
HAL Id: tel-01661378
https://theses.hal.science/tel-01661378

Submitted on 11 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the security of mobile agent systems
Hind Idrissi

To cite this version:
Hind Idrissi. Contributions to the security of mobile agent systems. Cryptography and Secu-
rity [cs.CR]. Université de La Rochelle; Université Mohammed V (Rabat), 2016. English. �NNT :
2016LAROS022�. �tel-01661378�

https://theses.hal.science/tel-01661378
https://hal.archives-ouvertes.fr

N◦ d’ordre : 2891

THÈSE DE DOCTORAT

Présentée par

Hind IDRISSI

Discipline : Informatique
Spécialité : Informatique et Sécurité de l’Information

Titre

Contributions à la Sécurité des Systèmes d’Agents
Mobiles

Soutenue le Vendredi 15 Juillet 2016

Devant le jury

Président :
Mr. Said EL HAJJI PES Faculté des Sciences, Université Mohammed V de Rabat, Maroc

Examinateurs :
Mr. Arnaud REVEL PU Université de La Rochelle, France

Mr. El Mamoun SOUIDI PES Faculté des Sciences, Université Mohammed V de Rabat, Maroc

Mr. Charly POULLIAT PU INP-ENSHEEIT, Toulouse - France

Mme. Lucile SASSATELLI MC Université Nice Sophia Antipolis, Nice - France

Mr. Jalal LAASSIRI PH Faculté des Sciences, Université Ibn Tofail de Kenitra, Maroc

Faculté des Sciences, 4 Avenue Ibn Battouta B.P. 1014 RP, Rabat - Maroc
Tel +212 (05) 537 77 18 34/35/38, Fax : +212 (05) 537 77 42 61, http ://www.fsr.ac.ma

2

N◦ d’ordre : 2891

DOCTORAL THESIS

Presented By

Hind IDRISSI

Option : Computer Sciences
Discipline : Computer Sciences and Information Security

Title

Contributions to the Security of Mobile Agent
Systems

Defended on July 15th, 2016

Jury

President :
Mr. Said EL HAJJI PES Faculty of Sciences, Mohammed-V University in Rabat, Maroc

Reporters :
Mr. Arnaud REVEL PU University of La Rochelle, France

Mr. El Mamoun SOUIDI PES Faculty of Sciences, Mohammed-V University in Rabat, Maroc

Mr. Charly POULLIAT PU INP-ENSHEEIT, Toulouse - France

Mme. Lucile SASSATELLI MC Nice Sophia Antipolis University, Nice - France

Mr. Jalal LAASSIRI PH Faculty of Sciences, Ibn Tofail University in Kenitra, Maroc

Faculté des Sciences, 4 Avenue Ibn Battouta B.P. 1014 RP, Rabat - Maroc
Tel +212 (05) 537 77 18 34/35/38, Fax : +212 (05) 537 77 42 61, http ://www.fsr.ac.ma

2

Avant-Propos

Cette thèse a été réalisé en cotutelle dans le cadre du Projet Hubert Curien Volubilis N°.
27041QL.

Les travaux présentés dans ce mémoire ont été effectués au Laboratoire de Mathématiques,
Informatique et Application (LabMIA) de la Faculté des Sciences de Rabat (FSR), Université
Mohammed V de Rabat au Maroc sous la direction du professeur El Mamoun SOUIDI, et au
Laboratoire Informatique, Image et Interaction (L3I), Université de La Rochelle en France sous
la direction du professeur Arnaud REVEL, dans le cadre d’une thèse en cotutelle.

Je commencerai par présenter ma plus vive gratitude à mon Directeur de thèse M. El
Mamoun SOUIDI, Professeur d’Enseignement Supérieur à la FSR. Grâce à ses encouragements
et ses conseils qui m’a procuré, il a su me mettre sur le chemin afin de mener à bien mes travaux
de recherche. Je ne saurais exprimer ma profonde gratitude à son égard et l’ultime respect que
je lui porte.

Je veux aussi exprimer toute ma reconnaissance à mon directeur de thèse en France, M.
Arnaud REVEL, Professeur des Universités à l’Université de La Rochelle. Je tiens à le remercier
profondément de m’avoir intégrée au sein de l’équipe « Interactivité et Dynamique des Systèmes
» du laboratoire L3I, et de m’avoir consacré son temps et son énergie malgré ses préoccupations
et son emploi du temps très chargé. Sa motivation, ses encouragements et ses conseils m’ont
été d’une très grande aide pour mener à terme ce travail.

Je souhaite remercier profondément M. Said EL HAJJI, Professeur d’Enseignement Supé-
rieur à la FSR, directeur du laboratoire LabMIA d’avoir accepté de présider le jury de ma thèse.
Je tiens à lui présenter ma gratitude de m’avoir intégrée au sein de son laboratoire et d’avoir
toujours été présent pour ses doctorants avec ses conseils scientifiques et humains, malgré ses
occupations.

Mes remerciements vont à Mr. Charly POULLIAT, Professeur des Universités à l’INP-Ecole
Supérieure Electronique Electrotechnique Informatique Hydraulique Télécommunications (INP-
ENSHEEIT), Toulouse-France, pour avoir accepté de rapporter mon travail et de participer au
jury. Ses remarques, ses conseils et ses suggestions m’apporterais de grand supports.

Je remercie également Mr. Jalal LAASSIRI, Professeur d’Habilité à la FS-Université Ibn
Tofail de Kenitra, pour avoir accepté de rapporter ce travail et de participer au jury. Ses belles
mots d’encouragement et de reconnaissance envers mon travail ne pourront que m’inciter à
continuer mes recherches sans se lasser ou baisser les bras.

Enfin, je voudrais adresser mes remerciements à Mme. Lucile SASSATELLI, Maitre de
Conférence à l’Université Nice Sophia Antipolis - France, pour avoir accepté de rapporter et
examiner ce travail et aussi participer au jury de ma soutenance. Le grand intérêt qu’elle a
exprimé vis-à-vis mes travaux m’a apporté une grande motivation.

Ces années de thèse ont été remarquablement riches d’expériences et de belles rencontres
qui m’ont particulièrement marquées. J’avais l’occasion fréquenter des personnes qui ont été

1

2 Avant-Propos

toutes intéressantes les unes des autres, et qui ont contribué positivement à mon apprentissage,
chacun à sa façon. J’aimerais exprimer ma reconnaissance envers tous les membres du labo-
ratoire LabMIA, particulièrement, Mohammed, Charifa et Janati, et également les membres
du laboratoire L3I, particulièrement M. Jean Marc Ogier pour son enthousiasme, Mme Nibal
Nayef pour son grand soutien, Imen, Maroua, Christophe, Daouda, Nam et Mickael.

Finalement, il y a des personnes que je ne saurais jamais remercier assez. A mes très chers
parents qui n’ont jamais cessé de m’encourager et me soutenir pour aller de l’avant, que Dieu
le tout puissant leur accorde la santé, la longévité et le bien-être. Je remercie aussi mes petites
sœurs et toute ma famille pour leur soutien tout au long de mes études.

Acknowledgment

I am grateful to Allah Almighty for giving me the courage, patience, determination as well
as guidance to accomplish this thesis.

I would like to express my special gratitude to Professor El Mamoun SOUIDI for trusting
in my abilities, providing me the opportunity of studying at LabMIA and for his unlimited
support, advice and encouragements. I would also like to extend my heartfelt gratitude to
Professor Arnaud REVEL for providing me the opportunity to work with him. I could have
never been able to achieve my goals without his intellectual support and enthusiasm. He has
been a source of constant motivation for me and will remain in the future as well.

I wish to extend my utmost gratitude to everyone at LabMIA for providing conducive
environment for research and development. I would like also to thank the members of L3I for
making my stay wonderful and memorable at La Rochelle.

This thesis in co-tutelle was supported by the grant of the project Hubert Curien Volubilis
N° 27041QL.

I would like to dedicate my life and my work to my beloved parents. I know that I cannot
express my gratitude to my parents by words. Throughout my life, they were always there praying
for me and for my success, they provided me with every comfort despite of a lot of constraints.
Whenever I am feeling depressed and demotivated, they consoled and encouraged me. My parents
have always been a source of inspiration, power and motivation for me. They encouraged me at
every step of my educational career and made me believe in my abilities. They surrounded me
with love, support and consideration. I know I can never thank my parents enough for all the
sacrifices they made for me. I pray that may Allah Almighty give them a healthy long life so
that they can see their dreams coming true. Ameen.

3

4 Acknowledgment

Abstract

Recently, the distributed computing has witnessed a great evolution due to the use of mobile
agent paradigm, endowed with innovative capabilities, instead of the client-server system where
the applications are bound to particular nodes in networks. Having captured the interest of
researchers and industry, the mobile agents are able to autonomously migrate from one node to
another across the network, transferring their code and data, which allows them to efficiently
perform computations, gather information and accomplish tasks.

However, despite its significant benefits, this paradigm still suffering from some limitations
that obstruct its expansion, primarily in the area of security. According to the current efforts
to investigate the security of mobile agents, two categories of threats are considered. The first
one concerns the attacks carried out on the mobile agent during its travel or stay by malicious
hosts or entities, while the second one deals the attacks performed by a malicious mobile agent
in order to affect the hosting platform and consume its resources. Thus, it is substantially
needed to conceive a complete security infrastructure for mobile agent systems, which includes
methodology, techniques and validation.

The aim of this thesis is to propose approaches which provide this technology with
security features, that meet with its overall structure without compromising its mobility,
interoperbility and autonomy capabilities. Our first approach was based on XML serialization
and cryptographic primitives, in order to ensure a persistent mobility of agent as well as a
secure communication with hosting platforms. In the second approach, we have conceived an
alternative to the first approach using binary serialization and Identity-based cryptography.
Our third approach was proposed to introduce anonymity aspect to the mobile agent, and
provide him with a tracing mechanism to detect intrusions along its trip. The fourth approach
was developed in order to restrict the access to the resources of the agent platform, using
a well-defined access control policy based on threshold cryptography. At this stage, we find
it interesting to experiment the utility of mobile agents with security features in preserving
the security of other technologies such as cloud computing. Thus, we have developed an
innovative cloud architecture using mobile agents endowed with cryptographic traces for
intrusion detection and a revocation protocol based on trust threshold for prevention.

Key-Words: Mobile Agents Security, Cryptography, Serialization, Access Control, Intru-
sion Detection and Prevention, JADE

5

6 Résumé

Résumé

Récemment, l’informatique distribuée a connu une grande évolution en raison de l’utilisation
du paradigme des agents mobiles, doté d’innovantes capacités, au lieu du système client-serveur
où les applications sont liées à des noeuds particuliers dans les réseaux. Ayant capturé l’intérêt
des chercheurs et de l’industrie, les agents mobiles sont capables de migrer de manière autonome
d’un noeud à un autre à travers le réseau, en transférant de leur code et leurs données, ce qui
leur permet d’effectuer efficacement des calculs, de recueillir des informations et d’accomplir
des tâches.

Cependant, en dépit de ses avantages significatifs, ce paradigme souffre encore de certaines
limitations qui font obstacle à son expansion, principalement dans le domaine de la sécurité.
Selon les efforts actuellement déployés pour évaluer la sécurité des agents mobiles, deux ca-
tégories de menaces sont considérées. La première catégorie concerne les attaques menées sur
l’agent mobile lors de son voyage à travers des hôtes ou des entités malveillantes, tandis que
la seconde catégorie traite les attaques effectuées par un agent mobile illicite afin d’affecter la
plate-forme d’hébergement et de consommer ses ressources. Ainsi, il est substantiellement né-
cessaire de concevoir une infrastructure de sécurité complète pour les systèmes d’agents mobiles,
qui comprend la méthodologie, les techniques et la validation.

L’objectif de cette thèse est de proposer des approches qui fournissent cette technologie avec
des fonctionnalités de sécurité, qui correspondent à sa structure globale sans compromettre ses
capacités de mobilité, l’interopérabilité et l’autonomie. Notre première approche est basée sur
la sérialisation XML et des primitives cryptographiques, afin d’assurer une mobilité persistante
de l’agent ainsi qu’une communication sécurisée avec les plates-formes d’hébergement. Dans
la seconde approche, nous avons conçu une alternative à la première approche en utilisant
la sérialisation binaire et la cryptographie à base de l’identité. Notre troisième approche
introduit l’aspect d’anonymat à l’agent mobile, et lui fournit un mécanisme de traçage pour
détecter les intrusions le long de son voyage. La quatrième approche a été développée dans
le but de restreindre l’accès aux ressources de la plate-forme de l’agent, en utilisant une
politique de contrôle d’accès bien définie à base la cryptographie à seuil. A ce stade, on s’est
intéressé à expérimenter l’utilité des agents mobiles avec des fonctionnalités de sécurité, dans
la préservation de la sécurité des autres technologies, telles que le Cloud Computing. Ainsi,
nous avons proposé une architecture innovante du Cloud, en utilisant des agents mobiles dotés
de traces cryptographiques pour la détection d’intrusion et d’un protocole de révocation à base
de seuil de confiance pour la prévention.

Mots-Clés : Sécurité des Agents Mobiles, Cryptographie, Sérialisation, Contrôle d’Accès,
Détection et Prévention d’Intrusion, JADE

Résumé Détaillé

Contexte de l’Etude

Actuellement, le besoin en information devient très exigent et l’interopérabilité des systèmes
deviens une approche primordiale. La mutation du paysage informatique vers les systèmes
distribués, implique l’interaction et la coopération entre les entités et les composants de ces
systèmes à travers le réseau, avec des connexions impérativement non-permanentes. Ceci soulève
le point de plus en plus sur les aspects de dynamicité, adaptabilité, autonomie et mobilité. Les
systèmes multi-agents ont été conçu afin d’apporter l’appui pour ces aspects et résoudre les
problèmes qui lui sont adjacents.

L’approche multi-agent [Fer99] considère tout système comme une petite société où des
entités ou des acteurs autonomes et indépendants appelés "agents" interagissent collectivement
en vue de traiter un problème ou exécuter une tâche. Ce qui explique son usage dans diverses
disciplines, à savoir la robotique [Sor13], l’industrie [Met11], l’optimisation des systèmes de
transport [Chen10], la simulation et la modélisation des systèmes complexes.

Le paradigme d’agent s’est tourné par la suite à la gestion de la mobilité, en inspectant
des compatibilités et des convergences assez intéressantes. Les systèmes d’agents mobiles sont
une technologie assez innovante qui a pu trouver une place au sein d’applications complexes
et émergentes comme le commerce électronique, les télécommunications, la gestion des réseaux
distribués [Gav09], la recherche adaptative et personnalisée d’information [Lu07], les jeux
informatiques [Dig12], etc. Grâce à leur autonomie, indépendance, adaptabilité et notamment
mobilité, les agents mobiles ont la capacité de réaliser leurs objectifs de manière fiable et très
flexible. Les agents mobiles se déplacent d’un nœud à un autre à travers le réseau, en possession
de toutes les ressources : données, code et état d’exécution, leur permettant d’exécuter leurs
tâches indépendamment des hôtes vers lesquels ils migrent.

Pourtant, la mobilité et la flexibilité des agents soulève des problèmes au niveau de la
sécurité. Les systèmes à base d’agents mobiles font souvent recours à des interactions locales ou
distantes avec d’autres agents sur le réseau. Ces interactions initient des communications difficile
d’assurer qu’elles sont saine et sure et ne portent aucun types d’anomalies ou de vulnérabilités
susceptibles de nuire à l’agent mobile ou aux hôtes le recevant. Actuellement, ce problème
devient un obstacle devant l’expansion de ce paradigme, qui suscite fortement la mise en place
de politiques de sécurité, identifiant les spécifications et les besoins à définir pour chacune
des entités (agent, hôte). En prenant en considération l’aspect dynamique de ces systèmes qui
génère en continue de nouvelles attaques et qui exige que chacune des entités interlocutrices
s’adapte au la politique de sécurité de l’autre.

7

8 Résumé Détaillé

Problématique

L’agent mobile est une approche émergente qui reflète l’autonomie et l’indépendance en prise
de décisions et en exécution de tâches. Cet approche rencontre toujours des contraintes à être
conçue en pratique à cause de la complexité des principes et des aspects qui lui sont associés.
La majorité des travaux en littérature qui traitent les systèmes à base d’agents mobiles, se
concentrent sur l’étude de la modélisation à travers différent niveaux d’abstraction : formel,
structurel et comportemental, sans se soucier ou accorder une importance aux aspects liés à la
sécurité. Ainsi, il semble être nécessaire, voire crucial, d’accorder plus d’intérêt aux problèmes
de sécurité soulevés par cette technologie.

En effet lorsqu’un agent se déplace, il est crucial de s’assurer qu’il sera exécuté correctement
en toute sécurité sur le nouveau système visité. De même, il est crucial de rassurer le système
d’agents de manière qu’il n’y aura aucun risque d’accueillir un nouvel agent mobile. Plus pré-
cisément, durant la mobilité de l’agent d’un hôte à un autre à travers le réseau, il peut se
trouver face à deux situations qui déclenchent des vulnérabilités compromettant sa sécurité. La
première situation s’établit quand l’agent migre vers un hôte malicieux sans pouvoir l’identifier.
Ce dernier peut alors exploiter les ressources de l’agent, modifier ses données, profiter de ses
comportements et de ses résultats ou encore lui injecter du code malicieux qui infectera par
la suite tous les hôtes que l’agent planifie de visiter. ceci reflète éventuellement l’émergence en
continu et en chaînage des menaces à d’autres hôtes. La deuxième situation concerne les me-
naces qui surgissent suite aux contact non sécurisé que peut avoir l’agent mobile avec d’autres
agents rencontrés en chemin. Ces agents peuvent avoir des comportements malicieux et bien
évidement nuire aux données et aux ressources de l’agent, ce qui lui empêcherait de s’exécuter
proprement.

De nombreux efforts ont été consacrés pour enquêter sur la sécurité des systèmes d’agents
mobiles. Ainsi, certains aspects fondamentaux tels que l’authentification, la confidentialité,
l’intégrité et le contrôle d’accès doivent être adressées. Dans ce contexte, plusieurs investigations
ont été mené sur les problèmes de sécurité et les fameuses solutions qu’ont été proposées dans
ce domaine, et qui comprennent de nombreuses techniques classiques dédiés à la protection de
l’agent mobile et les plates-formes d’hébergement [Alf05].

La majorité de ces solutions reposent sur des mécanismes cryptographiques bien connus et
des modèles traditionnels de contrôle d’accès [Bella04]. A titre d’exemple, le "Traçage d’Exé-
cution" produit des enregistrements des comportements et des actions de l’agent en utilisant
les signatures numériques. "L’Encapsulation Partielle du Résultat" préserve les résultats de
l’exécution de l’agent en utilisant le cryptage, la signature numérique, la fonction de hachage
et le code d’authentification. "L’Obfuscation de Code" impose une transformation au code
de l’agent, en utilisant des applications cryptographiques de différents niveaux de confiance.
"Code Porteur de Preuve" favorise la vérification automatique du code avant son exécution,
sur la base de la conformité d’une preuve codée. "L’État d’évaluation" est basée sur l’utilisa-
tion des fonctions d’évaluation, qui déterminent les privilèges accordés à un agent en fonction
de facteurs conditionnels et invariants. "Le Bac à Sable (SandBoxing)" permet l’exécution du
code de l’agent mobile dans un environnement restreint (bac à sable), qui apparaît semblable
au système global, et où les restrictions affectent certaines opérations du code.

En plus de ces solutions, il y a des contributions récemment proposées et qui adoptent de
nouvelles visions et orientations du paradigme des agents mobiles. En général, la plupart de ces
contributions sont inspirées des techniques précédemment mentionnées ou leur apportent des
améliorations, en tenant compte de l’utilisation croissante des systèmes d’agents mobiles dans
plusieurs disciplines, avec différents concepts et architectures.

Résumé Détaillé 9

Objectifs de la Thèse

L’objectif principal de cette thèse est la protection des systèmes basés sur les agents mobiles.
D’une part, cela concerne la protection de l’agent mobile, y compris son code et ses données,
contre les entités malveillantes qu’il peut rencontrer dans son itinéraire, et qui visent à affecter
son authentification, sa confidentialité et son intégrité. D’autre part, cela aussi comprend la
protection des plates-formes à agents contre les agents mobiles hébergés qui peuvent conduire
des comportements malveillants. Par conséquent, l’idée de base est de concevoir des méca-
nismes de protection qui préservent les exigences de sécurité de ces systèmes, sans pour autant
compromettre leurs caractéristiques de flexibilité, d’autonomie et de mobilité.

Dans ce contexte, nous proposons quatre approches :

1. Une robuste authentification basée sur un protocole d’échange de clés, intégré avec la
signature numérique. Ce mécanisme est associé à une mobilité fiable de l’agent à l’aide
de la sérialisation XML et des primitives cryptographiques [Idri14a].

2. Une forte authentification en utilisant le protocole d’accord de clé basé sur l’identité
et la signature de Schnorr, ainsi que la combinaison de la sérialisation binaire avec des
primitives cryptographiques pour assurer la mobilité sécurisée de l’agent [Idri15b].

3. Un processus robuste d’authentification anonyme en utilisant la cryptographie à courbe
elliptique avec appariement bilinéaire, et un mécanisme de détection d’intrusion basé sur
le traçage d’exécution des comportements et des actions effectués par l’agent mobile sur
les plates-formes d’hébergement visitées.

4. Une puissante politique de contrôle d’accès, basée sur un modèle d’accès discrétionnaire
associé à un système de partage de seuil, afin d’élaborer une gestion fiable des clés
pour les différents droits d’accès à accorder sur les ressources de la plate-forme d’agents
[Idri15c].

Toutes ces approches sont mises en œuvre et évaluées afin de prouver leur fiabilité, efficacité
et sécurité, par rapport aux autres solutions existantes. En outre, une application à la sécurité
du cloud computing est proposée, afin de montrer pratiquement que la sécurité de l’agent mobile
peut être bénéfique pour d’autres technologies.

Organisation de la Thèse

La présente thèse comprend six chapitres. Les deux premiers chapitres présentent les princi-
paux concepts utilisés, afin de permettre aux lecteurs de se familiariser avec le domaine concerné
et sa problématique soulevée. Les trois chapitres qui suivent sont consacrés à la description des
approches proposées. Alors que le dernier chapitre présente une application de la sécurité des
agents mobiles à la téchnologie du cloud computing.

Le chapitre 1 introduit un état de l’art, où les concepts généraux des systèmes d’agents
mobiles sont décrits. Cela inclut leurs définitions habituelles, leurs qualités, leurs domaines
d’application, les services nécessaires à leur exécution, les normes adoptées et des exemples de
plate-formes pour leur développement.

Le chapitre 2 expose en détail les problèmes de sécurité soulevés par cette technologie. Par
la suite, nous énumérons les différentes attaques possibles en fonction de quel aspect de sécurité
est affecté, ainsi que les principales contre-mesures qui ont été proposées et examinées par les
chercheurs.

10 Résumé Détaillé

Dans le chapitre 3, deux approches basées sur le mécanisme de sérialisation sont décrits.
La première approche utilise la sérialisation XML afin d’assurer un format persistant pour la
mobilité des agents, tandis qu’un protocole d’échange de clés intégré avec la signature numé-
rique est utilisé pour élaborer un processus d’authentification entre l’agent et sa plate-forme
d’hébergement [Idri15a]. Dans la seconde approche, une sérialisation binaire est adoptée pour
permettre une migration souple de l’agent, alors qu’une authentification forte est proposée, basé
sur un protocole d’accord de clé qui utilise l’identité et la Schnorr signature [Idri15b].

Dans le chapitre 4, on propose un système d’authentification qui préserve l’anonymat de
l’agent mobile lorsqu’il est hébergé par des plates-formes d’exécution. Ce système est basé sur la
cryptographie à courbe elliptique et l’appariement bilinéaire. En outre, un procédé de détection
d’intrusion est proposé, en faisant usage de la technique des traces cryptographiques, où les
comportements et les actions effectués par l’agent mobile sur chaque plate-forme d’hébergement
visitée sont enregistrés jusqu’à ce que l’agent retourne à sa plate-forme propriétaire, où ils
peuvent être vérifiés.

Le chapitre 5 propose une politique de sécurité pour protéger la plate-forme d’hébergement
et ses ressources. Cette politique utilise le modèle de contrôle d’accès discrétionnaire (DAC)
pour concevoir une matrice d’accès aux ressources de la plate-forme. En outre, un schéma de
partage de secret à seuil est intégré afin de dériver un ensemble de clés d’accès à partir de la
clé principale de la plate-forme, et qui sont nécessaires afin d’attribuer les droits d’accès sur les
ressources associées aux légitimes utilisateurs [Idri15c].

Dans le chapitre 6, nous décrivons une nouvelle application de la sécurité des agents mobiles
pour assurer une communication sécurisée entre les entités du cloud computing. A cet effet,
une détection d’intrusion et de prévention pour le cloud computing (cloud-IDPS) est conçue,
en utilisant deux techniques principales : une exécution de traçage pour garder une preuve sur
les services et les calculs effectués sur les serveurs du cloud, ainsi qu’un protocole de révocation
basé sur un seuil de confiance afin d’empêcher les intrusions détectées de se propager [Idri15d].

Par la fin, cette mémoire se termine par une conclusion générale qui résume nos contributions
et décrit les futures perspectives.

Contents

Avant-Propos 1

Acknowledgment 3

Abstract 5

General Introduction 17
Context . 17
Problematic and Related Works . 18
Objectives . 20
Organization of the Thesis . 20

Chapter 1 Mobile Agent Systems 23
1.1 Evolution . 24

1.1.1 Client/Server Architecture . 24
1.1.2 Remote Evaluation . 26
1.1.3 Code on-demand . 26

1.2 Basic Concepts of Mobile Agents . 27
1.2.1 Fundamentals . 27
1.2.2 Qualities and Advantages . 30
1.2.3 Application Areas . 32

1.3 Services for Mobile Agent Execution . 33
1.3.1 Structure, Creation and Communication 33
1.3.2 Localization, Migration and Execution 34
1.3.3 Security, Fault-Tolerance and Traceability 37
1.3.4 Life cycle and Control . 38

1.4 Standardization Efforts . 39
1.4.1 MASIF . 39
1.4.2 FIPA . 40

1.5 Examples of Mobile Agent Platforms . 41
1.5.1 JAVA Agent Development Framework (JADE) 41
1.5.2 Agent Applets (Aglet) . 43
1.5.3 Linda in a Mobile Environment (LIME) 43

1.6 Conclusion . 45

Chapter 2 Security of Systems based on Mobile Agents 47
2.1 Security Requirements . 47
2.2 Security Threats . 49

11

12 CONTENTS

2.2.1 Attacks of Malicious Agents . 49
2.2.2 Attacks of Malicious Platforms . 51

2.3 Protection of Mobile Agent Systems . 52
2.3.1 Protection of the Mobile Agent . 52
2.3.2 Protection of the Agents Platform . 55

2.4 Synthesis . 59

Chapter 3 Serialization and Cryptography for Mobile Agents 61
3.1 Preliminaries . 61

3.1.1 Binary Serialization . 62
3.1.2 XML Serialization . 63

3.2 XML Serialization with Cryptographic Primitives 64
3.2.1 Authentication Process . 64
3.2.2 Confidentiality and Integrity Preserved 66
3.2.3 Mobility Process . 68
3.2.4 Evaluation and Results . 71

3.3 Binary Serialization with ID-based Key Agreement Protocol 75
3.3.1 Authentication Process . 75
3.3.2 Confidentiality and Integrity Preserved 79
3.3.3 Mobility Process . 80
3.3.4 Evaluation and Results . 82

3.4 Synthesis and Discussion . 85
3.5 Conclusion . 87

Chapter 4 Elliptic Curve Cryptography for Mobile Agents 89
4.1 Preliminaries . 90

4.1.1 Notations . 90
4.1.2 Elliptic Curve Cryptography . 90
4.1.3 Intrusion Detection System . 91

4.2 Anonymous Authentication using Elliptic Curve Cryptography 93
4.2.1 Initialization Phase . 93
4.2.2 Registration Phase . 93
4.2.3 Authentication and Key Agreement Phase 94

4.3 Intrusion Detection based on Execution Tracing 96
4.4 Security Analysis . 100
4.5 Performance Analysis . 101

4.5.1 Authentication Performance . 102
4.5.2 Detection Performance . 103

4.6 Conclusion . 108

Chapter 5 Access Control and Cryptography for Agent Platforms 109
5.1 Preliminaries . 110

5.1.1 Access Control Policies . 110
5.1.2 Threshold Sharing Scheme . 111

5.2 Platform Architecture . 113
5.3 Authentication Process . 113
5.4 Access Control of the Platform Resources . 115
5.5 Security Analysis . 117

CONTENTS 13

5.6 Performance Analysis . 119
5.7 Conclusion . 122

Chapter 6 Application: Cloud Security using Secure Mobile Agent 125
6.1 Application Context . 126

6.1.1 Problem Statement . 127
6.1.2 Related Works . 129

6.2 Proposed Cloud-IDPS . 129
6.2.1 Cryptographic Traces for Intrusion Detection 130
6.2.2 Revocation-based Trust Threshold for Intrusion Prevention 135

6.3 Performance Analysis . 137
6.3.1 Response Time . 138
6.3.2 Network Load . 139
6.3.3 Security Performance . 139

6.4 Conclusion . 141

General Conclusion 143

Bibliography 145

List of Publications 153

List of Figures

1.1 Client/Server Architecture . 24
1.2 Remote Evaluation Architecture . 26
1.3 Code on-Demand Architecture . 27
1.4 Structure of a Multi-Agent System . 29
1.5 Mobile Agent Concept . 30
1.6 The migration process of an agent between two platforms 36
1.7 Life cycle of a mobile agent according to FIPA [FIPA] 41
1.8 Structure of JADE platform compliant to FIPA 42

2.1 Categories of Threats in Mobile Agent Systems 50
2.2 Sandboxing Technique . 56
2.3 Code Signing Technique . 57

3.1 Java pseudo-code of the binary serialization and deserialization 62
3.2 Java pseudo-code of the XML serialization and deserialization 63
3.3 The integrated Diffie-Hellman-DSA key exchange protocol 65
3.4 The Authentication process between the Native Platform of the agent and the

Remote Platform hosting it . 67
3.5 Mobility of the agent as XML serialized object 69
3.6 Java pseudo-code of class loading . 70
3.7 Steps in the round-trip of a mobile agent . 71
3.8 The Agents Architecture of the Communicating Platforms 76
3.9 The integrated improved ID-based key agreement protocol 77
3.10 The authentication process between native platform and hosting platform . . . 78
3.11 The signing and verifying of Schnorr’ signature 80
3.12 Mobility of the agent as binary serialized object 81
3.13 Steps in the round-trip of a mobile agent . 83
3.14 Comparison of energy consumption between the two proposed approaches . . . 86
3.15 Comparison of time performance between the two proposed approaches 86
3.16 Comparison of security overhead between the two proposed approaches 87

4.1 IDS Layering and Functionalities . 92
4.2 Registration Phase in the proposed approach 94
4.3 Authentication and Key Agreement Phase in the proposed approach 95
4.4 XML Code of serialized mobile agent with three destinations in its itinerary . . 97
4.5 Execution Tracing in our proposed IDS . 98
4.6 Time consumption of the authentication process when a MA moving across an

increasing number of RPs . 103

14

LIST OF FIGURES 15

4.7 Energy consumption of the authentication process when a MA moving across an
increasing number of RPs . 104

4.8 Time Response of our IDS compared to DIDMAS and SNORT 106
4.9 Bandwidth Consumption of our IDS compared to DIDMAS and SNORT 106
4.10 Time overhead of our IDS regarding the increase of the visited hosts 107
4.11 Detection rate of our IDS vs DIDMAS and SNORT 107
4.12 False Alarm rate of our IDS vs DIDMAS and SNORT 108

5.1 UML Class Diagram of the Proposed Platform Architecture 112
5.2 Authentication Process between the Native and Remote Platforms Using TTP

and Key Echange Mechanism . 114
5.3 Sharing the Access Rights Keys using Shamir’s Threshold Scheme 116
5.4 The Process of the Proposed Access Control Policy for the Native Platform . . 118
5.5 Time cost of Baseline Test and Security Test face to the increase of parameter K 121
5.6 Time cost of Baseline Test and Security Test face to the increase of interacting

mobile agents . 122
5.7 Comparison of Time Performance of our Solution versus to the Solution in

[Ismail08] . 122
5.8 Comparison of the Malicious Agent Detection Performance of the Baseline Test

and the Security Test . 123

6.1 The Generic Architecture of Cloud Computing 127
6.2 Security issues in Cloud Computing architecture 128
6.3 IDPS Functional layering . 130
6.4 The use of mobile agents in the interactions of the cloud computing 131
6.5 Authentication Process between the mobile agent (MA) and the cloud server (CS)133
6.6 Java pseudo-code of the cryptographic trace generation 134
6.7 The core of the message and reply for Forward-Trace() transaction 135
6.8 Pseudo-code describing the verification flow of a cloud server maliciousness . . 136
6.9 CloudSim code for processing one datacenter with 10 cloud servers and 7

cloudlets assigned to the mobile agent . 138
6.10 Response Time of our cloud-IDPS compared to [Braun05] 139
6.11 Network Load of our cloud-IDPS compared to [Braun05] 140
6.12 Detection rate of our cloud-IDPS compared to [Braun05] 141
6.13 False alarm rate of our cloud-IDPS compared to [Braun05] 142

List of Tables

1.1 Elements of a FIPA ACL Message . 35
1.2 Call-backs in an environment of mobile agents 39
1.3 A comparative table of the defined agent-platforms: JADE, Aglets and LIME . 44

2.1 An example of a trace . 52
2.2 Synthesis of the security attacks and their counter-measures 60

3.1 Time Performance of the different steps in the baseline test 73
3.2 Time Performance of the different steps of our proposed approach 74
3.3 Time Performance of the different steps of our proposed approach 84
3.4 Time costs of the operations in the baseline test 85

4.1 Notations used in this chapter . 90
4.2 Computational cost (in ms) of the operations performed on Remote Platform

(RP) and Mobile Agent (MA) . 102
4.3 Computational cost of our scheme compared to the schemes of Liu et al, Xiong

and Zhao . 103
4.4 IDS Reaction in normal and intrusion situations 104
4.5 Simulated Attacks using Metasploit . 105

5.1 Access Matrix for the adopted Architecture . 116
5.2 Time of the different operations performed during the process of the proposed

solution for one mobile agent with K=2 . 120

6.1 Authentication Credentials assigned to the mobile agent by the CSP 132
6.2 Technical Characteristics of the machines used in the evaluation 137
6.3 Technical Characteristics of the mobile agent 138
6.4 Time cost (in S) of the authentication and the cryptographic trace generation

on increasing number of cloud servers . 139
6.5 Examples of simulated Attacks to evaluate detection performance 140
6.6 Comparison of detection performance between our IDPS and the system of Braun

et al [Braun05] . 141

16

General Introduction

Contents
Context . 17
Problematic and Related Works . 18
Objectives . 20
Organization of the Thesis . 20

Context

Recently, the need for availability of information is exigent, and the interoperability in IT
systems becomes of a feature of a paramount interest. This is due to the mutation of the IT
landscape into distributed systems, which implies the interaction and cooperation among all
entities and components of that system across the network, with connections that are imper-
atively non-permanent. Accordingly, many essential aspects are increasingly highlighted, such
as: autonomy, dynamicity, adaptability and mobility. Among the newly emerging technologies
in the field, multi-agent systems (MAS) have been designed to provide support for these aspects
and solve problems that are adjacent to them.

According to Ferber [Fer99], the multi-agent approach considers every system as a miniatur-
ized society, where autonomous and independent entities, called "agents", interact collectively
to address a problem or perform a task. This conception explains its increasingly usage in a
wide variety of disciplines, namely in robotic [Sor13], industry [Met11], the optimization of
transport systems [Chen10], the simulation and modeling of complex systems.

For more reliability and effectiveness, the agent paradigm is eventually turned into the
mobility management, through inspecting more interesting capabilities and convergences. The
mobile agent systems are viewed as an innovative technology, that has managed to get a place,
within complex and emerging applications, such as: electronic commerce [Fas07], management
and optimization of distributed networks (especially wireless sensor networks) [Gav09], adap-
tive and personalized information retrieval [Lu07], computer games [Dig12] and many others.
Through their autonomy, independence, adaptability and mobility in particular, mobile agents
have the ability to achieve their goals, in flexible and operational manner. Indeed, the mobile
agents move from one node to another over the network, in possession of all needed resources:
data, code and execution state, which enable them to perform their tasks independently of the
hosts to which they migrate.

However, mobility and flexibility of agents raise many problems at the security level. This
is due to the fact that systems based on mobile agents often make use of local or remote in-
teractions with other agents on the network. These interactions initiate to a communication,

17

18 General Introduction

whose it is difficult to ensure that it is safe and secure, and do not carry any anomalies or
vulnerabilities that could affect the mobile agent or its receiving host. Thus, security problem
becomes an obstacle to the expansion of this paradigm, which greatly promotes the implemen-
tation of security mechanisms and policies, that identifies requirements and specifications to be
defined for each entity (agent, host). This cannot be achieved without taking into consideration,
the dynamic aspect of these systems, that are continuously victims to new attacks, and which
require each of the interlocutor entities to be adapted with the security policy of the other.

Problematic and Related Works

Mobile agent is an emerging approach, that reflects the autonomy and independence in
decision-making and execution of tasks. Yet, this approach still faces constraints to be designed
in practice, because of the complexity of the principles and aspects associated with it. The
majority of literature works, dealing the systems based on mobile agents, focus on the study of
modeling through different abstraction levels: formal, structural and behavioral, without caring
or attach importance to the aspects related to security. Hence, it seems to be necessary, even
crucial, to grant more interest in security issues raised by this technology.

