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École doctorale n◦576
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Introduction

The behaviour of neutral particles travelling through matter can be described
by a stochastic process. This process can be simulated using Monte Carlo par-
ticle transport codes. These codes can usually handle two types of simulations:
either criticality or fixed-source calculations. While criticality simulations repro-
duce the nuclear chain reaction and make use of the power iteration technique
to study core physics, fixed-source simulations are used in the context of radia-
tion shielding, ageing and dismantling. The purpose of fixed-source simulations
is to estimate a particle flux in an region of interest, or other quantities derived
from the flux such as reaction rates or energy deposition. In a given Monte Carlo
simulation, the estimated quantity is usually referred to as ”score” or ”tally”.
The configurations studied with radiation shielding calculations are often asso-
ciated to deep penetration problems or other rare events estimations. In those
cases, the number of particles to simulate in order to have enough contributions
to the score is too large to hope getting a precise estimation in a reasonable
computation time. Variance reduction methods are therefore used to alter the
simulation process so as to increase the occurrence probability of the rare events
at hand while keeping an unbiased estimation of the score. Hence, these methods
allow for a variance reduction of the estimated score for a given computation time.

Multilevel splitting techniques are variance reduction methods that were in-
troduced in the field of particle transport by Kahn and Harris [1]. The principle
of these techniques is to increase the number of simulated particles when ap-
proaching areas of interest of the geometry. In practice, the simulated space is
divided into regions of importance delimited by virtual frontiers called splitting
levels. Whenever a particle goes from a less important to a more important region,
it is duplicated. Each of the duplicated particles is given half the weight of the
original particle to ensure that the simulation remains unbiased. Thus, more com-
putation time is spent to simulate interesting particles, i.e. particle more likely
to contribute to the score, rather than new particles emitted from the source.
One of the advantages of these techniques over other types of variance reduction
methods is that they do not alter the particle transport between splitting events.
The particle transport in each importance region is left unchanged, keeping the
underlying physics unperturbed. However, the inherent downside of these tech-
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niques is that they require a fair knowledge of the system in order to accurately
define the importance regions. One needs to ensure that enough particles are go-
ing from region to region, in order to have a noticeable effect on the variance of
the estimated score. This requires to define close enough splitting levels. In the
meantime, the levels must be sufficiently distant from one another to prevent an
explosion of the particle population.

In order to cope with this issue, an adaptive method has been introduced in
the field of applied mathematics by Cérou and Guyader [2]. The proposed algo-
rithm, called Adaptive Multilevel Splitting (or AMS), was originally designed to
help estimate rare events occurrence probabilities in Monte Carlo simulations of
continuous Markov chains. It has then been extended to the simulation of discrete
Markov chains by Bréhier et al. [3]. The AMS method aims at duplicating the
interesting particles of the simulation, but does not use an a priori definition of
importance regions. Instead, the positions of the splitting levels are determined
on the fly, following a selection mechanism based on the classification of the sim-
ulated particle histories. To the best of our knowledge and rather surprisingly,
this algorithm has never been applied to the field of particle transport.

In summary, the need for accurate simulation of rare events in Monte Carlo
transport calculations led to the emergence of multiple variance reduction tech-
niques over the years. Many of those methods are based on multilevel splitting
techniques. However, multilevel splitting requires a precise positioning of the lev-
els to efficiently reduce the variance. This sometimes requires extended insight on
the system, which is not always available. In order to overcome this limitation,
an adaptive method called Adaptive Multilevel Splitting has been proposed in
the field of applied mathematics. Even if it has never been applied to particle
transport simulation, it could be useful for configurations requiring a precise sim-
ulation of rare events.

This justifies the work presented in this thesis, which consists in studying the
applicability of the Adaptive Multilevel Splitting algorithm as a variance reduc-
tion scheme for Monte Carlo particle transport.

After a presentation, in the opening chapters, of the physical context of this
work, the main part of this manuscript is devoted to the description of the many
steps required to implement the Adaptive Multilevel Splitting algorithm in the
transport code TRIPOLI-4 R© and its applications to several practical examples.

To begin with, the AMS method had to be adapted to fit the specificities of
particle transport. This is the subject of the third chapter. The original algorithm
has been rewritten to be consistent with the context of particle transport, since
it was created for variance reduction on generic Markov chains. In order to en-
sure the relevance of AMS for particle transport calculations, a Monte Carlo code
simulating a simplified transport process in a trivial geometry was developed. It
is able to perform Monte Carlo simulations in both AMS and analog mode (i.e.
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without variance reduction), for a problem that is simple enough to be solved ana-
lytically. This allowed us to ensure that the AMS method yields unbiased results.
Moreover, the obtained results were compared to those of analog simulations so
as to evaluate the variance reduction efficiency of the adapted AMS method. This
was the necessary first step towards an implementation of the AMS algorithm in
a industrial Monte Carlo transport code.

Chapter 4 is dedicated to the implementation of the AMS algorithm in the
neutral particle transport code TRIPOLI-4. An extended study of the code was
necessary to determine the most efficient way to implement AMS in TRIPOLI-4.
The idea was to find a way to implement the algorithm with the smallest impact
on computational time. In the meantime, it was also necessary to minimize the
intrusion of AMS in the code, in order to keep the existing modules unperturbed.
The efficiency of the implemented AMS was then compared to analog simulations,
and also to other variance reduction methods already available in TRIPOLI-4.
The variance reduction scheme was exclusively tested for single-score simulations.
Indeed, the original AMS algorithm was designed to reduce the variance on the
estimation of a single probability. However, observation suggested that the in-
formation gathered during the simulation process with AMS could be used to
reduce variance on multiple scores as well. This could be achieved through the
implementation of an on-the-fly scoring technique.

In the fifth part, we introduce a method allowing for on-the-fly scoring dur-
ing the AMS iterating process. To that end, multiple solutions were considered,
and the most effective one was implemented in TRIPOLI-4. The updated ver-
sion of the AMS algorithm was used to try and reduce the variance on multi-
ple scores in two typical shielding configurations: a deep penetration problem
and a three-dimensional streaming configuration. The obtained results were once
again compared to those obtained via analog and non-analog calculations. In the
work described up to this point, as well as in the literature, the AMS algorithm
was exclusively applied to non-branching trajectories. However, this restriction is
troublesome for particle transport Monte Carlo simulations, in which branching
trajectories may occur. Indeed, a particle collision with a nuclei of the surround-
ing medium can induce the emission of one or more secondary particles, resulting
in a branching trajectory.

The last chapter of this thesis addresses the extension of the AMS algorithm
to branching processes. We propose an innovative way for the AMS algorithm to
account for branching trajectories, and discuss its implementation in TRIPOLI-
4. Allowing the AMS to handle branching trajectories in Monte Carlo transport
simulations opens up new fields of applications for this variance reduction method,
such as coupled neutron/photon simulations or gamma spectrometry. The last
version of the AMS algorithm in TRIPOLI-4 has been used in both those fields
of applications, for which two configurations have been especially chosen to test
the suitability of AMS as a variance reduction technique in cases that require
explicit treatment of branching trajectories.
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Chapter 1

Monte Carlo particle transport

Neutral particle transport is the study of the behaviour of neutral particles
travelling through matter. It is theoretically described by the linear Boltzmann
equation, which is therefore referred to as transport equation. The methods used
to solve this equation fall into two categories: deterministic methods, and stochas-
tic methods also known as Monte Carlo methods [4]. Deterministic methods solve
the transport equation by numerical integration, which requires to discretize the
phase space and sometimes even to reduce the number of dimensions involved in
the problem. Even though these methods are very time-efficient, they are built
on approximations which lead to uncertainties on the calculated responses. On
the other hand, Monte Carlo methods use few approximations in the transport
model. In the context of particle transport, Monte Carlo methods simulate the
trajectory of each particle individually, from emission to absorption, while the
interactions of particles with matter are modelled as close to the physics as pos-
sible, thus eliminating the need for phase space discretization. Furthermore, the
Monte Carlo approach, as a statistical method, provides results with associated
confidence intervals, which can be reduced by simulating more and more particles.
Despite their large computational time, the specificities of Monte Carlo methods
make them reference methods both for the validation of deterministic calculations
and for industrial calculations.

As neutral particle transport by the Monte Carlo method is the basis of this
work, the first chapter is devoted to the presentation of this method. First, the
theoretical formulation of the transport equation is introduced, then we describe
the Monte Carlo approach for solving the Boltzmann equation.

1.1 Transport equation

1.1.1 Definitions and notations

Neutral particle transport theory describes the mathematical framework re-
quired to model the behaviour of neutral particles (e.g. neutrons, photons) travel-
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CHAPTER 1. MONTE CARLO PARTICLE TRANSPORT

ling through matter. The fundamental assumptions in transport theory are that
particles can be treated as point-like, and that all interactions between trans-
ported particles can be ignored. Before going any further, let us introduce some
definitions and notations which will be used throughout this thesis.

We define the position of a particle in the 6-dimensional phase space S as the
set of coordinates ( ~X, ~Ω, E), where

- ~X denotes the particle position in the 3-dimensional space,

- ~Ω is the unit vector giving the direction of displacement of the particle,

- E stands for the particle energy, which is the norm of the particle velocity
(except for massless particles).

The laws governing the interactions between particle and matter are represented
by macroscopic cross sections Σ( ~X,E), which basically represent the probability

of interaction per unit length for a particle at point ~X travelling along a straight
line at energy E [5]. The unit of macroscopic cross sections is the inverse of a
length, and the term macroscopic refers to the fact that cross sections are weighted
over the material density ρ( ~X) of the medium. The so-called microscopic cross

sections σ( ~X, ~Ω, E) are related to Σ( ~X, ~Ω, E) by Σ( ~X, ~Ω, E) = ρ( ~X)σ( ~X, ~Ω, E),
and are expressed in area units called barns (1 b=1e−24 cm2). Throughout the
remaining of this thesis, the following macroscopic cross sections will be used:

- Σa( ~X,E), the macroscopic absorption cross section, related to the proba-

bility of absorption at point ( ~X,E),

- Σs

(
~X, ~Ω � ~Ω′, E � E ′

)
d~Ω′dE ′, the probability for a particle colliding with

the medium at point ( ~X, ~Ω, E) to come out of the collision with a direction

inside the elementary solid angle d~Ω′ around ~Ω′ and an energy inside the
elementary energy interval dE ′ around E ′.

- Σt( ~X,E), the total macroscopic cross section such that

Σt( ~X,E) = Σa( ~X,E) +

∫∫∫
Σs

(
~X, ~Ω � ~Ω′, E � E ′

)
d~Ωd~Ω′dE ′. (1.1)

Cross sections, multiplicities and distribution functions of outgoing and sec-
ondary particles, which are the necessary ingredients to perform Monte Carlo
particle transport, depend on a series of parameters such as the temperature of
the medium, the nuclear properties of the target nucleus, the type and energy
of incident particle, etc. For each combination of such parameters, the displace-
ment and collision kernels have different shapes and thus modify the particles
propagation through matter. Accurate simulation results clearly depend on the
quality of the nuclear data available for the Monte Carlo code. Nuclear data
are usually evaluated combining experimental and theoretical studies, thus de-
pending on the available experimental data and on the chosen physical models.
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1.1. TRANSPORT EQUATION

The mainly used libraries are the European Joint Evaluated Fission and Fusion
data (JEFF-3.1.1 [6]) and the American Evaluated Nuclear Data File (ENDF/B-
VII [7]). The calculations presented in this work has been carried out using the
JEFF-3.1.1 library.

1.1.2 Integro-differential formulation

Under the assumption that the system has reached equilibrium, which is al-
ways the case in radiation shielding problems, the particle flows in and out of any
volume element d ~Xd~ΩdE are equal. The modelling of such systems is achieved
using the steady-state linear Boltzmann equation. Written in its integro-differen-
tial form, it establishes a balance of the particle flux φ at a given point of the
phase space ( ~X, ~Ω, E).

~Ω.~∇φ
(
~X, ~Ω, E

)
+ Σt

(
~X,E

)
φ
(
~X, ~Ω, E

)
=∫∫

Σs

(
~X, ~Ω′ � ~Ω, E ′ � E

)
φ
(
~X, ~Ω′, E ′

)
d~Ω′dE ′ +Q

(
~X, ~Ω, E).

(1.2)

The left-hand side of the equation describes the particles leaving the volume
element d ~Xd~ΩdE around ( ~X, ~Ω, E):

- ~Ω.~∇φ( ~X, ~Ω, E) represents the particles leaking out of the three-dimensional

volume element d ~X around ~X,

- Σt( ~X,E)φ( ~X, ~Ω, E) represents the particles entering a collision, thus being
absorbed or changing their direction and/or energy,

while the right-hand side of the equation gathers the terms describing the particles
arriving in d ~Xd~ΩdE:

-
∫∫

Σs

(
~X, ~Ω′ � ~Ω, E ′ �, E

)
φ
(
~X, ~Ω′, E ′

)
d~Ω′dE ′ represents those emerging

from of a collision at point ~X with direction ~Ω and energy E

- Q( ~X, ~Ω, E) represents the external sources of particles.

In order to have a transport equation suitable for Monte Carlo resolution, the
Boltzmann equation has to be cast into integral form [4].

1.1.3 Integral formulation

The flux at point ( ~X, ~Ω, E) can be expressed as the sum of two integrals. The
first corresponds to the contribution of particles coming directly from the source
point, and the second to the contribution of particles having undergone one or
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several collision(s) [8]:

φ
(
~X, ~Ω, E

)
=

∫
e−

∫ x
0 Σt( ~X−s~Ω,E)dsQ

(
~X − x~Ω, ~Ω, E

)
dx+∫∫∫

e−
∫ x
0 Σt( ~X−s~Ω,E)dsΣs

(
~X − x~Ω′, ~Ω′ � ~Ω, E ′ � E

)
φ
(
~X − x~Ω′, ~Ω′, E ′

)
dxd~Ω′dE ′

(1.3)

In order to simplify the above formula, let us introduce the so-called collision
density ψ( ~X, ~Ω, E) of particles entering a collision in ( ~X, ~Ω, E), defined as

ψ
(
~X, ~Ω, E

)
= Σt

(
~X,E

)
φ
(
~X, ~Ω, E

)
, (1.4)

as well as the following operators:

- the displacement operator, whose kernel is D( ~X ′ � ~X, ~Ω, E), describing a

flight from point ~X ′ to point ~X = ~X ′ + x~Ω, where x > 0 and such that

D
(
~X ′ � ~X, ~Ω, E

)
= Σt

(
~X,E ′

)
e−

∫ x
0 Σt( ~X−s~Ω,E)ds. (1.5)

- the collision operator whose kernel is C( ~X, ~Ω′ � ~Ω, E ′ � E), describing

a collision at point ~X resulting in a change of direction and energy from
(~Ω′, E ′) to (~Ω, E) and such that

C
(
~X, ~Ω′ � ~Ω, E ′ � E

)
=

1

Σt

(
~X,E ′

)Σs

(
~X, ~Ω′ � ~Ω, E ′ � E). (1.6)

- T (P ′ � P ) the transport kernel giving the density of particles passing

through point P ′ = ( ~X ′, ~Ω′, E ′) that will emerge from their next collision

at point P = ( ~X, ~Ω, E). It is the product of the displacement and collision
operator’s kernels:

T (P ′ � P ) = D( ~X ′ � ~X, ~Ω′, E ′)C( ~X, ~Ω′ � ~Ω, E ′ � E). (1.7)

The transport kernel T is sometimes denoted by K in the literature. We can
now derive from Equation (1.3) the integral equation satisfied by ψ(P ):

ψ(P ) =

∫
ψ(P ′)T (P ′ � P )dP ′ +

∫
Q(P ′)D( ~X ′ � ~X, ~Ω, E)dP ′, (1.8)

which is an inhomogeneous Fredholm equation of the second kind [9].

24



1.2. MONTE CARLO RESOLUTION

1.1.4 Neumann series expansion

It can be shown that Equation (1.8) admits a unique solution ψ, which may
be expanded as a Neumann series [10]:

ψ(P ) =
∞∑
n=0

ψn(P ), (1.9)

where

ψ0(P ) =

∫
D(P ′ � P )Q(P ′)dP ′ (1.10)

and for any n ≥ 1

ψn(P ) =

∫
T (P ′ � P )ψn−1(P ′)dP ′. (1.11)

In the Neumann expansion, each of the terms ψn(P ) in Equation (1.9) can be
interpreted as the contribution to ψ(P ) of particles having undergone n collisions
between the source and the point P . Therefore, the reconstruction of every event
taking part in the particles propagation allows for a numerical estimation of the
particle flux.

1.2 Monte Carlo resolution
Let us consider a subset D of the phase space, which we will refer to as the

detector. The purpose of the simulation is to estimate a response R(D) associated
to the detector, which is the measurement of a physical quantity of interest inside
D and is defined as

R(D) =

∫
P∈D

gR(P )φ(P )dP, (1.12)

where gR is the response function associated to the response R. For example, if R
is the flux, gR = 1. For a reaction rate, gR(P ) = Σt(P ). Substituting the collision
density into this equation, we obtain for any response R:

R(D) =

∫
P∈D

gR(P )

ΣtP
ψ(P )dP. (1.13)

In practice, the Monte Carlo method for particle transport consists in :

- determining the source point(s) of the simulation

- defining the rules for the statistical process of displacement and collision
for the simulated particles, according to the displacement and collision op-
erators used in Equation (1.8)
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- realizing n distinct runs of the process: n independent particle histories are
simulated

- defining a random variable R̂(D) such that E(R̂(D)) = R(D). R̂(D) is called
score and is an unbiased estimator of the response R(D). It is computed
using all parts of particle trajectory that are in D.

In order to compute the expected value of R̂(D), n distinct runs of the statistical
process are performed, so that the Central Limit Theorem provides an average
score associated with a confidence interval.

1.2.1 Particle tracking process

The statistical process governing the construction of particle histories is com-
posed of two parts: the displacement sampling and the collision sampling. If the
displacement does not result in the particle leaking out of the simulated space,
a collision is sampled according to the properties of the medium. If the particle
is not absorbed, a new displacement is sampled, and then another collision, etc.
This process is shown in Figure 1.1.

Start of
history

Flight length
sampling

Transport

Inside geometry

Collided
nucleus

sampling

Interaction
sampling

Outgoing
~Ω and E
sampling

Scattering

Absorption

Leaving geometry

Leakage

Boundary
condition

End of history

Figure 1.1. Schematic representation of the simulation of a particle
history using the Monte Carlo approach in a homogeneous medium.
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1.2. MONTE CARLO RESOLUTION

The probability density functions for displacement and collision are derived
from the corresponding expressions of the displacement and collision kernels
(Equation (1.5) and (1.6)). We present in the following the sampling laws ob-
tained for a particle travelling in a homogeneous medium. As most of the simu-
lated problems implies the simulation of heterogeneous geometries, the standard
procedure for Monte Carlo particle transport simulations is to divide the simu-
lated three-dimensional space into multiple volumes, each of which is assumed to
be homogeneous. The process for particles that crosses boundaries between those
volumes will be discussed at the end of this section.

Flight length sampling

Under the assumption that the transport is bounded to a single volume, the
cross section at any point ( ~X, ~Ω, E), with ~X inside the volume, depends only on

the energy. Consequently, we have for the displacement kernel from point ~X ′ to
point ~X = ~X ′ + x~Ω:

D
(
~X ′ → ~X, ~Ω, E

)
= Σt(E)e−xΣt(E), (1.14)

meaning that the distance x travelled by a particle between two interactions with
the medium is exponentially distributed with a probability density function:

f(x,E) = Σt(E)e−xΣt(E)1x>0, (1.15)

whose associated repartition function is:

F (x,E) =

∫ x

0

f(x′, E)dx′ = [1− e−xΣt(E)]1x>0. (1.16)

Therefore, a particle displacement length can be sampled by sampling an
uniformly distributed random variable ξ on the unit interval and using the inverse
of F :

x = F−1(ξ, E) = − 1

Σt(E)
ln(1− ξ). (1.17)

Collision sampling

Once the particle has been moved a distance x in the direction Ω, a collision
has to be sampled. The collision kernel from Equation (1.6) can be rewritten

C(~Ω′ → ~Ω, E ′ → E) =
1

Σt(E ′)
Σs

(
~Ω′ → ~Ω, E ′ → E). (1.18)

A homogeneous medium is actually a homogeneous mixture of nuclides. The
collision kernel can be expressed in terms of the total macroscopic cross sections
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Σj,t of each nuclide j, and of the cross section of each interaction i, denoted for
nuclide j by Σj,i:

C
(
~Ω′ → ~Ω, E ′ → E

)
=
∑
j

Σj,t(E)

Σt(E)

∑
i

Σj,i(E)

Σj,t(E)
fj,i
(
~Ω′ → ~Ω, E ′ → E

)
, (1.19)

where fj,i
(
~Ω′ → ~Ω, E ′ → E

)
is the probability density function of going from

(~Ω′, E ′) to (~Ω, E) during a collision of type i on nuclide j. From this last formu-
lation, we derive the sampling procedure for the particle collision:

- sampling of the nuclide which the particle collides with: the nuclide j is
chosen with probability

Pj =
Σj,t(E)

Σt(E)
. (1.20)

- sampling of the reaction type: the reaction i is selected from all reactions
available for nuclide j with probability

Pj,i =
Σj,i(E)

Σj,t(E)
=
σj,i(E)

σj,t(E)
. (1.21)

- sampling of the direction ~Ω and energy E of the particle after the collision:
those parameters depend on the direction ~Ω′ and energy E ′ of the particle
before the collision, and are distributed with the probability density function
available in the nuclear data:

fj,i
(
~Ω′ → ~Ω, E ′ → E

)
. (1.22)

1.2.2 Case of geometry with multiple volumes

As discussed above, the geometry is most of the time divided into multiple
volumes, each of which is assumed to be homogeneous. Various procedures for
handling geometries consisting of multiple volumes can be found in [11]. The
process described in the following has been selected because it presents some ad-
vantages for the further use of the Adaptive Multilevel Splitting technique, which
will be discussed in Chapter 3.

As long as the particles travel and interact inside a single volume, the transport
process remains unchanged. However, it may also happen that a flight length
sampled for a displacement causes the particle to change volume. In that case,
the particle is placed at the boundary between the volumes, and a new flight
length is sampled from this point, using the characteristics and cross sections
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of the new volume. The corresponding adapted transport scheme is shown in
Figure 1.2.
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Figure 1.2. Schematic representation of the simulation of a particle
history using the Monte Carlo approach in multiple volumes.

1.2.3 Score definitions

The purpose of a fixed-point Monte Carlo simulation is to compute an estimate
of a response function within an area of interest. This estimate is computed by
counting particle-related events occurring in the area of interest, such as collisions
or displacement lengths, to which we refer as ”contributions” to the estimation.
We refer to the couple estimator/area of interest as a ”score”. There are many
different scores that can be evaluated in Monte Carlo simulations. In the follow-
ing, we present the most common responses and the associated estimators: the
particle flux either in a volume or at a surface, the particle current and the reac-
tion rates.

One can compute multiple scores in a single Monte Carlo simulation: either
various responses in the same area of interest (for example a particle flux in a
detector and particle current at the detector’s boundary), or the same response
in various locations (like a reaction rate estimated in multiple volumes).
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Particle flux in a volume

A particle flux is defined as the number of particles travelling through a unit
area per unit time. It is therefore expressed in cm−2s−1. In fixed-point Monte
Carlo simulations, it is common to disregard the time dependency of the prob-
lem. Most of the time, we assume that the particle sources emit one particle per
second, and that the particle transport is instantaneous, thus obviating the time
dependence in the simulation as well as in the result.

There are two standard estimators that can be used to estimate the particle
flux in a volume. The first one is the track-length estimator, which computes the
score as the total distance travelled by the particles in the volume of interest (in
cm), divided by the number of simulated particles and the volume of the detector
area (in cm3):

φ̂TRACK =
1

nV

n∑
i=0

li, (1.23)

where n is the number of source particles, V the volume of the detector area and
li the distance travelled by particle i in the volume of interest (which is therefore
the ”contribution” of particle i to the score).

The second estimator of the flux in a volume is the collision estimator, which
estimates the particle flux by counting the number of collisions in the detector
area and multiplying this value by the mean distance travelled by a particle
between two collision points in the volume of interest, which is the multiplicative
inverse of the total cross section in the detector. We have therefore

φ̂COLL =
1

nV

n∑
i=0

ci
Σt

, (1.24)

where ci is the number of collisions undergone by particle i in the volume of in-
terest, and Σt is the total cross section in the detector.

The collision estimator is a priori less precise that the track-length estimator,
especially in low-density media in which the collision probability is low. How-
ever, it is slightly simpler to compute, as it does not require to evaluate travelled
distances between collisions and interfaces of volumes. This property can for ex-
ample be interesting to estimate a flux in the cells of a mesh covering part of the
geometry.

Particle current and surface flux

The estimator used to evaluate the particle current at a surface is simply the
number of particles crossing the surface divided by the number of source particle
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and the surface area.

ĴSURF =
1

nA

n∑
i=0

1S(i), (1.25)

where 1S(i) is 1 if particle i crossed the surface, and zero otherwise.

It is also possible to evaluate the particle flux through a surface, in which case
the contribution of each particle crossing the surface is computed as the cosine
of the angle between the particle direction and the normal vector of the surface:

φ̂SURF =
1

nA

n∑
i=0

1S(i)

~Ωi~nS
, (1.26)

where ~Ωi denotes the direction of particle i at the crossing point and ~nS is the
unit normal vector of the surface.

Reaction rates

The reaction rate is estimated in a volume as the average number of interac-
tions taking place per cubic centimeter per second. It is computed as the product
between the particle flux in the volume and the cross section of the reaction of
interest. For reaction j (total, absorption, etc.), we have

Rj = Σjφ, (1.27)

and the associated Monte Carlo estimator:

R̂j = Σjφ̂, (1.28)

where φ̂ can be either the track-length or collision estimator of the flux.
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Chapter 2

Variance reduction techniques

This chapter is devoted to the presentation of several variance reduction tech-
niques. This description is not meant to be exhaustive, but rather focused on the
methods implemented in the transport code TRIPOLI-4, around which this thesis
work revolved. The purpose of this chapter is to introduce the state of the art, as a
frame to help the reader understand the starting point of this Ph.D. work. To that
end, the last section of this chapter consists in the presentation of the Adaptive
Multilevel Splitting algorithm, in a formalism adapted to the simulation of dis-
crete Markov chains. It should be noted however that the theoretical description
made in this section is not a mandatory step to understand how the method works
when applied to particle transport, which will be the main objective of Chapter 3.

2.1 Motivation
In a Monte Carlo particle transport simulation, the limiting factor is the num-

ber of histories that need to be simulated in order to get a result with a reasonably
small confidence interval. In the case of radiation shielding simulations, we are
interested in the simulation of rare events, whose occurrence probabilities are
typically between 10−5 and 10−20. Only a few simulated histories will therefore
contribute to the response associated to such events, resulting in either a large
statistical error on the result, or a very long computation time.

