNRS 2013] LAAS-CNRS. ADREAM. http://www.laas.fr/1-32329-Le-
batiment-intelligent-Adream-instrumente-et-econome-en-energie.php, 2013.
(Cited on pages 78 and 106.)

[Laoutaris 2004] N. Laoutaris, S. Syntila and I. Stavrakakis. Meta algorithms for hier-
archical Web caches. In IEEE International Conference on Performance, Com-
puting, and Communications, 2004, pages 445–452, 2004. (Cited on page 65.)

[Laoutaris 2006] N. Laoutaris, H. Che and I. Stavrakakis. The {LCD} interconnection
of {LRU} caches and its analysis. Performance Evaluation, vol. 63, no. 7, pages
609 – 634, 2006. (Cited on page 66.)

[Lee 2011] M. Lee, K. Cho, K. Park, T. Kwon and Y. Choi. SCAN: Scalable Content
Routing for Content-Aware Networking. In 2011 IEEE International Conference
on Communications (ICC), pages 1–5, June 2011. (Cited on pages 94 and 95.)

[Lee 2012] J. Lee, S. Cho and D. Kim. Device mobility management in content-centric
networking. IEEE Communications Magazine, vol. 50, no. 12, pages 28–34, De-
cember 2012. (Cited on page 55.)

[Lindgren 2016] A. Lindgren, F. B. Abdesslem, B. Ahlgren, O. Schelén and A. M. Malik.
Design choices for the IoT in Information-Centric Networks. In 2016 13th IEEE
Annual Consumer Communications Networking Conference (CCNC), pages 882–
888, Jan 2016. (Cited on page 46.)

Bibliography 137

[Liu 2011] R. Liu, W. Wu, H. Zhu and D. Yang. M2M-Oriented QoS Categorization in
Cellular Network. In Wireless Communications, Networking and Mobile Com-
puting (WiCOM), 2011 7th International Conference on, pages 1–5, Sept 2011.
(Cited on page 76.)

[Liu 2012] H. Liu, X. De Foy and D. Zhang. A Multi-level DHT Routing Framework
with Aggregation. In Proceedings of the Second Edition of the ICN Workshop
on Information-centric Networking, ICN ’12, pages 43–48, New York, NY, USA,
2012. ACM. (Cited on pages 94 and 95.)

[Makridakis 1997] S. Makridakis and M. Hibon. ARMA Models and the Box-Jenkins
Methodology. Journal of Forecasting, vol. 16, no. 3, pages 147–163, 1997. (Cited
on page 78.)

[Meddeb 2014] M. Meddeb, M. Ben Alaya, T. Monteil, A. Dhraief and K. Drira. M2M
Platform with Autonomic Device Management Service. Procedia Computer Sci-
ence, vol. 32, no. 0, pages 1063 – 1070, 2014. The 5th International Conference on
Ambient Systems, Networks and Technologies (ANT-2014), the 4th International
Conference on Sustainable Energy Information Technology (SEIT-2014). (Cited
on page 16.)

[Meddeb 2015] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil and K. Drira. Cache
coherence in Machine-to-Machine Information Centric Networks. In 40th IEEE
Conference on Local Computer Networks, LCN 2015, Clearwater Beach, FL,
USA, October 26-29, 2015, pages 430–433, 2015. (Cited on page 19.)

[Meddeb 2017a] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil and K. Drira. AFIRM:
Adaptive Forwarding based Link Recovery for Mobility Support in NDN-based IoT
networks. Submitted to Future Generation Computer Systems, 2017. (Cited on
page 19.)

[Meddeb 2017b] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil and K. Drira. Cache
freshness in Named Data Networking of Internet of things. Under review in The
computer Journal with minor revision, 2017. (Cited on page 19.)

[Meddeb 2017c] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil and K. Drira. How
to cache in ICN/IoT networks? 14th ACS/IEEE International Conference on
Computer Systems and Applications, 2017. (Cited on page 19.)

138 Bibliography

[Meddeb 2017d] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil and K. Drira. The
Least Fresh First Cache Replacement Policy for NDN/IoT Networks. submitted
to 25th IEEE International Conference on Network Protocols, 2017. (Cited on
page 19.)

