Loic Lagadec

Noury Bouraqadi

Xuan Sang Le

Uyen Nhi

† Š9 † š7-51 † 55 † 57 † 6š † 67 † 68 † 72-7š † 81 † 89 † 91 † 97 † 99 VM Virtual Machine• 81 † 82 † 85 † 87 † 90 † 98 † 99 WIEM Wireless External Interface Module• 60 † 62 † 67 † 68 † 88

Cloud computing is often the most referenced computational model for Internet of Things• This model adopts a centralized architecture where all sensor data is stored and processed in a sole location• Despite of many advantages † this architecture suffers from a low scalability while the available data on the network is continuously increasing• It is worth noting that † currently † more than 50% internet To my

connections are between things• This can lead to the reliability problem in realtime and latency ‡sensitive applications• Edge ‡computing † which is based on a decentralized architecture † is known as a solution for this emerging problem by: (1" reinforcing the equipment at the edge (things" of the network and (2" pushing the data processing to the edge• Edge ‡centric computing requires sensors nodes with more software capability and processing power while † like any embedded systems † being constrained by energy consumption• Hybrid hardware sys ‡ tems consisting of FPGA and processor offer a good trade ‡off for this requirement• FPGAs are known to enable parallel and fast computation within a low energy budget• The coupled processor provides a exible software environment for edge ‡centric nodes• Applications design for such hybrid network/software/hardware (SW/HW" system always re ‡ mains a challenged task• It covers a large domain of system level design from high level software to low ‡level hardware (FPGA"• This results in a complex system design ow and involves the use of tools from different engineering domains• A common solution is to propose a heterogeneous design environment which combining/integrating these tools together• However † the heterogeneous nature of this approach can pose the reliability problem when it comes to data exchanges between tools• Our motivation is to propose a homogeneous design methodology and environment for such sys ‡ tem• We study the application of a modern design methodology † in particular object ‡oriented design (OOD" † to the eld of embedded systems• Our choice of OOD is motivated by the proven productivity of this methodology for the development of software systems• In the context of this thesis † we aim at using OOD to develop a homogeneous design environment for edge ‡centric systems• Our approach addresses three design concerns: (1" hardware design † where object ‡oriented principles and design patterns are used to improve the reusability † adaptability † and extensibility of the hardware system• (2" hardware / software co ‡design † for which we propose to use OOD to abstract the SW/HW integration and the communication that encourages the system modularity and exibility• (Š" middleware design for Edge Computing• We rely on a centralized development environment for distributed applications † while the middleware facilitates the integration of the peripheral nodes in the network † and allows auto ‡ matic remote recon guration• Ultimately † our solution offers software exibility for the implementation of complex distributed algorithms † complemented by the full exploitation of FPGAs performance• These are placed in the nodes † as close as possible to the acquisition of the data by the sensors † in order to deploy a rst effective intensive treatment• 1 Co ‡directeurs: Loic Lagadec & Noury Bouraqadi Xuan Sang LE Résumé L'informatique en nuage (cloud computing" est souvent le modèle de calcul le plus référencé pour l'internet des objets (Internet of Things"• Ce modèle adopte une architecture où toutes les données de capteur sont stockées et traitées de façon centralisée• Malgré de nombreux avantages † cette archi ‡ tecture souffre d'une faible évolutivité alors même que les données disponibles sur le réseau sont en constante augmentation• Il est à noter que † déjà actuellement † plus de 50 % des connexions sur Inter ‡ net sont inter objets• Cela peut engendrer un problème de abilité dans les applications temps réel• Le calcul en périphérie (Edge computing" qui est basé sur une architecture décentralisée † est connue comme une solution pour ce problème émergent en: (1" renforçant l'équipement au bord du réseau et (2" poussant le traitement des données vers le bord• Le calcul en périphérie nécessite des noeuds de capteurs dotés d'une plus grande capacité logicielle et d'une plus grande puissance de traitement † bien que contraints en consommation d'énergie• Les systèmes matériels hybrides constitués de FPGAs et de processeurs offrent un bon compromis pour cette exigence• Les FPGAs sont connus pour permettre des calculs exhibant un parallélisme spatial † aussi que pour leur rapidité † tout en respectant un budget énergétique limité• Coupler un processeur au FPGA pour former un noeud garantit de disposer d'un environnement logiciel exible pour ce noeud• La conception d'applications pour ce type de systèmes hybrides (réseau/logiciel/matériel" reste toujours une tâche dif cile• Elle couvre un vaste domaine d'expertise allant du logiciel de haut niveau au matériel de bas niveau (FPGA"• Il en résulte un ux de conception de système complexe † qui implique l'utilisation d'outils issus de différents domaines d'ingénierie• Une solution commune est de proposer un environnement de conception hétérogène qui combine/intègre l'ensemble de ces outils• Cepen ‡ dant † l'hétérogénéité intrinsèque de cette approche peut compromettre la abilité du système lors des échanges de données entre les outils• L'objectif de ce travail est de proposer une méthodologie et un environnement de conception ho ‡ mogène pour un tel système• Cela repose sur l'application d'une méthodologie de conception mod ‡ erne † en particulier la conception orientée objet (OOD" † au domaine des systèmes embarqués• Notre choix de OOD est motivé par la productivité avérée de cette méthodologie pour le développement des systèmes logiciels• Dans le cadre de cette thèse † nous visons à utiliser OOD pour développer un environnement de conception homogène pour les systèmes de type Edge Computing• Notre approche aborde trois problèmes de conception: (1" la conception matérielle † où les principes orientés objet et les patrons de conception sont utilisés pour améliorer la réutilisation † l'adaptabilité et l'extensibilité du système matériel• (2" la co ‡conception matériel/logiciel † pour laquelle nous proposons une utilisation de OOD a n d'abstraire l'intégration et la communication entre matériel et logiciel † ce qui encourage la modularité et la exibilité du système• (Š" la conception d'un intergiciel pour l'Edge Computing• Ainsi il est possible de reposer sur un environnement de développement centralisé des applications distribuées † tandis ce que l'intergiciel facilite l'intégration des noeuds périphériques dans le réseau † et en permet la recon guration automatique à distance• Au nal † notre solution offre une exibilité logicielle pour la mise en oeuvre d'algorithmes distribués complexes † et permet la pleine exploitation des performances des FPGAs• Ceux ci sont placés dans les noeuds † au plus près de l'acquisition des données par les capteurs † pour déployer un premier traitement intensif ef cace• List of Figures 2•1 Hardware design productivity gap: number of transistors available on a chip vs. the ability for the transistors to be used ef ciently in a design

[int11 † Sed06] • • • • • • • 12 2•2 Four layers meta ‡modelling framework • 15 2•Š Model
transformations allow to remodel an input model by executing transformation rules using a transformation engine

• 15 2•š Classi cation of model transformations• 17 2•5
Early binding: Both SW/HW parts are designed simultaneously and separately• An automatic mapping process is needed to interfacing both parts

• • • • • • • • • • • • 25 2•6
Late binding: Both SW/HW parts are speci ed by a unique model (language ‡based or MDE ‡based"• The system handles automatically the partition and the inter ‡task for interfacing at the high ‡level ‡synthesis phase

• 26 Š•1 Simpli ed class diagram
• Š2 Š•2
Classes de ne meta ‡descriptions of hardware structures• Theses meta ‡descriptions are based on synthesizable VHDL structures

• Šš Š•Š Description of the FIR lter in listing Š•1 using OoRCScript • • • • • • • • • • • • • • Š6 Š•š
Basic principle of OoRCScript syntax: sending a message to a description will gen ‡ erate a new description

• Š6 Š•5
• š8 Š•15 VHDL
designs are parsed into parser trees before being converted to circuit models using OoRCAdapter

• š9 Š•16
HDLDynamicCompositeDesign allows semi-automatic composition of models and pro ‡ vides a virtual process method for manual models linking

• • • • • • • • • • • • • • • 51 Š•17 A
prede ned Master ‡slave bus interface: IP designers just need to subclass Slave or Master to de ne their application logic

• 51 Š•18
Event ‡driven simulation of discrete system using an observer pattern• Assignment of a value to a signal will cause all related processes become active

• • • • • • • • • • • 5Š Š•19
Class digram design and the corresponding GUI implementation of our model syn ‡ thesis toolset

• 56 š•1
Memory mapping is used to provide a convenient access to FPGA from software• The solution must be as generic as possible to enable the reuse of the system

• 6Š š•Š
• 65 š•5
HWMappingScheme abstracts and encapsulates hardware circuits as regular soft ‡ ware objects• It can be considered as a gateway for hardware accessing from software 67 š•6 Performance measurement for continuously read/write test •

• • • • • • • • • • • • • 68 š•7
DebuggableSlave allows to inject automatically a debug sub ‡circuit to the slave and turns it to a Breakpoint controller

• 69 š•8 Original design of the detection circuit • 72 š•9
Mixture use of imported VHDL designs and custom design using OoRCSCript• The pixel counter simply count all received pixels

• 7Š š•
• 75 š•12
Publishing frequency of the topic /spybot/objectpos in regarding different window sizes of messages

• 76
5•1 Work ow of CaRDIN• Developers need to: (1" import the HW IP to system for soft ‡ ware/bitstream generation; (2" use the generated classes to develop their application 81 5•2 Simpli ed hardware/software architecture of a edge ‡centric node: the system is made as generic as possible by maximizing the reusability of software/hardware components

• 8Š 5•Š (a"
The entire application is developed on base station but is executed in distributed manner; (b" Communication between distributed objects residing in the caller node and the servant node

• 8Š 5•š
The automatic deployment and remote call of the example in listing 5•1 • • • • • • • 85 5•5 If the SW/HW is not deployed or outdated † the initialization of a distributed object will automatically trigger the recon guration of the node

• • • • • • • • • • • • • • • 86 5•6 Object detection implementation on the FPGA• 88 5•7
Network load of the node on different operations: (5•7a" the software/bitstream recon guration process ([t, t +]"; (5•7b" the frequently fetching test ([t, t + ]" and lastly (5•7c" the streaming test ([t, t + ]"• t is the time when an operation begins• • • 92 5•8 Š camera sensor nodes tracking a moving ball• Question: Which camera actually has the ball?

• 9Š 5•9
The frame buffer unit is replaced by the pixel counter unit to count the ltered pixels• 9Š 5•10 Deployment and execution of the distributed application via CaRDIN middleware• • 95

x Listings Š•1 VHDL implementation of a simplest low pass FIR lter

y n = x n + x n- • • • • • • • • • Šš Š•2 Function/procedure de nition • Š8 Š•Š Design reuse • Š8 Š•š
An optimized re ‡implementation of SimpleFIR using inheritance and override features • Š9 Š

•5 Abstract architecture • š0 Š•6 OoRCScript abstract method • š0 Š•7
Example of adding a counter to an existing pixel lter

• • • • • • • • • • • • • • • • • š1 Š•8 Implementation of interface converting using adapter pattern • • • • • • • • • • • • • šŠ Š•9 Implementation: decouple data interface (UART † I2C" • • • • • • • • • • • • • • • • • š5 Š•
• • • • • • • • • • š8 Š•11 Functional simulation implementation • 5š Š•12 Behavioural simulation implementation • 5š š•1
Example of using hardware breakpoint in software• The HWCounterMapping is the accessing class of a simple hardware counter• This counter has an input and an output signal † and counts from 0 to the value of input (100"• The breakpoint is set for output at value 50 (rst operand"• Note that the slave uses the address of ouput to select the second operand for the comparator At the physical level (sensor † actuator † etc•" † where the devices (things" actually interact with the real world † Sensor Networks (SN" are an important resource for IoT architecture• IoT can be considered as an evolution [START_REF] Mainetti | Evolution of wireless sensor networks towards the internet of things: A survey[END_REF] of SN at an internet ‡scale † thus existing work on SN can be adapted to IoT• SN offer a virtual layer where the digital system can communicate with the physical environment• Typically † a SN architecture consist of š main concepts [START_REF]Wireless Sensors in Heterogeneous Networked Systems[END_REF]:

• 70 š•
• 75 5•1 ExampleApp -a
• 88 5•Š
1•1•1 Internet of Things • 1 1•1•2 Edge Computing for Cyber ‡physical Systems • • • • • • • • • • Š 1•1
Network components: elements that enable connectivity within the network † connect an ap ‡ plication platform at one end of the network with one or more actual physical devices• These components correspond to the concepts of node † gateway † relay † sensor and actuator• Hardware platforms: The hardware requirement necessary for sensor/actuator nodes † compu ‡ tational/functional nodes (relay † server"• Middlewares: software stack create an virtual layer between application and the physical world• They aim at operating † monitoring and managing the sensor network• They are often generic and exible to different application scenario• Topology: describes how the SN is organized• The most common network topologies used in SN are star † tree † mesh or hybrid networks that combine the other ones• In the context of IoT † any kind of IP ‡based topologies can be applied• At the processing level † cloud computing is currently the most referenced computational model for IoT [START_REF] Botta | Integration of cloud computing and internet of things: a survey[END_REF]• Cloud computing adopts a centralized architecture with large virtual ability of storage and processing power• It is de ned [START_REF] Mell | The nist de nition of cloud computing[END_REF] as a model for enabling ubiquitous † convenient † on ‡demand network access to a shared pool of con gurable computing resources (e•g• † networks † servers † storage † applications † and services" that can be rapidly provisioned and released with minimal management effort or service provider interaction••• • IoT can bene t from this model for sensor data collecting † processing and decision making• The cloud can expose different services for sensor data usage (e•g• API † web services"• It creates a virtual layer between things and applications † thus hiding the complexity of tasks like system development † integration and management † etc•

Potential Problem of current IoT configuration

For the last decades † we have seen an important increase of IoT devices• A research in [START_REF] Friess | Internet of things: converging technologies for smart environments and integrated ecosystems[END_REF] (201Š" shows that † in 2011 † there were more than 15 billion things on the internet † over 50% internet connec ‡ tions are between or with things• By 2020 † this number can go up to more than Š0 billion things and " Internet Protocol over 200 billion intermittent connections are forecasted• All the connections are based on the client ‡ cloud model• Sensor data such as thermostats † surveillance cameras † healthcare system measurement † etc• are centralized to the cloud• This is not always obvious since IoT devices have different radical characteristics• Some are occasional accessed while others require realtime always ‡on connections• Connection bandwidth is another crucial factor † many devices are satis ed with low bandwidth con ‡ nections while others need a high bandwidth for data transfer• This is often referred as the Big ‡data problem [ZE + 11]• This centralized infrastructure of cloud suffers from a low scalability while the available data is con ‡ tinuously increasing• In real ‡time IoT systems this can lead to latency problems• That is † a large amount of IoT nodes may cause a work overhead to the system due to an intensive quantity of data to be trans ‡ ferred over the network• This costs network resources and degrades the response time of the system• The value for decision making of sensor data may be lost while it is traveling across the network• For data processing † although multi ‡core processors (on the cloud" are powerful enough for mass processing † it is not guaranty that they will be suitable for future calculation requirements of IoT• Sensor networks † the base of IoT † are often considered as networks of simple devices with limited performance• These devices are only used for data acquisition and transmission• This restricted vision leads to simple communication ‡centric middleware models• While these devices and middleware re ‡ spond well the requirements of SN † they may be not suitable at the scale of IoT• IoT systems † especially in smart system † may need more powerful devices with the ability to perform some local computations and decision making•

Edge Computing for Cyber-physical Systems

Cyber ‡physical systems (CPS" are integrations of computation and physical processes [START_REF] Lee | Cyber physical systems: Design challenges[END_REF]• It can be considered as a merger of embedded systems -a composition of standalone computing elements -and sensor network• CPS shares the same basic architecture with IoT• Nevertheless † it presents a higher combination and coordination between physical and computational elements [START_REF] ‡radu | Smart monitoring of potato crop: a cyber ‡physical system architecture model in the eld of precision agriculture[END_REF]• The integration of software ‡intensive embedded systems and internet communication into CPS is considered to be the next revolution of IoT• CPS provides the necessary infrastructure to deal with the Big ‡data problems• In many aspects of human activity † there has been a continuous struggle between the forces of centralization and decentralization••• [GLME + 15]• While today internet activities are dominant by the cloud † solution for the emerging IoT problems (as presented" requires a new evolution for the compu ‡ tational model• The network topology and the computing resource distribution need to be revised † in order to exploit the powerful features of IoT• The combination of Edge computing (EC" and CPS can be considered as a solution for these problems by: (1" migrating from a centralized architecture (cloud" to a distributed computing architecture; (2" strengthening the equipment at the edge of the network † where sensors are deployed and (Š" performing analytics and knowledge generation at the source of the data• Edge ‡centric nodes are processing ‡centric † thus † requires more processing capability• However † as regular embedded systems † they are constrained by power consumption• There are always the struggle to balance the performance/energy ratio on these systems• Moreover † as complex processing units † edge ‡centric nodes need an evolutive and exible architecture to boost the application development productivity• 1.1.3 Using FPGAs for Edge Computing in IoT: Benefits and Challenges

FPGAs

FPGAs [Xil] -stands for Field Programmable Gate Array-are integrated circuits designed to be re ‡ con gured by designers• They were rst invented by Xilinx in 1985 and have been increasingly grown up since then• Xilinx and Altera (now acquired by Intel" are two vendors that have a crucial role in the development of FPGAs• These devices are based on a matrix of con gurable logic blocks (CLBs" connected by programmable interconnects (switches"• Thus FPGAs can be recon gured to t different application contexts after manufacturing• This can be done by specifying the functionality of each CLB and then wiring them together (using con gurable switches"• Traditionally † FPGA con gurations are š described using Hardware Description Languages such as VHDL or Verilog• These descriptions are synthesized † using dedicated synthesis tools † into binary form (bitstream" † that con gures the device• FPGAs are used in wide range of applications such as Aerospace †Automotive † Data Center † Med ‡ ical † Security † Image and Signal processing † etc• Advantageous characteristics of FPGAs are: (1" Recon gurability and Flexibility: FPGAs are recon gurable and can implement easily tailored circuits for different application contexts; (2" Performance: FPGAs enable parallel and fast computations † thus are suitable for acceleration purpose; (Š"Energy consummation: direct parallel hardware execution of tasks avoids the overhead problem of traditional software system such as processors and thus is energy ‡friendly; (š" Maintainability: FPGAs circuits can be easily recon gured when performance im ‡ provements or bug x are available; (5" Reliability: FPGA circuits are a real hardware implementation of tasks † they minimize the reliability problem in comparison to software on processors since tasks are executed in parallel and have their own deterministic hardware resource•

FPGAs and Edge-computing

As stated † in edge ‡computing † edge ‡centric nodes' functionality often exceeds simple data collection and embeds more complex features• These nodes require more processing capabilities while keeping power consumption low• Recon gurable architectures such as FPGAs are known to enable parallel and fast computations within a low energy budget † hence can play a crucial role in edge ‡centric nodes [START_REF] De | An Braeken † and Abdellah Touha • Sensor systems based on fpgas and their applications: A survey[END_REF]• FPGAs add more processing ability to the nodes and thus allow to locally perform more sophisticated tasks• Furthermore † using FPGAs improves the exibility of the node's hardware• That is † the hardware can be simply tailored to adapt to different kinds of sensors• Today FPGA devices often come in a hybrid form factor consisting of an FPGA coupled with an embedded processor (e•g• ARM"• This kind of devices is ideal for building edge ‡centric nodes since:

(1" they offer the hardware acceleration (FPGA" while (2" providing a exible and powerful software environment (processor" for complex middleware and applications (IP ‡stack † web services"•

Challenges

Digital Hardware (FPGAs" design is always a complicate task• The design process requires a speci c knowledge which remains a challenge for developers and usually results in a loss of productivity• Es ‡ pecially † when FPGAs are used together with advanced software systems (edge ‡centric middleware † web services † distributed content network † etc•" † the problem of HW/SW co ‡design (detailed in sec ‡ tion 2•š" becomes a real challenge• There is a need for a dedicated environment to support ef cient development and deployment of such hybrid systems into the network• The environment should address to the following criteria: Generalization and Heterogeneity: since we target a network of nodes rather than a single de ‡ vice † the design environment (both SW and HW" should be generic enough to deal with differ ‡ ent edge ‡centric devices (FPGA/processor"• A standardized environment also helps applying design constraints on the system and thus better support system scalability• Integrability and Interoperability: the environment should promote the integration of: (1" SW and HW parts in an individual node and (2" the integration of each node to the over ‡all net ‡ work• A common communication protocol is needed for the SW/HW interfacing as well as the distribution of content over the network• Recon gurability and maintainability : a network may contain hundreds to thousands of hybrid nodes † manual deployment † recon guration † or maintenance of each node is an important is ‡ sue• An automatic mechanism is mandatory for remote (over ‡the ‡network" deployment and con guration of nodes † both on SW and HW• Distributed computing: Edge computing relies on distributed computing to push the processing to the edge• Therefore † middleware should promote the development and deployment of dis ‡ tributed algorithm/application over the network• These challenges cover a large domain of system level design from high level software to low level hardware• On the one hand † we rely on an high ‡end edge ‡centric (based on web services" software environment for end user application development and deployment• On the other hand † we need to deal with low ‡level FPGA design and SW/HW integration• There is always the need of a uni ed design methodology and environment for closing this important gap between the two worlds•

