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Abstract

In the theory of supervised learning, the identical assumption, i.e. the training

and the test samples are drawn from the same probability distribution, plays

a crucial role. Unfortunately, this essential assumption is often violated in

the presence of selection bias. Under such condition, the standard supervised

learning frameworks may suffer a significant bias. In this thesis, we use the im-

portance weighting method to address the selection bias problem in supervised

learning.

We first introduce the supervised learning frameworks and discuss the im-

portance of the identical assumption. We then study the importance weighting

framework for the generative and the discriminative learning under a general

selection scheme and investigate the potential of Bayesian Network to encode

a priori assumptions about the relationships between the variables in study,

including the selection variable, and to infer the independence and the condi-

tional independence relationships that allow the selection bias to be corrected.

We pay special attention to covariate shift, i.e. a special class of selection

bias where the conditional distribution, P (y|x), of the training and of the

test data are the same. We propose two methods to improve the importance

weighting for covariate shift. We first show that the unweighted model is

locally less biased than the weighted one on the low importance instances, and

then propose a method that combines them in order to improve the predictive

performance in the target domain. Finally, we investigate the relationship

between the covariate shift and the missing data problem for data sets with

small sample sizes and study a method that uses missing data imputation

techniques to correct the covariate shift in some simple but realistic scenarios.
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Résumé

Dans la théorie de l’apprentissage supervisé, l’hypothèse selon laquelle l’échantillon

de d’apprentissage et de test proviennent de la même distribution de proba-

bilité, joue un rôle crucial. Malheureusement, cette hypothèse essentielle est

souvent violée en présence d’un biais de sélection. Dans ce contexte, les algo-

rithmes d’apprentissage supervisés standards peuvent souffrir d’un biais signi-

ficatif. Dans cette thèse, nous abordons le problème du biais de sélection en

apprentissage supervisé en utilisant la méthode de pondération de l’importance

(”importance weighting” en anglais).

Dans un premier temps, nous présentons le cadre formel de l’apprentissage

supervisé et discutons des effets potentiellement néfastes du biais sur les perfor-

mances prédictives. Nous étudions ensuite en détail comment les techniques de

pondération de l’importance permettent, sous certaines hypothèses, de corriger

le biais de sélection durant l’apprentissage de modèles génératifs et discrimi-

nants. Nous étudions enfin le potentiel des réseaux bayésiens comme outils de

représentation graphique des relations d’indépendances conditionnelles entre

les variables du problème et celles liées au mécanisme de sélection lui-même.

Nous illustrons sur des exemples simples comment la graphe, construit avec

de la connaissance experte, permet d’identifier a posteriori un sous-ensemble

restreint de variables sur lesquelles agir pour réduire le biais.

Dans un second temps, nous accordons une attention particulière au co-

variate shift , i.e. un cas particulier de biais de sélection où la distribution con-

ditionnelle P (y|x) est invariante entre l’échantillon d’apprentissage et de test.

Nous proposons deux méthodes pour améliorer la pondération de l’importance

en présence de covariate shift. Nous montrons d’abord que le modèle non

pondéré est localement moins biaisé que le modèle pondéré sur les échantillons

faiblement pondérés, puis nous proposons une première méthode combinant les
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modèles pondérés et non pondérés afin d’améliorer les performances prédictives

dans le domaine cible. Enfin, nous étudions la relation entre le covariate shift

et le problème des données manquantes dans les jeux de données de petite taille

et proposons une seconde méthode qui utilise des techniques d’imputation de

données manquantes pour corriger le covariate shift dans des scénarios simples

mais réalistes. Ces méthodes sont validées expérimentalement sur de nombreux

jeux de données.
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Introduction

Selection bias, the problem when data are selected to training sets with an

uneven probability across instances, occurs in a wide array of domains for a

variety of reasons. This preferential sampling is pervasive in almost all empiri-

cal studies, including Machine Learning, Statistics, Social Sciences, Economics,

Bioinformatics, Biostatistics, Epidemiology, Medicine, etc. Case-control stud-

ies in Epidemiology are particularly susceptible to selection bias, including

bias resulting from inappropriate selection of controls in case-control stud-

ies, bias resulting from differential loss-to-follow up, incidence-prevalence bias,

volunteer bias, healthy-worker bias, and nonresponse bias. In studies of occu-

pational diseases, it is observed that: workers often exhibit lower overall death

rates than the general population because the relatively healthy individuals

are more likely to gain employment and to remain employed. Selection bias

has also received a great deal of attention in econometrics. For instance, sur-

veys are usually prone to contain volunteer bias since those who are willing

to participate, thus included in training data, have a particular attitude or

characteristic that is different from those who refuse to participate.

Selection bias causes the distribution of collected data used in the training

phase to deviate from that of the general population. In supervised learning,

selection bias usually causes a drop in the performance of predictive models

because learning from one distribution then predicting on another distribution

violates the basic independent and identical sampling assumption that almost

every learning algorithm makes and invalidates any established performance

guarantee.

Abstractly, we may consider an underlying random process that gener-

ates selection bias data. This generative process can be decomposed into an

unbiased data process that generates independent and identically distributed

1
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examples and a selection process that determines which examples of the unbi-

ased data process will be included into the training set. The selection process

or selection mechanism can be modeled by a binary variable, called selection

variable, that takes the value of 1 when the examples is selected and the value

of 0 otherwise. The use of the selection variable allows us to model the inter-

action between the selection mechanism and other variables in the study using

conditional independence concepts and graphical models. For example, in sur-

vey data, the unbiased data process would generate a data set that contains

every person of the whole population with the same probability. The selection

mechanism then decides which person is more likely to be included into the

study. We might presume that if a person have a certain interest or socioeco-

nomic status, he or she might be more willing and more likely to participate

than others. Covariate shift is a class of selection bias that received a lot of

attention in machine learning and other research communities in recent years.

Using graphical model we can characterize the selection mechanism in a mean-

ingful way that could determine which additional data set allows correcting

for selection bias.

Outline and Contributions

The focus of this thesis is on the algorithms for learning and predicting in

the present of selection bias with the use of an additional data set beside the

original training data and a graphical model that characterizes the selection

mechanism. The first Chapter reviews the supervised learning frameworks.

The second chapter reviews the selection bias problem and is followed by our

first contribution in this thesis which is the method of using the importance

weight to correct the selection bias. The last two chapters present two methods

that we developed to improve the importance weighting techniques that are

used to correct the bias caused by covariate shift, the most common types of

selection bias.

The first Chapter introduces the supervised learning frameworks used in

this thesis. We begin by reviewing its general formulation and the Bayes

optimal prediction function. We briefly present the generative frameworks

for approximating prediction functions including the Bayesian, the Maximum

2
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a Posteriori and the Maximum Likelihood frameworks. We then review the

learning theory that justifies why we can carry out the optimization on the

training data and expect a certain level of generalization to the test data. In

this theory, the assumption that the training and the test samples are drawn

from the same probability distribution plays a crucial role. We discuss the

difficulty of supervised learning in terms of the approximation-estimation error

trade-off which leads to the inevitable model misspecification, an importance

characteristic that affects the selection bias problem. Finally we review the

holdout validation and the cross validation, which are two empirical procedures

to estimate the prediction accuracy.

The crucial assumption that the training and the test samples are drawn

from the same probability distribution is unfortunately often violated in the

presence of selection bias. Under such condition, the learning frameworks pre-

sented in Chapter 1 need to be adjusted to remain valid. In chapter 2 we

first define some useful terminologies and classes of selection bias. We then

introduce the importance weighting framework for the generative and the dis-

criminative learning. Given the importance weight, the adaptation of the

generative learning to selection bias is very straight forward. We can approxi-

mate the generative distribution of the training data to a family of probability

distributions using the training data and then adjust it by the importance

weight to obtain an approximation of the test distribution before inferring the

prediction function. On the other hand, the adaptation of the discriminative

learning to the selection bias requires more complication. We introduce two

methods that use the importance weight for correcting the selection bias in

discriminative learning: one with sampling and the other with modification

of loss function. We then show that the importance weighted cross valida-

tion gives an almost unbiased estimate of the generalization error. We review

the covariate shift, which affects the prediction accuracy when coupling with

the model misspecification, and common methods for learning the importance

weight from the training data and a set of unlabeled examples. We also inves-

tigate the potential of Bayesian Networks to encode a priori assumptions of

about the relationship between variables, including the selection variable, and

to infer the independence and the conditional independence relationships that

allow selection bias to be corrected. In the experimentation section, we as-

3



CONTENTS

sess the ability of the importance weighting method in removing the complete

selection bias based on the independence and the conditional independence

relationships read from Bayesian Networks.

We observe that the bias in covariate shift is caused only by the model

misspecification and not by the change of decision boundary. Therefore using

the weighted model to predict every test instance may be excessive since the

importance weighting usually reduces the effective sample size as a harmful

side effect. In chapter 3, we show analytically that, while the unweighted

model is globally more biased than the weighted one, it may locally be less

biased on low importance instances. In view of this result, we then discuss a

manner to optimally combine the weighted and the unweighted models in order

to improve the predictive performance in the target domain. We conduct a

series of experiments on the synthetic and the real-world data to demonstrate

the efficiency of this approach.

Chapter 4 investigates the relationship between the covariate shift and the

missing data problem and explores the possibility of using the missing data im-

putation to improve the covariate shift correction. The importance weighting

even when being used partially as in previous chapter still reduces the effective

sample size. In this chapter, we show that there exists a weighting scheme on

the unlabeled data such that the combination of the weighted unlabeled data

and the labeled training data mimics the test distribution. We further prove

that the labels are missing at random in this combined data set and thus can

be imputed safely in order to mitigate the undesirable sample-size-reduction

effect of the importance weighting. A series of experiments on the synthetic

and the real-world data are conducted to demonstrate the efficiency of our

approach.
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Chapter 1

Supervised Learning Framework

This chapter introduces the supervised learning frameworks used in this thesis.

We begin by reviewing its general formulation and the Bayes optimal prediction

function. We briefly present the generative frameworks for approximating

prediction function including Bayesian, Maximum a Posteriori and Maximum

Likelihood. We then review the learning theory that justifies why we can carry

optimization on the training data and expect a certain level of generalization

to the test data. We discuss the difficulty of supervised learning in terms

of the approximation-estimation error trade-off that leads to the inevitable

model misspecification, an importance characteristic affecting selection bias.

Finally we review the holdout validation and the cross validation, two empirical

procedures to estimate prediction accuracy. .

1 Formalization

The task of the supervised learning is to learn from a set of labeled examples,

called the training data, a function to predict accurately unseen examples,

called the test data. The training data set {xi, yi}ni=1 consists of n ordered

pairs of xi ∈ X ⊂ R
d and yi ∈ Y ⊂ R, which are respectively a vector of

measurements of a single example and its label. The test data is another set

{xj}mj=1 that need to be labeled with high accuracy based on certain measures.

The fundamental assumption of supervised learning is that the training

and test data are independently and identically generated from an unknown

but fixed probability distribution P (x, y). This assumption implies that the

5



training and the test data are related and the observations in the training data

carry the information about the targeted test data probability distribution.

Let l(f(x), y) denote the function that measures the disagreement between

the prediction f(x) of an example and its real outcome y. We also call l(f(x), y)

the loss function since it represents the loss or the cost of predicting f(x) when

the true value is y. The choice of the loss function depends largely on the

learning problem being solved.

For the regression problem, a typical choice is the squared loss

l(f(x), y) = (y − f(x))2.

For the classification problem, one could choose the 0-1 loss

l(f(x), y) = 1− Ef(X)=Y =

⎧⎨
⎩0 if f(x) = y

1 otherwise .

The expected loss of a prediction function f(x) over the generative distribution

P (x, y) is called the generalization error or the risk and defined as:

R(f) = Ep[l(f(X), Y )] (1.1)

=

∫
X

∫
Y

l(f(x), y)P (x, y)dydx. (1.2)

2 Optimal Prediction and Risk Minimization

The theoretical optimal prediction, or Bayes optimal prediction, is the function

that minimizes R(f) and is given by:

f ∗ = argmin
f

Ep[l(f(X), Y )] (1.3)

= argmin
f

∫
X

∫
Y

l(f(x), y)P (x, y)dydx. (1.4)

The Bayes optimal risk achieved by the Bayes optimal prediction is then:

R(f ∗) =
∫
X

∫
Y

l(f ∗(x), y)P (x, y)dydx.

6



For example, if we use the square loss function, R(f) = Ep[(Y − f(X))2], then

the Bayes optimal prediction and the Bayes optimal risk are:

f ∗ = argmin
f

Ep[(Y − f(X))2]

=

∫
Y

yP (y|x)dy

= Ep[Y |X],

R(f ∗) =
∫
X

∫
Y

l(Ep[Y |x], y)P (x, y)dydx.

3 Generative Learning

Finding directly the Bayes optimal prediction of an examples f ∗(x) using its

definition is unfeasible when the joint probability distribution P (x, y) is un-

known. Alternatively, supervised learning uses the principle of induction to

infer f ∗(x) from a given set of labeled training data {xi, yi}ni=1. In generative-

based approaches of supervised learning, the main idea is to approximate the

generative distribution P (x, y) to a family of probability distributions using

the training data and then using its approximation to infer the prediction

function.

3.1 Bayesian Inference

In Bayesian inference (Box and Tiao [2011]; MacKay [1992]), a family of proba-

bility distributions, PM(x, y|θ) is specified to approximate the data distribution

P (x, y). Given the training data {xi, yi}ni=1 and a prior distribution q(θ), the

posterior distribution of the parameter θ is estimated using Bayes Theorem as

following:

PM(θ|{xi, yi}ni=1, q) =
q(θ)

∏n
i=1 PM(xi, yi|θ)∫

q(θ)
∏n

i=1 PM(xi, yi|θ)dθ .

The posterior generative distribution is then:

PM(x, y|{xi, yi}ni=1, q) =

∫
PM(x, y|θ)PM(θ|{xi, yi}ni=1, q)dθ. (1.5)

7



By integrating over θ, we are integrating over all the probability density func-

tion in the model. The computation of the posterior distribution of parameter

and posterior generative distribution relies on another layer of approximation

using Markov chain Monte Carlo methods (Green [1995]).

Consequently, we obtain the Bayesian prediction function by substituting the

posterior distribution above for the unknown conditional distribution P (y|x)
in Equation 1.4:

fB(x) = argmin
ŷ

∫
Y

l(ŷ, y)PM(y|x, {xi, yi}ni=1)dy (1.6)

where

PM(y|x, {xi, yi}ni=1, q) =
PM(x, y|{xi, yi}ni=1, q)

PM(x|{xi, yi}ni=1, q)

=
PM(x, y|{xi, yi}ni=1, q)∫

Y
PM(x, y|{xi, yi}ni=1, q)dy

.

3.2 Maximum a Posteriori

The integral in Equation 1.5 is not easily estimated and usually relies on an-

other layer of approximation. Alternatively Bayesian inference is often approx-

imated by Maximum a Posteriori (MAP) (Sorenson [1980]). The premise of

MAP is the same as Bayesian framework. We first specify a family of probabil-

ity distributions, PM(x, y|θ) with their prior probability q(θ), to approximate

the data distribution P (x, y). Given the training data {xi, yi}ni=1 and a prior

distribution q(θ), the posterior distribution of parameter θ is also estimated

using Bayes Theorem as following:

PM(θ|{xi, yi}ni=1, q) =
q(θ)

∏n
i=1 PM(xi, yi|θ)∫

q(θ)
∏n

i=1 PM(xi, yi|θ)dθ .

The MAP posterior generative distribution is then selected to be the single

distribution with the highest posterior probability, PM(x, y|θMAP ), where

θMAP = argmax
θ

PM(θ|{xi, yi}ni=1, q).

Finally, we obtain the MAP prediction function by substituting the posterior

8



distribution PM(y|x, θMAP ) for the unknown conditional distribution P (y|x)
in Equation1.4:

fMAP (x) = argmin
ŷ

∫
Y

l(ŷ, y)PM(y|x, θMAP )dy (1.7)

where

PM(y|x, θMAP ) =
PM(x, y|θMAP )

PM(x|θMAP )

=
PM(x, y|θMAP )∫

Y
PM(x, y|θMAP )dy

.

3.3 Maximum Likelihood

The maximum likelihood (ML) is based on selecting a distribution with the

highest likelihood given the data. We first specify a family of probability

distributions, PM(x, y|θ) to approximate the data distribution P (x, y). Given

the training data {xi, yi}ni=1, the likelihood of parameter θ is:

PM({xi, yi}ni=1|θ) =
n∏

i=1

PM(xi, yi|θ).

Since maximizing the logarithm of the likelihood above is easier to compute

and results in the same maximizer, we write:

log(PM({xi, yi}ni=1|θ)) =
n∑

i=1

log(PM(xi, yi|θ)).

We then select the generative distribution that maximizes the logarithm of the

likelihood to approximate the data generating distribution.

θML = argmax
θ

log(PM({xi, yi}ni=1|θ)).

Finally, we obtain the ML prediction function by substituting the posterior

distribution PM(y|x, θML) for the unknown conditional distribution P (y|x) in

9



Equation 1.4:

fML(x) = argmin
ŷ

∫
Y

l(ŷ, y)PM(y|x, θML)dy (1.8)

where

PM(y|x, θML) =
PM(x, y|θML)

PM(x|θML)

=
PM(x, y|θML)∫

Y
PM(x, y|θML)dy

.

4 Discriminative Learning

Generative learning produces a probability distribution over all input and out-

put variables and manipulates it to compute prediction functions. The dis-

advantage of generative learning is that searching for a probability density

distribution is a hard problem particularly in high dimension while the objec-

tive of may learning problems is just to predict the output.

Alternatively, discriminative learning, also called direct function approxi-

mation, directly attempts to estimate the input to output mappings without

modeling the generative distributions. Given a loss function, discriminative

learning tries to minimize the corresponding risk R(f) with the optimal pre-

diction function f ∗(x). Given n training data, Rn(f), called training error or

empirical risk and defined by

Rn(f) =
1

n

n∑
i=1

l(f(xi), yi)

is an unbiased estimator of R(f).

If the learning goal is only to find a prediction function that yields the

smallest loss as possible, the prevailing consensus is that direct function ap-

proximation is always to be preferred to generative approach. The most com-

pelling reason is that ”one should solve the problem directly and never solve

a more general problem as intermediate step” [Vapnik [1998]].

Given a learning problem with infinite input space and a finite number of

training examples, if the probability distribution of the input is continuous,

10



there exists a prediction rule f̂ among all possible functions that minimizes the

training error to 0 but maximizes the generalization error to 1. This situation

is called overfitting in literature. There are two principle methods to deal with

this problem. The first one is to pre-define a model or a hypothesis space H of

some possible functions, where the minimization of training error is performed

f̂ = argmin
f∈H

Rn(f).

