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Résumé en français

Nous vivons à l’ère du Big Data. Internet et les réseaux sociaux sont omniprésents dans
nos vies numériques et rendent accessible une quantité énorme de données. L’accès à
l’image était souvent limité aux albums photo de famille il y a encore quelques décennies.
Maintenant, nous avons accès à des millions de photos en quelques clics. Ceci rend la
vision et la compréhension de l’image par l’ordinateur d’autant plus important pour
gérer et analyser ces grandes collections d’images.

La vision par ordinateur se définit comme l’art d’enseigner aux ordinateurs com-
ment voir. Les images sont traduites en des formes mathématiques sur lesquelles des
opérations numériques sont appliquées. La vision par ordinateur utilise les avancées
de beaucoup de domaines comme l’apprentissage automatique, le traitement du signal,
les mathématiques appliquées et la géométrie. Les problèmes types en vision par or-
dinateur sont par exemple la classification d’images/vidéos, la recherche d’images, la
génération d’images, la détection d’objet, la reconstruction 3D et plein d’autres encore.
Plus récemment, la vision par ordinateur est capitale dans les voitures autonomes.

Cette thèse traite principalement du problème de la recherche d’image. Dans un
scénario type, on nous donne une image requête qui contient un objet important pour
l’utilisateur. Cet objet peut-être n’importe quoi, un bâtiment ou lieu connu, un objet du
quotidien... Le but est de retrouver des images contenant la même instance de l’objet
d’intérêt dans une grande collection contenant des millions d’images. Ce problème
n’est pas de la classification d’image ou de la détection d’objet car on recherche la
même instance. En classification ou en détection d’objet, le but est de décider si
les objets présents dans l’image appartiennent à des catégories génériques telles que
‘voiture’, ‘bâtiments’, ‘chats’ etc. Notre problème est plus spécifique. Si un utilisateur
soumet une photo d’un lieu particulier, nous devons retrouver ce même lieu, et non pas
n’importe quel bâtiment. Par conséquent, il n’est pas possible d’entrainer un classifieur
pour cet objet requête particulier, le nombre d’objets d’intérêt étant virtuellement infini.

iii



iv Contents

Les Défis de la Recherche d’Images

Un des problèmes clés en vision par ordinateur est la représentation du contenu vi-
suel. Un grand travail de recherche a été fait dans ce contexte, allant du design ‘mai-
son’ des descripteurs SIFT [Low04] aux récents descripteurs basés CNN (réseau de
neurones convolutionnels) [KSH12, SZ14]. La représentation visuelle reste un prob-
lème aussi en recherche d’image, car l’objet d’intérêt est présent dans les images avec
beaucoup de variations concernant sa taille, son illumination, les occlusions, etc. De
plus, la recherche d’image doit être efficace. Cette contrainte est cruciale en pratique.
L’utilisateur doit retrouver des contenus pertinents sans trop attendre.

Efficacité

Grâce à la représentation du contenu visuel, la recherche d’images se réduit à la
recherche des plus proches voisins dans un espace affine à grande dimension. On mesure
la similarité par une métrique comme la similarité cosinus ou la distance Euclidienne
entre le vecteur requête et les vecteurs de la collection. Les ordinateurs actuels sont très
rapides pour effectuer ce genre de calcul, mais les descripteurs ont une grande dimen-
sion et le nombre de similarité à calculer est aussi grand que la taille de la collection.
Ce problème est donc délicat quand on manipule de très grande collection d’images.
En plus de la complexité de la recherche, il ne faut pas oublier l’espace mémoire pour
stocker tous les vecteurs de la collection. L’indéxation est une solution connue qui évite
la comparaison exhaustive entre le vecteur requête et tous les vecteurs de la base. Par
exemple, on peut partitionner l’espace en régions et ne chercher que dans les regions
proches de la requête. Cependant, ces approaches perdent de leur efficacité en grande
dimension.

Représentation Visuelle

Beaucoup de système traditionnels décrivent une image par un ensemble de descrip-
teurs locaux, tels que les SIFT [Low04]. Cependant, cela ne constitue pas une solution
efficace car la complexité et la mémoire croit de plusieurs facteurs avec le nombre
d’images. Des travaux ont proposé des stratégies de regroupement pour agréger un en-
semble de descripteurs locaux en un seul descripteur global [SZ03, SPMV13, JPD+12].
Plus récemment, les descripteurs basés CNN ont atteint des performances état de l’art
dans de nombreux benchmarks en recherche d’images [RTC16, GARL16b]. Cependant,
les instances d’objet sous de sévères variations (objet de petite taille dans l’image, ob-
jet occulté, objet noyé dans l’arrière plan, objet pris par un angle de vue différent)
demeurent un problème. Une approche est l’expansion de requête (“query expansion”).
L’idée est de faire une première recherche avec l’image requête, pour obtenir les plus
proches voisins ; puis, de rechercher en prenant ces plus proches voisins comme requête.
Cela aide à retrouver des images contenant l’objet d’intérêt mais sous des variations
plus sévères.
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Contenu de la Thèse

Cette thèse apporte des solutions aux défis présentés dans la Section . Ces solutions
s’appuient sur une représentation continue d’un ensemble de vecteurs.

Vecteur Mémoire pour l’Indéxation

Ce chapitre se rapporte à la recherche de vecteurs similaires à un vecteur requête
dans une grande collection. De nombreux travaux étudient comment le fléau de la
dimension (la taille des vecteurs) rend les techniques d’indéxation inefficaces [WSB98,
ML14]. L’article [ML14] par exemple analyse expérimentalement la méthode FLANN
et observe que cette méthode de l’état de l’art donne des performances pauvres sur des
vecteurs synthétiques en grande dimension. Les auteurs concluent que “les collections
de vecteurs aléatoires constituent un des problèmes les plus difficiles en recherche de
plus proches voisins”.

La contribution de ce chapitre est un algorithme de recherche par similarité spéci-
fique aux vecteurs de grande dimension, comme ceux récemment utilisés en vision par
ordinateur pour représenter des images [PD07, JDSP10]. La technique d’indéxation
consiste à créer des unités de mémoire, chacune étant associée à plusieurs vecteurs de
la collection. Un représentant, appelé vecteur mémoire, est produit pour chaque unité
de mémoire. Il est construit de telle manière qu’il est possible de prédire si le vecteur
requête est similaire à au moins un vecteur de l’unité mémoire associée.

Soit une unité mémoire composée des vecteurs X = {x1, . . . ,xn} ⊂ R
d où xi est

le descripteur de l’image i de la collection. Son représentant vecteur mémoire est tel
que, pour un vecteur requête q donné, nous pouvons construire un test statistique de
similarité pour répondre à la question: est-ce que q est une quasi-copie d’au moins un
des vecteurs de l’unité mémoire ?

Nous proposons deux constructions de vecteur mémoire. La première est simple-
ment la somme des vecteurs de l’unité mémoire :

m(X ) =
∑

x∈X
x, (1)

où nous supposons que X est composée de n vecteurs différents. Bien que très simple,
cette construction n’est pas dénuée d’intérêt en grande dimension.

L’autre construction de vecteur mémoire est optimisée suivant la méthode suivante.
Soit X = [x1, . . . ,xn] la matrice d×n représentant l’unité mémoire. Nous imposons que,
pour tout i ∈ {1, . . . , n}, xi

⊤m(X ) = 1 exactement. Autrement dit, nous recherchons
m(X ) parmi les vecteurs m satisfaisant X⊤m = 1n où 1n est le vecteur dont les n
composantes sont égales à 1. Si un tel vecteur existe, alors pour q = xi, q⊤m = 1.
Nous éliminons ainsi les interférences avec les autres vecteurs de l’unité mémoire, qui
étaient la source principale de bruit dans la première construction.

Sous l’hypothèse H0 où le vecteur requête est aléatoire, la variance du score est
en ‖m‖2/d. Nous cherchons donc le représentant m de module ‖m‖ minimal sous la
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contrainte X⊤m = 1n. La solution est donnée grâce à la pseudo-inverse de Moore-
Penrose [RM72] :

m⋆ = (X+)⊤1n. (2)

Nous analysons les performances de ces deux constructions de vecteur mémoire
théoriquement et expérimentalement. Pour une assignation aléatoire des vecteurs de la
collection dans les unités de mémoire, la construction pinv donne de meilleurs résultats
que la simple somme. Cependant, lorsque les vecteurs de la collection regroupés dans
une unité mémoire partagent une certaine corrélation, la construction sommme donne
un test d’hypothèse aussi fiable que la construction pinv. Mais, la construction pinv
utilisée dans l’assignation supervisée de vecteurs corrélés produit des unités mémoires
plus homogènes en taille. Cela donne des temps de réponse plus uniformes d’une requête
à une autre. L’assignation supervisée en revanche est plus complexe, mais comme elle
est réalisée en amont de la recherche, ce surplus de complexité est souvent négligé dans
la littérature. Nous avons eu à coeur de proposer une assignation tout de même efficace
pour manipuler des grandes collections de vecteurs. Elle est basée sur une assignation
faiblement supervisée fonctionnant par lots. Ceci ne diminue pas les performances de
la recherche in fine.

Applications des Vecteurs Mémoires

Ce chapitre donne une implémentation pratique d’une recherche par similarité dans une
grande collection d’images à l’aide de vecteurs mémoires. De plus, il étudie une appli-
cation du concept de vecteur mémoire à la recherche d’information avec des contraintes
de sécurité et confidentialité.

La section 4.1 répond au cahier des charges d’une recherche par similarité dans une
grande collection d’images. Nous montrons que les vecteurs mémoires sont facilement
‘indéxables’ par des techniques classiques de partitionnement d’espace comme FLANN,
contrairement aux descripteurs d’image bruts. Cette indéxation rend la recherche en-
core plus efficace en termes de temps de réponse et d’espace mémoire pour des collec-
tions de millions d’images.

La section 4.2 étudie l’usage des vecteurs mémoires pour le respect de la confidential-
ité. Le but est de construire un système de recherche d’information multimédia efficace
protégeant les données. Le scénario réunit les trois acteurs suivants : l’utilisateur,
le serveur, et le propriétaire de la collection de données. Nous montrons l’utilité des
vecteurs mémoires en terme d’efficacité de la recherche et de respect de la confidential-
ité des données de chaque acteur. Les vecteurs mémoires produisent une seconde ligne
de défense rendant le vol des vecteurs de la collection par un utilisateur “curieux” plus
difficile.

Optimisation du Test par Groupe par Factorisation de Matrice

Ce chapitre poursuit l’idée du test par groupe, c’est à dire de déduire quels vecteurs
parmi les N vecteurs de la collection sont similaires à la requête à partir de seulement
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M mesures. Plutôt qu’une assignation des vecteurs de la collection dans des unités mé-
moires suivie d’une construction fixe des vecteurs mémoires, nous formulons le problème
sous la forme d’une optimization jointe de l’assignation et de la construction. En levant
la contrainte d’une assignation binaire (tel vecteur appartient ou pas à telle unité de
mémoire), la version continue de ce problème d’optimisation se révèle être équivalent à
un problème d’apprentissage de dictionnaire en représentation parcimonieuse. Nous ap-
pelons cette opération l’encodage, et nous nous restreignons à la famille des encodages
linéaires :

Y = enc(X) = XG⊤. (3)

Pour une requête q donnée, nous calculons les scores des unités mémoires ainsi :

s = q⊤Y. (4)

Puis, nous estimons les similarités requête - vecteurs de la collection c = q⊤X à partir
des mesures s. Encore une fois, nous nous restreignons à un estimateur linéraire :

ĉ = dec(s) = sH. (5)

Nous proposons deux solutions. La première trouve les matrices G ∈ R
M×N et

H ∈ R
M×N telles que les scores estimés ĉ et les scores exacts c soient les plus proches

possibles. Cela revient à résoudre le problème suivant :

min
G,H

∑

q∈Q
‖c − ĉ‖2

2 = min
G,H

∑

q∈Q
‖qT X − qT XG⊤H‖2

2,

où Q est un ensemble de vecteurs requêtes typiques. En fait, nous utilisons la collection
de vecteurs elle-même comme représentation de cet ensemble de requêtes typiques,
remplacant ainsi q par X et la norme Euclidienne sur les vecteurs par la norme de
Frobenius sur les matrice :

min
G,H

∥∥∥X⊤X − X⊤XG⊤H
∥∥∥

2

F
. (6)

Ce problème se résout en général par une décomposition en vecteurs propres. Soit
A = X⊤X la matrice de Gram associée à la matrice X. Etant symétrique et réelle,
A est diagonalisable : A = UΛU⊤, avec U matrice unitaire (U⊤U = UU⊤ = IN ).
Ainsi, on choisit G⊤ = UM et H = U⊤

M , où UM est la restriction de U aux valeurs
propres les plus grandes en amplitude.

La deuxième solution applique des méthodes d’apprentissage de dictionnaire pour
trouver des représentations parcimonieuses de la collection de vecteurs. La parcimonie
améliore ici l’efficacité de la recherche. Nous voulons une approximation de X par
YH où H ∈ R

M×N stocke les représentations parcimonieuses des vecteurs selon les
colonnes du dictionnaire Y ∈ R

d×M (aussi appelées atomes). Cela conduit à ce prob-
lème d’optimisation :

min
Y,H

1

2
‖X − YH‖2

F + λ ‖H‖1

sous contrainte ‖yk‖2 ≤ 1 for all 0 ≤ k < M.
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Nos expériences montrent que la décomposition en vecteurs propres n’est opérante
que pour de petites collections, alors que l’apprentissage du dictionnaire peut s’attaquer
à des très grandes collections. Testé sur des collections de plus de 108 images, cette
solution atteint des qualités de recherche comparables (et parfois meilleures) que la
méthode exhaustive mais avec une complexité bien moindre.

Recherche sur des variétés géométriques

Les chapitres 6 and 7 porte sur l’expansion de la requête. Nous utilisons une représenta-
tion d’une collection d’images basée sur un graphe pondéré donnant les relations entre
les vecteurs de la collection. Ce graphe sert pour retourner les images qui sont sur
la même variété géométrique que le vecteur requête. Alors que le problème principal
des chapitres précédents est d’améliorer l’efficacité de la recherche quitte à sacrifier la
qualité des résultats retournés, ce chapitre explore ce compromis dans l’autre sens. On
s’autorise une plus grande complexité dans le but d’améliorer la qualité de la recherche.

Le chapitre 6 introduit le mécanisme de diffusion régionale, qui prend en compte
plusieurs vecteurs requêtes pour un même coût en complexité. L’image est découpée en
région et un descripteur est extrait par région. Cette approche améliore nettement la
recherche d’objets d’intérêt petits ou noyés dans l’arrière plan. Dans les mécanismes de
diffusion sur graphe [PBMW99, ZWG+03, DB13], les vecteurs requêtes sont habituelle-
ment intégrés dans le graphe ; ils sont donc connus lors de l’indéxation. Notre nouvelle
approche se libère de cette hypothèse. Elle gère des requêtes jamais vues sans surplus
de complexité. La formule de la solution optimale est connue, mais tous les systèmes
actuels y dérogent [DB13] sous prétexte de la trop grande complexité de son calcul.
En fait, nous montrons que la solution alternative utilisée n’est que la résolution itéra-
tive d’un système linéaire. Comme la matrice associée est creuse et définie positive,
la méthode du gradient conjugué est plus efficace donnant la solution en moins d’une
seconde. Nous nous sommes servis du jeux de données INSTRE [WJ15], qui n’a pas
recu beaucoup d’attention jusqu’à présent, afin d’étudier la corrélation entre la qualité
des résultats retournés et la taille de l’objet d’intérêt dans les images. Nous proposons
aussi un nouveau protocole d’expérimentation plus adapté à de futures comparaisons.

Nos expériences montrent que notre méthode améliore nettement la recherche de
petits objets, et ce uniquement avec 5 à 10 descripteurs régionaux par image (ce sont
des descripteurs issus de CNN). Une telle qualité de recherche nécessitait auparavant
des milliers de descripteurs locaux. Le graphe des plus proches voisins n’est pas si
grand. Nos performances sont égales à celles de l’état de l’art sur deux benchmarks
bien connus.

Le chapitre 7 reproduit la même qualité de recherche que le chapitre 6, mais cette
fois plus rapidement. La complexité est plus grande pendant la phase d’indéxation.
Elle est linéaire avec la taille de la collection mais facilement parallèlisable. Elle prend
quelques heures pour une grande collection d’images. La complexité de la recherche
est quant à elle plus petite. L’expansion de la requête n’est plus qu’un simple post-
traitement. La qualité de la recherche est presque parfaite par rapport à la vérité
terrain.
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Application à la Reconnaissance de Lieux

La reconnaissance de lieux s’explique ainsi : Nous avons une collection d’images avec
leurs coordonnées GPS. Plusieurs images ont été prises à la même localisation, pouvant
former un panorama. Plusieurs solutions traitent de ce problème comme une applica-
tion de la recherche d’instances. L’utilisateur soumet une seule image d’où il est, et
cette image joue le rôle de la requête. Ce chapitre propose d’améliorer la géolocalisation
en calculant une similarité panorama à panorama, et non image à image.

Nous construisons une représentation d’un panorama en utilisant les vecteurs mé-
moires du chapitre 3. La grande différence étant que les unités mémoires sont main-
tenant constituées naturellement : l’assignation n’est plus aléatoire ou supervisée selon
la proximité des vecteurs, mais elle groupe ensemble les images d’une même localisation
GPS. L’espace mémoire est conservé car un vecteur décrit un panorama. La similarité
panorama - panorama améliore grandement la géolocalisation par rapport à l’état de
l’art. Nous montrons aussi dans la Section 8.3 qu’il surpasse même la recherche sur des
variétés géométriques du chapitre 6.
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Chapter 1

Introduction

We live in the age of big data. The rapid growth of social media and internet have
taken over a large part of our lives, but also made available enormous amount of data.
While our access to personal photography was mostly limited to family albums about
a decade ago, we now have access to millions of photos with a single click. Thanks
to these developments, computer vision and image understanding has become more
important than ever.

Computer vision can be briefly defined as “teaching computers how to see”. More
specifically, images are translated into mathematical representations, and are applied
various numeral operations. It makes use of the advancements of many other fields,
such as machine learning, signal processing, applied math and geometry. Some of
the computer vision problems include image/video classification, image/video retrieval,
image generation, object detection, 3D reconstruction and many others. More recently,
computer vision is being used in self-driving cars.

This thesis is mainly concerned about the problem of instance-based image retrieval.
In a typical scenario, we are given a query image which contains an object of interest.
This object can be anything from landmarks to daily objects. The goal is to return
images containing the same instance of the queried object from a large collection,
possibly containing millions of images. This problems differs from image classification
or object detection due to its instance-based nature. In image classification or object
detection, the goal is to classify objects into generic categories, such as cars, buildings,
cats etc. Our problem is much more specific. If a user submits an image of a particular
landmark, we must return the same landmark, not any other building. The same applies
for any other object of interest. Hence, it is not possible to train classifiers (since the
possibility of real world instances are infinite) and we must search the entire image
collection with the given query. Visual example of a typical image retrieval framework
is shown in Figure 1.1.

1
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Query	Image	

Feature	

Extrac+on	

Feature	

Extrac+on	

Retrieval	System	

Dataset	

Ranked	List	

Figure 1.1: Example of a basic image retrieval framework. Dataset images are collected
and feature extraction is applied. When a new query image is submitted, its feature
representation is compared against all the dataset vectors, and a ranked list of images
is returned to the user.
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Vector	Space	

Figure 1.2: Visualization of space partitioning in R
2. Similar images produce similar

visual representations, and are assigned to the same bin.

1.1 Challenges

One of the main problems in computer vision, in general, is the representation of visual
content. Significant amount of research has been done in this context, from traditional
hand-designed SIFT features [Low04], to more modern CNN-based descriptors [KSH12,
SZ14]. Visual representation also remains a challenge for image retrieval, thanks to
different variations of the object of interest, such as scale and illumination changes,
occlusion etc. In addition to visual representation, image retrieval also deals with the
problem of efficiency. This is an absolutely crucial constraint for any proposed system.
In practice, we must make sure that the user is able to retrieve the relevant content
without waiting too long.

1.1.1 Efficiency

Given a visual representation of images, basic image search boils down to a nearest
neighbors search in the vector space. This involves computing a similarity metric, such
as cosine similarity or Euclidean distance, between the query vector and dataset vectors.
While modern computers are relatively fast at making this kind of computations, image
descriptors have high dimensionalities, and the complexity of such an operation grows
linearly with the number of comparisons. Thus, this problem still remains important
when considering a dataset with millions of images. In addition to search complexity,
memory footprint of dataset vectors is another aspect of efficiency which must be
considered. Typical solutions to this problem involve indexing, which avoids making
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Query	Image	

NN-

search	

Ini-al	Ranked	List	

Query	

Expansion	

Final	Ranked	List	

Figure 1.3: Query expansion techniques are usually applied to the initial ranked list
returned by NN-search. It is a useful technique to retrieve positive images under severe
visual variations.

exhaustive comparison between the query and dataset vectors. An example solution
involves grouping geometrically close dataset vectors into the same bin, and avoid
dissimilar bins for a given query. However, these approaches are not as effective in higher
dimensional spaces. An example of space partitioning in R

2 is shown in Figure 1.2.

1.1.2 Visual Representation

Many of the traditional systems described an image with a set of local features, such
as SIFT [Low04]. Although effective, this was not an efficient solution since the search
and memory complexity grew exponentially with the number of images. Other works
designed pooling strategies to aggregate a set of local features into a single global
descriptor [SZ03, SPMV13, JPD+12]. More recently, CNN-based descriptors achieved
state-of-the-art performance in many image retrieval benchmarks [RTC16, GARL16b].
However, objects with severe visual variations, such as small and occluded objects,
objects with background clutter, and objects from different viewpoints still remain a
significant problem. One approach is called “query expansion”. The main idea is to
conduct a basic nearest neighbor search with the query image and retrieve the nearest
neighbors from dataset. Then, the second part of the process involves searching the
dataset using the retrieved nearest neighbors as queries. This helps retrieving images
that contain the same object as query, but under severe visual variations. This process
is shown in Figure 1.3.



Solutions and Content 5

1.2 Solutions and Content

In this thesis, we attempt to solve the challenges mentioned in Section 1.1. Our solu-
tions for both problems involve continuous representations of a set of vectors. Initial
chapters investigate the problem of indexing vectors in high-dimensional spaces and
propose efficient solutions. This is done by assigning images to groups and creating
a single continuous representation for each group. We then switch gears and propose
a query expansion framework which successfully retrieves images with different visual
variations. We use a weighted graph to represent the relationship between dataset
images for this problem.

This transcript is organized as follows:

• Chapter 2 gives brief literature background on the aforementioned challenges.
More specifically, we explain existing works in feature description, indexing, and
query expansion in image retrieval.

• Chapter 3 introduces an indexing scheme. We present a theoretical analysis of
how to represent a set of vectors in high-dimensional spaces. We call our group
representations memory vectors and show their effectiveness in various image
retrieval benchmarks.

• Chapter 4 presents practical applications and extensions of memory vectors. We
first show the effectiveness of using memory vectors for multimedia retrieval do-
main in terms of efficiency and privacy. We then investigate practical extensions
of memory vectors, such as their combination with existing space-partitioning
techniques.

• Chapter 5 presents a data-driven grouping strategy for indexing. Unlike Chapter
3, group representation and assignment we propose in this chapter is completely
data-driven.

• Chapter 6 changes our focus from efficiency to accuracy, as we explore a query
expansion method using the relationship between sets of images in the dataset.
We propose to apply an efficient manifold search technique to retrieve positive
images that were originally ranked in the bottom of the list.

• Chapter 7 extends our query expansion technique by making it more efficient
during the query time. While this increases the offline training time, our method
proposed in this chapter is up to 300 faster in query time than the one we proposed
in Chapter 6.

• Chapter 8 investigates the grouping of images for location recognition task. We
examine multiple aggregation techniques based on the location of images, includ-
ing memory vectors proposed in Chapter 3. We also compare location aggregation
against manifold search proposed in Chapter 6.
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Chapter 2

Background

This chapter is designed to give a brief background about instance-based image re-
trieval. In Section 2.1, we explain the basics of image representation for image retrieval,
including feature detection, representation and pooling for traditional hand-crafted de-
scriptors, and also more recent CNN-based learned feature representations. Then, we
discuss some of the existing image indexing techniques for image retrieval in Section 2.2,
such as space-partitioning and similarity estimation techniques. In Section 2.3, we give
a brief introduction to online query expansion.

2.1 Feature Representation and Pooling

This section talks about the existing work involving local feature detection, represen-
tation, and pooling. We first investigate the traditional part of the literature involving
hand-crafted local features, then move on the more recent research involving CNN-
based features. We use the terms pooling and aggregation interchangeably throughout
this section. Some parts of this section have been published in [ITGJ15].

2.1.1 Hand-crafted Features

Hand-crafted features refer to those that are detected, represented and pooled based on
certain fixed mathematical operations. Extracting such features from an image consists
of three steps. The detection step selects regions of interest, which are normalized into
fixed-size patches. The description step produces a vector representation for each of
the detected patches. While not mandatory, pooling step aggregates the set of vectors
extracted from an image into a single vector. We now describe the existing work for
each of the three steps.

7
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(a) Dense (b) Dense-IP (c) Zernike

(d) Dense ℓ2-norm (e) MSER-edge (f) SSR-edge

(g) fast-edge (h) DoG (i) MSER

(j) SSR (k) Harris (l) HesAff

Figure 2.1: Visualization of some of the local feature detection methods as shown in
Iscen et al. [ITGJ15]. For methods with predefined scales, we visualize the center of
points detected on the first scale (a)-(g), while for the ones that perform scale selection
we draw the corresponding ellipses or circles (h)-(l).
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2.1.1.1 Local Feature Detection

Typically, local interest points are tuned to detect image structures, such as corners
and blobs, highly distinctive and repeatable. They are rather designed to be appro-
priate for image matching applications. The standard evaluation metrics for such de-
tectors [MTS+05], e.g. repeatability, are designed to reflect sufficiency for matching
applications. One of the earlier exceptions is the work of Mikolajczyk et al. [MZS03]
where they focus on edges to represent objects. However, we are not necessarily inter-
ested in the repeatability of patches, but we discuss local features from the perspective
of the final application, image retrieval.

A related survey is the work of Nowak et al. [NJT06]. They are not interested in
the repeatability of patches, but directly measure classification accuracy. According to
them, detectors designed to obtain high repeatability perform the same as randomly
selected patches. They observe that performance is, up to some extent, an increasing
function of the number of points per image. Similarly, Avrithis and Rapantzikos [AR11]
do not restrict comparison to repeatability, but further compared image retrieval perfor-
mance, while considering the average number of points as a crucial parameter. Finally,
Iscen et al. [ITGJ15] compare sparse and dense interest detectors for image retrieval,
and propose a hybrid detection method.

We briefly describe existing methods for interest point detection or dense patch
sampling. In all those methods, a local descriptor is extracted from each region of
interest and an image is represented by a set of such descriptors. Figure 2.1 visualizes
some of the feature detectors used in computer vision.

Harris-Laplace detector. Harris detector localizes corners, based on the fact that
gradient values will change in multiple directions around a corner. It uses a scale
adapted version of the second moment matrix, known as Harris matrix [HS88]:

M = σ2
D · g(σI) ∗

[
L2

x(x, σD) LxLy(x, σD)
LxLy(x, σD) L2

y(x, σD)

]
, (2.1)

where σD is the differentiation scale, σI is the integration scale and Lz is the deriva-
tive computed in z direction. Differentiation scale σD is used to compute the local
derivatives with Gaussian kernels, and a Gaussian window with a size σI is used to
smooth and average the neighborhood around the point. The eigenvalues of this ma-
trix represent the gradient changes in two directions. Consequently, if one eigenvalue
is large while the other is small, there exists an edge, whereas if both eigenvalues are
large, there exists a corner. The interestingness of a point is captured by the cornerness
function, defined as cornerness = det(A) − αtrace2(A), where α is usually set to 0.05.

Extending Harris detector to be scale invariant, Mikolajczyk et al. [MS04] use
Laplacian-of-Gaussian (LoG) response and detect local extrema over multiple scales
to perform scale selection [Lin98]. This is the well known Harris-Laplace detector.
Only points with cornerness value higher than threshold τ are retained and final point
locations are chosen by a local maxima search procedure.
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Hessian-Affine detector [MTS+05], similar to Harris detector, detects image loca-
tions that have large derivatives in both directions. Point locations are selected as local
maxima of the Hessian matrix determinant, which now constitutes the interestingness
measure. The Hessian matrix is defined as

H =

[
Lxx(x, σD) Lxy(x, σD)
Lxy(x, σD) Lyy(x, σD)

]
, (2.2)

where Lzz is the second order partial derivative. All points with interestingness below
threshold τ are discarded. Although Hessian and Harris detectors are quite similar, the
detected points may be slightly different. In particular, unlike Harris, Hessian detector
tends to select locations with texture variations, in addition to corners.

The affine shape of the point is estimated by the eigenvalues of the second order
moment matrix M . An iterative procedure modifies the point’s location, scale and
shape until the estimated affine transform is able to map the detected region into one
that has equal eigenvalues of its second order moment matrix.

MSER Maximally Stable Extremal Regions were introduced by Matas et
al. [MCMP02] as a feature detector that tends to localize blobs. An extremal
region has all its intensity values greater (or less) than the outer region boundary
pixels. Then, a sequence of nested extremal regions is considered. Along this sequence
scale change between neighboring regions is estimated. Maximally stable are the local
minima of this quantity. In this fashion, nested regions are also likely to appear.
The detected regions can have very irregular shapes, therefore an ellipse is fitted to
detected regions in order to extract local descriptors. A parameter ∆ controls the
locality of the scale change computation.

Difference of Gaussians (DoG) was originally used for local feature detection by
Lowe [Low04]. DoG is an efficient way to approximate the Laplacian of Gaussian and
to detect edges at various image scales. A Gaussian kernel is used to create multiple
blurred versions of the image per octave. Simple subtraction of two consecutive blurred
images produces the DoG response. Interest points are located in the spatial-space as
local-maxima in a 3D search area of size 3.

Regular grid dense sampling. In contrast to interest points, dense sampling meth-
ods give less importance to high repeatability and try to provide a dense coverage of
the depicted objects. The most popular method is to sample points on a regular grid,
every δxy pixels. Depending on the application δxy can be really small, such as 3, or
quite larger, such as 16. In order to provide some scale tolerance, different scales are
considered by following the same procedure at nσ multiple scales of the image. All the
patches from different scales are pooled together in the end. A typical value for nσ

is 5, with 2 scales per octave. A significant improvement is achieved by filtering out
descriptors with low ℓ2-norm [GMJP14].
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Dense interest points were introduced by Tuytelaars [Tuy10] as a hybrid solution
to trade-off between sparse interest point detection and dense sampling. Instead of
selecting the center pixel of grid cell, as in regular dense sampling, they conduct local
search inside each cell over spatial and scale space. The point with maximum response
is kept per cell. Selected points are not necessarily local maxima. Since a single interest
point is selected from each cell, patches are very likely to be localized on smooth regions.
Moreover, quite a few patches are localized on the cell borders.

Zernike polynomials was introduced by Iscen et al. [ITGJ15] as another hybrid
solution between sparse and dense interest point detection. The authors propose to use
a bank of Zernike polynomials [Zer34] as detectors. Each pseudo-Zernike function is
used as a filter and this response constitutes the interestingness measure for detection
of point locations. Local maxima and local minima are detected for each filter inde-
pendently. Filter responses are ranked per filter, and point locations are selected until
each filter capacity is filled or until there are no more local extrema left. It is shown
that this method provides dense, yet localized image patches, and outperforms other
detection methods in image retrieval task.

