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Résumé en français
Au cours de cette thèse, nous avons étudié théoriquement la production de rayonnement Tera-

Hertz (THz) dans des microplasmas générés par des laser femtosecondes. Cette approche semble
prometteuse pour créer de manière efficace des sources THz compactes et à large spectre. Le
rayonnement THz intéresse de nombreuses applications comme par exemple, l’identification spec-
troscopique de substances dangereuses, l’imagerie en médecine ou biologie, la mesure d’épaisseur
dans les processus industriels, le contrôle qualité ou encore le contrôle non-destructif de la matière
(voir Chap. 1). Ces applications nécessitent la plupart du temps des sources pulsées et compactes
couvrant idéalement la totalité du spectre THz allant de 0.3 à 30 THz. Elles requièrent aussi
des puissances moyennes de sortie de l’ordre du µW; le contrôle non destructif, par exemple,
nécessite des amplitudes THz supérieures à 0.1 MV/cm.
Les sources THz conventionnelles comme les lasers à cascade quantique, les interrupteurs

photo-conducteurs et les schémas basés sur des cristaux nonlinéaires répondent aux nombreuses
exigences de ces applications THz. Ensemble, elles couvrent la totalité du spectre THz. De
plus, elles produisent des puissances moyennes allant jusqu’au mW avec des taux de conversion
d’énergie laser supérieure à 10−4, permettant d’atteindre des champs intenses de 1 MV/cm.
Cependant, aucune de ces sources ne couvre, seule, le spectre THz tout entier. Mais, surtout,
ces techniques sont limitées par la tenue au flux des matériaux.
Quelques unes de ces précédentes limitations peuvent être résolues en produisant un rayon-

nement THz dans des plasmas générés par des lasers femtosecondes. Les premiers travaux sur le
sujet ont montré la production de THz à partir d’un gaz neutre ionisé par un faisceau laser (voir
Sec. 1.3.1.1). Considérer un plasma permet, en effet, de s’affranchir de la limite au flux imposée
par le seuil d’endommagement du matériau. Cependant, les taux de conversion énergétique
atteints dans ces montages expérimentaux n’excèdent pas 10−8, des valeurs bien plus faibles que
celles obtenues pour les sources conventionnelles. Deux solutions ont été proposées pour aug-
menter cette efficacité. Tout d’abord, l’ajout un champ statique externe au faisceau laser (voir
Sec. 1.3.2). Puis, une autre solution, couramment utilisée, consiste à choisir un faiceau laser à 2
couleurs. Dans ces deux cas, les taux de conversion énergétique dépassent 10−4 (voir Sec. 1.3.3).
Ces schémas ont l’avantage certain de produire un rayonnement THz dont le spectre couvre la
totalité du spectre THz. Cependant, tout comme les sources conventionnelles, ces approches
basées sur l’utilisation de plasma nécessitent des lasers intenses de l’ordre du mJ, ce qui limite
la portabilité et miniaturization de ces sources THz.
Afin de miniaturiser les sources THz basées sur les plasmas, Buccheri and Zhang (Sec. 1.3.1.3)

ont généré du rayonnement THz en focalisant fortement un faisceau laser peu énergétique,
env. 1µJ, dans un gaz. Contrairement aux approches précédentes où les lasers mJ créent des
plasmas millimétriques, ce cas permet la formation de microplasma, plasma dont le taille est de
quelques micromètres. Cependant, là encore, les taux de conversion énergétiques restent faibles.
Dans le but de réaliser des sources THz efficaces et de faible encombrement, cette thèse s’est

focalisée sur l’étude théorique de la génération de rayonnement THz à partir de microplasma
généré par des lasers femtosecondes. Pour cela, nous avons tout à la fois modélisé l’émission THz
par de larges simulations fortement parallélisés résolvant les équations de Maxwell couplées à
celles de la matière, mais aussi par de petits modèles analytiques simplifiés. Ces deux approches
complémentaires nous ont permis d’apporter une meilleure description et compréhension des
rayonnements THz observés expérimentalement. De plus, nous avons appliqué les techniques
d’ajout de champ électrostatique (DC bias) et d’utilisation de laser à deux couleurs, connues
pour rendre plus efficace la génération de THz dans les plasma millimétriques, aux microplasmas.
Les principales étapes réalisées et résultats obtenus sont présentés ci-dessous.
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Nous avons développé un modèle analytique basé sur les équations de Maxwell couplées
à l’équation de Vlasov non relativiste pour les électrons, dans lequel les équations de taux
d’ionisation multiples et les collisions élastiques electron-ion sont prises en compte (voir Chap. 2).
Dans les conditions expérimentales générant des microplasmas, intensité laser supérieure à
1014 W/cm2 et laser fortement focalisé, la réponse des électrons liés aux ions (polarisation linéaire
et nonlinéaire) est négligeable devant la réponse des électrons libres. Nous avons développé les
trois premiers ordres des équations aux moments de l’équation de Vlasov. Ces trois équations
conduisent respectivement aux équations de continuité, d’Euler et de conservation d’énergie.
Ces équations couplées aux équations de Maxwell ont été développées au moyen d’une méthode
d’analyse multi-échelle. Nous supposons que les quantités microscopiques peuvent être écrites
sous forme de séries perturbatives. Cela résulte dans des ensembles d’équations hiérarchisés
dont chacun peut être associé à un mécanisme générant le rayonnement THz.
L’ordre le plus bas décrit le mécanisme appelé “courant d’ionization” (IC). Il tient compte des

courants macroscopiques et d’ionisation produits par le champs électrique. De plus, l’analyse
multi-échelle donne une équation énergétique qui tient compte du chauffage des gaz d’électrons.
Cela permet d’inclure une fréquence de collision electron-ion dépendant de l’énergie des electrons.
Cet ensemble d’équations modélise en particulier la production de THz dans des microplasmas
générés par des lasers à 1 couleur auxquels un champ statique extérieur est appliqué, ou encore
par des lasers à deux couleurs. Parfois, l’émission THz par IC peut être décrite par la méthode
de propagation d’impulsions unidirectionnelles. Cependant, cette approche n’est pas adaptée à
notre cas, à savoir les microplasmas, car elle ne modélise pas l’émission THz pour de grands
angles d’ouverture, tout comme elle ne modélise pas les phénomènes de séparation de charge
qui nécessitent la résolution des équations de Maxwell. Cela est rendu possible grâce à l’ordre
le plus bas de notre modèle analytique.
L’ordre suivant de l’ensemble des équations décrit le mécanisme appelé “Cherenkov-

transition” (TC). Il tient compte de l’excitation du plasma par une source pondéromotrice,
mais aussi, de termes sources additionnels décrivant l’ionization, les collisions et le chauffage.
Tous les termes du second ordre sont exprimés à partir des quantités calculées au premier ordre.
Cet ensemble d’équations décrit la génération THz dans des microplasmas générés par des lasers
de plusieurs cycles optiques.
Afin de résoudre ces équations, nous avons utilisé et/ou développé différents outils numériques.

La résolution de l’équation de Vlasov a été faite avec les codes Particle In Cell (PIC) OCEAN
et CALDER. La résolution des équations multi-échelle a été réalisée à l’aide du code fluide
ARCTIC, développé à partir de la version “type Yee” du code OCEAN. Le code ARCTIC a été
validé en comparant les spectres THz obtenus par des microplasmas générés à partir de faisceaux
“2 couleurs” en géométrie 3D à ceux obtenus avec le code PIC OCEAN (voir Chap. 3).
Nous travaillons avec des faisceaux laser fortement focalisés. Il a donc été indispensable de

développer, pour les codes PIC et fluide, un algorithme modélisant les faisceaux laser au-delà
de l’approximation paraxiale. Cet algorithme a le grand avantage de permettre l’introduction
d’impulsions laser possédant tout type de forme spatiale et/ou temporelle dans les codes élec-
tromagnétiques, par une simple description de sa forme spatio-temporelle dans un plan (voir
Sec. 3.3). Il est à noter que cette approche nouvelle est forte utile pour une large commu-
nauté travaillant sur les codes électromagnétiques, en particulier, pour ceux tranvaillant dans le
domaine de l’interaction avec de la lumière “structurée” ou avec des faisceaux laser fortement
focalisés.
Nous avons considéré l’ensemble de ces outils numériques ainsi que notre modèle multi-échelle

pour étudier la génération de THz dans des microplasma produits par des faisceaux laser fem-
tosecondes fortement focalisés (voir Chap. 4). L’analyse des termes source de courant révèlent
que le mécanisme IC est négligeable pour des lasers de plusieurs cycles optiques et que le mécan-
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isme TC joue le rôle principal. Dans ce cas, les sources pondéromotrices dominent la pression de
radiation, la convection ainsi que la diffusion. Dans le cas de faisceaux gaussiens, les courants
transverses excités par TC ne génèrent pas de rayonnement THz. Cela provient de leur caractère
anti-symétrique par rapport aux coordonnées spatiales transverses qui conduit à des intérférences
destructives dans le champ lointain. Cependant, les courants longitudinaux excités par TC sont
quant à eux symétriques et conduisent à du rayonnement électromagnétique. La polarization
longitudinale des courants rayonnants et la longueur du plasma de l’ordre de 10 microns resul-
tent dans un cone d’émission creux avec large angle d’ouverture (supérieur à 70◦). Ces résultats
obtenus avec les simulations PIC sont en accord avec les mesures expérimentales récemment
publiées (voir Sec. 1.3.1.3).
Dans le cas des faisceaux laser de plusieurs cycles optiques, les simulations PIC ont montré

une émission THz allant jusqu’à 20 THz, bien en dessous du pic de la fréquence plasma qui se
trouve autour de 50 THz dans nos simulations. Nous observons, malgré tout, une force oscilation
du plasma à la fréquence plasma locale. Nous avons présenté une solution analytique montrant
que dans un plasma inhomogène, les oscillations à la fréquence plasma peuvent exister sans
pour autant rayonner en champ lointain. De tels courants non-rayonnants ont un rotationel nul.
De précédents modèles imposaient une structure articfielle au plasma, détruisant par la même,
cette propriété du rotationel nul, ce qui introduisait un rayonnement artificiel à la fréquence
plasma (voir Sec. 1.3.1). Nos résultats montrent que la réponse plasma et la forme spatiale du
plasma doivent être correctement modélisés afin d’éviter un rayonnement artificiel autour de la
fréquence plasma. Nous avons aussi développé un modèle simplifié (modèle d’une plaque plasma)
qui tient compte de la réponse du plasma en forme de “plaque”. La réponse du plasma “plaque”
à l’application de la source pondéromotrice longitudinale reproduit très bien les spectres THz
obtenus à partir des simulations PIC (voir Sec. 5.4.5). Nous avons aussi obtenu des oscillations
non-rayonnantes des champs électriques à la fréquence locale plasma perpendiculaires au gradient
de densité électronique, et nous les avons identifiées comme étant des polaritons plasmons de
volume.
L’absence d’émission résonnante nous autorise à considérer le modèle du courant local modifié

pour prédire des taux de conversion énergétiques laser/THz pour différents paramètres laser.
L’efficacité de conversion sature pour des valeurs autour de 10−6−10−7 pour de grandes énergies
laser dans différentes conditions de focalisation. L’opacité du plasma aux fréquences THz joue
un rôle crucial dans le phénomène de saturation. Les résultats sont en bon accord avec les
simulations PIC.
De plus, nous avons regardé l’influence de la pression des gaz sur l’efficacité de conversion.

En accord avec des mesures expérimentales, nous avons trouvé un comportement quadratique
pour les basses pressions. Cela confirme que l’émission THz a lieu dans un régime non-résonant.
Pour les grandes pressions, l’efficacité de conversion tend à saturer.
Un comportement similaire est observé pour les microplasmas générés par un faisceau “1

couleur” complété par un champ électro-statique (voir Sec. 4.4). En augmentant la pression du
gaz et l’amplitude du champ statique, nous augmentons l’efficacité de conversion de deux ordres
de grandeur par rapport à un cas sans champ statique additionnel. Dans ce cas, les courants
d’émission THz sont excités par un champs electrostatique externe constant et peuvent être
modélisés par le mécanisme IC. Les simulations faites avec ARCTIC ont montré que lorsque
le plasma est excité par un champ statique externe longitudinal, le rayonnement THz est émis
avec un spectre dont la fréquence maximale est bien plus faible que la fréquence plasma. Et
ceci, malgré le fait que le plasma oscille à la fréquence plasma locale. Nous avons montré que la
situation change lorsque le champs statique externe est transverse. Par opposition à l’excitation
longitudinale, dans ce cas transverse, un rayonnement autour de la fréquence plasma est émis.
Cela montre que la forme du plasma est importante pour le spectre d’émission THz.
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En plus des faisceaux “1 couleur”, nous nous sommes intéressés à l’émission THz à partir de
microplasmas générés par des faisceaux “2 couleurs” (voir Chap. 5). Dans ce cas, l’émission
THz est générée par le mécanisme IC que nous modélisons avec le code ARCTIC en géométrie
3D. Dans le cas de très forte focalisation, la plasma émetteur agit comme un source ponctuelle
d’émission THz. La polarisation du courant d’émission THz peut être directement déterminée
par un profil de rayonnement toroïdal. Cette opportunité apparaît seulement pour les microplas-
mas les plus petits car pour les grands plasmas émetteurs, le profil de rayonnement dirigé vers
l’avant est déterminé par les longueurs et épaisseurs du plasma. Nous avons montré que les
plasmas, avec une épaisseur de l’ordre ou plus petite que la plus petite longueur d’onde plasma
le long de la direction de polarisation, rayonne en régime résonant. Nous avons trouvé, pour
les faisceaux lasers gaussiens polarisés linéairement, un élargissement spectral de l’émission THz
jusqu’à la fréquence plasma maximale de 50 THz pour un gaz entierement ionisé à pression
ambiante. Pour des faibles pressions de gaz, le plasma rayonne de manière résonante avec un
pic plus bas que la fréquence plasma maximale et qui dépend de la pression.
Pour interpréter ces résultats par un modèle simplifié pour de futures potentielles expériences,

nous avons proposé d’exploiter des faisceaux laser avec des formes spatiales transverses différentes
générant ainsi des plasmas aux profils de densité elliptiques. Les simulations 3D ont montré
que le spectre THz obtenu à partir de faisceaux elliptiques sont fortement dépendants de la
direction du champs électrique laser. Les champs THz émis peuvent être décrits à partir d’état
de polarization superposant deux cas fondamentaux : le cas quasi-électrique transverse (TE) et
le cas quasi-magnétique transverse (TM). Pour le cas TM, le champs electrique laser pointe dans
la direction où le plasma est fin. Dans ce cas, le spectre d’émission s’étend jusqu’à la fréquence
plasma maximale. En revanche, pour le cas TE, le champs electrique laser pointe dans la
direction où le plasma est épais. Ce cas ne donne pas de spectre THz large. Ce comportement
a pu être expliqué par notre modèle de plasma “plaque” (voir Sec. 5.4.3). Dans le cas TM, les
polaritons de surface et de volume sont excités. Cela donne des caractéristiques résonnantes qui
dépendent de la pression du gaz et expliquent l’élargissement spectral. Le cas TE ne présente
pas de caractéristiques résonantes expliquant l’absence d’élargissement spectral. Ces études
s’orientent vers la plasmonique THz dans des plasmas.
De plus, nous avons développé un modèle 3D qui permet de prédire les lois d’échelle pour

l’efficacité de conversion laser/THz pour différentes énergies laser et conditions de focalisation
d’un faisceau laser gaussien (voir Sec. 5.2). Selon notre modèle, les conditions de focalisation
conduisant à la simple ionisation totale au point focal sont optimales aussi longtemps que les ef-
fets de propagation nonlinéaires sont faibles. Dans ce cas, l’augmentation de l’énergie laser avec
la taille transverse du faisceau tout en maintenant l’intensité laser constante augmente l’efficacité
de conversion par le carré de l’énergie laser pour le cas optimal. En considérant ce type de config-
uration, nous avons montré que l’utilisation des faisceaux micro-joules “2 couleurs” produit des
taux de conversion énergétique excédant 10−4. Deux effets jouent en faveur d’une forte émission
THz à partir de microplasmas irradiés par des faisceaux “2 couleurs”. Tout d’abord, la nature
transverse des courants d’ionisation est avantageuse pour un accroissement du taux de conver-
sion avec la longueur plasma en comparaison avec le mécanisme TC, et l’opacité du plasma aux
ondes THz apparaît insignifiante. Ces avantages fondamentaux du mécanisme IC tiennent pour
des plasmas grands et petits. Deuxièmement, exclusivement pour les microplasmas, l’émetteur
rayonne de manière cohérente du fait des petites tailles transverses de la source.
Au delà des efficacités de conversion intéressantes, les faisceaux “2 couleurs” produisent des

amplitudes THz jusqu’à 0.5 MV/cm dans le voisinage du plasma. Cependant, séparer l’impulsion
laser de l’impulsion THz près du plasma reste difficile. Nous avons montré que les faisceaux
elliptiques fortement focalisés produisent des impulsions THz avec des amplitudes 10 kV/m
émises selon la direction de propagation laser (voir Sec. 5.3).
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D’autres études sont planifiées pour explorer l’intérêt de la lumière structurée. En considérant
notre algorithme permettant d’introduire les faisceaux laser de forme arbitraire développé dans
le code ARCTIC (voir Chap. 3), nous pouvons exploiter des faisceaux laser plus exotiques. Par
exemple, nous prévoyons d’utiliser des faisceaux dits “caustiques” pour séparer le faisceau THz
du faisceau laser juste derrière le plasma. Si cela est possible, de forts champs THz peuvent être
obtenus juste dans le voisinage du plasma sans besoin de fortement focaliser le faisceau THz ce
qui est limité par la diffraction.
Pour contrôler les effets plasmoniques durant la génération de rayonnement THz, nous nous

intéressons à la lumière “structurée”. Par exemple, nous nous attendons à contrôler les effets
résonnants par contrôle de la polarisation du faisceau à deux couleurs : le champs électrique d’un
faisceau laser de polarisation azimutale est orienté perpendiculairement au gradient de densité
électronique, alors qu’il est orienté parallèlement dans le cas d’une polarisation radiale. Comme
nous avons montré qu’un fort gradient électronique le long du champ électrique était nécessaire
pour exciter des résonances plasmoniques, passer de l’une à l’autre des polarisations permet de
contrôler ces effets résonants. De plus, en considérant des techniques modernes de structuration
spatiale des faisceaux laser, nous pouvons structurer le plasma afin de passer de l’une à l’autre
des résonances plasmoniques. Au delà du contrôle spectral, nous espérons guider et confiner les
faisceaux THz. Toutes ces considérations sont applicables aux plasmas issus des gaz, liquides ou
solides. Pour ces matériaux, nous devons conserver le traitement numérique complet en étendant
la réponse du matériel par la prise en compte de la dynamique des électrons liés et l’ionization
collisionnelle.
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1. Introduction to terahertz sources
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1.2.4. Difference frequency generation . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5. Summarizing the abilities of conventional THz sources . . . . . . . . . . 10

1.3. Laser-induced gas-plasma-based terahertz sources . . . . . . . . . . . 10
1.3.1. Single-color fs-laser-induced gas-plasma . . . . . . . . . . . . . . . . . . 10
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The main purpose of the thesis is the theoretical investigation of terahertz (THz) generation
in laser-induced microplasmas. In this manuscript, THz radiation is defined as electromagnetic
radiation ranging from 300 GHz to 30 THz (see Fig. 1.0.1). The corresponding photon energy
ranges from 1.24 meV1 to 124 meV. This photon energy is much smaller than the electron binding
energies in atoms and molecules or electronic band gaps of semiconductors or insulators, that
have typical values in the order of several eV. Fundamental modes that can be excited by THz
waves are found in the rotational motion of molecules, vibrational motion of crystal lattices or
precession of spins. The exploration and excitation of such states is the common idea behind all
applications that are going to be presented in Sec. 1.1. In turn, these applications pose various
requirements on the THz sources.

11 meV= 10−3 eV

LaserTransistor
Terahertz gap

Visible

UV

3 GHz 3 THz 30 THz 300 THz300 MHz 300 GHz30 GHz

Radiowaves

IR

Figure 1.0.1.: Schematic representation of the electromagnetic spectrum between radiowaves and
UV including THz frequencies that are labeled by the red box. This spectral region
is difficult to access and thus often called the “Terahertz gap” [1].
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photoconductive antenna

gas-plasma-based source

Figure 1.1.1.: Absorbtion spectra of TNT with many features in the THz domain obtained by
THz time-domain (TD) spectroscopy [3]. Source: DTU Lyngby / ISL [4].

The frequency interval of 300 GHz to 30 THz corresponds to oscillation periods from 3 ps down
to 30 fs. Thus, in order to produce THz radiation, processes faster than 3 ps, but slower than 30 fs
are needed. To fulfill this requirement is quite challenging: Typical sources of electromagnetic
radiation in the range from GHz to PHz are either electronic devices or lasers. But, electronic
devices barely reach response times below 3 ps (=̂ 1.38 meV) [2] and lasers typically cannot
produce radiation with oscillation periods above 30 fs (=̂ 138 meV) since their active media are
usually based on electronic transitions. This problem is often referred to as the “THz gap” [1]
that should reflect the lack of proper sources in the THz spectral range (see Fig. 1.0.1). In
Sec. 1.2, an overview of common solutions to this problem is presented.
A particular and rather new way to bridge the THz gap are THz sources based on laser-

induced gas-plasmas. The broad spectrum of laser-induced-gas-plasma schemes is discussed in
Sec. 1.3. Particular attention is paid to the strengths and limitations of these sources, motivating
to investigate laser-induced microplasmas as THz sources in this thesis.

1.1. Applications
Most of applications exploit linear “optical” properties of matter in the THz frequency range,
either for characterization or identification. One can divide those applications into two classes:
Some applications need tunable small spectral bandwidth sources; other require pulsed broad-
band THz sources, ideally covering the whole THz range. When using small spectral bandwidth
sources, typically the reflectivity, transmittance or absorption by a sample is measured. Here,
it is sufficient to access the amplitude of a THz wave, e.g., by using a bolometer. In order to
get phase informations as well, detection techniques like Fourier-transform spectrometry [5] or
electro-optic sampling [3] have been developed. These techniques require THz pulses. Broad-
band THz pulses have also other advantages as will be elaborated in Sec. 1.1.1.
Moreover, recent development of intense THz sources provides the possibility to control matter

by exploring nonlinear interaction with THz radiation. Typically, resonant excitation is provided
by small bandwidth radiation, whereas non-resonant excitation is often exploited by broadband
few-cycle THz pulses. Selected examples are presented in Sec. 1.1.2.

2
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Figure 1.1.2.: (a) Imaging of water content in a freshly cut leaf and after 48 hours by using
THz-TD spectroscopy [10]. (b) THz transmission of a rye leaf during 35 days
measured by THz-TD spectroscopy. Below, the weight of the pot containing the
rye plant that visualizes the amount of available water in the earth. Higher THz
transmission can be associated with a smaller water concentration [11].

1.1.1. Exploiting linear interaction of matter with THz pulses
Linear “optical” properties of matter are characterized by the frequency-dependent complex
dielectric function ε. It determines the phase velocity of the THz wave and its attenuation during
the propagation [6]. Specific dielectric linear properties of materials in the THz frequency range
give rise to the following applications.

Spectroscopic identification Many materials have resonant features of ε in the THz frequency
range. The dielectric function is intimately linked to the amount of energy absorbed by a
sample (absorption α). This fact can be exploited to identify drugs-of-abuse, pharmaceuticals,
explosives and other hazardous substances [7]. For example, Fig. 1.1.1 (black line) presents
the THz absorption spectrum of trinitrotoluol (TNT). The diversity of spectral features can be
used to identify TNT with a high selectivity. Moreover, THz spectra can give an inside about
DNA, amino and protein structures [8, 9]. All these applications can profit from broadband
THz spectra that cover a large amount of spectral features.

Biological and medical applications In biology THz sources find a wide range of applications
besides spectroscopy. The main reason is that THz waves are very sensitive to water content,
one of the main constituents of biological tissues. For frequencies of 1-100 THz the penetration
depth in water is less than 1 µm due to linear absorption caused by vibrational and rotational
transition [12]. Absorption measurements can identify and spatially resolve different tissues by
their water concentrations. For example, structural informations as water distribution in leaf
veins can be provided [see Fig. 1.1.2(a)] and in-vivo transmission measurements through plant
leaves can be used for optimization of irrigation strategies [see Fig. 1.1.2(b)].
In medicine, THz waves provide a tool for detection of diseases [12]. Unlike X-rays, THz

radiation is usually harmless to a living organism [13]. THz imaging can resolve tissues that
contain polar molecules. 2D imaging by spatial scanning or even 3D tomography with THz
waves have been already demonstrated [14]. In particular depending on the availability of cheap
and compact THz sources, THz imaging techniques might be utilized in clinical routine as a
complementary diagnostics tool of breast or skin cancer [15].
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Figure 1.1.3.: Wall thickness measurements on two points of the same high-density polyethylene
bottle by measuring the delay-time of the reflected THz pulse according to [16].

Industrial process and quality control
THz waves can penetrate through several materials as polymers, paper or textiles that are opaque
for infrared radiation (IR) and visual frequencies [16]. The delay time between the THz pulses
that are reflected at the front and rear surface of a layer determines its thickness (see Fig. 1.1.3).
Also for control of coating thickness for drugs, THz based thickness measurements are of interest
since the coating thicknesses plays an important role for the release of the drug inside the human
body. Unlike traditional methods using x-rays coherent tomography or thermography, even in-
situ indestructible measurements of multi-layer systems are possible [17]. Moreover, reflective
measurements allow for identification of defects like for example sub-surface cracks in polymers.

The resolution of the layer thickness is determined by the THz pulse duration. Decreasing the
pulse duration from few ps to 100 fs or shorter could increase the resolution from the 1 µm up to
date to 0.1 µm. Thus, there is a demand for broadband sources capable of delivering shorter THz
pulses. Moreover, the signal-to-noise ratio of the measurement is proportional to the average
power Pav

THz = ETHzνrep of the THz source, where ETHz is the THz pulse energy and νrep the
repetition rate. Therefore, high THz average powers are needed, in particular to accelerate the
measurement processes or to insure a better accuracy. This conclusion holds for all applications
which explore the sample by a linear interaction with THz pulses, i.e., all the applications that
have been presented above. For industrial process and quality control measurements, typical
THz average powers of Pav

THz = 50µW are needed [16, 17].

1.1.2. Control over matter
All the applications presented so far are based on linear interaction which does not require strong
THz fields. However, over the past years the achievable THz peak electric and magnetic fields
increased considerably. For ps-long THz pulses, electric fields around 1 MV/cm and magnetic
fields around 0.33 T can nowadays be reached at many laboratories. Consequently, the number
of investigations involving nonlinear interaction of THz radiation with matter, in particular,
control over matter by THz radiation, is rapidly increasing.
Low-frequency electromagnetic fields in the THz domain are favorable for excitation of matter:

The reason is that charged particles, for example electrons, can gain a substantial energy in the
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THz electric field because the THz-oscillation period is large. After half of the THz cycle the
electron that is accelerated by the THz electric field gains the maximum energy q2

eE
2
0

2meω2
THz

, where
qe is the electron charge, E0 the amplitude of the electric field oscillation, me the electron mass
and ωTHz the angular THz frequency. Already for Emax = 0.15 MV/cm and the THz frequency
νTHz = ωTHz/(2π) = 1 THz, the electron gains an energy of 1 eV. This idea has been used in [18]
where electrons were accelerated by the longitudinal electric field of a 10-µJ single-cycle THz
pulse. Only 0.1 MV/cm-THz-electric-field amplitude was sufficient to let the electron gaining
7 keV of energy within a waveguide along the distance of 3 mm.
THz pulses can even control the ionic motion: In [19], THz pulses with MV/cm-strong electric

fields have been used to switch the polarization of ferroelectric crystals. Here, few-cycle THz
pulses were coupled resonantly to the ionic motion in lithium niobate changing the conformation
of the crystal structure and herewith the ferroelectric polarization. Many other examples of
nonresonant and resonant control over matter and even light by THz radiation are given in [20].
The broad range of possibilities of matter control by THz radiation that has been presented

above suggests that there is still a large number of unexplored applications that are limited by
the availability of THz sources providing higher field amplitudes. Furthermore, the availability
of operating systems beyond the laboratory rooms will strongly depend on the compactness of
THz sources that can provide 0.1-1 MV/cm electric field amplitudes.

1.1.3. Demands on THz sources
Based on the insights in previous examples, the demands on THz sources can be formulated as
follows:

1. The requirements with respect to the THz spectrum differ strongly from application to ap-
plication. However, as has been shown above, many applications require pulsed broadband
THz sources, ideally covering the whole THz range from 0.3 to 30 THz.

2. Most THz applications perform measurements of linear “optical” properties. The THz
average power Pav

THz = ETHzνrep is important to provide a reasonable signal-to-noise-ratio.
However, average powers of Pav

THz ∼ 0.1− 50 µW are often sufficient [16, 17, 21]. On the
one hand those can be reached by sufficiently high THz pulse energies ETHz, on the other
hand by high repetition rates νrep.

3. As will be shown in the next section, many THz sources are driven by ultra-short laser
pulses which have a strong impact on the compactness and costs of THz sources. Thus,
it is advantageous to keep the driving laser pulse energy EL for a given THz average
power Pav

THz small. Thus, a large ratio Pav
THz/EL = νrepηTHz with laser-to-THz conversion

efficiency ηTHz = ETHz/EL is intended and requires, besides a high repetition rate νrep, a
reasonably large laser-to-THz conversion efficiency ηTHz.

4. When controlling matter or light by THz radiation, i.e., within a nonlinear interaction
regime, strong THz field amplitudes are needed. Electric fields of the order 0.1−1 MV/cm
and magnetic fields of the order 33-330 mT or above are required for current experiments.

1.2. Conventional sources
In the following an overview on modern THz sources is given with the noted exception of laser-
induced-gas-plasma-based THz sources that are discussed separately in the subsequent section.
First, a non-laser-driven THz source, the quantum cascade laser, is introduced. Then, three
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laser-driven types of pulsed THz sources are presented. Finally, the abilities of conventional
THz sources are summarized.

1.2.1. Quantum cascade lasers
Until 1994 it was not possible to exploit the laser principle to bridge the THz gap [22]. The
reason is the technological difficulty to construct an active medium operating at THz frequencies.
Lasers emitting radiation in visual and near-infrared spectral region contain active bulk or
gaseous media providing electronic transitions with eV energies. At THz frequencies nowadays
only cascades of engineered quantum states can provide meV transitions [24].
Fig. 1.2.1(a) illustrates the energy band diagram of the active medium in the so-called quan-

tum cascade laser (QCL). It consists of periodically arranged structures that can be divided
into an active region and a relaxation region in Fig. 1.2.1(a). The active region contains semi-
conductor layers with different band gaps. A sequence of three layers can form a potential trap
for the electrons with a localized quantum state. Three potential traps with spatially overlap-
ping wavefunctions lead to a three level system as needed to create population inversion. The
transition from level 3 to 2 for example can lead to stimulated emission of THz radiation. After
reaching the state 1, the electron enters the relaxation region that has the main function to
avoid space-charge creation. The active medium is pumped by an electrostatic field that leads
to a potential that decreases from left to right in Fig. 1.2.1(a). Thus after leaving the relaxation
region, the electron goes into the 3rd level of the next three level system.
QCLs operate in the frequency bands from 1 to 5 THz and from 10 to 30 THz [25]. Since

they are based on the laser principle only single-frequency or small-bandwidth pulsed operation
is possible [26, 27, 28]. Ultra-broadband THz radiation in the context of QCLs covers spec-
tral bandwidths of only ∆ν = 1 THz and can be achieved only with advanced mode control
techniques [29, 30]. Typically, operation below 5 THz needs cooling by hundreds of Kelvin be-
low the room temperature and results in Pav

THz ≤ 100 mW [31]. However, operation at room
temperature is possible providing moderate output powers around Pav

THz ≈ 5 µW and tunable
single-frequency THz emission from 2.06 to 4.35 THz. Even when focusing the THz radiation
down to the diffraction limit, THz electric fields reach only few kV/cm below 5 THz. Above
10 THz, Pav

THz ≥ 1 W has been achieved and peak electric fields can reach tens of kV/cm.
Tunable small spectral bandwidths of QCLs are convenient for spectroscopy where narrow

resonances have to be resolved. However, emission frequencies from 5 THz to 10 THz cannot
be accessed by QCLs due to strong absorption and dispersion in the active medium. Below

(b)(a)

active
region

relaxation
region

Figure 1.2.1.: (a) Energy band diagram of the QCL active medium that has been realized for
the first time in [22]. (b) Illustration of a photoconductive switch/antenna [23].
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5 THz, devices at room temperature deliver moderate powers of Pav
THz ≈ 5 µW, but require

low operation temperatures to achieve higher powers limiting the compactness and availability
of such QCLs. At least above 10 THz, providing tens of kV/cm electric field amplitudes in
single-frequency operation QCLs are used preferably for resonant control over matter.

1.2.2. Photoconductive switches
As sketched in Fig. 1.2.1(b), a photoconductive switch (PCS) consists of two principal compo-
nents: a semiconductor and a pair of electrodes. High voltage (HV) is applied to the electrodes.
No charge carriers are circulating until a fs-laser pulse reaches the semiconductor. By creat-
ing electron-hole pairs, a time-varying conductance is induced. Then, a current starts to flow
between and within the electrodes. The electrodes are acting as THz wave emitting antennas.
Their design is important to reach a high emission efficiency. Finally, the electron-hole pairs
recombine and again no current flow is possible. Since the current flow is changing typically
within a picosecond corresponding to 1 THz, the emitted radiation is in the THz range.
THz emission from PCS has been demonstrated the first time in 1984 [32]. Nowadays, several

PCS-based THz sources driven by only nJ 50-fs-long 1550-nm laser pulses are commercially
available providing emission between 0.3 and 3 THz [33]. They can reach moderate average
powers Pav

THz = 50µW, νrep = 100 MHz and laser-to-THz conversion efficiency ηTHz = 4 · 10−4.
Focusing leads to electric fields up to 1 kV/cm. In general, THz amplitudes cannot be increased
beyond several kV/cm [34]. The analysis in [35] shows that ETHz saturates with the laser pulse
energy EL. Increasing emitted THz pulse energy by increasing the HV is possible up to certain
limits. Above a threshold value HV arcing effect of GaAs at the electrodes leads to the damage
of the PCS.

Generation of THz waves above 3 THz remains a big challenge for PCSs. Usually the THz
pulse duration and thus the spectral bandwidth is limited by the PCS electronic circuit inertness,
in particular induced by the charge carrier recombination time of GaAs that is around 1 ps [35].
Efforts have been made to resolve this problem by shortening the recombination times. THz
radiation up to 30 THz has been demonstrated by using low-temperature grown GaAs and 12-fs-
short only-4-nJ laser pulses [36]. More recently interdigitated photoconductive antennas made
of semi-insulating GaAs have been used to produce THz pulses with frequencies up to 20 THz
using 15-to-35-fs-short only-nJ pulses [37]. To the best of the authors knowledge, however, no
reasonable THz average powers above 3 THz have been reported, yet.
In summary, compact PCS-based THz sources driven by few-µJ fs-laser pulses providing

Pav
THz ≈ 50 µW are interesting for applications based on linear THz-pulse-matter-interaction

below 3 THz. Generation above 3 THz with PCSs is still inefficient. THz field amplitudes are
limited to several kV/cm which restricts the applications to linear interaction regimes.

1.2.3. Optical rectification
Another very popular technique to generate THz radiation is based on optical rectification
(OR) in nonlinear crystals [38]. Non-centrosymmetric crystals exhibit a χ(2)-nonlinearity, i.e., a
nonlinear polarization that is proportional to the product of the exciting laser field oscillating at
the central frequency ωL with itself. This product leads besides frequency doubling to nonlinear
down-conversion towards the (ωL + ∆ωL) − ωL = ∆ωL frequency where ∆ωL is limited by the
spectral bandwidth of the laser. When the laser pulse has an appropriate bandwidth, frequencies
ωTHz = ∆ωL in the THz spectral range are produced.
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Under certain assumptions, in particular disregarding dispersion effects, one would expect a
quadratic growth of the THz pulse energy ETHz with laser pulse energy EL and thus a linearly
increasing conversion efficiency ηTHz. However, two-photon absorption and depletion of the
pump laser pulse limit ETHz [39]. Moreover, due to linear dispersion2 ω(k), the group velocity
vg,L = ∂kω(kL) of the laser pulse and the phase velocity vph,THz = ωTHz(kTHz)/kTHz of the
THz wave are different. After a certain propagation length in the nonlinear crystal, the driving
nonlinear polarization and the THz pulse are out of phase [see also Sec. 1.2.4]. This phase
mismatch limits the maximum laser-to-THz conversion efficiency. Moreover, the phase velocity
of the THz wave is frequency dependent. Thus, it is challenging to obtain phase-matching for a
broad range of frequencies and THz generation by OR is always a trade-off between ETHz and
spectral bandwidth ∆νTHz [3].
Using ZnTe crystals the phase mismatch can be reasonable [34]. Here, THz pulses below

3 THz with average powers of Pav
THz ≈ 150 µW have been created by 30-fs-short laser pulses

with EL = 48 mJ at low repetition rates νrep = 100 Hz [34]. Experimental results provided THz
peak electric fields of 69 kV/cm and could be even increased by one order of magnitude with a
stronger focusing. Pav

THz and thus the peak electric field is limited for a fixed crystal diameter by
the damage threshold of 1 MW/cm2 for ZnTe [40]. Moreover, the conversion efficiency has been
shown to saturate to ηTHz = 3 · 10−5 [34, 41], in particular due to the two-photon absorption of
the pump pulse and free-carrier absorption of the THz wave in ZnTe [42, 43].
As an alternative the use of LiNbO3 crystals having low THz absorption, higher nonlinear

coefficients as well as higher damage threshold has been proposed. However, linear dispersion
in LiNbO3 is strong. To resolve this problem, the phase-matching of laser pulse group velocity
and THz phase velocity by introducing a pulse front tilt to the laser have been experimentally
demonstrated [44]. This technique could increase the efficiency to ηTHz = 10−3 [45]. THz pulses
below 3 THz were generated with Pav

THz = 2 mW at νrep = 1 kHz for 85-fs-long driving laser
pulses with EL = 4 mJ. Tightest focusing produced 1 MV/cm THz fields. For a similar driving
configuration, the conversion efficiency could be boosted to ηTHz = 10−2 using cryogenic cooling
that reduces the absorption of the pump in the crystal [46].
Another attractive alternative turned out to be the organic crystal DSTMS as it provides

nonlinear coefficients one order of magnitude larger than LiNbO3 and good phase-matching.
The use of DSTMS could increase the efficiency to ηTHz = 10−1 [47]. THz pulses below 5 THz
were emitted with several tens of mW average power at νrep = 100 Hz for 65-fs-long driving laser
pulses with EL = 3 mJ. THz peak electric fields of 3.6 MV/cm have been reported and are even
in principle further up-scalable when increasing the driving laser pulse energy and the crystal
surface that has been already 20× 20 mm2-large in [47].
In principle for OR, the up-scaling of the THz pulse energy by increasing the THz-generating-

solid surface proportionally to the driving laser pulse energy while keeping the intensity constant
is realizable. This is a great plus of these approaches that makes record-breaking peak electric
field amplitudes possible by focusing the generated THz pulses down to the diffraction limit.
However, compact THz sources should not be driven by mJ-laser pulses, but require µJ-laser
pulses. A proof of principles in [48] has shown that high-repetition rate compact fs-fiber lasers
can drive OR in DSTMS creating pulsed THz radiation ranging from 0.2 to 8 THz that is suitable
for THz-TD spectroscopy. However, no THz average powers and efficiencies that could compete
with PCSs have been reported up to date. The reason might be that the scalability to lower
driving laser pulse energies is limited for OR, because it is efficient only in the collimated-laser
regime. Decreasing the driving laser beam size in the nonlinear crystal would decrease ηTHz.

2Here, ω is the angular frequency and k is the wavenumber. The indices “L” and “THz” indicate whether the
value for the driving laser or for the THz wave is meant, correspondingly.
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1.2. Conventional sources

THz source spectral range [THz] ∆νTHz Pav
THz maxETHz ηTHz νrep

QCL 1 ≤ νTHz ≤ 5 < 1 THz 100 mW 1 kV/cm - -
10 ≤ νTHz ≤ 30 1 W 10 kV/cm - -

PCS 0.3 ≤ νTHz ≤ 3 < 3 THz 50 µW 1 kV/cm 10−4 100 MHz
OR 0.3 ≤ νTHz ≤ 8 < 8 THz 10 mW 1 MV/cm 10−2 1 kHz
DFG νTHz ≥ 10 < 10 THz 10 mW 100 MV/cm 10−3 1 kHz

Table 1.1.: Characteristics of conventional broadband THz sources that are presented in Sec. 1.2.

In summary, OR is a widely used approach to generate mW-average-power pulsed THz radia-
tion. Efficiencies beyond ηTHz = 10−3 can be reached by using cryogenic cooling or wide-surface
organic crystals, however, only at kHz repetition rates. Tight focusing of the THz pulse leads
to peak electric fields above 1 MV/cm. This, however, requires at least mJ-driving-laser pulses.
Thus, OR based THz sources are not compact. Moreover, the upper emission frequency is
limited to 3 - 8 THz.

1.2.4. Difference frequency generation
The limitation of OR with respect to maximum THz-emission frequency can be resolved by using
difference frequency generation (DFG). DFG is also based on the χ(2)-nonlinearity. However,
the driving laser spectrum is rather broad, either because a very short laser pulse is used or two
laser pulses with different frequencies ω2, ω1 such that ωTHz = ω2−ω1 is sufficiently large. Like
for OR, phase matching is required: the phase mismatch ∆kLc = [k(ω2) − k(ω1) − k(ωTHz)]Lc
with crystal length Lc must be small. We refind OR as the border case for ωTHz → 0 since
∆kLc → [v−1

gr,L − v
−1
ph,THz]ωTHzLc, where the phase mismatch is defined by the group velocity of

the laser pulse and the phase velocity of the THz wave.
To obtain phase matching for DFG, mostly thin GaSe crystals are used. The first proof of

principles in [49] has shown that 10-fs-short pulses in GaSe can produce tunable broadband
emission from 8 to 50 THz. Adjusting the incidence angles fixes the phase-matching to specific
frequencies and makes the tuning possible. For small incident angles even emission from 0.1 to
5 THz has been generated. Pulsed THz emission from 10 to 72 THz with ∆νTHz = 10 THz
has been reported in [50]. A 4-mJ-strong laser pulse has been used to produce two spectrally
tunable driving pulses at νrep = 1 kHz. Resulting 1.7-to-19-mW-average-power THz radiation
was tightly focused to create 100 MV/cm-strong field-amplitudes at high emission frequencies
that are rather in the IR than THz spectral range.
Same as for QCL, DFG in inorganic crystals is not able to produce radiation between 5

and 8 THz due to strong THz absorption. DSTMS crystals resolved this problem. Tunable
1-THz-small-band THz emission from 4 to 18 THz has been produced by using 3 mJ driving
laser pulses with 1 kHz repetition rate [51]. Resulting 1.9-mW-average-power THz pulses were
focused leading to 3.7 MV/cm THz-field amplitudes.
In summary, DFG resolves the problem of OR to access THz frequencies beyond 8 THz

providing otherwise similar characteristics with OR. However, the frequency window between 5
and 8 THz remains difficult to access and only organic crystals can leverage DFG to bridge this
gap by tunable small band THz radiation.
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1. Introduction to terahertz sources

1.2.5. Summarizing the abilities of conventional THz sources
Tab. 1.1 summarizes the characteristics of conventional PCSs, QCLs or OR/DFG-based broad-
band THz sources3 that comply with many requirements of THz application: Together, they can
cover almost the whole THz gap. OR- and DFG-based sources provide up to 10 THz broad ra-
diation below 8 THz and above 10 THz, respectively. They produce THz average powers around
10 mW that are sufficient to create THz peak electric field amplitudes maxETHz = 1 MV/cm
and larger. Such a strong THz fields are required for nonlinear interaction of THz waves with
matter (see Sec. 1.1.2). For linear interaction, strong THz fields are not desirable and moderate
average powers of few µW are already sufficient (see Sec. 1.1.1). Those applications could profit
above all from compact broadband THz sources. These requirements can be fulfilled below
3 THz by conventional PCSs which provide conversion efficiencies around 10−4 already for only
nJ-driving-laser-pulse energies and operate at high repetition rates of 100 MHz.
Except for PCSs-based pulsed sources below 3 THz and some few-µJ-weak QCLs working

at room temperature, THz sources are usually driven by mJ-lasers that strongly limit their
compactness and availability. Moreover, none of the conventional sources provides moderate or
high-power THz pulses closing the whole THz gap at one blow.

1.3. Laser-induced gas-plasma-based terahertz sources
An alternative approach to THz sources that might overcome certain limitations of conventional
emitters are laser-induced gas-plasma-based terahertz sources. Here, a laser pulse ionizes an
initially neutral gas creating a plasma. The plasma electrons interact with the laser pulse giving
rise to several mechanisms for THz generation, as will be shown in this section [55, 56, 57].
Ionization of atoms typically sets in at intensities below 1014 W/cm2. As simple estimations
suggest, when focusing a 100-fs-laser pulse down to 1µm focal beam width, already 100 nJ laser
pulse energy are sufficient to reach this intensity and create free electrons4. Three main groups of
approaches are presented in the following: using single-color, DC-biased5 single-color and multi-
color fs-laser-induced gas-plasmas. The focus lies on important experiments and corresponding
propositions to explain the observed THz radiation as well as the interesting features of the
emitted THz radiation.

1.3.1. Single-color fs-laser-induced gas-plasma
1.3.1.1. The first THz emission reported from a gas-plasma

By definition single-color (1C) laser pulses have one frequency peak. THz emission from gas-
plasma induced by such laser pulses has been reported the first time by Hamster et al. in
1994 [55]. By focusing a 120-fs-long 50-mJ-strong laser pulse into gaseous helium, a THz pulse
was emitted in the laser propagation direction. Bolometric measurement of the THz pulse
energy revealed ETHz = 1 nJ resulting in a laser-to-THz conversion efficiency (in the following

3Many other propositions have been made to bridge the THz gap for intense THz sources. A record-braking
300-µJ-strong THz pulse has been produced by coherent synchrotron radiation by electrons in magnetic fields
within 1-2 THz spectral range [52]. Linear mode conversion of laser wake fields in inhomogeneous plasmas has
been shown to support THz radiation below 9 THz and GV/m-strong THz fields [53]. In [54], FEL-based THz
sources have been demonstrated emitting at 1.2-100 THz pulses with ETHz = 1− 50 µJ. These ultra-intense THz
sources are good candidates and already partially exploited to study the physics of intense THz fields. However,
they need large laser or accelerator facilities. The down-scaling to compact devices with moderate output powers
by keeping the efficiency cannot be done straightforwardly reducing the driving power.

4The required laser pulse energy is EL ∼ 1014 W/cm2 · (1µm)2 · 100 fs = 100 nJ.
5DC-biased =̂ exposed by a constant electric field

10



1.3. Laser-induced gas-plasma-based terahertz sources

(c)(b)(a)

Figure 1.3.1.: (a) Bolometer signal voltage detecting the THz power emitted by a laser-induced
helium-plasma depending on the gas pressure from [55]. (b-c) Corresponding
THz power spectrum measured by an FTIR-spectrometer for different initial atom
densities na. The arrows in (b) indicate the value of the plasma frequency νp for
a singly ionized gas.

only conversion efficiency) of ηTHz = 2 · 10−8. As Fig. 1.3.1(a) shows, ETHz and thus ηTHz
depend on the gas-pressure p that in turn is proportional to the initial atom density na. ETHz
increases quadratically with p up to its maximum value at p ≈ 170 Pa and then tends to
saturate. Corresponding THz spectra in Fig. 1.3.1(b-c) indicate two regimes. In (b), the spectral
peaks appear close to the plasma frequency νp =

√
q2

ene/(meε0)/(2π) with free electron density
ne = na for a singly ionized gas6. This observation stays valid as long as νptL < 1 (p < 170 Pa,
ne < 4.6 · 1017 cm−3) for tL = 120 fs indicating a resonant regime of excitation. For νptL > 1 in
(c), the spectrum almost does not change with the electron density indicating a non-resonant
regime.
Two mechanisms have been proposed to explain the associated THz radiation driven by the

time t and position r = (x, y, z)T-dependent transverse linearly x-polarized electric laser field
EL,x(r, t): On the one hand, electrons can be pushed by the cycle-averaged ponderomotive force

〈Fpond(r, t)〉t = − q2
e

4meω2
L
∇〈EL,x(r, t)2〉t (1.3.1)

where < . > indicates the averaging over one laser cycle7. Due to the cycle averaging, the
fast oscillations at 2ωL vanish. However, the ponderomotive force oscillating at 2ωL should
not be neglected. Due to the product with a fast oscillating electron density it can also drive
a low frequency current (see Sec. 4.1 for more details). On the other hand, in [55] the force
∝ (∇ne · epol)epol where epol is the laser polarization direction was claimed to be able to excite
the plasma at THz frequencies8. In our systematic theory in Sec. 2.5.2, we will regain this term.
The response of the plasma, in particular to the ponderomotive force, has been modeled in

[55] by means of a local harmonic oscillator that has a resonance at the plasma frequency.
According to this model, if the excitation spectrum is broad enough to excite the oscillations at
the plasma frequency, the far-field emission is peaked there. This approach could not explain the
experimental results above p = 103 Pa, in particular the strength of the signal in Fig. 1.3.1(a)
above p = 103 Pa which corresponds to the spectra peaked at low-frequencies in Fig. 1.3.1(c).
We will find in Chap. 4 a similar spectral behavior in microplasmas. Also, the quadratic increase
and the saturation of the signal with the gas pressure in Fig. 1.3.1(a) will be retrieved and their
potential origin clarified (see Chap. 4).

