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Introduction

L'objet de cette thèse est l'étude du transport branché, de problèmes variationnels qui
y sont liés et des structures fractales qui peuvent y apparaître. Avant d'introduire le
transport branché proprement dit et d'en faire le panorama, commençons par observer
que c'est une branche du transport optimal, dont on donne un très bref aperçu.

Transport optimal

Le problème du transport optimal remonte à 1781, lorsque Gaspard Monge publie son
�Mémoire sur la théorie des déblais et des remblais� [Mon81]. Une répartition initiale
de masse (il s'agissait de terre dans la formulation originale) étant donnée, et une
nouvelle répartition étant souhaitée, il s'agit pour chaque particule se trouvant en x,
de la déplacer vers une destination T (x) de façon à obtenir cette nouvelle répartition,
et ce de la manière la plus économique possible. Dans le modèle de Monge, le coût
de transport d'une particule est proportionnel à sa masse multipliée par la distance
parcourue, et le but est de minimiser la somme de toutes ces quantités. Dans un
langage moderne, le problème se formalise de la manière suivante : étant données deux
mesures de même masse µ et ν, disons de probabilité, sur un compact K ⊆ Rd, trouver
une fonction T : K → K solution du problème

min
T

{ˆ
K

|T (x)− x| dµ(x) : T#µ = ν

}
, (M)

où T#µ est la mesure image de µ par T , c'est-à-dire T#µ(B) = µ(T−1(B)) pour tout
borélien B, ou encore

´
φ ◦ T dµ =

´
φ dν pour tout φ ∈ C (K). Dans ce cadre, on

suppose que toute la masse µ(x) se trouvant en x est envoyée en un même point T (x),
sans qu'elle ne se sépare. Posé sous cette forme, c'est un problème dont le coût est
certes convexe, mais dont la contrainte est fortement non convexe. En e�et, si µ et ν
ont pour densité f et g, par changement de variable la contrainte T#µ = ν se reformule

f = |detDT | · g ◦ T, (0.0.1)

en admettant que T soit régulière et injective. Ainsi, la contrainte ne passe pas à la
limite pour des topologies faibles, et l'existence de solutions1 est restée inconnue jusque
très récemment.

1Question que les mathématiciens ne se posaient pas à l'époque de Monge.
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Une généralisation au problème de Monge a été posée par Kantorovich en 1942
[Kan04b; Kan04a], où l'inconnue n'est plus une fonction mais un plan de transport
π ∈ Π(µ, ν), soit une mesure sur l'espace produit π ∈ Prob(Rd×Rd) telle que (p1)#π =
µ, (p2)#π = ν. Dans cette formulation, on autorise désormais les particules qui se
trouvaient au départ en x à rejoindre di�érentes destinations, le mouvement étant
décrit par π: dπ(x, y) représente simplement la quantité de particules transportée de x
vers y. Le problème étendu, appelé problème de Monge-Kantorovich, s'exprime ainsi :

min
π

{ˆ
Rd×Rd

|y − x| dπ(x, y) : π ∈ Π(µ, ν)

}
. (MK)

Il est possible de voir ce nouveau problème comme une extension (par relaxation) du
problème de Monge. En particulier, à chaque fonction T est associé canoniquement
un plan de transport πT ∈ Π(µ, ν) de sorte que les coûts de πT et de T coïncident :
πT est la mesure concentrée sur le graphe de T , telle que la mesure d'une portion
du graphe corresponde à la mesure, selon µ, de sa projection sur l'axe des abscisses :
en d'autres termes πT = (Id, T )#µ. L'intérêt du problème de Monge-Kantorovich
est qu'il s'agit d'un problème de programmation linéaire : c'est un problème linéaire
sous contraintes convexes. On obtient de manière quasi-immédiate la compacité et la
continuité su�santes pour conclure à l'existence d'un minimiseur, et toute la théorie de
dualité convexe s'applique, fournissant de nombreux outils pour étudier le problème.

Néanmoins, cela ne prouve pas l'existence d'une solution au problème de Monge
(M), les solutions du problème de Monge-Kantorovich (MK) n'étant pas nécessairement
concentrées sur le graphe d'une fonction. Une stratégie pour résoudre le problème
originel de Monge a été proposée en 1979 par Sudakov [Sud79], puis mise en oeuvre avec
succès 20 ans plus tard par Ambrosio dans [Amb03]; d'autres preuves ont été établies
dans [EG99; TW01; CFM02]. Par ailleurs, de nombreuses variantes au problème de
Monge-Kantorovich ont été étudiées, en particulier des généralisations de la forme :

min
π

{ˆ
Rd×Rd

c(x, y) dπ(x, y) : π ∈ Π(µ, ν)

}
, (TO)

où c : Rd×Rd → R+ est une fonction continue. Une attention particulière a été portée
aux cas cp(x, y) = |y − x|p, p un exposant convexe (p ≥ 1) ou concave (p ≤ 1). Un
cas très naturel est le cas p = 2 (pour ses liens avec la physique), pour lequel Brenier
a démontré en 1991 l'existence et l'unicité de la solution, et que celle-ci est concentrée
sur un graphe. Plus précisément:

Théorème de Brenier ([Bre91]). Soit K un compact de Rd et µ, ν ∈ Prob(K) telles que
µ� L d. Alors il existe un unique plan de transport optimal pour le problème

min
π

{ˆ
Rd×Rd

|y − x|2 dπ(x, y) : π ∈ Π(µ, ν)

}
,

et il est donné par le gradient d'une fonction convexe : π = (Id,∇φ)#µ où φ est
convexe.

Une vaste théorie a été élaborée à la suite des travaux pionniers de Brenier [Bre91],
reliant le transport optimal à de nombreux domaines : géométrie dans les espaces
métrique, EDPs d'évolution, traitement d'images, inégalités fonctionnelles et géométriques
etc. Un vaste panorama de la théorie et ses principales applications pourra être trouvé
dans les ouvrages [San15], [Vil03; Vil09], [AGS08].
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Du transport optimal au transport branché

Dans le problème du transport optimal �classique�, le coût pour chaque particule ne
dépend que de sa position de départ et de sa position d'arrivée, et non de sa trajectoire.
C'est un implicite qui vient du problème posé au départ par Monge : le coût de
transport d'une particule de masse m est proportionnel à m × ` où ` est la distance
parcourue, or cette distance est minimale le long d'une géodésique, c'est-à-dire d'un
segment dans Rd, de sorte que si le transport est optimal, les particules p doivent se
déplacer en ligne droite et le coût total s'exprime bien comme

∑
pmp|yp − xp|. En

réalité, dès lors que le coût de transport c d'une particule ne dépend que de sa masse
m et de sa propre trajectoire γ, le problème peut se réduire à un coût ne dépendant
que de m et du couple (x, y).

Évidemment, cet axiome n'est pas satisfaisant pour modéliser nombre de situations
où le coût de transport de chaque particule peut dépendre du mouvement des autres
particules, par exemple en fonction de la quantité de particules empruntant le même
chemin. Dans le cas d'une foule voulant évacuer une pièce, chaque personne désire
rejoindre une issue tout en évitant de se rentrer dedans : les fortes concentrations sont
coûteuses voire proscrites, ce qui se traduit par une pénalisation ou une contrainte sur
la densité de transport. C'est le domaine de ce qu'on appelle le transport congestionné
[BCS10; CJS08]. À l'inverse, si plusieurs personnes veulent rejoindre une villeB à partir
d'une ville A par la route, il leur sera moins coûteux de covoiturer pour mutualiser les
frais d'essence et d'autoroute, auquel cas la concentration est favorisée : on entre le
domaine du transport branché. Dans ce modèle, les particules peuvent se grouper
et le coût d'un paquet de particules de masse totale m et voyageant conjointement
est H(m) × ` où ` est la distance parcourue. Si H(m) = m, H est additive, i.e.
H(a + b) = H(a) + H(b), et le coût des particules ensemble est égal au coût des
particules considérées séparément : on retrouve en e�et le problème de Monge. En
revanche, si H est strictement sous-additive, i.e. H(a + b) < H(a) + H(b) si a, b > 0,
alors il revient moins cher de se déplacer ensemble.

Ce type de coût apparaît en réalité de manière très naturelle, dès lors qu'existe un
phénomène �d'économie d'échelle� : transporter ou construire quelque chose de taille
m coûte davantage lorsque m augmente mais proportionnellement moins, rapporté à la
taillem. C'est le cas par exemple du transport routier, où un certain coût doit être payé
pour construire les routes, mais il ne coûte pas beaucoup plus cher d'augmenter le tra�c
et ou d'élargir le réseau. De manière générale, ce phénomène apparaît lorsqu'une partie
du coût réside dans le coût de construction d'une certaine structure. Cette économie
d'échelle se traduit par le fait que H(m)/m est décroissante en m, ce qui implique que
H est sous-additive. Ces conditions sont véri�ées en particulier pour toute fonction H
croissante, concave et telle que H(0) = 0, par exemple x 7→ xα, α ∈ [0, 1].
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(a) Transport de Monge. (b) Transport branché.

Figure 1: Transport d'un point vers un segment.

Dans le cas du transport de Monge, si l'on veut transporter une masse située en un
point vers une distribution uniformément répartie sur un segment, le transport optimal
consiste à faire voyager toutes les particules en ligne droite, le long d'une in�nité (non
dénombrable) de rayons de transport (voire Figure 1a); si l'on considère le transport
routier, ce n'est évidemment par la manière la plus économique de procéder ! Dans
un modèle de transport branché où le déplacement conjoint est moins coûteux, il est
préférable de faire voyager les particules ensemble le plus longtemps possible puis de les
faire se séparer a�n qu'elles rejoignent leurs di�érentes destinations, d'où l'apparition
de points de branchements et d'un réseau de transport comme l'illustre la Figure 1b.

De nombreuses structures naturelles, comme les réseaux racinaires, les branches
des arbres, les réseaux �uviaux, le système de vaisseaux sanguins dans le poumon etc.
partagent des traits similaires, de même que de nombreuses structures construites par
l'homme : réseaux routiers, gazoducs, oléoducs, systèmes d'irrigation, réseaux élec-
triques, réseaux d'assainissement etc. Une explication peut tenir au fait que toutes ses
structures partagent un principe commun : elles doivent irriguer une certaine distribu-
tion de masse à partir d'une source (ponctuelle ou étendue) tout en optimisant un coût
favorisant les fortes concentrations (par économie d'échelle dans les réseaux arti�ciels,
par soucis de préservation dans les réseaux naturels ; par exemple en biologie, les gros
vaisseaux sanguins sont préférables car moins fragiles). Un objectif de la théorie du
transport branché est notamment de mettre en évidence des propriétés qualitatives
générales de ces structures à l'aide d'un modèle commun.

Le transport branché et ses modèles

Le principal axiome que l'on supposera est le suivant : déplacer une masse m sur une
distance ` a un coût proportionnel à mα` où α est un exposant dit concave : α ∈ [0, 1].
Le cas plus général de la H-masse (introduit dans [DH03] suite aux travaux [Whi99]),
où H est croissante, sous-additive et H(0) = 0 a commencé a être étudié récemment
[BW15; Col+17], mais nous nous concentrerons dans cette thèse sur le cas H(m) = mα.
Le premier chapitre de la thèse dé�nit précisément les principaux modèles du transport
branché en fournissant certaines preuves � on l'espère � simpli�ées. Commençons par
le modèle le plus simple : le modèle discret, qui date des travaux de Gilbert [Gil67] en
1967, dont l'objet était l'optimisation des réseaux de communications.
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On se donne deux ensembles �nis de points (xi)i≤N , (yj)j≤M dans Rd, pondérés par
des masses (ai)i, (bj)j et on suppose qu'ils ont même masse total, disons unitaire :∑

i ai =
∑

j bj = 1. On peut les voir comme deux mesures de probabilité �niment
atomiques µ =

∑
i≤N aiδxi et ν =

∑
j≤M ajδyj . Le but est de connecter ces deux

mesures via un graphe pondéré orienté G qui consiste en un triplet G = (V,E,Θ =
(θe)e∈E) où V est l'ensemble des sommets, E celui des arêtes (orientées) et θe représente
pour chaque arête e un poids associé. Un tel graphe connecte µ et ν s'il véri�e les lois
de Kirchho� : en chaque sommet v ∈ V ,

masse rentrant en v = masse sortant en v,

les poids ai étant considérés comme rentrant en xi, les bj comme sortant en yj. À
chaque graphe est associé un coût qu'on appelle énergie de Gilbert :

Eα(G) =
∑
e∈E

θαe |e|,

où |e| désigne la longeur de l'arête e. Le problème de transport branché discret consiste
à trouver un minimiseur de cette énergie parmi tous les graphes envoyant µ sur ν,
autrement dit

min

{
Eα(G)

.
=
∑
e∈E

θαe |e| : µ
G−→ ν

}
. (DIα)

Par la méthode directe du calcul des variations, en faisant quelques réductions sur une
suite minimisante, il n'est pas di�cile de démontrer l'existence d'une solution ; une
preuve est donnée dans le premier chapitre. Que peut-on alors dire sur les minimiseurs ?
D'abord, qu'ils ne sont pas nécessairement uniques, comme le montre la Figure 2, où
le problème présente des symétries mais admet plusieurs solutions qui ne sont pas
symétriques.

1/2

1/2

(a) Un réseau optimal

1/4 1/4

1/4 1/4

(b) Un réseau symétrique,

non optimal

1/2

1/2

(c) Un réseau optimal

Figure 2: Situation sans unicité (1/2 < α < 1).

La principale propriété qualitative des minimiseurs est que ce sont tous des arbres
(lorsque α < 1). Plus précisément, le fait que H(x) = xα satisfasse H(0) = 0 et H
croissante empêche la présence de circuits (boucles qui suivent l'orientation des arêtes),
et sa stricte concavité empêche la présence de cycles (boucles non orientées). Prenons
l'exemple d'une source s et de deux puits p1, p2. Dans ce cas, trois topologies sont a
priori possible : en V, en Y ou en L. Lorsque les deux puits sont à même distance de
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la source, la forme en L n'est jamais optimale, et lorsque l'angle ^(p1− s, p2− s) n'est
pas trop grand, la forme en Y est préférable, comme l'illustre la Figure 3.

b

p1 p2

s

90◦

(a) Angle petit

p1 p2

s

(b) Angle grand

Figure 3: Graphes optimaux (α = 1/2).

Des extensions continues au modèle discret ont été proposées depuis les années 2000,
permettant de formuler le problème du transport branché, ou d'irrigation, pour des
mesures µ, ν ∈ Prob(K) quelconques et non nécessairement atomiques. Des modèles
dynamiques existent, mais on s'est intéressé dans cette thèse uniquement aux deux
principaux modèles statiques (dont chacun existe dans moult déclinaisons en fonction
du formalisme choisi) : le modèle eulérien introduit par Xia dans [Xia03], et le modèle
lagrangien développé par Bernot, Caselles, Morel et Morel, Maddalena, Solimini dans
[BCM09; MSM03]. Commençons par le modèle eulérien, plus facile à introduire à partir
du problème discret, et qui est formulé en termes de mesures vectorielles2. Partant du
modèles discret, on considère deux mesures �niment atomiques µ et ν et G un graphe
pondéré orienté. On peut construire une mesure vectorielle vG à partir de G :

vG =
∑

e∈E(G)

θeêH 1 e,

où ê ∈ Sd−1 est la direction du segment e. On constate que la contrainte G : µ→ ν et
son énergie de Gilbert peuvent s'exprimer entièrement en fonction de vG : G envoie µ
sur ν si et seulement si ∇ · vG = µ − ν au sens des distributions sur Rd, et Eα(G) se
réécrit

Eα(G)
.
=
∑
e

θαe |e| =
ˆ
K

|vG(x)|α d H 1(x).

Ceci motive l'introduction du problème d'irrigation dans sa forme eulérienne, où l'inconnue
est mesure vectorielle v qu'on appelle �ot d'irrigation :

min {Mα(v) : ∇ · v = µ− ν} , (EIα)

où la α-masse Mα est dé�nie comme

Mα(v) =


ˆ
K

∣∣∣∣ dv

d H 1 (x)

∣∣∣∣α d H 1(x) si v est recti�able,

+∞ sinon.

2En théorie géométrique de la mesure, on le formule plutôt en termes de courants.
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On dit que v est recti�able si c'est une mesure vectorielle de la forme v = θτ H 1 E où
θ est une fonction positive appelée multiplicité, E est un ensemble 1-recti�able3, τ(x)
un vecteur unitaire tangent à E en x. Des propriétés de coercivité et de semicontinuité
peuvent être démontrées pour établir l'existence de minimiseurs. Notons toutefois que
la topologie considérée doit être plus forte que la convergence faible des mesures pour
v, puisqu'on peut approcher faiblement un champs de vecteur lisse par une mesure
recti�able de α-masse bornée, de sorte que Mα n'est pas semicontinue inférieurement
pour cette topologie.

Passons maintenant au modèle lagrangien, plus riche au sens où on suit, dans ce
modèle, la trajectoire de chaque particule plutôt que de considérer uniquement leur
champ de vitesse de ces particules, comme c'était le cas dans le modèle eulérien. Sans
entrer dans les détails, un mouvement de particules est modélisé par une mesure η sur
un ensemble Γ de courbes paramétrées (pour des raisons techniques, elles seront dé�nies
sur [0,+∞] et 1-Lipschitziennes), par exemple une mesure de probabilité η ∈ Prob(Γ),
de sorte que dη(γ) représente la quantité de particules voyageant suivant la trajectoire
de γ. On appelle η un plan d'irrigation. La contrainte imposant à η d'envoyer µ
sur ν se formalise par les conditions (e0)#η = µ, (e∞)#η = ν où e0(γ) = γ(0) et
e∞(γ) = limt→∞ γ(t), ce qu'on note µ

η−→ ν. En chaque point x, la quantité de masse
θη(x) visitant x, appelée multiplicité, est dé�nie comme

θη(x) = η(γ ∈ Γ : x ∈ γ).

On note
´
γ
θη(x)α−1 dx :=

´ +∞
0

θη(γ(t))α−1|γ̇(t)| dt l'intégrale de θα−1
η le long de γ, et

on dé�nit le α-coût de η comme la somme pour toutes les courbes γ de cette quantité,
soit :

Iα(η) =

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ).

Cette expression, a priori barbare, admet toutefois une expression très simple sous
certaines hypothèses raisonnables sur η :

Iα(η) =


ˆ
K

θη(x)α d H 1(x) si η est recti�able,

+∞ sinon,
(0.0.2)

qui n'est pas sans ressemblance avec la α-masse. L'introduction de la première vient du
fait qu'aucune contrainte de recti�abilité n'y apparaît a priori et qu'il est ainsi assez aisé
de démontrer sa semicontinuité inférieure. Une preuve simple des propriétés de semi-
continuité, compacité, coercivité menant à l'existence d'optimiseurs, et ne recourant
pas à l'utilisation de paramétrisations des plans d'irrigation comme c'est souvent le cas
dans la littérature existant, est donnée dans le Chapitre 1. Le problème d'irrigation
lagrangien s'écrit alors

min

{
Iα(η)

.
=

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ) : µ
η−→ ν

}
. (LIα)

Les modèles eulérien et lagrangien sont équivalents, au sens que les minima des
deux problèmes d'irrigation correspondants sont les mêmes, et qu'il est possible de

3Une réunion dénombrables de courbes lipschitziennes et d'un ensemble de mesure H 1 nulle.
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construire un minimiseur d'un problème à partir d'un minimiseur de l'autre. Ce fait
était connu depuis un certain temps mais non démontré en toute rigueur et en totalité.
Le Chapitre 2 est consacré à la preuve de cette équivalence. Un ingrédient essentiel
est la preuve de la formule d'énergie (0.0.2), qui résulte d'une simple application du
théorème de Fubini-Tonelli, dont l'utilisation licite n'a pas toujours été clairement
justi�ée, puisque les mesures doivent être σ-�nies pour appliquer le théorème. C'est la
raison pour laquelle on démontre au préalable la recti�abilité des plans d'irrigation de
coût �ni. Écrivons formellement le calcul:

Iα(η)
.
=

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ) =

ˆ
Γ

ˆ
K

1x∈γθη(x)α−1 d H 1(x) dη(γ)

=

ˆ
K

θη(x)α−1η({γ : x ∈ γ}) d H 1(x)

=

ˆ
K

θη(x)α d H 1(x).

La deuxième égalité résulte d'un changement de variable (ou la co-aire), pour peu que
les courbes soient injective, la suivante par une interversion de l'ordre d'intégration,
et la dernière par dé�nition de la multiplicité θη(x). Cette forme est très proche de la
α-masse, de sorte que la comparaison des énergies sera aisée, si tant est qu'on puisse
construire un �ot d'irrigation de coût comparable à partir d'un plan d'irrigation et
réciproquement. Du cas lagrangien au cas eulérien, les choses sont plus faciles. À
partir de η on construit un �ot vη en superposant les �ots associés à chaque courbe, en
posant pour toute fonction ψ ∈ C (K)d

〈vη, ψ〉 =

ˆ
Γ

ˆ
γ

ψ(x) · dx dη(γ),

où
´
γ
ψ(x) ·dx :=

´ +∞
0

ψ(γ(t)) · γ̇(t) dt. Un �ot v étant donné, la construction d'un plan
d'irrigation induisant v s'obtient par une décomposition de Smirnov [Smi93] obtenue
dans le cadre des mesures vectorielles à divergence mesure par une approche à la
Dacorogna-Moser dans [San14], lorsque v est sans cycle. On aboutit au théorème
principal du Chapitre 2:

Theorem 0.0.1 (Équivalence des modèles). Si α < 1 and µ, ν ∈ Prob(K), le problème
eulérien (EIα) et le problème lagrangien (LIα) sont équivalents au sens où :

(i) les minima sont les mêmes

min
η:µ→ν

Iα(η) = min
v:µ→ν

Mα(v),

(ii) si v est optimal, il peut être représenté par un plan d'irrigation v = vη où η : µ→
ν est optimal,

(iii) if η est optimal, alors vη est optimal.

Un bref aperçu de la théorie

Donnons un aperçu rapide de la théorie, en restant assez vague sur le formalisme,
certains résultats s'exprimant plus simplement dans un modèle ou dans un autre.
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Angles minimaux Reprenons le cas d'une source x0 de masse m0 irriguant deux
puits x1, x2 à même distance de la source, de masses m1,m2 telles que m0 = m1 +m2.
Considérons un graphe Gx de structure en Y, de point de branchement situé en x. Si
Gx est d'énergie minimale, x doit être un point critique de la fonction

x 7→ Eα(Gx) = mα
0 |x0 − x|+mα

1 |x1 − x|+mα
2 |x2 − x|,

ce qui s'écrit

mα
0n0 +mα

1n1 +mα
2n2 = 0 où ni =

xi − x
|xi − x|

.

En posant k1 = m1

m0
, k2 = m2

m0
, on obtient les relations sur les angles:

cos θ1 =
k2α

1 + 1− k2α
2

2kα1
(0.0.3)

cos θ2 =
k2α

2 + 1− k2α
1

2kα2
(0.0.4)

cos(θ1 + θ2) =
1− k2α

2 − k2α
1

2kα1 k
α
2

. (0.0.5)

Si x1 et x2 sont équidistants de x0 et m1 = m2, alors θ1 = θ2 =: θ et x doit être
équidistant de x1 et x2. De plus 2θ = arccos(22α−1−1) =: θα et θ = arccos(2α−1). Ainsi
si θ ≥ θα, l'optimum ne peut être une structure en Y. En notant ` = |x1−x0| = |x2−x0|,
le coût de la structure en V est

cV = `mα21−α,

tandis que lorsque θ < θα la structure en Y (avec l'angle θα au branchement) coûte,
après un calcul élémentaire :

cY = `mα21−α cos((θα − θ)/2) < cV,

et c'est le minimiseur.

b

120◦

(a) α = 0

b

90◦

(b) α = 1/2

b

(c) α = 3/4 (d) α = 1

Figure 4: Graphes optimaux dans le cas d'une source et deux puits de même masse.

De la même manière, lorsque x1, x2,m1,m2 sont quelconques, on peut véri�er que
la structure en Y est préférable dès lors que cos(θ) <

1−k2α2 −k2α1
2kα1 k

α
2

, c'est à dire

θ > arccos

(
1− k2α

2 − k2α
1

2kα1 k
α
2

)
≥ arccos(22α−1 − 1)

.
= θα.

Ainsi, si x est un point de branchement, c'est-à-dire qu'il y a au moins 2 arêtes ren-
trantes ou 2 arêtes sortantes en x, notées e1, e2, par optimalité, l'angle entre e1 et e2

doit être supérieur ou égal à θα.
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Régularité du réseau Intéressons-nous maintenant au cas continu. Commençons
par dire qu'il est possible de montrer, en un certain sens, que les optimiseurs ne pos-
sèdent pas de cycles, comme dans le modèle discret. Dans le modèle lagrangien, par
exemple, on dé�nit le réseau d'un plan d'irrigation η comme l'ensemble des points par
lesquels circulent des particules :

Nη = {x : θη(x) > 0}.

Des propriétés de régularité du réseau ont été démontrées par Xia [Xia04; Xia11] dans
le modèle eulérien et [BCM08] dans le modèle lagrangien. Loin des mesures µ et ν, à
�l'intérieur du réseau�, on retrouver la structure d'un graphe.

Theorem 0.0.2 (Xia [Xia04]). Si v est un �ot optimal entre µ et ν et B est une boule
à distance positive de suppµ ∪ supp ν alors v restreint à B est un graphe discret.

Passons maintenant à la régularité au �bord� du réseau.

Theorem 0.0.3 ([BCM08; Xia11]). Si x est un point du réseau, le nombre de branches
qui en partent est borné par une quantité Q = Q(d, α).

Dans le cas d'une simple source µ = δ0, sous des hypothèses de régularité sur ν, on
peut en dire davantage.

Theorem 0.0.4 ([MS10]). Si γ est une courbe �du réseau�, alors elle est à courbure
localement bornée. De plus, elle admet des demi-tangentes en chaque point, et une
tangente en chaque point qui n'est pas un point de branchement.

Dans [MS10], les auteurs montrent de plus que γ véri�e une certaine EDO elliptique.

Irrigabilité et distance d'irrigation Les mesures µ et ν étant �xées, il n'est pas
garanti qu'elles puissent être connectées avec un α-coût �ni. Néanmoins, la relation
�µ et ν peuvent être connectées à α-coût �ni� est une relation d'équivalence, et tout
couple de mesures peut être connecté si toute mesure peut se connecter à une masse de
Dirac, auquel cas la mesure µ et dite α-irrigable. Un raisonnement dyadique a permis
a Xia de démontrer un critère d'irrigabilité.

Theorem 0.0.5 (Irrigabilité [Xia03]). Si α > 1 − 1
d
, alors toute mesure µ supportée

sur un compact de Rd est α-irrigable.

Cette condition est nécessaire au sens où la mesure uniforme sur un cube n'est pas
α-irrigable si α = 1− 1

d
et d > 1.

Si α > 1− 1
d
, alors pour toute paire de mesures µ, ν ∈ Prob(K) oùK est un compact

�xé de Rd, la quantité
dα(µ, ν) = min{Iα(η) : µ

η−→ ν}
est �nie, et c'est une distance sur Prob(K) qui métrise la convergence faible-? des
mesures, appelée distance d'irrigation. C'est un analogue aux distances de Wasserstein
en transport optimal classique. On peut étendre naturellement dα aux mesures positives
de même masse, et le coût en transport branché étant de la forme mα`, on peut
démontrer que

dα(µ, ν) ≤ Cmα diam(suppµ ∪ supp ν),

où m = ‖µ‖ = ‖ν‖ et C = C(α, d). Cette distance sera utilisée à maintes reprises dans
la thèse.
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Fonction paysage Dans le cas d'une seule source µ = δ0, on peut dé�nir une fonction
paysage zη associée à un plan d'irrigation optimale η : δ0 → ν, qui est devenue un outil
fondamental en transport branché. Elle a été introduite par Santambrogio dans [San07],
et est inspirée de la fonction du même nom utilisée par les géophysiciens (voir [RR01]).
Elle est dé�nie comme

zη(x) =

ˆ
γ

θη(x)α−1 dx

si γ est une �courbe du réseau� (en un sens à dé�nir) de 0 à x, et zη(x) = +∞ s'il n'existe
pas de telle courbe. Évidemment, il faut véri�er que cette dé�nition est cohérente et
ne dépend pas du choix de γ. Un intérêt de la fonction paysage est par exemple le fait
qu'elle joue le rôle de variation première pour la fonctionnelle

Xα(ν) = dα(δ0, ν)

au sens où

Xα(ν ′) ≤ Xα(ν) + α

ˆ
zη d(ν ′ − ν)

pour une certaine classe de compétiteurs ν ′. La fonction paysage est donc essentielle
dans l'étude de problèmes faisant intervenir la distance d'irrigation (au départ d'une
source), ce qui est l'objet du Chapitre 3. Par ailleurs, des propriétés de régularité Hölder
peuvent être établies sous des hypothèses de régularité pour ν, une propriété utilisée
pour démontrer la courbure localement bornée des branches, la bornitude uniforme des
longueurs des branches, et des comportements fractals des structures optimales.

Fractalité en transport branché

En regardant les réseaux optimaux calculés numériquement dans [OS11] (dans les
cas non-atomiques), or aux réseaux �uviaux naturels et leurs bassins d'irrigation, on
est tenté de les décrire comme fractals. Des travaux venant de la géophysique et
l'hydrologie vont dans ce sens [RR01]. En fait, même si le réseau sous-jacent Nη a
une in�nité de branchements, il s'agit toujours d'un ensemble 1-recti�able, il n'est
donc pas clair en quel sens la fractalité apparaît. Le terme fractals est usuellement
associé ou bien à des propriétés d'autosimilarité d'objets non lisses, ou à la présence
d'une dimension non entière. Un premier résultat rigoureux en transport branché en
tombant d'une certaine manière dans la première catégorie a été prouvé par Brancol-
ini et Solimini dans [BS14] : pour des mesures su�samment di�uses (par exemple la
mesure de Lebesgue sur un ensemble régulier), le nombre de branches de longueur ∼ ε
partant d'une branche de longueur ` est de l'ordre de `/ε. Cela peut être vu comme
une propriété d'auto-similarité car d'une certaine façon la longueur total est préservée
en regardant les sous-branches à toute échelle.

Et qu'en est-il pour l'autre versant de la fractalité, c'est-à-dire de la présence de
dimension non entière (ou fractale) ? Plusieurs conjectures ont été émises quant aux
ensembles pouvant présenter une dimension fractales ; ce peut être la frontière des
bassins d'irrigation (une conjecture de J.-M. Morel), ou bien certains ensembles de
niveaux de la fonction paysage introduite précédemment. On s'est intéressé avec F.
Santambrogio et Q. Xia à un autre candidat potentiel relié au transport branché : le
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bord de ce qu'on pourrait appeler les �boules unité� en transport branché. Ce sont
les ensembles de volume 1 les plus proches de l'origine 0 au sens de l'irrigation. C'est
l'objet du Chapitre 3. Pour donner un sens rigoureux à cela, tous les objets sont vus
comme des mesures, 0 devenant δ0 et un ensemble borélien E comme L E, ce qui
donne lieu lorsque α > 1− 1/d au problème d'optimisation de forme

min {dα(δ0,L E)
.
= Xα(L E) : Vol(E) = 1}. (0.0.6)

Le problème d'optimisation de forme est traité en considérant un problème relaxé,
remplaçant E par par des mesures à densité encadrée par 0 et 1, comme suit

min {Xα(ν) : 0 ≤ ν ≤ 1, ν ∈ Prob(Rd)}.

La fonction paysage est essentielle dans l'étude de ce problème, les minimiseurs (dont
l'existence se démontre par la méthode directe en calcul des variations) étant de la
forme

E = {x : z(x) ≤ z?}

où z est une fonction paysage associé à un plan d'irrigation optimal η : δ0 → L E et
z? < ∞. Notre étude a permis de démontrer des propriétés topologiques élémentaires
sur E (compacité, connexité, propriétés sur l'intérieur) et la régularité Hölder de la
fonction paysage z, bien qu'on ne connaisse pas la régularité de E (et qu'on conjecture
l'inverse). De cette façon, on a pu obtenir une borne supérieure sur la dimension de
Minkowski du bord

Theorem 0.0.6. Soit E solution de (0.0.6). On a

dimM(∂E) ≤ d− β,

où β = 1 + dα− d est l'exposant de Hölder de la fonction paysage.

On constante que l'exposant β varie de 0 à 1 lorsque α va de 1 − 1/d à 1, or
on s'attend à ce que le réseau devienne de plus en plus di�us lorsque α → 1 pour
retomber sur le problème de Monge. Or on sait que l'ensemble le plus proche de 0
pour la distance de Wasserstein W1 est évidemment la boule, dont le bord est lisse et
de dimension d− 1. On fait donc la conjecture suivante :

Conjecture 0.0.7. Si E est solution de (0.0.6), alors

dimH(∂E) = dimM(∂E) = d− β.

Démontrer ce résultat revient à obtenir la minoration dimH ∂E ≥ d− β, mais nos
stratégies n'ont pas encore permis de l'établir, laissant pour l'heure la question de la
fractalité ouverte. Une résolution numérique du problème a été entreprise, basée sur
le modèle de type Modica-Mortola proposé par Oudet et Santambrogio [OS11]. La
fonctionnelle du transport branché, dans sa version eulérienne, est approchée au sens
de la Γ-convergence par

Mα
ε (v) = ε−γ1

ˆ
|v(x)|σ dx+ εγ2

ˆ
|∇v(x)|2 dx,
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où σ, γ1, γ2 sont bien choisis et ε → 0. Il s'agit donc de minimiser cette fonctionnelle
sous contrainte inégalité sur la divergence de v pour notre problème d'optimisation
de forme : 0 ≤ ∇ · δε − vε ≤ 1 où δε est une certaine approximation de δ0. Dans
le problème à source et destination �xées, on imposait une contrainte égalité sur la
divergence, dont la projection pouvait se faire très rapidement numériquement (par
simple résolution d'un Laplacien). Dans notre approche, où la projection est plus
compliquée, une méthode de descente de type quasi-Newton proximale a été utilisée.
Des expériences numériques ont été menées, dont on donne un échantillon en Figure 5.

Figure 5: Mesure irriguée et réseau, α = 0.55

Problèmes variationnels en transport branché

Pour modéliser certaines phénomènes, on peut être amené à considérer des problèmes
du type

min {Xα(ν) + F (ν)},

le terme Xα(ν) représentant le coût de construction d'un réseau couvrant ν ou un coût
d'acheminement (d'un bien, d'un �uide etc.) vers ν, tandis que F (ν) est un coût
associé à la distribution irriguée. Une fonctionnelle F convexe, comme

F2(ν) =


ˆ
Rd

f(x)2

2
dx si ν = f L et

´
Rd f = 1,

+∞ sinon,

comme envisagé dans [San07], favorisera une répartition di�use et pourrait schéma-
tiquement modéliser une feuille ou le feuillage dont le but est de maximiser la surface
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à même de capter la lumière, ou la répartition d'une densité de population voulant se
répartir le plus proche du centre-ville (par un réseau) mais en évitant de fortes densités.
D'autres problèmes variationnels faisant intervenir Xα sont proposés dans [MSM03].

Le problème d'optimisation de forme dé�ni précédemment entre dans ce cadre, avec

F (ν) =

{
0 si ν ∈ Prob(Rd) et 0 ≤ ν ≤ 1,

+∞ sinon,

de même que le problème d'évolution de forme envisagé dans le Chapitre 5, où on
considère une suite de fonctionnelles F = F τ

k avec

Fk(ν) =

ˆ
Rd

ds(x,Ek)

τ
dν − λ

ˆ
Rd

dν,

où λ > 0 est �xé et ds(·, Ek) représente la distance signée à l'ensemble Ek.
Un outil essentiel pour l'étude de tels problèmes est la fonction paysage z. Par

exemple, dans le cas F = F2, des résultats descriptifs et de régularité en fonction de
z devraient pouvoir se démontrer. En particulier, l'équation d'Euler-Lagrange devrait
être de la forme

αz + f = cst sur {f > 0},

de sorte que f s'exprime en fonction de s. De plus, comme z(x) ≥ |x| on obtient une
borne sur le support de f . En�n, si z est β-Hölder, ce qui est le cas lorsque ν est assez
régulière � qu'il faudrait donc démontrer au préalable � alors f l'est également.

Néanmoins, ce type d'étude ne peut être e�ectué que pour la fonctionnelle Xα =
dα(δ0, ν), pour laquelle on sait dé�nir la fonction paysage, or on aimerait pouvoir
remplacer δ0 par plusieurs sources, éventuelle une mesure di�use µ. Le Chapitre 4
s'intéresse donc à dé�nir la fonction paysage dans le cas de sources multiples, et montrer
des résultats de régularité Hölder tels que ceux connus dans le cas d'une simple source.
Pour l'instant, on arrive à généraliser la dé�nition et les résultats de régularités pour
un plan d'irrigation optimal η : µ→ ν qui possède un système �ni de racines : il existe
N points x1, . . . , xN tels que η-presque toute courbe passe par l'un de ces points. Cette
condition est en particulier garantie lorsque d(suppµ, supp ν) > 0. Ceci est un premier
pas vers une dé�nition générale de la fonction paysage pour µ et ν quelconques. La
régularité de la fonction paysage devrait nécessiter en revanche certaines hypothèses
sur le réseau ou les mesures à connecter (séparation des mesures, réseau admettant un
nombre �ni de racine, par exemple) qui ne sont pas réalisées en général.

La thèse s'achève par un dernier chapitre dédié à des perspectives pouvant prolonger
les travaux présentés dans les précédents chapitres.
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1.1. THE DISCRETE MODEL

The aim of this �rst chapter is threefold. First of all, we want to give a brief but
precise description of what we consider to be the main models of branched transport.
We are going to de�ne the discrete model, which is the oldest one as it was introduced
in the 60's by Gilbert in [Gil67], though it was not termed branched transport at that
time. After that, we will go on with the two main continuous and static models: the
Lagrangian model, which uses the measures on path formalism, and the Eulerian model,
which uses the language of 1-dimensional currents or vector measures. Our second
purpose is to make an emphasis on the Lagrangian model, which is the most used in
the next chapters, and which we want to rephrase using measures on paths, which
we call irrigation plans, rather than �parameterized� tra�c plans used in the works of
Bernot, Caselles, Morel [BCM09], or patterns de�ned by Morel, Maddalena, Solimini
[MSM03]. With this formalism we are able to give simple proofs of the elementary
properties of minimizers, and to provide a rigorous basis to establish the equivalence
between the two continuous models, which is the object of Chapter 2. The �nal purpose
of this chapter is to set all the de�nitions and state all the results to be used in the
rest of the thesis, which will consequently be almost self-contained. Most of the results
of this chapter were already proved or could be assembled from the existing literature,
but we give proofs of some of them when we feel we were able to provide a simpler
proof or when the adaptation of the existing proofs to our irrigation plans framework
is not straightforward.

