
HAL Id: tel-01661588
https://theses.hal.science/tel-01661588

Submitted on 12 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Effect of Replication of Input Files on the
Efficiency and the Robustness of a Set of Computations

Thomas Lambert

To cite this version:
Thomas Lambert. On the Effect of Replication of Input Files on the Efficiency and the Robustness of a
Set of Computations. Other [cs.OH]. Université de Bordeaux, 2017. English. �NNT : 2017BORD0656�.
�tel-01661588�

https://theses.hal.science/tel-01661588
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE DE MATHÉMATIQUES ET

D’INFORMATIQUE

par Thomas Lambert

POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : INFORMATIQUE

Étude de l’effet de la réplication de fichiers
d’entrée sur l’efficacité et la robustesse d’un

ensemble de calculs

Date de soutenance : 8 Septembre 2017

Devant la commission d’examen composée de :
Olivier Beaumont Directeur de recherche, Inria Bordeaux Sud-Ouest Directeur
Anne Benoit Maîtresse de conférences, ENS de Lyon Rapporteuse
Nicolas Bonichon Maître de conférences, Université de Bordeaux Invité
François Clautiaux . . . Professeur des universités, Université de Bordeaux Examinateur
Lionel Eyraud-Dubois Chargé de recherche, Inria Bordeaux Sud-Ouest Encadrant
Nicolas Hanusse Directeur de recherche, CNRS . Président
Shadi Ibrahim Chargé de recherche, Inria Bretagne Atlantique Examinateur
Veronika Rehn-Sonigo Maîtresse de conférences, Université de Franche-Comté Examinatrice
Rizos Sakellariou . . . Senior lecturer, University of Manchester Rapporteur

2017

Résumé Avec l’émergence du calcul haute-performance (HPC) et des appli-
cations Big Data, de nouvelles problématiques cruciales sont apparues. Parmi
elles on trouve le problème du transfert de données, c’est-à-dire des communi-
cations entre machines, qui peut génerer des délais lors de gros calculs en plus
d’avoir un impact sur la consommation énergétique. La réplication, que ce soit
de tâches ou de fichiers, est un facteur qui accroît ces communications, tout
en étant un outil quasi-indispensable pour améliorer le parallélisme du calcul
et la résistance aux pannes.

Dans cette thèse nous nous intéressons à la réplication de fichiers et à son
impact sur les communications au travers de deux problèmes. Dans le premier,
la multiplication de matrices en parallèle, le but est de limiter autant que
possible ces réplications pour diminuer la quantité de données déplacées. Dans
le second, l’ordonnancement de la phase « Map » de MapReduce, il existe une
réplication initiale qu’il faut utiliser au mieux afin d’obtenir l’ordonnancement
le plus rapide ou entraînant le moins de création de nouvelles copies.

En plus de la réplication, nous nous intéressons aussi à la comparaison entre
stratégies d’ordonnancement statiques (allocations faites en amont du calcul)
et dynamiques (allocations faites pendant le calcul) sur ces deux problèmes
avec pour objectif de créer des stratégies hybrides mélangeant les deux aspects.

Pour le premier problème, le produit de matrices en parallèle, nous nous
ramenons à un problème de partition de carré où l’équilibrage de charge est
donné en entrée. Cet équilibrage donné, le but est de minimiser la somme
des semi-paramètres des rectangles couvrant des zones ainsi créés. Ce prob-
lème a déjà été étudié par le passé et nous démontrons de nouveaux résultats.
Nous proposons ainsi deux nouveaux algorithmes d’approximation, l’un fondé
sur une stratégie récursive et l’autre sur l’usage d’une courbe fractale. Nous
présentons également une modélisation alternative, fondée sur un problème
similaire de partition de cube, dont nous prouvons la NP-complétude tout
en fournissant deux algorithmes d’approximation. Pour finir, nous réalisons
également une implémentation pratique du produit de matrices en utilisant
nos stratégies d’allocation grâce à la librairie StarPU. Les résultats expérimen-
taux montrent une amélioration du temps de calcul ainsi qu’une diminution
significative des transferts de données lorsqu’on utilise une stratégie statique
d’allocation couplée à une technique de vol de tâches.

Pour le second problème, l’ordonnancement de la phase « Map » de MapRe-
duce, plusieurs copies des fichiers d’entrée sont distribuées parmi les pro-
cesseurs disponibles. Le but ici est de faire en sorte que chaque tâche soit at-
tribuée à un processeur possédant son fichier d’entrée tout en ayant le meilleur
temps de calcul total. Une autre option étudiée est d’autoriser les tâches non-
locales (attribués à des processeurs ne possédant pas leurs fichiers d’entrée)
mais d’en limiter le nombre. Dans cette thèse nous montrons premièrement
qu’un algorithme glouton pour ce problème peut être modélisé par un pro-
cessus de « balls-in-bins » avec choix, impliquant une surcharge (nombre de

On the Effect of Replication of Input Files iii

tâches supplémentaires par rapport à la moyenne) en O(m logm) où m est le
nombre de processeurs. Secondement, dans le cas où les tâches non-locales
sont interdites, nous relions le problème à celui de l’orientation de graphes, ce
qui permet d’obtenir des algorithmes optimaux et polynomiaux et l’existence
d’une assignation presque parfaite avec forte probabilité. Dans le cas où les
tâches non locales sont autorisées, nous proposons également des algorithmes
polynomiaux et optimaux. Finalement, nous proposons un ensemble de simula-
tions pour montrer l’efficacité de nos méthodes dans le cas de tâches faiblement
hétérogènes.

Title On the Effect of Replication of Input Files on the Efficiency and the
Robustness of a Set of Computations

Abstract The increasing importance of High Performance Computing (HPC)
and Big Data applications creates new issues in parallel computing. One of
them is communication, the data transferred from a processor to another. Such
data movements have an impact on computational time, inducing delays and
increase of energy consumption. If replication, of either tasks or files, gen-
erates communication, it is also an important tool to improve resiliency and
parallelism.

In this thesis, we focus on the impact of the replication of input files on
the overall amount of communication. For this purpose, we concentrate on
two practical problems. The first one is parallel matrix multiplication. In
this problem, the goal is to induce as few replications as possible in order to
decrease the amount of communication. The second problem is the scheduling
of the “Map” phase in the MapReduce framework. In this case, replication is
an input of the problem and this time the goal is to use it in the best possible
way.

In addition to the replication issue, this thesis also considers the compar-
ison between static and dynamic approaches for scheduling. For consistency,
static approaches compute schedules before starting the computation while
dynamic approaches compute the schedules during the computation itself. In
this thesis we design hybrid strategies in order to take advantage of the pros
of both. First, we relate communication-avoiding matrix multiplication with a
square partitioning problem, where load-balancing is given as an input. In this
problem, the goal is to split a square into zones (whose areas depend on the
relative speed of resources) while minimizing the sum of their half-perimeters.
We improve the existing results in the literature for this problem with two ad-
ditional approximation algorithms. In addition we also propose an alternative
model using a cube partitioning problem. We prove the NP-completeness of
the associated decision problem and we design two approximations algorithms.
Finally, we implement the algorithms for both problems in order to provide a

iv T. Lambert

comparison of the schedules for matrix multiplication. For this purpose, we
rely on the StarPU library.

Second, in the Map phase of MapReduce scheduling case, the input files
are replicated and distributed among the processors. For this problem we pro-
pose two metrics. In the first one, we forbid non-local tasks (a task that is
processed on a processor that does not own its input files) and under this con-
straint, we aim at minimizing the makespan. In the second problem, we allow
non-local tasks and we aim at minimizing them while minimizing makespan.
For the theoretical study, we focus on tasks with homogeneous computation
times. First, we relate a greedy algorithm on the makespan metric with a
“ball-into-bins” process, proving that this algorithm produces solutions with
expected overhead (the difference between the number of tasks on the most
loaded processor and the number of tasks in a perfect distribution) equal to
O(m logm) where m denotes the number of processors. Second, we relate this
scheduling problem (with forbidden non-local tasks) to a problem of graph ori-
entation and therefore prove, with the results from the literature, that there
exists, with high probability, a near-perfect assignment (whose overhead is
at most 1). In addition, there are polynomial-time optimal algorithms. For
the communication metric case, we provide new algorithms based on a graph
model close to matching problems in bipartite graphs. We prove that these al-
gorithms are optimal for both communication and makespan metrics. Finally,
we provide simulations based on traces from a MapReduce cluster to test our
strategies with realistic settings and prove that the algorithms we propose per-
form very well in the case of low or medium variance of the computation times
of the different tasks of a job.

Keywords Algorithmic, Scheduling, Parallel Computing, Matrix Product,
MapReduce

Mots-clés Algorithmique, Ordonnancement, Calcul Parallèle, Produit de
matrices, MapReduce

Laboratoire d’accueil Laboratoire Bordelais de Recherche en Informatique
(LaBRI)

On the Effect of Replication of Input Files v

vi T. Lambert

Remerciements

Mes premiers remerciements vont bien sûr à mes directeurs, Olivier et Lionel,
qui pendant les trois années qu’ont duré cette thèse, se sont toujours montrés
disponibles et attentifs, notamment dans ces moments intenses que sont la
rédaction et la préparation de la soutenance. Ce fut un réel plaisir de les
côtoyer et de travailler avec eux et j’espère bien pouvoir continuer à le faire
dans le futur.

J’aimerais ensuite remercier mes rapporteurs, Anne Benoit et Rizos Sakel-
lariou, pour avoir accepté de relire ma thèse et ce malgré un timing pas forcé-
ment agréable. Merci aussi à Nicolas Hanusse, Shadi Ibrahim, Veronika Rehn-
Sonigo, François Clautiaux et Nicolas Bonichon de m’avoir fait l’honneur de
compléter mon jury.

Parce que sans eux cette thèse n’aurait peut-être pas eu lieu, j’ai aussi une
pensée pour l’équipe ROMA du LIP (ENS de Lyon), en particulier Frédéric,
Loris et Bora, qui m’ont fait découvrir les joies de l’ordonnancement et du
calcul parallèle au travers des cours qu’ils ont dispensé et lors de mes stages
de M1 et M2 qu’ils ont encadré.

Il me faut aussi remercier les très nombreuses personnes que j’ai croisé au
cours de ces trois ans. Tout d’abord mes compagnons de pause midi, anciens
et passés, Bruno, poète virtuose, Pierre, dont nos conversations sur le cinéma
et le sport me manquent, Zoé, skieuse de l’extrême, Alice, parisienne en exil,
Elsa, dont la compassion fut une aide précieuse pendant les jours difficiles,
Sami, dont nos conversations sur le cinéma et le sport, toujours courtoises
malgré des désaccords de fond, vont me manquer, Jonathan, quémandeur de
pokemons , et Philippe, authentique jusqu’au bout. Il me faut aussi mentionner
les autres doctorants de l’IMB qui m’ont accueilli et qui sont partis depuis vers
d’autres cieux, Samuel, Alan, Jean-Baptiste, Marie, Camille, Romain, Marc,
Jocelyn ainsi que ceux qui sont encore là, Nicolas, Nikola, Vassilis, Thibault,
Manon, Roberto, Gabriele et Sergio. Il ne me faudrait pas oublier non plus les
résidents du LaBRI que j’ai eu l’occasion de côtoyer en séminaire ou lors des
activés de l’AFoDIB, Mathieu, Henry, Théo, Simon, Patxi, Noël, Rémi, Claire
P., Joris, Nicolas, Claire C., David J., David R., David I., Romaric, Marie,
Louis-Marie, Nathan, Mohamed et Thomas. Enfin je pense aussi aux résidents
de l’Inria, notamment Abdou, Samuel, Terry et Yann qui m’ont aidé à percer
les arcanes de StarPU, mais aussi Emmanuel J., Emmanuel A., Matthieu,

vii

Marc, Guillaume et Suraj.
Je n’oublie pas non plus mes vieux compagnons de l’ENS que j’ai toujours

plaisir à revoir. Tout d’abord Thomas, Robin et Vincent C., mes "co-loques"
du 1 avenue Debourg, fameux squat et haut-lieu d’expérimentation culinaire,
musical, cinématographique, vidéo-ludique et biorythmique auquel je pense
souvent la larme à l’œil, du moins jusqu’à ce que je me souvienne du saxo-
phone de Robin, du sens de l’humour bien à lui de Thomas et du goût un brin
trop prononcé de Vincent pour le piment. Je continue avec Élie, inépuisable
répertoire de savoirs inutiles donc indispensables, Rémi D.J.D.V., empiriste
imprévisible, Étienne, râleur d’élite, Mathias, éminent spécialiste en comédies
françaises, Fred, « docteur licorne », Samantha, à qui je dois les joies de la
rubrique fait-divers d’un petit journal du sud des Pouilles, Anaël, œnologue
hétérodoxe, et Benjamin, à qui j’aurais dû proposer de m’écrire ces remer-
ciements contre rémunération, ils auraient eu beaucoup plus de gueule. J’ai
enfin une petite pensée pour tous les autres que j’ai pu croisé au Foyer ou
ailleurs, Margaux, Damien, François, Vincent L.,Adrien, Isa, Julien, Noé, Léo,
Bertrand, Agathe, Arthur, Rémi N., Aurélien, Alexis, Alvaro, Marine, Alexan-
dre, Florine, Ronan, Sylvie. . .

Merci aussi à ma famille, notamment mes parents Jean-Luc et Françoise,
qui, malgré une volonté évidente de ma part de m’éloigner d’eux à chaque
nouvelle étape de mes études, m’ont toujours soutenu et encouragé.

J’ai aussi une petite pensée pour les deux urgentistes, les trois généralistes,
les trois kinésithérapeutes, les deux radiologues et la podologue qui se sont
relayés autour de mes deux chevilles et de mon dos ces trois dernières années
dans l’espoir de les remettre en état (avec un succès mitigé mais des efforts
méritoires).

Enfin, et ça sera ma conclusion, désolé à ceux que j’ai oublié et merci.
Certains appelleront ça de la lâcheté, je préfère parler de prévoyance diploma-
tique.

viii T. Lambert

Résumé détaillé

Avec l’émergence du calcul haute-performance (HPC) et des applications Big
Data, de nouvelles problématiques cruciales sont apparues. Parmi elles on
trouve le problème du transfert de données, c’est-à-dire des communications
entre machines, qui peut engendrer des délais lors de gros calculs en plus
d’avoir un impact sur la consommation énergétique. La réplication, que ce
soit de tâches ou de fichiers, est un facteur qui accroît ces communications,
tout en étant un outil quasi-indispensable pour améliorer le parallélisme du
calcul et la résistance aux pannes.

Dans cette thèse nous nous intéressons à la réplication de fichiers et à son
impact sur les communications au travers de deux problèmes. Dans le premier,
la multiplication de matrices en parallèle, le but est de limiter autant que
possible ces réplications pour diminuer la quantité de données déplacées. Dans
le second, l’ordonnancement de la phase « Map » de MapReduce, il existe une
réplication initiale qu’il faut utiliser au mieux afin d’obtenir l’ordonnancement
le plus rapide ou entraînant le moins de création de nouvelles copies.

En plus de la réplication, nous nous intéressons aussi à la comparaison entre
stratégies d’ordonnancement statiques (allocations faites en amont du calcul)
et dynamiques (allocations faites pendant le calcul) sur ces deux problèmes
avec pour objectif de créer des stratégies hybrides mélangeant les deux aspects.

Les trois premiers chapitres de cette thèse sont consacrés au produit de
matrices parallèle. Dans le premier nous nous concentrons sur une première
modélisation se basant sur un problème de partitionnement de carré. Le pro-
duit de matrices C = A× B peut en effet être considéré comme un ensemble
de tâches unitaires de la forme

Ti,j,k : Ci,j ← Ci,j + Ai,kBk,j

qu’il faut donc distribuer entre les processeurs disponibles. Dans un premier
temps nous considérons que toutes les tâches ayant le même Ci,j doivent être
données au même processeur (afin, par exemple, d’éviter des conflits d’écriture)
; nous nous retrouvons avec la matrice résultat C à partager. Si l’on suppose
la durée des tâches homogènes (une opération de type GEMM est plutôt stable
en pratique), l’équilibrage se fait facilement en accordant à chaque processeur

ix

un nombre de tâche proportionnel à sa vitesse de calcul relative. On a donc un
carré (la matrice résultat que l’on supposera carrée) à partager entre plusieurs
processeurs dont on connaît la surface occupée par chacun. Afin d’évaluer
le nombre de communications induites par un partitionnement (et que l’on
cherchera à minimiser), on considérera le nombre de Ai,k et de Bk,j à charger
pour chaque processeur, nombre qui est proportionnel à la somme des pro-
jections sur les deux dimensions des zones attribués aux processeurs. Cette
somme des projections sera donc notre fonction objectif à minimiser. Nous
appelons ce problème PERI-SUM.

Le problème de décision associé à PERI-SUM ayant été prouvé NP-complet,
nous nous sommes concentrés sur des algorithmes d’approximations en es-
sayant d’améliorer la littérature préexistante. Nous avons en particulier pro-
posé deux nouveaux algorithmes : NRRP et SFCP. Le premier est un al-
gorithme récursif. A chaque étape le rectangle (le carré en entrée lors du
premier appel) est partagé en plusieurs morceaux (au moins deux), de même
que l’ensemble des surfaces (les vitesses relatives). L’algorithme est ensuite
de nouveaux appelés sur chaque couple (rectangle, surfaces). Notre princi-
pal résultat de ce chapitre est la preuve que NRRP est une 2√

3
-approximation

(2√
3
' 1.15), ce qui constitue le meilleur ratio d’approximation connue à ce

jour. SFCP quant à lui est un algorithme qui utilise une courbe fractale, la
courbe de Hilbert, pour partitionner le carré en préservant une certaine local-
ité. Nous avons montré que SFCP est une 3

√
3√

11
-approximation (3

√
3√

11
' 1.57)

ce qui constitue à notre connaissance la première analyse de cette technique
classique pour ce problème. Enfin, dans ce chapitre, nous avons aussi proposé
une comparaison de stratégies statiques (comme les algorithmes précédents)
et dynamiques à l’aide de simulations afin notamment d’évaluer la robustesse
de notre approche en cas d’évaluation moins fiable des vitesses. Ces simu-
lations prouvent notamment que des stratégies hybrides (statiques avec une
composante dynamique) permettent d’améliorer la stabilité des stratégies sta-
tiques tout en diminuant sensiblement le nombre de communications par rap-
port aux stratégies dynamiques, montrant ainsi l’intérêt pour ce problème des
ordonnancements statiques.

Dans le second chapitre de cette thèse nous proposons une nouvelle mod-
élisation de la multiplication parallèle de matrices. Pour cela nous nous af-
franchissons de la contrainte de devoir attribuer toutes les tâches mettant en
jeu un même Ci,j à un même processeur et partitionnons cette fois l’espace
des tâches (qui est donc tri-dimensionnel). On a donc cette fois un problème,
nommé MSCubeP, où l’on partitionne un cube en zones de volumes donnés
et en minimisant la somme des projections sur les trois dimensions. Dans un
premier temps nous avons montré la NP-complétude du problème de décision
associé à une variante du problème, MSCuboidP (où l’on partitionne un par-
allélépipède rectangle au lieu d’un cube). La démonstration de ce résultat

x T. Lambert

se base sur une réduction depuis le problème de partition, une preuve simi-
laire à celle pour la NP-complétude du problème 2D. Nous proposons ensuite
deux algorithmes : 3D-NRRP et 3D-SFCP très similaires aux algorithmes du
problème 2D. 3D-NRRP est ainsi basé sur le même principe de divisions suc-
cessives du cube initial et nous montrons que c’est une 5

62/3
-approximation

(5
62/3
' 1.51). De même 3D-SFCP utilise une courbe de Hilbert en trois di-

mensions pour effectuer son partitionnement et nous montrons que c’est une
75/3

622/3
-approximation (75/3

622/3
' 1.64). Enfin, pour clore ce chapitre nous pro-

posons aussi une comparaison des deux modélisations, 2D et 3D. Il est en effet
facile de transformer toute solution de PERI-SUM en solution de MSCubeP
en répliquant la solution tout au long de la troisième dimension. Dans cette
section nous montrons notamment, théoriquement pour certains cas, via des
simulations pour les autres cas, que les solutions issues de MSCubeP sont très
vite meilleures et que le ratio (solution 2D)/(solution 3D) augmente quand
le nombre de processeurs augmente, avec un comportement asymptotique en
O(m1/6), où m est le nombre de processeurs.

Dans le troisième chapitre nous proposons une implémentation pratique du
produit de matrices. Le but en est bien sûr de tester en conditions réelles
les bons résultats théoriques prouvés auparavant ainsi que de confirmer les
résultats des simulations. Cette implémentation permet aussi d’interroger le
modèle, notamment certaines hypothèses réalisées, la confiance dans les esti-
mations de vitesses, la superposition des communications avec les calculs ou
l’indépendance des tâches entre elles dans le cas de la modélisation 3D. Pour
la réalisation pratique nous utilisons la librairie StarPU, développée à l’Inria
Bordeaux Sud-Ouest, qui permet la création de codes portables et adaptés aux
architectures hétérogènes (incluant par exemple CPUs et GPUs). Dans StarPU
les tâches sont soumises dès qu’elles sont disponibles à un ordonnanceur qui
les distribue ensuite aux différents processeurs selon un algorithme qui peut
être défini et implémenté par l’utilisateur. Nous avons donc produit un ordon-
nanceur hybride qui utilise NRRP ou 3D-NRRP pour distribuer statiquement
les tâches dans un premier temps, puis utilise un système de vol de tâches pour
corriger dynamiquement cet ordonnancement, particulièrement en cas de pro-
cesseur inactif. Le vol de tâche essaye, en regardant plus ou moins de tâches,
de chercher celle qui implique le moins de communications (donc qui nécessite
le moins de nouvelles données du point de vue du processeur voleur). Nous
comparons ces stratégies hybrides avec leurs pendants purement statiques ou
dynamiques, ainsi qu’avec DMDA, une stratégie pré-implémentée dans StarPU
et qui vise la minimisation du temps de calcul. Au final les résultats révèlent
principalement deux choses : 1) pour éviter les conflits d’écriture lorsque le
modèle utilisé est basé sur MSCubeP nous avons été obligés d’ajouter des
dépendances (lorsque deux tâches partagent un Ci,j on attend que la première
soit finie pour soumettre la deuxième) ou des tâches de réduction (on crée des

On the Effect of Replication of Input Files xi

versions temporaires des éléments de la matrice résultat que l’on somme à la
fin), ce qui dans les deux cas dégrade significativement le temps de calcul sur
la plateforme considérée, 2) néanmoins les stratégies basées sur NRRP offrent
des performances plus que satisfaisantes avec à la fois une énorme diminution
des communications et même une légère amélioration du temps de calcul.

Le dernier chapitre de cette thèse est lui consacré au second problème,
l’ordonnancement de la phase "Map" de MapReduce. Cette dernière peut
se modéliser par une distribution de tâches indépendantes avec pour con-
traintes un pré-placement des fichiers d’entrée à respecter. Afin d’améliorer,
entre autre, le parallélisme de l’application chaque fichier d’entrée est répliqué
plusieurs fois et donc chaque tâche a plusieurs processeurs candidats à son
exécution. En pratique, afin d’avoir le meilleur temps de calcul possible, on
autorise néanmoins les tâches non locales, c’est à dire les tâches exécutées sur
un processeur ne possédant pas, lors de la distribution initiale, des fichiers
d’entrée correspondants, mais cela entraîne des communications que l’on veut
éviter. Nous nous retrouvons donc avec deux problèmes : un premier où l’on
interdit ces communications supplémentaires et l’on cherche le meilleur temps
de calcul possible (MAKESPAN-MAPREDUCE) et un second ou l’on équili-
bre à tout prix les tâches afin d’obtenir le meilleur temps de calcul mais en
limitant autant que possible le nombre de tâches non locales à réaliser pour
cela (COMMUNICATION-MAPREDUCE). Notons que dans les deux cas les
tâches sont supposées homogènes (une distribution parfaite serait donc au plus
la partie entière du nombre de tâches divisée par le nombre de processeurs al-
louée à chaque processeur) et nous représentons le problème par un graphe
biparti représentant le placement des fichiers d’entrée. Dans un premier temps
nous nous concentrons sur MAKESPAN-MAPREDUCE. Nous montrons no-
tamment ses liens avec le problème de "balls-into-bins" avec choix multiple, ce
qui nous permet de prouver qu’un algorithme glouton sur ce problème retourne
une solution dont l’espérance du temps de calcul est n

m
+O(log logm) où n est le

nombre de tâches et m le nombre de processeurs. Ensuite, nous montrons que
ce problème est équivalent à un problème d’orientation de graphe. Il en résulte
l’existence d’algorithmes polynomiaux et optimaux ainsi que l’existence, avec
forte probabilité, d’une solution avec un temps de calcul n

m
+ 1. Dans un sec-

ond temps, nous nous concentrons sur COMMUNICATION-MAPREDUCE.
En particulier nous proposons deux algorithmes polynomiaux et optimaux,
FindAssignment et BestAssignment, basés sur des chemins alternants
empruntés à la littératures des flux et des couplages. Nous montrons, par
ailleurs, que ces deux algorithmes sont aussi optimaux pour MAKESPAN-
MAPREDUCE, impliquant une solution commune aux deux problèmes.

Après ces résultats théoriques nous proposons une série de simulations pour
comparer BestAssignment avec des deux algorithmes pré-existants. Nous
proposons deux séries de simulations. Dans la première nous gardons le modèle

xii T. Lambert

avec les tâches homogènes et évaluons le gain que l’on obtient avec BestAs-
signment (qui est optimal) par rapport aux autres algorithmes. Dans la sec-
onde série nous utilisons des traces issues d’un serveur Hadoop pour évaluer
les performances de BestAssignment en situation pratique, notamment avec
des tâches qui peuvent se révéler de durées très différentes. Globalement les
simulations montrent une importante diminution du nombre de tâches non-
locales pour des variances faibles ou moyenne de la durée des tâches avec
BestAssignment. Cependant, dans le cas d’une variance élevée et des rap-
ports n/m trop importants les anciennes stratégies purement dynamiques sem-
blent mieux fonctionner.

On the Effect of Replication of Input Files xiii

xiv T. Lambert

Contents

Contents xv

Introduction 1

1 Square Partitioning for Communication-Avoiding Parallel Ma-
trix Multiplication 7
1.1 Introduction . 7

1.1.1 Formal Definition of the Problem 8
1.2 Related Work . 11

1.2.1 Lower Bound . 11
1.2.2 Column-Based . 11
1.2.3 Rectangular Recursive Partitioning 12
1.2.4 Optimal Solutions for 2 and 3 processors 16
1.2.5 Dynamic Strategies . 18

1.3 Comparison Between Static, Dynamic and Hybrid Strategies in
Static and Dynamic Settings . 19
1.3.1 Presentation of the Targeted Platforms 19
1.3.2 Discrete Aspect of Matrix Partitioning 21
1.3.3 Presentation of the strategies 23
1.3.4 Experimental Results . 25

1.4 NRRP (Non-Rectangular Recursive Partitioning) 32
1.4.1 SNRRP (Simple Non-Rectangular Recursive Partitioning) 32
1.4.2 NRRP . 38

1.5 SFCP (Space-Filling Curve Partitioning) 66
1.5.1 Presentation of Space-Filling Curves 66
1.5.2 Approximation Ratio . 69
1.5.3 Complexity . 78

1.6 Conclusion and Perspectives . 79

2 Cube Partitioning for Communication-Avoiding Parallel Ma-
trix Multiplication 83
2.1 Introduction . 83
2.2 Related Work . 84

xv

CONTENTS

2.2.1 SCR (Slice-Column-Row) 84
2.2.2 NP-Completeness Proof of PERI-SUM 85

2.3 NP-Completeness of MSCuboidP 92
2.4 3D-NRRP (3D Non-Rectangular Recursive Partitioning) 100

2.4.1 Presentation of the Algorithm 100
2.4.2 Correctness . 102
2.4.3 Approximation Ratio . 104
2.4.4 Complexity . 106

2.5 3D-SFCP (3D Space-Filling Curve Partitioning) 106
2.5.1 Presentation of 3D-SFCP 106
2.5.2 Approximation Ratio . 110

2.6 Comparison Between Square and Cube Partitioning 119
2.6.1 Theoretical Comparison 120
2.6.2 Simulation Comparison 121

2.7 Conclusion and Perspectives . 124

3 Implementation of Square and Cuboid Partitioning with the
StarPU Software 127
3.1 Introduction . 127
3.2 Presentation of StarPU . 130

3.2.1 Tasks . 130
3.2.2 Workers . 130
3.2.3 Scheduler . 131

3.3 Implementation and Strategies 131
3.3.1 Static Allocations . 131
3.3.2 Dynamic Strategies . 134
3.3.3 Scheduler Implementation 135

3.4 Experimental Results . 136
3.4.1 Trace Analysis . 137
3.4.2 Makespan . 140
3.4.3 Communication . 143

3.5 Conclusion and Perspectives . 146

4 Matching-Based Assignment Strategies for Improving Data
Locality of Map Tasks in MapReduce 149
4.1 Introduction . 149

4.1.1 MapReduce and HDFS 149
4.1.2 Metric: Communication vs Makespan 151

4.2 Related Work . 154
4.2.1 Locality in Map-Reduce 154
4.2.2 Matchings in Bipartite Graphs 156

4.3 Greedy Approach . 156
4.3.1 Balls-into-Bins . 156

xvi T. Lambert

CONTENTS

4.3.2 Reduction to Balls-into-Bins 157
4.4 Matching-Based Approach . 159

4.4.1 Results for Makepan Metric 160
4.4.2 A First Communication-Optimal Algorithm 169
4.4.3 A Faster Communication-Optimal Algorithm 178

4.5 Simulations . 181
4.5.1 Settings . 182
4.5.2 Homogeneous Settings 185
4.5.3 Heterogeneous Settings 190

4.6 Conclusion and Perspectives . 194

Conclusion 197

Bibliography 201

On the Effect of Replication of Input Files xvii

CONTENTS

xviii T. Lambert

Introduction

Parallel computing is a very important field of computer science where com-
putation resources are aggregated in order to obtain a greater computational
power. The increase in the demand for high-speed computation and analysis
of larger and larger datasets has reinforced parallel computing as a crucial
research subject in the recent years.

Two main approaches have emerged. For a long time, parallel computing
was dominated by HPC (High Performance Computing), i.e. big local aggrega-
tion of processors like supercomputers. HPC mainly focuses on computations,
in particular scientific ones, with important hardware improvement on proces-
sors and very optimized and specific codes. However the increase of the size of
data used in HPC becomes an increasingly important problem and is identified
as one of the major challenges in the future of HPC, see Shalf et al. [2011] and
Geist and Lucas [2009].

More recently, datacenters and Big Data applications have developed a
more distributed approach, different from the one used in HPC. The main
strength of Big Data approach is to place storage as close as possible to local
computational resources, allowing fast analysis of large datasets (that can eas-
ily be split in different chunks and then distributed). This approach mainly
focuses on data distribution, with dedicated file systems like HDFS (Borthakur
[2008]), and uses simple programming models like MapReduce (Dean and Ghe-
mawat [2008]).

Initially, since the two approaches went in different directions, their usages
and associated challenges were different. One consequence was the existence of
two ecosystems with little in common, see Figure 1. Nowadays, for economic
and technical reasons, we can observe a "convergence" of both approaches. For
example, at programming level, HPC becomes more accessible with tools like
StarPU (Augonnet et al. [2011]), PaRSEC (Bosilca et al. [2013]) or KAAPI
(Gautier et al. [2007]) that avoid complicated MPI programming for users. At
the same time, the programming models in Cloud Computing are getting more
complex to improve efficiency of specific applications. Spark (Spark [2016]), for
example, is an improved version of MapReduce which provides a much more
efficient management of intermediate data. Similarly, at the hardware level,
the apparition of burst buffers on HPC machines make the data closer to the
computational resources than before while Infiniband resources, that used to

1

Figure 1: Ecosystems of Big Data (left) and HPC (right) (From Reed and
Dongarra [2015]).

be specific to HPC architectures, are now a common component in Big Data
clusters.

This convergence between HPC and Big Data implies many crucial issues
(Reed and Dongarra [2015]). A major aspect is data management and many
sub-questions result from this problematic: how to minimize data movement?
How to improve data availability? How to make the best use of data known
to be read-only?. . . .

Among all these questions, this thesis considers specifically the replication
problematic. Today, replication is a very classical tool in parallel computing.
Two kinds of replication schemes can be distinguished: task replication and
data replication.

In the case of tasks, replication provides an interesting tool to bring re-
silience to computation with a large set of tasks. More precisely, the repli-
cation of a task, i.e. the multiple execution of the same task, improves the
chances of this task to finish and to be correct. Such an operation can be done
in a reactive way, if there is a suspicion of a failed or a very slow task. This
is, for example, the way that MapReduce (Dean and Ghemawat [2008]) deals
with stragglers, i.e. abnormally slow tasks, see Zaharia et al. [2008], Fu et al.
[2015] or Guo and Fox [2012] for studies on the problem of managing such a
mechanism. Task replication can also be done in prevision. In this case, the
scheduler assumes that there will be a failure during the execution and there-
fore launches several duplicates of the same task to increase the chances of

2 T. Lambert

Introduction

finishing this task, see Wang et al. [1995] or Litke et al. [2007], or to check the
correctness of a task to avoid silent errors, see Lyons and Vanderkulk [1962] or
Fiala et al. [2012]. Task replication is beyond the scope of this thesis. However
we briefly consider task replication in Chapter 1 and Chapter 4.

The other type of replication, data replication, is a crucial component in
distributed computing. It can be used to avoid data loss (if the storage node
becomes down) and, more importantly, to improve the accessibility of data. In-
deed, data is notably used as input files. To be processed on a given processor,
a task needs its input data to be gathered on this processor. Therefore increas-
ing the replication of input files allows more processors to be able to schedule
a task without data movement during the computation. This technique has
widely proved its efficiency, see Chervenak et al. [2000], Stockinger et al. [2001]
or Ranganathan and Foster [2001]. This led some storage systems, like for ex-
ample HDFS (Borthakur [2008]), to replicate every input data chunk three
times by default. In this thesis we also consider replication performed during
the computation of a set of tasks, i.e. data movement (or communication).
A very classical behaviour in parallel computing is to never let a processor
idle. Therefore, when a processor has no local input files of a ready task, it
downloads these files from another processor, thus creating new replicates.

However replication has a cost. The first cost, of course, is storage. If a
data is replicated d times, this data alone will be using d times more disk ca-
pacity. In the case of Google or Amazon clusters, for example, the user pays in
function of used capacity and thus heavy replication significantly increases the
storage price. In addition, replication implies data movement and communica-
tion between nodes. Communications are an important issue in HPC, for the
following reasons. First of all, data movement is not instantaneous. Hoemmen
[2010] provides, in its introduction, an excellent review of this issue. Com-
munication time mostly depends on two parameters, latency and bandwidth.
Technical progress improves these values regularly, but these improvements
are nevertheless slow in comparison to the increase of computational power.
For example Graham et al. [2005] point that, from 1988 to 2004, the flops of
commodity processors increased by 59% while DRAM latency only decreased
by 5.5% (and the trend goes on). Therefore the overlap of communication with
task computation, a classical solution to avoid idle time while loading data,
could reach its limits if there are too many (or too large) objects to move.
In addition, communications also have an impact on energy consumption, as
underlined by Shalf et al. [2011] who place, among others, communication
reduction as one of the challenges to solve for the future of HPC.

In this thesis we study two particular problems under this communication-
avoiding angle. In Chapter 1, Chapter 2 and Chapter 3 we consider a very
classical operation, namely matrix multiplication. In these three chapters we
aim at minimizing the data movement (assuming there is no data replication
at the beginning) while ensuring good makespan. In this case, replication is

On the Effect of Replication of Input Files 3

treated as an objective function to minimize. In Chapter 4 we consider a
second problem, namely scheduling of the Map phase in MapReduce. In this
case we suppose that input files are replicated at the beginning and we want
to make use of these replications in order to have the best possible makespan,
or to avoid the creation of new duplicates. In this case, data replication is an
input of the optimisation problem on which we have no influence and that we
want to use in the best possible way.

Another aspect of this thesis is the opposition between static and dynamic
strategies, the two main scheduling approaches.

A scheduling strategy is said to be static if the schedule is determined before
the computation. To do so, static strategies rely on model and evaluation of
different parameters (computation time, size of the inputs, . . .). On the other
hand, a scheduling strategy is said to be dynamic if its schedule is determined
during the computation. To do so, dynamic strategies use their knowledge of
the actual state of the different components (tasks, processors, input files, . . .).
Both have been widely used and studied, static (Baptiste et al. [2012], Sen and
Gupta [1984] or Semar Shahul and Sinnen [2010]) and dynamic (Ouelhadj and
Petrovic [2009] or Blumofe and Leiserson [1999]).

In the dynamic case, we consider two kinds of strategies: resource-centric
and task-centric approaches. In the first case, resource-centric scheduling,
decisions are made when resources are ready, in general when a processor
becomes idle. Such strategies are designed to optimize the use of the available
resources. An example of resource-centric scheduling strategy is the work-
stealing technique where idle processors are allowed to steal tasks from other
processors if they are able to finish them earlier (Blumofe and Leiserson [1999]
or Bleuse et al. [2015]). On the other hand, task-centric schedulers make their
decisions when tasks are ready (for example when they are submitted or when
all tasks they depend on are finished). In this case the goal is to optimize the
cost of each task, in general to complete it as early as possible. A strategy
like MCT (Minimum Completion Time) that is close to the HEFT strategy
(Heterogeneous Earlier Finishing Time, Topcuoglu et al. [2002]) and which
allocates each task on the processor that can finish it the earliest, is a good
example of such an approach.

The pros and cons of dynamic and static approaches are well-known. Static
scheduling relies on a larger vision of the problem, allowing scheduling decisions
that use knowledge from future tasks and DAG structure to provide schedules
that can be proved to be more efficient that the ones from dynamic strategies
(Albers [2003]). This holds true even if associated decision problems are often
NP-complete, requiring the search of approximation algorithms. However, the
good quality of static strategies relies on the knowledge they have on the input.
If this knowledge is unreliable, the scheduling can be based on false and not
up-to-date information (due to wrong estimations of processing and transfer

4 T. Lambert

Introduction

times for instance), leading to bad decisions. Meanwhile, dynamic strategies
base their decisions on more accurate information, what reduces the chance
to making really bad choices, and are designed to react to unexpected events.
Therefore, dynamic strategies are often seen as a more reliable technique in
HPC because they are less dependent on accurate evaluation and able to adapt
from unexpected behaviours (task failures, broken links between machines,
. . .).

In this thesis, we mainly focus on static scheduling, in particular in Chap-
ter 1, Chapter 2 and Chapter 4, providing theoretical analysis. For both prob-
lems, parallel matrix multiplication and Map phase of MapReduce scheduling,
we try to make use of the strengths of static approach while minimizing its
weaknesses by augmenting it with dynamic techniques (mostly work-stealing)
in order to create hybrid approaches.

The thesis outline goes as follows.
In Chapter 1, we introduce the issue of communication-avoiding parallel

matrix multiplication with a focus on heterogeneous platforms. After intro-
ducing the PERI-SUM problem, that is the theoretical square partitioning
problem to work on, and presenting the different previous studies, we pro-
pose comparison between static and dynamic approaches for this problem. We
prove that, with the addition of a work-stealing strategy, static approaches
can be reliable for this particular case. In addition, we also design NRRP and
SFCP, two approximation algorithms for PERI-SUM with proved approxima-
tion ratios. This work has been partially realized with Abdou Guermouche
from HiePACS team at Inria Bordeaux Sud-Ouest and has been partially pub-
lished in SBAC-PAD’15 (Beaumont et al. [2015]) and IPDPS’16 (Beaumont
et al. [2016b]).

In Chapter 2, we pursue the study of parallel matrix multiplication with
a new model, the MSCubeP problem, which replaces the square partitioning
problem by a cube partitioning problem. Shortly, with PERI-SUM the goal
is to partition the output matrix while with MSCubeP we partition the entire
set of elementary tasks. In this chapter, we provide an NP-completeness proof
of MSCuboidP, a more general variant of MSCubeP, and two approximation
algorithms, 3D-NRRP and 3D-SFCP. In addition, we propose a comparison
between the PERI-SUM and the MSCubeP models, showing that the algo-
rithms for MSCubeP provide significantly better solutions than the ones from
PERI-SUM (in terms of induced communications), except for small instances
where the second performs slightly better. This work has been partially pub-
lished in Euro-Par’16 (Beaumont et al. [2016c]).

In Chapter 3, we propose a practical implementation of the algorithms
from the two previous chapters. For this purpose, we use the StarPU library
(Augonnet et al. [2011]) and propose experimentations on the computational
platform PlaFRIM2. From these experiments, we provide trace analysis and

On the Effect of Replication of Input Files 5

show a small speed-up and a significant decrease of data movement when a
static scheduler is used in place of the pre-implemented dynamic scheduler.
This recent work is still to be published.

In Chapter 4, we introduce the problem of scheduling during the Map phase
of MapReduce, a very popular paradigm of distributed computing. We propose
in this chapter two close models for this problem, MAKESPAN-MAPREDUCE
and COMMUNICATION-MAPREDUCE, which differ on the objective func-
tion (communication versus makespan), and a survey of scheduling techniques
on this issue. We also relate MAKESPAN-MAPREDUCE with the proba-
bilistic model Balls-In-Bins and to GRAPH-ORIENTIABILITY, a prob-
lem of edge orientation in graph, allowing us to use the existing literature
for these two problems. Finally, we propose optimal polynomial-time algo-
rithms (FindAssignment and BestAssignment) for COMMUNICATION-
MAPREDUCE and MAKESPAN-MAPREDUCE in the case of homogeneous
durations and propose a simulation-based analysis of their behaviour with on-
line and heterogeneous settings. In this case, the results are very encouraging:
we observe a decrease in the number of non-local tasks (tasks that are pro-
cessed on nodes that do not own their input files) when the variance between
the computation times is small enough. This work has been realized with Loris
Marchal from Roma team at ENS de Lyon and Bastien Thomas, intern in the
REALOPT team at Inria Bordeaux Sud-Ouest and is planned to be submitted
for publication shortly.

6 T. Lambert

Chapter 1

Square Partitioning for
Communication-Avoiding Parallel
Matrix Multiplication

1.1 Introduction

In the case of homogeneous resources, the problem of partitioning data for
Linear Algebra kernels in order to both balance the makespan throughout the
computation and to minimize communications is well understood. 2D block-
cyclic distributions, for instance, have been introduced in Scalapack Choi et al.
[1996] in order to achieve this goal. More recently, the problem has received a
lot of attention in Communication Avoiding algorithms design (see Hoemmen
[2010]; Anderson et al. [2011] and Solomonik and Demmel [2011]; Ballard et al.
[2012] for Matrix Multiplication specifically). In this context, the goal is to
partition the set of elementary computations to be performed into a minimal
number of zones, each zone being able to be processed in local memory (i.e.
both input, intermediate and output data). This corresponds to maximizing
the volume of computations that can be processed with a given amount of
memory.

In this chapter (and in Chapter 2 and Chapter 3), we concentrate on
dense Matrix Multiplication algorithms and more specifically on Matrix Mul-
tiplication algorithms that involve N3 elementary operations of type Ci,j ←
Ci,j + Ai,kBk,j, i.e. we ignore variants such as Strassen (Strassen [1969], Bal-
lard et al. [2012] also propose a communication avoiding algorithm for this
case) or Coppersmith-Winograd (Coppersmith and Winograd [1990]). Note
that throughout this chapter, and during Chapter 2 and Chapter 3, we will
assume that matrices are partitioned into blocks, whose size is chosen so as
to be well adapted to all types of resources (typically CPUs and GPUs). On
the other hand, we consider a fully heterogeneous platform where nodes may
have different processing capacities, and we address the most general problem,

7

1.1. Introduction

where several partially aggregated copies of C can reside simultaneously in
memory, such as in 2.5D algorithms Solomonik and Demmel [2011]. In this
context, the problem consists in partitioning the computational domain (the
cube of N3 points) into sub-domains allocated to the different resources. In
order to balance the load between the processing units, each unit should re-
ceive a volume of computation proportional to its processing speed and the
overall amount of communication, that corresponds to the overall boundary
area between the zones, should be minimized.

We target a heterogeneous computing platform withm computing resources
labelled M1,M2, . . . ,Mm and we denote by wl the time necessary to process
an elementary block matrix product on Ml. For the sake of simplicity and in
order to stick with more traditional scheduling models and notations, we will
assume that there exists a master node M0 that sends out chunks to workers
over a network. In practice, data initially resides in the memory and will be
sent from there to the different processing resources. Therefore, main memory
will act as the master node.

In order to have a clear and precise objective function, we will consider
a model for communications where communications can be overlapped with
computations, what is a reasonable assumption in the case of dense blocked
matrix product. Thus, communication time will not be explicitly taken into ac-
count in the makespan, but the overall number of elements sent from the main
memory to the processing units and between the processing units themselves
will be our target, and can be seen either as a measure of possible conges-
tion or as a measure of communication energy. Note that we do not forget
the makespan and evaluate communication volume assuming the makespan is
optimal by maintaining a perfect load balancing.

1.1.1 Formal Definition of the Problem

The standard matrix multiplication C = A×B can be seen as a set of N3 (for
square matrices) tasks

Ti,j,k : Ci,j ← Ci,j + Ai,kBk,j

for {i, j, k} ∈ [1, N]3. Each task Ti,j,k needs exactly three elements, Ci,j, Ai,k
and Bk,j to be computed and each of these elements are also needed by other
tasks. For example if two tasks Ti,j,k and Ti,j,k′ are allocated to two different
processors, respectively M1 and M2, then replicates of Ci,j must reside in the
local memory of M1 and M2. Note that what we call elements, the Ai,ks, Bk,js
and Ci,js, are blocks, i.e. sub-matrices of the original A, B and C. As stated
before, our goal here is to avoid as much as possible these replications, under
the assumption that we aim for an optimal makespan (that is achieved simply
by giving to each processor a number of Ti,j,ks proportional to its relative
computation speed).

8 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

As a first step we allocate tasks by bags. For a fixed k we allocate Ti,j,k
between the different processors and reproduce this scheduling for each k, lim-
iting the problem to only two dimensions (the Ai,k’s and the Bk,j’s) to simplify
it. In addition, note that each Ci,j is allocated to a single processor, avoid-
ing the problem of concurrent writing. This technique is the one mainly used
for High-Performance Matrix-Multiplication and introduced by ScaLAPACK
(Blackford et al. [1997], and Goto and Geijn [2008] for a more general survey).
This case can be modelled by the square partitioning problem PERI-SUM.
We define the following notations. Let Z be a zone included into a unary
square S = [0, 1] × [0, 1]. We define by s(Z) its area (formally

∫∫
Z

dxdy).

Let Π1(Z) = {x, ∃(x, y) ∈ Z} and Π2(Z) = {y, ∃(x, y) ∈ Z} be the pro-
jections of Z on both dimensions and denote by π1(Z) and π2(Z) their sizes
(π1(Z) = |Π1(Z)| and π2(Z) = |Π2(Z)|). Then we define the half-perimeters
of Z as p(Z) = π1(Z) + π2(Z), see Figure 1.1.

Z

R(Z)

π1(Z) = w(Z)

π2(Z) = h(Z)

Figure 1.1: Illustration of the definition of π1(Z), π2(Z) and R(Z)

Problem 1.1 (PERI-SUM). Given a set of m strictly positive rational num-
bers {s1, . . . , sm} such that

∑
sk = 1, and the square S = [0, 1] × [0, 1], find

for each sk a zone Zk ∈ S such that the surface of Zk is sk,
⋃
Zk = S, and

such that
∑
p(Zk) is minimized.

2/5 + 3/5
+ 3/5 + 2/5
+ 3/5 + 2/5
+ 2/5 + 3/5
+ 1/5 + 1/5∑

p(Z) = 22/5

Figure 1.2: Illustration of PERI-SUM.

On the Effect of Replication of Input Files 9

1.1. Introduction

An illustration of PERI-SUM can be found on Figure 1.2. For the particular
case of continuous zones (the most common case in this chapter, except in
Section 1.5) we also define the notion of covering rectangle and denote it by
R(Z). R(Z) is the smallest rectangle such that Z ⊆ R(Z). If R(Z) = [x1, x2]×
[y1, y2], then let us define the width of Z by w(Z) = x2 − x1 and the height
of Z by h(Z) = y2 − y1. Note that if Z is connected, then π1(Z) = w(Z) and
π2(Z) = h(Z), see Figure 1.1. In this case we also define ρ(Z) = max(h(Z),w(Z))

min(h(Z),w(Z))

as its aspect ratio.
This problem has been firstly introduced by Kalinov and Lastovetsky [2001]

and proven NP-Complete by Beaumont et al. [2002], see Section 2.2.2 for more
detail.

In PERI-SUM the square to be partitioned represents the result matrix
C (or more precisely one step of its computation) with its different elements,
the Ci,js. The set {s1, . . . , sm} is the relative speed of the processors (wi∑

wj
)

used to perform the parallel matrix multiplication: if a processor is faster than
another, it then has to compute more Ci,js. To calculate Ci,j, Ai,k and Bk,j are
needed. Therefore, to compute a subset Z of element of C, a processor has to
load {Ai,k, Ci,j ∈ Z} ∼ Π1(Z) and {Bk,j, Ci,j ∈ Z} ∼ ΠZ(Z) and thus the
amount of communication for this processor is the half-perimeter as defined
above.

Note that PERI-SUM can also be adapted to be used as a building block
for many dense linear algebra kernels. For instance, it has been extended to
LU factorization and other dense linear algebra kernels in Beaumont et al.
[2001b,a]. In this case, block cyclic principle is combined with the initial par-
titioning in order to obtain 2D-cyclic ScaLAPACK solutions (Blackford et al.
[1997]), where the load is balanced throughout the whole computation. These
partitionings have also been adapted to distributed hierarchical and highly het-
erogeneous platforms by Clarke et al. [2012], where the partitioning is applied
at two levels (intra-node and inter-node), based on sophisticated performance
models. The same partitioning has also been extended to finite-difference time-
domain (FDTD) method to obtain numerical solutions of Maxwell’s equations
by Shams and Sadeghi [2011].

In this model two assumptions are made :

• The communication cost for each processor is the same.

• Each processor has an unlimited local memory.

Ballard et al. [2011a] propose, for example, a different modelling where the
memory is limited and the bandwidth and writing-on-cache times are hetero-
geneous among processors. In this case theses values are also used to compute
the load balancing between processors (the sis). However, as the local memo-
ries are regularly flushed, the locality of input data is not as important as in
our model and the problem is more on maintaining a good load balancing and

10 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

assuring that each load fills the memory cache (i.e. during each load trying to
compute square sub-matrices of the output matrix).

For completeness, we point the existence of a variant of PERI-SUM, PERI-
MAX, where the objective function is to minimize maxi p(Zi). This problem
is also NP-complete, Beaumont et al. [2002], and two approximation algo-
rithms for PERI-SUM can be shown to be 2√

3
-approximations for PERI-MAX,

Beaumont et al. [2002]; Nagamochi and Abe [2007].

1.2 Related Work
In this section we present some important results on PERI-SUM that will be
extended in the other sections, or used as comparison points.

1.2.1 Lower Bound

A lower bound to PERI-SUM is known, based on Loomis-Whitney inequality,
see Ballard et al. [2011b]. Given {s1, . . . , sm}, there is no better allocation
than one where all zones are squares (what is not always possible). Then, for
all i, p(Zi) ≥ 2

√
si and thus

Copt ≥ 2
∑
i

√
si (1.1)

with Copt the optimal solution for a given instance of PERI-SUM.

1.2.2 Column-Based

Beaumont et al. [2002] propose a dynamic-programming-based solution for
PERI-SUM: ColumnBased. More precisely they optimally solve COL-PERI-
SUM, a variant of PERI-SUM where the partitioning is forced to be made of
columns.

To solve COL-PERI-SUM, ColumnBased computes the function fC(q) de-
fined as the cost of the best possible partitioning of a rectangle of size (

∑q
i=1 si)×

1, in rectangles of sizes {s1, . . . , sq}, in C columns and under the assumption
that if i ≤ j, then the column of si is not to the right of the column of sj.

Let Ci be a column of ki rectangles. Its height is the same than the unary
square, thus 1, and its width is equal to the sum of the surfaces of the rectangle
in the column,

∑i′+ki−1
j=i′ sj. Trivially the sum of the heights of the rectangle is

the height of the column and their individual widths are the same, the one of
the column. Thus the cost of a column is 1 + ki

∑i′+ki−1
j=i′ sj. Then

fC(q) =

{
1 + q ∗

∑q
i=1 si if C = 1

min1≤r≤q−C+1(1 + r ×
∑q

i=q−r+1 si + fC−1(q − r)) otherwise.

On the Effect of Replication of Input Files 11

1.2. Related Work

In addition to fC , ColumnBased also computes f cutC such that f cutC (q) con-
tains the optimal number of rectangles in the C − 1 first columns in a parti-
tioning with the q first elements. This value allows ColumnBased to quickly
compute the number of elements on each column of the final partitioning. See
Algorithm 1.1 for a formal description of ColumnBased.

Algorithm 1.1 : ColumnBased (R, {s1, . . . , sm})
Input : A set of positive values {s1, . . . , sm} such that

∑
si = s(R) and

s1 ≤ s2 ≤ . . . ≤ sm
Output : A number of columns C and {k1, . . . , kC} the number of

rectangle in each column to optimally solve COL-PERI-SUM.
s = 0 ;
for q = 1 to m do

s = s+ sq ;
f1(q) = 1 + s× q;
f cut1 (q) = 0 ;

for C = 2 to m do
for q = C to m do

fC(q) = min1≤r≤q−C+1(1 + r ×
∑q

i=q−r+1 si + fC−1(q − r)) ;
f cutC (q) = q − rmin ;

q = m ;
Cmin = C such that fC(m) = min1≤C≤m fC(m);
for C = Cmin downto 2 do

kC = q − f cutC (q) ;
q = f cutC (q) ;

k1 = q ;
return Cmin, {k1, . . . , kCmin} ;

Note that ColumnBased is optimal given an order of the {s1, . . . , sm}.
Beaumont et al. [2002] show that if s1 ≤ s2 ≤ . . . ≤ sm then the partitioning
returned by ColumnBased is optimal among all the possible orders.