6Here, qe is the electron charge, me the electron mass and ε0 the electric permittivity.
7Vectors are typed bold.
8This term seems to be forgotten since the often cited [58].
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Figure 1.3.2.: (a) THz generation scheme in a 1C laser induced air-filament from [59]: a 4-mJ
150-fs-long laser pulse (red) is focused into air using a 2 m focal lens leading to
filament formation. As indicated by the blue cone in (a) and confirmed by the
measured radiation profile in (b), THz radiation is emitted within a cone that is
oriented in the laser propagation direction.

1.3.1.2. Single-color fs-laser-induced filament

One decade later, THz generation in 1C-laser-induced gas-plasmas has been extended to fila-
ments [59, 60], motivated by the need to produce THz emission remotely. In [59], a 150-fs-long
4-mJ-strong laser pulse generates a filament in air [see Fig. 1.3.2(a)]. This filament and in par-
ticular the self-generated plasma, leads to THz radiation. As displayed in Fig. 1.3.2(b), conical
THz emission in the laser propagation direction was observed. The polarization of the THz
emission has been determined to be radial, i.e., the projection of the THz electric field vector
into the xy-plane has only a radial component.

Based on theoretical investigations in [58], a model has been proposed in [59] to describe the
corresponding THz emission. Here, the longitudinal9 electric field Ez in the plasma driven by
the longitudinal ponderomotive force is governed by [59]

(
∂2
t + νe∂t + ω2

p

)
Ez(z, t) = −

qeω
2
p

2ε0meω2
Lc

(2νe
c
− ∂z

)
IL(z, t) , (1.3.2)

where νe is the electron collision frequency, ωp = 2πνp the angular plasma frequency10, c the
vacuum speed of light and IL the intensity envelope of the laser pulse. The validity of Eq. (1.3.2)
requires that the current Jz is computed via Jz = −ε0∂tEz assuming implicitly (∇ × B)z =
0. In addition, in order to determine the whole spatio-temporal structure of Jz, a second
strong assumption is made: the plasma is assumed to be transversally infinitely thin. Then,
the computation of the far-field radiation emitted by the current gives THz far-field spectra
and radiation patterns. This model turned out to match well the conical radiation pattern.
The emission angle follows θ ∝

√
λTHz/Lp for λTHz/Lp � 1, where λTHz is the emitted THz

wavelength and Lp the length of the filament-plasma. Thus, for a filament that is typically much
longer than the THz wavelength, the emission angle is very small. This mechanism was referred
to as transition-Cherenkov (TC) mechanism. The name comes from the characteristic conical

9In the laser propagation direction z the component of a vector is referred to as “longitudinal”.
10Here, νe and ωp are treated as a constant.
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(a)

(b)

(c)

(d)

(e)

Figure 1.3.3.: (a) Schematic view of the set-up that was realized to characterize a THz-emitting
microplasma in [61]: The 100-fs pump laser (PUMP) is passing through a half
wave plate (HWP) and is focused by high numerical aperture objective (OBJ) into
ambient air; the THz radiation is focused by an off-axis parabolic mirror (OAPM)
before passing through a THz polarizer (POL). (b) Angularly and temporally
resolved THz signal ETHz,t that was measured by means of electro-optic sampling.
THz radiation is emitted within an emission cone of 80◦. (c) Reconstructed THz
electric field ETHz,t at the detection angle ϕ = 80◦ and laser pulse energies EL =
65 µJ, EL = 660 nJ. (d) Spectral amplitude for EL = 65 µJ and ϕ = 80◦. (e) THz
peak power scaling with EL at ϕ = 80◦.

radiation profile. While Cherenkov radiation usually requires the force moving at superluminal
velocity, this is not necessary for an emission zone of a finite length (see Chap. 4).
In terms of the plasma response to the excitation by the ponderomotive force, the model based

on Eq. (1.3.2) from [59] is very similar to the previously discussed propositions in [55]. Both
predict, for a sufficiently short laser pulse, oscillations of the current at the plasma frequency
ωp and the resulting far-field radiation to be peaked at ωp. However, using Eq. (1.3.2) and then
assuming a transverse shape of the plasma for the description of THz emission violates energy
conservation: This can be easily seen for the collision-less case. For νe = 0, an initially excited
plasma would oscillate with a constant amplitude at ωp after the excitation forever. Thus, the
energy within the plasma would stay constant. But, THz radiation emission requires a depletion
of this energy, because no external energy source is available after the excitation by the laser
pulse. This simple consideration shows that the model should be completed (see Chap. 2).

1.3.1.3. Single-color fs-laser-induced microplasma

Two decades after the first investigations of Hamster et al. in [55], the first proof of principles
has been made that gas-plasma based THz generation is indeed accessible with compact driving
lasers. In 2015, Buccheri and Zhang [61] generated THz radiation by strongly focusing a sub-µJ
laser pulse into air. Their experimental set-up is sketched in Fig. 1.3.3(a). A microplasma is

13



1. Introduction to terahertz sources

created in the focal region and emits conical THz radiation with a large opening angle θ ≈ 80◦ as
can be seen from Fig. 1.3.3(b). Similar emission patterns but with a smaller θ have been observed
in filaments which are much longer than a microplasma [cf. Sec. 1.3.1.2]. This observation is
in agreement with the model in [59] where the opening angle of the emission cone increases
when the plasma length decreases. As can be seen in the reconstructed THz electric field in
Fig. 1.3.3(c), ps-long THz pulses have been created. The corresponding far-field spectrum in
Fig. 1.3.3(d) reveals no sharp spectral features like one could expect from oscillations at the
plasma frequency. The spectrum is rather similar to what has been observed in Fig. 1.3.1(c)
close to the ambient pressure where 1.2 · 1019 cm−3≤ ne = 2.7 · 1019 cm−3 ≤ 5 · 1019 cm−3 for
a singly ionized gas. For few-tens-of-µJ laser pulses, the THz power is shown in Fig. 1.3.3(e)
to scale quadratically with the laser pulse energy EL, consistent with a linear increase of the
conversion efficiency. For EL > 50µJ, the scaling of the power becomes rather linear and the
conversion efficiency saturates.

In summary, it has been shown that already few-µJ laser pulse energies are sufficient to
produce THz emission from gas-plasmas like the microplasma in [61]. The first gas-plasma
based experiments on THz generation in [55] revealed only conversion efficiencies around 10−8

with mJ-driving-laser-pulse energies. The experimental set-ups win over their simplicity and
provide first proofs of principle that gas-plasma based THz sources can provide broadband
THz pulses below 6 THz and can be compact. However, the modeling of the THz radiation is
incomplete at this stage: On the one hand, besides longitudinal ponderomotive forces, transverse
ponderomotive forces [62], thermal pressure [63] and many other effects can lead to excitation
of the plasma at THz frequencies (see Sec. 2.5.2, 4.1). Thus, for 1C-driving-laser pulses the
dominating THz generation mechanism is still controversial. On the other hand, the modeling
of the plasma response should be completed. Moreover, the conversion efficiencies and spectral
bandwidth as observed from 1C-laser-induced microplasmas need a substantial improvement in
order to compete with traditional THz sources. The efforts to resolve these problems will be
elaborated in the rest of the manuscript.

1.3.2. DC-biased single-color fs-laser-induced gas-plasma
Another approach to generate THz radiation by using 1C-fs-laser-induced gas-plasmas originates
from the principle that has been already successfully realized in PCSs (see Sec. 1.2.2): Applying
a static electric field (DC-bias) during a fs-laser pulse induces a conductivity in a medium, a
low frequency current can be generated. In PCSs, the current in the metallic antenna attached
to the photo-conductive medium emits THz waves. In gas-plasmas, the plasma itself acts as
antenna. Löffler at al. were the first in 2000 [56] who produced THz emission from a DC-biased
gas-plasma [see Fig. 1.3.4(a)].
Later, it has been shown experimentally that DC-bias can increase the THz pulse energy in

1C-fs-laser-induced filaments [64]. As the measurement (markers) and the quadratic fit (red
dashed line) in Fig. 1.3.4(b) show, ETHz scales quadratically with the applied constant electric
field Es having an off-set for Es = 0. This off-set is interpreted as the signal originating from the
ponderomotive excitation that has been discussed in Sec. 1.3.1.2. The THz emission profile in
Fig. 1.3.4(c) reveals a forward directed emission which has a light asymmetry. This asymmetry
could be the result of the interference between the radially polarized THz wave originating from
the ponderomotive excitation and the linearly polarized emission coming from the DC bias.
Using a 50-fs-long 2.4-mJ laser pulse and Es = 5 kV/cm within a 2-cm long filament, the THz
pulse energy has been estimated to be ETHz = 0.05 nJ resulting in ηTHz = 2 · 10−8. In [64],
the authors estimate that potential improvements like higher bias-voltage or longer interaction
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Figure 1.3.4.: (a) Schematic figure of the scheme with DC-bias [64]: A static electric field Es is
applied normally to the propagation direction of the ionizing laser pulse and leads
to an excitation of the gas-plasma that emits a THz wave. (b) measured THz
pulse energy (marker) and a quadratic fit (line) depending on the applied static
electric field Es. (c) Radiation profile measured (marker) and computed (line)
from a DC-biased filament with Es = 3 kV/cm.

lengths could further increase the THz pulse energy to hundreds of nJ. However, a significant
increase of Es beyond tens of kV/cm is not possible due to creation of an electron avalanche
leading to sparks between the electrodes. Consequently, THz pulse energies around hundreds of
nJ from DC-biased 1C-fs-laser-induced filaments have not been reported up to date.
However, the limit for Es can be increased by using higher gas pressures. Higher gas pressures

lead to a reduction of the mean free path of the electrons. Thus, they are slower when colliding
with neutrals and ions. Consequently, the impact-ionization probability is reduced and no
avalanche is formed. In stronger focused configurations where no filament is created, THz pulse
energy has been shown to be independent on the gas pressure between 1 and 46 bar [65]. Because
of that, it was possible to increase the static field to Es = 200 kV/cm and the emitted THz field.
Using a 390-µJ strong fs-laser pulse, THz electric fields of 0.5 kV/cm have been reported in
nitrogen and 1 kV/cm in air [66]. Furthermore, the THz electric field has been shown to be
proportional to EL without any indication for a saturation behavior [56, 65, 66, 67]. As a direct
comparison with GaAs PCSs in [65] shows, THz field amplitudes accessible with DC-biased gas-
plasmas could beat the one based on PCSs when extrapolating the driving laser pulse energy to
10-100 mJ.

Same as for the non-biased 1C-laser pulses, the THz generation mechanism for DC-biased 1C-
fs-laser-induced gas-plasmas is controversial. Originally, in [56] the THz emission was associated
with acceleration of laser-induced charge careers and their deceleration or recombination. In [64],
the role of screening has been pointed out11: After the electrons get accelerated by the external
static electric field, a charge is created at the boundaries of the plasma and screens the external
electric field inside the gas-plasma. Assuming instantaneous ionization of the electrons followed
by the screening after the time ω−1

p , the current amplitude can be estimated to ∼ ε0Esωp. In
[64], the response of the plasma has been claimed to be determined by the Fourier spectrum of
the current F{Jx} following locally

F{Jx}(ω) =
ε0Esω

2
p

ω2 − ω2
p + iνeω

. (1.3.3)

Similar to the procedure in [59], the assumption of an infinitely thin plasma wire can be used

11The model in [68] omits the screening resulting in an unlimited acceleration of the electrons.
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Figure 1.3.5.: (a) Illustration of the typical two-color THz generation scheme [69]. Measured
THz peak electric field depending on the laser pulse energy from [57].

to compute the resulting hypothetical THz far-field spectrum. However, as pointed out in
Sec. 1.3.1.2, such an oscillating current cannot treat the plasma response correctly. In particular,
it does not account for the energy dissipation to the radiating field.

In summary, using an external static electric field can significantly enforce the THz generation
compared to unbiased 1C-fs-laser-induced gas-plasmas. Using mJ-strong laser pulses, DC-biased
gas-plasma sources might compete with PCSs in terms of achievable THz peak electric fields.
The modeling, however, does not account for screening effects and plasma response correctly. It
will be extended in Chap. 2 and applied in Sec. 4.4 to describe THz emission from 1C-laser-driven
DC-biased microplasmas.

1.3.3. Two-color fs-laser-induced gas-plasma
Two-color (2C) fs-laser pulses are by definition laser pulses with two frequency peaks. In the
following, the focus relies on 2C-laser pulses which have typically one fundamental harmonic
(FH) frequency peak at ωL and one second harmonic (SH) frequency peak at 2ωL. The standard
2C-THz-generation scheme consists of a focused 1C-laser pulse with pulse energy EL and a
β-barium-borate (BBO) crystal that is placed just before the focus [see Fig. 1.3.5(a)]. In the
BBO crystal, a χ(2)-nonlinear process leads to creation of the SH field and both harmonics
co-propagate towards the common focal spot. Close to the focus the resulting 2C-laser pulse
ionizes the gas creating an electron plasma that emits a THz pulse.
Initially, THz emission from 2C-laser pulses has been reported by Cook and Hochstrasser in

2000 [70]. A 65-fs 150-µJ laser pulse has been used to produce THz radiation with frequency
components < 4 THz in air. However, only few-pJ THz pulses leading to THz peak electric
fields below 1 kV/cm could be demonstrated resulting in ηTHz = 10−8, that is not an sub-
stantial improvement compared to 1C configurations in Sec. 1.3.1-1.3.2. Later, 10 kV/cm THz
peak electric field have been reported for EL = 400µJ [66] and 150 kV/cm for EL = 20mJ
in saturation [57] [see Fig. 1.3.5(b)]. Using 50-fs-long 30-mJ laser pulses in argon, efficiencies
of ηTHz = 10−4 and spectral bandwidth of 75 THz were achieved in [71]. The gas pressure
turned out to be important to maximize the THz pulse energy increasing with p up to p = 1 bar
and then decreasing for higher gas pressures [see Fig. 1.3.6(a)] [66, 71]. Finally, exploring the
λL-dependence of the THz generation by 2C-laser pulses [72], impressing 4.4 MV/cm THz peak
electric field amplitude have been reported reaching 20-THz-spectral bandwidth for 60-fs 400-µJ-
strong driving laser pulses leading to ETHz = 0.6µJ and thus ηTHz ≥ 10−3 for λL = 1.8 µm [see
Fig. 1.3.6(b)] [73].
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Figure 1.3.6.: (a) Air-pressure dependence of the 2C-laser-induced THz peak electric field that
was measured in [66]. Fundamental-pump-wavelength λL dependence of the THz-
pulse energy in nitrogen that has been reported in [73]. The blue dots specify the
measured values. The red solid line is ∝ λ4.6
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L and ∝ λ5.1
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Initially, the THz emission from 2C-laser pulses has been attributed to the four-wave-mixing
(FWM) process [70]. FWM is based on the χ(3)-nonlinearity of the neutral gas where the mixing
of three frequencies results in a down-conversion to the zero-frequency since ωL +ωL− 2ωL = 0.
Due to the finite pulse duration of the FH and SH pulse not only excitation at the 0-frequency
but also at THz frequencies is realized (cf. Sec. 1.2.3). For intensities sufficiently far below
1014 W/cm2, gases as air or argon get only weakly ionized and FWM contributes significantly
to THz generation (see Sec. 2.2.1 and [72, 74]). However, another THz generation mechanism
referred to as the ionization current (IC) or photo-current mechanism is held responsible for the
large THz peak amplitudes as observed in [57, 66, 73]: During the interaction of the laser electric
field E with an electron that is bounded within a neutral atom, the electron can be ionized and
subsequently accelerated in the laser electric field. Assuming at the time point t a macroscopic
electron density ne(t), the resulting local macroscopic current12 writes [75]

∂tJIC(t) = q2
ene(t)
me

EL(t)︸ ︷︷ ︸
=ιIC

, (1.3.4)

where the term on the right hand side ιIC can be considered as the IC source.
At intensities above 1014 W/cm2, the atoms are ionized in the tunnel ionization regime that

yields the typical step-like increase of the electron density as can be seen from Fig. 1.3.7(a). The
evaluation of Eq. (1.3.4) for a 2C-laser pulse leads to currents that can have a non-zero value
after the interaction which indicates a DC component of the current13 [see Fig. 1.3.7(b)]. The
amplitude of the low-frequency current is determined by ιIC. For 2C-laser pulses, it can provide
a significant excitation at THz frequencies whereas for similar 1C-laser pulses ιIC yields almost
no low-frequency components [see Fig. 1.3.7(c)].
The model Eq. (1.3.4), treats electrons as test particles in an external electric laser field.

But, accelerated electrons emit in particular THz electric field waves that vice versa can drive

12Throughout the manuscript, the current density is referred to as a current for sake of brevity.
13This low-frequency component of the current can be considered as the source for a ’zero-order’ Brunel

harmonic [76, 77].
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1. Introduction to terahertz sources
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Figure 1.3.7.: (a) An example from [57], where in (a) an exemplary electric field (red) and
resulting step-like increasing electron density (black) is presented. (b) shows the
corresponding ionization current and (c) the spectrum of the current source ιIC
for a 2C-laser pulse (solid red line) and 1C-laser pulse (dashed blue line).

the electron current [78]. Moreover, it is tempting to add a constant electric field Es to the
laser field in ιIC to describe DC-biased 1C-laser-induced gas-plasmas (see Sec. 1.3.2)14. But,
this would lead to an unterminated acceleration of the electrons. In reality, one expects that
displaced electrons impose a total charge density and thus, a restoring electric field. Such a
screening should appear whenever ιIC has a DC frequency component, independently whether
DC-biased 1C-laser pulses or 2C-laser pulses are considered. Thus, a self-consistent treatment
of the electron current and electric field is in general necessary.
In summary, 2C-fs-laser-induced gas-plasmas provide currently the most successful gas-

plasma-based-THz source. Using mJ-strong laser pulses, THz pulses can be created with efficien-
cies up to 10−3 leading to MV/cm-large THz peak electric fields. Thus, the 2C-fs-laser-induced
gas-plasma sources can compete with conventional THz sources that have been presented in
Sec. 1.2 in terms of average power, efficiency and peak THz fields. In terms of spectral prop-
erties, 2C-fs-laser-induced gas-plasma sources can produce even broader frequency spectra than
conventional sources covering the whole THz gap at one blow. However, mJ-laser-driven THz
sources are still not compact. Their scalability to lower pulse energies is an open issue and leads
to the main motivation of this work.

1.4. Motivation of this work
There is a large demand for THz sources driven by a wide range of applications ranging from
spectroscopic identification of explosives to industrial quality control of polymers (see Sec. 1.1).
Many of them can profit from compact broad-band pulsed THz sources covering the whole THz
gap between 0.3 and 30 THz. Conventional sources like PCSs or DFG-based sources (see Sec. 1.2)
cannot bridge the THz gap at one blow. Alternatively, fs-laser-induced gas-plasma-based THz
sources can be used (see Sec. 1.3). Those have been shown to provide broad-band THz pulses
emitting radiation even beyond the THz gap. Like conventional sources, they can reach THz
average powers at mW-level and THz peak electric fields of 1 MV/cm. The high performance
relies on mJ-driving lasers that dictate the size and costs of the THz source.

14This model has been used in [68] to model DC-biased 1C-laser-induced gas-plasmas.
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1.4. Motivation of this work

Applications exploiting linear properties of THz-matter interaction require often only few-µW
average power and do not require MV/cm peak electric field amplitudes. This poses the question,
if the driving laser pulses could be down-scaled to the µJ-level. Smaller driving lasers are not
only compact, they also can operate at much higher repetition rates. While mJ-lasers typically
operate at 1 kHz, µJ-lasers can easily operate at 100 MHz. This means that µJ-laser-based THz
sources could produce the same THz average powers like mJ-laser-based THz sources, but are
allowed to have efficiencies two orders of magnitude below.
The hope that µJ-laser-driven gas-plasma-based sources can reach this expectations is founded

by recent experiments [61]. Here, THz emission from a strongly focused 1C-laser pulse has been
observed. Even laser-pulse energies below 1 µJ have been sufficient to create a microplasma in
focus. However, this compact THz source did not reach the performance in terms of spectral
bandwidth covering the hole THz gap and laser-to-THz conversion efficiencies ηTHz ≥ 10−4 like
it is known from mJ-lasers-driven gas-plasma-based sources. This poses the question if it is
actually possible to improve the performance of fs-laser-induced microplasmas.
This work is dedicated to the theoretical investigation of THz generation in fs-laser-induced

microplasmas. The major goal is to understand the mechanisms of THz generation. This requires
a model that gives

1. a unified description of the major THz generation mechanisms,

2. a Maxwell-consistent theory of the plasma response.

Such a model is derived in Chap. 2. To investigate fs-laser-induced microplasmas by solving the
model equations, we provide

3. numerical tools for Maxwell-consistent modeling of the microplasma,

4. a numerical tool for tight focusing of laser pulses.

The presentation of those tools is a part of Chap. 3. Then, we want to

5. identify the major THz generation mechanisms in microplasmas,

6. understand the plasma response and emission properties,

7. propose ways to increase the laser-to-THz conversion efficiency.

This is done for single-color driving lasers in Chap. 4 and for two-color driving lasers in Chap. 5.
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2. Theory of THz emission from laser induced
microplasmas
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First, the ionization model that is used to compute the ion densities is presented. We argue
why linear and nonlinear polarization of the neutral atoms can be neglected. Afterwards, the
fundamental equations of the theory are presented: the Maxwell equations and the Vlasov
equation for the electrons. Then, the velocity moments of the Vlasov equation are computed
leading to the continuity, Euler and energy equations. A multiple scale expansion is performed
based on these equations, the two lowest order sets of equations are detailed and some properties
of them are discussed before considering the limitations of the multiple scale expansion. Finally,
we define what we consider as the far-field power spectrum from the gas-plasma and show how to
compute the far-field power spectrum from a current consistently with the Maxwell’s equations.

2.1. The ionization model
The ionization model is based on a semi-classical approach: We use the results from quantum
mechanics on field ionization in order to determine the density of free electrons, i.e., electrons
that are detached from the parent-ion. Then, the motion of free electrons interacting with the
laser is described classically (see Sec. 2.3). In this section, we repeat the results from the theory
of field ionization for peak intensities IL > 1014 W/cm2.
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2. Theory of THz emission from laser induced microplasmas

Two regimes of field ionization are distinguished and prevail in low and high intensity regime,
respectively [79]. The Keldysh parameter γ = ωL

√
(2meIp)/|qeE

(0)
L |, where Ip is the ionization

potential and E(0)
L is the electric field amplitude, determines the dominant regime. For γ � 1,

the multi-photon regime dominates. Here, the electron absorbs a number of photons such that
the total energy of the absorbed photons is higher than the ionization potential. For γ � 1,
the tunneling regime prevails. Here, the dipole energy reE(t), where re is the position of the
electron relative to the parent ion and E is the time varying-electric field, cancels the Coulomb
potential of the ion Vbound(re), such that the total potential decreases for a short moment and
the electron escapes from the parent ion. Assuming a laser wavelength λL = 2πc/ωL = 0.8µm
and the first-level ionization potential of argon with Ip = 15.759 eV [80], γ = 1 is reached for
an intensity I

(0)
L = cε0(E(0)

L )2/2 = 1.3 · 1014 W/cm2. Since we are working with intensities
IL ∈ [1014, 1016] W/cm2, we consider the tunneling mechanism to model field ionization. In
this regime, the ionization rate can be written as a monotonically increasing function of the
modulus of the instantaneous electric field. Because of that, a step-like increase of the electron
density, one at each extremum of the electric field, is characteristic for tunneling ionization
and has been indeed observed in experiments [81, 82]. This step-like increase is crucial for
THz generation in two-color-laser-induced gas-plasmas (see Sec. 1.3.3). More rigorous quantum-
mechanical approaches report qualitatively similar results like those obtained from quasi classical
approaches [83], at least for many cycle laser pulses.
In this work, the ionization rate W (Z) is computed according to the quasistatic ADK the-

ory [84, 85]:

W (Z)[E] = Ip
∣∣∣Cn?(Z),l

?
(Z)

∣∣∣ f(l(Z),m(Z)) exp
(
− 2E(Z)

0
3|E[Eat]|

)(
2E(Z)

0
|E[Eat]|

)2n?(Z)−m(Z)−1

, (2.1.1)

where

E
(Z)
0 = (2I(Z)

p [27.2116 eV])3/2 (2.1.2)

f(l,m) = (2l + 1)(l + |m|)!
2|m||m|!(l − |m|)!

(2.1.3)

n?(Z) = Z√
2I(Z)

p

(2.1.4)

Cn?(Z),l
?
(Z)

= 22n?(Z)

n?(Z)Γ(n?(Z) + l?(Z) + 1)Γ(n?(Z) − l
?
(Z))

(2.1.5)

Γ(x) =
∞∫
0

tx−1 exp (−t) dt (2.1.6)

l?(Z) = n?(Z) − 1, (2.1.7)

Hereby, Z is the charge of the created ion, l(Z) is the angular momentum and m(Z) the magnetic
quantum number of the electronic state. The electric field in Eq. (2.1.1) is given in units of
Eat = 5.1422 · 1011 V/m and the ionization potential in units of 27.2116 eV. The ionization
potentials are taken from [80]. In principle one has to account for m = −l . . . l. However, since
the ionization rate form = 0 is much larger than for otherm, we are used to considerm = 0 [84].
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2.2. Assumption of a polarization-free gas plasma

The density n(Z)
ion for a Z charged ion is determined by the set of equations

∂tn
(Z)
ion = W (Z)n

(Z−1)
ion −W (Z+1)n

(Z)
ion︸ ︷︷ ︸

=S(Z)
(2.1.8)

for Z = 0, 1, 2, 3, . . ., the initial neutral density is n(0)
ion(t = −∞) = nn(t = −∞) = na and

formally n(−1)
ion = 0, W (0) = 0. The atoms can be at most K times ionized and thus W (K+1) = 0.

For sake of brevity, we introduce the ion source S(Z) by

S(Z) = W (Z)n
(Z−1)
ion −W (Z+1)n

(Z)
ion . (2.1.9)

The electron source is defined by
S =

∑
Z

ZS(Z) . (2.1.10)

2.2. Assumption of a polarization-free gas plasma
Before building the theory, we argue why the nonlinear and linear polarization from bound
electrons can be neglected for THz generation and the laser pulse propagation in the case of
microplasmas. We exploit mainly the fact that we are dealing with strongly focused laser beams
leading to intensities above 1014 W/cm2. This fact results in high ionization degrees and short
interaction distances of the laser with the gas-plasma. Later in Sec. 5.2.5, we will argue that also
for the propagation of the THz waves, linear dispersion is of minor role for several-hundreds-of-
µm-short plasmas, i.e. microplasmas.
Here in the first part, we exclude one of two key effects of the nonlinear polarization: The THz

generation by four-wave-mixing (FWM). Then in the second part, both linear and non-linear
polarization response of the neutrals are shown to be negligible compared to the electron-response
and thus of minor importance for laser propagation effects.

2.2.1. Influence of the neutral polarization on the THz generation
We consider as an example an argon gas and an x-linearly polarized two-color driving laser with
the local electric field EL(t) = E

(0)
L
[√

1− ξ cos(ωLt) +
√
ξ cos(2ωLt+ φ)

]
exp (−t2/t20), where

λL = 2πc/ωL = 800 nm, t0 = 50 fs. The laser amplitude E(0)
L , fraction of energy in the SH

field ξ and the angle φ are kept free. The photon-energy corresponding to λL = 800 nm is 1.5
and 3 eV for the FH and SH wavelength, respectively. The first-level ionization potential of
argon is Ip = 15.759 eV [80], much larger than the laser photon energy. We assume that the
considered laser frequencies are far away from any material resonance. In this case, the nonlinear
polarization caused by EL leading to a down-conversion from 2ωL, ωL to THz frequencies follows
the scheme ωL + ωL − 2ωL = 0 and can be described by the following expression [38]

PNL(t) ≈ ε0χ(3)
ArE

3
L(t) . (2.2.1)

The nonlinear polarization can be rewritten as a current [6] JNL = ∂tPNL. This is a very useful
definition in order to compare the contributions from the nonlinear polarization with the IC-
mechanism. There, the current JIC is driven according to Eq. (1.3.4) in the linear polarization
case by the IC source ιIC = q2

eneEL/me = ∂tJIC. Analogous, we can define the nonlinear current
source ιNL by

ιNL = ∂tt
(
ε0χ

(3)
ArE

3
L(t)

)
. (2.2.2)
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2. Theory of THz emission from laser induced microplasmas

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.2.1.: Peak electric field amplitudes max |EL|, maximum electron density max ne in an
argon-plasma as well as the IC-THz-yield Y IC

THz and FWM-THz-yield Y FWM
THz in

arbitrary but comparable units. The dependence on phase φ and fraction of SH
energy ξ is shown for three different laser field strengths of a two-color laser pulse:
E

(0)
L = 14.5 GV/m (a-d), E(0)

L = 27.4 GV/m (e-h) and E
(0)
L = 45.8 GV/m (i-

l). The laser pulse duration is t0 = 50 fs. The initial atom density is na =
2.7 · 1019 cm−3.

Assuming that the currents JIC and JNL are present within a small volume, a point-source,
the emitted THz radiation is proportional to the time derivative of the current and thus to the
nonlinear source terms ιIC and ιNL. This motivates to introduce the THz yield of the current
source by

Y
(IC/FWM)

THz =
2π×60 THz∫

0

|ι̂IC/NL(ω)|2 dω , (2.2.3)

where the “ˆ” indicates the Fourier transform with respect to time as it is introduced in App. A.
Moreover, we have extended the integration beyond the THz-gap1 in order to be consistent with
considerations in Chaps. 4-5.
Now, we consider the THz yield for different laser field amplitudes. In [86], we find the

nonlinear refractive index n2 = 10.4 · 10−20 cm2/W for argon that can be converted into χ(3)
Ar ≈

2n2n
2cε0/3 = 1.8·10−26 m2/V2 following [38]. Hereby, n is the linear refractive index with n ≈ 1.

The neutral density nn and ion-densities n(Z)
ion for a Z times charged ion are computed according

1The following conclusions, however, do not change if integrating only up to 30 THz in Eq. (2.2.3).
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2.2. Assumption of a polarization-free gas plasma

NL

Figure 2.2.2.: Intensity-dependent contributions of the plasma-response and Kerr-response to
the susceptibility for a single-color laser pulse with t0 = 50. In both cases the
maximum value for all times is taken. The gray dotted line is the linear suscepti-
bility χ(1)

Ar for a neutral argon gas with na = 2.7 · 1019 cm−3.

to Sec. (2.1) and the electron density is approximated here by ne ≈
∑
Zn

(Z)
ion . Fig. 2.2.1(b)

shows that for peak electric fields around 20 GV/m [see Fig. 2.2.1(a)], the ionization degree is
far below full single ionization. Naturally, it becomes maximum, when the electric field becomes
maximum. This happens when half of the energy is in the SH and φ = 0, π. As can be seen in
Fig. 2.2.1(c-d), in such a case of weak ionization, more THz radiation is expected from the FWM
process than from the IC mechanism2. However, when reaching electric field amplitudes around
40 GV/m corresponding to an intensity of 1014 W/cm2, about 10 % of the atoms are ionized and
Y

(IC)
THz dominates Y (FWM)

THz already by 7 orders of magnitude [see Fig. 2.2.1(e-h)]. The difference
becomes more and more dramatic when increasing the laser field amplitude [see Fig. 2.2.1(i-l)].
For E(0)

L = 45.8 GV/m that is a typical value for examples that are going to be considered in
Chap. 5, Y (IC)

THz dominates Y (FWM)
THz by 9 orders of magnitude. Thus, we can neglect the nonlinear

polarization as the source of THz radiation for I(0)
L ≥ 1014 W/cm2.

2.2.2. Influence of the neutral polarization on the laser propagation
The propagation of a laser pulse through a gas-plasma can deviate from propagation in vacuum
first of all because of the neutral atoms and electrons response. This response can be character-
ized by the frequency dependent susceptibility [6, 38]. In the following, we estimate the linear
and nonlinear susceptibility of the neutrals and the susceptibility of the electrons for different
intensities. Hereby, we consider laser pulses from Sec. 2.2.1 with ξ = 0, i.e., single-color laser
pulses.
The susceptibility of the electrons for ωp(t) =

√
q2

ene(t)/(meε0) � ωL and neglecting the
damping of the electron current can be defined by

χplasma(t) = −
ω2

p(t)
ω2

L
. (2.2.4)

2The THz yield is π-periodic with respect to φ. Moreover, Y (FWM)
THz becomes as expected maximal when

maximizing (1− ξ)
√
ξ at ξ = 1/3 and for φ ∈ {0, π} [87]. For Y (IC)

THz , the situation is more complicated: For high
ionization degrees Y (IC)

THz becomes maximal when φ = π/2 in agreement with the common literature [71, 88, 89].
For low ionization degrees, Y (IC)

THz becomes maximal at some φ 6= π/2. As anticipated from Fig. 2.2.1, this deviation
arises from the fact that φ = π/2 minimizes the peak electric field and thus the electron density. The influence of
the phase angle φ on the THz generation is detailed in Chap. 5.
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2. Theory of THz emission from laser induced microplasmas

The nonlinear polarization in Eq. (2.2.1) contains besides THz-components for two-color pulses
also components at ωL and thus influences the laser propagation. We define3

χNL(t) = χ
(3)
ArE

2
L(t) . (2.2.5)

Moreover, the linear susceptibility of the neutral argon is χ(1)
Ar = 2.65 · 10−4 for λL ∈ [0.5, 2]µm

measured at 15 ◦C [90, 91].
Figure 2.2.2 presents the maximum values of χplasma (solid blue line) and χNL (solid black

line) normalized to χ(1)
Ar depending on the laser peak intensity I(0)

L . Obviously the response of
the plasma dominates for I(0)

L ≥ 1014 W/cm2 over the neutral response4. Thus, in a strong
focusing geometry where the intensity quickly increases before the focus leading to high degrees
of ionization over short propagation distances, the response of the neutral atoms can be neglected
and the electron-plasma response mainly determines the laser propagation. Hence, the linear
and nonlinear susceptibility of neutral atoms are disregarded in our model.

2.3. Maxwell and Vlasov equations
We assume the validity of the macroscopic Maxwell’s equations [6] that are the divergence-
equations5

∇ ·E(r, t) = ρ(r, t)
ε0

(2.3.1)

∇ ·B(r, t) = 0 (2.3.2)

and curl-equations

∇×E(r, t) = −∂tB(r, t) (2.3.3)

∇×B(r, t) = 1
c2∂tE(r, t) + µ0J . (2.3.4)

Here, E and B are the macroscopic electric and magnetic vector fields6, J is the macroscopic
current density and ρ is the macroscopic charge density7. Here, all fields are functions of position
vector r = (x, y, z)T and time t. The current will include only the contribution by the electrons,
because the ions are assumed to be fixed8.

The electron-plasma is governed by the non-relativistic Vlasov equation describing the distri-
bution function fe of the electrons depending on the electron position r and electron velocity v

∂tfe(r,v, t) + v · ∇rfe(r,v, t) + F
me
· ∇vfe(r,v, t) = S[n(Z)

ion ,E]δ(v) + C[fe, f
(Z)
ion ] , (2.3.5)

3Often, instead of EL(t), the envelope of the electric field without fast oscillations is included in the definition
because one is only interested in the polarization at ωL. However, for the response of the electron-plasma a
linear susceptibility cannot be introduced in this sense because of the fast variation of the electron density due to
ionization. For consistency, we introduce both susceptibilities using the fast oscillating field EL.

4This conclusion holds also for air as shown in App. B.
5Hereby, ∇ = (∂x, ∂y, ∂z)T.
6Vectors are typed in bold.
7For sake of brevity, E, B, J and ρ are also called electric field, magnetic field, current and charge density.
8For example, Argon ions have a mass that is more than 104 times larger than the mass of electrons. Thus,

ions are assumed to be fixed.
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2.4. Moments of the Vlasov equation

where v is the electron-velocity coordinate9. The electrons are pushed by the electromagnetic
force

F = qe [E(r, t) + v×B(r, t)] , (2.3.6)

with the negative elementary charge of the electron qe = −1.602 · 10−19 C. The ionization of
atoms is taken into account by the source term S that is specified in Sec. 2.1. We assume that
each electron is born with zero velocity by writing the delta-distribution δ(v) on the right side
of Eq. (2.3.5). The term C[fe, f

(Z)
ion ] in Eq. (2.3.5) describes elastic collisions, i.e., C has the

property to conserve the density and the total energy of the particles. Inelastic collisions are
neglected10. We are interested in the damping of the electron current due to collisions. Non-
relativistic electron-electron collisions do not change the electron current11 and thus we will
account for electron-ion collisions only.
Finally, defining the macroscopic current density J as the 1st velocity moment of the electron

distribution function fe,
J(r, t) = qe

∫
vfe(r,v, t)d 3v , (2.3.7)

allows for coupling to the macroscopic Maxwell equations. In addition, introducing the electron
density ne as the 0th moment of the electron distribution function fe, the total charge density
reads

ρ(r, t) = qe


∫
fe(r,v, t)d 3v︸ ︷︷ ︸

=ne(r,t)

−
∑
Z

Zn
(Z)
ion (r,v, t)

 . (2.3.8)

2.4. Moments of the Vlasov equation
In the following, the 0th , 1st , and 2nd velocity moments of the distribution function fe leading
to continuity and Euler equation, respectively, as well as the equation for the total energy of the
electrons will be re-derived. For sake of brevity, the functional arguments are skipped.

2.4.1. Continuity equation
Here, the 0th velocity moment of Eq. (2.3.5) is computed. With the definition of the electron
density in Eq. (2.3.8), the first term on the left hand side provides∫

∂tfe d
3v = ∂t

∫
fe d

3v = ∂tne . (2.4.1)

9Now, we distinguish between ∇r = (∂x, ∂y, ∂z)T = ∇ and ∇v = (∂vx , ∂vy , ∂vz )T.
10This includes recombination of the electron with its parent ion just after the ionization process that is in

particular the source of high harmonic generation, but not probable for intensities ≥ 1014 W/cm2 [92]. Avalanche
ionization is neglected because of the relatively small atomic densities ≤ 1020 cm−3, high ionization degrees and
laser pulse duration in the fs-domain. In weakly ionized gases and ps-long laser pulses avalanche ionization cannot
be neglected [93]. Recombinations are neglected since they appear only at ps-time scales and the electron current
is already damped before a significant number of electrons recombines [58].

11This can be seen as follows: Assume two non-relativistic electrons ’a’ and ’b’ with momenta pa and pb before
the collision event and p′a and p′b after the collision event. Momentum conservation gives pa + pb = p′a + p′a.
Since all the electrons have the same mass and charge and in the non-relativistic regime, a corresponding equality
holds for the electron velocities. Thus, the electron current is conserved.
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2. Theory of THz emission from laser induced microplasmas

Using integration by part for the second term gives∫
v · ∇rfed

3v = ∇r ·
∫

vfed
3v = ∇r · (neu) , (2.4.2)

where the (electron) fluid velocity u is defined by

u = 1
ne

∫
vfed

3v . (2.4.3)

Since the ions are assumed to be fixed, according to Eq. (2.3.7) the total current density reads

J = qeneu . (2.4.4)

The 0th moment of the force term vanishes because∫
F · ∇vfed

3v = −
∫
fe∇v · Fd 3v = 0 , (2.4.5)

when using integration by parts and fe(|v| =∞) = 0 as well as ∇v ·F = qe∇v ·(E + v×B) = 0.
Moreover, it is easy to see that ∫

Sδ(v)d 3v = S . (2.4.6)

Finally, the 0th moment of the term C has to vanish because elastic collisions conserve the
particle density. Adding up all the terms leads to the continuity equation

∂tne +∇r · (neu) = S . (2.4.7)

2.4.2. Euler equation
In analogy to Sec. 2.4.1, the 1st velocity moment of all terms in Eq. (2.3.5) is computed. First,
we have ∫

v∂tfed
3 v = ∂t (neu) . (2.4.8)

Rewriting the moment of the second term gives∫
v (v · ∇rfe) d3v = ∇r ·

∫
fev⊗ vd3v , (2.4.9)

where ⊗ denotes the usual outer product, and the divergence operator applied to a matrix-valued
function yields the divergence for each row of the matrix. By defining the expression for the
velocity spread of the electrons

var v = 1
ne

∫
fe(v− u)⊗ (v− u) d3v (2.4.10)

as well as using the electron density from Eq. (2.3.8) and fluid velocity from Eq. (2.4.3) results
in ∫

v (v · ∇rfe) d3v = ∇r · (neu⊗ u + nevar v) . (2.4.11)

We assume instantaneous thermalization of the plasma, which renders var v proportional to the
identity matrix:

var v = diag(1, 1, 1) 1
3ne

∫
|v− u|2 fe d

3v . (2.4.12)
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2.4. Moments of the Vlasov equation

Again via integration by parts, we find∫
v
( F
me
· ∇vfe

)
d3v = −

∫
fe∇v ·

(
v⊗ F

me

)
d3v

= −
∫
fe

( F
me

+ v∇v · F
me

)
d3v = −qene

me
(E + u×B)

(2.4.13)

for the 1st moment of the force term. The contribution from the ionization source term S
vanishes. In order to handle the 1st velocity moment of the collision term, the electron-ion
collision frequency νei is introduced via∫

vC d3v = −neνeiu . (2.4.14)

This term is responsible for the damping of the electron current, as will be clear later. Note
that in Eq. (2.4.14) we make again the assumption of instantaneous thermalization and thus
electron-ion collisions are isotropic, i.e., a scalar collision frequency νei is sufficient.

In summary, the 1st moment of Eq. (2.3.5) is giving the Euler equation

∂t (neu) +∇r · (neu⊗ u + nevar v) = qene
me

(E + u×B)− neνeiu . (2.4.15)

2.4.3. Energy equation
Finally, the energy density of electrons E is considered. It is defined by

E = me
2

∫
|v|2 fe d

3v . (2.4.16)

Again, first the 2nd velocity momenta of all terms in Eq. (2.3.5) are computed:∫
|v|2 ∂tfe d

3v = 2
me

∂tE . (2.4.17)

Next we have ∫
|v|2 v · ∇rfe d

3v = ∇r ·
∫
|v|2 vfe d

3v , (2.4.18)

which is already of 3rd order in the velocity and therefore, as we will see below, not relevant for
our multiple scale analysis in the next section. Furthermore,∫

|v|2 F
me
· ∇vfe d

3v = −
∫
fe∇v ·

(
|v|2 F

me

)
d3v = −2

∫
fe v · F

me
d3v = −2qene

me
u ·E ,

where we used integration by parts, Eq. (2.4.5), and v · (v×B) = 0. The ionization source S
gives no contribution, and the assumption of elastic collisions dictates∫

|v|2C d3v = 0. (2.4.19)

Using these results and the Euler equation (2.4.15), the free electron energy density is governed
by

∂tE + me
2 ∇r ·

∫
|v|2 vfe d

3v−meneνei |u|2

= meu · [∂t (neu) +∇r · (neu⊗ u + nevar v)] .
(2.4.20)
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2. Theory of THz emission from laser induced microplasmas

It is possible to recast the electron energy density in terms of u and var v:∫
|v|2 fe d

3v =
∫
|u|2 fe d

3v +
∫
|v− u|2 fe d

3v

= ne |u|2 + tr (nevar v) , (2.4.21)

where tr denotes the trace of the matrix. Then, we can identify kinetic and thermal energy
density as

Ekin = me
2 ne |u|2 , Eth = me

2 tr (nevar v) , (2.4.22)

respectively. Finally, we can exploit our assumption of instantaneous thermalization in
Eq. (2.4.12) and relate (var v)2 via Eq. (2.4.22) to the thermal energy density

ε2 : (var v)2 = diag(1, 1, 1) 2Eth,2
3men0

. (2.4.23)

2.5. Multiple scale expansion
In the following, Eqs. (2.4.7), (2.4.15) and (2.4.20) are simplified by means of a multiple scale
analysis. The general idea behind this approach is that electron velocities are small compared
to the speed of light, and thus velocity momenta become less important with increasing order.
What exactly ”small” means in this context is discussed at the end of this section. We introduce
a scaling parameter ε� 1, and expand the relevant quantities

ne =
∞∑
i=0

εini, u =
∞∑
i=1

εiui, E =
∞∑
i=2

εiEi,

var v =
∞∑
i=2

εi (var v)i ,
∫
|v|2 vfe d

3v =
∞∑
i=3

εi
(∫
|v|2 vfe d

3v
)
i
.

(2.5.1)

Each summation in Eq. (2.5.1) starts at the order of the respective power in v. This insures
as will be seen later, that the kth moment is driven by terms of order εk and higher, only.
Furthermore, the collision frequency νei and the ionization source S are set to the order ε0. Thus,
the ion densities n(Z)

ion are also at the order ε0. Eqs. (2.4.3) and (2.5.1) imply that the lowest order
current is of the order ε1. These scalings and the linearity of Maxwell’s equations (2.3.3)-(2.3.4)
implies that all the macroscopic quantities in Maxwell’s equations start at the order ε1:

E =
∞∑
i=1

εiEi, B =
∞∑
i=1

εiBi, J =
∞∑
i=1

εiJi, ρ =
∞∑
i=1

εiρi . (2.5.2)

Plugging Eqs. (2.5.1), (2.5.2) into Eqs. (2.4.7), (2.4.15) and (2.4.20) and separating the dif-
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2.5. Multiple scale expansion

ferent orders of ε gives12:

ε0 : ∂tn0 = S (2.5.3)
ε1 : ∂tn1 +∇ · (n0u1) = 0 (2.5.4)

ε1 : ∂t (n0u1) + n0νeiu1 = qen0
me

E1 (2.5.5)

ε2 : ∂t (n0u2) + ∂t (n1u1) + n0νeiu2 + n1νeiu1 +∇r · [n0u1 ⊗ u1 + n0 (var v)2] (2.5.6)

= qe
me

(n0E2 + n1E1 + n0u1 ×B1)

ε2 : ∂tE2 = meνein0 |u1|2 +meu1 · ∂t (n0u1) . (2.5.7)

We introduce the total energy per electron Etot by

Etot = E2
n0

. (2.5.8)

Following [94], we assume for the electron-ion collision frequency νei

νei[s−1] =
3.9× 10−6∑

Z
Z2n

(Z)
ion [cm−3]λei

Etot[eV]3/2
, (2.5.9)

where λei is the Coulomb logarithm.
The model is complete. In the following, we summarize the model equations by replacing

fluid velocities by current densities. Moreover, we regroup the equations into hierarchic sets of
equations. First, the lowest order set of equation is presented. Then, the next higher order set
of equation is considered.

2.5.1. The lowest order set of equation
Using Eqs. (2.1.8)-(2.1.9) and Eq. (2.5.1), (2.5.3), we have

ε0 : ∂tn
(Z)
ion = S(Z)[n(Z)

ion ,E1]

ε0 : n0 =
∑
Z

Zn
(Z)
ion . (2.5.10)

Hereby, we assume that the ionization source term S depends only on the lowest order electric
field E1. The definition of the current in Eq. (2.4.4) gives J1 = qen0u1. Eq. (2.5.5) determines
the current evolution by

ε1 : ∂tJ1 + νei[n(Z)
ion , n0, E2]J1 = q2

e
me

n0E1 , (2.5.11)

where the electron-ion collision frequency νei is specified by Eq. (2.5.9). In particular, νei depends
on the total electron energy Etot = E2/n0. Using Eq. (2.5.7), J1 = qen0u1 and Eq. (2.5.11), we
gain an expression for the evolution of the electron energy density

ε2 : ∂tE2 = E1 · J1 . (2.5.12)

12From now on again ∇ = ∇r = (∂x, ∂y, ∂z)T.
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2. Theory of THz emission from laser induced microplasmas

Linearity of the Maxwell’s equations (2.3.3)-(2.3.4) implies

∇×E1(r, t) = −∂tB1(r, t) (2.5.13)

∇×B1(r, t) = 1
c2∂tE1(r, t) + µ0J1 . (2.5.14)

Herewith, the lowest order set of equation is complete. It describes the evolution of the lowest
order quantities n(Z)

ion , n0, J1, E1 B1 and E2. Now, the initial and boundary conditions of the
problem have to be fixed: For this, we define the laser electric and magnetic fields EL and
BL that have to fulfill the Maxwell’s equations (2.3.3)-(2.3.4) in vacuum (J1 = 0). Before the
electric field E1 is large enough to ionize the gas, we have E1 = EL and B1 = BL. From the
moment on where n0 6= 0 and thus J1 6= 0, we have in general E1 6= EL and B1 6= BL.

Before coming to the next higher order set of equation, we interpret the role of the lowest order
set of equations and put them into the usual context of THz generation. The 0th order electron
density n0 in Eq. (2.5.10) describes the electrons that are produced locally due to ionization.
The 1st order current J1 in Eq. (2.5.11) is driven by the 1st order electric field E1 which has to
be computed consistently with the Maxwell equations (2.5.13)-(2.5.14). The electric field E1
does not equal to the electric laser field EL. In particular, it contains the THz electric field
that we are interested in. This is the fundamental difference compared to the IC-current JIC in
Eq. (1.3.4) from Sec. (1.3.3) that was initially proposed in [57, 66]. Herewith, the lowest order
set of equations gives a framework for the description of the ionization current mechanism that
is usually explored for two-color laser pulses. Such a Maxwell-consistent treatment has been
explored in [95, 96], but only for 1D and 2D geometries. In 3D geometry, only the unidirectional
pulse propagation equation is frequently employed to describe THz generation by two-color laser
pulses in weakly focused geometries [72, 75, 97]. Besides a Maxwell-consistent treatment of the
current and the electric field, the present model takes into account the evolution of the electron-
ion collision frequency νei that is normally assumed to be constant in studies on THz generation.
According to Eq. (2.5.9), νei increases with the ion densities and decreases for more energetic
electrons. Eq. (2.5.12) computes the required electron energy density E2.