This approach, called Empirical Risk Minimization (ERM), works best

when the domain knowledge about a specific learning problem is sufficient

to narrow down the searching range of the target function to a small set of

possible functions H.

However, in practical problems of machine learning, the family of the tar-

get function is usually unknown. In such case, we start with a small hypoth-

esis space H1 and extend it gradually through an infinite increasing sequence

{Hd}∞d=1, where Hd ⊂ Hd+1 for any d 1. This second approach is called Struc-

tural Risk Minimization. The empirical risk minimization is performed on

each Hd and we select the model in the sequence whose sum of empirical risk

and penalty for its complexity is minimal

f̂ = arg min
f∈H,∈N

Rn(f) + λJ(d, n),

where J(d, n) denotes the complexity measure of Hd and λ is the regulariza-

tion coefficient which allows choosing the trade-off between training error and

complexity.

5 Learning Bounds

Given the frameworks we presented, this section presents the learning theory

that justifies why we can carry optimization on the training data and expect a

certain level of generalization to test data. A partial list of textbooks, surveys,

and articles on statistical learning theory includes Devroye et al. [2013]; Kearns

1The choice of the sequence {Hd}∞d=1 comes from a domain knowledge of each specific
problem under study and non of them is universally optimal. The necessity of domain
knowledge is formally stated in what is called No Free Lunch Theorem (Wolpert [1996]).
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and Vazirani [1994]; Mendelson [2003]; Vapnik [2013, 1998]

It worth mentioning that thanks to the law of large numbers, the train-

ing error almost surely converses, as the training sample size n approaches

infinity, to the generalization error R(f). However, in real application, n is a

finite number. The analysis below quantifies how close the training and the

generalization errors are in that situation.

5.1 Hoeffding’s Inequality and Generalization Error Bound

of a Single Function

Given a prediction function f , we rewrite the different between its general-

ization error R(f), which need to be estimated, and the training error Rn(f),

which is accessible from the training data, as follows:

R(f)−Rn(f) = Ep[l(f(X), Y )]− 1

n

n∑
i=1

l(f(xi), yi).

By the law of large number, convergence of the training error of a function f

to its risk immediately yields:

P

[
lim
n→∞

(
Ep[l(f(X), Y )]− 1

n

n∑
i=1

l(f(xi), yi)

)
= 0

]
= 1.

When the training sample size is not infinite and the loss function is

bounded, Hoeffding’s Inequality quantifies how close the training error of a

function approaches its risk.

Theorem 1 (Hoeffding). Let {Xi, Yi}ni=1 be n i.i.d. random variables with

l(Yi, f(Xi) ∈ [a, b]. Then for all ε > 0, we have

P

[∣∣∣∣∣Ep[l(f(X), Y )]− 1

n

n∑
i=1

l(f(xi), yi)

∣∣∣∣∣ > ε

]
≤ 2 exp

(
− 2nε2

(b− a)2

)
.

Denote the right hand side of the above inequality by δ and only consider

the binary classification problem with 0-1 loss function1, we have b − a = 1,

1The result we obtain here generalizes well to other problems, including regression,
multi-class classification, and binary classification with different loss function.
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δ = 2 exp(−2nε2), and ε =

√
log 2

δ

2n
.

The Hoeffding inequality becomes

P [|R(f)−Rn(f)| > ε] ≤ δ.

Subtracting both sides of the inequality from 1, we find that for any function

f and any δ > 0, with probability at least 1− δ,

|R(f)−Rn(f)| ≤ ε. (1.9)

5.2 Uniform Convergence of Finite H

The bound obtained in previous section is applied only to one specific function

f ∈ H that is chosen before the training data is seen. However in supervised

learning, we normally start will a set H of more than one functions and then

choose one of them, which is f̂ in ERM framework, after seeing the data. A

useful bound should hold simultaneously for all f ∈ H.

Given a finite hypothesis space H = {fi}Ni=1. Given a function fi ∈ H, we

define a corresponding set of examples

Ci = {(xj, yj)
n
j=1 : R(fi)−Rn(fi) > ε}

where the ε-bound fails. Hoeffding’s inequality imposes that the probability

measure of this set must be small, so

∀i : P (Ci) ≤ δ.

Using the union bound we obtain

N⋃
i=1

P (Ci) ≤
N∑
i=1

P (Ci) ≤ Nδ.

We can write

P [∃f ∈ H : R(f)−Rn(f) > ε] =
N⋃
i=1

P (Ci) ≤ N2 exp(−2nε2).
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As a result, given a finite set of N function H, for any δ ∈ (0, 1], with proba-

bility at least 1− δ, the following bound holds

sup
f∈H

|R(f)−Rn(f)| ≤
√

log(2N
δ
)

2n
. (1.10)

5.3 Estimation Error

As stated earlier, we use the minimizer of training error f̂ = argminf∈H Rn(f)

to perform prediction on the test data. Therefore it is more interesting to

derive a generalization error bound of this function.

Denoting the best possible hypothesis in H as f ′ = argminf∈H R(f), the

estimation error R(f̂)−R(f ′) is bounded by

R(f̂)−R(f ′) = [R(f̂)−Rn(f̂)] + [Rn(f̂)−Rn(f
′)] + [Rn(f

′)−R(f ′)]

≤ sup
f∈H

|R(f)−Rn(f)|+ 0 + sup
f∈H

|R(f)−Rn(f)|

≤ 2 sup
f∈H

|R(f)−Rn(f)|.

This means that when the training error converges uniformly to the gen-

eralization error, the output f̂ of the learning algorithm has a generalization

error close to that of the best possible hypothesis in H. The distance bounded

by

2 sup
f∈H

|R(f)−Rn(f)|.

We put this result together with 1.10 into a theorem.

Theorem 2 Given a hypothesis space H with N elements, n training exam-

ples, and a fixed possitive δ, with probability at least 1− δ, we have that

R(f̂)−min
f∈H

R(f) ≤ 2

√
log(2N

δ
)

2n
.
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5.4 Uniform Convergence of Infinite H

When H has infinite number of elements, the complexity of H cannot be

measured by a simple counting. Vapnik [1998] extended the learning bound

and convergence above to the case of infinite H by introducing the Vapnik-

Chervonenkis (VC) dimension which measure complexity of infinite hypothesis

spaces.

The VC dimension of a hypothesis space H, denoted V C(H) is the size

d of the largest set S = {xi ∈ X : i = 1, ...d} such that for all label set

L = {yi ∈ Y : i = 1, ...d}, there exists some f ∈ H that classifies all examples

in S correctly according to L, i.e. f(xi) = yi for all i = 1, ...d. For example,

consider the hypothesis space H of all haft-planes in two dimensions. H can

shatter some set of three points like one in Figure 1.1a. All eight possible ways

to label these points are listed in Figure 1.1b-i and each one can be perfectly

classified by a haft-plane. On the other hand, for any set of four points, we

can always find labeling for these points like in Figure 1.1j, for example, such

that no haft-plan can classify them without error. Therefore, the size of the

largest set that the hypothesis space H of all haft-planes in two dimensions

can shatter is V C(H) = 3.

It turns out that VC-dimension can be used to provide the uniform con-

vergence of training error by following result due to Vapnik, which is seen by

many to be the most important theorem in learning theory.

Theorem 3 (Vapnik [1998]) Given an infinite hypothesis space H with a finite

VC-dimension, for any δ ∈ (0, 1], with probability at least 1 − δ, we have the

following bounds:

sup
f∈H

|R(f)−Rn(f)| ≤ O

(√
1

n

(
V C(H)log(

n

V C(H)
) + log(

1

δ
)

))
(1.11)

and

R(f̂)−min
f∈H

R(f) ≤ O

(√
1

n

(
V C(H)log(

n

V C(H)
) + log(

1

δ
)

))
.

With Theorem 2 and 3, we can estimate the minimum training samples size
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Figure 1.1: VC dimension of haft-planes in R
2: a)Three original points; b, c,

d, e, f; g; h; i : all eight possible labeling sets of the original three points can
be shattered by a haft-plane; j) For any set of 4 points, there exits a labeling
set that cannot be shattered by any haft-plane.
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M(ε, δ) that is necessary to bound the estimation error to be with a certain

accuracy ε and with a certain confidence level 1 − δ. The quantity M(ε, δ) is

known as the sample complexity and defined formally as following.

Definition 1 (Sample Complexity) For all ε, δ ∈ (0, 1), a hypothesis space H

is said to have a sample complexity M(ε, δ) if it is the smallest sample size for

which there exists an algorithm A that for all distribution P over X × Y, H

outputs a model f̂ ∈ H, depending on training data, so that with probability

1− δ:

R(f̂)−min
f∈H

R(f) ≤ ε.

From Theorem 2 and 3, Blumer et al. [1986, 1989, 1990] derived an upper

bound for the sample complexity of a hypothesis space H as following.

Corollary 4 Given hypothesis space H and 0 < δ, ε < 1, then

• The sample complexity of H is

m(ε, δ) = O

(
1

ε
ln
1

δ
+

V C(H)

ε
ln
1

ε

)
.

• If H is finite then the sample complexity of H is

m(ε, δ) = O

(
1

ε
ln
1

δ
+

|H|
ε

)
.

6 Approximation-Estimation Error Trade-off

Before discussing model selection based on its complexity, we first revisit the

approximation-estimation error trade-off. The bound of the difference between

generation error of the output function f̂ of an algorithm and the Bayes optimal

prediction can be decomposed as

R(f̂)−R(f ∗) ≤ min
f∈H

R(f)−R(f ∗)︸ ︷︷ ︸
approximation error

+R(f̂)−min
f∈H

R(f)︸ ︷︷ ︸
Estimation error

.
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H

argminf∈H

f̂

f ∗

estimation err. Total err.

approximation err.

Figure 1.2: Decomposition of generalization error into approximation and es-
timation errors

The approximation error is normally unknown and depends only on the

choice of H while the estimation error is quantifiable and and depend on

the size of H as shown previously. The decomposition of generalization into

approximation and estimation error is illustrated in Figure 1.2.

Suppose that we have two candidate hypothesis spaces H1 and H2 where

H1 ⊂ H2. If we use H2, we can guarantee to achieve a better approxima-

tion (since minf∈H R(f) ≤ minf∈H R(f)), at the expense of an increase of the

sample complexity of the hypothesis space, which in turn increases the esti-

mation error. Conversely, if we use H1, the estimation error is decreased while

approximation error can only increase. This problem in commonly called bias-

variance dilemma in literature: bias (or approximation error) and variance

(estimation error) cannot be reduced at the same time.

7 Model Specification

In Empirical Risk Minimization framework, the approximation and estimation

error are fixed because we specify a model H before seeing training data. This

framework works well in practice if we have a decent domain knowledge to fix

a model H that likely to contains the optimal model f ∗ or at least some model

that closely approximate f ∗. However, that’s not always the case in prac-

tice where domain knowledge is not always enough to specify a useful model.

An alternative is Structural Risk Minimization (SRM) method in which the

learning algorithm is allowed to make the choice whether to move from one hy-
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Sample complexity of H

Loss

approximation error

Generalization error
estimation error

Optimal complexity

Figure 1.3: Illustration of approximation-estimation error trade-off. Increas-
ing sample complex of the hypothesis space reduces approximation error but
increase estimation error at the same time. Optimal generalization error is
obtained at some complexity that usually neither optimizes estimation error
nor approximation error.

pothesis space H1 to a more complex hypothesis space H2 depends on whether

the reduction in approximation error is enough to justify for the increase in

model complexity. The compromise of estimation error and approximation

error is shown in Figure 1.3. At the optimal complexity, which minimizes the

the generalization error, the approximation error is typically a strictly positive

number. It means that in order to achieve optimal generalization error, we

normally accept some approximation error and stop increasing sample com-

plexity of the hypothesis space even when it has not included the universally

optimal model f ∗. This problem is called model misspecification and plays

an importance role in certain types of selection bias. We define it formally as

below.

Definition 2 H is said to be well-specified if there exist some f̂ ∈ H such

that R(f̂)−R(f ∗) = 0. Otherwise, H is said to be misspecified.

An example of model misspecification is when we use linear regression while the

underlying data generating function P (y|x) is non-linear. Besides the reason of

optimizing the approximation-estimation error trade-off as we discuss above,

a simpler model is preferred to a more complicated one because the former is

usually more transparent than the later. Model transparency, which facilitates

interpretability, is a fundamentally desirable property in many research areas

like biology, medical study, linguistics, or social science.
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train validation

Figure 1.4: Illustration of data partition for holdout validation validation.

8 Empirical Accuracy Estimation

Even though model complexity provides a well-justified guidance to eliminate

models that are either too complex or too simple, the model selection and pa-

rameter optimization processes still require estimating the accuracy of a pre-

diction function induced by learning algorithms. Besides, accuracy estimation

also predicts future performance of a prediction function. There are several

possible empirical accuracy estimation methods including holdout validation

and cross validation.

8.1 Holdout Validation

The available data set is partitioned, as illustrated in Figure 1.4, into a training

set DT = {xi, yi}nT
i=1 and a holdout validation set DV = {xi, yi}nV

i=1, which is

not to be used in training or parameter optimization process. The prediction

function f̂ is learned on the training data and evaluated on the validation set.

The validation loss of f̂ is defined as:

RV (f̂) =
1

nV

nV∑
i=1

l(f̂(xi), yi) (1.12)

The holdout validation loss provides the most straightforward and unbiased

estimator of the generalization error of f̂ but it reduces the sample size of

training data. If we have enough data we can assign a large holdout set to

reduce the variance of validation loss while keeping a sufficient training data

set. However, data are often scare, a more effective approach to make use the

available data is desirable.
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train validation train train train

1 2 3 4 5

Figure 1.5: Illustrative example of data partition for cross validation when
K = 5 and the second fold is used as validation set.

8.2 Cross Validation

An alternative to holdout validation when the training data are not massively

available is cross validation (Stone [1974]; Wahba [1990]). CV has been shown

to give a nearly unbiased estimator of the generalization error with finite sam-

ple (Smola and Schölkopf [1998]). In K-fold cross-validation, the training sam-

ple D is partitioned into K mutually exclusive and roughly equal-sized subsets

D1, D2, ..., DK , as illustrated in Figure 1.5 for the case K = 5. For each

k ∈ 1..K, prediction accuracy of the function f̂k that is constructed based

on the training set ∪i �=kDi is evaluated on the corresponding validation set

Dk. Let κ : 1, ..., N → 1, ..., K be an indexing function that maps an exam-

ple to its randomly allocated partition, the cross validation estimate of the

generalization error is

CV (f̂ , K) =
1

n

n∑
i=1

l(f̂κ(i)(xi), yi) (1.13)

Typical choices of K are 5, 10 and n. In leave-one-out cross validation

(LOOCV), i.e. K = n, the CV gives an approximately unbiased estimator of

the generalization error but can have a high variance because any two training

set are only different by one examples. On the other hand, when k is small, CV

has a lower variance since each training set is quite different from the other but

it may overestimate the generalization error. The extend of the overestimation

depends on where the how the performance of the learning method varies with

the training sample size. Overall, Breiman and Spector [1992]; Kohavi et al.

[1995] recommend K = 5 or K = 10 as good compromise for the bias and

variance of the estimation.
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Chapter 2

Correcting Selection Bias with

Importance Weighting

Framework

As discussed in Section 1 of Chapter 1, the assumption that the training and

the test samples are drawn from the same probability distribution plays a

crucial role in the theory of supervised learning. Unfortunately, this essential

assumption is often violated in the presence of selection bias. Under such

condition, the learning frameworks presented in Chapter 1 need to be adjusted

to remain valid.

In this chapter we first define some useful terminologies and the classifica-

tion of selection bias. We then introduce the importance weighting framework

for the generative and discriminative learning. Given the importance weight,

the adaptation of generative learning methods to the importance weighting

is very straight forward. We can approximate the generative distribution of

the training data to a family of probability distributions using the training

data and then adjust it by the importance weight to obtain an approxima-

tion of the test distribution before inferring the prediction function. On the

other hand, the adaptation of discriminative learning to the selection bias re-

quires more complication. We introduce two methods of using the importance

weight to correct selection bias in discriminative learning: one with sampling

and the other with modification of the loss function. We then show that the

importance weighted cross validation gives an almost unbiased estimate of
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the generalization error. We review covariate shift problem and two common

methods for learning the importance weight from the training data and a set

of unlabeled examples. We also investigate the potential of Bayesian Network

to encode researcher’s a priori assumption about the relationship between vari-

ables, including selection variable, and to infer independence and conditional

independence relationships that allow selection bias to be corrected. In the

experimentation section, we assess the ability of the importance weighting to

remove the complete selection bias based on the independence and conditional

independence relationships read from Bayesian Network. A part of this chapter

has been presented at ICONIP2015 conference (Tran and Aussem [2015b]).

1 Terminology and Categorization

Selection bias, also termed dataset shift or domain adaptation in the literature

Candela et al. [2009]; Moreno-Torres et al. [2012b], occurs when the train-

ing distribution Ptr(x, y) and the test distribution Pte(x, y) are different. It is

pervasive in almost all empirical studies, including Machine Learning, Statis-

tics, Social Sciences, Economics, Bioinformatics, Biostatistics, Epidemiology,

Medicine, etc. Selection bias is prevalent in many real-world machine learn-

ing problems because the common assumption in machine learning is that the

training and the test data are drawn independently and identically from the

same distribution. The term ”domain adaptation” is used when one builds a

model from some fixed source domain, but wishes to deploy it across one or

more different target domains. The term ”selection bias” is slightly more spe-

cific as it assumes implicitly that there exists a binary variable S that controls

the selection of examples in the training set, in other words we only have access

to the examples that have S = 1. The use of selection variable S to represent

structural assumptions about how the sampling mechanism is related to other

variables appears frequently in many selection bias researches, e.g. Cooper

[1995]; Cox and Wermuth [1996]; Didelez et al. [2010]; Geneletti et al. [2009].

To be specific, we assume that there exist a probability distribution P (x, y, s),

where training data are sampled from

Ptr(x, y) = P (x, y|s = 1)
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while test data are sampled from

Pte(x, y) =
∑
s

P (x, y, s) = P (x, y).

The existence of the selection variable S also distinguishes selection bias from

other sub-fields of domain adaptation. In selection bias, we can see that the

support of the test data distribution always contains that of the training data

distribution and if P (s = 1|x, y) > 0 for all x and y, then the two supports

overlap each other. On the contrary, in most of other domain adaptation

problems, the two supports can freely have non-overlapping region or even

be completely disjointed in extreme cases. In place of the selection variable,

other domain adaption methods usually assume the existence of some domain-

invariant representations which allows the training distribution to be able to

match with the test distribution after some transformations or alignments

(Courty et al. [2016]; Fernando et al. [2014]; Sun et al. [2016]). Other domain

adaptation methods assume the access to some labeled data with full feature

vector from test distribution (Ben-David et al. [2010]; Daumé III [2009]).