Finally, a naive implement of ColumnBased runs in O(m3) operations as it
has to compute fC(q) for every 1 ≤ C ≤ q ≤ m, and for each of these values it
needs to evaluate (1 +

∑q
i=q−r+1 si + fC−1(q − r)) for every r ∈ [1, q − C + 1].

However, using convexity property of fC allows dichotomous search for this
last part and thus the actual complexity of ColumnBased is O(m2 logm).

1.2.3 Rectangular Recursive Partitioning

Nagamochi and Abe [2007] propose a recursive algorithm based on a Divide-
and-Conquer approach: RRP (Rectangular Recursive Partitioning).

12 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

First note that the problem considered in Nagamochi and Abe [2007],PERI-
SUM-PERFECT-RECTANGLES, is slightly different. Indeed it only looks for
partitioning into perfect rectangles (for each Zk, Zk = R(Zk)).

Problem 1.2 (PERI-SUM-PERFECT-RECTANGLES). Given a set of m
strictly positive rational numbers {s1, . . . , sm} such that

∑
sk = 1, and the

square S = [0, 1]× [0, 1], find for each sk a rectangle Rk ∈ S such that the area
of Rk is sk,

⋃
Rk = S, and such that

∑
p(Rk) is minimized.

A solution of PERI-SUM-PERFECT-RECTANGLES is of course a valid
solution of PERI-SUM but the contrary is not true, see further for examples.

RRP is mostly based on a simple routine: Guillotine. Given a composed
zone R and a rational number α ∈ [0, 1], Guillotine(R,α) splits R along the
largest dimension into two rectangles of respective areas αs(R) and (1−α)s(R)
(see Figure 1.3 for a visualisation and Algorithm 1.2 for a formal definition).
In some cases, we may need to perform two Guillotine calls in sequence, and
we denote it with an additional input parameter. For future utilisation (in
particular in Section 1.4) and to reduce the space required by Guillotine, we
allow it to have more than one input parameter. More specifically, if (R1, R2) =
Guillotine(R,α), then Guillotine(R,α, β) = (Guillotine(R1, β), R2).

R1 R2

R

Figure 1.3: Illustration of Guillotine routine.

The principle of RRP is to recursively apply Guillotine on the unitary
square and the rectangles that come from a previous application of Guillotine.
The splitting of the input surfaces into two sets is made such that each set
has at least, if possible, one third of the total surface (i.e. we split with
Guillotine(R,α) with α ≥ 1

3
). For this purpose, surfaces are sorted in in-

creasing order and aggregated one by one until a third of the total is reached.
Lemma 1.1 shows that if at least one item remains, then the split is valid.
Otherwise, this means that

∑m−1
i=1 si <

s
3
, and hence sm is significantly larger

than the other values, and then RRP splits the rectangle into two rectangles
with one only containing sm. See Algorithm 1.3 for a more formal definition.

Lemma 1.1 (Nagamochi and Abe [2007]). Let {s1, . . . , sm} be a set of positive
values such that s1 ≤ . . . ≤ sm and k be the smallest k such that

∑k
i=1 si ≥

s
3

(s =
∑m

i=1 si). Then, if k < m,
∑m

i=k+1 si ≥
s
3
.

On the Effect of Replication of Input Files 13

1.2. Related Work

Algorithm 1.2 : Guillotine(R,α)

Input : A rectangle R = [x1, x2]× [y1, y2], α ∈ [0, 1]
Output : Two zones of surfaces αS(R), (1− α)S(R)
w = w(R) ;
h = h(R) ;
if h ≤ w then

R1 = [x1, x1 + αw]× [y1, y2]
else

R1 = [x1, x2]× [y1, y1 + αh]

R2 = R \R1 ;
return R1, R2

Proof. By definition of k,
∑k−1

i=1 si <
s
3
. Let us assume that

∑m
k+1 si <

s
3

for the search of a contradiction. In this case we obtain that sk ≥ s
3
. As

sk+1 ≤
∑m

i=k+1 si <
s
3
, we have sk > sk+1 which is a contradiction with the

hypothesis s1 ≤ . . . ≤ sm.

Lemma 1.2 (Nagamochi and Abe [2007]). Let R be a rectangle with ρ(R) ≤ 3,
α ∈ [0, 1] and R1, R2 = Guillotine(R,α).

• If α ≥ 1
3
then ρ(R1) ≤ 3.

• If (1− α) ≥ 1
3
then ρ(R2) ≤ 3.

Proof. Let us assume without loss of generality that h = h(R) ≤ w(R) = w,
and denote ρ = ρ(R) = w

h
. Then ρ(R1) = min(αw

h
, h
αw

). We have αw
h
≤ w

h
=

ρ ≤ 3 and h
αw

= 1
αρ
≤ 3

ρ
≤ 3 (under the assumption α ≥ 1

3
). Therefore, α ≥ 1

3

implies ρ(R1) ≤ 3 and for the same reason, (1−α) ≥ 1
3ρ

implies ρ(R2) ≤ 3.

RRP can be proven to be a 5
4
-approximation of PERI-SUM-PERFECT-

RECTANGLES. The proof relies on two main ingredients:

• If the aspect ratio of an output rectangle is below 3, then Lemma 1.3
applies (and 2√

3
≤ 5

4
).

• Otherwise, thanks to a sophisticated charge transfer technique, it can be
proven that there exists a surface significantly larger than some others
(the second mode of RRP has been used, otherwise Lemma 1.2 would
apply) and the good aspect ratio of this zone compensates the bad aspect
ratios of the smaller rectangles.

Lemma 1.3 (Nagamochi and Abe [2007]). Let R be a rectangle. Then:

p(R)

2
√
s(R)

=
1 + ρ(R)

2
√
ρ(R)

.

14 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Algorithm 1.3 : RRP (R, {s1, . . . , sm})
Input : A rectangle R, a set of positive values {s1, . . . , sm} such that∑

si = s(R) and s1 ≤ s2 ≤ . . . ≤ sm
Output : For each 1 ≤ i ≤ m, a rectangle Ri such that s(Ri) = si and⋃

Ri = R
if m = 1 then

return R
else

ρ = ρ(R) ;
s = s(R) ;
k = the smallest k such that

∑k
i=1 si ≥ s/3 ;

s′ =
∑k

i=1 si ;
if k < m then

R1, R2 = Guillotine(R, s′/s) ;
else

k = m− 1 ;
R1, R2 = Guillotine(R, 1− sm/s) ;

return RRP(R1, {s1, . . . , sk}) + RRP(R2, {sk+1, . . . , sm})

In particular, if ρ(R) ≤ 3 then,

p(R)

2
√
s(R)

≤ 2√
3
.

Proof. Let us assume without loss of generality that h = h(R) ≤ w = w(R)
and denote ρ = ρ(R) = w

h
. Then p(R) = h + w = h(1 + ρ). In addition

s = s(R) = hw = ρh2. Therefore

w + h

2
√
s

=
h(1 + ρ)

2
√
ρh2

=
1 + ρ

2
√
ρ
.

Furthermore, one can prove that x 7→ 1+x
2
√
x
is an increasing function on [1, 3]

and then, for ρ ≤ 3:
w + h

2
√
s
≤ 1 + 3

2
√

3
=

2√
3
.

First note that if only the first mode of RRP has been used, then the
approximation ratio can be lowered to 2√

3
' 1.15 as Fügenschuh et al. [2014]

pointed. In particular they propose the following sufficient condition: for all
i ∈ 1,m− 1, si+1 ≤ 2si.

Secondly it is important to clarify that the 5
4
-approximation is only valid for

PERI-SUM-PERFECT-RECTANGLES whose worst cases differ from those of

On the Effect of Replication of Input Files 15

1.2. Related Work

PERI-SUM. Indeed, let us consider an instance with two values ε and 1−ε. If ε
is small enough, the optimal partitioning is the one depicted on Figure 1.4(a):
the communication cost is 2

√
ε for the zone of surface ε and 2 for the other

zone, what yields a total of 2(1 +
√
ε). The partitioning returned by RRP is

shown on Figure 1.4(b) (see Section 1.2.4). In this case, the communication
cost is 1 + ε for the smallest zone and 2 − ε for the largest one, which gives
a total communication cost of 3. It results that Cost(RRP)

Copt
= 3

2(1+ε)
−→
ε→0

3
2
.

Therefore RRP is at most a 3
2
-approximation of PERI-SUM.

1− ε

ε√
ε

1

√
ε

1

(a)

√
ε

1− εε

ε 1− ε

1

rien

(b)

Figure 1.4: Two partitions of a square with the instance {ε, 1− ε}.

1.2.4 Optimal Solutions for 2 and 3 processors

Several studies (see below) have attempted to find optimal solutions for PERI-
SUM. The problem is heavily combinatorial and thus only solutions for two
particular cases, m = 2 and m = 3, exist. In both cases the same technique
is applied, the "push technique", that consists in starting from an arbitrary
partitioning and pushing elements on the edge of a zone toward its center, so
as to improve the global cost. Eventually the push technique leads to a limited
number of cases, which are candidates for optimal solutions.

In the m = 2 case, DeFlumere et al. [2012] prove there are two dominant
cases, the square corner case and the straight line case, see Figure 1.5.

Depending on the ratio between the two processors, both of these solutions
may be optimal cases.

Theorem 1.4 (DeFlumere et al. [2012]). Let {s1, s2} be an instance of PERI-
SUM such that s1 ≤ s2. Then:

• if s2
s1
≥ 3 then the optimal solution for this instance is the Square Corner

Partitioning.

16 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

R

P

Square Corner

R

P

Straight Line

Figure 1.5: The dominant cases with m = 2.

• Otherwise the optimal solution for this instance is the Straight Line Par-
titioning.

In the m = 3 case, DeFlumere and Lastovetsky [2014] find that there are
six dominant cases, see Figure 1.6.

S

R

P

Square Corner

S

R

P

Rectangle Corner

S

RP

Square Rectangle

SR

P

Block Rectangle

S

R
P

L Rectangle

S RP

Straight Line

Figure 1.6: The dominant cases with m = 3.

However three of the cases never dominate the others. Therefore there are
always three choices and depending on the size of the input surfaces, one of
these shapes is the optimal case.

On the Effect of Replication of Input Files 17

1.2. Related Work

Theorem 1.5 (DeFlumere and Lastovetsky [2014]). The optimal data parti-
tion shape for PERI-SUM with m = 3 is always one of three shapes: the Square
Corner, the Square Rectangle, or the Block Rectangle.

Note that these results have been extended to different processors topolo-
gies. In our modelling we consider that all processors are linked to a central
memory and input data are uploaded from it. Other topologies with links be-
tween processors have been considered, like star topology (DeFlumere [2014])
or fully connected processors (DeFlumere et al. [2014]).

1.2.5 Dynamic Strategies

If dynamic strategies are very commonly used in scheduling for parallel appli-
cations, there are few studies for parallel matrix multiplication and its commu-
nication avoiding version that is the main subject of this chapter. Beaumont
et al. [2013] point that simply considering matrix multiplication without data
locality (and simply as a set of tasks under the Divisible Load Theory (DLT))
may imply huge communication costs. Beaumont and Marchal [2014] pro-
pose a resource-centric dynamic scheduling strategy specific to communication
avoiding matrix multiplication, more precisely the outer-product i.e. the com-
putation of one layer of C. Here the tasks are of the form

Ti,j : Ci,j ← Ci,j + Ai ×Bj.

The strategy, denoted by DynamicOuter, applies the following procedure for
every idle processor M that finished its tasks: if I = {i, M owns Ai} and
J = {j, M owns Bj}, pick i and j at random such that i /∈ I and j /∈ J
and allocate to M all the Ti,j′s and Ti′,js such that i′ ∈ I and j′ ∈ J , see
Algorithm 1.4.

Algorithm 1.4 : DynamicOuter
while There is unprocessed task do

Wait for an idle processor M ;
I = {i, M owns Ai} ;
J = {j, M owns Bj} ;
i, j = two random integers such that i /∈ I, j /∈ J ;
Allocate {Ti,j if unprocessed } ∪ {unprocessed Ti,j′ , j′ ∈
J} ∪ {unprocessed Ti′,j, i′ ∈ I} to M ;

The basic principle of DynamicOuter is of course to make each load as prof-
itable as possible by allocating all "free" tasks to the processor that is loading
new input data. Beaumont and Marchal [2014] also provide theoretical analysis
of DynamicOuter and a notable improvement. Indeed they show theoretically

18 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

and experimentally that if more than a certain percent of the whole set of
tasks has been computed (98.5% for the outer-product, around 95% for the
whole matrix multiplication) then having a second phase of scheduling where
tasks are randomly chosen without data locality consideration decreases the
amount of communication. This improvement comes from the fact that at the
end of DynamicOuter there is high probability that loading a random Ai may
provide no free unprocessed tasks.

1.3 Comparison Between Static, Dynamic and
Hybrid Strategies in Static and Dynamic Set-
tings

In this section, we are interested in the comparison between pre-existing static
and dynamic strategies. Our main concern is to prove that even with the risk
of instability and the lack of information on the performance of our resources,
the search for efficient static strategies (see Sections 1.4 and 1.5 and Chapter 2)
may improve the efficiency of the application. To do this we propose hybrid
strategies that use the best of the two, dynamic and static approaches. In this
section we only use simulations, practical implementation of the problem will
be discussed in Chapter 3.

1.3.1 Presentation of the Targeted Platforms

For the sake of realism, we analyse the behaviour of several algorithms (see
Section 1.3.3) on four different target platforms.

The two first platforms, which we denote by Homogeneous-5-CPUs and
Homogeneous-20-CPUs, are homogeneous platforms consisting respectively
of 5 and 20 CPUs. Note that due to non-determinism of processing times, these
platforms will turn out to be heterogeneous in practice, but it corresponds
well to the homogeneous machines that can be found either in multicore HPC
systems or in datacenters.

In addition, we consider the Heterogeneous-1-GPU and the Heterogeneous-
4-GPUs heterogeneous platforms, that correspond well to machines consisting
of a few accelerators, such as GPU units, and a few multicore nodes. More
specifically, Heterogeneous-1-GPU consists in 1 GPU and 4 CPUs and
Heterogeneous-4-GPUs consists in 4 GPUs and 16 CPUs. Timings used
for the relative performance of GPUs and CPUs are a coarse approximation of
what can be achieved with regular matrix product operations on both devices:
in our simulations, we assume a GPU is 50 times faster than a regular CPU
core (in Beaumont et al. [2016a], for example the ratio is close to 30, the ratio
we choose is then slightly more important than in this particular case but with

On the Effect of Replication of Input Files 19

1.3. Comparison Between Static, Dynamic and Hybrid Strategies in Static
and Dynamic Settings

Name Distribution Parameters
Uniform-0.80 Uniform in [a, b]

a = 0.8, b = 1.2
Uniform-0.95 a = 0.95, b = 1.05

Gaussian-0.1 Truncated Gaussian
max(N (µ, σ2), 0)

µ = 1, σ = 0.1
Gaussian-0.5 µ ' 0.97, σ = 0.5
Gaussian-1 µ ' 0.48, σ = 1

TwoModes-2 v1 with prob. 0.99
v2 with prob. 0.01

v1 = 1/1.01, v2 = 2/1.01
TwoModes-10 v1 = 1/1.09, v2 = 10/1.09

Table 1.1: Probability distributions for execution times. The processing time
of a task processed by Ml is Xwl, where X is drawn with the corresponding
distribution. All distributions have an expected value of 1.

similar order of magnitude).
As already stated, our goal is also to model non-determinism in resource

performance. More precisely, the processing time of the i−th task on resource
Ml will be given by a random function depending on a specific probability
distribution. In order to do a fair comparison of makespan and communication,
we fix a value wCPU , which is the expected processing time for the CPUs for
all the probability distributions studied here. The expected processing time of
the GPUs is set to 1

50
wCPU (in our model, a GPU is expected to be 50 time

faster than a CPU). For a processor Ml this expected duration is denoted wl.
We consider three classes of probability distributions:

• Uniform-0.80 and Uniform-0.95: the computation time wi is drawn
uniformly on an interval [wl−x,wl+x] with x = 0.2wl for Uniform-0.80
and x = 0.05wl for Uniform-0.95.

• Gaussian-0.1, Gaussian-0.5, Gaussian-1: the computation time wi is
drawn under Gaussian law centred on wl. To avoid sub-zero computation
time the Gaussian distribution is truncated and therefore the center of
the distribution is in fact lower than wl in order to keep wl as the expected
value.

• TwoModes-2, TwoModes-10: the computation time wi may take two
values, the normal one, close to wl, with probability 0.99, and a degraded
one, close to wl multiplied by a constant factor, with probability 0.01.

Parameters are described in Table 1.1. Throughout the whole set of simula-
tions, the estimations are obtained with the same algorithm. Each resource
processes 5 tasks, whose execution times are chosen at random according to
the relevant distribution. Then, the estimated processing time will be taken
as the mean value of these 5 measurements. This typically corresponds to
classical algorithms used in runtime systems.

20 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Before presenting the strategies we use in our simulations, we provide a
small discussion on an important issue that comes from the differences between
the PERI-SUM model and the practical matrix multiplication.

1.3.2 Discrete Aspect of Matrix Partitioning

In PERI-SUM we are considering the partitioning of the unitary square and
allow any continuous split. However the application we are considering needs
a partitioning for a matrix that is in fact discrete. Therefore the application
of a solution of PERI-SUM to partition a matrix may imply roundings that
could degrade load balancing.

As an illustration, let us consider a platform with 16 identical processors
(with speed 1) and a matrix of size N = 10. With this input, RRP and
ColumnBased return the same optimal partition, 16 squares each with a half-
perimeter of 2.5, see Figure 1.7(a). After rounding, in the discrete partition
(depicted in Figure 1.7(b)), some processors are assigned 3×3 = 9 tasks while
other processors are only assigned 2 × 2 = 4 tasks. In this case, the rational
optimal makespan would be 100/16 = 6.25, but the makespan of the partition
returned after the rounding is 9.

(a) Partition from RRP and
ColumnBased

(b) Partition from RRP and
ColumnBased after rounding

Figure 1.7: Comparison between the results of the theoretical continuous par-
titioning and its discrete version, for 16 identical processors and a matrix of
size 10.

Let us denote RRP-Rounded and ColumnBased-Rounded the rounded ver-
sions of RRP and ColumnBased. Table 1.2 provides the makespan and com-
munication ratios in the case N = 50 (the parameter we use later for our
simulations) for the different platforms (and constant processing times). The
communication ratio is indeed good (much better, as expected, than the worst
case bound 5

4
), however the ratio for the makespan, that would be 1 if round-

ing was not used, is much worse than expected. In particular, on heteroge-
neous platforms, the makespan ratio can be as high as 1.38 for the platform

On the Effect of Replication of Input Files 21

1.3. Comparison Between Static, Dynamic and Hybrid Strategies in Static
and Dynamic Settings

Heterogeneous-4-GPUs. Moreover, we can observe that the situation gets
worse when new processors are added.

ColumnBased-Rounded RRP-Rounded
Makespan Communication Makespan Communication

Homo-5 1.02 1.02 1.02 1.02
Homo-20 1.04 1.01 1.08 1.03
Hetero-1 1.02 1.04 1.12 1.06
Hetero-4 1.04 1.04 1.38 1.00

Table 1.2: Ratio between the the result of ColumnBased-Rounded or RRP-
Rounded and the lower bounds in the case of constant and well-estimated
speeds

As stated before, the initial matrix, that may be huge, is split into blocks
whose size is chosen so as to be well adapted to all types of resources and
these blocks are the elementary items we want to allocate. For our current
application the block size needs to represent a good trade-off between large
granularity to fully exploit accelerators like GPUs and fine granularity to have
good behaviour on regular cores. Thus block sizes of order 1000 are required
and the number of blocks is therefore relatively small: for our test platform,
realistic problem sizes correspond to square matrices of several tens of thou-
sands of order. Thus we consider rather small number of blocks (N = 50 which
corresponds to a matrix size of 50000× 50000), so that the effect of rounding
errors is important and cannot be neglected.

In order to deal with rounding errors, we have implemented two new algo-
rithms, ColumnBased-Accurate and RRP-Accurate, that allow the assignment
of non-rectangular zones, while remaining close to the partition provided by
ColumnBased or RRP. This is achieved with the following procedure. By de-
sign, the output of ColumnBased is divided in a certain number k of columns,
C1, . . . , Ck, and each processor is assigned to a certain column. The idea is to
redefine the frontier between these columns so that each column has the cor-
rect surface (what is not the case in Figure 1.7(b), where the first column has
30 tasks instead of 25). To do so, we go through the matrix column by column
until the target number of tasks for this column is reached (see Figure 1.8(a)),
and we later proceed similarly with rows (see Figure 1.8(b)) so that each cell
contains exactly d skN

2∑
k′ sk′
e or b skN

2∑
k′ sk′
c tasks.

RRP-Accurate is designed along the same ideas and is illustrated in Fig-
ure 1.9.

Table 1.3 depicts the results achieved by ColumnBased-Accurate and RRP-
Accurate under the same conditions as in Table 1.2. We can observe that
RRP-Accurate is more efficient in terms of makespan than RRP-Rounded and
achieves similar results with respect to data exchanges.

22 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

(a) Previous split for Column-
Based

(b) Partition from
ColumnBased-Accurate

Figure 1.8: Illustration of ColumnBased-Accurate

Figure 1.9: Illustration of RRP-Accurate

As RRP-Accurate and ColumnBased-Accurate may "add" some piece of
rectangles of width or height 1 to each of the rectangles obtained with RRP
or ColumnBased, the worst case additional cost in terms of communication is
O(m) wherem is the number of processors (to compare with the 2N×

∑m
i=1

√
si

that is a lower bound for PERI-SUM for a square of size N ×N).
In general the discrete variant of PERI-SUM has not been studied to the

best of our knowledge. The SFCP algorithm introduced in Section 1.5 is the
only known static algorithm for this problem.

1.3.3 Presentation of the strategies

In this section, we provide a short summary of the strategies that will be used
in the simulations. They are divided in three categories, static strategies that
are based on pre-allocation of the tasks, dynamic strategies that are based
on allocation during the execution and hybrid strategies that rely on both
techniques.

On the Effect of Replication of Input Files 23

1.3. Comparison Between Static, Dynamic and Hybrid Strategies in Static
and Dynamic Settings

ColumnBased-Accurate RRP-Accurate
Makespan Communication Makespan Communication

Homo-5 1 1.03 1 1.03
Homo-20 1 1.04 1 1.05
Hetero-1 1.02 1.07 1.02 1.08
Hetero-4 1.04 1.12 1.04 1.05

Table 1.3: Ratio between the the result of ColumnBased-Accurate and RRP-
Accurate and the lower bounds in the case of constant and well-estimated
speeds.

Static

As discussed in the previous section, we adapt ColumnBased and RRP to
make them usable for discrete partitioning. We then have four strategies,
ColumnBased-Rounded, ColumnBased-Accurate, RRP-Rounded and RRP-Accurate.
We showed in Section 1.3.2 than ColumnBased-Rounded and RRP-Rounded
may fail to reach optimal makespan. However, by coupling them with dynamic
strategies (see Hybrid strategies subsection) this default can be avoided and
it is interesting in this case to compare the total communication cost of this
strategy with ones based on optimal-makespan partitioning.

Dynamic

For these simulations, we decide to use two dynamic strategies, a resource-
centric one and a task-centric one. Let us recall that in a resource-centric
strategy, processors choose their tasks (often when one is idle); whereas in
a task-centric approach, tasks choose the processor on which they will be
processed (often when a new task is ready or submitted).

The task-centric strategy, that we denote MCT (Min Cost Time), is an
adaptation of the HEFT heuristic, Topcuoglu et al. [2002]. Basically, to allo-
cate a task, the MCT scheduler simply chooses the processor that will finish
this task the earliest. The estimation is made using the current load of the
different processors and the performance estimation that is regularly updated.

The resource-centric strategy we use is MinCost that is close from Dynam-
icOuter that is introduced in Section 1.2.5. More precisely, instead of choosing
a row and a column at random (which is the DynamicOuter procedure), an idle
processor in MinCost strategy picks a task with the minimum cost (number of
row/column to load, i.e. 0, 1 or 2) and then loads, if they are not already in
its local memory, the corresponding row and column. All the available tasks
that become free (with cost 0) when loading these column and/or row are then
attributed to this processor. In our simulations we also decide to use another
natural feature of resource-centric algorithms, replication: at the end of the
computation, when a resource becomes idle but no task is available, an al-
ready started (and unfinished) task is replicated on this resource, in the hope

24 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

that this will allow to finish the task earlier. Such strategies are quite rare in
HPC scenarios, but have been extensively used in the Grid Computing com-
munity Cirne et al. [2007]. The consensus is that the most efficient approach
is WQR, which replicates all running tasks equally up to a certain limit on the
number of replications. In our experiments, only the fast resources (i.e. GPUs)
are allowed to duplicate tasks, in order to make sure that most replications
actually do improve the finish time of the task.

Hybrid

The goal of hybrid strategies is to retain the best of static and dynamic strate-
gies: the far-sight and the good theoretical quality output by static approaches,
the adaptability of dynamic approaches.

Basically, our hybrid strategies are composed of two waves. During the first
one, a static strategy (chosen among the ones presented above) is applied to
build a first allocation before the beginning of the execution. Then, each time
a processor is idle and there are unprocessed tasks, MinCost is applied. Idle
processors are allowed to perform tasks allocated to other processors. This
heuristic is close to the work-stealing strategy presented in Lima et al. [2012],
where the resource selects a victim to steal from. The stealing criterion may be
driven by locality to reduce data movements, as in Bueno et al. [2012]. These
strategies are used in runtime systems like PaRSEC (Bosilca et al. [2013]),
SMPSs (Badia et al. [2009]) or KAAPI (Gautier et al. [2007]).

We thus have four hybrid strategies, one for each static strategy and denote
them Hybrid-RRP-Rounded, Hybrid-RRP-Accurate, Hybrid-ColumnBased-Rounded
and Hybrid-ColumnBased-Accurate.

1.3.4 Experimental Results

In this section we present the results of the simulations for the different algo-
rithms presented above. In a first subsection we describe the case where the
settings are completely static, i.e the speeds do not change during the execu-
tion. Dynamic settings are presented in the second subsection. Let us recall
that there are two purely dynamic strategies, MCT (task-centric strategy) and
MinCost (resource-centric strategy) and 4 variants of static (resp. hybrid) algo-
rithms. Finally, for each heuristic and platform, we perform 50 runs. In order
to facilitate the comparison between the different strategies, the results have
been normalized using the expected communication cost (resp. makespan)
based on the lower bound from (1.1) (respectively on si∑

sj
N2).

Static Settings

When the performance of the resources is constant over time and well estimated
(the execution time of a task is always wCPU for a CPU and wGPU for a GPU),

On the Effect of Replication of Input Files 25

1.3. Comparison Between Static, Dynamic and Hybrid Strategies in Static
and Dynamic Settings

●●

●●

●●

●● ●● ●● ●● ●● ●● ●●

●●

●●

●●

●● ●● ●● ●● ●● ●● ●●

●● ●●

●●

●● ●● ●● ●● ●● ●● ●● ●● ●●

●●

●● ●● ●● ●● ●● ●● ●●

Homo−5 Homo−20

Hetero−1 Hetero−4

1.000

1.005

1.010

1.015

1.020

1.00

1.02

1.04

1.06

1.08

1.025

1.050

1.075

1.100

1.125

1.1

1.2

1.3

Sta
tic

M
inC

os
t

Hyb
rid

M
CT

Sta
tic

M
inC

os
t

Hyb
rid

M
CT

N
or

m
al

iz
ed

 m
ak

es
pa

n

● ● ●

● ●

Dynamic *ColumnBased−Rounded *ColumnBased−Accurate

*RRP−Rounded *RRP−Accurate

Figure 1.10: Makespan for different algorithms for the four platforms and for
static setting.

static heuristics are based on fully accurate previsions. In practice, one can
notice on Figure 1.10 that, except ColumnBased-Rounded and RRP-Rounded
because of rounding errors, all algorithms are close to the optimal. The small
difference for the heterogeneous platforms comes from the fact that some last
tasks may be allocated to a CPU instead of GPU (which was busy at that
time working on another task). This small difference can be solved with task
duplication (see Figure 1.11). The small difference from 1 in both cases is due
to imperfect load-balancing. For example, the lower bound we are considering
for Heterogeneous-1-GPU is N2

54
wCPU (54 = 50 + 1 + 1 + 1 + 1, the number

of tasks performed by unit of time for the whole platform) and to reach this
lower bound, the GPU needs, to execute 50

54
N2 tasks, 1

54
N2 tasks for the CPUs.

However, as N = 50, these values are not integer (1
54
N2 ' 46, 296) and the

lower bound is not achievable.
As for the communication costs, we can see in Figure 1.12 (and Figure 1.13)

that static heuristics perform better, as expected, and the "accurate" versions
do not create a significant extra cost. At the same time, hybrid strategies
perform well and the ratio with the optimal is always below 1.5. These good
results can be explained by the fact that very few job stealing operations
take place (except for Hybrid-ColumnBased-Rounded on Heterogeneous-
4-GPUs where the task balancing is quite odd, GPUs have a relatively unbal-
anced repartition of tasks, which does not degrade the makespan, but implies
many jobs stealing). For purely dynamic strategies, the communication cost is

26 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Hetero−1 Hetero−4

●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●●

1.00

1.01

1.02

1.03

1.00

1.01

1.02

1.03

r =
 0

r =
 1

M
inC

os
t

Hyb
rid

M
CT

M
inC

os
t

Hyb
rid

M
CT

N
or

m
al

iz
ed

 m
ak

es
pa

n

● ● ●

● ●

Dynamic *ColumnBased−Rounded *ColumnBased−Accurate

*RRP−Rounded *RRP−Accurate

Figure 1.11: Makespan for different algorithms for Heterogeneous-1-GPU
and Heterogeneous-4-GPUs for static setting with zero or one allowed
replication per task.

Homo−5 Homo−20 Hetero−1 Hetero−4

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●

●●

●●

●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●

●●

●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●

●●

●●

●●
●●

●●

●●

●●
●●

●●

●●

●●
●●

●●

●●

●●
●●

●●

●●

2.5

5.0

7.5

2.5

5.0

7.5

2.5

5.0

7.5

r =
 0

r =
 1

r =
 2

Static MinCost Hybrid MCT Static MinCost Hybrid MCT Static MinCost Hybrid MCT Static MinCost Hybrid MCT

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

● ● ●

● ●

Dynamic *ColumnBased−Rounded *ColumnBased−Accurate

*RRP−Rounded *RRP−Accurate

Figure 1.12: Communication cost of static, dynamic and hybrid strategies for
static setting

On the Effect of Replication of Input Files 27

1.3. Comparison Between Static, Dynamic and Hybrid Strategies in Static
and Dynamic Settings

larger and thus they have been excluded from Figure 1.13 to have a better view
on the performance of hybrid strategies. For MinCost, the ratio with the op-
timal value is close to 2 for heterogeneous platforms and 2.5 for homogeneous
ones. For MCT, it is between 7.5 and 9, depending on the platform.

Homo−5 Homo−20 Hetero−1 Hetero−4

●● ●● ●● ●●

●●
●●●●

●●

●●

●●

●● ●● ●● ●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●● ●● ●● ●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●
●● ●● ●●

●●

●●

●●

●●

●●
●● ●● ●●

●●

●●

●●

●●

●●
●● ●● ●●

●●

●●

●●

●●

●●
●● ●● ●●

●●●
●●●●●●●

●●
●●

●●

●●
●● ●● ●●

●●

●●
●●

●●

●●
●● ●● ●●

●●

●●
●●

●●

●●

●●

●●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●● ●●

●●

●●

●●
●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●● ●●

●●

●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●

1.0

1.1

1.2

1.3

1.4

1.0

1.1

1.2

1.3

1.4

1.0

1.1

1.2

1.3

1.4

r =
 0

r =
 1

r =
 2

Static Hybrid Static Hybrid Static Hybrid Static Hybrid

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

● ●

● ●

*ColumnBased−Rounded *ColumnBased−Accurate

*RRP−Rounded *RRP−Accurate

Figure 1.13: Communication cost of static, dynamic and hybrid strategies for
static setting

Dynamic Settings

In practice, performance is rarely constant over time and perfectly known,
something that explains the practical success of dynamic strategies.

Let us first consider makespan, since indeed our goal is to minimize the
execution time. In this setting, static heuristics fail to achieve this objective,
and results get worse when the variance of speeds increases, like for Gaussian-
0.5, Gaussian-1 or TwoModes-10, where the ratio on the makespan can be
larger than 2, see Figure 1.14. This can be explained by the bad estimations
of the speeds and by the fact that one processor can sometimes have a really
bad execution (a behaviour that is represented with TwoModes-10). In the
case of smaller variance, in particular Uniform-0.95, the results are better
and close to the expected time of "accurate" versions, but the ratios increase
with the number of processors, the risk of a bad estimation increasing in this
case. For the heuristics with a dynamic part (see Figure 1.15), replication
is compulsory to achieve a good makespan, in particular when the variance

28 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

●●
●●
●●
●
●●
●
●●
●●●
●
●
●●●
●●●

●
●

●●●●● ●● ●
● ●●●●●●●● ●●

●●
●

● ●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●
●●●●

●

●

●

●

●

●●

● ●

●●●●●●●●●
●●●● ●● ●● ●

●
●●●●● ●●

●●● ●
●

●
●

●

●
●

●
●

●

●

●

●
●

●
●
●●

●

●● ●●●●●●●●●●●● ●
●●●●●●●●●● ● ●●● ●

●●●● ●
●
●●
●●●●
●●
●●●●

●
●●●●●●●●●●●●●●●●●●●●

●
●
●●

●●●
●
●●●●●
●

●●
●
●

●
●

●
●

●

●

●
●

●●
●

●
●
● ●●●

●●

●

●●

●

●●●

●●●●●●●●●●●

●

● ●●●●●●●
●●●●●●

●● ●
●●●

● ● ●●●●

●●

●● ●

●●

●

●●●

●

●

●

●● ●

●

●

●

●●●

●●●●●●●●●● ●●●●●●●●●

●●●
●
●●

●

●
●
●●●●

●
●
●●

●

●●●
●●●●●●●

Homo−5 Homo−20

Hetero−1 Hetero−4

1.0

1.5

2.0

2.5

3.0

1

2

3

4

1

2

3

4

1

2

3

4

5

6

U−0
.8

0

U−0
.9

5

G−0
.1

G−0
.5

G−1
TM

−2

TM
−1

0

U−0
.8

0

U−0
.9

5

G−0
.1

G−0
.5

G−1
TM

−2

TM
−1

0

Performance Models

N
or

m
al

iz
ed

 m
ak

es
pa

n

ColumnBased−Rounded ColumnBased−Accurate

RRP−Rounded RRP−Accurate

Figure 1.14: Makespan without replication

is large. However, one replication per task is enough. The reason of such
a bad execution time (1.6 in the worst case for Heterogeneous-4-GPUs)
when there is no replication is that CPUs are really slower than GPUs, so
that assigning a task to a CPU instead of a GPU makes a large difference
on the overall processing time. The replication mechanism fixes this problem.
For homogeneous platforms the optimal is closer, because there is no "wrong"
attribution.

For the communication cost results (Figure 1.16 and Figure 1.17), static
algorithms are excluded since they achieve similar performance than in the
static case, but their makespan is very large. We also excluded MCT in Fig-
ure 1.17 order to keep it readable, since the communication cost induced by
MCT is really higher than those of the other algorithms (it is larger than 8
for Heterogeneous-4-GPUs or Homogeneous-20-CPUs). For the other
algorithms, MinCost and the hybrid ones, we only consider the case where we
allow one replication per task, as explained previously. First, we can notice
that even if MinCost has the worst ratio of these five algorithms, it stays below
3. We can also notice that MinCost exhibits a better robustness against the
variance of the platform.

Hybrid strategies suffer more of an increase in the variance since their static
assignment becomes less effective, in particular because of the poor reliability
of speed estimations. However the ratio is less than 1.5 (even less than 1.25 for
Heterogeneous-1-GPU) for small variance (Gaussian-0.1, TwoModes-
2, Uniform-0.80 and Uniform-0.95) and less than 2 in most cases even in
presence of large variance, what is always better than MinCost. One can notice

On the Effect of Replication of Input Files 29

1.3. Comparison Between Static, Dynamic and Hybrid Strategies in Static
and Dynamic Settings

Hetero−1 Hetero−4

●●●● ●●●● ● ● ● ●
●● ●● ●

● ●

●

●●● ●●● ● ● ●● ● ●●● ●●●●●●● ●●● ●

● ●●
●●● ●●●

●● ●●

●●●●●● ●●

●● ●●●●

●●●●
●
●

●
●●

●●

●●●

● ●● ●●●● ●● ● ●●●●●● ● ● ●●●●● ● ● ●●●●●●●●●●● ●●● ●●

1.0

1.1

1.2

1.3

1.4

1.0

1.1

1.2

1.3

1.4

r =
 0

r =
 1

U−0
.8

0

U−0
.9

5

G−0
.1

G−0
.5

G−1
TM

−2

TM
−1

0

U−0
.8

0

U−0
.9

5

G−0
.1

G−0
.5

G−1
TM

−2

TM
−1

0

Performance Models

N
or

m
al

iz
ed

 m
ak

es
pa

n

MinCost Hybrid−ColumnBased−Rounded Hybrid−ColumnBased−Accurate

Hybrid−RRP−Rounded Hybrid−RRP−Accurate MCT

Figure 1.15: Makespan for different levels of replication and different algo-
rithms

●

●●●●●●●●●●●

●

●● ●

●●●●

●●●●●●●●

●●●

●

●●●●

●●●●●

●●
●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●
●●●●
●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●● ●●●

●●

●●

●●●●

●●●

●●●●●●●●● ●●●
●●●●●●●●

●
●●

●

●

●●●●●●●●●●●

●●●●

●●●●

●

●●●●● ●

●

●● ●●

●
●

●●●●●●

●

●
●

●●●●●●●●

●

●●●
●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●● ●●●●
●

●●

●●●●●●●●

●●●

●●●

●

● ●
●

●●●●●●
●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

Homo−5 Homo−20

Hetero−1 Hetero−4

2.5

5.0

7.5

2

4

6

8

1

2

3

2

4

6

8

U−0
.8

0

U−0
.9

5

G−0
.1

G−0
.5

G−1
TM

−2

TM
−1

0

U−0
.8

0

U−0
.9

5

G−0
.1

G−0
.5

G−1
TM

−2

TM
−1

0

Performance Models

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

MinCost Hybrid−ColumnBased−Rounded Hybrid−ColumnBased−Accurate

Hybrid−RRP−Rounded Hybrid−RRP−Accurate MCT

Figure 1.16: Communication cost of dynamic and hybrid strategies for dynamic
setting.

30 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

that Hybrid-RRP-Accurate, which achieves a better balance, is more effective
for low variance since there is less job stealing. In the case of high variance,
the dispersion of the results makes it difficult to have a clear hierarchy, even if
Hybrid-RRP-Rounded is a little better because it has a cheaper initial static
repartition.

●

●
●●●●●●●● ●●

●

●
●

● ●
●
●
●
●●

●●

●

●

●●
●

●●

●

●

●

●
●

●●●●●
●
●●●● ●●●●●●●●●●●● ●●●●●●●●●●●

●

●

●

●

●●●●

●

●●● ●●●●●

●

●●●
●
●●●●●●●●●●
●

●●●
●●●●●●●

●

●●●●
● ●●●

●

●

●●●● ●●●●● ● ●●●

● ●

●

●●●
● ●

●

●●

●

●

●

●

●●●●●●●●●●●

●●
● ●

●●●●● ●

●● ●●

●

●

●●●●●●

●

●

●●●●●
●●

●

●
●

●

●●●

●

●●●●

●●●●●●●●●●●
●

●●●●●●●●
●●
●
●●●

●●

●●●
●
●●●●●●

●●
●
●

●

●●

●●●●
●

●●
●

●●●

●●
●

● ●

●

●●

●●
●
●

●

●

●
●

●

●●●●●●●●●

●●●
●●●

●●●●●●●●●●●
●●
●

●●●

●

●●●●●
●●● ●●●

●

●
●

●

●

●●●●

Homo−5 Homo−20

Hetero−1 Hetero−4
1.0

1.5

2.0

2.5

3.0

1.5

2.0

2.5

3.0

1.25

1.50

1.75

2.00

1.5

2.0

U−0
.8

0

U−0
.9

5

G−0
.1

G−0
.5

G−1
TM

−2

TM
−1

0

U−0
.8

0

U−0
.9

5

G−0
.1

G−0
.5

G−1
TM

−2

TM
−1

0

Performance Models

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

MinCost Hybrid−ColumnBased−Rounded Hybrid−ColumnBased−Accurate

Hybrid−RRP−Rounded Hybrid−RRP−Accurate

Figure 1.17: Communication cost of MinCost and hybrid strategies for dy-
namic setting.

Discussion

From these simulations we can retain several facts.

(i) Resource-based strategies are more efficient when we want to minimize
communications, and they can be time-optimal for parallel matrix mul-
tiplication.

(ii) Purely static partitioning is not reliable enough to be used in practice,
but adding a dynamic part to them may be both cost-efficient and time-
optimal.

(iii) Hybrid strategies are significantly better, in particular when the variance
is low, with an efficient static heuristic. This point justifies our search
for new algorithms to solve PERI-SUM.

On the Effect of Replication of Input Files 31

1.4. NRRP (Non-Rectangular Recursive Partitioning)

(iv) The practical implementation might be difficult (in particular it requires
to be able to send messages to others processors saying that the task
they may be working on has been finished by another processor) but task
duplication brings a real improvement to the makespan, in particular on
heterogeneous platforms.

1.4 NRRP (Non-Rectangular Recursive Parti-
tioning)

In this section we focus on divide-and-conquer-type algorithms, using RRP as
a basis and improving it by adding some new routines and subcases. The main
result, presented in Section 1.4.2, is the design of NRRP, a 2√

3
-approximation

algorithm.

1.4.1 SNRRP (Simple Non-Rectangular Recursive Par-
titioning)

As a first step to improve RRP, we use the insight from the optimal solution
of Section 1.2.4: whenever a value is significantly larger than the others, it
is best to avoid splitting into two rectangles. We thus slightly adapt RRP
by adding a new routine in addition to Guillotine: Square, depicted in
Figure 1.18. Square is inspired from the work of DeFlumere et al. [2012]
already presented in Section 1.2.4. Given a rectangle R and a rational number
α ∈ [0, 1], Square(R,α) returns a square R1 of area αs(R) and a zone Z2 which
corresponds to the initial rectangle R punched by square R1. The covering
rectangle of Z2 is R and Z2 will always be used to host an output zone, see
Algorithm 1.5 for a formal definition of Square.

R1

Z2

R

Figure 1.18: Illustration of Square routine.

32 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Algorithm 1.5 : Square(R,α)

Input : A rectangle R = [x1, x2]× [y1, y2], α ∈ [0, 1]
Output : Two zones of area αS(R), (1− α)S(R)
s = s(R) ;
R1 = [x1, x1 +

√
αs]× [y1, y1 +

√
αs] ;

Z2 = R \R1 ;
return R1, Z2

SNRRP

With Guillotine and Square we propose an improved algorithm: SNRRP
(Simple Non-Rectangular Recursive Partitioning), given in Algorithm 1.6. The
basic idea is the following: according to an appropriate condition, the current
rectangle is either split into two well-shaped rectangles (lines 7-9), or into a
square and its complement, the latter being assigned to a single processor (lines
12-13).

Algorithm 1.6 : SNRRP (R, {s1, . . . , sm})
Input : A rectangle R, a set of values {s1, . . . , sm} such that∑

si = s(R) and s1 ≤ s2 ≤ . . . ≤ sm
Output : For each 1 ≤ i ≤ m, a zone Zi such that s(Zi) = si and⋃

Zi = R
1 if m = 1 then
2 return R
3 else
4 ρ = ρ(R) ;
5 s = s(R) ;
6 k = the smallest k such that

∑k
i=1 si ≥

s
3ρ

;
7 s′ =

∑k
i=1 si ;

8 if k < m then
9 R1, R2 = Guillotine(R, s′/s) ;

10 return SNRRP(R1, {s1, . . . , sk}) + SNRRP(R2, {sk+1, . . . , sm})
11 else
12 R1, Z2 = Square(R, (s− sm)/s) ;
13 SNRRP(R1, {s1, . . . , sm−1}) + Z2

This algorithm can be proven to be a
√

3
2
-approximation (

√
3
2
' 1.22)

and thus be seen as a significant improvement of RRP. The proof relies on
one major invariant (that also ensures the correctness of the algorithm): each
rectangle on which the function is called has an aspect ratio below 3, as is

On the Effect of Replication of Input Files 33

1.4. NRRP (Non-Rectangular Recursive Partitioning)

depicted on Theorem 1.8. In order to prove it, we need the following lemmas
that are generalisations of Lemma 1.1 and Lemma 1.2.

Lemma 1.6. Let {s1, . . . , sm} be a set of positive values sorted in non-decreasing
order, ρ ≥ 1, and s =

∑
i si. Let us assume that there exists an index k such

that
k−1∑
i=1

si ≥ s
3ρ
, and let us consider the smallest such integer. Then

m∑
i=k

si ≥ s
3ρ
.

Proof. By definition of k,
k−2∑
i=1

si <
s
3ρ
. Therefore, if we assume that

m∑
i=k

si <
s
3ρ
,

we obtain sk−1 = s−
k−2∑
i=1

si−
m∑
i=k

si ≥ s
3ρ

(since ρ ≥ 1). Since sk ≤
m∑
i=k

si <
s
3ρ
, we

have sk−1 > sk which is a contradiction with the fact that the si’s are sorted
in non-decreasing order.

Lemma 1.7. Let R be a rectangle with ρ(R) ≤ 3, α ∈ [0, 1] and R1, R2 =
Guillotine(R,α).

• If α ≥ 1
3ρ(R)

then ρ(R1) ≤ 3.

• If (1− α) ≥ 1
3ρ(R)

then ρ(R2) ≤ 3.

Proof. Let us assume without loss of generality that h = h(R) ≤ w(R) = w,
and denote ρ = ρ(R) = w

h
. Then ρ(R1) = min(αw

h
, h
αw

). We have αw
h
≤ w

h
=

ρ ≤ 3 and h
αw

= 1
αρ
≤ 3ρ

ρ
≤ 3 (under the assumption α ≥ 1

3ρ
). Therefore,

α ≥ 1
3ρ

implies ρ(R1) ≤ 3 and for the same reason, (1 − α) ≥ 1
3ρ

implies
ρ(R2) ≤ 3.

Theorem 1.8 (Correctness). When executing SNRRP (R, {s1, . . . , sm}) with
ρ(R) ≤ 3, all the recursive calls to SNRRP (R′, {s′1, . . . , s′k}) are performed on
a rectangle area R′ such that ρ(R′) ≤ 3.

Proof. There are two cases where there are rectangles on which SNRRP is
called, at line 9 and at line 12. In the second case the rectangle is a square
produced by Square and then its aspect ratio is below 3. In the first case,
Lemma 1.6 ensures that Lemma 1.7 applies for both rectangles.

In order to complete the approximation proof we note that the zones re-
turned by the algorithm are produced at line 2 or 12. In the first case we know
that the zone is a rectangle with an aspect ratio below 3 (Theorem 1.8) and a
simple use of Lemma 1.3 proves that its half-perimeter is below 2√

3
times the

lower-bound (and 2√
3
≤
√

3
2
). In the case of line 12, the resulting zone is no

longer rectangular and we need an additional lemma.

Lemma 1.9. Let R be a rectangle such that ρ(R) ≤ 3, α ∈ [0, 1] and R′, Z =

Square(R,α). If α ≤ 1
3ρ(R)

then p(Z)

2
√
s(Z)
≤
√

3
2
.

34 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Proof. Let us denote ρ(Z) = ρ and s(Z) = s. Let us suppose that h =
h(R) ≤ w = w(R) without loss of generality. Note that the covering rectangle
of Z is R and therefore w = w(Z) and h = h(Z). In this case w = ρh,
so that p(Z) = (1 + ρ)h. By definition of Square, s = (1 − α)s(R) and
s(R) = hw = ρh2. Therefore s = (1− α)ρh2 ≥ (1− 1

3ρ(Z)
)ρh2 and hence

p(Z)

2
√
S(Z)

≤ (1 + ρ)h

2
√

(1− 1/3ρ)ρh2

≤
√

3(1 + ρ)

2
√

(3ρ− 1)
.

One can prove that the function x 7−→
√
3(1+x)

2
√
3x−1 reaches its maximum on

[1, 3] for x = 1 or x = 3 and this maximum is
√

3
2
. Then p(Z)

2
√
S(Z)
≤
√

3
2
.

Lemma 1.9 covers the second case of zone creation. Indeed, the hypothesis
of the lemma on the aspect ratio of R is ensured by Theorem 1.8 and the
hypothesis on α comes from the fact that, at line 11 of Algorithm 1.6, s−sm =∑n−1

i=1 si =
∑k−1

i=1 si <
s

3ρ(R)
by definition of k at line 5.

All of the above proves that if {Z1, . . . , Zm} = SNRRP (R, {s1, . . . , sm}),
then for all i ∈ [1,m], p(Zi)

2
√
si
≤
√

3
2
. Therefore we deduce

∑m
i=1 p(Zi)∑m
i=1 2

√
si
≤
√

3
2
. As∑m

i=1 2
√
si is the lower bound from (1.1), we obtain Theorem 1.10.

Theorem 1.10. SNRRP is a
√

3
2
-approximation for PERI-SUM.

Note that cases exist where SNRRP returns a partition such that the ratio
between the sum of perimeters and the lower bound based on (1.1) is indeed√

3
2
. Let us define for 1 < k ≤ m, sk = 2/3m−k+1 and s1 = 1/3m−1. One can

notice that sk = 2
3

∑k
i=1 si. Hence each step of SNRRP ([0, 1]2, {s1, . . . , sm})

corresponds to the case of line 11-12 and therefore the Square routine is called.
In addition, this corresponds the extremal position of the case of line 11-12
and we can notice in the proof of Lemma 1.9 that in this case the bound is
tight. Hence, if Z1, . . . , Zm = NRRP ([0, 1]2, {s1, . . . , sm}), p(Z1) = 2

√
s(Z1)

and for k > 1, p(Zk) = 2
√

3
2

√
s(Zk). Thus,

lim
m→∞

∑m
i=1 p(Zi)

2
∑m

i=1

√
s(Zi)

=

√
3

2

An illustration of this case is depicted in Figure 1.19.

On the Effect of Replication of Input Files 35

1.4. NRRP (Non-Rectangular Recursive Partitioning)

Figure 1.19: Worst case scenario for SNRRP.

Possible Improvement of SNRRP

Further improvements over SNRRP and its approximation ratio can be ob-
tained by changing an invariant. In both RRP and SNRRP, the aim is to
obtain a rectangle with an aspect ratio below 3. This can be generalized by
aiming for a rectangle with an aspect ratio below µ where µ is a parameter
whose value will be discussed. The objective is to use values of µ < 3, so
that the zones produced are as close to squares as possible. With values of µ
different from 3, above proofs have to be adapted at two places.

First note that Lemma 1.1 is conserved for µ ≥ 3 and can be rewritten in
Lemma 1.11.

Lemma 1.11. For µ ≥ 3, let {s1, . . . , sm} be a set of positive values such that
s1 ≤ . . . ≤ sm and k be the smallest k such that

∑k
i=1 si ≥

s
µ
. Then, if k < m,∑m

i=k+1 si ≥
s
µ
.

However, in the case µ < 3, the lemma has to be significantly weakened,
as expressed in Lemma 1.12.

Lemma 1.12. Let q > 1 be an integer and let µ be in [2q+1
q
, 2q−1
q−1 [. Let

{s1, . . . , sm} be a set of positive values such that s1 ≤ . . . ≤ sm and k be
the smallest k such that

∑k
i=1 si ≥

s
µ
. Then, if k ≤ m− q,

∑m
i=k+1 si ≥

s
µ
.

Proof. By definition of k,
∑k−1

i=1 si <
s
µ
. Let us assume

∑m
i=k+1 si <

s
µ
for the

search of a contradiction. In this case we obtain a sk ≥ µ−2
µ
s. In addition∑m

i=k+1 si ≥
∑m

i=k+1 sk+1 = (m − k)sk+1. Therefore sk+1 <
s

(m−k)µ . From the
assumption k ≤ m−q we deduce sk+1 <

s
qµ
. Furthermore, µ−2 ≥ 2q+1

q
−2 ≥ 1

q
.

Hence sk ≥ s
qµ
> sk+1 what is a contradiction with s1 ≤ . . . ≤ sm.

Both lemmas provide a sufficient condition for the possibility to split the list
of values such that each part sums to a fraction at least 1

µ
of the total, allowing

to perform a recursive call on each sublist. When the condition is not met,
the implication in the case µ ≥ 3 is that there exists a single large value sm ≥
s(1− 1

µ
), for which a large zone can be accommodated with low communication

cost by Square. When µ < 3 however, this guarantee is weakened to the

36 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

existence of at most q = b 1
µ−2c values whose sum is at least s(1 − 1

µ
). It

is thus necessary to design routines that can accommodate q zones with low
communication cost.

The conclusion is that using lower values for µ requires the consideration
of additional cases when it is not possible to obtain two parts that contain
more than 1

µ
of the total. The number of terminal zones to accommodate is

q = b 1
µ−2c, and the complexity of designing the corresponding partitioning

increases significantly with q.
Changing the value of µ has also an effect on the approximation ratios for

the individual zones returned by the algorithm. For the case where the algo-
rithm returns a rectangle, Lemma 1.3 becomes Lemma 1.13, with an identical
proof.
Lemma 1.13. Let R be a rectangle. If ρ(R) ≤ µ then:

p(R)

2
√
s(R)

≤ µ+ 1

2
√
µ
.

This function is increasing for the interesting values of µ, and thus decreas-
ing µ allows us to improve the approximation ratio in the case where all the
produced zones are rectangles. However, as shown above, this is not the limit-
ing worst-case; indeed, 2√

3
(µ+1
2
√
µ
for µ = 3) is smaller than

√
3
2
. Hence one could

expect that increasing slightly this part of the bound with a larger value of
µ would allow to lower the approximation ratios obtained for zones returned
as complements of a square, given in Lemma 1.9. However the generalized
version, Lemma 1.14, does not allow this.
Lemma 1.14. Let R be a rectangle such that ρ(R) ≤ µ, α ∈ [0, 1] and R′, Z =

Square(R,α). If α ≤ 1
µρ(R)

then p(Z)

2
√
s(Z)
≤ max(

√
µ
µ−1 ,

√
µ(µ+1)

2
√
µ−1).