Indeed, when an agent is moving, it is crucial to ensure that it will properly and safely
executed on the new system visited. Similarly, it is crucial to reassure the agent system, that
there will be no risk to welcome a new mobile agent. During the mobility of the agent from one
host to another over the network, it may face two situations that trigger a set of vulnerabilities
compromising safety. The first situation occurs when the agent migrates to a malicious host
without being able to identify him. In this case, the malicious host can exploit the resources
of the agent, modify its data, take advantage from its behaviors and results, or even more,
inject malicious code that will subsequently infect all the intended hosts in the itinerary of the
agent. Thereby, this eventually reflects the continuous and chained emergence of the threats
to other hosts. The second situation involves the threats, that arise when the mobile agent
gets untrustworthy contacts with other agents encountered along its way. These agents may
adopt malicious behaviors, that could obviously prevent the mobile agent from being properly
executed, by harming its data and resources.

Many efforts have been devoted to investigate the issue of mobile agent systems security.
Thus, in terms of security, some basic issues such as authentication, confidentiality, integrity and
access control should be addressed. Towards this, Alfalayleh et Brankovic [Alf05] conducted a
survey on the security issues and basic solutions in that field, which include many conventional
techniques dedicated to protect the mobile agent and the hosting platforms.

The majority of these solutions rely on well-known cryptographic mechanisms and tradi-
tional access control models [Bella04]. For instance, "Execution Tracing" produces records of
the agent’s behaviors and actions using digital signatures. "Partial Result Encapsulation" pre-
serves the results of the agent’s execution using encryption, digital signature, hash function and
authentication code. "Code obfuscation" enforces a transformation to the agent’s code, using
cryptographic maps with various trust levels. "Proof Carrying Code" promotes the automatic
verification of the code before its running, based on a conformity of an encoded evidence or
proof. "State Appraisal" is based on the use of appraisal functions, which determine the priv-
ileges granted to an agent based on conditional factors and invariants. "Sandboxing" allows
the execution of the mobile agent’s code in a restricted environment (sandbox), that appears
similar to the global system, and where restriction affects certain code operations.

In addition to these solutions, there are recently proposed security contributions that adopt

General Introduction 19

new visions and directions of the mobile agent paradigm. In general, most of these contribu-
tions are inspired from the techniques previously mentioned or bring enhancements to them,
taking into consideration the increasing use of mobile agent systems in multiple disciplines,
with different conceptions and architectures.

Zhang et al [Zhan06] describes how remote policy enforcement can be used for runtime
protection of agent’s code. His paper provides good mechanisms for restricting unauthorized
users from executing the code, which in turn provides good security for code of mobile agents.
They have shown how a Java Authentication and Authorization Service (JAAS) can be used to
enforce access control restrictions over data. However, the downfall is that system uses "Trusted
Computing Devices" and depends on "Trusted Runtime Environment (TRE)". Therefore, in
order this system to work, TRE should be present.

Mubarak et al [Mub07] describes semantically rich security policies for mobile agents.
According to the authors, policy enforcement consists of policy storage area, policy distributor,
policy implementer, and monitor and policy specifier. They structured policies for mobile agents
into three different types: authorization policies, obligation policies, and refrain policies. These
policies address issues associated with agents’ security, like encryption, access control, and
authorization. Although they have categorized policies, they did not specify the structure of a
policy.

Shibli et al [Shi10] presented a solution for authentication and authorization of mobile
agents based on Role-Based Access Control (RBAC) and eXtensible Access Control Markup
Language (XACML) policies. This solution can be applied in two steps: a) by creating security
architecture for authorization of mobile agents (authorization system), and b) by specification
of the structure/model for role-based XACML policies for mobile agents. These two steps
combined provide a complete authorization system for mobile agents.

Ibharalu et al [Ibh11] have proposed the use of a chain of digital envelopes with platform
registries to support dynamic agent’s itineraries in open network environment. This scheme
protects and allows mobile agents to roam freely in open networks environment without being
compromised in a malicious hosts. The main advantage is that the proposed scheme exhibited
better performance when compared to the results obtained from obfuscation methods in terms
of data integrity and security. The main drawback is that the proposed scheme consumes a little
more time visiting platform registries and executing complex cryptographic functions than the
obfuscation methods. Though the data is protected from hosts, the code is vulnerable to attack
by other malicious agents residing in the host.

Menacer et al [Men11] have presented a new mobile agents-based architecture that intends
to provide a comprehensive solution to the various issues related to security. This architecture
consists of a generalization of the market mechanisms to the non-market systems and it relies
on an extended mobile agent model, the seller-buyer (SB) model. Thus, it provides developers
with the opportunity to safely and efficiently use mobile agents in order to build distributed
large-scale applications.

Razouki and Hair [Raz14] have introduced an approach to find a new mobile agent paradigm
architecture, which can protect the mobile agent via two strategies of adaptation. The first
strategy a static adaptation performed by the MSAS (Management System of Agents Security)
based on the sensitivity of the services requested by the agent. The second strategy consists
of a reflexive dynamic structural adaptation performed by the mobile agent itself. According
to the degree of confidence on the platform visited, the mobile agent selects and adapts the
security components to the tasks to be performed by this platform.

Srivastava and Nandi [Sri14] have proposed a security protocol built on the foundation
of integrity based confidentiality and self-protection approach based on agent driven security.

20 General Introduction

Thus, the self-protection makes the mobile agent less interactive during its execution, while
the agent driven security is achieved through a novel concept of symmetric key’s component
distribution. According to this latter, a key component is distributed in secure manner, and
another key component is derived from ensuring integrity of data collected at run time. The
validity of this approach in overcoming different kind of security attacks, Petri net based for-
mal representation of the security protocol is provided to strengthen the belief of distributed
applications.

Objectives

The primary objective of this thesis is the protection of the mobile agent systems. This
concerns, in one hand, the protection of the mobile agent including its code and data, against
malicious entities it may meet in its itinerary, and which aim at affecting its authentication,
confidentiality and integrity. On the other hand, this implies the protection of the agent’s
platforms against the hosted agents which may conduct malicious behaviors. Then, the basic
idea is to design security mechanisms that preserve the privacy requirements of these systems,
without compromising their flexibility, autonomy and mobility features.

In this context, we have proposed four approaches:
1. A robust authentication process based on a key exchange protocol integrated with digital

signature, as well as a reliable mobility of the agent using the XML serialization and the
cryptographic primitives [Idri14a].

2. A robust authentication process using ID-based key agreement protocol along with
Schnorr signature, as well as a binary serialization combined with cryptographic primi-
tives to ensure secure mobility of the agent [Idri15b].

3. A robust anonymous authentication using elliptic curve cryptography along with bilinear
pairing, and a detection intrusion mechanism based on the execution tracing of the
behaviors and actions performed by the mobile agent on the hosting platforms.

4. A strong access control policy based on a discretionary access model associated to a
threshold sharing scheme, in order to elaborate a keys management for the different
access rights to be granted on the platform resources [Idri15c].

All these approaches are implemented and evaluated to prove their reliability, efficiency and
security, compared to other existing solutions. In addition, an application to cloud computing
security is proposed, in order to prove how much the security of mobile agents can be beneficial
for other technologies.

Organization of the Thesis

The present thesis is organized into six chapters. In order to enable readers to be familiar
with the concerned field and its problematic attested, the first two chapters introduce the main
concepts to be used and discussed. The following three chapters are devoted to the description
of the proposed approaches. while the last chapter presents an application of mobile agent
security to the cloud computing technology.

Chapter 1 introduces a state of the art, where the general concepts of the mobile agent
systems are described. This includes their usual definitions, their qualities, their application
areas, the services required for their execution, the adopted standards and platform examples
for their development.

General Introduction 21

Chapter 2 exposes in details the security problematic in this technology. Subsequently, we
enumerate the different possible attacks according to which security aspect is affected, and the
principal counter-measures that have been proposed and considered by researchers.

In Chapter 3, two approaches based on the serialization mechanism are described. The first
one makes use of the XML serialization to ensure persistent format for the agent mobility, while
a key exchange protocol integrated with digital signature is used to elaborate an authentication
process between the agent and its hosting platform [Idri14a]. In the second approach, a binary
serialization is adopted to allow a flexible migration of the agent, while a strong authentication
is proposed, based on ID-based key agreement protocol along with Schnorr signature [Idri15b].

In Chapter 4, we propose an authentication scheme that preserves the anonymity of the
mobile agent when being hosted by the executing platforms. This scheme is based on the
elliptic curve cryptography and the bilinear pairing. In addition, a detection intrusion method
is proposed, which is based on cryptographic traces technique. In this latter, the behaviors and
actions performed by the related agent on each hosting platform are recorded until the agent
returns back to its owner platform, where they can be verified in case of possible suspicious
entities.

Chapter 5 proposes a security policy to protect the hosting platform and its resources. This
policy makes use of the discretionary access control model (DAC) to design an access matrix
to the platform resources. Besides, a threshold sharing scheme is integrated to derive a set of
access keys from the platform master key, and which are required to be granted the access
rights of the associated resources [Idri15c].

In Chapter 6, we describe a new application of the mobile agent security to secure the
communication among the entities of the cloud computing. For that purpose, an intrusion
detection and prevention system for cloud computing (cloud-IDPS) is designed, making use of
two principal techniques: an execution tracing to save a proof of the services and computations
performed on the cloud servers, as well as a revocation-based trust threshold protocol in order
to prevent the intrusions detected from spreading [Idri15d].

Finally, this memory is ended with a general conclusion that summarizes our contributions
and describes some perspectives.

22 General Introduction

Chapter 1

Mobile Agent Systems

Contents
1.1 Evolution . 24

1.1.1 Client/Server Architecture . 24
1.1.2 Remote Evaluation . 26
1.1.3 Code on-demand . 26

1.2 Basic Concepts of Mobile Agents . 27
1.2.1 Fundamentals . 27
1.2.2 Qualities and Advantages . 30
1.2.3 Application Areas . 32

1.3 Services for Mobile Agent Execution . 33
1.3.1 Structure, Creation and Communication 33
1.3.2 Localization, Migration and Execution 34
1.3.3 Security, Fault-Tolerance and Traceability 37
1.3.4 Life cycle and Control . 38

1.4 Standardization Efforts . 39
1.4.1 MASIF . 39
1.4.2 FIPA . 40

1.5 Examples of Mobile Agent Platforms . 41
1.5.1 JAVA Agent Development Framework (JADE) 41
1.5.2 Agent Applets (Aglet) . 43
1.5.3 Linda in a Mobile Environment (LIME) 43

1.6 Conclusion . 45

Nowadays, the development of large-scale networks has enabled the emergence of a wide
variety of new technologies, such as: electronic commerce, information retrieval, system opti-
mization, distributed computing and many others. In these technologies, the communication
among their entities is very substantial to ensure their proper functioning. In this context, the
concept of mobile agents appeared as an innovative solution, that enables the implementation
of dynamic and adaptable applications, and makes the development of distributed applications
on large networks more generic.

A mobile agent is an autonomous entity or program running in an environment, using its own
resources and a set of services provided by the hosting platform. In this chapter, we will define

23

24 CHAPTER 1. MOBILE AGENT SYSTEMS

the main notions and services provided by the mobile agents and their associated environments.
We begin by exposing the evolution of the communication and exchanges in networks, starting
from client/server till mobile agent paradigm. We will process the life cycle of the mobile agent,
and discuss the qualities and advantages of this technology, including the mobility feature. The
standardization efforts are also evoked to highlight the interoperability, and the compatibility
among the environments and platforms executing the mobile agents. Examples of commonly
used platforms are defined and compared, according to many metrics, in order to show the most
suitable one for the modeling and implementation of our contributions.

1.1 Evolution

1.1.1 Client/Server Architecture

The client/server architecture is a model of software running, that can be realized between
inter-connected physical structures. It is based on two types of software or application: client
software and server software, that are running on two different machines connected through
communication channels. Within this architecture, an interaction between a client and server
is performed as illustrated in Figure 1.1. Accordingly, a client machine contacts a server to
provide services or carry out treatments. These requested services, viewed as programs acting
on data, are exploited by clients on remote machines, that are able to process the information
they retrieve from the server.

Figure 1.1 – Client/Server Architecture

In general, there is no standard definition for a client/server architecture. However, there
are some major concepts that govern around:

— Protocol : it is a standard that assembles rules and procedures, to ensure communication
between processes running on different machines, transmitting and receiving data over
the network. It is always the client who initiates the communication via services requests,
while the server waits passively to be activated and revived.

— Heterogeneity : It is a concept clearly shown in the different nature of hardware and
software structures (operating system or file management system), as well for one or
multiple networks. In other words, this implies the independence of the client/server

1.1. EVOLUTION 25

architecture from the platforms where it operates.
— Flexibility and Adaptability : The client/server architecture has great flexibility, insofar

as the server module can be adjusted by an interface, an application, a station or a newer
and upgraded model, without affecting the client module. Also, the reverse is possible.

— Resize: The hardware structure of the client/server model can be expanded or reduced
by adding or removing client stations. This is also valid for the software structure,
where the server can be upgraded with applications and data, that are newer and more
sophisticated.

Client/Server Models

There are different models of the client/server architecture, depending on the treatments
and services provided by the server.

— Processing Model : in this model, the client requests the server to perform treatments on
his behalf, and provide the corresponding results. These treatments may include oper-
ations on data, input and verification of forms, alarm processing, etc. In addition, they
are performed using programs implemented on servers, or incorporated into databases.

— Presentation Model : in this model, the presentation of interface displayed to the client is
managed by the server. In this context, we distinguish two types. The "remote presenta-
tion", where the client only supports the display of the interface, which greatly increases
network traffic and prevents load sharing between client and server. The "distributed
presentation" corresponds to a framing of the display in a character mode, under the
direction of a central site, but this makes the model more abusive, knowing that the
client always retains the slave role regarding the server.

— Data Model : it is the most famous model, and it is widely used by the SGBD systems, that
are installed at the server machine to ensure the management, storage and processing
of data. Thus, the client sends data processing requests as SQL queries to the server,
which in turns executes these tasks and sends back the corresponding results.

Advantages and Drawbacks

The client/server architecture is particularly recommended for networks requiring a high
level of reliability. This is due to its main features described bellow:

— Centralized resources: since the server is placed at the core of the network, it can manage
the resources commonly used by the clients (such as a centralized database), in order to
avoid problems of redundancy and contradiction.

— Better security : because the number of entry points for access to data is less important.
— Administration at the server level : the clients with little importance in this model, have

less need to be administered.
— scalable network : thanks to this architecture, it becomes possible to remove or add clients,

without disrupting the running of network or perform major modifications.
However, the client/server still suffers from some flaws, including:
— High cost : due to the technical nature of the server.
— Weak link : the server is the only weak link in the client/server network, given that

the entire network is built around it. Fortunately, the server has a high fault tolerance
(notably through the redundant array of independent disks (RAID) system).

26 CHAPTER 1. MOBILE AGENT SYSTEMS

1.1.2 Remote Evaluation

The remote evaluation is a technology that belongs to the field of code mobility, where the
client and the evaluation site are separated in time and/or space during the processing. An
interaction by remote evaluation, as shown in Figure 1.2, occurs when a client sends its code
to a distant site to be executed. The receiver site uses its own resources to run the code, and
then, deliver the results to the client in an additional interaction. In this scheme, only the
code is transmitted to the server, and it is only launched on that server. Usage examples of
this technology are: the code of a SQL query issued to a database server, and the interactions
among the PostScript printers.

Figure 1.2 – Remote Evaluation Architecture

Advantages and Drawbacks

The remote evaluation technology is becoming increasingly important for the number of
advantages it offers, such as:

— The great ability to gather detailed information on the behavior of the actual user in
real contexts of use. This is strongly requested and useful in contexts, where it is difficult
(or convenient) to install an evaluator to directly observing or recording the session.

— The centralization that allows the clients to carry out the evaluation in their familiar
environments, which contributes to ensure more security and gain more through the
natural behavior of the users.

Nevertheless, remote evaluation still presents some limitations, such as:
— It becomes very difficult to gather data and track the user’s interactions and behaviors,

when it concerns applications with limited capabilities (such as mobile devices), that
imposes constraints on the kinds of techniques to be used.

— Detecting the environmental conditions in which the session takes place is also an other
persistent problem.

1.1.3 Code on-demand

In the code on-demand (COD) technique as illustrated in Figure 1.3, the client has access to
a set of resources, but does not hold the skills to process them, then, its interacts with a remote

1.2. BASIC CONCEPTS OF MOBILE AGENTS 27

site in order to gather a knowledge that will be executed on the client machine. Thus, the client
charges the necessary code to the achievement of a service, while the remote site is responsible
for providing the required service’s know-how. The popular application of this technique is the
Java Applets, which consist of programs able to be loaded from web pages and executed on the
client machine [Fal06].

Figure 1.3 – Code on-Demand Architecture

Advantages and Drawbacks

The code on-demand is widely used in web services, due to its significant advantages. Among
these advantages, we can cite:

— It allows the client’s functionalities to be extended by downloading and executing code
in the form of applets or scripts.

— It reduces the number of features required to be pre-implemented.
— It improves system extensibility through allowing features to be downloaded after de-

ployment.
— It ensures that the application will be simple to maintain and easily upgradeable to new

technology.
However, the principal drawback of the COD lies in the fact that it reduces of visibility.

1.2 Basic Concepts of Mobile Agents

1.2.1 Fundamentals

Before approaching the concept of mobile agent, we find it interesting to define some
important notions, such as: agent and multi-agent system.

Agent

In fact, there is no standard definition for the term of "Agent", since there is a multitude of
similar definitions of agents, but differ according to the type of application for which the agent
is designed. According to [Brio01], the following types of agents are identified:

28 CHAPTER 1. MOBILE AGENT SYSTEMS

— Material Agent : it is an agent with a physical device, such as a robot.
— Software Agent : a software agent is purely logical, which includes the code, data, and

status. An example is the Unix daemons.
— Reactive Agent : this agent is marked by its simplicity, its small size and its behavior

based on the stimulus-response principle.
— Cognitive Agent : also called intentional, it is an agent that not only acts according to

the conditions of its environment but according to its own goals and intentions.
— Adaptable Agent : an agent that some of its internal, operational or functional (behav-

ioral) processes are modifiable running.
— Social Agent : it operates advanced interactions and cooperation with other agents in its

environment.
— Mobile Agent : it is an agent able to move in the environment or migrate from one site

to another following an itinerary, in order to be executed according to its tasks.
Among the numerous definitions provided, the majority seem to be a consensus within the

multi-agent community. In this context, we adopt the definition of Ferber [Fer99], where an
agent is viewed as a physical or virtual entity, which:

— has its own resources.
— is able to interact within an environment.
— is able to perceive its environment (but to a limited extent).
— is powered by a set of patterns (individual objectives and satisfaction/survival functions)

that seeks to optimize.
— can communicate directly with other agents.
— provides services and owns capabilities.
— may eventually breed.
This definition raises four essential properties:
— Autonomy : since an agent is directed by a set of its own trends, which are not only

behavioral but also concern its own resources (Memory, CPU, energy, access to sources).
— Independence: agents are independent from the environments where they are implanted,

which is automatically derived from the autonomy, due to the facts of transporting their
own resources and being able to manage them.

— Flexibility : it is evaluated when the agent is:
— Proactive: in addition to responding to its environment, the agent is capable to opt

an opportunistic behavior, led by its goals or its utility functions, and thus take
initiatives when appropriate.

— Social : it is able to interact with other agents (artificial or human) to complete tasks
or help others complete theirs.

— Able to respond in time: it can perceive its environment and respond quickly to
changes occurring there.

— Situatedness: the agent can receive sensible inputs from its environment, and perform
actions that are likely to change this environment. The Internet is an example of
environments where agents can be situated.

Multi-Agent System

A multi-agent system (MAS) is a system in which a set of intelligent entities called "Agents"
are cooperating and coordinating their goals and action plans, to solve a problem or achieve an
objective. According to Ferber [Fer99], it is a realization of electronic and computer models,
consisting of artificial entities that communicate with each other and act in an environment.

1.2. BASIC CONCEPTS OF MOBILE AGENTS 29

Indeed, this is another manner to involve the collective intelligence, while distributing activities
on contributors to achieve a goal, knowing that each contributor has a partial view of what to
do. A multi-agent system is composed of the following elements, as shown in Figure 1.4:

Figure 1.4 – Structure of a Multi-Agent System

— E: an environment with a metric.
— O: a set of objects. These objects are located, such that each object, at a given time,

can be associated to a position in E. They are also passive, that is to say, they can be
viewed, created, modified and destroyed by the agents.

— A: a set of agents, that are particular active objects (A ⊂ O) of the system.
— R: a set of relations that link the objects (Agents) together.
— Op: a set of operators, allowing the agents to collect, produce, consume, transform and

manipulate objects from O.
— A set of operators responsible for representing the application of "Op", and the reaction

of the world face to any attempt to change. It might be called "the laws of the universe."

Mobile Agent

The diversified usage of the mobile agent concept in several disciplines, has resulted in a
variety of definitions. Among these definitions, a common and general one is provided as the
following:

A mobile agent is an agent that possesses autonomous behaviors, mainly related to its
knowledge, its observations and interactions within the environment and with other agents. It
is characterized by its ability to move from one site to another in the network, with its set of
resources, to accomplish the client’s task.

Figure 1.5 shows an illustration of a mobile agent as a physical or software entity able to
move from one site to another across the network. During this trip, the agent executes the
tasks specified by its owner on the visited sites, while the results are stored until it returns back

30 CHAPTER 1. MOBILE AGENT SYSTEMS

to the original platform. Indeed, the mobility aspect is associated to the agent technology, in
order to make the latter more appropriate to the needs of large-scale networks and for mobile
computing. Thus, it is particularly intended for the implementation of applications, whose
performance varies depending on the availability and quality of services and resources, as well
as on the volume of data exchanged. According to what is mentioned before, the following
essential keys are derived:

Figure 1.5 – Mobile Agent Concept

— Environment: The environment in which the agent is evolving must comprise:
— Machines that receive the agent while its execution, and which provide the agent with

the necessary resources (computing unit, memory, etc.) to achieve the tasks required
by the clients.

— Other stationary and mobile agents, that cooperate with the mobile agent to reach
objectives.

— Network links that facilitates the mobility of the agent across different sites.
— Memory: every mobile agent is endowed with a storage capacity, enabling it to gather

information on the visited sites. The collected information are stored until return of the
agent to the client, to whom they are supplied.

— Behaviors: from a conceptual perspective, the agent is provided with a program that
threaded the tasks to accomplish. It is called to be reactions by delegation for the client.
Thus, the agent may migrate to a hosting platform, with a set of specific competences.

— Autonomy: an agent acts independently of its owner and the visited sites. It is able to
decide where it will move and what to do there, according to the tasks assigned to it.
That is to say, the agent itinerary can not always be predict.

1.2.2 Qualities and Advantages

In literature, there are two type of agents. Stationary agent that resides on a host, and com-
municates with its environment using conventional techniques, such ad the remote procedure
calls (RPC) or the notification messages. However, when they need to interact with other agents

1.2. BASIC CONCEPTS OF MOBILE AGENTS 31

on remote machines, they are obliged to use communication protocols based on client/server
model.

Thus, once mobility is associated to agents, it is considered as an orthogonal property.
It allows agents to communicate with other agents, and roam freely, while optimizing their
itineraries and deciding on the tasks to be executed. This can be achievable even when agents
are outside their environments, or these latter are out of service.

As a matter of fact, there are several qualities and advantages that motivate and promote
the use of mobile agents technology over the traditional client/server model, particularly in the
building of distributed systems. As such, we mention seven characteristics, according [Lan99]:

— Reduce of the network load : the communication within the distributed systems usu-
ally require multiple interactions, to accomplish tasks through direct transmission pro-
tocols, which increases the network traffic. Thus, mobile agents allow clients to package
the conversations and dispatch them to the destination host, in order to perform and
deal with interactions locally. This becomes more perceptible and useful when reducing
the flow of raw data in the network, or when it concerns very big data stored at remote
hosts, and which need to be processed in its locality rather than transferred over the
network.

— Overcome of the network latency : distributed systems that are processing on real-
time mode, like cooperative industrial robots, need to support all changes in their envi-
ronments and respond to them in real-time. The fact of monitoring such systems via a
substantial volume network involves significant latencies, which is unacceptable for sen-
sible systems. For critical real-time systems, such latencies are not acceptable. Making
use of mobile agents solves this concern, since these entities are able to migrate to a
machine and act locally, in order to execute the controller’s directions directly.

— Encapsulation of protocols: during the exchange of data within a distributed system,
it is strongly needed that each host holds a mechanism to properly code the outgoing
data, and interpret the incoming data. However, since that the communication protocols
are evolving to satisfy the new requirements for efficiency or security, it becomes more
complicated if not impossible to proceed to this upgrade properly. As a result, protocols
often become a legacy problem. In the case of mobile agents, the migration to remote
platforms allows the incorporation of "channels" based on proprietary protocols. With
this context, the mobile agent is able to access the messages it carries, even if the format
of these messages is changing, because the consuming way is also changing.

— Asynchronous and autonomous execution : the proper implantation of mobile de-
vices require expensive network connections, which are continuously open without in-
terruption. This is greatly onerous at economical and technical levels, and cannot be
feasible. As a solution for this issue, tasks are eventually involved into mobile agents,
which can then be dispatched into the network. At this moment, the agents become inde-
pendent of their owners and can carry out executions asynchronously and autonomously.
Later, the mobile device can reconnect and gather results from the agent.

— Dynamic adaptation : among the qualities of mobile agents is that they are able to
sense their execution environment, and thus respond autonomously to changes. Besides,
agents may work in communities and spread themselves among multiple hosts in the
network, in order to maintain the optimal configuration for solving a particular problem.
Such a collaboration is defined, when an agent on host X dispatches another agent to a
host Y where no agent is detected, also when a host shuts down, the mobile agents are
informed to update their itineraries and eliminate the host in question.

— Natural heterogeneity : from hardware and software perspectives, the network com-

32 CHAPTER 1. MOBILE AGENT SYSTEMS

puting is fundamentally heterogeneous. This is mainly due to the optimal conditions
provided by mobile agents for seamless systems integration. Normally, these systems can
be conceived, basing on the independence of computer-layer and transport-layer, which
is achievable in case of mobile agent systems, since these two layers only depend to the
execution environment.

— Fault-Tolerance and robustness: it becomes more easier to build fault-tolerant and
robust systems through the use of mobile agents, that react autonomously and dynam-
ically to inappropriate events and incidents. For instance, when a host is being shut
down, all agents executing on that host are warned to move to another destination,
where they can pursue their execution. It is worth to mention that the perimeter of a
community in general evolves over time, depending on system failures or the integration
of new resources.

1.2.3 Application Areas

In this section, we will discuss the use of systems based on mobile agents in distributed
applications. As such, there are three categories of applications:

— Computing: where the agent takes advantage of the resources of the visited platform to
perform its calculations, which allows the distribution of an execution and its adaptation
to the loads of machines. A highly recognized application of the use of mobile agent in
this category is:
— Distributed Computing [Cao12]: the distributed computing aims that every resource

has the same workload, which prevents a network node to be inactive, while other
tasks are waiting for execution on other nodes. Mobile agents are introduced in this
way, to ensure the dynamicity of tasks so that each task is represented by an agent,
whose life cycle depends on the duration of the task. This approach benefits from
cooperation and autonomy of mobile agents to make decisions of localization tasks.

— Delegation: where the agent is charged by a client to complete a task. Among the
applications we include in this category are:
— Electronic Commerce [Che14]: It concerns transactions with an electronic trans-

mission medium (www), and for which, a high heterogeneity is required in order to
access them at any time, place and on any device (computer, mobile phone, tablet,
TV interactive ...). The introduction of mobile agents in this application allows to
gather data, and adapt them according to the sites to which they are intended. This
is also assessed for mobile commerce (M-commerce).

— Finding Information [Og15]: looking for information on the network requires mul-
tiple interactions, which ends up with unnecessary information for the client. The
use of mobile agents aims to reduce the rate of unnecessary intermediate exchanges.
Thus, when an agent is sent to a host, the search and the exchange of messages be-
come local, which releases the network load. In addition, the agent carries only the
useful results of research conducted on several hosts.

— Filtering: where the agent processes the gathered data, filters and adapts them to the
client needs. Among the applications [Li15] we include in this category:
— Network Administration: it is necessary to ensure optimal use of the network and

its services. It involves mechanisms for gathering and visualizing data, detection and
management of faults, configuration of actor’s behavior and security management.
To meet these constraints and many others, the administrative tasks are then as-
signed to mobile agents to perform their execution independently and flexibly. In

1.3. SERVICES FOR MOBILE AGENT EXECUTION 33

addition to reducing the cost of communication, this technology allows to distribute
computations and analyses on several administered sites, which reduces the load on
the administration platform.

— Management of Active Networks: active networks is a new paradigm, in which blocs of
programs are extracted and downloaded, in order to be executed on network nodes
to change their behaviors. However, this obviously affects protocols, services and
applications, as well as mechanisms and high-level processes. To address this issue,
we have introduced mobile agents that encapsulate active programs to be executed,
instead of using passive packets of the current network. These mobile agents are
transmitted in packets and executed on each visited node by these packets.

1.3 Services for Mobile Agent Execution

1.3.1 Structure, Creation and Communication

Structure of a mobile agent

A mobile agent is an entity or a program able to independently and autonomously execute
jobs on behalf of a user. Thus, an agent needs to be provided with the necessary capabilities to
migrate from one machine to another across the network, which makes it important to recognize
the elements to be joined and transferred with the agent during the mobility process. According
to [Tanen07], there are three components involved in a mobile agent:

— The Code: a sequence of instructions to be executed, which define the static behavior of
the mobile agent.

— The Execution Context: it reflects the current execution state of the mobile agent (reg-
isters values, execution stack).

— The Data and Resources: there are two types:
— Transferable Resources: they represent the attributes values of the agent, which pro-

vide him with a global state.
— Non-Transferable Resources: they constitute the execution environment provided by

the system (open files, sockets, connections, registers, etc.) and the physical materials
used by the agent (printer, monitor, etc.) .

Creation of a mobile agent

The mobility of agents usually raises the issue of their creation and the locations where they
can start their activities. Indeed, the activity of an agent is related to the execution launching
of its code, which may have different forms:

— Local creation
— Creation with code on demand
— Creation with remote execution
It is worth to mention that the agent creation uses mechanisms on which rests mobility. In

addition, each created agent is provided with a globally unique name, that allows to locate the
agent and contact it. This is commonly known by "Naming Service". In the majority of mobile
agent systems, this unique name includes the characteristics of the machine (name, IP address,
MAC...) where the agent is executed, the port number, the name of the network domain and a
locally unique identifier [Fal06].

34 CHAPTER 1. MOBILE AGENT SYSTEMS

Communication between agents

Generally speaking, the communication between two entities could be performed in two
different manners:

1. it is the most intuitive, and makes use of mechanisms allowing direct communication be-
tween objects. This corresponds to the synchronous and asynchronous communications.

2. it consists in adopting mechanisms for indirect communication, such that an object
willing to communicate with another one sends a message to a third party, that takes
the responsibility to forward it to the recipient.

Indeed, it is important in a mobile agent system to recognize if the agent communicates
with another agent or with a set of agents. Besides, the agents can communicate with other
ones resident in the same place or with agents located in other places. An agent can evoke
a method of another agent and send him messages, if it is authorized to do, in a predefined
language such as the Agent Communication Language (ACL), which provides the agents with
the necessary tools to exchange messages and knowledge. An ACL message according to FIPA
[ACL02], as illustrated in Table 1.1, describes the state and the actions desired.

1.3.2 Localization, Migration and Execution

Localization Service

Actually, many communication constraints are raised by the mobility feature, since the
agents continuously change their execution locations, and must communicate independently of
these locations. In this context, it is substantial to provide reliability that ensure communi-
cations with mobile objects at any time. Thus, a mobile agent system should offer an agent
location service through a names server, which contains the current location of the agent or
enough information to locate it. According to Milojičić et al [Milo99], several localization
schemes were proposed, such as:

— Research: the names server looks for the location of an agent according to a defined
itinerary, which implies that this later must be known in advance. The number of com-
munications performed may vary from 1 to the maximum number of migrations of the
agent (hopes): 1 ≤ ncom ≤MAX(nmig)

— Update on the original platform: the names server located on the original platform of
the agents is updated once an agent migrates. In this case, the number of communications
performed with the original platform is equal to the number of migrations of the agent:
ncom =MAX(nmig)

— Tracking: the fact of following a tracking link can locate an agent. Thus, the number
of communications performed is at most equal to the number of nodes visited by the
agent: ncom ≤MAX(nmig)

— Recording: the agents register their actions and movements in a defined and centralized
name server, which is not located on the original platform. In this case, the number of
communications performed is equal to the number of migrations of the agent plus one
communication from the names server to the original platform: ncom =MAX(nmig)+1

Migration of an agent

The migration is the process of transferring an active agent from one site to another across
a network. According to [Jain00], this migration, as viewed in Figure 1.6, considers that the
agent may receive messages during its mobility. It includes the following steps:

1.3. SERVICES FOR MOBILE AGENT EXECUTION 35

Table 1.1 – Elements of a FIPA ACL Message
Element Description

performative
the type of the communicative act of the ACL
message

sender
the identity of the sender of the message, that
is, the name of the agent of the
communicative act.

receiver
the identity of the intended recipients of the
message.

content

the content of the message; equivalently
denotes the object of the action. The
content of any ACL message is intended to
be interpreted by the receiver of the
message. This is particularly relevant for
instance when referring to referential
expressions, whose interpretation might
be different for the sender and the receiver.

language
the language in which the content parameter is
expressed.

protocol
the interaction protocol that the sending agent is
employing with this ACL message.

encoding
the specific encoding of the content language
expression

ontology
the ontology(s) used to give a meaning to the
symbols in the content expression.

conversation-id

Introduces an expression (a conversation
identifier) which is used to identify the ongoing
sequence of communicative acts that together
form a conversation.

reply-to

This parameter indicates that subsequent messages
in this conversation thread are to be directed to
the agent named in the reply-to parameter, instead
of to the agent named in the sender parameter.

reply-with
Introduces an expression that will be used by the
responding agent to identify this message.

in-reply-to
Denotes an expression that references an earlier
action to which this message is a reply.

reply-by
Denotes a time and/or date expression which
indicates the latest time by which the sending
agent would like to receive a reply.

36 CHAPTER 1. MOBILE AGENT SYSTEMS

Figure 1.6 – The migration process of an agent between two platforms

1. The serialization of the agent context and the creation of a message to support the
serialized context of the agent and its code;

2. The suspension of the agent process, which implies that all communication with other
agents are also suspended. Then, the agent is destroyed;

3. The dispatch of the agent’s context and code to the destination machine;
4. the state of the migrating agent is restored on the destination machine, where a new and

lightweight process is created to pursue the agent execution.
5. The ongoing communications are redirected to the destination machine. Since, the agent

is not yet active, these messages will be processed after its reactivation;
6. The reactivation of the agent on the destination machine, once receiving the necessary

party of the context for its execution. Therefore, the destination machine checks the
dynamic relationship between the agent and its code. At that moment, the migration is
terminated and the process on the original machine can be definitely deleted.

The implementing of the agent migration depends on the strategy of processing these steps
along with the transferred data. Indeed, there exist two types of migrations:

— Strong Migration: it allows an agent to move whatever its execution state. Once
arrived, the agent resumes its execution exactly where it was before the migration. The
destination of the agent may be decided by the agent itself or by a related party.

— Weak Migration: it only transfers the agent code with data. Once on the destination
platform, the agent restarts its execution from the beginning, through calling the entry
point method of the agent execution of the agent. Thus, the execution context of the
agent is reset.

Execution of an agent

The execution of a mobile agent on a hosting machine relies on two factors. The first one
is the capacities involved into the mobile agent, and which allow him to be independently
executed. The second one concerns the available resources on the hosting machine, and which
are used by the agent to accomplish its tasks. During its travel, the mobile agent could visit
many machines with various operating systems, and where it may be necessary to get access
to the user interface, the file management system, the external applications and the network

1.3. SERVICES FOR MOBILE AGENT EXECUTION 37

interface. Therefore, the big challenge is to maintain the independence of the mobile agent
execution regarding the hosting systems, while granting the necessary authorizations to access
the system resources.

The mentioned challenge has been overcome through the use of the object-oriented language
"Java", for the implementation of mobile code [Gom01]. In this latter, the applications are
compiled into bytecode and executed in a virtual machine (JVM), which becomes actually a
universal execution environment since it is available on all machines in distributed systems.
Thus, the programmer has not to manage different languages and versions of a program, ac-
cording to the systems on which it will run. In addition to the portability feature, Java provides
a variety of services that allow the construction of mobile distributed applications, such as:

— The serialization/deserialization of an object in order to transfer it over the network,
— The communication between two objects located on remote machines (RMI, socket, etc

...),
— The dynamic loading of the code from a remote site.
Actually, the diversity of available platforms raises the compatibility issue during the mi-

gration between different platforms, where each platform has its own perception to define the
behavior of agents. In order to solve this problem, many contributions such as [Over04] have
proposed the integration of generic languages that describe the agent and allow its reconstruc-
tion in its native language.