Variance reduction methods were introduced in order to tackle this issue.
They aim to alter the simulation process, in order to reduce the variance on
the estimated score for a given computation time. In the following, we will refer
to simulations without variance reduction as analog. There are three ways for a
variance reduction technique to modify the simulation:

- To control the particle population, by increasing/decreasing it in areas of
high/low interest

- To modify the occurrence probability of certain physical processes in order
to increase the probability for a particle history to contribute to the score
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- To replace parts of the Monte Carlo simulation by deterministic calculations
to improve the overall computation time

Obviously, the modifications induced by the methods of the first two cate-
gories must be balanced in order to keep an unbiased estimation of the response.
Indeed, a non-analog Monte Carlo simulation will hopefully provide many more
contributions to the score than an analog simulation. This problem is addressed
by assigning a so-called weight to the altered trajectories. The contribution of any
weighted particle to the score will then be multiplied by the particle’s weight, thus
ensuring that the simulation result remains unbiased.

2.2 Figure of merit
The efficiency of a variance reduction method is based on two quantities: the

variance on the estimated result σ2, and the computation time t (CPU time).

The variance, as the square of the standard deviation σ, varies with the inverse
of the number of simulated histories n:

σ2 ∼ 1

n
. (2.1)

On the other hand, the computation time is directly proportional to n, pro-
vided that the number of simulated particles is large enough to smooth out the
differences of computation time between two distinct particle trajectories. As a
result, the product σ2 × t is independent of the number of simulated particles,
and can be used to compare the efficiency of two simulations. To this end, the
figure of merit (or FOM) is defined as

FOM =
1

σ2t
, (2.2)

as a measurement of the simulation efficiency. The higher the FOM, the greater
the performances of the simulation.

2.3 Exponential Transform

The Exponential Transform [12], derived from the Exponential Biasing (or Im-
portance Sampling), is the reference variance reduction method of the transport
code TRIPOLI-4 [13]. It is based on the use of a so-called importance function,
which is an arbitrary function associating any point of the phase space to an
importance value I( ~X, ~Ω, E) ∈ R, quantifying whether or not a particle located

at point ( ~X, ~Ω, E) is of interest to the simulation. The purpose of exponential
transform is to build a biased game, which means a stochastic process that has
the same global behaviour as an analog simulation, but with different operators.

We recall the linear Boltzmann equation satisfied by φ, in its integro-differen-
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tial formulation (see Section 1.1.2):

~Ω.~∇φ
(
~X, ~Ω, E

)
+ Σt

(
~X,E

)
φ
(
~X, ~Ω, E

)
=∫∫

Σs

(
~X, ~Ω′ → ~Ω, E ′ → E

)
φ
(
~X, ~Ω′, E ′

)
d~Ω′dE ′ +Q

(
~X, ~Ω, E).

(2.3)

We define the biased flux φ? such that for any point of the phase space,
φ?( ~X, ~Ω, E) = I( ~X, ~Ω, E)φ( ~X, ~Ω, E). We can rewrite Equation (2.3) to get an
equation on φ?:

~Ω.~∇φ?
(
~X, ~Ω, E

)
+

(
Σt

(
~X,E

)
− ~Ω.

~∇I( ~X, ~Ω, E)

I( ~X, ~Ω, E)

)
φ?
(
~X, ~Ω, E

)
=∫∫

Σs

(
~X, ~Ω′ → ~Ω, E ′ → E

) I( ~X, ~Ω, E)

I( ~X, ~Ω′, E ′)
φ
(
~X, ~Ω′, E ′

)
d~Ω′dE ′

+Q
(
~X, ~Ω, E)I( ~X, ~Ω, E).

(2.4)

We now introduce for any point ( ~X, ~Ω, E) of the phase space the following
quantities:

- ~Ω0 =
~∇I( ~X,E)

‖~∇I( ~X,E)‖ ,

- κ( ~X,E) = |~∇I( ~X,E)|
I( ~X,E)

,

- Σ?
t ( ~X, ~Ω, E) = Σt( ~X, ~Ω, E)− κ( ~X,E)~Ω.~Ω0,

- Σ?
s( ~X, ~Ω

′ → ~Ω, E ′ → E) = I( ~X,E)

I( ~X,E′)
Σs( ~X, ~Ω

′ → ~Ω, E ′ → E),

which we then substitute in Equation (2.4) in order to obtain

~Ω.~∇φ?
(
~X, ~Ω, E

)
+ Σ?

t

(
~X, ~Ω, E

)
φ?
(
~X, ~Ω, E

)
=∫∫

Σ?
s

(
~X, ~Ω′ → ~Ω, E ′ → E

)
φ?
(
~X, ~Ω′, E ′

)
d~Ω′dE ′ + I

(
~X, ~Ω, E

)
Q
(
~X, ~Ω, E).

(2.5)

Equation (2.9) written in this manner has the same form as Equation (1.2).
It is simply the linear Boltzmann equation, but with biased operators: Σ?

t instead
of Σt, Σ?

s instead of Σs and I ×Q instead of Q.

The Exponential Transform method is restrained to the biasing of the displace-
ment operator, while the collision sampling remains unchanged. This is obviously
not optimal, but the collision biasing requires heavy implementation, while the
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displacement biasing simply consists in tampering with the displacement sam-
pling procedure by substituting the biased cross section Σ?

t = Σt − κ~Ω. ~Ω0 for
the total cross section Σt. Since the parameter κ is always positive, Σ?

t is smaller

than Σt when the particles have a direction oriented towards ~Ω0, and greater when
they go in the opposite direction. Therefore, the flight lengths are stretched for
the particles going in the direction of the importance gradient, and shortened for
those directed the way opposite. Consequently, the particles are drawn towards
the areas of greater importance, thus helping the simulated particles to reach
areas of interest if the importance function I is well-defined.

The response associated to the biased flux is, according to Equation (1.12),

R?(D) =

∫
( ~X,~Ω,E)∈D

g?R
(
~X, ~Ω, E

)
φ?
(
~X, ~Ω, E

)
d ~Xd~ΩdE

=

∫
( ~X,~Ω,E)∈D

g?R
(
~X, ~Ω, E

)
φ
(
~X, ~Ω, E

)
I
(
~X,E

)
d ~Xd~ΩdE. (2.6)

Since the response estimated using the biased game should be the same as the
response estimated with an analog simulation, we have

g?R
(
~X, ~Ω, E

)
=
gR
(
~X, ~Ω, E

)
I
(
~X,E

) . (2.7)

In other terms, every contribution to the score obtained during the biased
simulation should be weighted by a factor

wET =
1

I
(
~X,E

) , (2.8)

which is handled in practice by the corrective weights of the particles.

The choice of an appropriate importance function lies at the heart of the
exponential transform method. There are multiple ways to obtain an importance
function. The most interesting candidate however is the solution of the adjoint
equation [4, 10]:

−~Ω.~∇φ†
(
~X, ~Ω, E

)
+ Σt

(
~X,E

)
φ†
(
~X, ~Ω, E

)
=∫∫

Σs

(
~X, ~Ω→ ~Ω′, E → E ′

)
φ†
(
~X, ~Ω′, E ′

)
d~Ω′dE ′ +Q†

(
~X, ~Ω, E).

(2.9)

where Q† is the adjoint source of the problem (related to the detector response).
The solution φ† of this equation is called the adjoint flux, which is for any given
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point of the phase space the average flux that would be generated by a particle
placed at this location.

It can be shown that if the adjoint flux is used as importance function, the
variance on the associated flux estimate is zero or nearly zero whatever the num-
ber of simulated particles. In any case, the computation of the adjoint flux is a
problem at least as complex as the resolution of the direct equation.

However, using an approximation of the adjoint flux as importance function
for the Exponential Transport method may be sufficient to efficiently reduce the
variance without requiring the simulation of too large a number of particle histo-
ries. In this view, TRIPOLI-4 has a module called INIPOND that automatically
pre-computes an importance map to be used during the biased simulation [14].
INIPOND approximates the adjoint flux on a discretized space and energy mesh,
by using an analogy with a one-dimensional problem. This module and the im-
portance map it generates will be used and discussed in Chapter 3.

2.4 Implicit capture
One of the possible causes of rare events is the presence of a highly absorbing

material in the simulated space. Indeed, a simulated particle entering such a ma-
terial has a low probability of ever coming out. It can therefore be interesting to
reduce the probability for a simulated trajectory to end in a capture, and rather
let the associated particle explore the geometry further. This can be done using
implicit capture.

Implicit capture simply consists in replacing capture events (and more gener-
ally absorption events) by scattering events. The corrective weight associated to
the implicit capture is the non-absorption probability associated to the collided
nucleus. The weight of a particle entering a collision on a nucleus j at point P
has to be multiplied by a factor

wIC = 1− σj,a
σj,t

=
σj,s
σj,t

, (2.10)

where σj,a is the microscopic absorption cross section for nucleus j, and σj,s its
microscopic scattering cross section.

The removal of all the absorption processes allows for longer particle trajecto-
ries, but then no event can be sampled to stop the particles transport except for
the leakage out of the geometry or of the energetic domain of simulation. There-
fore, the implicit capture has to be associated with another method capable of
ending the particle histories. This can be done using weight control methods [15].

2.5 Weight control
The purpose of weight control is to limit the discrepancies in the weight distri-

bution among the particles. Whenever weights are introduced in a Monte Carlo
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simulation, the danger of having big discrepancies in the particle weight values
arises. If the weight of a particle becomes insignificant compared to the aver-
age contribution to the score, the computational resources spent to simulate the
transport of this particle may be considered as a waste. On the other hand, if a
particle happens to contribute to the score with a far greater weight than any
other, the estimation of the score and its variance becomes unstable, due to a
single contribution carrying most of the score.

The splitting and Russian roulette mechanisms are the most commonly used
tools to address these issues [10, 16]. Splitting is used to reduce the weight of
particles, while Russian roulette prevents them from dropping too low.

2.5.1 Splitting

The principle of the splitting technique [1] is to split a particle of weight w
into n distinct particles, each carrying a weight wj, j ∈ [1, n] such that

n∑
j=1

wj = w, (2.11)

in order to have a better exploration of the geometry while keeping the global
simulated weight constant.

In practice, the use of splitting in Monte Carlo transport simulation is not re-
strained to weight control. However, as the particles generated by splitting carry
only a fraction of their precursor’s weight, splitting can be used to prevent the
particles weights from diverging. In that case, a threshold weight wmax is defined,
as well as a splitting number n. Whenever a particle weight w becomes greater
than wmax, the corresponding particle is instantaneously split into n particles,
each carrying one n-th of the initial weight w.

A wider exploration of the phase space should help reduce the variance, but the
multiplication of the particles implies an increase in computation time. Nonethe-
less, a wise choice of the splitting parameters should allow for a significant increase
of the FOM.

2.5.2 Russian roulette

The Russian roulette [10, 16] aims at limiting the lifespan of particles that
are unlikely to yield a relevant contribution to the final score. It can therefore be
used as a weight control technique to stop the transport of particles carrying a
small weight.

Similarly as for the splitting technique, a threshold weight wmin has to be
defined. When the weight of a particle becomes lower than wmin, a random game
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is played to decide whether or not the particle is killed. Any particle of weight
w ≤ wmin is killed by the Russian roulette with probability

Pkill = 1− w. (2.12)

If the particle does survive the roulette, its weight is set to 1 in order to keep
the average particle weight equal to the particle weight before the triggering of
Russian roulette. In a more general setting, a survival weight ws > wmin can be
defined for the roulette, in which case the probability Pkill becomes

Pkill = 1− w

ws
, (2.13)

the weight of the surviving particles being set to ws instead of 1.

2.6 Adaptive Multilevel Splitting

A new variance reduction method has recently been proposed in the litera-
ture of applied mathematics [2]. Originally designed to help the simulation of
rare events associated to continuous Markov chains, it has been extended to dis-
crete Markov chains [3]. Consequently, there will be no mention of particles in this
section, whose purpose is to present a general theoretical setting of the AMS algo-
rithm. We present in this section the mathematical setting of the AMS algorithm
applied to discrete Markov chains, which is the most suitable version of the AMS
algorithm in view of a transposition to the field of particle transport. This choice
will be justified in Chapter 3 alongside the description of the practical implemen-
tation of AMS as a variance reduction method for Monte Carlo particle transport.

It should however be kept in mind that the version of the AMS presented in
this section fits perfectly the theoretical framework of [3], so that the estimator
of the rare event occurrence probability introduced in the following is unbiased.

The following description is extracted from an article written as part of this
Ph.D. and presented at the joint conference International Conference on Ra-
diation Shielding / Topical Meeting of the Radiation Protection and Shielding
Division of the American Nuclear Society (ICRS-13 & RPSD-2016) [17].

2.6.1 Objective and setup

Let X = (Xt)t∈N be a discrete-time Markov chain with values in Rd, d ∈ N∗.
We define P as the path space, containing all possible realisations of the Markov
chain X. Given D a subset of Rd, we define the entrance time of the Markov
chain X in D:

τD = inf{t ∈ [0; τf ] : Xt ∈ D}, (2.14)
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where τf is the final stopping time of the Markov chain X, which we suppose
almost surely finite.

Given an observable φD : P → R such that φD(X) = 0 on the event τf < τD,
we would like to estimate the average E(φD(X)) of φD. Let us suppose now that
the probability for (Xt) to enter D before τf is very small, i.e. P(τD < τf ) � 1.
Estimating E(φD(X)) requires to sample the rare event τD < τf . In such a case
of rare event simulation, the AMS algorithm proposes to reduce the variance of
the estimation of E(φD(X)) by increasing the number of Markov chains reaching
the subset D. AMS is an iterative algorithm that consists of several steps. The
first step is a basic Monte Carlo simulation of multiple replicas of the Markov
chain X with a given initial condition. Each of the following steps consists in the
resampling of some Markov chains among the replicas, with an initial condition
getting closer to D at each iteration of the algorithm.

2.6.2 The AMS algorithm

Importance function

We define a so-called importance function, mapping Rd to R:

ξ : Rd → R,

which is used to quantify the proximity of a point in Rd to the subset of interest
D. The only requirement on ξ is that there exists a constant Zmax ∈ R such that

ξ(x) ≥ Zmax if x ∈ D. (2.15)

We further define the importance of a realization X = (Xt)t∈N of the Markov
chain as the supremum of ξ along the chain:

I(X) = sup
t∈[0;τf ]

ξ(Xt). (2.16)

The ξ function is probably the most important ingredient of the AMS algo-
rithm, since it is used to quantify the proximity of a path to the subset D. It is
therefore important to choose a good function ξ with regards to the rare event we
are trying to simulate. Even if the AMS algorithm is proven to yield an unbiased
result regardless of ξ, the choice of an optimized importance function is expected
to improve the variance reduction efficiency.
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Initialization

The AMS algorithm consists in an evolving interacting system of weighted
replicas. Given n > 0, we simulate n i.i.d. replicas of the Markov chain X, denoted
by Xj

0 = (Xj
0,t)t∈N, j ∈ {1, . . . , n}. For all j, the initial state Xj

0,0 is a point x0

located outside D. We define Z0 as

Z0 = ξ(x0). (2.17)

Let us denote by q ∈ N the current iteration number, and by k the number of
replicas to be resampled at each iteration.Within an iteration of the AMS algo-
rithm, every replica has the same weight. The common weight at iteration q will
be denoted wq, with w0 set to 1.

For the sake of simplicity, we assume in the following that distinct paths
cannot have the same importance. The general case is discussed in Section 2.6.3.
Now we can start iterating on q ≥ 0.

Iterations

1. For each j ∈ {1, . . . , n}, denote by τ jq,f the stopping time of the Markov

chain Xj
q , and by Sjq its importance (See Equation (2.16)):

Sjq = I(Xj
q ). (2.18)

2. Sort the sample (S1
q , . . . , S

n
q ) in increasing order:

S(1)
q < . . . < S(k)

q < . . . < S(n)
q .

3. Denote by Zq+1 the k -th order statistics S
(k)
q :

Zq+1 := S(k)
q . (2.19)

4. If Zq+1 ≥ Zmax, stop iterating, set Q = q and go to the final step

5. For all j ∈ {1, . . . , k}, resample replica X
(j)
q according to the resampling

kernel described in the following, and denote it by Xj
q+1

6. For all j ∈ {k + 1, . . . , n}, define Xj
q+1 = X

(j)
q

7. Update the common weight:

wq+1 =
n− k
n

wq. (2.20)
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8. Increment q and go to step 1.

Resampling process

At each iteration of the AMS algorithm, k replicas are resampled. Let us de-
note the current iteration number by q and the associated resampling level by
Zq+1.

For each of the k replicas X(j), j ∈ {1, . . . , k} to be resampled, one of the re-
maining replica X(i), i > k is randomly selected for duplication. We know for sure
that the Markov chain (X

(i)
t )

t∈[0;τ
(i)
f ]

contains at least one state whose importance

is greater than Zq+1 (otherwise it would have been resampled). We can therefore
define

τ (i)
q = inf

{
t ∈ [0; τ

(i)
q,f ] : ξ(X

(i)
q,t ) > Zq+1

}
(2.21)

as the first time at which the replica X(i) has an importance greater than Zq+1.

The resampled Markov chain (Yt)t≥0 is defined as a copy of X
(i)
q,t for all t ∈ [0, τ

(i)
q ],

and is then completed independently using the original Markov kernel, up to the
stopping time τf . This resampled Markov chain replaces the original one X(j) for
the next iteration of AMS.

Final step

Once the algorithm stops iterating, Q is the number of completed iterations.
Given the bounded observable φD introduced in Section 2.6.1, we define φ̂D such
as

φ̂D =
wQ
n

n∑
j=1

φD(Xj
N). (2.22)

Since the algorithm described in this section and the construction of φ̂ fit the
theoretical framework of a Generalized Adaptive Multilevel Splitting algorithm,
we can apply Theorem4̃.1 of [3] (the ”unbiasedness theorem”), which states that

E(φ̂D) = E(φD(X)), (2.23)

so that φ̂D is an unbiased estimator of E(φD(X)).

2.6.3 Interpretation of the replicas weights

In this section we provide a practical interpretation of the AMS weights to
give an intuition on the estimator Equation (6.6). The mathematical proofs of
the unbiasedness and consistency of the AMS estimator are not presented here.
We refer the reader to [2] and [3] for theoretical support.
At each iteration q ≥ 0, the level Zq+1 is chosen in such a way that the probability
for a path Xj

q to have an importance greater than Zq+1 (i.e. P(Sjq ≥ Zq+1|Sjq ≥
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Zq)) is estimated by

p̂q = 1− k

n
. (2.24)

Keeping that in mind, we can see that the weights of the replicas at iteration
q + 1 are nothing more than an estimate of the probability P(Sjq+1 ≥ Zq+1).
In other words, the AMS algorithm provides us at each iteration q with a set of
paths Xj

q , j ∈ {1, . . . , n}, carrying a common weight, which can be interpreted as
an estimate of the probability to have this particular set of paths instead of the
paths sampled at iteration 0.

2.6.4 About the number of resampled replicas

The algorithm presented in Section 2.6.2 is an ideal case. In reality, it may
occur that multiple replicas have the same importance. In that case, k should not
be seen as the number of resampled replicas, but rather as the parameter which
defines the splitting levels.

Indeed, the number of replicas having an importance less or equal to the k-th
lowest importance may very well be greater than k. When such a situation arises,
every path whose importance is less or equal to the level has to be resampled
[3].

This modification has to be taken into account in the replicas weights. If
the current iteration is the q-th and the number of particles to be resampled is
Kq ≥ k, then the weight update at step 7 of the algorithm has to be changed to:

wq+1 =
n−Kq

n
wq. (2.25)

In some pathological configurations, all the replicas may happen to have the
same importance, which leads to extinction at the next iteration. In such a case,
the iterating process is interrupted and the algorithm goes straight to the final
step (See Section 2.6.2), eventually yielding a null contribution.
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Part II

Adaptive Multilevel Splitting for

Monte Carlo particle transport
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Chapter 3

Adaptation of the AMS

algorithm to particle transport

Every Monte Carlo transport code relies on the particle tracking routine,
which simulates the random trajectories of the particles by transporting them
from one interaction to another, until they are absorbed or leak out of the geom-
etry.

The purpose of this chapter is to introduce AMS to the field of particle trans-
port, and show that it can be used as an effective variance reduction technique in
this new context. To do so, we first present a practical reformulation of the AMS
algorithm that takes the notions of particles and particle tracks into account. In
a second part, we introduce the MENHIR prototype, a simplified Monte Carlo
simulation code that was specifically designed to test the AMS implementation
in the context of particle transport. The last section of this chapter is devoted to
the presentation and analysis of some of the results obtained with MENHIR.

3.1 Applicability of AMS to particle transport

As described in Section 1.2, the simulation process of particle transport is
such that at any given time in the particle life, the position and characteristics
of the next interaction can be determined using only the particles coordinates
(position, direction, energy) and the medium properties. This implies that the
random process of particle transport can be seen as a discrete-time markovian
process. Let us refer to the sequence of the phase-space coordinates of a particle
(namely position, direction and energy) at each interaction with the medium as
the particle’s track. During the transport, the track of each transported particle
is built step by step, one interaction after the other, using only the knowledge
available from the last point of the track. The particle tracks are therefore Markov
chains, so that the AMS algorithm described in Section 2.6.2 can be implemented.
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TRANSPORT

We mentioned in Section 2.6 the existence of several versions of the AMS algo-
rithm. Indeed, the AMS algorithm we presented in Section 2.6.2 can be adapted
to handle continuous Markov chains (which is actually its original framework).
Particle trajectories can very well be considered as continuous Markov processes,
since a particle transport can be stopped and resumed even between collision
points. However, the use of the continuous version of AMS is troublesome in our
case for two reasons: on the one hand, it requires to evaluate particle importances
continuously between collision points, which complicates the computation process
if the importance function is nonlinear. On the other hand, the collision sampling
process implies brutal changes of direction and energy at collision points, which
may induces discontinuities in the importance along the particle trajectory for
angular and/or energy dependent importance functions.

Using the discrete formulation of AMS however, the importance of a particle
trajectory can easily be computed by evaluating the particle importance at each
collision point.

3.2 Practical AMS formulation

In the context of particle transport, the initialization step of the AMS algo-
rithm consists in the analog simulation of a set of independent particles. Then,
the AMS algorithm starts iterating until the stopping criterion is met. Each AMS
iteration consists in two steps: first, the set of particles is sorted with regard to
the particle importances (See Section 3.2.1). Then, the lowest-rated particles are
resampled by splitting the other tracks as described in Section 3.2.2. The param-
eter k that is used to define the splitting level is defined before the first iteration
and remains constant throughout the simulation.

In Monte-Carlo particle transport simulations, the particles are usually gath-
ered into batches, which are simulated one after the other. The mean score is
computed as the empirical mean of the scores of each batch, and the associated
standard error σ as the standard deviation of the batch scores divided by the
square root of the number of batches minus 1. By analogy to other simulations,
we will refer to an entire AMS simulation (initialization+iterations+final step)
as a batch, so that the mean score is computed as the empirical mean of the AMS
estimations of each batch.

3.2.1 The sorting step

Importance functions

In order to use the AMS algorithm, one has to be able to determine which
regions of the geometry are of interest to the simulation. Therefore, an importance
function has to be associated to the geometry. This function maps any point of
the phase space to an importance value, related to the probability for a particle
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located at a given point P to contribute to the final score. We denote it by

I(P ) = I( ~X, ~Ω, E), (3.1)

where ~X, ~Ω and E are the position, direction and energy of the point P , respec-
tively.

It has to be noted that within AMS, this function is only used to rank the
particles with respect to one another, so that the value of the importance at a
given point does not need to be meaningful on its own. This property is one of
the strengths of the AMS algorithm, as it allows for the use of trivial importance
functions for any problem, such as the inverse of the distance to the area of in-
terest.

It is believed (although up to now without any theoretical proof), that the ad-
joint score of the problem is the most efficient importance function for AMS. The
adjoint score at a given point of the phase space is defined as the average score
generated in the area of interest by a particle emitted from this point. Therefore,
it gives the most precise indication concerning the interest of a particle located
at a given point with regards to the score.

However, the determination of the adjoint score is a problem at least as com-
plex as the estimation of the direct score. Furthermore, if one has access to the
adjoint score, the solution of the direct problem is directly available as the value
of the adjoint score at the source point, obviating the need to perform the simu-
lation in the first place. As the AMS is robust with regards to the imperfections
of the importance map, an approximation of the adjoint score seems to be a good
importance function candidate for the AMS algorithm.

Particle tracks importance

In order to sort the particles, a value of importance has to be attached to each
of the particle tracks. When a new particle is simulated, a track is created. We
denote by P0 = ( ~X0, ~Ω0, E0) the emission point of a particle, and the first point
of its track. This particle travels along straight lines between collisions with the
medium, each collision resulting either in the absorption of the particle or in a
scattering event resulting in a random change of the particle direction and energy.
If the particle undergoes N collisions before being absorbed or leaking out of the
geometry, we define its track T as follows:

T = (P0, . . . , PN), (3.2)

where Pi = ( ~Xi, ~Ωi, Ei) represents the properties of the particle outgoing its i-th
collision with the medium. Using these notations, we introduce the importance
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of a particle track as:
I(T ) = max

i∈[0,N ]
I(Pi). (3.3)

We show in Figure 3.1 a particle track T . In this example, we assume that the
importance of a point is given by its abscissa x. Therefore, the track importance
I(T ) is that of the rightmost point.

×
P0

P1+

P2+

P3
+

×
P4

I(P0) I(T )

x

Figure 3.1. Illustration of a particle track and associated importance.

Importance function requirement

Theoretically, there is only one requirement on the importance function (Equa-
tion (2.15)). We designed a trick to ensure that this requirement is always met
whatever the importance function: any point within the area of interest is given
a numerical infinite importance. Furthermore, when a particle enters the area of
interest, the entry point is retrieved and appended to the particle track, also with
infinite importance). Thus, if a particle goes through the area of interest without
colliding in it, it would still have an infinite importance and would never be re-
sampled.

With this technique, if a particle that reached the area of interest is selected
for duplication, the splitting takes place at the boundary and not inside the area
of interest, which means that the contribution of the selected track has not to be
duplicated (since the particles outside the area of interest do not contribute to
the score).

Definition of the splitting level

Let n be the number of simulated particles, k the minimum number of tracks
to be resampled per iteration and q the index of the current iteration.

After the n particles have been absorbed or have leaked out of the geometry,
the AMS algorithm computes the importance I(Tj), j ∈ [1, n] of each particle
track (see Equation (3.3)). The splitting level Zq is then defined as the k-th
smallest value in the sample (I(T1), . . . , I(Tn)). Each particle track having an
importance less or equal to Zq is deleted, and the number Kq of suppressed
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particles at this iteration is kept in memory. Kq is by construction larger than k,
and could be strictly larger if multiple tracks have the same importance.

3.2.2 The splitting step

Resampling process

Once the sorting step of iteration q is over, the AMS proceeds to the resam-
pling of the Kq particle tracks that have been deleted from the simulation, so
that n distinct tracks are available for the next iteration of the algorithm.

For each of the particles to be resampled, one of the n−Kq remaining tracks
is selected. The probability distribution for the choice of the track to duplicate is
uniform and with replacement. Let us denote by Tj = (Pi), i ∈ [0, Nj] one of the
selected tracks. The emission point Psplit of the new particle is then defined as:

Psplit = inf {i ∈ [0, Nj] : I(Pi) > Zq} , (3.4)

which is the first point of the track Tj having an importance strictly greater than
Zq. The resampled particle is simulated from the point Psplit, and a new track is
filled with its collision points.

