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Titre : Solveurs performants pour l’optimisation sous contraintes en identification de

paramètres

Keywords : Optimisation sous contraintes, Systèmes point-selle, Préconditionneurs par blocs,

Problèmes inverses

Résumé : Cette thèse vise à concevoir des solveurs efficaces pour résoudre des systèmes

linéaires, résultant des problèmes d’optimisation sous contraintes dans certaines applications

de dynamique des structures et vibration (la corrélation calcul-essai, la localisation d’erreur, le

modèle hybride, l’évaluation des dommages, etc.). Ces applications reposent sur la résolution

de problèmes inverses, exprimés sous la forme de la minimisation d’une fonctionnelle en énergie.

Cette fonctionelle implique à la fois, des données issues d’un modèle numérique éléments finis,

et des essais expérimentaux. Ceci conduit à des modèles de haute qualité, mais les systèmes

linéaires point-selle associés, sont coûteux à résoudre. Nous proposons deux classes différentes

de méthodes pour traiter le système. La première classe repose sur une méthode de factorisa-

tion directe profitant de la topologie et des propriétés spéciales de la matrice point-selle. Après

une première renumérotation pour regrouper les pivots en blocs d’ordre 2. L’élimination de

Gauss est conduite à partir de ces pivots et en utilisant un ordre spécial d’élimination réduisant

le remplissage. Les résultats numériques confirment des gains significatifs en terme de rem-

plissage, jusqu’à deux fois meilleurs que la littérature pour la topologie étudiée. La seconde

classe de solveurs propose une approche à double projection du système étudié sur le noyau

des contraintes, en faisant une distinction entre les contraintes cinématiques et celles reliées

aux capteurs sur la structure. La première projection est explicite en utilisant une base creuse

du noyau. La deuxième est implicite. Elle est basée sur l’emploi d’un préconditionneur con-

traint avec des méthodes itératives de type Krylov. Différentes approximations des blocs du

préconditionneur sont proposées. L’approche est implémentée dans un environnement distribué

parallèle utilisant la bibliothèque PETSc. Des gains significatifs en terme de coût de calcul et

de mémoire sont illustrés sur plusieurs applications industrielles.



Hello World

Title : Efficient solvers for constrained optimization in parameter identification problems

Keywords : Constrained optimization, Saddle point systems, Block preconditioners, Inverse

problems

Abstract : This thesis aims at designing efficient numerical solution methods to solve linear sys-

tems, arising in constrained optimization problems in some structural dynamics and vibration

applications (test-analysis correlation, model error localization, hybrid model, damage assess-

ment, etc.). These applications rely on solving inverse problems, by means of minimization

of an energy-based functional. This latter involves both data from a numerical finite element

model and from experimental tests, which leads to high quality models, but the associated

linear systems, that have a saddle-point coefficient matrices, are long and costly to solve. We

propose two different classes of methods to deal with these problems. First, a direct factor-

ization method that takes advantage of the special structures and properties of these saddle

point matrices. The Gaussian elimination factorization is implemented in order to factorize

the saddle point matrices block-wise with small blocks of orders 2 and using a fill-in reducing

topological ordering. We obtain significant gains in memory cost (up to 50%) due to enhanced

factors sparsity in comparison to literature. The second class is based on a double projection

of the generated saddle point system onto the nullspace of the constraints. The first projection

onto the kinematic constraints is proposed as an explicit process through the computation of

a sparse null basis. Then, we detail the application of a constraint preconditioner within a

Krylov subspace solver, as an implicit second projection of the system onto the nullspace of the

sensors constraints. We further present and compare different approximations of the constraint

preconditioner. The approach is implemented in a parallel distributed environment using the

PETSc library. Significant gains in computational cost and memory are illustrated on several

industrial applications.
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moi. J’ai donc cette envie irrépressible de leur rendre hommage et de leur exprimer ma plus

profonde reconnaissance.
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and ordering method (Algorithm 3.1) blue (stiffness), green (constraint), red

(measures) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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1.1. Industrial context

1.1. Industrial context

EDF, as an operator of electric power production, needs to understand the mechanical behav-

ior of ageing equipments of which it is not the manufacturer, in the purpose to ensure their

proper functioning and to optimize their availability. Its R&D division rely on its expertise

in the field of structural mechanics through a wide-scope of research activity (vibrations,

fluid- structure interaction, seismic, rotor-dynamic machines, etc.) in order to guarantee the

safety of the generation plants and maintaining high efficiency.

Some structures may be exposed to high levels of vibration due to poor initial design and

ageing installations. As soon as the power plant starts up, a number of problems appear and

no definitive solution is adopted. These issues can result in reduced structural integrity and

could therefore be detrimental to both engine reliability and performance with a potentially

serious impact on safety.

The detection of high vibration levels leads to the production shutdown, in order to avoid

equipments damage. And this shutdown has a significant impact on the quality of service

and performance. The industrial context emphasizes the need to consider the condition of

ageing nuclear assets and manage their performance.

1.2. Considered methods and goals

This issue requires a deep understanding of the physical phenomena involved and the realiza-

tion of numerical models to assess the corrective solutions. In order to diagnose the origin of

the problem, test campaign is first and foremost performed on structures. A numerical model

is then built to reproduce the nominal behavior and evaluate proposed solutions. Therefore,

the designed numerical models must be of good quality in order to accurately predict the

behavior of analyzed structures. Experimental data is then used for model-updating or field

reconstruction purposes through inverse and namely identification problems.

Up to now, least-square’s type methods were used to solve these identification problems. In-

deed, the representativeness of numerical models is quantified during the stages of verification

and validation and experimental information is then combined with numerical simulations to

complete the a priori knowledge of structural behavior to propose industrial solutions. Hence,

we seek to give the best state and parameter estimation in structural dynamics problems

from both a finite element based mathematical model and a set of available experimental

data. This work arises from EDF’s need to improve solution methodologies for these inverse

problems and their associated constrained optimization problems in structural dynamics.
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1. Introduction and general overview

Among the different existing approaches that enable these steps, one is based on energy

functionals. This approach has shown its efficiency and has appeared to be an appropriate

indicator of the quality of a model with respect to measured data [38][94]. Adopting the

above-mentioned approach in a finite element framework leads to a sparse and large linear

system of equations equivalent to a saddle-point system or Karush-Kuhn-Tucker (KKT) sys-

tem. It arises too in many applications of scientific computing, e.g. constrained optimization

and incompressible fluid flow [17].

The implementation of energy-based functional approach within the work of Kuczkowiak

[71] shows that direct solvers used in mechanical softwares fail to solve efficiently the inverse

problem associated to an industrial structure model with more than 106 dofs and few hun-

dreds of measurement points and provide a huge computation cost for a single calculation.

But the numerical solution of large-scale industrial scientific problems generally requires

large computational times and large memory needs. Many efforts are acknowledged with re-

spect to both computer architecture aspects and the design of efficient algorithms, in order

to provide effective simulation tools. In this thesis, we are rather interested in the second

aspect.

This research work focuses on the solution of problems issued from large-scale identification

problems. More specifically, the main goal is to provide efficient solution methods to speedup

the solution of constrained optimization problems within the framework of the open-source

software Code Aster R© [1], which is a general purpose finite element code developed at EDF.

The choice of the considered methods directly is guided by from the main target of memory

and computational time efficiency.

In this work, direct solution methods have been investigated as a way to address the sequence

of saddle point systems to solve. Direct solvers consist of a first factorization of the coefficient

matrix into triangular factors, then successive forward and backward substitutions. They

are usually designed as a preprocessing step is applied before the factorization. This includes

scaling, pivoting and ordering. The preprocessing step makes the numerical factorization in

many cases easier and cheaper, which influences by the way the memory and the time of the

factorization step[3]. In that sense, direct solvers have been widely and successfully used in

the past decades in structural dynamics problems, particularly in the area of vibrations.

Direct solution methods, however, require a huge memory when dealing with a large and

sparse linear system. In structural mechanics, as in other applications, these methods have

proved to be efficient in the two-dimensional case, but a significant fill-in phenomenon usually

occurs when factorizing large-scale three-dimensional problems [103]. Hence, the memory

requirement generally penalizes their use. Furthermore, the a priori saddle point structure

of the systems appears to be problematic.
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The second class of methods is the iterative methods which provide a sequence of approxi-

mations of the solution of the linear system. Contrary to the direct solvers, these methods

only require the knowledge of the action of the matrix on a vector. Furthermore, they are

particularly well adapted to parallel computing [97].

We try here by means of a hybrid approach to reduce the needed memory and computation

time. We mix up direct and iterative methods so that they contribute together to empower

each other. Therefore, the factorization which is the key element of direct methods is used

in preconditioned iterative methods.

We finally implements the developed methods in the mechanical code CodeAster R©. The

contribution of this thesis will therefore be useful for industrial applications such as updating

structural finite element models from test data, or identifying unknown parameters[34].

1.3. Overview of the thesis

In light of the above topics and issues, this dissertation is divided into four chapters besides

of this short chapter of introduction. Chapter 2 proposes an introduction to important

information that is used along the different chapters. We explain the identification problems

through energy based functionals. We detail the formulation of their associated constrained

optimization problems and how it leads to the solution of a sequence of symmetric saddle

point linear systems. Next, we give a brief overview of existing methods for the solution

of those systems, where we we give relevant information about direct solvers and Krylov

subspace methods. The chapter’s main goal is to provide a detailed explanation of the

purpose of this thesis.

In Chapter 3, two different strategies using direct solution methods are proposed. The first

strategy is devoted to building a variant direct solution method that uses a dynamic process

handling factorization and ordering in the same step. This process enables to avoid pivoting

and to gain some fill-in especially in the case of indefinite symmetric matrices. While this first

strategy is of general purpose, the second one takes more advantage of the special structure

and properties of the studied saddle point system. The Gaussian elimination factorization is

implemented in order to factorize the saddle point matrices block-wise with small blocks of

orders 2 and using a fill-in reducing topological ordering. We will notice through numerical

experiments that those strategies remain less efficient in term of memory.

Then, we develop another class of solution methods in Chapter 4. We propose a double

projection of the generated saddle point system onto the nullspace of constraints. The first

projection onto the kinematic constraints is proposed as an explicit process through the
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computation of a null basis. Then, we detail the application of a constraint preconditioner

as an implicit second projection of the system onto the nullspace of the sensors constraints.

We characterize the spectrum of the preconditioned matrix, and we further carry out a

comparison of different approximations of the constraint preconditioner.

Chapter 5 puts the latter strategy at work on two problems of industrial relevance, namely

on a nuclear power plant alternator and a cooling water pump. Firstly, we illustrate nu-

merical efficiency of the double projection approach when applied to the complex industrial

application of the alternator, we solve a sequence of the saddle point systems generated for

a set of experimental eigenfrequencies and we evaluate the parallel performance. The sec-

ond application investigates the use of the solution method when applying the energy-based

approach in order to update the pump numerical model.

Finally, we draw final remarks and future research plans in Chapter 6.

21



22



Chapter 2
Large-scale identification problems

Contents

2.1. Identification methods . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1. Model parameter identification as an inverse problem . . . . . . . 24

2.1.2. Energy-based functional approaches . . . . . . . . . . . . . . . . . 26

2.1.3. The constrained optimization problem . . . . . . . . . . . . . . . . 26

2.2. Toward a saddle point system . . . . . . . . . . . . . . . . . . . . 30

2.2.1. Different approaches for introducing kinematic constraints . . . . . 32

2.2.2. Sensors constraints and observability of shape modes . . . . . . . . 35

2.2.3. Saddle-point linear systems . . . . . . . . . . . . . . . . . . . . . . 36

2.2.4. The coefficient matrix properties . . . . . . . . . . . . . . . . . . . 39

2.3. Solution methods of saddle point problems . . . . . . . . . . . . 44

2.3.1. Solving symmetric indefinite systems with sparse direct solvers . . 44

2.3.2. block factorization approach . . . . . . . . . . . . . . . . . . . . . . 47

2.3.3. Krylov subspace methods . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.4. Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.5. Segregated solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

23



2.1. Identification methods

2.1. Identification methods

As seen in the industrial context section, it is essential in industry to understand the me-

chanical behavior of equipments to ensure their structural performance and optimize their

availability. Some structures may be exposed to high levels of vibration which requires a deep

understanding of the physical phenomena involved and the realization of numerical models

to assess the corrective solutions. In many cases, experimental information is combined with

numerical simulations to complete the a priori knowledge of structural behavior in an effort

to address industrial issues. Consequently, numerical models must be of good quality in

order to accurately predict the behavior of analyzed structures. In order to achieve a good

model prediction, we use the identification of adequate model parameters.

2.1.1. Model parameter identification as an inverse problem

Model parameter identification is a very important and challenging matter in science and

technology. This kind of inverse problem arises in many applications.

In direct problems, it is often considered as a general rule to impose boundary conditions

either on the primal variable (temperature, displacement, electric potential, ...) as a Dirichlet

problem or on the dual one (temperature flux, surface force density, current vector) as a

Neumann problem. In the most complicated cases, one can have a combination of conditions

as a mixed boundary conditions problem but the number of independent conditions must

always be the same. These conditions generally ensure that the direct problem is solvable.

Basically, we consider that the solid geometry and its physical characteristics (conductivity,

elastic moduli,...) are also known. Conversely and from a physical point of view, an inverse

problem is a situation in which we want to evaluate some physical quantities θ that are

inaccessible through experimental setting. In order to identify these unknown quantities

called parameters, we need to exploit experimental information from another measurable

physical quantities d. And using a mathematical model of the direct problem, we get θ

explicitly from d (which is symbolically denoted d = G(θ)). The principle of identification

methods consists in establishing a mathematical relation based on physical laws, also known

as the model, linking both measurable and non-measurable quantities in a way that the

sought-after quantities can be found from the available measurements.

The solution of inverse problems may encounter, mathematically speaking, problems of exis-

tence, uniqueness and continuity of the solutions [21].The reader may find a general overview

on these methods describing general theory and inversion techniques in [106] and [22].
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2. Large-scale identification problems

Figure 2.1.: An inverse problem and its associated direct problem

It is usually possible to access in-service structures information and their structural behavior

like their frequencies or their modal displacements. These modal data can be calculated by

means of a continuous or discrete model, if the structures are perfectly known. Conversely,

this experimental modal data makes it possible to cover up a certain degree of ignorance of

the system. More concretely, they are used in some industrial applications like

• Model-updating, if the used model is suspected. Due to aging and evolving structures,

their functioning is affected and does not comply with the initial design;

• Identification of imperfectly known boundary conditions;

• Monitoring, detection or quantification of defects.

Solving model parameters identification problems depends on the nature of the problem

(statics, dynamics, etc.). Parameters identification problems ends up generally being for-

mulated as an optimization problem, namely seeking the minimum of a cost function that

quantifies in a certain metrics the difference between a model prediction and the available

data. The cost function is built in the literature in different ways. Among the different

approaches, there are

• Approaches based on least-squares [107] where the metrics is a L2 norm.

• An approach based on auxiliary fields, which are fields whose equations of motion

admit a single solution. Generally, cost functions are built upon the overdetermined

data over the boundary domain [6].

• Approaches consisting on energy-based functionals. An interesting example using this

approach within the framework of the Error in Constitutive Relation (ECR) [72] can

be found in [34].
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In the next section, a more in-depth description of energy-based identification methods

is provided. For more information on identification problems for structural mechanics, the

reader can find a general overview in [23] and [22], and in particular for industrial applications

like modal-updating or fields reconstruction in [75], [5], [14] and [15].

2.1.2. Energy-based functional approaches

This approach has first been introduced by P. Ladevèze [72] in the 1970s as a method that

uses an error indicator to check the quality of the solutions obtained by finite element (FE)

model. Unlike in the case of the auxiliary fields or the least-squares approaches, where the

quality of the model is measured by the distance between the solution of the direct problem

to the measured data, the energy-based functionals measure the model error.

As mentioned before, many applications and different versions have been proposed, for in-

stance for model updating [29, 40] and identification problems [55, 85], or model quality

assessment [73, 76]. Besides, several studies have successfully applied this principle under

linear or nonlinear conditions [14, 29], either in the frequency domain [40] or the time domain

[55, 54].

Therefore, the energy-based functional approach appears to be an appropriate indicator of

the quality of a model with respect to measured data and some particularly good properties

deserve to be highlighted. Indeed, it is able to locate erroneously modeled regions in space

[13, 67]. It is robust even in presence of noisy data and provides good convexity properties

of cost functions[62].

Thanks to energy based functional approach, we are able to build a model that predict the

structural behavior of structures [71, 34]. It is called the hybrid model, and is the combination

of the numerical and experimental ones. We integrate the identified experimental data into

the numerical model instead of looking at both models separately. An expansion operator is

then constructed introducing an additional approximation. More precisely, we seek to extend

the specific solutions identified experimentally on the numerical model. This step makes it

possible to eliminate the model calibration phase and to ensure that the finite element model

has an overall good inertia and stiffness properties.

2.1.3. The constrained optimization problem

In most of the industrial and application cases, and in the particular scope of interest of this

work, the study of structural dynamic behavior is performed by means of Finite Element

models. Besides, for industrial application cases energy-based functional approach aims to
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reconstruct fields on a numerical model from experimentally obtained data. In structural

dynamics, the kind of data we seek to reconstruct on a FE model are often eigenmodes or

displacement fields. The objectives are various as seen in above sections reconstruction for

visualization, test assessment, model calibration, damage identification and extrapolation of

the delicate degrees of freedom (dofs) that can not be obtained by experiments.

Let us consider a structure and its FE model with n degrees of freedom (dofs), where

[M ] ∈ Rn×n and [K] ∈ Rn×n are the so-called mass and stiffness matrices respectively. We

know that each couple of eigenvalue and eigenvector (ω, ϕ) of the finite element numerical

model satisfies (
[K]− ω2[M ]

)
{ϕ} = 0, {ϕ} 6= 0. (2.1)

Nevertheless, the model equations are not correct nor complete to represent the physical

equations, due to modeling assumptions, simplifications, misconceptions and possible model

errors. Besides there are some model parameters errors, which include the uncertainty on

boundary conditions, and inaccuracy on model parameters. These factors imply that the

numerical eigencouples may not correspond to the real dynamic behavior of the structure.

We use a set of unknown model parameters θ that parametrize the mass matrix [M ] =

[M(θ)] ∈ Rn×n and the stiffness matrix [K] = [K(θ)] ∈ Rn×n, and consequently couples

of eigenvalue and eigenvector (ωθ, ϕθ), in order to modelize these uncertainties and mis-

knowledge.

The identification problem aims to find this set of parameters θ such that each couple of

numerical eigenvalue and eigenvector (ωθ, ϕθ) is close to the correspondent experimental one

(ωexp, φexp) where φexp is only defined on s << n sensors.

The energy-based functional is constructed using two fields

• Let {ϕ} be the solution field and interpreted as the best estimation of the eigenmode

ϕθ, minimizing the distance with the measured eigenmode φexp at the pulsation ωexp,

while maintaining the regularity properties of eigenmodes.

• Let {ψ} be an error field that expresses the error in stiffness in the model which facil-

itates identifying the best set of parameters θ that enables a satisfactory reproduction

of the measurements through successive iterations. It satisfies

[K(θ)]{ψ} =
(
[K(θ)]− ω2

exp[M(θ)]
)
{ϕ}. (2.2)

The energy functional consists of the elastic potential energy of the error term ψ and aug-
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mented by the distance between measured and computed eigenmodes

eω({ϕ}, {ψ}, {θ}) =
1

2
{ψ}T [K(θ)]{ψ}+ r

2(1− r)
(Π{ϕ}−{φexp})T [Kr](Π{ϕ}−{φexp}) (2.3)

where r ∈ [0, 1] is a weighting scalar, Π is a projection operator from the space of the

numerical finite element model to the observation space and Kr ∈ Rs×s is a symmetric

positive definite scaling matrix. Although the choice of Kr is not a priori defined, it is

usually chosen to be dimensionally consistent with the induced energy norm and can be

obtained, for instance, by using the Guyan reduction on the observation space. More details

about Kr are available in [34].

In addition to the constraint (2.2), there are kinematic linear constraints which are described

as follows

[C]{ϕ} = 0, [C]{ψ} = 0, (2.4)

where [C] ∈ Rm×n represents m linear relations coming from the kinematic boundary con-

ditions and modeling constraints as will be detailed in section 2.2.1. It is supposed to be of

full row rank m. If it is not the case, we find either that the problem is inconsistent or that

some of the constraints are redundant and can be deleted without affecting the solution of

the problem. Moreover, the matrix [K] is supposed to be positive definite on ker([C]), which

ensures that the constraints lock the rigid body motions of the structure.

An important question to ask is what role experimental measurements play in the energy-

based functional in equation (2.3) ?

Before answering this question, let us present some helpful concepts. As seen before, energy-

based functional approach is generally based on the minimization of a cost function. In

general, this kind of problems leads to the resolution of a sub-determined linear system, and

whose solution may be in many cases ill-posed in the sense of Hadamard [30] as it may not

respect one or more of these listed conditions

• a solution exists,

• the solution is unique,

• the solution’s behavior changes continuously with the initial conditions.

The ill-posedness of the identification problem will generally lead to instability and sensi-

tivity of the solutions with respect to noisy data. To overcome this issue, we use Tikhonov

regularization techniques [108, 22], which are widely used when solving inverse problems

[106]. It consists on adding, among the set of admissible solutions, what we call regular-

ization conditions. It thus makes possible to introduce an a priori knowledge about the
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sought-after solution, which has the property to stabilize the solution with respect to noise

in data.

Hence, to answer the above question, the role of experimental measurements here is to

be Tikhonov regularization parameters, which facilitates the reconstruction of unobserved

fields. The parameter r makes it possible to control the importance of regularization in

the cost function. It represents the confidence that we have in the identified eigenvectors.

Actually, the more the coefficient r tends to 1, the more the motion of identified solution

degrees of freedom corresponds to the motion of the experimental degrees of freedom. On

the contrary, the more r tends to 0, the more the motion of the identified solution degrees of

freedom tends towards the motion of the numerical model degrees of freedom. In the many

publications dealing with energy-based approaches for identification problems, few provide a

real justification for the value of r, and choosing its suitable value is not trivial. Nevertheless,

the value of r = 0.5 makes the cost function robust with respect to the noise as mentioned

in [90, 74]. Here, we choose this value, so that both terms in the cost function (2.3) fulfill

a different role during the identification. The term corresponding to the error in stiffness

try to highlight the admissible forms while the second term try to obtain the best solution

among all admissible ones, in the sense that it minimizes the distance between experimental

and numerical model data.

Remark 2.1. It is also possible to choose a varying scheme for r, as done in [12] where

the energy-based approach is used as a cost function for the identification of elastodynamic

parameters from experimental measurements. Since the minimization is done in an iterative

way, the paper proposes an increasing iterative scheme for r in order to reduce the number

of iterations to obtain the optimal identified parameters. This approach may facilitate the

solution of the inverse problem due to the effect of the regularization terms that constrain

the cost function more and more.

In order to evaluate the discrepancy of a FE model with respect to a set of measurements,

we adopt the following method. Given a set of model parameters θ that parametrize [M ] =

[M(θ)] ∈ Rn×n and [K] = [K(θ)] ∈ Rn×n, we obtain the admissible fields

Sω = ({ϕ̂}, {ψ̂}), (2.5)

that minimizes (2.3). This minimization leads to the resolution of linear systems as developed

in next section. Finally, we evaluate the model error by computing eω(Sω, θ).
To find the best set of model parameters θ, since the admissible fields solution of (2.3)

depends on θ (Sω = (Sω(θ)), we solve the identification problem over a number of iterations.
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The mathematical problem is formally written as

θ̂ = argmin
θ∈Θ

eω(Sω, θ). (2.6)

2.2. Toward a saddle point system

We search a solution that minimize the energy functional (2.3) under the constraints (2.2)

and (2.4). In order to solve this constrained optimization problem, a Lagrangian functional

is introduced using the following Lagrange multipliers λ, λ1, and λ2 and is presented in the

following

Fω ({ϕ}, {ψ}, {λ}, {λ1}, {λ2}, θ) = eω ({ϕ}, {ψ}, θ)+cω ({ϕ}, {ψ}, {λ}, {λ1}, {λ2}, θ) , (2.7)

where

cω({ϕ}, {ψ}, {λ}, {λ1}, {λ2}, θ) = {λ}T
((

[K(θ)]− ω2
exp[M(θ)]

)
{ϕ} − [K(θ)]{ψ}

)
− {λ1}T [C]{ψ}+ {λ2}T ([C]{ψ} − [C]{ϕ}) . (2.8)

The variable θ is considered as implicit here and it will be used afterwards for model up-

dating and robust expansion purposes. The optimal value of {ϕ, ψ, λ, λ1, λ2} satisfies the

stationarity condition

dFω ({ϕ}, {ψ}, {λ}, {λ1}, {λ2}, θ) = 0, ∀{ϕ, ψ, λ, λ1, λ2} (2.9)

∂Fω
∂ϕ

dϕ+
∂Fω
∂ψ

dψ +
∂Fω
∂λ

dλ+
∂Fω
∂λ1

dλ1 +
∂Fω
∂λ2

dλ2 = 0, ∀{ϕ, ψ, λ, λ1, λ2} (2.10)

which yields the following system of equations using the symmetry property of [M ] and [K]

r
1−rΠ

T [Kr](Π{ϕ} − {φexp}) + ([K(θ)]− ω2
exp[M(θ)]){λ} − [C]T{λ2} = 0

[K(θ)]{ψ} − [K(θ)]{λ}+ [C]T{λ2} − [C]T{λ1} = 0

−[K(θ)]{ψ}+ ([K(θ)]− ω2
exp[M(θ)]){ϕ} = 0

[C]{ψ} = 0

[C]{ψ} − [C]{ϕ} = 0

(2.11)
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2. Large-scale identification problems

The third equation of (2.11) allows us to write

[K(θ)]{ψ} = ([K(θ)]− ω2
exp[M(θ)]){ϕ} (2.12)

consequently transforming the second equation in (2.11)

([K(θ)]− ω2
exp[M(θ)]){ϕ} − [K(θ)]{λ}+ [C]T{λ2} − [C]T{λ1} = 0 (2.13)

Using first, third and fourth equations in (2.11) in addition to (2.13), yields the following

system of linear equations
−[K(θ)] −[C]T [K(θ)]− ω2

exp[M(θ)] [C]T

−[C] 0 [C] 0

[K(θ)]− ω2
exp[M(θ)] [C]T r

1−rΠ
T [Kr]Π 0

[C] 0 0 0



{ψ}
{λ1}
{ϕ}
{λ2}

 =


0

0
r

1−rΠ
T [Kr]φexp

0


(2.14)

This system arises as the first-order optimality conditions for an equality-constrained quadratic

programming problem.

The stiffness and mass matrices considered here have different structures from usual ones

[K̃] =

(
[K(θ)] [C]T

[C] 0

)
, [M̃ ] =

(
[M(θ)] 0

0 0

)
(2.15)

with [K] ∈ Rn×n, [M ] ∈ Rn×n and [C] ∈ Rm×n, m ≤ n. In this case, the matrices [K] and

[M ] are the stiffness and mass matrices respectively without any constraints. [K] is sparse

and symmetric positive semidefinite. The dimension of its nullspace ker([K]) corresponds to

the number of rigid body motions of the studied body.

Through this formulation, the constrained mass [M̃ ] and stiffness [K̃] operators enable to

describe the studied system (2.14) as follows(
−[K̃(θ)] [K̃(θ)]− ω2

exp[M̃(θ)]

[K̃(θ)]− ω2
exp[M̃(θ)] r

1−r Π̃
T [K̃r]Π̃

)(
{ψ̃}
{ϕ̃}

)
=

(
0̃

r
1−r Π̃

T [K̃r]φ̃exp

)
(2.16)

where the symbol ∼ describes the augmented form of each operator and each variable.

Remark 2.2. The constraint equations are introduced via Lagrange multipliers {λ}, {λ1}
and {λ2}. Here, we choose a specific form to describe the kinematic constraints through

the Lagrange multipliers which is −λT1Cψ + λT2 (Cψ − Cϕ) instead of the classical form

λT1Cψ + λT2Cϕ, in order to get the same structure of the constrained matrix (2.16) as the

one generated by the industrial mechanical software Code Aster R©.
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2.2. Toward a saddle point system

2.2.1. Different approaches for introducing kinematic constraints

As we study linearly constrained structures, the constraint matrix [C] ∈ Rm×n has m linear

equations coming from two kinds of constraints

• single-freedom constraints (SFCs) they are essential boundary conditions on individual

degrees of freedom. For example ui = 0 means that only the node i is constrained,

where {u} = (ui) is the vector of physical degrees of freedom (dofs).

• multifreedom constraints (MFCs) These are functional equations that connect two or

more displacement components. In our case of study only linear constraints will be

studied. As usually done in industrial solvers, these relations are introduced directly

into the discretized problem. They can model for instance a non-deformable part of

the structure or connecting conditions between modelings [83].