[Meddeb 2017e] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil and K. Drira. Named
Data Networking: A promising architecture for the Internet of things (IoT). Jour-
nal on Semantic Web and Information Systems, 2017. (Cited on page 19.)

[Michel 1998] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd and V. Jacobson.
Adaptive web caching: towards a new global caching architecture. Computer
Networks and {ISDN} Systems, vol. 30, no. 22–23, pages 2169 – 2177, 1998.
(Cited on page 48.)

[Minerva 2015] R. Minerva, A. Biru and D. Rotondi. Towards a Definition of the Inter-
net of Things (IoT). In IEEE Internet Initiative, May 2015. (Cited on page 48.)

[Montavont 2014] J. Montavont, D. Roth and T. Noel. Mobile {IPv6} in Internet of
Things: Analysis, experimentations and optimizations. Ad Hoc Networks, vol. 14,
pages 15 – 25, 2014. (Cited on page 32.)

[Msadaa 2016] I. C. Msadaa and A. Dhraief. 1 - Internet of Things in Support of Public
Safety Networks: Opportunities and Challenges. In D. Camara and N. Nikaein,
editeurs, Wireless Public Safety Networks 2, pages 1 – 23. Elsevier, 2016. (Cited
on pages 32 and 33.)

[NSF 2010a] NSF. Mobility First project. http://mobilityfirst.winlab.rutgers.edu/, 2010.
(Cited on pages 38 and 41.)

[NSF 2010b] NSF. Named Data Networking project. http://www.named-data.net/,
2010. (Cited on pages 37 and 41.)

[Panigrahi 2014] B. Panigrahi, S. Shailendra, H. K. Rath and A. Simha. Universal
caching model and Markov-based cache analysis for information centric networks.
In 2014 IEEE International Conference on Advanced Networks and Telecom-
muncations Systems (ANTS), pages 1–6, Dec 2014. (Cited on page 52.)

[Pathan 2007] A. Pathan and R. Buyya. A taxonomy and survey of content delivery net-
works,. Technical Report, GRIDS-TR-2007-4, Grid Computing and Distributed
Systems Laboratory, The University of Melbourne, Australia., Feb. 2007. (Cited
on page 26.)

Bibliography 139

[Pavlou 2013] G. Pavlou. Information-Centric Networking and In-Network Cache Man-
agement: Overview, Trends and Challenges. In Keynote speech of the 9th
IFIP/IEEE Conference on Network and Service Management, 2013. (Cited on
page 48.)

[Pentikousis 2015] K. Pentikousis, B. Ohlman, D. Corujo, G. Boggia, G. Tyson, E. B.
Davies, A. Molinaro and S. Eum. Information-Centric Networking: Baseline
Scenarios. RFC 7476, March 2015. (Cited on pages 17 and 46.)

[Pentikousis 2016] K. Pentikousis, B. Ohlman, E. B. Davies, G. Boggia and S. Spirou.
Information-Centric Networking: Evaluation and Security Considerations. RFC
7945, September 2016. (Cited on page 104.)

[Podlipnig 2003] S. Podlipnig and L. Böszörmenyi. A Survey of Web Cache Replacement
Strategies. ACM Comput. Surv., vol. 35, no. 4, pages 374–398, December 2003.
(Cited on page 51.)

[Psaras 2012] I. Psaras, W. K. Chai and G. Pavlou. Probabilistic In-network Caching
for Information-centric Networks. In Proceedings of the Second Edition of the
ICN Workshop on Information-centric Networking, ICN ’12, pages 55–60, New
York, NY, USA, 2012. ACM. (Cited on pages 51 and 66.)

[Psaras 2014] I. Psaras, W. K. Chai and G. Pavlou. In-Network Cache Management
and Resource Allocation for Information-Centric Networks. IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 11, pages 2920–2931, Nov 2014.
(Cited on page 67.)

[Quevedo 2014a] J. Quevedo, D. Corujo and R. Aguiar. A case for ICN usage in IoT en-
vironments. In Global Communications Conference (GLOBECOM), 2014 IEEE,
pages 2770–2775, Dec 2014. (Cited on pages 17 and 48.)

[Quevedo 2014b] J. Quevedo, D. Corujo and R. Aguiar. Consumer driven information
freshness approach for content centric networking. In Computer Communications
Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on, pages 482–487,
April 2014. (Cited on pages 17, 50 and 107.)