2.1.1.2 Local Feature Representation

The SIFT descriptor [Low04] and its RootSIFT extension [AZ12b] have been shown
to perform very well for most applications. Many descriptors have been introduced
in the last years to improve the description speed or descriptor compactness, such as
SURF [BETG08], CHOG [CTC+09] or BRIEF [CLSF10]. The matching accuracy is
improved by learning the descriptor design [WB07, WHB09, SVZ14]. We will now
briefly describe SIFT and its extension RootSIFT.

SIFT, or Scale Invariant Feature Transform reduces each detected image patch into
a vector representation. The original SIFT detection algorithm [Low04] employs DoG
for interest point detection, and further applies additional steps to filter out points
belonging to edges or low-contrast regions. Nevertheless, SIFT can be used with any
of the feature detection techniques described in Section 2.1.1.1.

Given a detected image patch, SIFT first assigns an orientation to it. The goal
of this operation is to represent the detected image in a rotation-invariant manner.
We first calculate the gradient orientation of evenly sampled points from the detected
region. These values are quantized into a 36-bin histogram, evenly dividing the range of
360°orientation angles. Contribution of each sampled point to the orientation histogram
is weighted by its gradient magnitude. The orientation corresponding to the highest
peak of the orientation histogram is considered as the dominant orientation and is
assigned to the detected keypoint. In the case of multiple dominant orientations, local
peaks among the 80% of the highest peaks of the orientation histogram are assigned.
Multiple keypoints, one for each orientation, are created in that case.

The next step of the algorithm is to create a discriminative but illumination-
invariant feature descriptor for each detected region. A square region of 16 × 16 pixels
is taken around the detected keypoint. This is further divided into 16 subregions of
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4 × 4 pixels. Each sub-region contains an orientation histogram of 8 bins. After com-
puting 8-bin orientation histograms of each sub-region, the local feature representation
is obtained by concatenating them together, resulting in a 16 × 8 = 128 dimensional
feature descriptor. In practice, this vector is usually ℓ2-normalized for better matching
accuracy.

Traditionally, Euclidean distance was used to compare the similarity of two SIFT
features. However, since they are histograms, it is also possible to use other appropriate
distances or metrics. Arandjelović and Zisserman [AZ12b] show that with just a couple
of basic operations, it is possible to compute the Hellinger distance between two sets
of SIFT vectors. Given a SIFT vector, they (i) ℓ1-normalize it (ii) take the square root
of each element. They call the resulting descriptor RootSIFT. It is easily shown that
the Euclidean distance between two RootSIFT features is equivalent to the Hellinger
distance between two SIFT features. Assume that x and y are two different sets of
ℓ2-normalized SIFT descriptors. Their Euclidean distance is computed as

d(x,y) = ||x − y||2 = ||x||22 + ||y||22 − 2x⊤y = 2 − 2x⊤y. (2.3)

The Hellinger kernel for two ℓ1-normalized histograms x and y is defined as

H(x,y) =
n∑

i=1

√
xiyi, (2.4)

where n is the length of each histogram.
It then follows that the similarity between two RootSIFT features is

√
x

⊤√
y =

H(x,y). Hence, the Euclidean distance between two RootSIFT features is equivalent
to the Helinger distance between two SIFT features:

d(
√

x,
√

y) = ||√x − √
y||2 = ||x||22 + ||y||22 − 2

√
x

⊤√
y = 2 − 2H(x,y). (2.5)

2.1.1.3 Local Feature Pooling

Depending on the feature detection technique, each image may contain a set of hundreds
to thousands of SIFT vectors. When comparing the similarity of two images, one
possibility is to cross-match all SIFT vectors from both images. This involves computing
the cross-distance between thousands of vectors. The complexity grows as the square
of the number of vectors, making it inefficient for a practical image retrieval scenario.
One solution is to approximate cross-matching by aggregating a set of SIFT vectors
into a single global descriptor of higher dimensionality. In this section, we describe
some of the popular aggregation techniques in the literature.

Bag-of-Words models were originally developed for text understanding [SM83].
Given a document, the idea is to create an orderless representation in order to compare
it against other documents. This is done with the help of a dictionary, which is
assumed to contain all the possible words that may appear in a document. For
each document, we keep a histogram whose length is the size of the dictionary. We
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then simply count the frequencies of each word in the document and assign it its
corresponding bin in the histogram. As a result, the similarity comparison between
two documents is reduced to a histogram comparison.

A similar model is applied in computer vision and image retrieval [SZ03, CDF+04].
In that context, images are considered as documents, and local SIFT features are the
so-called “visual words”. One of the main differences is that, even though it is possible
to store a fixed dictionary which may correspond to all the words in a language for a
text application, this is not possible for computer vision. One cannot simply keep a
list of all possible SIFT vectors. In order to overcome this issue, the visual dictionary
is created with k-means clustering. This is part of the training process, where all SIFT
features from all training images are extracted and gathered together. Then, we cluster
these features into k clusters using the k-means algorithm [Llo82]. Resulting cluster
centers are considered as the entries of the visual dictionary, and are called visual words.
Given an image, each SIFT feature is assigned to the closest cluster center, and the
frequency of each visual word is recorded in a k-dimensional histogram, which is the
BoW representation of the image. Additionally, ℓ2-normalization and idf computation
are applied for better performance [SZ03].

Fisher vectors proposed by Perronnin et al. [PD07], is a more sophisticated aggre-
gation approach. The goal is similar to BoW: aggregation of many local SIFT features
into a single global descriptor. However, Fisher vectors usually require fewer visual
words (k) due to its complexity.

Fisher vectors is an approximation of the more general Fisher Kernel used for clas-
sification [JH98]. Contrary to the BoW-models, Fisher vectors models the visual word
space using a Gaussian mixture model (GMM), and not the k-means algorithm. GMM
parametrizes the SIFT feature space using the mean µi, covariance Σi and priors wi for
each visual word i = 1, ..., k. After the training of GMM, each image is encoded into a
Fisher vector using the following procedure.

Assume that x is the set of SIFT descriptors for an image. We first compute the
posterior probability between ith visual word and the jth SIFT feature

γij =
exp{−1

2(xj − µi)
⊤Σ−1

i (xj − µi)}
k∑

t=1
exp{−1

2(xj − µt)⊤Σ−1
i (xj − µt)}

. (2.6)

Compared to the basic BoW model which follows hard-assignment to cluster centers,
(2.6) acts as a soft assignment of xj to each visual word. Then, we compute the mean
and covariance deviation vectors with the following:

ui =
1

n
√
wi

n∑

j=1

γij(xj − µi) ⊙ 1

σi
, (2.7)

vi =
1

n
√

2wi

n∑

j=1

γij

{(
(xj − µi) ⊙ 1

σi

)◦2

− 1

}
, (2.8)
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where n is the number local SIFT features in the image. Note that, since we are
considering local SIFT features, all xj , ui, and vi have d = 128 dimensions. The final
representation for Fisher vectors is produced by concatenating (2.7) and (2.8) for each
component. In other words:

f = [. . .ui . . .vi . . . ]
⊤, (2.9)

for i = 1, ..., k components. Therefore, the final representational dimensionality of
Fisher Vectors is 2dk. Even though, the final dimensionality of f is much higher than
BoW for a given k, the complexity behind this method makes it possible to use it with
small k, giving relatively less overall dimensionality. In practice, ℓ2-normalization is
also applied to f .

VLAD or Vector of Locally Aggregated Descriptors [JDSP10], is another aggregation
method of local SIFT features. VLAD is based on the same idea as Fisher Vectors, as
it keeps statistics about relationship between visual words and local SIFT features in
addition to computing frequencies of each visual word. Contrary to the Fisher Vectors,
VLAD follows a simpler aggregation technique which does not require storing second-
order statistics. It can be considered as a more efficient variant of Fisher Vectors.

We first learn a dictionary of visual words using the k-means algorithm. Dictionary
entries (visual words) are cluster centers. For each image, we first find the closest visual
word for local SIFT features. Instead of just storing the frequency, we accumulate
residual between each visual word and the local SIFT features assigned to it:

ri =
∑

j s.t. NN(xj)=ci

xj − ci, (2.10)

where ci is the ith visual word. The final global representation is created by concate-
nating ri

f = [r⊤
1 . . . r

⊤
i . . . r

⊤
k ]⊤. (2.11)

Similarly to BoW and Fisher Vectors, ℓ2-normalization is applied in the end. The
overall dimensionality of f is dk, which is twice as less compared to Fisher Vectors.

GMP , or General Max Pooling [MP14], is a pooling technique designed to solve
the burstiness problem. In some cases, images have frequently-occurring visual pat-
terns that are not discriminative. These may be patches extracted from background,
grass, sky or other uninformative regions. If we think of aforementioned pooling
techniques (BoW, Fisher Vectors, VLAD) as some kind of sum-pooling, local SIFT
features corresponding to such frequently-occurring patterns dominate the final rep-
resentation due to their frequency. Max-pooling can simply be applied instead of
sum-pooling [BPL10], but this not compatible with higher-order statistical representa-
tions such as Fisher vectors, because it treats each dimension independently. Several
other heuristic approaches attempted to solve the burstiness problem through different
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normalization schemes [JDS09, TSPO13a, AZ13, DGJP13], such as power normaliza-
tion [PSL10, PJM10, JPD+12]. Jégou and Zisserman [JZ14] also propose a similar
aggregation method to GMP, where the weights are solved in a different manner.

Murray and Perronnin propose GMP [MP14], which attempts to mimic max-pooling
while being compatible with global representations such as Fisher Vectors. Their goal
is to create a pooling operator, which preserves the similarity between rarely-occuring
features. Let X = [x1, . . . ,xn] be a d × n matrix containing n local features. GMP
wants to preserve the matching similarity between the final representation f and xj ,
s.t. x⊤

j f = 1 for all j. In matrix form, this is written as:

X⊤f = 1n. (2.12)

The optimal solution with the minimal ℓ2-norm is found after solving the least-
squares regression problem

f⋆ = arg min
f

||X⊤f − 1n||2. (2.13)

There also exists a closed-form solution, which is solved with Moore-Penrose pseudo-
inverse [RM72] denoted by +:

f⋆ = (X⊤)+1n = (XX⊤)+X1n. (2.14)

The authors also propose a regularized version of this solution with parameter λ .
This is also known as ridge regression or Tikhonov regularization in the literature:

f⋆
λ = (XX⊤ + λI)+X1n, (2.15)

where I is the identity matrix of size n. Note that we have max-pooling when λ = 0
and sum pooling as λ → ∞.

2.1.2 CNN-based Features

CNN-based global descriptors are becoming popular in image retrieval, especially for
instance-level search. Existing works [BL15, RSCM16, KMO15, TSJ16] employ “off-
the-shelf” networks, originally trained on ImageNet, to extract descriptors via various
pooling strategies. The invariance is partially designed by global max [ARS+14, TSJ16]
or sum [KMO15, BL15] pooling layers or multi-scale querying [GARL16b], and partially
learned by the choice of the training data. Robustness to background clutter is improved
by computing descriptors over object proposals [MB15, GARL16a, XHZT15] or over
a fixed grid of regions [TSJ16]. Better performance is observed at a cost of increased
memory footprint [RSCM16].

Other approaches [BSCL14, RTC16, GARL16a] fine-tune such networks
to obtain descriptor representations specifically adapted for instance search.
NetVLAD [AGT+16] trains a VLAD layer on top of convolutional layers in an
end-to-end manner. It is tuned for the location recognition task. The training
images are obtained from panoramas, fed to a triplet loss to make it more compatible
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(a) L = 1 (b) L = 2 (c) L = 3

Figure 2.2: Visualization of sample square regions for R-MAC in the first 3 scales. The
top-left region of each scale is shown in grey, and its neighbors are shown with dashed
lines. Figure is taken from [TSJ16] with the permission of the corresponding author.

with image retrieval. As a result, their representation outperforms existing works in
standard location recognition benchmarks.

In this section, we describe the MAC and R-MAC pooling methods [TSJ16]
which are also used in the state-of-the-art image retrieval fine-tuned networks
[RTC16, GARL16a]. MAC (Maximum activation of convolutions) acts on the output
of an existing fully-convolutional network, such as VGG [SZ14] or ResNet [XHZT15], to
create a representation for the entire image. We discard the fully connected layers and
rather operate on the 3D output tensor of the convolutional layers. Assume that the
output tensor X has k feature maps. Each feature map Xi, s.t. i = 1, . . . , k, contains
a set of W × H activations obtained from the network. MAC image representation is
then created by max-pooling over all dimensions per feature map:

f = [f1 . . . fi . . . fk]⊤, s.t. fi = max
x∈Xi

x · ✶(x > 0), (2.16)

where ✶ is the indicator function which only fires for non-negative values. The dimen-
sionality of the representation is equal to the number of feature maps.

R-MAC (Regional Maximum Activation of Convolutions) is a variant of MAC, which
also considers the location of the activations in the representation. Given W ×H × k
dimensional activation map X , idea is to uniformly sample square regions from the
W × H grid. The sampling is done on L different scales. At the first scale l = 1, the
size of the square is as large as possible, s.t. the height and the weight is min(W,H).
Regions are then sampled such that the overlap between them is 40%. At each scale l,
regions of width 2min(W,H)/(l + 1) are sampled. Finally, all region vectors are sum-
aggregated , ℓ2-normalized, applied PCA-whitening [JC12], and ℓ2-normalized again.
This gives a d = k dimensional final global representation of the image.
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Figure 2.3: Group testing was first introduced in World War II by the American army.
Due to many injuries American army required all of its soldiers to make blood donations.
However, a small fraction of soldiers were infected with syphilis, and it was too expensive
to exhaustively search everyone one by one. So they decided to pool blood samples into
mixtures, and if a mixture was found positive, then the blood samples were individually
tested. Figure taken from Shi et al. [SFJ14].

2.2 Image Indexing and Similarity Estimation

Image retrieval aims to find the images in a large scale dataset that are most similar to a
given query image. Recent approaches create a global descriptor vector for each image.
Visual similarity is then quantified by measuring the similarity of these vectors (e.g.,
cosine similarity). If the dataset has N images each represented by a d-dimensional
feature vector, then an exhaustive search for each query requires dN operations.

A common approach to accelerate image search is space-partitioning indexing, which
operates in sub-linear time [ML14]. Indexing partitions the feature space R

d into clus-
ters and computes similarities between the query and dataset vectors that fall in the
same or neighboring clusters. Yet, as the dimension d grows, the chance that similar
images are assigned to different clusters increases, and the efficiency of these meth-
ods collapses due to curse of dimensionality [WSB98, ML14]. This is problematic in
computer vision since most state-of-the-art image descriptors have high intrinsic di-
mensionality.

Another popular approach for efficient image search performs a linear scan over
the dataset, computing approximate similarities using compact codes [Cha02, AZ14a,
WTF09, DCL08, JDS11, BL12]. These techniques have a complexity of d′N where
d′ < d is the reduced dimensionality of the compact code. The similarity between
vectors in R

d is approximated by the distance between their compact codes. State-of-
the-art large scale search algorithms combine indexing strategies with approximated
similarities [JDS11]. In other words, these works trade complexity for memory.

In this section, we briefly describe some of the existing indexing methods in image
retrieval.
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2.2.1 Space Partitioning

Similarity search for image retrieval often boils down to running a k-nearest neighbor
process. Assume that the dataset X is composed of N d-dimensional vectors {xi}N

i=1

such that ‖xi‖ = 1, ∀1 ≤ i ≤ N . The similarity between the query q and the vector xi

can be measured with the scalar product q⊤xi when all vectors are unit normalized.
FLANN (Fast Library for Approximate Nearest Neighbors) is a well-known approx-

imate similarity search framework and an example of space partitioning. It quantizes
the feature space based on the geometrical positions of the data vectors. The authors
propose two methods for quantization: the randomized k-d tree algorithm and the
priority search k-means tree algorithm.

In the classic k-d tree algorithm [FBF77], the split dimension is chosen as the
dimension with the highest variance. FLANN’s randomized k-d tree algorithm creates
the tree similarly, with the split dimension chosen randomly from the top D dimensions
with the highest variance. This allows for the creation of multiple k-d trees, which helps
the performance.

The second alternative of the framework, the priority search k-means tree algorithm,
quantizes the data using the distance across all dimensions instead of single dimension
at a time. This is done by clustering the data points in K clusters in each level
hierarchically, until the number of points in a cluster is less than K.

Even though it is a state-of-art library, FLANN does not perform well for truly
high-dimensional data, as acknowledged by its authors [ML14]. Effectiveness of FLANN
decreases when indexing such high-dimensional descriptors. It is only possible to return
high-quality results at the expense of a dramatic increase in the response time. This
is caused by FLANN performing a very large number of checks to eventually gather
enough good neighbors. This problem is not specific to FLANN but caused by the
curse of dimensionality whose effects are mitigated with extensive multiprobing.

2.2.2 Distance Approximation

LSH [Cha02], or Locality-sensitive hashing, is a well-known distance approximation
technique. It is used to create compact binary embedding from continuous feature de-
scriptors. Fast search often uses binary embedding for two reasons. It offers a compact
representation of the vectors and SSE instructions computes Hamming distances much
faster then Euclidean distance or cosine similarity.

An embedding casts a vector x ∈ R
d into a vector of D discrete components.

e : Rd → AD (2.17)

x → e(x) := (e(x)1, · · · , e(x)D)

This function is designed to provide i) a compact representation of vectors, and ii)
an estimation of the similarity s(q,x) between two vectors from their embeddings:
se(e(q), e(x)). Function se(·, ·) is faster to compute than s(·, ·).

LSH [Cha02] uses binary embeddings where A = {0, 1}. In a nutshell, once D
directions {uk}D

k=1 have been randomly drawn i.i.d. uniformly in hypersphere S
d, the
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k-th symbol of the embedding is computed as follows:

e(x)k := sign(x⊤uk),∀k ∈ [D], (2.18)

with sign(x) := 1 if x ≥ 0, and 0 otherwise. LSH has the following well-known property:

x⊤q

‖x‖‖q‖ ≈ cos

(
π

D
dH(e(q), e(x))

)
. (2.19)

The cosine is estimated via the Hamming distance dH(·, ·).
Many extensions of LSH exist, including spectral-hashing [WTF09] or shift-invariant

kernels [RL10]. More recent approach, Product Quantization [JDS11], uses a non-
binary finite alphabet to quantize each vector using its subspace indices.

2.2.3 Group Testing

Group testing has been used in other computer science fields in the past to solve typical
‘needles in a haystack’ problems. It did not receive attention in the image retrieval
community until the pioneering work of Shi et al. [SFJ14]. Here the goal is to reduce
the number of vectors against which the query is compared. The full dataset of N
vectors is first summarized by M ≪ N group vectors, where each group vector is also
d-dimensional. As the name suggests, each group vector represents a small subset of
images in the original dataset. These groups are composed randomly with or without
overlapping. Computation of the group vectors is performed offline under a specific
construction such that a comparison group vector vs query vector measures how likely
the group contains query matching vectors. Then, when presented with a query, the
system compares the query with the group vectors instead of individual image vectors.
This reduces the complexity from dN to dM .

Initial attempts [SFJ14] considered an adaptive group testing approach. M groups
are composed from the dataset, and querying proceeds in two stages. In the first stage,
the scores between group vectors and the query are computed. They measure how
likely their group contains some matching images. Then, in the second stage, the query
is compared with individual image vectors for only the most likely positive groups. If
the groups are roughly balanced in size and the query only matches a small number
of group vectors, then the complexity is reduced from dN to d(M +N/M). Although
this results in efficient image retrieval, it has one major drawback: memory usage is
increased since the group vectors and mapping from images to groups are stored in
addition to the dataset feature vectors.

Shi et al. [SFJ14] randomly assigns each feature to m multiple groups, and each
group consists of n vectors. This gives M groups in total, such that

M =
mN

n
. (2.20)

The representative vector for each group is simply the sum of features belonging to
that group. More precisely, let [xi]Mj

be the d × n matrix storing the features of jth
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group, then the representative vector {yj}M
j=1 is computed as:

yj =
∑

xi∈Mj

xi. (2.21)

At search time, the query is compared to all the representative vectors. Assume
that Y ∈ R

d×M is the matrix containing the representative vectors in each column.
Then, M group similarities for a given query q are calculated as:

v = [v1, ..., vM ]⊤ = Y⊤q. (2.22)

The group similarity vj is seen as a test output roughly indicating whether or not the
query is matching one of the features of the j-th group. This step has a complexity in
O(Md).

The score ui reveals how likely feature i matches the query. It is simply the sum of
the group similarities it belongs to:

ui =
∑

j∈Li

vj , (2.23)

where Li is the set of groups where the i-th feature is stored. This step has a complexity
in O(NM).

Finally, a shortlist of size R << N is created based on the top scores of u, and a
verification step reranks these candidate features based on their true similarities with
the query. This final step has a complexity in O(Rd).

2.3 Query Expansion

Online query expansion techniques are used to re-rank a ranked list of images after the
initial search. A variety of methods [CPS+07, CMPM11, TJ14] employ local features
and are well adapted to the Bag-of-Words model [SZ03]. Others are generic and applica-
ble on any global image representation [JHS07, QGB+11, AZ12b, SLBW14, DJAH14].
In both cases, ranking is performed on the image level.

2.3.1 Average Query Expansion

In average query expansion [CPS+07], Chum et al. construct a new query from the top
ranked images returned from the original query. Assume that q is the original query
vector. We search the dataset of image using q, i.e. similarity search, and retrieve top
m ranked images. Then a new query is formed based on the average:

qavg =
1

m+ 1

(
q +

m∑

i=1

xi

)
, (2.24)

where xi is the ith returned dataset image. This simple process is shown to improve
the accuracy of the image search for recent CNN-based representations as well [RTC16,
GARL16a].
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A similar approach called database-side feature augmentation [TL09, AZ12b], ap-
plies a similar process offline to the dataset image representations. Nearest m neighbors
for each dataset image is found, and each image represented by the sum-aggregation of
its own representation and its neighbors’ representations. Furthermore, weighting can
be applied during the sum-aggregation, where weight(r) = m−r

m is the weight for the
rth ranked neighbor.

2.3.2 Manifold Search

In this section, we focus on a different query expansion method based on
manifold search, which propagates similarities through a pairwise affinity ma-
trix [DB13, PBMW99]. Manifold-based techniques are applied to many computer
vision problems, such as semi-supervised classification [ZBL+03], seeded image seg-
mentation [Gra06], saliency detection [LMV14, CZHZ16], clustering [Don13] and image
retrieval [JB08, EKG10, YKTL09, DB13, XTZZ14]. It is also used for the retrieval
of general scenes or shapes of particular objects [JB08, EKG10, YKTL09, DB13].
Additionally, it can also fuse multiple feature modalities [ZYC+12, YMD15] by jointly
modeling them on the same graph.

The power of such methods lies in capturing the intrinsic manifold structure of the
data [ZBL+03]. The popular PageRank algorithm [PBMW99] was originally used to
estimate the importance of web pages by exploiting their links in a graph structure.
Our retrieval scenario comes closer to its so called personalized [PBMW99] or query
dependent versions [RD01], where the final ranking both respects the data manifold
and the similarity to a number of query vectors. Donoser and Bischof [DB13] review
a number of diffusion mechanisms for retrieval. Note that the term diffusion which
they use is only weakly related to continuous time diffusion process or random walks
on graph. We mainly follow Zhou et al. [ZWG+03] below.

2.3.2.1 Affinity matrix

Given a dataset X := {x1, . . . ,xn} ⊂ R
d, we define the affinity matrix A = (aij) ∈ R

n×n

having as elements the pairwise similarities between points of X :

aij := s(xi,xj), ∀(i, j) ∈ [n]2, (2.25)

where [n] := {1, . . . , n} and s : Rd × R
d → R is a similarity measure assumed to be

symmetric (A = A⊤), positive (A > 0), and with zero self-similarities (diag(A) = 0).
Matrix A is the adjacency matrix of a weighted undirected graph G with vertices

X . The degree matrix of the graph is D := diag(A1n), i.e. a diagonal matrix with the
row-wise sum of A. The Laplacian of the graph is defined as L := D − A. It is usual
to symmetrically normalize these matrices, for instance,

S := D−1/2AD−1/2, (2.26)

for the affinity matrix and L := In −S for the Laplacian, where In denotes the identity
matrix of size n. Matrices L,L are positive-semidefinite [Chu97].
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Figure 2.4: An example visualization of searching in manifolds. The dataset is searched
with the original query (red), and its nearest neighbors (green) are returned. Manifold
search then expands the ranked list so that the other dataset instances that lie on the
same manifold are also returned.
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2.3.2.2 Searching on manifolds

In the work of Zhou et al. [ZWG+03], a vector y = (yi) ∈ R
n specifies a set of query

points in X , with yi = 1 if xi is a query and yi = 0 otherwise. The objective is to
obtain a ranking score ui for each point xi ∈ X , represented as vector u = (ui) ∈ R

n.

We focus on a particular diffusion mechanism that, given an initial vector u0, iter-
ates according to

ut = αSut−1 + (1 − α)y. (2.27)

If S is a transition matrix and y an ℓ1 unit vector, this defines the following ‘random
walk’ on the graph: with probability α one jumps to an adjacent vertex according to
distribution stated in S, and with 1 −α to a query point uniformly at random. In this
fashion, points spread their ranking score to their neighbors in the graph. The benefit is
the ability to capture the intrinsic manifold structure represented by the affinity matrix
and to combine multiple query points.

Assuming 0 < α < 1, Zhou et al. [ZBL+03, ZWG+03] show that sequence {ut}
defined by (2.27) converges to

u⋆ = (1 − α)L−1
α y (2.28)

where Lα := In − αS is positive-definite, since Lα = αL + (1 − α)In ≻ αL � 0.

2.3.2.3 Relation to other domains

A diffusion mechanism also appears in seeded image segmentation [Gra06], where query
points correspond to labeled pixels (seeds) and database points to the remaining un-
labeled pixels. This problem is equivalent to semi-supervised classification [ZBL+03].
In our context, the approach of Grady [Gra06] decomposes u = (u⊤

d ,u
⊤
q )⊤ for the

scores of the query (fixed uq) and database (unknown ud) points. Diffusion interpo-
lates ud from uq by minimizing, w.r.t. ud, the quadratic cost

∑
i,j aij(ui − uj)2 =

u⊤Lu to enforce that neighboring points should have similar scores. By decomposing
L = [Ld, −Sqd; −S⊤

qd, Lq], it is shown [Gra06] that the solution fulfills Ldud = y with

y = S⊤
qduq. In our setup, Ld would be singular, preventing us to single out a solution

u⋆
d. Yet, it is easy to show that the minimizer of the cost αu⊤Lu + (1 − α)‖u‖2 has a

similar expression to (2.28). The regularization term singles out a solution by forcing
u to be zero in subgraphs not connected to any query point.

2.3.2.4 Local constraints

To handle noise and outliers, a locally constrained random walk [KDB09] is adopted,
where only pairs of points that are reciprocal (mutual) nearest neighbors are kept as
edges in the graph. In particular, given z ∈ R

d, let

sk(x|z) =

{
s(x, z), if x ∈ NNk(z)

0, otherwise
(2.29)
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be the similarity of x ∈ X given z, that is, restricted to the k nearest neighbors NNk(z)
of z in X . Then,

sk(x, z) = min{sk(x|z), sk(z|x)} (2.30)

equals s(x, z) if x, z are the k-nearest neighbors of each other in X , and zero otherwise.
Such similarity function is used to construct affinity matrix A like in (2.25).

2.4 Conclusion

This chapter provides an overview on certain aspects of image retrieval which will be
discussed in this manuscript. In Section 2.1, we gave a brief overview of image descrip-
tion for instance-based image retrieval. The goal of this section is to provide a basic
summary of some of the feature descriptors that will be used in the remainder of this
manuscript. The first half of this manuscript is concerned about the indexing problem
(as explained in Sec. 2.2), where we will build on existing group testing approaches, in
terms of representation and assignment. We will then turn our attention to query ex-
pansion (as explained in Sec. 2.3) in Chapters 6 and 7, and propose efficient extensions
to existing manifold search techniques, such as querying multiple vectors at once and
using faster solutions in the query time instead of random walks.



Chapter 3

Memory Vectors for Indexing

In this chapter, we consider the problem of searching for vectors similar to a query
vector in a large database. The typical applications are the search and exploration
in Big Media Data where documents are represented by feature vectors [WQSA15].
In this context, many papers report how the curse of dimensionality (due to the size
of the vectors) makes indexing techniques ineffective [WSB98, ML14]. The recent
paper [ML14] describing and analyzing the popular FLANN method experimentally
observes that even this state-of-the-art method performs poorly on synthetic high-
dimensional vectors, and the authors conclude that “random datasets are one of the
most difficult problems for nearest neighbor search”.

Some strategies have been proposed to (partly) overcome this problem. For in-
stance, the vector approximation file [WSB98] first relies on exhaustive search with
approximate measurements and then computes the exact similarities only for a subset
of vectors deemed of interest. The cosine sketch [Cha02] approximates cosine similarity
with faster Hamming distance. Other works like spectral hashing [WTF09], Euclidean
sketches [DCL08], product quantization [JDS11] and inverted multi-index [BL12] also
rely on compact codes to speed up neighbor search while compressing the data. An
interesting strategy is the Set Compression Tree [AZ14a], which uses a structure similar
to a k-d tree to compress a set of vectors into an extremely compact representation.
Again, this method is dedicated to small dimensional vectors (its authors recommend
the dimension be smaller than log2(N) where N is the size of the database) so that it is
used in conjunction with a drastic dimension reduction via PCA to work with classical
computer vision descriptors.

The main contribution of this chapter is a similarity search approach specifically
adapted to high-dimensional vectors such as those recently introduced in computer vi-
sion to represent images [PD07, JDSP10]. The proposed indexing architecture consists
of memory units, each of which is associated with several database vectors. A repre-
sentative, called a memory vector, is produced for each memory unit and defined such
that one can quickly and reliably infer whether or not at least one similar vector is

25
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stored in this unit by computing a single inner product with a new query.

Our approach is similar to the descriptor pooling problem in computer vision,
but at a higher level. Many successful descriptors, such as BOV [CDF+04, SZ03],
VLAD [JDSP10], FV [PD07], and EMK [BS09], encode and aggregate a set of local
features into global representations. Yet, the new representation has a larger dimen-
sion than the local features. We use a similar approach at a higher-level: instead of
aggregating local features into one global image representation, we aggregate global
representations into group representations, so called memory vectors. These have no
semantical meaning. Their purpose is to allow efficient search. Another difference is
that we keep the same ambient dimension.

A second contribution of this chapter is to study similarity search from the perspec-
tive of statistical signal processing and decision theory. Our analysis provides insight
into when and why the proposed approach provides low complexity (fast response time)
without sacrificing accuracy. A third contribution is the experimental work using com-
puter vision Big Media datasets as large as 100 million images. Our results suggest
that the approach we propose can achieve accuracy comparable to state-of-the-art while
providing results 5–10× faster.

This chapter is organized is as follows. Section 3.1 gives a formal problem state-
ment. Section 3.2 focuses on the design of a single memory vector. We formalize the
similarity of a query with the vectors of one memory unit as a hypothesis test. We de-
rive the optimal representative vector under some design constraints and show how to
compute it in an online manner. Section 3.3 proposes and analyzes two different ways
to assign database vectors to memory units: random assignment and weakly supervised
assignment which packs similar vectors into memory units. We provide a theoretical
and experimental analysis of the different design and assignment strategies. Section 3.4
presents the results of experiments that evaluate our approach on standard benchmarks
for image search. We use descriptors (vectors describing images) extracted with the
most recent state-of-the-art algorithm in computer vision [JZ14]. Our results show the
potential of our approach for this application. The contents of this chapter have been
published in [Iscen et al., 2017b].