2.5.2. Next higher order set of equations
Here, we consider one higher order set of equations. We suppose that n0, J1, E1, B1 and E2
are known from the solution or approximation of the equations in the previous section. Then,
according to Eq. (2.5.4), the 1st order electron density n1 is determined by

ε1 : ∂tn1 + 1
qe
∇ · J1 = 0 (2.5.15)

The definition of the current in Eq. (2.4.4) gives J2 = qen1u1 + qen0u2. Then, Eq. (2.5.6)
determines the current evolution by

ε2 : ∂tJ2 + νeiJ2 = q2
e
me

n0E2 + ι2 , (2.5.16)

where we define the source term ι2 by

ι2 = q2
e
me

n1E1 + qe
me

J1 ×B1 −
J1
qen0

(∇ · J1)− (J1 · ∇) J1
qen0

− 2qe
3me
∇Eth,2 , (2.5.17)
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2.5. Multiple scale expansion

with
Eth,2 = E2 − |J1|2/(2meq

2
en0)︸ ︷︷ ︸

=Ekin,2

. (2.5.18)

Hereby, Eth,2 carries the role of (var v)2 after the substitution by using Eq. (2.4.23). Moreover,
we obtain another set of Maxwell’s equations

∇×E2(r, t) = −∂tB2(r, t) (2.5.19)

∇×B2(r, t) = 1
c2∂tE2(r, t) + µ0J2 . (2.5.20)

Compared to the previous set of equations that also governs the evolution of the laser fields,
here, the initial and boundary conditions are very simple: All the fields equal to zero in the
beginning.
We elaborate the physical meaning of the present terms. The 1st order electron density in

Eq. (2.5.15) accounts for the outflow of the current J1. The 2nd order current J2 is driven by
the electric field E2 at the same order and can be damped similar to the lowest order set of
equations. But now, in addition the current is driven by the current source term ι2. The 2nd ,
3rd and 4th terms of ι2 in Eq. (2.5.17) have been already established by the ad-hoc model in [58]:
in particular, they contain as shown in App. D the ponderomotive source. Now in addition, the
first term ∝ n1E1 describes the action of the electric field E1 on n1 (“the missing electrons that
have been displaced by the action of E1”). Furthermore, the last term accounts for the diffusion
of the electrons13. Thus, we unified various well known THz generation mechanisms and can
treat them consistent with the Maxwell’s equations at the same level.

2.5.3. Evolution equations for the electric field
In the following, we isolate the laser fields from the electromagnetic fields due to the laser-
plasma interaction. For this, the homogeneous set of equations in Sec. 2.5.1 is transformed into
an inhomogeneous problem, but with trivial initial-boundary conditions, same as for the set of
equations in Sec. 2.5.2. The 1st order fields originating from the laser-gas-plasma interaction
excluding the laser fields are introduced by

Ẽ1 = E1 −EL

B̃1 = B1 −BL .
(2.5.21)

Since EL, BL solve the Maxwell’s equations (2.5.13)-(2.5.14) for J = 0, the current is trans-
formed as J̃1 = J1. Then, the Maxwell’s equations (2.5.13)-(2.5.14) are not affected by this
transformation. The current Eq. (2.5.11) transforms as follows

∂tJ1 + νeiJ1 = q2
e
me

n0Ẽ1 + ι1 (2.5.22)

ι1 = q2
e
me

n0EL . (2.5.23)

13A similar term has been made responsible for THz emission in [63]. Here, no assumption of instantaneous
thermalization of the electron-velocity-phase-space has been made. Instead, a phenomenological relaxation time
for the thermalization was introduced. However, in Sec. 4.1 using our model will show that the last term in
Eq. (2.5.17) is negligible compared to the other terms for our laser pulse parameters.
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2. Theory of THz emission from laser induced microplasmas

In analogy to the current Eq. (2.5.16), we introduced the lowest order current source term ι1.
Looking at Eq. (2.5.22) and Eq. (2.5.16) we see, that we expressed the current equations at both
orders in the same manner.
Now it is possible to write down the evolution equation for the 1st and 2nd order of E in the

same form. The Maxwell’s equations and current Eq. (2.5.22), (2.5.16) give

∂ttẼ1 + νe∂tẼ1 + q2
en0
meε0︸ ︷︷ ︸

=ω2
p(r,t)

Ẽ1 + c2∇×∇× Ẽ1 + c2νe

∫
∇×∇× Ẽ1 dt = −ι1

ε0
(2.5.24)

∂ttE2 + νe∂tE2 + ω2
p(r, t)E2 + c2∇×∇×E2 + c2νe

∫
∇×∇×E2 dt = −ι2

ε0
, (2.5.25)

where we introduce the time- and space-dependent generalization of the usual plasma frequency
ωp. It is important to note that the left side of Eq. (2.5.25) is of the same shape for both Ẽ1
and E2. The only difference lies in the source terms ι1 and ι2. Those depend strongly on the
driving laser field EL. Thus, it is important to study the source terms for different types of
incoming laser fields, in particular its strength and spectral properties. This will be done mainly
in Chaps. 4, 5.

2.5.4. Estimating the validity of the multiple scale expansion
The multiple scale expansion assumes that the amplitude of the quantities decreases with in-
creasing order of ε. Here, typical ratios between |n1| and n0 as well as |J2| and |J1| are estimated.
We consider two different aspects: First, the lowest order electric field is considered to be dom-
inated by the laser field EL. The electron current J1 is then non-resonantly driven at the laser
frequency ωL. This will give an upper bound for the amplitude of the laser field. Second, we
consider one resonant excitation scenario which will give an upper bound for the time scale at
which the multiple scale expansion is valid.

2.5.4.1. Upper bound for the laser field amplitude

It is reasonable to assume that the lowest order electric field is dominated by the driving laser field
EL since we are dealing with gases that are transparent for the laser and no field enhancement
can be expected. This assumption is expressed by |E1| ∼ E

(0)
L that means that the magnitude

of |E1| is of the order of the laser electric field amplitude E(0)
L . Then, Eq. (2.5.23) gives

|ι1| ∼
q2

en0
me

E
(0)
L . (2.5.26)

Since E1 is dominated by EL that oscillates at the laser frequency ωL, the amplitude of J1 can
be estimated by using Eq. (2.5.22) and replacing ∂t → ωL to be

|J1| ∼
q2

en0E
(0)
L

meωL
. (2.5.27)

This estimation translates in terms of the fluid velocity u1 = J/(qen0) into

|u1|
c
∼ qeE

(0)
L

cmeωL
= a0 , (2.5.28)
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where we define the normalized laser electric field amplitude a0. For a0 � 1, the regime is non-
relativistic. For λL = 0.8µm, the relativistic case with a0 = 1 is reached when E(0)

L = 40 GV/cm
corresponding to intensity I(0)

L = 2.13·1018 W/cm2. Thus, for our intensities below 1016 W/cm2,
a0 � 1 and we indeed work in the non-relativistic regime.

We now estimate the ratio between |n1| and n0. Even in the strongest focusing geometry the
focal spot size is limited due to the diffraction limit (see Sec. 3.3.2.2). Thus, it is reasonable
to assume that the typical length over which the current can vary is λL/(2π). Same as J1, n1
oscillates mainly at ωL and using Eq. (2.5.15) and replacing ∂t → ωL as well as ∂x/y/z → 2π/λL

|n1|
n0
∼ 1
qen0

2π|J1|
ωLλL

∼ |u1|
c
∼ a0 . (2.5.29)

Thus in a gas-plasma in the non-relativistic regime, |n1| � n0 should be well fulfilled.
Next, we estimate the ratio between |J2| and |J1| that should be at the order of the ratio

between the driving source terms |ι2| and |ι1|. Therefore, we estimate an upper bound for Eth,2.
Using Eq. (2.5.18), (2.5.12) and (2.5.11) we get an expression for Eth,2:

∂tEth,2 = Ekin,2

(
2νei + ∂tn0

n0

)
. (2.5.30)

Integration of this equation results in the estimation

Eth,2 .
me|J1|2

2q2
en0

(2νeit0 + 1) , (2.5.31)

where t0 is the laser pulse duration and we used the definition of Ekin,2 in Eq. (2.5.18). Now,
we replace in Eq. (2.5.17) all spatial derivatives by ∂x/y/z → 2π/λL. Moreover, we assume that
1/νei > t0 > 1/ωL. Then, after some algebra, we find

|ι2| . a0|ι1| . (2.5.32)

Thus, we can conclude that the ratio of |ι2| over |ι1| and thus of |J2| over |J1| and |E2| over |E1|
is typically much smaller than a0, rendering the multiple scale approach valid for non-relativistic
laser pulses.

2.5.4.2. Upper bound for the valid time-scale

Above, we considered frequency components of J1 that are close to the laser frequency ωL.
However, also other frequency components can be excited, in particular oscillations at the plasma
frequency ωp. Oscillations at ωp can survive for a long time and this poses an additional
limitation to the multiple scale expansion as will be shown in the following.
Just to see this limitation, we assume a simple 1D system with ∂y = ∂z = 0, νe = 0 and a

preformed plasma with an x-dependent electron density n0 = n0(x) and thus a space dependent
plasma-frequency ωp(x) =

√
q2

en0(x)/(meε0). We imagine that at the time point t = 0 a
constant electric field Es is applied along the x-axis. This translates into the initial conditions
E1,x(x, t = 0) = Es, ∂tE1,x(x, t = 0+) = 0, where 0+ indicates the state just after t = 0.
Eq. (2.5.14) and the translational invariance in y and z leading to (∇×B) · ex = 0 give

J1,x(x, t) = −ε0∂tE1,x(x, t) . (2.5.33)
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2. Theory of THz emission from laser induced microplasmas

Then, using Eq. (2.5.11) results in

∂ttE1,x(x, t) + ω2
p(x)E1,x(x, t) = 0 , (2.5.34)

with the solution
E1,x(x, t) = Es cos [ωp(x)t] , (2.5.35)

which fulfills our initial conditions. Thus, we consider an extreme situation, where oscillations
at ωp are not damped by losses, neither radiative losses nor losses by current damping and thus
the oscillations can survive for a long time.
Now, we compare n0 with n1. In order to evaluate Eq. (2.5.15) and to compute n1, we need
∇ · J1 = ∂xJ1,x. Using the solution for E1,x and Eq. (2.5.33) gives

J1,x(x, t) = ε0ωpEs sin (ωp(x)t) , (2.5.36)

and thus
∂xJ1,x = ε0ωpEs

(
∂xωp
ωp

sin(ωpt) + (∂xωp)t cos(ωpt)
)
. (2.5.37)

Please note, that the amplitude of J1,x is limited to ε0ωpEs whereas the amplitude of ∂xJ1,x
increases with t and is according to our solution using the multiple scale expansion not limited.
The reason is that the current in Eq. (2.5.36) oscillates at the plasma frequency that changes in
space. As the time goes on, the current at two positions gets more and more off-phase leading
to an increasing gradient.
Then, Eq. (2.5.15) gives

n1(x, t) = −ε0Es
qe

(∂xωp)t sin(ωpt) . (2.5.38)

comparing n1 with n0 gives ∣∣∣∣n1
n0

∣∣∣∣ ≤ ∣∣∣∣ε0Es
qen0

(∂xωp)t
∣∣∣∣ , (2.5.39)

where the “equal”-case is reached for t = π/2 + kπ and k ∈ N. However, the multiple scale
expansion assumes |n1| � |n0| and thus the time scale, where the solution is valid is limited to

t�
∣∣∣∣∣ qen0
ε0Es∂xωp

∣∣∣∣∣ ∼
∣∣∣∣∣2qeLtypn0
ε0Esωp

∣∣∣∣∣ = 2
√
me
ε0

Ltyp
Es

√
n0 , (2.5.40)

where we now introduce the typical length Ltyp by L−1
typ = max |(∂xn0)/n0| = 2 max |(∂xωp)/ωp|.

Thus, the smaller the plasma density gradients and the smaller the exciting electric field Es,
the longer the multiple scale expansion is valid. Moreover, the larger the electron density, the
longer the multiple scale expansion is valid, too14.
In is interesting to note that during the development of the multiple scale expansion, we

never used the Gauss law in Eq. (2.3.1) and also the divergence equation for the magnetic field
in Eq. (2.3.2). However, both are automatically valid at each order since they can be derived
from the other Maxwell’s equations and the continuity equation. Here, we can just verify this
conclusion: For example, it can be easily seen that ∇ · E1 = ρ1/ε0 = qen1/ε0 is fulfilled when
taking our solutions in Eq. (2.5.35), (2.5.38).

14This result might appear surprising. However, n1 is only proportional to ωp and thus to √n0 according to
Eq. (2.5.38). So, the ratio between n1 and n0, which is important for the validity of the multiple scale expansion,
is proportional to n−1/2

0 which makes the surprising result plausible.
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Now, we have to compare ι2 with ι1 = q2
en0/meEs. The 2nd order source term is x-polarized

and writes for the collision-less case using Eq. (2.5.17)

ι2,x = q2
e
me

n1E1,x −
J1,x
qen0

∂xJ1,x − J1,x∂x

(
J1,x
qen0

)
. (2.5.41)

By plugging in the previously computed n1, E1,x and J1,x gives after some algebra for t� ω−1
p∣∣∣∣∣ ι2,xι1,x

∣∣∣∣∣ ≤
∣∣∣∣ε0Es
qen0

(∂xωp)t
∣∣∣∣ , (2.5.42)

an analogical expression to Eq. (2.5.39). Thus, Eq. (2.5.40) stays the only necessary condition
that has to be fulfilled to render the multiple scale expansion valid.
According to Eq. (2.5.40), assuming Ltyp = 1µm and max n0 = 3 · 1025 m−3, renders the

multiple scale expansion valid if t × Es � 3.6 ps × GV/m. The considered laser peak electric
fields in this work are at the level of 40 GV/m - 400 GV/m. Like this, the electric fields due to
laser-plasma interaction stay below the GV/m-level (see in Chap. 4). Thus, the multiple scale
expansion is valid at ps time scales. In this section, we neglected the damping of the current.
However, typical damping times around 100 fs lead to an attenuation of the current before the
multiple scale approach becomes invalid.

2.6. Far-field emission from a current
When the current J in the gas-plasma is known, e.g., because it has been determined by means
of a simplified model like for the IC-mechanism in Sec. (1.3.3), then the emission by this current
in the far-field can be computed by means of the Maxwell equations (2.3.3)-(2.3.4). Using them,
in the temporal Fourier space (see App. A) the magnetic field fulfills the wave equation

∆B̂(r, ω) + ω2

c2 B̂(r, ω) = −µ0∇× Ĵ(r, ω) , (2.6.1)

where ω is the angular frequency coordinate. Solutions of Eq. (2.6.1) can be written as [6]

B̂(r, ω) = µ0

∫
Vplasma

∇r′ × Ĵ(r′, ω)G3D(r− r′, ω) d3r′ (2.6.2)

with the Green function
G3D(r, ω) =

exp
(
±iωc |r|

)
4π|r| . (2.6.3)

The ± indicates whether the incoming or the outgoing wave is considered. Here, we have to
consider outgoing waves and use the ” + ” sign. Integration by parts in Eq. (2.6.2) gives the far
field approximation (|r| � |r′|)

B̂far(r, ω) ≈ −iµ0
ω

c

r
|r| ×

∫
Vplasma

Ĵ(r′, ω)G3D(r− r′, ω) d3r′ . (2.6.4)
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The corresponding electric field in the far field, in particular outside the plasma volume, can
then be computed from c2∇× B̂far = −iωÊfar as

Êfar(r, ω) ≈ −c r
|r| × B̂far(r, ω) . (2.6.5)

We define the far-field power spectrum15 P 3D
far following the usual definition [6] by

P 3D
far (r, θ, ϕ, ω) = 2

µ0
<
[
Êfar(r, θ, ϕ, ω)× B̂?

far(r, θ, ϕ, ω)
]
· er , (2.6.6)

where < denotes the real part16. Here, we switched to standard (ISO) spherical coordinates
(r, θ, φ) according to

x = r sin(θ) cos(φ) y = r sin(θ) sin(φ) z = r cos(θ) (2.6.7)

for convenience. Then, the detection angle is given by (θ, ϕ) and the detector distance by r.
The vector er = r/|r| is the unit vector in r-direction and normal to the radiation sphere. Using
Eq. (2.6.4)-(2.6.5), the far-field power spectrum is given by

P 3D
far (r, θ, ϕ, ω) = 2 c

µ0

∣∣∣B̂far(r, θ, ϕ, ω)
∣∣∣2 . (2.6.8)

The integral of P 3D
far over the radiation sphere gives the angularly integrated power spectrum

P̃ 3D
far (ω) =

π
2∫

−π2

2π∫
0

P 3D
far (r, θ, ϕ, ω) r2 sin θ dϕ dθ , (2.6.9)

where the r-independence of P̃ 3D
far is ensured in the far-field due to energy conservation. Per-

forming moreover the integral over ω we get the total radiated energy

E3D
THz =

ωm∫
0

P̃ 3D
far (ω)dω , (2.6.10)

where we count the THz signal up to the angular frequency ωm.

Far-field emission from a current in 2D Special care has to be taken when it comes to evaluat-
ing Eq. (2.6.4) for 2D geometries with translational invariance in, e.g., y-direction17. Then, the
integration over y can be performed analytically leading to the 2D Green function valid in the
far field. We substitute K = ω

c

√
x2 + z2 � 1 and θ = ω

c |r| −K in Eq. (2.6.3) and approximate

15The far-field power spectrum corresponds to the spectral pointing flux.
16The “2” has been introduced since later we want to integrate only over positive frequencies.
17Such a configuration is used in Chap. 4, where we perform for sake of computational costs particle-in-

cell (PIC) simulations only in 2D. There, for a better comparison with PIC simulations, the simplified model that
need to compute the far-field emission from a current is also evaluated in 2D.
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as follows

G2D(x, z) =
∞∫
−∞

exp
(
iωc |r|

)
4π|r| dy =

∞∫
0

exp (iθ + iK)
2π
√
θ2 + 2Kθ

dθ

≈
∞∫
0

exp (iθ + iK)
2π
√

2Kθ
dθ =

exp
(
iωc
√
x2 + z2 + iπ4

)
√

8π ωc
√
x2 + z2

. (2.6.11)

Here, we used that for all y, θ/K → 0 for r⊥ =
√
x2 + z2 → ∞. Moreover, we have used that∫∞

0 sin(x) =
∫∞

0 cos(x) =
√
π/2 [98].

For 2D geometry with translational invariance in y-direction, we use polar coordinates (r, ϕ)
to parametrize the (x, z) plane according to

x = r cos(φ) y = r sin(φ) . (2.6.12)

Moreover, in 2D geometry, the THz energy density is defined analogous to the energy in 3D by

E2D
THz =

ωm∫
0

2π∫
0

P̃ 2D
far (r, ϕ, ω) r dϕ

︸ ︷︷ ︸
=P̄ 2D

far (ω)

dω . (2.6.13)
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This chapter presents numerical tools that serve for the analysis of THz generation in fs-
laser-induced microplasmas in Chap. 4 and Chap. 5. Sec. 3.1 summarizes some fundamentals of
Particle-In-Cell (PIC) codes which solve the fundamental equations given in Sec. 2.3, that are
the Vlasov equation coupled to the Maxwell equations. The lowest order set of equations from
the multiple scale expansion of these last ones, given in Sec. 2.5.1, is solved by a fluid code.
It is described and benchmarked by a 3D PIC simulation in Sec. 3.2. Finally, both numerical
codes require a tool to introduce tightly focused laser pulses into electromagnetic codes. We
have developed such an algorithm and present it in Sec. 3.3.

3.1. Fundamentals of Particle-In-Cell simulations
Particle-in-cell (PIC) codes compute the electromagnetic fields E, B and the electron distri-
bution function fe(r,v, t) by numerically solving the Maxwell’s equations and the equations
of motion for electrons, respectively1. First, we present the particle method used to solve the
non-relativistic Vlasov equation and then two different solvers for the numerical solution of the
Maxwell’s equations. Finally, we explain how these two kinds of discretization schemes are
coupled in PIC codes.

3.1.1. Modeling the plasma dynamics
We assume for the moment that we are looking for the approximation to the solution of the
homogeneous Vlasov equation, i.e., for S = 0 and C = 0 in Eq. (2.3.5). Here, we do not detail the
theory of the PIC codes described in [101], but give a brief description of its algorithm. PIC codes
model the plasma with the so-called macro-particles. These macro-particles are characterized

1In this work, we utilize the PIC codes OCEAN [99] and CALDER [100] that even can treat relativistic
electrons. In OCEAN and CALDER, an additional Vlasov equation for the ion species is discretized. Optionally
the ions can be fixed as done for our study.
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by the same physical quantities like real particles, for example mass and charge. But, they have
a statistical weight wi in such a way that one macro-particle models the dynamics of several real
particles. The discretization of the electron distribution function is then

fe(r,v, t) ≈
∑
i

wiS[r− ri(t),v− vi(t)] , (3.1.1)

where wi is the weight of the macro-particle i, vi and ri are the velocity and position of the
macro-particle i and S the weight function. It is typically chosen as a delta-functions in the
v-coordinate and a polynomial spline S̃ in the r-coordinate such that S(r,v) = S̃(r)δ(v).
The dynamics of a macro-particle i is governed by the equations of motion

∂tri(t) = vi(t) (3.1.2)

∂tvi(t) = qe
m
{E[ri(t), t] + vi(t)×B[ri(t), t]} . (3.1.3)

The equations of motions can be solved numerically for a sequence of discrete time-steps with
time-resolution δt.

In order to find an approximation to the full inhomogeneous Vlasov equation including ion-
ization and collisions, one splits the evolution of the electron distribution function into several
phases. First, one can generate macro-particles accounting for field ionization. Both, the PIC
code CALDER and OCEAN account for ionization following the scheme described in [100].
Hereby, the macro-particles are born at the position of the parent ion similarly to what happens
to real particles. Then, the macro-particles are pushed by the electromagnetic forces solving the
equations of motions. And finally, the momenta of the macro-particles may be modified due to
collisions. The PIC code CALDER is capable to account for electron-ion and electron-electron
collisions following the scheme that is described in [102].

3.1.2. Maxwell solver
The PIC codes that are used in this work, OCEAN and CALDER, solve the Maxwell equations
with different schemes: The Yee scheme in CALDER and the directional splitting (DS) scheme
in OCEAN. Both belong to the group of finite-difference-time-domain (FDTD) methods. The
idea of both schemes as well as their advantages and drawbacks are summarized in the following.

3.1.2.1. The Yee scheme

The Yee scheme has been proposed in 1966 [103] and is probably the most exploited scheme
for the solution of Maxwell’s equations up to date. It discretizes the Maxwell equations (2.3.3)-
(2.3.4) using the symmetric discrete derivative in space and time: For a differentiable function
f(x), the derivative f ′(x) can be approximated by f ′(x) ≈ [f(x + δx/2) − f(x − δx/2)]/δx up
to an error ∝ δx2 by means of Taylor expansion. For demonstration of the idea, we consider a
simple example in 1D with translational invariance in x, y such that ∂x ≡ 0 ≡ ∂y. Imagine, we
want to propagate an x-linearly polarized electric field Ex and a y-polarized magnetic field By
along the z-axis. Then, Eq. (2.3.3) gives ∂tBy = −∂zEx that can be discretized up to a second
order error in time and space by

By(z, t) ≈ By(z, t− δt)−
δt

δz
[Ex(z + δz/2, t− δt/2)− Ex(z − δz/2, t− δt/2)] . (3.1.4)

42



3.1. Fundamentals of Particle-In-Cell simulations

Ex

E zE
y

x

z

y

x
x x

xyE

z

Ex

E

y

z

TETM   3D
Yee
grid

z z y
z

(a) (b) (c)

B

B

B
B

B
B

Figure 3.1.1.: Distribution of the electromagnetic field sampling points according to the Yee
scheme in three cases [104]: two types of meshes in 2D and the 3D Yee grid.

Thus, we can compute the magnetic field at the new time-step using the electric and magnetic
fields from the past. Similar, Eq. (2.3.4) gives ∂tEx = c2∂zBy − µ0Jx and in discretized version

Ex(z + δz/2, t+ δt/2) ≈ Ex(z + δz/2, t− δt/2)− c2δt

[
µ0Jx(z + δz/2, t)

− By(z + δz, t)−By(z − δz, t)
δz

]
. (3.1.5)

Thus, we can compute the electric field at the new time-step using the magnetic and electric field
as well as the current from the past. This kind of subsequent computation of the magnetic and
electric fields that are known at time steps separated by δt/2 is called the leap-frog method. In
both discretized equations, besides the shift in time, the spatial grid of the electric and magnetic
fields are also shifted, namely by δz/2.
This idea can be straightforwardly extended to 2D and 3D [105]. In 2D, e.g., with trans-

lational invariance in y (∂y ≡ 0), the Maxwell’s equations separate into two independent sets
of equations2: one for the fields Ex, By and Ez (TM) and one for Bx, Ey and Bz (TE)3. The
corresponding Yee-meshes are presented in Fig. 3.1.1(a-b). In both cases the y-polarized mag-
netic/electric field is shifted by half of the spatial mesh, i.e., δx/2 and δz/2. This ensures the
possibility to access to the symmetric and thus 2nd order discrete spatial derivatives as required
for the discretization of the Maxwell’s equations. In 3D, the situation is similar: As shown in
Fig. 3.1.1(c), the electric field components are located at the edges of the green cube and the
magnetic field components normal to the surface of this green cube. When considering the red
cube that is shifted by δx/2, δy/2 and δz/2, the magnetic fields appear along the edges whereas
the electric fields appear normal to the surfaces.
An advantage of the Yee scheme is the possibility to choose the spatial sampling distances

δx, δy and δz independently of each other. This can save computational resources, for exam-
ple when the electromagnetic fields are slowly varying in one transverse direction, but quickly
varying in the others (e.g. in Sec. 5.3). However, the time resolution δt is constrained by
cδt ≤

√
1/(δx2 + δy2 + δz2) (Courant-Friedrichs-Lewy condition) in order to ensure stability

of the scheme [105]. This can make it slower than other schemes, especially in 3D. Moreover,
as will be shown in Sec. 3.2.1, different sampling point positions for different fields can pose
an additional difficulty, in particular when coupling the Yee scheme to nonlinear differential
equations. Furthermore, due to a finite size of the computation box, the Yee scheme requires

2This is true as long as the current does not introduce an asymmetry that is not the case in our problems.
3The name “TM” decrypts as “transverse magnetic”, since the magnetic field is zero in the laser propagation

direction z. The name “TE” decrypts as “transverse electric”, since the electric field is zero in the laser propagation
direction z.
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boundary conditions that let the electromagnetic fields propagate out of the numerical box. The
electromagnetic codes that are considered in this work and are based on the Yee scheme utilize
absorbing boundary conditions [106]. Unfortunately, these boundary conditions are not perfect
such that some reflections of the electromagnetic fields occur at the box boundaries4. Finally,
the Yee scheme exhibits numerical dispersion that will be compared in Sec. 3.1.2.3 with the
numerical dispersion of the directional splitting scheme presented next.

3.1.2.2. The directional splitting scheme

An alternative to the Yee scheme is the directional splitting (DS) scheme [101, 107]. The
Maxwell equations can be written in the form ∂tF + A∂xF + B∂yF + C∂zF = ε−1

0 (JT, 0, 0, 0)T

with F = (ET,BT)T and some constant matrices A, B and C. The idea is to split the solution
into three steps: First advancing the fields in x by solving ∂tF + A∂xF = ε−1

0 (JT, 0, 0, 0)T for a
small time step δt, then in y by solving ∂tF+B∂yF = ε−1

0 (JT, 0, 0, 0)T and finally in z by solving
∂tF + C∂zF = ε−1

0 (JT, 0, 0, 0)T. However, this gives in general only a 1st oder accuracy. In 2D,
for J = 0 the scheme can be upgraded by switching the order of advections [108]. Practically,
also in 3D the permutation of the three steps that are mentioned above leads to a significant
improvement. Another disadvantage of the scheme is that the spatial resolution is fixed for each
direction to δx = δy = δz. Compared to the Yee scheme, the DS scheme allows to use a larger
time step to insure its stability. The CFL condition is fulfilled if δt = δx/c. So, with equal
spatial resolution this makes the computations faster compared to the Yee scheme. Another
advantage of the DS scheme is that every field is discretized on the same mesh. Moreover,
particular boundary conditions are not required since the scheme naturally splits forward and
backward propagating waves.

3.1.2.3. Numerical dispersion of the schemes

The finite difference time domain solvers, i.e., the Yee and the DS scheme, are affected by
numerical dispersion. This means that electromagnetic waves that should propagate with the
speed of light c in vacuum, propagate with a different phase velocity which is frequency and
wave-propagation-direction dependent. To evaluate the numerical dispersion of the Yee and the
DS scheme, we consider a 2D plane wave of the form E = E0 exp[i(ωt−kxx−kzz)] and analogous
for B with angular frequency ω and wavenumbers kx, kz. These plane waves are solutions of the
discretized equations of the Yee scheme and the DS scheme. However, this imposes a relation
between k = (kx, kz) and ω(k) [105, 107].

For the Yee scheme, we consider δx = δz = δ and the largest possible time step δt = δ/
√

2. It
is common to introduce the phase velocity vph(kx, kz) = ω(kx, kz)/|k|. Then, according to [105]
we have

vYee
ph (kx, kz)

c
= 2

√
2√

(kxδ)2 + (kzδ)2 sin−1

√sin2 (kxδ/2)
2 + sin2 (kzδ/2)

2

 . (3.1.6)

This normalized phase velocity is presented in Fig. (3.1.2)(a). Obviously, the Yee scheme is
dispersion free if the electromagnetic wave propagates at an angle of 45◦ to the z axis and is
dispersive along the x and z axes.

4We observe reflected electromagnetic fields with an amplitude about 10−4 of the incoming wave.
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Figure 3.1.2.: Normalized phase velocity of electromagnetic waves that are propagated by the
Yee scheme (a) and the directional splitting scheme (b). Phase error φYee between
the FH and SH plane waves after a distance ∆z depending on the resolution (c).

For the DS scheme, we always have δx = δz = cδt = δ and following [107]

vDS
ph (kx, kz)

c
= 1√

(kxδ)2 + (kzδ)2 cos−1
(cos(kxδ) + cos(kzδ) + cos(kxδ) cos(kzδ)− 1

2

)
. (3.1.7)

Fig. (3.1.2)(b) shows that for the DS scheme the numerical dispersion is large at an angle of 45◦
and the scheme is dispersion free for propagation along the x and z axes.
What is the role of the numerical dispersion for simulations of THz generation in gas-plasmas?

In Fig. 2.2.1(c,g,k) of Sec. 2.2.1, we have seen that the THz yield of the ionization current (IC)
mechanism is very sensitive to the phase φ between the FH and SH electric fields. During
the propagation of the FH and SH waves through a medium with linear dispersion, this phase
changes. As pointed out above, the DS scheme is dispersion free along the propagation axis z.
But, we should estimate the effect of the numerical dispersion on the propagation of the FH and
SH field in the Yee scheme. We consider the FH plane wave ∝ cos(Ψ1) and the SH plane wave
∝ cos(Ψ2) with Ψ1 = ωLt − kz(ωL)∆z and Ψ2 = 2ωLt − kz(2ωL)∆z + ϕ after the propagation
distance ∆z. Now, kz is considered to be dependent on ωL. Without numerical dispersion, i.e.,
when kz(ω) = ω/c, it can be easily verified that ϕ = Ψ2 − 2Ψ1. However, due to the numerical
dispersion of the Yee scheme the following error φYee is created

φYee = Ψ2 − 2Ψ1 − ϕ = 2ωL∆z
(

1
vYee

ph (kx = 0, kz(ωL))
− 1
vYee

ph (kx = 0, kz(2ωL))

)

≈ 2ωL∆z
(

1
vYee

ph (kx = 0, ωL/c)
− 1
vYee

ph (kx = 0, 2ωL/c)

)
. (3.1.8)

This error is presented in Fig. 3.1.2(c) depending on the propagation distance ∆z and resolution
in terms of number of sampling points per fundamental laser wavelength. The error can be
considered modulo π since the effect of ϕ is π-periodic. When propagating by less that 50λL,
the error is only in the order of few percent for 50 sampling points per wavelength. However, in
order to propagate ∆z = 200λL while keeping the same error, the resolution should be increased.

We conclude that special care should be taken for two-color laser pulses: The phase difference
between the FH and SH fields according to Eq. (3.1.8) introduced by the numerical disper-
sion should not dominate the phase difference that is induced by real propagation effects (see
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Figure 3.1.3.: (a) Schematic representation of the discretization in PIC simulations with four
electromagnetic grid points and two macro-particles. (b) The PIC-loop scheme.

Chap. 5). This problem appears particularly in the Yee scheme5, since the DS scheme is disper-
sion free along the laser propagation axis6.

3.1.3. The PIC loop
On the one hand Sec. 3.1.2 has shown, that the Maxwell equations are typically discretized
by FDTD methods that describe the approximative electromagnetic fields on a grid at discrete
spatial positions. In the spatial cell within the volume V = δxδyδz each field component is known
at one single position. On the other hand in PIC codes, the Vlasov equation is discretized in
terms of macro-particles as has been sketched in Sec. 3.1.1. Those represent a big number of
real particles. The macro-particles have a continuously valued position and velocity coordinate,
i.e. they can be located not at the position of the electromagnetic fields. Fig. 3.1.3(a) illustrates
an example in 1D with two macro-particles with a spline order one shape S̃. How are the
electromagnetic fields and macro-particles coupled in PIC codes?
PIC codes are organized in the so-called PIC loop that is sketched in Fig. 3.1.3(b). Hereby,

the coupled system of Maxwell’s and the Vlasov equations is solved iteratively advancing in time
by one time step per loop iteration. The functionality of these two components which update
E, B and the macro-particles in particular pushing them by the electromagnetic force has been
already signified above. In addition to these two blocks, two intermediate blocks have to be
added [101]. On the one hand, after the electromagnetic fields have been updated, one has to
interpolate E, B at the continuously valued position rk(t) of the macro-particles obtaining

E(rk(t)) = V
∑
i

E(ri, t)S̃[ri − rk(t)] , B(rk(t)) = V
∑
i

B(ri, t)S̃[ri − rk(t)] . (3.1.9)

On the other hand after the macro-particles have been updated, the charge contribution from
each macro-particle has to be projected onto the grid positions ri of the electromagnetic solver:

ρ(ri, t) = qe
∑
k

wkS̃i[ri − rk(t)] . (3.1.10)

The current density is then computed using a charge conserving algorithm detailed in [109].

5One could inject the laser at the angle of 45◦ in order to suppress this effect. However, then the focal plane
where the laser fields are usually prescribes would be not parallel to the numerical box boundaries anymore.
This would make the computation of the laser boundary fields according to Sec. 3.3 computationally significantly
heavier since one could not resort to FFTs.

6One could argue that also the DS scheme introduces an error for waves that are propagating not parallel to
z that appear for strongly focused beams. However, for those beams the interaction of the laser with the plasma
is limited to only few tens of laser wavelengths (see Sec. 3.3.4.1) such that numerical dispersion stays weak.
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3.2. Fluid code ARCTIC: solving the lowest order set of multiple
scale equations

When electrons perform a rather collective motion such that only the lowest order velocity
moments of the electron distribution function fe are significant, a fluid description of the plasma
is sufficient. In Chap. 2, a fluid model has been derived and estimated to be able to describe THz
generation in fs-laser induced microplasmas. Here, we present our discretization scheme for the
lowest order set of fluid equations given in Sec. 2.5.1 that governs in particular the IC mechanism
for THz generation (see Sec. 1.3.3 and Chap. 5). The corresponding code is called ARCTIC7.
The Maxwell’s equations are discretized by means of the Yee scheme (see Sec. 3.1.2.1). In the
following section, we discuss the discretization of the material equations. Moreover, the results
of a benchmark against the PIC code OCEAN in 3D is presented.

3.2.1. Discretization of the material equations
The material equations given in Sec. 2.5.1 are local in space, i.e., they contain only time deriva-
tives. Preferably, we want to keep the 2nd order accuracy of the Yee scheme in time when
coupling the material equations to the Maxwell’s equations. Same as for the Yee scheme, we
use the fact that for a differentiable function f(t), the derivative f ′(t) can be approximated by
the symmetric difference quotient f ′(t) ≈ [f(t+ δt/2)− f(t− δt/2)]/δt up to a 2nd order error,
i.e., ∝ δt2. Moreover, we can approximate f(t) ≈ [f(t + δt/2) + f(t − δt/2)]/2, also up to a
2nd order error. Then, the ionization rate equations (2.1.8) can be approximated by n(Z)

ion (t±δt/2)
according to

n
(Z)
ion (t+ δt/2)− n(Z)

ion (t− δt/2)
δt

≈W (Z)[E1(t)]n
(Z−1)
ion (t+ δt/2) + n

(Z−1)
ion (t− δt/2)

2

−W (Z+1)[E1(t)]n
(Z)
ion (t+ δt/2) + n

(Z)
ion (t− δt/2)

2 , (3.2.1)

Obviously, Eq. (3.2.1) allows to compute the “new” ion density n(Z)
ion (t+δt/2) from the “new” ion

density n(Z−1)
ion (t+δt/2), the old ion densities n(Z)

ion (t−δt/2) and n(Z−1)
ion (t−δt/2) and the electric

field E1(t) at an intermediate time step (see App. E). If we assume that the old ion densities
at t − δ/2 and the electric field E1(t) are known, then the new ion densities can be computed
iteratively: First we compute the neutral density n(0)

ion(t+δt/2) since formally n(−1)
ion (t+δt/2) = 0

and then we compute n(Z)
ion (t + δt/2) for Z ≥ 1. Note that n(Z)

ion and thus the electron density
n0 = ∑

Z Zn
(Z)
ion are computed at times delayed by δt/2 from the electric field E1 [see also

Fig. 3.2.1(a)] following the leap frog method (see Sec. 3.1.2.1): Here, E1 and B1 are shifted by
half a time step and the current J1 is sampled in time same as B1.
Thus, when discretizing the current equation (2.5.11), we have to operate with the temporal

sampling of the current J1 that is already determined by the Yee scheme. Following the same

7ARCTIC is the “small brother” of the PIC code OCEAN [99]. The PIC code OCEAN has two versions: one
based on the Yee scheme and one on the the DS scheme. In this work, we use only the version utilizing the DS
scheme. However, the code ARCTIC is based on the implementation of the Yee scheme version of the PIC code
OCEAN that has been implemented by Rachel Nuter.
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Figure 3.2.1.: Schematic representation of the discretization in ARCTIC: in time (a) following
the leap frog scheme, in space (b) by extending the Yee scheme from Sec. 3.1.2.1.

approach like for the ion densities in Eq. (3.2.1) we get

J1(t+ δt/2)− J1(t− δt/2)
δt

+ νei
[
n̄

(Z)
ion (t), n̄0(t), Ē2(t)

] J1(t+ δt/2) + J1(t− δt/2)
2

≈ q2
e n̄0(t)
me

E1(t) (3.2.2)

using the abbreviation

n̄
(Z)
ion (t) = n

(Z)
ion (t+ δt/2) + n

(Z)
ion (t− δt/2)

2 , (3.2.3)

and analogous for n̄0 and Ē2. For the energy equation (2.5.12) we approximate

E2(t+ δt/2)− E2(t− δt/2)
δt

≈ E1(t) · J1(t+ δt/2) + J1(t− δt/2)
2 . (3.2.4)

Since νei[E2] is a “complicated” nonlinear function [see Eq. (2.5.9)], the system of equations
(3.2.2)-(3.2.4) cannot give explicit expressions for the “new” current J1(t + δt/2) and energy
density E2(t + δt/2). We approximate the solution using the fix-point iteration method that is
detailed in App. F: First, Eq. (3.2.2) gives an approximation of J1(t + δt/2) by approximating
E2(t+ δt/2) ≈ E2(t− δt/2). Then Eq. (3.2.4) uses this approximative value of the “new” current
to create a better approximation to E2(t+ δt/2). The procedure is continued until the difference
between two iterations is smaller than a parameter. Already few iterations can reduce the error
in terms of final thermal energy from 10−3 for one iteration to machine precision (cf. App. F).

Up to now we ignored that the spatial grid points of different components of E1 are located at
different positions in the Yee scheme. So, we place n0 and E2 according to Fig. 3.2.1(b) just in-
between of two neighboring points of E1,x, E1,y and E1,z and linearly interpolate at the position
of n0 and E2 when needed. This procedure conserves the 2nd order error in space. Thus, it does
not pose any problem to the approximation of the new ion densities according to Eq. (3.2.1).
However, when iterating between Eq. (3.2.2) and Eq. (3.2.4) in order to determine the new
current and energy density, the ion, electron and energy density have to be interpolated at the
grid of J1 in Eq. (3.2.2) and the current has to be interpolated in Eq. (3.2.4) at the grid of E2
introducing a spatial averaging. So, practically the number of iteration has to be kept small in
order not to smooth the macroscopic quantities too much. Usually, we use only one iteration
accepting an error around 10−3 in terms of energy density8.

8For few-cycle pulses two iteration are used since one turned out to be unstable, in particular simulation.
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Figure 3.2.2.: Angularly integrated THz far field spectrum obtained from the fluid model (red
solid line) and a PIC simulation (gray line) in 3D for the following parameter: Two-
color 0.17-µJ Gaussian laser pulse (Eω = 40 GV/m, E2ω = 20 GV/m, t0 = 50 fs,
eFH = eSH = ex according to Eq. 5.1.1) focused down to w0 = λFH = 0.8 µm in
argon with initial neutral density na = 3 · 1019 cm−3 (see Chap. 5 for details). In
addition, fluid simulations without the loss current (Jloss = 0) are shown (dashed
red line).

Before presenting a benchmark of the fluid code ARCTIC against the PIC code OCEAN, we
comment on the losses due to ionization. During the ionization process, the energy is transfered
from the electromagnetic field to the liberated electrons. Our PIC codes account for this by
introducing the loss current

Jloss = E
|E|2

∑
Z

IZp W
(Z)n

(Z−1)
ion . (3.2.5)

For consistency, we introduce in ARCTIC the same current but with E → E1. This current is
added to the current J1 → J1 + Jloss. We always keep track of the ionization losses that turn
out to be negligible for many-cycle-laser pulses and can have an impact for few-cycle pulses (see
next section and Chap. 4).

3.2.2. Benchmark: Drude-fluid vs. PIC in 3D
Here, we benchmark the code ARCTIC by the PIC code OCEAN in full 3D. The driving laser
pulse is defined by its transverse vacuum electric field at focus according to Eq. (5.1.1) in Chap. 5
and introduced with the algorithm described in Sec. 3.3. Laser and gas parameters used in the
benchmark are given in the caption of Fig. 3.2.2. Since we use a two-color laser pulse, the
IC-current mechanism is expected to be well described by the lowest order set of equations
from Sec. 2.5.1 solved by ARCTIC. The resulting angularly integrated THz far-field spectra are
presented in Fig. 3.2.2. A very good agreement between the fluid based model (solid red line)
and the PIC result (solid gray line) down to the PIC noise level is observed. In addition, the fluid
spectra with (solid red line) and without (dashed red line) the loss current Jloss reveal almost
no visible difference. Thus, ionization losses could be in principle neglected in this example.
The fluid simulations have been performed with the spatial resolution of δz = 8 nm (100 points

per λL), δx = 16 nm, δy = 32 nm and temporal resolution δt = 25 as. The resolution in the laser
propagation z direction has been selected to be very fine because of the numerical dispersion of
the Yee scheme that introduces a spurious phase shift between the FH and SH electric fields. The
resolution along the main transverse laser polarization direction x has been chosen to be finer
than along y in order to resolve higher field gradients that appear when the plasma is oscillating
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(a)

(b)

Figure 3.2.3.: Snapshot of the x-polarized current 150 fs after the laser has passed the focus: from
the fluid simulation with ARCTIC (a) and PIC simulation with OCEAN (b).

with the local plasma frequencies (cf. Sec. 2.5.4.1 and Sec. 5.1.2.2). We will see in Chap. 5
that the plasma in our benchmark simulation is less than 10 µm-long corresponding to 12.5λL.
Thus, according to Fig. 3.1.2(c) in Sec. 3.1.2.3, for a resolution of 100 points per wavelength the
artificial phase shift introduced by the numerical dispersion is negligible9. The simulation with
the PIC code OCEAN has been performed with the spatial resolution of δx = δy = δz = 32 nm
and temporal resolution δt = 106 as. Because in OCEAN the Maxwell solver is based on the
direction splitting (DS) scheme, the numerical dispersion along the x, y, z - axes is null and the
resolution in the laser propagation direction is less critical (see Sec. 3.1.2.3). As a consequence,
also the time step could be increased compared to the fluid simulation (Courant-Friedrichs-Lewy
condition).
The PIC and fluid codes are parallelized by means of domain decomposition. Thus, we

measure the computational resources in number of used CPU’s times the computation hours, in
short CPUh. The PIC simulation for Fig. 3.2.2 required 58900 CPUh, while the fluid simulation
consumed 9700 CPUh, which corresponds to a speed-up factor of 6. When using the same
resolution even a speed-up by two orders of magnitude is reached.
Besides the speed-up, in the fluid code ARTIC the fields inside the plasma are significantly

less noisy than in PIC simulations. Snapshots of the transverse currents in laser polarization
direction 150 fs after the laser pulse has passed the focus are presented in Fig. 3.2.3 for the
benchmark simulations. The noise of the PIC simulation with 10 macro-particles per cell in (b)
is almost 10 times stronger than the “real” current in the fluid simulation in (a). This noise
originates from the spread of the electron distribution function due to thermal heating (see
Chap. 4) and is proportional to 1/

√
N where N is the number of the macro-particles10. Thus,

in order to reduce the noise to the signal level, one would need more than 10 · 102 = 1000
macro-particles per cell. This is not feasible in 3D. Thus, for PIC simulations, just the angularly
integrated far-field spectra give reliable result in the THz domain due to averaging between all
the macro-particles within the plasma, while the fields in the plasma are too noisy to inspect
their spatial structure.

9We verified by various simulations in vacuum that this artificial phase-shift is indeed negligible obtaining an
artificial phase shift in focus of only 0.01π in our benchmark simulation.

10This statement becomes plausible considering equally weighted macro-particle in a cell with the random
scalar velocity vi and a Gaussian distribution function with the expectation values ui = u and the variance
∆vi = ∆v. The sum of the velocities

∑
i
vi determining the current in the PIC simulation has also the Gaussian

distribution function with the expectation values u, but with the variance ∆v/
√
N for N →∞.
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3.3. A technique to introduce arbitrarily shaped laser pulses
Investigation of laser matter interaction with electromagnetic codes requires to implement
sources for the electromagnetic fields. In the case of PIC codes like CALDER [110], PICLS [111]
or OCEAN [99], it is common practice to prescribe external electric and magnetic fields at
the numerical box boundaries and let the laser propagate towards the medium inside the box.
Very often, the paraxial approximation [112, 113] is used to calculate the required fields at the
boundaries. However, the paraxial approximation is valid only if the angular spectrum of the
laser pulse is sufficiently narrow. Thus, it is not possible to use this approximation for strongly
focused pulses. For several beam types, e.g. Gaussian, higher order approximations have been
presented [114, 115, 116, 117], but they are rather complicated and therefore not easy to imple-
ment. Moreover, for more exotic beam shapes, like vector beams or even sampled experimental
profiles, it may be even impossible to find an explicit analytical solution. In [118], a focusing
geometry with perfectly reflecting mirrors is exploited to introduce a tightly focused laser pulse
into an electromagnetic code. Here, the spatial profile of the laser is automatically pre-defined
by the focusing geometry and thus restricted to specific shapes.
In the following, we consider a simple and efficient algorithm for a Maxwell consistent calcu-

lation of the electromagnetic fields at the boundaries of the computational domain11. We call
them Laser Boundary Conditions (LBCs). Our algorithm describes any kind of laser pulses, in
particular tightly focused, arbitrarily shaped and polarized ones. Sec. 3.3.1 details the prob-
lem we want to solve. In Sec. 3.3.2, the theory of laser propagation in vacuum is reviewed.
Sec. 3.3 describes in detail our algorithm for the computation of Maxwell consistent LBCs,
and in Sec. 3.3.4 we present two illustrative examples: A tightly focused Gaussian beam and a
longitudinal needle beam. Sec. 4.5 summarizes the results.

3.3.1. Schematic presentation of the laser injection
In numerical studies of laser matter interaction, it is common practice to define the laser by
its propagation in vacuum, for example, by position and shape of the pulse at focus. Here, we
choose to prescribe the pulse in a plane P parallel to a boundary of the rectangular numerical
box, i.e., typically in the focal plane (see Fig. 3.3.1). The laser (red) is passing through the plane
P, where the fields12 E0, B0 are prescribed for all times t. The goal is to calculate the fields
EB, BB at the laser boundary from E0, B0. As we will see in Sec. 3.3, choosing P parallel to a
numerical box boundary allows us to resort to Fast Fourier Transforms (FFTs) in the numerical
computation of the LBCs. It is of course possible to prescribe the fields in any plane and use
the general solution given in the next section to calculate the LBCs. However, in this case one
cannot exploit the advantage of an efficient computation with FFTs (Sec. 3.3) and will have to
evaluate the spatial Fourier integrals directly, for example by performing discrete sums.

3.3.2. Laser field propagation in vacuum
Let E0(r⊥, t) = E(r⊥, z = z0, t) and B0(r⊥, t) = B(r⊥, z = z0, t) be the electromagnetic fields
in the plane P, where r⊥ = (x, y)T. In the following, we want to compute E, B in the whole
space and for all times in vacuum, i.e., the laser fields13 from Sec. 2.5. We will see that not all
components of E0, B0 can be prescribed independently. Moreover, we will comment on how to
handle evanescent fields, and finally discuss the paraxial limit.

11The algorithm has been published in [119].
12Vectors are typed in bold.
13For sake of clarity and since we only deal with vacuum electromagnetic fields here, during the whole Sec. 3.3.2

we set E = EL, B = BL.
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Figure 3.3.1.: Schematic picture of the laser (red) injection problem into the computational
domain: Electric and magnetic fields E0, B0 are prescribed in the plane P [here
the (x, y)-plane at z = z0]. The fields EB, BB at the laser boundary (blue) are
unknown and have to be calculated.

3.3.2.1. Propagation of electromagnetic fields and their interdependencies

Electromagnetic fields in vacuum are governed by Maxwell’s equations (2.3.1)-(2.3.4) for J = 0
and ρ = 0. In frequency or temporal Fourier space they read (for the definition of the Fourier
transforms see App. A.)