[Rao 2014] Y. Rao, H. Luo, D. Gao, H. Zhou and H. Zhang. LBMA: A novel Locator
Based Mobility support Approach in Named Data Networking. China Communi-
cations, vol. 11, no. 4, pages 111–120, April 2014. (Cited on page 57.)

140 Bibliography

[Ravindran 2012] R. Ravindran, S. Lo, X. Zhang and G. Wang. Supporting seamless
mobility in named data networking. In 2012 IEEE International Conference on
Communications (ICC), pages 5854–5869, June 2012. (Cited on page 57.)

[Ren 2013] Z. Ren, M.A. Hail and H. Hellbruck. CCN-WSN - A lightweight, flexible
Content-Centric Networking protocol for wireless sensor networks. In Intelligent
Sensors, Sensor Networks and Information Processing, 2013 IEEE Eighth Inter-
national Conference on, pages 123–128, April 2013. (Cited on page 47.)

[Rosensweig 2010] E. J. Rosensweig, J. Kurose and D. Towsley. Approximate Models
for General Cache Networks. In 2010 Proceedings IEEE INFOCOM, pages 1–9,
March 2010. (Cited on page 48.)

[Rossi 2011] D. Rossi and G. Rossini. Caching performance of content centric networks
under multi-path routing. Rapport technique, Telecom ParisTech, 2011. (Cited
on page 107.)

[Rossi 2012] D. Rossi and G. Rossini. On sizing CCN content stores by exploiting topo-
logical information. In 2012 Proceedings IEEE INFOCOM Workshops, pages
280–285, March 2012. (Cited on page 66.)

[Rossini 2012] G. Rossini and D. Rossi. A dive into the caching performance of Content
Centric Networking. In CAMAD, pages 105–109. IEEE, 2012. (Cited on page 66.)

[Saleh 2006] O. Saleh and M. Hefeeda. Modeling and Caching of Peer-to-Peer Traffic.
In Proceedings of the 2006 IEEE International Conference on Network Protocols,
pages 249–258, Nov 2006. (Cited on page 47.)

[Sandberg 1985] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon. Design
and implementation of the Sun Network filesystem. In USENIX, Summer 1985.
(Cited on page 50.)

[Sourlas 2014] V. Sourlas, P. Flegkas and L. Tassiulas. A novel cache aware routing
scheme for Information-Centric Networks. Computer Networks, vol. 59, pages
44 – 61, 2014. (Cited on page 51.)

[Teubler 2013] T. Teubler, M. A. Hail and H. Hellbruck. Efficient Data Aggregation with
CCNx in Wireless Sensor Networks. In EUNICE, volume 8115 of Lecture Notes
in Computer Science, pages 209–220. Springer, 2013. (Cited on page 47.)

Bibliography 141

[Tortelli 2014] M. Tortelli, L. A. Grieco, G. Boggia and K. Pentikousisy. COBRA:
Lean intra-domain routing in NDN. In 2014 IEEE 11th Consumer Communi-
cations and Networking Conference (CCNC), pages 839–844, Jan 2014. (Cited
on pages 94 and 95.)

[Tsilopoulos 2011] C. Tsilopoulos and G. Xylomenos. Supporting Diverse Traffic Types
in Information Centric Networks. In Proceedings of the ACM SIGCOMM Work-
shop on Information-centric Networking, ICN ’11, pages 13–18, New York, NY,
USA, 2011. ACM. (Cited on page 67.)

[Vasilakos 2012] X. Vasilakos, V. A. Siris, G. C. Polyzos and M. Pomonis. Proac-
tive Selective Neighbor Caching for Enhancing Mobility Support in Information-
centric Networks. In Proceedings of the Second Edition of the ICN Workshop
on Information-centric Networking, ICN ’12, pages 61–66, New York, NY, USA,
2012. ACM. (Cited on pages 70, 71 and 72.)

[Vleeschauwer 2011] D. De Vleeschauwer and D. C. Robinson. Optimum caching strate-
gies for a telco CDN. Bell Labs Technical Journal, vol. 16, no. 2, pages 115–132,
Sept 2011. (Cited on page 47.)