The stiffness matrix is assembled ignoring all constraints. these constraints is imposed by

changing the assembled stiffness matrix to produce a modified one. The modification process

is not unique because there are many constraint imposition methods. These ones offer trade-

offs in implementation, computational effort, numerical accuracy and stability. Among these

methods, we find in the mechanical software Code Aster R© two main ones : elimination and

dualization of linear and affine kinematic constraints.

Remark 2.3. In Code Aster R©, the SFCs can be either directly eliminated or dualized. The

MFCs can not be easily eliminated in the matrix [K̃]. They are added to the discretized

problem in Code Aster R©, as in many industrial software. Nevertheless, the imposition of

MFCs directly on the discretized unknowns is much easier to implement and much more

versatile (it easily mixes displacement and rotation) so that it is real common and powerful

modelization tool for the engineers.

We discuss in the following sections both methods for introducing the linear kinematic con-

straints and their application within the developed solutions methods in Chapters 3 and

4.

Dualization of the boundary conditions

The dualization method is the one used in section 2.2 by introducing Lagrange multipliers,

and also the one that is considered in Chapter 3 to generate the saddle point systems.

This approach is used in Code Aster R© and in many other general-purpose finite element
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2. Large-scale identification problems

programs that it is supposed to work as a black-box by minimizing guesses from its users. It

increases the size of the problem by introducing new unknowns through Lagrange multipliers.

Physically this set of unknowns represent constraint forces that would enforce the kinematic

constraints applied to the unconstrained system. This approach is exact aside from finite

precision arithmetic problems, it is extended to nonlinear constraints and we could obtain

the constraint forces directly.

The approach has two drawbacks. On the one hand, the adjunction of Lagrange multipli-

ers increases the number of degree of freedom of the whole problem, requiring expansion

of the original stiffness and mass matrices, which means more complicated storage alloca-

tion procedures. This may be disadvantageous when the number of boundary conditions

increases.

On the other hand, it leads to a loss of the positivity property of the stiffness matrix. We

recall that the resulting augmented stiffness and mass matrices have different structures from

usual ones as mentioned in (2.15). The resulting stiffness matrix becomes indefinite which

restrains the use of many factorization methods without permutation especially LDLT that

rely on positive definiteness. In fact, breakdown can occur due to zeros on the diagonal of

the (2,2) block in (2.16).

Even though, we will consider this approach when solving the system directly in Chapter 3,

as done in Code Aster R© software. In this case, the studied linear system is the system 2.16.

Remark 2.4. To overcome the stiffness matrix indefiniteness issue in Code Aster R©, the

stiffness matrix in 2.15 is transformed into an equivalent one, using double Lagrange multi-

pliers [88] as follows

[ ˜̃K] =

 [K] α[C]T α[C]T

α[C] −αI αI
α[C] αI −αI

 , (2.17)

where α > 0 is a scaling coefficient, chosen in order to obtain coefficients in the matrix α[C]

of similar magnitude with the ones of [K]. And similarly

[˜̃M ] =

[M ] 0 0

0 0 0

0 0 0

 (2.18)

where [M ] is the mass matrix of the unconstrained system.
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2.2. Toward a saddle point system

The saddle point linear system 2.16 becomes as follows −[ ˜̃K(θ)] [ ˜̃K(θ)]− ω2
exp[
˜̃M(θ)]

[ ˜̃K(θ)]− ω2
exp[
˜̃M(θ)] r

1−r
˜̃ΠT

[ ˜̃Kr]
˜̃Π

({˜̃ψ}
{˜̃ϕ}

)
=

 ˜̃0
r

1−r
˜̃ΠT

[ ˜̃Kr]
˜̃φexp

 , (2.19)

where the symbol ≈ describes the new augmented form of each operator and each variable,

and 

r
1−r
˜̃ΠT

[ ˜̃Kr]
˜̃Π =


r

1−rΠ
T [Kr]Π 0 0

0 0 0

0 0 0

 ,

r
1−r
˜̃ΠT

[ ˜̃Kr]
˜̃φexp =


r

1−rΠ
T [Kr]φexp

0

0

 ,

˜̃ψ =

 {ψ}{λ11}
{λ12}

 ,

˜̃ϕ =

 {ϕ}{λ21}
{λ22}

 ,

(2.20)

where λ11, λ12, λ21 and λ22 are the associated Lagrange multipliers. In [88], we prove the

equivalence of both linear systems 2.16 and 2.19.

Remark 2.5. If we seek to find the eigencouples
 [K] α[C]T α[C]T

α[C] −αI αI
α[C] αI −αI

− ω2

[M ] 0 0

0 0 0

0 0 0



ϕ

λ1

λ2

 =

0

0

0

 , (2.21)

searching eigenvalues will be more costly because of the loss of the properties of positivity

of the operator. Moreover, the spectrum of the problem widens due to the rise in degrees of

freedom, which implies different numerical problems to solve [81].

Elimination of boundary conditions

There is a more suitable approach when dealing with fixed and affine boundary conditions.

Instead of using the dual form through the Lagrange multipliers to constraint the problem

with affine boundary conditions, we eliminate some of the variables from the problem, to

obtain a simpler problem with fewer degrees of freedom. We use this technique as a first
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2. Large-scale identification problems

step in the iterative method developed in Chapter 4 in order to eliminate the kinematic

constraints.

We do so by projecting the problem in a more suitable space. Actually, we choose to describe

the subspace of feasible points that are solutions of [C]{u} = d.

Let Z ∈ Rn×(n−m) be a matrix such that span(Z) = ker(C) and Y ∈ Rn×m be a matrix

such that span(Y ) = range(CT ). We now express any solution of the linear constraints as

u = Y uY + ZuZ for some vectors uY ∈ Rm and uZ ∈ Rn−m. By substitution, we obtain

Cu = (CY )uY = d, hence by nonsingularity of CY we conclude that any vector u of the

form u = Y (CY )−1d + ZuZ satisfies the constraints Cu = d. We say that the solution is

the sum of a particular one up = Y (CY )−1d and a general one ug = ZuZ . In other words,

the elimination technique expresses feasible points as the sum of a particular solution plus

a displacement along the null space of the constraints.

If we consider the problem [K]{u} = {f} under these affine boundary conditions, we obtain

a new equivalent problem which is

ZTKZ = ZT (f − Y (CY )−1d) (2.22)

Where [Kc] = ZTKZ ∈ R(n−m)×(n−m) is the reduced stiffness matrix.

Remark 2.6. Searching for eigencouples is also simplified in the nullspace of the constraints.

The mass and the stiffness matrices ([M ], [K]) are assembled in a first step without taking

into account the boundary conditions, they describe an unconstrained structure. Then, We

project the eigenmodes of the unconstrained problem ([K]− ω2[M ]) {ϕ} = 0 to obtain the

eigenmodes of the constrained one
(
ZTKZ − ω2ZTMZ

)
ψ = 0. Therefore, the elimination

approach seems more natural, and suits better the eigenvalue problem in presence of affine

constraints.

Remark 2.7. In [88], we prove that the dualized system is equivalent to the reduced, in the

condition if we dualize the stiffness matrix and not the mass matrix, which is used within

the mechanical code Code Aster R©.

2.2.2. Sensors constraints and observability of shape modes

Let us recall in the following the remaining constraints applied to the optimization problem.

As mentioned above, they are the equality constraints that represent imposed equations at

the sensors degrees of freedom

[K(θ)]{ψ} =
(
[K(θ)]− ω2

exp[M(θ)]
)
{ϕ}, (2.23)
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2.2. Toward a saddle point system

where {ψ} is the error field that expresses the error in stiffness in the model, and {ϕ} is the

solution field and interpreted as the best estimation of the numerical eigenmode ϕθ, which

is minimizing the distance with the measured eigenmode φexp at the experimental pulsation

ωexp.

We call the sensors constraints here the constraints described by the third line of the system

2.14, which represent sensors degrees of freedom that are constrained through the equation

2.23. We notice that they are dependent of the experimental frequency ωexp, therefore they

slowly change for each linear system along the sequence. In section 4.1.2, we present an

approach that enables us to eliminate them implicitly.

Here, there is an interest in a better understanding of the structural dynamic behavior, and

identifying the modal parameters, namely the natural frequencies, damping ratios and mode

shapes. In this context, observability is a notion that plays a major role in the reconstruction

of states from inputs and outputs. Together with reachability, observability is central to the

understanding of feedback control systems [104].

Let us consider φ an eigenmode of the structure. We present in the following a condition on

φ such that

Πφ 6= 0 (2.24)

where Π is the projection operator from the space of numerical finite element model to the

observation space. If the condition 2.24 holds then the eigenmode φ is called observable.

The observability notion enables by using only information from the output measurements

to learn everything about the dynamical behavior.

This notion is mainly used here to describe the experimental configuration of the structure.

We see later in Chapter 4, that the studied linear system is invertible if and only if every

eigenmode is observable i.e. can be seen in at least one output channel.

2.2.3. Saddle-point linear systems

Adopting the above approach in a FE framework leads to a large and sparse linear system

which, as recommended by industrial guidelines of this work, is formulated symmetrically.

This symmetric formulation generates a sparse and large linear system of equations equiva-

lent to a saddle-point or Karush-Kuhn-Tucker (KKT) system. Such systems arise typically

in many applications of scientific computing, including for instance constrained optimization

[51], electromagnetism [89], incompressible fluid flow [52] and contact mechanics [83]. Hence,

there has been in recent years a growth of interest in saddle point problems, and many solu-

tion techniques have been developed. A review of the most known resolution techniques is
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2. Large-scale identification problems

found in [17].

In solid mechanics, the most known saddle point linear system is as follows

Kx = f ⇐⇒

(
G BT

B 0

)(
u

λ

)
=

(
c

d

)
(2.25)

where G ∈ Rn×n is symmetric positive semidefinite, B ∈ Rm×n, c ∈ Rn, d ∈ Rm and m ≤ n.

This symmetric indefinite problem of dimension N = n + m is assumed to belong to the

class of large and sparse saddle point problems.

Let us state a theorem related to the nonsingularity of K which makes sure the existence

and uniqueness of the solution.

Theorem 2.8. Let K ∈ RN×N be the coefficient matrix in (2.25). Assume that G is sym-

metric positive semidefinite, B has full row rank m and ker(G) ∩ ker(B) = {0}. Then K is

nonsingular.

The proof can be found in [17]. In this manuscript, we focus on the case where the (1,1)

block G is also an indefinite saddle point matrix. As we will see later in this section, this

property can imply some restrictions about the nonsingularity and the choice of the method

used to solve the saddle point system.

According to the previous Section, the initial linear problem to solve (2.16) has a saddle

point structure and is described as follows

A =

(
−[K̃(θ)] [K̃(θ)]− ω2

exp[M̃(θ)]

[K̃(θ)]− ω2
exp[M̃(θ)] r

1−r Π̃
T [K̃r]Π̃

)
(2.26)

where A is a 2N × 2N matrix partitioned into 2-by-2 block structure of dimension N × N

each. First, there is the constrained stiffness matrix [K̃(θ)] =

(
[K(θ)] [C]T

[C] 0

)
, then the

constrained impedance [K̃(θ)]−ω2
exp[M̃(θ)] =

(
[K(θ)]− ω2

exp[M(θ)] [C]T

[C] 0

)
that shares the

same structure as [K̃(θ)].

Finally r
1−r Π̃

T [K̃r]Π̃ =

(
r

1−rΠ
T [Kr]Π 0

0 0

)
is a very sparse symmetric matrix, it is composed

of a dense c× c sub-block scattered into a N ×N matrix.

In the following and throughout the remainder of the manuscript, we consider the following

abbreviations A = [K(θ)], B = [K(θ)] − ω2
exp[M(θ)] and T = r

1−rΠ
T [Kr]Π. The coefficient
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2.2. Toward a saddle point system

matrix A is then described as follows

A =


−A −CT BT CT

−C 0 C 0

B CT T 0

C 0 0 0

 (2.27)

An other alternative structure is presented below, it is more appealing than (2.27) and is

more suited for the developed solution method in Chapter 4 as will be shown later. It

represents a saddle point coefficient matrix with a null (2, 2) block. Using the permutation

matrix

P =


In 0 0 0

0 0 Im 0

0 In 0 0

0 0 0 Im

 (2.28)

we get the equivalent saddle-point structure

Ã = PTAP =


−A BT −CT CT

B T CT 0

−C C 0 0

C 0 0 0

 =

(
Ẽ C̃T

C̃ 0

)
(2.29)

where Ẽ =

(
−A BT

B T

)
∈ R2n×2n and C̃ =

(
−C C

C 0

)
∈ R2m×2n. The constraint matrix

C̃ is an augmented incidence matrix that is created from the contraint matrix C of the

numerical model.

Remark 2.9. We present in (2.30) a partitioning of the saddle point coefficient matrix

(2.29), that takes into account the sensors degrees of freedom in order to highlight their

influence

Ã =



−Ass −Ast BT
ss BT

ts −CT
ss −CT

ts CT
ss CT

ts

−Ats −Att BT
st BT

tt −CT
st −CT

tt CT
st CT

tt

Bss Bst Tss 0 CT
ss CT

ts 0 0

Bts Btt 0 0 CT
st CT

tt 0 0

−Css −Cst Css Cst 0 0 0 0

−Cts −Ctt Cts Ctt 0 0 0 0

Css Cst 0 0 0 0 0 0

Cts Ctt 0 0 0 0 0 0


, (2.30)
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where

C =

(
Css Cst

Cts Ctt

)
, T =

r

1− r
ΠT [Kr]Π =

(
Tss 0

0 0

)
,

A = [K(θ)] =

(
Ass Ast

Ats Att

)
, B = [K(θ)]− ω2

exp[M(θ)] =

(
Bss Bst

Bts Btt

)
.

Subscript s indicates the set of sensors degrees of freedom in the numerical model. Since there

are s sensors then Tss ∈ Rs×s is a small symmetric positive definite matrix. The equality

constraint 2.23 is described through the third block line/column in the coefficient matrix 2.30.

In the next section, we state some results and properties related to the coefficient matrix A.

2.2.4. The coefficient matrix properties

First, here are some important assumptions considered in this manuscript and imposed in

the mechanical code Code Aster R©

• C ∈ Rm×n is supposed to be of full row rank m, if such is not the case, we find either

that the problem is inconsistent or that some of the constraints are redundant and can

be deleted without affecting the solution of the problem. Also, if C is of full row rank

it is obvious that the augmented constraint matrix C̃ ∈ R2m×2n described above in

(2.29), is of full row rank 2m.

• The matrix A in (2.29) is supposed to be positive definite on ker(C), which ensures

that the constraints forbid the rigid body motions of the structure. This hypothesis is

verified also if A is only symmetric positive semidefinite and ker(A) ∩ ker(C) = {0}.

These assumptions will be supposed to be satisfied from now on.

Solvability conditions of the coefficient matrix block (1,1) Ẽ

Let us consider the coefficient matrix (2.29), in the following we present the conditions that

guarantee the nonsingularity of Ã. We begin by proving the nonsingularity of Ẽ which is

the (1, 1) block in (2.29).

Theorem 2.10. Let the matrix Ẽ =

(
−A BT

B T

)
∈ R2n×2n be as defined in (2.29). Ẽ is

invertible whenever the intersection of ker(B) and ker(T ) is reduced to the null vector.
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Proof. Assume A and B admit the following spectral decomposition

Â = ΛTAΛ = Diag
1≤j≤p

(ω2
j ), B̂ = ΛTBΛ = Diag

1≤j≤p
(ω2

j − ω2) (2.31)

Where 0 ≤ ω2
1 ≤ ... ≤ ω2

p are the p eigenvalues (counting possible multiplicities), and

Λ = (Λ1,Λ2, ...,Λp) their correspondent eigenvectors..

Since A is semidefinite then rank(A) = n − r with 0 ≤ r ≤ 6 the number of dofs of rigid

body motions, which implies the following decomposition

Â =

(
0r,r 0

0 Ân−r,n−r

)
, B̂ =

(
−ω2Ir,r 0

0 B̂n−r,n−r

)
, T̂ =

(
T̂r,r T̂r,n−r

T̂n−r,r T̂n−r,n−r

)
(2.32)

In the following, we will use the symbol ≡ to describe similarity between two matrices.

Hence, if X = P−1Y P for some invertible matrix P , then X ≡ Y with P being the change

of basis matrix. Using the spectral decomposition on the whole matrix leads to the similar

matrix E

Ẽ ≡ E =

(
ΛT 0

0 ΛT

)(
−A BT

B T

)(
Λ 0

0 Λ

)
=

(
−ΛTAΛ ΛTBTΛ

ΛTBΛ ΛTTΛ

)
(2.33)

E =


0r.r 0 −ω2Ir,r 0

0 Ân−r,n−r 0 B̂n−r,n−r

−ω2Ir,r 0 T̂r,r T̂r,n−r

0 B̂n−r,n−r T̂n−r,r T̂n−r,n−r

 (2.34)

Permuting the above matrix leads to the following similar form

E ≡


−Ân−r,n−r 0 B̂n−r,n−r 0

0 0r,r 0 −ω2Ir,r

B̂n−r,n−r 0 T̂n−r,n−r T̂n−r,r

0 −ω2Ir,r T̂r,n−r T̂r,r

 (2.35)

This decomposition leads to a saddle point matrix with a (1, 1) invertible block. We use here

the following LDLT block decomposition(
−A BT

1

B2 C

)
=

(
I 0

B2A
−1 I

)(
A 0

0 C +B2A
−1BT

1

)(
I A−1BT

1

0 I

)
(2.36)
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which enables us to prove the following similarity(
−A BT

1

B2 C

)
≡

(
A 0

0 C +B2A
−1BT

1

)
(2.37)

From this similarity, it is clear that A is congruent to the matrix

E ≡


−Ân−r,n−r 0 0 0

0 0 0 −ω2Ir,r

0 0 T̂n−r,n−r + B̂n−r,n−r(Ân−r,n−r)
−1B̂n−r,n−r T̂n−r,r

0 −ω2Ir,r T̂r,n−r T̂r,r

 (2.38)

Permuting this matrix so that the block (2, 2) gets triangular leads to

E ≡


−Ân−r,n−r 0 0 0

0 −ω2Ir,r 0 0

0 T̂n−r,r T̂n−r,n−r + B̂n−r,n−r(Ân−r,n−r)
−1B̂n−r,n−r 0

0 T̂r,r T̂r,n−r −ω2Ir,r

 (2.39)

Since −Ân−r,n−r is symmetric and negative definite, it follows that E is invertible if and only

if S = T̂n−r,n−r+B̂n−r,n−r(Ân−r,n−r)
−1B̂n−r,n−r is invertible. As B̂n−r,n−r(Ân−r,n−r)

−1B̂n−r,n−r

and T̂n−r,n−r are symmetric positive semi-definite matrices, it is obvious that S is a symmetric

positive semi-definite matrix. S is singular if and only if ∃V 6= 0 such that V TSV = 0. Since

for any W , W T T̂n−r,n−rW ≥ 0 and W T B̂n−r,n−r(Ân−r,n−r)
−1B̂n−r,n−rW ≥ 0 then S is singular

if and only if

V T T̂n−r,n−rV = 0 and V T B̂n−r,n−r(Ân−r,n−r)
−1B̂n−r,n−rV = 0 (2.40)

which implies that T̂n−r,n−rV = 0 and (Ân−r,n−r)
−1B̂n−r,n−rV = 0 since T̂n−r,n−r and (Ân−r,n−r)

−1

are symmetric positive, then T̂n−r,n−rV = 0 and B̂n−r,n−rV = 0 as (Ân−r,n−r)
−1 is invertible.

Finally, S is singular if and only if V ∈ ker(B̂n−r,n−r) ∩ ker(T̂n−r,n−r).

We notice that it suffices that A being positive semidefinite without being invertible to prove

the nonsingularity of Ẽ.

Thanks to the congruence (2.37) and from Sylvester’s Law of Inertia [66, p. 224] we conclude

that Ẽ is highly indefinite, with n− r positive and n+ r = n− r + 2s negative eigenvalues,

where r = dim(ker(A)). The same is of course true if B is rank deficient, as long as S

remains positive definite which is true as long as ker(B) ∩ ker(T ) = 0.
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2.2. Toward a saddle point system

Solvability conditions of the coefficient matrix Ã

In the following theorem, we prove the condition of invertibility of the whole matrix (2.29).

Theorem 2.11. Let the matrix Ã =

(
Ẽ C̃T

C̃ 0

)
∈ R2(n+m)×2(n+m) be as defined in (2.29).

if Ẽ is positive definite then Ã is invertible. If Ẽ is invertible, the nonsingularity of Ã is

guaranteed iff C̃Ẽ−1C̃T is nonsingular.

Proof. Ẽ is invertible, it yields that the saddle point matrix Ã admits the following block

triangular factorization

Ã =

(
I 0

C̃Ẽ−1 I

)(
Ẽ 0

0 S̃

)(
I Ẽ−1C̃T

0 I

)
(2.41)

where S̃ = −C̃Ẽ−1C̃T is the the Schur complement of Ẽ in Ã. Since the triangular blocks

are nonsingular, it follows that Ã is nonsingular iff S̃ is nonsingular.

Now if Ẽ is positive definite, it is easy to see that Ẽ−1 is also positive definite. For a nonzero

x 6= 0, we have

xT (C̃Ẽ−1C̃T )x = (C̃Tx)T Ẽ−1(C̃Tx) > 0 (2.42)

we recall that C̃Tx 6= 0 since C̃ has full row rank. Hence, S̃ is negative definite and Ã is

nonsingular.

It is not sufficient that Ẽ is nonsingular and C̃ has full rank for S̃ being nonsingular. Let us

consider

Ẽ =

(
1 0

0 −1

)
, C̃ =

(
1 1

)
Clearly S̃ = 0 so that Ã is singular.

Besides, as Ã is congruent to

(
Ẽ 0

0 S̃

)
, it readily follows that Ã is nonsingular iff S̃ =

−C̃Ẽ−1C̃T is invertible.

The condition considered here to prove the nonsingularity of Ã is algebraic and not practical.

We present in section 4.1.1 an alternative way to prove the nonsingularity of Ã by using
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2. Large-scale identification problems

the nullspace projection, and we prove that the nonsingularity condition depends on the

experimental set up, and precisely on the fact that each eigenmode need to be observable.

Coefficient matrix pattern and numerical properties

An important care must be taken when dealing with saddle point systems, as these systems

can be poorly conditioned. Their special structure makes them vulnerable to many numerical

difficulties. Besides, it can be used to avoid or attenuate the ill-conditioning. Actually, the

special structure of the resulting saddle point linear system (2.16) is a difficult challenge

especially for mechanical softwares which are more developed for FE-like matrices. The

coefficient matrix Ã is real and symmetric and presents several difficulties for mechanical

solvers

• It is not positive definite;

• It is poorly conditioned;

• it has a large bandwidth;

Figure 2.2 shows the structure of the non-zero elements of a 60×60 matrix Ã and illustrates

its mathematical properties, namely the very large bandwidth besides the very sparse block

(2, 2). The second figure (right) presents a similar size finite element matrix.

Figure 2.2.: The pattern of non-zero elements of the coefficient matrix (2.27) (left) and a
finite element stiffness matrix (right)
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2.3. Solution methods of saddle point problems

Moreover, the structure of the right-hand side in (2.16) also plays a role

rhs =

(
0̃

r
1−r Π̃

T [K̃r]φ̃exp

)
(2.43)

Here, the right hand side is composed of two sub-blocks. The first block is null and the

second one is sparse and its non-zero elements correspond to sensors degrees of freedom.

If we consider that

A−1 =

(
G F T

F D

)−1

=

(
G−1(I + F TS−1FG−1) −G−1F TS−1

−S−1FG−1 S−1

)
(2.44)

where S = D − FG−1F T . Then, it is clear that the (1, 1) and (2, 1) blocks in A−1 have no

influence on the solution u = A−1rhs, so that any ill-conditioning that may be present in

these blocks will not affect the solution. For details, see [43, 56, 111, 17].

2.3. Solution methods of saddle point problems

Many existing resolution methods are used to solve the saddle-point problems like (2.16),

a review of the most known resolution techniques is found in [17]. The most used solvers

are coupled (or global) ones which enables to solve the whole system at once and then to

compute the unkowns simultaneously.

2.3.1. Solving symmetric indefinite systems with sparse direct solvers

Direct methods are a tightly-coupled combination of techniques from numerical linear alge-

bra, combinatorics, graph theory and numerical analysis. The direct approach is used as a

black box in simulation software. The solutions obtained by these solvers are precise and

robust. Direct methods are thus often used in industrial codes where reliability is paramount

or for difficult problems. If the efficiency of direct methods is now difficult to surpass for 2D

problems, the unknowns of 3D problems are more coupled.

Depending on the topology of the matrix processed, a specific factorization is used. For a

positive definite symmetric matrix A, we will use a Cholesky decomposition A = LLT where

L is a lower triangular matrix. For a symmetric indefinite matrix, we prefer a decomposition

A = LDLT with D a block diagonal matrix. And more generally, we will use a decomposition

A = LU where U is an upper triangular matrix. For dense and structured matrices, an in-

depth coverage of these methods could be found in [33, 35].
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2. Large-scale identification problems

Direct solvers are usually implemented with a preprocessing step before the factorization.

This includes scaling, pivoting and ordering. The preprocessing step makes the numerical

factorization in many cases easier and cheaper, which influences the memory and the CPU

time of the factorization step [3]. The preprocessing step highlights two important parame-

ters in the factorization process. First, a low fill-in is sought by using ordering methods on

the matrix. Then, stability by preventing division by zero or by small quantities through

pivoting strategies. In fact, after the application of an ordering method to reduce fill-in, it

may be necessary to use pivoting in order to prevent a numerical breakdown, since pivots

may become very small or vanish which impacts stability [105]. We present a simple example

of this issue in the following(
ε 1

1 0

)
=

(
1 0
1
ε

1

)(
ε 0

0 −1
ε

)(
1 1

ε

0 1

)
. (2.45)

Rows and/or columns are permuted to first have pivotal elements with a large magnitude

and then to reorder null or small pivots last in the hope that these entries will be filled

before they are chosen as pivots[63]. Many pivot selection techniques have been proposed

for symmetric indefinite matrices. Bunch-Parlett [26] is based on complete pivoting and is the

most stable pivoting technique. Bunch-Kaufman [25] is based on partial pivoting and may

be instable whenever its factor matrix L got unbounded. In addition, there are two others

pivoting strategies that are usually referred to as rook’s pivoting : bounded Bunch-Kaufman

method and fast Bunch-Kaufman [8]. Nevertheless, it is difficult to achieve simultaneously

a good fill-in and stability because of complex interplays between ordering (for sparsity) and

pivoting (for stability)[10].

In the case of sparse matrices, numerical pivoting restrains a full static prediction of factors

pattern: it forces the use of dynamic data structures because it dynamically modifies the

structure of the factors, which have a significant impact on the fill-in and on the amount of

floating-point operations. To limit the amount of numerical pivoting, and stick better to the

sparsity predictions done during the symbolic factorization, partial pivoting can be relaxed,

leading to the partial threshold pivoting strategy [3].

The studied linear system (2.16) is symmetric, indefinite and very sparse saddle point system.

As Cholesky decomposition requires symmetric positive semidefiniteness, it is not used.

Instead, there are only two possible factorization techniques in this case, which are LU

and LDLT decompositions [57]. LU decomposition leads to ignore the matrix symmetry

by doing Gaussian elimination with partial or complete pivoting. This decomposition is

stable and recommended for the solution of such systems [26]. It is considered in the first

direct approach of section 3.2. For symmetric indefinite factorization and in the purpose of
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2.3. Solution methods of saddle point problems

preserving symmetry, we use LDLT where L is lower unit triangular matrix, and D is block

diagonal with 1-by-1 and 2-by-2 diagonal blocks. This latter is used partially in the second

direct approach developed in section 3.3 to maintain the numerical stability.

Let us consider A = −[K̃(θ)], B = [K̃(θ)]− ω2
exp[M̃(θ)] and T = r

1−r Π̃
T [K̃r]Π̃. Since A is an

invertible matrix, the saddle point matrix can be factorized in the following block diagonal

triangular LDLT factorization

E =

(
A BT

B T

)
=

(
I 0

BA−1 I

)(
A 0

0 T −BA−1BT

)(
I A−1BT

0 I

)
(2.46)

As usually found in classical saddle point systems, if A is symmetric negative (or positive)

definite, if B has a full column rank and if T is symmetric positive (or negative) semi-

definite, the saddle-point matrix admits the LDLT factorization with no pivoting is needed

[17], and with D diagonal. For instance, using the Cholesky decomposition of A = −LALTA
and T −BA−1BT = LCL

T
C in this case(

A BT

B T

)
=

(
LA 0

BA−1LA LC

)(
−I 0

0 I

)(
LTA LTAA

−1BT

0 LTC

)
= L̃D̃L̃T (2.47)

The singular values of the factor L̃, in this case, can be then bounded with the following

inequality [95]

κ(L̃) ≤ ||E||(3||E−1||+ 2||A−1||). (2.48)

Here A is augmented and equal to (
−K −CT

−C 0

)
(2.49)

which means that A and T − BA−1BT are not definite. Consequently, they only admit a

symmetric LDLT factorization, and in such factorizations, the inequality 2.48 do not hold.