3.1 Problem Formulation

Let X = {x1, . . . ,xn} denote a collection of d-dimensional vectors. We assume that all
vectors are normalized so that ‖xi‖2

2 = 1 for all i = 1, . . . , n.

Given a query vector y ∈ R
d with ‖y‖2

2 = 1, our objective is to determine which
vectors xi ∈ X are most similar to y. Determining which images would be “most
similar” to a human is subjective and not easily quantified. The real image datasets
used in the experiments we report in Section 3.4 include a set of queries and the corre-
sponding human-determined response sets, which are treated as ground truth for those
experiments. While humans can provide result sets for individual queries, generalizing
to produce result sets for never-seen-before queries is still an open problem.

More generally, when such a ground truth is not given to measure performance,
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since all vectors lie on the unit sphere, we measure similarity using the inner product
xi

⊤y. Then the problem of determining the most similar vectors to the query can be
stated more precisely as: given α0 > 0, find all vectors xi ∈ X such that xi

⊤y ≥ α0.
The accuracy of a technique can be measured in terms of its precision and recall.

Clearly a naive baseline approach to this problem would compute all n inner-
products xi

⊤y. Although it may provide perfect accuracy, this approach would have
computational complexity (strongly related to run-time) of O(nd) operations. This is
generally unacceptable when n and/or d are large, and we aim to obtain high accuracy
while reducing the complexity.

3.2 Memory Vectors

Given a memory unit X = {x1, . . . ,xn} ⊂ R
d, our objective in this section is to produce

a representative, a so-called memory vector, such that, given a query vector y regarded
as a random variable, we can efficiently perform a “similarity” test answering: is y a
quasi-copy of, or similar to, at least one of the vectors of the memory unit?

For the sake of analysis, this section assumes that the vectors xi are independent
and identically distributed samples from a uniform distribution on the d-dimensional
unit hypersphere. We model the query as a random vector y distributed according to
one of the two laws:

• Hypothesis H0: y is not related to any vector in X . y is then uniformly distributed
on the unit hypersphere.

• Hypothesis H1: y is related to one vector in X , say x1 without loss of generality.
We write this relationship as y = αx1+βZ, where Z is a random vector orthogonal
to x1 and ‖Z‖ = 1. This means that y is more similar to x1 as α gets closer to
1. We have α2 + β2 = 1 because ‖y‖ = 1.

We look for a representation scheme satisfying the following design constraints.
First, the set of vectors X is summarized by a single vector of the same dimension,
m(X ) ∈ R

d, called the memory vector and denoted by m when not ambiguous. Second,
the potential membership of query y to X is tested by thresholding the inner product
m⊤y.

3.2.1 Sum-memory Vector: Analysis

A very simple way to define the memory vector is

m(X ) =
∑

x∈X
x, (3.1)

where we assume that X is composed of n different vectors. Albeit naive, this strategy
offers some insights when considering high-dimensional spaces.

Iscen et al. [IFG+17] derive the pdf of the score m⊤y under H0 when m is a known
vector. This score has expectation 0 and variance ‖m‖2/d, and it is asymptotically
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distributed as N (0, ‖m‖2/d) as d → ∞. This gives an approximate pdf of m⊤y under
H0. In contrast, under H1, the inner product equals

m⊤y = α+ αm(X ′)⊤
x1 + βm(X ′)⊤

Z, (3.2)

with X ′ = X −{x1}. This shows two sources of randomness: the interference of x1 with
the other vectors in X and with the noise vector Z. Assuming that y is statistically
independent of the vectors in X ′ (this implies that the vectors of X are mutually
independent), we have

Ey[m⊤y|H1] = α,

V[m⊤y|H1] = ‖m(X ′)‖2/d. (3.3)

Assuming that X is composed of n < d statistically independent vectors on the unit
hypersphere also gives EX [‖m(X )‖2] = n and EX ′ [‖m(X ′)‖2] = n− 1. To summarize,
for large d, we expect the following distributions:

H0 : m⊤y ∼ N (0, n/d), (3.4)

H1 : m⊤y ∼ N (α, (n− 1)/d). (3.5)

Making a hard decision by comparing the inner product to a threshold τ , the error
probabilities (false positive and false negative rates) are given by

Pfp ≈1 − Φ

(
τ
√
d/n

)
(3.6)

Pfn ≈Φ

(
(τ − α)

√
d/(n− 1)

)
, (3.7)

where Φ(x) = 1√
2π

∫ x

−∞
e

− t2/2dt.

The number of elements one can store in a sum-memory vector is linear with the
dimension of the space when vectors are drawn uniformly on the unit hypersphere.
This construction is therefore useful for high-dimensional vectors only, as opposed to
traditional indexing techniques that work best in low-dimensional spaces.

If the vectors were pair-wise orthogonal, the dominant source of randomness (the
interference between x1 and vectors of X ′) is cancelled in (3.2). The variance under H1

reduces to β2(n− 1)/d. This prevents any false negative if β → 0. We further exploit
this intuition that orthogonality helps in the next section.

3.2.2 Optimization of the Hypothesis Test per Unit

We next consider optimizing the construction of the memory vector of a given set X .
Denote the d × n matrix X = [x1, . . . ,xn]. We impose that, for all i, xi

⊤m(X ) = 1
exactly and not only in expectation, as assumed above. In other words, X⊤m = 1n

where 1n is the length-n vector with all entries equal to 1. Achieving this, when y = x1,
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we eliminate the interference with the remaining vectors in X ′ which was previously
the dominant source of noise. In other words, under H1, Eq. (3.2) becomes

m⊤y = α+ βm⊤Z. (3.8)

Under H0, the variance of the score remains ‖m‖2/d. Therefore, the norm of the
memory vector is the key quantity determining the false positive probability.

We thus seek the representation m minimizing the energy ‖m‖2 subject to the
constraint that X⊤m = 1n. If multiple solutions exist, the minimal norm solution is
given by the Moore-Penrose pseudo-inverse [RM72]:

m⋆ = (X+)⊤1n. (3.9)

Since n < d, m⋆ = X(X⊤X)−11n. If no solution exists, m⋆ is a minimizer of ‖X⊤m −
1n‖. This formulation amounts to treating the representation of a memory unit as a
linear regression problem [B+06] with the objective of minimizing over m the quantity
‖X⊤m−1n‖2. Taking the gradient, setting it equal to zero, and solving for m gives back
m⋆. When possible, and for large d, this new construction leads to the distributions:

H0 : m⋆⊤y ∼ N (0, ‖m⋆‖2/d) (3.10)

H1 : m⋆⊤y ∼ N (α, β2‖m⋆‖2/d). (3.11)

The major improvement comes from the reduction of the variance under H1 for small
values of β2, i.e., α . 1. Iscen et al. [IFG+17] show that if the vectors of X are
uniformly distributed then ‖m⋆‖2 is larger in expectation than the square norm of the
naive sum representation from Section 3.2.1. The reduction of the variance under H1

comes at the price of an increase of the variance under H0. However, this increase is
small if n/d remains small. For large d, we have

Pfp ≈1 − Φ


τ

√
d

n
− 1


 , (3.12)

Pfn ≈Φ


τ − α

β

√
d

n
− 1


 . (3.13)

Note that β =
√

1 − α2 is a decreasing function of α. Therefore, if τ < α, Pfn is
a decreasing function of α. In particular Pfn → 0 when α → 1 as claimed above. In
contrast to the naive sum approach from Section 3.2.1, there is no longer false negative
when the query y is exactly one of the vectors in X . This holds for any value of τ < 1
when α = 1, so that the false positive rate can be as low as 1 − Φ(

√
d/n− 1).

Remark. This solution is identical (up to a regularization) to the “generalized max-
pooling” method introduced to aggregate local image descriptors [MP14]. However
in our case the aggregation is performed on the database side only. Our solution is
moreover theoretically grounded by a hypothesis test interpretation.
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Figure 3.1: Ratio of the global cost by the cost of the exhaustive search CH0
/N as a

function of n using random assignment on synthetic data. Setup: d = 1000, ǫ = 10−2.
The different curves correspond to values of α0 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Red and blue
lines correspond to sum and pinv constructions respectively. Darker shades correspond
to higher α0.

3.2.3 Weakly Supervised Assignment

We now analyze a scenario where the vectors packed in the same memory unit are
random but no longer uniformly distributed over the hypersphere: There is some cor-
relation among them. The vectors in a memory unit are now uniformly distributed over
a spherical cap [IFG+17]. This models the effect of a pre-processing which analyses
the database vectors in order to assign similar vectors to memory units. For instance,
Section 3.3.1 uses the k-means algorithm to process batches of database vectors.

We derive the same analysis as in the previous subsection with expectations and
variances which now depend on the angle of the spherical cap. These expressions
are complex and their derivation is detailed in [IFG+17]. In summary, the Kullback-
Leibler distance between the distributions of m⊤y under both hypotheses increases
as the spherical cap gets narrow. In other words, identifying the positive memory
units becomes easier when we assign correlated vectors to the same memory unit.
Interestingly, this mechanism helps the sum construction more than pinv, so that when
the vectors are very correlated, both constructions indeed perform equivalently.

3.3 Experimental Investigation

We next consider application scenarios where we need to store a large number N of
vectors and perform similarity search. One memory vector is not sufficient to achieve
a reliable test. We therefore consider an architecture that consists of M memory
vectors. The search strategy is as follows. A given query vector is compared with all
the memory vectors. Then we compare the query with the vectors stored in the memory
units associated with the high responses, i.e., those likely to contain a similar vector.
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3.3.1 Experimental Setup

Our experimental investigations are carried out using synthetic data (vectors uniformly
distributed over the hypersphere) as well as real data, which are described in this
section.

Datasets. We use the Inria Holidays [JDS08], Oxford5k [PCI+07], and UKB [NS06]
image datasets in our experiments. Additionally, we conduct large scale experiments
in Holidays+Flickr1M, which is created by adding images from the Flickr1M [PCI+07]
dataset to the Holidays dataset. Similarly we use the recently introduced Yahoo100M
dataset [TSF+16] to increase the dataset size.

Descriptors. We use the triangular embedding descriptor [JZ14], denoted by φ∆.
The only difference is that we do not apply the “powerlaw normalization” to better
illustrate the benefit of the pinv technique for the memory vector construction compared
to the sum (when applying the powerlaw normalization, both designs perform equally
well since the vectors are nearly orthogonal). Ultimately, we have d = 8064 (or d =
1920) dimensional feature vectors for each image, obtained by using a vocabulary of size
64 (resp. 16). For large experiments in Yahoo100M, we use d = 1024 VLAD descriptors
as extracted by [SXPK+14].

We also experiment using deep learning features (d = 4096) provided by Babenko et
al. [BSCL14]. As explained in their paper, the performance for the UKB dataset drops
with adapted features trained on the Landmarks dataset. Therefore, we use the original
neural codes trained on ILSVRC for the UKB dataset, and the adapted features for
Holidays and Oxford5k.

3.3.2 Random Assignment

We suppose that the N vectors in the database are randomly grouped into M units of
n vectors: N = nM . We aim at finding the best value for n. When the query is related
to the database (i.e., under H1), we make the following assumption: α0 < α < 1, and
we fix the following requirement: Pfn < ǫ < 1/2. Since Pfn is a decreasing function of
α, we need to ensure that Pfn(α0) = ǫ. This gives us the threshold τ :

τ = µH1
+ σH1

Φ−1(ǫ), (3.14)

with µH1
and σH1

being the expectation and the standard deviation of mj
⊤y under

H1. Note that Φ−1(ǫ) < 0 because ǫ < 1/2 so that τ < α. The probability of false
positive equals 1−Φ(τ/σH0

) which depends on n, denoted by Pfp(n). This is indeed an
increasing function for both memory vector constructions. Now, we decide to minimize
the expectation of the total computational cost CH0

when the query is not related.
We need to compute one inner product mj

⊤y per unit, and then to compute n inner
products xi

⊤y for the units giving a positive detection. In expectation, there are
M · Pfp(n) such units, and so

CH0
= M +M · Pfp(n) · n = N(n−1 + Pfp(n)). (3.15)
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Figure 3.2: ROC curves (1−Pfn as a function of Pfp) for sum and pinv constructions eval-
uated using (top) synthetic data with d = 100 and n = 10, (bottom) Holidays+Flickr1M
real dataset and φ∆ features with d = 1920 and n = 10.
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The total cost is the sum of a decreasing function (n−1) and an increasing function
(Pfp(n)).

For the random assignment strategy, there is a tradeoff between having a few big
units (n large) and many small units (n small). Fig. 3.1 illustrates this tradeoff for
different values of α0 with synthetic data. It is not possible to find a closed form
expression for the cost minimizer n⋆. When α0 is close to 1, the threshold is set to a
high value, producing reliable tests, and we can pack many vectors into each unit: n⋆

is large allowing a huge reduction in complexity. Even when α0 is as small as 0.5, n⋆ is
small but the improvement remains significant. In the setup of Fig. 3.1, the proposed
approach has a complexity that is less than one tenth of that of searching through all
database vectors (equivalent to n = 1). However, in order to increase the efficiency,
we introduce an additional O(Md) = O(dN/n) memory overhead for storing memory
vectors.

Figure 3.2 depicts the theoretical and empirical Receiver Operating Characteristic
(ROC) curves for different values of α. For the synthetic data, Pfn and Pfp are eval-
uated using Eq. (3.6) and (3.12). As expected the test performs better when α is
closer to 1 and when n ≪ d. For the real data, we use cosine similarity-based ground
truth, since it is directly related with the model we considered theoretically. For each
query vector, we deem a database vector as relevant if their cosine similarity is greater
than α0. To have enough ground-truth vectors, we look for these matching vectors on
the Holidays+Flickr1M dataset using various α0 values. This experiment using real
data confirms the findings of the theoretical analysis. The pinv construction performs
better than the sum as long as α0 is big as explained in Sect. 3.2.2. However, the
theoretical analysis is unable to predict performance levels on real dataset. It seems
that the vectors of this real dataset have a much lower intrinsic dimensionality than
their representational dimension d = 1920.

3.3.3 Weakly Supervised Assignment

A well-known technique in the approximate search literature is to partition the space
R

d by clustering the database vectors. This assigns similar database vectors to the
same cell [ML14]. In Section 3.2.3, we explain the advantage of a weakly supervised
assignment by showing that the distance between the distributions of positive and
negative memory units similarities increases. To show this point experimentally, we
modify the spherical k-means clustering [DM01], so that the clusters are represented
using pinv (or sum) in the update stage 1.

Better hypothesis test. Figure 3.4 shows that highly ranked memory units are very
likely true positives containing at least one matching vector. On the contrary, with the
random assignment, a positive memory unit may have a low rank. This means that we

1Note that, when we use such assignment techniques in spherical k-means, the number of vectors
per clusters is not evenly distributed. The dot product may be dominated by long cluster representation
vectors. Hence, we also propose a normalized version of the assignment, where the cluster representation
vectors obtained are normalized to the unit norm.
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now can analyse the database vectors of a shorter list of memory units to find most of
the matching vectors.

More than one match. Another byproduct of weakly supervised assignment is that
positive memory units are likely to contain more than one match, since matching vectors
usually have high cosine similarity with each other. This helps the search efficiency by
returning most of the matching vectors by only scanning a few positive memory units.
This is also experimentally shown in Figure 3.4. With the random assignment, we have
almost surely at most one matching vector in each positive memory unit.

Imbalance factor. We now analyze the cost of search with weakly supervised as-
signment. In Eq. (3.15), we assume that each unit contains n vectors. Up to this
approximation, Fig. 3.3 shows that both constructions sum and pinv perform better as
the inner correlation increases, but more surprisingly, they perform equivalently. It is
also shown that it is possible to pack many vectors into the same memory unit with
weakly supervised assignment, and still obtain a low search cost.

In practical applications, assuming that each unit contains a constant number of
vectors is no longer true with weakly supervised assignment. This makes the analysis
of the complexity more involved than (3.15). Moreover, this is potentially problematic
in some applications: the complexity and thus the runtime can change dramatically
from one query to another.

Imbalance factor is a metric to measure the impact of unbalanced clusters [JDS10].
It is defined as

δ = M
M∑

i=1

pi
2, (3.16)

where M is the number of clusters, and pi is the empirical probability that a database
vector belongs to the i-th cluster. This is measured as frequency pi = ni/N , where ni is
the cardinality of the i-th cluster. Simple derivations give the following expectation and
variance: E(ni) = N/M and V(ni) = (δ− 1)N2/M2. This shows that higher imbalance
factor corresponds to clusters with varying sizes. This gives birth to a wide variability
of the complexity from one query to another.

Table 3.1 shows the imbalance factor for different weakly supervised assignments.
It is shown that pinv variants have more balanced cells compared to traditional sum,
making the search process more effective. The negative effect of high imbalance factor
in practice is better observed in Figure 3.5. In this figure, the algorithm visits a fixed
number of positive memory units: 7 (Holidays), 30 (Oxford5k), or 60 (UKB). This
roughly gives us a complexity ratio of CH0

(τ) ≈ 0.2 on average. We then show the
complexity ratio per query in a histogram. It is clearly seen that the distribution for
pinv has smaller standard deviation compared to sum, even though their means are
almost the same. This makes pinv variant of spherical k-means a better alternative for
weakly supervised assignment.
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Figure 3.3: Ratio of the global cost by the cost of the exhaustive search CH0
/N as a

function of n using weakly supervised assignment and synthetic data. Setup: d = 1, 000,
ǫ = 10−2. The different curves correspond to values of α0 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Red
and blue lines correspond to sum and pinv constructions respectively. Darker shades
correspond to higher α0.
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Figure 3.4: Left: Probability that a memory unit contains at least one match with
respect to their rank. Green, red and blue lines correspond to random, sum spherical k-
means and pinv spherical k-means respectively. There is a high probability of retrieving
a match in highly ranked memory units, but it decreases faster with a weakly supervised
assignment. Right: The average number of matches given that the memory unit is
positive. Green, red and blue lines correspond to random, sum spherical k-means
and pinv spherical k-means respectively. Using random assignment, we have about 1
matching vector per memory unit. The weakly supervised assignment improves this
especially for higher-ranked units.
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sum sum + norm. pinv pinv + norm.
Holidays 2.08 2.17 1.90 2.03
Oxford5k 2.76 2.69 2.27 2.23
UKB 2.58 2.56 2.06 2.09

Table 3.1: Imbalance factor for different datasets using sum, pinv and their normalized
variants of k-means. Each dataset is clustered into M = N/10.
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Figure 3.5: Complexity per query for pinv k-means (blue) and sum k-means (red).
Although the averaged complexity ratios over all queries are similar, pinv has less
variance thanks to lower imbalance factor.

3.4 Application to Image Search

This section shows that memory vectors perform extremely well on typical computer
vision benchmarks. We assume two scenarios: closed-datasets in Section 3.4.1, and
large-scale and streaming data in Section 3.4.2.

Whereas the datasets were already introduced in Sect. 3.3.1, let us describe the
measure of performances. We follow the standard image retrieval protocol where each
image is represented by a feature vector and the ground truth is now based on the
visual similarity. The goal is to return visually similar images for a given query image.
The similarity of two images is measured by the cosine of their descriptor vectors, and
the images are ordered accordingly. We adopt the performance measure defined for
each benchmark: mAP (mean average precision) which measures the area under the
precision-recall curve [PCI+07] or 4-recall@4, which is the average number of correct
images in the top-4 positions.

As for the complexity, we first measure the similarities between the query and M
memory vectors. We compare these similarities with a given threshold τ . Then, we
re-rank all the vectors in positive memory units according to their similarities with the
query vector. We characterize the complexity of the search per database vector by:

CH1
(τ) = M +

∑

i:y⊤mi>τ

ni, (3.17)

where ni is the number of database vectors in the i-th memory unit. We measure the
complexity ratio CH1

(τ)/N and the retrieval performance for different values of the
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Figure 3.6: Image retrieval performance using visual similarity ground truth. K-means
variants bring significant improvement.

threshold τ . For large τ , no memory unit is positive, resulting in CH1
(τ)/N = M and

no candidate is returned. As τ decreases, more memory units trigger reranking.

3.4.1 Closed Dataset

Recall from Section 3.3 that weakly supervised assignment provides better approximate
search than a random assignment. This is confirmed for the image search benchmark in
Figure 3.6. Additionally, we show that it is possible to pack more vectors in a memory
unit using weakly supervised assignment in Figure 3.7. We use this approach (spherical
k-means with pinv) for the rest of our experiments.

The dimensionality of the descriptor linearly impacts the efficiency of any system.
Dimensionality reduction with PCA is one way to improve this point. Our method is
compatible with dimensionality reduction as shown in Fig. 3.8, where we reduce the
vectors to d′ = 1024 components. The search performance is comparable to the baseline
with less computational complexity. We also apply our method to features learned with
deep learning (d = 4096). Fig. 3.8 shows that the reduction in complexity also applies
when using high performance deep learning features.

Compact codes are another way to increase efficiency. We reduce the dimensional-
ity of the vectors to d′=1024 and binarize them by taking the sign of each component,
in the spirit of cosine sketches [Cha02]. In the asymmetric case [GP11, JJG11], only
memory vectors and dataset vectors are binarized, whereas in the symmetric case query
vectors are also binarized during the query time.

Figures 3.9 and 3.9 show the performance when using compact binary codes. For
the symmetric case, the sum method seems to perform better than pinv on the Holidays
and Oxford5k datasets. In the asymmetric case, both methods perform similarly. In
all cases, we achieve convergence to the baseline with a complexity ratio well below
1. Implementation efficiency is further improved in the symmetric case by using the
Hamming distance calculation instead of dot product.

Comparison with FLANN [ML14]. Running the FLANN algorithm on the Holi-
days+Flickr1M dataset reveals that the convergence to the baseline is achieved with a
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Figure 3.7: Search performance using random assignment (left) and weakly supervised
assignment (right). This last option uses fewer memory units and still obtains a good
search performance, which is not possible with random assignment.

speedup of 1.25, which translates to a complexity ratio of around 0.8. We can achieve
similar performance with a complexity ratio of only 0.3. This confirms that FLANN
is not effective for high-dimensional vectors. In this experiment, we use the autotune
option of the FLANN library, and set target_precision = 0.95, build_weight = 0.01,
and memory_weight = 0.

Execution time. We have shown that we get close to baseline performance while
executing significantly fewer operations. We now measure the difference in execution
time under a simple setup: d = 1024 and N = 106 dataset vectors. An average dot
product calculation between the query and all dataset vectors is 0.2728s. With N/10
memory vectors and ≈ 100k vectors in positive memory vectors, the execution time
decreases to 0.0544s. We improve the efficiency even further with symmetric compact
codes and Hamming Distance computation: the execution time becomes 0.0026s. Our
method is parallelized for further improvement.

3.4.2 Large Scale and Streaming Data

We conduct large scale experiments on Holidays+Flickr1M and Yahoo100M datasets.
The main advantage of our approach is its compatibility with large scale and streaming
data, where pre-clustering the data may not be possible. More specifically, we assume
that we have streaming images which we would like to index. As the size of the data
keeps growing continuously, it is not possible to apply traditional k-means in such a
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Figure 3.8: Left: The performance of memory vectors after PCA dimensionality reduc-
tion with d′ = 1024. Right: Image retrieval performance with deep learning features
(d = 4096), as trained by Babenko et al. [BSCL14]. Features for Holidays and Ox-
ford5K are retrained on the Landmarks dataset, whereas the ones for UKB are trained
on ILSVRC.
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Figure 3.9: Left: Experiments with binary codes after PCA reduction to d′ = 1024.
The quantization is symmetric: real query vectors are binarized and then compared to
binary memory vectors. Right: Experiments with binary codes after PCA reduction
to d′ = 1024. The quantization is asymmetric: real query vectors are compared to
binary memory vectors.
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scenario. We investigate two different approaches: random assignment and weakly
supervised assignment over mini-batches.

Online indexing assumes that we would like to index items in streaming data as
they become available. In such case, the random assignment is applicable provided that
the successive vectors in the stream are independent.

Figure 3.10 shows the image retrieval performance based on random assignment
with different group sizes n. With n = 10, the performance is close to the baseline
while performing roughly three times fewer vector operations than exhaustive search.
On the other hand, larger groups make it possible to have smaller complexity ratio
with a degrading effect on the quality of search, since the scores obtained from memory
vectors are noisier (see (3.6) and (3.12)). The pinv construction performs better than
sum in all cases except for a very large memory units of size n = 500, where the quality
of search is low in general.

Batch assignment. The alternative approach runs weakly supervised assignment on
small batches. A batch spherical k-means is the same as the regular spherical k-means
discussed in previous sections. We do not cluster the whole dataset at once because this
would not be tractable with large collections. Instead, we randomly divide the dataset
into batches of the same size and run a weakly supervised assignment separately for
each batch. Fig. 3.11 shows that this strategy improves the performance while keeping
the complexity of the clustering algorithm manageable.

We compare our approach to a well-known mini-batch k-means algorithm [Scu10]
(referred to as mbk) as implemented by [PVG+11]. We compare both strategies using
a batch size of 10k, and show the image retrieval performance for different complexity
ratio in Figure 3.12.

The first observation is that the plot of mbk is not smooth. This is due to the
clusters being unbalanced when using such mini-batch approaches. In fact, when we
measure the imbalance factor (3.16), we obtain δ = 183 ± 8. As a result, few clusters
contain a large number of dataset vectors, and when a cluster is accessed, the cost of the
verification step becomes expensive. On the contrary, the imbalance factor observed
using our batch spherical k-means is only 2.47 ± 0.01, resulting in a more efficient
verification step for positive memory units.

The complexity ratio per query for the two methods can be seen in Figure 3.13.
When we set the number of positive memory units to 3500, the mean complexity ratio
for our batch spherical k-means approach is 0.17, with a standard deviation of 0.01.
On the other hand, when mbk is used, the mean increases to 0.26 with a standard
deviation of 0.51.

Finally, we apply our batch assignment strategy to the Yahoo100M, which con-
sists of 97.6 million vectors. We divide the dataset into batches of 100k, and run
three different indexing strategies for each batch: random assignment with pinv, pinv-
based spherical k-means and sum-based spherical k-means. This dataset does not have
manually annotated ground truth or designated queries, therefore we use an existing
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Figure 3.10: Image retrieval performance in Holidays+Flickr1M with different memory
unit size n. The data is streamed in this scenario, and the memory untis are created
randomly.
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Figure 3.12: Comparison of our batch spherical k-means approach with the mini-batch
k-means algorithm (mbk) [Scu10]. The batch size equals 10k.

evaluation protocol [IRF16]. Dataset vectors are considered a match if they have a
similarity of 0.5 with the query vector. 1000 query vectors are randomly chosen and
those that have 0 or more than 1000 matches are filtered out. In the end, we have 112
queries, with each query having 11.4 matches on average.

We present our results in Figure 3.14. Since we have N/10 memory vectors for each
batch, a lower bound for the complexity ratio is 0.1. We see that pinv-based methods
converge to the baseline much faster than sum. Using our pinv-based k-means variant,
we achieve the same performance as baseline with 0.12 complexity ratio. This saves us
almost 90 million vector operations at query time.

3.5 Conclusion

This chapter takes a statistical signal processing point of view for image indexing,
instead of traditional geometrical approaches in the literature. This shift of paradigm
allows us to bring theoretical justifications for representing a set of vectors. We have
presented and analyzed two strategies for designing memory vectors, enabling efficient
membership tests for real-valued vectors. We have also showed two possible assignment
strategies and analyzed their performance theoretically and experimentally. For random
assignment, the optimized pinv construction gives better results than the simple sum
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aggregation. On the other hand, when the vectors in the same memory unit share some
correlation, sum is on par with the pinv construction as for the quality of the hypothesis
test. Yet, the pinv construction when used in the weakly supervised assignment offers
a lower imbalance factor. This yields less variability of the search runtime from one
query to another. This procedure is done offline and its complexity is often ignored in
the image search literature. On the contrary, we did pay attention to this bottleneck:
we proposed to run the weakly supervised assignment by batch and showed that it does
not spoil the overall performance of the image search.



Chapter 4

Applications and Extensions for Memory

Vectors

In this chapter, we study practical extensions of memory vectors in a large-scale image
search scenario, and their application in privacy-based multimedia domain. In Sec-
tion 4.1, we examine the further required considerations to apply memory vectors in a
large-scale instance search scenario. We show that, unlike raw high-dimensional image
image descriptors, our group representations are easily indexable using existing space
partitioning methods, such as FLANN. This makes the proposed system even more
efficient in a large-scale scenario with millions of vectors.

Section 4.2 investigates the use of memory vectors in the privacy domain. The goal
is to design an efficient multimedia retrieval system while keeping the data safe. We
consider a use case of with three entities: the user, the server, and the owner of the
data. We then show the effectiveness of memory vectors in such domain in terms of
search efficiency and privacy. It is shown that our proposed system adds a second line
of defense which makes it very hard for a “curious” user to reconstruct the data.

4.1 Scaling Group Testing with Memory Vectors

Most of the traditional high-dimensional indexing techniques fail due to the curse of
dimensionality [WSB98]. The partitioning strategies they all use eventually fail at pre-
serving neighbors in the same partitions, forcing the search procedure to scan many
partitions in order to determine good candidates for a query [LJW+07]. This exten-
sive scanning is very inefficient and dramatically increases resource consumption and
response time.

Similarity search techniques inspired by the group testing framework have recently
been proposed in an attempt to specifically defeat the curse of dimensionality. Group
testing has found applications in pharmacology, genome screening and has first been
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adapted to image retrieval by Shi et al. [SFJ14] and then extended by Iscen et
al. [IFG+17]. In this context, group testing specifically exploits the properties un-
derpinning truly high-dimensional spaces: the correlation between two random unit
vectors concentrates around zero as their dimension increases, facilitating by contrast
the identification of correlated (hence similar) vectors.

Like some traditional high-dimensional indexing schemes, group testing first forms
overlapping groups of features and computes a representative vector for each group.
Then, at query time, a test is performed on each group by checking the query against
the representative vector. The output of the test reveals how likely the query matches
one of the features in that group. The decoding step identifies some candidate features
by analyzing all the test outputs. A final verification step computes the true similarities
of the candidate features with the query, and gives back a ranking from which it is easy
to return the final result to the user.

Compared to more traditional high-dimensional indexing methods, the key differ-
ences with group testing are in the group formation strategies, the procedure to com-
pute representatives and the decoding process that identifies candidates features from
the test outputs. Works [SFJ14] and [IFG+17] prove group testing is particularly ro-
bust at higher dimensionalities and allows to return high-quality results faster than the
sequential scan, which is often the de facto preferred method to run at high-dimension.

The group testing paradigm as it is applied in [SFJ14] and [IFG+17] can hardly be
scaled to searching very large image collections. First, too many tests are performed at
query time when checking the query against the group representatives — the larger the
collection, the more such representatives, which limits scalability. Second, unnecessary
computations are done at decoding time because most of the tests indeed yield negative
output.

This section tackles these difficulties and proposes extensions to the group testing
in order to handle larger collections of feature vectors. Specifically, it shows that it is
surprisingly worth indexing the representatives, allowing to very quickly identify the
few positive tests. It also shows that these few positive tests not only deliver enough
information to identify the good candidates, but also accelerate the decoding step. In
terms of quality, it shows that the group testing technique proposed here performs
almost as well as other traditional indexing strategies (FLANN [ML14], LSH [IM98,
GIM99, DIIM04]) at a much lower cost, however.

This work has been published in [Iscen et al., 2016a]. The reader is encouraged to
read Section 2.2.3 for a background in group testing.

