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Abstract

In the theory of supervised learning, the identical assumption, i.e. the training
and the test samples are drawn from the same probability distribution, plays
a crucial role. Unfortunately, this essential assumption is often violated in
the presence of selection bias. Under such condition, the standard supervised
learning frameworks may suffer a significant bias. In this thesis, we use the im-
portance weighting method to address the selection bias problem in supervised
learning.

We first introduce the supervised learning frameworks and discuss the im-
portance of the identical assumption. We then study the importance weighting
framework for the generative and the discriminative learning under a general
selection scheme and investigate the potential of Bayesian Network to encode
a priori assumptions about the relationships between the variables in study,
including the selection variable, and to infer the independence and the condi-
tional independence relationships that allow the selection bias to be corrected.

We pay special attention to covariate shift, i.e. a special class of selection
bias where the conditional distribution, P(y|z), of the training and of the
test data are the same. We propose two methods to improve the importance
weighting for covariate shift. We first show that the unweighted model is
locally less biased than the weighted one on the low importance instances, and
then propose a method that combines them in order to improve the predictive
performance in the target domain. Finally, we investigate the relationship
between the covariate shift and the missing data problem for data sets with
small sample sizes and study a method that uses missing data imputation

techniques to correct the covariate shift in some simple but realistic scenarios.



Résumé

Dans la théorie de I’apprentissage supervisé, ’hypothese selon laquelle 1’échantillon
de d’apprentissage et de test proviennent de la méme distribution de proba-
bilité, joue un role crucial. Malheureusement, cette hypothese essentielle est
souvent violée en présence d'un biais de sélection. Dans ce contexte, les algo-
rithmes d’apprentissage supervisés standards peuvent souffrir d’un biais signi-
ficatif. Dans cette theése, nous abordons le probleme du biais de sélection en
apprentissage supervisé en utilisant la méthode de pondération de I'importance
("importance weighting” en anglais).

Dans un premier temps, nous présentons le cadre formel de ’apprentissage
supervisé et discutons des effets potentiellement néfastes du biais sur les perfor-
mances prédictives. Nous étudions ensuite en détail comment les techniques de
pondération de I'importance permettent, sous certaines hypotheses, de corriger
le biais de sélection durant I'apprentissage de modeles génératifs et discrimi-
nants. Nous étudions enfin le potentiel des réseaux bayésiens comme outils de
représentation graphique des relations d’indépendances conditionnelles entre
les variables du probleme et celles liées au mécanisme de sélection lui-méme.
Nous illustrons sur des exemples simples comment la graphe, construit avec
de la connaissance experte, permet d’identifier a posteriori un sous-ensemble
restreint de variables sur lesquelles agir pour réduire le biais.

Dans un second temps, nous accordons une attention particuliere au co-
variate shift , i.e. un cas particulier de biais de sélection ou la distribution con-
ditionnelle P(y|x) est invariante entre I’échantillon d’apprentissage et de test.
Nous proposons deux méthodes pour améliorer la pondération de I'importance
en présence de covariate shift. Nous montrons d’abord que le modele non
pondéré est localement moins biaisé que le modele pondéré sur les échantillons

faiblement pondérés, puis nous proposons une premiere méthode combinant les



modeles pondérés et non pondérés afin d’améliorer les performances prédictives
dans le domaine cible. Enfin, nous étudions la relation entre le covariate shift
et le probleme des données manquantes dans les jeux de données de petite taille
et proposons une seconde méthode qui utilise des techniques d’imputation de
données manquantes pour corriger le covariate shift dans des scénarios simples
mais réalistes. Ces méthodes sont validées expérimentalement sur de nombreux

jeux de données.
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Introduction

Selection bias, the problem when data are selected to training sets with an
uneven probability across instances, occurs in a wide array of domains for a
variety of reasons. This preferential sampling is pervasive in almost all empiri-
cal studies, including Machine Learning, Statistics, Social Sciences, Economics,
Bioinformatics, Biostatistics, Epidemiology, Medicine, etc. Case-control stud-
ies in Epidemiology are particularly susceptible to selection bias, including
bias resulting from inappropriate selection of controls in case-control stud-
ies, bias resulting from differential loss-to-follow up, incidence-prevalence bias,
volunteer bias, healthy-worker bias, and nonresponse bias. In studies of occu-
pational diseases, it is observed that: workers often exhibit lower overall death
rates than the general population because the relatively healthy individuals
are more likely to gain employment and to remain employed. Selection bias
has also received a great deal of attention in econometrics. For instance, sur-
veys are usually prone to contain volunteer bias since those who are willing
to participate, thus included in training data, have a particular attitude or
characteristic that is different from those who refuse to participate.

Selection bias causes the distribution of collected data used in the training
phase to deviate from that of the general population. In supervised learning,
selection bias usually causes a drop in the performance of predictive models
because learning from one distribution then predicting on another distribution
violates the basic independent and identical sampling assumption that almost
every learning algorithm makes and invalidates any established performance
guarantee.

Abstractly, we may consider an underlying random process that gener-
ates selection bias data. This generative process can be decomposed into an

unbiased data process that generates independent and identically distributed
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examples and a selection process that determines which examples of the unbi-
ased data process will be included into the training set. The selection process
or selection mechanism can be modeled by a binary variable, called selection
variable, that takes the value of 1 when the examples is selected and the value
of 0 otherwise. The use of the selection variable allows us to model the inter-
action between the selection mechanism and other variables in the study using
conditional independence concepts and graphical models. For example, in sur-
vey data, the unbiased data process would generate a data set that contains
every person of the whole population with the same probability. The selection
mechanism then decides which person is more likely to be included into the
study. We might presume that if a person have a certain interest or socioeco-
nomic status, he or she might be more willing and more likely to participate
than others. Covariate shift is a class of selection bias that received a lot of
attention in machine learning and other research communities in recent years.
Using graphical model we can characterize the selection mechanism in a mean-
ingful way that could determine which additional data set allows correcting

for selection bias.

Outline and Contributions

The focus of this thesis is on the algorithms for learning and predicting in
the present of selection bias with the use of an additional data set beside the
original training data and a graphical model that characterizes the selection
mechanism. The first Chapter reviews the supervised learning frameworks.
The second chapter reviews the selection bias problem and is followed by our
first contribution in this thesis which is the method of using the importance
weight to correct the selection bias. The last two chapters present two methods
that we developed to improve the importance weighting techniques that are
used to correct the bias caused by covariate shift, the most common types of
selection bias.

The first Chapter introduces the supervised learning frameworks used in
this thesis. We begin by reviewing its general formulation and the Bayes
optimal prediction function. We briefly present the generative frameworks

for approximating prediction functions including the Bayesian, the Maximum



CONTENTS

a Posteriori and the Maximum Likelihood frameworks. We then review the
learning theory that justifies why we can carry out the optimization on the
training data and expect a certain level of generalization to the test data. In
this theory, the assumption that the training and the test samples are drawn
from the same probability distribution plays a crucial role. We discuss the
difficulty of supervised learning in terms of the approximation-estimation error
trade-off which leads to the inevitable model misspecification, an importance
characteristic that affects the selection bias problem. Finally we review the
holdout validation and the cross validation, which are two empirical procedures
to estimate the prediction accuracy.

The crucial assumption that the training and the test samples are drawn
from the same probability distribution is unfortunately often violated in the
presence of selection bias. Under such condition, the learning frameworks pre-
sented in Chapter 1 need to be adjusted to remain valid. In chapter 2 we
first define some useful terminologies and classes of selection bias. We then
introduce the importance weighting framework for the generative and the dis-
criminative learning. Given the importance weight, the adaptation of the
generative learning to selection bias is very straight forward. We can approxi-
mate the generative distribution of the training data to a family of probability
distributions using the training data and then adjust it by the importance
weight to obtain an approximation of the test distribution before inferring the
prediction function. On the other hand, the adaptation of the discriminative
learning to the selection bias requires more complication. We introduce two
methods that use the importance weight for correcting the selection bias in
discriminative learning: one with sampling and the other with modification
of loss function. We then show that the importance weighted cross valida-
tion gives an almost unbiased estimate of the generalization error. We review
the covariate shift, which affects the prediction accuracy when coupling with
the model misspecification, and common methods for learning the importance
weight from the training data and a set of unlabeled examples. We also inves-
tigate the potential of Bayesian Networks to encode a priori assumptions of
about the relationship between variables, including the selection variable, and
to infer the independence and the conditional independence relationships that

allow selection bias to be corrected. In the experimentation section, we as-
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sess the ability of the importance weighting method in removing the complete
selection bias based on the independence and the conditional independence
relationships read from Bayesian Networks.

We observe that the bias in covariate shift is caused only by the model
misspecification and not by the change of decision boundary. Therefore using
the weighted model to predict every test instance may be excessive since the
importance weighting usually reduces the effective sample size as a harmful
side effect. In chapter 3, we show analytically that, while the unweighted
model is globally more biased than the weighted one, it may locally be less
biased on low importance instances. In view of this result, we then discuss a
manner to optimally combine the weighted and the unweighted models in order
to improve the predictive performance in the target domain. We conduct a
series of experiments on the synthetic and the real-world data to demonstrate
the efficiency of this approach.

Chapter 4 investigates the relationship between the covariate shift and the
missing data problem and explores the possibility of using the missing data im-
putation to improve the covariate shift correction. The importance weighting
even when being used partially as in previous chapter still reduces the effective
sample size. In this chapter, we show that there exists a weighting scheme on
the unlabeled data such that the combination of the weighted unlabeled data
and the labeled training data mimics the test distribution. We further prove
that the labels are missing at random in this combined data set and thus can
be imputed safely in order to mitigate the undesirable sample-size-reduction
effect of the importance weighting. A series of experiments on the synthetic
and the real-world data are conducted to demonstrate the efficiency of our

approach.



Chapter 1
Supervised Learning Framework

This chapter introduces the supervised learning frameworks used in this thesis.
We begin by reviewing its general formulation and the Bayes optimal prediction
function. We briefly present the generative frameworks for approximating
prediction function including Bayesian, Maximum a Posteriori and Maximum
Likelihood. We then review the learning theory that justifies why we can carry
optimization on the training data and expect a certain level of generalization
to the test data. We discuss the difficulty of supervised learning in terms
of the approximation-estimation error trade-off that leads to the inevitable
model misspecification, an importance characteristic affecting selection bias.
Finally we review the holdout validation and the cross validation, two empirical

procedures to estimate prediction accuracy. .

1 Formalization

The task of the supervised learning is to learn from a set of labeled examples,
called the training data, a function to predict accurately unseen examples,
called the test data. The training data set {x;,y;}", consists of n ordered
pairs of 7, € X C RY and y;, € Y C R, which are respectively a vector of
measurements of a single example and its label. The test data is another set
{x;}72, that need to be labeled with high accuracy based on certain measures.

The fundamental assumption of supervised learning is that the training
and test data are independently and identically generated from an unknown

but fixed probability distribution P(z,y). This assumption implies that the



training and the test data are related and the observations in the training data
carry the information about the targeted test data probability distribution.

Let I(f(z),y) denote the function that measures the disagreement between
the prediction f(z) of an example and its real outcome y. We also call I(f(x),y)
the loss function since it represents the loss or the cost of predicting f(x) when
the true value is y. The choice of the loss function depends largely on the
learning problem being solved.

For the regression problem, a typical choice is the squared loss

[(f(z),y) = (y = f(2))*

For the classification problem, one could choose the 0-1 loss

0 if f(z) =

I(f(zx),y) =1=Epx)=y = .
1 otherwise .

The expected loss of a prediction function f(x) over the generative distribution

P(z,y) is called the generalization error or the risk and defined as:

R(f) = Ep[l(f(X),Y)] (1.1)
// P(x,y)dydx. (1.2)

2 Optimal Prediction and Risk Minimization

The theoretical optimal prediction, or Bayes optimal prediction, is the function

that minimizes R(f) and is given by:
fr= argmlnE [(f(X),Y)] (1.3)
= argmln// P(z,y)dydzx. (1.4)

The Bayes optimal risk achieved by the Bayes optimal prediction is then:

/ / Pz, y)dyda.



For example, if we use the square loss function, R(f) = E,[(Y — f(X))?], then

the Bayes optimal prediction and the Bayes optimal risk are:

" = avgmin E,[(Y — /(X))

= /yP(ylﬂf)dy
Y

= EP[Y|X]7

// Y2, y) P, y)dyda.

3 Generative Learning

Finding directly the Bayes optimal prediction of an examples f*(x) using its
definition is unfeasible when the joint probability distribution P(x,y) is un-
known. Alternatively, supervised learning uses the principle of induction to
infer f*(x) from a given set of labeled training data {z;,y;}! ;. In generative-
based approaches of supervised learning, the main idea is to approximate the
generative distribution P(z,y) to a family of probability distributions using
the training data and then using its approximation to infer the prediction

function.

3.1 Bayesian Inference

In Bayesian inference (Box and Tiao [2011]; MacKay [1992]), a family of proba-
bility distributions, Py (z,y|0) is specified to approximate the data distribution
P(z,y). Given the training data {z;,y;} ; and a prior distribution ¢(f), the
posterior distribution of the parameter 6 is estimated using Bayes Theorem as

following;:

q(0) H?:l Py, y4]0)
qu) [Tim) Pa(i, yil0)do

The posterior generative distribution is then:

(9|{$wyl i= 17Q) -



By integrating over €, we are integrating over all the probability density func-
tion in the model. The computation of the posterior distribution of parameter
and posterior generative distribution relies on another layer of approximation
using Markov chain Monte Carlo methods (Green [1995]).

Consequently, we obtain the Bayesian prediction function by substituting the
posterior distribution above for the unknown conditional distribution P(y|x)

in Equation 1.4:
fe(z) = argmyjn/l(g),y)PM(y\flf, {wi,yikio)dy (1.6)
Y
where
PM(annyiyyi}n—laQ>
Py (ylz, {zi, vitiei.q) = nl_
iy { 14) PM(-T’{xhyi}i:b(J)

— PM(JU:?/HfEuyz}?:l,(I)
fid pM(xa y’{wza yi}zn:l? Q)dy

3.2 Maximum a Posteriori

The integral in Equation 1.5 is not easily estimated and usually relies on an-
other layer of approximation. Alternatively Bayesian inference is often approx-
imated by Maximum a Posteriori (MAP) (Sorenson [1980]). The premise of
MAP is the same as Bayesian framework. We first specify a family of probabil-
ity distributions, Py/(z,y|f) with their prior probability ¢(f), to approximate
the data distribution P(x,y). Given the training data {x;,y;}", and a prior
distribution ¢(#), the posterior distribution of parameter 6 is also estimated

using Bayes Theorem as following:

q(0) TTizy Pur (i, yil0)
q(0) TTi=, Por (i, yil0)do

Pr (O, yitie1, q) = f

The MAP posterior generative distribution is then selected to be the single
distribution with the highest posterior probability, Py/(z,y|0xrap), where

Orap = argmax Pa (01 @i, yitiet, @)-

Finally, we obtain the MAP prediction function by substituting the posterior



distribution Py (y|x, Oprap) for the unknown conditional distribution P(y|z)

in Equationl.4:

farap(z) = argmin / 1§, 9) Paa (yl, 6a1.p)dy (17)
Y

where

P (z,y|0rap)
PM($|9MAP)

. PM(fL’,y’eMAP)

 Jy Pu(@,yl0aap)dy”

Pu(ylz,Orap) =

3.3 Maximum Likelihood

The maximum likelihood (ML) is based on selecting a distribution with the
highest likelihood given the data. We first specify a family of probability
distributions, Py (x,y|6) to approximate the data distribution P(x,y). Given
the training data {z;,y;}, the likelihood of parameter 0 is:

Py({zi yi}ia10) = [ | Purcai vil6):

1=1

Since maximizing the logarithm of the likelihood above is easier to compute

and results in the same maximizer, we write:

log(Py({wi, yi}-110)) = Z log(Pyr (i, yil0)).

We then select the generative distribution that maximizes the logarithm of the

likelihood to approximate the data generating distribution.

Org = argmax log(Prr ({24, v }i110))-

Finally, we obtain the ML prediction function by substituting the posterior

distribution Py (y|x,0pr) for the unknown conditional distribution P(y|x) in



Equation 1.4:

Jur(z) = argmgin/l@,y)PM(Z/W@ML)dy (1.8)
Y
where
Pur(w,y|0n1)
Pus(yle, Oyyp) = 2T YI00L)
M(y| ML) PM(l"eML)
Py(z,y|0wmr)

[y P, yl0ar)dy”

4 Discriminative Learning

Generative learning produces a probability distribution over all input and out-
put variables and manipulates it to compute prediction functions. The dis-
advantage of generative learning is that searching for a probability density
distribution is a hard problem particularly in high dimension while the objec-
tive of may learning problems is just to predict the output.

Alternatively, discriminative learning, also called direct function approxi-
mation, directly attempts to estimate the input to output mappings without
modeling the generative distributions. Given a loss function, discriminative
learning tries to minimize the corresponding risk R(f) with the optimal pre-
diction function f*(x). Given n training data, R, (f), called training error or

empirical risk and defined by

is an unbiased estimator of R(f).

If the learning goal is only to find a prediction function that yields the
smallest loss as possible, the prevailing consensus is that direct function ap-
proximation is always to be preferred to generative approach. The most com-
pelling reason is that "one should solve the problem directly and never solve
a more general problem as intermediate step” [Vapnik [1998]].