∇ · Ê(r, ω) = 0 ∇× Ê(r, ω) = iωB̂(r, ω) (3.3.1)

∇ · B̂(r, ω) = 0 ∇× B̂(r, ω) = −iω 1
c2 Ê(r, ω) . (3.3.2)

Here, ω is the frequency variable, c is the vacuum speed of light, and “ˆ” denotes the Fourier
transform with respect to time t. The wave equation14 for the electric field E in frequency space
reads (analogous for the magnetic field B)

∆Ê(r, ω) + ω2

c2 Ê(r, ω) = 0 . (3.3.3)

Written in spatial Fourier space (with wavevector k as spatial Fourier variables) Eq. (3.3.3)
would reduce to an algebraic equation and lead to the vacuum dispersion relation k2 = ω2/c2.
However, we want to describe propagation of E0 along z. To this end, we keep the z variable and
perform the Fourier transform with respect to the transverse variables r⊥ only. Transforming
Eq. (3.3.3) to transverse spatial Fourier space, where k⊥ = (kx, ky)T is the transverse wavevector,
gives

k2
z(k⊥, ω)Ē(k⊥, z, ω) + ∂2

z Ē(k⊥, z, ω) = 0 , (3.3.4)

where kz(k⊥, ω) =
√
ω2/c2 − k2

x − k2
y, and “¯” denotes the temporal and transverse spatial

Fourier domain. The fundamental solutions of Eq. (3.3.4) are the forward (+) and backward
14We treat laser fields and thus always assume ω 6= 0.
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(−) propagating, plane or evanescent waves (analogous for the magnetic field B)

Ē±(k⊥, z, ω) = Ē±0 (k⊥, ω)e±ikz(k⊥,ω)(z−z0) . (3.3.5)

It is important to note that E±0 , B±0 cannot be chosen arbitrarily. In fact, only two out of
six vector components (for forward and backward direction, respectively) are independent. For
example, we can choose to prescribe E±0,⊥ in the plane P. Then, by exploiting Eqs. (3.3.1) and
(3.3.5), we get

Ē±⊥(k⊥, z, ω) = Ē±0,⊥(k⊥, ω)e±ikz(k⊥,ω)(z−z0) (3.3.6)

Ē±z (k⊥, z, ω) = ∓k⊥ · Ē±⊥(k⊥, z, ω)
kz(k⊥, ω) (3.3.7)

B̄±(k⊥, z, ω) = 1
ωkz(k⊥, ω)R

±(k⊥, ω)Ē±(k⊥, z, ω) , (3.3.8)

with the matrix

R±(k⊥, ω) =

 ∓kxky ∓
[
k2
z(k⊥, ω) + k2

y

]
0

±
[
k2
z(k⊥, ω) + k2

x

]
±kxky 0

−kykz(k⊥, ω) kxkz(k⊥, ω) 0

 . (3.3.9)

The third column of R± in Eq. (3.3.9) is composed of zeros, because the magnetic field is
determined by the transverse electric field components Ē±0,⊥ only. Obviously, we are imposing
kz 6= 0, which is implicitly assumed when stating that the laser is passing through the plane
P. Thus, the laser pulse must not have any components propagating parallel to P. In complete
analogy, one could prescribe the transverse magnetic fields B±0,⊥ in the plane P and exploit
Eqs. (3.3.2) to compute B± and E± in the whole space.
We have thus shown that laser fields fulfilling Maxwell’s equation in vacuum also fulfill

Eqs. (3.3.6)-(3.3.9). To prove the Maxwell consistency/equivalence of our approach for laser
pulses, we also have to show that the electromagnetic fields fulfilling Eqs. (3.3.6)-(3.3.9) ful-
fill Maxwell’s equations: Because of Eqs. (3.3.6) and (3.3.7) the electric field Ē has the
exp (±ikz(k⊥, ω)z) dependence in z and thus fulfills

k2
z(k⊥, ω)Ē(k⊥, z, ω) + ∂2

z Ē(k⊥, z, ω) = 0 . (3.3.10)

This is equivalent to the Helmholtz equation in position space:

∆Ê(r, ω) + ω2

c2 Ê(r, ω) = 0 . (3.3.11)

In complete analogy, Eq. (3.3.7) ensures that the electric field fulfills

∇ · Ê(r, ω) = 0 , (3.3.12)

and plugging Eq. (3.3.7) into Eq. (3.3.8) gives

∇× Ê(r, ω) = iωB̂(r, ω) . (3.3.13)

Applying the divergence operator on Eq. (3.3.13) we immediately get

∇ · B̂(r, ω) = 0 . (3.3.14)
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Finally, replacing the ∆-operator in Eq. (3.3.11) with the −∇×∇×-operator (possible because
∇ · Ê = 0) and using Eq. (3.3.13) we get

∇× B̂(r, ω) = −iω 1
c2 Ê(r, ω) . (3.3.15)

Eqs. (3.3.12)-(3.3.15) show that Ê, B̂ in position space defined by Eqs. (3.3.6)-(3.3.9) fulfill the
vacuum Maxwell’s equations in temporal frequency space.
In App. G, we give an alternative method to compute Maxwell consistent laser fields based

on the vector potential in the Lorentz gauge. Such description can be advantageous in specific
cases, for example radially polarized doughnut beams [120], where only one component of the
vector potential is sufficient to describe the whole laser pulse.

3.3.2.2. Eliminating evanescent fields and the paraxial limit

For k2
x + k2

y > ω2/c2, kz(k⊥, ω) becomes imaginary and Eq. (3.3.5) describes evanescent waves,
with exponentially growing or decaying amplitude in z direction. In free space propagation,
evanescent waves violate energy conservation and are thus unphysical and do not exist. In order
to get rid of evanescent waves, the spatial Fourier spectrum of E0 and B0 has to be filtered
in transverse spatial Fourier space, such that it contains only components with k2

x + k2
y <

ω2/c2. This condition is nothing else then ensuring the Abbe diffraction limit [112] for the
fields prescribed at z = z0, which, for instance, forbids to focus a beam to an arbitrary small
transverse size.

In contrast, if the spatial Fourier spectrum of E0 and B0 is nonzero only for k2
x +k2

y � ω2/c2,
one can expand kz as a Taylor series and approximate

kz(k⊥, ω) ≈ |ω|
c
− c

2|ω|
(
k2
x + k2

y

)
. (3.3.16)

Then, Eqs. (3.3.6)–(3.3.8) simplify to

Ē±⊥(k⊥, z, ω) ≈ Ē±0,⊥(k⊥, ω)e±i
[ |ω|
c
− c

2|ω|(k2
x+k2

y)
]
(z−z0) (3.3.17)

Ē±z (k⊥, z, ω) ≈ 0 B̄±x (k⊥, z, ω) ≈ ∓1
c
Ē±y (k⊥, z, ω) (3.3.18)

B̄±z (k⊥, z, ω) ≈ 0 B̄±y (k⊥, z, ω) ≈ ±1
c
Ē±x (k⊥, z, ω) , (3.3.19)

which is well known as the paraxial or Fresnel approximation [113]. The paraxial approximation
as it is presented above is valid if the spatial Fourier spectrum is sufficiently narrow. In position
space the transverse electric fields have to vary slowly along transverse coordinates over distances
2πc/ω.

3.3.3. Implementing the laser boundary conditions
Now, we describe the practical implementation of LBCs based on the solution of Maxwell’s
equations as derived in the previous Section. In the following, the laser pulse will propagate in
the forward direction (+) along z, i.e., we inject the laser pulse from the left side of the box (see
Fig. 3.3.1). In the plane P at z = z0 we prescribe the electric field E0,⊥(r⊥, t) that can be an
arbitrary function in space and time, for example a Gaussian profile in t and r⊥. Then, we want
to calculate the fields EB(r⊥, t) and BB(r⊥, t) at the boundary z = zB on the numerical grid
for all times. Let us consider an equidistant rectangular grid xi, yj , indices i, j running from 1
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to Nx, Ny, respectively, and with spatial resolution δx, δy. We evaluate E0,⊥ at the grid points
xi, yj for equidistant times tn, n is running from 1 to Nt, with temporal resolution δt:

Eijn
0,⊥ = E0,⊥(xi, yj , tn) . (3.3.20)

The following algorithm computes the electric and magnetic fields Eij
B(t) and Bij

B(t) at the
boundary z = zB for any given time t ∈ [t1 − zB−z0

c , tNt − zB−z0
c ]:

1. Calculate Êijn
0,⊥ via discrete Fourier transforms (DFTs) in time [121]:

ωn = 2π
Ntδt

(
−Nt

2 + n

)
(3.3.21)

Êijn
0,⊥ = δt

2π

Nt∑
l=1

Eijl
0,⊥e

iωntl , n = 1, . . . , Nt . (3.3.22)

2. Calculate Ēijn
0,⊥ via two-dimensional DFTs in transverse space:

kix = 2π
Nxδx

(
−Nx

2 + i

)
kjy = 2π

Nyδy

(
−Ny

2 + j

)
(3.3.23)

Ēijn
0,⊥ = δxδy

(2π)2

Nx,Ny∑
l,m=1

Êlmn
0,⊥ e

−i(kixxl+k
j
yy
m) , i, j = 1, . . . , Nx,y . (3.3.24)

3. Calculate transverse electric field components at the boundary (z = zB):

kijnz = <

√
(ωn)2

c2 − (kix)2 − (kjy)2 (3.3.25)

Ēijn
B,⊥ =

{
Ēijn

0,⊥e
ikijnz (zB−z0) for kijnz > 0

0 for kijnz = 0
. (3.3.26)

Here, < denotes the real part of a complex number. Note that we have set kijnz ≡ 0 and
Ēijn

B,⊥ ≡ 0 for indices i, j, n with (kix)2 + (kjy)2 ≥ (ωn)2/c2, in order to suppress evanescent
waves (see Sec. 3.3.2.2).

4. Calculate the longitudinal electric field component at z = zB:

ĒijnB,z =

−
kixĒ

ijn
B,x+kjyĒijnB,y
kijnz

for kijnz > 0
0 for kijnz = 0

. (3.3.27)

5. Calculate the magnetic field at z = zB:

Rijn =

 −kixkjy (kix)2 − (ωn)2

c2
(ωn)2

c2 − (kjy)2 kixk
j
y

−kjykijnz kixk
ijn
z

 (3.3.28)

B̄ijn
B =


1

ωnkijnz
RijnĒijn

B,⊥ for kijnz > 0
0 for kijnz = 0

. (3.3.29)
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0

^

Figure 3.3.2.: Sketch of the electric field amplitude for a multi-cycle laser pulse in frequency do-
main. The spectrum is significantly different from zero only in Nω � Nt frequency
points.

6. Calculate Êijn
B and B̂ijn

B via two-dimensional inverse DFTs:

Êijn
B,⊥ = (2π)2

NxNyδxδy

Nx,Ny∑
l,m=1

Ēlmn
B ei(klxxi+kmy yj) (3.3.30)

B̂ijn
B,⊥ = (2π)2

NxNyδxδy

Nx,Ny∑
l,m=1

B̄lmn
B ei(klxxi+kmy yj) . (3.3.31)

7. Calculate Eij
B(t) and Bij

B(t) for any given time t ∈ [t1 − zB−z0
c , tNt − zB−z0

c ]:

Eij
B,⊥(t) = 2π

Ntδt

Nt∑
n=1

Êijn
B e−iωnt (3.3.32)

Bij
B,⊥(t) = 2π

Ntδt

Nt∑
n=1

B̂ijn
B e−iωnt . (3.3.33)

The DFTs in steps 1, 2, and 6 can be calculated efficiently by means of FFTs. There are
various FFT libraries available, one of the most popular and efficient implementations is the
FFTW [122]. One has to take into account the particular definitions of spatial and temporal
Fourier transform in App. A, as well as the conventions of the particular FFT library. For the
FFTW [122], one has to use the forward transform (flag FFTW_FORWARD) in step 2, and the
backward transform (flag FFTW_BACKWARD) in steps 1 and 6. Then, in the worst case scenario of
three-dimensional simulations, the computational bottlenecks are the Nx · Ny one-dimensional
FFTs (step 1) and the 8 ·Nω two-dimensional FFTs (steps 2, 6), respectively.
The Fourier sums in step 7 allow to compute Eij

B(t) and Bij
B(t) for any given time t by means of

discrete Fourier interpolation. In fact, most of the discrete frequencies ωn will have a negligible
contribution to the spectrum when we are dealing with not-too-short laser pulses, i.e., a pulse
envelope modulated with the laser frequency ωL (see Fig. 3.3.2). By taking only Nω � Nt

significant summands into account when evaluating the Fourier sums Eqs. (3.3.32) and (3.3.33)
reduces significantly both memory consumption and execution time. Nevertheless, there is a
priori no restriction on the temporal bandwidth of the laser pulse15, because the solution of the
Maxwell’s equations is performed in frequency space (see Sec. 3.3.2.1).
When using DFTs to approximate continuous Fourier transforms as in the proposed algorithm

above, one has to be careful with respect to sampling rates and the inevitable periodic boundary
conditions. The initial datum E0,⊥ has to be well resolved in space and time, and one has to check
that the beam fits well in the transverse numerical box for all relevant z (e.g., the beam width

15The zero-frequency fields have to be always zero.
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may be larger at the boundary z = zB due to diffraction). Finally, one should not forget that
Eqs. (3.3.32) and (3.3.33) should be evaluated for times t in the interval [t1− zB−z0

c , tNt − zB−z0
c ]

only, otherwise a pulse train will be injected due to periodicity in time.
In a practical implementation, steps 1-6 will be performed by a pre-processor before launching

the main simulation. Then, only the relevant (nonzero) contents of the arrays Êijn
B and B̂ijn

B
(see remark above) will be passed to the main code and step 7 will be calculated at each time
step of the main simulation.
Before going on with examples, we want to make a last remark concerning the grid structure

of particular Maxwell solvers. For solvers like the Directional Splitting scheme (see Sec. 3.1.2.2),
E and B are discretized on the same equidistant grid and the above algorithm can be applied
directly. For other solvers, like the Yee scheme (see Sec. 3.1.2.1), the fields are described on
grids shifted by δx/2, δy/2, δz/2, respectively. In such case, a straightforward workaround is to
run the pre-processor on several transversely shifted grids, in order to compute the desired field
components for laser injection.
There are cases of practical relevance as laser injection at inclined incidence where it is insuf-

ficient to compute the fields EB(r⊥, t) and BB(r⊥, t) in a plane only. In these cases the discrete
Fourier sums in Eqs. (3.3.30), (3.3.31) can be evaluated directly without taking advantage of
FFTs. Instead of calculating the boundary fields at grid points xi, yj one would calculate them
at any desired x and y coordinate within the spatial window of validity, in complete analogy to
step 7.

3.3.4. Examples
3.3.4.1. Tightly focused Gaussian pulse

Here, we are going to simulate a tightly focused Gaussian pulse and its interaction with an
initially neutral gas, that is going to be ionized during the interaction. The electromagnetic
fields resulting from LBCs in paraxial approximation Eqs. (3.3.17)-(3.3.19), as they are often
applied in PIC codes, will be compared with LBCs according to the Maxwell consistent approach
Eqs. (3.3.6)-(3.3.8). For sake of computational costs, we restrict ourselves to the two-dimensional
case, where ∂y ≡ 0 accounts for translational invariance in transverse y direction. For both cases,
a linearly polarized Gaussian pulse is prescribed in the focal plane z = z0 by

E0,⊥(x, t) = E0e
−
(

x
w0

)2
−
(
t
t0

)2

cos(ωLt)ex , (3.3.34)

with the laser wavelength λL = 2πc/ωL = 0.8µm, pulse duration t0 = 20 fs, peak intensity
I0 = ε0c|E0|2/2 = 5 × 1014 W/cm2 and beam width w0 = 0.35µm giving E0 = 61.4 GV/m.
The particular choice of the beam width w0 implies that non-negligible parts of Ē0,⊥(kx, ω) are
evanescent. These evanescent fields are suppressed in the calculation of EB(r⊥, t) and BB(r⊥, t)
at the boundary z = zB fully compatible with Abbe’s diffraction limit (see Sec. 3.3.2.2). This
leads to a 10% larger full-width-at-half-maximum (FWHM) beam width and smaller electric
field at focus.
We solve Maxwell’s equations numerically using the PIC code OCEAN ([99], Sec. 3.1). A

spatial resolution of δx = δz = 0.25 c/ωL = 32 nm and temporal resolution of δt = 0.25 /ωL =
0.1 fs were employed. The domain consists of 2000 × 400 cells with 10000 macro-particles per
cell, and third order interpolation was used. In all simulations we consider an argon atmosphere
at ambient pressure having initially n0 = 3 × 1019 cm−3 neutral atoms. Figure 3.3.3 compares
snapshots of transverse (Ex) and longitudinal (Ez) electric field components for paraxial (a-c)
and Maxwell consistent (d-f) LBCs when the pulse is at focus. Distortions in the fields produced
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(d) (e) (f)

(a) (b) (c)

LL
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Figure 3.3.3.: Comparison of LBCs in paraxial approximation Eqs. (3.3.17)-(3.3.19) (a-c) and
according to the Maxwell consistent approach Eqs. (3.3.6)-(3.3.8) (d-f). Snapshots
of transverse fields Ex (b,e) and longitudinal fields Ez (c,f) of a tightly focused
Gaussian pulse reveal strong distortions in case of the paraxial LBCs. Calculations
were performed using the PIC code OCEAN ([99], Sec. 3.1), assuming an argon
atmosphere at ambient pressure. In (a) and (d) line-outs of the transverse electric
field Ex at focus are presented, revealing strong side-wings in the beam profile for
the paraxial LBCs. The laser pulse propagates from left to right.

by the paraxial LBCs [see Fig. 3.3.3(b,c)] are clearly visible, even the focus (position of smallest
beam width) is shifted by more than 1 µm from the expected position at z0 = 0µm. Both
transverse and longitudinal field amplitudes are not symmetric with respect to the focus. This
effect is also present in vacuum and is not caused by pulse propagation through the plasma. As
the line-out at focus in Fig. 3.3.3(a) shows, non-negligible side-wings appear outside the main
lobe. In contrast, the Maxwell consistent LBCs produce symmetric fields [see Fig. 3.3.3(e,f)] with
respect to the focus at z0 = 0, and the line-out in Fig. 3.3.3(d) shows no side-wings in the beam
profile. The maximum transverse electric field amplitude for the paraxial LBCs is significantly
lower than that achieved with the Maxwell consistent LBCs. For both LBCs, the longitudinal
field amplitude reaches about 30% of the transverse field amplitude, a direct consequence of the
steep transverse gradients in the beam profile.
The code OCEAN fully accounts for ionization according to the quasistatic ADK theory (see

[123, 84, 85], Sec. 2.1). Here, we use the ionization data from [124]16. It is instructive to inspect
the electron plasma generated by the tightly focused laser pulses for paraxial and Maxwell
consistent LBCs. The resulting distributions of the electron density ne after the laser pulse has
passed through the interaction region are shown in Fig. 3.3.4. The electron density profiles are
even qualitatively different for paraxial and Maxwell consistent LBCs: The paraxial LBCs give
a fish-like shape, where before the focus (negative z) the peak electron density appears off-axis
[see Fig. 3.3.4(a)], and only up to 60% of the argon atoms get ionized. In contrast, the Maxwell

16In Chaps. 4, 5, we are using ionization data from [80] that report a slightly lower ionization potential for
argon. However, the results almost do not change when using [124] instead of [80].
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(a)

(b)

L
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Figure 3.3.4.: Electron densities ne produced by the tightly focused Gaussian laser pulses shown
in Fig. 3.3.3 (see text for details). The profile produced by paraxial LBCs (a) is
even qualitatively different than the one produced by Maxwell consistent LBCs
(b). Electron densities are scaled to the initial neutral density na = 3×1019 cm−3.
The laser pulse propagates from left to right.

consistent LBCs produce a cigar like shape with the peak electron density on the optical axis [see
Fig. 3.3.4(b)], and at focus a fully ionized plasma is produced. These deviations in the plasma
profile are far from negligible, and have a noticeable impact on THz generation especially by
two-color laser pulses and might have a significant impact on back-reflected radiation or energy
deposition in different media. The observed sensitivity towards the LBC for tight focusing is not
limited to ultrashort low energy pulses interacting with gaseous media, but should be equally
important for solid targets and higher pulse energies.

3.3.4.2. Longitudinal needle beam

In order to demonstrate generality and ease of use of the proposed Maxwell consistent LBCs,
let us have a look at a (at the first glance) more complicated example. In [125], the authors
describe the ”creation of a needle of longitudinally polarized light” by tight focusing of a radially
polarized Bessel-Gaussian beam. The radial component of the electric field of such beam at focus
reads

E0,⊥(r, t) =
α∫

0

T (θ)
√

cos θ sin(2θ)e−( sin θ
sinα)2

J1

(
2 sin θ

sinα

)
J1

(
ωL
c
r sin θ

)
dθ

× E0 cos(ωLt)er .

(3.3.35)

Here, the electric field is written in cylindrical coordinates (r, φ, z), and er is the radial unit
vector. The beam profile is given as an integral over the angle θ, where α denotes the acceptance
angle of the focusing optic. Following [125], we assume a numerical aperture NA = 0.95,
corresponding to α ≈ 0.4π. J1(x) denotes the corresponding Bessel function. The transmission
function T (θ) takes into account a binary-phase optical element, which may further increase the
relative longitudinal field strength as well as the length of the needle, however, to the detriment
of the optical efficiency. Here, we consider a five-belt optical element and following [125] we

59



3. Numerical tools

(a) (b)
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Figure 3.3.5.: The absolute values of the radial and longitudinal electric fields Er (a) and Ez (b)
of a longitudinal needle beam in the focal region. The fields are normalized to the
maximum Er,max of the radial field Er in the whole space.

define the transmission function T as

T (θ) =
{

1 for 0 ≤ θ < θ1, θ2 ≤ θ < θ3, θ4 ≤ θ < α

−1 for θ1 ≤ θ < θ2, θ3 ≤ θ < θ4
, (3.3.36)

with θ1 = 0.0275π, θ2 = 0.121π, θ3 = 0.19π, and θ4 = 0.26π. The function T takes the values
”1” and ”-1” in the corresponding intervals for θ specified in Eq. (3.3.36). As in the previous
example, we consider a laser wavelength of λL = 0.8µm.

Figure 3.3.5 presents radial and longitudinal electric fields of the longitudinal needle beam
from simulations using OCEAN [99] and Maxwell consistent LBCs. A spatial resolution of
δx = δy = δz = 32 nm with 600 × 3072 × 3072 cells and a temporal resolution of δt = 0.1 fs
have been applied. In agreement with [125] we find a longitudinal field amplitude that exceeds
the radial one in the focal region along several laser wavelengths (∼ 8λL). The maximum
longitudinal field amplitude is about 1.6 times larger than the radial one, which achieves its
maximum out of focus at z = ±4λL. This allows the longitudinal field to dominate in the focal
plane by a factor of 2.5. Because of the strong longitudinal field that requires a broad transverse
spatial Fourier spectrum the paraxial approximation cannot be applied for the needle beam and
Maxwell consistent LBCs are indispensable.

3.3.5. Conclusion
Injecting laser pulses into Maxwell solvers requires to prescribe the electromagnetic fields at
the boundaries of the numerical box. Often, these fields are calculated by using the paraxial
approximation. We have shown that for tightly focused beams this approach does not give
accurate results. Instead, Maxwell’s equations in vacuum have to be solved rigorously in order
to find the proper fields at the boundaries. We proposed an easy to implement algorithm to
achieve this goal, which allows to calculate the laser boundary conditions (LBCs) from transverse
electric or magnetic field components defined in a plane, e.g., the focal plane. The presented
algorithm can be parallelized in a straight forward manner and may be used with simulations
tools employing domain decomposition.
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We successfully employed our approach to simulate a tightly focused Gaussian pulse. An
accurate handling of the laser injection turns out to be crucial: Electron density profiles from
ionization of neutral argon atoms due to field ionization are shown to be strongly dependent on
the LBCs. Consequently, the LBCs may have significant impact on features like back-reflected
radiation or energy deposition in the medium. Furthermore, our algorithm offers a simple way
to simulate more complex pulse configurations or even sampled experimental beam profiles.

In summary, two types of electromagnetic codes coupling to different types of material equa-
tions have been presented: PIC codes that approximate the solution to the fundamental equation
of the theory in Chap. 2, the Vlasov equation of electrons, and a fluid code that solves the lowest
order of the multiple-scale expansion. We have created a tool to introduce accurately arbitrarily
shaped, in particular tightly focused, one- and two-color laser pulses into electromagnetic codes.
In the following, these numerical tools will be utilized to investigate THz generation in fs-laser
induced microplasmas.
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As has been pointed out in Sec. 1.3.1.3, a promising approach towards miniaturization of
THz sources has been investigated experimentally in [61]: A pulsed single-color (1C) fs-laser is
strongly focused into a gas (e.g., air or argon). Intensities of 1014–1016 W/cm2 in the focal region
are reached with µJ driving pulses focused down to Abbe’s diffraction limit. In the focal region,
the neutral gas is ionized. A few-micrometer-thick and few-tens-of-micrometer-long microplasma
is created. The excitation of the plasma by the ionizing laser pulse leads to THz radiation that
can be measured in the far field.

The major goal of this chapter is to investigate theoretically and numerically the THz radiation
from such a microplasma1. For 1C-driving pulses, THz emission can be caused by excitation
of plasma currents via ponderomotive and radiation pressure sources [58]. These excitation
sources are included in the 2nd order set of equations in Sec. 2.5.2. This idea has been applied
to explain THz emission for filaments ([59, 60], see Sec. 1.3.1.2), and is usually referred to
as transition-Cherenkov (TC) mechanism: The ponderomotive force of the driving laser pulse
produces a longitudinal current structure, which propagates approximately with the speed of
light. The interference of radiation from distinct points along the propagation axis leads to
a conical emission. The name transition-Cherenkov mechanism comes from this characteristic
radiation profile. For 1C-laser pulses, the prevailing mechanism is still under discussion and
depends on both, laser and gas properties (see Sec. 1.3.1). Throughout this chapter, we assume
the laser pulses to interact with argon gas at ambient pressure (initial atom density na =
3 · 1019 cm−3, p ≈ 1 bar) when nothing else is written.
The chapter is organized in the following way. In Sec. 4.1, the model from Chap. 2 is analyzed

for the one-dimensional (1D) case to understand the main processes occurring in the laser gas
interaction: ionization, heating, collisions, and in particular excitation of plasma waves at THz
frequencies. We also estimate the laser pulse parameters where either the excitation via the
ionization current (IC) mechanism (J1) or TC mechanism (current in J2) dominates. However,
not every excited current leads to THz emission. In Sec. 4.2, the analysis is extended to the
two-dimensional (2D) case. The important role of non-radiative plasma wave excitations is

1The investigations have been published in [126].
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discussed. In Sec. 4.3, symmetry properties of the system are studied. Then, we provide a
simplified 2D/3D model for THz radiation in the 1C case. By means of this simplified approach,
the scaling of the THz conversion efficiency with various pulse parameters is discussed. All the
results are benchmarked by rigorous particle-in-cell (PIC) simulations (cf. Sec. 3.1) using the
codes OCEAN [99] and CALDER [100]. Finally in Sec. 4.4, we investigate DC-biased 1C-fs-laser-
induced microplasmas (cf. Sec. 1.3.2). The excitation of the plasma by applying an additional
constant electric field can be modeled by the IC mechanism that is included in the lowest order
set of equations in Sec. 2.5.1. The idea of [65] to boost the laser-to-THz conversion efficiency
by the DC-bias at high gas-pressures is explored for microplasmas by means of the fluid code
ARCTIC (cf. Sec. 3.2).

4.1. Comparing mechanisms of THz excitation
In the following section, the excitation of plasma currents in the THz range is analyzed for
various laser pulse durations and intensities. To this end, we restrict ourselves to a 1D con-
figuration, where translational invariance is assumed in the x and y directions while the laser
pulse propagates along z. The translational invariance in the x and y directions implies that no
emission from z-polarized currents that emit normal to the z-axis can be modeled. However, we
can study their excitation. We assume a laser pulse propagating through vacuum for z ≤ 0 and
entering the gas at z = 0. The incoming linearly polarized laser pulse is prescribed as

EL(t, z = 0) = E0
L sin(ωLt) exp

(
−t2/t20

)
ex , (4.1.1)

where t0 characterizes the pulse duration, E0
L is the electric field amplitude, and ex the unit

vector in x direction. The corresponding intensity can be calculated as I0
L = ε0c

(
E0

L
)2
/2 where

ε0 is the vacuum permittivity. The electric laser field EL in Eq. (4.1.1), solves the vacuum
Maxwell’s equations (with the corresponding magnetic field) as we have defined in Chap. 2. It
is important to select a sine pulse (and not a cosine pulse) to have no zero-frequency component
in the laser field EL, in particular for pulses down to the single-cycle level. Otherwise, the THz
yield would be strongly overestimated.
One advantage of our multiple scale model presented in Sec. 2.5 is that the orders ε1 and ε2,

i.e., in particular Eq. (2.5.11) and Eq. (2.5.16), can be analyzed separately. Let us start with
order ε1. We have seen in Sec. 2.5.3, that the current J̃1 = J1 in Eq. (2.5.22) is driven by the
electric laser field EL and the interaction field Ẽ1 = E1 − EL. As suggested in previous works
[57, 75, 88], we could neglect the effect of Ẽ1 when computing J1. By doing so, electrons are
treated as test particles driven by the laser electric field. As a consequence, there is no feedback
of the radiation (electric field Ẽ1) emitted by the current J1 on J1 itself. However, such back-
coupling has an important impact in particular in the THz frequency range [78], and therefore
this approximation can only serve as a very rough estimation for J1 at THz frequencies. But
fortunately, this back-coupling has a negligible impact on the main spectral component of J1,
namely at the laser frequency ωL, when laser propagation effects are negligible, thus in particular
for the short propagation distances (∼ 10 µm) and underdense plasmas that we are interested
in. In the following, we will compute the laser field EL for vacuum propagation, and neglect
plasma dispersion and nonlinear propagation effects. We therefore approximate E1 ≈ EL and
Eq. (2.5.11) for the 1st order current gives

∂τJ1 + νeiJ1 ≈ ι1 , (4.1.2)

with the first-order nonlinear source term ι1 = q2
en0EL/me. The current density J1 is transverse,
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Figure 4.1.1.: Example of a t0 = 50 fs, I0
L = 4× 1014 W/cm2 laser pulse at λL = 800 nm in argon

gas with initial atom density na = 3 × 1019 cm−3 in 1D configuration. Because
we neglect laser propagation effects, the problem depends on the co-moving time
τ = t− z/c only. In (a) the laser intensity IL (dashed red line) and the resulting
electron density n0 (solid black line) according to our model are shown. The
electron kinetic energy is presented in (b). Figure (c) presents the thermal energy
Eth as captured by the model (solid red line) for λei = 3.5, in excellent agreement
with the thermal energy EPIC

th,2 obtained from a PIC simulation (solid blue line).
In (d) the collision frequency νei according to Eq. (2.5.9) is shown.

as the electric field EL. For technical convenience, we switched to the co-moving pulse frame by
introducing the new time variable τ = t− z/c. The collision frequency νei has to be computed
from Eqs. (2.5.9) and the electron energy is determined by the energy equation (2.5.12). The
electron density n0 = ∑

Zn
(Z)
ion follows from the ion densities n(Z)

ion that are solution of the rate
equations [Eq. (2.1.8)] given in Sec. 2.1.

4.1.1. Laser heating
Let us have a look at a first illustrative example showing some basic processes, namely the
ionization and laser heating, captured by the ε1 model. We consider a laser pulse with t0 = 50 fs,
I0

L = 4×1014 W/cm2, λL = 800 nm in argon gas with the initial atom density na = 3×1019 cm−3,
corresponding to about 1 bar pressure. The laser pulse profile is shown in Fig. 4.1.1(a) (dashed
red line). The gas atoms are getting ionized and the electron density n0 in Fig. 4.1.1(a) (solid
black line) is growing step-wise near time points corresponding to extrema of EL. In this
particular case the final electron density n0 reaches the initial gas density na, thus the atoms
undergo complete single ionization. The electron kinetic energy Ekin,2 reaches about 48 eV,
and oscillates at 2ωL [see Fig. 4.1.1(b)]. According to our model, the thermal energy Eth,2 of
the electrons increases up to 10 eV [solid red line in Fig. 4.1.1(c)]. As shown by Eq. (2.5.30),
the heating of the electrons is driven by two mechanisms. Firstly, we have the contribution of
electron-ion collisions ∝ νei. Secondly, the ionization term ∝ ∂tn0 increases the thermal energy
as well, consistent with results published in [127]: Electrons which are born at a time point in
the laser cycle displaced from the peak electric field acquire a dephasing energy. This mechanism
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is important for fs-laser pulses but becomes negligible for longer pulses (> 100 fs)2, where the
heating from electron-ion collisions dominates. The evolution of the collision frequency νei is
shown in Fig. 4.1.1(d). It features a maximum near the peak intensity of the driving pulse and
decreases finally to 13 ps−1 corresponding to a collision time of 77 fs. Oscillations at 2ωL appear
due to the dependency on Ekin,2.
The prediction of the thermal energy by our model is now confronted with a 1D PIC simulation

accounting for electron-ion and electron-electron collisions by means of the code CALDER [102].
The input laser pulse [same as shown in Fig. 4.1.1(a)] propagates over 10 µm in argon, without
noticeable deformation. Thus, the thermal energies extracted from this simulation depend only
on the retarded time τ as well. The PIC electron thermal energy EPIC

th shown in Fig. 4.1.1(c)
(solid blue line) is in excellent agreement with the model. As already mentioned above, we
expect contributions from two different heating processes, which can be visualized in the PIC
results. The dashed blue line in Fig. 4.1.1(c) shows the thermal energy EPIC

th,x in the motion of
the electrons along the x-axis, which is the laser polarization direction. The dash-dotted blue
line shows the thermal energy EPIC

th,y/z contained in each of the other two degrees of freedom. We
note up to the laser pulse peak (τ = 0) that the thermal energy along the laser electric field
polarization direction x is larger than the ones in the other direction. Thus, the momentum
distribution of the electrons in the PIC simulation is anisotropic. The reason for this anisotropy
is the heating by the second term ∝ ∂tn0 on r.h.s in Eq. (2.5.30): The corresponding dephasing
energy (see above) is acquired solely along the laser polarization direction leading to a momentum
spread of the electron distribution function along x only. In contrast, heating by electron-ion
collisions is isotropic. However, the phase space quickly thermalizes in the PIC simulation due
to electron-electron and electron-ion collisions leading to an equal distribution of the thermal
energy along each direction after 100 fs of the interaction. This fact justifies the assumption of
instantaneous thermalization in our model.

4.1.2. Ionization current vs. transition-Cherenkov mechanism
Before discussing THz emission from the ε1 model (IC mechanism), let us proceed with the
calculation of J2 (TC mechanism). In 1D configuration, the current at order ε2 is driven by the
purely longitudinal source term ι2 = ι2,zez, which according to Eq. (D.6) in App. D contains
four contributions

ι2,z = ιpond
2,z + ιion

2,z + ιcol
2,z + ιheat

2,z . (4.1.3)

In the co-moving pulse frame, these contributions read (see App. H for details)

ιpond
2,z = n0

2qec
∂τ

∣∣∣∣J1
n0

∣∣∣∣2 , ιion
2,z = (∂τn0)

qec

∣∣∣∣J1
n0

∣∣∣∣2 ,
ιcol
2,z = n0νei

qec

∣∣∣∣J1
n0

∣∣∣∣2 , ιheat
2,z = 2∂τ (n0Eth)

3meqec
.

(4.1.4)

The first term is the ponderomotive source ιpond
2,z . The second source term ιion

2,z is a direct
consequence of the ionization, and is absent in preformed plasmas. The third source term
ιcol
2,z takes the radiation pressure into account. Finally, the fourth source term ιheat

2,z is caused by
diffusion or pressure of the electrons. We note that ιpond

2,z , ιion
2,z , and ιcol

2,z have already been derived
in [58]. In a 1D configuration, the longitudinal component of ∇×B vanishes and Eq. (2.5.20)

2According to the estimations of Eq. (2.5.31), the collisional heating dominates for 2νeit0 � 1. Inspired by
Fig. 4.1.1(d), we take νei = 13 ps−1 and obtain t0 � 38 fs.
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Figure 4.1.2.: In (a) the low-frequency power spectra of the second-order source term ι2,z (top-
most line) and its constituents are shown. The longitudinal electric field E2,z is
presented in (b) together with the electron density n0. In (c) the power spectra
of the longitudinal currents corresponding to the source terms in (a) are plotted.
In (d), the power spectra of the second-order source term ι2,z (solid lines) and the
electric field E2,z (dashed lines) are shown for an initially neutral gas (black lines)
and a preformed plasma (blue lines) with the same electron density as in the gas
after ionization. Driving laser and gas parameter are the same as in Fig. 4.1.1.

dictates that the longitudinal electric field E2,z is connected to the longitudinal current J2,z via

J2,z = −ε0∂τE2,z . (4.1.5)

Thus, we can substitute J2,z in Eq. (2.5.16) and end up with the following equation for the
longitudinal field E2,z:

∂ττE2,z + νei∂τE2,z +
(
q2

en0
meε0

)
E2,z = − ι2,z

ε0
. (4.1.6)

All quantities involved, in particular ι2,z, can be computed from the solution to the 1st order
problem.
Let us now come back to the case study of a 50-fs pulse from above. The low-frequency power

spectra of the 2nd order source term ι2,z and its four constituents defined in Eq. (4.1.4) are
presented in Fig. 4.1.2(a). Obviously, ι2,z (black line) is dominated by the ponderomotive source
ιpond
2,z (red line). Other contributions are at least one order of magnitude smaller for this driving
pulse. The peak excitation happens around 0.022ωL (i.e., ν ≈ 8.25 THz). In comparison, the
power spectrum of ι2,z at the plasma frequency ωp ≈

√
(q2

ena/meε0) ≈ 0.13ωL (i.e., ν ≈ 50 THz)
is almost two orders of magnitude smaller3. Nevertheless, longitudinal plasma oscillations at

3For our 50-fs example pulse the final electron density is n0(t→∞) ≈ na
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4. Single-color fs-laser-induced microplasmas

IC/TC regimes

Figure 4.1.3.: In (a) the up to 0.2ωL (ν ≤ 75 THz) integrated power spectrum of the source term
ι1,x (IC source) is shown as a function of laser pulse duration t0 and intensity
I0

L. The same data for ι2,z (TC source) are shown in (b). These two terms are
compared in panel (c): In the blue region the IC source term ι1,x dominates
by at least one order of magnitude, in the red region the same is true for the
TC source term ι2,z, and in the green region ι1,x and ι2,z are both important.
The computations are performed for an argon gas with the initial atom density
na = 3× 1019 cm−3.

ωp are excited in E2,z when the electron density n0 builds up, as can be seen in Fig. 4.1.2(b).
This excitation is also visible in the spectrum of the current J2,z shown in Fig. 4.1.2(c). It is
interesting to note that for our example the observed strong excitation at the plasma frequency
ωp is intimately linked to ionization. The power spectra of the electric field E2,z in a preformed
plasma and an initially neutral gas are compared in Fig. 4.1.2(d). Shooting the same driving
pulse into a preformed plasma with constant density n0 ≡ na triggers almost no oscillations at
ωp. For constant n0, the power spectrum of the second-order source term ι2,z is more narrow,
and in particular its value at ωp is more than three orders of magnitude lower. Only very
short driving pulses fulfill the resonance condition t0 . π/ωp and significantly excite plasma
oscillations in a preformed plasma.
In our discussion of plasma currents in the THz spectral range above we completely ignored

the first-order current J1. The reason for this is simply that for our 50-fs 1C-driving pulse,
J1,x has no significant THz component. In the spectral range shown in Fig. 4.1.2(c), the power
spectrum of J1,x (not shown) is more than ten orders of magnitude lower than that of J2,z.
Thus, in our example the IC mechanism is not present and THz emission results from the TC
mechanism only. However, this may change for other driving pulse parameters, even in 1C
configuration. In the following, the IC (J1) and TC (J2) mechanisms are compared for laser
intensities I0

L = 2− 50× 1014 W/cm2 and pulse durations t0 = 4− 50 fs. Figures 4.1.3(a,b) show
the power spectra of ι1,x and ι2,z (IC resp. TC source) integrated up to 0.2ωL (ν ≤ 75 THz).
Figure 4.1.3(a) reveals that the IC mechanism requires short and intense pulses to play a role,
in agreement with [96]. By contrast, the source term ι2,z of the TC mechanism varies only
weakly in the considered parameter range [see Fig. 4.1.3(b)]. Finally, Fig. 4.1.3(c) displays the
parameter regions where one of the source terms dominates by at least one order of magnitude.
We can conclude that the IC mechanism described by the lowest order of the multiple scale
expansion in Sec. 2.5.1 is important for very short pulses only, whereas the TC mechanism
which is included in the next higher order set of equations in Sec. 2.5.2 is the key player for
sufficiently long 1C-laser pulses.
We now want to cross-check the predictions of Fig. 4.1.3 by means of 1D PIC simulations.

To this end, we consider two pulse configurations: A few-cycle pulse with t0 = 5 fs, I0
L =
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Figure 4.1.4.: Hypothetical far field spectra integrated over all angles computed by assum-
ing an infinitely thin 10 µm long plasma wire (see text) are shown for I0

L =
4 × 1014 W/cm2, t0 = 5 fs (a) and t0 = 50 fs (b). Power spectra are calcu-
lated from current densities associated with the IC (x-polarized current), TC
(z-polarized current) mechanisms that are obtained from 1D PIC simulations and
model according to the legend.

4 × 1014 W/cm2 to illustrate the IC dominated regime and the multi-cycle pulse with t0 =
50 fs, I0

L = 4 × 1014 W/cm2 already used above as an example for the TC dominated regime.
Following [60, 59], we use the 1D results for the current density J and compute a hypothetical
angularly integrated far-field spectrum P̃wire

far by assuming the plasma having a transverse shape
of an infinitely thin 10-µm-long wire. The far-field spectrum is computed according to Eq. (2.6.8).
Simulation (solid lines) and model results (dashed lines) are presented in Fig. 4.1.4. For the IC
mechanism (light gray lines) we use the transverse current JPIC

x from PIC simulation4 and J1,x
from the full ε1 model5, without approximating E1 by EL. For the TC mechanism (dark red
lines) we use the longitudinal current JPIC

z from the PIC simulation and J2,z from the simplified
ε2 model according to Eq. (4.1.5). Obviously, PIC simulations (solid lines) and the model (dashed
lines) are in an excellent agreement. The PIC results confirm that the IC mechanism dominates
the TC mechanism for the short pump pulse (a), and vice versa for the longer pulse (b). In the
latter case, P̃wire

far produced by JPIC
x is even dominated by the noise of the PIC simulation and

the model gives a signal far below the signal from the TC mechanism (not shown).
It is important to note that the IC mechanism requires the full treatment of the equations

at order ε1. In contrast, assuming E1 ≈ EL causes almost no loss of accuracy when evaluating
the ε2 order of the model: The computation of the nonlinear source ι2,z for Fig. 4.1.4(b) was
performed approximating J1 according to Eq. (4.1.2) and gives already perfect agreement with
the PIC simulation. For the few-cycle pulse in Fig. 4.1.4(a), laser energy loss due to ionization [cf.
Eq. (3.2.5)] and electron heating becomes notable: The electric field amplitude decreases during
the propagation through the 10-µm-long gas-plasma by 3%, and the final electron density at
z = 10 µm is about 11% smaller than at z = 0 µm (not shown). Therefore, in Fig. 4.1.4(a) a
full treatment of the model up to order ε2 was necessary to obtain perfect agreement with PIC
results.
It is quite tempting to conclude from hypothetical far field spectra obtained from 1D results, as

shown in Fig. 4.1.4, on actual THz emission from a real 3D plasma as produced in experiments.
While such reasoning can be found in the literature, e.g. in [60], it is generally incorrect. On
the one hand, we assume translational invariance in the transverse directions when computing

4The simulation has been performed with the code CALDER (see Sec. 3.1) accounting for binary electron-ion
and electron-electron collisions with the resolution δt = 5.3 as, δz = 15.9 nm and 80000 macro-particles per mesh.

5The simulation has been performed with the fluid code ARCTIC (see Sec. 3.2) with δt = 5.3 as, δz = 15.9 nm.
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4. Single-color fs-laser-induced microplasmas

the 1D current, on the other hand, we impose later a thin transverse shape of the plasma wire
when computing the hypothetical far field. As we will see in the next section, realistic THz
emission spectra differ very strongly from Fig. 4.1.4. The reason for this discrepancy is that not
all plasma currents lead to emission of radiation, and in particular oscillations at the plasma
frequency may not radiate [128].

4.2. Radiating and non-radiating excitations
In the previous section, we have analyzed plasma currents generated by an intense fs-laser pulse
in a gas, with particular emphasize on excitations in the THz spectral range. The question we
want to answer now is how the radiation produced by these currents looks like. As already
indicated in the concluding remarks of Sec. 4.1, one has to be careful with excitations at the
plasma frequency, which may not contribute to the radiation spectrum [128]. The reason for
this will be elaborated in the following, however, a simple physical picture gives already some
insight: The plasma oscillations at ωp, whenever they are eigen-oscillations of the system, would
continue forever (for νei = 0) and their energy would stay inside the plasma. Thus, they cannot
contribute to radiation, or otherwise energy conservation is violated.
As we have seen above, the TC mechanism is expected to dominate the THz emission from

microplasmas created by multi-cycle 1C-laser pulses as used in [61]. In this section, we focus on
the TC mechanism and thus emission from the 2nd order current J2. Our starting point is thus
Eq. (2.5.25) that we repeat for clarity

∂ttE2 + νei∂tE2 + q2
en0
meε0

E2 + c2∇×∇×E2 + νeic
2

t∫
−∞

∇×∇×E2 = −ι2
ε0
. (4.2.1)

This equation is nothing else but the 3D version of Eq. (4.1.6). In contrast to the 1D case
studied above (where ι2 is purely longitudinal and the z-component of ∇ × E2 vanishes), in
3D all components of E2 are non-zero and coupled. Moreover, focusing dynamics of the driving
laser pulse render a transformation to the co-moving pulse frame useless.