AMS global weight

The resampling process splits Kq particle tracks among a set of n−Kq tracks,
therefore all particles weights have to be weighted at the end of iteration q by a
factor

Wq = 1− Kq

n
(3.5)

to ensure unbiasedness [2, 3].

In practice, the cumulated weight factor due to the AMS process from itera-
tions 1 to q is the same for each particle, and can be stored in a global weight

wq =

q∏
i=1

Wi

=

q∏
i=1

(1− Ki

n
). (3.6)

3.2.3 Scoring step

The AMS algorithm stops at the end of iteration q if n−Kq +1 particles have
reach the area of interest (i.e. Zq+1 is equal to numerical infinite). An estimator

can be constructed for any score φ in the area of interest. If we denote by φ̂MC
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the value estimated using a standard Monte Carlo estimator, then

φ̂AMS = wq × φ̂MC (3.7)

is an unbiased estimator of the quantity E(φ(X)) [3].

3.2.4 Optimization

Crossing points

Most of the time, the geometries considered are composed of many regions,
each of these regions having specific properties that impact the particle transport
(travel length, collision probabilities,...). When a particle passes from one region
to another during a flight, it can be stopped as it crosses the interface between
the regions, and a new flight length is resampled from this crossing point, taking
into account the properties of the entered region.

In that case, the characteristics of the particle at the crossing point depend
only on the coordinates of the particle at the last collision point and on the
physical properties of the first region. Similarly, the next collision point can be
determined based solely on the coordinates of the particle at the crossing point
and the physical properties of the second region.

Consequently, if the crossing points are added to the particle track in the same
manner as real collision points, the enriched track remains a Markov chain. The
AMS can thus be used on the enriched tracks [3]. This allows for a more precise
estimation of tracks importances, as it adds an importance estimation between
some collision points without any additional computing. This property can also
be used to improve the knowledge of the track importance within a single volume
by adding virtual surfaces in it (or simply by dividing it in sub-volumes).

Track storage

One of the downsides of the AMS algorithm is that it requires a priori to keep
the particle tracks accessible in memory at all times. However, it is not manda-
tory for the algorithm to store every point of the tracks.

The points composing the tracks are used in two ways during the AMS iter-
ations:

- To compute the importance of the track

- To define the splitting points during the resampling process

In order to avoid going through the importances of all points composing a
track to find the maximum value and define the importance of the track, an
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importance value can be assigned to each particle before their transport. Each
time a point is added to the particle’s track, the previous particle importance is
compared to the new point importance, and updated if necessary. By means of
the particle importance, there is no more need to keep every collision points in
the track in order to compute the track importance.

Furthermore, we can see that according to Equation (3.4), the splitting point
on a given track is defined as the first point of the track which importance is
greater than the current AMS splitting level. This means that the only points
that may be chosen for splitting are those having an importance greater than
any preceding point on the track. There is consequently no need to store a point
in the track if the point importance is less than the importance the particle had
when reaching it.

In the following implementations of the AMS algorithm, the tracks will only
contain points of increasing importance, and the importance of the tracks will be
computed on the fly.

Parallelization

Since a Monte Carlo particle transport simulation is made of a large number
of independent batch simulations, the standard parallelization of such codes is
simply performed by running batches in parallel while a collector thread man-
ages the gathering of each thread’s results. This procedure can be optimized by
sharing data concerning the geometry, materials, and other global variables.

Concerning AMS for particle transport, a straightforward way of paralleliz-
ing the calculations is to run independent AMS simulations on distinct threads,
each handling alone the initialization, iterations and final step. One may con-
sider other options to parallelize AMS calculations, like using multiple threads at
each resampling step to transport simultaneously all new replicas. However, since
simulations using the AMS algorithm still require to perform multiple indepen-
dent batch simulations, no options appears to be more efficient than to run the
batches on distinct threads and collect the estimations of each batch afterwards
to compute the average result.

3.3 The MENHIR prototype

In order to test the feasibility of implementing the AMS algorithm in a par-
ticle transport code, we decided to use a toy model depicting a geometry in
which analytical reference results can easily be computed. The problem consists
in an isotropic source of monoenergetic particles within an infinite homogeneous
medium. The source is placed at the centre of a spherical shell in which the particle
flux is estimated. A simplified Monte Carlo transport prototype, called MENHIR,
has been developed to simulate this problem. MENHIR has been specifically de-
signed for AMS testing, allowing for an easy implementation and validation of
the algorithm.
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Figure 3.2. MENHIR geometry.

3.3.1 Physics

The physics simulated in MENHIR is very simplified.The transported par-
ticles are monoenergetic. They travel at constant speed and undergo only two
types of collision: absorption and isotropic scattering. As the medium composing
the geometry is homogeneous, the absorption and scattering events occur with
constant probability rates. The associated cross sections are denoted Σa and Σs,
such that

Σt = Σa + Σs. (3.8)

When a particle is absorbed, transport is over and the particle’s history is
terminated. On the other hand, a particle undergoing a scattering event remains
alive but changes direction at random. The angular distribution of particles out-
going a scatter is isotropic.

These assumptions allow for an easy prototyping of the AMS algorithm. Fur-
thermore, the flux in the target shell can be analytically computed, which pro-
vides a reference value to validate the AMS implementation. Details concerning
the computation of the analytical solution can be found in Appendix A.

3.3.2 Code structure

MENHIR is written in C++. It is composed of 6 files, accounting for roughly
1100 lines of code. MENHIR is object oriented and divided into 4 classes: Point,
Vector, Geometry and Particle.

- The Point and Vector classes are basic classes containing three-dimensional
coordinates, as well as methods returning for example the distance of a given
point to the source, the norm of a vector, sampling methods to generate
isotropic vectors, etc.

- The Geometry class handles cross sections, sampling procedures for the
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flight length and collision type as well as methods computing importance
values.

- The Particle class holds everything relevant to a given particle: coordinates,
track, as well as the method that determines the position of splitting points.

MENHIR is capable of performing both analog and AMS simulations. The code
is executed using a simple command line, in which the simulation parameters can
be modified. The particle source point is fixed and always located at the origin
of the coordinate system (0, 0, 0). The free parameters of the simulation are:

- The simulation type (AMS or ANALOG)

- The total cross section Σt (in cm−1)

- The scattering probability Σs
Σt
∈ [0; 1[

- The distance between the source point and the target shell

- The thickness of the target shell

- The number of batches

- The number of particles per batch

- The minimum proportion of deleted particles by iteration (AMS only)

- The importance function to be used for tracks classification (AMS only)

3.3.3 Transport process

Before presenting and discussing the results obtained using MENHIR with
various parametrizations, we describe here the particle transport and the AMS
process within MENHIR. The pseudo-code for the analog transport process can
be found in Algorithm 1.

A particle is emitted at point (0, 0, 0) with an isotropically sampled direction
~Ω. A flight length d is sampled from the exponential distribution of parameter Σt.
If this flight length is long enough for the particle to cross the boundary of the
target shell, the particle is moved to the shell’s boundary and a new flight length
is sampled. Otherwise, the particle is moved of distance d in the direction ~Ω, to
the location of its first collision site. The particle is absorbed with probability Σa

Σt
.

If it is not absorbed, the particle is scattered towards a new isotropically sampled
direction. The process is repeated until the particle is absorbed.

In a similar way as for the particles entering the target shell, if the flight
length of a particle within the shell is long enough for the particle to exit the
shell, the particle is moved to the exterior boundary, and a new flight length is
sampled from here. The consideration of such interface crossing points allows for
an easy scoring of the track estimator: the particle tracks that contribute to the
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flux are actually already divided into parts that are either completely within the
shell or completely out of it.

Algorithm 1: Pseudo-code for analog particle transport in MENHIR.

1 while particle is alive do
2 sample flight length;
3 if entering or leaving target shell then
4 move particle to target boundary ;
5 if leaving then update track length estimator ;

6 else
7 move particle to collision site ;
8 if collision in target shell then
9 update track length estimator ;

10 update collision estimator ;

11 end
12 solve collision;

13 end

14 end

The particle transport process in the case of an AMS simulation is only altered
by the storing of the particle tracks and the computation of the track importances,
and remains otherwise unchanged. The entry points of particles in the target shell
are given a numerically infinite importance so as to ensure that the requirement
on the importance function is met (see Equation (2.15) and Section 3.2.1). In
practice, MENHIR sets this importance to DBL MAX, which is in C and C++ the
value of maximum representable finite floating-point number and depends on the
system and compiler used. On our system, DBL MAX= 1.797 69e308.

MENHIR takes into account the considerations described in Section 3.2.4:
the importance of each track is computed on the fly, and only the points of
increasing importance are added to the particle track. The pseudo-code describing
the particle transport for AMS simulations in MENHIR is shown in Algorithm 2.

3.3.4 AMS iteration process

When MENHIR uses the AMS algorithm, the code starts iterating after the
initial simulation of n particles. The pseudo-code of the AMS iteration process is
shown in Algorithm 3.

At the end of the initial simulation, the importances of the n generated tracks
are ordered, so as to find the k-th smallest value which will be our first splitting
level Z. In order to be efficient in the particle classification, the vector con-
taining the track importances is only partially sorted, making use of the C++
nth element function with parameter k, which rearranges the elements of the

56



3.3. THE MENHIR PROTOTYPE

Algorithm 2: Pseudo-code for AMS particle transport in MENHIR.

1 Itrack := 0 ;
2 while particle is alive do
3 sample flight length;
4 if entering target shell then
5 move particle to target boundary ;
6 set Ipoint ←DBL MAX ;

7 if leaving target shell then
8 move particle to target boundary ;
9 update track length estimator ;

10 else
11 move particle to collision site ;
12 if collision in target shell then
13 update track length estimator ;
14 update collision estimator ;

15 end
16 solve collision;
17 get Ipoint as the importance after collision;

18 end
19 if Ipoint > Itrack then
20 add point to particle track;
21 update Itrack ← Ipoint;

22 end

23 end

vector in such a way that the element at the k-th position is the element that
would be in that position if the vector was entirely sorted [18].

Once the splitting level Z is obtained, the tracks are separated into two vec-
tors: the rejected and the survivors vectors, according to whether or not the
importance of the track is greater than the splitting level. The global weight W ,
which is set to 1 before the first AMS iteration, is multiplied by (1 − K

n
), where

K is the size of the rejected vector. Each of the tracks within the rejected vector
is then resampled according to the resampling process described in Section 3.2.2,
by randomly selecting and duplicating a track from the survivors vector, and
sampling a new track using the transport process presented in Section 3.3.3.

When the K rejected tracks have been resampled, the new splitting level Z
is computed, and if Z is less than DBL MAX, another iteration begins. Otherwise,
the AMS algorithm stops iterating, and the cumulated estimators of the flux are
weighted by W before the simulation ends.
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Algorithm 3: Pseudo-code for AMS iterations in MENHIR.

1 q := 1 ;
2 W := 1 ;
3 Z := kth element(I(T1), . . . , I(Tn)) ;
4 while Z ≤ DBL MAX do
5 K := 0 ;
6 empty rejected and survivors vectors ;
7 for i ∈ [1, n] do
8 if I(Ti) ≤ Z then
9 add i to rejected vector;

10 K ← K + 1

11 else
12 add i to survivors vector;
13 end

14 end

15 W ← W × (1− K
n

) ;
16 for j in rejected vector do
17 randomly select a track l from the survivors vector ;
18 determine the splitting point on Tl ;
19 sample a new track Tj from the splitting point ;

20 end
21 q ← q + 1 ;
22 Z ← kth element(I(T1), . . . , I(Tn)) ;

23 end

3.3.5 Importance functions

Within MENHIR, three importance functions are available for AMS use. We
denote them Id, Ia and Ix. They are described in the following, and shown in
Figure 3.3.

Distance importance function Id

In our geometry, a straightforward way of defining an importance is to use
a function that increases as the distance to the target shell decreases. This can
be achieved for example by using the distance to the source point. For a spatial
point ~X = (x, y, z), the distance to the source point (0, 0, 0) is:

dsource =
√
x2 + y2 + z2. (3.9)

As it has already been stressed before, the AMS uses the importance function
only to classify particles, therefore the simulation remains unchanged if the im-
portance is replaced by any function having the same level sets. This is why we
can get rid of the square root without impacting the AMS behaviour. We then
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Figure 3.3. Illustration of importance functions in MENHIR.

define Id by
Id( ~X) = x2 + y2 + z2. (3.10)

Angular importance Ia

The importance function Id, as defined in Equation (3.10), does not take into
account the direction of the particles. However, it seems natural that two particles
located at equal distance to the target shell should have different importances if
one is going straight towards the target, and the other one in the opposite direc-
tion. In order to have a more precise definition of the importance, we try and build
an importance function that depends on the angular coordinates. Due to the ho-
mogeneity of the medium and also the fact that all scattering events are isotropic,
a pertinent classification can be obtained using Id for two particles before collision.

Keeping that in mind, an angular importance function can be derived for a
particle after collision by estimating the position of the next collision from the cur-
rent position and direction of the particle. As the flight lengths are exponentially
distributed with parameter Σt, the mean free path of a particle in the geometry
is 1/Σt. Therefore, we define the angular importance of any point ( ~X, ~Ω) as

Ia( ~X, ~Ω) = Id

(
~X +

1

Σt

~Ω

)
. (3.11)

X-Importance Ix

In order to test the robustness of the AMS algorithm, which should be able
to provide an unbiased estimation of the flux whatever the importance function,
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we also test a ”bad” importance function, i.e. a function that does not accurately
represent the problem at hand. In this view, MENHIR can use the coordinate x
as an importance function:

Ix( ~X) = x. (3.12)

The use of Ix as importance function for the AMS algorithm is obviously
not optimal, as it prevents the duplication of particle tracks having points with
negative x coordinates. The contributions of such particles can therefore only
be taken into account if they reach the detector directly from the source in the
initialization phase of the AMS algorithm.

3.4 Validation of AMS for particle transport
with MENHIR

Now that the MENHIR prototype has been introduced, we present in this sec-
tion various results obtained with MENHIR simulations. In a first part, we will
present results obtained at short distance, meaning that the position of the shell
will be chosen in order to be able to get an analog estimation of the flux. After
testing the impact of each AMS parameter on the efficiency of the algorithm,
which we will compare both to analog MENHIR results and analytical values, we
will move the shell away from the source, to repeat some of the comparisons in a
more severe configuration.

Throughout this section, every simulation result presented was obtained with
104 independent batches each of n = 104 initial particles (even for the analog
simulations). The same analysis was performed during this PhD for various initial
particles numbers, showing no difference in the resulting Figure Of Merit.

3.4.1 Flux estimation in a shell near the source point

In this configuration, the target shell has a width of 1 cm, and its inner bound-
ary is placed at 10 cm of the source point. Under these conditions, we are going
to investigate the impact of the parameter k on AMS efficiency.

Mean flux analysis

In order to investigate the impact of k on the AMS algorithm, we set the
scattering probability to 90%, and the mean free path of the particles to 1 cm.
The corresponding cross sections in MENHIR are

Σt = 1 cm−1 and Σs = 0.9 cm−1,

and under these conditions the reference flux in a 1-cm-width shell located at
10 cm from the source point is:

φref = 1.072× 10−1particles/cm2/s,
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for a unitary source emitting 1 particle/s.

For each of the three AMS importances Id, Ia and Ix (defined in Equa-
tions (3.10),(3.11) and (3.12)), multiple simulations were run with various k val-
ues, ranging from k = 1 (0.01% of the initial particles) to k = 9900 (99% of the
number of initial particles). The obtained results are gathered in Figure 3.4. In
this figure, the upper plot shows the empirical mean of the estimated flux as a
function of k, with associated 68% confidence intervals. The middle part of the
figure shows the relative standard error σ%, expressed in percentage of the mean
flux, and the bottom one the Figure Of Merit, which is computed as:

FOM =
1

σ2
% × t

, (3.13)

where σ2
% is the variance of the mean flux, and t is the simulation time (CPU

time between the first particle instantiation and the end of the 104 batches).

The main observation is that the AMS estimation of the flux is in perfect
agreement with the reference for every combination of k and I, confirming that
the AMS adaptation to a particle transport process is successful. The reference
value of the flux is never seen out of the three-sigma interval around the estimated
flux, which is remarkable considering that the standard error, which is also shown
in Figure 3.4, is never greater than 0.07% of the mean.

Relative standard error comparison

As all simulations presented in this section were run for 104 batches, it is rel-
evant to compare the relative standard error on the mean flux for different AMS
parametrization and for the analog computation. The middle graph of Figure 3.4
shows the relative standard error at the end of the 104 batches as a function of k
for each importance function, as well as the analog result (which does not depend
on k).

First of all, we observe that the standard errors obtained with the AMS sim-
ulations are always lower than for the analog simulation for the same number of
batches and of initial particles. In the AMS results we observe that σ% does not
depend on k as long as k

n
< 50%, whatever the importance function is. However,

the variance grows rapidly when more than half of the particles are resampled at
each iteration of the algorithm. This is a side-effect of the correlations between
particles. When too many particles are resampled per AMS iteration, the risk
of selecting several times the same track for duplication increases drastically. In
the meantime, the distance between the splitting levels in terms of importance
grows ever bigger. Consequently, reaching a given importance level requires fewer
iterations, leading to loss of precision in the associated global weight estimation.

Concerning the impact of the importance function, we can see that the errors
on the results obtained with Ia and Id are comparable, even if the use of the
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Figure 3.4. Influence of the parameter k on AMS efficiency in MEN-
HIR. Upper to lower: mean flux with 68% confidence intervals, relative
standard error, and FOM.
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angular function Ia seems to slightly improve the convergence. As expected, the
use of Ix is less effective.

Figures Of Merit

In the bottom plot of Figure 3.4, the FOM is represented for each AMS sim-
ulation as a function of k. For reference purposes, the FOM obtained with an
analog simulation in the same configuration is also shown. As it obviously does
not depend on k, the analog value remains constant over the figure. We can see
that, although the errors are independent of k for values of the parameter below
50%, the figure of merit rises with k up to a plateau value around k

n
= 10%.

This result is not predictable by the theory, and is most likely dependent on the
simulation code and the problem geometry. However, it seems to be a systematic
behaviour regardless of the importance function.

In the current setting, the Ix importance always yields less interesting results
in terms of FOM than the analog simulation. This is understandable, as Ix does
not accurately describe the system, preferably selecting for duplication particles
that are further in the x direction. The AMS process does not help to estimate
more precisely the importance of particles going in other directions. In this par-
ticular case, the result obtained is still unbiased, because particles are always
close enough to the target shell to be able to reach it without requiring variance
reduction techniques, and the symmetry of the problems allows even Ix to reduce
the variance on the result for a given computation time. However, the error re-
duction does not compensate for the AMS computational cost, so that the results
obtained using Ix are less interesting than the analog ones.

In the end, the computational cost of the AMS classification and resampling
process is penalizing for the AMS using Ix. We can see that it is also the case for
the other importance maps when k is smaller than 0.1% of the number of initial
particles. Above this threshold value however, AMS is more efficient than the
analog simulation, gaining up to a factor 2 in efficiency when the 10%-plateau is
reached.

On the far right side of the k axis, we can see that the effect of large k on the
standard error described previously seems to be somewhat smoothed on the FOM
plot. The impact of information loss due to multiple replicas being resampled at
once is balanced by the corresponding reduction of computation time. Indeed,
large k values imply that less iterations are required to reach the detector, which
saves a lot of computing time. On the other hand, each iteration requires more
time to complete, as there are at least k particles to be transported per iteration,
an effect that is strengthened by the partial sorting process (see Section 3.3.4),
whose complexity is on average linear in k [18]. Figure 3.5 shows the mean number
of iterations at which the AMS stopped, the mean duration of a single iteration
as well as the computation time of batch as functions of k. We can see that the
drop in the number of iterations takes precedence over the computation time per
iteration, so that the simulation time is decreasing with increasing k. However,
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Figure 3.5. Computation time analysis in function of k. Upper to
lower: mean computation time per iteration, mean number of itera-
tions and batch simulation time.

64



3.4. VALIDATION OF AMS FOR PARTICLE TRANSPORT WITH MENHIR

this is not enough to counteract the increase in variance observed in Figure 3.4,
so that the FOM ultimately drops when k is too high.

Summary

The main result of this analysis is that, under some conditions regarding its
parametrization, the use of the AMS algorithm results in an improved estimation
efficiency over the analog calculation. The AMS seems therefore to be a good
variance reduction scheme for Monte Carlo particle transport simulations. As
expected, the algorithm is always able to reduce the variance on the result for a
given number of batches. However, we exhibited some cases in which the impact
of AMS on the computation time makes it too slow to be able to reduce the
variance for a given computation time. This might be explained by the fact that
the geometry considered in this section was small enough for the analog simulation
to yield converged results in a short computation time. Let us now investigate
the AMS behaviour when the target shell is moved far away from the source,
to the point where no analog result can be obtained in a reasonable amount of
computation time.

3.4.2 Flux estimation in a shell far from the source point

In this second setting, the width of the target shell is 10 cm, and its inner
boundary is placed 1 m from the source point (that is, 10 times farther than in
the first case). Under these new conditions, we are going to repeat the simulations
and results analysis performed previously.

Setting

We take the same properties for the medium as in the 10-cm-shell case:

Σt = 1 cm−1 and Σs = 0.9 cm−1,

which results this time in a theoretical flux

φref = 7.377× 10−21particles/cm2/s,

for a unitary source emitting 1 particle/s.

Analysis

The results obtained with each of the three AMS importances Id, Ia and Ix
and various k values are displayed in Figure 3.6 and 3.7. The upper frame of Fig-
ure 3.6 shows the empirical mean of the estimated flux as a function of k, with
associated 68% confidence intervals. On the middle part of the figure, the relative
standard error σ% is represented, expressed in percentage of the mean flux. The
corresponding Figures Of Merit are shown in the bottom frame. Figure 3.7 shows
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the mean number of iterations at which the AMS stopped, the mean duration of
a single iteration as well as the computation time for a batch as functions of k.

The first point to notice is that there are no analog results available for this
setting. Despite simulating 1010 particles, not a single one reached the shell. On
the other hand, two out of three AMS simulation managed to give an estimation
of the flux in agreement with the reference value. Each AMS simulation consisted
of 104 batches of 104 initial particles.

The importances Id and Ia yielded both a result in good agreement with the
reference value, with similar performances. The estimates obtained with those
importance functions are superimposed on the top graph of Figure 3.6, so that
the Ia results are behind the Id points. On the middle graph, we can see that
taking the direction into account in the importance function (Ia) tends to slightly
improve the efficiency of the AMS algorithm. The shapes of the standard error
(middle frame) and the FOM (bottom frame) are comparable to those obtained in
the 10-cm-shell situation, and the drawn conclusions are therefore identical. Once
again, a plateau can be observed for the FOM, and the value of k

n
= 10% seems

to be the more interesting parametrization of the k value. The interpretation of
the Figure 3.7 is also the same as for the 10-cm-shell.

Apparent bias using Ix

The Ix importance function seems to yield biased results. In reality, the prob-
lem encountered here is a well-known phenomenon for splitting algorithms, called
apparent bias [3, 19]. The mean flux is actually not biased, but the empirical vari-
ance dramatically underestimates the real variance. This is due to the use of an
importance function that helps estimating the contribution to the flux of particles
going far in the x direction, but not in the others. Therefore, in order to have
a correct estimation of both the mean flux and the associated standard error,
one has to wait for contributions in other directions to happen ”naturally”, i.e.
directly from the source point at iteration zero of the AMS algorithm, as is the
case for analog simulations.

In the previous situation, the target shell was close enough to the source
point for particles to reach it and contribute to the estimated values. As a matter
of fact, we even had analog results in that configuration. With the target shell
located farther however, the probability for a particle to reach the shell from the
source is so low that it would take many more particle simulations to get analog
contributions to the flux. The same applies a fortiori for the AMS simulation
using Ix as importance.

3.5 Conclusion
In this chapter we introduced a formulation of the AMS algorithm adapted to

particle transport simulations. The MENHIR prototype has been presented, and
the results obtained using this simplified transport code led to multiple observa-
tions.
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First of all, we observed that the AMS algorithm can be used as a variance
reduction scheme for Monte Carlo particle transport. It yields unbiased results,
and in certain conditions improves the efficiency of the transport simulation.

The AMS particle transport simulations have only two more free parameters
than an analog simulation:

- the number of tracks resampled at each AMS iteration (k)

- the importance function used to classify the tracks (I).

After analysing the performance of AMS for multiple choices of k and I, in
two distinct configurations, we observed that the AMS efficiency increases with
k up to a plateau when k reaches 10 % of the initial particles. This value seems
to be the most interesting choice for k, but it is not predicted by the theory, and
is most likely dependent on the problem, and on the AMS implementation in the
transport code.

Concerning the importance function, we saw in this chapter that the use of an
angular importance function slightly improved the AMS efficiency, however the
problem that we considered is simplistic and symmetrical, so that the angular
dependence of the importance function may have greater impact in other con-
figurations. We also exhibited in Section 3.4.2 the penalizing effect of a strongly
inaccurate importance function on AMS simulations. The apparent bias issue can
be a source of real imprecision in the simulation results. However, we saw that it
can be made visible by running multiple AMS simulations using distinct impor-
tance functions, and checking the confidence intervals overlapping.

As it has been repeatedly stressed, the geometry and physics simulated in
MENHIR are very simple. Therefore, the conclusions drawn in this chapter can-
not be extended to more realistic particle transport problems. However, the de-
velopment of MENHIR paves the way for the AMS implementation in a real-life
particle transport code.
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Chapter 4

AMS in TRIPOLI-4 R©

The Monte Carlo particle transport code TRIPOLI-4 is currently developed in
the Laboratory of Stochastic and Deterministic Transport (LTSD). The TRIPOLI
family has been developed at CEA since the 60’s. It is able to simulate neutron,
photon, positron and electron transport in three-dimensional geometries, with
a continuous energy treatment [20]. TRIPOLI-4 can be used for core physics,
criticality, shielding and nuclear instrumentation applications, and already en-
compasses variance reduction techniques, such as Exponential Transform and
Implicit Capture.

The implementation of the AMS algorithm as a new variance reduction scheme
in TRIPOLI-4 represents the most important part of the work carried out dur-
ing this Ph.D. This is the reason why the remainder of this thesis is devoted
to presenting the implementation and characteristics of the AMS algorithm in
TRIPOLI-4. We will discuss the structure and interactions of the algorithm within
the transport code and then highlight the innovative alterations of the method,
that allows for a wider range of applications. All along, the AMS efficiency will
be tested against analog simulations and pre-existing variance reduction schemes.

In this chapter, we present the implementation of AMS in the TRIPOLI-4
code. As an industrial transport code which has various applications, the code
structure is much more complex in TRIPOLI-4 than in the MENHIR prototype
introduced in Section 3.3. In a first part, some details will be provided concerning
the structure of the code. Then, the implementation of AMS will be described,
from the iteration routine to the anchor points of the algorithm in the code and the
description of the interactions between AMS and TRIPOLI-4. The final part of
the chapter is devoted to the validation of the AMS implementation in TRIPOLI-
4, to which end we will present the results obtained in a simple geometry and
compare them to both analog simulations and pre-existing variance reduction
methods.
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4.1 Overview of the TRIPOLI-4 code
TRIPOLI-4 is mostly written in C++ and makes heavy use of object-oriented

programming. AMS in TRIPOLI-4 interacts with three main classes of the code:

- the geometry class

- the particle class

- the response class

In the following, we will use the ’particle’ term to refer to an instantiation of the
corresponding TRIPOLI-4 particle class and ’geometry’ to an instantiation of the
geometry class.