1.1 The discrete model

Let us start with the discrete model, which is the most concrete and easiest to grasp.
We consider two atomic probability measures µ, ν on Rd:

µ =
n∑
i=1

aiδxi , ν =
m∑
j=1

bjδyj ,

and we want to connect them in the cheapest possible way. In this discrete case, the
connection will be achieved through a graph, and the cost associated to each graph
will be the so-called Gilbert energy [Gil67].

Irrigation graph An irrigation graph G is a weighted oriented graph, that is a triple
G = (V,E,Θ = (θe)e∈E), where V is a set of vertices, E a set of oriented edges between
vertices and θe is a nonnegative weight associated to each edge e. We say that G sends
µ to ν if

(i) it satis�es Kirchho�'s Law, that is at each vertex v ∈ V ,

incoming mass at v = outgoing mass at v,

(ii) µ is considered as incoming and ν as outgoing: if v = xi then ai counts as
incoming and if v = yj then bi counts as outgoing.

We denote the set of irrigation graphs by IG(Rd) and by IG(µ, ν) the set of those

sending µ to ν. For short, we will write G : µ→ ν or µ
G−→ ν to say that G sends µ to

ν.
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CHAPTER 1. GENERAL THEORY

Gilbert energy For α ∈ [0, 1], we associate to every irrigation graph G its Gilbert
energy (see [Gil67; GP68]):

Eα(G) =
∑
e∈E

θαe |e|,

where |e| denotes the length of e. Notice that the cost is proportional to mα× `: if one
wants to send a mass m at distance ` along the graph then one should pay mα`.

The discrete irrigation problem The goal is to minimize Gilbert energy among
all graphs which send µ to ν, which reads:

min

{
Eα(G)

.
=
∑
e∈E

θαe |e| : µ
G−→ ν

}
. (DIα)

Since the map x 7→ xα is subadditive, i.e.

(x+ y)α ≤ xα + yα, ∀x, y ≥ 0,

it is less expensive for the mass to travel together as much as possible. This is responsi-
ble for the observed branching structures in optimizers in the strictly subadditive case
(α < 1). Let us look at the two extreme cases.

• α = 0

The mass does not appear in the cost, leaving only the total length of the graph:
it is called Steiner problem (see [GP68]),

• α = 1

The cost is linear in the mass, which corresponds the classical Monge problem in
optimal transport (see [San15] for a general reference on optimal transport).

Consequently, one may view the irrigation problem as an interpolation between two
well-known problems: Steiner and Monge's problems.

Before sketching a proof of existence, we will need some terminology. If e is an ori-
ented edge, ê ∈ Sd−1 denotes its orientation, ē the same edge with opposite orientation,
|e| its length, and e−, e+ its initial and �nal extremity respectively.

De�nition 1.1.1. Given p = (e1, . . . , ek) a sequence of oriented edges, we say that p
is

• a circuit if e+
i = e−i+1 for every i = 1, . . . , k,

• a cycle if p̃ = (ẽ1, . . . , ẽk) is a circuit, where ẽi ∈ {ei, ēi},
with the convention ek+1 = e1 and ẽk+1 = ẽ1.

Theorem 1.1.2. The discrete irrigation problem (DIα) admits solutions. Moreover,
if G is a solution, then

(i) it has no (non-trivial) inner vertex of degree 2,

(ii) it lies in the convex envelope of the sources and targets,

(iii) it has no circuit,

(iv) it has no cycle if α < 1.

Proof. Let us make some remarks concerning general graphs G : µ→ ν.
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1.1. THE DISCRETE MODEL

Support. The measures µ, ν are concentrated on the convex envelope C of the atoms,
which is a compact convex set, and one may project any graph G : µ→ ν on C getting
another graph G̃ still sending µ to ν, but with reduced cost Eα(G̃) ≤ Eα(G), since the
projection is 1-Lipschitz. Notice that the inequality is strict if G does not lie entirely
in C.

Circuits and cycles. If G has a circuit p = (e1, . . . , ek), then one may remove it
from the graph by removing a mass ε = mini θei to the edges ei (and then removing
edges with 0 multiplicity), thus getting a new graph G̃. Since p was a circuit of G, G̃
still satis�es Kirchho�'s Law and sends µ to ν. The fact that x 7→ xα is increasing
and that we have for sure removed at least one edge guarantees that Eα(G̃) < Eα(G).
Hence one may remove circuits iteratively while strictly reducing the cost.

Now, ifG has a cycle p = (e1, . . . , ek), choose an orientation τ . For |t| < ε = mini θei ,
add t to the weights of the edges of orientation τ (we write ei ∈ τ) and remove t to
those of opposite orientation, resulting in a graph Gt. At each vertex v, we have added
and removed the same amount of mass �owing in, thus Kirchho�'s Law is still satis�ed
so that Gt : µ→ ν. Now let us look at the cost:

Eα(Gt)− Eα(G) =
∑
i:ei∈τ

|ei|((θei + t)α − θαei) +
∑
i:ei /∈τ

|ei|((θei − t)α − θαei) =: f(t).

If α < 1 then x 7→ xα is strictly concave, and so is f , hence f(t) < f(0)+tf ′(0) = tf ′(0).
Now choose t with a sign opposite to f ′(0) so that Eα(Gt) < Eα(G). One may repeat
the operation until there is no more cycle while strictly reducing the cost.

Degree 2 vertices. One may remove vertices v which are neither a source nor a
target and which have degree 2 (i.e. they have exactly two adjacent edges), replacing
the two adjacent edges by a single one. Here again we reduce the cost Eα(G̃) ≤ Eα(G)
and preserve Kirchho�'s Law with G̃ : µ → ν. Notice that the inequality is strict if
there are degree 2 vertex which are not trivial (i.e. such that the adjacent edges are
not colinear).

Existence of minimizers In the case α = 1, it is easy to build a minimizer: con-
struct G as a superposition of straight paths going from each source xi to each desti-
nation yj with mass aibj. Now we place ourselves in the case α < 1 and we consider a
minimizing sequence (Gn)n∈N. Thanks to the previous paragraphs, we may assume that
the graphs Gn enjoy all the properties (i)�(iv). We may get a uniform bound on the
number of edges and vertices of the graphs Gn. Denote by f(L) the supremal number
of vertices of graphs connecting L sources and targets, termed leaves, and satisfying (i)
and (iv). Let us show that f(L) ≤ 2(L − 1) by induction. For L = 2 it is clear. Now
suppose that it is true for k < L and take such a graph G with L leaves. Consider a
simple non-oriented path p joining two leaves x, y with a maximal number of vertices.
Set x̂ the next vertex after x along this path and ê the corresponding edge. Since x̂
has degree at least 3, it is connected to a point which does not belong to p. We claim
that the connected component C of x̂ in G \ p consists only of edges joining x̂ and a
leaf. If it was not the case, one could either �nd a simple path p̂ ∈ G \ p connecting
x̂ to another vertex u which has at least two edges, or an edge e /∈ p between x̂ and a
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point u which is not a leaf. In all cases, if u was not a leaf then p̂ or e may be extended
to a simple path, connecting x̂ to a leaf because G is a cycle-free1. This extended path
is still denoted by p̂ and u the leaf which is its other extremity. This path cannot
intersect p since G has no cycle. Thus the concatenation of p \ ê and p̂ is a simple path
joining a pair of leaves and which has strictly more vertices than p because p̂ has at
least 3 vertices: a contradiction. We denote by A the leaves in C and we remove C
and ê from G, thus obtaining a new graph Ĝ. By construction, Ĝ : µ̂ → ν̂ where µ̂
and ν̂ are obtained from µ, ν by removing the atoms in A and possibly adding an atom
at x̂. Moreover this graph still enjoys properties (i) and (iv). Consequently we have
removed cardA+ 1 leaves (those in A, and x) while adding a possible one at x̂, hence
there are at most L − ` leaves where ` = cardA ≥ 1, which implies by the induction
hypothesis:

cardV (G) = cardV (Ĝ) + `+ 1

≤ f(L− `) + `+ 1

≤ 2(L− `− 1) + `+ 1 ≤ 2(L− 1),

thus

f(L) ≤ 2(L− 1)

for all L ≥ 2. Consequently, the number or edges and vertices of the graphs Gn is
uniformly bounded, and they are all contained in a common compact set, so that one
may extract a subsequence making all vertices and edges converge, leading to a limit
graph G : µ→ ν (even though some edges may disappear in the limit). The continuity
of the cost in the weights and vertices allows us to say that Eα(G) = min (DIα).

Suppose G optimal. The three �rst paragraphs imply that G is supported in the
convex envelope of the sources and targets, that G has no circuit and no (non-trivial)
inner vertex of degree 2. Moreover if α > 1, G has no cycle.

Remark 1.1.3. In the case α = 1, it is possible to have optimizers with cycles: consider
for example a square with two sources of mass 1/2 at vertices of a diagonal, and
two targets of mass 1/2 at vertices of the other diagonal. An optimizer consists in
4 segments connecting each source to the two targets, with mass 1/4. However, it is
possible to remove the cycles with unchanged cost (destroying the symmetry).

Examples In the case when there is only one source s and two targets t1, t2, an
optimal graph is made of at most three edges. If the targets are equidistant from s
with same mass 1/2, then there are two possible topologies: Y-shaped or V-shaped.
When t1, t2 are far enough from s, compared to their mutual distance |t1 − t2|, the
Y -shaped graph is the cheapest for α < 1, i.e. there is branching. The optimal angle
can be explicitly computed in terms of α.

1One iteratively add a new vertex to the path until there is no more, which happens because G is
cycle-free. This last vertex is necessarily a source or target, i.e. a leaf.
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(b) α = 1/2 (c) α = 1

Figure 1.1: Optimal graphs with one source and two targets of equal mass.

Continuous extensions Several continuous extensions to the discrete model have
been proposed, which are all equivalent or can be suitably modi�ed to be so. Two
dynamical models were proposed, one by Brasco and Santambrogio [BS11] based on
a path functional formulation in some Wasserstein space and another one by Brasco,
Buttazzo, Santambrogio [BBS11] based on a Benamou-Brenier formulation (see [BB00]
for the seminal work on the dynamical formulation of optimal transport). However, we
will concentrate on the two main static models: the �rst one, which dates back to 2003
and is the earliest continuous model of branched transport, has been introduced by Xia
in [Xia03]. We will call it the Eulerian model as it is based on vector measures which
can be viewed as a velocity �eld associated to moving particles. The other one is based
on measures on paths: the tra�c plan formulation introduced by Bernot, Caselles,
Morel [BCM09], and the pattern formulation introduced by Maddalena, Morel, Solimini
[MSM03], which are almost identical and which we will call Lagrangian model. We are
going to give a description of the Eulerian and Lagrangian models, with an emphasis
on the last one, as it allows us to de�ne a �landscape function� which is now a central
tool in branched transport.

1.2 The Lagrangian model

The �rst lagrangian model of branched transport was introduced by Morel, Maddalena,
Solimini in [MSM03] using what they called irrigation patterns, which essentially con-
sist of collections of curves χω labeled by some index ω living in a probability space
(Ω,P) and which represent the trajectory of each particle. Later, Bernot, Caselles and
Morel [BCM05] proposed a formulation based on measures on paths which they called
tra�c plans, thus getting rid of the parameter ω by considering only χ#P instead of χ.
However, many proofs still used such parameterizations χ which induced some com-
plications (measurability issues, extensive use of Skorokhod's Theorem for instance),
which can actually be avoided. We remark that in [MS13] the authors go further in
that direction when proving existence of minimizers. That is why in this section we
de�ne the Lagrangian model using measures on paths, which we call here irrigation
plans, and give simple proofs of elementary results, namely existence of minimizers
and basic structure properties of optimizers (single-path property, cycle-free property),
without resorting to parameterizations, thus avoiding unnecessary technicalities and
measurability issues. Also notice that, in this way, the Lagrangian branched transport
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model �ts the general framework of dynamical transport problems with measures on
curves, as in [Bre11] for Incompressible Euler and in [BCS10; CJS08] for tra�c conges-
tion. This exposition and its proofs are the object of [Peg16, Sections 1�2], extended
here to the non-compact case.

1.2.1 Notations and general framework

Let X be subset of Rd. We denote by Γ(X) the space of 1-Lipschitz curves in X
parameterized on R+, embedded with the topology of uniform convergence on compact
sets. We write for short Γ = Γ(Rd), but we will often take X to be some compact subset
K of Rd. If X is closed (for example a compact set or Rd) then Γ(X) is a Polish space,
which can be metrized by d(γ1, γ2) = supn∈N?

1
n

min(1, ‖γ1− γ2‖L∞([0,n])). If φ : X → R
and ψ : X → Rd are Borel functions on X, γ ∈ Γ(X), we setˆ

γ

φ(x) dx :=

ˆ ∞
0

φ(γ(t))|γ̇(t)| dt and
ˆ
γ

ψ(x) · dx :=

ˆ ∞
0

ψ(γ(t)) · γ̇(t) dt

provided these integrals exist.

Length and stopping time If γ ∈ Γ(X), we de�ne its stopping time and its length
respectively by

T (γ) = inf{t ≥ 0 : γ is constant on [t,+∞[},

L(γ) =

ˆ ∞
0

|γ̇(t)| dt,

which are valued in [0,+∞]. Since curves are 1-Lipschitz, L(γ) ≤ T (γ). Moreover,
one may prove that T and L are both lower semicontinuous functions and, as such, are
Borel. We denote by Γ1(X) the set of curves of �nite length.

Irrigation plans We call irrigation plan on Rd any probability measure η ∈ Prob(Γ(Rd))
satisfying

L(η) :=

ˆ
Γ(Rd)

L(γ) dη(γ) < +∞, (1.2.1)

and denote by IP(Rd) the set of irrigation plans on Rd. Notice that any irrigation plan
is concentrated on Γ1(Rd). Since this set is not closed in Prob(Γ(Rd)), we will introduce
some closed or compact subsets later. If µ and ν are two probability measures on Rd,
one says that η ∈ IP(Rd) irrigates ν from µ if one recovers the measures µ and ν by
sending the mass of each curve respectively to its initial point and to its �nal point,
which means that

(π0)#η = µ, (π∞)#η = ν,

where π0(γ) = γ(0), π∞(γ) = γ(∞) := limt→+∞ γ(t) and f#η denotes the push-forward
of η by f whenever f is a Borel map2. We denote by IP(µ, ν) the set of irrigation plans
irrigating ν from µ:

IP(µ, ν) = {η ∈ IP(Rd) : (π0)#η = µ, (π∞)#η = ν}.
2Notice that limt→∞ γ(t) exists if γ ∈ Γ1(Rd), and this is all we need since any irrigation plan is

concentrated on Γ1(K).

29



1.2. THE LAGRANGIAN MODEL

Arc length parameterization We say that a curve γ ∈ Γ is parameterized by arc
length if it has unit speed until it stops, i.e. |γ̇(t)| = 1 for a.e. t ∈ [0, T (γ)[. If an
irrigation plan η ∈ IP(Rd) is such that η-a.e. curve γ is parameterized by arc length,
we say that η is itself parameterized by arc length. Set φ : γ 7→ γ̃ the map which
associates to each curve γ ∈ Γ(K) its arc-length parameterization3. One may de�ne
the arc length parameterization of η as η̃ := φ#η and check that (π0)#η = (π0)#η̃ and
(π∞)#η = (π∞)#η̃.

Multiplicity Given an irrigation plan η ∈ IP(Rd), let us de�ne the multiplicity
θη : Rd → [0,∞] as

θη(x) = η(γ ∈ Γ(Rd) : x ∈ γ).

It represents the amount of mass which �ows by x through curves of η. We call network
associated to η the set Nη of points with positive multiplicity, i.e. points that are really
visited by η:

Nη := {x ∈ Rd : θη(x) > 0}.

Simplicity If γ ∈ Γ, we denote by

m(x, γ) = #{t ∈ [0, T (γ)] ∩ R+ : γ(t) = x} ∈ N ∪ {∞}

the multiplicity of x on γ, that is the number of times the curve γ visits x. We call
simple points of γ ∈ Γ those which are visited only once, i.e. such that m(x, γ) = 1
and denote by Sγ the set of such points. We say that γ is simple if γ \ Sγ = ∅ and
essentially simple if H 1(γ \Sγ) = 0. As usual we extend these de�nitions to irrigation
plans, saying that η is simple (resp. essentially simple) if η-a.e. curve is simple (resp.
essentially simple). Finally we set

mη(x) :=

ˆ
Γ

m(x, γ) dη(γ)

which represents the mean number of times curves visit x. Notice that

θη(x) =

ˆ
Γ

1x∈γ dη(γ) ≤
ˆ

Γ

m(x, γ) dη(γ)
.
= mη(x)

so that mη(x) is in a way the �full� multiplicity at x.

1.2.2 The Lagrangian irrigation problem

For α ∈ [0, 1] we consider the irrigation cost Iα : IP(Rd)→ [0,∞] de�ned by

Iα(η) :=

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ),

with the conventions 0α−1 = ∞ if α < 1, 0α−1 = 1 otherwise, and ∞ × 0 = 0. If
µ, ν are two probability measures on Rd, the Lagrangian irrigation problems consists
in minimizing the cost Iα on the set of irrigation plans which send µ to ν, which reads

min
η∈IP(µ,ν)

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ). (LIα)

3One may check that it is Borel.

30



CHAPTER 1. GENERAL THEORY

Notice that Iα is invariant by arc length reparameterization, thus we will often assume
without loss of generality that irrigation plans are parameterized by arc length.

First variation The cost Iα may be written as

Iα(η) =

ˆ
Γ

Zα
η (γ) dη(γ) where Zα

η (γ) :=

ˆ
γ

θη(x)α−1 dx

is the α-cost the curve γ ∈ Γ w.r.t. η. This map Zη is a �rst variation of Iα in the
following sense:

Proposition 1.2.1 (First variation inequality for Iα). If η is an irrigation plan with
�nite α-cost, then for all irrigation plan η̃ the following holds:

Iα(η̃) ≤ Iα(η) + α

ˆ
Zη(γ) d(η̃ − η). (1.2.2)

Notice that the integral
´
Zη d(η̃ − η) is well-de�ned since

´
Zη dη < ∞ and Zη is

nonnegative, though it may be in�nite.

This result may be obtained by adapting [San07, Theorem 3.1].

1.2.3 Existence of minimizers

In this section we prove the lower semicontinuity and compactness results leading to
the proof of existence of minimizers by the direct method in the calculus of variations
[Giu03]. We recall here that, unless stated otherwise, continuity properties on Γ relate
to the topology of uniform convergence on compact sets and on IP(Rd) to the weak-?
topology in the duality with Cb(Γ(Rd)).

Closedness and compactness results For M > 0, we set

ΓM(X) := {γ ∈ Γ(X) : T (γ) ≤M}.

Notice that if K ⊆ Rd is a compact set then ΓM(K) is a compact set for the uniform
topology by Ascoli's Theorem. For C > 0, we de�ne IPC(X) as the set of irrigation
plans η on X which satisfy:

T(η) :=

ˆ
Γ(X)

T (γ) dη(γ) ≤ C,

and we set IPC(µ, ν) := IPC(Rd)∩IP(µ, ν). By lower semicontinuity of T on Prob(Γ(Rd))
and because L ≤ T, it is easy to check that IPC(Rd) is a closed subset of Prob(Γ(Rd)).
Now let us investigate the closedness of IPC(µ, ν), via the continuity of the maps
π0 : η 7→ (π0)#η and π∞ : η 7→ (π∞)#η on IP(Rd).

Proposition 1.2.2. The maps π0,π∞ : IPC(Rd) → Prob(Rd) are continuous4. In
particular IPC(µ, ν) is a closed subset of Prob(Γ(Rd)).

4Recall that we always endow spaces of measures with their weak-? topology in the duality with
Cb.
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Proof. Clearly the map π0 : γ 7→ γ(0) is continuous on Γ(Rd), hence π0 is continuous
on IP(Rd). However π∞ : γ 7→ γ(∞) de�ned on Γ1 is not necessarily continuous thus
π∞ needs not be continuous on IP(Rd). Nevertheless, given any η ∈ IPC(µ, ν), by
Markov's inequality:

η(γ : T (γ) > M) ≤ C

M
, (1.2.3)

which rewrites

η(Γ(Rd) \ ΓM(Rd)) ≤ C

M
. (1.2.4)

Since π∞ is continuous on all the sets ΓM(Rd) for M > 0, inequality (1.2.4) allows us
to conclude. Indeed take ηn ⇀ η in IPC(Rd). Take ε > 0 and M large enough so that
C
M
≤ ε. For any φ ∈ Cb(Rd) one has

ˆ
Γ

φ(γ(∞)) dηn(γ) =

ˆ
Γ

φ(γ(M)) dηn(γ) +

ˆ
Γ\ΓM

(φ(γ(∞))− φ(γ(M))) dηn(γ)

and ˆ
Γ

φ(γ(∞)) dη(γ) =

ˆ
Γ

φ(γ(M)) dη(γ) +

ˆ
Γ\ΓM

(φ(γ(∞))− φ(γ(M))) dη(γ)

thus∣∣∣∣ˆ
Γ

φ(γ(∞))ηn(dγ)−
ˆ

Γ

φ(γ(∞)) dη(γ)

∣∣∣∣
≤
∣∣∣∣ˆ

Γ

φ(γ(M))ηn(dγ)−
ˆ

Γ

φ(γ(M)) dη(γ)

∣∣∣∣+ 4ε‖φ‖∞.

We pass to the lim supn using the continuity of πM : γ 7→ γ(M) on Γ(Rd), then take
the limit as ε→ 0 to get

ˆ
Rd
φ(x)(π∞)#ηn(dx)→

ˆ
Rd
φ(x)(π∞)# dη(x),

which means that π∞ is continuous on IPC(Rd). Since IPC(Rd) is a closed subset of
Prob(Rd), then so is IPC(µ, ν).

Now we just have to investigate its tightness to show that it is compact, as done in
the next lemma.

Lemma 1.2.3 (Compactness). Given µ, ν ∈ Prob(Rd) and C > 0, the set IPC(µ, ν)
is a compact subset of Prob(Γ(Rd)).

Proof. Thus it remains to prove that it is tight. We know that there exists a compact
set X ⊆ Rd such that

µ(Rd \X) ≤ ε. (1.2.5)

Notice that any curve γ ∈ Γ(Rd) which starts in X and such that T (γ) ≤ M stays
inside the compact set K = XM := {x : d(x,X) ≤ M} because it is 1-Lipschitz.
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Consequently, using inequality (1.2.5) together with (1.2.4):

η(Γ(Rd) \ ΓM(K)) ≤ η({γ : γ(0) /∈ X}) + η({γ : T (γ) > M})
= µ(Rd \X) + η({γ : T (γ) > M})

≤ ε+
C

M
≤ 2ε

if M ≥ C/ε. This holds for all η ∈ IPC(µ, ν) hence IPC(µ, ν) is a tight subset of
Prob(Rd) since ΓM(K) is compact (it is actually compact for the uniform topology).

Continuity results When A is a closed subset of K, we set

[A] = {γ ∈ Γ1 : γ ∩ A 6= ∅}, |A|η = η([A]),

so that θη(x) = |{x}|η =: |x|η. One may show that [A] is Borel. Our �rst continuity
result is that of |·|η along decreasing sequences of closed sets.

Lemma 1.2.4. If (An)n∈N is a decreasing sequence of closed sets and A =
⋂↓
nAn then

|A|η = lim
n→∞
|An|η.

Proof. Let us prove that [A] =
⋂↓
n[An]. The inclusion [A] ⊆

⋂
n[An] is clear since

[A] ⊆ [An] for all n. Let us take γ ∈
⋂
n[An]. Since belonging to some [B] only depends

on the trajectory of γ, we may assume that it is parameterized by arc length. Because
γ has �nite length L, there is a sequence (An)n and a sequence (tn)n ∈ [0, L] such that
γ(tn) ∈ An for all n. One may extract a converging subsequence, still denoted (tn)n,
such that tn

n→∞−−−→ t ∈ [0, L]. Since the (An)'s are decreasing closed sets, γ(t) belongs
to their intersection A, hence γ ∈ [A]. By the monotone convergence theorem

lim
n
|An|η

.
= lim

n
η([An]) = η([A])

.
= |A|η.

Proposition 1.2.5. For C > 0, the map

θ : Rd × IPC(Rd) −→ [0, 1]
(x, η) 7−→ θη(x)

is upper semicontinuous.

Proof. Given xn → x and ηn ⇀ η, take ε > 0. If n is large enough, xn ∈ B̄(x, ε), hence
lim supn|xn|ηn ≤ lim supn

∣∣B̄(x, ε)
∣∣
ηn
. Besides, using (1.2.3) one gets∣∣B̄(x, ε)

∣∣
ηn
≤ ηn({T > M}) + ηn({T ≤M} ∩ [B̄(x, ε)])

≤ C/M + ηn(A)

where we have set A := ΓM(Rd) ∩ [B̄(x, ε)]. It is easy to check A is closed since T is
lower semicontinuous and the ball is closed. Hence passing to the lim sup in n yields

lim sup
n

∣∣B̄(x, ε)
∣∣
ηn
≤ C/M + η(A) ≤ C/M +

∣∣B̄(x, ε)
∣∣
η
. (1.2.6)
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Taking M →∞, one gets

lim sup
n
|xn|ηn ≤ lim sup

n

∣∣B̄(x, ε)
∣∣
ηn
≤
∣∣B̄(x, ε)

∣∣
η
,

then we pass to the limit ε→ 0 using Lemma 1.2.4:

lim sup
n
|xn|ηn ≤ lim

ε→0

∣∣B̄(x, ε)
∣∣
η

= θη(x).

Recall that

Zα
η (γ) :=

ˆ
γ

θη(x)α−1 dx

is the α-cost the curve γ ∈ Γ w.r.t. η. Thus we set

Zα : Γ(X)× IP(X) −→ R
(γ, η) 7−→ Zα

η (γ)
.

Proposition 1.2.6. For any C > 0, the function Zα is lower semicontinuous on
Γ(Rd)× IPC(Rd).

Proof. The case α = 1 is clear since Z1(γ, η) = L(γ) hence we assume α < 1. We
know that the map f : (x, η) 7→ θη(x)α−1 is lower semicontinuous on Rd × IPC(Rd)
since θ : (x, η) 7→ θη(x) is upper semicontinuous by Proposition 1.2.5 and because
α − 1 < 0. Since T is lower semicontinuous, for ε > 0 and n large enough we have
T (γ) ≤ T (γn) + ε, which implies that

ˆ T (γn)

0

f(γn(t), ηn)|γ̇n(t)| dt ≥
ˆ T (γ)−ε

0

f(γn(t), ηn)|γ̇n(t)| dt. (1.2.7)

Recall that IPC(Rd) is metrizable5 for the narrow convergence as a subset of Prob(Γ(Rd))
where Γ(Rd) is a Polish space, hence Rd × IPC(Rd) is metrizable by some distance
d. Suppose for a moment that f is Lipschitz continuous on Rd × IPC(Rd) equipped
with this distance. Since γn converges uniformly to γ on [0, T (γ) − ε)], the func-
tions gn : t 7→ f(γn(t), ηn) converge uniformly to g : t 7→ f(γ(t), η) on [0, T (γ) − ε].
Now we have to take care of the |γ̇n(t)| factor. Since the sequence (γ̇n)n is bounded

in L∞([0, T (γ) − ε]) one may extract a subsequence (γ̇nk)k such that γ̇nk
L∞−−⇀ γ̇ and

|γ̇nk |
L∞−−⇀ u. It is a classical result that |γ̇(t)| ≤ u(t) almost everywhere on [0, T (γ)− ε].

Denoting by 〈·, ·〉 the duality bracket L1 − L∞ on [0, T (γ)− ε], we have
ˆ T (γ)−ε

0

f(γnk(t), ηnk)|γ̇nk(t)| dt
.
= 〈gnk , |γ̇nk |〉

k→∞−−−→ 〈g, u〉 ≥
ˆ T (γ)−ε

0

f(γ(t), η)|γ̇(t)| dt

since gnk → g uniformly hence strongly in L1. Prior to extracting the subsequence
(γ̇nk)k we could have taken �rst a subsequence of γ̇n such that the left hand-side con-
verged to lim infn

´ T (γ)−ε
0

f(γn(t), ηn)|γ̇n(t)| dt. Thus we actually have

lim inf
n

ˆ T (γ)−ε

0

f(γn(t), ηn)|γ̇n(t)| dt ≥
ˆ T (γ)−ε

0

f(γ(t), η)|γ̇(t)| dt.

5E.g. by the Lévy-Prokhorov metric.
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Finally, we use this inequality together with (1.2.7) and pass to the limit ε→ 0 thanks
to the monotone convergence theorem, which yields

lim inf
n

ˆ T (γn)

0

f(γn(t), ηn)|γ̇n(t)| dt ≥
ˆ T (γ)

0

f(γ(t), η)|γ̇(t)| dt. (1.2.8)

In general f is not Lipschitz continuous but only lower semicontinus. Nevertheless
(1.2.8) still holds for our function f because it may be written as an increasing sequence
of Lipschitz continuous functions fk ↑ f , hence writing the inequality with fk and using
the monotone convergence theorem as k →∞ proves that,

lim inf
n

Zα(γn, ηn) ≥ Zα(γ, η)

thus Zα is lower semicontinuous on Γ(Rd)× IPC(Rd).

Recall that

Iα(η) =

ˆ
Γ

Zα(γ, η) dη(γ),

hence the lower semicontinuity of Iα on IPC(Rd) will be obtained as a corollary to the
following lemma.

Lemma 1.2.7. Let X be a subset of Prob(Γ(Rd)).

(i) If f : Γ(Rd)×X → R is uniformly continuous and bounded, then the functional
F : η 7→

´
Γ
f(γ, η) dη(γ) is continuous on X.

(ii) If f : Γ(Rd)×X → [0,+∞] is lower semicontinuous, then F : η 7→
´

Γ
f(γ, η) dη(γ)

is lower semicontinuous on X.

Proof. Let us prove the �rst item. Take ηn ⇀ η. We set gn(γ) = f(γ, ηn) and g(γ) =
f(γ, η). The fact that f is uniformly continuous on Γ × X implies that gn → g
strongly in Cb(Γ). Since ηn ⇀ η, we have

´
Γ
f(γ, ηn) ηn(dγ) = 〈ηn, gn〉 → 〈η, g〉 =´

Γ
f(γ, η) η(dγ) where 〈·, ·〉 denotes the Cb(Γ)− Prob(Γ) duality bracket.
The second item is a straightforward consequence of the fact that f can be written as

the increasing limit of Lipschitz bounded functions fk, and of the monotone convergence
theorem.

Theorem 1.2.8. For α ∈ [0, 1], the irrigation functional Iα is lower semicontinuous
on IPC(Rd).

Proof. We just put together Proposition 1.2.6 which states that Zα is lower semicon-
tinuous on Γ(Rd)× IPC(Rd) and the previous lemma with X = IPC(Rd) and f = Zα,
recalling that

Iα(η) =

ˆ
Γ

Zα(γ, η) dη(γ).
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The existence theorem We are now able to prove the existence theorem for the
Lagrangian irrigation problem (LIα).

Theorem 1.2.9. If µ, ν are probability measures on Rd, there exists a minimizer η for
the problem

min
η∈IP(µ,ν)

{
Iα(η)

.
=

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ)

}
. (LIα)

Proof. We assume Iα 6≡ +∞, otherwise there is nothing to prove. Let us take a
minimizing sequence ηn, which we may assume to be parameterized by arc length. In
particular Iα(ηn) ≤ C for some C > 0. Consequently

T(ηn) = L(ηn)
.
=

ˆ
Γ

ˆ
γ

dx dηn(γ)

≤
ˆ

Γ

ˆ
γ

θη(x)α−1 dx dηn(γ)

.
= Iα(ηn) ≤ C,

which implies that ηn ∈ IPC(µ, ν). Thanks to Proposition 1.2.2, IPC(µ, ν) is a compact
(and metrizable) subset of Prob(Γ(Rd)) hence we can extract a converging sequence
ηn ⇀ η ∈ IPC(µ, ν) up to some renaming. By Theorem 1.2.8, Iα is lower semicontinu-
ous on IPC(Rd), thus

Iα(η) ≤ lim inf
n

Iα(ηn) = inf (LIα),

which shows that η is a minimizer for the problem (LIα).

Notice that we do not claim that for given µ, ν ∈ Prob(Rd) and α ∈ [0, 1], the
minimum is �nite, i.e. that there is an irrigation plan in IP(µ, ν) with �nite α-cost.
Hence in the sequel we will say that η ∈ IP(µ, ν) is optimal for Iα if it is a minimizer
of (LIα) and if it has �nite α-cost, in which case we write η ∈ OIPα(µ, ν).

Existence for the H-cost Let us just remark that all the computations and the
proofs done from Section 1.2.2 hold if we replace the map x 7→ xα by H : R+ → R+

and xα−1 with H(x)/x, where H satis�es:

(i) H(0) = 0,

(ii) H is continuous and nondecreasing,

(iii) x 7→ H(x)/x is nonincreasing,

(iv) limx→0
H(x)
x

= +∞.

Notice that items (ii)-(iii) hold if H is concave and increasing, and that (iii) implies
that H is subadditive.

36



CHAPTER 1. GENERAL THEORY

1.2.4 Operations on irrigation plans

In this section we de�ne restrictions, cuts and concatenations of irrigation plans. These
standard operations were de�ned in [BCM09], although there was a minor glitch in the
construction of a concatenation. In [Peg14], we de�ned it via approximation by �nite
graphs, while here we propose to prove a �gluing lemma� (analogous to the one in
optimal transport, see [San15, Lemma 5.5]) by disintegration of measures. In this
section X is a closed subset of Rd.

Restriction. Given an irrigation plan η ∈ IP(X) and a Borel set E ⊆ Γ(X), the
restriction of η to E is merely the measure-theoretic restriction: for all Borel set A ⊆
Γ(X),

η E(A) = η(E ∩ A).

Cut. If χ is a Borel map which associates to each curve γ ∈ Γ(X) a probability
measure χγ ∈ Prob(R2

+) concentrated on H = {(a, b) : a ≤ b}, then we de�ne the cut
η[χ] of η with respect to χ by:

〈φ, η[χ]〉 =

ˆ
Γ(X)

ˆ
H

φ(γ|[a,b](· − a) dχγ(a, b) dη(γ),

for all φ ∈ C0(Γ). It is a way to restrict each curve γ to some interval [a, b], but
each curve may be restricted in possibly in�nitely many ways, under a law given by
χγ. A possibility is for example to cut all curves γ between times a(γ) and b(γ) where
a, b : Γ(X)→ R+ are Borel and a ≤ b. The resulting irrigation plan is denoted by η[a, b]
and corresponds to η[χ] where χγ = δ(a(γ),b(γ)). If τ is a Borel map which associates
to each γ ∈ Γ(X) a probability measure τγ ∈ Prob(R+), then the cuts denoted by
η[0, τ ] and η[τ,+] associated to χγ = δ0⊗ τγ and χγ = τγ ⊗ δT (γ) respectively are called
complementary cuts (respectively initial and �nal cut) associated to τ .

Gluing. We are given two irrigation plans η1, η2 such that η+
1 = η−2 and we want to

glue them together.

Lemma 1.2.10 (Gluing lemma). There exists an irrigation plan η12 and a Borel map
τ : Γ(X)→ Prob(R+), such that

η1 = η12[0, τ ] and η2 = η12[τ,+].

The plan η12 is called a concatenation of η1 and η2 and τ a recovery cutting time.

Proof. Let us disintegrate η1 and η2 with respect to π∞ and π0 respectively, recalling
that (π∞)#η1 = (π0)#η2 =: σ, so that:

dη1(x, y) = dηy1(x) dσ(y) and dη2(y, z) = dηy2(z) dσ(y),

where ηy1 is concentrated on curves which stop at y and ηy2 on curves that start at y.
We set6 πy = ηy1 ⊗ η

y
2 and de�ne for all pair (γ1, γ2) of curves which start and stop at

6Any coupling π in Π(ηy1 , η
y
2 ) would do.
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a common point:

γ1 : γ2(t) =

{
γ1(t) if t ≤ T (γ1),

γ2(t− T (γ1)) if t > T (γ1).

We de�ne η12 in the following way:

〈η12, φ〉 =

ˆ
Rd

ˆ
Γ(X)×Γ(X)

φ(γ1 : γ2) dπy(γ1, γ2) dσ(y),

for all φ ∈ C0(Γ(X)). Now let us build τ . We start by de�ning a measure ρ ∈
M +(R+ × Γ(X)):

〈ρ, ψ〉 =

ˆ
Rd

ˆ
Γ(X)×Γ(X)

ψ(T (γ1), γ1 : γ2) dπy(γ1, γ2) dσ(y),

for all ψ ∈ C0(R+×Γ(X)). Then we disintegrate ρ with respect to the second projection
π2, noticing that (π2)#ρ = η12, thus getting:

dρ(t, γ) = dτγ(t) dη12(γ).

Now let us check that the desired properties hold. Take a test function φ ∈ C0(Γ(X)):

〈η12[0, τ ], φ〉 =

ˆ
Γ(X)

ˆ ∞
0

φ(γ|[0,t]) dτγ(t) dη12(γ)

=

ˆ
R+×Γ(X)

φ(γ|[0,t]) dρ(t, γ)

=

ˆ
Rd

ˆ
Γ(X)×Γ(X)

φ
(
(γ1 : γ2)|[0,T (γ1)]

)
dπy(γ1, γ2) dσ(y)

=

ˆ
Rd

ˆ
Γ(X)×Γ(X)

φ(γ1) dπy(γ1, γ2) dσ(y)

=

ˆ
Rd

ˆ
Γ(X)

φ(γ1) dηy1(γ1) dσ(y) =

ˆ
Γ(X)

φ(γ) dη1(γ),

and η1 = η12[0, τ ]. A similar computation shows that η2 = η12[τ,+], which ends the
proof.