Research Objectives and Contributions

Research Objectives

When looking at existing design methodologies for both SW and HW system † it is clear that software design methodologies † such as Object Oriented Design (OOD" † are in advance of hardware † in term of productivity• Hardware design always remains a long and tedious process † especially when it comes to the SW/HW co ‡design problem• This result in a complex system design ow and involve the use of tools from different engineering domains• Common solutions tend to propose a heterogenous design environment that integrates/combines these tools togethers• However † the heterogeneous nature of this approach can pose the reliability problem when it comes to data exchanges between tools of different expertise domains (i•e• syntactical and semantics interoperability"• Our motivation is to propose a homogeneous design methodology and environment for such system to minimize this problem• This work studies the application of modern design methodologies † in particular the OOD † on em ‡ bedded system design• Firstly † we aim at pro ting object oriented principles to hardware design for a more productive HW design environment• This latter complements the traditional HW design method ‡ ologies by promoting the concepts of Generalization † Generation † Standardization and Separation of concerns• Therefore it allows better system Reusability † Maintainability † and Extendability• Secondly † we explore the use of OOD to produce a uniform methodology and environment for SW/HW co ‡design• The largest gain of OOD here is the ability to abstract the SW/HW integration process in an implementation ‡independent way• Hence † the interfacing gap can be automatized at certain level by some correct ‡by ‡construction and automatic generation techniques• This is important seeing that closing SW/HW gap remains always a complex † time ‡consuming † error ‡prone and less ‡ contributive task• Last but not least † we want to position the proposed design approaches on the context of edge ‡ centric computing where the target system becomes much more complicated with a network of hybrid SW/HW nodes connected together• This forms a complex distributed environment and rises the ques ‡ tion of how to ef ciently manage † develop † deploy and maintain such system• A manual solution is not an option considering the network scale of the system• In this case † while the processing is de ‡ centralized (distributed" † the development (both SW and HW" † should be centralized to facilitate the management and maintenance• The deployment should be automatized to be able to handle a large scale of nodes• Such dedicated edge ‡centric environment is still missing in our perspective•

Contributions

The research towards this thesis has been partly included in the following publications (papers or poster † chronological order": The contribution presented in this thesis are designed and developed by the author• The software en ‡ vironment used for modeling and middleware † toolset building is based on Pharo Smalltalk [START_REF] Ducasse | Pharo by Example 50[END_REF] -an elegant object oriented language and environment• The research carried out for this thesis resulted in the following contributions (listed in the order they appear in this thesis": 1• Conceptual meta ‡model -baptized OoRC-that brings OOD concepts and principles to hard ‡ ware design• The meta ‡model support modeling hardware system at two levels of granularity:

(09] † that offers a more natural and direct way to bring SN to the internet• These approaches assume that sensor nodes are powerful enough to implements an IP stack• The web services can be used on top of these systems and offer the compatibility between SN and standard IoT infrastructures• These works show an impor ‡ tant advance in the area• They † however † provide only the infrastructure without further software API for the operations and interactions of the node• Middleware plays a crucial role in SN † it de nes an application platform that: (1" can be deployed in various application scenarios; (2" can handle the heterogeneous and distributed nature of the network and (Š" promotes the integrability of the system• Diverse middleware solutions have been proposed for SN• Some approaches such as [YG02 † MFHH05] consider the SN as a virtual database that can be queried through an SQL ‡like language• Others rely on Mobile agent approach in which applica ‡ tions are modular and each module can be distributed through the network [BHSS07 † ORRM09]• The works in [MAK07 † SCC + 06] propose a Virtual Machine approach which is more general than Mobile Agents• They allow arbitrary code to run on sensor nodes and make the software independent from the hardware architecture• Message oriented middleware [KS09 † CCD + 09] is another possible solu ‡ tion for communication inside SN• These approach support sending and receiving messages between distributed systems via an event ‡driven mechanism (publish/subscribe service"• These middle ‡wares could be a standalone architecture that runs directly on bare ‡metal hardware or could be built on top of an OS -such as TinyOS [LMP + 05]-dedicated for sensor network• All of these middleware are used mainly for querying raw sensor data rather than support the development and deployment of complex applications on the nodes•

2•1•1 Dedicated SN for Edge Computing • • • • • • • • • • • • • • • 2•1•2 Using FPGAs for Edge Computing in IoT • • • • • • • • • • • • • 2•1•Š Discussion • 2•2 Hardware Design Background . 2•2•1 Overview • 2•2•2 Hardware Design Methodologies • • • • • • • • • • • • • • • • 2•2•Š Discussion • 1Š 2•Š Meta ‡modeling for System ‡level Hardware Design Using MDE 2•Š•1 Model ‡Driven Engineering • 1š 2•Š•2 Component ‡based approaches • • • • • • • • • • • • • • • • • 2•Š•Š Platform ‡based approaches • • • • • • • • • • • • • • • • • • • 2•Š•š UML and Object Oriented based Approaches • • • • • • • • • 2•Š•5 Summary • 2•š Software/Hardware Co ‡design . 2•š•1 Early Binding Approaches • 2š 2•š•2 Late Binding Approach • 2•š•Š Discussion •

Using FPGAs for Edge Computing in IoT

Since the application of FPGAs for Edge Computing is a brand new topic † the state of the art is still limited in the context of IoT• However † we can consider the use of FPGA on SN as references † see ‡ ing that SN is the base of IoT and Edge Computing• Many researchers have explored the bene t of parallel processing and hardware recon guration in FPGA for prototyping sensor networks• Some approaches use only FPGA with [MR08 † CSM08] or without [LSKT1Š † HRVG08] soft ‡core processor (e•g• NIOS" to build the sensor nodes• Those enable the exible adaptation of hardware changes on sensor nodes † but do not offer the exible recon guration that software approaches do † nor do they support remote recon guration of the node• Since the system is entirely implemented in FPGA † the soft ‡ ware capacity of these nodes is limited that lead to the missing of an ef cient middleware• Other works such as [Ber12 † KPC + 08 † PRDC] address to these problems by proposing a non IP ‡based approach with an entire work ow to generate † remotely con gure and recon gure the FPGA• Theses work use a micro ‡controller (µC" to recon gure the FPGA• Both software (µC" and hardware (FPGA" can be reprogrammed/recon gured remotely from host via a wireless link (e•g• ZigBee"•However † the use of µC still limits the software capability of the node• The development is entirely baremetal (µC/FPGA" which is speci c and limits the reusability of the system• All of these approaches are non IP ‡based and are not compatible with an internet and edge ‡centric usage• Firstly † to support IoT † the IP ‡stack (and web services" must be implemented on µC or on FPGA which requires speci c skills• Secondly † they are designed only for sensor data acquisition and thus are not suitable for edge ‡centric applications•

Discussion

Current proposed SN architectures are based on the cloud ‡computing model † where all sensor data are centralized and processed in a sole place• Sensor nodes are often simple devices with limited software capabilities and used for data acquisition and transmission• This results a very simple communication ‡ based middleware• When passing to an edge computing model † these architectures and middlewares need to be revised• The IP protocol should be the base protocol for network communication• By rein ‡ forcing the edge of the network † edge ‡centric nodes are more powerful• This requires a new generation of middleware to be able to (1" ef ciently exploit the hardware capability of the nodes † (2" provide a rich set SW features for building complex application• FPGAs show interesting application in edge computing since they offer parallel and realtime pro ‡ cessing ability to the node with a reasonable energy budget• However † current uses of FPGAs on SN come up with pure hardware nodes that have limited SW capability and thus are unsuitable for EC• EC requires nodes with (1" rich SW features † (2" exible middleware for nodes communication and interaction and (Š" real ‡time data processing capability• Hybrid FPGA devices consisting of an FPGA coupled with embedded processor are therefore good candidates• The processor greatly simpli es the implementation of an IP ‡based software stack and associated web services as well as provides enough performance for an edge ‡centric middleware• The FPGA is dedicated to critical and real ‡time data processing tasks• 2.2 Hardware Design Background

Overview

Basically † a good system design methodology should consider following important criteria: (1" Time ‡to ‡ market (design time" † (2" Productivity (production outputs/inputs ratio" † (Š" Maintainability (repair/re ‡ place † exible to change † easy to maintenance † etc•" † (š" Extensibility (adding new capability" and (5" Reusability (reuse with less modi cation possible"• A exible and generic solution for software/hard ‡ ware integration involves SW/HW co ‡design• Software design has shown an important evolution with Oriented Object Design and Design Pattern• These design methodologies have been well proven on real world projects• They are claimed to be the best methodologies to satisfy the presented criteria• In [START_REF] John | An empirical study of the object ‡oriented paradigm and software reuse• SIGPLAN Not[END_REF] † authors have shown that object ‡oriented paradigm can improve productivity of software design by about 50% (1•5 times"• Hardware design † however † alway remains a long and tedious process• According to More's Law † the complexity of hardware system in terms of logic transistors in ‡ tegrated on a chip increases about 58% per year• Nevertheless † the hardware design productivity increases around 21% per year [int11]• In Electronic Design Automation (EDA" community † this rate is known as design productivity gap (gure 2•1" which results in in ating design costs• Most current research efforts on hardware design are aimed at closing this gap by rising the abstraction level and increase IP (Intellectual Property" reuse•

Hardware Design Methodologies

The traditional and commonly used languages for hardware design is Hardware Description Languages (HDL" † such as VHDL or Verilog• These languages allow to describe IP (Intellectual Property" cores at Register Transfer Level (RTL"• For decades † the main concern of hardware designer is to create an ef cient component (e•g• speed † area or power usage" using these languages• They focus on the creation and quali cation of IP content for a speci c application regardless of its further reusability in the application domain• This can cause a redundancy of similar IPs designed for different applications depending on different requirements• This design habit is called content-based design [START_REF] Damasevicius | Application of uml for hardware design based on design process model[END_REF]• It is worth noting that reuse does not necessarily apply only to circuits (content" † but can also be applied to concepts and techniques• Hardware designers are using methodologies (concepts + techniques" that are several years behind software• Traditional HW design methods and HDLs are not equipped with modern design features -such as object oriented-and thus limit the reusability † extendability and maintainability of existing IPs•

The increased complexity of hardware system requires more productive methodologies• Currently † to gain productivity † modern hardware design seeks to rise the design abstraction level• Literally † there are mainly two directions of abstraction: content-level abstraction and system-level abstraction• Content-level abstraction -also known as High Level Synthesis (HLS" [MS09]-allows to describe hardware IPs at an abstraction level higher than RTL using some traditional software languages like C † C++ † SystemC † Matlab † etc• [Ren1š † MVG + 12]• These systems have a dedicated compiler that trans ‡ forms an algorithm written in a target software language to a low ‡level RTL representation• This method improves the productivity of designers by providing automatic correct ‡by ‡construction features (via the compiler" and separating correctness design concern from timing design concern [START_REF] Pelcat | Design Produc ‡ tivity of a High Level Synthesis Compiler versus HDL[END_REF]• HLS methods are currently supported by FPGA vendors (Intel Altera † Xilinx † etc•" and commercial tools• They can be considered as future methodologies for IP content-design•

The system-level abstraction approaches † on the other hand † improve productivity by considering the abstraction at the system level in order to automatize the design process and to maximize the reusabil ‡ ity of IPs• These approaches aim at a more integration-based solution for hardware components reuse• They encourage new hardware design habits [DS0š † D1Š]: (1" design ‡for ‡reuse rather than design ‡ for ‡use (reusability" † (2" designing for a generic problem rather than for a speci c application (gener ‡ alization" † (Š" customizing existing IPs for a problem rather than designing it from scratch (extensibil ‡ ity"• Currently trending system ‡level abstraction methodologies rely on meta-modeling techniques using Model Driven Engineering (MDE" [START_REF] Dama | On the application of meta ‡design techniques in hardware design domain[END_REF]• The basic motivation is to model the hardware system at a higher level of abstraction and allows to describe hardware components (IPs" and their conceptual relationships at multi levels of abstraction• Therefore † designers need lesser focus on technological de ‡ tails and may bene t from high ‡level models for modern design techniques (i•e• object ‡oriented"• This improves the productivity by increasing the modularity of the system (ef cient reuse" and automating the design process (low ‡level code generation"•

Discussion

To improve productivity † two abstraction methodologies -content-level abstraction vs• system-level abstraction-rely on two different strategies• One focuses on rising the abstraction of IP description and allows designer to work at algorithmic level rather than at RTL level• The other methodology † on the other hand † emphasizes the modularity of the hardware system and encourage the reusability and extensibility of hardware components (IPs"• Although HLS approaches allow designers to describes hardware IP using decent software languages † they remain alway content-based design approaches and thus suffer the same reusability limit of HDL languages• Most research in this area focuses on sci ‡ enti c computing applications; it is not certain that HLSs is appropriate for system design• Approaches relied on MDE address to this problem by modelling the hardware system at a higher level abstraction• They are powerful to describe hardware components structure and relationships• However † it is not al ‡ ways obvious to express detailed behaviour of each component using these approaches• These issues 1Š will be detailed in the following sections which will focus on the different system level design techniques using MDE• 2.3 Meta-modeling for System-level Hardware Design Using MDE System ‡level design relied on MDE is becoming widespread since late 1990's [MC99 † DM 0Š † BSP05 † LBMD08]• Such design methodology has proven to be bene cial to deal with the increasing com ‡ plexity of digital systems• Proposed solutions are diverse † some approaches de ne their own formal modelling semantic [BH98 † WHMT08 † IEE1š] while others rely on well ‡known modelling standard like UML and Object Oriented Design [LW16a † EBZ + 12 † DS0š]• These approches offer a high ‡level ab ‡ straction speci cation † APIs and tools for hardware system modelling• Model ‡to ‡HDL is available with or without restriction for supporting low ‡level synthesis on actual hardware• In this section † we rst dis ‡ cuss about MDE in general † then consider three main categories of MDE methodologies for hardware system design: Component-based † Platform-based and Object-oriented based approaches•

Model-Driven Engineering

Before presenting different system-level design approaches for hardware design † we introduce -in this section-all methodological aspects related to meta-modeling with MDE• Model ‡Driven Engineering [RA12 † VDMV1š] uses abstraction to bridge the cognitive gap between the problem space and the solution space in a system• Models are the keys principle to describe the system at multi ‡levels of abstraction in order to close this gap• They are de ned by formalism Meta-models• Models processing is mainly performed via Model Transformations which is considered as the heart and soul of model ‡ driven software and system development [START_REF] Sendall | Model transformation: The heart and soul of model ‡ driven software development[END_REF]• Transformations can be used for code ‡generation † or for models mapping in the same or multiple levels of abstraction•

Model

The fundamental of MDE is model• A model is an abstraction representation of a real system or an environment• Models are based on generic concepts (or speci c set of concerns" and their relations for system description and speci cation• MDE considers model as data that we can query † analyze † report on † validate † simulate and transform in other useful formats [START_REF]OMG• Moden Driven Architecture (MDA" guide rev• 2•0• Technical report † Object[END_REF]• More precisely † ac ‡ cording to [START_REF] Kühne | What is a model?[END_REF] † the model concept can be de ned based on three main criteria: (1" Mapping: the model is related to the system by an explicit or implicit mapping between the reality and the concepts forming it• (2" Reduction: the model abstracts the system by representing only core properties that char ‡ acterize that system and ignoring all unnecessary details• (Š" Pragmatic: A model need to be usable in place of the original with respect to some purpose •

Meta-model

A model represents an abstract view of a real system by using an abstract syntax de ned by a metamodel• A meta ‡model describes precisely (1" the generic concepts and their relationships (used by models" † (2" the structuring rules that constrain these concepts and (Š" the combinations of the concepts On the opposite side † a transformation exogenous is a transformation that derives an output model conforming to a different meta ‡model from the source meta ‡model• This category can be separated into two sub ‡categories: horizontal and vertical based on the abstraction levels• Horizontal transformations mean that the two meta ‡models (source and target" share the same abstraction level• This operation performs the migration of models between different aspects or domains within a system at the same level of abstraction• Vertical transformations † on the other hand † allow passing models between differ ‡ ent abstraction levels• This can be a re nement (top ‡down" or a generalization (bottom ‡up" of model [START_REF] France | Multi ‡view software evolution: a uml ‡based framework for evolving object ‡oriented software[END_REF]• Model-to-text or Text-to-model are special kinds of vertical transformation• Model ‡to ‡text is used mostly for generating source code from low ‡level model and text ‡to ‡model de nes the reverse engineering to construct model from source code• Transformation rules allow mapping between concepts and relationships described by source meta ‡ model to the corresponding concepts and relationships de ned by target meta ‡model• These rules can be implemented by using software functions and procedures or by using a dedicated language• this language can be a declarative language (e•g• ATL [START_REF] Jouault | Transforming models with atl[END_REF] † QVT [OMG16] † etc•" † which describes what will be produced by the rule † or an imperative language (e•g• Xtend and Xpand [Kla07] † etc•" that speci es how the rule is executed•

Component-based approaches

In software engineering † Component ‡based design is a process that emphasizes the design and con ‡ struction of SW systems using reusable software components [Fab07 † Spa1Š]• It shifts the design perspective from programming SW to composing SW systems by mean of separation of concerns † in respect of the wide ‡ranging functionality of a given SW system• When it comes to HW design † Component ‡based design methodologies usually handle the problems of representation † retrieval and and code generation † it is the responsibility of user to implement plugins † EDA tools conforming to the standard•

The work on [START_REF] Wang | Tautschnig• A model driven develop ‡ ment approach for implementing reactive systems in hardware• In Speci cation, Veri cation and Design Languages[END_REF] introduces another approach of using MDE for component ‡based hard ‡ ware system ‡level design• This approach relies on COLA -COmponent LAnguage-[HKT + 07] † a synchronous data ow language and tool• COLA has its own well ‡de ned formal modelling syntax and semantic• The COLA tool allows the system high level speci cation as well as the generation of VHDL description † both for structures and behaviours• In general † a hardware system is modeled as a network of units † which can be composed hierarchically• Interactions between units/components are performed via channels• The network is controlled by an automata † which is actually a nit state machine diagram• This approach improves the productivity by raising the design abstraction• Beside † it handles the component integration problem by using abstract synchronous data ow models• GUI editor (e•g• for FSM diagram" reduces design complexity and avoid error ‡prone design tasks• COLA has also polymorphism components and library system for encouraging model reuse•

Discussion

The COLA and MetaRTL design approaches follow a top ‡down design method• The hardware com ‡ ponents and theirs connections are speci ed at a high level abstraction using models• The low ‡level code (e•g• HDL" -both behavioural and structural-can be generated from these models following a prede ned syntax and semantic• Therefore † the backward support to reuse existing HDL components is not possible• The IP ‡XACT approach † on the other hand † uses a bottom ‡up method• It is dedicated only to meta ‡specify existing HDL components• Since it enhances the automatic con guration and in ‡ tegration of IPs and thus improves reuse † it does not reduce the complexity of IP design• Unlike others approaches † where IP design and integration can be speci ed using a single high ‡level abstraction meta ‡model † in IP ‡XACT † designers need to handle separately the design task (in HDL" and the pack ‡ aging task (in XML" of the IP• Changes made on one task can cause the modi cation on other task• This is error ‡prone and unnecessary• Component ‡based approaches focus on the modularity of the hardware system• They resolve the integration problems using high level abstraction concepts † design space exploration and code gener ‡ ation• Therefore † these approaches improve reuse compared to traditional approaches• However † for the problem domain abstraction † despite efforts of merging OOD in component ‡based design [SDTF12 † SDTF1Š] (in SW design" † component ‡based approaches are not alway as exible as Object Oriented approaches (abstract † inheritance † polymorphism † etc•" in term of reusability and adaptabil ‡ ity• Furthermore † these approaches often rely on their own formal modelling semantic which † sometime † is not standard (apart from IP ‡XACT" † thus † hindering its widely adoption on other system•