In order to identify the part of E2 which actually contributes to the far field, we note that
according to Faraday’s law in Eq. (2.5.19) a curl-free field (∇ × E2 = 0) does not lead to
radiation in the far-field, because no electro-magnetic wave is produced (∂tB2 = 0). By using
the Helmholtz decomposition theorem, we can decompose E2 = E2,d + E2,r into a curl-free field
E2,d with ∇×E2,d = 0 and a divergence-free field E2,r with ∇ ·E2,r = 0. In general, both fields
are coupled in Eq. (4.2.1) by the terms ∝ n0 and ∝ νei. By taking the curl of Eq. (4.2.1), we
find6 that E2,d decouples from E2,r if

E2,d ×∇n0 = 0 , ∂tE2,d ×∇νei = 0 (4.2.2)
E2,r · ∇n0 = 0 , ∂tE2,r · ∇νei = 0 . (4.2.3)

Let us have a look at a simple but illustrative example for the occurrence of such non-radiative
curl-free electric fields: In a preformed collisionless plasma (n0 = const., νei = 0), the curl-free
and divergence-free fields are decoupled (see also [6]). Moreover according to Eq. (D.6), ι2
reduces to the ponderomotive source7 ιpond

2 = −n0/2qe∇|J1/n0|2. Because ιpond
2 is obviously

curl-free, the solution to Eq. (4.2.1) is also curl-free and Eq. (4.2.1) reduces to a simple oscillator

6We use ∇ · (n0E2) = (∇n0) ·E2 +n0∇ ·E2, ∇× (n0E2) = (∇n0)×E2 +n0∇×E2 and similarly for νei∂tE2.
7Note that for n0 = const., νei = 0, we have a cold plasma (E2 = 0). Moreover, ∇ · J1 = 0.
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Figure 4.2.1.: Snapshot of the longitudinal electric field E2,z from the model (a) and EPIC
z from

the corresponding 2D PIC simulation (b) at the time moment when the laser
pulse is at focus. The y-polarized Gaussian laser pulse (t0 = 50 fs, Imax = 4 ×
1014 W/cm2) is focused to w0 = 0.8 µm into a uniform preformed plasma (n0 =
3× 1019 cm−3).

equation

∂ttE2 + q2
en0
meε0

E2 = − n0
2qe
∇
∣∣∣∣J1
n0

∣∣∣∣2 . (4.2.4)

We now consider a 2D (translational invariance in y-direction, ∂y ≡ 0) linearly polarized Gaus-
sian pulse with the vacuum electric field in focus according to

EL,⊥(r⊥, z = 0, t) =

√√√√2I(0)
L
cε0

exp
(
−|r⊥|

2

w2
0
− t2

t20

)
sin (ωLt) ey, (4.2.5)

where the peak intensity is Imax = 4 × 1014 W/cm2, t0 = 50 fs and 0.8µm. Moreover, we
assume a uniform preformed plasma with electron density n0 = 3× 1019 cm−3. This particular
2D configuration has the advantage that in the PIC simulation the electric field of the driving
laser appears in the Ey component only, and the longitudinal component Ez is produced by the
plasma only. Thus, a direct confrontation of E2,z from the model with EPIC

z is possible. When
evaluating the model, the ponderomotive source and the laser field are approximated (see App. I).
Nevertheless, a temporal snapshot of the longitudinal electric field at focus (see Fig. 4.2.1)8

shows an excellent agreement between analytical model (a) and 2D PIC simulation (b). A low-
frequency field and a second harmonic (SH) field are clearly visible as a fast and slow modulation
pattern along z. Both fields are non-radiating according to our previous argumentation. This is
confirmed by inspecting the magnetic field component By in the PIC simulation, which is found
to be at background noise level (not shown).
For laser-induced plasmas, we have a finite plasma volume with spatially (and temporally)

varying electron density (∇n0 6= 0). For the sake of simplicity, we will look for curl-free solutions
of Eq. (4.2.1) for ι2 = 0 only, i.e., after the driving pulse has passed. Then, n0 is constant in
time and the general solution in the collisionless case has the form (see App. J)

E2,d = A(n0) cos

√ q2
en0
meε0

t+ φ(n0)

∇n0 , (4.2.6)

where A and φ are scalar functions depending on the electron density n0. The solution E2,d
oscillates at the local plasma frequency ωp(r) =

√
q2

en0(r)/meε0, and the electric field vector is
8The simulation has been performed with the PIC code OCEAN (cf. Sec. 3.1) with 3200 macro-particles per

mesh, δz = δx = 31.8 nm and δt = 100 as.
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Figure 4.2.2.: The same laser pulse as in Fig. 4.2.1 is focused into argon gas at ambient pressure.
A snapshot of the generated plasma (a) and the absolute value of the cosine of the
angle between EPIC and ∇nPIC (b) after the pulse has passed the focus are shown.
The corresponding snapshot of the electric field component EPIC

z is depicted in (c).
The exemplary time trace of EPIC

z in (d) features oscillations at the local plasma
frequency, in agreement with Eq. (4.2.6). The snapshot of BPIC

y in (e) shows
the magneto-static field which is present in the interaction region after the laser
pulse has passed [see corresponding time trace in (f)]. All temporal snapshots in
(a,b,c,e) are taken about 100 fs after the pulse has passed the focus. Recording
positions of the time traces shown in (d,f) are indicated by the respective arrows.

always parallel to ∇n0, thus E2,d is decoupled from radiating fields E2,r [c.f. Eq. (4.2.3)]. Those
findings are in agreement with [129].
Equation (4.2.6) presents the solution for a non-radiating eigen-oscillation at the plasma

frequency in 2D/3D configuration. We now want to show that such fields are really excited in
laser-induced microplasmas and inject the same y-polarized laser as in the previous example of a
preformed plasma in argon gas with na = 3×1019 cm−3. As above, we use the 2D geometry with
translational invariance in y-direction in the PIC simulation and neglect collisions. The resulting
electron density profile after the laser pulse has passed through the interaction region is shown
in Fig. 4.2.2(a): A 10 µm-long and 1 µm-wide plasma with fully singly ionized argon at focus. In
order to check whether the electric field in the PIC simulation after the laser pulse has passed is
of the form in Eq. (4.2.6), the absolute value of the cosine of the angle between EPIC and ∇nPIC

e
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Figure 4.2.3.: The same laser pulse as in Figs. 4.2.1, 4.2.2 is focused into argon gas at ambient
pressure. The angle-integrated far field spectra obtained from 2D PIC simulation,
model and 1D wire model are presented according to the legend.

is computed9 and presented in Fig. 4.2.2(b). Obviously, after the laser has left the interaction
region the two vectors are (anti-)parallel almost everywhere. Moreover, Figs. 4.2.2(c,d) confirm
that after the laser has left the interaction region, the electric field EPIC oscillates at the local
plasma frequency10. However, as expected from our previous reasoning, these oscillations occur
inside the plasma only, the angle-integrated far field spectrum in Fig. 4.2.3 (solid dark red line)
exhibits no feature at the plasma frequency, in direct contradiction to the results from the 1D
wire model11 discussed in the previous section (dotted green line). Moreover, 2D PIC simulations
with collisions (solid light gray line) coincide perfectly with PIC simulations without collisions,
up to the noise level around 10−2. In particular, collisions do not enhance the far-field amplitude
at the plasma frequency.
As previously explained, in the PIC simulation no radiation is emitted due to plasma oscilla-

tions after the excitation by the laser pulse. During the laser pulse, the non curl-free ιpond
2 term

(as ∇n0 6= 0) is able to generate a potentially radiating field E2,r. The investigation of this TC
radiation will be presented in the next section and explains the spectrum observed in Fig. 4.2.3.
Besides the non-radiating excitation E2,d, there exists a second non-radiating, magneto-static

excitation. The corresponding field B2,m is linked to a non-radiating, static current J2,m via

∆B2,m = −µ0∇× J2,m . (4.2.7)

The PIC simulation above confirms the existence of such a magneto-static excitation as well:
The y-component of the magnetic field BPIC is constant in time after the laser has passed the
interaction region. In Fig. 4.2.2(e) a snapshot of this static magnetic field component is shown,
together with an exemplary time trace in Fig. 4.2.2(f).
The total non-radiative current created in the microplasma can thus be written as

Jnonrad
2 = J2,m − ε0∂tE2,d . (4.2.8)

Interestingly, the second (curl-free) term in Eq. (4.2.8) is exactly what we used in the previous 1D
9If the absolute of EPIC or ∇nPIC

e is smaller than 1% of its average value in the whole box, we set the value
to unity since the angle between zero-vectors cannot be defined.

10Here, we can validate a posteriori the validity of the multiple scale expansion for this example: we find
an electric field corresponding to E2 driven by ι2 of the order 107 V/m. Similar values have been found in
Fig. 4.1.2(b) for 1D configuration. The ratio of 1st and 2nd order electric field is thus about 2×10−3 < 1.4×10−2 =
|qeE0

L/meωLc|, i.e., the upper bound for the ratio established in Sec. 2.5.4.1.
11Here, the current has been computed same as in Sec. 4.1.2. Then, by assuming an infinitely thin plasma

in x, the far-field power spectrum has been computed according to Sec. 2.6. Since, we compare with 2D PIC
simulations here, we have to use the 2D Greens function G2D.
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Figure 4.3.1.: Snapshot of the electric field EPIC
y (a) and the magnetic field BPIC

y (b) from the
same PIC simulation as presented in Fig. 4.2.2. The figure is a zoom-out of
Fig. 4.2.2(e), so the emitted THz and SH waves are visible (denoted as ’SH’ and
’THz’). The mean width of the focused laser is indicated by the dark red lines,
and the position of the generated plasma is marked as a blue oval.

model [c.f. Eq. (4.1.5)]. In order to compute the hypothetical far field spectra in Fig. 4.1.4, this
(curl-free) current density has been multiplied by a narrow transverse electron distribution in
order to represent a thin wire. It is obvious that such operation destroys the ”curl-free” property
of the current and thus introduces an artificial radiation. To judge if a current is radiating, its
transverse spatial dependence is of great importance. Therefore, 1D modeling is not suitable
for the description of THz emission from plasma currents and we perform 2D modeling for the
radiating fields in the next section.

4.3. Terahertz radiation from single-color-fs-laser-induced
microplasmas

We have seen in the previous section that one has to be careful when concluding from plasma
excitations on THz radiation in the far field. Plasma oscillations can be excited at the local
plasma frequency, which do not necessarily emit radiation. Using a 1D plasma model in order
to predict THz emission spectra from fs-laser gas interaction, as proposed in [60] and later used,
e.g., in [59, 61], may give incorrect results: As shown in Fig. 4.2.3, THz emission spectra obtained
from such model deviate strongly from those obtained from PIC simulations. Thus, in order to
understand the THz emission spectra, 2D or even 3D models are inevitable.
Throughout this section, we consider the 50-fs y-polarized laser pulse configuration already

employed in Figs. 4.2.2 and 4.2.3 as an example. For the sake of computational costs, the
following PIC simulations are performed in this 2D configuration [∂y ≡ 0, EL = EL,yey, see
Fig. 4.3.1(a)]. Our particular 2D geometry implies, that E1 and J1 are y-polarized. Then,
according to Eq. (2.5.17), ι2,y = 0. Thus, the radiation driven by such a source is fully described
by the magnetic field component B2,y, while B2,x = B2,z = 0. On the other hand, the driving
laser pulse is y-polarized and hence BL,y = 0 = B1,y. This natural separation, which is a
special feature of the chosen 2D geometry, is very handy when it comes to analyzing the PIC
simulation results. In Fig. 4.3.1(b) a snapshot of BPIC

y from the PIC simulation is presented.
The beam envelope of the focused laser is shown schematically as red lines. The snapshot is
taken about 100 fs after the driving pulse has passed the focus, and the extension of the created
plasma is sketched as a blue oval. In fact, zooming in on the region where the plasma is created
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would reproduce Fig. 4.2.2(e). In the larger frame of Fig. 4.3.1 emitted THz and also SH waves
propagating forward inside a cone are clearly visible. No radiation is emitted on-axis along z in
agreement with PIC simulations in [62].
What is the origin of this THz emission? In the framework of the 1D model in Sec. 4.1.2, the

excitation at THz frequencies turned out to be driven by the longitudinal ponderomotive source
mostly. However, one has to keep in mind that in 2D and 3D, ι2 has also transverse components,
in particular transverse ponderomotive sources that have been made responsible for THz emission
in gas jets [62]. To understand what is the driving source polarization direction in microplasmas,
we exploit the symmetries of the sources and the radiating currents in the following section. We
will see that the thickness of the plasma determines whether transverse currents lead to THz
emission. Afterwards, we consider a simple model of THz emission that allows to estimate the
laser-to-THz conversion efficiency for various laser pulse energies and focusing conditions.

4.3.1. Determining the radiating current polarization by symmetries
In this section, depending on the transverse spatial symmetry of the incoming driving laser
beam, the polarization of the prevailing THz-radiating currents for the TC mechanism (and the
IC mechanism) is determined for narrow plasmas. First, we determine the symmetry of the
current source ι2 (TC) that inherits the symmetry to the current J2 (cf. App. C). Second, we
show by using the relation between the current and the far-field emission from Sec. 2.6 that
transversally antisymmetric currents in a narrow plasma, i.e., a microplasma, give a negligible
contribution to the far-field-THz emission. Using these insights, we conclude about the emitting
current polarization depending on the driving laser beam symmetry.

4.3.1.1. Transverse symmetries of the THz-radiating currents

The second order nonlinear source term ι2 is computed in particular from the lowest order
current J1 [cf. Eq. (2.5.17)]. Thus, we have to consider the symmetries of ι1 and J1 before
concluding about ι2 and J2.

If the electron density profile n0 is symmetric in the transverse coordinate r⊥, the symmetry
of ι1 ∝ n0EL is determined by the laser electric field EL. First, let us consider a symmetric
transverse electric laser field [EL,⊥(r⊥) = EL,⊥(−r⊥)], for example the usual linearly polarized
Gaussian laser beam [cf. Eq. (4.2.5)12]. In Sec. 3.3, we have seen that even in vacuum a linearly
polarized Gaussian beam has a longitudinal electric field EL,z. Eq. (2.3.1) determines this field
as EL,z = −

∫
∇⊥ · EL,⊥ dz: the integration along z does not change the transverse symmetry,

but ∇⊥ = (∂x, ∂y)T does. Thus, EL,z is antisymmetric in r⊥ [EL,z(r⊥) = −EL,z(−r⊥)]. We
can conclude that ι1,⊥ is symmetric and ι1,z is antisymmetric in r⊥. In App. C, this kind of
symmetry has been introduced as the s-symmetry and visualized in Fig. C.1. Furthermore, ι1
induces its symmetry to J1. We conclude for a linearly polarized Gaussian laser beam (or in
general any laser field with the s-symmetry) that the transverse current J1,⊥ in the gas-plasma
is symmetric in r⊥, and the longitudinal current J1,z is antisymmetric.

On the other hand, when considering a transverse electric field that is antisymmetric in
the transverse coordinate [EL,⊥(r⊥) = −EL,⊥(−r⊥)], one can analogous conclude that J1,⊥ is
antisymmetric in the transverse coordinate and J1,z is symmetric. For example, this kind of
a-symmetry is present within a radially polarized needle beam in Sec. 3.3.4.213.

12The transverse symmetry of the laser electric field (in vacuum) is conserved along the laser propagation
direction z.

13Please note that if EL has either s- or a-symmetry, the modulus of the laser electric field |EL| =√
E2

L,x + E2
L,y + E2

L,z is always symmetric with respect to r⊥. Consequently, also the electron density n0 (and
similarly νei, see App. C) is always symmetric with respect to r⊥.
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(b) (c)(a)

+Jz

-Jz

+Jx

-Jx

Figure 4.3.2.: (a) Two types of antisymmetric currents with respect to the transverse axis x:
transverse antisymmetric currents Jx (red) and longitudinal antisymmetric cur-
rents Jz (blue). (b) Maximum of the angularly resolved far-field power spectrum
from two longitudinally polarized antisymmetric point-sources that are located
according to (a) distance Ds away from each other. The dashed line specifies the
function [2πDs/λTHz]2/4. (c) The same as in (b) but for a transverse antisym-
metric current. The dashed line specifies the function [2πDs/(2λTHz)]2/4. For
transverse currents, the scaling for small Ds is 4 times slower and thus the Ds-axis
is extended compared to (b). The inset specifies the behavior for the same Ds-
range as in (b). Both far-field spectra are normalized to the maximum of radiation
that can be expected for two coherent point-sources, i.e., emitter that are located
at the same position and oscillate with the same phase, i.e., in the symmetric case.

Now, the symmetry of ι2 is determined by Eq. (2.5.17) in Sec. 2.5.2: One can easily show
that independently on whether EL,⊥ is symmetric or antisymmetric in r⊥, the source term ι2
has the a-symmetry and thus also J2 has the a-symmetry14. This result is true only if EL,⊥ has
either the s- or the a-symmetry. If it does not have any of them, i.e. it is the sum of non-zero
a- and s-symmetric parts, then ι2 is in general neither a- nor s-symmetric and thus also J2 does
not have any symmetry.

4.3.1.2. Neglecting the far-field contribution from antisymmetric currents

We have seen previously that transverse currents driven by ι2 (TC) for a Gaussian laser pulse are
antisymmetric in the transverse coordinate r⊥. In the following, we will see that antisymmetric
currents, transverse or longitudinal ones, almost do not emit THz radiation for narrow plasmas.
Here, “narrow” means that the thickness of the plasma D � λTHz, where λTHz = 2πc/ωTHz is
the wavelength of the THz emission that we are looking at.

14Since n1 = −q−1
e
∫
∇ · J1 dt according to Eq. (2.5.15), n1 is antisymmetric in r⊥ if J1 has the s-symmetry

and symmetric if J1 has the a-symmetry. Thus, n1E1 has always the a-symmetry independently whether the
lowest order fields have the a- or the s-symmetry. For the term J1 × B1, we find the same result, since for the
x-component (J1 × B1)x = J1,yB1,z − J1,zB1,y is always antisymmetric in r⊥ (analogous for the y-component)
and (J1 ×B1)z = J1,xB1,y − J1,yB1,x is always symmetric. For the term J1(∇ · J1), the same considerations like
for n1E1 hold and similarly for the 4th term in Eq. (2.5.17). Since E2 is symmetric in r⊥ and following Eq. (2.5.18)
also E2,th is always symmetric. Because of that, the last source term in Eq. (2.5.17) has the a-symmetry, too.
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First, we consider two point sources that are separated by the distance Ds such that15

Ĵ(r, ω) = J0

[
δ

(
x− Ds

2 , y, z

)
± δ

(
x+ Ds

2 , y, z

)]
δ(ω − ωTHz)ex/z , (4.3.1)

where J0 is the amplitude of the current and ex/z is the unit vector in the x/z-direction. The
“+” sign reflects the situation where the currents are symmetric and they are antisymmetric
when taking the “-” sign. The two antisymmetric situations are visualized in Fig. 4.3.2(a). Using
the results from Sec. (2.6), the far-field power spectrum reads

P 3D
far = µ0ω

2

16π2c|r|2 δ(ω − ωTHz)
∣∣∣er × ex/z

∣∣∣2 ∣∣∣∣∣ exp

iω
c

√(
x− Ds

2

)2
+ y2 + z2


± exp

iω
c

√(
x+ Ds

2

)2
+ y2 + z2

 ∣∣∣∣∣
2

(4.3.2)

.
µ0ω

2

16π2c|r|2 δ(ω − ωTHz)
{

4 if +(
ω
cDs

)2 if −
, (4.3.3)

where er = r/|r| is the unit vector normal to the radiation sphere and using Taylor expansions
for Dsω/c � 1. This estimation suggests that antisymmetric currents emit by a factor of
[λTHz/(πDs)]2 weaker than coherently emitting symmetric currents. In Fig. 4.3.2(b) the maximal
emission is presented for a z-polarized antisymmetric current evaluating directly Eq. (4.3.2)
depending on Ds. The value is normalized to the result for a coherently emitting symmetric
source. Indeed, the emission disappears for Ds → 0 and increases up to 1 when the distance
between the sources approaches λTHz. As presented in Fig. 4.3.2(c), a similar situation is found
for an x-polarized antisymmetric source. However, comparing the inset in Fig. 4.3.2(c) with
Fig. 4.3.2(b), we find that the emission from transverse antisymmetric currents increases slower
with Ds compared to emission from longitudinal antisymmetric currents16.

In general, for an emitter at r′ in a narrow plasma where∣∣|r− r′| − |r⊥ + (z − z′)ez|
∣∣ ≤ |r′⊥| ≤ D/2� c

ω
, (4.3.4)

we have for the Green’s function in Eq. (2.6.3) by means of the Taylor expansion

G3D(r⊥ − r′⊥, z − z′) ≈ G3D(r⊥ + r′⊥, z − z′) (4.3.5)

up to an error ∝ (Dω/c)2. For a current component with Ĵi(r′⊥, z) = −Ĵi(−r′⊥, z) where
i ∈ {x, y, z}, we conclude ∫

Vplasma

Ĵi(r′)G3D(r− r′) d3r′ ≈ 0 , (4.3.6)

such that the far field P 3D
far vanishes. In 2D geometry, the same argumentation holds when

replacing r′⊥ → x′ and G3D → G2D.

15W.l.o.g., we consider the 3D case here, the 2D case can be treated analogous.
16This is because the |er × ex/z|2-term in Eq. (4.3.2) is maximal if er = r/|r| ⊥ ex, for example if er = ey.

However for r ⊥ ex we have x = 0 and the last term in Eq. (4.3.2) is zero such that P 3D
far = 0 for this emission

direction. For a z-polarized current, the |er × ex/z|2-term is also maximal if er = ey. But here, also the last
term in Eq. (4.3.2) is maximal and thus the maximum of the emission is stronger for a z-polarized antisymmetric
current than for an x-polarized antisymmetric current.
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4. Single-color fs-laser-induced microplasmas

The plasmas considered in this chapter are narrow. The electron density profile in Fig. 4.2.2(a)
reveals that the plasma is only 1 µm thick, i.e., 2|r′⊥| = Ds ≤ D = 1µm. In Fig. 4.2.3, we have
seen that THz emission is produced for ωTHz ≈ 0.02ωL and thus for λL = 0.8µm we have λTHz ≈
40µm. According to previous estimations, antisymmetric currents will radiate [λTHz/(πDs)]2 =
162-times weaker than symmetric currents. Thus, for our microplasmas antisymmetric currents
are practically not radiating compared to symmetric ones. From the previous section, we know
that for EL,⊥(−r⊥) = EL,⊥(r⊥) we have J1,z(−r⊥) = −J1,z(r⊥) and J2,⊥(−r⊥) = −J2,⊥(r⊥).
Thus, for a strongly focused linearly polarized Gaussian laser beam, only transverse currents J1,⊥
contribute to far-field emission via IC mechanism and only longitudinal currents J2,z contribute
via TC mechanism. This later mechanism dominated for many-cycle 1C-laser pulses17.

4.3.2. A simplified model of THz emission
Even if solving the full model up to order ε2 in Sec. 2.5.2, is already much cheaper in terms of
computational costs compared to full PIC simulations, it is still too heavy for quick estimations
and parameter scans. Therefore, we consider in the following further simplifications for the
computation of the THz emission in the far field.
Firstly, we will approximate the source term ι2 by the ponderomotive source ιpond

2 . Hereby we
neglect three terms in Eq. (D.6): In 1D, the 2nd and 3rd term have been shown to be much smaller
than the ponderomotive source in Sec. 4.1.2. The last summand in Eq. (D.6) is zero since in our
particular 2D configuration ∇ · J1 = 0. As has been shown in Sec. 4.3.1.2, for Gaussian beam
profiles and transversely narrow plasmas, only the longitudinal component of the current J2,z
contributes to the far-field THz emission. We assume that transverse ponderomotive sources do
not couple to radiating longitudinal currents and approximate the longitudinal ponderomotive
source term according to App. I by

ιpond
2,z = −q

3
en0I

2D
L (x, z, t)

2m2
eω

2
Lε0c


z
(
−1 + 4r2

⊥
w2(z)

)
z2

R + z2 + 4τ
ct20

 × [1 + cos(2ωLτ)] + 2ωL
c

sin(2ωLτ)
}

,

(4.3.7)

where I2D
L is the optical intensity (see App. I), τ = t− z/c and zR = w2

0ωL/(2c).
Secondly, we will not solve the full wave equation (4.2.1) to obtain E2, but neglect the term

proportional to n0. Then, for the collision-less case (νei = 0), the simplified equation reads

∂ttE2 +
�
�
�
��Z

Z
Z
ZZ

q2
en0
meε0

E2 + c2∇×∇×E2 = −ι2
ε0

. (4.3.8)

With this approximation, the curl-free part E2,d and divergence-free part E2,r of the solution
E2 decouple, and we disregard in particular the following three effects:

1. Plasma-frequency oscillations in the curl-free E2,d defined by Eq. (4.2.6) are neglected.

2. For the divergence free E2,r, both dispersion and absorption are neglected.

3. The coupling between E2,d and E2,r is neglected.

17For EL,⊥(−r⊥) = EL,⊥(r⊥) we have J1,⊥(−r⊥) = −J1,⊥(r⊥) and J2,⊥(−r⊥) = −J2,⊥(r⊥). Thus, for
antisymmetric laser beams, e.g. for a radially polarized needle beam, only longitudinal currents contribute to
far-field emission via IC mechanism and via TC mechanism when the plasma is thin.
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(a) (b)

Figure 4.3.3.: Snapshot of the longitudinal current JPIC
z from the PIC simulation (a) and Jmod

2,z
according to the simplified ε2-model (b), just after the laser pulse has left the
focus. The laser pulse parameter are as in Fig. 4.2.2(c,d) I(0)

L = 4 · 1014 W/cm2,
t0 = 50 fs, w0 = 0.8µm. But now na = 7.5 · 1017 cm−3 (p = 0.028 bar).

The first point is not problematic for the description of the THz far-field spectra, because such
plasma oscillations do not lead to radiation as they are curl-free. The second point is critical and
has to be accounted for, in particular for larger and more dense plasmas as we will see below.
The third point can be in principle important: The coupling can lead to resonant excitation as in
plasma wave-guides, similar to what is frequently exploited in the case of meta-materials [130].
However, as will be shown in Sec. 5.4.5, for smallest microplasmas longitudinal excitations do
not provide those effects.
It is interesting to note that using Eq. (4.3.8) instead of Eq. (4.2.1) is equivalent to solving

the simplified current equation ∂tJ2 = ι2, or

∂tJ2 + νeiJ2 = ι2 , (4.3.9)

when taking into account collisions. In this light, the approximation is not exactly new and has
already been applied for the current J1 and the IC mechanism [57, 75, 88]. By using Eq. (4.3.9),
we can easily compute the current J2 from ι2, and then B2 in the far field following the results
from Sec. 2.6 [Eq. (2.6.4), (2.6.6) and G2D from Eq. (2.6.11)].
To crosscheck this model, we compare the longitudinal current J2,z from the simplified model

with the current JPIC
z from a PIC simulation. Since our model does not account for the non-

radiating plasma oscillation, here we choose a lower gas pressure p = 0.028 bar. Then, the gas
is fully singly ionized in focus, same as for the previously discussed example with the higher
pressure. This results in the plasma oscillation period tp = 2π/ωp = 129 fs, i.e., sufficiently
longer than the laser pulse duration. Thus, we can observe the longitudinal current just before
the plasma starts to evolve at the local plasma frequency. The resulting longitudinal currents are
compared in Fig. 4.3.3 showing a good agreement between the model and the PIC simulation. It
is interesting to note the antisymmetry with respect to z: According to our model, J2,z is just an
integral of ιpond

2,z over time. By looking at the approximation for the longitudinal ponderomotive
source ιpond

2,z in Eq. (4.3.7), we find that the only antisymmetric term is the one ∝ z/(z2
R + z2).

It has its extrema of ±1/(2zR) for z = ±zR = ±2.5µm, in agreement with our observations of
the extrema in Fig. 4.3.318. This term is the result of the strong focusing since it is important
for 1/zR = 1/2.5µm> 1/ct0 = 1/15µm. Otherwise, in weaker focusing geometry, the term
∝ 4τ/(ct20) which is the analog of the longitudinal ponderomotive force in 1D according to
Sec. 4.1.2 becomes dominant. In the following, we concentrate again on higher gas pressures.

18There, the extrema are slightly shifted towards z = 0 in particular because of the product with n0.
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Figure 4.3.4.: Far field THz power spectra as a function of frequency ωTHz and detection angle
ϕ for the laser pulse of Figs. 4.2.2, 4.2.3 and 4.3.1. In (a) the result of the PIC
simulation and in (b) those of the simplified model (see text) are presented. In
(c) and (d) analogous results accounting for collisions are shown. The color scale
allows for quantitative comparison of the amplitudes, which are normalized to
max(PPIC

far ).

Before confronting the modeled far-field emission with PIC results, we have to take the second
point above into account, namely the incorrect treatment of THz dispersion. For frequencies
below the plasma frequency ωp the plasma becomes opaque. For given ωp and νei, it is possible
to compute the penetration depth of the electromagnetic field as

sp = c

2ωTHz
=


√√√√ ω2

THz + iνeiωTHz
ω2

THz + iνeiωTHz − ω2
p

 , (4.3.10)

where the symbol = denotes the imaginary part of a complex quantity. For singly ionized argon
gas, the penetration depth sp is about 0.5 µm for ωTHz ≈ 0.02ωL � 0.13ωL ≈ ωp. This is about
half the thickness of the plasma in the example of Fig. 4.2.2(a). For driving pulse configurations
which produce larger plasmas or cause multiple ionization, the penetration depth may become
significantly smaller than the plasma width. Then, the plasma emits mainly from a thin layer at
its surface, where radiation at frequencies below ωp can still exit due to optical tunneling. The
frequency dependent thickness of this layer is related to the penetration depth in Eq. (4.3.10).
In order to mimic this effect in our simplified model, we do not take into account contributions
from the whole plasma when calculating the far field THz power spectrum as described above.
Instead, we only take contributions from the current density J2 in a thin layer at the plasma
surface, i.e., from positions r and frequencies ωTHZ with distance to the transparent outer area
less than 1.2sp. The empirical factor 1.2 was chosen by equaling the THz pulse energy obtained
with model and PIC simulation in Fig. 4.3.4, and is kept constant for the rest of the chapter.
Of course, this approach implies a strong simplification of the situation, however, as we will see
below, it leads to reasonable agreement with PIC simulations with respect to the spectral and
angular distribution of the THz emission.
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[μm] [μm] [ ]

Figure 4.3.5.: Scaling of the conversion efficiency ηTHz with focal spot-size and pulse energy, for
fixed laser wavelength λL = 0.8 µm, pulse duration t0 = 50 fs and argon gas density
na = 3 × 1019 cm−3. In (a), PIC results (solid dark red line) and the simplified
model (dashed dark red line) for a laser pulse energy of EL = 0.18 J/m are shown.
The dashed light gray line shows model results accounting for collisions. In (b),
the model is evaluated in the (w0,EL)-plane. Ratios of PIC and model conversion
efficiencies are indicated in gray. In (c), ηTHz as a function of the pulse energy
is shown for tight focusing (w0 = 0.8 µm). Results from PIC simulations and the
simplified model with and without collision are in good agreement. The dashed-
dotted dark red line shows model results when the opaqueness of the plasma is
ignored (see text).

In Fig. 4.3.4(a), we present the angle resolved far field power spectrum PPIC
far for the PIC simu-

lation of Figs. 4.2.2, 4.2.3 and 4.3.1. The exact definition is provided in Sec. 2.6. For comparison,
Fig. 4.3.4(b) shows the power spectrum Pmod

far obtained from our simplified model. We find good
qualitative and even quantitative agreement, both spectra feature a broad peak around 0.022ωL
(i.e., 8.24 THz). Simulation and simplified model predict the strongest radiation under an angle
of ϕ ≈ 70◦ with respect to the optical axis. Because the length of the plasma is about 10 µm
only, THz emission due to the TC mechanism is expected at such large angles (cf. [60, 59] and
Sec. 5.2.1). Comparing the power spectrum PPIC

far with results from PIC simulation accounting
for collisions, as shown in Fig. 4.3.4(c), confirms that collisions are of minor importance for the
THz emission.

4.3.3. Scaling with the laser pulse energy and the focusing conditions
Let us finally discuss scaling properties of the THz conversion efficiency ηTHz = ETHz/EL where
EL is the THz pulse energy density in 2D (see Sec. (2.6) for details) containing frequencies below
0.2ωL (75 THz) and EL is the energy density of the incoming laser pulse. In the following, we will
use the term ”energy” also in the 2D case for the sake of readability, even if we mean ”energy
density”. Moreover, we fix the laser wavelength λL = 0.8 µm, pulse duration t0 = 50 fs and
neutral argon gas density na = 3× 1019 cm−3.
The conversion efficiency ηTHz for EL = 0.18 J/m as a function of the focal beam width

w0 is presented in Fig. 4.3.5(a). The simplified model is in good agreement with the PIC
simulations. It turns out that strong focusing leads to the highest conversion efficiency ηTHz for
the chosen pulse energy. Strong focusing is also preferable for higher pulse energies as shown by
the (w0,EL)-parameter scan in Fig. 4.3.5(b). The results of the parameter scan are presented
for the model. The ratio between the PIC and the model conversion efficiencies is indicated by
the gray numbers, showing reasonable agreement within one order of magnitude.
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For all focusing conditions in Fig. 4.3.5(b), the conversion efficiency ηTHz first increases with
the driving laser pulse energy, and then saturates for higher energies around 10−6 − 10−7. This
behavior, which translates into linear growth of the THz energy with the laser energy, is a
direct consequence of the opaqueness of the plasma for THz radiation. Figure 4.3.5(c) shows a
line-out of Fig. 4.3.5(b) for tight focusing (w0 = 0.8 µm) and corroborates this statement. Both
PIC results (solid red line) and model (dashed red line) are in good agreement. The red circle
symbols correspond to results from our simplified model when the opaqueness of the plasma
is ignored, i.e., the current density J2 in the whole plasma volume is taken into account. In
particular for larger pulse energies, where the plasma is much wider than the penetration depth
sp, conversion efficiencies are overestimated by several orders of magnitude. This clearly shows
that it is crucial to take the opacity of the plasma into account when the plasma width exceeds
the penetration depth.

4.4. DC-biased microplasmas
As has been shown in Sec. 4.3.3, the laser-to-THz conversion efficiency ηTHz for smallest mi-
croplasmas is slightly above 10−8 and saturates with the laser pulse energy to around 10−6.
Applying a constant electric field Es (DC-bias or bias field) to the gas-plasma increased ηTHz in
filaments [64] as well as in mJ-laser driven gas-plasmas [65] (cf. Sec. 1.3.2). Hereby, in addition
to the laser pulse the DC-bias itself drives the electrons leading to a THz emitting free-electron
current. In this section, we explore the THz emission originating from the DC bias applied to
1C-laser-induced microplasmas.
To model a gas-plasma in a constant electric field, two different models have been proposed.

In [68], the THz emitting current J has been suggested to be computed from ∂tJ = q2
ene/meEs in

analogy to the IC current ([57], cf. Sec. 1.3.3). Then, the electrons are treated as test particles.
However, for DC-biased gas-plasmas, this proceeding leads to a catastrophic failure: after the
ionization, i.e., when ne is constant in time, the current J grows to infinity. Descriptively, the
constant electric field would continue to accelerate the electrons forever.
This problem is resolved by the model that was proposed in [64] (cf. Sec. 1.3.2). First,

it assumes a translational invariant system perpendicular to the bias field. Employing the
Amperes law (2.3.4), this allows to compute the current J consistently with the electric field
by J = −ε0∂tE. Second, the current is assumed to be driven by the electric field such that
∂tJ = q2

ene/meE. Third, it assumes that E = Es for t < 0, and then at t = 0 free electrons are
created by ionization such that E evolves in time and for t > 0 in general E 6= Es. This results
in an electric field ∝ cos(ωpt) and current ∝ sin(ωpt) that oscillate at the plasma frequency
ωp (cf. Sec. 2.5.4.2). Accounting for collisions, this oscillation would be damped to zero, resulting
in a field free region inside the plasma, i.e., the external electric field is screened by the electrons.
However, since the system is assumed to be translational invariant normal to the oscillating
current, no radiation emission can be described by this model. The attempt to truncate the
current by assuming it to have a particular shape results in an unphysical overestimation of the
THz emission at the plasma frequency as discussed in Sec. 4.2. Thus, we should account for
the plasma shape and the current that is driven by a self-consistent electric field within a single
framework.
This can be done by solving the lowest order set of equations that is presented in Sec. 2.5.1.

Here, the total electric field E1 including the external electric field Es excites the electron current
J1. The displacement of the electrons creates the charge ρ1 = ε0∇ · E1 and thus a restoring
electric field screens Es. Besides charge separation, the current J1 leads also to THz emission
since we do not assume the system to be translational invariant normal to Es.
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As we have seen in the previous section, already 1C-fs-laser-induced microplasmas without
an external electric field lead to THz emission. There, the current J2 is excited mainly by
ponderomotive forces that are included in the 2nd order set of equations in Sec. 2.5.2. The total
current is just the sum J1+J2 of currents from both effects (and similarly for other fields). In this
section, the effect of the bias-field described by the IC mechanism is considered separately from
the TC mechanism including the ponderomotive effects. This is a particular advantage of the
multiple scale expansion that separates different effects. To solve the IC-mechanism-describing
lowest order set of equations in Sec. 2.5.1, we use the code ARCTIC19 (cf. Sec. 3.2).
Firstly, we consider the influence of the bias-field polarization: Initially proposed set-ups

envisaged an excitation by a transverse bias-field. However, the orientation of Es can be adjusted
to be longitudinal [131] or even helical [68]. In Sec. 4.4.1, we consider the transverse and
longitudinal variant and compare them with respect to efficiency, emission patterns and spectral
properties for smallest microplasmas. Secondly, the scaling properties of the conversion efficiency
are considered: the gas pressure dependence of ηTHz is investigated and the possibility to increase
the bias-voltage for high gas-pressures is exploited. Through this section, we also comment on
the role of the screening and the validity of the lowest order multiple scale expansion (cf. Sec. 2.5)
which is used for the description of the DC-biased fs-laser-induced microplasma.
In the following we restrict again to the 2D case with translational invariance in y. Through

the section the same Gaussian y-polarized laser pulse with t0 = 50 fs, Imax = 4 × 1014 W/cm2

and w0 = 0.8 µm is considered as in the largest part of Sec. 4.3. The gas is argon and by default
the initial atom density is na = 3× 1019 cm−3 (p ≈ 1 bar).

4.4.1. DC-bias polarization dependence
Let us consider a microplasma exposed by a longitudinal bias-field first, i.e., the excitation of
the low-frequency current takes place in the z-direction. In this sense, the reaction of the gas-
plasma to the excitation is expected to behave similarly to what we have seen from excitation
by longitudinal ponderomotive forces in Sec. 4.3. And indeed, the snapshot of the magnetic field
B1,y at time 100 fs after the laser pulse has left the focus displayed in Fig. 4.4.1(a) reveals THz
waves emitted almost normal to the laser propagation direction z. The resulting THz far-field
spectrum normal to the laser propagation direction in Fig. 4.4.1(c) is peaked at 5 THz and
does not have any signature at the plasma frequency, that is around 49 THz for the considered
gas-plasma in focus. This behavior is very similar to what has been observed in Fig. 4.2.3 for
the same 1C-fs-laser-induced microplasma without an external bias20. As the focal electric field
time trace in Fig. 4.4.1(e) shows, the external bias field of 30 kV/cm is screened rapidly as ex-
pected [64]. Contrary to what is expected from [64], almost no oscillation at the plasma frequency
are present in focus. However, the oscillations of the electric field at the local plasma frequency
are strong where the electron density gradient is large as can be seen in Fig. 4.4.2(a,b,c). The
snapshots of the longitudinal and transverse electric fields in Fig. 4.4.2(a,b) reveal a spatial mod-
ulation pattern qualitatively similar to what has been presented for the un-biased microplasma
in Fig. 4.2.2(c): Since the electric fields and currents oscillate at the local plasma frequency,

19The equations had to be slightly modified to include an external bias-field into ARCTIC. To this end, we
substitute Ě1 = E1 − Es, B̌1 = B1, J̌1 = J1. Now, the ionization rate W [|E1|], the current driving term in
Eq. (2.5.11), and energy equation (2.5.12) are computed by setting E1 = Ě1 + Es. Since the static electric field
is a solution of the vacuum Maxwell’s equations, we can solve the Maxwell’s equations simply by substituting
E1 → Ě1, B1 → B̌1, J1 → J̌1.

20Moreover, as can be seen in Fig. 4.4.1(a), a relatively strong magnetic field is present around the plasma (small
blue oval). This magnetic field is magneto-static or more precise quasi-magneto-static since we consider collisions
that damp out the current and thus slowly decrease the magnetic field. A similar magneto-static field has been
already observed in the same 1C-fs-laser-induced microplasma without an external bias in Fig. 4.2.2(e).
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(a)

(c) (d)

(f)(e)

(b)

Figure 4.4.1.: DC-biased argon gas with initial neutral density na = 3× 1019 cm−3 (p ≈ 1 bar).
The driving Gaussian laser pulse is y-polarized with t0 = 50 fs, Imax = 4 ×
1014 W/cm2 and w0 = 0.8 µm. The snapshots of the magnetic field B1,y around
the DC-biased laser-induced microplasma (blue oval) 150 fs after the laser pulse
has left the focus at z = 0 are presented in (a-b). The constant electric field is
z-polarized in (a) and x-polarized in (b) with the modulus |Es| = 30 kV/cm. The
far-field spectrum at r = (0.5, 0, 0)T mm corresponding to the snapshot in (a) is
presented in (c). The far-field spectrum at r = (0, 0, 0.5)T mm corresponding to
the snapshot in (b) is presented in (d). A time trace of the electric field in the
polarization direction of the DC field in focus is presented in (e) corresponding
to figures (a,c) and in (f) corresponding to (b,d). The system is assumed to be
translational invariant in y (∂y ≡ 0). The computations were performed with
ARCTIC (see Sec. 3.2) and the resolution δx = 32 nm= δz and δt = 75 as.

the oscillations get off-phase to each other shaping this characteristic field pattern. Albeit the
presence of these oscillations, no THz emission is observed at the local plasma frequency for a
longitudinal DC-bias.
Now, we consider a transverse external bias-field as it has been applied for example in [64].

According to Fig. 4.4.1(b), THz waves are mostly emitted along z. Compared to the previous
case, the field amplitude decreased by around a factor 4. The far-field spectrum in the laser
propagation direction in Fig. 4.4.1(d) is now significantly broadened and has besides a low-
frequency peak at 10 THz a peak around the focal plasma frequency νp = 49 THz. Such
a double peak structure has been already observed in the very first experimental work [70],
even if for a different set-up. Also the screening dynamics change: Now in agreement to [64],
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(a) (b)

(c) (b)(d)

Figure 4.4.2.: Snapshots of the electric field E1,z (a), E1,x (b) as well as the electron densities
n0 (c) and n1 (d) 100 fs after the laser pulse has passed through the focus. The
laser and gas parameter are the same as in Fig. 4.4.1(a).

strong oscillations at the local plasma frequency are visible even in focus [see Fig. 4.4.1(f)]. They
disappear mostly due to the damping of the current, i.e., the oscillations at the plasma frequency
are partially non-radiative for a transverse DC-bias.

This difference in the spectral emission properties is also found for two-color fs-laser-induced
microplasmas in Chap. 5, in particular in full 3D configurations. We interpret them in Sec. 5.4
by a simple plasmonic model.
Before investigating the conversion efficiencies from DC-biased microplasmas, a comment on

the validity of the multiple scale expansion that is the base for our investigation is in order.
Throughout this section, the lowest order of the multiple scale expansion in Sec. 2.5.1 is exploited.
According to Sec. 2.5.4, we have to ensure that the lowest order quantities are large compared
to the quantities at the next higher order. This should be in particular true for the electron
densities n0 and n1 = ρ1/qe = ε0/qe∇ · E1. Here, n1 can be identified as the displaced electron
density, in particular due to the external electric field. Figs. 4.4.2(c-d) compare the electron
densities for the configuration in Fig. 4.4.1(a) 100 fs after the laser pulse has left the focus. The
colorbar reveals that n1 is almost 4 orders of magnitude smaller than n0 justifying the validity
of the multiple scale expansion.
In summary, we have seen that the orientation of the current with respect to the plasma

shape can have a dramatic impact on the THz radiation properties. A longitudinal DC-bias
creates conical emission at large opening angles. A transverse DC-bias leads to forward and
backward THz radiations. The microplasma acts almost like a point source of THz emission.
The THz pulse energy from the longitudinal excitation is more that 10-times larger than from the
transverse excitation. The transverse excitation leads to a spectral broadening up to the focal
plasma frequency. Thus DC-biased microplasmas can emit THz radiation with a controllable
directionality and spectrum.

4.4.2. Scaling with gas pressure and bias-voltage
Unfortunately, the laser-to-THz conversion efficiency due to the DC-bias in the previously in-
vestigated microplasma is below 10−8. Thus, in contrast to the DC-biased filaments [64] or
mJ-laser driven gas-plasmas [56], no substantial enhancement of the conversion efficiency can be
reported for microplasmas at ambient pressure. However, we can exploit the idea from [65] to
increase the bias voltage at high gas pressures since high gas pressures are necessary to increase
the threshold for high voltage arcing between the electrodes (cf. Sec. 1.3.2).
To this end, we concentrate on the set-up from Fig. 4.4.1(a) with a longitudinal bias-field.

The red stars in Fig. 4.4.3(a) represent the gas-pressure-dependent conversion efficiency obtained
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x

(a) (b)

Figure 4.4.3.: (a) Laser-to-THz conversion efficiency from PIC simulations (stars) as a function
of the argon-gas pressure p for the laser pulse of Fig. 4.4.1(a) without DC bias.
In addition, the dashed line specifies the ∝ p2 scaling that one expects when
neglecting the opacity of the plasma. For the same laser pulse, the circles specify
the conversion efficiencies for p = 1 bar and p = 40 bar from the DC bias field
Es,x = 30 kV/cm only, i.e. without ponderomotive excitation, obtained from
the fluid code ARCTIC. (b) Conversion efficiency for the same laser pulse and
p = 40 bar for different bias-fields. The dashed line specifies the quadratic fit.

from PIC simulations with CALDER [110] without an external bias field. For low gas pressures
we observe a quadratic increase of ηTHz. The same dependence has been found in [55] experimen-
tally for low gas pressures. This is in agreement with the simplified model in Sec. 4.3.2 where the
THz emitting current is proportional to the electron density n0 so far the opacity of the plasma
is negligible. The two red circles in Fig. 4.4.3(a) specify the conversion efficiency originating
from the additional DC-bias field Es,z = 30 kV/cm computed by the fluid code ARCTIC. It
turns out that the effect of the DC-bias is smaller than the ponderomotive effects for this bias
field. Moreover, same as found experimentally in [65], increasing the gas-pressure from 1 bar to
40 bar does not lead to a substantial enhancement for the contribution of the ponderomotive
sources (stars) as well as the DC-bias (circles). Besides plasma opacity for THz frequencies, the
reason of the saturation is laser defocusing which results in lower electric field amplitudes and
electron densities. Fig. 4.4.4(c) presents the electron density profile after the ionization of the
gas for p = 40 bar. The plasma profile is strongly deformed compared to Fig. 4.4.2(c) where
p ≈ 1 bar. The peak electron density increases only by a factor of 10 instead of 40.
Increasing the gas pressure does not enhance the laser-to-THz conversion efficiency substan-

tially, but it permits to use higher bias voltages. Similarly to [65], we increase the bias voltage to
300 kV/cm for p = 40 bar. The resulting conversion efficiency is presented in Fig. 4.4.3(b). We
find in agreement with published experiments a quadratic increase. For the highest bias-voltage
we obtain ηTHz ≈ 3.5 ·10−6. This is an enhancement by almost 2 orders of magnitude compared
to unbiased microplasmas.
Before concluding on 1C-fs-laser-induced microplasmas, we again validate the multiple scale

expansion. Previously, for p = 1 bar and Es,z = 30 kV/cm, we obtained n0 ∼ 10−4n1. One
might expect that an increase of the bias-field Es,z by a factor 10 would degrade the validity by
the same factor. However, as Fig. 4.4.4 shows we still obtain n0 ∼ (10−4−10−3)n1. As suggested
in Sec. 2.5.4.2, the ratio between n0 and n1 scales predominantly with ∝ Es,z/

√
n0. Thus an

increase of the bias-field by a factor of 10 and an additional increase of the electron density by a
factor about 10, increases the ratio between n0 and n1 only by a factor about 3.2. In this light,
it is reasonable that albeit the increased bias voltage the validity of the multiple-scale expansion
is almost not affected since we also increased the gas pressure.
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(a) (b)

(c) (d)

Figure 4.4.4.: Snapshots of the electric field E1,z (a), E1,x (b) as well as the electron densities
n0 (c) and n1 (d) 100 fs after the laser pulse has passed through the focus. The laser
parameter are the same as in Fig. 4.4.1(a). But now, na = 120× 1019 cm−3 (p ≈
40 bar) and |Es| = 300 kV/cm.

4.5. Conclusions
For single-color driving pulses in gases at ambient pressure, as used, e.g., in [61], the TC mecha-
nisms is dominant for sufficiently long (50 fs) multi-cycle pulses. The ponderomotive excitation
dominates radiation pressure and other convective and diffusive sources. Strong plasma oscilla-
tions are excited at the plasma frequency, which are damped due to collisions.
Angularly-resolved far-field spectra confirm the angular THz emission characteristics for the

TC mechanism as proposed in [60]. In particular, for microplasmas the THz radiation is pre-
dominantly emitted at large angles > 70◦, as also observed in [61]. The origin of the emission
are longitudinal currents. Transverse currents are excited, but do not emit THz radiation due
to their antisymmetry with respect to the transverse coordinate and the small transverse size of
the microplasma compared to the large THz emission wavelengths.
However, the frequency dependence of the far field power spectra according to the model

derived in [60] is not correct: Oscillations at the plasma frequency are present in the microplasma
but do not contribute to the far field emission spectrum. This behavior has been analyzed,
showing that 1D modeling of the plasma currents is not sufficient to predict correct THz emission
spectra. The PIC simulations and model show that for a 50-fs-long single-color laser pulse the
THz spectra can cover the frequency range up to 20 THz that is far below the plasma frequency
about 50 THz for a fully singly ionized gas am ambient pressure.
The investigation of the THz conversion efficiency suggests that, for low-energy pulses strong

focusing is advantageous. Conversion efficiencies of 10−6 − 10−7 have been observed in PIC
simulations as well as in our simplified model. For higher laser energies, the conversion efficiency
saturates to 10−6, and the THz energy increases linearly with the pump energy. This saturation
is intimately linked to the opacity of the plasma at THz frequencies: For higher laser pulse
energies, the plasma volume becomes larger and radiates from a thin layer at its surface mostly.

THz radiation from DC-biased single-color fs-laser-induced microplasmas has been shown to
be spectrally tunable with a controllable directionality of the THz emission by adjusting the
polarization of the static electric field. Same as for un-biased fs-laser-induced microplasmas,
longitudinal currents emit far below the plasma frequency, whereas symmetric transverse cur-
rents radiate broadband THz emission up to 50 THz. The laser-to-THz conversion efficiency
was boosted by 2 orders of magnitude by increasing the bias voltage at high gas pressures such
that already for smallest microplasmas efficiencies above 10−6 have been obtained.
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In Chap. 4, THz radiation from single-color (1C) fs-laser-induced microplasmas has been
discussed. In this case, THz emission is produced by longitudinal low-frequency currents driven
mainly by the ponderomotive force. The laser-to-THz conversion efficiency for µJ-driving laser
pulses has been shown to saturate, even for increasing pulse energies, to around 10−6. DC-biased
microplasmas could increase the conversion efficiency beyond 10−6, but only when increasing
the bias field that is limited due to high voltage arcing. Moreover, for 50-fs-long laser pulses the
emission from unbiased gas-plasmas could range only up to about 15 THz, i.e., not sufficiently
broad to cover the whole THz range.
To overcome these limitations, we investigate in this chapter the potential of the ionization

current mechanism (IC) in microplasmas. Here, the THz emission is driven by two-color (2C)
laser pulses. Effective THz emission by the IC mechanism requires a temporal asymmetry in
the driving laser field that can be achieved in a straightforward manner by admixing the second
harmonic (SH) to the fundamental harmonic (FH) frequency of the laser pulse [57]1. This
configuration has not been explored experimentally for microplasmas up to date. However, as
has been shown in Sec. 1.3.3, it has been already used for larger plasmas to produce broadband
THz emission with laser-to-THz conversion efficiencies ηTHz beyond 10−4.
The major goals of the chapter are to estimate the potential of the IC mechanism in mi-

croplasmas, in particular, the scalability of the laser-to-THz conversion efficiency ηTHz and the

1As has been shown in Fig. 2.2.1(c,g,k), the THz yield Y IC
THz, defined as the power in the excitation source

ι1 = ιIC below 60 THz, is almost zero without a fraction of energy in the SH, i.e., the SH field is crucial.
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Figure 5.1.1.: Two-color 0.17-µJ Gaussian laser pulse [Eω = 40 GV/m, E2ω = 20 GV/m,
t0 = 50 fs, eFH = eSH = ex in (a,b) and eFH = ex, eSH = ey in (c)] focused down
to w0 = λFH = 0.8 µm in argon with initial neutral density na = 3 · 1019 cm−3.
(a) Snapshots of the electric field E1,x when the x-polarized laser pulse is in fo-
cus. Electron density profile for parallel (b) and perpendicular (c) to each other
polarized FH and SH electric fields after the ionization.

spectral properties of the THz emission. To this end, we proceed as follows: Firstly, the major
emission properties of the smallest microplasmas are investigated. For this, we recapitulate the
influence of the major driving laser pulse parameters with respect to the excitation source. Then,
for a selected set of parameters, the emission properties are explored by 3D simulations with
the code ARCTIC (see Sec. 3.2). Secondly, we investigate the scalability of the laser-to-THz
conversion efficiency ηTHz and elaborate the major differences from the 1C configuration. To
estimate the optimal focusing conditions for a given laser pulse energy, a simple model is de-
rived and validated by rigorous simulations with ARCTIC. Thirdly, the exploitation of elliptical
beams for THz generation is proposed and their advantages compared to circular beams are
discussed. Fourthly, a plasmonic model is proposed to explain important spectral features in
the THz emission that are met in all the previously discussed configuration. Finally, the major
results are summarized.

