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Introduction

Swelling hydrated clays are encountered in various aspects of life ranging from agricultural
activities, environmental protection and industry processes to civil engineering. They are used
for example as water barriers, clay liners for high-level radioactive waste management or drying
mud for petroleum exploitation [13]. An important feature is the swell-shrink behavior which
can be troublesome: it is able to cause the collapse of buildings, bridges, roads, rails and
tunnels constructed on swelling clay sites. In the petroleum industry, the stability of boreholes
drilled through clay-rich shales is strongly dependent on their swelling capacity. Resolving such
problems requires a deep understanding of the physical phenomena underlying the swell-shrink
behavior of expansive clayey soils.

In this framework, the present work focuses on modeling the mechanical behavior of smec-
tites which are the main mineral component of expansive clays. At the nanoscopic scale they
are composed of an assembly of electrically charged phyllosilicate layers called platelets. Their
negative charge stems from isomorphous substitutions of structural cations of higher valence
by others with lower valence and the presence of defects in the smectite crystal lattice. In order
to achieve global electroneutrality, exchangeable cations are present in the interlayer space [14].
This negative charge is primarily responsible for a variety of coupled hydro-mechanical electro-
chemical phenomena such as swelling when imbibing the interlayer space with water or polar
organic solvents. The understanding of the physical phenomena at the origin of the swelling of
hydrated smectites is therefore a central task in modeling expansive clayey soils.

A crucial feature for modeling clayey soils is a reasonable geometrical representation. Ex-
pansive clays exhibit a hierarchy of structures which are characterized at least by three distinct
length scales (nano, micro and macro) and two porosity levels (nano and micro-pores) [15]. The
finest scale is the nanoscale, wherein the charged clay platelets are separated by a nanoporous
network saturated by an aqueous electrolyte solution. The negative surface charge of the
platelets attracts the cations of the electrolyte solution in order to ensure global electroneu-
trality. Because of this attraction, the cation concentration in the vicinity of the clay surface
exceeds that of the equilibrium solution far away from the clay surface referred to as “bulk”
solution. The positively charged cations close to the negatively charged clay platelet surface
form a diffuse “Electrical Double Layer” (EDL). The characteristic length of the EDL is the
Debye’s length O(10−9 m) which gives the length over which the charged particles interact.
At the intermediate microscale of characteristic length O(10−6 m), the clay platelets assemble
to swollen clay clusters which constitute the solid phase at that length scale. The latter are
separated by a network of micropores filled either by pure bulk water at full saturation or by
a mixture of water and air in the unsaturated case. Regarding their size the micropores are
completely free of EDL effects.

Based on this local configuration, the purpose is to make predictions about the mechanical
behavior of these media at the observable macroscale. One of the most rigorous techniques
to upscale the coupled hydro-mechanical electrochemical phenomena occurring at the nano-
and microscales to the observable macroscale is periodic homogenization [16]. That is why
this procedure is used in the frame of this Ph.D thesis to derive the macroscopic constitutive
laws which are relevant for civil engineers. In this scope, studying the phenomena occurring at
the local scales and more precisely at the nanoscale plays a crucial role in modeling expansive
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clays.

The classical approach for modeling the physical phenomena occurring at the nanoscale is
the EDL theory, initially proposed by Gouy and Chapman [17], in which the water solvent is
considered as a dielectric continuum and the ions as point charges. The swelling pressure is
the repulsion resulting from the combined effects of the electrostatic attraction between the
negative surface charge of the clay platelets with the dissolved cation cloud of the electrolyte
solution and the predominant role of the osmotic pressure. It can be obtained by solving the
classical Poisson-Boltzmann (PB) problem. Despite its simplicity, this approach is able to
describe quantitatively the EDL behavior at high hydration levels, in the so-called osmotic
swelling regime [18]. However, the PB model predicts only swelling and fails at low hydration
in the so-called crystalline swelling regime. Thus, many extensions of the PB theory have been
proposed to improve the nanoscale description [19]. In order to account for both swelling and
shrinkage in the crystalline swelling regime, most of them include the finite size and correlation
effects between ions only, while keeping the assumption of a continuous water solvent [20].
Although the water solvent does not contribute to the formation of the EDL, it plays an utmost
important role in the nanoscale behavior because of its dominant density compared to that of
ions. However, the complexity in modeling water makes the full understanding of the nanoscale
behavior of expansive clays a huge challenge. Today, along with the development of computer
performance, the behavior inside the EDL can be predicted correctly by Molecular Dynamics
(MD) and Monte Carlo (MC) simulations if the interparticle interactions are exactly known.
Nevertheless, these techniques are so far computationally expensive and almost impossible to
include into upscaling methods to propagate the physical phenomena from the nano- to the
macroscale. Hence, less detailed physical approaches are more convenient but yield inherently
less satisfying results in comparison with simulation data.

The present work aims at filling this gap. The main task is to propose an improved de-
scription of the nanoscale behavior of clayey soils by accounting for the molecular nature of
the water solvent. Different phenomena of increasing complexity are consecutively taken into
account such as the finite size and polar nature of the water solvent through interparticle
correlations in the electrolyte solution in order to reproduce experimental observations at low
interplatelet distances (crystalline swelling). To this end, this thesis treats firstly the pure
solvent only, because of its crucial role, as i) a simple Hard Sphere (HS) fluid accounting for
particle size effects only; ii) a Lennard-Jones (LJ) fluid averaging over the different dipolar
interactions ; and iii) a Dipolar Hard Sphere (DHS) fluid to account more precisely for dipolar
interactions. Ions are finally added to complete the EDL model. According to the general plan
discussed above, this thesis is organized in five chapters.

Chapter 1 presents firstly the multiscale structure of expansive clays with an emphasize
on the nanoscale structure. The particular physical characteristics at that length scale which
governs the swelling behavior during hydration are discussed. A three-scale scheme of swelling
clays is then proposed which serves as basis in the present model approach for transfering
the coupled hydro-mechanical electrochemical phenomena from the nano- to the macroscale.
The Poisson-Boltzmann theory is briefly recalled to give an idea of the classical nanoscale
portrait. An overview of several existing improvements of the Poisson-Boltzmann model are
then presented which allow to account for the molecular nature of the ions in the electrolyte
solution. Their limitations in comparison with experimental results are the starting point of
the present approach.

To model the nanoscale behavior the Density Functional Theory (DFT) approach is chosen
in the present work. In this context, chapter 2 firstly presents the basic features of this method.
Interparticle correlation effects play a significant role in the fluid behavior and are studied in
the frame of this theory through the Radial Distribution Function (RDF). The RDF and its
determination are thus presented using an approach of statistical mechanics. As hard sphere
fluids are the fundamental reference systems of all kinds of discontinuous fluids, the principle
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ideas of Fundamental Measure Theory (FMT), the most efficient approach of the DFT for
studying such fluid systems, are finally recalled in this chapter.

In chapter 3, the water solvent is treated as an inhomogeneous Lennard-Jones fluid which
is the simplest way to account for its polar nature. In contrast to HS fluids which account
only for repulsive interparticle interactions, the LJ interaction potential consists of a short-
range repulsive and a long-range attractive part. The repulsive part can be treated by FMT
by considering an equivalent hard sphere potential while the attractive part is here explic-
itly studied by using an exact DFT approach called Density-Functional Perturbation Theory
(DFPT). In the present DFPT approach, interparticle correlations are determined by solving
the Ornstein-Zernike equation supplemented by the HyperNetted-Chain (HNC) closure includ-
ing an appropriate bridge function. Ions are finally added to an appropriate Lennard-Jones
fluid in order to give a first estimate of the EDL behavior.

Chapter 4 considers explicitly the finite size and polar nature of the water solvent by a
representation as a Dipolar Hard Sphere (DHS) fluid whose behavior depends on both the
spatial positions and the dipole orientation of the molecules. Similar to the LJ fluid, the
DHS fluid comprises a short-range hard sphere interaction potential which is treated by FMT.
The complex long-range dipolar interaction part is modeled by a modified DFTP approach in
which intermolecular dipole-dipole correlation effects are calculated using the Mean Spherical
Approximation (MSA) as initially proposed by Wertheim [21]. Ions are then added to complete
the DHS water model in the EDL.

Chapter 5 presents finally an application example of the work of this thesis towards civil
engineering. The idea is to incorporate the improved nanoscale portrait developped in the
framework of this thesis in the double-porosity model of the modified effective stress principle
of unsaturated swelling clays recently derived by our group using periodic homogenization [22].
The resulting model is then applied to simulate numerically the swelling pressure evolution
during hydration at fixed volume. Starting from a formulation of the mechanical equilibrium
at both the nanoscale of the electrical-double layer and the microscale where capillary effects
take place, the coupling between these two effects is incorporated in the overall stress over
the entire saturation range. The numerical results indicate that considerable improvements of
the model predictions at the macroscale can be obtained with a more accurate formulation of
the nanoscale phenomena by accounting for intermolecular correlation effects in the electrolyte
solution.
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Chapter 1

Introduction to the modeling of
expansive clays

Smectites are the main component of expansive clays which are widespread in nature. The
shrink-swell behavior is a particular physical characteristic of such media, which is at the origin
of many serious challenges in civil engineering. Understanding of the coupled hydro-mechanical
electrochemical phenomena underlying the swelling is therefore a crucial requirement.

To this end, this chapter starts by presenting the typical structure of smectite clays which
underlies their physical properties. Several important characteristics of smectites such as their
hydration behavior, exchangeable cation capacity and the swelling mechanism are then pre-
sented. In the last part of this chapter, a typical multi-scale model of swelling clays is presented
which will be applied in the last chapter of this Ph.D. thesis to transpose the mechanical be-
havior from the nanoscopic clay platelet scale to the observable macro scale using a periodic
homogenization method.

1.1 Clay mineralogy

Clays are probably the most active constituent of soils. With a grain size of less than 2 µ,
the influence of clay minerals on the soil properties depends not only on their quantity in the
soil, but essentially on their nature. In order to understand the coupled hydro-mechanical
electrochemical phenomena of expansive clayey soils, it is thus necessary to know the crystal
structure and composition of clay minerals in general and of smectites in particular, as they
are the clay group that exhibits swelling.

1.1.1 Basic structures and classification of clay minerals

The most commonly layered lattice structure of clay minerals is made up of two basic structural
units: a silica tetrahedron (T) and an aluminum octahedron (O). The silica tetrahedron is
formed by a silicon cation SiO4+ with four surrounding oxygen anions O2− arranged in a way
to define the corners of a tetrahedron. Each tetrahedron shares its three corners with its
neighbors to form a hexagonal network called the tetrahedral sheet (Fig.1.1). The aluminum
octahedron is composed of an aluminium Al3+ (or magnesium Mg2+) cation surrounded by six
hydroxyl groups OH−. Multiple edge-sharing octahedra build up the octahedral sheet (Fig.1.2).

These two basic sheets are arranged into layers which are called phyllosilicates and often
described as 2:1 if they consist of two tetrahedral and one octahedral sheet (TOT) or 1:1 if
they involve units of alternating tetrahedral and octahedral sheets (TO). The kaolinite and
halloysite groups are build by 1:1 phyllosilicates whose basic structural unit is asymmetric. In
contrast, the basic structural unit of 2:1 clays (TOT) is symmetric. The TOT unit can be found
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Figure 1.1: (a) Silica tetrahedron unit; (b) Silica tetrahedra arranged in a hexagonal network
[1].

Figure 1.2: (a) Octahedral unit; (b) Sheet structure built by octahedral units [1].

in many groups such as the mica, smectite and vermiculite groups which can be distinguished
according to their mineral structure and physical properties (Fig.1.3).

Figure 1.3: Schematic representation of several clay mineral groups [1].
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1.1.2 Isomorphous substitution

In practice, the structural composition of the phyllosilicate layers is often modified through
the substitution of one cation in the clay sheet by another cation of lower valence and of
the same size without changing the basic structure of the crystal. Common examples include
the substitution of Si4+ by Al3+ in the tetrahedra sheet, and Al3+ by Mg2+, Fe2+ in the
octahedral sheet. Such process is referred to as isomorphous substitution which is the primary
source of the negative surface charge of the phyllosilicate layer of the smectite group which is
compensated by cations in the electrolyte solution filling the interlayer space. It is this process
that is responsible for many particular physical phenomena of clay soils such as swelling and
shrinkage.

As an example Fig.1.4 presents the basic crystal structure of montmorillonite, the most
common member of the smectite group which is the main component of most expansive soils.
The interlayer space between the clay sheets contains water and free ions in order to ensure
the overall electroneutrality of the system (clay sheets + interlayer fluid). The clay sheets are
weakly linked to each other, which allows the smectites to swell.

Figure 1.4: Structure diagram of montmorillonite [1].

1.2 Swelling mechanisms of clays

The swelling behavior is a complex mechanism of hydrated expansive clays which stems from
water-clay interactions at the clay platelet scale. This process is commonly distinguished into
two regimes: crystalline and osmotic swelling corresponding to low and high hydration state of
clays. Crystalline swelling takes place when dry expansive clays are in contact with water and
then sequentially intercalate one, two, three, or four discrete layers of water in the interlayer
space. This process occurs firstly and is controlled by hydration energy forces while osmotic
swelling is associated with longer-range electrical double layer effects.

1.2.1 Crystalline swelling and cation hydration

Because of their negative surface charge, two adjacent 2:1 smectite layers tend a priori to repeal
each other. In contrast, the presence of exchangeable cations located near the platelet surface
in the interlayer space or in the hexagonal holes of the tetrahedral sheets to ensure global
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electroneutrality, adds an attractive interaction, and decreases the interlayer distance. When
the dry smectite is in contact with water, the interlayer cations will be hydrated and polar
molecules such as ethylene glycol or glycerol can be introduced into the interlayer space which
leads to a widening of the interlayer space referred to as swelling. At very low hydration, the
so-called “crystalline swelling" is a discrete process which corresponds to the intercalation of 0
to 4 layers of water molecules [13] (Fig.1.5). During the cation hydration mechanism, the water
molecules are more or less ordered because of the orientation of their negative pole toward the
hydrated cation which reduces the intermolecular attraction force between the clay platelet
surface and the interlayer cations. X-ray diffraction analyses confirm that the expansion of2 GEOTECHNICAL TESTING JOURNAL

FIG. 1—Conceptual model of the sequential crystalline swelling process
for smectite.

FIG. 2—Measured basal spacing for Na+-smectite as a function of rel-
ative humidity during wetting and drying. Data obtained from humidity-
controlled XRD tests by Chipera et al. (1997).
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Figure 1.5: Conceptual model of the sequential crystalline swelling process for smectites [2].

smectites during the crystalline swelling regime is a discrete process [23, 24], which can also
be observed in the water vapor adsorption isotherm [3]. Fig.1.6 presents an evolution of the
interlayer distance of Na-Montmorillonites with the relative water pressure adapted from the
water adsorption isotherm, which allows to determine the swelling pressure (see section 1.3.2)
for the crystalline swelling. For a pure montmorillonite, this pressure is of about 4 × 108;
1.1 × 108 and 0.27 × 108 Pa, corresponding to the formation of one, two and three water layers,
respectively [25].

1.2.2 Osmotic swelling and electrical double layer

When the interlayer distance exceeds 4 water layers, the solvation forces between hydrated
cations and the clay layers become negligible in comparison with the electrostatic repulsion
forces between the adjacent layers. This second swelling regime is referred to as osmotic
swelling.

To ensure global electroneutrality, the negatively charged clay sheets attract dissolved
cations close to the solid surface in the interlayer space. The cation concentration adjacent to
the surface is therefore extremely high compared that of the bulk electrolyte solution, while
that of anions in the vicinity of the clay particles is very low. In this region, the cation concen-
tration decreases with the distance away from the clay platelets while that of anions increases
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Figure 1.6: Evolution of basal distance with relative water pressure for Na-Montmorillonites,
where P/P0 designates the relative pressure of the adsorbed water. The formation of 0,1 and
2 layers of water is also observed [3].

until reaching the bulk values. Its length is characterized by the Debye’s length. Together
with the negatively charged clay platelet surface it builds the so-termed Diffuse Double Layer
or Electrical Double Layer (EDL) [26]. The excess of the cation concentration inside the EDL
is at the origin of an osmotic water flow from the bulk solution to the inter-platelet space to
restore equilibrium [25]. The equilibrium state of the clay platelet configuration results from
the competition between electrostatic attraction and osmotic repulsion forces.

When two clay platelets approach, their respective double layers begin to overlap. The
repulsion resulting from this overlap is responsible for the osmotic swelling which is, contrarily
to the cristalline swelling, a continuous process (Fig.1.7).

1.3 Electrical double layer theory

In the classical EDL theory, the nanoscale clay portrait is composed of two parallel incompress-
ible solid platelets with a negative surface charge separated by a distance 2H. The inter-platelet
space is filled by an aqueous binary electrolyte solution with completely dissolved monovalent
ions being in thermodynamic equilibrium with an external reservoir (called bulk) containing
the same electrolyte solution. In order to ensure global electroneutrality, the negative surface
charge of the clay platelets is compensated by an excess of cations close to the interface build-
ing the EDL (Fig.1.8). In this section, the ion concentration profiles will be studied in the
framework of Poisson-Boltzmann theory in order to describe qualitatively physical phenomena
occurring at the nanoscale such as the disjoining pressure.

1.3.1 Classical Poisson-Boltzmann Theory

The Poisson-Boltzmann theory is the classical continuous approach to describe qualitatively
EDL phenomena. It is based on the following assumptions:

1. Ions are considered as point charges without any interparticle interactions.

2. The negative charge of the clay sheets is supposed to be uniformly distributed over their
surface.
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Figure 1.7: Scheme of the Electrical Double Layer between two adjacent clay platelets [4].
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Chapter 1: Introduction to the modeling of expansive clays

3. The water solvent is simulated by a dielectric continuous medium with a constant per-
mitivity.

A binary 1:1 electrolyte solution (e.g. Na+ and Cl−) is selected to study the ion concentration
distributions (c+ and c−) inside the EDL. Note that the ion densities are identical in the neutral
bulk fluid (cb

+ = cb
− = cb).

Denoting by E, Φ and q, the electric field, potential and volumetric ion charge density in
the EDL space, respectively, the governing equations of the system are given by

∇ · (ǫǫ0E) = q, (1.1)

E = −∇Φ, (1.2)

q = F (c+ − c−), (1.3)

where F is the Farady constant, ǫ0 the vacuum permittivity and ǫ the relative dielectric constant
of the solvent.
In the one-dimensional case, Φ depends only on the spatial coordinate perpendicular to the
plates denoted by z (Fig.1.8). As a result, the 1D Poisson equation is directly obtained from
the above equations

ǫǫ0
d2Φ
dz2

= −F (c+ − c−). (1.4)

It is completed by the Neumann boundary condition resulting from the electroneutrality con-
dition

E · n = −dΦ
dn

= − Σ
ǫǫ0

, (1.5)

where n is the normal vector outward to the solid phase and Σ the surface charge.
In what follows, the Boltzmann distribution is derived for the ions inside the EDL. The con-
centration of ion i (Na+ and Cl− in this case) of an ideal mixture is related to the chemical
potential µi by

µi = µ0
i +RT ln

ci

c0
i

, (1.6)

where R is the ideal gas constant, µ0
i the reference chemical potential of ion i at the con-

centration c0
i . The electrochemical potential µ̃i is then introduced, which is, in this case, the

mechanical work being necessary to bring the ion i from a reference state (where the electrical
potential is defined as zero) to a specified concentration and electrical potential

µ̃i = µi + FziΦ

= µ0
i +RT ln

ci

c0
i

+ FziΦ, (1.7)

with zi denoting the ion valence. In the bulk fluid, the electrochemical potential is given by

µ̃b
i = µ0

i +RT ln
cb

c0
i

+ FziΦb. (1.8)

At the thermodynamic equilibrium, the electrochemical potential is uniform µ̃i = µ̃b
i , so that

the combination of Eqs. (1.7) and (1.8) leads to the Boltzmann distribution

ci = cb exp
(

−Fziψ

RT

)
, (1.9)

where ψ = Φ − Φb is the electric potential relative to the bulk value. The combination of
Eq.(1.4) and Eq.(1.9) builds the classical Poisson-Boltzmann (PB) theory. Applied to the
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Figure 1.9: Profile of the electric potential inside the EDL in the case of a 1:1 electrolyte
solution, cb = 0.1 mol/l; Σ = −0.1C.m−2; H=1nm.

planar geometry in Fig.1.8 with −H ≤ z ≤ H, this theory allows to numerically calculate the
1D profile of the relative electric potential ψ(z) inside the EDL from

ǫǫ0
d2ψ

dz2
= −Fcb

[
exp

(
−Fψ

RT

)
− exp

(
Fψ

RT

)]

= 2Fcb sinh
(
Fψ

RT

)
, (1.10)

or

d2ψ

dz2
=

2Fcb

ǫǫ0
sinh

(
Fψ

RT

)
, (1.11)

supplemented by the boundary condition (1.5) which is rewritten as

dψ
dz

∣∣∣∣
z=H

= − Σ
ǫǫ0

. (1.12)

The ion concentration distributions are finally obtained with Eq.(1.9).
In this ionic liquid theory, it is useful to introduce a characteristic length scale named the
Debye length which is defined as

λD =

√
ǫǫ0RT∑

i q
2
i ci

. (1.13)

It determines the scale over which the electric potential and the ion concentrations vary inside
the electrolyte solution away from the charged clay platelet surface. That is an order of
magnitude of the EDL thickness.

Numerical results for the electric potential and the ion concentration profiles are illustrated
in Fig.1.9 and Fig.1.10, respectively. The cation concentration increases monotonously from the
center to the solid surface and is dominant compared to that of anions which evolves inversely.
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Figure 1.10: Ion distributions in the EDL space for the case of a 1:1 electrolyte solution,
cb = 0.1mol/l; Σ = −0.1C.m−2; H=1nm.

1.3.2 Disjoining pressure

Marcroscopic expansion is an important characteristic property of smectites, which arises
among other phenomena from electrochemical repulsion in the clay-water system at the
nanoscopic clay platelet scale. In the classical EDL theory, only the interactions between
cations and the negatively charged clay platelets are considered to be at the origin of the so-
called disjoining pressure at the nanoscale and of the resulting swelling pressure of the overall
medium at the macroscale. In what follows the disjoining pressure is derived for an EDL system
by using the Poisson-Boltzmann model.

Designating by p the fluid pressure, the mechanical equilibrium equation for the 1D case of
the EDL is written as [27]

− dp
dz

+ qE = 0. (1.14)

In combination with Eqs.(1.2), (1.3) and (1.9), the above equation becomes

− dp
dz

+ 2Fcb sinh
(
Fψ

RT

)
dψ
dz

= 0, (1.15)

− d
dz

[
p− 2RTcb cosh

(
Fψ

RT

)]
= 0, (1.16)

which means that the term p − 2RTcb cosh
(
Fψ

RT

)
is independent of z. In the case of large

separation distances, the bulk behavior is found at the center between the two plates with
ψ = 0 and p = pb (pb designates the bulk pressure), which allows to write

p− 2RTcb cosh
(
Fψ

RT

)
= pb − 2RTcb. (1.17)

Rearranging the terms of the above equation and using Eq.(1.9) the pressure of the fluid phase
is then given by

p = pb + 2RTcb

[
cosh

(
Fψ

RT

)
− 1

]
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Chapter 1: Introduction to the modeling of expansive clays

= pb +RT [c+ + c− − 2cb]

= pb + π, (1.18)

where the Donnan osmotic pressure is introduced as [28]

π = RT [c+ + c− − 2cb] . (1.19)

Eq.(1.14) can be rewritten as

− ∇p+ ∇ · τM = 0, (1.20)

where the Maxwell stress tensor is defined by

τM = ǫǫ0

(
E ⊗ E − E2

2
I

)
. (1.21)

It is straightforward to verify that ∇ · τM = qE. The exerted stress is σ = −pI + τM . The
disjoining stress tensor is introduced by referring to the bulk situation

Πd = −σ − pbI = πI − τM . (1.22)

In the 1D case of the double layer Πd is constant in the z direction

Πd = RT [c+ + c− − 2cb] − ǫǫ0
2
E2. (1.23)

It can be calculated using the EDL properties in the middle of the interlayer spacing (z = 0)
where E = 0 or at the solid surface (z = H) where E(z = H) = −Σ/ǫǫ0, it comes

Πd = 2RTcb

[
cosh

(
Fψ(z = 0)

RT

)
− 1

]
(1.24)

= RT [c+ + c− − 2cb]
∣∣∣∣
z=H

− Σ2

2ǫǫ0
. (1.25)

As the arithmetic average is greater than the geometric average, the osmotic pressure is always
repulsive while the electrical forces are attractive, the result being always repulsive according to
Eq.(1.24). As an example, the disjoining pressure is depicted as a function of the layer distance

+ + + 

+ + + 

p 

t
M 

t
M 

 


d
 = 

d 
n.n

 

S

Figure 1.11: Mechanical equilibrium in the EDL.

in Fig.1.12 for different bulk ion concentrations. Obviously, the disjoiing pressure resulting
from the PB model is always repulsive and decreases monotonously when the interlayer distance
increases.
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Figure 1.12: Disjoining pressure of a 1:1 electrolyte solution with Σ = −0.1 C.m−2 predicted
by the Poisson-Boltzmann model.

1.4 Multi-scale structure of clayey soils

Clay minerals exhibit distinct structural arrangements depending on the considered length
scale. Three different structural length scales (nano-, micro- and macroscale) are typically
distinguished and the associated fundamental structural components are clay platelets and
particles for the solid phase and pores and cracks for the fluid phase.

The determination of the structure at the different length scales is the aim of a multitude
of experimental investigations [29, 5]. For example, Scanning Electron Microscopy (SEM)
and Transmission Electron Microscopy (TEM) are typical experimental tool used to provide
insight into the strucutre of clay minerals at the nano- and the micro-scale. Fig.1.13 shows a
high resolution SEM image of the structural organization of smectites at different length scales
as given by [5]. Obviously, at the smallest scale (10 nm), we can see an assembly of parallel clay
platelets which is surrounded by a solution. At larger scales, the clay structure is composed of
clay clusters and a pore network.

From these experimental observations, a typical three-scale representation is proposed as
shown in Fig.1.14 which is used to describe electro-chemo-mechanical phenomena occurring in
saturated [15] and unsaturated [22] swelling clayey soils. This model representation is charac-
terized by two porosity levels (nano- and micro-pores) and three separate length scales (nano-,
micro- and macroscale). The nanoscale representation is composed of incompressible, linear-
elastic parallel clay platelets exhibiting a negative surface charge. The platelets are separated
by a nanoporous network which is saturated by an aqueous binary electrolyte solution. At
the intermediate microscale, the clay platelets form swollen clay clusters constituting the solid
particles. At this length scale, they are separated from each other by a micropore network
filled with bulk water (saturated case) or with a mixture of bulk water and air (unsaturated
case). Regarding their size, the micropores are completely free from EDL effects. Such local
representation allows to model the hydro-mechanical behavior of a swelling clay system from
the nanoscale to the macroscale by using for example periodic homogenization methods [30].
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50 nm

10 nm

Figure 1.13: High resolution SEM images of clay texture at different length scales [5].

Figure 1.14: Three-scale representation of expansive clay media.

1.5 Previous works and thesis scope

1.5.1 Literature review

Based on their multi-scale structure, several two- and three-scale models have been developed
by Moyne and Murad [16, 31, 32, 33, 15] for saturated expansive clays which are rigorously
derived by micromechanical analyses using periodic homogenization [30] to propagate the cou-
pled electro-chemico-mechanical phenomena from the nano- to the macro-scale. This allows
to obtain macroscopic constitutive laws where the effective medium properties account for the
local clay matrix structure and composition. The three-scale model has further been extended
to unsaturated swelling clays [22] resulting in a novel macroscopic effective stress principle
which is able to describe the hydro-mechanical behavior of swelling clays during oedometric
water infiltration [34].
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The limitation of these works is to use the classical Poisson-Boltzmann theory to capture
the physics at the nanoscale, which neglects completely the molecular nature of the water
solvent and ion size effects. These approaches describe therefore only accurately the osmotic
swelling regime, where only swelling is observed and fails in the crystalline swelling regime.
With the aim of improving the nanoscale description, Tien Dung Le [35] has accounted for
the finite size and interparticle correlation effects of ions for both the two- and three-scale
model of saturated swelling media in his Ph.D thesis using classical Density Functional Theory
coupled with the Mean Spherical Approximation (MSA) and the anisotropic HyperNetted-
Chain (HNC) approach to compute the ion distributions in the interlayer space. Such model
is able to predict swelling and shrinking in the crystalline swelling regime, but it completely
neglects the molecular nature of the water solvent.

A variety of experimental and modeling efforts have been undertaken aiming to understand
the primary role of the water solvent in the nanoscopic behavior of hydrated expansive clayey
soils. Ferrage et al. [24, 36] highlight the discrete evolution of the swelling pressure from zero
to two molecular water layers in smectite clays during the crystalline swelling regime (small
interplatelet distances) using X-ray and neutron diffraction techniques. These observations are
confirmed by Monte Carlo (MC) simulations using the CLAYFF model propsed by Cygan et
al. [37]. The related oscillatory form of the water molecule distribution in the inter-platelet
pores that means the existence of discrete water layers is also obtained by Delville [38, 39] from
MC simulations which uses the classical SPCE (Extended Single Point Charge) model of water
[40]. The evolution of the related swelling pressure that results at the macroscale has been
studied in the frame of experimental oedometric water infiltation tests performed by Imbert
and Villar [11]. They showed an increase of the swelling pressure during the water uptake
process which is related to the water transfert between the different pore types (micro- and
nanopores). In addition, their studies highlighted that final value of the swelling pressure at
complete saturation depends on the initial dry density and the initial water content.

Accounting for the molecular nature of the water solvent in the electrolyte solution is thus
indispensable for small interplatelet distances or in the crystalline swelling regime in order to
correctly predict the hydro-mechanical behavior of hydrated clays. This task is highly difficult
because of the complexity of the coupled intermolecular interactions in the water solvent, but
it should be undertaken in a realistic theoretical model of expansive clayey soils.

1.5.2 Thesis scope

This thesis aims at improving the nanoscale description of expansive clayey soils initially devel-
oped in the work of Tien Dung Le [35] by considering water no longer as a continuous solvent
but as individual polar molecules. The final objective is to reconcile with existing experimental
and computational modeling results such as the presence of discrete water layers in the inter-
platelet space and the resulting oscillatory form of the disjoining pressure evolution during the
hydration process of expansive clays in the crystalline swelling (low water content).

To this end, different model approaches of increasing complexity are proposed to account
for the molecular nature of water aiming at determining the physical phenomena that govern
the mechanical behavior at low interplatelet distances. The water solvent is firstly modeled as a
hard sphere fluid which is successfully treated using the Fundamental Measure Theory (FMT)
(chapter 2). Such a model allows to account for the finite size of the water molecules. The
polar nature of the water solvent can be considered in a first approach through an interparticle
Lennard-Jones (LJ) potential which averages over the different types of Van der Waals interac-
tions (chapter 3). The interparticle LJ potential is composed a short-range soft repulsive and
a long-range attractive part. The soft repulsive part is considered as an equivalent hard sphere
reference system which is treated by FMT. An exact Density Functional Perturbation Theory
(DFPT) approach accounting for interparticle correlation effects of the inhomogeneous LJ fluid
is proposed in this chapter to study the attractive part. In Chapter 4 the dipolar nature of the
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water solvent is considered explicitly by modeling water as a Dipolar Hard Sphere (DHS) fluid
being hard spheres with a permanent dipole moment embedded at their center. This complex
fluid is treated by a modified DFPT approach incorporating the dipole-dipole correlation ef-
fects which can be approximately calculated from the Ornstein-Zernike equation supplemented
by the MSA closure proposed by Wertheim [21]. Ions are finally added to the pure solvent to
complete the EDL model as it is shown in Fig.1.15. Such an EDL model is commonly referred
to as civilized model.

Figure 1.15:

Towards an application of the present work, in Chapter 5 an improved expression of the
disjoining pressure at the nanoscale accounting for the molecular nature of the water solvent
is included in our recently developed modified form of Terzaghi’s effective stress principle
of unsaturated expansive clays [22] in order to numerically simulate the hydro-mechanical
behavior of expansive clays during water infiltration tests. The aim is to highlight the domain
of validity and the limits of the classical PB theory and the possible improvements that can
be obtained by considering the molecular nature of water which is a highly interesting topic in
civil engineering.
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Chapter 2

Introduction to Density Functional
Theory and application to
Hard-Sphere fluids

Classical Density Functional Theory (DFT) is probably the most powerful tool for theoretical
analyses of inhomogeneous fluids. For this reason, this approach is chosen for modeling the
water solvent in the inter-platelet space of smectite clays. The present chapter resumes thus the
fundamental principles underlying all model approaches developed in the frame of this Ph.D
thesis.

To start, a brief introduction to DFT is presented resulting in the fundamental general
equation that is used to determine the water molecule (and ion) distribution at the nanoscopic
clay platelet scale. The correlations between the constituents which play a crucial role in
determining the thermodynamic properties of fluids are herein taken into account by the Radial
Distribution Function (RDF) [41]. The later is determined by the resolution of the Ornstein-
Zernike equation splitting intermolecular interactions into a direct and an indirect part.

The simplest case of a discontinuous fluid is the Hard-Sphere (HS) fluid with a purely
repulsive intermolecular potential accounting exclusively for particle size effects. The HS fluid
is generally considered as a reference case for more complex fluids and it is successfully treated
by the Fundamental Measure Theory (FMT) [42]. This chapter summarizes thus the main
ideas of the derivation of FMT from classical DFT.

2.1 Classical Density Functional Theory

Established in the mid 1970s, the DFT was originally derived for quantum mechanical systems
and has further been extended to classical statistical mechanics [43]. Since then, DFT has
turned out to be a powerful tool for theoretical analyses of inhomogeneous systems in different
configurations such as drying and wetting, interfacial phenomena (e.g. surface adsorption and
desorption) and capillary condensation. DFT is formulated starting from a density functional
definition of the thermodynamic potentials. In the case where the temperature, the volume and
the chemical potential (assuming an equilibrium situation) are held fixed, the thermodynamic
function to minimize is the grand potential, Ω [ρ] which is defined as a functional of the density
distribution ρ(r) by

Ω [ρ] = F [ρ] +
∫
ρ(r) [Vext(r) − µ] dr, (2.1)

where F [ρ] is the intrinsic free energy functional, Vext(r) the external potential acting on
the particles, and µ the chemical potential. At the equilibrium state, the grand potential is
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minimum. The density profile ρ(r) can therefore be determined from the variational principle

δΩ [ρ]
δρ(r)

= 0. (2.2)

where
δΩ [ρ]
δρ(r)

designates the functional derivative of the grand potential Ω relative to the dis-

tribution function ρ(r). The reader is referred to the book of Hansen and McDonald (§ 3.2)
[44] for a short and simple introduction to functional differentiation.

The intrinsic free energy F can be split into an ideal and an excess part

F [ρ] = F id[ρ] + Fex[ρ], (2.3)

in which the later is generally not known exactly while the ideal term is given by

F id [ρ] = kBT

∫
ρ(r)

(
ln
[
ρ(r)Λ3

]
− 1

)
dr, (2.4)

where kB is the Boltzmann constant, T the absolute temperature and Λ the thermal de Broglie
wavelength (this length plays no role in the following developments). The functional derivative
of this ideal part relative to ρ(r) gives the ideal chemical potential

δF id

δρ(r)
= kBT ln

[
ρ(r)Λ3

]
. (2.5)

The variational principle (2.2) can therefore be written as

0 = kBT ln
[
ρ(r)Λ3

]
+
δFex

δρ(r)
+ Vext(r) − µ. (2.6)

With β = 1/kBT , it follows directly

ρ(r)Λ3 = exp
[
β

(
µ− δFex [ρ]

δρ(r)
− Vext(r)

)]
. (2.7)

At thermodynamic equilibrium in a homogeneous fluid (bulk fluid), the chemical potential
admits the decomposition

µ = µb = µid
b + µex

b = kBT ln
(
ρbΛ3

)
+ µex

b , (2.8)

where ρb designates the bulk particle density. Combined with Eq.(2.7), the following expression
is finally obtained for the density distribution ρ(r)

ρ(r) = ρb exp
[
β

(
µex

b − δFex [ρ]
δρ(r)

− Vext(r)
)]

. (2.9)

The above relation is the fundamental equation underlying all developments of DFT. It remains
to find an expression of the excess free energy functional Fex [ρ], which is the key ingredient of
the various DFT approaches [45].

2.2 Radial Distribution Function

The excess free energy functional Fex [ρ] includes interparticle interactions, in which correlation
effects plays a significant role. In order to account for these effects, it is convenient to introduce
the Radial Distribution Function (RDF) (or pair correlation function) g(r) which describes how
the density of a fluid varies with distance from a reference particle.
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2.2.1 Definition

Preliminary remark: all calculations are presented here in the canonical ensemble in which the
number of particles N , the volume V and the absolute temperature T are fixed. The extension
to the grand canonical ensemble (fixed chemical potential µ, volume V and temperature T ) can
be found, for example in the textbook of Hill [46] for more details.

Consider a closed system of N particles without any external field in a volume V (with
the average number density ρ = N/V ) and at the temperature T (the inverse temperature
is defined by β = 1/kBT ), in which the interaction between particles is characterized by the
potential energy UN (r1, ..., rN ) with ri denoting the spatial position of particle i (i = 1, ..., N).
The probability of finding particle 1 at r1 + dr1, particle 2 at r2 + dr2, etc is given by [41]

P (N)(r1, ..., rN )dr1...drN =
e−βUN

ZN
dr1...drN , (2.10)

where ZN =
∫
...
∫
e−βUN dr1...drN is the configurational integral averaging over all possible

combinations of particle positions. Since P (N) is a probability density function, it normalizes
to unity ∫

...

∫
P (N)(r1, ..., rN )dr1...drN = 1. (2.11)

In order to obtain the probability of a reduced configuration, in which only the positions of the
first 1 to n particles (n < N) are fixed at r1, ..., rn irrespective of the remaining N −n particle
positions, Eq.(2.10) is integrated over the configuration of the N − n remaining particles

P (N)(r1, ..., rn) =
1
ZN

∫
...

∫
e−βUN drn+1...drN . (2.12)

The particles being identical, the probability of finding any particle in dr1 at r1, . . . , and any
particle in drn at rn is defined by the n-particle density defined as

ρ(n)(r1, ..., rn) =
N !

(N − n)!
P (n)(r1, ..., rn). (2.13)

The prefactor N ! /(N − n)! can be explained by the fact that there are N possible choices for
the first particle, N − 1 for the second, etc.

In the simplest case of a homogeneous fluid with n = 1, ρ(1) gives the one-particle density
which is independent of the position r1 and equal to the macroscopic density

1
V

∫
ρ(1)(r1)dr1 = ρ(1) =

N

V
= ρ. (2.14)

If the particles are independent of each other, ρ(n) is simply equal to ρn. It is now convenient
to introduce the n-particle correlation function g(n) of an arbitrary fluid by

ρ(n)(r1, ..., rn) = ρng(n)(r1, ..., rN ). (2.15)

From Eqs.(2.13) and (2.15), g(n) is defined by

g(n)(r1, ..., rn) =
V nN !

Nn(N − n)!
P (n)(r1, ..., rn). (2.16)

In statistical mechanics, the pair correlation function g(2)(r1, r2), also known as the Radial
Distribution Function (RDF) plays a crucial role for determining the thermodynamic properties
of a fluid. If the system is isotropic, g(2)(r1, r2) depends only on the relative distance r = |r1−r2|
between two particles and g(2)(r1, r2) = g(2)(r) ≡ g(r). It follows

ρ(2)(r1, r2) = ρ2g(2)(r1, r2) = ρ(2)(r1, r2) = N(N − 1)P (2)(r1, r2). (2.17)
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Integrating over the entire volume by noting that
∫ ∫

P (2)(r1, r2)dr1dr2 = 1 results then in

N(N − 1) = ρ2
∫ ∫

g(2)(r1, r2)dr1dr2 (2.18)

=
N2

V

∫
g(2)(r)dr =

N2

V

∫ ∞

0
g(r)4πr2 dr. (2.19)

It follows
∫
ρg(r) dr =

∫ ∞

0
ρg(r)4πr2 dr = N − 1 ≈ N, (2.20)

where the quantity ρg(r)4πr2 represents hence the number of molecules lying within the spher-
ical shell centered at a reference particle and between the two radii r and r + dr.

r=d
0 1 2 3 4 5

g
(r

)

0

1

2

3

4

Figure 2.1: Radial Distribution Function of the uniform hard-sphere fluid at the reduced par-
ticle density ρd3 = 0.813.

Fig.2.1 shows an example of a typical profile of the radial distribution function g(r) of a
hard sphere fluid of diameter d, in the example of an isotropic HS fluid of reduced density
ρd3 = 0.813. It is characterized by an oscillatory behavior as a function of the reduced distance
r/d from the reference particle placed at the origin. Because of the exclusion volume due to the
finite size of hard spheres, g(r/d < 1) = 0 and the maxima of g(r) are placed nearly at entire
multiples of the sphere diameter r/d = 1, 2... with an average value tending asymptotically
towards 1.

2.2.2 Ornstein-Zernike equation

From the asymptotic behavior of g(r) which tends towards 1 as r → ∞, it is convenient to
define the total correlation function h(r) as

h(r) = g(r) − 1, (2.21)

which measures the total influence of molecule 1 on molecule 2 at a separation distance r.
Ornstein and Zernike proposed in 1914 [47] to split this influence into two contributions, a
direct and an indirect part. The direct contribution is resumed by the direct correlation
function, denoted c(r). For the indirect contribution, the authors propose to consider the
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direct interaction between particle 1 and a third particle (labeled 3), which in turn interacts
with particle 2, directly or indirectly. The indirect part is weighted by the density distribution
of particle 3 and averaged over all its possible positions. This decomposition for the case of a
uniform and isotropic fluid of density ρ is described mathematically by the Ornstein-Zernike
(OZ) equation [47]

h(r12) = c(r12) + ρ

∫
dr3 c(r13)h(r23), (2.22)

where rij = ri − rj (i, j = 1, 2, 3) denotes the distance between two particles i and j (i, j =
1, 2, 3). For an infinite fluid, Eq.(2.22) can be rewritten as a spatial convolution

h(r12) = c(r12) + ρ

∫
dr3 c(r12 − r32)h(r32) = c(r12) + ρ(c⊗ h)(r12). (2.23)

2.2.3 Closures

It is evident that the Ornstein-Zernike relation Eq.(2.22) contains two unknowns (i.e h(r)
and c(r)). Therefore, it needs to be supplemented by an auxiliary closure relation. Using a
diagrammatic expansions of the pair correlation functions as shown in [44] the following exact
relation can be obtained

h(r) + 1 = exp[−βu(r) + γ(r) +B(r)], (2.24)

where u(r) is the interparticle potential, γ(r) the indirect correlation function defined as γ(r) ≡
h(r) − c(r) and B(r) is the so-called “bridge" function. The bridge function B(r) is not known
exactly, that is why Eq.(2.24) may be regarded as the definition of B(r). Finding an appropriate
approximation of B(r) called “closure", plays the essential role of Integral Equation Theories
(IET). Among the various existing approximations [48], one has to cite the Hyper-Netted Chain
(HNC) which is obtained by setting B(r) = 0

h(r) + 1 = exp[−βu(r) + h(r) − c(r)]. (2.25)

Another typical approximation is the Percus-Yevick (PY) closure which is derived from the
linearization of the HNC closure Eq.(2.25), exp γ(r) ≃ 1 + γ(r)

g(r) = exp[−βu(r)][1 + γ(r)]. (2.26)

The PY closure Eq.(2.26) plays a particular role because it yields an analytic solution for the
direct correlation function in the fundamental case of a hard sphere fluid [49]

c(r) =





0 for r > d,

−λ1 − 6ηλ2
r

d
− η

2
λ1
r3

d3
for r < d,

(2.27)

where d is the particle diameter, η =
π

6
ρd3 the particle volume fraction and λ1, λ2 are defined

by

λ1 =
(1 + 2η)2

(1 − η)4
,

λ2 = −(1 + η/2)2

(1 − η)4
.