1.3.3 Security, Fault-Tolerance and Traceability

Security of agents

Security is considered as a critical feature that must be provided in a mobile agent system,
since the agent during its trip has to interact with different systems and resources that are
characterized with various levels of trust. According to this, two principal categories of security
issues are identified:

— Malicious Platform against Agent: when an agent is migrating to a new platform,
it has to expose in clear its code, status and data. This makes it susceptible to con-
fidentiality and integrity threats on behalf of the hosting platform, which exploits its
information and manipulates its behaviors and results. Thus, mobile agents need to be
protected at two levels: the protection of the code (changing behavior) and the changing
of the agent status. Many approaches are proposed to address this security problems,
such as: detection based on tracing techniques, black-box approach and cryptography
mechanisms,

— Malicious Agent against Platform: a mobile agent could have free and unauthorized
access to the runtime environment and thus, it could violate its confidentiality, integrity
and availability by intercepting or modifying its data, fully exploiting its resources,
cloning or migrating indefinitely. The main two approaches used in this category are:
the access control to limit the access to the local resources of the platform, and the
authentication where the real identity of the agent is verified.

Fault-Tolerance

During its execution, the mobile agent interacts with several hosts, which exposes it to an
eventual failure or unexpected disconnection of the site on which it is running. This failure
or disconnection lead to the disappearance of the agent, and subsequently the dysfunction of
the application based on it. According to this, an application is said to be secure when it is

38 CHAPTER 1. MOBILE AGENT SYSTEMS

able to continue processing in case of failure of a system entity. This property is called "Fault-
Tolerance".

Within an architecture of services, various types of failures are considered, such as: stop
(crash or failure) where no result is returned after repeated invocations, omission, temporal
failure where a correct response did not arrive in defined time interval, value failure where
incorrect values are received. Concerning the applications based on mobile agents, additional
types of failures are depicted in [Sha06]:

— An agent may disappear after visiting numerous platforms, and thus the results of its
execution will be lost.

— In case that a disappearance of an agent is detected, it is substantial to inform its
initiator platform.

— The global and successive execution of the agent on different sites causes a problem of
atomicity.

In order to cope with these failures, the majority of mobile agent environments adopt a
checkpoint mechanism, which is used to subsequently restore the agent in case of failure. How-
ever, during the restoration process, it must be taken into consideration to not have two active
agents at the same time.

Traceability

A mobile agent is an autonomous entity that executes in asynchronous manner. Thus, either
for the native platform that launches the agent or for the platforms receiving it, it is very useful
to have information on the performance of the agent, its state, the machine where it comes and
that on which it is located. Hence, despite their autonomy allowing them to choose where to go
and when to execute, the use of traceability mechanisms becomes primordial to monitor and
control the movement of mobile agents.

For instance, it will be interesting to record that an agent has changed the order of the
sites it should visit because of a temporary unavailability of a network link, or that it has
waited until this disruption is trailed away. This also concerns the agents whose missions are
either exploratory (robots on Internet) or make reference to specific goals and needs (the agents
charged to find the right interlocutors to carry out their tasks).

1.3.4 Life cycle and Control

A runtime environment for mobile agents must provide the user with the ability to control
the activities of the agent, that goes through several stages in its life cycle. According to El
Falou [Fal06], these stages are the following:

— Creation and Initialization: when an agent is created, it is initialized with the nec-
essary information to its execution, such as the itinerary and its user’s preferences. Fur-
thermore, the owner of an agent initializes it with the necessary information necessary
to interact with its hosting environment, such as the owner and sender identities.

— Migration: the aim of the migration is usually promoted by a local operation with
stationary agents or other mobile agents running on the same site or exploiting additional
resources (computing power, memory). Thus, before resuming its activities, the agent
will need information on the new destination.

— Activation and Desactivation: an agent is desactivated by suspending its execution
and then saved using serialized mechanism. On the other side, the activation is the
reverse operation by which the agent is restored to continue execution.

1.4. STANDARDIZATION EFFORTS 39

Table 1.2 – Call-backs in an environment of mobile agents
Agent Life Cycle Call-back

Creation afterBirth()

Migration
beforeMove() ; afterMove()

afterMoveFailed()

Activation afterResume()

Deactivation beforeSuspend()

Termination beforeDeath()

— Termination: once its tasks are achieved, the agent is terminated and its execution
process is killed. Before its termination the agent needs to deliver a report to its user.

In practice, the developers make use of methods named "Call-back" to define the life cycle
of the mobile agent. These call-backs let the agent informed once an event of its life cycle
starts, succeeds or fails, which allows to react or refuse one of them. Table 1.2 gives examples
of call-backs in a mobile agent environment.

1.4 Standardization Efforts

In network, each platform or site is is designed with respect to a specific architecture and
model of agents, or with respect to a specific application domain. This raises a problem of com-
patibility between different environments for mobile agents, which can not move to a machine
that executes a different system than their native system. Thereby, to ensure a high level of
interoperability, it becomes primordial to propose a standardization with minimal concepts and
functionalities of mobile agent platforms. In this context, we define two standardization efforts:
MASIF and FIPA.

1.4.1 MASIF

MASIF (Mobile Agent System Interoperability Facilities Specification) [Milo98] is a stan-
dard specified by the Object Management Group (OMG), for the system based on mobile
agents. It is based on a set of definitions and interfaces, that allow a level of interoperability
between different mobile agents. Indeed, MASIF requires an infrastructure primarily based on
the following concepts:

— Agents are viewed as autonomous programs working on behalf of an individual or an
organization.

— Agents are hosted and executed in a context defined by the agents system, called "place".
It is possible that the source place and destination place of a mobile agent, reside in the
same system of agents.

— An agent system is a platform that can create, interpret, execute, dispatch and stop the
agent. It is associated with an authority that identifies the person or the organization
for which it acts.

— A type of agents system describes the agents profile (language, serialization methods,
etc) within this system. Thus, an agent moves from one place to another, if its profile is
recognized by the destined system of agents.

40 CHAPTER 1. MOBILE AGENT SYSTEMS

— The systems of agents with the same authority are grouped in a region, which ensures
scalability.

The development of MASIF relies on two CORBA interfaces: MAFAgentSystem and
MAFFinder, which have been defined at the side of the hosting system, not at the agent
side. The MAFAgentSystem interface defines the operations to manage the life cycle of the
agent, such as the creation, suspension, resumption and termination of the agent, as well as the
transfer and reception of mobile agent classes. While the MAFFinder interface is concerned by
the recording and location of places, agents systems and agents. In addition, MASIF defines a
security service mainly based on users authentication, mutual authentication of agents systems,
authentication and delegation of agents.

1.4.2 FIPA

FIPA (Foundation for Intelligent Physical Agents) [FIPA02] is a standardization organiza-
tion founded in 1996 in Geneva (Switzerland), with the aim to specify software standards, that
ensure interoperability between agents and applications based on agents. In general, there are
five categories specifications defined by FIPA:

— Abstract architectures: they define the abstract entities needed for the development
of an environment of agents.

— Agents communication: where the ACL messages (Agent Communication Language),
the message exchange protocols, and many others concepts are addressed.

— The transport of agents messages: this category deals with the transmission and
representation of messages, through various network protocols.

— Agents management: this category addresses the control and management of agents
within and between platforms of agents.

— The applications: where examples of application areas, on which can be deployed FIPA
agents, are exposed.

In the recent version of FIPA (FIPA2000), there is a focus on the needs and technologies
that allow the agent to take advantage of mobility, such as:

— Life cycle of the mobile agent: it is illustrate in Figure 1.7, where a new state "transit"
is added to the model of stationary agent, with two actions "move" and "execute". To
activate the state ’Transit’, the mobile agent must initiate the implementation of a
protocol of mobility to go to a new system. The action ’Move’, initiated by the agent,
allows to place it in a transient state. On the other hand, the action ’execute’, which is
initiated by the executing system, helps to bring out the agent of the transitional state
and activates its execution.

— Protocols of mobility: it assembles a set of protocols that support various forms of
mobility. This particularly concerns the migration, the cloning and the invocation of the
agent.

— Mobility ontology of the agent: this gives a definition of a set of objects and functions
for mobility. Every object contains a set of parameters, such that each parameter is
characterized by: a semantic description, a presence, a type (Integer, Word, String, URL,
Term, Set or Sequence) and a list of values that can be supported. Similarly, a function
is specified by a symbol, a type of agent supporting this function, a semantic description,
a domain, a range, and an arity indicating the number of arguments in the function.

Recently, many platforms of mobile agents adopt the standard FIPA, such as JADE (see
below) used in this thesis. Concerning the security issues related to mobility of agents, they were
not addressed in the FIPA specifications. However, many efforts were investigated in this sens,

1.5. EXAMPLES OF MOBILE AGENT PLATFORMS 41

Figure 1.7 – Life cycle of a mobile agent according to FIPA [FIPA]

such as in [Zha01], where an architecture is proposed with two security services: a service for
secure communication that prevents eavesdropping from external network, and another service
for a secure execution to prevent unauthorized access to the resources of the agent and the
platform.

1.5 Examples of Mobile Agent Platforms

In this section, we expose different existing platforms for the development of mobile agent
systems. Not for the purpose of comparing them, but rather to put in evidence the capabilities
and characteristics of each one. In general, there is no other rule, in the choice of the platform,
than its technical configuration, since a lot of recently added platform were deprecated due to
their poor configuration or the complexity to be implanted. We will describe three platforms
according to their communication approaches, which are: JADE, Aglets and LIME.

1.5.1 JAVA Agent Development Framework (JADE)

JADE [Belli01] is a free project developed in Java by the Telecom Italia Group CSELT1
,with the cooperation of the University of Parma (Italy), and it is distributed by Telecom Italia
Lab (Tilab) under LGPL. It follows the specifications of the FIPA Standard, and provides
interoperability with a complete set of agents and services: naming service, yellow pages service,
parsing service and a library of protocols interaction, that make the development and set up of
the multi-agent systems more easier. JADE platform can be spread on multiple servers, with
only one java virtual machine (JVM) executed on each server. Conceived as an agents container,
the JVM allows multiple agents to be launched in parallel on the same server.

42 CHAPTER 1. MOBILE AGENT SYSTEMS

Being a FIPA compliant agent platform, JADE includes three mandatory components:
Agent communication Channel (ACC), Agent Management System (AMS) and Director Facil-
itor (DF), as illustrated in Figure 1.8.

Figure 1.8 – Structure of JADE platform compliant to FIPA

— Agent Management System (AMS) provides the naming service, ensuring that each agent
in the platform has a unique name. It performs several “management tasks” as well, such
as creating and killing agents on containers. It is a mandatory agent providing a directory
service as it maintains a register of description of all agents in the platform.

— Director Facilitator (DF) provides a yellow pages service. Agents of the platform register
with the DF. This allows one agent to trace other agents that provide the services it
requires by requesting the DF.

— Agent Communication Channel (ACC) is the agent that supports the communication
between agents inside and outside the platform. It listens for remote invocations. When
it receives an ACL message encoded as a string, which is usually the case of non-JADE
agents, it parses the message and converts it into a Java jade.lang.acl.ACLMessage object
used by all agents in the JADE platform.

The communication among agents within this framework is performed via FIPA ACL mes-
sages (Agent Communication Language) sent over an MTP (Message Transport Protocol). The
later, works such a chameleon mechanism, that adapts to every situation by transparently
choosing the best available protocol. The main protocols used are: RMI, HTTP and IIOP, but
there are others that can be instantiated.

JADE adopts a multi-threading method to manage the cooperative and cyclic behaviors,
and makes use of a graphical user interface (GUI) for remote management agents (RMA). The
GUI creates and runs an agent on a remote server, that needs to be provided with an agents
container, already in running mode. This is achieved using some sophisticated graphical tools

1.5. EXAMPLES OF MOBILE AGENT PLATFORMS 43

that support the correction phase, such as:
— Dummy Agent : it displays the messages exchanged among the agents, validates their

integration in the SMA and facilitates the debugging.
— Sniffer Agent : when the user wants to monitor an agent or group of agents, the sniffer

is then used to track the exchanged messages. The screened messages are displayed or
stored for subsequent analysis.

— Introspector Agent : it allows the control and the supervision of the current agent’s life
cycle and its behaviors, traced in its exchanged messages.

We make use of this platform for the implementation of our approaches, as it fits our needs
for mobility, through its communication mode based on FIPA ACL, that supports serialized
objects, which lighten the migration process. It also provides a yellow page directory, where
referenced services are integrated and managed using ontologies. Based on behavioral attitudes,
the conception of mobile agents allows the achievement of distributed applications.

1.5.2 Agent Applets (Aglet)

Aglets [Tai99] are components developed by IBM at Tokyo in 1995, in order to furnish a
uniform platform for mobile agents development in heterogeneous areas, such as network and
internet. In reality, they are mobile Java objects acting as mobile agents, so, they can move
from one host to another, where they are able to begin or continue the execution performed on
the last host.

The communication of Aglets is based on the exchange of messages according to KQLM
language (Knowledge Query and Manipulation Language). The main components involved in
the communication of Aglets are:

— Aglet: it is a mobile Java object able to move across hosts able to receive and execute
agents. It is an autonomous and reactive object, since it can continue execution once
arrived to destination, and dynamically react to the incidents of its environment.

— Context: it is the Aglet’s executing environment, which is provided with mechanisms
and capabilities to control, update and track the aglets, in a uniform manner.

— Host: it is every server or machine able to receive one or multiple contexts. It usually
refers to a network node.

— Proxy: every Aglet owns a specific proxy as delegate, that acts as a shield to protect the
public methods of the Aglet from unauthorized direct access. For that reason, it hides
the real location of the Aglet.

When an Aglet needs to send a message, it must go through the proxy of the recipient.
Each Aglet holds a messaging manager, that allows it to deal with messages one by one in their
order of arrival. Aglet is endowed with a great simplicity of implementation, and its security
features are based on Java APIs and a personalized controller, that allows users to edit their
own preserving-privacy methods. However, the fact of hiding the localization of an Aglet may
raise many flaws, especially in environments that are not fault-tolerant, and where tracing
the movements of the agents is essential. Concerning dynamic environments, it becomes more
narrow and complicated, to define granted rights and rules to access local resources or execute
tasks.

1.5.3 Linda in a Mobile Environment (LIME)

LIME [Murph06] is a model and middleware, supporting the development of applications
that exhibit physical mobility of hosts, logical mobility of agents, or both. LIME adopts a

44 CHAPTER 1. MOBILE AGENT SYSTEMS

coordination perspective inspired by the work on the Linda, which is a model of parallel pro-
gramming, regardless of the place, data or time. Linda is composed of two explicit notions:
"tuples" and " primitive access methods" (which: are out(), eval(), in() and read()).

Indeed, LIME is not viewed as a complete platform, since it does not support the various
elements described in the standards, but only exploits coordination in order to build distributed
applications. Making use of shared storage space called "tuples", the communication is decou-
pled in time and space, which notably fits the mobile environments where the interlocutors
move in dynamic manner. Accordingly, each mobile agent is associated to a "tuples" space,
and each host detains an Interface of "Tuple" Space (ITS), at which the mobile agents may
subscribe, through providing the tuples to be shared. ITS is the union of tuples shared by local
agents. When an agent wants to communicate with one or multiple agents, it disseminates a
"tuple" in space.

Table 1.3 – A comparative table of the defined agent-platforms: JADE, Aglets and LIME
Agents Metrics Communication

Type Mobility State DF Method Type Protocol

JADE
Proactive

Reactive
Weak Yes Yes Asynchronous

Asynchronous

Synchronous

RMI

HTTP

IIOP

Aglets Proactive Weak Yes No
Asynchronous

Synchronous

Asynchronous

Synchronous

ATP

RMI

CORBA

LIME

It supports different

types of agents,

depending on

the hosting

system, through a

synchronization

medium

Yes No Synchronous
Asynchronous

Synchronous
Sockets

This mechanism is extended for use in remote communications. For that purpose, a set of
several ITSs is assembled in a Federation of Tuples Space (FTS), which is managed by a leader
site that adopts a conventional election mechanism, whose role is to consider the incoming and
outgoing ITSs. This allows the agents to interact remotely and be warned of any changes, in
order to adapt and maintain the optimal configuration of their environment.

Although its simplicity and its flexibility, the centralized management provided by the FTS
within this model, cannot be adequate for highly dynamic environments. This is more illustrated
in cases where the leader of a FTS is passed away, or when the communication links between
agents, asking for remote synchronization, are not constant.

Finally, we have grouped the main features of these Java platforms in the summary Table
1.3, in order to get a quick overview.

1.6. CONCLUSION 45

1.6 Conclusion

This chapter was devoted to define the principal concepts and aspects in the mobile agent
systems. After discovering the evolution of communications and services over the network until
mobile agent paradigm, we have provided the usual definitions and fundamentals in this field,
its advantages as well as an overview of its application disciplines. Subsequently, the essential
services required for the execution of mobile agents are described, with a highlight on the
admitted standards and examples of commonly used agent platforms.

46 CHAPTER 1. MOBILE AGENT SYSTEMS

Chapter 2

Security of Systems based on
Mobile Agents

Contents
2.1 Security Requirements . 47
2.2 Security Threats . 49

2.2.1 Attacks of Malicious Agents . 49
2.2.2 Attacks of Malicious Platforms . 51

2.3 Protection of Mobile Agent Systems . 52
2.3.1 Protection of the Mobile Agent . 52
2.3.2 Protection of the Agents Platform 55

2.4 Synthesis . 59

Certainly, mobile agent paradigm provides promising solutions that facilitate the distributed
execution through open networks. However, it introduces serious security problems mainly
related to the luck of confidence. Thus, in order to implement applications based on mobile
agents, in a such way they reach their full potential, it is strongly recommended to employ
them in mobile agent platforms which are safe and secure.

In this chapter, the security issues associated to the use of mobile agent technology are
emphasized. We begin by exposing the substantial requirements needed to maintain the se-
curity of an information system in Section 2. Then, Section 3 enumerates the famous attacks
leaded separately against the mobile agent and the agent’s platform. In Section 4, the counter-
measures adopted to protect the mobile agent and the agent’s platform are investigated. Finally,
a synthesis is provided in Section 5.

2.1 Security Requirements

In general, the development of an application necessitates the definition of requirements,
whether they are functional describing the tasks to accomplish, or non-functional defining the
way these tasks are performed. The security is among the non-functional requirements, which
represents a great challenge to the expansion of new technologies. It is often related to the

47

48 CHAPTER 2. SECURITY OF SYSTEMS BASED ON MOBILE AGENTS

design and requirements identification of the involved system, without compromising the proper
functioning of the application.

Attacks that occur in a systems based on mobile agents may have different sources and dif-
ferent targets. Indeed, there are four classes of attacks: two classes whose source is a malicious
mobile agent, and the other two are caused by a dishonest agents system. In order to resist to
the different forms of attacks in an information system, it is of a paramount importance neces-
sary to introduce mechanisms that ensure the security needs [Bra05], such as authentication,
confidentiality, integrity, availability, non-repudiation and access control.

— Authentication: authentication of an information system is the process to verify the
identity of another entity (person, computer ...) to allow its access to resources (systems,
networks, applications...). It permits then to validate the authenticity of the entity in
question. The fact that a mobile agent authenticate a platform is the first and essential
resource before it proceeding to its execution, because a malicious site could hide its
identity in order to attract the agent, and then leads attacks on it such as masquerade
balls and cloning agents. Similarly, a mobile agent has to authenticate on each visited
agents system, and therefore, an agent system is then capable to decide if it is a trusted
agent.

— Confidentiality: data confidentiality consists on ensuring that information is kept secret
and that only authorized persons may have access to it. It is a very recommended
property in elaboration of a security policy or approach. Maintaining the confidentiality
of the stored data, the parameters of treatment, and any information circulating through
the network is the main objective of the security. This concerns mainly the private data
such as the resources and services of the agents system, as well as the code and data of
the mobile agent.

— Integrity: the integrity is the principle made to ensure that the data are those believed
to be, and verifying data integrity consists in checking whether the data have been
altered during transmission (incidentally or intentional) or not. It is a very valuable
property to maintain confidence between the communicating parties. For example, in
the context of mobile agents, the itinerary of the agent is a sensible data that requires
specific protection against all forms of tampering.

— Availability: availability ensures the proper and not abusive use of the services and/or
resources of the system. In addition, this property provides access to resources and/or
services as long as the requesting entity is authorized. Both the agent and the agents
platform have to ensure the availability of their data and services to local and remote
agents, and provide controlled concurrency, support for simultaneous access, deadlock
management, and exclusive access as required. They are also concerned by detecting
software/hardware failures, and supporting fault-tolerance and fault-recovery.

— Non-Repudiation: it is the assurance that the originating entity can be held respon-
sible for its communication. In other words, availability requires that either side of a
communication cannot deny the communication later. Thus, when a mobile agent is
executing on an agents platform, this execution, including all data involved, operations
performed and results obtained, cannot be repudiated by one of them. This is due to
the fact that, the important communication exchanges are logged and recorded, basing
on the identities authenticated, so as to prevent denials by any party of a transaction.

— Access Control: this means the concept of granting or denying access rights to a user,
program or process. Furthermore, access control requires that only legitimate users have
rights to use certain services or to access certain resources, for which unauthorized users
are kept out. Thus, both agent and agents platform need to adopt a security policy based

2.2. SECURITY THREATS 49

on access control, to prevent their resources from the abuse of malicious entities, that
attempt to get unauthorized access. Here, there are many mechanisms to decide whether
or not to grant a request to an entity, such as: password access, digital signature, etc.

— Accountability: Both mobile agents and agent platforms need to be held accountable
for their actions. Mobile agents need to be held accountable for services and data it
accessed, and platforms need to be held accountable for the services and data it pro-
vided. These actions need to be uniquely identified, authenticated, and logged. This log,
maintained by either or both the mobile agent and agent platform, must be tamper-
proof and non-repudiable. Measures need to be in place to handle situations when the
log becomes full.

2.2 Security Threats

In general, it is difficult to decide in advance the threats and vulnerabilities you may face
in a system, since the probability of risk occurrences changes depending on variety of system
metrics, including its nature and status. Thus, it becomes primordial to recognize these risks
and try to prevent them, through implanting an effective and reliable security policy.

An attack is viewed as the set of environmental actions and behaviors, that may threaten a
system and cause serious damages. There are two types of attacks:

— Passive Attacks: in this attacks, the data and resources of the system are not modified,
only their confidentiality is affected. Examples of passive attacks are: eavesdropping,
illegal copying, etc.

— Active Attacks: they are more potent, because they are able to alter the information or
remove it, as well as influence the overall system behavior. Examples of active attacks
are: alteration, denial of service etc.

In literature, there are many classifications of attacks against mobile agent systems. In
addition to the technical report of the NIST [Jan99], we were inspired from [Alf05; Bier02] to
distinguish two major categories of attacks as illustrated in Figure 2.1 attacks led by malicious
agents on platforms or other agents, and attacks led by malicious platforms on the hosted
agents.

2.2.1 Attacks of Malicious Agents

When a malicious agent is moving across several platforms over the network, it may exploit
abusively the resources and services of these platforms, in order to produce severe harms, or
communicate improperly and unsafely with other naive agents encountered in the itinerary.
The attacks of mobile agents can take different forms, as described bellow.

Masquerading Attack

A mobile agent is masquerading when it hides its real identity and uses the identity of
another agent, in order to get privileges, for which it normally does not have the right. This
may cause serious damages to the hosting platform and accuse another agent to be responsible
of this damages. Consequently, many trust relationships within a community of mobile agent
systems are broken.

50 CHAPTER 2. SECURITY OF SYSTEMS BASED ON MOBILE AGENTS

Figure 2.1 – Categories of Threats in Mobile Agent Systems

Denial of service Attack

A denial of service attack may occur either intentionally or through a programming error,
when an agent executing on a hosting platform, attempts to excessively consume the resources
of the platform (CPU, bandwidth, ...). The big concern of this attack relies on the fact that the
agent code is elaborated outside the platform charged with its execution, and this code may be
malicious.

Unauthorized Access

Access control is a mechanism, that aims to manage and monitor the access of legitimate
users and processes, to the services and resources for which they are authorized, as it is specified
in an adopted security policy. Thus, each mobile agent has to respect the security policy of the
visited platform. However, when this agent comes to obtain illegally privileges and services, it
may harm the hosting platform and other local or remote agents.

Repudiation

Repudiation is a breakdown of the communication among the entities of the system, caused
by an agent involved in the transactions. It may lead to huge problems and conflicts, either it
is produced accidentally or intentionally. Thus, protecting the platform from agent repudiating
transactions is considered to be substantial and crucial, through introducing the appropriate
security mechanisms and countermeasures, taking into account the techniques to solve the
occasioned disagreements.

2.2. SECURITY THREATS 51

2.2.2 Attacks of Malicious Platforms

Since an agent platform is able to execute a mobile agent, thus, it may have malicious
attitudes and attempt in various ways to harm the mobile agent. Among the attacks in this
context, the following ones are identified.

Eavesdropping Attack

Eavesdropping is a conventional attack also called "Listening", as it intercepts secret com-
munications. mobile agent platforms are considered as prolific environments, where this kind
of attacks may occur and expand. This is due to the fact that these platforms take control of
the received agent exchanges, including every executed statements or produced information.
Moreover, even when the mobile agent adopts robust security mechanisms to be protected, the
eavesdropping platforms can lead analysis on the agent’s behaviors, in order to approach its
approved strategies and recognize the services it may provide.

Alteration Attack

Alteration attack occurs when an agent suffers from lack of its data integrity. An agent
that moves to a client platform must expose its code, state, and data, in order to be executed.
Thereby, the platform may modify the own data of the mobile agent, as well as other data
gathered and obtained on previously visited platforms. What is worst is when the malicious
platform alters the execution state of the agent, either temporarily to force a modified execution
according to the platform specifications, or permanently through injecting viruses, worms or
Trojan horses to attack other platforms being in the itinerary of the mobile agent.

Masquerading Attack

A malicious platform can hide its real identity and masquerade as another trusted host,
in order to deceive the mobile agent as to its true destination and then extract its sensitive
information. What is more harmful in this attack is that it can facilitate other attacks, such as:
eavesdropping, abusive extraction of sensible data, etc. In addition to deceiving naive agents,
the masquerading platforms can harm the platforms whose identities were exploited.

Denial of Service Attack

Once arriving on an agents platform, the mobile agent waits that its requested services will
be properly executed on the defined and allocated resources, according to specific constraints.
However, the malicious platform may ignore the services requests of the agent, introduce unac-
ceptable delays for critical tasks, even more, do not execute the mobile agent or terminate its
session without any notification, which could lead the agent to be dead-locked.

Incorrect Code Execution

In this kind of attacks, a malicious platform may change the way it executes the code of the
agent, without modifying either its code or its execution state. In this context, the platform
can assign or return false values during computations and comparisons, re-execute the agent to
copy some of its parts or messages, or simply re-execute the agent with different data.

52 CHAPTER 2. SECURITY OF SYSTEMS BASED ON MOBILE AGENTS

2.3 Protection of Mobile Agent Systems

The security problem in the mobile agent systems represents a brake on the actual use of
this technology. The latter requires, in one hand the protection of the resources and data on
the host machines, through limiting the access rights and consumption of resources, and on
the other hand, the preservation of agent’s integrity and confidentiality as well as those of its
communications [Alf05].

Indeed, mobile agents become a new field of investigation for the security research field. Ac-
cording to this, there are two main areas of research: the protection of agents against malicious
platforms and the protection of agent’s platform against malicious agents [Alf05; Bella04].

2.3.1 Protection of the Mobile Agent

Cryptographic Traces

Cryptographic Traces or "Execution Tracing", as proposed by Vigna [Vigna98], is a de-
tection technique based on a post-mortem analysis of data and events, which generate "traces"
to notice any abnormal execution on the hosting platform, either by the agent or the platform
itself. It enables an agent’s owner to check the agent’s execution history (logs of the actions
performed by the agent), and see if it contains any unauthorized or improper modifications
done by a malicious platform.

A trace is represented by a pair (n, S), where n is the set of the unique identifiers of the op-
erations performed, while S is the set of signatures containing the line codes of these operations.
Indeed, the statements in the agent’s code are divided into two categories: "white statements"
where only the values of the agent’s internal variables are used, and "black statements" which
require information from external environments. Thus, only the black statements are considered
for signature in S. Table 2.1 shows an example of a trace.

Table 2.1 – An example of a trace
Code Trace

read(x) (1, x=30)

a = b+ c (2, none)

e = encrypt(input) (3, e = "qyt2b0#")

T = T + e (4, none)

isAuthenticated(param) (5, "True")

This technique assumes that all entities (agents or platforms) in the itinerary of the agent
communicate through using signed messages, which implies that they must hold a private and
public key to compute the digital signatures. When a platform receives an agent, it produces
an associated trace during the execution of the agent. This trace may include information such
as: the unique identifier of the message, the identity of the sender, the timestamp, the final
state as well as a trusted third party to be consulted in case of conflicts. Once the execution is
terminated, the trace is signed by the hosting platform using its private key, and then transferred
along with the agent’s code and state to the next destination. In the return of the agent to
its owner platform, this latter may suspect that a certain platform cheated while executing
the agent. In this case, the owner can either re-execute the agent from its initial state or ask

2.3. PROTECTION OF MOBILE AGENT SYSTEMS 53

the suspicious platform to reproduce the trace. Subsequently, the agent’s owner compares the
reproduced trace with that originally provided by the suspicious platform. The same principle
is used to protect a platform against malicious agents.

This first version of execution traces has shown some limitations, such as the potential
large size and number of logs to be retained and the fact that the owner platform needs to
wait until it obtains suspicious results in order to run the verification process. According to
this, Tan and Moreau [Tan02] have proposed a new version where the verification process of
the trace is assigned to an independent "Verification Server" as a trusted third party. This
verification server receives a copy of the agent before its migration. Afterwards, each visited
platform forwards the produced trace to this server, that simulates the execution of the agent
on that platform using the agent’s copy. This process is repeated until the return of the agent
to its home machine.

Partial Result Encapsulation

This technique consists of detecting the modifications applied to the agent, through en-
capsulating the results of the agent’s execution performed on each visited platform. Thus, the
encapsulated information is lately verified to discover any security breaches. This verification,
to ensure agent’s results validity, can be evaluated on the native platform or on an intermediary
placed in the path of the agent. Indeed, the encapsulation aims at preserving many security
requirements, such as the confidentiality, integrity, non-repudiation and accountability, through
using cryptographic primitives, namely encryption, digital signature, hash function and authen-
tication code. In general, there are three manner to encapsulate results: with the agent, with
the platform or with a trusted third party.

Among the approaches proposed in this context, Young et Yung [Young97] defines a method
called "sliding Encryption", based on the public-key cryptography to encrypt small amounts
of results whithin a larger block and thus obtain small piecess of ciphertext. This aims to
reduce the volume of encrypted data, which fits the limited storage capacities of the agent. In
addition, Roth [Roth98] presents an oriented-platform method, where each platform executing
the mobile agent adds the obtained results to the chain of results included in the agent, through
linking them to the results on the previous platform. In other words, a platform has to digitally
sign its results with its private key, and then hashes the concatenation of the chain of results
with its encrypted results. The fact of encrypting the results with the private key of the agent’s
owner, ensures strong integrity.

Nevertheless, the technical report of the NIST [Jan99] describes many flaws and limitations
of this technique. For instance, if a platform maintains the set of the keys, it will be possible
for this platform, once visited again, to partially alter the results without being detected.

Code Obfuscation

Code obfuscation is a technique where a transformation is enforced to the agent’s code,
before being sent for execution on different platforms, with various trust levels. According to a
predefined security policy, this transformation must preserve the behavior of the mobile agent
and the actions it is charged to perform. That is to say, a platform that hosts an agent with an
obfuscated code, could neither disclose the sensible information included in the code, as they
become hard to understand and analyze, nor modify the attitude and behavior of the agent’s
execution.

In literature, many obfuscation transformations were proposed [Wro02], including: "Data
Obfuscation" where only data and data structures are concerned without modifying the code

54 CHAPTER 2. SECURITY OF SYSTEMS BASED ON MOBILE AGENTS

itself, "Layout Obfuscation" where information not affecting the code execution are modified
or removed, such as comments and debugging lines, "Control Obfuscation" where the control
flow used by the code is altered, and "Preventive Obfuscation" that focuses on preserving the
code against the decompilators and debuggers.

Hohl [Ho98] makes use of this technique to constitute a time-limited-black box, where
the mobile agent can be involved and safely executed on suspicious platforms, for a limited
period. However, according to an analysis and critical study provided by [Ann03], the obfus-
cation technique combined with reverse engineering, can be suitable for delaying the threats on
agents, but not preventing them. Eventually, despite the fact that this technique resists to the
impersonation and denial of service attacks, the real concern is to implement it in practice.

Computing with Encrypted Functions

This technique is a software solution based on cryptographic primitives to preserve integrity
and privacy of the mobile agent’s code. The main concept of this technique consists in incorpo-
rating an encrypted function inside the agent’s code, that will be executed on a mobile agent
platform, which totally ignores any substantial information about the function.

Sander et Tschudin [San98] proposed a technique that conceives the mobile agent as a black
box for the platform where it is executing. Thus, they force the platform to execute the agent’s
code, without being able to decrypt the encrypted function involved in it. This is formulated
as follows:

— Problem: Alice has an algorithm to compute a function f . Bob has an input x and
can provide a service to Alice by computing f(x). However, Alice does not want Bob to
learn anything about the function f . Besides, Alice and Bob could not communicate or
exchange messages during the computing of f(x).

— Solution:
— Alice encrypts f to get E(f);
— Alice creates a program P (E(f)) that implements E(f);
— Alice embeds the program P (E(f)) within the mobile agent and sends it to Bob;
— Bob executes the mobile agent, which implies executing P (E(f)) to x to produce

P (E(f(x)));
— Bob sends back the mobile agent to Alice;
— Alice decrypts P (E(f(x))) to get f(x).

Although this technique enables the execution of encrypted programs on untrustworthy
platforms, but it is still limited in employment, as it is applicable only for polynomial and
rational functions for which a suitable encryption could be known. Finally, it is worth to mention
that the computing with encrypted functions is vulnerable to some class of attacks such as denial
of service and replay attacks.

Environmental Key Generation

The technique of environmental key generation as proposed by Riordan and Schneier
[Rio98], makes an agent generates a key when an environmental condition is true. This key
can be used to decrypt a message destined to an agent, whose sender wants it to be readable
only under certain conditions, such as matching a certain search string. It is primordial that
the platform ignores the significance and dependence of these conditions, because they master
the whole environment. That is to say, if the environment does not satisfy the conditions to
generate the key, it is impossible to guess the function of the agent.

The generation of the environmental key could be performed in different manners:

2.3. PROTECTION OF MOBILE AGENT SYSTEMS 55

— using fixed data on a channel, such as web pages and severs of news. However, the utility
of this method is based on the entities that have direct or indirect access to the channel,
and which could manipulate the data.

— using temporal constraints, such as generating a key only before or after a specific date,
or according to a fixed time interval.

This technique may be of great benefit for many applications other than mobile agents, such
as remote alarms, blind search engines and directed viruses. However, it stills suffering from
some limitations, mainly related to the maliciousness of platforms that come to force the mobile
agent to execute different functions, even the required conditions to generate the activation key
are met.

Spatial Security Policies

A Sentient Computing environment as defined by Scott et al [Scott04], is an environment
where the involved system may perceive his own state and use the related information to cus-
tomize its behaviors. The authors of that research work initiate a technique to model new
security policies for mobile agents, mainly based on agents location. These policies called "Spa-
cial policies" are employed to make the location assertions (either positive or negative) more
dynamic.

Regarding future perspectives on sensitive applications to locations, these dynamic asser-
tions will be of great interest and utility. This is due to the fact that they can refer to the
location of physical and virtual objects in the world. This technique provides a useful way to
compel the mobility of agents, in order to safely use the mobile agent technology and to simplify
the development process of future sensitive applications.

Self-Executing Security Examination

Abbreviated as "SENSE", self-executing security examination was proposed by Page et
al [Page04] as a general software architecture for mobile agent protection. This architecture
includes security schemes, involving programmed mobile agents that carry their own security
implementations, make them more independent.

The basic idea behind this concept focuses on the use of a scan algorithm by the mobile
agent, in order to verify the integrity of its code in arbitrary temporal intervals. Thereafter, the
returned scan result is compared with a code image carried by the agent. Thus, the mobile agent
can easily detect any attempted attacks and ensures its integrity without having to consult the
owner host.

2.3.2 Protection of the Agents Platform

Agent Authentication

The conception of mobile agent environments is similar to distributed systems, where au-
thentication is a big concern. In case of mobile agents, in addition to verify the integrity of the
code and data of the agent, it is strongly needed to authenticate platforms and servers working
on behalf users.

Among the various tentatives in this context, Greenberg et al [Green98] proposed to digi-
tally sign the mobile agent with a public key algorithm, which allows to generate a certificate
that ensures agent’s integrity, as well as to authenticate the agent’s owner and receiver. More-
over, confidentiality is also preserved through encrypting the mobile agent, so that only the

56 CHAPTER 2. SECURITY OF SYSTEMS BASED ON MOBILE AGENTS

Figure 2.2 – Sandboxing Technique

destined platform decrypt it. However, this method expresses many limitations [Jan99], par-
ticularly in the distribution of the public keys. It is substantial to find a mechanism to easily and
promptly the public key certificates of users, namely when the number of users is increasing.
Another limitation is the classification of the certification related to a program, while this later
could not be usually defined as inoffensive. In addition, the verification made in a short and
limited time could not be effective and qualifies the state of the mobile agent while executed
on malicious platforms.

Sandboxing

Sandboxing [Vigna03] is referring to the sand boxes used by minesweepers to detonate
devices safely, as illustrated in Figure 2.2. This technique allows the execution of the mobile
agent’s code in a restricted environment (sandbox), that appears similar to the global system,
and where restriction affects certain code operations such as: the access to the file system, the
opening of a network connection, the access to the properties and programs of the local system,
or invoking programs on the local system. This ensures that a malicious mobile agent cannot
cause any harm to the execution environment that is running it. It mostly depends on the
access control of the resources and the security policy associated, and proceeds to the execution
of a mobile agent with limited privileges, even suspicious, in the sandbox without caring about
security issues.