Given a learning problem with infinite input space and a finite number of

training examples, if the probability distribution of the input is continuous,

10



there exists a prediction rule f among all possible functions that minimizes the
training error to 0 but maximizes the generalization error to 1. This situation
is called overfitting in literature. There are two principle methods to deal with
this problem. The first one is to pre-define a model or a hypothesis space H of

some possible functions, where the minimization of training error is performed

A

f = argmin Ry (f).
This approach, called Empirical Risk Minimization (ERM), works best
when the domain knowledge about a specific learning problem is sufficient
to narrow down the searching range of the target function to a small set of
possible functions H.

However, in practical problems of machine learning, the family of the tar-
get function is usually unknown. In such case, we start with a small hypoth-
esis space H; and extend it gradually through an infinite increasing sequence
{H4}2,, where Hy C Hypq for any d '. This second approach is called Struc-
tural Risk Minimization. The empirical risk minimization is performed on
each Hy and we select the model in the sequence whose sum of empirical risk

and penalty for its complexity is minimal

f= argfn;{mNRn(f) + AJ(d,n),

where J(d,n) denotes the complexity measure of H, and A is the regulariza-
tion coefficient which allows choosing the trade-off between training error and

complexity.

5 Learning Bounds

Given the frameworks we presented, this section presents the learning theory
that justifies why we can carry optimization on the training data and expect a
certain level of generalization to test data. A partial list of textbooks, surveys,

and articles on statistical learning theory includes Devroye et al. [2013]; Kearns

IThe choice of the sequence {H4}3 | comes from a domain knowledge of each specific
problem under study and non of them is universally optimal. The necessity of domain
knowledge is formally stated in what is called No Free Lunch Theorem (Wolpert [1996]).

11



and Vazirani [1994]; Mendelson [2003]; Vapnik [2013, 1998]

It worth mentioning that thanks to the law of large numbers, the train-
ing error almost surely converses, as the training sample size n approaches
infinity, to the generalization error R(f). However, in real application, n is a
finite number. The analysis below quantifies how close the training and the

generalization errors are in that situation.

5.1 Hoeffding’s Inequality and Generalization Error Bound

of a Single Function

Given a prediction function f, we rewrite the different between its general-
ization error R(f), which need to be estimated, and the training error R, (f),

which is accessible from the training data, as follows:
1 n
R(f) = Bu(f) = ByI(f(X),Y)] = = 3 U(f (i), v1):
i=1

By the law of large number, convergence of the training error of a function f

to its risk immediately yields:

P

Tim. (Ep[uf(X),Y)] - %Zuf(asi),yo) - o] 1

When the training sample size is not infinite and the loss function is
bounded, Hoeffding’s Inequality quantifies how close the training error of a

function approaches its risk.

Theorem 1 (Hoeffding). Let {X;,Y;}, be n i.i.d. random variables with
1(Y:, f(X;) € [a,b]. Then for all e > 0, we have

] <zep (-2

Denote the right hand side of the above inequality by 0 and only consider

P

B0 V)] = 3 U(f@). )

the binary classification problem with 0-1 loss function®, we have b — a = 1,

!The result we obtain here generalizes well to other problems, including regression,
multi-class classification, and binary classification with different loss function.

12



log%
2n
The Hoeffding inequality becomes

§ = 2exp(—2ne?), and € =

PIIR(f) = Bua(f)] > €] <6.

Subtracting both sides of the inequality from 1, we find that for any function
f and any ¢ > 0, with probability at least 1 — 9,

R(f) — Ru(f)] < e. (1.9)

5.2 Uniform Convergence of Finite H

The bound obtained in previous section is applied only to one specific function
f € JH that is chosen before the training data is seen. However in supervised
learning, we normally start will a set H of more than one functions and then
choose one of them, which is f in ERM framework, after seeing the data. A
useful bound should hold simultaneously for all f € .

Given a finite hypothesis space H = {f;}X,. Given a function f; € H, we

define a corresponding set of examples

Ci = {(@j,y5)j=1 : R(fi) — Ra(fi) > €}

where the e-bound fails. Hoeffding’s inequality imposes that the probability

measure of this set must be small, so

Vi: P(C;) < 6.

Using the union bound we obtain

N

JP@) < i P(C;) < N&.

i=1
We can write

PAf € H: R(f) = Ru(f) > ] = | P(Ci) < N2exp(—2ne®).

=1

13



As a result, given a finite set of N function 3, for any ¢ € (0, 1], with proba-
bility at least 1 — 4, the following bound holds

log(3%)
?22'3(” — R, (f)| < 2n5 :

(1.10)

5.3 Estimation Error

As stated earlier, we use the minimizer of training error f = argmin resc Ry (f)
to perform prediction on the test data. Therefore it is more interesting to
derive a generalization error bound of this function.

Denoting the best possible hypothesis in H as f’ = argmingeq R(f), the
estimation error R(f) — R(f’) is bounded by

A

R(f) = R(f) = [R(f) = Ru(f)] + [Ra(f) = Bu(f)] + [Ra(f) — R(S)]

< sup |[R(f) = Rn(f)[ + 0+ sup [R(f) — Rn(f)]
feXH fer
< 2sup |[R(f) = Bn(f)]-
fex

This means that when the training error converges uniformly to the gen-
eralization error, the output f of the learning algorithm has a generalization
error close to that of the best possible hypothesis in H. The distance bounded
by

2sup [R(f) = Ru(f)]-
fexr

We put this result together with 1.10 into a theorem.

Theorem 2 Given a hypothesis space H with N elements, n training exam-

ples, and a fized possitive §, with probability at least 1 — &, we have that

R() — win R(f) < 225

fex 2n
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5.4 Uniform Convergence of Infinite HH

When H has infinite number of elements, the complexity of H cannot be
measured by a simple counting. Vapnik [1998] extended the learning bound
and convergence above to the case of infinite J{ by introducing the Vapnik-
Chervonenkis (VC) dimension which measure complexity of infinite hypothesis
spaces.

The VC dimension of a hypothesis space H, denoted VC(H) is the size
d of the largest set S = {z; € X : ¢ = 1,...d} such that for all label set
L=A{y; €Y :i=1,..d}, there exists some f € H that classifies all examples
in S correctly according to L, i.e. f(x;) = y; for all i = 1,...d. For example,
consider the hypothesis space H of all haft-planes in two dimensions. H can
shatter some set of three points like one in Figure 1.1a. All eight possible ways
to label these points are listed in Figure 1.1b-i and each one can be perfectly
classified by a haft-plane. On the other hand, for any set of four points, we
can always find labeling for these points like in Figure 1.1j, for example, such
that no haft-plan can classify them without error. Therefore, the size of the
largest set that the hypothesis space H of all haft-planes in two dimensions
can shatter is VC(H) = 3.

It turns out that VC-dimension can be used to provide the uniform con-
vergence of training error by following result due to Vapnik, which is seen by

many to be the most important theorem in learning theory.

Theorem 3 (Vapnik [1998]) Given an infinite hypothesis space H with a finite
VC-dimension, for any 6 € (0,1], with probability at least 1 — 0, we have the

following bounds:

sup () - ()] < O (\/ (Voo arg) + m(%))) (111)

and

R(f) - min B(f) < O (\/ % (VCCWOQ(VO%) - zOg<§>)> .

With Theorem 2 and 3, we can estimate the minimum training samples size
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Figure 1.1: VC dimension of haft-planes in R?: a)Three original points; b, c,
d, e, f; g; h; i: all eight possible labeling sets of the original three points can
be shattered by a haft-plane; j) For any set of 4 points, there exits a labeling
set that cannot be shattered by any haft-plane.
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M (e, ) that is necessary to bound the estimation error to be with a certain
accuracy € and with a certain confidence level 1 — §. The quantity M (e, d) is

known as the sample complexity and defined formally as following.

Definition 1 (Sample Complexity) For all €,6 € (0,1), a hypothesis space H
is said to have a sample complexity M (e, ) if it is the smallest sample size for
which there exists an algorithm A that for all distribution P over X x Y, H
outputs a model f € H, depending on training data, so that with probability
1—46:

R(f) —min R(f) < e.

fer -

From Theorem 2 and 3, Blumer et al. [1986, 1989, 1990] derived an upper

bound for the sample complexity of a hypothesis space H as following.
Corollary 4 Given hypothesis space H and 0 < d,e < 1, then

e The sample complexity of H s

m(e,5) = (1an LYoy znl) |

€ € €

o [f JH us finite then the sample complexity of H s

1.1
m(e, d) =0 (—ln— + @) .
€ 0 €

6 Approximation-Estimation Error Trade-off

Before discussing model selection based on its complexity, we first revisit the
approximation-estimation error trade-off. The bound of the difference between
generation error of the output function f of an algorithm and the Bayes optimal

prediction can be decomposed as

R(f) = R(f") < min R(f) = R(f) + f%(f) —min R(f).

[\ J/

-~

g
approximation error  Estimation error
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estimation err. Total err.

argmin pegc

approximation err.

f*

Figure 1.2: Decomposition of generalization error into approximation and es-
timation errors

The approximation error is normally unknown and depends only on the
choice of H while the estimation error is quantifiable and and depend on
the size of H as shown previously. The decomposition of generalization into
approximation and estimation error is illustrated in Figure 1.2.

Suppose that we have two candidate hypothesis spaces H; and Hsy where
Hy C Hy. If we use Hy, we can guarantee to achieve a better approxima-
tion (since mingese R(f) < mingege R(f)), at the expense of an increase of the
sample complexity of the hypothesis space, which in turn increases the esti-
mation error. Conversely, if we use JH;, the estimation error is decreased while
approximation error can only increase. This problem in commonly called bias-
variance dilemma in literature: bias (or approximation error) and variance

(estimation error) cannot be reduced at the same time.

7 Model Specification

In Empirical Risk Minimization framework, the approximation and estimation
error are fixed because we specify a model H before seeing training data. This
framework works well in practice if we have a decent domain knowledge to fix
a model H that likely to contains the optimal model f* or at least some model
that closely approximate f*. However, that’s not always the case in prac-
tice where domain knowledge is not always enough to specify a useful model.
An alternative is Structural Risk Minimization (SRM) method in which the

learning algorithm is allowed to make the choice whether to move from one hy-
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Loss ) . o
Optimal complexity Generalization error

estimation error

approximation error

Sample complexity of H

Figure 1.3: Illustration of approximation-estimation error trade-off. Increas-
ing sample complex of the hypothesis space reduces approximation error but
increase estimation error at the same time. Optimal generalization error is
obtained at some complexity that usually neither optimizes estimation error
nor approximation error.

pothesis space H; to a more complex hypothesis space H, depends on whether
the reduction in approximation error is enough to justify for the increase in
model complexity. The compromise of estimation error and approximation
error is shown in Figure 1.3. At the optimal complexity, which minimizes the
the generalization error, the approximation error is typically a strictly positive
number. It means that in order to achieve optimal generalization error, we
normally accept some approximation error and stop increasing sample com-
plexity of the hypothesis space even when it has not included the universally
optimal model f*. This problem is called model misspecification and plays
an importance role in certain types of selection bias. We define it formally as

below.

Definition 2 H is said to be well-specified if there exist some f e H such
that R(f) — R(f*) = 0. Otherwise, H is said to be misspecified.

An example of model misspecification is when we use linear regression while the
underlying data generating function P(y|z) is non-linear. Besides the reason of
optimizing the approximation-estimation error trade-off as we discuss above,
a simpler model is preferred to a more complicated one because the former is
usually more transparent than the later. Model transparency, which facilitates
interpretability, is a fundamentally desirable property in many research areas

like biology, medical study, linguistics, or social science.
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train validation

Figure 1.4: Ilustration of data partition for holdout validation validation.

8 Empirical Accuracy Estimation

Even though model complexity provides a well-justified guidance to eliminate
models that are either too complex or too simple, the model selection and pa-
rameter optimization processes still require estimating the accuracy of a pre-
diction function induced by learning algorithms. Besides, accuracy estimation
also predicts future performance of a prediction function. There are several
possible empirical accuracy estimation methods including holdout validation

and cross validation.

8.1 Holdout Validation

The available data set is partitioned, as illustrated in Figure 1.4, into a training
set Dy = {x;,y;}17, and a holdout validation set Dy = {x;,y;}.Y;, which is
not to be used in training or parameter optimization process. The prediction
function f is learned on the training data and evaluated on the validation set.
The validation loss of f is defined as:

ny
R(f) = - S 1(f (). ) (112
i=1
The holdout validation loss provides the most straightforward and unbiased
estimator of the generalization error of f but it reduces the sample size of
training data. If we have enough data we can assign a large holdout set to
reduce the variance of validation loss while keeping a sufficient training data
set. However, data are often scare, a more effective approach to make use the

available data is desirable.
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1 2 3 4 5

Figure 1.5: Illustrative example of data partition for cross validation when
K =5 and the second fold is used as validation set.

8.2 Cross Validation

An alternative to holdout validation when the training data are not massively
available is cross validation (Stone [1974]; Wahba [1990]). CV has been shown
to give a nearly unbiased estimator of the generalization error with finite sam-
ple (Smola and Scholkopf [1998]). In K-fold cross-validation, the training sam-
ple D is partitioned into K mutually exclusive and roughly equal-sized subsets
D1, Ds, ..., Dk, as illustrated in Figure 1.5 for the case K = 5. For each
k € 1..K, prediction accuracy of the function fk that is constructed based
on the training set U;D; is evaluated on the corresponding validation set
Dy. Let k:1,...., N — 1,..., K be an indexing function that maps an exam-
ple to its randomly allocated partition, the cross validation estimate of the

generalization error is

~

CV(.K) = 3 Ufuty ) 91) (1.13)

Typical choices of K are 5, 10 and n. In leave-one-out cross validation
(LOOCYV), i.e. K =n, the CV gives an approximately unbiased estimator of
the generalization error but can have a high variance because any two training
set are only different by one examples. On the other hand, when k is small, CV
has a lower variance since each training set is quite different from the other but
it may overestimate the generalization error. The extend of the overestimation
depends on where the how the performance of the learning method varies with
the training sample size. Overall, Breiman and Spector [1992]; Kohavi et al.
[1995] recommend K = 5 or K = 10 as good compromise for the bias and

variance of the estimation.
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Chapter 2

Correcting Selection Bias with
Importance Weighting

Framework

As discussed in Section 1 of Chapter 1, the assumption that the training and
the test samples are drawn from the same probability distribution plays a
crucial role in the theory of supervised learning. Unfortunately, this essential
assumption is often violated in the presence of selection bias. Under such
condition, the learning frameworks presented in Chapter 1 need to be adjusted
to remain valid.

In this chapter we first define some useful terminologies and the classifica-
tion of selection bias. We then introduce the importance weighting framework
for the generative and discriminative learning. Given the importance weight,
the adaptation of generative learning methods to the importance weighting
is very straight forward. We can approximate the generative distribution of
the training data to a family of probability distributions using the training
data and then adjust it by the importance weight to obtain an approxima-
tion of the test distribution before inferring the prediction function. On the
other hand, the adaptation of discriminative learning to the selection bias re-
quires more complication. We introduce two methods of using the importance
weight to correct selection bias in discriminative learning: one with sampling
and the other with modification of the loss function. We then show that the

importance weighted cross validation gives an almost unbiased estimate of

22



the generalization error. We review covariate shift problem and two common
methods for learning the importance weight from the training data and a set
of unlabeled examples. We also investigate the potential of Bayesian Network
to encode researcher’s a priori assumption about the relationship between vari-
ables, including selection variable, and to infer independence and conditional
independence relationships that allow selection bias to be corrected. In the
experimentation section, we assess the ability of the importance weighting to
remove the complete selection bias based on the independence and conditional
independence relationships read from Bayesian Network. A part of this chapter
has been presented at ICONIP2015 conference (Tran and Aussem [2015Db]).

1 Terminology and Categorization

Selection bias, also termed dataset shift or domain adaptation in the literature
Candela et al. [2009]; Moreno-Torres et al. [2012b], occurs when the train-
ing distribution P,,.(x,y) and the test distribution P.(x,y) are different. It is
pervasive in almost all empirical studies, including Machine Learning, Statis-
tics, Social Sciences, Economics, Bioinformatics, Biostatistics, Epidemiology,
Medicine, etc. Selection bias is prevalent in many real-world machine learn-
ing problems because the common assumption in machine learning is that the
training and the test data are drawn independently and identically from the
same distribution. The term ”domain adaptation” is used when one builds a
model from some fixed source domain, but wishes to deploy it across one or
more different target domains. The term ”selection bias” is slightly more spe-
cific as it assumes implicitly that there exists a binary variable S that controls
the selection of examples in the training set, in other words we only have access
to the examples that have S = 1. The use of selection variable S to represent
structural assumptions about how the sampling mechanism is related to other
variables appears frequently in many selection bias researches, e.g. Cooper
[1995]; Cox and Wermuth [1996]; Didelez et al. [2010]; Geneletti et al. [2009].
To be specific, we assume that there exist a probability distribution P(x,y, s),

where training data are sampled from

Py(r,y) = P(z,yls = 1)
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while test data are sampled from
Pie(w,y) =Y Plz,y,s) = P(z,y).