In general, the PY closure relation turns out to be more successful than the HNC closure
when the intermolecular potential is strongly repulsive and short-ranged. In contrast, the
HNC approximation is more accurate than PY for systems governed by long-range attractive
potentials (e.g. electrolyte solutions) [44]. An extension of the PY approximation for common
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fluid models consisting of a hard-sphere interaction plus an isotropic attractive tail due to the
intermolecular potential u1(r) is the Mean Spherical Approximation (MSA) [50]. For a given
spherically symmetric potential

u(r) =

{
∞ for r < d,
u1(r) for r > d,

(2.28)

the MSA is defined in terms of the radial distribution function g(r) and the direct correlation
function c(r) by

{
g(r) = 0, r < d
c(r) = −βu1(r), r > d.

(2.29)

The first relation in Eq.(2.29) is exact, while the second one is an extension of the asymptotic
long-range behavior of c(r) (r ≫ d), which is obviously an approximation.

The most attractive feature of MSA is to provide an analytic solution for ionic [51, 52]
and dipolar hard sphere fluids [21]. For ionic fluids, the analytical MSA solution for the direct
correlation function cMSA

ij (r) between two particle i and j is split into a short-range term c̃ij(r)
being the direct correlation function of a system of uncharged hard spheres and an electrical
long-range term

cMSA
ij (r) =





c̃ij(r) − β

4πǫǫ0

qiqj

d

(
2B − B2r

d

)
for r < d

− β

4πǫǫ0

qiqj

r
for r > d,

(2.30)

where qi, qj are the electric charges and ǫ0, ǫ designate the vacuum permittivity and the relative
permittivity of the solvent, respectively. The parameter B is given by

B =
x+ 1 −

√
1 + 2x

x
, x = λDd, (2.31)

with λD the Debye length which can be written as

λ2
D =

β

ǫǫ0

N∑

i=1

ρiq
2
i , (2.32)

where ρi designates the density of ion i.
Because of their simplicity, the PY, HNC and MSA closures are commonly selected to study

simple fluids. However, the absence of the bridge function B(r) can cause poor performances of
these approximations even in the case of simple fluids. In order to overcome these shortcomings,
various assumptions of the bridge function B(r) have been proposed [53]. Typical examples
are the Percus-Yevick (PY), Verlet (V) bridge functions.

BP Y (r) = BP Y [(γ(r))] = ln[1 + γ(r)] − γ(r), (2.33)

BV (r) = BV [(γ(r))] =
−γ(r)2

2[1 + αγ(r)]
, (2.34)

with α = 0.8 in the original Verlet bridge function [54]. Another usual approximation is the
Martynov-Sarkisov (MS) bridge function [55]

BMS(r) = BMS [γ(r)] = [1 + 2γ(r)]1/2 − γ(r) − 1. (2.35)

In the case of more complex fluids such as Lennard-Jones fluids, the role of the bridge function
B(r) becomes predominant. Some appropriate bridge functions for such fluids will be presented
and discussed in chapter 3.

40



Chapter 2: DFT and application to HS fluids

2.3 Density functional perturbation theory

Recalling the fundamental equation of DFT (2.9) for solving the density distribution of an
inhomogeneous fluid

ρ(r) = ρb exp
[
β

(
µex

b − δFex [ρ]
δρ(r)

− Vext(r)
)]

. (2.36)

It remains to find an expression of the excess free energy functional Fex [ρ] which can be done
by using a perturbation method starting from the exact relation (see [44] for a derivation):

ρ(2)(r1, r2) = 2
δFex[ρ]
δu(r1, r2)

, (2.37)

where u(r1, r2) is the pair potential between two particles located at r1 and r2, respectively. In
the framework of Density Functional Perturbation Theory (DFPT), the later can be expressed
as the sum of a repulsive part u0(r1, r2) being the reference term, and a weak attractive part
ua(r1, r2) considered as the perturbation term. Introducing a coupling parameter λ, allows
then to continuously vary the intermolecular potential from the initial reference state (λ = 0)
to the final state (λ = 1). The complete intermolecular potential is then written as

uλ(r1, r2) = u0(r1, r2) + λua(r1, r2), 0 ≤ λ ≤ 1. (2.38)

In combination with Eq.(2.37), it comes

ρ(2)(r1, r2;λ) = 2
δFex[ρ;λ]
δuλ(r1, r2)

= 2
δFex[ρ;λ]

δ[λua(r1, r2)]
. (2.39)

The change in the Helmholtz free energy with respect to λ is then given by

δFex[ρ;λ] =
1
2

dλ
∫∫

ρ(2)(r1; r2;λ)ua(r1, r2)dr1dr2. (2.40)

Integrating the above relation between λ = 0 (reference system) and λ = 1 gives hence an
exact expression of the excess free energy

Fex[ρ] = F0[ρ] +
1
2

∫ 1

0
dλ
∫ ∫

ρ(2)(r1, r2;λ)ua(r1, r2) dr1 dr2, (2.41)

where F0[ρ] is the excess free energy functional of the reference fluid of density ρ(r) with the
pair potential u0(r1, r2). The pair density with the potential uλ(r1, r2) is now defined by

ρ(2)(r1, r2;λ) = ρ(r1)ρ(r2) [1 + h(r1, r2;λ)] , (2.42)

with h(r1, r2;λ) the total correlation function. Eq.(2.41) becomes then

Fex[ρ] = F0[ρ] +
1
2

∫∫
ρ(r1) ρ(r2)ua(r1, r2) dr1 dr2 + Fcorr[ρ], (2.43)

where Fcorr[ρ] denotes the contribution to the excess free energy Fex due to interparticle
correlations induced by the perturbation part of the interparticle potential

Fcorr[ρ] =
1
2

∫ 1

0
dλ
∫∫

ρ(r1) ρ(r2)h(r1, r2;λ)ua(r1, r2) dr1 dr2. (2.44)

Note that the density profiles ρ(r1) and ρ(r2) are maintained constant while increasing λ. To
do this, the external potential Vext(r) has to be adjusted as explained in Sullivan [56] and
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Evans [57]. The density distribution expression Eq.(2.36) for an inhomogeneous fluid is finally
written as

ρ(r1) = ρb exp

[
β

(
µex

b − δF0 [ρ]
δρ(r1)

−
∫
ρ(r2)ua(r1, r2)dr2 (2.45)

−
∫ 1

0
dλ
∫
ρ(r2)h(r1, r2; ρ;λ)ua(r1, r2)dr2 − Vext(r1)

)]
.

Eq.(2.45) is the expression underlying all perturbation theories for both bulk and inhomoge-
neous fluids using various approximations for the excess free energy of the reference system
F0[ρ] and for the total correlation function of the inhomogeneous system h(r1, r2; ρ;λ) [58].
Such DFT approach allows to obtain an exact expression for the particle density profiles of inho-
mogeneous fluids starting from the determination of the total correlation function h(r1, r2; ρ;λ)
of the inhomogeneous fluids. DFPT is the main theory in the present work, which treats the
different fluid models such as Lennard-Jones and Dipolar Hard-Sphere fluids presented in the
following chapters.

2.4 Fundamental Measure Theory

Hard Sphere fluid is the most simple particle fluid and is the fundamental reference system of
the different fluid models used in this work. With the aim of calculating the density distribution
ρ(r) of hard sphere fluids in any geometry using Eq.(2.9), the Fundamental Measure Theory
was suggested in its original form by Rosenfeld [42, 59], and further developed by Kierlik
and Rosinberg [60, 61]. It is noteworthy that Cuesta applied the FMT formalism to another
geometry, namely parallel hard cubes instead of hard spheres [62]. The latest developments of
FMT can be found in two review articles published by Roth et al. [63, 64]. For the sake of
simplicity, in this thesis, the FMT formalism is applied to one-component hard sphere fluids
(but can be extended to the cases of mixtures) based on the synthetic introduction of Hansen
and McDonald [44].

2.4.1 Percus-Yevick direct correlation function of hard spheres

The starting point of FMT is the fact that the PY direct correlation function Eq.(2.27) of a hard
sphere fluid may be expressed in terms of geometric quantities produced by the intersection of
two spheres of radius R (2R = d) and separated by a distance r > R (see Fig.2.2) such as the
overlap volume ∆V (r), the overlap surface ∆S(r) and the overlap radius ∆R(r) = 2R − R̄,
where R̄ = R + r/4 is the mean radius of the convex envelope surrounding the spheres. The
idea is here that these geometric quantities can be expressed in terms of convolutions of the
characteristic volume function ω3(r) and surface function ω2(r) of individual spheres

ω3(r) = Θ(R− |r|), ω2(r) = δ(R− |r|), (2.46)

where Θ denotes the Heaviside function, δ the Dirac function and r = |r|. It comes

∆V (r) = ω3 ⊗ ω3 =
∫
ω3(r − r′)ω3(r′)dr′ = 2

∫ R

r/2
π(R2 − r′2)dr′ Θ(d− r)

=
4
3
πR3

(
1 − 3

2
x+

x3

2

)
Θ(d− r), (2.47)

∆S(r) = 2ω3 ⊗ ω2 = 2
∫
ω3(r − r′)ω2(r′)dr′ = 4πR

(
R− r

2

)
Θ(d− r)

= 4πR2
(

1 − r

d

)
Θ(d− r), (2.48)
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Figure 2.2: Geometric quantities of two interpenetrating spheres.

∆R(r) =
∆S
8πR

+
R

2
Θ(d− r) =

(
R− r

4

)
Θ(d− r), (2.49)

where ⊗ is the spatial convolution and x = r/d. The direct correlation function c(r) of hard
spheres given by the Percus-Yevick Eq.(2.27) can be rewritten with some algebra as

− c(r) = χ(3)∆V (r) + χ(2)∆S(r) + χ(1)∆R(r) + χ(0)Θ(d− r), (2.50)

where the coefficients χ(α) (α = 0, 1, 2, 3) are given by

χ(0) =
1

1 − ξ3
, χ(1) =

ξ2

(1 − ξ3)2
,

χ(2) =
ξ1

(1 − ξ3)2
+

ξ2
2

4π(1 − ξ3)3
, (2.51)

χ(3) =
ξ0

(1 − ξ3)2
+

2ξ1ξ2

(1 − ξ3)3
+

ξ3
2

4π(1 − ξ3)4
,

where ξα = ρR(α) are the so-called SPT (Scaled Particle Theory) variables [65] related to the
fundamental geometric measures of a sphere R(α) as follows

R(3) = 4
3πR

3 (volume), R(2) = 4πR2 (surface)
R(1) = R (rayon), R(0) = 1.

(2.52)

To write c(r) in Eq.(2.50) solely in terms of the characteristic functions of an individual sphere,
the Heaviside function Θ(d−r) has to be decomposed in a sum of convolutions of single sphere
functions

Θ(d− |r|) = 2 (ω3 ⊗ ω0 + ω2 ⊗ ω1 + ω2 ⊗ ω1) , (2.53)

where the scalar functions (ωα) with (α ∈ 0, 1, 2, 3) and the vector functions ωα with (α ∈ 1, 2)
are all expressed in terms of the two basic functions of Eq.(2.46) as given by

ω3(r) = Θ(R− |r|), (2.54)

ω2(r) = δ(R− |r|), (2.55)

ω1(r) =
ω2(r)
4πR

, (2.56)

ω0(r) =
ω2(r)
4πR2

, (2.57)
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ω2 = ∇ω3 = δ(|r|−R)
r
r
, (2.58)

ω1 =
ω2

4πR
. (2.59)

In the case of the vector function, the convolution product ⊗ includes a scalar product. Note
that the representation of Θ(d−|r|) in Eq.(2.53) can be easily verified in the Fourier space (see
Appendix A.1). As a result, the PY direct correlation function in Eq.(2.50) can be rewritten
as

− c(r) = χ(3)ω3 ⊗ ω3 + 2χ(2)ω2 ⊗ ω3

+ χ(1)
[

1
4πR

ω2 ⊗ ω3 +R (ω0 ⊗ ω3 + ω1 ⊗ ω2 + ω1 ⊗ ω2)
]

+ 2χ(0) [ω0 ⊗ ω3 + ω1 ⊗ ω2 + ω1 ⊗ ω2] ,

= χ(3)ω3 ⊗ ω3 + 2χ(2)ω2 ⊗ ω3 + χ(1)
[
2ω1 ⊗ ω3 +

1
4π

(ω2 ⊗ ω2 + ω2 ⊗ ω2)
]

+ 2χ(0) [ω3 ⊗ ω0 + ω1 ⊗ ω2 + ω1 ⊗ ω2] , (2.60)

or in a more compact form

c(r) =
∑

α,β

cαβ ωα ⊗ ωβ. (2.61)

2.4.2 Excess free energy functional

The fundamental hypothesis of FMT is to assume that the excess free energy functional of a
hard sphere fluid, Fex, can be expressed in the form of a weighted density functional

βFex[ρ] =
∫

Φ[{nα(r′)}]dr′, (2.62)

where Φ is the reduced excess free energy density which is a function of spatially weighted
densities nα(r) defined by

nα(r) =
∫
ρ(r′)wα(r − r′) dr′. (2.63)

The next step is to identify the weight functions wα(r) in Eq.(2.63). The idea is to decompose
the direct correlation function c(|r − r′|) in terms of the weight functions wα(r). Starting from
the following definition [44]

− c(|r − r′|) = β
δ2Fex

δρ(r)δρ(r′)
. (2.64)

In combination with Eq.(2.62), the first derivative of Fex[ρ] with respect to ρ(r) is

β
δFex [ρ]
δρ(r)

=
∑

α

∫
dr′′ ∂Φ

∂nα
(r′′)

δnα(r′′)
δρ(r)

. (2.65)

With

nα(r′′) =
∫

dr′′′ρ(r′′ − r′′′)wα(r′′′) =
∫

dr′′′ρ(r′′′)wα(r′′ − r′′′) (2.66)

δnα(r′′)
δρ(r)

=
∫

dr′′′ δρ(r′′′)
δρ(r)

wα(r′′ − r′′′) = wα(r′′ − r), (2.67)

the first derivative reads as

β
δFex [ρ]
δρ(r)

=
∑

α

∫
dr′′ ∂Φ

∂nα
(r′′) wα(r′′ − r), (2.68)
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and the second derivative becomes

β
δ2Fex [ρ]
δρ(r)δρ(r′)

=
∑

α,β

∫
dr′′ ∂2Φ

∂nα∂nβ
(r′′)wα(r′′ − r)

δnβ(r′′)
δρ(r′)

=
∑

α,β

∫
dr′′ ∂2Φ

∂nα∂nβ
(r′′) wα(r′′ − r) wβ(r′′ − r′). (2.69)

In a homogeneous fluid,
∂2Φ

∂nα∂nβ
(r′′) is independent of the spatial position r′′ and the above

equation in combination with Eq.(2.64) yields

− c(|r − r′|) = β
δ2Fex [ρ]
δρ(r)δρ(r′)

=
∑

α,β

∂2Φ
∂nα∂nβ

∫
dr′′wα(r′′ − r)wβ(r′′ − r′)

=
∑

α,β

∂2Φ
∂nα∂nβ

∫
wα(−r′′′)wβ(r − r′ − r′′′)dr′′′ (2.70)

=
∑

α,β

± ∂2Φ
∂nα∂nβ

wα ⊗ wβ(r − r′).

The last term of Eq.(2.70) is the convolution of the weight functions wα(−r) and wβ(r) of two
particles α and β located at r and r′, respectively. If the functions wα are even (scalar func-
tions) the sign is “+", if the functions are odd (vector functions) the sign is “−". Therefore, the
products of scalar functions are standard convolutions, the vector convolutions must be pre-
ceded by a sign “−" and products of scalar and vector functions cancel out by the permutation
of the indices α and β. The similarity of the expressions Eq.(2.60) and Eq.(2.70) justifies the
choice to use the characteristic functions ωα and ωα as weight functions wα . Therefore

nα(r) =
∫
ωα(r − r′) ρ(r′) dr′, α = 0 to 3 (2.71)

nα(r) =
∫

ωα(r − r′) ρ(r′) dr′, α = 1,2 (2.72)

where the functions ωα and ωα are given by the relations Eq.(2.54-2.59). The scalar densities
nα and vector densities nα have the dimensions of the weight function ωα and ωα (lengthα−3).

The reduced excess free energy density Φ is now determined by expressing it as a linear
combination of the lowest powers of the weighted densities and their products in the spirit of a
virial expansion. Since Φ is a scalar with the dimension of a number density, the only possible
terms are: n0, n1n2, n3

2, n1 · n2 and n2n2 · n2. Thus

Φ ({nα}) = φ0n0 + φ1n1n2 + φ2n
3
2 + φ3n1 · n2 + φ4n2n2 · n2, (2.73)

where the coefficients φ0, φ1, φ2, φ3 and φ4 are functions without dimension of the quantity
without dimension n3. If the fluid is homogeneous, the scalar weighted densities reduce to the
SPT variables Eq.(2.52) and the vector densities vanish. Therefore,

Φ ({nα}) = φ0ξ0 + φ1ξ1ξ2 + φ2ξ
3
2 . (2.74)

In order to establish a relation between the excess pressure P ex and Φ, one can write

Ωex[ρ] = −
∫
P ex[ρ]dr

= Fex −
∫
ρ(r)

δFex

δρ(r)
dr. (2.75)
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Using the definition of the weighted densities Eq.(2.71) and Eq.2.72) and the relation of the
derivative of the free energy Eq.(2.68), the second term of the above relation becomes

∫
ρ(r)β

δFex

δρ(r)
dr =

∑

α

∫
dr
∫

dr′ρ(r)
∂Φ
∂nα

(r′)ωα(r′ − r) =
∑

α

∫
dr′ ∂Φ

∂nα
(r′)nα(r′). (2.76)

The excess pressure P ex is then given by

βP ex[ρ] = −Φ +
∑

α

∂Φ
∂nα

nα, (2.77)

where the sum covers all scalar densities.
The scaled particle theory ([44], page 233 and Appendix E, page 599) shows the intuitive

result that the excess chemical potential of a hard sphere of radius R is nearly equal to the
reversible work required for the creation in the fluid of a cavity of volume 4/3πR3 that can
hold this particle. In the limit R → ∞, this term dominates and µex → (4/3πR3)P . In the
bulk, we have the classical relation

βµex = β
∂ (Fex/V )

∂ρ

∣∣∣∣
T

=
∂Φ
ρ

∣∣∣∣
T

=
∑

α

∂Φ
∂ξα

∂ξα

∂ρ
=
∂Φ
∂ξ3

V + O
(
R2
)
. (2.78)

For large particles (R → ∞), the preceding evaluation of µex in powers of R indicates that the
derivative ∂Φ/∂ξ3 has to be identified with βP . This relation is assumed to be valid also in
the inhomogeneous case allowing to substitute ξ3 by n3:

∂Φ
∂n3

= βP = βP id + βP ex = n0 + βP ex. (2.79)

Using Eq.(2.77) to express P ex in Eq.(2.79) gives the fundamental relation for the excess free
energy density in the FMT

∂Φ
∂n3

= −Φ +
∑

α

∂Φ
∂nα

nα + n0. (2.80)

By use of Eq.(2.73) to replace Φ in Eq.(2.80) (note that φi depends only on n3), the different
terms can be identified successively
• Term in n0

− φ0n0 + φ0n0 + n3
dφ0

dn3
n0 + n0 =

dφ0

dn3
n0. (2.81)

Hence

dφ0

dn3
=

1
1 − n3

−→ φ0 = − ln (1 − n3) + c0. (2.82)

• Term in n1n2

− φ1n1n2 + 2φ1n1n2 +
dφ1

dn3
n3n1n2 = n1n2

dφ1

dn3
. (2.83)

Hence

dφ1

dn3
=

φ1

1 − n3
−→ φ1 =

c1

1 − n3
. (2.84)

• Term in n3
2

− φ2n
3
2 + 3φ2n

3
2 +

dφ2

dn3
n3

2n3 = n3
2

dφ2

dn3
. (2.85)
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Hence

dφ2

dn3
=

2φ2

1 − n3
−→ φ2 =

c2

(1 − n3)2
. (2.86)

• Term in n1 · n2

dφ3

dn3
=

φ3

1 − n3
−→ φ3 =

c3

1 − n3
. (2.87)

• Term in n2n2 · n2

− φ4 + 3φ4 +
dφ4

dn3
n3 =

dφ4

dn3
. (2.88)

Hence

dφ4

dn3
=

2φ4

1 − n3
−→ φ4 =

c4

(1 − n3)2
, (2.89)

where c0–c4 are integration constants. With the above relations Eq.(2.73) becomes then

Φ ({nα}) = [c0 − ln (1 − n3)]n0 +
c1

1 − n3
n1n2 +

c2

(1 − n3)2
n3

2

+
c3

1 − n3
n1 · n2 +

c4

(1 − n3)2
n2n2 · n2. (2.90)

It remains to determine the constants c0 − c4. The key idea is to identify these constants in
order to satisfy the classical relation ([44], page 72)

c(r, r′) = −β δ2Fex

δρ(r)δρ(r′)
(2.91)

where c(r, r′) is given by the Percus-Yevick relation Eq.(2.60). This is a rather technical task
which is developed in Appendix A.2.1. The final result for the expression of the excess free
energy Φ is the original FMT version of Rosenfeld





ΦRF = ΦRF
1 + ΦRF

2 + ΦRF
3

ΦRF
1 = −n0 ln(1 − n3)

ΦRF
2 =

n1n2 − n1 · n2

1 − n3

ΦRF
3 =

n3
2 − 3n2n2 · n2

24π(1 − n3)2
.

(2.92)

Rosenfeld’s approximation of the excess free energy is in good agreement with MC results when
applying it to one component inhomogeneous hard sphere fluids [61, 66] as well as for HS fluid
mixtures [67]. However, the Rosenfeld functional based on the Percus-Yevick closure leads to
the Percus-Yevick compressibility equation of state [68]

βPPY =
∂Φ
∂n3

=
n0

1 − n3
+

n1n2

(1 − n3)2
+

n3
2

12π(1 − n3)3
, (2.93)

In a homogeneous HS fluid, where the scalar weighted densities reduce to the SPT variables
nα → ξα given by Eq.(2.52) (ξ0 = ρ, ξ1 = ρR, ξ2 = ρ4πR2, ξ3 = ρ(4/3πR3) = η), PPY can be
expressed in terms of the particle packing fraction η as follows

βPPY = ρb
1 + η + η2

(1 − η)3
, (2.94)

47



Chapter 2: DFT and application to HS fluids

If the Rosenfeld functional turns out to satisfy simulation data for the one-component hard
sphere fluid at low densities, the Percus-Yevick Eq.(2.94) overestimates the pressure of about 7%
when approaching the liquid-solid phase transition [63]. The semi-empirical Carnahan-Starling-
Boublík (CS) equation of state (EOS) [69] (extented by Mansoori-Carnahan-Starling-Leland
(MCSL) to mixtures) is a simple and very accurate EOS of one-component HS fluids:

βPMCSL =
1 + η + η2 − η3

(1 − η)3
=

n0

1 − n3
+

n1n2

(1 − n3)2
+

n3
2

12π(1 − n3)3
− n3n

3
2

36π(1 − n3)3
. (2.95)

An improved version of FMT called the “White-Bear" version of FMT has therefore been
developed, which is given is the appendix §A.2.2 [64]:





ΦW B = ΦW B
1 + ΦW B

2 + ΦW B
3

ΦW B
1 = −n0 ln(1 − n3)

ΦW B
2 =

n1n2 − n1 · n2

1 − n3

ΦW B
3 =

n3 + (1 − n3)2 ln(1 − n3)
36πn2

3(1 − n3)2
[n3

2 − 3n2n2 · n2].

(2.96)

2.5 Application of the hard sphere fluid in EDL model ap-
proaches

The hard sphere fluid is the simplest model approach of discontinuous fluids. Most descriptions
consider the hard sphere fluid as a fundamental reference system to which particle interactions
(of dipolar and/or electrical nature) are added.

As a starting point of the present work, the water solvent in the interplatelet pores is
modeled by an inhomogeneous hard sphere fluid confined between two planar hard walls and in
equilibrium with an external homogeneous bulk fluid as represented schematically in Fig.2.3.

Figure 2.3: HS model for the water solvent in an Electrical Double Layer.

Roth calculates the density profile of HS fluids in various geometries by using the different
versions of FMT. By comparing the numerical results with MC data, he shows that the White
Bear and the White Bear Mark II give almost the same results which are more accurate than
those obtained with the Rosenfeld version [64]. For the sake of simplicity, the White Bear
version of FMT Eq.(2.96) is therefore used to study such a hard sphere system in which the
intermolecular and external potentials incorporated solely finite particle size effects. In the
planar geometry of Fig.2.3, these potentials read as

uHS(r) =

{
0, r ≥ d
∞, r < d

(2.97)
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and

Vext(z) =

{
0, z ≥ R = d/2
∞, z < R = d/2

(2.98)

with r the interparticle distance and z the distance perpendicular to the walls

2.5.1 FMT applied to planar geometry cases

For a planar geometry as in Fig.2.3 the fundamental equations of FMT presented in the previous
sections depend only on the distance from the wall z. Consequently it follows

nα(r) ≡ nα(z) =
∫
ρ(z′)ωα(z − z′) dz′, (2.99)

β
δFex

HS [ρ]
δρ(z)

=
∑

α

∫
∂Φ
∂nα

δnα(z′)
δρ(z)

dz′, (2.100)

δnα(z′)
δρ(z)

=
δ

δρ(z)

∫
ρ(z′′)ωα(z′ − z′′) dz′′ = ωα(z′ − z). (2.101)

From these above definitions, it comes

β
δFex

HS [ρ]
δρ(z)

=
∑

α

∫
∂Φ
∂nα

ωα(z′ − z)dz′, (2.102)

which can be expressed in the form of convolutions recalling that the scalar weight functions
are even and the vectorial ones are odd

β
δFex

HS [ρ]
δρ(z)

=
3∑

α=0

∂Φ
∂nα

⊗ ωα −
2∑

α=1

∂Φ
∂nα

⊗ ωα. (2.103)

In the present case of a HS fluid confined between two planar hard walls, the density distribution
defined in Eq.(2.9) can thus be rewritten as

ρ(z) = ρb exp

[
βµex

b −
3∑

α=0

∂Φ
∂nα

⊗ ωα +
2∑

α=1

∂Φ
∂nα

⊗ ωα − βVext(z)

]
, (2.104)

where the one-dimensional weight functions ωα(z) and ωα(z) are presented in the Appendix
A.3.

2.5.2 Bulk hard sphere fluid equations

The first step in modeling inhomogeneous HS fluids is to determine the thermodynamic proper-
ties of the corresponding homogeneous bulk reference HS fluid. The bulk pressure is determined
using the accurate semi-empirical Carnahan-Starling-Boublík EOS

PCS = kBT ρb
1 + η + η2 − η3

(1 − η)3
, (2.105)

The excess free energy and the excess chemical potential are calculated analytically from the
Carnahan-Starling equation of state Eq.(2.105).

Starting from the definition of the intrinsic free energy F

F = Nµ− PV, (2.106)

dF = −SdT − PdV + µdN, (2.107)
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the relation between the pressure P and the intrinsic free energy F is given by

P = −
(
∂F
∂V

)

T,N
. (2.108)

For the HS homogeneous fluid

Fex
HS = FHS − F id =

∫ ∞

V

(
PHS − P id

)
dV = NkBT

∫ ∞

V

(
βPHS

ρb
− 1

)
dV
V
, (2.109)

with dV/V = −dη/η and Eq.(2.105) it comes,

βfex
HS =

βFex
HS

N
=
∫ η

0

(
βPHS

ρb
− 1

)
dη
η

=
∫ η

0

4η − 2η2

(1 − η)3

dη
η

=
4η − 3η2

(1 − η)2
. (2.110)

The excess chemical potential is then given by

µex
HS =

Fex
HS

N
+
P ex

HS

ρb
= kBT

[
4η − 3η2

(1 − η)2
+

1 + η + η2 − η3

(1 − η)3
− 1

]
= kBT

8η − 9η2 + 3η3

(1 − η)3
.(2.111)

2.5.3 Results and discussion

The density profile is determined numerically by the solution of Eq.(2.104) with MATLAB c©

using an iterative Picard method [64]. In the numerical calculations, all integral convolutions
are evaluated by using the “conv” function of the MATLAB c© toolbox. Before performing
the calculations, an appropriate step size ∆z should be chosen in order that the results are
insensitive to the step size. As shown in Fig.2.4, this can be done with a step size ∆z which
allows to recover the Carnahan-Starling bulk pressure by the value of density of the hard sphere
fluid at contact ρcontact = ρ(z = d/2) in the case of a unique hard wall with the help of the
contact theorem [63]

ρcontact

∣∣∣∣
∆z−→0

= ρb
1 + η + η2 − η3

(1 − η)3
= ρCS. (2.112)

As a compromise between numerical calculation costs and the numerical accuracy, ∆z = 0.001d
is selected in the present case leading to a relative error of 0.15% for ρbd

3 = 0.7.

0 1000 2000 3000 4000

3.9

3.95

4

d/∆z

ρ
c
d
3

 

 

ρ
CS

ρ
contact

Figure 2.4: Contact value of the hard-sphere fluid near a hard wall versus the grid point number
d/∆z for a reduced bulk density ρd3 = 0.7.

To solve Eq.(2.104) by iteration with the Picard method, a suitable initial guess for ρ(z) is
the bulk density ρb. The new estimate of ρ(z) is obtained by the right hand side of Eq.(2.104).
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Figure 2.5: Density profiles of inhomogeneous hard sphere fluids at different reduced bulk
densities near a hard wall in comparison with Monte Carlo simulation taken from [6].

The iteration is repeated until the change in the density profile ρ(z) at each point is smaller
than the convergence criterion.

Fig.(2.5) presents the density profiles of a HS fluid in contact with a unique planar hard
wall placed at the origin (z = 0), obtained with the present FMT compared with the MC
results taken from [6] for different normalized bulk densities.

Due to their finite size d, no particles can be found at a distance of half a diameter away
from the wall. This zone is the so-called the “exclusion zone". The density distributions have
an oscillatory behavior. The density is maximum at the boundary of the exclusion zone at
z = d/2. The following maxima are situated nearly at entire multiples of the particle diameter
with an amplitude diminishing continuously until reaching the bulk density far away from the
wall.

As expected, since the FMT formalism has been developed for low bulk densities [64], the
agreement between FMT and MC results is very good at low bulk densities (e.g ρbd

3 = 0.5745),
but is less accurate when increasing the bulk density.

The density profiles obtained by the FMT formalism for HS fluids confined between two
planar hard walls at different separation distances are depicted in Fig.2.6. Similar to the former
case of one planar hard wall, the density distribution is also oscillatory. However, the number
of fluid layers is strongly dependent of the separation distance 2H between the two walls.

Another important mechanical property of confined fluids is the disjoining pressure Πd

which is defined as the force per unit area over the bulk pressure that has to be applied on the
two walls to keep them at a fixed distance 2H.

Πd = P − Pb, (2.113)

where the fluid pressure can be expressed as a function of the particle density at the wall by
the so-called contact theorem

P = kBTρ(z = d/2). (2.114)
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Figure 2.6: Density profiles of a hard sphere fluid confined between two hard walls for different
separation distances between the walls for the reduced bulk density ρbd

3 = 0.813.

The disjoining pressure profile of the confined hard sphere fluid at the reduced bulk density
ρbd

3 = 0.73 (corresponding to the water density with d = 2.8 × 10−10 m) as a function of the
separation distance 2H is shown in Fig.2.7. Identically to the density profiles, Πd exhibits an
oscillatory shape alternating between repulsive and attractive parts. Note that only the parts
of the curve represent equilibrium configurations, justifying the hypothesis of discrete numbers
of water layers in the crystalline swelling regime at small interplatelet distances. This is clearly
an important improvement compared to the classical Poisson-Bolzmann theory which results
in a monotonously decreasing purely repulsive disjoining pressure (Fig.1.12).
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Figure 2.7: Disjoining pressure profile of a hard-sphere fluid confined between two planar hard
walls as a function of the separation distance 2H at the reduced bulk density ρbd

3 = 0.73.

It has to be noted however that the disjoining pressure obtained for the simple HS fluid is
highly repulsive, especially at small separation distances, overestimating the values expected
for the water solvent in the nano-scale pores of clayey soils. In addition, the bulk pressure
calculated by Eq.(2.105) is of about 108 Pa which is significantly higher than the expected
value of about 105 Pa. In order to overcome this shortcoming, an attractive force should be
added to the particle interaction potential which can counterbalance the excessive hard core
repulsive force.
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2.6 Conclusion

In this chapter, we have presented the derivation of classical Density Functional Theory which is
probably the most effective theory to study molecular fluids. Density-Functional Perturbation
Theory is a DFT approach, which allows to calculate exactly the particle density profiles of
inhomogeneous fluids by determining their total correlation function. DFPT is the common
theoretical foundation to study different fluid models presented in the following.

The simplest way to consider the molecular nature of the water solvent in clayey soils is to
account for the finite size of the molecules. This can be done by modeling water solvent as a
simple HS fluid with a purely repulsive interparticular potential accounting only for particle
size exclusion. The Fundamental Measure Theory and especially the so-called “White Bear”
version is an efficient tool to solve accurately HS fluids in any geometry.

According to our expectations, the resulting density distribution profiles for an inhomho-
geneous HS fluid in contact with a planar hard wall exhibit an oscillating behavior and are in
good agreement with MC data.

As a first model of interplatelet pores as in clay minerals, this chapter depicts the results
obtained with the “White-Bear" version of FMT for a HS fluid confined between two planar
hard walls. The fluid molecules are organized in layers whose number is strongly dependent
of the interplatelet distance which is similar to hydration behavior in the interplatelet pores
observed during the crystalline swelling regime of hydrated expansive clays. The disjoining
pressure obtained in this case has also an oscillatory behavior in function of the interplatelet
distance allowing to account for repulsion and attraction. Such a profile allows to explain
the formation of discrete water layers during the hydration process in the crystalline swelling
regime at small interplatelet distances.

However, such a HS fluid model yields high repulsive values of the fluid pressure at small
interplatelet distances and in the bulk fluid. To overcome this shortcoming, an attractive inter-
particle potential should be added to counterbalance the purely repulsive HS fluid interaction
potential. The effect of different attractive particle interactions will therefore be treated in the
two following chapters of this work.
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Appendix A

A.1 Fourier transform of Θ(d − |r|)

The three-dimensional Fourier transform V̂ (k) of the function V (r) and its inverse transform
are defined by:

V̂ (k) =
∫ ∞∫

−∞

∫
V (r) exp(−ik · r) dr, (A.1)

V (r) =
1

(2π)3

∫ ∞∫

−∞

∫
V̂ (k) exp(ik · r) dk. (A.2)

If the function V (r) is only dependent on r = |r|, its Fourier transform depends only on k:

V̂ (k) = 4π
∫ ∞

0
V (r)

r sin (kr)
k

dr. (A.3)

For the Heaviside function H(d− r), it comes hence

Ĥ(d− r) = 4π
∫ d

0

r sin (kr)
k

dr = 4π
sin(kd) − kd cos(kd)

k3
. (A.4)

For the sphere characteristic functions

ω3(r) = Θ(R− r), (A.5)

ω2(r) = δ(R− |r|), (A.6)

ω1(r) =
ω2(r)
4πR

, (A.7)

ω0(r) =
ω2(r)
4πR2

, (A.8)

ω2(r) = ∇ω3 = δ(r −R)
r
r
, (A.9)

ω1(r) =
ω2

4πR
, (A.10)

and their Fourier transforms are given by

ω̂3(k) = 4π
sin(kR) − kR cos(kR)

k3
, (A.11)

ω̂2(k) = 4πR
sin(kR)

k
, (A.12)

ω̂1(k) =
sin(kR)

k
, (A.13)

ω̂0(k) =
sin(kR)
kR

, (A.14)
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ω̂2(k) = ikω̂3 = i4π
sin(kR) − kR cos(kR)

k3
k, (A.15)

ω̂1(k) =
ω̂2

4πR
= ikω̂3 = i

sin(kR) − kR cos(kR)
k3R

k, (A.16)

We calculate now

2 (ω̂3 ⊗ ω̂0 + ω̂1 ⊗ ω̂2 + ω̂1 ⊗ ω̂2) =

2

{
4π

sin(kR) − kR cos(kR)
k3

sin(kR)
kR

+ 4π
R sin2(kR)

k2
− 4π
k4R

[sin(kR) − kR cos(kR)]2
}

=

8π
k4R

{
[sin(kR) − kR cos(kR)] sin(kR) + (kR)2 sin2(kR) − [sin(kR) − kR cos(kR)]2

}
=

8π
k3

{
cos(kR) sin(kR) − kR

[
cos2(kR) − sin2(kR)

]}
=

4π
k3

[sin(kd) − kd cos(kd)] . (A.17)

Finally, we have

Ĥ = 2 (ω̂3 ⊗ ω̂0 + ω̂1 ⊗ ω̂2 + ω̂1 ⊗ ω̂2) (A.18)

A.2 Development of the Fundamental Measure Theory

A.2.1 Determination of the constants c1–c4

To determine the constants c1–c4 of Eq.(2.90), let us start considering the case of low densities
(n3 −→ 0). In this case, the radial distribution function g is equal to exp(−βu(r)) [41] (page
263). This is a rather intuitive result for the case of hard spheres with g = 0 inside the sphere
and g = 1 outside. Therefore using Eq.(A.18), the Ornstein-Zernike Eq.(2.22) leads to

c
(
|r − r′|

)
= −β δ2Fex

δρ(r)δρ(r′)
= −Θ(2R− |r − r′|)

= −2 (ω0 ⊗ ω3 + ω1 ⊗ ω2 + ω1 ⊗ ω2)
(
|r − r′|

)
(A.19)

where Θ is the Heaviside function.
The functional integration of the previous relation leads to

βFex =
1
2

∫ ∫
drdr′ρ(r)ρ(r′)Θ(2R− |r − r′|). (A.20)

Note that
∫

dr′′′ ωα(r − r′ − r′′′)ωβ(r′′′) =
∫

dr′′ ωα(r − r′′)ωβ(r′′ − r′), (A.21)

where r′′ = r′ + r′′′ and note also that the scalar weight functions are even and the vector
weight functions odd

ωβ(r − r′) = ωβ(r′ − r)
ωβ(r − r′) = −ωβ(r′ − r).

(A.22)

It comes then finally

βFex =
∫

dr
∫

dr′ρ(r)ρ(r′)
∫

dr′′ [ω0(r′′ − r)ω3(r′′ − r′) + ω1(r′′ − r)ω2(r′′ − r′)

−ω1(r′′ − r) · ω2(r′′ − r′)
]

=
∫

dr′′ (n0 n3 + n1 n2 − n1 · n2) . (A.23)
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The comparison with Eq.(2.90) for n3 −→ 0 yields

c0 = 0 c1 = 1 c3 = −1 , (A.24)

which allows to rewrite the expression of Φ in Eq.(2.90) as

Φ ({nα}) = − ln (1 − n3)n0 +
1

1 − n3
n1n2 +

c2

(1 − n3)2
n3

2

− 1
1 − n3

n1 · n2 +
c4

(1 − n3)2
n2n2 · n2. (A.25)

The remaining terms (in c2, c4) are obtained with the higher order terms of the virial develop-
ment of Fex. With the above relation, the direct correlation function c(r) becomes

c(|r − r′|) = −β δ2Fex

δρ(r)δρ(r′)

c(r) = −
∑

α,β

∂2Φ
∂nα∂nβ

ωα ⊗ ωβ +
∑

α,β

∂2Φ
∂nα∂nβ

ωα ⊗ ωβ, (A.26)

where the first derivative terms are given by

∂Φ
∂n0

= − ln(1 − n3)

∂Φ
∂n1

=
n2

1 − n3

∂Φ
∂n2

=
n1

1 − n3
+ 3c2

n2
2

(1 − n3)2
+ c4

n2 · n2

(1 − n3)2
(A.27)

∂Φ
∂n3

=
n0

1 − n3
+ 2c2

n3
2

(1 − n3)2
+

n1n2

(1 − n3)2
− n1 · n2

(1 − n3)2
+ 2c4

n2 (n2 · n2)
(1 − n3)3

∂Φ
∂n1

= − n2

1 − n3

∂Φ
∂n2

= − n1

1 − n3
+ 2c4

n2n2

(1 − n3)2
,

and the second derivatives read as

∂2Φ
∂n0∂n3

=
1

1 − n3

∂2Φ
∂n1∂n2

=
1

1 − n3

∂2Φ
∂n1∂n3

=
n2

(1 − n3)2

∂2Φ
∂n2

2

= 6c2
n2

(1 − n3)2

∂2Φ
∂n2∂n3

=
n1

(1 − n3)2
+ 6c2

n2
2

(1 − n3)3
+ 2c4

n2 · n2

(1 − n3)3

∂2Φ
∂n2

3

=
n0

(1 − n3)2
+ 4c2

n3
2

(1 − n3)3
+ 2

n1n2

(1 − n3)3
− 2

n1 · n2

(1 − n3)3
+ 6c4

n2 (n2 · n2)
(1 − n3)4

∂2Φ
∂n1∂n3

= − n2

(1 − n3)2
(A.28)

∂2Φ
∂n1∂n2

= − 1
1 − n3
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∂2Φ
∂n2∂n2

= 2c4
n2

(1 − n3)2

∂2Φ
∂n2∂n3

= − n1

(1 − n3)2
+ 4c4

n2n2

(1 − n3)3

∂2Φ
∂n2∂n2

= 2c4
n2

(1 − n3)2
.