Particle class

The particle class contains the particle type (neutron, photon, positron or
electron) and the associated properties, its position, direction, energy and statis-
tical weight, the volume and/or mesh cell in which the particle is, the status of
the particle (”at source point”, ”entering a collision”, ”emerging from a collision”
or ”killed”), as well as a structure storing information about the last free flight
of the particle: length, number of volumes crossed, corresponding cross sections,
etc.

Geometry class

The geometry class stores instantiations of all volume classes composing the
problem, as well as information regarding the positions of those volumes.

Response class

The response class is designed to store the contributions of particles to a score
in a given volume or sum of volumes. The particle contributions are computed
by a method of the response class which is directly called by the particles at
various moments in the transport process. The response class is also in charge of
computing mean values and associated relative standard errors on the score at
the end of each batch. This step is referred to as ”collecting”.

4.1.1 TRIPOLI-4 simulation process

The user interaction with TRIPOLI-4 is carried out through an input file.
It is a basic text file using commands in a dedicated language in order to de-
fine the geometry, the compositions of the materials present in the geometry, the
characteristics of the sources, the scores and all the parameters of the simulation
(number of batches, number of particles per batch, variance reduction schemes,
etc.). Once the input file has been read, the simulation begins.

The purpose of this section is to introduce the context for the implementation
of AMS in TRIPOLI-4. The description carried out here is therefore restricted to
the analog simulation process of neutrons for shielding applications. Furthermore,
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the AMS algorithm introduced earlier is unable to take branching processes into
account. This particular issue will be discussed in the last chapter of this thesis.
For pure-neutron simulations though, TRIPOLI-4 can handle multiplying colli-
sions by taking into account neutron multiplicity in the particle weights.

Batch simulation

At the beginning of each batch, a vector holding all the source neutrons for the
entire batch is created. Particles are extracted one after the other from this vec-
tor, and transported until it is absorbed or leak out of the geometry. During the
neutron transport, the response class is called after each neutron flight and after
each collision, storing the contributions associated to those events if there are any.

Once the source vector has been emptied, the response class collects the value
associated to the whole batch, updates the average score and the associated stan-
dard error over all completed batches, and dumps the current result to the output
file. The simulation stops when the number of simulated batches meets the num-
ber of batches asked by the user in the input file.

Analog neutron transport process

Once a neutron is extracted from the source vector, its transport is simulated
as a succession of free flights and collisions in the medium until the neutron is
absorbed or leaks out of the geometry. Let us now describe the standard transport
process for the analog simulations of neutrons.

The free flights are sampled according to the following displacement kernel
[20]:

T ( ~X → ~X ′, ~Ω, E) = Σt( ~X
′, E)e−

∫ | ~X′− ~X|
0 Σt( ~X+s~Ω,E)ds, (4.1)

where Σt( ~X,E) is the macroscopic total cross section at position ~X and energy
E, which is given by the geometry class.

If the sampled flight length is short enough for the neutron to remain inside
the geometry boundaries, the neutron is moved to the collision site. After the
particle displacement, the response class is called to compute and memorize any
contributions to the score, if the last flight went through the target volume. Then
the collided nuclide is sampled and the collision type selected. If the neutron is
not absorbed, the energy and direction of the neutron emerging from the collision
are computed. For reactions with multiple outgoing neutrons, only one neutron is
simulated, the multiplicity of the reaction is taken into account in the outgoing-
neutron weight.

4.1.2 Importance map generation

As briefly discussed in Section 2.3, TRIPOLI-4 has a built-in module called
INIPOND that automatically pre-computes importance maps for the Exponen-
tial Transform variance reduction technique. The importance maps provided by
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this module can be of interest for AMS use as importance function.

The INIPOND module has been specifically developed for TRIPOLI as early
as 1990 [14]. It has been optimized for the use of the Exponential Transform
technique, and extensively discussed in [13] and [21]. Its purpose is to quickly
compute an approximate solution of the adjoint problem on a spatial and energy
mesh defined by the user. Given a spatial detector D, the importance function is
assumed to be factorized in spatial, angular and energy parts:

I(X,Ω, E) = Is(X, g)× Ia(X,Ω, g)× Ie(g), (4.2)

where g denotes the energy group containing E.

The three parts of the importance are evaluated as follows:

Is(X, g) = exp

(
−
∫ dist(X,D)

0

K(X + r.Ω0, g)dr

)
, (4.3)

Ia(X,Ω, g) =
Σt(X, g)

Σt(X, g)−K(X, g)Ω.Ω0

, (4.4)

Ie(g) =
1

β + 1

(Eg
sup)

β+1 − (Eg
inf )

β+1

Eg
sup − Eg

inf

, (4.5)

where Σt is the total macroscopic cross section and Ω0 the direction of inter-
est (related to the slope of the importance map). The values of K are assumed
constant for each material and each energy group, and are either derived from
a Placzek-like equation as described in [14], or set by the user. Eg

inf and Eg
sup

denote the bounding values for energy group g, and the β parameter is set by the
user in order to adjust the global strength of the biasing and define the energy
profile of the importance map at the detector.

The INIPOND module can also compute the importance for a problem figuring
multiple detectors, in which case a weight is associated to each detector and the
importance at a given point is defined as the weighted sum of the importance for
each detector. More details concerning the construction of the importance map
by the INIPOND module can be found in Appendix B.

4.2 AMS implementation

This section is devoted to the description of the AMS implementation in
TRIPOLI-4 for neutron shielding simulations. The purpose is to describe how
the AMS algorithm is integrated in TRIPOLI-4: the interactions between the
AMS algorithm and the rest of the code, as well as the anchor points of the
method in TRIPOLI-4. The use of AMS is activated through the use of dedicated
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commands in the input file, which toggles a control flag in the code. The syntax
of the AMS commands in the TRIPOLI-4 input file are detailed in Appendix C.

The implementation of AMS in TRIPOLI-4 was intended to optimize the
algorithm efficiency while remaining as non-intrusive as possible.

4.2.1 The AMS Manager

In order for the AMS-related methods to remain as independent as possible
from the rest of the code, a new class has been implemented. The AMS Manager
handles all AMS parameters, variables, and methods, so that each interaction of
TRIPOLI-4 with the AMS algorithm is carried out by a simple call of an AMS
Manager method.

Tracks and points

The main ingredient for AMS is the track structure needed to store neutron
histories. The AMS Manager holds a vector of tracks, each of which consists of a
vector of points and an importance value. The data structure of the track class
is represented in Figure 4.1.

Track

Importance

Point 1

Point 2

Point 3

..
.

Point

Position

Direction

Energy

Weight

Importance

Figure 4.1. Data structure of the track class.

The track points contain all the information required for the particle class to
be able to restart the transport process. This is mandatory for the AMS resam-

75



CHAPTER 4. AMS IN TRIPOLI-4 R©

pling step, in which splitting points are used as starting points of new neutron
histories. Keeping the resampling process in mind, each point should also carry
an importance value that will be used to define the splitting point. The minimum
content of the point class is therefore:

- the position in space (three floating-point numbers)

- the direction (three floating-point numbers)

- the energy

- the statistical weight

- the importance value

Building neutron tracks

Assuming that the AMS is activated, the AMS Manager empties the tracks
vector at the beginning of each batch. The Manager is then called by the particle
class once before each free flight displacement. The Manager computes the local
importance IS of the neutron, which depends on the importance function and the
neutron’s position, direction and energy. Then the Manager checks the neutron’s
status. If the status is ”at source point”, a point holding every information about
the source point is created, added to a new track whose importance is set to IS
and the track is appended to the tracks vector.

If the neutron status is ”about to fly”, the neutron’s track already exists (it
is the last track of the tracks vector). In that case, the last free flight of the
neutron is examined in order to determine whether or not it crossed the target
boundary. If so, a crossing point is created with the coordinate the neutron had
when it crossed the target boundary, and appended to the track with importance
DBL MAX (∼ 1.797 69e308 ).

If the neutron’s importance is less than DBL MAX, the importance IP of the
point emerging from the collision is computed. If IP is strictly greater than the
track importance, a new point is created and added to the last track of the tracks
vector, whose importance is then set to IP .

The set of tracks obtained with this procedure is consistent with the descrip-
tion of ”tracks of increasing importance” made in Section 3.2.4. In addition to the
attributes of the point class, all the information required by the AMS algorithm
is available.

End of the analog simulation

The AMS algorithm does not interfere in any way with the transport and
scoring process. Therefore, the only difference between an AMS and a regular
TRIPOLI-4 simulation at the end of the last neutron transport of each batch is
the state of the AMS Manager and of its tracks vector.
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Once the analog batch simulation of n neutrons is complete, TRIPOLI-4 usu-
ally calls the response class to collect the score. If the AMS is used however, this
step is bypassed, the score remains as-is and the AMS Manager is called to launch
the iteration process. Before the iteration process begins, the global weight W of
the AMS algorithm is set to 1.

AMS iterations

The AMS Manager builds a vector holding only the importances of the n
simulated tracks, and determine the splitting level using the C++ nth element
function on this vector(see Section 3.3.4). If the splitting level value is less than
DBL MAX, the Manager cycles through the tracks vector and erases every track
whose importance is less than or equal to the level. The purpose here is to keep
an array containing only the survivor tracks in order to simplify the sampling
procedure for the duplication process later on.

The removal of elements from the tracks vector is performed using a swap-
and-pop technique: the element to erase is swapped with the last element of
the vector and then popped out. Swap-and-pop prevents the costly moving of
elements resulting from a standard erasing function that preserves the sequence
order, which is of no interest in our case. The number of erased tracks Kpop is
used to update the AMS global weight:

W ← W ×
(

1− Kpop

n

)
. (4.6)

Once the tracks vector has been purged of tracks having an importance less
than the splitting level, Kpop new neutrons are simulated by duplicating some of
the survivor tracks.

Neutron resampling

For each of the deleted neutrons, a new track has to be created and appended
to the tracks vector. Therefore, each of the tracks selected for duplication have to
be sampled among the first n−Kpop tracks of the vector. Each selected track is
then navigated through to find the first point whose importance is strictly larger
than the splitting level. The AMS Manager creates a new track containing the
splitting point, appends it to the tracks vector and instantiates a new neutron
which properties are given by the splitting point’s attributes. The new neutron
status is set to ”about to fly”, and the standard TRIPOLI-4 transport method
for analog neutrons is called.

Throughout the transport process, the new neutron tracks are built in the
exact same way as the analog tracks at iteration 0, by adding the points of
increasing importance to the last track of the tracks vector. Any neutron passing
through the target area generates a contribution to the score, which is computed
and stored by the response class with a weight of 1 as usual, since the final AMS
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global weight remains unknown until the end of the iterating process.

Scores collect

Once the AMS algorithm stops iterating, the response class is directly called
by the AMS Manager to collect the score, i.e. to add up the contributions stored
during all iterations, and multiply the result by the final global AMS weight W .
The computation of the average score value over past batches and the associated
standard error is then performed.

4.2.2 Pre-collision AMS algorithm

Up to this point, we always considered particle tracks that were composed of
the particles coordinates coming out of the collisions. Yet, the sequences of pre-
collision coordinates are also discrete Markov chains, on which the AMS algorithm
could be used. The AMS implementation has however to be slightly altered, and
the use of importance maps taking the particle directions into account becomes
irrelevant.

This option is toggled by a designated command in the TRIPOLI-4 input file.
The importance of points are estimated before each collisions and appended to
the particle tracks if their importance exceeds the track’s one. When a particle is
duplicated, the resampled particle starts its transport by a collision instead of a
flight. Otherwise nothing changes in the simulation process.

When splitting a particle track, the regular AMS algorithm duplicates the
splitting point and samples a new flight length, whereas the pre-collision algo-
rithm does not duplicate the particle direction, and resamples the collision. The
use of a pre-collision algorithm can be either advantageous or disadvantageous,
depending on whether or not a given particle importance is correlated with its
direction.

The efficiency of the pre-collision AMS is therefore highly dependent on the
importance function definition. If the importance correctly takes into account
the particles directions, it will presumably be more suitable for the regular AMS
algorithm. This option of the AMS algorithm in TRIPOLI-4 will therefore be
tested in several cases in the following.

4.2.3 Importance functions

Spatial importance functions

The AMS implementation in TRIPOLI-4 allows for the use of purely spatial
importance functions, which do not take angle and energy coordinates into ac-
count. The geometry is provided with a spatial object S, which can be a point, a
line, a ring or a simple 3D-surface (plane, cylinder or sphere). The chosen object
is defined in the TRIPOLI-4 input file as follows:
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- Points are defined by three spatial coordinates.

- Lines are defined by a point and a direction vector.

- Rings are defined by a radius, a point (position of the ring center) and a
vector (direction of the ring axis)

- Planes are defined by a point of the plane and a normal vector

- Spheres are defined by a point (position of the sphere center) and a radius

- Cylinders are defined by a line (axis of the cylinder) and radius

Once the object of interest S has been defined, the importance can be com-
puted at any point of the geometry as a function of the distance to S. The com-
putation of the spatial importance is carried out on-the-fly by the AMS Manager
whenever the importance of a particle is requested. Two distinct importance func-
tions are available: either the importance decreases with the distance to S, so that
particles are ”attracted towards” S, or the importance increases with the distance
to S, so that particles are ”pushed away” from S. The desired importance is de-
fined by a dedicated command in the input file.

If we denote by IS and IS̄ the attractive and repulsive importance functions,
their values at any point (X,Ω, E) within the geometry are given by:

IS(X,Ω, E) =
1

dist(X, S)
(4.7)

and
IS̄(X,Ω, E) = dist(X, S). (4.8)

”PATH” importance function

In order to take into account a priori knowledge of preferential pathways,
the AMS can be provided with an ordered sequence of spatial points P0, . . . , PN ,
which are used by the code to create a so-called path. In that case, the importance
for a point X depends on the orthogonal projection P (X) of X on the path. If
we denote by [Pp, Pp+1] the segment on which P (X) is located, we define the
importance at point X as

IS(X,Ω, E) =

p−1∑
i=0

[dist(Pi, Pi+1)] + dist(Pp, P (X))− dist(X, P (X)), (4.9)

so that the importance increases along the path and decreases with the distance
to the path.
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INIPOND importance map

As discussed in Section 4.1.2, TRIPOLI-4 has a module called INIPOND that
pre-computes importance maps for the Exponential Transform variance reduction
scheme. As an approximation of the adjoint score of the problem, it gives for a
particle with coordinates ( ~X, ~Ω, E) an estimate of its average contribution to the
score. It is therefore a good candidate as importance for AMS.

We denote by I+
6 the six-dimensional importance computed by INIPOND.

The INIPOND parameters are defined in the TRIPOLI-4 input file as for regu-
lar simulations resorting to variance reduction. This allows the AMS Manager to
simply call the INIPOND module during the simulation to get importance values.
The default importance returned by the module takes into account the particles
positions, directions and energy. However, the spatio-energy and angular parts
are calculated separately in the code, so that it is possible to ask the INIPOND
module to provide only the non-angular part, which we denote by I+

4 .

The non-angular importance I+
4 can be seen as an approximation of the pre-

collision adjoint score. It is indeed computed for any point P , under simplifying
assumptions, as an estimation of the average score generated by a particle enter-
ing a collision at point P .

This makes I+
4 an interesting importance function to be used for the pre-

collision AMS algorithm (See Section 4.2.2), which precisely needs to classify
particle tracks according to their pre-collision importances.

Volume importance weighting

Regardless of the importance function, each region of the geometry is at-
tributed a weighting factor, which is used to weight the importance of any point
within the region. This allows the user to increase or decrease the importance
region by region, giving more flexibility in the importance construction. This
feature can be particularly helpful when using spatial importance functions. All
volumes of the geometry have a default importance weight wV = 1, which can be
modified in the TRIPOLI-4 input file.

4.3 Validation of AMS in TRIPOLI-4

4.3.1 Bypass geometry

The system chosen to test the AMS implementation in TRIPOLI-4 consists in
an extruded box filled with Helium-4 (1024 atom per cm3), with leakage boundary
conditions. The dimensions of the box are 10 cm × 10 cm ×+∞. A neutron flux
is produced from a 2 MeV isotropic neutron source at one corner of the box and
detected inside an infinite cylinder of 1 cm in diameter placed at the opposite
corner. Between the source and the detector is placed a highly absorbent high
density cylinder composed of Boron-10 (1025 atoms per cm3). A top view of the
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problem geometry is represented in Figure 4.2.

Source

Detector

He4

B10

Figure 4.2. Geometry for the bypass problem.

The cross sections used for this simulation are provided by the nuclear data
library JEFF-3.1.1, which is the reference evaluation in TRIPOLI-4.

4.3.2 Objectives and setup

The purpose of the bypass problem study is to test the validity of AMS as a
variance reduction scheme for TRIPOLI-4. In a first part, we will test the AMS
algorithm results and efficiency against analog results. We will then reproduce
the sensitivity analysis performed for MENHIR in Section 3.4, in order to test
in this new context the impact of the importance function and of the proportion
of resampled particles per batch. Finally, we will compare results obtained by
TRIPOLI-4 with AMS and with the Exponential Transform.

The challenge for the simulated neutrons in this problem is to successfully
bypass the Boron cylinder while staying away from the geometry where they
could leak out. To illustrate the high probability of absorption of the high density
Boron in the thermal and epithermal energy ranges, we show in Figure 4.3 the
total, scattering and absorption cross sections for the Boron element.

In the remainder of this section, three distinct functions will be used as im-
portances for the AMS algorithm:

- the purely spatial importance function IS, defined for each point as the
reciprocal of the distance to the target cylinder (see Section 4.2.3)

- the 6-dimensions importance map I+
6 computed by the INIPOND module

(position, normalized direction, energy)
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Figure 4.3. Total, scattering and absorption cross sections for the
Boron-10 isotope.

- the non-angular 4-dimensions part I+
4 of the importance map computed by

INIPOND (position and energy only) with the pre-collision version of the
AMS algorithm (see Section 4.2.3)

The values and gradient of the INIPOND map I+
6 are represented in Fig-

ure 4.4. We can see that the automated module was able to determine the pref-
erential pathways around the Boron cylinder, both in terms of scalar importance
and of preferential directions.

Figure 4.4. Scalar value and gradient of the importance map I+
6

generated by INIPOND for the bypass problem, restricted to the first
energy group.
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4.3.3 Neutron tracks in the bypass geometry

We show in Figure 4.5 all the tracks obtained during the AMS iterations.
The algorithm was initialized with a set of 20 analog neutron tracks shown in
Figure 4.5a. As the neutrons cannot be absorbed by Helium nuclei, all tracks
terminate either by leaking out of the geometry or by being absorbed in the
Boron cylinder.
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(a) Initial set of analog neutron tracks
before the first AMS iteration
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(b) Resampled tracks colored by itera-
tion number (0 to 143)

Figure 4.5. Representation of all tracks simulated during an AMS
batch in the bypass geometry.

In Figure 4.5b, we show the tracks resampled at each iteration of the AMS
algorithm. In this example, k = 1 track was resampled per iteration. We can see
that as the AMS algorithm iterates, the resampled neutron tracks are getting ever
closer to the detector, coming around the Boron massive. After 143 iterations, all
the 20 neutron tracks have reached the detector and the algorithm stops.

4.3.4 Impact of the k parameter

All results presented here are issued from simulations of 104 batches of 104

particles each (meaning n = 104 particles for each of the 104 AMS calculations).

For each of the three AMS importances IS, I+
6 and I+

4 , we performed sim-
ulations for various k values between k = 1 (0.01% of the initial particles) to
k = 9900 (99% of the initial particles). The results obtained are summed up in
Figure 4.6. In this figure, we represent on the upper plot the empirical mean of
the estimated fluxes as a function of k with associated 68% confidence intervals.
The middle part of the figure shows the relative standard error σ%, expressed in
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percentage of the mean flux, and the bottom one the Figure Of Merit:

FOM =
1

σ2
% × t

. (4.10)

We observe that all the confidence intervals obtained with AMS overlap. This
is in agreement with the fact that AMS yields an unbiased estimator of the
flux for any combination of k and importance function. The estimated fluxes are
also in agreement with the analog calculation, for which the standard error is
larger for the same number of initially simulated particles. In the middle frame
of Figure 4.6, we can see that the standard errors in all AMS simulations with
importance I+

6 are overall smaller than with I+
4 , which are smaller than with IS.

This is in accordance with the expected behaviour of the AMS algorithm, since
I+

4 takes into account both the geometry and the neutron energies and I+
6 adds

a directional dependence.

Concerning the impact of the k parameter, we can see in the bottom part of
Figure 4.6 the shapes of the FOM for the three importance functions. Two of
the FOM exhibit the same behaviour as previously seen in MENHIR simulations
(see Section 3.4). The AMS efficiency increases with k up to a plateau before
dropping as k becomes too high. However, the limit at which the FOM becomes
stable seems to be k

n
∼ 1%. This value is lower than the one obtained in the

study performed with MENHIR, which lead to a plateau at k
n
∼ 10%. As there is

no theoretical explanation for this plateau phenomenon, we can only guess that
this difference is either an effect of the AMS implementation or of the considered
problem.

Furthermore, we can see that the plateau on the FOM plot in the case of
the I+

4 importance is almost non-existent. Looking closely enough, we observe a
plateau even in this case, which is reached for k

n
∼ 2%. However the FOM drop

for lower k values is far less steep than for other importance maps. This is a
side effect of the use of a discretized and non-angular importance map. Indeed,
every particle located in a given cell of the geometry and in the same energy bin
will have the same importance, since their directions are not taken into account.
Therefore, many tracks can have the same importance value, so that more than
k particles are resampled at each iteration (see Section 2.6.4). In this view, the
simulations with the lowest k values do not in practice resample k particles per
iteration but actually more than k.

On the FOM plateau however, the efficiency reached for each of the INIPOND
importances is very similar. This is an important result, as it shows that the pre-
collision AMS algorithm using I+

4 as importance is as efficient as the regular AMS
algorithm with I+

6 . We saw that the variance obtained with I+
6 was slightly smaller

than with the pre-collision algorithm. However, this difference is compensated by
the fact that the pre-collision uses a non-angular importance map, so that more
than k particles are actually resampled at each iteration of the algorithm.
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Figure 4.6. Influence of the parameter k on AMS efficiency in
TRIPOLI-4 for the bypass problem. Upper to lower: mean flux with
68% confidence intervals, relative standard error, and FOM normal-
ized by the analog FOM.
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In order to compare AMS efficiency with regards to the analog calculation,
we look at the value of the FOM plateau for each importance function. We can
see that the AMS FOM is 200 times larger than the analog FOM with IS and
around 600 times with both I+

4 and I+
6 . All of the importance functions yield very

interesting results in terms of FOM gain, making AMS an interesting variance
reduction scheme for TRIPOLI-4. Unlike in the results obtained with MENHIR
(see Section 3.4), there is no combination of k and I for which the AMS is less
efficient than the analog calculation. As the attenuation is much greater than in
the MENHIR’s case, the time spent for ordering and resampling is more useful
to the simulation. Let us now compare AMS results to other variance reduction
techniques in this configuration.

4.3.5 Comparison to the Exponential Transform method

Introducing a new variance reduction method into TRIPOLI-4 raises the con-
cern of comparing its efficiency against pre-existing techniques. The reference vari-
ance reduction method in TRIPOLI-4 is the Exponential Transform technique,
already discussed in Section 2.3, to which the INIPOND module of importance
maps pre-calculation is originally dedicated. We launched a simulation using the
Exponential Transform method on the bypass problem alongside an analog simu-
lation, two regular AMS simulations (I+

6 , IS) and a pre-collision AMS (I+
4 ). The

resampling proportion for the three AMS simulations was set to k = 1% of the
initial number of particles per iteration.

For this comparison, we ran the 5 simulations for the same amount of com-
putational time, recording the flux estimation at regular intervals. We show in
Figure 4.7 the convergence of the mean flux estimators, with the relative standard
errors and associated Figures Of Merit. In the top plot of the figure, the dotted
lines represent the evolution of the mean flux values, while the full lines represent
the evolution of the upper and lower bounds of the 68% confidence intervals.

Despite the gain in FOM of AMS over the analog simulation, we observe that
the Exponential Transform (E.T.) yields even more interesting results. The best
AMS efficiency turns out to be 10 times lower than E.T.

On the middle plot of Figure 4.7, we can see that the AMS estimation of
the flux is impaired by several jumps in the standard error. These jumps are a
consequence of some realizations of the AMS algorithm that yield a large estimate
of the flux. They have an impact on the mean flux estimation but a greater impact
on the error estimation.

The AMS simulation using the spatial importance IS exhibits no jumps, how-
ever we can see in the top frame of Figure 4.7 that the mean flux obtained with
importance IS is somewhat underestimated (though it remains in the confidence
interval of the other simulations). Therefore, if the simulation ran longer, a large
contribution would certainly have arrived and the error would have jumped.
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Figure 4.7. Convergence of AMS, analog and Exponential Transform
simulations as a function of the computation time for the bypass prob-
lem. Upper to lower: mean flux with 68% confidence intervals, relative
standard error, and FOM normalized by the final analog FOM.
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If a single contribution has a strong impact on the mean value, then the associ-
ated rare events are under-represented during the AMS simulations. This happens
if the importance function is not able to determine the actual interest of some
tracks for the estimation of the flux. The presence of these jumps is consequently
a quality indicator of the chosen importance function. This is also true for the
Exponential Transform method. In this particular case, the standard error curve
obtained with E.T. does not present any jump. We can therefore assume that
the INIPOND module was able to provide an importance function that was well
suited for E.T. use, but less adapted to AMS.

It should be kept in mind that an absence of variance jump is no insurance
that the simulation parametrization is optimal. As it is the case here with AMS
and the spatial importance IS, it is usually impossible to know if the number of
performed batches is large enough to have an accurate estimation of the score. The
AMS robustness with regards to the importance function provides the possibility
of trying multiple importances and ensure that the confidence intervals overlap,
thus increasing the reliability of the estimated score.

4.4 Conclusion
The implementation of the Adaptive Multilevel Splitting into TRIPOLI-4 has

been performed with a minimal impact on the surrounding code. The implemen-
tation of a new class to interface AMS with TRIPOLI-4 and handle the entire
AMS processes permitted to limit the intrusions in other classes of the code.

The AMS algorithm implemented in TRIPOLI-4 is controlled through com-
mands in the input file, in the same manner as for other modules of TRIPOLI-4.
It allows for an easy use and comparison of various geometric importance func-
tions, as well as the importance maps provided by the INIPOND module, initially
designed for the Exponential Transform method.

The study of the Bypass problem presented in the last section of this chapter
puts once again into light the robustness of the AMS with regard to the pa-
rameter k and the importance, since the obtained result are always unbiased.
Furthermore, the AMS results are very interesting in terms of FOM by compar-
ison with the analog results, which makes AMS a legitimate variance reduction
scheme for TRIPOLI-4.