Platform-based approaches

Platform ‡based design " [SVM01 † PBSV + 0š † Sed06] is a methodology for creating a highly integrated design• It improves productivity chie y through extensive and planned IP reuse• A platform represents an abstract view of an application domain• Its architecture is based on a x set of generic components that can be parameterized at certain degree• Such platform allows to design various hardware systems in a given domain (e•g• video/image processing" and thus attain some generalization• Applications development is based on the composition and parameterization of generic components• Platform can be built on top of each other where the lower level design is abstracted away [START_REF] Sangiovanni | De ning platform ‡based design[END_REF]• Platform ‡based design de nes a xed architectural model for an application domain based on two key principles [START_REF] Keutzer | System ‡level design: orthogonalization of concerns and platform ‡based design[END_REF]: interface standardization and Orthogonalisation of concerns• Interface stan ‡ dardization means abstract communications between modular circuit components• This abstraction is mapped to physical interconnection by communication protocols which are de ned by interconnec ‡ tion type (e•g• point ‡to ‡point † shared bus † network † etc•" and topology• Orthogonalisation of concerns means isolation of different design aspects so that they can be independently implemented † optimized † and explored• This isolation could be the separation of communication from computation or of function from architecture• These two principles promote design reuse by allowing the independent evolution of hardware blocks with respect to the system architecture• A component can be reused on different applications as long as it responds to all requirement to the architectural constraints• Application design can be performed either in bottom ‡up or top ‡down manner• In the st case † the system has a library of IPs † cores † or virtual components implementing high complexity functions (e•g• image processing"• The application is built by selecting the component designs from library and connecting them together• In the other case † the library consists of only basic generic components (e•g• multipliers † vector processing etc•"• they are automatically mapped together as the result of a top ‡down design process• Both methods must respect the pre ‡de ned system architecture to ensure generalization of the platform• Platform ‡based design is basically used for system ‡on ‡chip design [START_REF] Cilardo | Design automation for application ‡speci c on ‡chip interconnects: A survey• Integration[END_REF]• For example † in com ‡ puter vision domain † the work in [START_REF] Peter | Recon gurable platform-based design in FPGAs for video image processing[END_REF] proposes a platform -Sonic ‡on ‡Chip-with architecture and module libraries dedicated for recon gurable video image processing• The HW application can be construct at run ‡time using dynamic recon guration• [START_REF] Ngan | Etude et conception d'un réseau sur puce dynamiquement adaptable pour la vision embarquée[END_REF] provides a network ‡on ‡chip for process ‡ ing multi ‡image sensors• This network makes it possible to dynamically manage different ow in parallel by automatically adapting the data path between the computing units in order to ef ciently execute different applications• Or † most recently † [START_REF] Kechiche | Ouni• Real ‡time image and video processing: Method and architecture[END_REF] has reported the bene t of platform ‡based design for real ‡time image and video processing• Platform ‡base design can also be used for communication ‡ based SoC architecture [Mar16 † CF16] such as bus ‡based [START_REF] A• Oetken † S• Wildermann | A bus ‡based soc architecture for exi ‡ ble module placement on recon gurable fpgas[END_REF] or network ‡on ‡chip [START_REF] Ngan | Etude et conception d'un réseau sur puce dynamiquement adaptable pour la vision embarquée[END_REF] systems; or for multi ‡interconnect processors [Pom16 † SF16] † etc•

Discussion

Platform ‡based design shows interesting use on domain speci c applications• By emphasizing on in ‡ terface standardization and orthogonalisation of concerns † it imposes constrains on system architecture and thus allow ef cient reusability and scalability (on large designs"• Since it focuses on an applica ‡ tion domain † platform ‡based design can be opted for speci c system performance enhancement (e•g• image processing"• Moreover † platform ‡based design is not mutually exclusive † that is † it can be used conjointly with other design methodologies such as HLS † component ‡based or object oriented based design for better productivity• The architectural model can also be applied on SW/HW co ‡design that is helpful for automatic SW/HW communication•

UML and Object Oriented based Approaches

In the context of hardware system ‡level design † the term Object ‡oriented (OO" means the application of Object ‡oriented Design (OOD" principles on hardware design using MDE rather than the use of object oriented languages (OOLs" for hardware description• There are work that did use OOLs for hardware description such as [START_REF] Guo | Compiling ruby into fpgas[END_REF] (Ruby" † [BH98 † HBH + 99] (Java †JHDL" † [Dec0š] (Python" † etc• These approaches have dedicated API that allows to describe hardware design using an OOL• They attain some productivity improvement by abstracting data type and constructs and by avoiding the syntax verbose problem of traditional HDL• Nevertheless † despite the use of an OOL † the application of OOD principles (abstraction † inheritance † polymorphism † etc•" on hardware design itself is missing or limited † making these approaches unsuitable for system ‡level design• OO ‡based system ‡level design approaches share some similarities with the component based ap ‡ proaches such as system modularization † auto code generation † etc• However † they use a more exible abstraction models for problem domain abstraction that support better IP reusability and adaptability• Moreover † like on software domain † the use of OOD on hardware domain also improves the docu ‡ mentation for the further reuse and system maintenance• Most recent OO ‡based approaches rely on the well ‡known standard modeling language UML [START_REF] Omg ‡uml | OMG Uni ed Modeling Language TM (OMG UML[END_REF]• UML † developed by the Object Management Group † is an open standard language for specifying † visualizing † constructing and documenting the software systems• However † it can also be used to model other non software system• UML has a rich set of diagrams that allow to specify -at a hight level speci cation-the structure (e•g• class diagram" as well as the behaviour (e•g• state or sequence diagram" of a system• Several UML pro les have been proposed for hardware system mod ‡ elling such as UML for SoC [START_REF] Vanderperren | Uml for electronic systems design: a comprehensive overview• Design automation for embedded systems † 12[END_REF] † UML of System C [START_REF] Riccobene | A soc design methodology involving a uml 2•0 pro le for systemc• In Design[END_REF] or the standard MARTE [START_REF] Omg | UML Pro le for MARTE: Modeling and Analysis of Real ‡Time Embed ‡ ded Systems[END_REF]• MARTE † stand for Modelling and Analysis of Real-time and Embedded Systems † is an UML pro le for model driven development of real time and embedded system (for both functional and non ‡functional aspects"• It is used in most recent proposed approaches for hardware system ‡level design• Most proposed approaches allow the mapping between UML diagrams and HDL concepts• Several works model the hardware system behaviour using UML behavioural diagram with different mapping models• MODEASY [WAU + 08] introduces a method and modelling tool for transforming a subset of UML state diagram elements into synthesizeable VHDL description• It allows to specify system be ‡ haviour in form of FSM• The work in [START_REF] Doligalski | Uml state machine implementation in fpga devices by means of dual model and verilog[END_REF] proposes method for mapping UML state diagram to an intermediate model based on hierarchical con gurable Petri net• Then † this intermediate model can be converted to HDL such as VHDL or Verilog• Another mapping possible is shown in [START_REF] Bazydlo | Ł• Stefanowicz• Translation uml diagrams into verilog[END_REF] † this method allows transformation from a state diagram using temporal Hierarchical Concurrent Finite State Machine (HCFSM" model † into Verilog hardware speci cation † the generated HDL can be simulated or synthesized on hardware• A part from state diagram † there are some other works that use a sequence diagram instead † such as [EFQ15 † LW16b]• The proposed approach in [START_REF] Ebeid | Hdl code generation from uml/marte sequence diagrams for veri cation and synthesis• Design automation for embedded systems † 19[END_REF] uses UML/MARTE to model the hardware system † it starts from a a sequence diagram with timing constraints † then automat ‡ ically generates its implementation in both System C or VHDL for veri cation• Using UML behavioural diagram allows to specify the structure and functionality of interacting com ‡ ponents using a high ‡level abstract model and hence reduces the design complexity• However † since these kind of diagrams focus only on behavioural description † they are not appropriate for structural 20 speci cation † which is important in system ‡level design• Furthermore † these approaches do not use the main principle of OOD (e•g• inheritance † polymorphism † etc•" † and thus limit the reusability and adaptability of the system• Other modelling approaches address this problem by using UML structural diagrams• GASPARD [GLBP + 11 † QMD08 † EBZ + 12] is a MARTE compliant SoC design tool and environment that allows to obtain executable system (such as hardware system in VHDL" from a high level MARTE speci cation• It relies heavily on the concepts presented in the Hardware Resource Model package• Such tool focus on the system modularization (using component diagrams" and components mapping † thus allows ef cient system structural speci cation• The system allows to generate structural skeleton VHDL codes which consist of entity and components mapping• The component behaviour must rely on existing IP or be described manually (using HDL"•

The work in [DM 0Š † DS0š] brings the principles of OOD and design pattern into hardware design• It proposes a framework for OOD concepts † domain speci c concepts and meta programming on hardware design• The system focus on (1" the structuring † the enscaptsulation † and reuse of HW designs at a highest level of abstraction; (2" using OOD techniques not only on hardware system modelling but also on hardware design processes• The work uses class diagram for system speci cation and is able to map between UML class diagram and structural VHDL abstractions (skeleton code"• The component behaviour is manually described using HDL or meta ‡programming• Some software design patterns such as composite † decorator † adapter have been adapted on hardware design for ef cient IP reuse and customizing• Most recently † AMoDE ‡RT [MWP + 10 † LW16a] is a MDE approach compliant with MARTE that target the FPGA ‡based embedded realtime system design• UML models are intensively used to gen ‡ erate system implementation• It provides a script ‡based tool called GenERTiCA for mapping between UML model element and VHDL structures• The system proposes a complete design solution by support ‡ ing to describe both structure (using class diagram" and behaviour (using sequence diagram" of the hardware system• Some basic OOD design principles (without design pattern" are allowed † such as encapsulation † inheritance † association• Apart from UML † there exist also other OO approaches based on OO HDL such as System C• [MGSPF11] introduces a case study of using Aspect Oriented Programming and OOD in hardware design using System C• The work focuses on increasing components reuse by decreasing components coupling• The proposed approach supports the use of OO concept (inheritance † interface" † design pattern † and meta ‡programing on the design process• Discussion OOD techniques promote productivity by describing the system in an abstract and implementation ‡ independent way• They raise signi cantly the abstraction level and encourage system reusability and adaptability• This has been well proven on software domain• From the conception perspective † hard ‡ ware systems share some similarities with OOD concepts (components vs• classes † component com ‡ munication vs object communication † etc•" † and thus can be expressed using OOD• UML shows an important application in high ‡level system design• It allows to combine the OO concepts for structural design (component † class diagrams" with the behavioural models (state † se ‡ quence diagrams † etc•"• Some works focus on the use of UML for modelling system functionality that can produce behavioural HDL code from graphical diagrams• However † they lose the support of OOD techniques in the design process• Other works emphasize on system structural speci cation• OOD tech ‡ niques is the primary concerns of these approaches• They have shown that † the use of OO concepts and design pattern in hardware can solve the design reuse problem using abstract concepts• Nev ‡ ertheless † they are hard to specify the system behaviour which needs to be described manually or via meta ‡programming• Only the work on [START_REF] Leite | System ‡level design based on uml/ ‡ marte for fpga ‡based embedded real ‡time systems[END_REF] proposes a complete solution for both system structural and behavioural• Because of the natural difference between UML high level graphical aspects and low level hardware concepts † it is not obvious to use all possible diagrams (structural and behavioural" elements to express hardware concepts• Most proposed solutions use only a subset elements of a target diagram to model hardware system• This constrains the design process to a subset hardware elements and patterns † which sometime † limit the design exibility and the scalability of system• We argue that there is the need of an intermediate meta-model to ll in this gap• A meta ‡model that is familiar with high ‡level OOD design principles -and therefore UML compliant-while being exible enough to express low level hardware behaviour and structure•

Summary

To deal with the increasing complexity of digital systems † MDE gains advantage over traditional ap ‡ proach by: (1" reducing system complexity via high ‡level abstract model † (1" encouraging design reuse and adaptation by mean of separation of concerns † generalization and generation (to HDL" † and (Š" aiming at integrating different existing design methods and tools into a unique high ‡level design en ‡ vironment and ow• Table 2•1 shows a review of presented approaches using MDE † based on the reusability † adaptability and extensibility of a HW design• Platform ‡based approaches particularly ad ‡ dress a speci c application domain• They rely on common architectures based on principle components xed within a certain degree of parameterization• Such architectures supports a variety of application in a given domain † thus attain some generalization• Component ‡based and OOD approaches are more generic• Component ‡based approaches are service ‡oriented and best at system functional ab ‡ stractions• They are powerful for IP integration by using a high ‡level abstraction concepts of component communication protocol• OOD approaches † on the other hand † are identity ‡oriented and are best at abstracting the problem domain of a system• They offer a more exible model to describe † reuse † adapt and extend hardware IPs• OOD can be integrated in platform ‡based design models in order to add more abstraction to the architectural model † thus enhances the components reuse and integration in an application domain•

2Š

A common problem of current MDE design approaches is that they only allow one ‡way mapping between high level concepts and low level hardware elements (HDL"• The inverse process that ef ciently reuses existing HDL designs in MDE environment is not considered enough † apart from IP ‡XACT which is only intended for regular IP reuse• By reuse † we mean the use of HDL designs † not as a low ‡level static elements but as high level active design elements• It is important to note that most currently existing legacy IP library are designed using traditional HDL• Allowing reuse of regular HDL designs in MDE environment should be considered as an important factor of a productive design system• As shown in table 2•1 † none of presented approaches satisfy all the criteria (reusability † adaptabil ‡ ity † extensibility and legacy HDL reuse"• Our objective is to propose a design approach aiming at ful lling all these criteria• We argue that OOD is suitable for our purpose since it naturally promote the integration-based design concepts (presented in section 2•2•2": (1" design for reuse (abstraction" † (2" design for generic problem (problem domain abstraction" † (Š" design for easy adaptability and exten ‡ sibility (design pattern † inheritance"• However † we do not try to directly map between high level OOD concepts to low ‡level hardware structures• We aim at lling this gap using an intermediate meta ‡model that bring OOD principles to HW design• 2.4 Software/Hardware Co-design SW/HW integration is another factor that has a signi cant impact on the overall productivity of the embedded system design process † mostly on complex systems which requires simultaneous develop ‡ ment of software and hardware• SW/HW interaction problem remains always problematic• It varies from project to project due to the change of requirements and takes an important amount of develop ‡ ment time while has less contribution on the overall system functionality• Such tedious † unnecessary and error ‡prone task † need to be taken in to account in SW/HW system level design• SW/HW co ‡design [Tei12 † JDM + 07] addresses this problem by abstracting the SW/HW system ‡ level design process• It meets the design objectives by exploiting the synergism of hardware and soft ‡ ware through their concurrent design• This is achieved using various methodologies for design space exploration †generalization and generation• SW/HW co ‡design provides a heterogeneous design en ‡ vironment that includes descriptions of SW/HW † and communication modules• Literately † proposed solutions for SW/HW co ‡design can be classed into two categories : Early binding and late binding approaches•

Early Binding Approaches

Early binding means that the SW/HW separation of the system is performed at the early stage of a top ‡down design process• In complex SW/HW system † this reduces the design complexity by decom ‡ posing the system into a hierarchy of manageable and coordinated sub ‡systems• Figure 2•5 shows the basic steps of the design process• At the beginning † the designer performs a system analysis and identi cation of tasks † from here † the system is separated into two parts (SW and HW"• Both parts are then developed simultaneously and separately• Usually † the hardware part is modelled in a high ‡ level abstract form (e•g• MDE † HLS † etc•" † that afterward promotes the SW/HW integration• It may be constrained to some architectural requirements if needed• The mapping stage is an automatic or 2š nication Finite State Machines (FSM" † Synchronous/Reactive and Data ‡ ow Process Networks Models in SW/HW co ‡design• These models include: formal speci cations † set of system and non functional properties and design constraints• The functional speci cation fully characterizes the system while sat ‡ isfying the set of properties• In [START_REF] Frank | From uml to hdl: a model driven architectural approach to hardware ‡software co ‡design[END_REF] † authors propose a co ‡design approach based on the transfor ‡ mation of different UML diagrams into SW or HW tasks• The work introduces MODCO † a tools that help generate HDL code from UML state diagram• They state that the tool is the rst step to bridge the gap between hardware and software design•

Discussion

SW/HW co ‡design is an important step for rapid prototype of complex embedded systems• It aims at an heterogenous architecture and environment (SW † HW and communication modules" for system design• The goal is to optimize the design constraints such as cost † performance and power as much as possible while reducing the time ‡to ‡market of the system• Trade off are often made between these requirements to achieve a reasonable design productivity • Late binding co ‡design approaches often focuses on language ‡based design method• Despite the advantages of using uni ed language for specifying both SW and HW at a algorithm level † these approaches have some limits due to the nature of the language• Firstly † this latter usually invokes the use of a compiler which is architecture speci c• Changing the underlying architecture (processor+ FPGA" leads to an important overhead to develop a new compiler that supports the new hybrid platform• This is not always faisaible• Secondly † the language emphasize on algorithm description † which is content ‡ based and does not inherently encourage design reuse † as discussed in section 2•2•2• A combination of Early binding co ‡design † with platform ‡based design and high ‡level system mod ‡ elling (OOD † UML" offers a better system modularity (both on SW and HW" † thus promotes the system reusability and adaptability• It allows also a better decoupling of the system with the underlying hard ‡ ware platform• This increases the exibility of the design environment with regard to different projects or different architectures (processor/FPGA and their interfacing"•

Positioning our work

The main contribution of this thesis is to study the application of modern design principles -Object Oriented Design (OOD"-on hybrid hardware/software system design † in the context of IoT and edge ‡ centric computing• The work focuses on three main design concerns:

The rst design concern is Hardware Design• We introduce an object oriented meta ‡model that bring OOD principles to hardware system ‡level design• Our approach is based on the observation that: (1" most content-based design methodologies lack the ability to ef ciently abstract the hardware at system level (coarse ‡grained level"; (2" the majority of proposed system-level design methodologies are not ful lled enough to specify the detail hardware behaviour (ne ‡grained † RTL level" and promote exible IPs reusability † adaptability and extensibility; and (Š" modern MDE ‡based approaches have dif culty to reuse and integrated existing legacy HDL designs in their environment• Our meta ‡model aims to the amount of design space exploration possible will be limited in complex system † thus the result is not alway optimal ll the different gap between high ‡level design concepts (i•e• OOD concept" and low ‡level hardware concepts• It plays the role of an immediate meta ‡model that is familiar with most modern object oriented design methodologies † while being exible enough to express any low ‡level hardware structures and have backward support to legacy HDL design reuse• Second design concern is Software/hardware co-design• The application context is focused on the use of FPGA hybrid system for IoT edge ‡centric computing• The design environment here is limited to an application domain• Therefore † our solution on HW/SW design is based on a combination of early binding co ‡design approach with an object oriented platform ‡based system ‡level design approach• Object oriented design is used for both software and hardware design• The SW/HW system is highly modularized and reusable for different avours of applications• Last design concern covers the middleware design for IoT edge ‡computing• We provides an edge ‡ centric middleware dedicated to the proposed hybrid system• This middleware eases the integration of FPGA edge ‡centric devices to the network• It supports distributed development and remote recon gu ‡ ration of nodes (both on SW at runtime and HW"• Š•5•š Automatic Circuits Integration and Con guration

• • • • • • • • 50 Š•5•5 Discussion • 51 Š•6
In ‡vivo Circuit Models Simulation 52

Š•6•1 Execution Model: time ‡driven vs• event ‡driven • • • • • • • • • 52 Š•6•2 Event ‡driven Simulation of Circuit Models • • • • • • • • • • • • 5Š Š•7
Interfacing the OoRC meta ‡model with External Tools 54 This chapter presents OoRC (Objecti cation of Recon gurable Circuits" † a dedicated meta ‡model for integration ‡based HW design• It begins with an overview of the meta ‡model and its associated features• Section Š•2 enlightens about how the meta ‡model can be used for content-based design• Section Š•Š presents OoRCScript † a dedicated Domain Speci c Language (DSL" for describing digital circuits using our meta ‡model• Hardware system ‡level design with object oriented technique will be presented in section Š•š• We talk about different kinds of model transformation in OoRC in Section Š•5• The simulation of circuit models is covered in section Š•6• Section Š•7 describes the interfacing of OoRC with external tools such as external simulator or synthesizer † etc• Finally † section Š•8 concludes the chapter•

Š•7•1 Ex ‡vivo Simulation Using an External Simulator • • • • • • • • 5š Š•7•2 Circuit model synthesis and deployment • • • • • • • • • • • • • 55 Š•8