Among the tools that facilitate the implementation of sandboxing, there is the code inter-
preters [Haus00]. Those later involve three principal components: "ClassLoader" that converts
the remote code in data structures able to be added to the hierarchy of the local class, "Verifier"
that performs a set of checks, before charging the remote code, to ensure that only legitimate
code are executed, and finally, "Security Manager" controls the operations performed by re-
mote classes. However, this technique suffers from various troubles. When one of the mentioned
three components fails, the security could be violated, because an incorrect classification of a
remote class as a local one, allows it to exploit the privileges of the local class. Another issue
is the increase of the execution time of a legitimate remote code, but this can be overcome by
Code Signing technique.

2.3. PROTECTION OF MOBILE AGENT SYSTEMS 57

Figure 2.3 – Code Signing Technique

Code Signing

When a mobile agent is created, the Code Signing, as shown in Figure 2.3 incites his owner
to digitally sign it so that it can be identified during his round-trips. It enables every visited
platform to verify that the agent’s code has not been modified since it was signed by its owner.
Thus, this technique allows to obtain a high-level authentication for hosting platforms, as well
as ensure the integrity of the code.

Digital signature and one-way hash function are two principal primitives used by code sign-
ing. This later was remarkably introduced by Microsoft to elaborate the Microsoft Authenticode,
which is typically used in the framework ActiveX. Java JDK 1.1 for controls and Java applets
[Madison03; MSDN]. According to this, an applet with a valid signature is executed as a
reliable code and therefore allowed to get access to all available properties in Java, while an
unsigned applet or whose signature is invalid is executed in a sandbox. Moreover, digital signa-
tures widely benefit from the public key infrastructure, because the certificates containing the
identity and the public key of an entity can be easily located and checked. The main problem
of this technique is that it verifies the identity of the code creator, but it does not guarantee
that it is trustworthy. This cloud absolutely not solve the fundamental risk associated with
the agent behaviors, which leaves the hosting platforms vulnerable to damages due to faulty or
malicious code from a reliable source. In addition, a malicious mobile agent not only exploits
the granted privileges to harm the executing hosts, but also to open a door for other malicious
agents by changing the acceptance policy on the platform. Another issue makes this technique
overly restrictive towards mobile agents belonging to untrustworthy entities, as they do not run
at all. Consequently, rather than relying on the identity of the code creator, it would be more
efficient to have a code verification conducted by a reliable party or by an evaluation service.

Access Control

Every program running on an information system needs to get access to the resources in or-
der to perform its task. Therefore, for security concerns, the environment executing the mobile
agent must be restricted, through strictly controlling the resources needed for accomplishing
jobs. This mechanism is approximately an extension to the Sandboxing, such that a more com-
plex access control policy is implemented, and where agents could not interfere with other
agents or platforms to establish separated isolated domains and control all cross-domain ac-
cesses. According to this, a concept called "Reference Monitor" [Shnei01] was proposed as a

58 CHAPTER 2. SECURITY OF SYSTEMS BASED ON MOBILE AGENTS

mediator for all accesses, which gives permissions to a mobile agent for a number of resources
according to the result of the authentication. It is based on a wide variety of conventional
security mechanisms, such as:

— Mechanisms that isolate processes and controls;
— Cryptographic primitives to encrypt the exchanged information, as well as to identify

and authenticate users, agents and platforms;
— Mechanisms to control access to the resources of computations;
— Mechanisms for audit and security of events occurring at the agent platform.
Examples of reference monitors are the principal interpreter of SAFE-TCL and the "Se-

curity Manager" in Java. This technique solves the problems of Sandboxing as it provides a
finer granularity on the protection and authorization, as well as an adaptation of access rights
according to the mobile agents.

Proof Carrying Code

Code verification is a principle that analyses the semantics of the agent’s code, basing its
structure and behavior, and according to a given security policy. In addition to Sandboxing that
ensures rudimentary and expensive verification, many other approaches are proposed. Proof
Carrying Code (PCC) is one among these approaches that promote the automatic verification
of the code before its running, based on a conformity proof. PCC was firstly introduced by
Necula and Lee [Nec98] to allow a system receiving a code from another system to determine
with certainty and instantaneously if this code is safe to install and run. The idea is that the
code producer gives an encoded evidence or proof that the code adheres to the security policy of
the consumer. The proof is conceived such that it can be digitally transmitted to the consumer,
and that it can be quickly validated through a reliable, simple and automatic procedure. Once
the code has been verified, it may be executed safely. PCC guarantees the safety of the incoming
code providing that there is no flaw in the verification-condition generator, the logical axioms,
the typing rules, and the proof-checker. Many advantages of PCC are highlighted. First of all,
it is "tamper-proof" as any attempt to modify the code or the proof will be detected. It is also
“self-certifying”, because no cryptography or trusted third party is required. Besides, it involves
a static program with low-cost checking, after which the program can be executed without any
expensive run-time checking. However, PCC shows some limitations, that include the potential
size of the proof and the time consumed by the process of validating the proof, as well as the
proof generation which is only possible for simple properties such as safety memory, and very
difficult concerning complex properties.

State Appraisal

During the mobility of the agent across multiple platforms, it carries its code, data (static
or gathered) and execution state. This last gets changed and produces dynamic data while the
agent is executed at each host. State Appraisal was introduced by Farmer et al. [Farm96] to
guarantee that an agent has not become malicious or modified due to the alteration of its state
by a malicious host. This technique is based on the use of appraisal functions, which determine
the privileges granted to an agent based on conditional factors and invariants. These functions
are used by platforms to verify the execution state of an incoming agent, and determine the
privileges that this agent can get in order to proceed to its execution. According to this, the
author of a mobile agent must anticipate the possible modifications to the agent’s state and to
counteract them within the appraisal function. Likewise, the agent’s sender generates another
appraisal function to specify the set of permissions to be requested by the agent. Both author

2.4. SYNTHESIS 59

and sender of the mobile agent applies constraints on the state to reduce responsibility and/or
control costs, and they sign the agent to protect their appraisal functions against non-detectable
modification.

State Appraisal provides a flexible way for an agent to request permissions, according to
its current state and the task needed to be executed on a particular host. However, its major
issue consists in the difficulty to formulate suitable security properties for the mobile agent, and
to obtain a state appraisal function that guarantees these properties. Thus, many attacks still
difficult to detect because they were not predicted, so they are not included in the appraisal
functions to ensure the necessary protection.

Path Histories

The basic concept of path histories approach is to maintain an authenticable recording of
the platforms already visited by an agent [Reis00], since this agent during its travel life may
be hosted by multiple platforms with various trust levels. Actually, when the mobile agent
migrates to colossal number of platforms, it faces a great difficulty to maintain trust. Moreover,
an agent whose itinerary is not decided in advance, could not be easily confided, such an agent
that is looking for specific information and which updates its travel path dynamically. In order
to build a path history, each platform visited by the mobile agent must append a signed input,
that contains the current platform’s identity and that of the next platform to be visited by
the agent. According to the information involved in the history, the current hosting platform
decides whether to execute the agent or not and what privileges and services should be granted
to him. In addition, so as to prevent tampering attacks, each signed record constructed by
a platform should include the record of the previously visited platform. This technique does
not prevent the platform from malicious behaviors, but applies a deterrent effect due to the
non-repudiation of the platform’s record signed basing the path. However, the main problems
with this technique consist in the fact that the path verification process becomes increasingly
expensive with the increase of its history. Moreover, it depends on the ability of the platforms
to correctly judge the reliability of those previously visited.

2.4 Synthesis

In this chapter, we have approached the security issues in the systems based on mobile
agents. According to the security requirements commonly requested in each information system
to maintain its safety, we have exposed the related threats to each category and the counter-
measures to be considered in order to prevent them. Table 2.2 provides a synthesis of this
chapter.

60 CHAPTER 2. SECURITY OF SYSTEMS BASED ON MOBILE AGENTS

Table 2.2 – Synthesis of the security attacks and their counter-measures
Counter-Measures Category

Integrity

Attacks

Alteration
Encrypted Funcions

Environmental Key
Prevention

Cryptographic Traces

Partial Result Encapsulation

Code Signing

"SENSE"

Detection

Unauthorized

Access

Access Control Prevention

Cryptographic Traces Detection

Availability

Attacks

Denial of

Service

Access Control Prevention

Cryptographic Traces Detection

Confidentiality

Attacks

Eavesdropping

Encrypted Functions

Environmental Key

Code Obfuscation

Prevention

Unauthorized

Access

Access Control

Sandboxing
Prevention

Cryptographic Traces

Partial Result Encapsulation
Detection

Authentication

Attacks
Masquerading

Agent Authentication

Sandboxing
Prevention

Path Histories

Code Signing
Detection

Accountability

Attacks

Incorrect Code

Execution

Sandboxing Prevention

State Appraisal

Proof Carrying Code

Partial Result Encapslation

Detection

Chapter 3

Serialization and Cryptography for
Mobile Agents

Contents
3.1 Preliminaries . 61

3.1.1 Binary Serialization . 62
3.1.2 XML Serialization . 63

3.2 XML Serialization with Cryptographic Primitives 64
3.2.1 Authentication Process . 64
3.2.2 Confidentiality and Integrity Preserved 66
3.2.3 Mobility Process . 68
3.2.4 Evaluation and Results . 71

3.3 Binary Serialization with ID-based Key Agreement Protocol 75
3.3.1 Authentication Process . 75
3.3.2 Confidentiality and Integrity Preserved 79
3.3.3 Mobility Process . 80
3.3.4 Evaluation and Results . 82

3.4 Synthesis and Discussion . 85
3.5 Conclusion . 87

In this chapter, we attempt to address the security issues related to the mobility of an
agent. For that purpose, we introduce two new approaches to secure the mobile agent during
its trip, in which it may be hosted by malicious platforms or interact with other agents qualified
as suspicious. In these approaches, we make use of serialization mechanism in its two forms:
XML-based and binary. Besides, to establish an authentication mechanism between the agent
and its host or interlocutor, as well as to ensure its confidentiality and integrity, cryptographic
primitives are employed such as: the key exchange and key agreement protocols, signatures,
encryption algorithms, etc.

3.1 Preliminaries

The communication between different systems always introduces some performance overhead
originating from the fact that the data within the memory of a system should be transferred

61

62 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

Serialization

private static void Serial(Serializable object,
String filename)

{
ObjectOutputStream OS = new ObjectOutputStream(
new FileOutputStream(filename));
OS.writeObject(object);
OS.close();
}

Deserialization

private static Object Deserial(String filename)
{
ObjectInputStream IS = new ObjectInputStream(
new FileInputStream(filename));
Object obj = IS.readObject();
IS.close();
return obj;
}

Figure 3.1 – Java pseudo-code of the binary serialization and deserialization

into the memory of the other one. To achieve this, the in-memory object is first transformed
into bytes that can be sent over the network, this is called "Serialization". It has two most
important reasons:

— the need to persist the state of an object to a storage medium so an exact copy can be
re-created at a later stage.

— the need to send the object by value from one application domain to another.
Serialization is the process of converting an object into a form that can be readily trans-

ported, which makes it more persistent. For example, an object can be serialized to be easily
transported over Internet via HTTP protocol between a client and a server. Deserialization is
the reverse process that reconstructs the object from the stream. Since we make use of JAVA
language in our conceptions and implementations, it is interesting to know that Java serializa-
tion relies on flows. Indeed, the data generated through a serialization process may be in binary
format, which we call " Binary Serialization", or in a textual format using XML, which is called
"XML Serialization" [M.Pich]. Both types of serialization are described in the following.

3.1.1 Binary Serialization

Binary serialization [M.Pich] is the most traditional method for object persistence in Java.
It makes use of a pair of objects: ObjectInputStream and ObjectOutputStream, to read and
write a binary format of data. These objects are associated with two classes:FileInputStream
and FileOutputStream, that allow to read and write the bytes to and from a file system. In
addition, it is necessary to use the interface "Serializable" to identify the mentioned classes and
objects. In Figure 3.1, we provide a pseudo-code of the binary serialization and deserialization
in Java.

In the serialization process, an object of the FileOutputStream class is created, so that an
empty file is also created. Then, an instance of the class ObjectOutputStream is initialized, such
that the content of the concerned data object is transformed into stream of bytes using the
method "writeObject()". Thus, the objects is the serialized and stored in the empty file. In the
deserialization process, a FileInputStream object is created to read the serialized content in the

3.1. PRELIMINARIES 63

Serialization

private static void XMLSerial(Serializable object,
String filename)

{
FileOutputStream OS = new FileOutputStream(filename);
XMLEncoder encoder = new XMLEncoder(OS);
encoder.writeObject(object);
encoder.close();
}

Deserialization

private static Object XMLDeserial(String filename)
{
FileInputStream IS = new FileInputStream(filename);
XMLDecoder decoder = new XMLDecoder(IS);
Object obj = decoder.readObject();
decoder.close();
return obj;
}

Figure 3.2 – Java pseudo-code of the XML serialization and deserialization

file passed as parameter. This object is used to create an instance of the ObjectInputStream
class, which allows to load the serialized content into bytes, through the readObject() method.
These bytes are stored in an ordinary object variable. In both processes, close() method closes
the file and ends the writing or the reading.

3.1.2 XML Serialization

XML serialization [M.Pich] is widely used to ensure the object persistence, particularly in
web applications, since it is mainly based on the Java Bean standard that allows the object
content to be accessible to other applications, which provides interoperability due to the use
of XML standard. This type of serialization makes use of the FileInputStream and FileOutput-
Stream classes to read and write XML files in the same way as binary serialization. However,
for XML serialization the developer has to use the XMLEncoder and XMLDecoder classes of
java.beans package to encode and decode the file in XML format. In Figure 3.2, we provide a
pseudo-code of the XML serialization and deserialization in Java.

In the serialization process, an object of the FileOutputStream class is created, so that an
empty XML file is also created. Then, an instance of the class XMLEncoder is initialized basing
the file stream object, and will be used to encode the data, through the method writeObject()
that transforms the content of the concerned object into XML to be serialized. In the deserial-
ization process, a FileInputStream object is created to read the serialized content in the XML
file passed as parameter. This object is then used to create an instance of the XMLDecoder
class. Afterwards, the XML content of the serialized object is decoded using the readObject()
method. Finally, the object value is returned without any specific data conversion. In both
processes, close() method closes the file and ends the writing or the reading.

64 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

3.2 XML Serialization with Cryptographic Primitives

A mobile agent must have the ability to communicate with other agents of the system
(either local or remote agents), to exchange information and benefit from the knowledge and
expertise of other agents. In practice, mobility does not replace the communication capabilities
of the agents but completes them. Hence, the interaction between mobile agents needs first to
initiate communication between the platforms, ensure their compatibility and collect specific
information about them.

To establish a well-defined security policy to address the threats mentioned in the previous
Chapter 2, we need to satisfy the security requirements related to this paradigm: authentication,
confidentiality, integrity and availability. In this section we present a detailed description of
our approach, that consists in simulating a set of cooperative agents in charge of performing
different mechanisms, in order to satisfy the security requirements. These mechanisms include
the Diffie-Hellman key exchange protocol associated with digital signature to authenticate the
communicating entities and ensure integrity of the migrating agent, AES encryption algorithm
to guarantee the confidentiality of data exchanged, and the principle of XML serialization to
obtain a persistent and transportable format of agent.

3.2.1 Authentication Process
To prevent attacks related to unavailability of authentication, we integrate in each one of the

interacting platforms, a specific agent called ”DH −DSA_Agent”. This later owns a specific
list that contains the addresses of the hosts constituting the itinerary to follow. In practice,
these addresses can be IP addresses or MAC addresses of the hosting machines. Before the
migration of agent to a new host, an authentication mechanism using the Diffie-Hellman key
exchange [DH76], and the standard for digital signature [Galla09] is running between the
”DH −DSA_Agent” of both platforms, in order to create a common shared key. This key will
be used afterwards to sign and verify the addresses and data exchanged between both hosts.

The first step of Diffie Hellman algorithm is to generate randoms for modulo and primitive
root computations. This implies the use of a pseudo random number generator (PRNG) to
achieve this task. Yet, the DH-provider in Java Runtime does not support cryptographic gen-
erator, which are considered as the faster and most secure ones after the quantum generators.
This issue leads us to adopt a new implementation of Diffie Hellman algorithm using ISAAC+
[Auma06]. The ISAAC+ algorithm is an enhanced version provably secure of ISAAC (Indi-
rect, Shift, Accumulate, Add and count), which has similarities with RC4 [Mousa06]. It uses
an array of 256 four-octet integers as the internal state, and writes the results to another 256
four-octet integer array. It is very fast on 32-bit computers.

In our approach, we are inspired from [Phan05] in order to fix the weaknesses of the
Diffie-Hellman key exchange Protocol, especially its vulnerability to Man-In-The-Middle attack,
through integrating the digital signature (DSA). Figure 3.3 enumerates the different steps of
the improved protocol. All random values are generated with ISAAC+, the computations are
performed on finite field, and for the digital signature we use the one-way function SHA-1
[East01]. At the step 10, we introduce the IP address of the remote host (got from the list of
addresses that the mobile agent carries) in the signature, while at the step 11, this signature
is verified by the hosting platform through producing an equivalent signature using its own IP
address.

The main idea of the enhanced integrated Diffie-Hellman-DSA key exchange protocol is to
ensure computations basing on two ephemeral secrets v and w, which are chosen by the two

3.2. XML SERIALIZATION WITH CRYPTOGRAPHIC PRIMITIVES 65

F
ig
ur
e
3.
3
–
T
he

in
te
gr
at
ed

D
iffi

e-
H
el
lm

an
-D

SA
ke
y
ex
ch
an

ge
pr
ot
oc
ol

66 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

parties A and B. This provides forward secrecy because even if the long-term private key of
any party is exposed, then the previous session keys cannot be computed, since the ephemeral
secrets v and w for that session are unknown. In addition, the key freshness property is provided
because every session key is a function of ephemeral secrets, so neither party can predetermine
a session key’s value, since he would not know what the other party’s ephemeral secret is going
to be.

Figure 3.4 describes the proposed authentication process. First of all, the native machine
sends a request for mobility of an agent to the remote platform and asks for information to be
able to authenticate it. Since each machine includes a manager agent, which is responsible for
managing communications and interactions between the components of its own platform, as well
as with the remote ones. Thus, this manager agent collaborates with the ”DH −DSA_Agent”
in order to perform the steps of the authentication protocol and generate a session shared key of
256 bits. The produced key is used later to maintain the confidentiality and integrity properties.

In fact, the establishment of an authentication mechanism between agents and platforms is
very essential, to avoid attacks in relation with unauthorized access. An agent that has access to
a platform and its services without having the proper authorization can harm other agents and
the platform itself. Thus, a platform that hosts agents must ensure that they cannot get access
to the data and services if they do not hold the relevant authorizations. For an efficient and well-
defined access control policy, the platform must first authenticate the mobile agent and verify
its identity, before being instantiated on the platform. There are several methods for mutual
authentication on the network, among them the "HTTPS Mutual Authentication". In this later,
secured layers are associated to the protocol using encryption, such as TLS (Transport Layer
Secure). Accordingly, secured passwords are generated (TLS-EAP) and the identity of the client
and server are verified using certificates. Thus, many attacks are avoided: Man-in-the-Middle
attack, offline password dictionary attack and phishing.

However, this mechanism was recently broken as it suffers from serious deficiencies, such
as certificates management problem and layering problem, that makes it impossible to match
authentication session and transport session. In our solution, we do not make use of certificates,
so we gain in terms of resources dedicated to implant a Certificate Authority (CA), and in
terms of time consumed to interact with the CA and charge certificates. Besides, in both
platforms, there is a distribution of tasks among the agents that are endowed with an execution
tracing mechanisms, which creates a matching between different level of execution. Moreover,
our protocol is based on complex problems in mathematics such as discrete logarithm.

3.2.2 Confidentiality and Integrity Preserved
When information are exchanged between two environments, especially heterogeneous ones

[Mitro11], they can easily be intercepted or modified by an intruder. In order to preserve
confidentiality in our approach, we are primarily based on the use of cryptography. Indeed, the
modern field of cryptography has two major classes: the symmetric-key cryptography where the
interlocutors share the same key, and the asymmetric-key cryptography where each entity holds
a pair of mathematically related keys: public key and private key.

At the authentication phase described in the previous section, a session key was created and
shared between the two communicating platforms. In addition, the pairs of public and private
keys (Xa, Ya) and (Xb, Yb), generated respectively by the native and host machines, are used to
produce the digital signatures. Hence, the choice to use of one of the mentioned cryptogrpahy
classes depends on the conception of our approach, its needs and its performances. Knowing that
asymmetric-key cryptosystems are considered to be effective, since they rely on the difficulty

3.2. XML SERIALIZATION WITH CRYPTOGRAPHIC PRIMITIVES 67

F
ig
ur
e
3.
4
–
T
he

A
ut
he
nt
ic
at
io
n
pr
oc
es
s
be

tw
ee
n
th
e
N
at
iv
e
P
la
tf
or
m

of
th
e
ag
en
t
an

d
th
e
R
em

ot
e
P
la
tf
or
m

ho
st
in
g
it

68 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

to solve complex problems such as the discrete logarithm. However, they are very slow and
consume more computer resources to perform the computations and to store the generated
keys, that are mostly very long. On the other side, the symmetric-key cryptosystems make
use of less memory and resources with small key length. They are actually much faster in
processing because their computations are based essentially on permutations, substitutions and
transformations. Besides, they are largely used for data compression, but they need secure
channel to share the secret key.

Since the concern of securely exchanging the secret common key is resolved by the authenti-
cation process, that adopts a secure key exchange without information leakage. Then, we make
the choice to use a symmetric cryptosystem, which is justified by the small length of keys and
the fast computations. The algorithm adopted is AES256 (Advanced Encryption Standard)
[Rober12], which is robust and introduces a key length of 256 bits, that matches well with the
length of the obtained key session.

According to this, a specific agent named ”AES_Agent” is integrated in the communication,
so that it is present in both interacting platforms. This agent involves the cryptographic methods
and takes in charge the encryption of the mobile agent on the native machine, including its
data and code, while its decryption is assured on the hosting machine. Both encryption and
decryption are performed using the session key. It is worth to mention that the ”AES_Agent”
effectively deals with an instance of the mobile agent class, that is conceived in a persistent
format and sent by "Manager_Agent". More details are provided in the next section.

The integrity feature is also preserved in our approach, at two levels: 1) during the
authentication-based key exchange, and 2) during the mobility of the agent and exchange of
data.

At the last steps of the authentication protocol in Figure 3.4, the native machine, through
its ”DH −DSA_Agent”, signs the set of the generated and calculated values by the protocol,
along with the IP address of the remote host. Then, this signature is sent to the relevant host,
that in turn charges its ”DH −DSA_Agent” to sign the keys generated with its IP address,
and sends the signature to the native machine. Both machines must verify and validate the
received signature to carry on processing. Once the authentication has passed, the mobile agent
is encrypted in order to preserve confidentiality. Before moving the agent to its destination, the
same persistent format of the agent instance, used in encryption, is also signed using the session
key and the DSA algorithm. The obtained signature is joined to the encrypted agent object.
Thus, to check the integrity of the received agent, the hosting platform first decrypts it, signs
the given value using the session key and then compares the obtained signature with that
provided. If the two signatures are matching, then the agent’s integrity is preserved, else the
agent was altered.

The unavailability of the integrity may expose the agent to several threats such as ”Alteration
attack”. When an agent migrates to a remote platform, it exposes its own information (the code,
the state, and data) to the platform, which can be malicious and may attempt to modify its
carried content. Indeed, preventing the agent from being modified by the platform is strongly
needed, but unfortunately it does not yet have an efficient solution. Therefore, the impact of
the alteration attacks is alleviated through the use of mechanisms able to detect the changes
that have occurred.

3.2.3 Mobility Process
Mobility in the context of transportability across the network can be performed through

layer protocols, such as HTTP provided with the Apache server. It can also be achieved by

3.2. XML SERIALIZATION WITH CRYPTOGRAPHIC PRIMITIVES 69

F
ig
ur
e
3.
5
–
M
ob

ili
ty

of
th
e
ag
en
t
as

X
M
L
se
ri
al
iz
ed

ob
je
ct

70 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

JAVA APIs like RMI (Remote Method Invocation) or RPC (Remote Procedure Call) that
manipulate remote objects. These APIs are structured in network layers based on the OSI
model to ensure interoperability between programs and versions of Java.

In our approach, we adopt a weak mobility where the mobile agent restarts its execution
on each visited host. For that purpose, we make use of the XML serialization mechanism to
provide a persistent and well transportable medium of the agent and its sensible data across the
network. This association is appropriate to address the flaws of other modes of transportability,
because it is easy to develop and it ensures convenience and efficiency through the generation
of easily readable and editable format.

AID remoteAG = new AID ("Agent@Hind−47303a:1099/JADE",AID.ISGUID);
addBehaviour(new CyclicBehaviour (){

private static final long serialVersionUID = 1L;
public void action() {

receive = receive();
BufferedInputStream bis = new BufferedInputStream(

new FileInputStream("C:\\serial.xml"));
XMLDecoder xmlDecoder = new XMLDecoder(bis);

Class c = null;
URL[] urls ={new URL("http://10.9.25.251/")};
URLClassLoader ucl = new URLClassLoader(urls);
c = ucl.loadClass("test.serial");

for (Method m : c.getDeclaredMethods()){
System.out.println(" methods : " +m.getName());}

Class getArg1[] = { (new String[1]).getClass() };
Method m = null;
m = c.getMethod("main",getArg1);

String[] my1 = { "arg1 passed", "arg2 passed" };
Object myarg1[] = { my1 };
m.invoke(null,myarg1);

...

... }

Figure 3.6 – Java pseudo-code of class loading

Figure 3.5 describes the mobility process using this mechanism. In the native machine, an
agent named ”Serial_Agent” is integrated in order to serialize in XML format an instance
(object) of the mobile agent class. This class contains the attributes and execution code of the
agent. Then, the XML instance given is encrypted by the ”AES_Agent” using the session key
and transferred to the host machine. At the other side, the class of mobile agent is rebuilt using
the encrypted XML instance of the agent, which is firstly decrypted by ”AES_Agent” using
the session key, and deserialized using the XMLDecoder of JavaBeans API.

The problem encountered in this simulation, was when the host platform does not support
the JavaBeans of XML serialization or does not recognize certain classes needed in execution.

3.2. XML SERIALIZATION WITH CRYPTOGRAPHIC PRIMITIVES 71

After research, we have found that the principle of URLClassLoader is the most appropriate
for our approach, as illustrated in Figure 3.6. It will give us the possibility to load the classes
and packages needed for execution from the URL of native machine or any other databases in
the network, which implants an aspect of availability of information.

3.2.4 Evaluation and Results

In this section, we evaluate the performance of our approach through running experiments
using JADE agent framework. In the previous section, while giving a description of the solution,
we have in parallel analyzed its ability to prevent attacks such as: ”Unauthorized Access Attack”,
”Alteration Attack” and ”Eavesdropping Attack”. Thus, our evaluation efforts have been focused
on testing the time spent by migrating agents, under the conditions mentioned above. This
section is divided into two parts: Theoretical Analysis that presents a formal computation of
the time spent for interactions, and Practical Experiments in which two tests are performed
to calculate the overhead of security provided. The first one is considered as basic test that
illustrates a simple migration process without integrating the security mechanisms discussed,
while the second one includes the implementation of the proposed approach.

Theoretical Analysis

Normally, a launched mobile agent migrates from one site to another and then comes back
to the first one, in what it is called a round-trip. Figure 3.7 shows the stages of the agent
round-trip:

Figure 3.7 – Steps in the round-trip of a mobile agent

— In the going, the agent is involved in an authentication process that uses ISAAC+ and
Diffie-Hellman-DSA protocol, and which generates a session key. Afterwards, the agent
is serialized in an XML object format, then encrypted using AES256 and signed with
DSA.

— Once the serialized-encrypted object is received, the host tries to rebuild the agent,
through decrypting the object using AES256 and then deserializing it, while using its
signature to check its integrity. When the class of the agent is unreachable, we make use
of the URLClassLoader method. Thus, when the agent is rebuilt, an acquittal is sent to
the native machine in order to delete the agent, which will be properly executed

— In the return, the agent brings the results of the execution to its native machine.
Let’s consider TRT = the time cost of the round trip, such as:

TRT = T1 ∗Njp (3.1)

72 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

Where:
— Njp = the number of jumps during the execution, which is based on the data exchanged

in each stage.
— T1 is a period comprising the time costs related to the stages in the proposed approach,

as shown in Equation 3.2:

T1 = Ti + Tdd + TXs + Tenc + Tsign + Tdec + TXd + Tr + Tmig. (3.2)

such that:
— Ti: the time cost of ISAAC+ randoms generation;
— Tdd: the time cost of the Diffie-Hellman-DSA protocol;
— TXs: the time cost of the XML serialization;
— Tenc: the time cost of the AES-256 encryption;
— Tsign : the time cost of the DSA signature;
— Tdec: the time cost of the AES-256 decryption;
— TXd: the time cost of the XML deserialization;
— Tr: the time cost of the requests exchanged along the approach;
— Tmig: the time cost of the data sending along the agent migration;

Knowing that TXs is approximately equal to TXd, and Tenc is approximately equal to Tdec.
Then, the Equation 3.2 becomes:

T1 = Ti + Tdd + 2TXs + 2Tenc + Tsign + Tr + Tmig. (3.3)

Since the request messages are internally exchanged within each platform and their length
does not exceed few characters, then, no computation time is consumed for the initiation of the
communication, no memory is allocated and no frames are used for transporting data across
the network. Hence, the time spent for the requests could be considered as negligible, and the
Equation 3.3 becomes:

T1 ' Ti + Tdd + 2TXs + 2Tenc + Tsign + Tmig. (3.4)

As it is previously said, the time consumed during one round trip is calculated according to
the Equation 3.1. However, there is an extra time added during the going of the mobile agent.
This extra time concerns the loading of the agent’s class using URLClassLoader, in case the
host does not recognize it. When returning back to the native machine, the mobile agent does
not need to load the class because it is already provided. To sum up, the total time spent in a
round trip of an agent is calculated according to Equation 3.5:

TRT = ((T1 + Tcl)×NGjp) + (T1 ×NRjp) (3.5)

with:
— Tcl: the time cost of the class loading;
— NGjp: the number of the jumps in the go;
— NGjp: the number of the jumps in the return.

Practical Experiments

Our experiments are performed using 4 heterogeneous machines with different operating
systems (Windows, Ubuntu, Mac Os). The first one is considered as a native machine and the

3.2. XML SERIALIZATION WITH CRYPTOGRAPHIC PRIMITIVES 73

others as hosts. All machines are characterized by Core i7 processor at 2.7 GHz, with 4 Go of
RAM, and 500 Go on an ATA 500 hard disk. They are equipped with JADE Snapshot agent
platform in its 3.6.1 version, and they make use of a 100Mbps switched Ethernet network with
WampServer.

a) The baseline test

In order to evaluate the feasibility and performance of our approach, we find it interesting
to configure a baseline test, which consists in performing a simple mobility of agent using only
XML serialization concept, without trying to encrypt it or to authenticate it. This allows to
calculate the overhead needed for securing the mobile agent. The results of this test are exposed
in Table 3.1.

Table 3.1 – Time Performance of the different steps in the baseline test
Time(ms) 1 Host 2 Hosts 3 Hosts

TXs 73 91 143

Tmig 127 243 339

Tcl 338 914 2463

In such normal conditions where the agent is only serialized and transferred, Equation 3.4
becomes:

T1 = 2× TXs + Tmig , with NGjp = NRjp = 1 (3.6)

Thus, referring to the results in Table 3.1 and according to the Equations 3.5 and 3.6,
the time cost of the baseline test, noted TRTB , where an agent moves to one host in normal
conditions, can be calculated as follows:

TRTB = (((2 × 73) + 127 + 338) × 1) + (((2 × 73) + 127) × 1) = 611 + 273 = 884ms

In theory, the time to move an agent over three hosts is three times the time of moving an
agent to one host. However, the use of different and heterogeneous machines for experiments,
makes our results not uniform. In order to recognize this overall difference, we compute the
average of time that an agent spent while migrating over three hosts:

T
′

RTB =
(((2× 143) + 339 + 2463)× 1)

3
+

(((2× 143) + 339)× 1)

3
= 1029+208 ' 1237ms

Then, the difference is around: 4RTB = T
′

RTB − TRTB = 1237− 884 = 353ms, taking into
consideration that the large part of this difference concerns the loading of classes over the
network, particularly that we have heterogeneous machines.

b) Implementation of our approach

The second experimentation is based on the implementation of our approach, taking into
consideration the four aspects mentioned before. This test launches the set of agents charged

74 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

with operating the different mechanisms adopted to reach a high level of security. The results
we got through running this second test are shown in Table 3.2:

Table 3.2 – Time Performance of the different steps of our proposed approach
Time(ms) 1 Host 2 Hosts 3 Hosts

Ti 2.4 3.9 6.1

Tdd 3.8 (parameters) +
2.6 (computations)
= 6.4

20.8 48

TXs 78 96 141

Tenc 15 33 50

Tsign 10.4 22.7 34

Tmig 182 328 432

Tcl 343 907 2470

Referring to these results and according to the Equations 3.4 and 3.5, with: NGjp = NRjp =
1, the time spent by our approach to move an agent is noted TRTA, and can be calculated as
follows:

TRTA = ((2.4 + 6.4 + (2× 78) + (2× 15) + 10.4 + 343 + 182)× 1)+

(((2.4 + 6.4 + (2× 78) + (2× 15) + 10.4 + 182)× 1)

= 730.2 + 387.2

= 1117.4ms

Similarly to the baseline test, we are interested in computing the time difference between
the agent migration to one host and the average of agent migration to three hosts :

T
′

RTA =
((6.1 + 48 + (2× 141) + (2× 50) + 34 + 2470 + 432))× 1

3
+

(((6.1 + 48 + (2× 141) + (2× 50) + 34 + 432)× 1)

3
' 1124 + 300.7

' 1424.7ms

Then, the difference is around:

4RTA = T
′

RTA − TRTA ' 1424.7− 1117.4 ' 307.3ms.

Finally, we can deduct the overhead dedicated to secure the mobility of the agent across
the network. This overhead is mainly related to the security techniques employed to ensure
the authentication between the communicating entities, as well as to preserve the integrity and
confidentiality of data and exchanges. The computational value of this overhead is:

3.3. BINARY SERIALIZATION WITH ID-BASED KEY AGREEMENT PROTOCOL 75

TRTA − TRTB = 1117.4− 884 ' 233ms.

This value represents 21% of the overall time that an agent takes to move. It involves the
cost of: ISAAC+ randoms generation, the key exchange, the DSA digital signatures, the AES
encryption/decryption, the loading of agents classes using URLClassLoading and the exchange
data between hosts and agents. The overhead of 233ms seems to be admissible, credible and
not compromising the mobility performance of the agent, which benefits from a security feature
protecting him against vulnerabilities of hosting platforms.

3.3 Binary Serialization with ID-based Key Agreement
Protocol

The mobility of the agent and its capacity to roam freely over network nodes, does not sub-
stitute the fact that it must hold the ability to well communicate with its entourage, in order to
exchange information and benefit from the knowledge and expertise. Thus, it is quite important
to initiate the communication between the interacting entities, check their compatibility and
authenticate them, before exchanging sensible data end executing tasks.

This section provides a deep description of a new approach to secure the mobile agent, that
makes a set of agents interacting and cooperating together, in order to satisfy the security
requirements of the system. This approach includes diverse mechanisms, such as ID-Based
Key Agreement protocol to authenticate the interacting entities and to generate a session key,
which is used afterwards in AES encryption to ensure the confidentiality of the exchanged data
along. A binary serialization of the mobile agent is integrated to guarantee a persistent and
easy transportable format over the network, while a Schnorr signature is used to preserve its
integrity.

First of all, we find it interesting to make an overview of the agents architecture adopted to
simulate the proposed approach. This architecture is illustrated in Figure 3.8, and it integrates
a set of cooperative agents in the two interacting platforms:

— “Admin_Ag” is the administrator agent charged with managing the communication
and data exchange between the two platforms. Each incoming/outgoing request or in-
formation to/from the platform is controlled and analyzed by this agent. It has also to
administer the communication between the local agents and direct the tasks associated
with them.

— “IKA_Ag” is the agent charged with performing the ID-based key agreement protocol
and the authentication.

— “BinSerial_Ag” is the agent charged with carrying out the binary serialization and
deserialization of the mobile agent object.

— "AES256_Ag” is the agent charged with encryption and decryption of the mobile
agent, using the session key generated during the authentication.

— “Sign_Ag” which is responsible for editing a Schnorr signature of exchanged data, in
order to check their integrity.

3.3.1 Authentication Process
Authentication is an important process that verifies the identity of an entity (person, com-

puter...), in order to decide whether to grant him access to the resources (systems, networks,
applications...) or not. Thus, an authentication process between the native (initiator) platform

76 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

Figure 3.8 – The Agents Architecture of the Communicating Platforms

of the agent and the platform receiving it, is the first and essential resource before the execution
of the agent. This is due to the fact that a hosting platform could be malicious, and may hide
its real identity in order to attract the agent and then leads attacks on it.