Proof. We denote ρ(Z) = ρ and s(Z) = s. We suppose that h = h(R) ≤
w = w(R) without loss of generality. Note that the covering rectangle of Z
is R and therefore w = w(Z) and h = h(Z). In this case w = ρh, which
implies p(Z) = (1 + ρ)h. By definition of Square, s = (1 − α)s(R) and
s(R) = hw = ρh2. Therefore s = (1− α)ρh2 ≥ (1− 1

µρ(Z)
)ρh2 and hence

p(Z)

2
√
S(Z)

≤ (1 + ρ)h

2
√

(1− 1/µρ)ρh2

≤
√
µ(1 + ρ)

2
√

(µρ− 1)
.

One can prove that the function x 7−→
√
µ(1+x)

2
√
µx−1 is decreasing on [1, 1 + 2

µ
]

and increasing on [1 + 2
µ
, µ] and then

√
µ(1+x)

2
√
µx−1 ≤ max(

√
µ
µ−1 ,

√
µ(µ+1)

2
√
µ−1). Then,

p(Z)

2
√
S(Z)
≤ max(

√
µ
µ−1 ,

√
µ(µ+1)

2
√
µ−1).

On the Effect of Replication of Input Files 37

1.4. NRRP (Non-Rectangular Recursive Partitioning)

If µ < 3, then max(
√

µ
µ−1 ,

√
µ(µ+1)

2
√
µ−1) =

√
µ
µ−1 . With such a value of µ, the

dominant worst case is when the rectangle R is a perfect square (see Figure
1.20(a)) and the low value of µ implies the possibility for the square to take a

large portion of the rectangle. If µ > 3, then max(
√

µ
µ−1 ,

√
µ(µ+1)

2
√
µ−1) =

√
µ(µ+1)

2
√
µ−1 .

With such a value of µ, the dominant worst case is when the rectangle R has
an aspect ratio of µ (see Figure 1.20(b)) and the large value of µ implies a
huge deformation of the rectangle which increases the approximation ratio.

1√
µ

1

1

(a)

1√
µ

1

µ

(b)

Figure 1.20: Dominant worst case in function of µ for the Square routine.

In summary, x 7→
√

x
x−1 is decreasing on]1, 3] and

√
x(x+1)

2
√
x−1 is increasing

on [3,+∞[. Therefore, with this technique of proof and with no change on
SNRRP, the value µ = 3 yields to the best approximation ratio.

Therefore, to improve SNRRP, we need two things:

• A new routine for splitting in addition to Guillotine to deal with rect-
angles with aspect ratio µ < 3.

• New subcases for pathological cases when Square routine does not pro-
vide the targeted approximation ratio.

1.4.2 NRRP

In this section, we describe NRRP, a new approximation algorithm to solve
PERI-SUM that provides a 2√

3
-approximation (2√

3
' 1.15). As for RRP and

SNRRP, NRRP is based on a divide and conquer paradigm. At each step,
it tries to split the actual rectangle into two parts (more in few cases), and
is applied recursively on each part. As stated previously, we now aim for
a µ smaller than 3 and choose µ = 5

2
what is the smallest value such that

q = b 1
µ−2c ≤ 2.

As the number of cases increases and to add clarity in the following, we now
use the terms simple and composed zones. Simple zones are terminal and
are allocated to a single processor. In what follows, they will be denoted using
letter Z. Composed zones are unions of simple zones that are encountered

38 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

during the algorithm. In what follows, they will be denoted using letter R
(they are always rectangle).

Let us first describe the complete algorithm and the different routines
it uses, in addition of the already known Guillotine and Square. We re-
call that to reduce space required, we allow Guillotine to have more than
one input parameter. More specifically, if (R1, R2) = Guillotine(R,α), then
Guillotine(R,α, β) = (Guillotine(R1, β), R2).

The first new routine is Tripartition, depicted in Figure 1.21 and Algo-
rithm 1.7. In some (rare) cases, neither Guillotine nor Square routines are
able to provide either simple zones or composed zones consisting of a rectangle
whose aspect ratio is smaller than 5/2. In this case, we use Tripartition(R,α, β),
that returns three rectangles R1, Z2 and Z3 (in practice, rectangles Z2 and Z3

will always be used to host simple zones) of respective areas αs(R), βs(R) and
(1 − α − β)s(R). The difference with the result given by Guillotine(R,α +
β, α/(α + β) is that we do not perform the second split along the largest
dimension of R′.

R1

Z2

Z3

R

Figure 1.21: Illustration of Tripartition routine.

Algorithm 1.7 : Tripartition(R,α, β)

Input : A rectangle R = [x1, x2]× [y1, y2], α, β ∈ [0, 1]
Output : Three zones of respective areas αS(R), βS(R),

(1− α− β)S(R)
w = w(R) ; h = h(R) ;
if h ≤ w then

w1 = (α + β)w ; h1 = α
α+β

h ;
R1 = [x1, x1 + w1]× [y1, y1 + h1] ; Z2 = [x1, x1 + w1]× [y1 + h1, y2]

else
w1 = α

α+β
w ; h1 = (α + β)h ;

R1 = [x1, x1 + w1]× [y1, y1 + h1] ; Z2 = [x1 + w1, x2]× [y1, y1 + h1]

Z3 = R \ (R1 ∪R2) ;
return R1, Z2, Z3

The second routine is Superposition depicted in Figure 1.22 and Algo-
rithm 1.8. Superposition(R,α, ε) returns three zones, R1, Z2 and Z3 of re-

On the Effect of Replication of Input Files 39

1.4. NRRP (Non-Rectangular Recursive Partitioning)

spective areas εs(R), (α− ε)s(R) and (1− α)s(R). R1 is a square that can be
placed in the upper left corner, Z2 a rectangle which is placed under R1 in the
bottom left corner and Z3 is the remaining zone, i.e. R punched by both R1

and Z2. In practice, Z2 and Z3 will always be used to host simple zones.

R1

Z2
Z3

R

Figure 1.22: Illustration of Superposition routine.

Algorithm 1.8 : Superposition(R,α, ε)

Input : A rectangle R = [x1, x2]× [y1, y2], α, ε ∈ [0, 1]
Output : Three zones of respective areas εS(R), (α− ε)S(R),

(1− α)S(R)
w = w(R) ; h = h(R) ; s = s(R) ;
l =
√
εs ; R1 = [x1, x1 + l]× [y1, y1 + l];

if h ≤ w then
w1 = (α−ε)hw

h−l ; Z2 = [x1, x1 + w1]× [y1 + l, y2]

else
h1 = (α−ε)hw

w−l ; Z2 = [x1 + l, x2]× [y1, y1 + h1]

Z3 = R \ (R1 ∪ Z2) ;
return R1, Z2, Z3

Finally let us define Packing. Given a list {s1, . . . sk} sorted in increasing
order, two rational values s and s′ and a rectangle R such that s(R) =

∑
si,

Packing({s1, . . . , sk}, s, s′, R) returns a list of couples (Rj, Sj) where Rj is
a rectangle and Sj is a subset of {s1, . . . , sk} such that

⋃
Rj = R, s(Rj) =∑

i∈Sj si and s ≤ s(Rj) ≤ s′. For shortness, we allow sk to be larger than s′ and
in this case Packing({s1, . . . , sk}, s, s′, R) = Packing({s1, . . . , sk−1}, s, s′, R1)+
(R2, sk), where R1, R2 = Guillotine(R, (s(R) − sk)/s(R)). We will explicitly
discuss the existence of such a function in the condition we use it. We will de-
note by Map(NRRP,L), with L = Packing({s1, . . . , sk}, s, s′, R) the function
that applies NRRP to each of the Rjs.

Now, all necessary ingredients to describe NRRP are there, see Algo-
rithm 1.9. For a more visual approach Figure 1.23 provides all the subcases
with the associated lines. Each part and subcase will be discussed and de-
scribed during the correctness and the approximation ratio proofs.

40 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Algorithm 1.9 : NRRP (R, {s1, . . . , sm})
Input : A rectangle R, a set of values {s1, . . . , sm} such that

∑
si = s(R) and s1 ≤ s2 ≤ . . . ≤ sm

Output : For each 1 ≤ i ≤ m, a zone Zi such that s(Zi) = si and
⋃
Zi = R

1 if m = 1 then
2 return R
3 else
4 ρ = ρ(R) ;
5 k = the smallest k such that

∑k
i=1 si ≥

2s
5ρ

;

6 s′ =
∑k
i=1 si ;

7 if k < m then
8 if s− s′ ≥ 2s

5ρ
then

9 R1, R2 = Guillotine(R, s′/s) ;
10 return NRRP(R1, {s1, . . . , sk}) + NRRP(R2, {sk+1, . . . , sm})
11 else
12 R1, R2, R3 = Tripartition(R, (s′ − sm−1)/s, (sm−1)/s)) ;
13 return NRRP(R1, {s1, . . . , sm−2}) + Z2 + Z3

14 else
15 s′ =

∑k−1
i=1 si ;

16 if s′/s ≤ 1− 3(ρ+1)2

16ρ
then

17 R1, Z2 = Square(R, s′/s) ;
18 return NRRP(R1, {s1, . . . , sm−1}) + Z2

19 else
20 if m > 2 then
21 s′′ = s′ − sm−1 ;

22 if s′′ ≥ 2ρs′2

5s
then

23 if s′′ ≤ 5ρs′2

2s
then

24 R1, Z2, Z3 = Guillotine(R, s′/s, s′′/s′) ;
25 return NRRP(R1, {s1, . . . , sm−2}) + Z2 + Z3

26 else
27 s′′′ = s′′ − sm−2 ;

28 if s′′′ ≥ 2ρs′2

5s
then

29 Rtemp, Z2 = Guillotine(R, s′/s) ;

30 L = Packing({s1, . . . , sm−1}, 2ρs
′2

5s
, 5ρs

′2

2s
, Rtemp) ;

31 return Map(NRRP, L) + Z2

32 else

33 if s′′′/s ≤ (1−
√

1−ρ∗s′/s)2

ρ
then

34 Z2, Rtemp, Z4 = Guillotine(R, s′/s, (s′′′ + sm−1)/s′) ;
35 R1, Z3 = Square(Rtemp, s′′′/(s′′′ + sm−1)) ;
36 return NRRP(R1, {s1, . . . , sm−3}) + Z2 + Z3 + Z4

37 else
38 R1, Rtemp, Z4 = Superposition(R, s′/s, s′′′/s) ;
39 Z2, Z3 = Guillotine(Rtemp, sn−2/(s′ − s′′′)) ;
40 return NRRP(R1, {s1, . . . , sm−3}) + Z2 + Z3 + Z4

41 else

42 if s′′/s ≤ (1−
√

1−ρ∗s′/s)2

ρ
then

43 Rtemp, Z3 = Guillotine(R, s′/s) ;
44 R1, Z2 = Square(Rtemp, s′′/s′) ;
45 return NRRP(R1, {s1, . . . , sm−2}) + Z2 + Z3

46 else
47 R1, Z2, Z3 = Superposition(R, s′/s, s′′/s) ;
48 return NRRP(R1, {s1, . . . , sm−2}) + Z2 + Z3

49 else
50 Z1, Z2 = Guillotine(R, s′/s) ;
51 return Z1 + Z2 ;

On the Effect of Replication of Input Files 41

1.4. NRRP (Non-Rectangular Recursive Partitioning)

R1 R2

(a) (A1), l9-l10

R1

Z2

Z3

(b) (A2), l12-l13

R1

Z2

(c) (B1), l17-l18

R1

Z2
Z3

(d) (B2-a1), l24-l25

Z2L

(e) (B2-a2′), l29-l31

R1

Z2
Z3

(f) (B2-a2′′-1), l34-l36

R1

Z2 Z3

(g) (B2-a2′′-2), l38-l40

R1

Z2

Z3

Z4

(h) (B2-b1), l43-l45

R1

Z2

Z3

Z4

(i) (B2-bZ), l47-l48

Z1 Z2

(j) (B2-c), l50-l51

Figure 1.23: All the cases in NRRP. The gray rectangles are the ones on which
the recursive calls are made, the white ones are returned zones.

42 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

The proof that NRRP is indeed a 2√
3
-approximation algorithm is decom-

posed into two parts.
In order to keep the proofs relatively simple, we enforce that NRRP can

only be applied to a (simple or composed) zone R that fulfills the following
properties: R must be (i) a rectangle (ii) whose aspect ratio is less or equal
than 5/2 (the µ we are aiming for). Proving that these two properties hold
true in NRRP is done in the Correctness subsection.

Unfortunately, it is not always possible to partition the unit square into
rectangles whose aspect ratios are all smaller than 5/2, and NRRP may create
such zones under the following two conditions: (i) these zones have to be
terminal (ii) each time NRRP creates such a set of zones, the 2√

3
-approximation

ratio must be fulfilled for the set of zones (maybe not for each individual zone,
but for the set as a whole). Proving that these two properties hold true in
NRRP is done in the Approximation Ratio subsection.

In both cases (Correctness and Approximation Ratio subsections), proofs
are rather technical and involve many subcases, but all these subcases are
required to enforce the claimed approximation ratio.

Correctness

In order to prove the correctness of NRRP, we need to prove the following
theorem, that states that all the composed rectangles (on which the algorithm
is recursively applied) have an aspect ratio lower than 5/2, since this property
is crucial in order to establish the approximation ratio. In all the following,
we consider that the list of si values is sorted in increasing order, s1 ≤ s2 ≤
. . . ≤ sm. Furthermore, we assume that rectangles R are composed zones, i.e.
m > 1.

Theorem 1.15 (Correctness of NRRP). When executing NRRP (R, {s1, . . . , sm})
with ρ(R) ≤ 5/2, all the recursive calls to NRRP (R′, {s′1, . . . , s′k}) are per-
formed on a rectangle area R′ such that ρ(R′) ≤ 5/2.

Proof. The first step of the algorithm finds k, the smallest index such that
s′ =

∑k
i=1 si ≥

2s
5ρ
, where s = s(R) and ρ = ρ(R) (Line 5). Depending on the

value of k, there are two cases (Line 7).
Case (A) (lines 8-13) corresponds to the case k < m, that is split into

two subcases.
Case (A1) (lines 9-10) corresponds to the case where s−s′ is also larger

than 2s
5ρ(R)

. Then, with α = s′/s, Lemma 1.16 applies.

Lemma 1.16. Let R be a rectangle with ρ(R) ≤ 5/2, α ∈ [0, 1] and R1, R2 =
Guillotine(R,α).

• If α ≥ 2
5ρ(R)

then ρ(R1) ≤ 5/2.

On the Effect of Replication of Input Files 43

1.4. NRRP (Non-Rectangular Recursive Partitioning)

• If (1− α) ≥ 2
5ρ(R)

then ρ(R2) ≤ 5/2.

Proof. Let us assume without loss of generality that h = h(R) ≤ w(R) = w,
and denote ρ = ρ(R) = w

h
. Then ρ(R1) = min(αw

h
, h
αw

). We have αw
h
≤ w

h
=

ρ ≤ 5/2 and h
αw

= 1
αρ
≤ 5ρ

2ρ
≤ 5/2 (under the assumption α ≥ 2

5ρ
). Therefore,

α ≥ 2
5ρ

implies ρ(R1) ≤ 5/2 and for the same reason, (1 − α) ≥ 2
5ρ

implies
ρ(R2) ≤ 5/2.

Therefore, in case (A1), Guillotine(R,α) returns two rectangles R1, R2

whose aspect ratios are smaller than 5/2 and we can apply NRRP on each of
them.

Case (A2) (lines 12-13) corresponds to the case where s′ =
∑k

i=1 si ≥
2s
5ρ
,

s − s′ < 2s
5ρ

and k < m. In this case, we rely on the Tripartition rou-
tine and the following lemma states that if R1, Z2, Z3 = Tripartition(R, (s′ −
sm−1)/s, sm−1/s), then ρ(R1) ≤ 5/2 and Z2 and Z3 are simple.

Lemma 1.17. If s′ =
∑k

i=1 si ≥
2s

5ρ(R)
, k < m and s − s′ < 2s

5ρ(R)
, then

k = m− 1 and ρ(R) < 6/5. In addition, if R1, Z2, Z3 = Tripartition(R, (s′ −
sn−1)/s, sn−1/s), then ρ(R1) ≤ 5/2.

R1

Z2

Z3

w

h
h1

w1

Figure 1.24: Case (A2)

Proof. Let us assume without loss of generality that h = h(R) ≤ w(R) = w
and define ρ = ρ(R). By definition of k, we know that s′′ =

∑k−1
i=1 si <

2s
5ρ
.

Therefore

sk = s′ − s′′,
sk = s− (s− s′)− s′′,

sk > s− 2s

5ρ
− 2s

5ρ
,

sk > s(1− 4

5ρ
) = s

4ρ− 4

5ρ
.

44 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Since the si values are sorted, s− s′ =
∑m

i=k+1 si ≥ (m− k)sk+1 ≥ (m− k)sk.
Hence 2s

5ρ
> (m − k)sk > (m − k)s5ρ−4

5ρ
. This implies that m − k < 2

5ρ−4 ≤ 2
since ρ ≥ 1, and then k ≥ m− 1. Thus, the only possible value for k is m− 1
(remember that k < m). Therefore, s = s′′ + sm−1 + sm < 3 2s

5ρ
and ρ < 6/5.

Let us denote α = s′′/s, β = sm−1/s and γ = sm/s, w1 = w(R1) and
h1 = h(R1) (see Figure 1.24). We want to prove that both w1/h1 and h1/w1

are smaller than 5/2, which is equivalent to proving 2/5 ≤ w1/h1 ≤ 5/2. First,
let us recall that w1 = (α + β)w and h1 = α

α+β
h.

Let us now establish lower bounds on α, β and γ (the following bounds
hold true α < 2

5ρ
and β ≤ γ < 2

5ρ
). Let us notice that 1 − α = β + γ < 4

5ρ
.

Therefore α > 5ρ−4
5ρ

, and similarly β > 5ρ−4
5ρ

. For γ, noticing that 2γ ≥ β+γ =

1− α > 5ρ−2
5ρ

, we obtain γ > 5ρ−2
10ρ

.
Since α + β = 1− γ, then

5ρ− 2

5ρ
< α + β <

5ρ+ 2

10ρ
.

Moreover, since w1/h1 = ρ (α+β)2

α
, then

ρ
(5ρ− 2)2

25ρ2
× 5ρ

2
<
w1

h1
< ρ

(5ρ+ 2)2

100ρ2
× 5ρ

5ρ− 4

and
(5ρ− 2)2

10
<
w1

h1
<

(5ρ+ 2)2

20(5ρ− 4)
.

Trivially, (5ρ−2)2
10

≥ 9/10 > 2/5. Moreover, (5ρ+2)2

20(5ρ−4) ≤ 49/20 < 5/2 since

x 7→ (5x+2)2

20(5x−4) is a decreasing function over [1, 6/5]. Hence, we prove 2/5 ≤
w1/h1 ≤ 5/2 and therefore, ρ(R1) ≤ 5/2.

The above lemmas prove the correctness of the calls to NRRP in cases
(A1) and (A2) (lines (10) and (13) of Algorithm 1.9). Case (B) (lines 15-51)
corresponds to the case where k = m, which happens when sm is significantly
larger than the other values. Let us denote s′ = s− sm (Line 15). Depending
on the value of s′, several subcases can occur.

Case (B1) (lines 17 and 18) corresponds to a small s′, i.e. s′ ≤ s(1 −
3(ρ+1)2

16ρ
). In this case, Square is called and generates R1 that is a square (with

aspect ratio is 1 < 5/2) and the simple zone Z2.
Let us note that in all remaining cases, ρ − 3(ρ+1)2

16
< ρs′

s
< 2/5 (where

ρ = ρ(R)). In addition, 13/64 ≤ ρ− 3(ρ+1)2

16
for ρ ∈ [0, 5/2] and thus,

13/64 ≤ ρ− 3(ρ+ 1)2

16
< ρ

s′

s
< 2/5. (1.2)

On the Effect of Replication of Input Files 45

1.4. NRRP (Non-Rectangular Recursive Partitioning)

R1 Z2

R

Figure 1.25: Case (B2)

Case (B2) (lines 21 to 48) The situation is depicted in Figure 1.25,
where Z2 is simple (and such that ρ(Z2) ≤ 5/2). Unfortunately, ρ(R1) > 5/2
so that NRRP cannot directly be called on R1, which needs to be further split
into several rectangles with acceptable aspect ratio.

Let us denote s′′ = s′ − sm−1.
Case (B2-a) (Lines 22-40) corresponds to the case 2ρs′2

5s
≤ s′′.

Case (B2-a1) (Lines 24-25) correspond to the case 2ρs′2

5s
≤ s′′ ≤ ρ5s′2

2s
.

Lemma 1.19 proves that if R1, Z2, Z3 = Guillotine(R1, s
′/s, s′′/s′) (see Fig-

ure 1.26), then ρ(R1) ≤ 5/2 and that Z2 and Z3 are simple so that the call
NRRP on R1 at line 24 is valid.

R1

Z2
Z3

R

Figure 1.26: Case (B2-a1)

Case (B2-a2) (lines 27-40) corresponds to the case where s′′ > ρ5s′2

2s
. It

is again split into several subcases depending on the value of s′′′ = s′′ − sm−2.
Let us first note that s′′′ > 0. Indeed, thanks to (1.2), we know that s′′/s′ >
ρ5s′

2s
> 65/128 > 1/2. Therefore sm−2 ≤ sm−1 < s′(1− 1/2) < s′/2 < s′′.
Case (B2-a2′) (Lines 29-31) corresponds to the case s′′′ ≥ ρ2s′2

5s
. Then,

the conditions of Lemma 1.18 hold true (with α = ρ s
′

s
and the s of Lemma 1.18

be the current s′) and we can build Packing({s1, . . . , sm−1}, 2ρs
′2

5s
, 5ρs

′2

2s
, R1). By

definition of Packing, each rectangle of this list (except possibly at one simple
rectangle) have a surface between 2ρs′2

5s
and 5ρs′2

2s
. Therefore, with x being the

surface of the different rectangles from Packing({s1, . . . , sm−1}, 2ρs
′2

5s
, 5ρs

′2

2s
, R1),

46 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

we are in the condition of Lemma 1.19 (the rectangle R in Lemma 1.19 is R1

here). Thus we can call NRRP on each element of the list, since all the
rectangles of the list, except, again, possibly at one simple rectangle, have an
aspect ratio smaller than 5/2 (see Figure 1.27).

Z2

R

Figure 1.27: Case (B2-a2′)

Lemma 1.18. Let R be a rectangle such that ρ(R) = 1/α and {s1, . . . , sm}
an ordered list such that

∑
si = s(R) = s. Then, if m ≥ 3,

∑m−2
i=1 si ≥ 2αs

5
,∑m−1

i=1 si >
5αs
2

and 13/64 < α < 2/5, then we can build Packing(R, {s1, . . . , sm}, 2αs5 ,
5αs
2

)
in linear time.

Proof. Let us denote s = s(R), s′ = s− sm and s′′ = s′ − sm−1 (we know that
s′′ ≥ 2αs

5
). Note that 5α

2
> 1/2.

• Let us first assume that sm+sm−1 >
5αs
2
. In this case, 2sm ≥ sm+sm−1 >

5αs
2

and therefore sm > 5αs
4

> 2αs
5
. In addition, s′′ ≤ 5αs

2
(otherwise

s = s′′ + sm−1 + sm > s/2 + s/2). Therefore, let us consider R1, where
R1, R2 = Guillotine(R, s′/s). Let j be such that

∑j
i=1 si ≤ s′ − 2αs

5
and∑j+1

i=1 si > s′ − 2αs
5
. We have two cases:

(i) If sm−1 ≥ 2αs
5
, then j = m − 2. Therefore, 2αs

5
≤ s′′ ≤ 5αs

2
and

2αs
5
≤ sm−1 ≤ 5αs

2
(sm−1 > 5αs

2
implies sm > 5αs

2
and for the same

reason, since s′′ ≤ 5αs
2
, this is impossible). Therefore, if R1, R3 =

Guillotine(R1, s
′′/s′), [(R1, {s1, . . . , sm−2}), (R3, {sm−1}), (R2, {sm})] is a

valid output of Packing(R, {s1, . . . , sm}, 2αs5 ,
5αs
2

).

(ii) If sm−1 < 2αs
5
, then ∀i ≤ m − 1, si < 2αs

5
and j < m − 1. Let us

denote sbis =
∑j

i=1 si and ster =
∑m−1

i=j+1 si. sbis < s′′ ≤ 5αs
2

and

sbis + sj+1 > s′ − 2αs

5
>

5αs

2
− 2αs

5
.

Hence
sbis >

5αs

2
− 2αs

5
− 2αs

5
= (5/2− 4/5)αs ≥ 2αs

5
.

On the Effect of Replication of Input Files 47

1.4. NRRP (Non-Rectangular Recursive Partitioning)

Moreover, s′− sbis = ster implies that ster ≥ s′− (s′− 2αs
5

) and therefore
ster ≥ 2αs

5
, and ster ≤ s′ − (s′ − 4αs

5
) < 5αs

2
. Therefore, if R1, R3 =

Guillotine(R1, (sbis + ster)/s
′, ster/(sbis + ster)),

[(R1, {s1, . . . , sj}), (R3, {sj+1, . . . , sm−1}), (R2, {sm})] is a valid output of
Packing(R, {s1, . . . , sm}, 2α5 ,

5α
2

).

• Otherwise, sm + sm−1 ≤ 5αs
2
. Since sm−1 ≤ sm, we know that sm−1 ≤ 5αs

4

and therefore ∀i ≤ m−1, si ≤ 5αs
4
. Let us apply the following procedure:

– If si ≥ 2αs
5
, then, since si ≤ sm ≤ 5αs

2
, we can leave si alone since it

fulfills the condition.
– Else, let ji be such that

∑i
j=ji

sj ≥ 2αs
5

and
∑i

j=ji+1 sj <
2αs
5
. Note

that
i∑

j=ji

sj = sji +
i∑

j=ji+1

sj < si +
i∑

j=ji+1

sj <
4αs

5
<

5αs

2

Then, the set {sji , . . . , si} fulfills the condition.

After the execution of the above algorithm, there may exist a k such that∑k
j=1 sj <

2αs
5
. If sk+1 ≥ 2αs

5
, then

k+1∑
j=1

sj ≤
2αs

5
+ sm−1 ≤

2αs

5
+

5αs

4
=

33αs

20
<

5αs

2

and trivially
∑k+1

j=1 sj ≥
2αs
5
. Therefore the set {s1, . . . , sk+1} fulfills the

condition. Otherwise, there exists i such that k = ji. Then

i∑
j=1

sj ≤
2αs

5
+

4αs

5
=

6αs

5
<

5αs

2

and trivially
∑i

j=1 sj ≥
2αs
5
. Therefore, the set {s1, . . . , si} fulfills the

condition.

Then, in any possible case, we have built a valid result for Packing(R, {s1, . . . , sm}, 2αs5 ,
5αs
2

)
(in linear time).

Lemma 1.19. Let R be a rectangle such that ρ(R) = 1/α and R′, R′′ =
Guillotine(R, x). If 13/64 ≤ α ≤ 2/5 and 2α

5
≤ x ≤ 5α

2
, then ρ(R′) ≤ 5/2.

Proof. Let us suppose without loss of generality that h = h(R) ≤ w(R) = w.
In this case, h(R′) = h and w(R′) = xw with x ∈ [0, 1]. s(R′) = xw × h =
xS(R). Therefore 2α

5
≤ x ≤ 5α

2
. Since ρ(R′) ≤ 5/2 ⇔ 2/5 ≤ w(R′)/h(R′) ≤

5/2 is equivalent to 2/5 ≤ x/α ≤ 5/2 and 2α
5
≤ x ≤ 5α

2
, which is true by

construction.

48 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Case (B2-a2′′) (Lines 33-40) corresponds to the case s′′′ < 2ρs′2

5s
. Note

that s′′′ < 2ρs′2

5s
and s′′ > 5ρs′2

2s
is a possible situation, for example with sm−1 =

sm−2 = 21ρs′2

10s
+ ε. In this case, either we successively apply Guillotine and

Square on R or we use Superposition on R (the choice will be discussed in
the Approximation Ratio subsection) before using Guillotine on one of the
rectangle. Both cases are depicted in Figure 1.28 and in all cases, at most one
rectangle (R1) is not simple, and since it is shaped as a square, then its aspect
ratio is less than 5/2, and the calls to NRRP at lines 37 and 39 are both valid.

R1

Z2

Z3

Z4

R
R1

Z2

Z3

Z4

R

Figure 1.28: Case (B2-a2′′)

Case (B2-b) (lines 42 to 48) corresponds to the case s′′ < 2ρs′2

5s
. In this

case, we rely on the technique described for Case (B2-a2′′). We successively
apply Guillotine and Square on R or we use Superposition on R (the choice
will be discussed in the Approximation Ratio subsection) and are depicted in
Figure 1.29.

R1

Z2 Z3

R
R1

Z2
Z3

R

Figure 1.29: Case (B2-b)

Case (B2-c) (lines 50 and 51) corresponds to the case where m = 2,
and thus neither subcases in (B2-a) nor (B2-b) are possible, and s1 is too big
to use case (B1). In this case NRRP simply uses Guillotine and returns the
two resulting rectangles. Therefore there are only simple zones in this case.

This ends the proof of Theorem 1.15

On the Effect of Replication of Input Files 49

1.4. NRRP (Non-Rectangular Recursive Partitioning)

To finish the correctness aspect of NRRP, we also prove that it is always
possible to perform the Square routine, i.e. that the edge length of the pro-
duced square is indeed smaller than the lengths of the edges of the rectangle
that contains it. We have two main cases that we recall on Figure 1.30. The
left figure represents case (B1), the right figure represents case (B2-a2′′)
and case (B2-b).

For the first case, we know that s(R1) ≤ 2
ρ(R)5

s(R). In addition s(R) =√
ρ(min(h(R), w(R)))2. Thus,

h(R1) = w(R1) =
√
s(R1) ≤

√
2

5
min(h(R), w(R))

and therefore h(R1) = w(R1) ≤ min(h(R), w(R)).
In the second case, we know that s(R1 ∪ Z2) ≤ 2

ρ(R)5
s(R) and s(R1) ≤

2ρs(R1∪Z2)2

5s(R)
(in both cases, (B2-a2′′) and (B2-b), s(R1 ∪ Z2)s

′, s(R1) = s′′′

in case (B2-a2′′) and s(R1) = s′′ in case (B2-b)). Let us suppose without
loss of generality that w = w(R) ≥ h(R) = h and let us denote α = s(R1∪Z2)

s(R)
.

Therefore w(Z2) = αw and h(Z2) = h and

s(R1 ∪ Z2) = w(Z2)h(Z2) = αρh2.

In addition w(R1) = h(R1) =
√
s(R1). Thus,

w(R1) ≤

√
2ρs(R1 ∪ Z2)2

5s(R)
≤ α

√
2ρwh

5
= αρ

(√
2

5

)
h

= α

(√
2

5

)
w.

Therefore w(R1) ≤
(√

2
5

)
w(Z2) ≤ w(Z2) and w(R1) ≤ αρ

(√
2
5

)
h(Z2). Since

αρ ≤ 2
5
, w(R1) ≤ h(Z2) also holds true what finishes the correctness proof of

NRRP.

Approximation Ratio

We now prove our claim that NRRP is a 2√
3
-approximation for PERI-SUM

(Theorem 1.20).

Theorem 1.20. NRRP is a 2√
3
-approximation for PERI-SUM.

Proof. We will extensively rely on the following lemma in order to prove The-
orem 1.20.

Lemma 1.21. Let A,B,C and D denote 4 positive rational numbers, then if
A
B
≤ α and C

D
≤ α, then A+C

B+D
≤ α.

50 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

R1

Z2

R
R1

Z2 Z3

R

Figure 1.30: Possible uses of Square routine.

Proof. Let A,B,C and D be 4 positive rational numbers such that A
B
≤ α and

C
D
≤ α. Then A ≤ αB and C ≤ αD. Thus A + C ≤ α(B + D) and finally

A+C
B+D

≤ α.

Lemma 1.21 plays a crucial role in the following proof. Indeed let us par-
tition the sks into I subsets S1, . . . , SI . Then, by Lemma 1.21, if

∀i,
∑

k∈Si p(Zk)

2
∑

k∈Si
√
sk
≤ 2√

3
, then

∑m
k=1 p(Zk)

2
∑m

k=1

√
sk
≤ 2√

3
.

If NRRP is called with m = 1, then it returns the input rectangle (line 2).
We have proved in the Correctness subsection that all composed rectangles (on
which NRRP is recursively called) have an aspect ratio less than 5/2. This is
enough to prove our result since a such a rectangle satisfies, by Lemma 1.3

p(Ak)

2
√
sk
≤ 7
√

2

4
√

5
<

2√
3
.

To establish the approximation ratio, using Lemma 1.21, we can therefore
consider those rectangles independently.

Unfortunately, there are simple Z zones for which the 5/2 aspect ratio does
not hold true, and it is not true in all cases that p(Zk)

2
√
s(Zk)

≤ 2√
3
. Nevertheless,

for each case depicted in Figures 1.24, 1.25, 1.26, 1.27 ,1.28, 1.29, if we group
all the terminal simple zones Z1, Z2 (and possibly Z3), then we can prove
that

∑
p(Zk)

2
∑√

s(Zk)
≤ 2√

3
, so that the bound holds globally if it is not the case for

individual zones. Then, we can conclude with Lemma 1.21 that the 2√
3
bound

holds true since it is enough to exhibit one partitioning of the sks such that
the bounds holds for each individual group of the partition.

The rest of the proof is rather technical and simply proves that the above
bound holds true for all possible subcases of NRRP.

Let us now check the different possible results of NRRP.
First if m = 1, then a single rectangle R is returned, and by construction

(see Correctness subsection) (Line 2) ρ(R) ≤ 5/2, what ends the proof.

On the Effect of Replication of Input Files 51

1.4. NRRP (Non-Rectangular Recursive Partitioning)

Case (A1) (lines 9-10): NRRP returns no simple areas.
Case (A2) (lines 12-13) corresponds to the case described in Figure 1.31

with 2 simple zones Z2 and Z3. Lemma 1.23 proves that p(Z2) + p(Z3) ≤
2√
3
(2(
√
sm−1 +

√
sm)), what ends the proof of this case. Lemma 1.22 is a

technical Lemma that is needed to prove Lemma 1.23.

R1

Z2

Z3

w

h
h1

w1

Figure 1.31: Case (A2)

Lemma 1.22. Let x ∈ [1, 6/5], z ∈ [5x−2
10x

, 2
5x

] and y ∈ [5x−4
5x

, z] and f(x, y, z) =
x+1+ y

1−z
2
√
x(
√
y+
√
z)
. If α = 1 − z − y ≥ 1/5 and xz ≤ 2/5, then f(x, y, z) ≤

f(1, 1/5, 3/10) = 16
√
5

7(2+
√
6)
< 2√

3

Proof. First let us prove that f is decreasing in y and z.

∂f

∂y
(x, y, z) =

2
√
y(
√
y +
√
z)− (1− z)(x+ 1)− y

4
√
xy(1− z)(

√
(y) +

√
z)2

Therefore, ∂f
∂y

(x, y, z) ≤ 0 is equivalent to 2
√
y(
√
y+
√
z)−(1−z)(x+1)−y ≤

0.

2
√
y(
√
y +
√
z)− (1− z)(x+ 1)− y = 2y + 2

√
yz − x− y − 1 + xz + z

= y + z + 2
√
yz + zx− x− 1

= 2
√
yz − (1− γ)x− α

As x ≥ 1 and y ≤ z, we have:

2
√
y(
√
y +
√
z)− (1− z)(x+ 1)− y ≤ 2z −+z − α

≤ 3z − 1− α

Yet z ≤ 2
5ρ
≤ 6/5 and α ≥ 1/5, hence,

2
√
y(
√
y +
√
z)− (1− z)(x+ 1)− y ≤ 6/5− 1− 1/5 = 0

52 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

and thus ∂f
∂y

(x, y, z) ≤ 0.

∂f

∂z
(x, y, z) =

2z3/2(
√
y +
√
z)− (1− z)2(x+ 1)− (1− z)y

2
√
xz(1− z)2(

√
(y) +

√
z)2

So ∂f
∂z

(x, y, z) ≤ 0 is equivalent to 2z3/2(
√
y+
√
z)−(1−z)2(x+1)−(1−z)y ≤

0.

2z3/2(
√
y +
√
z)− (1− z)2(x+ 1)− (1− z)y = 2z2 + 2z

√
yz − x− 1 + 2zx

+ 2z − xz2 − z2 − y + xy

≤ 4z2 − x− 1 + 2xz + 2z − xz2 − z2 − y − z2

≤ 4z2 − x− 1 + 2xz + 2z − xz2 − y
≤ 3z2 − 2 + 2xz + 2z − y

Since xz ≤ 2/5,

2z3/2(
√
y +
√
z)− (1− z)2(x+ 1)− (1− z)y ≤ 3z2 − 2 + 4/5 + 2z − y

≤ 12/25 + 4/5− 1/5− 6/5

≤ −3/25

and thus ∂f
∂z

(x, y, z) ≤ 0.
Then f(x, y, z) ≤ f(x, 5x−4

5x
, 5x−2

10x
). Let us denote g(x) = f(x, 5x−4

5x
, 5x−2

10x
) so

that

g(x) =

√
5(x(5x+ 17)− 6)

(5x+ 2)(2
√

5x− 4 +
√

10x− 4)

We are interested in proving that g(x) is decreasing with x in [1, 6/5].
First,

g′(x) =

√
5(10x+ 17)

(5x+ 2)(2
√

5x− 4 +
√

10x− 4)

− 5
√

5(x(5x+ 17)− 6)

(5x+ 2)2(2
√

5x− 4 +
√

10x− 4)

−

√
5(x(5x+ 17)− 6)(5√

10x−4 + 5√
5x−4)

(5x+ 2)(2
√

5x− 4 +
√

10x− 4)2

so that g′(x) ≤ 0⇐⇒

(25x2 + 20x+ 64)−
5(x(5x+ 17)− 6)(5x+ 2)(1√

10x−4 + 1√
5x−4))

(2
√

5x− 4 +
√

10x− 4)
≤ 0

Moreover 5x+2 is increasing with x in the interval [1, 6/5], so that 5x+2 ≥
7. To finish the proof, let us denote A(x) =

(1√
10x−4

+ 1√
5x−4

)

(2
√
5x−4+

√
10x−4) Clearly, A(x) is

On the Effect of Replication of Input Files 53

1.4. NRRP (Non-Rectangular Recursive Partitioning)

decreasing with x in the interval [1, 6/5], so that in particular in the interval
[1, 11/10], A(x) ≥ A(11/10) and in the interval [11/10, 6/5], A(x) ≥ A(6/5).

Therefore, in the interval [1, 11/10],

B(x) = (25x2+20x+64)−
(5(x(5x+ 17)− 6)(5 + 2)(1√

10∗11/10−4
+ 1√

5∗11/10−4
))

(2
√

5 ∗ 11/10− 4 +
√

10 ∗ 11/10− 4))
≤ 0

=⇒ g′(x) ≤ 0.

Moreover, B is a polynomial of degree 2 that tends to −∞ when x tends to
+∞, that is equal to 40

√
42 − 146 > 0 in 0 and to 669 − 320

√
14/3 < 0 in 1

so that B(x) is negative in the interval [1, 11/10]
Similarly, in the interval [11/10, 6/5],

C(x) = (25x2+20x+64)−
(5(x(5x+ 17)− 6)(5 + 2)(1√

10∗6/5−4
+ 1√

5∗6/5−4
))

(2
√

5 ∗ 6/5− 4 +
√

10 ∗ 6/5− 4)
≤ 0

=⇒ g′(x) ≤ 0.

As previously, C is a polynomial of degree 2 that tends to −∞ when x tends
to ∞, that is equal to 827/8 > 0 in 0 and to −435/64 < 0 in 11/10 so that
B(x) is negative in the interval [11/10, 6/5].

Therefore f(x, y, z) ≤ g(x) ≤ g(1) = 16
√
5

7(2+
√
6)
< 2√

3
and we have our result.

Lemma 1.23. Let us suppose that s′ =
∑k

i=1 si ≥
2s

5ρ(R)
, k = m − 1 and

s − s′ < 2s
5ρ(R)

. Then, if R1, Z2, Z3 = Tripartition(R, (s′ − sn−1)/s, sm−1/s),
p(Z2)+p(Z3)

2(
√
s(Z2)+

√
s(Z3))

≤ 2√
3

Proof. We use the same notations as for Lemma 1.17: without loss of gener-
ality, w = w(R) ≥ h(R) = h and denote ρ = ρ(R), α = s′′/s, β = sn−1/s and
γ = sn/s. Let us also denote w1 = w(R1) and h1 = h(R1) (see Figure 1.31).
Remember that we have proved in Lemma 1.17 that

5ρ− 4

5ρ
≤ α ≤ 2

5ρ
5ρ− 4

5ρ
≤ β ≤ γ

5ρ− 2

10ρ
≤ γ ≤ 2

5ρ

1 ≤ ρ ≤ 6/5

and that w1 = (α + β)w and h1 = α
α+β

h. With these notations, p(Z2) =

w1 + h − h1 and p(Z3) = w − w1 + h. Then p(Z2) + p(Z3) = w + 2h − h1 =

54 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

ρh+2h− α
α+β

h = h(ρ+2− α
α+β

). Since α+β = 1−γ, α
α+β

= 1−γ−β
1−γ = 1− β

1−γ .
Then, p(Z2) + p(Z3) = h(ρ + 1 + β

1−γ). Moreover, s(Z2) = whβ = βρh2 and
s(Z3) = whγ = γρh2. Thus, with f defined as in Lemma 1.22,

p(Z2) + p(Z3)

2(
√
s(Z2) +

√
s(Z3))

=
ρ+ 1 + β

1−γ

2
√
ρ(
√
β +
√
γ)

= f(ρ, β, γ)

Since 1 − β − γ = α > 1/5 and γρ = ρ s−s
′

s
≤ 2/5, we can apply Lemma 1.22

and obtain our result.

Let us now move to Case (B), i.e. k = m.
Case (B1) (lines 17 and 18): NRRP returns a single simple zone Z2

defined by R1, Z2 = Square(R, s′/s). In this case, Lemma 1.24 proves that
p(Z2) ≤ 2√

3
× 2
√
s(Z2).

Lemma 1.24. Let R be a rectangle. If α ≤ 1 − 3(ρ(R)+1)2

16ρ(R)
and R1, Z2 =

Square(R,α), then p(Z2)

2
√
Z2
≤ 2√

3
.

Proof. Let us suppose, without loss of generality that w = w(R) ≥ h(R) = h
and then ρ = ρ(R) = w/h. If R1, Z2 = Square(R,α), then R(Z2) = R and
p(Z2) = w+h = (ρ+1)h. In the same time, s(Z2) = (1−α)s(R) = ρ(1−α)h2.
Then,

p(Z2)

2
√
Z2

=
ρ+ 1

2
√
ρ(1− α)

.

As x 7→ 1√
1−x is a increasing function on [0, 1[and α ≤ 1− 3(ρ(R)+1)2

16ρ(R)
, we have

p(Z2)

2
√
Z2

=
ρ+ 1

2
√
ρ(1− α)

≤ ρ+ 1

2
√
ρ(1− 1 + 3(ρ+1)2

16ρ
)
.

Therefore,
p(Z2)

2
√
Z2

≤ ρ+ 1

2
√

3(ρ+1)2

16

=
2√
3
.

In the rest of the cases, (1.2) applies and

13/64 ≤ ρ− 3(ρ+ 1)2

16
< ρ

s′

s
< 2/5.

Let us first start with Case (B2-b) (lines 42 to 48), we will show later
that other cases are dominated by these ones.

Lemma 1.25 justifies the choice between performing successively Guillotine
and Square (Lines 42 to 45) or Superposition (Lines 47 and 48). In both
cases, there are exactly two simple zones: Z2 and Z3 in the first case, Z ′2 and
Z ′3 in the second one (see Figure 1.32).

On the Effect of Replication of Input Files 55

1.4. NRRP (Non-Rectangular Recursive Partitioning)

Lemma 1.25. Let R be a rectangle, ρ = ρ(R), α such that 1 − 3(ρ+1)2

16ρ
<

α < 2
5ρ

and ε be such that 0 ≤ ε ≤ 2ρα2

5
. Let R′, Z3 = Guillotine(R,α),

R1, Z2 = Square(R′, ε/α) and R′1, Z2, Z
′
3 = Superposition(R,α, ε). Then,

• If ε ≤ (1−
√
1−ρα)2
ρ

then p(Z2) + p(Z3) ≤ p(Z ′2) + p(Z ′3).

• Otherwise p(Z2) + p(Z3) ≥ p(Z ′2) + p(Z ′3).

R1

Z2 Z3

w

w1

h

R′1

Z ′2
Z ′3

w

w′1

h

h′1

h− h′1

Figure 1.32: Case (B2-b)

Proof. Let us suppose, without loss of generality, that w = w(R) ≥ h(R) = h.
Let us denote w1 = w(Z2), w′1 = w(Z ′2) and h′1 = h(R′1) = w(R′1) and, by
construction, h(Z2) = h(Z3) = h(Z ′3) = h, h(Z ′2) = h − h′1, w(Z3) = w − w1

and w(Z ′3) = w − h′1 (see Figure 1.32). Trivially,

p(Z2) + p(Z3) = w1 + h+ w − w1 + h = (ρ+ 2)h

and

p(Z ′2) + p(Z ′3) = w′1 + h− h′1 + w − h′1 + h

= (ρ+ 2)h+ w′1 − 2h′1
= p(Z2) + p(Z3) + w′1 − 2h′1.

Thus, p(Z2) + p(Z3) ≤ p(Z ′2) + p(Z ′3) ⇐⇒ w′1 − 2h′1 ≥ 0. Yet, by definition,
h′21 = s(R′1) = εwh, then h′1 =

√
ρε × h. Moreover, w′1(h − h′1) = s(Z ′2) =

(α− ε)s(R). Thus, w′1 = ρ(α−ε)
1−√ρεh and finally

w′1 − 2h′1 =

(
ρ(α− ε)
1−√ρε

− 2
√
ρε

)
h.

56 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Hence,

p(Z2) + p(Z3) ≤ p(Z ′2) + p(Z ′3)⇐⇒
ρ(α− ε)
1−√ρε

− 2
√
ρε ≥ 0

⇐⇒ 2
√
ρε ≤ ρ(α− ε)

1−√ρε
⇐⇒ 2

√
ρε− 2ρε ≤ (α− ε)ρ

⇐⇒ 2
√
ρε ≤ (α + ε)ρ

⇐⇒ 2
√
ε ≤ (α + ε)

√
ρ

⇐⇒ −ε√ρ+ 2
√
ε− α√ρ ≤ 0.

Moreover, x 7→ −√ρx2 + 2x− α√ρ is positive over [1−
√
1−αρ√
ρ

, 1+
√
1−αρ√
ρ

]. Since
1+
√
1−αρ√
ρ
≥ 1√

ρ
≥
√

2
5
and
√
ε ≤ α ≤ 2/5 then, in any case

√
ε ≤ 1+

√
1−αρ√
ρ

. So,

p(Z2) + p(Z3) ≤ p(Z ′2) + p(Z ′3)⇐⇒
√
ε ≤ 1−

√
1− αρ
√
ρ

⇐⇒ ε ≤
(1−

√
1− ρ(R)α)2

ρ
,

what achieves the proof of Lemma 1.25.

In the first case (lines 42 to 45),

0 ≤ ρ
s′′

s
≤ (1−

√
1− ρ(R)α)2.

In this case, Lemma 1.27 applies (with α = s′/s and ε = s′′/s, where the
bounds on α comes from (1.2)) and proves claimed result. Lemma 1.26 is a
technical lemma needed for the proof of Lemma 1.27.

Lemma 1.26. Let f(x, y, z) = x+2
2(
√
y−z+

√
x−y) . Then, for x ∈ [1, 5/2], y ∈

[x− 3(x+1)2

16
, 2/5] and z ∈ [0, (1−

√
1− y)2],

f(x, y, z) ≤ 2√
3
.

Proof. First let us observe that f increases with z. Therefore, ∀x, y,

f(x, y, z) ≤ f(x, y, (1−
√

1− y)2)

≤ x+ 2

2(
√
y − (1−

√
1− y)2 +

√
x− y)

≤ x+ 2

2(
√
y − 1 + 2

√
1− y − (1− y) +

√
x− y)

≤ x+ 2

2(
√

2(
√

1− y − (1− y)) +
√
x− y)

.

On the Effect of Replication of Input Files 57

1.4. NRRP (Non-Rectangular Recursive Partitioning)

In the following, let us denote zmax = (1−
√

1− y)2.
Let us consider gx(y) =

√
2(
√

1− y − (1− y))+
√
x− y. Successive deriva-

tions lead to

g′′x(y) = − 1

4(x− y)3/2
−

(1− 1
2
√
1−y)2

2
√

2(
√

1− y − (1− y))3/2
− 1

4
√

2(1− y)3/2
√√

1− y − (1− y)
.

Therefore, on y ∈ [x− 3(x+1)2

16
, 2/5], gx(y) ≤ 0 and gx is concave.

Then for all y ∈ [x− 3(x+1)2

16
, 2/5], gx(y) ≥ min(gx(x− 3(x+1)2

16
), gx(2/5)).

Let us first suppose that min(gx(x− 3(x+1)2

16
), gx(2/5)) = gx(2/5). Then,

f(x, y, z) ≤ x+ 2

2(
√

2(
√

1− y − (1− y)) +
√
x− y)

≤ x+ 2

2gx(y)

≤ x+ 2

2gx(2/5)

≤ x+ 2

2(
√
x− 2/5 +

√
2
√√

3/5− 3/5)
.

Let us denote A =
√

2
√√

3/5− 3/5. Let us prove that G1(x) = x+2

2(
√
x−2/5+A)

is inferior or equal to 2√
3
for x ∈ [1, 5/2]. One can prove that

G′1(x) =
x− 14/5 + 2A

√
x− 2/5

4
√
x− 2/5(

√
x− 2/5 + A)2

.

Then G′1(x) ≥ 0 is equivalent to x−14/5+2A
√
x− 2/5 ≥ 0. As ρ ≤ 14/5,

it is equivalent to 2A
√
x− 2/5 ≥ 14/5−x which is equivalent to 4A2(x−2/5) ≥

196/25− 28/5x+ x2. By replacing A2 by 2(
√

3/5− 3/5) we obtain,

G′1(x) ≥ 0⇐⇒ −x2 + (8

√
3

5
+

4

5
)x− (

16
√

3

5
√

5
+

148

25
) ≥ 0.

One can prove that this is equivalent to x ≥ 2(1+2
√
15)

5
− 4

√
6

5
> 1 and therefore

G1 is decreasing on [1, 2(1+2
√
15)

5
− 4
√
6

5
] and increasing on [2(1+2

√
15)

5
− 4
√
6

5
, 5/2].

Therefore G1(x) ≤ max(G1(1), G1(5/2)). As we have

G1(1) =
3
√

5

2(
√

3 +
√

2(
√

15− 3))
<

2√
3

58 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

G1(5/2) =
9
√

5

2
√

2(
√

21 + 2
√

(
√

15− 3))
<

2√
3
.

We can deduce that G1(x) ≤ 2√
3
and, if min(gx(x− 3(x+1)2

16
), gx(2/5)) = gx(2/5),

then f(x, y, z) ≤ 2√
3
.

Let us now suppose that min(gx(x − 3(x+1)2

16
), gx(2/5)) = gx(x − 3(x+1)2

16
).

Then,

f(x, y, z) ≤ x+ 2

2(
√

2(
√

1− y − (1− y)) +
√
x− y)

≤ x+ 2

2gx(y)

≤ x+ 2

2gx(x− 3(x+1)2

16
)

≤ x+ 2

2(
√

3(x+1)2

16
+
√

2(
√

1− y − (1− y)))

≤ 2√
3
× x+ 2

x+ 1 + 4
√
2√
3

√√
1− y − (1− y)

= G2(x).

Hence,

G2(x) ≤ 2√
3
⇐⇒ x+ 2 ≤ x+ 1 +

4
√

2√
3

√√
1− y − (1− y)

⇐⇒ 1 ≤ 4
√

2√
3

√√
1− y − (1− y)

⇐⇒ 1 ≤ 32

3
(
√

1− y − (1− y)).

If X =
√

1− y, then,

G2(x) ≤ 2√
3
⇐⇒ 1 ≤ 32

3
(X −X2)

⇐⇒ −32

3
X2 +

32

3
X − 1 ≥ 0.

Above inequality is equivalent to

1

2
−
√

10

8
≤ X ≤ 1

2
+

√
10

8

and furthermore, is equivalent to

1−

(
1

2
+

√
10

8

)2

≤ y ≤ 1−

(
1

2
−
√

10

8

)2

.

On the Effect of Replication of Input Files 59

1.4. NRRP (Non-Rectangular Recursive Partitioning)

As 1 − (1
2

+
√
10
8

)2 ≤ 13/64 ≤ y and 1 − (1
2
−
√
10
8

)2 ≥ 2/5 ≥ y, then for all x,
G2(x) ≤ 2√

3
and we have our result.

So, in any case, we prove that f(x, y, z) ≤ 2√
3
.

Lemma 1.27. Let R be a rectangle, ρ = ρ(R) and α such that 1 − 3(ρ+1)2

16ρ
<

α < 2
5ρ

and let ε be such that 0 ≤ ρε ≤ (1 −
√

1− ρα)2. Let us denote
R′, Z3 = Guillotine(R,α) and R1, Z2 = Square(R′, ε/α). Then,

p(Z2) + p(Z3)

2(
√
s(Z2) +

√
s(Z3))

≤ 2√
3
.

Proof. With the same notations as in the proof of Lemma 1.25, p(Z2)+p(Z3) =
(ρ+2)h. Moreover, s(Z2) = (α−ε)s(R) = ρ(α−ε)h2 and s(Z3) = (1−α)s(R) =
ρ(1− α)h2. Then,

p(Z2) + p(Z3)

2(
√
s(Z2) +

√
s(Z3))

=
ρ+ 2

2(
√
ρ(α− ε) +

√
ρ(1− α))

.

We can thus use Lemma 1.26 with x = ρ, y = αρ and z = ερ, and we
obtain claimed result.