The existence of this variable S allows modeling expert knowledge about se-

lection process in a causal sense using graphical model as will be shown in later

section. There are several cases worth considering regarding the dependence

structure between X, Y , and S (Fan and Davidson [2007]; Moreno-Torres et al.

[2012a]; Zadrozny [2004]):

1. If S ⊥⊥ X and S ⊥⊥ Y , the selected sample is not biased, that is, the

examples (x, y, s) which have S = 1 constitute a random sample from

the general distribution P (x, y). In this case, the i.i.d assumption is

satisfied, all theoretical results presented in previous section holds true

without any adjustment needed.

2. Covariate shift: S ⊥⊥ Y |X, the selected sample is biased but the biased-

ness only depends on the feature vector X. This case is also termed

sample bias and corresponds to a change in the prior probabilities of

the features. This type of bias has been extensively studied in machine

learning literature and there are methods for correcting it Ben-david

et al. [2007]; Bickel et al. [2009]; Blitzer et al. [2008]; Cortes et al. [2010];
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Dud́ık et al. [2005]; Huang et al. [2006]; Kanamori et al. [2009, 2012]; Shi-

modaira [2000]; Sugiyama and Kawanabe [2012]; Sugiyama et al. [2007b];

Yu and Szepesvári [2012]; Zadrozny [2004].

3. Prior probability shift: S ⊥⊥ X|Y , the selected sample is biased but the

biasedness depends only on the label Y. This case is also termed label

bias and corresponds to a change in the prior probabilities of the labels.

This type of bias has been studied in machine learning literature and

there are methods for correcting it Elkan [2001]; Ting [2002].

4. If no independence assumption holds between X, Y , and S. This is

termed complete selection bias in the literature. The selected sample is

biased and we cannot hope to learn a mapping from features to labels

using the selected sample, unless we have some additional information

on the mechanism by which the samples were preferentially selected to

the data set as will see.

2 Learning under Selection Bias with Impor-

tance Weighting

In this section, we assume that we know the selection probability distribution

P (s = 1|x, y), which fully quantifies the selection mechanism. We first relate

the the selection probability to the change of distribution from training to test

data by the so-called importance weight. We then show that this importance

weight can be used effectively to correct selection bias of all three classed

discussed above.

Definition 3 (Importance weight) Given the support of Ptr(x, y) contains

the support of Pte(x, y), i.e. for all (x, y) ∈ X × Y : (Pte(x, y) > 0 =⇒
Ptr(x, y) > 0), the ratio

β(x, y) =
Pte(x, y)

Ptr(x, y)

is defined over the support of Pte(x, y). It quantifies the change of distribution

from training to test data and is called the importance weight.
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Given selection probability distribution P (s = 1|x, y), if it is positive for all

(x, y) in the support of P (x, y), i.e. there is no deterministic exclusion of

example, using Bayes’ rule

P (x, y, s) = P (x, y|s = 1)P (s = 1)

= P (s = 1|x, y)P (x, y),

we can relate the importance weight to the selection distribution as following:

β(x, y) =
Pte(x, y)

Ptr(x, y)
=

P (x, y)

P (x, y|s = 1)
=

∫
X

∫
Y
P (s = 1|x′, y′)dy′dx′

P (s = 1|x, y) .

The non-deterministic exclusion of example is important for selection bias

to be corrected. If there are some instances (x, y) that are always excluded

from the training data, i.e. P (s = 1|x, y) = 0, learning from training data

with selection bias becomes an extrapolation problem, where prediction on ex-

cluded examples requires further assumptions or becomes unreliable. In gen-

eral dataset shift, there may be cases where test data that are never seen in

training set but are instead associated with training data by some assumed re-

lationships depends on each specific problem. For example in image processing

domain, training images might be taken under certain lighting or equipment

conditions, whereas prediction is performed on images taken under different

conditions. In these cases, changes from training to test data are usually mod-

eled by some transformations e.g. translation or rotation of the feature vector

rather than by the change of data distribution. This is another kind of non-

stationary problem where focus is placed on the transformation of data instead

of learning model adaptation.

2.1 Importance Weighting for Generative Learning

Given the selection distribution, or equivalently the importance weight, the

adaptation of generative learning methods is very straightforward. We can

approximate the generative distribution of training data Ptr(x, y) to a fam-

ily of probability distributions using the training data and then adjust it by

the importance weight to obtain test distribution, Pte(x, y) = Ptr(x, y)β(x, y),

before inferring the prediction function.
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Importance Weighting for Bayesian Inference

The training data distribution Ptr(x, y) is approximated by a family of prob-

ability distributions, PM(x, y|θ), specified by θ with prior probability q(θ).

Given the training data, the posterior distribution of parameter θ is estimated

using Bayes Theorem as following:

PM(θ|{xi, yi}ni=1) =
q(θ)

∏n
i=1 PM(xi, yi|θ)∫

q(θ)
∏n

i=1 PM(xi, yi|θ)dθ .

The posterior training distribution is then:

PM(x, y|{xi, yi}ni=1) =

∫
PM(x, y|θ)PM(θ|{xi, yi}ni=1)dθ.

The estimated test distribution is obtained by adjusting the posterior training

distribution by the importance weight

Pte,M(x, y|{xi, yi}ni=1) = PM(x, y|{xi, yi}ni=1)β(x, y).

Consequently, we obtain the Bayesian prediction function by substituting the

estimated distribution above for the unknown conditional distribution (p(y|x)
in Equation 1.4:

fB(x) = argmin
ŷ

∫
Y

l(ŷ, y)Pte,M(y|x, {xi, yi}ni=1)dy (2.1)

where

Pte,M(y|x, {xi, yi}ni=1) =
Pte,M(x, y|{xi, yi}ni=1)

Pte,M(x|{xi, yi}ni=1)

=
Pte,M(x, y|{xi, yi}ni=1)∫

Y
Pte,M(x, y|{xi, yi}ni=1)dy

=
PM(x, y|{xi, yi}ni=1)β(x, y)∫

Y
PM(x, y|{xi, yi}ni=1)β(x, y)dy

.

Importance Weighting for Maximum a Posteriori

Again, the training data distribution Ptr(x, y) is approximated by a family of

probability distributions, PM(x, y|θ), specified by θ with prior probability q(θ).
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Given the training data, the posterior distribution of parameter θ is estimated

using Bayes Theorem as following:

PM(θ|{xi, yi}ni=1) =
q(θ)

∏n
i=1 PM(xi, yi|θ)∫

q(θ)
∏n

i=1 PM(xi, yi|θ)dθ .

The posterior training distribution in MAP framework is selected to be the

single distribution with highest posterior probability:

θMAP = argmax
θ

PM(θ|{xi, yi}ni=1).

The estimated test distribution is obtained by adjusting the posterior training

distribution by the importance weight

Pte,M(x, y|θMAP ) = PM(x, y|θMAP )β(x, y).

Finally, we obtain the MAP prediction function by substituting the pos-

terior distribution PM(y|x, θMAP ) for the unknown conditional distribution

(p(y|x) in Equation 1.4:

fMAP (x) = argmin
ŷ

∫
Y

l(ŷ, y)Pte,M(y|x, θMAP )β(x, y)dy (2.2)

where

Pte,M(y|x, θMAP ) =
Pte,M(x, y|θMAP )

Pte,M(x|θMAP )

=
Pte,M(x, y|θMAP )∫

Y
Pte,M(x, y|θMAP )dy

=
PM(x, y|θMAP )β(x, y)∫

Y
PM(x, y|θMAP )β(x, y)dy

.

Importance Weighting for Maximum Likelihood

Under selection bias, we first specify a family of probability distributions,

PM(x, y|θ) to approximate the training data distribution Ptr(x, y). Given the
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training data {xi, yi}ni=1, the likelihood of parameter θ and its logarithm is:

PM({xi, yi}ni=1|θ) =
n∏

i=1

PM(xi, yi|θ).

log(PM({xi, yi}ni=1|θ)) =
n∑

i=1

log(PM(xi, yi|θ)).

We then select the generative distribution that maximizes the logarithm of the

likelihood to approximate the training data distribution.

θML = argmax
θ

log(PM({xi, yi}ni=1|θ)).

The estimated test distribution is obtained by adjusting the posterior training

distribution by the importance weight

Pte,M(x, y|θML) = PM(x, y|θML)β(x, y).

Finally, we obtain the MAP prediction function by substituting the posterior

distribution PM(y|x, θML) for the unknown conditional distribution (p(y|x) in
Equation1.4:

fML(x) = argmin
ŷ

∫
Y

l(ŷ, y)Pte,M(y|x, θML)β(x, y)dy (2.3)

where

Pte,M(y|x, θML) =
Pte,M(x, y|θML)

Pte,M(x|θML)

=
Pte,M(x, y|θML)∫

Y
Pte,M(x, y|θML)dy

=
PM(x, y|θML)β(x, y)∫

Y
PM(x, y|θML)β(x, y)dy

.

2.2 Importance Weighting for Discriminative Learning

The adaptation of generative learning methods to selection bias problem is

fairly simple. One only needs to adjust the approximation of the training data

generative distribution by the importance weight before inferring the prediction
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function. However, the application of generative learning in practice is very

limited. Discriminative learning is often preferred to generative learning when

the learning goal is to find a prediction rule with lowest loss as possible. In this

section, we introduce two methods of using the importance weight to correct

selection bias in discriminative learning: one with sampling and the other with

modification of loss function.

2.3 Importance Weighting Using Sub-sampling Meth-

ods

Given a training data with selection bias, if we can construct a new data set

that follows the general distribution (test data) then we can expect to correct

selection bias without having to modify the algorithm. This method, therefore,

can work with any algorithms just by changing the training data. In fact, sub-

sampling the training data with the importance weight can recover the original

unbiased distribution.

Lemma 5 Given a selection distribution P (s = 1|x, y), and its corresponding

importance weight β(x, y) if we define a reweighted distribution

P̂ (x, y, s) = β(x, y)P (x, y, s)

then

P̂ (x, y|s = 1) = P (x, y).

Proof

P̂ (x, y, s = 1) = P (x, y, s = 1)β(x, y)

= P (x, y, s = 1)
P (x, y)

P (x, y|s = 1)

= P (s = 1)P (x, y|s = 1)
P (x, y)

P (x, y|s = 1)

= P (s = 1)P (x, y).
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Thus, P̂ (x, y, s = 1) = P (x, y)P (s = 1). If we sum this expression over x, y

we obtain P̂ (s = 1) = P (s = 1). Therefore,

P̂ (x, y|s = 1) =
P̂ (x, y, s = 1)

P̂ (s = 1)

=
P (x, y)P (s = 1)

P (s = 1)

= P (x, y).

Lemma 5 states that an unbiased training sample can be obtained by sam-

pling each training example by β(x, y) = P (x,y)
P (x,y|s=1)

. Note however that the

support of P (x, y) should be contained in the support of P (x, y|s = 1) for the

β(x, y) to be always defined. A similar technique applied to covariate shift was

discussed in Zadrozny [2004].

The unbiased expected loss of the model follows:

Theorem 6 Given the weighted distribution P̂ (x, y, s) = β(x, y)P (x, y, s), for

any loss function l(f(x), y), we have:

Ex,y∼P̂ [l(f(x), y)|s = 1] = Ex,y∼P [l(f(x), y)].

Proof From Lemma 5, we have P̂ (x, y|s = 1) = P (x, y). Therefore,

Ex,y∼P̂ [l(f(x), y)|s = 1] =

∫
x

∫
y

l(f(x), y).P̂ (x, y|s = 1)dydx

=

∫
x

∫
y

l(f(x), y).P (x, y)dydx

= Ex,y∼P [l(f(x), y)].

Using Theorem 6, we can learn or evaluate a model based on examples

drawn from weighted distribution P̂ without suffering from selection bias.

There are two basic sampling methods that allow us represent samples draw

from P̂ : sampling with replacement and acceptance sampling (Von Neumann

[1951]). It has been shown in Zadrozny et al. [2003] that the former cre-
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ates duplicate examples which may causes severe overfitting while the later

achieves a much better performance. In rejection sampling, given the training

data set D = {xi, yi}ni=1 which includes n i.i.d. examples from the distribu-

tion P (x, y|s = 1) we include each original training example to a new sub-

sampled data set D′ with a probability proportional to the importance weight

β(x, y) = P (x,y)
P (x,y|s=1)

to obtain examples follow test distribution P (x, y).

Noting that examples in D are independent and that their acceptance to D′

are also independent of each other, we can deduce that D′ is an i.i.d sample

from P (x, y) thanks to Lemma 5.

To maximize the size of the sub-sampled data set we set the probability of

acceptance to

P (a = 1|x, y) = β(x, y)

maxx,y(β(x, y))

Where a is the acceptance indicator, a = 1 when the examples is accepted and

a = 0 otherwise. We have

EPtr [β(x, y)] =

∫
x

∫
y

Ptr(x, y)

Pte(x, y)
Ptr(x, y)dydx

=

∫
x

∫
y

Pte(x, y)dydx = 1.

Hence the expected size of sub-sampled data set is

n′ = n
E[β(x, y)]

maxx,y(β)
=

n

maxx,y(β)
.

This reduction of training sample size only depends on the maximum value

of β(x, y) and can be significant in some selection bias scheme. The most

impacted data are low importance training examples which are expected to

be rejected with high probability. To remedy this waste of training data, we

can repeatedly sub-sample the original training data, then train many models

on the sub-sampled data sets and aggregate the prediction of the models in

a manner similar to ensemble learning methods as in Zadrozny et al. [2003].

However, this approach requires an increase of computation cost. On the

other hand, most learning algorithms allow us to modify the loss function to

compensate for the change of distribution and leave the the original training

data unchanged.
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2.4 Direct Importance Weighting on Loss Function

Given that most popular learning algorithms can be formulated as empirical

risk minimization of a certain loss functions, in this section we present a direct

approach of using the importance weight to correct selection bias by modifying

the loss functions. We observe that the generalization error of a function can

be written as

R(f) = EPte [l(f(X), Y )]

=

∫
X

∫
Y

l(f(x), y)Pte(x, y)dydx

=

∫
X

∫
Y

l(f(x), y)
Pte(x, y)

Ptr(x, y)
Ptr(x, y)dydx

= EPtr [β(x, y)l(f(X), Y )].

As a result, minimizing the expectation of importance weighted loss over train-

ing distribution is equivalent to over test distribution. Each learning algorithm

requires a different modification to implement the importance weight but in

general we can assume a class of parameterized function class H = {f(x, θ) :
θ ∈ Θ} for the learning task, where

θ = (θ1, θ2, ..., θm)
T ∈ Θ ⊂ R

m.

In risk minimization frame work, we need to solve

min
θ∈Θ

n∑
i=1

l(f(xi, θ), yi) + λJ(f) (2.4)

where J(f) is a penalty functional and is defined on H.

Under sample reweighting scheme β, it becomes

min
θ∈Θ

n∑
i=1

βil(f(xi, θ), yi) + λJ(f). (2.5)

Below, we discuss how to minimized this regularized empirical risk in some

common settings.
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Regularized Least-squares Regression with Kernel Model

Regularized least-squares regression (RLS) is one of the most importance re-

gression methods in machine learning. The Kernel model is defined by

f(·, θ) = 〈Φ(·), θ〉

where Φ(·) is a feature map from X to a feature space F and θ ∈ F. The inner

product in F is defined by a kernel function k(x, x′) = 〈Φ(x),Φ(x′)〉. Some

common choices of kernel are:

• Linear kernel

k(xi, xj) = xT
i xj.

• Polynomial kernel

k(xi, xj) = (xT
i xj + 1)d.

• Gaussian Kernel

k(xi, xj) = exp

(
−||xi − xj||2

σ2

)
.

Using square norm for regularization and square loss function, 2.5 becomes

min
θ∈Θ

n∑
i=1

βi(〈Φ(xi), θ〉 − yi)
2 + ||f ||2. (2.6)

It can be shown that the solution to 2.6 to be written as (Girosi et al.

[1995])

f(·, θ) =
n∑

i=1

αik(·, xi)
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We rewrite the regularization term as

||f ||2 = 〈f, f〉

= 〈
n∑

i=1

αik(·, xi),
n∑

j=1

αjk(·, xj)〉

=
n∑

i=1

n∑
j=1

αiαj〈k(·, xi), k(·, xj)〉

=
n∑

i=1

n∑
j=1

αiαjk(xi, yj)

Let K is kernel matrix, i.e. K is the n × n matrix with the (i,j)-th element

Kij = k(xi, yj). Then the regularization term becomes

J(f) = αTKα.

For weighted square loss function:

n∑
i=1

βil(f(xi, θ), yi) =
n∑

i=1

(f(xi, θ)− yi)
2

=
n∑

i=1

βi

(
n∑

j=1

αjk(xi, yj)− yi

)2

Denote by B the diagonal matrix with diagonal (β1, β2, ..., βn), the matrix form

of the weighted square loss is then

(Kα− y)TB(Kα− y).

Therefore, 2.5 becomes

min
α∈α

(Kα− y)TB(Kα− y) + λαTKα. (2.7)

The optimization is convex in α, so we can set its gradient with respected to
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α to 0 and obtain the solution for α as:

α = ((λB−1 +K)−1y.

As a result we just need to solve a single linear system for α :

((λB−1 +K)α = y,

which can be handled by any available linear system solver.

Support Vector Machine for Classification

A support vector machine (SVM) constructs a separate hyperplane that max-

imizes the margin between the training data points and the decision boundary

Boser et al. [1992]; Scholkopf and Smola [2001]. Although SVM was originally

dirived using maximum margin principle, it can be reconstructed under em-

pirical risk minimization framework (Evgeniou et al. [2000]) with hinge loss,

which is defined as

l(f(x, θ), y) = [1− yf(x, θ)]+ = max(0, 1− yf(x, θ))

The weighted empirical risk minimization problem 2.5 becomes

min
θ∈Θ

n∑
i=1

βi[1− yif(xi, θ)]+ +
λ

2
||θ||2. (2.8)

Since yi ∈ {−1, 1} for classification problem, the formulation above is equiva-

lent to:

min
θ,ξ

1

2
||θ||2 + C

n∑
i=1

βiξi (2.9)

subject to the constraints:

yif(xi) ≥ 1− ξi,

ξ ≥ 0.
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which is a quadratic programming problem that is different than the original

problem presented in Cortes and Vapnik [1995] only by the importance weight

added into the total empirical loss. If we use kernel method and let k(xi, yj)

denote the kernel that defines the inner product between the feature maps.

The dual of 2.9 is

max
α

n∑
i=1

αi − 1

2

n∑
i,j=1

αiαjyiyjk(xi, yj) (2.10)

subject to

0 ≤ αi ≤ βiC,

n∑
i=1

αiyi = 0.