Remark 1.2.11. The result generalizes easily with n irrigation plans η1, . . . , ηn such that
η+
i = η−i+1: one may �nd an irrigation plan η and recovery cutting times τi : Γ(X) →

Prob(R+) for 0 < i < n such that

ηi = η[τi−1, τi],

with τ0 = δ0 and τn = δT (·). We write η ∈ η1 : η2 : . . . : ηn to say that η is such a gluing.

Remark 1.2.12. From two irrigation plans η ∈ IP(µ, ν) and η′ ∈ IP(ν, ξ) one may build
an irrigation plan η′′ ∈ IP(µ, ξ) with cost

Iα(η′′) ≤ Iα(η) + Iα(η′).
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Indeed, just take η′′ to be a gluing of η and η′, with τ a recovery cutting time. Then
one has:

Iα(η′′) =

ˆ
Γ(X)

ˆ
γ

θη′′(x)α−1 dx dη′′(γ)

=

ˆ
Γ(X)

ˆ
R+

(ˆ
γ|[0,b]

θη′′(x)α−1 dx+

ˆ
γ|[b,∞]

θη′′(x)α−1 dx

)
dτγ(b) dη′′(γ)

=

ˆ
Γ(X)

ˆ
R+

ˆ
γ|[0,b]

θη′′(x)α−1 dx dτγ(b) dη′′(γ)

+

ˆ
Γ(X)

ˆ
R+

ˆ
γ|[b,∞]

θη′′(x)α−1 dx dτγ(b) dη′′(γ).

Notice that θη′′(x) ≥ θη(x) and θη′′(x) ≥ θη′(x), henceˆ
Γ(X)

ˆ
R+

ˆ
γ|[0,b]

θη′′(x)α−1 dx dτγ(b) dη′′(γ) ≤
ˆ

Γ(X)

ˆ
R+

Zη(γ|[0,b]) dτγ(b) dη′′(γ)

=

ˆ
Zη(γ) dη(γ) = Iα(η),

and the same goes for the other term, leading to

Iα(η′′) ≤ Iα(η) + Iα(η′).

Moreover it is clear that η′′ ∈ IP(µ, ξ).

1.2.5 Irrigability and irrigation distance

We have already noticed that a pair of probability measures cannot necessarily be con-
nected with �nite α-cost. However, according to the previous subsection, the relation
�µ and ν can be connected with �nite α-cost� is transitive, thus every pair of mea-
sures can be connected with �nite α-cost if and only if every measure µ be connected
with �nite α-cost to δ0, in which case we say that µ is α-irrigable. The next result
from [Xia03] provides a su�cient condition on α and d for irrigability of compactly
supported measures.

Proposition 1.2.13 (Irrigability). If α > 1 − 1
d
then for every pair of compactly

supported measures (µ, ν) ∈ Prob(Rd), there is an irrigation plan η ∈ IP(µ, ν) of �nite
α-cost, i.e. such that Iα(η) <∞.

Remark 1.2.14. One can actually show that the uniform measure on a unit cube can
be irrigated from a unit Dirac mass if and only if α > 1 − 1

d
, hence this condition is

necessary for an arbitrary pair (µ, ν) to be irrigable with �nite α-cost.

For µ, ν ∈ Prob(Rd), we set dα(µ, ν) to be the optimal α-cost connecting the two,
namely:

dα(µ, ν) = min {Iα(η) : η ∈ IP(µ, ν)} ∈ R ∪ {+∞}.
The lower semicontinuity of Iα and the continuity of π0,π∞ on IPC(Rd) readily imply
that dα is lower semicontinuous. From Remark 1.2.12 we get the triangle inequality,
thus dα is a distance on compactly supported measures, and we may state the following
(proven in [Xia03]).
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Proposition 1.2.15. Fix a compact subset X ⊆ Rd and α > 1− 1
d
. Then dα(µ, ν) <∞

for every pair of measures µ, ν ∈ Prob(X) and dα is a distance on Prob(X) which
metrizes the weak-? convergence of measures in the duality with C (X).

Actually, sharp inequalities comparing dα and Wasserstein distances Wp have been
established in [BBS11] and [MS07]:

cW1/α(µ, ν) ≤ dα(µ, ν) ≤ W1(µ, ν)β,

where β = 1 + αd− d.

1.2.6 Basic structure properties of optimizers

From now on, we assume that we are in the branched case α < 1. We show that
optimizers of the Lagrangian irrigation problem (LIα) enjoy some tree-like properties:
the single-path property and the cycle-free property. The �rst one is actually a �rst step
to prove the second, which is a stronger property. In order to do so, let us anticipate
a bit of content from Chapter 2, that is:

(i) any η ∈ OIPα(µ, ν) is simple, meaning that it is concentrated on curves γ which
are injective on [0, T (γ)],

(ii) any η ∈ OIPα(µ, ν) is recti�able, i.e. there is a 1-recti�able set R such that η-a.e.
curve γ stays essentially in R: H 1(γ \R) = 0,

(iii) the following energy formula (see Theorem 2.1.9) is true for all simple and recti-
�able irrigation plans (hence for optimal ones):

Iα(η) =

ˆ
Rd
θη(x)α d H 1(x), (EF)

(iv) if η ∈ OIPα(µ, ν), and η′ ∈ IP(µ, ν) is a candidate irrigation plan which is
recti�able, then

Iα(η) ≤
ˆ
Rd
θη′(x)α d H 1(x) ≤ Iα(η′),

even if η′ is not simple and last inequality is strict, thanks to the simple replace-
ment lemma (Lemma 2.1.12).

Let us start with a few notations. Given n points (x1, . . . , xn) ∈ Rd, we denote by
Γ(x1, . . . , xn) the set of curves γ ∈ Γ(Rd) which visit points (x1, . . . , xn) in that order,
i.e. there are times t1 ≤ . . . ≤ tn such that γ(ti) = xi for all i. Also, we denote by
Γ[x1, . . . , xn] the set of curves which visit (x1, . . . , xn) no matter the order of visit.

Proposition 1.2.16 (Single path property). Assume that η ∈ OIPα(µ, ν) with α < 1.
For all pair of points x, y such that η(Γ(x, y)) > 0, there is a curve parameterized by
arc length on a segment [0, `] and denoted by γη(x, y) such that η-a.e. curve γ ∈ Γ(x, y)
coincide in its trajectory with γη(x, y).

Remark 1.2.17. Let us clarify a bit. We say that γ1 and γ2 coincide in their trajectory
if they can be reparameterized in γ̃1, γ̃2 so that γ̃1 = γ̃2, or equivalently if this equality
holds with γ̃1, γ̃2 being the arc-length parameterization of γ1, γ2.
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Proof. Let A and B be two subsets of Γ(x, y) with positive mass η(A), η(B) > 0.
For ε > 0 small, we de�ne another irrigation plan ηε obtained from η by replacing
a proportion ε of curves of B by curves where the path between x and y has been
replaced by the paths of those in A. We shall be more precise. We set

ηB =
η B

η(B)
and ηA =

η A

η(A)
,

and tx(γ), ty(γ) to be the unique times7 for which γ(tx(γ)) = x, γ(tyγ)) = y. Following
Remark 1.2.11 we de�ne a gluing η̃A ∈ ηB[0, tx] : ηA[tx, ty] : ηB[ty,+], which is possible
after checking the compatibility of the consecutive marginals. It is clear that the
recovery cutting times are tx, ty. Then we set

ηε = η − εηB + εη̃A.

Obviously ηε ∈ IP(µ, ν) because by construction (π0)#η̃A = (π0)#ηB and (π∞)#η̃A =
(π∞)#ηB. Given u ∈ Rd, notice that

θη̃A(u) =

ˆ
Γ(Rd)

(1u∈γ([0,tx]) + 1u∈γ(]tx,ty [) + 1u∈γ([ty ,T ])) dη̃A(γ)

= θηB(Γ(u, x, y)) + θηA(Γ(x, u, y)) + θηB(Γ(x, y, u)),

so that the multiplicity θηε(u) can be expressed as

θηε(u) = θη(u)− εθBη (u) + εθAη (u)

where

θAη (u) =
η(A ∩ Γ(x, u, y))

η(A)
and

η(B ∩ Γ(x, u, y))

η(B)
.

We know that ηε is recti�able, hence by optimality of η (recall (iv) at the beginning of
this section), one has

ˆ
Rd
θηε(u)α d H 1(u) ≥ Iα(η),

or equivalentlyˆ
Rd

(
θη(u) + ε

(
θAη (u)− θBη (u)

))α
d H 1(u) ≥

ˆ
Rd
θη(u)α d H 1(u).

By interchanging the roles of A and B, one gets the same inequality but for ε of
arbitrary sign. Notice that the map ε 7→ (θη(u)+ερ)α is strictly concave if ρ 6= 0 hence
the map

ε 7→
ˆ
Rd

(
θη(u) + ε

(
θAη (u)− θBη (u)

))α
d H 1(u)

is strictly concave if θAη (u)− θBη (u) is not identically 0. Since it is minimal at ε = 0, it
cannot be strictly concave, therefore

θAη (u) = θBη (u)

7It is well de�ned for simple curves, which is true η-a.e.
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for H 1-a.e. u ∈ Rd. For any nonnegative function f de�ned on Rd, one has
ˆ
Rd
f(u)θAη (u) d H 1(u) =

ˆ
Rd
f(u)θBη (u) d H 1(u). (1.2.9)

By Fubini's Theorem, we can give another expression for these:
ˆ
Rd
f(u)θAη (u) d H 1(u) =

1

η(A)

ˆ
Rd

ˆ
A

1γ∈Γ(x,u,y)f(u) dη(γ) d H 1(u)

=
1

η(A)

ˆ
A

ˆ
γ

f(u)1γ∈Γ(x,u,y) du dη(γ)

=

 
A

ˆ
γ[x,y]

f(u) du dη(γ),

where we have set γ[x, y] = γ|[tx(γ),ty(γ)], thus (1.2.9) rewrites:
 
A

ˆ
γ[x,y]

f(u) du dη(γ) =

 
B

ˆ
γ[x,y]

f(u) du dη(γ). (1.2.10)

Now we consider a countable basis of open sets (On)n∈N in Rd and we take f = 1On .
For all n ∈ N and all A,B ∈ Γ(x, y), one has:

 
A

H 1(γ[x, y] ∩On) dη(γ) =

 
B

H 1(γ[x, y] ∩On). (1.2.11)

As a consequence, the mean value of H 1(γ[x, y] ∩ On) on all subsets of Γ(x, y) is
constant, which implies that outside an η-negligible set E, for all curve γ ∈ Γ(x, y)\E,
the quantity H 1(γ[x, y] ∩ On) does not depend on γ. This implies that for all curves
in γ ∈ Γ(x, y) \E, the trajectory of γ[x, y] is the same. By contradiction, if there were
two curves γ, γ̃ ∈ Γ(x, y) \E such that the trajectories of γ[x, y], γ̃[x, y] were di�erent,
we could �nd an open set On which is disjoint from γ[x, y] and which intersects γ̃[x, y],
thus H 1(γ[x, y] ∩On) = 0 6= H 1(γ̃[x, y] ∩On): a contradiction. As a consequence all
curves γ ∈ Γ(x, y) \ E coincide in their trajectory between x and y. We denote this
curve, parameterized by arc length on an interval [0, `], by γη(x, y).

We are now able to prove the stronger cycle-free property, which is a Lagrangian
counterpart to the cycle-free property in the discrete case ((iv) of Theorem 1.1.2).

Theorem 1.2.18 (Cycle-free property). If η ∈ OIPα(µ, ν) with α < 1 then there is
no loop sequence x1, x2, . . . , xn, xn+1 = x1 such that η(Γ[xi, xi+1]) > 0 for 1 ≤ i ≤ n.

Remark 1.2.19. Recall that Γ[x, y] is the set of curves which visit x and y, no mat-
ter in which order. Thus η(Γ[xi, xi+1]) > 0 means that either η(Γ(xi, xi+1)) > 0 or
η(Γ(xi+1, xi)) > 0.

Proof. The idea is similar to the proof of the previous proposition, thus we are going
to give fewer details. For all i, we set si = 1, Ai = Γ(xi, xi+1) if if η(Γ(xi, xi+1)) > 0,
and si = −1, Ai = Γ(xi+1, xi) otherwise, in which case η(Γ(xi+1, xi)) > 0. We know by
the single-path property that all curves in Ai follow a common trajectory γi between xi
and xi+1 (from xi to xi+1 if si = 1, from xi+1 to xi if si = −1). We are going to remove
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a small mass ε > 0 from the γi's such that si > 0 and add ε to the other ones. Here
again, the construction is based on the gluing lemma. We set ηAi = η Ai

η(Ai)
. We consider

a maximal (i.e. longest) sequence of points σ = xk, xk+1, . . . , xl such that si = 1 for all
i = k, . . . , (l − 1), and we take ησ = ηAk−1

[0, txk ] : δγσ : ηAl [txl ,+] (or just ησ = δγσ if σ
is the whole sequence), where γσ = γk : . . . : γl is the concatenation of the consecutive
curves associated to σ. We denote by U the set of all such maximal sequences σ.
Now for each consecutive triple τ = xk−1, xk, xk+1 such that sk−1 = sk = −1 we take
ητ ∈ ηAk−1

[0, txk ] : ηAk [txk ,+]: these triples form a set V . We de�ne the competitor

ηε = η − ε
∑
si=−1

ηAi + ε
∑
τ∈V

ητ + ε
∑
σ∈U

ησ.

The �rst sum corresponds to the mass we remove, the second is a reconnection term
which we must add due to this removal, while the third sum corresponds to the mass
that we want to add. We leave it to the reader to check that ηε ∈ IP(µ, ν) and that

θηε(u) = θη(u) + ε∆θ(u),

where ∆θ(u) = siθ(u) if u ∈ γi. By optimality of η, we have
ˆ
Rd
θη(u)α d H 1(u) ≤

ˆ
Rd

(θη(u) + ε∆θ(u))α d H 1(u),

which holds for ε ≥ 0, but also for ε ≤ 0, had we reversed the order of the loop
sequence. Here again we are faced with a concave function of ε which is minimal at
the interior point 0. This can only happen if θ(u) = 0 for H 1-a.e. u ∈

⋃
i γi, which is

a contradiction since on each γi, θη(u) ≥ η(Ai) > 0.

1.3 The Eulerian model

We keep assuming till the end of this chapter, that α ∈ [0, 1[.

Irrigation �ows We call irrigation �ow on Rd any vector measure v ∈M d(Rd) such
that ∇·v ∈M 1(Rd), where ∇·v is the divergence of v in the sense of distribution. We
denote by IF(Rd) the set of irrigation �ows, and we equip it with the Mdiv topology,

that is vn
Mdiv−−−⇀ v if vn and ∇ · vn converge to v and ∇ · v weakly as measures, in the

duality with C0(Rd,Rd) and C0(Rd,R) respectively.

Remark 1.3.1. These objects have several names. They are called 1-dimensional normal
currents in the terminology of Geometric Measure Theory, and are called tra�c paths
by Xia in [Xia03].

If E ⊆ Rd is an H 1-measurable set, τ : E → Sd−1 is H 1-measurable and θ : E →
R+ is H 1-integrable, we de�ne the vector measure JE, τ, θK ∈M d(K) by

< JE, τ, θK, ψ >=

ˆ
E

θ(x)ψ(x) · τ(x) d H 1(x),

for all ψ ∈ C0(Rd,Rd). In other terms JE, τ, θK .
= θτ H 1 E.
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1.3. THE EULERIAN MODEL

Recti�able irrigation �ow Recall that if E is a 1-recti�able set, at H 1-a.e x ∈ E
there is an approximate tangent line (see [Mat95, Chapter 17]) denoted by Tan(x,E).
An irrigation �ow of the form v = JE, τ, θK where E is 1-recti�able and τ(x) ∈
Tan(x,E) for H 1-a.e. x ∈ E is termed recti�able8.

From discrete to continuous Consider an irrigation graph G ∈ IG(Rd). One can
de�ne the vector measure vG by

vG :=
∑

e∈E(G)

Je, ê, θeK.

One can check that∇·vG =
∑

e∈E(G) θe(δe−−δe+) ∈M 1(Rd) and that vG is a recti�able
irrigation �ow on Rd. Also, both the cost Eα and the constraint G ∈ IG(µ, ν) can be
expressed solely in terms of vG. Indeed Kirchho�'s law can actually be expressed in
terms of the divergence ∇ · vG:

Proposition 1.3.2. If G is a graph, G ∈ IG(µ, ν) if and only if ∇ · vG = µ− ν.

Consequently, we say that v sends µ to ν if ∇ · v = µ − ν and denote by IF(µ, ν)
the set of such irrigation �ows.

Now on the generalization of Gilbert Energy, if we identify vG with its H 1-density,
one has

Eα(G)
.
=
∑

e∈E(G)

θαe |e| =
ˆ
Rd
|vG(x)|α d H 1(x).

This leads to de�ning the following cost on IF(Rd):

Mα(v) =


ˆ
|v(x)|α d H 1(x) if v is recti�able,

+∞ otherwise,

which is called the α-mass of v.

On the de�nition and semicontinuity of the α-mass. Several de�nitions of α-
mass have been given depending on the setting (currents or vector measures, euclidean
or metric setting). In [DH03] it was de�ned in a euclidean setting for integer recti�able
currents as the integral of the multiplicity to the α (actually they consider more general
costs than x 7→ xα but concave integrands H, and de�ne a so-called H-mass). Lower
semicontinuity is proven in this space of integer recti�able currents for a α-�at norm Fα.
A similar de�nition is used in a metric setting in [Ste10]. Though lower semicontinuity
is not explicitly proven, the same de�nition for real recti�able currents (in a Euclidean
setting) is used by Stepanov and Paolini in [PS06] and extended to �at chains. In the
works [Xia03] and [Xia04], two di�erent de�nitions of Mα are used, both by relaxation:
either in the space Mdiv of vector measures v whose divergence are measures (for the
weak convergence of v and ∇ · v), or in the space of �at chains (for the usual �at

8A recti�able irrigation �ow is, in the language of currents, a recti�able normal 1-current on Rd.
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norm). Things are clari�ed in [Col+17] where it is proven that the lower semicontinuous
envelope of the α-mass de�ned on real-valued polyhedral chains is precisely

Mα(v) =


ˆ
|v(x)|α H 1(dx) if v is recti�able,

+∞ otherwise,

on the space of real �at chains. Since this space is larger than IF(Rd), and the topol-
ogy weaker than the weak convergence in Mdiv, all these de�nitions coincide and in
particular Mα is lower semicontinuous on IF(Rd).

Eulerian irrigation problem We are now able to formulate an Eulerian irrigation
problem in a continuous setting. Given two probability measures µ, ν ∈ Prob(Rd), we
want to �nd an irrigation �ow v sending µ to ν which has minimal α-mass. This reads

min {Mα(v) : v ∈ IF(µ, ν)} . (EIα)

Xia proved the following existence theorem in [Xia03].

Theorem 1.3.3 (Existence of minimizers). For any compactly supported probability
measures µ, ν ∈ Prob(Rd), there is a minimizer v to the Eulerian irrigation problem
(EIα). Moreover if 1− 1

d
< α < 1 the minimum is always �nite.

As for lagrangian irrigation problem, we call optimal irrigation �ow for Mα with
prescribed source and target µ, ν a minimizer of (EIα) which has a �nite cost, and we
denote by OIFα(µ, ν) the set of such optimal irrigation �ows.

1.4 The single source case

In this section, we place ourselves in the case of a single source by assuming that the
initial measure is a unit Dirac: µ = δ0, and we assume α < 1. This is the most studied
case in branched transport, either from the point of view of Maddalena, Morel, and
Solimini's patterns de�ned in [MSM03], studied also by Devilanova, Solimini in [DS07a;
DS07b], or in the tra�c plan framework (the closest to our irrigation plans framework)
by Bernot, Caselles, Morel [BCM05; BCM08; BCM09]. In this case, Santambrogio was
able to de�ne a landscape function in [San07], a terminology borrowed from geophysics
([RR01]), which can be thought of as a �supergradient� of the cost Iα and has become an
important tool to study optimal networks or variational problems related to branched
transport, as done in Chapter 3.

1.4.1 Tree property

Optimal networks in the single source case have a tree structure stemming from a root
located at 0, as stated in the next proposition.

Proposition 1.4.1 (Tree property). Let η ∈ IP(δ0, ν) be an optimal irrigation plan
with �nite α-cost. For all x ∈ Nη, η-a.e. curve γ passing through x coincides in its
trajectory with a common curve γη(x) : [0, L(γη(x))]→ Rd which goes from 0 to x.
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1.4. THE SINGLE SOURCE CASE

Proof. We simply use Proposition 1.2.16, noticing that θη(x) > 0 if and only η(Γ(0, x)) >
0 since η-a.e. curve starts at 0, and de�ning γη(x) = γη(0, x).

For γ ∈ Γ(Rd) and t ≥ 0, we de�ne the joint multiplicity of γ at t w.r.t. the
irrigation plan η by

θη(γ[0, t]) = η(γ̃ ∈ Γ(Rd) : γ̃|[0,t] = γ|[0,t]).

The previous proposition yields the following immediate corollary.

Corollary 1.4.2. Let η as in the previous proposition and parameterized by arc length.
If x ∈ Nη and γ = γη(x) then:

∀t ≤ L(γ), θη(γ(t)) = θη(γ[0, t]).

1.4.2 The landscape function

The landscape function associated to an optimal irrigation plan was de�ned by Santam-
brogio in [San07] with some inspiration from optimal channel networks in geophysics
(see [RR01]). The terminology and the results of this section are extracted from [San07]
and given without proofs, for which we refer to the original paper, or to Chapter 4 which
generalizes these results to the multiple sources case.

To de�ne the landscape function associated to an optimal network η, we need to
de�ne a large class of curves which follow the network in a sense.

De�nition 1.4.3 (η-good curves). We say that a curve γ is η-good if

ˆ T (γ)

0

θη(γ[0, t])α−1 dt <∞

which is equivalent to the two assertions:

(i) Zη(γ) <∞,

(ii) θη(γ(t)) = θη(γ[0, t]) for all t < T (γ).

Proposition 1.4.4. If η is an optimal irrigation plan, the following assertions hold:

(i) η-good curves γ are injective9 on [0, T (γ)[,

(ii) they are paremeterized by arc length if η is itself parameterized by arc length,

(iii) η is concentrated on the set of η-good curves.

One may view the set of η-good curves as the right generalization of support for
irrigation plans. The following proposition is key to de�ning the landscape function.

Theorem 1.4.5 (Well-de�nedness property). If η is optimal and γ1, γ2 are two η-good
curves with the same endpoint x, then Zη(γ1) = Zη(γ2).

9Actually, it is injective on the whole [0, T (γ)] but this is a consequence of Theorem 1.4.5.
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De�nition 1.4.6 (Landscape function). If η is optimal, the previous proposition allows
us to de�ne the landscape function zη by:

zη(x) =

{
Zη(γ) if γ is an η-good curve such that γ(∞) = x,

+∞ otherwise.

The following �rst variation formula is fundamental. A slightly weaker version was
established in [San07], the proof of this one is given in Chapter 3, Proposition 3.1.5.

Proposition 1.4.7 (First variation). Suppose that η is an optimal irrigation plan
between δ0 and ν, with landscape function zη. The following holds:

dα(δ0, ν̃) ≤ dα(δ0, ν) + α

ˆ
Rd
zη d(ν̃ − ν),

for all ν̃ ∈ Prob(Rd).

Therefore, zη may be thought as a �supergradient� of ν̃ 7→ dα(δ0, ν̃). Let us state
the other main properties of landscape functions.

Proposition 1.4.8 (Lower semicontinuity). The landscape function associated to an
optimal irrigation plan is lower semicontinuous.

Proposition 1.4.9 (Steepest descent). The network Nη follows the direction of steepest
descent of zη, in the sense that for all x0 ∈ Nη:

∀x ∈ Nη, zη(x) ≥ zη(x0)− θη(x0)α−1|x− x0|+ o(|x− x0|).

With some extra hypotheses on ν, one may get more regularity of zη.

Proposition 1.4.10 (Hölder continuity). We assume that α > 1− 1
d
. Suppose that ν

is of the form:
ν = f L E with f ≥ c > 0 on E,

and E is regular in the sense that

∀x ∈ E,∀r ≤ diam(E), ΘE(x, r) :=
|Br(x) ∩ E|
|Br(x)|

≥ c′,

for some c′ > 0. Then the landscape function zη associated to any optimal irrigation
plan η ∈ OIPα(δ0, ν) is β-Hölder continuous on E where

β = d

(
α−

(
1− 1

d

))
= 1 + dα− d.
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2.1. THE ENERGY FORMULA

The goal of this chapter is to give a complete and rigorous proof of the equivalence
between the Lagrangian and Eulerian irrigation problems (LIα) and (EIα). This is a
fact which has been known for some time and was stated in the book [BCM09]. The
�rst connection between the two models was perhaps being made in [PS06], where the
Lagrangian model is set through what they call �transports� which correspond to our
irrigation plans with a preliminary quotient with respect to reparameterization, and
where the Eulerian model is cast in the framework of �at chains. An ad hoc Smirnov
decomposition theorem was proved for �at chains (Smirnov originally proved it for
normal currents in [Smi93]), as a way to build a transport from a �at chain, while a
�at chain is clearly induced by a transport. Although it is not explicitly stated, the
way to pass from Eulerian to Lagrangian (our Section 2.3) can be extracted from their
work. For the converse way, one needs to show some simplicity of optimizers (done by
some recursive loop-removal in [BCM09]), and use an energy formula which expresses
the Lagrangian cost as a generalized Gilbert energy. This is done in [BCM09] via
Fubini-Tonelli's theorem also the σ-�niteness is not explicitly stated. To prove it, one
should prove �rst the recti�ability of optimal irrigation plans, as done in Bernot's PhD
thesis ([Ber05]), which we prove di�erently in Section 2.1.1. The same fact was noticed
in the recent paper [BW15] where they prove the equivalence between the Lagrangian
(patterns) and Eulerian (mass �ux) models with more general costs, replacing the
α-cost and α-mass with H-costs and H-masses for a large class of functions H.

In Section 2.4 the equivalence between the two models is established, using the
energy formula and a Smirnov decomposition (see [Smi93]) for vector measures obtained
by Santambrogio in [San14] via a Dacorogna-Moser approach, as stated in Theorem
2.4.1. In short, both Eulerian and Lagrangian irrigation problems they have same
minimal value, and one can build minimizers of one problem from minimizers of the
other. In this chapter we assume α < 1, and that we are on a compact set K ⊆ Rd for
simplicity.

2.1 The energy formula

The aim of this section is to establish an energy formula stated in [BCM09, Section
4.3], expressing the Lagrangian irrigation cost as follows:

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ) =

ˆ
K

θη(x)α d H 1(x), (EF)

provided η satis�es some hypotheses (namely essential simplicity and recti�ability).
The term on the right-hand side is the so-called Gilbert Energy denoted by Eα(η).
The proof relies solely on the correct use of Fubini-Tonelli's theorem, which requires
σ-�niteness of measures. The next subsection is therefore devoted to the recti�ability
of irrigation plans.
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2.1.1 Recti�able irrigation plans

Intensity and �ow We de�ne the intensity iη ∈M +(K) and �ow vη ∈M d(K) of
an irrigation plan η ∈ IP(µ, ν) by the action on continuous maps:

〈iη, φ〉 =

ˆ
Γ

ˆ
γ

φ(x) dx dη(γ),

〈vη, ψ〉 =

ˆ
Γ

ˆ
γ

ψ(x) · dx dη(γ),

for all φ ∈ C (K), ψ ∈ C (K)d. The quantity diη(x) represents the total circulation at
x and dvη(x) the total �ow at x.

Concentration and recti�ability Let A be a Borel subset of K. By de�nition of
iη, the following assertions are equivalent:

(i) iη is concentrated on A, i.e. iη(Ac) = 0,

(ii) for η-a.e. γ ∈ Γ, γ ⊆ A up to an H 1-null set, i.e. H 1(γ \ A) = 0.

In that case we say (with a slight abuse) that η is concentrated on A. An irrigation
plan η ∈ IP(K) is termed σ-�nite if it is concentrated on a σ-�nite set w.r.t. H 1 and
recti�able if it is concentrated on a 1-recti�able set1.

The intensity iη has a simple expression when η is σ-�nite, as shown below.

Proposition 2.1.1. If η is an irrigation plan concentrated on a σ-�nite set A, then
iη = mη H 1 A.

Proof. For any Borel set B, one has

iη(B) = iη(A ∩B) =

ˆ
Γ

ˆ
γ

1A∩B dx dη(γ)

=

ˆ
Γ

ˆ
B

m(x, γ) d H 1 A(x) dη(γ)

=

ˆ
B

ˆ
Γ

m(x, γ) dη(γ) d H 1 A(x)

=

ˆ
B

mη(x) d H 1 A(x).

The equality on the second line follows from the coarea formula, the next from Fubini-
Tonelli's theorem which holds because measures are σ-�nite, and the last one from the
de�nition of mη.

Now we would like to prove that irrigation plans η are concentrated on their network
Nη

.
= {x ∈ K : θη(x) > 0} and that the latter is a recti�able set. The �rst assertion is

true provided η has �nite α-cost, as we shall see later, and the second item holds in all
generality, as we shall prove know. Our proof follows an idea of [BCM09, Theorem 4.10],

1A 1-recti�able set is the union of an H 1-null set with a countable union of Lipschitz curves.
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though we cannot use the energy formula yet (as its proof requires said recti�ability or
σ-�niteness) and take care of the fact that the recti�ability criterion of Lemma 2.1.3
(as well as Lemma 2.1.4) applies to sets of �nite H 1 measure and not of σ-�nite H 1

measure. In [BW15, Lemma 3.18], another proof is provided adapting a proof of Bernot
([Ber05, Lemma 4.6.4] or [BCM09, Lemma 6.3]). With our approach, we will need a
few notions and lemmas from geometric measure theory.

If A is a subset of Rd we de�ne the upper and lower 1-density of A at x as

Θ(x,A) = lim sup
r↓0

H 1(A ∩B(x, r))

2r
, Θ(x,A) = lim inf

r↓0

H 1(A ∩B(x, r))

2r
.

When these quantities are equal, we call their common value Θ(x,A) the 1-density of
A at x.

The �rst lemma we will need is proved in [Mat95, Chapter 8].

Lemma 2.1.2. If B ⊆ Rd,

H 1(B) = sup{H 1(K) : K ⊆ B compact such that H 1(K) <∞}.

The second is due to Besicovitch and may be obtained as a particular case of [Mat95,
Theorem 17.6].

Lemma 2.1.3. Let E be an H 1-measurable set such that H 1(E) <∞. If its 1-density
Θ(x,E) exists and is equal to 1 for H 1-a.e. x in E then it is 1-recti�able.

Finally, we will need the following result which is included in [Mat95, Theorem 6.2].

Lemma 2.1.4. If E is a set such that H 1(E) <∞, then the upper 1-density Θ(x,E)
is less than 1 for H 1-a.e. x in E.

Proposition 2.1.5 (Recti�ability of the network). If η ∈ IP(K) is an irrigation plan,
its network Nη is 1-recti�able.

Proof. First of all, since the network does not change under normalization, we may
assume that η is parameterized by arc length. We have Nη =

⋃
n>0D

n where

Dn :=

{
x : θη(x) >

1

n

}
.

Let us show that that H 1(Dn) < ∞. By contradiction assume that for some n,
H 1(Dn) = ∞, hence thanks to Lemma 2.1.2 one can �nd for M > 0 as large as we
want a compact subset K ′ ⊆ Dn such that M ≤ H 1(K ′) < ∞. Since H 1(K ′) < ∞
one can use Fubini-Tonelli's theorem to get

L(η)
.
=

ˆ
Γ

L(γ) dη(γ) ≥
ˆ

Γ

H 1(γ ∩K ′) dη(γ) =

ˆ
Γ

ˆ
K′

1x∈γ d H 1(x) dη(γ)

=

ˆ
K′

ˆ
Γ

1x∈γ dη(γ) d H 1(x)

=

ˆ
K′
θη(x) d H 1(x) >

M

n
.
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The inequality L(η) > M
n
must be true for allM > 0, i.e. L(η) =∞, which contradicts

the de�nition of an irrigation plan, hence H 1(Dn) <∞.
Now we shall prove that Θ(x,Dn) = 1 a.e. on Dn. Since Dn has �nite H 1-measure,

we already know Θ(x,Dn) ≤ 1 for H 1-a.e. x ∈ Dn by Lemma 2.1.4, thus it remains
only to prove Θ(x,Dn) ≥ 1. If A is a Borel subset of R we denote Leb(A) the set of
Lebesgue points of A, which are points t such that

lim
r↓0

|A ∩ [t− r, t+ r]|
2r

= 1,

where |X| denotes the Lebesgue measure of X ⊆ R. Recall that by Lebesgue's theorem
we have |A \ Leb(A)| = 0. For any γ ∈ Γ1, we set

Aγ =

{
t : t ∈ Leb

(
s : |γ(s)|η >

1

n

)
for all n s.t. |γ(t)|η >

1

n

}
,

Bγ = {t ∈]0, T (γ)[ : γ̇(t) exists} ,
Dγ = γ(Aγ ∩Bγ).

Notice that |[0, T (γ)] \ (Aγ ∪Bγ)| = 0 hence H 1(γ \ Dγ) = 0 since γ is Lipschitz.
Finally we set

D′ =
⋃
γ∈Γ1

Dγ.

Let us check that H 1(Nη \D′) = 0. We have
ˆ
Nη\D′

θη(x) d H 1(x) =

ˆ
Nη\D′

ˆ
Γ

1x∈γ dη(γ) d H 1(x)

=

ˆ
Γ

ˆ
Nη\D′

1x∈γ d H 1(x) dη(γ)

=

ˆ
Γ1

H 1(Nη ∩ γ \D′) dη(γ)

= 0.

The use of Fubini-Tonelli's theorem is justi�ed since Nη =
⋃
nD

n is σ-�nite and the last
equality follows from H 1(Nη∩γ\D′) ≤H 1(γ\Dγ) = 0. This implies H 1(Nη\D′) = 0
since θη > 0 on Nη. Now take any x ∈ Dn ∩D′. By construction of D′ there is a curve
γ ∈ Γ1 and a t ∈ Aγ ∩Bγ such that x = γ(t), which implies that

|s ∈ [t− r, t+ r] : γ(s) ∈ Dn|
2r

r↓0−−→ 1 (2.1.1)

and
H 1(γ([t− r, t+ r]) \Dn)

2r

r↓0−−→ 0. (2.1.2)

It follows from (2.1.2) and the fact that γ([t−r, t+r]) ⊆ B̄(x, r) because γ is 1-Lipschitz
that

Θ(x,Dn)
.
= lim inf

r↓0

H 1(B(x, r) ∩Dn)

2r
≥ lim inf

r↓0

H 1(γ([t− r, t+ r]))

2r
.
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But γ has a derivative e at t which has unit norm. Moreover the H 1-measure of
γ([t− r, t+ r]), which is a compact connected set, is larger than the distance between
γ(t− r) and γ(t+ r), and since γ(t± r) = x± re+ o(r) one has

H 1(γ([t− r, t+ r])) ≥ |γ(t+ r)− γ(t− r)| = 2r + o(r),

which yields Θ(x,Dn) ≥ 1. This proves that Θ(x,Dn) exists and is equal to 1 for H 1-
a.e. x ∈ Dn hence Dn is 1-recti�able by Lemma 2.1.3 and Nη =

⋃
nD

n as well.

At this stage we have shown that the network of any irrigation plan is recti�able, yet
this does not mean that any irrigation plan is recti�able (this is obviously not the case)
since η needs not be concentrated on Nη. However, it is essentially the only candidate
recti�able set (or even candidate σ-�nite set) on which η could be concentrated, as
stated below.

Corollary 2.1.6. Given η ∈ IP(K) an irrigation plan, the following assertions are
equivalent:

(i) η is concentrated on Nη,

(ii) η is recti�able,

(iii) η is σ-�nite.

Proof. It is enough to prove (iii)⇒ (i) by the previous proposition. If η is concentrated
on a σ-�nite set A, we know by Proposition 2.1.1 that iη = mη H 1 A. Therefore iη is
also concentrated on {x : mη(x) > 0} = Nη.

Remark 2.1.7. From this and Proposition 2.1.1 we get that iη = mη H 1 if η is recti�-
able.

The most important consequence of Proposition 2.1.5 is the following recti�ability
result.

Theorem 2.1.8 (Recti�ability). If η has �nite α-cost with α ∈ [0, 1[, it is recti�able.

Proof. Because of the previous statement, we need only show that η is concentrated on
Nη. We have Iα(η)

.
=

´
Γ

´
γ
θη(x)α−1 dx dη(γ) < ∞ hence for η-almost every curve γ,

for H 1-almost every x in γ, θη(x)α−1 <∞, which implies that θη(x) > 0 i.e. x ∈ Nη.
By de�nition, it means that η is concentrated on Nη.

2.1.2 Proof of the energy formula

We de�ne Gilbert energy Eα : IP(K)→ [0,∞] as

Eα(η) =


ˆ
K

θη(x)α d H 1(x) if η is recti�able,

+∞ otherwise.
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and a variant Ēα : IP(K)→ [0,∞], which is kind of a �full� Gilbert energy:

Ēα(η) =


ˆ
K

θα−1
η (x)mη(x) d H 1(x) if η is recti�able,

+∞ otherwise.

Assuming α ∈ [0, 1[, we would like to establish the energy formula

Iα(η) = Eα(η). (EF)

This does not hold in general. Actually we are going to show that Iα(η) = Ēα(η) for
all irrigation plan η ∈ IP(K) and that Ēα(η) = Eα(η) provided η is essentially simple.