The existence of the selection variable S also distinguishes selection bias from
other sub-fields of domain adaptation. In selection bias, we can see that the
support of the test data distribution always contains that of the training data
distribution and if P(s = 1|x,y) > 0 for all x and y, then the two supports
overlap each other. On the contrary, in most of other domain adaptation
problems, the two supports can freely have non-overlapping region or even
be completely disjointed in extreme cases. In place of the selection variable,
other domain adaption methods usually assume the existence of some domain-
invariant representations which allows the training distribution to be able to
match with the test distribution after some transformations or alignments
(Courty et al. [2016]; Fernando et al. [2014]; Sun et al. [2016]). Other domain
adaptation methods assume the access to some labeled data with full feature
vector from test distribution (Ben-David et al. [2010]; Daumé III [2009]).

The existence of this variable S allows modeling expert knowledge about se-
lection process in a causal sense using graphical model as will be shown in later
section. There are several cases worth considering regarding the dependence
structure between X, Y, and S (Fan and Davidson [2007]; Moreno-Torres et al.
[2012a]; Zadrozny [2004]):

1. IfS 1L X and S 1L Y, the selected sample is not biased, that is, the
examples (x,y,s) which have S = 1 constitute a random sample from
the general distribution P(x,y). In this case, the i.i.d assumption is
satisfied, all theoretical results presented in previous section holds true

without any adjustment needed.

2. Covariate shift: S L Y|X, the selected sample is biased but the biased-
ness only depends on the feature vector X. This case is also termed
sample bias and corresponds to a change in the prior probabilities of
the features. This type of bias has been extensively studied in machine

learning literature and there are methods for correcting it Ben-david
et al. [2007]; Bickel et al. [2009]; Blitzer et al. [2008]; Cortes et al. [2010];
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Dudik et al. [2005]; Huang et al. [2006]; Kanamori et al. [2009, 2012]; Shi-
modaira [2000]; Sugiyama and Kawanabe [2012]; Sugiyama et al. [2007b];
Yu and Szepesvari [2012]; Zadrozny [2004].

3. Prior probability shift: S L X|Y, the selected sample is biased but the
biasedness depends only on the label Y. This case is also termed label
bias and corresponds to a change in the prior probabilities of the labels.
This type of bias has been studied in machine learning literature and
there are methods for correcting it Elkan [2001]; Ting [2002].

4. If no independence assumption holds between X, Y, and S. This is
termed complete selection bias in the literature. The selected sample is
biased and we cannot hope to learn a mapping from features to labels
using the selected sample, unless we have some additional information
on the mechanism by which the samples were preferentially selected to

the data set as will see.

2 Learning under Selection Bias with Impor-

tance Weighting

In this section, we assume that we know the selection probability distribution
P(s = 1|x,y), which fully quantifies the selection mechanism. We first relate
the the selection probability to the change of distribution from training to test
data by the so-called importance weight. We then show that this importance
weight can be used effectively to correct selection bias of all three classed

discussed above.

Definition 3 (Importance weight) Given the support of P,.(x,y) contains
the support of Pi(x,y), i.e. for all (z,y) € X XY : (Pe(z,y) > 0 =

P,.(z,y) > 0), the ratio

e =

is defined over the support of Pi(x,y). It quantifies the change of distribution

from training to test data and is called the importance weight.
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Given selection probability distribution P(s = 1|x,y), if it is positive for all
(xz,y) in the support of P(z,y), i.e. there is no deterministic exclusion of

example, using Bayes’ rule

we can relate the importance weight to the selection distribution as following:

Blz,y) = Fre(2,y) = P(z,y) _ Jx fy P(s = 1|2',y")dy'dz’
) Ptr(x,y) P(x,y|s: 1) P(S: 1|ZE,y)

The non-deterministic exclusion of example is important for selection bias
to be corrected. If there are some instances (z,y) that are always excluded
from the training data, i.e. P(s = l|z,y) = 0, learning from training data
with selection bias becomes an extrapolation problem, where prediction on ex-
cluded examples requires further assumptions or becomes unreliable. In gen-
eral dataset shift, there may be cases where test data that are never seen in
training set but are instead associated with training data by some assumed re-
lationships depends on each specific problem. For example in image processing
domain, training images might be taken under certain lighting or equipment
conditions, whereas prediction is performed on images taken under different
conditions. In these cases, changes from training to test data are usually mod-
eled by some transformations e.g. translation or rotation of the feature vector
rather than by the change of data distribution. This is another kind of non-
stationary problem where focus is placed on the transformation of data instead

of learning model adaptation.

2.1 Importance Weighting for Generative Learning

Given the selection distribution, or equivalently the importance weight, the
adaptation of generative learning methods is very straightforward. We can
approximate the generative distribution of training data P,.(z,y) to a fam-
ily of probability distributions using the training data and then adjust it by
the importance weight to obtain test distribution, Pi.(z,y) = Py.(x,y)8(z,y),

before inferring the prediction function.
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Importance Weighting for Bayesian Inference

The training data distribution P, (x,y) is approximated by a family of prob-
ability distributions, Pps(x,y|0), specified by 6 with prior probability ¢(0).
Given the training data, the posterior distribution of parameter 6 is estimated

using Bayes Theorem as following:

q(0) [ 15, Prr(i, 9il0)
q(0) ITi—, Par(zi, y:|0)do

Pr (01 wi,yitisy) = T
The posterior training distribution is then:

Pa( gl sy }y) = / Pay (i, 410) Pay (8] {1, 5}y ).

The estimated test distribution is obtained by adjusting the posterior training

distribution by the importance weight

Piem(z, YR wi, viticr) = Pu(z, y{zi, vitie) Bz, y).

Consequently, we obtain the Bayesian prediction function by substituting the
estimated distribution above for the unknown conditional distribution (p(y|x)

in Equation 1.4:

fB(x) = argm;n/jl(gay)Pte,M(y|$7 {$Z>yz}?:l)dy (21)

where

n Prevt (@, yl{zi, yi i)
Pearloles oo bbion) = =g Gl i)
By yikin))
Jy Prea (@ yl{zi, yi}is) )dy
__ Puleyl{i vi}in) B, y)
fy Pur(@, yl{@s yi}i) Bz, y)dy

Importance Weighting for Maximum a Posteriori

Again, the training data distribution P,.(x,y) is approximated by a family of
probability distributions, Py (z,y|@), specified by 6 with prior probability ¢(0).
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Given the training data, the posterior distribution of parameter 6 is estimated

using Bayes Theorem as following:

q(0) [T, Pur(zi, y:l0)
[ (0TI, Parlzi, yil0)do”

PM(QHl’iayz’ ?:1) =

The posterior training distribution in MAP framework is selected to be the

single distribution with highest posterior probability:
Orrap = argmeax Pr (O wi, yi i)

The estimated test distribution is obtained by adjusting the posterior training

distribution by the importance weight

Pie i (z,y|0nrrap) = Pu(x, y|0aap) (2, y).

Finally, we obtain the MAP prediction function by substituting the pos-
terior distribution Py (y|z,0pap) for the unknown conditional distribution

(p(y|z) in Equation 1.4:

Puara) = svgmin [ 16.9)Penlole.Ouar) S )dy (22)

where

.Pe7 g’/” y 8
Pie(ylz, Orrar) = ;%MAE($|9|MA§:)D>
— Preni(z,y|0rap)
f% PtevM(fanWMAp)dy
— Pu(z,y0rmap)B(z,y)
Jy Par (e, ylaap) Bz, y)dy

Importance Weighting for Maximum Likelihood

Under selection bias, we first specify a family of probability distributions,

Py (z,y|f) to approximate the training data distribution P,.(z,y). Given the
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training data {x;, y;}7,, the likelihood of parameter 6 and its logarithm is:

Pry({i, yi}iq0) = H Py (i, yil0).
i=1

log(Pa({wis yi}i110)) = > log(Pus (i, yil)).

i=1
We then select the generative distribution that maximizes the logarithm of the

likelihood to approximate the training data distribution.
Orre = argmaxlog(Pa ({2, yi}ial0)).

The estimated test distribution is obtained by adjusting the posterior training

distribution by the importance weight

Pte,M(-rvy‘eML) - PM(x,y‘eML)ﬂ(l’,y)

Finally, we obtain the MAP prediction function by substituting the posterior
distribution Py (y|z, 0yrr) for the unknown conditional distribution (p(y|z) in

Equationl.4:

e () = arguin /H 1) Pre (g, 0212) B, y)dy (2.3)

where

Pre (2, y|001)
Pte,M(JC\eML)

. Pte,M<x>?/‘0ML)

Sy Pren (@, yl0arn)dy

_ Py(2,y0ne)B(x,y)
Jy Prr(@ ylOarr) Bz, y)dy

Pte,M(y|37, 9ML) =

2.2 Importance Weighting for Discriminative Learning

The adaptation of generative learning methods to selection bias problem is
fairly simple. One only needs to adjust the approximation of the training data

generative distribution by the importance weight before inferring the prediction
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function. However, the application of generative learning in practice is very
limited. Discriminative learning is often preferred to generative learning when
the learning goal is to find a prediction rule with lowest loss as possible. In this
section, we introduce two methods of using the importance weight to correct
selection bias in discriminative learning: one with sampling and the other with

modification of loss function.

2.3 Importance Weighting Using Sub-sampling Meth-

ods

Given a training data with selection bias, if we can construct a new data set
that follows the general distribution (test data) then we can expect to correct
selection bias without having to modify the algorithm. This method, therefore,
can work with any algorithms just by changing the training data. In fact, sub-
sampling the training data with the importance weight can recover the original

unbiased distribution.

Lemma 5 Given a selection distribution P(s = 1|x,y), and its corresponding

importance weight 5(x,y) if we define a reweighted distribution

A

P(z,y,s) = p(x,y)P(x,y,s)

then
P(z,y|ls =1) = P(z,y).

Proof

A

P(z,y,s =1) = P(z,y,s = 1)p(x,y)

P(z,y)
=Py s =D o
= P(s=1)P(z,y|ls = 1)%
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Thus, P(z,y,s = 1) = P(x,y)P(s = 1). If we sum this expression over x,y
we obtain P(s = 1) = P(s = 1). Therefore,

Pla,y,s =1)
P(s=1)
P(x,y)P(s =

P(s=1)

P(z,y). |1

Pla,yls = 1) =
D

Lemma 5 states that an unbiased training sample can be obtained by sam-
pling each training example by [(z,y) = P(P%{sy:)l)' Note however that the
support of P(z,y) should be contained in the support of P(x,y|s = 1) for the
B(x,y) to be always defined. A similar technique applied to covariate shift was
discussed in Zadrozny [2004].

The unbiased expected loss of the model follows:

Theorem 6 Given the weighted distribution P(x,y,s) = B(z,y)P(z,y,s), for
any loss function I(f(x),y), we have:

E, ypll(f(2),y)ls = 1] = Epyop[l(f(x), )]

Proof From Lemma 5, we have P(z,y|s = 1) = P(x,y). Therefore,

E, pll(f(z), /x/y P(z,y|s = 1)dydz

Aé Pla, y)dydz

= Eoyr[l(f(2)9)]. 1

Using Theorem 6, we can learn or evaluate a model based on examples
drawn from weighted distribution P without suffering from selection bias.
There are two basic sampling methods that allow us represent samples draw
from P: sampling with replacement and acceptance sampling (Von Neumann
[1951]). It has been shown in Zadrozny et al. [2003] that the former cre-

31



ates duplicate examples which may causes severe overfitting while the later
achieves a much better performance. In rejection sampling, given the training
data set D = {x;,y;}; which includes n ii.d. examples from the distribu-
tion P(x,y|ls = 1) we include each original training example to a new sub-
sampled data set D’ with a probability proportional to the importance weight
Bz, y) = 1{%@21) to obtain examples follow test distribution P(z,y).
Noting that examples in D are independent and that their acceptance to D’
are also independent of each other, we can deduce that D’ is an i.i.d sample
from P(z,y) thanks to Lemma 5.

To maximize the size of the sub-sampled data set we set the probability of

acceptance to
B(z,y)
matzy(B(x, y))

Where a is the acceptance indicator, a = 1 when the examples is accepted and

Pla=1lz,y) =

a = 0 otherwise. We have

Py (
Ep, [B(x,y)] / / Pt Pt,« (, y)dyda
te

/ / Pye(z,y)dydz = 1.

Hence the expected size of sub-sampled data set is

R (G R
max,,(8) max,,(3)

This reduction of training sample size only depends on the maximum value
of B(z,y) and can be significant in some selection bias scheme. The most
impacted data are low importance training examples which are expected to
be rejected with high probability. To remedy this waste of training data, we
can repeatedly sub-sample the original training data, then train many models
on the sub-sampled data sets and aggregate the prediction of the models in
a manner similar to ensemble learning methods as in Zadrozny et al. [2003].
However, this approach requires an increase of computation cost. On the
other hand, most learning algorithms allow us to modify the loss function to
compensate for the change of distribution and leave the the original training

data unchanged.
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2.4 Direct Importance Weighting on Loss Function

Given that most popular learning algorithms can be formulated as empirical
risk minimization of a certain loss functions, in this section we present a direct
approach of using the importance weight to correct selection bias by modifying
the loss functions. We observe that the generalization error of a function can

be written as

R(f) = Ep,[I(f(X),Y)]

/ / Y) Pre(x, y)dydx

[ [use ;j; P gy i
= Ep, [B(z, y)I(f(X),Y)].

As a result, minimizing the expectation of importance weighted loss over train-
ing distribution is equivalent to over test distribution. Each learning algorithm
requires a different modification to implement the importance weight but in
general we can assume a class of parameterized function class H = {f(z,0) :

0 € O} for the learning task, where
0 = (01,92, ...,Gm)T €0 CR™

In risk minimization frame work, we need to solve

n

min p_ 1(f(:,0),y:) + AJ(f) (2.4)

where J(f) is a penalty functional and is defined on K.

Under sample reweighting scheme £, it becomes

minZ@ (4,0),yi) + AJ(f). (2.5)

0cO

Below, we discuss how to minimized this regularized empirical risk in some

common settings.
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Regularized Least-squares Regression with Kernel Model

Regularized least-squares regression (RLS) is one of the most importance re-

gression methods in machine learning. The Kernel model is defined by

where ®(+) is a feature map from X to a feature space F and 6 € F. The inner
product in F is defined by a kernel function k(z,2") = (®(z), P(z)). Some

common choices of kernel are:

e Linear kernel

k(z;,z;) = x] z;.
e Polynomial kernel

k(zi,x;) = (z]z; + 1)~

e Gaussian Kernel

2
k(z;,z;) = exp (—M) :

g

Using square norm for regularization and square loss function, 2.5 becomes

min 3 B,((®(x,),0) — o) + |1 (2.6)

i=1

It can be shown that the solution to 2.6 to be written as (Girosi et al.
[1995])

F0) =3 ak()
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We rewrite the regularization term as

IfI1P = (£, )
= <Z aik<’,xi),zajk('7xj)>

— Z Z ;o (k(-, ), k(- x5))

i=1 j=1

= Z Z ai@jk’(% yj)

i=1 j=1

Let K is kernel matrix, i.e. K is the n x n matrix with the (i,j)-th element

K;j = k(x;,y;). Then the regularization term becomes
J(f) =o' Ka.

For weighted square loss function:

n

> Bl(f (i 0),m) = 3 (i, 0) = i)?

=1

n n 2
=> 5 (Z ajk(xi,y;) — yz)

i=1 j=1

Denote by B the diagonal matrix with diagonal (31, fa, ..., 5,), the matrix form

of the weighted square loss is then
(Ka—y)"B(Ka —y).
Therefore, 2.5 becomes
Ioréleig(Ka —y)'B(Ka —y) + Ao’ Ka. (2.7)

The optimization is convex in «, so we can set its gradient with respected to

35



a to 0 and obtain the solution for « as:
o= ((AB7 + )y
As a result we just need to solve a single linear system for « :
(AB™' + K)a =y,
which can be handled by any available linear system solver.

Support Vector Machine for Classification

A support vector machine (SVM) constructs a separate hyperplane that max-
imizes the margin between the training data points and the decision boundary
Boser et al. [1992]; Scholkopf and Smola [2001]. Although SVM was originally
dirived using maximum margin principle, it can be reconstructed under em-
pirical risk minimization framework (Evgeniou et al. [2000]) with hinge loss,

which is defined as

W(f(x,0),y) = [1 —yf(z,0)]; =max(0,1—yf(z,0))

The weighted empirical risk minimization problem 2.5 becomes

min S B~ i f (2, 0)) + 511 (2.9
=1

00 <

Since y; € {—1, 1} for classification problem, the formulation above is equiva-

lent to:

1 n
in—||0]]* + C 2.9
in g0 + €3 s 2.9
subject to the constraints:

yif(z;) >1-&,

§=>0.
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which is a quadratic programming problem that is different than the original
problem presented in Cortes and Vapnik [1995] only by the importance weight
added into the total empirical loss. If we use kernel method and let k(z;,y;)
denote the kernel that defines the inner product between the feature maps.
The dual of 2.9 is

n 1 n
mgxz&z‘ 3 Z o yyik(@i, yj) (2.10)
i=1 ij=1
subject to
0 S Q; S Bzca

z”: a;y; = 0.
=1

This quadratic programming can be handled by many existing solver such as
SVMlight (Joachims [1998]).

Support Vector Machine for Regression

Support vector regression (SVR) (Vapnik [2013]) can be reconstructed under
empirical risk minimization framework with einsensitive loss function | f(x, ), y/.

described by

0 if <
|f($,9),y|€: 1 ‘f(x) yl > €
|f(z) —y| —€ otherwise.