In our approach, the authentication process is operated by a specific agent called “IKE_Ag”,
which is integrated in both communicating platforms. This agent achieves an ID-Based Key
Agreement protocol (IKA) [Can02], that allows both to authenticate the platforms and to gen-
erate a secret session key, which will be used to encrypt the information exchanges. This protocol
assumes that the involved parties are identified by a unique and secret identity (e.g., Alice’s
identity is a string value (IDA) that may include the hash of various concatenated parameters,
such as: JADE identifier with username, IP address, MAC address and realm in randomized
order). Moreover, a trusted entity called Key Generation Center (KGC) is implanted to gener-
ate the public parameters of the system, and also to issue the secret keys to the users, based
on their public identities. Our proposed IKA protocol is inspired from [Fiore10] and improved
to fit our specific needs and conditions, as well as to ensure the targeted authentication. This
protocol is based on three phases: Setup, Key Extraction and Key Exchange.

It is worth to mention that for simple and deterministic simulation, we consider that the
“IKA_Ag” contains a beforehand list of the platforms’ identifiers that it has the intention to
visit. This list is retrieved from a Trusted Third Party (TTP), and it respects the confidence
threshold and the constraints imposed by the native platform. This concept can be applied
similarly for the dynamic and adaptive mobility, in which the agent ignores where it has to
migrate and takes a decision once it found attractive indexes in real-time.

Figure 3.9 describes the process of the improved IKA-Authentication protocol. In the setup
phase, public parameters to be used in computations and exchanges are generated by the KGC,
such that the random numbers are generated using ISAAC+ random generator [Auma06], and
the operations are performed on a finite field. The protocol effectively begins when the native

3.3. BINARY SERIALIZATION WITH ID-BASED KEY AGREEMENT PROTOCOL 77

F
ig
ur
e
3.
9
–
T
he

in
te
gr
at
ed

im
pr
ov
ed

ID
-b
as
ed

ke
y
ag
re
em

en
t
pr
ot
oc
ol

78 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

platform sends to the KGC the identity of the hosting platform, that the mobile agent wants to
authenticate before migrating to it. Once informed by the request from the KGC, the hosting
platform forwards its own identity to be verified and authenticated. At the extraction phase, a
private key is computed and forwarded to each one of the interacting platforms by the KGC.
This key is based on the Schnorr’s Signature [Schn91] of the platform identity using the public
key parameter y. Afterwards, at the key exchange phase, both platforms exchange credentials
based on random exponents. Among the credentials sent by the hosting platform, there is eH :
the hash value of its own identity IDH concatenated with the public rN . Therefore, In order to
verify the identity of the remote host, the native platform computes the hash of the intended
platform identity IDR concatenated with the value of VH , and checks if it corresponds to the
value of eH . Finally the session key is computed as follow:

Z = H2(z1, z2) = H2(g
(tH+SH)(tR+SR)gtH .tR)

Figure 3.10 illustrates the authentication process and the interactions between the agents
of the two communicating platforms. First, the “Admin_Ag” of the native platform notifies
the hosting platform with its intention to move an agent, and advises it of the necessity to be
authenticated. Then, an authentication process is launched, integrating the "IKA_Agents" of
both platforms and the KGC. At the end, if the authentication succeeds, then a session key
of 256 bits is generated to be used later to maintain the confidentiality and integrity of data
exchanged.

Figure 3.10 – The authentication process between native platform and hosting platform

In general, the authentication is an essential mechanism that avoids attacks based espe-
cially on unauthorized access. Definitely, there are several protocols and functions to ensure

3.3. BINARY SERIALIZATION WITH ID-BASED KEY AGREEMENT PROTOCOL 79

authentication, such as protocols that combine TLS (Transport Layer Secure) with Certifi-
cates Authority (CA). However, this mechanisms are easily broken regarding the topological
architecture of the network, that makes it impossible to match authentication session with the
transport session, and where the management of certificates, in terms of space allocation and
time, is arduous. In this context, our proposed authentication based on IKA protocol is proven
to be secure, since it depends on the new intractability assumption called Strong Diffie-Hellman
assumption (SDH), and provides many security properties [Fiore10]:

— Forward Secrecy: after that a session is completed and that its session key is erased,
the adversary cannot learn anything about this key even if it corrupts the parties involved
in that session.

— Resistance to Reflection Attacks: an adversary cannot compromise a session in
which the two parties have the same identity (and the same private key).

— Resistance to Key Compromise Impersonation: when the adversary knows the
private key of a platform, it does not allow him to impersonate this platform to other
entities.

3.3.2 Confidentiality and Integrity Preserved

Confidentiality ensures that information are kept secret and that only authorized users can
get access to them. It is a very recommended property in the conception of security policies.
Thus, maintaining the confidentiality of information circulating through the network is a big
concern, either for the resources and services of the hosting platform or for the code and data
of the mobile agent.

Our contribution to fix this issue is primarily based on cryptography, taking into consider-
ation its two main categories: symmetric-key cryptography and asymmetric-key cryptography,
with their advantages and limitations. In the authentication phase, the ID-Based Key Agree-
ment protocol allows the share of a session key of 256 bits in a secure manner. This provides a
solution to the famous problem of securing the key exchange in symmetric-key cryptography.
Hence, we think it very interesting to employ this category along with the session key, especially
for its high performances with the data compression and with the devices having limited storage
memory, such a mobile agent. Accordingly, we make use of the Advanced Encryption Standard
(AES) [Rober12], that is qualified as a robust encryption algorithm, introducing different key
lengths (128, 196 or 256 bits).

After producing a persistent object of the mobile agent class, the “Admin_Ag” sends this
object along with the session key to the “AES256_Ag”. This later encrypts the persistent object
and returns back the cipher to the “Admin_Ag”, that dispatches it in a migration process.
Through encrypting the data exchanged between the authenticated platforms, we counter the
eavesdropping attacks and avoid that intruders recognize the real content of the exchanged
messages that are intercepted.

Concerning the integrity, it ensures that the data are those believed to be. This implies the
verification that the data have not been altered during the transmission (either accidentally
or intentionally). In order to maintain the confidence between the communicating parties of
our approach, the integrity of the exchanged data is preserved such that each platform makes
use of Schnorr’s signature [Schn91] to sign its own data, before sending them to the intended
destination. The Schnorr’ signing and verifying is described in Figure 3.11.

At the authentication phase, the hosting platform signs its identity along with rN (the
signature corresponds then to the pair (SN , eH)), while the native platform has to verify this
signature to ensure authentication, as well as to prove integrity. The appropriate computation

80 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

Figure 3.11 – The signing and verifying of Schnorr’ signature
Signing Verifying

- x: the master key of the system
- k ∈ Z: random
To sign the message M:

1) r = gk

2) e = H(M ‖ r)
3) S = k − ex

The signature is the pair (S,e)

- Y: the public key of the system
1) r′ = gS .Y e

2) e′ = H(M ‖ r′)

if e == e′ then the signature is
verified

of the Schnorr’ signature is shown in the last steps of Figure 3.10.
Once the authentication is successful, the mobile agent could be welcomed by the hosting

platform. In reality, this latter receives an encryption of the agent’s instance along with its cor-
responding signature. Then, the platform begins by decrypting the encrypted agent’s instance,
signing the given result using Schnorr’ signature and then comparing the obtained signature
with that provided with the cipher. If both signatures are matching, then the integrity of the
mobile agent received is proven. This implies that the hosting platform can proceed to the
rebuild of the mobile agent’s class with all its attributes and functions, and then launch its exe-
cution. However, if the signatures are not corresponding, then the hosting platform terminates
the mobile agent and sends a report to the native platform, in order to inform it about the
failure of integrity check.

The use of the signature mechanism, to support the integrity of information communicated
between two platforms, avoids several threats such as “Alteration Attacks” and “Pollution At-
tacks”. However, being able to prevent an agent from being modified by a platform or at least
detect the changes being occurred, are problems which still do not find a radical solution.

3.3.3 Mobility Process
The systems based on mobile agents support two types of mobility: weak and strong. In the

weak mobility, only the code, data and some special moments (breakpoint) are transferred with
the agent to be run. It may be initiated at any time but with loss of current treatment, i.e.,
it resumes its execution from the beginning. The systems which support weak mobility, save
and restore only the runtime values of (all or some of) the agent’s properties, while the agent’s
execution is resumed on the target machine by, for example, automatically sending a predefined
message to the agent. On the other hand, the strong migration allows an agent to move across
the network, regardless of the runtime state in which it is located, and to continue its execution
after migration exactly where it was stopped before. It includes saving and restoring the entire
runtime state of the agent, including the execution stack, the program counter, and so on. Strong
mobility is more transparent, in the sense that agent is completely unaware of it. However, it
is technically more difficult to implement.

In practice, the mobility of agents can be performed using data transfer protocols based on
TCP/IP, such as: HTTP, FTP, SMTP and RTP. These protocols are usually connected with
a networking service such as Apache Server, where data are exchanged as sockets. Another
possibility to achieve the mobility is to make use of JAVA APIs like RMI (Remote Method
Invocation) and RPC (Remote Procedure Call) to monitor distant entities.

In our approach, we adopt a weak mobility in the context of agent transportability across
the network. Moreover, to enhance this transportability to make it persistent and easier, it

3.3. BINARY SERIALIZATION WITH ID-BASED KEY AGREEMENT PROTOCOL 81

F
ig
ur
e
3.
12

–
M
ob

ili
ty

of
th
e
ag
en
t
as

bi
na

ry
se
ri
al
iz
ed

ob
je
ct

82 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

appears very interesting to make use of a binary serialization mechanism. This later presents
many advantages since it deals with several issues of other transfer modes, generates a readable
and editable format which provides efficiency and it is easy to implement.

When the hosting platform is successfully authenticated, the native machine prepares its
agent to move. For that purpose, an agent named “BinSerial_Ag” is integrated, which takes
in charge to serialize the instances of the mobile agent class (object), using Serializable and
Externalizable interfaces along with a set of writing and reading methods on output and input
streams. In this process, all attributes and variables of the mobile agent as well as its code
are coded as a binary data flow. According to [Tau12], the JAVA language provides tools (in
JDK) that allow the binary serialization in transparent way and independently of the operating
system.

Figure 3.12 shows where and when the process of binary serialization is introduced in the
mobility of the agent. Before transferring the serialized instance of the mobile agent to the
remote hosting platform, it is firstly encrypted using the session key generated in the authen-
tication phase. Once arriving to the hosting platform, the mobile agent instance is decrypted
and then deserialized using the BinaryFormatter of the JAVA serialization package. This aims
to reconstruct the class of the serialized object on the intended platform. If the skeleton of the
mobile agent class is not known by the API of the JAVA core, then the hosting platform may
call the dynamic class loading services provided by JAVA such as URLClassLoader, which load
the predefined class from a bank of class provided on the network, or from the web server of
the native platform after obtaining the necessary authorizations.

3.3.4 Evaluation and Results

In this section, we expose and discuss the results got through implementing the proposed
solution. For that purpose we make use of JADE [Belli01], the Java Agent Platform designed
for multi-agent systems and with respect to specifications of FIPA [FIPA02] standard specified
for software interoperability among agents and agent- based applications. First, we give a the-
oretical computation of the time spent to achieve all aspects of the solution. Then, we present
the results of the testing performed to know the overhead provided through introducing security
mechanisms.

Theoretical Analysis

During the trip of the agent from the native platform to the hosting platform, it performs
many operations to ensure the different aspects of security needed. According to this, Figure
3.13 illustrates the round-trip of the mobile agent, that includes:

— In the going, the agent is involved in an authentication process that uses ISAAC+ and
an ID-based Agreement protocol (IKA), that eventually produces a session key. Subse-
quently, the agent is serialized in a binary object format, and to preserve confidentiality
and integrity, the serialized object is encrypted using AES256 and signed using Schnorr’
signature.

— Once the encrypted object is received, the host tries to rebuild the agent, through de-
crypting the object using AES256 first, checking its integrity using signatures and then
deserializing it. When the class of the agent is unreachable, we make use of the URL-
ClassLoader method. Thus, when the agent is rebuilt, an acquittal is sent to the native
machine in order to delete the agent, in order to be properly executed.

— The agent returns back to its native machine and presents the results of the execution.

3.3. BINARY SERIALIZATION WITH ID-BASED KEY AGREEMENT PROTOCOL 83

Figure 3.13 – Steps in the round-trip of a mobile agent

Let us consider TRT the total time spent for the approach, according to Equation 3.1 and
3.5. Thus, the included period T1 comprises many processes represented by the sub-durations
in Equation 3.7:

T1 = Tr + Ti + TIKA + TBs + Tenc + Tsign + Tmig + Tdec + Tv + TBd. (3.7)

such that:
— Tr: the time cost of the requests exchanged along the approach;
— Ti: the time cost of ISAAC+ randoms generation;
— TIKA: the time cost of the ID-based key agreement protocol;
— TBs: the time cost of the binary serialization;
— Tenc: the time cost of the AES-256 encryption;
— Tsign : the time cost of the Schnorr signature;
— Tmig: the time cost of the data sending along the agent migration;
— Tdec: the time cost of the AES-256 decryption;
— Tv: the time cost for the verification;
— TBd: the time cost of the binary deserialization;

In order to simplify the computations, we will take into consideration some constraints.
Knowing that the messages transporting requests are small and they are exchanged internally,
so Tr can be negligible. Also, Tenc is estimated to be approximately equal to Tdec, as well as
TBs with TBd. Then, Equation 3.7 becomes:

T1 = Ti + TIKA + 2TBs + 2Tenc + Tsign + Tmig + Tv. (3.8)

Practical Experiments

The practical testing of the proposed approach is conducted using one machine as a Native
Platform and four others considered as Hosting Platforms. All machines are heterogeneous with
different operating systems (2 Windows, 2 Ubuntu, and 1 MacOs). The technical characteristics
of the five machines are: Intel Core i7 processor at 2.7 GHz with 4 Go of RAM, connected
through 100Mbps switched Ethernet network with WampServer [WampServ]. For the creation,
management, mobility and execution of the agents we adopt JADE Snapshot of version 4.3. For
the IKA-Authentication protocol, SHA-2[Gilb03] and SHA-3[Jaffar13] are used to generate

84 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

a hash of 256 bits. Table 3.3 shows the timing results obtained during the trip of the mobile
agent and the execution of different security processes.

Table 3.3 – Time Performance of the different steps of our proposed approach
Time in ms 1 Host 2 Hosts 3 Hosts 4 Hosts

Ti 2,9 5,6 8,3 11,4

TIKA 8,7 16,4 32,3 51,1

TBs 59,5 92,2 148,7 182,6

Tenc 14 30,6 48,4 82,8

Tsign 12,7 24 33,9 45,6

Tmig 179,4 327,2 496,4 682,7

Tv 2,7 5,2 7,8 10,2

Tcl 313 882 1863 2911

Thus, according to Equations 3.5 and 3.8 with NGjp = NRjp = 1, and referring to the
obtained results in Table 3.3, the total time spent to execute a one round-trip of our approach,
noted TRTA, is:

TRTA = ((2, 9 + 8, 7 + (2× 59, 5) + (2× 14) + 12, 7 + 179, 4 + 2, 7 + 313)× 1)+

((2, 9 + 8, 7 + (2× 59, 5) + (2× 14) + 12, 7 + 179, 4 + 2, 7)× 1)

= (340, 7 + 343) + 343

' 1026, 7ms

In the logic of the calculations theory, the time that takes the agent to move over four
hosting platforms, must be four times equal to the time of agent’s migration to one hosting
platform. We think it interesting to see if our solution and the architecture chosen respect this
theory settling. Thus, to know the overall difference, we calculate the total time to execute our
solution for 4 hosting platforms, noted T

′

RTA:

T
′

RTA =
(11, 4 + 51, 1 + (2× 182, 6) + (2× 82, 8) + 45, 6 + 682, 7 + 10, 2 + 2911)

4
+

(11, 4 + 51, 1 + (2× 182, 6) + (2× 82, 8) + 45, 6 + 682, 7 + 10, 2)

4
= 1060, 6 + 332, 9

' 1393, 5ms

Therefore, the overall difference is:

4RTA = T
′

RTA − TRTA = 1393, 5− 1026, 7 = 366, 8ms

Taking into consideration that the large part of this difference concerns the loading of classes
over the network, we can conclude that our approach scales regarding to the changing of en-
vironments and the increase of visited hosts. This is mainly due to the dynamic and flexible

3.4. SYNTHESIS AND DISCUSSION 85

aspects of the agent’s behaviors, as well as to the use of JAVA which allows us to benefit from
its tracing services to store traces of execution code in cash memory.

Finally, from above experiments we can deduce the overhead of the security added to the
mobility of the agent. This overhead is strongly related to the mechanisms employed in view of
avoiding threats raising due to the unavailability of authentication, integrity and confidentiality.
Hence, it includes the cost of ISAAC+ random number generator, IKA-Authentication protocol,
AES encryption and Schnorr signature with its verification. For that purpose, let consider a
baseline test considering the following measurements In Table 3.4:

Table 3.4 – Time costs of the operations in the baseline test
Time(ms) 1 Host 2 Hosts 3 Hosts

TBs 61 84 129

Tmig 92 211 323

Tcl 308 870 1814

Thus, referring to the results in Table 3.1 and according to the Equation 3.5, such that :

T1 = 2× TBs + Tmig , with NGjp = NRjp = 1 (3.9)

Then, the cost of an agent mobility to one host, in normal conditions, is noted TRTB and
can be calculated as follows:

TRTB = (((2 × 61) + 92 + 308) × 1) + (((2 × 61) + 92) × 1) = 522 + 214 = 736ms

Finally, the computational value of the security overhead is:

TRTA − TRTB = 1026, 7− 736 ' 290, 7ms.

This security overhead represents approximately 28% of the total time spent to move the
agent in secure manner, using the proposed approach. In practice, this value seems to be eligible
and credible, and did not affect the flexibility of the mobility aspect, which in reality gains in
matter of protecting him from any external threats.

3.4 Synthesis and Discussion

In this section, we conduct a comparison between the two proposed approach. According to
this, many evaluation performances are considered in terms of energy consumption, time cost
and security overhead.

Figure 3.14 illustrates the energy consumption rate of the first approach using XML serial-
ization compared to the second approach based on binary serialization. We notice that the first
approach expresses more consumption of energy than the second approach. This expands with
the increase of the visited hosts.

In addition, Figure 3.15 presents a comparison of the time performance between the two
proposed approaches, where it is clearly shown that the second approach needs less time costs
compared to the first one. This could be due to the binary context of the agent, which fastens
its migration and processing since it is easily recognized.

86 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

Figure 3.14 – Comparison of energy consumption between the two proposed approaches

Figure 3.15 – Comparison of time performance between the two proposed approaches

Figure 3.16 evaluates the security overhead of the two proposed approaches. Since both
approaches address the same security aspect, we can spot that the first approach base on XML
serialization consumes less overhead to maintain the required security compared to the second
approach based on binary serialization.

Finally, we can deduce that each one of the proposed approaches holds specific benefits

3.5. CONCLUSION 87

Figure 3.16 – Comparison of security overhead between the two proposed approaches

and limitations. Despite that the first approach consumes more energy and time, it shows
a low security overhead. Thus, it can be appropriate for highly sensible applications where
security is a priority. In parallel, the second approach expresses lower rates of energy and time
consuming face to a high security overhead, which makes it adequate for applications where
security is strongly needed, as long as it does not compromise the other features like flexibility
and reliability.

3.5 Conclusion

This chapter presents initial results of a research effort aimed at the analysis of the security
issues in mobile agent systems. It also describes two proposed solutions to elaborate security
policies based on mechanisms such as: cryptography, signature, key exchange and key agreement
protocols, as well as XML and binary serialization. These mechanisms are mainly introduced to
ensure the properties of confidentiality, integrity, authentication, and give an enhanced mobility
for the agent migrating from one site to another across the network. The results of the mobile
agent performance using these approaches, and the security analysis provided by evaluating
their effectiveness to prevent attacks such as: "Man-in-the-middle attacks", "Masquerading
attacks", "Eavesdropping attacks" and "Alteration attacks", can be reused as guidelines to
develop secure mobile agent systems involved in mission-critical applications.

88 CHAPTER 3. SERIALIZATION AND CRYPTOGRAPHY FOR MOBILE AGENTS

Chapter 4

Elliptic Curve Cryptography for
Mobile Agents

Contents
4.1 Preliminaries . 90

4.1.1 Notations . 90
4.1.2 Elliptic Curve Cryptography . 90
4.1.3 Intrusion Detection System . 91

4.2 Anonymous Authentication using Elliptic Curve Cryptography 93
4.2.1 Initialization Phase . 93
4.2.2 Registration Phase . 93
4.2.3 Authentication and Key Agreement Phase 94

4.3 Intrusion Detection based on Execution Tracing 96
4.4 Security Analysis . 100
4.5 Performance Analysis . 101

4.5.1 Authentication Performance . 102
4.5.2 Detection Performance . 103

4.6 Conclusion . 108

In this chapter, a novel approach is presented to early identify anomalies and intrusions
occurred during the trip of the mobile agent. This approach relies on two mechanisms: the
anonymous authentication and the intrusion detection. The proposed authentication scheme is
provided with a privacy preservation and an anonymity in the mobility across the networks.
It is supported by the use of elliptic curve cryptography and bilinear pairing, that guarantee
reliability and efficiency in countering famous and vicious attacks. In addition, our agent is
endowed with an intrusion detection system based on cryptographic traces, where records are
produced during the execution of requested tasks on hosting platforms, with respect to a chain-
ing mechanism. This latter substantially reduces the size of the nested and stored traces and
makes a connection among all of them until return to the native platform, which facilitates
their verification, as well as the revocation of the related malicious hosts.

The rest of this chapter is organized as follows. In Section 2, some notations used in this
paper with a highlight on the employed mechanisms are provided. Section 3 presents the process
of the anonymous authentication based on elliptic curve cryptography, such that a session key

89

90 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

is produced through an associated key agreement to encrypt and decrypt the exchanged mes-
sages among the authenticated entities. In Section 4 our proposed intrusion detection method
is described as mainly based on tracking the behaviors of the agent, during its trip across mul-
tiple platforms. Thus, it keeps a proof of the agent execution or alteration, through producing
traces that employ cryptographic primitives and respect a chaining mechanism. Besides, several
evaluations based on security analysis and performance analysis, using variety of metrics and
comparisons, are conducted and provided in Sections 4 and 5. Finally, further perspectives are
discussed in conclusion.

4.1 Preliminaries

4.1.1 Notations
The notations used throughout this chapter are described in Table 4.1 as the following:

Table 4.1 – Notations used in this chapter
Notation Description

MA(C, d, Sx) Mobile Agent with code C, data d and state in x;
RP Remote Platform;
IDx Identity of entity x;
AIDx Anonymous identity of entity x;
p, q Two large prime, such that: q | p− 1;
G1, G2 A cyclic additive group and a cyclic multiplicative

group with prime order q;
e : G1 ×G1 −→ G2 An efficient admissible bilinear map;
Fp Finite Field;
E(Fp) An elliptic curve over Fp defined by the equation

y2 = x3 + ax+ b, where a, b ∈ Fp and 4a3 + 27b2 6= 0;
G The cyclic additive group of order q, which consists

of points on E(Fp) and an "infinite point";
P a generator of G;
Hi(.) Collision resistant cryptographic hash function
‖ Concatenation
⊕ Exclusive-Or operation

4.1.2 Elliptic Curve Cryptography
Over a finite field Fp, an elliptic curve [Kap08] is defined by an equation of the form:

y2 = x3+ax+ b, where a and b are arbitrary constants, satisfying the condition 4a3+27b2 6= 0.
An elliptic curve defines O, a point at infinity, which serves as the identity element for some
operations. O with all rational points of the curve form an abelian (commutative) group E(Fp)

4.1. PRELIMINARIES 91

under addition modulo p operation. The operations include the addition of two points and the
double of a point.

Point Addition: given P,Q ∈ G, and l the line determined by P and Q in case P 6= Q or
by the tangent line to E/Fp in case P = Q. The sum P +Q can be computed as the reflected
point of R about the x-axis, such that R is the intersection between the curve E and the line l.

Point Multiplication: multiples of a point P can be viewed as repeated addition opera-
tions: nP = P + P + · · ·+ P︸ ︷︷ ︸

ntimes

.

Elliptic curve discrete logarithm problem (ECDLP): given P,Q ∈ E(Fp), find the
integer k such that Q = kP .

Computational Diffie-Hellman problem (CDH): given a tuple {P, aP, bP} ∈ G for
some a, b ∈ Z∗p, the CDH problem in G is to compute the element abP .

In this work, the elliptic curve cryptography is associated with bilinear pairing, that is
defined as follows:

Let G1 and G2 be a cyclic additive group generated by P of prime order q and a cyclic
multiplicative group of the same order q, respectively. A map e : G1 × G1 −→ G2 is called a
computable bilinear pairing [Enge13] if it is featured with the following properties:

1. Bilinearity: for every two random points X,Y ∈ G1, and a, b ∈ Z∗q , e(aX, bY) =

e(X,Y)ab.

2. Non-degeneracy: there exists X,Y ∈ G1 such that e(X,Y) 6= 1G2
.

3. Computability: for any two random points X,Y ∈ G1 , e(X,Y) could be calculated
by an efficient algorithm in polynomial time.

A bilinear map e can be implemented using the modified Weil or Tate pairing [Enge13] defined
on elliptic curves.

4.1.3 Intrusion Detection System

Among the famous solutions to address security issues in an information system is to detect
intruders performing malicious activities, through integrating intrusions detection system (IDS).
This later is defined by the NIST [Scarf07] as a software or hardware device, potentially capable
to identify an attack and notify appropriate personnel immediately, which help to stop possible
threats or at least prevent them from succeeding.

According to [Patel10], an IDS is built with four functional layers as illustrated in Figure
4.1.

— Infrastructure: this means in general the technology layout, where the IDS is incorpo-
rated. This may concern either individual or collaborative structures, with different sorts
of architectures: "centralized" where detection and alert elements are produced locally;
"hierarchical" in which the system is divided into several small groups with similar fea-
tures, such that lowest levels work for detection and highest ones for alert correlation, and
"distributed" that ensures an autonomous system with distributed management control,
where each participant possesses its own functional components to communicate with
others.

— Monitoring: this is necessary related to the analysis of the collected data through
monitoring the network traffic. This may contain particular segments and devices, dy-
namic behaviors stating which actions are performed on which resources, or events oc-
curring on specific applications and which affect the overall performance. This analysis is

92 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

made according to the monitored environment, if it is either network-based, host-based,
application-based or a combination that provides more high flexibility and efficiency.

— Detection: it is mostly occurred in real-time, while the system is monitored to depict
abnormal activities and behaviors, and then provide adequate prevention solution. There
are three main categories of detection methods. Misuse methods employ specifically tra-
ditional patterns such as: signatures to predict and detect intrusions. Anomaly methods
inspect incidents on frequency and uncover abnormal patterns of behaviors, using variety
of approaches such as:
— "Statistical Patterns": they are based on observation of subjects activities and edition

of behaviors profiles,
— "Machine Learning": it is able to improve and optimize its performance over time

and revise its strategy depending on the returned reactions,
— "Data Mining": it makes the detection process more effective through deploying

patterns, classifications, structures or events in data.
Finally, Hybrid methods combine the both categories, such that misuse detects known
attacks, while anomaly detects unknown attacks.

— Response: once an attack is detected, the system can follow two prevention strategies:
"passive", in which the system can simply terminate its activity, and "active", in which
the system generates correlated alarm clustered into incidents, blocks the activity of the
malicious source and edits vulnerabilities reports with alert contexts.

Figure 4.1 – IDS Layering and Functionalities

4.2. ANONYMOUS AUTHENTICATION USING ELLIPTIC CURVE CRYPTOGRAPHY93

4.2 Anonymous Authentication using Elliptic Curve Cryp-
tography

Authentication is one of the most important security mechanisms in any information system,
that aims at ensuring safety of its entities and components. Among the variety of authentication
mechanisms proposed in literature [Lee07], the "Anonymous Authentication Schemes" are
recently proposed, and they are particularly provided with privacy preservation and anonymity
in mobility networks. In this section, we propose a novel anonymous authentication scheme
based on elliptic curve cryptography [Kap08], to ensure efficiency, reliability and resistance
to a large range of attacks. Moreover, due to the limited resources and computing capacity of
mobile agents, we make use of lightweight protocol where low cost functions (hash function,
Or-exclusive, concatenation) are employed to reduce computation loads. At the end of the
scheme, a session key is shared to encrypt and decrypt the exchanged messages between the
agent and the platform. Indeed, there are three phases in the proposed scheme: the initialization
phase, the registration phase and the authentication with key agreement phase. These phases
are described in details as follows.

4.2.1 Initialization Phase
In this phase, the mobile agent MA generates all parameters needed by the system through

the following steps:

1. MA generates randomly two large prime numbers p and q, then chooses an elliptic curve
E(Fp) over Fp.

2. MA generates an additive group G1 with the order q, a multiplicative group G2 with the
same order q, a generator P of the group G1 and a bilinear pairing e : G1 ×G1 −→ G2.

3. MA chooses two secure hash functions
— H1 : {0, 1}∗ ×G1 −→ G1

— H2 : {0, 1}∗ ×G2 −→ Z∗q
4. MA generates a random number as secret key xMA ∈ Z∗q and computes YMA = xMA.P .
5. MA sends {E(Fp), G1, G2, H1(.), H2(.), YMA} to the remote platform and keeps secret
xMA.

4.2.2 Registration Phase
In this phase, the remote platform RP securely registers forMA to be able to receive it and

execute it safely. In order to prove the temporal correctness of the execution, we need to ensure
time synchronization between MA and RP s. Thus, we make use of Network Time Protocol
(NTP) [Mills10] to keep the clocks in sync. Figure 4.2 shows the steps of registration between
MA and RP .

1. Once receiving the system parameters, RP generates a random number as secret key
xRP ∈ Z∗q and computes YRP = xRP .P . Then, RP submits his identity IDRP along
with YRP to MA over a secure channel (Secure Socket Layer (SSL)) .

2. MA checks the validity of IDRP . If it is not valid, MA reports a conflict; otherwise, it
produces a timestamp tMA and two random ephemeral secrets a, b ∈ Z∗q . Then it com-
putes AMA = a.P , BMA = b.P , QA = AMA ⊕ YRP and Q2 = BMA ⊕ YRP . Afterwards,
using its secret key and the ephemeral keys, MA hides its real identity and that of RP

94 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

Remote Platform (RP) Mobile Agent (MA)

Generates xRP

YRP = xRP .P
IDRP ,YRP−−−−−−−→

Generates a, b and tMA

AMA = a.P ; BMA = b.P
Q1 = AMA ⊕ YRP

Q2 = BMA ⊕ YRP

AIDMA = H1(IDMA ‖ tMA ‖
xMA ‖ AMA ‖ BMA)

AIDRP = H1(IDRP ‖ Q1 ‖ Q2)
CRP = a+ b+AIDRP .P

{Req_AID′RP ,AMA,
←−−−−−−−−−−−−−
BMA,AIDMA,CRP }

Generates tRP

Q1 = AMA ⊕ YRP

Q2 = BMA ⊕ YRP

AID′RP = H1(IDRP ‖ Q1 ‖ Q2)
AID′RP ,tRP−−−−−−−−→

Checks tRP , verifies:
AIDRP == AID′RP

CRP .P = AMA +BMA+
V erificationStatus:←−−−−−−−−−−−−−

On/Off
AID′RP .YRP

Figure 4.2 – Registration Phase in the proposed approach

and computes the corresponding anonymous identities as follows:
- AIDMA = H1(IDMA ‖ ts ‖ xMA ‖ AMA ‖ BMA), and
- AIDRP = H1(IDRP ‖ Q1 ‖ Q2);
At last, MA computes CRP = a+ b+AIDRP .xMA and sends {Req_AID′RP , AIDMA,
AMA, BMA, CRP } to RP .

3. Upon receiving {Req_AID′RP , AIDMA, AMA, BMA, CRP }, RP produces a timestamp
tRP and computes Q1 = AMA ⊕ YRP , Q2 = BMA ⊕ YRP , and AID′RP = H1(IDRP ‖
Q1 ‖ Q2). Then RP sends AID′RP ,tRP to MA.

4. MA checks the validity and freshness of tRP , then verifies whether
AIDRP == AID′RP and CRP .P == AMA+BMA+AID

′
RP .YMA, where == refers to the

comparison. If this verification does not match, the MA returns back an authentication
reject message (Status: Off). Otherwise, MA advises RP to continue the authentication
(Status: On).

4.2.3 Authentication and Key Agreement Phase

In this phase, the MA can achieve an anonymous authentication after registering RP . The
procedure of the authentication and key agreement phase is shown as follows and illustrated in

4.2. ANONYMOUS AUTHENTICATION USING ELLIPTIC CURVE CRYPTOGRAPHY95

Figure 4.3.

Remote Platform (RP) Mobile Agent (MA)

Generates n and t′RP

NRP = n.P ; MRP = n.YRP

KRP = H1(NRP ‖MRP ‖ t′RP)
URP = e(KRP ,MRP)
ZRP = xRP + (H1(AID

′
RP ‖ URP

‖ t′RP))
n.xRPmodq

cipher = EncKRP
(AID′RP ‖ ZRP)

NRP ,t′RP−−−−−−→
cipher

Checks t′RP , computes:
M ′RP = xMA.NRP

KMA = H1(NRP ‖M ′RP ‖ t′RP)
U ′RP = e(KMA,M

′
RP)

clear = DecKMA
(cipher)

Z ′RP = clear +AIDRP

Checks the equation:
Z ′RP .P = YRP + P.(H1(AIDRP ‖
U ′RP ‖ t′RP)

M ′RP .YRP /YMAmodq
if it holds, generates d, computes:
DMA = d.P
Pass = H2(DMA ‖M ′RP ‖ Z ′RP .P

‖ t′RP)
Session Key:
SK = H2(Pass ‖ d.NRP)

DMA,←−−−−
Pass

Checks:
Pass = H2(DMA ‖MRP ‖ ZRP .P

‖ t′RP)
Session Key:
SK = H2(Pass ‖ n.DMA)

Figure 4.3 – Authentication and Key Agreement Phase in the proposed approach

1. RP produces a second timestamp t′RP and generates a nonce n ∈ Z∗q , then computes
NRP = n.P , MRP = n.YMA, KRP = H1(NRP ||MRP ||t′RP), URP = e(MRP ,KRP),
ZRP = xRP +(H1(AID

′
RP ||URP ||t′RP)

n.xRPmodq and cipher = EncKRP
(AID′RP ||ZRP).

At last, {NRP , cipher, t
′
RP } are sent to MA.

2. Upon receiving {NRP , cipher, t
′
RP }, MA checks the validity and freshness of t′RP , then

computes M ′RP = xMA.NRP , KMA = H1(NRP ||M ′RP ||t′RP) and U
′
RP = e(KMA,M

′
RP).

Using the key KMA,MA decrypts the cipher to get clear = DecKMA
(cipher), computes

Z ′RP = clear ⊕AIDRP and checks whether the equation (1) holds.

Z ′RP .P = YRP + P.(H1(AIDRP ||U ′RP ||t′RP))
M ′RP .YRP .Y −1

MA (4.1)

96 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

If the equation does not hold, MA stops the authentication process and sends a failed-
authentication message to RP . Otherwise, MA authenticates successfully RP and gen-
erates d ∈ Z∗q , computes DMA = d.P ,Pass = H2(DMA||
M ′RP ||Z ′RP .P ||t′RP) and the session key SK = H2(Pass||d.NRP). Then, MA sends
{Pass,DMA} to RP .

3. RP computes H2(DMA||MRP ||ZRP .P ||t′RP) and checks whether it is equal to Pass.
If not, the session is stopped; Otherwise, the session key is calculated SK =
H2(Pass||n.DMA).

4.3 Intrusion Detection based on Execution Tracing

Detection of anomalies in an information system becomes one of the most requested features
to predict risks and prevent harms. In this section, we proceed to the description of our proposed
IDS integrated during the mobility of the agent across the network. We keep using elliptic curve
primitives to generate cryptographic traces of the agent execution.

According to the conception criteria of the detection intrusion systems, our proposed IDS
is provided with a fully distributed infrastructure, where the monitored environment is a com-
bined network-host based area. Besides, we adopt an anomaly detection technique based on a
statistical analysis of the behaviors registered by the subjects and objects. This is mainly related
to the nature of mobile agent systems, that are endowed with high scalability and less energy
consumption, which contribute efficiently in ensuring fast and rigorous detection of known and
unknown intrusions. Moreover, we choose to make the response of our IDS as significant as
possible, through revoking the malicious entity and ending its activities once it does not satisfy
the security requirements.

When a native platform needs services from other remote platforms, it creates a mobile
agent, that will be in charge of moving across these platforms, executing the requested actions
and returning back with the obtained results. The named agent may contain a stack of IP
addresses of the platforms it has to visit, the data needed to be involved and the code of the
activities to be performed. Figure 4.4 shows a preview of an XML file of a serialized mobile
agent, that needs to move across three remote platforms and perform specified activities on
each one.

In this agent file, many information are indicated such as: agent credentials (name, identity,
size, location), its itinerary including the hosts to be visited and their characteristics, the
assigned tasks with input data file and results log file as mandatory file resources, the encrypted
code of the mobile agent, the mobility departure time and the java keystore file containing the
session keys shared with authenticated hosts. During this round-trip, the mobile agent may be
victim of a variety of intrusion attacks, aiming at harming its code, data, status and path. Thus,
it is strongly requested, that the agent records all behaviors and actions during its execution.
Accordingly, when receiving the returning agent, the native platform will be able to detect
maliciousness and anomalies occurred.