Theorem 2.1.9 (Energy formula). Assuming α ∈ [0, 1[, the following formula holds:

Iα(η) = Ēα(η). (EF')

Moreover, if η is essentially simple this rewrites

Iα(η) = Eα(η). (EF)

Proof. By Theorem 2.1.8, if η is not recti�able then Iα(η) = Eα(η) = Ēα(η) = ∞
and the result is clear. Now we assume that η is recti�able, which means that it is
concentrated on the recti�able set Nη, according to Theorem 2.1.8 and Corollary 2.1.6.
Notice that by the coarea formula we haveˆ

Γ

ˆ
γ

θη(x)α−1 dx dη(γ) =

ˆ
Γ

ˆ
K

θη(x)α−1m(x, γ) d H 1(x) dη(γ),

thus the goal is to reverse the order of integration. Here Fubini-Tonelli's theorem
applies because η is concentrated on its network, which is recti�able, which yields

Iα(η) =

ˆ
Γ

ˆ
Nη

θη(x)α−1m(x, γ) d H 1(x) dη(γ)

=

ˆ
Nη

θη(x)α−1mη(x) d H 1(x)

=

ˆ
K

θη(x)α−1mη(x) d H 1(x) = Ēα(η).

and (EF') holds. Now if η is essentially simple then in all the previous calculations
mη(x) = θη(x) so that

Iα(η) =

ˆ
Nη

ˆ
Γ

θη(x)α−1θη(x) dη(γ) d H 1(x)

=

ˆ
K

θη(x)α d H 1(x) = Eα(η),

thus getting (EF).

Remark 2.1.10. Actually, the proof shows that the equality Iα(η) = Ēα(η) (and Iα(η) =
Eα(η) if η is essentially simple) holds also for α = 1 provided η is recti�able. However,
one may �nd η non-recti�able such that I1(η) ∈]0,∞[ while H 1(Nη) = 0. In that case
one has 0 =

´
K
mη(x) d H 1(x) < I1(η) < Ē1(η) =∞. Notice also that for such η one

has 0 =
´
K
θη(x)α−1mη(x) d H 1(x) < Iα(η) =∞ for α ∈ [0, 1[, which explains why we

imposed Eα(η) = Ēα(η) =∞ if η is not recti�able.
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2.1.3 Simplicity of optimal irrigation plans

In this section we shall prove that optimal irrigation plans are necessary simple using
the energy formula.

�Reduced� intensity We associate to any irrigation plan η ∈ IP(K) a �reduced�
intensity jη by

〈jη, φ〉 =

ˆ
Γ

ˆ
γ

φ(x) d H 1(x) dη(γ),

for all φ ∈ C (K). It is a positive �nite measure, since the total mass is

‖jη‖ =

ˆ
Γ

H 1(γ) dη(γ) ≤
ˆ

Γ

L(γ) dη(γ) = L(η) <∞.

Remark 2.1.11. Notice that if A is a Borel set, jη(A) = 0 ⇔ iη(A) = 0 hence by
de�nition η is recti�able if and only if jη is concentrated on a recti�able set, in which
case it is concentrated on the recti�able network Nη and one has jη = θη H 1 using
Fubini-Tonelli's theorem.

Lemma 2.1.12 (Simple replacement). Let η ∈ IP(µ, ν) be an irrigation plan. Con-
sider the minimization problem

min {L(ζ) : jζ ≤ jη and ζ ∈ IP(µ, ν)} . (LENη)

Then

(i) this problem admits minimizers which are all simple,

(ii) if η is recti�able, all minimizers ζ are also recti�able and jζ ≤ jη rewrites

θζ ≤ θη H 1 -almost everywhere. (2.1.3)

Any minimizer of (LENη) is called a simple replacement of η.

Proof. Let us call m the in�mum of (LENη) and show that it admits a minimizer. Take
a minimizing sequence (ζn)n such that every ζn is normalized, in particular ζn ∈ IPC(K)
for some C > 0. Up to extraction we have convergence ζn ⇀ ζ, and since IPC(µ, ν) is
closed by Proposition 1.2.2, ζ ∈ IPC(µ, ν). Moreover L(ζ) = m by lower semicontinuity
of L

.
= I1 on IPC(K), which we proved in Corollary 1.2.8. Now in order to show that

ζ is a solution of (LENη) we only have to check the last constraint jζ ≤ jη. Take any
open set O. One has

jζn(O) =

ˆ
Γ

H 1(γ ∩O)ζn(dγ).

By a generalization of Golab's Theorem (see [BB05]), the following holds

H 1(γ ∩O) ≤ lim inf
n

H 1(γn ∩O)
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if γn → γ uniformly on compact sets, which means that γ 7→ H 1(γ ∩ O) is lower
semicontinuous on Γ. Consequently ζ 7→

´
Γ
H 1(γ ∩ O)ζ(dγ) is lower semicontinuous

and one gets

jζ(O)
.
=

ˆ
Γ

H 1(γ ∩O)ζ(dγ) ≤ lim inf
n

ˆ
Γ

H 1(γ ∩O)ζn(dγ) ≤ jη(O)

for all open set O. This implies that jζ ≤ jη by regularity of �nite measures hence ζ is
a minimizer of (LENη).

Let us check that any minimizer ζ is simple. By contradiction, if it was not simple
there would be a set Γ′ ⊆ Γ such that ζ(Γ′) > 0 and every γ ∈ Γ′ has a loop. One may
de�ne a Borel map r : γ 7→ r(γ) which removes from γ ∈ Γ′ the loop with maximal
length (the �rst one in case there are several), and is identical on Γ \ Γ′. Then set
ζ̄ := r(ζ). Obviously one has L(ζ̄) < L(ζ), ζ̄ ∈ IP(µ, ν) and jζ̄ ≤ jζ , which contradicts
the optimality of ζ in (LENη).

Finally, suppose η is recti�able and take ζ a minimizer of our problem. According to
Remark 2.1.11, the inequality jζ ≤ jη implies that ζ is recti�able and jη = θη H 1, jζ =
θζ H 1, which yields (ii).

Proposition 2.1.13. Given α ∈ [0, 1], if η ∈ IP(µ, ν) is optimal with �nite α-cost,
then it is simple.

Proof. The case α = 1 is straightforward from Lemma 2.1.12 since L = I1. Now we
assume that α < 1 and take η optimal, in which case the �niteness of the α-cost implies
the recti�ability of η by Theorem 2.1.8. We need only show that η is a minimizer of
(LENη). Take η̃ a simple replacement of η. Then since η, η̃ are recti�able and θη̃ ≤ θη
H 1-a.e., one has

Iα(η) =

ˆ
K

θα−1
η mη d H 1 ≥

ˆ
K

θαη d H 1 ≥
ˆ
K

θαη̃ d H 1 = Iα(η̃)

Since η is optimal we have equality everywhere, which means that mη = θη = θη̃ = mη̃

H 1-a.e. Consequently

L(η) =

ˆ
K

mη(x) d H 1(x) =

ˆ
K

mη̃(x) d H 1(x) = L(η̃)

hence η minimizes (LENη) and is as such simple by Lemma 2.1.12.

2.2 From Lagrangian to Eulerian

Recall that we have associated to any irrigation plan η ∈ IP(K) an intensity iη ∈
M +(K) and a �ow vη ∈M d(K). We will show that vη is an irrigation �ow sending µ
to ν and satisfying Mα(vη) ≤ Iα(η) under some hypotheses.

Proposition 2.2.1. If η ∈ IP(µ, ν) then vη ∈ IF(µ, ν).
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Proof. Let us calculate the distributional divergence of vη. For φ ∈ C (K), we have

〈∇ · vη, φ〉 = −〈vη,∇φ〉 = −
ˆ

Γ

ˆ ∞
0

∇φ(γ(t) · γ̇(t) dt dη(γ)

=

ˆ
Γ1

(φ(γ(0))− φ(γ(∞))) dη(γ)

=

ˆ
K

φ(x)µ(dx)−
ˆ
K

φ(x)ν(dx),

thus ∇ · vη = µ− ν ∈M 1(K), which implies that vη ∈ IF(µ, ν).

Proposition 2.2.2. If η is recti�able, then vη is a recti�able irrigation �ow.

Proof. Without loss of generality we may assume that η is parameterized by arc length.
We know that η is concentrated on its network Nη, which is recti�able. Given ψ ∈
C (K)d, by the area formula one hasˆ

Γ

ˆ ∞
0

ψ(γ(t)) · γ̇(t) dt dη(γ) =

ˆ
Γ

ˆ
γ

ψ(x) ·
∑
γ(t)=x

γ̇(t) dx dη(γ)

=

ˆ
K

ψ(x) ·
ˆ

Γ(x)

∑
γ(t)=x

γ̇(t) dη(γ) d H 1(x)

=

ˆ
K

ψ(x) · v(x) d H 1(x),

where we have set for H 1-almost every x ∈ Nη:

v(x) =

ˆ
Γ(x)

∑
γ(t)=x

γ̇(t) dη(γ).

Let us denote by L(x) the approximate tangent line at H 1-almost every x. Since a.e.
γ stays in Nη up to a H 1-null set, we know that for η-almost every γ, for H 1-almost
every x ∈ γ, if x = γ(t) then γ̇(t) (is well-de�ned and) belongs to L(x). By Fubini's
theorem, one can reverse the order of �almost everywhere� 's and state that for H 1-a.e.
x ∈ Nη, for η-a.e. γ ∈ Γ(x),

∑
γ(t)=x γ̇(t) ∈ L(x) hence v(x) ∈ L(x). Consequently vη

is the recti�able irrigation �ow vη = JNη, τ, θK where τ = v(x)/|v(x)| (whatever value
in Sd−1 if v(x) = 0) and θ(x) = |v(x)|.
Proposition 2.2.3. If η is an essentially simple and recti�able irrigation plan, in
particular if η is optimal, we have

Mα(vη) ≤ Iα(η).

Proof. By Remark 2.1.7 we know that iη = mη H 1 = θη H 1. Since |vη| ≤ iη = θη H 1,
vη has an H 1-density which is less than θη. Using the energy formula, we have

Iα(η) = Eα(η) =

ˆ
K

θη(x)α H 1(dx) ≥
ˆ
K

|vη(x)|α d H 1(x) = Mα(vη),

the last equality because vη recti�able as state in the previous proposition.

We have therefore proven that we have

inf
IF(µ,ν)

Mα ≤ inf
IP(µ,ν)

Iα,

and that if η is optimal, vη is a good optimal candidate for the Eulerian problem (EIα).
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2.3 From Eulerian to Lagrangian

Given an irrigation �ow v ∈ IF(µ, ν) of �nite cost Mα, we would like to build an
irrigation plan η ∈ IP(µ, ν) such that v = vη (and whose cost is less than v). This is
not true in general (because of the presence of cycles) but a Smirnov decomposition
gives the result if v is optimal for (EIα).

Cycle If v ∈ IF(K), we say that w ∈ IF(K) is a cycle of v if |v| = |w| + |v − w|
and ∇ · w = 0. It is easy to check that if v is recti�able then w and v − w are also
recti�able. The following Smirnov decomposition is proved by Santambrogio via a
Dacorogna-Moser approach in [San14].

Theorem 2.3.1 (Irrigation �ow decomposition). Given an irrigation �ow v ∈ IF(µ, ν),
there is an irrigation plan η ∈ IP(µ, ν) and a cycle w ∈ IF(K) satisfying

(i) v = vη + w,

(ii) iη ≤ |v|.

From this we deduce:

Corollary 2.3.2. If v is an optimal irrigation �ow in IF(µ, ν), there is an irrigation
plan η ∈ IP(µ, ν) such that

(i) v = vη,

(ii) |vη| = iη.

Proof. Let us take vη, w as in the previous theorem. Since Mα(v) < ∞, v and vη are
recti�able, and by optimality of v one has

ˆ
K

|vη(x)|α d H 1(x) = Mα(vη) ≥Mα(v) =

ˆ
K

(|vη(x)|+ |w(x)|)α d H 1(x),

thus we must have |w(x)| = 0 H 1-a.e., which means w = 0, thus v = vη and (i) holds.
This implies |vη| ≤ iη ≤ |v| = |vη| and thus we have the equality |vη| = iη claimed in
(ii).

Proposition 2.3.3. If v is an optimal irrigation �ow in IF(µ, ν), one can �nd an
irrigation plan η ∈ IP(µ, ν) such that

Iα(η) ≤Mα(v).

Proof. Take η as in the previous corollary. Since Mα(v) <∞, v is recti�able and iη =
|v| is concentrated on a recti�able set, which means by de�nition that η is recti�able.
As a consequence |v| = iη = mη H 1 and we have

Mα(v) =

ˆ
K

|v(x)|α d H 1(x) =

ˆ
K

mη(x)α d H 1(x),
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while

Iα(η) = Ēα(η) =

ˆ
K

θη(x)α−1mη(x) d H 1(x).

We would like Iα(η) ≤ Mα(v), which is a priori not necessarily the case for the η we
have constructed, since it is not necessarily essentially simple. Instead, take a simple
replacement η̃ ∈ IP(µ, ν) satisfying mη̃ = θη̃ ≤ θη ≤ mη. Then we get

Iα(η̃) =

ˆ
K

θη̃(x)α d H 1(x) ≤
ˆ
K

mη(x)α d H 1(x) = Mα(v)

which yields the result.

Remark 2.3.4. Since the minima in the Eulerian and Lagrangian problems are actually
the same as we shall see in Theorem 2.4.1, the previous inequality is an equality, which
implies that θη = θη̃ = mη H 1-a.e. thus η was actually optimal hence simple.

2.4 The equivalence theorem

We are now able to formulate the equivalence between the Lagrangian and Eulerian
models.

Theorem 2.4.1 (Equivalence theorem). If α < 1 and µ, ν ∈ Prob(K), the Eulerian
problem (EIα) and the Lagrangian problem (LIα) are equivalent in the following sense:

(i) the minima are the same

min
η∈IP(µ,ν)

Iα(η) = min
v∈IF(µ,ν)

Mα(v),

(ii) if v is optimal in IF(µ, ν), it can be represented by an optimal irrigation plan,
i.e. v = vη for some optimal η ∈ IP(µ, ν),

(iii) if η is optimal in IP(µ, ν), then vη is optimal in IF(µ, ν) and iη = |vη|.

Proof. It all follows from Proposition 2.2.3 and Proposition 2.3.3. The equality iη = |vη|
comes from

Iα(η) =

ˆ
K

iαη (x) d H 1(x) ≥
ˆ
K

|vη(x)|α d H 1(x) = Mα(vη),

since we have equality everywhere by optimality of vη and η.

Remark 2.4.2. Notice in particular that the equality iη = |vη| implies that curves of
η have the same tangent vectors when they coincide. To be more precise, one may
use the proof of Proposition 2.2.2 to state that there is an H 1-a.e. de�ned function
τ : Nη 7→ Sd−1 such that for η-a.e. γ ∈ Γ, for H 1-a.e. x ∈ γ, γ̇(t) = |γ̇(t)|τ(x)
whenever γ(t) = x.
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Extension to the H-mass We assume that H satis�es:

(i) H(0) = 0,

(ii) H is lower semicontinuous and nondecreasing,

(iii) H is subadditive,

(iv) limx→0
H(x)
x

= +∞.

These hypotheses are weaker than those needed to prove lower semicontinuity of the
Lagrangian H-cost, as remarked in the last paragraph of Section 1.2.3. Under these
hypotheses, it was proven in [Col+17] that the H-mass is lower semicontinuous and it
is not di�cult to show existence for the Eulerian problem with such H-mass. Without
any changes other than replacing xα and xα−1 with H(x) and H(x)/x respectively,
one may check that the equivalence between the Lagrangian and Eulerian irrigation
problems hold. As a byproduct, we obtain existence of minimizers for the Lagrangian
problem (built from a minimizer of the Eulerian problem), although we could not
prove it directly since the lower semicontinuity of the H-cost with these hypotheses
on H is not guaranteed, as noticed in [BW15]. In this paper, they prove in particular
existence and equivalence between the Eulerian and Lagrangian problems in a more
general case, dropping the last condition limx→0

H(x)
x

= +∞. In that case optimizers
are not necessarily recti�able and the Eulerian cost can be expressed as

MH(v) =

ˆ
Rd
H(|v̄(x)|) d H 1(x) +H ′(0)‖vs‖,

where v = v̄H 1 +vs and vs is the singular part w.r.t H 1.
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Chapter 3
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3.1. PRELIMINARIES

Looking at the optimal branching structures computed numerically in [OS11] (in
some non-atomic cases), or at natural drainage networks and their irrigations basins,
one is tempted to describe them as fractal (see [RR01]). Actually, even though the
underlying network has in�nitely many branching points, it is still a 1-recti�able set,
hence it is not clear in what sense fractality appears. Fractality is a notion which usu-
ally relates either to self-similarity properties of non-smooth objects, or to non-integer
dimension of sets. A �rst rigorous result which would fall in the �rst category is proven
by Brancolini and Solimini in [BS14]: for su�ciently di�use measures (for example the
Lebesgue measure restricted to a Lipschitz open set), the number of branches of length
∼ ε stemming from a branch of length l is of order l/ε. This may read as a self-similarity
property since in a way the total length is preserved when looking at subbranches at
all scales.

The present chapter leans towards the other notion of fractality, that is towards
�fractal� dimension. Some sets in branched transport have already been proposed
as candidates to exhibit non-integer dimension, for instance the boundary of adjacent
irrigation basins (an open conjecture by J.-M. Morel). Here we are interested in another
candidate which is related to branched transport: the boundary of what we call unit
balls for branched transport. With the results of the present chapter, we can only
prove an upper bound on the dimension, which is non-integer, and conjecture that this
upper bound is actually sharp.

The chapter is divided into �ve parts. In a preliminary section we brie�y recall the
Lagrangian framework of branched transport set in Chapter 1, and we formulate our
question as a shape optimization problem involving the irrigation distance. Section 3.2
is devoted to the proof of existence of minimizers and to elementary properties of mini-
mizers. In Section 3.3 we prove the β-Hölder regularity of the landscape function, which
appears in the description of optimizers, and use it to derive an upper bound on the
Minkowski dimension of the boundary of the optimizers in Section 3.4. The �nal section
is an attempt at computing optimizers numerically by adapting the Modica-Mortola
approach introduced by [OS11], where we provide some computer visualizations.

3.1 Preliminaries

Let us make a very quick recall of the Lagrangian framework we have introduced in
Chapter 1 and its main features.

3.1.1 The irrigation problem

We denote by Γ(Rd) (or Γ for short) the set of 1-Lipschitz curves in Rd parameterized
on [0,∞], endowed with the topology of uniform convergence on compact sets.

Irrigation plans We call irrigation plan any probability measure η ∈ Prob(Γ) sat-
isfying the following �nite-length condition

L(η) :=

ˆ
Γ

L(γ) dη(γ) < +∞, (3.1.1)
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where L(γ) =
´∞

0
|γ̇(t)| dt. Notice that any irrigation plan is concentrated on Γ1(Rd) :=

{γ : L(γ) <∞}. We denote by IP(Rd) the set of all irrigation plans η ∈ Prob(Γ). If µ
and ν are two probability measures on Rd, one says that η ∈ IP(Rd) irrigates ν from
µ if one recovers the measures µ and ν by sending the mass of each curve respectively
to its initial point and to its �nal point, which means that

(π0)#η = µ and (π∞)#η = ν,

where π0(γ) = γ(0), π∞(γ) = γ(∞) := limt→+∞ γ(t) and f#η denotes the push-forward
of η by f whenever f is a Borel map1. We denote by IP(µ, ν) the set of irrigation plans
irrigating ν from µ:

IP(µ, ν) = {η ∈ IP(Rd) : (π0)#η = µ, (π∞)#η = ν}.
If η is a given irrigation plan, we de�ne the multiplicity at x, that is the total mass
passing by x, as

θη(x) = η({γ ∈ Γ : x ∈ γ}),
where x ∈ γ means that x belongs to the image of the curve γ. Finally, for any
nonnegative function f , we denote by

´
γ
f(x) dx the line integral of f along γ ∈ Γ:

ˆ
γ

f(x) dx :=

ˆ +∞

0

f(γ(t))|γ̇(t)| dt.

Irrigation costs For α ∈ [0, 1] we consider the irrigation cost Iα : IP(Rd)→ [0,∞]
de�ned by

Iα(η) :=

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ),

with the conventions 0α−1 = ∞ if α < 1, 0α−1 = 1 otherwise, and ∞× 0 = 0. If µ, ν
are two probability measures on Rd, the irrigation (or branched transport) problem
consists in minimizing the cost Iα on the set of irrigation plans which send µ to ν,
which reads

min
η∈IP(µ,ν)

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ). (LIα)

We set Zη(γ) =
´
γ
θη(x)α−1 dx so that the cost may expressed as

Iα(η) =

ˆ
Γ

Zη(γ) dη(γ).

Proposition 3.1.1 (First variation inequality for Iα). If η is an irrigation plan with
Iα(η) �nite, then for all irrigation plan η̃ the following holds:

Iα(η̃) ≤ Iα(η) + α

ˆ
Zη(γ) d(η̃ − η). (3.1.2)

Theorem 3.1.2 (Existence of minimizers,). For any pair of probability measures µ, ν ∈
Prob(Rd) with compact support, the problem (LIα) admits a minimizer.

Theorem 3.1.3 (Irrigability). If 1− 1
d
< α < 1, for any µ, ν ∈ Prob(Rd) with compact

support there exists some η ∈ IP(µ, ν) such that Iα(η) is �nite.

From now on we assume that α ∈
]
1− 1

d
, 1
[
.

1Notice that limt→∞ γ(t) exists if γ ∈ Γ1(K), and this is all we need since any irrigation plan is
concentrated on Γ1(K).
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Irrigation distance Let us set

dα(µ, ν) = min{Iα(η) : η ∈ IP(µ, ν)}

for any pair µ, ν of probability measures on Rd. For any compact K ⊆ Rd, it induces a
distance on Prob(K) which metrizes the weak-? convergence of measures in the duality
with C (K). On non-compact subsets of Rd, the distance dα is lower semicontinuous
w.r.t. the weak-? convergence of measures in the duality with bounded and continuous
functions (narrow convergence)2.

The following result comes from [BCM09; Xia03].

Proposition 3.1.4 (Scaling law). For any compactly supported measures µ, ν with
equal mass, there is an upper bound on the irrigation distance depending on the mass
and the diameter. We set µ′ = µ−µ∧ν, ν ′ = ν−µ∧ν the disjoint parts of the measures
and m = |µ′| = |ν ′| their common mass. Then:

dα(µ, ν) ≤ Cmα diam(suppµ′ ∪ supp ν ′).

Landscape function Given an optimal irrigation plan η ∈ IP(δ0, ν), we say that a
curve γ is η-good if ˆ T (γ)

0

θη(γ[0, t])α−1 dt <∞

which is equivalent to the two assertions:

(i) Zη(γ) <∞,

(ii) θη(γ(t)) = θη(γ[0, t]) for all t < T (γ).

One may prove by optimality that η is concentrated on the set of η-good curves.
Moreover it is proven in [San07] that for all η-good curves γ, the quantity Zη(γ) depends
only on the �nal point γ(∞) of the curve, thus we may de�ne the landscape function
zη as follows:

zη(x) =

{
Zη(γ) if γ is an η-good curve s.t. x = γ(∞),

+∞ otherwise.

Notice that for an optimal η the cost may be expressed in terms of zη:

Iα(η) =

ˆ
Γ

Zη(γ) dη(γ) =

ˆ
Rd
zη(x) dν(x).

Finally, one may show that zη is lower semicontinuous and that the inequality zη(x) ≥
|x| holds.

2Proving this is just an adaptation of the proof on compact sets. If µ is �xed (for example) and
νn → ν with ηn ∈ IP(µ, νn) optimal and parameterized by arc length, assuming that the cost is
bounded, the irrigation plans ηn are tight and one may extract a subsequence converging to some η
which irrigates ν and whose cost is less than lim inf dα(µ, νn) by lower semicontinuity of Iα.
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3.1.2 The shape optimization problem

We ask ourselves the following question: what is the set of unit volume which is closest
to the origin in the sense of irrigation? To give this a precise meaning, we embed
everything in the space of probability measures; hence we want to minimize the dα
distance between the unit Dirac mass at 0 ∈ Rd and sets E of unit volume, seen as the
uniform measure on E. This problem reads

min {dα(δ0,1E L ) : |E| = 1}, (Sα)

where L denotes the Lebesgue measure on Rd. We relax this problem by minimizing
on a larger set, which is the set of probability measures with Lebesgue density bounded
by 1, thus getting:

min {Xα(ν) : ν ≤ 1, ν ∈ Prob(Rd)}, (Rα)

where Xα(ν) = dα(δ0, ν).
In the following, we will sometimes encounter positive measures which do not have

unit mass, thus we extend the functional by setting Xα(ν) := dα(|ν|δ0, ν) for any �nite
measure ν.

A key tool in the analysis of this problem lies in the following lemma.

Proposition 3.1.5 (First variation inequality for Xα). Suppose that ν ∈ Prob(Rd)
with Xα(ν) < ∞. Suppose also that η is an optimal irrigation plan between |ν|δ0 and
ν, with landscape function zη. The following holds:

Xα(ν̃) ≤ Xα(ν) + α

ˆ
zη d(ν̃ − ν)

for any ν̃ ∈ Prob(Rd).

Notice also that the integral
´
zη d(ν̃ − ν) is well-de�ned since

´
zη dν = Iα(η) =

Xα(ν) <∞ and zη is non-negative, though it may be in�nite.

Proof. If
´
zη dν̃ = ∞ then there is nothing to prove. Otherwise for ν-a.e. x, zη(x) is

�nite hence there are η-good curves reaching x and one can �nd a measurable3 map
g : Rd → Γ which associates with every x an η-good curve reaching x. Let us build
an irrigation plan η̃ ∈ IP(|ν̃|δ0, ν̃) which is concentrated on η-good curves, by setting
η̃ = g#ν, so that

ˆ
Γ

Zη dη̃ =

ˆ
Γ

zη(γ(∞)) dη̃(γ) =

ˆ
Rd
zη(x) dν̃.

Then, by the �rst variation inequality for Iα, we get:

Xα(ν̃)
.
= dα(|ν̃|δ0, ν̃) ≤ Iα(η̃) ≤ Iα(η)+α

ˆ
Γ

Zη d(η̃−η) = Xα(ν)+α

ˆ
Rd
zη d(ν̃−ν).

3One can characterize η-good curves as those γ such that Z̃η(γ) <∞ where Z̃η(γ) :=
´∞
0
|γ|t,η dt is

a slight variation of Zη de�ned in [San07] which is also lower semicontinuous. Hence the multifunction

associating to every x the set of η-good curves reaching x can be written as
⋃
`∈Q{γ ∈ Γ : Z̃η(γ) ≤

`, γ(∞) = x}, i.e. as a countable union of multifunctions with closed graph. This means that this
multifunction is measurable and admits a measurable selection (see e.g. [CV77]).
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3.2 Existence and �rst properties

We will often denote by C = C(α, d) or c = c(d) di�erent positive constants which
depend only on α, d or d respectively.

3.2.1 Existence of minimizers

Theorem 3.2.1. The relaxed shape optimization problem (Rα) admits at least a min-
imizer.

Proof. The existence of a minimizer follows from the lower semicontinuity and tight-
ness. Indeed, any minimizing sequence νn must have bounded �rst moment since

ˆ
|x| dν(x) ≤

ˆ
zη(x) dν(x) = dα(δ0, ν).

A bound on the �rst moment implies tightness of the sequence and, up to extracting
a subsequence, one has νn ⇀ ν. The condition νn ≤ 1 implies ν ≤ 1 and the lower
semicontinuity of dα provides the optimality of ν.

For 1 > α > 1 − 1
d
, we will denote the optimal value for the relaxed shape opti-

mization problem (Rα) by:

eα := min{dα(δ0, ν) : ν ≤ 1 and ν ∈ Prob(Rd)}.

Lemma 3.2.2 (Scaling lemma). For any �nite measure ν we have

Xα(ν) ≥ eα|ν|α+ 1
d .

Proof. For λ = |ν|−1/d, let ν̃ = λdϕ#(ν) be a scaling of ν under the map ϕ(x) = λx in
Rd. Then,

´
Rd dν̃ = λd

´
Rd dν = λd|ν| = 1 and ν ≤ 1. Thus,

eα ≤ dα(ν̃, δ0) = λαd+1dα(ν, |ν|δ0) = |ν|−(α+ 1
d)Xα(ν).

For any ν, we say that z is a landscape function of ν if it is the landscape function
zη associated with some optimal irrigation plan η ∈ IP(δ0, ν).

Theorem 3.2.3. Let ν be a minimizer of (Rα) and z a landscape function of ν. Then
ν is the indicator of a set A which is a sublevel set of z:

A = {x : z(x) ≤ z?}, with z? =
eα
α

(α +
1

d
). (3.2.1)

In particular, A is a solution to problem (Sα) and it is a compact and path-connected
set.

Proof. We show that ν also minimizes the �rst variation of Xα, that is µ 7→
´
z dµ.

Take ν̃ a competitor for (Rα). By Proposition 3.1.5, one has:

Xα(ν̃) ≤ Xα(ν) + α

ˆ
z d(ν̃ − ν),
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but Xα(ν) ≤ Xα(ν̃), thus ˆ
z dν ≤

ˆ
z dν̃

for any ν̃. So as to minimize this quantity, ν must concentrate its mass on the points
where z takes its lowest values. More precisely, there is a value z? ∈ [0,∞] such that

ν(x)


= 1 if z(x) < z?,

∈ [0, 1] if z(x) = z?,

= 0 if z(x) > z?.

Indeed, we just take z? = sup{t ∈ R : |{z(x) ≤ t}| < 1}. Since
´
z dν = eα > 0,

necessarily z? > 0. This kind of arguments is typical in optimization problems under
an upper density constraint, as it was for instance done for crowd motion applications
in [MRS14].

Step 1: z? ≤ eα
α

(
α + 1

d

)
For 0 ≤ k < z?, we consider the competitor ν̃ = 1{z≤k} and set |ν̃| = 1−m, noting

that m > 0 by de�nition of z?. Using Lemma 3.2.2 and Proposition 3.1.5, one gets

eα(1−m)α+ 1
d ≤ Xα(ν̃) ≤ Xα(ν) + α

ˆ
z d(ν̃ − ν) = eα − α

ˆ
{z>k}

z dν.

Since ν({z > k}) = 1− |{z ≤ k}| = m, it follows that

eα(1−m)α+ 1
d ≤ eα − αkm. (3.2.2)

As α + 1
d
> 1, the map t 7→ tα+ 1

d is (strictly) convex, thus

eα

(
1−

(
α +

1

d

)
m

)
≤ eα(1−m)α+ 1

d ≤ eα − αkm,

hence forgetting the middle term, subtracting eα and dividing by m:

αk ≤ eα

(
α +

1

d

)
.

Taking the limit k → z? yields:

z? ≤ eα
α

(
α +

1

d

)
. (3.2.3)

Step 2: ν = 1A where A = {z ≤ z?}
Take the competitor ν̃ = 1{z≤z?} and set |ν̃| = 1 + m, m ≥ 0. Using again the

scaling lemma and the �rst variation of Xα one gets:

eα(1 +m)α+ 1
d ≤ eα + α

ˆ
z=z?

z d(ν̃ − ν) = eα + αz?m.

Now by strict convexity of t 7→ tα+ 1
d , if m > 0 then one has eα(1 + m)α+ 1

d >
eα
(
1 +

(
α + 1

d

)
m
)
, thus

eα

(
α +

1

d

)
m < αz?m,

which contradicts (3.2.3). Consequently m = 0, hence ν = ν̃ = 1{z≤z?}.
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Step 3: Compactness and connectedness
A is closed since z is lower semicontinuous and bounded since z(x) ≥ |x| for all

x ∈ Rd. It is path-connected since any point x with z(x) ≤ z? is the endpoint of an
η-good curve γ starting from 0 and γ ⊆ A because z is increasing along this curve.

Step 4: z? ≥ eα
α

(
α + 1

d

)
Take x0 ∈ A with maximal Euclidean norm. Then the half ball Hr(x0) := Br(x0)∩

{x : 〈x − x0, x0〉 > 0} is included in Ac. We consider the competitor ν̃ = 1AtHr(x0),
with mass |ν̃| = 1 + m, where m = |Hr(x0)| = crd for some constant c = c(d). To
irrigate ν̃, we pay at most the cost of irrigation of ν, plus the price for moving an extra
mass m from 0 to x0 along the irrigation plan, plus the cost for moving this mass to
Br(x0) \ A, which we can bound by Cmαr, as follows:

Xα(ν̃) = dα((1 +m)δ0, ν̃) ≤ dα((1 +m)δ0, ν +mδx0) + dα(ν +mδx0 , ν + 1Hr(x0))

= Xα(ν +mδx0) + dα(mδx0 ,1Hr(x0))

≤ eα + αmz(x0) + Cr1+dα,

where C = C(α, d) is some positive constant. Since x0 is not a Lebesgue point of A
and x0 ∈ A, by Lemma 3.2.4 below, it follows that z(x0) = z?. Putting this in the
previous inequality, combining it with the convexity inequality

Xα(ν̃) ≥ eα(1 +m)α+ 1
d ≥ eα

(
1 +

(
α +

1

d

)
m

)
,

and dividing by m > 0, one gets:

eα

(
α +

1

d

)
≤ αz? + Cr1+dα−d.

Passing to the limit r → 0, we obtain

z? ≥ eα
α

(
α +

1

d

)
.

3.2.2 Lebesgue points

For any set K, let us set ΘK(x, r) := |K∩B(x,r)|
|Br(x)| the fraction of mass of Br(x) lying in

K. We also set

β = d

(
α−

(
1− 1

d

))
= 1 + dα− d,

a number which is strictly between 0 and 1 as 1 > α > 1− 1
d
, which will appear as in

the �rst chapter as a Hölder exponent of the landscape function.

Lemma 3.2.4. If z(x) < z?, then x is a Lebesgue point of A.

Proof. Consider the competitor ν̃ = 1A∪Br(x) with mass |ν̃| = 1 + m where m =
|Br(x) \ A|. To irrigate ν̃ from 0 one may irrigate ν +mδx from 0, then 1Br(x)\A from
x. The �rst cost may be estimated by the �rst variation of Xα, and the second one
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may be bounded knowing that irrigating a mass m at distance r costs less than Cmαr
for some constant C = C(α, d). This writes rigorously as:

Xα(ν̃) = dα((1 +m)δ0, ν̃) ≤ dα((1 +m)δ0, ν +mδx) + dα(ν +mδx, ν + 1Br(x)\A)

= Xα(ν +mδx) + dα(mδx,1Br(x)\A)

≤ eα + αmz(x) + Cmαr,

On the other hand, by the scaling lemma and by convexity, one has Xα(ν̃) ≥ eα
(
1 +

(
α + 1

d

)
m
)
≥

eα + αmz?, the last inequality resulting from Theorem 3.2.3. Combining this with the
previous series of inequalities yields:

m1−α(z? − z(x)) ≤ Cr,

which rewrites
Θ1−α
Ac (x, r)(z? − z(x)) ≤ Crβ, (3.2.4)

where we recall β = 1+dα−d is a number strictly between 0 and 1. As a consequence,
if z(x) < z? then ΘAc(x, r)

r→0−−→ 0 and x is a Lebesgue point of A.

3.3 Hölder continuity of the landscape function

We set Ar(x) := A∩Br(x), z̄r(x) the central median of z on the set Ar(x) and zr(x) its
mean. We are going to show that z is β-Hölder continuous using Campanato estimates
(Campanato spaces were introduced in [Cam63], see [Giu03, Section 2.3] for a modern
exposition), as it is done in [San07]. More precisely, we are going to prove the following
inequality, for arbitrary r > 0:

 
Ar(x)

|z − zr(x)| ≤ Crβ, (3.3.1)

|zr(x)− zr/2(x)| ≤ Crβ, (3.3.2)

zr(x)− z(x) ≤ Crβ, (3.3.3)

|z(x)− zr(x)| ≤ Crβ, (3.3.4)

|z|y−x|(x)− z|y−x|(y)| ≤ C|y − x|β. (3.3.5)

Notice that the two last inequalities imply that z is indeed β-Hölder continuous:

|z(y)− z(x)| ≤ |z(y)− z|y−x|(y)|+ |z|y−x|(x)− z|y−x|(y)|+ |z(x)− z|y−x|(x)|
≤ C|y − x|β.

The main di�culty we will encounter is that we will quite easily obtain estimates of
the form

· · · ≤ C
rβ

ΘA(x, r)1−α ,

and will need to get rid of the term ΘA(x, r)1−α, i.e. treat the case when it becomes
small.
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3.3.1 Main lemmas

We will make use of the following lemmas.

Lemma 3.3.1 (Maximum deviation). There is a constant C = C(d, α) > 0 such that
the following holds:

∀y ∈ Ar(x), z? − z(y) ≤ C
rβ

ΘAc(x, r)1−α . (3.3.6)

Remark 3.3.2. One can see that if ΘA(x, r) becomes small, then ΘAc(x, r) is large (close
to 1), and actually all values of z in Ar(x) become close to the same value z? up to
Crβ.

Proof. We consider the competitor ν̃ = 1A∪Br(x), with mass |ν̃| = 1 + m where m =
|Br(x) \A|. For any y ∈ Ar(x), let us irrigate ν̃ from 0 by irrigating ν from 0, moving
an extra mass m from 0 to y along the irrigation plan, then irrigating 1Br(x)\A from
this mass at y. Using Lemma 3.2.2, we have

eα(1 +m)α+ 1
d ≤ Xα(ν̃) ≤ Xα(ν) + α

ˆ
z d(mδy) + Crmα.

By convexity,

eα

(
1 +

(
α +

1

d

)
m

)
≤ (1 +m)α+ 1

d eα ≤ eα + αmz(y) + Crmα,

thus, knowing that eα
(
α + 1

d

)
= αz? by (3.2.1):

αmz? ≤ αmz(y) + Crmα.

By de�nition, m = ωdr
dΘAc(x, r) where ωd is the volume on the unit d-dimensional

ball, hence

z? − z(y) ≤ Cr(rdΘAc(x, r))
α−1 = C

rβ

ΘAc(x, r)1−α .

Lemma 3.3.3 (Mean deviation). There is some constant C = C(d, α) > 0 such that
 
Ar(x)

|z(y)− zr(x)| dy ≤ Crβ

for all r > 0 and all x ∈ A.

Proof. We will �rst show that
 
Ar(x)

|z(y)− zr(x)| dy ≤ C
rβ

ΘA(x, r)1−α .