Introduction

Content-based design methodologies (such as HDL or HLS" mainly focus on the creation and quali ca ‡ tion of IP (Intellectual Property" content• They have very limited features that support ef cient reusability † extendability and maintainability of IPs• Many System-level design methodologies use different design paradigm to address these problems• They aim at abstracting and automatizing the hardware design process at system level by mean of generalization † system standardization † separation of concerns and system modularization• That said † they are designed to handle the design task at a system perspective• However † when tearing down to the RTL level † these methodologies lack the ability to ef ciently de ‡ scribe the content of each IP• Often † they rely on an external design methodology for IP ‡content design (e•g• MDE for system ‡level design while using HDL or HLS for content ‡based design"• This ends up with an heterogenous design environment which is complex and error prone• Some methodologies support built ‡in IP content design but with limited structures or computational model (e•g• FSM † state diagram † sequence diagram † etc" † thus are not exible• The OoRC meta ‡model offers a unique and homogenous environment for both hardware system level design and IP content description• It uses Object oriented paradigm for System-level design while having dedicated API and language for IP content design• It means to close the different gap between modern SW design methodology (OOD" and low level HW concepts and allows the two design direc ‡ tions can cohabit so that developers can bene t the advantages of both worlds in a sole environment• Š0 3.1.1 OoRC in a Nutshell

Objectives

The OoRC meta ‡model aims at covering both content-level design and system-level design problem• At RTL level † it has API and dedicated DSL for modeling HW circuits as a graph of connected objects• Unlike most RTL approaches that rely on static meta ‡model for de ning passive and rigid models of circuits † OoRC's models are able to evolve dynamically thank to the live objects• This feature simpli es and promotes the (run ‡time" (semi ‡"automatic models processing † such as: (1" structural refactoring of circuit models for optimization; (2" automatic injection of structures and behaviours to a circuit model depending on application context (e•g• debug sub ‡circuit"; (Š" automatic incremental construction of circuit model via GUI (CAD" tool or DSL; (š" de nition of abstract structures from OoRC structures † providing correct ‡by ‡construction feature and automatic structure and code generation † etc• At system-level † OOD techniques and design pattern can be directly applied on circuit models• This provides the abstraction for presenting a design solution of a problem in a implementation ‡independent way• The main philosophy here is that the subject of OOD is not a physically existing object (objects at RTL level" † but the abstract concepts for solving a design problem• This separation of concerns allows better design modularity † reusability and adaptability• In OoRC † when talking about design reuse † we do not only mean the reuse of models represented by our meta ‡model but also the reuse of traditional HDL models• The OoRC provides backward support to legacy VHDL IPs• That is † out meta ‡model is able to import and present VHDL IPs as regular circuit models which then can be used to perform model processing † model integration † etc• As stated † this feature is important since the majority existing IP libraries are in traditional HDL forms•

Features

The meta ‡model is equipped with dedicated libraries for structural and behavioural modelling of hard ‡ ware structures (at RTL level as well as system level"• It is implemented using Pharo Smalltalk † an object oriented language and environment suitable for system modelling• On top of these APIs † different fea ‡ tures are available: In digital circuits † each operation has a propagation delay † and thus the assignment of its outputs to signals needs also a delay to take effect• In OoRC † we model a Signal as an object with history• To maintain this time history † a signal holds two informations: (1" the current value of the signal (before the operation" and (2" the new value that will take effect after the propagation delay of the operation• Each time the signal is updated (i•e• once the propagation delay elapses" † the new value will become current• Note that † in OoRC † variables are modeled as an instance of a data type class• They hold one value at a time and have no history• Variables are used in processes † functions or procedures• OoRCScript is an embedded DSL in the Pharo environment and is based on OoRC API for circuit de ‡ scription• It is extensible † compiler ‡free and inherits all characteristics of an interpreted language as well as the dynamic environment of Pharo• With its compact and minimalist syntax † OoRCScript simpli es and abstracts the circuit speci cation in comparing to the API• While being able to express low ‡level hardware concepts (using the API" † the language is naturally object oriented• Hence † it is familiar with most object oriented design principles• The OOD concepts can be used directly on OoRCScript for system level design• The same language is used for both HW content and system level design• Further ‡ more † OORCScript is not mutually exclusive † it can be used conjointly with other system ‡level design methodologies such as UML• Since the language is object oriented friendly † mapping UML diagrams to OoRCScript is more straightforward and easier than to a traditional HDL language (e•g• VHDL or Verilog"•

Circuit Structures Modeling

OoRCScript Syntax

The OoRCScript can be executed normally inside the Pharo environment without the need of a dedicated compiler• The code can be veri ed (at run ‡time" as an interpreted language• The language is extensible by adding more description methods to meta ‡description classes• These methods can then be used directly in OoRCScript without any further modi cation• OoRCScript code when executed † will create and connect all description objects to model a (sub"circuit• Although at this point the DSL code is syntactically correct † sometimes † its semantics are erroneous which makes the generated model improper• Therefore † it is worthwhile to perform an integral check of the circuit ‡model• For instance † the meta ‡model is able to detect some common problems: (1" assignment to signals of different data types † (2" sequential statements outside of process/procedure/function or using combinational statements inside a process † etc• † (Š" illegal operations on the data type of a sig ‡ nal † or (š" multi ‡source driving to a signal• In addition to this veri cation † in this phase † the system also the automatic signal resizing in the operations of two or more LogicVector signals of different size•

Coarse-grained Modeling: Hardware System Level Design Using Object Oriented Technique

Integration-based design approach involves two main steps: system-level design and content based design• The rst step describes the system at conceptual level• It generalizes the system and speci es the relation between components without any detail of implementation• This allows to build an overall system speci cation• In doing so † a speci c design problem can be generalized to have a more generic solution• This promotes the reuse † maintainability and integrability of the system in different application contexts with minimal modi cation and design effort• OO technique therefore plays an crucial role in system analysis and design• The second step consists of the implementation of the system for a speci c application context• It is the traditional content ‡based design with respect to the overall system speci cation• Š7

Polymorphism

Polymorphism allows some part of the design's architecture can be de ned differently• This can be done by subclassing a design and rede ne the desired structure• Rede nition (override" is supported in OoRCScript but is restricted• Only the entire architecture and reuse methods (OoRCScript methods and VHDL likes functions/procedures" are allowed to be rede ned• This restriction ensures the semantic coherence of the circuit• Listing Š•š shows an example of architecture override• The class TwoTapFIR † subclass of SimpleFIR † reimplements the entire architecture of the circuit by using an DFF (D Flip Flop ‡ for introducing a delay between x n and x n- "• This introduces a more optimized solution for the circuit architecture• In hardware design † polymorphism can be used to adapt an existing design to a new application context• A part of the design can be reused while the other part may be rede ned to be compatible with the new context•

Abstraction

Abstraction enables the de nition of HW designs at a very conceptual level without any architectural detail• It provides an overall view of design's functionality while suppressing the details below the current level• Thus † an abstraction design can be used as a common interface for a family of circuits with different architectural and/or behavioural implementations but which share the same external view• For example † in a Master/Slave bus design † the bus controller may be interested mainly in the way masters/slaves are controlled rather than how they are actually performed• In this case † all masters/slaves can be generalized into a single abstract master/slave design• OoRCScript allows to de ne virtual (abstract" architecture or methods (OoRCScript method † VHDL ‡ like functions/procedures" in a design• This kind of design does not represent an actual circuit † but instead it materializes a template• Sub ‡designs have responsibility to implement the virtual architecture or methods•

Š9

In listing Š•5 † the class SimpleFIR de nes an abstract architecture• An actual architecture must be implemented in all subclasses (e.g. TwoTapFIR" of this class• Listing Š•6 shows another possibility of abstraction using an OoRCScript method• The architecture is set as a return of the buildArch method• This is an abstract method• All subclass must implement it by specifying the architecture's descriptions• Abstraction is ideal to perform system level design• It provides an overall view of the conceptual system by specifying how circuit modules are connected and interact with other• Detail implementation can be realized later depending on the use context of the system•

Basic OO Design Operations

OOD Pattern on Hardware Design

Design operations † once combined together † can specify the relationship of system components and thus allow to construct the system speci cation

Automatic Circuits Integration and Configuration

Automatic circuits integration and con guration provide a mechanism to put designs together and en ‡ able a compatible communication between them via a common interface• OoRC supports this by introducing HDLDynamicCompositeDesign § † a dedicated class for designs integration as illustrated in gure Š•16• This class allows to compose a set of input designs and wrap them in a common interface• This interfacing ‡process is semi ‡automatic and can be de ned as a function of: M I = E composite (D, S) where D = {D i |i = ..n} is a set of input designs and S = {S i |i = ..n} is a set of corresponding ports classi cations (for each input design"• A ports classi cation S i of a design D i speci es how a port of D i will be connected to the interface• Basically † all ports can be classi ed into one of following categories: clock,reset: clock and reset ports † these ports will be connected directly to the clock,reset port of the interface• Control ports: start,end, etc. control the behaviour of the circuit• These ports will be connected to corresponding internal signals of the interface for manual processing• A design may or may not have these type of ports• Physical ports are ports which need to be forwarded directly to the interface inputs/outputs without any processing• They may be used to connect to an actual hardware device (sensors † physical bus † etc•"• These ports will be connected directly to corresponding input/output ports (also denoted as forwarded ports" of the interface• They are optional in a design• Logical ports: address/data and other control ports that need manually wired inside the inter ‡ face to adapt the design to the new interface• Since it's a semi ‡automatic process † the E composite function will be performed in two phases:

Automatic pre-processing : in this phase † an empty composite model is rst initialized• The model then generates all necessary signals/ports and connects them to corresponding input design D i based on their port classi cation S i • Manual processing: Additional ports of the interface are manually de ned in this phase• The model then execute the method craft to perform the internal linking of logical signals (connected to logical ports in previous phase" and control signal (start,end" of each input design D i to the interface (red zone in gure Š•16"• In HDLDynamicCompositeDesign † this method is a virtual method• The class is not used directly † it must to be subclassed• All its subclasses have the responsibility to implement the method craft to specify internal linking logic depending on each interface•

Predefined Interface for IP Integration

The dynamic composite design method can be used to build a prede ned interface for IP ‡integration• This can be considered as an interface template• Designers can use it to implement their application

The Parser can work with either simulation or synthesizable VHDL code † but the meta ‡model supports only synthesizable VHDL structures § This class is based on the hardware composite pattern system ‡level design methodologies support this feature in their system• Some approaches (e•g• IP ‡ XACT [START_REF]Standard structure for packaging † integrating † and reusing IP[END_REF]" allow this but require an additional manual IP decoration/meta ‡descriptions step † then work on these descriptions/decorations rather than on the IP itself• Therefore † they are hard to deeply commit change to the IP (optimization † restructuring † etc•"• On the other hand † OoRC † allows to fully import legacy HDL IP as a native model † that one can perform any transformation on it lately• Automatic circuits integration and con guration provides a (semi" ‡automatic mechanism for com ‡ bining several arbitrary designs together via a common interface template• This feature uses design pattern and performs some correct ‡by ‡constructions and automatic structure generation of the inter ‡ face depending on the input set of designs• Advantage of this approach is that it abstracts away and separates the interface from the real implementation so that it can be independently applied on dif ‡ ferent application contexts• This reduces the design cost for the interface which alway remains as a time ‡consuming and less ‡contributive task• 3.6 "In-vivo" Circuit Models Simulation

Execution Model: time-driven vs. event-driven

To understand how the simulated execution of FPGA circuits works † one must understand what kind of execution model is used in the meta ‡model• For such a model † two kinds of systems need to be taken into account † the continuous systems and the discrete systems [START_REF] Sloot | Model Execution: Event driven versus Time driven[END_REF]• In the rst ones † the state of the system (signals † ports" changes continuously with respect to time † whereas in the latter ones † the state changes instantaneously at separate points in times• In reality † there are few systems that are either completely continuous or discrete † although often † one type dominates the other• For example † a synchronous circuit that uses the global clock can be considered as a continuous system since its state can be changed at each clock• But when we consider the system at gate ‡level † when a part of the circuit is active † all related operations will be performed and make change on its outputs• This change † in consequence † will trigger instantaneously other parts connected to it• This process is repeated until the state of each part becomes stable• These parts † therefore † can be considered as discrete systems• The challenge here is to nd a computational model that mimics closely the behaviour of such time ‡advance systems• There are † in fact † two models that can be used in this case: time-driven and event-driven• A continuous system can be easily simulated using the time-driven [PL08 † Slo15]• With this approach † the simulation advances time with a x increment of exactly Δt time units which is called simulation clock ¶ • After each clock † the state of the system is updated for the interval of [t, t + Δt]• This approach † however † is not very appropriate for simulating a discrete system• For a such system † the time step Δt must be small enough to capture all events• Often † this time step is extremely small which is unac ‡ ceptable as the simulation time involved• Furthermore † there are obviously empty time steps that cause wasting simulation time• An event-driven simulation [PL08 † Slo15 † SC95] has a nature close to a discrete system• The simula ‡ tion time in this case advances directly to the next ‡event time• An event represents a state change of the system caused by incoming data or internal processes• For the case of a discrete system † the approach is met• At that point † the outputs of the model can be inspected• This kind of simulation † as explained by its name † interests only how outputs values of a circuit change depending on its inputs † regardless of the time needed to complete the calculation• This is helpful for software/hardware co ‡development• Developers can use the circuit model as an hardware abstraction to build and test their software without worrying about the actual hardware implementation• Listing Š•11 shows an implementation of this simulation mode•

Circuit model synthesis and deployment

To support the deployment of circuit models on an actual hardware † OoRC has a dedicated toolset for automatic synthesis• It can be performed in three main steps:

Firstly † it encapsulates the target model in a dedicated interface• This interface allows an agreed communication between the FPGA circuit and the physical world (e•g• processor † sensors † etc•"• The nal model (including interface" will be nally exported to VHDL for low level synthesis• Secondly † it generates a device con guration for a selected hardware• This con guration is hard ‡ ware speci c and different between vendors• It speci es all the options needed for a low level synthesis on a particular device• The con guration also sets up the physical mapping of the interface generated on the previous step• This allows to connect circuit ports to actual FPGA IO ports• Finally † the toolset performs a low level synthesis based on the VHDL code and the device con g ‡ uration obtained from previous steps• This is done automatically by invoking a series of commands provided by vendor synthesis tools• If all commands are successfully executed † a bitstream will be generated at the end of the process and ready for deployment•

In the system † these steps can be modelled by three main concepts: PhysicalInterface † DeviceConguration and Synthesis as illustrated on top of gure Š•19• PhysicalInterface is a subclass of HDLDy-namicCompositeDesign• It is a composite design which allows to de ne a generic physical interface wrapper (e•g• serial † parallel † usb † ethernet † etc•" for any input circuit model• This wrapper enables the communication of the circuit with the outside world (e•g• processor † network † etc•"• The Device-Con guration class † in additional to device speci cation † also speci es how an interface is mapped to the FPGA IOs• The mapping con guration of an interface is separated from its de nition to ensure the interface independent regard to different devices• When an interface (PhysicalInterface" accept a con guration (DeviceCon guration" † it requires the con guration to set up the ports map for it (via the method portMap"• A new added device needs to de ne all portMap methods for the interfaces that it supports• Note that † physical ports (of the input design" forwarded by the interface are design speci c and are unde ned at the design time of the generic interface• In this case † they need to be manually mapped at run time by the con guration (using the method manualMap"• The interface and con guration are used by the Synthesis to generate all manifest les needed for a low ‡level synthesis• The system supports synthesis via SSH (using the class RemoteSynthesis"• This allows all vendors tools (Xilinx † Altera † etc•" can be centralized on a server † and the synthesis will be performed remotely based on a selected vendor device• The bottom of gure Š•19 shows a simple implementation of synthesis GUI tool from the class dia ‡ gram• The list on the left displays all design classes available in the system• Users need to manually classify all ports for a selected design (LGCameraUnit"• This decides how each port are connected in the interface• On the right † one can select an desired interface (APF51Builder" and a supported de ‡ vice (APF51Imx"• Users may also need to specify the port map (IO" for all physical ports of the target design † since they are unknown by the interface at design time• Thanks to the dynamic environment of Smaltalk † when new design † interface † or device classes are added to the system † they will be updated automatically to the GUI•

Summary

In this chapter † we have presented the OoRC meta ‡model † our rst contribution that provides an object oriented approach for digital circuits modeling• The meta ‡model allows to describe a circuit as a graph of connected live objects• This graph is especially handy for model transformation/processing (refac ‡ toring † integration † etc•"• A circuit model is executable an can perform a in-vivo hardware simulation relying on events• This work was partly published in [LLF + 15]• One can manually design circuit models using the dedicated DSL• The DSL brings oriented ‡object technique to hardware description to support system ‡level design and enables ef cient reuse of IPs• It is also possible to reuse third ‡party hardware designs (in VHDL" in our system thanks to the built ‡in VHDL parser•

The chapter focused mainly on basic concepts and methodologies of OoRC• The meta ‡model covers all basic aspects of digital hardware design † from hardware description and simulation to automatic low level synthesis• Based on this solution † high level (CAD" tools can be built for circuit design or for automatic circuit model processing• Chapter š will show another possible use of the OoRC meta ‡model for abstracting hardware circuits and automatically handling software/hardware communication• 57 This chapter presents OoRCBridge † our dedicated middleware and toolset for software/hardware interfacing• It aims at being a generic solution for integrating FPGA within existing software systems• Middlewares interoperability is supported in our system so that programmers can stay on their mid ‡ dleware while having a possibility of hardware (FPGA" interaction• Section š•1 provides an overview of our methodology• Section š•2 describes the hardware architecture needed for de ning a common communication protocol between software and hardware• The middleware is detailed in section š•Š• In section š•š † an approach for software ‡like hardware debugging will be presented• Section š•5 shows a case study where we use OoRCBridge in robotic application• The chapter will nally be summarized in section š•6•

Overview

As discussed in chapter 2 † there are many advantages to use FPGA with high level software in embed ‡ ded or robotic applications• However † the interfacing problem between FPGA and high level software always remains problematic• Especially † when one want to integrate FPGAs in existing SW system which results a hybrid heterogenous system (different devices † physical interfaces † or high ‡level SW systems † etc•"• Late binding approaches such as language-based approaches (HLS" allows using a unique model for SW/HW co ‡design and abstracting SW/HW communication• However † these ap ‡ proaches suffer from a low scalability since they are heavily architecture ‡dependent (compiler † inter ‡ face † etc•"• Therefore † they are not versatile enough to adapt to different devices † interface or software systems• We argue that a solution based on a combination of early binding approach and platformbased approach support better system modularity• By focusing on the separation of concerns and the interface standardization † these approaches promote reusability and adaptability † thus enhance the system scalability• Basically † the proposed approach must have the ability to easily adapt to different kinds of physical FPGA ‡processor communication interface• This may be a general purpose interface (USB † ethernet † serial † etc•" or a dedicated high performance SoC interface (WIEM † PCLe † etc•"• More ‡ over † the solution needs to be as generic as possible to maximize the reuse of the system on different application contexts• This can be done by de ning a uniform middleware for SW/HW communica ‡ tion• Beside being exible † this middleware must provide an intuitive protocol to high level software• The protocol has to be software ‡friendly and requires less effort on hardware processing from software• Traditional software languages are designed to work ef ciently with memory access• Therefore † a natural way to access the underlying resources from software is to map each hardware device to a segment of virtual memory• In doing so † all of the actual I/O interaction on hardware now occurs in memory in the form of standard memory addressing• This can be achieved by using memory mapped le technique as in operating systems such as Unix• Each hardware device appears as a device le in the system• This le can be easily mapped to a segment of virtual memory• Registers on hardware devices are associated with address values• The software can therefore treat the device as if it is a part of the primary memory• The same method can be applied on FPGA by mapping the FPGA into a virtual memory region where each FPGA circuit occupies a segment of it as shown in gure š•1• 2• Deployment stage: the bitstream generated from previous stage is deployed on the FPGA• On the software side † the corresponding hardware driver is installed• The system then generates all necessary APIs to allow accessing to FPGA registers via our middleware• This middleware is application independent since it is based on memory mapping technique• Accessing FPGA circuit registers by address requires an address resolution mechanism• An ad ‡ dress/data IO interface is suitable for this purpose• The implementation of OoRCBridge uses Wishbone interface as base addressing scheme for FPGA modules• Wishbone is an open source address/data IO logic bus " intended to modules integration• This interface is used widely on FPGAs to connect several designs together• On the software side † the OoRCBridge is optimized for software develop ‡ ment using Pharo (Smalltalk"• However † all (software/hardware" principles presented in this thesis are generic and can be applied on other hardware buses (e•g• AXI š•" or object oriented programming languages (e•g• Python"• 4.2 Hardware Architecture

Interface Template

The automatic encapsulation of inputs modules within Wishbone interface happens at the design stage• OoRCBridge has a generic interface template that allows to automatically embed any input designs• This template is based on the integration feature of the meta ‡model presented in section Š•5•š † as shown in the upper part of the gure š•2•