Tracing the activities of a mobile agent across different platforms was introduced by Vigna
in [Vigna98], which was of a great inspiration for our contribution. According to Vigna’s work,
a trace is generated through a post-mortem analysis of data and events, during the execution
of the agent code. The later is considered as a segment comprising a sequence of statements,
which can be classified as white and black. White statement modifies the agent’s execution using
agent’s internal variables only. For example: a = b+ c is a white statement, such that a, b and
c are local variables of agent’s code. Black statement makes use of information received from

4.3. INTRUSION DETECTION BASED ON EXECUTION TRACING 97

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:Agents xmlns:ns2="http://NPMachine">

<ns2:Agent>
<queueSize>16</queueSize>
<ns2:ID> MA_NP_4 </ns2:ID>
<ns2:Name> MobAg_1 </ns2:Name>
<ns2:Location> 192.168.252.46 </ns2:Location>
<ns2:Itinerary>

<group type="WINDOWS">
<Hosts>

<First name="RP1.domain.com" IP= "192.168.252.111" port="80"/>
<Second name="RP2.domain.com" IP= "192.168.252.132" port="80"/>
<Third name="RP3.domain.com" IP= "192.168.252.208" port="80"/>

</Hosts>
</group>

</ns2:Itinerary>
<ns2:Job>

<task class="RoundTrip.CyclicActivities">
<workspace ref="default"/>
<resource>input.dat</resource>
<resource>result.log</resource>

</task>
</Job>
<ns2:code format="base64">c314cd0ca81dcd1bdd13e80d5948a2fdd757a79ca

8741237e34e7859e4fd2cf2940191f2a798b79aecb8caa081e283354379
dd68f802c01fb0d16de128da8252271cb234687d67ddd9cb7a4280203a
b9040057af30a764b1f6c1c5756a83a5fb77ce797b15e0dd3499132c9c1
ad0bd50f1913520fe83b3ec4c2d4cac183969a528b53abfaaebfe0368725
2ddf9636b34c2879d204c301c89252d3690cf09263070.....</ns2:code>

<ns2:date> 2015-08-13 18:05:11.234 GMT</ns2:date>
<ns2:KeyStore>

<Secure OpenSSL="true" >
<resource>NP_KeyPair.jks</resource>
<resource>SessionKeys.jks</resource>

</Secure>
</ns2:KeyStore>

</ns2:Agent>
</ns2:Agents>

Figure 4.4 – XML Code of serialized mobile agent with three destinations in its itinerary

external environments to alter the state of the program, such as a function read(x) that assigns
to x a value obtained from the terminal. Actually, the produced traces enable the verification
of the agent execution, when malicious entities aim at tampering the agent, through claiming
and supposing fake scenarios or operations.

The main idea of our approach is illustrated in Figure 4.5. Thus, during the round-trip of
the mobile agent across n platforms (RP s) to execute n activities (Act), these later are recorded
using a tracing function, that involves many parameters such as: the session key obtained at the
authentication process, the identities of the sender, the receiver and the intended next recipient,
timestamp and many others. In practice, the trace of the agent’s execution on a remote platform

98 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

F
ig
ur
e
4.
5
–
E
xe
cu
ti
on

T
ra
ci
ng

in
ou

r
pr
op

os
ed

ID
S

4.3. INTRUSION DETECTION BASED ON EXECUTION TRACING 99

is represented by the pair: T =< U,M >. U is the unique session identifier of the trace obtained
through combining the session key with a unique identifier, which is randomly generated using
the Java package java.util.UUID. While M is an encapsulated message containing many fields
with signatures and encryption, and which are associated with the black statement of the
executed code (Activities). This message is formatted as follow:

— The first and second fields (IDNP , IDRPi
) indicate respectively the identities of the

agent owner and sender.
— The third field (ts) indicates a timestamp referring to the arrival time of the mobile

agent to the platform RPi+1.
— The fourth field contains the AES-256 encryption [Rober12] of a data set using the

session key SKi obtained through the authentication. This set includes two values:

1. The elliptic curve digital signature (ECDSA) [Kap08] of the following platform iden-
tity (IDRPi+1

) and the timestamp (ts), using the ECC secret key of the current
platform (xRPi

) calculated during the authentication.

2. The ECC encryption using the public key of the next platform (YRPi+1
) of a data

set, that includes the unique identifier of the trace (u), the agent code, the black
statement executed in the code (BS), the results obtained (RT) and the set of traces
generated on the visited platforms (random, T1, ..., Ti−1).

— The fifth field includes the ECDSA signature using the agent’s owner private key (xNP)
of the hash values of (BS with RT) and (Ti−1).

On RP1 :=> to RP2:
→M1 := (IDNP , IDRP1

, ts, EncAESSK1
(SignECDSAxRP1

(AIDRP2
, ts),

EncECCYRP2
(u,Code, random)), SignECDSAxNP

(hash(random)).

On RPi :=> to RPi+1:
→Mi := (IDNP , IDRPi

, ts, EncAESSKi
(SignECDSAxRPi

(AIDRPi+1
, ts),

EncECCYRPi+1
(u,Code,BS,RT, (random, T1, ..., Ti−1),

SignECDSAxNP
(hash(BS,RT), hash(code), hash(Ti−1)).

After being executed on the current hosting platform "RPi" and before moving to its fol-
lowing destination "RPi+1", the mobile agent must authenticate this latter, and then produce
the trace of its current execution Ti =< Ui,Mi >. When the remote platform "RPi+1" receives
the mobile agent with its trace, it begins by verifying the message M before proceeding to the
execution of the agent on its environment. First of all, the identities of the agent’s owner and
sender are verified, and the timestamp (ts) is checked for freshness. Then, using the session key
(SKi+1) obtained at the authentication process, the fourth field of M is decrypted using the
symmetric-key algorithm AES-256. Thus, to be sure that the trace is valid and exactly intended
to it, "RPi+1" decrypts the signature SignECDSAxRPi

(AIDRPi+1
, ts) using the public key of

the sender. The anonymous identity owned by "RPi+1" is compared with that provided in the
signature, without forgetting to check ts and its compatibility with the common reference clock.

Once the comparison is valid, "RPi+1" decrypts the ECC encryption using its private key,
and gets in clear: the unique identifier of the trace, the agent code, the black statement executed
on "RPi", the obtained results and the set of traces produced from the launching of agent till
its execution on "RPi−1" (for the trace on the first remote platform and in the absence of a
previous trace, this latter is replaced by a random, generated on "NP"). Accordingly, in order

100 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

to check the integrity of the mobile agent, we make use of the one-way hash function SHA-3
[Jaffar13], to separately hash the agent code, the executed statements along with the obtained
results, as well as the previous trace on "RPi−1". These hash values are compared to those
contained in the signature included in the fifth field of M , and which is decrypted using the
public key of the agent’s owner (YNP).

As we adopt a chaining mechanism to link the traces, it becomes sufficient for "RPi+1"
to verify the last trace Ti coming from "RPi". Finally, once passing all these verification, the
platform can execute the mobile agent according to the required specifications and then, produce
the relevant trace after authenticating the next destination. Otherwise, the agent edits a failure
report, ends its activity on this platform and moves to the following one. When all the hosts in
the agent itinerary are visited, the mobile agent returns back to its native platform "NP", with
the obtained results and the tracing of the executions performed. In case that "NP" suspects
an execution or an alteration of the agent on a particular platform, it consults the relevant
cryptographic trace and inspects it deeply. in case it still has doubts, "NP" sends a mobile
agent in order to re-execute the same specified tasks and produce a new cryptographic trace to
be compared with the old one. If the comparison does not match, then an intrusion is detected.

4.4 Security Analysis

Anonymity

In our scheme, the real identity of the mobile agent is contained in an anonymous identity
AIDMA = H1(IDMA ‖ ts ‖ xMA ‖ AMA ‖ BMA), such that: AMA = a.P and BMA = b.P
with a and b two nonces for randomization and freshness. In addition to the fact that IDMA

is protected in a hash function, an adversary that intercepts the messages between MA and
RP will not be able to calculate the real identity of MA, as he will face the CDH problem and
because the two nonces are unknown for him. Therefore, our proposed scheme maintains the
agent anonymity.

Untraceability

untraceability is called to be provided when an adversary can not identify the real identity
of the mobile agentMA or make a link between any two of its sessions. An adversary can collect
by eavesdropping all the anonymous identities of MA (AIDMA) from the exchanged messages
in every session. If the agent preserves the same value of AIDMA, the adversary may guess
that this value frequently requested is containing the identity of the agent, and can employ it
without recognizing its real value. In other words, the adversary traces that a same specific
value is continuously requested at the same time and position in the authentication process. In
our scheme, due to the unique timestamp and the random ephemeral secrets, all the produced
anonymous identities of MA are different and the adversary cannot trace who communicates
with MA by monitoring the channel. Therefore, our proposed scheme provides the attribute of
untraceability to users.

Perfect Forward Secrecy

Perfect forward secrecy is called to be provided when the previous session keys cannot be
disclosed, even if the secret keys of the mobile agent (MA) and the remote platforms (RP) are
compromised. In our proposed scheme, the session key is SK = H2(Pass ‖ n.d.P) with n and

4.5. PERFORMANCE ANALYSIS 101

d two ephemeral secrets chosen by MA and RP , which guarantee key freshness in each session.
Despite the fact that an adversary could hold the secret keys of both MA and RP , he will not
be able to get the session key as he still needs at least to compute n.d.P from NRP = n.P and
DMA = d.P , which is impossible due to the intractability of the Computational Diffie−Hellman
(CDH) problem. Thus, the perfect forward secrecy is proven.

Known Key Security

Known Key Security is called to be provided when a produced session key is compromised
and it could not influence the other session keys. In our proposed scheme, we can clearly see that
an intruder cannot determine any other session key given a corrupted one, since these session
keys are independently computed using the random ephemeral secrets n and d, which are
separately generated and fairly contributed for every session. Therefore, our proposed scheme
could provide the known-key security.

Man-In-The-Middle Attack

In our scheme, the mobile agent MA authenticates the remote platform RP through veri-
fying if the equation(1) holds. Without the private key of RP : xRP and the ephemeral secrets
n, any adversary cannot generate NRP neither KRP to compute ZRP and the cipher. In the
same way, RP authenticates MA through verifying if the equation: Pass = H2(DMA ‖MRP ‖
ZRP .P ‖ t′RP) holds. Without the secret key of MA: xMA, an adversary cannot compute
M ′RP from NRP , which means he cannot compute the accurate value of Pass. Accordingly, our
scheme provides a mutual authentication between the communicating parties, which makes it
well-resistant to the Man-In-The-Middle attack.

Replay Attack

In a replay attack, an adversary may gather the exchanged messages over a public network,
and attempt to replay them for the other entities implicated in the authentication process. Our
scheme can resist this attack due to the use of timestamp and ephemeral secrets. Even if an
adversary intercepts messages from MA and RP , he cannot replayed to this messages to be
authenticated with MA or RP since these latter contribute fairly in generating random nonces
for each authentication session. In addition, the freshness of the timestamps produced for every
session can be easily verified.

4.5 Performance Analysis

In this section, an analysis of our approach performance is provided according to various
metrics: time, detection rate, scalability and effectiveness. For that purpose, JADE framework
is used for the implementation, that considers a set of heterogeneous machines with different
operating systems (Windows, Ubuntu, MacOs), such that only one is viewed as "Native Ma-
chine" and the others as "Remote Machines". The technical characteristics of these machines
are: Intel Core i7 processor at 2.7 GHz with 4 Go of RAM, connected through 100Mbps switched
Ethernet network with WampServer. Concerning the characteristics of the mobile agent as an
entity with limited resources, it has a storage memory of 512 Mbits and GenuineIntel 800 MHz
processor with HTTP-based-MTP (Message Transport System).

102 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

4.5.1 Authentication Performance
In this part, we evaluate the computational cost of our anonymous authentication scheme

and we compare its performance with other well-known schemes, like Liu et al.’s schemes
in its two versions: preliminary and security-enhanced [Liu14], Xiong’s certificateless remote
anonymous authentication scheme [Xiong14], as well as Zaho’s scheme for wireless networks
[Zhao14]. To be compatible with those named schemes and to achieve the comparable level of
security to 1024-bits RSA, we employed the super-singular elliptic curve E/Fp : y2 = x3 + x
providing groups with a Tate pairing e : G1 ×G1 −→ G2. The embedding degree of this curve
is 2, q is a 160-bit prime and p is a 512-bit prime generated using the cryptographic pseudo
random generator ISAAC+ [Auma06]. For convenience, we define some notations as follows:

— Te: the running time for performing a module exponentiation operation;
— Th: the running time for performing a one-way hash function;
— Tp: the running time for performing a bilinear pairing operation;
— Tm: the running time for performing an elliptic curve point multiplication;
— Ta: the running time for performing a modular addition/subtraction operation;
— Ts: the running time for performing a symmetric encryption/decryption operation;

Table 4.2 – Computational cost (in ms) of the operations performed on Remote Platform (RP)
and Mobile Agent (MA)

Operation RP MA

Te 8.75 19.43
Th 0.07 0.26
Tp 17.81 92.20
Tm 4.63 11.38
Ts 10.32 14.84

Table 4.2 shows the computational cost of the different operations involved in the authen-
tication process. Indeed, the running time of these operations either on the remote platform
RP or the mobile agent MA is derived through repeated simulation experiments. Eventually,
the total cost of the authentication phase in the proposed scheme is separately formulated as
follows:

— On RP : 3Tp + 3Th + 2Tm + Ta + Ts + Te
— On MA: 3Tp + 4Th + 2Tm + Ta + Ts + Te
From comparative perspective, Table 4.3 exposes the computational cost of the three men-

tioned schemes compared to ours, that shows a better computational efficiency.
Furthermore, Figure 4.6 illustrates the comparison of the communication overhead between

the schemes of Liu et al [Liu14], Xiong [Xiong14], Zhao [Zhao14] and ours. This comparison
relies on the time consumed by the mobile agent (as a service requester) through the processing
of authentication operations over an increasing number of visited remote platforms (as service
providers). Besides, this overhead is basically evaluated depending on the size and duration of
the request/response messages, that are exchanged during the authentication processes in one
round-trip of the mobile agent. The results indicate that our protocol reduces at least 80%,
67% and 23% from the overall running time of Liu et al, Zhao and Xiong schemes, respectively.

4.5. PERFORMANCE ANALYSIS 103

Table 4.3 – Computational cost of our scheme compared to the schemes of Liu et al, Xiong and
Zhao

RP (service provider) MA (service requester)

Liu et al [Liu14] Tp + 3Th + 2Tm + 2Te 4Tp + 3Th + Ta + Te

Xiong [Xiong14] 5Tp + 4Th + 2Tm + Ta 4Tp + 5Th + 3Tm + Ta

Zhao [Zhao14] 6Tp + 5Th + Ts 3Tp + 4Th + Tm + Ta + Ts

Our Scheme 3Tp + 3Th + 2Tm + Ta + Ts + Te 3Tp + 4Th + 2Tm + Ta + Ts + Te

Figure 4.6 – Time consumption of the authentication process when a MA moving across an
increasing number of RPs

An evaluation of the energy consumption of our scheme compared to the other three ones is
provided in Figure 4.7. Assuming, that aMA runs on a 1.6 MHz processor, its energy consumed
can be calculated as eA = tA×C, where tA is the total computation time for authentication, and
C is the CPU maximum power. The comparison, in terms of energy usage as shown in Figure
4.7, indicates that our scheme achieves the best performance, such that it reduces approximately
70%, 48% and 62% of the overall energy consumed by the schemes of Liu et al, Xiong and Zhao,
respectively.

4.5.2 Detection Performance

The effectiveness of an IDS is assessed on how the detection method is capable to make
correct attack detection. This section describes the experimental results and performance eval-
uation of the proposed IDS, according to many evaluation metrics: accuracy, overhead and
consumption. For that purpose, we consider the confusion matrix in Table 4.4, where four
reactions are considered given the real event and the IDS prediction:

— True Negative (TN): correct IDS operation, where a real event is successfully defined as

104 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

Figure 4.7 – Energy consumption of the authentication process when a MA moving across an
increasing number of RPs

normal.
— True Positive (TP): correct IDS operation, where a real event is successfully labeled as

an attack.
— False Negatives (FN): incorrect IDS operation, where a real attack is predicted as normal

event.
— False Positives (FP): incorrect IDS operation, where a normal event is predicted as an

attack.

Table 4.4 – IDS Reaction in normal and intrusion situations

Predicted Situation Real Situation
Normal Intrusion

Normal True Negative (TN) False Positive (FP)
Intrusion False Negative (FN) True Positive (TP)

According to [Blasco10], many measurements can be performed to quantify the effectiveness
of an IDS, such as:

False Alarm rate (FAR):

FP

TN + FP
=

number of false alarms
number of alarms

(4.2)

Detection rate (DR) or Sensitivity or Recall (R):

TP

TP + FN
=

number of detected attacks
number of attacks

(4.3)

Accuracy (A):
TN + TP

TN + FP + FN + TP
(4.4)

4.5. PERFORMANCE ANALYSIS 105

Precision (P):
TP

TP + FP
(4.5)

Table 4.5 – Simulated Attacks using Metasploit
Name of Attack Description

performs a scan of a remote machine to determine
Nmap TCP Scan the availableports that can be exploited to gain shell

access of the server hosting the mobile agent.
Persisent given a listener payload on an open port of a remote
Meterpreter machine, the attacker obtains almost complete
Backdoor control over the machine hosting the mobile agent.

using a spoofed address, the attacker applies a TCP
DoS flooding to burden the machine and make it

unavailable for the agent.
gives an enumerated wordlist of present users using

Finger Service smtp-enum module and allows an attacker to disrupt
User a network using the redirection capability in the

finger daemon.

All experiments are carried out on heterogeneous machines equipped with JADE platform
and the java library JPCAP (Network Packet Capture Facility) [JPCap] for capturing and
sending packets. Real attacks are simulated and injected in the running environments using
MetaSploit tool [Mayn11] dedicated for the penetration tests and the creation of secure so-
lutions. In this context, we are concerned about evaluating the scalability criteria, such as
response time and bandwidth consumption, as well as the effectiveness criteria in terms of de-
tection rate and false alarm rate. The obtained results are compared to the centralized IDS
SNORT tool [Snort], and to the system of Brahmi et al [Brah11], in which a Distributed
Intrusion Detection using Mobile Agents and Snort (DIDMAS) is proposed.

In order to be compatible in the comparison with DIDMAS and SNORT, Table 4.5 defines
the attacks adopted in our tests.

Scalability Evaluation

Among the very common and important metrics for evaluating a scalable system, there is
the "response time" that defines the total time spent to depict an attack since its launching, as
well as the "energy consumption" in terms of transmission capacity of network (bandwidth).

Figure 4.8 shows the response time achieved by our IDS, compared to DIDMAS and SNORT,
in order to discover the four types of attacks indicated before. Thereby, we remark that our IDS
expresses a fast response time behavior. In addition, as depicted in Figure 4.9, the bandwidth
consumption of our IDS shows a low rate regarding DIDMAS and SNORT. This is mainly due
to the mobility feature of the agent, that begins the analysis of data on the environments where
attacks are located. The obtained results attest clearly the performance of our IDS, which will
neither be compromised by the increase of attacks in type and number, nor by the increase of
the remote hosts being visited. This is illustrated in Figure 4.10, that gives the time overhead
added by our IDS while the number of visited hosts is rising.

106 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

Figure 4.8 – Time Response of our IDS compared to DIDMAS and SNORT

Figure 4.9 – Bandwidth Consumption of our IDS compared to DIDMAS and SNORT

4.5. PERFORMANCE ANALYSIS 107

Figure 4.10 – Time overhead of our IDS regarding the increase of the visited hosts

Effectiveness Evaluation

Figure 4.11 – Detection rate of our IDS vs DIDMAS and SNORT

The commonly used metrics to test the effectiveness of an IDS are: detection rate and false
alarm rate. The first one, indicates the number of correctly detected attacks, while the second

108 CHAPTER 4. ELLIPTIC CURVE CRYPTOGRAPHY FOR MOBILE AGENTS

Figure 4.12 – False Alarm rate of our IDS vs DIDMAS and SNORT

indicates the normal scenarios incorrectly considered as intrusions. It is worth to notice, that
a good IDS must have a high detection rate, whereas the false alarm rate is expected to be as
low as possible.

This is well experienced in Figure 4.11, where our IDS shows notable large detection rates
in comparison with DIDMAS and SNORT. These rates are improved in average of about 2%
and 21% from DIDMAS and SNORT, respectively. Furthermore, Figure 4.12 indicates, that
the false alarm rates resulting by our IDS are significantly lower of about 22% and 43% than
DIDMAS and SNORT, respectively.

Thus, regarding the challenges that an IDS faces to prove its effectiveness, our IDS fits the
existing requirements through providing a low false alarm rate and maintaining a high detection
rate.

4.6 Conclusion

In this chapter, we have proposed a robust and distributed approach to address the security
issues faced by mobile agents, during their migration. Making use of the cryptographic elliptic
curve functions based on bilinear pairing, we have provided our agent with an efficient anony-
mous authentication and proactive execution tracing techniques. The carried out experimental
results prove the scalability and effectiveness of the introduced approach, since it reduces the
computational costs, in terms of response time and bandwidth consumption, and it exposes
a high detection rate versus a low false alarm rate. As perspectives, we will be concerned in
extending the IDS into an intrusion detection and prevention system (IDPS), as well as in
deploying access control techniques for trustworthy platforms.

Chapter 5

Access Control and Cryptography
for Agent Platforms

Contents
5.1 Preliminaries . 110

5.1.1 Access Control Policies . 110
5.1.2 Threshold Sharing Scheme . 111

5.2 Platform Architecture . 113
5.3 Authentication Process . 113
5.4 Access Control of the Platform Resources 115
5.5 Security Analysis . 117
5.6 Performance Analysis . 119
5.7 Conclusion . 122

In this chapter, a novel contribution is introduced. It allows the hosting platform to grant
access only to the authenticated mobile agents, and ensures secure communication between the
both via the generation of a session key, that is used to encrypt and decrypt the exchanges.
Besides, it monitors the accesses to the resources of the platform in a flexible and interoperable
manner, which guarantees the confidentiality and lessens damages in case that a malicious agent
is received.

This chapter is organized as follows. Section 2 provides an overview of the mechanisms
utilized to conceive the proposed approch: 1) the access control principle and its famous models,
and 2) the secret sharing principle based on threshold. In Section 3 the overall architecture of
the approach is presented. In order to protect the hosting platform from agent attacks, Section
4 decribes the adopted authentication process, which is strengthened using a fixed and an
enhanced version of Diffie-Hellman key exchange, While Section 5 presents our security policy
to manage the access to the platform resources, through using an extended Discretionary Access
Control model (DAC) along with Shamir-threshold sharing scheme. A security analysis based
on variety of attacks is provided in Section 6. Moreover, in Section 7, the security, feasibility
and effectiveness of the proposed contribution were evaluated according to three factors: time
performance, authorization performance and the resistance to some well known attacks. Finally,
a results interpretation and perspectives are provided in the conclusion.

109

110CHAPTER 5. ACCESS CONTROL AND CRYPTOGRAPHY FOR AGENT PLATFORMS

5.1 Preliminaries

5.1.1 Access Control Policies

An access control policy is defined by Samarti [Sam01] as a set of high level directives that
specify which entity (a subject) has the permission to exercise what operation (an action) on
which data (an object). Thus, the three essential concepts on which an access control policy is
based are:

— Subject : it is an active entity able to get access to the system assets. It can be a user,
an application, a network server...

— Object : it is a passive entity representing the assets to be protected. It can be a file, a
program, a device, a connection...

— Action: it is a particular operating mode processed by a subject on an object. For
instance, the actions to be considered by a user on a file are: write, read and execute.

In view of its efficiency in preserving the security of an information system, especially its
confidentiality and integrity, an access control policy must satisfy the following specifications
and principles [Sam01]:

— Least Privileges: it consists in providing a subject with the access to the smallest
number of objects needed to accomplish a task, even if it holds more permissions.

— Verification of each access: all the accesses granted to a user over an object must be
verified continuously, even after that this user is authorized.

— Tracking: in addition to the implementation of the access control policy, its administra-
tion requires a parallel monitoring to know whether the access control policy is properly
working or not.

— Granularity: it represents the smallest unit to which access is controlled. This can be
a file, a program, a block of data, hardware devices, etc. In reality, everything depends
on what to control with respect to users and their access.

— Access Log Files: the accesses authorized in a system are recorded in "Access/Audit
Log" files, which allows to enhance the system features, identify the improper use of an
object and the bugs sources as well as to detect penetrations.

According to a swot analysis on access control models conducted by M. Ennahbaoui et
al [Ennah14], there are two major categories of access control models. The first category
concerns the classical and basic models: Discretionary Access Control (DAC) and Mandatory
Access Control (MAC). In the second category, enhanced and extended models are derived from
the first category, such as: Role-Based Access Control (RBAC), Organization-Based Access
Control (OrBAC) and many others. In this chapter, we make use of DAC model, hence it will
be interesting to briefly define this latter.

DAC [Ennah14] is a flexible model that allows a subject to assign permissions to other
subjects, and where the agreement or revocation of privileges is regulated by administrative
policy. An example of this model usage is the management of access files in Unix operating
system. There exist two famous discretionary models: Lampson model and Harrison Ruzzo
Ullman (HRU) model.

In the Lampson model, the access rights are specified in a access control matrix. It is
represented by the triplet (S,O,MSO), where S is the set of subjects, O is the set of objects and
MSO is the access control matrix, that associates to each couple (subject, object) a set of access
rights, according to the nature of the object. Moreover, the matrix can be continuously updated
through the creation or destruction of subjects and objects, as well as by the addition or removal
of access rights. In practice, to overcome the storage problems, there are two applications of

5.1. PRELIMINARIES 111

this matrix: Access Control List where the actions are stored by column, and Capabilities List
where the actions are stored by row.

The HRU model is an extension of the Lampson model. It makes use of the classical access
control matrix with the advantage of specifying a set of a primitive operations, called "Com-
mands", to assign the access rights, as well as to create and delete subjects and objects. In this
model, when a subject S is the owner of an object O, then S can assign its access rights of
O to other subjects. The commands are constructed from primitive operations such as: enter,
delete, create object, delete object, etc.

5.1.2 Threshold Sharing Scheme
Let us consider an example of a Bank vault which must be opened every day. In the Bank,

there is a category of employees who are trusted enough to participate in the opening of the
vault, but not trusted if each one owns the complete combination to the vault. Hence, it would
be reliable to design a system where for example any four of these employees together can open
the vault, but no individual alone can do so. The above problem can be solved by means of a
secret sharing scheme.

Secret sharing schemes were independently introduced by Blakley [Blakl79] and Shamir
[Sham79] in 1979. In this chapter, we consider a special type of secret sharing scheme, called
a threshold scheme. An informal definition of a threshold scheme is as follows:

Let k and n be positive integers, such that k ≤ n. A (k, n)-threshold scheme is a method of
sharing a secret K among a set of n participants in such a way that any k participants can
compute the value of the secret , but no group of k − 1 or fewer can do so.

According to this definition, when a dealer wants to share a secret among the participants,
it gives each one some partial information calles "share". The most popular construction of
these (k, n)−schemes is Shamir Threshold Scheme, which is formulated as follows:

Notations:

— let p ≤ n− 1: a prime number
— P = {P1, P2, ..., Pn}: the set of the participants
— K ∈ Zp: the possible secret
— S ∈ Zp: the set of possible shares
— D: a dealer

Initialization:
D chooses n public, distinct and non-zero elements from Zp, denoted xi, such that: 1 ≤ i ≤ n.

Distribution:

1. D wants to share the secret K ∈ Zp. D chooses randomly k − 1 elements from Zp,
denoted a1, a2, ..., ak−1, such that: a0 = K.

2. D computes yi = a(xi), for 1 ≤ i ≤ n, where: a(x) =
∑k−1

j=0 ajx
j mod p

3. D gives the participant Pi the share yi

112CHAPTER 5. ACCESS CONTROL AND CRYPTOGRAPHY FOR AGENT PLATFORMS

F
ig
ur
e
5.
1
–
U
M
L
C
la
ss

D
ia
gr
am

of
th
e
P
ro
po

se
d
P
la
tf
or
m

A
rc
hi
te
ct
ur
e

5.2. PLATFORM ARCHITECTURE 113

5.2 Platform Architecture

In this section, we present the adopted architecture where the proposed approach is con-
ceived. It is composed of three main parts: the Native Platform that we would like to secure,
the Remote Platform sending the mobile agent and the Trusted Third Party (TTP). Figure
5.1 illustrates the structure of the adopted framework via an UML class diagram, showing the
links between the different components.

— Key_Manager_Agent : It is an agent that makes use of the pseudo random number
generator ISAAC+ [Auma06], to automatically generate a key of 256 bits for each file
created in the environment. These keys and their corresponding hash obtained using
SHA-3 [Jaffar13] are assembled in two separate lists.

— Admin_Agent : It is responsible of the communication among all intern components
and also with remote entities. Its tasks include mathematical operations to authenticate
platforms, verify the keys and give access, in addition to managing the data of the
environment and controlling their use.

— Authenticator_Agent : It is charged with the authentication of any external entity claim-
ing access to the platform. It collaborates with the TTP to perform a Key exchange
integrating digital signature to prevent MITM attacks and generate a session key.

— File_Agents: These agents contain the sensible files and data of the environment. They
are protected and encrypted.

In the remote platform, we consider an "Authenticator_Agent" with the same properties of
that in the native platform, and a mobile agent containing two important information:

— H(Key): The mobile agent may contain one or more specific keys for accessing one or
more specific files. But this key is not given in clear, even the mobile agent did not know
its value. The access keys are hashed using SHA-3, before they are provided along with
an integer K to the mobile agent, via the TTP and through a secure channel.

— K: It is an integer referring to the number of concatenated access keys contained in the
hash. It is useful for the native platform when receiving an authenticated mobile agent,
to compute the arrangements of keys, that may construct the same hash.

In this context, it is necessary to notice that each mobile agent follows a preliminary itinerary
defined by its own platform. Thus, the agent knows in advance the identities and locations (IP
Address) of the platforms it will visit.

5.3 Authentication Process

To prevent vulnerabilities arising due to the unavailability of authentication, an agent
charged with performing a mutual authentication is employed. This process inspired from
[Phan05] is based on an enhanced Diffie-Hellman key Exchange protocol integrated with a
digital signature DSA, which makes it well resistant to the Man-In-The-Middle Attacks. Figure
5.2 describes the authentication process that is composed of four phases:

1. Key Request : The remote platform communicates with the TTP in order to request
the access keys to perform specific tasks. This request is then transferred to the native
platform, which analyzes the required tasks and defines the concerned resources with
their corresponding access keys. These latter are first concatenated and hashed using
SHA3, then transferred to the TTP along with the integer K. The TTP in turn, relays
this response to the requesting remote platform. We should mention that communications

114CHAPTER 5. ACCESS CONTROL AND CRYPTOGRAPHY FOR AGENT PLATFORMS

F
ig
ur
e
5.
2
–
A
ut
he
nt
ic
at
io
n
P
ro
ce
ss

be
tw

ee
n
th
e
N
at
iv
e
an

d
R
em

ot
e
P
la
tf
or
m
s
U
si
ng

T
T
P

an
d
K
ey

E
ch
an

ge
M
ec
ha

ni
sm

5.4. ACCESS CONTROL OF THE PLATFORM RESOURCES 115

in this phase are carried out via a secure channel, through which, the TTP sends to the
both platforms an ephemeral key (T) to be involved in the key exchange protocol.

2. Setup: Both interacting platforms agree on a set of basic parameters to perform compu-
tations. This set includes large primes (p, q and h) to define the rank of the finite field
(Fp) to be used, and a generator (g) on this field to achieve exponentiation.

3. Key Exchange: In this phase, every platform generates randomly a private key (Xi),
which is used to calculate the public key (Yi) on the basis of setup parameters. Fixing
the security of the protocol at this stage requires two main characteristics: the exchange
of public key should not be in clear, and the number of passes must be minimized to
prevent the intruder from collecting sensitive data. Thus, each platform chooses randomly
an ephemeral secret (v and w), which is involved in the computation of the values (Mi

and Ni) basing the public key. The overall exchange consists of two passes concluded
with the generation of a session key, while its robustness is due to the hardness of the
discrete logarithm problem.

4. Authentication: At this stage, each platform creates a digital signature through hashing
a set of concatenated values. This set includes the parameters and calculated values of
the previous phases, in addition to the relevant TTP identity and the appropriate IP
address. Both signatures are then exchanged and verified to validate the authentication
of communicating platforms.

5.4 Access Control of the Platform Resources

Access control limits the actions or operations that a legitimate user of a computer system
can perform, which could lead to breach of security. Thus, in order to define an access control
policy for our agent platform, we need to model our architecture as compounded of objects
and subjects, such that the objects are the files stored and the subjects are the agents able to
initiate actions or operations on objects.

For this approach, we choose to use DAC model for many reasons. First of all, it is a famous
model widely used in information and operating system such as Linux. Also, it is flexible and
appropriate for the systems where information sharing is important without compromising
security. In our work, data are shared with the mobile agents and we need a flexible and light-
weighted security policy that will not slow the exchanges between platforms and mobile agents.

The use of RBAC model in our case is not adequate, as it is based on roles directly associated
with permissions. Thus, the problem is that the users having the same role possess necessarily
the same privileges, which reduce the flexibility. To apply this model, we need absolutely to
classify the agents into roles, where the agents having the same role must have the same access
rights on the same files, which is not achievable in our modeling because each mobile agent
has its specific access rights on specific files. In addition, there are no common rules among
the agents (such as giving to the AgentA the right to access the files of AgentB, because any
other agent having access to AgentA will get automatically the right to access the AgentB).
This Access Control policy consolidates the security, as each agent is independent with its own
access rights, and there is no common relations that might be a source of security attacks.

DAC model is designed such as the authorizations are controlled at the discretion of users,
who are the controller or owner of some resources and assign the permissions to other users
that may be strangers. Hence, in our platform the objects are represented by files containing
data. The typical access rights defined here are: Read, Write, Execute and Own. The meaning
of the first three access rights is self evident. Ownership is concerned about controlling who

116CHAPTER 5. ACCESS CONTROL AND CRYPTOGRAPHY FOR AGENT PLATFORMS

Figure 5.3 – Sharing the Access Rights Keys using Shamir’s Threshold Scheme

can change the access permissions for the files or keys. Thus, the access right ”Own” includes
in reality the three others. This model is based on Access Matrix showed in Table 5.1, where
each row refers to a subject (Agents), each column refers to an object (Files and keys). Each
cell of the matrix specifies an access right, that is authorized for the subject in the row, and to
the object in the column.

Table 5.1 – Access Matrix for the adopted Architecture
File A File B ... Keys List SessionKey

File_Agent A O

File_Agent B O
... O

Admin_Agent W , R W , R W , R R R

Key_Manager_Agent O

Authenticator_Agent O
O: Own R: Read W: Write

In order to specify each access right related to each file, we make use of Shamir’s (n, t)
Threshold Sharing Scheme presented in [Blakl11] to decompose the key of each file into sub-
keys according to which access rights are granted. This scheme is designed such that each
secret S in some field F is shared among n parties by creating a random polynomial P ∈
F (x) of a degree t, such that P (0) = S. The i-th gets the share (i, P (i)). Given any t + 1
shares P (x0), ..., P (xt), it is possible to recover P (0)(the secret S) using Lagrange Interpolation:
P (0) =

∑t
i=0 λiP (xi), where: λi =

∏
j 6=i

xj

(xj−xi)
.

Figure 5.3 defines n = 6 access rights extracted from the main three single ones, with a
threshold t = 4 to reconstruct the original key, and with l = 2 the number of levels (level 1

5.5. SECURITY ANALYSIS 117

with one access right and level 2 with two concatenated access rights). This sharing structure
may be extended such as: if s is the number of main single access rights, then the number of
shares is n =

∑s−1
i=1 C

i
s, while the number of levels is s−1. Let us consider a simulation scenario

where a mobile agent is carrying two concatenated keys (H(Key1 + Key2), k = 2) to access
two files with specific access rights. We suppose that the native platform contains four files, and
the mutual authentication is successfully performed, Figure 5.4 describes the processing steps,
in normal conditions, of the proposed access control policy.

— Step 1 : The mobile agent is encrypted using the session key and AES algorithm
[Rober12], then it migrates to the native platform. We choose AES-256 due to its
very convenient use as it consumes little memory, for its reduced complexity and for its
easy implementation. Once arriving to the native platform, the mobile agent is decrypted
by the relevant "Admin_Agent" to get the credentials: H(Key1 +Key2)andk = 2. At
this moment, there is no risk that the mobile agent will be duplicated because all the
system is fault tolerant. When an unexpected failure happened, the mobile agent will
resume its execution and recover the last saved state. Besides, the mobility from one
platform to other is transactional and each mobile agent can only be executed in one
node at a time.

— Step 2 : In possession of mobile agent credentials, and knowing that for each file in the
platform there is 7 keys specifying 6 access rights and a global secret key, the "Ad-
min_Agent" has to construct a list of arrangements without repetition of two elements
among the 28 keys (7 keys for 4 files). The order of these arrangements is very impor-
tant due to the use of hash function, where: H(Key1 +Key2) 6= H(Key2 +Key1). It
is worth to mention, that the two keys are belonging to different files, which means that
the arrangements of keys for the same file are eliminated. Thus, the final list contains
effectively A2

28−4×A2
7 = 588 possibilities, and it is sent to the "Key_Manager_Agent"

along with the hash of the two concatenated keys .
— Step 3 : Once receiving the list of key-arrangements, the "Key_Manager_Agent" per-

forms a restricted search for the corresponding hash. If this later is found, then the files
subject of this arrangement are recognized with the corresponding access rights. There-
after, the "Key_Manager_Agent" decrypts the relevant files, adjusts them according to
the access rights assigned, and notifies the "Admin_Agent" to allow the mobile agent
to execute its tasks on the named files. Else, if the hash is not found, then an acquittal
is sent to the "Admin_Agent" in order to terminate the mobile agent.

5.5 Security Analysis

In this section, the resistance of the proposed solution against some well-known attacks is
investigated.