There is a disjoint union Ar(x) = A−tA+ such that |A−| = |A+| = |Ar(x)|
2

and z ≤ z̄r(x)
on A−, z ≥ z̄r(x) on A+. Let us consider the competitor ν̃ = 1A − 1A+ + 1A− . By the
�rst variation lemma:

Xα(ν̃) ≤ Xα(ν) + α

ˆ
z d(ν̃ − ν).
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Recall that Xα(ρ) = dα(δ0, ρ) when ρ is a probability measure, which is the case for ν
and ν̃, and that dα is a distance. Thus by the triangle inequality:

α

ˆ
z d(ν − ν̃) ≤ dα(δ0, ν)− dα(δ0, ν̃) ≤ dα(ν, ν̃).

We know that dα(ν, ν̃) ≤ C|ν̃ − ν|α diam(supp(ν̃ − ν)) ≤ C|Ar(x)|αr for some C =
C(α, d) > 0. Moreover notice thatˆ

z d(ν − ν̃) =

ˆ
A+

z(y) dy −
ˆ
A−
z(y) dy

=

ˆ
A+

(z(y)− z̄r(x)) dy +

ˆ
A−

(z̄r(x)− z(y)) dy

=

ˆ
Ar(x)

|z(y)− z̄r(x)| dy.

Consequently:
 
Ar(x)

|z(y)− z̄r(x)| dy ≤ C|Ar(x)|α−1r ≤ C
|Ar(x)|α−1

|Br(x)|α−1 r
1+d(α−1) = C

rβ

ΘA(x, r)1−α .

Moreover, one has

|zr(x)− z̄r(x)| =
∣∣∣∣ 
Ar(x)

z(y)− z̄r(x) dy

∣∣∣∣ ≤  
Ar(x)

|z(y)− z̄r(x)| dy ≤ C
rβ

ΘA(x, r)1−α

which leads to 
Ar(x)

|z(y)− zr(x)| dy =

 
Ar(x)

|z(y)− z̄r(x)| dy + |zr(x)− z̄r(x)| ≤ C
rβ

ΘA(x, r)1−α .

Now we get rid of ΘA(x, r)1−α. If ΘA(x, r) ≥ 1/2, we get the desired inequality. On
the other hand, if ΘAc(x, r) ≥ 1/2, by Lemma 3.3.1, we have

0 ≤ z? − z(y) ≤ Crβ, ∀y ∈ Ar(x),

which also implies that
0 ≤ z? − zr(x) ≤ Crβ.

By these two inequalities, we have

|z(y)− zr(x)| ≤ Crβ, ∀y ∈ Ar(x).

Now, taking the mean over Ar(x) 3 y leads to the wanted inequality as well: 
Ar(x)

|z(y)− zr(x)| dy ≤ Crβ.

Remark 3.3.4. Notice that the estimate 
Ar(x)

|z(y)− zr(x)| dy ≤ C
rβ

ΘA(x, r)1−α

is valid in general: we only use the fact that ν is an indicator function (a density
bounded from below would su�ce). The optimality of ν comes into play to to get rid
of ΘA(x, r).
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3.3.2 Hölder regularity

Proposition 3.3.5 (Small-scale di�erence). For all x ∈ A and all r > 0 one has

|zr(x)− zr/2(x)| ≤ Crβ.

Proof. First we show that

|zr(x)− zr/2(x)| ≤ C
rβ

ΘA(x, r)1−α .

Indeed, by Lemma 3.3.3,

|zr(x)− zr/2(x)| ≤

´
Ar/2(x)

|z(y)− zr(x)| dy
|Ar/2(x)|

≤ |Ar(x)|
|Ar/2(x)|

 
Ar(x)

|z(y)− zr(x)| dy

≤ 2d
ΘA(x, r)

ΘA(x, r/2)
Crβ ≤ C

rβ

ΘA(x, r/2)
.

As before, if ΘA(x, r/2) ≥ 1/2 we get the desired estimate. Otherwise, we have
ΘAc(x, r/2) ≥ 1/2 and ΘAc(x, r) ≥ 2−dΘAc(x, r/2) ≥ 2−1−d. Now, by Lemma 3.3.1,

0 ≤ z? − z(y) ≤ C
rβ

ΘAc(x, r)
≤ Crβ, ∀y ∈ Ar(x).

Consequently 0 ≤ z? − zr/2(x) ≤ Crβ and 0 ≤ z? − zr(x) ≤ Crβ which implies that

|zr(x)− zr/2(x)| ≤ Crβ.

Lemma 3.3.6 (Lower deviation to the mean). There is a constant C = C(d, α) > 0
such that for all x ∈ A and all r > 0 one has:

∀y ∈ Ar(x), zr(x)− z(y) ≤ Crβ. (3.3.7)

Proof. First we show that

zr(x)− z(y) ≤ C
rβ

ΘA(x, r)1−α .

Remove the mass m = |Ar(x)| going to Ar(x) from the irrigation plan, make it travel
along the plan to any �xed y ∈ Ar(x) and then send it to Ar(x): this should cost more.
This implies

αmz(y)− α
ˆ
Ar(x)

z + Cmαr ≥ 0,

which may be rewritten as

zr(x)− z(y) ≤ Cmα−1r ≤ C
rβ

ΘA(x, r)1−α .

Now if ΘA(x, r) ≥ 1/2 one gets the desired result. Otherwise ΘAc(x, r) ≥ 1/2 and
Lemma 3.3.1 yields:

0 ≤ z? − z(y) ≤ Crβ, ∀y ∈ Ar(x).
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Thus 0 ≤ z? − zr(x) ≤ Crβ and for any �xed y ∈ Ar(x),

|zr(x)− z(y)| ≤ |zr(x)− z?|+ |z? − z(y)| ≤ Crβ,

from which we also get the wanted inequality.

Lemma 3.3.7 (Deviation to the mean). For all x ∈ A and all r > 0, one has

|z(x)− zr(x)| ≤ Crβ.

Proof. By Proposition 3.3.5, one has

|z(x)− zr(x)| ≤ |z(x)− zr/2(x)|+ |zr/2(x)− zr(x)| ≤ |z(x)− zr/2(x)|+ Crβ,

which means by setting f(r) = |z(x)− zr(x)| for r > 0 that:

f(r) ≤ f(r/2) + Crβ.

Consequently for all k ∈ N

f(r) ≤ f(r · 2−(k+1)) + Crβ
k∑
i=0

2−iβ

thus

f(r) ≤ lim sup
ε→0

f(ε) + Crβ
∞∑
i=0

2−iβ ≤ lim sup
ε→0

f(ε) + Crβ.

Now let us prove that f(ε) → 0 when ε → 0, i.e. zε(x)
ε→0−−→ z(x). We already know

that z is lower semi-continuous hence z(x) ≤ lim infε→0 zε(x). Moreover using (3.3.7),
we have

lim sup
ε→0

zε(x) ≤ lim sup
ε→0

(z(x) + Cεβ) = z(x),

which implies that zε(x) → z(x) when ε → 0. Therefore the inequality f(r) ≤ Crβ

holds, that is to say:
|z(x)− zr(x)| ≤ Crβ.

Lemma 3.3.8 (Large scale di�erence). For any x, y ∈ A, one has:

|z|y−x|(x)− z|y−x|(y)| ≤ C|y − x|β.

Proof. Set r = |y− x|, and ∆r = Br(x)∩Br(y). Notice that, ∆r being a �xed fraction
of Br(x) (independent of r), |∆r| = c|Br| for some c = c(d) ∈]0, 1[.

If both ΘAc(x, r) ≥ c
2
and ΘAc(y, r) ≥ c

2
, then by Lemma 3.3.1 one has:

0 ≤ z? − zr(x) ≤ C
rβ

ΘAc(x, r)1−α ≤ Crβ, and 0 ≤ z? − zr(y) ≤ C
rβ

ΘAc(y, r)1−α ≤ Crβ,

which implies the desired inequality

|zr(x)− zr(y)| ≤ Crβ. (3.3.8)
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On the other hand, if either ΘAc(x, r) or ΘAc(y, r) is less than c/2, say ΘAc(x, r) ≤ c
2
,

we claim the desired inequality (3.3.8) still holds. Indeed, for all u ∈ Ar(x)∩Ar(y) one
has

|zr(x)− zr(y)| ≤ |zr(x)− z(u)|+ |zr(y)− z(u)|
thus integrating over Ar(x) ∩ Ar(y) in u one gets:

|zr(x)− zr(y)| ≤ 1

|Ar(x) ∩ Ar(y)|

[ˆ
Ar(x)

|z(u)− zr(x)| du+

ˆ
|Ar(y)|

|z(u)− zr(y)| du
]

≤ Crβ
|Ar(x)|+ |Ar(y)|
|Ar(x) ∩ Ar(y)|

,

the last inequality resulting from Lemma 3.3.3. Note that

|Ar(x) ∩ Ar(y)| = |∆r ∩ A| ≥ |∆r| − |Br(x) \ A| = c|Br(x)| − |Br(x) \ A|
which implies that

|Ar(x)|+ |Ar(y)|
|Ar(x) ∩ Ar(y)|

≤ 2|Br(x)|
c|Br(x)| − |Br(x) \ A|

=
2

c−ΘAc(x, r)
≤ 4

c
.

Thus, in this case, we still have

|zr(x)− zr(y)| ≤ Crβ
|Ar(x)|+ |Ar(y)|
|Ar(x) ∩ Ar(y)|

≤ Crβ.

Theorem 3.3.9 (Hölder continuity). The function z is β-Hölder continuous on A.
More precisely:

∀x, y ∈ A, |z(y)− z(x)| ≤ C|y − x|β,
for some constant C = C(α, d).

Proof. By Lemma 3.3.7 and Lemma 3.3.8,

|z(y)−z(x)| ≤ |z(y)−z|y−x|(y)|+ |z|y−x|(y)−z|y−x|(x)|+ |z(y)−z|y−x|(y)| ≤ 3C|y−x|β.

Let us state a consequence of this result which is a re�nement of the previous
proposition on Lebesgue points. Now we may quantify the minimal size of a ball one
can put inside A around x in terms of z? − z(x).

Proposition 3.3.10 (Interior points). For some constant C = C(α, d) the following
holds:

∀x ∈ A, Br(x)(x) ⊆ A, (3.3.9)

where r(x) = C(z? − z(x))1/β ≥ 0. In particular

{x ∈ A : z(x) < z?} ⊆
◦
A and ∂A ⊆ {x ∈ A : z(x) = z?}.

Proof. It su�ces to prove (3.3.9) for x0 ∈ A satisfying z(x0) < z?. Consider a point
x ∈ Ac. Take a point y ∈ A which is closest to x : it is possible since A is compact.
By construction y is not a Lebesgue point of A, thus by Lemma 3.2.4, z(y) = z?. By
the Hölder continuity of z stated in Theorem 3.3.9,

z? − z(x0) = |z(y)− z(x0)| ≤ C|y − x0|β ≤ C|x− x0|β,
where the last inequality follows from the fact that |y−x0| ≤ |y−x|+|x−x0| ≤ 2|x−x0|
because y minimizes the distance from x. Hence, for all x ∈ Ac, |x − x0| ≥ C(z? −
z(x0))1/β = r(x0), which implies the desired result.
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3.4 On the dimension of the boundary

We are interested in the dimension of the boundary ∂A, our guess being that it should
be non-integer, and lie between d− 1 and d. Here we look at the Minkowski dimension
(also called box-counting dimension). Given a setX, we denote byNε(X) the maximum
amount of disjoint balls of radius ε centered at points of X.

De�nition 3.4.1 (Minkowski dimension). We de�ne the upper Minkowski dimension
of X by

dimM(X) = lim sup
ε→0

log(Nε(X))

− log ε
,

and the lower Minkowski dimension by

dimM(X) = lim inf
ε→0

log(Nε(X))

− log ε
.

When these coincide we just call it the Minkowski dimension and denote it by dimM(X).

We shall get an upper bound on the upper Minkowski dimension. We say that X
is of dimension smaller than δ if dimMX ≤ δ.

Lemma 3.4.2. There is a constant C = C(α, d) such that for all k ≤ z?,

|{x ∈ A : k < z(x) ≤ z?}| ≤ C(z? − k).

Proof. Consider the competitor ν̃ = 1{z≤k} with total mass |ν̃| = 1 −m, where m =
|{x ∈ A : k < z(x) ≤ z∗}|. As in (3.2.2), one has

eα(1−m)α+1/d ≤ eα − αkm

hence knowing that αz? = (α + 1/d)eα and developing the term on the left-hand side
at order 2, we obtain:

−αmz? +
eα
2

(α +
1

d
)(α +

1

d
− 1)m2 ≤ −αkm

Thus
m ≤ C(z? − k)

with 1/C = eα(α + 1/d)(α + 1/d− 1)/(2α).

Theorem 3.4.3. The set ∂A is of dimension less than d− β.

Proof. For ε > 0 �xed, take disjoint balls (Bi)i∈I of radius ε, where N := |I| = Nε(∂A).
We set B+

i = Bi \A, B−i = Bi∩A. We split the set of balls into two parts: those which
have a larger intersection with A rather than Ac, and vice-versa. Namely, we set

I+ = {i ∈ I : |B+
i | ≥ |Bi|/2}, N+ = |I+|,

I− = {i ∈ I : |B−i | ≥ |Bi|/2}, N− = |I−|,

so that I = I+ ∪ I− and N ≤ N+ +N−. We are going to bound N+ and N− by some
power of ε.

77
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Step 1: Bound on N−

Since z is β-Hölder continuous on A, one has for each Bi = Bε(xi):

∀x ∈ Bi ∩ A, |z(x)− z?| < Cεβ,

since the center xi lies in ∂A ⊆ {z = z?} according to Proposition 3.3.10. Consequently

(∂A)ε ∩ A ⊆ {z? − Cεβ < z ≤ z?},

thus because of Lemma 3.4.2:

|(∂A)ε ∩ A| ≤ |{z? − Cεβ < z ≤ z?}| ≤ Cεβ.

Using the previous inequality and the fact that |B−i | ≥ |Bi|/2 ≥ Cεd for i ∈ I−, one
has:

CN−εd ≤
∑
i∈I−
|B−i | ≤ |(∂A)ε ∩ A| ≤ Cεβ,

which implies:
N− ≤ Cε−(d−β). (3.4.1)

Step 2: Bound on N+

We consider the competitor ν̃ = 1Ã where Ã = A ∪
⋃
i∈I+ B

+
i . It has a mass

|ν̃| = 1 + m where m =
∑

i∈I+|B
+
i |. To irrigate ν̃, we send an extra mass |B+

i | to
each center xi along the irrigation plan, which costs α|B+

i |z?, then we send this mass
towards B+

i , which costs at most C|B+
i |
αε. But one should get a cost no less than

eα(1 + m)α+1/d by the scaling lemma. Moreover, with a development of order 2 one
has:

(1 +m)α+1/d ≥ 1 + (α + 1/d)m+ 1/2 · (α + 1/d)(α + 1/d− 1)(1 +m)α+1/d−2m2

≥ 1 + (α + 1/d)m+ Cm2

because for ε small, 1 +m is less than 2 for example. Consequently one may say:

eα
(
1 + (α + 1/d)m+ Cm2

)
≤ eα + αmz? +

∑
i∈I+

Cε|B+
i |
α.

Recall that αz? = eα(α + 1/d), thus after simplifying one gets for some C > 0:

m2 ≤ C
∑
i∈I+
|B+

i |
αε ≤ CN+ε1+αd. (3.4.2)

Notice that for i ∈ I+, |B+
i | ≥ |Bi|/2 ≥ Cεd, so that

m =
∑
i∈I+
|B+

i | ≥ CN+εd.

Injecting this into (3.4.2), one gets:

(N+εd)2 ≤ CN+ε1+αd,
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thus
N+ ≤ Cε1+αd−2d = Cε−(d−β). (3.4.3)

Putting (3.4.1) and (3.4.3) together yields:

Nε(∂A) = N ≤ N+ +N− ≤ C

εd−β
,

and

dimM(∂A) = lim sup
ε→0

log(Nε(∂A))

− log(ε)
≤ d− β,

which means that ∂A is of dimension smaller than d− β.

This result pushes us to propose the following conjecture:

Conjecture 3.4.4. The boundary ∂A is of dimension d− β, in the sense that:

dimH(∂A) = dimM(∂A) = d− β.

Proving this requires to establish the inequality dimH(∂A) ≥ d − β, for which we
do not have a working strategy yet.

3.5 Numerical simulations

Our goal now is to compute solutions to our shape optimization problem numerically.
To perform numerical simulations, we use the Eulerian framework of branched trans-
port, �rst de�ned by Xia in [Xia03]. This framework is based on vector measures with
a measure divergence, i.e. measures v ∈M d(Rd) such that ∇ · v ∈M (Rd), the set of
such measures being denoted by Mdiv(Rd). The cost is the so-called α-mass:

Mα(v) =


ˆ ∣∣∣∣ dv

dH 1 (x)

∣∣∣∣α d H 1(x) if v is 1-recti�able,

+∞ otherwise.

An elliptic approximation of this functional was introduced by Oudet and Santambrogio
in [OS11], in the spirit of Modica and Mortola [MM77]. The approximate functional is
de�ned for ε > 0 by:

Mα
ε (v) = ε−σ1

ˆ
|v(x)|σ dx+ εσ2

ˆ
|v(x)|2

2
dx

for suitably chosen σ, σ1, σ2. It is proven in [OS11] that Mα
ε Γ-converges to Mα as ε

goes to 0, for a suitable topology on Mdiv(Rd). Moreover, the Γ-convergence result
also holds imposing an equality constraint on the divergence ∇ · v = fε, for a suitable
sequence fε ⇀ f , as proven in [Mon17]. The results of [OS11] are proven in dimension
d = 2, but in [Mon15] there is a proof of how to extend to higher dimension, in the
case α > 1 − 1/d (in dimension d = 2 there is also a version of the Γ-convergence
result for α ≤ 1/2). Also note that, recently, other phase-�eld approximations for
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branched transport or other network problems have been studied, see for instance
[BOO16; FCM16; BLS15].

Here we adapt the approach of [OS11] to our shape optimization problem by adding
this time an inequality constraint on the divergence.

Recall that the Lagrangian and Eulerian frameworks are equivalent [Peg16], so that
the irrigation distance may be computed in the following way:

dα(µ, ν) = inf
v
{Mα(v) : ∇ · v = µ− ν}.

Consequently the shape optimization problem (Rα) rewrites, in relaxed form, as:

min
v
{Mα(v) : µ− 1 ≤ ∇ · v ≤ µ} where µ = δ0. (ES)

Setting a = µ − 1, b = µ and some molli�ed versions aε = µε − 1, bε = µε,for example
a convolution of µ with the standard molli�er of suitable size rε (e.g. εσ2r−dε = o(1) as
in [Mon17]), we de�ne the following approximate problem, for ε > 0:

min
v
{Mα

ε (v) : aε ≤ ∇ · v ≤ bε}. (AS)

Let us remark that the above-mentioned Γ-convergence results do not allow us to
say that this problem approximates (ES), as the inequality constraint on the divergence
is not directly in these works. We leave this question for further investigation, as our
aim is for now to make a �rst attempt to compute numerically an optimal shape for
the original problem (Sα).

3.5.1 Optimization methods

We tackle problem (AS) by descent methods. Two di�culties arise: �rst of all, the
functional Mα

ε is not convex hence there is no guarantee that the methods converge, and
if they do, they may converge to a local minimizer which is not necessarily a global
minimizer ; secondly, this is a constrained problem, hence we will need to compute
projections or resort to proximal methods to handle the constraint. The simplest
approach is to use a �rst-order method, for instance to perform a projected gradient
descent on the functional Mα

ε for ε �xed (but small):

The projected gradient method.∣∣∣∣∣ v0 ∈ C
vn+1 = pC(vn − τn∇Mα

ε (vn)),

where
C = {v : aε ≤ ∇ · v ≤ bε}

is the convex set of admissible vector �elds for (AS).

Computing the projection pC is not an easy task, even more so as we want fast
computations since this projection should be done at each step of the algorithm. Actu-
ally, this projection step will be quite costly (at least in our approach), hence we need
to pass to a higher order method to get to an approximate minimizer in a reasonable
number of iterations.
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Recall that the projected gradient method is a particular case of the proximal
gradient method, which we describe brie�y. Consider a problem of the form

min
v
f(v) + g(v)

where f is smooth and g �proximable�, in the sense that one may easily compute its
proximal operator

proxτg(v) = argmin
v′

g(v′) +
1

2τ
|v′ − v|2.

The proximal gradient method consists in doing at each step an explicit descent for f
and an implicit descent for g:

The proximal gradient method.∣∣∣∣∣ v0 given

vn+1 = proxτng (vn − τn∇f(vn)).

The projected gradient method corresponds to the case

g(v) =

{
0 if v ∈ C,
+∞ otherwise.

If there was no function g, we recover the classical gradient descent method. Notice
that there is an implicit choice in this method, since we compute gradients which
depend on the scalar product. There is no reason that the canonical scalar product
is well adapted to the function we want to minimize. Following the work of Lee, Sun
and Saunders [LSS14] on Newton-type proximal methods, one may �twist� the scalar
product, leading to the more general method:

A �twisted� proximal gradient method.∣∣∣∣∣ v0 given

vn+1 = proxτn,Hng (vn − τn∇Hnf(vn)),
(3.5.1)

where ∇Hf(x) is the gradient of f with respect to the scalar product 〈x, y〉H = 〈Hx, y〉
for H an invertible self-adjoint operator, and

proxτ,Hg (v) = argmin
v′

g(v′) +
1

2τ
‖v′ − v‖2

H .

The best quadratic model of f around a point x0 is

Qfx0(x) = f(x0) + 〈∇Hf(x0), x〉H + 1/2〈x, x〉H ,

with H = Hf (x0) being the Hessian of f at x, thus it is natural to consider (3.5.1) with
Hn = Hf (xn). Notice indeed that if g is zero, the proximal operator is the identity and
that ∇Hf(v) = H−1∇f , so that one recovers Newton's method:

vn+1 = vn − τnH−1
n ∇f(vn),

81



3.5. NUMERICAL SIMULATIONS

which is known to converge quadratically for smooth enough f . This is why this method
is called proximal Newton method. However, for large-scale problems, computing and
storing the Hessian is very costly, thus an alternative is to set Hn to be an approxima-
tion of the Hessian of f at vn, thus leading to proximal quasi-Newton methods. These
methods were introduced in [LSS14], which we refer to for further detail and theoretical
results of convergence.

A very popular choice for Hn is given by the L-BFGS method (see [LN89]), which is
a quasi-Newton method building in some sense the �best� approximation of the Hessian
at vn using only the information of the points vk and the gradients ∇f(vk) for a �xed
number of previous steps k = n, n− 1, . . . , n−L+ 1. The interest is that no matrix is
stored, and there is a very e�cient way to compute the matrix-vector product H−1

n · v
using simple algebra. Therefore, we decided to implement a proximal L-BFGS method,
which in our case reads:

Projected L-BFGS method.∣∣∣∣∣ v0 given

vn+1 = pH̃nC (vn − τnH̃−1
n ∇f(vn)),

(3.5.2)

where H̃n is the approximate Hessian computed with the L-BFGS method with L steps
and pH̃nC is the projection on C with respect to the norm ‖·‖H̃n .

The algorithm to compute the matrix-vector product H̃−1
n · x is given in Section

3.5.3.

3.5.2 Computing the projection

The di�culty lies in the computation of the projection, that is on the proximal operator.
A box constraint on the variable is very easy to deal with, but here we are faced with
box constraints on ∇·v, that is on a linear operator applied to v. Moreover, we want to
compute a projection with respect to a twister scalar product 〈·, ·〉H , which adds some
extra di�culty. For simplicity of notations, we rename aε, bε as a, b. By de�nition,
�nding the projection pHC (v0) of v0 amounts to solving the optimization problem:

min

{
‖v − v0‖2

H

2
: a ≤ ∇ · v ≤ b, v//∂Ω

}
. (P)

Note that, when one considers the divergence operator as an operator acting on vector
�elds de�ned on the whole Rd (extended to 0 outside Ω), the Neumann boundary
condition above exactly corresponds to the fact that the divergence has no mass on
∂Ω, which can be considered as included in the inequality constraints.

As a convex optimization, such a problem admits a dual problem, which we are
going to use. We set

ψ(w) =

{
0 if a ≤ w ≤ b,

+∞ if not,
.

whose Legendre transform is

g(u) = ψ?(u) =

ˆ
bu+ −

ˆ
au−,
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so that ψ = ψ?? = g?. Let us derive formally the dual problem by an inf − sup
exchange:

inf
v//∂Ω

{
‖v − v0‖2

H

2
: a ≤ ∇ · v ≤ b

}
= inf

v

1

2
‖v − v0‖2

H + ψ(∇ · v)

= inf
v

1

2
‖v − v0‖2

H + sup
u
−〈∇u, v〉 − g(u)

= inf
v

sup
u

1

2
‖v − v0‖2

H − 〈∇Hu, v〉H − g(u)

≥ sup
u
−g(u) + inf

v

1

2
‖v − v0‖2

H − 〈∇Hu, v〉H

= − inf
u
g(u) + sup

v
〈∇Hu, v〉H −

1

2
‖v − v0‖2

H

= − inf
u
g(u) +

‖∇Hu‖2
H

2
+ 〈∇Hu, v0〉H

= − inf
u
g(u) +

1

2

ˆ
H−1∇u · ∇u−

ˆ
u(∇ · v0).

Hence the dual problem reads:

min
u

1

2

ˆ
H−1∇u · ∇u−

ˆ
u(∇ · v0)︸ ︷︷ ︸

f(u)

+

ˆ
bu+ −

ˆ
au−︸ ︷︷ ︸

g(u)

. (D)

The inf − sup exchange can be justi�ed with equality via Fenchel's duality [Bre11,
Chapter 1] in a well-chosen Banach space. Hence there is no duality gap:

min (P) + min (D) = 0.

As a consequence solving the dual problem provides a solution to the primal one.
Indeed if u is optimal for (D) then v = v0 +∇Hu is optimal for (P). Now let us justify
why it was interesting to pass by the resolution of a dual problem. Such a problem is
of the form

min
u
f(u) + g(u), (3.5.3)

where f is smooth, with gradient ∇f(u) = −∇· (H−1∇u)−∇·v0, and g is proximable:

proxτg(u)(x) =


u(x)− τa if u(x) < τa,

0 if τa ≤ u(x) ≤ τb,

u(x)− τb if u(x) > τb.

We know how to compute the proximal operator and the gradient of f , since L-BFGS
provides a simple method to compute the product H−1x. Problems of the form (3.5.3)
with f smooth (and computable gradient) and g proximable can be tackled with �rst-
order methods such as the proximal gradient method described in the previous section
(also called ISTA) or a fast proximal gradient method called FISTA, introduced in
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[BT09]. We opted for the latter, which is a slight modi�cation of the proximal gradient
method using an intermediary point:∣∣∣∣∣∣∣

u0 ∈ H1(Rd),

ũn = un + λn(un − un−1),

un+1 = proxτg(ũn − τ∇f(ũn)),

(FISTA)

where λn is given by some recursive formula (we refer to [BT09] for the details). It
enjoys a theoretical and practical rate of convergence which is higher than ISTA and
which is that of the classical gradient method:

f(un)− fopt ≤
2Lf |u0 − uopt|2

(n+ 1)2
.

3.5.3 Algorithms and numerical experiments

Following the work of [OS11], we discretize our problem on a staggered grid : we divide
the cube Q = [−1, 1]2 into M2 subcubes of side 2/M , the functions U are de�ned at
the center of the small cubes, while the x component V x of a vector �elds V is de�ned
on the vertical edges of the grid and the y component V y on the horizontal edges of
the grid. This is quite convenient to compute the discrete divergence of a vector �eld
and the discrete gradient of a function.

• Unknowns: (V x
i,j) 1≤i≤M

1≤j≤M+1
, (V y

i,j)1≤i≤M+1
1≤j≤M

, with

V x
1,j = V x

M+1,j = V y
i,1 = V y

1,M+1 = 0,

which means that V is parallel to the boundary.

• Objective function:

F (V ) = ε−σ1h2
∑
i,j

N(V̂i,j)
σ + εσ2h2/2

(∑
i,j

|∇i,jV
x|2 +

∑
i,j

|∇i,jV
y|2
)
.

There are several de�nitions to give to make sense of F . First of all N is a smooth
approximation of the norm, of the form

N(x) = (|x|2 + ε2
s)

1/2 for εs small.

The discrete vector �eld V̂i,j = (V̂ x
i,j, V̂

y
i,j) is an interpolation of (V x, V y) de�ned

at the centers of the cubes:

V̂ x
i,j =

V x
i,j + V x

i+1,j

2
, V̂ y

i,j =
V y
i,j + V y

i,j+1

2
, 1 ≤ i, j ≤M.

Finally the discrete gradient is de�ned as usual by

∇i,jV
x = ((V x

i,j+1 − V x
i,j)/h, (V

x
i+1,j − V x

i,j)/h), 1 ≤ i ≤M − 1, 1 ≤ j ≤M,

∇i,jV
y = ((V y

i,j+1 − V
y
i,j)/h, (V

y
i+1,j − V

y
i,j)/h), 1 ≤ j ≤M − 1, 1 ≤ i ≤M.
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We may now give the main algorithm and its sub-methods.

Algorithm 1 Proximal L-BFGS for F

Data: tolerance tol, initial vector �eld V0, step τ0, source δ
V ← V0, U ← U0

compute error
while error > tol do

τ ← τ0

repeat
G←MultiplyBFGS(∇F (V ))
V, U ← Project(V − τG, U, δ, τ)
τ ← τ/2

until F (V ) has decreased
update L-BFGS data
compute error

end while

The update step for L-BFGS data consists in storing in Y, Z, r the points and
gradients of the L previous steps, so that at step n:

YL−k = ∇F (Vn−k)−∇F (Vn−k−1), ZL−k = Vn−k − Vn−k−1

for all k = 0, . . . , L− 1, and rk = 1/(Yk · Zk) for all k = 0, . . . , L− 1. Notice here that
we do a simple backtracking line search by reducing the step size τ until the energy has
decreased, for example until it has su�ciently decreased and satis�es the Armijo rule.
Also, notice that the potential U computed at step n is used at the next step as initial
data ; this trick extensively speeds up the computation of the projection. Finally, we
took as error measurement some relative di�erence between two consecutive steps.

Now, as stated in Section 3.5.2, the projection on C with respect to ‖·‖H is computed
via the FISTA method, as follows:

Algorithm 2 Project V0 on C with respect to ‖·‖H
Data: tolerance tolp, step τp
function Project(V0, U0, δ, τ)

D0 ← ∇ · V0

U ← U0

while error > tolp do
tp ← t; t← (1 +

√
1 + 4t2p)/2; s← (tp − 1)/t

G←MultiplyBFGS(∇U)
Ui ← U + s(U − Uold)
Uold ← U
U ← Prox(Ui − τp(∇ ·G−D0), δ, τ)
compute error

end while
V ← V0 +MultiplyBFGS(∇U)
return V, U

end function
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The Prox function is just the proximal operator associated with the discrete coun-
terpart of g : u 7→

´
bu+ −

´
au− where a = δ − 1, b = δ. Thus P = Prox(U, δ, τ) is

de�ned by:

Pi =


Ui − τ(δi − 1) if Ui < τ(δi − 1),

0 if τ(δi − 1) ≤ Ui ≤ τδi,

Ui − τδi if Ui > τδi.

For the sake of completeness, we give a simple method to compute the L-BFGS
multiplication H−1X (see [LN89; Noc80] for details).

Algorithm 3 L-BFGS multiplication H−1X

function MultiplyBFGS(X)
G← X
for i = L, . . . , 1 do

si ← riZi ·G
G← G− siYi

end for
G← (ZL · Y )/(YL · YL)G
for i = 1, . . . , L do

t← riYi ·G
G← G+ (si − t)Zi

end for
return G

end function

We present some numerical results obtained with εs = 10−4, on a M ×M grid with
M = 201 and ε = 3h where h = 2/M , the code being written in Julia. We have started
with random initial values for V and a smooth approximation δ of the Dirac δ0. After
some days of computation on a standard laptop, one gets the following shapes and
underlying networks.
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(a) Norm of the vector �eld, α = 0.55 (b) Irrigated measure, α = 0.55

(c) Norm of the vector �eld, α = 0.65 (d) Irrigated measure, α = 0.65

(e) Norm of the vector �eld, α = 0.85 (f) Irrigated measure, α = 0.85

Figure 3.1: Algorithm output for di�erent α's after ∼ 15000�25000 iterations.
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4.1. FRAMEWORK DEFINITION

The landscape function is now a central tool in branched transport. It was �rst
de�ned by Santambrogio in [San07] as a generalization of the landscape function which
was very well known by geophysicists (see [RR01]) though it was considered on a
discretized grid. It represents the elevation of the landscape on which water �ows
to irrigate water basins such as lakes. The de�nition was given in the single-source
case, and regularity results of Hölder type were established �rst in [San07], then by
Brancolini and Solimini in [BS11] under more general hypotheses and with a di�erent
approach. An attempt at de�ning the landscape function for multiple sources was
made by Xia in [Xia14] in the discrete case. The present chapter aims at de�ning the
landscape function in the multiple source case but with non atomic measures, under
an hypothesis on the source and target measures µ, ν, namely that they have disjoint
support:

supp(µ) ∩ supp(ν) = ∅.

From this de�nition we are able to extend many nice properties already known in the
single-source case: the landscape function is the �rst variation of the function Xα, and
it exhibits Hölder regularity under some regularity hypotheses on the measures. A
direct use of the landscape function can be made to obtain the uniform boundedness
of the length of the �bers. Other applications already known in the single source case
hopefully also hold in the multiple source case, but this is left for further investigation:
the regularity of the �bers (locally �nite curvature) proved in [MS10], and the fractal
branching behaviour established in [BS14].

4.1 Framework de�nition

We make slight modi�cations to the standard framework described in the �rst chapter,
in order to simplify notations and proofs. The main di�erence will be that curves are
no longer de�ned on R+ but on R instead.

The set of curves We set Γ = Lip1(R,Rd), and de�ne for all γ ∈ Γ:

T−(γ) = sup{t : γ is constant on ]−∞, t[},
T+(γ) = inf{t : γ is constant on ]t,+∞[}.

For a curve γ ∈ Γ, we write γ : [T−, T+] → Rd to mean that T−(γ) = T− and
T+(γ) = T+, and we denote by γ− = γ(T−(γ)), γ+ = γ(T+(γ)) the starting point and
stopping point of γ. We will write x γ y if γ is a curve starting at x and stopping at
y, and x γ y if either x γ y or x γ y.

Restrictions and inclusions If γ is simple and x ∈ γ, we denote by tx the unique t ∈
[T−(γ), T+(γ)] such that γ(t) = x. For x, y ∈ γ, γ[x, y] denotes the usual restriction1

γ|[tx,ty ] if tx ≤ ty or γ|[ty ,tx] if ty ≤ tx, and γ[x,+], γ[x,−] denote respectively γ[x, γ+] and
γ[x, γ−]. We also de�ne the obvious variants γ]a, b[, γ[a, b[ and so on excluding some

1For us, if I is an interval γ|I is a map de�ned only on I, but it induces a unique Lipschitz
extension to the whole R which is constant before and after I and we will make the slight abuse of
not distinguishing the two.
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extremities. We say that γ1 is included in γ2 and we write γ1 ⊆ γ2 if the trajectory of
γ1 is part of that of γ2.

Paths A path p between x and y is a sequence of curves γi of the form

p : x = x1
γ1 x2

γ2 . . . xn−1
γn−1 xn = y,

and an oriented path p from x to y is a sequence of curves γi of the form

p : x = x1
γ1 x2

γ2 . . . xn−1
γn−1 xn = y.

For such an oriented path p we will denote by γp : [0, T+]→ Rd the curve, parameterized
by arc length, obtained by concatenating the γi's, so that x γp y.

Curve multiplicity Let η be an irrigation plan. For γ ∈ Γ we set

θη(γ) = η(γ̃ : γ ⊆ γ̃),

and we say that γ is a η-branch if θη(γ) > 0. An η-branch path, oriented or not, is a
path made of η-branches. When η is �xed and there is no confusion, we will omit the
pre�x η- and talk about branches and branch paths.

Cycle-free property We recall that an irrigation plan η is said cycle-free if there is
no loop sequence x1, x2, . . . , xn, xn+1 = x1 such that η(Γ[xi, xi+1]) > 0 for 1 ≤ i ≤ n,
where Γ[x, y] is the set of curves which visit x and y, no matter the order. In particular
if η(Γ[x, y]) > 0 then there is a unique2 curve γη(x, y) joining x and y (either from x
to y or the contrary), such that η-almost every curve γ ∈ Γ[x, y] follows γη(x, y) in its
trajectory.

4.1.1 Good curves and paths

We need a notion of curve which is more general than branches: we would like to
consider curves that do not stay entirely in the network but can go to its �boundary�,
but which nevertheless follow the irrigation plan. This is the role played by what we
call η-good curves.

De�nition 4.1.1 (η-good curve). We say that γ : [T−, T+] → Rd is an η-good curve
stemming from σ ∈ γ if ˆ

γ

θη(γ[σ, x])α−1 dx <∞.

Moreover, if γ starts at the stem σ (resp. if it stops at the stem), we say that γ is
right-sided (resp. left-sided). We say that it is one-sided if it is left- or right-sided.

Remark 4.1.2. In the single-source case µ = δs, η-good curves stemming from s cor-
respond to the de�nition of η-good curves given in De�nition 1.4.3. Moreover it is
possible to show that if γ stems from another point, then it is the restriction of an
η-good curves stemming from s.

2Parameterized by arc length on an interval [0, `].
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The de�nition of η-good curves induces a notion of η-good path.

De�nition 4.1.3 (η-good path). We say that a path p, oriented or not, is η-good if it
is made of one-sided η-good curves.

Now We would like to prove that optimal irrigation plans η with �nite cost are
concentrated on the set of η-good curves: in this way this set could be thought as some
kind of support for η. For now, we are able to prove it in the case of optimal irrigation
plans which have a �nite root system (de�ned in Subsection 4.1.2), though it should
be true in all generality. Let us establish �rst a general lemma which does not require
this extra hypothesis.