We conclude that the numerical stability comes at the expense of pivoting.

In Chapter 3, we present a global approach that combines factorization and ordering and

that avoids pivoting. We present in the same chapter a more in-depth method that takes

advantage of the saddle point structure of the coefficient matrix of the linear system 2.16.

Remark 2.12. Two main direct methods are available in the mechanical code Code Aster

R©[20]. First, The inhouse multifrontal method MULTFRONT which is parallelized in

shared memory (OpenMP). This method does not use any pivoting, and a breakdown can oc-

cur due to zeros on the diagonal of the (2,2) block in (2.27). To overcome this situation, the
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2. Large-scale identification problems

original system is transformed into an equivalent one, using the notion of “double Lagrange”

multipliers as described in section 2.2.1. The second one is MUMPS [3] which is a pack-

age with a multifrontal approach for solving systems of linear equations. it is designed for

square sparse matrix that can be either unsymmetric, symmetric positive definite, or general

symmetric. The direct factorization is performed depending on the symmetry of the matrix.

2.3.2. block factorization approach

This approach is based on the implicit factorization block preconditioners which is used to

figure out a better application of block preconditioners for saddle point systems by consid-

ering the decomposition of the block preconditioner P = FEFT where solutions with each

of the matrices E and F are easily obtained [41]. Then the preconditioner P is derived

implicitly from specially chosen E and F . Using this same idea in order to produce block

factorization can be considered to solve large saddle point systems. We present in this section

two different block factorization methods for the studied coefficient matrix.

Before that, let us recall here the second variant of the coefficient matrix structure presented

in equation (2.29)

Ã = PÃP =


−A BT −CT CT

B T CT 0

−C C 0 0

C 0 0 0

 =

(
Ẽ C̃T

C̃ 0

)
, (2.50)

where Ẽ =

(
−A BT

B T

)
∈ R2n×2n and C̃ =

(
−C C

C 0

)
∈ R2m×2n.

This structure of the coefficient matrix Ã is useful in the framework of the block factorization

approach. Actually, it is mainly used with a specific partitioning such that

Ã =

Ẽ11 ẼT
21 C̃T

1

Ẽ21 Ẽ22 C̃T
2

C̃1 C̃2 0

 , (2.51)

where Ẽ11 ∈ R2m×2m, Ẽ21 ∈ R2(n−m)×2m, Ẽ22 ∈ R2(n−m)×2(n−m), C̃1 ∈ R2m×2m and C̃1 ∈
R2m×2(n−m). In this configuration, we assume that C̃1 is invertible. This structure enables

us to find triangular block factorizations. This is achievable by many existing methods.

The first one uses an algebraic description of the nullspace method in order to factor the
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2.3. Solution methods of saddle point problems

coefficient matrix. It is used in the fields of optimization and known as reduced Hessian

methods, structural mechanics and known as “direct elimination”/“force method“, electrical

engineering and known as “loop analysis”, and fluid mechanics and known as the “dual

variable” method. Even if these different interpretations of the nullspace method have never

been used in the context of matrix factorization, the nullspace method remains a good

approach if we want to guarantee the stability of numerical factors and to predetermine the

elimination ordering [92].

In this method, we use a new basis, called the fundamental basis relative to the nullspace Z̃

of the constraint matrix C̃. We use

– Z̃ ∈ R2n×2(n−m) the nullbasis such that span(Z̃) = ker(C̃),

– Ỹ ∈ R2n×2m such that span(Ỹ ) = range(C̃T ),

we write the fundamental nullspace basis Ñ as :

Ñ =

(
Ỹ Z̃ 0

0 0 I2m

)
(2.52)

It turns out that

ÑT ÃÑ =

Ỹ T ẼỸ Ỹ T ẼZ̃ Ỹ T C̃T

Z̃T ẼỸ Z̃T ẼZ̃ 0

C̃Ỹ 0 0

 (2.53)

then the coefficient matrix Ã is as follows

Ã = Ñ−T

Ỹ T ẼỸ Ỹ T ẼZ̃ Ỹ T C̃T

Z̃T ẼỸ Z̃T ẼZ̃ 0

C̃Ỹ 0 0

 Ñ−1 (2.54)

From the decomposition 2.54, it is sufficient to build Ñ as a triangular matrix, which is for

instance achievable by taking Z̃T =
(
V I2(n−m)

)
, where V = −C̃−1

1 C̃2 and Ỹ =
(
I 0

)
[17]. The factors can be expressed as

(
Ỹ Z̃ 0

0 0 I2m

)−1

=

I2m V 0

0 I2(n−m) 0

0 0 I2m


−1

=

I2m −V 0

0 I2(n−m) 0

0 0 I2m

 (2.55)

The second method is the Schilders factorization [80]. It was originally derived by considering
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2. Large-scale identification problems

models for electronic circuits. This decomposition is given by :

Ã =

Ẽ11 ẼT
21 C̃T

1

Ẽ21 Ẽ22 C̃T
2

C̃1 C̃2 0

 =

C̃T
1 0 J̃1

C̃T
2 J̃2 Ũ

0 0 I


L̃1 0 I

0 L̃2 0

I 0 0


C̃1 C̃2 0

0 J̃T2 0

J̃T1 ŨT I

 (2.56)

where L̃1 ∈ R2m×2m, L̃2 ∈ R2(n−m)×2(n−m) nonsingular, J̃1 ∈ R2m×2m, J̃2 ∈ R2(n−m)×2(n−m)

nonsingular, Ũ ∈ R2(n−m)×2m and

Ẽ11 = J̃1C̃1 + C̃T
1 J̃

T
1 + C̃T

1 J̃1C̃1

Ẽ21 = Ũ C̃1 + C̃T
2 J̃

T
1 + C̃T

2 L̃1C̃2

Ẽ22 = J̃2L̃2J̃
T
2 + Ũ C̃2 + C̃T

2 Ũ
T + C̃T

2 L̃1C̃2

Since we search for an exact decomposition, we need to define implicitly Ã by the choices of

L̃i and J̃i. One possible choice as mentioned in [92] is :

L̃1 = −C̃−T1 D̃AC̃
−1
1 , J̃1 = L̃AC̃

−1
1

where L̃A and D̃A the strictly lower triangular part and the diagonal part of Ẽ11. Through

this and precedent equations, we get Ũ , L̃2 and J̃2.

We present in section 3.3 a direct solution method that exploits the special saddle point

structure of the coefficient matrix using a sparse 2-by-2 block factorization. We then compare

it numerically to existing direct solvers.

2.3.3. Krylov subspace methods

The iterative methods are the most used when we treat a large and sparse problem. They

use an initial guess to generate successive approximations to a solution. There are many

iterative methods in the literature like stationary iterations or Krylov subspace methods. we

present in this section those latter for solving saddle point problems. Rather than discussing

all existing methods and implementations, we will describe the main properties of the most

commonly used methods.

Krylov subspace Theory

Suppose we have the following system to solve

Ax = b (2.57)
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2.3. Solution methods of saddle point problems

If we consider x0 the initial guess for the solution x and define the initial residual to be

r0 = b − Ax0. Krylov subspace is constructed as an iterative process whose kth iterate xk

satisfies

xk ∈ x0 +Kk(A, r0), ∀k, 1 ≤ k ≤ n (2.58)

where Kk(A, r0) is the kth Krylov subspace generated by A and r0 and equals to

Kk(A, x0) ≡ span{r0,Ar0, ...,Ak−1r0} (2.59)

The starting idea of the Krylov subspace methods comes from the Cayley-Hamilton theorem

that proves that the inverse of a matrix can be expressed as a linear combination of its

powers [97]. Krylov subspace methods involve finding an “optimal” solution in a given

space, augmenting the space, and repeating the procedure.

Conjugate gradient method

The conjugate gradient (CG) method is one of the well known iterative techniques for solving

sparse symmetric positive definite linear systems. The method converges to the solution via

the minimization of the A-norm of the error as the Krylov subspace is increased at each step

[65].

Theoretically the method could take at most n steps to calculate the exact solution if

A ∈ Rn×n. However, in practice, convergence to acceptable accuracy often occurs after

only a few steps [93]. The conjugate gradient method uses a 3-term recurrence relation,

so as we increase the subspace from which we seek a solution, we need only recall the ap-

proximations from the two most recent subspaces to produce the approximation xk that

minimizes the norm of the error at the kth step ek = u − uk. We present in the following

the CG algorithm

Algorithm 2.1: Conjugate Gradient Method

1 Choose x0.

2 Set r0 = b−Ax0 and p0 = r0.

3 for k ← 0 to .. do

4 αk = 〈rk,rk〉
〈Apk,pk〉

,

5 uk+1 = uk + αkpk,

6 rk+1 = rk − αkApk,
7 βk = 〈rk+1,rk+1〉

〈rk,rk〉
,

8 pk+1 = rk+1 + βkpk.
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In order to prevent any possible breakdown in the calculation of αk and βk in Algorithm 2.1,

we need that the matrices A be symmetric positive definite. Indeed, the vector sequences in

the Conjugate Gradient method correspond to a factorization of a tridiagonal matrix similar

to the coefficient matrix. Therefore, a breakdown of the algorithm can occur corresponding to

a zero pivot if the matrix is indefinite. Furthermore, for indefinite matrices the minimization

property of the Conjugate Gradient method is no longer well-defined. If the coefficient matrix

is symmetric but indefinite, then we could use the MINRES or SYMMLQ algorithms [87].

The MINRES and SYMMLQ methods are variants of the CG method that avoid the LU

factorization and do not suffer from breakdown. MINRES minimizes the 2-norm of the

residual in Krylov subspaces of increasing dimension instead of minimizing the A-norm of

the error. SYMMLQ solves the projected system, but does not minimize anything (it keeps

the residual orthogonal to all previous ones). It is based on the LQ factorization of the

tridiagonal matrices formed in the Lanczos method. Though, those methods can be less

robust and more vulnerable to rounding errors, in this case we can use GMRES. Actually,

when the problem is symmetric, GMRES and MINRES do the same calculations in exact

arithmetic, but GMRES tends to suffer less from loss of orthogonality. We can describe

GMRES as the best implementation of MINRES [97].

Generalized Minimum Residual Method (GMRES)

When the coefficient matrix is symmetric but indefinite, it is possible to find an approxima-

tion in a particular subspace which minimizes the 2-norm of the residual. The Generalized

Minimum Residual (GMRES) Method [98] is a robust algorithm that do that. It generates

an orthogonal basis for the Krylov subspace via the Arnoldi method mentioned in Algorithm

2.2.

Algorithm 2.2: Arnoldi Method

1 Given v1 such that ||v1|| = 1.

2 for i← 1 to .. do

3 ṽi+1 = Avi,
4 for j ← 1 to i do

5 hij = 〈ṽi+1, vj〉,
6 ṽi+1 = ṽi+1 − hijvj,

7 hi+1,i = ||ṽi+1||,
8 vi+1 = ṽi+1

hi+1,i
.

After making use of the Arnoldi process, we construct the GMRES method presented in
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2.3. Solution methods of saddle point problems

Algorithm 2.3.

Algorithm 2.3: The GMRES algorithm

1 Choose x0.

2 Set r0 = b−Ax0.

3 Set v1 = r0
||r0|| .

4 for k ← 0 to .. do

5 ♦ Compute vk+1 and hi,k, ∀i = 1, 2, ..., k + 1 using Arnoldi method,

6 ie. Compute Vk+1 and Hk+1,k such that AVk = Vk+1Hk+1,k,

7 ♦ Solve the least squares problem yk = min
y∈Rk
||βe1 −Hk+1,ky||,

8 ♦ Set xk = x0 + Vkyk

In term of convergence, we notice that if k < n exists such that Kk(A, r0) = Kk+1(A, r0),

then xk = x = A−1b in exact real arithmetic [61], which stops the process. Otherwise, it

yields Kk(A, r0) = Rn which means that xn is obviously the expected solution. Moreover in

the case of the GMRES method we have a bound for the residual of the kth iteration given

by

||rk||2 ≤ ||r0||2 min
q∈Pk

||q(A)||2 (2.60)

where Pk = {q | q is a polynomial of degree at most k with q(0) = 1}.

In the GMRES method, the convergence behavior is described by the spectrum in the sym-

metric case. Actually it is influenced namely by the minimization of a polynomial over the

set of eigenvalues of the matrix, which is proved for instance in [98]. In the unsymmetric

case, although the spectrum is not a sufficient parameter to characterize the convergence

behavior of GMRES [60], nevertheless the existence of clustered eigenvalues contributes to

speedup the convergence as shown in [17, 27, 101].

When solving large-scale linear systems of size n, it is possible that a large number of

iterations may be necessary to obtain an acceptable solution, which is prohibitive in terms

of memory requirement. Indeed, at each iteration, an additional basis vector of the Krylov

subspace need to be stored. Besides when the number of iterations increases, then the

dimension of the the least-squares problem goes up as well. There is a restarted version of

GMRES, in which we choose to restart the method after each m steps [98]. This method,

called GMRES(m), restarts with a vector x0 equal to the last computed iterate xm, which

limits the the memory requirements.
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2.3.4. Preconditioning

It is usually conceivable to transform the original system Ax = b in a new one, maintaining

the same solution but getting more favorable properties for the con vergence of iterative

methods. Generally, the rate of convergence is accelerated when many clusters appear away

from 0 [27]. There is different ways to transform the original problem using a nonsingular

preconditioner M

• left preconditioning

MAx =Mb (2.61)

• right preconditioning {
AMx̂= b

x =Mx̂
(2.62)

• split preconditioning using M =M1M2{
M1AM2x̂=M1b

x =M2x̂
(2.63)

It is worth mentioning that the number of iterations of the Krylov subspace method is

generally different if M is used as a left, right or split preconditioner, even though the

spectrum of the associated preconditioned matrices are identical. In particular, the stopping

criterion is evaluated with A replaced by the left-preconditioned operator M−1A and the

preconditioned residual M−1(Axk − b) or with the right-preconditioned operator AM−1

and the error M(xk − x). If M−1 is a good preconditioner, the preconditioned operator

will be well-conditioned. For left-preconditioning, this means the preconditioned residual

can be made small, but the true residual may not be. For right preconditioning, ||M(xk −
x)||2 is easily made small, but the true error ||xk − x|| may not be. This explains why

left-preconditioning is better for making error small while right-preconditioning is better

for making the residual small and for debugging unstable preconditioners. Besides, right

preconditioning can be attractive, since the preconditioned residual is equal to the original

one.

General-purpose preconditioners

Since preconditioners play a very important role in the convergence of iterative methods, it is

an active domain of research (see e.g. [17, 16, 109]). Many different preconditioning strategies

can be applied to a system. A trivial example of a very simple preconditioner can be obtained
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2.3. Solution methods of saddle point problems

using, for instance, M = diag(A). The following classes of algebraic preconditioners can be

distinguished

• Stationary iterative methods (Chapters 4 and 10 in [97]) the oldest methods em-

ployed to solve linear systems. Even if they are supplanted by more sophisticated meth-

ods, they remain in action as simple preconditioners. The main ones are the Richardson

method, the Jacobi method, the Gauss-Seidel method, the Successive Overrelaxation

(SOR) method and the Symmetric Successive Overrelaxation (SSOR) method.

• Incomplete factorization (ILU) (Sections 10.3 and 10.4 in [97]) They are first

Introduced separately around 1960 [24]. The theoretical existence of incomplete fac-

torization can be verified for some classes of matrices [82], nevertheless it may fail for

other ones. The principle of an incomplete factorization is to limit the fill-in during the

factorization by ignoring some factors entries, in order to get a good approximation

of the matrix, at least cost in terms of time and memory. Such a factorization can be

used as a preconditioner of an iterative method, in the form M = L̃Ũ where L̃ and

L̃ are the approximate factors of the factorization of A. The incomplete factorization

method generally use two kinds of criteria

– The position of different entries in the matrix,

– The numerical values of the different entries.

It is of course possible to combine these two criteria respectively lower and upper

triangular matrices. The main issue with this method, concerns the fill-in of the

factorization, as the factors can be much more dense than the original matrix. There

is then recommended to use ordering techniques in the same way as in direct methods.

• Sparse approximate inverses (Section 10.5 in [97]) These methods focus on finding

a sparse matrix M that approximates the inverse A−1 under the condition

M = arg min
M∈T

||I−AM||F (2.64)

where ||.||F is the Frobenius norm and T is a sparsity pattern to impose. The advantage

of this type of preconditioners compared to incomplete factorizations is to be more

stable numerically and easier to parallelize. Nevertheless, it remains very expansive in

terms of computational time. The study of these preconditioners is beyond the scope

of this state of the art.

• Algebraic Multigrid (AMG) (Section 13.6 in [97]) Relaxation schemes, such as the

Gauss-Seidel or the Jacobi method, efficiently damp high frequency errors, however

they make no progress towards reducing low frequency errors. The main idea of multi-
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grid methods is to move the problem to a coarser grid so that previously low frequency

errors turn now into high frequency errors and can be damped efficiently. If we apply

this procedure recursively, we obtain a method with a computational cost that depends

only linearly on the problem size.

Contrary to physics-based geometric multigrid approach, where the geometry of the

problem is used to define the various multigrid components, the algebraic multigrid

(AMG) methods use only the information available in the linear system of equations

and are therefore suitable to solve problems on more complicated domains and un-

structured grids.

Remark 2.13. Different techniques are accessible in Code Aster R©. We can find an in-

house preconditioned conjugate gradient method (PCG), used for both symmetric positive

definite and indefinite linear systems. Besides several Krylov subspace methods such as

GMRES, are performed with the PETSc library [11].

Some preconditioning techniques for saddle point problems

Recently, a large amount of work has been devoted to developing effective preconditioners to

enhance iterative solution methods for large symmetric linear systems in saddle point forms

which are mostly special cases of :(
A BT

B −D

)(
x

y

)
=

(
f

g

)
(2.65)

where A ∈ Rn×n nonsingular, B ∈ Rm×n,m ≤ n and D ∈ Rn×n. We present mainly two

important classes : block diagonal/triangular preconditioners and constraint preconditioners.

• Block preconditioners They are based explicitly on the block factorization(
A BT

B −D

)
=

(
I 0

BA−1 I

)(
A 0

0 S

)(
I A−1BT

0 I

)
(2.66)

where S = −(D + BA−1BT ) is the Shur complement. Their performance depends on

the existence of efficient approximations to A and S [96].

Assuming that A and −S are both symmetric positive definite, the essential diagonal

preconditioner is

Pdiag =

(
A 0

0 −S

)
(2.67)
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2.3. Solution methods of saddle point problems

More details about this preconditioner can be found in [84].

Similarly, the essentially block triangular preconditioner is

Ptriang =

(
A BT

0 ±S

)
(2.68)

Choosing the minus sign in Ptriang results in a diagonalizable preconditioned matrix

with only two distinct eigenvalues equal to 1. Choosing the plus sign yields a pre-

conditioned matrix with all the eigenvalues equal to 1. For either choice of the sign,

GMRES is guaranteed to converge in at most two steps in exact arithmetic [102]. In

practice, A and S are replaced by some appropriate approximations.

• Constraint preconditioners ([28, 79]) They have the general form

Pconstr =

(
G BT

B 0

)
(2.69)

where G ∈ Rn×n. Their structure is also of saddle point form with the same constraints

as the original problem. The constraint preconditioner projects the problem onto the

null space of the constraint matrix B which explains why this preconditioning technique

is closely related to the null space method. Using an iterative method with constraint

preconditioning or using the nullspace method are, in fact, mathematically equivalent

[58].

Keller et al. [28] investigated the use of the constraint preconditioner on saddle point

problems without (2, 2) block, while Dollar [42] extended the constraint preconditioner

to regularized symmetric saddle-point problems. We shall adapt these results to suit

our case in section 4.2.

For a more extensive survey of these and other techniques, see [17].

2.3.5. Segregated solvers

Both direct solvers based on triangular factorizations of the global matrix, and iterative

algorithms like Krylov subspace methods applied to the entire system, typically with some

form of preconditioning, are entitled coupled methods. These solvers deal with the system

(2.16) as a whole, computing {ψ̃} and {ϕ̃} simultaneously and without making explicit use

of reduced systems. Besides coupled solvers, there are segregated ones. We present here the
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Schur complement reduction. We recall again the linear system(
Ẽ C̃T

C̃ 0

)(
x

w

)
=

(
f

0

)
(2.70)

where Ẽ ∈ R2n×2n is symmetric positive definite and C̃ ∈ R2m×2m is of full row rank 2m,

f ∈ R2n. This saddle point system can also be written as

{
Ẽx+ C̃Tw = f

C̃x = 0
(2.71)

The idea is to multiply the first equation in (2.71) by C̃Ẽ−1 and to subtract the second

relation to deduce the equation satisfied by w

C̃Ẽ−1C̃Tx = C̃Ẽ−1f (2.72)

The matrix S̃ = −C̃Ẽ−1C̃T is known as the Schur complement of the saddle point system.

Once the solution w∗ has been computed, x will finally satisfy the equation

Ẽx = f − C̃Tw∗ (2.73)

There is an other well known segregated solver which is the nullspace method. Considering

the fundamental basis 2.52 by taking Ỹ = C̃T , we transform the initial system (2.71) to a

new one  C̃ẼC̃T C̃ẼZ̃ C̃C̃T

Z̃T ẼC̃T Z̃T ẼZ̃ 0

C̃C̃T 0 0


xYxZ
w

 =

 C̃f

Z̃Tf

0

 (2.74)

It is obvious that xY is determined by the following 2m× 2m system

C̃C̃TxY = 0 (2.75)

As recalled above, it is clear here that xY = 0 since C̃ is of full row rank so that C̃C̃T is

symmetric and positive definite. In case if the right hand side of (2.75) is not null, we could

solve the 2m×2m system by Cholesky factorization if 2m is small enough otherwise by using

an effective iterative method the conjugate gradient (CG).

Since xY = 0, we could find xZ by solving the following 2(n−m)× 2(n−m) system

Z̃T ẼZ̃xZ = Z̃Tf (2.76)
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It is possible to solve the system by computing a factorization when 2(n−m) is small. For

problems where 2(n−m) is large, we use suitable iterative methods to find an approximate

solution to (2.76). Once the solution xZ is found, the solution set is then described by

x = Z̃xZ .

Finally w can be obtained by solving

C̃C̃Tw = C̃(f − ẼZ̃xZ) (2.77)

which is a reduced system of order 2m with the same symmetric positive definite coef-

ficient matrix C̃C̃T as (2.75). It is the normal equation for the overdetermined system

C̃Tw = f − ẼZ̃xZ . It is possible to use the same Cholesky factorization of the (2.75).

This method will be used in the chapter 4 and enhanced in order to be an adequate strategy

to solve the presented saddle point problem.

Remark 2.14. Even when Ẽ is singular, the nullspace method is applicable which not the

case for Shur complement method. More generally, if H̃ is the symmetric part of Ẽ, the

method is applicable as long as the condition ker(H̃) ∩ ker(C̃) = 0 is satisfied.

2.4. Conclusion

In this chapter, we have carried out a presentation of the physical and mathematical formu-

lation coming from parameters identification problems. Energy-based functional approaches

present specific features that make them particularly attractive when dealing with an identi-

fication problem in structural mechanics good convexity of cost functionals, ability to localize

model errors in space, and robustness in the presence of of noisy data. For these reasons,

they are adopted in this work as a tool to enhance the a priori model error knowledge.

We have also provided a review of sparse direct methods dedicated to symmetric indefinite

matrix in order to highlight the difficulties we can encounter when solving our problem. We

have focused then on the solution of saddle point systems by iterative methods based on

Krylov subspace, and some attractive preconditioners have been detailed. As a matter of

fact, the preconditioning tends to blur the distinction between direct and iterative solvers,

and also that between segregated and coupled schemes. Many direct methods are used

as preconditioners, and also many preconditioners used with coupled iterative schemes are

frequently based on segregated methods.

The next chapter investigates the direct solution methods to solve the saddle point prob-
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lem by considering it firstly as a general symmetric indefinite matrix and then by taking

advantage of its special structure.
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3.1. Direct solvers for large saddle point systems generated by the energy functional
approach

3.1. Direct solvers for large saddle point systems

generated by the energy functional approach

One of the main computational challenges that arises in energy-based approach is obtaining

a solution for the generated coupled system :(
−[K̃(θ)] [K̃(θ)]− ω2

exp[M̃(θ)]

[K̃(θ)]− ω2
exp[M̃(θ)] r

1−r Π̃
T [K̃r]Π̃

)(
{ψ̃}
{ϕ̃}

)
=

(
0̃

r
1−r Π̃

T [K̃r]φ̃exp

)
(3.1)

This is achievable employing direct solvers on the whole system or using a segregated strategy.

Applying direct linear solvers to (3.1) for large scale problems may be prohibitive. We use

the symbol Ã to describe the coefficient matrix of the studied linear system throughout this

chapter.

We present in the following some mechanical direct solvers for saddle point linear systems

generated by the energy-based approach.

3.1.1. Mechanical direct solvers for the energy functional approach

The energy-based functional approach is rarely implemented, mainly because the repeated

use of this approach for model updating or robust expansion applications, leads then to a

huge computational cost [53].

This computational cost is due to the special structure of the resulting linear system (3.1).

Indeed, this is a difficult challenge especially for mechanical softwares which are more than

often used for FE-like matrices. These softwares using direct methods and factorization, are

usually preferred for their robustness and the moderate storage requirement of mechanical

problems. Though, when applied on these symmetric indefinite matrices, they are inefficient

due to a significant growth factor and a high fill-in. The implementation of the energy-based

functional approach within the framework of robust expansion shows that direct solvers

used in mechanical softwares fail to solve efficiently the inverse problem [71]. In fact, it is

shown that for an industrial structure model with more than 106 degrees of freedom and

few hundreds of measurement points, MD Nastran R© provides a huge computation cost for

a single calculation.

Most of mechanical solvers are suitable for large, sparse, hermitian matrices with a small

bandwidth of non-zero terms around the diagonal. Indeed, as the finite element matrices

are generally symmetric, only the terms on and above the diagonal need to be stored. This

reduces the memory requirements and number of operations to solve the matrix. However,
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Figure 3.1.: A 10× 10 matrix describing the same structure of the coefficient matrix in (3.1)

here, the saddle-point matrices have large bandwidth of non-zero entries around the diagonal,

which precisely makes the factorization operation prohibitive. An example of the structure

of such matrices is presented in Figure 3.1, it will be used throughout this chapter.

One way to remedy that matter is the model reduction. Actually, the reduction may be

performed on two different types of data : the shapes in the different domains, namely here

eigenmodes and the structural matrices (stiffness and mass).

Reduction of shapes is easy since only the measured partition of the degrees of freedom is

retained, and the reduction of the system matrices is, unavoidably, a simplifying process

[68]. The price to pay is the limited validity of the reduced model since it is only able to

represent a partial subset of the modes of the structure. A numerical force connectivity

pattern appears between the retained degrees of freedom of the reduced structural matrices.

A clear advantage of this method in model updating is that there is no need to use the

information from a numerical model (containing errors) to extrapolate experimental results,

as it is the case for expansion. The reader can refer to these references [91, 86] about

parametric reduced models.

Although many techniques based on model reduction have accelerated calculations, never-

theless this action downgrades in the same time the error localization properties as shown in

[19, 39]. Here, wishing to keep these localization properties, the problem is solved without

further reduction.

We present in the following a new direct method to solve the saddle point systems.
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3.2. A dynamic dual factorization and ordering strategy to reduce fill-in

3.2. A dynamic dual factorization and ordering strategy to

reduce fill-in

Sparse symmetric indefinite direct solvers encounter some numerical difficulties to handle

the fill-in issue, as the ordering method effect is deteriorated due to some dynamic pivoting

techniques. Hence, it may be interesting to figure out a method that enables factorization

without a need to do pivoting. We propose in this section a new direct approach that enables

a fill-in reduction. It is implemented as a dynamic factorization approach that combines

factorization and ordering in the same step.

3.2.1. Factorization and ordering dual process

Direct solvers are usually implemented with a preprocessing step before the factorization.

This includes scaling, pivoting and ordering. The preprocessing step makes the numerical

factorization in many cases easier and cheaper, which influences the memory and the CPU

time of the factorization step. However, for the kind of matrices envisaged here, this process

is not the best one. To explain in details this issue, let us take the example of the Figure

3.1. It is about a small 10× 10 matrix Ã that describes the same structure of the coefficient

matrix in 3.1. We modelize this matrix using three colors for each block : blue for block

(1, 1), green for blocks (2, 1) and (1, 2) and red for block (2, 2), as presented in Figure 3.2.