The efficiency of this new method has been tested against the reference vari-
ance reduction method of TRIPOLI-4, namely the Exponential Transform. For
the same computation time, the error on the score estimated using the Exponen-
tial Transform method was approximately three times less than the best AMS
results. The problem considered here was complicated enough for the variance
reduction schemes to have a visible effect on the estimation efficiency. However,
this was still a toy model. We will present in the following some results in more
realistic configurations.
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One of the downside of the AMS algorithm is the computation time overhead
due to the simulation of thousands of neutrons between the source and the de-
tector during the iterating process, even though most of those particles do not
contribute to the final score. However, they may contribute to responses outside
of the target volume, for example fluxes in volumes between the source and the
target area. Those quantities could be estimated alongside the target response
in a single AMS simulation, provided that the AMS algorithm is able to assign
the proper weight to each of the contributions. The unbiased estimation of scores
outside of the target area is the subject of the following chapter.
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Chapter 5

On-the-fly scoring with AMS

The AMS iteration process implies the simulation of many neutrons between
the source points and the detector area. In the simple AMS version we have pre-
sented before, the only responses that could be estimated with the AMS algorithm
had to be associated to the target volume. Therefore, possible contributions to
other responses (outside the target area) are not taken into consideration. This
could however be performed during the same AMS simulation, provided that the
weight given by the algorithm to these contributions is adequately computed.

Taking into account scores outside the target volume could ensure that the
AMS simulations use all the information available from the iterating process.
However, one could only hope for a variance reduction on the scores that are in
areas located on the path of particles going from the source to the AMS target. In
other regions, most contributions to the scores will come from the initial particle
simulation (iteration zero).

In the AMS theoretical description, there is a straightforward way to take into
account scores outside the target volume. This method will be presented in the
first part of this chapter. As it will be described in the following, this technique
requires to keep in memory the complete histories of all particles, including those
of particles that are suppressed at each AMS iteration, and to compute every
score at the end of the AMS final step. To circumvent the need of storing all
simulated trajectories, we propose an on-the-fly scoring procedure that enables
easy and efficient scoring outside of the target volume directly during the iterating
process. The last two sections of this chapter are devoted to applications making
use of this new functionality to compute flux attenuations in a succession of
volumes or through successive surfaces. The first test case presented is the flux
attenuation of neutrons in water, and the second one is the flux attenuation in a
three-dimensional labyrinth.
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5.1 Multiple scoring with AMS
In the theoretical formulation of the AMS algorithm for discrete-time Markov

chains described in [3], the scoring process is not limited to scores in the target
volume. We present in this section the general scoring process, expressed in terms
of particle transport and particles tracks.

5.1.1 Particles genealogy construction

In order to implement the scoring procedure proposed in [3], we need to define
the particles ”genealogy”. The idea behind the genealogy is to store the entire
histories of all simulated particles, including the histories that are deleted for
resampling, and to associate each of these tracks to a weight value.

In order to build the genealogy, the tracks storage has to be altered: when-
ever a particle is resampled, its old track has to be kept in memory and a new
track created. This new track is a partial copy of the track selected for duplica-
tion, from its first point up to the splitting point. When the resampled particle
is transported from the splitting point, each of its collision points is appended to
the new track.

With those modifications, the genealogy at the end of a given iteration q is
composed of n ”active” tracks starting from their source points, plus all the tracks
that were removed during previous iterations (at least k × (q − 1)).

5.1.2 Scoring using the genealogy

Let us consider an observable ψ of the track space (corresponding to any
response within the geometry). Using an analog simulation, we can build an
unbiased estimator ψ̂ of the expected value of ψ as

ψ̂MC =
1

n

n∑
i=1

ψ(Xi), (5.1)

where (Xi)i∈[1,n] is a set of analog tracks.

In order to define an estimator of E(ψ) using the particles genealogy, we
introduce some notations. For any iteration q of the AMS algorithm, we denote
by

- Zq the splitting level

- Kq the number of particles tracks that have an importance less than Zq

- T off
q the set of tracks that have an importance less than Zq, which will be

deleted during the iteration
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- T on
q the set of tracks having an importance greater than Zq, which will

survive the iteration.

Using these notations, we define ψ̂on
q and ψ̂off

q as the contributions to the

estimator ψ̂ of the histories of iteration q:

ψ̂on
q =

∑
X∈T on

q

ψ(X) and ψ̂off
q =

∑
X∈T off

q

ψ(X). (5.2)

At the beginning of iteration q of the AMS algorithm, the particles genealogy
is composed of all the tracks of iteration q (on and off) and all the tracks deleted at
each previous iteration. According to [3], we can construct an unbiased estimator
ψ̂q of the expected value of ψ at each iteration q of the AMS algorithm as

ψ̂q = wqψ̂
on
q +

q∑
j=0

wjψ̂
off
j , (5.3)

where

wj =


1
n

if j = 0

1
n

∏j−1
i=0

(
1− Ki

n

)
if j > 0

This formula is valid for any response. For a response φ estimated in the AMS
target area, we should therefore obtain with Equation (5.3) the same expression as
the estimator introduced in Section 3.2.3. Let us assume that the algorithm stops
iterating after Q iterations. All tracks contributing to the score have necessarily
reached the target volume. Therefore, their importance is numerically infinite and
they are never resampled. They consequently all belong to the set T on

Q . We have

therefore ψ̂off
q = 0 for any q ≤ Q, which implies

φ̂Q = wQφ̂
on
Q

=

[
1

n

Q−1∏
q=0

(
1− Kq

n

)]
φ̂on
Q

=

[
Q−1∏
q=0

(
1− Kq

n

)]
1

n

∑
X∈T on

Q

φ(X), (5.4)

which is identical to the ”standard” expression of the AMS estimator of E(φ)
given in Equation (6.6)).

We can also check that at iteration 0, Equation (5.3) is equivalent to the
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expression of the analog estimator for any response ψ:

ψ̂0 = w0ψ̂
on
0 + w0ψ̂

off
0

=
1

n
(ψ̂on

0 + ψ̂off
0 )

=
1

n

 ∑
X∈T on

0

ψ(X) +
∑

X∈T off
0

ψ(X)


= ψ̂MC (5.5)

5.2 On-the-fly scoring procedure

Implementing the genealogy-based scoring method in TRIPOLI-4 would re-
quire to keep the partial contributions of particles within the tracks structure,
and to be able to duplicate the contributions of particles when they are selected
for resampling. Furthermore, we would also need to manage the track weights
independently until the score collect at the end of the iterating process.

In order to prevent the algorithm implementation becoming overly complex
while still accurately computing all scores, we derive from the genealogy-based
scoring a procedure that enables us to collect each score at a specific iteration.
Indeed, the estimator introduced in Equation (5.3) is unbiased for any score at
any iteration of the AMS algorithm, which means that we can choose a collect-
ing iteration for each score. The choice of the appropriate collecting iteration for
each of the scores is the central point of our on-the-fly scoring procedure, and
we will show that it allows for an unbiased estimation of any score without any
modification of the track structure, even out of the target area.

It seems obvious that the score collecting should be delayed as much as possi-
ble, in order to take into account contributions from multiple iterations. However,
if waiting for too long, the fact that we do not store in the track structures the
contributions to scores can induce a loss of information. There are actually two
ways in which the contributions can be lost. The first one occurs if a track con-
tributing to the score is deleted, and the second if a track contributing to the
score is duplicated without duplicating its contribution.

Those contribution losses can only occur for scores outside of the target vol-
ume, since particles entering the target area are given a numerical infinite impor-
tance. The scoring volumes considered in the following examples are therefore not
the target volume of the AMS algorithm, but any other volume of the geometry
in which a response is estimated.
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5.2.1 Contribution deletion risk

We show in Figure 5.1 an example of potential contribution loss due to the
resampling of a particle track that contributed to a score in a volume that is not
the AMS target area.
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Figure 5.1. Illustration of potential information loss due to the re-
sampling of a contributing track.

In this example, the importances at collision points are such that I0 < I1 <
I2 < I3 < I4. We reach an iteration q for which the splitting level Zq is greater
than I2 but less than I4. The left track, having an importance I2 < Zq, is resam-
pled. The middle track is selected for duplication at its first point of importance
greater than Zq. Since we do not store the particles contributions in the tracks,
the contribution of the left track may be lost and lead to a biased result.

We can circumvent this issue by collecting the score φ during an iteration
q such that no track contributing to the score has ever been deleted from the
simulation. We have therefore φ̂offj = 0 for any j < q, so that Equation (5.3)
becomes

φ̂q = Wqφ̂
on
q +Wqφ̂

off
q . (5.6)

We can see that under the condition that no contributing track is deleted, the
weighting factor is unique and equal to the current global AMS weight. Therefore,
the collecting iteration for a score has to be such that no contributing track is
deleted. Thus, all contributions to the score can be added on the fly during the
simulation and without weighting factor. The weighting can be performed on the
total score with the AMS global weight at the collecting iteration.

Remark

For any score within the AMS target volume, this collecting criterion is in
accordance with the algorithm stopping criterion. Indeed, since the importance
of all tracks entering the target is numerically infinite, no tracks contributing to
a score within the target can ever be deleted as long as the splitting level is less
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than numerical infinity. All contributions to the target score are therefore added
during the simulation and the weighting is performed using the final AMS global
weight.

5.2.2 Contribution duplication issue

The second issue raised by not storing score contributions in tracks is the in-
ability to copy a track’s contributions when it is duplicated. Despite the previous
condition imposed on the collecting iteration, situations in which contributions
have to be duplicated can still occur.

Let us consider a simple example: a particle is contributing to a score while
its track has an importance IA, and then reaches a zone of greater importance
so that the importance of the whole track is IB > IA. Some iterations later, the
splitting level takes a value Zq so that

IA < Zq < IB. (5.7)

The track we consider here will not be deleted, since its final importance is
greater than Zq. However, it could be selected for duplication, in which case the
splitting point will be a point of the track located after the scoring point, since
Z > IA. In that case, the computation of the estimator φ̂q+1 would require to
duplicate the contribution of the particle and pass it on to the resampled track.
An illustration of this situation is shown in Figure 5.2, in which the rightmost
particle enters the scoring volume with importance IA = I1, but has a track of
total importance IB = I3.
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Figure 5.2. Illustration of potential information loss due to the du-
plication of a contributing track.

For the target scores, we bypassed this problem by adding target entering
points to the particles tracks with numerically infinite importance. Since the
parts of the tracks that contributes to the target scores are necessarily located
after the boundary crossing point, no contribution has ever to be copied. Indeed,
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the last point that can be selected as splitting point is the boundary crossing
point, since its importance is infinite.

In contrast with target scores, it is impossible to define boundary impor-
tances values for intermediate volumes that prevent contributions duplication.
That would imply to have boundary importances that are greater than any im-
portance value within the volumes, preventing the AMS algorithm from correctly
classifying particle tracks with regard to the target.

In summary, the rule for choosing the optimal collecting iteration has to en-
sure that no contribution to the score can be deleted, and that no contribution
duplication can occur. The on-the-fly scoring procedure we propose in the follow-
ing is based on the introduction of an importance value for each of the scores. We
will show in the following that we can apply a condition on this score importance
to trigger the score collect at the appropriate iteration.

5.2.3 Scores importances

In order to accurately choose the optimal collecting iteration for each scores,
we attach to each score φ a score importance Iφ. For any track X contributing to
the score, the track importance at the moment of the contribution is retrieved.
Iφ is then computed as the minimum value among these importances.

In TRIPOLI-4, this is handled by the response class (which manages the
scores). It attributes an importance value to each score at the beginning of the
batch and initializes it to numerical infinity. As soon as a particle contributes to
a score, the AMS Manager is called to provide the current importance of the par-
ticle’s track. This value is compared to the importance of the score and if smaller,
the score importance is updated. An example of score importance computation
is shown in Figure 5.3.

×
I0

•I2

×
I2

• I4

• I4

×
I4

• I1

•
I3

×
I3

Scoring Volume
Iφ = min (I1, I2, I4) = I1

Figure 5.3. Definition of a volumic score importance from the im-
portances of contributing tracks.
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In this example, we assume that a track is contributing to the score as soon
as it enters the scoring volume. This is for example be the case if the score is
the probability of reaching the volume, or the particle current at the volume
boundary. The importance of each track at the moment of their contribution to
the score are therefore left to right I2, I4 and I1. The score importance after the
termination of the three trajectories is then

Iφ = min(I1, I2, I4)

= I1.

5.2.4 On-the-fly scoring process

Let us now express the condition on deleted tracks contributions in terms
of score importance. Once per iteration, after the splitting level has been deter-
mined but before the resampling process takes place and the AMS global weight
is updated, the splitting level is compared to the importance value of each score.
If the splitting level is greater than or equal to the score importance, the score is
collected and weighted by the current AMS global weight. Each score is collected
once per simulation. After a score has been collected, eventual contributions to
this score are not taken into account.

This procedure does ensure that no contributing track is ever deleted before
the score is collected, since the importance of any track contributing to a score
is by definition greater than or equal to the score importance. This technique
also allows us to address the problem of duplicated contributions. As described
before, this issue arises from situations in which the splitting level is less than
the importance of a contributing track but greater than the importance the track
had when it contributed to the score, so that if the track is selected for duplica-
tion, the splitting point could be located after a contributing part of the track.
With the on-the-fly scoring technique however, this situation is solved, since the
score will be already collected when the situation arises, so that the duplicated
contribution has not to be taken into account.

Not only does this on-the-fly scoring technique define the collecting iterations
for every score, but it allows us also to overcome the need of keeping contribu-
tions attached to the particle tracks, as all contributions to a score are collected
at once using the global AMS weight.

Overall, the only changes made to the previous AMS implementation are

- the addition of an importance value to each score

- the inclusion in the AMS process of a loop on the scores that checks after
each splitting level if some of them have to be collected.
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5.3 Flux attenuation in a deep-penetration
configuration

5.3.1 Problem description

The first problem chosen to test the on-the-fly scoring capacities of the AMS
algorithm in TRIPOLI-4 consists in an isotropic neutron point source emitting
neutrons according to a Watt spectrum and placed at the bottom of a straight box
filled with water. The box is 3 m high and has a base dimension of 60 cm×60 cm.
We use this setup to estimate the neutron flux attenuation in water starting from
a fission source. This can be seen as an extremely simplified representation of a
pool-type reactor, i.e. a nuclear reactor which core is immersed in an open pool
of water acting as the neutron moderator, reflector, coolant, and radiation shield.
In order to artificially simulate a very large pool, a perfect reflection boundary
condition is applied on the side of the pool.

•
Neutron source

- 3 m

- 2,7 m

-2,4 m - 2,4 m

- 2,1 m

- 30cm

- 20cm

- 10cm

Figure 5.4. Geometry for the deep-penetration study: water pool
divided into 10-cm-thick slices.

The probability for a fission neutron to go through 3 m of water without being
absorbed is in the order of 10−14. We are going to estimate the volume neutron
flux in 10-cm-thick slices from the source to the surface of the pool, in order to
test the on-the-fly scoring technique for a succession of volumes.

5.3.2 Results

The same importance functions as in the previous chapter were used to pa-
rametrize the AMS algorithm: a purely spatial importance IS and two INIPOND
importance maps: I+

4 and I+
6 . In this case the importance IS is defined as the
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invert of the depth.

Figure 5.5 shows the estimated neutron flux in the succession of virtual vol-
umes from the source point (0 m) to the water surface (3 m), for the three AMS
simulations, an analog run, and a calculation using the Exponential Transform
method with importance I+

6 . The results were obtain by running 3000 batches of
1000 initial number of particles each. All AMS simulations were performed with
k set to 1% of the number of particles.

The first observation is that all three AMS estimations are in perfect agree-
ment. The confidence intervals around the flux estimation overlap in all volumes
from the source to the detector. Furthermore, in the volumes where analog results
are available, we can see that the analog and AMS yield the same results. On the
other hand, the simulation that used Exponential Transform drastically underes-
timates the flux in all volumes (around ten times). The smallest discrepancy is
to be found near the water surface, which is not surprising since the Exponential
Transform is supposed to estimate the flux at the surface.

The bottom plot of Figure 5.5 indicates that in the first 50 cm from the source
point, the analog simulation is more efficient than any AMS calculation in esti-
mating the flux. This is a direct consequence of the AMS time overhead, since
the algorithm waits for the iterations to end before giving a result, even for scores
that have been collected early in the iteration process. The discrepancies in the
FOM values obtained with the two importance maps of INIPOND (I+

6 and I+
4 )

are very small, and most likely due to statistical variations.

Despite the fact that the relative standard error obtained with IS is less than
with I+

4 for the same number of batches, we can see that this order is reversed
on the FOM plot. This illustrates the capacity of a map that takes into account
the particle energies to reduce the AMS computation time even if it increases the
uncertainty on the estimation in some energy groups that were deemed less inter-
esting. The results obtained with the spatial map IS are overall less interesting
in terms of FOM, especially in the volumes located between 50 cm and 2 m from
the pool bottom, but they remain very close to those obtained with I+

4 and I+
6 .

We observe that the mean values obtained using the Exponential Transform
are well below the values estimated by the other methods, (even the area where
analog results are available). It is not unusual for the Exponential Transform to
underestimate the flux in locations other than the target area. Indeed, the Ex-
ponential Transform alters the transport process in order to convey the particles
toward the target, which may result in an apparent underestimation of interme-
diate scores. In our case however, even the flux estimation at the water surface is
barely in agreement with the AMS results. For all Exponential Transform results,
it is actually the standard errors that are underestimated. In fact, the simulation
is just missing rare events that will eventually cause the estimation to jump and
give the same result as the other simulations. There is however no way of pre-
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Figure 5.5. Neutron flux attenuation in the water pool problem for
AMS and the Exponential Transform method. Upper to lower: mean
flux with 68% confidence intervals, relative standard error, and FOM.
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dicting when those rare events will be simulated. It is also impossible, without
comparison with other results, to know if the estimated values are correct or not.

It should be kept in mind that the computation of all the importance maps
used up to this point were constructed by INIPOND while letting the module au-
tomatically determining its biasing parameters. It is therefore not surprising to
have such a poor convergence for the Exponential Transform method, for which
the precision of the importance map has a great impact on efficiency.

The results obtained with Exponential Transform are therefore an indicator
that the importance map generated by INIPOND does not accurately represent
the problem at hand. The quality of the importance map can however be improved
through a manual parametrization of the INIPOND module. Details concerning
the INIPOND module as well as its manual parametrization can be found in
Appendix B. After multiple studies, we managed to parametrize the INIPOND
module so as to obtain an importance map I++

6 that would permit the Expo-
nential Transform to accurately estimate the flux. This importance map was also
used as importance in new AMS simulations. The results obtained with this opti-
mized importance are shown in Figure 5.6. For the sake of comparison, we added
to the figure the best AMS result obtained with the importance map from the
automatic mode of INIPOND (i.e. with importance I+

4 ).

Although we observe small discrepancies above 2 m due to statistical fluctu-
ations (the relative standard error in this area is most of the time greater than
10%), we can see that the confidence intervals of all the simulations overlap. Near
the detector, the optimized importance map allows the Exponential Transform
not only to yield the same result as the AMS simulations, but also to be more
efficient. The optimization of the INIPOND parameters also allows for an im-
provement of the AMS FOM in the case of the 6-dimensional map, however not
as strong as for the Exponential Transform method.

One should keep in mind that the Exponential Transform method, used with
an importance map that is a good approximation of the adjoint solution of the
problem, will always be more efficient than the AMS algorithm in the detector
area. We saw with this example that AMS is an interesting method to reduce
the variance of scores located on the path between source and detector. This
problem also illustrated how the AMS is much less sensitive to the quality of
the importance map than the Exponential Transform method. The automatic
parametrization of the INIPOND module allows the AMS algorithm to obtain
unbiased results without further parameter optimization.

5.4 Flux attenuation in a 3D streaming
configuration

The Exponential Transform aims at reducing the variance by altering the
sampled particle flight lengths between collision sites. It is therefore not surprising
for it to be really efficient in a deep-penetration problem as seen in the previous
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Figure 5.6. Neutron flux attenuation in the water pool problem for
AMS and Exponential Transform, using optimized INIPOND maps.
Upper to lower: mean flux with 68% confidence intervals, relative stan-
dard error, and FOM.
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section (provided an adapted importance map is used). However, if we consider
a streaming problem, in which the simulated particles have to follow a twisted
path to reach the detector area, the shortening or stretching of free flights will
most likely not be sufficient for the Exponential Transform to significantly reduce
the variance. On the other hand, the AMS algorithm does not seem to have such
limitations, and should therefore prove itself most useful for such configurations.

5.4.1 Problem description

The analysis we propose here is the study of neutrons streaming through a
three-dimensional labyrinth filled with air and located in a concrete environment.
This geometry has already been investigated during in a preliminary study whose
results have been presented during this Ph.D. at the International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engi-
neering (M&C 2017) [22].

In this problem, the air has a density of 0.001 293 g/cm3, and the concrete
is an ilmenite-limonite concrete of density 2.9 g/cm3. The labyrinth is shown in
Figure 5.7, and the elemental compositions of both air and concrete are detailed
in Table 5.1.

Figure 5.7. Geometry for the labyrinth problem.
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Element Air Concrete

0.001 293 g/cm3 2.9 g/cm3

Hydrogen - 00.66
Oxygen 21.00 36.45
Nitrogen 79.00 -
Magnesium - 00.15
Aluminium - 00.80
Silicon - 03.06
Sulfur - 00.08
Calcium - 05.83
Titanium - 16.03
Iron - 36.93

Table 5.1. Elemental composition of the simulation materials as a
percentage by weight.

A 2-MeV isotropic neutron point source is placed at the center of a cubic
room of side 4 m. It is represented on Figure 5.7 by a blue point. The entrance
of the labyrinth is located at a corner of this room. The labyrinth itself is a 44-
meter-long tunnel composed of a section of dimension 2 m×2 m×50 cm followed
by 14 ”square” sections of dimensions 3 m×3 m×50 cm. When assembled, those
sections compose a tunnel of 7 straight corridors joined by six 90◦ bends.

This problem has been chosen as a case in which the Exponential Transform
can not be of any help to reduce the variance on a score estimated at the end
of the labyrinth. Indeed, due to the air concentration, the particle flight lengths
within the tunnel will most of the time be large enough for the particle next
collision to occur in the concrete walls of the tunnel. Therefore, stretching or
shortening the flight length using the Exponential Transform should not have a
sufficient impact on the transport behaviour to allow the particles to reach the
end of the tunnel, regardless of the importance map quality. In such configura-
tions, the attenuation is induced by abrupt changes of direction in the geometry,
which reduces the efficiency of the Exponential Transform method.

In order to validate the AMS variance reduction capacity on other scores than
flux in volumes, two types of scores have been defined in this geometry. The first
one consists of an estimation of the flux in a mesh covering the entire geometry,
and the second one is a surface flux, estimated on surfaces placed at various
distances along the tunnel and at the very end of the labyrinth. The chosen
surfaces are the interfaces between the square sections composing the labyrinth,
and the AMS target is the surface located at the end of the tunnel. We will refer
to it as the detector in the remainder of this section.
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5.4.2 Construction of importance functions

As for the other cases, we wished to test the AMS efficiency in this context
using spatial importance function as well as INIPOND importance maps.

Purely spatial importance function

Given the problem at stake, it seems highly probable that the particles con-
tributing to the flux at the detector are the ones that travel along the tunnel.
Therefore, a good purely spatial candidate for the importance function would
have the following characteristics:

- For all point within the source room, the importance is inversely propor-
tional to the distance to the labyrinth entrance.

- In the tunnel, the importance increases between the labyrinth entrance and
the end of the tunnel.

- In the concrete, the importance is zero.

To build such a function in TRIPOLI-4, we used the path spatial importance
described in Section 4.2.3, and defined the path as the sequence of source and
black points displayed in Figure 5.7. We furthermore forced the importance out-
side of the labyrinth to zero by setting a null weighting factor to the corresponding
volume. The resulting importance function is shown in Figure 5.8.

Figure 5.8. Spatial importance IS for the labyrinth geometry.
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INIPOND importance map

The spatial mesh we defined for the INIPOND calculation is composed of
50 × 50 × 50 cells. Their dimensions are approximately 40 cm×10 cm×10 cm in
the tunnel, and their size increases progressively with increasing distance from
the labyrinth. The energy domain of the simulation (1e−11–20 MeV) has been
divided into 6 energy groups, detailed in Table 5.2.

Group Maximum Energy Minimum Energy

1 20 MeV 1 MeV
2 1 MeV 100 keV
3 100 keV 5 keV
4 5 keV 0.625 eV
5 0.625 eV 1e−3 eV
6 1e−3 eV 1e−3 eV

Table 5.2. Energy discretization of the importance map.

We used the automatic parametrization of INIPOND to compute the impor-
tance I+

6 . The variations of the resulting map being the same in every energy
group, we show only in Figure 5.9 the non-angular part I+

4 of the importance,
restricted to a single group.

Figure 5.9. Automatically generated importance map I+
4 for energy

group 2.

We can see that the INIPOND module successfully evaluates the importance
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map for the entire geometry, also computing an importance for each cell within
the concrete. As expected, the preferential path for the neutrons from the source
to the detector is indeed through the tunnel.

Mesh score

Figure 5.10 shows the flux obtained in the cells of the mesh covering the
labyrinth, with both an analog and AMS simulation with importance IS. The
simulation time was set to 90 minutes for both simulations, which ran on the
same computer, each on a single thread. The AMS simulation used 104 particles
per batch with a k value set to 100.

(a) Analog neutron flux (b) AMS neutron flux

Figure 5.10. Representation of the mesh neutron flux obtained with
an analog simulation (a) and an AMS simulation with IS (b), for the
same computation time.

We can see in Figure 5.10 that the AMS algorithm allows TRIPOLI-4 to
estimate a flux in every cell of the mesh inside the labyrinth, despite the 20
orders of magnitude attenuation. Furthermore, we notice that the estimation of
the flux outside the tunnel is not impaired by the zero-valued importance of the
concrete. This is not surprising, since the AMS algorithm does not modify the
transport of particles in the geometry, therefore the collisions in concrete are
accounted for in the score estimation, but no track can be duplicated at those
points.

Surface Flux Estimations

In order to perform a more quantitative efficiency comparison, we compared
the results obtained on the surface flux scores. We performed an analog simula-
tion, an AMS simulation with the purely spatial importance IS, and two AMS
simulations with the importance maps I+

6 and I+
4 computed by INIPOND. All

the simulations ran simultaneously on the same computer for 67 hours, each of
them on a single thread.

The results obtained are shown in Figure 5.11 with respect to the distance
between the surfaces and the labyrinth entrance. The dotted vertical lines indi-
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cate the locations of the 90◦ bends in the tunnel.

The comparison of the results obtained for the surface flux tallies puts once
again into light the efficiency of the AMS algorithm. Regardless of the importance
function, the AMS results are in agreement all along the tunnel, while the analog
simulation fails to accurately estimate a flux deeper than 11 meters. Closer to
the labyrinth entrance, we can see that the results of the AMS simulation are in
very good agreement with the values obtained from the analog simulation.