The weighted empirical risk minimization problem 2.5 becomes

R A
{orélg;ﬁi!f(x,e),y!e+§\l9ll ; (2.11)
which is equivalent to:
min 5|16] +C;6i(&-+£i) (2.12)
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subject to the constraints:
yi — f(ri) < e+ &,

—yi + f(z) <e+ &,
§>0.

If we use kernel method and let k(x;,y;) denote the kernel that defines the

inner product between the feature maps. The dual of 2.12 is
1 n n n
max —— Z (o —ai)(aj—aj)k(w;,y;) —e Z(ai—kaf) +e Z(ai —af)y; (2.13)

! 2
i,j=1 =1 =1

subject to constraints

n
g a; —af =0.
i=1

This again becomes quadratic programming and can be solve by any available

solver.

Adaptive Boosting for Classification

Freund and Schapire [1995] Adaptive Boosting (AdaBoost), formulated by
Yoav Freund and Robert Schapire (Freund and Schapire [1995]), can be used
in conjunction with many weak learner to improve their performance. The
outputs of the weak learners are combined into a weighted additive model that
represents the final output. The final output of AdaBoost can be written as
a linear combination of all the weak learners trained at every stage of the

algorithm
M
f(x,0) = Z U U (T, Yim)
m=1
where
o 0= {m, Ym}M_, is the set of model parameters,

e a,,(x,7y,) is output of the weak learner trained at staged m.
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Given exponential loss function

l(f(l’, 0)>y) = 6$p(yf($7 0))7

the weighted empirical risk minimization problem is

min . Z Biel‘p(yif(xia {ama 'ym}f]\r{:l))' (214)

M
{OCMF‘/m}m:l i=1

This optimization problem is equivalent to the original AdaBoost with

initial weighting for example (z;, ;) set to f;.

2.5 Importance Weighted Cross Validation

When selection bias is covariate shift, Sugiyama et al. [2007a] demonstrated
that the importance weighted cross validation (IWCV) gives an almost unbi-
ased estimate of the generalization error. In this section, we show that this is
true even in the general selection bias setting.

Recall that in K-fold cross-validation, the training sample D is partitioned
into K mutually exclusive subsets D1, D>, ..., Dk, which we assume to be equal
size for simplicity. For each k£ € 1..K, prediction accuracy of the function
fr that is constructed based on the training set D\ Dy, is evaluated on the
corresponding validation set Dy. Alsolet x: 1,..., N — 1,..., K be an indexing
function that maps an example to its randomly allocated training partition.

To compensate for the effect of selection bias in cross validation procedure,

we modify C'V in equation 1.13 so that importance weight is taken into account:

IWCV(F,K) = 3 flae yl (), ) (215)

The property of IWCV under selection bias is exactly the same with CV in

standard learning condition as can be seen below.

Lemma 7 Given training data D with n examples that can be partitioned
into K subset of equal size n/K, IWCV(f,K) on biased training data gives

an unbiased estimate of the generalization error of the algorithm when it is
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given n —n/K training data, i.e.

Epp, [IWCV(f, K)] = Ry (f). (2.16)

Proof For any example (z;,y;) in the training data D, we have

Epep, |8, yi)l(fagiy (), v2)]
= EDm(i)NPtT ED\Dn(i)NPtr [B(SEH yi)l(fn(i) (x’b>a yz)]

Pte(xhyi) 7
=F ww/ [y (@i), Y ) P (4, 43 ) dvidy;
D\D,(i)~P xxy[Ptr(xiayi)( @ (i), Yi) P (24, i)

= ED\DH(i)NPtr/ [l(fﬁ(i)(xi>7yi)Pte(x%yi)dxidyi
XxY

~

= EDH(i)NPteED\DnmNPM [l(fn(i) (z3), y3)]

- Rnfn/K<f)
(because D\D,; is a set of n —n/K training examples).

Therefore,

n

A~

Ep~p, [IWC’V(f, K)] = ED~PW[% Z 5(3717 yi)l(fn(i) (961)7 yz)]

=1

1< ;
=~ Eper, B y)l(fago (1), 41)
=1

i=1

Lemma 7 implies that if we choose K large enough for importance weighted

cross validation (IWCV), e.g. K = n (Leave One Out CV) or K = %,
IWCV( f , ) provides an almost unbiased estimate of the generalization er-
ror of the algorithm given training data with selection bias. This property is
valid for any loss function with or without smoothness. Therefore, we can use
IWCV to evaluate performance of any algorithm in the presence of selection

bias just like we can use standard CV when there is no selection bias.
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2.6 Covariate Shift

At first glance, it may appear that covariate shift is not a problem because
it assumes that P(y|z) which determine the predicting function remains un-
changed. In fact, Shimodaira [2000] showed that there are circumstances un-
der which the predictive performance is jeopardized by covariate shift. This
happens typically when the parametric model family {P(y|z,0)}yco is mis-
specified, that is, there does not exist any ¢ € O such that P(y|z = x,0) =
P(y|z = x) for all x € X, so none of the models in the model family can exactly
match the true relation between x and y.

The intuitive explanation of why covariate shift under model misspecifi-
cation causes learning bias is that the optimal (misspecified) model performs
better in dense regions of the input space than in sparse regions, because the
dense regions dominate the average prediction error. If the dense regions of
input are different in the training and test sets, the optimal model on the
former will no longer be optimal on the latter. In other words, under model
misspecification the optimal model depends on the input distribution P(x),

which is changed from training to test data by covariate shift.

Illustrative Example of Regression under Covariate Shift

Consider a regression problem under covariate shift where the training data are
sampled from a normal distribution with mean 0 and standard deviation 0.5,
i.e. P,(x) = N(0,0.5) while the test data are sampled from P, (x) = N(0,1).
The two distributions are depicted in Fig. 2.1a. We can see that data centered
around 0 are sampled into the training set more frequently than those far
away from the origin. Therefore, any model trained on this data will put more
effort in minimizing prediction error in the central. This may or may not be a
problem depends on whether the model is well-specified or miss specified.
Given that we use Least squares (LS) regression to learn a linear model

y = Ox, the empirical risk minimization becomes:

- I )
0= argmn [; Z(@azl —¥i) ]

i=1

If the underlying data generating function is also a linear function, for

41



example y = 0*x + noise = 2z + N(0,0.3), then the model is well-specified.
In this case, #* = 2 is locally optimal for every input point. As a result, it
also globally optimal given any input distribution. Given sufficient training
data, 6 — 6* even under covariate shift. We can see in Figure 2.1 that the
linear model learned from the biased training data almost perfectly matches
the optimal model to predict test data when training data set is large enough
(500).

On the other hand, when the generating function is non-linear, for example
y = f(x) + noise = —x + 23+ ~ N(0,0.3) , then the model is misspecified.
There is no linear function in the form y = Oz that is uniformly optimal
over every input point. The optimal linear function is one that minimizes
prediction error in denser region of input distribution while compromising in
sparser region. Therefore, when the input distribution changes, the optimal
function changes accordingly. As training sample size increases, the empirical
risk minimization estimator 4 still converges but not to the optimal parameter
¢’ for test data, i.c. 6 — 0] #0.

2.7 Importance weighting for Covariate shift

Covariate shift is the simplest case of selection bias. Given the assumption
S 1L Y|X, which implies that P(y|x,s = 1) = P(y|z), we can decompose the

training distribution as following:

Pi(z,y) = P(z,yls = 1)
P(y|lz,s = 1)P(x|s = 1)
P(ylz)P(x[s = 1)

while the test distribution is

Pte(xay) = P(ZL‘,y) = P(y|ZL')P(ZE)

Therefore we can use importance weighting approach presented previously to

correct selection bias with the importance weight only depends on the input
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(c) Linear regression on train vs. test data with 500 examples
Figure 2.1: An illustrative example of learning under sample bias while model
is well-specified
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(b) Linear regression on train vs. test data with 500 examples

Figure 2.2: An illustrative example of learning under sample bias while model
is miss-specified
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This formulation allows importance weight to be estimated from the biased
training data, which gives P(z|s = 1) and an unlabeled data set that is sampled
in general population, which gives P(x).

A naive approach for estimating () is to estimate the two marginal mea-
sures from the training sample and the unbiased external sample respectively.
For instance, we can employ standard density estimators like Kernel Density
Estimation (Parzen [1962]; Rosenblatt et al. [1956]) to estimate them. How-
ever, this naive approach is known to be inferior since density estimation in
high dimensions is hard, and moreover, small estimation error could worsen the
performance significantly, especially when these two probabilities P(x|s = 1)
and P(z) are small. It seems more appealing to directly estimate f(z). In-
deed, a large body of work has been devoted to this line of research Bickel
et al. [2009]; Cortes et al. [2010]; Huang et al. [2006]; Kanamori et al. [2009];
Nguyen et al. [2010]; Sugiyama et al. [2007b]; Zadrozny [2004]. The function
of density ratio can be estimated directly by matching the two distributions in
terms of the Kullback-Leibler divergence as in Nguyen et al. [2010]; Sugiyama
et al. [2007b], in terms of a least-squares function fitting Kanamori et al. [2009]
or in term of kernel mean in reproducing kernel Hilbert spaces Huang et al.
[2006]. In this study, we consider two of them that where shown to be suc-
cessful with Covariate shift: 1) the Kernel Mean Matching (KMM) algorithm
proposed by Huang et al. Huang et al. [2006] and 2) the Unconstrained Least-
Square Importance Fitting (uLSIF), proposed by Kanamori et al. Kanamori
et al. [2009]. We briefly present below these two methods and discuss how they
adapt naturally to complete selection bias.

We assume a similar setup to semi-supervised learning where we have a
labeled set of training data and an external unlabeled set of data. However
unlike semi-supervised learning, where training and test data are assumed to
come from the same distribution, in covariate shift framework we assume the

availability of n i.i.d. training samples

{(«',y" )}y ~ Py(x) = P(z,y|s = 1)

and n’ i.i.d. test samples

’

{<J‘Ji7 y/i)}?:l ~ Pte(‘r) = P(ZL’, y)
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on domain X x Y.

2.7.1 Kernel Mean Matching

Let & : X — J denote the canonical feature map into a feature space F
is the reproducing kernel Hilbert space (RKHS)(Aronszajn [1950]; Hofmann
et al. [2008]) induced by a kernel k. B is the upper bound of the density
ratio and p : P — J the expectation operator: u(P) := E, pu[P(x)]. The
relation between kernel mean matching and importance weighting is justified

by following theorem

Theorem 8 (Gretton et al. [2009]) The operator mu is a bijection between the
space of all probability measures and the marginal polytope induced by the fea-
ture map ®(x) if F is an RKHS with universal kernel k(x,z") = (®(z), P(z'))
in the sense of Steinwart [2002].

KMM tries to match the means in the feature space of training sample
p(P(zs|s = 1)) and test sample p(P(xs)) by minimizing discrepancy between

their empirical value,

n/

s D250 = 3 DG
subject to the constraints ° € [0, B] and |27, ' — 1] <,
where {z°}"_, are the training samples and {2/}, are the samples obtained
from external sources. In the subsequence experiments, € = (y/n —1)/y/n and
B = 1000 as suggested in Gretton et al. [2009].

2.7.2 TUnconstrained Least-Squares Importance Fitting

This method is based on linear density-ratio models. Formally, it assumes that

the density ratio 5(z) can be approximated by a linear model

B(z) = Z a;hi()

where the basis functions h;, ¢ = 1,..., M are chosen so that h;(z) > 0 for

all . The coefficients oy, ..., aps are parameters of the linear model and are
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determined by minimizing the discrepancy between the true and the estimated

importance weights:

1 .

L(@) = 5 Bp, [(3(x) - 5(2))]

= 2 En, [F(2)] ~ Br, B@)B()] + 5 Er, [5(2)
= B [B(@)] ~ B [B@)] + 5 Bn, [5°(2)]
We have the last equality since
B 0)3(0)] = [ Be) el ooy
- [ B@Puayts

Approximating the expectations in L by their empirical averages and drop
the last term, which is a constant, the importance weight fitting becomes a
minimization problem

(e 1<
: PYORANY YL,
min o= 3 (B - — 37 A’ + ARegla)
i=1 j=1

where the regularization term Reg(«) is introduced to avoid overfitting.
A heuristic choice of h;(xs) proposed in Kanamori et al. [2009] is a Gaussian
kernel centered at the test points {27 }i2, when number of test points is small

(less than 100) or at template points {27}, which is a random subset of
test set when the number of test points is large for computation advantage.
The kernel width and the regularization term Reg(«) are optimized by cross-

validation with grid search.
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3 Importance Weight Estimation with Bayesian

Network

The categorization of selection bias presented in previous section ignores all
possible conditional independence between feature variables X, Xs,... € X.
Therefore when there is no conditional independence holds between X as a
whole, Y, and S, we cannot hope for a bias correction method. However,
in practice, there are many cases where independence or conditional indepen-
dence relationships between some but not all feature variables, output variable,
and selection variables can help identifying formula to correct selection bias.
One of the tools that have been found to be particularly useful in inferring
these independence relationships is Bayesian networks (BNs). In this section
we investigate the potential of BNs to encode researcher’s a priori assumption
about the relationship between variables, including selection variable, and to
infer independence and conditional independence relationships that allow se-
lection bias to be corrected. Besides selection bias, BN is a useful tool to diag-
nose the bias in estimating causal effect between variables in many biomedical
and epidemiologic researches (Glymour [2006]; Greenland et al. [1999]; Herndn
et al. [2002]).

Formally, a BN is a tuple < G, P >, where G =< V,E > is a directed
acyclic graph (DAG) with a set of nodes V' representing the variables in the
study, and a set of edges E representing direct probabilistic dependencies be-
tween them. P denotes the joint probability distribution on V whose de-
pendencies are induced by G. In G, one node can be linked to another by
an directed edge, for examples X — Y, without forming any directed closed
loops. If there exists a directed edge from X to Y then X and Y are said to be
adjacent while X is called a parent of Y and Y is called a child of X. A path is
an unbroken route traced along or against directed edges connecting adjacent
nodes. A directed path is a path that can be traced through a sequence of
directed edges in the direction indicated by the arrows of the directed edges,
such as the path from X to S'in X — Y — S. A node S is said to be a
collider on a specific path if it is a common child of two variables on that
path, such as S in X — S <+ Y, which is said to collide at S. If a path does
not collide at S than S is said to be non-collider on that specific path. A
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path is unconditionally blocked if it has one or more colliders. A path from a
node Y to a node S is said to be blocked conditionally on X if either there is a
variable in X that is a non-collider on the path. Otherwise the path is said to
be unblocked. Two nodes X and S are are said to be d-separated conditional
on Y if all paths from X to S are blocked conditional on Y. The BN structure
encodes a set of conditional independence assumptions: that each node V; is
conditionally independent of all of its non-descendants in G given its parents.
These independence assumptions, in turn, imply many other conditional in-
dependence statements, which can be extracted from the DAG using called
d-separation criterion Pearl [1988]. If X and S are d-separated conditional on
Y, X and S are conditionally independent given Y in distribution P.

The construction BN to diagnose selection biased problem can be based on
the investigators understanding of the relationships and dependencies among
variables which usually bear a causal effect interpretation. A direct edge from
X — Y implies X is a cause of Y and Y is the effect of X. A missing link
between them implies that they have no direct causal effect. The causal effect
interpretation of the BN helps domain expert easily encode their assumption
into a DAG from which useful independence relationships can be inferred.
However, that is not the only way to construct a BN. In many practical settings
the BN is unknown and one needs to learn it from the data de Morais and
Aussem [2010]; Kojima et al. [2010]; Penia [2011]; Scutari and Brogini [2012];
Villanueva and Maciel [2012]. In our study, we always assume that a BN is
always be given.

The BNs in Figure 2.3 represent three types of selection bias discussed in
previous section. In Figure 2.3a, d-separation of S and Y given X implies
that S L Y|X, which is covariate shift assumption. Similarly, d-separation
of S and X given Y in 2.3b implies prior probability shift assumption. In
Figure 2.3c, all variables are connected, thus it falls into complete selection

bias category.

3.1 Examples

To illuminate the nature of complete selection bias that arises in the complete
selection bias case, consider the examples depicted in Figure 2.4 and Figure 2.5.

The Bayesian network structures should be regarded as graphical structures
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(a) Covariate shift: Y L S|X (b) Prior probability shift: X 1L S|Y

O O
O,

(c) Complete selection bias

Figure 2.3: Three types of selection bias represented by DAGs

encoding conditional independencies between X, Y, and S which may involve
other variables as well. We provide two concrete examples in Epidemiology

and Medicine for purposes of illustration.

Example 1 A medical example of selection bias shown in Figure 2./ (where X
is a two dimensional vector (X1, Xs)) was reported in Geneletti et al. [2009];
Horwitz and Feinstein [1978], and subsequently studied in Pearl [2012], in
which it was noticed that the effect of Estrogen, Xy (i.e., X \ X1), on Endome-
trial Cancer, Y, was overestimated in the data studied. One of the symptoms
of the use of Estrogen is vaginal bleeding X and the hypothesis was that women
noticing bleeding are more likely to wvisit their doctors, causing women using
Estrogen to be overrepresented in the study. The exposure Xo and the disease’Y
may be associated. However, this association is distorted because the selection

criteria favor women who have vaginal bleeding.