2 4 6 8 10
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Figure 3.2.: A colorful structure of the matrix Ã of the Figure 3.1
blue (stiffness), green (constraint), red (measures)
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3. Sparse block-wise factorization for saddle point matrices

We apply the standard LU algorithm on the matrix Ã without any ordering method. The

number of nonzero elements is equal to 70 as mentioned in the Figure 3.3. We note that

we cannot use the same colors as in Figure 3.2 for each block, because in the process of

the factorization, we do not keep track of the initial elements of the coefficient matrix, the

structure of the updated matrix L+ U changes in an unpredictable way. We notice that the

nonzero elements of L+ U fills the positions of zero elements that are localized in the center

of the global block matrix and also in the (2, 2) block. This is predictable because of the

specific structure of the global matrix and the sparsity of the (2, 2) block.
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Figure 3.3.: The structures of Ã and the factor matrices L+ U with standard LU and
implied large fill-in

Now, we would like to analyze the impact of application of a reordering algorithm. Many

heuristics have been developed in order to find good fill-reducing ordering. Here, we will be

focusing on minimum degree heuristics, since they are the most efficient for non structured

matrices and because of their incremental process.
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Figure 3.4.: The structure of the reordered matrix PT ÃP using the approximate minimum
degree algorithm

blue (stiffness), green (constraint), red (measures)
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Figure 3.5.: The structures of PT ÃP and the factor matrices L+ U with standard LU
using the approximate minimum degree algorithm and consequent reduced fill-in

We apply the approximate minimum degree algorithm (AMD) on the matrix Ã. It consists

in the application of the permutation P on the working matrix Ã.

We notice in Figure 3.4 that the element (1, 1) vanishes, which implies the necessity of ap-
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3. Sparse block-wise factorization for saddle point matrices

plying some pivoting technique in order to continue the elimination process. The pivoting

technique then modifies the initial ordering of the matrix PT ÃP , which explains the unsym-

metric structure of the resulting factors. We obtain in the Figure 3.5 a number of nonzero

elements of 54. This fill-in can be improved if the AMD algorithm does not yield null pivots.

To address this concern, the following idea is proposed. Instead of doing successive and

disjoint ordering and factorization steps, these ones are performed in conjunction, so that,

when a small pivot is detected, the efficient ordering for sparsity preservation is overrid-

den. Thus, each pivot used in the factorization process is well chosen and no pivoting is

needed. We present in the following an algorithm that mixes the AMD ordering with the

LU factorization with a specific strategy for choosing pivots.

The AMD algorithm is modified in such a way we can merge it with the LU factorization

algorithm. First, instead of ordering all graph nodes, the modified algorithm gives an order

to a node dynamically at each iteration. Thanks to this, the line of the factor matrix U and

the column of the second factor matrix L associated to the chosen node are filled at each

iteration. This process goes on until L and U are totally computed. The described process

is sequential.

In the described process, it happens that in some iterations the AMD algorithm generates

many nodes with the same minimum degree. Actually, this can be found in the usual AMD

algorithm also and when this situation occurs, the first node encountered among them is

usually taken. Here, the proposed algorithm 3.1 chooses among them the node that gives

the better pivot. It is worth mentioning that this observation is useful in order to improve

the algorithm. In fact, three-dimensional large structures in mechanics involve large regular

meshes which are huge graphs with millions of nodes. Away from borders, each node has the

same degree. Hence, at each iteration and in order to choose the suitable node, the classical

AMD ordering algorithm may find thousands of nodes with the same minimum degree.

It may occur that none of these minimum degree nodes is suitable because of the singu-

larity of their associated pivot elements. In the regular AMD ordering algorithms, this

implies the requirement to use pivoting techniques to avoid breakdown. Here, the Algo-

rithm 3.1 performs a search among the nodes with a degree just above the minimum. It

is obvious that this choice downgrades the initial fill-in reduction of the AMD algorithm.

Nevertheless, it prevents factorization from breakdown, preserves a high level of sparsity

and avoids in the same time the use of pivoting techniques. This algorithm 3.1 of dual

factorization and ordering based on the approximate minimum degree algorithm is shown.
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3.2. A dynamic dual factorization and ordering strategy to reduce fill-in

Algorithm 3.1: Direct solution method based on a dual ordering-factorization step

and using a modified version of the AMD algorithm

Data: a sparse Matrix Ã = (aij) ∈ Rn×n

Result: factor matrices L,U such that LU = Ã and the ordering vector Perm

1 Initialization of different parameters;

2 threshold (a threshold for numerical robustness);

3 Perm = ∅ (the permutation vector);

4 ZeroP ivots = ∅ (a list of nodes with zero pivots);

5 iterations = 0;

6 while iterations ≤ number of nodes do

7 Pick a node p with an approximate minimum degree;

8 if Ã(p, p) > threshold & node p unlabelled & p 6∈ ZeroP ivots then

9 Number the node p;

10 Put the node p in the list Perm;

11 Do AlgParLU(Ã, p);
12 iterations = iterations+ 1;

13 if ZeroP ivots 6= ∅ then

14 while ∃q ∈ ZeroP ivots such that Ã(q, q) > threshold do

15 Number the node q ;

16 Put the node q in the list Perm;

17 Remove the node q from the list ZeroP ivots;

18 Do AlgParLU(Ã, q);
19 iterations = iterations+ 1;

20 else

21 if p 6∈ J then

22 Put the node p in the list ZeroP ivots;

23 if ZeroP ivots 6= ∅ then

24 Add the list J at the end of Perm ;

68



3. Sparse block-wise factorization for saddle point matrices

We add below the description of the routine AlgParLU for line-by-line factorization.

Algorithm 3.2: A routine describing a line-by-line factorization process

Data: a sparse Matrix Ã = (aij) ∈ Rn×n, the selected node p, and the factor

matrices L and U
Result: factor matrices L,U

1 Do a Gauss elimination on the pth pivot of the matrix Ã ;

2 Update the pth line in U and column in L ;

We apply the algorithm 3.1 on the example of Figure 3.1. We present in Figures 3.6 and 3.7

the new structure of the ordered matrix QT ÃQ and the fill-in generated by its factorization.

We notice that the algorithm 3.1 gives an approximate ordering to that of classical AMD

algorithm. Clearly, if no singular pivot is found in the factorization process, it would give the

exact same ordering of the AMD algorithm. Besides, in comparison to Figure 3.4, the first

element (1, 1) is not zero, which means that there is no need to apply pivoting techniques.

The number of nonzero element is equal to 49 in this case. It is less than both previous

cases which highlights the fill-in reduction gained thanks to the algorithm 3.1 by avoiding

pivoting.
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Figure 3.6.: The structure of the reordered matrix QT ÃQ with the dual factorization and
ordering method (Algorithm 3.1)

blue (stiffness), green (constraint), red (measures)
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Figure 3.7.: The structures of QT ÃQ and the factor matrices L+ U with the dual
factorization and ordering method (Algorithm 3.1)

Actually, Algorithm 3.1 downgrades the usual ordering yield by AMD to bring more robust-

ness and efficiency to the factorization. It avoids singular pivots by putting them in a list

(called ZeroP ivots in the algorithm) then retest them each time the factorized matrix is

updated. This technique helps keep a level of optimality with respect to the fill-in. The

factorization ends up when all the remaining (uneliminated) diagonal entries are null.

In the following section, Algorithm 3.1 is applied on some matrices with medium size and

compared with unsymmetric direct solvers. From now on, we choose the name Minimum

Degree Factorization (MDF ) for Algorithm 3.1.

3.2.2. Comparison with off-the-shelf general direct solvers on medium

size test-structures

A prototype code of MDF has been implemented in Matlab R©. Numerical experiments focus

on producing meaningful comparisons according to sparsity and stability. The test matrices

share the same properties of the system (3.1). The numerical experiments were conducted

with three different sparse direct solvers : MUMPS[3], SuperLU [77] and UMFPACK[36].
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Setting equivalent parameters

Many technical differences prevent to achieve a fair comparison. As many parameters in

these codes can be set by the user and any modification of their values can lead to different

performances [4]. Consequently, preprocessing parameters are set similarly so that the codes

perform equivalently.

Some codes can use any sparsity ordering provided by the user, which is the case for both

MUMPS and SuperLU , other codes can only use their own ordering algorithms which are

sometimes buried deeply within the code. This will cause different amounts of fill-in, whose

difference is not intrinsic to the factorization algorithms. Here, only minimum degree or-

dering variants are used for each solver. MUMPS uses an approximate minimum degree,

SuperLU uses the multiple minimum degree and both compute this symmetric permutation

on the structure of A + AT . UMFPACK uses a column approximate minimum degree to

compute a fill-in reducing preordering[36].

Furthermore, The smallest pivoting threshold for MUMPS, UMFPACK, SuperLU and

MDF has been chosen so that it provides a trade-off between preserving sparsity and ensur-

ing numerical stability during factorization. The relative threshold for numerical pivoting is

chosen equal to 0.01.

In all test cases, an artificial right-hand side b is used in the runs, so that the system Ax = b

had the known solution x = (xi) with xi = 1, 1 ≤ i ≤ n. The iterative refinement is used

with all different solvers and is stopped when the componentwise sparse relative backward

error (Berr) defined by Berr = maxi(
|Ax−b|i

(|A|.|x|+|b|)i ), is close to machine precision [7]. The

number of steps of iterative refinement and the error are also reported. For each test matrix,

the fill-in nnz(L+ U) of LU factorization is given with a ratio of sparsity. This ratio is

computed as nnz(L+U)
nnz(A)

. The number of steps (Steps), the error (Errref ) and the backward

error (Berrref ) after the iterative refinement process are also reported.

The following sections present numerical results to measure how MDF interacts with ran-

domized finite element test matrices and an industrial test matrix that share the structure

of the coefficient matrix of the linear system given in equation (3.1). It is reminded that

only storage and numerical stability outcomes are considered within this study.

Results for randomized One-Dimensional finite element test matrices

First, a finite classical one-dimensional mass and spring system composed of n identical

springs and masses is considered, see Figure 3.8. Its stiffness matrices are discrete Laplacians.

c sensors are used to produce the experimental finite element mesh.
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Figure 3.8.: One-dimensional system composed of N masses and springs in series

The fill-in behavior of the different solvers is illustrated in Table 3.1.

Matrix FE1 FE2 FE3 FE4

n 200 400 600 800

c 10 20 30 40

nnz 904 1814 2724 3634

MDF Fill-in 1,229 2,387 3,643 4,805

Ratio(%) 1.35 1.31 1.33 1.32

UMFPACK Fill-in 1,316 2,646 4,021 5,249

Ratio(%) 1.45 1.45 1.47 1.44

MUMPS Fill-in 996 2,242 3,444 4,064

Ratio(%) 1.10 1.23 1.26 1.11

SuperLU Fill-in 1,346 2,663 4,014 5,383

Ratio(%) 1.48 1.46 1.47 1.48

Table 3.1.: Fill-in results for one-dimensional randomized finite element test matrices using
MDF , UMFPACK, MUMPS and SuperLU respectively.

Some observations that can be drawn from Table 3.1 are twofold. Firstly, MUMPS has the

best reducing fill-in factorization and MDF has the second best one. The reason is that in

such matrices and by construction, the pivots are chosen among a large set of candidates

that present all the same numerical value which decreases the efficiency of MDF .

Secondly, as the test matrices are one-dimensional finite element ones, they keep a simple

pattern in LU factors which explains that 1 ≤ Ratio ≤ 2. In addition, for each solver the

Ratio of sparsity remains in an average range, even though the size of problem gets bigger.

In the following, Table 3.2 is shown to contrast the numerical behavior of MDF with other

well-known solvers. Clearly, for such one-dimensional finite element test matrices all solvers

yields comparable stable solutions. The backward error Berr almost reaches the machine

precision in double precision. With one step of iterative refinement process solvers manage

to reach it, which explains that the error Errref and the backward error Berrref decrease
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by one or two orders of magnitude.

Matrix FE1 FE2 FE3 FE4

n 200 400 600 800

c 10 20 30 40

nnz 904 1814 2724 3634

MDF

Err 1.5E-12 2.9E-12 3.1E-11 1.8E-12

Berr 4.1E-15 7.5E-15 7.3E-14 3.8E-15

Steps 1 1 1 1

Errref 7.2E-14 9.6E-14 1.1E-13 1.4E-13

Berrref 1.3E-16 1.3E-16 1.2E-16 1.7E-16

UMFPACK

Err 6.3E-14 1.0E-13 1.2E-13 1.4E-13

Berr 2.4E-16 3.0E-16 6.7E-16 3.9E-16

Steps 1 1 1 1

Errref 8.0E-14 9.7E-14 1.2E-13 1.5E-13

Berrref 1.3E-16 1.6E-16 1.5E-16 1.3E-16

MUMPS

Err 4.8E-13 1.0E-12 1.1E-12 1.4E-12

Berr 8.7E-16 3.8E-15 2.6E-15 2.3E-15

Steps 1 1 1 1

Errref 7.1E-14 1.0E-13 1.2E-13 1.4E-13

Berrref 1.2E-16 1.8E-16 1.4E-16 1.5E-16

SuperLU

Err 1.7E-12 3.4E-12 8.1E-11 2.8E-12

Berr 5.1E-15 8.2E-15 9.4E-14 5.4E-15

Steps 1 1 2 1

Errref 8.2E-14 2.8E-14 7.1E-12 2.5E-13

Berrref 1.6E-16 1.5E-16 1.7E-16 1.4E-16

Table 3.2.: The numerical behavior of MDF , UMFPACK, MUMPS and SuperLU when
solving one-dimensional randomized finite element test matrices before and after using an

iterative refinement process

Results for randomized Three-Dimensional finite element test matrices

We generate a randomized three dimensional unstructured numerical model. Using its stiff-

ness and mass matrices, the coefficient matrix of the linear system (3.1) is constructed.

Building the experimental mesh is done such as the (2, 2) block in the coefficient matrix of
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3.2. A dynamic dual factorization and ordering strategy to reduce fill-in

the system (3.1) keeps the same pattern, even though the problem gets bigger.

Based on the results, the following conclusions are derived. Not surprisingly, MDF and

MUMPS perform much better than other solvers regarding the fill-in. As the test matrices

are three dimensional finite element ones with irregular pattern, MDF achieves a smaller

fill-in than MUMPS. For all solvers, the Ratio of sparsity is growing as the size of the test

matrices increases.

Matrix FE13D FE23D FE33D FE43D

n 200 400 600 800

c 10 20 30 40

nnz 1238 2588 3732 4910

MDF Fill-in 6,628 28,039 48,372 84,654

Ratio(%) 5.35 10.38 12.96 17.24

UMFPACK Fill-in 7,956 30,386 60,577 91,028

Ratio(%) 6.42 11.74 16.23 18.53

MUMPS Fill-in 7,294 28,282 52,226 92,558

Ratio(%) 5.89 10.92 13.91 18.85

SuperLU Fill-in 8,014 29,307 53,554 95,821

Ratio(%) 6.47 11.32 14.34 19.51

Table 3.3.: Fill-in results for 3D randomized finite element test matrices using MDF ,
UMFPACK, MUMPS and SuperLU respectively

Regarding the stability issue, MDF gets inaccurate when dealing with this type of matrices

so that it needs in some cases two steps of iterative refinement. The number of zerosP ivots

in MDF has an important consequence on the accuracy of the solution and the number of

iterative refinement steps. Here, a higher number of these pivots is being recorded which

result, in general, in inaccurate but sparser factors L and U . Furthermore, MUMPS is less

impacted so that the backward error needs only two or three orders of magnitude to reach

the machine precision through iterative refinement.
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Matrix FE13D FE23D FE33D FE43D

n 200 400 600 800

c 10 20 30 40

nnz 1238 2588 3732 4910

MDF

Err 3.8E-08 8.5E-06 1.7E-05 7.1E-06

Berr 1.0E-10 2.9E-08 5.4E-08 1.6E-08

Steps 1 2 2 2

Errref 1.5E-13 2.2E-13 2.5E-13 3.0E-13

Berrref 1.9E-16 2.0E-16 1.9E-16 2.1E-16

UMFPACK

Err 4.0E-13 9.5E-13 1.7E-12 2.5E-12

Berr 1.9E-15 4.1E-15 7.7E-15 9.9E-15

Steps 1 1 1 1

Errref 1.4E-13 2.5E-13 2.9E-13 2.9E-13

Berrref 1.4E-16 2.0E-16 2.0E-16 1.9E-16

MUMPS

Err 1.5E-11 2.0E-10 1.4E-10 3.2E-10

Berr 3.7E-14 3.5E-13 5.6E-13 1.7E-12

Steps 1 1 1 1

Errref 1.2E-13 2.0E-13 2.6E-13 2.7E-13

Berrref 1.3E-16 1.7E-16 1.8E-16 1.8E-16

SuperLU

Err 1.8E-10 2.9E-08 7.5E-08 5.1E-08

Berr 3.1E-13 3.6E-12 9.2E-11 8.4E-11

Steps 2 2 2 2

Errref 1.2E-13 3.1E-13 3.7E-13 2.8E-13

Berrref 1.3E-16 1.4E-16 1.7E-16 1.4E-16

Table 3.4.: The numerical behavior of MDF , UMFPACK, MUMPS and SuperLU when
solving 3D randomized finite element test matrices before and after using an iterative

refinement process

Results for an industrial Three-Dimensional test case

Finally we consider the coefficient matrix generated from a small version of the numerical

FE model of the industrial cooling pump presented in Chapter 5 and from its experimental

measurements. Its corresponding saddle-point matrix pattern is provided in Figure 3.9. The

size of the system is 2006× 2006 and the number of nonzero elements is nnz = 169, 538.
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Some structures of the reordered matrix are shown in Figure 3.10. The structure of the

matrices reordered by MDF looks like UMFPACK built-in AMD reordering algorithm,

due to the same node selection process as explained in the previous section but it gives a

more scattered matrix. Each ordering influences the structure of the initial matrix and at

the same time the structure of the factor matrices L and U as shown in Figure 3.11.

Figure 3.9.: The initial structure of the industrial test case coefficient matrix (size
2006× 2006, nnz = 169, 538)

Figure 3.10.: The structure of the reordered matrix using AMD (left) and MDF (right)
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Figure 3.11.: The structure of the factor matrix L+ U after a LU factorization of the
industrial test case coefficient matrix reordered by MDF (nnzLU = 850, 645)

When comparing the fill-in of LU factorization, MDF seems to perform slightly better than

MUMPS and is significantly better than other solvers. Even if each solver uses a minimum

degree ordering variant they do not perform the same way. Actually, the pivoting is an

important parameter that influences how each solver works. Threshold partial pivoting is

used in all solvers here. It is a usual technique in sparse Gaussian elimination and helps to

avoid excessive growth in the size of entries during the matrix factorization.

Matrix A MDF UMFPACK MUMPS SuperLU

Fill-in 850,645 914,271 878,848 1,002,364

Ratio (%) 5.01 5.39 5.18 5.91

Err 8.7E-05 1.8E-08 2.1E-06 5.1E-06

Berr 1.1E-08 5.4E-10 1.6E-10 2.7E-09

Steps 2 2 1 2

Errref 4.6E-09 4.1E-09 1.3E-09 2.7E-09

Berrref 1.3E-16 1.6E-16 1.7E-16 1.5E-16

Table 3.5.: FIll-in results and numerical behavior of MDF , UMFPACK, MUMPS and
SuperLU when solving the industrial matrix A
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This pivoting strategy may differ depending on the matrix structure. Here, a strong prefer-

ence is given to diagonal entries. Actually, in SuperLU and UMFPACK if the pivot does

not satisfy the threshold (0.01), diagonal elements are tested. If neither of the above satisfies

the threshold, the maximum magnitude element in the column will be used as the pivot.

For MUMPS, even if it can choose pivots from off the diagonal, the largest entry in the

column might be unavailable for pivoting at this stage if all entries in its row are not fully

summed. In this case, it is kept in the Schur complement and is passed to the parent node

where all rows will be available for pivoting so that a pivot can be chosen from the column.

It is interesting to note that for MUMPS the number of delayed pivots has an impact on

the fill-in in the same way that the zerosP ivots have in MDF . This matches with the fact

that this strategy is used at the cost of increasing the size of the frontal matrices and causing

more work and fill-in than were forecast [4].

The same remarks as for randomized three dimensional finite element matrices are formulated

regarding stability. Solutions obtained by MDF , MUMPS, UMFPACK and SuperLU

need to be refined through some steps of iterative refinement process. This behavior steps

up with the matrix enlargement.

Limitations and performance inhibitors

In this section, we just presented a variant direct solution method that uses a dynamic

process handling factorization and ordering in the same step. This variant enables us to

avoid pivoting and gains some fill-in especially in the case of indefinite symmetric matrices.

The performance of standard solvers is presented. We limited our study to one specific kind

of ordering algorithms based on minimum degree concept. The goal was to compare these

solvers using the same basic ordering concept as MDF does.

This approach has several limitations. Firstly, although we study a very particular saddle

point matrices. Their specific structure is though not exploited within MDF since this latter

could be applied to any invertible matrix.

Secondly, MDF requires an implementation with dynamic memory management of the LU

factors. Actually, this algorithm is proposed to handle the problem of the fill-in generated

by pivoting, that involves tracking it dynamically and thus impacts dramatically the com-

putation time. Hence, the proposed algorithm is intrinsically dynamic and is not suitable

with a symbolic factorization.

Thirdly, the numerical results are evaluated measuring only the fill-in in the LU factors

as well as the numerical stability. There are other aspects that influence the efficiency of

the numerical factorization, for example the sparsity pattern. It influences the number of

FLOPS required and, more importantly, to which extent it is possible to exploit dense linear
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algebra kernels. However, these latter elements need a proper symbolic factorization that

exploits an elimination tree. However, as said before, this algorithm is intrinsically dynamic

and then not suited for those strategies.

That is why, we present in the next section a more suitable approach that takes into account

the specific structure of our problem. Since symmetric indefinite matrices arising from saddle

point problems can be congruently transformed into special form of a block structure as will

be discussed, the transformed matrices can be exploited efficiently by taking advantage of

the structure and properties of their blocks. We then compare this approach numerically

with the standard direct solvers.

3.3. Sparse 2-by-2 block factorization of saddle point

matrices

A general sparse symmetric indefinite solver, as it employs numerical pivoting for stability,

has rarely the capability of predicting the fill-in rising in the generated factors, which is

emphasized in the previous section. In the saddle-point systems literature, there is another

approach that predetermines the elimination ordering. We call it the block factorization

approach. However it may or may not produce sparser factors than a general sparse solver.

3.3.1. Determination of the transformation matrix and partitioning

As seen in section 2.3.2, a comparative study of different null-space block factorizations for

symmetric saddle point systems has demonstrated the possibility of exploiting the block

structure of those matrices in a direct solver [92].

We present here an approach that exploits the specific structure of our saddle point matrix.

This new factorization considers doing micro-factorizations. In this formulation, the coeffi-

cient matrix is reordered by pairing every entry on the diagonal of the (1, 1) block with a

corresponding entry in the constraint block (2, 1) so that the entries on the diagonal of the

permuted matrix form micro 2-by-2 block saddle point systems.

To reach this goal, we propose in this section a new transformation πTAπ = Â, followed by

a 2-by-2 block Gaussian elimination factorization PT ÂP = LDLT , where :

• L is block lower triangular with blocks of order 2, and D is a block diagonal matrix

with block of order 2.
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3.3. Sparse 2-by-2 block factorization of saddle point matrices

• π is a 2(n+m)×2(n+m) transformation matrix, which describes a new matrix whose

entries are 2-by-2 block saddle point matrices. We choose it such that the LDLT

factorization is stable and has a sparse factors L and D.

• P is a predefined 2(n+m)× 2(n+m) permutation matrix for a priori pivoting of Â.

We define first a permutation τ : N 2(n+m) → N 2(n+m) by

τ =

(
1 2 3 · · · 2(n+m)− 1 2(n+m)

1 n+m+ 1 2 · · · n+m 2(n+m)

)
. (3.2)

The 2(n+m)× 2(n+m) permutation matrix Pτ related to τ is given by

Pτ =
[
e1 , en+m+1 , e2 , · · · , e2(n+m)

]
, (3.3)

where ei is the ith unit vector of length 2(n+m).

In order to illustrate this transformation, we consider here a 10 × 10 saddle point matrix

Ã with the same pattern as the coefficient matrix of the studied linear system (3.1), see

Figure 3.12. We choose the same color for each block of the matrix. We recall that (1, 1)

block refers to the constrained stiffness and is in blue, the blocks (2, 1) and (1, 2) describes

the impedance and are in red, and the block (2, 2) is a matrix describing the projection of

experimental sensors degrees of freedom on the numerical model degrees of freedom and is

in green.

We notice that by applying this natural order symmetrically to the initial matrix Ã, the

entries having different color and index get coupled, see Figure 3.13. The new matrix is

formed of 2-by-2 block entries that inherit the same structure of Ã.
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Figure 3.12.: The matrix Ã Figure 3.13.: The matrix PTτ APτ

An interesting observation to report, is to see these 2-by-2 elemental block of the 2(n+m)×
2(n+m) matrix as entries of an augmented (n+m)× (n+m) matrix.

Figure 3.14.: The graph associated with matrix Ã (left) and the reduced graph associated
with matrix PTτ APτ (right)

In term of graph terminology, this could be seen as a graph with supernodes of order 2. This
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is illustrated in Figure 3.14.

The main idea we propose here to maintain sparsity is to reorder those supernodes using

approximate minimum degree algorithm. This approach enables getting a more comprehen-

sive sparse ordering regarding to 2-by-2 block Gaussian elimination.

This yields a new transformation r applied on a half smaller set N 2(n+m) → N 2(n+m) rep-

resenting supernodes labelled form 1 to n + m. This permutation reorders increasingly the

different nodes of the set {i, i + 1, · · · , n + m} with respect to their approximate minimum

degree.

Finally we can describe the final permutation π : N 2(n+m) → N 2(n+m) used on the matrix Ã
by

π =

(
1 2 3 · · · 2(n+m)− 1 2(n+m)

r(1) n+m+ r(1) r(2) · · · r(n+m) (n+m) + r(n+m)

)
. (3.4)

The 2(n+m)× 2(n+m) permutation matrix Pπ related to π is given by

Pπ =
[
er(1) , en+m+r(1) , er(2) , · · · , e(n+m)+r(n+m)

]
, (3.5)

where ei is the ith unit vector of length 2(n+m). We illustrate the action of this permutation

matrix on Figure 3.15.

Figure 3.15.: The matrix PTπAPπ and its associated compressed graph

The matrix G = PTπAPπ has block entries of order 2, they are given for 1 ≤ i, j ≤ (n + m)
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by :

Gij =

[
−aii bii

bii tii

]
(3.6)

where A = [aij] = −[K̃(θ)], B = [bij] = [K̃(θ)] − ω2
exp[M̃(θ)], T = [tij] = r

1−r Π̃
T [K̃r]Π̃,

1 ≤ i, j ≤ (n+m).

Note that a suitable pairing that preserves sparsity and is numerically stable should be

chosen, see Section 3.3.2 for further discussion.

3.3.2. Sparse 2-by-2 block factorization and numerical stability

We use the following LDLT block decomposition at each stage of elimination, as already

discussed in [26](
−A BT

1

B2 C

)
=

(
I 0

B2A
−1 I

)(
A 0

0 C +B2A
−1BT

1

)(
I A−1BT

1

0 I

)
. (3.7)

That means we need to have a (1, 1) nonsingular block in Â = PTπAPπ.

We recall that at the kth stage of Gaussian elimination, the updated matrix Â(k) has the

following partitioning

Â(k) =

(
Â(k)

11 Â(k)
21

Â(k)
21 Â(k)

22

)
, (3.8)

where Â(k)
11 is 2× 2 pivot and Â(k)

21 contains 2(n+m)− 2 rows and two columns

Â(k)
11 =

(
−a(k)

k,k b
(k)
k,k

b
(k)
k,k t

(k)
k,k

)
and Â(k)

21 =



−a(k)
(k+1),k b

(k)
(k+1),k

b
(k)
(k+1),k t

(k)
(k+1),k

...
...

−a(k)
(n+m),k b

(k)
(n+m),k

b
(k)
(n+m),k t

(k)
(n+m),k


, (3.9)

Â(k)
22 =



−a(k)
(k+1),(k+1) b

(k)
(k+1),(k+1) . . . −a(k)

(n+m),(k+1) b
(k)
(n+m),(k+1)

b
(k)
(k+1),(k+1) t

(k)
(k+1),(k+1) . . . b

(k)
(n+m),(k+1) t

(k)
(n+m),(k+1)

...
. . .

...

−a(k)
(n+m),(k+1) b

(k)
(n+m),(k+1) . . . −a(k)

(n+m),(n+m) b
(k)
(n+m),(n+m)

b
(k)
(n+m),(k+1) t

(k)
(n+m),(k+1) . . . b

(k)
(n+m),(n+m) t

(k)
(n+m),(n+m)


. (3.10)

Through this matrix, we determine a 2 × 2 block diagonal element Dk,k, and the kth two

columns of a unit lower triangular matrix L, which are partitioned into Lk,k and Lk+1,k in
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the same way as Â. It follows that

Dk,k = Â(k)
11 , Lk,k = I, Lk+1,k = Â(k)

21 D
−1
k,k, (3.11)

At the kth stage of elimination, the size of Â(k) decreases by 2 and it yields

Â(k+1) = Â(k) −

(
I

Lk+1,k

)
Dk,k

(
I LTk+1,k

)
=

(
0 0

0 Â(k)
22 − Â

(k)
21 D

−1
k,kÂ

(k)
21

)
. (3.12)

Let us call g̃
(k)
i,j =

(
−a(k)

i,j b
(k)
i,j

b
(k)
i,j t

(k)
i,j

)
, we explicit in the following the expression

Â(k)
22 − Â

(k)
21 D

−1
k,kÂ

(k)
21 =


g

(k)
(k+1),(k+1) · · · g

(k)
(n+m),(k+1)

...
. . .