4.1.1 Discussion

We now discuss the cons (first) and then the pros of using group testing versus using tra-
ditional similarity search techniques when indexing large collections of high-dimensional
features like Fisher vectors [PD07], VLAD [AZ13], T-embedding [JZ14] or other CNN-
based [BSCL14, GWGL14] descriptors. This discussion ends with a list of requirements
that group testing approaches must meet in order to cope with scale, i.e., indexing very
large collections of high-dimensional vectors.
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Even though it is a state-of-art library, FLANN does not perform well for truly high-
dimensional data, as acknowledged by its authors [ML14]. The experiments described
later confirm that the effectiveness of FLANN decreases when indexing such high-
dimensional descriptors. It is only possible to return high-quality results, however, at
the expense of a dramatic increase in the response time. This is caused by FLANN
performing a very large number of checks to eventually gather enough good neighbors.
This problem is not specific to FLANN but caused by the curse of dimensionality whose
effects are mitigated with extensive multiprobing.

In contrast, group testing is less sensitive to the curse of dimensionality and better
handles high-dimensional features. Yet, its recent application to image search [SFJ14,
IFG+17] experiences scalability problems. First, group testing has to compare the
query to all the representatives group vectors and that comparison is currently done
using a linear scan. This is clearly not scalable when the number of representative group
vectors grows, which is the case when indexing larger collections of images. Indexing
larger collections (N grows) means for [SFJ14, IFG+17] that M as to grow too. At
scale, this comparison step becomes excessively costly.

By construction, only a handful of group representative vectors are meaningful for
a given query, hence most comparisons between the query and the group representa-
tive vectors are done in a pure waste. Quickly identifying the best representatives is
therefore a key requirement for designing scalable group testing approaches.

More importantly, the effectiveness of the group testing proposed in [SFJ14,
IFG+17] vanishes as N grows. Compared to a linear scan of the features in O(Nd),
the gain in complexity (as detailed in Sect. 2.2.3) is:

γ =
M

N
+
M

d
+
R

N
, (4.1)

where M is the number of groups, and R is the size of the shortlist.
The second term shows that having M << N is not sufficient: At scale, M will

become larger than d, spoiling the gain in complexity. This is solely due to the decoding
procedure of [SFJ14] and [IFG+17].

Furthermore, equation (2.23) is likely to sum extremely small values for the vj

associated to the representatives that turn out not to be relevant for a query. Therefore,
identifying the best representatives and ignoring the others, i.e., setting their vj to zero,
diminishes the cost of decoding as many factors can now be excluded from the sum in
equation (2.23). It is not needed to take into account similarities to all representatives
as [SFJ14] and [IFG+17] do.

Finally, the contributions in [SFJ14] and [IFG+17] compute the true similarities be-
tween the query andR ≪ N features. According to [SFJ14] and [IFG+17], R is typically
equal to N/10, which, at scale, becomes prohibitively expensive as well. Therefore, the
value of R has to be significantly reduced to allow scaling. Works [SFJ14] and [IFG+17]
can not easily diminish R without severely endangering quality. They essentially keep
M small to control the cost of evaluating equation (2.23) (which corresponds also to
the second term of (4.1)). This is done by choosing m small, the number of groups
each image is assigned to( see eq. (2.20)). This implies that [SFJ14] and [IFG+17] have
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a rather small number m of evidences (i.e., test outputs vj) to evaluate the likelihood
ui of being a match. Very efficiently identifying the best representatives allows to use
a larger value for m which strengthens the redundancy between the groups.

Consequently, the likelihood scores of the database features identified become more
reliable because these scores are computed from more test outputs. For the non match-
ing features, their likelihoods become less noisy, i.e., shrink to zero, because vj = 0 for
irrelevant representative group vectors. This improves the reliability of the decoding
and makes possible the use of a lighter verification step, i.e., using a small value for R.

On the pro side, the lessons learnt from the two group testing papers are the fol-
lowing ones. The most salient property of the group testing framework is its capacity
to cope with truly high-dimensional datasets. This has been demonstrated in [SFJ14]
where the performance improves as the dimensionality of the features increases. Is-
cen et al. [IFG+17] show that the Moore-Penrose pseudo-inverse construction (see
eq. (3.9)) produces more informative representatives compared to the simple sum that
is used in [SFJ14]. [IFG+17] also demonstrates that representatives are more informa-
tive when some form of similarity between features is used to weakly guide the creation
of the groups instead of relying on a pure random strategy. They derived groups from
running a k-means which clusters similar features in groups of very different cardinal-
ities. However, reducing the unbalanced cardinalities between these groups is key to
avoid similarities being dominated by overcrowded groups.

Taking the lessons learnt from [SFJ14, IFG+17] for granted, the above discussion
allows to isolate two main requirements that must be addressed in order to design
scalable group testing techniques:

• Requirement R1: Quick identification of the best representatives for a query and
removal of the bottleneck from eq. (2.23) by ignoring irrelevant vj values.

• Requirement R2: Increasing the groups redundancy to improve quality (m) al-
lowing to decrease the number of true similarities calculations (R).

4.1.2 Scaling Group Testing

This section describes the extensions to the group testing framework in order to fa-
cilitate scaling. The resulting extended group testing algorithm is called sGT which
stands for scalable group testing. We detail how the learnt lessons and the requirements
detailed above can be addressed.

4.1.2.1 Even-Size Groups of Similar Vectors

We first address the lessons learnt from [SFJ14, IFG+17]. In order to create even-
size groups of similar features, we propose to use the random k-d tree algorithm from
FLANN. That algorithm gradually cuts in two equal subsets the collection of vectors
to be indexed, until the bottom leaf of the k-d tree contains one unique feature. It is
easy to navigate down a fully constructed k-d tree and identify the node where the two
child sub-trees each consist of a total of n vectors. This is where we take control of
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the algorithm in the FLANN library: All the vectors below that particular node now
go into two distinct groups. In order to have each feature assigned to m groups, we
simply launch the creation of m random k-d trees.

Once the groups have been formed this way, we compute the pseudo-inverse for each
group in order to determine its representative (see eq. (3.9)). It is important to note
that we take control of the construction process of the k-d trees in FLANN. Once the
representatives are stored, the k-d trees are no longer needed and they are deallocated.

Please note that we have taken control of the k-d tree construction per se and
there is nothing really specific to FLANN here. Using FLANN is handy because it
is a state-of-the-art library anyone can download, facilitating the reproduction of our
methodology, and because it better copes with high-dimensionality (compared to the
regular k-d tree) thanks to his enhanced dimension splitting criterion.

4.1.2.2 Indexing Representative Vectors

We then address requirements R1 and R2. It is rather straightforward to insert the
group representative vectors into an index in order to circumvent the linear scanning
(see eq. (2.22)) limiting the scalability of [SFJ14] and [IFG+17]. Instead of determining
the similarities to all M representatives, it is worth probing the index and get back the
k representatives with the highest similarities to the query.

First, this is faster especially because most modern high-dimensional techniques are
approximate and trade response-time for efficiency. Second, it is safe to force to zero
the similarities vj between the query and the (M−k) representatives that remain. Since
k is typically orders of magnitude smaller than M , (M −k) is a large value which saves
a lot of resource consumption when running the decoding step: many vj = 0, making
the computation of equation (2.23) very sparse. Requirement R1 is hereby addressed.

Two comments are in order, however. First, most high-dimensional indexing
schemes work for Euclidean distances. This is the case for some of the algorithms
implemented within the FLANN library. It is not very complicated to translate
a ℓ2 distance into a dot product as it is needed to evaluate equation (2.22). We
ℓ2-normalize the representative vectors to be compatible with the query whose norm
equals one. We ask FLANN to index the database of these normalized representative
vectors ȳj = yj/‖yj‖. For the k nearest neighbors output by FLANN, we compute
the similarities:

vj =
2 − ‖ȳj − q‖2

2
‖yj‖ = (ȳ⊤

j q)‖yj‖ = y⊤
j q. (4.2)

This conversion needs the extra storage of one scalar, ‖yj‖, per representative vector.
After obtaining these similarities, we compute (2.23) and re-rank R top scoring features
based on their true similarities with the query.

Second, indexing the M representatives facilitates increasing m, which is the num-
ber of groups each feature is assigned to. This addresses the requirement R2 and also
positively impacts the quality of the results returned by group testing indexing algo-
rithms. The time it takes to retrieve k representatives indeed does not change that
much when M increases. It is anyway much faster than the linear scan. Works [SFJ14]
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and [IFG+17] had to set m to a small value in order to reduce the complexity of their
implementations when analyzing the M representatives. They had a complexity ob-
jective. In contrast, indexing these representatives to quickly retrieve k of them allows
us to set m such that it is possible to meet a quality objective. At last, this better
quality yields a more reliable ranking of the candidates. The true matching features
are ranked higher. This allows us to reduce the size R of the shortlist and to decrease
the complexity of the final verification step.

4.1.2.3 Summary

We argue that it is possible to scale group testing high-dimensional approaches provided
that these lessons learnt from [SFJ14, IFG+17] are enforced and the two requirements
presented above are addressed. We therefore implemented within the sGT algorithm
a group construction strategy based on k-d tree to marry fixed size groups and some
similarity between the vectors of each group. sGT also includes the implementation of
the indexing of the representative vectors to quickly identify the k best representatives.
This, in turn, allows to increment the redundancy of vectors in groups (m), improving
quality. The candidate vectors being more accurate, it allows to decrease the length of
the candidate list R, which saves response time.

The next section demonstrates that these extensions indeed make group testing
approaches easier to scale to larger collections of very high-dimensional vectors.

4.1.3 Experiments

This section basically compares the behavior of three high-dimensional indexing
schemes. Two of them are state-of-the-art: the first technique is the traditional k-d
tree based index from the FLANN library [ML14]. The second technique is our own
implementation of the original group testing scheme proposed by Shi et al. [SFJ14].
The third technique is sGT which includes the various extensions discussed in the
previous section aiming at better handling large scale collections.

We first describe our experimental setup before moving to the experiments them-
selves where the comparison of the behavior of the three techniques is made using the
mean average precision and running time indicators.

4.1.3.1 Experimental Setup

We use a public large-scale image retrieval benchmark dataset known as Hol-
idays+Flickr1M for our experiments. This dataset is the combination of the
original Holidays image dataset [JDS08] with 1 million distractor images from
Flickr1M [PCI+07]. The dataset contains N=1,001,491 images in total. The image
retrieval quality is evaluated with the provided ground-truth for 500 queries and
measured by mean average precision (mAP).

To facilitate the direct comparison with existing methods [SFJ14, IFG+17], we use
the same T-embedding features [JZ14] with d = 1,920 which corresponds to a codebook
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vocabulary of size 16. These features are made available online.1 Following the pipeline
presented in the original paper [JZ14], we post-process these features with power-law
normalization, setting α = 0.5.

4.1.3.2 Image Features are Hardly Indexable

We first show that the T-embedding features extracted from the images can hardly
be indexed due to their dimensionality. This motivates the need for alternative high-
dimensional indexing schemes such as group testing based approaches better coping
with the curse of dimensionality.

We started by using the linear search option of FLANN in order to determine the
quality and the time it takes when using the 500 queries. It takes 901 seconds to run
the entire query set, and the resulting mAP is equal to 51.9. These values form the
baseline we will refer to in the remainder of this section.

We then ask FLANN to determine what would be the best high-dimensional strategy
in order to index the image features. We therefore set the FLANNParameters internal
data structure to AUTOTUNED with a target precision set to 0.95. The resulting index
determined by FLANN is a k-d tree. It takes 677 seconds to probe the index with the
500 queries. Using the index instead of relying on the linear scan is only 1.29 times
faster. This little speedup is explained by the very large number of checks FLANN
has to perform in order to meet the required precision. Observing the logs produced
by FLANN shows that close to 450,000 checks are done for each query – so half of
the features are indeed scanned, making the indexing useless as it can not confine the
search to a small portion of the database. This is a direct consequence of the high-
dimensionality of the indexed features.

The T-embedding features are indeed of a very large dimensionality. Their repre-
sentational dimension is 1,920 while their local intrinsic dimensionality (see [ACF+15])
is estimated to be 150.3 ± 41.3. This is a very high value, which emphasizes the neg-
ative consequences of the curse of dimensionality. Please note that FLANN proved to
work with descriptors having a much smaller intrinsic dimensionality. For example,
SIFT has a representational dimension equal to 128 while its estimated local intrinsic
dimensionality is 12.3 ± 3.0 (again, see [ACF+15], Section 6.3). Their indexing is thus
much easier.

One obvious approach to circumvent this dimensionality problem is to apply a
dimension reduction technique to the features with the hope not to degrade too severely
the resulting mAP. We therefore took our collection of image features, applied a PCA
and kept a varying number of the most significant resulting dimensions. We then ran
the (PCA-ed) queries against that transformed collection and computed the resulting
mAP when using a linear scan. Figure 4.1 plots the outcome of this experiment. The
figure shows that the mAP rapidly decreases when reducing the number of dimensions
for the transformed features. While such transformed features might be more indexable,
the resulting quality would be too low to have any practical interest. Using a linear
scan is not an option either as it is too slow.

1http://people.rennes.inria.fr/Ahmet.Iscen/memoryvectors.html

http://people.rennes.inria.fr/Ahmet.Iscen/memoryvectors.html
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Figure 4.1: Observed mAP after PCA applied to the T-embeddings image features.
Varying number of retained dimensions.

Most modern image features (VLAD, CNN-based features, etc.) share with the T-
embeddings this property of lying in truly high-dimensional spaces. They can therefore
hardly be indexed using traditional approaches. The following experiments demonstrate
that group testing strategies better handle dimensionality.

4.1.3.3 Even-Size Groups of Similar Vectors

The lessons learnt from studying the literature suggest that creating even-size groups
of similar vectors is best for group testing approaches. We proposed in Section 4.1.2.1
to take control of the random k-d tree creation process to this aim. The experiment
described now shows this indeed works as the resulting performances are better. The
competitive group testing method we compare against is [SFJ14]. Its group construc-
tion uses a fully random assignment procedure to create even-size groups. This exper-
iment uses a similar setting as the one defined in [SFJ14], i.e., n = 15, m = 2, and
R=M=133,532.

The mAP when using the pure random group creation technique is 50.8. In contrast,
the mAP we observe when taking control of the k-d tree reaches 51.6. Forming groups
according to some similarity (even quite weak as we utilize higher levels of the k-d tree)
improves quality, which is however slightly below the baseline (mAP=51.9).

4.1.3.4 Redundancy for Better Candidate Vectors

When discussing the design options to scale group testing, we highlighted the necessity
to decrease the number of true similarity computations between the query and the
candidate features. This is requirement R2. We also claimed this goal could be achieved
by increasing the redundancy of features in groups, i.e., increasing the value for m. The
experiments discussed now are evaluating the mAP for sGT, varying the values of m
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Figure 4.2: Search quality with different m and R. Percentages in parenthesis give
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and R.
The resulting experiments, illustrated by the Figure 4.2, show the mAP achieved

by sGT when m goes from 2 (low redundancy) to 15 (high redundancy) as well as when
R goes from 10,000 (small value, 1% of the database) to 100,000 (large value, 10% of
the database, same settings as in [SFJ14]). It can be observed that for a fixed value
for R, a better mAP is reached if m is larger. In other words, it is worth increasing m
which reduces R for a fixed mAP.

However, increasing m also increases M (see eq. (2.20)), the total number of groups.
This has a direct impact on the costs of equations (2.22) and (2.23). It is possible to
keep these costs under control thanks to the indexing of the group representatives, as
demonstrated by the next experiment.

4.1.3.5 Indexing Group Representatives

Indexing the vectors that represent the groups is a way to meet the requirement R1
defined above. It is indeed quite straightforward. We used the same settings as above,
with m = 3. We then give the collection of vector representatives to FLANN instructed
to automatically determine the best index thanks to its AUTOTUNE setting. When m = 3,
there are 200,298 representatives corresponding to as many groups created with the
taking control of the k-d tree process. FLANN finds that it is best to index that
collection using a k-d tree which will provide a speed up of 39.26 compared to the
linear scanning of all the representatives. Higher settings of m confirm significant
speed up gains: FLANN estimates the speed up to be equal to 82.96 when m = 4 and
74.67 when m = 8. The scalability objective linked to R1 is therefore achieved.

It is interesting to try to index group representatives when they result from the
random construction process. Asking FLANN to determine the best index when fed
with such 200,298 representatives fails: the library estimates that it is the linear scan
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Figure 4.3: Intrinsic dimensionality varying m. Random and sum vs. k-d tree and
pseudo-inverse group creation methods.

m=3 m=4 m=8
Time (s) mAP Time (s) mAP Time (s) mAP

Random G.T. [SFJ14] 187 0.507 252 0.512 483 0.518
sGT [this method] 180 0.505 164 0.504 172 0.500

Table 4.1: Comparing the search time of different group construction methods for group
testing.

that is the most competitive method when trying to identify the best representatives.
Digging into the logs of FLANN shows that it is again the dimensionality of the group
representatives which can explain this remarkable difference in behavior. While both
k-d tree based representatives and random representatives have the same represen-
tational dimensionality (i.e. d =1,920), they have however a quite different intrinsic
dimensionality.

With m = 3, k-d tree based group representatives have an estimated local intrinsic
dimensionality of 90.6±29.5 while random based group representatives have an intrinsic
dimensionality of 166.4±13.5. It is therefore much harder to index random based group
vectors, and resorting on the linear scan is possibly the best strategy.

Indeed, blending randomly the features increases the entropy, explaining why the
resulting intrinsic dimensionality is even higher than the one of the raw features. Such
random group vectors are distributed all over the high-dimensional space, making it
quite hard to distinguish the near neighbors from the most distant ones, as clearly stated
in the seminal paper about neighbor meaningfulness [BGRS99]. Similar observations
can be made for other values of m, as it is reported in Figure 4.3.



Scaling Group Testing with Memory Vectors 55

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

 0  20  40  60  80  100  120  140  160  180  200

m
A

P

Running Time (sec.)

1%

3%

5%

7%
9%k ≈ 10000

k ≈ 30000

k ≈ 50000 k ≈ 70000 k ≈ 90000

sGT. m=8, M ≈ 534k
sGT. m=4, M ≈ 267k
sGT. m=3, M ≈ 200k

FLANN k-d tree (image features)

Figure 4.4: Response times vs. mAP. FLANN k-d tree, several configuration for sGT.

4.1.3.6 Overall Performance: Comparing Quality and Run Time

The last experiment compares the overall performance of sGT with (i) the performance
of the k-d tree created by FLANN over all of the image features, as described in Sec-
tion 4.1.3.2 and (ii) with the state-of-the-art group testing scheme by Shi et al. [SFJ14].

To measure the performance of the k-d tree of FLANN, we ask the library to return
the top 1%, 2%, . . . , 10% image features that are the most similar to the queries. This
obviously impacts the response time as well as the resulting mAP. This is depicted by
Figure 4.4 where a line that gives the performance of the FLANN index is plotted. This
line shows that when an increasing number of features are considered, then the response
time increases as does the mAP, as expected. It is possible to know the percentages of
the most similar features that are considered at query time as it is specified along the
line. For clarity, not all such percentages are indicated; the missing ones can easily be
deduced.

The other series of lines display the performance of sGT. The parameter of utmost
importance in this strategy is the redundancy, m, which we vary here. We therefore
created 3 configurations of the groups for three specific values of that m parameter that
are m = 3, m = 4 and m = 8. The Figure 4.4 therefore contains three other lines, each
depicting the behavior of one group testing configuration for sGT.

To better understand the behavior of sGT, we have changed for each configura-
tion the number of representatives that are identified to subsequently evaluate equa-
tions (2.22) and (2.23). One of the claims we make in this section is that indexing the
representatives is beneficial to performance because returning a particular number of
them (k) among a total of M existing representatives is mostly independent of that
M value while it boosts performance. We therefore instructed sGT to return the best
k group representatives (with k ranging from 2,560 to 90,000) before identifying the
R =50,000 best image features. We visualise along the sGT lines in Figure 4.4 some
of these values for k. We explicitly give few such values to preserve the clarity of this
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figure. For example, the response times and the corresponding mAP obtained with the
three configurations of sGT when k ≈10,000 are all three represented on the lines using
a triangle pointing downward symbol. Similarly, the operating points are represented
with the square symbol for k ≈50,000.

Using these symbols facilitates observing that indeed, the response times of sGT
is mostly independent of M (which increases as m grows). When m = 3, then there
are overall M =200,298 group vector representatives, while there are M =534,128
when m = 8. Despite these different values for M , retrieving the same number k of
representatives takes roughly the same amount of time, between 160 and 180 seconds
when k ≈90,000, see the circles on the figure. Furthermore, the order of these three
circles on the time-line is not ruled by m, materializing the independence between M
and the response time.

This figure also shows that the mAP improves as m increases, while the response
time stays quasi identical thanks to having indexed the group representatives.

Finally, it is interesting to compare the response times and the mAP that Shi et
al. [SFJ14] could achieve using the same parameters. Table 4.1 compares three con-
figurations of the original group testing technique (based on random grouping and the
use of the sum (2.21) to compute the representatives) to the same three configurations
for sGT that we have described. Please note, however, that [SFJ14] uses all M repre-
sentatives when evaluating equations (2.22) and (2.23) while we use only the k ≈90,000
best ones. The table shows that sGT is much faster than the original group testing
proposal, while the quality does not differ significantly.

4.2 Memory Vectors for Identification with Privacy

This section considers a typical scenario involving the following three entities. The
owner O has a collection of N objects. The user U would like to know whether there is
an object in this collection similar enough to query object, and in that case, which object
it is. The owner is not willing to operate the identification and outsources this task
to a server S. The targeted applications are typically related to multimedia retrieval,
medical diagnosis, biometrics. In the later case, the owner O is a personification of the
enrollment phase. A feature vector is extracted from the objects (iris, face captures)
and used as a proxy: similar objects share similar features. Overall, this boils down to
managing a database of vectors probed with query vectors.

We add the following privacy / security requirements:

• U doesn’t want to reveal his query,

• O is reluctant in disclosing his database.

In other words, S, the outsourced server is not trusted. This actor is deemed as semi-
honest (or honest but curious): it operates the search task, however it tries to grab
information about the query or the database. This would allow S to profile U, i.e. to
disclose what U is interested in, or to perform the search with unauthorized users,
i.e. without the agreement of O. In biometrics application, disclosing database vectors
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could lead to spoofing [HEMF15]. Some make the distinction between the privacy,
which protects user U, and the security, which protect the data of the owner O.

Section 4.2.2 describes a classical solution based on embedding and secure multi-
party computation. We selected the LSH embedding which maps real vectors to binary
hashes. Evaluating the cosine similarity between vectors amounts to computing the
Hamming distance between their hashes. We use a very efficient cryptographic pro-
tocol called SHADE for securing Hamming distances computations2: while S learns
nothing from the query, U learns nothing from the database vector except the index
of the most similar vector. This system enables privacy under the semi-honest model,
but the security of owner’s data is weak if U and S collude.

This weakness is due to S having binary hashes in the clear. The main counter-
measure in literature is fully homomorphic encryption. It allows computing distances
between two ciphers s.t. S now manipulates data previously encrypted by O. However,
computation in the encrypted domain is very low preventing the scalability of the
system.

This method trades privacy of the user and security of the data for scale of the
database, speed of similarity search and quality of the identification. This is achieved
by resorting to advanced signal processing rather than more cryptography. Section 4.2.3
describes a second version of the system adding on top of LSH and SHADE a group
testing scheme for dealing with efficiency of the search while leaking only very little
useful information.

In order to understand the basic concepts about LSH, we encourage the
reader to read Section 2.2.2 before reading the following. This work has been
published [Iscen and Furon, 2016].

4.2.1 Setup

The owner O has a database of vectors X := {xi}N
1 s.t. xi ∈ R

d with Euclidean norm
‖xi‖ = 1,∀i ∈ [N ], where [N ] := {1, · · · , N}. We denote the query of the user by
q ∈ R

d with ‖q‖ = 1. The similarity between the query and a database vector x is
defined by s(q,x) := q⊤x.

In this section, we analyse the proposed system having in mind biometrics iden-
tification. Database vectors are biometrics recorded at the enrollment phase. U is
interested in knowing the index of the most similar vector in the database if similar
enough:

ι̂ :=

{
arg maxi∈[N ] s(q,xi) if s(q,xι̂) ≥ ρ

∅ otherwise
(4.3)

There are two cases: The query is a noisy version of an enrolled vector xi⋆ ; or the
query is random and we denote i⋆ = ∅. For a given threshold ρ, three errors are possible:

• False negative: ι̂ = ∅ while i⋆ 6= ∅

2Another option is partial homomorphic encryption
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• False identification: ι̂ 6= i⋆ while i⋆ 6= ∅

• False positive: ι̂ 6= ∅ while i⋆ = ∅

We denote by Pfn, Pfid, and Pfp respectively the probabilities of these events.
The ‘real’ search defined in (4.3) produces non zero error probabilities depending

on how strongly the query is correlated with xi⋆ (when i⋆ 6= ∅ ) and on the size N of
the database. Due to privacy, S can not perform the real search as defined above. In
agreement with O, S runs a secure and approximate search with lower performances.

4.2.1.1 SHADE Protocol

Suppose now that U and S have respectively the binary words wU and wS, and that
dH(wU,wS) is needed. SHADE is an efficient protocol [BCP13] allowing U to learn
nothing about wS except dH(wU,wS), while S gains no information about wU. In
short, at the k-th round, S creates two messages: m(k)

0 = wS
k +rk andm(k)

1 = (wS
k

⊕
1)+

rk, where rk is an alea uniformly distributed over ZD+1. Thanks to an oblivious transfer,
U receives vk := m

(k)

wU

k

. After D rounds, S sends R :=
∑D

k=1 rk to U who computes

V :=
∑D

k=1 vk and V − R = dH(wU,wS). SHADE is secure in the static semi-honest
model: U and S are honest but curious. There is an efficient version of SHADE for
computing a batch of Hamming distances between one query and N vectors [BCF+14].

4.2.1.2 Adding Comparison and Minimum

Letting U knowing the Hamming distance dH(wU,wS) is dangerous in the dynamic
model where U is allowed to perform several distance computations: With D well
chosen queries, U can disclose wS. The authors of SHADE recommend the use of the
GMW protocol [SZ13] to first securely compare V − R to a threshold τ . U only gets
sign(dH(wU,wS) − τ). For a batch of distances, their minimum is securely computed
and U only learns ι̂ = arg min dH(wU,wS).

4.2.2 First Version of the System

A system is a list of procedures followed by the three actors O, S and U. The owner
O draws D random directions stacked in matrix A := [u1, · · · ,uD], computes the
embeddings of its vectors, and sends S the database E := {e(xi)}. O grants U the
access of the identification by sending A so that U can compute the embedding of its
query q.

At query time, entities U and S perform the SHADE protocol, where wU = e(q)
and wS = e(xi) with the batch option. U maps the Hamming distances dH(e(xi), e(q))
to similarity estimates ŝ(q,xi) thanks to (2.19). U finds the index with the biggest
similarity and takes it as the output if it is above the threshold ρ. The search is
approximate because it is based on similarity estimates.
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An option is to add GMV protocol to let U learn either indices of vectors whose
approximated similarity with the query is above a threshold (secure comparison), or
the index of the vector whose approximated similarity is maximum (secure maximum).
Note that this is done on the Hamming distances because (2.19) is a monotonic map-
ping. A combination of the two implement the search as defined in (4.3).

4.2.2.1 Analysis

Complexity: The quality of the approximate search depends on D, the embedding
length. For any two vectors x and q s.t. q⊤x = cos(θ), and A randomly generated as
early described, π

DdH(e(q), e(x)) in (2.19) is indeed an estimation of θ with no bias and
variance θ(π− θ)/D. However, the complexity of the SHADE protocol deeply depends
on D. The secure computation of a batch of size N has a complexity [BCF+14]:

C ∝ [(2ND log2(D))/o+ 3D]Csym, (4.4)

where o is a constant setting the security of the protocol (at least 128), and Csym

is the complexity of one symmetric cryptography operation (i.e. AES encryption /
decryption).

Even though SHADE has been a breakthrough considerably lowering the complexity
of the secure computation of Hamming distances, it is the bottleneck of our system. It
takes 0.2s to securely compute and run the GMV protocol over N = 200 embeddings
of length D = 900 (see [BCF+14]).

Security: SHADE enables the privacy of U, but the owner O has some concerns.
The parameter of the embedding (here matrix A) is generated by the owner O and
only shared with U. This parameter is the only secret that prevents a curious server
S from performing illegal identification or estimating the database vectors by inverting
the embedding. By colluding with one user, S learns this secret.

Since (2.17) is a surjection, the embedding is not reversible and perfect reconstruc-
tion of X is impossible. However, one can see the embedding as a quantizer producing
quantification noise. Sect. 4.2.2.2 measures the accuracy of a reconstruction of x from
e(x) provided matrix A is known.

4.2.2.2 Inverting LSH

A simple reconstruction of a unit norm vector x from its embedding is:

x̂ = κ(A(2e(x) − 1D)), (4.5)

where κ is s.t. EA[‖x̂‖2] = 1. To quantify its accuracy, we introduce a(x) := x⊤x̂. The
closer to 1, the better the reconstruction. We have:

a(x) = κ
D∑

k=1

|u⊤
k x|. (4.6)
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LSH was originally proposed with {uk} being independent random directions in R
d.

In this case, Section 4.2.6 shows:

EA[a(x)] ≈
√

g

1 + g
with g :=

2D
πd

. (4.7)

However, if D ≤ d, it is known that A being a random basis of rank D yields a
better search [WTF09]. In this case, ‖A(2e(x) − 1D)‖2 = D for any x. Section 4.2.6
shows:

EA[a(x)] ≈ √
g with g ≤ 1. (4.8)

If D > d, a good choice is A as a random tight frame [SVZ13] s.t. ‖A(2e(x) −
1D)‖2 = d/D‖2e(x) − 1D)‖2 = d. Yet, the r.v. u⊤

k x are no longer independent and it
is hard to say something more than:

√
2
π

≈ 0.80 ≤ EA[a(x)] ≤ 1. (4.9)

Approximate search based on LSH embedding usually sets D > d. On expectation,
x̂ is then a good approximation of x since they correlate more than 0.8.

Fig. 4.8 shows the reconstruction accuracy w.r.t. D, when A is a random tight
frame or random Gaussian matrix.

4.2.2.3 Lessons Learnt from the First System

The parameter of utmost importance is the length of the embedding D. It sets a trade-
off between the quality of the identification, the complexity of the protocol, and the
security when A has been compromised. Yet, this trade-off is poor as the reconstruction
provides a good accuracy when D > d.

4.2.3 The Proposed System

Our aim is to provide a second line of defense. Group testing was recently introduced in
approximate search. The idea is to pack database vectors into groups and to compute
a representation per group, so-called memory vector, which allows to perform a group
test. This test reveals whether the query is similar to at least one of the vectors in the
group. For large dimension d, more vectors can be packed into one group because the
correlation between two independent vectors with unit norm concentrates around 0.

Each database vector belongs to several groups. The decoding aims at identifying
the matching vector(s) from the results of the group tests. A matching vector is defined
as having a similarity with the query high enough: s(q,x) ≥ α. Naively, matching
vectors are lying at the intersection of the groups yielding a positive group test. Things
are not that simple because these tests suffer from false positives and false negatives.
Yet, if the number of groups is large enough, the decoding succeeds in identifying
matching vectors.

This approach brings two advantages to our system:
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• The number of groups M is smaller than the number of vectors N . This lowers
both the storage space and the complexity of the protocol by a gain γ := M/N <
1.