G D——()
H—0

Figure 2.4: Example of selection bias in Endometrial Cancer study where
X, ={X1, Y}
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Example 2 Figure 2.5 represents a case-control study reported in Hernan
et al. [2004] of the effect of postmenopausal estrogens, X, on the risk of myocar-
dial infarction, Y. The variable S indicates whether a woman in the population
study s selected for the case control study. The edge from disease status to se-
lection S indicates that cases in the cohort are more likely to be selected than
non case, which is the key feature of a case-control study. As women with a low
bone mass density, denoted by M , were preferentially selected as controls, M is
connected to S. The edge from X to M represents the protective effects of es-
trogens on the bone mass density. Note that Figure 2.5 is essentially the same
as Figure 2./, except that we have now M is missing in the test set. This sit-
uation typically arises in various clinical studies or epidemiological scenarios,

where M s too difficult or costly to measure in the target population.

() O
(M) ®

Figure 2.5: Example selection bias in the study of the effect of postmenopausal
estrogens where X, = {M,Y}.

The selection bias mechanisms shown in Figure 2.6a and 2.6b are simple

variations thereof. Example in selection bias shown in Figure 2.6¢ is another

example known as a M-structure.
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(c) X5 = {M, M}

(a) X

Figure 2.6: Top figures: Covariate shift and prior probability shift. From (a)
to (e): Examples of complete selection bias mechanisms depicted graphically.
The S-control vector is shown along each plot.

3.2 Recoverability of Selection Bias in Graphical Model

Recent research by Bareinboim and Pearl [2012]; Bareinboim et al. [2014] pro-
vide probabilistic and graphical conditions for recovering probability distribu-
tion from selection biased data with and without unbiased data over a subset

of the variables.

3.2.1 Recoverability without External Data

Definition 4 Given a BN graph G5 augmented with a node S encoding the
selection mechanism, the distribution or conditional distribution @) is said to
be s-recoverable from selection biased data in Gy if the assumptions embed-
ded in Gg renders () expressible in terms of the distribution under selection
bias P(v|S = 1). Formally, for every two probability distributions P, and P;
compatible with G, Pi(v|S = 1) = Py(v|S = 1) > 0 implies Pi(v) = Py(v)

Theorem 9 The distribution P(y|x) is s-recoverable from Gy if and only if
(S LY|X).

Among three cases of selection bias, only covariate shift allows the conditional

distribution of y given x to be recoverable without external data. However

52



recoverability of P(y|z) is not sufficient to correct the bias when the model is
misspecified, i.e. when the hypothesis space does not contain the true data
generating mechanism P(y|x) as discussed in the previous chapter. In such
case, the asymptotic optimal hypothesis on the training data may be different
than the asymptotic optimal hypothesis on the test data and both P(y|z) and
P(z) (or equivalently P(z,y)) are required to correct the bias.

3.2.2 Recoverability with External Data

Definition 5 Given a BN graph G augmented with a node S encoding the
selection mechanism, the distribution query Q) is said to be s-recoverable from
selection biased data in G5 with external information over T C V' and selec-
tion biased data over M C V if the assumptions embedded in G4 renders @)
expressible in terms of the distribution under selection bias P(m|S = 1) and
P(t), both positive. Formally, for every two probability distributions P, and
Py compatible with Gy, if they agree on the available distributions, Pi(m|S =
1) = P(m|S = 1) > 0, Pi(t) = Py(t) > 0, they must agree on the query
distribution, Qp, = Qp,.

Theorem 10 The bias-free distribution P(x,y) is recoverable from a S-bias

training samples if there exists a set of variables X that satisfies:
e S-bias training sample contains X,
o The biased free distribution of X, is estimable.
e X, controls S over (X,Y), i.e. S L (X,Y)|X
e The support of P(xs|s = 1) contains the support of P(xs).
Under these conditions:

P(z,y)= Y P,y s = 1)B(x,) (2.17)
zs\{zy}

Where (z,) = o=l

P(s=1|zs) *

In our notation, Xy may include X, a partial of X, Y, or some variables M
that is measure in training data but not in test data, e.g., bone mass density

in Example 2.
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Proof Bayes’ rule, we have

P(z,y,z5,s =1)
P(s =1|x,y,z,)

P(z,y,z,) =

In addition P(s = 1|z,y,zs) = P(s = 1|z;) since S L (X,Y)|X,. Therefore,

P(s=1)
P s)=Plz,y,x4ls=1)———.
Finally,
P(z,y)= Y P,y )
zs\{z,y}
= Z P(I,y,l’5|8 = 1)/3(I3) I
xﬁ\{$7y}

Theorem 10 relies on a combination of data assumptions (P(z,) can be
estimated) and qualitative assumptions (X controls S over (X,Y)) that may
appear difficult to satisfy in practice. However, in certain domains like epi-
demiology, information about the selection process can sometimes be expressed
and modeled in a communicable scientific language (e.g., graphs or structural
equations) by the domain experts. Examples of common selection bias in
epidemiology can be found in Hernan et al. [2004].

Theorem 10 reduces the importance weight to only depends on x, which is
measured in both training and external data set. It is also worth noting that

B(xs) can be reformulated as,

P(xs)

Blxs) = Plads=1) (2.18)

So fB(zs) may be estimated from a combination of biased and external
data. Covariate shift and prior probability shift can be seen as special cases
this selection bias scheme where X, = X for covariate shift and X, = Y for
prior probability shift. Replacing B(z,y) by S(xs), the following results are

drawn directly from Lemma 5 and Theorem 6.
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Corollary 1 Given that condition of Theorem 10 is satisfied, if P is a new

distribution such that

~

P(I’,y,ZES,S) = P(z,y,xs,s)ﬂ(:ps)

then
P(z,yls =1) = P(z,y).

Corollary 2 Given that the condition of Theorem 10 is satisfied, and P in
Corollary 1, for all classifier h, all loss function | = I(h(z),y),
E$7yNP<l> = Ex,yNﬁ(l|S = 1)
B, y~p(l) is the loss that we would like to minimize and E,  _s(ls = 1))
is the loss that may be estimated from the new biased sample drawn from the
weighted distribution P.

Similarly, directly weighting loss function of a learning algorithm with §(x)

will correct selection bias.

Corollary 3 The expectation of importance weighted loss with B(zs) over the

training distribution is equal to the expectation of loss over test distribution.

R(f) = Ep.[I(f(x),y)]
= Ep, [B(x)l(f(2),y)].

As a result, we can either use subsampling or modify the leaning algorithm

with importance weighted loss function to correct for selection bias.

4 Experimentation and Results

In this section, we assess the ability of importance weighting to remove com-
plete selection bias based on Theorem 10. In the first three toy experi-
ments (two regression problems and one classification problem), we investi-
gate whether covariate shift and prior probability shift corrections may help
reduce complete selection bias despite our assumptions between the training

and test distributions difference being violated (through an invalid choice for
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Xs). With this in mind, KMM (uLSIF will be used later on real data only) is

applied under three assumptions:

e Covariate shift (i.e., f(x) = P(I;|(::)1) or ry = x),
e Prior probability shift (i.e., 5(y) = % or xs = y, the importance

weight is estimated using the bias training data set and an unbiased data

set that contains only labels),

P(zs)

Blaas=1) s 18 correctly specified).

e Complete selection bias (i.e., f(zs) =

They are denoted KMM(X), KMM(Y), KMM(Xj) in the sequel. The test
error will plotted as a function of the number of training points. All exper-
iments on synthetic data are repeated 30 times for each number of training
points. The reported errors are average values. We examine: 1) the case
where the learning model is well-specified or misspecified and 2) when Xj is
not completely observed. The toy experiments are intended mainly to provide
a comparison between the above three estimators and the plug-in estimator
that estimates ((z) from the true (known) distribution, against the optimal
solution that consist of fitting the model directly on the test data. It should be
emphasized that neither KMM nor uLSIF requires any prior knowledge of the
true sampling probabilities. We then test our approach on real world bench-
mark data sets, from which the training examples are selected according to
various biased sampling schemes as suggested in Huang et al. [2006]. Finally,
we consider a plausible biased sampling schemes on a prospective cohort study
which included more than 7500 elderly osteoporotic women followed-up during

4 years.

4.1 Regression Problem with a Well-specified Model

Consider the S-bias mechanism displayed in Figure 2.7, where the feature X
has a uniform distribution in [0,1]: P(X) ~ U(0,1). Note that the influence
of M onY is mediated by {X,S}.
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(9 O
(M) ®

Figure 2.7: Selection mechanism in regression problem with a well-specified
model and X, = {M,Y}.

The observations are generated according to y = 1 — 0.5z and are observed
in Gaussian noise with standard deviation 0.5 (see Figure 2.8¢c); the black solid
line is the noise-free signal). The intermediate variable M, between X and S,
is generated according to M = X + N(0,0.3%). As M is only measured in the
training set, it is not used an input feature in our regression model. Therefore,
we are investigating a case where X is partially missing in the test set. The
probability of a given example being included in the training set depends on

Y and M and is given by

y—m, if01<(y—m)<1
P(S =1|m,y) ~ < 0.1, if (y—m) <0.1

1, otherwise

Note that the minimum value of P(S = 1|m,y) needs to be greater than 0
so that the support of P(m,y) is contained in the support of P(m,y|s = 1),
as required by Theorem 10. The choice of P(m,y) is intended to induce a
noticeable discrepancy between P(y|z,s = 1) and P(y|z). We sampled 200
training (red crosses in Figure 2.8¢c) and testing (grey circles) points from P,
and P, respectively. The bias is clearly noticeable from the X-Y contour plots
in Figure 2.8a and b. The bias-free distribution P(x,y) is recoverable from
the S-bias training samples since {M, Y} satisfies Theorem 10. Thus we use
Corollary 3, to remove selection bias by weighting the squares loss on each
example of the linear model by the importance ratio:

P(m,y) P(s=1m,y)

ﬂ(xs):ﬁ(m7y): P(m’y|5:1) B P(s:l)

where P(s = 1|m,y) and P(s = 1) may be obtained from the known
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Figure 2.8: Toy regression problem 1. (a) and (b) Contour plots X-Y on
training and test sets; (¢) Polynomial models of degree 1 fit with OLS and
WOLS.

selection mechanism shown above or directly estimated by KMM using training
and unlabeled data.
We attempted to model the observations with a linear model, which is

a well-specified model considering that the true generating function is also
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Figure 2.9: Average performances of four WOLS methods and OLS on the test
data as a function of the number of training points.

linear. The black dashed line in Figure 2.8c is a best-case scenario given our
test points, which is shown for reference purposes: it represents the model fit
using ordinary least squared (OLS) on the test set. The brown line is a second
reference result, derived only from the training data via OLS, and predicts
the test data very poorly. Note that unlike covariate shift where well-specified
model can perform well without importance weighting, in this case, selection
bias strongly affects the prediction performance even the learning model is
well-specified.

The green dashed line is a third reference result, fit with weighted ordinary
least square (WOLS), using the true (z;) values calculated from the true data
generating mechanism, and predicts the test data quite well. The other three
dashed lines are fit with WOLS using the KMM weighting schemes under the
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three assumptions. Note that the true generating model between X and Y is
included in the hypothesis space.

We estimated the effect of the number of training points on the estima-
tion of the reweighting factors by examining the average mean square error
(MSE) on the test set as a function of the number of training points. As may
be observed in Figure 2.9, the error goes down as the sample size increases,
until it reaches an asymptotic value. KMM(X;) performs well even with rel-
atively moderate amounts of data and achieves almost optimal error quite
quickly, handily outperforming the reweighting method based on KMM(X)
and KMM(Y) by a noticeable margin. More interestingly, KMM(Xj) also
outperforms the reweighting method based on the true data generating mech-
anism, especially when the sample size is small. This result may seem counter-
intuitive at first sight: the reason is that the exact importance-sampler weights
are not always optimal unless we have an infinite sample size. See Shimodaira
[2000] for a thorough discussion. Remarkably, despite our assumption regard-
ing the difference between the training and test distributions being violated,
KMM(Y) and KMM(X) improve the test performance. However, this im-
provement is not sufficient to correct totally the selection regardless of the

training sample size.

4.2 Regression Problem with a Misspecified Model

In this second toy experiment, our data are generated according to the non-
linear function. In addition, we assume that Y is directly dependent on the

missing variable M and not mediated by X and S as depicted in the S-bias

() ()
(M) O

Figure 2.10: Selection mechanism in regression problem with a misspecified
model and X = {M, Y}

mechanism in Figure 2.10.
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The input samples are generated according to X ~ N(0,0.3). The in-
termediate variable M is generated according to M = X + N(0,0.3%). The
observations are generated according to y = sinc(z) + 0.5m and are observed
in Gaussian noise with standard deviation 0.5 (see Figure 2.11c; the black
curve is the noise-free signal). Here again, we attempted to model the ob-
servations with a linear model which is misspecified, i.e. the true generating
model between X and Y is not included in the hypothesis space. The S variable

indicating actual selection to the training set is generated according to,

m—y if0l1<m-y<l1
P(S =1m,y) ~ { 0.1 itm—y<0.1
1 otherwise

The distribution shift due to selection bias above is clearly noticeable from
the X-Y contour plots in Figure 2.11a and 2.11b. Here again, the bias-free dis-
tribution P(x,y) is recoverable from the S-bias training samples since {M, Y}
satisfies Theorem 10 (i.e., {X,Y} L S|{M,Y}). Thus we use Corollary 3 to
remove selection bias.

As expected, KMM(X,) compares more favorably to the other methods
and does exceptionally well even with moderate amounts of data. Note that,
contrary to the previous experiment, this is pretty much a dead heat between
KMM(X) and KMM(Y') in terms of performance. Still, both approaches were
able to reduce the bias by a noticeable margin compared to the baseline un-
weighted approach ("no weighting”) although not being able to match the
best scenario where there is no selection bias. Note that because KMM/(X)
and KMM(Y") relies on the wrong assumptions about selection mechanism, we
can always hand-pick a selection scenario so that importance weighting that
solely relies on X or Y becomes less effective or even worse than the baseline

unweighted approach as we will see in the next experiment.

4.3 Toy Classification Problem

We now turn our attention to a synthetic classification problem. Consider the
S-bias mechanism depicted in Figure 2.13, where X consists of two variable
(Xh XQ) :
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—— Best scenario - - - FitwithKMMonY
—— Fit without weighting
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(c) Linear model fit

Figure 2.11: Toy regression problem 2. (a) and (b) Contour plots X-Y on
training and test sets; (c¢) Polynomial models of degree 1 fit with OLS and

WOLS.

Figure 2.13: Selection mechanism in classification experiment with X, =
{X1,Y}.
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Figure 2.12: Average performances of four WOLS methods and OLS on the
test data as a function the number of training points of toy regression problem
2.

Two class of data present with the same probability
ply=1) =p(y = —1) =0.5.

Xy depends on Y as P(X5|Y = 1) ~ N(0,0.5) and P(X5|Y = —1) ~ N(2,0.5).
Finally, X is generated according to X; = X5/2 + €, where € ~ N(0,0.5).

It follows that the optimal decision boundary in terms of mean square er-
ror between positive-labeled and negative-labeled examples is the line x5 = 1.
While the labels are solely determined by the feature X5, labels are dependent
on X; in the biased training set because conditioning on S opens a path be-
tween X; and Y. Positive samples are preferentially selected to the training

set when they are close to the true decision boundary,
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1

Figure 2.14: Polynomial models of degree 1 fit with OLS and WOLS of toy
classification problem

500 training data points are plotted in Figure 2.14. As may be seen, the
selection causes some positive examples (black cross sign) to be excluded from
the training set while all the negative examples (brown circle) are included. A
linear function f(z1,22) is trained to minimize the Mean Square Error (MSE)
on the training set. Due to selection bias the boundary learned on biased
training set (brown solid line) is shifted and rotated. The set of variable that
controls the selection mechanism is X = {X;,Y} since S L X, Y{Y, X;}.
Importance weighting using the underlying probability (green dashed line)
and KMM on X; (blue dashed line) achieve a MSE almost as low as the

best possible model when training sample size is large enough as can be seen
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Figure 2.15: Average performances of four WOLS methods and OLS on the test
data as a function the number of training points of toy classification problem.

in Figure 2.15. KMM(X) (red dashed line) amplifies the current selection
bias, causing a higher classification error rate with respect to the unweighted
baseline method. This can be seen as an example of a bias amplification caused
by an inappropriate choice of variates to control.

In contrast, KMM(Y) (purple dashed line) adjusts the proportion of positive-
labeled and negative-labeled in the training set and reduces the bias by 75%
as shown in Fig.2.15. However this improvement can easily be reversed if we

choose a different selection mechanism as can be seen in example below.

Example 3 Consider a learning problem where the training and test distribu-
tion are shown in Table 2.1 and Table 2.2.
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plr,yls=1) |ly=0|y=1 plr,y) ly=0]y=1

z=0 0.375 | 0.25 z=0 0.4 0.1
rz=1 0.25 | 0.125 =1 0.1 0.4
Table 2.1: Train distribution Table 2.2: Test distribution

The optimal prediction for this learning problem is y = fo(x) = =, which
achieves a prediction error of 20%. However, under the given selection bias, the
prediction function learned from the training data (assumed to be large enough)
will be y = fi(x) = 0, which predicts correctly only 50% of the test data. This
selection bias is controlled by both x and y. If we make a wrong assumption
about the selection mechanism, e.g.,the prior probability shift, we will apply
the importance weight 5(y) as shown in Table 2.3 and get the training data set
that follows a weighted distribution as shown in Table 2.4. Consequently, we
learn the prediction function y = fo(x) = 1 —x, which predicts incorrectly 80%
of test data, worse than the unweighted model. Therefore, using tmportance

weight with prior probability shift assumption is harmful in this case.