[Vural 2014] S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong and R. Tafazolli.
In-network caching of Internet-of-Things data. In Communications (ICC), 2014
IEEE International Conference on, pages 3185–3190, June 2014. (Cited on
page 48.)

[Vural 2016] S. Vural, N. Wang, P. Navaratnam and R. Tafazolli. Caching Transient
Data in Internet Content Routers. IEEE/ACM Transactions on Networking,
vol. PP, no. 99, pages 1–14;, 2016. (Cited on page 49.)

[W3C 1996] World Wide Web Consortium W3C. W3C httpd.
http://www.w3.org/pub/WWW/Daemon/, 1996. (Cited on page 50.)

[W3C 2006] World Wide Web Consortium W3C. Hypertext Transfer Protocol.
http://www.w3.org/pub/WWW/Protocols/, 2006. (Cited on page 50.)

[Wang 2012a] L. Wang, A. K. M. M. Hoque, C. Yi, A. Alyyan and B. Zhang. OSPFN:
An OSPF Based Routing Protocol for Named Data Networking. 2012. (Cited on
page 94.)

[Wang 2012b] L. Wang, R. Wakikawa, R. Kuntz, R. Vuyyuru and L. Zhang. Data Nam-
ing in Vehicle-to-Vehicle Communications. In In Proceedings of INFOCOM 2012

142 Bibliography

Workshop on Emerging Design Choices in Name-Oriented Networking, March
2012. (Cited on page 47.)

[Wang 2012c] Y. Wang, K. Lee, B. Venkataraman, R. L. Shamanna, I. Rhee and S. Yang.
Advertising cached contents in the control plane: Necessity and feasibility. In 2012
Proceedings IEEE INFOCOM Workshops, pages 286–291, March 2012. (Cited
on pages 94 and 95.)

[Wang 2013a] J. M. Wang, J. Zhang and B. Bensaou. Intra-AS Cooperative Caching for
Content-centric Networks. In Proceedings of the 3rd ACM SIGCOMM Workshop
on Information-centric Networking, ICN ’13, pages 61–66, New York, NY, USA,
2013. ACM. (Cited on pages 48 and 67.)

[Wang 2013b] L. Wang, O. Waltari and J. Kangasharju. MobiCCN: Mobility support
with greedy routing in Content-Centric Networks. In 2013 IEEE Global Com-
munications Conference (GLOBECOM), pages 2069–2075, Dec 2013. (Cited on
pages 55 and 57.)

[Wong 2006] K. Wong. Web cache replacement policies: a pragmatic approach. IEEE
Network, vol. 20, no. 1, pages 28–34, Jan 2006. (Cited on page 51.)

[Xu 2014] B. Xu, L. D. Xu, H. Cai, C. Xie, J. Hu and F. Bu. Ubiquitous Data Accessing
Method in IoT-Based Information System for Emergency Medical Services. IEEE
Transactions on Industrial Informatics, vol. 10, no. 2, pages 1578–1586, May 2014.
(Cited on page 46.)

[Xylomenos 2012] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V.A. Siris and G.C. Poly-
zos. Caching and mobility support in a publish-subscribe internet architecture.
Communications Magazine, IEEE, vol. 50, no. 7, pages 52–58, July 2012. (Cited
on page 64.)

[Xylomenos 2014] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. V. Katsaros and G. C. Polyzos. A Survey of Information-Centric
Networking Research. IEEE Communications Surveys Tutorials, vol. 16, no. 2,
pages 1024–1049, Second 2014. (Cited on pages 17, 27 and 28.)

[Yi 2012] C. Yi, A. Afanasyev, L. Wang, B. Zhang and L. Zhang. Adaptive forwarding
in named data networking. Computer Communication Review, vol. 42, pages
62–67, 2012. (Cited on page 93.)

Bibliography 143

[Yi 2013] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang and L. Zhang. A case
for stateful forwarding plane. Computer Communications, vol. 36, no. 7, pages
779 – 791, 2013. (Cited on page 92.)

[Yi 2014] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang and L. Zhang. On the
Role of Routing in Named Data Networking. In Proceedings of ACM Confer-
ence on Information-Centric Networking (ICN’2014), September 2014. (Cited on
page 92.)