In the other case (lines 47 and 48), since

(1−
√

1− ρ(R)α)2 ≤ ρ
s′′

s
<

2ρs′2

5s2
,

Lemma 1.29 applies and achieves the proof. Lemma 1.28 is a technical lemma
needed for the proof of Lemma 1.29.

Lemma 1.28. For any fixed x, y such that 1 ≤ x ≤ 5
2
and 1

5
≤ y ≤ 2

5
, consider

f(z) = x+2−B(y,z)√
x−y+

√
y−z , where B(y, z) = 2

√
z− y−z

1−
√
z
, and denote z0 = (1−

√
1− y)2

such that B(y, z0) = 0. Then for all z such that z0 ≤ z ≤ 2y2

5
, f(z) ≤ f(z0).

Proof. Computing f(z0)− f(z) yields to

f(z0)−f(z) =
(x+ 2)(

√
x− y +

√
y − z)− (x+ 2−B(z))(

√
x− y +

√
y − z0)

(
√
x− y +

√
y − z)(

√
x− y +

√
y − z0)

.

Hence f(z0)−f(z) has same sign as g(z) = B(z)(
√
x− y+

√
y − z0)− (x+

2)(
√
y − z0 −

√
y − z). We note C(x, y) =

√
x− y +

√
y − z0, so that we can

write the derivative g′(z) = B′(z)C(x, y)− x+2
2
√
y−z .

Let us first note that, given the bounds on x and y, C(x, y) ≥
√
x− y ≥√

3
5
, and x + 2 ≤ 7

2
. Since we have z ≤ 2y2

5
, we get y − z ≥ y(1 − 2y

5
) ≥

1
5
(1− 4

25
) ≥ 1

6
, which yields to 1

2
√
y−z ≤

√
6
2
.

Similarly, the bounds on y provide the following bounds on
√
z,

60 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

•
√
z ≥ √z0 = 1−

√
1− y ≥ 1−

√
4
5
because y ≥ 1

5

•
√
z ≤ y

√
2
5
≤ ζ = 2

5

√
2
5
because y ≤ 2

5
.

Computing B′(z) gives B′(z) = 2−y−
√
z(2−

√
z)√

z(1−
√
z)2

= 2−y√
z(1−

√
z)2
− 2−

√
z

(1−
√
z)2

. A
simple analysis shows that both u 7→ 1

u(1−u)2 and u 7→ − 2−u
(1−u)2 are decreasing

on I = [1 −
√

4
5
, ζ]. This implies that B′(z) ≥ B′(ζ2). Together with y ≤ 2

5
,

this yields to B′(z) ≥ 2− 2
5
+ζ(2−ζ)

ζ(1−ζ)2 ≥ 8.

Putting all together provides g′(z) ≥ 8
√

3
5
− 9

2

√
6
2
≥ 0. Hence g is an

increasing function with z, and since g(z0) = 0 by construction, we get f(z0)−
f(z) ≥ 0 for all z ≥ z0.

Lemma 1.29. Let R be a rectangle with ρ = ρ(R), and

• α such that 1− 3(ρ+1)2

16ρ
< α < 2

5ρ

• ε such that (1−
√

1− ρα)2 ≤ ρε ≤ 2ρα2

5

• R1, Z2, Z3 = Superposition(R,α, ε).

Then,
p(Z2) + p(Z3)

2(
√
s(Z2) +

√
s(Z3))

≤ 2√
3
.

Proof. With the same notations as in the proof of Lemma 1.25 (see on the
right of Figure 1.32),

p(Z2) + p(Z3) = (ρ+ 2)h+ w′1 − 2h′1

= (ρ+ 2)h+ (
ρ(α− ε)
1−√ρε

− 2
√
ρε)h

= (ρ+ 2 +
ρ(α− ε)
1−√ρε

− 2
√
ρε)h.

Moreover, s(Z2) = (α − ε)s(R) = ρ(α − ε)h2 and s(Z3) = (1 − α)s(R) =
ρ(1− α)h2, so that

p(Z2) + p(Z3)

2(
√
s(Z2) +

√
s(Z3))

=
ρ+ 2 + ρ(α−ε)

1−√ρε − 2
√
ρε

2(
√
ρ(α− ε) +

√
ρ(1− α))

.

If we set x = ρ, y = αρ and z = ερ and B(y, z) = 2
√
z − y−z

1−
√
z
, then we

can use Lemma 1.28 to prove that ∀x, y the worst case happens when ερ =
(1 −

√
1− αρ)2, which implies ρ(α−ε)

1−√ρε = 2
√
ρε. We can thus use Lemma 1.26

to conclude the proof.

On the Effect of Replication of Input Files 61

1.4. NRRP (Non-Rectangular Recursive Partitioning)

R1

Z2
Z ′

R

(a)

Z ′

R

(b)

Figure 1.33: Case (B2-a1) and Case (B2-a2′)

Case (B2-a1) (Lines 24-25) and Case (B2-a2′) (Lines 29-31) are
presented on Figure 1.33 and Case (B2-a2′′) (Lines 34-36 and 38-40) is
presented on Figure 1.34.

First, let us note that all four cases contain a large zone, denoted Z ′, and a
set of smaller zones on the side. Among these smaller zones, there is at most
one simple zone included in a rectangle whose aspect ratio is larger than 5/2.
Therefore, the other zones are either composed (and thus not considered here)
or their aspect ratio is smaller than 5/2 (which thanks to Lemma 1.3 yields
the desired bound on the cost). The idea of the rest of the proof is to group
this small zone with the large zone Z ′ and to show that their combined cost
satisfies the bound.

R1

Z2

Z3

Z ′

R

(a)

R1

Z2

Z3

Z ′

R

(b)

Figure 1.34: Case (B2-a2′′)

A general proof can be obtained thanks to the remark that since small zones
which are correct are not taken into account, all four cases can be reduced to
one case, which is described in Figure 1.35, where Z1 is the rectangle whose
aspect ratio is "too large". Then, a general result expressed in Lemma 1.30
shows that all of these cases have a better cost ratio than the case (B2b) shown
on Figure 1.32, what concludes the proof that p(Z1)+p(Z′)

2(
√
s(Z1)+

√
s(Z′))

≤ 2√
3
.

62 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Z1
Z ′

w

w1

h
h1

Figure 1.35: Subproblem studied in Lemma 1.30.

It only remains to show that all cases satisfy the assumptions of Lemma 1.30.
To prove ρ(Z1) ≥ 4

3
, we can actually prove ρ(Z1) > 21/10. In cases (B2-a1)

and (B2-a2′), the question is not raised anyway unless ρ(Z1) > 5/2. In case
(B2-a2′′), ρ(Z1) ≤ 21/10 would imply that sm−2 ≤ sm−1 ≤ 21s′

s
and then

s′′′ ≥ 2s′

5s
, what is a contradiction with the assumption s′′′ < 2s′

5s
. In addition

s(Z ′) = s − s′ ≥ s − s(1 − 3(ρ(R)+1)2

16ρ(R)
) and s = ρw2. Hence we can indeed use

Lemma 1.30 to solve these cases (the case in Figure 1.34(a) does not exactly
reduce like the others, but Lemma 1.30 and its proof are adaptable to this
case).

Lemma 1.30. Let Z1 and Z ′ be as depicted in Figure 1.35. If ρ(Z1) = h1
w1
≥

4/3 and s(Z′)
h2
≥ 3(ρ(R)+1)2

16
, then p(Z1)+p(Z′)

2(
√
s(Z1)+

√
s(Z2))

is maximum when h1 = h.

Proof. Let us denote x = ρ(Z1). Trivially, p(Z1) + p(Z ′) = w1(
w+h
w1

+ 1 +

x) and
√
s(Z1) +

√
s(Z ′) = w1(

√
s(Z′)

w1
+
√
x). Therefore, p(Z1)+p(Z′)

2(
√
s(Z1)+

√
s(Z′)

=

w+h
w1

+1+x

2(

√
s(Z′)
w1

+
√
x)

= f(x). f ′(x) =
2

√
s(Z′)
w1

√
x+x−w+h

w1
+1

4
√
x(

√
s(Z′)
w1

+
√
x)2

and therefore f ′(x) ≥ 0 is

equivalent to 2

√
s(Z′)

w1

√
x + x − (w+h

w1
+ 1) ≥ 0. Since x ≥ 1, we have to prove

that 2
√
s(Z ′)

√
x−(w+h) ≥ 0. Let us denote ρ = ρ(R), so that w+h = (ρ+1)h.

Let us prove that 2
√
s(Z ′)

√
x− (ρ+ 1)h ≥ 0.

2
√
s(Z ′)

√
x− (ρ+ 1)h ≥ 0⇐⇒ 2

√
s(Z ′)

√
x ≥ (ρ+ 1)h

⇐⇒ 4s(Z ′)x ≥ (ρ+ 1)h2

⇐⇒ x
s(Z ′)

h2
≥ (ρ+ 1)2

4
.

Since we assumed that x ≥ 4/3 and s(Z′)
h2
≥ 3(ρ+1)2

16
, we have x s(Z

′)
h2
≥ (ρ+1)2

4

and we obtain the result claimed above.

On the Effect of Replication of Input Files 63

1.4. NRRP (Non-Rectangular Recursive Partitioning)

Therefore, f is increasing with x, and, when w1 is fixed, the cost ratio is
maximum when h1 = h.

Case (B2-c) (Lines 50-51) can been seen as the extremal case of Case
(B2-a2′′-2) (s(R1) → 0) and is thus covered by its study (worst case scenario
is when s(R1) increase).

This completes the proof of all possible cases of NRRP and therefore the
proof of Theorem 1.20.

Note that the bound is tight, the worst case scenario is more or less the
same than the one of SNRRP, see Figure 1.36.

Figure 1.36: (Reminder) Worst case scenario for SNRRP and NRRP.

Complexity

Let us first consider the cost of NRRP without the Packing routine. Each
routine (Guillotine, Tripartition, Square, Superposition) induces O(1)
operations. Therefore the only costs during a call of NRRP are the recursive
calls and the search for the smallest k such that

∑k
i=1 si ≥

2s
5ρ
. With a O(m)

pre-computation of the partial sums
∑j

i=1 si (with j ∈ [1,m]) before the first
call of NRRP each continuous partial sum can be done with O(1) operations
and therefore the search for the k can be done in O(logm) with binary search.
Trivially, there are at most m calls of NRRP (the size of the instance strictly
decreases at each recursive call) and thus the complexity of NRRP without the
Packing routine is O(m logm). Note that the same analysis applies for RRP
and SNRRP.

The evaluation of the cost of Packing routine is a bit more complex. Let
us assume that Packing is used at each call of NRRP and let C(m) denote
its cost for an instance of size m. During a call of Packing, the instance is
split into k ∈ [2,m] instances, each of size xi such that

∑m
i=1 xi = m. For the

same pre-computation of the partial sums as before we can do splitting in k−1
binary searches each of cost λ logm where λ is a given constant. Thus

C(m) ≤ λ(k − 1) logm+
k∑
i=1

C(xi),

64 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

where C(1) = 1.

Lemma 1.31. C(m) ≤ λm log(m) +m.

Proof. First let us prove the following result: for all integers (m, j) such that
1 ≤ j < m, (m−j) log(m−j)+j log(j) ≤ (m−1) log(m−1). For this purpose
let us consider f(x) = (m − x) log(m − x) + x log(x) defined on [1,m − 1].
f ′(x) = − log(m− x)− 1 + log(x) + 1 = log

(
x

m−x

)
. Thus,

f ′(x) ≥ 0⇔ x

m− x
≥ 1⇔ x ≥ m

2
.

Hence f is decreasing on [1, m
2

] and increasing on [m
2
,m − 1] and therefore

f(x) ≤ max(f(1), f(m− 1)) = (m− 1) log(m− 1).
Let us now prove Lemma 1.31 by induction on m.
For m = 1, C(1) = 1 ≤ λ× 1× log(1) + 1 and that proves the case.
Otherwise let us suppose that the result holds true for everym′ ∈ [1,m−1].

In this case,

C(m) = λ(k − 1) log(m) +
k∑
i=1

C(xi)

≤ λ(k − 1) log(m) +
k∑
i=1

(λxi log(xi) + xi)

≤ λ(k − 1) log(m) + λ
k∑
i=1

(xi log(xi)) +m.

To end the proof, let us prove that
∑k

i=1 xi log(xi) ≤ (m−k+1) log(m−k+1) ≤
(m − k + 1) log(m). The result can be proved by induction on k. The result
holds trivially true for k = 1. Otherwise, assume the result being true for
k − 1, then

k∑
i=1

xi log(xi) =
k−1∑
i=1

(xi log(xi)) + xk log(xk)

≤

(
k−1∑
i=1

xi − k + 2

)
log

(
k−1∑
i=1

xi − k + 2

)
+ xk log(xk)

≤

(
k∑
i=1

xi − k + 1

)
log

(
k∑
i=1

xi − k + 1

)
≤ (m− k + 1) log(m− k + 1).

On the Effect of Replication of Input Files 65

1.5. SFCP (Space-Filling Curve Partitioning)

And we can finally conclude that

C(m) ≤ λ(k − 1) log(m) + λ

k∑
i=1

(xi log(xi)) +m

≤ λ(k − 1) log(m) + λ(m− k + 1) log(m− k + 1) +m

≤ λ(k − 1) log(m) + λ(m− k + 1) log(m) +m

C(m) ≤ λm log(m) +m.

Thus, with Lemma 1.31, the total cost of the Packing routine calls is proven
to be O(m logm), thus the claimed complexity of NRRP.

Theorem 1.32. NRRP (R, {s1, . . . , sm}) runs in at most O(m logm) opera-
tions.

1.5 SFCP (Space-Filling Curve Partitioning)
In this section, we present SFCP, another algorithm to solve the PERI-SUM
problem. Even if its approximation ratio (3

√
3√

11
' 1.57) is worse than the ones

of NRRP or RRP, this study is interesting for two reasons:

• Space-filling curves (main ingredient of SFCP) are a very common tool
to preserve data-locality, PERI-SUM aims at the same goal. Hence it is
of interest to provide analysis of an algorithm using space-filling curve
to solve PERI-SUM.

• SFCP is designed to solve the discrete variant of PERI-SUM without
additional rounding or adaptation like RRP-Accurate (it can also be
used to solve PERI-SUM in its original version). Therefore, this is the
only known guaranteed approximation ratio for this problem.

1.5.1 Presentation of Space-Filling Curves

We considered a space-filling curve, i.e. a bijective function from [1, N]2 to
[1, N2] and more precisely the Hilbert space-filling curve Hilbert [1891], see
Figure 1.37. Among the space-filling curves, Hilbert has the property to be
continuous and to have a fractal approach (the filling is made locally at every
scale). Then it is a classical technique to preserve data locality while enforcing
a good load balancing (Deveci et al. [2016]; Heinecke and Bader [2008]; Manne
and Sørevik [1996]; Pilkington et al. [1994]).

In what follows, we consider an N × N square and suppose that N is a
power of 2. Note that we can return to PERI-SUM by simply rescaling the

66 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

1 2 3 4

1

2

3

4

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

Figure 1.37: Hilbert’s curve for N = 4 and N = 8.

square (in particular if we divide the perimeters of the zone built by SFCP on
an N × N square by N , we have the perimeters for the [0, 1] × [0, 1] square).
Note also that we now consider a discrete problem and no longer a continuous
one (there are N2 elements on the square we allocate to processors). Note
that the notations from PERI-SUM can be adapted easily. If Z is a subset of
[1, N] × [1, N], now Π1(Z) = {i, (i, j) ∈ Z} and Π2(Z) = {j, (i, j) ∈ Z} are
the projections of Z in this case (and πi(Z) = |Πi(Z)| for i ∈ {1, 2}).

Let us first note, as described in Lemma 1.33, that the projection of the
union of two subsets of [1, N]×[1, N] is smaller than the sum of the projections,
even for disjoint subsets.

Lemma 1.33. Let X and Y be two subsets of [1, N]2. Then, ∀i ∈ [1, 2],

πi(X ∪ Y) ≤ πi(X) + πi(Y).

Proof. We prove here the property for π1 and we can prove it similarly for π2.
We have

Π1(X ∪ Y) = {i, (i, j) ∈ X ∪ Y }
= {i, (i, j) ∈ X} ∪ {i, (i, j) ∈ Y }
= Π1(X) ∪ Π1(Y).

Therefore,

π1(X∪Y) = |Π1(X∪Y)| = |Π1(X)∪Π1(Y)| ≤ |Π1(X)|+|Π1(Y)| = π1(X)+π1(Y).

Let us now define a key element of this section: the q-squares. They are
important to define the key properties we are looking for in the space-filling
curves and for the proof of the approximation ratio.

On the Effect of Replication of Input Files 67

1.5. SFCP (Space-Filling Curve Partitioning)

Definition 1.1. Let us denote as q-squares all the subsquares of the square
[1, N] × [1, N] which are of the form [1 + n1 × 2q, (n1 + 1) × 2q] × [1 + n2 ×
2q, (n2 + 1)× 2q] where n1, n2 ∈ [0, N/2q − 1]2.

Intuitively q-squares are partitioning a square into a grid of N/2q × N/2q
(see Figure 1.38 for a better visualization).

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

Figure 1.38: Here N = 8 and the filled-in-black areas are (from the smallest
one to the biggest one) 0-square, 1-square and 2-square. However the dashed
area is not a q-square.

The study we propose does not only concern the Hilbert’s curve, even if we
use this curve in particular for illustration and implementation. It may apply
to every space-filling curve that can be seen as a function H : [1, N2]→ [1, N]2

that fulfils the following two conditions.

Property 1.1. If Sq is a q-square, then there exists an integer n such that
H([n, n+ 4q − 1]) = Sq.

Property 1.2. For all n ∈ [1, N2−1], if (i1, j1) = H(n) and (i2, j2) = H(n+1),
then i1 = i2 or j1 = j2.

The first one means that the path through the square [1, N]2 is built, at
every level, one q-square after an other. The second means that there are no
diagonal moves. From these two properties we can conclude than the second
one is transferred at any level to the q-squares, which is described in the
following corollary.

Corollary 1.34. Let H be a function from [1, N2] to [1, N]2 which satisfies
Property 1.1 and Property 1.2. Let q be in N and S1, S2 be two q-squares with
S1 = I1× J1 and S2 = I2× J2. If there is a k such that H([k, k+ 4q− 1]) = S1

and H([k + 4q, k + 2× 4q − 1]) = S2, then either I1 = I2 or J1 = J2.

Proof. First if S1 = I1×J1 and S2 = I2×J2 are two q-squares, then I1∩I2 6= ∅
(respectively J1 ∩ J2 6= ∅) implies I1 = I2 (respectively J1 = J2). This can be

68 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

proved simply since I1 = [1 +n1× 2q, (n1 + 1)× 2q] and I ′1 = [1 +n′1× 2q, (n′1 +
1) × 2q] with n1, n

′
1 ∈ [0, N/2q − 1]2 and thus if n1 6= n′1 there could be no

intersection.
Let us now prove Corollary 1.34 by induction on q.
The case q = 0 corresponds exactly to Property 1.2 and therefore holds

true.
Let us suppose that the result holds true for q − 1. Let S1 = I1 × J1 and

S2 = I2 × J2 be two q-squares and k such that H([k, k + 4q − 1]) = S1 and
H([k + 4q, k + 2× 4q − 1]) = S2. Thanks to Property 1.1 if S1,1, S1,2, S1,3 and
S1,4 are the (q − 1)-squares that compose S1, then there is k1, k2, k3 and k4
such that for all i ∈ {1, 2, 3, 4}, H([ki, ki+4q−1−1]) = S1,i. If we suppose that
k1 < k2 < k3 < k4, since

⋃
[ki, ki + 4q−1 − 1] = [k, k + 4q − 1], then,

• k1 = k

• ki = ki−1 + 4q−1 for 1 < i ≤ 4.

Similarly, let us define S2,1, S2,2, S2,3 and S2,4, (q − 1)-squares included in S2

and k′1, k′2, k′3, k′4 equivalent to k1, k2, k3, k4 for S2,1, S2,2, S2,3 and S2,4. Similarly

• k′1 = k + 4q

• k′i = k′i−1 + 4q−1 for 1 < i ≤ 4.

In addition

k + 4q = k1 + 4× 4q−1 = k2 + 3× 4q−1 = k3 + 2× 4q−1 = k4 + 4q−1

and then H([k4, k4+4q−1−1]) = S1,4 and H([k4+4q−1, k4+2×4q−1−1]) = S2,1.
Let us denote S1,4 = I ′1 × J ′1 and S2,1 = I ′2 × J ′2 then, by assumption I ′1 = I ′2
or J ′1 = J ′2. Thus I1 ∩ I2 6= ∅ or J1 ∩ J2 6= ∅ and therefore I1 = I2 or J1 = J2
what achieves the proof for q.

Relying on H with such properties, SFCP simply makes the partitioning
going through the squares until we reach the desired area, as described in
Algorithm 1.10.

1.5.2 Approximation Ratio

We claim that SFCP is a 3
√
3√

11
-approximation (3

√
3√

11
' 1.57) algorithm for PERI-

SUM (Theorem 1.35), and prove this ratio in this section.

Theorem 1.35. SFCP is a 3
√
3√

11
-approximation algorithm for PERI-SUM.

On the Effect of Replication of Input Files 69

1.5. SFCP (Space-Filling Curve Partitioning)

Algorithm 1.10 : SFCP
Input : a set of integers {s1, . . . , sp} such that

∑
si = N2

Output : For each 1 ≤ i ≤ p, a zone Zi such that s(Zi) = si and⋃
Zi = [1, N]2

stot = 0
foreach k ∈ [1, p] do

Zk = H([stot, stot + sk])
stot = stot + sk + 1

Proof. Let us prove that the ratio holds for every zone Zk and therefore holds
for their sum (i.e. for all k, p(Zk)

2
√
sk
≤ ρ implies

∑
p(Zk)∑
2
√
sk
≤ ρ, see Lemma 1.21).

Let us focus on the study of general subsets of [1, N]× [1, N] that are the
images by H of an interval of [1, N2] (i.e. all the possible Zk for every possible
distribution of the {s1, . . . , sm}). In order to refine the analysis we distinguish
different kinds of q-squares.

Definition 1.2. Let Z be a subset of [1, N]2. A q-square Sq is said to be
completed by Z if Sq ⊆ Z. A q-square Sq is said to be partially completed by
Z if Sq ∩ Z 6= ∅ and Sq * Z.

Definition 1.3. Let Z be a subset of [1, N]2. Let us denote qZ as the largest
q such that there exists a q-square completed by Z.

For a better view of these two definitions see Figure 1.39, that also illus-
trates the statement of the next lemma, i.e. the fact that for every q there are
at most two partially-completed q-squares.

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

Figure 1.39: If the zone Z is the one defined by the red path, then the black
zone is a completed 2-square and the gray zones are partially completed 2-
squares. At the same time, in this case qZ = 2.

Lemma 1.36. Let Z be a subset of [1, N]2 such that there exists an interval
I of [1, N2] such that H(I) = Z. Then, for all q, at most two q-squares are
partially completed by Z.

70 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Proof. Let S1, S2, . . . , Sk be all the q-squares such that for i ∈ [1, k], Si∩Z 6= ∅.
By assumption on H (Property 1.1), for all i ∈ [1, k], there exists ni such that
Si = H([ni, ni + 4q − 1]). Let us assume that n1 < n2 < . . . < nk and let us
denote Ii = [ni, ni + 4q − 1]. Since H is bijective, we also know that for i 6= j,
nj /∈ Ii and, therefore, for all x, y, z ∈ Ii × Ij × Il, i < j < l implies x < y < z.
At the same time, we know that Z = H(I) where I is an interval of [1, N2].
By assumption, we know that there exists x1 and xk such that x1 ∈ I1 ∩ I
and xk ∈ Ik ∩ I. We know that x1 < xk and x1, xk ∈ I, then [x1, xk] ⊆ I. In
addition, as for all y ∈ Ij, with j such that 1 < j < k, x1 < y < xk, and then
y ∈ [x1, xk] which implies y ∈ I. Thus for all j ∈]1, k[, Sj ⊆ H(I) = Z and
therefore Sj is completed by Z. So we have proved that only S1 and Sk can
be partially completed by Z and so there are at most two partially completed
q-squares.

A direct consequence of Lemma 1.36 is that we can bound the number of
completed qZ-squares by 6 (see Figure 1.40 for a visualization of a case with 6
such squares).

Lemma 1.37. Let Z be a subset of [1, N]2 such that there exists an interval
I of [1, N2] such that H(I) = Z. Then there are at most 6 completed qZ-
squares and at most 2 partially completed qZ-squares and they fit in at most
two (qZ + 1)-squares.

Proof. The second statement is a direct corollary of Lemma 1.36. Indeed, if
Z fits in at least three (qZ + 1)-squares, then one of them, at least, must be
completed, which is a contradiction with the definition of qZ .

In order to prove the first statement, we can simply notice that a (q + 1)-
square consists of exactly 4 q-squares. Suppose now that Z has at least 7
completed qZ-squares. Then the only possible partition of these squares into
two (qZ + 1)-squares is one of these two (qZ + 1)-squares containing three
completed qZ-squares and the other one containing four completed qZ-squares.
Therefore this last one is also completed, which is in contradiction with the
definition of qZ .

The key point in this proof is the partially completed qZ-squares. Thanks
to Lemma 1.37 we know that there are at most two such squares. Let S1,Z and
S2,Z be the two qZ-squares partially completed by Z. Let nZ be the number
of completed qZ-squares and let si,Z =

|Si,Z∩Z|
4qZ

, i ∈ {1, 2}. si,Z represents the
fractions of S1,Z and S2,Z that are intersected by Z (both are in [0, 1[). We
have sZ = 4q(nZ + s1,Z + s2,Z).

The values π1(Z) and π2(Z) are more difficult to estimate. Let us first
define LZ =

p(Z\(S1,Z∪S2,Z))

2qZ
, the scaled size of the projections of the zones

defined by the qZ-squares completed by Z. Let us now define

x1,Z =
p(Z \ S2,Z)− p(Z \ (S1,Z ∪ S2,Z))

2qZ

On the Effect of Replication of Input Files 71

1.5. SFCP (Space-Filling Curve Partitioning)

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

Figure 1.40: In this case qZ = 1 and there are six completed 1-squares and two
partially completed 1-squares.

x2,Z =
p(Z \ S1,Z)− p(Z \ (S1,Z ∪ S2,Z))

2qZ
.

These two values are the parts of p(Z) that come exclusively from the partially
completed qZ-squares. A better view of these values can be found in Figure
1.41. However, as shown in Figure 1.41(c), there are some cases where the xi,Z
refers to the same data, therefore we have only an inequality (what is enough
to establish the bound). Hence p(Z) ≤ 2q(LZ + x1,Z + x2,Z).

x1,Z

x2,ZLZ

(a)

x1,ZLZ

(b)

x1,Z x2,Z

LZ

(c)

Figure 1.41: Illustrations of the previous definitions.

Therefore,

ρZ =
p(Z)

2
√
sZ
≤ 2qZ (LZ + x1,Z + x2,Z)

2
√

4qZ (nZ + s1,Z + s2,Z)
≤ LZ + x1,Z + x2,Z

2
√
nZ + s1,Z + s2,Z

.

Let us prove a result on the sizes of nZ and LZ .

72 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Lemma 1.38. LZ ≤ nZ + 1.

Proof. Let us prove this result by induction on nZ . If nZ = 1 then LZ = 2.
Indeed if nZ = 1 then Z \ (S1,Z ∪ S2,Z) is a single qZ-square. Therefore LZ =
2∗2qZ
2qZ

= 2.
Elsewhere assume that the result holds true for nZ = k and consider nZ =

k + 1. Let Z ′ be Z minus the last qZ-square of Z (in the order where the
Hilbert’s curve goes through them). nZ′ = nZ − 1 = k. Therefore LZ′ ≤
nZ′ + 1. At the same time Corollary 1.34 states that the removed qZ-square
shares at least one projection with Z ′. Therefore LZ − LZ′ ≤ 1, what leads to
LZ ≤ 2 + (nZ − 1) = nZ + 1.

Let us now establish a relation between xi,Z and si,Z . Let us define fq as
follows

fq(x) =


0 if q = 0 and x = 0
1
3

if q = 0 and x 6= 0
1
4
fq−1(2x) if q > 0 and x ≤ 1

2
1
4

+ 1
4
fq−1(2(x− 1

2
)) if q > 0 and x > 1

2

Let us first prove that fq is an increasing function that can be bounded, as
stated in Lemma 1.39.

Lemma 1.39. For all q and for all x, fq is a increasing function on [0, 1] and
for all x ∈ [0, 1], 1

3
x2 ≤ fq(x) ≤ 1

3
.

Proof. We first prove the inequality ∀x ∈ [0, 1], 1
3
x2 ≤ fq(x) ≤ 1

3
, by induction

on q. If q = 0 we have two cases: if x = 0, then 1
3
×x2 = 1

3
×0 = 0 = f0(0) ≤ 1

3
,

else 1
3
× x2 ≤ 1

3
= f0(x) ≤ 1

3
. Therefore, the property holds true for q = 0.

Let us suppose this holds true for q − 1. We also have two cases, x ≤ 1
2

and x > 1
2
. In the first case

fq(x) =
1

4
fq−1(2x) ≤ 1

4
× 1

3
≤ 1

3

and
fq(x) =

1

4
fq−1(2x) ≥ 1

4
× 1

3
(2x)2 ≥ 1

3
x2

In the second case

fq(x) =
1

4
+

1

4
fq−1(2(x− 1

2
)) ≤ 1

4
+

1

4
× 1

3
≤ 1

4
+

1

12
=

1

3

and

On the Effect of Replication of Input Files 73

1.5. SFCP (Space-Filling Curve Partitioning)

fq(x) = 1
4

+ 1
4
fq−1(2(x− 1

2
))

fq(x) ≥ 1
4

+ 1
4
× 1

3
(2x− 1)2

fq(x) ≥ 1
4

+ 1
4
× 1

3
(4x2 − 4x+ 1)

fq(x) ≥ 1
4

+ 1
3
x2 − x

3
+ 1

12

fq(x) ≥ 1
3
x2 + 1−x

3

fq(x) ≥ 1
3
x2.

For the increasing part we also use an induction on q. The fact is obvious for
q = 0. Let us suppose that for all x, y ∈ [0, 1]2, x ≤ y implies fq−1(x) ≤ fq−1(y).
If x ≤ y ≤ 1

2
, then

fq(x) =
1

4
fq−1(2x) ≤ 1

4
fq−1(2y) = fq(y).

If x ≤ 1
2
< y, then

fq(x) =
1

4
fq−1(2x) ≤ 1

4
≤ 1

4
+

1

4
fq−1(2(y − 1

2
)) = fq(y).

If 1
2
≤ x ≤ y, then

fq(x) =
1

4
+

1

4
fq−1(2(x− 1

2
)) ≤ 1

4
+

1

4
fq−1(2(y − 1

2
)) = fq(y),

what achieves the induction proof.

Let us now prove, as stated in Lemma 1.40, that fq is a function such that
si,Z ≥ fq(xi,Z), where q depends on the size of the q-square we are considering
(in practice q = qZ).

Lemma 1.40. Let Sq be a q-square. Let Z be a connected subset of [1, N] ×
[1, N] such that Z ∩ Sq 6= ∅, Z = H(I) and Z * Sq. Let x = π1(Z∩Sq)

2q
,

y = π2(Z∩Sq)
2q

and s = |Z∩Sq |
4q

. Then s ≥ fq(x) and s ≥ fq(y).

Proof. Let us prove this lemma by induction on q. If q = 0, we immediately
get x = 1, y = 1 and s = 1 (0-squares have an area of exactly one, so either
they are completed or they are not intersected at all). As f0(1) = 1

3
, then

s ≥ f0(x) and s ≥ f0(y).

Let us suppose that the property holds true for q − 1. Let us consider the
q-square as a subdivision of four (q−1)-squares. By hypothesis, and because of
Lemma 1.36 we know that at most one of these four squares can be partially
completed, the hypothesis Z * Sq ensuring that if there are two q-squares
partially completed by Z, the second one is outside of Sq. Therefore our
original q-square is composed of 0, 1, 2, 3 or 4 completed (q − 1)-squares plus
one or zero partially completed (q− 1)-square. Let us consider these subcases.
In Figure 1.43 one can see the different cases that will be considered. The
other cases can be solved by symmetry considerations or cannot occur, such
as the ones in Figure 1.42, which lead to a contradiction with Corollary 1.34.

74 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

1 2

1

2

x

y

(a)

1 2

1

2

x

y

(b)

Figure 1.42: Impossible cases, completed squares are in black, partially com-
pleted one is dashed

Let us consider the case depicted in Figure 1.43(a). In this case, there is one
partially completed (q−1)-square. Therefore, it can be observed that x, y ≤ 1

2
.

Therefore by rescaling x and y we can use the recurrence hypothesis. Indeed,
let Sq−1 by the dashed (q − 1)-square. One can observe that π1(Z ∩ Sq) =
π1(Z ∩ Sq−1), π2(Z ∩ Sq) = π2(Z ∩ Sq−1) and |Z ∩ Sq| = |Z ∩ Sq−1|. Therefore
if x′ = 2x, y′ = 2y and s′ = 4s, then x′ = π1(Z∩Sq−1)

2q−1 , y′ = π2(Z∩Sq−1)

2q−1 and
s′ = |Z∩Sq−1|

4q−1 and we can apply the recurrence statement with x′, y′ and s′.
Hence s′ ≥ fq−1(x

′) and s′ ≥ fq−1(y
′). By definition fq(x) = 1

4
fq−1(x

′) and
fq(y) = 1

4
fq−1(y

′) and then s ≥ fq−1(x) and s′ ≥ fq−1(y), thus the claimed
result holds true in this case.

Let us now consider the case depicted in Figure 1.43(b). We only represent
the case where there is a partially completed square (the other cases are solved
similarly by considering the last complete square as a partially completed one).
When there is a partially completed square, either x or y is strictly larger than
1
2
. We assume here that x > 1

2
and y = 1

2
. Let Sq−1 be the partial (q−1)-square

and Scq−1 be the completed one. Let x′ = π1(Z∩Sq−1)

2q−1 and s′ = |Z∩Sq−1|
2q−1 . Thanks

to Lemma 1.33,

x =
π1(Z ∩ Sq)

2q

x ≤
π1(Z ∩ Sq−1) + π1(Z ∩ Scq−1)

2q
.

Because Scq−1 is completed we have

x ≤
π1(Z ∩ Sq−1) + π1(S

c
q−1)

2q
,

x ≤ π1(Z ∩ Sq−1)
2q

+
2q−1

2q
,

x ≤ 1

2
x′ +

1

2
.

On the Effect of Replication of Input Files 75

1.5. SFCP (Space-Filling Curve Partitioning)

Similarly s = 1
4

+ 1
4
s′. In addition, by using the induction hypothesis on x′

and s′, fq−1(x′) ≤ s′. Hence fq−1(2(x − 1
2
)) ≤ fq−1(x

′) ≤ 4(s − 1
4
) what leads

to 1
4

+ 1
4
fq−1(2(x− 1

2
)) ≤ s and then fq(x) ≤ s. As x ≥ y, fq(y) ≤ s thanks to

Lemma 1.39, thus the claimed result holds true.

The cases depicted in Figure 1.43(c), Figure 1.43(d) and Figure 1.43(e) can
be solved easily. In all these cases one can observe that s ≥ 1

2
≥ 1

3
≥ fq(x) for

all x ∈ [0, 1]. The last inequality is given by Lemma 1.39. Therefore in these
cases, the result holds true.

1 2

1

2

x

y

(a)

1 2

1

2

x

y

(b)

1 2

1

2

x

y

(c)

1 2

1

2

x

y

(d)

1 2

1

2

x

y

(e)

Figure 1.43: Possible cases, completed squares are in black, partially completed
one is dashed.

An illustration of the intuition behind the recursive aspect of fq can be
seen on Figure 1.44. On the left figure, we are in the first case, i.e. x ≤ 1

2
.

One can observe that the zones to consider are the two dashed ones. We can
go even further and prove that we can consider only one of both because we
are looking for a lower bound. Therefore, the zone we have to consider is only
contained in one of the four sub-square and, after re-scaling x by multiplying
it by two, we can have this bound by considering fq−1.

The case where x > 1
2
, is illustrated on the right. For the same reasons, we

can consider the lower half of the square only. As x > 1
2
, we know that there

must be at least two squares that intersect Z. Using Property 1.1 and the
hypothesis stating that another square next to this one intersects Z, we know

76 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

that one of them is completed. This is represented on the figure (the black
zone is completed) so s ≥ 1

4
, and a bound on the area of the zone present in

the dashed region can be given by fq−1 (after a re-scaling of x− 1
2
).

1 2

1

2

x

1 2

1

2

x

Figure 1.44: A schema to understand the definition of fq.

The intuition behind f0(1) = 1
3
is that

∑+∞
k=1

1
4k

= 1
3
. Indeed, if we search

for the smallest s such that x can be equal to 1, we notice that this occurs
when A is made of a sequence of squares whose area is the quarter of the
precedent one. This case is depicted in Figure 1.45. In this case, for a given
q, one can observe that s = 1

4q
+
∑q

k=1
1
4k

whose limit, when q increase to
infinity, is

∑+∞
k=1

1
4k

= 1
3
. In addition, this is the smallest value which ensures

that Lemma 1.39 holds true.

1 2 3 4

1

2

3

4

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

Figure 1.45: The case where s is minimized while x is set to 1.

Thanks to Lemmas 1.39 and 1.40, we know that si,Z ≥ fqZ (xi,Z) ≥ 1
3
x2i,Z .

Therefore

ρZ ≤
LZ + x1,Z + x2,Z

2
√
nZ + s1,Z + s2,Z

≤ LZ + x1,Z + x2,Z

2
√
nZ + 1

3
(x21,Z + x22,Z)

.

On the Effect of Replication of Input Files 77

1.5. SFCP (Space-Filling Curve Partitioning)

Let us now consider the function g(x, y) = LZ+x+y

2
√
nZ+

1
3
(x2+y2)

. The following

lemma states that this function reaches its maximum at (1, 1).

Lemma 1.41. For all x, y ∈ [0, 1]2, g(x, y) ≤ g(1, 1).

Proof. Let us define hy, y ∈ [0, 1] as hy(x) =
nZ+

1
3
y2− 1

3
(LZ+y)x

2(nZ+
1
3
(x2+y2))3/2

for x ∈ [0, 1].

One can prove that ∂g
∂x

(x, y) = hy(x) and ∂g
∂y

(x, y) = hx(y). Easily, we can
observe that hy(x) ≥ 0 is equivalent to nZ + 1

3
y2 − (LZ + y)x ≥ 0. As x ≤ 1,

nZ + 1
3
y2 − 1

3
(LZ + y)x ≥ nZ + 1

3
y2 − 1

3
(LZ + y). Therefore if ∀y ∈ [0, 1],

nZ + 1
3
y2 − 1

3
(LZ + y) > 0, then ∀y ∈ [0, 1], hy(x) > 0. This can be done by

considering the polynomial P (y) = 1
3
y2 − 1

3
y + (nZ − LZ

3
), whose discriminant

is 1
9
− 4

3
(nZ − LZ

3
). Thanks to Lemma 1.38 LZ ≤ nZ + 1. By definition,

nZ ≥ 1. Therefore 3nZ ≥ LZ + 1. This leads to nZ − LZ
3
≥ 1

3
, what implies

1
9
− 4

3
(nZ− LZ

3
) ≤ −1

3
and hence P (y) > 0. We deduce that for all x, y ∈ [0, 1]2,

hy(x) > 0, and so are ∂g
∂x

(x, y) and ∂g
∂y

(x, y). Therefore, for all y ∈ [0, 1],
g(1, y) ≥ g(x, y) and for all x ∈ [0, 1], g(x, 1) ≥ g(x, y). So for all x, y ∈ [0, 1]2,
g(x, y) ≤ g(1, 1).

Thanks to Lemma 1.41,

ρZ ≤
LZ + 2

2
√
nZ + 2

3

.

Let us consider two cases: nZ ≤ 3 and nZ ≥ 4. In the first case, by using
Lemma 1.38, we have ρZ ≤ nZ+3

2
√
nZ+

2
3

, and, for nZ ≤ 3, nZ+3

2
√
nZ+

2
3

≤ 3
√
3√

11
.

For the second case, we use a less tight upper bound. We know that
LZ + x1,Z + x2,Z ≤ 6 and 2

√
nZ + 1

3
(x2 + y2) ≥ 2

√
nZ . Therefore ρZ ≤ 3√

nZ

and for nZ ≥ 4, 3√
nZ
≤ 3

2
≤ 3

√
3√

11
.

So, in any case, if Z1, . . . , Zp is the partition of [1, N]2 given by SFCP, then
for all k ∈ [1, p], ρZk ≤ 3

√
3√

11
what achieves the proof of Theorem 1.35.

Note that for an individual zone, the worst case is nZ = 3 and LZ = 4
(Figure 1.46(a)) and it can occur, notably in the case of Hilbert’ function, as
it is shown on Figure 1.46(b).

1.5.3 Complexity

The computation of Hilbert’s curve has been a problem studied for a long
time, see Butz [1971]; Breinholt and Schierz [1998] for example. We use the
implementation from Skilling et al. [2004] that provides for given i, j H−1(i, j)
in O(d logN) where d is the dimension (d = 2 here).

78 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

x1,Z = 1

x2,Z = 1LZ = 4

(a)

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

(b)

Figure 1.46: Worst case for an individual zone during the execution of SFCP.
Dashed squares are partially completed.

Therefore with a single pre-computation in O(m) to precompute for each
processor the portion of the image of H that is attributed to it (to compare
with the O(m2 logm) of ColumnBased and the O(m logm) of NRRP and asso-
ciated), we can allocate the whole square with a O(N2 logN logm) complexity
(versus O(N2) for the others).

1.6 Conclusion and Perspectives
In this chapter we presented, in Section 1.1, PERI-SUM, the square parti-
tioning problem we studied all along, and how it can be used to provide
communication avoiding matrix multiplication. Then, in Section 1.2, we ex-
plored the pre-existing studies on this particular problem: lower bound, NP-
Completeness, approximation algorithms (ColumnBased and RRP), optimal
solution for particular cases and dynamic strategy (MinCost). In Section 1.3
we justified the search of new approximation algorithm by showing that if static
strategies are not always reliable in practise they can be used as bases for ef-
ficient and cost-effective hybrid strategies. Next, in Section 1.4, we presented
our main result: the algorithm NRRP, an approximation algorithm with the
best-known ratio for this problem (2√

3
' 1.15). We also proposed a weaker

variant, SNRRP, and discussed possible improvements for divide-and-conquer
algorithms to solve PERI-SUM. Finally, in Section 1.5, we presented SFCP, a
space-filling-curve-based algorithms that is the only known algorithm designed
for the discrete variant of PERI-SUM with guaranteed approximation ratio.

If the current work on PERI-SUM and its close variants appears to be
consistent, there are still many possible additional problems to work on.

For example, mostly with a theoretical point of view, NRRP can probably
be improved. Let us recall that initially RRP (and SNRRP) aim at splitting
rectangles into rectangles with aspect ratios below 3. To design NRRP we

On the Effect of Replication of Input Files 79

1.6. Conclusion and Perspectives

change the aimed aspect ratio to a smaller value 5
2
. However this value, denoted

µ can be lowered again (down to 2) but it requires additional subcases (see
NRRP in comparison to RRP or SNRRP). By pushing this splitting logic, we
think we can design a (α+ ε)-approximation for every strictly positive ε. The
aimed α could be 3

2
√
2
' 1.06, the ratio between half-perimeter of a rectangle

with aspect ratio 2 and the lower bound of its half-perimeter. Note that this
is just an intuition, the new designed subcases might imply a larger constant
ratio.

Another possible improvement of PERI-SUM can be a task and communi-
cation heterogeneous version. More precisely, in this chapter (and also in the
whole thesis), each task Ti,j,k has the same computation time and each data
(Ai,k, Bk,j or Ci,j) has the same size. We can also consider a problem without
such assumption (we focus on the bi-dimensional version, omitting the k).

Problem 1.3 (PERI-SUM-HETEROGENEOUS). Let T = {ti,j, (i, j) ∈
[1, N]2} be a set of tasks, w be a weight function from T to R and wx, wy
be weight functions from [1, N] to R. Given a repartition {s1, . . . , sm} such
that

∑
si = w(T), find for each si a zone Zk ⊂ T such that w(Zk) = sk and⋃

Zk = T and minimizing

∑
k

 ∑
i,∃j,ti,j∈Zk

wx(i) +
∑

j,∃i,ti,j∈Zk

wy(j)

 .

Note that, in its more general form, the building of a repartition that
achieves minimal makespan, without communication consideration, is itself a
NP-complete problem (equivalent to Bin-Packing problem).

The first motivation to study PERI-SUM-HETEROGENEOUS is the sparse
matrix-multiplication. If we set the weights to 0 or 1 (1 if this is a non-zero
element or data), we have a model of sparse matrix multiplication (or the outer
product of sparse-vectors, in the purely 2D-case). The problem of communi-
cation avoiding sparse-matrix multiplication has already been considered but,
to the best of our knowledge, not with this model. For example Demmel et al.
[2008] propose a solution based on kernel reorganisation of the matrices.

By using non binary weights, we can also extend the model to low rank-
matrices. More precisely, low-rank matrix approximation is a method to repre-
sent a matrixM (with a small approximation and possible loss of information)
as the product of two matrices, the first Mr with few columns, the second Mc

with few rows. In addition to the possible gain in storage cost, low-rank ma-
trix approximation also improves matrix multiplication. Instead of directly
multiplying two matrices A and B, the product Ac × Br is computed first,
creating a intermediate matrix with few row and columns that is then multi-
plied with Ar and Bc. If we now suppose that we multiply two block-matrices
where each block uses low-rank representation, then we can use PERI-SUM-
HETEROGENEOUS as a model for communication-avoiding parallel matrix

80 T. Lambert

1. Square Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

multiplication by linking w, wx and wy to the sizes of the different Ai,j and
Bk,j (each depending of their rank).

Another motivation to study PERI-SUM-HETEROGENEOUS is FMM
(Fast Multipole Method), an algorithm introduced in Greengard and Rokhlin
[1987] and considered as one of the most important algorithms of the last cen-
tury, Dongarra and Sullivan [2000]. FMM is an algorithm to solve N -body
interactions. These N particles are in a space, with possibly heterogeneous
placement (possible locally empty or dense spaces). In order to efficently com-
pute the interaction force applied on each particle, the space is divided into
zones. Inside a zone, the interactions are fully computed (each particle inter-
acts with all the others). Then each zone computes the interaction force of its
particle with the ones of each neighbour zone. After these two phases, zones
are approximated to one particle each (whose charge depends on the ones in
this zone), the space is split again into zones and the procedure continues
recursively as before until there is only one zone.

The parallel computation of FMM is an important challenge, see Agullo
et al. [2016a] for an example. However the link with PERI-SUM-HETEROGENEOUS
is not direct. If we represent the space by a square and particles by their
coordinates in this square, we have something close to an input of PERI-
SUM-HETEROGENEOUS with weight being 0 if there is no particle at this
coordinate, 1 otherwise. An important part of the communication between
processors during parallel FMM comes from the computations of interactions
between particles of a zone and the ones of its neighbours. These interactions,
for a given zone, are correlated to its number of particles (and the one of its
neighbours) and its number of neighbours. In order to avoid having too many
neighbours, having compact zones with low perimeter is important. Therefore,
if PERI-SUM-HETEROGENEOUS is currently not a perfect model of parallel
FMM, a solution to this problem might be a solution to avoid communication.

To the best of our knowledge, PERI-SUM-HETEROGENEOUS has not
really been studied. The problem being strictly harder than PERI-SUM we
can already state it is NP-complete. One possible algorithm is SFCP, presented
in Section 1.5, whose adaptation is easy and already in use, Deveci et al. [2016].
However there is no real study on the efficiency of SFCP for this particular
problem. In addition, SFCP has disappointing results for solving PERI-SUM
in comparison to ColumnBased or NRRP and there are chance that there
exist better algorithms than SFCP to solve PERI-SUM-HETEROGENEOUS.
However they are still to be designed.

In Chapter 2, we propose to go back to the study of communication-
avoiding matrix multiplication. For this purpose, we propose to study MSCubeP,
the direct 3D-transposition of PERI-SUM, the partitioning of a cube into poly-
hedra.

On the Effect of Replication of Input Files 81

1.6. Conclusion and Perspectives

82 T. Lambert

Chapter 2

Cube Partitioning for
Communication-Avoiding Parallel
Matrix Multiplication

2.1 Introduction
As stated in Chapter 1, the standard matrix multiplication C = A×B can be
seen as a set of N3 tasks (for square matrices of size N)

Ti,j,k : Ci,j ← Ci,j + Ai,kBk,j

for {i, j, k} ∈ [1, N]3. As stated before, our goal here is to avoid as much as
possible the replication of the Ai,k’s, Bk,j’s and Ci,j’s, under the assumption
that we aim at achieving optimal makespan.

In Chapter 1, we schedule this set of tasks by bags, one value k after an-
other. In this chapter we propose to schedule the whole set at once, adding
a dimension to the previous problem. To simplify the model, we consider
equally the Ai,k’s, the Bk,j’s and the Ci,j’s, even if these last ones are, in
practice, read-write data and not read-only data. In this case we end up
with a 3-dimension problem, instead of a 2-dimension one, with a cube par-
titioning problem MSCubeP. We define the following notations. Let Z be a
zone included into a cube Cu. We define by v(Z) its volume. Let Π1(Z) =
{(x, z), ∃y, (x, y, z) ∈ Z}, Π2(Z) = {(y, z), ∃x, (x, y, z) ∈ Z} and Π3(Z) =
{(x, y), ∃z, (x, y, z) ∈ Z} be the projections of Z on the three faces and
π1(Z) = |Π1(Z)|, π2(Z) = |Π2(Z)| and π3(Z) = |Π3(Z)| be their sizes. Then
we define the half-covering surface of Z as Hs(Z) = π1(Z) + π2(Z) + π3(Z).

Problem 2.1 (Minimizing-Surface-Cube-Partition (MSCubeP)). Given a set
of m rational numbers {v1, . . . , vm} such that

∑
vk = 1, and the cube Cu =

[0, 1] × [0, 1] × [0, 1], find a set of zones Zk of Cu such that v(Zk) = vk and⋃
Zk = Cu, so as to minimize

∑
Hs(Zk).

83

2.2. Related Work

For the particular case of continuous zones, i.e. polyhedrons (that is ad-
dressed in Section 2.4), we also define the notion of covering cuboid and denote
it by Cu(P), with P being a polyhedron. Cu(P) is the smallest cuboid such
that P ⊆ Cu(P). If Cu(P) = [x1, x2]× [y1, y2]× [z1, z2], then let us define the
width of P by w(P) = x2−x1, the height of P by h(P) = y2−y1, and the depth
of P by d(P) = z2−z1. Note that if P is connected, then π1(P) = w(P)×d(P),
π2(P) = h(P) × d(P) and π3(P) = w(P) × h(P). In this case we also define
ρ(P) = max(w(P),h(P),d(P))

min(w(P),h(P),d(P))
its aspect ratio and ρ′(P) = max(w(P),h(P),d(P))

med(w(P),h(P),d(P))
its sec-

ondary aspect ratio (where med(x, y, z) is the median value between x, y and
z).

Later, particularly in Section 2.3, we consider a variant of MSCubeP:
MSCuboidP. In MSCuboidP, instead of a cube, a cuboid is to be partitioned.

Problem 2.2 (Minimizing-Surface-Cuboid-Partition (MSCuboidP)). Given a
cuboid Cu = [0, x]× [0, y]× [0, z] and a set of m rational numbers {v1, . . . , vm}
such that

∑
vk = xyz, find a set of zones Zk of Cu such that v(Zk) = vk and⋃

Zk = Cu, so as to minimize
∑
Hs(Zk).

Finally, note that, for the same reason as for PERI-SUM (see Ballard et al.
[2011b]), the best theoretical solution would be that all zones are cubes. In
this case, for all k, Hs(Zk) ≥ 3v

2
3
k and thus

Copt ≥ 3
∑
k

v
2
3
k , (2.1)

where Copt denotes the optimal solution for a given instance of MSCubeP.

2.2 Related Work

For the general problem of parallel matrix multiplication we rely on the related
work already presented in Section 1.2. For MSCubeP we found almost no
study. The only pre-existing algorithm we found, SCR, is presented below.
However, solutions for PERI-SUM can be adapted to solve MSCubeP, this
will be developed in Section 2.6. In addition, we present in Section 2.2.2 a
sketch of the proof that PERI-SUM is NP-complete which is close to the one
we propose in Section 2.3 to prove the NP-completeness of MSCuboidP, a
variant of MSCubeP.

2.2.1 SCR (Slice-Column-Row)

SCR (for Slice-Column-Row) is a dynamic programming algorithm introduced
by Zarei Zefreh et al. [2016] and that is the direct 3-dimension transposition of
ColumnBased (see Section 1.2.2) used to solve PERI-SUM. Like ColumnBased,

84 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

SCR makes an assumption on the partitioning. SCR assumes that there is a
first splitting of the cube into slices and then use ColumnBased to compute the
internal splitting of each slice. More precisely let {v1, . . . , vm} be an instance of
MSCubeP. SCR computes the function f : [1,m]×[1,m]→ R such that f(S, q)
is the cost of the best partition into slices-columns of the instance {v1, . . . , vq}
with S slices. In practice

f(S, q) =


1 +

(∑
1≤k≤q

vk

)
ColumnBased({vN1 , . . . , vNq }) if S = 1

min
1≤r≤q−S+1

1 + f(S − 1, q − r) +

(∑
q−r≤k≤q

vk

)
ColumnBased({vNq−r, . . . , vNq }) otherwise

where vNk is the normalized value of vk (see Algorithm 2.1 for a formal
description of SCR). Like ColumnBased, SCR uses a function fcut in order
to compute the number of cuboids per slices (here f cutS (q) is the number of
cuboids in the S − 1 first slices in a partition with S slices and the q first
vk). The complete partitioning of the unitary cube can then be obtained by
applying ColumnBased on each of the S slices (S being the number of slice
computed by SCR) with knowledge on the number of cuboids in each slide
(the kis computed by SCR).

Note that ColumnBased, that also relies on dynamic programming, has a
computation time of O(p2 log p). Thus the naive computation time of SCR,
if we directly translate above equation, would be O(m5 logm). However, by
pre-computing all the ColumnBased(({vNk , . . . , vNk′}) for k, k′ ∈ [1,m]2 we can
reduce this complexity to O(m3 logm). Note also that, unlike for Column-
Based, there is currently no proof that sorting the vk in increasing order im-
proves the efficiency of SCR and thus no guarantee that SCR outputs the best
slice-column partitioning.