Lemma 4.1.4. Let η be a simple irrigation plan which has �nite Iα cost and which
satis�es the cycle-free property. Fix x0 ∈ Nη. Then for η-almost every curve γ ∈ Γ(x0),

ˆ
γ

θη(γ[x0, x])α−1 dx <∞.

Proof. Let us denote by Γ(x0, x) the set of curves γ such that x0, x ∈ γ and

θx0(x) = η(Γ(x0, x)).

Recall that η satis�es the cycle-free property. Consequently, for all x such that θx0(x) >
0, almost all curves γ in Γ(x0, x) follow a common trajectory γx0,x, i.e. γ[x0, x] = γx0,x.
This implies that for almost every curve γ ∈ Γ(x0, x):

θx0(x) = θη(γ[x0, x]).

Taking the power α− 1 and integrating of Γ(x0, x) yields:

θx0(x)α =

ˆ
Γ(x0,x)

θη(γ[x0, x])α−1 dη(γ).

This equality also holds trivially if θx0(x) = 0. Then integrating in x:
ˆ
Rd

ˆ
Γ(x0,x)

θη(γ[x0, x])α−1 dη(γ) d H 1(x) =

ˆ
Rd
θx0(x)α d H 1(x) ≤ Iα(η) <∞.

Thus by Fubini's theorem one gets

∞ >

ˆ
Γ(x0)

ˆ
Rd

1x∈γθη(γ[x0, x])α−1 d H 1(x) dη(γ)

=

ˆ
Γ(x0)

ˆ
γ

θη(γ[x0, x])α−1 dx dη(γ).

Consequently for η-almost every curve γ in Γ(x0),
ˆ
γ

θη(γ[x0, x])α−1 dx <∞,

which is what we wanted to prove.

92



CHAPTER 4. THE LANDSCAPE FUNCTION

Remark 4.1.5. This shows in particular that if θη(x0) > 0, then either x0 is an atom of
both µ and ν, or one can �nd a branch containing x0. Indeed, since Γ(x0) has positive
measure, either almost all curves are constant equal to x0 and x0 is an atom of µ and
ν, or there is a positive quantity of non-trivial curves in Γ(x0). Then for sure there is
a non-trivial curve γ ∈ Γ(x0) such that

ˆ
γ

θη(γ[x0, x])α−1 dx <∞,

and γ[x0, x] for some x in the interior of the curve is a branch containing x0.

We end this subsection by giving a de�nition of irrigation basins using η-good
curves.

De�nition 4.1.6 (Irrigation basins). If η ∈ IP(µ, ν) and x ∈ Nη we de�ne the irriga-
tion basins of x as:

Bas+
η (x) := {y : there is an η-good curve stemming from x s.t. γ+ = y,

Bas−η (x) := {y : there is an η-good curve stemming from x s.t. γ− = y,

and

Basη(x) := Bas+
η (x) ∪ Bas−η (x).

4.1.2 Root systems

The role of the origin in the single-source case is replaced by the notion of root system.

De�nition 4.1.7 (Root system). We call root system for η any set of points R ⊆ Nη

such that η-almost every curve γ passes through some point ρ ∈ R. The elements
ρ ∈ R are called roots.

Remark 4.1.8. In the single-source case µ = δs, there is obviously a root system made
of a single point: R = {s}.

The following lemma states that for disjointly supported source and target mea-
sures, optimal irrigation plans have a �nite root system. It follows from the fact that the
irrigation network has a �nite graph structure away from the support of the measures,
which is proven in [Xia04] where it is termed �interior regularity�.

Lemma 4.1.9 (Finite root system). If η ∈ IP(µ, ν) is an optimal irrigation plan with
�nite Iα cost, it admits a �nite root system R ⊆ Nη. Moreover one can assume that
all points ρ ∈ R are at positive distance from the supports of µ and ν.

Proof. We cut the curves of the irrigation plan η between their �rst exit time from
(suppµ)ε and their �rst entry time into (supp ν)ε for ε small, getting a irrigation plan
η̃ ∈ IP(µ̃, ν̃). Since by optimality η is known to have a �nite graph structure far from
the supports of the measures (by [BCM09, Theorem 4.7]), the marginal measures µ̃
and ν̃ are atomic. We take R to be the set of atoms of µ̃ for example.

Now we are able to prove that optimal irrigation plans are concentrated on the set
of good curves, provided that they have a �nite root system.
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Proposition 4.1.10. Suppose η is a simple irrigation plan with �nite Iα cost which
satis�es the cycle-free property and admits a �nite root system R. Then η is concen-
trated on the set of η-good curves passing through points of R.

Proof. By Lemma 4.1.4, if ρ ∈ R is �xed, outside an η-negligible set Eρ, all curves
γ ∈ Γ(ρ) satisfy ˆ

γ

θη(γ[ρ, x])α−1 dx <∞.

Since almost all curves pass through an element ρ ∈ R, η is concentrated on
⋃
ρ∈R(Γ(ρ)\

Eρ) which proves the result.

However, considering η-good curves reaching a root will be too restrictive to give
a de�nition of a landscape function which satis�es the desired properties (for example
semicontinuity). This justi�es the following de�nition.

De�nition 4.1.11 (Root network). We denote by R̄ the set of points x which belong
to a simple branch path connecting two roots, and call it the root network.

Remark 4.1.12. If η has the cycle-free property and R is �nite, then R̄ is a compact
set since it is made of a �nite union of compact curves.

R̄

ρ1

ρ2

µ
ν

Figure 4.1: A root network induced by a system of two roots.

If γ is a curve intersecting R̄, we denote by ρ−(γ), ρ+(γ) the �rst and last points
of γ belonging to R̄. Next lemma will relate η-good curves stemming from arbitrary
points σ ∈ Rd to η-good curves stemming from points ρ of the root network R̄.

Lemma 4.1.13. Let η be simple irrigation plan with �nite Iα cost which is cycle-free
and has a �nite root system R. If γ is a right-sided η-good curve stemming from σ ∈ Rd

and reaching x, then we are in one of the three situations:

(i) γ intersects R̄: γ can be cut in two, a branch γ[σ, ρ+(γ)] and a right-sided η-good
curve γ[ρ+(γ), x],

(ii) γ is after R̄: γ ∩ R̄ = ∅ and there is a right-sided η-good curve γ̄ starting at
ρ = ρ+(γ̄) and stopping at x such that γ = γ̄[σ, x],

(iii) γ is before R̄: γ ∩ R̄ = ∅ and there is a branch γ̄ starting at σ and stopping at
ρ = ρ−(γ̄) such that γ = γ̄[σ, x].

The analogous statement for left-sided η-good curves holds as well.
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R̄

γ

ρ−(γ)

ρ+(γ)µ
ν

Figure 4.2: A right-sided η-good curve entering and leaving R̄.

Proof. If γ intersects R̄ and ρ+(γ) 6= x, then we are clearly in situation (i). Now we
assume that that γ does not intersect R̄ except possibly at x. We proceed in two steps.

Step 1. Let ξ be a branch such that ξ 6⊆ R̄ and consider the curves containing ξ.
We know almost all of them pass through a root. We want to show that almost all of
them may only pass through root after following ξ, or almost all of them may only pass
through a root before following ξ. Suppose on the contrary that there are ρ1, ρ2 ∈ R
and positive amounts of curves A1, A2 such that all curves in A1 pass through ρ1 then
ξ along a common trajectory γ1, and all curves in A2 pass through ξ then ρ2 along a
trajectory γ2. Since η has no circuit, the branch path

ρ1
γ1[ρ1,ξ−]

ξ−
ξ
ξ+ γ2[ξ+,ρ2]

ρ2

is a simple branch path joining ρ1 6= ρ2 ∈ R hence by de�nition ξ ⊆ R̄ which is a
contradiction. This proves what we claimed.

Step 2. Consider y ∈ γ[σ, x[: it is clear that γ[σ, y] is a branch which does not
intersect R̄, hence by the �rst step, we know that either almost all curves containing
this branch reach a root before, or they all reach a root after it. By taking a sequence
yn ∈ γ[σ, x[ such that yn → x, one can state that their are two possibilities.

The �rst possibility is that except for a negligible set U , all curves γ̃ satisfy the
following: if γ̃ contains a piece γ[σ, y] for some y ∈ γ[σ, x[ and a root ρ ∈ R, then ρ
is reached before γ, following a unique trajectory γρ from σ to ρ. We set ρ̄ the �rst
point where these trajectories part when we follow the curves backwards starting at σ,
and set γ′ the common trajectory from ρ̄ to σ. We set γ̄ = γ′ ∪ γ the concatenation
of γ′ and γ. By de�nition all the curves following γ[σ, y] contain γ̄[ρ̄, y], hence γ̄ is a
right-sided η-good curve stemming from ρ̄. Let us show that ρ̄ ∈ R̄. If ρ̄ ∈ R, we are
done. Otherwise there are two trajectories γρ, γρ′ which parted at ρ̄. Since they could

not meet again by the cycle-free property, ρ
γρ[ρ,ρ̄]

ρ̄
γρ′ [ρ̄,ρ

′]
ρ′ is a simple branch path,

and by construction ρ̄ ∈ R̄. Then we replace γ̄ with its restriction γ̄[ρ+(γ̄), x] and we
are in situation (ii).

The second possibility is that except for a negligible set U , all curves γ̃ satisfy the
following: if γ̃ contains a piece γ[σ, y] for some y ∈ γ[σ, x[ and a root ρ ∈ R, then ρ
is reached after γ[σ, y]. Since the amount of roots is �nite and the cycle-free property
holds, there is a point y ∈ γ[σ, x[ close enough to x such that for all the trajectories
between y and ρ of the curves containing γ[σ, y] cannot part from γ. Hence almost all
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curves containing γ[σ, y] contain γ and γ is actually a branch. If γ+ ∈ R̄ then we are in
situation (i) (with γ[ρ+(γ), x] being trivial), while if γ+ /∈ R̄, we are in situation (iii).

The case of γ left-sided is obtained in a similar manner.

Remark 4.1.14. Notice that this shows that any η-good curve (not necessarily one-
sided) can be decomposed into a path made of curves which are restrictions of η-good
curves stemming from points of R̄.

Next lemma will be essential, in that if a good curve stems from a point ρ ∈ R̄,
there is a point after which (and a point before which) the multiplicity and the �joint
multiplicity� coincide.

Lemma 4.1.15 (Good stem). Let η be a simple irrigation plan satisfying the cycle-free
property, and R be a �nite root system for η. If γ is an η-good curve stemming from a
point of the root network, then

∀y ∈ γ]ρ+(γ),+[, θη(y) = θη(γ[ρ+(γ), y]),

and

∀y ∈ γ]−, ρ−(γ)[, θη(y) = θη(γ[y, ρ−(γ)]).

Proof. Take such a curve γ. The curve γ[ρ+(γ),+] is an η-good curve stemming
from ρ+(γ) ∈ R̄ which is right-sided. Take y ∈ γ]ρ+(γ),+[. For sure θη(y) ≥
θη(γ[ρ+(γ), y]) > 0. We look at the curves passing through y. We know by hypothesis
that almost all curves pass through a root, and the amount of roots is �nite. Take A
a positive amount of curves passing through y and by a root ρ ∈ R, then all curves in

A follow a common trajectory γ′ = γy,ρ, and ρ+(γ)
γ[ρ+(γ),y]

y
γy,ρ

ρ is a branch path
joining ρ+(γ) and ρ. If one trajectory is included into the other, since ρ /∈ γ]ρ+(γ), y[
it must be γ[ρ+(γ), y] ⊆ γy,ρ. By the cycle-free property, these trajectories cannot part
and meet again. Thus if we follow the curves γ[ρ+(γ), y] and γ′ from the common point

y, if those trajectories part at some point y′, we know that ρ+(γ)
γ[ρ+(γ),y′]

y′
γ′[y′,ρ]

ρ
would be a simple branch path joining ρ+(γ) and ρ, thus they would belong to the root
network, which is a contradiction to the de�nition of ρ+(γ). By way of consequence,
almost every curve passing through y contains γ[ρ+(γ), y] and

θη(y) = θη(γ[ρ+(γ), y]).

The same reasoning shows that

∀y ∈ γ]−, ρ−(γ)[, θη(y) = θη(γ[y, ρ−(γ)]).

4.2 De�nition of the landscape function

We assume that µ and ν have compact and disjoint supports:

suppµ ∩ supp ν = ∅.
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By Lemma 4.1.9, the situation is the following: each point ρ ∈ R̄ will give rise to a cost
function Zρ de�ned on curves with extremity ρ as the integral3 along the curve of θα−1

η .
The goal will be to prove that with a suitable choice of an additive constant to each
Zρ, which amounts to assigning a reference value at ρ, these maps take the same value
when needed: namely when a point is reached by di�erent curves, possibly joining
di�erent roots. This will allow us to de�ne a global landscape function z : Rd → R.

Recall that Zη(γ) =
´
γ
θη(x)α−1 dx. We de�ne a signed variant when a reference

point σ is �xed.

De�nition 4.2.1. Let σ ∈ Rd be �xed. For all simple curve γ such that σ = γ± we
de�ne

Zσ(γ) =


+

ˆ
γ

θη(x)α−1 dx if σ = γ−,

−
ˆ
γ

θη(x)α−1 dx if σ = γ+.

4.2.1 Balance property

The following proposition is the multiple source counterpart to the well-de�nedness
property established in Proposition 1.4.5, and will be key to de�ning the landscape
function.

Proposition 4.2.2 (Balance property). We assume that η is an optimal irrigation
plan with �nite Iα cost. Consider a good loop, that is a loop made of one-sided4 η-good
curves:

p1
γ1 p2

γ2 . . . γn pn+1 = p1

where pi
γi pi+1 is either pi

γi pi+1 or pi
γi pi+1. Then one has

∑
pi

γi pi+1

Zη(γi) =
∑

pi
γi pi+1

Zη(γi),

or equivalently ∑
i

Zpi(γi) = 0.

3Actually, up to a sign depending on the orientation of the curve, just as in the de�nition of the

integral on the real line
´ b
a
f = ±

´
[a,b]

f depending on whether a ≤ b or b ≤ a.
4Since two-sided good curves can be cut in two one-sided good curves, it does not matter.
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γ1

+ε γ2

+ε

γ3

−ε
p1 p3

p2

x′1 x′2

x′3

Figure 4.3: A good loop made of three η-good curves. Their stems are signaled by a
large white circle.

Proof. We denote by σi the stem of the i-th η-good curve, and xi its other extremity.
Choose an orientation for the loop and a small ε > 0. We want to add a small mass
ε to all the curves which are oriented accordingly, and remove ε from all the other
ones. We cannot do it directly to the whole curves because they are not necessarily
branches: there may be no mass left at the point xi. Therefore for all i, we consider a
small εi ≥ 0 and we cut the curve γi at a time ti = T∓(γi) ± εi before the extremity
xi, setting x′i = γi(ti). We are going to remove and add the mass to the restrictions
γ′i = γi[σi, x

′
i] of the original curves γi. For example, say the chosen orientation is such

that the loop should be read left to right. Then one adds ε to the curves γ′i such that
pi

γi pi+1 and one removes ε to the other curves γ′i such that pi
γi pi+1. Of course,

ε must be small enough so as to be able to remove ε to those curves, but we should
choose ε and εi even more carefully. We do the following:

• if γi is a branch we do not restrict the curve, i.e. we set εi = 0,

• if γi is not a branch, since θη(γi[σi, x′i]) continuously decreases to 0 as εi → 0, we
may assume that θη(γi[σi, x′i]) = ε, with ε smaller than all the masses θη(γj) > 0
which correspond to the branches γj's.

To preserve the source and target measures µ, ν, we need to reconnect the point xi to x′i
for all i. There are several possible cases depending if xi is also a stem of the adjacent
curve or not, and depending on their orientations. But in any case, this reconnection
costs less than

C
∑
i

εα|xi − x′i|.

For i such that pi
γi pi+1, in which case we add ε, one should pay a cost no larger than

αε

ˆ
γ′i

θη(x)α−1 dx = αεZη(γ
′
i),

and for i such that pi
γi pi+1, we gain at least

−αε
ˆ
γ′i

θη(x)α−1 dx = αεZη(γ
′
i).
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Since the total cost increment should be nonnegative by optimality of η, one gets

αε
∑

pi
γi pi+1

Zη(γ
′
i)− αε

∑
pi
γi pi+1

Zη(γ
′
i)) + Cεα

∑
i

|xi − x′i| ≥ 0,

thus ∑
pi
γi pi+1

Zη(γ
′
i) ≤

∑
pi
γi pi+1

Zη(γ
′
i) + Cεα−1

∑
i

|xi − x′i|. (4.2.1)

It is clear that for all i, Zη(γ′i) → Zη(γi) as ε → 0. Moreover since x 7→ θη(γi[σi, x])
decreases when x tends xi along the curve and θη(γi[σi, x′i]) = ε, one has

εα−1|xi − x′i| ≤
ˆ
γi[x′i,xi]

θη(γi[σi, x])α−1 dx,

which tends to 0 when x′i → xi because γi is η-good. Passing to the limit ε → 0 in
(4.2.1) yields: ∑

pi
γi pi+1

Zη(γi) ≤
∑

pi
γi pi+1

Zη(γi).

Since the converse inequality holds, had we chosen the converse orientation for the
loop, we obtain ∑

pi
γi pi+1

Zη(γi) =
∑

pi
γi pi+1

Zη(γi).

Since Zpi(γi) is +Zη(γi) in case pi
γi pi+1 and −Zη(γi) in case pi

γi pi+1, we get the
equivalent equation ∑

i

Zpi(γi) = 0.

Notice that if we have a good loop

ρ1
γ1 x1

γ′1 ρ2
γ2 x2

γ′2 ρ3 . . . ρn
γn xn

γ′n ρn+1 = ρ1

where ρ1, . . . , ρn ∈ R, one has by the balance property:

n∑
j=1

(Zρj(γj)− Zρj+1
(γ′j)) = 0. (4.2.2)

Notice that in this expression, each function Zρ appears an even number of times,
half the time with a + sign, and half the time with a − sign, hence the same balance
equation holds if one replaces Zρ by Z̄ρ = cρ +Zρ for any choice of values cρ ∈ R. Our
goal now is to choose these constants cρ suitably so as to guarantee that all terms in
the sum of (4.2.2) are 0:

Z̄ρ(γ)− Z̄ρ(γ′) = 0,

for all good path ρ γ x γ′ ρ′ where ρ, ρ′ ∈ R and γ, γ′ are one-sided η-good curves.
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4.2.2 Construction of the landscape function

For any pair of roots ρ, ρ′, we write ρ _ ρ′ if ρ γ x γ′ ρ′ holds for some one-sided
η-good curves γ, γ′, and call it a link5. We say that ρ, ρ′ are connected if there is a
chain

ρ = ρ1 _ ρ2 _ . . . _ ρn = ρ′.

The connectedness relation is an equivalence relation on R de�ning equivalence classes
which we call connected components. The following lemma will provide us with a good
enumeration of all possible links between roots.

Lemma 4.2.3 (Links enumeration). For any connected component R′ of R there is an
enumeration of all links between elements of R′:

ρ1 _ ρ′1, ρ2 _ ρ′2, . . . , ρn _ ρ′n,

such that
∀j ≤ n, ρj ∈

⋃
i<j

{ρi, ρ′i}.

Remark 4.2.4. Obviously since all links ρ _ ρ are in this enumeration, all the roots
ρ ∈ R′ appear in it.

Proof. We simply proceed by induction. We start by choosing a link ρ1 _ ρ′1 arbitrarily,
then having chosen the �rst k− 1 links, we choose the next one ρk _ ρ′k, distinct from
the previous ones, such that ρk or ρ′k is an extremity of one the previous links. We
do this until there is none left. By construction the �rst item is satis�ed. Moreover,
all links have been enumerated: if there was another one left, since R′ is a connected
component, there would also be one which was not selected but which would share an
extremity with one of the previous extremities. This contradicts the fact that we had
completed the selection process.

Next proposition will de�ne the numbers cρ for ρ ∈ R′ using this enumeration, while
Proposition 4.2.6 will extend this choice to all (cρ)ρ∈R̄ in such a way that Z̄ρ = cρ +Zρ
satis�es the desired property: for x �xed, the quantity Z̄ρ(γ) does not depend on the
choice of ρ nor the curve γ with extremity ρ but only on the other extremity x of γ.

Proposition 4.2.5. Let R′ be a connected component of R, t ∈ R. We denote by

ρ1 _ ρ′1, ρ2 _ ρ′2, . . . , ρl _ ρ′l

the links enumeration of R′ given by Lemma 4.2.3. For all i, we choose one-sided

η-good curves ξi, ξ′i such that ρi
ξi xi

ξ′i ρ′i. Then there is a unique choice of values
(cρ)ρ∈R′ such that

(i) cρ1 = t,

(ii) Zρi(ξi) + cρi = Zρ′i(ξ
′
i) + cρ′i for all 1 ≤ i ≤ l.

5Of course ρ _ ρ is a link.
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Proof. We set cρ1 = t and proceed by induction. We consider the �rst link ρ1
ξ1 x1

ξ′1

ρ′1. We want

cρ1 + Zρ1(ξ1) = cρ′1 + Zρ′1(ξ
′
1)⇐⇒ cρ′1 = cρ1 + (Zρ1(ξ1)− Zρ′1(ξ

′
1)).

If ρ′1 = ρ1, then ρ1
ξ1 x1

ξ′1 ρ′1 is a good loop and by Corollary 4.2.2, relation (4.2.2)
holds for our loop:

Zρ1(ξ1)− Zρ′1(ξ
′
1) = 0.

Hence (ii) holds for the �rst link, as cρ1 = cρ′1 . If ρ
′
1 6= ρ1, then one may choose cρ′1 so

as to enforce it:
cρ′1 := cρ1 + (Zρ1(ξ1)− Zρ′1(ξ

′
1)).

And we go on by induction: let us assume that (ii) holds for i ≤ k − 1 < l. We pass

on to the next: ρk
ξk xk

ξ′k ρ′k. By hypothesis, either ρk or ρ′k belongs to the roots
already covered, say ρk. If ρ′k /∈

⋃
i<k{ρi, ρ′i} then one may enforce the desired property

by setting:
cρ′k := cρk + (Zρk(ξk)− Zρ′k(ξ

′
k)).

Now if both ρk, ρ′k ∈
⋃
i<k{ρi, ρ′i}, by hypothesis on the links enumeration, there is a

chain made of the previous links with extremities ρk, ρ′k:

ρk = ρ̃1
ξ̃1 x̃1

ξ̃′1 ρ̃′1 . . . ρ̃l
ξ̃l x̃l

ξ̃′l ρ̃′l = ρ′k,

where each link ρ̃j
ξ̃j x̃j

ξ̃′j ρ̃′j is some link of the enumeration ρi
ξi xi

ξ′i ρ′i for i < k.

We complete the chain with ρ′k
ξ′k xk

ξk ρk to obtain a loop:

ρk = ρ̃1
ξ̃1 x̃1

ξ̃′1 ρ̃′1 . . . ρ̃l
ξ̃l xl

ξ̃′l ρ̃′l = ρ′k
ξ′k xk

ξk ρk

and we apply the balance relation (4.2.2):

0 =
∑
j≤l

(Zρ̃j(ξ̃j)− Zρ̃′j(ξ̃
′
j)) + Zρ′k(ξ

′
k)− Zρk(ξk),

=
∑
j≤l

(
(cρ̃j + Zρ̃j(ξ̃j))− (cρ̃′j + Zρ̃′j(ξ̃

′
j))
)

+
(
(cρ′k + Zρ′k(ξ

′
k))− (cρk + Zρk(ξk))

)
,

Now by the induction hypothesis, since in the big sum we have di�erences of cost

functions (Zρ + cρ)− (Zρ′ + cρ′) associated to previous links ρi
ξi xi

ξ′i ρ′i for i < k, all
these di�erences are 0. Consequently:

0 = (cρ′k + Zρ′k(ξ
′
k))− (cρk + Zρk(ξk)),

and (ii) holds for i ≤ k. We conclude that we can choose the cρ's inductively so that
it holds for all i ≤ l, and this choice is unique by construction.
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Proposition 4.2.6. There exists a choice of real numbers (cρ)ρ∈R̄ such that for all link

ρ γ x γ′ ρ′ with ρ, ρ′ ∈ R̄, one has

Z̄ρ(γ) = Z̄ρ′(γ
′),

where Z̄ρ = Zρ + cρ.

Remark 4.2.7. This choice is unique up to choosing a value cρk for a selection (ρk)k of
representatives of the connected components of R̄.

Proof. Consider a point ρ̄ ∈ R̄. There is a branch path joining ρ̄ to some root ρ ∈ R:

ρ = x1
γ1 x2

γ2 . . . xn+1 = ρ̄,

where we recall by de�nition that the γi are branches. We would like to set

cρ̄ = cρ +
n∑
i=1

Zxi(γi),

but �rst we need to check that this is independent of the chosen branch path. Take
another one

ρ = x′1
γ′1 x′2

γ′2 . . . x′n′+1 = ρ̄,

which leads to a loop

ρ = x1
γ1 x2

γ2 . . . xn+1 = ρ̄ = x′n′+1
γ′n . . . x′2

γ′1 x′1 = ρ.

By Corollary 4.2.2 one has

n∑
i=1

Zxi(γi) =
n′∑
i=1

Zx′i(γ
′
i),

which is what we wanted. Now let us show that with this choice of (cρ)ρ∈R̄, the desired
equality holds. Take ρ̄, ρ̄′ ∈ R̄ and two one-sided η-good curves γ, γ′ with extremities
ρ̄, x and ρ̄′, x respectively. We know that there are roots ρ, ρ′ ∈ R and branch paths
such that:

ρ = x1
γ1 x2

γ2 . . . xn+1 = ρ̄ and ρ′ = x′1
γ′1 x′2

γ′2 . . . x′n′+1 = ρ̄′.

Thus, the roots ρ, ρ′ are in a common connected component R′, and one may �nd a
chain

ρ = ρ̃1 _ ρ̃2 _ . . . ρ̃ñ = ρ′,

where for all i ≤ ñ, ρ̃i _ ρ̃i+1 is some link ρji
ξji xj

ξ′ji ρ′ji of the enumeration given by
Proposition 4.2.5. Here again, we build a loop by concatenating the curves γ, γ′ and
three last chains together, which we write in short:

ρ′
γ′i ρ̄′ γ

′
x γ ρ̄ γi ρ

ξji
ξ′ji ρ′.
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By the balance property, one has:∑
i

Zx′i(γ
′
i) + Zρ̄′(γ

′)− Zρ̄(γ) +
∑
i

Zxi+1
(γi) +

∑
i

(Zρji (ξji)− Zρ′ji (ξ
′
ji

)) = 0

which rewrites

cρ̄′ − cρ′ + Zρ̄′(γ
′)− Zρ̄(γ)− (cρ̄ − cρ) +

∑
i

(Zρji (ξji)− Zρ′ji (ξ
′
ji

)) = 0

or equivalently

Z̄ρ̄′(γ
′)− Z̄ρ̄(γ) = cρ′ − cρ −

∑
i

(Zρji (ξji)− Zρ′ji (ξ
′
ji

)). (4.2.3)

Now notice that in the sum Zρji appears the same amount of time with a + sign than
with a − sign, except for the extreme terms ρ̃ji = ρ and ρ̃ji = ρ′: Zρ appears once
more with a + sign, and Zρ′ once more with a −. Hence recalling that Z̄ρ̃ := cρ̃ + Zρ̃,
(4.2.3) rewrites

Z̄ρ̄′(γ
′)− Z̄ρ̄(γ) = −

∑
i

(Z̄ρji (ξji)− Z̄ρ′ji (ξ
′
ji

)),

but we know by Proposition 4.2.5 that Z̄ρji (ξji) = Z̄ρ′ji
(ξ′ji) for all i, hence:

Z̄ρ̄(γ) = Z̄ρ̄′(γ
′).

De�nition 4.2.8 (Landscape function). The previous proposition allows us to de�ne
for all optimal irrigation plan η with �nite cost a landscape function z : Basη(R̄)→ R
by:

z(x) = Z̄ρ(γ)

if γ is a one-sided η-good curve joining ρ ∈ R̄ and x.

4.3 Basic properties

In this section we prove the basic properties of the landscape function which were
already known in the single-source case: semicontinuity, expression of the optimal cost
and of the variation of dα in terms of z.

4.3.1 Fundamental property

Beforehand, we establish what we call the fundamental property of the landscape
function: it is in a sense a primitive of θα−1

η along η.

Proposition 4.3.1 (Fundamental property). If γ is an η-good curve then

Zη(γ)
.
=

ˆ
γ

θη(x)α−1 dx = z(γ+)− z(γ−).
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Proof. The result holds by de�nition for one-sided η-good curves joining a point ρ ∈ R̄
too any other point x. By subtraction it is clear that it therefore holds for any restriction
of such curves. Noticing a telescopic sum, this shows that it holds also for curves which
can be decomposed as a concatenation of such restrictions, thus by Lemma 4.1.13, it
holds for any one-sided η-good curve, no matter the stem. Since a two-sided η-good
curve is the concatenation of two one-sided η-good curves, we get the result for any
η-good curve.

As a corollary, we get the same property for η-good paths. Recall that an oriented
path p induces a curve γp obtained by concatenating the curves of p.

Corollary 4.3.2. If p is an oriented η-good path, then

Zη(γp)
.
=

ˆ
γp

θη(x)α−1 dx = z(γ+
p )− z(γ−p ).

4.3.2 Semicontinuity

We de�ne
Bas+

η (R̄) =
⋃
ρ∈R̄

Bas+
η (ρ) and Bas−η (R̄) =

⋃
ρ∈R̄

Bas−η (ρ).

We are going to prove that the landscape function z de�ned in the previous section
is Lipschitz continuous on the root network R̄, lower semicontinuous on the positive
basin Bas+

η (R̄) and upper semicontinuous in the negative basin Bas−η (R̄).

Lemma 4.3.3. If η is an irrigation plan with �nite Iα cost, the map (t, γ) 7→ θη(γ|[0,t])
is upper semicontinuous on R+ × Γ.

Proof. Take tn → t and γn → γ. Fix ε > 0. Since θη stays unchanged after repa-
rameterization of η, we assume that for almost all curves γ, T−(γ) = 0 and γ is
parameterized by arc-length. We know that for n large enough tn ≥ t− ε, so that

lim sup
n

θη(γ̃ : γn|[0,tn] ⊆ γ̃) ≤ lim sup
n

η(γ̃ : γn|[0,t−ε] ⊆ γ̃).

We shall prove that

lim sup
n

η(γ̃ : γn|[0,t−ε] ⊆ γ̃) ≤ η(γ̃ : γ|[0,t−ε] ⊆ γ̃).

Let us set
Fk = {γ̃ : ∃t0,∀s ∈ [0, t− ε], |γ̃(t0 + s)− γ(s)| ≤ 1/k}.

It is a decreasing sequence of subsets of Γ. Let γ̃ ∈ Γ1 belonging to
⋂
k
↓Fk and being

parameterized by arc-length, with length T . There is a sequence tk ∈ [0, T ] such that

∀s ∈ [0, t− ε], |γ̃(tk + s)− γ(s)| ≤ 1/k.

Up to subsequence tk → t̄ ∈ [0, T ], so that

∀s ∈ [0, t− ε], γ̃(t̄+ s) = γ(s),
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and γ|[0,t−ε] ⊆ γ̃, which means that⋂
k

↓
Fk = F := {γ̃ : γ|[0,t−ε] ⊆ γ̃}. (4.3.1)

Since γn → γ, we know that γn ∈ Fk for n large enough. Consequently

lim sup
n

η(γ̃ : γn|[0,t−ε] ⊆ γ̃) ≤ η(Fk).

Using the monotone convergence theorem and (4.3.1),

lim sup
n

η(γ̃ : γn|[0,t−ε] ⊆ γ̃) ≤ lim
k→∞

η(Fk) = η(F ) = η(γ̃ : γ|[0,t−ε] ⊆ γ̃),

thus

lim sup
n

η(γ̃ : γn|[0,tn] ⊆ γ̃) ≤ η(γ̃ : γ|[0,t−ε] ⊆ γ̃).

Passing to the limit ε→ 0 we get by the monotone convergence theorem :

lim sup
n

η(γ̃ : γn|[0,tn] ⊆ γ̃) ≤ η(γ̃ : γ|[0,t] ⊆ γ̃)

or equivalently

lim sup
n

θη(γn|[0,tn]) ≤ θη(γ|[0,t]),

which is what we wanted to prove.

Lemma 4.3.4. The map γ 7→
´ T+(γ)

0
θη(γ|[0,t])

α−1 dt de�ned on curves Γ 3 γ : [0, T+(γ)]→
Rd is lower semicontinuous.

Proof. Set

f(γ) :=

ˆ T+(γ)

0

θη(γ|[0,t])
α−1 dt.

The map (t, γ) 7→ θη(γ|[0,t])
α−1 being lower semicontinuous, as well as γ 7→ T+(γ), this

readily implies that f is lower semicontinuous.

Before proving the semicontinuity of the landscape function, we �rst need a conti-
nuity result on the root network.

Lemma 4.3.5. The landscape function z is Lipschitz continuous on the root network
R̄.

Proof. We know that R̄ is made of a �nite union B of branches (those belonging to
a simple path joining two roots). We set M > 0 the minimal multiplicity of those
branches. Take two points x, y ∈ R̄. We know that there is a path

x = p1
γ1 p2

γ2 . . . pn+1 = y

where γi is a restriction of a branch belonging to B for all i. We remove a mass M to
all curves such that pi

γi pi+1, which is possible because all branch have a multiplicity
larger than M , and add a mass M to those for which pi

γi pi+1, and sends a mass M
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for x to y along a straight line, with cost no larger than CMα|y − x|. Since the cost
increment must be nonnegative, one has

−M
∑
i

Zpi(γi) + CMα|y − x| ≥ 0.

Recalling that z(y)− z(x) =
∑

i Zpi(γi), we obtain:

z(y)− z(x) ≤ CMα−1|y − x|.

Interchanging the roles of x and y yields

|z(y)− z(x)| ≤ CMα−1|y − x|,

and z is Lipschitz continuous on R̄.

Proposition 4.3.6 (Semicontinuity). The landscape function is lower semicontinuous
on Bas+

η (R̄) and upper semicontinuous on Bas−η (R̄).

Remark 4.3.7. If µ and ν have disjoint compact supports, one may de�ne an extension
of z in a neighbourhood of suppµ and supp ν which is upper semicontinuous on the
neighborhood of suppµ and lower semicontinuous on the neighborhood of supp ν.

Proof. We assume that η is parameterized by arc length. Take a sequence xn → x ∈
Bas+

η (R̄). We want to prove that

z(x) ≤ lim inf
n

z(xn).

We assume that lim infn z(xn) < ∞, otherwise there is nothing to prove. Also, up to
subsequence, we may assume that z(xn)→ ` = lim infn z(xn) and z(xn) ≤M <∞. We
know that for all n, xn is reached by some right-sided η-good curve γn stemming from
a point ρn ∈ R̄. By Lemma 4.1.15 and by restricting the curve we may assume that
ρn = ρ+(γn). Since R̄ is compact, up to subsequence we may assume that ρn → ρ ∈ R̄.
Moreover up to reparameterization we may assume that T−(γn) = 0 and that γn is
parameterized by arc length. Consequently by the fundamental property of Proposition
4.3.1, one has

z(xn)− z(ρn) = Zη(γn).

Since z is continuous on R̄ and Zη is lower semicontinuous one has

Zη(γ) ≤ lim inf Zη(γn) = lim inf
n

z(xn)− z(ρ).

It is clear that γ− = ρ, γ+ = x. Now we want to check that γ is an η-good curve. Since
θη(y) = θη(γn[ρn, y]) for y ∈ γn]ρn, y[ by Lemma 4.1.15, one has

Zη(γn) =

ˆ
γn

θη(y)α−1 dy =

ˆ T+(γn)

0

θη(γn|[0,t])
α−1 dt.

As z(ρn) → z(ρ) and z(xn) ≤ M we have Zη(γn) ≤ C for some constant C > 0. By
the previous proposition, the right-hand side is lower semicontinuous with respect to
γn thus ˆ T+(γ)

0

θη(γ|[0,t])
α−1 dt ≤ lim inf

n
Zη(γn) ≤ C.
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Since η is concentrated on simple curves, γ is injective on [0, T+(γ)[, and if it is not
injective on the whole [0, T+(γ)], we restrict γ to the �rst time it reaches γ+, obtaining
a curve γ′ such that

ˆ
γ′
θη(γ

′[ρ, y])α−1 dy ≤
ˆ T+(γ)

0

θη(γ|[0,t])
α−1 dt ≤ C <∞

and γ′ is η-good. Therefore by Proposition 4.3.1 we obtain:

z(x)− z(ρ) = Zη(γ) ≤ lim inf
n

z(xn)− z(ρ)

and z is lower semicontinuous on Bas+
η (R̄). We can do the same reasoning to get the

upper semicontinuity of z on Bas−η (R̄), noticing that if γ is a left-sided η-good curve
reaching x from a point ρ one has a minus sign:

z(x)− z(ρ) = −Zη(γ).

4.3.3 Formula for the optimal cost

Proposition 4.3.8. If η ∈ IP(µ, ν) is an optimal irrigation plan with �nite Iα cost
and z is an associated landscape function, then z ∈ L1(µ) ∩ L1(ν) and

Iα(η) =

ˆ
Rd
z d(ν − µ).

Proof. We know by Proposition 4.1.10 that η-almost every curve γ is an η-good curve,
hence by the fundamental property stated in Proposition 4.3.1, one has:

Zη(γ) = z(γ+)− z(γ−).

Moreover for all ρ ∈ R:
ˆ

Γ(ρ)

(z(γ+)− z(ρ)) dη(γ) =

ˆ
Γ(ρ)

Zη(γ[ρ,+]) dη(γ)

≤
ˆ

Γ(ρ)

Zη(γ) dη(γ)

= Iα(η) <∞.