This quadratic programming can be handled by many existing solver such as

SVMlight (Joachims [1998]).

Support Vector Machine for Regression

Support vector regression (SVR) (Vapnik [2013]) can be reconstructed under

empirical risk minimization framework with εinsensitive loss function |f(x, θ), y|ε
described by

|f(x, θ), y|ε =
⎧⎨
⎩0 if |f(x)− y| ≤ ε

|f(x)− y| − ε otherwise.

The weighted empirical risk minimization problem 2.5 becomes

min
θ∈Θ

n∑
i=1

βi|f(x, θ), y|ε + λ

2
||θ||2, (2.11)

which is equivalent to:

min
θ,ξ

1

2
||θ||2 + C

n∑
i=1

βi(ξi + ξ∗i ) (2.12)
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subject to the constraints:

yi − f(xi) ≤ ε+ ξi,

−yi + f(xi) ≤ ε+ ξ∗i ,

ξ ≥ 0.

If we use kernel method and let k(xi, yj) denote the kernel that defines the

inner product between the feature maps. The dual of 2.12 is

max
α

−1

2

n∑
i,j=1

(αi−α∗
i )(αj−α∗

j )k(xi, yj)−ε

n∑
i=1

(αi+α∗
i )+ε

n∑
i=1

(αi−α∗
i )yi (2.13)

subject to constraints

0 ≤ αi, α
∗
i ≤ βiC,

n∑
i=1

αi − α∗
i = 0.

This again becomes quadratic programming and can be solve by any available

solver.

Adaptive Boosting for Classification

Freund and Schapire [1995] Adaptive Boosting (AdaBoost), formulated by

Yoav Freund and Robert Schapire (Freund and Schapire [1995]), can be used

in conjunction with many weak learner to improve their performance. The

outputs of the weak learners are combined into a weighted additive model that

represents the final output. The final output of AdaBoost can be written as

a linear combination of all the weak learners trained at every stage of the

algorithm

f(x, θ) =
M∑

m=1

αmam(x, γm)

where

• θ = {αm, γm}Mm=1 is the set of model parameters,

• am(x, γm) is output of the weak learner trained at staged m.
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Given exponential loss function

l(f(x, θ), y) = exp(yf(x, θ)),

the weighted empirical risk minimization problem is

min
{αm,γm}Mm=1

n∑
i=1

βiexp(yif(xi, {αm, γm}Mm=1)). (2.14)

This optimization problem is equivalent to the original AdaBoost with

initial weighting for example (xi, yi) set to βi.

2.5 Importance Weighted Cross Validation

When selection bias is covariate shift, Sugiyama et al. [2007a] demonstrated

that the importance weighted cross validation (IWCV) gives an almost unbi-

ased estimate of the generalization error. In this section, we show that this is

true even in the general selection bias setting.

Recall that in K-fold cross-validation, the training sample D is partitioned

into K mutually exclusive subsets D1, D2, ..., DK , which we assume to be equal

size for simplicity. For each k ∈ 1..K, prediction accuracy of the function

f̂k that is constructed based on the training set D\Dk is evaluated on the

corresponding validation set Dk. Also let κ : 1, ..., N → 1, ..., K be an indexing

function that maps an example to its randomly allocated training partition.

To compensate for the effect of selection bias in cross validation procedure,

we modify CV in equation 1.13 so that importance weight is taken into account:

IWCV (f̂ , K) =
1

n

n∑
i=1

β(xi, yi)l(f̂κ(i)(xi), yi) (2.15)

The property of IWCV under selection bias is exactly the same with CV in

standard learning condition as can be seen below.

Lemma 7 Given training data D with n examples that can be partitioned

into K subset of equal size n/K, IWCV (f̂ , K) on biased training data gives

an unbiased estimate of the generalization error of the algorithm when it is
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given n− n/K training data, i.e.

ED∼Ptr [IWCV (f̂ , K)] = Rn−n/K(f̂). (2.16)

Proof For any example (xi, yi) in the training data D, we have

ED∼Ptr [β(xi, yi)l(f̂κ(i)(xi), yi)]

= EDκ(i)∼PtrED\Dκ(i)∼Ptr [β(xi, yi)l(f̂κ(i)(xi), yi)]

= ED\Dκ(i)∼Ptr

∫
X×Y

[
Pte(xi, yi)

Ptr(xi, yi)
l(f̂κ(i)(xi), yi)Ptr(xi, yi)dxidyi

= ED\Dκ(i)∼Ptr

∫
X×Y

[l(f̂κ(i)(xi), yi)Pte(xi, yi)dxidyi

= EDκ(i)∼PteED\Dκ(i)∼Ptr [l(f̂κ(i)(xi), yi)]

= Rn−n/K(f̂)

(because D\Dκ(i) is a set of n− n/K training examples).

Therefore,

ED∼Ptr [IWCV (f̂ , K)] = ED∼Ptr [
1

n

n∑
i=1

β(xi, yi)l(f̂κ(i)(xi), yi)]

=
1

n

n∑
i=1

ED∼Ptr [β(xi, yi)l(f̂κ(i)(xi), yi)]

=
1

n

n∑
i=1

Rn−n/K(f̂)

= Rn−n/K(f̂).

Lemma 7 implies that if we choose K large enough for importance weighted

cross validation (IWCV), e.g. K = n (Leave One Out CV) or K = n
2
,

IWCV (f̂ , K) provides an almost unbiased estimate of the generalization er-

ror of the algorithm given training data with selection bias. This property is

valid for any loss function with or without smoothness. Therefore, we can use

IWCV to evaluate performance of any algorithm in the presence of selection

bias just like we can use standard CV when there is no selection bias.
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2.6 Covariate Shift

At first glance, it may appear that covariate shift is not a problem because

it assumes that P (y|x) which determine the predicting function remains un-

changed. In fact, Shimodaira [2000] showed that there are circumstances un-

der which the predictive performance is jeopardized by covariate shift. This

happens typically when the parametric model family {P (y|x, θ)}θ∈Θ is mis-

specified, that is, there does not exist any θ ∈ Θ such that P (y|x = x, θ) =

P (y|x = x) for all x ∈ X, so none of the models in the model family can exactly

match the true relation between x and y.

The intuitive explanation of why covariate shift under model misspecifi-

cation causes learning bias is that the optimal (misspecified) model performs

better in dense regions of the input space than in sparse regions, because the

dense regions dominate the average prediction error. If the dense regions of

input are different in the training and test sets, the optimal model on the

former will no longer be optimal on the latter. In other words, under model

misspecification the optimal model depends on the input distribution P (x),

which is changed from training to test data by covariate shift.

Illustrative Example of Regression under Covariate Shift

Consider a regression problem under covariate shift where the training data are

sampled from a normal distribution with mean 0 and standard deviation 0.5,

i.e. Ptr(x) = N(0, 0.5) while the test data are sampled from Pte(x) = N(0, 1).

The two distributions are depicted in Fig. 2.1a. We can see that data centered

around 0 are sampled into the training set more frequently than those far

away from the origin. Therefore, any model trained on this data will put more

effort in minimizing prediction error in the central. This may or may not be a

problem depends on whether the model is well-specified or miss specified.

Given that we use Least squares (LS) regression to learn a linear model

y = θx, the empirical risk minimization becomes:

θ̂ = argmin
θ

[
1

n

n∑
i=1

(θxi − yi)
2

]

If the underlying data generating function is also a linear function, for
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example y = θ∗x + noise = 2x + N(0, 0.3), then the model is well-specified.

In this case, θ∗ = 2 is locally optimal for every input point. As a result, it

also globally optimal given any input distribution. Given sufficient training

data, θ̂ → θ∗ even under covariate shift. We can see in Figure 2.1 that the

linear model learned from the biased training data almost perfectly matches

the optimal model to predict test data when training data set is large enough

(500).

On the other hand, when the generating function is non-linear, for example

y = f(x) + noise = −x + x3+ ∼ N(0, 0.3) , then the model is misspecified.

There is no linear function in the form y = θx that is uniformly optimal

over every input point. The optimal linear function is one that minimizes

prediction error in denser region of input distribution while compromising in

sparser region. Therefore, when the input distribution changes, the optimal

function changes accordingly. As training sample size increases, the empirical

risk minimization estimator θ̂ still converges but not to the optimal parameter

θ′ for test data, i.e. θ̂ → θ′tr �= θ′.

2.7 Importance weighting for Covariate shift

Covariate shift is the simplest case of selection bias. Given the assumption

S ⊥⊥ Y |X, which implies that P (y|x, s = 1) = P (y|x), we can decompose the

training distribution as following:

Ptr(x, y) = P (x, y|s = 1)

= P (y|x, s = 1)P (x|s = 1)

= P (y|x)P (x|s = 1)

while the test distribution is

Pte(x, y) = P (x, y) = P (y|x)P (x).

Therefore we can use importance weighting approach presented previously to

correct selection bias with the importance weight only depends on the input

β(x, y) =
Pte(x, y)

Ptr(x, y)
=

P (x)

P (x|s = 1)
= β(x).
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(c) Linear regression on train vs. test data with 500 examples

Figure 2.1: An illustrative example of learning under sample bias while model
is well-specified
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(b) Linear regression on train vs. test data with 500 examples

Figure 2.2: An illustrative example of learning under sample bias while model
is miss-specified
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This formulation allows importance weight to be estimated from the biased

training data, which gives P (x|s = 1) and an unlabeled data set that is sampled

in general population, which gives P (x).

A naive approach for estimating β(x) is to estimate the two marginal mea-

sures from the training sample and the unbiased external sample respectively.

For instance, we can employ standard density estimators like Kernel Density

Estimation (Parzen [1962]; Rosenblatt et al. [1956]) to estimate them. How-

ever, this naive approach is known to be inferior since density estimation in

high dimensions is hard, and moreover, small estimation error could worsen the

performance significantly, especially when these two probabilities P (x|s = 1)

and P (x) are small. It seems more appealing to directly estimate β(x). In-

deed, a large body of work has been devoted to this line of research Bickel

et al. [2009]; Cortes et al. [2010]; Huang et al. [2006]; Kanamori et al. [2009];

Nguyen et al. [2010]; Sugiyama et al. [2007b]; Zadrozny [2004]. The function

of density ratio can be estimated directly by matching the two distributions in

terms of the Kullback-Leibler divergence as in Nguyen et al. [2010]; Sugiyama

et al. [2007b], in terms of a least-squares function fitting Kanamori et al. [2009]

or in term of kernel mean in reproducing kernel Hilbert spaces Huang et al.

[2006]. In this study, we consider two of them that where shown to be suc-

cessful with Covariate shift: 1) the Kernel Mean Matching (KMM) algorithm

proposed by Huang et al. Huang et al. [2006] and 2) the Unconstrained Least-

Square Importance Fitting (uLSIF), proposed by Kanamori et al. Kanamori

et al. [2009]. We briefly present below these two methods and discuss how they

adapt naturally to complete selection bias.

We assume a similar setup to semi-supervised learning where we have a

labeled set of training data and an external unlabeled set of data. However

unlike semi-supervised learning, where training and test data are assumed to

come from the same distribution, in covariate shift framework we assume the

availability of n i.i.d. training samples

{(xi, yi)}ni=1 ∼ Ptr(x) = P (x, y|s = 1)

and n′ i.i.d. test samples

{(x′i, y′i)}n′
i=1 ∼ Pte(x) = P (x, y)
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on domain X× Y.

2.7.1 Kernel Mean Matching

Let Φ : X → F denote the canonical feature map into a feature space F

is the reproducing kernel Hilbert space (RKHS)(Aronszajn [1950]; Hofmann

et al. [2008]) induced by a kernel k. B is the upper bound of the density

ratio and μ : P → F the expectation operator: μ(P ) := Ex∼P (x)[Φ(x)]. The

relation between kernel mean matching and importance weighting is justified

by following theorem

Theorem 8 (Gretton et al. [2009]) The operator mu is a bijection between the

space of all probability measures and the marginal polytope induced by the fea-

ture map Φ(x) if F is an RKHS with universal kernel k(x, x′) = 〈Φ(x),Φ(x′)〉
in the sense of Steinwart [2002].

KMM tries to match the means in the feature space of training sample

μ(P (xs|s = 1)) and test sample μ(P (xs)) by minimizing discrepancy between

their empirical value,

min
β

‖ 1
n

n∑
i=1

βiΦ(xi
s)−

1

n′

n′∑
i=1

Φ(x′i
s )‖2

subject to the constraints βi ∈ [0, B] and | 1
n

∑n
i=1 β

i − 1| ≤ ε,

where {xi
s}ni=1 are the training samples and {x′i

s}ni=1 are the samples obtained

from external sources. In the subsequence experiments, ε = (
√
n− 1)/

√
n and

B = 1000 as suggested in Gretton et al. [2009].

2.7.2 Unconstrained Least-Squares Importance Fitting

This method is based on linear density-ratio models. Formally, it assumes that

the density ratio β(x) can be approximated by a linear model

β̂(x) =
M∑
i=1

αihi(x)

where the basis functions hi, i = 1, ...,M are chosen so that hi(x) ≥ 0 for

all x. The coefficients α1, ..., αM are parameters of the linear model and are
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determined by minimizing the discrepancy between the true and the estimated

importance weights:

L(α) =
1

2
EPtr [(β̂(x)− β(x))2]

=
1

2
EPtr [β̂

2(x)]− EPtr [β̂(x)β(x)] +
1

2
EPtr [β

2(x)]

=
1

2
EPtr [β̂

2(x)]− EPte [β̂(x)] +
1

2
EPtr [β

2(x)]

We have the last equality since

EPtr [β̂(x)β(x)] =

∫
β̂(x)

Pte(x)

Ptr(x)
Ptr(x)dx

=

∫
β̂(x)Pte(x)dx

= EPte [β̂(x)]

Approximating the expectations in L by their empirical averages and drop

the last term, which is a constant, the importance weight fitting becomes a

minimization problem

min
α

1

2n

n∑
i=1

(β̂(xi
s))

2 − 1

n′

n′∑
j=1

β̂(x′i
s) + λ.Reg(α)

where the regularization term Reg(α) is introduced to avoid overfitting.

A heuristic choice of hi(xs) proposed in Kanamori et al. [2009] is a Gaussian

kernel centered at the test points {xj}nte
j=1 when number of test points is small

(less than 100) or at template points {xj}100j=1, which is a random subset of

test set when the number of test points is large for computation advantage.

The kernel width and the regularization term Reg(α) are optimized by cross-

validation with grid search.
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3 Importance Weight Estimation with Bayesian

Network

The categorization of selection bias presented in previous section ignores all

possible conditional independence between feature variables X1, X2, ... ∈ X.

Therefore when there is no conditional independence holds between X as a

whole, Y , and S, we cannot hope for a bias correction method. However,

in practice, there are many cases where independence or conditional indepen-

dence relationships between some but not all feature variables, output variable,

and selection variables can help identifying formula to correct selection bias.

One of the tools that have been found to be particularly useful in inferring

these independence relationships is Bayesian networks (BNs). In this section

we investigate the potential of BNs to encode researcher’s a priori assumption

about the relationship between variables, including selection variable, and to

infer independence and conditional independence relationships that allow se-

lection bias to be corrected. Besides selection bias, BN is a useful tool to diag-

nose the bias in estimating causal effect between variables in many biomedical

and epidemiologic researches (Glymour [2006]; Greenland et al. [1999]; Hernán

et al. [2002]).

Formally, a BN is a tuple < G, P >, where G =< V,E > is a directed

acyclic graph (DAG) with a set of nodes V representing the variables in the

study, and a set of edges E representing direct probabilistic dependencies be-

tween them. P denotes the joint probability distribution on V whose de-

pendencies are induced by G. In G, one node can be linked to another by

an directed edge, for examples X → Y , without forming any directed closed

loops. If there exists a directed edge from X to Y then X and Y are said to be

adjacent while X is called a parent of Y and Y is called a child of X. A path is

an unbroken route traced along or against directed edges connecting adjacent

nodes. A directed path is a path that can be traced through a sequence of

directed edges in the direction indicated by the arrows of the directed edges,

such as the path from X to S in X → Y → S. A node S is said to be a

collider on a specific path if it is a common child of two variables on that

path, such as S in X → S ← Y , which is said to collide at S. If a path does

not collide at S than S is said to be non-collider on that specific path. A
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path is unconditionally blocked if it has one or more colliders. A path from a

node Y to a node S is said to be blocked conditionally on X if either there is a

variable in X that is a non-collider on the path. Otherwise the path is said to

be unblocked. Two nodes X and S are are said to be d-separated conditional

on Y if all paths from X to S are blocked conditional on Y . The BN structure

encodes a set of conditional independence assumptions: that each node Vi is

conditionally independent of all of its non-descendants in G given its parents.

These independence assumptions, in turn, imply many other conditional in-

dependence statements, which can be extracted from the DAG using called

d-separation criterion Pearl [1988]. If X and S are d-separated conditional on

Y , X and S are conditionally independent given Y in distribution P .

The construction BN to diagnose selection biased problem can be based on

the investigators understanding of the relationships and dependencies among

variables which usually bear a causal effect interpretation. A direct edge from

X → Y implies X is a cause of Y and Y is the effect of X. A missing link

between them implies that they have no direct causal effect. The causal effect

interpretation of the BN helps domain expert easily encode their assumption

into a DAG from which useful independence relationships can be inferred.

However, that is not the only way to construct a BN. In many practical settings

the BN is unknown and one needs to learn it from the data de Morais and

Aussem [2010]; Kojima et al. [2010]; Peña [2011]; Scutari and Brogini [2012];

Villanueva and Maciel [2012]. In our study, we always assume that a BN is

always be given.

The BNs in Figure 2.3 represent three types of selection bias discussed in

previous section. In Figure 2.3a, d-separation of S and Y given X implies

that S ⊥⊥ Y |X, which is covariate shift assumption. Similarly, d-separation

of S and X given Y in 2.3b implies prior probability shift assumption. In

Figure 2.3c, all variables are connected, thus it falls into complete selection

bias category.

3.1 Examples

To illuminate the nature of complete selection bias that arises in the complete

selection bias case, consider the examples depicted in Figure 2.4 and Figure 2.5.

The Bayesian network structures should be regarded as graphical structures
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X Y

S

(a) Covariate shift: Y ⊥⊥ S|X

X Y

S

(b) Prior probability shift: X ⊥⊥ S|Y

X Y

S

(c) Complete selection bias

Figure 2.3: Three types of selection bias represented by DAGs

encoding conditional independencies between X, Y , and S which may involve

other variables as well. We provide two concrete examples in Epidemiology

and Medicine for purposes of illustration.