The direct correlation function is hence written as

− c(r) =
2

1 − n3
ω0 ⊗ ω3 +

2
1 − n3

ω1 ⊗ ω2 +
2n2

(1 − n3)2
ω1 ⊗ ω3 + 6c2

n2

(1 − n3)2
ω2 ⊗ ω2

+ 2

[
n1

(1 − n3)2
+ 6c2

n2
2

(1 − n3)3
+ 2c4

n2 · n2

(1 − n3)3

]
ω2 ⊗ ω3

+

[
n0

(1 − n3)2
+ 6c2

n3
2

(1 − n3)4
+ 2

n1n2

(1 − n3)3
− 2

n1 · n2

(1 − n3)2
+ 6c4

n2 (n2 · n2)
(1 − n3)4

]
ω3 ⊗ ω3

+
2

1 − n3
ω1 ⊗ ω2 − 2c4

n2

(1 − n3)2
ω2 ⊗ ω2. (A.29)

In a homogeneous fluid, nα −→ ξα and the vector quantities nα vanish, the direct correlation
function c(r) reduces then to

− c(r) =
2

1 − ξ3
ω0 ⊗ ω3 +

2
1 − ξ3

ω1 ⊗ ω2 +
2ξ2

(1 − ξ3)2
ω1 ⊗ ω3 + 6c2

ξ2

(1 − ξ3)2
ω2 ⊗ ω2

+ 2

[
ξ1

(1 − ξ3)2
+ 6c2

ξ2
2

(1 − ξ3)3

]
ω2 ⊗ ω3

+

[
ξ0

(1 − ξ3)2
+ 6c2

ξ3
2

(1 − ξ3)4
+ 2

ξ1ξ2

(1 − ξ3)3

]
ω3 ⊗ ω3

+
2

1 − ξ3
ω1 ⊗ ω2 − 2c4

ξ2

(1 − ξ3)2
ω2 ⊗ ω2. (A.30)

Rearranging the terms according to

− c(r) =
2

1 − ξ3
[ω0 ⊗ ω3 + ω1 ⊗ ω2 + ω1 ⊗ ω2]

+

[
ξ0

(1 − ξ3)2
+ 6c2

ξ3
2

(1 − ξ3)4
+ 2

ξ1ξ2

(1 − ξ3)3

]
ω3 ⊗ ω3

− 8πRc4
ξ2

(1 − ξ3)2
ω1 ⊗ ω2 (A.31)

+ 24πc2
ξ2

(1 − ξ3)2
ω1 ⊗ ω2

+ 2

[
ξ1

(1 − ξ3)2
+ 6c2

ξ2
2

(1 − ξ3)3
+

ξ2

4πR(1 − ξ3)2

]
ω2 ⊗ ω3,

and identifying Eq.(A.31) with the expression of the direct correlation function in Eq.(2.60),one
obtains

c2 =
1

24π
c4 = − 1

8π
. (A.32)

Introducing these results in Eq.(A.25) yields finally in the expression of the excess free energy
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in the original FMT version of Rosenfeld




ΦRF = ΦRF
1 + ΦRF

2 + ΦRF
3

ΦRF
1 = −n0 ln(1 − n3)

ΦRF
2 =

n1n2 − n1 · n2

1 − n3

ΦRF
3 =

n3
2 − 3n2n2 · n2

24π(1 − n3)2
.

(A.33)

A.2.2 “White Bear" version

As mentioned in earlier, the Rosenfeld functional turns out to satisfy simulation data for the
one-component hard sphere fluid but overestimates the pressure of about 7% when approach-
ing the liquid-solid phase transition [63]. The semi-empirical Carnahan-Starling-Boublík (CS)
equation of state (EOS) [69] (extented by Mansoori-Carnahan-Starling-Leland (MCSL) to mix-
tures) is known to be a simple and very accurate EOS of one-component HS fluids:

βPMCSL =
1 + η + η2 − η3

(1 − η)3
=

n0

1 − n3
+

n1n2

(1 − n3)2
+

n3
2

12π(1 − n3)3
− n3n

3
2

36π(1 − n3)3
. (A.34)

In an improved version of FMT, called the “White-Bear" version of FMT, the reduced excess
free energy density Φ is thus determined by imposing the MCSL equation of state Eq.(A.34)
as an input [64]. In the homogeneous fluid, Φ is now postulated on the form

Φ = f1(n3)n0 + f2(n3)n1n2 + f3(n3)n3
2. (A.35)

Since the MCSL equation of state Eq.(A.34) is now imposed as an input, the relation Eq.(2.79)
can no longer be verified. A thermodynamic relation between PMCSL and the new functional
expression of Φ can be established by starting from the expression of Ω in the homogeneous
fluid

Ω
V

= −P =
(
kBTΦ + f̃ id

b − ρbµb

)
, (A.36)

where f̃ id
b is the ideal free energy per volume unit, which is given by

f̃ id
b = ρbkBT

[
ln(Λ3ρb) − 1

]
. (A.37)

Starting from the definition of the chemical potential

µ =
∂(F/V )
∂ρ

∣∣∣∣
T

, (A.38)

the bulk chemical potential takes the form

µb =
∂

∂ρb

(
kBTΦ + f̃ id

b

)∣∣∣∣
T

= kBT
∂Φ
∂ρb

∣∣∣∣
T

+ kBT
[
ln(Λ3ρb) − 1

]
+ kBT. (A.39)

Since

∂Φ
∂ρb

=
∑

α

∂Φ
∂nα

∂nα

∂ρb
, (A.40)

where nα are only scalar weighted densities and remarking that ρb
∂nα

∂ρb
= nα, it comes

− βP = Φ −
∑

α

∂Φ
∂nα

nα − n0. (A.41)
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Using the expression of Φ given by Eq.(A.34) and Φ to the expression of Eq.(A.35) the above
relation becomes

βP = n0(1 + n3f
′
1) + n1n2(f2 + n3f

′
2) + n3

2(2f3 + n3f
′
3). (A.42)

and identifying P to PMCSL given by Eq.(A.34), the identification of the different terms in n0,
n1n2 and n2

3 gives

1 + n3f
′
1 =

1
1 − n3

f ′
1 =

1
1 − n3

f1 = − ln(1 − n3) + d1 = − ln(1 − n3), (A.43)

where the constant d1 has been chosen so that the function Φ1 = f1(n3)n0 coincides with the
expression of Rosenfeld Eq.(2.92) for n3 −→ 0.
In the same manner, the function f2 is solution of

f2 + n3f
′
2 =

1
(1 − n3)2

, (A.44)

Setting f2 =
A

n3
, where A is an arbitrary function of n3, yields

A′ =
1

(1 − n3)2
,

A =
1

1 − n3
+ d2. (A.45)

Hence

f2 =
1

n3(1 − n3)
+
d2

n3
=

(1 + d2) − d2n3

n3(1 − n3)
=

1
1 − n3

, (A.46)

which gives d2 = −1 in order to find the original Rosenfeld functional Eq.(2.92) when n3 −→ 0.
Finally, the problem for f3 is written as

2f3 + n3f
′
3 =

1 − n3/3
12π(1 − n3)3

, (A.47)

whose general solution is given by f3 =
A

n2
3

, so that the above equation can be rewritten as the

derivative of function A

A′ =
3n3 − n2

3

36π(1 − n3)3
=

1
36π

[
2

(1 − n3)3
− 1

(1 − n3)2
− 1

1 − n3

]
, (A.48)

and thus

A =
1

36π

[
1

(1 − n3)2
− 1

1 − n3
+ ln(1 − n3) + d4

]

=
1

36π(1 − n3)2

[
n3 + (1 − n3)2 ln(1 − n3) + d4(1 − n3)2

]
. (A.49)

In order to find the original Rosenfeld form when n3 −→ 0, d4 must be zero, verifying that
limn3−→0 f3 = 1/(24π) and finally

f3 =
1

36πn2
3(1 − n3)2

[n3 + (1 − n3)2 ln(1 − n3)]. (A.50)

60



Chapter 2: DFT and application to HS fluids

Keeping the structure of Eq.(2.92) for the vector-like weighted densities, the reduced excess
free energy density in the “White Bear" version of FMT is then given by





ΦW B = ΦW B
1 + ΦW B

2 + ΦW B
3

ΦW B
1 = −n0 ln(1 − n3)

ΦW B
2 =

n1n2 − n1 · n2

1 − n3

ΦW B
3 =

n3 + (1 − n3)2 ln(1 − n3)
36πn2

3(1 − n3)2
[n3

2 − 3n2n2 · n2].

(A.51)

This approach obviously results in a different expression of the direct correlation function than
the one originally proposed by Rosenfeld and which is also accurate in comparison with MC
simulation data [63]. As a test for self-consistency, the bulk pressure is recalculated from
Eq.(A.51)

∂Φ
∂n3

=
n0

1 − n3
+

n1n2

(1 − n3)2
− n3

2(2 + n3(n3 − 5))
36πn2

3(1 − n3)3
− n3

2 ln(1 − n3)
18πn3

3

, (A.52)

which differs slightly from the MCSL expression Eq.(A.34). For the seek of minimizing this
inconsistency, another equation of state was proposed [70]

βPCSIII =
n0

1 − n3
+
n1n2

(
1 +

1
3
n2

3

)

(1 − n3)2
+
n3

2

(
1 − 2

3
n3 +

1
3
n2

3

)

12π(1 − n3)3
− n3n

3
2

36π(1 − n3)3
. (A.53)

When setting P = PCSIII in Eq.(A.41) and applying the same procedure as before, the reduced
excess free energy Φ takes the form





ΦW BII = ΦW BII
1 + ΦW BII

2 + ΦW BII
3 ,

ΦW BII
1 = −n0 ln(1 − n3),

ΦW BII
2 =

n1n2 − n1 · n2

1 − n3

[
1 +

1
3
φ2(n3)

]
,

ΦW BII
3 =

n3
2 − 3n2n2 · n2

24π(1 − n3)2

[
1 − 1

3
φ3(n3)

]
,

φ2(n3) =
1
n3

[
2n3 − n2

3 + 2(1 − n3) ln(1 − n3)
]

φ3(n3) =
1
n2

3

[
2n3 − 3n2

3 + 2n3
3 + 2(1 − n3)2 ln(1 − n3)

]

(A.54)

which is called “White Bear Mark II" version of FMT and which has the advantage of recovering
the Carnahan-Starling-Boublík EOS in the limit of a uniform bulk fluid [71]

∂Φ
∂n3

= βPCS = ρb
1 + η + η2 − η3

(1 − η)3
. (A.55)

A.3 One-dimensional weight functions ωα(z)

To calculate the convolutions f ⊗ ωα, where the function f depends only on the spatial co-
ordinate z perpendicular to the walls. The coordinate z being at the origin of the sphere, it
comes:

F3(z) = f ⊗ ω3 =
∫
r2dr

∫ π

0
dθ sin θ

∫ 2π

0
dϕΘH(R− r)f(z − r cos θ)

= 2π
∫ R

0
r2dr

∫ π

0
dθ sin θ f(z − r cos θ). (A.56)
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Performing the change of variables (r,− cos θ) −→ (r, z′) with z − z′ = r cos θ, we have

− drd cos θ = |J |dr dz′, (A.57)

with

J =

∣∣∣∣∣∣∣∣∣∣

∂r

∂r

∣∣∣∣
z′

∂r

∂z′

∣∣∣∣
r

−∂ cos θ
∂z

∣∣∣∣
z′

−∂ cos θ
∂z′

∣∣∣∣
r

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

1 0

z − z′

r2

1
r

∣∣∣∣∣∣∣∣
=

1
r
. (A.58)

Hence,

F3(z) = 2π
∫ z′=R

z′=−R

∫ r=R

r=|z′|
f(z − z′)rdrdz′ =

∫ z′=R

z′=−R
f(z − z′)ω(3)(z′)dz′

=
∫ z′=z+R

z′=z−R
f(z′)ω(3)(z − z′)dz′, (A.59)

with ω(3)(z) = 2π
∫ r=R

r=|z′|
rdrΘH(R − |z′|) = π(R2 − z

′2)ΘH(R − |z′|). If we suppose f(z) = fj

for zj − ∆z/2 < z < zj + ∆z/2 on 2N intervals regularly separated by ∆z, it comes

F3(z) =
∫ z+R

z′=z−R
f(z′)π

[
R2 − (z − z

′

)2
]

(A.60)

F3(zk) = fk−N

∫ R+∆z/2

R
π
[
R2 − (zk − z

′

)2
]

dz′ +
k+N−1∑

j=k−N+1

fj

∫ zj+∆z/2

zj−∆z/2
π
[
R2 − (zk − z

′

)2
]

dz′

+ fk+N

∫ R

R−∆z/2
π
[
R2 − (zk − z′)2

]
dz′=

2N+1∑

j=1

Ω(3)
j fk+N+1−j=

N∑

j=−N

Ω(3)
j+N+1fk−j . (A.61)

The previous expressions coincide with the definition of the function conv of Matlab with the
option (“same”), where the values of Ω(3)

j are given by

j = 1 Ω(3)
1 = π

∫ R

R−∆z/2

[
R2 − (zk − z

′

)2
]

dz′ =
πR3

4
(∆z)2

R2

[
1 − ∆z

6R

]

2 ≤ j ≤ 2N Ω(3)
j = π

∫ zk+N+1−j+∆z/2

zk+N+1−j−∆z/2

[
R2 − (zk − z

′

)2
]

dz′

= πR2∆z

[
1 − (N + 1 − j)2

(
∆z
R

)2

− 1
12

(
∆z
R

)2
]

(A.62)

j = 2N + 1 Ω(3)
2N+1 = π

∫ −R+∆z/2

−R

(
R2 − z,2

)
dz′ =

πR3

4
(∆z)2

R2

[
1 − ∆z

6R

]

For the kind of convolutions f ⊗ω2, where the function f depends only on the coordinate z, it
comes

F2(z) = f ⊗ ω2 =
∫
r2dr

∫ π

0
sin θ dθ

∫ 2π

0
dϕ δ(R− r)f(z − r cos θ)

= 2πR2
∫ π

0
f(z −R cos θ) sin θ dθ. (A.63)

Imposing z′ = z −R cos θ:

F2(z) = f ⊗ ω2 = 2πR
∫ z+R

z−R
f(z′)dz′ = 2πR

∫
f(z′) ΘH(R− |z − z′|)dz′. (A.64)
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Finally, with the kind of convolutions f ⊗ ω2, where the function f depends only on the
coordinate z, it comes

F2(z) = f ⊗ ω2 =
∫
r2dr

∫ π

0
sin θ dθ

∫ 2π

0
dϕ δ(R− r)

r
r
f(z − r cos θ)

= R2
∫ 2π

0




sin θ cosϕ
sin θ sinϕ

cos θ


dϕ sin θ f(z −R cos θ)dθ. (A.65)

The only non-zero component is the component along with Oz

(F2)z (z) = 2πR2
∫ π

0
cos θ sin θ f(z −R cos θ)dθ. (A.66)

Imposing z′ = z −R cos θ:

(F2)z (z) = 2π
∫ z+R

z−R
(z − z′)f(z′)dz′ = 2π

∫
(z − z′)ΘH(R− |z − z′|)f(z′)dz′

= ω(v2)(z − z′)dz′, (A.67)

with

ω(v2)(z − z′) = 2π(z − z′)ΘH(R− |z − z′|). (A.68)

If we suppose f(z) = fj on intervals which are regularly separated by ∆z, it comes

(F2)z (z) = 2π
∫

(z − z′)ΘH(R− |z − z′|)f(z′)dz′

= 2π
∫ z+R

z′=z−R
(z − z′)f(z′)dz′ = 2π

∫ R

z′=−R
z′f(z − z′)dz′

(F2)z (zk) ≃
∑

j

Ω(2v)
k−j+1fj =

∑

j

Ω(2v)
j fk−j+1 (A.69)

(F2)z (zk) ≃ 2π
∫ zk+R

zk−R

(
zk − z′) dz′

= 2πfk+N

∫ zk+N

zk+N −∆z/2

(
zk − z′) dz′

+ 2π
2N∑

j=2

fk+N+1−j

∫ zk+N+1−j+∆z/2

zk+N+1−j−∆z/2

(
zk − z′) dz′

+ 2πfk−N

∫ zk−N +∆z/2

zk−N

(
zk − z′) dz′

=
2N+1∑

j=1

Ω(2v)
j fk+N+1−j =

N∑

j=−N

Ω(2v)
j+N+1fk−j , (A.70)

with

Ω(2v)
1 = 2π

∫ zk+N

zk+N −∆z/2

(
zk − z′) dz′ = π∆z(zk − zk+N + ∆z/4) = −π∆z2(N − 1/4)

Ω(2v)
j = 2π

∫ zk+N+1−j+∆z/2

zk+N+1−j−∆z/2

(
zk − z′) dz′ (A.71)

= 2π(zk − zk+N+1−j)∆z = −2π(N + 1 − j)∆z2

Ω(2v)
2N+1 = 2π

∫ zk−N +∆z/2

zk−N

(
zk − z′) dz′ = π∆z(zk − zk−N − ∆z/4) = π∆z2(N − 1/4)
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Chapter 3

Lennard-Jones fluid

3.1 Introduction

The Lennard-Jones fluid is a classical model for simple fluids containing both a short-range
repulsive and a long-range attractive part in the interparticle potential which is given by

uLJ(r) = 4ǫ

[(
σ

r

)12

−
(
σ

r

)6
]
, (3.1)

where ǫ is the depth of the potential well and σ the finite distance at which the interparticle
potential is zero (see Fig.3.1). This fluid model is selected to account for the molecular nature
of the water solvent expecting to lower the pressure due to the attractive term in r−6. This
term expresses the polar nature of the water solvent averaging all the different Van der Waals
contributions, namely Keesom, Debye and London forces, which are all attractive in r6. The
first term in r−12 expresses the Pauli repulsion at short distance.

The most powerful tool for theoretical analyses of inhomogeneous LJ fluids is probably
the classical Density-Functional Theory (DFT), which treats the Helmholtz free energy as a
functional of density distribution. In the framework of DFT, the behavior of LJ fluids can be
effectively studied by splitting the intermolecular potential into a short-range repulsive and a
long-range attractive part. The repulsive part is considered as an effective hard sphere reference
system which is successfully treated by FMT, and the Mean-Field Approximation (MFA) is
generally used for the attractive part [44]. MFA is computationally efficient due to its simplicity
by entirely neglecting interparticle correlations while being able to describe qualitatively some
inhomogeneous phenomena [60]. However, the limitations of the MFA are outstanding: it
completely disregards the fluid structure and its performance is strongly system-dependent.

Various attempts have been made to remedy the MFA, such as done by Tang et al.[72]
who extended the Barker-Henderson (BH) theory of uniform LJ fluids [73] to inhomogeneous
LJ fluids. Their approach improves qualitatively the density profiles near a hard wall for low
bulk densities but yields significant errors at high densities. Therefore, more sophisticated
DFT models have been proposed to take into account correlations in inhomogeneous LJ fluids
[58]. In the framework of these theories, the correlation effects are evaluated by computing the
Radial Distribution Function (RDF) for the corresponding bulk fluid at a suitable averaged
“coarse-grained" density. Such approaches are quite successful in predicting the structure of
inhomogeneous fluids. Nevertheless, the use of homogeneous RDF to represent inhomogeneous
fluids is highly questionable and very often the numerical computation is not stable in case of
computationally demanding conditions (e.g. high densities and strongly correlated systems).

This chapter uses an exact Density-Functional Perturbation Theory (DFPT) presented in
chapter 2, which can give a complete description of inhomogeneous LJ fluids in terms of their
density profile and their RDF. Although this approach is computationally more demanding, it
is stable and uses exact formula for predicting density profiles.
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3.2 DFPT applied to Lennard-Jones fluids

According to Eq.(2.38), the interparticle LJ potential, uLJ(r) given by Eq.(3.1) needs to be split
into a repulsive term u0(r) considered as the interparticle potential of the reference system and
a weak attractive term ua(r), being the perturbation potential in the present DFPT approach.
We use in this work a common separation which has been suggested by Weeks-Chandler-
Andersen (WCA) [74] (Fig.3.1)

u0(r) =

{
uLJ(r) + ǫ, r < 21/6σ

0, r ≥ 21/6σ
(3.2)

and

ua(r) =

{
−ǫ, r < 21/6σ

uLJ(r), r ≥ 21/6σ.
(3.3)

In the WCA theory, the thermodynamic properties of the reference system such as the pair

r=<
0.5 1 1.5 2 2.5

u
(r

)=
0

-2

-1

0

1

2

3

4
u0(r)
ua(r)

21=6<

21=6<

d=<

Figure 3.1: WCA separtion of the intermolecular LJ potential.

correlation function and the excess free energy need to be determined, which represents a
numerically quite expensive task. The authors have therefore proposed to approximate the
reference system by an equivalent hard sphere system. The main task of this approximation is
thus to determine an appropriate hard sphere diameter d. To do this, the cavity distribution
function y0(r) of the reference system is introduced

y0(r) = g0(r) exp[βu0(r)], (3.4)

where g0(r) is the corresponding RDF. Since the reference interaction is harshly repulsive, it
is reasonable to approximate y0(r) by that of a hard sphere system of diameter d, yHS(r) so
that the above equation reads as

g0(r) ≃ yHS(r) exp[−βu0(r)]. (3.5)

The particle diameter d can be determined by approximating the thermodynamics of the refer-
ence system with those of the hard sphere system within the framework of the compressibility
theorem [74]

∫
dr{yHS(r) exp[−βu0(r)] − 1} =

∫
dr{yHS(r) exp[−βuHS(r)] − 1}. (3.6)
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This criterion yields an effective hard sphere diameter dependent on both temperature and
density. However, this approximation is no longer valid when dealing with an arbitrary inho-
mogeneous fluid. For this physical reason, the analytical expression suggested by Lu, Evans
and Telo da Gama [75] is used in this study, which is only temperature dependent

d(T ∗)
σ

=
α1T

∗ + α3

α2T ∗ + 1
, (3.7)

where α1 = 0.3837 and α2 = 0.4293 according to the work of Verlet and Weis [76] and α3 is an
adjustable parameter chosen such that the approximation yields a good fit of the homogeneous
fluid properties with simulation data. For instance, Kierlik and Rosinberg [60] have selected
α3 = 1.032 for the WCA separation of the Lennard-Jones potential with a cutoff radius rc =
2.5σ (the cutoff radius rc is the distance from which the interparticle potential is set to zero)
in the MFA such that the liquid-vapor coexistence curve is in good agreement with simulation
results. In the present study, an effective way for the determination of α3 is used, which is
based on the contact theorem. The value of α3 is adjusted in the way that the predicted
contact density coincides with its value from simulation data [77]. Finally, in the context of
the WCA perturbation theory (combination between the WCA theory and DFPT), the density
distribution of an inhomogeneous LJ fluid is obtained by using the following expression

ρ(r1) = ρb exp

[
β

(
µex

b − δFHS [ρ]
δρ(r1)

−
∫ 1

0
dλ
∫
ρ(r2) [1 + h(r1, r2; [ρ];λ)]ua(r1, r2)dr2 − Vext(r1)

)]
, (3.8)

where FHS [ρ] is the excess free energy of the equivalent hard sphere reference system (of
diameter d), which can be very accurately estimated by the use of FMT (chapter 2).

In the bulk limit, the density is independent of spatial position. The excess free energy,
excess chemical potential and bulk pressure are given by

Fex
b = FHS

b +
ρ2

b

2
V

∫ 1

0
dλ
∫
g(r;λ)ua(r) 4πr2dr, (3.9)

µex
b =

(
∂Fex

b

∂N

)

T,V
= µHS

b + ρb

∫ 1

0
dλ
∫
g(r;λ)ua(r) 4πr2dr, (3.10)

pb = −
(
∂F
∂V

)

T,N
= pHS

b +
ρ2

b

2

∫ 1

0
dλ
∫
g(r;λ)ua(r) 4πr2dr, (3.11)

where V is the volume of the system, N the particle number. FHS
b , µHS

b and pHS
b are respec-

tively the corresponding values of the equivalent HS reference system which are formulated in
subsection 2.5.2.

3.3 Determination of the RDF using integral equation theory

The RDF plays a crucial role in determining thermodynamic properties of simple fluids. In
this subsection, integral equation theories are used to determine the RDFs of homogeneous and
inhomogeneous Lennard-Jones fluids.

3.3.1 Homogeneous Lennard-Jones fluids

As mentioned in chapter 2, the Ornstein-Zernike relation Eq.(2.22) and an appropriate closure
Eq.(2.24) are the main ingredients of an integral equation theory. Some simple closures such
as the HNC and PY can be obtained by setting the bridge function B(r) = 0, which have
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been used to study Lennard-Jones fluids, and their failure is reported in the literature [78].
Therefore, several other closures have been developed recently to overcome this shortcoming.
From the simulation data of correlation functions, Duh, Haymet and Handerson propose a new
approximation for the bridge function of a homogeneous Lennard-Jones fluid (DHH closure)
[78, 79], namely the functional form

B(s) =
−s2

2
[
1 +

(
5s+ 11
7s+ 9

)
s

] , (3.12)

where s(r) = γ(r) − βua(r) is the so-called “normalization" of the indirect correlation function
γ(r). From Fig.3.2, it is obvious that the role of B(r) in predicting the RDF g(r) of homoge-
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a) ρσ3 = 0.5; T ∗ = 1.36. MC data from
[7].
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b) ρσ3 = 0.65; T ∗ = 1.35. MC data from
[80].

Figure 3.2: Radial Distribution Function g(r) of bulk Lennard-Jones fluids obtained with two
closures: HNC + B(r) and HNC and comparison with simulation results.

neous fluids is negligible at low densities (ρσ3 = 0.5, Fig.3.2a), but it becomes significant at
higher densities (ρσ3 = 0.65, Fig.3.2b). Especially, at very high densities and low temperature

(ρσ3 = 0.85 and
kBT

ǫ
= 0.88), HNC without B(r) fails in computing RDF, while HNC com-

bined with a convenient B(r) gives a very good agreement with Monte-Carlo data (Fig.3.3).
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Figure 3.3: Radial distribution function of a homogeneous LJ fluid at high density and low

temperature:ρσ3 = 0.85,
kBT

ǫ
= 0.88. The circles are MC results taken from [7].
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3.3.2 Inhomogeneous LJ fluids

In the presence of an external potential Vext(r), LJ fluids become inhomogeneous systems in
which the density distribution is position-dependent. Integral equation theories for inhomo-
geneous fluids are rigorously studied in the literature for example by Plischke and Henderson
[81], and Kjellander and Sarman [82, 83]. The theories are developed in the same way as for
the homogeneous case by solving the O-Z equation coupled with an appropriate closure.

Now, the inhomogeneous situation is considered where the fluid is confined between two
infinite plates located at z = ±H with the particle density function ρ(z). For our computations,
a cylindrical coordinate system is adopted, which is depicted in Fig.3.4, with the radial direction
r lying in the Oxy plane parallel to the plates and the axial coordinate z being orthogonal to
the solid surfaces (−H < z < H). The first particle is placed on the Oz axis at the position
z1. The second particle is at the position z2 and χ12 is the projection of the distance between

the two particles r12 =
√

(z1 − z2)2 + χ2
12 on the plane Oxy. Note that the two particles

interact with each other by the pair potential u(z1, z2, χ12). In what follows the correlation

z

x0

z1

z2


12

2H

Figure 3.4: Two-dimensional geometry of Lennard-Jones fluids confined between two walls.

functions of inhomogeneous Lennard-Jones fluids are computed by solving the O-Z Eq.(2.22)
in this cylindrical coordinate system. To start, the three-dimensional inhomogeneous problem
is written as a two-dimensional one in the Oxy plane. The two-dimensional Ornstein-Zernike
equation reads as

h(z1, z2, χ12) = c(z1, z2, χ12) +
∫
ρ(z3)dz3

∫
c(z1, z3, χ13)h(z2, z3, χ23)2πχ3dχ3 (3.13)

To simplify the notation, χ is used instead of χ12. The above equation can be solved in
combination with the extension of the DHH closure Eq.(3.12) for inhomogeneous Lennard-
Jones fluids given by

h(z1, z2, χ) = exp[−βu(z1, z2, χ) + γ(z1, z2, χ) +B(z1, z2, χ)] − 1, (3.14)

B(s) =
−s2

2
[
1 +

(
5s+ 11
7s+ 9

)
s

] , (3.15)

where γ(z1, z2, χ) = h(z1, z2, χ) − c(z1, z2, χ) designates the indirect correlation function and
s(z1, z2, χ) = γ(z1, z2, χ) − βua(z1, z2, χ). In order to solve the anisotropic Ornstein-Zernike
equation (3.13) with the DHH closure, the Hankel transform in χ is used

f̃(k) =
∫
f(χ)J0(kχ)dχ, (3.16)

f(χ) =
1

2π

∫
f̃(k)J0(kχ)dk, (3.17)
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with k denoting the variable in the Hankel space, J0 the Bessel function of order 0, dχ = 2πχdχ
and dk = 2πkdk. Note that by treating z1 and z2 as parameters, the Hankel transform of the
Ornstein-Zernike relation Eq.(3.13) is written as

h̃(k, z1, z2) = c̃(k, z1, z2) +
∫

dz3 ρ(z3) c̃(k, z1, z3) h̃(k, z3, z2). (3.18)

The space between the two plates (−H < z < H) is divided in M equally spaced layers parallel
to the Oxy plane of center zm (1 ≤ m ≤ M) and of thickness ∆z. Assuming that the density
ρm in a layer m is uniform and denoting c̃ij(k) = c̃(zi, zj , k), γ̃ij(k) = γ(zi, zj , k), ρm = ρ(zm),
Eq.(3.18) reads as

γ̃ij(k) =
∑

m

ρm ∆z c̃im(k) [γ̃mj(k) + c̃mj(k)] , (3.19)

or
∑

m

[δmi − ρm ∆z c̃im(k)] γ̃mj(k) =
∑

m

ρm ∆z c̃im(k)c̃mj(k), (3.20)

where δmi is the Kronecker delta functions. Knowing c̃ij(k), for each value of k, the system
Eq.(3.20) is a linear system which is easy to solve in γ̃ij(k) (1 ≤ i ≤ M and 1 ≤ j ≤ M) .

For a given density distribution ρ(r), the algorithm for the computation of the RDF is then

1. Chose an initial guess for γ(z1, z2, χ);

2. Calculate the total correlation function h(z1, z2, χ) from Eq.(3.14);

3. Calculate the direct correlation function c(z1, z2, χ) = h(z1, z2, χ) − γ(z1, z2, χ);

4. Perform the Hankel transform of c(z1, z2, χ) −→ c̃(z1, z2, k) by use of Eq.(3.16);

5. Calculate γ̃(z1, z2, k) from Eq.(3.18) for each value of k;

6. Recalculate the indirect correlation function γ(z1, z2, χ) by the inverse Hankel transform
with Eq.(3.17);

7. Iterate until convergence.

3.4 Results and discussions

3.4.1 Effective intermolecular potential

In the present approach, the calculation of the mean radial distribution function g(r) =∫ 1

0
dλ g(r;λ) is necessary for the determination of the thermodynamic properties of LJ flu-

ids (both homogeneous and inhomogenous case). As this procedure is time consuming, an
effective pair potential which accounts for the effects of λ while eliminating the explicit λ-
dependence of the model formula would be useful. To this end, the RDF for different values
of the λ parameter are illustrated in Fig.3.5. It is obvious that the averaged pair distribution

function
∫ 1

0
dλg(r;λ) is very close to the curve corresponding to λ = 0.5. This remains valid for

any Lennard-Jones fluid at low densities and temperatures as shown in Fig.3.6. According to
this analysis, an effective pair potential will be used, instead of the λ-dependent Lennard-Jones
potential to calculate the mean RDF. From now, the calculations of the λ-averaged RDFs are
replaced by those of a fluid with an effective pair potential at λ = 0.5 according to

ueff = u0 +
1
2
ua. (3.21)
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Figure 3.5: Influence of λ on the radial distribution function of a bulk Lennard-Jones fluid at
ρσ3 = 0.5 and T ∗ = 1.35.
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Figure 3.6: λ-dependency of the radial distribution function for various densities at T ∗ = 1. The
red, blue and sky blue curves correspond to ρσ3 = 0.2, ρσ3 = 0.4 and ρσ3 = 0.6, respectively.
The solid curves are calculated with λ = 0.5 and the dashed curves are the averaged curves in
terms of λ.

3.4.2 Density profiles of inhomogeneous Lennard-Jones fluids

This section presents the density profiles of inhomogeneous LJ fluids near a planar hard wall
and confined between two hard walls or in a slit pore obtained by the present perturbation
theory. In order to verify the accuracy of the present approach, the results are compared with
MC simulation data. The MC simulations use an exact LJ potential Eq.(3.1) with a possible
cutoff whereas this study uses the WCA interparticle potential where u0 given by Eq.(3.2) is
approximated by an HS potential and ua is given by Eq.(3.3) with the same parameters as the
exact LJ model with a possible identical cutoff.
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3.4.2.1 Lennard-Jones fluids near a hard wall

Consider a LJ fluid near a planar hard wall located at z = 0 whose external potential is given
by

Vext(z) =

{
∞, z < σ/2
0, z ≥ σ/2

(3.22)

where z is the coordinate in the direction perpendicular to the solid surface. The computations
are performed at fixed temperature T ∗ = 1.35 for various bulk densities in order to compare
with the available MC data of Lutsko [8]. This is a typical test case for various density
perturbation theories applied to LJ fluids [72, 84, 8, 85]. In the present study, the intermolecular
pair potential is decomposed as in Eqs.(3.2) and (3.3), and the long-range attractive part is
truncated at the cut-off radius rc = 4σ, according to the MC simulation work of Lutsko [8]

uLJ(r, rc) =

{
uLJ(r) − uLJ(rc), r < rc,

0, r > rc.
(3.23)

The results of both the MFA and the present perturbation theory are depicted in Figs.(3.7-3.9).
At relatively low bulk density (ρbσ

3 = 0.5), the mean distance between the fluid particles is
relatively large and the attractive interparticle forces are consequently dominant. This leads
to a depletion of fluid particles in the vicinity of the wall and the disappearance of oscillations
in the density profile as shown in Fig.3.7. In contrast to the present theory which predicts
correctly the monotonic increase of the density profile, the MFA is obviously unable to capture
these two phenomena and fails in this case. When increasing the bulk density (Fig.3.8 and 3.9),
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0
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0.6

Present theory

Mean-field theory
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Figure 3.7: Density distribution profile of an inhomogeneous LJ fluid near a hard wall: ρbσ
3 =

0.5, T ∗ = 1.2. The MC simulation results are reported in the work of Lutsko [8].

the mean distance between the fluid particles is smaller, which enhances the contribution of
the short-range repulsive interactions. Therefore, the density profiles oscillate around the bulk
density value. In these intermediate and high density cases, MFA considerably overestimates
the oscillation strength, especially in the vicinity of the wall while the present theory is still in
excellent agreement with the MC data. To conclude, the present perturbation theory clearly
captures the different physical phenomena occurring at the interface between inhomogeneous
LJ fluids and a hard wall across the range of studied densities, and is in excellent agreement
with MC results.
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Figure 3.8: As Fig.3.7 for ρbσ
3 = 0.65.
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Figure 3.9: As Fig.3.7 for ρbσ
3 = 0.82.

3.4.2.2 Confined Lennard-Jones fluids

This section presents the density profiles of inhomogeneous LJ fluids confined between two
hard walls and in slit pores obtained with the present perturbation theory. According to the
conditions used in the computer simulations [9, 10], the interparticle LJ potential given by
Eq.(3.23) is used with a cut-off radius rc = 2.5σ. The two walls are placed at −H and H,
respectively and generate an external potential given by

Vext(z) =

{
∞, |z|> H − σ/2,
0, |z|≤ H − σ/2,

(3.24)

where z is the coordinate in the direction perpendicular to the walls. The density profiles
predicted by the present theory, MFA and MC simulation data are shown in Fig.3.10. In
comparison with the MC simulation results, the MFA exaggerates the oscillations of the density
profile while the profile obtained from the present theory is quite accurate. In a next step the
validity of the present theory is tested for the case of gas adsorption in slit-like pores. The
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Figure 3.10: Density profiles of an inhomogeneous Lennard-Jones fluid confined between two
hard walls: ρbσ

3 = 0.75; T ∗ = 1.304, and 2H = 5σ. The open circles represent the MC
simulation results [9].

fluid-solid interaction potential is modeled by the LJ 10-4-3 potential [86] written as

Vw(z) = 2πǫ

[
2
5

(
σ

z

)10

−
(
σ

z

)4

− σ4

3∆(z + 0.61∆)3

]
, (3.25)

with ∆ = 1/
√

2σ. This type of fluid-solid potential contains a short-range repulsive and a long-
range attractive part similar to the classical LJ potential as shown in Fig.3.11. The reduced

z/σ
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)
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Figure 3.11: Solid-fluid LJ 10-4-3 potential at 2H = 7.5σ.

bulk density ρbσ
3 is set to 0.5925 and the reduced temperature T ∗ to 1.2 identically to the

MC simulation [10]. The density distribution profiles obtained with the MFA and the present
theory along with the MC results are illustrated in Fig.3.12. It can be seen that both theories
yield a satisfactory agreement with the MC data. The improvement of the present theory
compared to the MFA is not significant. A possible explanation could be that correlations
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between fluid constituents may be canceled out by the attractive forces coming from the walls.
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Figure 3.12: Density profiles of a Lennard-Jones fluid confined between two LJ walls: ρbσ
3 =

0.5925; T ∗ = 1.2, and 2H = 7.5σ. The open circles represent the MC simulation results of [10].

3.4.3 Radial distribution function of inhomogeneous LJ fluids

Accounting for the spatial dependence in interparticle correlations of inhomogeneous fluids
through their RDF g(z1, z2, χ) plays the key role in the present perturbation theory. Conse-
quently, the RDFs of a LJ fluid near a hard wall for the density profiles of Fig.3.7-3.9 (for
different spatial positions z) are presented in this section. For a relatively low bulk density
ρbσ

3 = 0.5, no oscillation is observed in the density profile (Fig.3.7) and the RDF is isotropic
at almost any position z (Fig.3.13). At the intermediate bulk density ρbσ

3 = 0.65, slight
oscillations appear in the density profile close to the wall (Fig.3.8). At the same time, the pro-
files of the corresponding RDF exhibit an anisotropic behavior near the wall (Fig.3.14). The
correlation between the anisotropy of the RDF g(z1, z2, χ) and the oscillations in the density
profile is still more pronounced at high bulk density (ρbσ

3 = 0.82) (Fig.3.15). It is obvious
that g(z1, z2, χ) is generally highly anisotropic in the vicinity of interfaces. Similarly to the
oscillations observed in the density profiles, this anisotropic behavior is gradually reduced when
moving away from the walls until the isotropic RDF of the corresponding bulk fluid is recovered.
From these observations it can be deduced that replacing the anisotropic RDF g(z1, z2, χ) by its
isotropic counterpart g(r) of the corresponding bulk fluid yields satisfying density distribution
profiles (in comparison with MC data) only at relatively low or intermediate bulk densities and
fails at high bulk densities [72, 87, 84].

3.5 Application to Electrical Double Layer

The aim of this section is to derive an appropriate model for Electrical Double Layer (EDL)
as they can be found in clayey soils. As shown above, the water solvent can be appropriately
modeled by a LJ fluid. The electrolyte solution is represented by a mixture of three species of
charged spheres with the respective point charges qα (α = 0, 1, 2) embedded at their center. The
first species is the water solvent molecule whose charge is q0 = 0, while the two other species
are the solute ions (cation and anion) with their respective charges ±q. The pair potential
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Figure 3.13: Radial distribution functions of an inhomogeneous LJ fluid near a hard wall at
ρbσ

3 = 0.5 and T ∗ = 1.35. The corresponding density profile is presented in Fig.3.7.

Figure 3.14: As Fig.3.13 for ρbσ
3 = 0.65. The corresponding density profile is presented in

Fig.3.8.

between particle α at r1 and particle β at r2 is then given by

uα,β(r12) = uLJ
α,β(r12) +

qαqβ

ǫ0ǫrr12
, (3.26)
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Figure 3.15: As Fig.3.13 for ρbσ
3 = 0.82. The corresponding density profile is presented in

Fig.3.9.

where r12 = |r1 − r2|. The LJ potential uLJ
α,β(r12) given by Eq.(3.1) is split into a short-range

repulsive part u0
α,β(r12) and a long-range attractive part ua

α,β(r12), according to the WCA
approximation [74]

u0
α,β(r12) =

{
uLJ

α,β(r12) + ǫα,β , r12 < 21/6σα,β

0, r12 ≥ 21/6σα,β
(3.27)

and

ua
α,β(r12) =

{
−ǫα,β , r12 < 21/6σα,β

uLJ
α,β(r12), r12 ≥ 21/6σα,β .

(3.28)

For the sake of simplicity, the diameters of the species are identical and chosen equal to the
equivalent hard sphere diameter d of the soft repulsive part u0

α,β(r), calculated by Eq.(3.7),
with α3 = 1.032 [60].
The equilibrium density distribution ρα of each molecular species is determined by minimizing
the grand potential Ω[ρα] of the system with respect to the corresponding density

δΩ[ρα]
δρβ

= 0, β ∈ {0,+,−} , (3.29)

with

Ω[ρα] = F [ρα] +
∑

α

∫
drρα(r)[Vα(r) − µα]. (3.30)

The intrinsic free energy F [ρα] is composed of contributions from ideal gas behavior, Lennard-
Jones and electric interactions

F [ρα] = F id[ρα] + FLJ [ρα] + Fel[ρα], (3.31)
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where the ideal gas contribution is written as

F id[ρα] = kBT
∑

α

∫
ρα(r)

{
ln
[
Λ3

αρα(r) − 1
]}

dr. (3.32)

Similarly to the WCA separation of the interparticle LJ potential (Eqs.(3.27) and (3.28)), the
LJ term FLJ [ρα] can be split into a repulsive FLJ

0 [ρα] and an attractive contribution FLJ
a [ρα].

The repulsive term is approximated by that of a hard sphere fluid of equivalent diameter d
which is successfully treated by the FMT, while the remaining term can be exactly computed
as

FLJ
a [ρα] =

1
2

∑

α

∑

β

∫ ∫
ρα(r1)ρβ(r2)gLJ

α,β(r1, r2;λ = 0.5)ua
α,β(r1, r2)dr1dr2. (3.33)

Since the ionic densities are evidently negligible in comparison with the water solvent density,
the term accounting for electric interactions Fel[{ρα}] can be considered in the MFA, in which
correlations between ion components are completely neglected

Fel[{ρα}] =
1
2

∑

α

∑

β

∫ ∫
ρα(r1)ρβ(r2)

qαqβ

4πǫǫ0r12
dr1dr2. (3.34)

The equation to solve for obtaining the density distribution of species α Eq.(3.8) is hence
rewritten as

ρα(r1) = ρb
α exp

{
β

[
µex

b [{ρα}] − δFHS [{ρα}]
δρα(r1)

−
∑

β

(∫
ρβ(r2)gLJ

α,β(r1, r2;λ = 0.5)ua
α,β(r1, r2)dr2 −

∫
ρβ(r2)

qαqβ

4πǫǫ0r12
dr2

)
− Vα(r1)





 .

(3.35)

Applying the above relation to an EDL geometry (Fig.3.4) with −H < z < H, the densities ρα

depend only on the spatial coordinate z perpendicular to the layer surfaces placed at z = ±H,
respectively. It follows

ρα(z1) = ρb
α exp

[
β

(
µex

b [{ρα}] − µex
HS [{ρα}] − µex

LJ [{ρα}]

−
∑

β

∫ H

−H
ρβ(z2)dz2

∫ ∞

0
2πχdχ

qαqβ

4πǫǫ0r12
− Vα(z1)




 , (3.36)

where

µex
b [{ρα}] = µHS

b [{ρα}] +
∑

β

ρb
β

∫
gLJ

α,β(r;λ = 0.5)ua
α,β(r)dr,

µex
LJ [{ρα}] =

∑

β

∫
ρβ(r2)gLJ

α,β(r1, r2;λ = 0.5)ua
α,β(r1, r2)dr2,

r12 =
√
χ2 + (z1 − z2)2.