Since R is a �nite root system, this implies that z ◦ π∞ is η-summable thus z ∈ L1(ν).
The same reasoning gives that z ∈ L1(µ). Finally, again by Proposition 4.1.10, we
have:

Iα(η) =

ˆ
Γ

Zη(γ) dη(γ) =

ˆ
Γ

(
z(γ+)− z(γ−)

)
dη(γ)

=

ˆ
Rd
z dν −

ˆ
Rd
z dµ.
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4.3.4 First variation formula

In the single-source case, z is the �rst variation of the functional Xα = dα(δ0, ·). In
the multiple source case, we want to show that it is in a way the �rst variation of dα,
when we do perturbations of µ or ν. However, we must restrict these perturbations
to happen only in a given basin Basη(σ). Indeed, to estimate the cost increment, we
need to perturb the underlying irrigation plan η ∈ OIPα(µ, ν), but in the single-source
case all curves passed by a same point s = 0, hence to perturb ν one could redirect
the curves going to a set A to another set B using the common junction at s, without
having to modify µ in consequence. In the multiple source case, this fails in general:
changing the measure ν may force us to change the measure µ as well. If we impose that
the changes are made inside a basin Basη(σ), then we can use the common junction σ
to do whatever we want with µ and ν independently.

Theorem 4.3.9 (First variation formula). Let η ∈ IP(µ, ν) be an optimal irrigation
plan with �nite Iα cost and z an associated landscape function. If µ′, ν ′ ∈M 1

+(Rd) are
such that µ− µ′ and ν − ν ′ are concentrated in an irrigation basin Basη(σ) then:

dα(µ′, ν ′) ≤ dα(µ, ν) + α

ˆ
Rd
z d((ν ′ − ν))− (µ′ − µ)),

provided z ∈ L1(ν ′) ∩ L1(µ′).

Proof. We are going to use the �rst variation formula of Iα stated in 1.2.1:

Iα(η̃) ≤ Iα(η) + α

ˆ
Γ

Zη d(η̃ − η). (4.3.2)

Since µ − µ′, ν − ν ′ are concentrated in a common irrigation basin Basη(σ), |µ − µ′|-
almost every points x and |ν − ν ′|-almost every points y are reached by right-sided
η-good curve γx, γy respectively, which stem from σ. We can modify the irrigation
plan η by removing, adding and redirecting mass which �ows through curves visiting
σ, using gluings as in the proofs of Proposition 1.2.16 and Theorem 1.2.18, to obtain
an irrigation plan η′ ∈ IP(µ′, ν ′) which is concentrated on η-good paths.

As a consequence, by the fundamental property, one has Zη(γ) = z(γ+)− z(γ−) for
η′-almost every γ. Since z ∈ L1(µ′) ∩ L1(ν ′), it yields:

ˆ
Γ

Zη(γ) dη′(γ) =

ˆ
Γ

(z(γ+)− z(γ−)) dη′(γ) =

ˆ
Rd
z dν ′ −

ˆ
Rd
z dµ′.

Finally, plugging this in (4.3.2), knowing that Iα(η) = dα(µ, ν) and that dα(µ′, ν ′) ≤
Iα(η′), one gets

dα(µ′, ν ′) ≤ Iα(η′) ≤ Iα(η) + α

ˆ
Γ

Zη d(η′ − η)

= dα(µ, ν) + α

(ˆ
Rd
z dν ′ −

ˆ
Rd
z dµ′

)
−α
(ˆ

Rd
z dν −

ˆ
Rd
z dµ

)
.
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This theorem will be the essential tool in proving the Hölder regularity of the
landscape function with some extra hypotheses, although other ingredients will be
needed. Indeed, as we will do general perturbations which do not occur in a single
basin, we will need to perform small transfers between basins with controlled cost.

4.4 Hölder regularity

In this section, we want to prove the regularity of the landscape function we have
de�ned under some extra hypotheses on the measures µ and ν. Our assumption will
be that µ and ν are probability measures of the form:

µ = f L |U and ν = gL |V ,

where f and g are functions bounded from below by a constant c0 > 0, and U, V are
open connected sets which are Ahlfors regular in the sense that for some r0 > 0 and
all r ≤ r0:

∀x ∈ U, ΘU(x, r) ≥ c0, and ∀y ∈ V, ΘV (y, r) ≥ c0.

Moreover, for this whole section we assume that η ∈ OIPα(µ, ν) is an optimal irrigation
plan with α ∈]1−1/d, 1[ which has a �nite root system R. We denote by z a landscape
function as constructed in Section 4.2.

Before going further, we will need some new de�nitions. Recall that the root net-
work R̄ is the union of all simple branch paths joining pairs of roots ρ, ρ′ ∈ R. For each
connected component P of R̄, we pick once and for all a root ρP ∈ P ∩R and we denote
by P the �nite collection of these connected components. Each connected component
P ∈ P is associated with a basin Bas(P ) and its signed counterparts Bas(P )± as
follows:

Bas+(P ) =
⋃
ρ∈P

Bas+
η (ρ), Bas−(P ) =

⋃
ρ∈P

Bas−η (ρ), and Bas(P ) =
⋃
ρ∈P

Basη(ρ).

These basins, which we call rooted basins, provide a decomposition of the measures
µ, ν:

(i) Bas+
η (R̄) =

⋃
P∈P Bas+(P ) and Bas−η (R̄) =

⋃
P∈P Bas−(P ),

(ii) for all P ∈P, µ(Bas−(P )) > 0 and ν(Bas+(P )) > 0,

(iii) µ and ν are respectively concentrated on Bas−η (R̄) and Bas+
η (R̄).

4.4.1 Transfer between basins

De�nition 4.4.1. Let A,B be two Borel sets of positive measure |A|, |B| > 0. We call
x a transfer point from A to be B if for some constants c, R > 0 and all r ≤ R:

ΘA(x, r) ≥ c, and x ∈ B̄.
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Lemma 4.4.2. If |U \ (A ∪B)| = 0 with |A|, |B| > 0 and |A ∩B| = 0, then there is a
point x such that

ΘA(x, r) ≥ c and ΘB(x, r) ≥ c,

for r ≤ R and some constants c = cA,B > 0, R = RA,B > 0. In particular x is a
transfer point from A to B and from B to A.

Proof. Consider two points x, y which are Lebesgue points of A and B respectively, and
a small radius r0 such that Θ�A(x, r) := |Qr(x)∩A|

(2r)d
> 1/2 and Θ�B(x, r) := |Qr(x)∩B|

(2r)d
> 1/2

for r = r0, where Qr(x) is the cube centered at x with radius r. Since U is open and
connected, there is a curve γ : [0, 1] → U which joins x to y. If the radius r0 is small
enough, the cubes Qr0(γ(t)) stay inside U as well, and the map

f(t) = Θ�A(γ(t), r0)

is continuous on [0, 1], with f(0) > 1/2 and f(1) < 1/2. Consequently there is a time
t0 and x0 = γ(t0) such that

Θ�A(x0, r0) = Θ�B(x0, r0) = 1/2.

Now we take r = r0/2 and we want to �nd a cube Qr(x) ⊆ Qr0(x0) such that the same
equality holds: Θ�A(x, r) = Θ�B(x, r) = 1/2. Cut the cube Qr0(x0) into 2d subcubes Qi

of radius r and centers xi. If the equality holds for one xi we set x = xi. Otherwise, one
could �nd two cubes Qi, Qj with i 6= j such that Θ�A(xi, r) > 1/2 and Θ�A(xj, r) < 1/2.
Now we can reproduce the starting argument to �nd an x lying in the segment [xi, xj]
such that Θ�A(x, r) = 1/2. We set x1 = x, r1 = r, and we keep going to produce a
sequence of cubes Qn = Qrn(xn) such that each is included in the previous one, with
rn = r02−n and such that

Θ�A(xn, rn) = Θ�B(xn, rn) = 1/2.

The sequence xn is Cauchy and converges to a point x which is the intersection of
all these cubes. We claim that there is a constant c > 0 such that ΘA(x, r) ≥ c and
ΘB(x, r) ≥ c for all r ≤ R (recall that this density is computed with respect to balls
and not cubes). Take n such that rn+1 < r/2

√
d ≤ rn. One knows that x ∈ Qn+1

hence Br(x) ⊇ Qn+1, thus:

ΘA(x, r) ≥ |A ∩Q
n+1|

|Br(x)|
= 1/2

|Qn+1|
|Br(x)|

≥ 1/2
2d

ωd

(
rn/2

r

)d
≥ c > 0.

The same holds for B and we are done.

We set X − (resp. X +) to be the collection of sets A made of a union of negative
basins (resp. positive basins) associated to components P ∈ P, that is sets of the
form A =

⋃
P∈P′ Bas−(P ) (resp. A =

⋃
C∈P′ Bas−(P )) where P ′ ⊆P. In the rest of

this section, all results will be stated and proved for negative basins but their positive
counterparts hold as well ; hence for this section we write X = X −, X = Bas−η (R̄)
and XP = Bas−(P ) for P ∈P.
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De�nition 4.4.3 (Basin variation of µ). For each P ∈P, suppose that we have two
nonnegative measures χP , ξP which are concentrated onXP and which represent a mass
that we want to remove from µ and add to µ respectively. Assume that

∑
P χP ≤ µ

and set µ′ = µ +
∑

P (ξP − χP ) which is a nonnegative measure. Then the triple
(µ′, (χP )P , (ξP )P ) is called a basin variation of µ.

De�nition 4.4.4 (Transfer relation). We de�ne a binary relation on X as follows:
A  B if there exists constants K = KA,B > 0, ε = εA,B > 0 such that for all m ≤ ε
one can �nd a basin variation (µ′, (χP ), (ξP )) of µ such that:

(i)
∑

P χP (XP ) + ξP (XP ) ≤ Km,

(ii) for all P such that XP 6⊆ A ∪B, χP (XP ) = ξP (XP ),

(iii)
∑

P :XP⊆A(ξP − χP )(XP ) = −m and
∑

P :XP⊆B(ξP − χP )(XP ) = +m,

(iv)
∣∣´ z d(µ′ − µ)

∣∣ ≤ cm1+β/d,

(v) dα(µ, µ′) ≤ cm1+β/d.

In that case we say that the basin variation (µ′, (χP ), (ξP )) transfers a mass m from A
to B with controlled cost.

Lemma 4.4.5. Let x be a transfer point from A to B. The following holds:

• there exists R = RA,B > 0 and C = CA,B > 0 such that for all r ≤ R,
 
Br(x)∩A

|z − z(x)| dx ≤ Crβ,

• if A,B ∈X then A B.

Remark 4.4.6. The basin variation (µ′, (χP ), (ξP )) satisfying the requirements for A 
B as in De�nition 4.4.4 that we get from the proof is the following: χP = c1XP∩Br(x)

for all P ∈ P with rd ≈ m, ξP0 = mδx, and ξP = 0 if P 6= P0 ; P0 being such that x
belongs to XP0 ⊆ B. Moreover Rd

A,B ≈ εA,B.

Proof. We set zr,A(x) =
ffl
Br(x)∩A z(y) dy and mr = |Br(x) ∩ A|. The proof strongly

relies on computations made in [San07] to prove the Hölder continuity of the landscape
function in the single-source case, and on calculations which are quite classical when
working with Campanato spaces (see [Giu03, Section 2.3]). We divide the proof into
two steps.

Step 1: z(x) = zA(x) := limr→0 zr,A(x). Recalling that µ ≥ c01U , we remove
c01Br(x)∩A from µ and we send a mass c0mr to x, then we spread it again to Br(x)∩A.
To be more precise, we set µ̃ = µ− c01Br(X)∩A + c0mrδx. Since diam(supp(µ− µ̃)) ≤ r
and ‖µ− µ̃‖ ≤ 2c0mr, we know that

|dα(µ̃, ν)− dα(µ, ν)| ≤ Crmα
r , (4.4.1)
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while on the other hand by the �rst variation formula of Theorem 4.3.9 one has:

dα(µ̃, ν) ≤ dα(µ, ν) + α

ˆ
Rd
−z d(µ̃− µ)

= dα(µ, ν)− αc0mrz(x) + αc0

ˆ
Br(x)∩A

z(y) dy.
(4.4.2)

Putting (4.4.1) and (4.4.2) together yields:

αc0mrz(x)− αc0

ˆ
Br(x)∩A

z(y) dy ≤ Crmα
r

or equivalently

z(x)−
 
Br(x)∩A

z(y) dy ≤ Crmα−1
r . (4.4.3)

But

Crmα−1
r = C

rβ

ΘA(x, r)1−α ≤ Crβ, (4.4.4)

the last inequality holding for r ≤ RA,B (with C depending on cA,B) because x is a
transfer point from A to B. By (4.4.3) and (4.4.4), one has

z(x) ≤ zr,A(x) + Crβ,

then passing to the limit r → 0:

z(x) ≤ lim inf
r→0

zr,A(x).

By upper semicontinuity of z on Bas−η (R̄) one has the opposite inequality:

lim sup
r→0

zr,A(x) ≤ z(x),

hence
z(x) = zA(x)

.
= lim

r→0
zr,A(x). (4.4.5)

Step 2:
ffl
Br(x)∩A|z−z(x)| ≤ Crβ. We cut Br(x)∩A into two parts of equal measure:

Br(x) ∩ A = A1 t A2 where |A1| = |A2| = mr/2.

Removing c01A1 and adding c01A2 to µ, one gets by the same kind of estimates we used
in the �rst step:

Crmα
r + c0α

ˆ
A1

z − c0α

ˆ
A2

z ≥ 0. (4.4.6)

We denote by z̃r,A(x) the median of z on Br(x) ∩ A. Taking A1, A2 of equal measure
such that z ≤ z̃r,A(x) on A1 and z ≥ z̃r,A(x) on A2, we obtain

ˆ
A2

z −
ˆ
A1

z =

ˆ
A2

(z − z̃r,A(x))−
ˆ
A1

(z − z̃r,A(x)) =

ˆ
Br(x)∩A

|z − z̃r,A(x)|,
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and putting this into (4.4.6) implies:
 
Br(x)∩A

|z − z̃r,A(x)| ≤ Crmα−1
r ≤ Crβ,

where we have used (4.4.4) in the last inequality. It is clear that up to changing again
C, the median may be replaced by the mean:

 
Br(x)∩A

|z − zr,A(x)| ≤ Crβ. (4.4.7)

The rest is just standard Campanato estimates, which we do here for the sake of
completeness. Let us compare the quantities zr,A(x) and zr/2,A(x):

|zr/2,A(x)− zr,A(x)| =

∣∣∣∣∣
 
Br/2(x)∩A

(z − zr,A(x))

∣∣∣∣∣
≤
 
Br/2(x)∩A

|z − zr,A(x)|

≤ |Br(x) ∩ A|
|Br/2(x) ∩ A|

 
Br(x)∩A

|z − zr,A(x)|

≤ C

 
Br(x)∩A

|z − zr,A|

≤ Crβ,

the last inequality following from (4.4.7), and the last but one from |Br/2(x)∩A| ≥ crd

because x is a transfer point from A and B. Then one has

|z(x)− zr,A(x)| ≤ |z(x)− zr/2,A(x)|+ |zr/2,A(x)− zr,A(x)|
≤ |z(x)− zr/2,A(x)|+ Crβ,

which means by setting f(r) = |z(x)− zr,A(x)| for r ∈]0, R] that:

f(r) ≤ f(r/2) + Crβ.

Consequently for all k ∈ N,

f(r) ≤ f(r2−(k+1)) + Crβ
k∑
i=0

2−iβ

thus by taking the limit k →∞:

f(r) ≤ lim sup
ε→0

f(ε) + Crβ
∞∑
i=0

2−iβ ≤ lim sup
ε→0

f(ε) + Crβ.

Now we know by (4.4.5) that f(ε) → 0 when ε → 0, which implies that f(r) ≤ Crβ,
that is to say:

|z(x)− zr,A(x)| ≤ Crβ.
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By way of consequence

 
Br(x)∩A

|z − z(x)| ≤
 
Br(x)∩A

|z − zr,A(x)|+ |z(x)− zr,A(x)| ≤ Crβ.

Now set εA,B = c2
0R

d
A,B and take m ≤ εA,B. We know that c0r

d ≤ mr ≤ ωdr
d for all

r ≤ R ≤ r0. Set r such that c2
0r
d = m, so that r ≤ RA,B, and set

tr =
m

c0mr

=
c0r

d

mr

≤ 1.

Choose P0 such that x ∈ XP0 ⊆ A. Consider a family of disjoint sets X̃P ⊆ XP such
that

⋃
P X̃P =

⋃
P XP . We de�ne χP = trc01X̃P∩Br(x)∩A for all P ∈P, ξP0 = mδx and

ξP = 0 if P 6= P0, and �nally µ′ = µ +
∑

P ξP − χP = µ + mδx − trc01A∩Br(x). Since
tr ≤ 1 and trc0|A ∩ Br(x)| = trc0mr = m, µ′ is a probability measure, and one may
check that (µ′, (χP ), (ξP )) is a basin variation satisfying (i), (ii) and (iii) of De�nition
4.4.4. Let us check (iv) and (v):∣∣∣∣ˆ z d(µ− µ′)

∣∣∣∣ = m

∣∣∣∣z(x)−
 
A∩Br(x)

z

∣∣∣∣ ≤ Cmrβ ≤ Cm1+β/d,

the last inequality coming from the fact that m = c2
0r
d. Moreover since ‖µ−µ′‖ ≤ 2m

and diam supp|µ− µ′| ≤ 2r, one has

dα(µ, µ′) ≤ Crmα ≤ Cm1+β/d

because α + 1/d = 1 + β/d. As a consequence A B.

Proposition 4.4.7. The binary relation  on X satis�es the following properties:

(i) transitivity.

(A B and B  C) =⇒ A C,

(ii) subset.

(A ⊆ A′, B ⊆ B′ and A B) =⇒ A′  B′,

(iii) grouping.

(A1  A2  A1 and A1 ∪ A2  B) =⇒ A1  B and A2  B,

(A B1 ∪B2 and B1  B2  B1) =⇒ A B1 and A B2,

(iv) connection.

A 6= X =⇒ ∃P ∈P, (XP 6⊆ A and A XP ).

Proof. We prove the three items successively.
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Proof of (i) We treat for example the �rst implication, the second one being handled
symmetrically. Set εA,C = 1/2 · min(εA,B, εB,C) and take m ≤ εA,C . We know there
exists basin variations (µ1, (χ1

P ), (ξ1
P )) and (µ2, (χ2

P ), (ξ2
P )) transferring a mass 2m from

A to B and from B to C respectively, with controlled cost. Let us build a new one as
follows:

χP =
1

2
(χ1

P + χ2
P ), ξP =

1

2
(ξ1
P + ξ2

P ),

and

µ′ = µ+
∑
P

(ξP − χP ) =
1

2
(µ1 + µ2).

By construction
∑

P χP ≤ µ and µ′ is a nonnegative measure, so that (µ′, (χP ), (ξP ))
is a basin variation of µ, and it is easy to check that it transfers a mass m from A to
C. Obviously, for all P one has

∑
P χP (XP ) + ξP (XP ) ≤ (KA,B + KB,C)m. Moreover

one can control the cost variation:∣∣∣∣ˆ z d(µ′ − µ)

∣∣∣∣ ≤ 1

2

∣∣∣∣ˆ z d(µ1 − µ)

∣∣∣∣+
1

2

∣∣∣∣ˆ z d(µ2 − µ)

∣∣∣∣
≤ 2−1(KA,B +KB,C)(2m)1+β/d

≤ 21/d+α−1(KA,B +KB,C)m1+β/d.

Moreover by subadditivity of the dα distance

dα(µ, µ′) = dα(µ/2 + µ/2, µ1/2 + µ2/2) ≤ dα(µ/2, µ1/2) + dα(µ/2, µ2/2)

≤ 2−α(KA,B +KB,C)(2m)1+β/d

= 21/d(KA,B +KB,C)m1+β/d

Thus setting KA,C = 21/d(KA,B + KB,C) all the required properties to get A  C are
satis�ed.

Proof of (iii) Consider a loop A1  A2  A1 and B such that A := A1 ∪ A2  B.
Let us establish for example A1  B. We consider a basin variation (µ̂, (χ̂P ), (ξ̂P )) of µ
which transfers a mass m from A to B with controlled cost. Set mi = ξ̂(Ai)− χ̂P (Ai) ∈
R for i = 1, 2. We take a basin variation (µ̄, (χ̄P ), (ξ̄P )) which sends a mass m2 from
A2 to A1 if m2 > 0, or a mass −m2 from A1 to A2 if m2 < 0. This is possible if
|m2| ≤ min(εA1,A2 , εA2,A1), but

|m2| ≤
∑

P :XP⊆A2

(ξ̂P (XP ) + χ̂P (XP )) ≤ KA,Bm,

hence this condition is satis�ed if

m ≤ min(εA1,A2 , εA2,A1)

KA,B

. (4.4.8)

De�ne for all P

χP =
1

2
(χ̄P + χ̂P ), ξP =

1

2
(ξ̄P + ξ̂P )
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and

µ′ = µ+
∑
P

(ξP − χP ) =
1

2
(µ̄+ µ̂).

It is easy to see that (µ′, (χP ), (ξP )) is a basin transfer of µ which transfers a mass m/2
from A1 to B. Moreover one has∑

P∈P

ξP (XP ) + χP (XP ) ≤ K̃m,

as well as ∣∣∣∣ˆ z d(µ′ − µ)

∣∣∣∣ ≤ K̃m1+β/d

and

dα(µ, µ′) ≤ K̃m1+β/d,

where K̃ := (KA,B max(KA1,A2 , cA2,A1) +KA,B) /2. Thus (µ′, (χP ), (ξP )) is a mass
transfer of mass m/2 (and not m) from A1 to B with controlled cost for constants

εA1,B =
min(εA1,A2 , εA2,A1)

2KA,B

and KA1,B = K̃21+β/d.

We have proved that A1  B, and the same goes for A2. The analogous statement for
A B1 ∪B2 holds as well.

Proof of (iv) Take a set A ∈X such that A 6= X. If there is a P such that XP 6⊆ A
and |XP ∩ A| > 0 then clearly A  XP . Otherwise set B =

⋃
P :XP 6⊆AXP . We know

that |A|, |B| > 0, |A ∩B| = 0 and |U \ (A ∪B)| = 0, hence by Lemma 4.4.2 there is a
frontier point x from A to B. Since B is closed, x actually belongs to B, and there is
a basin XP contained in B such that x ∈ XP . By de�nition x is a frontier point from
A to XP and by Lemma 4.4.5 one has A XP .

Remark 4.4.8. Notice that using (i) successively, if one has a loop

A1  A2  . . . An = A1

then Ai  Aj  Ai for all i, j, and using (iii) successively, it generalizes to arbitrary
loops: (

A1  A2  . . . An = A1 and
⋃
i

Ai  B

)
=⇒ ∀i, Ai  B,(

A 
⋃
i

Bi and B1  B2  . . . Bn = B1

)
=⇒ ∀i, A Bi.

Proposition 4.4.9. The binary relation is total in the sense that for all A,B ∈X ,
A B.
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Proof. Let us de�ne some terminology which will render the proof very easy. We say
that two elements A,B ∈ X are equivalent if A  B and B  A. We call blocks
all elements A ∈ X which are unions of equivalent basins, that is sets of the form
A =

⋃
P⊆P′ XP where P ′ ⊆P and all the (XP )P∈P′ are pairwise equivalent. We will

consider block chains
C = A1  A2  . . . An−1  An

which are simple in the sense that for i 6= j, Ai and Aj have no basin in common.
The length `(C ) of C is n and its size s(C ) is the total number of basins appearing in
the Aj's: s(C ) = card{P : ∃i,XP ⊆ Ai}. We consider the simple chains of maximal
size (it makes sense because there are only �nitely many), and among them those with
minimal length. Pick such a chain C . If card{P : XP ⊆ An} < card P then there
exists a P ∈ P such that An → XP and XP 6⊆ An by (iv) of Proposition 4.4.7. Now
since C has maximal size, XP must belong to a previous basin: XP ⊆ Ai for i < n. By
(ii) one has An  Ai, thus the blocks Ai, Ai+1, . . . , An are equivalent. Consequently all
the basins XP belonging to the Aj's for i ≤ j ≤ n are equivalent, using (iii) successively
as in Remark 4.4.8. Hence Ãi :=

⋃
j≥iAj is itself a block and one has a block chain

C̃ = A1  . . . Ai−1  Ãi,

which is a simple block chain with s(C̃ ) = s(C ) and `(C̃ ) < `(C ): a contradiction.
Consequently one had card{P : XP ⊆ An} = card P and the chain was made of a
single block A1 = An made of all basins. Therefore all basins are equivalent, and all
elements A ∈X as well by (ii). This is what we wanted.

We set K̄ = maxA,B∈X KA,B and ε̄ = maxA,B∈X εA,B.

Proposition 4.4.10 (Basin transfers). There exists constants K, ε > 0 such that for
any family of real numbers (mP )P∈P satisfying

∑
P∈P mP = 0 and m :=

∑
P |mP | ≤ ε,

one may �nd a basin variation (µ′, (χP ), (ξP )) of µ such that

(i)
∑

P (ξP − χP )(XP ) = mP ,

(ii)
∣∣´ z d(µ′ − µ)

∣∣ ≤ Km1+β/d,

(iii) dα(µ, µ′) ≤ Km1+β/d.

Proof. Assume that the mP 's are not all 0, otherwise there is nothing to do. Take
P1 ∈P such that |mP1 | is minimal. IfmP1 < 0 chooseQ1 ∈P such thatmQ1 > 0 ; nec-
essarily |mP1| ≤ mQ1 and we know that there is a basin variation V1 = (µ1, (χ1

P ), (ξ1
P ))

of µ sending a mass |mP1| from XP1 to XQ1 and with controlled cost, provided that
|mP1 | ≤ ε̄. If mP1 > 0 we choose Q1 such that mQ1 < 0 and a basin variation which
sends a mass |mP1| from XQ1 to XP1 . Then we set for all P ∈P:

m1,P = mP − (ξ1
P (XP )− χ1

P (XP )).

We know that m1 :=
∑

P |m1P | ≤ m + K̄mP1 ≤ (1 + c)m and m1,P1 = 0. We consider
the family of real numbers (m1,P )P∈P . We continue by induction, building sequences
Pi, Qi, Vi,mi,P until all the (mi,P )P are 0, and set I the number of steps. We obtain a
sequence satisfying for all i ≤ I:
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(i) for all P , mi,P = mi−1,P − (ξiP (XP )− χiP (XP )),

(ii) mi :=
∑

P |mi,P | ≤ (1 + K̄)mi−1,

(iii) mi,Pj = 0 for all j ≤ i.

Notice that this is justi�ed provided |mi| is always less that ε̄, which is guaranteed if
m(1 + K̄)1+#P ≤ ε̄. Then we de�ne a basin variation V = (µ′, (χP ), (ξP )) by

χP = 1/I ·
∑
i

χiP , ξP = 1/I ·
∑
i

ξiP

and
µ′ = µ+

∑
P

(ξP − χP ).

One has for all P ∈P:

0 = mI,P = mI−1,P − (ξIP (XP )− χIP (XP )) = . . . = mP −
∑
i≤I

(ξiP (XP )− χiP (XP ))

hence
(ξP − χP )(XP ) = mP .

Moreover one has ∣∣∣∣ˆ z d(µ′ − µ)

∣∣∣∣ ≤ K̄(1 + K̄)I(1+β/d)m1+β/d

and

dα(µ, µ′) ≤ K̄(1 + K̄)I(1+β/d)m1+β/d.

Setting K = K̄(1 + K̄)#P(1+β/d) and ε = ε̄/(1 + K̄)#P , one gets the desired result.

4.4.2 A general �rst variation inequality

Proposition 4.4.11. Let ν ′ ∈ Prob(Rd) be a probability measure such that |ν ′ − ν| is
concentrated on Bas+

η (R̄) and has mass m ≤ ε. Then there is a probability measure µ′

and an irrigation plan η′ ∈ IP(µ′, ν ′) such that

(i) η′ is concentrated on η-good paths,

(ii)
∣∣´ z d(µ′ − µ)

∣∣ ≤ Cm1+β/d,

(iii) dα(µ, µ′) ≤ Cm1+β/d.

Proof. Notice that one may write:

ν ′ = ν + ξ̄ − χ̄

where ξ̄, χ̄ are nonnegative measures concentrated on Bas+
η (R̄) which are mutually

singular and have same mass, with χ̄ ≤ ν. Setting for all P ∈P:

mP = ξ̄(Bas+(P ))− χ̄(Bas+(P )),

we know that
∑

P mP = 0. By the previous proposition, one can �nd a basin variation
(µ′, (ξP ), (χP )) such that
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(i)
∑

P (ξP − χP )(XP ) = mP ,

(ii)
∣∣´ z d(µ′ − µ)

∣∣ ≤ Km1+β/d,

(iii) dα(µ, µ′) ≤ Km1+β/d.

It is possible to connect µ′ and ν ′ using η-good paths, since for all P , ξP − χP and
(ξ̄−χ̄) Bas+(P ) are concentrated on a common basin Basη(ρP ) and have equal (signed)
mass. Hence there exists an irrigation plan η′ ∈ IP(µ′, ν ′) obtained by adding, remov-
ing, and reconnecting η-good curves passing by a same connected component P , so
that η′ is concentrated on η-good paths.

From this result, we are able to prove a �rst variation formula for general variations
of ν, with µ �xed, at the cost of an extra error term, which is of lower order in our case
α ≥ 1− 1/d.

Theorem 4.4.12. Let η ∈ IP(µ, ν) be an optimal irrigation plan with �nite Iα cost
and z a landscape function. If ν ′ ∈ Prob(Rd) is such that |ν ′ − ν| is concentrated on
Bas+

η (R̄) and has mass m then the following holds:

dα(µ, ν ′) ≤ dα(µ, ν) + α

ˆ
z d(ν ′ − ν) + Cm1+β/d,

for some constant C independent from ν ′ and m.

Remark 4.4.13. Notice that since z is bounded from below on Basη +(R̄) and that
z ∈ L1(ν), the integral

´
z d(ν ′ − ν) is well-de�ned and valued in R ∪ {+∞}.

Proof. If
´
z d(ν ′ − ν) = +∞ there is nothing to prove. Otherwise z ∈ L1(ν ′) and we

take µ′ and η′ ∈ IP(µ′, ν ′) given by the previous proposition. One has

dα(µ′, ν ′) ≤ Iα(η′) ≤ Iα(η) + α

ˆ
Γ

Zη d(η′ − η).

Now since z ∈ L1(µ′) ∩ L1(ν ′) and that Zη(γ) = z(γ+) − z(γ−) for η′-almost every γ,
one has

dα(µ′, ν ′) ≤ Iα(η) + α

ˆ
z d(ν ′ − ν)− α

ˆ
z d(µ′ − µ),

hence using the triangle inequality and Iα(η) = dα(µ, ν):

dα(µ, ν ′) ≤ dα(µ, ν) + α

ˆ
z d(ν ′ − ν) + dα(µ, µ′)− α

ˆ
z d(µ′ − µ).

By the previous proposition, the two last terms are bounded by Cm1+β/d, which implies
that

dα(µ, ν ′) ≤ dα(µ, ν) + α

ˆ
z d(ν ′ − ν) + Cm1+β/d.
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4.4.3 The regularity theorem

Theorem 4.4.14. There exists a constant C > 0 such that for any r ≤ r0, x ∈
Bas−η (R̄) and y ∈ Bas+

η (R̄), one has:

 
U∩Br(x)

|z − zr(x)| ≤ Crβ and
 
V ∩Br(y)

|z − zr(y)| ≤ Crβ,

hence z is β-Hölder continuous on Bas−η (R̄) and Bas+
η (R̄).

Proof. Consider a ball B = Br(x) ∩ Bas+
η (R̄) centered at some x ∈ Bas+

η (R̄). We
partition it in two parts of equal measure:

B = B1 tB2 with |B1| = |B2| = |B|/2 =: m/2,

and we set ν ′ = ν − c1B1 + c1B2 ∈ Prob(Rd). Then we apply Theorem 4.4.12:

dα(µ, ν ′) ≤ dα(µ, ν) + α

ˆ
Bas−(R̄)

z d(ν ′ − ν) + Cm1+β/d,

= dα(µ, ν) + αc

(ˆ
B1

z −
ˆ
B2

z

)
+ Cm1+β/d,

(4.4.9)

but by the triangle inequality, one has

|dα(µ, ν)− dα(µ, ν ′)| ≤ dα(ν, ν ′) ≤ Cmαr, (4.4.10)

the last inequality being true because ‖ν − ν ′‖ = m and diam(supp|ν ′ − ν|) ≤ 2r.
Combining (4.4.9) and (4.4.10), one gets

ˆ
B2

z −
ˆ
B1

z ≤ Cmαr + Cm1+β/d.

Taking B1, B2 such that z ≥ z̄r(x) on B2 and z ≤ z̄r(x) where z̄r(x) is the median of z
on Br(x) ∩ Bas+(R̄), and dividing by m we obtain

 
Br(x)∩Bas+(R̄)

|z − z̄r(x)| ≤ Cmα−1r + Cmβ/d.

Now since m ≈ rd, one has mα−1r ≈ rβ ≈ rβ, and replacing the median by a mean
(which is easy to do), we �nally get

 
Br(x)∩V

|z − zr(x)| ≤ Crβ.

The same reasoning gives the corresponding inequality on Bas−η (R̄). By the equivalence
between Campanato and Hölder spaces, as U and V are Ahlfors regular, this means
that z is β-Hölder continuous on U and V .
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4.4.4 A straightforward consequence

Theorem 4.4.15. Let µ, ν be probability measures of the form

µ = f L |U and ν = gL |V ,

where U, V are bounded, open and connected sets such that Ū ∩ V̄ = ∅ and which are
Ahlfors regular, and f, g ≥ c0 > 0. If η is an optimal irrigation plan for the α-cost,
where α > 1− 1/d, then η has equibounded �ber lengths, in the sense that:

η − ess sup
γ∈Γ

L(γ) <∞.
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5.1. A SHAPE EVOLUTION PROBLEM

5.1 A shape evolution problem

We want here to de�ne a dynamical counterpart to the shape optimization problem
studied in Chapter 3, so as to obtain a shape evolving continuously towards the optimal
shape. We try to give a sketch of what one would like to accomplish regarding this
problem. The calculations will be quite formal and most of the claims will not be proven
but are left open for now, as their study is currently ongoing. We introduce the shape
evolution problem via an implicit scheme of what should be its time discretization, in
the spirit of gradient �ows discretization (see [San15, Chapter 8] or [San14b; San17] for
an overview of gradient �ows, [AGS08] for the whole theory), or De Giorgi's minimizing
movements [De 93; Amb95]. Actually, it may be seen as a geometric minimizing
movement (see for example [Bra14, Chapters 6,8] or [ATW93] on this topic).

Given λ > 0, we de�ne the functional F : M +(Rd)→ R ∪ {+∞} by

Fα,λ(µ) := Xα(µ)− λ‖µ‖,

and identifying Lebesgue measurable sets E with 1E L , we also set

Fα,λ(E) := Xα(1E L )− λ|E|.

The term −λ|E| is a volume term which we take for simplicity as replacement for the
constraint |E| = 1 which was imposed in Chapter 3.

Let T > 0 be a �xed duration and τ > 0 be a small time step. Given a set E0, we
look for a sequence of sets (Eτ

k )k de�ned by

Eτ
0 = E0, (5.1.1)

and

Eτ
k+1 ∈ argmin

E
F (E) +

ˆ
E∆Ek

d(x, ∂Ek)

τ
dx, (5.1.2)

for k ≤ dT/τe. The integral term behaves like squared distance (divided by τ), as it
is more or less the integral of a distance on a small slice ; moreover if one considers
a translation of a cube by a distance h this integral term indeed gives h2. Thus it is
quite similar to minimizing movements, and very close to the variational approach for
the motion by mean curvature (see [ATW93]). We would like to do the following:

(i) (Well-de�nedness) Prove that one can de�ne a sequence (Eτ
k )k by (5.1.1)-(5.1.2),

i.e. there exists minimizers at each step.

(ii) (Continuous motion) De�ne a suitable set-valued map Ēτ (t) for t ∈ [0, T ] such
that Ē(kτ) = Eτ

k , for example Ēτ (t) = Eτ
dt/τe and prove that it converges

Ēτ τ→0−−→ Ē

in some sense to some Ē.

(iii) (Evolution equation) Prove that the motion of Ē is described by the evolution
equation:

vt(x) = λ− αzt(x) for x ∈ ∂Ē(t), (5.1.3)
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where vt(x) is the normal speed of Ē(t) at x and zt is a landscape function
associated to E(t), which represents the marginal cost in irrigation. Recall that
z is the �rst variation Xα, so that the term on the right is actually the opposite
of δFα,λ, the �rst variation of Fα,λ. Of course, all these notions and equation
(5.1.3) should be given a precise meaning �rst!

Before entering the study, let us rewrite (5.1.2). Notice thatˆ
E∆Ek

d(x, ∂Ek) dx =

ˆ
E\Ek

d(x,Ek) dx+

ˆ
Ek\E

d(x,Ec
k) dx

=

ˆ
ds(x,Ek)(1E\Ek − 1Ek\E) dx

=

ˆ
E

ds(x,Ek)−
ˆ
Ek

ds(x,Ek) dx,

where ds(x,E) is the signed distance to E. Since the second term is a constant, (5.1.2)
is equivalent to

Eτ
k+1 ∈ argmin

E
Fα,λ(E) +

ˆ
E

ds(x,Ek)

τ
dx. (5.1.4)

Now let us try to discuss the issues in dealing with each step and propose sketches
for some proofs.

Well-de�nedness. We are going to take minimizers of (5.1.4) in the larger class of
positive measures ν such that ν ≤ 1. It is clear that ν 7→ Fα,λ(ν) +

´ ds(x,Eτk )

τ
dν is

lower semicontinuous since Xα is lower semicontinuous and the remaining part

−λ|ν|+
ˆ
ds(x,E

τ
k )

τ
dν(x) =

ˆ
φ dν, where φ(x) =

ds(x,E
τ
k )

τ
− λ,

is continuous because φ ∈ Cb(Rd). Assuming that Eτ
k compact, one may prove su�cient

properties (lower bounded, tightness of minimizing sequences...) to guarantee that
there is a minimizer

ντk+1 ∈ argmin
ν≤1

Fα,λ(ν) +

ˆ
ds(x,E

τ
k )

τ
dν(x) =: G (ν).