2.2.2 NP-Completeness Proof of PERI-SUM

In Section 2.3 we prove the NP-completeness of the decision problem associated
to MSCuboidP. This proof is inspired from the one existing for PERI-SUM
(Beaumont et al. [2002]), and this is why we propose here a survey of this
proof to help the reader understand the proof in Section 2.3. First note that
PERI-SUM is an optimisation problem and the problem we are considering is
therefore PERI-SUM-DEC.

Problem 2.3 (PERI-SUM-DEC). Given a set of m strictly positive rational
numbers {s1, . . . , sm} such that

∑
sk = 1, the square S = [0, 1] × [0, 1] and a

rational K, is there a set of zones {Z1, . . . , Zm} such that for each k the area
of Zk is sk,

⋃
Zk = S, and

∑
p(Zk) ≤ K ?

On the Effect of Replication of Input Files 85

2.2. Related Work

Algorithm 2.1 : SCR ({v1, . . . , vm})
Input : A set of positive values {v1, . . . , vm} such that

∑
vi = 1 and

v1 ≤ v2 ≤ . . . ≤ vm
Output : A number of slices S and {k1, . . . , kS} the number of cuboid

in each slice to partition the unary cube.
for q = 1 to m do

f1(q) = 1 +

(∑
1≤k≤q

vk

)
ColumnBased({vN1 , . . . , vNq });

f cut1 (q) = 0 ;

for S = 2 to m do
for q = S to m do

fS(q) = min1≤r≤q−S+1 1 + f(S − 1, q − r) +(∑
q−r≤k≤q

vk

)
ColumnBased({vNq−r, . . . , vNq }) ;

f cutS (q) = q − rmin ;

q = m ;
Smin = S such that fS(m) = min1≤S≤m fS(m);
for S = Smin downto 2 do

kS = q − f cutS (q) ;
q = f cutS (q) ;

k1 = q ;
return Smin, {k1, . . . , kSmin} ;

First let us consider 2-PART-EQUAL, a variant of 2-PART, the classical
partition problem.

Problem 2.4 (2-PART). Given a set of n strictly positive rational numbers
{a1, . . . , an}, is there I ⊆ [1, n] such that∑

i∈I

ai =
∑
i/∈I

ai?

Problem 2.5 (2-PART-EQUAL). Given a set of 2n strictly positive rational
numbers {a1, . . . , a2n}, is there I ⊆ [1, 2n] such that |I| = n and∑

i∈I

ai =
∑
i/∈I

ai?

Lemma 2.1. 2-PART-EQUAL is NP-complete.

Proof. Trivially 2-PART-EQUAL is in NP (checking that the two sums are
equal can be done in polynomial time). For the NP-completeness proof we

86 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

propose a reduction from 2-PART, that is known to be NP-complete, Garey
and Johnson [2002]. Let {a1, . . . , bn} be an instance of 2-PART. Let C be an
integer (C > 0) and let {b1, . . . , b2n} be defined as follows,

bi =

{
ai + C if i ≤ n

C otherwise.

We now prove that there exists a subset I ⊆ [1, n] such that
∑

i∈I ai =
∑

i/∈I ai
if and only there is a subset I ′ ⊆ [1, 2n] such that |I ′| = n and

∑
i∈I′ bi =∑

i/∈I′ bi.
Let us assume there is I ⊆ [1, n] such that

∑
i∈I ai =

∑
i/∈I ai. Let I ′ =

I ∪ {bn+1, . . . , bn+n−|I|}. Then,

∑
i∈I′

bi =
∑
i∈I

bi +

2n−|I|∑
i=n+1

bi

=
∑
i∈I

(ai + C) +

2n−|I|∑
i=n+1

C

=
∑
i∈I

ai + |I|C + (n− |I|)C

=
∑
i∈I

ai + nC

and

∑
i/∈I′

bi =
∑
i/∈I

bi +
2n∑

i=2n−|I|+1

bi

=
∑
i/∈I

(ai + C) +
2n∑

i=2n−|I|+1

C

=
∑
i/∈I

ai + (n− |I|)C + |I|C

=
∑
i∈I

ai + nC

=
∑
i∈I′

bi,

what achieves the proof in this case.

On the Effect of Replication of Input Files 87

2.2. Related Work

Let us now assume that there is a subset I ′ ⊆ [1, 2n] such that |I ′| = n and∑
i∈I′ bi =

∑
i/∈I′ bi. Let I = I ′ ∩ [1, n]. Then,∑

i∈I

ai =
∑
i∈I

(bi − C)

=
∑
i∈I

bi − |I|C

=
∑
i∈I′

bi −
∑
i∈I′\I

bi − |I|C

=
∑
i∈I′

bi − |I ′ \ I|C − |I|C

=
∑
i∈I′

bi − |I ′|C

=
∑
i∈I′

bi − nC

and ∑
i/∈I

ai =
∑

i∈[1,n]\I

(bi − C)

=
∑

i∈[1,n]\I

bi − (n− |I|)C

=
∑
i/∈I′

bi −
∑

i/∈[n+1,2n]∩I′
bi − (n− |I|)C

=
∑
i/∈I′

bi − (n− |I ′ \ I|)C − (n− |I|)C

=
∑
i∈I′

bi − (n− |I ′|+ |I|)C − (n− |I|)C

=
∑
i∈I′

bi − nC

=
∑
i∈I

ai

what achieves the proof.

Both NP-Completeness proofs, the ones for PERI-SUM and MSCuboidP,
rely on a reduction from 2-PART-EQUAL. More precisely, the proof of NP-
Completeness is a reduction from 2-PART-EQUAL to a variant of PERI-SUM,
PARTITION-ALL-SQUARES, where all zones are forced to be squares (the
ideal partition).

88 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Problem 2.6 (PARTITION-ALL-SQUARES). Given a set of m strictly pos-
itive rational numbers {l1, . . . , lm} such that

∑
l2k = 1, and the square S =

[0, 1] × [0, 1], is there a set of squares {S1, . . . , Sm} such that for each k the
surface of Sk is l2k and

⋃
Sk = S ?

Lemma 2.2 (Beaumont et al. [2002]). PARTITION-ALL-SQUARES is NP-
complete.

Proof. Let us now consider an instance {a1, . . . , an} of 2-PART-EQUAL. The
first step of this proof is to transform this instance into a second one, {b1, . . . , bn},
such that M

2
< bi ≤ 3M

4
where M = 4

3
max
i

bi. The utility of this inequality
will be developed later.

We define {b1, . . . , bn} as: ∀i, bi = 2(ai + 2n max
j

aj). Let N = max
i

bi =

2(2n+ 1) max
i

ai = 3M
4
. Thus

∀ i, bi > 4n max
j

aj =
4n

4n+ 2
N >

2

3
N =

M

2
.

Therefore M
2
< bi ≤ 3M

4
. Let us now prove that there is a solution of 2-PART-

EQUAL with the input {a1, . . . , an} if and only if there is a solution with the
input {b1, . . . , bn}.

Let us first suppose that there exists I such that |I| = n
2
and

∑
i∈I ai =∑

i/∈I ai. In this case, ∑
i∈I

bi =
∑
i∈I

2(ai + 2n max
j

aj)

= 2
∑
i∈I

ai + |I|4n max
j

aj

= 2
∑
i∈I

ai + 2n2 max
j

aj

and ∑
i/∈I

bi =
∑
i/∈I

2(ai + 2n max
j

aj)

= 2
∑
i/∈I

ai + |[1, n] \ I|4n max
j

aj

= 2
∑
i∈I

ai + (n− |I|)4n max
j

aj

= 2
∑
i∈I

ai + 2n2 max
j

aj

=
∑
i∈I

bi.

On the Effect of Replication of Input Files 89

2.2. Related Work

Otherwise let us assume there is I such that |I| = n
2
and

∑
i∈I bi =

∑
i/∈I bi. In

this case ∑
i∈I

ai =
∑
i∈I

(
bi
2
− 2n max

j
aj)

=
1

2

∑
i∈I

bi − |I|2n max
j

aj

=
1

2

∑
i∈I

bi − n2 max
j

aj

and ∑
i/∈I

ai =
∑
i/∈I

(
bi
2
− 2n max

j
aj)

=
1

2

∑
i/∈I

bi − (n− |I|)2n max
j

aj

=
1

2

∑
i∈I

bi − n2 max
j

aj

=
∑
i∈I

ai.

Thus there exists a solution of 2-PART-EQUAL with input {a1, . . . , an} if and
only if there exists a solution with input {b1, . . . , bn}.

To achieve the proof, we propose a reduction from the input {b1, . . . , bn} to
an instance of PARTITION-ALL-SQUARES. For this we need an additional
tool: the Kenyon’ squares. For each i, we want to tile a rectangle Ri of size
bi× (M − bi) with a polynomial number of squares. Kenyon [1996] proves that
this can be done with a logarithmic number of squares if the rectangle is not too
elongated (what is ensured by the inequality M

2
< bi ≤ 3M

4
). We denote KS(i)

the number of Kenyon’ squares to tile Ri and w(bi, j), for 1 ≤ j ≤ KS(i) the
width of the squares used for this tiling. Let l = 20S+ 17M , with S = 1

2

∑
bi.

We are now ready to describe the instance of PARTITION-ALL-SQUARES:
it consists of 14 + n+

∑n
i=1KS(i) squares of width

13S+11M
l

(×1), 7S+6M
l

(×3),
3S+2M

l
(×2), 2S+2M

l
(×4),

4S+3M
l

(×2), 3S+3M
l

(×2),
bi
l
, ∀i, w(bi,j)

l
, ∀i and ∀1 ≤ j ≤ KS(i),

which should be used to tile the unit square.
In the following we denote by Ax,y a square of width xS+yM

l
, by Abi a square

of width bi and by Abi,j a square of width w(bi, j).

90 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

In any case, the tiling presented on Figure 2.1 is valid. The following step
is to tile the remaining two rectangles with the remaining squares, i.e. the Abis
and the Abi,js.

A7,6

A13,11

A2,2 A2,2

A4,3

A3,2

A3,3

A7,6A7,6

A3,3

A4,3

A3,2

A2,2

A2,2

S
l
× M

l
rectangles

Figure 2.1: Tilling of the unitary square rectangle with the Ax,ys, the Abis and
the Abi,js.

When there is a solution for instance {b1, . . . , bn} of 2-PART-EQUAL, we
propose the tiling depicted in Figure 2.2 for the two S

l
× M

l
rectangles. First,

for a given i, the Abi,js can tile a bi
l
× M−bi

l
rectangle. Thus, for a given i, the

Abi,js put together with Abi can tile a bi
l
× M

l
rectangle. Thus, with half of the

Abis put side by side and by tiling the remaining area by the associated Abi,js
we can tile one of the S

l
× M

l
rectangle. This tiling is possible because we know

that there exists I such that
∑

i∈I bi =
∑

i/∈I bi = S
2
. Thus, if there exists a

solution for the instance {b1, . . . , bn} of 2-PART-EQUAL, then there exists a
tiling of the unitary square with our instance of PARTITION-ALL-SQUARES.

The counter-part is a bit more complex to prove. We skip this part of the
proof here (see Beaumont et al. [2002]). Globally, the idea is to prove that if
there is a tiling, the tiling is as in Figure 2.1 (under the assumption than S is
significantly greater than M , assumption that is fulfilled for n large enough,
for example n ≥ 400). Similarly, the tiling of the S

l
× M

l
can only be made the

On the Effect of Replication of Input Files 91

2.3. NP-Completeness of MSCuboidP

Abi

Abi,j

M
l

S
l

Figure 2.2: Tilling of a M
l
× S

l
rectangle with some Abis and Abi,js.

way described on Figure 2.2, notably because ∀i, bi > M
2

and two Abi cannot
lie one on top of the other.

With Lemma 2.2, we achieve the proof of NP-completeness of PERI-SUM-
DEC.

Theorem 2.3 (Beaumont et al. [2002]). PERI-SUM-DEC is NP-complete.

Proof. Let {l1, . . . , lm} be an instance of PARTITION-ALL-SQUARES. Let
{s1, . . . , sm} be defined as si = l2i for all i and K =

∑m
i=1 2li. ({s1, . . . , sm}, K)

is a valid instance of PERI-SUM-DEC. We know, thanks to equation (2.1),
that any valid tiling of the unitary square with zones of surface s1, . . . , sm
has a half-perimeter larger than

∑m
i=1 2
√
si =

∑m
i=1 2li = K and this case

only happens where all zones are square. Therefore there exists a solution
of PERI-SUM with instance ({s1, . . . , sm}, K) if and only if there exists a
solution for PARTITION-ALL-SQUARES with instance {l1, . . . , lm}. Thus
we have a reduction from PARTITION-ALL-SQUARES to PERI-SUM-DEC
what achieves the proof.

2.3 NP-Completeness of MSCuboidP

In this section we are interested in the NP-Completeness of MSCuboidP. Note
that the NP-completeness of MSCuboidP does not imply the NP-Completeness
of MSCubeP (the NP-completeness of MSCubeP would imply the NP-completeness
of MSCuboidP), that is still an open problem.

MSCuboidP is not a decision problem, so, like for PERI-SUM, we are con-
sidering the decision problem associated to MSCuboidP, MSCuboidP-DEC.

92 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Problem 2.7 (MSCuboidP-DEC). Given a cuboid Cu = [0, x]× [0, y]× [0, z]
and a set of m rational numbers {v1, . . . , vm} such that

∑
vk = xyz and a

numberK, is there a set ofm zones Zk of Cu such that V (Zk) = vk,
⋃
Zk = Cu

and
∑
Hs(Zk) ≤ K ?

We start by reducing this problem to a more constrained variant named
ACCuboidP, in which the goal is to partition the cuboid in cubes of specified
side lengths. ACCuboidP is of course the 3D-counterpart of PARTITION-
ALL-SQUARES.

Problem 2.8 (All-Cube-Cuboid-Partition (ACCuboidP)). Given a set of m
given rational numbers {l1, . . . , lm} such that

∑
l3k = xyz, and a cuboid Cu =

[0, x] × [0, y] × [0, z], is there a set of k cubes Ck ∈ Cu such that V (Ck) = l3k
and

⋃
Ck = Cu ?

Lemma 2.4. ACCuboidP is NP-Complete.

Proof. It is easy to check that ACCuboidP belongs to NP. We prove NP-
hardiness of ACCuboidP with a method inspired from the hardiness proof of
the equivalent 2D problem (see Section 2.2.2), by using a reduction from 2-
PART-EQUAL (the partitioning of a set of values into two sets of equal size and
equal sum), which is NP-complete according to Lemma 2.1. Our proof consists
of two steps: from an instance of 2-PART-EQUAL, we first derive another set
of numbers bi and prove that they can be partitioned into two equal sets if
and only if the 2-PART-EQUAL instance has a solution. Then, we use the
bi numbers to build an instance of ACCuboidP for which the existence of a
packing is equivalent to partitioning the bi into two equal size sets.

First Reduction

Let us now consider an instance of 2-PART-EQUAL, {a1, . . . , a2n} and let us
denote 2A =

∑
1≤i≤2n

ai and M = 6n ×max
i

ai. Let us suppose, without loss of

generality, that n is a multiple of 120 larger than 240 and let us define a new
set {b1, . . . , b2n} as

∀i, bi = ai + 3n×max
i

ai +D where D =
60M − (A mod 60M)

n

= ai +
M

2
+D.

In addition, let us set k = n
120

+ A+nD
60M

and S = 1
2

∑
1≤i≤2n

bi. One can prove

that k is an integer (since n is a multiple of 120) and that S = 60k ×M . In
addition, let us notice that for all i, M

2
< bi (since D ≥ 0 and ai > 0) and

On the Effect of Replication of Input Files 93

2.3. NP-Completeness of MSCuboidP

bi ≤ M . Indeed, D ≤ 60M
n
≤ M

4
and ai + M

2
≤ M(1

2
+ 1

6n
) ≤ 4M

6
. Therefore

bi ≤ 11M
12
≤M .

Let us now prove that there exists a solution to the instance of 2-PART-
EQUAL if and only if there exists a set I ⊂ [1, n] such that

∑
i∈I
bi =

∑
i/∈I
bi. If

there exists I such that |I| = n and
∑
i∈I
ai =

∑
i/∈I
ai, then

∑
i∈I

bi −
∑
i/∈I

bi =
∑
i∈I

ai −
∑
i/∈I

ai + (|I| − |I|)(M
2

+D)

∑
i/∈I

ai −
∑
i∈I

ai = (|I| − |I|)(M
2

+D).

Yet,
∑

i/∈I ai −
∑

i∈I ai ≤ 2n×max ai = M
3

and M
2
≤ M

2
+D. Therefore,

(|I| − |I|)M
2
≤ M

3
and (|I| − |I|) ≤ 2

3
< 1.

By symmetry, we obtain |I| = |I| and I is a solution to 2-PART-EQUAL.

Second Reduction

In order to build the ACCuboidP instance that will be used in the reduction,
we rely on a result from Walters [2009] stating that it is possible to tile any
cuboid with a number of cubes which is poly-logarithmic in the side lengths
of the cuboid. We denote the cubes in such a tiling Walters’ cubes, and
we denote by WS(X, Y, Z) the (poly-logarithmic size) set of cubes tiling the
cuboid X × Y × Z.

Let us consider the following instance of ACCuboidP:

• A cuboid of size 11M × 15M × S (with S = 60k ×M).

• 20k cubes of length 6M .

• 24k cubes of length 5M .

• 30k cubes of length 4M .

• 20k cubes of length 3M .

• ∀i, a cube of length bi.

• ∀i, WS(M − bi, bi, bi) and WS(M,M − bi, bi).

with M , k and the bi’s defined from the ai’s as in the reduction described
above. One can see that the reduction is polynomial, since the sizes of the
Walters’ cubes sets are poly-logarithmic functions of the bi’s.

94 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

M − bi
bi

bi

bi

M − bi

Figure 2.3: Tiling of a bi ×M ×M cuboid.

In the first part of the proof, we prove that if we can split the bi items in
two equal sets, then the above set of cubes can be packed into the cuboid.

Let us first consider, for each i, the cube of length bi and the two associated
Walters’ cubes sets. Figure 2.3 shows how they can be packed into a cuboid
of size M ×M × bi, where the cuboid of size (M − bi)× bi× bi and the cuboid
of size (M − bi) × bi × M are tiled with the cubes from WS(M − bi, bi, bi)
and WS(M,M − bi, bi) respectively. Stacking up such cuboids on top of one
another, we can build two M ×M × S cuboids from the two sets I and I, see
Figure 2.4.

bi-cubes

Walter’s cubes

M

S

Figure 2.4: Tiling of a M ×M × S cuboid (on a M × S face).

Figure 2.5 shows how to tile a 11M×15M rectangle with the corresponding
squares, where bothM×M squares represent a slice of theM×M×S cuboids
presented above. This arrangement can be repeated for a total length of S,
since

10k × 6M = 12k × 5M = 15k × 4M = 20k × 3M = 60k ×M = S.

Hence, this provides a tiling of the whole 11M × 15M × S cuboid.
For the second part of the proof, we need to prove that if the cuboid can

be tiled with the set of cubes, then a partition of the bi values in two equal

On the Effect of Replication of Input Files 95

2.3. NP-Completeness of MSCuboidP

5M

6M

4M

M
3M

4M

M

6M

5M

Figure 2.5: Tiling of a 11M × 15M rectangle.

size sets exists. We start by proving that in any valid tiling of the cuboid, the
11M × 15M rectangle can only be tiled as shown on Figure 2.5 (or under the
same pattern but up to horizontal symmetry).

Let us note that, except for the bi-cubes and the Walters’ cubes, all cubes
have a length that is a multiple ofM . Therefore, one can see that the resulting
projections of the bi-cubes and the Walters’ cubes in a valid partition on the
11M × 15M rectangle can be seen as several M ×M squares.

Let us consider any valid tiling of the cuboid, and analyse relative arrange-
ments of the 3M -cubes, bi-cubes and Walters’ cubes. Their total volume is
27M3 × 20k + 120M3 × k = 660M3 × k. On average over all the S slices of
the cuboid, this represents a surface of 660M3×k

S
= 11M2. We now prove that

to tile this 11M × 15M face we need at least a total surface of 11M2 coming
from 3M -cubes, bi-cubes and Walters’ cubes.

Let s be the surface coming from these cubes divided by M2, and assume
by contradiction that s ∈ [0, 10]. Let p6, respectively p5 and p4, the number or
6M -cubes, respectively 5M -cubes and 4M -cubes, used to tile the 11M×15M -
face. We have computed the possible values such that (15 × 11 − s)M2 =
(36p6 + 25p5 + 16p4)M

2, they can be found on Table 2.1. We now consider
each case one by one.

Case (1) s = 0, p6 = 3, p5 = 1, p4 = 2: 11 and 15 are odd, therefore
there must be a least one fraction of an odd square in every line or column
(we can see the rectangle as a grid 11×15). The odd cubes are the 5M -cubes,
the 3M -cubes and the ones we can produce with bi-cubes and Walters’ cubes.
Since we have only one 5M -cube, the total length of odd squares is less than
15, so we cannot have one fraction of an odd square in every column. Therefore
the tiling in this case is not possible.

Case (2) s = 1, p6 = 0, p5 = 4, p4 = 4: As 5 × 4 > 15, we cannot have
more than three 5-squares in a line and therefore, with four 5-squares, we have
to be in one of the arrangements shown in Figure 2.6(a) and Figure 2.6(b). In

96 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Case s p6 p5 p4
(1) 0 3 1 2
(2) 1 0 4 4
(3) 1 0 8
(4) 2 2 3 1
(5) 3 0 2 7
(6) 4 1 5 0
(7) 2 1 4

Case s p6 p5 p4
5

(8) 6 1 3 3
(9) 7 3 2 0
(10) 8 0 5 2
(11) 1 1 6
(12) 9 3 0 3
(13) 10 0 3 5

Table 2.1: Possible values of p6, p5 and p4 as a function of s.

both cases, there exist at least two columns where two 5-squares are superposed
(denoted di in the figures). However, the only way to complete these columns
to a height of 11 is to use a square of size 1, and we have only one M -square
since s = 1. Therefore the tiling in this case is infeasible.

5 5

5 5

d1 d2 d3

(a)

5 5 5

5

d

(b)

6 6

5 5 5

3

(c)

6

6

3

5

5

(d)

Figure 2.6: Tiling in cases (2), (4) and (9).

Case (3) s = 1, p6 = 2, p5 = 0, p4 = 8: By a parity argument similar to
the one used in Case (1), we can prove the infeasibility of the tiling.

Case (4) s = 2, p6 = 2, p5 = 3, p4 = 1: It is easy to see that the
6-squares and the 5-squares can only be tiled in a way similar to Figure 2.6(c).
Therefore there is no room to place the 4-square and the tiling is infeasible in
this case.

Case (5) s = 3, p6 = 0, p5 = 2, p4 = 7: By a parity argument similar to
the one used in Case (1), we can prove the infeasibility of the tiling.

Case (6) s = 4, p6 = 1, p5 = 5, p4 = 0: By reasoning on the number of
5-squares in a similar fashion than in Case (2), we can prove the infeasibility
of the tiling.

Case (7) s = 4, p6 = 2, p5 = 1, p4 = 4: By a parity argument similar to
the one used in Case (1), we can prove the infeasibility of the tiling.

Case (8) s = 6, p6 = 1, p5 = 3, p4 = 3: Since 5 + 5 + 6 > 15, we cannot
have two 5-squares and one 6-square appearing on the same line. Then we have
only two choices to tiles these squares. The first is shown on Figure 2.7(a). In
this case there is a rectangle of size 9M × 6M that can be proven infeasible to
tile with six M -squares and three 4M -squares. Therefore we have to be in the

On the Effect of Replication of Input Files 97

2.3. NP-Completeness of MSCuboidP

case of Figure 2.7(c), where the dashed zone does not intersect the last 5M -
square (otherwise we are in the case in Figure 2.7(b) that is strictly harder to
tile than the case of Figure 2.7(a)). Therefore the dashed zone, a square of size
5M × 5M has to be tiled with only fractions of 4M -squares and M -squares.
In order to fill the gap of size 5M the only way to begin is the one shown in
Figure 2.7(d). To complete the last column, we have to fill the 7M -gap, and
7 = 5 + 2× 1 is the only possibility (there are only two M -squares remaining).
This yields the situation shown in Figure 2.7(e), and one can see that the tiling
can not be finished with the remaining 4M -squares: the tiling is infeasible in
this case.

6

5 5 5

(a)

6

5 5
5

(b)

6

5 5

(c)

6

5 5 4

(d)

6

5 5 4

5

(e)

Figure 2.7: Tiling in case (8).

Case (9) s = 7, p6 = 3, p5 = 2, p4 = 0: It is impossible to have three
6M -squares. Indeed 2 × 6 > 11 and then we cannot have two 6M -squares
appearing on the same column. In the same time, 3 × 6 > 15 and then we
cannot have three 6M -squares appearing on the same line (see Figure 2.6(d) to
have a better visualization). Hence there is no room to store three 6M -squares,
and the tiling in this case is infeasible.

Case (10) s = 8, p6 = 0, p5 = 5, p4 = 2: By reasoning on the number of
5-squares in a similar fashion than in Case (2), we can prove the infeasibility
of the tiling.

Case (11) s = 8, p6 = 1, p5 = 1, p4 = 2: By a parity argument similar
to the one used in Case (1), we can prove the infeasibility of the tiling.

Case (12) s = 9, p6 = 3, p5 = 0, p4 = 3: By a parity argument similar
to the one used in Case (1), we can prove the infeasibility of the tiling.

Case (13) s = 10, p6 = 0, p5 = 3, p4 = 5: We consider two sub-cases:
either we have one 3M -square and one M -square, or we have ten M -square.
In the first case we notice that with the available squares there are only two
ways to achieve a exact length of 11M : 1M + 5M + 5M and 3M + 4M + 4M .
Both options create gaps that cannot be filled with the remaining squares, see
Figure 2.8(a). In the second case (ten M -squares and no 3M -square), there

98 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

are more options to achieve a length of 11M . The first one is to use two 4M -
square and three M -squares. This creates a 3M × 4M gap, and there are too
few M -squares to fill it, see Figure 2.8(b), therefore we cannot tile this way.
The second option is to use two 5M -squares and oneM -square. In this case we
have to use four more M -squares to complete and then we have again a length
11M to achieve, that, with the remaining resources, can only be done either
with two 4M -squares and three M -squares, and we have proven above that
it is not feasible, or with a 4M -square, a 5M -square and two M -squares, but
in this case we cannot tile the resulting 2M × 3M rectangle because we have
too few M -squares, see Figure 2.8(c). Another option is to use a 4M -square
and seven M -squares, but this results in a gap of length 7M to fill and one
can see that is not possible, see Figure 2.8(d) (replacing the 5M -square of the
figure by a 4M -square yields the same problem). Another possibility is to use
a 5M -square and six M -squares, for which the only reasonable continuation
is the case shown on Figure 2.8(e) and this creates a gap of length 6M which
cannot be tiled with the remaining squares. The last option is to use a 5M -
square, a 4M -square and two M -squares but the tiling is still impossible, as it
is shown on Figure 2.8(f). Therefore, in any sub-case, the tiling is infeasible
in this case.

5

5
3

4

4

(a)

4

4

(b)

5

5

5

4

(c)

5

4

(d)

5

5

(e)

5

4
5

5

(f)

Figure 2.8: Tiling in case (13).

This proves that at every slice of the main cuboid, the surface coming from
the 3M -cubes, the bi-cubes and the Walters’ cubes is at least 11M2. Since
this is exactly the average value, this implies that this surface is exactly 11M2

for each slice. We can now observe that this requires at least two M -squares
in any slice and once again this is exactly the average value of M -squares.
Therefore, in any slice, there are exactly two M -squares and one 3M -square.
The argument used to create Table 2.1 now proves that the slice necessarily
includes two 6M -squares, two 5M -squares and two 4M -squares, and one can
prove that the only way to tile the 11M × 15M rectangle with these squares
is as shown on Figure 2.5.

On the Effect of Replication of Input Files 99

2.4. 3D-NRRP (3D Non-Rectangular Recursive Partitioning)

We have built a pattern that must appear on each slice of the cuboid, and
in which the bi cubes have to be included into two separate parts of the tiling.
Let us denote by I the indexes of the bi cubes which appear in the leftmost
M×M×S cuboid. Since by construction, bi > M

2
for all i, these cubes have to

be arranged as depicted on Figure 2.4. This proves that
∑
i∈I
bi ≤ S and

∑
i/∈I
bi ≤ S.

Since the total sum is 2S, this implies that both sums are in fact equal to S,
and thus that there exists a solution to the original 2-PART-EQUAL instance.

Note that the pattern in Figure 2.5 can be horizontally reversed. Further-
more, both possible patterns can be present on the final tiling. However, even
in this case, considering the bi-cubes on the left side still yields a set I such
that

∑
i∈I
bi =

∑
i/∈I
bi = S.

Theorem 2.5. MSCuboidP-DEC is NP-complete.

Proof. There is a reduction from ACCuboidP to MSCuboidP-DEC. Indeed,
ACCuboidP ({l1, . . . , lm}, [0, x]×[0, y]×[0, z]) is feasible if and only ifMSCuboidP−
DEC({l31, . . . , l3m}, [0, x]× [0, y]× [0, z], 3

∑
v
2/3
k) is feasible (the bound in (2.1)

is tight if and only if there is a partitioning where only cubes are used). Yet,
thanks to Lemma 2.4, ACCuboidP is NP-complete. Therefore MSCuboidP-
DEC is NP-complete.

2.4 3D-NRRP (3D Non-Rectangular Recursive
Partitioning)

Now that we prove NP-completeness, we look for an approximation algo-
rithm. In this section, we present 3D-NRRP, an approximation algorithm for
MSCubeP and MSCuboidP. This algorithm is basically the 3D-counterpart of
SNRRP (Section 1.4.1) and we prove it is a 5

62/3
-approximation (5

62/3
' 1.51)

for MSCubeP.

2.4.1 Presentation of the Algorithm

3D-NRRP (see Algorithm 2.2) is based on the divide and conquer principle.
At each step of the algorithm, the current cuboid is split into two parts, and
the same routine is recursively applied to each part. The splitting can be
performed according to three modes (the choices between the three modes are
made to ensure important invariants for the approximation ratio).

The first mode is the general case, in which the cuboid is partitioned in
two disjoint cuboids by cutting along the largest side (Lines 7 to 18 in Algo-
rithm 2.2, and Figure 2.9(a)). If this is not possible, vm can be proved to be
significantly larger than the other vi’s. Therefore, whenever possible (Lines 23

100 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

to 24 of Algorithm 2.2, and Figure 2.9(b)), 3D-NRRP shapes the smallest part
as a cube included in the covering cuboid of the other part, which is made of
one element only, namely vm. In some cases, the edge length of this cube can
be larger than the smallest dimension of the cuboid. In that case, we create
a cuboid like in Figure 2.9(c) (Line 26-32 of Algorithm 2.2) by setting one
dimension to the smallest dimension of the current cuboid and making the
remaining two dimensions equal.

Algorithm 2.2 : 3D-NRRP
Input : A set of values {v1, . . . , vm} sorted in non-decreasing order, a cuboid

Cu = [x1, x2]× [y1, y2]× [z1, z2] such that v(Cu) =
m∑
i=1

vi

Output : For each 1 ≤ i ≤ m a polyhedron Pi such that
⋃
Pi = Cu and v(Pi) = vi

1 if m = 1 then
2 return Cu
3 else

4 v =
m∑
i=1

vi ;

5 w = w(Cu) ; h = h(Cu) ; d = d(Cu) ;
6 ρ =

max(w,h,d)
min(w,h,d)

; ρ′ = max(w,h,d)
med(w,h,d)

;

7 if there exists k such that
k−1∑
i=1

vi ≥ v
3ρ′ then

8 k = the smallest such index k ;
9 v′ =

∑k−1
i=1 vi ;

10 if w = max(w, h, d) then
11 Cu1 = [x1, x1 + v′/(h× d)]× [y1, y2]× [z1, z2];
12 Cu2 = [x1 + v′/(h× d), x2]× [y1, y2]× [z1, z2]

13 else
14 if h = max(w, h, l) then
15 Cu1 = [x1, x2]× [y1, y1 + s′/(w × d)]× [z1, z2] ;
16 Cu2 = [x1, x2]× [y1 + s′/(w × d), y2]× [z1, z2]

17 else
18 Cu1 = [x1, x2]× [y1, y2]× [z1, z1 + v′/(w × h)] ;
19 Cu2 = [x1, x2]× [y1, y2]× [z1 + v′/(w × h), z2]

20 return 3D-NRRP({v1, . . . , vk−1}, Cu1) + 3D-NRRP({vk, . . . , vm}, Cu2) ;
21 else

22 v′ =
m−1∑
i=1

vi and α = v′/v;

23 if αρ2 ≤ ρ′ then
24 Cu1 = [x1, x1 +

3
√
v′]× [y1, y1 +

3
√
v′]× [z1, z1 +

3
√
v′] ;

25 else
26 if w = min(w, h, d) then
27 Cu1 = [x1, x2]× [y1, y1 +

√
v′/w]× [z1, z1 +

√
v′/w] ;

28 else
29 if h = min(w, h, d) then
30 Cu1 = [x1, x1 +

√
v′/h]× [y1, y2]× [z1, z1 +

√
v′/h] ;

31 else
32 Cu1 = [x1, x1 +

√
v′/d]× [y1, y1 +

√
v′/d]× [z1, z2] ;

33 return 3D-NRRP({v1, . . . , vm−1}, Cu1) + (Cu \ Cu1)

On the Effect of Replication of Input Files 101

2.4. 3D-NRRP (3D Non-Rectangular Recursive Partitioning)

(a) (b) (c)

Figure 2.9: The three splitting modes of 3D-NRRP. In all cases, the gray
polyhedra is attributed to {v1, . . . , vk−1}, the white one to {vk, . . . , vm}.

2.4.2 Correctness

The proof of the approximation ratio relies on an important invariant: the
aspect ratio of the cuboids on which 3D-NRRP is called is smaller than 3. Let
us now check that this invariant is satisfied after any of the three splitting
modes of 3D-NRRP.

In the first mode, in which the cuboid is partitioned into two disjoint
cuboids by cutting along the largest side (Figure 2.9(a)), we know there is

an index k such that
k−1∑
i=1

vi ≥ v
3ρ′

. Hence, we can apply Lemma 1.6 (page 34)

to ensure that
m∑
i=k

vi ≥ v
3ρ′

. We then use Lemma 2.6 to conclude.

Lemma 2.6. Let Cu be a cuboid of dimension w×h×d, with volume V = hwd,
aspect ratio ρ, and secondary aspect ratio ρ′. Let us assume that Cu1 and Cu2
are obtained by cutting Cu along the largest side, with V (Cu1) and V (Cu2)
not smaller than V

3ρ′
. Then, ρ(Cu1) ≤ max(3, ρ) and ρ(Cu2) ≤ max(3, ρ).

Proof. Let us suppose that w ≤ h ≤ d without loss of generality. In this case,
w = w(Cu1) = w(Cu2), h = h(Cu1) = h(Cu2), ρ = d/w and ρ′ = d/h. Let
us denote d1 = d(Cu1) and d2 = d(Cu2) and let us consider the cuboid Cu1.
Then, there are 3 cases to consider:

• If h ≤ d1, then ρ(Cu1) = d1/w ≤ d/w = ρ,

• If w ≤ d1 ≤ h, then ρ(Cu1) = h/w ≤ d/w ≤ ρ,

• If d1 ≤ w ≤ h, by assumption w × h × d1 = V (Cu1) ≥ V
3ρ′

= w×h×d
3ρ′

.
Therefore d1 ≥ d/3ρ′. Then, ρ(Cu1) = h/d1 ≤ 3hρ′

d
= 3.

Thus, in all cases, ρ(Cu1) ≤ max(3, ρ). By symmetry, the same proof applies
to Cu2.

In the second case, vm is significantly larger than the other vis and these
last ones are packed into a single cube (see Figure 2.9(b)). Thus, in this case,

102 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

the only produced cuboid on which 3D-NRRP is called is a cube whose aspect
ratio is then 1 ≤ 3. Therefore, the only thing left here is to prove that we can
perform such a partitioning, i.e. the side of the cube is smaller than the width,
the height and the depth of the initial cuboid. The condition v′

v
ρ2 ≤ ρ′ and

Lemma 2.7 ensures that this is indeed possible (the length of the cube is 3
√
v′).

Lemma 2.7. Let Cu be a cuboid of dimension w×h×d, with volume V = hwd,
aspect ratio ρ, and second aspect ratio ρ′. For any α > 0 such that αρ2 ≤ ρ′,
then 3

√
αV ≤ min(w, h, d).

Proof. Without loss of generality, we can assume that w ≤ h ≤ d and therefore
d = ρw and d = ρ′h and finally h = ρ

ρ′
w. Thus:

3
√
αV =

3
√
αwhd = 3

√
α
ρ2

ρ′
w ≤ w.

In the third case, vm is also significantly larger than the other vis but these
last ones may not be packed into a single cube. In this case the packing is made
with a small cuboid (see Figure 2.9(c)). In this case we use Lemma 2.8 that
states that this cuboid has an aspect ratio below 3 (more precisely, an aspect
ratio smaller than the initial cuboid that is, according to the invariant, below
3) and that the dimensions of this cuboid are small enough to be contained by
the initial cuboid.

Lemma 2.8. Let Cu be a cuboid of dimension w×h×d, with volume V = hwd,
aspect ratio ρ, and second aspect ratio ρ′. Let α be such that ρ′

ρ2
< α < 1

3ρ′
. Let

us denote minl = min(w, h, d). Then
√
α V

minl
≤ med(w, h, d). In addition, if

Cu′ is a cuboid of dimensions minl×
√
α V

minl
×
√
α V

minl
then ρ(Cu′) ≤ ρ.

Proof. Without loss of generality we can suppose minl = w ≤ h ≤ d and
therefore d = ρw and d = ρ′h and finally h = ρ

ρ′
w. Thus:√

α
V

w
=
√
αhd = (

√
αρ′)h ≤ h√

3
≤ h.

Moreover ρ′

ρ2
< α implies

√
αρ′ ≥ ρ′

ρ
, and thus

√
αV
w

= h
√
αρ′ ≥ hρ′

ρ
= w.

Then, ρ(Cu′) =

√
αV
w

w
, and the previous result yields ρ(Cu′) ≤ h

w
= ρ

ρ′
≤ ρ.

Thus, we cover the three modes and ensure the invariant stated by Theo-
rem 2.9.

Theorem 2.9. During the execution of 3D-NRRP, all recursive calls are made
on a cuboid with an aspect ratio below 3.

On the Effect of Replication of Input Files 103

2.4. 3D-NRRP (3D Non-Rectangular Recursive Partitioning)

2.4.3 Approximation Ratio

This part is devoted to the proof of Theorem 2.10, which states that 3D-NRRP
achieves a 5

62/3
approximation ratio (5

62/3
' 1.51).

Theorem 2.10. 3D-NRRP is a 5
62/3

-approximation for MSCubeP.

Proof. The sketch of the proof is as follows. First, we prove that if {P1, . . . , Pm}
is an output of 3D-NRRP, then any output polyhedron Pi satisfies Hs(Pi)

3V (Pi)
2
3
≤

5

6
2
3
. Remind that Equation (2.1) states that Hs(P ∗i) ≥ 3v(P ∗i)

2
3 for any (opti-

mal) solution {P ∗1 , . . . , P ∗m}. By summing up these inequalities for all i, we get
that

∑
iHs(Pi) ≤

5

6
2
3

∑
iHs(P

∗
i) and obtain the approximation result claimed

in Theorem 2.10.
The rest of the section is devoted to the proof that any polyhedron returned

by 3D-NRRP satisfies the property stated above. Let us first observe that there
are only two situations in which 3D-NRRP returns a singleton: Line 2 and Line
33. In the first case, according to Theorem 2.9, the returned polyhedron is a
cuboid with aspect ratio below 3. In this case Lemma 2.12 provides the desired
result, since 5

3 3√3 ≤
5

6
2
3
. Lemma 2.11 is a technical lemma in order to prove

Lemma 2.12.

Lemma 2.11. Let f(x, y) = y+x(1+y)

3(xy)2/3
. Then, with x ∈ [1, y] and y ∈ [1, 3],

f(x, y) ≤ 5

3 3√3 .

Proof. One can show that ∂f
∂x

(x, y) = 2x−1−y
9y1/3x4/3

. Since x ≥ 0 and y ≥ 0,
∂f
∂x

(x, y) ≥ 0 if and only if x ≤ 1+y
2
. Hence, x 7→ f(x, y) is decreasing on [1, 1+y

2
]

and increasing in [1+y
2
, y], which implies f(x, y) ≤ max(f(1, y), f(y, y)).

f(1, y) = y+2
3 3
√
y
and f(y, y) = 2y+1

3y2/3
. From y ≥ 1, one can obtain (y+2) 3

√
y ≥

2y + 1, and this implies y+2
3 3
√
y
≥ 2y+1

3y2/3
. Let us denote g(y) = y+2

3 3
√
y
: the previous

statements show that f(x, y) ≤ g(y). One can prove that g′(y) = 2(y−1)
9y4/3

.
Therefore g is increasing on [1,∞] and, in the considered case, g(y) ≤ g(3) =
5

3 3√3 , what proves the claimed result.

Lemma 2.12. If P is a cuboid with ρ(P) ≤ 3, then Hs(P)

3v(P)2/3
≤ 5

3 3√3 .

Proof. Let us denote ρ(P) = ρ and v(P) = V . Let us suppose that w =
w(P) ≤ h = h(P) ≤ d(P) = d without loss of generality. Let us denote
x = h/w. In this case d = ρw and V = whd = ρxw3. Therefore

Hs(P)

3V 2/3
=

(x+ ρ+ xρ)w2

3(ρxw3)2/3
=
ρ+ x(1 + ρ)

3(ρx)2/3
= f(x, ρ),

where f is as defined in Lemma 2.11, what ends the proof.

104 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

In the other case, 3D-NRRP may return a cuboid minus a cube, as de-
scribed on Figure 2.9(b), or a cuboid minus a small cuboid, as described on
Figure 2.9(c). The bound on the volume of the cube or the small cuboid is
such that the conditions of Lemma 2.14 are satisfied. As before, this relies on
the technical Lemma 2.13.

Lemma 2.13. Let f(x, y) = y+x(1+y)

3(xy−x2
3
)2/3

. Then, with x ∈ [1, y] and y ∈ [1, 3],

f(x, y) ≤ 5
62/3

.

Proof. One can prove that ∂f
∂x

(x, y) =
1+y
3
x2+(7

3
+y)yx−2y2

9(yx−x2
3
)5/3

. Then ∂f
∂x

has the same

sign than Py(x) = 1+y
3
x2+(7

3
+y)yx−2y2. Since Py is a second order polynomial

with Py(0) = −2y2 < 0 and lim
x→+∞

py(x) = +∞, Py is either positive on [1, y],

negative on [1, y], or negative and then positive. Therefore x 7→ f(x, y) on
[1, y] is either increasing, decreasing or decreasing and then increasing. In any
case, f(x, y) ≤ max(f(1, y), f(y, y)).

Let g(y) = f(1, y) = 1+2y
3(y−1/3)2/3 . One can show that g′(y) = 2(y−2)

9(y−1/3)5/3 ,
hence g is decreasing on [1, 2] and increasing on [2, 3]. Therefore g(y) ≤
max(g(1), g(3)) = max((3

2
)2/3, 7

4 3√3) = (3
2
)2/3.

Let h(y) = f(y, y) = 2+y
3√12y . One can show that h′(y) = 2(y−1)

3
√

12y2
, hence h is

increasing on [1, 3]. Therefore h(y) ≤ h(3) = 5
62/3

.
Putting it all together, we obtain f(x, y) ≤ max((3

2
)2/3, 5

62/3
) = 5

62/3
.

Lemma 2.14. If v(P) ≥ (1− 1
3ρ′(P)

)v(Cu(P)) and ρ(P) ≤ 3, then Hs(P)

3v(P)2/3
≤

5
62/3

.

Proof. Let us denote ρ = ρ(P), ρ′ = ρ′(P), V = v(P), and let us denote by w,
h, d for the dimensions of Cu(P). Let us assume that w ≤ h ≤ d without loss of
generality. Then, d = ρw and d = ρ′h, and let us also denote x = h/w = ρ/ρ′.
With such notations, we get v(Cu(P)) = ρxw3 and Hs(P) = (ρ+x(1+ρ))w2.
Thus, the condition on V (P) can be written as

v(P) ≥ (1− 1

3ρ′(P)
)v(Cu(P)) = (1− x

3ρ
)ρxw3 = (ρx− x2

3
)w3,

what leads to
Hs(P)

3V (P)2/3
≤ (ρ+ x(1 + ρ))w2

3(ρx− x2

3
)2/3w2

=
ρ+ x(1 + ρ)

3(ρx− x2

3
)2/3

= f(x, ρ),

where f is as defined in Lemma 2.13, what achieves the proof.

Thus in both cases we prove our approximation, which achieves this proof.

On the Effect of Replication of Input Files 105

2.5. 3D-SFCP (3D Space-Filling Curve Partitioning)

Note that the approximation ratio is also valid for any instance of MSCuboidP
where the input cuboid has an aspect ratio below 3.

Also, if only the first mode is used (that may happen for instance with
small heterogeneity), then for all k, Hs(Pk)

3V (Pk)2/3
≤ 5

3 3√3 according to Lemma 2.6
and Lemma 2.12 (5

3 3√3 ' 1, 16). A possible sufficient condition may be for
k > 1, 1

2
vk ≤ vk−1, the same condition to have RRP being a 2√

3
-approximation

according to Fügenschuh et al. [2014]. Indeed in this case, if ({vi, . . . , vj}, Cu)
is the input of a recursive call of 3D-NRRP, then, with v =

∑j
k=i vk, v − vk =∑j−1

k=i vk ≥ vj−1 ≥ 1
2
vj. Thus v ≥ 3

2
vj, that is equivalent to v − vj ≥ 1

3
v which

implies v − vj ≥ 1
3ρ′(Cu)

v. Hence there is k′ < j such that
∑k′

k=i vk ≥
1
3
v and

therefore Lemma 2.6 applies. Thus we have just proven Theorem 2.15.

Theorem 2.15. On the set of instance {v1, . . . , vm} of MSCubeP such that
∀1 < k ≤ m, 1

2
vk ≤ vk−1, 3D-NRRP is a 5

3 3√3-approximation of MSCubeP.

2.4.4 Complexity

As for SNRRP, for the instance {v1, . . . , vm}, by pre-computing the partial
sums, the cost of each call of 3D-NRRP is O(logm). Thus, as there are at
most m calls (one for each vk), the worst case complexity of 3D-NRRP is
O(m logm).

2.5 3D-SFCP (3D Space-Filling Curve Partition-
ing)

In this section we present the analysis of 3D-SFCP, the 3D-counterpart of
SFCP (Section 1.5), that we prove to be a 7

5
3

62
2
3
-approximation (7

5
3

62
2
3
' 1.64).

The basic principle is still the same as for SFCP, 3D-SFCP uses space-filling
curves to go through the cube and perform the partitioning. Note that, as for
SFCP, 3D-SFCP is an algorithm that can be used directly to solve the discrete
version of MSCubeP. Note that the analysis we provide is really close to the
one in Section 1.5.

2.5.1 Presentation of 3D-SFCP

In the following we consider an N×N×N cube and suppose that N is a power
of 2. Note that we can return to MSCubeP by simply rescaling the cube (in par-
ticular if we divide the covering half-surfaces by N2 we have the covering half-
surfaces for MSCubeP). Note also that we now consider a discrete problem and
no longer a continuous one (there are N3 elements in the cube to be allocated
to processors). Note that the notation from MSCubeP can be adapted easily.

106 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

If Z is a subset of [1, N]× [1, N]× [1, N], now Π1(Z) = {(i, k), (i, j, k) ∈ Z},
Π2(Z) = {(j, k), (i, j, k) ∈ Z} and Π3(Z) = {(i, j), (i, j, k) ∈ Z} are the
projections of Z in this case (and πi(Z) = |Πi(Z)| for i ∈ {1, 2, 3}).

Let us first note, as described in Lemma 2.16 (which is a direct adaptation
of Lemma 1.33), that the projection of the union of two subsets of [1, N] ×
[1, N] × [1, N] is smaller than the sum of the projections, even for disjoint
subsets.

Lemma 2.16. Let X and Y be two subsets of [1, N]3. Then, ∀i ∈ [1, 3],

πi(X ∪ Y) ≤ πi(X) + πi(Y).

Proof. We prove here that the property holds true for π1 (proof similar for π2
and π3). We have

Π1(X ∪ Y) = {(i, k), (i, j, k) ∈ X ∪ Y }
= {(i, k), (i, j, k) ∈ X} ∪ {(i, k), (i, j, k) ∈ Y }
= Π1(X) ∪ Π1(Y).

Therefore π1(X ∪ Y) ≤ π1(X) + π1(Y). Indeed,

π1(X∪Y) = |Π1(X∪Y)| = |Π1(X)∪Π1(Y)| ≤ |Π1(X)|+|Π1(Y)| = π1(X)+π1(Y).

The q-cubes, the 3D-counterpart of q-squares, are now defined as follows.

Definition 2.1. Let us denote as q-cubes all the subcubes of the cube [1, N]3

which are of the form [1 + n12
q, (n1 + 1)2q] × [1 + n2 × 2q, (n2 + 1)2q] × [1 +

n32
q, (n3 + 1)2q] where n1, n2, n3 ∈ [0, N/2q − 1]3.

See Figure 2.5.1 for an illustrated example of q-cubes.
The study we propose is a bit more general than Hilbert’s curve only, even

if we use this curve in particular for implementation. It applies to every space-
filling curve that can be seen as a function H : [1, N3] → [1, N]3 that fulfils
the following two conditions.

Property 2.1. If Cq is a q-cube, then there exists a positive integer n such
that H([n, n+ 23q − 1]) = Cq.

Property 2.2. ∀n ∈ [1, N3−1], if we denote (i1, j1, k1) = H(n) and (i2, j2, k2) =
H(n+ 1), then two of these are true:

• i1 = i2;

On the Effect of Replication of Input Files 107

2.5. 3D-SFCP (3D Space-Filling Curve Partitioning)

Figure 2.10: The two red cubes are 0-cube and 1-cube, the two gray ones are
not q-cubes.

• j1 = j2;

• k1 = k2.

The first one means that the path through the cube [1, N]3 is built, at
every level, one q-cube after another. The second means that there are no
diagonal moves. From these two properties we can deduce than the second one
is transferred at any level to the q-cubes, which is described in the following
corollary.

Corollary 2.17. Let H be a function from [1, N3] to [1, N]3 which satisfies
Property 2.1 and Property 2.2. Let q be in N and C1, C2 be two q-cubes with
C1 = I1 × J1 ×K1 and C2 = I2 × J2 ×K2. If we suppose there exists an index
n such that H([n, n + 23q − 1]) = C1 and H([n + 23q, n + 2 × 23q − 1]) = C2,
then two of these hold true:

• I1 = I2;

• J1 = J2;

• K1 = K2.

Note that this is equivalent to the following: if there exists an index n such
that H([n, n+ 23q − 1]) = C1 and H([n+ 23q, n+ 2× 23q − 1]) = C2, then one
of these hold true:

• Π1(C1) = Π1(C2);

• Π2(C1) = Π2(C2);

• Π3(C1) = Π3(C2).

108 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Proof. First if C1 = I1 × J1 × K1 and C2 = I2 × J2 × K2 are two q-cubes,
then I1 ∩ I2 6= ∅ (respectively J1 ∩ J2 6= ∅ and K1 ∩K2 6= ∅) implies I1 = I2
(respectively J1 = J2 and K1 = K2). This can be proved simply by recalling
that I1 = [1 + n1 × 2q, (n1 + 1)× 2q] and I2 = [1 + n2 × 2q, (n2 + 1)× 2q] with
n1, n2 ∈ [0, N/2q − 1]2 and thus if n1 6= n2 the intersection is empty.

Let us now prove Corollary 2.17 by induction on q.
The case q = 0 corresponds exactly to Property 2.2 and therefore holds

true.
Let us now suppose that the result holds true for q−1. Let C1 = I1×J1×K1

and C2 = I2×J2×K2 be two q-cubes and k such that H([k, k+ 23q−1]) = C1

and H([k + 23q, k + 2× 23q − 1]) = C2. Thanks to Property 2.1 we know that
if the C1,is, i ∈ [1, 8] are the (q − 1)-cubes that compose C1, then ∀i ∈ [1, 8]
there exists ki such that, H([ki, ki + 23(q−1) − 1]) = C1,i. If we suppose that
ki < ki+1 ∀i ∈ [1, 7], as

⋃
[ki, ki + 23(q−1) − 1] = [k, k + 23q − 1], then

• k1 = k;

• ki = ki−1 + 23(q−1) otherwise.

Similarly we can define C2,i, i ∈ [1, 8], as the (q− 1)-cubes included in C2 and
the k′is such that H([k′i, k

′
i + 23(q−1) − 1]) = C2,i. Similarly

• k′1 = k + 23q;

• k′i = k′i−1 + 23(q−1) otherwise.

In addition

k + 23q = k1 + 8 ∗ 23(q−1) = k2 + 7 ∗ 23(q−1) = . . . = k8 + 23(q−1)

and thenH([k8, k8+23(q−1)−1]) = C1,8 andH([k8+23(q−1), k8+2×23(q−1)−1]) =
C2,1. If we now denote C1,8 = I ′1 × J ′1 × K ′1 and C2,1 = I ′2 × J ′2 × K ′2, by
assumption, two of these hold true:

• I ′1 = I ′2;

• J ′1 = J ′2;

• K ′1 = K ′2.

Thus two of these hold true:

• I1 ∩ I2 6= ∅ implying I1 = I2;

• J1 ∩ J2 6= ∅ implying J1 = J2;

• K1 ∩K2 6= ∅ implying K1 = K2;

what achieves the proof for q.

Relying on a function H with such properties, 3D-SFCP simply performs
the partitioning going through the cube until the wanted volume is reached,
as described in Algorithm 2.3.