...

g
(k)
(n+m),(k+1) · · · g

(k)
(n+m),(n+m)

−

g

(k)
(k+1),k

...

g
(k)
(n+m),k

 (g
(k)
k,k)
−1
(
g

(k)
(k+1),k · · · g

(k)
(n+m),k

)
.

(3.13)

Thus,

Â(k)
22 − Â

(k)
21 D

−1
k,kÂ

(k)
21 =


g

(k)
(k+1),(k+1) − g

(k)
(k+1),k(g

(k)
k,k)
−1g

(k)
(k+1),k · · · g

(k)
(n+m),(k+1) − g

(k)
(k+1),k(g

(k)
k,k)
−1g

(k)
(n+m),k

...
. . .

...

g
(k)
(n+m),(k+1) − g

(k)
(n+m),k(g

(k)
k,k)
−1g

(k)
(k+1),k · · · g

(k)
(n+m),(n+m) − g

(k)
(n+m),1(g

(k)
k,k)
−1g

(k)
(n+m),1

 .

(3.14)

Therefore the (k + 1)th 2× 2 pivot is described by

pivotk+1 = g
(k)
(k+1),(k+1) − g

(k)
(k+1),k(pivotk)

−1g
(k)
(k+1),k. (3.15)

Using the different expressions of each quantity, we obtain that

pivotk+1 =

(
−a(k)

(k+1),(k+1) b
(k)
(k+1),(k+1)

b
(k)
(k+1),(k+1) t

(k)
(k+1),(k+1)

)
−

(
−a(k)

(k+1),k b
(k)
(k+1),k

b
(k)
(k+1),k t

(k)
(k+1),k

)
1
δ

(
t
(k)
k,k −b(k)

k,k

−b(k)
k,k −a

(k)
k,k

)(
−a(k)

(k+1),k b
(k)
(k+1),k

b
(k)
(k+1),k t

(k)
(k+1),k

)
,

(3.16)

where δ = −t(k)
k,ka

(k)
k,k − (b

(k)
k,k)

2.

Repeating the 2× 2 Gaussian elimination recursively on the transformed matrix leads to a

substantial reduction of the fill-in especially in the studied sparse system.

However, to solve directly sparse linear systems, an efficient factorization need to be stable.

The numerical stability is controlled by both the growth factor defined ρ =
maxi,j,k a

(k)
ij

maxi,j aij
and

the elements of L. The pivoting strategies of BunchâParlett and BunchâKaufman guarantee

the bound ρ ≤ (2.57)2(n+m)−1 [26, 8]. In many cases, the growth factor stays far away from

the bound, but it appears to be hard to find a substantially smaller upper bound for a general

problem. For saddle point systems, a smaller bound for F -matrices is given in [37].
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Here all the pivots are of order 2 and are of the form(
α β

β γ

)
. (3.17)

Those pivots need to be invertible and their inverse should be properly bounded. In order

to guarantee the numerical stability, we choose the best 2× 2 pivots. We develop a strategy

for selecting those pivots. Firstly, we test the minimum degree pivots in the transformed

matrix and its compressed graph and we compute their determinants. If pivots do not match

numerical requirements, then we alter the ordering of the transformed matrix in such a way

we could maintain the same minimum degree ordering on the compressed graph. We do

that by only permuting the second row/column in the actual pivot. Using this technique we

track the best diagonal 2×2 pivots during the Gauss elimination. If there is no possibility of

maintaining the same initial order of the compressed graph to guarantee numerical stability,

then we alter this order in order to get go back to the classical LDLT factorization algorithm

with pivots of order 1 and 2.

It is clear that we pay much more attention on the construction of a suitable ordering that

enables numerical stability as well as sparsity of the factor matrices, than focusing on the

construction of the LDLT factorization. Indeed, this latter is already extensively developed

in many packages and solvers, for instance in MA47 [46].

3.3.3. Comparison with symmetric direct solvers

We consider the same set-up as in 3.2.2. In this section, we present results using the above-

detailed factorization method, that we call SBlock here, as the basis of a direct method. Our

intention is to demonstrate the stability and sparsity of these factorizations when applied

to randomized three dimensional test cases like in 3.2.2. Our main goal is to compare its

performance with that of a general sparse symmetric indefinite solvers such as MUMPS. We

concentrate on the solution of a single saddle point system and do not exploit the potential

advantages of SBlock within a sequence of saddle point systems.

We perform tests using MATLAB R©. For comparison, we consider results for the MATLAB

command ldl and MUMPS. Both solvers compute an LDLT factorization, where L is unit

lower triangular and D is block diagonal with 1× 1 and 2× 2 blocks. They use MA57 code

from the HSL mathematical software library [45]. It computes a sparsity-preserving ordering

of the coefficient matrix Ã and a scaling to ensure numerical stability. This code ois designed

to robustly solve general symmetric indefinite sparse linear systems. It thus does not exploit

the block structure of the matrix Ã.
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Matrix FE1 FE2 FE3 FE4

2(n+m) 2,410 4,104 6,504 10,000

nnz 14,427 24,608 39,660 60,054

SBlock F ill-in 100,112 266,800 612,522 1,216,652

Err 1.94e-10 1.75e-10 2.48e-10 1.22e-09

UMFPACK − LU Matlab F ill-in 774,108 2,817,520 7,165,751 15,218,709

Err 9.90e-13 1.75e-12 2.48e-12 2.83e-12

MA57− LDLT Matlab F ill-in 217,136 624,756 1,701,536 3,583,097

Err 5.55e-09 1.62e-08 5.54e-09 1.69e-08

MUMPS − LU Fill-in 574,624 1,823,314 4,800,112 10,365,088

Err 2.94e-12 4.18e-12 3.48e-12 8.60e-12

MUMPS − LDL Fill-in 303,299 1,016,383 2,860,465 6,602,797

Err 1.51e-09 2.54e-09 2.48e-09 4.18e-08

Table 3.6.: Fill-in and numerical stability results for three-dimensional randomized finite
element test matrices using SBlock, UMFPACK and MUMPS with AMD ordering

We note that many parameters in these codes can be set by the user and any modification

of their values can lead to different performances. Consequently, preprocessing parameters

are set similarly so that the codes perform equivalently. We recall that for each test matrix,

the fill-in nnz(L+ U) of LU factorization is given with a ratio of sparsity. This ratio is

computed as nnz(L+U)
nnz(A)

.

Table 3.6 is shown to contrast the numerical behavior of SBlock with other direct solvers.

We notice that the gain in memory can reach up to 50% to 70%, which is very significant

from an industrial point of view. Beyond the efficiency of the proposed factorization in

term of fill reduction, we have also obtained good results with regard to numerical stability.

Indeed SBlock is better than both Matlab’s ldl and MUMPS even if the size increases.

3.4. Conclusion

We achieved significant results in comparison to global direct solvers by using a new block

factorization approach. This latter takes the advantage of the specific structure of the saddle

point systems generated by the energy-based functional approach.

Much more attention was paid to construct a suitable sparse and stable direct method, than
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3. Sparse block-wise factorization for saddle point matrices

to focus on building an efficient LDLT factorization. Through numerical experiments, this

approach led to significant gain in term of fill-in reduction up to 50% in comparison with

symmetric sparse solvers, and up to 90% in comparison with unsymmetric sparse solvers

for the studied sequence of saddle point linear systems. In term of numerical stability, we

outperformed symmetric sparse solvers, but we were less stable than unsymmetric ones.

Hence, this approach showed how important it can be to take the structure of the coefficient

matrix into account to build an associated compressed graph.

Even with this amount of fill reduction, the memory cost remains expansive which pro-

hibits using direct approaches for large scale real life problems. Investigating those direct

approaches has been conducted with the main goal of reducing the memory cost. Up to

now, and a part of the interesting results, the proposed strategies have not achieved com-

pletely this objective. Those conclusions have motivated the research work presented in the

next chapter. Indeed, we will use iterative methods instead of direct ones, and search to

design efficient block preconditioners to solve the sequence of saddle point systems, using

the knowledge we gain about factorization strategies.
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4.1. A double explicit-implicit projections onto the constraints nullspace

4.1. A double explicit-implicit projections onto the

constraints nullspace

When dealing with constrained optimization problems, it is natural to try to use the con-

straints to eliminate some of the variables from the problem, to obtain a simpler problem

with fewer degrees of freedom.

Up to now, we did not set up a distinction between the several constraints of the studied

constrained optimization problem. In Chapter 3, we considered the whole constraints and we

solve the linear system globally. In this chapter, we make the distinction between them, and

we recall that the existing constraints are twofold. Firstly, fixed linear or affine constraints,

that are easy to eliminate explicitly as will be shown in section 4.1.1. Secondly, fixed sensors

constraints, that we enforce in order to describe a quantifiable distance between the numer-

ical and experimental models. Their elimination may cause an additional computation cost

if done explicitly as will be demonstrated in section 4.1.2. To remedy to that, we present an

implicit elimination approach later in this chapter.

4.1.1. First explicit projection of the saddle point system onto the

nullspace of kinematic constraints

As mentioned in section 2.2.1, we recall that in order to practically introduce kinematic

linear constraints, we usually choose a dual form to describe them through the Lagrange

multipliers. This approach is used in many general-purpose finite element programs that

are supposed to work as a black-box by minimizing guesses from its users. It increases the

size of the problem by introducing new unknowns through Lagrange multipliers. Physically

this set of unknowns represent constraint forces that would enforce the kinematic constraints

applied to the unconstrained system.

We also recall that the approach drawbacks are twofold. On the one hand, the adjunction

of Lagrange multipliers increases the number of degree of freedom of the whole problem, re-

quiring expansion of the original stiffness and mass matrices, which means more complicated

storage allocation procedures. This may be disadvantageous when the number of boundary

conditions increases. On the other hand, it leads to a loss of the positivity property of the

stiffness matrix. It becomes indefinite which restrains the use of many factorization methods

and preconditioning schemes that rely on positive definiteness.

This is why we use nullspace projection in order to get a more suitable description of con-

strained structures when dealing with fixed and affine boundary conditions. Hence, instead

of using the dual form through the Lagrange multipliers to constraint the problem with
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4. Constraint preconditioners for the projected saddle point system

affine constraints, we eliminate some of the variables from the problem, to obtain a simpler

problem with fewer degrees of freedom. We do so by projecting the problem in the nullspace

of the kinematic constraints as will be shown later in this section.

Let us recall here the equivalent variant of the coefficient matrix Ã of the studied system

presented before in section 2.2.3

Ã =


−A BT −CT CT

B T CT 0

−C C 0 0

C 0 0 0

 =

(
Ẽ C̃T

C̃ 0

)
, (4.1)

described using the following abbreviations

A = [K(θ)], B = [K(θ)]− ω2
exp[M(θ)], T =

r

1− r
ΠT [Kr]Π,

and where

Ẽ =

(
−A BT

B T

)
∈ R2n×2n and C̃ =

(
−C C

C 0

)
∈ R2m×2n.

The constraint matrix C̃ is an augmented incidence matrix that is created from the constraint

matrix C of the numerical model. This alternative structure is more appealing than the initial

one (2.27), it represents a saddle point coefficient matrix with a null (2, 2) block, which is

more suitable for a projection of Ã onto the nullspace of the kinematic constraints C̃.

In the following, we describe the coefficient matrix Ã in the nullspace of C̃. We need then

to compute a nullspace basis

Z̃ ∈ R2n×2(n−m) such that span(Z̃) = ker(C̃).

In order to build the nullspace basis Z̃, we take advantage of the block structure of C̃, in

such a way that the computation cost is cut by half, as presented in the lemma below.

Lemma 4.1. Let the matrix C̃ =

(
−C C

C 0

)
∈ R2m×2n be as defined above.

If Z ∈ Rn×(n−m) is a nullspace basis of C then Z̃ =

(
Z 0

0 Z

)
is a nullspace basis of C̃.
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4.1. A double explicit-implicit projections onto the constraints nullspace

Proof. The following equation proves the lemma

C̃Z̃ =

(
−C C

C 0

)(
Z 0

0 Z

)
=

(
−CZ CZ

CZ 0

)
.

It is then sufficient to compute the nullspace basis of the constraint matrix C in order to get

the nullspace basis of C̃. We recall that the matrix C is a full row rank matrix and if such is

not the case, we find either that the problem is inconsistent or that some of the constraints

are redundant and can be deleted without affecting the solution of the problem.

One standard method for computing a null space basis for C is known as the fundamental

basis method [17]. In this method and under the assumption of full rank of C, it is possible

to find a subset of m columns of C that are linearly independent. We then arrange those

columns as the first m columns of C. Let P be a permutation matrix such that CP =

(Cm, Cn−m), where, Cm is the first m linearly independent columns of C. Then, the columns

of

Z = P

[
−C−1

m Cn−m

In−m

]
, (4.2)

form a basis of the null space of C. This concept is applied in other forms using QR, LU or

the singular value decomposition (SV D) of the matrix C [32]. All these techniques have a

trade-off between sparsity and numerical stability. In the QR and SV D methods, we get an

orthogonal basis of the nullspace that is dense and computationally expensive [70].

The nullspace basis Z needs to be sparse, well-conditioned, easy to apply. Those criteria are

difficult to match together, actually Z can be rather ill-conditioned or dense. Paramount

among them is sparsity. The problem of finding a sparse nullspace basis is shown to be

NP-hard [31] and even If C is sparse that do not mean the sparsity of Z.

There is a technique that suits those purposes, which is the sparse Gaussian elimination

approach that attempts to preserve sparsity while keeping rounding errors under control.

We compute the nullspace basis Z by performing LU on the matrix CT . This latter is called

a skinny matrix, since its rows outnumbers its columns. As done above, there exists two

permutation matrices, P used for stability, and Q used for sparsity such that

PCTQ =

[
L1

L2

]
U1, (4.3)
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4. Constraint preconditioners for the projected saddle point system

where L1 ∈ Rm×m is invertible. We define the nullspace basis such as

Z = P T

[
−L−T1 LT2

I

]
. (4.4)

In Section 2.3.5, we saw that the saddle point coefficient matrix 4.1 can be reduced to a

block triangular form using the basis (
Ỹ Z̃ 0

0 0 I2m

)
, (4.5)

where

Ỹ ∈ R2n×2m such that span(Ỹ ) = range(C̃T ) i.e. span
([
Ỹ Z̃

])
= R2n.

Indeed, when taking Ỹ = C̃T , which is the description of range(C̃T ) in canonical basis, and

when premultiplying 4.1 at right and left, it turns out that C̃ẼC̃T C̃ẼZ̃ C̃C̃T

Z̃T ẼC̃T Z̃T ẼZ̃ 0

C̃C̃T 0 0

 . (4.6)

(4.6) is an anti-triangular system. It is invertible iff Z̃T ẼZ̃ and C̃C̃T are invertible. Since

C̃ is of full row rank then C̃C̃T is symmetric and positive definite. Therefore, we need to

prove that Z̃T ẼZ̃ is nonsingular, so that the coefficient matrix 4.6 is proved invertible.

Theorem 4.2 gives a necessary and sufficient condition to prove the nonsingularity of matrix

Z̃T ẼZ̃.

Theorem 4.2. The matrix Z̃T ẼZ̃ is invertible whenever

Ker(ZTBZ) ∩Ker(ZTTZ) = {0} (4.7)

Proof. Using the fact that Z̃ =

(
Z 0

0 Z

)
, we obtain :

Z̃T ẼZ̃ =

(
Z 0

0 Z

)T (
−A B

B T

)(
Z 0

0 Z

)
=

(
−ZTAZ ZTBZ

ZTBZ ZTTZ

)
(4.8)
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4.1. A double explicit-implicit projections onto the constraints nullspace

We use the following LDLT block decomposition(
−A BT

1

B2 C

)
=

(
I 0

B2A
−1 I

)(
A 0

0 C +B2A
−1BT

1

)(
I A−1BT

1

0 I

)
(4.9)

The matrix Z̃T ẼZ̃ is congruent to the matrix(
−ZTAZ 0

0 ZTTZ + (ZTBZ)(ZTAZ)−1(ZTBZ)

)
. (4.10)

We know that the matrix A = K is supposed to be positive definite on ker(C), this implies

that ZTAZ is symmetric positive definite. Also the matrix

S = ZTTZ + (ZTBZ)(ZTAZ)−1(ZTBZ)

is symmetric positive semidefinite matrix. Thus, the invertibility of Z̃T ẼZ̃ depends of the

definiteness of S. Suppose that S is singular then there exists V 6= 0, such that V TSV = 0

which means

V T (ZTTZ)V = 0 and V T [(ZTBZ)(ZTAZ)−1(ZTBZ)]V = 0.

As T is symmetric positive semidefinite then V ∈ ker(ZTTZ). Similarly it is clear that

V ∈ ker((ZTAZ)−1ZTBZ) = ker(ZTBZ).

Finally Z̃T ẼZ̃ is nonsingular iff ker(ZTBZ) ∩ ker(ZTTZ) = {0}.

This condition is naturally fulfilled in mechanical measurements. Actually, let us consider

the numerical finite element model of the constrained structure with (Kc = ZTKZ,Mc =

ZTMZ) its stiffness and mass matrices. if ω is not an eigenfrequency, then ker(ZTBZ) =

ker(Kc(θ)−ω2Mc(θ)) = 0, it follows that the condition below is fulfilled. On the other hand,

if ω is an eigenfrequency, then there exists u 6= 0 such that ZTBZu = (Kc(θ)−ω2Mc(θ))u =

0. Since it is possible to choose a measurement configuration such that any eigenmode is

observable, it implies that ZTTZu 6= 0, this satisfies the condition of invertibility.

Remark 4.3. As mentioned in 2.30, we can produce the same process by considering the
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sensors degrees of freedom partitioning. let us take

Ẽs =


−Ass −Ast BT

ss BT
ts

−Ats −Att BT
st BT

tt

Bss Bst Tss 0

Bts Btt 0 0

 . (4.11)

When projecting onto the kinematic constraints as described in section 4.1.1, it yields that

the projected coefficient matrix is such that

AZs = Z̃T
s ẼsZ̃s =


−AZss −AZst BT

Zss
BT
Zts

−AZts −AZtt BT
Zst

BT
Ztt

BZss BZst TZss 0

BZts BZtt 0 0

 , (4.12)

where

Z̃s =

(
Zs 0

0 Zs

)
,

is the nullspace basis of C̃s and Zs is the nullspace basis of Cs partitioned in the same way

as in matrix 2.30. The subscript Z indicates the projected form of each block matrix.

Since the kinematic constraints are fixed and do not depend of the experimental frequency,

the nullspace basis Z̃ is computed once for the sequence of saddle point systems to solve.

In the case of the sensors constraints, we need to compute a different nullspace basis of(
BZss BZst

)
for each system along the sequence of saddle point linear systems, which is

presented in the next subsection.

The equivalent linear system to solve is then C̃ẼC̃T C̃ẼZ̃ C̃C̃T

Z̃T ẼC̃T Z̃T ẼZ̃ 0

C̃C̃T 0 0


xYxZ
w

 =

Ỹ Tf

Z̃Tf

0

 , (4.13)

where

f =

(
0

r
1−rΠ

T [Kr]φexp

)
,

(
xY

xZ

)
= x =

(
ψ

ϕ

)
, w =

(
λ1

λ2

)
,

and the solution set of C̃x = 0 is described by x = Ỹ xY + Z̃xZ .

The unknown w in equation 4.13 enables us to get reaction forces. Actually, any kinematic

constraint may be replaced by a system of forces. Very often, reaction forces can be identified
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4.1. A double explicit-implicit projections onto the constraints nullspace

with Lagrange multipliers, here w is one of these latter. Here, we are not interested by

computing reaction forces, we thus focus our attention on computing the unknown x only.

The third equation in the linear system 4.13 is C̃C̃TxY = 0, since C̃ is of full row rank

then the matrix C̃C̃T is symmetric positive definite, which implies that xY = 0. Since

x = Ỹ xY + Z̃xZ = Z̃xZ then we need to obtain xZ . To fulfill this purpose, equation 2 in the

system 4.13 is the only linear equation to solve as will be discussed in upcoming sections. It

is presented here such as(
−ZTAZ ZTBZ

ZTBZ ZTTZ

)(
xZ1

xZ2

)
=

(
−AZ BZ

BZ TZ

)(
xZ1

xZ2

)
=

(
0

ZTf

)
, (4.14)

where xTZ =
(
xTZ1

xTZ2

)
.

The findings of this section are twofold. Firstly, we describe the studied saddle point system

in an equivalent form by using the nullspace method. This method is already used in the

literature of saddle point systems [17], however it is enhanced here by taking advantage of

the augmented structure of the studied system. We use a skinny LU technique in order to

construct the nullspace basis, as already done in [70], then we adapt it to our case. Thanks

to the specific structure we have, we cut by half the computational cost for obtaining the

nullspace basis.

Secondly, we give an adequate proof of the invertibility of our system, using this new equiv-

alent form. We also generate the new projected linear system to solve. This one have a

saddle point structure.

4.1.2. Second projection of the projected system onto the nullspace of

sensors constraints

After eliminating the kinematic constraints in the previous section, we eliminate the remain-

ing constraints. Those latter are associated with the sensors degrees of freedom. We focus

in this section on developing the second projection through the same explicit approach used

in section 4.1.1. Then, due to its expansive computational cost, we propose an alterna-

tive implicit projection approach through solving the first projected system using constraint

preconditioners.
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4. Constraint preconditioners for the projected saddle point system

Explicit projection onto the nullspace of sensors constraints

Let us develop the second explicit projection, in order to show how difficult it is, to compute

the nullspace basis of the sensors constraints. We recall the projected saddle point system

to solve (
−AZ BZ

BZ TZ

)(
xZ1

xZ2

)
=

(
0

ZTf

)
, (4.15)

As shown in [41], we use a LDLT factorization with pivoting on TZ = ZTTZ so that

QTTZQ = JDJT , (4.16)

where J ∈ R(n−m)×s, Q ∈ R(n−m)×(n−m) a permutation matrix and D ∈ Rs×s invertible such

that sZ = rank(TZ). We then add the variable p = DJTQTxZ2 so that we may write −AZ 0 BZQ

0 −D−1 JT

QTBZ J 0


 xZ1

p

QTxZ2

 =

 0

0

QT (ZTf)

 . (4.17)

Finally, we obtain a non regularized saddle-point as follows(
H F T

F 0

)(
t

QTxZ2

)
=

(
0

−QT (ZTf)

)
, (4.18)

where

H =

(
AZ 0

0 D−1

)
∈ R(n−m+s)×(n−m+s),

is the main matrix and

F =
(
QTBZ J

)
∈ R(n−m)×(n−m+s),

is the constraint one, and t =

(
−xZ1

−p

)
.

The rank of F is independent from BZ one. Let us prove this in the lemma below.

Lemma 4.4. Let F =
(
QTBZ J

)
∈ R(n−m)×(n−m+s) be as described above. Then F is of

full row rank independently from the rank of BZ.

Proof. We recall that BZ = KZ − ω2
expMZ .

If ω2
exp is an eigenvalue of the generalized eigenproblem

(KZ − λMZ)V = 0
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then BZ is singular, its nullspace is then the corresponding modal subspace. From equation

4.16, we note that ker(J) ⊂ ker(TZ). Also as shown in Theorem 4.2, the nonsingularity

property implies ker(BZ) ∩ ker(TZ) = {0}. Thus, ker(BZ) ∩ ker(J) = {0}, which yields the

linear independence of F rows.

If ω2
exp is not an eigenvalue then F is directly of full row rank.

The solution set of Ft = −QT (ZTf) is described by t = UtU + V tV where

• V ∈ R(n−m+s)×s a matrix such that span(V ) = ker(F ),

• and U ∈ R(n−m+s)×(n−m) a matrix such that span(U) = range(F T ).

Using the following basis transformation

(
t

QTxZ2

)
=

(
U V 0

0 0 I

) tU

tV

QTxZ2

 , (4.19)

and as done in section 4.1.1, we obtain the following system FHF T FHV FF T

V THF T V THV 0

FF T 0 0


 tU

tV

QTxZ2

 =

 0

0

−QT (ZTf)

 , (4.20)

which yields to 3 reduced linear systems

FF T tU = −QT (ZTf),

V THV tV = −V THF T tU ,

FF TQTxZ2 = −F (HF T tU +HV tV ).

(4.21)

tU is determined by the the first (n −m) × (n −m) system. Since F is of full row rank as

assumed below then FF T is symmetric and positive definite so that we can solve the first

and third linear systems in equation 4.21 by Cholesky factorization or by conjugate gradient

(CG).

Let us prove in the following that the coefficient matrix V THV of the second equation is

also symmetric positive definite.

Theorem 4.5. Let the matrix V THV ∈ Rs×s be as described above, then it is symmetric

positive definite.
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Proof. Let x ∈ Rs×s be a nonzero, we have V x 6= 0 since V has full column rank. It yields

xT (V THV )x = (V x)T

(
ZTAZ 0

0 D−1

)
(V x) > 0. (4.22)

Hence, it is also possible to solve the second linear system in 4.21 by Cholesky factorization

or conjugate gradient method.

Once the solution tV is found, the solution set of Ft = −QT (ZTf2) is then described by

t = UtU + V tV . Then, xZ2 can be obtained using the third reduced system . It is possible

to use the same Cholesky factorization for both first and third equations.

This approach details the explicit use of the basis V of the nullspace

ker
([
QTBZ J

])
in order to solve the sequence of saddle point systems. We highlight the need to compute

an explicit nullspace basis V for each saddle point system because it changes at each new

experimental frequency. Even if it is possible to maintain the same symbolic structure while

computing V through skinny factorization of F T , it remains a costly process.

In the next subsection, we introduce an alternative implicit approach that avoids computing

an explicit basis of the nullspace of sensors constraints.

Replacing the explicit projection by an implicit approach

In order to avoid the expensive cost to find the nullspace basis explicitly, it seems more

judicious to use the implicit variant of the nullspace method.

A modern version of the null-space method is to implicitly projecting onto the null space

through the class of projected Krylov methods [99]. Since those methods are proved to be

mathematically equivalent to applying a Krylov subspace method preconditioned with a con-

straint preconditioner [58, 59], we use and adapt this preconditioner to replace the explicit

projection.

We consider in the following the saddle point coefficient matrix AZ and its associated con-

straint preconditioner GZ as follows

AZ =

(
−AZ BZ

BZ TZ

)
∈ R2(n−m)×2(n−m) and GZ =

(
−GZ BZ

BZ TZ

)
∈ R2(n−m)×2(n−m). (4.23)
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4.2. Constraint preconditioners approximations for the projected saddle point system

Unlike the problems studied in the saddle point literature, and especially in constraint pre-

conditioners one, we note here that the coefficient matrix of the projected system AZ has a

square constraint block BZ .

In the next section, we study the properties of the preconditioned coefficient matrix G−1
Z AZ

for the studied case. Then we adapt the constraint preconditioner GZ to be used with

the special structure of the projected saddle point system 4.14, by proposing better fit

approximations of the Schur complement.

4.2. Constraint preconditioners approximations for the

projected saddle point system

We recall that we are using the constraint preconditioner in order to eliminate implicitly

the sensors constraints as mentioned in previous section. We propose here to adapt the

constraint preconditioner results in [28, 42] to suit the case of the studied problem. Then,

we propose a physics-based approximation of the constraint preconditioner.

4.2.1. Spectral characterization of the preconditioned matrix

We recall the projected linear system to solve(
−AZ BZ

BZ TZ

)(
xZ1

xZ2

)
=

(
0

ZTf

)
. (4.24)

Here, the saddle point coefficient matrix AZ and the constraint preconditioner GZ satisfy all

the following assumptions that are valid during the whole chapter

• the constraint matrix BZ = KZ − ω2
expMZ ∈ R(n−m)×(n−m) is square and maybe rank

deficient if ω2
exp ∈ Sp(KZ ,MZ),

• TZ ∈ R(n−m)×(n−m) is symmetric and positive semidefinite, and has rank s equal to the

number of sensors, where 0 < s < n−m.

In light of those assumptions, we bring out the following results that we use later in this

section

• Since TZ = ZTTZ = ZT ( r
1−rΠ

TKrΠ)Z, it is possible to consider a factorization of TZ

such as TZ = LDLT where L ∈ R(n−m)×s, and D ∈ Rs×s is symmetric and positive

definite.
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4. Constraint preconditioners for the projected saddle point system

• If we consider Q ∈ R(n−m)×(n−m−s) such that range(Q) = ker(TZ), then from the condi-

tion of invertibility ker(BZ)∩ker(TZ) = {0}, we conclude that QTBZ ∈ R(n−m−s)×(n−m)

has full row rank n − m − s. We consider N ∈ R(n−m)×s such that range(N) =

ker(QTBZ).

• Since range(L) = range(C), we can describe R(n−m)×(n−m) using the basis
(
L Q

)
.

Let us characterize the spectrum of the constraint preconditioner GZ for the studied problem.