Now let us prove that νk+1 is indeed the indicator of a set. Take a landscape function zτk
associated to ντk = 1Eτk . We know by Proposition 3.1.5 for any competitor ν ∈M +(Rd),

Xα(ν) ≤ Xα(ντk+1) + α

ˆ
zτk d(ν − ντk+1), (5.1.5)

thus by adding −
´
λ dν +

´ ds(x,Eτk )

τ
dν:

G (ν) ≤ G (ντk+1) +

ˆ
Rd

(
αzτk(x) +

ds(x,E
τ
k )

τ
− λ
)

d(ν − ντk+1). (5.1.6)

By optimality of ντk+1, the integral on the right must be nonnegative for all competitor
ν, which means thatˆ

Rd
(φ(x)− λ) dντk+1(x) = min

ν≤1

ˆ
Rd

(φ(x)− λ) dν(x). (5.1.7)
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where we have set φ(x) = αzτk(x) +
ds(x,Eτk )

τ
. Consequently, ντk+1 should be equal to

1 on {φ < λ} and to 0 on {φ > λ}. But using the strict concavity of the map
x 7→ xα it is possible to show that inequality (5.1.5), hence inequality (5.1.6) as well,
is actually strict if ν 6= ντk+1. As a consequence (5.1.7) admits a unique minimizer, and
|{φ = λ}| = 0, which implies that

ντk+1 = 1φ≤λ L .

Therefore the set Eτ
k+1 := {αzτk(x)+

ds(x,Eτk )

τ
≤ λ} is a solution of (5.1.4), or equivalently

of (5.1.2). Notice φ being lower semicontinuous and coercive, Eτ
k+1 is a compact set

(recall that we have assumed Eτ
k to be compact). We have proven if E0 is compact, we

may de�ne a sequence (Eτ
k )k as wanted, and it is made of compact sets.

Continuous motion. Now we would like to pass to the limit τ → 0 in the sequence
(Eτ

k )k, but also in the sequence (zτk)k, as this function will play a role in describing
the motion, to obtain a continuum of sets Ē(t) and functions z̄(t, ·) for t ∈ [0, T ]. To
do that, we should place ourselves in some well-suited functional spaces where we can
prove enough compactness to pass to the limit (at least up to subsequence).

Let us investigate the sequence (Eτ
k )k �rst. We set K the set of compact subsets

of Rd and de�ne for all A,B ∈ K :

D(A,B) =

ˆ
A∆B

d(x, ∂A) dx =

ˆ
Rd
ds(x,A)(1B − 1A) dx.

By optimality of Eτ
k+1, one has

Fα,λ(E
τ
k+1) +

D(Eτ
k+1, E

τ
k )

τ
≤ Fα,λ(E

τ
k )

or equivalently

D(Eτ
k+1, E

τ
k ) ≤ τ(Fα,λ(E

τ
k )−Fα,λ(E

τ
k+1)). (5.1.8)

Thus by summation over k, one gets

dT/τe−1∑
k=0

τ
D(Eτ

k+1, E
τ
k )

τ 2
≤ Fα,λ(E0)−Fα,λ(E

τ
dT/τe) ≤ C, (5.1.9)

for some constant C > 0. It seems that the quantity D(A,B) behaves like a squared
distance between A and B (as said before, considering a translation of a cube by a
distance h gives h2), thus (5.1.9) should be some kind of H1 bound and give some
compactness.

Let us investigate the sequence (zτk)k. The situation is perhaps clearer here: the
regularity one should expect is Hölder-continuity of exponent β = 1 + dα − d. In-
deed landscape functions associated to absolutely continuous measures µ are β-Hölder
continuous as proven in [San07], with some extra regularity assumptions on µ. More-
over in Chapter 3 we prove the Hölder regularity (with same exponent) of the land-
scape function associated to optimal shapes. Thus what we are expecting here is that
zτk ∈ C 0,β(Eτ

k ), or perhaps zτk ∈ C 0,β(Xτ
k ) for a large enough subset Xτ

k ⊆ Eτ
k . What
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we would like is an upper bound on the Hölder constant to get compactness by Ascoli's
theorem. But this will not be enough for the zτk to converge, up to subsequence, to a
curve z(t) ∈ C 0,β(E(t)) for t ∈ [0, T ], as we need some regularity in t as well, that is
we need a control of |zτk+1− zτk | of some sort. This is something which may not be very
easy for the following reason. We know that zτk is a landscape function for ντk , that is
a �rst variation of Xα at ντk , and usually the regularity in time of the �rst variation is
given by the fact that νk+1 is close to νk, and that the �rst variation is unique and is
somewhat regular as a function of ν (often it has an explicit in terms of ν). Here, we
do not have uniqueness of the �rst variation in general, hence the one chosen at step
k+ 1 may be very di�erent from the one chosen at the previous step k. However since
Xα exhibits some kind of concave behaviour, we can hope that it is �often� unique (a
concave function on Rd being di�erential everywhere but in small set) and continuous.
If uniqueness fails anyway in our case, a careful choice should be made to guarantee
some continuity of the landscape functions between two consecutive time steps.

Evolution equation. As Eτ
k = {x : αzk(x) + ds(x,Ek−1)/τ ≤ λ}, it is reasonable to

claim that ∂Eτ
k ⊆ {x : αzk(x) + ds(x,Ek−1)/τ = λ} as in the static shape optimization

problem. Take a point x ∈ ∂Eτ
k , then one has:

ds(x,E
τ
k−1)

τ
= λ− αzk(x).

The quotient ds(x,Eτ
k−1)/τ can be interpreted as the speed of the boundary at point

x, thus the limit equation should be:

vt(x) = λ− αzt(x) for x ∈ ∂E(t), (5.1.10)

where vt(x) is the normal speed of ∂E(t) at x. But what sense should we give to
(5.1.10) ? This does not seem evident, as the sets E(t) have no reason to be regular
(even BV , since we suspect they may have fractal boundary), and as the regularity in
time that one should be expect is unclear. A possible weak formulation of equation
(5.1.10) could be the following: a curve of compact sets E(t) moves with normal speed
v if for all t > 0 and all x ∈ Rd \ E(t), the following holds:

d

dt
d(x,E(t)) = v(πE(t)(x)). (5.1.11)

Di�culties arise because πE(t) may not be well-de�ned, even if x is taken close to
the boundary ∂E(t), and the strategy to prove this from the discrete scheme has
yet to be elaborated. However let us give a reasoning which goes in that direction
for a particular geometric situation. Take a point x ∈ Rd \ (Eτ

k ∪ Eτ
k+1), denote by

xk = πEτk (x), xk+1 = πEτk+1
(x) (assuming they are well de�ned). Suppose that set has

�increased�, in the sense that the segment [x, xk+1] does not intersect Eτ
k and that [x, xk]

intersects Eτ
k+1 (see Figure 5.1), and denote x̃k+1 the intersection point closest to x.
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x

xk+1

x̃k xk

x̃k+1

Figure 5.1: Projection on Eτ
k and Eτ

k+1.

On the one hand, one has

d(x,Eτ
k ) = |x− xk| = |x− x̃k+1|+ |x̃k+1 − xk| ≥ d(x,Eτ

k+1) + |x̃k+1 − xk|,

but |x̃k+1 − xk| = d(x̃k+1, E
τ
k ) = ds(x̃k+1, E

τ
k ) and αzk+1(x̃k+1) + ds(x̃k+1, E

τ
k )/τ = λ

because x̃k+1 ∈ ∂Eτ
k+1, which leads to

d(x,Eτ
k ) ≥ d(x,Eτ

k+1) + τ(λ− αzk+1(x̃k+1)),

which rewrites

−
d(x,Eτ

k+1)− d(x,Eτ
k )

τ
≥ λ− αzk+1(x̃k+1). (5.1.12)

On the other hand, setting x̃k = πEτk (xk+1), one has

d(x,Eτ
k ) ≤ |x− x̃k| ≤ |x− xk+1|+ |xk+1 − x̃k|

= d(x,Eτ
k+1) + d(xk+1, E

τ
k ),

but d(xk+1, E
τ
k ) = ds(xk+1, E

τ
k ) and αzk+1(xk+1) + ds(xk+1, E

τ
k )/τ = λ because xk+1 ∈

∂Eτ
k+1, which implies that

−
d(x,Eτ

k+1)− d(x,Eτ
k )

τ
≤ λ− αzk+1(xk+1). (5.1.13)

When passing to the limit τ → 0, equations (5.1.12)-(5.1.13) may lead to the considered
relation (5.1.11).

5.2 Towards proving fractality of optimal shapes

In this section we try to provide some ideas and formal computations in the direction
of proving that the optimal shapes of Chapter 3 have a fractal boundary of non-integer
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dimension d − β where β = 1 + dα − d. Again, we stress that the computations or
proofs given here are quite sketchy and sometimes not proved in full detail as this is
still ongoing work.

Let ν = 1A be an optimizer of the shape optimization problem (Rα) and η ∈
OIPα(δ0, ν). We set Z = Zη and z = zη the landscape function associated to η. Then
for any η-good curve γ such that Z(γ) ≥ t we de�ne

πz≥t(γ) = γz≥t := γ|[z−1(t),+∞[,

and we consider the tail of η at level t, de�ned by

ηt = (πz≥t)#(η {Z > t}).

Let us compute the initial and �nal measures µt := (π0)#ηt and νt = (π∞)#ηt:

〈µt, φ〉 =

ˆ
Z>t

γz≥t(0) dη(γ) =

ˆ
Z>t

γ(z−1(t)) dη(γ).

〈νt, φ〉 =

ˆ
Z>t

φ(γz≥t(∞)) dη(γ) =

ˆ
Z>t

φ(γ(∞)) dη(γ) =

ˆ
z>t

φ(x) dν(x).

Notice that µt is atomic because if Z(γ) > t then θ(γ(z−1(t))) > 0 hence there can
only be countably many such γ(z−1(t)), since they lie on di�erent branches. Moreover
the total mass of νt is ‖νt‖ = ν(x : z(x) > t), but in our shape optimization problem
ν = 1z≤z? , hence

‖νt‖ = Vol(x : z? ≥ z(x) > t).

We know by Lemma 3.4.2 that we have the upper bound:

Vol(x : z(x) > t) ≤ C(z? − t). (5.2.1)

A conjecture on a lower bound of the volume In order to prove the lower bound
on the Hausdor� dimension of the boundary ∂E that we seek, that is

dimH(∂E) ≥ d− β,

which is stated in Conjecture 3.4.4, a key ingredient would be the reverse inequality of
(5.2.1), that is a lower bound on the volume of {z? ≥ z > t} as conjectured below.

Conjecture 5.2.1. There exists some c > 0 such that

Vol(x : z? ≥ z(x) > t) ≥ c(z? − t).

We do not have a strategy to prove this (if true), but let us just relate this volume
|x : z? ≥ z(x) > t| to other expressions or quantities which might be used to estimate
it from below. Let us compute the cost of ηt, observing that if ∞ > z(x) > t then
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θηt(x) = θ(x). One has

Iα(ηt) =

ˆ
Z>t

ˆ
γ

1z(x)>tθηt(x)α−1 d H 1(x) dη(γ)

=

ˆ
Z>t

ˆ
γ

1z(x)>tθ(x)α−1 d H 1(x) dη(γ)

=

ˆ
Z>t

(z(γ(∞))− t) dη(γ)

=

ˆ
z>t

(z(x)− t) dx.

This is a �rst simple expression for the cost of the tail of η cut for z > t. We may get
another expression using Fubini-Tonelli's theorem:

Iα(ηt) =

ˆ
Z>t

ˆ
γ

1z(x)>tθηt(x)α−1 d H 1(x) dη(γ)

=

ˆ
z(x)>t

θηt(x)α d H 1(x)

=

ˆ
z(x)>t

θη(x)α d H 1(x).

We may relate the tail energy Iα(ηt) to the volume Vol(t < z ≤ z?).

Proposition 5.2.2. The function t 7→ Iα(ηt) is Lipschitz and

d+

dt
Iα(ηt) = −Vol(t < z ≤ z?) and

d−

dt
Iα(ηt) = −Vol(t ≤ z ≤ z?).

Proof. Take for example ε > 0 small. We have

Iα(ηt+ε)− Iα(ηt) =

ˆ
z>t+ε

(z(x)− (t+ ε)) dx−
ˆ
z>t

(z(x)− t) dx

= − εVol(t < z ≤ z?)

+

(ˆ
z>t+ε

(z(x)− (t+ ε)) dx−
ˆ
z>t

(z(x)− (t+ ε)) dx

)
= −εVol(t < z ≤ z?)− ε

ˆ
t<z≤t+ε

(z(x)− (t+ ε))

ε
dx.

But ∣∣∣∣ˆ
t<z≤t+ε

(z(x)− (t+ ε))

ε
dx

∣∣∣∣ ≤ Vol(t < z ≤ t+ ε)
ε→0−−→ 0,

which shows that t 7→ Iα(ηt) is Lipschitz and implies that

d+

dt
Iα(ηt) = lim

ε→0+

Iα(ηt+ε)− Iα(ηt)

ε
= −Vol(t < z ≤ z?).

A similar computation with ε < 0 shows that

d−

dt
Iα(ηt) = −Vol(t ≤ z ≤ z?).
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Now we may reformulate the desired lower bound on the volume as follows.

Proposition 5.2.3. The following assertions are equivalent:

(i) ∃c > 0 : Vol(z > t) ≥ c(z? − t),

(ii) ∃c > 0 : Iα(ηt)
.
=
´
z>t

(z − t) ≥ c(z? − t)2,

(iii) ∃c > 0 :
´
z>t

(z? − z) ≥ c(z? − t)2.

Proof. Let us prove (i) ⇔ (iii). We know by the �rst variation formula for Xα and by
the scaling Lemma that

eα − eα(α + 1/d)m+ eα
α(α + 1/d)(α + 1/d− 1)

2
m2 ≤ eα − α

ˆ
z>t

z(x) dx,

where m = Vol(z > t). This rewrites, recalling that eα(α + 1/d) = αz?:

cm2 ≤
ˆ
z>t

(z? − z(x)) dx,

where c = c(α, d) is some constant. This inequality shows that (i) ⇒ (iii). On the
other hand one hasˆ

z>t

(z? − z(x)) dx ≤
ˆ
z>t

(z? − t) dx ≤ (z? − t)m,

which shows that (iii) ⇒ (i).
Similarly ˆ

z>t

(z(x)− t) dx ≤
ˆ
z>t

(z? − t) dx ≤ (z? − t)m,

which shows that (ii) ⇒ (i). It remains to prove (i) ⇒ (ii). But we know that

− d

dt
Iα(ηt) = Vol(t < z ≤ z?) ≥ c(z? − t),

which yields:
Iα(ηt) ≥ c(z? − t)2.

Lower dimension estimate from the lower estimate on the volume We want
to show a way to prove dimH{z = z?} ≥ d − β from Conjecture 5.2.1, that is from
Vol(z > t) ≥ c(z?− t), which we assume to be true in this paragraph. Notice that this
would still not prove Conjecture 3.4.4 since we only know that ∂A ⊆ {z = z?}.

The strategy is the following. The measure µt is an atomic measure, which we
renormalize as an atomic probability measure σt = µt/‖µt‖. We write it as:

σt =
∑
i∈N

aitδxit .

As t → z? it converges weakly (up to subsequence) to a probability measure σ. We
are going to prove that σ has a.e. a local dimension which is bounded from below by
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d−β. Of course, this measure is concentrated on the set {z = z?} thus getting a lower
bound on the dimension of this set by a mass distribution principle ([Fal97]).

Let us start with some notations. We write a ≈ b if there are constants c, C
depending only on α, d such that ca ≤ b ≤ Ca. For all x we denote by Bas(x) the
basin of x, by δ(x) its diameter and we set

z?(x) = sup{z(y) : x ≤ y}, ρ(x) = sup{|y − x| : x ≤ y},

where by x ≤ y we mean that y ∈ Bas(x). Finally we set

`(x, y) = sup{L(γ) : γ η-good from x to y},
and

`(x) = sup{L(γ) : γ η-good starting at x }.

Lemma 5.2.4. The following equivalences hold for all x ∈ E:

|Basx| ≈ `(x)d, (5.2.2)

ρ(x) ≈ `(x), (5.2.3)

δ(x) ≈ `(x), (5.2.4)

z?(x)− z(x) ≈ `(x)β. (5.2.5)

Moreover if y ≥ x is a point such that either z(y) = z?(x) or `(x, y) = `(x) then

|y − x| ≈ `(x). (5.2.6)

Proof. Take a point y ≥ x. Let us bound
´ y
x
θα−1 from above and below, using the fact

that z is Hölder-continuous and that θ(x) = |Bas(x)|:

Cδ(x)d(α−1)`(x, y) ≤ |Bas(x)|α−1`(x, y) = θ(x)α−1`(x, y)

≤
ˆ y

x

θα−1

= z(y)− z(x) ≤ C|y − x|β.

Now take a point y ≥ x which has maximal z, that is z(y) = z?(x). One may write

z?(x)− z(x) ≤ C|y − x|β ≤ Cρ(x)β ≤ C`(x)β.

Take a point y′ which maximizes `(x, y′), that is `(x, y′) = `(x). One may write

C`(x)β = C`(x)d(α−1)`(x) ≤ Cδ(x)d(α−1)`(x, y′) ≤ z?(x)− z(x).

Consequently one has approximate inequalities in the previous chain of inequalities:

`(x) ≈ δ(x),

`(x)β ≈ z?(x)− z(x),

ρ(x) ≈ δ(x),

|Bas(x)| ≈ δ(x)d.

Moreover, for the chosen y and y′, one has moreover:

|y − x| ≈ |y′ − x| ≈ `(x).
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Now notice that for all i, µt(xi) = Vol(Bas(xi)) ≈ δ(xi)
d, therefore:

σt(xi) ≈
δ(xi)

d

‖µt‖
.

δ(xi)
d

z?(xi)− t
,

the last inequality following from the fact that

‖µt‖ = Vol(z > t) ≥ c(z? − t) ≥ c(z?(xi)− t).

Since δ(xi)β ≈ z?(xi)− z(xi) = z?(xi)− t, thus

σt(xi)

δ(xi)d−β
.

δ(xi)
β

z?(xi)− t
≤ C.

We are not going to look at σt directly but at σ̃t de�ned by

σ̃t =
∑
i

ait
L |Bas(xi)

|Bas(xi)|
.

The calculation we did before gives:

σ̃t(Bas(xi)) ≤ C diam(Bas(xi))
d−β.

When t → z?, the measures σ̃t converge (up to subsequence) to a measure σ̃. Notice
that for all φ which is continuous:∣∣∣∣ˆ φ dσ̃t −

ˆ
φ dσt

∣∣∣∣ ≤∑
i

ati

 
Bas(xti)

|φ(x)− φ(xti)| dx
t→z?−−−→ 0

thus σt and σ̃t have the same limit (up to subsequence).

Lemma 5.2.5. The measure σ is concentrated on {x : z(x) = z?}.

Proof. Take x /∈ L, that is to say z(x) < z?. Consider z? > t > z(x) + ε with ε small.
Then for any y ∈ BCε1/β(x), one has z(y) < t by Hölder continuity of z and thus y does
not belong to any basin of points xt which satisfy z(xt) = t. Consequently

σ̃t(BCε1/β(x)) = 0,

which is true for all t large enough, hence taking the limit t→ z? yields:

σ̃(BCε1/β(x)) = 0.

Consequently suppσ ⊆ {x : z(x) = z?}.

Theorem 5.2.6. The measure σ has lower local dimension at least d−β, in the sense
that for σ-a.e. x, one has:

dimloc σ(x) := lim inf
ε→0

log σ(Bε(x))

log ε
≥ d− β.
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Lemma 5.2.7. There exists some ε0 small such that for all ε < ε0 and all x ∈ {x :
z(x) = z?}, the set Bε(x) only intersects a number of basins Bas(y) from points y such
that z(y) = z? − cε1/β which is bounded from above by a constant N = N(α, d).

Proof. It comes from the fact that all these basins are disjoint and occupy a volume
≈ εd, and they must all lie in some ball CBε(x), consequently there number is bounded
by such a constant.

Corollary 5.2.8. The level set of the landscape function L := {x : z(x) = z?} is of
dimension at least d− β, in the sense that:

dimH{x : z(x) = z?} ≥ d− β.

Proof of Theorem 5.2.6. Fix ε > 0 and x such that z(x) = z?. We consider the ball
Bε(x) and we �x a level t < z?. For all y ∈ Bε(x) ∩ L, there is an ancestor yt, that
is yt ≤ y, such that z(yt) = t. We know that along a curve reaching x ∈ L we have
|y − x|β ≈ z? − z(y) thus we may chose a t which is su�ciently close to z?, namely

z? − t ≈ εβ

to ensure that yt ∈ Bε(y), independently of y. Let us call Yt the set of such yt's. Thanks
to the previous lemma, this set has a cardinal bounded from above by a constant
N = N(α, d). Thus we write

Yt = (yit)i≤Nt ,

with Nt ≤ N . Since
Bε(x) ⊆

⋃
i≤Nt

Bas(yit),

we may deduce that

σ̃t(Bε(x)) ≤
∑
i≤Nt

σ̃t(Bas(yit)) ≤ C
∑
i≤Nt

diam(Bas(yit))
d−β.

One has that diam(Bas(yit)) ≈ (z? − z(yit))
1/β ≈ ε, which leads to

σ̃t(Bε(x)) ≤ CNtε
d−β ≤ Cεd−β.

Since Bε(x) is open, passing to the limit as t→∞ yields:

σ̃(Bε(x)) ≤ lim inf
t→∞

σ̃t(Bε(x)) ≤ Cεd−β.

Passing to the log and sending ε to 0 yields:

dimloc σ̃(x) = lim inf
ε→0

log σ̃(Bε(x))

log ε
≥ lim inf

ε→0

log(Cεd−β)

log ε
= d− β.

5.3 Further perspectives

The aim of this �nal section is to formulate some remaining open questions, among
many others of course, related to the work presented before and to propose some
research perspectives in a few words.
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The landscape function in the general case In Chapter 4 we have given a de�ni-
tion of landscape function when the optimal irrigation plan has a �nite root system, and
we have shown semicontinuity on the positive and negative basins, as well as Hölder
regularity results with extra hypotheses on the source and target measures µ, ν. In
general, there is only a countable (instead of �nite) root system, hence there is still
much work to be done to handle the general case. Many reasonings in Chapter 4 have
been made by �nite induction using the fact that there was a �nite root system, thus
some reasonings might be adapted to the general case by countable induction, perhaps
to give a proper de�nition of the landscape function, although some more involved
results like Hölder regularity or even semicontinuity should require more ideas (if even
true).

A di�erent approach to de�ne a landscape function may come from the following
remark. Notice that the map H(x) = x 7→ xα/α is continuous and concave on R+,
hence it may be expressed as a Legendre transform:

H(x) = inf
w≥0

wx−H?(w) where H?(w) =
wp

p

where p < 0 is the conjugate exponent of α satisfying 1/α + 1/p = 1. The optimal
irrigation problem may be rephrased formally as follows:

inf
η∈IP(µ,ν)
η recti�able

ˆ
K

H(θη(x)) d H 1(x)

= inf
η∈IP(µ,ν)
η recti�able

inf
w>0

ˆ
K

θη(x)w(x) d H 1(x)−
ˆ
K

H?(w(x)) d H 1(x)

= inf
w>0

ˆ
K

−H?(w(x)) d H 1(x) + inf
η∈IP(µ,ν)
η recti�able

ˆ
K

θη(x)w(x) d H 1(x).

We have merely proceeded by an inf-inf exchange, and we stress that the in�mum for
w is among any nonnegative Borel maps. Now notice that the last term rewrites by
Fubini-Tonelli's theorem:

inf
η∈IP(µ,ν)
η recti�able

ˆ
K

θη(x)w(x) d H 1(x) = inf
η∈IP(µ,ν)
η recti�able

ˆ
Γ

Lw(γ) dη(γ),

where Lw(γ) =
´
γ
w(x) dx is the weighted length of γ w.r.t. w. Set a pseudo-distance

dw(x, y) = inf{Lw(γ) : x
γ−→ y} and notice that if we want the righthand side to be

(almost) minimal then the curves γ should be (almost) dw-geodesics, hence

inf
η∈IP(µ,ν)
η recti�able

ˆ
Γ

Lw(γ) dη(γ) = inf
π∈Π(µ,ν)

ˆ
K×K

dw(x, y) dπ(x, y),

having dropped the recti�ability requirement, which can be justi�ed. Finally, the
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optimal irrigation problems rewrites

inf
η∈IP(µ,ν)
η recti�able

ˆ
K

H(θη(x)) d H 1(x) (5.3.1)

= inf
w>0

ˆ
K

−H?(w(x)) d H 1(x) + inf
π∈Π(µ,ν)

ˆ
K×K

dw(x, y) dπ(x, y)︸ ︷︷ ︸
MKw(µ,ν)

. (5.3.2)

The optimal irrigation problem can be seen as a Monge-Kantorovich problem with an
unknown transport plan π ∈ Π(µ, ν) but the cost is also part of the unknown: it is a
distance dw where w is not �xed but is penalized by

´
K
−H?(w(x)) d H 1(x). This term

forces w to be +∞ everywhere but on a 1-dimensional set because −H?(w) = −wp/p
with p < 0. This formulation might be worth looking at for itself, even more so as one
can apply Monge-Kantorovich duality to the term MKw(µ, ν):

inf
π∈Π(µ,ν)

ˆ
K×K

dw dπ = sup
φ⊕ψ≤dw

ˆ
φ dν +

ˆ
ψ dµ. (5.3.3)

If dw was the euclidean distance d, which is the Monge case, then the supremum could
be simpli�ed as

sup
φ⊕ψ≤dw

ˆ
φ dµ+

ˆ
ψ dν = sup

φ∈Lip1,d

ˆ
φ d(ν − µ),

and one is tempted to write the same for dw, leading to a primal-dual problem:

inf
π∈Π(µ,ν)

ˆ
K×K

dw dπ = sup
φ∈Lip1,dw

ˆ
φ d(ν − µ), (5.3.4)

but the meaning of this last problem is not so clear because dw is not a classical distance
as it takes +∞ values and the choice of the functional space for φ is not so clear either.
A possibility would be to look for solutions

φ ∈ L1(µ) ∩ L1(ν) ∩ Lip1,dw(Rd) (5.3.5)

where

Lip1,d = {φ ∈ B(Rd,R) : |φ(y)− φ(x)| ≤ dw(x, y) for all x, y} (5.3.6)

This setting gives a (proposed) a rigorous meaning to (5.3.4). But then what could we
say about Kantorovich potentials, that is optimal φ's ? It turns out they could play
the role of the landscape function. Indeed, in the single source case µ = δ0, the primal
problem is trivial since there is only one transport plan, and the primal-dual problem
(5.3.4) may be written as

ˆ
K

dw(0, y) dν(y) = sup
φ≤dw(0,·)

ˆ
K

φ(y) dν(y),

and dw(0, ·) is a solution. Now if η ∈ OIPα(δ0, ν), then w(x) = θη(x)α−1 is a solution to
(5.3.2) and one expects that η is concentrated on dw-geodesics so that dw(0, x) = zη(x)
for ν-a.e. x.
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The idea is the following: given η ∈ OIPα(µ, ν), set wη = θα−1
η , consider the

problem

sup
φ∈Lip1,dw

ˆ
φ d(ν − µ), (5.3.7)

for example in the setting of (5.3.5), and de�ne landscape functions as solutions of this
problem. The di�culty is then to show that there are solutions ! In classical optimal
transport theory, the dual problem

sup
ψ⊕φ≤c

ˆ
φ dν +

ˆ
ψ dµ

has solutions φ ∈ L1(ν), ψ ∈ L1(µ) when c is lower semicontinuous, bounded from
below and real-valued, which is not the case here with c = dw. Notice that if φ was a
solution to (5.3.7) and if we had duality in the sense of (5.3.4), then one should have

ˆ
φ d(ν − µ) =

ˆ
K×K

dw dπη =

ˆ
Γ

Lw(γ) dη(γ)

where πη ∈ Π(µ, ν) is the transport plan associated to η. Since |φ(y)−φ(x)| ≤ dw(x, y)
and since integrals with respect to µ, ν, πη may be rewritten as integrals with respect
to η, the previous equality should imply that Lw(γ) = dw(γ(0), γ(∞)) = φ(γ(∞)) −
φ(γ(0)) for η-a.e. γ. Notice that Lw(γ) = Zη(γ) hence Zη depends only on the endpoints
of the curves via Zη(γ) = φ(γ(∞))− φ(γ(0)). In particular the �rst variation formula
for Iα (Proposition 1.2.1) should yield a �rst variation formula for dα, as done in the
proof of Proposition 3.1.5 with µ = δ0 �xed, of the form

dα(µ′, ν ′) ≤ dα(µ, ν) + α

ˆ
φ d(ν ′ − ν)− α

ˆ
φ d(µ′ − µ),

for all µ′, ν ′. Notice however that such a general inequality for arbitrary µ′, ν ′ may not
be true if η is not single rooted, as noticed in Theorem 4.3.9. With such a de�nition
of landscape function one could hope to recover the fact that it is a kind of (super)
�rst variation for dα, which is the main property that is asked to tackle variational
problems involving this distance. Moreover, this is also the only property that is used
on the landscape function to prove Hölder continuity. Finally, notice that in the single
source case, problem (5.3.2) rewrites as

min
w>0

1

−p

ˆ
K

w(x)p d H 1(x) +

ˆ
K

zw(x) dν(x),

where zw = dw(0, ·). Since zw(x) is obtained by integrating w along a geodesic γ from
0 to x, w can be thought as some kind a derivative z′w of zw along the network, and if
one could rephrase the problem in terms of z = zw, it would read as

min
z

1

−p

ˆ
K

|z′(x)|p d H 1(x) +

ˆ
z(x) dν(x),

so that z would satisfy in some vague sense ∆pz = ν but with negative p. This does
not seem completely unreasonable since a connection between the branched transport
problem and p-harmonic maps has been made in the discrete case by Xia in [Xia14].
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On the frontier between irrigation basins We place ourselves in the single source
case. Take η ∈ OIPα(µ, ν) and recall the de�nition of basin from a point x ∈ Nη:

Basη(x) = {y : there is an η-good curve γ s.t. x ∈ γ and y = γ(∞)}.

One can show that it is a closed set. Consider two basins B,B′ from two points x, x′

such that x′ /∈ B and x /∈ B′: what can we say on B ∩B′ when the intersection is not
empty? A conjecture by J.-M. Morel is that it should be fractal, perhaps in the sense
that dimH(B ∩ B′) > d− 1, a very tempting conjecture being dimH(B ∩ B′) = d− β.
This question was one of the initial questions posed at the beginning of this thesis,
although the apparently simpler question regarding the fractality of the optimal shapes
considered in Chapter 3 could not be given a satisfying answer yet, hence much work
and new ideas are needed in order to answer this question. What can only be proven
for now is the fact that B ∩B′ is Lebesgue-negligible.

Numerical re�nements for the shape optimization problem Our numerical
approach described in Chapter 3 to compute a candidate solution to our shape opti-
mization problem does not allow us to re�ne the discretization grid and do the compu-
tations in a reasonable time. We would like to have a more precise picture of what an
optimizer should look like, and to be able to compute a box dimension of the boundary
so as to support Conjecture 3.4.4 stating that dimH(∂E) = d− β. In order to do that,
one should use more sophisticated tools to re�ne the grid, perhaps by multi grid meth-
ods (to re�ne the grid near the boundary) or moving grid techniques. This is in project
with E. Oudet. Also, one should at some point prove rigorously the Γ-convergence of
our approximate elliptic functional towards the branched transport functional with
inequality constraint on the divergence.

Variational approximation of the H-mass We would like to consider branched
transport problems with more general costs than

´
θη(x)α d H 1(x), namely to replace

the map x 7→ xα with a function H : R+ → R+ leading to a so-called H-mass:

MH(v) =


ˆ
Rd
H(|v(x)|) d H 1(x) if v is recti�able,

+∞ otherwise.
(5.3.8)

It seems the idea of considering such costs comes from the notion of �at chains with
coe�cients in normed groups, as considered by White in [Whi99], the H-mass being
introduced for the �rst time, as far as we know, in [DH03]. The standard hypotheses
for H are the following:

(i) H(0) = 0,

(ii) H is lower semicontinuous and nondecreasing,

(iii) H is subadditive,

(iv) limx→0
H(x)
x

= +∞.
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More general, the last hypothesis can be dropped, in which case one should take another
de�nition of H-mass by lower semicontinuous envelope:

MH(T ) = inf
Pn

F−→T

lim inf
n→∞

MH(Pn),

for �at chains T , that is the completion of polyhedral chains with respect to the �at
norm F and MH is de�ned by expression 5.3.8 on polyhedral chains. The validity of
(5.3.8) when (iv) is satis�ed, as well as a general representation formula when it does
not hold, was established recently in [Col+17]. A de�nition of H-cost in a Lagrangian
setting was given by [BW15], together with the proof on general properties in this case.
We have already remarked in Chapter 2 that the equivalence with the Lagrangian and
Eulerian models holds in the case of the H-mass with almost no changes, with extra
hypotheses on H (those also assumed [BW15]). Notice that removing hypothesis (iv)
does not guarantee that v is recti�able but it can have an absolutely continuous part.
In covers in particular the case of the urban planning studied in [But+09; BW15] where
H(m) = min(am, 1 + bm) with 0 < b < a.

What we would like to do now is perform numerical computations for such problems.
Can we adapt the variation model a la Modica-Mortola to the case of the H-mass? In
dimension 2, given H, we would like to �nd a function h : R+ → R+ such that Mh

ε

Γ-converges to MH where

Mh
ε (v) = ε−1

ˆ
R2

h(ε|v(x)|) dx+ ε3

ˆ
R2

|∇v(x)|2 dx.

We expect that a recti�able current v of mass m concentrated on a segment of length `
should be approximated by a di�use vector �eld vε concentrated on a tube around this
segment, oriented by the segment and invariant along it. The �ux on a perpendicular
section should be equal to m and vε should optimize Mh

ε with cost `H(m), hence it
should be given by a radial pro�le u : R→ R which optimizes:

min

{ˆ
h(|u(x)|) dx+

ˆ
u′(x)2 dx :

ˆ
u = H(m)

}
.

Questions arise: can we invert this formula, i.e. �nd an h such that it holds for all
m, H being given? Is there a formula or an expression in terms of H? Can we prove
Γ-convergence?
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Titre : Transport branché et structures fractales

Mots clefs : transport branché, transport optimal, calcul des variations, fractales, théorie géométrique de la
mesure

Résumé : Cette thèse est consacrée à l'étude du transport branché, de problèmes variationnels qui y sont
liés et de structures fractales qui peuvent y apparaître. Le problème du transport branché consiste à connecter
deux mesures de même masse par le biais d'un réseau en minimisant un certain coût, qui sera pour notre étude
proportionnel à mLα a�n de déplacer une masse m sur une distance L. Plusieurs modèles continus ont été
proposés pour formuler le problème, et on s'intéresse plus particulièrement aux deux grands types de modèles
statiques : le modèle Lagrangien et le modèle Eulérien, avec une emphase sur le premier. Après avoir posé
proprement les bases de ces modèles, on établit rigoureusement leur équivalence en utilisant une décomposition
de Smirnov des mesures vectorielles à divergence mesure. On s'intéresse par la suite à un problème d'optimisation
de forme lié au transport branché qui consiste à déterminer les ensembles de volume 1 les plus proches de l'origine
au sens du transport branché. On démontre l'existence d'une solution, décrite comme un ensemble de sous-
niveau de la fonction paysage, désormais standard en transport branché. La régularité Hölder de la fonction
paysage, obtenue ici sans hypothèse de régularité a priori sur la solution considérée, permet d'obtenir une borne
supérieure sur la dimension de Minkowski de son bord, qui est non-entière et dont on conjecture qu'elle en est la
dimension exacte. Des simulations numériques, basées sur une approximation variationnelle à la Modica-Mortola
de la fonctionnelle du transport branché, ont été e�ectuées dans le but d'étayer cette conjecture. Une dernière
partie de la thèse se concentre sur la fonction paysage, essentielle à l'étude de problèmes variationnels faisant
intervenir le transport branché en ce sens qu'elle apparaît comme une variation première du coût d'irrigation.
Le but est d'étendre sa dé�nition et ses propriétés fondamentales au cas d'une source étendue, ce à quoi l'on
parvient dans le cas d'un réseau possédant un système �ni de racines, par exemple pour des mesures à supports
disjoints. On donne une dé�nition satisfaisante de la fonction paysage dans ce cas, qui véri�e en particulier la
propriété de variation première et on démontre sa régularité Hölder sous des hypothèses raisonnables sur les
mesures à connecter.

Title : Branched transport and fractal structures

Keys words : branched transport, optimal transport, calcul of variations, fractals, geometric measure theory

Abstract : This thesis is devoted to the study of branched transport, related variational problems and fractal
structures that are likely to arise. The branched transport problem consists in connecting two measures of same
mass through a network minimizing a certain cost, which in our study will be proportional to mLα in order to
move a mass m over a distance L. Several continuous models have been proposed to formulate this problem, and
we focus on the two main static models : the Lagrangian and the Eulerian ones, with an emphasis on the �rst
one. After setting properly the bases for these models, we establish rigorously their equivalence using a Smirnov
decomposition of vector measures whose divergence is a measure. Secondly, we study a shape optimization
problem related to branched transport which consists in �nding the sets of unit volume which are closest to
the origin in the sense of branched transport. We prove existence of a solution, described as a sublevel set of
the landscape function, now standard in branched transport. The Hölder regularity of the landscape function,
obtained here without a priori hypotheses on the considered solution, allows us to obtain an upper bound on the
Minkowski dimension of its boundary, which is non-integer and which we conjecture to be its exact dimension.
Numerical simulations, based on a variational approximation a la Modica-Mortola of the branched transport
functional, have been made to support this conjecture. The last part of the thesis focuses on the landscape
function, which is essential to the study of variational problems involving branched transport as it appears as
a �rst variation of the irrigation cost. The goal is to extend its de�nition and fundamental properties to the
case of an extended source, which we achieve in the case of networks with �nite root systems, for instance if the
measures have disjoint supports. We give a satisfying de�nition of the landscape function in that case, which
satis�es the �rst variation property and we prove its Hölder regularity under reasonable assumptions on the
measures we want to connect.
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