5.1. Smallest microplasmas
In the following, the driving laser pulse is defined by its transverse vacuum electric field at focus
according to

EL,⊥(r⊥, z = 0, t) = exp
(
−|r⊥|

2

w2
0
− t2

t20

)
×
[
Eω cos(ωLt) eFH + E2ω cos(2ωLt+ φ) eSH

]
, (5.1.1)

where r⊥ = (x, y)T and z account for the transverse and longitudinal spatial coordinates, resp.,
t is the time coordinate, w0 the vacuum focal beam width, t0 the pulse duration, Eω and E2ω the
FH and SH electric field amplitudes, resp., ωL the FH laser frequency, φ the SH relative phase
angle, and the unit vectors eFH and eSH define the (linear) polarization direction of the FH and
SH, respectively. The laser pulse is propagating in the positive z direction, and the origin of
the coordinate system is chosen at its vacuum focal point. By defining the tightly focused laser
pulse via its properties at the vacuum focus we follow the algorithm described in Sec. 3.3.
Let us start with the smallest microplasma, when a 2C 50-fs x-polarized 0.17-µJ Gaussian

pump pulse is focused down to the diffraction limit (here w0 = 0.8µm) into an argon gas at
ambient pressure. A less than 10-µm-long and 1-µm-thick cylindrical microplasma is created
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Figure 5.1.2.: Relative phase φ(z) between the FH and SH field for laser and gas parameter
same as in Fig. 5.1.1(a) on the optical axis (x = y = 0) as well as the electron
density n0(z) (after the pulse has passed) and the on-axis spectral power of the
THz current (< 60 THz). The electron density n0 and the current power are
normalized to one.

[see 5.1.1(b)]. The gas is fully singly ionized at r = 0 in the focal plane, leading to peak electron
densities about 3 × 1019 cm−3. Albeit the relatively high electron density, the laser pulse is
almost unperturbed by the plasma [see Fig. 5.1.1(a)] because of the small interaction length,
and propagates almost as in vacuum. In the following, the THz generation from such a sub-µJ
laser pulse is investigated.

5.1.1. Influence of the two-color-pump-pulse parameter on the excitation
Same as for the 1C case in Chap. 4, before studying the THz emission properties from a
microplasma it is beneficial to investigate the much easier accessible excitation source, here
ι1 = q2

en0/meEL [cf. Sec. 2.5.3]. The laser field2 EL approximates well E1 at the laser frequen-
cies when the laser pulse propagates almost unperturbed through the microplasma. For higher
laser pulse energies or weaker focusing (e.g. in the filamentation regime) it would be required
to account for nonlinear laser propagation effects. In the following, simply the influence of the
laser pulse parameter on the excitation source ι1 = q2

en0/meEL, mostly in the focal point at
z = 0, is investigated.

5.1.1.1. Phase angle φ between FH and SH

The laser field EL is the sum of the FH and SH field, and it is well established that the strongest
excitation at THz frequencies takes place usually for the relative angle φ = π/2 [cf. Eq. (5.1.1)]
between FH and SH [71]. Deviations from that appear only in regimes with low ionization
yield [cf. Fig. 2.2.1(b-c) in Sec. 2.2.1], where φ strongly influences the free electron density.
Since, we concentrate on the case where the gas is typically fully singly ionized3, φ = π/2 at the
vacuum focus in most of the simulations is considered.
However, the FH and SH fields are propagating differently, even in vacuum. This makes in

particular the relative phase angle φ between the two harmonics z-dependent

φ(z) = ψ(z, 2ωL)− 2ψ(z, ωL), (5.1.2)

2We shall remember that the laser field has been introduced in Sec. 2.5.1 as the vacuum solution of the
Maxwell’s equations for the laser.

3Adjusting the focusing to full single ionization optimizes the laser-to-THz conversion efficiency as will be
shown in Sec. 5.2.
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(a) (b)
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(c) (d)

00

Figure 5.1.3.: Power spectrum of the excitation source ι1 ∝ n0EL at focus where EL is the FH
part of the laser field (solid red line) or SH part (gray dashed line) for φ = π/2,
with laser and gas parameter as in Fig. 5.1.1(a); (a) α = 0 (SH field parallel to
the FH field); (b) α = φ = π/2 (SH field perpendicular to the FH field). THz
yield Y IC

THz (low-frequency integrated excitation source) driven by the FH (c) and
SH (d) field as a function of the angle α between FH and SH field vectors and φ.
For the computation of n0 always EL = EFH + ESH is used.

where ψ is the z-dependent phase at the corresponding frequency. The variation of φ along z
implies a strong variation of the excitation efficiency of the THz current along z (see Sec. 5.1.1.2
and the following example).
The variation of ψ is determined well in the paraxial approximation by the Gouy phase such

that
ψparax(z, ω) = ψparax(z = 0, ω) + arctan

( 2cz
w2

0ω

)
, (5.1.3)

where with our definition in Eq. (5.1.1) ψparax(z = 0, ωL) = 0 and ψparax(z = 0, 2ωL) = φ(z = 0).
Let us consider the strongest focusing case as presented in Fig. 5.1.1. The dark red dashed line
in Fig. 5.1.2 is presenting the corresponding φparax, which almost coincides with both vacuum
Maxwell and argon gas Maxwell simulation results. At focus, the optimum value of φ = π/2
is retrieved. However, the phase angle φ changes from π to 0 over a couple of µm propagation
range4. Because only φ = π/2 leads to an optimum excitation of the THz current, for z 6= 0
the excitation is significantly weaker. As a result, the low-frequency current source presented in
Fig. 5.1.2 (solid black line with star markers) is significantly shorter than the plasma, indicated
by its electron density (dash-dotted blue line).

5.1.1.2. Polarization of FH and SH fields

When in contrast to the configuration with x-polarized FH and SH electric fields, the SH field
is perpendicularly polarized to the FH electric field (eFH = ex, eSH = ey), the electron density
is reduced considerably [see Fig. 5.1.1(b,c)]. The reason is the lower electric field amplitude,
because

√
E2
ω + E2

2ω ≤ |Eω| + |E2ω|. As a consequence, the total electron charge Q is reduced
by a factor ∼ 4.2. Also in this case, the laser pulse is almost unperturbed by the plasma.

In the following, the THz source term n0E is analyzed componentwise for eFH = ex, eSH =
cos(α)ex + sin(α)ey. For the parallel case (α = 0), the low-frequency power spectrum of n0EFH
(red solid line) and n0ESH (gray dashed line) is presented in Fig. 5.1.3(a). Here, the excitation
is driven by the FH and the SH electric fields. However, the excitation by the FH electric field

4We shall note that here we assumed that the focal beam widths of the SH and FH electric fields are the
same, namely w0. But, even if their focal beam widths are different both ψparax(z, ωL) and ψparax(z, 2ωL) vary
by π along z. Thus, due to its definition in Eq. (5.1.2), φ varies always by π along z.
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(a) (b)

Figure 5.1.4.: THz yield for laser and gas parameter as in Fig. 5.1.1(a). In (a) the dependence
on φ and the fraction of energy in the SH pulse component is presented. In (b)
a line-out of (a) for the optimal angle φ = π/2 is shown: The dependency on the
SH pulse energy is not so critical. Already for few percent of the total energy in
the SH field, the excitation source is reasonably strong.

dominates. For the perpendicular situation (α = π/2) shown in Fig. 5.1.3(b), solely the SH
electric field is responsible for the excitation. The reason is the time-dependence of the electron
density n0 that does not provide a FH frequency component in this case. Thus, the product of
n0 with EFH does not lead to a low-frequency component of the source. Since the excitation is
driven by the SH electric field, the THz-emitting current has the polarization direction of the
SH electric field.
In summary, the polarization of THz radiation should depend on the polarization of the 2C-

pump laser fields. When the FH and SH electric fields are parallel to each other, the THz emission
is linearly polarized in the same direction. Turning the SH polarization by 90 degrees with respect
to the FH polarization should make the THz polarization follow the SH one. Furthermore,
as detailed in Fig. 5.1.3(c-d), the optimum configuration for THz production based on the
evaluation of the source term is φ = π/2 and α = 0.

5.1.1.3. Amplitude ratio of FH and SH, pulse duration and laser wavelength

Last but not least we comment on the impact of the FH vs. SH amplitude resp. energy ratio,
laser pulse duration t0 and the laser wavelength λL. In recent experiments, various fractions of
the total pulse energy were converted to the SH frequency. In focused geometries 1 % up to
12 % have been converted [75] and even more than 20 % are in principle possible when focusing
the FH and SH beam after its generation in collimated geometry. Our analysis of the strength
of THz source term ι1 depending on the energy ratio is presented in Fig. 5.1.4. Throughout this
chapter, we assume that 20 % of the total pulse energy is in the SH field, thus we are very close
to the optimum case.

To increase the laser-to-THz conversion efficiency using larger laser wavelengths has been pro-
posed in [73] (see also Sec. 1.3.3). The evaluation of the source term for various laser wavelengths
λL in Fig. 5.1.5(b) confirms indeed that an increase of the THz yield by a factor of 6 when going
from λL = 0.8µm to λL = 1.6µm might be possible. Moreover, as Fig. 5.1.5(a) shows, this
increase is accompanied by a broadening of the excitation spectrum.
In agreement with [132], another possibility to broaden the excitation spectrum is to use

shorter driving laser pulses, as the power spectrum of the current source ι1 in Fig. 5.1.5(c) shows.
In Sec. 5.1.3.0.1, another more flexible way to tune the THz spectrum by using incommensurate
frequencies will be elaborated [133]. In this work, we will stick to 50-fs 800-nm-FH laser pulses.
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(a)
(b)

(c)
(d)

Figure 5.1.5.: In (a) the dependence on λL of the power spectrum of ι1 is illustrated for other
laser and gas parameter as in Fig. 5.1.1(a). In (b) the corresponding frequency
integrated value, i.e., the THz yield is shown. In (c-d) an analogous parameter scan
against the laser pulse duration t0 is presented. Here, the electric field amplitudes
have been kept constant and thus the laser pulse energy depends on t0.

5.1.2. Emission properties for the two-color scheme
In the following the emission properties for the smallest microplasma, when the 2C 50-fs pump
pulse from Fig. 5.1.1 is focused down to the diffraction limit, are investigated. For this, the fluid
code ARCTIC is used (cf. Sec. 3.2). In Sec. 3.2.2, ARCTIC is successfully benchmarked against
the PIC code OCEAN (cf. Sec. 3.1) exactly for the set-up that is going to be discussed next.

5.1.2.1. Point source radiation profiles

The pulse energy is only 0.17 µJ, and the laser-induced plasma is approximately 8 µm long.
For such short interaction length, the laser propagation is practically unaffected and follows
almost the vacuum case, where the phase angle φ is evolving along z due to the particular
frequency dependence of the Gouy phase. The optimum value of φ = π/2 is reached only in the
focal plane, and the longitudinal variation of φ further reduces the effective length of the THz
source to approximately 4µm (cf. Sec. 5.1.1.1). Therefore, the source is small compared to THz
wavelengths and the microplasma acts as a point source, i.e., a dipole.
When FH and SH are both x-polarized, the dipole-like THz radiation profile forms a torus

with a hole along the x axis as sketched in Fig. 5.1.6(a). Simulations confirm the point-like
emission as presented by the angularly resolved THz far-field spectra for three different planes
in Fig. 5.1.6(b-d). We regain the characteristic hole of the torus in (b) at ϕZX = 90◦, 270◦.
Cutting the torus along the ZY plane, like a bagel, we find as expected the ϕZY-independent
radiation profile in (c). In (d) in the XY-plane we find a similar emission pattern as in (b)
due to the cylindrical symmetry of the emission profile with respect to the x-axis, but shifted
by 90 degrees due to the counterclockwise counting of the angles ϕZX and ϕXY. Please note
that the emission is not exactly toroidal, but slightly forward directed. This can be see from
Fig. 5.1.6(c), where the emission at ϕZY = 0◦ appears broader than at ϕZY = 90◦. The laser-to-
THz conversion efficiency is ηTHz = 7.42 ·10−7 that is already more than one order of magnitude
larger than for 1C-driving laser pulses with the same laser-pulse energy.
According to Sec. 5.1.1.2, turning the SH polarization to eSH = ey, should provide only an

excitation of a y-polarized low-frequency current. Then, since the microplasma acts as a point
source, the dipole-like THz radiation profile forms a torus with a hole along the y axis, tilted by
90◦ compared to the parallel case as sketched in Fig. 5.1.6(e). Simulations confirm the point-like
emission as presented by the angularly resolved THz far-field spectra for three different planes
in Fig. 5.1.6(f-h). The overall THz energy yield is reduced by a factor ∼ 17 compared to the
parallel case because of the reduced electron charge and excitation strength (cf. Sec. 5.1.1.2).
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(b) (c) (d)(a)

(f) (g) (h)(e)

Figure 5.1.6.: The same two-color 0.17-µJ Gaussian laser pulse as in Fig. 5.1.1(a), i.e., both FH
(blue line) and SH (red line) electric fields are x-polarized. The radiation pattern
for one THz frequency (assuming a point source at r = 0) is sketched in (a) (yellow
surface) as well as the plasma (blue surface). In (b-d) the simulated THz radiation
profiles in terms of the far field power spectra Pfar in the ZX (y = 0), ZY (x = 0),
and XY (z = 0) planes are presented. We count the azimuthal angles ϕZX, ϕZY
counterclockwise from the z-axis, respectively and ϕXY from the x-axis. The laser
pulse is propagating in positive z direction. In (e-h), the same results are presented
for a y-polarized SH electric field normal to the x-polarized FH electric field.

In Chap. 4, a point-like THz radiation normal to the laser propagation direction has been
emitted from longitudinal low-frequency currents. In this section, we have seen point-like emis-
sion from different transverse currents. The characteristic THz radiation pattern from smallest
microplasmas allows a direct determination of the THz-driving-current polarization in future
experiments. In Sec. 5.2.2, we will see that this is not possible for longer gas-plasmas and is
unique for the shortest microplasmas.

5.1.2.2. Spectral properties

As shown in Fig. 5.1.6(b-c), broadband THz-to-far-infrared emission up to ω/(2π) = ν ∼ 50 THz
is observed from 2C-laser-induced microplasmas. Such a broad emission spectrum requires a
broadband THz emitting current. The power spectrum of the THz current on the optical axis
is presented in Fig. 5.1.7(a). The black dashed line specifies the local plasma frequency νp =√
q2

en0/(meε0)/(2π) evolving with the electron density. It appears that the current spectrum is
broadened up to νp. At focus (z = 0), the plasma is mostly excited up to about 50 THz.

This broadening of the current power spectrum affects the THz emission properties: Fig-
ure 5.1.7(b) shows the angularly integrated THz far-field spectrum for different gas pressures,
i.e., different maximum plasma densities. According to the gas pressure, the spectrum broad-
ens up to the maximum plasma frequency νp(z = 0), as indicated by the vertical dotted lines.
Similar broadening with increasing gas pressure has been already observed experimentally for
much longer plasmas [75]. Here, the broadening was explained by laser propagation effects. Our
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1, 1,

(a)

(b)

(c)

Figure 5.1.7.: (a) Power spectrum of the THz emitting current J1,x on the optical axis (x =
y = 0) normalized to its respective value at ωL. The laser and gas parameters are
the same as in Fig. 5.1.1(a), in particular p ≈ 1 bar. The local plasma frequency
νp(z) (after ionization) is indicated by the black dashed line. (b) The angularly
integrated far-field power spectrum P̃far in THz spectral range for p ≈ 10−2 bar (i,
green line), p ≈ 10−1 bar (ii, black line), p ≈ 1 bar (iii, red line) and p ≈ 2 bar (vi,
blue line). The maximum plasma frequency (at focus) is marked by dotted lines for
each curve. Additionally, the normalized power spectrum of the excitation n0EL,x
at focus is presented as light gray dashed line. (c) Power spectrum of the THz
emitting current J1,x on the optical axis (x = y = 0) normalized to its respective
value at ωL for p ≈ 10−1 bar. The local plasma frequency νp(z) (after ionization)
is indicated by the black dashed line. In addition, the black dash-dotted line
specifies the value νp(z = 0)/

√
2.

Maxwell-consistent simulations show, however, that such laser propagation effects can be ruled
out for smallest microplasmas.
For the two lowest gas-pressures, in addition to the broadening up to νp(z = 0), the far-field

spectrum reveals a resonant feature at approximately νp(r = 0)/
√

2. This can be also seen in
the current power spectrum in Fig. 5.1.7(c) for p ≈ 0.1 bar. Now, in addition to the oscillations
at the local plasma frequency, the current provides a maximum close to νp(r = 0)/

√
2 (dash-

dotted line). Similar spectral features have been found in experiments with molecular gas-jets
in [134]: When increasing the gas-pressure up to p = 0.7 bar peaks at νp/

√
2 have been found.

For higher pressures, the position of the peak-THz spectrum stagnated as in our simulations.
This observations give rise to an interpretation of the microplasma as a plasmonic nanoparticle
with characteristic resonant features that is performed in Sec. 5.4.4.

5.1.3. Alternative pump pulse configurations
Besides the classical 2C scheme that has been studied above, alternative configurations have
been proposed either to broaden the THz emission spectrum or to enhance the laser-to-THz
conversion efficiency [88, 89, 133, 135]. In the following two of them are investigated for the
smallest microplasma, again by 3D simulation with ARCTIC.

5.1.3.0.1. Incommensurate frequencies It was already demonstrated that the IC mechanism
permits to tune the THz emission spectrum via the pump waveform [88, 133, 135]. The idea
behind this tunability lies again in excitation source term ι1 which is very sensitive to the
pump waveform. This property also holds for microplasmas as Fig. 5.1.8 shows: Detuning the
frequency of the second color from 2ωL to 1.8ωL leads to the excitation spectrum indicated by
the dashed gray line in Fig. 5.1.8(a) [cf. Fig. 5.1.7(b)], featuring a maximum around 75 THz. For
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(a)

(b)

Figure 5.1.8.: (a) Angularly integrated far-field THz power spectrum (red line) and power spec-
trum of the excitation source ∝ n0EL,x at focus (light gray dashed line) for incom-
mensurate laser frequencies, i.e., ωL and 1.8ωL. The other laser and gas parameters
are the same as in Fig. 5.1.1(a). The maximum local plasma frequency is marked
by the dotted red line. (b) The corresponding current power spectrum on the
optical axis, where the local plasma frequency is indicated by the white line.

argon at 1 bar pressure and single ionization at focus, the peak excitation is thus well above the
the maximum plasma frequency νp = 49 THz. In this case, the emitted THz far-field spectrum
follows almost perfectly the excitation spectrum [see Fig. 5.1.8(a)], even though the current
shows a strong feature at νp [see Fig. 5.1.8(b)].
The laser-to-THz conversion efficiency increases to ηTHz = 2.04·10−6 compared to the classical

2C scheme where we found ηTHz = 7.42 · 10−7. This corresponds to an increase by a factor 2.7.
It is typical that currents at higher frequencies lead to stronger emission: the far-field power
spectrum of a point source is ∝ ω2

THz (see Sec. 5.2.1). The emission for the incommensurate
case takes place at frequencies 2.5 times larger than for the classical 2C scheme from Sec. 5.1
and one might expect an increase by a factor 2.52 = 6.25. The reason that the actual increase is
smaller relies in the amplitude of the emitting current that is reduced for the incommensurate
case [compare Fig. 5.1.8(b) vs. Fig. 5.1.7(a)]. This is an additional evidence that radiation
below the peak plasma frequency radiates in a rather resonant regime.

5.1.3.0.2. Saw tooth Another interesting, more complex pump configuration is the sawtooth
waveform. It was shown in [89] that the source term ι1 driving the THz emitting current density
gets maximized by a sawtooth electric field. We test this prediction with a four color (4C) approx-
imation of the sawtooth in the microplasma configuration: we chose the temporal evolution of the
laser pulse in focus as cos(ωLt−π/2)+cos(2ωLt+π/2)/2+cos(3ωLt−π/2)/3+cos(4ωLt+π/2)/4
and keep other laser pulse parameters in Eq. (5.1.1) as for the classical 2C case, in particular
the pump pulse energy is fixed to EL = 0.17µJ. The source term ι1 can be evaluated and the 4C
set-up gives an increase of the THz yield by a factor 4. The comparison of the far-field spectra
in Fig. 5.1.9, reveals a 7.5 times larger conversion efficiency ηTHz = 5.58 · 10−6 compared to the
standard 2C case. The reason for this increase of THz emission from the microplasma is twofold:
Firstly, the excitation is stronger for the four color pulse, as expected [compare Fig. 5.1.9(b) vs.
Fig. 5.1.7(a)]. Secondly, the total number of free electrons produced by the four color sawtooth
is 2.65 times larger than for the two color pulse.
Already the classical 2C scheme might be challenging to realize in an experiment for smallest

microplasmas. The approximation of the saw tooth pulse shape by a four color laser pulse should
be even more difficult since all the colors need to have a good spatial and temporal overlap. In the
following, we will therefore investigate alternative ways to increase the laser-to-THz conversion
efficiency.
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Figure 5.1.9.: (a) Angularly integrated far-field THz power spectrum for a four color sawtooth
pulse (dashed line) and a standard two color pulse (red line). The other laser and
gas parameters are the same as in Fig. 5.1.1(a). (b) The corresponding current
power spectrum on the optical axis.

5.2. Scaling of the laser-to-THz conversion efficiency
The excitation of the plasma by the strongly focused 2C-fs-laser pulse as considered in the
previous section is quite effective: For example, the THz current power spectrum in Fig. 5.1.7(a)
is just one order of magnitude below the current at the laser frequency ωL. However, the laser-
to-THz conversion efficiency ηTHz is of the order of 10−6. This is already one order of magnitude
larger than what can be reached with 1C-laser pulses with same energy and exploiting the TC
mechanism (cf. Chap. 4). While 1C-laser pulses do not provide a scaling of ηTHz beyond 10−6,
it is worth investigating the upscaling for multi-µJ 2C pulses. To this end, we resort to a
simple model that estimates the scaling properties of the conversion efficiency with respect to
the radiating plasma geometry and benchmark it by rigorous 3D simulations with the fluid code
ARCTIC (cf. Sec. 3.2).

5.2.1. The plasma wire model
Simple considerations of the emission from a radiating current structure can explain various
tendencies that we observe in our simulations. To this end, we do not consider the origin of the
THz radiating current, but just assume that such current exists in a volume with length Lp and
width Dp. As pointed out in Sec. 5.1.1.1, the radiating current structure is not necessarily as
large as the plasma. However, as for the plasma profile itself, we can assume that the scaling of
Lp and Dp with the laser pulse parameters is the same as long as the laser pulse is not deformed
too much, i.e., we are dealing with a microplasma.
When keeping the peak intensity at focus constant while increasing the focal beam width

w0 and laser pulse energy EL simultaneously, the following assumptions on the scalings are
reasonable in the light of the quasi-monochromatic paraxial approximation in Eq. (I.6):

Dp ∝ w0 , Lp ∝ w2
0 . (5.2.1)

In order to get the scaling of the emitted THz pulse energy ETHz with Lp and Dp, the following
model is proposed: The radiating current structure is assumed to move invariantly with the
vacuum speed of light c (or, more precisely, with the group velocity of the pump pulse) and thus

J(r⊥, z, t) = J0(t− z/c) (5.2.2)

in a cylinder with diameter Dp and length Lp. Outside this cylinder, which is centered around
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r = 0, we assume a neutral gas and thus zero current density. In temporal Fourier space, the
assumption in Eq. (5.2.2) translates into

Ĵ(r⊥, z, ω) = Ĵ0(ω)eiω
c
z . (5.2.3)

With this assumption, in the far-field, the radiated power spectrum follows according to
Eqs. (2.6.4), (2.6.8)

Pfar = µ0
c
ω2

∣∣∣∣∣∣ r
|r| ×

∫
V

Ĵ0(ω) e
iω
c

(|r−r′|+z′)

4π|r− r′| d3r′
∣∣∣∣∣∣
2

. (5.2.4)

where r = (x, y, z)T is the position of the detector and V is the plasma volume. The goal is now
to simplify Eq. (5.2.4).
We note that the distance |r− r′| expands in the far-field by means of Taylor expansion as

|r− r′| ≈ |r| − xx′ + yy′

|r| − z′ z
|r| . (5.2.5)

Using this expansion in the exponent in Eq. (5.2.4) and |r− r′| ≈ |r| we obtain

Pfar ≈
∣∣∣∣∣r× Ĵ0(ω)
|r|

∣∣∣∣∣
2

︸ ︷︷ ︸
=:FJ0

∣∣∣∣∣∣∣∣
Lp
2∫

−Lp
2

e
iω
c
z′
(
1− z
|r|

)
dz′

∣∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
=:FLp

× µ0ω
2

16π2c|r|2

∣∣∣∣∣∣
∫
A

e
−iω

c
xx′+yy′
|r| dx′ dy′

∣∣∣∣∣∣
2

︸ ︷︷ ︸
=:FDp

, (5.2.6)

where A is the transverse surface of the plasma.
It is very interesting to note that for our model-current Eq. (5.2.3), the far-field power spec-

trum separates into three terms that have their own simple role. In order to discuss their de-
pendencies properly, we now switch to standard (ISO) spherical coordinates (r, θ, φ) according
to

x = r sin(θ) cos(φ) y = r sin(θ) sin(φ) z = r cos(θ) . (5.2.7)

• The term FJ0(θ, φ, ω) is mainly characterized by the orientation of the current.

• The term FLp(θ, ω) is solely determined by the length of the plasma, and can be evaluated
as

FLp(θ, ω) =
4c2 sin2

[
ωLp
2c (1− cos θ)

]
ω2(1− cos θ)2 . (5.2.8)

• The term FDp(r, ω) is dependent on the transverse profile of the current structure. For
thin plasmas, i.e. Dp/λTHz � 1 where λTHz = c/νTHz, it reads

FDp(r, ω) ≈
µ0ω

2D4
p

256cr2 . (5.2.9)

Thus, the THz pulse energy scales as ETHz ∝ D4
p.

Both FJ0 and FLp depend on the detection angle, which is visualized in Fig. 5.2.1. For a fixed
orientation of the current, FJ0 has the toroidal shape as expected for the emission profile of a
point source. For a transverse current, i.e., J0 ‖ ex, the hole of the torus is oriented along the
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(a) (b)

Figure 5.2.1.: Visualization of the angular dependency of the factors FJ0 and FDp in Eq. (5.2.10).
The thin plasma is oriented along the z-axis. In (a), a transverse current J0 ‖ ex is
considered, and the toroidal FJ0 has its hole oriented along the x-direction (green
surface). In (b), a longitudinal current J0 ‖ ez is considered, and the toroidal
FJ0 has its hole oriented along the z-direction (red surface). The plasma length
dependent FLp is illustrated in (a,b) in blue for Lp = 1.6λTHz. Its fig-shaped
lobe is oriented in the laser propagation direction along z. The product between
FLp and FJ0 results in the emission profile. In (c), THz emission scaling in terms
of the angularly integrated far-field power spectrum P̃far depending on Lp for
a transverse (Jx) and longitudinal current (Jz) is shown. The scaling for short
plasmas (dashed dark red line, Jx and Jz) and long plasmas (dashed light gray
line, Jx only) is presented.

x-direction, as shown by the green surface in Fig. 5.2.1(a). For a point source, i.e., Lp � λTHz,
the factor FLp is constant, FLp ∝ L2

p, and gives just a sphere in our present visualization (not
shown). For larger Lp, i.e., when passing to a line source, FLp becomes a fig-shaped structure
oriented in the laser propagation direction as visualized by the blue surface in Fig. 5.2.1(a). The
radiated flux is then proportional to the product of FJ0 and FLp . Obviously, there is some good
angular overlap between the two quantities in the case of a transverse current.
Next, the angularly integrated power spectrum P̃far is computed from Eq. (5.2.6) for thin

plasmas and transverse resp. longitudinal currents:

P̃far =
∫∫
Ω

Pfar r
2 sin θ dθ dφ =

πµ0cD
4
p

64 |J0(ω)|2 ×
π∫

0

sin2
[
ωLp
2c (1− cos θ)

]
(1− cos θ)2 GJ0(θ) sin θ dθ ,

(5.2.10)
where

GJ0(θ) =
{

1 + cos2 θ for J0 ‖ ex
2 sin2 θ for J0 ‖ ez

. (5.2.11)

Let us consider a transverse current, i.e., J0 ‖ ex first. For Lp � λTHz, we obtain by means
of Taylor expansion the scaling ETHz ∝ L2

p. The solid light gray line in Fig. 5.2.1(c) shows
the predicted dependency of the angularly integrated far-field power spectrum P̃far on Lp. For
Lp � λTHz, we find as expected P̃far ∝ L2

p, whereas for Lp � λTHz and transverse current one
gets P̃far ∝ Lp.
It is, of course, also possible to evaluate this simple model in Eq. (5.2.10) for a longitu-

dinal current J0 ‖ ez, as it occurs in the TC mechanism for 1C-fs-laser-induced microplas-
mas (cf. Chap. 4). For short plasmas, we again obtain by means of Taylor expansion the scaling
ETHz ∝ L2

p. For longer plasmas the situation is different. For a longitudinal current compared
to a transverse current, FLp remains unchanged, but the toroidal FJ0 is oriented differently,
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wd

(a) (a)
(a)(b)

Figure 5.2.2.: (a) Estimation of the laser-to-THz conversion efficiency based on the simple model
Eq. (5.2.10) versus pulse energy EL and beam width at focus w0. The black
dashed line specifies EL = 0.17µJ × (w0/0.8µm)2, thus it scales the laser pulse
of Fig. 5.1.1(a) to larger focal beam widths w0 while keeping the peak intensity
constant. As the figure shows, the optimum beam width w0 for a given laser pulse
energy is very close to this line. (b) Scaling of laser-to-THz conversion efficiency
ηTHz following the black dashed line in (a) obtained from rigorous numerical sim-
ulations (solid dark red line), model disregarding laser defocusing (light dashed
gray line) and model corrected for laser defocusing (solid light gray line, see text).

as shown in Fig. 5.2.1(b). Since the overlap between FJ0 and FLp is crucial for efficient THz
emission, it is a priori clear that relying on a longitudinal current is detrimental when passing
to longer plasmas. Indeed, the corresponding angularly integrated far-field power spectrum P̃far
shown in Fig. 5.2.1(c) (solid dark red line) confirms a sublinear scaling with Lp for a longitudi-
nal current. In this light, a particular reason for the saturation of the laser-to-THz conversion
efficiency for higher laser pulse energies that was observed for 1C-laser-driven THz generation
in Sec. 4.3.3 is the sublinear scaling with the radiating plasma length.
Finally, even if microplasmas are transversally thin, we can investigate the scaling rules for

thick emitters in order to see the difference to other approaches. As shown in App. K, if
Dp � λTHz two regimes of emission are possible: (i) P̃far ∝ D4

p if Dp/λTHz �
√
Lp/λTHz

and (ii) P̃far ∝ D2
p if Dp/λTHz �

√
Lp/λTHz. The latter regime can be met for example in gas

jets [62, 134] or THz generation in nonlinear crystals (cf. Secs. 1.2.3, 1.2.4). Gas plasmas created
by a focused laser pulse operate rather in regime (i) and thus offer same as microplasmas a much
better scalability.

5.2.2. Up-scaling the efficiency
In the following, the scalability of the laser-to-THz conversion efficiency ηTHz in microplasmas is
investigated based on the plasma wire model developed in Sec. 5.2.1. The intermediate results
obtained from our simple model Eq. (5.2.10) suggest that for the IC mechanism, where THz
radiating currents are transverse, increasing ηTHz by passing to larger plasma volumes should
be possible. As long as the considered plasmas are thin (Dp � λTHz), emitters at different
transverse positions radiate coherently. Thus, the emitted THz pulse energy should scale with
the emitting plasma surface squared, i.e. ∝ D4

p in contrast to transversally thick plasmas with
the scaling ∝ D2

p. For a line source (Lp � λTHz), according to our model we can therefore
expect that ηTHz ∝ D4

pLp/EL, where EL is the laser pulse energy. We can use this rough
estimate for the conversion efficiency to optimize pulse energy EL versus beam width at focus
w0. Results are shown in Fig. 5.2.2(a), where Dp and Lp have been determined as the plasma
width and plasma length defined by the value of electron density that is 10 % of the initial
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(a)

(b)

Figure 5.2.3.: (a) Series of snapshots of the electric field Ex for a laser with w0 = 4.5µm and
laser pulse energy EL = 5.4µJ. The other laser and gas parameter are the same as
for the smallest microplasma in Fig. 5.1.1(a). (b) Final electron density profile.

atom density. The computation of the electron density profile has been performed employing
the paraxial approximation for the electric field [for 2C pulses in analogy to Eq. (I.6)], thus
neglecting nonlinear and non-paraxial propagation effects. According to this simple estimate,
in order to increase ηTHz, one should increase the focal beam width w0 while keeping the peak
intensity constant, i.e., EL ∝ w2

0. The peak intensity should be chosen such that the gas is fully
ionized. Then, because Dp ∝ w0 and Lp ∝ w2

0, the overall THz pulse energy ETHz is expected
to scale with ∝ w6

0, and finally ηTHz ∝ w4
0 ∝ E2

L. One would also expect a scaling of the final
electron charge as Qwd ∝ LpD

2
p ∝ w4

0.
Let us finally confront these predictions with rigorous full 3D Maxwell-consistent numeri-

cal simulation results with ARCTIC (cf. Sec. 3.2). We keep all laser and gas parameters as
for the smallest microplasma in Fig. 5.1.1(a), but increase the (vacuum) focal beam width
(w0 = 0.8 . . . 4.5µm) as well as the laser pulse energy (EL = 0.17 . . . 5.4 µJ), such that the
(vacuum) peak intensity stays constant. Figure 5.2.2(b) (solid red line) indeed confirms a dra-
matic enhancement of the laser-to-THz conversion efficiency ηTHz by more than two orders of
magnitude. Our simulation results suggest that, under the right focusing conditions, for only
10-µJ laser energy a conversion efficiency well above 10−4 can be achieved.
In the numerical simulations, however, a scaling of ηTHz below the expected ∝ w4

0 (dashed gray
line) is found, as clearly visible in Fig. 5.2.2(b). This effect can be attributed to laser defocusing
by the free electrons, i.e., a nonlinear propagation effect, which becomes the more pronounced
the longer the plasma is. In Fig. 5.2.3(a) a series of snapshots of the laser pulse is presented and
allows to track the defocusing process. The laser pulse is focused several tens of micrometers
before the vacuum focus at z = 0. The peak electric field is reduced from ∼ 50 GV/m to
∼ 40 GV/m. In Fig. 5.2.3(b) the resulting free electron density profile is shown. For the highest
pulse energy of 5.4 µJ, already a 190-µm-long and 6-µm-thick plasma is created. Compared
to the smallest microplasmas, where the laser is almost unperturbed by the plasma, the peak
electron density is reduced by a factor ∼ 3 [cf. Fig. 5.1.1(b)].
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w0 [µm] 0.8 1.13 1.6 2.26 3.2 4.53

Q [nC] 0.014 0.057 0.21 0.67 2.05 5.42

ηTHz [10−5] 0.074 0.338 1.25 3.65 8.26 14.4

kQ 4.05 3.69 3.43 3.20 2.80

kη 4.39 3.75 3.11 2.35 1.60

kη̃ 4.29 4.36 4.24 3.94 4.00

Table 5.1.: Simulations results varying the focal beam width w0 for a constant vacuum peak
intensity and thus increasing the laser pulse energy (see text).

The simulated values of the electron charge Q versus w0 and resulting exponents kQ obtained
from nearest neighbours fitting5 are presented in Tab. 5.1. Between w0 = 0.8µm and w0 =
1.13µm, we find the expected exponent kQ ≈ 4. The corresponding exponent for the laser-to-
THz conversion efficiency kη is even slightly higher than 4, because we are at the limit to short
plasma scaling with ETHz ∝ L2

p. For larger w0, the exponent kQ decreases significantly. The
exponent kη decreases even stronger than kQ, and the question is whether this decrease can be
explained by the plasma defocusing only, or some additional parasitic effect is at play.
Even in simulations with strong defocusing, we observe that Lp ∝ w2

0 and Dp ∝ w0 for the
normalized electron density profile, and only the number of created electrons, i.e., the density
n0, is decreasing. Because the source term ι1 driving the current J1 is proportional to n0, we can
expect that the conversion efficiency ηTHz gets simply reduced by a factor ∝ n2

0 ∝ (Q/Qwd)2,
where Q is the final electron charge extracted from the numerical simulation and Qwd ∝ w4

0
is the ideal final electron charge without defocusing effects. The corresponding exponent kη̃ is
presented in the last line of Tab. 5.1, and seems to support the scaling law

ηTHz ∝ w4
0

(
Q

Qwd

)2
(5.2.12)

that is additionally visualized in Fig. 5.2.2(b) (solid gray line). Thus, the sub-optimal scaling
of ηTHz in the microplasmas considered here (up to Lp = 190 µm) can be attributed solely to
plasma defocusing.

5.2.3. Gas-pressure and phase angle dependence
Before investigating the emission properties from the largest microplasmas that lead according
to Sec. 5.2.2 to considerable conversion efficiencies above 10−4, the dependence of ηTHz on gas
pressure p and the phase angle φ is investigated.
The dependence on p for the smallest and the largest previously considered microplasmas are

presented in Fig. 5.2.4(a). In both cases, at low gas pressures we find a scaling with the power
1.414 ≈

√
2. Thus, the current cannot be considered to be driven only by the current source

term ι1 ∝ p, where J1 would scale with p and thus ηTHz with p2. Consequently, the feedback
of the electric field Ẽ1 (cf. Sec. 2.5.3) on the current J1 is confirmed to be crucial down to
low gas-pressures. In Sec. 5.1.2.2, resonant features at low gas pressures that allow the same
conclusion have been found for the smallest microplasmas. Here, we find for the smallest and
the largest considered microplasma the same scaling of ηTHz with the gas pressure. Thus, one

5kQ = log
(
Q+/Q−

)
/ log

(
w+

0 /w
−
0
)
, where superscripts + and − refer to left and right neighbour, respectively.
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(b)(a)

Figure 5.2.4.: Laser-to-THz conversion efficiency versus gas-pressure (a) and phase angle φ (b)
for the smallest and the largest microplasma in from Fig. 5.2.2(a) with Ep and w0
according to the legend.

would expect to find resonant features also in larger microplasmas. The gas-pressure behavior
for larger microplasmas will be detailed in Sec. 5.2.4.

For larger gas pressures, the up-scaling of ηTHz with p drops in agreement with experimental
results for much stronger driving laser pulses in [66]. The deviation from the low-gas-pressure
scaling is stronger for larger microplasmas [black curve in Fig. 5.2.4(a)] going hand in hand with
the decrease of the peak electron density due to laser defocusing (cf. Sec. 5.2.2).
In Sec. 5.1.1, the relative phase angle between the FH and SH field φ has been shown to be

important for an efficient excitation by the excitation source ι1 at low frequencies. In this light,
Fig. 5.2.4(b) reveals for small and large microplasmas a surprisingly weak dependence on φ. The
laser-to-THz conversion efficiency varies only within a factor 10 when changing the phase φ in
the vacuum focal plane. However, this is reasonable, since as has been shown in Sec. 5.1.1.1,
already the linear vacuum propagation of a focused 2C-laser pulse changes φ by a value of π
along z because of the frequency dependence of the Gouy phase. Moreover, even for the smallest
microplasmas when no nonlinear laser propagation effects are at play, the optimum of ηTHz is
not exactly at φ = π/2 in contrast to the expectations gained by evaluating the excitation source
ι1 in Sec. 5.1.1. This observation emphasizes again, that the self-action of the electric field Ẽ1
that is included in ARCTIC cannot be neglected for an accurate prediction.

5.2.4. Emission properties of larger microplasmas
In Sec. 5.1, the THz emission properties for smallest microplasmas driven by EL = 0.17µJ-laser
pulses have been studied: point source THz radiation profiles have been presented, the emission
spectrum was shown to range up to about 50 THz and beeing strongly gas-pressure dependent.
In Sec. 5.2, by going to larger microplasmas increasing the laser pulse energy by a factor about
30 and adjusting the focusing conditions to it’s optimum, the laser-to-THz conversion efficiency
was boosted by more than 2 orders of magnitude. Here, the emission properties of larger
microplasmas are compared to those of the smallest one from Sec. 5.1.
According to Fig. 5.2.3(b), now the plasma is about 6 µm thick and 190 µm long shaping a line

source for THz emitters. In the plasma wire model in Sec. 5.2.1, the plasma-length-dependent
factor FLp in the expression for the far-field spectral power [Eq. (5.2.6)] is a sphere for smallest
microplasmas and becomes a fig-shaped forward oriented structure for longer plasmas. Thus,
for larger laser pulse energies leading necessarily to longer plasmas the THz emission is expected
to be forward directed, in agreement with [95]. Fig. 5.2.5(a,b) shows the angularly resolved
far-field spectrum for the largest considered microplasma: Indeed, THz waves are emitted in
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(b)(a)

(c) (d) (e)

(a) (b)

Figure 5.2.5.: (a-b) Angularly resolved THz power spectra in the ZX (y = 0) and ZY (x = 0)
planes for w0 = 4.53µm, EL = 5.4µJ. The 190 µm-long plasma acts as a THz
line source, distinguished by the transition from toroidal to forward emission (see
text). Other laser and gas parameters are kept as in Fig. 5.2.3. Comparison of the
angularly integrated far-field spectra (c) and forward emitted electric fields just be-
hind the plasma (d) between the smallest (black line, w0 = 0.8µm, EL = 0.17µJ)
and largest (red line, w0 = 4.53µm, EL = 5.4µJ) considered microplasmas. The
black colored time trace in (d) has been enlarged by a factor of 50 for a better
comparison. (e) Power spectrum of the THz emitting current J1,x on the optical
axis (x = y = 0) normalized to its respective value at ωL for EL = 5.4µJ.

the forward direction within an isotropic radiation cone, where lower frequencies are emitted
preferably under larger emission angles (for 0 ≤ ϕZX ,ϕZY ≤ 90◦). Following the plasma wire
model, in contrast to smallest microplasmas, the emission profile is not sensitive to the laser
polarization: the laser polarization-dependent factor FJ0 is a torus and its product with FLp is
not sensitive to whether the hole of the torus is pointing in the x- or in the y-direction.
For the large microplasma much stronger THz radiation is emitted compared to the smallest

microplasma as confirmed by the angularly-integrated THz emission spectrum in Fig. 5.2.5(c).
The forward-emitted low-frequency-filtered (≤ 60 THz) electric field just behind the plasma
reveals in Fig. 5.2.5(d) for the large microplasma considerable peak THz fields up to 0.5 MV/cm
and anyhow 6 kV/cm for the smallest microplasma.
The angularly-integrated THz emission spectrum for the large microplasma in

Fig. 5.2.5(c) (red line) is less wide than for the smallest microplasma (black line). The rea-
son is the reduced peak electron density due to laser defocusing (cf. Sec. 5.2.2): For both mi-
croplasmas, the maximum plasma frequency determines the width of the spectrum. The power
spectrum of the THz-emitting current on the optical axis in Fig. 5.2.5(e) confirms that again
strong oscillations at the local plasma frequency are excited and only partially radiate.
A comparison between angularly integrated far-field spectra for p ≈ 1 bar and p ≈ 0.1 bar

is presented in Fig. 5.2.6(a). Similarly to the smallest microplasma, the spectrum is tunable
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(a)

(b)

Figure 5.2.6.: (a) Angularly integrated far-field power spectra for laser parameter from Fig. 5.2.3
and two different gas-pressures according to the legend. (b) The power spectrum
of the current on the optical axis for p ≈ 0.1 bar reveals a double peak structure.
The black dashed line specifies the local plasma frequency.

0.01

0.04

0.08

0.14(b)

nodisp / nodisp

(a)

Figure 5.2.7.: In (a) the radiation profile with (solid line, vg > vph) and (dashed line, vg = vph =
c) without linear dispersion of argon is shown, as computed from our simplified
model of Sec. 5.2.1. Here we used (vg − vph)/vph = 3 × 10−4, which is a realistic
value for argon at ambient pressure (refractiveindex.info). In (b) the relative
error in the far field power spectrum is shown. Up to Lp = 100 × λTHz the error
is less than 10 %.

with the gas pressure, but to a smaller extend since for the low gas pressure, the peak electron
density and the peak plasma frequency are almost not reduced by laser defocusing. In the
power spectrum of the current in Fig. 5.2.6(b) for p ≈ 0.1 bar, we find again a double peak
structure (similar to Fig. 5.1.7(c) for smallest microplasmas): The oscillations at the local plasma
frequency are strong but the far-field emission is dominated by the low frequency peak. While
for the smallest microplasmas this peak has been found at νp/

√
2, here the emission peak is

located around νp/2. A similar qualitative behavior will be found for elliptical beams as well as
in 2D geometry in Sec. 5.3.3 and explained by a plasmonic model in Sec. 5.4.4.

5.2.5. The role of linear dispersion
It is known that THz emission from longer plasmas appears as a hollow cone [136, 137]. This
effect can be explained by the difference of group velocity of the pump in the plasma vg and the
THz phase velocity vph in the ambient gas, and vg > vph. The plasma wire model presented in
Sec. 5.2.1 can be easily extended to the case c 6= vg 6= vph: assume J(r⊥, z, t) = J0(t− z/vg) in
Eq. (5.2.2), and vph is the phase velocity of the THz wave instead of c. Redoing the computation
from Sec. 5.2.1, the plasma length determined term FLp in Eq. (5.2.8) that dominates the
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radiation profile for long plasmas becomes

FLp(θ, ω) =
4v2

ph sin2
[
ωLp
2vph

(vph
vg
− cos θ)

]
ω2(1− cos θ)2 . (5.2.13)

If the plasma length is Lp = 100λTHz, the dent in the center of the cone in Fig. 5.2.7(a) is almost
invisible. Only for Lp = 500λTHz and thus practically going to mm-long plasmas, the dent is
clearly visible. As the estimation of the error neglecting the linear dispersion in Fig. 5.2.7(b)
shows, it is justified to omit the dispersion of argon leading to vg ≈ vph = c for microplasmas,
as we are doing in this work.

5.3. THz generation by elliptical laser beams
As has been shown in Sec. 5.1, THz radiation from smallest microplasmas having a length smaller
than the THz wavelength has several outstanding properties compared to emission from longer
and wider plasmas:

1. The polarization of the THz emitting current can be identified simply by the emission
profile. This additional information is expected to facilitate the identification of the THz
generating mechanism in future experiments.

2. The point-like THz emission separates mostly from the laser. This could allow to bring a
sample close to the plasma to explore strong THz fields without the necessity of focusing
the THz pulse.

3. The laser propagates undistorted by the plasma and reaches peak electric fields as in
vacuum leading to high electron densities and thus large number of THz emitters.

4. Many emitters radiate coherently due to small plasma dimensions.

5. The THz emission spectrum is ultra-broad reaching the maximum plasma frequency at
50 THz for a singly ionized gas at ambient pressure.

6. The THz spectrum is strongly tunable by the gas pressure.

Advantages 1. - 4. are based on the short length of microplasmas. However, to have a short
plasma by tightly focusing circular beams leads automatically to very thin plasmas. The re-
sulting free electron charge is small and limits the emitted THz pulse energy. Laser-to-THz
conversion efficiencies above 10−6 are barely reachable and result in only pJ-THz-pulse energies
for shortest microplasmas (cf. Sec. 5.1.2).
In the following, a way to circumvent this problem is presented. When focusing a laser beam

tightly along one transverse direction (x) and weakly along another transverse direction (y),
the diffraction along x will be strong and determine the plasma length that will stay short
independently on how large the laser beam along y is. In the following, we define the laser pulse
at focus by

EL,⊥(r⊥, z = 0, t) = exp
(
− x2

w2
0,x
− y2

w2
0,y
− t2

t20

)
×
[
Eω cos(ωLt) eFH + E2ω cos(2ωLt+ φ) eSH

]
,

(5.3.1)

where in contrast to Sec. 5.1, the laser has the short beam width w0,x and the long beam width
w0,y resulting in a spatially elliptical beam profile. Figure 5.3.1(a,b) presents a snapshot of
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(a) (b)

(c) (d)

Figure 5.3.1.: Two-color 1.7-µJ elliptical Gaussian laser pulse (Eω = 40 GV/m, E2ω = 20 GV/m,
t0 = 50 fs, eFH = eSH = ey) focused down to w0,x = λFH = 0.8 µm, w0,y = 8 µm in
argon with initial neutral density na = 3 · 1019 cm−3 (p ≈ 1 bar). (a-b) Snapshots
of the electric field E1,y in two planes when the y-polarized laser pulse is in focus.
(c-d) Electron density profile in two planes after the ionization. The laser pulse
propagates along z.

the electric field of a laser pulse focused into argon with w0,x = 0.8µm and w0,y = 8µm in two
different planes. This laser pulse propagates without a noticeable deformation by the plasma and
creates an approximately 10-µm-long and 1-µm-thin plasma along x as shown in Fig. 5.3.1(c).
Along y, the plasma is approximately 10-µm-wide leading to a disc-shaped plasma profile in
Fig. 5.3.1(d). In the following we investigate THz radiation from elliptical laser beams in two
steps.
Firstly, w0,y will be further increased and the plasma more and more extended along y. As

will be shown in the following, by increasing the plasma size in the y direction, the THz-pulse
energy can be up-scaled. A similar strategy is also used for conventional THz sources: When
exploiting OR (cf. Sec. 1.2.3) one tries to increase the nonlinear crystal surface proportional to
the driving laser-pulse energy to obtain larger THz pulse energies. In this case, increasing the
crystal surface is physically possible. In gas plasmas, when simply focusing a 2C-laser pulse,
the control over the plasma dimensions is limited, in particular due to nonlinear propagation
effects. Exploiting elliptical beams, we keep the plasma short as requested to avoid nonlinear
laser propagation effects. Effectively, we approach to 2D-geometry, but by a real 3D laser beam.
Secondly, THz emission properties for driving elliptical beams will be investigated. Naturally,

when approaching the 2D-geometry the response of the plasma separates into two cases, the
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Figure 5.3.2.: THz pulse energy ETHz (solid lines) and laser-to-THz conversion efficiency
ηTHz (dashed lines) for elliptical driving laser beams with different long-axis
beam widths w0,y ∝ EL. Hereby two cases are considered: an x-polarized laser
pulse (quasi TM, gray lines) and a y-polarized laser pulse (quasi TE, red lines).
Other laser pulse parameters are w0,x = 0.8µm, t0 = 50 fs and the gas is argon
with an initial neutral density na = 3 · 1019 cm−3 (p ≈ 1 bar).

transverse electric (TE) and the transverse magnetic (TM) case6. We investigate them separately
and show that for quasi 2D, i.e., 3D elliptical beams, those two cases can be indeed used to
describe any other linear polarization state by superposition7. The TE case will be shown
to provide 2D-point-like THz emission that allows to access 10-kV/cm-large THz-electric-field
amplitudes without focusing the THz pulse. The TM case will be shown to provide resonant
features that lead to strongly gas-pressure-tunable ultra-broadband THz spectra.