The external potential Vα(z1) is imposed by the two charged LJ walls:

Vα(z1) = V LJ
α (z1) + V el

α (z1), (3.37)
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where V LJ
α (z1) accounts for the LJ interactions between oxygen atoms of the rigid clay particles

and the species α of the electrolyte solution as reported by the SPCE (Extended Single Point
Charge) model of the bulk water [40]. According to Delville [38, 39], V LJ

α (z1) is expressed as

V LJ
α (z1) = πρs

OǫO−α





σ12
O−α

45




1
(
z1 − L

2

)9 − 1
(
z1 +

L

2

)9


− σ6

O−α

3




1
(
z1 − L

2

)3 − 1
(
z1 +

L

2

)3







,(3.38)

where σO−α, ǫO−α represent interaction length and strength, ρs
O the oxygen density within

the walls and L the wall thickness. Similarly to the form of the interparticle LJ potential,
such fluid-solid potential comprises a short-range repulsive and a long-range attractive parts
as shown in Fig.3.16. Since the two walls are identically charged, the electric fields introduced

z/d
-5 0 5

β
V

L
J

α
(z
)

-0.05

0

0.05

0.1

Figure 3.16: Fluid-solid LJ potential V LJ
α (z)+V LJ

α (2H−z) between two clay surfaces placed at
±H and species α of an electrolyte solution for L = 7×10−10 m , ρs

Od
3 = 0.052, βǫO−α = 0.2669

and 2H = 10d.

by the charged surfaces have the same strength, but opposite directions. As a result, the total
external electric field between the two walls is zero and the electrical potential is given by

V el
α (z1) = qαΥ, (3.39)

where Υ is a constant. Another quantity is of more interest, namely the mean electrostatic
potential ψ(z1) accounting for both, the charged walls and the ionic charges in the electrolyte
solution which is defined by

ψ(z1) =
∑

β

∫ H

−H
ρβ(z2)dz2

∫ ∞

0
2πχdχ

qβ

4πǫǫ0r12
+ Υ. (3.40)

The one-dimensional Poisson equation reads as

ǫǫ0
d2ψ

dz2
= −

∑

α

ραqα ≡ Q(z). (3.41)
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The solution of this problem is easily obtained by the superposition of the charge profiles at
different inter-platelet distances. The electrostatic potential due to a surface charge density
Q(z2)dz2 is given by

dψ(z1) = −Q(z2)dz2

2ǫǫ0
|z1 − z2|+const, (3.42)

which results after integration in

ψ(z1) = −
∫ H

−H

Q(z2)
2ǫǫ0

|z1 − z2| dz2 + C. (3.43)

Note that the identical surface charge of the two walls has only an impact on the constant C.
Because of the planar symmetry of the system (z′

2 = −z2), it follows

ψ(z1) = −
∫ 0

−H

Q(z2)
2ǫǫ0

|z1 − z2| dz2 −
∫ H

0

Q(z2)
2ǫǫ0

|z1 − z2| dz2 + C

= −
∫ H

0

Q(−z′
2)

2ǫǫ0
|z1 + z′

2| dz′
2 −

∫ H

0

Q(z2)
2ǫǫ0

|z1 − z2| dz2 + C

= −
∫ H

0

Q(z2)
2ǫǫ0

(|z1 − z2|+|z1 + z2|) dz2 + C. (3.44)

To eliminate the unknown constant C, the potential ζ is imposed on the two solid interfaces
such that

ψ(z1) − ζ = −
∫ H

0

Q(z2)
2ǫǫ0

(|z1 − z2|−|H − z2|+|z1 + z2|−|H + z2|) dz2

= −
∫ H

0

Q(z2)
2ǫǫ0

(|z1 − z2|+|z1 + z2|−2H) dz2. (3.45)

The density profiles of solvent, anions and cations are then calculated with

ρ0(z1) = ρb
0 exp

{
β
[
µex

b [{ρb
0}] − µex

HS [ρ] − µex
LJ [{ρ0}] − V LJ

0 (z1)
]}
, (3.46)

ρ+(z1) = ρb
+ exp

{
β
[
µex

b [{ρb
+}] − µex

HS [ρ] − µex
LJ [{ρ+}] − V LJ

+ (z1)
]

− βeψ(z1)
}
, (3.47)

ρ−(z1) = ρb
− exp

{
β
[
µex

b [{ρb
−}] − µex

HS [ρ] − µex
LJ [{ρ−}] − V LJ

− (z1)
]

+ βeψ(z1)
}
, (3.48)

where ρ =
∑

β ρβ. Taking advantage of the symmetry of the Q profile and the condition of
overall electroneutrality written as

2Σ +
∫ H

−H
Q(z2)dz2 = 0, (3.49)

where Σ is the electric surface charge density of each of the two plates, this results in

ψ(z1) = ζ −
∫ H

−H

Q(z2)
2ǫǫ0

[|z1 − z2|−(H − z2)] dz2

= −
∫ H

−H

Q(z2)
2ǫǫ0

|z1 − z2|dz2 + ζ − ΣH
ǫǫ0

. (3.50)

The density profiles can hence be rewritten as

ρ0(z1) = ρb
0 exp

{
β
[
µex

b [{ρb
0}] − µex

HS [ρ] − µex
LJ [{ρ0}] − V LJ

0 (z1)
]}
, (3.51)

ρ+(z1) = ρb
+K exp

{
β
[
µex

b [{ρb
+}] − µex

HS [ρ] − µex
LJ [{ρ+}] − V LJ

+ (z1)
]

+
βe

2ǫǫ0

∫ H

−H
Q(z2)|z1 − z2|dz2

}
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≡ ρb
+K exp{+}, (3.52)

ρ−(z1) = ρb
− exp

{
β
[
µex

b [{ρb
−}] − µex

HS [ρ] − µex
LJ [{ρ−}] − V LJ

− (z1)
]

− βe

2ǫǫ0

∫ H

−H
Q(z2)|z1 − z2|dz2

}

≡ ρb
−

1
K

exp{−}, (3.53)

where K = exp
[
−βe

(
ζ − ΣH

ǫǫ0

)]
is a positive constant which is obtained by solving the

following second degree equation

2Σ + e

∫ H

−H
[ρ+(z1) − ρ−(z1)] dz1 = 0, (3.54)

and more explicitly

K2 +
2Σ
eρb

K
∫H

−H exp{+}dz1

−
∫H

−H exp{−}dz1∫H
−H exp{+}dz1

= 0, (3.55)

where ρb
+ = ρb

− ≡ ρb.

3.5.1 Density profile of the pure solvent

In what follows, the water solvent is considered in the absence of ions, confined between two
parallel clay lamellae. The water solvent is modeled by a LJ fluid with: d = 2.8 × 10−10m the
water molecule diameter, ρbd

3 = 0.7344 the bulk water density, T = 300K the temperature
and σ is calculated with Eq.(3.7). The parameter ǫ plays the most important role in modeling
water as a LJ fluid. It should be high enough to result in a reasonable bulk pressure pb of
about 105 Pa calculated with Eq.(3.11). With the bulk density ρbd

3 = 0.7344, ǫ/kBT is found
equal to 1.077 which satisfies the bulk pressure criterion. In addition, from the phase diagram
of LJ fluids [88], it can be seen that these values correspond to the liquid phase.

The external LJ potential stems from the interactions between oxygen atoms of the clay
particles and those of the water solvent so that the water-wall interaction parameters are
selected conforming to the SPCE model [40, 36], namely σO−O = 3.5532×10−10m, ǫO−O/kBT =
0.2669, L = 7 × 10−10m. The resulting density distribution is presented in Fig.3.17. In

z=d
-1.5 -1 -0.5 0 0.5 1 1.5

;
(z

)d
3

0

0.005

0.01

0.015

Figure 3.17: Density profile of water considered as a LJ fluid confined between two clay lamellae
represented by rigid LJ walls separated by a distance of 2H = 3d at: ρbd

3 = 0.7344, βǫ = 1.077.
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comparison with the bulk value ρbd
3 = 0.7344, the water density between the two clay surfaces

are negligible. In other words, no liquid is present between the two solid particles. This can be
explained by the strong attraction between fluid particles compared to the wall-fluid attractive
interactions (ǫO−O/kBT = 0.2669), which are not strong enough to retain the water molecules
between the two walls. Increasing the wall-fluid interaction strength is therefore the unique
solution to attract water. Fig.3.18 shows the expected profile of the confined water solvent after
multiplying ǫO−O by a factor 50 and increasing the distance between the two clay lamellae to
2H = 15d. However, this violent increase of the water-wall interaction strength has no physical
meaning. Hence, the present LJ model fails in modeling the water solvent confined in an EDL.

z=d
-10 -5 0 5 10

;
(z

)d
3

0

0.5

1

1.5

Figure 3.18: Density profile of water LJ fluid confined between two extremely attractive clay
lamellae at: ρbd

3 = 0.7344, βǫ = 1.077, 2H = 15d.

3.5.2 Density profiles of the constituents of the electrolyte solution

This section depicts the results of the density profiles when adding ions to the pure water
solvent to complete the EDL description. In the case of a pure water solvent, no liquid was
observed between the two clay lamellae, which probably stems from the extremely attractive
forces between the water molecules. Consequently, two cases are considered in modeling the
solvent:

1. the solvent is a LJ fluid with low LJ interaction strength βǫ = 0.7407 (or T ∗ = 1.35);

2. the water solvent is modeled by a LJ fluid with βǫ = 1.077.

These two cases allow to study the effects of the LJ interaction strength between the fluid
particles on the ion density profiles.

3.5.2.1 Lennard-Jones fluid solvent with low interaction strength

To simplify the numerical calculations, the LJ interactions between the different constituents
of the EDL (water-water, ion-water, ion-ion) are identical and characterized by the interaction
strength βǫ = 0.7407 (T ∗ = 1.35). The density profiles of the different EDL components are
obtained by solving the three density equations Eq.(3.51)-(3.53) and the second order equation
Eq.(3.55) itertatively. In this study, a 1:1 electrolyte at the bulk ion concentration cb = 0.1M
is studied. The two clay surfaces separated by a distance of 2H = 4d generate the external
LJ potential given in Eq.(3.38) as well as an electrostatic potential due to their surface charge
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Figure 3.19: Density profiles of the different components for an electrolyte solution 1:1; cb =
0.1M , ρ0d

3 = 0.7344, βǫ = 0.7407 confined between two clay lamellae separated by a distance
2H = 4d.

density Σ = −0.1 C/m2. The numerical results are presented in Fig.3.19. The LJ interaction
effects are characterized by the layered density distribution of the ionic components, especially
for the cations. Such effects are similar to those of hard sphere solvent EDL models as they
can be found in literature [89, 90].

3.5.2.2 Realistic water solvent

The LJ parameters for ion-water and ion-ion interactions are now set to βǫ = 0.6667 (or
T ∗ = 1.5), σ/d = 1.0152 respectively, while those of water-water interactions are identical to
the case of the pure water solvent (i.e. βǫ = 1.077). As shown in Fig.3.20, similarly to the case
of the pure water solvent (Fig.3.17), the water density is negligible in the EDL space while
the ion concentration profiles are monotonous, which is similar to the behavior obtained with
classical EDL models considering a continuous solvent [20]. This means that the water density
ρ0(z) has no impact in predicting the ion density profiles ρ±(z) in an EDL. The present EDL
model hence confirms the accuracy of the continuous solvent approach within EDL models
commonly considered in literature due to their simplicity.

3.6 Conclusion

This chapter considers the molecular and polar nature of the water solvent by studying an
inhomogeneous Lennard-Jones fluid. To do this, an exact Density-Functional Perturbation
Theory is used to predict the density profiles as well as the RDF of inhomogeneous LJ fluids.
The LJ potential is separated into repulsive and attractive parts according to the WCA ap-
proximation [74], which results in the decomposition of the excess free energy in a short-range
repulsive and a long-range attractive part. The first one is commonly considered as that of a
temperature-dependent effective hard sphere fluid, while the last one is computed by the exact
relation accounting for interparticle correlations of the inhomogeneous LJ fluid. The results
obtained with the present perturbation theory are in excellent agreement with those from MC
simulations for various densities and configurations (e.g. inhomogeneous LJ fluids near a hard
wall, confined between two hard walls and in slit-like pores). The key issue of the present the-
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Figure 3.20: Density profiles of different components for a 1:1 electrolyte solution: ρ0d
3 =

0.7344, βǫwater−water = 1.077, 2H = 5d, βǫwater−ion;ion−ion = 0.6667.

ory is to exactly compute the anisotropic RDFs of the inhomogeneous LJ fluids. This makes
our approach more stable and more accurate than other DFT models proposed in literature
[72, 87, 84, 85], in which the RDF is approximated by that of the corresponding bulk LJ fluids.
An application of the present approach of inhomogeneous LJ fluids to compute the density
profiles inside EDL as they can be found in clayey soils confirms the layered ion concentra-
tion profiles in the case of a LJ fluid solvent characterized by a low LJ interaction strength
βǫ = 0.7407, which is similar to those obtained for hard sphere solvent EDL models. A more re-
alistic approach for the water solvent consists in imposing a high attractive strength βǫ = 1.077
of the interparticle LJ potential to obtain a reasonable bulk pressure (105 Pa). However, in
this case there are almost no water molecules in the EDL because they are not strongly enough
retained by the platelet walls. This results in monotonous ion density profiles similar to the
continuous solvent approach commonly considered in classical EDL models.
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Appendix B

B.1 Fourier 1D transform

The 1D Fourier transform, F (k), of a function f(x) (f(x < 0) = 0) is given by

F (k) =
∫ +∞

0
f(x) exp(−i k x) dx. (B.1)

If performing this transform (and its inverse) by Matlab tool, the functions fft that associates
X(m) to x(n) and ifft that associates x(n) to X(m) are defined as

X(m) =
N∑

n=1

x(n) exp
[
−2π i (m− 1)

(n− 1)
N

]
if 1 ≤ m ≤ N, (B.2)

x(n) =
1
N

N∑

m=1

X(m) exp
[
2π i (m− 1)

(n− 1)
N

]
if 1 ≤ n ≤ N. (B.3)

We have

xn = (n− 1)∆x =
n− 1
N

xmax,

km = (m− 1)∆k =
m− 1
N

kmax,
(B.4)

with





∆x =
xmax

N

∆k =
kmax

N

kmax =
2πN
rmax

. (B.5)

Imposing m′ = m− 1 −N/2 (−N/2 ≤ m′ ≤ N/2 − 1), it follows

X ′(m′) = X(1 +m′ +
N

2
) =

N∑

n=1

x(n) exp
[
−2 i π (m′ +

N

2
)
(n− 1)
N

]

=
N∑

n=1

x(n) exp
[
−2 i π

m′ (n− 1)
N

]
exp [−i π (n− 1)] (B.6)

=
N∑

n=1

(−1)n−1 x(n)
{

cos
[
2π

m′ (n− 1)
N

]
− i sin

[
2π

m′ (n− 1)
N

]}
.

Obviously, we find that

Re [X ′(−m′)] = +Re [X ′(m′)]
Im [X ′(−m′)] = −Im [X ′(m′)]

(B.7)

The 1D Fourier transformation is therefore symmetrical with respect to midpoint. When the
frequency (k) increases, the calculation of the integral (B.1) becomes increasingly difficult, the
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number of values of f used by period which will decrease.

If one wants to obtain the Fourier transform of the function f(x), it is necessary that for
m = N/2 the Fourier transform F (k) tends to 0 and extends the transform beyond m = N/2
by 0. The same comment applies to the inverse transform. In 3D case of the following section,
the symmetry no longer exists because of the factor 1/k in the denominator but the previous
comment also remains valid.

B.2 3D transform

If V (r) is a function of the vector r = (x, y, z) and V̂ (k) its Fourier transform, we have hence

V̂ (k) =
1

(2π)3/2

∫ ∞∫

−∞

∫
V (r) exp(−ik · r) dr , (B.8)

V (r) =
1

(2π)3/2

∫ ∞∫

−∞

∫
V̂ (k) exp(ik · r) dk . (B.9)

(B.10)

A triple integral of the following form

V̂ (|k|) =
1

(2π)3/2

∫ ∞∫

−∞

∫
V (|r|) exp(−ik · r) dr , (B.11)

can be converted to a simple integral by using spherical coordinates




x = r sin θ cosφ 0 ≤ r < ∞
y = r sin θ sinφ 0 ≤ θ < π
z = r cos θ 0 ≤ φ < 2π

(B.12)

dr = dxdy dz → r2 sin θ dr dθ dφ

k · r → k r cos θ with k = (0 0 k)T

and then

V̂ (|k|) =
1

(2π)3/2

∫ ∞

0

∫ π

0

∫ 2 π

0
V (r) exp(−i k r cos θ) r2 sin θ dr dθ dφ

=
(

2
π

)1/2 ∫ ∞

0
V (r)

r sin(k r)
k

dr (B.13)

By the similar way

V (r) =
1

(2π)3/2

∫ ∫ ∫
V̂ (k) exp(ik · r) dk

=
1

(2π)3/2

∫ ∞

0

∫ π

0

∫ 2 π

0
V̂ (k) exp(i k r cos θ) k2 sin θ dk dθ dφ

=
1

(2π)1/2

∫ ∞

0

∫ π

0
V̂ (k) exp(i k r cos θ) k2 sin θ dk dθ

=
1

(2π)1/2

∫ ∞

0
V̂ (k)

[
−exp(i k r cos θ)

i k r

]θ=π

θ=0
k2 dk

=
(

2
π

)1/2 ∫ ∞

0
V̂ (k)

k sin(k r)
r

dk (B.14)
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If we perform this transform by using Matlab, knowing that

rn = (n− 1)∆r =
n− 1
N

rmax

km = (m− 1)∆k =
m− 1
N

kmax

(B.15)

with





∆r =
rmax

N

∆k =
kmax

N

kmax =
2πN
rmax

(B.16)

It follows

V̂ (km) =

√
2
π

∆r
km

imag [−fft (V . ∗ r))] , (B.17)

V (rn) =

√
2
π

kmax

rn
imag

[
ifft

(
V̂ . ∗ k)

)]
. (B.18)

Difficulty is the Fourier transform of a convolution

Û ∗ V = (2π)3/2 Û V̂ (B.19)

= 4π
∆r2

k2
m

imag [−fft (U. ∗ r))] . imag [−fft (V. ∗ r))] . (B.20)

To overcome this difficulty, it may be efficient to redefine the Fourier transform. It is therefore
possible to choose use one of the two columns of the below table

V̂ (k) =
1

(2π)3/2

∫∞∫
−∞

∫
V (r) exp(−ik · r) dr V̂ (k) =

∫∞∫
−∞

∫
V (r) exp(−ik · r) dr

V (r) =
1

(2π)3/2

∫∞∫
−∞

∫
V̂ (k) exp(ik · r) dk V (r) =

1
(2π)3

∫∞∫
−∞

∫
V̂ (k) exp(ik · r) dk

V̂ (k) =
√

2
π

∫∞
0 V (r)

r sin(k r)
k

dr V̂ (k) = 4π
∫∞

0 V (r)
r sin(k r)

k
dr

V (r) =
√

2
π

∫∞
0 V̂ (k)

k sin(k r)
r

dk V (r) =
1

2π2

∫∞
0 V̂ (k)

k sin(k r)
r

dk

V̂ (km) =
√

2
π

∆r
km

imag [−fft (V . ∗ r))] V̂ (km) = 4π
∆r
km

imag [−fft (V . ∗ r))]

V (rn) =
√

2
π

kmax

rn
imag

[
ifft

(
V̂ . ∗ k)

)]
V (rn) =

1
2π2

kmax

rn
imag

[
ifft

(
V̂ . ∗ k)

)]

Û ∗ V = (2π)3/2 Û V̂ Û ∗ V = Û V̂

F
[

exp(−κ r)
r

]
=
√

2
π

1
κ2 + k2

F
[

exp(−κ r)
r

]
=

4π
κ2 + k2

B.3 Hankel transform

The Hankel transform f̃(k) of a function f(r) is defined by

f̃(k) = 2π
∫ ∞

0
f(r)J0(kr)rdr, (B.21)

and its inverse Hankel transform of f̃(k) is defined as

f(r) =
1

2π

∫ ∞

0
f̃(k)J0(kr)kdk, (B.22)
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where J0(kr) is the zero-order Bessel function of the first kind and k the spatial coordinate in
the Hankel space. First of all, the Hankel transform is proven to be the 2-dimensional Fourier
transform of a spherically symmetric function.
The 2-dimensional Fourier transform F (k) of a function f(r) is given by

F (k) =
∫ ∫

f(r) exp(−ik · r)dr. (B.23)

Without any loss of generality, consider a polar coordinate system (z, θ) such that the k vector
lies on the θ = 0 axis (in K-space). In these polar coordinates the Fourier transform is written
as follows

F (k) =
∫ r=∞

r=0

∫ θ=2π

θ=0
f(r, θ) exp(−i k r cos θ)rdrdθ. (B.24)

If the function f depends only on r, and is independent of the angular variable θ. The Fourier
transform becomes

F (k) = f̃(k) = 2π
∫ ∞

0
f(r)J0(kr)rdr, (B.25)

where J0(z) is given by

J0(z) =
1

2π

∫ 2π

0
exp(−i z cos θ)dθ. (B.26)

Based on the properties of the Fourier transform, the Hankel transform of a convolution integral
can be written as

H
[∫

f(r − r′)g(r′)dr′
]

= f̃(k)g̃(k). (B.27)

Finally, from the Parseval’s theorem which states
∫ ∞

0
|f(r)|2rdr =

∫ ∞

0
|f̃(k)|2kdk, (B.28)

and by using the orthogonality relation of Bessel functions
∫ ∞

0
rJα(ur)Jα(vr)dr =

1
u
δ(u− v), (B.29)

the following expression is obtained
∫ ∞

0
f(r)g(r)rdr =

1
4π2

∫ ∞

0
f̃(k)g̃(k)kdk. (B.30)

The table B.1 gives some examples of Hankel transform.

B.4 Numerical Hankel transform

The numerical Hankel transform and its inverse can be performed by using the method proposed
by Lado [91]. The function f(r) is assumed zero for r ≥ R and can be written in a series of
J0(

µj r

R
) where µj is the j-th positive root of J0

f(r) =
∞∑

j=1

Aj J0(
µj r

R
). (B.31)
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f(r) f̃(k)

1
2π δ(k)

k
1
r

2π
k

1√
r2 + z2

2π
exp (−k|z|)

k

exp (−α r) 2π α

(α2 + k2)3/2

exp (−α r)
r

2π√
α2 + k2

exp
(
−π r2

)
exp

(
− k2

4π

)

1

(r2 + z2)3/2
2π

exp (−|z| k)
|z|

1
r2 + z2

2πK0(|z| k)

2 z2

(r2 + z2)2 2π |z| kK1(|z| k)

d2f

dr2
+

1
r

df
dr

−k2 f̃(k)

Table B.1: Hankel transform.

To determine Aj , one uses the orthogonality nature of the Bessel functions [92]

∫ R

0
J0(

µj r

R
)J0(

µl r

R
) r dr =

R2 J2
1 (µj)
2

δjl. (B.32)

It follows

Aj =
2

R2 J2
1 (µj)

∫ R

0
f(r)J0

(
µj r

R

)
r dr, (B.33)

and finally

f(r) =
2
R2

∞∑

j=1

1
J2

1 (µj)

(∫ R

0
f(r′)J0

(
µj r

′

R

)
r′ dr′

)
J0(

µj r

R
)

=
1

πR2

∞∑

j=1

1
J2

1 (µj)
f̃(kj) J0(

µj r

R
) (B.34)

wit kj = µj/R. If r = ri =
µiR

µN
, it becomes

f(ri) = f

(
µiR

µN

)
=

2
µN

∞∑

j=1

J0

(
µi µj

µN

)

J2
1 (µj)

f̃(kj). (B.35)

By the similar way, we have

f̃(k) =
∞∑

j=1

Bj J0

(
µj k R

µN

)
. (B.36)
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As
∫ R

0
J0(

µj k R

µN
) J0(

µl k R

µN
) k dk =

µ2
N

R2

J2
1 (µj)

2
δjl, (B.37)

the Bj coefficients are given by

Bj =
2R2

µ2
N J2

1 (µj)

∫ µN /R

0
f̃(k′)J0

(
µj k

′R

µN

)
k′ dk′. (B.38)

Consequently

f̃(k) =
2R2

µ2
N

N∑

j=1

J0

(
µj k R

µN

)

J2
1 (µj)

(∫ µN /R

0
f̃(k′) J0

(
µj k

′R

µN

)
k′dk′

)

=
4πR2

µ2
N

N∑

j=1

J0

(
µj k R

µN

)

J2
1 (µj)

f

(
µjR

µN

)
. (B.39)

If k = ki =
µi

R
and rj =

µjR

µN
, one obtains

f̃(ki) =
4πR2

µ2
N

N−1∑

j=1

J0

(
µj µi

µN

)

J2
1 (µj)

f(rj). (B.40)
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Chapter 4

Dipolar Hard-Sphere fluid

4.1 Introduction

In Chapter 3, the molecular and polar nature of the water solvent is implicitly considered
through the approach of a LJ fluid. Now the dipolar nature of water molecules will be explicitly
considered by modeling a Dipolar Hard Sphere fluid (DHS). In order to study such a fluid
model, we use the DFPT approach described in chapter 2 to predict the density distribution
as well as the dipole orientation profile. Interparticle correlations are computed by the Mean
Spherical Approximation (MSA) which is proposed by Wertheim [21] for the DHS fluid. This
MSA approach will be used to estimate the dielectric permittivity of the isotropic bulk fluid
without external electrical field and the bulk fluid subjected an external electrical field. Ions
are finally added to complete the EDL description.

Water molecules consist of a central oxygen atom covalently bonded to two hydrogen atoms
building an assembly of a negative (the oxygen end) and a positive (where the hydrogens are)
pole. Such structural arrangement produces a net dipole. From the modeling point of view,
the water molecule will be simply approximated by a hard sphere carrying a point dipole at
its center (Fig. 4.1). Therefore, in order to improve the LJ model of water, as presented in

= 
H H 

- 

+ 

Figure 4.1: Modeling the water molecule as a dipolar hard sphere.

Chapter 3, the molecular nature of the water solvent is now explicitly taken into account by
considering it as a Dipolar Hard Sphere (DHS) fluid. This allows to capture two important
physical features of molecular interactions: short-range repulsions and long-range orientation-
dependent electrostatic interactions [93] which are classified into three kinds of dipole-dipole
interactions.

• Keesom interaction (Fig 4.2): The interaction between permanent dipoles is referred
to as Keesom interaction. Because of their free rotating capacity, two dipoles may find
favorable orientations to maximize the attraction between them. These interactions are
partially responsible for the cohesion of liquids composed of polar molecules.
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B

(Permanent dipole) (Permanent dipole)

(Permanent dipole) (Non polar or atom)

(Permanent dipole) (Induced dipole)

Figure 4.2: Keesom interaction between permanent dipoles.

• Debye interaction (Fig. 4.3): These interactions are also known as polarization re-
sulting from the interactions between permanent and induced dipoles. The latter appears
when the electric field created by a polar molecule deforms the electron cloud of another
adjacent (polar or nonpolar) molecule, inducing a dipole moment within the so-called
polarized molecule.

B

(Permanent dipole) (Permanent dipole)

(Permanent dipole) (Non polar or atom)

(Permanent dipole) (Induced dipole)

Figure 4.3: Debye interaction between permanent and induced dipoles.

• London dispersion force (Fig. 4.4): This kind of attractive force occurs even between
nonpolar molecules or atoms. As the electrons are in constant motion, their distribution
at any given instant creates a short-lived instantaneous dipole moment (although, on
average, the dipole moment is zero). This instantaneous dipole creates an electrical field
which induces temporarily another dipole within an adjacent atom. Such instantaneous
induced-dipole interactions between nonpolar molecules are the so-called London disper-
sion forces.

Among the three types of dipole interactions contributing to the Van-der-Waals forces between
water molecules, only Keesom (permanent-permanent dipoles) interactions linked to the orien-
tation of the water molecules will be considered in the following. Debye (permanent-induced
dipoles) and London dispersion (instantaneous-induced dipoles) forces are either neglected in
the present approach or added in an average Lennard-Jones term.

The complexity in comparison with simple (atomic) fluids is the anisotropy of the dipole-
dipole interaction (Fig. 4.5): it depends not only on the spatial position ri of a fluid molecule
i, but also on the dipole orientation ωi which is specified by the dipole moment strength mi

and orientation angles located with respect to a fixed direction (ωi = (θi, φi) where 0 ≤ θi ≤ π
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Chapter 4: Dipolar hard sphere fluid

A

(Non polar or atom)

B

(Non polar or atom)

(Instantaneous dipole) (Non polar or atom)

(Instantaneous dipole) (Induced dipole)

B

Figure 4.4: London dispersion force between fluctuating and induced dipoles.

2

12

m1

m2

21 zr

Figure 4.5: Geometrical configuration of dipole-dipole interactions.

is the angle with the fixed direction and 0 ≤ φi ≤ 2π the angle in the plane perpendicular
to the fixed direction). To simplify the notation, the symbol i ≡ (ri,ωi) is used to denote
the coordinates of the fluid molecule i which occupies the position ri with a dipole oriented
along the direction ωi. The dipolar hard sphere fluid is characterized by the DHS interaction
potential between molecules 1 and 2

u(1, 2) =





∞, r < d

− m2

4πǫ0r3
D(1, 2), r > d .

(4.1)

If r = r1 − r2 is the direction between the two sphere centers (chosen as the fixed direction),
r = |r| the distance between the two sphere centers with m̂1, m̂2 and r̂ the unit vectors in the
directions of m1, m2 and r, we define




S(1, 2) = 1
∆(1, 2) = m̂1 · m̂2 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2)
D(1, 2) = 3 (m̂1 · r̂) (m̂2 · r̂) − m̂1 · m̂2 = 2 cos θ1 cos θ2 − sin θ1 sin θ2 cos(φ1 − φ2) .

(4.2)

In spherical coordinates (Fig. 4.6), the elementary solid angle is dω = sin θdθdφ and therefore
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Figure 4.6: Representation of a vector in spherical coordinates: θ and φ are respectively the
polar and the azimuth angles.

∫
dω =

∫ π

0
sin θ dθ

∫ 2π

0
dφ = 4π. Denoting by angular brackets with orientations ωi as

subscripts the average over the orientations of the involved molecules

〈...〉
ω1

≡ 1
4π

∫
... dω1, 〈...〉

ω1,ω2
≡ 1

(4π)2

∫∫
... dω1dω2 , (4.3)

and performing simple integrals (possibly with the help of the Matlab Symbolic Toolbox) gives

〈S(1, 2)∆(1, 2)〉
ω1,ω2

= 0, 〈S(1, 2)D(1, 2)〉
ω1,ω2

= 0, 〈∆(1, 2)D(1, 2)〉
ω1,ω2

= 0,
〈
S2(1, 2)

〉
ω1,ω2

= 1,
〈
∆2(1, 2)

〉
ω1,ω2

=
1
3

〈
D2(1, 2)

〉
ω1,ω2

=
2
3
.

(4.4)

This means that S(1, 2), D(1, 2), and ∆(1, 2) are the components of an orthogonal basis set.
Therefore, the solution for the distribution function h(1, 2) is assumed to be of the form [21, 94]

h(1, 2) = hS(r) + h∆(r)∆(1, 2) + hD(r)D(1, 2), (4.5)

where hS(r), h∆(r) and hD(r) are respectively the isotropic part of h, its projection on ∆(1, 2)
and on D(1, 2) calculated by multiplying Eq. (4.5) successively with S, ∆ and D and integrating
over all solid angles

hS(r) = 〈h(1, 2)〉
ω1,ω2

, (4.6)

h∆(r) = 3 〈h(1, 2)∆(1, 2)〉
ω1,ω2

, (4.7)

hD(r) =
3
2

〈h(1, 2)D(1, 2)〉
ω1,ω2

. (4.8)

The Direct Correlation Function (DCF) c(1, 2) can be treated in a similar way resulting in

c(1, 2) = cS(r) + c∆(r)∆(1, 2) + cD(r)D(1, 2). (4.9)

It has to be noted that as the DHS fluid dipoles can turn around themselves, their orien-
tation capacity is strongly influenced by their neighbors. Hence, the orientational correlations
play a crucial role in the fluid behavior. Similarly to atomic fluids, there exist three com-
mon theoretical approaches for studying molecular fluids: integral equation theory, density
functional theory and perturbation theory, in which the final expressions of the molecular dis-
tribution functions resemble closely those obtained for atomic fluids, except that all quantities
are now functions of the dipole orientations. In what follows, this chapter presents a DFT
approach for DHS fluids based on the nonlocal density functional theory developed by Tang et
al [89] in which the orientational correlations between polar molecules are accounted for using
the pair correlation functions of the corresponding homogeneous DHS fluid obtained with the
Mean Spherical Approximation (MSA) approach proposed by Wertheim [21]. Finally, ions are
added to complete the Electrical Double Layer (EDL) representation.
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Chapter 4: Dipolar hard sphere fluid

4.2 Mean spherical approximation for homogeneous DHS fluid

The first application of integral equation theory to dipolar hard sphere fluids is probably due
to Wertheim [21] by using the MSA closure which is more specifically reported in the lecture
note of Henderson [95].

Consider a DHS fluid characterized by the dipolar intermolecular potential of Eq. (4.1).
The n-particle density ρ(n)(1, 2, ..., n) is now the probability of finding n particles in the volume
elements (r1 + dr1, r2 + dr2, . . . , rn + drn) with their dipole moments oriented along the solid
angles (ω1 + dω1,ω2 + dω2, . . . ,ωn + dωn). The Ornstein-Zernike (OZ) relation (2.22) has
to be rewritten to take into account the distribution of the direction of the dipole moment as

h(1, 2) = c(1, 2) +
∫
ρ(3)h(1, 3)c(2, 3)d(3) , (4.10)

where ρ(3) is the molecular density at position r3 with a dipole moment in the direction ω3.
Equation (4.10) is general. In a homogeneous situation (bulk fluid) ρ(i) = ρ/4π is uniform
where ρ is the molecule density irrespective of the direction of its dipole moment. The OZ
equation becomes in this case

h(1, 2) = c(1, 2) +
ρ

4π

∫
h(1, 3)c(2, 3)d(3) = c(1, 2) + ρ

∫
〈h(1, 3)c(2, 3)〉

ω3
dr3. (4.11)

To solve the above equation, it is convenient to use the Fourier transform. First, recall that a
function f(r) and its Fourier transform f̂(k) are linked by

f̂(k) =
∫
f(r) exp(−ik · r)dr and f(r) =

1
(2π)3

∫
f̂(k) exp(ik · r)dk . (4.12)

The Fourier transform of a function f(r) depending only on r = |r| (and not on r) depends
only on k = |k| (and not on k). Assuming that k coincides with the z axis (k = (0 0 k)), f̂(k)
reads then in spherical coordinates as

f̂(k) =
∫∫∫

f(r) exp (−ik · r)dr =
∫ ∞

0
r2f(r)dr

∫ 2π

0
dφ
∫ π

0
sin θdθ exp (ikr cos θ)

= 2π
∫ ∞

0
r2f(r)dr

∫ π

0
sin θdθ exp (ikr cos θ) = 4π

∫ ∞

0
r2f(r)j0(kr)dr, (4.13)

where j0(z) =
sin z
z

is the zero-order spherical Bessel function of the first kind. The Fourier

transform of h(1, 2) is then given by

ĥ(1, 2) = ĥS(k) + ĥ∆(k)∆(1, 2) +
∫
hD(r)D(1, 2) exp(−ik · r)dr. (4.14)

Obviously, the Fourier transforms of the terms with S(1, 2) and ∆(1, 2) are straightforward,
while those of hD(1, 2) and cD(1, 2) are more complicated because D(1, 2) depends on r̂. Noting
that dr = r2drdωr, first the integration is done over the dipole moment orientation, using the
following property:

∫
D(1, 2) exp(−ik · r)dωr = −4πj2(kr)Dk(1, 2) (4.15)

where (the proof which is rather technical and without difficulties has been omitted)

Dk(1, 2) = 3
(
m̂1 · k̂

) (
m̂2 · k̂

)
− m̂1 · m̂2, (4.16)
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and j2(z) is the second order spherical Bessel function of the first kind given by

j2(z) =
(

3
z3

− 1
z

)
sin z − 3

z2
cos z . (4.17)

Finally we obtain
∫
hD(r)D(1, 2) exp(−ik · r)dr = −4πDk(1, 2)

∫ ∞

0
j2(kr)hD(r)r2dr = Dk(1, 2)hD(k), (4.18)

where hD(k) is the Hankel transform in j2

hD(k) = −4π
∫ ∞

0
j2(kr)hD(r)r2dr, (4.19)

Eq. (4.14) can thus be rewritten in the form

ĥ(1, 2) = ĥS(k) + ĥ∆(k)∆(1, 2) + hD(k)Dk(1, 2). (4.20)

The same type of relation holds obviously for (̧1, 2). Using the property that a convolution
product (in r3) in the real space reduces to a simple product in the Fourier space, the Fourier
transform of the OZ equation (4.11) is given by

ĥ(1, 2) = ĉ(1, 2) + ρ
〈
ĉ(1, 3)ĥ(3, 2)

〉
ω3

. (4.21)

The term
〈
ĉ(1, 3)ĥ(3, 2)

〉
ω3

in the preceding equation after substitution of ĥ and ĉ according

to (4.20) contains convolution integrals over the direction ω3 of the type

A ∗B =
1

4π

∫
A(1, 3)B(3, 2)dω3 , (4.22)

where the functions A and B are either S, ∆ or Dk. The integral multiplication rules, which
can easily be established, are shown in Table.4.1. It is obviously from Table.4.1 that the three

S ∆ Dk

S S 0 0
∆ 0 ∆/3 Dk/3
Dk 0 Dk/3 (Dk+2∆)/3

Table 4.1: Evaluation of angular convolutions of the basic functions.

functions S, D and ∆ form a closed set under the operation (4.22) so that the convolution of
any two functions gives only a function in the same set (or zero).

We are now ready to solve the Ornstein-Zernike equation (4.20). As we have only one
equation and two unknown functions h and c, another relation (closure) is required. In what
follows, we will use the MSA closure in the case of a uniform DHS fluid. The MSA closure
reads as

h(1, 2) = −1, for r < d; c(1, 2) =
βm2D(1, 2)

4πǫ0r3
, for r > d . (4.23)

The first relation is exact. The second one c(r) = −βw(r) where w(r) is the intermolecular
potential is only an approximation valid in the asymptotic case of large values of r. The MSA
assumes that this asymptotic behavior for c is valid as soon as r is larger than the hard sphere
diameter d.

96



Chapter 4: Dipolar hard sphere fluid

From the MSA closure (4.23) and the developments (4.5 –4.9) for h and c, it follows



r < d : hS(r) = −1 h∆(r) = 0 hD(r) = 0

r > d : cS(r) = 0 c∆(r) = 0 cD(r) =
βm2

4πǫ0r3
.

(4.24)

Note that cD(r) decays asymptotically as r−3 for r > d and hD(r) also decays as r−3 for large
values of r (r ≫ d)(see section 11.5 in [44]). Hence, the projections cD(1, 2) and hD(1, 2) are
long-range whereas the other projections are all short-ranged. To avoid numerical difficulties
due to the slow decay of cD(1, 2) and hD(1, 2), it is convenient to introduce two short-range
additional functions h0

D(r) and c0
D(r) to remove the asymptotic behavior in r−3 [44]

h0
D(r) = hD(r) − 3

∫ ∞

r

hD(r′)
r′

dr′, (4.25)

c0
D(r) = cD(r) − 3

∫ ∞

r

cD(r′)
r′

dr′. (4.26)

Differentiating Eq. (4.25) leads to

dh0
D

dr
=

dhD

dr
+

3
r
hD =

1
r3

d
dr

(
r3hD

)
. (4.27)

Multiplying by r3 and integrating from 0 to r yields

[
r3hD

]r
0

=
∫ r

0
r′3 dh0

D

dr′
dr′ =

[
r′3h0

D

]r
0

− 3
∫ r

0
r′2h0

D dr′ , (4.28)

so that the inverse relations are easily obtained:

hD(r) = h0
D(r) − 3

r3

∫ r

0
h0

D(r′) r′2dr′, (4.29)

cD(r) = c0
D(r) − 3

r3

∫ r

0
c0

D(r′) r′2dr′. (4.30)

Substituting ĥ(1, 2) and ĉ(1, 2) by their decompositions according to (4.20) in the Ornstein-
Zernike relation (4.21) and making use of the table (4.1) for the integration over the dipole
orientation, one obtains for the terms in S, ∆ and D

ĥS(k) = ĉS(k) + ρ ĉS(k) ĥS(k), (4.31)

ĥ∆(k) = ĉ∆(k) +
ρ

3

[
ĉ∆(k) ĥ∆(k) + 2 cD(k) hD(k)

]
, (4.32)

hD(k) = cD(k) +
ρ

3

[
cD(k) hD(k) + cD(k) ĥ∆(k) + ĉ∆(k) hD(k)

]
. (4.33)

It can be shown that the Hankel transforms hD(k) and cD(k) of the functions hD(r) and cD(r)
are respectively the Fourier transforms ĉ0

D(k) and ĥ0
D(k) of the functions h0

D(r) and c0
D(r) [96].

The inverse transforms can be consequently written in terms of spatial convolution integrals
as follows

hS(r) = cS(r) + ρ cS ⊗ hS , (4.34)

h∆(r) = c∆(r) +
ρ

3

[
c∆ ⊗ h∆ + 2 c0

D ⊗ h0
D

]
, (4.35)

h0
D(r) = c0

D(r) +
ρ

3

[
c0

D ⊗ h0
D + c0

D ⊗ h∆ + c∆ ⊗ h0
D

]
. (4.36)

The closure relations for the projection functions hS(r), h∆(r) and cD(r), c∆(r) are already
given by Eq. (4.24). For h0

D(r) and c0
D(r), the closure deduced from Eq. (4.24) using the

relations (4.25) and (4.26) is given by

h0
D(r) = −3K, r < d; c0

D(r) = 0, r > d, (4.37)

97



Chapter 4: Dipolar hard sphere fluid

where K is a constant defined as

K =
∫ ∞

d

hD(r)
r

dr. (4.38)

It is obvious from Eq. (4.34) and the MSA closure for DHS fluids (4.24) that the functions
hS(r) and cS(r) are the solution of the PY approximation for a hard sphere fluid of density
ρ. This has an important consequence: the dipolar effects do not affect the distribution of the
molecule centers in comparison with the hard sphere fluid.

To solve the problem for the ∆ and D projections, the two equations (4.35) and (4.36) are
linearly decorrelated introducing the auxiliary functions c+(r) and c−(r) defined by

c+(r) =
1

3K

[
c0

D(r) +
1
2
c∆(r)

]
, (4.39)

c−(r) =
1

3K

[
c0

D(r) − c∆(r)
]
, (4.40)

together with h+(r) and h−(r) defined in a similar way. The new functions satisfy

h+(r) − c+(r) = 2Kρc+ ⊗ h+, (4.41)

h−(r) − c−(r) = −Kρc− ⊗ h−, (4.42)

with the closure relations {
c±(r) = 0, r > d,
h±(r) = −1, r < d.

(4.43)

The couples (c+, h+) and (c−, h−) satisfy both an Ornstein-Zernike type equation comple-
mented by the MSA closure i.e. the Percus-Yevick approximation for a hard sphere fluid. In
the case (c+, h+) the fluid density is 2Kρ whereas in the case (c−, h−), it is −Kρ. Solving
the OZ equation with a negative density might appear surprising but will not cause any prob-
lem in practice. Denoting the Percus-Yevick solution for a hard sphere fluid of density ρ by
(cP Y (r; ρ), hP Y (r; ρ)) (where cS(r; ρ) is analytic and given by Eq. (2.27)), we have

c+(r) = cP Y (r; 2Kρ), h+(r) = hP Y (r; 2Kρ),
c−(r) = cP Y (r; −Kρ), h−(r) = hP Y (r; −Kρ).