Using the fundamental nullspace basis of TZ which is described as follows

Nf =

(
In−m 0 0

0 L Q

)
.

It turns out that the equivalent coefficient matrix is

AZN = NT
f AZNf =

 −AZ BZL BZQ

LTBZ LTTZL 0

QTBZ 0 0

 (4.25)

This approach has been used in interior point optimization problems [42] when the constraint

matrix is a rectangular one. But it remains true when BZ is square and singular like here.

We obtain then

G−1
ZNAZN =

 −AZ BZL BZQ

LTBZ LTTZL 0

QTBZ 0 0

 (4.26)

Let us take

R =

(
−AZ BZL

LTBZ LTTZL

)
and P =

(
QTBZ 0

)
, (4.27)

such that

G−1
ZNAZN =

(
R P T

P 0

)
(4.28)

Using the assumptions in the beginning of this section, we have that R is invertible and P

is of full row rank. This is the case already studied in the literature [28]. We present in the

following some theorems that describe the same results we got when BZ is singular.

Theorem 4.6. Let GZ and AZ be as defined before. We suppose that BZ is singular. The

matrix G−1
Z AZ has

• an eigenvalue at 1 with multiplicity 2(n−m)− s,
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4.2. Constraint preconditioners approximations for the projected saddle point system

• s eigenvalues which are defined by the generalized eigenvalue problem

NT (AZ +BT
ZLD

−1LTBZ)Nv = λNT (GZ +BT
ZLD

−1LTBZ)Nv. (4.29)

The general proof of this theorem can be found in [42]. Theoretically, applying the constraint

preconditioner enables to cluster nearly the whole spectrum to 1. In industrial applications,

the number of sensors s is negligible in comparison to the number of physical degree of

freedom n.

Using this theorem, it is possible to conclude some conditions in order to guarantee that the

eigenvalues are real, which are

• either NT (AZ +BT
ZLD

−1LTBZ)N or NT (GZ +BT
ZLD

−1LTBZ)N is positive definite

• both NT (AZ +BT
ZLD

−1LTBZ)N and NT (GZ +BT
ZLD

−1LTBZ)N are positive definite

Theorem 4.7. Let GZ and AZ be as defined before. We suppose that BZ is singular. If

GZ +BT
ZLD

−1LTBZ is positive definite, then the matrix G−1A has 2(n−m) eigenvalues as

defined in the above theorem and (n-m)+i+j linearly independent eigenvectors. There are :

• n−m eigenvectors of the form
(

0T yT
)

that corresponds to the case λ = 1,

• i(0 ≤ i ≤ (n −m)) eigenvectors of the form
(
xT yT

)
arising from AZx = GZx for

which the i vectors x are linearly independent and λ = 1.

• j(0 ≤ i ≤ (n − m)) eigenvectors of the form
(
xT yT

)
that correspond to the case

λ 6= 1.

We now consider the degree of the minimal polynomial of the preconditioned matrix which

determines the convergence behavior of a Krylov subspace method such as GMRES. If we

use the results cited before when GZ+BT
ZLD

−1LTBZ is positive definite, then the dimension

of Krylov subspace K(G−1A, b) is at most min{s+ 2, 2(n−m)}.

Now from the spectral characterization presented here it is possible to conclude that the

proposed approach is efficient theoretically. But, we need to find and build in practice

suitable approximations for the constraint preconditioner blocks, especially for the (1,1)

block AZ and the Schur complement SZ . We propose next some possible factorizations and

approximations for the constraint preconditioner.
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4. Constraint preconditioners for the projected saddle point system

4.2.2. Factorization of constraint preconditioners and Schur

complement approximations

The coefficient matrix AZ of the projected system 4.24 as well as the constraint precon-

ditioner GZ are not positive definite, which means we cannot apply the PCG algorithm.

However we can treat the problem using a general nonsymmetric and preconditioned GM-

RES. We recall that preconditioning is typically used with Krylov projection methods to

alter the spectrum and hence accelerate the convergence rate of iterative techniques, here it

is also used to eliminate the sensors constraints.

Since we solve the preconditioned system in each iteration of the iterative method, we need a

suitable direct factorization that can be reused symbolically for several systems. We present

a possible factorization in the following

GZ =

(
In−m 0

−BZG
−1
Z SZ

)(
−GZ BZ

0 In−m

)
, (4.30)

where SZ = TZ +BZG
−1
Z BZ is the Schur complement of −GZ .

G−1
Z =

(
−G−1

Z G−1
Z BZ

0 In−m

)(
In−m 0

S−1
Z BZG

−1
Z S−1

Z

)
. (4.31)

Remark 4.8. It is also possible to present the constraint preconditioner using this LDLT

factorization based on the Schur complement of GZ

P =

(
−GZ BT

Z

BZ TZ

)
=

(
I 0

−BZG
−1
Z I

)(
−GZ 0

0 TZ +BZG
−1
Z BT

Z

)(
I −G−1

Z BT
Z

0 I

)
. (4.32)

The constraint preconditioner is implemented as(
−GZ BT

Z

BZ TZ

)−1

=

(
−G−1

Z 0

0 I

)(
I −BT

Z

0 I

)(
I 0

0 (TZ +BZG
−1
Z BT

Z )−1

)(
I 0

BZG
−1
Z I

)
(4.33)

Many algorithms for solving saddle point systems depend on the availability of good approx-

imations for the (1,1) block −AZ and for the Schur complement SZ . The construction of

such approximations is a strongly problem-dependent matter.

Here we build a specific constraint preconditioner PChol that relies on an approximation of

the Schur complement. This approximation is mostly based on structural dynamics.
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4.2. Constraint preconditioners approximations for the projected saddle point system

The constraint preconditioner PChol

Let us first propose an approximation of the Schur complement. Actually, we observe that

SZ = TZ +BZA
−1
Z BZ = TZ − AZ − 2ω2

expMZ + ω4
expMZK

−1
Z MZ . (4.34)

Let us consider again the spectral decomposition of KZ and MZ more explicitly with asso-

ciated eigenvalues as done in 2.31

UTKZU = Diag
1≤j≤N

(ω2
j ), U

TMZU = I, (4.35)

where 0 ≤ ω2
1 ≤ ... ≤ ω2

N are the N eigenvalues (counting possible multiplicities), and

U = (u1, u2, ..., uN) their correspondent M -orthonormalized eigenvectors. We obtain :

UTBZU = UT (KZ − ω2
expMZ)U = Diag

1≤j≤N
(ω2

j − ω2
exp). (4.36)

Through above expressions and after some algebraic simplification we get

BZA
−1
Z BZ = U−T

[
Diag

1≤j≤N

(
(ω2

j − ω2
exp)

2

ω2
j

)]
U−1 (4.37)

Since we are more interested by low experimental frequencies in industrial applications

ωexp � ωN , we can approximate the dense matrix BZA
−1
Z BZ by the sparse matrix KZ =

−AZ .

BZA
−1
Z BZ ≈ −AZ . (4.38)

Actually, we note that the equation 4.34 can be seen as a polynomial approximation of a

function that has ω2
exp as an argument.

Let us then introduce the approximation of the Schur complement SZ we consider here

S̊Z = TZ − AZ ≈ SZ . (4.39)

S̊Z is symmetric and positive definite and admits an exact Cholesky factorization S̊Z =

L̊SL̊S
T

. Since AZ is also positive definite, we can take GZ = LAL
T
A an exact Cholesky de-

composition as an approximation of this block. Consequently, we present the preconditioner
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4. Constraint preconditioners for the projected saddle point system

PChol

P−1
Chol =

(
−LALTA BZ

BZ TZ

)−1

≡

(
−L−TA L−1

A L−TA L−1
A BZ

0 In−m

)(
In−m 0

L̊S
−T
L̊S
−1
BZD

−1 L̊S
−T
L̊S
−1

)
.

(4.40)

The constraint preconditioner has an approximation of the Schur complement that is more

problem-dependent. It enables to replace the denser matrix SZ = TZ + BZA
−1
Z BZ by a

sparse matrix, which reduces enormously the computational cost as will be shown later in

this chapter and in Chapter 5. However, this preconditioner rely on a direct factorization

based approximations, and direct factorization is known to be a less scalable approach in

parallel framework.

The preconditioner PChol is incorporated in the iterative method GMRES. The default

convergence test is based on the L2-norm of the residual. Convergence (or divergence) is

decided by three quantities : the decrease of the residual norm relative to the norm of the

right hand side, rtol, the absolute size of the residual norm, atol, and the relative increase

in the residual, dtol. Convergence is detected at iteration k if

||rk||2 = ||Axk − b||2 < max(rtol.||b2||2, atol), (4.41)

and divergence is detected whenever

||rk||2 = ||Axk − b||2 > dtol.||b2||2. (4.42)

When solving large scale real life problems, the constraint preconditioner may be unstable

and ill-conditioned. To reach satisfying numerical results, we choose to use the constraint

preconditioner at right. Actually, right-preconditioning is better for making the residual

small and for debugging unstable preconditioners. It can be also attractive because the

preconditioned residual ||P(xk − x)||2 is equal to the true error ||xk − x||.

Remark 4.9. It is worth mentioning that the number of iterations of the Krylov subspace

method is generally different if P is used as a left, right or split preconditioner, even though

the spectra of the associated preconditioned matrices are identical. In particular, the stop-

ping criterion is evaluated with A replaced by the left-preconditioned operator P−1A and the

preconditioned residual P−1(Axk − b) or with the right-preconditioned operator AP−1 and

the error P(xk − x).

Let us present here the developed algorithm that we use later for our applications.
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4.2. Constraint preconditioners approximations for the projected saddle point system

Algorithm 4.1: Double explicit-implicit projection iterative approach to solve the saddle point

linear system 2.16

Data: The linear system 2.16

Result: Solution fields {ψ} and {ϕ}
– Permuting the saddle point system to obtain the structure in 4.1

– First explicit projection

– Computing the skinny LU factorization with pivoting of the constraint matrix C

PCTQ =

[
L1

L2

]
U1,

where L1 ∈ Rm×m is invertible.

– Construct the nullspace basis Z of the constraint matrix C

Z = P T

[
−L−T1 LT2

I

]
.

– Construct the nullspace basis Z̃ of the constraint matrix C̃ as

Z̃ =

(
Z 0

0 Z

)

– Building the projected saddle point system(
−AZ BZ

BZ TZ

)(
xZ1

xZ2

)
=

(
0

ZTf

)
. (*)

– Second implicit projection

– Build the constraint preconditioner GZ used to eliminate sensors constraints

G−1
Z =

(
SolveA(−G−1

Z ,−Ĝ−1
Z ) 0

0 I

)(
I −BT

Z

0 I

)(
I 0

0 SolveS(S−1
Z , Ŝ−1

Z )

)(
I 0

BZSolveA(−G−1
Z ,−Ĝ−1

Z ) I

)

– Choose GZ the approximation of the (1,1) block AZ .

– Choose the solution method SolveA and its preconditioner ĜZ .

– Choose SZ the approximation of the Schur complement.

– Choose the solution method SolveS and its preconditioner ŜZ .

– Solve the projected system (∗) using the preconditioned GMRES with the constraint

preconditioner GZ in outer loop.

– Obtain (
ψ

ϕ

)
=

(
Z 0

0 Z

)(
xZ1

xZ2

)
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We note that since GZ and SZ are both symmetric positive definite, then we use the con-

jugate gradient method in the inner solution methods SolveA and SolveS in the constraint

preconditioner PChol.

In the next section, we showcase the efficiency of the proposed algorithm 4.1 and we evaluate

the performance of different approximations of the blocks AZ and SZ in the constraint

preconditioner.

4.3. Academic application to structural mechanics

The iterative resolution process is illustrated first on an academic three-beam structural

system. More numerical results are presented in Chapter 5 on large industrial applications.

The geometry of the studied structure is depicted in Figure 4.1 (left) while its finite element

model is presented in Figure 4.1 (right). The structure is composed of different types of

finite elements.

Figure 4.1.: The geometry and FE model of the tree-beam structure

We consider 4 different test cases generated from the finite element model of the three-beam
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structural system. Each one present different number of physical and Lagrange degrees of

freedom. They are shown in Table 4.1.

Matrix Physical dofs (n) Lagrange dofs (m) System size System nnz condition number

A1 10,074 873 21,894 1,798,539 2.1e+08

A2 13,497 1,089 29,172 2,503,134 2.5e+08

A3 22,791 1,593 48,768 4,490,766 3.2e+08

A4 64,506 3,273 135,558 13,778,775 7.1e+08

Table 4.1.: Presentation of the global coefficient matrices of each test case

Here the mechanical software Code Aster R© enables us to get a full row rank constraint

matrix C for all test cases. Also, those constraints are integrated in order to forbid the

rigid body motions of the structure. For all the test cases, we choose an experimental

frequency near to the second eigenfrequency, which means that BZ is ill-conditioned. This

case is the most challenging since the experimental configuration needs to enable observing

all model eigenmodes to ensure the nonsingularity of the generated saddle point system. The

experimental mesh is constructed artificially to fulfill this requirement.

The condition number is estimated using MUMPS in double precision arithmetics as a direct

solver of the linear system. Regarding this parameter (around 108), the solution may be

challenging for iterative solution methods. The condition number can be explained by the

quality of the mesh: we guess in Figure 4.1 that the mesh elements have a strong spatial

variations. We also deduce from the condition number that all test cases have nonsingular

coefficient matrices, which confirms that all solvability conditions mentioned in Chapter 2

are satisfied.

4.3.1. Implementation considerations

In this section, we succinctly describe the routines developed in both the mechanical software

Code Aster R© [1], the direct solver SuperLU [77] and the PETSc library (Portable, Extensi-

ble Toolkit for Scientific Computation) [11], related to the developed iterative algorithm 4.1

studied in this manuscript. More precisely, we emphasize that the implementation has been

done in a parallel framework. Finally, we notify the reader that this section refers to several

routines specific to PETSc [11].

The developments are split in three main parts. The first one gives information on how the

saddle point structure of the systems is taken into account in the code; this has been particu-
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4. Constraint preconditioners for the projected saddle point system

larly developed in order to define the constraint preconditioner. Currently in Code Aster R©,

the available preconditioning techniques treat the global system and unfortunately do not

take into account the saddle point structure of the systems. We developed in the mechanical

software a routine that enables to retrieve the stiffness matrix K, the mass matrix M , the

constraint matrix, the observation matrix Π, the norm matrix Kr and the right hand side.

We used Code Aster R© global ordering, which makes possible to identify the nature of each

degree of freedom, and to extract the matrix blocks. Once the different blocks were retrieved,

we used local PETSc ordering in order to identify unknowns on each process. For sake of

flexibility of implementation, we chose to implement the system with the function MATSHELL

in PETsc to define our own matrix type, then PCSHELL to construct our new preconditioner

class. We emphasize that the implementation has been done in a parallel framework.

The second part illustrates the developments carried out both in standalone in order to get

an explicit nullspace basis from the constraint matrix. The code uses an interface developed

in Fortran 90 to the direct solver SuperLU, which is a a general purpose library written in C

and callable from either C or Fortran for the direct solution of large, sparse, nonsymmetric

systems of linear equations. Its main feature is that it enables getting access explicitly to

the factor matrices. Those are then used to construct the nullspace basis as described in

equation 4.4. We note that we used the routine amd that performs minimum degree ordering

in order to get sparse factors.

The third part main idea is to use the PETSc library as an iterative solver for the solution

of each linear system in the sequence, and more specifically the GMRES method, as justified

in section 4.2.2. This approach is already available in Code Aster R© , thanks to an interface

developed in Fortran 90. However, we made developments in standalone in C, since we need

to first transform our system through explicit nullspace projection. We used the PETSc

preconditioner framework called PCFIELDSPLIT to implement the block solvers in PETSc,

with PCFieldSplitSetIS to indicate exactly which rows/columns of the matrix belong to a

particular block.

Since GMRES in PETSc Library is implemented with left-preconditioning by default, we

used FGMRES in which only right preconditioning is supported, up to an accuracy of 10−9

for the applications of this chapter. The program implemented works in parallel. A very

close attention is paid to the ordering of unknowns especially in this parallel framework.

All experiments carried out on this chapter were performed on the Aster5 cluster, an IBM

IDATAPLEX computer located at EDF R&D Data Center (each node of Aster5 is equipped

with 2 Intel Xeon E5 â 2600, each running 12 cores at 2.7 Ghz). Physical memory available

on a given node (24 cores) of Aster5 ranges from 64 GB to 1 TB. This code was compiled

by the Intel compiler suite with the best optimization options and linked with the Intel
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MKL BLAS and LAPACK subroutines. Since we use PETSc with this parallel system that

supports MPI, the figure below presents a summary of the bandwidth received with different

number of MPI processes and potential speedups.

We emphasize that when studying the scalability of the iterative approach, we use up to

16 processors of only one node. In practice, even if we do not consider parallel framework

in the theoretical part of this chapter, this framework allows us to consider selected large-

scale industrial problems, and to prove their performance in regards to a limited amount of

computational time on a moderate number of cores.

4.3.2. Results of the first explicit nullspace projection

As shown in section 4.1.1, the projection onto the nullspace of kinematic constraints is

performed through the computation of an explicit basis Z of the nullspace of the constraint

matrix C. This enables us to study the reduced system (4.14) instead of the global system

(2.16).
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A1 10,074 873 21,894 1,798,539 873 × 10,074 10,074 × 9,201 1.3e-2 18,402 1,943,373

nnz = 3,387 nnz = 12,890

A2 13,497 1,089 29,172 2,503,134 1,089 × 13,497 13,497 × 12,408 2.9e-2 24,816 2,751,990

nnz = 4,146 nnz = 16,977

A3 22,791 1,593 48,768 4,490,766 22,791 × 22,791 1,593 × 21,198 6.4e-2 42,396 5,071,433

nnz = 6,062 nnz = 27,847

A4 64,506 3,273 135,558 13,778,775 64,506 × 3,273 64,506 × 61233 18.8e-2 122,466 16,358,756

nnz = 12,555 nnz = 74,794

Table 4.2.: Presentation of the global and reduced coefficient matrices of each test case and
description of the projection onto the nullspace of kinematic constraints

We note that the reduced system size is comparable to the global system size, which is due

to low number of Lagrange degrees of freedom. Besides, the computation time relative to

the nullspace basis remains low even for large test cases.

4.3.3. Comparing different approximations of the constraint

preconditioner PChol

Before comparing above approximations of the constraint preconditioner, let us first set up

some important parameters.

Choosing the restart parameter

It is very difficult practically to choose an appropriate value of the restart number m. Tra-

ditionally, it has been assumed that the larger the value of restart number m, the fewer

iterations are required for convergence. In fact, a large m improves the information in the

GMRES residual polynomial (see, e.g., [69]). Furthermore, a large enough m for GMRES(m)

can to some extent reduce the impediment to superlinear convergence [110] and may be re-
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quired to avoid stalling [98]. Nevertheless, if m is too large, the goal of restarting as a means

of reducing computational and storage costs is negated.

In practice, we generally attempt to choose a value for m that balances in the one hand the

good convergence properties resulting from a large value with the other hand the reduction

of computational work resulting from a smaller value. Here, we will use the numerical

discrepancy between preconditioned and unpreconditioned residual, which helps us to pick

an appropriate restart number enabling the convergence of both residual.
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Figure 4.2.: Convergence history of the constraint preconditioner when setting up the
restart number to 100
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Figure 4.3.: Convergence history of the constraint preconditioner when setting up the
restart number to 20

As shown in Figure 4.2 and Figure 4.3, if we run the preconditioner without a restart number,
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we notice that after some number of iterations, the preconditioned and unpreconditioned

residuals, that are supposed be the same when preconditioning at right, move away from

one another. We choose then this point of first disconnection as a restart number. Using

this trick, we recover the convergence of both residuals and we accelerate hopefully the

convergence time.

Choosing the direct solver

The approximation proposed above require an exact Cholesky decomposition for the block

AZ and the Schur complement approximation SZ . In order to choose the best direct solver,

we show the results of the direct solution of the linear system Ax = b where A a symmetric

positive definite matrix.

The direct solver enabling Cholesky factorization provided in PETSc [11] is tested together

with the following matrix ordering methods: Nested Dissection (ND), One-way Dissection

(1WD), Reverse Cuthill-McKee (RCM), Quotient Minimum Degree (QMD), and Approximate

Minimum Degree (AMD). PETSc is used to call the MUMPS [3] and PaStiX [64] direct solvers,

with the provided ordering methods. Further note that PETSc only provide sequential

implementations of the Cholesky factorisation. Parallel implementations are made possible

using MUMPS and PASTIX.

Ordering Set up Apply Solve Fill-in Fill Ratio

size = 9, 201 Get Symbolic Numeric Total Set up

nnz = 602, 603 Ordering Facto. Facto. + Apply

PETSc Natural 0.00 49.01 27.70 76.70 0.03 76.73 16,980,101 28.17

ND 0.00 1.00 0.48 1.49 0.00 1.49 1,943,372 3.22

1WD 0.00 7.04 3.25 10.31 0.01 10.32 5,646,066 9.36

RCM 0.00 5.42 3.20 8.63 0.01 8.64 5,718,474 9.48

QMD 0.06 1.01 0.45 1.53 0.00 1.54 1,951,034 3.23

AMD 0.00 0.91 0.42 1.34 0.00 1.35 1,856,094 3.08

MUMPS AMD 0.00 0.06 0.34 0.41 0.00 0.42 1,920,557 3.18

AMF 0.00 0.09 0.56 0.65 0.01 0.66 2,215,053 3.67

METIS 0.00 0.14 0.40 0.55 0.01 0.56 1,871,817 3.10

PORD 0.00 0.14 0.47 0.61 0.01 0.62 1,944,021 3.22

QAMD 0.00 0.09 0.51 0.60 0.01 0.61 2,040,667 3.38

SCOTCH 0.00 0.20 0.41 0.61 0.01 0.62 1,918,287 3.18

PASTIX SCOTCH 0.14 0.00 0.57 0.57 0.02 0.59 3,343,588 5.46

Table 4.3.: Cholesky direct solve using different packages and ordering methods
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Furthermore, we note ”Fill-in” to mention the number of nonzeros in the matrix factor L,

and the term ”fill ratio” to express the number of nonzeros in the factor divided by the

number of nonzeros in the target matrix. We discuss mainly the computation time spent on

the relevant PETSc functions.

PETSc with AMD ordering provides the best reordering in terms of fill-in. We reduce the fill

factor from 28.17 to around 3.08. However, MUMPS with AMD ordering performs the best

in term of computation time. Hence, we use this setting in the implementation of the exact

direct factorization of the constraint preconditioner PChol.

Testing constraint preconditioner PChol

Before testing the constraint preconditioner PChol, we present a very well-known constraint

preconditioner in the saddle point literature that we call here PSIMPLE. This latter is the

most used one in computational fluid mechanics applications known as SIMPLE schemes

for ’Semi-Implicit Method for Pressure-Linked Equations’ [18]. We want to evaluate its

performance in comparison to the constraint preconditioner PChol.

The preconditioner PSIMPLE is as follows

P−1
SIMPLE =

(
−L−TA L−1

A L−TA L−1
A BZ

0 In−m

)(
In−m 0

L−TS L−1
S BZD

−1 L−TS L−1
S

)
, (4.43)

where S̃Z = TZ +BZD
−1BZ = LSL

T
S the exact Cholesky factorization and D = Diag(AZ).

This preconditioner enables us to evaluate how the classical approximation of the Schur

complement performs in comparison to the developed approximation in PChol.

Let us apply the proposed constraint preconditioners PSIMPLE and PChol on the test cases

A1, A2, A3 and A4 described in Table 4.2.
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A1 18,402 1,943,373 PSIMPLE 886 9.709e+01 1.958e+10 1.278e+02

PChol 20 1.917e+01 5.790e+08 6.670e+01

A2 24,816 2,751,990 PSIMPLE 897 1.535e+02 2.772e+10 1.811e+02

PChol 19 5.361e+01 9.044e+08 1.140e+02

A3 42,396 5,071,433 PSIMPLE 1213 4.030e+02 5.566e+10 2.420e+02

PChol 19 9.762e+01 1.622e+09 2.023e+02

A4 122,466 16,358,756 PSIMPLE 3012 4.466e+04 5.998e+11 5.137e+02

PChol 20 1.158e+03 7.323e+09 9.218e+02

Table 4.4.: Iterative solution method of the test cases using FGMRES with the constraint
preconditioners PSIMPLE and PChol

From numerical results, PChol seems efficient, compared to PSIMPLE. This latter approaches

the dense Schur complement SZ = TZ −BZA
−1
Z BZ by a Cholesky decomposition of a dense

matrix S̃Z = TZ − BZDiag(AZ)−1BZ , while PChol approaches the dense Schur complement

by a sparse matrix. This enables a reduction of flops and CPU time with less iterations.

However, the Cholesky direct decomposition is not scalable in time and memory and may

be expansive for large systems. We investigate this point by running PChol within a parallel

framework in a coming section.

Let us now analyze the computational time of each step of the iterative solution method when

applied on the large test case A4. In order to do that, we present in the following different

steps of the application of the constraint preconditioner within the iterative method.

Let us begin with some definitions. Using the following decomposition of the constraint

implementation

(
−GZ BT

Z

BZ TZ

)−1

=

(
I G−1

Z BT
Z

0 I

)(
−G−1

Z 0

0 S−1
Z

)(
I 0

BZG
−1
Z I

)
, (4.44)

we define the following keywords as three solution steps

• Solve Low : The solution method associated with the matrix G−1
Z in those block
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matrices (
I G−1

Z BT
Z

0 I

)
and

(
I 0

BZG
−1
Z I

)
,

• Solve 0 : The solution method associated with the coefficient matrix G−1
Z in the block

(1,1) of the matrix (
−G−1

Z 0

0 S−1
Z

)
,

• Solve Schur : The solution method associated with the coefficient matrix S−1
Z in the

block (2,2) of the matrix (
−G−1

Z 0

0 S−1
Z

)
.
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Figure 4.4.: Convergence history of the academic application problem for different system
sizes when using the constraint preconditioner PChol
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Test case A4 Computational time for each Step of the iterative solution method
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PSIMPLE Time (sec) 0.09 4.46 853.62 866.22 1832.02 1632.10 40976.05 44475.21 44658.25

percent time (%) 0 0 2 2 4 4 92 100 100

Count 2 2 2 3 3012 3012 3012 3012 1

PChol Time (sec) 2.23 544.26 558.92 1104.01 317.68 17.72 812.42 1148.5 1152.40

percent time (%) 0 47 48 95 27 2 70 99 100

Count 2 2 2 3 20 20 20 20 1

Table 4.5.: Profiling table of test case A4 with constraint preconditioners PSIMPLE and
PChol including computational time for each Step of the iterative solution method

From the Table 4.5, we confirm that the best Schur complement approximation is the one

implemented within PChol. Actually, the step associated with the Schur complement in

PSIMPLE takes 92% of the computational time. Moreover, we notice when using PChol that

Cholesky decomposition takes 95% of the whole computational time, which emphasizes the

need to replace these exact ”approximations” of AZ and SZ by less memory consuming

approaches or at least more scalable ones.

In Figure 4.4 we compare the performance (in terms of iteration count) of the constraint

preconditioner PChol within a parallel framework and applied to the test case A4. We note

that the convergence does not depend on the problem size, all test cases have the same

convergence pattern.

Comparing constraint preconditioner PChol and its block triangular equivalent

preconditioner

We present the upper block preconditioner

PCholTrig =

(
−GZ BT

Z

0 SZ

)
. (4.45)
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4.3. Academic application to structural mechanics

We use the same approximations of the constraint preconditioner PChol for the block GZ ans

the Schur complement SZ .

Let us compare both block preconditioners (PCholTrig and PChol) applied on the test case A4.

We show the results in Table 4.6.

Test case A4 Computational time for each Step of the iterative solution method
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olve
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PChol Time (sec) 2.01 227.47 232.31 459.78 130.67 9.67 338.78 479.14 483.90

percent time (%) 0 47 48 95 27 2 70 99 100

Count 2 2 2 3 20 20 20 20 1

PCholTrig Time (sec) 2.02 220.24 251.02 471.26 - 910.33 2308.3 3218.6 3251.20

percent time (%) 0 7 8 14 - 29 70 99 100

Count 2 2 2 3 - 120 120 120 1

Table 4.6.: Profiling table comparing the constraint preconditioner PChol and its equivalent
triangular block preconditioner PCholTrig including computational time for each step of the

iterative solution method

We note that the steps Solve 0 and Solve Low are gathered in the same step Solve 0 in

the triangular block preconditioner. The number of iterations has grown to 120 using the

triangular block preconditioner and CPU time increases nearly seven times as much PChol
costs. Actually, applying the preconditioner PCholTrig takes more time and more iterations

than the constraint preconditioner PChol. The application cost for this latter is expansive

because of the direct Cholesky factorization (95%) included in the set up step. In comparison

to the triangular block preconditioner, setting up the preconditioner costs only 14%.

Through these results, we conclude that it is much more advantageous to use PChol in its

full form than using it in the triangular form. Thus, we continue using PChol, however we

intend to investigate its parallel performance and also some different approximations to AZ

in order to reduce the computational cost of the direct decomposition.