On the Effect of Replication of Input Files 109

2.5. 3D-SFCP (3D Space-Filling Curve Partitioning)

Algorithm 2.3 : 3D-SFCP
Input : a set of positive integer values {v1, . . . , vm} such that∑

vi = N3

Output : For each 1 ≤ i ≤ m, a zone Zi such that v(Zi) = vi and⋃
Zi = [1, N]3

vtot = 0
foreach k ∈ [1,m] do

Zk = H([vtot, vtot + vk])
vtot = vtot + vk + 1

2.5.2 Approximation Ratio

We claim that 3D-SFCP is a 7
5
3

62
2
3
-approximation (7

5
3

62
2
3
' 1.64) to MSCubeP in

Theorem 2.18, and prove this ratio in this section.

Theorem 2.18. 3D-SFCP is a 7
5
3

62
2
3
-approximation to MSCubeP.

Proof. In this proof we prove that the ratio holds for every zone Zk and there-
fore holds for their sum (i.e. for all k, Hs(Zk)

3v
2
3
k

≤ ρ implies
∑
Hs(Zk)∑
3v

2
3
k

≤ ρ).

We now focus on the study of general subsets of [1, N]3 that are the image by
H of an interval of [1, N3] (i.e. all the possible Zk for every possible distribution
of the {v1, . . . , vm}). In order to refine the analysis we distinguish different
kinds of q-cubes.

Definition 2.2. Let Z be a subset of [1, N]3. A q-cube Cq is said to be
completed by Z when Cq ⊆ Z. A q-cube Cq is said to be partially completed
by Z when Cq ∩ Z 6= ∅ and Cq * Z.

Definition 2.3. Let Z be a subset of [1, N]3. We denote as qZ the largest q
such that there exists a q-cube completed by Z.

These two notions are the exact 3D counterpart of completed and partially-
completed q-squares introduced in Section 1.5. Similar properties apply, for
example for every q there are at most two partially-completed q-cubes.

Lemma 2.19. Let Z be a subset of [1, N]3 such that there exists an interval
I of [1, N3] such that H(I) = P . Then ∀q at most two q-cubes are partially
completed by Z.

Proof. Let C1, C2, . . . , Ck be all the q-cubes such that for i ∈ [1, k], Ci∩Z 6= ∅.
By assumption on H, ∀i ∈ [1, k], there exists ni such that Ci = H([ni, ni +
8q − 1]). Let us assume that n1 < n2 < . . . < nk and let us denote Ii =
[ni, ni + 8q/N − 1]. Since H is bijective, we also know that for i 6= j, nj /∈ Ii
and, therefore, for all x, y, z ∈ Ii × Ij × Il, i < j < l implies x < y < z. At

110 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

the same time, we know that Z = H(I) where I is an interval of [1, N3]. By
assumption we know there exist x1 and xk such that x1 ∈ I1∩I and xk ∈ Ik∩I.
We know that x1 < xk and x1, xk ∈ I, so that [x1, xk] ⊆ I. In addition, as
∀y ∈ Ij, 1 < j < k, x1 < y < xk, and then y ∈ [x1, xk] what implies y ∈ I. We
deduce that for all j ∈]1, k[, Cj ⊆ H(I) = Z and therefore Cj is completed by
A. So we have proved that only C1 and Ck can be partially completed by Z
and so there are at most two partially completed q-cubes.

A direct consequence of Lemma 2.19 is that we can bound the number of
completed qZ-cubes by 14.

Lemma 2.20. Let Z be a subset of [1, N]3 such that there exists an interval
I of [1, N3] such that H(I) = Z. Then there are at most 14 completed qZ-
cubes and at most 2 partially completed qZ-cubes and they fit into at most two
(qZ + 1)-cubes.

Proof. The second statement is a direct corollary of Lemma 2.19. Indeed, if
Z fits in more than two (qZ + 1)-cubes, then one of them, at least, must be
completed, which is a contradiction with the definition of qZ .

In order to prove the first statement, we can simply notice than a (q + 1)-
cube consists of exactly 8 q-cubes. Let us now assume that Z has at least 15
completed qZ-cubes. Then the only possible repartition of these cubes in the
two (qZ+1)-cubes which contains them is 7+8 and one of the two (qZ+1)-cubes
contain 8 completed qZ-cubes, therefore this one is also completed, which is in
contradiction with the definition of qZ .

The key point in our proof are the partially completed qZ-cubes. Thanks
to Lemma 2.20 we know that they are at most two. Let C1,Z and C2,Z be the
two qZ-cubes partially completed by Z. Let us consider the following values:
let nZ be the number of completed qZ-cubes and let vi,Z =

|Ci,Z∩Z|
8qZ

, i ∈ {1, 2}.
The vi,Z represent the fractions of C1,Z and C2,Z which are intersected by Z
(both are in [0, 1[). We have |Z| = 23qZ (nZ + v1,Z + v2,Z).

The size of Cu(Z), and the values π1(Z), π2(Z) and π3(Z) are more difficult
to estimate. Let us first define SZ =

Hs(Z\(C1,Z∪C2,Z))

4qZ
, the scaled half surface of

the covering truncated cuboid of the volume defined by the qZ-cubes completed
by Z.

Let us now define

s1,Z =
Hs(Z \ C2,Z)−Hs(Z \ (C1,Z ∪ C2,Z))

4qZ

and
s2,Z =

Hs(Z \ C1,Z)−Hs(Z \ (C1,Z ∪ C2,Z))

4qZ
.

These two values are the portion of Hs(Z) that come exclusively from partially
completed qZ-cubes. However, there are cases where the si,Z refer to the same

On the Effect of Replication of Input Files 111

2.5. 3D-SFCP (3D Space-Filling Curve Partitioning)

data, therefore we have only an inequality (that is enough for the bound we
are looking for). Hence Hs(Z) ≤ 4qP (SZ + s1,Z + s2,Z).

Therefore,

ρZ =
Hs(Z)

3|Z|2/3
≤ 4qZ (SZ + s1,Z + s2,Z)

3(23qZ (nZ + v1,Z + v2,Z))2/3
≤ SZ + s1,Z + s2,Z

3(nZ + v1,Z + v2,Z)2/3
.

We can refine this upper bound. Let

x1,i,Z =
πi(Z \ C2,Z)− πi(Z \ (C1,Z ∪ C2,Z))

4qZ

and

x2,i,Z =
πi(Z \ C1,Z)− πi(Z \ (C1,Z ∪ C2,Z))

4qZ
.

Therefore si,Z = xi,1,Z + xi,2,Z + xi,3,Z . However, we know that C1 precedes
one of the other qZ-cubes of Z and this qZ-cube cannot be C2 by definition of
qZ . Thus, and according to Corollary 2.17, there exists C ′ in Z \ (C1 ∪ C2)
such that Π1(C1) = Π1(C

′) or Π2(C1) = Π2(C
′) or Π3(C1) = Π3(C

′). Hence
Π1(Z \ C2,Z) ⊂ Π1(Z \ (C1,Z ∪ C2,Z)) or Π2(Z \ C2,Z) ⊂ Π2(Z \ (C1,Z ∪ C2,Z))
or Π3(Z \ C2,Z) ⊂ Π3(Z \ (C1,Z ∪ C2,Z)). Therefore x1,1,Z = 0, x1,2,Z = 0 or
x1,3,Z = 0.

With a similar reasoning for the x2,i,Z and with x1,Z = max(x1,1,Z , x1,2,Z , x1,3,Z)
and x2,Z = max(x2,1,Z , x2,2,Z , x2,3,Z), s1,Z ≤ 2x1,Z and s2,Z ≤ 2x2,Z . Hence,

ρZ ≤
SZ + 2(x1,Z + x2,Z)

3(nZ + v1,Z + v2,Z)2/3
.

Let us first prove a result on the relative values of nZ and SZ .

Lemma 2.21. SZ ≤ 2nZ + 1.

Proof. Let us prove this result by induction on nZ . If nZ = 1 then SZ = 3.
Indeed if nZ = 1 then Z \ (C1,Z ∪ C2,Z) is a single qZ-cube. Therefore SZ =
3∗4qZ
4qZ

= 3.
Let us suppose that the result holds true for nZ = k and consider nZ = k+1.

Let Z ′ be Z minus the last (in the order where the Hilbert’s curve go through
them) qZ-cube of Z. nZ′ = nZ−1 = k. Therefore SZ′ ≤ 2nZ′+1. At the same
time Corollary 2.17 states that the qZ-cube we remove shares at least one face
with Z ′. Therefore SZ−SZ′ ≤ 2, what leads to SZ ≤ 2+2(nZ−1) = 2nZ+1.

Let us find a relationship between xi,Z and vi,Z . Let us look for a function
fq such that vi,Z ≥ fq(xi,Z), where q depends on the size of the q-cubes we are
considering (in practice q = qZ). Let us consider the following definition of fq.

112 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

fq(x) =



0 if q = 0 and x = 0
3
7

if q = 0 and x 6= 0
1
8
fq−1(4x) if q > 0 and x ≤ 1

4
1
8

+ 1
8
fq−1(4(x− 1

4
)) if q > 0 and 1

4
< x ≤ 1

2
1
4

+ 1
8
fq−1(4(x− 1

2
)) if q > 0 and 1

2
< x ≤ 3

4
3
8

+ 1
8
fq−1(4(x− 3

4
)) if q > 0 and 3

4
< x

(2.2)

Before any other consideration, let us prove two important lemmas dealing
with fq. First Lemma 2.22 states that fq is an increasing function that can be
bounded.

Lemma 2.22. ∀q, fq is an increasing function on [0, 1] and ∀x ∈ [0, 1], 3
7
x

3
2 ≤

fq(x) ≤ 3
7
.

Proof. Let us first prove that ∀x ∈ [0, 1], 3
7
x

3
2 ≤ fq(x) ≤ 3

7
. We prove this

claim by induction on q.
If q = 0 then there are two cases. If x = 0 then fq(x) = 0 and 3

7
0

3
2 = 0 =

fq(x) ≤ 3
7
. Else fq(x) = 3

7
and then 3

7
x

3
2 ≤ 3

7
= fq(x) ≤ 3

7
what achieves the

proof.
Let us now assume that property holds true for q − 1. Let x be in]k

4
, k+1

4
]

with k ∈ [0, 3]. In this case fq(x) = k
8

+ 1
8
fq−1(4(x− k

4
)). Therefore,

fq(x) =
k

8
+

1

8
fq−1(4(x− k

4
)) ≤ 3

8
+

3

56
=

3

7
.

Similarly,

fq(x) ≥ k

8
+

3(4x− k)
3
2

8× 7
≥ k

8
+

3(x− k
4
)
3
2

7
.

Let us consider the function gk(x) = k
8
+

3(x− k
4
)
3
2

7
−3

7
x

3
2 . g′k(x) = 9

14
(
√
x− k

4
−

√
x). As x ≥ k

4
, (
√
x− k

4
−
√
x) ≤ 0 and therefore gk is decreasing on]k

4
, k+1

4
].

Hence gk(x) ≥ gk(
k+1
4

) = k
8

+ 3(1−(k+1)
3
2)

56
. One can prove that the function

h : y 7→ y
8

+ 3(1−(y+1)
3
2)

56
reaches its lower bound on [0, 3] for y = 0 and y = 3

and h(0) = h(3) = 0. Therefore ∀k ∈ [0, 3] and ∀x ∈]k
4
, k+1

4
],

fq(x)− 3

7
x

3
2 = gk(x) ≥ h(k) ≥ 0.

We just proved that ∀x ∈ [0, 1] 3
7
x

3
2 ≤ fq(x) ≤ 3

7
. By induction this

property holds for every q.

On the Effect of Replication of Input Files 113

2.5. 3D-SFCP (3D Space-Filling Curve Partitioning)

Let us now prove that fq is an increasing function. We again prove this
claim by induction on q. For q = 0 the result is trivial.

Let us now suppose that fq−1 is an increasing function on [0, 1]. Let k ∈
[0, 3]. If x ≤ y and x, y ∈ [k

4
, k+1

4
[, then

fq(x) =
k

8
+

1

8
fq−1(4(x− k

4
)) ≤ k

8
+

1

8
fq−1(4(y − k

4
)) = fq(y).

In the other cases, if x ≤ y and there are k, k′ ∈ [0, 3] such that k < k′ and
x ∈ [k

4
, k+1

4
[and y ∈ [k

′

4
, k
′+1
4

[, then,

fq(x) =
k

8
+

1

8
fq−1(4(x− k

4
)) ≤ k + 1

8
≤ k′

8
≤ k′

8
+

1

8
fq−1(4(y − k′

4
)) = fq(y).

Therefore our property holds true for q and by induction we prove that fq
is an increasing function for every q.

Secondly fq enables to bound vi,Z by a function of xi,Z , as stated in the
following lemma.

Lemma 2.23. Let Cq be a q-cube. Let Z be a connected subset of [1, N]3 such
that Z ∩ Cq 6= ∅, Z = H(I) and Z * Cq. Let x = π1(Z∩Cq)

4q
, y = π2(Z∩Cq)

4q
,

z = π3(Z∩Cq)
4q

and v = |Z∩Cq |
8q

. Then v ≥ fq(x), v ≥ fq(y) and v ≥ fq(z).

Proof. Let us prove this lemma by induction on q. If q = 0,then x = 1, y = 1,
z = 1 and v = 1 (0-cubes have a volume of exactly one, so either they are
completed or they are not intersected at all). As f0(1) = 3

7
, then v ≥ f0(x),

v ≥ f0(y) and f0(z).

Let us suppose that the property holds true for q − 1. Let us consider our
q-cube as a subdivision of eight (q− 1)-cubes. By assumption, and because of
Lemma 2.19, we know that at most one of these eight cubes can be partially
completed (the assumption Z * Cq ensures that if there are two q-cubes
partially completed by Z, the second one is outside of Cq). Therefore our
original q-cube is composed of n ∈ [0, 8] completed (q − 1)-cubes plus one or
zero partially completed (q − 1)-cube.

• First of all, if n ≥ 4 then v ≥ 1
2
as more than half of the q-cube is

completed. In addition 1
2
≥ 3

7
≥ fq(x) for all x according to Lemma

2.22. Therefore v ≥ fq(x), v ≥ fq(y) and v ≥ fq(z) is true.

114 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

• If n = 0, then Z is contained in only one partially completed (q−1)-cube.
We denote it by Cq−1. In addition, we have x ≤ 1

4
. Let x′ (respectively y′

and z′) be equal to π1(Z∩Cq−1)

4q−1 (respectively to π2(Z∩Cq−1)

4q−1 and π3(Z∩Cq−1)

4q−1)
and v′ = |Z∩Cq−1|

8q−1 . Then,

v′ =
|Z ∩ Cq−1|

8q−1
=
|Z ∩ Cq|

8q−1
= 8v

and

x′ =
π1(Z ∩ Cq−1)

4q−1
=
π1(Z ∩ Cq)

4q−1
= 4x.

Therefore, by assumption,

v =
1

8
v′ ≥ 1

8
fq−1(x

′) =
1

8
fq−1(4x) = fq(x)

and similarly we prove that v ≥ fq(y) and v ≥ fq(z).

• If n = 1, 2 or 3, let Cq−1 be the additional partially completed (q − 1)-
cubes and let Z ′ be the fraction of Z in Cq−1 (we suppose Z ′ 6= ∅,
the reverse can be interpreted as the extremal case with n−1 completed
(q−1)-cubes). Then v = n×8q+V (Z ′). If we denote v′ = |Z′|

8q−1 = |Z∩Cq−1|
8q−1

then v = n
8

+ v′

8
. Similarly, if x′ = π1(Z′)

4q−1 = π1(Z∩Cq−1)

4q−1 (similar definition
for y′ and z′) and x′′ = π1(Z\Z′)

4q
, then Lemma 2.16 leads to x ≤ x′

4
+ x′′.

Z \Z ′ consists exactly in n completed (q−1)-cubes, therefore, according
to Lemma 2.16, π1(Z ′ \ Z) ≤ n × 4q−1 and x′′ ≤ n

4
. As 0 < x′ ≤ 1,

x′

4
+ n

4
∈]n

4
, n+1

4
], then,

fq(
x′

4
+
n

4
) =

n

8
+

1

8
fq−1(4(

x′

4
+
n

4
− n

4
)) =

n

8
+

1

8
fq−1(x

′).

Since fq−1 is increasing (Lemma 2.22), then fq(x) ≤ fq(
x′

4
+ n

4
) = n

8
+

1
8
fq−1(x

′).

By application of the induction assumption fq−1(x′) ≤ v′ we can conclude

fq(x) ≤ n

8
+

1

8
fq−1(x

′) ≤ n

8
+
v′

8
= v.

Similarly we prove the property for y and z and by induction for every
q.

On the Effect of Replication of Input Files 115

2.5. 3D-SFCP (3D Space-Filling Curve Partitioning)

An illustration of the intuition behind the definition of fq can be seen on
Figure 2.11. On Figure 2.11(a), we are in the first case, x ≤ 1

4
. One can see

that the volume to consider is the dashed one. We can even go further and
prove that only the intersection with one of the two cubes is to be considered
since we are searching for a lower bound. Therefore, the area we have to
consider is only contained in one of the eight sub-cube and, after re-scaling x
by multiplying it by four, we obtain this bound by using fq−1.

x

(a)

x

(b)

x

(c)

Figure 2.11: A schema to understand the definition of fq.

The case where x > 1
4
, is illustrated on Figure 2.11(b) (in the particular

case of x ≤ 1
2
). For the same reasons than before, we can only consider the

right hand side of the cube. As 1
4
< x, we know that there must be at least

two cubes intersecting Z (else x ≤ 1
4
).

We know that one of them is completed and that the case presented on
Figure 2.11(c) (two partial (qZ − 1)-cubes) cannot happen. Indeed thanks to
Property 2.2 we know that the path of the curve goes to the (qZ − 1)-cubes
one after another. In addition we know that there exists a completed qZ-cube

116 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

just before and furthermore a completed (qZ − 1)-cube. Therefore after this
completed (qZ − 1) − cube, if the intersection between the curve and Z goes
through two (qZ − 1)-cubes the first of the two must be completed.

If we go back to Figure 2.11(b), we now know that one of the (qZ − 1)-
cube is completed (represented by the black volume), so v ≥ 1

8
, and we want

a bound on the area present in the dashed region, that can be given by fq−1
(after a re-scaling of x− 1

4
).

The intuition behind f0(1) = 3
7
is that

+∞∑
k=1

3
8k

= 3
7
. Indeed, to obtain the

smallest v such that x can be equal to 1, we notice that this asymptotically
occurs when Z is made of a sequence of cubes whose projections are as in
Figure 2.12(a) on the face of area x (three competed q-cubes, then three com-
pleted (q − 1)-cubes and so goes on) and which projection on the other faces
is similar to Figure 2.12(b). In this case, for a given q, one can observe that
v =

∑q
k=1

3
8k

whose limit, when q increases to infinity, is
∑+∞

k=1
3
8k

= 3
7
.

(a) (b)

Figure 2.12: An illustration of the intuition behind the definition of fq.

Thanks to Lemmas 2.22 and 2.23, we prove that vi,Z ≥ fqZ (xi,Z) ≥ 3
7
x

3
2
i,Z .

Therefore

ρZ ≤
SZ + 2(x1,Z + x2,Z)

3(nZ + v1,Z + v2,Z)2/3
≤ SZ + 2(x1,Z + x2,Z)

3(nZ + 3
7
(x

3
2
1,Z + x

3
2
2,Z))2/3

.

Let us now consider the function g(x, y) = SZ+2(x+y)

3(nZ+
3
7
(x

3
2+y

3
2))2/3

. As stated

below, g(x, y) reaches its maximum on (1, 1) for x, y ∈ [0, 1]2.

Lemma 2.24. ∀x, y ∈ [0, 1]2, g(x, y) ≤ g(1, 1).

Proof. Let us first recall Lemma 2.21 that states that SP ≤ 2nP + 1.

One can show that ∂f
∂x

(x, y) =
nZ+

3
7
(y

3
2−x

1
2 (SZ+y))

3(nZ+
3
7
(x

3
2 y

3
2))

. Therefore the sign of
∂f
∂x

(x, y) is the same as hy(x) = nZ + 3
7
(y

3
2 − x 1

2 (SZ + y)).

On the Effect of Replication of Input Files 117

2.5. 3D-SFCP (3D Space-Filling Curve Partitioning)

Let us suppose that nZ ≥ 4. Hence,

hy(x) = nZ +
3

7
(y

3
2 − x

1
2 (SZ + y))

≥ nZ +
3

7
(y

3
2 − (SZ + y)) (x ≤ 1)

≥ nZ −
3

7
SZ +

3

7
(y

3
2 − y)

≥ 1

7
nZ −

3

7
+

3

7
(y

3
2 − y) (SZ ≤ 2nZ + 1)

≥ 1

7
+

3

7
(y

3
2 − y).

One can prove that the function y 7→ 1
7

+ 3
7
(y

3
2 − y) is larger than 5

63
≥ 0.

Thus, in this case hy(x) ≥ 0 and then ∂f
∂x

(x, y) is an increasing function with
x. Therefore g(x, y) ≤ g(1, y) ∀y and similarly we prove g(x, y) ≤ g(x, 1) for
all x and conclude that g(x, y) ≤ g(1, 1).

If nZ ≤ 3, let us remark that hy(x) is a decreasing function, and then g
is a convex function in x. Hence g(x, y) ≤ max(g(0, y), g(1, y)) ∀y. Similarly
we prove g(x, y) ≤ max(g(x, 0), g(x, 1)) for all x and conclude that g(x, y) ≤

max(g(0, 0), g(0, 1), g(1, 0), g(1, 1)) = max

(
SZ

3n
2/3
Z

, SZ+2
3(nZ+

3
7
)2/3

, SZ+4
3(nZ+

6
7
)2/3

)
. By

an exhaustive enumeration of cases (we know the value of nZ and the fact that
SZ is included between 3 and 2nZ + 1), we can prove that if nZ ≤ 3, then
g(x, y) ≤ g(1, 1) (see Table 2.2).

SZ

3n
2/3
Z

SZ+2
3(nZ+

3
7
)2/3

SZ+4
3(nZ+

6
7
)2/3

nZ = 1, SZ = 3 1 5
3∗(1+3/7)2/3

' 1.31 7
3∗(1+6/7)2/3

' 1.54

nZ = 2, SZ = 3 1
22/3
' 0.62 5

3∗(2+3/7)2/3
' 0.92 7

3∗(2+6/7)2/3
' 1.15

nZ = 2, SZ = 4 4
3×22/3 ' 0.84 6

3∗(2+3/7)2/3
' 1.11 8

3∗(2+6/7)2/3
' 1.32

nZ = 2, SZ = 5 5
3×22/3 ' 1.05 7

3∗(2+3/7)2/3
' 1.29 8

3∗(2+6/7)2/3
' 1.49

nZ = 3, SZ = 3 1
32/3
' 0.48 5

12
(7
3
)2/3 ' 0.73 75/3

27
' 0.95

nZ = 3, SZ = 4 4
35/3
' 0.64 1

2
(7
3
)2/3 ' 0.88 8×72/3

27
' 1.08

nZ = 3, SZ = 5 5
35/3
' 0.80 7

12
(7
3
)2/3 ' 1.02 72/3

3
' 1.22

nZ = 3, SZ = 6 6
35/3
' 0.96 2

3
(7
3
)2/3 ' 1.17 10×72/3

27
' 1.36

nZ = 3, SZ = 7 7
35/3
' 1.12 3

4
(7
3
)2/3 ' 1.32 11×72/3

27
' 1.49

Table 2.2: Values of g(0, 0), g(0, 1) (= g(1, 0)) and g(1,1) for nZ ≤ 3.

118 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

Thanks to Lemma 2.24, we know that

ρZ ≤
SZ + 4

3(nZ + 6
7
)
2
3

.

Let us consider two cases: nZ ≤ 8 and nZ ≥ 9. In the first case, using
Lemma 2.21, we have ρZ ≤ 2nZ+5

3(nZ+
6
7
)
2
3
. One can prove that the function x 7→

2x+5

3(x+ 6
7
)
2
3
reaches its maximum on [0, 8] for x = 8 and then

ρZ ≤
21

3(8 + 6
7
)
2
3

=
7

5
3

62
2
3

.

For the second case, we use a less sophisticated upper bound. We know
that SZ + 2(x1,Z +x2,Z) ≤ 20 and 3(nZ + 3

7
(x

3
2 + y

3
2))2/3 ≥ 3(nZ)2/3. Therefore

ρZ ≤ 20
3(nZ)2/3

and for nZ ≥ 9, 20
3(nZ)2/3

≤ 20

3 3√3 ≤
7
5
3

62
2
3
.

Therefore, in any case, if Z1, . . . , Zm is the partition of [1, N]3 given by
3D-SFCP, then for all k ∈ [1,m], ρZk ≤ 7

5
3

62
5
3
what achieves the proof of Theo-

rem 2.18.

2.6 Comparison Between Square and Cube Par-
titioning

In Section 2.1 we observed that solutions of PERI-SUM can be transformed
into solutions of MSCubeP. In this section we are interested in theoretical and
practical comparisons between both.

First let us recall that the transformation of a solution of PERI-SUM into
a solution of MSCubeP is obtained by replicating it alongside the third di-
mension, see Figure 2.13. More precisely, let {Z1, . . . , Zm} be a solution of
PERI-SUM for the instance {s1, . . . , sm}. We now define {P1, . . . , Pm} such
that for all 1 ≤ k ≤ m, Pk = Zk × [0, 1]. For all k, v(Pk) = s(Zk) = sk, thus∑
v(Pk) = 1, and

⋃
Pk = (

⋃
(Zk))× [0, 1] = [0, 1]3. Therefore {P1, . . . , Pm} is

a valid solution of MSCubeP for the instance {s1, . . . , sm}.

On the Effect of Replication of Input Files 119

2.6. Comparison Between Square and Cube Partitioning

(a) (b)

Figure 2.13: Transformation of a PERI-SUM solution into a MSCubeP solu-
tion.

2.6.1 Theoretical Comparison

First let us try to evaluate the covering half-surface of such a partitioning. Let
{Z1, . . . , Zm} and {P1, . . . , Pm} be as defined above. For a given k,

Hs(Pk) = π1(Pk) + π2(Pk) + π3(Pk)

= |Π1(Pk)|+ |Π2(Pk)|+ |Π3(Pk)|
= |Π1(Zk)× [0, 1]|+ |Π2(Zk)× [0, 1]|+ |Π1(Zk)× Π2(Zk)|
= π1(Zk) + π2(Zk) + sk

= p(Zk) + sk

and thus ∑
Hs(Pk) =

∑
(sk + p(Zk)) = 1 +

∑
(p(Zk)).

By reducing the number of degrees of freedom from 3 to 2, 2D-allocation
algorithm (the one that solves PERI-SUM) misses more efficient allocation,
independently of the quality of the 2D communication cost. For example let
us consider 9 identical processors. The corresponding instance of PERI-SUM
is then {s1, . . . , s9} with si = 1

9
for all i. In this case the lower bound from

(1.1) is reachable (see Figure 2.14(a)) and then
∑
k

p(Zk) = 6 and
∑
k

Hs(Pk) = 7

where {P1, . . . , P9} is the 3D counterpart of this allocation (see Figure 2.14(b)).
However there is an allocation {P ′1, . . . , P ′9} (see Figure 2.14(c)) such that
Hs(P ′k) = 19

3
< 7 = Hs(Pk). Thus even the best possible 2D solution they

miss better communication avoiding allocations.
For the moment, let us focus on instances {s1, . . . , sm} with si = 1

m
. We

know that, for every {Z1, . . . , Zm} that is a solution of PERI-SUM for instance
{s1, . . . , sm},

m∑
k=1

p(Zk) ≥
m∑
k=1

√
sk =

m∑
k=1

2

√
1

m
= 2
√
m.

120 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

(a) (b) (c)

Figure 2.14: Solutions of {1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
}

Meanwhile, using 3D-NRRP, there exists a solution {P1, . . . , Pm} for {s1, . . . , sm}
of MSCubeP such that

m∑
k=1

Hs(Zk) ≤ α
m∑
k=1

3s
2
3
k = α

m∑
k=1

3

(
1

m

) 2
3

= 3α 3
√
m

where α denotes the approximation ratio.
Thus the communication cost of the best possible solution of MSCubeP

obtained from PERI-SUM is larger than 1 + 2
√
m while there is a solution

with a cost less than 3α 3
√
m. Hence

Communication with 2-dimension allocation
Communication with 3-dimension allocation

≥ 1 + 2
√
m

3α 3
√
m

= O(6
√
m)

and this ratio goes to infinity with the number of processors. Therefore, if
we define Transform(AlgoPERI-SUM,{s1, . . . , sm}) the algorithm that applies
AlgoPERI-SUM to {s1, . . . , sm} and then transforms the output into a solution
of MSCubeP, then there is no constant approximation ratio for Transform.

Theorem 2.25. For any algorithm A that solves PERI-SUM, there is no
constant α such that Transform(A) is a α-approximation for MSCubeP.

2.6.2 Simulation Comparison

In order to compare solutions of MSCubeP with solution of PERI-SUM on
other distributions, we propose a few simulations.

First we propose two general distributions:

• Uniform distribution: for a given x, Uniform-x returns a real in [1 −
x, 1 + x].

• Pareto distribution: for a given α ≥ 1, Pareto-α returns a real X such
that Pr(X > x) = x−α. Pareto distribution is a very heterogeneous dis-
tribution, with few large values and many small ones. On Figure 2.15 are

On the Effect of Replication of Input Files 121

2.6. Comparison Between Square and Cube Partitioning

given 3 examples of the corresponding repartition functions (the proba-
bility for a given x that a probabilistic variable following this distribution
is lower than x).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

α = 1
α = 2
α = 5

Figure 2.15: Repartition function of the Pareto distribution for different values
of the parameter α.

With these two distributions, we emulate two cases, one with similar proces-
sors but with more of less small differences (Uniform distribution) and another
one with a heterogeneous platform with few faster processors (for example
GPUs) and many slower processors (for example CPUs).

0.9

1.2

1.5

1.8

2.1

0
25

0
50

0
75

0
10

00

m

Lo
w

er
B

ou
nd

/3
D

−
N

R
R

P

Distribution
Homogeneous

Pareto−1

Uniform−0.2

Pareto−2

Uniform−0.5

Pareto−5

Uniform−0.9

(a) 1 ≤ m ≤ 1000

0.95

1.00

1.05

1.10

2.
5

5.
0

7.
5

10
.0

m

Lo
w

er
B

ou
nd

/3
D

−
N

R
R

P

Distribution
Homogeneous

Pareto−1

Uniform−0.2

Pareto−2

Uniform−0.5

Pareto−5

Uniform−0.9

(b) 1 ≤ m ≤ 10

Figure 2.16: Average ratio between the results of 3D-NRRP and the lower
bound of Transform for different values of m and different distributions.

Let us first compare 3D-NRRP (SCR returns close results with larger com-
putation time) with the lower bound of Transform, i.e. 1 plus the lower bound

122 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

of PERI-SUM. For each distribution and each m (where m denotes the num-
ber of processors) 3D-NRRP is run on 100 instances. Results are depicted in
Figure 2.16.

In general, the distribution seems to have little effect on the gain from 3D-
NRRP in comparison to 2D-based strategies with an asymptotic point of view.
In Figure 2.16(a) all curves seem to be close of the one from the Homogeneous
distribution which asymptotic behaviour has been proved above, i.e. the ratio
is a 0(6

√
m) function (in particular, the increase of the ratio is very strong at

the beginning, going to 1 for m = 1 to around 1.5 for m = 125, and then for
m = 750 the ratio is still below 2). However, for very small values, Transform
using a perfect 2D-allocation (all zones being squares) would be, in average,
better than solutions from 3D-NRRP to solve MSCubeP, see Figure 2.16(b).

1.00

1.05

1.10

2.
5

5.
0

7.
5

10
.0

m

Lo
w

er
B

ou
nd

/L
ow

er
B

ou
nd

−
3D

Distribution
Homogeneous

Pareto−1

Uniform−0.2

Pareto−2

Uniform−0.5

Pareto−5

Uniform−0.9

Figure 2.17: Average ratio between the results of 3D-NRRP and the result of
Transform(max(ColumnBased,RRP,NRRP)) for small values of m and differ-
ent distributions.

On Figure 2.17 we propose this time a comparison between 3D-NRRP
and Transform(min(ColumnBased,RRP,NRRP)), i.e. an algorithm that re-
turns the best solution of PERI-SUM between the three computed by the
algorithms ColumnBased, RRP and NRRP. We focus only on the case where
m ≤ 10. If the results are slightly better than the one with the lower bound,
there are still solutions for Transform(min(ColumnBased,RRP,NRRP)) that
are better than solutions from 3D-NRRP. In particular, let us consider the ex-
ample of the instance {1

5
, 4
5
}. The solution given by NRRP is on Figure 2.18(a)

(and is optimal according to Theorem 1.4) and its transformation in a solution
of MSCubeP depicted in Figure 2.18(b). The half perimeter of the square of
area 1

5
is 2√

5
and the half-perimeter of the remaining zone is 2. Thus the to-

tal is 2 + 2√
5
, and hence the solution returned by Transform(NRRP,{1

5
, 4
5
})

has a covering half-surface of 3 + 2√
5
' 3.894. The solution returned by

On the Effect of Replication of Input Files 123

2.7. Conclusion and Perspectives

3D-NRRP is on Figure 2.18(c). The covering half-surface of the cube is 3

5
2
3

and the covering half-surface of the remaining polyhedron is 3, for a total of
3
(

1 + 1

5
2
3

)
' 4.026, that is larger than the covering half-surface of the solution

from Transform(NRRP).

(a) Solution
from NRRP

(b) Solution from
Transform(NRRP)

(c) Solution from 3D-
NRRP

Figure 2.18: Solutions of the instance {1
5
, 4
5
}.

The conclusion of this study is then that for large platforms the solution of
MSCubeP generates, theoretically and experimentally, significantly less com-
munication than the transformed solutions of PERI-SUM. However, for very
small platforms (m ≤ 5) this no longer holds true, and transformed solutions
are really competitive.

2.7 Conclusion and Perspectives

In this chapter, we presented in Section 2.1 MSCubeP, the 3D counterpart of
PERI-SUM. MSCubeP, as PERI-SUM, can be used to model communication-
avoiding parallel matrix multiplication. In Section 2.2 we proposed a short pre-
sentation of pre-existing works, including SCR, an adaptation of ColumnBased
for MSCubeP, and a sketch of the proof of NP-completeness for PERI-SUM.
From this proof we proposed, in Section 2.3, a proof of the NP-completeness
of MSCuboidP-DEC, the decision problem associated to MSCuboidP that is
itself a (more general) variant of MSCubeP. Then, in Sections 2.4 and 2.5
we proposed two approximation algorithms, 3D-NRRP and 3D-SFCP, that
are respectively 5

62/3
and 7

5
3

62
2
3
-approximation algorithms for MSCubeP. Finally,

in Section 2.6, we proposed a comparative analysis of the solutions of PERI-
SUM with the solutions directly designed for MSCubeP, proving that the ratio
between them grows to infinity when the number of processors increases.

The study of MSCubeP and its variants is not yet finished. First, as stated
before, the NP-completeness of MSCubeP is still an open problem. The perfor-
mance of 3D-NRRP on small instances, notably in comparison to transformed
solutions of PERI-SUM, can still be improved. In addition, the perspectives

124 T. Lambert

2. Cube Partitioning for Communication-Avoiding Parallel Matrix
Multiplication

×

× ×
×

×

×
×

×

(a)

×
×

×

×

×

×

(b)

Figure 2.19: A same allocation on two different layers of a same parallel sparse
matrices multiplications.

we propose in Section 1.6 can be translated to cube partitioning. In particular
a heterogeneous version of MSCubeP, MSCubeP-HETEROGENEOUS, could
be even more interesting, in the case of dense or low-rank matrices, than PERI-
SUM. Indeed, to solve MSCubeP using a PERI-SUM solution we reproduce
this partitioning alongside the third dimension. Such solution is no longer de-
sirable. Indeed, let us assume that Ai,k and Bk,j are not zero while Ai,k′ or Bk,j′

are. In such case, the task Ti,j,k has a non-zero weight while the one of Ti,j,k′
has a zero weight. Therefore, from a layer to another, the allocation might
have to differ. For example, on Figure 2.19, the left hand figure presents an
allocation with a perfect load-balancing between its 4 zones for one particular
layer. However, the same allocation on the right hand figure has no longer this
good load-balancing for a different layer. Therefore, the solutions of PERI-
SUM-HETEROGENEOUS for different layers have to be different (as must be
the inputs) what requires computations for each. Therefore, a direct solution
of MSCubeP-HETEROGENEOUS could improve general computation time.

As we did for PERI-SUM, we can also update MSCubeP into a problem
of hypercube (or hyperrectangle) partitioning, i.e. increase the dimension of
the object to split. Recently, tensor contraction computation has become a
very considered problem, see Peise et al. [2014], Napoli et al. [2014], Shi et al.
[2016], Nelson et al. [2015] or Huang et al. [2017]. A tensor can be seen as a
generalisation of a matrix in an N -dimension space. More precisely, an N -D
tensor T can be defined as a multi-dimensional array of scalar elements, each
dimension having a length lk,T (k being the index of the dimension). With
this definition, an m × n matrix M would be a 2-D tensor with l1,M = m
and l2,M = n. In order to facilitate the description of tensor contraction we
need to define the index bundles of a tensor T . An index bundle I is simply a
dT -tuple, where dT is the dimension of the tensor T . If I = {t1, . . . , tdT } is an
index bundle, TI is then in R, more precisely the element of T placed in the
t1-th array according to the first dimension, in the t2-th array according to the

On the Effect of Replication of Input Files 125

2.7. Conclusion and Perspectives

second dimension, . . . , and in the tTd-th array in the last dimension.
Let us suppose that we have 3 tensors A,B,C with dA + dB = 2k+ dC and

k ∈ N. Let us also suppose that ∀i ∈ [1, k], ldA−k+i,A = li,B. Then if Im, Jn
and Pk are partial index bundles of respective sizes m,n, k, with m = dA − k
and n = dB − k, then the general tensor contraction is defined by

CImJn = α
∑

Pk∈[1,l1,B]×...[1,lk,B]

AImPkBPkJn + βCImJn

with α, β being given constants and ImJn (respectively ImPk and PkJn)
being considered as an index bundle resulting of the concatenation of Im and
Jn (respectively Im and Pk and Pk and Jn). If we set dA = dB = dC = 2, then
k = 1 and the tensor contraction is the exact definition of the general matrix
multiplication (GEMM) defined as

Ci,j = α
∑

Ai,lBl,j + βCi,j

that is, with α, β = 1, the definition of the matrix multiplication.
There is a lot of conceptualization and modelling work to do, but a parallel

tensor contraction requires thus to split a hyperrectangle (of dimension dC if
we assume that all computations done on CImJn are done on a same processor),
while minimizing the replication of the AImPks and the BPkJn .

In the following chapter we will be concerned with the practical imple-
mentation of parallel matrix multiplication with the StarPU framework. Our
goal will be to rely on the results of Chapter 1 and Chapter 2 and establish
the exact gain in time and communication they can bring to parallel matrix
multiplication.

126 T. Lambert

Chapter 3

Implementation of Square and
Cuboid Partitioning with the
StarPU Software

3.1 Introduction
In Chapter 1 and Chapter 2, we have considered two models of the parallel
matrix multiplication, with a focus on communication issues. In both cases, in
order to provide simple (but NP-complete) problems which we could efficiently
tackle, we introduced several (possibly optimistic) assumptions.

Let us first recall that we are considering the parallel square matrices mul-
tiplication C = AB and that we see this product as a set of tasks Ti,j,k such
that

Ti,j,k : Ci,j ← Ci,j + Ai,kBk,j

where Ai,k, Bk,j and Ci,j are block-submatrices of A, B and C. The goal here is
to schedule this set of tasks in order to reach an almost optimal makespan (by
never letting any processor idle), while minimizing the number of replicates
(or data transfers) of the Ai,ks, Bk,js and Ci,js. The transformation of this
problem into PERI-SUM or MSCubeP requires several assumptions.

(i) We assume the existence of a reliable evaluation of the computation
time of each task (that are here presumably equivalent) on each proces-
sor. This assumption, that is unavoidable to work on theoretical static
problems, is reasonable. Indeed the basic tasks Ti,j,ks are GEMM (GEn-
eral Matrix Multiply, an operation of type C ← αAB + βC, α = 1 and
β = 1 in our case), a well-know routine that is expected to be very stable.
In addition, simulations from Section 1.3 tend to show that, even when
these estimations are unreliable, static algorithms can be complemented
with work stealing strategies to obtain comparable or better performance
than purely dynamic ones.

127

3.1. Introduction

(ii) In our model communications are not associated with any time penalty
and can always be overlapped with computations. More precisely we
want to avoid them for different reasons (limitation of data transfer to
avoid energy consumption, reduction of data storage cost, managing to
overlap communication) but in our model the amount of communication
is only a metric. Yet, data transfers are not immediate and therefore
can impact the makespan. We assume that the overlapping is possible,
but is this overlapping perfect ? Moreover we consider the processors as
equal for this metric, but their physical arrangement and their proper
characteristics make that the different transfer times and energy costs
may not be equal.

(iii) In our model, particularly for MSCubeP, we assume that the Ai,ks, Bk,js
and Ci,js are similar. However the Ai,ks and the Bk,js are read-only data
and the Ci,js are read-write data. This has two consequences.

First, in order to execute Ti,j,k, Ai,k and Bk,j only have to be downloaded
while Ci,j has to be downloaded and then uploaded when Ci,j is no longer
needed by the current processor, inducing higher communication cost.

Moreover the Ci,js create (weak) dependencies between tasks. Let us
consider two tasks Ti,j,k1 and Ti,j,k2 . If both two tasks are executed se-
quentially, no problem occurs, Ci,j is modified during the first task and
the second task is aware of this modification during its own execution,
the result at the end is as expected, see Figure 3.1(a). If they are ex-
ecuted on two different processors, two cases may occur. In the first
case, the executions of both tasks are not overlapping. In this case, if
the modification of Ci,j is propagated on the central memory (or directly
sent to the processor M2) then the execution of the second task is aware
of it and the final result is as expected, see Figure 3.1(b). Otherwise,
both executions are done, at least partially, with overlapping time. In
this case, at the end of the execution, each of the two processors has a
different version of Ci,j. If both propagate their modifications without
precaution, then the last one will overwrite the version of the first one,
resulting in a false result, see Figure 3.1(c).

This conflict can be solved with two approaches. First, executions of
tasks with the same pair (i, j) can be forced not to overlap, to ensure
the situation of Figure 3.1(b), but the parallelism of the application is
lowered. Otherwise, a reduction operation that sums the two partial
versions of Ci,j may solve the problem, see Figure 3.1(d). However this
solution implies additional tasks (the reduction tasks) and thus addi-
tional computation time and data transfers. None of these solutions is
perfectly satisfying. Therefore, in general, considering that the replica-
tion of the Ci,js is not more expensive than the replication of the Ai,ks

128 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

and the Bk,js seems too optimistic and most probably false.

Ci,j = 0 Ti,j,k1

Ci,j ← Ai,k1
Bk1,j

Ti,j,k2

Ci,j ← Ai,k1
Bk1,j + Ai,k2

Bk2,j

Ci,j = Ai,k1Bk1,j +Ai,k2Bk2,j X

(a) Sequential execution

Ci,j = 0

M1 : Ti,j,k1

Ci,j ← Ai,k1
Bk1,j

Ci,j = Ai,k1Bk1,j

M2 : Ti,j,k2

Ci,j ← Ai,k1
Bk1,j + Ai,k2

Bk2,j

Ci,j = Ai,k1Bk1,j +Ai,k2Bk2,j X

(b) Parallel non-overlapping execution

Ci,j = 0

M1 : Ti,j,k1

Ci,j ← Ai,k1
Bk1,j

Writing Conflict Ci,j = Ai,k1Bk1,j or Ai,k2Bk2,j ×
M2 : Ti,j,k2

Ci,j ← Ai,k2
Bk2,j

(c) Parallel overlapping execution without reduction

Ci,j = 0

M1 : Ti,j,k1

Ci,j ← Ai,k1
Bk1,j

Reduction

Ci,j ← C
M1
i,j + C

M2
i,j

Ci,j = Ai,k1Bk1,j +Ai,k2Bk2,j X

M2 : Ti,j,k2

Ci,j ← Ai,k2
Bk2,j

(d) Parallel overlapping execution with reduction

Figure 3.1: Execution of two tasks Ti,j,k1 and Ti,j,k2 with different modes.

Our goal in this chapter is mainly to test our algorithms in a real situation,
i.e. to extend the work of Section 1.3 by replacing simulations with practical
implementation. In particular we are concerned with the resilience of our
scheduling techniques if the assumptions presented above happen to be at
least partially false (we already show that considering that the replication of
the Ci,js does not cost more than the replication of the Ai,ks and the Bk,js is
not totally reasonable).

Before that, we provide a small introduction to StarPU, Augonnet et al.
[2011], the software we use to implement our scheduler.

On the Effect of Replication of Input Files 129

3.2. Presentation of StarPU

3.2 Presentation of StarPU

StarPU is a task programming library for hybrid architectures developed at
Inria Bordeaux Sud-Ouest. For our needs we only use a fraction of the possi-
bilities of StarPU. This section does not claim to provide a good overview of
StarPU but focuses on the parts of StarPU we use in order to understand how
we implement our scheduler and what difficulties we encountered.

3.2.1 Tasks

The central objects in StarPU are tasks. A program using StarPU usually con-
sists in a set of tasks that are submitted to StarPU that handles the scheduling
and dispatching of these tasks among available resources. We will discuss it
later, but note that StarPU provides some schedulers while also allowing pro-
grammers to create their own.

The structure of a task is very simple. The main component is the codelet
which is basically the function that is executed when the task is processed.
Since StarPU targets heterogeneous environments, in particular platforms with
CPUs and GPUs, a codelet is in fact composed of several functions, one for
each type of processor. For example, in our case, we need to provide a GEMM
function that works on CPU and a GEMM function that works on GPU.
In addition, codelets can also have a performance model. Basically, for each
execution of a given codelet on a processing node, StarPU keeps in memory
basic informations in order to produce this performance model. With such
information, StarPU can evaluate, if needed, the performance of this codelet
on a given processor, notably to produce an estimation of the computation
time.

In addition to the codelet, a task also has arguments and handles. The
goal or arguments is literal. The handles are data, that are also arguments
of the functions from the codelet, but that can be used by several tasks. In
particular, registering an argument as a handle allows StarPU to create and
manage duplicates. Note that handles can be tagged as read-only, write-only
or read-write data. This precision is important for the StarPU scheduler which
is based on the STF model (Sequential Task Flow, see Agullo et al. [2016b]
for example). More precisely, StarPU creates, from the submitted tasks and
the tag of each handle and each task, a dependency graph in order to avoid
conflicts (StarPU assumes that a task submitted before another one must be
the first to be processed if there are dependencies between the two).

3.2.2 Workers

For StarPU, each processor is a worker. Each worker has a type (CPU or GPU
for example) and is associated to a memory node. A memory node is simply a

130 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

part of the memory available, that can be the main RAM or the local memory
or a processor. In the platform we consider in Section 3.4, all CPUs have the
same memory node (that is also the main RAM) and each GPU has its own
memory node. As our algorithms (NRRP and the others) aim at reducing the
number of data transfers (which are made from memory nodes to others), we
chose not to distinguish two workers having the same memory node and to
consider them as a single worker during the static allocation.

3.2.3 Scheduler

As stated above, StarPU provides some pre-implemented schedulers, in par-
ticular DMDA that, with the help of performance models, evaluates the com-
putation time of the task on all workers at its submission and chooses the
worker that is able to finish this task first (an algorithm similar to MCT that
is presented in Section 1.3, but that also have communication considerations
during the evaluation). If the programmer wants to use this option, the StarPU
part of the program is then only definition of the codelets, registration of the
handles, submission of the tasks and waiting until the end of task executions.

If the programmer wants to plug its own scheduler on StarPU this is pos-
sible but with respect of the general structure of a StarPU scheduler.

A StarPU scheduler consists of several functions, the two main being

• push_task : Called when a submitted task is ready (i.e. all the tasks that
precede it in the dependency graph are done), mostly to put the task in
a task list (that can be general or for a specific worker/memory node).

• pop_task : Called when a worker is idle and awaken (wake up workers
can, for example, be done during push_task). It is used to choose the
next task to be processed by this worker.

The task cycle of StarPU is then simple. As soon as a task has been sub-
mitted with all its dependencies solved, this task is pushed (with push_task)
into the system and ready to be executed. Later, a worker will "pop" this task
(with pop_task) and process it.

3.3 Implementation and Strategies
In this section we present the key points of our scheduler implementation and
the different strategies we propose.

3.3.1 Static Allocations

Chapter 1 and Chapter 2 are devoted to the study of static strategies. We
thus implement each of the algorithms we present before to solve PERI-SUM

On the Effect of Replication of Input Files 131

3.3. Implementation and Strategies

and MSCubeP (ColumnBased, RRP, SNRRP, NRRP, SFCP, SCR, 3D-NRRP,
3D-SFCP) in C. Just a note on the outputs:
• In the case of PERI-SUM solvers, except for SFCP, the solution is a set of

zones. Zones are defined as the union of rectangles, themselves defined
by their coordinates. In practice all zones produced by ColumnBased
and RRP are rectangles and the ones produced by SNRRP and NRRP
are composed of at most two rectangles.

• In the case of MSCubeP solvers, except for 3D-SFCP, the solution is
a set of polyhedra. This time a polyhedron is defined as the union of
cuboids (at most three for 3D-NRRP).

• In the case of SFCP, the discrete aspect of the solutions makes that it is
more effective to deal directly with a bi-dimensional array containing for
each i, j the ID of the memory node on which, for all k, the tasks Ti,j,k
are processed. Similarly, in the case of 3D-SFCP, it is a tri-dimensional
array containing for each i, j, k the ID of the memory node on which the
task Ti,j,k is computed.

At the exception of SFCP and 3D-SFCP, the outputs of our algorithms
have to be transformed to be used on an N × N matrix multiplication. The
problem is here the same than the one presented in Section 1.3.2. We recall
the two proposed solutions:
• Rounded routine, in this case the coordinate of each rectangle is rounded

to the closest integer. The main inconvenient of this technique is the
degradation of the load-balancing.

• Accurate routine, in this case the rectangles are modified using broken
lines, see Figure 3.2. In this case the load balancing is saved with small
degradation of the communication cost

However, if the Rounded routine is easy to generalize for any algorithm
returning rectangles (or cuboids), we have currently no such generalisation
for the Accurate routine. In addition the combinatorial complexity of a spe-
cific implementation makes us preferring to use another heuristic, slightly less
effective for communication purpose but generalisable to any set of rectangles.

In the following, we transform the input {s1, . . . , sm} into number of tasks
to process for each memory node (we group workers belonging to the same
memory node as one), {n1, . . . , nm}, by rounding the partial sums. More
precisely, if Round is defined as the classical rounding operation (if x− bxc <
0.5 then x = bxc, else x = dxe),

n1 = Round(s1 ×N2)

nk = Round(N2 ×
k∑
i=1

si)−
k−1∑
i=1

ni

132 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

(a) Partition from RRP (b) Partition from RRP-
Accurate

Figure 3.2: Illustration of RRP-Accurate

where N is the size of the matrices (in the case of solutions of MSCubeP,
replace the N2 by N3).

We propose Precise, a new routine that preserves load balancing. The
routine goes in two waves (we describe here the 2D version for simplicity):

• First, each rectangle is reduced to its inner rectangle, i.e. the larger
rectangle with integer coordinates fully contained in the initial rectangle.
More precisely, if R = [x1, x2]×[y1, y2], its inner rectangle is the rectangle
Rin = [dx1e, bx2c] × [dy1e, by2c]. Each element of an inner rectangle is
assigned to the corresponding memory node and the nis are updated
(ni = ni − s(Rin,i)).

• Second, one by one, for each unassigned element t of the matrix (i.e.
element that are not in an inner rectangle), we check the assignment of
the (up to) 8 neighbouring elements (we consider diagonals and there
are fewer neighbours on the border). Then we look for a memory node
with ni > 0 that has been assigned at least on one of these neighbours.
If at least one exists, element t is assigned to the one with smallest ni.
Otherwise the task is attributed to the memory node with the smallest
positive ni.

Precise is generalisable to MSCubeP solvers (inner rectangles become inner
cuboids and the neighbourhood includes up to 26 elements instead of 8).

We now have, for each algorithm, two ways to transform the output into
tasks assignment for memory nodes, Rounded and Precise. The first one pro-
duces less communication, the second preserves load balancing. Both will be
tested in Section 3.4.

On the Effect of Replication of Input Files 133

3.3. Implementation and Strategies

3.3.2 Dynamic Strategies

We consider here the dynamic strategies that we implemented within StarPU.
We can distinguish two kinds: work-stealing strategies and purely dynamic
strategies. The first ones complement a static allocation (turning it into a
hybrid strategy, like in Section 1.3), the second ones do not rely on an initial
allocation. For both, we define the cost of a task for a memory node as the
number of handles to move or duplicate to execute this task on a worker that
belongs to this memory node (therefore this cost can be between 0 and 3).

Work-Stealing

Work-Stealing strategies aim to fix possible errors performed during the tasks
repartition. Basically, when a worker is idle with no remaining attributed
tasks on its memory node, work-stealing strategies determine a task to be
stolen (implying possible handle transfers) from another memory node.

We propose three strategies:

• RandSteal: Choose a memory node at random and steal the last ready
task submitted on it. If there is no remaining task on this memory node,
RandSteal tries the next one (in Round-Robin fashion) until a task is
found or all memory nodes have been checked.

• ChoiceSteal: Check the last submitted tasks of each memory node and
choose the one with the smallest cost.

• EffectiveSteal: Check all unprocessed tasks. During a first pass, Effec-
tiveSteal stops if there is a free task (with cost 0). Otherwise, Effec-
tiveSteal remembers the memory nodes that own a task of cost 1 or 2
and attempt to find these tasks during a second pass (they might have
been processed in the meantime). If after these two passes there is still
no task to steal, then RandSteal is called.

In addition to these three strategies, Static denotes a strategy without
work-stealing where tasks allocation is enforced until the end.

Purely Dynamic Strategies

The strategies presented here do not rely on an initial static allocation. Each
strategy is defined by a function that is called by idle workers. We implement
three such strategies:

• FirstDyn: Idle workers begin the execution of the first submitted and
unprocessed task.

• ChoiceDyn-X: An idle worker looks at the (at most) X first submitted
and unprocessed tasks and chooses the one with the smallest cost.

134 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

• EffectiveDyn: An idle worker looks at all the submitted and unprocessed
tasks and chooses the one with the smallest cost.