The template has three main parts: WishboneMaster † WBBusController and DynamicWishboneSlave• The WishboneMaster is an architectural abstract design• It de nes only the regular master interface to the bus controller• A subclass of this design has the responsibility to implement the detail communica ‡ tion (decoder/encoder" between Wishbone and a speci c physical interface• The WEIM2Wishbone is an example † it describes how an incoming data from the physical WIEM (Wireless External Inter ‡ face Module" can be adapted to Wishbone and vice ‡versa• Each realization of WishboneMaster is speci c to a physical link• One can easily develop a library of classes describing different Wishbone adapters for most popular used physical interfaces• As long as a new master is implemented based on WishboneMaster † it can be used directly by the Wishbone template without any further modi cation• A DynamicWishboneSlave is a composite design of a user ‡input design• It encapsulates automati ‡ cally the input design in a Wishbone slave interface• This can be done by connecting all logical ports (speci ed by S i † ports classi cation" of the input design to a corresponding registers• These registers are Wishbone data words aligned (8/16/Š2 bits aligned"• They are then assigned automatically to a virtual address• Therefore † they can be accessed from the slave using the address bus• All other ports classi ed as physical will be forwarded directly to the bus controller for external communication• A WBBusController is a composite design of a master and several slaves• Internally † it de nes an arbiter that decides which slave is activated at a time based on the requested address from the master• " Wikipedia: A logic bus does not specify electrical information or the bus topology• In ‡ stead † the speci cation is written in terms of signals † clock cycles † and high and low levels• https://en•wikipedia•org/wiki/Wishbone_(computer_bus" It is de ned to have 8 † 16 †Š2 and 6š bits buses• In our system † only 8 †16 and Š2 bits buses are supported (which can be easily converted to computer type on software side" to provide the same memory mapping mechanism to the high ‡level software † since the higher layer operates independently of the lower one; (2" they must be able to encode the address/data from higher layer to a data format compatible with the physical interface (serial † parallel † etc•"; and (Š" they share the same communication protocol with the corresponding Wishbone master on FPGA † so that † the master can decode data it receives from the driver and map it back to the wishbone• One can have a library of pre ‡built drivers for commonly used physical interface † likewise the Wish ‡ bone master on hardware side• These drivers can be easily added into the middleware without any further modi cation at API level• Different drivers can be activated at the same time to provide access to different FPGA devices•

API Layer

The API layer is completely decoupled from the system layer• The only link between them is via the device le (produced by the system layer" which is con gurable• The layer has two API levels• The rst one is the low-level API which is developed in C• At this level † the system uses the memory mapping technique on the provided device le• The whole FPGA is considered as a virtual memory region• Every FPGA register can therefore be accessible via its corresponding virtual address• Furthermore † the API is able to access the IRQ Manager on the FPGA and makes the interruption handle available to users• This feature allows user applications to react to an event raised on the FPGA † for example † when the circuit nishes the processing or when a hardware breakpoint meets its condition † etc• The second level -the high-level API-is a high level language binding of the low ‡level API• OoRCBridge middleware has a Smalltalk implementation as an example of binding• The same principle can be used to bind the API to any high level object ‡oriented languages (Python † Ruby † etc•"• User application † which use the high-level API † can therefore interact with FPGA registers as if they were plain objects•

In our system † different FPGA devices can be used simultaneously• Each one is mapped to a sep ‡ arated virtual memory region• Multiple circuits can run in parallel on one or more FPGAs• They are assigned to independent memory segments• On software † these circuits can be considered as pro ‡ cesses• Since Smalltalk supports concurrency at the language level † it's trivial to map each circuit on FPGA to a equivalent Smalltalk process• Note that † on hardware † the circuits are independent and there is no physical connection between them † so the synchronisation between processes must be done on the software side• This can be achieved by using the interruption handle feature to determine which process is nished and is ready for synchronizing•

Software Development Using the Middleware

Both API levels can be used for software development † but the high-level API is more exible and software ‡friendly since it is coupled with an object oriented language• At this level † more abstrac ‡ tion can be added to hide all hardware aspects• Hardware accessing can therefore be performed in a convenient way as plain software objects• In OoRCBridge † this is achieved using an automatic code generation process as illustrated in gure š•š• When circuit models are deployed on hardware † based on the addressing scheme performed at the integration phase † the OoRCBridge toolset will generate automatically an accessing class for each circuit to our framework and automatically integrated with the Wishbone interface without any further modi cation• Therefore † the data/address registers of the block RAM were accessed via the wishbone interface by using their associated address• On the software side † a small C applica ‡ tion using our low ‡level software API is developed to provide access to these registers• Š• With the generated interface + high-level software API: This case uses the same hardware con ‡ guration as the second one• But on the software side † the toolset generates also the accessing classes• The application has been developed in Smalltalk and used these classes to perform the read/write operation to Block RAM registers on FPGA• For the last two test cases † the wishbone has been con gured conforming to the WIEM on AFP51 with 16 bits of data width † 16 bits of address width and 100 Mhz clock•

The same test scenario has been carried out for these three cases: a 20 MB of data was written continuously to the block RAM (2KB" and then was read back and stored into an array• This process has been repeated 10 times for each case and the average read/write speed has been calculated• The result is shown in the gure š•6• In the rst case † since the communication interface is optimized only for the block RAM on FPGA † an ideal transfer rate of 5MB/s for reading and 7•77MB/s for writing is obtained• This † however † takes an important amount of development time both on hardware and software which can be quanti ed by the number of active lines of code• The process -which performs simple read/write on the block RAM-took totally about Š20 lines of code (180 lines of VHDL for the interface ¶ + 26 lines for the IO con guration + 11š lines of C code"•

In the second case † to make the interface more generic † a wishbone interface was inserted on hard ‡ ware side † and the accessing on software side was realized via our low ‡level API• Although the read ‡ /write speed is reduced to around ŠMB/s † developers can save a lot of development time since the interface was generated automatically• It took about 112 lines of codes (1Š lines for IO con guration + 99 lines for the C code"• They † however † must take care of direct management of data on the low ‡level software (registers addresses † data conversions † •etc"• disable the output clock when a control signal is triggered (i•e• the break signal"• Cutting off the clock results in stopping the execution of the target circuit while holding its current state• Since the slave uses the global clock † it is not affected by this event and thus can read the target circuit's state on software demand• The break signal is also used by the slave to trigger an interrupt to the IRQ Manager• This allows the manual handle on software side when the breakpoint takes place• In addition to the clock controller † a third component † the clock counter † is added to measure the execution time of the target circuit in clock cycles• It starts as the circuit to debug starts the computations and stops when the done signal of the circuit is asserted• Since the counter uses the same clock as the circuit † it is also halted when the clock is disabled• In this way † the developer can inspect exactly the execution time of the circuit at the breakpoint• Listing 4.1: Example of using hardware breakpoint in software. The HWCounterMapping is the accessing class of a simple hardware counter. This counter has an input and an output signal, and counts from 0 to the value of input (100). The breakpoint is set for output at value 50 (rst operand). Note that the slave uses the address of ouput to select the second operand for the comparator Software can resume the halted execution at anytime by writing a true boolean to the resume register which connects to the clock controller• This action allows the clock controller to enable the output clock † and hence wake up the target circuit and the clock counter• The execution ow can then continue• This debug feature is built in supported by our low ‡level API and is easily bound to any high level binding (e•g• Smalltalk implementation"•

The listing š•1 shows an example (in Smalltalk" of how the breakpoint is set on the software side and how to use the IRQ Manager to handle the breakpoint• HWCounterMapping is a subclass of HWMappingScheme• This class -generated by the toolset-abstracts a simple hardware counter circuit on FPGA• The program simply waits until interrupt happens then prints the value of output and the number of executed clocks at the breakpoint• The execution of the circuit is resumed (line 9" after the breakpoint is processed•

The only drawback of this method is that the implementation of the debug circuit requires to use the clock ‡gating technique to control the clock (clock controller"• The vendor speci c Digital Clock Manager (DCM" is required to produce a low ‡skew gated clock• This feature † therefore † is vendor dependent• Vendor speci c features are limited in our system since we focus on a hardware/software independent platform to enforce the portability between systems•

Case Study: Using OoRCBridge Toolset and Middleware for Robotic Development

Today robotic computing systems are usually implemented using general purpose processors because of their accessibility and simplicity which do not require speci c knowledge• Furthermore † many robotic middleware are available that facilitate the development process• However † this approach restricts sev ‡ eral optimization opportunities and may not always satisfy performance † cost † and energy requirements [START_REF] Cullinan | Comput ‡ ing performance benchmarks among cpu † gpu † and fpga• Internet[END_REF]• FPGA infrastructures can be considered as a good solution for these issues † especially in complex robotic systems that require time consuming tasks• Advantages are many to use FPGAs along with general purpose processors• On the one hand † FPGAs provide hardware acceleration and on the other hand † CPUs allow developers to use exible software development environments• This combina ‡ tion also allows reduce the overall energy consuming of the application by carrying critical tasks on FPGA and hence deducing the software overhead• However † software/hardware integration remains a challenge for robotic developers and usually results in a loss of productivity [START_REF] David | Bacon † Rodric Rabbah † and Sunil Shukla• Fpga programming for the masses• Commun[END_REF]• Robotics development involves experts from different domains• To encourage them to adopt FPGAs in their projects † a uni ed software/hardware platform for easily integrating FPGAs in existing robotic system is mandatory• Above all † this platform must be generic enough to be reused from project to project with minimal modi cation• OoRCBridge is well suited for this purpose• Firstly † it eases the software/hardware integration with the help of a dedicated middleware and an automatic code generation process• Secondly † its API can be easily integrated to other robotic middleware -by binding the low ‡level APIs to the new environment• This allows developers to stay on their robotic middleware while have additional hardware accessing feature• This section demonstrates a use case of OoRCBridge in robotic development where a robot uses a camera to detect and follow an object speci c by a colour pattern•

Scenario

The robot follower is developed using the ROS middleware• The application consists of a ROS network with many nodes for controllers and sensors• We use Pharo Smalltalk for the implementation of ROS nodes -as the Smalltalk binding of ROS client API is available• Among the sensor nodes † there is a node that handles a camera -called detector node• It is the principal node for object tracking• The principle is simple † the node will capture images from the camera and use a colour lter algorithm to detect object position• This latter will then be communicated to the controller node via the ROS network• Since a software implementation of the image processing can easily be achieved † it is not an optimal solution• The application require a real ‡time tracking from the detector node which is therefore a time ‡critical task• A software implementation may not fast enough to respond to this characteristic † especially for a large image resolution (e•g• VGA"• Furthermore † the use of a high level language to implement the task can add more overhead to the system and thus can increase the overall energy consummation -another factor that should be considered in such robotic application• The comparison in section š•5•Š will verify these hypothesis• FPGAs are suitable for resolving these kinds of problem• In this demonstration † we focus mainly on the implementation of the image processing algorithm -critical part of the node-on FPGA• For simplicity † we use the same device (i•e• APF51" as the previous experiment to build the detector node• The idea is that we connect directly a 0V7670 camera to the FPGA (APF51" via its GPIOs• The FPGA captures the image from the camera (pixel by pixel" and lters each pixel using a hardware HSV lter by a speci c colour pattern• The ltered pixels are then used to calculate the barycenter of the detected region which nally provides the position of object• The hardware design of this process can be described using our meta ‡model † but here we use existing VHDL design from another project instead• This allows to demonstrate the ability of reusing existing third ‡party designs (backward compatible" of the meta ‡ model• Figure š•8 shows the original design of the detection circuit † it contains 5 main components:

The camera controller is used to con gure the functionalities of the camera via a I2C ‡like inter ‡ face• The two important con gurations used in this experiment are: (1" the pixel is 16 bits RGB 565 format and (2" the image is in VGA mode (6š0xš80"•

The capture logic controls the image acquisition• From here the resolution of the image can be con gured by either 6š0xš80 (VGA" or Š20x2š0 (QVGA" or 160x120 (QQVGA" via dedicated ags• This is achieved by downsampling the input image from camera by a factor (e•g• for the QVGA mode † for every 2 lines 1 is skipped and every 2 pixels † only 1 is captured"•

The HSV lter unit lters each pixel by converting it from RGB to HSV format and then test if it falls into the threshold colour range of a speci c colour pattern• This unit outputs a 1 bit binary pixel•

The center of mass unit uses the binary pixel from the HSV lter and the pixel position to calculate the barycenter of the detected region• The unit assumes that there is only one region in the ltered image• The object position will be the barycenter of all regions•

The frame buffer stores the ltered image into a block RAM † each pixel is encoded as 1 bit (binary image"• This design has been imported to our system using the meta ‡model without any modi cations• Each component corresponds to a design class• The OoRCBridge toolset has been used to generate the The HSV colour space is used because it is less sensitive to lighting variations we've acquired a value around 2556 global clocks cycles "" (for VGA setting"• So that it takes about š global clocks cycles to produce a pixel at the highest resolution (shortest pixel production time on the capture unit"• This result con rms the proposed hypothesis• A possible solution to this problem is to collect š pixels (∼ /" from the capture unit and then process them in parallel by using š separated lters• At highest resolution † the time of collecting š pixels (16 clocks cycles" is approximatively the processing time of a pixel on the lter unit (1š clocks cycles"• By pipelining the capture unit † the lters unit † and the center of mass unit † the pixels processing part takes no extra time compared to the pixel capture time• This was done by modifying the VHDL code of the original design• The new version is shown in the gure š•10• Since this new design is optimized for the highest image resolution (VGA" † it obviously works well with the lower ones• Again † the design can be imported and used in the framework without any problem•

FPGA vs Processor

As mentioned previously † using FPGA to handle the complex processing task can improve the per ‡ formance while reducing the power consumption• To verify this hypothesis † we have performed an experiment based on object detection algorithm with two scenarios:

Image processing using software: The FPGA is used to acquire image from the camera sensor and store it in a local block ram• The processing software is developed in C and runs on the ARM• This program continuously fetches image from FPGA's block RAM and lter it (in HSV colour space" based on a colour pattern• Since the internal BRAM (Block RAM" is limited † the FPGA can only store each time an image colour of QQVGA resolution (160x120"• Therefore the scenario works narrowly on QQVGA image• Image processing using FPGA: In this scenario the image processing part is handled by the FPGA• The optimized detection circuit on gure š•10 is used• For the experimentation † the circuit is con gured to work with VGA image• In this scenario † the software part simply fetches the object position as soon as it is available• •11 shows the average power consumption and the processing time of each frame between the two scenarios• The result demonstrates that † the VGA image processing on FPGA is two times faster than the QQVGA software version while consuming two times less power• The rst scenario is performed entirely sequential• So the total processing time for each image is denoted as : t  = t c +t tf +t p • With t c is captured time † t tf is the image transfer time and t p is the processing time on processor• In the second scenario † since the data is streamed † the lters are in parallel and the processing units are pipelined † the processing part takes no extra time compared to the capturing part † that is: t = t c • This proves why the image processing on FPGA (VGA" is much faster than on the processor (QQVGA"• Regarding the power consumption † the rst scenario requires energy on both FPGA (for captur ‡ ing" and processor (for processing"• In the second scenario † only the FPGA is in need of power † the processor only fetches the object position from the FPGA and hence † has less impact on the power consumption• Literally † the work on [START_REF] Cullinan | Comput ‡ ing performance benchmarks among cpu † gpu † and fpga• Internet[END_REF] has proved that FPGAs outperformed GPU and CPU for xed algorithms using streaming such as digital signal processing † or data encryption † etc•; which is exactly our case•

Communication Through the ROS Middleware

The detector node's software runs on the ARM processor of the APF51 board• The Smalltalk binding of the ROS client API is prior installed on the node• Since our middleware API also supports Smalltalk binding † it is straightforward to develop application using a mixture of the two middlewares without any problem † as shown in listing š•2• 1 |node pub hwdetector pos| 2 "Hardware accessing class generated by the middleware" Š hwdetector = ODMappingScheme new. š hwdetector resolution "VGA".

5 hwdetector start true. can be generalized and simpli ed at certain levels• OoRCBridge proposes a solution for this problem• It provides a highly abstract environment for software/hardware communication• The design of the system relies on the perspective of software programmers -who are not always hardware expertsand therefore is software ‡friendly• The middleware and the toolset allow to close the interfacing gap by abstracting the software/hardware communication• Automatic code generation (both on software and hardware" handles complex software/hardware co ‡design tasks and therefore avoid the error ‡ prone problem• In OoRCBridge † some manual tasks have to be done at the very low level where the physical interface meets the hardware driver• This is unavoidable since they depend on how the FPGA is physically connected to the processor• However † these tasks can be considered as generic to a speci c physical link and can be reused on different applications without any problem -as long as the physical interface remains the same• The Internet will disappear. There will be so many IP addresses, so many devices, sensors, things that you are wearing, things that you are interacting with, that you won't even sense it. It will be part of your presence all the time... This chapter mainly focuses on the problem of developing and deploying applications on edge ‡ centric sensor networks † consisting of hybrid nodes• The network topology is † however † shadowed and unspeci ed• Since the network is based on internet protocol † any IP ‡based (Internet Protocol" network topology can be used with the middleware (CaRDIN" as an underlying networking layer (system level"• We start with the discussion about the context and the general view of CaRDIN in section 5•1• Its architecture is then detailed in the section 5•2• Section 5•Š describes the programming mechanism of edge ‡centric SN based on CaRDIN middleware• Before concluding the chapter † two case studies is showed to demonstrate the proposed platform as a proof of concept in section 5•š and 5•5•

Eric Schmidt † Google chairman

5•Š•1 CaRDIN's Distributed Object API • • • • • • • • • • • • • • • • • 8Š 5•Š•2 Automatic Remote SW/HW Recon guration of Nodes • • • • • 85 5•Š•Š Discussion • 87 5•š Case Study 1: Camera Sensor Node Performing Image Processing . . . 88 5•š•1 Scenario • 88 5•š•2 Benchmarkings • 90 5•5

CarDIN: overview

Despite of various existing middlewares † developing and deploying end ‡to ‡end application on SN (in general" remains highly complex• There are alway the problems of scalability and heterogeneity• Scalability issue often relates to the handleability of a middleware in different SN scales• In a large scale SN † manual management † development and deployment of each node is not a good idea• Remote and dynamic methods are more preferable in this case• Such mechanism allows developing and re ‡ con guring the nodes without physically removing them from the deployment site• The heterogeneity problem impacts not solely the hardware architecture of a node but also the software design process• That is † nodes' hardware is often homogenous while software development is usually performed in a heterogeneous way• Most existing middlewares rely on a x hardware architecture for building nodes and have dif culty to adapt different node's hardware architectures to the system• On the software side † application development involves programming both server and nodes• This result in a complex process since programmer needs to individually develop each nodes † then link them together on the server side• This process may not be homogenous since the development of the development of the server part and the nodes may use different languages † technics or architectures (processor vs• micro ‡ controller"• Hardware homogeneity limits the heterogeneity of the SN while SW heterogeneity makes the development process more complicated and error prone• Existing middleware solutions tend to focus on data centralization † they operate on SN consisting simple nodes (HW and SW" with limited capabilities• These nodes simply perform data collection and delivery• A decentralized architecture such as edge ‡centric computing † on the other hand † pushes the data processing to the edge of the network and thus requires more capable nodes (SW and HW"• Such nodes can handle more complex application for data processing and decision making• A truly distributed environment is therefore needed for such systems that allows to: (1" push the processing power of the application to the edge ‡centric node † (2" promote the development † management and deployment of distributed application on the network• Up until now † the problems of HW design and HW/SW integration have been addressed• We have proposed dedicated toolset and middleware for SW/HW co ‡design on a hybrid FPGA/processor de ‡ vices• However † to use the system for edge ‡computing † a dedicated distributed environment for edge ‡ centric applications is still missing• The proposed middleware must take into account the development and deployment of not only the SW but also the HW on hybrid nodes• CARDIN is our proposition to solve this problem• CaRDIN proposes a dedicated middleware † hardware architecture and toolset for edge computing environment based on IP ‡based SN• As discussed in chapter 2 † IP ‡based SNs provide an homogeneous communication layer for connecting heterogeneous devices• The use of IP ‡based SN has two main bene ts: (1" it solves the hardware heterogeneity problem by promoting the integration of wide ‡range of IP ‡compliant devices; (2" it provides the compatibility with existing IoT infrastructure and thus easily In CaRDIN † to reinforce the equipment at the edge of the network † hybrid FPGA devices (i•e• FPGA + processor" are used• These devices are ideal for balancing the performance requirement with the energy consumption limitation of edge ‡centric nodes• They could have many form ‡factors and archi ‡ tectures• Therefore † to ease the SW/HW co ‡design † CaRDIN abstracts the SW/HW interaction on a node using a generic communication model (based on OORC ‡Bridge"• Basically † the network's architecture adopts a base station (data center † cloud" at the core where the services are exposed to the end ‡user• This base station is surrounded by nodes with small web server constituting a content ‡distributed network " • Web services (REST ‡based † websocket" are used as the base communication model for the network• To develop applications across the proposed network † the CaRDIN's middleware relies on a Virtual Machine solution• The VM creates a unique SW layer for application building• This provides an homogenous SW environment for the development and deploy ‡ ment of distributed applications on the network• The VM and web ‡services enable also the possibility of automatically and remotely recon guring SW/HW on edge ‡centric nodes• With these features † ap ‡ plications now can be developed and centralized in one place † while being executed in a distributed manner across the network• CaRDIN consists of a prede ned software/hardware architecture and a toolset that help to ef ‡ ciently build and deploy edge ‡centric nodes• Figure 5•1 shows the work ow of CaRDIN both at design time and runtime• At design time † the base station has a toolset dedicated to interface integration• The toolset takes HW designs (could be legacy IPs (VHDL" or OoRC models" as input and generates all the required interfaces to : (1" the communication between the FPGA and the processor on the node † (2" the node ‡to ‡node and node ‡to ‡base station communication• This toolset outputs a bitstream and software API classes that will be deployed on the nodes at runtime• Developers can use the generated " The network topology could be any IP ‡compliant topology API classes along with our distributed object API to remotely access the FPGA on the nodes• From the developer perspective † the entire application is developed on one place as a regular program † while being distributively running across the network• For that † at runtime † CaRDIN provides a mechanism for automatic SW partitioning and deploying software/bitstream on the nodes from the base station•