• O will not give S embeddings of database vectors, but of memory vectors. This
makes harder the reconstruction of database vectors.

4.2.3.1 Encoding

The owner O randomly packs the N database vectors into M groups {Gj}M
j=1 s.t. i)

any group comprises n vectors, ii) any vector belongs to m groups. This rules enforces
that M = mN/n. A possible construction is explained in [IFG+17]. We call the map
the M × N binary matrix B indicating which vector belongs to which group: bi,j = 1
if xi belongs to group Gj , 0 otherwise.

Then, O computes the memory vectors, i.e. the representatives of each group. We
adopt here the most simple constructions investigated in [IFG+17]:

mj =
∑

i:bi,j=1

xi. (4.10)

Finally, O computes the embeddings of the memory vectors and sends S the follow-
ing compact description E

′ = {e(mj)}M
j=1. O sends U parameters (A,B, {‖mj‖}M

j=1):
A is needed to compute query embedding, B and {‖mj‖}M

j=1 to decode the tests. Note
that the database E

′ is smaller than E since it has M < N entries.

4.2.3.2 Querying

U computes e(q) thanks to A and runs the SHADE protocol with S, who learns nothing
about the query. U obtains estimations of the cosine between q and mj . Multiplying
by the norm ‖mj‖, this gives estimated similarities ŝj ≈ q⊤mj .

The big benefit is the decrease of SHADE complexity, which was the bottle-
neck of the previous system. Instead of securely computing N Hamming distances
dH(e(q), e(xi)), we compute M < N distances dH(e(q), e(mj)).

Soft decoding: From {ŝj}M
j=1 and map B, U runs the decoding to identify i⋆, index

of the matching vector.
In summary, the decoding computes N scores. ci is the likelihood ratio w.r.t. two

hypothesis: xi is the matching vector (Hi) or not (H̄i).

ci =
M∑

j=1

log
fHi

(ŝj , bi,j)
fH̄i

(ŝj , bi,j)
, (4.11)

where the pdfs are modeled as mixtures of two Gaussian distributions, ηN (α; (n −
1)/d) + (1 − η)N (0;n/d), with parameter η given in Table 4.2. We refer the reader
to [IFG+17] for justifications of this statistical model. Then, U computes the maximum
of these scores and compares with the threshold.
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Table 4.2: Definition of the weights

bi,j = 1 bi,j = 0

Hi η = 1 η = 0

H̄i η = (n− 1)/N η = n/N

Hard decoding: To prevent oracle attacks from U, we use the GMW protocol
to apply a secure comparison: U learns nothing more than dj = sign(ŝj − τ), where
threshold τ has been carefully selected by O. Then, the decoding computes the following
scores:

ci =
M∑

j=1

dj log
pHi

(bi,j)
pH̄i

(bi,j)
+ (1 − dj) log

1 − pHi
(bi,j)

1 − pH̄i
(bi,j)

, (4.12)

with pHi
(bi,j) = Eŝj∼fHi

(ŝj ,bi,j)[ŝj > τ ]:

pHi
(bi,j) = ηΦ


(τ − α)

√
d

n− 1


+ (1 − η)Φ


τ

√
d

n




and parameter η given in Table 4.2.

4.2.4 Security

Unauthorized identification is possible whenever an untrusted actor, be it U and/or S,
has in his hands both (A,B, {‖mj‖}M

j=1) and E
′. This happens only when S and U

colluded, or if U succeeds to steal E′.
The group testing approach brings a second line of defense by mixing the database

vectors into memory vectors. We focus here on the reconstruction of the database
vectors. To do so, the untrusted actor must i) reconstruct the memory vectors by
‘inverting’ their embeddings, and ii) estimate database vectors from the reconstructed
memory vectors of groups they belong to. Reconstruction i) needs E

′, A and {‖mj‖}.
The quality of the reconstruction is quite high as shown in Sec. 4.2.2.2. Estimation ii)
needs B. The quality of the reconstruction is investigated in the next section.

4.2.4.1 Inverting Memory Units

Equation (4.10) can be rephrased as M = XB⊤ where M := [m1, · · · ,mM ] is a d×M
matrix storing the memory units while X := [x1, · · · ,xN ] stores the database vectors
and B is the map (See Sect. 4.2.3.1). Estimating back X from M is possible using
a ridge regression or the pseudo-inverse of B⊤: X̂ ∝ M(B⊤)†. We can show that
reconstructing x from the exact memory units, produces an estimation x̂ s.t.

E[a(x)] = min(1,
√
γ). (4.13)
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Yet, this requires the inverse of large M×M matrix BB⊤. The average of some memory
vectors albeit not optimal is faster: X̂ ∝ MB achieving (ν := n/N):

E[a(x)] ≈
√

γ

1 + ν2(M − 1) + γ(1 − ν)2
. (4.14)

4.2.4.2 Full Reconstruction

The attacker first reconstructs the group vectors {m̂k} from their embeddings {e(mk)},
and then reconstructs the database vectors {x̂i}. It is easy to show that if the first step
produces a reconstruction accuracy measured by E[a(m)] = a1 while the second step
achieves E[a(x)] = a2 starting from true memory vectors, then the total reconstruction
yields E[a(x)] = a1a2 thanks to the linearity of the second step. This is evidenced in
the experimental work.

4.2.5 Experiments

4.2.5.1 Experimental Setup

We test our system using both synthetic and real data. For both cases, we keep the
ratio γ = M/N = m/n = 0.1. This means that the retrieval system needs only
0.1 of memory storage and vector comparisons compared to exhaustive search. The
embedding is parametrized s.t. D = 2d.

Synthetic Data. We create a synthetic dataset of N vectors distributed randomly
on the unit hypersphere of R

d. We then create Nq random query vectors, such that
each query has exactly one match in the dataset, xi⋆ , and the similarity between the
query and the matching vector is q⊤xi⋆ = α. We set d = 1, 920, N = 10, 000, Nq = 100,
and α = 0.5.

Real Data. We also use Labeled Faces in the Wild (LFW) dataset [HRBLM07],
which has 13,233 images of 5,749 people. For the query set, we choose a random
image from people who have i) at least two images , ii) have at least one match with
a similarity greater than or equal to α. We use the full (d = 67, 584) Fisher face
descriptors [SPVZ13] to calculate the similarities to generate the query set. Then,
we use the same query set for all experiments, regardless of different descriptors or
dimensionality. Setting α = 0.5 gives us Nq = 104 queries, each belonging to a different
person. We also choose 1, 000 random queries from people who have no other matching
vectors. All queries and random queries are removed from the dataset.

For our experiments, we reduce the dimension of Fisher face descriptors from 67, 584
to 1, 920 for fair comparison with synthetic data. We also use CNN-based descrip-
tors [BSJ16], whose dimension is reduced from 4, 096 to 1, 920.
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Parameters setting. As stated earlier, we can set the ratio of M/N = 0.1 with dif-
ferent m and n combinations. We choose the optimal setting empirically by maximizing
the Kullback-Leibler distance between negative and positive distributions. This gives
n = 200, m = 20, and τ = 0.8 × α.

Evaluation. The three metrics for evaluating the performance are the probabilities
of the three types of error, Pfp, Pfn and Pfid as functions of threshold ρ (see Sect. 4.2.1).
Security is gauged by the quality of the reconstruction of the database vectors measured
by E[a(x)].

4.2.5.2 Approximate Search

Fig. 4.5 shows the performance of the identification of the baseline, i.e. the exhaustive
search on real vectors, without any privacy and security issues, as defined in (4.3).
Fig. 4.6 shows the same evaluation for the first system described in Sect. 4.2.2. Fig. 4.7
shows the system proposed in Sect. 4.2.3 with the hard decoding variant (4.12). We
are smoothly degrading the performance of the approximate search over synthetic data,
however it still performs well on the real dataset.

4.2.5.3 Security

Fig. 4.8 shows the reconstruction performance while inverting LSH with the synthetic
dataset. It encompasses two matrix A generation procedures: Gaussian i.i.d. entries
and uniform tight frame. The latter option is known to produce better approximate
search. This illustrates the security of the first system described in Sect. 4.2.2. In our
setup where D = 2d, we end up with E[a(x)] ≈ 0.88.

Fig. 4.8 shows the reconstruction performance while inverting the memory units
with m ∈ [2, 20] and n = 200 on the synthetic dataset. It encompasses two recon-
struction methods: the pseudo inverse of B and the average of memory vectors (See
Sect. 4.2.4.1). This illustrates the security improvement thanks to the second line of
defense provided by group testing. In our setup where n = 200 and m = 20, we end up
with E[a(x)] ≈ 0.33.

Overall, the reconstruction of vectors {xi} from {e(mk)} outputs estimates corre-
lated on expactation E[a(x)] ≈ 0.88 × 0.33 = 0.29. We run the attack on the real
datasets and get E[a(x)] ≈ 0.88 × 0.31 = 0.27.

4.2.6 Reconstruction from LSH

Assuming that A has an isotropic distribution (either independent Gaussian entries or
a random frame), w.l.o.g. we set x = (1, 0, . . . , 0) and

‖x̂‖2 = κ2




D∑

k=1

‖uk‖2 +
∑

k 6=ℓ

|ak(1)||aℓ(1)|

 (4.15)
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Figure 4.5: Baseline performance, synthetic and LFW (Fisher / deep learning features)
datasets.
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Figure 4.8: Left:Reconstruction from LSH: a(x) as a function of D/d. Empirical mean,
min. and max. over 10,000 reconstructions. Unif. Tight Frame (plain), Gaussian i.i.d.
(dashed), Eq. (4.7) (+) and Eq. (4.8) (o). Right: Reconstruction from memory vectors:
a(x) as a function ofm/n. Empirical mean, min., and max. over 40,000 reconstructions.
Pseudo-inverse (plain), average (dashed), Eq. (4.13) (o) and (4.14) (+).

If ak(1) ∼ N (0, 1), EA[‖x̂‖2] = κ2D(d+ 2(D − 1)/π) and

κ ≈
√

1
Dd(1 + g)

with g :=
2D
πd

. (4.16)

For this x, a(x) = κ
∑D

k=1 |ak(1)| s.t.

EA[a(x)] = κD
√

2/π =
√

g

1 + g
. (4.17)

If uk is uniformly distributed on the unit sphere (random uniform frame or basis),
the marginal distribution of ak(1):

f(s) =
(1 − s2)

d−3

2

B(1/2, (d− 1)/2)
,∀s,−1 ≤ s ≤ 1, (4.18)

s.t. E[|ak(1)|] =
√

2/dπ(d − 2)!!/(d − 1)!! ≈
√

2/dπ. For D ≤ d, the random uniform
tight frame is indeed a basis: EA[‖x̂‖2] = D and EA[a(x)] =

√
g.

4.2.7 Reconstruction from Memory

We assume the following model for matrix B. For row r, 1 ≤ r ≤ M , we randomly select
n indices in [N ] and set these coefficients to 1. With a high probability rank(B) = M
and Tr(BB⊤) = nM . As for the vector, EX[X⊤X] = IN .
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Pseudo-inverse reconstruction: X̂ = ηM(B⊤)†, with (B⊤)† = (BB⊤)−1B. Con-
stant η is s.t. the expectation (over X and B) of the average squared norm of x̂i equals
1.

E[
∑N

i=1 ‖x̂i‖2]
N

= E[Tr(X̂⊤X̂)]/N (4.19)

= η2
E[Tr(X⊤XB⊤(BB⊤)−1B)]/N

= η2
E[Tr((BB⊤)−1BB⊤)]/N = η2M/N

The expectation of the average correlation is given by:

E[
∑j

i=1 x⊤
i x̂i]

N
= E[Tr(X⊤X̂)]/N (4.20)

= ηE[Tr(B⊤(BB⊤)−1B)]/N =
√
M/N.

Sum reconstruction: X̂ = ηMB. Constant η is s.t. the expectation of the average
squared norm of ‖x̂i‖2 equals 1.

E[
∑N

i=1 ‖x̂i‖2]
N

= η2
E[Tr(X̂⊤X̂)]/N

= η2
E[Tr((BB⊤)2)]/N. (4.21)

We define B̃ := (B−ν1M :N )
ν(1−ν) with ν := n/N . Its columns are centered random vectors

whose covariance matrix is the identity. The eigenvalues of their empirical covariance
matrix B̃B̃⊤/N follows the Marchenko-Pastur distribution. For large N and γ = M/N ,
we then have:

E[Tr((B̃B̃⊤)2)]/MN2 = 1 + γ. (4.22)

Expressing (BB⊤)2 as a function of B̃B̃⊤ leads to:

E[Tr((BB⊤)2)] = ν2MN2(1 − ν2 + γ(1 − ν)2 + ν2M), (4.23)

which gives the value of η thanks to (4.21). On the other hand, the expectation of the
average correlation is given by:

E[
∑j

i=1 x⊤
i x̂i]

N
= ηE[Tr(X⊤XB⊤(B⊤B)−1B]/N

= ηE[Tr(B⊤(B⊤B)−1B]/N = ηM/N

=

√
γ

1 − ν2 + γ(1 − ν)2 + ν2M
(4.24)

4.3 Conclusion

This chapter proposes further applications and extensions of memory vectors. First,
drawing the lessons from the pioneer applications of group testing to similarity
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search [SFJ14, IFG+17], we propose a grouping strategy based on kd-trees. This
ensures groups of even sizes comprising weakly similar features. An important byprod-
uct of this approach is that the resulting representative vectors have small intrinsic
dimensionality compared to the raw dataset features. This allows us to integrate an
ANN search algorithm, such as FLANN, into the group testing framework. This is
the keystone for freeing the total number of groups. We seize this opportunity to
increase this number to compute more reliable scores. This in turn gives birth to a
shorter list of candidates for the verification step. The overall construction improves
the scalability of group testing similarity search while maintaining high search quality.

Secondly, we presented a privacy and security enhancing scheme for approximate
search. It is built upon a first version which enables users privacy but not security
of the owner’s data especially when user and server collude. Contrary to the “Signal
Processing in the Encrypted Domain” trend which uses even more advanced crypto-
graphic primitives like full homomorphic encryption, we propose an alternative only
based on signal processing. It is much faster and more scalable (even more that the
first version). Yet, the attack is not absolutely blocked, but relatively in the sense that
vector reconstruction is so bad that it can’t be exploited.



Chapter 5

Optimizing Group Testing Using Matrix

Factorization

Previous chapters demonstrated the use of memory vectors and group testing in image
retrieval. Even though the proposed methods showed significant improvements in terms
of efficiency, there still are certain drawbacks. First of all, we only consider engineered
group representations (sum or pinv), and group assignment is independent from the
representation. Secondly, our initial attempts considered an adaptive group testing
approach. M groups are composed from the dataset, and querying proceeds in two
stages. In the first stage, the scores between group vectors and the query are computed.
They measure how likely their group contains some matching images. Then, in the
second stage, the query is compared with individual image vectors for only the mostly
likely positive groups. If the groups are roughly balanced in size and the query only
matches a small number of group vectors, then the complexity is reduced from dN
to d(M + N/M). Although this results in efficient image retrieval, it has one major
drawback: memory usage is increased since the group vectors and mapping from images
to groups are stored in addition to the dataset feature vectors. In other words, these
works trade complexity for memory.

In this chapter, we pursue the idea of deducing which vectors are matching in a
database of size N from only M < N measurements. We re-examine the group testing
formulation. Rather than a random partition of the dataset into groups followed by
a specific construction of the group vectors, we formulate the problem of finding an
optimal group testing design for a given image dataset. Removing the restriction to
binary designs, the continuous version of this optimization problem turns out to be
equivalent to dictionary learning. For small and medium sized datasets, with N <
d, one can remove the requirement of a sparse design matrix, and then the problem
simplifies further to that of a matrix factorization whose solution is given by the SVD.

The chapter is organized as follows. Section 5.1 introduces the problem formu-
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lation and notation. Section 5.2 proposes different techniques to solve the problem
depending on the parameters N and d. Section 5.3 shows the compatibility of our
approach with an existing coding method in the literature. Section 5.4 presents the
evaluation of proposed method using real image datasets. This work has been published
in [Iscen et al., 2016b].

5.1 Problem Statement

The dataset is composed of N d-dimensional vectors {xi}N
i=1 such that ‖xi‖ = 1, for all

i, and each xi is the global feature vector of one image in the dataset. The similarity
between two vectors xi and xj is the scalar product x⊤

i xj . Denote by X the d × N
matrix [x1, . . . ,xN ].

We aim to find M group vectors of dimension d, {yi}M
i=1, stored in d × M matrix

Y. Unlike the previous group testing approaches, we do not randomly assign dataset
vectors to groups and we do not compute the group vectors according to a specific
construction. Our goal is to directly find the bestM group vectors globally summarizing
the dataset. We call this process the encoding, and we restrict our scope to a linear
encoding:

Y = enc(X) = XG⊤. (5.1)

Given a query image, represented by its global descriptor vector q, we compute the
group scores,

s = q⊤Y. (5.2)

Finally, we estimate the similarities between query and database vectors c = q⊤X from
the measurements s. Again, we assume a linear estimator:

ĉ = dec(s) = sH. (5.3)

Our aim is to design G ∈ R
M×N and H ∈ R

M×N to allow for a fast and accurate
search. Note that this setup is similar to the pioneering work of Shi et al. [SFJ14]:
in their paper, G is indeed a randomly generated binary matrix where G(i, j) = 1 if
xj belongs to the i-th group and G(i, j) = 0 otherwise. Hence, in the previous group
testing approach, G captures both how groups are made and how the group vectors
are computed (a simple sum in [SFJ14]). On the contrary, we look for the best matrix
representing the dataset, which will heavily depend on X.

Complexity. Exhaustive search involves computing q⊤X, which has a complexity
of dN . Computing the group measurements (5.2) takes dM operations, and the de-
coding (5.3) takes MN . This gives a complexity of dM + NM for group-testing
search, compared to dN operations for exhaustive search. The complexity ratio is
thus ρ = M/N + M/d, implying that M must be smaller than both N and d to yield
efficient queries.

Previous work based on group testing [SFJ14, IFG+17] designs groups so that every
column of G has exactly m ≪ M ones; i.e., each dataset vector belongs to m groups.
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This produces a sparse decoding matrix H which, in turn, yields the better complexity
ratio ρ = M/N +m/d. However, none of the approaches [SFJ14, IFG+17] attempt to
optimize G and H. They either create G randomly or use a clustering algorithm to
coarsely group similar dataset vectors [IFG+17]. In the following sections, we discuss
two techniques that optimize the matrices G and H for a particular dataset X.

We focus on the complexity of performing a query. Determining the optimal encod-
ing and decoding matrices G and H requires additional computation applied offline or
periodically. We assume that the corresponding complexity is not as critical as in the
query stage. Our only requirement is that the complexity of this offline computation
be polynomial in N and d to ensure that it is tractable.

5.2 Proposed Solutions

We now provide two alternative solutions for the setup described in Section 5.1. As we
will show in the experimental section, both solutions have advantages and drawbacks,
and can be chosen depending on the feature vectors and the number of items in the
dataset.

5.2.1 First Solution: Eigendecomposition

In the first approach, we consider finding matrices G ∈ R
M×N and H ∈ R

M×N so that
the approximate scores ĉ and exact scores c are as close as possible. Based on (5.1),
(5.2) and (5.3), this amounts to:

minimize
G,H

∑

q∈Q
‖c − ĉ‖2

2 =

minimize
G,H

∑

q∈Q
‖qT X − qT XG⊤H‖2

2,

where Q is assumed to be representative of typical queries. Of course, this distance
cannot be zero for all q ∈ R

d since the N ×N matrix G⊤H has rank at most M < N .
We focus on providing accurate scores for typical queries. We use the dataset of vectors
itself as a proxy of the typical ensemble of queries. This amounts to replacing q by X
and to consider the Frobenius matrix norm:

minimize
G,H

∥∥∥X⊤X − X⊤XG⊤H
∥∥∥

2

F
. (5.4)

This problem is commonly solved by eigendecomposition. Let A = X⊤X be the
Gramian symmetric matrix associated to X. As a real symmetric matrix, A is diag-
onalizable: A = UΛU⊤, where U is an orthogonal matrix (U⊤U = UU⊤ = IN ).
This means that we can simply assign G⊤ = UM and H = U⊤

M , where UM are the
eigenvectors associated with the M largest eigenvalues.

In practice, we do not need to compute the Gram matrix A = X⊤X . The singular
value decomposition (SVD) of X is defined as X = SΣU⊤, where S are the eigenvectors
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of XX⊤, and U are the eigenvectors of X⊤X. Hence, this SVD gives us the desired
output without having to calculate A. It is worth noting that this solution resembles
a well known dimension reduction method: Principal Component Analysis (PCA).
However, while PCA is usually employed to reduce the dimensionality of the vectors
from d to d′ components, in our approach we use it to reduce the number of vectors
from N to M . Alternatively, more efficient dimensionality reduction methods, such as
sparse projectors [NPG14], can be used to construct H.

The major drawback of this approach is that H is not sparse. Therefore, the
complexity of the decoding (5.3) is in O(MN). Hence, this solution is efficient for
scenarios where d is larger than N .

5.2.2 Second Solution: Dictionary Learning

Dictionary learning has been widely applied in imaging problems, e.g., to obtain efficient
representations and discover structure using local patches; see [MBP14] for a survey.
Our second solution applies dictionary learning to find a sparse description of the
dataset enabling efficient image search. For any query q, we expect the score vector c to
be sparse; the few high-amplitude coefficients correspond to the matching images, and
remaining low-amplitude coefficients correspond to non-matching images. Moreover,
we do not need the estimate ĉ to be very close to c, per se, as long as the matching
images receive a substantially higher score than the non-matching ones.

Because the three steps (5.1), (5.2) and (5.3) of our method are linear, this recon-
struction of the similarities through a sparse matrix H implies a sparse representation of
the dataset vectors, which leads to the connection with dictionary learning. Specifically,
we aim to approximate X by YH where H ∈ R

M×N stores the sparse representations of
the dataset vectors in terms of columns (so-called atoms) of the dictionary Y ∈ R

d×M .
This leads to the following optimization problem:

minimize
Y,H

1
2

‖X − YH‖2
F + λ ‖H‖1

subject to ‖yk‖2 ≤ 1 for all 0 ≤ k < M.

The ℓ1-norm penalty on H (sum of the magnitude of its elements) encourages a
solution where each column of X can be represented as a sparse combination of columns
of the dictionary Y. The level of sparsity depends on λ. Unlike the previous solution
of Section 5.2.1, this scheme is competitive when N is larger than d since we benefit
from the reduced complexity of sparse matrix multiplication. An algorithm such as
Orthogonal Matching Pursuit (OMP) [PRK93, DMZ94] allows us to strictly control the
sparsity of H. For a given dictionary Y, OMP finds H = [h1, · · · ,hN ] by sequentially
solving

minimize
hi

1
2

‖xi − Yhi‖2
2

subject to ‖hi‖0 ≤ m.

Adopting this algorithm, we control the sparsity of the matrix H by setting m to a
desired value. Note that this solution is directly related with the problem statement in
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Section 5.1, even if G is not directly a part of the solution. The reconstruction of the
vectors X is linear up to an approximation, X ≈ YH. Since this is a linear process ,
we have Y = XG⊤ (1) where G⊤ = H+ (pseudo-inverse). Therefore, the connection is
obvious. Furthermore, G is not needed during the search; what matters is Y and H.

This solution is similar to the recently proposed indexing strategy based on sparse
approximation [BMM15], which also involves training a dictionary Y and a sparse
matrix H. However, the way these matrices are used in [BMM15] is completely different
from the approach proposed here. Their framework adheres to a space partitioning
approach; it indexes each descriptor in buckets using an inverted file based on the non-
zero entries of H. For a given query, their system runs orthogonal matching pursuit
(OMP) to find a sparse approximation, and then it calculates distances between the
query and the dataset vectors that share the same buckets. In contrast, the method
proposed here involves no indexing and makes no direct distance calculations between
the query and the dataset vectors. Indeed, this allows us to completely avoid touching
dataset vectors at query time.

Similarly, clustering can be used to make groups, as in traditional indexing ap-
proaches [ML14], but the decoding does not perform well for the following reason. The
decoding matrix is too sparse: a single non-zero component in each column (this vector
belongs to that cluster). This requires an additional verification step after the decoding
step for the vectors in the leading cluster. This is not needed in our method, hence
we obtain huge savings in complexity and memory. Our approach can be seen as per-
forming a sort-of soft clustering, where each vector belongs to multiple clusters with
different weights.

5.2.3 Large-scale Dictionary Learning

When designing an image search system, one must consider large-scale problems con-
sisting of millions to billions of images. Our primary goal is an efficient image search
system whose query time complexity (computational, and memory) is reduced. Al-
though we have been ignoring the complexity of the encoding phase, by assuming that
the complexity of this stage is less critical application-wise, it should remain tractable.

One of the most widely-known dictionary learning algorithms is that proposed by
Mairal et al. [MBPS10]. This algorithm provides a fast implementation and allows
other possibilities such as mini-batch learning and online dictionary updates. These
features make it an attractive algorithm for large-scale problems. However, the training
time increases dramatically with M for large-N datasets, as reported in Section 5.4.
Even though this calculation needs to be done only once in the offline stage, we still
need a scalable training approach to index all dataset vectors easily.

One solution is to use a subset of dataset vectors as a surrogate for the entire
dataset. Once the dictionary Y is trained on the subset, a less expensive sparse decoding
algorithm, such as OMP, can be used to compute the matrix H for the entire dataset.

Elhamifar et al. [ESV12] propose a solution similar to dictionary learning, with
the sole aim of finding representatives from the data. A related approach is to use
coresets [AHPV04]. A coreset C is a problem-dependent approximation of a dataset
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X. Feldman et al. [FFS13] show that for every X and ǫ > 0 there exists a coreset
C ∈ R

d×N ′
, N ′ < N , for which the following inequality holds:

(1 − ǫ)· min
H∈RM×N

‖X − YH‖2
F ≤ min

H̃∈RM×N′

∥∥∥C − YH̃
∥∥∥

2

F

≤ (1 + ǫ) · min
H∈RM×N

‖X − YH‖2
F .

Typically, C has many fewer columns than X, thereby summarizing the whole
dataset with just a few representatives. The main advantage of this approach is its
speed. Finding a coreset for a large-scale dataset takes a short time, only a few seconds
in our experiments. Then, running dictionary learning on the coreset is significantly
faster than on the original dataset. We empirically evaluate the speedup and the effect
on accuracy in the experimental section.

5.3 Compressed Dictionaries

Instead of dealing with a database of N image vectors of length d, our novel approach
now manages a database of M group vectors of the same dimension. Compared to a
linear scan, we reduce the number of comparisons from N to M , and yet, rank N items
based on their estimated score.

Nevertheless, our scheme remains compatible with the traditional coding methods.
Instead of a linear scan browsing group vectors, we can add on top of our method an
approximate search. This can take the form of either an embedding producing compact
representations of the group vectors, or an indexing structure finding the closest group
vectors w.r.t. a query. This improves even further the overall efficiency.

Case study: Combination with PQ-codes. An embedding offers a compact rep-
resentation of group vectors allowing a fast approximation of their dot products with the
query. PQ-codes [JDS11], for instance, are a priori not compliant since they operate on
Euclidean distances. We convert Euclidean distance to cosine similarity in the following
way. Each group vector y is split into ℓ subvectors ỹu, where 1 ≤ u ≤ ℓ. Each subvector
ỹu is quantized using the codebook Cu = {ci,u}Q

i=1: vu = arg min1≤i≤Q ‖ỹu −ci,u‖. The
compact representation of y is the list of codeword indices (v1, . . . , vℓ) ∈ {1, . . . , Q}ℓ.
This is exactly the same encoding stage as the original PQ-codes [JDS11].

The dot product query vs group vector is approximated by the dot product query
vs quantized group vector:

q⊤y =
ℓ∑

u=1

q̃⊤
u ỹu ≈

ℓ∑

u=1

q̃⊤
u cvu,u, (5.5)

where q̃u is the u-th subvector of the query. As in the original application of PQ-codes,
the quantities {q̃⊤

u ci,u} are computed at query time and stored in a lookup table for
evaluating (5.5) efficiently over a large number of group vectors. Using approximate
dot products is an additional source of error, but experiments in the next section show
that the decoding schemes described above gracefully handle this.
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Figure 5.1: Comparison of eigendecomposition, dictionary learning (DL), and
LSH [Cha02]. DL gives better performance, all the more so as the dataset is large.
We only evaluate DL up to M/N = 1/10 for Oxford105k and Paris106k. Performance
eventually converges to the baseline after this point.

5.4 Experiments

After detailing the experimental protocol, we report retrieval performance results to-
gether with a comparison with other image retrieval approaches.

5.4.1 Experimental Setup

Datasets. We evaluate our retrieval system using the Oxford5k [PCI+07] and
Paris6k [PCI+08] datasets, which contain 5,063 and 6,412 images respectively. For
large-scale experiments we add 100,000 Flickr distractor images [PCI+07], resulting
in datasets referred as to Oxford105k and Paris106k. Additionally, we use the Yahoo
Flickr Creative Commons 100M dataset [TSF+16] (referred as to Yahoo100M), which
comprises about 100 million image vectors. For comparison with other works, we also
run experiments on the Holidays [JDS08] and UKB [NS06] datasets.

For each dataset, we follow its standard procedure to evaluate performances. The
mean Average Precision (mAP) measures the retrieval quality in all datasets except for
UKB, where the performance is gauged by 4×recall@4.

Features. For most of our experiments, we use the state-of-the-art R-MAC fea-
tures [TSJ16]. Depending on the network used, these features have dimensionality



78 Optimizing Group Testing Using Matrix Factorization

of either d = 512 or d = 256.1 In section 5.4.3, we use T-embedding features [JZ14]
with d = 8, 064 to allow a more direct comparison with the most similar concurrent
methods. For Yahoo100M, we use VLAD [JDSP10] with d = 1, 024 as in [SXPK+14].

Complexity analysis. We report the complexity ratio, ρ = (Md+s)/dN , where s =
nnz(H) is the number of non-zero elements of matrix H. For the eigendecomposition,
we set s = MN , whereas for dictionary learning (Section 5.2.2), m controls the sparsity
of H making the complexity ratio ρ = M/N +m/d. Unless otherwise specified, we set
m = 10 for R-MAC features; when d = 512 then decoding contributes only 0.02 to ρ
(i.e., 2% of the complexity of exhaustive search). The memory ratio, the ratio of the
memory required compared to that of exhaustive search, is equal to ρ for non-sparse H.
When H is sparse, we need to store mN scalars and their indices, making the memory
ratio M/N +m/d+m log2(M)/d ≈ ρ.

5.4.2 Retrieval Performance

We first evaluate our system for different M using either eigendecomposition or dictio-
nary learning solutions. We also include the popular sketching technique LSH [Cha02],
which approximates similarity by comparing binary compact codes of length d′ = ρd.
We measure the retrieval performance in terms of mAP and complexity ratio as men-
tioned in Section 5.4.1.

Figure 5.1 shows the retrieval performance for different complexity ratios. It is
clearly seen that eigendecomposition suffers at low complexity ratio in large-scale
datasets. This is expected because we must set M to a very small value to obtain
a low complexity ratio since the decoding matrix H is not sparse in this solution. On
the other hand, we can set M to a much higher value for a given complexity ratio using
dictionary learning since H is sparse.

Our variant based on dictionary learning performs better than the baseline on all
datasets. One would expect the performance to be worse than baseline for M ≪ N
due to loss of information, but this is surprisingly not the case. A possible explanation
is that dictionary learning “denoises” similarities between vectors by looking at the
distribution of images in the dataset.