(4.44)

The anisotropic parts c0
D(r) and c∆ are given in terms of the PY-HS correlation function [93]

c∆(r) = 2K [cP Y (r; 2Kρ) − cP Y (r; −Kρ)] , (4.45)

c0
D(r) = K [2cP Y (r; 2Kρ) + cP Y (r; −Kρ)] , (4.46)

and

h∆(r) = 2K[hP Y (r; 2Kρ) − hP Y (r; −Kρ)], (4.47)

h0
D(r) = K[2hP Y (r; 2Kρ) + hP Y (r; −Kρ)]. (4.48)

The quantity K defined by Eq. (4.38) can be computed directly. As c0
D is null for r > d,

Eq. (4.30) reduces to

r3cD(r) =
βm2

4πǫ0
= −3

∫ d

0
c0

D(r′)r′2dr′ for r > d

= −3K
∫ d

0
[2cP Y (r; 2Kρ) + cP Y (r; −Kρ)] r2dr , (4.49)

where Eq. (4.46) has been used. Denoting Q(η) the quantity defined by

Q(η) = 1 − 4πρ
∫ d

0
cP Y (r, ρ)r2 dr =

(1 + 2η)2

(1 − η)4
, (4.50)

98



Chapter 4: Dipolar hard sphere fluid

where η =
1
6
πρd3 is the solid volume fraction, K is solution of the following equation

3y ≡ ρβm2

3ǫ0
= Q(2Kη) −Q(−Kη) . (4.51)

The preceding equation allows to compute K for given y and η. The solution is unique for Kη
comprised between 0 and 1/2 when y increases monotonically from 0 to ∞. For illustrative
purposes, Figure 4.7 depicts the profiles of the projections hS(r), h∆(r) and hD(r) for ρd3 = 0.7
and m∗2 = βm2/(4πǫ0d3) = 2.

r=d
0 1 2 3 4

h
(r

)

-1

-0.5

0

0.5

1

1.5

2
h"
hD

hS

Figure 4.7: Projections of total correlation function h(1, 2) for a dipolar hard spheres fluid with

ρd3 = 0.7 and m∗2 =
β

4πǫ0d3
m2 = 2.

4.3 Dielectric permittivity

The dielectric permittivity is a notion that is not trivial to introduce rigorously. Here we will
follow the approach given by Fröhlich [97]. To start, we recall some classical notions of the
macroscopic theory of dielectrics. The relative permittivity ǫ of a medium is defined by

D = ǫǫ0E = ǫ0E + P , (4.52)

where D is the electric displacement field, ǫ0 the vacuum permittivity and P the medium
polarisation (the mean polar moment per unit volume). In a dielectric material in the absence
of charge, we have

∇ · D = 0 or ∇ · (ǫǫ0E) = 0 . (4.53)

Consider an infinite dielectric medium of permittivity ǫǫ0 submitted to an electric field E. In
this medium consider a macroscopic free spherical void of volume V (prior to the introduction
of N polar molecules) of permittivity ǫ0 (Fig. 4.8).

In the spherical void cavity the electric field is given by the classical relation E′ = 3ǫ/(2ǫ+
1)E. This field E′ will polarize the dipoles inside the cavity. The dipolar molecules with a
total electric moment M =

∑N
i=1 mi submitted to the external potential E′ acquire a potential
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E
0

ε
0

E

ε

E

ε

E’

ε
0

V V

Figure 3: Fröhlich approach for the determination of the dielectric constant ǫ: an infinite dielectric
medium of dielectric permittivity ǫǫ0 is submitted to an electric field E; inside this medium there is an
empty spherical cavity of volume V (dielectric permittivity ǫ0) occupied by N dipoles.

quantity exp (βM · E′) is now developed in power series of E near E = 0. Limiting the development to
the linear term:

〈mi · ~k〉E =
〈

(mi · ~k)
(

1 + β
3ǫ

2ǫ+ 1
M · E

)〉
(54)

where the mean value 〈 〉 without superscript refers to the cavity in the absence of external field
(E = E′ = 0). Therefore 〈mi〉 = 0 and the preceding relation leads to

〈mi · ~k〉E = β
3ǫ

2ǫ+ 1

〈
(mi · ~k) (M · E)

〉
(55)

In the directions perpendicular to E the components of M are null. Then

〈M〉E =
∑

i

〈mi · ~k〉E~k = β
3ǫ

2ǫ+ 1

〈∑

i

(mi · ~k) (M · E)

〉
~k = β

3ǫ
2ǫ+ 1

〈
M2

z

〉
E (56)

As in the absence of an electrical field, the electric moment is isotopic, 〈M2
z 〉 = 〈M2〉/3, finally:

P
ǫ0

= (ǫ− 1)E =
〈M〉E

ǫ0V
=

β

ǫ0V

ǫ

2ǫ+ 1

〈
M2

〉
E (57)

and thus

(ǫ− 1)(2ǫ+ 1)
9ǫ

=
β

9ǫ0V

〈
M2

〉
=
βρm2

9ǫ0

〈M2〉
Nm2

= ygK (58)

with y = βρm2/(9ǫ0) and gK = 〈M2〉/(Nm2) designates the Kirkwood factor. As M =
∑

i mi, M2

contains N terms of the type of 〈m2
1〉 and N(N − 1) terms of the type of 〈m1 · m2〉:

gK =
〈M2〉
Nm2

= 1 + (N − 1) 〈m̂1 · m̂2〉 (59)

Hence:

(ǫ− 1)(2ǫ+ 1)
9ǫ

= ygK = y [1 + (N − 1) 〈m̂1 · m̂2〉] (60)

This last result is now applied to the case of the MSA closure. Recalling the relation (7)

1
3
h∆(r) =

1
(4π)2

∫
∆(1, 2)g(1, 2)dω1dω2, (61)

7

Figure 4.8: Fröhlich approach for the determination of the dielectric constant ǫ: an infinite
dielectric medium of dielectric permittivity ǫǫ0 is submitted to an electric field E; inside this
medium there is a void spherical cavity of volume V (dielectric permittivity ǫ0) occupied by N
dipoles. E′ is the electric field inside the cavity prior to the introduction of the N dipoles.

energy −M · E′. The canonical average 〈 〉E is then introduced according to Kirkwood [98],
where the superscript E indicates that the solicitation is due to the electric potential E 6= 0.
If the external electric field is oriented along Oz of unit vector k, E = Ek it comes

〈mi · k〉E =
∫
. . .
∫

mi · k exp [−β (UN − M · E′)]d(1) . . .d(N)∫
. . .
∫

exp [−β (UN − M · E′)]d(1) . . .d(N)
, (4.54)

where UN is the intermolecular potential. The quantity exp (βM · E′) is now developed in
power series of E near E = 0. Limiting the development to the linear term, it comes

〈mi · k〉E =
〈

(mi · k)
(

1 + β
3ǫ

2ǫ+ 1
M · E

)〉
, (4.55)

where the mean value 〈 〉 without superscript refers to the cavity in the absence of any external
field (E = E′ = 0). Therefore 〈mi · k〉 = 0 and the preceding relation reduces to

〈mi · k〉E = β
3ǫ

2ǫ+ 1
〈(mi · k) (M · E)〉 . (4.56)

In the directions perpendicular to E the components of M are null. Then

〈M〉E =
∑

i

〈mi · k〉Ek = β
3ǫ

2ǫ+ 1

〈∑

i

(mi · k) (M · E)

〉
k = β

3ǫ
2ǫ+ 1

〈
M2

z

〉
E (4.57)

In the absence of an electric field, the electric moment is isotopic, 〈M2
z 〉 = 〈M2〉/3. The medium

polarization can thus be written as

P
ǫ0

= (ǫ− 1)E =
〈M〉E

ǫ0V
=

β

ǫ0V

ǫ

2ǫ+ 1

〈
M2

〉
E (4.58)

and thus

(ǫ− 1)(2ǫ+ 1)
9ǫ

=
β

9ǫ0V

〈
M2

〉
=
βρm2

9ǫ0

〈M2〉
Nm2

= ygK, (4.59)

with y = βρm2/(9ǫ0) and gK = 〈M2〉/(Nm2), the latter designating the Kirkwood factor. As
M =

∑
i mi, M2 contains N terms of the type of 〈m2

1〉 and N(N − 1) terms of the type of
〈m1 · m2〉 so that the Kirkwood factor can be rewritten as

gK =
〈M2〉
Nm2

= 1 + (N − 1) 〈m̂1 · m̂2〉 . (4.60)
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Introducing the above expression in (4.59) yields finally

(ǫ− 1)(2ǫ+ 1)
9ǫ

= ygK = y [1 + (N − 1) 〈m̂1 · m̂2〉] . (4.61)

This last result is now applied to the case of the MSA closure. Recalling the relation (4.7)

1
3
h∆(r) =

1
(4π)2

∫
∆(1, 2)g(1, 2)dω1dω2, (4.62)

we have

(N − 1)〈m̂1 · m̂2〉 = (N − 1)

(
ρ

4π

)2 ∫
∆(1, 2)g(1, 2)dω1dω2dr1dr2

(
ρ

4π

)2 ∫
g(1, 2)dω1dω2dr1dr2

=
(N − 1)ρ2

∫
h∆(r12)

3
dr12dr1

(N − 1)
ρ

4π

∫
dω1dr1

=
ρ

3

∫
h∆(r)dr, (4.63)

and thus

gK = 1 +
ρ

3

∫
h∆(r)dr. (4.64)

Using relation (4.47) in the Fourier space for k = 0, we have

h̃∆(0) =
∫
h∆(r)dr = 2K

[
h̃PY(0; 2ρK) − h̃PY(0; −ρK)

]
. (4.65)

In combination with the Ornstein-Zernike relation in the Fourier space, Eq. (4.50) takes the
form

Q(η) =
(1 + 2η)2

(1 − η)4
= 1 − 4πρ

∫ d

0
cPY(r; ρ)r2dr

= 1 − ρ c̃PY(0; ρ) =
1

1 + ρ h̃PY(0; ρ)
, (4.66)

so that h̃∆(0) can be expressed as

ρh̃∆(0) =
1

Q(2Kη)
− 1 + 2

[
1

Q(−Kη)
− 1

]
=

1
Q(2Kη)

+
2

Q(−Kη)
− 3 . (4.67)

The relative permittivity ǫ is thus finally given by the equation

(ǫ− 1)(2ǫ+ 1)
9ǫ

= y

[
1 +

ρ

3
h̃∆(0)

]
. (4.68)

Using Eq. (4.65) to express h̃∆(0) and writing y in terms of K according to Eq. (4.51), the
following second second order equation in ǫ is obtained

(ǫ− 1)(2ǫ+ 1)
9ǫ

=
1
9

[Q(2Kη) −Q(−Kη)]
[

1
Q(2Kη)

+
2

Q(−Kη)

]

=
1
9

[
2Q(2Kη)
Q(−Kη)

− Q(−Kη)
Q(2Kη)

− 1
]

=

(
Q(2Kη)
Q(−Kη)

− 1
)(

2
Q(2Kη)
Q(−Kη)

+ 1
)

9
Q(2Kη)
Q(−Kη)

, (4.69)
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which has the unique positive solution

ǫ =
Q(2Kη)
Q(−Kη)

. (4.70)

This is Wertheim’s result for the dielectric constant calculated with the MSA closure. Before
this formula, there were two classical standard formula for its estimation:

Clausius-Mossotti: ǫ =
1 + 2y
1 − y

, (4.71)

and

Onsager: y =
(ǫ− 1)(2ǫ+ 1)

9ǫ
. (4.72)

The Clausius-Mossotti is inaccurate and leads to the so-called polarization catastrophe because
ǫ diverges when y = 1. The Clausius-Mossotti, Onsager and Wertheim-MSA results for the
dielectric constant are plotted in Fig. 4.9 in comparison with Monte-Carlo data taken from the
work of Valisko [99]. Obviously, the Onsager approach is much better than that of Clausius-
Mossotti but less accurate than the MSA approach. However, the MSA is not able to capture
ǫ at high values of y corresponding to the case of water (ǫ ≈ 80).

y = -;m2

900
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20

40
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Figure 4.9: Relation between the relative permittivity of a homogeneous DHS fluid of a density
ρd3 = 0.7 and the molecular parameter y = βρm2/(9ǫ0).

4.4 Density Functional Perturbation Theory (DFPT) approach
for the DHS fluid

In a series of papers Oleksy and Hansen [100, 101, 102, 103] develop a theory for a polar
fluid and ions using the DFT in the Mean Field Approximation (MFA). When the MFA is
applied to a bulk subjected to a constant electric field, the electric permittivity is given by
the Clausius-Mossotti formula leading inevitably to the polarization catastrophe [102]. The
aim of this section is to include (in an approximate way) interparticle correlation effects in the
DFT approach to see how the results are then modified. First, an introduction sets the basic
framework for the modeling approach. The new theory is then applied to two cases: a bulk
dipolar hard sphere fluid and the same fluid confined between two walls.
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4.4.1 Introduction

The water solvent is explicitly considered as an inhomogeneous DHS fluid confined between two
parallel charged plates located at z = −H (charge density Σ) and at z = H (charge density
−Σ) to ensure overall charge neutrality of the system. The system is treated in cylindrical
coordinates with the Oz axis parallel to the external electric field Eext = E0 = Σ/ǫ0 (E0 is
the electric field driven only by charges and not by dipoles). The molecule distribution profile
depends both on the dipole orientation ω and on the molecule center position r as

ρ(r,ω) = ρ(r)α(r,ω) (4.73)

where the orientation-dependent function α(r,ω) is normalized by (see Fig. 4.6)

1 =
∫
α(r,ω)dω =

∫ 2π

0
dφ
∫ π

0
α(r,ω) sin θ dθ. (4.74)

ρ(r) is therefore the total density irrespective to the dipoles orientation. If α is independent of
ω, α(r) = 1/(4π).

According to the DFPT approach for LJ fluids presented in chapter 3, the complete inter-
molecular potential u(1, 2, λ) can be written as

u(1, 2, λ) = uHS(r1, r2) + λudd(1, 2), 0 ≤ λ ≤ 1 (4.75)

where uHS(r1, r2) corresponds to the reference hard sphere system and udd(1, 2) the dipole-
dipole interaction potential given explicitly by

udd(1, 2) = − m2

4πǫ0r3
D(1, 2), (4.76)

where D(1, 2) is given by Eq. (4.2c) which is the perturbation part. The intrinsic free energy
of a DHS fluid is decomposed as

F = F id + Fex
HS + Fex

dd . (4.77)

The ideal gas contribution to the intrinsic free energy, F id, is

F id = kBT

∫
d(1)ρ(1)

{
ln
[
4πΛ3ρ(1)

]
− 1

}
, (4.78)

with d(1) = dr1 sin θ1dθ1dφ1. The introduction of the factor 4π in Eq. (4.78) can be justified
considering the case of a bulk fluid where ρ(1) ≡ ρ(r1,ω1) = ρb/(4π), ρb being the total
molecules density. The classic result F id = kBT

∫
ρb

[
ln(Λ3ρb) − 1

]
is then recovered. The

ideal chemical potential µid is then given by

µid =
δF id[ρ]
δρ(1)

= kBT ln[Λ34πρ(1)]. (4.79)

The excess free energy part due to hard sphere exclusions, Fex
HS , is treated by the fundamental

measure theory presented in chapter 2:

βFex
HS [ρ] =

∫
Φ[{nα(r′)}]dr′ =

1
4π

∫∫
Φ[{nα(r′)}]dr′dω′ (4.80)

where

nα(r) =
∫∫

wα(r − r′)ρ(r′,ω′)dr′dω′ (4.81)
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The functional derivative of nα(r′) relative to ρ(r,ω) is given by

δnα(r′)
δρ(r,ω)

=
∫∫

dr′′dω′′ δρ(r′′,ω′′)
δρ(r,ω)︸ ︷︷ ︸

δ(r − r′′)δ(ω − ω′′)

wα(r′ − r′′) = wα(r′ − r) (4.82)

The functional derivative of FHS [ρ] relative to ρ(r,ω) reads then directly as

β
δFHS [ρ]
δρ(r,ω)

=
1

4π

∑

α

∫∫
dr′dω′ ∂Φ

∂nα
(r′)

δnα(r′)
δρ(r,ω)

=
1

4π

∑

α

∫∫
dr′dω′ ∂Φ

∂nα
wα(r′ − r)

=
∑

α

∫
dr′ ∂Φ

∂nα
(r′)wα(r′ − r) . (4.83)

The functional integration (see section 3.2 in chapter 3) allows to calculate the excess free
energy part due to the dipole-dipole interactions as

Fex
dd [ρ] =

1
2

∫∫
d(1)d(2)ρ(1)ρ(2)udd(1, 2)

∫ 1

0
dλ g(1, 2;λ) , (4.84)

where g(1, 2;λ) is the radial distribution function of the inhomogeneous hard sphere fluid with
an interaction potential λudd(1, 2) (see Eq. (4.75)). Finally, the density distribution given by
Eq. (2.36) is rewritten for an inhomogeneous DHS fluid in the form

ρ(1) =
ρb

4π
exp

{
β

[
µex

b − δFex
HS [ρ]

δρ(r1)
− µex

dd(1) − V (1)
]}

, (4.85)

where µex
b is the bulk excess chemical potential (hard sphere and dipole-dipole interactions),

µex
dd is the dipole-dipole interaction part of the excess chemical potential which follows directly

from the corresponding contribution to the excess free energy (4.84) as

µex
dd(1) =

δFex
dd [ρ]

δρ(1)
=
∫

d(2)ρ(2)udd(1, 2)
∫ 1

0
dλ g(1, 2;λ), (4.86)

and Vext(1) is the external potential acting on dipole (1) which is given by

Vext(1) = −m1 · E0 = −mE0 cos θ1 , (4.87)

where E0 = Σ/ǫ0 is the external electric field only driven by the two charged planes at z = ±H.
As the bulk value and the hard sphere part of the chemical potential are not dependent of the
dipole orientation, the density distribution can be rewritten as

ρ(1) =
ρb

4π
exp

[
βµex

b − β
δFex

HS(ρb)
δρ(r1)

]
× exp [−βµex

dd(1) − βVext(1)]

= C(r) × exp [−βµex
dd(1) − βVext(1)] . (4.88)

The above equation together with Eq. (4.73) allows to write

α(1) =
ρ(1)
ρ(r)

=
exp [−βµex

dd(1) − βV (1)]∫
dω1 exp [−βµex

dd(1) − βV (1)]
. (4.89)

Because of the azimuthal symmetry and translational invariance in the Oxy plan, ρ(r,ω) =
ρ(z, θ) = ρ(z)α(z, θ). The orientation function α(1) can be calculated by using, for a given z,
a development of the function α(z, θ) in terms of Legendre polynomials (see Appendix §C.1)
with respect to cos θ

α(z, θ) =
∞∑

k=0

αk(z)Pk(cos θ). (4.90)
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The orthogonality relation for the Legendre polynomials reads as

∫ 1

−1
Pk(x)Pl(x)dx =

2
2k + 1

δkl, (4.91)

where δkl is the Kronecker symbol. As P0 = 1, it is immediate to verify that α0 = 1/(4π),
which is a direct consequence of the normalization condition (4.74).

The orthogonality of the Legendre polynomials allows to determine the αk parameters in
Eq. (4.90) by

αk(z1) =
2k + 1

4π

∫ 1

−1
exp [−βµex

dd(z1, θ1) − βV (z1, θ1)]Pk(cos θ1)d(cos θ1)
∫ 1

−1
exp [−βµex

dd(z1, θ1) − βV (z1, θ1)] d(cos θ1)
. (4.92)

The central task of the present approach is to calculate the excess chemical potential µex
dd(1)

linked to dipole-dipole interactions starting from Eq. (4.86). The orientation density profile ρ(1)
can then be obtained with Eq. (4.85) and the dipole orientation distribution with Eq. (4.92).
As the determination of the radial distribution function g(1, 2;λ) is a tricky task, as suggested
by Tang et al. [89], g(1, 2;λ) is approximated by the radial distribution function of the cor-
responding homogeneous bulk DHS fluid gMSA(1, 2) which has been determined in §4.2 using
the mean spherical approximation.

In what follows, the calculation is performed per unit area perpendicular to Oz by consider-
ing the first molecule (1) placed at r1 = (0, 0, z1) with −H ≤ z1 ≤ H. The integration is carried
out in cylindrical coordinates over a second molecule (2) placed at r2 = (χ cosφ, χ sinφ, z2)
with dr2 = χdχdφdz2 where 0 ≤ φ ≤ 2π, 0 ≤ χ < ∞ and −H ≤ z2 ≤ H. χ is the distance
between the molecule (2) and the Oz axis as shown on Fig. (4.10). The integration must
also be carried out over the dipole orientation of both molecules (1) (dω1 = sin θ1dθ1dφ1 with
0 ≤ θ1 ≤ π and 0 ≤ φ1 ≤ 2π) and (2) (dω2). Hence, the dipole-dipole excess free energy (per
unit surface perpendicular to Oz), F̂ex

dd is rewritten as

Figure 4.10: Dipole position and orientation.

F̂ex
dd = − m2

8πǫ0

∫∫
ρ(1)ρ(2) gMSA(1, 2)

D(1, 2)
r3

d(1)d(2) (4.93)
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= − m2

8πǫ0

∫ H

−H
dz1ρ(z1)

∫ π

0
α(z1, θ1) sin θ1dθ1

∫ 2π

0
dφ1

∫ H

−H
dz2ρ(z2)

∫ 2π

0
dφ
∫ ∞

0
χdχ

×
∫ π

0
sin θ2dθ2

∫ 2π

0
dφ2 α(z2, θ2) [1 + hS(r) + h∆(r)∆(1, 2) + hD(r)D(1, 2)]

D(1, 2)
r3

,

where D(1, 2) is given by by Eq. (4.2c)

D(1, 2) = 3 (m̂1 · r̂) (m̂2 · r̂) − m̂1 · m̂2

= (3 cos2 θ − 1) cos θ1 cos θ2

+ 3 cos θ sin θ [cos θ1 sin θ2 cos(φ− φ2) + cos θ2 sin θ1 cos(φ− φ1)] (4.94)

+ sin θ1 sin θ2

{
3
2

sin2 θ [cos(2φ− φ1 − φ2) + cos(φ2 − φ1)] − cos(φ2 − φ1)
}
,

with r2 = (z2 − z1)2 + χ2 and sin θ = χ/r.

The excess chemical potential is given by the functional derivative of Eq. (4.93):

µex
dd(1) =

δF̂ex
dd

δρ(1)
= − m2

4πǫ0

∫
ρ(2)gMSA(1, 2)

D(1, 2)
r3

d(2)

= − m2

4πǫ0

∫ H

−H
dz2 ρ(z2)

∫ 2π

0
dφ
∫ ∞

0
χdχ

∫ π

0
sin θ2α(z2, θ2) dθ2

×
∫ 2π

0
dφ2 [1 + hS(r) + h∆(r)∆(1, 2) + hD(r)D(1, 2)]

D(1, 2)
r3

. (4.95)

4.4.2 Behavior of the bulk DHS fluid

When the two walls move away to infinity, one obtains a homogeneous bulk fluid with constant
density ρb in the presence of a uniform external field E0. The molecule distribution depends
now only on the spatial orientation of the dipole, θ, such as

ρ(z, θ) = ρb α(θ). (4.96)

In the subsequent section, the dipole-dipole excess free energy Eq. (4.93) and the dipole-dipole
excess chemical potential Eq. (4.95) are calculated in the homogeneous bulk fluid limit. These
functional expressions of the state variables are the starting point for the determination of the
DHS fluid density and the dipole orientation profile in the presence of an external electric field
by use of equations (4.88) and (4.89), respectively.

The excess chemical potential can be determined either directly or indirectly using its
definition as the functional derivative of the excess free energy. For completeness and to verify
the consistency of the present model DFPT approach, both derivations are presented in detail
in the appendix (§C.2.1). For the sake of simplicity, we show here only the principle steps of
the direct derivation.

4.4.2.1 Dipole-dipole excess chemical potential of the homogeneous DHS fluid

The direct calculation of the orientation-dependent dipole-dipole excess chemical potential
starts from Eq. (4.95). By setting z1 = 0 and z2 = z, Eq. (4.95) reads as

µex
dd(θ1) = −ρbm

2

4πǫ0

∫ H

−H
dz
∫ 2π

0
dφ
∫ ∞

0
χdχ

∫ π

0
sin θ2α(θ2)dθ2

∫ 2π

0
dφ2

D(1, 2)
r3

× [1 + hS(r) + ∆(1, 2)h∆(r) +D(1, 2)hD(r)] (4.97)
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The details of the calculation are given in the appendix (§C.2.1.2). The orientation-dependent
dipole-dipole excess chemical potential can finally be written under the following form

µex
dd(θ1) =

8πρbm
2α1

9ǫ0
cos θ1 − πρbm

2

5ǫ0
K

[
40
3
α0 +

4
15
α2

(
3 cos2 θ1 − 1

)]

=
πρbm

2

ǫ0

[
−8

3
Kα0 +

8
9
α1 cos θ1 − 4

75
Kα2

(
3 cos2 θ1 − 1

)]
. (4.98)

The mean chemical potential due to the dipolar interactions is obtained by averaging over all
the orientations

µex
dd =

∫
µex

dd(θ1)α(ω1)dω1 = 2π
∫ 1

−1
µex

dd(θ1)α(cos θ1)d(cos θ1)

=
2π2ρbm

2

ǫ0

[
−16

3
Kα2

0 +
16
27
α2

1 − 16
375

Kα2
2

]
, (4.99)

which is in agreement with relation (C.33) in §C.2.1.1 of the appendix resulting from the
functional derivation of the excess free energy.

4.4.2.2 Dipole moment orientation profile in a uniform electric field

For a bulk fluid submitted to a uniform electric field E0, the coefficients αk in the development
of the dipole orientation distribution function α(θ) in terms of Legendre polynomials can be
rewritten by introducing the previous derived expression of µex

dd(θ) (4.98) in Eq. (4.92)

αk =
2k+1
4π

∫ 1

−1
exp

{
β

[
πρbm

2

ǫ0

(
8
3
Kα0 − 8

9
α1u+

4
75
Kα2(3u2 − 1)

)
+mE0u

]}
Pk(u)du

∫ 1

−1
exp

{
β

[
πρbm

2

ǫ0

(
8
3
Kα0 − 8

9
α1u+

4
75
Kα2(3u2 − 1)

)
+mE0u

]}
du

,(4.100)

where cos θ1 = u. After further simplification the above expression becomes

αk =
2k + 1

4π

∫ 1

−1
exp

{
β

[
πρbm

2

ǫ0

(
−8

9
α1u+

4
25
Kα2u

2
)

+mE0u

]}
Pk(u)du

∫ 1

−1
exp

{
β

[
πρbm

2

ǫ0

(
−8

9
α1u+

4
25
Kα2u

2
)

+mE0u

]}
du

. (4.101)

Note that Eq. (4.101) verifies the condition α0 = 1/(4π). Fig. 4.11 shows the orientation
distribution of the dipoles in a bulk fluid submitted to different electric field strengths E0 =
Σ/ǫ0 generated by the surface charge densities ±Σ at the two walls. If E0 = 0, as the first
Legendre polynomial is P0(u) = 1, it follows directly from Eq. (4.101) that α1 = α2 = 0 are
solutions of Eq. (4.101) with k ∈ {1, 2}. All higher orders in αk are also null. The dipole
orientation distribution is independent of θ, being in agreement with an isotropic bulk fluid.
Increasing E0 6= 0, the dipoles align along the electric field direction as expected.

4.4.2.3 Permittivity of a bulk DHS fluid submitted to a uniform electric field

In the case Σ 6= 0, the bulk DHS fluid is a dielectric polarized medium as the dipoles tend to
align themselves along the field direction. The polarization of the DHS molecules is given by

P =
∫ π

0
m cos(θ)ρ(z, θ)2π sin θ dθ =

4π
3
mρbα1. (4.102)

This dielectric polarization creates an internal electric field that reduces the overall field within
the bulk DHS fluid. In the dielectric theory, if the polarization P is uniform, the internal electric

107



Chapter 4: Dipolar hard sphere fluid
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 

 

 

Figure 4.11: Dipole orientation profiles of a bulk fluid for different uniform electric fields:
E0 = Σ/ǫ0 and α(θ) =

√
α2

x + α2
y.

field is straightforwardly calculated by adding the surface charges ±P on the boundaries of the
medium. Therefore, the electric field within the bulk DHS fluid reads as

E =
Σ − P

ǫ0
= E0 − P

ǫ0
, (4.103)

where E0 is the electric field only driven by charges. Starting from the above relation, the
relative permitivity ǫ of the medium can be calculated by the following expression

ǫǫ0E = ǫ0E + P

ǫǫ0

(
E0 − P

ǫ0

)
= ǫ0

(
E0 − P

ǫ0

)
+ P = ǫ0E0 . (4.104)

Hence

ǫ =
E0

E0 − P

ǫ0

=
E0

E0 − 4π
3ǫ0

mρbα1

. (4.105)

In the MFA framework and at low electric field strength, the above relation reduces to the
Clausius-Mossotti (CM) formula [102] (see Appendix §C.3)

ǫ =
1 +

2
9
βm2ρb

ǫ0

1 − βm2ρb

9ǫ0

=
1 + 2y
1 − y

. (4.106)

Fig. 4.12 illustrates the dependence of the permittivity of a bulk DHS fluid at a high density
ρbd

3 = 0.734 and a low dipole moment strength m∗2 = βm2/(4πǫ0d3) = 0.75 as calculated
by Eq. (4.105). This yields ǫ values between 1 and 11. As y = 4π/9 ρbd

3m∗2, the Clausius-
Mossotti formula (4.105) gives ǫ ≃ 11.0. When the electric field E0 increases, the quantity
α1/E0 and therefore the relative permittivity ǫ decrease to tend towards 1 for high values of
E0. For high dipolar interactions as in water (m∗2

⋍ 2), taking into account the correlation
effects (using the bulk values for the radial distribution functions) is not accurate enough to
avoid the “Clausius-Mossotti catastrophe” and Eq. (4.105) is no longer valid.

4.4.3 Behavior of HS dipolar fluids confined between two walls

4.4.3.1 The dipole-dipole excess chemical potential

Now the case of an inhomogeneous situation is studied with the water solvent modeled as a
DHS fluid confined between two planar hard walls located at z = ±H. With the density profile
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 

Figure 4.12: Evolution of the permittivity of a bulk DHS fluid submitted to an electric field
E0 = Σ/ǫ0, where Σ is the surface charge of the walls (bulk density ρbd

3 = 0.734 and reduced
dipole moment strength m∗2 = 0.75).

expressed by Eq. (4.88) and the dipole distribution by Eq. (4.92), the dipole-dipole excess
chemical potential µex

dd is given by Eq. (4.95)

µex
dd(1) = − m2

4πǫ0

∫ H

−H
dz2 ρ(z2)

∫ 2π

0
dφ
∫ ∞

0
χdχ

∫ π

0
α(z2, θ2) sin θ2 dθ2

×
∫ 2π

0
dφ2 [1 + hS(r) + h∆(r)∆(1, 2) + hD(r)D(1, 2)]

D(1, 2)
r3

. (4.107)

The resolution of the above expression plays the central role in determining the dipole orien-
tation distribution Eq. (4.89) and the orientation-dependent density profile Eq. (4.85). The
calculation is of the same type as that of the preceding section but a little more complicated in
a inhomogeneous situation. The details are given in §C.2.2 of the appendix. Only the results
are recalled here.

The excess chemical potential due to dipole-dipole interactions can be decomposed as

µex
dd(1) = µex

dd(1)
∣∣∣
S

+ µex
dd(1)

∣∣∣
∆

+ µex
dd(1)

∣∣∣
D

(4.108)

where

µex
dd(1)

∣∣∣
S

= −2πm2

3ǫ0
cos θ1 [(ρα1) ⊗ IhS

] (z1) , (4.109)

µex
dd(1)

∣∣∣
∆

= −πm2

4ǫ0
[Jh∆

⊗ Ih∆
] (z1) , (4.110)

µdd(1)
∣∣∣
D

= −m2

4ǫ0

[
ρ⊗ Iρ

hD
+ ρα2 ⊗ Iρα

hD

]
(z1) (4.111)

and Ih(z) =
∫ ∞

|z|

(
3z2

r4
− 1
r2

)
h(r)dr for h = hS or h∆ (4.112)

and Jh∆
(z) = ρ(z2)

[
4
5
α2(z)

(
cos2 θ1 +

1
3

)
+

1
π

(
cos2 θ1 − 1

3

)]
. (4.113)

109

1'2 

JO t 

s 

"' 6 t 

•1 

2 t 

0 
0 0.0!' 0.1 0.15 0.2 0.25 0.3 

·c' . :l ) 
1_ . .. ; nt , 



Chapter 4: Dipolar hard sphere fluid

Iρ
hD

(z) =
∫ ∞

|z|
dr

[
5
3

− z2

r2
+ cos2 θ1

(
3z2

r2
− 1

)]
hD(r)
r2

(4.114)

Iρα
hD

(z) = −π
∫ ∞

|z|
dr

[
4
3

− 8
z2

r2
+

36
5
z4

r4
+ cos2 θ1

(
−12

5
+

96
5
z2

r2
− 108

5
z4

r4

)]
hD(r)
r2

.(4.115)

4.4.3.2 Density and dipole orientation profiles in a uniform electric field

The orientation-dependent density profile of a DHS fluid confined between two plates Eq. (4.85)
exerting a uniform electric field on the fluid, is rewritten as

ρ(z1, θ1) =
ρb

4π
exp {β [µex

b − µex
HS(ρ) − µex

dd(z1, θ1) − V (θ1)]} , (4.116)

where the excess chemical potential of the bulk fluid in equilibrium with the one confined
between the two plates µex

b can be decomposed as

µex
b = µex

HS(ρb) + µex
dd(ρb), (4.117)

where µex
dd(ρb) is given by Eq. (4.99) with α0 = 1/(4π) and α1 = α2 = 0 in the bulk limit if

E0 = 0 and the external potential reads as

V (θ1) = −mE0 cos θ1. (4.118)

The spatial position dependent density profile is then obtained after integration of Eq. (4.116)
over the solid angles θ1 and φ1 resulting in

ρ(z1) =
ρb

4π
exp {β [µex

b − µex
HS(ρ)]}

∫ 2π

0
dφ1

∫ π

0
dθ1 sin θ1 exp [−β (µex

dd(z1, θ1) + V (z1, θ1))]

=
ρb

2
exp {β [µex

b − µex
HS(ρ)]}

∫ 1

−1
d(cos θ1) exp [−β (µex

dd(z1, θ1) + V (z1, θ1))] . (4.119)

In a similar manner as for the homogeneous DHS fluid, the coefficients αk(z1) of the Legen-
dre development of the dipole orientation profile α(z1, θ1) for the inhomogeneous case can be
calculated by

αk(z1) =
2k + 1

4π

∫ 1

−1
exp [−β (µex

dd(z1, θ1) + V (z1, θ1))]Pk(cos θ1)d(cos θ1)
∫ 1

−1
exp [−β (µex

dd(z1, θ1) + V (z1, θ1))] d(cos θ1)
. (4.120)

The dipole-dipole pressure in the bulk is finally calculated by

pb
dd = ρbµ

ex
dd − fex

dd =
16π2ρ2

bm
2

3ǫ0

(
−Kα2

0 +
α2

1

9
− K

125
α2

2

)
,

p∗
dd = βd3 16π2ρ2

bm
2

3ǫ0

(
−Kα2

0 +
α2

1

9
− K

125
α2

2

)

=
64π3

3
m∗2ρ∗2

b

(
−Kα2

0 +
α2

1

9
− K

125
α2

2

)
. (4.121)

The bulk pressure of a DHS fluid is then given by the sum of Eq. (2.105) and Eq. (4.121)
leading to

pb = pHS
b + pdd

b = kBTρb
1 + η + η2 − η3

(1 − η)3
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+
16π2ρ2

bm
2

3ǫ0

(
−Kα2

0 +
α2

1

9
− K

125
α2

2

)
. (4.122)

In the case E0 = 0, α0 = 1/(4π) and α1 = α2 = 0 in the bulk limit the above relation reduces
to

pb = kBTρb
1 + η + η2 − η3

(1 − η)3
− ρ2

bm
2

3ǫ0
K. (4.123)

Similarly to the former case of a HS fluid confined between two hard walls in Chapter 2, the
disjoining pressure of a confined DHS fluid in this configuration with E0 = 0 is calculated by

Π = kBTρ(z = d/2) − pb. (4.124)

4.4.3.3 Application to the EDL

In the EDL description, the two plates exhibit an identical negative surface charge density,
which generates an electric field E0 = 0 between the two plates. Global electroneutrality
will be ensured when adding ions into the interlayer space. Therefore, the external potential
stems only from the finite particle size Eq. (2.98). As a numerical application, a DHS fluid
confined between two neutral hard walls located at 0 and L is studied. According to existing
MC data documented in the work of Tang et al [89], the parameter values are set to L = 15d,
ρbd

3 = 0.7 and m∗2 = 2. First, the spatial position-dependent density profile of the DHS
fluid calculated with Eq. (4.119) along with MC results is presented on Fig. 4.13 in order to
verify the accuracy of the present approach. The overall agreement between the present theory
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MC simulation
Present Theory

Figure 4.13: Density profile of a DHS fluid confined between two hard walls with ρbd
3 = 0.7

and m∗2 = 2.

and the MC simulation is quite good. However, this approach underestimates the contact
density by nearly 10%. This disagreement probably stems from the inaccurate approximation
of the RDF in the vicinity of the walls [89] which is approximated by that of the corresponding
bulk DHS fluid. Dipole-dipole correlations are characterized by the rotation capacity of the
dipoles which is strongly influenced by its neighbors. Such interparticle correlation effects are
represented by the dipole orientation distribution. Fig. 4.14 depicts a three-dimensional view
of the dipole orientation profile α(z, θ) of a confined DHS fluid in the same conditions as in
Fig. 4.13. Obviously, the dipoles prefer to align parallel to the walls in the regions immediately
adjacent to the walls and perpendicular to the walls in the next region. This kind of change in
preferential orientation is periodic until reaching the uniform orientation behavior of dipoles
at the center region of the two walls and the period is approximately one molecule diameter d.
These conclusions are in good agreement with those of Tang et al. [89].
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Figure 4.14: Dipole orientation distribution of the DHS fluid confined between two hard walls
with ρbd

3 = 0.7, m∗ = 2, 2H = 15d.

Figure 4.15: Density profile of a DHS fluid in comparison with that of the corresponding HS
fluid: ρbd

3 = 0.7 and m∗2 = 2.
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Fig. 4.15 shows dipole-dipole effects on the density profile in comparison with that of a
simple HS fluid. The density distribution of the DHS fluid at this high bulk density has an
oscillatory profile identical to that of the HS fluid. This reflects the dominant role of hard
sphere exclusions. The attractive effects of dipole-dipole interaction reduce significantly the
contact density in comparison with a simple HS fluid. In addition dipole correlations lead to
a spatial layer organization of the molecules that is why the density profile of the DHS fluid
is more oscillatory than that of the corresponding HS fluid. At small interplatelet distances

z=d
-1 -0.5 0 0.5 1

;
(z

)d
3

0

1

2

3

4

5

6
HS fluid
DHS fluid

Figure 4.16: Density profiles of HS and DHS fluids (2H = 2d, ρbd
3 = 0.7 and m∗2 = 2). The

density profiles are depicted on the left and the dipole orientation distribution is presented on
the right.

corresponding to the hydration behavior in the crystalline swelling regime of expansive clays,
this model predicts discrete water layers similar to the former case of a HS fluid. If 2H = 2d
(Fig. 4.16) the water molecules concentrate near the two walls in two layers. The orientation
of the dipoles in these two layers is nearly uniform (α(z/d = ±0.5, θ) = α0 = 1/(4π)). In the
middle of two walls there are very few water molecules with dipole moments orientated almost
parallel to the walls. As shown in Fig. 4.17, 2H = 2.5d seems to be a transition configuration
between the two states 2H = 2d and 2H = 3d. In this case two layers adjacent to the walls
can be observed as in the former case of 2H = 2d, however in the middle between these two
layers, some oscillations are observed on the density profile (left plot on Fig. 4.17). This leads
to a significant change in the dipole orientation profile (right plot on Fig. 4.17), which differs
completely from that of the former case. The dipoles in this case are orientated preferentially
parallel to the walls at any spatial position in the interlayer space. If 2H = 3d as shown on
Fig. 4.18, three layers of the water molecules separated by a distance of about one molecule
diameter d can be observed. The dipole orientation of the water molecules in the two layers
near the solid surfaces tend to be parallel to the walls. In the center layer, the behavior of the
dipoles is completely different as they are orientated preferentially perpendicular to the walls.

Fig. 4.19 presents the disjoining pressure of the DHS fluid calculated with Eq. 4.124 for
ρbd

3 = 0.7 and m∗2 = 2 versus the separation distance between the walls in comparison with
that of the corresponding HS fluid. It is obvious that the dipolar attractive forces reduce
significantly the repulsive force of the simple HS fluid in the case of high bulk densities and
intermediate dipole moment strength, especially at small separation distances. Similarly to
the case of the corresponding HS fluid (see chapter 2), the disjoining pressure of a DHS fluid
exhibits both repulsive and attractive parts where only the decreasing segments represent stable
equilibrium configurations. This allows to explain the formation of discrete layers of the water
molecules in the interlayer space in the crystalline swelling regime.

The final task is to find an appropriate dipole moment strength to obtain a reasonable bulk
pressure pb = 105 Pa as in the case of Lennard-Jones fluids presented in Chapter 3. With

113



Chapter 4: Dipolar hard sphere fluid

z=d
-1.5 -1 -0.5 0 0.5 1 1.5

;
(z

)d
3

0

0.5

1

1.5

2

2.5

3

3.5
HS fluid
DHS fluid

Figure 4.17: Same configuration as in Fig. 4.16 with 2H = 2.5d.
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Figure 4.18: Same configuration as in Fig. 4.16 with 2H = 3d.

the water molecule diameter d = 2.8 10−10m, the bulk water density ρbd
3 = 0.7344 and the

temperature T = 300K, the dipole moment strength m can be calculated from Eq. (4.123) as

pb = kBTρb
1 + η + η2 − η3

(1 − η)3
− ρ2

bm
2

3ǫ0
K = 105. (4.125)

The reduced dipole moment strength is found to be m∗2 = 4.68 satisfying the bulk pressure
criterion. However, with such a high dipolar moment, no solution can be found for the water
density between the two walls. The failure is probably explained by the inaccuracy of the
approximation of the radial distribution function of the inhomogeneous fluid by that of the
corresponding bulk fluid, especially for high dipole moments [89].
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Figure 4.19: Disjoining pressure profile of the DHS fluid in comparison with that of the HS
fluid: ρbd

3 = 0.7 and m∗2 = 2.

4.5 Towards a “civilized" model of the Electrical Double Layer

With the aim of completing the Electric Double Layer (EDL) model, ions are now added
to the water solvent. The electrolyte solution is modeled by a dipole-ion mixture. Ions are
modeled as hard spheres with the charge concentrated at their center, water molecules are
considered as hard spheres carrying a dipole moment at their center. The Van der Waals forces
are modeled by dipole-dipole interactions accounting for Keesom forces and Lennard-Jones
interactions accounting for Debye and London dispersion forces. Such a model is referred to as
a “civilized” model [102].

4.5.1 Interaction potentials

The complexity of this fluid model in comparison with the former models discussed in this
thesis stems from the electrical interactions between the fluid molecules. Therefore, we present
here a brief summary of the electrical interactions between charges and dipoles.