In addition, we also use DMDA, an already implemented task-centric dy-
namic scheduler based on MCT (each task, at the submission, is allocated to
the worker that will complete it first). Note that unlike the MCT of Section 1.3,
DMDA is communication-aware, and evaluates the data transfer duration to
choose among the workers.

3.3.3 Scheduler Implementation

We now focus on some practical details of our StarPU scheduler implementa-
tion.

Prefetching

In the default settings of StarPU, the data handles of a task are loaded into a
memory node just before the beginning of its execution. With such behaviour,
the communications would not be overlapped with computations, what would
create an important difference with our assumptions. This is why, in our
implementation, we use the StarPU prefetch option that allows to begin the
data transfers during the planing of a future task execution. More precisely,
when a worker pops a task (to process it), this worker also begins loading the
handles for a future task (in our case, when the n-th task begins, the loading of
the inputs of the n+2-th task begins too). Practically, we also use work-stealing
in advance, a task is not stolen when a worker has no remaining ready task but
when it has not enough ones (i.e. strictly less than 2 in our implementation).
Note that we decide to forbid the stealing of already prefetched tasks.

Reduction

In Section 3.1, we present the issue of overlapping two tasks Ti,j,k and Ti,j,k′
that share a Ci,j. By default, Ci,j being a read-write handle, StarPU assumes
that there is a dependency between them. More precisely, if Ti,j,k is submitted
before Ti,j,k′ , then push_task is called on Ti,j,k′ only once Ti,j,k is terminated.
So there cannot be an overlap of Ti,j,k and Ti,j,k′ .

In the case of 2D-strategies, as Ti,j,k and Ti,j,k′ are scheduled on the same
memory node, this is a problem only if there are many workers on the same
memory node (the pool of tasks present on the task list of the memory node
can be too small to satisfy all the workers, and they may begin to steal tasks
from other memory nodes). In the platform we consider in Section 3.4, all
CPUs are on a same memory node and thus the problem occurs. To avoid
that, we use the work of Cojean et al. [2016] which allows to use several CPUs
on a same task. More precisely, the set of CPUs is split into two subsets, each

On the Effect of Replication of Input Files 135

3.4. Experimental Results

can be considered as a single worker. This trick reduces the number of workers
on this memory node to 2 and avoids the problem of early stealing. Since
GEMMs are highly parallel, this has very low overhead.

In the case of 3D-strategies, the non-overlapping of Ti,j,k and Ti,j,k′ is a real
problem. Indeed, it is very common that two memory nodes share Ci,j blocks
on many (or all) their tasks. In such a case, one of the two memory node
must wait for the completion of many tasks of the other memory node before
beginning its own set, implying idle workers for a long time or early steals.
To avoid this problem, we create reduction tasks thanks to auxiliary handles.
For each Ci,j, if at least two memory nodes share this Ci,j, one Caux

i,j is created
for each memory node that needs it. The use of different handles means that
StarPU does not consider the tasks as having a dependency and both can
be pushed simultaneously. In addition, after the submission of all GEMM
tasks, we create reduction tasks, each having two handles, Ci,j and one Caux

i,j .
The reduction tasks are then executed after the GEMM tasks, ensuring the
coherency. However, these additional tasks also implies additional computation
time and data transfers whose costs have to be evaluated.

3.4 Experimental Results

In this section we present the first experimental results from our StarPU im-
plementation.

The tests we run are made on a "Sirocco" node of PlaFRIM2. A Sirocco
node is composed of 4 GPUs and 24 CPUS (4 of which are dedicated to GPU
management). More precisely the platform contains:

• 2 Dodeca-core Haswell Intel R© Xeon R© E5-2680 v3 @ 2.50 GHz,

• 128 GB of RAM,

• 4 Nvidia GK110BGL [Tesla K40m] (rev a1).

StarPU allows to plug several BLAS library. For our experiments, we use
the MKL library for the GEMM operation on CPUs and cuBLAS library for
the GEMM operation on CPUs.

As experiment set, we use matrices of double with size 7680, 15360, 23040
and 30720 (the size of the matrix A, B and C) split into square blocks of size
960 (the size of one Ai,k, Bk,j or Ci,j). Therefore the matrices of blocks, which
should be to split and distribute (with a PERI-SUM or MSCubeP solver)
among memory node, have size 8, 16, 24 and 32. The size of the block is
chosen to achieve efficiency for the GEMM operation on GPUs.

In this section we decide to focus on NRRP and 3D-NRRP among all the
static algorithms we present in Chapter 1 and Chapter 2, the others having

136 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

similar or worst results (in addition, since the performance model and the num-
ber of memory nodes do not change between runs, the input of PERI-SUM, or
MSCubeP, is always the same). Each time two versions are proposed, NRRP-
Rounded and NRRP-Precise (respectively 3D-NRRP-Rounded and 3D-NRRP-
Precise) and each version is tested on every dynamic strategies. In addition,
each version of 3D-NRRP is used with and without reduction. Therefore, we
have:

• 5 purely dynamic strategies (DMDA, FirstDyn, ChoiceDyn-10, ChoiceDyn-
50, EffectiveDyn).

• 4 work-stealing strategies (Static, RandSteal, ChoiceSteal, EffectiveSteal)
and 6 allocation strategies (NRRP-Rounded, NRRP-Precise, 3D-NRRP-
Rounded, 3D-NRRP-Precise, 3D-NRRP-Rounded-Redux, 3D-NRRP-Precise-
Redux), thus 24 hybrid strategies.

We compare these 29 different strategies on the 4 different sizes for matrices
(8×8, 16×16, 24×24 and 32×32 blocks). For each configuration we perform
25 runs.

3.4.1 Trace Analysis

Before going to general results, we present some notable behaviour of our
strategies. For this purpose, we use the FxT library that can be used by
StarPU to produce traces that can be analysed. The goal of this section
is not to compare strategies but to check the prevision we made on their
behaviour (for instance on the impact of work-stealing or reduction) and to
prepare explanations for the results in the two following sections.

In the following figures, the different operations can be distinguished with
their colors. Mainly three of them are important:

• Green rectangles represent GEMM tasks.

• Pink rectangles represent data movement (mainly loading of Ci,js, espe-
cially at the begin of the execution for GPUs).

• Blue rectangles represent Reduction tasks, if any.

In order to have a basis for comparison, we propose, on Figure 3.3, a trace
of Static with NRRP-Rounded used as partitioning algorithm. In this trace,
and all others ones, the two sets of 10 CPUs are at the top, the four GPUs are
at the bottom.

Globally GEMM are scheduled one after another with little idle times.
There is no notable communication, except at the beginning of the execu-
tion for the GPUs (that cannot start without an initial delay transfer of their

On the Effect of Replication of Input Files 137

3.4. Experimental Results

Figure 3.3: Trace of an execution with strategy Static and NRRP-Rounded
allocation

Ci,js). This means that the overlapping of the communication is done per-
fectly. However this trace also points the main problem with purely static
strategies (especially when the static allocation exhibits bad load-balancing,
as Rounded): some workers finish earlier than others. Here two of the GPUs
clearly have fewer tasks to process than the two others.

Figure 3.4: Trace of an execution with strategy RandSteal and NRRP-
Rounded allocation

In Figure 3.4 we now present a version with RandSteal strategy, keeping
NRRP-Rounded as partitioning algorithm. Here, all workers finish at the same
time, but communications are now visible, in particular at the end (when work-
stealing begins). The communications mainly come from the fact that the Ci,js
are now shared and Ci,j transfers cannot always be overlapped with compu-

138 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

Figure 3.5: Trace of an execution with strategy Static and 3D-NRRP-Rounded
allocation

tations. Therefore, RandSteal (and other work-stealing strategies) may pay
for their better load-balancing with waiting time in addition to the foreseeable
additional data transfers.

If we now use 3D-NRRP-Rounded instead of NRRP-Rounded, see Fig-
ure 3.5, we observe the dependency problem mentioned earlier.

Figure 3.6: Trace of an execution with strategy RandSteal and 3D-NRRP-
Rounded allocation

For example the third GPU begins processing its tasks significantly later
than the other ones (and even after some have finished their tasks, probably
with one of them sharing all its Ci,js with this GPU). As stated above, without
reduction tasks, StarPU generates many "wrong" dependencies between tasks
sharing a Ci,j and this implies that some workers may have to wait for the

On the Effect of Replication of Input Files 139

3.4. Experimental Results

Figure 3.7: Trace of an execution with strategy RandSteal and 3D-NRRP-
Rounded-Redux allocation

others to finish all their tasks before starting their own.
Note that the use of work-stealing, see Figure 3.6, improves the behaviour,

but with the work-stealing happening too early (the communication operations
are visible earlier than in Figure 3.4).

The use of reduction tasks, like in 3D-NRRP-Rounded-Redux can be seen
on Figure 3.7, with the reduction tasks being visible after the GEMM tasks.
Globally we also see that this option is not fully satisfying with additional
communications (the transfers of the Ci,js and the Caux

i,j s) and additional com-
putation time.

3.4.2 Makespan

Let us first consider the makespan metric, mainly to eliminate strategies that
produce unsatisfying makespan. Note that in this section (and in Section 3.4.3)
the y scale on every figure does not start at 0.

On Figure 3.8(a) we propose a comparison between all three partitioning
algorithms, NRRP-Precise, 3D-NRRP-Precise and 3D-NRRP-Precise-Redux.
Let us first note that, as expected, Static strategies with 3D-NRRP as parti-
tioning algorithm and without reduction operation have a catastrophic makespan
that gets worse when N (and the number of tasks) increases, reaching up to
twice the best makespan achieved by the other allocations. The ratio 2 can
be explained by the fact that two memory nodes share all their Ci,js and thus
work one after the other. For the two other strategies, NRRP-Precise and
3D-NRRP-Precise-Redux, the performance of Static strategy is much closer to
the other strategies, a bit worse in some cases (N = 15360 for example). Note
that for NRRP-Precise, Static is the best strategy for N = 7680, probably
because of the shorter execution time of its pop_task function. Anyway, the

140 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

good results of Static on Precise partitions indicate the good quality of the
performance model for the GEMM operations.

If we now look at work-stealing strategies, let us first note that Effec-
tiveSteal is effective enough to make 3D-NRRP-Precise partitioning able to
challenge the other partitioning algorithms whereas the two others, ChoiceS-
teal and RandSteal, improve the makespan but not enough. In other cases,
there is a very small difference between all three strategies. EffectiveSteal is
a bit less effective in the case N = 7680, a bit more in the case N = 15360
and there is no significant winner in the other cases. To finish, note that in
general NRRP-Precise partitionings appear to be the most effective for all the
values of N (around 0.225s against 0.25s and 0.3s for N = 7680, around 1.6s
against 1.6s and 1.75s for N = 15360, around 5.25s against 5.25s and 5.5s for
N = 23040 and around 12s against 12s and 13s for N = 30720). The better
parallelism (in comparison to 3D-NRRP-Precise with no EffectiveSteal) and
the absence of reduction tasks (in comparison to 3D-NRRP-Precise-Redux)
generate a real advantage.

NRRP−Precise 3D−NRRP−Precise 3D−NRRP−Precise−Redux

●

●

●

●

●●●●

●●

●●
●

●

●

● ●●
●●
●

●
●

● ●●
●
●●●

●
●
●●● ●

●●

●

●
●●

●

●●

●

●

●

●●●●
●

●
●
●

● ●●

●
●

●
●
●

●

●● ●●

●●●

●

●

●

●

●●

● ●
●
●

● ●●●

●
●
●

●

●

● ●

●●● ●● ●● ●
●

●

●

●
●● ●●● ●●

0.20

0.25

0.30

0.35

0.40

2.0

2.5

5

6

7

8

9

12

15

18

21

24

N
 =

 7680
N

 =
 15360

N
 =

 23040
N

 =
 30720

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Strategies

M
ak

es
pa

n
(s

)

(a) Makespan of strategies using NRRP-Precise, 3D-NRRP-
Precise and 3D-NRRP-Precise-Redux

Dynamic

●

● ● ●
●

●

● ●
●

●

●

●
● ●

●

●
●

●●

●

●

●

●

●

●

● ●
●

●

●

●
●
● ●

●

●

●

● ●
●

●●

●
●●●

●

0.25

0.30

0.35

0.40

1.8

2.0

2.2

2.4

5.5

6.0

6.5

7.0

13

14

15

16

17

N
 =

 7680
N

 =
 15360

N
 =

 23040
N

 =
 30720

Firs
tD

yn

Cho
ice

Dyn
−1

0

Cho
ice

Dyn
−5

0

Effe
cti

ve
Dyn

DM
DA

Strategies

M
ak

es
pa

n
(s

)

(b) Makespan of purely dynamic strate-
gies

Figure 3.8: Makespan of strategies using NRRP-Precise, 3D-NRRP-Precise
and 3D-NRRP-Precise-Redux or purely dynamic strategies.

On the Effect of Replication of Input Files 141

3.4. Experimental Results

Dynamic NRRP−Rounded NRRP−Precise

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●
●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●●
●
●

●

●

●

●

●●●●

●●

●
●
●

●

●

● ●
●

●
●

●

●

●

●
●●

●

●●●

●

●

●
●
● ●

●

●

●

●

●

●

0.25

0.30

0.35

1.6

1.8

2.0

2.2

5.4

5.7

6.0

6.3

12.5

13.0

13.5

N
 =

 7680
N

 =
 15360

N
 =

 23040
N

 =
 30720

Cho
ice

Dyn
−1

0

Cho
ice

Dyn
−5

0

Effe
cti

ve
Dyn

DM
DA

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Strategies

M
ak

es
pa

n
(s

)

Figure 3.9: Makespan of strategies using NRRP-Precise, NRRP-Rounded and
purely dynamic strategies.

In Figure 3.8(b), we present the results for dynamic strategies. This mainly
emphasizes the unsatisfying results of FirstDyn that is removed on the follow-
ing figure, Figure 3.9. In this one, we propose a comparison between strategies
using NRRP as partitioning algorithm (the most effective according to Fig-
ure 3.8(a)) and compare both versions, NRRP-Rounded and NRRP-Precise,
with purely dynamic strategies (without FirstDyn).

If we focus on purely dynamic strategies, we can mainly do three observa-
tions. First the criterion X in ChoiceDyn-X has a major influence (ChoiceDyn-
10 is always worse than ChoiceDyn-50). Secondly EffectiveDyn is often less
effective than ChoiceDyn-50. A possible interpretation is that stolen tasks in
ChoiceDyn-50 are more or less of same quality than the ones in EffectiveDyn
but are found faster. Last, DMDA appears to be more effective than purely
communication-based dynamic strategies (ChoiceDyn-50 is close but slightly
less effective).

The comparison between Rounded and Precise is at the advantage of the
second. In the case of Static strategies, Rounded, having a worse load-balancing,
has a larger makespan except for the case N = 15360 (for reasons that are still
to explain). For the other strategies, results are close, but Precise-based ones
is slightly more stable.

To finish, static-based strategies, augmented with work-stealing, are more

142 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

makespan-effective than purely dynamic ones, which is a surprise (if we com-
pare to results from the simulations of Section 1.3). One possible explanation
is that DMDA, despite its data-aware property, induces too many data trans-
fers, especially of Ci,j blocks, and is thus less effective than the combination
of NRRP and work-stealing strategies.

3.4.3 Communication

Let us now focus on the amount of communications induced by each strat-
egy. We have two goals: first, determine if there is a correlation between
makespan results and communication results; second determine if, with com-
parable makespan, some strategies are more communication-effective than oth-
ers.

NRRP−Precise 3D−NRRP−Precise 3D−NRRP−Precise−Redux

●
●●
●

●
●●

●●● ●●●

● ●●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

3.0

3.5

4.0

4.5

15

20

30

40

50

60

70

40

80

120

160

N
 =

 7680
N

 =
 15360

N
 =

 23040
N

 =
 30720

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Strategies

C
om

m
un

ic
at

io
n

(G
B

)

(a) Communication amount of strategies using NRRP-Precise,
3D-NRRP-Precise and 3D-NRRP-Precise-Redux

Dynamic
●

● ● ● ●

●

●

●

●
● ●

●
●●●

●

●
● ●

●

●●●

●

● ●●
●
●

●

●
● ● ●

●●

3

4

5

6

20

30

50

75

100

50

100

150

200

N
 =

 7680
N

 =
 15360

N
 =

 23040
N

 =
 30720

Firs
tD

yn

Cho
ice

Dyn
−1

0

Cho
ice

Dyn
−5

0

Effe
cti

ve
Dyn

DM
DA

Strategies

C
om

m
un

ic
at

io
n

(G
B

)

(b) Communication amount of purely
dynamic strategies

Figure 3.10: Communication amount of strategies using NRRP-Precise, 3D-
NRRP-Precise and 3D-NRRP-Precise-Redux or purely dynamic strategies.

First, we consider in Figure 3.10(a) the comparison between all three
partitioning strategies, NRRP-Precise, 3D-NRRP-Precise and NRRP-Precise-
Redux. If we put Static with 3D-NRRP-Precise aside, NRRP-based strategies

On the Effect of Replication of Input Files 143

3.4. Experimental Results

are significantly more effective (Static with 3D-NRRP-Precise can be slightly
more communication-effective than NRRP-Precise, in the case N = 15360 for
example, but at the cost of a bad makespan as shown in the previous section).
If we compare (coarsely) the results of EffectiveSteal (that seems to be a good
trade-off between makespan effectiveness and communication effectiveness) for
NRRP-Precise and the second most effective, 3D-NRRP-Precise, we note that
the second one can transfer up to around 33% more data, see Table 3.1.

For the other notable observations, the poor makespan results of ChoiceS-
teal and RandSteal when 3D-NRRP-Precise algorithm is used, in comparison
to the ones of EffectiveSteal with the same algorithm, likely come from a bad
choice of stolen tasks (at least one of the memory node is only functioning with
work-stealing) that are here catastrophic (more than 2.5 as much data transfer
as EffectiveSteal in the case N = 30720). Second, the reduction tasks have a
clear impact on the NRRP-Precise-Redux results. A good way to evaluate the
cost of reduction is to compare the cost of Static with 3D-NRRP-Precise and
3D-NRRP-Precise-Redux, see Table 3.2. With high costs (around 44% more
communications for N = 30720), the reduction tasks have a huge impact that
make the reduction option not satisfying for both metrics.

NRRP-Precise 3D-NRRP-Precise
N = 7680 ' 2.75 GB ' 3.25 GB ' +18%
N = 15360 ' 17 GB ' 18 GB ' +6%
N = 23040 ' 24 GB ' 30 GB ' +25%
N = 30720 ' 45 GB ' 60 GB ' +33%

Table 3.1: Comparison of the two partitioning algorithm NRRP-Precise and
3D-NRRP-Precise with use of EffectiveSteal.

3D-NRRP-Precise 3D-NRRP-Precise-Redux Reduction cost
N = 7680 ' 2.75 GB ' 3.5 GB ' 0.75 GB (+27%)
N = 15360 ' 16 GB ' 17.5 GB ' 1.5 GB (+9%)
N = 23040 ' 25 GB ' 30 GB ' 5 GB (+20%)
N = 30720 ' 45 GB ' 65 GB ' 20 GB (+44%)

Table 3.2: Comparison of the two partitioning algorithms NRRP-Precise and
3D-NRRP-Precise-Redux with use of Static. The difference represents the
reduction cost.

Note that FirstDyn is also disappointing for both metrics, see Figure 3.10(b).
FirstDyn can transfer more than 4 times as much data than the other strate-
gies. For the rest of the dynamic strategies (more precise view on Figure 3.11),
ChoiceDyn-50 and EffectiveDyn produce more or less the same amount of
communications. Therefore the difference between them from the makespan

144 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

Dynamic NRRP−Rounded NRRP−Precise

●●●

●

●
●
●

●

●

●
●

●●
●

●

● ●

●●●

●
●
● ●●

●

●

● ●

●

●●

●

●

●●

●●● ●●●

●
●
●
● ●●

2.4

2.7

3.0

3.3

3.6

10

12

14

16

25

30

35

40

40

50

60

70

N
 =

 7680
N

 =
 15360

N
 =

 23040
N

 =
 30720

Cho
ice

Dyn
−1

0

Cho
ice

Dyn
−5

0

Effe
cti

ve
Dyn

DM
DA

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Sta
tic

Ran
dS

te
al

Cho
ice

Ste
al

Effe
cti

ve
Ste

al

Strategies

C
om

m
un

ic
at

io
n

(G
B

)

Figure 3.11: Communication amount of strategies using NRRP-Precise,
NRRP-Rounded and or purely dynamic strategies.

point of view may be a consequence of ChoiceDyn being a bit faster to com-
pute, however this assumption has to be confirmed by further investigation.
Both ChoiceDyn-50 and EffectiveDyn strategies are also more communication-
effective than DMDA, whose results are comparable to the ones of ChoiceDyn-
10.

The comparison between Rounded and Precise is more even. Precise is
expected to achieve a better load-balancing, inducing less work-stealing (that
can be seen in Figure 3.11 with few differences between EffectiveSteal, Choic-
eSteal, RandSteal and Static when NRRP-Precise is used), but with an in-
crease of the communication volume, notably in the initial allocation. On
Figure 3.11 we can observe that this increase can be significant. For example,
in the case N = 30720, EffectiveSteal produces around 41GB of transferred
data (with reasonable makespan, unlike Static) when NRRP-Rounded is used,
against 45GB for Static with NRRP-Precise (+9.75%). However in some other
cases, N = 7980 or N = 23040, NRRP-Precise performs better than NRRP-
Rounded. Although the difference in these cases is less important than in the
case N = 30720, this shows there is no clear winner between Rounded and
Precise approaches (for makespan and communication metrics), the difference
is probably highly correlated to the initial allocation, depending on the error
coming from the rounding.

On the Effect of Replication of Input Files 145

3.5. Conclusion and Perspectives

Finally, we compare dynamic and work-stealing strategies, always on Fig-
ure 3.11. We already showed that, on the makespan metric, the results of
both NRRP-Rounded and NRRP-Precise are very satisfying, with a slight im-
provement over the native DMDA. In the case of communication metric we
can highlight that the EffectiveSteal strategies provide a significant improve-
ment with sometimes up to a 25% of reduction in amount of transferred data.
Therefore the use of static allocation appears to bring a strong gain in commu-
nication with no loss of makespan-efficiency. The slightly better results for the
makespan likely also comes from this important reduction of communications.

DMDA NRRP-Rounded NRRP-Precise
N = 7680 ' 3.2 GB ' 2.7 GB (−15.6%) ' 2.8 GB (−12.5%)
N = 15360 ' 14.5 GB ' 10.5 GB (−27.6%) ' 12 GB (−17.2%)
N = 23040 ' 33 GB ' 24 GB (−27.2%) ' 23.5 GB (−28.8%)
N = 30720 ' 58 GB ' 41 GB (−29.3%) ' 45 GB (−24.1%)

Table 3.3: Comparison of the two partitioning algorithms NRRP-Rounded and
NRRP-Precise with use of EffectiveSteal and DMDA (Between parenthesis the
gain from DMDA is given).

3.5 Conclusion and Perspectives
In this chapter we focus on the practical implementation of the algorithms that
we designed in Chapter 1 and Chapter 2. In Section 3.1 we recall the problem
and discuss the assumptions we made during the theoretical study. Then, in
Section 3.2, we present StarPU, the library we use to implement our strategies.
In Section 3.3 we present these strategies, mainly based on the algorithms
of Chapter 1 and Chapter 2. Finally, in Section 3.4 we present the results
obtained on a heterogeneous platform. These results are very encouraging:
hybrid strategies that use static algorithm, and work-stealing, slightly improve
the makespan of the native algorithm while significantly improving the amount
of communication, showing the strength of our approach.

Globally we also see that even if some assumptions made during the the-
oretical part are not perfectly true in practice (the absence of communication
cost for example), the resulting hybrid algorithms are reliable on this prob-
lem. However, we identified other assumptions, especially considering that
Ci,j blocks have the same cost as Ai,k and Bk,j blocks in Chapter 2, that can
induce important misbehaviours that are not perfectly corrected (3D-NRRP-
based strategies are disappointing).

On the perspectives of this work, the first thing is to continue the analysis
of the current results. We already prove the strength of our approach, al-
though some behaviours opens up questions that may require further analysis

146 T. Lambert

3. Implementation of Square and Cuboid Partitioning with the StarPU
Software

(some unexpected hierarchies between strategies for example) and can bring
interesting information in order to improve future algorithms. In addition we
have tested these strategies on one platform only. In order to have an idea of
the behaviour on more general architectures, further experiments have to be
done.

Among the other elements on which we have little information is the
scheduling cost. We can easily evaluate the computation time of the alloca-
tion but currently we have no information on the cost of the different calls to
pop_task functions. Some results seem to indicate that some strategies have a
significant additional cost (for example EffectiveDyn against ChoiceDyn), but
this is a by-default explanation that needs to be confirmed.

Finally, an important improvement on our model would be to add energy
consumption estimation. Currently we have no such estimation, but the gain
on communications gives us great hope on significantly decreasing the energy
consumption during parallel matrix multiplication.

On the Effect of Replication of Input Files 147

3.5. Conclusion and Perspectives

148 T. Lambert

Chapter 4

Matching-Based Assignment
Strategies for Improving Data
Locality of Map Tasks in
MapReduce

4.1 Introduction

In this chapter we consider a new problem in which there is an upstream repli-
cation of the input files. Therefore, replication is here an input of the problem
and the goal will be to use this redundancy in order to improve data locality.
In the current section we first introduce the problem and its motivations. In
Section 4.2 we present some related works, in particular for the improvement
of locality in Map-Reduce and the search for matching in bipartite graphs. In
Section 4.3 we relate a classical dynamic scheduler with the Balls-In-Bins
modelling, providing probabilistic results for the scheduler. In Section 4.4 we
propose matching-based algorithms to solve the problem for the two proposed
metrics in polynomial time. Finally, in Section 4.5, we present some simulation
results to compare our original strategy with pre-existing solutions.

4.1.1 MapReduce and HDFS

MapReduce is a well-known framework for distributing data-processing compu-
tations onto parallel clusters that has been introduced by Google and has been
popularized by implementations like Hadoop (White [2012]). In MapReduce, a
large computation is broken into small tasks that run concurrently on multiple
machines. MapReduce is a very successful example of a dynamic scheduler, as
one of its crucial feature is its inherent capability of handling hardware fail-
ures and processing capability heterogeneity, thus hiding this complexity to the
programmer, by relying on on-demand assignments and the online detection

149

4.1. Introduction

"abracadabra"

"ra"

"dab"

"aca"

"abr"

(’r’,1)
(’a’,1)

(’d’,1)
(’a’,1)
(’b’,1)

(’a’,1)
(’c’,1)
(’a’,1)

(’a’,1)
(’b’,1)
(’r’,1)

(’a’,5)
(’b’,2)
(’d’,1)

(’r’,2)

(’c’,2)

Map Reduce

Figure 4.1: Illustration of MapReduce principle.

of nodes that perform poorly.
In a classical MapReduce application, the original dataset is first split into

data chunks and distributed onto the computing nodes. Then, computation is
decomposed into two phases: a Map phase followed by a Reduce phase, each
of them being composed of several tasks. Let us consider a textbook example:
letter count, computing the number of occurrences of each letter in a word.
The Map phase of MapReduce splits the word in small pieces and processors
compute the number of occurrences of each letter in their fraction of word.
Then, during the Reduce phase, MapReduce partially aggregates these partial
results, see Figure 4.1.

However, MapReduce is also widely used to distribute bag-of-tasks appli-
cations, which are composed of Map tasks only. Such applications represent
77% of the MapReduce jobs studied in Kavulya et al. [2010]. For these appli-
cations, data locality is the main source of communications. There have been
relatively few theoretical studies of data locality in MapReduce and its impact
on communications, see Guo et al. [2012].

In MapReduce, minimizing the amount of communications performed at
runtime is a crucial issue. The initial distribution of the chunks onto the
platform is performed by a distributed filesystem such as HDFS, Borthakur
[2008]. By default, HDFS replicates randomly data chunks several times onto
the nodes (usually 3 times). This replication has two main advantages. First,
it improves the reliability of the process, limiting the risk of losing input data.
Second, replication tends to minimize the number of communications at run-
time. Indeed, by default, each node is associated to a given number of Map
and Reduce slots (usually two of each kind). Whenever a Map slot becomes

150 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

available, the default scheduler first determines which job should be scheduled,
given the job priority and history. Then, it checks whether the job has a local
unprocessed data chunk on the processor. If yes, such a local task is assigned,
and otherwise, a non-local task is assigned and the associated data chunk is
sent from a distant node. Therefore, intuitively, having more replicas provides
more opportunities for a given chunk of being processed locally.

It has been shown that depending on the size of the job, Ibrahim et al.
[2012], the fraction of non-local tasks can be around 12-17%, and their pro-
cessing takes between 1.2 to 2 times longer due to communications of remote
data chunks. The quality of the data locality of a scheduling policy, given a
replication mechanism, is therefore a crucial issue.

In this chapter we focus on the Map phase of MapReduce, the distribution
of independent and presumed-homogeneous tasks between processors.

4.1.2 Metric: Communication vs Makespan

The problem we address is by nature a bi-criteria optimisation problem, the
first one being the makespan (total completion time) of the Map phase and
the second one being the number of non-local tasks (i.e. tasks that are not
processed on one of the processors that holds the corresponding data chunk).
In the case of homogeneous tasks, it is easy to achieve optimal makespan (never
leave a processor idle by assigning non local tasks, as done in MapReduce) and
conversely it is easy to perform only local tasks (keep a processor idle if it does
not own unprocessed chunks anymore).

Both of these metrics will be considered, always under the assumption that
the other one is optimized. More precisely,

• if we consider the makespan metric, we assume that only local tasks are
performed,

• if we consider the communication metric, we assume that if a processor
is idle it will begin an unprocessed task.

Throughout this chapter we use the following modelling. We represent the
initial placement of data chunks by a bipartite graph G = (T, P,E) with a set
T of n task nodes and a set P of m processor nodes. An edge e ∈ E between
task node tj and processor node pi indicates the presence of a chunk of task tj
on processor pi. Let σ be a function from T to P (the tasks allocation). With
the assumption of homogeneity, our two metrics are equivalent to the following
two problems.

Problem 4.1 (MAKESPAN-MAPREDUCE). Given a bipartite graph G =
(T, P,E) find a function σ : T → P such that

• For every tj ∈ T , {σ(tj), tj} ∈ E.

On the Effect of Replication of Input Files 151

4.1. Introduction

• maxpi∈P |{tj, σ(tj) = pi}| is minimized.

Problem 4.2 (COMMUNICATION-MAPREDUCE). Given a bipartite graph
G = (T, P,E) find a function σ : T → P such that:

• maxpi∈P |{tj, σ(tj) = pi}| ≤
⌈
|T |
|P |

⌉
.

• |{tj, {σ(tj), tj} /∈ E}| is minimized.

In MAKESPAN-MAPREDUCE the first condition ensures that all tasks
are local and maxpi∈P |{tj, σ(tj) = pi}| represents the makespan of the al-
location (as all tasks have the same processing time, the most loaded pro-
cessor will be the last to end and thus will determine the makespan). In
COMMUNICATION-MAPREDUCE the first condition ensures the optimal-
ity of the makespan (if all processors perform no more than

⌈
|T |
|P |

⌉
tasks, the

load balancing is perfect) and |{ti, {σ(tj), tj} /∈ E}| is the number of non-local
tasks.

To help to construct the schedule σ, we propose to define a new object for
this graph-based modelling.

Definition 4.1 (Assignment). Let G = (P, T,E) be a bipartite graph. An
assignment of G is a subset A of E such that:

∀tj ∈ T, ∃ a unique pi ∈ P such that {pi, tj} ∈ A.

An assignment is thus a subset of the edges such that each task node has
a unique edge in this subset. Therefore every assignment is a valid sched-
ule. In particular this schedule respects the locality forced in MAKESPAN-
MAPREDUCE. We now add metrics to evaluate the quality of an assignment.

Definition 4.2 (Degree in an assignment, maximum degree and total load
imbalance). Let A be an assignment of G = (P, T,E).

• The degree in A of a vertex pi of P , denoted dA(pi), is the degree of pi
in G′ = (P, T,A), the sub-graph of G induced by A.

• the maximum degree d(A) of A is defined as D(A) = max
pi∈P

dA(pi).

• The total load imbalance Imb(A) of A is given by

Imb(A) =
∑
pi∈P

dA(pi)>d |T ||P |e

(
dA(pi)−

⌈
|T |
|P |

⌉)
.

152 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

1

2

3

4f

e

d

c

b

a

(a)

1

2

3

4f

e

d

c

b

a

(b)

Figure 4.2: Two examples of assignments for the same input graph.

These notions are illustrated on Figure 4.2, where tasks are on the left
hand side and processors on the right. Solid edges represent an assignment
and dashed ones are the initial edges that are not used in the assignment.
Each task can be uniquely associated to one solid edge, but processors can
be assigned to more than one task. On Figure 4.2(a), the maximum degree
is 3 (reached on 2) and the total load imbalance is 1. On Figure 4.2(b), the
maximum degree is 2 (reached on 2 and 4) and the total load imbalance is 0.

Every schedule that is a solution of MAKESPAN-MAPREDUCE is a valid
assignment (and every assignment is a schedule that is a solution of MAKESPAN-
MAPREDUCE) and if D(A) is minimized, then maxpi∈P |{tj, A(tj) = pi}| is
minimized. Therefore, to solve MAKESPAN-MAPREDUCE we can focus on
assignments with minimal maximal degree only.

For COMMUNICATION-MAPREDUCE we proceed as follows.

• If A is an assignment, then for every processor pi such that dA(pi) >
⌈
|T |
|P |

⌉
we unassign dA(pj) −

⌈
|T |
|P |

⌉
tasks and attribute them to processors pi′s

such that dA(pi′) <
⌈
|T |
|P |

⌉
. At the end we have a schedule σ such that

maxpi∈P |{tj, σ(tj) = pi}| ≤
⌈
|T |
|P |

⌉
and |{tj, {σ(tj), ti} /∈ E}| ≤ Imb(A)

as non-local tasks may only be tasks whose assignment has been modified
by the previous transformation.

• If σ is a schedule such that maxpi∈P |{tj, σ(tj) = pi}| ≤
⌈
|T |
|P |

⌉
, then

for every non-local task we attribute this task to an arbitrary processor
such that there is an edge between them. With this transformation we
have a valid assignment A and Imb(A) ≤ |{tj, {σ(tj), tj} /∈ E}|. Indeed
the set {pi, dA(pi) >

⌈
|T |
|P |

⌉
} is empty before the transformation (as

On the Effect of Replication of Input Files 153

4.2. Related Work

{tj, σ(tj) = pi}| ≤
⌈
|T |
|P |

⌉
) and thus during the transformation Imb(A)

only increases by at most 1 at each new attribution of the tj.

So from every solution of COMMUNICATION-MAPREDUCE with C com-
munications we can produce an assignment A such that Imb(A) ≤ C and
from every assignment A we can produce a solution of COMMUNICATION-
MAPREDUCE with less than Imb(A) communications. Thus, to solve COMMUNICATION-
MAPREDUCE, we focus on assignment with minimum total load imbalance.

In the following, in particular in Section 4.4, we mainly use assignments as
solutions of COMMUNICATION-MAPREDUCE and MAKESPAN-MAPREDUCE.

To finish this introduction, two remarks on the models:

• In COMMUNICATION-MAPREDUCE we consider that all non-local
tasks as equivalent. In practice, processors are grouped into racks and
among non-local tasks the communication cost is cheaper when data
comes from a processor from the same rack. Some studies, Yekkehkhany
[2017] or Isard et al. [2009], propose such refinements but it is beyond
the scope of this chapter.

• We are not considering failures. Some heuristics (Ibrahim et al. [2012]
for example) propose, if there is an idle processor, to launch a speculative
task that is a duplicate of an unfinished task whose processing time is
abnormally long. As our algorithms are based on a static approach this
possibility is hard to model and we choose not to consider it in this
chapter.

4.2 Related Work

4.2.1 Locality in Map-Reduce

A number of papers have studied the data locality in MapReduce. Note that
most studies that aim at minimizing the communications focus on the Shuffle
phase of a MapReduce application: in this phase, the scheduler transfers the
output data of the Map tasks to create the input data of the Reduce tasks.
Minimizing the communication of this data-intensive phase has been the target
of many studies, such as with coflow scheduling, Chowdhury and Stoica [2012],
Chowdhury and Stoica [2015] or Qiu et al. [2015]. Some papers have also pro-
posed to place Reduce tasks close to their input to reduce the communications
of the shuffle phase, Hammoud and Sakr [2011] or Tan et al. [2013].

However, as outlined in the previous section, we concentrate in this paper
on the Map phase. Several studies have already tried to minimize the data
exchange in this phase.

Zaharia et al. [2010] first proposed the Delay scheduler to improve data
locality for several job competing on a cluster. In their strategy, if a given job

154 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

has a free slot for a new task on a processor buts owns no local chunk, instead
of running a non-local task, leading to data movement (as in the classical
scheduler), this job waits for a small amount of time, allowing other jobs to run
local tasks instead (if they have some). The authors show that this improves
data locality while preserving fairness among jobs.

Ibrahim et al. [2012] also outline that, apart from the shuffling phase, an-
other source of excessive network traffic is the high number of non-local map
tasks. They propose Maestro, an assignment scheme that intends to maximize
the number of local tasks. To this end, Maestro estimates which processors
are expected to be assigned the smallest number of local tasks, given the dis-
tribution of the replicas. These nodes are then selected first to assign local
tasks. They experimentally show that this reduces the number of non-local
map tasks.

Xie and Lu [2012] propose a simple assignment strategy based on the degree
of each processor to overcome the problem of non-local map tasks. The idea is
to give priority to processors with the smallest non-zero number of unprocessed
replicas, so that they could be assigned a local task. They propose a “peeling”
algorithm that first serves the processor with a single unprocessed replica (and
thus assigns to them their unique local task), and then switches to a classical
random assignment for other processors. Using queuing theory and assuming
that processing times are given by geometric distribution, they prove that
their strategy offers close to optimal assignment for small to medium load.
In a similar context, Wang et al. [2013] propose a new queuing algorithm to
simultaneously maximize throughput and minimize delay in heavily loaded
conditions.

Guo et al. [2012] consider the locality of map tasks. They propose an al-
gorithm based on the Linear Sum Assignment Problem to compute an assign-
ment with minimal communications. Unfortunately, in the case where there
are more tasks than processors, their formulation is obviously wrong: they
add fictitious processors to get back to the case with equal number of tasks
and processors, solve the problem, and then remove the fictitious processors
without taking care of the task reassignment.

Isard et al. [2009] propose a flow-based scheduler: Quincy. More precisely
they consider the case of concurrent jobs and want to ensure that if a job is
submitted to the platform its computation time would be smaller than Jt sec-
ond where t is its computation time with exclusive access to the platform and
J the number of jobs running on the platform. To respect this deadline, they
propose a sophisticated model with many parameters (size of the input files,
bandwidth, data transfer, possible pre-emption of tasks,. . .) and transform
this problem into a flow problem (see Ford and Fulkerson [2015]). Recently
this algorithm’s computation time has been significantly improved by Gog
et al. [2016] in order to have sub-second scheduling time at each submission of
a new job.

On the Effect of Replication of Input Files 155

4.3. Greedy Approach

4.2.2 Matchings in Bipartite Graphs

A first research direction (more precision in Section 4.4) deals with the exis-
tence of matchings, in particular perfect matchings, i.e. matchings whose size
is the number of vertices. For instance, the work of Erdös and Rényi [1964]
on random bipartite graphs proves that there exists a perfect matching of a
bipartite graph of 2n vertices with asymptotic probability e−2e

−c as soon as
the number of edges is n lnn+cn+o(n). Walkup [1980], instead of an assump-
tion on the number of edges, uses a condition on the minimum degree of the
vertices. In this model, asymptotically, a regular bipartite graph (i.e. whose
both sets of vertices are of equal size) has a perfect matching if its minimum
degree is at least 2.

A second research direction deals with the efficient computation of match-
ings. Many algorithms rely on augmenting paths, see Ford and Fulkerson
[2015]. An augmenting path is a path that induces an improvement of the
current existing flow (or matching) by permuting some edges of the path with
some of the actual solution. For bipartite graphs, very efficient algorithms exist
to find an optimal matching, such as the Hopcroft-Karp Algorithm, Hopcroft
and Karp [1973], with a complexity of O(m

√
n), where n denotes the number

of vertices and m the number of edges, or the one proposed by Goel et al.
[2013] for regular bipartite graphs, whose expected complexity is O(n log n).
There also exist approximation algorithms with better computation time that
no longer guarantee the computation of a perfect matching, Langguth et al.
[2010] or Dufossé et al. [2015].

4.3 Greedy Approach

In this section, we consider MAKESPAN-MAPREDUCE only, i.e. non-local
tasks are forbidden. We are interested in analysing the Hadoop standard
scheduler, a greedy algorithm that picks a random local task as soon as a
processor is idle. We prove that this scheduler can be modelled by a Balls-
In-Bins process and thus its expected makespan is n

m
+O(log logm) where n

is the number of task, and m the number of processors.

4.3.1 Balls-into-Bins

In the context of MAKESPAN-MAPREDUCE, processors are only allowed to
compute the chunks they own locally. This might generate some load imbal-
ance, since some of the processors may stop their computations early.

Such a process is closely related to Balls-In-Bins problems, Raab and
Steger [1998]. More specifically, we prove in Section 4.3.2 that it is possible
to simulate the greedy algorithm for assigning Map tasks with a variant of a
Balls-In-Bins game. In this randomized process, n balls are placed randomly

156 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

into m bins and the expected load of the most loaded bin is considered. In
a process where data chunks are not replicated, chunks correspond to balls,
processing resources correspond to bins, and if tasks have to be processed
locally, then the maximum load of a bin is equal to the makespan achieved
by greedy assignment. The case of weighted balls, that corresponds to tasks
whose lengths are not of unitary length, has been considered by Berenbrink
et al. [2008]. It is shown by Berenbrink et al. [2008] that when assigning a
large number of small balls with total weight W , one ends up with a smaller
expected maximum load than the assignment of a smaller number of uniform
balls with the same total weight. In the case of identical tasks, Raab and
Steger [1998] provide value on the expected maximum load, depending on the
ratio m

n
. For example, in the case m = n, the expected maximum load is

logn
log logn

(1 + o(1)).
Balls-into-bins techniques have been extended to multiple choice algorithms,

where r random candidate bins are pre-selected for each ball, and then the ball
is assigned to the candidate bin whose load is minimum. It is well known that
having more than one choice strongly improves load balancing. We refer the
interested reader to Mitzenmacher [2001] and Richa et al. [2001] for surveys
that illustrate the power of two choices. Typically, combining previous re-
sults with those of Berenbrink et al. [2000], it can be proved that whatever
the expected number of balls per bin, the expected maximum load is of order
n/m + O(log logm) even in the case r = 2, what represents a very strong
improvement over the single choice case. Peres et al. [2010] study cases with
a non-integer r. In this case, with a given parameter β, for each ball, with
probability β the assignation is made after choosing between two bins or,
with probability (1 − β), the assignation is made like for a regular Balls-
In-Bins process. In this case, for 0 < β < 1, the expected maximum load
is n

m
+ O(logm

β
). Thus, the exact β = 1 (i.e. r = 2) is needed to reach the

O(log logm) regular Balls-In-Bins gap. The combination of multiple choice
games with weighted balls has also been considered by Peres et al. [2010]. In
this case, each ball comes with its weight wi and is assigned, in the r-choices
case, to the bin of minimal weight, where the weight of a bin is the sum of the
weights of the balls assigned to it. Both the results for (1 + β) and for r = 2
have been extended.

4.3.2 Reduction to Balls-into-Bins

We consider here a simple dynamic scheduler to solve MAKESPAN-MAPREDUCE,
called Greedy and inspired by the MapReduce scheduler and detailed in Al-
gorithm 4.1. If there exists local not yet processed tasks, one such local task
is chosen at random, performed locally and marked as processed on all pro-
cessors. If no such unprocessed local task exists, then the processor stops its
execution. Note that it reduces to the straightforward version of the MapRe-

On the Effect of Replication of Input Files 157

4.3. Greedy Approach

duce scheduler when communications are forbidden.
Let us consider a more general context for the analysis of this algorithm,

where tasks have heterogeneous processing times (wi is the duration of task ti)
and processors have slightly different initial availability times (εj is the avail-
ability time of processor j). However, the Greedy scheduler has no knowledge
of the task durations before their execution. We assume, as in Berenbrink et al.
[2008] or Peres et al. [2010], that this heterogeneity in task durations and pro-
cessor availability times allows us to consider that no ties have to be broken.
Note that in Greedy, the initial chunk distribution is given by n random sets
of r choices: C1, . . . , Cn. Together with the initial processor availability times
and the task durations, these random choices entirely define the scheduler
behavior.

Algorithm 4.1 : Greedy(C1, . . . , Cn, ε1, . . . , εm)

Input : C1, . . . , Cn: sets of r random choices
Input : ε1, . . . , εm: initial processor availability times
Initial chunk distribution:
for i = 0 . . . n do

Place a copy of chunk i onto processors {pi(1) , . . . , pi(r)} where
Ci = {i(1), . . . , i(r)}

Task assignment:
while there exists an unprocessed task do

Whenever a processor pk completes a task, assign to this processor
the local task ti with smallest index, if any

We now prove that in presence of replication, the expected makespan of
the Greedy scheduler is closely related to the balls-into-bins problem with
r multiple choices. Algorithm 4.2 shows the process of distributing n balls of
sizes w1, . . . , wn into m bins whose initial loads are given by ε1, . . . , εm. This
distribution is done as follows: for each ball, r bins are selected at random
(using the random choices Ci) and the ball is placed in the least loaded of
these r bins. The following theorem shows the relation between the simple
dynamic scheduler and the Balls-In-Bins process.

Algorithm 4.2 : Balls-In-Bins(C1, . . . , Cn, ε1, . . . , εm)

for i = 0 . . . n do
Place ball bi of weight wi into the least loaded bin among bins
{Bi(1) , . . . , Bi(r)} where Ci = {i(1), . . . , i(r)} ;

Theorem 4.1. Let us denote by MaxLoad the maximal load of a bin using

158 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

Balls-In-Bins and by Cmax the makespan achieved using Greedy. Then,

MaxLoad(C1, . . . , Cn, ε1, . . . , εm) = Cmax(C1, . . . , Cn, ε1, . . . , εm).

Proof. In order to prove above result, let us prove by induction on i the fol-
lowing Lemma.

Lemma 4.2. Let jb(i) denote the index of the bin where ball bi is placed and let
jp(i) denote the index of the processor where task ti is processed, then jb(i) =
jp(i).

Proof. Let us consider ball b1 and task t1. b1 is placed in the bin such that εk
is minimal, where k ∈ C1. Conversely, t1 is replicated onto all the processors
pk, where k ∈ C1. Since each processor executes its tasks following their index,
t1 is processed on the first processor owning t1 that looks for a task, i.e. the
processor such that εk is minimal. This achieves the proof in the case n = 1.

Let us assume that the lemma holds true for all indexes 1, . . . , i−1, and let
us consider the set of bins Bk and the set of processors pk such that k ∈ Ci. By
construction, at this instant, processors pk, k ∈ Ci have only processed tasks
whose index is smaller than i. Let us denote by Si = {ti1 , . . . , tini} this set of
tasks, whose indexes ik’s are smaller than i. These tasks have been processed
on the processors whose indexes are the same as those of the bins on which
balls {bi1 , . . . , bini} have been placed, by induction hypothesis. Therefore, for
each pk, k ∈ Ci, the time at which pk ends processing the tasks assigned to
it and whose index is smaller than i is exactly the weight of the balls with
index smaller than i placed in Bk. Therefore, the processor pk that first tries
to compute ti is the one such that εk plus the weight of the balls with index
smaller than i placed in Bk is minimal, so that jb(i) = jp(i), what achieves the
proof of the lemma.

Therefore, the makespan achieved by Greedy on the inputs (C1, . . . , Cn, ε1, . . . , εm)
is equal to the load of most loaded bin in Balls-In-Bins on the same input,
which achieves the proof of the theorem.

Thanks to this result, we can apply known bounds on the maximum load for
Balls-In-Bins processes derived in the literature, as related in the previous
section. In particular, going back to the case of tasks with identical processing
times, the expected makespan when r ≥ 2 is known to be of order n/m +
O(log logm) (with high probability).

4.4 Matching-Based Approach
In this section we are interested in optimal solutions for MAKESPAN-MAPREDUCE
and COMMUNICATION-MAPREDUCE. First, in Section 4.4.1, we link MAKESPAN-
MAPREDUCE to an already studied problem: GRAPH-ORIENTIABILITY

On the Effect of Replication of Input Files 159

4.4. Matching-Based Approach

and present the pre-existing results, notably the existence, with high probabil-
ity, of an assignment with makespan smaller or equal than

⌈
|T |
|P |

⌉
+1. Finally, in

Section 4.4.2 and 4.4.3, we focus on COMMUNICATION-MAPREDUCE and
present two algorithms to solve it in polynomial time. Note that these two al-
gorithms are also proven optimal for MAKESPAN-MAPREDUCE, therefore,
on every bipartite graph, there exists an assignment that is optimal for both
MAKESPAN-MAPREDUCE and COMMUNICATION-MAPREDUCE.

4.4.1 Results for Makepan Metric

Let us first introduce the GRAPH-ORIENTIABILITY problem. We distin-
guish (undirected) edges, denoted {u, v} from (directed) arcs, denoted (u, v).

Problem 4.3 (GRAPH-ORIENTIABILITY). Given an undirected graphG =
(V,E), find a directed version G′ = (V,E ′), with {u, v} ∈ E ⇔ (u, v) ∈
E ′ or (v, u) ∈ E ′, such that maxv∈V |{u ∈ V, (u, v) ∈ E ′}| is minimized.

GRAPH-ORIENTIABILITY can be used to solve MAKESPAN-MAPREDUCE
in the case where the degree of each task is 2. Let G = (P, T,E) be such
an instance of MAKESPAN-MAPREDUCE. Let G′ = (P,E ′) be an undi-
rected graph such that {pi, pi′} ∈ E ′ if and only if {pi, tj} and {pi′ , tj} are
in E (we allow multiple edges). Note that |E ′| = |T |. If we consider a di-
rected version G′′ = (P,E ′′) of G′ then A, defined such that {pi, tj} ∈ A if
and only if (pi′ , pi) ∈ E ′′, it is a valid assignation and its maximal degree
is the maximal number of incident arc to a vector in G′′ (the orientation of
an edge represents a choice between two vertices), see Figure 4.3. Note that
GRAPH-ORIENTIABILITY can be extended to hypergraphs to model ver-
sions of MAKESPAN-MAPREDUCE with arbitrary r (where r is the number
of replicas of each task).

One of the main contributions to this problem comes from Sanders et al.
[2003]. In this paper they provide polynomial algorithms for GRAPH-ORIENTIABILITY
and its hypergraph version and a probabilistic evaluation on the expected value
of the optimal value of an input of GRAPH-ORIENTIABILITY. More pre-
cisely, with high probability, the optimal solution is at least near-perfect (i.e.
maxv∈V |{u ∈ V, (u, v) ∈ E ′}| ≤ 1 +

⌈
|E′|
|P |

⌉
).

Theorem 4.3 (Sanders et al. [2003]). Let G = (V,E) be an undirected graph.
With high probability there exists a directed version of G such that the vertex
with the most in-incident arcs has an in-degree inferior or equal to 1 +

⌈
|E|
|V |

⌉
.

Therefore, under the assumption that each task has at least two replicas
(otherwise we are in a case close to the Balls-In-Bins modelling without
the power of r choices) Theorem 4.3 implies directly that there exists a near-
perfect assignment for the MAKESPAN-MAPREDUCE problem, as stated in
the following corollary.

160 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

1

2

3

4f

e

d

c

b

a

(a)

e

d

a b

f

c
3

21

4

(b)

1

2

3

4f

e

d

c

b

a

(c)

e

d

a b

f

c
3

21

4

(d)

Figure 4.3: Figure 4.3(a) represents an input of MAKESPAN-MAPREDUCE
which equivalent version of an input of GRAPH-ORIENTIABILITY is on
Figure 4.3(b). The assignment on Figure 4.3(c) is equivalent to the orientation
of Figure 4.3(d).

Corollary 4.4. Let G = (P, T,E) be a bipartite graph such that the degree of
every element of T is at least 2. Then, with high probability there exists an
assignation with maximal degree smaller or equal to 1 +

⌈
|T |
|P |

⌉
.

Proof. By randomly removing excess edges we place ourselves in the case where
for all tj ∈ T , the degree of tj is 2. Therefore we can transform G into an
undirected graph G′ = (P,E ′) as described above (see Figure 4.3). Thanks
to Theorem 4.3, we know that there is a directed version of G′ such that the
vertex with the most in-incident arcs has an in-degree inferior or equal to
1 +

⌈
|E′|
|P |

⌉
= 1 +

⌈
|T |
|P |

⌉
. This oriented version of G′ has an induced assignment

for G with the transformation also described above and in Figure 4.3, and
this assignment has the same maximal degree as the maximal in-degree in G′′,
what achieves proof of Corollary 4.4.

Furthermore, Theorem 4.3 has been extended by Czumaj et al. [2003] by
proving that for a small number of tasks the optimal solution of GRAPH-
ORIENTIABILITY is exactly 1 +

⌈
|T |
|P |

⌉
and for large numbers it is

⌈
|T |
|P |

⌉
.

On the Effect of Replication of Input Files 161

4.4. Matching-Based Approach

Theorem 4.5 (Czumaj et al. [2003]). Let G = (V,E) be an undirected graph.
There exists two positive constants λ, c such that:

• If |E| ≥ c|V | log |V | then with high probability there exists a directed
version of G such that the vertex with the most in-incident arcs has an
in-degree equal to

⌈
|E|
|V |

⌉
.

• If |E| ≤ λ|V | log |V | then with high probability there exists a directed
version of G such that the vertex with the most in-incident arcs has an
in-degree equal to 1 +

⌈
|E|
|V |

⌉
.

With this theorem, the probabilistic study of the expected optimal value
of the optimal maximal degree of an assignation is closed. Very efficient algo-
rithms have been proposed to polynomially solve GRAPH-ORIENTIABILITY,
Sanders [2004] or Cain et al. [2007], with very good complexity (near-linear
in the case of graphs, i.e. r = 2). To finish this section, we propose a sketch
of a direct proof of Corollary 4.4, without the transformation into an instance
of GRAPH-ORIENTIABILITY, because some of the intermediate results will
prove useful for the following sections.