The relative standard errors for each of the surface flux estimations are re-
ported in the middle frame of Figure 5.11. We can see that for the same computa-
tion time, the smallest standard errors are obtained by the AMS using the purely
spatial importance map IS. This indicates that the importance maps computed
by INIPOND do not correctly represent the problem. This is most likely the con-
sequence of an incorrect estimation of the spectral effects. Indeed, the INIPOND
module does not accurately take into account the particle energy decrease dur-
ing transport, which in this case leads to an overestimation of the higher energy
group importances. This may have little impact on the Exponential Transport
behaviour, as particles transported in distinct groups are independently biased,
but within the AMS algorithm, those particles are compared to one another. In
this case, this leads to illegitimate resampling of low-energy neutrons in favor of
high-energy ones, even if they are farther from the end of the tunnel. This has an
impact on the AMS efficiency, which spends time performing unnecessary split-
ting. Every supernumerary AMS iteration lowers the global weight assigned to
the particles, eventually leading to underestimated estimations for some batches.

Nevertheless, it must be borne in mind that the INIPOND map did still enable
the AMS algorithm to estimate the correct average flux on all considered tallies.
Therefore, the use of the INIPOND map for AMS remains a viable option, and
may prove itself very efficient in configurations where trivial importance functions
are not enough to describe the problem.

It is worth noting that the FOM obtained for the estimations of the first four
surface fluxes are greater for the analog simulation than for any AMS simula-
tion. This is a direct consequence of the extra computational time required for
the AMS simulation to classify and resample particles, which is penalizing if the
score is too easy to estimate.

The use of the Exponential Transform with importance I+
6 did not yield any

results, since the first batch simulation never ended. We tested several other
parametrizations of the module but the best results were similar to those of the
analog simulation.
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Figure 5.11. Neutron surface flux obtained with AMS and analog
simulations with respect to the distance between the surfaces and the
tunnel entrance. Upper to lower: mean flux with 68% confidence in-
tervals, relative standard error, and FOM.
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5.4.3 Construction of reference values

We wished to compare the AMS results with values obtained using another
method. Due to the complexity of the problem however, we were unable to obtain
a reference value for the flux using the Exponential Transform variance reduc-
tion method. Considering the flux attenuation, it was obviously not reasonable
to hope getting analog results all the way to the end of the tunnel.

A deterministic approach was considered, but the size of the geometry and the
low concentration of the air inside the tunnel were most likely to lead to difficulties
calculating the flux, strong ray effects or other anomalous computational effects
[23].

Surface particle restart

The chosen strategy for constructing reference values uses a two-step feature
of TRIPOLI-4. It is called surface restart and is based on a two step approach,
each step involving a TRIPOLI-4 simulation. In a first simulation, the character-
istics of particles crossing the boundary of a given volume are stored and dumped
into a file. Then, TRIPOLI-4 uses this file to initialize the source particles for the
second simulation, making use of the Markov property of the simulated particle
transport. Surface restart can be used in series, each simulation storing particles
to be used as source in the next simulation.

In our case, the geometry was divided into eight parts, the first one contain-
ing the source room, and each of the successive parts encompassing consecutive
pieces of the tunnel. After having restricted the geometry to its first part, 106

particles were simulated from the source point (without variance reduction). Dur-
ing the simulation, the particles states at the interface between the first and the
second part of the geometry were stored. Then, seven successive simulations were
performed, each of them restricted to a single part of the geometry. Each time,
106 particles were simulated using the particle states stored during the previous
simulation as source and the particles leaving the restricted geometry were stored
to be used in the next simulation.

Obviously, less than 106 particles were stored at the end of each partial simula-
tion. They have been consequently massively duplicated, and the flux estimation
may suffer from correlations. Furthermore, the estimation of the variance on the
estimated scores in this multiple-simulation configuration is a complicated mat-
ter. We did not estimate the confidence intervals in this study, since our purpose
was only to provide a reference value to validate the results obtained with AMS.

Validation of AMS results

Figure 5.12 shows the surface flux estimated with the three AMS simulations
as well as the reference values estimated using the surface particle restart strategy
presented above, represented as a dashed gray line. We can see that all results
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are in accordance, which comfort us in the accuracy of the AMS results.
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Figure 5.12. Comparison of AMS and reference results along the
labyrinth.

5.5 Conclusion
After having adapted the theoretical scoring procedure for scores outside the

target volume of the AMS, we showed that any score could be collected at the
end of the algorithm iterations, provided that we had access to the whole particle
genealogy. However, this genealogy-based scoring would have a strong impact on
track storage, and would also require heavy modifications of the scoring process
of TRIPOLI-4.

It is however possible to collect scores at any iteration of the AMS algorithm,
and this is what is actually done, thereby minimizing the modifications required
in TRIPOLI-4. We showed that a wise choice of the scoring iteration allows us
to avoid the storing of the whole genealogy to collect scores outside the target
volume. We introduced in this chapter an innovative way of determining the best
iteration at which to collect scores on the fly during the iterating process, and
then showed in two test cases that the resulting implementation was indeed work-
ing and efficient, since it permits to estimate unbiased results outside the target
volume with a better FOM compared to analog simulation results.

This new feature of AMS in TRIPOLI-4 allows for a wider field of applica-
tions, since the AMS estimations are no longer restricted to the target area nor
to volume scores. Yet, this implementation of AMS is still not usable in some
cases. It is indeed limited to particle tracks that each represents the history of a
single particle. In shielding configurations however, the interaction of a particle
with a nuclide can result in the emission of one or several secondary particles,
and there are cases in which these secondary particles have to be treated explicitly.
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In order to have an AMS algorithm that can be used for any shielding sim-
ulation, the AMS implementation has therefore to be adapted in order to take
branching processes into account. This adaptation is the subject of the next chap-
ter.
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Chapter 6

Handling branching tracks with

AMS

In Monte Carlo neutron transport simulations, the majority of multiplying
reactions can be handled by transporting a single outgoing particle carrying a
weight that reflects the particle multiplicity [20]. In analog simulations however,
each outgoing particle is treated as an independent particle and transported in-
dividually. This is troublesome for the AMS algorithm, since such interactions
generate multiple secondary tracks for a single incoming track. We refer to those
tracks as ”branching tracks”.

After describing why we wish the algorithm to be able to deal with branching
tracks, we propose a way of defining the importance of branching tracks as well
as the associated resampling procedure. In a third part, we address the imple-
mentation of this new technique in TRIPOLI-4. The last sections of this chapter
are devoted to the study of two cases especially chosen to assess the efficiency
of AMS as a variance reduction scheme in simulations where correct handling of
branching tracks is required. The first one is a gamma-ray spectrometry case, and
the second a coupled neutron-photon calculation.

6.1 Motivation

The AMS algorithm does not provide a direct way of defining importances for
branching tracks. The easiest way of bypassing this issue is to let the code assign
weights to particles that undergo multiplying reactions so that the resulting track
is weighted but not branching.

This workaround can however not be used in every situation. There are sim-
ulations in which the weight treatment of particle multiplicities is either not
applicable or not sufficient to prevent tracks from branching. In coupled neutron-
photon simulations for example, the inelastic scattering of neutrons on a nucleus
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leaves the nucleus in an excited state from which it eventually releases radiation
in the form of photon(s). In that case, the original neutron carries on its transport
while one or several photons are emitted. The emitted photons may very well be
represented by a single photon carrying a weight, but the primary neutron and
the secondary photon can not be replaced by a single weighted particle due to
their distinct nature.

Another example of situation in which the secondary particles have to be
simulated one by one are gamma-ray spectrometry simulations. The score in this
kind of simulations consists in a spectrum of deposited energy per particle, usually
called ”pulse-height tally”. The related deposited spectrum score of TRIPOLI-4
records the total energy deposited in the detector by a particle from its emission
at the source to the termination of all progeny. This implies that all secondary
tracks are correlated. If a photon coming from the source point generates two
secondary photons of 511 keV energy which are then both absorbed in the detec-
tor, deposing all their energy in it, the whole process registers as a single event
of 1022 keV. Weight-based multiplicity representation is not well suited to handle
cases with correlated secondary particles, which can only be accurately repre-
sented by an explicit treatment of branching tracks.

Pulse-height tallies are actually non-Boltzmann scores, as they can not be
described by the Boltzmann equation due to the fact that they require knowledge
of the entire trajectory for a contribution to be computed. Non-Boltzmann scores
are a complex matter in terms of variance reduction. The restraint on weight
use complicates the application of most variance reduction methods. Most of the
time, it is possible to circumvent those problems, but it requires to modify the
variance reduction schemes [24]. For the time being, TRIPOLI-4 is not able to
use the Exponential Transform method if these kind of scores are requested in
the simulation. This gave us one more reason to find a way of handling branching
tracks in the AMS algorithm.

6.2 Practical approach

As of today, the problem of applying AMS to branching Markov Chains has
never been addressed in the literature. There is however no theoretical impedi-
ment to the consideration of branching tracks in AMS, provided that their im-
portances and the associated resampling procedures are correctly defined.

We present in this section a way of defining branching tracks importances
and the associated resampling procedures, which looks to fit the framework of [3]
and should therefore yield unbiased results. Our approach is extensively tested
in the last two sections of this chapter, both to validate the unbiasedness of the
estimation and to evaluate its relevance in terms of variance reduction.
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6.2.1 Definition of branching track importance

The importance of branching tracks can be simply defined in the same way
as non-branching tracks. That is, the importance of the track is the maximum
importance of its points. In the case of a branching track, this includes the points
of all branches.

An example of importance definition in the case of a branching track is shown
in Figure 6.1. The importance in this configuration is assumed to increase when
the particle gets closer to the target, so that the importance values displayed on
the figure are such that I0 < I1 < · · · < I6.
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Figure 6.1. Illustration of a branching track. The branching point is
drawn in red.

The track displayed in Figure 6.1 branched at its second collision with the
medium and resulted in two outgoing particles. Since the point importances are
computed after the collisions, the importance of the original track at the branch-
ing point but prior to the branching event was I1. Then, each of the secondary
particles added its collision points to a secondary track, both secondary tracks
being attached to the original track at the branching point. Due to the chosen
importance function, the first points of both secondary tracks have the same im-
portance I2, although their directions differ. One of the secondary tracks reached
an importance I5 while the other culminated at I6. The overall importance of the
entire branching track is therefore I = max(I1, I5, I6) = I6.

6.2.2 Branching track duplication

Once the importance of branching tracks is defined, the classification process
and the selection of the tracks to be resampled remains unchanged. During the
resampling of a deleted track however, a branching track can be selected for du-
plication. In that case, the duplication process is rather more complex than for
single-branch tracks.
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When a single-branch track is selected for duplication, it is split at the first
point of importance greater than the splitting level. In the case of a branching
track however, three cases have to be distinguished, depending on the relative
position of the splitting level and the branching point:

1. The splitting level crosses the particle track before the first branching point,
in which case the splitting point is on the primary track.

2. The splitting level crosses the particle track after the first branching point
and crosses only one secondary track, so that the splitting point is on a
single secondary track.

3. The splitting level crosses the particle track at or after the first branching
point and crosses several secondary tracks. Then, multiple secondary tracks
should be split.

Primary track splitting

This is the simplest case. As the splitting level crosses the particle track before
any branching point, the standard splitting procedure can be implemented and
the resampling process remains unchanged. The particle is simply duplicated at
the first point of importance greater than the splitting level, and the duplicated
particle is then independently simulated.

Let us consider the branching track shown in Figure 6.1. The first two points
make up the primary track, which would have to be split for any splitting level
Z such that I0 < Z < I1, as shown in Figure 6.2.

×
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• I4

• I6

×I6

• I3

• I5

×I5

Splitting level
• I1

•

•

×

Resampled trackTrack to be duplicated

Figure 6.2. Example of a branching track duplication process for a
splitting level less than the importance of the branching point

Single secondary branch splitting

The second possible configuration is as follows: one of the secondary tracks
has an importance greater than the splitting level, while the importance of the
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others are smaller. The duplication of such a branching track is also fairly similar
to the standard duplication process. Only the secondary track that reached the
level has to be split, which generates a new standard single-branch track.

Using the branching track illustrated in Figure 6.1, we show an example of
single secondary track splitting in Figure 6.3, by imposing a splitting level whose
value Z is comprised between I5 and I6, so that the secondary track on the left
has an importance I5 < Z while the one on the right has an importance I6 > Z.

×
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• I2

• I4

•I6

×I6

• I3

• I5

×I5

Splitting level

• I6

Resampled trackTrack to be duplicated

Figure 6.3. Example of a branching track duplication process for a
splitting level crossing a single secondary track

Multiple secondary branches splitting

The last possible outcome occurs when the splitting level crosses multiple
secondary tracks. In that case, each of those secondary tracks has to be split.
However, one should keep in mind that the original duplicating process consists
also in copying the track selected for duplication up to the splitting point. In
this view, all new tracks resulting from the splitting of multiple secondary tracks
have to be considered in the subsequent AMS iterations as secondary tracks of a
virtual single track. Therefore, they have to be treated together in the rest of the
simulation, just as any other branching track.

Once again, we use the branching track of Figure 6.1 to illustrate such a
splitting process. It occurs if the track is selected for duplication with any splitting
level Z crossing the track after the branching point and such that both secondary
tracks have importances greater than Z. An example of such a situation is shown
in Figure 6.4.

6.3 Implementation strategy
The implementation in TRIPOLI-4 of the method described above for the

treatment of branching tracks within AMS requires a modification of the track
structure, so as to be able to take into account secondary tracks after a branching
event.
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Figure 6.4. Example of a branching track duplication process for a
splitting level crossing multiple secondary tracks

6.3.1 Tree-type track structure

The AMS track structure in TRIPOLI-4, as introduced in Section 4.2.1, con-
sists in a points vector and a single importance value for the whole track. It is
therefore not well suited to take branching processes into account. We decided to
transform these tracks into tree-type structures instead. The new version of the
track class holds a vector of branches, each of which is actually an instance of the
former track structure with an additional ”threshold” attribute. We will discuss
the value and purpose of this threshold in the following. The data structure of
these new tracks is represented in Figure 6.5.

6.3.2 Branching track transport process

The transport of a source particle now begins with the creation of a track
holding a single branch to which the particle source point is added. The impor-
tance of the branch is set to the importance of its first point, and its threshold is
set to zero. The branch is then filled as usual during the particle transport. Note
that it is still possible to build the track branches only with points of greater
importance than the branch importance so as to reduce the memory load (see
Section 3.2.4).

Whenever the particle generates a secondary particle, an empty branch is
added to the particle’s track. The threshold of this new branch is set to the im-
portance of the ”mother” particle immediately prior to the splitting event. Since
the importance is only evaluated after the collisions or at the boundaries between
volumes, the threshold is by construction the importance of the mother track’s
last point before splitting, which is either the previous collision point, the source
point or the last boundary crossing point. The threshold value will play an es-
sential role in the track duplication process. More details will be given in the
following.
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Figure 6.5. Data structure of the tree-type track class.

During the secondary particle transport, its collision points are added to the
new branch, following the same process as for a primary particle. If the secondary
particle itself generates a tertiary particle, a new branch is created in the same
track and the tertiary particle is handled as any other secondary particle. Once
all progeny is terminated, the importance of the whole track is computed as the
maximum importance of all branches within the track. We show in Figure 6.6 an
example of branching track history (6.6a) and the corresponding track as stored
in the tree-type track structure (6.6b).

6.3.3 Duplicating branches

Once the importance of tracks is defined, the classifying step of the AMS al-
gorithm can be performed as usual. The tracks that have an importance lower
than the splitting level are deleted from the simulation (with all their branches),
and as many of the remaining tracks are selected for duplication.

Let us consider one of the tracks selected for duplication. The duplication
process stipulates that every branch of the track that reached the level should be
split. The track importance being greater than the splitting level, at least one of
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Figure 6.6. Example of branching track storing using the tree-type
track structure

its branches will be duplicated. One can determine whether or not a given branch
has actually reached the splitting level using only the importance of the branch
and its threshold value. Three scenarios are possible:

1. The splitting level is less than the threshold of the branch. This implies that
when the corresponding particle was generated, its parent particle had al-
ready an importance greater than the level. The branch should therefore not
be duplicated. This corresponds to the ”Primary track splitting” situation
described in the previous section.

2. The splitting level is greater than the branch threshold but less than the
branch importance. Either the particle has been produced by a parent which
had not yet reached the splitting level, or it is a source particle which
reached the level during its transport. The first point of the branch whose
importance is above the level is then defined as splitting point.

3. The splitting level is greater than the branch importance. In that case, the
particle history has been terminated before reaching the splitting level and
the branch is not duplicated.

A new track is instantiated to hold all duplicated branches. Each of those
branches is initialized with the corresponding splitting point, and both the branch
importance and threshold are set to the value of this point importance. The
branch is then filled by transporting a particle from this point until the termina-
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tion of its history.

In a configuration without branching events, we can see that the algorithm
behaviour is identical to the previous AMS implementation. The only difference
is that the points previously stored in the track structure are now contained in
branches embedded in the tracks, but with a single branch per track. This has no
impact on the simulation, apart from a small change in the storing process. The
computational time overhead induced by the tree-type track structure is however
negligible with regard to the global AMS cost.

6.4 Gamma-ray spectrometry
The problem considered to validate the use of AMS as a variance reduction

method in simulations requiring precise branching tracks handling is the mod-
elling of a measurement station for sodium spectrometry. It is a reproduction of
the geometry proposed in [25]. We recall that the score of interest in spectrometry
simulation is a pulse-height tally, which is a non-Boltzmann score.

6.4.1 Objective and setup

The geometry is composed of a sodium sample opposite a High-Purity Ger-
manium detector (HPGe). Both are encased in a lead chamber, whose role is to
cut off external radiation. The only photon source is therefore the sodium sample.
The lead walls of the chamber are coated with a 2-mm-thick copper film. The
modelled measurement station is shown in Figure 6.7. The detector is an accurate
model of the HPGe Canberra GR2021 detector, and the sodium sample is placed
22 cm away from the detector, so as to maximize the count rate [25]. The photon
emission lines of the sodium sample, which will be used as source term for the
simulation, are shown in Table 6.1.

Energy (MeV) Intensity

0.9966 0.000021
1.368626 0.999936
2.754007 0.99855
2.871000 0.0000025
3.866220 0.00074
4.238900 0.0000084

Table 6.1. Simulated photon emission lines of the sodium sample for
the spectrometry simulation.

The purpose of the simulation is to reproduce the HPGe detector response.
Within the simulation, the corresponding score is a spectrum that registers for
each source particle the energy deposited in the germanium crystal by all the
secondary particles of its progeny. This can be estimated using a pulse-heigh
tally. InFigure 6.7, the germanium crystal is shown in dark cyan. As we aim to
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test the AMS algorithm in a realistic case, we decided to explicitly simulate elec-
trons and positrons alongside photons in this problem. In this configuration, each
source photon generates on average 17 secondary particles (photons, electrons
and positrons combined).

Figure 6.7. Gamma-ray spectrometry setting

6.4.2 AMS results and efficiency

As previously mentioned in Section 6.1, the Exponential Transform method
can not be used to reduce the variance on this type of scores. The AMS results
presented in the following will therefore be compared only to analog results. The
INIPOND module is only able to compute importance maps for neutrons or pho-
tons, so the INIPOND photon maps were also used as importance functions for
electrons and positrons.

Three AMS simulations (I+
6 , I+

4 and one with the purely spatial importance
IS) were run alongside an analog simulation. In this case, IS was defined as the
reciprocal of the distance to the center point of the detector (see Section 4.2.3).
All simulations used 104 source photons per batch, and the AMS k parameter
was set to 100. The energy depositions in the germanium crystal were collected
during 5 days (CPU time). The energy range between 1e−11 and 8 MeV has been
divided into 1600 bins in which the energy depositions were counted. The result-
ing spectrum, normalized by the number of source photons, is shown in Figure 6.8.
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Figure 6.8. Photon spectrum obtained with AMS compared to an
analog simulation. Upper to lower: counts normalized by the number
of simulated source particles, relative standard error, and FOM.
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We can see in the top frame of Figure 6.8 that all four spectra are perfectly
superimposed. As they are plotted without confidence intervals, we can observe
how the three AMS spectra are far less noisy than the analog spectrum, especially
at energies greater than 1 MeV. On the far right side of the spectrum, we observe
that all AMS simulations were able to simulate events leading to high-energy
depositions that the analog simulation was completely unable to estimate.

The middle frame of the figure shows that the relative standard errors pro-
duced by the AMS simulations are smaller than the analog ones in every energy
bin for the same computation time, showing that the AMS algorithm is a suit-
able variance reduction scheme for gamma-ray spectrometry simulations. The
resulting FOM gain over the analog simulation is approximately 10 for the AMS
calculation using the INIPOND map I+

6 , and up to 30 with the purely spatial
importance.

The higher efficiency we managed to reach with the AMS came from the use
of a simple spatial importance function. This confirms that the INIPOND im-
portance maps are often not well suited for AMS use. However, the automated
generation of an importance map still allows for a great efficiency improvement
over the analog simulation.

In order to increase our confidence in the AMS results, we now focus our atten-
tion on a specific peak in the photon spectrum, which can only be obtained with a
correct treatment of track branching. The 511 keV peak is due to photons of pre-
cisely 511 keV being absorbed in the germanium crystal and depositing all their
energy therein. Those photons come from positron-electron annihilations. Like all
charged particles, a positron continuously loses energy during its transport. At
one point, its energy becomes so low that any interaction with an electron of the
surrounding medium results in the annihilation of both particles. This process
results in the emission of two photons, each with an energy of 511 keV, which are
emitted in opposite directions.

Since the particle source of our problem is a photon source, 511 keV photons
are necessarily secondary particles emitted by secondary positrons. Therefore,
their branches belong to tracks that have branched at least twice.

We show in Figure 6.9 the 511 keV peak of the spectra presented in Figure 6.8.
The top plot of the figure shows the mean counts of energy around 511 keV with
associated 68% confidence intervals. We can observe on this plot that the results
obtained by all simulations are in agreement, which illustrates the validity of the
method we propose to handle branching tracks in AMS.

This study illustrated the ability of our AMS implementation to yield unbiased
results with a reduced variance in situations that require the explicit treatment
of branching processes. However, the limitations of the INIPOND module to pho-
tons and neutrons prevented us from testing the AMS with distinct importance
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Figure 6.9. 511 keV peak of the photon spectrum for AMS and Ana-
log simulations. Upper to lower: mean flux with 68% confidence inter-
vals, relative standard error, and FOM.
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functions for each particle type. Therefore, we decided to test this option on a
neutron-photon coupled simulation.

6.5 Neutron/photon coupled calculation
When it comes to branching tracks and variance reduction, one of the situa-

tions that is commonly encountered in shielding applications is neutron-photon
coupled simulation, in which the purpose is to estimate a photon score in a sim-
ulation where the source particles are neutrons.

6.5.1 Variance reduction in coupled simulations

The difficulty with coupled simulations is to find a proper way to implement
variance reduction. In the case of neutron-photon simulations, the variance reduc-
tion scheme can be applied only to neutrons, only to photons, or to both particle
types.

The AMS implementation with tree-type track structures enables multiple
ways of dealing with coupled simulations: indeed, it is possible to prevent pri-
mary particles from generating new branches in the primary particle track. Thus,
in the case of a neutron-photon simulations, the secondary photons would be
left out of the track structure, and the algorithm applied only to neutrons. The
eventual contributions scored by the secondary photons can then be considered
as contributions attached to the neutron collision that generated the photons. It
is also possible to perform an analog neutron simulation, and to build new AMS
tracks only for secondary photons before launching the AMS iterations. In that
case, AMS would only apply to photons.

Another possibility is to add both neutrons and photons to the track struc-
tures, but use different importance functions depending on the particle type. This
last possibility should be the most efficient, but the difficulty lies in defining a
good importance function for neutrons, since the most important neutrons in a
coupled neutron-photon simulation are those that are most likely to produce in-
teresting photons. The optimal neutron importance in this case should therefore
take into account the photon production in all modelled materials.

This issue has already been studied in TRIPOLI-4, which was provided with
a tool to compute a neutron importance map as the product of the photon im-
portance with the photon production probability [26]. This coupled importance
map could be a good candidate as neutron importance function to optimize the
AMS for coupled neutron-photon simulations.

6.5.2 Coupled problem description

In this section, we test the new AMS implementation abilities in reducing the
variance for a given coupled neutron-photon problem. The considered problem is
the same as was used in [26] to investigate the variance reduction efficiency of
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TRIPOLI-4 for coupled neutron-photon simulations. That study found an opti-
mized biasing scheme for TRIPOLI-4 that allowed for a variance reduction using
the Exponential Transform method. The AMS results presented in this section
will therefore be compared to the optimized configuration.

The problem consists of an isotropic neutron source with a Watt emission
spectrum, placed in a paraffin collimator which is separated from a detector by
10 slabs composed of either polyethylene or stainless steel. The slabs are dis-
posed alternately, except for two successive slabs of polyethylene, as shown in
Figure 6.10. The whole system is enclosed in an air-filled box with leakage bound-
ary conditions. The score we are interested in is a photon dose in the detector
region.

DetectorSource •

Figure 6.10. Geometry for the coupled neutron-gamma problem. The
stainless steel slabs are shown in green and the polyethylene slabs in
red.

6.5.3 Importance functions

For this problem, seven distinct importance functions were used:

- the purely spatial importance function IS, defined for each point as the
reciprocal of the distance to the center of the detector

- the neutron importance maps In6 and In4 computed by the INIPOND module
(with and without angular dependency)

- the photon importance map Ip6 and Ip4 computed by the INIPOND module
(with and without angular dependency)

- the coupled importance map Ic6 and Ic4 computed by the INIPOND module
(with and without angular dependency)

The photon importance maps Ip6 and Ip4 are built by INIPOND using the same
algorithm as for neutrons importance maps, but with photon cross sections. The
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coupled importance maps Ic6 and Ic4 are actually neutron importance functions,

which are computed for any point ( ~X, ~Ω) of the energy group g as:

Ic6( ~X, ~Ω, g) =
∑
g′

[
Γg′
(
~X, g

)
× Ip6

(
~X, ~Ω, g′

)]
(6.1)

and
Ic4( ~X, ~Ω, g) =

∑
g′

[
Γg′
(
~X, g

)
× Ip4

(
~X, ~Ω, g′

)]
, (6.2)

where Γg′( ~X, g) is the production probability of group-g′ photons for a neutron

at point ~X and within energy group g. The photon production probabilities are
related to the photon multiplicities, which are tabulated values available in the
nuclear data libraries alongside cross sections.

6.5.4 Results

Using those seven functions, we ran 9 AMS simulations with k = 1% and
various importance parametrizations, which we denote by pairs (I1 − I2), where
I1 the importance function used for neutrons and I2 the importance used for pho-
tons. The parametrizations (.− I2) correspond to AMS applied on photons only
with importance I2, after an analog neutron transport.

Two simulations were performed using the Exponential Transform method.
One of them used importance Ip6 to bias the photon transport, leaving the neu-
tron transport unaltered. The other was a reproduction of the most efficient
parametrization found by Petit et al. in [26]. It consists of using Ip6 to bias the
photon transport while increasing by a factor 10 the photon production in the
stainless steel slabs.