To explore this phenomenon further, we plot the distribution of matching and non-
matching vector similarities from Oxford5k using the original global descriptors. We
repeat the same process using the reconstructed similarities from dictionary learning.
As we see in Figure 5.2, both reconstructed similarity distributions have a lower variance
than the original distributions. This is especially true for the non-matching distribu-
tion. This variance reduction increases the separation between the distributions, which
translates to the better performance of our dictionary learning method.

Sparsity of H is controlled by parameter m in dictionary learning (see Section 5.2.2).
This is an important factor in the complexity ratio ρ. The ratio between m and d

1Features available online: ftp://ftp.irisa.fr/local/texmex/corpus/memvec/cvpr16/rmac/

ftp://ftp.irisa.fr/local/texmex/corpus/memvec/cvpr16/rmac/
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Figure 5.2: Distributions of matching and non-matching vector similarities from Ox-
ford5k dataset. Red (blue) curves represent distributions of true (resp. reconstructed)
similarities. The main improvement comes from the reduction of variance under the
negative distribution.

contributes to ρ independently from M . It is possible to set this ratio to a small value
to eliminate its influence.

We compute a dictionary of M atoms and we calculate several matrices H by
applying OMP with different m. We plot the retrieval performance for different m and
M in Figure 5.3. In most cases, the performance does not vary much w.r.t. m. The
biggest difference is observed for Oxford105k where largerm leads to better performance
for small M .

The dimensionality of the vectors is an important factor affecting the overall com-
plexity. Lower dimensionality implies lower complexity and less memory usage. Al-
though our experiments up to now are done in what can be considered as a low-
dimensional feature space (d = 512), we evaluate our system with even smaller fea-
tures, d = 256, in Figure 5.4. The results are similar to those for d = 512, although the
accuracy of eigendecomposition increases at a slower rate for large N .

The training stage computes Y and H and is performed only once and offline.
However, it is important that this stage is scalable for updating the dictionary if needed.
Experimentally, a small number of iterations (≈ 100) is sufficient for dictionary learning.
This does not require much training time. Using Mairal et al. ’s algorithm [MBPS10],
we report the duration of the offline training on Figure 5.5. All experiments are done
on a server with Intelr Xeonr E5-2650 2.00GHz CPU and 32 cores. The training time
is reasonable for all datasets, but it increases dramatically with M in large datasets.
Other training procedures would be necessary for handling large M and N .

Coresets , as explained in Section 5.2.3, reduce the training time even further for
large datasets. Instead of using the entire dataset, we find a coreset C which represents
the data with a few representatives vectors to train the dictionaries. We report results
for coresets of different sizes in Table 5.1. Empirically, we achieve a similar performance
by training on coresets of vectors. This allows us to train the dictionary for larger M in
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Figure 5.4: Retrieval performance using smaller features: d = 256.
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Figure 5.5: Offline training time needed for dictionary learning with 100 iterations.



82 Optimizing Group Testing Using Matrix Factorization

Oxford105k Paris106k
mAP Time mAP Time

|C| = N/10 60.1±1.1 14.6 78.3±1.0 1.8
|C| = N/5 62.1±1.2 16.9 79.2±0.8 2.3
|C| = N/2 62.7±0.4 23.9 79.5±0.4 3.3

X 65.5 45.5 81.2 5.3

Table 5.1: Performance and training time (in minutes) using coresets to train the
dictionary. M is set to 5, 257 and 532 for Oxford105k and Paris105k respectively, and
m = 50. Each experiment is run 5 times, and we report the mean and the standard
deviation.

Mem. Ratio Holidays Oxford5k UKB

Exhaustive 1.0 77.1 67.4 3.63

Iscen et al. [IFG+17]-Kmeans 1.4 76.9 67.3 3.63
Iscen et al. [IFG+17]-Rand 1.4 75.8 62.0 3.63
Shi et al. [SFJ14] w/ bp. 1.4 75.5 64.4 3.63
Borges et al. [BMM15] 1.0 59.2 59.9 3.43
LSH [Cha02] 0.4 73.9 65.8 3.61
PCA 0.4 75.4 64.3 3.61
Shi et al. [SFJ14] w/o bp. 0.4 8.7 24.1 1.33
Ours - Eigen. 0.4 76.9 67.7 3.63
Ours - Dict. Learn. 0.4 55.2 68.8 3.59

Table 5.2: Comparison in image retrieval for a given complexity ratio of 0.4. This
experiment uses long T-embedding features (d = 8, 096). Eigendecomposition and
dictionary learning generally perform better at lower memory ratio.

just a few minutes. Note that Paris106k has fast training time even without coresets.
This is because the best performance for this dataset is obtained with M = 532, a
rather small value. The drawback to using coresets is that H is less sparse: m = 50.
This results in the same performance but slightly higher complexity.

The search time is the average number of seconds to respond to a query. Although
comparing vector operations is reliable in general, we also include the actual timings.
Exhaustive search takes 0.029s on Oxford105k and 0.03s on Paris106k (average per
query). Our method takes 0.003s on Oxford105k (M = 5, 257), and 0.001s on Paris106k
(M = 532), with higher mAP than exhaustive search.

5.4.3 Comparison with Other Methods

We compare our system with other image retrieval approaches. First we compare with
the popular FLANN toolbox [ML14] using Oxford105k and R-MAC features. We set the
target precision to 0.95 and use the “autotuned” setting of FLANN, which optimizes the
indexing structure based on the data. We repeat this experiment 5 times. The average
speed-up ratio provided by the algorithm is 1.05, which corresponds to a complexity
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Mem. Ratio Oxf5k Oxf105k Paris6k Paris106k

Exhaustive 1.0 66.9 61.6 83.0 75.7

Iscen et al. [IFG+17]-Kmeans 1.1 65.6 61.2 79.7 75.7
Iscen et al. [IFG+17]-Rand 1.1 25.1 43.7 21.2 44.4
Shi et al. [SFJ14] w/ bp. 1.1 15.4 28.1 18.7 37.7
Borges et al. [BMM15] 1.0 8.5 22.7 8.2 18.9
LSH [Cha02] 0.1 48.6 40.5 70.1 58.2
PCA 0.1 58.1 8.0 86.1 38.9
Ours-Eigen. 0.1 56.8 8.0 86.3 40.9
Ours-D.L. 0.1 73.7 65.5 85.3 78.9

Table 5.3: Comparison with R-MAC features (d = 512) and 0.1 complexity ratio.

Query Match Query Match Query Match

Query Match Match Match Match Match

Query Match Match Match Match Match

Figure 5.6: Some examples of match and query in Yahoo100M dataset. Two vectors
are considered a match if their similarity is above 0.5.
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ratio of 0.95. In other words, FLANN is ineffective for these R-MAC descriptors,
most likely due to their high intrinsic dimensionality (d = 512): as discussed by its
authors [ML14], FLANN is not better than exhaustive search when applied to truly
high-dimensional vectors. In contrast, our approach does not partition the feature
space and does not suffer as much the curse of dimensionality. Our descriptors are
whitened for better performance [JC12], which tends to reduce the effectiveness of
partitioning-based approaches.

Next we compare our method with other group testing and indexing methods in
the image retrieval literature. To have a fair comparison, we report the performance
using the same high-dimensional features (d = 8, 064), same datasets, and the same
complexity ratio as the group testing methods. Additionally, we also compare our scores
to a dictionary learning-based hashing method [BMM15], LSH [Cha02] and PCA, where
dimensionality of vectors is reduced such that d′ = 0.4d.

Table 5.2 shows the comparison for a fixed complexity ratio. We outline two obser-
vations. First, eigendecomposition works well in these experiments. This is especially
true for the Holidays dataset where N = 1, 491 and d = 8, 064; large M can be used
while keeping the complexity ratio low since N < d. This is clearly a scenario where it
is plausible to use the eigendecomposition approach. Second, dictionary learning per-
forms poorly for Holidays. This dataset contains only 1, 491 images, which constrains
the size of the dictionary M to be small and prevents sparsity: the best parameters
(via cross-validation) are found to be M = 519 and m = 409, giving ρ = 0.4. Note that
this experiment uses long t-embedding descriptors (d = 8, 096) in small and mid-scale
datasets. Most likely, these features have low intrinsic dimensionality, and PCA and
LSH are thus favored. Table 5.3 uses shorter R-MAC features (d = 512) for comparison.
The increase in performance is more significant, especially for large datasets.

Yahoo100M is a recently released large-scale dataset consisting of approximately
100M images. Since there is no manually annotated ground-truth, we use the following
evaluation protocol: a dataset vector is considered to match the query if its cosine
similarity is at least 0.5. There are 112 queries randomly selected from the dataset.
Each query has between 2 and 96 matches, and 11.4 matches on average. Table 5.4.2
shows visual examples of queries and matches.

This dataset is split into chunks of N ′ = 100k images. We run dictionary learning
and OMP independently to learn matrices Y and H for each chunk, setting M ′ =
N ′/100 and m = 100. Overall, it results in M = N/100. We can perform this offline
stage in parallel. At query time, we pool scores from each chunk together and sort them
to determine a final ranking. When we evaluate the retrieval performance, we obtain
a mAP of 89.4 with ρ ≈ 1/10. This is a significant increase compared to running the
same setup with LSH, which results in a mAP of 70.9. Furthermore, it is still possible
for the dictionary learning approach to obtain very good performance with ρ < 1/10
by setting M and m to smaller values as shown in Table 5.4.3.

Similar to other datasets, we apply coresets for the Yahoo100M dataset. We learn
a coreset for each chunk separately, which makes its calculation feasible. We set |C| =
N/2, m = 100 and M = N/100, and obtain a mAP of 87.9 compared to a mAP of 89.4
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M = N/200 M = N/100 M = N/50
mAP ρ mAP ρ mAP ρ

m = 100 85.7 0.105 89.4 0.11 92.8 0.12
m = 50 81.0 0.055 84.7 0.06 87.4 0.07
m = 20 61.8 0.025 71.4 0.03 78.2 0.04

Table 5.4: Performance (mAP) and complexity ratio (ρ) in Yahoo100M for different M
and m.

Baseline Our Method b = 8 b = 64
Oxford5k 66.9 73.4 73.1 72.9
Paris6k 83.0 88.1 87.7 85.6
Oxford105k 61.6 65.5 63.1 30.4
Paris106k 75.7 81.2 80.9 76.8

Table 5.5: Combination of our method with PQ-codes. We use M = 350 for Oxford5k,
M = 30 for Paris6k, M = 5257 for Oxford105k, and M = 532 for Paris106k.

using the entire chunks.

Compatibility with coding methods. One of the main strengths of our method
is its complementarity with other popular coding strategies in computer vision. We
combine our method with PQ-codes [JDS11] as explained in Section 5.3. We use ℓ = d/b
subvectors for different values of b and Q = 256 codewords per each subquantizer
(except for Paris6k where Q = 16 due to small M). This reduces the term O(M × d)
by a factor of b if we neglect the fixed cost of complexity of building the lookup table.

Table 5.5 shows the difference of performance with and without PQ-codes. Observe
that the performance remains almost the same for b = 8. The compression factor by
PQ-code is significant (8 floats replaced by 1 byte).

5.5 Conclusion

This chapter lowers the complexity of image search by reducing the number of vector
comparisons. We formulate the image search problem as a matrix factorization problem,
which can be solved using eigendecomposition or dictionary learning. We show that
the former is a plausible option for small datasets, whereas the latter can be applied
for large-scale problems in general. When applied to real datasets comprising up to 108

images, our framework achieves a comparable, and sometimes better performance, than
exhaustive search within a fraction of complexity. It is worth noting that this approach
is complementary to other indexing/approximated similarity approaches such that it
can be combined to further increase efficiency.



86 Optimizing Group Testing Using Matrix Factorization



Chapter 6

Manifold Search: Efficient Diffusion on

Region Manifolds

Up until this point, the main focus of the problems that we studied in this thesis
manuscript has been indexing. We derived group representations of sets of images to
improve the efficiency of image retrieval. We switch gears in this chapter and focus on a
different area of image retrieval, namely query expansion. We resort to a different kind
of representation of sets of images; we use a weighted graph to represent the relationship
between vectors in the dataset. This graph is used in the query time to retrieve images
that lie on the same manifold as the query. While the main concern of previous chapters
was to improve the efficiency of the search while sacrificing the accuracy, this chapter
explores the other side of this trade-off. Our proposed method adds extra complexity
during the query time, but the accuracy of the search is significantly improved compared
to the baseline. The reader is encouraged to read Section 2.3 for a basic background
knowledge of the topics that will be discussed in this chapter. The contents of this
chapter has been published in [Iscen et al., 2017c].

6.1 Introduction

Object search is a key tool behind a number of applications like content based image
collection browsing [WL11, MCM13], visual localization [SWLK12, AGT+16], and 3D
reconstruction [HSDF15, SRCF15]. Many applications benefit from retrieving images
taken from various viewing angles and under different illumination, e.g. more infor-
mation for the user while browsing, localization in day and night, and complete 3D
models. Each image is represented by one or more descriptors designed or learned
to exhibit a certain degree of invariance to imaging conditions. Retrieval is formu-
lated as a nearest neighbor search in the descriptor space, performed by approximate
methods [ML14, JDS11, KA14, BL16].

While collections of local descriptors provide good invariance, global descriptors

87
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(a) single query

(b) multiple queries

Figure 6.1: Diffusion on a synthetic dataset in R
2. Dataset points, query points and

their k-nearest neighbors are shown in blue, red, and green respectively. Contour lines
correspond to ranking scores after diffusion. In this work, points are region descriptors.

like VLAD [JDSP10] have smaller memory footprint, but are more prone to locking
onto the clutter. This mainly holds when the queried object covers only a small part
of the image. In case of global CNN descriptors, the invariance is partially designed
by global max [ARS+14, TSJ16] or sum [KMO15, BL15] pooling layers or multi-scale
querying [GARL16b], and partially learned by the choice of the training data. Ro-
bustness to background clutter is improved by computing descriptors over object pro-
posals [MB15, GARL16a, XHZT15] or over a fixed grid of regions [TSJ16]. Better
performance is observed at a cost of increased memory footprint [RSCM16].

In image collections, objects are depicted in various conditions. As a consequence,
query and relevant images are often connected by a sequence of images, where con-
secutive images are similar. The descriptors of these images form a manifold in the
descriptor space. Even though the images of the sequence contain the same object, the
descriptors may be completely unrelated after a certain point.

This idea has been first exploited by Chum et al. [CPS+07] who introduce query
expansion. The average query expansion (AQE) is now used as a standard tool in
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image retrieval, due to its efficiency and significant performance boost. However, AQE
only explores the neighborhood of very similar images. Recursive and scale-band re-
cursive methods [CPS+07] further improve the results by explicitly crawling the image
manifold. This is at a cost of increased query time.

Query expansion exploits the manifold of images at query time—starting from near-
est neighbors of the query and using these neighbors to issue new queries. On the other
hand, diffusion [PBMW99, ZWG+03, DB13] is based on a neighborhood graph of the
dataset that is constructed off-line and efficiently uses this information at query time
to search on the manifold in a principled way.

We make the following contributions:

• We introduce a regional diffusion mechanism, which handles one or more query
vectors at the same cost. There is one vector per region and a few regions per
image so that constructing and storing the graph is tractable. This approach
significantly improves retrieval of small objects and cluttered scenes.

• In diffusion mechanisms [PBMW99, ZWG+03, DB13], query vectors are usually
part of the dataset and available at the indexing stage. A novel approach to
unseen queries with no computational overhead is proposed.

• Though a closed form solution to diffusion is known to exist, it has been explicitly
avoided so far [DB13]. We show that the commonly used alternative is in fact
a well known iterative linear system solver. Since the relevant matrix is sparse
and positive definite, the conjugate gradient method is more efficient resulting in
practical query times well below one second.

• To study the dependence of performance on relative object size, we experiment
on INSTRE dataset [WJ15], which has not received much attention so far. We
propose a new evaluation protocol that is in line with other well known datasets
and provide a rich set of baselines to facilitate future comparisons.

6.2 Method

This section describes our contributions on image retrieval: handling new query points
not in the dataset, searching for multiple regions with a single diffusion mechanism,
and efficiently computing the solution.

6.2.1 Handling New Queries

In prior work on diffusion, a query point q is considered to be contained in the dataset
X [ZBL+03, DB13]. This does not hold in a retrieval scenario, but a query can be
included in the dataset graph at query time [ZYC+12] as follows. The k nearest neigh-
bors NNk(q) of q in X are found and reciprocity is checked. The rows and columns
of the affinity matrix A corresponding to NNk(q) are updated to maintain (2.30) in
the presence of q, and A is augmented by appending an extra row and column for q.
Matrix S is computed by normalizing A (2.26). Finally, vector y indicates that q is a
query. Generalizing to multiple query points is straightforward.
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Even if we ignore the time needed for the above computation, we argue that locking,
modifying and augmenting the entire affinity matrix for each query is not acceptable in
terms of space requirements1. We introduce here an alternative method which defines
vector y in a new way rather than modifying A. Qualitatively, instead of searching for
q, we are searching for its neighbors NNk(q), appropriately weighted. In particular,
we define y as

yi = sk(xi|q), ∀i ∈ [n]. (6.1)

Our motivation for this choice is detailed in Section 6.2.2 including the more general case
of multiple query points. Figure 6.1 shows a toy 2-dimensional example of diffusion,
where the k-nearest neighbors to each query point taken into account in (6.1) are
depicted. It is evident that multiple manifolds are captured when multiple queries
are issued. Section 6.3 experimentally shows improved performance compared to the
conventional approach.

6.2.2 Regional Diffusion

The diffusion mechanism described so far is applicable to image retrieval when database
and query images are globally represented by single vectors. We call this global diffu-
sion in the rest of the chapter. Unlike the traditional representation with local descrip-
tors [SZ03, PCI+07], global diffusion fits perfectly with the early CNN-based global
features [BL15, KMO15, RTC16].

Global features still fail under severe occlusion or when the object of interest is
small. Local CNN features from multiple image regions have been investigated for this
purpose, either aggregated [GWGL14, TSJ16] or represented as a set [RSCM16]. Given
a query image, the latter means that one searches for each query feature individually.

Fortunately, diffusion as defined in section 2.3.2 can already handle multiple queries.
In the following, an image is represented by a set Xi ⊂ R

d of m points, one for each
region. Dataset X is the union of such sets over all images; n still denotes its size. The
query image is also represented by a set Q of m points. Each region feature is a point
possibly lying on a different manifold. We discuss below the new definition of vector y
and the combination of individual region ranking scores into a single score per image.
We call this mechanism regional diffusion.

Specifying queries. In the conventional approach where query points are in the
dataset, one directly applies (2.27) with y ∈ {0, 1}n+m with m non-zero elements
indicating the query points. This situation resembles the personalized PageR-
ank [PBMW99]. However, it is simpler to keep A as an n × n affinity matrix and to
set y ∈ R

n as

yi :=
∑

q∈Q

sk(xi|q), ∀i ∈ [n]. (6.2)

1Imagine the case of multiple users querying at the same time; a different matrix per query is
required. Also, updating mutual neighbors requires k-NN lists which are not available any longer.
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Each dataset point xi is assigned a scalar that is the sum of similarities over all query
points q for which xi appears in the corresponding k-nearest neighbor set NNk(q), and
zero if it appears in no such set.

Derivation. Our work is inspired by the analysis in the work of Grady [Gra06] that
we apply to the diffusion mechanism of Zhou et al. [ZWG+03], where query points Q
are in the dataset. We decompose the quantities in (2.27) as f = (f⊤

d , f
⊤
q )⊤, with fd ∈ R

n

and fq ∈ R
m,

S =

(
Sd Bdq

Bqd Sq

)
, (6.3)

and y = (0⊤
n,1

⊤
m)⊤. Subscripts d, q denote data and query respectively. Then, (2.27) is

written as

f t
d = αSdf t−1

d + αBdqf t−1
q (6.4)

f t
q = αBqdf t−1

d + αSqf t−1
q + (1 − α)1m. (6.5)

Provided this system converges, the data part satisfies

f⋆
d ∝ L−1

α Bdq1m (6.6)

if f⋆
q ∝ 1m, Sq = 0m×m and Bqd = 0m×n. In words, the query points are perfectly

retrieved, they are dissimilar to each other, and the graph is indeed directed with query
regions pointing to dataset regions, but the reverse is not allowed. Comparing (6.6)
with (2.28), it follows that Bdq1m is a good choice for y. Since Bdq stores the similarities
between the dataset and the query points, this analysis justifies the single query (6.1)
and the multiple queries (6.2) cases.

Diffusion. Given this definition of y, diffusion is now performed on dataset X , jointly
for all query points in Q. Affinities of multiple query points are propagated in the graph
in a single process at no additional cost compared to the case of a single query point.
Here we are excluding the additional cost of computing y itself in (6.2) compared
to (6.1). This search takes place in all related work. We also do not discuss how to
make this search more efficient in space and time [BL16], which is beyond the scope of
this work.

Figure 6.1 illustrates the diffusion on single and multiple query points. The contour
lines show the ranking score any point on the plane would be assigned given the query
point(s). It is evident that multiple manifolds are captured when multiple queries are
issued.

Pooling. After diffusion, each image is associated with several elements of the ranking
score vector f⋆, one for each point x in X ⊂ X . A simple way to combine these scores
is to define the score of image X as

f(X) =
∑

j∈[m]

wjf
⋆
iX(j), (6.7)
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where iX(j) is the index of the j-th point of X in the dataset X and w = (wj) a
weighting vector. The latter is defined as w = 1m for sum pooling and, assuming
m < d,

w = (ΦΦ⊤ + λIm)−11m (6.8)

for generalized max pooling (GMP) [MP14, IFG+17], where Φ = (x⊤
iX(1), . . . ,x

⊤
iX(m))

⊤

and λ ∈ R
+ is a regularization parameter. Our experiments show that GMP always

outperforms sum pooling.

6.2.3 Efficient Solution

Iteration (2.27) works well in practice but is slow at large scale. Taking the closed-form
solution (2.28) literally, one may be tempted to compute the inverse L−1

α offline, but
this matrix is not sparse like Lα. We propose a more efficient solution by making the
connection to linear system solvers.

Diffusion is an iterative solver. Eq. (2.27) can be seen as an iteration of the Jacobi
solver [Hac94]. Given a linear system Ax = b2, Jacobi decomposes A as A = ∆ + R
where ∆ = diag(A). It then iterates according to

xt = ∆−1(b −Rxt−1). (6.9)

In our case, x = f , b = (1 − α)y, and A = Lα = I − αS. It follows that ∆ = In and
R = −αS, so that

f t = αSf t−1 + (1 − α)y. (6.10)

We have just re-derived (2.27). Note that a sufficient condition for Jacobi’s convergence
is that matrix A is strictly diagonally dominant, i.e. |aii| >

∑
j 6=i aij for i ∈ [n]. It is

easily checked that Lα does satisfy this condition by construction, given that 0 < α < 1.
This provides an alternative proof of the main result of Zhou et al. [ZBL+03].

Conjugate gradient (CG) [NW06] is the method of choice for solving linear systems
like ours

Lαf = (1 − α)y, (6.11)

where Lα is positive-definite, and in particular for graph-related problems [Vis12]. It
has been used for random walk problems [Gra06], but not diffusion-based retrieval
according to our knowledge. In fact, the linear system formulation has been explicitly
avoided in this context [DB13].

Here we argue, as in [LM04], that it is the solution of (6.11) that we seek, rather
than the path followed by iteration (2.27). However, we use CG to approximate this
solution, since matrix Lα is indeed positive-definite. At each iteration, CG minimizes
the quadratic function φ(x) = 1

2x⊤Ax − x⊤b in a particular direction by analytically
computing the optimal step length. More importantly, the direction chosen at each

2We adopt the standard linear system notation in this section; matrix A is not to be confused with
our affinity matrix defined in (2.25).
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iteration is conjugate to previous ones. Thus, any update of x along this direction does
not destroy the optimality reached in the entire subspace considered thus far.

Contrary to other iterative methods including (6.10), CG is guaranteed to terminate
in n steps. Remarkably, it provides good approximations in very few steps.

Normalization is preconditioning. Finally, a standard improvement is precondi-
tioning, i.e. , solving a related system with A replaced by C−1AC−⊤, a matrix sat-
isfying a weak condition like its eigenvalues being clustered. Unfortunately, finding
an appropriate matrix C can be quite complex [Vis12]. We observe that normaliza-
tion (2.26) is preconditioning. Indeed, we could equally consider matrix Lα = D−αA =
αL+ (1 − α)I ≻ 0 and solve the linear system

Lα(D−1/2f) = (1 − α)(D1/2y) (6.12)

instead, which is equivalent to (6.11). By normalizing Lα into Lα, we are actually
performing preconditioning with C = diag(Lα)1/2. This is a simple form of symmetric
preconditioning, known as diagonal scaling or Jacobi [TBI97]. It improves convergence,
be it for CG or diffusion (2.27).

6.2.4 Scaling Up

Despite the efficient solution described in the previous section, there are still issues
concerning space and offline pre-processing at large scale. We address these issues
here.

Compact representation. At large scale, the number of region features per
database image should be kept as low as possible. For this reason, we learn a Gaussian
Mixture Model (GMM) on the original features of each database image and represent
the image by the unit normalized means. This is an even more natural choice when
dealing with overlapping regions (see Section 6.3). As a result, it decreases the number
of region features and their redundancy.

The off-line construction of the affinity matrix is quadratic in the number of vec-
tors in the database and might not be tractable at large scale. We employ the efficient
and approximate k-NN graph construction method by Dong et al. [DCL11]. Section 6.3
shows that it is orders of magnitude faster than exhaustive search and has almost no
effect on performance.

Truncating the affinity matrix. Instead of ranking the full dataset, diffusion re-
ranks an initial search. This baseline in our experiments is done with global descriptors
and kNN search. Then we apply diffusion only on the top ranked images. We truncate
the affinity matrix keeping only the rows and columns related to the regions of the
top ranked images and re-normalize it according to (2.26). The cost of this step is not
significant compared to the actual diffusion.
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Pooling INSTRE Oxf5k Oxf105k Par6k Par106k

sum 79.1 92.2 90.6 96.1 94.4
GMP 80.0 93.2 91.6 96.5 94.6

Table 6.1: Retrieval performance (mAP) of regional diffusion with sum and generalized
max pooling (GMP), with λ = 1 in (6.8).

6.3 Experiments

This section presents the experimental setup and investigates the accuracy of our meth-
ods for image retrieval compared with the state-of-the-art approaches.

6.3.1 Experimental Setup

Datasets. We use three datasets. Two are well-known image retrieval benchmarks:
Oxford Buildings [PCI+07] and Paris [PCI+08]. We refer to them as Oxford5k
and Paris6k. We experiment at large-scale by adding 100k distractor images from
Flickr [PCI+07], forming Oxford105k and Paris106k datasets. The third corpus is the
recently introduced instance search dataset called INSTRE [WJ15]. It contains various
everyday 3D or planar objects from buildings to logos with many variations such as
different scales, rotations, and occlusions. Some objects cover a small part of the
image, making it a challenging dataset. It consists of 28,543 images from 250 different
object classes. In particular, 100 classes with images retrieved from on-line sources,
100 classes with images taken by the dataset creators, and 50 classes consisting of
pairs from the second category. We differentiate from the original protocol [WJ15],
which uses all database images as queries. We randomly split the dataset into 1250
queries, 5 per class, and 27293 database images, while a bounding box defines the
query region3. The query and the database sets have no overlap. We use mean average
precision (mAP) as a performance measure in all datasets.

Representation. We employ a CNN that is fine-tuned for image retrieval [RTC16]
to extract global and regional representation. In particular, this fine-tuned VGG pro-
duces 512 dimensional descriptors. We extract regions at 3 different scales as in R-
MAC [TSJ16], while we additionally include the full image as a region. In this fashion,
each image has on average 21 regions. The regional descriptors are aggregated and re-
normalized to unit norm in order to construct the global descriptors, which is exactly
as in R-MAC. We apply supervised whitening [RTC16] to both global and regional de-
scriptors. We use this network to perform all our initial experiments. In Section 6.3.4,
we also report scores with higher dimensional descriptors derived from the fine-tuned
ResNet101 [GARL16b] using the same fixed grid.

3http://people.rennes.inria.fr/Ahmet.Iscen/diffusion.html

http://people.rennes.inria.fr/Ahmet.Iscen/diffusion.html
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Figure 6.2: Impact of the number of nearest neighbors k in the affinity matrix. mAP
performance for global and regional diffusion on Oxford5k; baselines are R-MAC and
R-match respectively.

Implementation details. We define the affinity function using a monomial ker-
nel [TAJ13] as s(x, z) = max(x⊤z, 0)3. The diffusion parameter α is always 0.99, as in
the work of Zhou et al. [ZBL+03]. The k-NN search required by (6.2) is assumed to
access all database vectors exhaustively. Our work does not investigate how approx-
imate search methods [ML14, JDS11, KA14, BL16, IRF16] could improve time and
space consumed by this process. After computing (6.2), we only keep the largest k
values of y and set the rest to zero.

6.3.2 Impact of Different Components

Neighbors. We vary the number of nearest neighbors k for constructing the affinity
matrix and evaluate performance for both global and regional diffusion. The global
baseline method is k-NN search with R-MAC, while the regional one is the method by
Razavian et al. [RSCM16], where image regions are indexed and cross-matched. We
refer to the latter as R-match in the rest of our experiments.

Results for Oxford5k are presented in Figure 6.2, and are consistent in other
datasets. The performance stays stable over a wide range of k. The drop for low
k is due to very few neighbors being retrieved (where regional diffusion is more sensi-
tive), whereas for high k, it is due to capturing more than the local manifold structure
(where regional diffusion is superior). This behavior is consistent with the fact that
small patterns appear more frequently than entire images.

We set k = 200 for regional diffusion, and k = 50 for global diffusion for the rest
of the chapter. Since only mutual neighbors are linked, the actual number of edges
per element is less: The average number of edges per image (resp. region) is 25 (resp.
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Figure 6.3: mAP performance of regional diffusion vs. number of iterations for conjugate
gradient (CG) and iterative diffusion (2.27). Labels denote diffusion time.

75) for global (resp. regional) diffusion, measured on INSTRE. We set k = 200 for the
query as well in the case of the regional diffusion, while for the global one k = 10 is
needed to achieve good performance.

Pooling. We evaluate the two pooling strategies after regional diffusion in Table 6.1.
Generalized max pooling has a small but consistent benefit in all datasets. We use this
strategy for the rest of our experiments. Weights (6.8) are computed off-line and only
one scalar per region is stored.

Efficient diffusion with conjugate gradient. We compare the iterative diffu-
sion (2.27) to our conjugate gradient solution. We iterate each method until conver-
gence. Performance is presented in Figure 6.3 with timings measured on a machine with
a 4-core Intel Xeon 2.00GHz CPU. CG converges in as few as 20 iterations, which are
also faster, while (2.27) reaches the same performance as CG only after 110 iterations.

The average query time on Oxford5k including all stages for global baseline, regional
baseline, global diffusion and regional diffusion without truncation is 0.001s, 0.321s,
0.02s, and 0.664s, respectively.

Handling new queries. We compare our new way of handling new queries to the
conventional approach that assumes queries to be part of the dataset. Our method
achieves 80.0 mAP on INSTRE compared to 77.7 achieved by the conventional
approach. We therefore not only offer space improvements but also better perfor-
mance,mainly in the case of regional diffusion. The main difference is that k nonzero
elements are kept both per query region (6.2) and for the entire vector y. This, due to
the overlapping nature of the CNN regions, may filter out incorrect neighbors.
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Figure 6.4: mAP performance for varying number of regional descriptors after learning
a GMM per image. Symbol ⋆ denotes global diffusion, and ⋄ to the default number of
regions (21) per image. Average diffusion time in seconds is shown in text labels.