Bly) |ly=0|y=1
r=0| 08 |1.3333
r=1| 08 |1.3333

po(r,y) [y=0| y=1
y=0 | 0.3 |0.3333
y=1 | 0.2 |0.1667

Table 2.3: Importance weight
assuming prior  probability
shift.

Table 2.4: Weighted distribu-

tion.

The conclusion we can draw from these toy experiments is that complete
selection bias could be corrected if we are able to estimate 3(x) with sufficient
confidence. As the number of training samples increases, the method’s predic-
tion error converges to the unbiased error. KMM(Xj) results are comparable
and sometime better with respect to the underlying probability method. While
KMM(Xj) is far superior to both KMM(Y) and KMM(X), it is worth mention-
ing that KMM(Y) and KMM(X) could improve test performance significantly
in some cases and amplify selection bias in some other cases. Therefore, se-
lecting a correct set of variables to be controlled is critical in correcting for

selection bias. If we make a wrong assumption about the selection mechanism,
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the result could be very random. A similar problem of bias amplification when
wrong variables are adjusted can be found the causal inference domain (Pearl
[2010] ). Finally, it should also be noted that the external data used to estimate
the importance weight in KMM(X) are labeled data with partial feature vec-
tor (not all features have to be included). This requirement seems to severely
restrict the application of our approach in practice. However, labeled data
with few features at population level are a lot easier to find than the labeled
data with full feature vector in many cases. For instance, the distribution of
a certain diseases at different age is quite easy to find from the public domain
or from combining data of many researches. As a result, if the variables that
control the selection of patients into the study are patients’ age and the disease

itself, we can use those available data to correct for the selection bias.

4.4 Real-world Data sets

In the following experiments, we examine whether using importance weighting
can reduce selection bias in 10 UCI data sets with 5 classification tasks and 5
regression tasks. We employ three methods to estimate importance weighting:
ratio of underlying probability, KMM, and uLLSIF and compare their perfor-
mance against the baseline unweighted method.

For each data set, X is chosen to be the label Y and the most correlated
input variable to Y (denoted as X; for simplicity). The choice of X; is to
induce a clear effect of selection bias. In fact, X; can be a set of variables and
in the extreme case, it could include all the parent nodes of Y, making the
external data needed for the selection bias correction be sufficient for predicting
the label Y. In that case, we can just ignore the biased training data and use
the external data set, if it is available, to build the prediction model. However,
we argue that in practice unless in adversarial cases, the selection mechanism
is normally controlled by very few variables whose prediction power can hardly
dominate that of other variables in the study. Therefore, using X; to predict
Y yields a much worse prediction accuracy compared to using the full feature
vector even under selection bias.

The selection bias mechanism is illustrated in Figure 2.16.
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Figure 2.16: Selection mechanism in real world data set experiment with

X, ={X1,Y}

The selection variable S for each training example is determined according
to two scenarios depending on whether it is regression or classification problem.

For regression problem, we use

exp(axy + by + ¢)
1+ exp(ax, +by +¢)’

P(s = 1]y, y) =

where a, b, ¢, are parameters that determine the bias and showed in Table 2.5,

along with information of each data set.

Data set dim | # train | # test | o a b|c
India diabetes 8 400 208 le-4 | 05| - |-
Ionosphere 34 | 250 128 0.1 05| -1|-
BreastCancer 10 300 158 0.01 05| -]-
Haberman 3 200 105 0.056 05| - |-
GermanCredit 24 | 700 375 le-5 | 05| - |-
Airfoil self noise 5 1000 492 0.1 |1 110
Abalone 8 2000 1360 0.1 |15]-1|1
Computer Hardware | 9 100 53 le-4 | 1 210
Auto MGP 8 300 173 0.1 |1 -110
Boston Housing 13 | 300 92 0.01 |1 110

Table 2.5: UCI data sets characteristics, Gaussian kernel width, and bias
parameters. Parameters b and ¢ are not used for classification tasks.

For binary classification problem, we use:
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a if z1 > mean(z;) and y =1
P(s =1lz1,y) =
1, otherwise

For each data set, we then train 4 predictive models learned under the four
weighting schemes discussed above and a model learned from the unbiased
data (baseline) using SVM-light (Joachims [1998]) which allows importance
weighting to be fed directly to SVM. All classifiers are trained with the common
Radial Basis Function (RBF), with a kernel size o chosen through a 5-fold
cross validation. This procedure is repeated 100 times for each data set. The
performance metrics we use are averaged test errors for classification problems
and normalized mean square errors (NMSE) given by

1 Nte (yfe . ?)Z)Z

Nie i=1 var (yte)

for regression problem.

The numerical results are reported in Table 2.6 and visualized in Figured
2.18. As may be seen, all importance weighting schemes achieve lower pre-
diction error with respect to the baseline unweighted scheme. The underlying
probability weighting scheme performs pretty good.

Curiously, on the Boston Housing data set, all the three weighting schemes
perform worse than the baseline unweighted method. This is an example
showing that the increase of variance due to importance weighting may exceed
its bias correction effect, worsening the overall performance. Figure 2.17 shows
that the prediction error on the Boston Housing data set is much more sensitive
to training sample size than other data set, e.g. the Airfoil Self Noise data set,
on which importance weighted models perform well. Therefore the reduction
of the effective training sample size due to importance weighting have a much

deeper impact on the Boston Housing than on other data set.
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Importance Weighted Cross Validation for Selecting Weighted or
Unweighted Model

The importance weighting has two effect on the learning algorithms: the bias
correction and the effective training sample size reduction. The former im-
proves while the later worsens the algorithms’ overall performance. Which
effect dominates the other is data-dependent and cannot be determined the-
oretically. Therefore, we employ IWCV, which was proven to be almost un-
biased, to avoid using importance weighted model when its training sample
size reduction effect dominates its bias correction effect. We repeat the exper-
iments with UCI data sets, adding a 10-fold IWCV for each weighting scheme.
For each of the 100 trials on each data set and each weighting scheme, we only
use a weighted model to predict test data when it outperforms unweighted
model; otherwise we use unweighted model.

The numerical results are visualized in Figured 2.19. With IWCV, all
the three weighting scheme still perform worse than unweighted model on
Boston Housing data set but with a very small margin because IWCV is able
to detect that the weighted model is worse than unweighted model most of
the time (83/100 trials with KMM, 93/100 trials with uLSIF, 85/100 trials
with underlying probability weighting). On the other hand, IWCV can only
detect 47/100 trials where weighted model with KMM performs worse than
unweighted model on Auto MGP data set. This and the fact that the other
two weighting scheme perform pretty well on the same data set (reduce over
20% of MSE) suggest that the importance weight on Auto MGP data set
estimated by KMM is not a good approximation of the true importance weight.
This is an example showing that the overall performance of the importance
weighting methods depend not only on the trade-off between bias reduction
effect and effective training sample size reduction effect but also on how good

the importance weight is estimated.

Non-parametric Test of Experiment Result

In order to better assess the overall results obtained for each of 4 weighting
schemes, a non-parametric Friedman test was firstly used to evaluate the re-

jection of the hypothesis that all the models perform equally well (except the
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unbiased model of course) at significant level 5%. Statistically significant dif-
ferences were observed. So we proceeded with the Nemenyi post hoc test. The
results along with the average rank diagrams are shown in Fig. 2.20. The ranks
are depicted on the axis, in such a manner that the best ranking algorithms
are at the rightmost side of the diagram. The algorithms that do not differ
significantly (at p = 0.05) are connected with a line. As may be observed in

Figure 1, contrary to uLSIF, KMM is significantly better than no weighting.

Critical Difference = 1.5

uLSIF on Xs — KMM on Xs

No weighting Underlying probs

5 4 3 2 1
Average Rank

Figure 2.20: post hoc analysis

4.5 Hip Fracture Data

We next test our selection bias correction method on EPIDOS samples Cail-
let et al. [2015] which included more than 7598 elderly osteoporotic women
followed-up during 4 years. Women who were not able to walk independently
and those who had a hip fracture or bilateral hip replacement were excluded

The goal is to discriminate between individuals of the positive class (having
hip fracture) from negative class based on 14 available features described in
Table 2.7. The data set is highly imbalanced with only 293 positive example,
so we sample to keep only 4% negative examples and also remove examples
with missing value to simplify the problem.

We simulate a synthetic selection bias scenario that the chronicle diseases
(X1) and the hip fracture Y have a negative effect on the inclusion of an
example into the training sample, following the Table 2.8. In this scenario,

women who have many (> 2 chronicle diseases, or hip fracture have some
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probability % > 0, where b represents the bias level, to fail to follow up with
the experiment, thus be excluded from the training set. This probability is
increased to b if they have both many chronicle diseases and hip fracture. This

is a typical survival bias in epidemiology.

Name ‘ Description ‘ Values
Fracture Hip-fracture during the 4-years | binary
follow-up
Age Age at study inclusion < 80, 80 < 85,
85 <90, > 90

Chron_disease

Number of chronic diseases

binary: < 2, > 2

Psycho Use of sedatives or anxiolytics at | binary
inclusion
Vit_D Use of vitamin D at inclusion or | binary
history of vitamin D one year be-
fore inclusion
Gluco Use of glucocorticoids at inclusion | binary
or history of glucocorticoids one
year before inclusion
Alcohol Daily intake of alcohol in g binary: 1 < 20,
> 20
Tobacco Tobacco smoking none, former, ac-
tual
Gait_speed Gait speed at inclusion in m/s < 0.60, 0.6 <
0.85, 0.85 < 1,>
1
Test_5 Five chair test (time to sit down | 1 < 9, 9 < 16,
and stand up five times) in s 16 < 23,> 23,
incapable
BMI Body mass index at inclusion low, normal,
obesity
BMD T-score of BMD of the neck at in- | binary: normal
clusion or <1,<25
Falls Number of falls during 6 months | binary: <2, > 2
before inclusion
Earl_Frac History of fracture from age of 55 | binary
to inclusion
Par_Frac History of hip-fracture in the par- | binary

ents
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X1 1Y |S=0| S=1
X, =1]0 | b/2 | 1b/2
Xi=11|1 a 1-b
Xi=01]0 0 1
Xi=0|1|b/2|1b/2

Table 2.8: Probability of S given X;,Y.

We then train a SVM classifier on biased data under the four weighting
schemes discussed in previous experiments and a classifier on unbiased data
for reference. All classifiers are trained with Radial Basis Function (RBF),
C' =1 and kernel size ¢ = 0.1, which is chosen through a 5-fold cross valida-
tion. We vary the bias level, b, from 0.2 to 0.95 and repeat this experiment
100 times. The result plotted in Figure 2.21 shows that all three importance
weighting schemes perform well and help reduce some bias compared to un-
weighting model. We observe that the improvement of importance weighting is
high when bias level is up to 0.9. Above this range, the improvement is reduced.
This implies that when selection bias is too strong, importance weighting may
increase the variance significantly, reducing the overall performance. However,
overall, the importance weighting is effective for this specific data set for se-
lection bias in the experimented range. We also notice that the underlying
probability weighting method works slightly better then the other two at all
bias level. Finally, IWCV has very little impact on this data set since weighted

models outperform unweighted model with a clear margin.

5 Discussion & Conclusion

The results presented in this chapter show that importance weighting method
that exploits the assumptions deemed plausible about the sampling mecha-
nism is able to correct or reduce selection bias. The method hinges on the
existence of a bias control feature vector, X, and an additional (biased-free)
sample that allows us to estimate the distribution of X,. We showed that direct
weighting estimation is able to achieve significant improvements in regression
and classification accuracy over the unweighted method, using toy problems,

benchmarks from UCI, and a prospective cohort study. The correctness of the
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B No weighting B Underlying probs
O KMM on Xs B Unbiased model
B uLSIF on Xs

Error

0.40 045 0.50 0.55

0.2 0.4 0.6 0.8 0.9 0.95

Bias level

Figure 2.21: Classification performance vs. bias level, b, on hip fracture data
set

bias-control feature vector plays a critical role in this improvement. Although
we observe in our experiment that the weighting schemes could perform well
in many situations where our key assumption is not valid (assuming covariate
shift and prior probability shift instead of complete selection bias), there still
exist situations where the weighting schemes worsen the performance of learn-
ing algorithms when the assumption about the selection mechanism is invalid.
So we caution the hurried researcher against correcting for selection bias with
invalid assumptions, as it may have harmful consequences on the model per-
formance. In fact, all conclusions are extremely sensitive to which variables
we choose for X,. As the choice of X, usually reflects the investigator’s sub-
jective and qualitative knowledge of statistical influences in the domain, the
data analyst must weight the benefit of reducing selection bias against the risk
of introducing new bias carried by unmeasured covariates even where none
existed before. Nevertheless, we hope this study will convince others about

the importance of selection bias correction methods in practical studies and
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suggest relevant tools which can be used to achieve that goal.

Another difficulty posed by the selection bias problem is that given the key
assumptions about the selection mechanism is valid, the gain in accuracy of
the weighting scheme is still data dependent. Fortunately, IWCV can detect
when the training sample size reduction effect of the importance weighting
dominates its bias correction effect. Therefore, using IWCV, we can reliably
decide when to use weighted model to correct selection bias and when to use
unweighted model and accept that the training sample size is not sufficient for

the importance weighting.
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Chapter 3

Improving Importance
Weighting in Covariate Shift

Correction

Importance weighting has been shown in previous chapter to be an effective
technique to deal with selection bias. We has also demonstrated that bias
in covariate shift is caused only by the model mispecification and not by the
change of decision boundary. Therefore using weighting model to predict every
test instance may be excessive since importance weighting usually produces a
side effect of effective sample size reduction, which is harmful in many cases.
In this chapter, we show analytically that, while the unweighted model is
globally more biased than the weighted one, it may locally be less biased on
low importance instances. In view of this result, we then discuss a manner
to optimally combine the weighted and the unweighted models in order to
improve the predictive performance in the target domain. We conduct a series
of experiments on synthetic and real-world data to demonstrate the efficiency
of this approach. A version of this chapter has been presented at ECML2015

conference (Tran and Aussem [2015a]).

1 Expectation and Local Expectation of Loss

We first define some key concepts used along the chapter and state some results

that will support our analysis. We are interested in predicting the output value
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y at an input point x using a model hyg(x) = h(z,0) parameterized by 6 €
© C R™. Under covariate shift assumption, the test inputs follow a different
probability distribution ps(x) while the conditional probability distribution of

test output p(y|r) remains unchanged. The ratio f(x) = ;’z:—gg is called the

importance of x. Given a loss function I(h(z,0),y) : Y x Y — [0, 00), we shall
consider throughout this chapter, the following loss functions:

e EL-Tr: Expectation of loss over training distribution p(x, y) = py-(z)p(y|x)
Losso(he) = Euymsll(2.0).9)) = [ p0) [ plula)ih(z,0). g}y

e EL-Te: Expectation of loss over test distribution p'(z,vy) = pe(x)p(y|x)
Lossi(ho) = Evyyy10(2.0),)) = [ puta) [ plule)i(h(e, ), )y

e EL-TWTr: Expectation of Importance-weighted loss over training dis-

tribution

LOSSB(hG) = Ew,yfvp[ﬁ(x)l(h(xv 0)? y)]

e B-LEL-Te: We then define Local Expectation of loss over test distribu-
tion given B(x) < B of any given hypothesis hy:

loss(hg, B(x) < B) = /

@) [ pla)i(h(a,6), iy
B(x)<B Y
B-LEL-Te can be seen as a generalization of EL-Te since
loss(hg, B(x) < 00) = Lossi(hg)
We also define the optimal parameters of EL-Tr, EL-Te and EL-IWTr:

0o = argming Losso(hg)
0, = argming Lossy(hg)

05 = argming Lossg(hyg).

It may easily be shown that EL-IWTr is equal to EL-Te,
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= T T Pre(®) T T
Eryal @0 0)0)] = [ 1) [ o0l 2101 (2.0) )y

- /pte(m)/p(y!x)l(h(mﬁ),y)dydx

Therefore, minimizing EL-TWTr is equivalent to minimizing EL-Te. Nonethe-
less, while hg, is globally less biased than hg,, we will show next that it is
more biased than hy, on low-importance instances. Note that B-LEL-Te can

be rewritten as:

loss(hg, B(x) < B) = /

B(z) / Por () )Lz, B), )y
B(x)<B Y

Suppose [(z) takes on continuous value in [by, bys] where by > 0, we may

rewrite B-LEL-Te as following:

toss(h f() < B) = [ b /ﬂ . A Pur(@)p(yl2) U (x,0), y)dydad

Let L(hg, B(z) = b) = [4,=p Jy Per(@)p(y|2)U( (2, 0), y)dydz, then:

loss(hg, B(x) < B) /b bL(hy, B(x) = b)db

Similarly, if 3(z) takes on discrete values in {b;}M, such that by < by <
... < by, we rewrite B-LEL-IWTr as:

k(B)

loss(hg, B(x) < B) = Z biL(he, B(x) = bi)

where k(B) is the largest integer such that byzy < B. From the definitions

above, we may write
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Lossi(hg) = loss(hg, B(z) < by),
Losso(hg) = szo L(hg, f(x) = b)db, for continuous f(x),
Losso(hg) = 2 L(he, B(z) = b;), for discrete B(x).