Conspiracy Attack

Consider 3 mobile agents belonging to 3 different remote platforms, can these platforms
work together to collect correlated parameters of the native platform? If the 3 mobile agents
claim access to the same file with different modes (Write, Read, Execute), can they collaborate
within the native platform to reach a higher access right than they possess?

First of all, our contribution benefits from the security and ability of Shamir’s Threshold
scheme to prevent this attack. Therefore, our security policy is fine-grained according because

118CHAPTER 5. ACCESS CONTROL AND CRYPTOGRAPHY FOR AGENT PLATFORMS

F
ig
ur
e
5.
4
–
T
he

P
ro
ce
ss

of
th
e
P
ro
po

se
d
A
cc
es
s
C
on

tr
ol

P
ol
ic
y
fo
r
th
e
N
at
iv
e
P
la
tf
or
m

5.6. PERFORMANCE ANALYSIS 119

the ”Admin_Agent”, as the mediator among agents, performs all necessary computations with-
out disclosing the private parameters of the environment. Besides, the received mobile agents
are transporting hashes without knowing their real values, which means they need absolutely
to resolve the barrier created by exponential operation, large prime number application and
one way hash function. Thus, this attack will fail.

MITM Attack

The authentication process adopted for our proposed solution proves its resistance against
the Man-In-The-Middle attack. This is due to the fixation of the integrated DHKE-DSA using
ephemeral keys, such as the computations of the two session keys Krn and Knr depend on
the ephemeral keys r and n as well as T shared by the TTP via a secure channel. It provides
two important properties. The first one is perfect forward secrecy, because in the long-term,
if a private key of any party is exposed, previous session keys cannot be computed since the
ephemeral keys of that session are unknown. The second one is key freshness, as every session
key is a function of ephemeral keys, which means no party can predetermine the session key’s
value since he would not know the other party’s ephemeral key.

Reverse Attack

In this attack, when two platforms are belonging the same level of hierarchy, then each one of
them can use its public parameters and relationships to access or modify the internal information
of the other platform. In our approach, our native platform is hierarchically independent and
only relies to the TTP, that manages its remote communication according to specific constraints.
Thus, in case that there exists a relationship between our platform and another one, this latter
cannot access internal information of the first one.

In our approach, it is very difficult for the attacker to know the superkey of the native
platform, due to the TTP that interacts through highly secure channel. Moreover, the use of
the one way hash function provides the non-reversibility property, that makes the derivation of
the input data from output data impossible. In addition, if that attacker intends to intercept
the messages from the native platform, it must absolutely recover the session key, and then it
will be faced to the challenge of solving the discrete logarithm problem (DLP) and the complex
exponential computations with large prime numbers.

5.6 Performance Analysis

In this section, we present the experimental investigations to prove the feasibility, effective-
ness and the detection capacity of the proposed approach. Our evaluation is based on three
factors: time performance and detection performance. Thus, we have designed and implemented
the proposed architecture basing real machines with Core i7 processor at 2.7 GHz, and 4 Go of
RAM. All machines are equipped with JADE agent platform [Belli01] in its 4.3.3 version.

Time Cost

To compute the time cost of our solution, we need to compute the time of each operation
performed during the round trip of the mobile agent to access the native platform data. These
calculated times include the following operations:

— TRAK : the request of the access keys,

120CHAPTER 5. ACCESS CONTROL AND CRYPTOGRAPHY FOR AGENT PLATFORMS

— TKEA: the key exchange with the authentication,
— TEDMA: the encryption and decryption of the mobile agent,
— TMig: the migration of the agent,
— TCAL: the construction of the arrangement list,
— THS : the hash search,
— TDMF : the decryption with moderation of the corresponding files,
— TMAE : the mobile agent execution,
— TEMA + TReturn: the return of the encrypted mobile agent to its own platform,

Let Ttotal be the execution time for the previously mentioned operations:

TTotal = TRAK + TKEA + TEDMA + TMig + TCAL + THS + TDMF

+ TMAE + TEMA + TReturn

Knowing that TMig and TReturn are approximately equal, and the time to encrypt an agent
is the same as to decrypt it, then:

TTotal = TAKR + TKEA +
3

2
TEDMA + 2TMig + TCAL + THS + TDMF + TMAE (5.1)

Table 5.2 – Time of the different operations performed during the process of the proposed
solution for one mobile agent with K=2

Operations Time (ms)

Ttotal(K = 2)

=301,1 ms

TAKR 33,7
TKEA 8,6
TEDMA 30
TMig 46,6
TCAL 3,4
THS 2,1
TDMF 62,3
TMAE 23,8

Table 5.2 presents the measured times of the operations mentioned for the previous scenario,
where a remote platform sends a mobile agent with two concatenated keys to get access to two
files among four ones, and the total time is calculated according to Equation 5.1. These time
costs has been measured for the system setup of two real platforms, where a native platform
has interacted with a remote one for 100 times. Likewise, the use of JADE as agent framework
adopting Java programming language, allows us to take benefit from the services of its security
providers and its Java cryptography extension (JCE). The process is reiterated with two files of
500 Kbytes and 1000 Kbytes, then the cost time of each operation is calculated as the average
of its 100 iteration times.

We find it interesting to extend our experiments, such that we first launch a baseline test
without security operations, and then a test of our proposed solution. This will allow us to
know the overhead of the security added to the system, as well as to show its effectiveness
and its reliability to detect malicious entities. Both experiments are performed through the

5.6. PERFORMANCE ANALYSIS 121

configuration of a system architecture composed of six real platforms, where a native platform
hosting 20 files of different sizes is interacting with five remote platforms. In each test, every
remote platform sends 20 mobile agents to get different access rights to specific files. Among
the total 100 mobile agents there are 40 which are malicious. It should be noticed that for both
tests, the process is launched 100 times and the average time value is kept.

Figure 5.5 – Time cost of Baseline Test and Security Test face to the increase of parameter K

Figure 5.5 shows the time costs of the baseline test and the security test, regarding to
different and growing values of the parameter (K). Besides, Figure 5.6 gives the total time that
each test spent to interact with increasing number of mobile agents. The obtained results show
the ability of our solution to scale in front of large conditions, namely the expanded number
of mobile agents requesting to access platform services, the set up of growing databases and
especially the advantage to continue performing in non-connected areas. Moreover, the overhead
of security added is about 40% of the the overall cost, which is credible and highly beneficial
for the platform to counter external vulnerabilities.

For comparative purposes, we are referred to the method of Leila Ismail [Ismail08], where
the authentication and access control to the system resources are controlled by the mobile agent
platform. This allows transparent and dynamic way to grant access rights among cooperating
agents through access control capabilities, while the authentication mechanism is ensured using
a Certification Authority (CA). Figure 5.7 presents the measured time costs for a round-trip of
this method compared to the our, for different file sizes: 500Kbytes, 1000Kbytes, 1500Kbytes
and 2000Kbytes respectively. It demonstrates the effectiveness of our solution with a security
overhead of 40% versus 67% for the other one.

Detection Capacity

It was worthy at this stage to evaluate the capacity of our solution to detect maliciousness
related mainly to unauthorized access attacks. Figure 5.8 compares the performance of both
proposed tests to detect harmful mobile agents. When the Baseline Test was able to detect only
10 malicious agents among 40, which represents 25% of the total malicious agents number, our
scheme was able to detect the forty agents trying to get access without being authorized, which

122CHAPTER 5. ACCESS CONTROL AND CRYPTOGRAPHY FOR AGENT PLATFORMS

Figure 5.6 – Time cost of Baseline Test and Security Test face to the increase of interacting
mobile agents

Figure 5.7 – Comparison of Time Performance of our Solution versus to the Solution in
[Ismail08]

means 100% of the total malicious agents number.

5.7 Conclusion

In this chapter, we have dealt with the security issues that a hosting platform may face
when receiving mobile agents. Among the serious concerns in this context are the unauthorized
access attacks, that could harm the entire system and be extended to external entities. For that

5.7. CONCLUSION 123

Figure 5.8 – Comparison of the Malicious Agent Detection Performance of the Baseline Test
and the Security Test

purpose, we have associated access control and cryptographic mechanisms in a new combination,
that shows its effectiveness to fill the majority of security needs: the authentication using DHKE-
DSA, the confidentiality using AES encryption by a session key, the integrity through SHA-3
hush function, and access control along with availability management through using DAC and
Shamir’s threshold scheme. Our solution proves its scalability and reliability in detection of
malicious mobile Agents.

124CHAPTER 5. ACCESS CONTROL AND CRYPTOGRAPHY FOR AGENT PLATFORMS

Chapter 6

Application: Cloud Security using
Secure Mobile Agent

Contents
6.1 Application Context . 126

6.1.1 Problem Statement . 127
6.1.2 Related Works . 129

6.2 Proposed Cloud-IDPS . 129
6.2.1 Cryptographic Traces for Intrusion Detection 130
6.2.2 Revocation-based Trust Threshold for Intrusion Prevention 135

6.3 Performance Analysis . 137
6.3.1 Response Time . 138
6.3.2 Network Load . 139
6.3.3 Security Performance . 139

6.4 Conclusion . 141

Cloud Computing is a rapidly expanding paradigm that brings a revolution in IT world
through using the Internet services. These services that consist of applications and databases
deployed in large centralized data centers, are delivered to end users on demand rather than
being maintained in a large and expensive IT infrastructure. Cloud computing was defined
by the NIST [Mell11] as an emerging computing approach enabling ubiquitous, convenient
and on-demand network access to shared resources (e.g., data, servers, applications, and ser-
vices), that can be rapidly provisioned and released with minimal management effort or service
provider interaction. Available and accessible data/services, reliable and flexible computations
on demand, in addition to the wide storage capacities associated with high quality of services,
are among the numerous benefits of the cloud that attract customers and make it a viable
commercial option, particularly for small companies and startups which will potentially reduce
their costs when paying only for what they really use.

Even though Cloud Computing shows a significant widespread according to its recent design
of IT hardware, the security of clouds has become an important issue. With distributed and
open structure mainly based on resource virtualization, global replication and migration, cloud
computing increasingly attracts potential intruders. In 2011 [Galan11], the Amazons Elastic
Computer Cloud service is used by a hacker to attack Sonys online entertainment systems, by

125

126 CHAPTER 6. CLOUD SECURITY USING SECURE MOBILE AGENT

registering and opening an Amazon account and using it anonymously. Such attack compro-
mised more than 100 million customer accounts, the largest data breach in the U.S. One of the
most common requirements for cloud security is Intrusion Detection and Prevention System
(IDPS), which can be efficient to early detect malicious entities, track their untrustworthy be-
haviors and prevent serious damages to the systems. An IDPS was also defined by the NIST
[Scarf07] as a software or hardware device, that has all the capabilities of an intrusion detection
system (IDS) to potentially identify an attack and notify appropriate personnel immediately,
and can also attempt to stop possible threats or at least prevent them from succeeding, so that
they can be contained.

In this chapter, a robust IDPS relying on mobile agent technology is proposed, in order
to ensure a safe interaction model where the communication between the cloud provider and
its related cloud storage servers is secure and reliable. The use of this technology allows us to
benefit from the autonomy, pro-activity, mobility and flexibility of its entities, as well as from
the security aspects provided throught highly secure and complex mechanisms, which provides
the cloud with new intelligent and reliable solutions. According to [Talia11], the qualities
offered by the mobile agents make them well suitable for user access management through a
negotiation process, as well as for the automation, composition and trading of the resources
and services, which make clouds smarter and more efficient in their interactions and processing.

Our approach begins once the cloud provider receives requests from one or multiple cloud
users. Then, it creates a mobile agent with specified constraints, and which will be charged for
the migration across the cloud storage servers to perform computations, collect data, benefit
from services, and then it will return back to the cloud provider with final results. Along
its round-trip, the mobile agent adopts two major mechanisms combined with cryptographic
primitives (asymmetric encryption, digital signature and hash function) to ensure confidentiality
and integrity of data associated. The first mechanism consists of generating cryptographic
traces, where all behaviors, actions and computations performed either by the agent or the
hosting server are recorded, so that any anomaly can be easily detected through verifying and
analyzing these traces. The second is a prevention mechanism based on revocation technique,
where a trust threshold is assigned to each server to define its degree of maliciousness, according
to many factors and proofs. Once this threshold is reached, the named server is added to the
black database of malicious servers hosted by a specified authority.

The reminder of this chapter is organized as follows. Section 2 defines the context of this
application, where a statement of the security problems in cloud computing, especially those
between the Cloud Provider and the storage servers, and a brief review on the related works are
provided. In Section 3 we describe the proposed cloud-IDPS. Then, an evaluation of the appli-
cation performances using ClouSim tool is exposed in Section 4, such that the obtained results
are compared to a basic mathematical model, in terms of security, reliability and efficiency.
Finally, further discussion and perspectives are mooted in conclusion.

6.1 Application Context

This section exposes the context and the motivation of this work. Thus, we begin by intro-
ducing the security problem in the cloud computing. Then, we locate our application compared
to other related works investigating the security issue of the cloud.

6.1. APPLICATION CONTEXT 127

6.1.1 Problem Statement
While cloud computing makes a large set of advantages more appealing than ever, it also

brings new and challenging security threats to the outsourced data. This is relatively due to
the virtualization concept and the physical absence of data and machines, which makes the
resources and services within the cloud architecture not fully secure neither well monitored and
managed.

Figure 6.1 – The Generic Architecture of Cloud Computing

We begin with an architecture description of cloud data storage services illustrated in Figure
6.1. This latter consists of four different entities: data owner, cloud user (CU), cloud service
provider (CSP) controlling and monitoring numerous storage servers (SS), and TPA that has
the capabilities to assess cloud storage security on behalf of a data owner. When a CU submits
storage or computation service requests, the CSP charges its administration server to spread
the request among its different SS located on different geographical areas. Among the essential
features that Cloud Computing provides are defined:

— Broad Network Access: Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, tablets, laptops, and workstations).

— Resource Pooling : The provider’s computing resources are pooled to serve multiple con-
sumers using a multi-tenant model, with different physical and virtual resources dynami-
cally assigned and reassigned according to consumer demand. There is a sense of location
independence in that the customer generally has no control or knowledge over the exact
location of the provided resources but may be able to specify location at a higher level of
abstraction (e.g., country, state, or data-center). Examples of resources include storage,
processing, memory, and network bandwidth.

128 CHAPTER 6. CLOUD SECURITY USING SECURE MOBILE AGENT

F
ig
ur
e
6.
2
–
Se
cu
ri
ty

is
su
es

in
C
lo
ud

C
om

pu
ti
ng

ar
ch
it
ec
tu
re

6.2. PROPOSED CLOUD-IDPS 129

These two features are highly vulnerable to several attacks (such as: Man-In-The-Middle
attack and Masquerading attack) and raise many security problems as shown in Figure 6.2. In
this context, multiple scenarios are considered:

— An adversary A could corrupt one or multiple SSs and control them to launch various
cheating attacks.

— An adversary could intercept the communication between the CPU and the cloud servers,
and modify the exchanged data to compromise their confidentiality and integrity.

— An adversary may compromise CUs privacy by leaking their confidential data to others.
Within the scope of this article, we focus on how to ensure secure cloud data storage ser-

vices. We consider both malicious outsiders and a semi-trusted storage server SS as potential
adversaries interrupting cloud data storage services. Malicious outsiders can be economically
motivated, and have the capability to attack cloud storage servers and subsequently pollute or
delete owner’s data while remaining undetected. The CS is semi-trusted in the sense that most
of the time it behaves properly and does not deviate from the prescribed protocol execution.
However, for its own benefit the CS might neglect to keep or deliberately delete rarely accessed
data files that belong to ordinary cloud owners. Moreover, the CS may decide to hide the data
corruptions caused by server hacks or Byzantine failures to maintain its reputation.

6.1.2 Related Works
Many efforts have been devoted to investigate the security issue of Cloud Computing. In-

deed, several solutions have been proposed in the literature, where IDPSs are supplied as very
important and invaluable tools. Towards this, [Tupak11] proposed a Cloud-IDPS based on a
virtual machine monitor, called hypervisor to protect the system from different types of attacks
in the infrastructure layer (IaaS). However, it has not provided a prevention solution face to
high severe attacks over the system.

[Kholi12] propose a fully distributed system P2P architecture with no central manager
coordinator. Their system adopts hybrid detection techniques using network and host based
audit data, which provides a flexible, robust and elastic solution for cloud computing, but not
sufficient to detect large scale attacks due to the absence of a central correlation master.

Recently, Autonomic Computing drew researchers attention for CIDPS with minimal human
intervention. [Smith10] proposed an autonomic mechanism for anomaly detection in a cloud
computing environment, with uniform format analysis and size reduction for data, as well as
learnt how to detect the nodes which have abnormal behavior and act differently from others
in an unsupervised mode.

Ontology features are also used, such as uCLAVS the detection malware based on intrusion
ontology representation proposed by [Marti10]. Their model provides a multi-engine based
files analysis service instead of running complex software on every host to analyze the files
individually.

[Dastj10] proposed an application of mobile agents in IDPS to provide flexible, scalable, and
a cost effective system for the cloud environment. However, the inefficient sharing of knowledge
among the mobile agents makes the robustness of the system not supported and the scalability
not ensured.

6.2 Proposed Cloud-IDPS

In this section, a thorough description of the proposed Cloud-IDPS is provided, which
consists basically of two main parts. The first one concerns our contribution to elaborate a

130 CHAPTER 6. CLOUD SECURITY USING SECURE MOBILE AGENT

robust detection mechanism, based on cryptographic traces produced by autonomous agents
during their mobility across cloud servers. The second part presents our prevention policy that
punishes malicious entities through a server revocation technique based on trust threshold. The
detection and prevention in our proposed system are complementary and dependent, as they are
basically reliant to the same sensible parameters in the cryptographic traces obtained through
the trip of the mobile agent, to perform the tasks that the CU requests. First, let us consider
Figure 6.3 as an explicit scheme describing functional layering in an IDPS. Generally, there are
three essential security functions that an IDPS should serve:

Figure 6.3 – IDPS Functional layering

1. Monitoring and Detection: as discussed in Chapter 4, the monitoring may concern
network traffic to analyze particular segments and devices, or dynamic behaviors stating
which actions are performed on which resources, or events occurring on specific ap-
plications and which affect the overall performance. The detection is occurred through
analyzing the collected data or the stated behaviors. It makes use of three main categories
of detection methods: Misuse, Anomaly or Hybrid. Thus, when an attack is detected,
the system generates one or multiple alarms which are clustered into incidents (Corre-
lation). This could be achieved implicitly through data-mining techniques, or explicitly
using patterns based logical and temporal constraints languages.

2. Prevention: in order to prevent the intrusions, the IDPS responds actively by modifying
its access control policy temporarily or punishing the attacker through changing its state
or routing him elsewhere. Passive responses are also welcomed, where attacker activities
are blocked and terminated through ending connection sessions.

6.2.1 Cryptographic Traces for Intrusion Detection
In this section, we describe the proposed detection method, which is mainly based on the

execution tracing associated to the mobile agents. Thanks to its numerous features, mobility
of agents makes interactions with cloud servers more flexible and efficient through minimizing
the number of messages exchanged, which help in reducing network traffic. As illustrated in
Figure 6.4, in a normal scenario, the CSP receives multiple requests for computation or storage
services from different CUs. According to this, a mobile agent is created and attributed a list of
the IP addresses to visit and the tasks to perform on each one. Then, the mobile agent analyzes
the given positions to follow the shortest path, and moves among the specified cloud servers to
execute its tasks, such that the obtained results are securely accumulated until it returns backs
to the CSP.

6.2. PROPOSED CLOUD-IDPS 131

F
ig
ur
e
6.
4
–
T
he

us
e
of

m
ob

ile
ag
en
ts

in
th
e
in
te
ra
ct
io
ns

of
th
e
cl
ou

d
co
m
pu

ti
ng

132 CHAPTER 6. CLOUD SECURITY USING SECURE MOBILE AGENT

Before migration, the agent is also assigned some essential credentials given in Table 6.1,
to authenticate the visited cloud servers according to their IP addresses. Thus, we make use of
an enhanced version of Diffie-Hellman key exchange protocol inspired from [Phan05], where
the digital signature algorithm is integrated to fix security issues related to Man-in-the-Middle
attacks. Figure 6.5 illustrates the authentication process, that generates a common session key
at the end. This process employs the cryptographic generator ISAAC+ to produce randoms
and the hash function SHA-3 to elaborate signatures.

Table 6.1 – Authentication Credentials assigned to the mobile agent by the CSP
Credential Description

p, t random odd primes, where t < p− 1

and q = t

(p− 1)

2

g generator of the field Fp

XMA random private key, with 1 < XMA < q

PKCSP public key of the CSP
H(.) 256-bits hash function (SHA-3)

The use of ephemeral secrets a and b chosen by the both sides provides two important
properties. The first one is forward secrecy that prevents the disclosure of any of the previous
session keys even if the long-term private key of any party is exposed. The second one is key
freshness as neither of the authenticating parties can predetermine the value of the session
key, since he would not know the ephemeral secret of the other party. In addition, the use
of the CSP’s public key in computations facilitates traceability and saves time and energy of
producing a public key for the agent at each cloud sever visited. Thereby, the 256-bits length
session key (SKn) obtained at the cloud server (n) will be used to compute the cryptographic
trace on that platform.

Being inspired from the tracing technique in [Vigna98], a trace is associated to the execution
of the mobile agent on each visited server. It is noted T =< ui, S > and contains the signature
of the executed black statements, in addition to a unique identifier of the trace produced
randomly using the Java package java.util.UUID. This process allows the owner of the agent to
verify its execution and depict supposed behaviors or claimed operations performed by malicious
intruders aiming at tampering the agent. Indeed, the temporal correctness of agent execution
is a crucial point to guarantee that the connected cloud servers work in synchronized timing.
Thus, we introduce Network Time Protocol (NTP) [Mills10] to enforce clocks of the different
cloud servers under control of the CSP to perform in sync with him. This makes the control and
matching of log entries more straightforward when an event occurred across multiple servers.

A cryptographic trace is generated as indicated in the Java function illustrated in Figure 6.6.
It contains a generic DSA signature performed using the public key of the CSP, which makes
this later the only one able to decrypt it by means of its private key. In addition to the unique
identifier (ui), the identities (ID_s: sender, host: current host, ID_next: intended host), the
session key (SK_S(i)), the timestamp (ts) and the required task (Task), the generic signature
includes two nested fields:

— A symmetric encryption, using AES and the 256-bits SKS(i), of black statements and
results obtained through execution of requested task.

6.2. PROPOSED CLOUD-IDPS 133

Mobile Agent (MA) Cloud Server (CSn)

a: random integer p,q,g,H−−−−−→
XCSn : random private key < q

YCSn
: public key, with:

YCSn
= gXCSnmodp

b: random integer

VMA = gamodp,

WMA = PKa
CSPmodp

RMA = VMAmodq
VMA,WMA−−−−−−−→

VCSn = gbmodp,

WCSn
= Y b

CSn
modp

VCSn ,WCSn←−−−−−−−− RCSn
= VCSn

modq

Kab =W a
CSn

modp, Kba =W b
MAmodp,

Kba = V a×XMA

CSn
modp Kab = V

b×XCSn

MA modp

IPh: address in the Host list IPCSn : address of the platform

Signature:

SCSn = b−1 ×H((VCSn ‖ Kba ‖ Kab

SCSn←−−− ‖ IPCSn
) +XCSn

×RCSn
)modq

Verify: SCSn
== SMA, where:

SMA = a−1 ×H((VMA ‖ Kab ‖ Kba

‖ IPh) +XMA ×RMA)modq

Common Shared Key

SKn = Kab×Kbamodp = gvw×(XMA+XCSn))modp

Figure 6.5 – Authentication Process between the mobile agent (MA) and the cloud server (CS)

— The DSA signature, using SK_S(i), of the agent’s identity and its sender, as well as a
SHA-3 hash of the timestamp, black statements and the results of execution.

In order to ensure a chaining mechanism among the traces produced during the trip of
the mobile agent, the trace that has been generated on the previous cloud server (the agent’s
sender) is also enclosed in the generic signature, while its hash is joined to the nested signature.
This only concerns cloud servers starting from order i = 2, as for the first visited server no
previous trace is provided by the sender that is the CSP.

Once returning back to the CSP, the mobile agent presents the final results along with the
collected traces. Then, a verification of each trace T (S(i)) is performed following the steps
below:

1. Using its secret key, the CSP decrypts the generic signature, verifies the identities in-

134 CHAPTER 6. CLOUD SECURITY USING SECURE MOBILE AGENT

public Trace<ui,S> Generate_CryptoTrace(Agent A, CloudServer S(i)){
ID_s = A.getSender();
ID_ma = A.getAgentIdentity();
host = S(i).getIdentity();
crd = A.getCredentials;
PK_csp = crd.getCSPkey();
ID_next = crd.getNextHost(S(i));
SK_S(i) = this.getSessionKey();
Task= A.getRequestTask();
BS = class.execute(A).getBlackStatement();
RS= class.execute(A).getResults();
// current timestamp
java.sql.Date ts = new java.sql.Timestamp(Calendar.getInstance().getTime().getTime());
ui = UUID.randomUUID(); // unique identifier
Signature dsa1 = Signature.getInstance("SHA256withDSA", "SUN"); dsa1.initSign(PK_csp);
Signature dsa2 = Signature.getInstance("SHA256withDSA", "SUN"); dsa2.initSign(SK_S(i));
if (i==1)
T(S(i))= <ui, dsa1.sign(dsa1.update(ui, SK_S(i), ID_s, host, ID_next, ts, Task,

AES_Encrypt(SK_S(i), (BS,RS)), dsa2.sign(dsa2.update(ID_s, ID_ma,
Hash(ts, BS, RS)))))>;

else
T(S(i))= <ui, dsa1.sign(dsa1.update(T(S(i−1)), ui, SK_S(i), ID_s, host, ID_next, ts, Task,

AES_Encrypt(SK_S(i), (BS,RS)), dsa2.sign(dsa2.update(ID_s, ID_ma,
Hash(ts, BS, RS), Hash (T(S(i−1)))))))>;

return T(S(i));
}

Figure 6.6 – Java pseudo-code of the cryptographic trace generation

volved and checks the freshness of the timestamps (ts). Then, decrypts the cipher to get
the black statements and results in clear.

2. A SHA-3 hash of the previous trace provided by the mobile agent is calculated: h1 =
Hash(T (S(i− 1))).

3. Using the current session key SK_S(i), the CSP decrypts the nested signature and
verifies the identity of the agent and its sender.

4. The CSP computes its own hash of the timestamp along with the black statements and
results, that are provided in the cipher. Then, this hash is compared to that contained
in the third field of the nested signature.

5. The CSP computes the hash of the given trace in the first field of the generic signature:
h2 = Hash(T (S(i− 1))). Then h1 and h2 are compared to the hash in the last field of
the nested signature.

Once the verification is successfully carried out, the cloud server is classified as trustworthy
for this session, else it is considered suspicious and the CSP proceeds to its prevention policy.

6.2. PROPOSED CLOUD-IDPS 135

6.2.2 Revocation-based Trust Threshold for Intrusion Prevention

As a matter of fact, the prevention policy we adopt for our system consists in a double faced
method: ending the activity of the malicious server in that session, and punishing it through
decreasing its level of trust.

When the CSP verifies the trace of the mobile agent’s execution on a server S(i), and finds
that one or more comparisons do not match, then this server is qualified as suspicious. At this
stage, the CSP sends a message to the named server asking it for forwarding the specified trace.
The core of this message and its reply provided by S(i) is shown in Figure 6.7, such that the
identity of each one is involved as identifier for its message.

From CSP to S(i):
M_(csp-to-si)=Sign_(sk_(si)) (Hash(ID_(si)), Forward-Trace())

From S(i) to CSP:
M_(si-to-csp)=Sign_(pk_(csp)) (Hash(ID_csp), Hash(ID_(si)),

M_(csp-to-si), T(S(i)))

Figure 6.7 – The core of the message and reply for Forward-Trace() transaction

Once the CSP receives the reply for its request and decrypts the involved signature using
its private key, it proceeds to the verifications as indicated in Figure 6.8.

1. Checks the hash containing its identity ID_csp, then verifies that the value
Hash(ID_(si)) is the same in both messages M_(csp− to− si) and M_(si− to− csp).

2. Decrypts the nested M_(csp− to−si) using the session key and verifies that it contains
the forward request.

3. Computes the hash of the trace provided Hash(T (S(i))) and verifies that it matches
with the hash given by the server S(i+ 1).

It is sufficient that one of these verifications does not match, so that the CSP can start its
revocation protocol in concordance with a Trust Authority (TA). Otherwise, it charges the same
mobile agent with moving to the server S(i) to re-execute the same tasks, and then verifies that
the execution agrees with the forwarded trace. If the traces match, then the server is qualified
as honest, else the revocation protocol is triggered.

The revocation protocol has two instances according to the trust level of the cloud server. A
trust level (TL) is represented by a decimal number between 0 and 1 and it is allocated by the
Trust Authority (TA), which is the only one who possesses the right to modify it. According
to this (TL), the revocation may be conditional or permanent, with regard to a threshold (d)
decided by the TA for each cloud server registered in its database.

The conditional revocation protocol is processed when the cloud server has a TL that did
not reach yet the threshold (d), and it is described as follows:

1. The CSP informs the TA that the server S(i) is suspicious and sends to it the proofs it
has.

2. The TA verifies that the TL of the named server is less than the (d), and then requests
the trace directly from S(i).

136 CHAPTER 6. CLOUD SECURITY USING SECURE MOBILE AGENT

Verification_Flow (Suspicious Server (S_i)){

Request(Forward-Trace()) ===> (S_i)

While (timestamp){

if (Not-Received())
{Revocation ((S_i), Punishement(level=1))}

else{
/* Verification 1 */

if (Hash(ID_(S_i)). NotEqualTo (extract-ID_Hash(M_(csp-to-si),
M_(si-to-csp))))

{Revocation ((S_i), Punishement(level=2))}

else{
/* Verification 2 */

if (Hash(T(S_i)). NotEqualTo(extract-Trace_Hash(M_(si-to-csp))))
{Revocation ((S_i), Punishement(level=3))}

else{
/* Verification 3 */

Agent. re-Execute();
if (Agent. getCurrentTrace(). NotEqualTo(T(S_i)))

{Revocation ((S_i), Punishement(level=4))}

else{
Print (" The Cloud Server is Honest")

}}
}}
}}

Figure 6.8 – Pseudo-code describing the verification flow of a cloud server maliciousness

3. If the cloud server forwards the trace, the TA proceeds to a verification of all data
involved in this trace, then it re-executes the agent again and compares the given trace
with that provided by the CSP.
— if they match, then the server is considered to be honest and the CSP is warned for

dishonest attitude.
— else, the server is provisionally revoked and punished by subtracting a percentage of

its TL according to a punishment scale.
4. If the server did not present the requested trace, then it is revoked with decreasing its
TL until sending the trace or proving its good intention.

Concerning the permanent revocation protocol, it becomes activated when the TL of the

6.3. PERFORMANCE ANALYSIS 137

suspicious server exceeds the threshold (d). It is defined in the steps bellow:

1. The CSP informs the TA that the server S(i) is malicious and sends all its proofs to
demonstrate that it conducts incorrect behaviors.

2. The TA verifies that the TL of the named server is less than the (d).

3. The TA verifies narrowly all information provided by the CSP, beginning by the times-
tamp freshness, the identities of communicating parties and the session key produced.
Whether one of these data is incorrect, the TA stops the revocation and warns the CSP
for invalid information. Else, verification is pursued.

4. The TA computes the hash of the given trace in the CSP proofs Hash(T (S(i))) with
the hash included in the trace of the server S(i+ 1). If they match, it sends the mobile
agent to be re-executed and verifies if the obtained trace agrees with the others.
— if they agree, this means that the CSP claimed a revocation basing falsified proofs.

In this case, the TA imposes a sanction to the CSP for its dishonest attitude.
— else, the server is permanently revoked with decreasing its TL.

6.3 Performance Analysis

In this section, we evaluate the detection and prevention performances of our Cloud-IDPS to
prove its reliability and effectiveness. For that purpose, a basic cloud environment was implanted
using the simulation toolkit CloudSim [Calhe10], which is configured on the Java IDE Eclipse.
The CSP and the cloud servers are represented by virtual machines (VMs) allocated on physical
heterogeneous hosts with the characteristics denoted in Table 6.2. According to this, many
datacenters are implanted and mastered by our CSP, such that each datacenter contains several
cloud servers hosted on VMs.

Table 6.2 – Technical Characteristics of the machines used in the evaluation
Characteristic Value

OS Windows_XP, Ubuntu, MacOs
Processor Core i7 at 2.7 GHz
RAM 4 Go
Bandwidth 1000 Mbit/s

Indeed, the use of mobile agents needs the integration of an agent framework in each ma-
chine. We make use of JADE 4.3.3 FIPA-compliant agent platform, which is also configured
on Eclipse and charged with receiving, executing and dispatching our mobile agent. This latter
has the characteristics denoted in Table 6.3.

The experiments being conducted initiate five datacenters hosting increasingly 2, 4, 6, 10
and 15 cloud servers, as virtual machines (VMs). It is worth to mention that CloudSim involves
two fundamental entities: the brokers responsible for managing the actions on VMs, and the
cloudlets which are the tasks to be executed by the servers. Hence, the requested tasks are
assembled in a list of cloudlets submitted by the broker, then assigned to the mobile agent
before its mobility, during which the execution of these tasks is traced. Figure 6.9 shows an
example of Java pseudo-code used in CloudSim to establish the proposed configuration. The
evaluation of our IDPS for cloud focuses on three important metrics: response time, network

138 CHAPTER 6. CLOUD SECURITY USING SECURE MOBILE AGENT

Table 6.3 – Technical Characteristics of the mobile agent
Characteristic Value

Storage Memory 512 Mbits
Processor GenuineIntel 800 MHz
Communication Protocol HTTP-based-MTP
Bandwidth 100 Mbit/s

load and detection rates. This is achieved while making a comparison with the mathematical
model presented by [Braun05], where a basic client/server architecture is adopted to ensure
communication inside cloud.

public void processEvent(SimEvent ev) {
int num_user = 1;
Calendar calendar = Calendar.getInstance();
CloudSim.init(num_user, calendar);
Datacenter DC4 = createDatacenter("Datacenter_04", 10);
DatacenterBroker broker = (DatacenterBroker)createBroker("DCBroker");
broker.submitVmList(createVM(broker.getId(), 10, 1));
broker.submitCloudletList(createCloudlet(broker.getId(), 7, 1);
CSPAgent.Tasks= broker.getCloudletList;

CloudSim.startSimulation();
CSPAgent.move();

//...
}

Figure 6.9 – CloudSim code for processing one datacenter with 10 cloud servers and 7 cloudlets
assigned to the mobile agent

6.3.1 Response Time

When the mobile agent is charged with manifold tasks that require mobility across numerous
cloud servers, it is strongly needed, before taking the overall response time of the system, to
calculate the overhead of security added through performing the authentication mechanism
and the trace generation. Table 6.4 illustrates this overhead face to the increase of visited cloud
servers. Knowing that only one migration from one server to another takes about 156ms, it is
clearly noticed that the authentication and trace generation represent a very low percentage of
the overall time spent during the agent trip.

A comparison of response time between our cloud-IDPS and the work of [Braun05], re-
garding the increase of requested tasks, is shown in Figure 6.10. By virtue of this latter, we
prove that adopting mobile agent technology for cloud environments is beneficial as it reduces
response time of about 34% and provides a flexible and secure layout.

6.3. PERFORMANCE ANALYSIS 139

Table 6.4 – Time cost (in S) of the authentication and the cryptographic trace generation on
increasing number of cloud servers

Nb of Servers Authentication Trace Generation

2 0.024 0.088
7 0.079 0.312
15 0.166 0.654
30 0.325 1.42
60 0.643 2.65

Figure 6.10 – Response Time of our cloud-IDPS compared to [Braun05]

6.3.2 Network Load

Our cloud-IDPS shows very challenging performance in terms of network load, compared
to Braun et al [Braun05]. This is illustrated in Figure 6.11, where we remark that the use of
mobile agent provided with security features results in a lower network load of about 30%.

It is also noted that optimum load is expressed when the number of visited cloud servers is
less than six, which means that to ensure the efficiency and optimization of mobile agent tasks,
it is strongly recommended that its trip do not exceed six destinations.

6.3.3 Security Performance

The efficiency of an IDPS is determined through evaluating its capacity to make correct
attack detection. For that purpose, we consider two commonly used rates to quantify the
detection performance:

140 CHAPTER 6. CLOUD SECURITY USING SECURE MOBILE AGENT

Figure 6.11 – Network Load of our cloud-IDPS compared to [Braun05]

Detection rate (DR) :
Number of detected attacks

Number of attacks

False Alarm rate (FAR) :
Number of false alarms

Number of alarms

For capturing and sending packets (especially malicious ones), we make use of the Java
library JPCAP (Network Packet Capture Facility) [JPCap] with JADE [Belli01]. Besides,
real attacks are simulated and injected in the running environments using MetaSploit tool
[Mayn11] dedicated for penetration tests and creation of secure solutions. Examples of the
used attacks are shown in Table 6.5.

Table 6.5 – Examples of simulated Attacks to evaluate detection performance
Attack Description

DoS/DDoS using a spoofed address, the attacker applies a TCP SYN flooding to
burden the cloud server and make it unavailable.

Reused IP the attacker burdens the server VM to force its disconnection and
convince the centralized management component to allocate it for him.

Nmap TCP performs a scan of a remote machine to determine the available ports
Scan that can be exploited to gain shell access of the server hosting

the mobile agent.