Example 1 A medical example of selection bias shown in Figure 2.4 (where X

is a two dimensional vector (X1, X2)) was reported in Geneletti et al. [2009];

Horwitz and Feinstein [1978], and subsequently studied in Pearl [2012], in

which it was noticed that the effect of Estrogen, X2 (i.e., X \X1), on Endome-

trial Cancer, Y , was overestimated in the data studied. One of the symptoms

of the use of Estrogen is vaginal bleeding X1 and the hypothesis was that women

noticing bleeding are more likely to visit their doctors, causing women using

Estrogen to be overrepresented in the study. The exposure X2 and the disease Y

may be associated. However, this association is distorted because the selection

criteria favor women who have vaginal bleeding.

X \X1

X1

Y

S

Figure 2.4: Example of selection bias in Endometrial Cancer study where
Xs = {X1, Y }.
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Example 2 Figure 2.5 represents a case-control study reported in Hernán

et al. [2004] of the effect of postmenopausal estrogens, X, on the risk of myocar-

dial infarction, Y . The variable S indicates whether a woman in the population

study is selected for the case control study. The edge from disease status to se-

lection S indicates that cases in the cohort are more likely to be selected than

non case, which is the key feature of a case-control study. As women with a low

bone mass density, denoted by M , were preferentially selected as controls, M is

connected to S. The edge from X to M represents the protective effects of es-

trogens on the bone mass density. Note that Figure 2.5 is essentially the same

as Figure 2.4, except that we have now M is missing in the test set. This sit-

uation typically arises in various clinical studies or epidemiological scenarios,

where M is too difficult or costly to measure in the target population.

X

M

Y

S

Figure 2.5: Example selection bias in the study of the effect of postmenopausal
estrogens where Xs = {M,Y }.

The selection bias mechanisms shown in Figure 2.6a and 2.6b are simple

variations thereof. Example in selection bias shown in Figure 2.6c is another

example known as a M-structure.
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X \X1

X1

Y

S

(a) Xs = {X1, Y }

X

M

Y

S

(b) Xs = {M,Y }

X

M1 M2

Y

S

(c) Xs = {M1,M2}

Figure 2.6: Top figures: Covariate shift and prior probability shift. From (a)
to (e): Examples of complete selection bias mechanisms depicted graphically.
The S-control vector is shown along each plot.

3.2 Recoverability of Selection Bias in Graphical Model

Recent research by Bareinboim and Pearl [2012]; Bareinboim et al. [2014] pro-

vide probabilistic and graphical conditions for recovering probability distribu-

tion from selection biased data with and without unbiased data over a subset

of the variables.

3.2.1 Recoverability without External Data

Definition 4 Given a BN graph Gs augmented with a node S encoding the

selection mechanism, the distribution or conditional distribution Q is said to

be s-recoverable from selection biased data in Gs if the assumptions embed-

ded in Gs renders Q expressible in terms of the distribution under selection

bias P (v|S = 1). Formally, for every two probability distributions P1 and P2

compatible with Gs, P1(v|S = 1) = P2(v|S = 1) > 0 implies P1(v) = P2(v)

Theorem 9 The distribution P (y|x) is s-recoverable from Gs if and only if

(S ⊥⊥ Y |X).

Among three cases of selection bias, only covariate shift allows the conditional

distribution of y given x to be recoverable without external data. However
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recoverability of P (y|x) is not sufficient to correct the bias when the model is

misspecified, i.e. when the hypothesis space does not contain the true data

generating mechanism P (y|x) as discussed in the previous chapter. In such

case, the asymptotic optimal hypothesis on the training data may be different

than the asymptotic optimal hypothesis on the test data and both P (y|x) and
P (x) (or equivalently P (x, y)) are required to correct the bias.

3.2.2 Recoverability with External Data

Definition 5 Given a BN graph Gs augmented with a node S encoding the

selection mechanism, the distribution query Q is said to be s-recoverable from

selection biased data in Gs with external information over T ⊆ V and selec-

tion biased data over M ⊆ V if the assumptions embedded in Gs renders Q

expressible in terms of the distribution under selection bias P (m|S = 1) and

P (t), both positive. Formally, for every two probability distributions P1 and

P2 compatible with Gs, if they agree on the available distributions, P1(m|S =

1) = P2(m|S = 1) > 0, P1(t) = P2(t) > 0, they must agree on the query

distribution, QP1 = QP2.

Theorem 10 The bias-free distribution P (x, y) is recoverable from a S-bias

training samples if there exists a set of variables Xs that satisfies:

• S-bias training sample contains Xs

• The biased free distribution of Xs is estimable.

• Xs controls S over (X, Y ), i.e. S ⊥⊥ (X, Y )|Xs

• The support of P (xs|s = 1) contains the support of P (xs).

Under these conditions:

P (x, y) =
∑

xs\{x,y}
P (x, y, xs|s = 1)β(xs) (2.17)

Where β(xs) =
P (s=1)

P (s=1|xs)
.

In our notation, Xs may include X, a partial of X, Y , or some variables M

that is measure in training data but not in test data, e.g., bone mass density

in Example 2.
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Proof Bayes’ rule, we have

P (x, y, xs) =
P (x, y, xs, s = 1)

P (s = 1|x, y, xs)
.

In addition P (s = 1|x, y, xs) = P (s = 1|xs) since S ⊥⊥ (X, Y )|Xs. Therefore,

P (x, y, xs) = P (x, y, xs|s = 1)
P (s = 1)

P (s = 1|xs)
.

Finally,

P (x, y) =
∑

xs\{x,y}
P (x, y, xs)

=
∑

xs\{x,y}
P (x, y, xs|s = 1)β(xs)

Theorem 10 relies on a combination of data assumptions (P (xs) can be

estimated) and qualitative assumptions (Xs controls S over (X, Y )) that may

appear difficult to satisfy in practice. However, in certain domains like epi-

demiology, information about the selection process can sometimes be expressed

and modeled in a communicable scientific language (e.g., graphs or structural

equations) by the domain experts. Examples of common selection bias in

epidemiology can be found in Hernán et al. [2004].

Theorem 10 reduces the importance weight to only depends on xs, which is

measured in both training and external data set. It is also worth noting that

β(xs) can be reformulated as,

β(xs) =
P (xs)

P (xs|s = 1)
(2.18)

So β(xs) may be estimated from a combination of biased and external

data. Covariate shift and prior probability shift can be seen as special cases

this selection bias scheme where Xs = X for covariate shift and Xs = Y for

prior probability shift. Replacing β(x, y) by β(xs), the following results are

drawn directly from Lemma 5 and Theorem 6.
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Corollary 1 Given that condition of Theorem 10 is satisfied, if P̂ is a new

distribution such that

P̂ (x, y, xs, s) = P (x, y, xs, s)β(xs)

then

P̂ (x, y|s = 1) ≡ P (x, y).

Corollary 2 Given that the condition of Theorem 10 is satisfied, and P̂ in

Corollary 1, for all classifier h, all loss function l = l(h(x), y),

Ex,y∼P (l) = Ex,y∼P̂ (l|s = 1).

Ex,y∼P (l) is the loss that we would like to minimize and Ex,y∼P̂ (l|s = 1))

is the loss that may be estimated from the new biased sample drawn from the

weighted distribution P̂ .

Similarly, directly weighting loss function of a learning algorithm with β(xs)

will correct selection bias.

Corollary 3 The expectation of importance weighted loss with β(xs) over the

training distribution is equal to the expectation of loss over test distribution.

R(f) = EPte [l(f(x), y)]

= EPtr [β(xs)l(f(x), y)].

As a result, we can either use subsampling or modify the leaning algorithm

with importance weighted loss function to correct for selection bias.

4 Experimentation and Results

In this section, we assess the ability of importance weighting to remove com-

plete selection bias based on Theorem 10. In the first three toy experi-

ments (two regression problems and one classification problem), we investi-

gate whether covariate shift and prior probability shift corrections may help

reduce complete selection bias despite our assumptions between the training

and test distributions difference being violated (through an invalid choice for
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Xs). With this in mind, KMM (uLSIF will be used later on real data only) is

applied under three assumptions:

• Covariate shift (i.e., β(x) = P (x)
P (x|s=1)

or xs = x),

• Prior probability shift (i.e., β(y) = P (y)
P (y|s=1)

or xs = y, the importance

weight is estimated using the bias training data set and an unbiased data

set that contains only labels),

• Complete selection bias (i.e., β(xs) =
P (xs)

P (xs|s=1)
, xs is correctly specified).

They are denoted KMM(X), KMM(Y ), KMM(Xs) in the sequel. The test

error will plotted as a function of the number of training points. All exper-

iments on synthetic data are repeated 30 times for each number of training

points. The reported errors are average values. We examine: 1) the case

where the learning model is well-specified or misspecified and 2) when Xs is

not completely observed. The toy experiments are intended mainly to provide

a comparison between the above three estimators and the plug-in estimator

that estimates β(x) from the true (known) distribution, against the optimal

solution that consist of fitting the model directly on the test data. It should be

emphasized that neither KMM nor uLSIF requires any prior knowledge of the

true sampling probabilities. We then test our approach on real world bench-

mark data sets, from which the training examples are selected according to

various biased sampling schemes as suggested in Huang et al. [2006]. Finally,

we consider a plausible biased sampling schemes on a prospective cohort study

which included more than 7500 elderly osteoporotic women followed-up during

4 years.

4.1 Regression Problem with a Well-specified Model

Consider the S-bias mechanism displayed in Figure 2.7, where the feature X

has a uniform distribution in [0, 1]: P (X) ∼ U(0, 1). Note that the influence

of M on Y is mediated by {X,S}.
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X

M

Y

S

Figure 2.7: Selection mechanism in regression problem with a well-specified
model and Xs = {M,Y }.

The observations are generated according to y = 1− 0.5x and are observed

in Gaussian noise with standard deviation 0.5 (see Figure 2.8c); the black solid

line is the noise-free signal). The intermediate variable M , between X and S,

is generated according to M = X +N(0, 0.32). As M is only measured in the

training set, it is not used an input feature in our regression model. Therefore,

we are investigating a case where Xs is partially missing in the test set. The

probability of a given example being included in the training set depends on

Y and M and is given by

P (S = 1|m, y) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y −m, if 0.1 ≤ (y −m) ≤ 1

0.1, if (y −m) ≤ 0.1

1, otherwise

Note that the minimum value of P (S = 1|m, y) needs to be greater than 0

so that the support of P (m, y) is contained in the support of P (m, y|s = 1),

as required by Theorem 10. The choice of P (m, y) is intended to induce a

noticeable discrepancy between P (y|x, s = 1) and P (y|x). We sampled 200

training (red crosses in Figure 2.8c) and testing (grey circles) points from Ptr

and Pte respectively. The bias is clearly noticeable from the X-Y contour plots

in Figure 2.8a and b. The bias-free distribution P (x, y) is recoverable from

the S-bias training samples since {M,Y } satisfies Theorem 10. Thus we use

Corollary 3, to remove selection bias by weighting the squares loss on each

example of the linear model by the importance ratio:

β(xs) = β(m, y) =
P (m, y)

P (m, y|s = 1)
=

P (s = 1|m, y)

P (s = 1)

where P (s = 1|m, y) and P (s = 1) may be obtained from the known
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Test data
Biased training data
Best scenario
Fit without weighting

Fit with underlying probability
Fit with KMM on (M,Y)
Fit with KMM on X
Fit with KMM on Y

(c) Linear model fit

Figure 2.8: Toy regression problem 1. (a) and (b) Contour plots X-Y on
training and test sets; (c) Polynomial models of degree 1 fit with OLS and
WOLS.

selection mechanism shown above or directly estimated by KMM using training

and unlabeled data.

We attempted to model the observations with a linear model, which is

a well-specified model considering that the true generating function is also
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Figure 2.9: Average performances of four WOLS methods and OLS on the test
data as a function of the number of training points.

linear. The black dashed line in Figure 2.8c is a best-case scenario given our

test points, which is shown for reference purposes: it represents the model fit

using ordinary least squared (OLS) on the test set. The brown line is a second

reference result, derived only from the training data via OLS, and predicts

the test data very poorly. Note that unlike covariate shift where well-specified

model can perform well without importance weighting, in this case, selection

bias strongly affects the prediction performance even the learning model is

well-specified.

The green dashed line is a third reference result, fit with weighted ordinary

least square (WOLS), using the true β(xs) values calculated from the true data

generating mechanism, and predicts the test data quite well. The other three

dashed lines are fit with WOLS using the KMM weighting schemes under the
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three assumptions. Note that the true generating model between X and Y is

included in the hypothesis space.

We estimated the effect of the number of training points on the estima-

tion of the reweighting factors by examining the average mean square error

(MSE) on the test set as a function of the number of training points. As may

be observed in Figure 2.9, the error goes down as the sample size increases,

until it reaches an asymptotic value. KMM(Xs) performs well even with rel-

atively moderate amounts of data and achieves almost optimal error quite

quickly, handily outperforming the reweighting method based on KMM(X)

and KMM(Y ) by a noticeable margin. More interestingly, KMM(Xs) also

outperforms the reweighting method based on the true data generating mech-

anism, especially when the sample size is small. This result may seem counter-

intuitive at first sight: the reason is that the exact importance-sampler weights

are not always optimal unless we have an infinite sample size. See Shimodaira

[2000] for a thorough discussion. Remarkably, despite our assumption regard-

ing the difference between the training and test distributions being violated,

KMM(Y ) and KMM(X) improve the test performance. However, this im-

provement is not sufficient to correct totally the selection regardless of the

training sample size.

4.2 Regression Problem with a Misspecified Model

In this second toy experiment, our data are generated according to the non-

linear function. In addition, we assume that Y is directly dependent on the

missing variable M and not mediated by X and S as depicted in the S-bias

mechanism in Figure 2.10.

X

M

Y

S

.

Figure 2.10: Selection mechanism in regression problem with a misspecified
model and Xs = {M,Y }
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The input samples are generated according to X ∼ N(0, 0.3). The in-

termediate variable M is generated according to M = X + N(0, 0.32). The

observations are generated according to y = sinc(x) + 0.5m and are observed

in Gaussian noise with standard deviation 0.5 (see Figure 2.11c; the black

curve is the noise-free signal). Here again, we attempted to model the ob-

servations with a linear model which is misspecified, i.e. the true generating

model betweenX and Y is not included in the hypothesis space. The S variable

indicating actual selection to the training set is generated according to,

P (S = 1|m, y) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
m− y if 0.1 ≤ m− y ≤ 1

0.1 if m− y ≤ 0.1

1 otherwise

The distribution shift due to selection bias above is clearly noticeable from

the X-Y contour plots in Figure 2.11a and 2.11b. Here again, the bias-free dis-

tribution P (x, y) is recoverable from the S-bias training samples since {M,Y }
satisfies Theorem 10 (i.e., {X, Y } ⊥⊥ S|{M,Y }). Thus we use Corollary 3 to

remove selection bias.

As expected, KMM(Xs) compares more favorably to the other methods

and does exceptionally well even with moderate amounts of data. Note that,

contrary to the previous experiment, this is pretty much a dead heat between

KMM(X) and KMM(Y ) in terms of performance. Still, both approaches were

able to reduce the bias by a noticeable margin compared to the baseline un-

weighted approach (”no weighting”) although not being able to match the

best scenario where there is no selection bias. Note that because KMM(X)

and KMM(Y ) relies on the wrong assumptions about selection mechanism, we

can always hand-pick a selection scenario so that importance weighting that

solely relies on X or Y becomes less effective or even worse than the baseline

unweighted approach as we will see in the next experiment.

4.3 Toy Classification Problem

We now turn our attention to a synthetic classification problem. Consider the

S-bias mechanism depicted in Figure 2.13, where X consists of two variable

(X1, X2).
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Figure 2.11: Toy regression problem 2. (a) and (b) Contour plots X-Y on
training and test sets; (c) Polynomial models of degree 1 fit with OLS and
WOLS.

X2

X1

Y

S

Figure 2.13: Selection mechanism in classification experiment with Xs =
{X1, Y }.
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Figure 2.12: Average performances of four WOLS methods and OLS on the
test data as a function the number of training points of toy regression problem
2.

Two class of data present with the same probability

p(y = 1) = p(y = −1) = 0.5.

X2 depends on Y as P (X2|Y = 1) ∼ N(0, 0.5) and P (X2|Y = −1) ∼ N(2, 0.5).

Finally, X1 is generated according to X1 = X2/2 + ε, where ε ∼ N(0, 0.52).

It follows that the optimal decision boundary in terms of mean square er-

ror between positive-labeled and negative-labeled examples is the line x2 = 1.

While the labels are solely determined by the feature X2, labels are dependent

on X1 in the biased training set because conditioning on S opens a path be-

tween X1 and Y . Positive samples are preferentially selected to the training

set when they are close to the true decision boundary,
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P (S = 1|x1, y) ∼
⎧⎨
⎩0.2, if 0 ≤ x1 ≤ 1 and y = 1

1, otherwise
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Figure 2.14: Polynomial models of degree 1 fit with OLS and WOLS of toy
classification problem

500 training data points are plotted in Figure 2.14. As may be seen, the

selection causes some positive examples (black cross sign) to be excluded from

the training set while all the negative examples (brown circle) are included. A

linear function f(x1, x2) is trained to minimize the Mean Square Error (MSE)

on the training set. Due to selection bias the boundary learned on biased

training set (brown solid line) is shifted and rotated. The set of variable that

controls the selection mechanism is Xs = {X1, Y } since S ⊥⊥ X, Y |{Y,X1}.
Importance weighting using the underlying probability (green dashed line)

and KMM on Xs (blue dashed line) achieve a MSE almost as low as the

best possible model when training sample size is large enough as can be seen
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Figure 2.15: Average performances of four WOLS methods and OLS on the test
data as a function the number of training points of toy classification problem.

in Figure 2.15. KMM(X) (red dashed line) amplifies the current selection

bias, causing a higher classification error rate with respect to the unweighted

baseline method. This can be seen as an example of a bias amplification caused

by an inappropriate choice of variates to control.

In contrast, KMM(Y) (purple dashed line) adjusts the proportion of positive-

labeled and negative-labeled in the training set and reduces the bias by 75%

as shown in Fig.2.15. However this improvement can easily be reversed if we

choose a different selection mechanism as can be seen in example below.

Example 3 Consider a learning problem where the training and test distribu-

tion are shown in Table 2.1 and Table 2.2.
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p(x, y|s = 1) y = 0 y = 1

x = 0 0.375 0.25

x = 1 0.25 0.125

Table 2.1: Train distribution

p(x, y) y = 0 y = 1

x = 0 0.4 0.1

x = 1 0.1 0.4

Table 2.2: Test distribution

The optimal prediction for this learning problem is y = f0(x) = x, which

achieves a prediction error of 20%. However, under the given selection bias, the

prediction function learned from the training data (assumed to be large enough)

will be y = f1(x) = 0, which predicts correctly only 50% of the test data. This

selection bias is controlled by both x and y. If we make a wrong assumption

about the selection mechanism, e.g.,the prior probability shift, we will apply

the importance weight β(y) as shown in Table 2.3 and get the training data set

that follows a weighted distribution as shown in Table 2.4. Consequently, we

learn the prediction function y = f2(x) = 1−x, which predicts incorrectly 80%

of test data, worse than the unweighted model. Therefore, using importance

weight with prior probability shift assumption is harmful in this case.

