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V. Abstract

Plastic materials are essential to our current way of life. Since they are cheap, light in weight and easy
to produce, they replaced other materials like wood, glass, or ceramic in many application fields.
Despite these advantages, plastic materials came under criticism due to an extensive plastic
consumption and two main drawbacks became apparent. Plastics are made from petrol, which is
considered as a nonrenewable resource and the long lifespan of plastic in the environment causes
increasing pollution. Bioplastics were developed to overcome these disadvantages of common plastic
materials without losing their practical side. Bioplastics are polymer materials that are either bio-
based or biodegradable or even both. Bio-based polymers allow the production of the common plastic
materials from renewable sources, and biodegradable polymers aim at the end-of-life problematic of
plastics. Materials with these properties afford the production of petrol-independent and more
environmental-friendly plastics. Especially for packing applications, where the application time is

normally much shorter than the lifetime, biopolymers promise to be a good alternative.

Among these biopolymers, polylactide (PLA) is one of the most attractive materials, since it fulfills both
criteria of being a bioplastic: it is bio-based and (bio)degradable. Due to its comparable mechanical
performance to poly(ethylene terephthalate) (PET) or poly(styrene) (PS), PLA was considered for
short-time applications, such as packaging, but also for long-time applications in the automotive
industry or electronics. Despite its (bio)degradability, PLA is investigated for these long-time
applications, meaning that it could be stable enough to be recycled by reprocessing and reused as

other plastics. Such end-of-life scenarios have not been extensively studied in the case of PLA.

At room temperature, PLA is brittle and requires plasticization to further broaden its application range.
Conventional plasticization by blending is suboptimal