It is well acknowledged that reliable IDPS has to express a high detection rate, while keeping
the false alarm rate as reduced as possible. Table 6.6 lists the results of injecting different attacks
to evaluate the behavior our IDPS, compared to the system of Braun et al, while detection rates

6.4. CONCLUSION 141

specific for each kind of attack are shown in Figure 6.12. They clearly prove the robustness and
effectiveness of our IDPS in detecting intrusions, through highly significant detection rates that
are enhanced of about 15% more than Braun et al.

Table 6.6 – Comparison of detection performance between our IDPS and the system of Braun
et al [Braun05]

Number of Cloud Servers 2 4 6 10 15 30

Number of injected attacks 1 2 3 6 10 17
Attacks detected: Braun et al 0 0 1 2 4 9
Attacks detected: our IDPS 1 2 3 6 10 17

Figure 6.12 – Detection rate of our cloud-IDPS compared to [Braun05]

The given results are further supported by the assessment of the false alarm rate as indicated
in Figure 6.13, where we mark a notably low false alarm rate of our IDPS versus a substantial
rate for the system of Braun et al. Hence, our cloud-IDPS shows very promising features as
security tool for cloud environment.

6.4 Conclusion

In this chapter, a new approach for intrusion detection and prevention in cloud computing
is proposed. We were concerned by depicting insider threats through introducing interoperable
and secure mobile agents able to trace their execution on multiple cloud servers. Provided with
cryptographic mechanisms, an agent needs to save a proof containing the black statements

142 CHAPTER 6. CLOUD SECURITY USING SECURE MOBILE AGENT

Figure 6.13 – False alarm rate of our cloud-IDPS compared to [Braun05]

of the tasks performed during its mobility. These traces undergo a thorough verification, in
which a prevention policy is agile in case of detected maliciousness. Depending on a trust
threshold, malicious servers are provisionally or permanently revoked, while decreasing their
trust level for each suspicious behavior. The practical experiments we have conducted show a
low response time and network load, against a high detection performance compared to the
traditional client/server architecture. In future, we will be interested in extending our IDPS to
cover the different layers and infrastructures of the cloud architecture, as well as introducing
an access control model able to collaborate with mobile agents.

General Conclusion

The technological revolution shown in the applications based on mobile computing, espe-
cially those using the mobile agent paradigm, was essentially caused by a set of recent phe-
nomena such as nomadic users, terminal mobility or the activity in the disconnected mode.
Moreover, when these phenomena are associated to the dynamicity, autonomy and indepen-
dence of the environment, then, serious security issues are raised, whose resolution represents
a real challenge.

The context of this memory concerns the security of mobile agent systems, either against
the attacks that can be leaded by malicious hosts or by malicious agents. Although the field of
security is relatively old, this problem is far from being solved, due to the life cycle of the attacks
and solutions. But it is always possible to make an attack more difficult through minimizing
the risks and assuring a sufficient level of safety.

In this work, we have first defined the specific aspects of these systems which include au-
tonomous agents able to move across the network, as well as hosting platforms allowing the
execution of these agents. Besides, we have highlighted the requirements needed by every infor-
mation system, particularly mobile agent system, in order to be qualified as "secure system".
Then, we have conducted a thorough study on the popular security attacks, which are classified
into two categories: attacks against mobile agent and attacks against platform. According to
these two categories, we have discussed the counter-measures proposed in literature to investi-
gate this problematic.

In order to provide our mobile agent system with the authentication aspect, many mecha-
nisms were introduced such as Diffie-Hellman key exchange integrated with digital signature,
ID-based key agreement protocol integrated with Schnorr signature, as well as an anonymous
authentication based on elliptic curve and bilinear pairing. We were primarily concerned by
counteracting Man-In-The-Middle attacks and masquerading attacks, as well as ensuring for-
ward secrecy and key freshness. In addition, all authentication schemes proposed generate a
session key, which is used lately in other processes.

Confidentiality aspect is preserved in our approaches through the use of encryption. Thus,
our agent was usually encrypted before its migration, and decrypted once arrived to destination.
We made use of a symmetric-key algorithm "AES", because it is robust and much faster,
moreover, a session key is provided and could be used. Elliptic curve cryptography is also
adopted, since it ensures efficiency, reliability, resistance to a large range of attacks, in addition
to the small key lengths it supports and which are provided by a trust third party. Among the
famous attacks we were concerned by neutralizing is the eavesdropping attack.

Integrity aspect is eventually ensured through signing the mobile agent including, its code
and data. A variety of signatures was performed throughout the proposed approaches, according
to the crypto-system involved. Thus, we make use of the digital signature (DSA), the Schnorr
signature and the elliptic curve digital signature (ECDSA), with the aim to detect alteration

143

144 General Conclusion

attacks. In order to detect any other malicious behaviors of the agent or the platform charged
with its execution, we have introduced a detection intrusion mechanism based on execution
tracing, such that all performed behaviors and actions are recorded and verified once the agent
returns back to its owner.

Access control aspect is also considered to secure the platforms of mobile agents against
the unauthorized access attacks. Thus, a discretionary access control policy is adopted along
with Shamir Threshold sharing scheme, in order to simulate a key management of the access
rights to the platform resources. According to this, each resource gets a set of shares as keys
corresponding to its specific access rights.

It was of great interest to ensure that these mechanisms would not compromise the mobility
and flexibility features of the agent. Thereby, the serialization principle, either the XML version
or the binary version, was employed to guarantee a persistent context of the agent, which will
facilitate its mobility and promote its visibility across the network.

With the intention to manifest the advantageous use of mobile agent security for the benefit
of other technologies, we have proposed a security solution for the cloud computing. It consists
in an IDPS relying on secure mobile agents moving across the cloud servers and executing
tasks independently. Thus, along its trip, the mobile agent saves cryptographic traces of the
services and computations it performs on each server, while a revocation protocol based on
trust threshold is launched by the agent’s owner once it suspects a cloud server.

Perspectives

Finally, this work provides first attempts to protect the mobile agent systems. However,
many perspectives are considered in the future, such as:

— The design of a bi-directional approach, which allows in parallel, the mobile agent and
the hosting platform, to evaluate the level of security of the entity being in contact. This
implies the use of mechanisms which can be mutually monitored and controlled.

— The increase of the mobile agent autonomy, in a such way that it can take the initiative
to react after the evaluation of the host’s reliability. We think it would be of high interest
to introduce the trust-based models along with learning features.

— The use of hybrid meta-heuristics to optimize the mobility of the agent in particular
applications, such as the traveling salesman with one-commodity pickup and delivery.

— The use of mobile agents security in the benefit of other emerging technologies, such as:
Mobile Computing, Smart Cities and JavaCards.

Bibliography

[ACL02] FIPA, A. C. L. (2002). Fipa acl message structure specifica-
tion. Foundation for Intelligent Physical Agents. Available at: http :
//www.fipa.org/specs/fipa00061/SC00061G.html.

[Alf05] M. Alfalayleh and L. Brankovic. "An Overview Of Security Issues And Techniques
In Mobile Agents", In Communications and Multimedia Security (pp. 59-78). Springer US.
(2005).

[Ann03] L. D’Anna, B. Matt, A. Reisse, T. Van Vleck, S. Schwab and P. LeBlanc. "Self-
protecting mobile agents obfuscation report". Network Associates Laboratories Report.
(2003).

[Auma06] J. Aumasson. "On the pseudo-random generator isaac". IACR Cryptology ePrint
Archive, 2006: 438. (2006).

[Bella04] P. Bella vista, A. Corradi, C. Frederici, R. Montanari and D. Tibaldi. "Security for
Mobile Agents: Issues and Challenges". Invited Chapter in the Book Handbook of Mobile
Computing, I. Mahgoub, M. Ilyas(eds.), CRC Press, (2004).

[Belli01] F. Bellifemine, A. Poggi and G. Rimassa. "JADE: a FIPA2000 compliant agent de-
velopment environment" .AGENTS ’01: Proceedings of the fifth international conference on
Autonomous agents, 216-217. ACM (2001).

[Bier02] E. Bierman, T. Pretoria and E. Cloete. "Classification of Malicious Host Threats in
Mobile Agent Computing". In Proceedings of the 2002 annual research conference of the
South African institute of computer scientists and information technologists on Enablement
through technology (pp. 141-148). South African Institute for Computer Scientists and In-
formation Technologists. (2002).

[Blakl11] G. R. Blakley and G. Kabatiansky. "Shamir’s Threshold Scheme". In Encyclopedia
of Cryptography and Security, pp. 1193-1194. Springer US, (2011).

[Blakl79] G. R. Blakley. "Safeguarding cryptographic keys". In Proceedings of the national
computer conference (Vol. 48, pp. 313-317). (1979).

[Blasco10] J. Blasco, A. Orfila, A. Ribagorda. "Improving network intrusion detection by means
of Domain-Aware genetic programming". In: International Conference on Availability, Relia-
bility, and Security, pp. 327-332. (2010).

[Brah11] I. Brahmi, S. B. Yahia, P. Poncelet. "A Snort-based mobile agent for a distributed
intrusion detection system". In IEEE Proceedings of the International Conference on Security
and Cryptography (SECRYPT), pp. 198-207. IEEE. (2011).

[Braun05] P. Braun and W. Rossak. "Mobile agents : Basic concepts, mobility models and the
tracy toolkit". Morgan Kaufmann/Elsevier and dpunkt.verlag, ISBN-10: 1558608176, USA,
(2005).

145

146 BIBLIOGRAPHY

[Brio01] J. P. Briot and Y. Demazeau. "Introduction aux agents: Principes et architecture des
systèmes multi-agents". Collection IC2, Hermès, (2001).

[Calhe10] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. DeRose and R. Buyya.
"CloudSim:A toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms". Software: Practice and Experience, Wiley
publishers; 41(1): 23-50. (2010).

[Can02] R. Canetti and H. Krawczyk. "Universally Composable Notions of Key Exchange and
Secure Channels". Editors, Advances in Cryptology, Proceedings of the International Confer-
ence on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), LNCS,
no. 2332, Netherlands. (2002).

[Cao12] J. Cao and S. K. Das. "Mobile agents in networking and distributed computing". (Vol.
3), John Wiley & Sons. (2012).

[Che14] L. Che and X. P. Yang. "Research and Application of Mobile Agent In E-Commerce
System". In Applied Mechanics and Materials, Vol. 519, pp. 458-461. (2014).

[Chen10] B. Chen and H. Cheng, "A review of the applications of agent technology in traffic
and transportation systems", IEEE Transactions on Intelligent Transport Systems, vol. 2,
no. 11, pp. 485-497. (2010).

[DH76] W. Diffie and M. Hellman. "New directions in cryptography". Information Theory,
IEEE Transactions on, 22(6): 644-654. (1976).

[Dastj10] A. V. Dastjerdi, K. A. Bakar and S. G. H. Tabatabaei. "Distributed intrusion detec-
tion in clouds using mobile agents". In Third International Conference on Advanced Engi-
neering Computing and Applications in Sciences, Sliema. pp. 175-180. (2010).

[Dig12] F. Dignum. "Agents for games and simulations", Autonomous Agents and Multi-Agent
Systems, Springer, vol. 2, no. 24, pp. 217-220. (2012).

[East01] D. Eastlake and P. Jones. "US secure hash algorithm 1 (SHA1)". No. RFC 3174.
(2001).

[Enge13] A. Enge. "Bilinear pairings on elliptic curves". arXiv preprint arXiv:1301.5520. (2013).
[Ennah14] M. Ennahbaoui, S. Elhajji, "Swot Analysis of access control models", International

Journal of Security and Its Applications (IJSIA), vol.8, No.3. pp. 407-424. (2014).
[FIPA02] Foundation for Intelligent Physical Agents. "FIPA Agent Management Support for

Mobility Specification", document number dc00087c. Technical report, Geneva, Switzerland,
May (2002).

[Fal06] S. El-Falou. "Programmation répartie, optimisation par agent mobile". Thèse de doc-
torat, Université de Caen, FRANCE. (2006).

[Farm96] W. M. Farmer, J. D. Guttman, and V. Swarup. "Security for mobile agents: Authen-
tication and state appraisal". In Proceedings of the European Symposium on Research in
Computer Security (ESORICS), pages 118–130, Sep. (1996).

[Fas07] M. Fasli, "On agent technology for e-commerce: trust, security and legal issues", The
Knowledge Engineering Review, vol. 1, no. 22, pp. 3-35. (2007).

[Fer99] J. Ferber. "Multi-agent systems: an introduction to distributed artificial intelligence",
volume 1. Addison-Wesley Reading. (1999).

[Fiore10] D. Fiore and R. Gennaro. "Making the Diffie-Hellman protocol identity-based", Ed-
itors, Topics in Cryptology-CT-RSA, Springer Berlin Heidelberg. Proceeding of the 10th
Cryptographers’ Track at the RSA Conference, San Francisco, CA, USA. (2010).

BIBLIOGRAPHY 147

[Galan11] J. Galante, O. Kharif and P. Alpeyev. "Sony Network Breach Shows Amazon Clouds
Appeal for Hackers". (May 17,2011). Available: http : //www.bloomberg.com/news/2011 −
05 − 15/sony − attack − shows − amazon − s − cloud − service − lures − hackers − at −
pennies− an− hour.html

[Galla09] P. Gallagher. "Digital Signature Standard (DSS)". Federal Information Processing
Standards Publication, FIPS PUB, vol. 186, no 3. (2009).

[Gav09] D. Gavalas, G. E. Tsekouras and C. Anagnostopoulos, "A mobile agent platform for
distributed network and systems management", Journal of Systems and Software, vol. 2, no.
82, pp. 355- 371. (2009).

[Gilb03] H. Gilbert and H. Handschuh, "Security Analysis of SHA-256 and Sisters", Editors,
Selected Areas in Cryptography Proceedings of the 10th annual workshop, SAC, August
14-15, Ottawa, Canada. (2003).

[Gom01] J. Gomuluch and M. Schroeder. "Information agents on the move". Software Focus,
2(2), 31-36. Wiley (2001).

[Green98] M. S. Greenberg, J. C. Byington, T. Holding and D. G. Harper, " Mobile Agents
and Security", IEEE Communications Magazine, pp. 76-85. (1998).

[Haus00] M. Hauswirth, C. Kerer and R. Kurmanowytsch. "A secure execution framework for
Java". In Proceedings of the 7th ACM conference on computer and communications security
(CCS 2000), Athens, Greece, pages 43-52, (2000).

[Ho98] F. Hohl. "Time limited blackbox security: Protecting mobile agents from malicious
hosts". In Mobile agents and security (pp. 92-113). Springer Berlin Heidelberg. (1998).

[Ibh11] F. T. Ibharalu, A. B. Sofoluwe and A. T. Akinwale. "A reliable protection architecture
for mobile agents in open network system". International journal of computer applications,
17(7), 6-14. (2011).

[Idri14a] H. Idrissi, A. Revel and E. M. Souidi. "A New Approach based on Cryptography and
XML Serialization for Mobile Agent Security". In ICAART (1), pp. 403-411. (2014).

[Idri15b] H. Idrissi, E. M. Souidi, and A. Revel. "Mobile Agent Security Using ID-Based Agree-
ment Protocol and Binary Serialization". International Journal of Security and Its Applica-
tions, 9(5), 19-30. (2015).

[Idri15c] H. Idrissi, E. M. Souidi, and A. Revel. "Security of Mobile Agent Platforms Using
Access Control and Cryptography". In Agent and Multi-Agent Systems: Technologies and
Applications (pp. 27-39). Springer International Publishing. (2015).

[Idri15d] H. Idrissi, M. Ennahbaoui, E. M. Souidi and S. E. Hajji. "Mobile Agents with Cryp-
tographic Traces For Intrusion Detection in the Cloud Computing". Procedia Computer
Science, 73, 179-186. (2015).

[Ismail08] L. Ismail. " A Secure Mobile Agents Platform ". Journal of Communications, Volume
3, Issue 2, pp. 1-12. (2008).

[JPCap] Available at: http : //netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html
[Jaffar13] A. Jaffar and C. J. Martinez, "Detail Power Analysis of the SHA-3 Hashing Algo-

rithm Candidates on Xilinx Spartan-3E", International Journal of Computer and Electrical
Engineering, vol. 4, no. 5, , pp. 410-413. (2013).

[Jain00] R. Jain, F. Anjum and A. Umar. "A comparison of mobile agent and client-server
paradigms for information retrieval tasks in virtual enterprises". Proceedings of the Academi-
a/Industry Working Conference on Research Challenges, pp. 209-213, Washington, DC, USA.
IEEE. (2000).

148 BIBLIOGRAPHY

[Jan99] W. Jansen and T. Karygiannis. "Mobile agent security". Technical report National
Institute of Standards and Technology, Special Publication 800-19. 1999.

[Kap08] V. Kapoor,V. S. Abraham and R. Singh."Elliptic curve cryptography". ACM Ubiquity,
9(20), 20-26. (2008).

[Kholi12] H. A. Kholidy and F. Baiardi. "CIDS: A Framework for Intrusion Detection in Cloud
Systems". In 9th International Conference on Information Technology: New Generations
(ITNG), Las Vegas, NV, pp.379-385. (2012).

[Lan99] D. B. Lange and M. Oshima. "Seven good reasons for mobile agents". Commun. ACM,
ACM, vol. 42, 88-89. (1999).

[Lee07] J. S. Lee, C. C. Chang, P.Y. Chang and C.C. Chang. "Anonymous authentication
scheme for wireless communications". International Journal of Mobile Communications, 5(5),
590-601. (2007).

[Li15] Y. Li and L. Zhu. "Data Acquisition System Research Based on Mobile Agent in Network
Management". In International Conference on Computer Science and Electronic Technology
(ICCSET’14). Atlantis Press. (2015).

[Liu14] J. Liu, Z. Zhang, X. Chen, K. S. Kwak, "Certificateless Remote Anonymous Authen-
tication Schemes for Wireless Body Area Networks", IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 2, pp. 332-342, (2014).

[Lu07] T. Lu and C. Hsu. "Mobile agents for information retrieval in hybrid simulation envi-
ronment". Journal of network and computer applications, 30(1), 244-264. (2007).

[M.Pich] M. Pichiliani. "Introducing XML Serialization Differences between Binary Serializa-
tion and Serialization in Java". Web site: http : //mrbool.com/differences − between −
binary − serialization− and− serialization− in− java/31208.

[MSDN] "Introduction to Code Signing", (n.d.). From Microsoft Corporation, Mi-
crosoft Developer Network (MSDN) Web site:https : //msdn.microsoft.com/en −
us/library/ms537361%28v = vs.85%29.aspx

[Madison03] "Signed Code", (n.d.). Retrieved December 15, 2003, from James Madison
University, IT Technical Services. Web site: http : //www.jmu.edu/computing/info −
security/engineering/issues/signedcode.shtml

[Marti10] C. A. Martinez, G. I. Echeverri and A. G. C. Sanz. "Malware detection based on
cloud computing integrating intrusion ontology representation,” in IEEE Latin-American
Conference on Communications (LATINCOM), Bogota, pp.1-6. (2010).

[Mayn11] D. Maynor. "Metasploit toolkit for penetration testing, exploit development, and
vulnerability research". Elsevier.(2011).

[Mell11] P. Mell and T. Grance. "The NIST definition of cloud computing". [Recommendations
of the National Institute of Standards and Technology-Special Publication 800-145]. Wash-
ington DC: NIST. (2011). Available at http : //csrc.nist.gov/publications/nistpubs/800 −
145/SP800− 145.pdf .

[Men11] D. E. Menacer, H. Drias and C. Sibertin-Blanc. "The MP Architecture: towards a
secure framework for mobile agents". International Journal of Agent-Oriented Software En-
gineering, 4(4), 390-414. (2011).

[Met11] M. Metzger and G. Polakow, "A survey on applications of agent technology in industrial
process control", IEEE Transactions on Industrial Informatics, vol. 4, no. 7, pp. 570-581.
(2011).

BIBLIOGRAPHY 149

[Mills10] D. Mills, J. Martin, J. Burbank, W. Kasch. "Network time protocol version 4: Protocol
and algorithms specification". No. RFC5905, June (2010).

[Milo98] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka,
D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White. "MASIF : The
OMG Mobile Agent System Interoperability Facility". Personal and Ubiquitous Computing,
2(2): 117-129, June (1998).

[Milo99] D. S. Milojičić, W. LaForge and D. Chauhan. "Mobile objects and agents (moa)".
pages 595–610. 46. (1999).

[Mitro11] D. Mitrovic, M. Ivanovic, Z. Budimac and M. Vidakovic. "An overview of agent mo-
bility in heterogeneous environments". In Workshop Proceedings on Applications of Software
Agents, page 52. (2011).

[Mousa06] A. Mousa and A. Hamad. "Evaluation of the RC4 algorithm for data encryption".
IJCSA, 3(2): 44-56. (2006).

[Mub07] M. Mubarak, Z. Khan, S. Sultana, H. B. Asghar, H. F. Ahmad, H. Suguri and F.
Jabeen. "A Dynamic Policy based Security Architecture for Mobile Agents". in "New Tech-
nologies, Mobility and Security", pp. 493-505, Springer Netherlands. (2007).

[Murph06] A. L. Murphy, G. P. Picco and G. C. Roman. "LIME: A coordination model and
middleware supporting mobility of hosts and agents". ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 15(3), 279-328. (2006).

[Nec02] G. C. Necula. "Proof-carrying code. design and implementation". (pp. 261-288).
Springer Netherlands. (2002).

[Nec98] G.C. Necula, P. Lee. " Safe, Untrusted Agents Using Proof-Carrying Code", Mobile
Agents and Security, G. Vigna (Ed.), Springer-Verlag, Berlin, Allemagne, pp. 61-91. (1998).

[Og15] B. O. Oguntunde, A. O. Osofisan and G. A. Aderounmu. "Embedded Mobile Agent
(EMA) for Distributed Information Retrieval". International Journal of Computer Science
and Information Security, 13(3), 84. (2015).

[Over04] B. J. Overeinder, F. M. T. Brazier and D. R. A. de Groot. "Cross-platform generative
agent migration". In Proceedings of the Fourth European Symposium on Intelligent Tech-
nologies, Hybrid Systems and their implementation on Smart Adaptive Systems, pp. 356-363.
EUNITE (2004).

[Page04] J. Page, A. Zaslavsky and M. Inrawan, "Countering Security Vulnerabilities In Agent
Execution Using A Self Executing Security", In Proceeding of the 3rd International Joint
conference on Autonomous Agents and Multi-Agents (AAMA2004), Vol 3, pp.1486-1487,
New York (USA), (2004).

[Patel10] A. Patel, Q. Qassim and C. Wills. "A survey of intrusion detection and prevention
systems". Information Management & Computer Security; 18: 277-290. (2010).

[Phan05] R. W. Phan."Fixing the integrated Diffie-Hellman-DSA key exchange protocol". Com-
munications Letters, IEEE, 9(6):570-572. (2005).

[Raz14] H. Razik and A. Hair. "Self-Adaptive Security for Mobiles Agents". International Jour-
nal of Computer Applications, 94(13).(2014).

[Reis00] H. Reiser. "Security Requirements for Management Systems using Mobile Agents". In
proceeding of the Fifth IEEE Symposium on Computers and Communications: ISCC 2000,
Antibes, France, pages 160-165, (2000).

150 BIBLIOGRAPHY

[Rio98] J. Riordan and B. Schneier, "Environmental Key Generation Towards Clueless Agents",
G. Vinga (Ed.), Mobile Agents and Security, Springer-Verlag, Lecture Notes in Computer
Science No. 1419, (1998).

[Rober12] T. Robertazzi. "Advanced Encryption Standard (AES)". In Basics of Computer
Networking, pages 73-77. Springer. (2012).

[Roth98] V. Roth. "Mutual Protection of Co-operating Agents", in Secure Internet Program-
ming, Vitek et Jensen (Ed.), Springer-Verlag, Berlin, Allemagne, pp 26-37. (1998).

[Sam01] P. Samarati and S. Capitani de Vimercati. "Access Control: Policies, Models, and
Mechanisms". In Riccardo Focardi et Roberto Gorrieri, editeurs, Foundations of Security
Analysis and Design, volume 2171 of Lecture Notes in Computer Science, pages 137-196.
Springer Berlin Heidelberg, (2001).

[San98] T. Sander, C. F. Tschudin, "Protecting Mobile Agents Against Malicious Host", in
Mobile Agents and Security, G. Vigna (Ed.), Springer-Verlag, pp 44-60. Berlin, Allemagne
(1998).

[Scarf07] K. Scarfone and P. Mell. "Guide to intrusion detection and prevention systems (idps)".
NIST special publication; 800(2007), 94. (2007).

[Schn91] C. P. Schnorr. "Efficient signature generation by smart cards". Journal of Cryptology,
vol. 3, no. 4, pp. 161-174. (1991).

[Scott04] D. Scott, A. Beresford and A. Mycroft, “Spatial Security Policies for Mobile Agents
in a Sentient Computing Environment, Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 0302-9743 (Print), pp 102-117, 19 Feb, (2004).

[Sha06] M. H. Shao and J. Zhou. "Protecting mobile-agent data collection against blocking
attacks". Computer Standards & Interfaces, 28(5): 600–611. 50. (2006).

[Sham79] A. Shamir. "How to share a secret". Communications of the ACM, 22(11), 612-613.
(1979).

[Shi10] A. Shibli, A. Giambruno and S. Muftic. "Security architecture and methodology for
authorization of mobile agents". International Journal of Internet Technology and Secured
Transactions, 2(3-4), 271-290. (2010)

[Shnei01] F. B. Schneider, G. Morrisett and R. Harper. "A Language-Based Approach to Secu-
rity". In R. Wilhelm (Ed.): Informatics, 10 Years Ahead, LNCS 2000, Springer-Verlag Berlin
Heidelberg, pp: 86-101, (2001).

[Smith10] D. Smith, Q. Guan and S. Fu. "An Anomaly Detection Framework for Autonomic
Management of Compute Cloud Systems". 34th Annual Computer Software and Applications
Conference Workshops (COMPSACW), Seoul, pp. 376-381. (2010).

[Snort] Available at: https : //s3.amazonaws.com/snort− org − site/production/document
_files/files/000/000/099/original/snort_manual.pdf

[Sor13] A. Soriano, E. J. Bernabeu, A. Valera and M. Vallés. "Multi-agent systems platform
for mobile robots collision avoidance". In Advances on Practical Applications of Agents and
Multi-Agent Systems (pp. 320-323). Springer Berlin Heidelberg. (2013).

[Sri14] S. Srivastava and G. C. Nandi. "Self-reliant mobile code: a new direction of agent
security". Journal of Network and Computer Applications, 37, 62-75. Elsevier (2014).

[Tai99] H. Tai and K. Kosaka. "The Aglets project". Commun. ACM, 42, 100- 101. (1999).
[Talia11] D. Talia. "Cloud Computing and Software Agents: Towards Cloud Intelligent Ser-

vices". In WOA, Vol.11, pp.2-6. (2011).

BIBLIOGRAPHY 151

[Tan02] H. K. Tan and L. Moreau, "Extending Execution Tracing for Mobile Code Security". In
K. Fischer and D. Hutter (Eds.), Proceedings of Second International Workshop on Security
of Mobile Multi-Agents Systems (SEMAS’2002), pp. 51-59, Bologna, Italy. (2002).

[Tanen07] A. S. Tanenbaum, A. S. "Modern Operating Systems". Prentice Hall Press, Upper
Saddle River, NJ, USA. 44. (2007).

[Tau12] C. J. Tauro, N. Ganesan, S. Mishra and A. Bhagwat, "Object Serialization: A Study
of Techniques of Implementing Binary Serialization in C++, Java and. NET", International
Journal of Computer Applications, vol. 6, no. 45, (2012).

[Tupak11] U. Tupakula, V. Varadharajan and N. Akku. "Intrusion Detection Techniques for In-
frastructure as a Service Cloud". IEEE International Conference on Dependable, Autonomic
and Secure Computing pp. 744-751. (2011)

[Vigna03] G. Vigna. "Mobile agents and security", Vol. 1419. Springer, Edition (2003).
[Vigna98] G. Vigna. "Cryptographic traces for mobile agents". In Mobile agents and security

(pp. 137-153). Springer Berlin Heidelberg. (1998).
[WampServ] WampServer, http://www.wampserver.com
[Wro02] G. Wroblewski. "General Method of Program Code Obfuscation". Doctoral disserta-

tion, PhD Dissertation, Wroclaw University of Technology, Institute of Engineering Cyber-
netics. (2002).

[Xiong14] H. Xiong. "Cost-effective scalable and anonymous certificateless remote authentica-
tion protocol". Information Forensics and Security, IEEE Transactions on, 9(12), 2327-2339.
(2014).

[Young97] A. Young, M. Yung, "Slinding Encryption : A Cryptographic Tool for Mobile
Agents", Proceedings of the 4’" International Workshop on Fast Software Encryption. Biham
(Ed.), Springer-Verlag, pp 230-241. Berlin, Allemagne. (1997).

[Zha01] M. Zhang, A. Karmouch, and R. Impey. "Towards a secure agent platform based on
FIPA". In Proceedings of the 3th International Workshop on Mobile Agents for Telecommu-
nication Applications (MATA ’01), volume 2164/2001 of LNCS, pages 277–289, Montreal,
Canada. Springer Berlin/Heidelberg. (2001).

[Zhan06] X. Zhang, F. Parisi-Presicce and R. Sandhu. "Towards Remote Policy Enforcement
for Runtime Protection of Mobile Code Using Trusted Computing". Advances in Information
and Computer Security, vol. 4266, pp. 1611-3349. (2006).

[Zhao14] Z. Zhao. "An efficient anonymous authentication scheme for wireless body area net-
works using elliptic curve cryptosystem". Journal of Medical Systems, 38(2), 1-7. (2014).

152 BIBLIOGRAPHY

List of Publications

1. Hind Idrissi, Arnaud Revel and El Mamoun Souidi (2016). "Security of Mobile Agent
Platforms using RBAC based on Dynamic Role Assignment ". International Journal of
Security and Its Applications, 10(4), 117-134.

2. Hind Idrissi, Mohammed Ennahbaoui, El Mamoun Souidi, Said El Hajji and Arnaud
Revel (2016). "Secure and Flexible RBAC Scheme Using Mobile Agents". In Proceedings
of the Mediterranean Conference on Information and Communication Technologies 2015
(pp. 447-455). Springer International Publishing.

3. Hind Idrissi, Mohammed Ennahbaoui, El Mamoun Souidi and Said El Hajji (2015).
"Mobile Agents with Cryptographic Traces For Intrusion Detection in the Cloud Com-
puting". Procedia Computer Science, 73, 179-186.

4. Mohammed Ennahbaoui, Hind Idrissi and Said El Hajji (2015, November). "Secure
and flexible grid computing based intrusion detection system using mobile agents and
cryptographic traces". In Innovations in Information Technology (IIT), 2015 11th Inter-
national Conference on (pp. 314-319). IEEE.

5. Hind Idrissi, El Mamoun Souidi and Arnaud Revel (2015). "Security of Mobile Agent
Platforms Using Access Control and Cryptography". In Agent and Multi-Agent Systems:
Technologies and Applications (pp. 27-39). Springer International Publishing.

6. Hind Idrissi, El Mamoun Souidi and Arnaud Revel (2015). "Mobile Agent Security
Using ID-Based Agreement Protocol and Binary Serialization". International Journal of
Security and Its Applications, 9(5), 19-30.

7. Hind Idrissi, Mohammed Ennahbaoui, El Mamoun Souidi, Arnaud Revel and Said El
Hajji (2014, April). "Access control using mobile agents". In Multimedia Computing
and Systems (ICMCS), 2014 International Conference on (pp. 1216-1221). IEEE.

8. Hind Idrissi, Arnaud Revel and El Mamoun Souidi (2014). "A New Approach based
on Cryptography and XML Serialization for Mobile Agent Security". In International
Conference on Agents and Artificial Intelligence (ICAART) (pp. 403-411). ACM.

153

154 List of Publications

Thèse de Doctorat

Discipline: Informatique
Spécialité: Informatique et Sécurité de l’Information
Laboratoire: Mathématiques, Informatique et Applications
Période d’accréditation: 2012-2016
Responsable du Laboratoire: Pr. Said EL HAJJI
Directeurs de Thèse: Pr. Arnaud REVEL et Pr. El Mamoun SOUIDI

Titre de la Thèse: Contributions à la Sécurité des Systèmes
d’Agents Mobiles

Hind IDRISSI

Résumé :
Récemment, l’informatique distribuée a connu une grande évolution en raison de l’utilisation

du paradigme des agents mobiles, doté d’innovantes capacités, au lieu du système client-serveur
où les applications sont liées à des nœuds particuliers dans les réseaux. Ayant capturé l’intérêt des
chercheurs et de l’industrie, les agents mobiles sont capables de migrer de manière autonome d’un
nœud à un autre à travers le réseau, en transférant de leur code et leurs données, ce qui leur permet
d’effectuer efficacement des calculs, de recueillir des informations et d’accomplir des tâches.

Cependant, en dépit de ses avantages significatifs, ce paradigme souffre encore de certaines lim-
itations qui font obstacle à son expansion, principalement dans le domaine de la sécurité. Selon les
efforts actuellement déployés pour évaluer la sécurité des agents mobiles, deux catégories de men-
aces sont considérées. La première catégorie concerne les attaques menées sur l’agent mobile lors de
son voyage à travers des hôtes ou des entités malveillantes, tandis que la seconde catégorie traite
les attaques effectuées par un agent mobile illicite afin d’affecter la plate-forme d’hébergement et
de consommer ses ressources. Ainsi, il est substantiellement nécessaire de concevoir une infrastruc-
ture de sécurité complète pour les systèmes d’agents mobiles, qui comprend la méthodologie, les
techniques et la validation.

L’objectif de cette thèse est de proposer des approches qui fournissent cette technologie avec
des fonctionnalités de sécurité, qui correspondent à sa structure globale sans compromettre ses
capacités de mobilité, l’interopérabilité et l’autonomie. Notre première approche est basée sur
la sérialisation XML et des primitives cryptographiques, afin d’assurer une mobilité persistante
de l’agent ainsi qu’une communication sécurisée avec les plates-formes d’hébergement. Dans
la seconde approche, nous avons conçu une alternative à la première approche en utilisant la
sérialisation binaire et la cryptographie à base de l’identité. Notre troisième approche introduit
l’aspect d’anonymat à l’agent mobile, et lui fournit un mécanisme de traçage pour détecter les
intrusions le long de son voyage. La quatrième approche a été développée dans le but de restreindre
l’accès aux ressources de la plate-forme de l’agent, en utilisant une politique de contrôle d’accès
bien définie à base la cryptographie à seuil. A ce stade, on s’est intéressé à expérimenter l’utilité des
agents mobiles avec des fonctionnalités de sécurité, dans la préservation de la sécurité des autres
technologies, telles que le Cloud Computing. Ainsi, nous avons proposé une architecture innovante
du Cloud, en utilisant des agents mobiles dotés de traces cryptographiques pour la détection
d’intrusion et d’un protocole de révocation à base de seuil de confiance pour la prévention.

Mots clés : Sécurité des Agents Mobiles, Cryptographie, Sérialisation, Contrôle d’accès,
Détection et Prévention d’Intrusion, JADE.

	Avant-Propos
	Acknowledgment
	Abstract
	General Introduction
	Context
	Problematic and Related Works
	Objectives
	Organization of the Thesis

	Mobile Agent Systems
	Evolution
	Client/Server Architecture
	Remote Evaluation
	Code on-demand

	Basic Concepts of Mobile Agents
	Fundamentals
	Qualities and Advantages
	Application Areas

	Services for Mobile Agent Execution
	Structure, Creation and Communication
	Localization, Migration and Execution
	Security, Fault-Tolerance and Traceability
	Life cycle and Control

	Standardization Efforts
	MASIF
	FIPA

	Examples of Mobile Agent Platforms
	JAVA Agent Development Framework (JADE)
	Agent Applets (Aglet)
	Linda in a Mobile Environment (LIME)

	Conclusion

	Security of Systems based on Mobile Agents
	Security Requirements
	Security Threats
	Attacks of Malicious Agents
	Attacks of Malicious Platforms

	Protection of Mobile Agent Systems
	Protection of the Mobile Agent
	Protection of the Agents Platform

	Synthesis

	Serialization and Cryptography for Mobile Agents
	Preliminaries
	Binary Serialization
	XML Serialization

	XML Serialization with Cryptographic Primitives
	Authentication Process
	Confidentiality and Integrity Preserved
	Mobility Process
	Evaluation and Results

	Binary Serialization with ID-based Key Agreement Protocol
	Authentication Process
	Confidentiality and Integrity Preserved
	Mobility Process
	Evaluation and Results

	Synthesis and Discussion
	Conclusion

	Elliptic Curve Cryptography for Mobile Agents
	Preliminaries
	Notations
	Elliptic Curve Cryptography
	Intrusion Detection System

	Anonymous Authentication using Elliptic Curve Cryptography
	Initialization Phase
	Registration Phase
	Authentication and Key Agreement Phase

	Intrusion Detection based on Execution Tracing
	Security Analysis
	Performance Analysis
	Authentication Performance
	Detection Performance

	Conclusion

	Access Control and Cryptography for Agent Platforms
	Preliminaries
	Access Control Policies
	Threshold Sharing Scheme

	Platform Architecture
	Authentication Process
	Access Control of the Platform Resources
	Security Analysis
	Performance Analysis
	Conclusion

	Application: Cloud Security using Secure Mobile Agent
	Application Context
	Problem Statement
	Related Works

	Proposed Cloud-IDPS
	Cryptographic Traces for Intrusion Detection
	Revocation-based Trust Threshold for Intrusion Prevention

	Performance Analysis
	Response Time
	Network Load
	Security Performance

	Conclusion

	General Conclusion
	Bibliography
	List of Publications