Electric field and potential created by a charge

Consider a charge q1 placed at r1. At point r2, it creates a potential Φq1(r2) and an electric
field Eq1(r2) given by

Φq1(r2) =
q1

4πǫ0r12
Eq1(r2) = −∇r2

Φq1(r2) =
q1

4πǫ0r3
12

r12, (4.126)

with r12 = r2 − r1 and r12 = |r12|.

Electric field and potential created by a dipole

Consider now a dipole m1 placed at r1. It creates at point r2 a potential Φd1(r2) and an
electrical field Ed1(r2) given by

Φd1(r2) =
1

4πǫ0

m1 · r12

r3
12

Ed1(r2) = −∇r2
Φd1(r2) =

1
4πǫ0

(
3

m1 · r12

r5
12

r12 − m1

r3
12

)
. (4.127)

Intermolecular potential
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The different intermolecular potentials are written as follows




Charge (1) – Charge (2) u12 =
q1q2

4πǫ0r12
= q1Φq2(r1) = q2Φq1(r2)

Charge (1) – Dipole (2) u12 =
q1

4πǫ0

m2 · r21

r3
12

= q1Φd2(r1) = −m2 · Eq1(r2)

Dipole (1) – Charge (2) u12 =
q2

4πǫ0

m1 · r12

r3
12

= −m1 · Eq2(r1) = q2Φd1(r2)

Dipole (1) – Dipole (2) u12 = − 1
4πǫ0r3

12

[
3
(

m1 · r12

r12

)(
m2 · r12

r12

)
− m1 · m2

]

= −m1 · Ed2(r1) = −m2 · Ed1(r2)

(4.128)

Interaction with an external field

The interaction potential of a charge qi placed at point r with an external field E0 = −∇Φ0

is given by Vi = qiΦ0(r) (note that Φ0 is defined within a constant). The interaction potential
of a dipole is Vd = −m · E0(r).

4.5.2 DFPT applied to electrolyte solutions

In this part we consider an ionic solution with a dipolar hard sphere solvent and a monovalent
salt (i ∈ {d,+,−}) confined between two plates placed at z = ±H which are electrically charged
with a surface charge density Σ. Designate ρ =

∑
i ρi the sum of all molecular densities. For

the sake of simplicity, the diameters of the three fluid components are identical and equal to
that of the water molecule d = 2.8 10−10 m. To write in an uniform notation, we refer to the
ions by ρ±(1) = ρ±(r1)/(4π). To describe the system, the Density Functional Perturbation
Theory will be used. The reference system is the hard sphere fluid. Similarly to the preceding
section, as the improvement of the model by taking into account the correlation forces through
the bulk radial distribution function is weak, the mean field approximation (MFA) will be used
here.

The Helmholtz free energy is decomposed as

F [{ρi}] = F id[{ρi}] + FHS [ρ] + FLJ [{ρi}] + Fel[{ρi}] (4.129)

where

F id[{ρi}] = kBT
∑

i∈{d,+,−}

∫
d(1) ρi(1) [log (Λi ρd(1)) − 1]

= kBT

∫
dr dω ρd(r,ω) [log (Λd ρd(r,ω)) − 1]

+ kBT
∑

i∈{+,−}

∫
dr ρi(r) [log (Λi ρi(r)) − 1] (4.130)

The fluid is in thermodynamic equilibrium with a bulk “b” where the electroneutrality is
achieved everywhere. As the system is at fixed temperature and chemical potential, the grand
potential has to be minimized (or more simply the chemical potential of the three components
is fixed by their bulk values with µi(1) = δF [{ρi}]/δρi(1)). Deriving functionally Eq. (4.129)
leads to the density profiles for the solvent molecules and the ions given by

ρi(1) =
ρib

4π
exp

{
β

[
µHS

b (ρb) − δFHS [ρ]
δρ(r1)

+ µi
LJ
b − µLJ

i + µi
el
b − µel

i (1) − Vi(1)

]}
, (4.131)
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where ρib is the total density of molecules i (irrespective of their orientation for the dipoles)
in the bulk, µHS

b , µLJ
i and µel

i are respectively the excess chemical potential of hard spheres
in the bulk, the excess chemical potential due to the Lennard-Jones potential and to electrical
effects. These two last terms are determined in the next paragraphs.

4.5.2.1 Lennard-Jones term

In the mean field approximation, the excess free energy is given by

FLJ [{ρi}] =
1
2

∑

ij

∫∫
d(1)d(2)ρi(1)ρj(2)uLJ

ij (|r1 − r2|)ΘH(r12 − d), (4.132)

where ΘH(r12 − d) recalls the hard sphere nature of the reference fluid. The corresponding
excess chemical potential is obtained by the functional derivative of the above equation with
respect to ρi

µLJ
i (1) =

δFLJ [{ρi}]
δρi(1)

=
∑

j

∫
d(2)ρj(2)uLJ

ij (|r1 − r2|)ΘH(r12 − d). (4.133)

This relation is applied to the case of a double layer using cylindrical coordinates. Taking
advantage the translation invariance in the plane Oxy parallel to the plates, fix the point 1 r1

at the spatial position (0, 0, z1) and the point 2 (r2) at the position z2 separated away from the
Oz axis by a distance χ (see Fig. 4.10). This leads to

µLJ
i (z1) =

∑

j

∫ H

−H
dz2

∫ ∞

χ=0
2πχdχρj(z2)uLJ

ij (r12)ΘH(r12 − d)

=
∑

j

∫ H

−H
dz2ρj(z2)

∫ ∞

max(d,|z2−z1|)
2πr12dr12u

LJ
ij (r12)

=
∑

j

∫ H

−H
dz2ρj(z2)vLJ

ij (|z2 − z1|), (4.134)

with

vLJ
ij (|z2 − z1|) =

∫ ∞

max(d,|z2−z1|)
2πr12dr12u

LJ
ij (r12). (4.135)

4.5.2.2 Electrical term

The intrinsic excess free energy due to electrical effects is given by

Fel[{ρi}] =
1
2

∑

i j∈{d,+,−}

∫∫
d(1) d(2) ρi(1) ρj(2)uij(1, 2) ΘH(r12 − d), (4.136)

The total electrical excess free energy F el is the sum of the intrinsic free energy Fel and the
effect of the charged plates giving rise to the external electrical field Eext and potential Φext

F el[{ρi}] = Fel[{ρi}] +
∑

i∈{d,+,−}

∫
d(1)ρi(1) (qiΦext − mi · Eext) , (4.137)

where m± = 0 and qd = 0. The chemical potential is obtained by deriving the preceding
expression

µel
i (1) =

δFel[{ρi}]
δρi(1)

+ qiΦext − mi · Eext. (4.138)
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In the case of an EDL, Φext is constant and Eext is null but the general case of different surface
charges on the two external plates will be treated here. The electrical intrinsic excess chemical
potential of the different species is achieved by deriving functionally the relation (4.136)

δFel

δρd(1)
=

∫
d(2) ρd(2)udd(1, 2) ΘH(r12 − d)

+
∑

i∈{+,−}

∫
dr2 ρi(r2)udi(1, 2) ΘH(r12 − d) (4.139)

δFel

δρ±(r1)
=

δFel

δρ±(1)
=

∫
d(2) ρd(2)ud±(1, 2) ΘH(r12 − d)

+
∑

i∈{+,−}

∫
dr2 ρi(r2)ui±(1, 2) ΘH(r12 − d), (4.140)

where uij(1, 2) is the electrical interaction potential between the charge (or the dipole) i located
at the position r1 (and with the dipole orientation ω1 with the charge (or the dipole) j located
at the position r2 (and with the dipole orientation ω2. According to relation (4.128) with
i, j ∈ {d,+,−}

uij(1, 2) = −mi · Ej2(r1) + qiΦj2(r1)
= −mj · Ei1(r2) + qjΦi1(r2).

(4.141)

For dipoles, the combination of Eq. (4.139) with (4.141) yields

δFel

δρd(1)
=

∫
d(2) ρd(2)udd(1, 2) ΘH(r12 − d)

+
∑

i∈{+,−}

∫
dr2 ρi(r2)udi(1, 2) ΘH(r12 − d)

= −m1 · [Edd(1) + Edq(1)] , (4.142)

with

Edd(1) =
∫

d(2) ρd(2) Ed2(r1) ΘH(r12 − d), (4.143)

Edq(1) =
∑

i∈{+,−}

∫
dr2 ρi(r2) Ei2(r1) ΘH(r12 − d) (4.144)

where Edd(1) and Edq(1) are respectively the electric field at the point r1 occupied by the
dipole 1 due respectively to the dipoles and the ions in the solution.

For the ions Eq. (4.140) in combination with Eq. (4.141) gives

δFel

δρi(r1)
=
∫

d(2)ρd(2)uid(1, 2)ΘH(r12 − d) +
∑

j∈{+,−}

∫
dr2 ρj(r2)uij(1, 2)ΘH(r12 − d)

= qi [Φdq(r1) + Φqq(r1)] , (4.145)

with

Φdq(r1) =
∫

d(2)ρd(2)Φd2(r1) ΘH(r12 − d), (4.146)

Φqq(r1) =
∑

j∈{+,−}

∫
dr2ρj(r2)Φj2(r1)ΘH(r12 − d). (4.147)

where Φdd and Φdq are respectively the electric potential due to the dipoles and the ions in the
solution.
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The above results are now applied to the case of a electrical double layer with −H < z < H.
The molecular densities are only dependent on z and the electric fields are now parallel to Oz.
Taking advantage of translation invariance on the plane Oxy parallel to the plates, fix the point
1 (r1) at the spatial position (0, 0, z1) and the point 2 (r2) at the position z2 separated away from
the Oz axis by a distance χ. The vector r12/r12 ·k is (z2 −z1)/r12 with k = (0, 0, 1). Averaging
over the plane Oxy parallel to the plates, we obtain m1 = m1 cos θ1 k and m2 = m2 cos θ2 k
with dω1 = 2π sin θ1 dθ1 and dω2 = 2π sin θ2 dθ2 . The objective is to compute the field Edd(z1

given by

Edd(z1) =
∫

dr2 dω2 ρd(r2,ω2)
1

4π ǫ0 r3
12

[
3

r12

r12

(
m2 · r12

r12

)
− m2

]
ΘH(r12 − d) . (4.148)

In cylindrical coordinates, the above equation can be rewritten as

Edd(z1) =
m

4π ǫ0

∫ π

θ2=0
2π cos θ2 sin θ2 dθ2

∫ H

z2=−H
dz2 ρ(z2, θ2)

×
∫ ∞

χ=0
2π χdχ

1
r3

12

[
3

(z2 − z1)2

r2
12

− 1

]
ΘH(r12 − d), (4.149)

where r12 =
√

(z2 − z1)2 + χ2 with z1 and z2 being fixed, 2 r12 dr12 = 2χdχ. It follows

∫ ∞

χ=0
2π χdχ

1
r3

12

[
3

(z2 − z1)2

r2
12

− 1

]
ΘH(r12 − d) =

2π
∫ ∞

r12=|z2−z1|
dr12

[
3

(z2 − z1)2

r4
12

− 1
r2

12

]
ΘH(r12 − d) =





2π

[
−(z2 − z1)2

r3
12

+
1
r12

]+∞

|z2−z1|

= 0 if |z2 − z1|> d

2π

[
−(z2 − z1)2

r3
12

+
1
r12

]+∞

d

= 2π

[
(z2 − z1)2

d3
− 1
d

]
if |z2 − z1|< d

(4.150)

= 2π

[
(z2 − z1)2

d3
− 1
d

]
ΘH(d− |z2 − z1|).

As a result, the electric field Edd(z1) generated by the dipolar solvent particles reduces to

Edd(z1) =
πm

ǫ0

∫ H

−H
dz2

∫ π

0
cos θ2 sin θ2 dθ2 ρ(z2, θ2)

[
(z2 − z1)2

d3
− 1
d

]
ΘH(d− |z2 − z1|). (4.151)

The polarization P (z1) is oriented along the Oz axis and given by

P (z1) = m

∫
cos θ1 ρd(z1, θ1) dω1 = 2πm

∫ π

0
dθ1 cos θ1 sin θ1 ρd(z1, θ1). (4.152)

This allows to write the electric field Edd(z1) in the form

Edd(z1) =
1

2ǫ0

∫ H

−H
dz2 P (z2)

[
(z2 − z1)2

d3
− 1
d

]
ΘH(d− |z2 − z1|). (4.153)

The density profiles of the fluid constituents Eq. (4.131) can be now rewritten as

ρi(z, θ) =
ρib

4π
exp

{
− β

[
µHS

i [ρ] − µHS
i (ρb)
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+
∑

j

∫ ∞

max(d,|z−z′|)
dz′ ρj(z′) vLJ

ij (|z − z′|) − µi
LJ
b (ρb) + V LJ ext

i (z)

+ qi (Φqd + Φqq + Φext) −mi cos θ (Edd + Edq + Eext) − µel
ib

]}
. (4.154)

The term V LJ ext
i (z) designates a Lennard-Jones-type interaction between the species i and

the plates. The electrical contribution to the excess chemical potential of the bulk µel
ib is null

for the ions (as the bulk potential is taken as the reference potential, i.e. Φ is the double
layer potential) and the dipoles in the mean field approximation (see Eq. C.41 with α1 = 0).
The electrical potential acting on the charges Φ = Φqd + Φqq + Φext which is the sum of the
electrical potential due to the ions Φqd and the water molecules Φqq plus the external charges
Φext is classically identified as the macroscopic potential Φ solution of the Poisson equation
(see §4.5.3). The electric field Eloc = Edd + Edq + Eext is the local field seen by the dipoles1.
It is the sum of the electric field E0 = Eext + Edq due to the external field and the charges in
the solution. Therefore Eloc = E0 + Edd. The equation for the dipoles is then written as

ρd(z, θ) = ρd(z)αd(z, θ) =
ρdb

4π
exp

{
− β

[
µHS

d [ρ] − µHS
d (ρb)

+ µLJ
d (z) − µLJ

d b + V LJ ext
d (z) −m cos θ Eloc

]}
. (4.155)

Using Eq. (4.116), integration of the above equation over the solid angle leads to

ρd(z) = 2π
∫ π

0
ρd(z, θ) sin θ dθ = ρb

d exp

{
−β

[
µHS[ρ]−µHS

b (ρb)+µLJ
d (z)−µLJ

d b +V LJ ext
d (z)

]}

× sinh [βmEloc(z)]
βmEloc(z)

. (4.156)

The angular prefactor α(z, θ) for the dipolar solvent obtained by dividing Eq. (4.155) by
Eq. (4.156) leading to

α(z, θ) =
1

4π
βmEloc(z)

sinh [βmEloc(z)]
exp [βmEloc(z) cos θ] , (4.157)

where α(z, θ) can be developed in terms of Legendre polynomials according to Eq. (4.90).
Remember that α0 = 1/4π and

α1(z) =
3
2

∫ +1

−1
α(z, θ)P1(cos θ) d cos θ =

3
2

∫ +1

−1
α(z, θ) cos θ d cos θ . (4.158)

Noting that

∫ 1

−1
exp(βmEx)xdx =

2
βmE

[
cosh (βmE) − sinh (βmE)

βmE

]
, (4.159)

α1(z) is given by

α1(z) =
3

4π

[
coth (βmEloc(z)) − 1

βmEloc(z)

]
. (4.160)

1It should be noted that Ed2(r1) = −∇r1
Φd2(r1) (see Eq. (4.143) and (4.146)), E±2(r1) = −∇r1

Φ±2(r1)
(see Eq. (4.144) and (4.147)) and Eext(r1) = −∇r1

Φext(r1). But the operator ∇r1
does not commute with the

integral sign as the densities ρi are discontinuous on the sphere r12 = d .
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If the argument of the cotangent function is smaller than 1,

coth x ≃ 1
x− x3/3 + O(x5)

=
1
x

(
1 + x2/3 + O(x4)

)
=

1
x

+
x

3
+ O(x3) (4.161)

and therefore

α1(z) ≃ 1
4π
βmEloc(z). (4.162)

For ions, it comes

ρ±(z) = ρb
± exp

{
− β

[
µHS[ρ] − µHS

± (ρb) + µLJ
± (z) − µLJ

± b + V LJ
± (z) + q±Φ(z)

]}
. (4.163)

If hard sphere and Lennard-Jones effects are neglected, the classical distribution is recovered
as expected in the mean field approximation. The last step is to determine the local electric
field Eloc(z) and the electric potential Φ(z).

4.5.3 Poisson equation

The Poisson equation is written for a mixture of dipoles and ions in vacuum confined between
two parallel plates placed at z = ±H and charged with a surface density Σ

ǫ0
d2Φ
dz2

= −
∑

i∈{+,−}

ρiqi +
∫

dωm cos θ
dρd(z, θ)

dz
(4.164)

= −Qc(z) +
dP
dz

, (4.165)

with Qc(z)(z) = q+ρ+(z)+ q−ρ−(z) the local volume charge density and P (z) the local density
of polarization defined by the following relation

P (z) =
∫ π

0
m cos θ ρd(z, θ) 2π sin θ dθ =

4π
3
mρd(z)α1(z), (4.166)

where α1(z) is solution of Eq. (4.160) (α1 ≃ βmEloc/(4π) as a first estimate given by
Eq. (4.162)).

The limit conditions are written as

z = −H −ǫ0
dΦ(z)

dz
= ǫ0E = Σ − P (z),

z = +H −ǫ0
dΦ(z)

dz
= ǫ0E = −Σ − P (z).

(4.167)

Considering the symmetry of the problem we can also use the condition that at z = 0, E =
−ǫ0dΦ/dz = 0. It should be noted that the polarization is odd (P (−z) = −P (z)).

Performing a first integration for 0 ≤ z ≤ H we obtain (by symmetry P (z = 0) = 0)

ǫ0
dΦ
dz

= −
∫ z

0
Qc(z′)dz′ + P (z), (4.168)

or E(z) =
1
ǫ0

∫ z

0
Qc(z′)dz′

︸ ︷︷ ︸
field due to charges E0

−P (z)
ǫ0︸ ︷︷ ︸

field due to dipoles

. (4.169)

A second integration provides

Φ(z) = Φ(0) +
1
ǫ0

[
−
∫ z

0
dz′

∫ z′

0
Qc(z′′)dz′′ +

∫ z

0
P (z)dz

]
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= Φ(0) +
1
ǫ0





[
−z′

∫ z′

0
Qc(z′′)dz′′

]z′=z

z′=0

+
∫ z

0
z′Qc(z′)dz′ +

∫ z

0
P (z)dz





= Φ(0) +
1
ǫ0

[∫ z

0
(z′ − z)Qc(z′)dz′ +

∫ z

0
P (z)dz

]
. (4.170)

The local field Eloc can now be calculated starting from Eq. (4.103)

E(z) = E0(z) − P (z)
ǫ0

Eloc(z) = E0(z) + Edd(z) (4.171)

Eloc(z) = E(z) +
P (z)
ǫ0

+ Edd(z).

where Edd(z) is given by (see (4.153))

Edd(z) =
1

2ǫ0

∫ H

−H
dz′ P (z′)

[
(z′ − z)2

d3
− 1
d

]
ΘH(d− |z′ − z|). (4.172)

If the polarization P (z′) is nearly uniform within z−d < z′ < z+d, the above relation reduces
to

Edd(z) =
P (z)
2ǫ0

∫ z+d

z−d
dz′

[
(z′ − z)2

d3
− 1
d

]
= −2P (z)

3ǫ0
, (4.173)

and it follows

Eloc(z) = E(z) +
P (z)
3ǫ0

. (4.174)

This relation is the well known Lorentz relation introduced in many classical textbooks [104].
The electric potential Φ is known to within an arbitrary constant which can be determined

from the global electroneutrality condition of the system (plates + ionic fluid).

4.5.4 Results and discussions

In this section, we study a mixture of a dipolar solvent with a monovalent entirely dissociate
salt confined between two identical negatively charged walls in order to predict qualitatively the
behavior of the electrolyte solution in the crystalline swelling regime. The following parameters
are chosen for the calculation: separation distance 2H = 4d, dipole bulk density ρb

dd
3 = 0.734,

water particle diameter d = 2.8Å, reduced dipole moment m∗2 = 0.02, electric surface charge
density Σ = −0.0135 C/m2 and bulk ion concentration cb = 10−3 mol/L.

Fig. 4.20 presents the density distributions of ions. As the walls are negatively charged, the
cations are strongly attracted by the walls, whereas the anions are excluded. Obviously, the
density profiles of the two fluid components have the similar oscillatory behavior as that of a
hard sphere fluid near a hard wall. This differs from the density profiles predicted in the case of
a continuous solvent EDL model in which ion concentrations decrease or increase monotonously
away from the plates. This difference originates from the finite size effects of the solvent particle
which are stronger than electrical effects. The observation is also pronounced on the dipole
density distribution (Fig. 4.21) which is almost coincided with that of the corresponding hard
sphere fluid.

Fig. 4.22 shows the evolution of the different electric fields as well as the polarization in
the EDL space. Due to the symmetry of the system, the polarization vanishes at the midplane
and increases strongly close to the plates where the electric potential is high. However, the
dipole-dipole electrical field Edd, which is the average of the polarization over a distance of
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Figure 4.20: Density profiles of ions in the EDL space with 2H = 4d, ρb
dd

3 = 0.734, d = 2.8Å,
m∗2 = 0.02, Σ = −0.0135 C/m2 and cb = 10−3 mol/L.
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Figure 4.21: As in Fig. 4.20 for the dipole density profile and that of the corresponding hard
sphere fluid.

a particle diameter, is almost uniform and negligible. Therefore the three electric fields E0,
Eloc, E(z) are almost identical in the center zone. In the vicinity of the plates, because of a
strong increase of the polarization, the macroscopic electrical field E(z) decreases significantly
in comparison with the local field Eloc and the field due to charges E0. The decrease of the
macroscopic electrical field would become very important when increasing slightly the dipole
moment. This makes the macroscopic field E decreasing significantly near the plates. The
“inverse" behavior of the macroscopic field when approaching the plates when increasing the
dipole moment is absolutely impossible in the EDL space. This observation confirms the crucial
role of correlation effects which are completely neglected in the present MFA approach.

4.6 Conclusion

This chapter accounts explicitly for the molecular and polar nature of the water solvent in
an EDL using a dipolar hard sphere fluid. For studying such a fluid, first the MSA proposed
by Wertheim [21] is presented in the case of a homogeneous fluid. The radial distribution
function of a bulk DHS fluid calculated with MSA is then incorporated into the DFPT ap-
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Figure 4.22: The evolution of the different electric fields in the EDL space.

proach presented in chapter 3 in order to represent the dipole-dipole correlation effects of the
corresponding inhomogeneous fluid.

The numerical results show that the dipole-dipole interactions favor a spatial layer orga-
nization of the fluid molecules and reduce effectively the contact density of the fluid confined
between two hard walls in comparison with the corresponding HS fluid. At small interplatelet
distances corresponding to the crystalline swelling regime, the formation of fluid molecule lay-
ers is observed. The dipole orientation in the two layers immediately adjacent to the walls is
nearly uniform as in the bulk limit whereas the dipole moments in the next layers prefer to be
perpendicular to the walls while a few dipole moments located between two successive layers
are almost parallel to the walls.

Dipole-dipole attractive interaction effects reduce significantly the disjoining pressure in
comparison with that of the corresponding HS fluid. The oscillatory form for the disjoining
pressure of a DHS fluid contributes effectively to explain the formation of discrete layers of
water molecules in the low hydration regime. With a high water bulk density ρbd

3 = 0.734,
a high value of dipole moment m∗2 = 4.68 is required to simulate reasonably the bulk water
behavior. Such a high dipole moment leads to the inaccuracy of the MSA in approximation to
describe the dipole-dipole correlation effects in an inhomogeneous DHS fluid, which is at the
origin of the failure of the present approach.

Ions are finally added into the DHS water solvent as well as a negative surface charge of
the platelets to complete the EDL description. The numerical results obtained by the present
MFA approach shows an oscillatory form for the ions density profiles, which are very different
from that predicted by a classical continuous solvent model. This is probably explained by the
dominant role of hard sphere effects in comparison with electrical interaction effects. However,
neglecting interparticle correlations in the framework of MFA makes inaccurate the prediction
of the behavior of the EDL fluid especially in the cases of intermediate and high dipole moment
values. Therefore, an exact calculation of the interparticle correlations within the electrolyte
solution is necessary.
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Appendix C

C.1 Legendre polynomials

• Definition
The Legendre polynomials are defined for any natural number n by:

d
dx

[(
1 − x2

) dPn(x)
dx

]
+ n(n+ 1)Pn(x) = 0, Pn(1) = 1 (C.1)

• First ten Legendre polynomials

P0(x) = 1

P1(x) = x

P2(x) =
1
2

(3x2 − 1)

P3(x) =
1
2

(5x3 − 3x)

P4(x) =
1
8

(35x4 − 30x2 + 3)

P5(x) =
1
8

(63x5 − 70x3 + 15x)

P6(x) =
1
16

(231x6 − 315x4 + 105x2 − 5)

P7(x) =
1
16

(429x7 − 693x5 + 315x3 − 35x)

P8(x) =
1

128
(6435x8 − 12012x6 + 6930x4 − 1260x2 + 35)

P9(x) =
1

128
(12155x9 − 25740x7 + 18018x5 − 4620x3 + 315x)

P10(x) =
1

256
(46189x10 − 109395x8 + 90090x6 − 30030x4 + 3465x2 − 63)

• Properties

Pn(x) is an nth-degree polynomial. The polynomials for odd-values of n are odd and for
even-values of n are even: Pn(−x) = (−1)n Pn(x) .

• Scalar product

On the range [−1, 1] Legendre polynomials are orthogonal with respect to the scalar
product:

〈P,Q〉 =
∫ 1

−1
P (x)Q(x) dx (C.2)
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〈Pm, Pn〉 =
∫ 1

−1
Pm(x)Pn(x) dx = 0 pour m 6= n (C.3)

||Pn||2 = 〈Pn, Pn〉 =
2

2n+ 1
(C.4)

C.2 Calculation details in modeling dipolar hard sphere fluids

C.2.1 In the homogeneous bulk fluid

C.2.1.1 Calculation of the chemical potental from the excess free energy

The expression of the excess free energy due to dipole-dipole interactions per unit volume in a
homogeneous DHS fluid given by Eq. (4.93) is rewritten below

F̂ex
dd = −ρ2

bm
2

8πǫ0

∫ π

0
α(θ1) sin θ1dθ1

∫ 2π

0
dφ1

∫ ∞

−∞
dz
∫ 2π

0
dφ
∫ ∞

0
χdχ

∫ π

0
sin θ2dθ2

×
∫ 2π

0
dφ2α(θ2)[1 + hS(r12) + h∆(r12)∆(1, 2) + hD(r12)D(1, 2)]

D(1, 2)
r3

12

. (C.5)

Changing the integral variables, r12 = r =
√
z2 + χ2, cos θ =

z

r
and with z being fixed,

χdχ = rdr, it follows

F̂ex
dd = −ρ2

bm
2

8πǫ0

∫ π

0
α(θ1) sin θ1dθ1

∫ 2π

0
dφ1

∫ ∞

−∞
dz
∫ 2π

0
dφ
∫ ∞

|z|
dr
∫ π

0
sin θ2dθ2

×
∫ 2π

0
dφ2α(θ2)[1 + hS(r) + h∆(r)∆(1, 2) + hD(r)D(1, 2)]

D(1, 2)
r2

. (C.6)

C.2.1.1.1 Calculation of the isotropic term in D(1, 2)

The first two terms of Eq. (C.6) in D(1, 2) are

F̂ex
dd

∣∣∣
S

= −ρ2
bm

2

8πǫ0

∫ π

0
α(θ1) sin θ1dθ1

∫ 2π

0
dφ1

∫ ∞

−∞
dz
∫ 2π

0
dφ
∫ ∞

|z|
dr
∫ π

0
sin θ2dθ2

×
∫ 2π

0
dφ2α(θ2)[1 + hS(r)]

D(1, 2)
r2

(C.7)

The integration in φ, φ1 and φ2 is made using formal calculus and using the parity of the
integral in z:

F̂ex
dd

∣∣∣
S

= = −ρ2
bm

2

4πǫ0

∫ π

0
α(θ1) sin θ1dθ1

∫ ∞

0
dz
∫ ∞

|z|
dr
∫ π

0
α(θ2) sin θ2dθ2

× 8π3 cos θ1 cos θ2(3 cos2 θ − 1)
[1 + hS(r)]

r2
. (C.8)

As cos θ =
z

r
the following sub-integrals can be defined

IgS
=

∫ ∞

0
dz
∫ ∞

|z|
dr

(
3
z2

r4
− 1
r2

)
(1 + hS(r))

IhS
=

∫ ∞

0
dz
∫ ∞

|z|
dr

(
3
z2

r4
− 1
r2

)
hS(r). (C.9)

As
∫ ∞

0
dz
∫ ∞

z
dr

(
3
z2

r4
− 1
r2

)
=
∫ ∞

0
dz

[
1
r

− z2

r3

]∞

r=z

= 0 , (C.10)
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IgS
= IhS

. The isotropic total correlation function hS(r) satisfies the following conditions:
hS(r) = −1 for r < d; the function is discontinuous at r = d and tends to 0 at large values of
r. IhS

can thus be decomposed as

IhS
=

∫ d

0
dz
∫ d

z
dr

(
−3

z2

r4
+

1
r2

)

︸ ︷︷ ︸
A

+
∫ d

0
dz
∫ ∞

d
dr

(
3
z2

r4
− 1
r2

)
hS(r)

︸ ︷︷ ︸
B

+
∫ ∞

d
dz
∫ ∞

z
dr

(
3
z2

r4
− 1
r2

)
hS(r)

︸ ︷︷ ︸
C

. (C.11)

The integration of the terms A and B follows directly

A =
∫ d

0
dz
∫ d

z
dr

(
−3

z2

r4
+

1
r2

)
=
∫ d

0
dz

[
z2

r3
− 1
r

]d

r=z

=
∫ d

0
dz

(
z2

d3
− 1
d

)
= −2

3
. (C.12)

B =
∫ d

0
dz
∫ ∞

d
dr

(
3
z2

r4
− 1
r2

)
hS(r) =

∫ ∞

d
dr hS(r)

[
z3

r4
− z

r2

]d

z=0

=
∫ ∞

d
dr hS(r)

[
d3

r4
− d

r2

]
. (C.13)

For C, an integration by parts is used with




du = dz −→ u = z,

v(z) =
∫ ∞

z
dr

(
3
z2

r4
− 1
r2

)
hS(r) −→ dv

dz
= −2hS(z)

z2
+ 6z

∫ ∞

z

hS(r)
r4

dr.
(C.14)

It comes

C =
∫ ∞

d
dz
∫ ∞

z
dr

(
3
z2

r4
− 1
r2

)
hS(r) =

[
z

∫ ∞

z
dr

(
3
z2

r4
− 1
r2

)
hS(r)

]z=∞

z=d

+2
∫ ∞

d

hS(r)
r

dr − 6
∫ ∞

d
z2dz

∫ ∞

z

hS(r)
r4

dr, (C.15)

where the last term on the right hand side is

∫ ∞

d
z2dz

∫ ∞

z

hS(r)
r4

dr =

[
z3

3

∫ ∞

z

hS(r)
r4

dr

]∞

z=d

+
∫ ∞

d

z3

3
hS(z)
z4

dz

= −d3

3

∫ ∞

d

hS(r)
r4

dr +
1
3

∫ ∞

d

hS(r)
r

dr . (C.16)

Hence, C reduces to

C =
∫ ∞

d
dr hS(r)

(
d

r2
− d3

r4

)
. (C.17)

Finally, the sub-integrals of Eq. (C.8) reduce to

IgS
= IhS

= A+B + C = −2
3
. (C.18)

Substituting this result into Eq. (C.8), the isotropic part of the dipole-dipole excess free energy
is rewritten as

F̂ex
dd

∣∣∣
S

=
4π2ρ2

bm
2

3ǫ0

∫ π

0
α(θ1) cos θ1 sin θ1dθ1

∫ π

0
α(θ2) cos θ2 sin θ2dθ2 . (C.19)
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With
∫ π

0
α(θ) cos θ sin θdθ =

∫ 1

−1
α(θ) cos θ d(cos θ) =

2
3
α1, (C.20)

it comes finally

F̂ex
dd

∣∣∣
S

=
16π2ρ2

bm
2

27ǫ0
α2

1, (C.21)

which is the excess free energy contribution due to the dipole-dipole interactions obtained in
the mean field approximation [102].

C.2.1.1.2 Calculation of the term in ∆(1, 2)D(1, 2)

The second term of Eq. (C.6) in ∆(1, 2)D(1, 2) given by

F̂ex
dd

∣∣∣
∆

= −ρ2
bm

2

8πǫ0

∫ π

0
α(θ1) sin θ1dθ1

∫ 2π

0
dφ1

∫ ∞

−∞
dz
∫ 2π

0
dφ
∫ ∞

|z|
dr
∫ π

0
sin θ2dθ2

×
∫ 2π

0
dφ2 α(θ2)h∆(r)

∆(1, 2)D(1, 2)
r2

= −ρ2
bm

2

4πǫ0

∫ π

0
α(θ1) sin θ1dθ1

∫ ∞

0
dz
∫ ∞

z
dr
∫ π

0
α(θ2) sin θ2dθ2

× h∆(r)2π3 (3 cos2 θ − 1)
r2

[cos2 θ1 + cos2 θ2 + 3 cos2 θ1 cos2 θ2 − 1] , (C.22)

is solved in the same manner. Knowing that h∆ vanishes for r < d, is discontinuous at r = d
and tends towards 0 for large values of r, we define the sub-integral

Ih∆
=

∫ ∞

0
dz
∫ ∞

z
dr

(
3
z2

r4
− 1
r2

)
h∆(r)

=
∫ d

0
dz
∫ ∞

d
dr

(
3
z2

r4
− 1
r2

)
h∆(r)

︸ ︷︷ ︸
A

+
∫ ∞

d
dz
∫ ∞

z
dr

(
3
z2

r4
− 1
r2

)
h∆(r)

︸ ︷︷ ︸
B

. (C.23)

The first integral term becomes

A =
∫ ∞

d
h∆(r)dr

∫ d

0
dz

(
3
z2

r4
− 1
r2

)
=

∫ ∞

d
dr h∆(r)

[
z3

r4
− z

r2

]d

z=0

=
∫ ∞

d
dr h∆(r)

(
d3

r4
− d

r2

)
. (C.24)

The expression of B is analogous to Eq. (C.15) substituting hS by h∆. Its solution is given by
the relation (C.17) which corresponds to −A. It follows directly

Ih∆
= 0 −→ F̂ex

dd

∣∣∣
∆

= 0 (C.25)

C.2.1.1.3 Calculation of the term in D2(1, 2)

The term in D2(1, 2) of Eq. (C.6) is

F̂ex
dd

∣∣∣
D

= −ρ2
bm

2

8πǫ0

∫ π

0
α(θ1) sin θ1dθ1

∫ 2π

0
dφ1

∫ ∞

−∞
dz
∫ 2π

0
dφ
∫ ∞

0
χdχ

∫ π

0
α(θ2) sin θ2dθ2
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×
∫ 2π

0
dφ2 hD(r)

D2(1, 2)
r3

. (C.26)

Changing the integral variables as (z, χ) −→ (r, θ), the Jacobian of the transformation is given
by

χdχdz = r2dr sin θdθ, (C.27)

where θ varies from 0 to π and r from 0 to +∞. It follows

F̂ex
dd

∣∣∣
D

= −ρ2
bm

2

8πǫ0

∫ π

0
α(θ1) sin θ1dθ1

∫ 2π

0
dφ1

∫ π

0
α(θ2) sin θ2dθ2

∫ 2π

0
dφ2

×
∫ π

0
sin θdθ

∫ 2π

0
dφ
∫ ∞

0
dr hD(r)

D2(1, 2)
r

= −ρ2
bm

2

8πǫ0

∫ π

0
α(θ1) sin θ1dθ1

∫ π

0
α(θ2) sin θ2dθ2

×
[
−8π3

5
(cos2 θ1 + cos2 θ2 − 3 cos θ1 cos θ2 − 7)

] ∫ ∞

0
dr
hD(r)
r

, (C.28)

where
∫∞

0 dr
hD(r)
r

= K according to Eq. (4.38). The dipole orientation distribution function,

α(θ), is decomposed in terms of the Legendre polynomial series as
∫ π

0
α(θ1) sin θ1dθ1 =

∫ 1

−1
α(θ1)d(cos θ1) = 2α0, (C.29)

∫ π

0
α(θ1) cos2 θ1 sin θ1dθ1 =

∫ 1

−1
α(θ1) cos2 θ1d(cos θ1)

=
∫ 1

−1
α(θ1)

2P2(cos θ1) + P0(cos θ1)
3

=
2
3
α0 +

4
15
α2. (C.30)

Hence, Eq. (C.28) reduces to

F̂ex
dd

∣∣∣
D

=
π2ρ2

bm
2K

5ǫ0

(
−80

3
α2

0 − 16
75
α2

2

)
. (C.31)

In conclusion, the dipole-dipole excess free energy is

F̂ex
dd = F̂ex

dd

∣∣∣
S

+ F̂ex
dd

∣∣∣
∆

+ F̂ex
dd

∣∣∣
D

=
16π2ρ2

bm
2

3ǫ0

(
−Kα2

0 +
α2

1

9
− K

125
α2

2

)
, (C.32)

where α0 = 1/(4π). The first term in α2
0 exists in the bulk without any externally applied field.

The second term in α1 is obtained in the MFA approach [102]. Consequently, the average
excess chemical potential due to the dipole-dipole interaction is obtained by differentiating the
preceding relation with respect to ρb

µex
dd =

∂F̂ex
dd

∂ρb
=

32π2ρbm
2

3ǫ0

(
−Kα2

0 +
α2

1

9
− K

125
α2

2

)
. (C.33)

C.2.1.2 Direct calculation of the dipole-dipole excess chemical potential

The computation of the orientation-dependent dipole-dipole excess chemical potential starts
from Eq. (4.97) rewritten below:

µex
dd(θ1) = −ρbm

2

4πǫ0

∫ H

−H
dz
∫ 2π

0
dφ
∫ ∞

0
χdχ

∫ π

0
sin θ2α(θ2)dθ2

∫ 2π

0
dφ2

D(1, 2)
r3
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× [1 + hS(r) + ∆(1, 2)h∆(r) +D(1, 2)hD(r)]

= −ρbm
2

4πǫ0

∫ H

−H
dz
∫ 2π

0
dφ
∫ ∞

|z|
dr
∫ π

0
sin θ2α(θ2)dθ2

∫ 2π

0
dφ2

D(1, 2)
r2

× [1 + hS(r) + ∆(1, 2)h∆(r) +D(1, 2)hD(r)] , (C.34)

where the integral variables have been changed according to (z, χ) −→ (z, r). First the inte-
gration is made over φ and φ2. As the result should be independent of φ1, an averaging over

φ1 as
1

2π

∫ 2π

0
(...)dφ1 is added to the above integral expression, which yields

1
2π

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 2π

0
dφD(1, 2) = 2π(3 cos2 θ − 1) cos θ1 cos θ2, (C.35)

1
2π

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 2π

0
dφ∆(1, 2)D(1, 2) =

π

2
(3 cos2 θ − 1)

×(3 cos2 θ1 cos2 θ2 + cos2 θ1 + cos2 θ2 − 1), (C.36)
1

2π

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 2π

0
dφD2(1, 2) = −π

2

(
5 cos2 θ1 + 5 cos2 θ2 + 12 cos2 θ − 9 cos4 θ − 5

−9 cos2 θ1 cos2 θ2 − 30 cos2 θ1 cos2 θ − 30 cos2 θ2 cos2 θ + 27 cos2 θ1 cos4 θ

+27 cos2 θ2 cos4 θ + 72 cos2 θ1 cos2 θ2 cos2 θ − 81 cos2 θ1 cos2 θ2 cos4 θ
)

(C.37)

with cos θ =
z

r
, H = ∞ and ρ(z) = ρb, in the bulk DHS fluid. The calculation of Eq. (C.34) is

analogous to that presented in section §C.2.1.1.

C.2.1.2.1 Calculation of the isotropic term

The two first isotropic terms of Eq. (C.34) are

µex
dd

∣∣∣
S

= −2πρbm
2

ǫ0

∫ ∞

0
dz
∫ ∞

z
dr
∫ π

0
sin θ2α(θ2)dθ2

(3 cos2 θ − 1) cos θ1 cos θ2

r2
gS(r)

= −2πρbm
2

ǫ0
cos θ1

∫ ∞

0
dz
∫ ∞

z

(
3
z2

r4
− 1
r2

)
gS(r)dr

∫ π

0
sin θ2 cos θ2α(θ2)dθ2, (C.38)

which can be simplified by introducing

IgS
=

∫ ∞

0
dz
∫ ∞

z

(
3
z2

r4
− 1
r2

)
gS(r)dr = −2

3
, (C.39)

JS =
∫ π

0
sin θ2 cos θ2α(θ2)dθ2 =

2
3
α1 . (C.40)

µex
dd

∣∣∣
S

reduces then to

µex
dd

∣∣∣
S

=
8πρbm

2α1

9ǫ0
cos θ1. (C.41)

C.2.1.2.2 Calculation of the term in ∆(1, 2)D(1, 2)

The second term of Eq. (C.34) in ∆(1, 2)D(1, 2) is

µex
dd

∣∣∣
∆

= −πρbm
2

2ǫ0

∫ ∞

0
dz
∫ π

0
sin θ2α(θ2)(3 cos2 θ1 cos2 θ2 + cos2 θ1 + cos2 θ2 − 1)

×
∫ ∞

z
dr

(3 cos2 θ − 1)
r2

h∆(r) = −πρbm
2

2ǫ0
Ih∆

Jh∆
, (C.42)
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where the sub-integrals are given by

Ih∆
=

∫ ∞

0
dz
∫ ∞

z
dr(

3z2

r4
− 1
r2

)h∆(r), (C.43)

Jh∆
=

∫ π

0
sin θ2α(θ2)(3 cos2 θ1 cos2 θ2 + cos2 θ1 + cos2 θ2 − 1)

=
∫ 1

−1
2α(θ2)

[(
cos2 θ1 +

1
3

)
P2(cos θ2) +

(
cos2 θ1 − 1

3

)
P0(cos θ2)

]
d(cos θ2), (C.44)

with P0(x) = 1 and P2(x) = (3x2 − 1)/2. Note that ||Pn||2= 2/(2n + 1) and α0 = 1/(4π), it
comes

Jh∆
=

4
5
α2

(
cos2 θ1 +

1
3

)
+

1
π

(
cos2 θ1 − 1

3

)
. (C.45)

Finally, with the relation Eq. (C.25), we obtain

µex
dd

∣∣∣
∆

= 0 . (C.46)

C.2.1.2.3 Calculation of the term in D2(1, 2)

This term of Eq. (C.34) is given by

µex
dd

∣∣∣
D

= −ρbm
2

4πǫ0

∫ ∞

−∞
dz
∫ 2π

0
dφ
∫ ∞

0
χdχ

∫ π

0
sin θ2α(θ2)dθ2

∫ 2π

0

D2(1, 2)
r3

hD(r) . (C.47)

As before, after the integral variables change (z, χ) −→ (r, θ), it follows

µex
dd

∣∣∣
D

= −ρbm
2

4πǫ0

∫ ∞

0
dr
∫ π

0
sin θdθ

∫ 2π

0
dφ
∫ π

0
sin θ2α(θ2)dθ2

∫ 2π

0

D2(1, 2)
r

hD(r)

= −πρbm
2

5ǫ0

∫ 1

−1
(3 cos2 θ1 cos2 θ2 − cos2 θ1 − cos2 θ2 + 7)α(θ2)d(cos θ2)

×
∫ ∞

0

hD(r)
r

dr. (C.48)

Using the development of MSA for the DHS fluid with K =
∫∞

0 hD(r)/rdr and the decompo-
sition of α in term of Legendre polynomial series

∫ 1

−1
(3 cos2 θ1 cos2 θ2 − cos2 θ1 − cos2 θ2 + 7)α(θ2)d(cos θ2)

=
∫ 1

−1

[
cos2θ1(3 cos2 θ2 − 1) − 1

3
(3 cos2 θ2 − 1) +

20
3

]
α(θ2)d(cos θ2)

=
∫ 1

−1

[
2
3

(3 cos2 θ1 − 1)P2(cos θ2) +
20
3

]
α(θ2)d(cos θ2)

=
40
3
α0 +

4
15
α2(3 cos2 θ1 − 1), (C.49)

leads to

µex
dd

∣∣∣
D

(θ1) = −πρbm
2

5ǫ0
K

[
40
3
α0 +

4
15
α2

(
3 cos2 θ1 − 1

)]
. (C.50)

Summing the contributions (C.41), (C.46) and (C.50), the dipole-dipole excess chemical po-
tential is given by the following expression

µex
dd(θ1) = µex

dd

∣∣∣∣∣
S

+ µex
dd

∣∣∣
∆

+ µex
dd

∣∣∣
D
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=
8πρbm

2α1

9ǫ0
cos θ1 − πρbm

2

5ǫ0
K

[
40
3
α0 +

4
15
α2

(
3 cos2 θ1 − 1

)]

=
πρbm

2

ǫ0

[
−8

3
Kα0 +

8
9
α1 cos θ1 − 4

75
Kα2

(
3 cos2 θ1 − 1

)]
. (C.51)

The mean bulk chemical potential given by Eq. (C.33) is recovered by an integration over θ1

(see Eq. (4.99)).