Architecture of a Node

Since OoRCBridge is designed for SW/HW co ‡development † it ts well with the purpose of building edge ‡centric nodes• OoRCBridge can apply architectural design constraints on edge ‡centric nodes and allows to have a generic and homogenous application layer on top of heterogenous devices• The SW/HW interface is standardised with an uniform SW/HW communication mechanism• This al ‡ lows to abstract the HW accessing from SW point of view• This separation of concerns promotes the independence of higher middleware from the underlying HW architecture• The middleware handles automatically the SW/HW communication and thus reduces the application design complexity• Figure 5•2 shows the simple view of the proposed SW/HW architecture for an edge ‡centric node built on top of an FPGA coupled with a processor (e•g• ARM"• We use OoRCBridge for HW (FPGA IPs" integration and HW/SW communication• CaRDIN middleware relies on APIs exposed by OoR ‡ CBridge to provide abstract hardware access to user application• Both OoRCBridge and CaRDIN are hosted by an embedded ‡oriented Linux OS• The IP Stack is part of the OS and is used by CaRDIN to implement the communication protocol (HTTP † REST"• Our middleware is based on a lightweight (small memory footprint" HTTP server that supports plugins• These plugins can be loaded at runtime on de ‡ mand• There are two core plugins: the REST engine and an embedded interpreted language Virtual Machine (e•g• Smalltalk VM"• The REST engine implements the web service mechanism that handles the network communication• The REST architecture does not have the de nition of common data formats• The exchanged data can be formatted differently depending on application• XML is commonly used for data formatting † but using it on sensor nodes is not very suitable• The XML syntax is too verbose and requires a complicated parser with signi cation computational overhead• Javascript Object Notation (JSON" is a good alternative for data formatting• Its syntax is simple and compact• Hence † it is well suited to sensor nodes• In CaRDIN † all network messages are in JSON format• All remote commands between nodes (in JSON" are decoded to software objects (e•g• Smalltalk objects" by the REST engine and handled by the VM• This VM has a dedicated API and primitives to access to the FPGA registers (using OoRCBridge" and to recon gure the FPGA given the bitstream• Returned data objects from the VM can be serialized to JSON message which can be transferred to other nodes using the REST engine•

The VM along with the REST web services offers two bene ts : rst † since the node supports dynamic language † the software on the node can be evolved at runtime; second † the node can be recon g ‡ ured (software/hardware" remotely without the needing to restart the node• The system enables the distributed programming on the node• In other words † the software development can be centralised on the base station while its deployment and execution are actually automatically distributed across nodes• SSSynchronisableObject• This class handles the network communication between objects (caller object and callee object" using the REST API• The key different of our DOA in comparison to other DOA is that † at deployment time † the same distributed class will be deployed on both caller node and servant node• No partition of methods needed• An instance of this class can play the role of either caller (master" object or callee (slave" object• Depending on the role of this instance (caller or callee" † its behaviour when executing a method is different• Concretely † if the instance is a caller object † all annotated meth ‡ ods (e•g• with pragma" will be considered as remote methods and will be remotely invoked using our DOA• Otherwise † if the instance is a callee object † it will recognize all annotated methods as local methods and others methods as remote methods• This mechanism allows a full bidirectional communi ‡ cation between objects using the same connection (for each remote call"• That is † beside performing any remote call from the caller object † the callee object can also perform a remote call (e•g• callback for returned data" to the caller object on the same connection• The mechanism is applied on any node on the network † and allows a peer ‡to ‡peer communication between nodes without passing to the base station• Note that † to record changes on a distributed class † CaRDIN will assign a (new" version num ‡ ber to it when it is created or modi ed• A deployment process on remote nodes will be automatically triggered when this number is changed• 1 "Simple distributed class with a remote method that calculates the factorial value of a given number" Our DOA shares some similarities with the base principle of the CORBA [START_REF] Omg ‡corba | Common Object Request Broker Architecture[END_REF] speci cation † but indeed has some distinguished characteristics• Firstly † since we target a homogenous and centralized software environment on top of heterogenous hardware devices † a single language is used for dis ‡ tributed application development• Therefore there are no need for object interface de nition (using an interface de nition language and dedicated compiler"• Client and server code coexist in a same distributed class so that the caller object and callee object naturally share the same interface• This simpli es the application development and reduces the middleware overhead on embedded system• Secondly † in our DOA † nodes on the network are equal (including the base station" † a node can at the same time play the role of caller node and servant node (depending on the role of distributed objects"• Therefore † nodes can coordinate between them without the present of a centralized server or name server• We rely on the REST protocol for object inter ‡communication• This allows us to bene t from the existing embedded HTTP server without adding additional software layer for the communication and thus results in a small footprint middleware• While provide enough features to develop distributed application on the SN• This version of our DOA still has some limitations: (1" To successfully deploy a distributed class on a remote node † its supper class must be already existed on that node• Although the DOA allows to remotely deploy a speci c class on the remote node † this must be manually handled by developer• (2" The error/exception mechanism is simple by returning an error object describing the stack trace of the remote VM• (Š" There is not yet a mechanism to automatically manager the life cycle of remote objects• Our DOA allows to delete remote reference objects by manually performing remote delete (garbage" operation• This section describes an experiment that demonstrates and validates the proposed prototype platform• The CarDIN middleware is implemented to support the Smalltalk language but the principle applies to any dynamic language (Python † Ruby † etc•"• The node's hardware is based on an Armadeus APF51 Sin ‡ gle Board Computer which adopts a Freescale i•MX515 (Cortex ‡A8 @ 800MHz † 512MB DDR RAM" and a Xilinx Spartan 6 (LX9"• The physical interface between the FPGA and the processor is WIEM (Wireless External Interface Module" with 16 ‡bit dedicated data/address bus• The experiment is based on the image processing example presented in the previous chapter• It shows an implementation of a sensor node for image processing using our platform based on the FPGA circuit presented in the previ ‡ ous chapter• An OV7670 camera is connected directly to the GPIOs of the FPGA (APF51"• The FPGA acquires image from camera and lters it using a HSV lter based on a color pattern• This ltered image is then used to estimate the position of object as the barycenter of the largest connected component The image processing VHDL code is imported to the OORCBridge toolset for interface generation and virtual address mapping• The bitstream and the corresponding distributed class are then generated automatically and ready to be deployed on the node• Listing 5•2 shows the completed distributed class• The rst 5 methods (lines 2 ‡16" are generated automatically by the toolset• The last 2 methods (lines 17 ‡2š" are manually added for more complex features• At this point † no further development is needed for the node• In the developer point of view † the remote access to FPGA can be coded in a single class (11 active development lines"• The system abstracts all the network communication † software partition † and hardware accessing that are performed transparently behind the code• The API supports two kinds of pragma• The <remote> pragma on a method informs the caller that the method should be called remotely• When executing this kind of methods † the caller gathers all necessary arguments then passes them to the corresponding callee object• This latter will handle the execution and send back the result to the caller• The second kind of pragma † the <remote:...> † operates similarly to the rst one † except that it allows to specify a callback for each returned data• This is especially helpful when continuously streaming data from the servant node to the caller node• The #positionDo:ns: (line 17" method in the listing 5•2 uses this kind of pragma• It allows to stream a number of samples of object position (speci ed by anInt" to the base station at a frequency of 10 Hz (100 milliseconds"• Each sample will be handled by the callback aCallbackBlock † which is a Smalltalk block closure• Since the method is executed on callee object † the callback (line 20" † on the opposite † is executed locally on caller object for every returned sample of data• The #gateway method enables the caller object to identify the REST resource (url" of the sensor node• This is necessary when the caller intends to initialize a communication with the callee object• On the sensor node † all the annotated methods of CameraUnitWrapper † such as #signature †#x † #y † #position † and #positionDo:ns: † operate as local methods and have direct access to the FPGA register• On the base station † annotated methods (with <remote> or <remote:...>" are recognized as remote methods and will perform remote calls when executed• Others (without pragma" are normal Smalltalk methods and therefore will be performed locally on the base station• The method #stream in line 2Š is a normal Smalltalk method that uses a remote method in its body• The code requires the #positionDo:ns: method to stream 500 samples of object position from the node and then simply prints each one of these on the base station•

Benchmarkings

At the beginning † when the node is powered on † only the software stack is running: the http server † the REST engine and the Smalltalk VM• Table 5•1 shows the static memory footprint of the software stack• The Resident Set Size points out the actual physical memory occupied by the software stack• This memory portion can be increased when the objects memory allocated for the Smalltalk image is full• In this case † the VM will claim for more dynamic memory allocation• Table 5•Š shows the average percentage of the resources occupied by the software stack at different operation tests: (1" idle stage (with or without plugins"• (2" The SW is deployed on the Smalltalk image• (Š" The bitstream is con gured on FPGA• (š" The base station continuously fetches 500 samples of object position from the node with the rate of 10Hz• (5" The node streams 500 samples of object data to the base station at a frequency of 10Hz• At the idle stage (with or without plugins" † the software stack has no impact on the CPU consumption• The HTTP server takes around 0 †Š% of memory † up to 0 †5% when the system is fully loaded• The memory used is nearly constant when the node is in operation mode• The hardware recon guration takes most of CPU resource in the 5 tests• This process consists in streaming the bitstream from the base station to the node † then deploying the bit stream on the FPGA• Since it invokes some kernel modules to communicate with the FPGA † the CPU has a work overhead (26 †2%"• After the recon guration † the FPGA starts its processing and is ready for communication The last two tests carry the same operation: fetching 500 samples of object position from the node at the rate of 10 Hz• The frequently fetching test requires to open repeatedly a connection between the node and the base station (500 connections"• These connections add more overhead to the CPU consumption (21%"• The streaming test involves only one connection † then continuously streams data via that connection• Therefore † the process consumes averagely only 5% of the CPU resource• Figure 5•7 shows the network load on the node in different active operations• Since the software/hard ‡ ware recon guration requires les transfer † the bandwidth used for this operation goes up to 2Š5 KiB/s for reception (RX" and 9•58 KiB/s for transmission (TX" in around 2 seconds• Others operations require the bandwidth of less than 20 KiB/s for RX and less than 5 KiB/s for TX• Obviously † the frequently fetch ‡ ing mode uses more network resource than the streaming mode• Above all † the fetching feature can be used to handle occasional requests since the network resource could be rapidly free at the end of a transmission• The streaming feature † in the other hand † is suitable for persistent and real ‡time con ‡ nection † however † it requires that the network resource is reserved and blocked for a long time• There may be many connections on a node at the same time † therefore † the choice (fetching vs streaming" depends on the frequency of data that one wants to transmit• This experiment uses an existing VHDL code for the image processing on the FPGA• But the scenario can be expanded by starting with a pure software image processing implementation (e•g• in C"• Mod ‡ ern high level synthesis tools are able to synthesize this code to RTL• Our toolset can then handle the generated VHDL•

Case study 2: distributed algorithm development and deployment with CARDIN

To demonstrate the development and deployment of distributed algorithm on the network using CARDIN † we consider a simple camera surveillance scenario † as shown in gure 5•8: Š camera sensor (hybrid" nodes are deployed on the network † they cary the same operation that tracks a moving ball based on a colour pattern• At anytime † the base station can ask any one of them about the node that actually has the ball• These nodes need to coordinate between them to decide who is handling the ball• This deci ‡ sion could be based on the size of the ball seen by each camera• The node with the largest detected zone will be voted for the leader• The three camera sensor nodes are based on the same setup of the previous case study (section 5•š"• For the detection circuit † to calculate the size of the detected zone † we replace the frame buffer unit with a pixel counter unit † as shown in gure 5•9• This latter will count the total number of the ltered pixels as the size of the detected zone• This value can be query from software via CARDIN middleware• For the voting algorithm † we base on a simple Token Ring Election algorithm § as shown in algorithm 1 [START_REF] Raynal | Leader Election Algorithms[END_REF]• Concretely † each node on the network has a unique ID and a reference to the next node• The last node refers to the rst node to constitute a ring• The same token ring election algorithm is implemented on each node• When the base station wants to know the leader (e•g• the node which has the ball" † it demands a node to start the election † an election message is created and sent from node to node until it reaches the original sender (the starter node"• At this point † the decision is made to vote § http://www•cs•colostate•edu/ cs551/CourseNotes/Synchronization/RingElectExample•html The ring is built by associating a successor node to each node• The base station then demands the node1 to start the election by performing a remote call via the method #elect:• At the rst run † the distributed class and the associated bitstream are automatically deployed on the corresponding node before each execution• This process is repeated when a node require its successor to perform the #elect: method (line 25 of the listing 5•Š"• This causes an automatic deployment chain of the application on all the three nodes on the network• In our DOA † all nodes are equal † a node can play at the same time the role of a caller node and a callee node• That is † a node can handle a remote call while being able to perform remote calls to other nodes• For example † while the node 1 executes the #elect: method required by the base station † it can passing the election message to the node 2 by performing a remote call of #elect: to that node † and so on• Therefore † sensor nodes are able to communicate with each other without passing to the base station• Note that at line 2Š of the listing 5•Š † we need to set the role of the current's successor object 9š to a master object † so that it can actually perform an remote call to the next node• This case study show how complex distributed algorithms can be developed and deployed using CaRDIN• It demonstrates the main philosophy behind our DOA: centralization development † automatic deployment and distributed execution• Firstly † the entire application are written on the base station• Our DOA allows developers to focus on the algorithm implementation without worrying about net ‡ work communication † code deployment and node ‡to ‡node coordination• Secondly † the deployment of the application on the network is at runtime and automatic• This process can happen between nodes without the intervention of the base station• Finally † the middleware encourages the independent coor ‡ dination between nodes † which is important in edge ‡centric applications where nodes may coordinate between them to make a decision instead of relying on centralized server• Futhermore † new node can be easily incorporated into the system by simply binding it to remote objects•

Summary

In this chapter † we introduced CaRDIN † a platform for ef ciently developing and deploying IP ‡based edge ‡centric network• Our proposal uses an FPGA † that offers high performance while reducing power consumption• We show that an hybrid hardware system (FPGA + processor" along with a web service oriented software platform enables remote recon guration/reprogramming of sensor nodes• The use of web services favors straightforward integration with existing IoT standards• Moreover † we rely on an object ‡oriented language to support transparently referencing remote objects• The Virtual machine brings the dynamicity of interpreted languages and allow the development of distributed algorithms on the node † through mixing surrogates for remote objects with local objects• The distributed software API hides all the details of node operations and interactions and let developers focus on the functionalities of their application• To demonstrate the proposed platform † in the st case study † we have built a smart sensor node on an APF51 board as a proof of concept• This node connects to a camera and performs an object detection algorithm on the FPGA• It communicates the object position to the base station using the distributed objects API• The second case study demonstrates the use of CarDIN to develop and development distributed applications on the network which allow node ‡to ‡node coordination• 95 La conclusion résulte souvent de ce moment précis où vous en avez eu marre... The research in this thesis studies the application of modern design methodology † in particular OOD † on embedded system• The context here converges to the utilization of FPGA/processor hybrid devices in IoT and edge ‡computing• This results in a propositional of a dedicated design ow † middleware and toolsets for simplifying the SW/HW development process• The ultimate goal is to provide an environment that allows end users to bene t from OOD to easily develop edge ‡centric applications † while always have the ability to exploit the hardware features of FPGAs in a software ‡friendly way• Therefore † our contribution address the targeted problem following three main axes:

-Anonyme

6

Conclusion and Perspectives

Promoting OOD on HW design with the OoRC meta-model

The OoRC meta ‡model is designed with OOD principles and design pattern in mind• While it fully support modelling FPGA circuits at RTL (ne ‡grained" level (using the dedicated DSL" † its main objective is to enhance the HW system ‡level (coarse ‡grained" design experience• The philosophy here is to use abstraction to separate as much as possible the problem space from the implementation space• Thus † one can use the meta ‡model to provide a generic solution (i•e• implementation ‡independent" to a speci c problem so that it can be adaptable in different application contexts• This encourages the intensive use of modularity † adaptability and extensibility concepts in hardware design to increase system reusability and hence improve productivity• One advantage of our meta ‡model compared to existing approaches is that it supports reuse of VHDL legacy IPs as regular object oriented models• This feature extends the ability of the meta ‡model to manipulate existing third party IPs † such as performing automatic processing † integration † structural refactoring or feature injection † etc• The meta ‡model can be employed as the base model for different design purposes• For example † it can be used to develop CAD tools † to build higher level graphical modelling tool (e•g• UML" or to design a HW/SW co ‡design environment/platform † etc•

Bridging the HW/SW interfacing gap with OoRCBridge

OoRCBridge is a platform built on top of the OoRC meta ‡model• It uses OOD combined with the platform ‡based methodology and the early ‡binding approach for SW/HW co ‡design• It aims at inte ‡ grating FPGA devices with existing high level object oriented software• The key point of OoRCBridge is independent integration via interface standadization• Both SW and HW (FPGA" parts of the system comply with a standadized communication interface and protocol• They can therefore freely vary with respect to this agreement † regardless of the underlying physical architecture• The standadized interface is architecture speci c• Fortunately † its implementation can be abstracted and automatized using the correct-by-construction and generation techniques• An interface model (template" can be constructed in an abstract form• It is used to reason about the proposed implementation of the interface depending on the inputs † then ensuring that all required functionality will be delivered and the correct behaviour exhibited• Automatic code generation closes the SW/HW gap and provides software ‡friendly API for hardware accessing from high ‡level software environment•

Centralized development and automatic remote deployment of edge-centric applications with CaRDIN

CaRDIN provides a dedicated environment for developing edge ‡centric applications on the network (IP ‡based" of hybrid FPGA/processor devices• It uses OoRCBridge to facilitates and standardizes the HW/SW integration on each node• On top of this † a distributed software environment is set up using a VM approach• The proposed DOA allows to centralize the development process by mean of transparently referencing and mixing surrogates for remote objects with local objects• On the one hand † this feature favours the application development † management and maintenance• On the other hand † it simpli es the incorporation of new nodes into the application using the automatic object binding mechanism• In addition † SW/HW on the nodes can be remotely recon gured without the need of manually detaching them from the deployment site• This supports better system scalability seeing that edge ‡centric applications may rely on a large ‡scale network• To demonstrate and validate the proposed prototype platform (CaRDIN" † an experiment based on sensor node that perform image process has been built † as a proof of concept• This node connects to a camera and performs an object detection algorithm on the FPGA• It communicates the object position to the base station using our distributed objects API•

Current and Future Works

Regarding the OoRC meta ‡model † beside applying OOD on hardware design † reuse of existing third party VHDL legacy is also an important feature † since it can reduce the design cost and time• For the moment † we have only checked the validity of the VHDL parser † which transforms the VHDL code to an abstract syntax tree (AST"• However † the transformation of ASTs to OoRC circuit models still remains unveri ed " • Therefore † the next step is nding methods and benchmarks to verify the correctness this transformation• This involves additional work on the model ‡checking domain for a formal veri cation•