6.3.3 Large-scale Diffusion

We now focus on the large scale solutions of Section 6.2.4.

Reduced number of regions. Figure 6.4 shows the impact of reducing the number
of regions with Gaussian mixture models. Having as few as 5 descriptors per image
already achieves competitive performance, while reducing the online search complexity.
We decrease the number of neighbors k to 50 when GMM reduction is used, as there
are now fewer positive neighbors.

Affinity matrix with Dong’s algorithm [DCL11]. We compare the exhaustive
construction of matrix A to Dong’s efficient k-NN graph algorithm [DCL11]. Exhaustive
search for Oxford105k composed of 2.2M regions takes 96 hours on a machine with a 12-
core Intel Xeon 2.30GHz CPU. The approximate graph only takes 45 minutes and affects
the final retrieval performance only slightly. It achieves 91.6 mAP on Oxford105k and
94.6 on Paris106k, while the exhaustive construction yields 92.5 and 95.2 respectively.

Truncation is a means to handle large scale datasets, i.e. more than 100k images.
Regional diffusion on the full dataset takes 13.9s for Oxford105k, which is not practical.
We therefore rank images according to the aggregated regional descriptors, which is
equivalent to the R-MAC representation [TSJ16], and then perform diffusion on a
short-list. Figure 6.5 reports results with truncation. The performance of the full
database diffusion is nearly attained by re-ranking less than 10% of the database. The
entire truncation and diffusion process on Oxford105k takes 1s, with truncation and
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Method m × d INSTRE Oxf5k Oxf105k Par6k Par106k

Global descriptors - nearest neighbor search

CroW [KMO15]† 512 - 68.2 63.2 79.8 71.0
R-MAC [RTC16] 512 47.7 77.7 70.1 84.1 76.8
R-MAC [GARL16b] 2,048 62.6 83.9 80.8 93.8 89.9
NetVLAD [AGT+16]† 4,096 - 71.6 - 79.7 -

Global descriptors - query expansion

R-MAC [RTC16]+AQE [CPS+07] 512 57.3 85.4 79.7 88.4 83.5
R-MAC [RTC16]+SCSM [SLBW14] 512 60.1 85.3 80.5 89.4 84.5
R-MAC [RTC16]+HN [QGB+11] 512 64.7 79.9 - 92.0 -
Global diffusion 512 70.3 85.7 82.7 94.1 92.5
R-MAC [GARL16b]+AQE [CPS+07] 2,048 70.5 89.6 88.3 95.3 92.7
R-MAC [GARL16b]+SCSM [SLBW14] 2,048 71.4 89.1 87.3 95.4 92.5
Global diffusion 2,048 80.5 87.1 87.4 96.5 95.4

Regional descriptors - nearest neighbor search

R-match [RSCM16] 21×512 55.5 81.5 76.5 86.1 79.9
R-match [RSCM16] 21×2,048 71.0 88.1 85.7 94.9 91.3

Regional descriptors - query expansion

HQE [TJ14] 2.4k×128 74.7 89.4† 84.0† 82.8† -
R-match [RSCM16]+AQE [CPS+07] 21×512 60.4 83.6 78.6 87.0 81.0
Regional diffusion⋆ 5×512 77.5 91.5 84.7 95.6 93.0
Regional diffusion⋆ 21×512 80.0 93.2 90.3 96.5 92.6
R-match [RSCM16]+AQE [CPS+07] 21×2,048 77.1 91.0 89.6 95.5 92.5
Regional diffusion⋆ 5×2,048 88.4 95.0 90.0 96.4 95.8

Regional diffusion⋆ 21×2,048 89.6 95.8 94.2 96.9 95.3

Table 6.2: Performance comparison to the state of the art. Results from original
publications are marked with †, otherwise they are based on our implementation. Our
methods are marked with ⋆. Points at 512D are extracted with VGG [RTC16] and at
2048D with ResNet101 [GARL16b]. Regional diffusion with 5 regions uses GMM.



Experiments 99

103 104 105
80

85

90

95

100

size of truncated affinity matrix

m
A

P

Oxford105k
Paris106k
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re-normalization taking only a small part of it. In the following, search on Oxford105k
and Paris105k is performed by truncating the top 10k images. This choice results in an
affinity matrix A of around 200k regions. When GMM reduction is used, our short-list
size is chosen so that A has 2M regions too, keeping re-ranking complexity fixed.

Our approach is scalable thanks to truncation: the shortlist length is fixed and
so is the re-ranking time, regardless of the database size and the dimensionality of
the descriptors. Although this shortlist contains a small fraction of the database, its
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Figure 6.6: Precision of each positive image measured at the position where it was
retrieved, averaged over positive images according relative object size. Statistics com-
puted on INSTRE over all queries for global and regional diffusion.
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Figure 6.7: Query examples from INSTRE, Oxford, and Paris datasets and retrieved
images ranked by decreasing order of ranking difference between global and regional
diffusion. We measure precision at the position where each image is retrieved and
report this under each image for global and regional diffusion. Average Precision (AP)
is reported per query for the two methods.

significantly outperforms the baseline.

Small objects. We present quantitative and qualitative results revealing that images
benefit from our method mainly when the depicted object is small and the scene is
cluttered. Figure 6.7 shows that the retrieved images with the highest increase of
precision of regional compared to global diffusion contain small objects that the latter
cannot see. Since the bounding boxes are available for all images of INSTRE, we
quantitatively measure precision for all positive images: Figure 6.6 shows that the
highest improvement indeed comes for objects with small relative size.

6.3.4 Comparison to Other Methods

We compare with the state-of-the-art approaches with global or regional representa-
tion, with or without query expansion. Table 6.2 summarizes the results. We im-
plement three methods typically combined with BoW, namely Average Query Expan-
sion (AQE) [CPS+07], Spatially Constrained Similarity Measure (SCSM) [SLBW14]
and Hello Neighbor (HN) [QGB+11]. AQE is also effective with CNN global rep-
resentation [TSJ16, KMO15, GARL16a]. A baseline for the regional scenario is R-
match [RSCM16]. We additionally extend AQE to regional representation4 combined
with the similarity used in R-match. Hamming Query Expansion5 (HQE) [TJ14] is the
only method not using CNNs, but local descriptors.

4AQE has not been proposed in a regional scenario. We extend it as competitive baseline derived
from prior work.

5We evaluated HQE on INSTRE for the purposes of this work.
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Regional diffusion significantly outperforms all other methods in all datasets. Global
diffusion performs well on Paris because query objects almost fully cover the image in
most of the database entries. This does not hold on INSTRE, which contains a lot of
small objects. The improvements of regional diffusion are in this case much larger.

6.4 Conclusion

This chapter proposes a retrieval approach capturing distinct manifolds in the descrip-
tion space at no additional cost compared to a single query. We experimentally show
that it significantly improves retrieval of small objects and cluttered scenes. The conclu-
sion is that as few as 5-10 regional CNN descriptors can convey important information
on small objects while thousands of conventional local descriptors are typically needed.
Thus, a regional affinity matrix becomes possible. Regional diffusion was not possible
before. In contrast to prior work, we use the closed form solution of the diffusion itera-
tion, obtained by the conjugate gradient method. Combined with our contributions on
space efficiency, this achieves large scale search at reasonable query times. Using recent
CNN architectures, we achieve state-of-the-art and near optimal performance on two
popular benchmarks and a recent more challenging dataset.
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Chapter 7

Manifold Search: Fast Spectral Ranking

In Chapter 6, we make diffusion process efficient by solving a linear system online with
conjugate gradients (CG), also handling multiple regions at the same cost. However,
query times are still in the order of one second at large scale. In this chapter, our
work does more work offline than graph construction and shows that query expansion
is more than just “post-processing”.

Given a dataset of size n and a query vector, a sparse observation vector y ∈ R
n is

first constructed based on a similarity search. The final ranking vector x∗ ∈ R
n results

from a linear operator T : Rn → R
n applied on y [ITA+17]. Our work computes and

stores a sparse rank-r approximation of T represented by n× r matrix Φ offline, such
that x = ΦΦ⊤y ≈ x∗. This is obtained online by projecting y onto a r-dimensional
embedding space followed by a search of the NN of Φ⊤y among the n rows of Φ in R

r.
This is achieved without ever forming a dense representation for T . Figure 7.1 illustrates
a 1d signal processing miniature of this idea. We make the following contributions:

1. Image retrieval is cast as linear filtering over a graph, efficiently performed in the
frequency domain.

2. A truly scalable solution computes an approximate Fourier basis of the graph
offline, accompanied by performance bounds.

3. Manifold search is reduced to a two-stage similarity search thanks to an explicit
embedding. This is useful in many other applications than retrieval.

4. A rich set of interpretations connects to different fields.

This work has been published in [Iscen et al., 2017a].
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Figure 7.1: (a), (b) Output signal is xi : = β
∑∞

t=0 α
tyi−t with α ∈ [0, 1) and β : = 1−α.

This is a low-pass filter determined by xi = αxi−1 + (1 − α)yi, with impulse response
ht = βαtut and transfer function H(z) : = β

∑∞
t=0(az−1)t = β/(1−αz−1). This assumes

a directed graph G with vertices V = Z and edges E = {(i, i + 1) : i ∈ Z}, shown in
blue. (c), (d) Using a weighted undirected graph G instead. Information “flows” in all
directions, controlled by edge weights. In retrieval, the sample in red is the query, and
the output x is its similarity to all samples.
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7.1 Method

This section presents the problem and the proposed algorithm in abstract form, re-
quiring as input a graph and a matrix function. Concrete choices relevant to image
retrieval are discussed in the end.

7.1.1 Problem

We are given a weighted undirected graph G = (V,E,w) with n vertices
V = {v1, . . . , vn}, ℓ edges E ⊂ V 2, and a positive weight (similarity) function
w. The graph is determined by its n× n symmetric nonnegative adjacency matrix W
with elements wij = w(vi, vj) if (vi, vj) ∈ E and zero otherwise. Graph G contains no
self-loops, i.e. W has zero diagonal. We assume W is sparse with 2ℓ ≤ kn nonzero
elements for given k ≪ n.

We define the n × n degree matrix D : = diag(W1) where 1 is the all-ones vector,
and the symmetrically normalized adjacency matrix W : = D−1/2WD−1/2 with the
convention 0/0 = 0. We also define the Laplacian and normalized Laplacian of G as
L : = D − W and L : = D−1/2LD−1/2 = I − W, respectively. Both are singular and
positive-semidefinite; the eigenvalues of L are in the interval [0, 2] [Chu97]. Hence, if
λ1, . . . , λn are the eigenvalues of W, its spectral radius ̺(W) : = maxi |λi| is 1. Each
eigenvector u of L associated to eigenvalue 0 is constant within connected components
(e.g. , L1 = D1 −W1 = 0), while the corresponding eigenvector of L is D1/2u.

We are also given a transfer function h : S → S, where S is the set of real sym-
metric square matrices including scalars, R. Our results hold for any function h under
conditions given in section 7.2, but our standard choice is

hα(A) : = (1 − α)(I − αA)−1 (7.1)

parametrized by α ∈ [0, 1) and provided that I − αA is nonsingular. Accordingly,
we define the n × n matrices Lα : = β−1(D − αW ) and Lα : = D−1/2LαD

−1/2 =
β−1(I − αW), where β := 1 − α. Both are positive-definite [ITA+17] and indeed
L−1

α = hα(W).
Now, given a n × 1 observation vector y on the graph vertices, the problem is to

compute n× 1 ranking vector

x∗ : = h(W)y (7.2)

efficiently, in the sense that h(W) is not explicitly computed or stored. For hα in
particular, we look for a more efficient solution than solving linear system

Lαx = y (7.3)

as in [ITA+17]. The idea is that W and h are given in advance and we are allowed to
pre-process them offline, while y (x) is given (resp. computed) online. Moreover, y is
sparse in practice as discussed in section 7.1.3.
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7.1.2 Algorithm

We describe our algorithm given an arbitrary n × n matrix A ∈ S (instead of W)
and a transfer function h. Our solution is based on a sparse low-rank approxima-
tion of A computed offline such that online, x ≈ h(A)y is reduced to a sequence of
sparse matrix-vector multiplications. The approximation is based on a randomized
algorithm [RST09] that is similar to Nyström sampling [DM05] but comes with perfor-
mance guarantees [HMT11, WC13]. In the following, r ≪ n, p < r, q and τ are given
parameters, and r̂ = r + p.

1. (Offline) Using simultaneous iteration [TBI97], compute an n× r̂ matrix Q with
orthonormal columns that represents an approximate basis for the range of A,
i.e. QQ⊤A ≈ A. In particular, this is done as follows [HMT11]: randomly draw
an n× r̂ standard Gaussian matrix B(0) and repeat for t = 0, . . . , q − 1:

(a) Compute QR factorization Q(t)R(t) = B(t).

(b) Define the n× r̂ matrix B(t+1) : = AQ(t).

Finally, set Q : = Q(q−1), B : = B(q) = AQ.

2. (Offline) Compute an approximate rank-r eigenvalue decomposition UΛU⊤ ≈ A,
where n× r matrix U has orthonormal columns and r × r matrix Λ is diagonal.
In particular, roughly following [HMT11]:

(a) Form the r̂ × r̂ matrix C : = Q⊤B = Q⊤AQ.

(b) Compute its eigendecomposition V̂ Λ̂V̂⊤ = C.

(c) Form (V,Λ) by keeping from (V̂ , Λ̂) the slices (rows/columns) corresponding
to the r largest eigenvalues.

(d) Define the matrix U : = QV .

3. (Offline) Make U sparse by keeping its τ largest entries and dropping the rest.

4. (Online) Given y, compute
x : = Uh(Λ)U⊤y. (7.4)

Observe that U⊤ projects y onto R
r. With Λ being diagonal, h(Λ) is computed element-

wise, so h can be given online. Finally, multiplying by U and ranking x amounts to
dot product similarity search in R

r.

7.1.3 Retrieval

The above algorithm solves any problem of the form (7.2) satisfying our assumptions.
We now apply it to image retrieval, following [ITA+17]. We are given a dataset of N
images, each represented by m region descriptors in R

d. Global image description is
just the special case m = 1. The entire dataset is represented by a total of n = Nm
descriptors V = {v1, . . . ,vn}, with each vi associated to vertex vi of G. Descriptors
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are obtained by sampling a set of rectangular regions on CNN activations of a net-
work, followed by pooling, normalization, PCA, whitening, and optionally reduced by
a Gaussian mixture model [ITA+17].

Given descriptors v, z ∈ R
d, we measure their similarity by s(v, z) = (v⊤z)γ , where

exponent γ > 0 is a parameter. We denote by s(vi|z) the similarity s(vi, z) if vi

is a k-NN of z in V and zero otherwise. The sparse n × n similarity matrix S is
defined element-wise as sij : = s(vi|vj), and the symmetric adjacency matrix W as
wij : = min(sij , sji), representing mutual neighborhoods.

Given a query image represented by descriptors {q1, . . . ,qm} ⊂ R
d, we form the

observation vector y ∈ R
n with elements yi : =

∑m
j=1 s(vi|qj) by pooling over query

regions. We make y sparse by keeping the k largest entries and dropping the rest,
and compute the ranking vector x ∈ R

n by (7.4), containing the ranking score xi of
each dataset region vi. To obtain a score per image, we perform a linear pooling
operation [ITA+17] represented as x : = Σx where Σ is a sparse N × n pooling matrix.
The N × r matrix U : = ΣU is indeed computed offline so that we directly compute
x = Uh(Λ)U⊤y online.

Computing y involves Euclidean search in R
d, which happens to be dot product

because vectors are ℓ2-normalized. Applying U and ranking x amounts to a dot product
similarity search in R

r. We thus reduce manifold search to Euclidean followed by dot
product search. The number of nonzero elements of y and rows of U , whence the cost,
are the same for global or regional search.

7.2 Analysis

We refer to our algorithm as fast spectral ranking (FSR) with the following variants:

• FSR.sparse: This is the complete algorithm.

• FSR.approx: Drop sparsification stage 3.

• FSR.rank-r: Drop approximation stage 1 and sparsification stage 3. Set r̂ = n,
Q = I, B = A in stage 2.

• FSR.exact: same as FSR.rank-r for r = n.

Given observation vector y ∈ R
n, n × n matrix A ∈ S, and function h, we denote by

x = FSR.v(y|A, h) ∈ R
n the vector obtained by variant v of the algorithm. We consider

here functions h for which there exists a series expansion

h(A) =
∞∑

t=0

ctA
t (7.5)

for A ∈ S. We denote by H the family of such functions.
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7.2.1 Correctness

Algorithm FSR.exact is not useful: U is a dense n× n matrix in this case and even if
space is not an issue, one is still better off solving linear system (7.3) as in [ITA+17]
rather than using (7.4). However, showing its correctness is instructive in light of its
interpretation in section 7.3.

Theorem 1 If h ∈ H and series (7.5) converges, then FSR.exact(y|A, h) = h(A)y. In
particular, FSR.exact(y|W, hα) = x∗.

Proof: Matrix A is real symmetric hence diagonalizable, and FSR.exact computes
its exact eigenvalue decomposition UΛU⊤ = A, where U is orthogonal. Because the se-
ries converges, h(A) = Uh(Λ)U⊤ = U diag(h(λ1), . . . , h(λn))U⊤ [AM05]. In particular,
hα ∈ H and has the geometric progression expansion

hα(A) : = β(I − αA)−1 = β
∞∑

t=0

(αA)t, (7.6)

which converges absolutely if ̺(αA) < 1 [AM05]. This holds for A = W because α < 1
and ̺(W) = 1.

7.2.2 Complexity

The offline complexity is mainly determined by the number of columns r̂ of matrix Q:
Stage 1 reduces the size of the problem from n2 down to nr̂. The online complexity is
determined by the number of nonzero entries in matrix U . A straightforward analysis
leads to the following:

• FSR.approx: The offline complexity is O(qn(k + r̂)r̂) time and O(nr̂) space; its
online (time and space) complexity is O(nr).

• FSR.sparse: The offline complexity is O(qn(k + r̂)r̂ + τ log τ) time and O(nr̂)
space; its online complexity is O(τ).

Stage 1 is “embarrassingly parallelizable” meaning that it is dramatically accelerated
on parallel and distributed platforms. Since the online stage 4 amounts to NN search,
any approximate method applies, making it sublinear in n.

7.2.3 Error Bound

We present main ideas for bounding the approximation error of FSR.rank-r and
FSR.approx coming from literature. The approximation QQ⊤A ≈ A of stage 1 is stud-
ied in [HMT11]: an average-case bound on

∥∥∥A−QQ⊤A
∥∥∥ decays exponentially fast in

the number of iterations q to |λr+1|. Stage 2 yields an approximate eigenvalue decom-
position of A: Since A is symmetric, A ≈ QQ⊤AQQ⊤ = QCQ⊤ ≈ QV ΛV⊤Q⊤ = UΛU⊤.
The latter approximation C ≈ V ΛV⊤ is essentially a best rank-r approximation of
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C = Q⊤AQ. This is also studied in [HMT11] for the truncated SVD case of a
non-symmetric matrix. It involves an additional term of |λr+1| in the error.

We are actually approximating h(A) by Uh(Λ)U⊤, so that |h(λr+1)| governs the
error instead of |λr+1|. A similar situation appears in [TFP06]. Therefore, our method
makes sense only when the restriction of h to scalars is nondecreasing. This is the case
for hα.

7.3 Interpretation

Our work is connected to studies in different fields with a long history. Here we give
here a number of interpretations both in general and to the particular case h = hα.

7.3.1 Random Walks

Consider the iterating process: for t = 1, 2, . . .

x(t) : = αAx(t−1) + (1 − α)y. (7.7)

If A is a stochastic transition matrix and x(0),y are distributions over vertices, this
specifies a random walk on a (directed) graph: at each iteration a particle moves to a
neighboring vertex with probability α or jumps to a vertex according to distribution y
with probability 1 −α. This is called a Markov chain with restart [BLSV06] or random
walk with restart [PYFD04]. State x(t) converges to x∗ = hα(A)y as t → ∞ provided
̺(αA) < 1 [ZBL+03]. In fact, (7.7) is equivalent to Jacobi solver [Hac94] on linear
system (7.3) [ITA+17].

If y = ei, the i-th canonical vector, then x∗ is used to rank the vertices of G,
expressing a measure of “similarity” to vi [ZWG+03]. Parameter α controls how much
x∗ is affected by boundary condition y [Vig09]: x∗ equals y for α = 0, while in the
limit α → 1, x∗ tends to a dominant eigenvector of A. Indeed, for α = 1, (7.7) becomes
a power iteration.

7.3.2 Random Fields

Given a positive-definite n × n precision matrix A ∈ S and a mean vector µ ∈ R
n, a

Gaussian Markov random field (GMRF) [RH05] with respect to an undirected graph G
is a random vector x ∈ R

n with normal density p(x) : = N (x|µ, A−1) iff A has the same
nonzero off-diagonal entries as the adjacency matrix of G. Its canonical parametriza-
tion p(x) ∝ e−E(x|b,A) where E(x|b, A) : = 1

2x⊤Ax − b⊤x is a quadratic energy. Its
expectation µ = A−1b is the minimizer of this energy. Now, x∗ = L−1

α y (7.3) is the
expectation of a GMRF with energy

fα(x) : = E(x|y,Lα) =
1
2

x⊤Lαx − y⊤x. (7.8)

A mean field method on this GMRF is equivalent to Jacobi or Gauss-Seidel solvers
on (7.3) [WJ08]. Yet, conjugate gradients (CG) [NW06] is minimizing fα(x) more
efficiently [ITA+17, CK16].
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If we expand fα(x) using βLα = αL + (1 − α)I, we find that it has the same
minimizer as

α
∑

i,j

wij ‖x̂i − x̂j‖2 + (1 − α) ‖x − y‖2 , (7.9)

where x̂ : = D−1/2x. The pairwise smoothness term encourages x to vary little across
edges with large weight whereas the unary fitness term to stay close to observation
y [ZBL+03]. Again, α controls the trade-off: x∗ equals y for α = 0, while for α → 1,
x∗ tends to be constant over connected components like dominant eigenvectors of W.

7.3.3 Regularization and Kernels

The first term of (7.8) is interpreted as a regularization operator related to a kernel
K = L−1

α [SSM98, SK03, KV04]. In a finite graph, a kernel can be seen either as an
n×n matrix K or a function κ : V 2 → R operating on pairs of vertices. More generally,
if h(x) > 0 for x ∈ R, which holds for hα, then K : = h(W) is positive-definite and
there is an n×n matrix Φ such that K = Φ⊤Φ, or κ(vi, vj) = φ(vi)⊤φ(vj) where feature
map φ : V → R

n is given by φ(vi) : = Φei. A particular choice for Φ is

Φ : = h(Λ)1/2U⊤ (7.10)

where UΛU⊤ is the eigenvalue decomposition of W. If we choose a rank-r approximation
instead, then Φ is an r × n matrix and φ is a low-dimensional embedding onto R

r.
The goal of out-of-sample extension is to compute a “similarity” κ̂(z1, z2) between

two unseen vectors z1, z2 ∈ R
d not pertaining to the graph. Here we define

κ̂(z1, z2) : = ψ(z1)⊤Φ⊤Φψ(z2) (7.11)

given any mapping ψ : R
d → R

n, e.g. ψ(z)i : = s(vi|z) discussed in section 7.1.3.
This extended kernel is also positive-definite and its embedding φ̂(z) = Φψ(z) is a
linear combination of the dataset embeddings. For r ≪ n, our method allows rapid
computation of κ or κ̂ for any given function h, without any dense n×n matrix involved.

7.3.4 Paths on Graphs

Many nonlinear dimension reduction methods replace Euclidean distance with an ap-
proximate geodesic distance, assuming the data lie on a manifold [LV07]. This involves
the all-pairs shortest path (APSP) problem and Dijkstra’s algorithm is a common
choice. Yet, it is instructive to consider a naïve algorithm [CLRS09]. We are given a
distance matrix where missing edges are represented by ∞ and define similarity weight
wij = e−dij . A path weight is a now a product of similarities and “shortest” means
“of maximum weight”. Defining matrix power A⊗t as At with + replaced by max, the
algorithm is reduced to computing maxtW

⊗t (element-wise). Element i, j of W⊗t is
the weight of the shortest path of length t between vi, vj .

Besides their complexity, shortest paths are sensitive to changes in the graph. An
alternative is the sum1 of weights over paths of length t, recovering the ordinary matrix

1In fact, similar to softmax due to the exponential and normalization.
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power Wt, and the weighted sum over all lengths
∑∞

t=0 ctWt, where coefficients (ct)t∈N

allow for convergence [Vig09], [STC04]. This justifies (7.5) and reveals that coefficients
control the contribution of paths depending on length. A common choice is ct = βαt

with β = 1 − α and α ∈ [0, 1) being a damping factor [Vig09], which justifies function
hα (7.6).

7.3.5 Graph Signal Processing

In signal processing [OS10], a discrete-time signal of period n is a vector s ∈ R
n where

indices are represented by integers modulo n, that is, sī : = s(i mod n)+1 for i ∈ Z. A
shift (or translation, or delay) of s by one sample is the mapping sī 7→ si−1. If we
define the n×n circulant matrix Cn : = (e2 e3 . . . en e1)2, a shift can be represented by
s 7→ Cns [SM13]. A linear, time (or shift) invariant filter is the mapping s 7→ Hs where
H is an n × n matrix with a series representation H : = h(Cn) =

∑∞
t=0 htC

t
n. Matrix

Cn has the eigenvalue decomposition UΛU⊤ where U⊤ is the n × n discrete Fourier
transform matrix F . If the series h(Cn) converges, filtering s 7→ Hs is written as

s 7→ F−1h(Λ)Fs. (7.12)

That is, s is mapped to the frequency domain, scaled element-wise, and mapped back
to the time domain.

Graph signal processing [SM13, SNF+13] generalizes the above concepts to graphs
by replacing Cn by W, an appropriately normalized adjacency matrix of an arbitrary
graph. If UΛU⊤ is the eigenvalue decomposition of W, we realize that (7.4) treats y as
a (sparse) signal and filters it in the frequency domain via transfer function h to obtain
x. Function hα in particular is a low-pass filter that reconstructs x even from a single
nonzero sample y over the graph. By varying α from 0 to 1, the frequency response
varies from all-pass to sharp low-pass, allowing only the DC component.

7.4 Related Work

The history of the particular case h = hα is the subject of the excellent study of
spectral ranking [Vig09]. The fundamental contributions originate in the social sci-
ences and include the eigenvector formulation by Seeley [See49], damping by α (7.6) by
Katz [Kat53] and the boundary condition y (7.3) by Hubbell [Hub65]. The most well-
known follower is PageRank [PBMW99]. In machine learning, hα has been referred to
as the von Neumann [KSTC02, STC04] or regularized Laplacian kernel [SK03]. Along
with the diffusion kernel [KL02, KV04], it has been studied in connection to regular-
ization [SSM98, SK03].

Random fields are routinely used for low-level vision tasks where one is promoting
smoothness while respecting a noisy observation, like in denoising or segmentation,
where both the graph and the observation originate from a single image [TLAF07,

2Observe that Cn is the adjacency matrix of the directed graph of Figure 7.1 after adding an edge
from the rightmost to the leftmost vertex.
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CK16]. A similar mechanism appears in semi-supervised learning [ZBL+03, ZLG03,
ZGL03, CWS03] or interactive segmentation [Gra06, KLL08] where the observation is
composed of labels over a number of samples or pixels. In our retrieval scenario, the
observation is formed by the neighbors in the graph of an external query image (or its
regions).

The random walk or random walk with restart (RWR) formulation [ZWG+03,
ZBL+03, PYFD04] is an alternative interpretation to retrieval [DB13]. Yet, directly
solving a linear system is superior [ITA+17]. Offline matrix decomposition has been
studied for RWR [TFP06, FNOK12, JSSK16]. All three methods are limited to hα

while sparse LU decomposition [FNOK12, JSSK16] assumes an uneven distribution of
vertex degrees [KF11], which is not the case for k-NN graphs. In addition, we reduce
manifold search to two-stage Euclidean search via an explicit embedding, which is data
dependent throught the kernel K = L−1

α .
In the general case, the spectral formulation (7.4) has been known in machine

learning [CWS03, STC04, NLCK05, ZKLG06, VSKB10] and in graph signal process-
ing [SM13, SNF+13, HVG11]. The latter is becoming popular in the form of graph-
based convolution in deep learning [BZSL13, HBL15, DBV16, BBL+16, MBM+16,
PKP17]. However, with few exceptions [BZSL13, HBL15], which rely on an expen-
sive decomposition, there is nothing spectral when it comes to actual computation.
It is rather preferred to work with finite polynomial approximations of the graph fil-
ter [DBV16, BBL+16] using Chebyshev polynomials [HVG11, SVF11] or translation-
invariant neighborhood templates in the spatial domain [MBM+16, PKP17].

We cast retrieval as graph filtering by constructing an appropriate observation vec-
tor. We actually perform the computation in the frequency domain via a scalable
solution. Comparing to other applications, retrieval conveniently allows offline com-
putation of the graph Fourier basis and online reuse to embed query vectors. An
alternative is to use random projections [TB14, RTB+15]. This roughly corresponds
to a single iteration of our step 1. Our solution is thus more accurate, while h can be
specified online.

7.5 Practical Considerations

Block diagonal case. Each connected component of G has a maximal eigenvalue 1.
These maxima of small components dominate the eigenvalues of the few (or one) “giant”
component that contain the vast majority of data [KF11]. For this reason we find the
connected components with the union-find algorithm [CLRS09] and reorder vertices
such that A is block diagonal: A = diag(A1, . . . , Ac). For each nl × nl matrix Al,
we apply offline stages 1-3 to obtain an approximate rank-rl eigenvalue decomposition
ÛlΛ̂lÛ

⊤
l ≈ Al with rl = max(ρ, ⌈rnl/n⌉) if nl > ρ, otherwise we compute an exact

decomposition. Integer ρ is a given parameter. We form (Ul,Λl) by keeping up to ρ slices
from each pair (Ûl, Λ̂l) and complete with up to r slices in total, associated to the largest
eigenvalues of the entire set diag(Λ̂1, . . . , Λ̂c). Online, we partition (y1; . . . ; yc) = y,
compute each xl from yl by (7.4) and form back vector x = (x1; . . . ; xc).



Experiments 113

Sparse neighborhoods. Denote by ηi the ℓ2-norm of the i-th row of U . FSR.exact
yields η = 1 but this is not the case for FSR.approx. Larger (smaller) values appear to
correspond to densely (sparsely) populated parts of the graph. For small rank r, norms
ηi are more severely affected for uncommon than common vectors in the dataset. We
propose replacing each element xi of (7.4) by

x′
i = xi + (1 − ηi)v⊤

i q, (7.13)

for global descriptors, with a straightforward extension for regional ones. This is re-
ferred to as FSRw.approx and is a weighted combination of manifold search and Eu-
clidean search. It approaches the former for common elements and to the latter for
uncommon ones. Our experiments show that this is essential at large scale.

7.6 Experiments

This section introduces our experimental setup, investigates the performance and be-
havior of the proposed method and its application to large-scale image retrieval.

7.6.1 Experimental Setup

Datasets. We use three image retrieval benchmarks: Oxford Buildings (Ox-
ford5k) [PCI+07], Paris (Paris6k) [PCI+08] and Instre [WJ15], with the evaluation
protocol introduced in [ITA+17] for the latter. We conduct large-scale experiments by
following a standard protocol of adding 100k distractor images from Flickr [PCI+07]
to Oxford5k and Paris6k, forming the so called Oxford105k and Paris106k. Mean
average precision (mAP) evaluates the retrieval performance in all datasets.