C.2.2 Dipole-dipole excess chemical potential of an inhomogeneous DHS
fluid

The excess chemical potential due to dipole-dipole interactions of an inhomogeneous DHS fluid
is given by Eq. (4.95)

µex
dd(1) = − m2

4πǫ0

∫ H

−H
dz2 ρ(z2)

∫ 2π

0
dφ
∫ ∞

0
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×
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D(1, 2)
r3

. (C.52)

C.2.2.1 Calculation of the term in D(1, 2)

The first two terms of Eq. (C.52) are rewritten by changing the integral variables as r =
√

(z1 − z2)2 + χ2, cos θ =
|z1 − z2|

r
and χdχ = rdr
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Since the final result is independent of φ1, it can be averaged over φ1
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Hence, it comes
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where

IgS
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C.2.2.2 Calculation of the term in D(1, 2)∆(1, 2)

The second term of Eq. (C.52) (in D(1, 2)∆(1, 2)) is
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When averaging over φ1
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Eq. (C.57) becomes
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with
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where P0(x) = 1 and P2(x) = (3x2 −1)/2 are the Legendre polynomials of order 0 and 2. With
||Pn||2= 2/(2n+ 1) and α0 = 1/(4π), the preceding integral expression reduces to
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C.2.2.3 Calculation of the term in D2(1, 2)

The last term of Eq. (C.52) is given by
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Firstly, the integration over the solid angles gives
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Consequently,
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The next step is to calculate the following integrals
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Finally, the expression of µex
dd(1)
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Alternatively µex
dd(1)
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can be put in form of convolution integrals
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Finally the excess chemical potential due to dipole-dipole interactions is given by
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C.3 Clausius-Mossotti formula

The Clausius-Mossotti formula for a bulk dipolar hard sphere fluid submitted to an electric
field only driven by charges E0 is easily derived starting from the exact relation Eq. (4.105)
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3ǫ0
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. (C.74)

In the mean field approximation and at low electric field strength, Eq. (4.160) reduces to

α1 ≃ βmEloc

4π
, (C.75)

where the local electric field acting on a dipole Eloc is given in the bulk case by the classical
Lorentz relation (Eq. (4.174))

Eloc = E +
P

3ǫ0
, (C.76)

with E = E0 − P/ǫ0 being the macroscopic electric field (driven by both charges and dipoles).
Therefore
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The relative dielectric constant is then deduced from Eq. (C.74)

ǫ =
E0

E0 − βρbm
2

3ǫ0
Eloc

=
1 + 2y
1 − y

with y =
βρbm

2

9ǫ0
. (C.78)
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Chapter 5

Modeling the hydro-mechanical
behavior of unsaturated swelling
clays

5.1 Introduction

After the detailed study of the nanoscale description of swelling clays presented in the previous
chapters, this chapter is devoted to an application example to model the hydro-mechanical
behavior during hydration at the observable macroscale starting from a description of the
coupled physico-electrochemical phenomena at the nanoscopic clay platelet scale. The idea
is to apply the three scale extension of Terzaghi’s effective stress principle to unsaturated
expansive clays that was rigorously derived by our group using micro-mechanical analyses
[22] to numerically simulate macroscopic swelling pressure tests during hydration at fixed
volume. This numerical application gave rise to an oral presentation at the “E-UNSAT2016"
conference in Paris joint to a publication in the corresponding conference proceedings [34]
which is essentially recovered in this chapter.

The numerical application refers to an experimental swelling pressure test of Imbert and
Villar performed at the CIEMAT [11] on 50/50wt%1 mixtures of pellets and powder of “FoCa"
bentonite compacted at a dry density of 1.45 g/cm3. This reference experiment (called MGR7
in [11]) has been performed with the pellets “RESEAL II" (initial water content 5%) and the
powder “FoCa7" whose initial water content is 12%.

Fig.5.1 shows a schematic representation of the cylindrical oedometer cell (inner diameter 10
cm and height 5 cm) used for the hydration tests. The water infiltration is performed through
the ceramic porous disc at the bottom by a deionized water column of 1m in height. The
ceramic disc at the top being also porous so that the air inside the sample is at thermodynamic
equilibrium with the surrounding air. The experiment consists in measuring the pressure that
has to be applied on the upper disc (called “swelling pressure") in order to prevent sample
deformation during water intake at constant temperature.

Fig.5.2 shows the evolution of the swelling pressure and the degree of saturation during
the experiment. The saturation degree Sw = 100% corresponds to a final water content ωf =
33.1 ± 0.8%, the latter being defined as the ratio of fluid to solid mass ω = mwater/msolid.
After an initial fast increase, the swelling pressure exhibits a temporary drop followed by a
new increase until reaching a stationary value of the same magnitude as the first maximum.
The final value at the fully saturated state, linked to the dry density, reaches values between
0.5 and 4 MPa. [105].

1weight percent
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H2O inlet 

Pext air outlet Patm 

1 m Bentonite 

sample 

Figure 5.1: Experimental setup of the swelling pressure tests performed by Imbert and Villar
[11].

Figure 5.2: Evolution of the swelling pressure and the saturation degree during water infiltration
of the pellets/bentonite powder mixture of the experiment MGR7 in [11].
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Several modeling efforts have been undertaken to elucidate the physical phenomena under-
lying these observations [105, 106, 107, 108, 33, 22, 109]. The behavior is generally associated
with the collapse of the microscopic solid structure when reaching the loading-collapse curve
[105]. All these models are able to link the mechanical behavior to the capillary pressure drop
during water uptake. However, to the best of our knowledge, they are all based on an empirical
approach to account for micro- and nanoscopic contributions to the overall swelling pressure.
In order to fill this gap between the local and overall hydro-mechanical behavior, we apply the
multi-scale model of unsaturated expansive clays that was recently developed in our group [22]
to numerically simulate the evolution of the swelling pressure during hydration.

The model derivation is based on the characteristic multi-scale structure of swelling clay
minerals that is roughly presented in chapter 1 and recalled on Fig.5.3. According to this
representation, swelling clays are porous media characterized by two porosity levels (referred
to as nano- and micropores tied up to their size [110]) and three disparate length scales:

Figure 5.3: Multi-scale structure of swelling clays.

• At the nanoscale the medium is composed of incompressible linear-elastic clay platelets
of constant surface charge Σ < 0. The platelets are separated by a nanoporous network
saturated by a binary electrolyte solution. The monovalent ions in the aqueous solution
are completely dissociated and distributed in the way to compensate the excess surface
charge of the clay platelets resulting in the formation of a diffuse Electrical Double Layer
(EDL) near the solid liquid interface. In the classical EDL approach considering the
electrolyte solution as continuous and the ions as point charges, the force acting on the
platelets, called disjoining pressure is of purely electrochemical nature. In this case,
the disjoining pressure is purely repulsive and decreases monotonously for an increasing
interlayer distance (cf. Fig.1.12).

As presented in the previous chapters and analyzed in more detail in this chapter, the
nanoscale description can considerably be improved by considering the molecular nature
of the electrolyte solution (water solvent + ions).

Among these different particle interactions (molecule size exclusion, dipolar and electrical
effects), it is the finite size of the solvent molecules that is expected to dominate the
swelling behavior at low hydration levels leading to the formation of discrete water layers
in the interplatelet space. Therefore, as a first improvement of the nanoscale description
of swelling clays, we consider the molecular nature of the water solvent only (as the
ion concentration is negligible compared to that of water) by modeling it as a simple
hard sphere fluid. As has been shown on Fig.2.7, this allows to reproduce an oscillatory
shape of the disjoining pressure accounting for both, repulsion and attraction. Beyond
the link between the physical phenomena at the different length scales and the resulting
macroscopic hydro-mechanical behavior, this study aims at pointing out the limits of the
classical EDL theory in modeling the disjoining pressure during hydration and to show
the potential improvements that can be done on the nanoscale portrait. Note finally

139



Chapter 5: Modeling the hydro-mechanical behavior of unsaturated swelling clays

that the present approach is straightforward to incorporate more sophisticated models
including the dipolar nature of the water solvent as well as the presence of ions.

• At the intermediate microscale the platelets assemble to swollen clay aggregates (or par-
ticles) building the solid phase at that length scale. The particles are separated by a
microporous network (free of EDL effects regarding their size) which is filled by a mix-
ture of bulk water and air. Due to the meniscus between the air and the water phase,
capillary pressure effects originate from that length scale.

Based on this representation of the local clay matrix it is thus possible to incorporate the
coupling between (microscopic) capillary and (nansoscopic) disjoining pressure effects in the
overall hydro-mechanical behavior over the entire water saturation range. The action of the
capillary pressure is of repulsive nature tending to widen the micropores. The effect of the
disjoining pressure at the particle scale however is opposite to that of the capillary pressure:
pushing two adjacent platelets away from each other results in a swelling of the clay particles
at the microscale. As will be shown in the following, the multi-scale model is able to provide
further insight to the water transfer mechanism from the micro- to the nanoporous space and
the linked evolution of the disjoining pressure during water infiltration.

This chapter is organized as follows. The detailed derivation being beyond the scope of
this work, this chapter starts by presenting directly the final macroscopic model equations
in an isotropic medium approximation. For more insight to the model derivation, we refer
to [22]. Section 5.3 shows the application of the three-scale model to numerically simulate
the oedometric water infiltration test of Imbert and Villar [11] starting with a presentation
of the governing equations at the different hydration levels. The numerical results are finally
analyzed in comparison to the experiment under consideration of the medium reorganization
at the different local length scales.

5.2 Multi-scale model equations in an isotropic medium ap-
proximation

Starting from the formulation of the mechanical equilibrium at the local scales according to
the geometric description presented in Fig.5.3, the total stress σT of the overall medium is
obtained by periodic homogenization [30]. Neglecting shear stresses the total stress given by
[22]

σT = σEI − P eff
f I − Πeff I, (5.1)

where I designates the identity tensor is the sum of three terms: (i) an effective contact stress
σE linked solely to the solid phase connectivity, (ii) an effective fluid pressure P eff

f accounting
for capillary pressure effects arising from the micropores and (iii) an effective disjoining pressure
Πeff strongly tied up with the action of the electrolyte solution on the clay platelets in the
nanopores. In what follows, the different terms are explained in more detail.

5.2.1 Elastic contact stress

The present model approach considers elastic deformation only so that the effective contact
stress σE = tr (σE) /3 is linked to the volumetric macroscopic strain ǫ = tr(ǫ) by Hooke’s law
σE = K̃ǫ, with K̃ the macroscopic bulk modulus. Note that ǫ < 0 in the case of compression.

For the determination of the macroscopic bulk modulus, we recall the classical definition of
the macroscopic Biot coefficient α [111]

α = 1 − K̃

Ks
, (5.2)
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where Ks is the microscopic bulk modulus translating the rigidity of the clay particles. For

an isotropic medium, the ratio
K̃

Ks
can be estimated using self-consistent medium approxima-

tion according to [112]

K̃

Ks
= 1 − α = 1 − nf

1 − 1 − nf

1 +
4µs

3Ks

, (5.3)

where µs designates the microscopic shear modulus of the solid phase (here the clay particles)
and nf the Eulerian inter-particle porosity defined as the ratio of the pore volume to the actual
volume of the overall medium. It is recalled that 4µs/3Ks = 2(1 − 2νs)/(1 + νs) allowing to
express the above relation as a function of the Poisson coefficient of the clay particles νs which
results in

α = 1 − K̃

Ks
=

3nf (1 − νs)
2 (1 − 2νs) + nf (1 + νs)

. (5.4)

Note that Ks and νs are taken as parameters in this study.

5.2.2 Effective disjoining pressure

The effective disjoining pressure represents the macroscopic result of the nanoscopic disjoining
pressure Πd, which is given by [22]

Πeff = (1 − α)Πd . (5.5)

We may observe that α plays the role of a scaling factor accounting for the transmissibility of
disjoining forces between adjacent clay particles. Using Eq.(5.4), Πeff can be expressed as a
function of the microporosity nf and the Poisson coefficient of the solid phase at the microscale
νs

Πeff =
2 (1 − nf ) (1 − 2νs)

(1 + νs)nf + 2 (1 − 2νs)
Πd. (5.6)

From the above equation it is obvious that the model approach for the disjoining pressure Πd at
the nanoscale plays a crucial role in its contribution to the macroscopic behavior of the overall
medium. As stated in chapter 1, the classical approach to express disjoining stresses is the
EDL theory. One objective of the present study is to determine range of validity of the EDL
for computing the disjoining pressure in swelling clays as well as its limits and the possible
improvements that can be done by considering the molecular nature of the electrolyte solution.

We recall that in classical EDL theory Πd is expressed as a function of ion concentration cb

and inter-platelet distance 2H using Poisson-Boltzmann (PB) equation [33]

Πd,P B(cb, H) = 2cbRT [cosh ϕ̄0(cb, H) − 1] , ϕ̄0 =
Fϕ0(cb, H)

RT
(5.7)

with ϕ0(cb, H) the electric potential at the midplane between two adjacent platelets. As shown
on Fig.1.12 the resulting disjoining pressure is purely repulsive and a decreasing function of the
platelet distance. This approach is thus chosen for modeling Πd in the osmotic swelling regime
(large interplatelet distances) where disjoining forces might be driven by EDL effects.

At low water content (in the crystalline swelling regime) corresponding to the beginning
of the experiment, solvation forces seem to play a major role in the swelling behavior at the
platelet scale [12] resulting in a distribution of the density of water molecules that oscillates
between maxima located at values 2H equal to nearly entire multiples of the molecule diameter
dH2O ≈ 2.8 Å and minima lying on nearly odd entire multiples of the molecule half-diameter
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Figure 5.4: Distribution of (a) the water molecule density and (b) solvation pressure as a
function of the interlayer space [12].

as shown on Fig.5.4a. The resulting solvation force (Fig.5.4b) exhibits as well an oscillatory
shape allowing to account for repulsion and attraction which is not accounted for by classical
EDL theory.

A simple approach to such a solvation force evolution is to model the electrolyte solution as
a HS fluid (accounting for particle size effects of the solvent constituents) confined between two
planar hard walls representing the clay platelets (Fig.2.3). Such a system has been discussed
in chapter 2. We recall here directly the resulting expression of the disjoining pressure being a
function of the interplatelet distance 2H Eq.(2.113)

Πd(2H) = kBTρ(z = d/2, 2H) − PCS(ρb), (5.8)

where ρ(z = d/2, 2H) is the particle density at the contact with the solid wall and PCS(ρb) is
the Carnahan-Starling bulk pressure for a fluid of density ρb [44].

Fig.5.5 compares the profiles of the disjoining pressure obtained by PB theory (cb =
10−4mol/l) and for a HS fluid (ρbd

3 = 0.73) as a function of the interplatelet distance normal-
ized by the water molecule diameter d = 2.8Å.

As expected, for a hard sphere fluid confined between two hard walls Πd(2H) has an os-
cillatory profile with maxima located at nearly entire multiples of particle diameter whose
amplitude decreases rapidly with the platelet distance. Note that only the decreasing parts
represent equilibrium states. In addition, the HS pressure reaches sensitively higher values at
small interplatelet distances than the PB theory. It is thus obvious that the PB model has to
be improved to predict the disjoining pressure for small interplatelet distances. The HS fluid
model is chosen here in the crystalline swelling regime.

5.2.3 Equivalent fluid pressure

The equivalent fluid pressure is given by

P eff
f = Pa − χeffPc, (5.9)

with Pa the air pressure and Pc the capillary pressure defined as Pc = Pa − Pw in such a way
that Pc > 0. As the air is in equilibrium with the atmospheric pressure in the experiment, Pa
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diameter d confined between two planar hard walls 
(Figure 2), ex[] is expressed by 

 (FMT) according to [16]. The disjoining pressure 
being defined as the force acting on the walls to keep 
them at a fixed distance 2H, it can be expressed using 
contact theorem which tells that, at mechanical 
equilibrium, d can be computed from the difference 
between the pressure the fluid acts on the wall P and the 
bulk pressure Pb: 

 
     

   
(2 ) 2 2

/ 2,2B CS bk T z d H

  
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      
    

 , 

(7) 
with kB the Boltzmann constant. The density 

distribution of the bulk fluid CS is expressed in terms of 
the bulk density b by Carnahan-Starling equation [17]. 

 
Figure 3. Disjoining pressure profiles of a PB fluid (cb=10-4 
mol/l) and a HS fluid (bd

3=0.73) as a function of normalized 
inter platelet distance 2H/d (dH20=2.8Å).  

Figure 3 compares the profiles of the disjoining 
pressure obtained by PB theory (cb=10-4 mol/l) and for a 
HS fluid as a function of normalized inter platelet 
distance 2H/d. For the HS fluid, the water molecule 
diameter and normalized bulk concentration are set to 
dH20=2.8Å and bd3=0.73 (corresponding to a mass 
density H20=103kg/m3). The HS fluid pressure allows to 
account for attraction (d<0) and repulsion (d>0), while 
PB is a purely repulsive decreasing function of the 
platelet distance. According to the expectations [14], the 
oscillatory profile of the HS fluid exhibits maxima at 
entire multiples of d whose amplitude decreases rapidly 
with the platelet distance. Note that only negative slope 
parts represent equilibrium positions. In addition, the HS 
law reaches somewhat higher values of the disjoining 
pressure at small distances than PB theory. 

The coupling of the different physical phenomena is 
made through the porosities at the micro- and nano-scale 
 being defined as the respective pore volume over the 
total volume. Assuming a stratified local arrangement, 
the nano-porosity is expressed by the inter-platelet 
distance according to  / sH H H   , with 2HS the 
platelet thickness. For an isotropic homogeneous 
distribution of the clusters, the two porosities are linked 
by a scalar version of the overall solid mass balance 
        1 1 1 1 expf fn n        ,  (8) 

where the overbars refer to a stress free reference state 
which can be chosen arbitrarily. Similarly, using self-
consistent approach, the micro-porosity is given by an 
integral form of the fluid mass balance 
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  
      



.  (9) 

In the following
underlie the co
different stages
states and alo The 
numerical application refers to an experimental swelling 
pressure test on FoCa clay 50/50 weight percent bentonite 
powder/pellets mixture performed at the CIEMAT and 
presented in [1,2]. The clay sample we refer to is  
with a dry density dry=1.45g/cm3 which corresponds to 
the ratio of the mass of the solid phase (clay cluster) at 
the dry state mc

i over the total volume VT. The cylindrical 
sample (100mm in diameter and 50m in height) was 
hydrated from the bottom of an oedometric cell. The 
swelling pressure applied to the cell to prevent 
deformation during water intake was recorded for mean 
water contents  varying from i=0.8 to f=0.33. 

2.2.1 Initial “dry state”

Initially, we assume all water to be confined in the 
nanopores so that the micropores are only filled by air 
implying that i=0. The gas/liquid interface should thus 
be at clay cluster surface (cf. Figure 4). This hypothesis 
agrees with a rough estimation of the pore diameter 
linked to the initial capillary pressure of about 200MPa 
using Laplace equation 2 4 / 2nm   (with 
water/air surface tension (298K)=72x10-3N.m) which is 
clearly superior to the nanopores. 

The initial state represents the reference state for this 
application, so that   and   . As sample 
deformation is prevented during water intake no overall 
elastic stress appears with respect to the initial state and 
E=0. Initially there is no pressure applied to the cell 
Pext

i=0 and it follows from (1) in combination with (2), 
(3) and (5) that all capillary effects are compensated by 
the disjoining pressure 200   . 

As wi=0.8, it is reasonable to assume crystalline 
swelling [18] so that d

i is computed according to the HS 
fluid law in (7). The inter platelet distance estimated with 
this law, 2Hi=3.12Å, corresponds to 1-2 water layers 
which is consistent with crystalline swelling. Assuming a 
platelet thickness 2Hs=1nm, the corresponding nano-
porosity is i=Hi/(Hi+Hs)=0.24. 

It is important to note that using PB theory, the 
disjoining pressure is not able to compensate the initial 
capillary pressure (cf. Figure 3). Even if the 
approximation of the electrolyte solution by a simple HS 
fluid requires further improvement including ionic and 

   
-

Figure 5.5: Disjoining pressure profiles of a PB fluid (cb = 10−4 mol/l) and a HS fluid (ρbd
3 =

0.73) as a function of normalized inter platelet distance 2H/d (dH2O = 2.8Å).

is constant and Pc can be linked to the overall saturation ST
w by a law of type “van Genuchten"

[113]. It comes consequently that Pc = Pc(Sw). χeff is the volumetric component of the
effective Bishop type tensor which is linked to clay fabric properties and saturation in the
micropores according to

χeff = 1 − (1 − χ)α, (5.10)

where χ(0 ≤ χ ≤ 1) is the microscopic Bishop parameter. For capillary pressures higher
than the water entering pressure P e

c , the later can be expressed as a function of saturation, for
example as [114]

χ(ST
w) = ST

w +

∫ 1

ST
w

Pc(sw)dsw

Pc(ST
w)

for Pc > P e
c . (5.11)

Combination of Eqs. (5.4), (5.9) and (5.10) allows finally to express P eff
f as a function of

ST
w and nf parameterized by Ks and νs.

5.2.4 Porosities

As shown in Fig.5.3, the microscopic portrait of expansive clays consists of swollen clay particles
separated by a porous network that is occupied by one or more bulk fluid phases. According
to an Eulerian approach defining the porosity as the ratio of the pore volume V micro

f to the
actual volume of the overall medium V , the microporosity is given by

nf =
V micro

f

V
. (5.12)

In the present three-scale model approach of unsaturated expansive clays, the Eulerian inter-
particle porosity is obtained by an integral form of the fluid mass balance at the microscale
allowing to discriminate between contact, capillary and disjoining stresses in the variation of
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the microporous space. For isotropic media, the variation of the Eulerian microporosity with
respect to a strain free reference state at nf can be written as [22]

nf − nf = (α− nf )
[
ǫ+

(1 − χ)Pc

Ks
− Πd

Ks

]
. (5.13)

Combination of the above equation with Eq. (5.4) allows to express nf as a function of the
macroscopic strain, the capillary and the disjoining pressure, parameterized by Ks and νs as
follows

nf − nf =
nf (1 − nf )

2(1 − 2νs)
1 + νs

+ nf

[
ǫ+

(1 − χ)Pc

Ks
− Πd

Ks

]
. (5.14)

For deformable media, it is generally more convenient to analyze the evolution of the porous
space in terms of the Lagrangian porosity being defined with respect to the volume of the overall

medium in the reference state V , as nL
f =

V micro
f

V
. Writing the actual volume of the medium as

V = V + ∆V , the link with the Eulerian porosity is directly obtained

nL
f =

V micro
f

V

V

V
= nf

V + ∆V
V

= nf [1 + tr(ǫ)]

= nf (1 + ǫ) . (5.15)

From the above equation it can easily be seen that in the absence of any deformation, both
porosities are identical. The combination of the above equation with (5.13) yields then for the
variation of the Lagrangian microporosity

nL
f − nf = nf − nf + ǫnf

= α ǫ+
α− nf

Ks
[(1 − χ)Pc − Πd]

= α ǫ+ β [(1 − χ)Pc − Πd] . (5.16)

The above result is consistent with the classical Biot relation, with the coefficient β defined
as

β =
α− nf

Ks
=

(1 − νs) (1 − nf )nf

2 (1 − 2νs) + nf (1 + νs)
1
Ks

. (5.17)

In comparison to the saturated case, the fluid pressure contribution is accounted for by
(1 − χ)Pc which is a function of the capillary pressure. In addition, the present multi-scale
model allows to consider the impact of the disjoining pressure on the evolution of the porous
space.

This last relation shows that a compression (ǫ < 0) results in a decrease of the microporosity.
Pc and Πd being positive, a decrease of the capillary pressure (water uptake) results in a
decrease of the microporous space and thus of nf , while a decrease of the disjoining pressure
should increase nf which is in agreement with the expectations.

As in the microscopic case, the Eulerian nanoporosity is defined as the volumetric ratio of
the interplatelet pores to the actual volume of a clay particle at the microscale
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〈φ〉 =
V nano

f

V micro
s

. (5.18)

Note that the interplatelet distance is not necessarily uniform insight a clay particle.
That is why the average value over the solid phase at the microscale is used, i.e. 〈φ〉s =

1
V micro

s

∫
V micro

s
φdV .

Assuming a stratified nanoscopic structure consisting of a parallel arrangement of clay
platelets of thickness 2Hs according to Fig. 5.3, 〈φ〉 can be related to the interplatelet distance
2H according to

〈φ〉 =
H

H +Hs
. (5.19)

As shown in [22], the two porosities are linked to each other by an integral version of the overall
solid mass balance, which can be written in its isotropic version as

(1 − nf )(1 − 〈φ〉s) = (1 − nf )(1 −
〈
φ
〉s

) exp(−ǫ) , (5.20)

where the overbars refer again to a strain free reference state.
For the same reasons as before, for deformable media it might be more convenient to express the
variation of the nanoporous space in the Lagrangian approach which defines the nanoporosity
with respect to the particle volume at the reference state

〈
φL
〉

=
V nano

f

V
micro
s

. (5.21)

The link with the Eulerian porosity is given by

〈
φL
〉

=
V nano

f

V micro
s

× V micro
s

V
micro
s

= 〈φ〉 × V micro
s + ∆V micro

s

V
micro
s

= 〈φ〉 (1 + ǫs) , (5.22)

with ǫs = ∆V micro
s

V
micro

s

the volumetric strain of a clay particle. The clay particle deformation

∆V micro
s is defined as the sum of the variation of the porous space ∆V nano

f = V nano
f − V

nano
f

and the solid phase ∆V nano
s = V nano

s − V
nano
s inside a particle. Assuming incompressible clay

platelets (∆V nano
s = 0), ǫs reduces to

ǫs =
∆V nano

f

V
micro
s

=
V nano

f − V
nano
f

V
micro
s

=
〈
φL
〉

−
〈
φ
〉
. (5.23)

Combination of the above equation with (5.22) allows to express the variation of the
nanoporous space in the Eulerian approach as

ǫs = 〈φ〉 (1 + ǫs) −
〈
φ
〉

=
〈φ〉 −

〈
φ
〉

1 − 〈φ〉 . (5.24)
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Defining the volumetric strain of the micropores as the variation of the Lagrangian micro-

porosity ǫf =
∆V micro

f

V
= nL

f −nf given by Eq.(5.16), in combination with Eq.(5.23) the overall
strain can be rewritten as

ǫ =
∆Vf

V
=

∆V micro
f

V
+

∆V nano
f

V

=
V micro

f − V
micro
f

V
+
V nano

f − V
nano
f

V
micro
s

V
micro
s

V

= nL
f − nf +

[〈
φL
〉

−
〈
φ
〉] V − V

micro
f

V

= nL
f − nf +

[〈
φL
〉

−
〈
φ
〉]

(1 − nf )

= ǫf + (1 − nf ) ǫs . (5.25)

The different terms of the total stress can thus all be expressed as functions of the nano-
and micro-porosities . This means that the coupling between the different physical phenomena
is made through these two porosity levels.
Note furthermore that these are exactly the inter- and intra-cluster porosities that allow to
account for water transfer between the two porosity levels. As shown in the subsequent ap-
plication, for a fixed sample volume, a decrease of the interparticle pores and therefore of nf

(due to a decrease of Pc during water infiltration, for example) is compensated by an increase
of the interplatelet space and thus of 〈φ〉 indicating a water transfer from the micro- to the
nanopores. This increase of the separation distance between the clay platelets in turn results
in a decrease of the disjoining pressure Πd.

5.3 Application to an oedometric swelling pressure test

This section presents the governing equations used for the computation of the different stages of
imbibition (the dry and the fully saturated states, along with intermediate saturations) during
the oedometric swelling experiment shown in Figure.5.2. The swelling pressure is defined as
Pext the applied pressure to the upper disc to prevent volumetric strain. The total stress given
by Eq.(5.1) is constant and equal to −PextI. The assumptions underlying the computation
according to the experimental data [11] are:

• At the initial state of the imbibition (denoted in the following by the superscript “i"), the
water content of the sample is set to the mean value between the powder and the pellets

ωi ≈ 0.12 + 0.05
2

= 0.085 which corresponds to 1 to 2 water layers in the interplatelet

pores [3]. The corresponding water saturation is Si
w = ωi/ωf = 0.26 which is consistent

with the experimental observations. For this saturation level, all water is assumed to
be confined in the nanopores, while the micropores are only filled by air. The meniscus
between the air and water should thus be located at the limit of the nanopores on the
surface of the clusters as shown in Fig.5.2 implying that the microscopic Bishop coefficient
is null, χi = 0. This hypothesis agrees with a rough estimation of the pore diameter linked
to the initial capillary pressure of about 200 MPa using Laplace equation Pc = 2γ/R.
With the water/air surface tension γ(298K) = 72 × 10−3 N.m the corresponding pore
diameter is approximately 2R = 4γ/Pc ≈ 2 nm which is clearly superior to the nanopore
diameter and justifies the assumption that the later is completely saturated.

• The final state of the imbibition (denoted by the superscript “f") corresponds to the fully
saturated state in the absence of any capillary pressure, i.e. P f

c = 0.
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5.3.1 Initial “dry state"

The initial state represents the reference state for this application, so that ni
f = nf and 〈φ〉 =

φi = φ. For the sake of simplicity, the brackets “〈·〉" will be omitted in the notation of the
average nanoporosity in the following. As sample deformation is prevented during water intake
no overall elastic stress appears with respect to the initial state and σE = 0. Initially, there is
no pressure applied to the cell P i

ext = 0 and it follows from Eq.(5.1)

Pext = 0, σE = 0 ⇒ Πi
eff = −P eff,i

f

(5.9) ⇒ Πi
eff = −

(
Pa − χeff,iP i

c

)

Pa ≈ 0 ⇒ Πi
eff ≈ χeff,iP i

c

. (5.26)

In combination with Eqs. (5.5) and (5.10), it comes

(
1 − αi

)
Πi

d =
[
1 − (1 − χi)αi

]
P i

c =
(
1 − αi

)
P i

c

⇒ Πi
d(φi) = P i

c(Si
w) = 200 MPa , (5.27)

which means that the initial high capillary pressure is completely compensated by the disjoining
pressure.

Assuming crystalline swelling at the beginning of the experiment the disjoining pressure is
computed by the hard sphere fluid law (5.8) which allows to estimate the interplatelet distance
corresponding to the initial capillary pressure value as

Πd,HS(H i) = P i
c = 200 MPa

(5.8)−−−→ 2Hi = 3.12 Å . (5.28)

This corresponds to 1-2 water layers which is consistent with the assumption of crystalline
swelling [3]. The corresponding nanoporosity is estimated using Eq.(5.19) by assuming a
platelet thickness 2Hs = 1nm

φi = φ =
H i

H i +Hs
= 0.24 . (5.29)

In order to show the improvement of the HS law compared to the PB law in computing the
disjoining pressure at the initial sate, Fig.5.6 compares the disjoining pressure curves obtained
with a classical PB approach (5.7) for cb = 10−4 mol/l (fixed value for the rest of chapter)
with that obtained with a HS fluid law (5.8). The figure shows also the disjoining pressure
value at the initial state of imbibition and the corresponding interplatelet distance estimated
from relation Eq.(5.8). It can easily be seen that at small interplatelet distances, the disjoining
pressure values predicted by the HS fluid law are significantly higher than those predicted by
the PB law. It is thus obvious that the disjoining pressure estimated with the PB theory is not
able to compensate the high initial capillary pressure. This confirms again the need to take
into account the solvation forces for computing the disjoining pressure at the beginning of the
imbibition experiment. Even if modeling the electrolyte solution by a simple HS fluid is a very
simplistic approach which requires further improvement (including ionic and dipolar interac-
tions as presented in the previous chapters), this approach represents a clear improvement of
the nanoscale description at low hydration levels where the solvation forces dominate the EDL
effects.

For the estimation of the microporosity at the initial sate ni
f we introduce:

• the dry density ρss = mnano
s /V nano

s = 2670 kg/m3 [115], with mnano
s the mass of the solid

phase in a clay particle;
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Figure 5.6: Disjoining pressure profiles obtained with a PB law Eq.(5.7) for cb = 10−4 mol/l
and with a HS fluid Eq.(5.8). The red point indicates the value at the initial state of the
imbibition experiment equal to the capillary pressure.

• all water being located in the nanopores, the initial water content is defined as the mass
ratio of water to the solid phase inside a particle ωi = mnano

H2O /m
nano
s = 0.085;

• the dry density of the sample ρdry = mmicro
s /V = 1.45 g/cm3, with mmicro

s the mass of
the solid phase at the microscale.

It follows

ρdry

ρss(1 − φ)
=

mmicro
s

V

V nano
s

mnano
s

V micro
s

V nano
s

=
V nano

s

V

mnano
s +mnano

H2O

mnano
s

= (1 − ni
f )(1 + ωi)

⇒ ni
f = nf = 1 − ρdry

ρss(1 − φi)(1 + ωi)
= 0.39 (5.30)

5.3.2 Final fully saturated state

At the final state the medium is completely saturated (Sf
w = 1), the capillary pressure vanishes

and from Eq.(5.9) it follows that the fluid pressure contribution becomes negligible P eff,f
f =

Pa ≈ 0. From the mechanical equilibrium Eq.(5.1), it can be concluded that the external
swelling pressure reaches its maximum value which is entirely ensured by disjoining pressure
effects

σE = 0 , P eff,f
f = 0 ⇒ P f

ext = Πf
eff =

(
1 − αf

)
Πf

d(Hf )

=
2
(
1 − nf

f

)
(1 − 2νs)

(1 + νs)nf
f + 2 (1 − 2νs)

Πf
d(Hf ) , (5.31)

where Πf
d(Hf ) is a function of the interplatelet distance at the final state Hf . At full saturation

it seems reasonable to assume osmotic swelling and the disjoining pressure is consequently given
by PB theory Eq.(5.7).

The values of the porosities depend on chosen approach, Eulerian or Lagrangian. As macro-
scopic deformation is prevented (ǫ = 0), it comes directly from Eq. (5.15) that the Eulerian
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and the Lagrangian microporosities are identical. The volumetric strain of the microporous
space is thus given by

ǫff = nf
f − nf = nL,f

f − nf

=
αf − nf

f

Ks
Πf

d = βf Πf
d . (5.32)

As the nanoporosity is defined with respect to volume of the solid phase at the microscale,
even without any effective medium deformation, the clay particles are free to shrink or swell
during water imbibition. The Eulerian and the Lagrangian nanoporosities differ from each
other. The Eulerian nanoporosity at the final state is directly obtained by application of Eq.
(5.20)

φf = 1 − (1 − nf )(1 − φ)

1 − nf
f

. (5.33)

The corresponding Lagrangian nanoporosity can be expressed by insertion of ǫ = 0 in Eq.
(5.25), which results in

φL = φ−
nL

f − nf

1 − nf
. (5.34)

Alternatively, by the use of Eq. (5.23) in combination with the above equation, the volu-
metric strain of the clay particles with respect to the reference configuration can be expressed
as

ǫfs = φL − φ =
nf − nL

f

1 − nf
. (5.35)

From this last relation, it can be seen that in the absence any macroscopic deformation, a
decrease in the microporous space is compensated by a swelling of the clay particles, whereas
an increase of the interparticle space induces a shrinkage of the solid phase at the microscale.

5.3.3 Intermediate saturations

At intermediate saturations we chose a representation of the overall medium by a division
into two parts as shown schematically on Fig.5.7: a fully saturated part of height x + ∆ at
the bottom and a part of height L − x − ∆ at the top being at the initial saturation, where
L denotes the sample height and ∆ the local macroscopic deformation due to the different
saturations of both parts. Note that this might not correspond to the real configuration. But
as no information is given about the advancement of the water front during water infiltration,
this representation has the advantage that it does not require to define microscopic saturation
and capillary pressure which can differ from their macroscopic values.

As the sample diameter is fixed, the volumetric fractions of both parts are given by the
ratio of their respective height to the sample height

Bottom part: θb =
x+ ∆
L

;

Top part: θt =
L− x− ∆

L
= 1 − x+ ∆

L
= 1 − θb .

(5.36)
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L-x

∆

x

Figure 5.7: Representation of the sample at intermediate saturations as composed of two parts:
the bottom being fully saturated and the top at the initial saturation. The overall saturation
is obtained by the volume ratio of the two parts. On the left: configuration without local
deformation; on the right: with local deformation ∆ due to different water contents

.

The overall saturation is thus given by mean value over both parts weighted by their respective
volume fraction as

ST
w = θb + (1 − θb)Si

w , (5.37)

with Si
w = ωi/ωf = 0.26. The local vertical strains ǫi = {0, 0, ǫi} read as

ǫb =
∆
x

and ǫt = − ∆
L− x

, (5.38)

where the coupling with the saturation is made via the overall water saturation (5.37). The
corresponding oedometric elastic pressures are given by

σ
b/t
E = M̃ b/tǫb/t, (5.39)

with M̃ b/t = K̃b/t +
4
3
µb/t the oedometric bulk modulus. Using Eq.(5.4) in combination

with the relation µ =
3(1 − 2ν)K̃

2(1 + ν)
for the Lamé parameter µ assuming a constant value for the

macroscopic Poisson ratio ν, the oedometric bulk modulus is linked to the microporosity nb/t
f

via the Biot coefficient as follows

M̃ b/t =
3(1 − ν)

1 + ν
Ks

(
1 − α(nb/t

f )
)
. (5.40)

As the system is assumed at mechanical equilibrium, the total pressure of each part cor-
responds to the external swelling pressure Pext. The bottom part being completely satu-
rated, the capillary pressure is nul and P eff,b

f = Pa ≈ 0, whereas at the top part we have
the initial configuration of hydration (St

w = Si
w). This means that all water is confined in

the nanopores and consequently χt = 0 and P t
c = P i

c = Πi
d = 200 MPa. The equivalent

fluid pressure in this part is obtained by a combination of Eq.(5.9) and Eq.(5.10) which gives
P eff,t

f = Pa − χeff
t P i

c = Pa −
[
1 − (1 − χt)αt

]
P i

c = Pa −
[
1 − α(nt

f )
]

Πi
d. As a result, the

respective vertical components of the total pressure can be written as

Bottom part: − Pext(ST
w) = −P eff,b

f + σb
E − Πb

eff
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= −Pa + M̃ b(nb
f )ǫb −

[
1 − α(nb

f )
]

Πd(Hb)

= −Pa +
[
1 − α(nb

f )
] [3(1 − ν)

1 + ν
Ks ǫb − Πd(Hb)

]

= −Pa +
2
(
1 − nb

f

)
(1 − 2νs)

(1 + νs)nb
f + 2 (1 − 2νs)

[
3(1 − ν)

1 + ν
Ks

∆
x

− Πd(Hb)
]

(5.41)

Top part: − Pext(ST
w) = −P eff,t

f + σt
E − Πt

eff

= −
{
Pa −

[
1 − α(nt

f )
]
P i

c

}
+ M̃ s(nt

f )ǫs −
[
1 − α(nt

f )
]

Πd(Ht)

= −Pa + M̃ t(nt
f )ǫt +

[
1 − α(nt

f )
] [

Πi
d − Πd(Ht)

]

= −Pa +
[
1 − α(nt

f )
] [3(1 − ν)

1 + ν
Ksǫt + Πi

d − Πd(Ht)
]

= −Pa +
2
(
1 − nt

f

)
(1 − 2νs)

(1 + νs)nt
f + 2 (1 − 2νs)

×
[
−3(1 − ν)

1 + ν
Ks

∆
L− x

+ Πi
d − Πd(Ht)

]
.