The meta ‡model can be further abstracted by adding more abstraction layers on top of it• Apart from OoRCBridge † we plan to study other use ‡cases in hardware design• It can be used to build high ‡ level CAD tool (GUI" † that can automatize the design process at certain level• Or † it can be combined with other system ‡level design methodology † such as UML † to provide high ‡level graphical hardware speci cation and SW/HW co ‡design environment• As for the CaRDIN environment † while it is possible to dynamically recon gure software on a node † the remote hardware recon guration (FPGA" is often done in an of ine manner• That is † the entire FPGA needs to be recon gured and reset even if the change only affects a small part of the circuit• This can cause an interruption on other independent parts that are processing data• A solution to this problem is adding FPGA partial recon guration support to the node's middleware• This feature allows to make change only on a part of the FPGA while conserving the others part from resetting• The current version of our DOA still has some limitations as presented in section 5•Š•Š• These lim ‡ itations could be the future features of the DOA• Concretely: (1" we can add classes dependencies mechanism to the DOA † when a distributed class is deployed on a node † the system automatically de ‡ ploys also all its missing dependency classes•(2" The DOA supports automatic garbage collection of remote objects• This can be done at VM level• The idea is when the VM reclaims the memory occu ‡ pied by a caller object (that is no longer in use by the program" † it also perform a remote call to the corresponding remote VM to delete the referenced object of the servant node• The edge ‡centric experiments in this thesis is only a proof of concept• The ultimate goal is to use the prototype platform to deploy truly distributed applications on an edge ‡centric network (e•g• surveil ‡ lance"• Such sensor network consists of many smart nodes and has the capacity to simply incorpo ‡ rate new nodes into the system• Then different strategies can be performed and tested to optimize the distribution of calculation resource on the network• Concretely † the distribution of an application on edge ‡centric network should be scheduled based on the resource -such as memory † CPU † or battery status-available on each node• This may lead to the development of a task scheduler on the CaRDIN middleware that allows to ef cient delivery calculation tasks to the edge of the network † while away balancing the energy/power constraint on each node• In software domain † this relates to the work on dynamic software update which targets solutions for dynamically migrating code between nodes [TPF + 16]• Moreover † it becomes more interesting if one can not only migrate code between nodes † but also the execution state of the nodes• With the VM † it is trivial to take a snapshot of a software on a node then execute it on other nodes• As for the FPGA † we can rely on a hardware virtualization solution• There are actually some remarkable works on this topic † such as [LLLB1š † BNLLL16] that allow to capture the current execution state of an FPGA then continue it on other FPGAs using a virtual FPGA architecture• Security and Privacy of sensor data on the network are another interesting research topic• In traditional SN † outputs of sensor nodes are often vulnerable to unauthorized observation• When these nodes participate to the internet (IoT" † this become a serious problem since the sensor data can be easily sniffed by enemy/third ‡party application over the internet• This raises the need of a cryptog ‡ raphy mechanism on SN [GKS05 † AB08]• Cryptography is complex † slow and power hungry † thus is not alway suitable to use on traditional sensor nodes• However † our proposed edge ‡centric nodes can overcome this constraint with the help of FPGA• Cryptography algorithm can be implemented on real hardware (FPGA" which allows fast execution and power friendly• Software/FPGA Co ‡design for Edge ‡computing: Promoting Object ‡oriented Design Co ‡conception Logiciel/FPGA pour Edge ‡computing: Promotion de la conception orientée objet Cloud computing is often the most referenced computational model for Internet of Things• This model adopts a centralized architecture where all sensor data is stored and processed in a sole location• De ‡ spite of many advantages † this architecture suffers from a low scal ‡ ability while the available data on the network is continuously in ‡ creasing• It is worth noting that † currently † more than 50% internet connections are between things• This can lead to the reliability prob ‡ lem in realtime and latency ‡sensitive applications• Edge ‡computing † which is based on a decentralized architecture † is known as a solu ‡ tion for this emerging problem by: (1" reinforcing the equipment at the edge (things" of the network and (2" pushing the data processing to the edge• Edge ‡centric computing requires sensors nodes with more software capability and processing power while † like any embedded systems † being constrained by energy consumption• Hybrid hardware sys ‡ tems consisting of FPGA and processor offer a good trade ‡off for this requirement• FPGAs are known to enable parallel and fast compu ‡ tation within a low energy budget• The coupled processor provides a exible software environment for edge ‡centric nodes• Applications design for such hybrid network/software/hardware (SW/HW" system always remains a challenged task• It covers a large domain of system level design from high level software to low ‡ level hardware (FPGA"• This results in a complex system design ow and involves the use of tools from different engineering domains• A common solution is to propose a heterogeneous design environ ‡ ment which combining/integrating these tools together• However † the heterogeneous nature of this approach can pose the reliability problem when it comes to data exchanges between tools• Our motivation is to propose a homogeneous design methodology and environment for such system• We study the application of a modern design methodology † in particular object ‡oriented design (OOD" † to the eld of embedded systems• Our choice of OOD is motivated by the proven productivity of this methodology for the de ‡ velopment of software systems• In the context of this thesis † we aim at using OOD to develop a homogeneous design environment for edge ‡centric systems• Our approach addresses three design con ‡ cerns: (1" hardware design † where object ‡oriented principles and design patterns are used to improve the reusability † adaptability † and extensibility of the hardware system• (2" hardware / software co ‡ design † for which we propose to use OOD to abstract the SW/HW integration and the communication that encourages the system mod ‡ ularity and exibility• (Š" middleware design for Edge Comput ‡ ing• We rely on a centralized development environment for dis ‡ tributed applications † while the middleware facilitates the integra ‡ tion of the peripheral nodes in the network † and allows automatic remote recon guration• Ultimately † our solution offers software exi ‡ bility for the implementation of complex distributed algorithms † com ‡ plemented by the full exploitation of FPGAs performance• These are placed in the nodes † as close as possible to the acquisition of the data by the sensors † in order to deploy a rst effective intensive treatment• L'informatique en nuage (cloud computing" est souvent le modèle de calcul le plus référencé pour l'internet des objets (Internet of Things"• Ce modèle adopte une architecture où toutes les données de cap ‡ teur sont stockées et traitées de façon centralisée• Malgré de nom ‡ breux avantages † cette architecture souffre d'une faible évolutivité alors même que les données disponibles sur le réseau sont en con ‡ stante augmentation• Il est à noter que † déjà actuellement † plus de 50 % des connexions sur Internet sont inter objets• Cela peut engen ‡ drer un problème de abilité dans les applications temps réel• Le calcul en périphérie (Edge computing" qui est basé sur une architec ‡ ture décentralisée † est connue comme une solution pour ce problème émergent en: (1" renforçant l'équipement au bord du réseau et (2" poussant le traitement des données vers le bord• Le calcul en périphérie nécessite des noeuds de capteurs dotés d'une plus grande capacité logicielle et d'une plus grande puissance de traitement † bien que contraints en consommation d'énergie• Les sys ‡ tèmes matériels hybrides constitués de FPGAs et de processeurs of ‡ frent un bon compromis pour cette exigence• Les FPGAs sont connus pour permettre des calculs exhibant un parallélisme spatial † aussi que pour leur rapidité † tout en respectant un budget énergétique lim ‡ ité• Coupler un processeur au FPGA pour former un noeud garantit de disposer d'un environnement logiciel exible pour ce noeud• La conception d'applications pour ce type de systèmes hybrides (réseau/logiciel/matériel" reste toujours une tâche dif cile• Elle couvre un vaste domaine d'expertise allant du logiciel de haut niveau au matériel de bas niveau (FPGA"• Il en résulte un ux de conception de système complexe † qui implique l'utilisation d'outils issus de différents domaines d'ingénierie• Une solution commune est de proposer un environnement de conception hétérogène qui com ‡ bine/intègre l'ensemble de ces outils• Cependant † l'hétérogénéité intrinsèque de cette approche peut compromettre la abilité du sys ‡ tème lors des échanges de données entre les outils• L'objectif de ce travail est de proposer une méthodologie et un envi ‡ ronnement de conception homogène pour un tel système• Cela re ‡ pose sur l'application d'une méthodologie de conception moderne † en particulier la conception orientée objet (OOD" † au domaine des systèmes embarqués• Notre choix de OOD est motivé par la pro ‡ ductivité avérée de cette méthodologie pour le développement des systèmes logiciels• Dans le cadre de cette thèse † nous visons à utiliser OOD pour développer un environnement de conception homogène pour les systèmes de type Edge Computing• Notre approche aborde trois problèmes de conception: (1" la conception matérielle † où les principes orientés objet et les patrons de conception sont utilisés pour améliorer la réutilisation † l'adaptabilité et l'extensibilité du système matériel• (2" la co ‡conception matériel/logiciel † pour laquelle nous proposons une utilisation de OOD a n d'abstraire l'intégration et la communication entre matériel et logiciel † ce qui encourage la mod ‡ ularité et la exibilité du système• (Š" la conception d'un intergi ‡ ciel pour l'Edge Computing• Ainsi il est possible de reposer sur un environnement de développement centralisé des applications dis ‡ tribuées † tandis ce que l'intergiciel facilite l'intégration des noeuds périphériques dans le réseau † et en permet la recon guration au ‡ tomatique à distance• Au nal † notre solution offre une exibilité logi ‡ cielle pour la mise en oeuvre d'algorithmes distribués complexes † et permet la pleine exploitation des performances des FPGAs• Ceux ci sont placés dans les noeuds † au plus près de l'acquisition des don ‡ nées par les capteurs † pour déployer un premier traitement intensif ef cace• Keywords: IoT † Edge Computing † FPGA † Object Oriented Design † Distributed Objects Mots clés: l'internet des objets † Calcul en Périphériques † FPGA †Conception orientée objet † Objets distribués

 Using object oriented technique on HW system ‡level design • • • • • • • • • • • • • Š8 Š•6 Base structure of decorator pattern applied on hardware design • • • • • • • • • • • š1 Š•7 Example: attach more responsibility to a pixel lter using decorator pattern • • • • • šŠ Š•8 Base structure of adapter pattern applied on hardware design •• • • • • • • • • • • šŠ Š•9 Example: Interface conversion using adapter pattern • • • • • • • • • • • • • • • • • šš Š•10 Base structure of composite pattern applied on hardware design • • • • • • • • • • • š5 Š•11 Base structure of bridge pattern applied on hardware design • • • • • • • • • • • • • š6 Š•12 Example: Interface & architectural implementation decoupling using bridge • • • • • š6 Š•1Š T ‡diagrams represent basic model transformations supported in OoRC • • • • • • • • š7 Š•1šBy using a visitor pattern † a circuit model can be independently exported to other model (VHDL/Verilog † etc•"

 Addressing scheme generated automatically by the bus controller• • • • • • • • • • • 6š š•š OoRCBridge middleware provides generic APIs for hardware communication• The OoRC toolset generates automatically application ‡speci c accessing classes using these APIs •

 10 Optimized design of the detection circuit with š HSV lters in parallel • • • • • • • • 7š š•11 On the left † the power consumption between the software and hardware implemen ‡ tation of the object detection• On the right † the processing time per frame of each version

 2 A mixture of ROS API and OoRCBridge middleware API• The code publishes object positions through the ROS middleware •

 subclass of SSSynchronisableObject-is a distributed class with one annotated method (#factorialOf:"• On the base station † at the rst object instantiation of the class (line 15" † the class is automatically deployed on remote node• Line 16 requires the node to calculate the factorial of 10 † then prints it on the base station • • • 8š 5•2 Example of a distributed class• The methods with a pragma are executed remotely• Others are locally executed methods •

 Today † two thirds of Internet traf c are dedicated to image transmission † this can go up to 80% in the next years Š Lopez et al. [GLME + 15] and Faure et al. [FFH + 11b † FFH + 11a] share a human ‡centric vision on EC in which they consider the important role of human in the edge devices• This vision shows a global view of edge ‡centric computing with different interesting discussions about: Trust † Privacy † Control † Intelligence and Proximity• My vision here † in this thesis † is limited in the context of IoT and shares some similarities with one presented by Bonomi et al. [BMZA12] † where EC extends the cloud computing to the edge of the network• EC considers a node ‡oriented view of the internet• This architecture consists of data center and clouds at the core and surrounding by nodes with small web server and content ‡distributed network• At the edge of the network † some distinguishing characteristics can be found: Low latency and proximity: by pushing the data processing to the edge of the network † a large amount of raw sensor data can be processed locally in order to produce a compact and rich information before delivery to the centralized point• This reduces the network traf c and thus allows a fast response time• It also adds the possibility of ltering sensor data before delivery• EC promotes also the distributed communication between closed nodes rather than using a far ‡ away central point (cloud"• Scalability: EC allows large ‡scale sensor network with large number of nodes since the network overload are distributed to the edge• Realtime interaction: EC is suitable for realtime IoT applications by allowing fast response time between things and application (over the network"• Heterogeneity: different form factor of edge ‡devices can be easily deployed in wide ‡variety of EC environment• Intelligence and Control are on the edges: nowadays † hardware devices become smaller and more powerful while being cheaper• Thus † IoT devices have more processing and storage ca ‡ pacity• This implies that edge ‡centric nodes are more capable and can make local decision and control what to do with sensor data•

Contents 2 • 1

 21 Edge Computing .

Figure 2 . 1 :

 21 Figure 2.1: Hardware design productivity gap: number of transistors available on a chip vs. the ability for the transistors to be used ef ciently in a design[START_REF]International technology roadmap for semiconductors[END_REF][START_REF] Peter | Recon gurable platform-based design in FPGAs for video image processing[END_REF]

1š 2 .

 2 3.1.3 Model Transformations Model transformations are key operations of MDE• They allow to transform a model conforming to a source meta ‡model at an abstraction level into another model conforming to a target meta ‡model at the same or different abstraction level• Figure 2•Š shows the basic principle• Transformations are performed by applying transformations rules to the input model using a transformation engine• Rules are software artefacts that implement basic transformation steps• A transformation engine executes a collection of rules on a source model and derive the target model• Model transformations can be classi ed differently according to different criteria• However †in general-all transformations can be categorized into two classes: Exogenous and Endogenous [MVG06] † as shown in gure 2•š• A transformation is endogenous when the source model and the target model conform to a same meta ‡model• This operation can be an optimisation † a restructuring of model or a combination of indi ‡ vidual models to form a complete model• A sub ‡category of this type of transformation is de ned as model composition or model weaving• This operation allows to combine several models in to a single one and presents the links between model elements• It is used in applications that require traceability † model comparison or model annotation [RA12]• This model weaving concept is similar to the aspect weaving concept presented in aspect-oriented programming [Jéz08]•

 Summary . 57

 OoRCScript is a DSL based on Smalltalk syntax• It allows to design FPGA circuits right inside the programming environment• OoRC supports OOD and design pattern for hardware system ‡level design• These techniques can also be used for model processing and automatic IPs integration• To support reuse of legacy VHDL † the system relies on a dedicated VHDL parser to import and transform a HDL model to OoRC model• Circuits models support both in-vivo (internal" simulation and ex-vivo external simulation (e•g• GHDL"• Circuit models can be exported to VHDL for synthesis• OoRC has a toolchain that automatizes the circuit synthesis using vendor tools• Š1 tional logic † or latches or registers• A Port is a Signal with additional information about its direction• In our meta model † a Port must be either input † output or bidirectional (inout"• As shown in gure Š•1 † the meta ‡model supports basic synthesizable data type supported by most synthesis tools: Integer † Natural † Logic † LogicVector † Signed and Unsigned (in accordance with the integer † natural † std_logic † std_logic_vector † signed and unsigned types in VHDL": for basic arithmetic and logic operations• Record (collection of elements of different data types"; and Array (collection of similar elements of any datatype" described using a composite pattern• Enumeration for enumerated and user de ned type•

Figure Š• 2 -

 2 Figure Š•2 shows a simpli ed class diagram of circuit's meta ‡descriptions• The class HDLDesignEntry models a complete circuit with an interface (HDLEntity" and one or more architecture(s" (HDLArchitecture"• An entity speci es the external interface of a circuit while an architecture describe its internal structure and behaviour• A circuit may have different architectures but only one is used at a time• A subclass of HDLDesignEntry -when created or changed-will be assigned automatically a signature number• Therefore † all instances of it (models" share the same signature• This signature number is syn ‡ thesizable as a constant signal on actual hardware• It has nothing to do in circuit modelling but is useful to verify whether the circuit is deployed on actual hardware• All subclasses of HDLStructure are meta ‡descriptions that describes circuit elements (i•e• sub ‡circuits"• They allow to: (1" specify the structure of an element and (2" de ne the behaviour of that element in responding to the change of its inputs (signals"• Circuit elements can be broadly classi ed in two domains: combinational domain and sequential domain• A combinational circuit has no internal memory (i•e• latches or iplops" or state (i•e• closed feedback loop"• Its outputs are de ned as a function of inputs only• The same input value will always produce an identical output (when settled"• In OoRC † all synthesizable VHDL concurrent structures (e•g• conditional signal assignment, selected signal assignment, etc." are modeled as subclasses of HDLConcurrent• Note that † although processes are composed of sequential statements †they are de ned as a concurrent structure• They are executed in parallel with other processes or other concurrent statements• A sequential circuit † on the other hand † has an internal state and its output is a function of inputs as well as the internal state• Although sequential circuit can be described using concurrent statements

 meta ‡model has dedicated APIs for circuit model construction• This is helpful for automatic model processing or building high level tools• One can use these APIs to manually describe the circuit † but it is more preferable to use OoRCScript † a dedicated DSL for this purpose• This DSL allows to simply and directly describe the FPGA circuits• Figure Š•Š shows the example use of the DSL for describing the FIR circuit presented in listing Š•1 • A circuit model can be described by subclassing the class OoRCScript has been evolved since the last version presented in [LLF + 15] by eliminating the need of a compiler and improving/simplifying the syntax Š5 HDLDesignEntry and implementing the virtual method build with OoRCScript• The DSL is self-de ning and its syntax is based on message send as shown in gure Š•š• The principle is as follow: All objects in OoRCScript are instances of meta ‡descriptions• These object are denoted as de ‡ scription objects• The syntax is de ned by sending a message (method" -denoted as description message-to a description object• This action will create a new description object based on the received message• Some built ‡in description objects are available for any design: input †output †inout: for port declaration• signal,var : for signal and variable declaration• arch: for architecture de nition• function, procedure: for DSL function and procedure de nition• alias: create a reference to others signals/ports instead of creating new one•

 add_out q is Unsigned size .6DFF map {#d-> sample. #clk->clk. #q->q}. An optimized re-implementation of SimpleFIR using inheritance and override features

 Design operations are driven by basic OO concepts• They strengthen the system speci cation by main ‡ taining the clarity of the design hierarchies• Basically † there are š main design operations: 1• GENERALIZATION: As de ned by the name † generalization is the process of extracting share characteristics of two or more designs and combining them into a generalized design• Share characteristics may be external interface or internal structures• This operation aims at general ‡ izing a design problem or de ning a generic family of similar designs• Generalization uses the inheritance and abstraction concepts• 2• SPECIALIZATION: In contrast to generalization † speci cation reduces the application context of existing designs by adding more speci c features to the original design• It promotes the ex ‡ tensibility and reusability of existing designs• Specialization uses inheritance and polymorphism concepts• Š• REALIZATION: Provides a content ‡based implementation of a design• Unlike specialization † -which relies on existing designs-realization speci es the implementation of a design from scratch• This design could be a brand new design using OoRCScript or an implementation of existing abstracting design• š• COMPOSITION: this operation allows to embed one or more low ‡level design to a higher ‡level design• It aims at performing hierarchical system design• It uses the previously presented design reuse concept•

25

 signal name # s_flag s_done is Logic. 26 filter map {#clk->clk. #reset->reset. #start->start. #pixel->pixel. #color_pt -> color_pt. #flag->s_flag. #done->s_done}. Example of adding a counter to an existing pixel lter 3.4.3.2 Adapter Intent Convert the interface of a design into another interface expected by the system• This pattern allows to plug an existing design of different interface into the system by using an commonly known interface• Structure gure Š•8• š2 left this test as future work• Moreover † the test requires proper and well ‡de ned synthesizable VHDL benchmarks •

1

 HDLDesignEntry Behavioural simulation implementation Behavioural simulation: this is the traditional hardware simulation• In this mode † the system keeps tracking the behaviour of the circuit during time• This behaviour can be de ned by the intrinsic signal values of the circuit over time• To do this † the execution of the circuit model will be performed with a time queue• This latter contains the next ‡event times and signals that will be assigned to new values in each event † as illustrated in listing Š•12• We can consider this time ‡queue as a test ‡bench in traditional simulators• At each execution step † the simulation time advances to the closest next ‡event time † the inputs signals related to this event are assigned to new values and the propagation execution is performed• At the end of each event † the state of the circuit along with the current timing information is recorded in a Value Change Dump le (VCD"• This process is repeated until the time ‡queue is empty• The nal VCD le can then be viewed by a external VCD viewer for analyzing• 3.7 Interfacing the OoRC meta-model with External Tools 3.7.1 "Ex-vivo" Simulation Using an External Simulator It is possible to simulate the circuit model with an external simulate • This can be done in an indirect manner by: (1" generating a test ‡bench from the time queue and (2" exporting the target circuit as Unit Under Test for the test ‡bench• The simulation can then be performed on the test ‡bench by invoking a series of external simulator's commands• This method applies only for behavioural simulation• Currently † the system supports automatic ex ‡vivo simulation using the open ‡source simulator GHDL 5š 3.7.