As aforementioned, a model h(x,0) is said to be correctly specified if there
exist parameter §* € O such that h(z,0*) = f(z), otherwise it is said to be
musspecified. It is obvious that if a model is correctly specified, the optimal
parameter 6 of EL-Tr, EL-Te, and any B-LEL-Te coincide. Therefore, the
model that minimizes EL-Tr will perform well on the test data globally (i.e.,
minimizing EL-Te) as well as locally (i.e., B-LEL-Te) in any region of the form
f(x) < B. Yet, in practice, almost all models are more or less misspecified.
So minimizing EL-Tr 6 is not necessarily equivalent minimizing EL-Te. Since
EL-Te is equal to EL-IWTr, the parameter minimizing of EL-IW'Tr 65, which
can be estimated from data, will also minimize EL-Te as shown in Shimodaira
[2000], Zadrozny [2004]. However, due to the model misspecification, 65 does
not necessarily minimize B-LEL-Te. In fact, we will prove that there exist some
B*(hg,) € [bo,bas] such that B-LEL-Te of 03 exceeds that of 6y by proving
a stronger conclusion that for all model hy, with 6 € O, there exist some
B*(hg) € [bo,bas] such that B*-LEL-Te of hy exceeds that of hg,, in other
words any hy is locally more biased than hy, when predicting the instances
with f(z) < B*.

In addition, the estimation of 63 may subject to high variance since it
involves instance weighting. Hence the idea to use hg, of instead of hgy, to
predict the test instances with f(x) < B*.

2 Problem Analysis

In this section, we conduct theoretical analyses for a simple and then a more
general selection bias mechanism. Those analyses will be used to derive a
practical procedure aiming at reducing the bias due to covariate shift with
misspecified regression or classification learning models.

We first show how EL-Tr is related to B-LEL-Te,
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Lemma 11 Suppose [(z) takes on continuous value in [by,by] with by >
bo > 0, then:

1 bl
Losso(hg) = Eloss(hg,ﬁ(x) < buy) +/ ﬁloss(hg,ﬁ(x) < B)dB
bo

Proof For continuous (z):

b 1 by -1
/bo ﬁloss(hg,ﬁ(x) < B)dB = / loss(hg, B(x) < B)d (F)

bo

= loss(hg, B(z) < B) (%) Z(])M B /bM %d(loss(he,ﬁ(x) < B))

bo
Recall that loss(hg, f(z) < B) = f L (hg, b)db, we have loss(hg, f(x) < by) =
0 and d(loss(hg, f(x) < B)) = BL(hy, f(x) = B)dB. Thus:

by 1 —1
/ —5loss(hg, B(x) < B)dB = —loss(hg,ﬁ(aﬁ) < by)
bo B bM

+ /b N %(Bﬁ(hg,ﬁ(x) _ B)B)

By definition, we have Lossg(hg) = bM L(hg, B(x) = B)dB, so:

b 1
/ —5loss(hg, B(x) < B)dB = —s—loss(hg, bar) + Losso(hyg)
bO B bM

which concludes the proof |}
A similar results holds in the discrete case.

Corollary 4 Suppose 3(z) takes on discrete values {b; }}1, such that by < by <
.. < by, then:

M-1
1
Losso(hg) = Eloss(hf), ) <bum)+ (E - m) loss(hg, B(x) < by).
k=0 +
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]Z_Ol <i T i 1> loss(hg, B(x) < by) + iloss(hg,ﬁ(x) < bar)

= (% - E) [06£ (ho, B(x) = bo)]

+ (é - b_t) (0L (hg, B(z) = by) + b1 L(h, B(x) = by)]

+.

+ <le_1 - i) (oL (hg, B(x) = bo) + ... + bar—1L(h, B(z) = brs—1)]

+ i[boﬁ(hg,ﬁ(x) = by) + b1L(h, B(x) = b1) + .. + bl (he, B(x) = bas)]

+ bar—1L(ho, B(x) = br—1) K — 5 ) - i}

bu—1 by
1

+ barL(hg, B(x) = bar) {E}

=2 £lho, Blx) = b)
= Losso(he) |}

In view of Corollary 4, we may now state the following theorem,

Theorem 12 Suppose there exists two real values, by and by, such that by <
1 < by and a subset Xq C X such that

5(1-) _ {bo Zf.% € XO
by ifx ¢ Xo,

then there exists a threshold B* such that:

loss(hg,, B(x) < B*) > loss(hg,, B(x) < B*).
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In fact, B* can take any value in [by, by).

Proof By definition, Lossy(hg,) < Losso(hg,), using Lemma 11, we may write:

1 1 1
Losso(hg,) = b—loss(hgo, B(x) < by)+ (b_ — b—) loss(hg,, B(x) < by)
1 o O
1 1 1
= —Lossi(hg,) + | — — — | loss(heg,, B(x) < bo)
by bo by
Similarly,
1 1 1
Losso(hg,) = —Lossy(hg,) + | — — — | loss(he,, 5(z) < by)
b1 bO bl
Thus,
1 1 1 1
—Lossy(hg,) + | — — — ) loss(hg,, B(x) < by) < —Lossy(he,)
b1 b(] b1 bl
1 1
+ | — — — | loss(hg,, B(z) < by)
bo b
Finally,
loss(hg,, B(x) < by) — loss(hg,, B(x) < by) > — [Lossi(hg,) — Lossi(hg,)]
1= bo

It is easily shown that the right hand side of the inequality above is non-

negative due to the definition of 6;. It follows that

loss(hg,, B(x) < by) — loss(hg,, B(x) < by) >0

which, given the assumption about (z), is equivalent to,

loss(hg,, B(x) = by) — loss(hg,, B(x) = by) > 0

Thus the Theorem is true when B* = by. It is also true for any other B* €

[bo, b1) as a consequence. |}

When the assumptions of Theorem 12 holds, we say that the covariate shift

scheme follows a simple step distribution. The equality in Theorem 12 only

86



occurs when #y minimizes EL-Te and #; minimizes EL-Tr. Such condition in-
dicates that covariate shift does not have an effect on searching for optimal 6,
which is a rare case as shown by other studies. Theorem 12 shows that for
simple step distribution where inclusion in the training sample is either pro-
portional to by ' (over-sampled instances), or to b; * (under-sampled instances),
hg, exhibits a lower bias compared to hy, on the low importance test instances.
This type of selection bias mechanism is actually quite common. For instance,
prospective cohort studies in epidemiology are by design prone to covariate
shift because selection criteria are associated with the exposure to potential

risk factors.

Theorem 13 For all 0 € O, there exists a threshold B*(hg) such that
loss(hg, B(x) < B*(hg)) = loss(hg,, B(x) < B*(hg)) (3.1)
B*(hg) could take any value in the set below:
B*(hy) = argmax(loss(hp, f(x) < B) — loss(hg,, A(x) < B)
The equality occurs whenever 01 is also a minimum for EL-Tr.

Proof We prove by contradiction that Theorem 13 holds. Assume that in-
equality 3.1 does not hold for B*(hy) defined above:

loss(hg, B(x) < B*(hg)) — loss(hg,, f(x) < B*(hy)) <0 (3.2)
By definition of B*(hy), we may show that, for all B € [bg, ba],
loss(hg, B(x) < B) — loss(hg,, f(x) < B) <0

Thus, for all B € [by, b

loss(hg,, B(x) < B) > loss(hg, B(z) < B)

Now, using Lemma 11 for continuous /3(z), we have:
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1 |
Losso(hg,) = Eloss(hgo,ﬁ(:c) < bun) +/ ﬁloss(hgo,ﬂ(x) < B)dB
bo

1 b
> —Iloss(hg, B(x) < by) —i—/ —loss(hy, f(z) < B)dB

bM bO B2

= Lossg(hg)

Hence, Losso(hg,) > Lossy(hg), contradicts the fact that
0o = argming Lossg(hg) is the optimal hypothesis under the unweighting scheme
and 6 # argming Lossg(hyg).

If the two terms in inequality3.1 are equal, then we can prove similarly
that Lossg(hg,) = Lossg(hg), which implies that 6; is also a minimal solution

of EL-Tr. The demonstration for discrete S(x) values follows similarly. |

Theorem 13 states that any model hy with 6 € © is outperformed by hy,
learned from the unweighted training samples in terms of bias when predicting
examples with 3(x) < B*(hg). This is also applied to model hg, which mini-
mizes EL-IWTr. In addition, the estimation of 3 may exhibit a higher variance
due to the effective sample size reduction as discussed in Cortes et al. [2010];
Gretton et al. [2009]. These results altogether suggest that hgy, should be pre-
ferred to hg, for predicting the instance’s outputs in the region 3(x) < B*(hy),
termed low-importance region. Therefore, for any learning task with co-
variate shift, we shall train two distinct models, one with and the other without
the importance weighting scheme. Then, we shall use the latter to predict in-
stances satisfying f(x) < B*(hg) and use the former to predict the remaining
instances. The optimal value for B*(hyg) may be estimated from the train-
ing data. The set of all possible empirical threshold B*(hgﬁ) can be obtained
empirically by solving the following problem :

B (ho) = argmax " 5 A 05)) — o by 60))]  (33)

i€{1,..,n}
B(z:)<B

As n grows to infinity, it follows from the law of large numbers that,
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@*(h(;) — B*(hy)

Therefore, B*(hg,) could be estimated empirically either from training data
or by cross validation. In this study, we use a 5-fold importance weighted
cross validation to estimate B*(hg,) as suggested in Sugiyama et al. [2007b].
It should be emphasized that B*(hg,) is not necessarily unique. For instance,
any value between by and by in Theorem 12 is admissible as mentioned earlier.

For a fixed hy equation 3.3 can be solved by first calculate:

L(B) = % > Bla)lys, hi, 05)) = Uyss hlys, 00)))- (3.4)
1e{1,..,n}
B(zi)<B

Then B*(hy) is the maximum of L(B). The complexity of calculating L(B)
and finding the maximum is only O(n) since for any B’ > B, L(B) can be

expressed as following:

i(B')—fi<B>+% N Bl hlwi 05)) — Ui, hlyis 60))].
e

3 Performance of Hybrid Model vs. Impor-
tance Weight

In this section, we assess the ability of our "hybrid approaches” to reduce the
learning bias under covariate shift based on Theorem 13 and 12. We employed
two strategies to estimate the importance weights: one is based explicitly on
the true bias mechanism, the other is based on Unconstrained Least-Square
Importance Fitting (uLSIF), a method that estimates f(z) in both training
and test data. Our method is not applicable to KMM since it requires the
importance weight to be estimated in both the training and the test data
while KMM can only estimate the former. We test our approaches on several
real world benchmark data sets, from which the training examples are selected
according to various biased sampling schemes as suggested in Kanamori et al.
[2009].
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Figure 3.1: Distribution change and true importance weight in the toy problem.

3.1 Toy Regression Problem

Consider the following training data generating process: = ~ N (g, 0¢) and y =
f(x)+e, where g = 0, 09 = 0.5, f(z) = —z+23 and € ~ N(0,0.3). In the test
data, we have the same relationship between x and y but the distribution of the
covariate x is shifted to x ~ N(uy,01), where g = 0, 07 = 1. The training and
test distributions, along with their ratio are depicted in Figure 3.1a and 3.1b.
The minimization of EL-Tr is obtained using the unweighted Least Square
Regression (uLSR) method for the normal regression while minimization of
EL-Te is performed by the weighted Least Square Regression (wLSR). As
shown in Shimodaira [2000], wLSR is unbiased thus it should perform better
than uLLSR, which is biased, on test data. However, as can be seen in Figure
3.2a, uLSR (red dashed line) seems to better approximate the y = f(x) curve
(in blue) than wLSR (black dashed line) on instances in the interval (—1,1). As
may be seen in Figure3.2b, the hybrid model that optimally combines wLSR
and uL.SR, based on Theorem 1, achieves a lower Mean Square Error (MSE)
compared to wLSR. The experiment was repeated 30 times for each number of
sample size. It should be noted that the hybrid model always outperforms the
weighted model and the gain in performance on the test set is more noticeable

for larger training sizes.
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Figure 3.2: An illustrative example of fitting a function f(x) using a linear
model with or without the weight importance scheme (wLSR/uLSR) and a
combination of both (termed ”Mix”).
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3.2 Simple Step Sample Selection Distribution

In this experiment, we consider a simple step distribution with known or esti-
mated selection probabilities and we apply this selection scheme on a variety of
UCI data sets in order to assess the efficiency of our bias correction procedure
in more realistic scenarios. We use a SVM classifier for both classification and
regression tasks. Experiments are repeated 50 times for each data set. In each
trial, we randomly select an input feature x¢ to control the bias along with
100-300 training samples and 200-900 examples without label. We then apply

the following single step probability distribution as discussed in Theorem 12,

pl =0.9, if ¢ < mean(x°)
P(s=1lz=2af) =ps = oo _
P2 =7 Tern() otherwise

where r is a parameter that controls the strength of the selection bias. In
each trial  takes a random value from a normal distribution N(2,0.1). With
these parameters, the selection probability for instances having an z¢ value
(e.g. a degree of exposure to some risk factor) above the mean is between 7 to
10 times smaller than for those having of a lower value. This is a scenario that
typically arises in epidemiological cohort studies when subjects are includes
in the study according to some exposure factor. Consider the two following
weighting schemes. The first one: 8 = pe(x)/pi-(x) = p(s = 1)/p(s = 1|x) ~

1/ps assumes that the bias mechanism is known exactly.

. bl =1, if ¢ < mean(x°)
Blx) ~pg ~
b2 =1+ exp(r), otherwise.
In practice, however, the selection probability is rarely known exactly. So
let us assume that the estimation of  is subject to some error and let us

consider the following approximate weighting scheme:

B( ) -1 bl =1, if ¢ < mean(x°)
€T) r~ ps ~
b2 =1+ exp(r), if otherwise

where 7 = r + N(0,0.1) is our noisy estimate of r. For each weighting

scheme, we fit a true weighted model (denoted as P in Table 3.1) and an ap-
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Figure 3.3: MSE gain (over weighted model) of the mix data vs. MSE gain
mix model under simple step distribution covariate shift. Points below the
diagonal line indicate that the mix data outperforms the mix model. The
importance weight is estimated based on the true selection probability (Figure
a) and based on the estimated selection probability (Figure b).

proximated weighted model (denoted as P) As p; < 1and py > 1, our weight-
ing mechanism satisfies the assumptions of Theorem 12, so we set B* = 1. We
report the mean square errors (MSE) in Table3.1. All values are normalized
by the MSE of the unweighted model (our gold standard). As may be seen
from the plots in Figure3.3a and 3.3b, the combined models outperform the
weighted ones. That is, when using either exact probability ratio, the results
obtained with P,,, are better than that of P. The same observation can be
made when the estimated probability ratios are used instead (i.e., me Versus

P) except on the Banknote data set. The gain is significant at the significance

level 5% using the Wilcoxon signed rank test.
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3.3 General Selection Mechanisms

In this last experiment, we use the same setting as above but we use a more

general distribution:

pl = 0.9 if 2¢ < mean(z*)
P(s = 1]z = zf) = ps = { p2 = 0.1 if 2§ > mean(z°) + 0.8 x 20(z°)

p3 =0.9 — %;m)@) otherwise.

where o(x¢) denotes the standard deviation of z¢. As may be observed,
the assumptions required in Theorem 12 do not hold anymore with this more
general sample selection distribution. According to Equation 3.3, we need to
estimate B*(hg) empirically from data. We consider again two importance
weighting schemes: one is based on the true underlying probability and is
referred to as P, while the other is based on the uL.SIF estimator. As may
be observed from Table 3.2, Figure 3.4a, and Figure 3.4b that performances
of the hybrid models are significantly improved with respect to the weighted

models, except with the Congressional Voting and Banknote data sets.

4 Conclusions

In this chapter, we showed that the standard importance weighting approach
used to reduce the bias due to covariate shift can easily be improved when
misspecified training models are used. Considering a simple class of selection
bias mechanisms, we proved analytically that the unweighted model exhibits
a lower prediction bias compared to the globally unbiased model in the low
importance input subspace. Even for more general covariate shift scenarios,
we proved that there always exist a threshold for the importance weight below
which the test instances should be predicted by the globally biased model. In
view of this result, we proposed a practical procedure to estimate this threshold
and we discussed a simple procedure to combine the weighted and unweighted
prediction models. The method was shown to be effective in reducing the bias

on both synthetic and real-world data.
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Figure 3.4: MSE gain (over weighted model) of the mix data vs. MSE gain mix
model under general distribution covariate shift. Points below the diagonal line
indicate that the mix data outperforms the mix model. The importance weight
is estimated based on the true selection probability (Figure a) and based on
the estimated selection probability (Figure b).
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Chapter 4

Selection Bias as a Missing Data

Problem

Importance weighting, even when being used partially as in previous chapter
still reduces the effective sample size, which is harmful when the initial train-
ing sample size is already small. In this chapter, we show that there exists
a weighting scheme on the unlabeled data such that the combination of the
weighted unlabeled data and the labeled training data mimics the test distribu-
tion. We further prove that the labels are missing at random in this combined
data set and thus can be imputed safely in order to mitigate the undesirable
sample-size-reduction effect of importance weighting. A series of experiments
on several synthetic and real-world data sets are conducted to demonstrate
the efficiency of our approach. A version of this chapter has been presented at
ESANN2017 conference (Tran and Aussem [2017]).