β(y) y = 0 y = 1

x = 0 0.8 1.3333

x = 1 0.8 1.3333

Table 2.3: Importance weight
assuming prior probability
shift.

pw(x, y) y = 0 y = 1

y = 0 0.3 0.3333

y = 1 0.2 0.1667

Table 2.4: Weighted distribu-
tion.

The conclusion we can draw from these toy experiments is that complete

selection bias could be corrected if we are able to estimate β(xs) with sufficient

confidence. As the number of training samples increases, the method’s predic-

tion error converges to the unbiased error. KMM(Xs) results are comparable

and sometime better with respect to the underlying probability method. While

KMM(Xs) is far superior to both KMM(Y) and KMM(X), it is worth mention-

ing that KMM(Y) and KMM(X) could improve test performance significantly

in some cases and amplify selection bias in some other cases. Therefore, se-

lecting a correct set of variables to be controlled is critical in correcting for

selection bias. If we make a wrong assumption about the selection mechanism,
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the result could be very random. A similar problem of bias amplification when

wrong variables are adjusted can be found the causal inference domain (Pearl

[2010] ). Finally, it should also be noted that the external data used to estimate

the importance weight in KMM(Xs) are labeled data with partial feature vec-

tor (not all features have to be included). This requirement seems to severely

restrict the application of our approach in practice. However, labeled data

with few features at population level are a lot easier to find than the labeled

data with full feature vector in many cases. For instance, the distribution of

a certain diseases at different age is quite easy to find from the public domain

or from combining data of many researches. As a result, if the variables that

control the selection of patients into the study are patients’ age and the disease

itself, we can use those available data to correct for the selection bias.

4.4 Real-world Data sets

In the following experiments, we examine whether using importance weighting

can reduce selection bias in 10 UCI data sets with 5 classification tasks and 5

regression tasks. We employ three methods to estimate importance weighting:

ratio of underlying probability, KMM, and uLSIF and compare their perfor-

mance against the baseline unweighted method.

For each data set, Xs is chosen to be the label Y and the most correlated

input variable to Y (denoted as X1 for simplicity). The choice of X1 is to

induce a clear effect of selection bias. In fact, X1 can be a set of variables and

in the extreme case, it could include all the parent nodes of Y , making the

external data needed for the selection bias correction be sufficient for predicting

the label Y . In that case, we can just ignore the biased training data and use

the external data set, if it is available, to build the prediction model. However,

we argue that in practice unless in adversarial cases, the selection mechanism

is normally controlled by very few variables whose prediction power can hardly

dominate that of other variables in the study. Therefore, using X1 to predict

Y yields a much worse prediction accuracy compared to using the full feature

vector even under selection bias.

The selection bias mechanism is illustrated in Figure 2.16.

67



X \X1

X1

Y

S

Figure 2.16: Selection mechanism in real world data set experiment with
Xs = {X1, Y }

The selection variable S for each training example is determined according

to two scenarios depending on whether it is regression or classification problem.

For regression problem, we use

P (s = 1|x1, y) =
exp(ax1 + by + c)

1 + exp(ax1 + by + c)
,

where a, b, c, are parameters that determine the bias and showed in Table 2.5,

along with information of each data set.

Data set dim # train # test σ a b c

India diabetes 8 400 208 1e-4 0.5 - -

Ionosphere 34 250 128 0.1 0.5 - -

BreastCancer 10 300 158 0.01 0.5 - -

Haberman 3 200 105 0.05 0.5 - -

GermanCredit 24 700 375 1e-5 0.5 - -

Airfoil self noise 5 1000 492 0.1 1 1 0

Abalone 8 2000 1360 0.1 1.5 -1 1

Computer Hardware 9 100 53 1e-4 1 -2 0

Auto MGP 8 300 173 0.1 1 -1 0

Boston Housing 13 300 92 0.01 1 1 0

Table 2.5: UCI data sets characteristics, Gaussian kernel width, and bias
parameters. Parameters b and c are not used for classification tasks.

For binary classification problem, we use:
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P (s = 1|x1, y) =

⎧⎨
⎩a if x1 > mean(x1) and y = 1

1, otherwise

.

For each data set, we then train 4 predictive models learned under the four

weighting schemes discussed above and a model learned from the unbiased

data (baseline) using SVM-light (Joachims [1998]) which allows importance

weighting to be fed directly to SVM. All classifiers are trained with the common

Radial Basis Function (RBF), with a kernel size σ chosen through a 5-fold

cross validation. This procedure is repeated 100 times for each data set. The

performance metrics we use are averaged test errors for classification problems

and normalized mean square errors (NMSE) given by

1

nte

nte∑
i=1

(ytei − ŷi)
2

var(yte)

for regression problem.

The numerical results are reported in Table 2.6 and visualized in Figured

2.18. As may be seen, all importance weighting schemes achieve lower pre-

diction error with respect to the baseline unweighted scheme. The underlying

probability weighting scheme performs pretty good.

Curiously, on the Boston Housing data set, all the three weighting schemes

perform worse than the baseline unweighted method. This is an example

showing that the increase of variance due to importance weighting may exceed

its bias correction effect, worsening the overall performance. Figure 2.17 shows

that the prediction error on the Boston Housing data set is much more sensitive

to training sample size than other data set, e.g. the Airfoil Self Noise data set,

on which importance weighted models perform well. Therefore the reduction

of the effective training sample size due to importance weighting have a much

deeper impact on the Boston Housing than on other data set.
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Figure 2.17: MSE vs. training sample size on Boston Housing and Airfoil Self
Noise data sets.
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Importance Weighted Cross Validation for Selecting Weighted or

Unweighted Model

The importance weighting has two effect on the learning algorithms: the bias

correction and the effective training sample size reduction. The former im-

proves while the later worsens the algorithms’ overall performance. Which

effect dominates the other is data-dependent and cannot be determined the-

oretically. Therefore, we employ IWCV, which was proven to be almost un-

biased, to avoid using importance weighted model when its training sample

size reduction effect dominates its bias correction effect. We repeat the exper-

iments with UCI data sets, adding a 10-fold IWCV for each weighting scheme.

For each of the 100 trials on each data set and each weighting scheme, we only

use a weighted model to predict test data when it outperforms unweighted

model; otherwise we use unweighted model.

The numerical results are visualized in Figured 2.19. With IWCV, all

the three weighting scheme still perform worse than unweighted model on

Boston Housing data set but with a very small margin because IWCV is able

to detect that the weighted model is worse than unweighted model most of

the time (83/100 trials with KMM, 93/100 trials with uLSIF, 85/100 trials

with underlying probability weighting). On the other hand, IWCV can only

detect 47/100 trials where weighted model with KMM performs worse than

unweighted model on Auto MGP data set. This and the fact that the other

two weighting scheme perform pretty well on the same data set (reduce over

20% of MSE) suggest that the importance weight on Auto MGP data set

estimated by KMM is not a good approximation of the true importance weight.

This is an example showing that the overall performance of the importance

weighting methods depend not only on the trade-off between bias reduction

effect and effective training sample size reduction effect but also on how good

the importance weight is estimated.

Non-parametric Test of Experiment Result

In order to better assess the overall results obtained for each of 4 weighting

schemes, a non-parametric Friedman test was firstly used to evaluate the re-

jection of the hypothesis that all the models perform equally well (except the
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unbiased model of course) at significant level 5%. Statistically significant dif-

ferences were observed. So we proceeded with the Nemenyi post hoc test. The

results along with the average rank diagrams are shown in Fig. 2.20. The ranks

are depicted on the axis, in such a manner that the best ranking algorithms

are at the rightmost side of the diagram. The algorithms that do not differ

significantly (at p = 0.05) are connected with a line. As may be observed in

Figure 1, contrary to uLSIF, KMM is significantly better than no weighting.

KMM on Xs

Underlying probsNo weighting

uLSIF on Xs

Critical Difference = 1.5

5 4 3 2 1
Average Rank

Figure 2.20: post hoc analysis

4.5 Hip Fracture Data

We next test our selection bias correction method on EPIDOS samples Cail-

let et al. [2015] which included more than 7598 elderly osteoporotic women

followed-up during 4 years. Women who were not able to walk independently

and those who had a hip fracture or bilateral hip replacement were excluded

The goal is to discriminate between individuals of the positive class (having

hip fracture) from negative class based on 14 available features described in

Table 2.7. The data set is highly imbalanced with only 293 positive example,

so we sample to keep only 4% negative examples and also remove examples

with missing value to simplify the problem.

We simulate a synthetic selection bias scenario that the chronicle diseases

(X1) and the hip fracture Y have a negative effect on the inclusion of an

example into the training sample, following the Table 2.8. In this scenario,

women who have many (≥ 2 chronicle diseases, or hip fracture have some
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probability b
2
≥ 0, where b represents the bias level, to fail to follow up with

the experiment, thus be excluded from the training set. This probability is

increased to b if they have both many chronicle diseases and hip fracture. This

is a typical survival bias in epidemiology.

Name Description Values

Fracture Hip-fracture during the 4-years
follow-up

binary

Age Age at study inclusion < 80, 80 ≤ 85,
85 ≤ 90, > 90

Chron disease Number of chronic diseases binary: < 2, ≥ 2
Psycho Use of sedatives or anxiolytics at

inclusion
binary

Vit D Use of vitamin D at inclusion or
history of vitamin D one year be-
fore inclusion

binary

Gluco Use of glucocorticoids at inclusion
or history of glucocorticoids one
year before inclusion

binary

Alcohol Daily intake of alcohol in g binary: 1 ≤ 20,
> 20

Tobacco Tobacco smoking none, former, ac-
tual

Gait speed Gait speed at inclusion in m/s < 0.60, 0.6 ≤
0.85, 0.85 ≤ 1,>
1

Test 5 Five chair test (time to sit down
and stand up five times) in s

1 ≤ 9, 9 ≤ 16,
16 ≤ 23,> 23,
incapable

BMI Body mass index at inclusion low, normal,
obesity

BMD T-score of BMD of the neck at in-
clusion

binary: normal
or ≤ 1, ≤ 2.5

Falls Number of falls during 6 months
before inclusion

binary: ≤ 2, > 2

Earl Frac History of fracture from age of 55
to inclusion

binary

Par Frac History of hip-fracture in the par-
ents

binary

Table 2.7: Variables included in the study.
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X1 Y S=0 S=1
X1 = 1 0 b/2 1-b/2
X1 = 1 1 a 1-b
X1 = 0 0 0 1
X1 = 0 1 b/2 1-b/2

Table 2.8: Probability of S given X1,Y.

We then train a SVM classifier on biased data under the four weighting

schemes discussed in previous experiments and a classifier on unbiased data

for reference. All classifiers are trained with Radial Basis Function (RBF),

C = 1 and kernel size σ = 0.1, which is chosen through a 5-fold cross valida-

tion. We vary the bias level, b, from 0.2 to 0.95 and repeat this experiment

100 times. The result plotted in Figure 2.21 shows that all three importance

weighting schemes perform well and help reduce some bias compared to un-

weighting model. We observe that the improvement of importance weighting is

high when bias level is up to 0.9. Above this range, the improvement is reduced.

This implies that when selection bias is too strong, importance weighting may

increase the variance significantly, reducing the overall performance. However,

overall, the importance weighting is effective for this specific data set for se-

lection bias in the experimented range. We also notice that the underlying

probability weighting method works slightly better then the other two at all

bias level. Finally, IWCV has very little impact on this data set since weighted

models outperform unweighted model with a clear margin.

5 Discussion & Conclusion

The results presented in this chapter show that importance weighting method

that exploits the assumptions deemed plausible about the sampling mecha-

nism is able to correct or reduce selection bias. The method hinges on the

existence of a bias control feature vector, Xs, and an additional (biased-free)

sample that allows us to estimate the distribution ofXs. We showed that direct

weighting estimation is able to achieve significant improvements in regression

and classification accuracy over the unweighted method, using toy problems,

benchmarks from UCI, and a prospective cohort study. The correctness of the
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Figure 2.21: Classification performance vs. bias level, b, on hip fracture data
set

bias-control feature vector plays a critical role in this improvement. Although

we observe in our experiment that the weighting schemes could perform well

in many situations where our key assumption is not valid (assuming covariate

shift and prior probability shift instead of complete selection bias), there still

exist situations where the weighting schemes worsen the performance of learn-

ing algorithms when the assumption about the selection mechanism is invalid.

So we caution the hurried researcher against correcting for selection bias with

invalid assumptions, as it may have harmful consequences on the model per-

formance. In fact, all conclusions are extremely sensitive to which variables

we choose for Xs. As the choice of Xs usually reflects the investigator’s sub-

jective and qualitative knowledge of statistical influences in the domain, the

data analyst must weight the benefit of reducing selection bias against the risk

of introducing new bias carried by unmeasured covariates even where none

existed before. Nevertheless, we hope this study will convince others about

the importance of selection bias correction methods in practical studies and
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suggest relevant tools which can be used to achieve that goal.

Another difficulty posed by the selection bias problem is that given the key

assumptions about the selection mechanism is valid, the gain in accuracy of

the weighting scheme is still data dependent. Fortunately, IWCV can detect

when the training sample size reduction effect of the importance weighting

dominates its bias correction effect. Therefore, using IWCV, we can reliably

decide when to use weighted model to correct selection bias and when to use

unweighted model and accept that the training sample size is not sufficient for

the importance weighting.
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Chapter 3

Improving Importance

Weighting in Covariate Shift

Correction

Importance weighting has been shown in previous chapter to be an effective

technique to deal with selection bias. We has also demonstrated that bias

in covariate shift is caused only by the model mispecification and not by the

change of decision boundary. Therefore using weighting model to predict every

test instance may be excessive since importance weighting usually produces a

side effect of effective sample size reduction, which is harmful in many cases.

In this chapter, we show analytically that, while the unweighted model is

globally more biased than the weighted one, it may locally be less biased on

low importance instances. In view of this result, we then discuss a manner

to optimally combine the weighted and the unweighted models in order to

improve the predictive performance in the target domain. We conduct a series

of experiments on synthetic and real-world data to demonstrate the efficiency

of this approach. A version of this chapter has been presented at ECML2015

conference (Tran and Aussem [2015a]).

1 Expectation and Local Expectation of Loss

We first define some key concepts used along the chapter and state some results

that will support our analysis. We are interested in predicting the output value

80



y at an input point x using a model hθ(x) = h(x, θ) parameterized by θ ∈
Θ ⊂ Rm. Under covariate shift assumption, the test inputs follow a different

probability distribution pte(x) while the conditional probability distribution of

test output p(y|x) remains unchanged. The ratio β(x) = pte(x)
ptr(x)

is called the

importance of x. Given a loss function l(h(x, θ), y) : Y× Y → [0,∞), we shall

consider throughout this chapter, the following loss functions:

• EL-Tr: Expectation of loss over training distribution p(x, y) = ptr(x)p(y|x)

Loss0(hθ) = Ex,y∼p[l(h(x, θ), y)] =

∫
ptr(x)

∫
p(y|x)l(h(x, θ), y)dydx

• EL-Te: Expectation of loss over test distribution p′(x, y) = pte(x)p(y|x)

Loss1(hθ) = Ex,y∼p′ [l(h(x, θ), y)] =

∫
pte(x)

∫
p(y|x)l(h(x, θ), y)dydx

• EL-IWTr: Expectation of Importance-weighted loss over training dis-

tribution

Lossβ(hθ) = Ex,y∼p[β(x)l(h(x, θ), y)]

• B-LEL-Te: We then define Local Expectation of loss over test distribu-

tion given β(x) ≤ B of any given hypothesis hθ:

loss(hθ, β(x) ≤ B) =

∫
β(x)≤B

pte(x)

∫
Y

p(y|x)l(h(x, θ), y)dydx

B-LEL-Te can be seen as a generalization of EL-Te since

loss(hθ, β(x) ≤ ∞) = Loss1(hθ)

We also define the optimal parameters of EL-Tr, EL-Te and EL-IWTr:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
θ0 = argminθ Loss0(hθ)

θ1 = argminθ Loss1(hθ)

θβ = argminθ Lossβ(hθ).

It may easily be shown that EL-IWTr is equal to EL-Te,
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Ex,y∼p[β(x)l(h(x, θ), y)] =

∫
ptr(x)

∫
p(y|x)pte(x)

ptr(x)
l(h(x, θ), y)dydx

=

∫
pte(x)

∫
p(y|x)l(h(x, θ), y)dydx

Therefore, minimizing EL-IWTr is equivalent to minimizing EL-Te. Nonethe-

less, while hθβ is globally less biased than hθ0 , we will show next that it is

more biased than hθ0 on low-importance instances. Note that B-LEL-Te can

be rewritten as:

loss(hθ, β(x) ≤ B) =

∫
β(x)≤B

β(x)

∫
Y

ptr(x)p(y|x)l(h(x, θ), y)dydx

Suppose β(x) takes on continuous value in [b0, bM ] where b0 > 0, we may

rewrite B-LEL-Te as following:

loss(hθ, β(x) ≤ B) =

∫ B

b0

b

∫
β(x)=b

∫
Y

ptr(x)p(y|x)l(h(x, θ), y)dydxdb

Let L(hθ, β(x) = b) =
∫
β(x)=b

∫
Y
ptr(x)p(y|x)l(h(x, θ), y)dydx, then:

loss(hθ, β(x) ≤ B) =

∫ B

b0

bL(hθ, β(x) = b)db

Similarly, if β(x) takes on discrete values in {bi}Mi=0 such that b0 < b1 <

... < bM , we rewrite B-LEL-IWTr as:

loss(hθ, β(x) ≤ B) =

k(B)∑
i=0

biL(hθ, β(x) = bi)

where k(B) is the largest integer such that bk(B) ≤ B. From the definitions

above, we may write
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Loss1(hθ) = loss(hθ, β(x) ≤ bM),

Loss0(hθ) =
∫∞
b0

L(hθ, β(x) = b)db, for continuous β(x),

Loss0(hθ) =
∑M

i=0 L(hθ, β(x) = bi), for discrete β(x).

As aforementioned, a model h(x, θ) is said to be correctly specified if there

exist parameter θ∗ ∈ Θ such that h(x, θ∗) = f(x), otherwise it is said to be

misspecified. It is obvious that if a model is correctly specified, the optimal

parameter θ of EL-Tr, EL-Te, and any B-LEL-Te coincide. Therefore, the

model that minimizes EL-Tr will perform well on the test data globally (i.e.,

minimizing EL-Te) as well as locally (i.e., B-LEL-Te) in any region of the form

β(x) < B. Yet, in practice, almost all models are more or less misspecified.