All simulations ran simultaneously for 15 h, and the obtained results are gath-
ered in Table 6.2, in which the best parametrization of the Exponential transform
is denoted Γ× 10.

We can see that all estimated results are in perfect agreement. Furthermore,
the AMS algorithm efficiently reduces the variance for every parametrization
(the FOM gain over the analog simulation is always greater than one). The AMS
parametrization that yielded the most interesting results in terms of variance re-
duction is (IS - IS), where the purely spatial importance is used for both neutrons
and photons. In this case, the FOM is almost 80 times greater than the analog
simulation and more than 20 times greater than the best Exponential Transform
result.

A comparison of the results obtained with parametrizations (IS - . ), ( . -
IS) and (IS - IS) exhibits the difficulty in applying a reduction variance scheme
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6.5. NEUTRON/PHOTON COUPLED CALCULATION

Type Parametrization Dose Rate Relative Error (%) FOM Gain

Analog N/A 1.06e+03 6.31 1.00

E.T.
Γ× 10 1.03e+03 3.37 3.50
Ip6 1.07e+03 5.91 1.14

AMS

IS - IS 1.04e+03 0.71 79.51
In6 - Ip6 1.02e+03 2.02 9.73
. - IS 1.01e+03 2.06 9.39
Ip6 - Ip6 1.03e+03 2.24 7.97
. - Ip6 1.04e+03 2.64 5.70
Ip4 - Ip4 1.05e+03 3.10 4.14
In4 - Ip4 1.10e+03 2.91 4.70
. - Ip4 1.04e+03 3.46 3.33
IS - . 1.01e+03 3.61 3.05
Ic4 - Ip4 1.06e+03 3.72 2.88
Ic6 - Ip6 1.08e+03 5.67 1.24

Table 6.2. Estimated photon dose rate (in µSv/h) for the coupled
neutron-photon problem.

to a coupled problem. The (IS - . ) parametrization is 3 times more efficient in
estimating the photon dose rate than the analog simulation, although it does not
resample the secondary photons simulated during the neutron iterations. On the
other hand, keeping the neutron tracks unchanged and resampling the photons
improves the estimation efficiency over the analog simulation by a factor 9. By
applying a variance reduction scheme on both particle types (IS - IS), we are able
to obtain a FOM gain 10 times greater than that.

Once again, the most efficient estimation is given by an AMS simulation that
uses purely spatial importance functions. This seems to indicate a poor energy
treatment in the importance map generated by the INIPOND module. In order to
investigate this more thoroughly, we present in Table 6.3 the dose rate estimations
restricted to several energy ranges for some of the simulations presented above.

Our first observation is that all results are in agreement regardless of the en-
ergy range. We can see that the most energetic group accounts for most of the
integrated dose rate (around 84%). It is therefore not surprising that the FOM
gains computed in this group are close to those obtained for the total dose rate.
However, there is some information to derive from the results in the lower energy
ranges.

If we focus on comparing the FOM gain evolution with regards to the energy
group for each of the simulations, we can see that when using a purely spatial
importance function, the AMS efficiency is greater in the lowest energies. This
makes sense, since the use of a spatial importance favours the particles that are
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CHAPTER 6. HANDLING BRANCHING TRACKS WITH AMS

Energy Range Simulation Dose Rate Error (%) FOM Gain

E >1 MeV

Analog 8.97e+02 7.27 1.00
E.T.(Γ× 10) 8.81e+02 3.56 4.16

AMS (IS − IS) 8.73e+02 0.81 80.38
AMS (In6 - Ip6 ) 8.46e+02 2.24 10.52
AMS (IS - . ) 8.74e+02 3.96 3.36

E ∈[100 keV,1 MeV]

Analog 1.65e+02 8.01 1.00
E.T.(Γ× 10) 1.51e+02 8.49 0.89

AMS (IS − IS) 1.68e+02 0.46 309.8
AMS (In6 - Ip6 ) 1.75e+02 4.26 3.55
AMS (IS - . ) 1.74e+02 6.03 1.77

E <100 keV

Analog 6.95e-01 100 1.00
E.T.(Γ× 10) 2.02e-01 25.74 15.11

AMS (IS − IS) 2.22e-01 2.74 1334
AMS (In6 - Ip6 ) 1.19e-01 21.37 21.93
AMS (IS - . ) 1.88e-01 44.4 5.07

Table 6.3. Energy repartition of the photon dose rate (in µSv/h) for
the coupled neutron-photon problem.

the closest to the detector area, which are most likely those that have the lowest
energies, since they are farther from the source point. This illustrates how the
AMS could be even more efficient, if it were to optimize the simulation efficiency
in groups that matter the most. On the other hand, focusing on the results ob-
tained with the INIPOND importance maps, we can see that the FOM gain drops
in the intermediate energy range regardless of the variance reduction method. For
the Exponential Transform simulation, it is even lower than 1 in that group. This
clearly indicates a bad treatment of the energy dependency of the problem by the
INIPOND module.

It is worth noting that the discrepancies in the FOM gains between energy
groups is only a symptom of a bad energy representation in the importance map,
and it does not give enough information to design a better importance function.
Indeed, if the estimate in a given energy group has a greater variance than the
other estimates within the detector area, it is not necessarily the importance val-
ues in that group that are incorrect. The error most likely originates from wrong
importances in a higher energy range and in an area outside of the detector.

In addition to the photon results, we also show in Table 6.4 the neutron
dose rate estimated in the detector during the same simulations. Even if the
purpose of the problem was to reduce the variance on the photon dose rate,
it is still interesting to see that most AMS simulations were able to correctly
estimate the neutron dose rate in the same simulation. What is more, some of
the AMS simulations even managed to reduce quite effectively the variance of
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6.6. CONCLUSION

Type Parametrization Dose Rate Relative Error (%) FOM Gain

Analog N/A 2.96e+03 13.66 1.00

E.T.
Γ× 10 3.04e+03 15.89 0.74
Ip6 2.12e+03 17.67 0.60

AMS

IS - . 2.90e+03 1.25 119.12
IS - IS 2.98e+03 1.27 116.39
In6 - Ip6 3.04e+03 6.62 4.27
Ip6 - Ip6 3.28e+03 15.86 0.74
In4 - Ip4 3.14e+03 13.72 0.99
Ip4 - Ip4 3.27e+03 11.86 1.33
Ic6 - Ip6 2.24e+03 25.17 0.30
. - Ip4 2.64e+03 20.03 0.47
Ic4 - Ip4 4.16e+03 26.15 0.27
. - Ip6 3.30e+03 15.26 0.80
. - IS 3.35e+03 17.53 0.61

Table 6.4. Estimated neutron dose rate (in µSv/h) for the coupled
neutron-photon problem.

the neutron score as well as the photon score. It should be kept in mind that the
Exponential Transform results presented in Table 6.4 come from simulations that
were parametrized to optimize the photon score, which probably explains the low
FOM that were obtained.

The study of this problem confirmed the ability of the AMS algorithm to
reduce the variance in simulations presenting branching processes. We showed
that the AMS can use a distinct importance function for each particle type, and
illustrated once again how a simple spatial importance function allows for an
efficient estimation of the result. However, we also highlighted the need for an
importance-generating tool more suited to the use of the AMS algorithm than
the INIPOND module.

6.6 Conclusion

In this section we proposed a method that allows the AMS to be applied on
branching processes and presented the necessary modifications to be implemented
in TRIPOLI-4 for the AMS algorithm to handle branching tracks.

This new ability of the AMS in TRIPOLI-4 was at first validated using a
photon-electron-positron spectrometry simulation. Not only did we show that
our AMS algorithm yielded an unbiased estimation of the score over the en-
tire energy range, but we showed that the estimation of a non-Boltzmann score
did not damage the AMS performance as a variance reduction technique, and we
observed a drastic increase of the FOM for both INIPOND and purely spatial im-
portances (up to 30 times greater than the analog FOM over the entire spectrum).
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CHAPTER 6. HANDLING BRANCHING TRACKS WITH AMS

After validating the AMS efficiency in simulations containing branching par-
ticle trajectories, we decided to use the AMS algorithm in a common challenging
configuration for variance reduction methods in radiation shielding simulations,
and tested the AMS efficiency in a coupled photon-neutron simulation. The re-
sults of this study showed that the algorithm was a suitable variance reduction
method for such configurations. We demonstrated the robustness of the AMS with
regard to the importance function as well as the new possibility of using distinct
importances for primary and secondary particles in the presence of branching
events.

In its current state, the AMS algorithm can now be used in TRIPOLI-4 for
any fixed-source particle transport simulation, without limitations on the type of
scores nor on the geometry.
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Conclusion and perspectives

The purpose of this Ph.D. was to study the applicability of the Adaptive
Multilevel Splitting algorithm as a variance reduction scheme for Monte Carlo
particle transport.

To that end, the algorithm was first reformulated to fit the frame of particle
transport. In order to validate this adapted version of the algorithm, a Monte
Carlo transport prototype able to use the AMS algorithm was developed (See
Chapter 3). The MENHIR prototype was designed to estimate a particle flux
in a very specific geometry, with enough simplifications to allow for an analyt-
ical computation of the result. The comparison of results obtained with AMS
relative to the analytical reference flux showed that the AMS was able to give
unbiased estimations of the flux regardless of the algorithm parametrization, just
as predicted by the theory. Using MENHIR in both AMS and analog transport
modes, we were able to assess the abilities of the AMS algorithm as a variance
reduction scheme for Monte Carlo particle transport. The comparison of the Fig-
ures Of Merit demonstrated that the AMS algorithm could indeed be a viable
variance reduction method for Monte Carlo particle transport in configurations
in which rare event simulation is required to have a precise estimation of the score.

These preliminary results paved the way for the implementation of the AMS
algorithm in a production Monte Carlo transport code. The method was there-
fore implemented in the transport code TRIPOLI-4 R© (See Chapter 4). A bypass
geometry was used as a first test case to validate the implementation of AMS in
this new context, which showed that the use of AMS could improve the efficiency
of the score estimation by a factor 600 compared to an analog simulation. In this
case however, the Exponential Transform method, which is the current reference
variance reduction scheme of TRIPOLI-4, turned out to be more efficient in re-
ducing the variance than the AMS algorithm.

The bypass geometry was a configuration that enabled us to confirm that the
AMS algorithm was indeed an interesting variance reduction scheme. However,
the first implementation of AMS in TRIPOLI-4 did not take full advantage of the
algorithm possibilities, among which is the ability to estimate scores outside the
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AMS target area. We derived from the applied mathematics theoretical formula-
tion of the AMS estimator an on-the-fly scoring method that enabled multi-zone
scoring during the AMS iterations (Chapter 5). We illustrated this new feature
through the study of two typical shielding problems: a deep-penetration config-
uration and a streaming simulation. In both cases, the AMS turned out to be
an efficient way of reducing the variance on score estimations both inside and
outside of the target area. The deep-penetration problem demonstrated the ro-
bustness of the AMS algorithm with regard to the importance function, while the
3D-streaming configuration showed the AMS variance reduction capabilities in a
problem for which the use of the Exponential Transform method was of no help.

This improved implementation of the AMS in TRIPOLI-4 allowed for unbiased
scoring of multiple scores in multiple locations of the geometry. The algorithm
could however not be used in every situation, as it was unable to handle branch-
ing trajectories, which are common in Monte Carlo particle transport simulations.
Branching particle trajectories can result for example from particles travelling in
a multiplying medium, or in coupled simulations in which particles of multiple
types are simulated. As the problem of branching processes in the AMS algorithm
is not addressed in the literature, we proposed in Chapter 6 an innovative method
that enables the AMS algorithm to deal with branching trajectories.

After adequately modifying the AMS implementation in TRIPOLI-4 so as
to handle branching trajectories, the upgraded AMS algorithm was used to re-
duce the variance for a gamma-spectrometry simulation, which is a situation in
which most weight-based variance reduction schemes are either not usable or re-
quire heavy modifications. The final AMS implementation in TRIPOLI-4 is how-
ever directly applicable in those configurations. Thus, we validated our branching
track handling procedure, and we illustrated the ability of the AMS in reducing
the variance even on such non-Boltzmann scores. Last, we considered a coupled
neutron-photon simulation, in which we were interested in a photon score with a
neutron-source simulation. The results presented in the last section of this the-
sis showed that the AMS was able to efficiently reduce the variance in this new
context, and even allowed for the use of various importances for distinct particle
types.

The studies presented in this thesis, alongside all the tests performed dur-
ing this Ph.D., show that regardless of the importance function, either purely
spatial or provided by an INIPOND calculation, the AMS algorithm is always
able to estimate the score of interest with increased efficiency as compared to
an analog simulation. However, we saw that the additional knowledge supposedly
brought by INIPOND-generated maps did not always improve the AMS efficiency.
It should be kept in mind that the INIPOND module is a tool designed for use by
the Exponential Transform method. The importance maps it provides are based
on assumptions that are not always suited to other importance-based variance
reduction methods. For example, the INIPOND maps do not take into account
the slowing down of particles during transport, which often leads to mistreatment
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of the energy-dependence in the importance maps by assigning too great an im-
portance to higher energy groups. Within the AMS algorithm, this issue can lead
to illegitimate resampling of low-energy particles in favor of high-energy particles,
even in configurations in which the particles need to lose energy in order to reach
the detector.

As of today, there is no proof that the optimal importance map for AMS in a
given particle transport problem is the adjoint score. Our guess is that it is most
likely a function related to the adjoint problem, either the adjoint score or the
adjoint probability of reaching the detector area. Further theoretical work around
the AMS algorithm could provide clues to answer this question. In the meantime,
it would be of great interest to study the AMS efficiency using high-quality im-
portance functions, even if it requires the use of a third-party software to be
computed (i.e. a software developed outside of the TRIPOLI-4 project). Once
the optimal importance function is found, it should be possible to implement a
specific module to compute an estimation of this importance function especially
designed for AMS use.

Another possibility is to use the many tracks simulated during the AMS iter-
ations in order to improve the quality of the importance map at the end of each
batch. The AMS can indeed be used to build a genealogy of particle histories go-
ing from the source to the detector, with associated occurrence probabilities. One
can then derive an estimation of the adjoint score for every point of the genealogy,
as the average score generated by particles that have passed by those points, and
use this knowledge to correct errors in the importance map. This step-by-step
importance map improvement could for example be performed through machine
learning algorithms.
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Résumé

Contexte de l’étude

Le comportement des particules neutres qui se déplacent dans de la matière
peut être décrit physiquement par un processus stochastique. C’est ce proces-
sus qui est reproduit dans les simulations de transport de particules utilisant la
méthode Monte-Carlo. Les codes utilisés pour simuler le transport Monte-Carlo
de particules ont deux modes de fonctionnement : criticité ou source fixe. Les
simulations de criticité reproduisent la réaction en châıne de la fission nucléaire
et s’appuient sur des itérations sur la puissance pour étudier la physique du cœur,
tandis que les calculs à source fixe sont utilisées pour traiter des problèmes de
radioprotection, de vieillissement et de démantèlement.

L’objectif des simulations de radioprotection est l’estimation d’un flux de par-
ticules dans une zone d’intérêt, ou bien de quantités dérivées de flux telles que des
taux de réactions ou des dépôts d’énergie. Dans une simulation donnée, la quantité
estimée est souvent appelée ”score” ou ”tally”. Les configurations étudiées dans
les simulations de radioprotection sont souvent associées à l’étude de problèmes à
forte atténuation, auquel cas les particules simulées ont une probabilité très faible
de contribuer au score. Le nombre de particules qu’il est nécessaire de simuler
devient alors trop grand pour espérer avoir une estimation précise du score en
un temps de calcul raisonnable. Dans ce contexte, les méthodes de réduction
de variance se proposent de modifier le processus de transport des particules afin
d’augmenter la probabilité d’occurrence des évènements rares, tout en conservant
une estimation non biaisé du score. Ainsi, elles permettent de réduire la variance
sur l’estimation du flux pour un temps de calcul donné.

Dans cette optique, les méthodes dites de multilevel splitting furent introduites
par Kahn et Harris [1]. Leur principe est d’augmenter le nombre de particules
simulées à proximité des zones d’intérêts de la simulation. En pratique, l’espace
de la simulation est divisé en régions d’importance, délimitées par des frontières
virtuelles appelées niveaux de splitting. Lorsqu’une particule simulée passe d’une
région de moindre importance à une région d’importance plus élevée, elle est du-
pliquée. Chacune des particules résultante de la duplication se voit attribuer la
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moitié du poids statistique de la particule initiale, afin que la simulation reste non-
biaisée. En utilisant ces techniques, le temps de calcul est alloué à la simulation
de particules dont les trajectoires semblent intéressantes, c’est-à-dire susceptibles
de contribuer au flux, plutôt qu’à la simulation de particules générées à la source.
Un des avantages de ces méthodes, par comparaison aux autres techniques exis-
tantes, est qu’elles permettent de ne pas altérer le transport des particules entre
les évènements de splitting. En effet, le transport de particules entre les régions
d’importance reste analogue, ce qui permet de garder la physique sous-jacente
intacte. Le problème inhérent à ces méthodes de splitting est qu’elles nécessitent
une connaissance précise du problème afin de définir les régions d’importance
de manière efficace. Il faut s’assurer que suffisamment de particules changent de
région pour avoir un effet perceptible sur la variance du flux estimé, mais un
découpage du problème en régions trop petites entrâınerait une explosion de la
population de particules à simuler.

Ce problème a été contourné dans le domaine des mathématiques appliquées,
où une méthode appelée Adaptive Multilevel Splitting (AMS) a été proposée
par Cérou et Guyader [2], puis étudiée dans une configuration plus générale par
Bréhier et al. [3]. Cette méthode, qui a également pour objectif de dupliquer
les particules ayant des trajectoires intéressantes, s’affranchit de la définition de
régions d’importance en amont de la simulation. À la place, les niveaux de split-
ting sont déterminés à la volée durant le processus de simulation, suivant un
mécanisme de sélection basé sur la classification des trajectoires de particules
déjà simulées. Cependant, cet algorithme n’a jamais été appliqué à la simulation
du transport de particules. Elle pourrait pourtant s’avérer utile pour les configu-
rations nécessitant une simulation précise d’évènements rares.

La méthode AMS

L’algorithme AMS présenté par la suite est une version condensée de l’algorithme
adapté au transport Monte-Carlo de particules mis en place durant cette thèse.
Dans ce contexte, le processus itératif de l’AMS s’enclenche après une phase
d’initialisation constituée d’une simulation analogue de n particules, c’est-à-dire
une simulation n’utilisant pas de méthode de réduction de variance. Puis, chaque
itération de l’algorithme contient deux phases : une de classement et une de
rééchantillonnage. L’AMS dépend de deux paramètres : la fonction d’importance
servant au classement des particules, et le nombre entier k utilisé pour définir
le nombre de rééchantillonnage à effectuer à chaque itération. Le numéro de
l’itération courante est notée q.

La phase de classement

Durant cette phase, la fonction d’importance est utilisée pour classer les trajec-
toires des particules simulées précédemment. À l’itération 1, les trajectoires prises
en compte sont celles des particules analogues simulées durant l’initialisation.
Lors des itérations suivantes, les trajectoires à classer seront celles provenant de
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la phase de rééchantillonnage de l’itération précédente. La fonction d’importance
associe à chaque point de l’espace des phases une valeur d’importance reliée à
la probabilité pour une particule émise en ce point de contribuer au score final.
L’importance d’une trajectoire de particule est alors définie comme l’importance
maximale parmi celles des points la composant. Une fois l’importance de chaque
trajectoire calculée, ces traces sont classées par ordre d’importance croissant.

Nombre de méthodes de réduction de variance reposent sur l’utilisation de
fonctions d’importance. Néanmoins, l’AMS utilise l’importance de façon partic-
ulière, puisque l’importance n’est pas utilisée lors de la simulation, mais unique-
ment pour comparer les trajectoires les unes aux autres après que la simulation
des particules les générant soit terminée. Ainsi, il n’est pas nécessaire que la
valeur numérique de la fonction d’importance à un point donné ait un sens par
elle-même. Cette propriété est l’une des forces de la méthode AMS, puisqu’elle
permet l’utilisation de fonctions triviales comme importances, telles que l’inverse
de la distance au point cible de la simulation.

Une fois les trajectoires des particules classées, un niveau de splitting est
défini pour l’itération en cours. Il s’agit d’une valeur d’importance limite en deçà
de laquelle les trajectoires seront rééchantillonnées durant la deuxième phase de
l’itération. Le niveau de splitting est défini comme l’importance de la kième tra-
jectoire la moins bien classée. Les trajectoires des particules ayant une importance
inférieure au niveau de splitting sont supprimées. Le nombre de trajectoires sup-
primées est nécessairement supérieur ou égal à k. À l’itération q, ce nombre est
noté Kq.

La phase de rééchantillonnage

Durant cette phase,Kq nouvelles trajectoires de particules sont échantillonnées
afin de remplacer celles supprimées à l’issue de la phase de classement. Ainsi, le
nombre n de traces disponibles au début de l’itération q + 1 reste inchangé.

Pour chacune des trajectoires à rééchantillonner, l’une des n−Kq traces ayant
survécu à la phase de classement est sélectionnée au hasard pour être dupliquée.
La distribution de probabilité pour la sélection de la trajectoire à dupliquer est
uniforme et avec remise. Le point de splitting, point d’émission de la nouvelle tra-
jectoire, est défini comme le premier point le long de la trajectoire sélectionnée
pour duplication dont l’importance est supérieure au niveau de splitting. La par-
ticule rééchantillonnée est ensuite simulée de manière analogue comme si elle avait
été émise depuis ce point.

Le processus de rééchantillonnage duplique Kq particules parmi un ensemble
de n−Kq traces. De façon à conserver un résultat non-biaisé à l’issue de la sim-
ulation, tous les poids des particules doivent être pondérées à la fin de l’itération
q par un facteur [2, 3] :

Wq = 1− Kq

n
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En pratique, le poids cumulé par les particules durant les itérations successives
est le même pour toutes les particules, et est enregistré comme un poids global

wq =

q∏
i=1

Wi

=

q∏
i=1

(1− Ki

n
). (6.3)

Fin des itérations

L’algorithme AMS s’arrête d’itérer à la fin de l’itération q si n − Kq + 1
particules ont atteint la zone d’intérêt. Pour n’importe quel score φ dans la zone
d’intérêt, un estimateur AMS peut être construit. Si l’on dénote φ̂MC la valeur
estimée utilisant un estimateur Monte-Carlo standard, alors

φ̂AMS = wq × φ̂MC

est un estimateur non biaisé de la quantité E(φ(X)) [3].

Application novatrice

Après avoir adapté la formulation de l’AMS aux spécificités du transport
Monte-Carlo de particules, comme reproduit ci-dessus, un prototype de code de
transport Monte-Carlo mettant en œuvre l’AMS a été développé (voir Chapitre 3)
afin d’étudier l’applicabilité de cette méthode à un code de transport de partic-
ules. Le prototype MENHIR a été conçu pour estimer un flux de particules dans
une géométrie très spécifique, avec un processus de transport suffisamment sim-
plifié pour permettre un calcul analytique du flux. La comparaison des résultats
de référence et de ceux obtenus par simulation AMS montre que la méthode de
réduction de variance donne effectivement une estimation non biaisée du flux,
et ce quelle que soit la paramétrisation de l’algorithme. MENHIR est également
capable d’effectuer des simulations Monte-Carlo ”analogues”, c’est-à-dire sans
appliquer de méthode de réduction de variance. En utilisant MENHIR à la fois
en mode analogue et en mode AMS, nous avons également testé les capacités
de l’AMS à réduire la variance sur le flux estimé. La comparaison de résultats
obtenus par des simulations dans les deux modes pour un temps de calcul donné
a démontré que l’AMS pouvait être une méthode de réduction de variance viable
pour le transport Monte-Carlo de particules en présence d’évènements rares.

Ces résultats encourageants ont ouvert la voie à l’implémentation de l’AMS
dans un vrai code Monte-Carlo de transport de particules. La méthode a donc été
implémentée dans le code TRIPOLI-4 R© (voir Chapitre 4). Une première configu-
ration test a été utilisée pour valider l’implémentation dans ce nouveau contexte.
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Dans le cas considéré, l’atténuation provient de la nécessité par les particules
de contourner un massif très absorbant pour atteindre la zone d’encaissement.
L’étude de ce problème démontra que l’AMS implémenté dans TRIPOLI-4 per-
met d’augmenter l’efficacité d’estimation du score d’un facteur 600 par rapport
à une simulation analogue.

L’étude du cas de contournement a permis de confirmer l’intérêt d’utiliser
l’AMS dans des simulations de transport de particules à fortes atténuations.
Cependant, la première version de son implémentation dans TRIPOLI-4 n’utilisait
pas toutes les capacités de l’algorithme, parmi lesquelles la possibilité d’estimer
des scores hors de la zone cible de l’algorithme. Depuis la formulation théorique
de l’estimateur AMS, telle qu’introduite dans la littérature de mathématiques
appliquées, nous avons mis en œuvre une méthode d’encaissement à la volée
permettant l’estimation de scores dans plusieurs zones de la géométrie en une
seule simulation AMS (Chapitre 5). Nous avons ensuite illustré les capacités
de cette nouvelle implémentation par l’étude de deux problèmes typiques du
domaine de radioprotection: un calcul d’atténuation du flux de neutrons dans
une grande profondeur d’eau (”deep penetration”), et une configuration dite
de ”streaming”, c’est-à-dire dans laquelle l’atténuation du flux provient de con-
traintes géométriques et non de la capacité d’absorption du milieu. Dans les deux
études, l’AMS s’est montré efficace en tant que méthode de réduction de variance,
à la fois pour les scores estimés à l’intérieur et à l’extérieur de la zone cible. La
première configuration a été utilisée pour illustrer la robustesse de l’AMS vis-à-vis
de la fonction d’importance, et la seconde a montré les capacités de réduction de
variance de l’AMS dans un cas dans lequel la méthode de réduction de variance
actuelle de TRIPOLI-4 est inutilisable.

Cette implémentation améliorée de l’AMS dans TRIPOLI-4 ne permettait
pas encore l’utilisation de l’algorithme dans tout type de configurations, car la
méthode était encore dans l’incapacité de traiter les trajectoires branchantes.
Dans le contexte étudié, une trajectoire branchante peut par exemple résulter du
transport d’une particule dans un milieu multiplicateur, ou encore d’une simula-
tion couplée dans laquelle plusieurs types de particules sont simulées (neutrons,
photons, etc.). La prise en compte des trajectoires branchantes par l’AMS est un
sujet qui n’a jamais été abordé dans la littérature avant cette thèse. Nous avons
donc mis en place une méthode innovante permettant à l’algorithme de manipuler
ce type de trajectoires (Chapitre 6).

Après avoir modifié l’implémentation de l’AMS dans TRIPOLI-4 afin d’étendre
le champ d’application de l’AMS aux trajectoires branchantes, l’AMS a été utilisé
pour réduire la variance dans une simulation de spectrométrie gamma, qui est
une situation dans laquelle les méthodes de réduction de variance usuelles sont
soit indisponibles soit difficilement applicables. La version définitive de l’AMS
dans TRIPOLI-4 est par contre utilisable directement dans cette configuration.
Ainsi, nous avons validé notre procédure de prise en compte des trajectoires bran-
chantes dans l’AMS, et avons également illustré la capacité de l’AMS à réduire
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dans ce type de cas. Enfin, nous avons considéré une simulation couplée neu-
trons/photons, dans laquelle la quantité d’intérêt est un score photon alors que
la source de particules émet exclusivement des neutrons. Les résultats obtenus
montrent que l’AMS est capable de réduire efficacement la variance dans ce nou-
veau contexte, et permet même l’utilisation de fonctions d’importances dépendant
du type de particules tout en restant non-biaisé.