[Zhang 2010] L. Zhang, D. Estrin, J. Bruke, V. Jacobson, J. Thornton, D. Smetters,
B. Zhang, G. Tsudik, K. Claffy, D. Krioukov, D. Massey, C. Papadopoulos,
T. Abdelzaher, L. Wang, P. Crowley and E. Yeh. Named Data Networking (NDN)
Project. October 2010. (Cited on page 65.)

[Zhang 2013] G. Zhang, Y. Li and T. Lin. Caching in information centric networking: A
survey. Computer Networks, vol. 57, no. 16, pages 3128 – 3141, 2013. Information
Centric Networking. (Cited on pages 30, 47 and 65.)

[Zhang 2016] Y. Zhang, D. Raychadhuri, L. A. Grieco, E. Baccelli, J. Burke, R. Ravin-
dran and G. Wang. ICN based Architecture for IoT - Requirements and Chal-
lenges. Internet-draft, Internet Research Task Force (IRTF), 2016. version 2
expires on February 29. (Cited on pages 32 and 46.)

[Zhou 2014] Z. Zhou, X. Tan, H. Li, Z. Zhao and D. Ma. MobiNDN: A mobility support
architecture for NDN. In Proceedings of the 33rd Chinese Control Conference,
pages 5515–5520, July 2014. (Cited on pages 31 and 53.)

[Zhu 2013] Z. Zhu, A. Afanasyev and L. Zhang. A New Perspective on Mobility Support.
Technical Report NDN-0013, NDN, July 2013. (Cited on page 55.)

	Introduction
	I General context and state of the art
	Information-Centric IoT Networks
	Introduction
	The Internet evolution
	Information-Centric Networking
	Information Naming
	Routing
	Caching and storing
	Mobility

	The vision of Internet of Things (IoT)
	IoT under the TCP/IP stack
	IoT standardization effort

	Which ICN architecture for IoT?
	ICN architectures
	Data-Oriented Network Architecture (DONA)
	Publish-Subscribe Internet Routing Paradigm (PSIRP)
	COntent Mediator architecture for content-aware nETworking (COMET)
	Scalable and Adaptive Internet Solutions (SAIL)
	Content Centric Networking (CCN)
	CONVERGENCE
	Mobility First

	IoT fundamental requirements
	ICN in IoT environment: suitability analysis
	NDN for IoT

	Conclusion

	State of the art
	Introduction
	Information-Centric Networking for Internet of Things applications
	In-network caching
	Cache freshness
	Cache replacement policies
	Mobility in ICN
	Mobility management in NDN
	Proposals for producer mobility issue in NDN
	Location Resolution approach
	Triangular approach
	Locator/identifier separation approach
	Routing-based approach

	Conclusion

	II Contributions and Results
	Caching strategy for NDN-based IoT networks
	Introduction
	A focus on NDN layer
	Caching techniques
	Cache placement selection
	Cache decision policies

	Caching strategy assumptions
	Consumer-cache caching strategy
	An example using the consumer-cache strategy under NDN/IoT networks
	The cache cost
	Conclusion

	Freshness-aware in-network caching in NDN-based IoT networks
	Introduction
	Analyze and prediction model
	The IoT traffic patterns
	Prediction model
	Autoregressive Moving Average model
	Data collection
	Calculation of ARMA parameters

	Event-based freshness mechanism
	Event-based freshness algorithm
	Example with event-based freshness mechanism

	Least Fresh First cache replacement policy
	LFF algorithm
	Example with LFF policy

	Conclusion

	Adaptive Forwarding for Efficient Mobility Support in NDN-based IoT networks
	Introduction
	Which approach to handle producer mobility in NDN-based IoT networks?
	Routing and Forwarding planes in NDN
	Existing studies on routing plane
	Existing studies on forwarding plane

	AFIRM: Adaptive Forwarding based lInk Recovery for efficient Mobility support
	FIBs construction
	Link recovery
	Example with AFIRM algorithm

	Conclusion

	Performance Evaluation
	Introduction
	Simulation setup
	Topology
	Content catalog
	Parameters configuration

	Evaluation metrics
	Simulation results
	Static scenario
	Consumer-cache caching strategy results
	Event-based mechanism results
	Least Fresh First cache replacement policy results

	Dynamic scenario

	Conclusion

	Conclusion and perspectives
	Bibliography