5.3.1. Up-scaling of the THz pulse energy
When increasing w0,y from the diffraction limit (here w0,y ≈ 0.8µm) to several µm or even
mm, the size of the plasma along y increases accordingly. Mathematically, terms involving
the differential operator ∂y acting on a field become negligible, as the system becomes quasi
translational invariant in the y direction. We will see that “translational invariant” in our
context means that the plasma width along y is larger than the plasma wavelength λp = c/νp
in focus. We shall note that the 2D approach has been already used through all the Chapter 4
to describe THz generation for 1C-driving-laser pulses via the TC mechanism. Even if here
we investigate a different THz generation mechanism, the IC mechanism, the following results
anticipate that real 3D elliptical beams can approach 2D systems in general.
Let us consider the laser-to-THz conversion efficiency ηTHz = ETHz/EL for a linearly increasing

focal beam width w0,y and laser pulse energy EL first. Other laser pulse parameters are kept
as in Fig. 5.3.1. We consider two cases: the electric laser field is polarized in the long (y)
direction (quasi TE) and the electric laser field is polarized in the short (x) direction (quasi TM).
The dashed lines in Fig. 5.3.2 present the scaling of the conversion efficiency. For the lowest
considered laser pulse energy w0,y = 0.8µm = w0,x, we get the smallest circular microplasma
that has been investigated in Sec. 5.1. Increasing w0,y and thus the size of the plasma in y
increases ηTHz by one order of magnitude for TM and two orders of magnitude to ηTHz ≈ 10−4

6Please remember, that the transverse electric laser field is y-polarized for the TE case and x-polarized for
the TM case.

7Please note, that this is possible only for any linear polarization state. When using for example circular
polarization, the ionization rate changes compared to the linear one and we cannot just superpose the solution
by the TE and TM case.
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(c)

(a) (b)

60
4

(d)

60

quasi TE quasi TM

Figure 5.3.3.: Illustration of the far-field radiation pattern from a Dy = λTHz-long thin line
source oriented along the y-direction. The electric laser field is y-polarized in (a)
and x-polarized in (b). (c-d) Simulated THz far-field power spectra in the ZX-
plane for a y-polarized laser in (c) and x-polarized laser in (d). Other laser pulse
and gas parameter are the same as in Fig. 5.3.1. The insets in (c-d) demonstrate
the forward emitted THz pulses just behind the plasma at z = 12.7µm.

for TE. At some point, in both cases the conversion efficiency reaches a constant value. This is
a direct consequence of the increasing plasma size in y that forbids emission in the y-direction
as shown in App. L. Then the THz pulse energy scales with ∝ Dy ∝ w0,y, where Dy is the
approximate size of the plasma in the long y-direction.
The solid lines in Fig. 5.3.2 present the corresponding THz pulse energies. When the conver-

sion efficiency reaches a constant value, the THz pulse energy increases linearly and could be
only limited by the stability of the driving laser pulse. For laser pulse energies above 10 µJ,
THz pulse-energies reach values of almost 100 nJ. This is 40 times smaller than the record of
4 µJ-strong THz pulses from IR-laser driven gas-plasma based sources [73], but sufficient for
some applications requiring strong THz fields (cf. Sec. 1.1.2). In addition, as will be shown in
the following section, elliptical-beam-driven gas-plasma-based THz sources pose some interesting
features that are not known from other THz sources.

5.3.2. Polarization dependence: TE vs. TM
While for long plasmas mostly the plasma length determines the radiation profiles, we found for
short circular microplasmas in Sec. 5.1 a strong dependence on the polarization of the driving
laser beam. This finding holds also for strongly focused elliptical beams. When increasing the
beam width w0,y of a strongly focused elliptical beam, the radiating plasma is thin in x and z
and thick in y. A sketch of the angular radiation patterns from such a transverse line source is
presented for y and x polarized emitting current in Fig. 5.3.3(a,b) respectively. In both cases,
almost no radiation is emitted along the y-direction. For y-polarization, the angular emission
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~

Figure 5.3.4.: Angularly integrated far-field power spectra for the elliptical beam from Fig. 5.3.1
in the case of a y-polarized laser electric field (quasi TE, light gray solid line) and
an x-polarized laser electric field (quasi TM, dark red solid line). Corresponding
results from 2D simulations with translational invariance in y are presented as
dashed lines. The solid dark black line specifies the emission spectrum from a
3D simulation with laser polarization at 45◦. The dashed dark black line is the
far-field spectrum computed from the superimposed fields for the x-polarized and
y-polarized laser in 3D (see text for details).

pattern is almost toroidal similar to a point source. However, since the plasma is elongated
along y (here up to few mm), the THz-pulse phase front is rather cylindrically shaped and could
be focused by cylindrical mirrors to form a line source of THz radiation. For y-polarization, we
obtain a line of forward and backward emission.
In the following, the radiation profiles and then the emission spectra from simulations with

ARCTIC (cf. Sec. 3.2) are analyzed for laser parameter as in the caption of Fig. 5.3.1 and x/y-
polarized driving lasers. Hereby, the final plasma width is smaller that 1 µm in x and about
10µm-large in y according to Figs. 5.3.1(c,d). The argon gas at ambient pressure is fully singly
ionized with plasma wavelength λp(r = 0) = c/νp(r = 0) = 6.15µm in focus. Thus, the size of
the plasma in x is significantly smaller and in y larger than λp(r = 0).

The simulated angularly resolved far-field spectra in the ZX-plane are presented in
Figs. 5.3.3(c,d). As expected from a line source along y (c), the emission in the plane nor-
mal to y is almost angularly independent. Only for the larger emission frequencies the plasma
tends to become a line source in the z-direction8 and thus slightly prefers forward emission at
ϕZX = 0◦. For the x-polarized driving laser (b), the simulated emission is confirmed to point in
the forward (ϕZX = 0◦) and backward direction (ϕZX = 180◦), and nothing is emitted normal to
the laser propagation direction (ϕZX = 90◦, 270◦) in agreement with the sketch in Figs. 5.3.3(b).

Considering the THz pulses that are emitted in the forward direction in the insets in
Figs. 5.3.3(c,d), we find strong single-cycle THz pulses reaching amplitudes about 10 kV/cm. For
the y-polarization case in (c), the THz pulse normal to the laser propagation direction reaches
similar amplitudes, that could be easily accessed by placing the sample close to the focal plane.
The THz pulse for the TE case in (d) is shorter than for the TM case as a consequence of the
emission spectra that show a dramatic difference between the y- and x-polarized laser pulse. For
the latter one, the spectrum is significantly broadened up to about 50 THz that corresponds to
the maximum plasma frequency max νp.
The broadening for an x-polarized laser up to max νp can be seen even better in the angu-

larly integrated far-field spectrum in Fig. 5.3.4 (dark red solid line), while for the y-polarized

8More precise, this happens when the THz wavelength is smaller than the plasma extend in z.
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(a) (b)

Figure 5.3.5.: Power spectrum of the transverse currents on the optical axis for the y (a) and
x-polarized (b) laser pulse with laser and gas parameter same as in Fig. 5.3.1. The
local plasma frequency is marked by the dashed line.

laser (light gray solid line) no broadening is found. The corresponding dashed lines show the
results of 2D simulations, i.e. w0,y →∞. There, we can find a similar behavior: no broadening
if the laser electric field is oriented in the translational invariant direction y, and a broadening
up to max νp if the laser electric field points in the direction of the strong electron density
gradient, i.e., along x. It is known that the equations that we use to describe the plasma re-
sponse (cf. Sec. 2.5.1) separate in 2D into two cases: the TE case that governs the fields B1,x,
E1,y, B1,z for a y-polarized driving laser pulse and the TM case that governs the fields E1,x,
B1,y, E1,z for an x-polarized driving laser pulse (see Sec. 5.4.1 for details). Any other linear
polarization state in 2D can be written as the superposition of these two cases. For example,
an incoming laser pulse that is polarized under 45◦ will give an electric field solution that can
be written as E = ETE/

√
2 + ETM/

√
2, where ETE and ETM are the solutions for a y-(TE) and

x-polarized (TM) driving laser pulse respectively. If the 3D elliptical beam approaches the 2D
case, this property should hold. We check it by comparing the angularly integrated THz-far-field
power spectrum for a simulation with polarization at 45◦ (dark black solid line) and the result
for the superposed fields (dark black dashed line) in Fig. 5.3.4. Both overlap almost perfectly
and the 3D elliptical beam is shown to approach well the 2D behavior. We conclude that the
spectrum of an arbitrary linearly polarized 3D elliptical beam can be approximated by using the
superposed fields from the quasi TE and quasi TM cases. In particular, we demonstrate that
the THz emission spectrum can be tuned by rotating the linear polarization of the incoming
laser pulse when using elliptical beams.
In the following, we want to detail the origin of the emission properties for quasi TE and

quasi TM cases. In Sec. 4.2, for 1C-laser-induced microplasmas, we have seen that longitudinal
excitation can lead to oscillations of the current at the local plasma frequency that do not radiate.
It is thus interesting to see whether this is also the case for the quasi TE case. Fig. 5.3.5 presents
the current power spectrum along the optical axis. We find, that no oscillations at the local
plasma frequency are present for the quasi TE case (a) and they are present (and partially
radiate) in the quasi TM case (b). This behavior raises the question why no oscillations at
the local plasma frequency are observed for the excitation in the quasi translational invariant
transverse direction in the TE case, but in the TM case and for a longitudinal excitation.
Moreover, it should be clarified why for the TM case the oscillation lead to emission at the
plasma frequency, but nothing is emitted when longitudinal currents are excited. A deeper
analysis to answer these questions will be performed in Sec. 5.4.
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5.3. THz generation by elliptical laser beams

Figure 5.3.6.: Pressure-dependent angularly integrated far-field spectrum for a y-polarized
strongly focused laser pulse in 2D (TE). The laser pulse parameter are wx =
0.8µm, t0 = 50 fs, Eω = 40 GV/m, E2ω = 20 GV/m. The gas is argon.

(a)

(b)

Figure 5.3.7.: (a) Angularly integrated far-field power spectra for the elliptical beam from
Fig. 5.3.1(d), i.e., the quasi TM case, for two different gas-pressures according
to the legend. The dotted lines specify the maximum plasma frequency. (b) The
power spectrum of the current on the optical axis for p ≈ 0.1 bar reveals a double
peak structure. The black dotted line specifies the local plasma frequency explain-
ing one peak. The black dash-dotted line marks the frequency peak ν = 13.5 THz
that is close to the maximum of the emission frequency for p ≈ 0.1 bar in (a).
There, this peak is also marked by a black dash-dotted line.

5.3.3. Gas-pressure dependence of the TM case
Finally, the gas pressure dependence of the (quasi) TM case that provides THz emission up
to the local plasma frequency according to the previous section is investigated. We have seen
already for smallest and larger circular Gaussian beams in Secs. 5.1.2.2, 5.2.4 a gas pressure
tunable behavior of THz spectra. Also for the TM case in 2D9 the spectra are highly gas-
pressure-tunable according to Fig. 5.3.6. We observe a low-frequency peak around 16 THz that
almost does not move when changing the gas pressure and a peak close to the peak plasma
frequency (dashed line) moving with the gas pressure. The gas-pressure-dependent peak is
slightly below the peak plasma frequency, 0.8 THz for 0.1 bar and 0.3 THz for 1.4 bar.
One might argue that this shift ordinates from the fact that the plasma is inhomogeneous

with smaller plasma frequencies besides the focus. However, as the following analysis of the

9Here, we rely on 2D simulations for sake of computational costs. As we have previously seen, they approach
well elliptical beams. The major difference is that the emission around the plasma frequency is better pronounced
for 2D beams than for 3D elliptical beams.
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emission spectrum and the power spectrum of the radiating current shows, the origin of this
shift is a resonant feature slightly below the plasma frequency. Figure 5.3.7(a) presents the far
field power spectra for p ≈ 0.1 bar and p ≈ 1 bar visualizing again the gas-pressure tunability,
now for real 3D elliptical beams. Especially for p ≈ 0.1 bar (black line), the shift of the
emission peak (dashed-dotted line) from the maximum plasma frequency (dotted line) is visible.
As Fig. 5.3.7(b) shows, the emission frequency peak can be found also in the current power
spectrum. It appears in addition to the oscillations at the local plasma frequency. Thus, the
shift of the gas-pressure dependent emission peak originates rather from a distinct resonance
than from oscillations at the local plasma frequency. This behavior is interpreted in Sec. 5.4.4
by means of a simplified plasmonic model which also clarifies the origin of the shift.

In summary, THz emission from tightly focused elliptical beams has been investigated by
rigorous 3D simulations with ARCTIC. We have seen that increasing the laser beam width
in one transverse direction can increase the conversion efficiency by 2 orders of magnitude
compared to smallest microplasmas to 10−4. Consequently, for mJ-driving laser pulses the
THz pulse energy could reach the µJ-level and being useful for strong-THz-field experiments.
Moreover, many interesting additional emission features have been found: The emission profile
is polarization dependent. If the laser pulse is polarized in the long-beam-width direction, the
THz pulse separates from the laser pulse and 10-kV/cm THz-field amplitudes can be accessed
without focusing. The microplasma produces a line of THz emission. THz spectra are tunable
by the linear polarization of the driving laser pulse. Gas-pressure-dependent spectra give an
evidence of resonant THz emission. Those resonant features are shown to exist whenever the
electron density changes transversally along distances smaller than the THz wavelength.

5.4. A plasmonic view on spectral properties of THz emission
When comparing plasmonic nanoantennas10 that are used for example for SH generation [130]
with some gas-plasmas that are used for THz generation (e.g. our microplasmas or [75]) one
finds many similarities: both consist of a material (metal or gas-plasma) with a strong free
electron response that makes it opaque for the generated radiation wavelengths (400 nm or
6µm-1 mm) and both have dimensions (few nm or few µm) that are comparable or smaller
than the plasma wavelength λp = c/νp (200 nm or > 6µm). While the plasmonic nanoantennas
are typically discussed in the framework of plasmonics, i.e. discussing nanoparticle resonances,
gas-plasma-based THz generation is usually explained without taking those into account.
However, in our Maxwell consistent 2D and 3D simulations we have found

various examples that indicate resonant excitation and partially resonant emis-
sion (Secs. 4.4.1, 5.1.2.2, 5.2.4, 5.3.2):

• spectral broadening up to the local plasma frequency for transverse THz electric fields
pointing in the direction of strong electron density gradients while no broadening appears
if it points in the direction with weakly changing electron density

• gas-pressure tunable spectral peaks below the maximum plasma frequency, especially for
low gas pressure

• radiation from currents close to the maximum plasma frequency if those are transverse (IC-
mechanism and Gaussian beams in this chapter) and nonradiative oscillations at the local

10Plasmonic nanoantennas are sub-wavelength metallic structures. Those have typically pronounced electro-
magnetic resonances that are often used to enhance the nonlinear response of a metal-dielectric structure.
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vacuum
(a) (b)THz emisssion

laser

THz-SPP

Figure 5.4.1.: (a) Illustration of the plasma slab model: The plasma (dark blue) is approximated
by an in the y and z-direction infinitely extended preformed-plasma slab (striped)
with plasma frequency ωp and thickness d, it is surrounded by vacuum. The
laser (red) propagates along z and excites the plasma leading to THz emission (or-
ange). (b) Plasmon-polariton dispersion relation for a metal-vacuum interface.

plasma frequency if the emitting currents are longitudinal (TC-mechanism and Gaussian
beams in Chap. 4)

To interpret those observations, a very simple plasmonic nanostructure is investigated: a metallic
or plasma slab. It should approximate well a plasma with a small size along x and large size
along y and z [see Fig. 5.4.1(a)]

Before exploring this structure, let us recapitulate the basic features of the most simple plas-
monic structure: a metal-air interface. This structure is assumed to be preformed (existing for
all times) and translational invariant in y- and z-direction. Thus, one can determine its modes by
the angular frequency ω and spatial frequencies ky and kz. We consider w.l.o.g. only modes with
ky = 0. Then, the electromagnetic fields of the modes are ∝ exp [i(kzz − ωt)]. The modes with
ω > ckz can radiate into the air half space. The modes with ω ≤ ckz can propagate only along
the interface (see Sec. 5.4.1 for details). Those two regimes have two eigenmodes characterized
by its dispersion relations ω = ω(kz) that are imprinted in Fig. 5.4.1(b), the volume plasmon
polariton (VPP) and the surface plasmon polariton (SPP) [138]. The VPP (orange line) is a
band-edge that separates modes that can propagate along x in the plasma [ω(kz) >

√
ω2

p + c2k2
z ]

from the modes that cannot propagate along x in the plasma [ω(kz) <
√
ω2

p + c2k2
z ]. The VPP

itself is characterized by a constant field amplitude in the metal and radiates into air. For kz = 0,
its frequency is ω(kz = 0) = ωp and approaches the line ω = ckz for large kz. The SPP (blue
line) is a localized solution that propagates along the interface. It starts at ω(kz = 0) = 0 and
approaches the value ωp/

√
2 for large kz.

As will be shown in the following, similar resonances influence the excitation and emission at
THz frequencies in a plasma slab. Firstly, we derive equations that govern the electromagnetic
fields after excitation in the plasma slab. Secondly, we discuss its response for different types
of excitation and (ω, kz)-pairs. Then, by means of the plasma slab model, we interpret the
observations that have been done above concerning: spectral characteristics of the polarization-
and gas-pressure dependence in elliptical beams as well as nonradiative oscillation at the plasma
frequency.
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5.4.1. The plasma slab model
We consider a system as sketched in Fig. 5.4.1(a): A preformed plasma slab with the thickness
d in the x-direction and a time-invariant electron density n0 and collision frequency νei. Both
are translational invariant in y and z. Above and below the wire we assume a semi-infinite
dielectric medium, a cladding11, with the constant permittivity εc. Thanks to the analogy of
the 1st and 2nd order current equation that has been introduced in Sec. 2.5.3, we can consider in
the following the general case where J ∈ {J̃1,J2}, ι ∈ {ι̃1, ι2}, E ∈ {Ẽ1,E2} and B ∈ {B̃1,B2},
i.e., we treat the IC and the TC mechanism by the same theory. Then the current equation
∂tJ + νeiJ = q2

en0/meE + ι and the Maxwell’s equations (2.3.3)-(2.3.4) determine the whole
response of the system. In the frequency space (see App. A), they can be rewritten for angular
frequency ω 6= 0 to

∇× Ê = iωB̂ (5.4.1)

∇× B̂ = − iω
c2 εÊ + Q̂ , (5.4.2)

where the complex dielectric permittivity of the plasma ε = εp for |x| ≤ d/2 reads

εp = 1−
ω2

p
ω2 + iωνei

(5.4.3)

and for sake of brevity, we introduce the source term

Q̂ = µ0ι

−iω + νei
. (5.4.4)

We introduce the space-dependent dielectric permittivity ε by setting ε = εp for |x| ≤ d/2 and
ε = εc (later εc = 1) for |x| > d/2. Same as for ε, we consider an excitation that is translational
invariant in y, i.e., ∂y ι̂ = 0 and thus ∂yQ̂ = 0. Because of that, we can set all the y-derivatives
to zero and Eqs. (5.4.1)-(5.4.2) separate into two sets of equations. The translational invariance
of the slab in z allows to write down these two sets of equations in the Fourier space with respect
to z (∂z → ikz) giving

∂xĔy = iωB̆z (5.4.5)
(TE) − ikzĔy = iωB̆x (5.4.6)

ikzB̆x − ∂xB̆z = − iω
c2 ε1Ĕy + Q̆y (5.4.7)

and

ikzĔx − ∂xĔz = iωB̆y (5.4.8)

(TM) − ikzB̆y = − iω
c2 εĔx + Q̆x (5.4.9)

∂xB̆y = − iω
c2 εĔz + Q̆z, (5.4.10)

where the “̆ ” indicates the (ω, kz)-space according to the definition in App. A. The 1st set is
called the transverse electric (TE) case, because the only electric field component Ey is polarized

11The name cladding is usually used in plasmonics. There, often the dielectric medium above and below are
different and called substrate and cladding.
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in the transverse translational invariant direction. Here, the only fields different from zero are
(B̆x, Ĕy, B̆z). The 2nd case is called the TM-case correspondingly and describes the evolution of
(Ĕx, B̆y, Ĕz). In the following, in the light of Eqs. (5.4.5)-(5.4.10), we consider three different
cases:

(i) TE with transverse excitation in y (ῐy 6= 0 6= Q̆y and Q̆x = 0 = Q̆z)

(ii) TM with transverse excitation in x (ῐx 6= 0 6= Q̆x and Q̆z = 0 = Q̆y)

(iii) TM case with longitudinal excitation in z (ῐz 6= 0 6= Q̆z and Q̆y = 0 = Q̆x).

Please note that (i) corresponds to the THz generation by y-polarized elliptical beams and
(ii) by x-polarized elliptical beams as investigated in Sec. 5.3. The TM case with longitudinal
excitation corresponds to the excitation by longitudinal ponderomotive forces as investigated in
Chap. 4. In the following, the Maxwell’s equations Eqs. (5.4.5)-(5.4.10) for the plasma slab are
solved for these three cases.

5.4.1.1. TE with transverse excitation in y

Here we concentrate on case (i), i.e., ῐ = ῐyey. Firstly, the general solution inside the plasma
and air slab is computed and then the continuity of the transverse fields used to determine the
entire solution.
Eqs. (5.4.5)-(5.4.7) give the evolution equation for the transverse field Ĕy inside the plasma

and air correspondingly to

∂2
xĔy −

(
k2
z −

ω2

c2 ε

)
︸ ︷︷ ︸

=Λ2

Ĕy = −iωQ̆y︸ ︷︷ ︸
=S̆y

. (5.4.11)

For sake of simplicity, we consider that S̆y is constant inside the plasma slab and zero outside
of it. Then, the general solution in the plasma reads12

Ĕp
y = Ap cosh (Λpx) + Sy

(Λp)2 (cosh (Λpx)− 1) , (5.4.12)

where Λp = k2
z − ω2/c2εp. In the positive x-half-space in the cladding

Ĕc
y = Ac exp

[
∓Λc

(
x− d

2

)]
, (5.4.13)

where Λc = k2
z − ω2/c2εc. If k2

z ≥ εcω2/c2, here we use the “−”-sign (later always the upper
sign) since for the “+”-sign the field would grow exponentially when x → ∞. If k2

z < εcω2/c2,
here we use the +-sign (later always the lower sign) to obtain only outgoing along x propagating
waves13. Please note that the negative x-half-space has not to be considered separately since
the transverse fields are symmetric in x and the longitudinal fields are antisymmetric since we
consider a symmetric ῐy and following App. C.
Ĕy has to be continuous at the plasma-cladding interface. Moreover, B̆z and thus according

to Eq. (5.4.5) ∂xĔy have to be continuous at the interface. These two conditions determine Ac

12It can be found by firstly computing the solution to the homogeneous Eq. (5.4.11) that is Ĕp
y =

Ap cosh (Λpx) + Bp sinh (Λpx). Since S̆y is symmetric in x, Ĕy has to be also symmetric and thus Bp = 0.
The particular solution can be found by means of variation of constants.

13This result depends on the sign conventions in the definition of the Fourier transform in App. A.
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and Ap to

Ac = Ap cosh
(Λpd

2

)
+ Sy

(Λp)2

[
cosh

(Λpd

2

)
− 1

]
(5.4.14)

Ap =
Sy
Λp sinh

(
Λpd

2

)
± ΛcSy

(Λp)2

[
cosh

(
Λpd

2

)
− 1

]
∓Λc cosh

(Λpd

2

)
− Λp sinh

(Λpd

2

)
︸ ︷︷ ︸

=D1

, (5.4.15)

where we introduced the denominator D1 that will be further investigated below.
Finally Eqs. (5.4.5)-(5.4.6) determine the magnetic fields to

B̆x = −kz
ω
Ĕy (5.4.16)

B̆z = Λp

iω

A
p sinh (Λpx) + Sy

(Λp)2 sinh (Λpx) for 0 ≤ x ≤ d
2

∓Λc

ΛpAc exp
[
∓Λc

(
x− d

2

)]
for x > d

2
. (5.4.17)

5.4.1.2. TM with transverse excitation in x

Next, case (ii) with ῐ = ῐxex is considered. Eqs. (5.4.8)-(5.4.10) give the evolution equation for
the transverse field B̆y inside the plasma and air correspondingly to

∂2
xB̆y − Λ2B̆y = −ikzQ̆x︸ ︷︷ ︸

=S̆x

. (5.4.18)

In analogy to the TE case in the previous section, we obtain in the plasma

B̆p
y = Ap cosh (Λpx) + Sy

(Λp)2 (cosh (Λpx)− 1) (5.4.19)

and in the positive x-half-space in the cladding

B̆c
y = Ac exp

[
∓Λc

(
x− d

2

)]
. (5.4.20)

The difference to TE appears when applying the continuity conditions at the plasma-air
interface: B̆y is continuous but the continuity of Ĕz does not induce the continuity of ∂xB̆y
according to Eq. (5.4.10) since ε changes at the interface14. Applying the continuity conditions
determines Ac and Ap to

Ac = Ap cosh
(Λpd

2

)
+ Sy

(Λp)2

[
cosh

(Λpd

2

)
− 1

]
(5.4.21)

Ap =
Sx
Λp sinh

(
Λpd

2

)
± εp

εc
ΛcSx
(Λp)2

[
cosh

(
Λpd

2

)
− 1

]
∓ε

p

εc
Λc cosh

(Λpd

2

)
− Λp sinh

(Λpd

2

)
︸ ︷︷ ︸

=D2

, (5.4.22)

where we introduced the denominator D2. Please note the difference compared to D1 for TE in
Eq. (5.4.15), the factor εp/εc.

14Note that here Q̆z = 0. The case Q̆z 6= 0 is considered in the following section.
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Finally, Eqs. (5.4.8)-(5.4.9) determine the electric fields to

Ĕx = kzc
2

ωε
B̆y −

ic2

ωε
Q̆x (5.4.23)

Ĕz = ic2Λp

ωε

A
p sinh (Λpx) + Sy

(Λp)2 sinh (Λpx) for 0 ≤ x ≤ d
2

∓Λc

ΛpAc exp
[
∓Λc

(
x− d

2

)]
for x > d

2
. (5.4.24)

5.4.1.3. TM case with longitudinal excitation in z

Finally, case (iii) with ῐ = ῐzez is considered. Same as for case (ii), the electromagnetic fields are
of the TM type described by Eqs. (5.4.8)-(5.4.10). Now in contrast to the previous cases, the
longitudinal fields are symmetric and the transverse fields are antisymmetric in x. The transverse
magnetic field By fulfills the homogeneous Eq. (5.4.18) with Q̆x = 0 15. In the plasma

B̆p
y = Ap sinh (Λpx) (5.4.25)

and in the positive x-half-space in the cladding

B̆c
y = Ac exp

[
∓Λc

(
x− d

2

)]
. (5.4.26)

The continuity conditions give

Ac = Ap sinh
(Λpd

2

)
(5.4.27)

Ap = −Q̆z

∓ε
p

εc
Λc sinh

(Λpd

2

)
− Λp cosh

(Λpd

2

)
︸ ︷︷ ︸

=D3

, (5.4.28)

where we introduced the denominator D3. Please note the difference compared to D2 for TM
and a transverse excitation in Eq. (5.4.22), the sinh and cosh are interchanged.

Finally Eqs. (5.4.8)-(5.4.9) determine the electric fields to

Ĕx = kzc
2

ωε
B̆y (5.4.29)

Ĕz = c2Λp

iωε

Q̆z
Λp −

A
p cosh (Λpx) for 0 ≤ x ≤ d

2
∓Λc

ΛpAc exp
[
∓Λc

(
x− d

2

)]
for x > d

2

 . (5.4.30)

5.4.2. The response of a plasma slab
In the following, the response of the plasma slab to the three previously established cases of
excitation is analyzed for a (kz, ω)-independent constant excitation source ῐ. Hereby, we are
interested in resonant features of the structure.
The previously derived coefficients Ap, Ac determine the field strength. When those become

large, we can expect an enhanced, resonant excitation. A necessary condition is then that the
denominators D1, D2, D3 become zero (or small). In Fig. 5.4.2, the inverse of the denominator
is presented for the three cases (column-wise) for νei = 0 (1st row) and νei 6= 0 (2nd row) in a

15Hereby the assumption of a constant excitation in the plasma is used giving ∂xQ̆z = 0.
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(d) (e) (f)

(a) (b) (c)

Figure 5.4.2.: Inverse denominator Di for νei = 0 (a-c) and νei = 13 ps−1 (d-f), where in the slab
ι = ey (TE) in the 1st column, ι = ex (TM) in the 2nd column and ι = ez (TM)
in the 3rd column. The slab thickness is d = 1µm, the plasma frequency νp =
49.15 THz.

saturated color-scale plot. We find no characteristic features for TE (a,d), but two resonance
branches for TM and both transverse (b,e) and longitudinal (c,f) excitation. Those are more
pronounced for νei = 0, but otherwise similar when taking into account collisions or neglecting
them.

For d→∞ the plasma-cladding interfaces separate from each other and one might expect for
the slab a similar response as for a single plasma-cladding interface. Indeed, features similar to
those in Fig. 5.4.2(e,f) have been already presented for the plasma-air interface in Fig. 5.4.1(b).
It agreement with our observations of Fig. 5.4.2(d-f), it is known that such an interface does
not provide resonances for the TE case but for the TM case [138]. To see it from our plasma
slab model, we make a link from a plasma slab to a single plasma-dielectric interface by con-
sidering the boarder case d → ∞. For our plasma slab, the denominator D1 (TE) goes as
exp(Λpd/2)(∓Λc − Λp)/2 if d → ∞. But this expression is always different from zero since
εc 6= εp for each ω. Thus, one does not obtain any resonances in the TE case. The situation
is different for D2 which goes as exp(Λpd/2)(∓Λcεp/εc − Λp)/2 if d → ∞. This expression has
zeros that can be shown to coincide with the SPP resonance that is presented in Fig. 5.4.1(b)
and explains the lower branch in Fig. 5.4.2(e). The upper branch corresponds to the VPP that
is characterized by Λp = 0 explaining the enhancement of D2 for ω → ωp. Also D3 that we
found for a longitudinal excitation goes as exp(Λpd/2)(∓Λcεp/εc − Λp)/2 if d → ∞ such that
also here SPPs can be excited in this limit explaining the lower branch in Fig. 5.4.2(f). For D3,
we can immediately see for Λp = 0 characterizing the VPP that D3 = 0 explaining the upper
branch in Fig. 5.4.2(f).
It is important to note, that for a finite plasma thickness d, D2 and D3 are different, even if

they belong both to the TM case. We shall remember that they were obtained for two different
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(g) (h) (i)

(a)

(d)

(b)

(e)

(c)

(f)

Figure 5.4.3.: Poynting fluxes in the x-direction normal to the slab (a-c) and in the z-direction
along the slab (d-f) at x = 0.51 · d, i.e., just at the slab surface in the vacuum.
Spectral energy ŭ in the slab (g-i). In the 1st column ῐ = ey (TE), in the 2nd ῐ =
ex (TM) and in the 3rd ῐ = ez (TM) inside the slab. The slab thickness is d = 1µm,
the plasma frequency νp = 49.15 THz and the collision frequency νei = 13 ps−1.

types of excitation. D2 describes the excitation by a transverse current source along x and D3
describes the excitation by a longitudinal current source along z. These results in the different
responses in Fig. 5.4.2(e) and Fig. 5.4.2(f). While the resonances for the longitudinal excitation
in Fig. 5.4.2(f) almost follow the single-interface resonances in Fig. 5.4.1(b), the transverse TM-
like excitation in Fig. 5.4.2(e) shifts the resonances closer to ωp.
Finally, let us analyze how these resonances radiate. To this end we introduce the spectral

poynting flux S̆ = 2/µ0<{Ĕ×B̆?} and the spectral energy density ŭ =
∫ d/2
−d/2(ε0|Ĕ|2+|B̆|2/µ0) dx.

Fig. 5.4.3 presents the emitted flux S̆x (1st row) and the along the surface guided flux S̆z (2nd row)
just above the plasma-air interface. Due to previous considerations it is not surprising that
no features are observed for the TE case in the 1st column. For TM and transverse excita-
tion (2nd column), a VPP-like enhancement of emission at ωp can be found in (b). For lon-
gitudinal excitation (3rd column), no VPP-like enhancement of emission can be found in (c).
The reason is that Λpd is small and the electric field Ĕz(x = d/2) ∝ sinh(Λpd/2) following

121



5. Two-color fs-laser-induced microplasmas

Eq. (5.4.30) becomes also small such that no enhancement of S̆x is possible. However, the spec-
tral energy density in Fig. 5.4.3(i) reveals that the plasma is excited resonantly at ωp for all
kz by longitudinal excitations that do not lead to radiation. Those are called bulk plasmon
polaritons (BPPs) since they can be also met in homogeneous plasmas. We should note that for
both transverse and longitudinal TM excitation a strong SPP-like flux is observed (e,f).
In summary, we have seen three important effects in a plasma slab:

• TE-like excitations, i.e. excitations in the translational invariant direction do not lead to
resonances of the plasma slab response

• TM-like transverse excitations provide VPP- and SPP-like resonances

• longitudinal excitation provides resonant enhancement at the plasma frequency, however,
the emission at ωp is not enhanced since d is small

In the following, these observations will be used to interpret better some of tendencies that have
been observed in previous rigorous simulations.

5.4.3. Spectral polarization dependence in elliptical beams
In Sec. 5.3.2, we have seen that the THz spectra emitted from elliptical beams depend on the
driving laser polarization. In contrast to laser pulses that are polarized in the quasi transla-
tional invariant direction y (quasi TE), x-polarized driving pulses (quasi TM) lead to spectral
broadening up to νp. We use the plasma slab model to show that this broadening is most likely
a result of plasmon-polariton-like resonances.
To this end we assume a model excitation source ι1(z) = ιmod(z) = q2

en0[EL(x =
0, z)]/meEL(x = 0, z) using the on-axis 2D paraxial approximation for the 2C-laser field in
analogy to App. I. The laser parameter are the same as in Sec. 5.3.2. We consider the amplitude
of the source depending on the temporal frequency ωL and spatial frequency kz, i.e., in spatial
and temporal Fourier space, in Fig. 5.4.4(a)16. We find that the excitation of forward emitting
waves (kz > 0) is slightly preferred compared to backward propagating waves (kz < 0). It ranges
up to ω = ωp and kz = kp.

Next, we consider the response of the plasma slab to this excitation for the TE case and the
TM case using the plasma slab model from Sec. 5.4.1.1 and Sec. 5.4.1.2. The resulting spectral
poynting fluxes just above the interface are presented in Fig. 5.4.4(c-f). No resonant features
are excited for TE (1st column) and we find signatures of VPPs and SPPs for TM (2nd column).
According to the plasma slab model only waves with S̆x 6= 0 contribute to far-field emission,
which we compute as P̂x =

∫
S̆x dkz. Using the result from Fig. 5.4.4(c-d) we evaluate the far-

field spectrum that is presented in Fig. 5.4.4(g). It reproduces almost perfectly the qualitative
difference between the 3D quasi TE and quasi TM simulation results in Fig. 5.3.4: The TE
far-field power spectrum is peaked slightly below 10 THz and then decreases rapidly. The TM
power spectrum is broadened up to the maximum plasma frequency that has been taken as
the plasma frequency of the plasma slab νp. According to the plasma slab model, the VPP is
responsible for the emission at the plasma frequency. However, as we will discuss in the next
section, also the SPP can contribute to far-field emission and slightly shift the emission peak
from the plasma frequency towards lower frequencies.
Please note, we have made observations of transverse nonradiating oscillation at the plasma

frequency in transversally DC-biased microplasmas in Sec. 4.4 and in elliptical beams for the
TM case. Thus, we shall conclude that oscillations at the plasma frequency for the TM case

16Please keep in mind that the modulus of the source does not depend on whether EL is x- or y-polarized.
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5.4. A plasmonic view on spectral properties of THz emission
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Figure 5.4.4.: Results of the slab model using the on-axis excitation spectrum (a) ιmod
1 of a

2D (∂y ≡ 0) 2C-laser pulse (see text for details). The slab thickness is d = 0.4µm,
the plasma frequency ωp/(2π) = νp = 49.15 THz and the collision frequency
νei = 13 ps−1. (b) Spectral energy ŭ in the slab for an x-polarized laser (TM).
Spectral poynting fluxes in the x-direction normal to the slab (c,d) and in the
z-direction along the slab (e,f) at x = 0.51 · d, i.e., just at the slab surface in the
vacuum. In (c-f), in the 1st column the laser is y-polarized (TE), in the 2nd column
the laser is x-polarized (TM). (g) Comparison of the kz-integrated far-field spectra
for TE and TM according to the plasma-slab model. (h) Field profiles of the mode
ω = 0.2ωp, kz = 0 that is marked by the black cross in (c). (i) Field profiles of
the mode ω = ωp, kz = 0.5kp that is marked by the black circle in (d).
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5. Two-color fs-laser-induced microplasmas
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Figure 5.4.5.: Results of the slab model for reduced gas pressure p ≈ 0.1 corresponding to the
plasma frequency ωp/(2π) = νp = 15.54 THz. Other parameter are the same as
in Fig. 5.4.4 for an x-polarized laser (TM). (a-b) Spectral pointing fluxes just at
the slab surface in the vacuum (x = 0.51d). The horizontal white dotted line
specifies the plasma frequency. (c) Comparison of the far-field spectra according
to the slab model (black dash-dotted line) and the rigorous 3D simulation with
ARCTIC (black solid line) same as presented in Fig. 5.3.7. Now, in addition the
kz-integrated poynting flux Ŝz along z is presented (gray dashed line). (d) Field
profile of the surface-plasmon-polariton-like mode at ω = 0.93ωp, kz = 2kp that is
marked by the black circle in (b). (e) The same resonance for a thicker slab with
d = 4µm, now at ω = 0.7ωp for the same kz.

are not only radiative. The power spectrum in Fig. 5.4.4(b) reveals that around ω = ωp close
to kz = 0 a large electromagnetic energy density is present in the plasma slab, but according to
Fig. 5.4.4(d) nothing is emitted there. The field structure in Fig. 5.4.4(i) visualizes that the high
electro-magnetic energy density is due to the transverse electric field Ex which cannot contribute
to the far-field power spectrum P̂x. It is much stronger than the fields By and Ez which can
contribute to emission.

5.4.4. Spectra from TM-polarized elliptical beams at low gas pressures
For TM-polarized elliptical beams in Sec. 5.3.3, we have seen that THz emission spectrum is
broadened up to the maximum plasma frequency that is gas pressure dependent. According
to our previous result, the VPP leading to enhancement of the emission at νp can explain this
behavior. However, we found in Sec. 5.3.3 in rigorous simulations that the emission peak is
typically shifted from the maximum plasma frequency to slightly lower frequencies. This shift
was most clearly visible at low gas pressures p < 1 bar. In the following, we argue that this
behavior indicates SPP-like excitation that finally leads to THz emission.
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5.4. A plasmonic view on spectral properties of THz emission

How is it possible that SPPs, that are waves bounded to the plasma-dielectric interface, lead
to emission? The plasma slab model has a drawback: it accounts only for excitation of SPPs
but not their emission since the plasma is translational invariant in z. THz-SPPs, as sketched in
Fig. 5.4.1(a) (blue color), are excited and propagate along the plasma slab. In reality, however,
the plasma is finite having truncations along z. When SPPs reach the plasma truncations, they
can be reflected or transmitted leading to emission into the far-field. In the following, we only
keep track of SPP excitation to provide an explanation of the previously mentioned shift from
the maximum plasma frequency.
We consider the same excitation as in the previous section for the TM case, but now assuming

a plasma frequency corresponding to a fully singly ionized gas at 10 times lower gas pressure
p ≈ 0.1 bar. The resulting spectral poynting fluxes are presented in Fig. 5.4.5(a,b). When
comparing the guided flux in Fig. 5.4.5(b) with Fig. 5.4.4(f) where the plasma frequency is 10
times higher, much larger kz in units of kp = ωp/c are excited. For large kz/kp, the SPPs are
excited at a constant frequency slightly below ωp. Their signature can be seen when considering
the kz-integrated spectral flux Ŝz =

∫
S̆z dkz in Fig. 5.4.5(c) that results in a peak slightly

below the plasma frequency. For comparison, the emitted power spectrum P̂x according to the
plasma slab model and the far-field power spectrum of the rigorous ARCTIC simulation [same
as in Fig. 5.3.7(a)] is shown. While P̂x does not support the shift from the maximum plasma
frequency, the SPP resulting in the frequency peak in Ŝz could be the reason of the small shift
from max νp. Thus, both VPPs and SPPs can in principle influence the THz emission properties.
Finally, we should comment on the strength of the shift. The SPP frequency for large kz and

a single plasma-air interface is at ω = ωp/
√

2. For finite d, the SPP-frequency is the higher the
smaller d is. For the considered plasma slab the resonance is at 0.93ωp. Thus, the shift from
the maximum plasma frequency depends on the thickness of the plasma. Moreover, according
to the large spectral shifts away from the maximum plasma frequency for cylindrical beams and
low gas pressures in Secs. 5.1.2.2, 5.2.4, we can expect that the strength of the shift is in general
plasma-shape dependent.
In Fig. 5.4.5(d,e), the field structure of the SPP is presented for d = 0.4µm and d = 4µm.

Obviously, for thicker plasmas an even stronger SPP is created. However, it is localized withing
only few µm and thus is expected to disappear when the electron density gradient is too weak.

5.4.5. Non-radiating oscillations at the plasma frequency
We have seen in Chap. 4 for 1C-laser-driven THz generation with and without an external
DC-bias that longitudinal excitations lead to oscillations at the local plasma frequency which
do not radiate. In Sec. 4.2, we presented a general solution for non-radiative plasma oscilla-
tion [Eq. (4.2.6)]. Here, we want to elaborate the excitation of such oscillations that have been
previously introduced as BPPs by the plasma slab model.
To this end we investigate the example of the tightly focused 1C-laser pulse from Sec. 4.3.

The excitation spectrum is computed by assuming ιmod = ιpond
z (x = 0, z)ez using the 2D on-axis

ponderomotive source from App. I. Its spectral amplitude is presented in Fig. 5.4.6(a) preferring
slightly more forward waves. Resulting spectral poynting fluxes are shown in Figs. 5.4.6(b,d). No
VPP is excited and thus no resonant features are visible in the emission spectrum in Fig. 5.4.6(e).
The plasma slab model (light gray line) coincides well with the PIC results (dark red line) that
are the same as in Fig. 4.2.3. The deviation at 20 THz might rely on SPPs that are excited
according to Fig. 5.4.6(d) but not radiating in the framework of the present plasma slab model.
The fact that no emitting resonant features are present justifies the simplified model in

Sec. 4.3.2 that does not account for the plasma-response (except corrections that account for
plasma opacity). However, the model in Sec. 4.3.2 was not able to reproduce the result that no
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5. Two-color fs-laser-induced microplasmas
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Figure 5.4.6.: Results of the slab model using the on-axis excitation spectrum (a) ιpond
2,z of a

2D (∂y ≡ 0) 1C-laser pulse (see text for details). The slab thickness is d = 0.4µm,
the plasma frequency ωp/(2π) = νp = 49.15 THz and the collision frequency
νei = 13 ps−1. Spectral poynting flux in the x-direction normal to the slab (b)
and in the z-direction along the slab (d) at x = 0.51 · d. (c) Spectral energy ŭ
in the slab. (e) Comparison of the kz-integrated far-field spectra according to
the plasma-slab model and the PIC simulation same as in Fig. 4.2.3 (red line) in
Chap. 4. (f) Field profiles of the mode ω = 0.1ωp, kz = 0.05kp that is marked
by the black cross in (c). (g) Field profiles of the mode ω = ωp, kz = 2kp that is
marked by the black circle in (c).

emission takes place at frequencies close to ω = 0, that is now possible with the plasma slab
model.
To visualize the field structure of the emitting modes, one selected emitting mode is charac-

terized in Fig. 5.4.6(f). The corresponding ratio of the electric field amplitudes determines the
emission angle θ: tan(90◦ − θ) = Ex/Ez = 1.5/2.6 → θ = 60◦ that is close to the maximum
emission angle of 70◦ as found by PIC simulation results in Sec. 4.3.
In PIC simulations, we found that oscillations at the plasma frequency exist but do not radiate.

Also in the framework of the plasma slab model, we find these oscillations as can be seen from
the spectral electromagnetic energy density in Fig. 5.4.6(c). The field profile for one selected
mode in Fig. 5.4.6(g) displays a strong electric field Ex confirming that these oscillations appear
normal to the electron density gradient, along x, in agreement with the nonradiating oscillating
solution in Sec. 4.2.
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5.5. Conclusions

In summary a simplified 2D model of THz emission accounting for resonant plasma response
has been developed. It explains the absence of spectral broadening and resonant features for
elliptical beams where the excitation takes place in the transverse direction in which the plasma
size is larger than the plasma wavelength. If the excitation takes place along strong electron
density gradients plasmon-polariton resonances can be excited and lead to THz emission. The
plasma slab model confirms that longitudinal excitation can lead to nonradiating oscillations
at the plasma frequency for thin plasmas d. The model reproduces spectral features of various
simulations, but could be improved by accounting for plasma truncations.

5.5. Conclusions
THz emission from two-color-fs-laser-induced microplasmas has been investigated by means of
3D Maxwell-consistent simulations and simplified models. The conclusions are as follows:
In the strongest focusing case, microplasmas can act as point sources of THz emission, fea-

turing toroidal radiation patterns that determine the orientation of the THz emitting current.
This additional information is expected to facilitate the identification of the THz generating
mechanisms in future experiments.
Sufficiently thin 2C microplasmas radiate in a resonant regime where the spectral width of the

THz emission is broadened up to the maximum plasma frequency that increases with the gas
pressure. In real 3D plasmas, also the emission peak frequency increases for low gas pressures,
but stays approximately constant for higher gas pressures.
When the thickness of the plasma in polarization direction of the driving laser pulse becomes

larger than the smallest plasma wavelength, the resonant features can disappear. This property
leads to laser polarization dependent spectral tuning properties of THz emission from elliptical
beams that approach the 2D configuration by real 3D laser beams.
A simplified 2D plasmonic plasma slab model that naturally takes into account the plasma

response has been developed to further elaborate these spectral features. As the result, spectral
broadening behavior could be attributed to plasmon-polariton-like resonances that exist only
when the two-color laser is polarized along a strong plasma density gradient. Furthermore, the
model confirms that no oscillations at the plasma frequency are emitted into the far field when
a thin plasma is excited by longitudinal current sources as for 1C-driving lasers.
Another 3D model that accounts only for the plasma geometry has been developed. It shows

that the transverse nature of the ionization currents in two-color pump configuration allows an
excellent scalability of the laser-to-THz conversion efficiency, while THz generation mechanisms
relying on longitudinal radiating currents are detrimental for the upscaling by increasing the
plasma length. Furthermore, the particularly small width of microplasmas favors the up-scaling
of the conversion efficiency compared to transversally much wider THz emitting sources like gas
jets or nonlinear crystals.
This model was used to optimize the focusing conditions of a circular Gaussian beam for

a given laser pulse energy. Focusing conditions leading to fully singly ionized plasmas turned
out to be nearly optimal as long as nonlinear propagation effects can be neglected. To scale
the optimal focusing conditions with the laser pulse energy, the focal beam width has to be
increased with the square-root of the laser pulse energy. By using such optimized configuration,
for laser pulse energies around 5 µJ the conversion efficiency can exceed 10−4.