(5.42)

Note that in the completely saturated bottom part Πd is computed by PB law (5.7), whereas
in the top part it is determined by the HS fluid law (5.8). In a similar way, the respective
Eulerian microporosities are obtained from Eq.(5.13) which yields

nb
f = nf +

(
α(nb

f ) − nb
f

) [
ǫb − Πd(φb)

Ks

]

= nf +
nb

f (1 − nb
f )

2(1 − 2νs)
1 + νs

+ nb
f

[
∆
x

− Πd(φb)
Ks

]
(5.43)

and

nt
f = nf +

(
α(nt

f ) − nt
f

) [
ǫt +

Πi
d − Πd(φt)
Ks

]

= nf +
nt

f (1 − nt
f )

2(1 − 2νs)
1 + νs

+ nt
f

[
− ∆
L− x

+
Πi

d − Πd(φt)
Ks

]
. (5.44)

Contrarily to the fully saturated state where macroscopic strain is prevented (note that in
this case, the sample is entirely composed of the bottom part), at intermediate saturations,
the Eulerian and Lagrangian microporosities differ from each other due to the presence of local
strains in each part. Their respective values can be expressed from Eq. (5.16) as follows

nL,b
f = nf + α(nb

f )ǫb − βb Πd(φb)

= nf +
3nb

f (1 − νs)

2 (1 − 2νs) + nb
f (1 + νs)

∆
x

−
α(nb

f ) − nb
f

Ks
Πd(φb) (5.45)

and

nL,t
f = nf + α(nt

f )ǫt + βt
[
Πi

d − Πd(φt)
]
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= nf −
3nt

f (1 − νs)

2 (1 − 2νs) + nt
f (1 + νs)

∆
L− x

+
nt

f (1 − nt
f )

2(1 − 2νs)
1 + νs

+ nt
f

Πi
d − Πd(φt)
Ks

. (5.46)

The Eulerian nanoporosities are expressed from the mass conservation of the solid phase
Eq.(5.20) which simplify in the limit of small deformations to

(
1 − nb

f

) (
1 − φb

)
= (1 − nf ) (1 − φ) exp (−ǫb)

= (1 − nf ) (1 − φ)
x

x+ ∆
, (5.47)

and
(
1 − nt

f

) (
1 − φt

)
= (1 − nf ) (1 − φ) exp (−ǫt)

= (1 − nf ) (1 − φ)
L− x

L− x− ∆
. (5.48)

To derive the above expressions we adopted an approximation of the elementary deformation dǫ

as a function of the elementary variation of the sample height dl as follows dǫ =
dl
l

. Integration

of this equation results in

[ǫ]ǫb

0 = [ln l]x+∆
x −→ ǫb = ln

x+ ∆
x

, (5.49)

and

[ǫ]ǫt

0 = [ln l]L−x−∆
L−x −→ ǫt = ln

L− x− ∆
L− x

. (5.50)

In the same way as for the fully saturated state, the corresponding Lagrangian nanoporosities
are obtained by insertion of Eqs. (5.45) and (5.46) in Eq. (5.25), which results in

φL,b = φ+
ǫb − nL,b

f + nf

1 − nf

= φ+

[
1 − α(nb

f )
]
ǫb + βb Πd(φb)

1 − nf
. (5.51)

and

φL,t = φ+
ǫt − nL,t

f + nf

1 − nf

= φ+

[
1 − α(nt

f )
]
ǫt + βt

[
Πi

d − Πd(φt)
]

1 − nf
. (5.52)

Replacing α and β by their respective explicit expressions (5.4) and (5.17), it comes

φL,b = φ+
1 − nb

f

1 − nf
×

2 (1 − 2νs)
∆
x

+ (1 − νs)nb
f

Πd(φb)
Ks

2 (1 − 2νs) + nb
f (1 + νs)

. (5.53)

and
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φL,t = φ−
1 − nt

f

1 − nf
×

2 (1 − 2νs)
∆

L− x
− (1 − νs)nt

f

Πi
d − Πd(φt)
Ks

2 (1 − 2νs) + nt
f (1 + νs)

. (5.54)

Alternatively, by the use of Eq. (5.23) in combination with the above equations, the volu-
metric strain of the clay particles with respect to the reference configuration can be expressed
as

ǫbs =

[
1 − α(nb

f )
]
ǫb + βb Πd(φb)

1 − nf

=
1 − nb

f

1 − nf
×

2 (1 − 2νs)
∆
x

+ (1 − νs)nb
f

Πd(φb)
Ks

2 (1 − 2νs) + nb
f (1 + νs)

, (5.55)

and

ǫts =

[
1 − α(nt

f )
]
ǫt + βt

[
Πi

d − Πd(φt)
]

1 − nf

= −
1 − nt

f

1 − nf
×

2 (1 − 2νs)
∆

L− x
− (1 − νs)nt

f

Πi
d − Πd(φt)
Ks

2 (1 − 2νs) + nt
f (1 + νs)

. (5.56)

This results in a system of 6 unknowns
{
Pext, x (or ∆), nb/t

f , φb/t
}

depending on the overall

water saturation ST
w parameterized by Ks, ν and νs.

5.4 Results and discussion

This section depicts the numerical results of the simulation of the swelling pressure during
hydration and the related evolution of the microscopic properties giving further insight to the
local rearrangement. As the present approach has a purely qualitative character, without any
loss of generality, we impose the Poisson ratio of the clusters being fixed and equal to that at
the macroscale ν = νs = 0.25. The numerical results are analyzed in terms of Ks playing the
role of a scaling parameter accounting for the transmissibility between nanoscopic disjoining
and microscopic capillary effects. If it is not mentioned otherwise Ks is set to 5 MPa allowing to
obtain values of the swelling pressure nearby the experimental results, at least for moderately
high saturations [34].

5.4.1 Swelling and disjoining pressure

To start, remind that according to the model approach presented in the previous section the
overall medium is considered to be composed of two parts, a fully saturated bottom part and
a top part remaining at the initial saturation level. The overall saturation ST

w is then given
by the mean value of both parts weighted by their respective volume ratio according to Eq.
(5.37). The initial sate of saturation corresponds thus to the medium consisting only of the top
part (ST

w = Si
w = 26%). As developed in section 5.3.1, we assume crystalline swelling in this

part. Consequently, even at intermediate sates the disjoining pressure in the top part Πt
d is

approached by the HS fluid law of Eq.(5.8). Inversely, the final sate corresponds to the medium
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consisting only of the bottom part (ST
w = 1) being at full saturation. According to data in

literature [24], the interlayer space is filled by three or more water layers which is consistent
with osmotic swelling. As stated in section 5.3.2 the disjoining pressure in this part Πb

d is thus
calculated with the PB law of Eq.(5.7).

In what follows, we show our numerical results of the evolution of the overall effective
pressure, commonly designated as “swelling pressure", as a function of the overall saturation
degree. A comparison with the evolution of its nanoscopic counterpart which is the disjoining
pressure allows to conclude about the contribution of the later to the overall swelling behavior.
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Figure 5.8: (a) Numerical results of the swelling pressure as a function of the overall saturation
of the medium and comparison to the experimental data from [11]; (b) Disjoining pressure in
the bottom (saturated → PB law) and in the top part (initial state → HS law). The curves
are obtained with with Ks = 5 MPa.

The blue curve in Fig.5.8(a) shows the external swelling pressure Pext obtained with the
present three-scale model as a function of the overall medium saturation for the microscopic
clay particle bulk modulus set to Ks = 5 MPa. The numerical results are compared to the
experimental values taken from [11] and represented by black circles in this figure.

In agreement with the experimental results, Pext increases with the overall saturation.
Owing to the separation of the different contributions (contact stress, capillary pressure and
disjoining forces) to the total swelling pressure in Eq.(5.1), the model indicates that this behav-
ior is rather due to the collapse of the capillary pressure in the micropores than to an increase
of the disjoining pressure in the nanopores.

As shown on Fig.5.8(b), Πd decreases during water infiltration. The red dots correspond to
the top part of the sample being at the initial saturation where Πd is computed by a HS law
Eq.(5.8), whereas the blue dots correspond to the bottom part being at full saturation where
Πd is estimated using PB theory Eq.(5.7). It can be seen that with increasing saturation, Πd

increases in the top part (inset in Fig. 5.8(b)), while it decreases in the bottom part. At full
saturation the medium being entirely composed by the bottom part so that capillary pressure
vanishes. As a consequence, the external pressure is completely determined by the disjoining
pressure which is calculated by classical EDL theory. It is worth noting that the interplatelet
distance estimated with the PB law at full saturation corresponds to about 3 water layers in
the nanopores which is in agreement with the expectations [24].

However, Figure.5.8(a) highlights also the limits of the present model. After a good agree-
ment at low saturations, the numerical values clearly exceed the experimental ones. Further-
more, after a first increase, the experiment swelling pressure decreases before increasing again.
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Such behavior is confirmed by many experimental and modeling studies for different clay types
[11, 105]. It is generally explained by the collapse of the solid matrix when reaching the loading-
collapse (LC) line in the context of elasto-plastic deformation corresponding to a restructuring
of solid structure at the microscopic scale [105].

In order to account for this local reorganization, we propose here a first simplistic approach
which includes swelling at the nanoscopic clay platelet scale within the rigidity of a microscopic
clay particle. As a consequence, instead of imposing a fixed value for the microscopic rigidity,
Ks is related to the nanoporosity as follows

Ks(ST
w) = Ki

s

φi

φ(ST
w)

, (5.57)

where Ki
s = 5 MPa is the microscopic compressibility at the initial state. This law does not

aim to quantitatively represent the evolution of microscopic rigidity, but it allows to capture
qualitatively the impact of the variation of the nanostructure on the rigidity of the clay clusters.
Thus, The latter should become softer when the interplatelet space increases.

The swelling pressure obtained by the simulations with Ks evolving according to Eq. (5.57)
is shown by the red curve in Fig.5.8(a). It can be seen that for an overall saturation up to
70%, the values of Pext are slightly higher than those obtained with a constant Ks. A possible
explanation might be that the major part of the medium in this case is composed by the dry
top part which is compressed by the swelling of the saturated bottom part (Fig. 5.10). The
overall medium becomes thus more rigid thereby resulting a more important swelling pressure.
When the saturation further increases, the compression of the top part reduces which results
in a decrease of Ks in this part. In addition, the major part of the medium is now saturated
with an interlayer spacing higher than at the initial state. The overall medium softens and
the swelling pressure is lower than for Ks fixed at 5 MPa throughout the experiment. This
simplified approach allows to reduce the value of the swelling pressure at full saturation (of
about 6.5% in this application example), but the reduction is not sufficient to recover the
experimental observations nor to reproduce its temporary drop. More efforts have to be done
to correctly account for plastic deformation. The following analyses are thus realized with fixed
values of Ks.
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Figure 5.9: (a) External pressure as a function of the total saturation of the medium for
different values of Ks. (b) Evolution of the swelling pressure at the final (saturated) state as a
function of the microscopic bulk modulus Ks.

To further investigate the impact of microscopic rigidity on the swelling pressure Fig.5.9(a)
depicts the evolution of Pext during water intake for different values of Ks taken between 0.5
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MPa and 100 MPa. For high values of Ks, steep increase of Pext is observed at low saturation
levels which attenuates at high saturations. In contrast, for low values of Ks, the external
pressure increases rather at high saturation levels. The swelling pressure at the final state of
hydration decreases when the bulk modulus of clay clusters Ks decreases. Nevertheless even
with very low values (Ks = 1 MPa), the external pressure is still significantly higher than
experimental values. In order to test if the present model allows to recover the experimental
values at full saturation, Fig.5.9(b) shows the evolution of the final swelling pressure P f

ext as
a function of Ks. Although a decrease of P f

ext is observed when Ks decreases, the multi-scale
model clearly overestimates the swelling pressure at full saturation. Moreover, these values of
Ks are significantly lower than the values of the effective bulk modulus documented in literature
lying commonly between 10 and 50 GPa [116, 117]. Despite these apparent limits of the present
model approach, two important conclusions can be drawn:

• To obtain external swelling pressures in the MPa regime, Ks has to be of the same order
of magnitude which is significantly lower than the values of the overall bulk modulus
documented in the literature.

• We remind that due to the separation of the different contributions to the overall stress,
Ks is only tied up to the connectivity of the clay platelets inside a particle. Thus regarding
these low values of Ks we conclude that the overall rigidity of the medium might not be
ensured by the connectivity of the solid phase, but it is explained by the action of the
disjoining pressure acting on the clay platelets in the nanopores.

5.4.2 Deformation and porosities
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Figure 5.10: Deformation in the bottom (at full saturation) and top (at initial saturation) parts
as a function of the total saturation of the medium for Ks = 5 MPa.

As highlighted in section 5.3.3, even if the overall sample deformation is prevented, local
volumetric strain can appear as a consequence of the difference in the saturation degree in-
side the sample. The evolution of the respective vertical deformation in the two parts of the
medium with the overall saturation is illustrated in Fig.5.10. According to the expectation, the
fully saturated bottom part swells, whereas the top part (at the initial state) is compressed.
Gradually, as hydration goes on, the swelling of the bottom part decreases down to zero at the
final state. This is logical as the volume of the oedometric cell is fixed and at the final state
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the entire medium is composed of the bottom part. The top part is continuously compressed
during hydration.
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Figure 5.11: Volumetric strain of (a) the micropores and (b) the clay particles in the bottom
(saturated) and top (initial state) parts as a function of the total saturation of the medium for
Ks = 5 MPa.

Figure.5.11 allows to get a better insight to the repartition of the deformation in the two
parts between the variation of the microscopic fluid and solid phases. (Figure.5.11(a) presents
the evolution of the volumetric strain in the micropores which is defined as the variation of
the Lagrangian microporosity according to Eq. (5.16) with the overall saturation. Similarly,
Fig.5.11(b) depicts the corresponding evolution of the clay particle strain which is given by the
variation of the Lagrangian nanoporosity according to Eq.(5.23).

These graphs point out that the swelling of the bottom part is mainly due to the increase
of the interplatelet space. As shown by the blue line in Fig. 5.11(a) after a slight increase at
low hydration degrees, the microporous space is continuously compressed with increasing water
intake. This behavior is consistent the reduction and final collapse of the capillary pressure
at full saturation as stated in literature [105]. Consequently, water is transferred from the
micro- to the nanopores thereby increasing the interlayer space which is in agreement with a
positive strain of the clay particles as shown by the blue line in Fig.5.11(b). According to the
numerical results, after a steep increase at the beginning of hydration the nanoporosity in the
bottom part decreases during infiltration but remains always higher than its value in the initial
reference state. This behavior might be explained by the fixed overall sample volume which
limits the swelling. A different swelling behavior of the clay particles might be observed for
free hydration.

In the top part the micro- and nanoporosities decrease during water infiltration as shown
by the red lines in Fig. 5.11(a) and 5.11(b), respectively. The numerical results indicate that
the compression of this part is mainly due to the decrease of the microporous space. The clay
particles are only slightly compressed. In the present model approach this is due to the fact that
the interplatelet distance is limited by the divergence of the disjoining pressure of the HS fluid
law at a separation distance of one water molecule diameter (cf. Fig.5.5). Nevertheless, note
that even if the present HS fluid law might overestimate the minimum interplatelet distance
to one water layer, the limitation of the compression of the nanopores is consistent with the
intercalation of hydrated cations to compensate the surface charge of the clay platelets [13].
The compression of the clay particles would have been certainly be more pronounced if the
nanopores were initially filled by at two water layers.

Note finally that the variation of the nanoporosities with ST
w in both parts is at the origin

of the respective evolution of the disjoining pressure as depicted in Fig.5.8(b). For completion
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Figure 5.12: Volumetric strain of (a) the micropores and (b) the clay particles at the fully
saturated state as a function of the microscopic bulk modulus Ks.

of the above analysis, Fig.5.12 depicts the volumetric strain of (a) the micropores ǫff and (b)
the clay particles ǫfs at the fully saturated state as a function of the microscopic bulk modulus
Ks. As overall sample deformation is prevented, the Eulerian and Lagrangian microporosities
are identical and ǫff is computed with Eq.(5.32).
In agreement with the collapse of the capillary pressure in the micropores at full saturation
[106], the numerical results show a reduction of the microporosity between the initial dry and
the final saturated state (Fig.5.12(a)).
As macroscopic strain is prevented, the decrease in the inter-particle space is compensated by
an increase of the inter-platelet space as shown on Fig. 5.12(a). This confirms that even in the
absence of macroscopic strain the clay particles can swell. At a consequence, the Lagrangian
and Eulerian nanoporosities do not coincide and ǫfs is given by the difference between the
Lagrangian nanoporosity between the initial and the final state according to Eq.(5.35).
The curves on Fig.5.12 confirm thus the ability of the multi-scale model in capturing the water
transfer from the micro-to the nanopores during hydration. As can be seen furthermore on
these graphs, such evolution of the porous space is more pronounced for a soft solid matrix
being characterized by low values of Ks.
Note finally that the increase of the nanoporosity is at the origin of the significant reduction
of the disjoining pressure during water as depicted on Fig.5.13.

5.5 Conclusion

The multi-scale version of Terzaghi’s effective stress principle for unsaturated expansive clays
accounting for electro-chemo-hydro-mechanical coupling at different length-scales [22] is applied
to numerically simulate swelling pressure tests at constant volume. The comparison between
our numerical results and experimental data performed at the CIEMAT highlight the ability
of our model in discriminating between the respective contributions of microscopic capillary
pressure and nanoscopic disjoining forces to the overall swelling pressure. The main conclusions
are:

• The model is able to capture water transfer from the microscopic inter-particle to the
nanoscopic inter-platelet pores during hydration. As a consequence, the increase of the
swelling pressure observed in the experimental data and confirmed by our numerical com-
putations can be explained as the result of two phenomena: the high capillary pressure at
the initial low saturation level is completely compensated by the disjoining pressure. With
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Figure 5.13: Variation of the disjoining pressure between the initial (Si
w = 0.26) and the final

fully saturated state as a function of the microscopic bulk modulus Ks.

increasing saturation, water is continuously transferred from the micro- to the nanopores
resulting in a decrease of the microscopic inter-particle pores and a swelling of the clay
particles. At full saturation when capillary pressure vanishes the swelling pressure corre-
sponds to the effective disjoining pressure with a somewhat lower magnitude compared
to its initial value due to a higher inter platelet distance within the clay agglomerates at
the nano-scale.

• The classical PB theory remains valid at high saturation levels in the osmotic swelling
regime where swelling is driven by EDL effects. However, for low hydration, in the
crystalline swelling regime the molecular character of the electrolyte solution has to
be taken into account for accurately modeling the disjoining pressure at small inter-
platelet distances. By selecting a nanoscopic description of a simple HS fluid confined
between two planar hard walls the disjoining pressure has been computed using classical
DFT. Notwithstanding the simplicity of our approach it leads to an improvement of the
nanoscopic description, particularly at low hydration levels.

• In the present model approach, the microscopic bulk modulus is only linked to the solid
phase connectivity inside the clay clusters and plays the role of a scaling parameter
between disjoining and capillary effects. The numerical results show that in order to
obtain swelling pressures in the MPa regime, Ks has to be of the same order of magnitude,
which is significantly lower than the values of the overall bulk modulus typically found in
the literature. We conclude that the overall rigidity of the medium may thus be ensured
by nanoscopic disjoining forces.

Some shortcomings still persist such as the overestimation of the swelling pressure and the
inability in reproducing the temporary drop of the swelling pressure during water intake. Such
behavior is generally explained by a rearrangement of the clay particles in the frame of elasto-
plastic deformation which is not accounted in the present model approach the latter assuming
only elastic deformation. Being an important aspect to be included in the multiscale model,
this is however out of the scope of this thesis.
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Conclusion and future work

This thesis presents some possible improvements for modeling the nanoscale portrait of swelling
clays by considering the water solvent as a fluid of individual molecules in order to account
for both their finite size and polar nature. The objective is to recover existing experimental
evidences and computational results obtained with molecular dynamic models such as the
presence of discrete water layers at low hydration, the evolution of the swelling pressure during
water intake . . . Through chapters 2 to 4 different phenomena of increasing complexity are
successively considered in the Electrical Double Layer description, such as the molecule size
and polar nature of the water solvent inducing interparticle correlation effects. Finally, the
presence of ions is included to arrive at the so-called “civilized" model of EDL.

In a first step presented in Chapter 2, the finite size of the water molecules is considered
by representing the EDL as a simple hard sphere fluid confined between two planar hard walls.
Such a fluid is a fundamental reference system in statistical mechanics commonly treated by
the Fundamental Measure Theory (FMT). This theory is known as the most powerful toolbox
for studying (mixtures of) one-component homogeneous and inhomogeneous hard sphere fluids
primarily thanks to its easy implementation and very good performance especially at low and
intermediate bulk densities. At low hydration, that is at small interplatelet distances of a few
molecular diameters, the electrolyte solution can be modeled in a first approach as a HS fluid
confined between two hard walls. The resulting density profiles obtained with FMT show an
oscillatory behavior which is in agreement with an arrangement of the fluid molecules in the
interplatelet space in discrete layers at low hydration. Varying the distance between the two
parallel plates leads to an oscillatory behavior of the disjoining pressure (being defined as the
pressure acting on the plates to keep them at a fixed distance) which allows to account for
attraction or repulsion. Solely the decreasing parts of the disjoining pressure with increasing
separation distance represent mechanically stable configurations, which is consistent with the
experimentally observed formation of discrete water layers at low hydration. However, when
modeling the electrolyte solution as a simple HS fluid, the fluid pressure values obtained at small
interplatelet distances or in the bulk limit are unrealistically high. Therefore, an interparticle
attractive potential has to be added to the purely repulsive HS potential in order to remedy
this shortcoming.

In chapter 3, the water solvent is modeled as a Lennard-Jones (LJ) fluid which exhibits both
repulsive and attractive parts in its intermolecular potential. The LJ fluid presents a convenient
approach to account for the polar nature of the water solvent as it averages the different types of
dipolar interactions. In several former studies the density profiles of different inhomogeneous LJ
fluids have been accurately calculated by using a very accurate Density-Functional Perturbation
Theory (DFPT) in which interparticle correlations are included through the computation of
the Radial Distribution Function. An application of this approach for modeling an electrolyte
solution in the case of a low LJ interaction strength (βǫ = 0.7407) predicts oscillatory density
profiles for both the solvent and ions, which is similar to the results obtained when modeling
the solvent as a simple HS fluid. A more realistic approach for the water solvent consists in
imposing a high interaction strength βǫ = 1.077 to produce a reasonable bulk pressures (of the
order of 105 Pa). However, in this case the simulations show that almost no water molecules
are present in the EDL space because they are strongly attracted by the bulk water.
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Conclusion and future work

Chapter 4 tries to improve the LJ solvent model by taking explicitly into account the
orientation of the molecule dipoles through a DFPT approach. For the sake of simplicity,
dipole-dipole correlation effects of the inhomogeneous Dipolar Hard Sphere (DHS) fluid are
approximated by those of the corresponding homogeneous bulk fluid. The numerical results
confirm again the formation of discrete molecule layers in the crystalline swelling regime and
gives in addition the dipole orientation profile over the interplatelet space. For high dipole
moments, the disjoining pressure of the DHS fluid is significantly reduced in comparison with
that of the corresponding HS fluid and reasonable bulk pressures can be recovered. However,
the computation of interparticle correlations of the inhomogeneous DHS fluid by those of the
corresponding bulk DHS fluid is no longer realistic in the case of high dipole moments, which
is at the origin of the failure of the present DHS model approach. To remedy this shortcoming
the behavior of an electrolyte solution is finally studied in the framework of the Mean Field Ap-
proximation for a DHS fluid of a low dipole moment. The corresponding numerical simulations
result in oscillatory density profiles of the fluid components even for ions.

An application example is presented in chapter 5 by incorporation of the improved descrip-
tion at the nanoscale developed in this work into the three-sale model for unsaturated clayey
soils developed by Mainka et al. [22] to simulate the swelling pressure evolution of a clay sample
during hydration at constant volume. The numerical results obtained with this double porosity
model allow to capture the contributions of the microscopic capillary pressure and nanoscopic
disjoining forces to the overall swelling pressure. It can be shown that their evolution is a
consequence of the water transfer from the micro- to the nanopores during water uptake. As a
first qualitative improvement of the nanoscale portrait for crystalline swelling, the electrolyte
solution is modeled as a simple HS fluid confined between two planar hard walls. PB theory
is assumed to remain valid at high hydration (osmotic swelling). This leads to a significant
improvement of the swelling pressure computation, especially at low hydration level. Obviously
some shortcomings still persist, such as the inability of the present model in accounting for
elasto-plastic deformation.

In conclusion, this work contributes to improve existing nanoscale models of expansive
clayey soils by accounting for the molecular nature of the water solvent. The obtained results
exhibit the dominant role of the molecular character of the electrolyte solution which is then
incorporated into a three-scale model obtained in the framework of periodic homogenization in
order to numerically simulate the hydromechanical behavior of swelling clays during oedometric
hydration tests. The comparison between the numerical results and experimental data confirms
that a better description of the mechanical behavior at the macroscale stems partially from
improvements of the nanoscale model.

While this thesis has proposed an improvement of the nanoscopic description of expansive
clayey soils, some opportunities for extending the scope of this work are suggested below.

• Wertheim’s result for the dielectric constant calculated with MSA is obviously much
better than that of the two classical formula of Clausius-Mossotti and Onsager. However,
the MSA is not able to produce the dielectric constant of water (ǫ = 80). Some existing
more sophisticated closures could be investigated.

• To complete the “civilized” model of the electrolyte solution, dipole-dipole correlation
effects of the inhomogeneous DHS fluid have to be calculated accurately for the case of
water with high density and dipole moment values. This is actually a very difficult task,
but it should be undertaken.

• Regarding the application to simulate swelling pressure tests, a rearrangement of the
clay particles in the frame of elasto-plastic deformations has to be incorporated into the
three-scale model in order to correctly recover the evolution of the swelling pressure over
the entire saturation range.
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Taking into account the solvent discontinuous nature
in the mechanical modeling of swelling clays

Prise en compte du caractère discontinu du solvant
dans la modélisation mécanique des argiles gonflantes

L
es argiles hydratées gonflantes se rencontrent dans maints aspects de la vie allant des ac-
tivités agricoles à la protection de l’environnement et des procédés industriels au génie

civil. Elles sont utilisées par exemple comme barrières pour éviter la dispersion des polluants
dans l’environnement ou pour la gestion des déchets y compris les déchets radioactifs de haute
activité. Une caractéristique importante est leur comportement de contraction-gonflement qui
peut être gênant car il est capable de provoquer la dégradation voire l’effondrement des struc-
tures (bâtiments, ponts, routes, tunnels. . . ) construites sur des sites en argile gonflante. Dans
l’industrie pétrolière, la stabilité des forages dans les schistes riches en argile dépend fortement
de leur capacité de gonflement. La résolution de ces problèmes nécessite donc une compréhen-
sion approfondie des phénomènes physiques qui sous-tendent le comportement des sols argileux
expansifs.

L’objectif de cette thèse est l’amélioration à l’échelle nanométrique des modèles d’argiles
gonflantes en considérant le fluide dans l’espace interfoliaire composé d’eau comme solvant et
d’ions – cations compensateurs pour assurer l’électroneutralité globale et anions – non plus
comme un milieu continu mais comme un milieu discontinu sous forme de molécules individu-
elles afin de tenir compte à la fois de leur taille finie, de la nature dipolaire de l’eau et des
effets de corrélation entre les molécules. Cette thèse s’insère dans une série de travaux visant
à construire, par changement d’échelle, un modèle d’argiles gonflantes pour le génie civil fondé
sur une description aussi précise que possible de la physique à l’échelle du nanomètre.
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Chapitre 1 – Introduction à la modélisation des argiles gonflantes

Le premier chapitre rappelle quelques notions de base sur les smectites qui constituent
la principale composante minérale des argiles expansives. Une caractéristique essentielle pour
pouvoir modéliser par changement d’échelle le comportement des sols argileux à l’échelle macro-
scopique de l’ingénieur en génie civil est d’adopter une représentation géométrique de complex-
ité raisonnable. Les argiles expansives présentent en effet toute une hiérarchie d’échelles avec,
au moins, trois échelles de longueurs caractéristiques distinctes (nano, micro et macro) et deux
niveaux de porosité (nanopores et micropores) [15].

À une échelle de longueur de l’ordre du nanomètre, elles sont composées d’un assemblage de
couches de phyllosilicate chargées électriquement appelées feuillets. Leur charge négative vient
de substitutions isomorphes de cations structurels de valence supérieure par d’autres de valence
inférieure et aussi de la présence de défauts dans le réseau cristallin de la smectite. Les feuillets
d’argile sont séparés par un réseau nanoporeux saturé par une solution aqueuse d’électrolyte.
La charge de surface négative des feuillets attire les cations de la solution d’électrolyte afin
d’assurer l’électroneutralité globale du système (phases solide et liquide). En raison de cette
attraction, la concentration des cations au voisinage de la surface d’argile dépasse celle de
la solution d’équilibre loin de celle-ci appelée bulk. Les cations chargés positivement forment
ensemble avec les feuillets d’argile chargés négativement une double couche électrique (EDL ou
Electrical Double Layer) diffuse. La longueur caractéristique de l’EDL est la longueur de Debye
O(10−9 m) qui donne la longueur sur laquelle les particules chargées interagissent. A l’échelle
microscopique intermédiaire de longueur caractéristique O(10−6 m), les feuillets argileux se
rassemblent pour former des paquets qui constituent la phase solide à cette échelle de longueur.
Ces derniers sont séparés par un réseau de micropores remplis soit par de l’eau pure, soit par
un mélange d’eau et d’air dans le cas non saturé. Du fait de leur leur taille, les micropores sont
totalement exempts d’effets EDL.

Ce travail se concentre sur les effets mécaniques engendrés par une telle situation et plus
particulièrement sur la pression de gonflement qui est l’équivalent macroscopique de la pression
de disjonction à l’échelle des feuillets. La pression de disjonction est définie comme l’excès de
pression vis-à-vis de la pression du bulk pour maintenir la distance interfoliaire à une valeur
fixée tandis que la pression de gonflement est l’excès de pression, toujours par rapport au bulk
(avec une pression de liquide éventuellement négative dans le cas non saturé), pour maintenir
un échantillon à volume fixé.

Sur la base de cette configuration locale, le but est de faire des prédictions sur le comporte-
ment mécanique de ces milieux à l’échelle macroscopique observable. Une technique rigoureuse
pour mettre à niveau les phénomènes électrochimiques hydromécaniques couplés qui se pro-
duisent aux petites échelles à l’échelle macroscopique observable est l’homogénéisation péri-
odique [16]. C’est pourquoi cette procédure est utilisée dans le cadre de cette thèse de doctorat
pour dériver les lois constitutives macroscopiques qui sont pertinentes pour les ingénieurs en
génie civil. Dans ce cadre, étudier les phénomènes qui se produisent aux échelles locales et plus
précisément à l’échelle nanométrique joue un rôle crucial comme brique élémentaire dans la
modélisation des argiles expansives.

L’approche classique pour modéliser les phénomènes physiques se produisant à l’échelle
nanométrique est la théorie de la double couche électrique, initialement proposée séparément
par Gouy et Chapman [17], dans laquelle le solvant (eau) est considéré comme un diélectrique
continu et les ions comme des charges ponctuelles. La pression de disjonction est la répulsion
résultant des effets combinés de l’attraction électrostatique entre la charge de surface négative
des feuillets d’argile et le nuage cationique dissous de la solution d’électrolyte et le rôle pré-
dominant de la pression osmotique. Elle peut être obtenue en résolvant le problème classique
de Poisson-Boltzmann (PB). Malgré sa simplicité, cette approche est capable de décrire quan-
titativement le comportement de la double couche électrique pour des ions monovalents à des
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niveaux d’hydratation élevés, dans le régime dit de gonflement osmotique [18]. Même dans ce
régime osmotique, un des défauts du modèle de PB est de prédire seulement un gonflement
alors que pour des cations plurivalents des comportements plus complexes sont observés. Une
modélisation plus sophistiquée toujours avec un solvant continu mais avec des ions de taille
finie et en prenant en compte les effets de corrélation entre les ions permet de bien rendre
compte de ce phénomène [20, 35].

Le cas du gonflement cristallin aux faibles hydratations et donc avec des distances interfoli-
aires de la taille des molécules d’eau est infiniment plus délicat à décrire. Doivent être prises en
compte non seulement les interactions entre les ions et les parois des feuillets mais également les
forces d’hydratation entre le solvant dipolaire (eau) et ces parois. Le présent travail va tenter
de poursuivre cette tâche en augmentant progressivement la sophistication de la description.

Chapitre 2 – Introduction à la Théorie de la Fonctionnelle de densité (DFT) et
application aux fluides de sphères dures

Dans une première étape, seule la taille finie des molécules d’eau va être prise en compte
en ne considérant que le solvant, ce dernier étant représenté comme fluide simple de sphères
dures (HS pour Hard Spheres). L’approche peut être jugée très élémentaire mais le fluide de
sphères dures est une référence fondamentale dans le cadre du développement de modèles plus
sophistiqués issus de la mécanique statistique.

La modélisation d’un fluide de sphères dures va utiliser la théorie fondamentale de la mesure
(FMT pour Fundamental Measure Theory). Cette théorie est connue comme l’outil le plus
puissant pour étudier analytiquement un fluide homogène constitué de sphères dures ou d’un
mélange de sphères dures. Ses bases théoriques et sa mise en œuvre sont décrites au chapitre 2.
Ses performances sont excellentes comparées aux simulations moléculaires surtout aux densités
moléculaires faibles ou intermédiaires.

A basse hydratation, c’est-à-dire pour de faibles distances interfoliaires de l’ordre de
quelques diamètres moléculaires, une première approche de modélisation considère le fluide
interfoliaire comme un fluide HS confiné entre deux parois dures planes parallèles. Les profils
de densité obtenus avec la théorie fondamentale de la mesure montrent un comportement oscil-
latoire en accord avec un agencement des molécules fluides en couches discrètes dans l’espace
interfoliaire.

La variation de la distance entre les deux plaques parallèles conduit à un comportement
oscillatoire de la pression de disjonction qui permet de rendre compte de l’attraction ou de la
répulsion. Seules les distances interfoliaires où la pression de disjonction est décroissante quand
la distance entre les plaques augmente sont des configurations mécaniquement stables. Ceci est
cohérent avec l’observation expérimentale qui montre que le remplissage de l’espace interfoliaire
se fait par des couches d’eau discrètes à faible hydratation. Cependant, la modélisation par
un fluide de sphères dures entraîne de grandes valeurs de la pression exercée par le fluide
sur le solide pour de petites distances interfoliaires qui sont irréalistes. Un potentiel attractif
interparticulaire doit nécessairement être ajouté au potentiel de sphères dures purement répulsif
afin de remédier à cette lacune.

Chapitre 3 – Fluide de Lennard-Jones

Dans le chapitre 3, l’eau est modélisée comme un fluide de Lennard-Jones (LJ) avec un
potentiel intermoléculaire composé de deux termes variant en r−6 et r−12 respectivement. De
ce fait, ce potentiel est répulsif aux faibles distances de séparation et attractif aux longues
distances de séparation. Le fluide de Lennard-Jones est une alternative simple pour prendre
en compte la nature polaire de l’eau car pour les trois types d’interactions dipolaires (Keesom,
Debye, London), le potentiel attractif aux grandes distances de séparation r a un comportement
en r−6 analogue au potentiel LJ de type 6-12.
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Dans un premier temps, les profils de densité pour différents fluides LJ confinés entre deux
plaques parallèles ont été calculés par une approche perturbative de la théorie de la fonction-
nelle de densité (DFPT) à partir du modèle de sphères dures dans laquelle les corrélations
interparticulaires sont incluses par l’intermédiaire de la fonction de distribution radiale (RDF
pour Radial Distribution Function). Cette dernière est calculée pour la situation inhomogène
du fluide confiné entre deux plaques au moyen de la résolution de l’équation d’Ornstein-Zernike.
Elle est complétée par une fermeture incluant une fonction bridge tirée de la littérature pour
le cas des fluides LJ. La résolution est effectuée dans l’espace de Hankel en r, la coordonnée z
perpendiculaire aux plaques jouant un rôle de paramètre. Les résultats obtenus par cette méth-
ode sont en excellent accord avec les simulations par dynamique moléculaire dans les mêmes
conditions expérimentales.

Cette approche est ensuite utilisée pour simuler le fonctionnement d’une double couche
électrique en ajoutant aux potentiels de sphères dures et de Lennard-Jones le potentiel de
Coulomb pour les ions (toutes les molécules sont supposées avoir le même diamètre). Dans le
cas d’un faible potentiel d’interaction de type LJ des profils de densité oscillatoires sont observés
pour le solvant et les ions, ce qui est similaire aux résultats obtenus lors de la modélisation
avec un fluide de sphères dures. Une approche plus réaliste pour l’eau consisterait à augmenter
le potentiel d’interaction afin d’obtenir des pressions dans le bulk plus raisonnables (de l’ordre
de 105 Pa). Cependant, dans ce cas, les simulations montrent que l’eau liquide ne pénètre plus
dans l’espace interfoliaire (même avec des potentiels d’interaction eau-paroi élevés).

Chapitre 4 – Fluide de sphères dures dipolaire

Le chapitre 4 tente d’améliorer le modèle de LJ pour le solvant en prenant explicitement
en compte le caractère dipolaire des molécules du solvant en supposant que, pour l’eau, les in-
teractions de type Keesom sont dominantes. Chaque molécule est alors une sphère dure dotée
en son centre d’un moment dipolaire fixe pouvant s’orienter en fonction du champ électrique
local d’où la dénomination fluide de sphères dures dipolaire (DHS pour Dipolar Hard Sphere).
Des travaux récents de Olesky et al. [100, 101, 102, 103] suggèrent que la prise en compte des
corrélations entre molécules pourrait être la clef pour améliorer la description des fluides dipo-
laires. La méthode perturbative du paragraphe précédent (DFPT) est donc reprise. L’approche
de Wertheim est utilisée pour calculer la fonction de distribution radiale dans le bulk [21]. Pour
alléger les calculs des effets de corrélation dipôle-dipôle autant que possible, la RDF du fluide en
situation inhomogène entre deux plaques a été approchée par celle du fluide homogène du bulk.
Les résultats numériques confirment à nouveau la formation de couches de molécules discrètes
dans le régime du gonflement cristallin et donnent en outre le profil d’orientation des dipôles
dans l’espace interfoliaire. Pour des faibles moments dipolaires, la pression de disjonction du
fluide DHS est significativement réduite par rapport à celle du fluide HS correspondant et des
valeurs de pression raisonnables peuvent être récupérées. Cependant, le calcul des corrélations
interparticulaires du fluide DHS inhomogène à partir de la RDF du fluide DHS homogène en
équilibre ne permet pas d’atteindre une valeur de la constante diélectrique du solvant dans le
cas des moments dipolaires élevés. Ceci est sans doute à l’origine de la défaillance du modèle
DHS dans l’approche actuelle.

Les bases d’un modèle dit “civilisé” sont ensuite développées avec l’eau se comportant
comme un fluide DHS et les ions comme des sphères dures complétées par un potentiel de
Coulomb. Vu la très faible amélioration des performances du modèle due à la prise en compte
des corrélations intermoléculaires, une approche de type champ moyen a été privilégiée. Un
exemple numérique de résolution est fourni pour un cas de faible moment dipolaire du solvant.
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Chapitre 5 – Modélisation du comportement hydromécanique des argiles gon-
flantes non saturées

Le chapitre 5 est un retour aux échelles macroscopiques du génie civil. Les modèles plus
sophistiqués à la nanoéchelle développés dans ce travail sont incorporés dans le modèle à trois
échelles pour les sols argileux insaturés développé par Mainka et al. [22]. La situation étudiée
est l’évolution de la pression de gonflement d’un échantillon d’argile pendant l’hydratation à
volume constant bien documentée par Imbert and Villar [11].

Les résultats numériques obtenus par nos simulations à l’aide de ce modèle à double porosité
permettent de saisir la contribution simultanée de la pression capillaire microscopique et des
forces de disjonction nanoscopiques à la pression globale de gonflement. On peut montrer que
leur évolution est une conséquence du transfert d’eau des micropores aux nanopores lors de
l’hydratation. Comme première amélioration qualitative du portrait à l’échelle nanométrique
pour le gonflement cristallin, la solution d’électrolyte est modélisée comme un simple fluide de
sphères dures confiné entre deux parois rigides planes. La théorie de Poisson-Boltzmann est
supposée rester valable à forte hydratation dans le cas du gonflement osmotique. Ceci conduit à
une amélioration significative du calcul de la pression de gonflement, en particulier aux faibles
niveaux d’hydratation. De toute évidence, des imperfections persistent, comme l’incapacité
du modèle à trois échelles à décrire les déformations irréversibles subies par les empilements
microscopiques des feuillets que les modèles classiques de génie civil traduisent dans le langage
des transformations élasto-plastiques.

Conclusion

Ce travail a analysé les possibilités ainsi que les difficultés liées à une description détaillée des
phénomènes à l’échelle moléculaire entre les feuillets de smectites avec comme objectif ultime
(à terme) une modélisation rigoureuse des argiles fondées sur un processus de changement
d’échelle. Pour pouvoir procéder avec efficacité au changement d’échelle, des modèles simplifiés
doivent être construits sans renoncer à une représentation pertinente de la physique à l’échelle
nanométrique.

La prise en compte du caractère dipolaire de l’eau caractérisée par un moment dipolaire
élevé reste un véritable défi. D’une part, des fermetures pour le bulk plus sophistiquées que le
modèle de Wertheim existent et mériteraient d’être étudiées. D’autre part, la prise en compte
des corrélations entre les molécules dans le cas du fluide inhomogène est très exigeante et semble
ne pas pouvoir se satisfaire de l’utilisation des fonctions de distributions radiales du fluide dans
le bulk en équilibre correspondant.

Pour simuler les tests de pression de gonflement, une autre difficulté fondamentale et de
nature complètement différente est liée au réarrangement des particules d’argile dans le cadre
des déformations élasto-plastiques qui devrait être incorporé dans le modèle à trois échelles si
l’on souhaite récupérer correctement l’évolution de la pression de gonflement sur toute la plage
de saturation.

En espérant que ce travail puisse contribuer à faire avancer les idées pour atteindre cet
objectif un peu idéal de disposer d’un modèle d’argiles gonflantes fondé sur une description
physique pertinente des phénomènes à la nanoéchelle et propagé vers les échelles macroscopiques
du génie civil par un changement d’échelle!
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Abstract

Taking into account of the discontinuous nature of the solvent
in the mechanical modeling of swelling clays

This work aims at improving the nanoscale description of expansive clayey soils using the
Density Functional Theory (DFT). Water is no longer considered as a continuous solvent but
as a fluid of individual polar molecules in order to recover existing experimental and modeling
results such as the presence of discrete water layers in the interplatelet space or the variation
of the disjoining pressure with the interplatelet distance at low hydration level. Different
physical phenomena of increasing complexity are successively considered. The finite size of the
water molecules is firstly taken into account by modeling water as a Hard Sphere fluid using
the Fundamental Measure Theory. The polar nature of the water solvent is then implicitly
taken into account through a Lennard-Jones potential averaging the different types of Van der
Waals interactions. Next the polar nature of the solvent is explicitly modelized by considering
water as a Dipolar Hard Sphere fluid. These two fluid models are studied in the framework
of the Density Functional Perturbation Theory in which correlation effects between the fluid
molecules are incorporated. Ions are finally added in order to complete the Electrical Double
Layer description at the nanoscale. With the objective of an application to civil engineering,
the improved expression of the disjoining pressure at the nanoscale is included in a modified
form of Terzaghi’s effective stress principle for unsaturated expansive clays recently developed
by our group in order to numerically simulate the hydro-mechanical behavior of expansive clays
during water uptake.

Keywords: swelling clay, porous media, electrical double layer, discontinuous solvent, dis-
joining pressure, interparticle correlations

Prise en compte du caractère discontinu du solvant dans la
modélisation mécanique des argiles gonflantes

Ce travail vise à améliorer la description à l’échelle du nanomètre des sols argileux expan-
sifs en utilisant la théorie de la fonctionnelle de densité (DFT). L’eau n’est plus considérée
comme un solvant continu mais comme un fluide de molécules polaires individuelles. L’objectif
est de reproduire les résultats issus de l’expérience ou de la modélisation numérique tels que
la présence de couches d’eau discrètes dans l’espace interfolaire ou la variation de la pression
de disjonction avec la distance interfolaire dans le régime de gonflement cristallin. Différents
phénomènes physiques de complexité croissante sont successivement étudiés. La taille finie des
molécules d’eau est tout d’abord prise en compte en modélisant l’eau comme un fluide de
sphères dures traité par la théorie fondamentale de la mesure. La nature polaire du solvant est
ensuite implicitement considérée en utilisant un potentiel intermoléculaire de Lennard-Jones
pour reproduire les différents types d’interactions de Van der Waals. La nature dipolaire de
l’eau est ensuite explicitement modélisée par un fluide dipolaire de sphères dures. Ces deux
derniers modèles utilisent une approche perturbative de la théorie de la fonctionnelle de den-
sité dans laquelle les effets de corrélation entre les molécules du fluide sont incorporés. Les ions
sont finalement ajoutés afin de compléter la description de la double couche électrique. En vue
d’une application au génie civil, l’expression améliorée de la pression de disjonction à l’échelle
nanométrique est incluse dans une forme modifiée du principe de Terzaghi appliqué aux argiles
expansives non-saturées récemment développée dans notre groupe afin de simuler numérique-
ment le comportement hydro-mécanique des argiles gonflantes lors d’essais d’infiltration d’eau.

Mot-clés: argiles gonflantes, milieux poreux, double couche électrique, solvant discontinu,
pression de disjonction, corrélations intermoléculaires
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