So minimizing EL-Tr θ0 is not necessarily equivalent minimizing EL-Te. Since

EL-Te is equal to EL-IWTr, the parameter minimizing of EL-IWTr θβ, which

can be estimated from data, will also minimize EL-Te as shown in Shimodaira

[2000], Zadrozny [2004]. However, due to the model misspecification, θβ does

not necessarily minimize B-LEL-Te. In fact, we will prove that there exist some

B∗(hθβ) ∈ [b0, bM ] such that B-LEL-Te of θβ exceeds that of θ0 by proving

a stronger conclusion that for all model hθ, with θ ∈ Θ, there exist some

B∗(hθ) ∈ [b0, bM ] such that B*-LEL-Te of hθ exceeds that of hθ0 , in other

words any hθ is locally more biased than hθ0 when predicting the instances

with β(x) ≤ B∗.

In addition, the estimation of θβ may subject to high variance since it

involves instance weighting. Hence the idea to use hθ0 of instead of hθβ to

predict the test instances with β(x) ≤ B∗.

2 Problem Analysis

In this section, we conduct theoretical analyses for a simple and then a more

general selection bias mechanism. Those analyses will be used to derive a

practical procedure aiming at reducing the bias due to covariate shift with

misspecified regression or classification learning models.

We first show how EL-Tr is related to B-LEL-Te,
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Lemma 11 Suppose β(x) takes on continuous value in [b0, bM ] with bM >

b0 > 0, then:

Loss0(hθ) =
1

bM
loss(hθ, β(x) ≤ bM) +

∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB

Proof For continuous β(x):

∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB =

∫ bM

b0

loss(hθ, β(x) ≤ B)d

(−1

B

)

= loss(hθ, β(x) ≤ B)

(−1

B

)
|bMb0 −

∫ bM

b0

−1

B
d(loss(hθ, β(x) ≤ B))

Recall that loss(hθ, β(x) ≤ B) =
∫ B

b0
bL(hθ, b)db, we have loss(hθ, β(x) ≤ b0) =

0 and d(loss(hθ, β(x) ≤ B)) = BL(hθ, β(x) = B)dB. Thus:

∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB =

−1

bM
loss(hθ, β(x) ≤ bM)

+

∫ bM

b0

1

B
(BL(hθ, β(x) = B)dB)

By definition, we have Loss0(hθ) =
∫ bM
b0

L(hθ, β(x) = B)dB, so:

∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB = − 1

bM
loss(hθ, bM) + Loss0(hθ)

which concludes the proof

A similar results holds in the discrete case.

Corollary 4 Suppose β(x) takes on discrete values {bi}Mi=0 such that b0 < b1 <

... < bM , then:

Loss0(hθ) =
1

bM
loss(hθ, β(x) ≤ bM) +

M−1∑
k=0

(
1

bk
− 1

bk+1

)
loss(hθ, β(x) ≤ bk).
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Proof

M−1∑
k=0

(
1

bk
− 1

bk + 1

)
loss(hθ, β(x) ≤ bk) +

1

bM
loss(hθ, β(x) ≤ bM)

=

(
1

b0
− 1

b1

)
[b0L(hθ, β(x) = b0)]

+

(
1

b1
− 1

b2

)
[b0L(hθ, β(x) = b0) + b1L(hθ, β(x) = b1)]

+ ...

+

(
1

bM−1

− 1

bM

)
[b0L(hθ, β(x) = b0) + ...+ bM−1L(hθ, β(x) = bM−1)]

+
1

bM
[b0L(hθ, β(x) = b0) + b1L(hθ, β(x) = b1) + ..+ bML(hθ, β(x) = bM)]

= b0L(hθ, β(x) = b0)

[(
1

b0
− 1

b1

)
+

(
1

b1
− 1

b2

)
+ ...+

(
1

bM−1

− 1

bM

)
+

1

bM

]
+ ...

+ bM−1L(hθ, β(x) = bM−1)

[(
1

bM−1

− 1

bM

)
+

1

bM

]

+ bML(hθ, β(x) = bM)

[
1

bM

]

=
M∑
i=0

L(hθ, β(x) = bi)

= Loss0(hθ)

In view of Corollary 4, we may now state the following theorem,

Theorem 12 Suppose there exists two real values, b0 and b1, such that b0 ≤
1 ≤ b1 and a subset X0 ⊂ X such that

β(x) =

⎧⎨
⎩b0 if x ∈ X0

b1 if x /∈ X0,

then there exists a threshold B∗ such that:

loss(hθ1 , β(x) ≤ B∗) ≥ loss(hθ0 , β(x) ≤ B∗).
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In fact, B∗ can take any value in [b0, b1).

Proof By definition, Loss0(hθ0) ≤ Loss0(hθ1), using Lemma 11, we may write:

Loss0(hθ0) =
1

b1
loss(hθ0 , β(x) ≤ b1) +

(
1

b0
− 1

b1

)
loss(hθ0 , β(x) ≤ b0)

=
1

b1
Loss1(hθ0) +

(
1

b0
− 1

b1

)
loss(hθ0 , β(x) ≤ b0)

Similarly,

Loss0(hθ1) =
1

b1
Loss1(hθ1) +

(
1

b0
− 1

b1

)
loss(hθ1 , β(x) ≤ b0)

Thus,

1

b1
Loss1(hθ0) +

(
1

b0
− 1

b1

)
loss(hθ0 , β(x) ≤ b0) ≤ 1

b1
Loss1(hθ1)

+

(
1

b0
− 1

b1

)
loss(hθ1 , β(x) ≤ b0)

Finally,

loss(hθ1 , β(x) ≤ b0)− loss(hθ0 , β(x) ≤ b0) ≥ b0
b1 − b0

[Loss1(hθ0)− Loss1(hθ1)]

It is easily shown that the right hand side of the inequality above is non-

negative due to the definition of θ1. It follows that

loss(hθ1 , β(x) ≤ b0)− loss(hθ0 , β(x) ≤ b0) ≥ 0

which, given the assumption about β(x), is equivalent to,

loss(hθ1 , β(x) = b0)− loss(hθ0 , β(x) = b0) ≥ 0

Thus the Theorem is true when B∗ = b0. It is also true for any other B∗ ∈
[b0, b1) as a consequence.

When the assumptions of Theorem 12 holds, we say that the covariate shift

scheme follows a simple step distribution. The equality in Theorem 12 only
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occurs when θ0 minimizes EL-Te and θ1 minimizes EL-Tr. Such condition in-

dicates that covariate shift does not have an effect on searching for optimal θ,

which is a rare case as shown by other studies. Theorem 12 shows that for

simple step distribution where inclusion in the training sample is either pro-

portional to b−1
0 (over-sampled instances), or to b−1

1 (under-sampled instances),

hθ0 exhibits a lower bias compared to hθ1 on the low importance test instances.

This type of selection bias mechanism is actually quite common. For instance,

prospective cohort studies in epidemiology are by design prone to covariate

shift because selection criteria are associated with the exposure to potential

risk factors.

Theorem 13 For all θ ∈ Θ, there exists a threshold B∗(hθ) such that

loss(hθ, β(x) ≤ B∗(hθ)) ≥ loss(hθ0 , β(x) ≤ B∗(hθ)) (3.1)

B∗(hθ) could take any value in the set below:

B∗(hθ) = argmax
B

(loss(hθ, β(x) ≤ B)− loss(hθ0 , β(x) ≤ B))

The equality occurs whenever θ1 is also a minimum for EL-Tr.

Proof We prove by contradiction that Theorem 13 holds. Assume that in-

equality 3.1 does not hold for B∗(hθ) defined above:

loss(hθ, β(x) ≤ B∗(hθ))− loss(hθ0 , β(x) ≤ B∗(hθ)) < 0 (3.2)

By definition of B∗(hθ), we may show that, for all B ∈ [b0, bM ],

loss(hθ, β(x) ≤ B)− loss(hθ0 , β(x) ≤ B) < 0

Thus, for all B ∈ [b0, bM ]

loss(hθ0 , β(x) ≤ B) > loss(hθ, β(x) ≤ B)

Now, using Lemma 11 for continuous β(x), we have:
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Loss0(hθ0) =
1

bM
loss(hθ0 , β(x) ≤ bM) +

∫ bM

b0

1

B2
loss(hθ0 , β(x) ≤ B)dB

>
1

bM
loss(hθ, β(x) ≤ bM) +

∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB

= Loss0(hθ)

Hence, Loss0(hθ0) > Loss0(hθ), contradicts the fact that

θ0 = argminθ Loss0(hθ) is the optimal hypothesis under the unweighting scheme

and θ �= argminθ Loss0(hθ).

If the two terms in inequality3.1 are equal, then we can prove similarly

that Loss0(hθ0) = Loss0(hθ), which implies that θ1 is also a minimal solution

of EL-Tr. The demonstration for discrete β(x) values follows similarly.

Theorem 13 states that any model hθ with θ ∈ Θ is outperformed by hθ0

learned from the unweighted training samples in terms of bias when predicting

examples with β(x) ≤ B∗(hθ). This is also applied to model hθβ which mini-

mizes EL-IWTr. In addition, the estimation of θβ may exhibit a higher variance

due to the effective sample size reduction as discussed in Cortes et al. [2010];

Gretton et al. [2009]. These results altogether suggest that hθ0 should be pre-

ferred to hθβ for predicting the instance’s outputs in the region β(x) ≤ B∗(hθ),

termed low-importance region. Therefore, for any learning task with co-

variate shift, we shall train two distinct models, one with and the other without

the importance weighting scheme. Then, we shall use the latter to predict in-

stances satisfying β(x) ≤ B∗(hθ) and use the former to predict the remaining

instances. The optimal value for B∗(hθ) may be estimated from the train-

ing data. The set of all possible empirical threshold B̂∗(hθβ) can be obtained

empirically by solving the following problem :

B̂∗(hθ) = argmax
B

1

n

∑
i∈{1,..,n}
β(xi)≤B

β(xi)[l(yi, h(xi, θβ))− l(yi, h(yi, θ0))] (3.3)

As n grows to infinity, it follows from the law of large numbers that,

88



B̂∗(hθ) → B∗(hθ)

Therefore, B∗(hθβ) could be estimated empirically either from training data

or by cross validation. In this study, we use a 5-fold importance weighted

cross validation to estimate B∗(hθβ) as suggested in Sugiyama et al. [2007b].

It should be emphasized that B∗(hθβ) is not necessarily unique. For instance,

any value between b0 and b1 in Theorem 12 is admissible as mentioned earlier.

For a fixed hθ equation 3.3 can be solved by first calculate:

L̂(B) =
1

n

∑
i∈{1,..,n}
β(xi)≤B

β(xi)[l(yi, h(xi, θβ))− l(yi, h(yi, θ0))]. (3.4)

Then B̂∗(hθ) is the maximum of L̂(B). The complexity of calculating L̂(B)

and finding the maximum is only O(n) since for any B′ > B, L̂(B) can be

expressed as following:

L̂(B′) = L̂(B) +
1

n

∑
i∈{1,..,n}

B<β(xi)≤B′

β(xi)[l(yi, h(xi, θβ))− l(yi, h(yi, θ0))].

3 Performance of Hybrid Model vs. Impor-

tance Weight

In this section, we assess the ability of our ”hybrid approaches” to reduce the

learning bias under covariate shift based on Theorem 13 and 12. We employed

two strategies to estimate the importance weights: one is based explicitly on

the true bias mechanism, the other is based on Unconstrained Least-Square

Importance Fitting (uLSIF), a method that estimates β(x) in both training

and test data. Our method is not applicable to KMM since it requires the

importance weight to be estimated in both the training and the test data

while KMM can only estimate the former. We test our approaches on several

real world benchmark data sets, from which the training examples are selected

according to various biased sampling schemes as suggested in Kanamori et al.

[2009].
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Figure 3.1: Distribution change and true importance weight in the toy problem.

3.1 Toy Regression Problem

Consider the following training data generating process: x ∼ N(μ0, σ0) and y =

f(x)+ε, where μ0 = 0, σ0 = 0.5, f(x) = −x+x3, and ε ∼ N(0, 0.3). In the test

data, we have the same relationship between x and y but the distribution of the

covariate x is shifted to x ∼ N(μ1, σ1), where μ1 = 0, σ1 = 1. The training and

test distributions, along with their ratio are depicted in Figure 3.1a and 3.1b.

The minimization of EL-Tr is obtained using the unweighted Least Square

Regression (uLSR) method for the normal regression while minimization of

EL-Te is performed by the weighted Least Square Regression (wLSR). As

shown in Shimodaira [2000], wLSR is unbiased thus it should perform better

than uLSR, which is biased, on test data. However, as can be seen in Figure

3.2a, uLSR (red dashed line) seems to better approximate the y = f(x) curve

(in blue) than wLSR (black dashed line) on instances in the interval (−1, 1). As

may be seen in Figure3.2b, the hybrid model that optimally combines wLSR

and uLSR, based on Theorem 1, achieves a lower Mean Square Error (MSE)

compared to wLSR. The experiment was repeated 30 times for each number of

sample size. It should be noted that the hybrid model always outperforms the

weighted model and the gain in performance on the test set is more noticeable

for larger training sizes.
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Figure 3.2: An illustrative example of fitting a function f(x) using a linear
model with or without the weight importance scheme (wLSR/uLSR) and a
combination of both (termed ”Mix”).
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3.2 Simple Step Sample Selection Distribution

In this experiment, we consider a simple step distribution with known or esti-

mated selection probabilities and we apply this selection scheme on a variety of

UCI data sets in order to assess the efficiency of our bias correction procedure

in more realistic scenarios. We use a SVM classifier for both classification and

regression tasks. Experiments are repeated 50 times for each data set. In each

trial, we randomly select an input feature xc to control the bias along with

100-300 training samples and 200-900 examples without label. We then apply

the following single step probability distribution as discussed in Theorem 12,

P (s = 1|x = xc
i) = ps =

⎧⎨
⎩p1 = 0.9, if xc

i ≤ mean(xc)

p2 = 0.9
1+exp(r)

, otherwise

where r is a parameter that controls the strength of the selection bias. In

each trial r takes a random value from a normal distribution N(2, 0.1). With

these parameters, the selection probability for instances having an xc value

(e.g. a degree of exposure to some risk factor) above the mean is between 7 to

10 times smaller than for those having of a lower value. This is a scenario that

typically arises in epidemiological cohort studies when subjects are includes

in the study according to some exposure factor. Consider the two following

weighting schemes. The first one: β = pte(x)/ptr(x) = p(s = 1)/p(s = 1|x) ∼
1/ps assumes that the bias mechanism is known exactly.

β(x) ∼ p−1
s ∼

⎧⎨
⎩b1 = 1, if xc

i ≤ mean(xc)

b2 = 1 + exp(r), otherwise.

In practice, however, the selection probability is rarely known exactly. So

let us assume that the estimation of β is subject to some error and let us

consider the following approximate weighting scheme:

β̂(x) ∼ p−1
s ∼

⎧⎨
⎩b1 = 1, if xc

i ≤ mean(xc)

b2 = 1 + exp(r̂), if otherwise

where r̂ = r + N(0, 0.1) is our noisy estimate of r. For each weighting

scheme, we fit a true weighted model (denoted as P in Table 3.1) and an ap-
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Figure 3.3: MSE gain (over weighted model) of the mix data vs. MSE gain
mix model under simple step distribution covariate shift. Points below the
diagonal line indicate that the mix data outperforms the mix model. The
importance weight is estimated based on the true selection probability (Figure
a) and based on the estimated selection probability (Figure b).

proximated weighted model (denoted as P̂ ). As p1 < 1 and p2 > 1, our weight-

ing mechanism satisfies the assumptions of Theorem 12, so we set B∗ = 1. We

report the mean square errors (MSE) in Table3.1. All values are normalized

by the MSE of the unweighted model (our gold standard). As may be seen

from the plots in Figure3.3a and 3.3b, the combined models outperform the

weighted ones. That is, when using either exact probability ratio, the results

obtained with Pmix are better than that of P . The same observation can be

made when the estimated probability ratios are used instead (i.e., P̂mix versus

P̂ ) except on the Banknote data set. The gain is significant at the significance

level 5% using the Wilcoxon signed rank test.
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3.3 General Selection Mechanisms

In this last experiment, we use the same setting as above but we use a more

general distribution:

P (s = 1|x = xc
i) = ps =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p1 = 0.9 if xc

i ≤ mean(xc)

p2 = 0.1 if xc
i > mean(xc) + 0.8× 2σ(xc)

p3 = 0.9− xc
i−mean(xc)

2σ(xc)
otherwise.

where σ(xc) denotes the standard deviation of xc. As may be observed,

the assumptions required in Theorem 12 do not hold anymore with this more

general sample selection distribution. According to Equation 3.3, we need to

estimate B̂∗(hθ) empirically from data. We consider again two importance

weighting schemes: one is based on the true underlying probability and is

referred to as P , while the other is based on the uLSIF estimator. As may

be observed from Table 3.2, Figure 3.4a, and Figure 3.4b that performances

of the hybrid models are significantly improved with respect to the weighted

models, except with the Congressional Voting and Banknote data sets.

4 Conclusions

In this chapter, we showed that the standard importance weighting approach

used to reduce the bias due to covariate shift can easily be improved when

misspecified training models are used. Considering a simple class of selection

bias mechanisms, we proved analytically that the unweighted model exhibits

a lower prediction bias compared to the globally unbiased model in the low

importance input subspace. Even for more general covariate shift scenarios,

we proved that there always exist a threshold for the importance weight below

which the test instances should be predicted by the globally biased model. In

view of this result, we proposed a practical procedure to estimate this threshold

and we discussed a simple procedure to combine the weighted and unweighted

prediction models. The method was shown to be effective in reducing the bias

on both synthetic and real-world data.
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model under general distribution covariate shift. Points below the diagonal line
indicate that the mix data outperforms the mix model. The importance weight
is estimated based on the true selection probability (Figure a) and based on
the estimated selection probability (Figure b).
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Chapter 4

Selection Bias as a Missing Data

Problem

Importance weighting, even when being used partially as in previous chapter

still reduces the effective sample size, which is harmful when the initial train-

ing sample size is already small. In this chapter, we show that there exists

a weighting scheme on the unlabeled data such that the combination of the

weighted unlabeled data and the labeled training data mimics the test distribu-

tion. We further prove that the labels are missing at random in this combined

data set and thus can be imputed safely in order to mitigate the undesirable

sample-size-reduction effect of importance weighting. A series of experiments

on several synthetic and real-world data sets are conducted to demonstrate

the efficiency of our approach. A version of this chapter has been presented at

ESANN2017 conference (Tran and Aussem [2017]).