118



4. Constraint preconditioners for the projected saddle point system

Parallel test of the constraint preconditioner PChol

We use in the following the same preconditioner PChol but within a parallel context. This

experiment is conducted on a cluster as mentioned in the implementation considerations

4.3.1. We mention that MUMPS is also parallel.

We study the scalability of the proposed preconditioner. To do so, we solve the test case

A4 by running on 1, 2, 4, 8 and 16 processes. The convergence of the iterative method for

these different distributions is presented in Figure 4.5. It shows the independence of the

convergence from the number of processes used.

Figure 4.5.: Convergence history of the test case A4 when using the constraint
preconditioner PChol on 1, 2, 4, 8 and 16 processes

In Table 4.7, the parallel performance obtained, and in particular the parallel efficiency, are

presented. This latter indicator is calculated as the ratio between the ideal acceleration

between two runs with different number of processes and the actual acceleration measured.

Compared to the reference execution with 1 processor, an efficiency of the order of 89%

is observed for 2 processes. This figure indicates a good parallel efficiency. However, the

efficiency drops as we run on more processes. This parallel efficiency can be improved by

dealing with a larger problem as will be done in Chapter 5. Indeed, each processor must

have a sufficient number of unknowns to solve.

A notable memory and Flops decrease is indeed obtained on the parallel results. Especially

for the case of 2 processes, but they drop in efficiency when number of processes increase,

which is explained by the moderate size of the problem.
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Functions & CPU time (sec) Statistics

Set up Apply Total

Preconditioner PChol S
o
lve

L
ow
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lve
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S
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ota

l

C
P

U
T
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(%
)

Itera
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s

F
lop
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Time (sec) 459.78 130.67 9.67 338.78 479.14

1 proc percent (%) 95 27 2 70 99 4.839e+02 - 20 7.323e+09 9.218e+02

Count 3 20 20 20 20

Time (sec) 238.21 184.67 10.42 67.73 263.20

2 procs percent (%) 88 68 4 25 97 2.719e+02 89 21 1.824e+09 1.977e+02

Count 3 21 21 21 21

Time (sec) 141.23 111.64 6.88 38.91 157.66

4 procs percent (%) 84 67 4 23 94 1.677e+02 72 21 1.106e+09 1.198e+02

Count 3 21 21 21 21

Time (sec) 84.51 66.13 5.21 25.14 96.63

8 procs percent (%) 82 64 5 24 94 1.030e+02 58 21 7.277e+08 7.573e+01

Count 3 21 21 21 21

Time (sec) 58.50 49.50 4.05 14.66 68.31

16 procs percent (%) 76 65 5 19 89 7.657e+01 40 21 5.835e+08 5.743e+01

Count 3 21 21 21 21

Table 4.7.: Evaluation of the constraint preconditioner PChol on the test case A4 running on
1, 2, 4, 8 and 16 processes

In previous experiments, it is shown that the convergence of the proposed block precondi-

tioner PChol is independent of both the number of processes and the size of the problem.

These properties are quite essential in parallel computing because they ensure to solve prob-

lems as large as desired as long as we have a sufficiently powerful machine. They also imply

the optimality of the proposed approach. We intend to study large and real life industrial

applications in Chapter 5 to prove the efficiency of the proposed approach.

Parallel test for different approximations of the block AZ in PChol

Let us consider in this section different approximations for AZ in the constraint precondi-

tioner PChol, that are more scalable than Cholesky factorization. We take here the same

exact Cholesky decomposition of TZ −AZ − 2ω2
expMZ = L̊SL̊S

T
as an approximation for the
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4. Constraint preconditioners for the projected saddle point system

Schur complement SZ , in order to analyze the impact of different approximations of AZ on

the convergence of the iterative method.

− Incomplete factorization preconditioners

We test the incomplete LU factorization with threshold approach which is quite similar to

incomplete Cholesky factorization, however unlike this latter, it has a parallel implementa-

tion. The main inconvenient here, is using an unsymmetric preconditioner for a symmetric

matrix, which imply using a general accelerator like GMRES instead of the conjugate gra-

dient method in inner loops. This preconditioner rely on threshold dropping as well as a

mechanism to control the maximum size of ILU factors, this approach can be expansive, but

this cost can be offset by the gain in the acceleration part of the process.

We apply this preconditioner on the test case A4 with different drop tolerances as shown in

Figure 4.6. The motivation is to select a certain accuracy but at the same time limit the

amount of memory and then of time required.

Figure 4.6.: Convergence history of the constraint preconditioner PCholILUT
with different

drop tolerances applied on the test case A4

From Figure 4.6, we note that taking a drop tolerance equal to 0.01 gives the best trade-off

between accuracy and speed. Using this threshold, we apply the constraint preconditioner

PCholILUT
for the test case A4 in order to compare with the preconditioner PChol. In addition

to this sequential application of ILUT, we use a parallel implementation PILUT which is a

parallel preconditioner based on Saad’s dual-threshold incomplete factorization algorithm.
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4.3. Academic application to structural mechanics

It uses the Schur-complement approach to generate parallelism. PILUT is proposed through

Hypre library [2], it uses MPI and a coarse-grain parallelism.

Figure 4.7 shows the convergence history of the constraint preconditioner PCholILUT
applied

on the test case A4 within a parallel implementation. Up to iteration 30, the convergence

history of the running jobs on 2, 4, 8 and 16 processes keep the same shape, then each one

converges in a different way than others.
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Figure 4.7.: Convergence history of the constraint preconditioner PCholILUT
running on 2, 4,

8 and 16 processes applied on the test case A4 - chosen drop tolerance = 0.01

FGMRES (rtol = 1e− 9, MaxIt = 10, 000)

The preconditioner PCholILUT
1 proc 2 procs 4 procs 8 procs 16 procs

# Iterations 63 71 65 67 55

CPU Time (sec) 2.856e+03 1.742e+03 1.076e+03 8.587e+02 9.065e+02

Efficiency % - 82 76 42 15

Flops 1.453e+12 8.396e+11 4.751e+11 3.199e+11 2.072e+11

Memory (MB) 4.561e+02 2.330e+02 1.335e+02 8.105e+01 5.644e+01

Table 4.8.: Evaluation of the constraint preconditioner PCholILUT
applied on the test case

A4 running on 1, 2, 4, 8 and 16 processes

Table 4.8 collects the results for the five different simulations. We observe that the use
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of incomplete factorization instead of exact one reduces the memory cost by a half, nev-

ertheless the CPU time and Flops increase dramatically. It is clear that using incomplete

factorization approach sequentially is not the better choice, as they approximate poorly the

three-dimensional structures finite element matrices. When using a parallel version on 4

processes, we divide the CPU time by three, which yields a parallel efficiency of 76.8 %.

This number is acceptable in regards to the moderate dimension of the problem. However,

the efficiency drops dramatically when increasing the number of processes.

− Algebraic Multigrid preconditioners (AMG)

We introduce in this section another algebraic approximation of the block AZ that is based

on the multigrid approach. The main idea behind this approach came from vibration prob-

lems. Indeed, relaxation schemes, such as the Gauss-Seidel or the Jacobi method, efficiently

damp high frequency errors, however they make no progress towards reducing low frequency

errors. The multigrid methods aim to move the problem to a coarser grid so that previously

low frequency errors turn now into high frequency errors and can be damped efficiently. If

we apply this procedure recursively, we obtain a method with a computational cost that

depends only linearly on the problem size.

Contrary to physics-based geometric multigrid approach, where the geometry of the problem

is used to define the various multigrid components, the algebraic multigrid (AMG) methods

use only the information available in the linear system of equations and are therefore suitable

to solve problems on more complicated domains and unstructured grids.

Introduced in Hyper library, BoomerAMG is a parallel implementation of algebraic multi-

grid. It uses two different coarsening strategies, one suited to structured problems and the

other more efficient for unstructured grids. Moreover, it provides some classical point-wise

smoothers (Jacobi, Gauss-Seidel ...). We use the default symmetric relaxation (symmetric-

SOR/Jacobi), which is required for conjugate gradient method that expects symmetry. We

use this library to build the constraint preconditioner PCholBoomerAMG
.

PETSc also provides a native algebraic multigrid preconditioner GAMG with different im-

plementations : a smoothed/unsmoothed aggregation AMG, a classical AMG, a hybrid geo-

metric AMG. Optimizing parameters for AMG is tricky; however we recall that we are using

AMG methods as black box approximations. We use this approach to build the constraint

preconditioner PCholGAMG
.

Figure 4.8 presents the parallel performance, in terms of iteration count, of the constraint

preconditioners PCholBoomerAMG
and PCholGAMG

.
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Figure 4.8.: Convergence history of the constraint preconditioners PCholBoomerAMG
(up) and

PCholGAMG
(down) running on 2, 4, 8 and 16 processes applied on the test case A4

We observe approximately the same pattern of convergence for each calculation. The itera-

tion count is between 40 and 60 for both preconditioners.
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FGMRES (rtol = 1e− 9, MaxIt = 10, 000)

The preconditioner PCholBoomerAMG
1 proc 2 procs 4 procs 8 procs 16 procs

# Iterations 51 44 54 51 52

CPU Time (sec) 4.527e+03 2.515e+03 1.894e+03 1.346e+03 1.341e+03

Efficiency % - 90 60 42 21

Flops 7.473e+11 4.684e+11 3.343e+11 2.118e+11 1.693e+11

Memory (MB) 3.982e+02 2.133e+02 1.286e+02 7.608e+01 5.518e+01

Table 4.9.: Evaluation of the constraint preconditioner PCholBoomerAMG
applied on the test

case A4 running on 1, 2, 4, 8 and 16 processes

FGMRES (rtol = 1e− 9, MaxIt = 10, 000)

The preconditioner PCholGAMG
1 proc 2 procs 4 procs 8 procs 16 procs

# Iterations 53 60 38 50 54

CPU Time (sec) 1.255e+03 8.256e+02 7.471e+02 7.473e+02 9.272e+02

Efficiency % - 76 42 21 9

Flops 7.473e+11 2.993e+12 3.757e+11 3.339e+11 1.693e+11

Memory (MB) 3.982e+02 6.752e+02 4.730e+02 3.246e+02 2.666e+02

Table 4.10.: Evaluation of the constraint preconditioner PCholGAMG
applied on the test case

A4 running on 1, 2, 4, 8 and 16 processes

We observe in Tables 4.9 and 4.10 that less memory needs are recorded than in PChol (by

57%) and in PCholILUT
(by 13%). In the same time, the CPU time increases by 2.6 times for

PCholGAMG
and by 9 times for PCholBoomerAMG

in the sequential computation in comparison

to PChol. Parallel computation helps to decrease the flops, the memory and the CPU time,

however it is less efficient when the number of processes increases.

4.4. Conclusion

We have proposed in this chapter an iterative approach for the solution of linear systems with

symmetric saddle point matrices generated through constrained optimization and arising

from identification problems. Since the size of the industrial problems is large, the currently

available solvers involving direct methods are too inefficient.
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This approach based on a double projection onto the nullspace of the constraints can thus

be used to replace the direct solvers to solve such linear systems in structural mechanics. It

is based on a first projection onto the nullspace of kinematics constraints using an explicit

sparse nullspace basis. This latter is computed using an augmented form of the nullspace

basis of the kinematic constraint matrix associated with the finite element model of the

structure.

The projected system has a saddle point structure too. The second projection of this system

onto the nullspace of the sensor constraints is done using the implicit nullspace method.

Actually, since the sensor constraints depend on each frequency, this means computing a

nullspace basis for each linear system over the whole sequence of generated saddle point

systems, which can be expensive.

The implicit nullspace projection method requires solving the saddle point system through

constraint preconditioners. We have extended here the use of these preconditioners to solve

the reduced saddle point system by proposing a new physical based approximation of the

Schur complement block.

The double explicit implicit projection algorithm 4.1 has been implemented within different

standalone codes for each step. In Code Aster R©, we developed a subroutine to retrieve

essential structural matrices and information from test cases. Then, using a Fortran interface

to SuperLU , we developed an implementation to build the nullspace basis. Finally, we

developed the iterative solution method of the projected system in C using PETSc. In this

latter, we developed a user method based on the Schur complement block factorization, that

enables taking into account the block structure of the constraint preconditioners. Actually,

instead of factoring those preconditioners with available global codes such as MUMPS, we

implemented in PETSc a GMRES outer loop for the whole system, that incorporates two

block linear systems using PCG inner loops.

We have tested the approach on a solid mechanics problem. we have compared the proposed

variant of the constraint preconditioner with some other block preconditioners that are often

used when solving saddle point systems arising in different applications.

This variant has proved to be efficient in terms of both preconditioner applications and com-

putational operations. Numerical experiments have highlighted the relevance of the proposed

preconditioner that leads to a significant decrease in terms of computational operations.

As reported in this chapter, the proposed iterative process is implemented in a parallel

distributed memory environment through both the PETSc libraries. The scalability prop-

erties of the proposed preconditioner are illustrated, where the main focus is to allow us to

consider a broader class of constraint preconditioners approximations using incomplete fac-
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torization and multigrid algorithms. Those latter, enhanced by the parallel framework, have

demonstrated comparable results in regards to computational time with a limited amount

of memory. We further emphasize that a thorough study on large scale real life applications

is performed in Chapter 5.
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Chapter 5
Evaluation of solvers performance on

industrial applications
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5.1. Illustration of performance and robustness of the double projection iterative approach
– Large turbo generator

The goals of the industrial applications of this chapter is to illustrate the numerical behavior

of the developed iterative solution methods from Chapter 4 on industrial finite element (FE)

models. Two different cases are presented.

First, a large case built on an industrial FE model (roughly 1 million Degrees of freedom) and

massive measurements (almost 700 sensors) is introduced. Direct solution methods are first

used, providing a relevant reference point. Associated numerical difficulties are highlighted.

Iterative solutions techniques are then introduced. Their robustness and precision are clearly

demonstrated, and their performance both on speed and memory are emphasized.

A smaller test case, based on a light FE model (30 000 degrees of freedom) and restraint

measurement set (80 sensors) is then presented. The same comparison methodology is de-

rived, revealing the limits of the proposed techniques. Some ways of improvements are then

proposed.

5.1. Illustration of performance and robustness of the

double projection iterative approach – Large turbo

generator

Turbo generators are the devices that converts mechanical energy of the steam turbine to

electrical energy.

Figure 5.1.: A picture of the Gigatop 4-pole generator if General Electric used in nuclear
power plant
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5. Evaluation of solvers performance on industrial applications

They consist of a rotating part and a stationary part

• Rotor is the rotating part of an electric generator. The rotor has a wiring, fed in

continuous current by the excitation unit. The rotation motion generates a controlled

magnetic field,

• Stator is the stationary part of an electric generator, which surrounds the rotor. The

stator has a wire winding in which the chaning electromagnetic field induces an electric

current.

Manufacturers design their equipments to ensure proper operation, hence limiting vibration

levels. However, in the particular case of the 900 MW power plant generators, the design

choices resulted in significant vibrations levels. These abnormally high vibration levels on

these equipments are due to the conjunction of two phenomena [9]

• The first phenomenon derives from the choice of design, in order to improve the effi-

ciency and production capacity of the generators. This design induces the existence of

a force component that has an ovalized shape in two lobes, rotating at 100 Hz. This

shape is presented on Figure 5.2. These forces depend on the excitation current and

the load applied to the machine.

Figure 5.2.: A descriptive diagram of the force with an ovalized shape in two lobes

• The second phenomenon is the existence of modes shapes, around 100 Hz, whose forms

coincide with ovalizations in two lobes. The modal density can be important, up to a

mode every Hz on some equipments and with the presence of almost double modes.

The conjunction of these two phenomena is specific to the 900 MW generator technology
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and can lead to degradation, on the one hand, of stator elements and, on the other hand, of

peripheral elements by the transmission of vibrations [50]. The presence of high vibration

levels in the stator decreases mainly the performance of alternators, but can also result

in material damage. In both cases, the unavailability of the equipment entails significant

financial losses for EDF.

Figure 5.3.: A turbo generator in the engine room of a nuclear power plant

Figure 5.4.: A power plant turbo generator for the generation of electric power
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Industrial constraints on power plant, and on turbo generators in particular, however, pro-

hibit changes on the electro-technical design, so that vibration issues need to be addressed

through structural modifications. These modifications are provided by the supplier, since

EDF is only in charge of the production.

For years, FE models have been developed by the supplier, in order to asses the efficiency of

the provided solutions. The confidence in the provided solutions, however, heavily relies on

the representativeness of the FE models. Nevertheless, efficient solutions are hard to design.

The manual manufacturing processors of large parts induce significant variability between

the different equipments of a same type. Feedback also shows that these materials are very

sensitive to operating conditions such as temperature.

As the recommended solutions do not always prove effective, EDF had to acquire numerical

and experimental tools and models to anticipate the occurrence of these problems before

restarting the machine. Many measurements have been performed on generator stator parts,

and are available for model updating. Thanks to energy based functional approach, we are

able to build a model that predict the structural behavior of structures [71, 34]. However,

since each generator differ from each other, updating has to be performed for each structure,

which is still a challenge, partly due to the large size of the model.

5.1.1. Experimental setup and numerical model details

Test campaigns and especially modal analysis, have been carried out on the not operating

alternator. The excitation unit and the rotor are removed from the alternator, then ac-

celerometers are positioned inside the magnetic circuit to record the vibration generated by

an impact hammer, see Figure 5.5.
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Figure 5.5.: The accelerometers are positioned inside the magnetic circuit to record
vibration generated by an impact hammer

Figure 5.6.: The experimental mesh composed of a set of sensors on the 900 MW power
plant alternator used for the study

Hence, experimental modal parameters are obtained by measuring its operating deflection
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shapes, and post-processoring the vibration data. We give here the experimental coarse

mesh of the alternator and the first six eigenmodes of the experimental mesh.

Figure 5.7.: The first six eigenmodes associated with the experimental mesh of the
alternator

A generic numerical model, representing the average behavior resulting from the tests carried

out on the various sites and equipments, has been built by EDF. This model is currently

used to estimate operating response levels.

The numerical finite element model consists of a set of 3D elements, shell elements of type

Discrete Kirchhoff Triangle, quadrangles and some Euler-Bernouilli straight beams as shown

in Figure 5.8. It contains many kinematic relationships between several degrees of free-

dom, representing the assembly of components. Moreover, the materials are assumed to be

isotropic while some components are considered orthotropic.

135



5.1. Illustration of performance and robustness of the double projection iterative approach
– Large turbo generator

Figure 5.8.: The numerical mesh of the 900 MW power plant alternator used for the study

Number of nodes Number of elements Degrees of freedom Degrees of observation

77,814 Hexa8 887,601 (Physical)

245,849 10,833 Beams 44,292 (Lagrange) 684

148,878 shells

Table 5.1.: The mesh characteristics of the numerical model

We recall that the saddle-point generated systems are described as follows(
−[K̃(θ)] [K̃(θ)]− ω2

exp[M̃(θ)]

[K̃(θ)]− ω2
exp[M̃(θ)] r

1−r Π̃
T [K̃r]Π̃

)(
{ψ̃}
{ϕ̃}

)
=

(
0̃

r
1−r Π̃

T [K̃r]φ̃exp

)
. (5.1)
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The matrix Size Nonzero elements number

The stiffness matrix [K̃(θ)] 909,747 × 909,747 25,169,423

The mass matrix [M̃(θ)] 909,747 × 909,747 10,621,566

The observation matrix Π̃ 684 × 909,747 4,815

The norm matrix [K̃r] 684 × 684 234,270
r

1−r Π̃
T [K̃r]Π̃ 909,747 × 909,747 12,487,542

The saddle point matrix 1,819,494 × 1,819,494 161,915,766

Table 5.2.: The size and sparsity of the generated coefficient matrix and its sub-blocks

Table 5.2 shows the size and the nonzero elements number of each block matrix in the

coefficient matrix of the studied saddle point linear system 5.1. We note that the number of

sensors used on the structure is equal to s = 684 and the number of Lagrange multipliers is

equal to m = 22, 146.

This system is challenging, not only from its dimension, but also from the condition number

of the saddle point matrix which is of order of 1011. We recall that the condition number

is estimated using MUMPS in double precision arithmetics as a direct solver of the linear

system. This value can be notably related to the properties of the mesh; in particular, when

there are strong spatial variations of the size of the mesh elements, or when some of them

are flattened, the condition number increases [100].
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Figure 5.9.: The structure of the coefficient matrix of the saddle point linear system 5.1
associated with the alternator

Figure 5.9 shows the structure pattern of the coefficient matrix of the saddle point linear

system 5.1. It is a 2(n+m)× 2(n+m) saddle-point matrix partitioned into four (n+m)×
(n + m) blocks. The (1, 1) block is a sparse symmetric finite element matrix. The blocks

(1, 2) and (2, 1) share the same structure as the (1, 1) block. The (2, 2) block is a very sparse

symmetric matrix, it is composed of a dense s×s sub-block scattered into a (n+m)×(n+m)

matrix, where s << n+m is the number of sensors.

5.1.2. Study of the performance of direct solvers

The goals of this section are twofold. Firstly, we intend to evaluate the application of direct

solvers on a large industrial model, that could potentially pose problems related to the

structure of the assembled saddle point matrix. Secondly, we compare this performance

with the results of the next section, to prove the efficiency of the developed approach of

Chapter 4.
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In this part, we limit our computations to one frequency. It is chosen close to the model

second eigenfrequency, in order to be more challenging for the solver.

The first attempt to solve the system generated for this model initially leads to a computation

failure linked to a solver’s message confronted with a quasi-singular matrix. However, the

assembly of the problem is verified and proves to be quite correct. Moreover, we know that

the matrix is invertible if all eigenmodes are observable (see Chapter 2), which is verified

by the chosen measurement configuration. Theoretically, we should be able to invert the

assembled saddle point matrix and obtain a unique solution. Nevertheless, MUMPS is

misled due to the particular structure of the system, and it considers it as a a quasi-singular

system. Hence, we force the computation by canceling some tests in the analysis phase of

the solver.

This first calculation is initially launched on a one processoror. The computation time to

solve the linear system for the requested frequency is 32,413 seconds with a memory con-

sumption (Peak virtual memory usage) of more than 36 GB. The computation, although

possible, is relatively time and memory consuming. Table 5.3 shows the different computa-

tion times observed for different parallel configurations of the same computation.

number of procs 1 proc 2 procs 4 procs 8 procs 16 procs

CPU time (sec) 32,413 16,180 14,741 9,210 8,718

Table 5.3.: The computation time observed for different parallel configurations for one
frequency and with a default MUMPS setup

When using the parallel framework of MUMPS, we obtain a classical speed-up. However,

the time consumed by the solver for the resolution of the large saddle point system seems

important. Actually, an important part of the time is devoted to the preliminary analysis

of the matrix. This is probably due to the particular structure of the saddle point matrix.

Furthermore, the default setup of MUMPS choose AMF (see Chapter 3) as the ordering

method. In the following, we present in Table 5.4 the results of the same calculation when

choosing METIS as the ordering method, since it is the best choice as found in Chapter 3.

number of procs 1 proc 2 procs 4 procs 8 procs 16 procs

CPU time (sec) 17,172 8,940 6,597 6,184 5,812

Table 5.4.: The computation time observed for different parallel configurations for one
frequency using MUMPS (METIS ordering)
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It is clear that there is an improvement due to the ordering method. Indeed, if we look at

the time spent by MUMPS for the resolution of the system, we accelerate the calculation

from 2 to 5 times compared to the default ordering. Nevertheless, the CPU time and the

memory requirements are huge for one frequency. This result confirms our goal to develop

less time consuming methods as done in chapter 4.

5.1.3. Application of the double projection approach

This numerical study is challenging and serves as a relevant realistic test case in structural

dynamics to investigate the efficiency of preconditioners for Krylov subspace methods. As

mentioned in Chapter 4, we solve the projected system instead of the full system as we elim-

inate kinematic constraints. We recall that we use the same implementation considerations

mentioned in Section 4.3.1 throughout this chapter.

Application of the explicit nullspace projection onto the kinematic constraints

As expressed in Table 5.5, the difference between the full system generated from Code Aster R©
and the one we generate in size is dependent of the number of Lagrange degrees of freedom.

Since this number is not large in comparison to the number of physical degrees of freedom,

the size of both systems is comparable. Also, it is usually known that matrix projection may

generate some additional fill-in or a much denser matrix. Here, we limit this effect thanks to

the skinny LU technique. We note that the generated linear system is also of saddle point

structure, which is specific to the problems studied within this manuscript.

Physical dofs (n) 887,601

Lagrange dofs (m) 22,146

The constraint matrix C 22,146×887,601

nnz = 320, 818

The nullspace basis Z 887,601×865,455

nnz = 1, 239, 034

Full system size 1,819,494

Full system nnz 161,915,766

Reduced system size 1,775,202

Reduced system nnz 167,340,178

Table 5.5.: Information about the full saddle point system and the projected one
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Steps CPU time (sec) Memory (MB)

LU factorization of CT 8.8e–02 11.41

Building the inverse permutation 5.36e–01 0.00

Getting L1 - -

size 22, 146× 22, 146

nonzero elements 64, 049

Getting L2 - -

size 865, 455× 22, 146

nonzero elements 387, 904

Getting LT1 and LT2 3.59e–02 2.02

L−T1 LT2 2.65e+01 3.60

Stocking the nullbasis Z 2.49e+00 2.10

Total 2.94e+01 19,13

Table 5.6.: Steps of building the null basis of the kinematic constraint matrix

Table 5.6 details the steps to build the null basis of C. It is clear that the processor is not

expensive in regards of CPU time and Memory. We note that computing L−T1 LT2 is done by

solving 865, 455 linear systems which have the same coefficient matrix L−T1 and right hand

sides form the columns of the matrix LT2 . SuperLU solves using the same factorization of

the coefficient matrix with multiple right hand sides.

Application of the implicit nullspace projection through the constraint preconditioner

As introduced in chapter 4, we begin testing the constraint preconditioner PChol on the

projected saddle point system.

Figure 5.10 proves the independence of the convergence of the constraint preconditioner PChol
from the number of processors, which confirms the findings of Chapter 4. We show in Table

5.7 the iteration count of the linear systems, the CPU time and the memory requirements

provided by PETSc, respectively when using the constraint preconditioner PChol for 1, 2, 4,

8 and 16 processors.
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Figure 5.10.: Convergence history of the constraint preconditioner PChol applied on the
alternator problem on 2, 4, 8 and 16 processors

In comparison to the reference execution on 1 processor, we note a good parallel efficiency,

especially for 2 (95%) and 4 (94%) processors execution. From 1 processor to 16 processors,

we have an efficiency of 81%, which is considered a good result. In term of iterations count,

all executions yield the same number.

Nevertheless, the 1 processor execution takes nearly two times as much as MUMPS does

(see Table 5.4) when this latter is conducted using METIS ordering. From 8 processors, the

execution of the constraint preconditioner PChol yields better results in terms of CPU time

compared to the direct solver MUMPS, thanks to the parallel efficiency.

From the standpoint of memory consumption, the developed approach of Chapter 4, is

definitely better than direct solvers. Indeed for the 1 processor execution, we need less than

1 GB to conduct the solution method.
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Preconditioner PChol CPU Time (sec) Efficiency(%) Iterations Flops Memory (MB)

1 proc 3.261e+04 - 45 9.124e+10 5.182e+03

2 procs 1.716e+04 95 45 4.578e+10 2.662e+03

4 procs 8.674e+03 94 45 2.537e+10 1.448e+03

8 procs 4.971e+03 82 45 1.314e+10 7.793e+02

16 procs 2.516e+03 81 45 6.687e+09 3.934e+02

Table 5.7.: Evaluation of the constraint preconditioner PChol applied on the alternator test
case and running on 1, 2, 4, 8 and 16 processors for a precision of 10−9

We show in Table 5.8 the profiling time table of all executions. We observe that the main

time consuming step is when setting up the constraint preconditioner. Actually, considering

the use of Cholesky factorization of the block matrices AZ and SZ as an approximations in

the constraint preconditioner PChol, it is a somehow predictable result.

Preconditioner PChol Functions & CPU time (sec)

Set up Apply Total

Solve Low Solve 0 Solve Schur Total CPU Time (sec)

1 proc percent (%) 95 74 2 24 100 3.261e+04

Count 3 45 45 45 45

2 procs percent (%) 95 75 2 23 100 1.716e+04

Count 3 45 45 45 45

4 procs percent (%) 94 74 2 23 100 8.674e+03

Count 3 45 45 45 45

8 procs percent (%) 94 78 3 19 100 4.971e+03

Count 3 45 45 45 45

16 procs percent (%) 91 71 4 25 99 2.516e+03

Count 3 45 45 45 45

Table 5.8.: Profiling CPU time table of the constraint preconditioner PChol applied on the
alternator test case and running on 1, 2, 4, 8 and 16 processors for a precision of 10−9

Table 5.8 emphasizes the fact that PChol is a preconditioner that depends mostly on direct

factorization. This preconditioner takes approximately 95% of the CPU time to be set up

than to be applied, which means that there is no need to test the precision 10−4 in this case.