Image Descriptors. We apply our method on the same global and regional image
descriptors as in [ITA+17]. Global description is R-MAC with 3 different scales [TSJ16],
including the full image as a separate region. Regional descriptors consist of the same
regions as those involved in R-MAC but without sum pooling, resulting in 21 vectors
per image on average. Global and regional descriptors are processed by supervised
whitening [RTC16]. In particular we work with d-dimensional vectors extracted from
VGG [SZ14] (d = 512) and ResNet101 [HZRS16] (d = 2, 048) networks fine-tuned
specifically for image retrieval [RTC16, GARL16b].

Implementation . We adopt the same parameters for graph construction and
search as in [ITA+17]. A monomial kernel is used for pairwise descriptor similarity,
i.e. s(v, z) = (v⊤z)3. We use α = 0.99, and keep the top k = 50 and k = 200 mutual
neighbors when constructing the graph for global and regional vectors, respectively.
These choices make our experiments directly comparable to prior results on manifold
search for image retrieval with CNN-based descriptors [ITA+17]. In all our FSR.approx
experiments, we limit the algorithm within the largest connected component only,
while each element xi for vertex vi in some other component is just copied from yi.
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Figure 7.2: Performance of regional search with FSR.rank-r. Runtimes are reported in
text labels. ⋄ refers to FSR.exact performed with conjugate gradients as in [ITA+17]

This choice works well because the largest component holds nearly all data in practice.
Time measurements are reported with a 4-core Intel Xeon 2.00GHz CPU. Runtimes
refer to the search time excluding the construction of the observation vector, since this
task is common to all baseline and our methods.

7.6.2 Retrieval Performance

Rank-r. We analyze the performance of FSR.rank-r for varying values of r. Param-
eter r affects the quality of the approximation and defines the dimensionality of the
embedding space. The initial vectors in R

d are projected to an r-dimensional space
where manifold search is enabled.

Figure 7.2 reports performance for regional search. The optimal value of r depends
on the structure of the dataset. In all cases the optimal performance appears already
before r = 1k. In particular for Paris6k, performance reaches its peak with as small
as r = 100. Compared to FSR.exact as implemented in [ITA+17], it achieves the same
mAP but 150 times faster on Oxford5k and Paris6k, while 300 times faster on Instre.
Global search demonstrates a similar behavior but is skipped due to lack of space.

We achieve 97.0 mAP on Paris6k which is near-perfect performance. Figure 7.3
presents the two queries with the lowest average precision and their top-ranked negative
images based on the ground-truth. It appears that in most cases the ground-truth is
incorrect, as these images have visual overlap with the query bounding box. In both
cases, we retrieve the object of interest with variations thanks to manifold search.
The first true (visually) negative image for “La Défense” query appears at rank 126.
This image does not contain “La Grande Arche” but it depicts buildings from the
surroundings due to “topic drift” of manifold search. The same outcome is seen for the
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(La Défense, AP: 92.1) #5 #32 #51 #70 #71 #76 #79 #126

(Pyramide du Louvre, AP: 92.7) #2 #4 #8 #61 #68 #72 #75 #108

Figure 7.3: Two queries with the lowest AP from Paris6k and the corresponding top-
ranked negative images based on the ground-truth. The left-most image contains the
query object, and its AP is reported underneath it. Images considered to be negative
based on the ground-truth are shown with their rank underneath. Ranks are marked
in blue for incorrectly labeled images that are visually relevant (overlapping), and red
otherwise.

other query, where the first visually negative image containing “Palais du Louvre” is
at rank 108.

Regional search performs better than the global one [ITA+17] at the cost of more
memory and slower query time. Our approach unlocks this bottleneck thanks to the
offline pooling U = ΣU . Indeed, global and regional search on Instre take 0.040s and
0.042s, respectively, with our method, while the corresponding times for FSR.exact are
0.055s and 3s.

Approximate eigendecomposition keeps the off-line stage tractable at large scale.
The mAP equals 89.5 with FSR.rank-5000 and regional search on Instre. The drop is
small with FSR.approx (89.2) while the offline computation is 20 times faster: it takes
3 hours instead of 60 hours with 570k Instre regional descriptors, using 16-core Intel
Xeon 2.00GHz CPU. This is important at large scale because the off-line complexity of
FSR.rank-r increases polynomially.

7.6.3 Large-scale Experiments

We now apply our approach to a larger scale by using only 5 descriptors per image
thanks to a GMM reduction [ITA+17]. This choice improves the scalability while
minimizing the accuracy losses.

FSRw.approx becomes crucial, especially at large scale, because vectors of sparsely
populated parts of the graph are not well represented. Figure 7.4 shows the comparison
between FSRw.approx and FSR.approx. We achieve 94.2 and 90.2 with FSRw.approx
and FSR.approx respectively with r = 10k and Resnet101 descriptors.

We further report the performance separately for each of the 11 queries of Ox-
ford105k dataset. Results are shown in Figure 7.5. Low values of r penalize sparsely
populated parts of the graph, i.e. landmarks with less similar instances in the dataset.
FSRw.approx partly solves this issue.
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Figure 7.4: Oxford105k with FSR.approx and FSRw.approx using Resnet101(R) and
VGG(V).

The search time is 0.14s. and 0.3s. per query for r = 5k and r = 10k respectively in
Oxford105k. It is two orders of magnitude faster than FSR.exact: The implementation
of [ITA+17] requires about 14 seconds per query. Iscen et al. [ITA+17] reduce this
timing thanks to dataset truncation: manifold search is a re-ranking only applied to
top-ranked images. We do not use any truncation. This improves the mAP by 4% and
our method is still 1 second faster.

Sparse embeddings. We set r to a large enough value, such as 10k, to avoid compro-
mising the search accuracy. This results in r-dimensional embeddings. Most descriptors
belong only to few manifolds and each embedding vector has high energy in the compo-
nents of the corresponding manifolds. Figure 7.6 presents the results of FSRw.approx.
Remarkably, the drop equals %2 mAP for embeddings that are ≈ 90% sparse. Making
the embeddings sparser yields memory savings.

Quantized descriptors. Construction of the observation vector requires storage of
the initial descriptors. We further use product quantization (PQ) [JDS11] to compress
those and perform approximate search method in Euclidean space. When using PQ with
64 and 256 bytes, we achieve mAP equal to 91.1 and 94.2 in Oxford105k, respectively,
while without PQ 94.4 is achieved. This comparison is performed with FSRw.approx.

7.6.4 Comparison to Other Methods

Table 7.1 compares our method with the state-of-the-art. We report results for
r = 5k, FSR.rank-r for global description, FSR.approx for regional description, and
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Figure 7.5: mAP reported separately for each landmark in Oxford105k with
FSR.approx (left) and FSRw.approx (right). Number of positive images per land-
mark queries is shown in the labels.

Method m × d INSTRE Oxf5k Oxf105k Par6k Par106k

Global descriptors - Euclidean search

R-MAC [RTC16] 512 47.7 77.7 70.1 84.1 76.8
R-MAC [GARL16b] 2,048 62.6 83.9 80.8 93.8 89.9

Global descriptors - Manifold search

Diffusion [ITA+17] 512 70.3 85.7 82.7 94.1 92.5
FSR.rank-r 512 70.3 85.8 85.0 93.8 92.4
Diffusion [ITA+17] 2,048 80.5 87.1 87.4 96.5 95.4
FSR.rank-r 2,048 80.5 87.5 87.9 96.4 95.3

Regional descriptors - Euclidean search

R-match [RSCM16] 21×512 55.5 81.5 76.5 86.1 79.9
R-match [RSCM16] 21×2,048 71.0 88.1 85.7 94.9 91.3

Regional descriptors - Manifold search

Diffusion [ITA+17] 5×512 77.5 91.5 84.7 95.6 93.0
FSR.approx 5×512 78.4 91.6 86.5 95.6 92.4
Diffusion [ITA+17] 21×512 80.0 93.2 90.3 96.5 92.6
FSR.approx 21×512 80.4 93.0 - 96.5 -
Diffusion [ITA+17] 5×2,048 88.4 95.0 90.0 96.4 95.8
FSR.approx 5×2,048 88.5 95.1 93.0 96.5 95.2
Diffusion [ITA+17] 21×2,048 89.6 95.8 94.2 96.9 95.3
FSR.approx 21×2,048 89.2 95.8 - 97.0 -

Table 7.1: Performance comparison to the baseline methods and to the state of the art
on manifold search [ITA+17]. Points at 512D are extracted with VGG [RTC16] and at
2048D with ResNet101 [GARL16b]. Regional representation with m = 5 descriptors
per image uses GMM. Large-scale regional experiments use the FSRw.approx variant.
Dataset truncation is used in [ITA+17] at large scale.
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Figure 7.6: Effect of sparsification of U in Oxford105k with FSRw.approx and
Resnet101 descriptors. The τ largest values of U are kept to achieve different levels of
sparsity.

FSRw.approx in large-scale (with 100k distractors) and regional experiments. GMM
reduces the number of regions per image from 21 to 5 [ITA+17]. We do not experiment
large-scale without GMM since there is not much improvement any more and it is less
scalable. Our method reaches performance similar to that of FSR.exact as evaluated
with CG [ITA+17]. Our benefit comes from the dramatic speed-up. For the first
time, manifold search runs almost as fast as Euclidean search. Consequently, dataset
truncation is no longer needed and this improves the mAP.

7.7 Conclusion

This chapter reproduces the excellent results of online linear system solution [ITA+17]
at fraction of query time. We even improve performance by avoiding to truncate the
graph online. The offline stage is linear in the dataset size, embarrassingly paralleliz-
able and takes a few hours in practice for the large scale datasets of our experiments.
The approximation quality is arbitrarily close to the optimal one at a given embed-
ding dimensionality. The required dimensionality for good performance is large but in
practice the embedded vectors are very sparse. This resembles an encoding based on a
large vocabulary, searched via an inverted index. Although it is not the focus of this
work, both Euclidean and dot product search stages can be handled by any efficient
search method [JDS11]. Our method is generic and may be used for problems other
than search, including clustering or unsupervised learning.



Chapter 8

Location Recognition with Set

Representation

This chapter studies a location recognition problem. Our problem is a follows. We
have a dataset corresponding to images with GPS locations. We assume that there are
multiple images taken from a single location, corresponding to a panorama. Some of
the traditional location recognition techniques treated this problem as a visual instance
retrieval task. The user queries a single image from their location, and this image is
matched against every image of the dataset. In this chapter, we propose to match
panoramas to panoramas, instead of images to images.

We propose to construct panorama representatives by applying memory vectors
introduced in Chapter 3. The main difference to the previous task is that now the
groups are “natural”, meaning that instead of random or weakly-supervised assignment,
we assign images to the groups based on their GPS location. Surprisingly, not only
panorama matching gives a significant improvement compared to the baseline in terms
of accuracy. We also show in Section 8.3 that it even surpasses the manifold search
technique we introduced in Chapter 6.

This work is published in [Iscen et al., 2017d].

8.1 Introduction

Location recognition has been treated as a visual instance retrieval task for many
years [ZK06, SBS07, AZ14b, AGT+16, HE08, SHSP16]. Additional, task-specific ap-
proaches include ground truth locations to find informative features [SBS07], regres-
sion for a more precise localization [TSP11, KGC15], or representation of the dataset
as a graph [CS13]. A dense collection of multiple views allows 3D representations
are possible, e.g. structured from motion [IZFB09], searching 2D features in 3D mod-
els [SLK12, LSHF12], or simultaneous visual localization and mapping [CN10]. How-
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Figure 8.1: Left: Toy example of two vector sets X, Y on the 2D plane are shown
on the left. Middle: Pairwise similarity between all vectors, cross-matching with
sum-vectors, i.e. X⊤Y (8.1). Only for visualization purposes, and since we are deal-
ing with unnormalized 2D vectors, the similarity between vectors x,y is defined as
e‖x−y‖2

. Right: weighted pairwise-similarity between all vectors, cross-matching with
pinv-vectors, i.e. G−1

X X⊤YG−1
Y (8.2).

ever, this does not apply to sparse “street-view” imagery [TSPO13b, TAS+15], where
dataset items and queries are groups of images taken at a single location, in a panorama-
like layout.

Several approaches on visual instance retrieval propose to jointly represent a set of
images. These sets of images can appear at the query or at the database side. In the
former case, these images are different views of the same object or scene [AZ12a, SJ15]
and finally performance is improved. This joint representation, which commonly is an
average query vector constructed via aggregation, is presumably more robust than each
individual query vector. On the other hand, when aggregating images on the database
side it is better to group them together by similarity [IFG+17]; images are assigned to
sets, and a joint representation is created per set.

This work revisits location recognition by aggregating images both on query and
database sides. Our method resembles implicit construction of a panorama, i.e. images
are combined in the feature space and not in the image space, but we also experiment
with an explicit construction. Contrary to the general case of visual instance retrieval,
it is easy to obtain multiple query images, e.g. capturing them with a smartphone
or with multiple cameras in the case of autonomous driving. On the database side,
location provides a natural way of grouping images together. Thus, contrary to generic
retrieval, the images to be aggregated on the query and database sides, may not be
similar to each other; they rather depict whatever is visible around a particular location.

We significantly outperform the state of the art without any form of supervision
other than the natural, location-based grouping of images, and without any costly
offline process like 3D reconstruction. Indeed we are reaching near perfect location
recognition on the Pittsburgh dataset [TSPO13b] even when we use as few as four
views on the query side.
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Figure 8.2: Example of all images assigned to a single location (first two rows) and
the corresponding panorama (last row) covering a full 360 degree view, constructed by
automatic stitching.

8.2 Panorama to Panorama Matching

This section describes our contribution for location recognition. We assume that for
each possible location we are given a set of images covering a full 360 degree view while
consecutive images have an overlap (see Figure 8.2). We propose two ways to construct
a panoramic representation of each location: an implicit way by vector aggregation and
an explicit way by image stitching into a panorama and extraction of a single descriptor.

8.2.1 Implicit Panorama Construction

We form a panoramic representation by aggregating the descriptors of images from
the same location. In this way, we implicitly construct a panorama in the descriptor
space. In order to achieve this, we employ two approaches for creating memory vectors,
i.e. sum-vector (3.1) and pinv-vector (3.9).

In contrast to previous works that aggregate the image vectors only on the dataset
side [IFG+17] or only on the query side [SJ15], we rather do it for both. This requires
that the query is also defined by a set of images which offer a 360 degree view. A
realistic scenario of this context is autonomous driving and auto-localization where the
query is defined by such a set of images.

Assume that n images in a dataset location are represented by d × n matrix X
and that k images in the query location by d × k matrix Y. Analyzing the similarity
between the two sum-vectors is straightforward. Panorama similarity is given by the
inner product

s(X,Y) = m(X)⊤m(Y) = 1⊤
n X⊤Y1k. (8.1)

Similarly, panorama similarity for pinv-vectors is given by

s+(X,Y) = m+(X)⊤m+(Y) = 1⊤
n G−1

X X⊤YG−1
Y 1k, (8.2)

where GX = X⊤X is the Gram matrix for X. Compared to (8.1), the sum after
cross-matching is weighted now, and the weights are given by G−1

X and G−1
Y . This is
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Figure 8.3: Two examples of failures with pan2pan/net. We show the query and the
top ranked image from the dataset.

interpreted as “democratizing” the result of cross-matching; the contribution of vectors
that are similar within the same set are down-weighted, just as in handling the bursti-
ness phenomenon for local descriptors [JZ14]. We visualize this with a toy example in
Figure 8.1. Unweighted cross-matching is dominated by “bursty” vectors in the same
cluster. Democratization down-weights these contributions.

8.2.2 Explicit Panorama Construction

Our second approach explicitly creates a panoramic image. The descriptors are then
extracted from the panorama. Given that images of a location are overlapping, we
construct a panoramic image using an existing stitching method. In particular, we use
the work of Brown and Lowe [BL07], which aligns, stitches, and blends images auto-
matically based on their local SIFT descriptors and inlier correspondences. Figure 8.2
shows a stitched panoramic image. Once stitching is complete, we extract a single
global descriptor from the panorama image, capturing the entire scene.

8.3 Experiments

In this section, we describe our experimental setup, and compare our method to a
number of baselines using the state-of-the-art NetVLAD network in a popular location
recognition benchmark.
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Figure 8.4: Comparison of existing approaches (im2im [AGT+16], im2pan [IFG+17],
pan2im [SJ15]) with our methods (pan2pan/sum, pan2pan/pinv and pan2pan/net) for
the full 4096D (left) and for reduced dimensionality to 256D (right).
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Figure 8.5: Recall@5 on Pitt250k, sampling l images from each query panorama and
using NetVLAD descriptors of two different dimensionalities d. We report average
measurements over 10 random experiments and compare our methods pan2pan/pinv
and pan2pan/net.
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8.3.1 Experimental Setup

The methods are evaluated on the Pittsburgh dataset [TSPO13b] referred to as
Pitt250k. It contains 250k database and 24k query images from Google Street View.
It is split into training, validation, and test sets [AGT+16]. We evaluate our approach
on the test set, which consists of 83,952 dataset images and 8,280 query images. Each
image is associated with a GPS location and 24 images are associated with the same
GPS location. Therefore, each panoramic representation aggregates 24 images. There
is a total of 345 query locations and 3,498 dataset locations. We use NetVLAD for
our descriptor representation in all experiments. While the original representation is
d = 4,096 dimensional, we also experiment with reducing dimensionality to d = 256 by
PCA.

The standard evaluation metric is Recall@N . It is defined to equal 1 if at least one
of the top N retrieved dataset images is within 25 meters from the spatial location of
the query. Average is reported over all queries. We follow this protocol for the baseline
and other cases where the query images are used individually.

Aggregating on the query side implies that there is a single query per location: the
number of queries decreases from 8,280 to 345. We report the average recall@N from
these 345 panorama queries. Section 8.3.3 also experiments with a larger number of
random queries, each capturing only a fraction of the panoramic view. In this case,
recall@N is averaged over those random queries. Aggregating on the dataset side does
not affect the standard evaluation.

8.3.2 Panorama Matching

We refer to our proposed method as panorama to panorama or pan2pan matching, in
particular pan2pan/sum and pan2pan/pinv when aggregating descriptors with sum-
vector and pinv-vector respectively; and as pan2pan/net when using a NetVLAD de-
scriptor from an explicit panorama. We compare against the following baselines: image
to image matching (im2im) as in the work by Arandjelovic et al. [AGT+16], image to
panorama matching (im2pan) corresponding to dataset-side aggregation as in the work
by Iscen et al. [IFG+17], and panorama to image matching (pan2im) corresponding to
query-side aggregation as in the work by Sicre and Jégou [SJ15].

Figure 8.4 compares all methods for different descriptor dimensions. Clearly,
panorama to panorama matching outperforms all other methods. The improvement
is consistent for all N and significant for low N : pan2pan/net obtains 98% recall@1!
There are only 7 failure queries. Two of them are shown in Figure 8.3. One is a
challenging query depicting an indoor parking lot and the other actually retrieves the
same building, which is incorrectly marked in the dataset’s ground truth.

The recall is not only improved, but the search is also more efficient both speed-wise
(242× faster) and memory-wise (24× less memory). Instead of comparing a given query
image against 83k vectors, we only make 3.5k comparisons. Additional operations are
introduced when aggregating the set of query images, but this cost is fixed and small
compared to the savings from the dataset side.
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Comparing to results in prior work, im2pan behaves as in the work of Iscen et
al. [IFG+17] when compared to the baseline im2im. That is, memory compression
and speed up at the cost of reduced performance. However, pan2im does not appear
to be effective in our case, in contrast to the work of Sicre and Jégou [SJ15]. On the
contrary, pan2pan significantly improves the performance while enjoying both memory
compression and search efficiency.

8.3.3 Sparse Panorama Matching

Aggregating on the dataset side is performed off-line. However, the user is required
to capture images and to construct a full panorama (24 images in our case) at query
time. Even though this is not a daunting task given the advances of smartphones and
tablets, we additionally investigate a scenario where the user only captures a partial
panoramic view.

In particular, we randomly sample a subset of l images from the query location and
consider them as the query image set. Explicit panorama construction is no longer
possible because the sampled images may not overlap and so we cannot stitch them.
In this case, we feed sampled images through the convolutional layers only, and stack
together all activations before pooling them through the NetVLAD layer (pan2pan/net
for sparse panoramas).

Figure 8.5 shows the results. Our methods have near-perfect performance even for
a small number of sampled images. When the user only takes four random photos, we
are able to locate them up to 99% recall@5. Another interesting observation is that
pan2pan/pinv outperforms pan2pan/net for l = 2, which is expected due to the nature
of pinv-vec construction. It is theoretically shown to perform well even if all the vectors
in the set are random, as shown in the original paper [IFG+17].

8.3.4 Comparison to Diffusion-based Retrieval

This work casts location recognition as a retrieval task. Query expansion techniques
significantly improve retrieval performance. We compare to the state-of-the-art retrieval
method by Iscen et al. [ITA+17], a kind of query expansion based on graph diffusion.
In this method, an image is represented by individual region descriptors and at query
time all query regions are processed. We compare to this method by considering that
regions and images in [ITA+17] correspond to images and panoramas respectively in
our scenario.

Our pan2pan/pinv and pan2pan/net approaches achieve 96.5% and 98% recall@1
respectively, while the approach [ITA+17] gives 91.9%. Even though query expansion
improves the baseline, it does not help as much as our methods. This can be expected
because [ITA+17] is based on many instances of the same object, which is not the case
for location recognition on street view imagery.
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8.4 Conclusion

This chapter proposes an unsupervised and conceptually very simple method, yet very
effective. Besides the performance gain, we make significant savings in space by aggre-
gating descriptors of individual images over each group. The need for multiple query
views is not very demanding because only four views are enough—an entire query
panorama is definitely not needed. Although our aggregation methods have been used
for instance retrieval in the past, we are the first to successfully aggregate on both
dataset and query-side for location recognition (which in fact has failed for instance
retrieval [SAJ15]).



Conclusion

This manuscript addresses the issues of efficiency and accuracy in image retrieval by
designing continuous representations using a set of vectors. Our first contribution
considers the indexing problem. We take a statistical signal processing point of view
to represent a group of vectors in a continuous manner. We start with basic sum-
pooling (3.1), and investigate certain properties of such representation in a membership
test scenario. We then look for the optimal solution based on our hypothesis, which
happens to be the pinv-pooling (3.9). This solution is shown to be better, theoretically
and empirically, when the dimensionality of the descriptors is high. This is especially
useful for the high-dimensional state-of-the-art descriptors.

Pooling strategies, such as sum (3.1) and pinv (3.9) assume that a set of vectors are
already assigned to groups. We also investigate different group assignment strategies
in Chapter 3. Random assignment is the most straightforward assignment strategy,
and requires no additional offline computation (Sec. 3.3.2). In that case, vectors are
randomly assigned to groups of same size. This is relevant for cases such as streaming
data. We show that pinv construction is significantly better than sum construction with
random assignment. On the other hand, it is also possible to assign similar vectors to
the same group. We call this strategy weakly-supervised assignment (Sec. 3.3.3). It
requires an additional offline data-driven process, such as clustering, to assign similar
vectors together. Group sizes are not necessarily the same anymore, and depend on the
distribution of the data. An interesting finding is that the the difference between the
pinv and sum constructions diminishes as the similarity between intra-group vectors
increases.

The weakly-supervised strategy proposed in Chapter 3 is not fully data-driven.
Assignment strategy is data-driven, but the group representation is a generic design,
such as pinv or sum-pooling. We look for purely data-driven solutions in Chapter 5.
The idea is to adapt both assignment and representation based on data, and optimize
them jointly. Our first solution is given by eigendecomposition (5.2.1). Its alternative
based on dictionary learning (5.2.2) gives a sparser, hence more efficient solution. Our
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method is shown to be effective in well-known benchmarks, including a large-scale
experiment with almost 100 million vectors. We achieve the same accuracy as baseline
with only 10% of original complexity in almost all cases.

The second half of this transcript investigates manifold-based query expansion tech-
niques. Contrary to indexing, such techniques trade efficiency for accuracy by intro-
ducing additional processing in the query time to improve the accuracy of the search.
The relationship between the vectors is captured with a weighted graph in this sce-
nario. In Chapter 6, we analyze the existing manifold search techniques, particularly
diffusion processes. We make additional contributions related to image search, such
as a way to handle multiple queries at the same time for regional vectors and a more
efficient solution in the query time using conjugate gradients. We also propose large-
scale extensions, such reducing the number of regional vectors per image with GMM,
or truncating the affinity matrix based on the initial ranked-list. We achieve close to
perfect performance in multiple benchmarks, while keeping the query time below one
second even in large-scale datasets consisting of 2 million vectors.

Chapter 7 proposes to make manifold search even faster in the query time by intro-
ducing additional computations offline. The closed-form solution of diffusion involves
taking the inverse of a large sparse matrix, and is not scalable for large-scale. We
compute its low-rank approximation without computing the inverse directly. This is
based on the fact that the solution can be written as geometric series. This means that
only the eigenvalues change after each iteration and eigenvectors remain the same. Our
experiments reproduce our state-of-the-art scores from Chapter 6, but they are up to
300 times faster in the query time.

Manifold Search vs Memory Vectors. Throughout this transcript, we propose
two separate methods for hashing and query expansion. In Chapters 3 and 4, memory
vectors do not bring any improvement in terms of search accuracy, and are solely
used for indexing to benefit complexity. However, this is not the case in Chapter
8, where memory vectors improve the search accuracy dramatically, when used to
group panoramas on the dataset and query side. It is also shown that manifold search
(Chapter 6), which has improved the search accuracy in instance-based image retrieval,
is not as effective as memory vectors in this scenario.

Another similar setup for a comparison between the two approaches would be to
aggregate the sub-regions of an image to a single vector using pinv construction, as
opposed to regional diffusion in Chapters 6 and 7. In that case, the search accuracy
even drops for Oxford5k, Paris6k, and Instre using ResNet descriptors (see Sec. 6.3).
We achieve 74.2, 90.0, and 45.7 respectively with pinv construction in these datasets,
compared to 95.8, 95.3, and 89.6 with regional diffusion.

This observation can be explained by the definition of the problem. Images in the
same group for location recognition are composed of a panorama, meaning that there are
multiple views and perspectives. Furthermore, it is likely that multiple sub-images from
a panorama will be relevant, since there are may be multiple buildings and landmarks
that discriminate a location. On the other hand, the situation is different when sampling
regions from an image. There may be a single object of interest corresponding to a
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few regions, and the rest may be clutter or background. Pseudo-inverse pooling is
especially appropriate for the former problem, since it creates a representation which
equally weighs the contributions of all the viewpoints, not just the dominant ones,
hence the improvement in search accuracy.

8.4.1 Perspectives

We conclude this manuscript by discussing possible future directions related to the
methods discussed in this manuscript.

New memory vector designs

Our solutions to design memory vectors, i.e. sum (3.1) and pinv (3.9), require the
dimensionality of group vectors to be the same as image vectors. One possible direction
is to remove this constraint and investigate a scenario where the dimensionality of group
representation can vary. This introduces another degree of freedom, and yet another
parameter that may effect the trade-off between accuracy and efficiency. Going to
higher-dimensional spaces is likely to improve the accuracy, but hurt efficiency due to
bigger vectors. A thorough analysis about the theoretical and empirical performance
of such approach may benefit group testing in image retrieval even further.

Random walks

We only investigate a certain random walk strategy (2.27) in Chapter 6. Many other
similar techniques exist in the literature [DB13], and their application in our task may
give us a better understanding of manifold search in image retrieval. An important
constraint in that direction is that the efficiency of the search system must be preserved.
Thus, whatever process is used for manifold search, it must converge to a good solution
quickly in practice. Another alternative is to derive a closed-form solution and apply it
to our scheme in Chapter 7. Assuming that the closed-form solution is based on element-
wise operations on a diagonal matrix, they search system would remain efficient.

Low-shot learning

This manuscript shows the effectiveness of manifold search in image retrieval. However,
it can be extended to different computer vision tasks as well. An example would be to
use manifold search for learning without fully-labeled data, such as low-shot learning.
In that scenario, only a few labeled instances of a class exist and the rest of the data
is unlabeled. It’s important to retrieve the unlabeled data of the same class, so that
it can be used to learn about different visual variations of the same object. Manifold
search can be utilized in such case, in order to retrieve the unlabeled data of a given
class and use it during the learning process.
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Multimodal embeddings

Our embedding technique proposed in Chapter 7 proposes embeddings in diffusion
space. Even though we only use it with images, an interesting direction would be to
investigate its capability of creating common spaces for multimodal data. A straight-
forward approach would be to build separate subgraphs for different modalities, and
create edges between them based on some ground-truth. Resulting would be a single
connected graph, whose decomposition would give us embeddings in a common space.
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Résumé
Cette thèse étudie l’indexation et le mécanisme d’expansion de requête en recherche
d’image. L’indexation sacrifie la qualité de la recherche pour une plus grande efficacité;
l’expansion de requête prend ce compromis dans l’autre sens : il améliore la qualité de
la recherche avec un coût en complexité additionnel. Nous proposons des solutions pour
les deux approches qui utilisent une représentation continue d’un ensemble de vecteurs.
Pour l’indexation, notre solution est basée sur le test par groupe. Chaque vecteur image
est assigné à un groupe, et chaque groupe est représenté par un seul vecteur. C’est la
représentation continue de l’ensemble des vecteur du groupe. L’optimisation de cette
représentation pour produire un bon test d’appartenance donne une solution basée
sur la pseudo-inverse de Moore-Penrose. Elle montre des performances supérieures à
celles d’une somme basique des vecteurs du groupe. Nous proposons aussi une alter-
native suivant au plus près les vecteurs-images de la base. Elle optimise conjointement
l’assignation des vecteurs images à des groupes ainsi que la représentation vectorielle
de ces groupes. La deuxième partie de la thèse étudie le mécanisme d’expansion de
requête au moyen d’un graphe pondéré représentant les vecteurs images. Cela per-
met de retrouver des images similaires le long d’une même variété géométrique, mais
éloignées en distance Euclidienne. Nous donnons une implémentation ultra-rapide de
ce mécanisme en créant des représentations vectorielles incorporant la diffusion. Ainsi,
le mécanisme d’expansion se réduit à un simple produit scalaire entre les représen-
tations vectorielles lors de la requête. Les deux parties de la thèse fournissent une
analyse théorique et un travail expérimental approfondi utilisant les protocoles et les
jeux de données standards en recherche d’images. Les méthodes proposées ont des
performances supérieures à l’état de l’art.

Abstract
In this thesis, we study the indexing and query expansion problems in image retrieval.
The former sacrifices the accuracy for efficiency, whereas the latter takes the opposite
perspective and improves accuracy with additional cost. Our proposed solutions to both
problems consist of utilizing continuous representations of a set of vectors. We turn
our attention to indexing first, and follow the group testing scheme. We assign each
dataset vector to a group, and represent each group with a single vector representation.
We propose memory vectors, whose solution is optimized under the membership test
hypothesis. The optimal solution for this problem is based on Moore-Penrose pseudo-
inverse, and shows superior performance compared to basic sum pooling. We also
provide a data-driven approach optimizing the assignment and representation jointly.
The second half of the transcript focuses on the query expansion problem, representing
a set of vectors with weighted graphs. This allows us to retrieve objects that lie on
the same manifold, but further away in Euclidean space. We improve the efficiency
of our technique even further, creating high-dimensional diffusion embeddings offline,
so that they can be compared with a simple dot product in the query time. For both
problems, we provide thorough experiments and analysis in well-known image retrieval
benchmarks and show the improvements achieved by proposed methods.
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