1 Introduction

In previous chapter we discussed the fact that reweighting methods do not nec-

essarily improve the prediction accuracy as they reduce the effective training

sample size and presented the hybrid model approach that used partially the

weighted model and partially the unweighted model on test data. The reduc-

tion of sample size becomes more severe when the initial training sample size

is small even for the hybrid model. Another drawback of current importance

weighting approaches is that the unlabeled data set are usually discarded once

98



the importance weights are estimated. Some information is lost in the process.

To our best knowledge, non of the existing methods to deal with covariate

shift takes advantage of the unlabeled data in the training phase given that

the importance weight was estimated.

In this chapter we show that there exists a weighting scheme on the unla-

beled data so that a combination of these weighted unlabeled data and original

training data forms a new data set, called the hybrid data set, that have label

missing at random (MAR). The missing values of label in the hybrid data are

then imputed using state of the art imputation methods for MAR data. This

approach is particularly useful when very few labeled data are provided.

2 The Hybrid Data Method

The importance weight estimation almost always requires some unlabeled data

from general population to provide an estimation of the input distribution

of test data. In importance weighting approaches, after importance weight

is estimated, the unlabeled data set is usually discarded, causing a lost of

information that could be helpful in reducing covariate shift without increasing

much variation especially when initial training sample size is small. In this

section, we show that there exists a weighting scheme on unlabeled data so

that a combination of these weighted unlabeled data and original data forms

a new data set, called hybrid data set, free from covariate shift. We also

show that the missing label in the new hybrid data set satisfies missing at

random condition. Therefore it can be imputed using state of the art methods

for missing at random problem. Assuming that the unlabeled data follow

the input distribution pte(x) of test data, we first derive, in this Section, a

weighting scheme w(x) on the unlabeled data so that a combination of these

weighted unlabeled data and the original training data forms a new data set

that mimics pte(x). Our main result can be stated as follows:

Theorem 14 Given n1 training examples and n2 unlabeled examples, that fol-

low distributions ptr(x) and pte(x) respectively, there exists a weighting scheme

w(x) =
n1

n2

(
max
x∈X

ptr(x)

pte(x)
− ptr(x)

pte(x)

)

99



on the unlabeled examples such that the mixture of n1 unweighted training

examples and n2 weighted unlabeled examples follows the distribution pte(x).

Proof The hybrid data set follows a mixture distribution

ptr(x)
n1

n1 + n2

∫
w(x)pte(x)dx

+pte(x)
w(x)∫

w(x)pte(x)dx
× n2

∫
w(x)pte(x)dx

n1 + n2

∫
w(x)pte(x)dx

Imposing this mixture to be pte(x) and solving for w(x), we have:

w(x) =
n1

n2

(
C − ptr(x)

pte(x)

)

Where C is any constant that satisfies w(x) ≥ 0 for all x ∈ X since w(x) is

a non-negative coefficient. That gives C ≥ maxx∈X
ptr(x)
pte(x)

. If we increase C

by ΔC, the weight of every unlabeled example will be increased by n1

n2
ΔC.

The choice of the constant C is only depends on how much weight we would

like to attribute to the unlabeled data. Unlike the semi-supervised learning,

we don’t assume any relationship between ptr(x) and p(y|x), We only use the

unlabeled data to improve prediction accuracy indirectly through correcting

the input distribution. When there is no covariate shift, in the semi-supervised

learning setting, (Castelli and Cover [1996]) showed that the labeled examples

are exponentially more valuable than the unlabeled examples in constructing

classification rules. Therefore, we argue that the quantity of the unlabeled

data in the final hybrid training data set should be minimized using a minimal

weight that allows the selection bias correction.

Since the effective number of unlabeled data increase linearly with C, we

will set it as small as possible, C = maxx∈X
ptr(x)
pte(x)

. Finally,

w(x) =
n1

n2

(
max
x∈X

ptr(x)

pte(x)
− ptr(x)

pte(x)

)
.

We have shown that the resulting hybrid data set is unbiased but it still

contains missing labels. There are circumstances under which even the best

designed study is jeopardized by non-missing-at-random data. The following

result shows the labels are in fact MAR:

Theorem 15 The labels in the hybrid data set obtained from the weighting

scheme in Theorem 14 are missing at random.
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Proof From Theorem 14, the hybrid data set follows the marginal distribution

pte(x) of the test data. In addition, because of the definition of covariate shift,

Let RY = 1 denotes ”Y is missing” and 0 otherwise, it is easily shown that

p(y|x,RY = 1) = p(y|x,RY = 0) = p(y|x), which is the definition of the MAR

missing mechanism.

The methods for correcting covariate shift bears similarity to the tech-

niques employed in semi-supervised learning. The latter usually make further

assumptions on the data distribution p, more specifically on the relationship

between p(y|x) and p(y) (Zhu [2005]). When the models used for representing

ptr(x) and p(y|x) do not share common parameters, semi-supervised learning

methods cannot improve the predictive performance. For example, transduc-

tive support vector machines (Chapelle et al. [2006]; Joachims [1999]), assumes

that the data contains clusters that have homogeneous labels and as a result

the decision boundary has to lie in low density regions. In contrast, generative

models, (Baluja [1999]; Castelli and Cover [1996]) assumes that p(x|y) is a

mixture of distributions, allowing the decision boundary to go through some

denser regions. The success of a semi-supervised learning method depend on

whether the data distribution can be accurately approximated by a param-

eterized model and the degree to which the class distributions overlap (Zhu

[2005]). On the other hand, the covariate shift supposes the input training

and test distributions are different and make no further assumption on the

relationship between ptr(x) and p(y|x). That differentiate our approach from

semi-supervised learning methods.

2.1 Predictive Mean Matching for the Missing Data Im-

putation

Give a hybrid data set that is MAR, our next step is to impute the missing

labels. Missing data imputation is a well-studied topic in the statistical analy-

sis. From the many references, we choose Predictive Mean Matching (PMM),

which was first presented in Little [1988] and proved to be successful with miss-

ing data imputation, as was shown to be robust to the misspecification of the

imputation model in Morris et al. [2014]. For the covariate shift problem, if we

can choose a correctly specified model in the first place, there will be no learn-
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ing bias. However due to the lack of domain knowledge, it is safer to assume

that the imputation model for the unlabeled data is misspecified. Robustness

of imputation models to misspecification is an important criterion that should

be considered with great care when choosing an imputation method.

For a data set that only has missing labels as in our hybrid data set, PMM

first estimates a linear regression of y on x and produces a posterior predictive

distribution of the coefficient vector α that specifies the linear regression. A

set of coefficient α∗ is drawn from that posterior distribution. Using α∗, PMM

predicts values of all cases (labeled and unlabeled). For each case with missing

label xu, we determine a set of five labeled cases {(xt; yt) : t = 1, ..., 5} whose

predicted labels are closest to the predicted label of xu. One of five values in

{yt) : t = 1, ..., 5} is randomly selected to be an imputed value of the missing

case xu. For a new imputed data set in multiple imputation, the process is

repeated from drawing a new set of coefficient α∗ from posterior predictive

distribution.

3 Performance of Hybrid Data vs. Hybrid

Model and Weighting Models

In this section, we assess the ability of our hybrid data approach to reduce

the model variance due to importance weighting in the covariate shift bias

reduction process. We use two strategies to estimate the importance weights

β(x) = pte(x)
ptr(x)

: the first is based explicitly on the true bias mechanism, the sec-

ond is based on Unconstrained Least-Square Importance Fitting (uLSIF). We

first study a toy regression problem to show whether covariate shift corrections

based on our method can reduce the prediction error on the test set when the

learning model is misspecified and the training sample size is small. Then we

test our approach on real world benchmark data sets corrupted by a simple

covariate shift bias selection mechanism.

3.1 Toy Regression Problem

Consider the following training data generating process: x ∼ N(μ0, σ0) and y =

f(x) + ε, where μ0 = 0.5, σ0 = 0.5, f(x) = −x+ x3, and ε ∼ N(0, 0.3). In the
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test data, the same relationship between x and y holds but the distribution of

the covariate x is shifted because of the selection bias that causes the examples

to be selected with a probability depending on x:

p(s = 1|x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
4x2 if 4x2 ∈ [0.01, 1]

0.01 if 4x2 ≤ 0.01

1 otherwise.

The training and test distributions, along with their ratio are plotted in

Fig. 4.1a and 4.1b. Least Square Regression is used to train a linear model

to predict output y from x. We first investigate the effect of unlabeled data

quantity on the performance of the hybrid data. As may be seen in Figure 4.1c,

the Mean Square Error (MSE) of the regression model drops as the unlabeled-

labeled sample size ratio, n2/n1, increases. At first, as more unlabeled data

are used, n2/n1 varies from 0 to 1, the improvement is clearly noticeable. The

smaller the initial training sample size is, the larger the margin of the improve-

ment gets because the hybrid data approach is more effective at preserving the

effective sample size. When n2/n1 varies from 1 to 2, a further but moderate

improvement is observed. Again, the more unlabeled data are used, the smaller

the weights of the unlabeled example according to Theorem 14. Consequently,

the imputation variance contributes less to the final prediction error. Finally,

when the value of n2/n1 is large enough, no further improvement is noticed

since the unlabeled data are only helpful in reducing the distribution mismatch

up to the point when the hybrid data mimics closely the test data distribu-

tion. This behavior is contrary to semi-supervised learning methods whose the

predictive performance tend to increase as more unlabeled data are used given

that their assumptions is correct. We will use in the toy problem an unlabeled

data set five times larger than the labeled data set for and only twice as large

in real-world data set experiments. We shall now compare the ”hybrid-data

approach” against respectively the unweighted, weighted, and hybrid-model

approaches. In the hybrid-model approach presented in previous chapter, the

predictive performance in some regions of the input space is improved by com-

bining the weighted and the unweighted models. The average MSE of these

models over 100 repeated trials is reported for every training sample size in

Figure 4.2. The unweighted model (black solid line) serves as a baseline. As
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expected, it performs worse than the other models. When the training sample

size is large enough (say, more than 300) the hybrid-model method achieves a

lower MSE because it has the lowest bias as suggested by Theorem 13. On the

other hand, the hybrid-data method (blue solid line) outperforms any other

method with a large margin when the training sample size is small. As sam-

ple size increases, the variance reduction becomes less significant, the hybrid

data’s performance is similar to that of the weighted model. From these ob-

servations, we conclude that the hybrid-data approach is more effective when

the sample size is small.

3.2 Experiments on Real-world Data sets

In this series of experiments, we consider the learning problems under a covari-

ate shift induced by an artificial selection mechanism with known or estimated

selection probabilities. We apply this selection scheme on a variety of UCI data

sets in order to assess the efficiency of our approach in more realistic scenarios.

We use a SVM classifier for both classification and regression tasks. Exper-

iments are repeated 50 times for each data set. In each trial, we randomly

select 100 training examples, 200 unlabeled examples, and an input feature xc

that controls the probability of an an example to be selected into the training

set as follows:

p(s = 1|x = xc
i) = ps =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p1 = 0.9 if xc

i ≤ mean(xc)

p2 = 0.1 if xc
i > mean(xc) + 0.8× 2σ(xc)

p3 = 0.9− xc
i−mean(xc)

2σ(xc)
otherwise.

where σ(xc) denotes the standard deviation of xc. Each of three approaches,

namely the weighted data, hybrid model, and hybrid data is applied with both

the true important weights and the important weights estimated with uLSIF.

The MSE of each model is normalized by that of the unweighted model (our

gold standard) and plotted in Fig.4.3 and 4.4. As may be observed, the hybrid

data approach always outperforms the weighted model by a noticeable margin

except when ulSIF is used on the Cadata data set. However, we suspect that

the estimation of importance ratio on this data set fails as all other methods
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using ulSIF performs worse than the basic unweighted method on this data

set. The hybrid data method also outperforms the hybrid model method in

most situations, except on the Australian credit data set with true important

weight and on the Cadata and Ionosphere data sets with ulSIF. Our results

strongly suggest that our bias correction method combined with missing at

random label imputation is effective at increasing the prediction performance

when few labeled data are available.

4 Conclusion and Open Problems

We have shown that given training data with covariate shift and unbiased un-

labeled data there exists a weighting scheme on the unlabeled data such that

the combination of the weighted unlabeled data and the labeled training data

mimics the test distribution. The fact that the labels are missing at random

in this combined data set allows effective imputation in order to mitigate the

undesirable sample-size-reduction effect of importance weighting. Both ex-

periments on synthetic and real-world data demonstrate the efficiency of our

approach.

In our study, PMM has shown to be an effective method for imputation

given the combined data set is missing at random. According to whether there

is assumption about the relationship between p(y|x) and ptr(x) or not, we

can take semi-supervised learning methods as alternative approaches to use

the combined data set more efficiently. However, we have to keep in mind

that the predictive performance of semi-supervised learning methods depends

heavily on matching of problem structure with model assumption. Therefore,

a good understanding of the specific problem is required to use semi-supervised

learning methods effectively for covariate shift problem.
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Figure 4.1: A function f(x) is fitted by a linear model: a) Input density distri-
bution; b) True importance weights; c) MSE of hybrid-data model vs. unla-
beled/labeled ratio for different training sample sizes.
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Chapter 5

Conclusions

Selection bias is pervasive in almost all empirical studies, including Machine

Learning. This thesis focus on the problems of supervised learning in the

presence of selection bias. We have presented a general importance weight-

ing framework to correct for selection bias with Bayesian Networks and two

techniques to improve the importance weighting for the covariate shift. In

this closing Chapter, we draw several conclusions from our work and suggest

avenues for future research.

In the first part of this thesis, we discussed the importance weighting frame-

work for generative and discriminative learning. We then present two methods

of using the importance weight to correct for selection bias in discriminative

learning: one with sampling and the other with modification of the loss func-

tion. Our results show that the importance weighting method that exploits

the assumptions deemed plausible about the sampling mechanism achieves

significant improvements in regression and classification accuracy over the un-

weighted method. Our analysis show that the importance weighted cross val-

idation provides an almost unbiased estimate of the generalization error. In

addition, we show that the IWCV can reliably decide when to use the weighted

model to correct for selection bias and when to use the unweighted model and

accept that the training sample size is not sufficient for the importance weight-

ing.

There are several interesting future directions for selection bias correction

with the importance weighting method. First, instead of requiring some as-

sumptions about the sampling mechanism, one may expect to be able to infer

them - at least partially - from several sources of data under some milder as-
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sumptions. This approach shares some similar intuition with transfer learning.

Second, it would be interesting to consider a formal sensitivity analysis to test

the robustness of the importance weighting method against the uncertainty of

the S-control feature vector Xs. The problem is that, given that we accept the

existence of a S-control feature vector, Xs, the choice for the variables to be

included in Xs may be subject to some uncertainty. With real-world data, it is

almost impossible to make a firm statement regarding the appropriateness of

Xs, or to promise to reduce the selection bias, or even to refrain from creating

new bias where none exists. This problem is also well known in causal infer-

ence from observational data: all conclusions are extremely sensitive to which

variables one chooses to hold constant (known as the ”confounders”) when we

are assessing the causal effect ofX on Y . For bias correction as for causal infer-

ence, such factors may be identified by simple graphical means when a (causal)

graphical model is provided. Otherwise, no one is able to to tell us exactly

which factors should be included in the analysis. This is why the so-called

adjustment problem is so critical in the analysis of observational studies. We

are facing the sample problem here. While the importance weighting scheme

was shown to perform well despite our wrong assumptions about Xs in our

simulations, it is fairly easy design a synthetic selection scenario such that the

importance weighting relying on invalid assumptions performs worse than the

baseline unweighted approach. Therefore, we believe there are circumstances

under which even the best designed and run study is jeopardized by selection

bias: improper handling of biased data can potentially distort the conclusions

drawn from a study.

In the second part of this thesis, we presented a simple, yet effective, proce-

dure that combines the weighted and unweighted prediction models in order to

improve the standard importance weighting approach when misspecified train-

ing models are used. Our results showed that, while the unweighted model is

globally more biased than the weighted one, it may locally be less biased on

low importance instances. The hybrid model combining the weighted and the

unweighted prediction models was shown to improve significantly the predic-

tion performance with respect to the weighted or unweighted prediction mod-

els alone. Our method bears many resemblance to local learning techniques,

which assign each training example a weight that depends on the location of
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the training point in the input space relative to that of the point to be pre-

dicted (Bottou and Vapnik [1992]). Local learning is known to reduce the

estimation bias at the expense of increasing model complexity. Therefore, it

would be interesting to study the overall performance of local learning tech-

niques under covariate shift with and without taking the importance weight

into consideration.

In the last part of this thesis, we investigated the relationship between the

covariate shift and the missing data problems and explored the possibility of

using missing data imputation to improve the covariate shift correction. We

established formally that, given a training set corrupted by covariate shift and

an additional unbiased unlabeled data set, there exists a way to combine the

weighted unlabeled data and the labeled training data such that the result-

ing data set follows the test distribution. In addition, the labels in this hybrid

data set were proven to be missing at random (MAR), allowing the use of stan-

dard imputation methods. Our experiments on synthetic and real-world data

demonstrated the efficiency of the approach with small sample sizes training

data sets. The main caveat of the hybrid data approach is that its performance

depends heavily on the imputation method being used. To our best knowl-

edge, there are very few imputation methods (like PMM) that are robust to

model misspecification, a property that is arguably crucial for the success of

our hybrid data approach.

In term of future research directions, we think it should be useful to con-

sider semi-supervised learning techniques for each specific problem with covari-

ate shift. A good matching between the semi-supervised learning techniques

and the data structure may greatly improve the prediction accuracy with small

sample size data sets. Another idea is to exploit directly the unlabeled data

to correct the covariate shift without estimating the importance weight as an

intermediate step. Such a direct approach would render covariate shift correc-

tion independent on the importance weight estimation methods. Therefore, we

hope this work will open up many avenues of future possible research topics

on bias correction.
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J. Quiñonero Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence.

Dataset Shift in Machine Learning. MIT Press, 2009. (Editors). 23

Vittorio Castelli and Thomas M Cover. The relative value of labeled and un-

labeled samples in pattern recognition with an unknown mixing parameter.

IEEE Transactions on information theory, 42(6):2102–2117, 1996. 100, 101

116



REFERENCES

Olivier Chapelle, Mingmin Chi, and Alexander Zien. A continuation method

for semi-supervised svms. In Proceedings of the 23rd International Confer-

ence on Machine Learning, ICML ’06, pages 185–192, New York, NY, USA,

2006. ACM. ISBN 1-59593-383-2. doi: 10.1145/1143844.1143868. 101

G Cooper. Causal discovery from data in the presence of selection bias. In

Proceedings of the Fifth International Workshop on Artificial Intelligence

and Statistics, pages 140–150, 1995. 23

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

learning, 20(3):273–297, 1995. 37

Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for

importance weighting. In J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor,

R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Pro-

cessing Systems 23, pages 442–450. Curran Associates, Inc., 2010. 24, 45,

88
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