L’ensemble des études de cas effectuées durant cette thèse ont montré que
l’AMS est une méthode de réduction de variance efficace, et innovante par rap-
port aux méthodes classiques. Le travail effectué a abouti à une implémentation
opérationnelle de la méthode AMS dans le code Monte-Carlo de transport de
particules TRIPOLI-4 R©, dans lequel elle est appelée à devenir une alternative
puissante à la méthode actuelle de la transformation exponentielle. Bien qu’ayant
mis en avant certains cas dans lesquels la méthode de la transformée exponentielle
est plus efficace que l’Adaptive Multilevel Splitting, nous avons démontré la sim-
plicité de mise œuvre de l’AMS, ainsi que sa capacité à traiter des configurations
extrêmement sévères ou de natures complexes dans lesquelles l’utilisation de la
méthode actuelle est simplement impossible.
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APPENDIX AAPPENDIX A:

ANALYTICAL SOLUTION FOR MENHIR

The construction of an analytical solution for the problem simulated in MEN-
HIR described in this appendix is derived from the works presented in [5] and
[27], where the authors propose methods for computing the neutron density in
uniform infinite medium with isotropic scattering and isotropic point source.

In MENHIR, an isotropic point source of monokinetic particles is located at
point (0, 0, 0), the medium is infinite and homogeneous with constant cross sec-
tions. The total cross section value is considered to be 1, and the only available
reactions are isotropic scattering with probability σs and capture with probability
1− σs.

The source term Q can then be written

Q(~r, ~Ω) = Q(~r) =
1

4π
δ(|~r|) (A.1)

where δ is the Dirac delta function. The collision kernel C is reduced to

C( ~X, ~Ω′ → ~Ω, E ′ → E
)

=
σs
4π

(A.2)

Under those assumptions, we can derive from Equation (1.3) and expression
for the particle flux at point ~r:

φ(~r) =

∫
e−|~r−

~r′| 1

4π|~r − ~r′|2
δ(|~r′|)d~r′ +

∫
e−|~r−

~r′| σs

4π|~r − ~r′|2
φ(~r′)d~r′, (A.3)

or equivalently

φ(~r) =

∫ [
δ(|~r′|) + σsφ(~r′)

] e−|~r−
~r′|

4π|~r − ~r′|2
d~r′. (A.4)

This last expression can be put in integrable form by the use of Fourier trans-
forms. If we denote by ψ(~k) the Fourier transform of φ(~r), such that

ψ(~k) =

∫
ei
~k.~rφ(~r)d~r, (A.5)

then the Fourier transform of Equation (A.4) yields

ψ(k) = [1 + σsψ(k)]
arctan k

k
,

so that

ψ(k) =
1

k
arctan k

− σs
. (A.6)
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APPENDIX A. ANALYTICAL SOLUTION FOR MENHIR

Using the inversion formula, we obtain for the scalar flux

φ(r) =

∫ ∞
0

r
3
2k−

1
2J 1

2
ψ(k)dk, (A.7)

where J 1
2

is the first kind Bessel function of order 1
2
.

The flux in a shell of inner radius r1 and outer radius r2 is therefore

φ =
3

4π(r3
2 − r3

1)

∫ r2

r1

φ(r)dr, (A.8)

which can be numerically computed using a mathematical symbolic computation
program (Mathematica R©in our case).
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APPENDIX BAPPENDIX B:

THE INIPOND MODULE OF TRIPOLI-4

The INIPOND module of TRIPOLI-4 is designed to build importance maps
for any problem, on a discretized phase space. The formula used to compute the
importance in each cell of the mesh covering the geometry is derived from the
expression of the importance in an infinite slab geometry.

B.1 IMPORTANCE FUNCTION FOR MONOKINETIC
PARTICLES IN AN INFINITE SLAB GEOMETRY

Let us try and compute an importance value for a homogeneous infinite slab
geometry. Let us assume that monokinetic particles are transported in this geom-
etry, and that the score of interest is the probability to reach an infinite detector
surface, defined as the plane of equation x = 0. The position of a particle is
given by the coordinates ( ~X, ~Ω), where ~X = (x, y, z). In this configuration, the
importance at a given point depends only on the distance between the point and
the detector. We illustrate in Figure B.1 the relative position of a particle to the
plane detector before and after a displacement of length s.

D
et

ec
to

r

~Ω0
•

+

~Ω

x x− s~Ω. ~Ω0

s

Figure B.1. Relative position of a particle to the detector area before
and after displacement in the infinite slab geometry.

Let us denote by Ib( ~X, ~Ω) the importance before collision, which is the impor-

tance of a particle entering a collision at spatial point ~X with direction ~Ω. We
similarly define Ia( ~X, ~Ω) as the importance after collision, referring to the impor-

tance of a particle having undergone a collision at spatial point ~X and coming
out of this collision with direction ~Ω.

In order for the functions Ib and Ia to be consistent, we must ensure that the
importance of a particle entering a collision is equal to the sum of the importances
of all particles that could come out of it, and that the importance of a particle
starting a flight at a given point is equal to the sum of the importances over all
possible locations of the next collision point. Formally, we have:

Ib( ~X, ~Ω) =

∫
C( ~X, ~Ω→ ~Ω′)Ia( ~X, ~Ω

′)d~Ω′ (B.1)
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and

Ia( ~X, ~Ω) =

∫
D( ~X → ~X ′, ~Ω)Ib( ~X

′, ~Ω)d ~X ′. (B.2)

Under the assumption of isotropic reactions, the importance before collision
does not depend on ~Ω. Furthermore, the considered problem being symmetrical
with regards to the y and z coordinates, the importance before collision is only
dependent on the x coordinate. We place the origin of the coordinate system on
the volume of interest, so that x increases with the distance to the detector, x = 0
being the detector frontier. Let us assume that the importance before collision at
a given point ( ~X, ~Ω) takes the form

Ib( ~X, ~Ω) = Ib(x) = e−κx, (B.3)

where κ is a constant parameter of the medium, which will be determined in the
following.

If we express requirement (B.2) in terms of flight length, we obtain for the
importance after collision:

Ia( ~X, ~Ω) =

∫
D( ~X → ~X + s~Ω, ~Ω)Ib( ~X + s~Ω, ~Ω)ds

=

∫ ∞
0

Σte
−ΣtsIb(x− s~Ω.~Ω0)ds

in which the vector ~Ω0 is the direction vector (−1, 0, 0).

We can now derive an expression for Ia:

Ia( ~X, ~Ω) =

∫ ∞
0

Σte
−Σtse−κ(x−s~Ω.~Ω0)ds

= Σte
−κx
∫ ∞

0

e−(Σt−κ~Ω.~Ω0)sds

=
Σt

Σt − κ~Ω.~Ω0

e−κx.

We replace this expression in Equation (B.1) in order to get a condition on
the parameter κ that will ensure consistency between the definition of the two
importances Ia and Ib.

Ib( ~X, ~Ω) =

∫
C( ~X, ~Ω→ ~Ω′)Ia( ~X, ~Ω

′)d~Ω′ (B.4)

= e−κx
∫
C( ~X, ~Ω→ ~Ω′)

Σt

Σt − κ~Ω′.~Ω0

d~Ω′ (B.5)

In this simplified case, the collision kernel C is reduced to a scattering kernel.
The homogeneity of the medium implies that all cross sections are independent
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on ~X, and due to the isotropy of the scattering events, the scattering cross section
Σs(~Ω→ ~Ω′) does not depend on the direction. The probability of passing from a

direction ~Ω to any direction ~Ω′ is then 1/4π, so that

Ib( ~X, ~Ω) = e−κx
∫

1

4π

Σs

Σt

Σt

Σt − κ~Ω′.~Ω0

d~Ω′

=
Σs

2κ
ln

(
Σt + κ

Σt − κ

)
e−κx.

Consequently, in order for the assumption (B.3) to hold true, we must ensure
that

Σs

2κ
ln

(
Σt + κ

Σt − κ

)
= 1, (B.6)

which is a Placzek equation on κ. κ is therefore often referred to as Placzek
coefficient.

B.2 EXTENSION TO MULTI-KINETIC CASE

Let us now extend the previous formula for energy-dependent cross sections.
The simulated energy range is supposed to be divided into energy groups such
that inside every group g, the cross section Σt(g) is constant. Any point of the

phase space is therefore defined by the coordinates ( ~X, ~Ω, g). Assuming now that
we can compute a Placzek coefficient κg for each group and that the expression
for Ib is

Ib( ~X, ~Ω, g) = Ib(x, g) = e−κgx, (B.7)

and the expression computed for Ia becomes

Ia( ~X, ~Ω, g) =
Σt(g)

Σt(g)− κg~Ω.~Ω0

e−κgx. (B.8)

The energy aspect has an impact on the collision kernel C. It is still a scat-
tering kernel, but now takes into account the probability for a particle at point
~X in energy group g to come out of the scatter event in a lower group g′:

C( ~X, ~Ω→ ~Ω′, g → g′) =
Σs(g → g′)

Σt(g)
. (B.9)
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We have for the importance before collision:

Ib( ~X, ~Ω) =

∫∫
C( ~X, ~Ω→ ~Ω′, g → g′)Ia( ~X, ~Ω

′, g′)d~Ω′dg′

=
∑
g′≤g

[∫
C( ~X, ~Ω→ ~Ω′, g → g′)Ia( ~X, ~Ω

′, g′)d~Ω′
]

=
∑
g′≤g

[∫
C( ~X, ~Ω→ ~Ω′, g → g′)

Ia( ~X, ~Ω
′, g′)

Ia( ~X, ~Ω′, g)
Ia( ~X, ~Ω

′, g)d~Ω′

]

=
∑
g′≤g

[
e−κgx

∫
1

4π

Ia( ~X, ~Ω
′, g′)

Ia( ~X, ~Ω′, g)

Σs(g → g′)

Σt(g)

Σt(g)

Σt(g)− κg~Ω′.~Ω0

d~Ω′

]
.

If we now assume that the energetic profile of the importance function does
not depend on the position ~X nor on the direction ~Ω, so that

Ia( ~X, ~Ω
′, g′)

Ia( ~X, ~Ω′, g)
=
Ia(g

′)

Ia(g)
(B.10)

we can now compute the integral, which leads to

Ib( ~X, ~Ω) =
∑
g′≤g

[
Ia(g

′)

Ia(g)

Σs(g → g′)

2κg
ln

(
Σt(g) + κg
Σt(g)− κg

)
e−κgx

]
. (B.11)

Combining Equation (B.11) with Equation (B.7) yields∑
g′≤g

[
Σs(g → g′) Ia(g′)

Ia(g)

]
2κg

ln

(
Σt(g) + κg
Σt(g)− κg

)
= 1. (B.12)

The INIPOND module is initiated with a parameter β that is used to define
the energetic profile of the importance map. It computes Ia(g) for any group g
as:

1

β + 1

(E+
g )β+1 − (E−g )β+1

E+
g − E−g

, (B.13)

where E−g and E+
g are the inferior and superior energies of group g, respectively.

Then, it solves the Placzek equation Equation (B.12) to find the value of κg for
each group.

B.3 MESH IMPORTANCE COMPUTATION

The importance maps computed by INIPOND are discretized both spatially
and energetically. The bins of the spatial discretization are referred to as cells,
while the energy bins are called groups. In addition to the spatial and energetic
meshes, the INIPOND module is provided with the position of one or several
detectors Di, each of them associated to a biasing parameter βi. Each energy
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group g is then given a weight Wi,g such that:

Wi,g =
1

βi + 1

(E+
g )βi+1 − (E−g )βi+1

E+
g − E−g

(B.14)

where E−g and E+
g are the inferior and superior energies of group g, respectively.

To compute the importance map, INIPOND starts by calculating for each
volume of the geometry a Placzek coefficient per energy group. For each group
g the Placzek coefficient κg is computed. In order to minimize discrepancies be-
tween energy groups, which could be troublesome for the Exponential Transform
method, the Placzek coefficient is replaced by a value kg such that

- If κg < 0, kg = 0

- If g > 1 and κg < kg−1 − 0.05, kg = kg−1 − 0.05

- If g > 1 and κg > kg−1 + 0.05, kg = kg−1 + 0.05

- If κg > 0.9× Σt(g), kg = 0.9× Σt(g)

Then, starting from the center of the detector cell, the module uses a Dijkstra
algorithm to compute the shortest path between each cell and the detector cell.
In this process, the distance between two adjacent cells takes into account the
Placzek coefficients. For two cells c1 and c2, it is defined as

dg(c1, c2) = kg × dist(c1, c2), (B.15)

where dist(cj, ck) is the geometric distance between the centers of cells 1 and 2,
and kg the smoothed Placzek coefficient of group g.

For each combination of cell, detector and energy group, the Dijkstra algo-
rithm is used to compute the shortest path length from the center of the cell to
the detector in group g, passing by the centers of other cells. The paths lengths
are computed using the inter-cell distances defined previously. We denote these
values lg(cj, Di), and define the non-angular importance of any cell cj in group g
as

Ig(cj) =
∑
i

Wi,ge
−lg(cj ,Di). (B.16)

B.4 POINT IMPORTANCE

When the importance of a point ( ~X, ~Ω, E) is asked to the INIPOND module,

the cell c corresponding to the point ~X is retrieved as well as the energy group g
containing E. The non-angular importance is then

I4( ~X, ~Ω, E) = Ig(c), (B.17)
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while the angular importance is computed as

I6( ~X, ~Ω, E) = I4( ~X, ~Ω, E)
Σt( ~X,E)

Σ?( ~X,E)
(B.18)

where
Σ?( ~X,E) = Σt( ~X,E)− kg~Ω.~Ωc. (B.19)

In order to prevent abrupt variations of the importance, Σ? is set to 0.2×Σt

whenever Σt( ~X,E)− kg~Ω.~Ωc < 0.2Σt.

B.5 MANUAL INIPOND PARAMETRIZATION

Due to the approximations made in the automatic computation of Placzek
coefficient (in particular the assumption of Equation (B.10)), the obtained values
may very well be inadequate to compute an accurate importance map in some
configurations. This could result in the Exponential Transform being stuck in the
first batch simulation, or in an under-estimation of the score.

To solve those problems, one can manually parametrize the INIPOND mod-
ule, that is, giving values to be used as Placzek coefficients at hand in TRIPOLI-4
input file. This requires a lot of work and expertise, since each material have to
be given a Placzek coefficient per energy group.

The common way to adjust Placzek coefficient is to perform a short Exponen-
tial Transform simulation (only a few batches) while storing the particle collision
sites. The user can then use a tool to visualize collision points in the geometry for
each energy group, and adjust the Placzek coefficient so as to balance the particle
population between volumes and energy groups on the path between the source
and the detector.

In the case of a single-detector importance map, it follows from the Exponen-
tial Transform method and the INIPOND module importance definition that a
variation ∆k in a Placzek coefficient value yields an increase or decrease of the
particle population in the corresponding energy group at a distance l from the
detector by a factor

R = e∆k.l. (B.20)

This method requires most of the time multiple test simulations and sub-
sequent Placzek coefficients modifications to eventually reach the expected be-
haviour. Furthermore, some experience is needed to correctly relate the collision
points distribution to the particle population, as well as to decide which coeffi-
cients to adjust.
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APPENDIX CAPPENDIX C:

AMS INPUT FILE SYNTAX FOR TRIPOLI-4

C.1 OVERVIEW

AMS
TARGET <target definition>
IMPORTANCE <PARTICLE TYPE1 >

Description of importance function
END IMPORTANCE
IMPORTANCE <PARTICLE TYPE2 >

Description of importance function
END IMPORTANCE
. . .
RESAMPLE COLLISIONS <flag>
CROSS SPLIT <flag>
SPLIT proportion

END AMS

Within the AMS block, the mandatory keywords are TARGET and IMPORTANCE. The
default values for other parameters are specified in the following sections.

C.2 TARGET DEFINITION

The keyword TARGET is used to define the volume of interest for the simulation
(typically a detector). It is the responsibility of the user to ensure that the defined
target is in accordance with the importance function used during the simulation.
There are two ways to define the target of the simulation:

C.2.1 SINGLE TARGET

The syntax is the following:

TARGET num(vol)

where volume id is either the volume number or name.

C.2.2 MULTIPLE TARGETS

TARGET LIST nb(vol)
num(vol1) . . . num(voln)
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AMS can handle a list of volumes as target, enabling the user to divide the target
in multiple volumes. It should be kept in mind that the smallest variance for
a given volume will be achieved with an AMS simulation using this particular
volume as single target.

C.2.3 SCORING OUTSIDE TARGETS

AMS is capable of returning an unbiased estimator of any score within the
geometry. However a variance reduction can only be expected for scores which
are estimated either around the target(s) or on the path of the particles between
their emission point(s) and the target(s).

C.3 SPLITTING PROPORTION

The keyword SPLIT allows the user to change the proportion of particles to
be splitted at each AMS iteration. According to experiment, this parameter has
no noticeable influence on efficiency as long as it remains greater than 0.5%. On
the other hand, it seems unreasonable in terms of correlations to split more than
half of the particles per iteration, which is why it is recommended to keep this
proportion below 50%.

If SPLIT is not specified, a value of 1% is assumed. The syntax is as follows:

SPLIT proportion

where proportion is expressed in percent.

C.4 AMS OPTIONS

C.4.1 CROSSING POINTS SPLITTING

In order to have a more precise estimation of the importance of a particle
during its transport through the geometry, the AMS algorithm can evaluate its
importance when it crosses frontiers between volumes. This allows the method to
classify and split particles at crossing points, which are treated in the exact same
way as collision points. This functionality is controlled by a flag which can take
the values 1 (activated) or 0 (disabled):

CROSS SPLIT <flag>

The default value for this flag is 1, but it can be useful to disable crossing points
if the geometry is composed of many volumes, which can significantly increase
computation time.
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C.4.2 COLLISION RESAMPLING

There is two ways of performing particle splitting with AMS: Either the par-
ticles importances are evaluated just after collision points, in which case the par-
ticles are duplicated by coying the particles characteristics outgoing a collision.
In some cases, such as simulations with highly absorbing materials or importance
functions with poor or no account of the particles direction, it may be interesting
to evaluate importance before collisions, and to duplicate particles at collision
sites while resampling collisions. The syntax for enabling/disabling collision re-
sampling is

RESAMPLE COLLISIONS <flag>

C.5 IMPORTANCE FUNCTIONS

The AMS algorithm uses an importance function to determine which particle
tracks are the most interesting. The keyword IMPORTANCE has to be followed by
the type of particle type (NEUTRON, PHOTON, ELECTRON or POSITRON). The cor-
responding particles will be taken into account by the AMS algorithm with the
importance defined inside the block.

Obviously, the AMS can not perform variance reduction on particles that are
not in the simulation. If a single particle type is present in the simulation, this
type should be given after IMPORTANCE. If multiple particle types are simulated,
an IMPORTANCE block has to be given for each particle type that the AMS should
take into account. The particles that do not have a corresponding importance
will be left out of the AMS reduction variance algorithm.

To apply the same importance function to all particle types present in the
simulation, one can use ALL PARTICLE as particle type.

C.5.1 IMPORTANCE MAPS

When parametrized with MAP, AMS uses an importance map computed by the
INIPOND module Therefore, it requires the VARIANCE REDUCTION block in the
same data file. AMS takes into account every option available to other variance
reduction techniques, such as the manual modification of the bias parameters
kplaczek or the importance monitoring. The keyword MAP has to be followed by
the type of particle type (either NEUTRON or PHOTON) corresponding to one of the
types specified in the VARIANCE REDUCTION block. This allows for example to use
a photon importance while performing AMS on neutrons. The syntax is as follows:

IMPORTANCE <PARTICLE TYPE>
MAP <REDVAR TYPE>

END IMPORTANCE
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NOTE: There are no evidence that importance monitoring improves the effi-
ciency of AMS. Its use forces the first batches of the simulation to run without
AMS, which may lead the simulation to freeze the same way it would if another
variance reduction technique was used. This is why I recommend to disable im-
portance monitoring by adding the line MONITORING 0 to the SIMULATION block.

C.5.2 SPATIAL IMPORTANCE FUNCTIONS

The keywords FROM, TOWARDS and PATH allow the user to set a spatial impor-
tance. The importance of a point is in this case computed regarding to a POINT,
LINE, PLANE, SPHERE, CYLINDER, RING or PATH.

POINT

IMPORTANCE <PARTICLE TYPE>
<MODE> POINT X Y Z

END IMPORTANCE

The importance of a given point is defined according to the distance d between
this point and the point (X, Y, Z). <MODE> is either FROM or TOWARDS. Using
FROM, the importance is d, which causes the particles to be pushed away from the
point (X, Y, Z), regardless of the geometry. With TOWARDS, the importance is 1

d
,

which causes the particles to be attracted to (X, Y, Z).

LINE

IMPORTANCE <PARTICLE TYPE>
<MODE> LINE

POINT X Y Z
VECTOR VX VY VZ

END IMPORTANCE

The importance of a given point is defined according to the shorter distance dL
between this point and the line passing through point (X, Y, Z) and parallel to
direction vector (VX , VY , VZ). <MODE> is either FROM or TOWARDS. Using FROM,
the importance is dL, which causes the particles to be pushed away from the line.
With TOWARDS, the importance is 1

dL
, which causes the particles to be attracted

to the line.
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PLANE

IMPORTANCE <PARTICLE TYPE>
<MODE> PLANE

POINT X Y Z
VECTOR VX VY VZ

END IMPORTANCE

The importance of a given point is defined according to the shorter distance dP
between this point and the plane passing through point (X, Y, Z) with normal
vector (VX , VY , VZ). <MODE> is either FROM or TOWARDS . Using FROM, the im-
portance is dP , which causes the particles to be pushed away from the plane.
With TOWARDS, the importance is 1

dP
, which causes the particles to be attracted

to the plane.

SPHERE

IMPORTANCE <PARTICLE TYPE>
<MODE> SPHERE R

POINT X Y Z
END IMPORTANCE

The importance of a given point is defined according to the distance dS between
this point and the sphere of radius R and center (X, Y, Z). <MODE> is either
FROM or TOWARDS. Using FROM, the importance is dS, which causes the particles
to be pushed away from the sphere surface regardless of the geometry. With
TOWARDS, the importance is 1

dS
, which causes the particles to be attracted towards

the sphere surface.

CYLINDER

IMPORTANCE <PARTICLE TYPE>
<MODE> CYLINDER R

POINT X Y Z
VECTOR VX VY VZ

END IMPORTANCE

The importance of a given point is defined according to the distance dC between
this point and the surface of the infinite cylinder with radius R which axis passes
through point (X, Y, Z) and is directed by vector (VX , VY , VZ).<MODE> is either
FROM or TOWARDS. Using FROM, the importance is dC , which causes the particles
to be pushed away from the cylinder surface. With TOWARDS, the importance is
1
dC

, which causes the particles to be attracted towards the cylinder.
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RING

IMPORTANCE <PARTICLE TYPE>
<MODE> RING R

POINT X Y Z
VECTOR VX VY VZ

END IMPORTANCE

The importance of a given point is defined according to the distance dR between
this point and the ring of radius R and center (X, Y, Z), which axis is directed
by vector (VX , VY , VZ). <MODE> is either FROM or TOWARDS. Using FROM, the
importance is dR, which causes the particles to be pushed away from the ring.
With TOWARDS, the importance is 1

dR
, which causes the particles to be attracted

towards the ring.

PATH

IMPORTANCE <PARTICLE TYPE>
PATH

STRENGTH s
POINT LIST nb(points)

X1 Y1 Z1

. . .
Xn Yn Zn

END PATH
END IMPORTANCE

A path is defined as an ordered sequence of points. The importance of a point
outside the path is defined using the minimal distance from the point to the
path d⊥, and the distance along the path from the first point of the path to the
orthogonal projection of the point on the path d‖. The importance is defined as

I = d‖ − s.d⊥, (C.1)

so that it increases with the distance along the path and decreases with the
distance to the path. The parameter s represents the attraction strength of the
path, which influences the slope of the importance function around the path.

Volume importance weighting

In addition to the importance function, each volume of the geometry carries an
importance factor that weights the importance of any point within its boundaries.
By default, this value is set to 1. The user can change the weight of any number
of volumes using the following syntax:

VOLU num(vol1). . . num(voln) WEIGHT w
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IMPORTANCE <PARTICLE TYPE>
. . .
VOLU num(vol1). . . num(voln) WEIGHT w

END IMPORTANCE
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Résumé : L’algorithme Adaptive Multilevel Split-
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la littérature de mathématiques appliquées, en tant
que méthode de réduction de variance pour la si-
mulation Monte Carlo de châınes de Markov. Ce
travail de thèse se propose d’implémenter cette
méthode de réduction de variance adaptative dans
le code Monte-Carlo de transport de particules
TRIPOLI-4 R©, dédié entre autres aux études de
radioprotection et d’instrumentation nucléaire. Ca-
ractérisées par de fortes atténuations des rayonne-
ments dans la matière, ces études entrent dans la
problématique du traitement d’évènements rares.

Outre son implémentation inédite dans ce do-
maine d’application, deux nouvelles fonctionnalités

ont été développées pour l’AMS, testées puis va-
lidées. La première est une procédure d’encais-
sement au vol permettant d’optimiser plusieurs
scores en une seule simulation AMS. La seconde est
une extension de l’AMS aux processus branchants,
courants dans les simulations de radioprotection,
par exemple lors du transport couplé de neutrons
et des photons induits par ces derniers.

L’efficacité et la robustesse de l’AMS dans
ce nouveau cadre applicatif ont été démontrées
dans des configurations physiquement très sévères
(atténuations du flux de particules de plus de 10
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avantages prometteurs de l’AMS par rapport aux
méthodes de réduction de variance existantes.
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Abstract : The Adaptive Multilevel Splitting al-
gorithm (AMS) has recently been introduced to the
field of applied mathematics as a variance reduc-
tion scheme for Monte Carlo Markov chains simu-
lation. This Ph.D. work intends to implement this
adaptative variance reduction method in the par-
ticle transport Monte Carlo code TRIPOLI-4 R©,
dedicated among others to radiation shielding and
nuclear instrumentation studies. Those studies are
characterized by strong radiation attenuation in
matter, so that they fall within the scope of rare
events analysis.

In addition to its unprecedented implementa-
tion in the field of particle transport, two new fea-
tures were developped for the AMS. The first is

an on-the-fly scoring procedure, designed to opti-
mize the estimation of multiple scores in a single
AMS simulation. The second is an extension of the
AMS to branching processes, which are common
in radiation shielding simulations. For example, in
coupled neutron-photon simulations, the neutrons
have to be transported alongside the photons they
produce.

The efficiency and robustness of AMS in this
new framework have been demonstrated in physi-
cally challenging configurations (particle flux at-
tenuations larger than 10 orders of magnitude),
which highlights the promising advantages of the
AMS algorithm over existing variance reduction
techniques.
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