Now, let us compare the constraint preconditioner PChol to PCholILUT
introduced in Chapter

4.
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We evaluate the performance of PCholILUT
by running the executions on 4, 8 and 16 pro-

cessors. Table 5.9 summarizes the performance data for each execution. We observe that

PCholILUT
is less efficient than PChol in term of iteration count. The CPU time of the ILUT

approach is ten times higher than the exact Cholesky approach. Besides, in term of flops,

PCholILUT
is applied more than 500 hundred time which increases directly the number of

operations to approximately 104 billions. We conclude that the constraint preconditioner

PCholILUT
is not suited to industrial applications we aim to solve for the precision 10−9.

Preconditioner PCholILUT
CPU Time (sec) Iterations Flops Memory (MB)

4 procs 1.471e+05 541 4.712e+13 1.448e+03

8 procs 8.216e+04 502 2.311e+13 7.793e+02

16 procs 4.986e+04 549 1.419e+13 4.779e+02

Table 5.9.: Evaluation of the constraint preconditioner PCholILUT
applied on the alternator

test case and running on 4, 8 and 16 processors for a precision of 10−9
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Figure 5.11.: Convergence history of the constraint preconditioner PCholILUT
applied on the

alternator problem on 4, 8 and 16 processors for a precision of 10−9

Using the same preconditioner PCholILUT
, we restart the computation with a precision of

10−4, see Table 5.10. We notice decreasing figures in comparison to Table 5.9 by a ratio of
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approximately 5. Indeed, this preconditioner takes only 3% of the CPU time to be set up,

which means that the CPU time is almost proportional to the number of iterations. Though,

the computation for 16 processors is two times CPU time consuming than the direct solver

MUMPS.

Preconditioner PCholILUT
CPU Time (sec) Iterations Flops Memory (MB)

4 procs 2.851e+04 87 8.425e+12 1.372e+03

8 procs 1.583e+04 86 4.712e+12 7.688e+02

16 procs 9.875e+03 87 2.257e+12 4.581e+02

Table 5.10.: Evaluation of the constraint preconditioner PCholILUT
applied on the alternator

test case and running on 4, 8 and 16 processors for a precision of 10−4

Finally, we compare the constraint preconditioner PChol to PCholBoomerAMG
introduced in

Chapter 4.

Preconditioner PCholBoomerAMG
CPU Time (sec) Iterations Flops Memory (MB)

4 procs 2.457e+04 97 8.326e+12 4.963e+02

8 procs 1.464e+04 97 4.361e+12 2.450e+02

16 procs 7.579e+03 101 2.353e+12 1.623e+02

Table 5.11.: Evaluation of the constraint preconditioner PCholBoomerAMG
applied on the

alternator test case and running on 4, 8 and 16 processors for a precision of 10−9
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Figure 5.12.: Convergence history of the constraint preconditioner PCholBoomerAMG
applied

on the alternator problem on 4, 8 and 16 processors for a precision of 10−9

From Table 5.11 and Figure 5.12, we observe that the iteration count is stable for different

number of processors. Globally, algebraic multigrid approximation is one time and a half as

much CPU time consuming as the Cholesky direct factorization for 16 processors and with

a precision of 10−9. Nevertheless, it requires less memory and is more scalable.

Let us conduct the same computation for PCholBoomerAMG
with a precision of 10−4 this time.

Here, as in the case of PCholILUT
, the preconditioner takes only 3% of the CPU time to be

set up, which means that the computation time is almost proportional to the number of

iterations, which is confirmed by the numerical results in Table 5.12.

Preconditioner PCholBoomerAMG
CPU Time (sec) Iterations Flops Memory (MB)

4 procs 1.059e+04 43 3.678e+12 3.766e+02

8 procs 6.345e+03 42 2.251e+12 1.845e+02

16 procs 3.272e+03 43 1.242e+12 8.421e+01

Table 5.12.: Evaluation of the constraint preconditioner PCholBoomerAMG
applied on the

alternator test case and running on 4, 8 and 16 processors for a precision of 10−4

146



5. Evaluation of solvers performance on industrial applications

We conclude that PCholBoomerAMG
can perform 40% better than direct solver MUMPS for 16

processors for a negligible memory.

In the above numerical results of the alternator case, we tested the double projection ap-

proach, on a large real life problem. The approach proved to be efficient in terms of both

preconditioner applications and computational operations.

Those numerical experiments have highlighted the relevance of the proposed preconditioner

PChol that leads to a significant decrease in terms of computational operations. A saving

of up to 80% in terms of Memory and to 50% of CPU time is obtained with respect to the

classical direct method on the alternator large-scale application. We have also presented

some alternatives to preconditioner PChol, like incomplete factorization based and multigrid

based which can achieve comparable results when reducing the sought precision.

5.2. Demonstration of the computational limitations of the

double projection iterative approach – Industrial

cooling water pump

This section is devoted to study the computational limitations of the proposed approach in

Chapter 4 when dealing with a medium or small test case. We demonstrate those limitations

on an industrial cooling water pump. The cooling water pump is used for supplying heat

exchangers with cooling water. Their flow rate varies depending on the heat flow to be

dissipated.

5.2.1. Experimental setup and problem description

Many difficulties could be encountered during the test campaign (very noisy measures due to

other nearby pumps, difficulties in identifying modes) and during numerical studies (problem

of representativeness of the numerical model).
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Figure 5.13.: The experimental mesh of the cooling water pump used for the study

Figure 5.13 shows the experimental mesh used to study the pump. 78 measuring points were

instrumented. These measuring points are distributed as follows :

• Motor : 24 measurements points spread over 4 crowns of 6 points each;

• Pump : 18 measurements points spread over 3 crowns of 6 points each;

• Suction pipe: 3 measurements points;

• Discharge pipe: 3 measurements points

• Pump / pillar interface: for each of the 3 interfaces : 4 measurements points on the

pump feet, 2 measurements points on the metal mounting plate, 3 measurements points

on the pillar.

The modal analysis is carried out by successively moving the tridimensional axis sensors.
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Figure 5.14.: The first five eigenmodes of the experimental mesh of the cooling water pump
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On the other hand, a FE model, presented in Figure 5.15, is created to study the structure’s

behavior. This model is not meant to accurately represent the geometry and details of the

pump. It simply serves as a support for the construction of a finite element model which

must reproduce faithfully the first modes of the pump.

Figure 5.15.: The 3D model and the numerical mesh of the cooling water pump

Only the studs are meshed with 3D elements. The motor, the bearing support and the

pump body are modeled using shell elements. The piping is modeled using Euler straight

beam elements. The thicknesses attributed to the main components contribute to obtaining

a mass similar to that of the real components.
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Figure 5.16.: The first five eigenmodes of the numerical mesh of the cooling water pump

We use the standard nominal parameters for concrete (E = 1.92 e10 Pa and ρ = 2300kg/m3)

and steels (E = 2.1 e11 Pa and rho = 2300kg/m3). The thicknesses of the motor, the bearing

bracket and the pump body were calculated to obtain the nominal masses of the components.

Table 5.13 shows the size and the nonzero elements number of each block matrix in the

coefficient matrix of the studied saddle point linear system 5.1. We note that the number of
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sensors used on the structure is equal to s = 324 and the number of Lagrange multipliers is

equal to m = 2, 046.

The matrix Size Nonzero elements number

The stiffness matrix [K̃(θ)] 37,005 × 37,005 1,198,533

The mass matrix [M̃(θ)] 37,005 × 37,005 846,419

The observation matrix Π̃ 324 × 37,005 714

The norm matrix [K̃r] 324 × 324 52,650
r

1−r Π̃
T [K̃r]Π̃ 37,005 × 37,005 254,898

The saddle point matrix 74,010 × 74,010 4,286,083

Table 5.13.: The size and sparsity of the generated coefficient matrix and its sub-blocks

Figure 5.17 shows the structure pattern of the coefficient matrix of the saddle point linear

system 5.1.

Figure 5.17.: The structure of the coefficient matrix of the saddle point linear system 5.1
from the pump application

This system have a condition number of order of 1011 even if it is smaller then the turbogen-

ertor test case. This notably related to the strong spatial variations of the size of the mesh
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elements. As will be shown later in this chapter, this implies an ill-conditioned constraint

preconditioner, which may increase the number of iterations of the GMRES solution method.

5.2.2. Application of the double projection approach

As done in previous test case, we begin by computing the null basis, then we generate the

projected saddle point system.

Application of the explicit nullspace projection onto the kinematics constraints

Table 5.14 details the steps to build the null basis of C. Clearly, computing a nullbasis Z

from the constraint matrix C of the pump numerical model is not expansive.

Steps CPU time (sec) Memory (MB)

LU factorization of CT 1.20e–02 1.85

Building the inverse permutation 1.60e–02 0.00

Getting L1 - -

size 2, 046× 2, 046

nonzero elements 3, 942

Getting L2 - -

size 32, 913× 2, 046

nonzero elements 454

Getting LT1 and LT2 3.59e–02 0.10

L−T1 LT2 1.19e–02 0.46

Stocking the nullbasis Z 7.20e–02 2.54

Total 1.47z–01 19,13

Table 5.14.: Steps of building the null basis of the kinematic constraint matrix

Finally, we show in Table 5.15 the numerical properties of the global saddle point system

and its equivalent projected one. Here, the number of Lagrange multipliers is limited, which

explains the small difference between both sizes of the full and reduced systems. We recall

that the reduced system has also a saddle point structure.
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Physical dofs (n) 34,959

Lagrange dofs (m) 2,046

The constraint matrix C 2,046×34,959

nnz = 3, 692

The nullspace basis Z 34,959×32,913

nnz = 36, 592

Full system size 74,010

Full system nnz 4,286,083

Reduced system size 65,826

Reduced system nnz 4,549,550

Table 5.15.: Information about the full saddle point system and the projected one

In the following, we study the performance of the constraint preconditioner PChol, then we

compare it to the preconditioner PCholBoomerAMG
. From the alternator test case, we observe the

inefficiency of the preconditioner PCholILUT
, that is why we limit our study to the multigrid

approximation in the pump test case. We also limit our parallel performance test to 4

processors because of the moderate size of the application.

Demonstration of the computational limitation of the developed approach

Table 5.16 collects the results for the different simulations.

Whatever the number of processors is, we observe that the use of the constraint precondi-

tioners leads to a significant decrease in terms of memory needs. We also notice an increasing

number of iterations over the simulations using the preconditioner PChol with a moderate

number of computational operations. A parallel efficiency of 77% in terms of computational

time at a price of using 4 processors is obtained on the PChol calculation which is a rather

satisfactory result.

154



5. Evaluation of solvers performance on industrial applications

Direct solver MUMPS CPU Time (sec) Memory (MB)

1 proc 3.932e+01 1.445+03

Preconditioner PChol CPU Time (sec) Iterations Flops Memory (MB)

1 proc 1.514e+02 647 5.213e+09 8.105e+01

2 procs 7.725e+01 639 2.724e+09 4.521e+01

4 procs 3.921e+01 649 1.631e+09 2.705e+01

Preconditioner PCholBoomerAMG
CPU Time (sec) Iterations Flops Memory (MB)

1 proc 2.554e+02 154 8.458e+10 6.782e+01

2 procs 1.671e+02 159 4.684e+10 3.652e+01

4 procs 9.170e+01 154 2.847e+10 2.014e+01

Table 5.16.: Evaluation of the constraint preconditioner PChol and PCholBoomerAMG
applied

on the pump test case and running on 1, 2 and 4 processors

Table 5.16 emphasized the limitations of the proposed approach. In comparison to direct

solver and apart from the memory cost, no gain in CPU time is obtained for the simulations

using PChol in parallel. We reach comparable performance to direct solver using 4 processors.

On this application, PCholBoomerAMG
is also less efficient than PChol in terms of CPU time and

number of operations, even if this latter needs slightly a larger cost in memory. Besides, we

note a high number of iterations, this is probably due to the poor condition number of the

used constraint preconditioners and inherited from the coefficient matrix.

Thus, for medium and small size applications, direct solvers may be preferable since they give

a satisfying result in term of computational time, memory and stability using a sequential

calculation.

5.3. Conclusion

The chapter deals with real-life applications leading to sequences of symmetric saddle point

linear systems. As reported in Chapter 4, the proposed iterative process is implemented in

a parallel distributed memory environment through the PETSc libraries. In practice, the

parallel framework allows us to consider selected large-scale industrial problems in a limited

amount of computational time on a moderate number of cores.

This chapter highlights many findings. First, numerical experiments show that the explicit

projection onto the nullspace of the kinematic constraints is the less consuming step in the
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5.3. Conclusion

iterative solution method developed in Chapter 4. Then, results emphasize the efficiency of

the class of constraint preconditioners on a large-scale industrial application. A saving of up

to 57% in terms of computational time is obtained with respect to the direct solver MUMPS

on this application running on 16 processors.

Simultaneously, we have compared the performance of incomplete factorization and multigrid

based approximations of the constraint preconditioner (PCholILUT
and PCholBoomerAMG

). Their

performance is also tested in parallel setup. In terms of CPU time, they are less efficient, even

if there is a substantial gain in terms of memory needs. When taking a less important relative

tolerance, those preconditioners get a better gain, even if this direct factorization based

constraint preconditioner gives slightly better results on the large-scale system illustrated

here.

The second application showed us some limitations of the developed approach when dealing

with medium and small size test cases. Actually, direct solver MUMPS performs better

than the developed iterative method even when running on 1 processor. This latter method

may involve an ill-conditioned constraint preconditioner and then increases the number of

iterations, which makes it less competitive in terms of computational time.
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Chapter 6
Conclusions and future research

Conclusions

This work aims at improving the solution of identification problems in structural dynamics

within the industrial context of EDF’s research and development needs. The main objec-

tive is to provide efficient methods in term of memory cost to solve the sequences of linear

systems, arising from those problems. This guarantee the application of energy based func-

tional approach for model updating or data expansion within the open source Code Aster R©
software, a finite element code developed at EDF, which is used as a simulation tool by the

engineering departments to produce notably safety analysis.

Chapter 3 subsequently studied different approaches to design efficient direct sparse solvers.

The investigations carried out in this chapter were not designed to be very thorough, the

purpose was mainly to design a direct solution method that was cheap to apply and rea-

sonably effective at reducing the fill-in of the factor matrices required in solving the saddle

point system.

The first strategy that has been investigated studied the adequacy of mixing the steps of fac-

torization and ordering to address additional fill-in due to pivoting strategies. This approach

was motivated for its purpose to get an ordering based on approximate minimum degree al-

gorithm applied to a weighted graph. Taking numerical values into account has helped to

avoid destroying the initial fill-in reducing ordering. Broadly speaking, this strategy showed

a good ability to compete other unsymmetric direct solvers in term of fill-in reduction, when

applied to the studied saddle point systems. Though, many difficulties appeared. Indeed, the

approach requires an implementation with dynamic memory management of the LU factor

which prohibits the exploitation of an elimination tree in a proper symbolic factorization.
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Besides, although we study a very particular saddle point systems, their specific structure is

not exploited.

To do so, a second strategy combining the specific structure of the systems within a block

factorization has been developed. This approach allows to take advantage of the individual

feature of the studied system in such a way we gain inherent fill-in reduction. This new

factorization considers doing micro-factorizations after permuting the saddle point system.

The proposed permutation is based on pairing every entry on the diagonal of the (1, 1) block

with a corresponding entry in the constraint block (2, 1) so that the entries on the diagonal

of the permuted matrix form micro 2-by-2 block saddle point systems. Then, considering the

compressed graph formed by those supernodes of order 2 and associated with the coefficient

matrix and reordering it. A comprehensive effort has been considered to maintain the numer-

ical stability during the factorization process to avoid factors growth. Much more attention

was paid to construct a suitable sparse and stable direct method, than to focus on build-

ing an efficient LDLT factorization. Thus, we implemented and performed different tests

on MATLAB R© which implied choosing medium size test cases for this chapter. Through

numerical experiments, this approach led to significant gain in term of fill-in reduction up

to 50% in comparison with symmetric sparse solvers, and up to 90% in comparison with

unsymmetric sparse solvers for the studied sequence of saddle point linear systems. In term

of numerical stability, we outperformed symmetric sparse solvers, but we were less stable

than unsymmetric ones. Hence, this approach showed how important it can be to take the

structure of the coefficient matrix into account to build an associated compressed graph.

However, The memory cost of the developed algorithm remained expensive for medium size

test cases, which confirmed that the proposed approach is not adapted for large scale real

life applications.

The challenge of proposing another class of solvers, able to handle the studied sequence

of saddle point linear systems with regard of negligible memory cost, has been addressed

in Chapter 4. In this framework, the thesis has contributed to the research area related

to algebraic block preconditioning for the GMRES Krylov subspace method. This central

part of the research subsequently studied the adequacy of a projection onto the nullspace of

the constraints to address problems of industrial relevance. This approach has been made

possible by making a distinction in the existing constraints. While kinematic constraints

are fixed linear and affine conditions, the constraints related to sensors degrees of freedom

are varying along the sequence of saddle point linear systems. This distinction has dictated

the type of projection of each kind of constraints. We project the system onto the nullspace

of the kinematic constraints by computing an explicit nullspace basis. This latter step is

generally computationally too expensive in practice, but reveals that in our case is relevant

due the nested special structure of the studied saddle point systems. The second projection
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6. Conclusions and future research

onto the nullspace of remaining varying constraints is performed through applying constraint

preconditioners with the action of the GMRES method. In this sense, we have contributed

in studying several approximations of the blocks of those preconditioners, especially for the

Schur complement block.

The double explicit implicit projection algorithm 4.1 has been implemented within different

standalone codes for each step. In Code Aster R©, we developed a subroutine to retrieve

essential structural matrices and information from test cases. Then, using a Fortran interface

to SuperLU , we developed an implementation to build the nullspace basis. Finally, we

developed the iterative solution method of the projected system in C using PETSc. In this

latter, we developed a user method based on the Schur complement block factorization, that

enables taking into account the block structure of the constraint preconditioners. Actually,

instead of factoring those preconditioners with available global codes such as MUMPS, we

implemented in PETSc a GMRES outer loop for the whole system, that incorporates two

block linear systems using PCG inner loops.

Thanks to this code, the efficiency of this approach has been illustrated on several problems

in structural mechanics. In fact, the studied approach is particularly well suited to improve

the convergence of the iterative solver. A first medium-scale problem has revealed a huge

gain in terms of GMRES iteration count and has strengthened our belief in selecting the

proposed problem-dependent approximation of the Schur complement. Then, two large-scale

real-life problems have been studied in Chapter 5. The first application is a turbogenerator

of a nuclear power plant, and leads to significant gains in terms of computational time. The

second application is a medium size cooling water pump, and proves that the developed

approach may be less appealing for medium and small size applications, since direct solvers

give better results in regards to computational time. Finally, all these results have been

obtained at a negligible memory requirement. A relevant point has been illustrated in

different applications, concerning the scalability of this class of preconditioners proposed

by replacing the exact factorization by incomplete one or multigrid method as possible

approximations. On a large-scale problem, this technique enables us to preserve the degree

of scalability of the constraint preconditioner.

We provided here a new efficient solution approach to speedup the solution of constrained

optimization problems arising in large-scale identification applications. The contribution of

this thesis is therefore useful for industrial applications such as updating structural finite

element models from test data, or identifying unknown parameters [34].
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Perspectives

All these contributions let us address interesting perspectives and mention several extensions

to the present research. We can distinguish

– In the second direct approach developed in Chapter 3, the Minimum degree algorithm

is just one possibility for obtaining suitable permutation of the compressed graph.

There are other graph based methods and nested dissection algorithms that need ex-

ploring.

For the approach developed in Chapter 4, an interesting approach would be to test

another way to apply those preconditioners : implicit factorization constraint precon-

ditioners, which is demonstrated to be very effective as well as being cheap to apply

for classical constraint preconditioners [42], and it may be adapted here for our specific

structure.

– In terms of implementation, we may in near future implement the developed direct

symmetric approach of Chapter 3 in a solver that support the LDLT factorization, for

instance in MA47 [46].

Also, in a future work, the implementation of different steps of Algorithm 4.1 in

Code Aster R© environment will increase their numerical performance. Actually, this

software uses PETSc as an iterative solver, we may then develop our approach directly

within it. For the explicit step, in which we need to compute a sparse nullspace ba-

sis, it is possible to integrate SuperLU as an external package of PETSc, in order to

gather all developments in the same platform. This future action aims an integration

of the developed approach into a future distribution of the open-source computational

platform.

– Once all developments are integrated in the same version of the mechanical software

Code Aster R©. This latter can be used to deal with real life industrial applications

of the energy-based functional approach. For instance, we may update large scale

structural finite element models from test data, or identify unknown parameters.
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Appendix A
Sparse direct solution methods

The basic idea of direct methods is to decompose the coefficient matrix of the linear system

into a product of particular matrices (triangular lower and upper, diagonal) that are easier

to reverse. This is called factorization or decomposition. One of the most widely known

direct methods is that of Gaussian Elimination. It transforms a linear system into an upper

triangular one by introducing zeros below the diagonal, first in column 1, then column 2,

and so on. To do this we subtract multiples of each row with subsequent rows. We can think

of this as being equivalent to premultiplying the matrix by a sequence of lower triangular

matrices.

A.1. Sparse matrix factorization

A sparse matrix is a matrix with a high proportion of zero coefficients. Practically, sparse

matrices correspond to systems of equations in which each equation involves a very small

number of unknowns. When a matrix A is sparse, its inverse A−1 is generally much denser

A−1 contains many non-zero terms. Moreover, the triangular matrices L and U resulting

from factorization A = LU may be reasonably sparse when using suitable techniques. Hence,

many algorithms and data structures are designed in order to take advantage of this sparse

structure. The goal is to reduce the memory and avoid computation costs that would be

induced by a dense computation. Conventional matrix operations can be performed econom-

ically without storing the null elements of the matrix and without performing unnecessary

computation between null elements.

The algorithm A.1 presents LU factorization algorithm of a sparse matrix A. The matrix A
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A.1. Sparse matrix factorization

is factorized in-place by replacing its terms with those of the two triangular matrices L and

U . When the matrix is sparse, only the non-zero entries are stored and the operations on

the null entries are then deleted. We notice if the entry aij is null before the factorization, a

new non-zero entry is introduced into the factorized matrices (Line 6 in algorithm A.1). It

is then clear that during the factorization process, new non-zero entries are created and the

factors are denser than the initial matrix. This phenomenon is called fill-in.

Algorithm A.1: kij in-place version of LU factorization algorithm

Data: A sparse Matrix A = (aij) ∈ Rn×n

Result: Matrices L,U such that LU = A

1 initialization;

2 for k ← 1 to n do

3 for i← k + 1 to n− 1 do

4 aik ← aik
akk

5 for j ← k + 1 to n do

6 aij ← aij − aikakj

Fill-in is the main challenge for sparse direct methods. Indeed, the problems to be solved

have sparse matrices, but the decomposition algorithms (Gauss, LU, Cholesky, etc.) gener-

ally lead to the construction of very full matrices, which implies the emergence of storage

problems And computation time costs. Let us take the famous example illustrated in Figure

A.1. This matrix entries are null except those of the first row, the first column and the

diagonal, it is pretty clear that the matrix becomes full after the first step of factorization.

Figure A.1.: An example of a sparse matrix that has a full fill-in

Many techniques have been developed to enable efficient factorization of sparse matrices.

It is then possible to reduce the fill-in and predict the structure of the factors. Indeed,

direct solvers are usually implemented with a preprocessing step before the factorization.

This includes scaling, pivoting and ordering. The preprocessing step makes the numerical
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A. Sparse direct solution methods

factorization in many cases easier and cheaper, which influences the memory and the CPU

time of the factorization step.

Solving a large sparse linear system Ax = b is generally composed of four major phases [47]

as shown in Figure A.2

1. The analysis phase (also called the preprocessing step) It consists in applying a per-

mutation P on the working matrix A in order to change the order of elimination of

the unknowns of the system, in order to reduce the phenomenon of fill-in of the new

matrix PAP T .

2. The symbolic factorization phase its purpose is to determine the structure of the factor

matrices before the numerical factorization step. It avoids the use of dynamic data

structures. The potential drawback to using dynamic data structures, though, is that

because allocation of memory is not fixed, there is the possibility for the structure

to overflow if it exceeds the maximum allowed memory limit or underflow if the data

structure becomes empty.

3. The numerical factorization phase it is in this stage that the computation of numerical

values of factors L and U , taking into account the changes made during the analysis

phase.

4. The “solve” phase It enables the computation of the numerical solution by forward and

backward substitution. Indeed, it solves the triangular systems y = Ux and Ly = b.

Figure A.2.: Different steps of sparse direct methods

The main issue in sparse matrices comes from the fill-in in the matrix factorization. As

the choice of pivots affects the sparsity of the resulting factors, a fill-in reducing ordering is

usually applied. Nevertheless, a very large number of ordering alterations is needed in order

to choose a stable pivot and that implies generating the fill-in in a somewhat unpredictable
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way due to this pivoting which involves tracking it dynamically. This impacts dramatically

the computation time and yields to excessive fill-in[17]. As shown in [44], preserving sparsity

may conflict with pivoting, so there is a need to reach a compromise. In [49], it is introduced

a method that used the minimum degree algorithm [78] with relative pivot tolerance for

stability for symmetric indefinite factorization. In [48], we find the multifrontal approach

used in many solvers like MUMPS (Multifrontal Massively Parallel Solver) [3].
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Titre : Solveurs performants pour l’optimisation sous contraintes en identification de paramètres

Mots clefs : Optimisation sous contraintes, Systèmes point-selle, Préconditionneurs par blocs, Problèmes
inverses

Résumé : Cette thèse vise à concevoir des solveurs
efficaces pour résoudre des systèmes linéaires,
résultant des problèmes d’optimisation sous con-
traintes dans certaines applications de dynamique des
structures et vibration (la corrélation calcul-essai, la
localisation d’erreur, le modèle hybride, l’évaluation
des dommages, etc.). Ces applications reposent sur
la résolution de problèmes inverses, exprimés sous
la forme de la minimisation d’une fonctionnelle en
énergie. Cette fonctionelle implique à la fois, des
données issues d’un modèle numérique éléments fi-
nis, et des essais expérimentaux. Ceci conduit à des
modèles de haute qualité, mais les systèmes linéaires
point-selle associés, sont coûteux à résoudre. Nous
proposons deux classes différentes de méthodes pour
traiter le système. La première classe repose sur
une méthode de factorisation directe profitant de la
topologie et des propriétés spéciales de la matrice
point-selle. Après une première renumérotation pour
regrouper les pivots en blocs d’ordre 2. L’élimination

de Gauss est conduite à partir de ces pivots et en
utilisant un ordre spécial d’élimination réduisant le
remplissage. Les résultats numériques confirment des
gains significatifs en terme de remplissage, jusqu’à
deux fois meilleurs que la littérature pour la topolo-
gie étudiée. La seconde classe de solveurs propose une
approche à double projection du système étudié sur le
noyau des contraintes, en faisant une distinction en-
tre les contraintes cinématiques et celles reliées aux
capteurs sur la structure. La première projection est
explicite en utilisant une base creuse du noyau. La
deuxième est implicite. Elle est basée sur l’emploi
d’un préconditionneur contraint avec des méthodes
itératives de type Krylov. Différentes approxima-
tions des blocs du préconditionneur sont proposées.
L’approche est implémentée dans un environnement
distribué parallèle utilisant la bibliothèque PETSc.
Des gains significatifs en terme de coût de calcul et
de mémoire sont illustrés sur plusieurs applications
industrielles.

Title : Efficient solvers for constrained optimization in parameter identification problems

Keywords : Constrained optimization, Saddle point systems, Block preconditioners, Inverse problems

Abstract : This thesis aims at designing efficient
numerical solution methods to solve linear systems,
arising in constrained optimization problems in some
structural dynamics and vibration applications (test-
analysis correlation, model error localization, hybrid
model, damage assessment, etc.). These applications
rely on solving inverse problems, by means of mini-
mization of an energy-based functional. This latter
involves both data from a numerical finite element
model and from experimental tests, which leads to
high quality models, but the associated linear sys-
tems, that have a saddle-point coefficient matrices,
are long and costly to solve. We propose two differ-
ent classes of methods to deal with these problems.
First, a direct factorization method that takes advan-
tage of the special structures and properties of these
saddle point matrices. The Gaussian elimination fac-
torization is implemented in order to factorize the
saddle point matrices block-wise with small blocks of

orders 2 and using a fill-in reducing topological or-
dering. We obtain significant gains in memory cost
(up to 50%) due to enhanced factors sparsity in com-
parison to literature. The second class is based on a
double projection of the generated saddle point sys-
tem onto the nullspace of the constraints. The first
projection onto the kinematic constraints is proposed
as an explicit process through the computation of a
sparse null basis. Then, we detail the application
of a constraint preconditioner within a Krylov sub-
space solver, as an implicit second projection of the
system onto the nullspace of the sensors constraints.
We further present and compare different approxima-
tions of the constraint preconditioner. The approach
is implemented in a parallel distributed environment
using the PETSc library. Significant gains in compu-
tational cost and memory are illustrated on several
industrial applications.
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