Another possibility to increase the conversion efficiency to the 10−4-level by using elliptical
beams has been presented. Besides laser-polarization tunable THz spectra, they offer 2D point-
like emission profiles and can acts as THz line sources. By increasing their transverse size for
mJ-driving laser pulses 100 nJ-THz-pulse energies could be produced.
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6. Summary and outlook

In this thesis, we have theoretically investigated terahertz (THz) generation in fs-laser-induced
microplasmas. This novel approach is promising to provide compact and efficient sources of
broadband THz radiation. THz radiation has many applications as spectroscopic identification
of hazardous substances, THz imaging in biology and medicine, thickness measurements in
industrial processes and quality control as well as control over matter (see Sec. 1.1). These
applications often require compact pulsed THz sources covering ideally the whole THz range
from 0.3 to 30 THz and at least µW-THz-average output powers. For control over matter, THz
field amplitudes above 0.1 MV/cm are usually needed.
Conventional THz sources as quantum cascade lasers, photoconductive switches and nonlinear-

crystal-based schemes comply with many requirements of THz applications (see Sec. 1.2). To-
gether they can cover almost the whole THz range. They produce THz average powers up
to the mW-level while reaching laser-to-THz conversion efficiencies above 10−4 and can reach
1 MV/cm-strong THz fields. However, none of them can cover the whole THz gap at one blow.
Furthermore, they often suffer from material damage.
Certain limitations of conventional emitters might be resolved by producing THz radiation in

fs-laser-induced gas-plasmas (see Sec. 1.3). In a pioneering work, single-color (1C) driving laser
pulses have been shown to produce THz emission when ionizing an initially neutral gas [55].
Using a gas-plasma already resolves the problem of material damage. However, laser-to-THz
conversion efficiencies only about 10−8 were reached by this setup, i.e., far below what can be
achieved with conventional sources. Two ways to increase the laser-to-THz conversion efficiency
were proposed. Firstly, the conversion efficiency was shown to be enhanced by an external
electric field (a DC-bias) for 1C driving laser pulses [56]. Secondly, a frequently used approach
employs two-color (2C) mJ-driving-laser pulses. Here, conversion efficiencies can exceed the
10−4-level [57]. Moreover, this scheme is known to produce ultra-broadband THz spectra cover-
ing the whole THz range. However, same as many conventional sources these gas-plasma-based
approaches require mJ-strong driving laser pulses that limit their compactness and availability.
To miniaturize gas-plasma-based THz sources, Buccheri and Zhang [61] generated THz ra-

diation by strongly focusing an only µJ-weak laser pulse into a gas. In contrast to previously
reported approaches with mJ-driving laser pulses creating at least mm-large plasmas, this leads
to the formation of a microplasma. However, conversion efficiencies as they can be reached by
conventional THz sources and broadband THz-spectra as they can be reached by 2C-mJ-laser-
induced gas-plasmas were not reported.
To make a step towards the realization of efficient small-scale THz sources based on laser-gas

interaction, the attention of this thesis was set to the theoretical investigation of THz generation
in fs-laser-induced microplasmas. To this end, we performed both, Maxwell-consistent modeling
of THz emission employing large-scale numerical simulations and simplified analytical models
that lead to a better understanding of the results obtained from rigorous simulations. We
analyzed the mechanisms of THz generation in 1C-laser-induced microplasmas similar to those
that have been investigated experimentally in [61]. Moreover, we applied the ideas that are
known from mJ-laser-induced large gas-plasmas, namely DC-biased 1C-laser-induced and 2C-
laser-induced gas-plasmas, to increase the laser-to-THz conversion efficiency in microplasmas.
The following major steps have been performed and results obtained.
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6. Summary and outlook

We derived a model based on the Maxwell equations, the non-relativistic Vlasov equation for
the electrons, ionization rate equations for multiple ionization and taking elastic electron-ion
collisions into account (see Chap. 2). For peak intensities above 1014 W/cm2 and strong focus-
ing conditions generating up to few-hundreds-of-µm-long microplasmas, the neutral polarization
response was neglected in front of the free electron response. We derived the three lowest veloc-
ity moments of the Vlasov equation leading to continuity, Euler and energy balance equations.
These equations and the Maxwell’s equations were expanded by means of a multiple-scale anal-
ysis. We assumed that any microscopic quantity can be written as a perturbation series. This
ansatz results in a hierarchy of equation-sets that can be associated with two THz generating
mechanisms.
The lowest order set of equation describes the so-called ionization current (IC) mechanism. It

accounts for ionization and the macroscopic current that is driven by the electric field. Moreover,
the multiple scale analysis gives an energy equation that accounts for the heating of the electron
gas. This allows to introduce an electron-ion collision frequency depending on the electron
energy. This set of equations models in particular the THz generation in DC-biased 1C-laser-
induced and 2C-laser-induced microplasmas. In some cases, also the often used unidirectional
pulse propagation approach can describe THz emission driven by the IC mechanism. However,
this approach is unsuitable for microplasmas since it cannot model THz emission at large angles
as well as charge separation effects that require a Maxwell-consistent modeling as given by our
lowest order set of equations.
The next higher order set of equations describes the so-called transition-Cherenkov (TC)

mechanism. It accounts for excitation of the plasma by the ponderomotive source, but also
additional ionization, collisional and heating-driven source terms. All these second order source
terms can be computed from the lowest order quantities. This set of equations describes the
THz generation in many-cycle 1C-laser-induced microplasmas.
In order to solve the model equations, several numerical tools were used and developed. For

the numerical solution of the Vlasov equation, the particle-in-cell (PIC) codes OCEAN and
CALDER were utilized. For the solution of the lowest order set of multiple-scale equations, the
fluid code ARCTIC was developed based on the Yee-solver-version of OCEAN. The ARCTIC
code was benchmarked against the PIC code OCEAN by comparing the THz emission spectra
for smallest 2C-fs-laser-induced microplasmas in 3D (see Chap. 3).
Because we are working with strongly focused laser beams, it was necessary to develop an

algorithm for both, fluid and PIC code, modeling laser beams beyond the paraxial approxima-
tion. This algorithm has the big advantage to introduce any arbitrarily shaped laser pulses into
electromagnetic codes by prescribing its spatio-temporal shape in a plane (see Sec. 3.3). Nota
bene, the novel approach can be useful for a larger community working on electromagnetic codes,
in particular for investigation of matter-“structured light”-interaction or interaction of strongly
focused laser beams with matter.
By means of our multi-scale model and numerical tools, we investigated THz emission from

strongly focused 1C-fs-laser-induced microplasmas (see Chap. 4). The analysis of the current
source terms revealed that the IC mechanism is negligible for multi-cycle 1C-laser pulses and
the TC mechanism plays the leading role. Here, ponderomotive sources turned out to dominate
radiation pressure, convective and diffusive sources. For a Gaussian beam, transverse currents
excited by the TC mechanism do not lead to THz emission. The reason is their antisymmetry
with respect to the transverse spatial coordinate. It leads to destructive interference in the
far-field for an only 1-µm-thin plasma. However, TC-mechanism driven longitudinal currents
are symmetric and can radiate. The longitudinal polarization of the radiating currents and the
plasma length about 10 µm results in the hollow emission cone with an opening angle > 70◦ in
the presented PIC simulations in agreement with previously reported experimental results [61].
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For many-cycle 1C-laser pulses, PIC simulations reveal THz emission up to 20 THz, i.e., far
below the peak plasma frequency at about 50 THz in our simulations. Nevertheless, the plasma
is strongly oscillating at the local plasma frequency. We have presented an analytical solution
showing that even in an inhomogeneous plasma, oscillations at the local plasma frequency can
exist without radiating into the far-field. Such non-radiating currents are curl-free. Previously
established models imposed a synthetic plasma structure destroying this curl-free property in-
troducing artificial radiation around the plasma frequency [59, 60, 64]. Our results show that the
plasma response and shape have to be modeled consistently in order to avoid artificial radiation
at the plasma frequency.
We have also developed a simplified model (plasma slab model) that accounts for the re-

sponse of the plasma with a simplified slab-shape. Applying the longitudinal ponderomotive
source to the plasma slab response reproduces well THz emission spectra obtained from PIC
simulations (see Sec. 5.4.5). Also here, nonradiating electric field oscillations at the local plasma
frequency normal to the electron density gradient were found and could be identified as the bulk
plasmon polariton.
The absence of resonantly driven emission allowed to utilize the modified local current model

to obtain estimations of the laser-to-THz conversion efficiency for various laser pulse parameter.
The conversion efficiency has been shown to saturate to values around 10−6−10−7 for larger laser
pulse energies for different focusing conditions. The opacity of the plasma for THz frequencies
turned out to play a crucial role for the saturation behavior. The results have been shown to be
in good agreement with PIC simulations.
Moreover, we have investigated the gas pressure dependence of the conversion efficiency. In

agreements with previously reported experiments, a quadratic scaling for low gas-pressures was
found. This is an additional confirmation that the emission takes place in a rather non-resonant
regime. For higher gas-pressures the conversion efficiency tends to saturate.
A similar behavior holds for longitudinally DC-biased 1C-laser-induced microplasmas (see

Sec. 4.4). By increasing the gas pressure and bias-voltage, we could boost the conversion ef-
ficiency by 2 orders of magnitude compared to un-biased microplasmas. Here, THz emitting
currents are excited additionally by a constant external electric field and can be modeled by
the IC mechanism. Maxwell consistent simulations with ARCTIC have shown that also when
exciting the plasma by an external longitudinal electric field, THz radiation is emitted far below
the maximum plasma frequency albeit the plasma oscillates with the local plasma frequency.
We exploited the flexibility to adjust the direction of the external electric field to show that the
situation changes when applying the constant electric field in the transverse direction. Then in
contrast to longitudinal excitation, radiation around the maximum plasma frequency is emitted.
This demonstrates that the plasma shape is important for the THz emission spectrum.
Besides 1C-driving-laser pulses, we investigated THz emission from 2C-driving-laser pulses for

microplasmas (see Chap. 5). Here, THz emission is induced by the IC mechanism that we have
modeled by the code ARCTIC in 3D. In the strongest focusing case, the emitting plasma can
act as a point-source of THz emission. Then, the polarization of the THz-emitting current can
be determined directly from the toroidal radiation profile. This opportunity appears only for
smallest microplasmas, since for larger emitting plasmas the more (forward) directed radiation
profile is determined by the plasma length and thickness only.
We have shown that plasmas with a thickness of the order of or smaller than the smallest

plasma wavelength along the laser polarization direction radiate in a resonant regime. For
linearly polarized Gaussian laser beams, we have found a spectral broadening of the THz emission
up to the maximum plasma frequency that is about 50 THz for a fully singly ionized gas at
ambient pressure. For low gas pressures the plasma radiates resonantly with a gas-pressure-
dependent peak below the maximum plasma frequency.
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6. Summary and outlook

To interpret this behavior by a simplified model and potentially easily realizable experiments,
we proposed to exploit transversally elliptically shaped laser beams that lead to elliptically
shaped transverse electron density profiles. Maxwell-consistent 3D simulations have shown that
THz emission spectra from elliptical beams are strongly dependent on the direction of the
laser electric field vector. The emitted THz fields can be described for each polarization state
superposing two fundamental cases: the quasi transverse electric (TE) and transverse magnetic
(TM) cases. For the quasi TM case, the electric laser field points into the direction where the
plasma is thin. Here, the emission spectrum is broadened up to the maximum plasma frequency.
For the quasi TE case, the electric laser field points into the direction where the plasma is thick.
Here, the THz emission spectrum is not broadened.
This behavior has been explained by our plasma slab model (see Sec. 5.4.3). For the quasi TM

case, surface and volume plasmon polaritons are excited. Those provide resonant features that
depend on the gas pressure and explain the spectral broadening. For the quasi TE case, no reso-
nant features are present explaining the un-broadened emission spectrum. These investigations
show a route towards THz-plasmonics in plasma-based THz generation schemes.
Furthermore, we have developed a 3D model that allows to estimate the scaling of the laser-to-

THz conversion efficiency for various laser pulse energies and focusing conditions for a Gaussian
beam (see Sec. 5.2). According to this model, focusing conditions leading to full single ionization
in focus are optimum as long as nonlinear propagation effects are weak. Then, increasing the
laser pulse energy with the focal beam width while keeping the peak intensity constant boosts the
conversion efficiency with the laser pulse energy squared in the optimal case. By using such an
optimized configuration, we have shown that already for few-µJ 2C-driving-laser pulses, the laser-
to-THz conversion efficiency can exceed the 10−4-level. Two effects play in favor of strong THz
emission from 2C-color microplasmas: Firstly, the transverse nature of the ionization currents
is advantageous for the up-scaling of the conversion efficiency with the plasma length compared
to the TC mechanism and the opacity of the plasma for THz waves appears insignificant. These
fundamental advantages of the IC mechanism hold for large and small plasmas. Secondly,
exclusively for microplasmas, emitter radiate rather coherently due to the small transverse size
of the source.
Besides competitive laser-to-THz conversion efficiencies, 2C-laser-induced microplasmas pro-

vide single-cycle broadband-THz pulses reaching strong THz-field amplitudes up to 0.5 MV/cm
in the vicinity of the plasma. However, separating the laser pulse from the THz pulse close to the
plasma remains challenging. We have shown that strongly focused elliptical beams provide THz
pulses with 10 kV/cm-strong field amplitudes emitted normal to the laser propagation direc-
tion (see Sec. 5.3). Further investigations are planned involving the exploration of “structured
light” to resolve this issue.
Using our algorithm to introduce arbitrarily shaped laser pulses into our fluid code ARCTIC

(see Chap. 3), we can exploit even more exotic laser beams. For example, we plan to use the
so-called caustic beams [139] to separate the THz pulse from the laser pulse just behind the
plasma. If this can be done, strong THz fields could be accessed just in the vicinity of the
plasma without strong focusing the THz beam that is limited by the diffraction limit of light.
Also for control over plasmonic effects during the THz generation process, we plan to inves-

tigate “structured light”. For example, we could expect to switch resonant effects on or off by
switching the polarization of a 2C-laser beam: For an azimuthally polarized laser field, the elec-
tric field vector is oriented almost normally to the electron density gradient, while for a radially
polarized laser field, the electric field vector is almost parallel to the electron density gradi-
ent. Since we have shown a strong electron density gradient along the electric laser field to be
necessary to excite plasmonic resonances, switching between this two polarization states might
provide control over resonant effects. Moreover, employing modern beam shaping techniques,

132



we could engineer the plasma channel to switch between different plasmonic resonances. Besides
resonant THz spectral tuning, we can expect to guide and confine THz pulses. All these consid-
erations are applicable besides gas-plasmas to liquid- or solid-plasmas. These plasmas could be
potentially interesting alternatives to gas-plasmas due to their high densities of electrons which
are potential emitters. It should be investigated to which extent the radiating plasma volume
can be maximized although the opacity for THz waves. For liquid- or solid-plasmas we should
keep the Maxwell-consistent treatment, but extend the material response taking into account
bounded-electron response and collisional ionization.
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Appendices

A. The Fourier transforms
We define the temporal Fourier transform f̂(r, ω) of a function f(r, t) by

f̂(r, ω) = 1
2π

∫
f(r, t)eiωt dt (A.1)

f(r, t) =
∫
f̂(r, ω)e−iωt dω . (A.2)

Further on, we define the transverse spatial Fourier transform f̄(k⊥, z, ω) of a function f̂(r, ω)
by

f̄(k⊥, z, ω) = 1
(2π)2

∫∫
f̂(r⊥, z, ω)e−ik⊥·r⊥ d2r⊥ (A.3)

f̂(r⊥, z, ω) =
∫∫

f̄(k⊥, z, ω)eik⊥·r⊥ d2k⊥ , (A.4)

where r⊥ = (x, y)T and k⊥ = (kx, ky)T.
In analogy, we define the longitudinal spatial Fourier transform f̆(r⊥, kz, ω) of a function

f̂(r, ω) by

f̆(r⊥, kz, ω) = 1
2π

∫
f̂(r⊥, z, ω)e−ikzz dz (A.5)

f̂(r⊥, z, ω) =
∫
f̆(r⊥, kz, ω)eikzz dz . (A.6)

Note the difference in the sign of the exponent for temporal and spatial transforms, which is
common practice in the optical context. In particular, when one wants to approximate Fourier
integrals by finite sums, and resort to discrete Fourier transformations (DFTs) or even fast
Fourier transforms (FFTs) [121], it is important to keep track of these sign conventions.

B. Neglecting the neutral polarization in air
Here we show in analogy to Sec. 2.2.2, that the free electron response of the plasma dominates for
I

(0)
L ≥ 1014 W/cm2 over the response of bound electrons in air. For simplicity, the delayed con-
tribution due to Raman scattering is neglected. Following [72], we assume n2 = 12·10−20 cm2/W
and χ(1)

Air = 2.42·10−4 according to [90]. The single ionization potentials for O2- and N2-molecules
are taken from [80]. Figure B.1 presents the maximum values of χplasma (solid blue line) and
χNL (solid black line) normalized to χ(1)

Ar depending on the laser peak intensity I(0)
L . Obviously,

the free electron response dominates for I(0)
L ≥ 1014 W/cm2 over the bound electron response.

In contrast to the argon gas, the dominance of the free electron response sets in at even lower
intensities. The reason is the lower first ionization potential of O2-molecules (I(1)

p = 12.07 eV)
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Figure B.1.: Intensity-dependent contributions of the plasma-response and Kerr-response to the
susceptibility for a single-color laser pulse with t0 = 50. In both cases the maximum
value for all times is taken. The gray dotted line is the linear susceptibility χ(1)

Ar for
a neutral argon gas with na = 2.7 · 1019 cm−3.

compared to argon atoms (I(1)
p = 15.76 eV) leading to larger free electron densities at low

intensities.

C. Relation between transverse symmetries of the current source
and current

Symmetries of the electromagnetic fields and especially of the radiating current are important.
In particular, as discussed in Sec. 4.3.1, they can determine whether a current can radiate or not,
and thus give hints about the responsible THz generation mechanism in rigorous simulations or
experiments.
Here, we concentrate on two symmetries and show that if the current source has one of these

symmetries, then the radiated electric fields and the radiating current in the gas-plasma have the
same symmetry. The following symmetries of the current source ι are considered (see Fig. C.1
for visualization):

ιa(r⊥, z, t) · e⊥ = −ιa(−r⊥, z, t) · e⊥
ιa(r⊥, z, t) · ez = ιa(−r⊥, z, t) · ez ,

(C.1)

r⊥

⊥

⊥

⊥

⊥

s-symmetrya-symmetry

Figure C.1.: Visualization of the a-symmetry and the s-symmetry in Eqs. (C.1)-(C.2).
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and
ιs(r⊥, z, t) · e⊥ = ιs(−r⊥, z, t) · e⊥
ιs(r⊥, z, t) · ez = −ιs(−r⊥, z, t) · ez ,

(C.2)

with e⊥ ∈ {(1, 0, 0)T, (0, 1, 0)T} and ez = (0, 0, 1)T. We consider that the laser propagates along
the z-axis. The z-coordinate of a field is called the longitudinal component. The components
normal to it are called transverse components. For the case in Eq. (C.1), the transverse source is
antisymmetric in the transverse direction r⊥ = (x, y, 0)T and the longitudinal source is symmet-
ric in r⊥. We call this symmetry of a vector field “the a-symmetry”1. For the case in Eq. (C.2),
the transverse source is symmetric in r⊥ and the longitudinal source is antisymmetric in r⊥.
We call this symmetry of a vector field “the s-symmetry”2. Without repeating Eqs. (C.1)-(C.2)
for other fields, same as for ι we use the indices a and s when indicating that the corresponding
field has this kind of symmetry.
In the following, we consider the general case E ∈ {Ẽ1,E2}, B ∈ {B̃1,B2}, J ∈ {J1,J2} and

ι ∈ {ι1, ι2} whenever no index or tilde is written.
The electron density n0 depends according to Eq. (2.5.10) explicitly on |E1|. Independently

whether E1 is a- or s-symmetric, n0 is symmetric with respect to r⊥ since it depends only on the
modulus of E1. Thus, n0E conserves the symmetry of E. Moreover, J1 has the same symmetry
as E1 [cf. current Eq. (2.5.11)]. Thus, E1 · J1 is symmetric and according to Eq. (2.5.12), E2 is
symmetric with respect to r⊥. Because of that and Eq. (2.5.9) also νei is symmetric with respect
to r⊥. Thus, besides n0 also the product with νei does not change the symmetry.
How does the symmetry of ι influences the symmetries of the other fields? We can decompose

the source and analogous the other fields in the following form

ι = ιa + ιs . (C.3)

Adding/subtracting the current equations Eq. (2.5.22) or Eq. (2.5.16) evaluated at (r⊥, z) and
(−r⊥, z) and using the a- and s-symmetry of the fields gives

∂tJa/s + νeiJa/s = q2
e
me

n0Ea/s + ιa/s . (C.4)

Hereby, we have used that the product of J with n0 or νei does not change the symmetry
and taking the time derivative of J also does not change the symmetry. So, we obtained one
equation for the a-symmetry and one for the s-symmetry. The same can be done with the
Maxwell’s equations3. So, when the driving source term is s/a-symmetric, the current and the
electromagnetic fields are s/a-symmetric.

In summary, if the transverse components of the current source ι ∈ {ι1, ι2} are antisymmetric
in the transverse coordinate r⊥ and the longitudinal component is symmetric, then this is true
also for the current, electric and magnetic field. In the other case, if the transverse components
of the current source are symmetric in r⊥ and the longitudinal component is antisymmetric, then
this symmetry also passes to the current and electric field. When discussing single-color driving
laser pulse in Sec. 4.3.1, we make use of these findings in order to argue that ponderomotively
driven antisymmetric transverse currents do not lead to THz emission for thin plasmas.

1The label “a” in ιa indicates the fact that the transverse components are antisymmetric in r⊥.
2The label “s” in ιs indicates the fact that the transverse components are symmetric in r⊥.
3The ∇×- and ∂t-operator conserve the a-symmetry or s-symmetry. Thus, adding/subtracting Maxwell’s

Eq. (2.5.14), (2.5.20) or Eq. (2.5.13), (2.5.19) evaluated at (r⊥, z) and (−r⊥, z) and using the a- and s-symmetry
of the fields gives one set of equations for the a-symmetric fields and one set of equations for the s-symmetric
fields.
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D. Rewriting ι2 in terms of J1

Here the nonlinear source term ι2 in Eq. (2.5.17) of the main text is rewritten such that it
contains no electromagnetic fields E1, B2 but only J1. All, the fields depend on r ant t and thus
the arguments are left out for sake of brevity. First, we rewrite the 2nd term in Eq. (2.5.17) as
follows

qe
me

J1 ×B1 = − qe
me

J1 ×
t∫

−∞

∇×E1 dt
′

= −J1 ×∇×
t∫

−∞

1
qen0

(∂t′ + νei) J1 dt
′

= −J1 ×∇×
t∫

−∞

J1
qen0

(
νei + ∂t′n0

n0

)
J dt′ − J1 ×∇×

J1
qen0

(D.1)

Adding the 4th term in Eq. (2.5.17) to Eq. (D.1) and using the vector identity b × (∇× b) +
(b · ∇) b = ∇|b|2/2 gives

qe
me

J1 ×B1 − (J1 · ∇) J1
qen0

= −J1 ×∇×
t∫

−∞

J1
qen0

(
νei + ∂t′n0

n0

)
J dt′ − qen0

2 ∇
∣∣∣∣ J1
qen0

∣∣∣∣2 . (D.2)

Herewith, we identify the last term in Eq. (D.2) as the ponderomotive source term

ιpond
2 = −qen0

2 ∇
∣∣∣∣ J1
qen0

∣∣∣∣2 . (D.3)

Moreover using Eq. (2.5.15)-(2.5.16), the 3rd term in Eq. (2.5.17) is rewritten as follows

− J1
qen0

(∇ · J1) = − 1
n0
∂t (J1n1) + n1

n0

(
q2

e
me

n0E1 − νeiJ1

)
. (D.4)

By adding Eq. (D.4) to the 1st term in Eq. (2.5.17) and using again Eq. (2.5.15) we get

qe
me

n1E1 −
J1
qen0

(∇ · J1) = − 1
qen0

(∂t + νei)

J1

t∫
−∞

∇ · J1 dt′

 (D.5)

Finally, using Eq. (D.2), (D.5) the source term ι2 in Eq. (2.5.17) of the main text can be rewritten
in terms of J1 to

ι2 = ιpond
2 − J1

qe
×∇×

t∫
−∞

J1
n0

(
νei + ∂t′n0

n0

)
dt′ − 2qe

3me
∇Eth,2 −

(νei + ∂t)
qen0

J1

t∫
−∞

∇ · J1 dt
′

 .

(D.6)

138



E. Discretization of the ionization rate equations
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Figure E.1.: Time trace of a few-cycle laser electric field in units of a0 = qeE
(0)
L /(cmeωL) (a). The

peak intensity is I0 = 4 · 1014 W/cm2 and pulse duration t0 = 5 fs. Corresponding
ionization rate for Argon (b). Time trace of the electron density n0 when using
symmetric discretization according to Eq. (E.1) (red line) and a simple forward
Euler scheme (black line) (c). The temporal resolution is given by δt = 0.25ωL
resolving 25 points per laser oscillation. Scan of the final electron density when
varying the number of points per laser oscillation (d). Relative error (solid curves)
normalized to the symmetric method with 5000 points per wavelength (e). In
addition, two curves ∝ 1/δt (dashed black line) and ∝ 1/δt2 (dashed red line) are
shown. Required time for the python test routine (f).

E. Discretization of the ionization rate equations
Here, we write down the explicit solution of the discretized ionization rate equations (2.1.8)
and test it for a few-cycle pulse. In Sec. (3.2.1), using the symmetric difference quotient that
approximates ∂tn(Z)

ion (t) in terms of n(Z)
ion (t ± δt/2) up to an error ∝ δt2, we have expressed the

ionization rate equations according to Eq. (3.2.1). Taking into account the definition of n̄(Z)
ion in

Eq. (3.2.3), the up-date formula for the new ion densities reads

n
(Z)
ion (t+ δt/2) =

n
(Z)
ion (t− δt/2)

(
1− δt

2 W
(Z+1)[E1(t)]

)
+ δt

2 W
(Z)[E1(t)]n̄(Z−1)

ion (t)
1 + δt

2 W
(Z+1)[E1(t)]

. (E.1)

Now, we test the convergence of the solution by computing the electron density n0 =∑
Z Zn

(Z)
ion of argon (see Sec. 2.1). The electric field is assumed to be known with E1(t) =
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E
(0)
L sin(ωLt) exp(−(t/t0)2)ex. We consider I(0)

L = ε0(E(0)
L )2/2 = 4 ·1014 W/cm2, λL = 2πc/ωL =

0.8µm, t0 = 5 fs, i.e., a few-cycle pulse. The corresponding electric field and the ionization rate
are shown in Fig. E.1(a-b). Only four ionization events contribute to ionization and thus the
electron density in Fig. E.1(c) has four big steps. In addition to the computation according to
Eq. (E.1) (red line), the solution with an explicit forward Euler scheme is presented (black line)
leading to a slightly overestimated electron density. As the final electron density in Fig. E.1(d)
shows, it is worth to use our symmetric discretization scheme that converges much faster than
the forward Euler scheme. The error of our scheme in Fig. E.1(e) decreases faster than quadrat-
ically with the number of points per laser period whereas the forward Euler scheme has only a
linear convergence. In both cases the computation time increases linearly [see Fig. E.1(f)].

F. Fix-point iteration for discrete solution of energy and current
equation

Here, we detail the fix-point iteration method for the solution of the nonlinear system of equa-
tions (3.2.2)-(3.2.4) in Sec. 3.2.1. Assume J1(t−δt/2), E2(t−δt/2), n(Z)

i (t−δt/2), n(Z)
i (t+δt/2),

n0(t−δt/2), n0(t+δt/2) and E(t) are known. We are looking for an approximation of J1(t+δt/2),
E2(t + δt/2). Employing the definition of n̄ in Eq. (3.2.3) and analogue definitions for n̄0, we
proceed as follows:

1. Set
E(0)

2 (t+ δt/2) = E2(t− δt/2) (F.1)

2. Iterate for 1 ≤ k ≤ Kmax:

ν̄ = νei
[
n̄

(Z)
ion (t), n̄0(t),

(
E(k−1)

2 (t+ δt/2) + E2(t− δt/2)
)
/2
]

(F.2)

J(k)
1 (t+ δt/2) = n̄0(t)E1(t) + J1(t− δt/2) (1/δt− ν̄/2)

1/δt+ ν̄/2 (F.3)

Ek2 (t+ δt/2) = E(t− δt/2) + δt

2 E1(t) ·
(
J(k)

1 (t+ δt/2) + J1(t− δt/2)
)

(F.4)

as long as |E(k)
2 (t+ δt/2)− E(k−1)

2 (t+ δt/2)| ≥ γ, where γ defines the precision
or for k ≥ 2: |E(k)

2 (t+ δt/2)− E(k−1)
2 (t+ δt/2)| > |E(k−1)

2 (t+ δt/2)− E(k−2)
2 (t+ δt/2)|,

in the later case the iteration does not converge and the method is inappropriate.

Now, we test the algorithm for a laser pulse similar to the test in Sec. E but with a longer pulse
with t0 = 25 fs. Figs. (F.1)(a-c) illustrate the corresponding electric field E1,x, the ionization
rate and the electron density. The current and the electron energy E2 = n0E2 are shown in
Fig. F.1(d-e) using only one iteration (Kmax = 1). Hereby, the relative error in terms of the final
value of E2 compared to a computation with 5000 points per laser oscillation and Kmax = 10 is
around 10−3. It decreases according to Fig. F.1(f) to the level of the machine precision already
after six iterations.
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Figure F.1.: Time trace of a few-cycle laser electric field in units of a0 = qeE
(0)
L /(cmeωL) (a).

The peak intensity is I0 = 4 · 1014 W/cm2 and pulse duration t0 = 25 fs. The
corresponding ionization rate for Argon in (b). In (c) the time trace of the electron
density n0 is shown that was computed according to Eq. (E.1) with a temporal
resolution of δt = 0.25ωL resolving 25 points per laser oscillation. In (d) and (e),
the current and energy per electron are shown solving the heating equation with the
Banach Fixed-point iteration and Kmax = 1. Relative electron energy error with
respect to a computation with 5000 points per laser oscillation and 10 iterations
depending on the number of maximal iterations Kmax (f).

G. Generating Maxwell consistent solutions using the vector
potential in Lorentz gauge

Introducing electromagnetic potentials A, φ in Lorentz gauge via

B̂ = ∇× Â Ê = iωÂ−∇φ̂ (G.1)

∇ · Â(r, ω) = iω 1
c2 φ̂(r, ω) , (G.2)

leads to decoupling of φ and the components of A, and one finds (in vacuum) [6]

k2
z(k⊥, ω)Ā(k⊥, z, ω) + ∂2

zĀ(k⊥, z, ω) = 0 . (G.3)
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In analogy to Eq. (3.3.4), fundamental solutions are the forward (+) and backward (−) propa-
gating, plane or evanescent waves

Ā±(k⊥, z, ω) = Ā±0 (k⊥, ω)e±ikz(k⊥,ω)(z−z0) . (G.4)

By plugging Eq. (G.4) into Eq. (G.1), and using Eq. (G.2) to eliminate φ, electric and magnetic
fields can be expressed in terms of the vector potential at z = z0:

B̄±(k⊥, z, ω) = ik±(k⊥, ω)× Ā±0 (k⊥, ω)e±ikz(k⊥,ω)(z−z0) (G.5)

Ē±(k⊥, z, ω) = iω
(

1− c2

ω2 k±(ω)k±(ω)T
)

Ā±0 (k⊥, ω)e±ikz(k⊥,ω)(z−z0) . (G.6)

In general, the three components of A±0 can be chosen independently, however, only two compo-
nents are necessary to prescribe an arbitrary laser pulse 4. The use of the vector potential can be
nevertheless advantageous, because certain beams, like radially polarized doughnut beams [120],
can be described by a single (longitudinal) component of the vector potential.

H. Transformation of the 1D current source ι2 into the co-moving
pulse frame

We rewrite the current source Eq. (D.6) in 1D geometry. Using ∂x = ∂y = 0 and J1,z = 0 we
get

ι2,z = − n0
2qe

∂z

∣∣∣∣J1
n0

∣∣∣∣2 − J1,x
qe

∂z

t∫
−∞

J1,x
n0

(
νei + ∂t′n0

n0

)
dt′

− J1,y
qe

∂z

t∫
−∞

J1,y
n0

(
νei + ∂t′n0

n0

)
dt′ − 2qe

3me
∂z (n0Eth) .

(H.1)

We also find that ι2,x = ι2,y = 0, so ι2 is purely longitudinal in 1D. Next we transform ι2,z into
the co-moving pulse frame (z, t) 7→ (ξ = z, τ = t − z/c). According to the approximation we
made in Eq. (4.1.2), the current J1 can be calculated directly from the vacuum laser field EL.
Because EL and thus J1 do not change their temporal shape upon propagation along z, they
are invariant in the new variable ξ and the z derivative transforms as ∂z = ∂ξ − ∂τ/c = −∂τ/c
leading to

ι2 = n0
2qec

∂τ

∣∣∣∣J1
n0

∣∣∣∣2ez + n0
qec

∣∣∣∣J1
n0

∣∣∣∣2 (νei + ∂τn0
n0

)
ez + 2qe

3mec
∂τ (n0Eth) ez . (H.2)

4As shown in Sec. 3.3.2.1, only two electric or magnetic field components can be set independently for a laser
pulse (kz 6= 0), the corresponding divergence equation determines the third one. Hence, only two components of
A±0 are sufficient to prescribe an arbitrary laser pulse.
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I. Ponderomotive source in quasi-monochromatic paraxial
approximation

Here, we derive an approximate expression for the ponderomotive source term

ιpond
2 = − n0

2qe
∇
∣∣∣∣J1
n0

∣∣∣∣2 . (I.1)

The Gaussian 2D laser electric field is computed in the quasi-monochromatic paraxial approxi-
mation as

E2D
L (x, z, t) ≈ <


E0

L e
− x2

w2
0

(
1+i zzR

)− τ2
t20
−i(ωLτ−π2 )√

1 + i zzR

 ey , (I.2)

with τ = t− z/c, and the Rayleigh length zR = w2
0ωL/2c. The symbol < denotes the real part

of a complex quantity. In general, the current J1 has to be calculated by solving the Maxwell’s
equations coupled to Eqs. (2.5.11) and (2.5.12). However, when using J1 to calculate the source
term ι2 in order to study the TC mechanism, it is sufficient to approximate (for νei = 0)

J1(x, z, t) ≈ q2
e
me

t∫
−∞

n0(x, z, t′)E2D
L (x, z, t′) dt′ ≈ n0q

2
e

meωL
<


iE0

L e
− x2

w2
0

(
1+i zzR

)− τ2
t20
−i(ωLτ−π2 )√

1 + i zzR

 ey .

In the following computation of ∇|J1/n0|2 we will omit the z dependent Gouy phase as well
as the transverse phase curvature. The former would give a z dependent time shift for ιpond

2 of
maximum half a laser period, while the latter is almost flat near focus where we look for a good
approximation. Thus, both phases are without a greater importance for THz waves. Then, the
ponderomotive source writes in terms of the optical intensity

ιpond
2 ≈ − n0q

3
e

2m2
eω

2
Lε0c
∇
{
I2D

L [1 + cos(2ωLτ)]
}
, (I.3)

with

I2D
L (x, z, t) = ε0c

(
E0

L
)2

2
w0
w(z) e

− 2x2
w2(z)

− 2τ2
t20 , (I.4)

w(z) = w0

√
1 +

(
z

zR

)2
. (I.5)

A similar treatment applies to a Gaussian 3D laser electric field

E3D
L (r, t) ≈ <E

0
L e
− x2+y2

w2
0

(
1+i zzR

)− τ2
t20
−i(ωLτ−π2 )

1 + i zzR

ey . (I.6)

One just has to plug the expression for the 3D intensity

I3D
L (r, t) = ε0c

(
E0

L
)2

2

[
w0
w(z)

]2
e
− 2x2+2y2

w2(z)
− 2τ2

t20 (I.7)
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into the expression for the ponderomotive source Eq. (I.3). Thus, the longitudinal ponderomotive
source ιpond

2,z for a 2D/3D Gaussian driving pulse, which we need to evaluate our model, reads

ιpond
2,z = − q3

en0IL
2m2

eω
2
Lε0c


z
(

1−D + 4r2
⊥

w2(z)

)
z2

R + z2 + 4τ
ct20

 × [1 + cos(2ωLτ)] + 2ωL
c

sin(2ωLτ)
}

, (I.8)

where IL is given by Eq. (I.4) or (I.7), D = 2 or 3 is the number of dimensions, and r2
⊥ = x2

or x2 + y2, respectively. Here, the term ∝ z appears due to beam focusing, while the term
∝ τ reflects the longitudinal ponderomotive source as it already exist in 1D. Both are equally
important in 2D or 3D geometry. The product n0IL produces THz as well as SH frequencies
due to the step-like increase in time of n0.

J. Non-radiating solutions of the wave equation
We want to show that the general curl-free solution E2,d to the wave equation (4.2.1) in the
collisionless case (νei = 0), after the driving pulse has passed (ι2 = 0, ∂tn0 = 0), is given by
Eq. (4.2.6) of the main text. Because ∇×E2,d = 0, Eq. (4.2.1) reduces to an oscillator equation

∂2
t E2,d + q2

en0
meε0

E2,d = 0 , (J.1)

and we can write the general solution as

E2,d(r, t) = g(r) exp

i
√
q2

en0
meε0

t

 . (J.2)

For convenience, Eq. (J.2) is written in complex form, and g(r) is a complex valued function
fulfilling

∇× g(r) = 0, g(r)×∇n0(r) = 0 . (J.3)

Thus, we can write g(r) = ∇h(r) with some scalar complex valued function h(r). For spatially
varying n0, ∇h ×∇n0 = 0 further implies h(r) = f(n0) with some complex valued function f ,
and we have

E2,d = exp

i
√
q2

en0
meε0

t

∇f(n0) . (J.4)

Taking the real part of Eq. (J.4), we identify A(n0) = |∂n0f(n0)| and φ(n0) = arg [∂n0f(n0)] in
Eq. (4.2.6).

K. THz pulse energy scaling for thick plasmas
The plasma wire model in Sec. 5.2.1 contains a priori no restriction on the plasmas thickness.
Thus, one can evaluate the plasma thickness-dependent term FDp in Eq. (5.2.6) for any Dp.
When Dp � λTHz, then FDp ∝ D4

p. Here, we consider the scaling for Dp � λTHz. In order to
perform the integration over x′, y′ in Eq. (5.2.6), polar coordinates (r′⊥, ϕ′) are introduced as
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(a) (b) (c)

~ ~ ~

Figure K.1.: Plasma thickness dependency of the angularly integrated far-field power spec-
trum (solid line) according to the plasma wire model Eq. (5.2.6). The corresponding
plasma thickness is given above the graph respectively. The light gray dotted line
specifies the ∝ D4

p-scaling. The dark red dashed line specifies the ∝ D2
p-scaling.

The vertical dotted black line specifies the boarder of the two scaling regimes that
shifts according to the law Dp/λTHz =

√
Lp/λTHz.

x′ = r′⊥ cosϕ′, y′ = r′⊥ sinϕ′. Then, using polar coordinates we can write

FDp = µ0ω
2

16π2c|r|2

∣∣∣∣∣∣∣∣
Dp

2∫
0

r′⊥

2π∫
0

e−iω
c
r′⊥ sin(θ) cos(ϕ′) dϕ′ dr′⊥

∣∣∣∣∣∣∣∣
2

= µ0ω
2

4π2c|r|2

∣∣∣∣∣∣∣∣
Dp

2∫
0

r′⊥J0

(
ω

c
sin(θ) r′⊥

)
dr′⊥

∣∣∣∣∣∣∣∣
2

=
µ0ω

2D4
p

64c|r|2

∣∣∣∣∣∣
1∫

0

r′⊥J0

(
ω

2cDp sin(θ) r′⊥
)
dr′⊥

∣∣∣∣∣∣
2

,

where we employed the identity (x cosϕ′+ y sinϕ′)/|r| = sin(θ) cos(ϕ′−φ), made for each φ the
substitutions ϕ′ − φ → φ and 2r′⊥/Dp → r′⊥ and utilized the identity for the Bessel function
J0(x) =

∫ π
0 exp (ix cos(φ′)) dφ′/π.

Using this expression, we can compute the far field spectrum depending on Dp by means of
Eq. (5.2.6). The results for three different Lp are presented in Fig. K.1. For Dp � λTHz, we
find as expected P̃far ∝ D4

p. Otherwise the far-field spectrum increases with D2
p for sufficiently

large Dp. The boarder of these two regimes depends not only on Dp, but also on Lp. This is
the result of competition between FDp with FLp . They both select a particular set of angles
θ. For large Lp, FLp prefers θ-angles around 0◦ while FDp prefers θ-angles around 0◦ and 180◦.
In the light of Eq. (K.1), we can define the cut-off angle θcut

Dp by setting ωDp sin(θcut
Dp )/(2c) = 1

that reduces to ωDpθ
cut
Dp/(2c) = 1 for small θcut

Dp . Similarly due to FLp in Eq. (5.2.8), we define
ωDp[1 − cos(θcut

Lp )]/(2c) = 1 and for small θcut
Lp we set ωLp(θcut

Lp )2/(2c) = 1 by means of Taylor
expansion. The transition from the FLp-dominated regime to the FDp-dominated regime appears
at (πDp/λTHz)2 = (πLp/λTHz). As can be seen in Fig. K.1, this transition coincides with the
transition of the different scaling regimes.
In summary, if Dp � λTHz, then P̃far ∝ D4

p. For Dp � λTHz, we have two regimes: P̃far ∝ D4
p

if Dp/λTHz �
√
Lp/λTHz and P̃far ∝ D2

p if Dp/λTHz �
√
Lp/λTHz.

L. THz pulse energy scaling for elliptical beams
Here, we investigate the THz pulse energy scaling with the radiating plasma dimensions for a
tightly focused elliptical beam as discussed in Sec. 5.3. To this end, the plasma wire model from
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Sec. 5.2.1 is used. To evaluate the far field power spectrum in Eq. (5.2.6), we assume a cuboid
plasma with the length Lp � λTHz, short plasma thickness Dx � λTHz along x and long plasma
thickness Dy � λTHz along y.
Depending on whether the incoming laser beam is x or y polarized, following the plasma wire

model the current polarization depending factor reads

FJ0 =


y2+z2

|r|2 for J0 ‖ ex
x2+z2

|r|2 for J0 ‖ ey
. (L.1)

The short plasma length implies FLp ≈ L2
p. The plasma thickness dependent term can be

evaluated as

FDp = µ0ω
2D2

x

4π2c|r|2
sin2

[
ωDy
2c

y
|r|

]
[
ω
c
y
|r|

]2 . (L.2)

For Dy � λTHz = 2πc/ω, FDp goes to zero if y → |r|, i.e, if the plasma is very broad along y,
no radiation is emitted in the y-direction. In the following, we make use of it by introducing the
polar coordinates

z = r⊥ cosϕ x = r⊥ sinϕ (L.3)

and considering the far-field emission only for small y, i.e., |r| ≈ r⊥. Then, the polarization
depending factor simplifies to

FJ0 ≈
{

cos2 ϕ for J0 ‖ ex
1 for J0 ‖ ey

. (L.4)

By substituting ξ = ωDyy/(2cr⊥), the angularly integrated power spectrum can be evaluated
to

P̃far =
∞∫
−∞

2π∫
0

Pfar r⊥ dϕ dy = L2
pD

2
xDy

µ0ω

4π |J0(ω)|2
∞∫
−∞

sin2 ξ

ξ2 dξ

{
π for J0 ‖ ex
2π for J0 ‖ ey

. (L.5)

Thus, independently on laser polarization, the THz pulse energy scales with ∝ Dy according to
the plasma wire model.
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Titre: Étude théorique de la génération térahertz dans les microplasmas induits par laser
Résumé: Nous étudions la génération de rayonnement TeraHertz (THz) dans des microplas-
mas produits par des lasers femtosecondes. Cette technique est prometteuse pour créer effi-
cacement des sources THz compactes et étendue spectralement (0.3-30 THz), qui intéressent de
nombreuses applications, comme l’identification spectroscopique de substances dangereuses ou
encore l’imagerie en biologie et médecine. Contrairement aux sources conventionnelles, comme
les interrupteurs photo-conducteur, les sources THz basées sur des plasmas ne sont pas limitées
par la tenue au flux et couvrent l’ensemble du spectre THz. Afin de modéliser des microplasmas
générés par des faisceaux laser fortement focalisés, nous présentons un nouvel algorithme qui
permet d’injecter tout type de laser dans des codes électromagnétiques. Nous dérivons aussi
un modèle compatible avec les équations de Maxwell qui inclut les deux mécanismes généra-
teurs de THz: le courant d’ionisation (IC) et le mécanisme “Transition-Cherenkov” (TC). Ce
dernier mécanisme domine la production de THz pour des lasers à plusieurs cycles optiques, où
l’émission est produite par les courants d’électron longitudinaux. Dans le cas des microplasmas
où un champ électrostatique externe est ajouté, le taux de conversion énergétique laser/THz
peut être augmenté de deux ordres de grandeur via le mécanisme IC lorsque le champs statique
ou la pression du gaz sont accrus. De plus, les simulations 3D montrent que pour un faisceau
laser à deux couleurs et dans des conditions optimales de focalisation, une énergie laser de 10
micro-Joule est suffisante pour atteindre des taux de conversion bien au-dessus de 10−4. Dans
ce cas, la nature transverse du courant IC est cruciale pour accroitre l’efficacité avec la longueur
du plasma. En considérant un faisceau laser à deux couleurs de forme elliptique, nous proposons
de contrôler les spectres d’émission en exploitant les effets plasmoniques résonants.
Mots clés: Sources terahertz, microplasma, codes électromagnétiques, forte focalisation

Title: Theoretical investigations of terahertz generation in laser-induced microplasmas
Abstract: We investigate terahertz (THz) generation in fs-laser-induced microplasmas, which
are promising candidates for compact and efficient broadband THz sources (0.3-30 THz). Such
sources have various applications as spectroscopic identification of hazardous substances or THz
imaging in biology and medicine. Unlike conventional THz sources as photoconductive switches,
gas-plasma-based THz sources do not suffer from irreversible material damage and can cover
the whole THz range at once. To simulate tightly-focused-laser-induced microplasmas, we pro-
pose an efficient numerical algorithm that can introduce any arbitrarily shaped laser pulses
into electromagnetic codes. We derive a Maxwell-consistent model that includes two major THz
generation mechanisms, the ionization current (IC) and transition-Cherenkov mechanisms (TC).
The latter mechanism is shown to dominate for single-color multi-cycle lasers pulses where the
emission is driven by longitudinal electron currents. For microplasmas a constant electric field
can boost the laser-to-THz converison efficiency by two orders of magnitude via the IC mech-
anism when increasing the gas-pressure and bias-voltage. Moreover for two-color-driving laser
pulses, Maxwell-consistent 3D simulations show, that only 10 µJ laser pulse energy are sufficient
to reach conversion efficiencies well above 10−4 when optimizing the focusing conditions. Here,
the transverse nature of the IC currents is crucial for the up-scaling of the efficiency with the
plasma length. By using elliptically-shaped two-color-driving laser beams, we propose to control
the emission spectra by exploiting resonant plasmonic effects.
Keywords: THz sources, microplasma, electromagnetic codes, tight focusing
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UMR 5107, 33405 Talence, France




	Résumé en français
	Introduction to terahertz sources
	Applications
	Exploiting linear interaction of matter with THz pulses
	Control over matter
	Demands on THz sources

	Conventional sources
	Quantum cascade lasers
	Photoconductive switches
	Optical rectification
	Difference frequency generation
	Summarizing the abilities of conventional THz sources

	Laser-induced gas-plasma-based terahertz sources
	Single-color fs-laser-induced gas-plasma
	DC-biased single-color fs-laser-induced gas-plasma
	Two-color fs-laser-induced gas-plasma

	Motivation of this work

	Theory of THz emission from laser induced microplasmas
	The ionization model
	Assumption of a polarization-free gas plasma
	Influence of the neutral polarization on the THz generation
	Influence of the neutral polarization on the laser propagation

	Maxwell and Vlasov equations
	Moments of the Vlasov equation
	Continuity equation
	Euler equation
	Energy equation

	Multiple scale expansion
	The lowest order set of equation
	Next higher order set of equations
	Evolution equations for the electric field
	Estimating the validity of the multiple scale expansion

	Far-field emission from a current

	Numerical tools
	Fundamentals of Particle-In-Cell simulations
	Modeling the plasma dynamics
	Maxwell solver
	The PIC loop

	Fluid code ARCTIC: solving the lowest order set of multiple scale equations
	Discretization of the material equations
	Benchmark: Drude-fluid vs. PIC in 3D

	A technique to introduce arbitrarily shaped laser pulses
	Schematic presentation of the laser injection
	Laser field propagation in vacuum
	Implementing the laser boundary conditions
	Examples
	Conclusion


	Single-color fs-laser-induced microplasmas
	Comparing mechanisms of THz excitation
	Laser heating
	Ionization current vs. transition-Cherenkov mechanism

	Radiating and non-radiating excitations
	Terahertz radiation from single-color-fs-laser-induced microplasmas
	Determining the radiating current polarization by symmetries
	A simplified model of THz emission
	Scaling with the laser pulse energy and the focusing conditions

	DC-biased microplasmas
	DC-bias polarization dependence
	Scaling with gas pressure and bias-voltage

	Conclusions

	Two-color fs-laser-induced microplasmas
	Smallest microplasmas
	Influence of the two-color-pump-pulse parameter on the excitation
	Emission properties for the two-color scheme
	Alternative pump pulse configurations

	Scaling of the laser-to-THz conversion efficiency
	The plasma wire model
	Up-scaling the efficiency
	Gas-pressure and phase angle dependence
	Emission properties of larger microplasmas
	The role of linear dispersion

	THz generation by elliptical laser beams
	Up-scaling of the THz pulse energy
	Polarization dependence: TE vs. TM
	Gas-pressure dependence of the TM case

	A plasmonic view on spectral properties of THz emission
	The plasma slab model
	The response of a plasma slab
	Spectral polarization dependence in elliptical beams
	Spectra from TM-polarized elliptical beams at low gas pressures
	Non-radiating oscillations at the plasma frequency

	Conclusions

	Summary and outlook
	Appendices
	The Fourier transforms
	Neglecting the neutral polarization in air
	Relation between transverse symmetries of the current source and current
	Rewriting 2 in terms of J1
	Discretization of the ionization rate equations
	Fix-point iteration for discrete solution of energy and current equation
	Generating Maxwell consistent solutions using the vector potential in Lorentz gauge
	Transformation of the 1D current source 2 into the co-moving pulse frame
	Ponderomotive source in quasi-monochromatic paraxial approximation
	Non-radiating solutions of the wave equation
	THz pulse energy scaling for thick plasmas
	THz pulse energy scaling for elliptical beams

	Bibliography
	Acknowledgments