1 Introduction

In previous chapter we discussed the fact that reweighting methods do not nec-
essarily improve the prediction accuracy as they reduce the effective training
sample size and presented the hybrid model approach that used partially the
weighted model and partially the unweighted model on test data. The reduc-
tion of sample size becomes more severe when the initial training sample size
is small even for the hybrid model. Another drawback of current importance

weighting approaches is that the unlabeled data set are usually discarded once
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the importance weights are estimated. Some information is lost in the process.
To our best knowledge, non of the existing methods to deal with covariate
shift takes advantage of the unlabeled data in the training phase given that
the importance weight was estimated.

In this chapter we show that there exists a weighting scheme on the unla-
beled data so that a combination of these weighted unlabeled data and original
training data forms a new data set, called the hybrid data set, that have label
missing at random (MAR). The missing values of label in the hybrid data are
then imputed using state of the art imputation methods for MAR data. This

approach is particularly useful when very few labeled data are provided.

2 The Hybrid Data Method

The importance weight estimation almost always requires some unlabeled data
from general population to provide an estimation of the input distribution
of test data. In importance weighting approaches, after importance weight
is estimated, the unlabeled data set is usually discarded, causing a lost of
information that could be helpful in reducing covariate shift without increasing
much variation especially when initial training sample size is small. In this
section, we show that there exists a weighting scheme on unlabeled data so
that a combination of these weighted unlabeled data and original data forms
a new data set, called hybrid data set, free from covariate shift. We also
show that the missing label in the new hybrid data set satisfies missing at
random condition. Therefore it can be imputed using state of the art methods
for missing at random problem. Assuming that the unlabeled data follow
the input distribution pg(x) of test data, we first derive, in this Section, a
weighting scheme w(x) on the unlabeled data so that a combination of these
weighted unlabeled data and the original training data forms a new data set

that mimics pi(z). Our main result can be stated as follows:

Theorem 14 Given ny training examples and ny unlabeled examples, that fol-

low distributions py.(x) and pi(x) respectively, there exists a weighting scheme

wiz) = 2 (max pur() ptr(a:))

Ny \ 26X D) Pre()
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on the unlabeled examples such that the mixture of ny unweighted training

examples and ny weighted unlabeled examples follows the distribution py.(z).

Proof The hybrid data set follows a mixture distribution

n w(x) ny [ w( pte
ny + ny [ w(x)pe(z)de +pt8(x)fw($)pte($)d$ . ny + ng [ w( pte( )da:

Per( )

Imposing this mixture to be py(z) and solving for w(x), we have:

w(zw) = s <C - ptr(iﬁ))
na pte(x)
Where C' is any constant that satisfies w(xz) > 0 for all z € X since w(z) is

a non-negative coefficient. That gives C' > max ey %‘ If we increase C

by AC, the weight of every unlabeled example will be increased by Z—;AC’.
The choice of the constant C' is only depends on how much weight we would
like to attribute to the unlabeled data. Unlike the semi-supervised learning,
we don’t assume any relationship between py.(z) and p(y|z), We only use the
unlabeled data to improve prediction accuracy indirectly through correcting
the input distribution. When there is no covariate shift, in the semi-supervised
learning setting, (Castelli and Cover [1996]) showed that the labeled examples
are exponentially more valuable than the unlabeled examples in constructing
classification rules. Therefore, we argue that the quantity of the unlabeled
data in the final hybrid training data set should be minimized using a minimal
weight that allows the selection bias correction.

Since the effective number of unlabeled data increase linearly with C, we

will set it as small as possible, C' = max, ¢y i ”E ik Finally,

w(z) = ™ (max pu(x) ptr(w)) 1

ng \ 2€X pre(z)  pre(w)
We have shown that the resulting hybrid data set is unbiased but it still

contains missing labels. There are circumstances under which even the best

designed study is jeopardized by non-missing-at-random data. The following
result shows the labels are in fact MAR:

Theorem 15 The labels in the hybrid data set obtained from the weighting

scheme in Theorem 14 are missing at random.
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Proof From Theorem 14, the hybrid data set follows the marginal distribution
Pre(x) of the test data. In addition, because of the definition of covariate shift,
Let Ry = 1 denotes 7Y is missing” and 0 otherwise, it is easily shown that
p(ylz, Ry = 1) = p(y|z, Ry = 0) = p(y|z), which is the definition of the MAR

missing mechanism.

The methods for correcting covariate shift bears similarity to the tech-
niques employed in semi-supervised learning. The latter usually make further
assumptions on the data distribution p, more specifically on the relationship
between p(y|z) and p(y) (Zhu [2005]). When the models used for representing
pir(x) and p(y|z) do not share common parameters, semi-supervised learning
methods cannot improve the predictive performance. For example, transduc-
tive support vector machines (Chapelle et al. [2006]; Joachims [1999]), assumes
that the data contains clusters that have homogeneous labels and as a result
the decision boundary has to lie in low density regions. In contrast, generative
models, (Baluja [1999]; Castelli and Cover [1996]) assumes that p(z|y) is a
mixture of distributions, allowing the decision boundary to go through some
denser regions. The success of a semi-supervised learning method depend on
whether the data distribution can be accurately approximated by a param-
eterized model and the degree to which the class distributions overlap (Zhu
[2005]). On the other hand, the covariate shift supposes the input training
and test distributions are different and make no further assumption on the
relationship between py.(z) and p(y|x). That differentiate our approach from

semi-supervised learning methods.

2.1 Predictive Mean Matching for the Missing Data Im-

putation

Give a hybrid data set that is MAR, our next step is to impute the missing
labels. Missing data imputation is a well-studied topic in the statistical analy-
sis. From the many references, we choose Predictive Mean Matching (PMM),
which was first presented in Little [1988] and proved to be successful with miss-
ing data imputation, as was shown to be robust to the misspecification of the
imputation model in Morris et al. [2014]. For the covariate shift problem, if we

can choose a correctly specified model in the first place, there will be no learn-
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ing bias. However due to the lack of domain knowledge, it is safer to assume
that the imputation model for the unlabeled data is misspecified. Robustness
of imputation models to misspecification is an important criterion that should
be considered with great care when choosing an imputation method.

For a data set that only has missing labels as in our hybrid data set, PMM
first estimates a linear regression of y on x and produces a posterior predictive
distribution of the coefficient vector a that specifies the linear regression. A
set of coefficient o* is drawn from that posterior distribution. Using o*, PMM
predicts values of all cases (labeled and unlabeled). For each case with missing
label x,, we determine a set of five labeled cases {(z¢;y:) : t = 1,...,5} whose
predicted labels are closest to the predicted label of x,. One of five values in
{y:) : t =1,...,5} is randomly selected to be an imputed value of the missing
case x,. For a new imputed data set in multiple imputation, the process is
repeated from drawing a new set of coefficient a* from posterior predictive

distribution.

3 Performance of Hybrid Data vs. Hybrid
Model and Weighting Models

In this section, we assess the ability of our hybrid data approach to reduce
the model variance due to importance weighting in the covariate shift bias
reduction process. We use two strategies to estimate the importance weights
Bx) = ;’z:—gg: the first is based explicitly on the true bias mechanism, the sec-
ond is based on Unconstrained Least-Square Importance Fitting (uLSIF). We
first study a toy regression problem to show whether covariate shift corrections
based on our method can reduce the prediction error on the test set when the
learning model is misspecified and the training sample size is small. Then we
test our approach on real world benchmark data sets corrupted by a simple

covariate shift bias selection mechanism.

3.1 Toy Regression Problem

Consider the following training data generating process: x ~ N (j,00) and y =
f(x) + €, where g = 0.5, 09 = 0.5, f(z) = —z + 23, and € ~ N(0,0.3). In the
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test data, the same relationship between x and y holds but the distribution of
the covariate x is shifted because of the selection bias that causes the examples

to be selected with a probability depending on x:

42? if 42% € [0.01, 1]
p(s =1lz) = < 0.01 if 422 < 0.01
1 otherwise.

The training and test distributions, along with their ratio are plotted in
Fig. 4.1a and 4.1b. Least Square Regression is used to train a linear model
to predict output y from z. We first investigate the effect of unlabeled data
quantity on the performance of the hybrid data. As may be seen in Figure 4.1c,
the Mean Square Error (MSE) of the regression model drops as the unlabeled-
labeled sample size ratio, ny/nq, increases. At first, as more unlabeled data
are used, ny/ny varies from 0 to 1, the improvement is clearly noticeable. The
smaller the initial training sample size is, the larger the margin of the improve-
ment gets because the hybrid data approach is more effective at preserving the
effective sample size. When ny/n; varies from 1 to 2, a further but moderate
improvement is observed. Again, the more unlabeled data are used, the smaller
the weights of the unlabeled example according to Theorem 14. Consequently,
the imputation variance contributes less to the final prediction error. Finally,
when the value of ny/n; is large enough, no further improvement is noticed
since the unlabeled data are only helpful in reducing the distribution mismatch
up to the point when the hybrid data mimics closely the test data distribu-
tion. This behavior is contrary to semi-supervised learning methods whose the
predictive performance tend to increase as more unlabeled data are used given
that their assumptions is correct. We will use in the toy problem an unlabeled
data set five times larger than the labeled data set for and only twice as large
in real-world data set experiments. We shall now compare the ”"hybrid-data
approach” against respectively the unweighted, weighted, and hybrid-model
approaches. In the hybrid-model approach presented in previous chapter, the
predictive performance in some regions of the input space is improved by com-
bining the weighted and the unweighted models. The average MSE of these
models over 100 repeated trials is reported for every training sample size in

Figure 4.2. The unweighted model (black solid line) serves as a baseline. As
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expected, it performs worse than the other models. When the training sample
size is large enough (say, more than 300) the hybrid-model method achieves a
lower MSE because it has the lowest bias as suggested by Theorem 13. On the
other hand, the hybrid-data method (blue solid line) outperforms any other
method with a large margin when the training sample size is small. As sam-
ple size increases, the variance reduction becomes less significant, the hybrid
data’s performance is similar to that of the weighted model. From these ob-
servations, we conclude that the hybrid-data approach is more effective when

the sample size is small.

3.2 Experiments on Real-world Data sets

In this series of experiments, we consider the learning problems under a covari-
ate shift induced by an artificial selection mechanism with known or estimated
selection probabilities. We apply this selection scheme on a variety of UCI data
sets in order to assess the efficiency of our approach in more realistic scenarios.
We use a SVM classifier for both classification and regression tasks. Exper-
iments are repeated 50 times for each data set. In each trial, we randomly
select 100 training examples, 200 unlabeled examples, and an input feature z¢
that controls the probability of an an example to be selected into the training

set as follows:

pl = 0.9 if 2§ < mean(z°)
p(s = 1llz = i) = ps = { p2 = 0.1 if 2¢ > mean(z°) + 0.8 x 20(x°)

p3 =0.9 — %z?)(x) otherwise.

where o(z¢) denotes the standard deviation of z°. Each of three approaches,
namely the weighted data, hybrid model, and hybrid data is applied with both
the true important weights and the important weights estimated with uLLSIF.
The MSE of each model is normalized by that of the unweighted model (our
gold standard) and plotted in Fig.4.3 and 4.4. As may be observed, the hybrid
data approach always outperforms the weighted model by a noticeable margin
except when ulSIF is used on the Cadata data set. However, we suspect that

the estimation of importance ratio on this data set fails as all other methods
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using ulSIF performs worse than the basic unweighted method on this data
set. The hybrid data method also outperforms the hybrid model method in
most situations, except on the Australian credit data set with true important
weight and on the Cadata and Ionosphere data sets with ulSIF. Our results
strongly suggest that our bias correction method combined with missing at
random label imputation is effective at increasing the prediction performance

when few labeled data are available.

4 Conclusion and Open Problems

We have shown that given training data with covariate shift and unbiased un-
labeled data there exists a weighting scheme on the unlabeled data such that
the combination of the weighted unlabeled data and the labeled training data
mimics the test distribution. The fact that the labels are missing at random
in this combined data set allows effective imputation in order to mitigate the
undesirable sample-size-reduction effect of importance weighting. Both ex-
periments on synthetic and real-world data demonstrate the efficiency of our
approach.

In our study, PMM has shown to be an effective method for imputation
given the combined data set is missing at random. According to whether there
is assumption about the relationship between p(y|z) and p.(z) or not, we
can take semi-supervised learning methods as alternative approaches to use
the combined data set more efficiently. However, we have to keep in mind
that the predictive performance of semi-supervised learning methods depends
heavily on matching of problem structure with model assumption. Therefore,
a good understanding of the specific problem is required to use semi-supervised

learning methods effectively for covariate shift problem.
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Chapter 5

Conclusions

Selection bias is pervasive in almost all empirical studies, including Machine
Learning. This thesis focus on the problems of supervised learning in the
presence of selection bias. We have presented a general importance weight-
ing framework to correct for selection bias with Bayesian Networks and two
techniques to improve the importance weighting for the covariate shift. In
this closing Chapter, we draw several conclusions from our work and suggest
avenues for future research.

In the first part of this thesis, we discussed the importance weighting frame-
work for generative and discriminative learning. We then present two methods
of using the importance weight to correct for selection bias in discriminative
learning: one with sampling and the other with modification of the loss func-
tion. Our results show that the importance weighting method that exploits
the assumptions deemed plausible about the sampling mechanism achieves
significant improvements in regression and classification accuracy over the un-
weighted method. Our analysis show that the importance weighted cross val-
idation provides an almost unbiased estimate of the generalization error. In
addition, we show that the IWCV can reliably decide when to use the weighted
model to correct for selection bias and when to use the unweighted model and
accept that the training sample size is not sufficient for the importance weight-
ing.

There are several interesting future directions for selection bias correction
with the importance weighting method. First, instead of requiring some as-
sumptions about the sampling mechanism, one may expect to be able to infer

them - at least partially - from several sources of data under some milder as-
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sumptions. This approach shares some similar intuition with transfer learning.
Second, it would be interesting to consider a formal sensitivity analysis to test
the robustness of the importance weighting method against the uncertainty of
the S-control feature vector X. The problem is that, given that we accept the
existence of a S-control feature vector, X, the choice for the variables to be
included in X may be subject to some uncertainty. With real-world data, it is
almost impossible to make a firm statement regarding the appropriateness of
X, or to promise to reduce the selection bias, or even to refrain from creating
new bias where none exists. This problem is also well known in causal infer-
ence from observational data: all conclusions are extremely sensitive to which
variables one chooses to hold constant (known as the ”confounders”) when we
are assessing the causal effect of X on Y. For bias correction as for causal infer-
ence, such factors may be identified by simple graphical means when a (causal)
graphical model is provided. Otherwise, no one is able to to tell us exactly
which factors should be included in the analysis. This is why the so-called
adjustment problem is so critical in the analysis of observational studies. We
are facing the sample problem here. While the importance weighting scheme
was shown to perform well despite our wrong assumptions about X, in our
simulations, it is fairly easy design a synthetic selection scenario such that the
importance weighting relying on invalid assumptions performs worse than the
baseline unweighted approach. Therefore, we believe there are circumstances
under which even the best designed and run study is jeopardized by selection
bias: improper handling of biased data can potentially distort the conclusions
drawn from a study.

In the second part of this thesis, we presented a simple, yet effective, proce-
dure that combines the weighted and unweighted prediction models in order to
improve the standard importance weighting approach when misspecified train-
ing models are used. Our results showed that, while the unweighted model is
globally more biased than the weighted one, it may locally be less biased on
low importance instances. The hybrid model combining the weighted and the
unweighted prediction models was shown to improve significantly the predic-
tion performance with respect to the weighted or unweighted prediction mod-
els alone. Our method bears many resemblance to local learning techniques,

which assign each training example a weight that depends on the location of
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the training point in the input space relative to that of the point to be pre-
dicted (Bottou and Vapnik [1992]). Local learning is known to reduce the
estimation bias at the expense of increasing model complexity. Therefore, it
would be interesting to study the overall performance of local learning tech-
niques under covariate shift with and without taking the importance weight
into consideration.

In the last part of this thesis, we investigated the relationship between the
covariate shift and the missing data problems and explored the possibility of
using missing data imputation to improve the covariate shift correction. We
established formally that, given a training set corrupted by covariate shift and
an additional unbiased unlabeled data set, there exists a way to combine the
weighted unlabeled data and the labeled training data such that the result-
ing data set follows the test distribution. In addition, the labels in this hybrid
data set were proven to be missing at random (MAR), allowing the use of stan-
dard imputation methods. Our experiments on synthetic and real-world data
demonstrated the efficiency of the approach with small sample sizes training
data sets. The main caveat of the hybrid data approach is that its performance
depends heavily on the imputation method being used. To our best knowl-
edge, there are very few imputation methods (like PMM) that are robust to
model misspecification, a property that is arguably crucial for the success of
our hybrid data approach.

In term of future research directions, we think it should be useful to con-
sider semi-supervised learning techniques for each specific problem with covari-
ate shift. A good matching between the semi-supervised learning techniques
and the data structure may greatly improve the prediction accuracy with small
sample size data sets. Another idea is to exploit directly the unlabeled data
to correct the covariate shift without estimating the importance weight as an
intermediate step. Such a direct approach would render covariate shift correc-
tion independent on the importance weight estimation methods. Therefore, we
hope this work will open up many avenues of future possible research topics

on bias correction.
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