1

 cnt = HWCounterMapping new. 2 cnt input . Š cnt setBreakpointOn #output forValue condition #=. š cnt start true. 5 cnt waitForIRQ [6 cnt bpActive ifTrue [7 'Stop at ', cnt output asString print. 8 'Steps ', cnt clockCount asString print.

Figure 4 . 8 :

 48 Figure 4.8: Original design of the detection circuit

Figure 4 . 10 :

 410 Figure 4.10: Optimized design of the detection circuit with 4 HSV lters in parallel

Figure 4 . 11 :

 411 Figure 4.11: On the left, the power consumption between the software and hardware implementation of the object detection. On the right, the processing time per frame of each version

5

 CaRDIN: A Dedicated Environment for EdgeComputing on Recon gurable Sensor Networks Contents 5•1 CarDIN: overview . 80 5•2 Architecture of a Node . 82 5•Š Edge ‡centric Nodes Development with CaRDIN's middleware 83

Case study 2 :

 2 distributed algorithm development and deployment with CARDIN . 91 5•6 Summary . 95

2 Figure 5 . 1 :

 251 Figure 5.1: Work ow of CaRDIN. Developers need to: (1) import the HW IP to system for software/bitstream generation; (2) use the generated classes to develop their application

 a normal method" 11 ExampleApp >> printFactorial aNumber Transcript show aNumber 1Š 1š "This distributed class can be used by creating an object and binding it to the address of a node, the callee object will be automatically created on that node" ExampleApp -a subclass of SSSynchronisableObject-is a distributed class with one annotated method (#factorialOf:). On the base station, at the rst object instantiation of the class (line 15), the class is automatically deployed on remote node. Line 16 requires the node to calculate the factorial of 10, then prints it on the base station When a caller wants to perform remote call on the callee object † it initiates the communication with the remote object• The caller arguments are then serialized to JSON and passed to the callee object via the REST API• On the servant node † the REST engine receives the JSON data and reconstructs the argument objects † the corresponding method is then called on the callee object• The result of the call is nally serialized to JSON and send back to the caller object• and the signature of the current circuit on FPGA • The sequence diagram on gure 5•5 describes in detail this update process•5.3.3 DiscussionThe main ideas behind our middleware is Centralization of code † automatic deployment and Collaboration execution• Centralization of code facilitates the maintenance † management and development of distributed applications• All edge ‡centric nodes carry the same initial software setup with CaRDIN middleware pre ‡deployed• Application development is incremental and centralized on one place• New node's behaviour can be easily incorporated to the application by binding objects to the node• The DOA automatically handles the deployment and synchronisation of objects• A node can † at the same time † plays the role of a master(caller" or slave(callee" node• The middleware is dedicated to edge ‡centric computing and thus promotes the development of distributed algorithms on edge ‡centric nodes• Collaboration execution means the execution and the calculation resource of applications are diffused to the edge of the network † through transparently referencing and mixing surrogates for remote objects with local objects•

Figure 5 . 6 :

 56 Figure 5.6: Object detection implementation on the FPGA.

Figure 5 . 7 :

 57 Figure 5.7: Network load of the node on different operations: (5.7a) the software/bitstream recon guration process ([t, t +]); (5.7b) the frequently fetching test ([t, t + ]) and lastly (5.7c) the streaming test ([t, t + ]). t is the time when an operation begins.

Figure 5 . 8 :Figure 5 . 9 :1"]

 5859 Figure 5.8: 3 camera sensor nodes tracking a moving ball. Question: Which camera actually has the ball?

Figure 5 . 10 :

 510 Figure 5.10: Deployment and execution of the distributed application via CaRDIN middleware.

Contents 6 • 1

 61 Contribution Summary . 97 6•2 Current and Future Works . 99 6.1 Contribution Summary

 In OoRCBridge † OOD is used to design interface template• Designs are reused † re ned and enriched to provide a generic † automatic and modularized IPs integration mechanism

• • • • • • • 61 ix š•2

 10 Create a new FIR lter model and resize all data signals to 16 bits •

 Token Ring Implementation for camera surveillance examples using CaRDIN • • • • • 9š

	IoT Internet of Things• iii † 1-š † 9-11 † 27 † 28 † 97 † 100	Glossary
	IP (1" Internet Protocol in the context of networking † in case of hardware design † the term means
	(2" Intellectual Property • ix † x † 8 † 10-1Š † 17-22 † 2š † 25 † 27 † Š0 † Š1 † 50-52 † 57 † 6Š-65 †
	API Application Programming Interface• iv † x † xi † 2 † 8 † 1š † 20 † Š0 † Š1 † Š5 † š8 † 59 † 62 † 65-71 † 75 † 79-82 † 95 † 97 † 98
	76 † 79 † 81-85 † 89 † 98 AST Abstract Syntax Tree• 99 AXI Advanced eXtensible Interface• 62 JSON Javascript Object Notation• 82 † 8š MARTE Modelling and Analysis of Real ‡time and Embedded Systems• 20 † 21 † 26 MDE Model Driven Engineering• ix † 8 † 1Š † 1š † 16 † 18 † 20-2š † 26 † 27 † Š0	1
	BLIF Berkeley Logic Interchange Format• š9 MOF Meta Object Facility• 15	
	CAD Computer ‡aided design• Š1 † Š2 † š8 † 57 † 98 † 99 OMG Object Management Group• 15	
	CLB Con gurable Logic Block(s"• š OO Object Oriented• iv † 20-22 † 29 † Š8 † š0	
	CORBA Common Object Request Broker Architecture• 87 OOD Object Oriented Design • iv † x † 6-8 † 18 † 20-22 † 2š † 25 † 27-Š1 † Šš † Š5 † š0 † 6Š † 6š †
	CPS Cyber ‡physical Systems• Š 97-99	
	DOA Distributed Objects API• 8Š-85 † 87 † 9š † 95 † 98 † 99	
	DSL Domain Speci c Language• iii † 29-Š1 † Š5 † Š7 † Š8 † š9 † 57 † 97	
	EC Edge Computing• Š † š † 10 † 11	
	EDA Electronic Design Automation• 12 † 17 † 18	
	FIR Finite impulse response• ix † xi † Š5 † Š6 † š8	
	FPGA Field Programmable Gate Array• iii † ix † 1 † š † 5 † 7 † 10 † 11 † 1Š † 15 † 21 † 25-29 † Š1 † Š2 † Š5 † 52 †
	55 † 60-62 † 6š-75 † 80-82 † 85 † 87-91 † 97-100	
	FSM Finite State Machine• 18 † 20 † 26 † 27	
	FSMD Finite State Machine with Datapath• 17 SoC System on a Chip• 19-21 † 26 † 60	
	SW Software• iv † ix † x † 5-8 † 11 † 12 † 16 † 18 † 19 † 2š-28 † 59-61 † 65 † 79-82 † 85 † 86 † 97-99
	GPIO General Purpose Input/Output• 72	
	GUI Graphic User Interface• ix † 18 † Š1 † 55 † 56 † 99 UART Universal asynchronous receiver/transmitter• xi † šŠ † š5 † š6	
	HDL Hardware Description Language• 12-1š † 17 † 18 † 20-22 † 2š † 25 † 27 † 28 † Š0 † Š1 † Š5 † 51 † 52
	HLS High Level Synthesis• 1Š † 2š † 26 † Š0 † 60	
	HTTP Hypertext Transfer Protocol• 82 † 87 † 90	
	xi xii	

HW Hardware• iii † iv † ix † x † 5-8 † 12 † 1Š † 16 † 19 † 21-Š1 † Šš † Š5 † Š8 † Š9 † š5 † 51 † 59 † 60 † 65 † 79-82 † 85 † 86 † 97-99 I2C Inter ‡Integrated Circuit• xi † š5 † š6 xiii IEEE Institute of Electrical and Electronics Engineers• 17 † Š2 † š8 OOL Object Oriented Language• 20 OoRC Objecti cation of Recon gurable Circuits• iii † 8 † 29-Š5 † š7-5Š † 55 † 57 † 61 † 81 PCLe (Peripheral Component Interconnect Express• 60 REST Representational state transfer• 2 † 81 † 82 † 8š † 87 † 89 † 90 ROS Robot Operating System• iv † xi † 25 † 59 † 71 † 75 † 76 RTL Register Transfer Level• iii † 7 † 8 † 12 † 1Š † 17 † 27 † 29-Š2 † š8 † 91 † 97 SN Sensor Network(s"• 2 † Š † 10 † 11 † 80 † 87 † 100 SOAP Simple Object Access Protocol• 2 Introduction Contents 1•1 Context: Internet of Thing † Edge computing and FPGA 1

 The existing internet infrastructure is the primary resource for IoT• Most IoT devices are IP ‡enabled " and are able to easily participate to the internet• Web services -such as REST † SOAP † etc•-are well established mechanisms for the communication between IoT nodes• The advantage of web services is that they are general purpose and thus † can be easily integrated to others systems (e•g• IoT systems" that are built on standard (and general purpose" IT components• The passing of IP to IPv6 allows an unrestricted address scheme and enables a large ‡scale of things•

• • • • 7 1•Š Outline of the Thesis . 8 1.1 Context: Internet of Thing, Edge computing and FPGA 1.1.1 Internet of Things Internet of things (IoT" is a concept increasingly supported by various stakeholders and market forces• It is foreseen to be a world ‡wide network of interconnected devices or objects (things" through wired and wireless connections [VF1Š]• The network provides a unique addressing scheme and creates a pervasive environment where a person can interact anytime with the digital and physical worlds• The primary goal is to enable things to be connected anytime † anywhere and with anything or persons using existing network infrastructure• Objects can identify themselves and have seamless intelligence for context decision making• IoT can be considered as the next evolution of the internet [Eva11] and has many potential applications † especially in smart systems such as healthcare † Smart Cities † Smart Grids † Smart Cars and mobility † Smart Homes and Assisted Living † Smart Industries † Public safety † Energy & environmental protection † Agriculture † etc• 1 1.1.1.1 Resource for IoT

 Chapter 2 presents the state of the art of our research which covers the following domains: edge ‡ computing † hardware design † and HW/SW co ‡design• Chapter Š describes our OoRC meta ‡model at conceptual level• Both RTL ‡level modeling and system ‡level modeling are addressed• The chapter also describes how the meta ‡model handles the reuse of VHDL legacy IPs as regular object oriented models• Chapter š targets the SW/HW co ‡design problem with OoRCBridge † middleware and toolset ded ‡ icated for integrating FPGA devices in existing high ‡level software system• Concretely † the SW/HW communication is standardized † a mechanism for automatic interface generation is speci ed and an API for abstracting HW accessing is also provided• Chapter 5 puts it all together in the context of edge ‡ computing• We present our dedicated distributed environment named CaRDIN• It has been developed for application building and deploying on such hybrid system• Finally † in chapter 6 † conclusions are drawn and future work related to the OoRC meta ‡model and CaRDIN are discussed•

	Š• Hardware architecture † middleware and toolset for edge ‡centric application development• The Creativity is thinking up new things. Innovation is doing philosophy here is to (1" centralize the development of distributed (decentralized" application † (2" automatize the application deployment and (Š" abstract the network communications• new things.
	Theodore Levitt
	OOD is the main design methodology employed throughout these contributions to produce a unique
	design environment and ow• It is used in conjunction with (1" Model ‡Driven Engineering (MDE" to
	model hardware system † (2" platform ‡based design for SW/HW co ‡design and (Š" distributed pro ‡ gramming to provide environment for distributed application development and deployment on the net ‡ work• 1.3 Outline of the Thesis 2
	State of the Art
	1" ne ‡grained level where it is used to specify FPGA circuits at RTL level; (2" coarse ‡grained
	level where OOD principles and design patterns are employed to abstract and modularize the
	hardware system•
	2• Dedicated design environment (middleware and toolset" for SW/HW integration which is based
	on the OOD and platform ‡based design approaches• The essential is to close the SW/HW gap
	by abstracting the communication and provide automatic implementation (generation" of the in ‡
	terface (both SW and HW" depending on the application context•

 2•5 Positioning our work . Edge centric architecture consists of a data center at the core surrounded by capable nodes with small web server constituting a content distribution network• Sensor Networks compliant with Inter ‡ net protocol (IP" are good candidates for building such architecture• Unfortunately † most SNs solutions are non ‡IP ‡compatible SNs † thus have dif culty to participate to internet (missing of IP stack"• In the context of EC † the integration of such SN to IP ‡based network requires the deployment of an extra layer at the edge of the two networks to link non ‡IP SN communications with internet communications [GRL + 08 † KBLK07]• Proposed approaches are focused on wrapping data coming from sensor sources for sharing and processing over the Internet• Those works provide heterogeneity out of SN• Commu ‡ nication and application ‡level code needs to be hand ‡programmed for each node• Recently † a new research trend has emerged in this area: the IP ‡based sensor networks † [PKGZ08 † D +

	This chapter covers an examination of existing research in the eld of embedded system design
	methodologies and application of FPGA ‡based device in IoT and edge ‡centric computing• The rst
	section enlightens the current use of SN and FPGA in the edge computing domain• We then analyze
	the hardware design gap by comparing different existing hardware design methodologies• Hard ‡
	ware/software co ‡design is another related important research eld which will be discussed at the end
	of the chapter•
	2.1 Edge Computing
	2.1.1 Dedicated SN for Edge Computing

Table 2 .

 2

	Solution	Design	Modeling syn ‡	Abstraction level Design	Inheritance	Legacy HDL
		methodolology	tax/semantic		adaptability	(Extensibility"	reuse
	MetaRTL	Component ‡	Language ‡	Functional †	no	no	no
		based	centric	protocol level			
			meta ‡model				
	IP ‡XACT	Component ‡	XML	Protocol level	Parameterization no	yes
		based					
	COLA	Component ‡	Language ‡	functional †	Polymorphism	no	no
		based	centric	protocol level			
			meta ‡model				
	[Sed06] †	Platform ‡based Architectural	Application	Parameterization no	Fixed set of
	[Nga11] †		model	domain †			generic
	[KTO16] †			interface			components
	[OWTK10] †			standardisation			
	[Pom16]						
	MODEASY †	Object ‡	UML	Functional (state	no	no	no
	[DA1Š] †	oriented		diagram"			
	[BAS1š]						
	[EFQ15] †	Object ‡	UML	Functional	no	no	no
	[LW16b]	Oriented		(sequence dia•"			
	GASPARD	Object ‡	UML	Structural	Parameterization no	no
		oriented		(component dia•"			
	[DM 0Š] †	Object ‡	UML	Structural (class	Design pattern	yes	no
	[DS0š]	oriented		diagram"			
	AMoDE ‡RT	Object ‡	UML	Structural (class	abstract	yes	no
		oriented		dia•" &	methods		
				functional			
				(sequence dia•"			

1: Synthetic table of presented HW system-level design approaches using MDE

 • This class -subclass of HWMappingScheme-en ‡

		Read speed (MB/s)	write speed (MB/s)
		8	7,77
		6	
		5,009	
	MB/s	4		3,153
				2,715
		2		1,98	1,528
		0	
		Ideal	Interface + low-level SW Interface + Smalltalk
	Figure 4.6: Performance measurement for continuously read/write test

2• With the generated interface + low-level software API: the Block RAM design has been imported

 • Figure5•6 shows the simpli ed block diagram of the object detection circuit (at 100Mhz"• This circuit can be con gured (via dedicated ags" to work with either VGA or QVGA or QQVGA image• The base station and the node participate to the same LAN network using ethernet•

		<remote>
	16	^{self x. self y}
	17 CameraUnitWrapper >> positionDo aCallbackBlock ns anInt
	18	<remote #aCallbackBlock>
	19	anInt timesRepeat [
	20	aCallbackBlock value self position.
	21	milliseconds wait.
	22]
	2Š CameraUnitWrapper >> stream
	2š	self positionDo [p| p print] ns Listing 5.2: Example of a distributed class. The methods with a pragma are executed remotely. Others are . locally executed methods
	1 DeviceMapper subclass #CameraUnitWrapper
	2 CameraUnitWrapper >> gateway
	Š	^'ffvm/portal'
	š CameraUnitWrapper >> signature
	5	<remote>
	6	^self int At
	7 CameraUnitWrapper >> x
	8	<remote>
	9	^self int At
	10 CameraUnitWrapper >> y
	11	<remote>
	12	^self int At
	1Š "The following methods are manually added"
	1š CameraUnitWrapper >> position
		88

Table 5 . 1 :

 51 Memory footprint(KB) of the web services

	Module Resident Set Size Shared memory
	Httpd	6š0	5šš
	REST+VM	5Š2	80
	Resource		Object detection circuit
	Slice registers		1 †00Š/11 †šš0 (8%"
	Slice LUTs		1 †551/5 †720 (27%"
	RAMB16BWERs		Š2/Š2 (100%"
	BUFG/BUFGMUXs	Š/16 (18%"

Table 5 . 2 :

 52 FPGA resource used

 • The table 5•2 shows the resource used by the object detection circuit on the FPGA•

	Stage	Memory used(%" CPU used(%"
	(1" Httpd only (idle"	0•Š	0
	(1" Full system (idle"	0•5	0
	(2" Software recon g•	0•5	š•7
	(Š" Bitstream recon g•	0•5	26•2
	(š" Frequently fetching	0•55	21
	(5" Streaming	0•5	5•Š

Table 5 .

 5

3: Resource used of the software stack in the node.

" In MDE † the term platform model is also know as architectural model

¶ The simulation clock is unrelated to the hardware clock and is used only by the simulator to keep track of the simulation time as the simulation proceeds

"ROS API for communication via ROS middleware"

node = ROSNode new.

Assigned automatically by OoRCBridge toolset

" In fact † the validation can be manually performed by re ‡exporting the imported legacy model to VHDL and then comparing the two VHDL codes

Acknowledgments

Firstly † I would like to express my sincere gratitude to my advisors Prof• Noury Bouraqadi and Prof• Loic Lagadec for the continuous support of my Ph•D study and related research † for their patience † mo ‡ tivation † and immense knowledge• Their guidance helped me in all the time of research and writing of this thesis• I could not have imagined having better advisors and mentors for my Ph•D study• My sincere thanks also goes to my supervisors Dr• Luc Fabresse † Dr• Jean ‡Christophe Le Lann † and Dr• Jannik Laval † for their kindness † their availability and their advices on techincal and scienti c as ‡ pects during this thesis• Without their precious support it would not be possible to conduct this research• Besides my advisors and supervisors † I would like to thank the rest of my thesis committee: Prof• Olivier Romain † Dr• Anne Etien † Dr• Thomas Ledoux and Dr• Ahcene Bounceur † for their insightful comments and encouragement † but also for the hard question which incented me to widen my research from various perspectives• I thank my fellow labmates at IMT Lille Douai and ENSTA Bretagne with whom i have pleasure to work and for all the fun we have had in the last three years• Last but not the least † I would like to thank my family: my wife † Phuong TRAN and to my daughter † Uyen Nhi † for supporting me spiritually throughout writing this thesis and my life in general• Xuan Sang LE vii viii

Thanks to the automatic code generation feature of the toolset † the hardware accessing via our middleware is simple and convenient• Software developer only need about 16 lines of code to connect the node to the ROS network † access object positions from hardware and publish them to the controller• The code is quite comprehensive for roboticists who are not hardware experts• Without the toolset and middleware † the implementation would be more speci c and complicate• Manual development will take an important amount of time on software/hardware communication and make the maintenance of the application more dif cult † since each change on the hardware may cause a propagation change on the software -from low level to high level• Figure š•12 shows the publishing frequency of the detector node to the network• We've achieved a frequency of around 27 Hz• This frequency is quite good for a real ‡time tracking robot•

Summary

Software/hardware interfacing remains always problematic as a time ‡consuming † expert ‡requiring and error ‡prone task• It demands an important development effort while has less contribution to the overall application and can cause a loss of productivity• Nevertheless † by using middleware † the task