Sketch of Proof of Corollary 4.4

As a first step, we establish the relationship between assignments and match-
ings. We recall that a matching of a bipartite graph G = (P, T,E) is a subset
M of E such that each node of P ∪ T is incident to at most one edge in
M . There are some notable differences between an assignment and a match-
ing. First, in an assignment, two edges may be incident to the same processor
node. Second, a task node may not be covered by an edge of a matching, while
it is necessary connected to a processor node in an assignment.

For a given integer l, we build an auxiliary bipartite graph Gl from the
bipartite graph representation of our problem, by replicating l times the set of
processors, see Figure 4.4. We show in the following lemma that the existence
of an assignment of maximum degree l in G is directly related to the existence
of a matching of size |T | in Gl.

Definition 4.3 (Gl). Let G = (P, T,E) be a bipartite graph and l be an
integer. We define Gl = (P l, T, El) with:

• P l =
⋃
pi∈P
{p1i , . . . , pli}.

• (pki , tj) ∈ El if and only if (pi, tj) ∈ E.

Lemma 4.6. Let G = (P, T,E) be a bipartite graph with |T | = n and let l
be an integer. There exists an assignment of maximum degree l if and only if
there exists a matching of size n in Gl.

162 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

1

2

3

4f

e

d

c

b

a

11

21

31

41

12

22

32

42f

e

d

c

b

a

Figure 4.4: An example of replication of a bipartite graph. On the left G, on
the right G2.

Proof. Let us first suppose that there exists an assignment A of maximum
degree l of G. For pi ∈ P let vA(pi) denotes its neighbourhood in the sub-graph
induced by A, i.e. vA(pi) = {tj ∈ T, (pi, tj) ∈ A} (and |vA(pi)| = dA(pi)). Let
M be a subset of El with M =

⋃
pi∈P

Mpi with

Mpi =
{

(p1i , t1), . . . , (p
dA(pi)
i , tdA(pi)),

{t1, . . . , tdA(pi)} = vA(pi)
}
.

Since ∀pi ∈ P , dA(pi) ≤ l, then ∀pi, {p1i , . . . , p
dA(pi)
i } is a valid subset of P l.

Let (pki , tj) and (pk
′

i′ , tj′) denote any two edges of M .

• If i 6= i′, then pki 6= pk
′

i′ . In addition, by definition of an assignment,
vA(pi) ∩ vA(pi′) = ∅ (otherwise there is a contradiction with ∃!pi ∈
P, (pi, tj) ∈ A) and then tj 6= tj′ .

• If i = i′, then tj = tj′ if and only if k = k′.

Therefore, M is a valid matching. Moreover, since vA(pi) ∩ vA(pi′) = ∅, then
Mpi ∩Mpi′

= ∅. Therefore, |M | =
∑
|Mpi | =

∑
dA(pi) = n by definition of an

assignment. Thus, there exists a matching of cardinal n in Gl.
Let us now assume that there exists a matching M of Gl with |M | = n.

Let us build a subset A of E such that

(pi, tj) ∈ A⇔ ∃k, (pki , tj) ∈M .

On the Effect of Replication of Input Files 163

4.4. Matching-Based Approach

Let (pi, tj) and (pi′ , tj′) be any two edges of A. There exists (k, k′) such that
(pki , tj), (p

k′

i′ , tj′) ∈M . By definition of a matching, tj = tj′ if and only pki = pk
′

i′ .
Hence tj = tj′ if and only if pi = pi′ . Moreover, |A| = |M | = n and therefore,
∀tj, there exists pi such that (pi, tj) ∈ A. Thus A is an assignment of G and
D(A) ≤ l as dA(pi) ≤ l for all pi ∈ P .

Note that Lemma 4.6 states that finding an optimal assignment for a bipar-
tite graph G is equivalent to finding a maximal matching (in Gl). So this im-
plies a possible method, summarized in Algorithm 4.3, to solve MAKESPAN-
MAPREDUCE: (i) building Gl, (ii) finding a maximal matching in Gl, and
(iii) turning it into an assignment for G.

Algorithm 4.3 : NaiveAssignment(G)
Input : A bipartite graph G = (P, T,E)
Output : An assignment A of G of minimum maximal degree
l =

⌈
|T |
|P |

⌉
;

A = ∅ ;
while A is not an assignment do

Find a maximal matching M of Gl ;
if |M | = |T | then

A← the conversion of M into an assignment of size l ;

l← l + 1 ;
return A

Thanks to Lemma 4.6 we can now use a classical result on matching in
bipartite graphs, namely Hall’s Theorem (Theorem 4.7).

Theorem 4.7 (Hall [1935]). Let G = (P, T,E) be a bipartite graph. There
exists a perfect matching (of cardinal min(|P |, |T |)) of G if and only if for all
subset T ′ of T , its neighbourhood P ′ verifies |P ′| ≥ |T ′|.

By using Lemma 4.6 and Theorem 4.7 we prove a sufficient and necessary
condition to have a assignment with maximal degree l.

Lemma 4.8. Let G = (P, T,E) be a bipartite graph. There is an assignment
of G of maximum degree l if and only if for all subset T ′ of T , its neighbourhood
P ′ satisfies l|P ′| ≥ |T ′|.

Proof. Let T ′ be a subset of T and let vG(T ′) be its neighbourhood in G. By
construction of Gl = (P l, T, El), |vGl(T ′)| = l|vG(T ′)|. In addition, thanks
to Lemma 4.6, there exists an assignment of G of maximum degree l if and
only if there is a perfect matching of Gl, what is equivalent (Theorem 4.7) to
∀T ′ ⊆ T , |T ′| ≤ |vGl(T ′)| = l|vG(T ′)|.

164 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

1

2

3

2

1

f

e

d

c

b

a

e

d

b

f

c

Figure 4.5: An illustration of Lemma 4.8. The set of red tasks is composed
of 5 tasks whose neighbourhood is a set of only two processors. Therefore, as
5 > 2× 2 there is no assignment with maximal degree 2.

In the following, for a given l, we want to evaluate the probability of exis-
tence of a configuration which forbids assignment of maximal degree l. Thanks
to Lemma 4.8 we know that if there is a subset T ′ of T such that its neighbour-
hood P ′ verifies |T ′| > l|P ′| then there is no such assignment, as illustrated in
Figure 4.5.

Let tj be a task of T and let P ′ be a subset of P of cardinal q. The
probability that the entire neighbourhood of tj is included in P ′ is

(
q
m

)r (since
m = |P |) by using a draw with replacement (a more pessimistic hypothesis
than the real draw without replacement).

Let XP ′ be the random variable that represents the number of tasks whose
neighbourhood is included in P ′. XP ′ follows a binomial law of parameter n
(the number of tasks) and

(
q
m

)r (the probability that a task has its neighbour-
hood included in P ′), where q denotes the cardinal of P ′. Therefore,

Pr(XP ′ = k) =

(
n

k

)((q
m

)r)k (
1−

(q
m

)r)n−k
.

Let Yq,k denote the number of subsets of P of size q such that exactly k
elements of T have their neighbourhood included in this subset, i.e.

Yq,k =
∑
P ′⊆P
|P ′|=q

1XP ′=k

where 1XP ′=k is the random variable equal to 1 when XP ′ = k and to 0 other-
wise. Therefore, E(1XP ′=k) = Pr(XP ′ = k) and, by linearity of expectations,

On the Effect of Replication of Input Files 165

4.4. Matching-Based Approach

E(Yq,k) = E

∑
P ′⊆P
|P ′|=q

1XP ′=k


=
∑
P ′⊆P
|P ′|=q

E(1XP ′=k)

=
∑
P ′⊆P
|P ′|=q

Pr(XP ′ = k)

=
∑
P ′⊆P
|P ′|=q

(
n

k

)((q
m

)r)k (
1−

(q
m

)r)n−k

=

(
m

q

)(
n

k

)(q
m

)rk (
1−

(q
m

)r)n−k
.

Thanks to Lemma 4.8 and as it is explained before, there is no assignment
of maximal degree l if and only if there exists T ′ and its neighbourhood P ′ such
that l|P ′| < |T ′| and thus if and only if there exists (q, i), with q ∈ [0, p], i ∈ N∗,
such that Yq,lq+i ≥ 1.

Note that the condition (Yq,lq+l+i ≥ 1) is included in the condition (Yq+1,l(q+1)+i ≥
1). Indeed, if there is a set of q processors that contains the entire neighbour-
hood of lq+l+i tasks, there also exists a set of q+1 processors that contains this
neighbourhood (obtained by adding any processor not already in the subset).
Thus, Yq,lq+l+i ≥ 1 implies Yq+1,l(q+1)+i ≥ 1. On the contrary, Yq+1,l(q+1)+i = 0
implies Yq,lq+l+i = 0. Therefore, we can focus on the events (Yq,lq+i ≥ 1) with

i ∈ [1, l] only. Let us define the random variable Zl =
m∑
q=0

l∑
i=1

Yq,lq+i. If Zl = 0,

then Yq,lq+i = 0 for all (q, i) and there exists an assignment of maximum degree
l. Otherwise, if Zl ≥ 1, there exists a (q, i) such that Yq,lq+i ≥ 1 and then there
is no assignment of maximum degree l.

Using the Markov inequality, we obtain

Pr(Zl ≥ 1) ≤ E(Zl)

1

≤
m∑
q=0

l∑
i=1

E(Yq,lq+i)

≤
m∑
q=0

l∑
i=1

(
m

q

)(
n

lq + i

)(q
m

)r(lq+i) (
1−

(q
m

)r)n−lq−i
.

166 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

To achieve the proof it can be proven that if r = 2 and m divides n (every
input of MAKESPAN-MAPREDUCE that fulfils the condition of Corollary 4.4
can be placed under these two conditions by removing edges) then Pr(Zl ≥
1) = O(1

n
). However, the proof is mainly computational and technical, so we

just provide the main steps to this result, avoiding proofs of technical claims.
The interested reader can go to Beaumont et al. [2017] for the complete proof.

First Claim 4.1 states that instead of dealing with a double sum
m∑
q=0

l∑
i=1

E(Yq,lq+i),

we can focus on a simple sum,
m∑
q=1

E(Yq,lq+1).

Claim 4.1 (Beaumont et al. [2017], p26).

Pr(Zl ≥ 1) < 2
m∑
q=1

E(Yq,lq+1).

In order to bound Pr(Zm ≥ 1), we want then to bound E(Yq,lq+1). Let
us recall the following well known upper and lower bounds on the factorial
(Bollobás [2013]). For any n ∈ N∗,

√
2πn

(n
e

)n
< n! <

√
2πn

(n
e

)n
e

1
12n

and thus, for any n > m > 0,(
n

m

)
=

n!

m!(n−m)!

<

√
2πn

(
n
e

)n
e

1
12n

√
2πm

(
m
e

)m√
2π(m− p)

(
n−m
e

)m−p
<

1√
2π

nn+
1
2

mm+ 1
2 (n−m)n−m+ 1

2

e
1

12n .

Due to the domain of validity of above inequality, the rest of the proof will
be split into two parts. The case lq + 1 = n solved by Claim 4.2 and the case
mq + 1 < n is considered in Claim 4.3.

Claim 4.2 (Beaumont et al. [2017], p27). If lq + 1 = n, then E(Yq,lq+1) =
O
(
1
n

)
.

Claim 4.3 (Beaumont et al. [2017], p29). If lq + 1 < n,

E(Yq,lq+1) <
e

1
12m e

1
12n

2π
√
nm

en(f0,n(x,α)+
1
n
f1,n(x,α))

where x = q
p
, α = m

n
,

f1,n(x, α) ≤ K,

On the Effect of Replication of Input Files 167

4.4. Matching-Based Approach

with K ∈ N, and
f0,n(x, α) ≤ f(x) + Cn,

where Cn = O
(
1
n

)
and f(x) = x ln(x)− (1−x)2

x
ln(1−x)+ln(x+(1−x)

1
x (1+x)).

Claim 4.3 proves that

E(Yq,lq+1) <
e

1
12m e

1
12n

2π
√
nm

enf(x)+nCn+K

for x ∈ In =
[

1
αn
, n−1
(α+1)n

− 1
αn

]
.

Thus,

n−1
l∑

q=1

E(Yq,lq+1) ≤
∑

x=q/m∈In

e
1

12m e
1

12n

2π
√
nm

enf(x)+nCn+K

≤ e
1

12m e
1

12n

2πn
√
α
enCn+K

∑
x=q/m∈In

enf(x)

≤ O

(
1

n

) ∑
x=q/m∈In

enf(x).

Therefore the end of this proof relies on the study of the function f . This
function is strictly negative on]0, 1[(Claim 4.4) and is equivalent to x ln(x)
when x goes to 0 (Claim 4.5). Note that we suppose α = m

n
< 1. The case

m = n has to be treated separately (Claim 4.6).

Claim 4.4 (Beaumont et al. [2017], p37). ∀x ∈]0, 1[, f(x) < 0.

Claim 4.5 (Beaumont et al. [2017], p41). For all ε ∈]0, 1− α[, there exists x0
such that x ≤ x0 implies f(x) ≤ (1− ε)x ln(x).

Claim 4.6 (Beaumont et al. [2017], p23). Let us assume that (i) r = 2, (ii)
n = m and (iii) l = 2. Then Pr(Zl ≥ 1) = O

(
1
n

)
.

Without loss of generality, we can assume that the x0 from Claim 4.5 is
smaller than e−1. As x 7→ x ln(x) is decreasing on]0, e−1], ∀x ∈

[
1
αn
, x0
]
,

f(x) ≤ −(1− ε) 1
αn

ln (αn). In addition, f is continuous on
[
x0,

1
1+α

]
and thus,

there exists x1 ∈
[
x0,

1
1+α

]
such that f(x) ≤ f(x1). Thanks to Claim 4.4,

f(x1) < 0 and ∃K ′ < 0 such that ∀x ∈
[
x0,

1
1+α

]
, f(x) ≤ K ′. Thus,

168 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

∑
x=q/m∈In

enf(x) =
∑

x=q/m∈[1
αn
,x0]

enf(x) +
∑

x=q/m∈[x0, 1
1+α]

enf(x)

=
∑

x=q/m∈[1
αn
,x0]

e−
1−ε
α
ln(αn) +

∑
x=q/m∈[x0, 1

1+α]

enK
′

=
1

(αn)
1−ε
α

 ∑
x=q/m∈[1

αn
,x0]

1

+ enK
′

 ∑
x=q/m∈[x0, 1

1+α]

1


=

1

(αn)
1−ε
α

× n+ enK
′ × n

= O(n
α−1+ε
α) +O(nenK

′
)

= O(1)

because α− 1 + ε ≤ 0, what ends the case lq + 1 < n.
Thus we can conclude

Pr(Zl ≥ 1) ≤ 2

n−1
l∑

q=1

E (Yq,lq+1)

≤ 2

n−1
l
−1∑

q=1

E (Yq,lq+1) + 2E
(
Yn−1

l
,n

)
≤ O

(
1

n

) ∑
x=q/m∈In

enf(x) +O

(
1

n

)

≤ O

(
1

n

)
what achieves the proof.

�

4.4.2 A First Communication-Optimal Algorithm

In this section we focus on COMMUNICATION-MAPREDUCE problem. In
what follows, we propose a polynomial algorithm to polynomially solve COMMUNICATION-
MAPREDUCE, following classical ideas from the literature on the matching
and flows problem (see Ford and Fulkerson [2015] for instance).

On the Effect of Replication of Input Files 169

4.4. Matching-Based Approach

Alternating Paths

Let us first adapt the notion of alternating path.

Definition 4.4. Let G = (P, T,E) be a bipartite graph and let A be a subset
of E.

• A path of G is a sequence of vertices (x1, . . . , xk) such that ∀i ∈ [1, k−1],
(xi, xi+1) ∈ E. Note that in a path of a bipartite graph the vertices
switch between T and P .

• An alternating path of G according to A is a path (x1, . . . , xk) of G such
that:

– If xi ∈ T , then (xi, xi+1) ∈ A.
– If xi ∈ P , then (xi, xi+1) /∈ A.

An example of an alternating path is described in Figure 4.6. On the left
hand side, solid edges represent an assignment, and dashed ones the unused
edges. On the right hand side, the proposed path (to improve the clarity of the
scheme, edges that are not in the path have been removed) is an alternating
one according to the previous assignment.

1

2

3

4f

e

d

c

b

a

(a)

1

2

3

4f

e

d

c

b

a

(b)

Figure 4.6: Example of alternating path.

Alternating paths can be used to improve an existing assignment. Indeed,
Lemma 4.9 states that if the starting and the ending vertices of an alternating
path are in P , then it is possible to build an assignment that improves the
degree of the last vertex and increases by one the degree of the first one.

Lemma 4.9. Let G = (P, T,E) be a bipartite graph, let A be an assignment of
G and let x = (pi1 , tj1 , . . . , pik) be an alternating path of G according to A. Let

170 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

⊗ be the xor operation (A⊗ B = (A ∪ B) \ (A ∩ B)) and let x be assimilated
to its edges, then,

• A⊗ x is an assignment.

• dA⊗x(pi1) = dA(pi1) + 1

• dA⊗x(pik) = dA(pik)− 1

• ∀pi ∈ P \ {pi1 , pik}, dA⊗x(pi) = dA(pi).

Proof. Let G = (P, T,E) be a bipartite graph, let A be an assignment of G
and let x = (pi1 , tj1 , . . . , tjk−1

, pik) be an alternating path of G according to A.
Let tj ∈ T :

• If tj = tjl ∈ {tj1 , . . . , tjk−1
}, then, by definition of an alternating path,

(tjl , pil+1
) is in A (and, by definition of an assignment, it is the only edge

from tj in A) and (pil , tjl) is not. Therefore (pil , tjl) is in A⊗ x (and it is
the only edge from tj in A⊗ x) and (tjl , pil+1

) is not.

• Otherwise, the unique edge in A from tj is not in x (and x has no edges
from tj) and therefore is also present in A⊗ x.

Therefore, ∀tj ∈ T , there is an unique edge from tj in A ⊗ x that is thus an
assignment.

Furthermore, let pi be in P , then

• if pi = pi1 , then (pi1 , tj1) is added to its neighbourhood in A⊗ x,

• if pi = pik , then (tjk−1
, pik) is removed from its neighbourhood in A⊗ x,

• if pi = pil ∈ {pi2 , . . . , pik−1
}, then (pil , tjl) is added to its neighbourhood

and the edge (tjl−1
, pil) is removed from its neighbourhood in A⊗ x,

• otherwise there is no modification of its neighbourhood from A to A⊗x.

Therefore,

• dA⊗x(pi1) = dA(pi1) + 1

• dA⊗x(pik) = dA(pik)− 1

• ∀pi ∈ P \ {pi1 , pik}, dA⊗x(pi) = dA(pi).

From now on, we focus on finding an alternating path that improves the
whole assignment. For this purpose we define improving path.

On the Effect of Replication of Input Files 171

4.4. Matching-Based Approach

Definition 4.5. Let G = (P, T,E) be a bipartite graph and A be an as-
signment of G. An improving path according to A is an alternating path
x = (pi1 , tj1 , . . . , pik) such that dA(pi1) + 1 < dA(pik).

Lemma 4.9 implies that an improving path can be used to build an assign-
ment that can even decrease the maximum degree if pik is the only vertex such
that dA(pik) = D(A). Similarly, an improving path can also be used to build
an assignment that decreases the total load imbalance if dA(pi,k) >

⌈
|T |
|P |

⌉
and

dA(pi,1) <
⌈
|T |
|P |

⌉
.

Optimality

In fact, a stronger property holds true: if there is no improving path, then the
assignment has a minimum total load imbalance. This result is formalized in
Theorem 4.10.

Theorem 4.10. Let G = (P, T,E) be a bipartite graph, let A be an assignment
of G. If there is no improving path according to A then A has a minimum total
load imbalance.

Proof. First let us introduce a first lemma to state the different cases that may
happen if we use an alternating path to change an assignment, with regards
on load imbalance.

Lemma 4.11. Let G = (P, T,E) be a bipartite graph and A be an assignment
of G. Let x = (pd, . . . , pf) be an alternating path according to A. Then,

• if dA(pd) <
⌈
|T |
|P |

⌉
< dA(pf) then Imb(A⊗ x) = Imb(A)− 1,

• if dA(pd) >
⌈
|T |
|P |

⌉
> dA(pf) then Imb(A⊗ x) = Imb(A) + 1,

• otherwise Imb(A⊗ x) = Imb(A).

Proof. By direct application of Lemma 4.6.

Note that an alternating path x = (pd, . . . , pf) such that dA(pd) <
⌈
|T |
|P |

⌉
<

dA(pf) is an improving path.
We will rely on the three following lemmas to prove Theorem 4.10.

Lemma 4.12. (Berge Berge [1957]) Let G = (P, T,E) be a bipartite graph
and M be a matching of G. M is maximal if and only if there no alternating
path x = (pi1 , tj1 , . . . , tjk−1

) such that there is no edge from pi1 and from tjk−1

in M .

172 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

Lemma 4.13. Let A and A′ be two assignments of a same bipartite graph
G = (P, T,E). If there exists pi such that dA(pi) > dA′(pi), then there exists
an alternating path x = (pd, . . . , pf) according to A such that dA(pd) < dA′(pd)
and pf is the vertex verifying dA(pf) > dA′(pf) with the largest degree in A.

Proof. To prove the above lemma, we need a more general definition of a
replicated graph. Instead of replicating each vertex of P l times, we replicate pi
lpi times (the number of replications can be different from a vertex to another).
In this case, Lemma 4.6 can be adapted: let G = (P, T,E) be a bipartite graph
with |T | = n, |P | = m and (li)1≤i≤m be a set of integers. Then, there exists
an assignment A with, for all pi ∈ P , dA(pi) ≤ li if and only if there exists a
matching of size n in the replicated graph of G where each pi is replicated li
times.

Let now A and A′ be two assignments of a bipartite graph G such that ∃pi
that fulfils dA(pi) > dA′(pi). Let pf be the vertex satisfying dA(pf) > dA′(pf)
with the largest degree in A. Let us consider the graph G′ that is a replicated
graph of G where pf is replicated dA(pf) − 1 times and where pi ∈ P \ {pf}
is replicated max(dA(pi), dA′(pi)). Let t ∈ T be such that (pf , t) ∈ A. Thanks
to the modified version of Lemma 4.6, we can define a matching M ′ of G′ of
size |T | and a matching M of size |T | − 1 associated to the partial assignment
A \ (pf , t).

M is not a matching of maximum size since M ′ is larger. Therefore, ac-
cording to Lemma 4.12, there exists an alternating path x = (pi1 , tj1 , . . . , tjk−1

)
such that there is no edge from pi1 and from tjk−1

in M . The only possible free
vertex from T is t, thus this alternating path must fulfil x = (pkdd , . . . , t).
In addition, to have a free replicate in G′ according to M , pd must fulfil
dA(pd) < max(dA(pd), dA′(pd)) and therefore dA(pd) < dA′(pd).

We then easily check that the path (pd, . . . , t, pf) is an alternating path
and, as dA(pd) < dA′(pd), thus we have the claimed result.

Lemma 4.14. Let G = (P, T,E) be a bipartite graph and let A,A′ be two
assignments of G. Therefore there are finite sequences of assignments (Ak)k≤l
and paths (xk)k≤l−1 (l is the length of the sequence) such that

• A0 = A

• ∀pi ∈ P, dAl(pi) = dA′(pi)

• ∀k ≤ l, xk is alternating according to Ak and Ak+1 = Ak ⊗ xk

• If xk = (pdk , . . . , pfk), then dAk(pdk) < dA′(pdk) and dAk(pfk) > dA′(pfk)
and pfk is the pi with larger degree in Ak such that dAk(pi) > dA′(pi).

• ∀pi ∈ P , the sequence (|dAk(pi)− dA′(pi)|)k≤l is decreasing.

On the Effect of Replication of Input Files 173

4.4. Matching-Based Approach

Proof. Let us suppose that these sequences have been built until rank k. If
∀pi ∈ P, dAk(pi) = dA′(pi), then sequences are built. Otherwise, we recall that∑
pi∈P

dAk(pi) = |T | =
∑
pi∈P

dA′(pi). Thus if ∃pi such that dAk(pi) 6= dA′(pi), then

dAk(pi) > dA′(pi) or ∃p′i is such that dAk(p′i) > dA′(p
′
i). Therefore, according

to Lemma 4.13, there exists an alternating path xk = (pdk , . . . , pdf) such that
dAk(pdk) < dA′(pdk) and pfk is the vertex with the larger degree in Ak verifying
dAk(pfk) > dA′(pfk). Let us define Ak+1 = Ak ⊗ xk.

Let us prove that sequences are finite. Let us consider the sequence (uk)k∈N
defined by uk =

∑
pi∈P
|dAk(pi)− dA′(pi)|.

uk+1 =
∑
pi∈P

|dAk+1
(pi)− dA′(pi)|

=
∑

pi∈P\{pdk ,pfk}

|dAk+1
(pi)− dA′(pi)|+ |dAk+1

(pdk)− dA′(pdk)|+ |dAk+1
(pfk)− dA′(pfk)|

=
∑

pi∈P\{pdk ,pfk}

|dAk(pi)− dA′(pi)|+ |dAk(pdk) + 1− dA′(pdk)|+ |dAk(pfk)− 1− dA′(pfk)|

=
∑

pi∈P\{pdk ,pfk}

|dAk(pi)− dA′(pi)|+ |dAk(pdk)− dA′(pdk)| − 1 + |dAk(pfk)− dA′(pfk)| − 1

= uk − 2

Therefore there exists an index l such that ul = 0 and hence ∀pi ∈
P, dAl(pi) = dA′(pi) and the sequences are finite. Note that similar calcu-
lations prove that (|dAk(pi)− dA′(pi)|)k≤l is decreasing for all pi.

Let us now finish the proof of Theorem 4.10. Let G = (P, T,E) be a
bipartite graph and let A be an assignment of G. Let us suppose that A has
not an optimal total load imbalance. In this case, there exists an assignment
A′ such that Imb(A) > Imb(A′). Thanks to Lemma 4.14, we can build two
finite sequences (Ak)k≤l and (xk)k≤l−1 such that

• A0 = A,

• Al = A′,

• ∀pi ∈ P, dAl(pi) = dA′(pi),

• ∀k < m, xk is alternating and Ak+1 = Ak ⊗ xk.

In particular Imb(A0) > Imb(Al). Therefore, there exists k0 such that Imb(Ak0) >
Imb(Ak0+1) = Imb(Ak0 ⊗ xk0). Let xk0 = (pdk0 , . . . , pfk0), then, thanks to

Lemma 4.11, dAk0 (pdk0) <
⌈
|T |
|P |

⌉
< dAk0 (pfk0). Moreover, by construction of

the sequences, dAk0 (pfk0) > dA′(pfk0).

174 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

Thus, we have proven that there exists k0 such that x = (pd, . . . , pf) is an
alternating path according to Ak0 and such that dAk0 (pd) <

⌈
|T |
|P |

⌉
< dAk0 (pf)

and dAk0 (pf) > dA′(pf). Let k0 be the smallest k such that there exists such a
path according to Ak (not necessarily xk). In order to prove that k0 = 0, let
us assume by contradiction that k0 > 0.

Let x = (pd, . . . , pf) be an alternating path according to Ak0 such that
dA(pd) <

⌈
|T |
|P |

⌉
< dA(pf) and dAk0 (pf) > dA′(pf).

Let us suppose that x and xk0−1 are disjoint. In this case, x is a valid alter-
nating path according toAk0−1, dAk0−1

(pd) = dAk0 (pd) <
⌈
|T |
|P |

⌉
and dAk0−1

(pf) =

dAk0 (pf) >
⌈
|T |
|P |

⌉
. Thus, we reach a contradiction with the definition of k0.

Let us assume that x and xk0−1 are not disjoint. In this case, let us define
vi and vj such that

• vi is the first vertex in x to be in xk0−1,

• vj is the last vertex in x to be in xk0−1.

If vi is before vj in xk0−1, then (pd, . . . , vi, . . . , vj, . . . pf) is a valid alternating
path according to Ak0−1. Furthermore, if vi 6= pd, pd is not in xk0−1 and
dAk0−1

(pd) = dAk0 (pd) <
⌈
|T |
|P |

⌉
. Otherwise, dAk0−1

(pd) = dAk0 (pd) − 1 <
⌈
|T |
|P |

⌉
.

Thus, in all cases dAk0−1
(pd) <

⌈
|T |
|P |

⌉
and similarly, we prove that

⌈
|T |
|P |

⌉
<

dAk0−1
(pf) and reach a contradiction with the definition of k0.

Therefore, vj is before vi in xk0−1. Let us consider the path y = (pd, . . . , vi, . . . , pfk0−1
),

that is a valid alternating path according to Ak0−1. As previously, dAk0−1
(pd) <⌈

|T |
|P |

⌉
. In addition, dA′(pf) < dAk0 (pf) ≤ dAk0−1

(pf) by assumption and be-
cause (|dAk(pi)− dA′(pi)|)k≤l is decreasing. Thus, by construction of the pfk ’s,
dAk0−1

(pf) ≤ dAk0−1
(pfk0−1

). Therefore,
⌈
|T |
|P |

⌉
< dAk0−1

(pfk0−1
) and y is an al-

ternating path with all desired properties. Therefore, we reach a contradiction
with the definition of k0.

Hence, we prove by contradiction that k0 = 0 and thus that there ex-
ists an alternating path x = (pd, . . . , pf) according to A such that dA(pd) <⌈
|T |
|P |

⌉
< dA(pf). Therefore, there exists an improving path according to A,

what achieves the proof of Theorem 4.10 by contraposition.

Therefore, by searching for an improving path until there is none left,
COMMUNICATION-MAPREDUCE can be optimally solved. Theorem 4.10
then give us a first algorithm: FindAssignment (see Algorithm 4.4).

In addition, Theorem 4.10 can be adapted to MAKESPAN-MAPREDUCE.
Indeed, if there is no improving path according to an assignment A, then A has

On the Effect of Replication of Input Files 175

4.4. Matching-Based Approach

Algorithm 4.4 : FindAssignment(G)

Input : A bipartite graph G = (P, T,E)
Output : An assignment A of G of minimum maximal degree and

minimum total load imbalance
A = ∅ ;
foreach tj ∈ T do

Choose a random pi such that (pi, tj) ∈ E and add this edge to A;

while there exists an improving path according to A do
Compute an improving path x according to A;
A← A⊗ x ;

return A

a minimummaximum degree, what is stated in Theorem 4.15. Therefore Find-
Assignment solves MAKESPAN-MAPREDUCE and COMMUNICATION-
MAPREDUCE simultaneously and can be used in both cases.

Theorem 4.15. Let G = (P, T,E) be a bipartite graph, let A be an assignment
of G. If there is no improving path according to A, then A has a minimum
maximum degree.

Proof. This proof is very similar to the proof of Theorem 4.10 and relies on
the same lemmas, in particular Lemma 4.14.

Let G = (P, T,E) be a bipartite graph and let A be an assignment of G.
Let us suppose that A has not a minimum maximum degree. Therefore, there
exists A′ such that D(A′) < D(A).

Thank to Lemma 4.14, we know that there are finite sequences of assign-
ments (Ak)k≤l and paths (xk)k<l such that

• A0 = A,

• Al = A′,

• ∀pi ∈ P, dAl(pi) = dA′(pi),

• ∀k < m, xk is alternating and Ak+1 = Ak ⊗ xk.

In particular D(A0) > D(Al). Therefore, there exists k0 such that D(Ak0) >
D(Ak0+1) = D(Ak0 ⊗ xk0). Let xk0 = (pdk0 , . . . , pfk0). Since xk0 is alternating

• dAk0⊗xk0 (pdk0) = dAk0 (pdk0) + 1,

• dAk0⊗xk0 (pfk0) = dAk0 (pfk0)− 1,

• ∀pi ∈ P \ {pdk0 , pfk0}, dAk0⊗xk0 (pi) = dAk0 (pi).

176 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

Yet,D(Ak0) > D(Ak0⊗xk0) and, since pfk0 is the only processor with decreasing
degree, D(Ak0) = dAk0 (pfk0). Moreover,

dAk0 (pdk0) + 1 = dAk0⊗xk0 (pdk0),

dAk0 (pdk0) + 1 ≤ D(Ak0 ⊗ xk0),
dAk0 (pdk0) + 1 < D(Ak0),

dAk0 (pdk0) + 1 < dAk0 (pfk0).

Therefore, xk0 is improving, D(Ak0) = dAk0 (pfk0) and dAk0 (pdk0) < dA′(pdk0).
We have proved if there exists an index k0 such that D(Ak0) > D(A′), there

exists an improving path according to Ak0 with some additional properties. Let
us define k0 as the smallest k such that D(Ak) > D(A′) and there exists an
improving path x = (pd, . . . , pf) according to Ak (and that improving path
could differ from xk) such that dAk(pf) = D(Ak) and dAk0 (pd) < dA′(pd). In
order to prove that k0 = 0 by contradiction, let us assume that k0 > 0.

Let x = (pd, . . . , pf) be such an improving path in Ak0 , D(Ak0) > D(A′).
First, let us note that D(Ak0−1) ≥ D(Ak0) > D(A′). Indeed, for all pi 6=

pdk0−1
, dAk0−1

(pi) ≥ dAk0 (pi).
Second, let us assume that x and xk0−1 are disjoint. In this case, dAk0−1

(pd) =
dAk0 (pd) < dA′(pd) and dAk0−1

(pf) = dAk0 (pf) = D(Ak0) ≤ D(Ak0−1). If
D(Ak0) = D(Ak0−1), then, x is a valid improving path and dAk0−1

(pf) =
D(Ak0−1). Otherwise,D(Ak0−1) = dAk0−1

(pfk0−1
), indeedD(Ak0−1) > D(Ak0) >

D(A′), and thus, there exists at least one pi such that dAk0−1
(pi) > dA′(pi) and

by construction this is also the case for pfk0−1
), so that

dAk0−1
(pdk0−1

) + 1 = dAk0 (pdk0−1
) ≤ D(Ak0) < dAk0−1

(pfk0−1
).

Hence, xk0−1 is an improving path withD(Ak0−1) = dAk0−1
(pfk0−1

) and dAk0−1
(pdk0−1

) <
dA′(pdk0−1

) by construction. Thus x and xk0−1 are not disjoint since otherwise,
we would reach a contradiction with the definition of k0.

Therefore, we know that x and xk0−1 are not disjoint. Let vi and vj be two
vertices of G such that

• vi is the first vertex in x to be in xk0−1,

• vj is the last vertex in x to be in xk0−1.

Let us suppose that vi is before vj in xk0−1. Then, (pd, . . . , vi, . . . , vj, . . . , pf)
is a valid alternating path in Ak0−1. Because (|dAk(pi) − dA′(pi)|)k≤l is de-
creasing, dAk0−1

(pd) ≤ dAk0 (pd) < dA′(pd). Similarly dAk0−1
(pf) ≥ dAk0 (pf) and

thus dAk0−1
(pd) + 1 < dAk0−1

(pf) and (pd, . . . , vi, . . . , vj, . . . , pf) is improving.
If D(Ak0−1) = D(Ak0), then we reach a contradiction with the definition of
k0. Otherwise we know that D(Ak0−1) = dAk0−1

(pfk0−1
) and can prove that

(pd, . . . , vi, . . . , vj, . . . , pfk0−1
) is an improving path with all the properties we

want, thus another contradiction.

On the Effect of Replication of Input Files 177

4.4. Matching-Based Approach

Finally, we prove that vi is after vj in xk0−1. Therefore, y = (pdk0 , . . . , vj, . . . , pf)
is an alternating path according to Ak0−1. As previously, dAk0−1

(pdk0) <
dA′(pdk0) ≤ D(A′). Thus dAk0−1

(pdk0) + 1 ≤ D(A′). Similarly, D(A′) <
D(Ak0) = dAk0 (pf) ≤ dAk0−1

(pf). Thus, y is improving and if D(Ak0−1) =
D(Ak0), then we reach a contradiction with the definition of k0. Otherwise,
we consider y′ = (pd, . . . , vi, . . . , pfk0) and reach a similar contradiction.

Hence, we prove that, in any case, k0 > 0 implies the existence of an
improving path according to Ak0−1 with all desired properties. Therefore,
k0 = 0 and there is an improving path according to A0 = A, which achieves
the proof of the theorem.

Correctness and Complexity

To prove the termination of FindAssignment, let us prove that there is no
loops (an improving path creating another improving and so goes on) and
thus the number of improving paths goes to 0. Let us consider

∑
dA(pi)

2. If
x = (pd, . . . , pf) is an improving path, then∑

dA⊗x(pi)
2 −

∑
dA(pi)

2 = (dA(pd) + 1)2 + (dA(pf)− 1)2 − dA(pd)
2 − dA(pf)

2

= 2(dA(pd) + 1− dA(pf)) < 0

Therefore,
∑
dA(pi)

2 is decreasing during the execution of FindAssign-
ment. Since this value is bounded (trivially by 0), there is an instant where
there is no longer an improving path and FindAssignment terminates, re-
turning an assignment with minimum total load imbalance and minimum max-
imum degree.

Similarly to Ford-Fulkerson Algorithm (Ford and Fulkerson [1956]), the
search for an improving path can be done by breadth-first-search in O(|E|).
Furthermore 0 ≤

∑
dA(pi)

2 ≤ (
∑
dA(pi))

2 = |T |2 and
∑
dA(pi)

2 strictly de-
creases at each step. Thus there is at most |T |2 steps and each needs |E| opera-
tions. Therefore the worst case complexity of FindAssignment is O(|E||T |2).

Theorem 4.16. FindAssignment terminates in at most O(|E||T |2) opera-
tions.

Note that in the application problem |E| = r|T | where r is the number of
replications of each chunk. Then the worst case complexity is O(|T |3).

4.4.3 A Faster Communication-Optimal Algorithm

However, in FindAssignment, the search of an improving path can be expen-
sive and the problem of producing fast scheduling algorithms has been recently
highlighted by Gog et al. [2016]. This is why we propose a faster algorithm,
BestAssignment.

178 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

Presentation

Instead of going from any assignment and improving it step by step, like Find-
Assignment, BestAssignment goes from a processor after another, each
time searching for the smallest alternating path from this processor to a non-
assigned task (if any) and applying it to the current partial assignment, see
Algorithm 4.5.

Algorithm 4.5 : BestAssignment (G)
Input : A bipartite graph G = (P, T,E)
Output : An assignment A of G of minimum maximal degree and

minimum total load imbalance
A = ∅ ;
while A is not an assignment do

foreach pi ∈ P do
if There is an alternating path according to A from pi to an
unassigned tj then

x = the smallest such path ;
A← A⊗ x ;

else
Remove pi from P ;

return A

Correctness and Complexity

As for FindAssignment the search for alternating path can be done in
O(|E|). Furthermore at each step, either a task is assigned or a processor
is removed, thus the number of steps is O(|T |+ |P |). Thus BestAssignment
has a worst case complexity of O((|T | + |P |)|E|). Furthermore, we prove the
optimality of BestAssignment by showing there is no improving path ac-
cording to the returned assignment.

Theorem 4.17. BestAssignment returns an Assignment with no improving
path.

Proof. Let A∞ be the final set returned by BestAssignment. If we suppose
that there is always an edge incident to each task (else there is no existing
assignment anyway), trivially A∞ is an assignment. It is constructed only
using alternating path and there is always, for each task, a such path from a
processor (in particular a simple edge from one of its neighbours). Let us now
prove the optimality of this assignment by showing there is no improving path
according to A∞.

On the Effect of Replication of Input Files 179

4.4. Matching-Based Approach

Let pi1 be the first processor, if any, such that there is no alternating path
from pi1 to an unassigned task according to the current state of A that we
denote A1. Let us now define P1 as the subset of P that contains all the
processors that can be reached with an alternating path from pi1 according to
A1. Let T1 be the neighbourhood of P1, i.e. T1 = {tj ∈ T, ∃pi ∈ P1, (pi, tj) ∈
E}.

We now want to show that for all tj ∈ T1 there exists pi in P1 such that
(pi, tj) ∈ A1. Let tj be in T1 and pi ∈ P1 be in its neighbourhood. By
definition of P1 there is an alternating path (pi1 , . . . , pi) according to A1. If
(pi, tj) ∈ A1 we have our result, else (pi1 , . . . , pi, tj) is a valid alternating path
according to A1. By definition of pi1 , tj is assigned and then there is pi′ such
that (pi′ , tj) ∈ A1 and thus x(pi1 , . . . , pi, tj, pi′) is also a valid alternating path
and pi′ ∈ P1. Therefore we have for all tj ∈ T1 there exists pi in P1 such that
(pi, tj) ∈ A1.

Let now A1,T1 (respectively A∞,T1) be {(pi, tj) ∈ A1, tj ∈ T1} (respec-
tively {(pi, tj) ∈ A∞, tj ∈ T1}). We also denote similarly A′T1 for any par-
tial assignment A′. Then, for every partial assignment A′ after A1, we prove
A1,T1 = A′T1 . Let us suppose otherwise and search for a contradiction. Let A′
be the first partial assignment after A1 such that A1,T1 ⊗ A′T1 6= ∅. Because
all the edges of A1 from T1 goes to an element of P1, we know that there is
(pi, tj) ∈ A1,T1 ⊗ A′T1 such that pi ∈ P1. In addition, in the assignment just
before A′ (we denote it A′′), there is an alternating path that contains (pi, tj).
Let x = (pd, . . . , pi, tj, . . . , tj′) be this path (A′ = A′′ ⊗ x). We know that
tj′ is unassigned in A′′ and thus tj′ /∈ T1 and so x = (pd, . . . , pi, tj, . . . , pf , tj′)
with pf /∈ P1. Hence there is pi′ such that pi′ is the first vertex in P \ P1

after pi in x. Without loss of generality we can assume that pi′ is after tj. By
definition A′′T1 = A1,T1 and then (pi1 , . . . , pi, tj, pi′) is a valid alternating path
according to A1 and A′′ and therefore pi′ ∈ P1 that is a contradiction. Then,
for every partial assignation A′ after A1, A1,T1 = A′T1 . More precisely, after A1,
all processors in P1 will not be in any alternating path (this is why they are
removed from P in BestAssignment) and all tasks in T1 will stay assigned
to processors from P1.

Similarly we also prove that dA1(pi) = dA′(pi) for all pi in P1 and, by
construction |dA1(pi) − dA1(pi′)| ≤ 1 for all pi, pi′ ∈ P 2

1 (at each step of the
algorithm the degree of the departure vertex increase by one).

Now we define pik as the first processor of P \
⋃

1≤l<k
Pl if any, such that

there is no alternating path from pik to an unassigned task. Let Pk the subset
of P \

⋃
1≤l<k

Pk that contains all the processors that can be reached with an

alternating path from pik according to the current partial assignation, denoted
Ak. We also define Tk its neighbourhood in T \

⋃
1≤l<k

Tk . Finally we also denote

P∞ = P \
⋃
Pk and T∞ its neighbourhood in T \

⋃
Tk.

180 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

With the same reasoning than for P1, T1 we proved:

• For all tj ∈ Tk there is pi in Pk such that (pi, tj) ∈ Ak.

• For every partial assignation A′ after Ak, Ak,Tk = A′Tk .

• For every partial assignation A′ after Ak, dAk(pi) = dA′(pi) for all pi in
Pk and |dAk(pi)− dAk(pi′)| ≤ 1 for all pi, pi′ ∈ P 2

k .

Note that |dAk(pi) − dAk(pi′)| ≤ 1 for all pi, pi′ ∈ P 2
k and for all tj ∈ Tk

there is pi in Pk such that (pi, tj) ∈ Ak holds true for k = ∞. Note also that
P∞ can be equal to P in the case where an alternating path is found at each
step.

We now want to prove that there is no improving path according to A∞.
First, as |dAk(pi) − dAk(pi′)| ≤ 1 for all pi, pi′ ∈ P 2

k and dAk(pi) = dA∞(pi) for
all pi in Pk. Thus there is no improving path inside the Pks.

In addition we easily note that |(max dAk(pi)) − (min dAk′ (pi′))| ≤ 1 for
k < k′. Therefore there is no improving path from a vertex of Pk′ to a vertex
of Pk if k < k′. Hence the only possible improving path are from Pk to Pk′ with
k < k′. However, in this case, there is tj in Tk such there exists pi in P \ Pk
such that (pi, tj) ∈ A∞ (a necessary condition to a such alternating path). Yet
we prove for all (pi, tj) ∈ A∞,Tk = Ak,Tk , pi ∈ Pk and thus we have our proof
of optimality of BestAssignment.

With Theorem 4.17 and the previous remark, we prove that BestAssign-
ment solves COMMUNICATION-MAPREDUCE andMAKESPAN-MAPREDUCE
with a worst case complexity of O((|T |+ |P |)|E|) (O(|T |2 + |T ||P |) in the case
|E| = r|T |).

In practice, we produce a C implementation, in particular for simulations of
Section 4.5, and measure its computation time. The results are on Figure 4.7.
Globally the average computation time is below 1s (as in Gog et al. [2016],
but the difference with their model brings a need for further investigations to
do a fair comparison), except for very high values of |T |, more than 250000
tasks, that is 3 times the number of tasks of the largest job in Kavulya et al.
[2010]. Anyway, even in these cases, the average computation time is, at most,
around 3s. Note that a cluster of 10000 machines is not unrealistic, a full
Google cluster is composed of 12500 machines (Gog et al. [2016]).

4.5 Simulations

In this section, we are interested in both MAKESPAN-MAPREDUCE and
COMMUNICATION-MAPREDUCE problems. As said previously, both prob-
lems can be solved in polynomial time. In a first time we consider settings
where all tasks have the same uniform computation time, the perfect case on

On the Effect of Replication of Input Files 181

4.5. Simulations

1e−04

1e−02

1e+00

0
25

00
50

00
75

00

10
00

0

|P|

A
ve

ra
ge

 C
om

pu
ta

tio
n

tim
e

(s
)

Ratio |T|/|P|
|T|/|P| = 1 |T|/|P| = 2 |T|/|P| = 3 |T|/|P| = 4 |T|/|P| = 5

|T|/|P| = 10 |T|/|P| = 20 |T|/|P| = 30 |T|/|P| = 40 |T|/|P| = 50

Figure 4.7: Average computation time in second of BestAssignment for
different values of |T ||P | and |P |.

which BestAssignment is optimal. In this situation we want to compare
it with pre-existing strategies in order to evaluate the gain from this optimal
strategy. Secondly, we work on the modelling with on-line heterogeneous tasks,
i.e. tasks for which the duration is not known and may be different from one to
another. In this case we want to test the resilience of BestAssignment-based
strategies in practical settings.

4.5.1 Settings

In this section we present the settings we use later for our simulations.

Strategies

We compare three main strategies: Greedy-based, BestAssignment-based
and Maestro-based. The first two ones are based on Greedy and BestAs-
signment defined early. The last one uses a strategy proposed in Ibrahim

182 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

et al. [2012]. Basically the Maestro is a greedy two-waves scheduler. In order
to explain the functioning of Maestro, we introduce the parameters defined
by the authors

• For a processor pi, HCNi denotes its host chunk number, i.e. the number
of data chunks from unprocessed tasks present on the processor.

• For a task tj, its chunk weight is Cwj = 1−
(
i=r∑
i=i1

1
HCNi

)
where pi1 , . . . , pir

are the processors that host the duplicates of the data chunk of tj. This
value represents the probability for tj to be non-locally executed. If a
chunk is on a processor with many other chunks, then it is more likely to
be executed by another processor (because the first processor may not
finish its other tasks on time).

• For two processors pi, pi′ , Sci
′
i denotes the number of shared chunks be-

tween pi and pi′ . With the graph notation, if G = (P, T,E) is the graph
representing the chunk repartition, Sci′i = |{tj, {pi, tj} ∈ E and {pi′ , tj} ∈
E}|.

• For a processor pi, its node weight isNodeWi =
HCNi∑
j=1

(
1−

r∑
k=1

1
HCNij,k+Sc

i
ij,k

)
where (pj,1, . . . , pj,r) are the processors that host data chunk of tj. Quickly,
the higher is NodeWi, the less pi has a chance to process non-local task.

During the first phase, Maestro assigns |P | tasks, one by processor. To do
this, it first chooses the processor pi with the lowest NodeWi (a processor with
few hosted chunks or/and many shared chunks with other critical processors)
and allocates to pi the task whose chunk is present on pi with the largest chunk
weight (i.e. the task with the most chance to be non-locally executed). More
precisely Maestro gives to the processor with highest chance to process non-
local tasks the task it hosts with the highest chance to be processed non-locally,
see Algorithm 4.6.

During its second phase, that is purely dynamic, each time a processor is
idle, the local task with the highest chunk weight is assigned to this processor
and processed. If there is no local task, an arbitrary unprocessed task is
processed after the loading of the data chunk (if non-local tasks are allowed,
otherwise the processor stays idle), see Algorithm 4.7.

We can now define the strategies. First if non-local tasks are forbidden
(makespan metric):

• Greedy-Makespan: uses Greedy algorithm to dynamically perform
the assignment.

• Static-BestAssignment-Makespan: uses the assignment statically com-
puted by BestAssignment. Note that on uniform settings, any optimal-
certified algorithm will perform with the same efficiency.

On the Effect of Replication of Input Files 183

4.5. Simulations

Algorithm 4.6 : Maestro-First-Wave
for k = 1 to |P | do

pi = the processor with highest NodeWi ;
tj = the task present on pi with the highest Cwj ;
execute tj on pi ;
remove tj ;
remove pi ;
foreach pi′ do

compute NodeWi′ ;

foreach tj′ do
compute Cwj′ ;

• BestAssignment-Makespan: uses the assignment statically computed
by BestAssignment. If a processor is idle with no pre-assigned tasks
available, it randomly chooses an unprocessed task among those for which
a chunk is present on it. This strategy is only used in Section 4.5.3 to
improve adaptability for online heterogeneous scheduling.

• Maestro-Makespan: uses the two waves from Maestro to statically
and then dynamically compute the assignment. Note that for the second
wave non-local-tasks are forbidden and thus processors stay idle when
all their tasks have been performed.

In the second case (communication metric):

• Greedy-Communications: uses Greedy algorithm to dynamically per-
form the assignment. If a processor is idle without local tasks, it ran-
domly picks a task among the ones present on the processor with the
largest number of chunks at this instant.

• BestAssignment-Communications: uses the assignment statically com-
puted by BestAssignment. If a processor is idle with no assigned tasks,
it processes one of its local tasks. If there are no longer unprocessed lo-
cal tasks, then the processor steals a task among the local tasks of the
processor with the largest number of unprocessed assigned tasks. This
stealing procedure is close to the transformation in Section 4.1.2. If a
processor is idle, this is the case where its degree is below

⌈
|T |
|P |

⌉
. As the

stolen processor has the largest degree, it is above
⌈
|T |
|P |

⌉
. If the stolen

task is local, the stolen processor degree may be below
⌈
|T |
|P |

⌉
but in this

case this is equivalent to applying an alternating path without changing
the load imbalance.

184 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

Algorithm 4.7 : Maestro-Second-Wave
while There is unprocessed tasks do

Wait for an idle processor pi ;
if There is local chunk on pi then

tj = the task present on pi with the highest Cwj ;
execute tj on pi ;
remove tj ;
foreach tj′ do

compute Cwj′ ;

else
tj = a random non-local task ; execute tj on pi ;
remove tj ;
foreach tj′ do

compute Cwj′ ;

• Maestro-Communications: uses the two waves from Maestro to stat-
ically and then dynamically computes the assignment.

Note that in both cases, the Maestro strategies slightly differ from Ibrahim
et al. [2012] as we do not launch speculative tasks (duplicate tasks in case of
presumed failure). Therefore the results of Maestro in our simulations are
slightly better for the communications metric.

Traces

In order to produce realistic cases for the heterogeneous settings we use the
traces from Kavulya et al. [2010]. These traces come from a recording of jobs
during 10 months on a Hadoop cluster. In order to emulate the on-line aspect,
the computational time of each task is randomly picked at the beginning of
its simulated execution. In the following, we focus on jobs with at most 10000
tasks (more than 95% of the jobs). In addition we classify the jobs depending
on their Normalized Standard Deviation (NSD), i.e. standard deviation of
the computation times divided by the mean of these computation times, see
Table 4.1.

4.5.2 Homogeneous Settings

In this section we focus on the case where all tasks have the same computa-
tional time (so not based on traces). For each strategy we run 250 simula-
tions for |P | ∈ {10, 50, 100}, for |T ||P | ∈ {1, 2, 3, 4, 5, 10, 20, 30, 40, 50} and for

On the Effect of Replication of Input Files 185

4.5. Simulations

NSD < 0.05 NSD ∈ [0.05, 0.1[NSD ∈ [0.1, 0.25[NSD ∈ [0.25, 0.5[NSD ∈ [0.5, 1[NSD ≥ 1 Total
|T | < 50 49 (2, 41%) 109 (5, 35%) 123 (6, 04%) 60 (2, 95%) 39 (1, 92%) 26 (1, 28%) 406 (19, 94%)
|T | ∈ [50, 100[18 (0, 89%) 50 (2, 46%) 93 (4, 57%) 61 (3, 00%) 34 (1, 67%) 23 (1, 13%) 279 (13, 70%)
|T | ∈ [100, 250[11 (0, 54%) 75 (3, 68%) 205 (10, 07%) 110 (5, 40%) 78 (3, 83%) 25 (1, 23%) 504 (24, 75%)
|T | ∈ [250, 500[10 (0, 49%) 55 (2, 70%) 105 (5, 16%) 68 (3, 34%) 50 (2, 46%) 17 (0, 83%) 305 (14, 98%)
|T | ∈ [500, 1000[1 (0, 05%) 5 (0, 25%) 21 (1, 03%) 44 (2, 16%) 33 (1, 62%) 18 (0, 88%) 122 (5, 99%)
|T | ∈ [1000, 5000[1 (0, 05%) 10 (0, 49%) 43 (2, 11%) 32 (1, 57%) 33 (1, 62%) 76 (3, 73%) 195 (9, 58%)
|T | ∈ [5000, 10000[0 (0, 00%) 16 (0, 79%) 57 (2, 80%) 33 (1, 62%) 16 (0, 79%) 10 (0, 49%) 132 (6, 48%)
|T | ≥ 10000 0 (0, 00%) 9 (0, 44%) 4 (0, 20%) 14 (0, 69%) 39 (1, 91%) 27 (1, 33%) 93 (4, 57%)
Total 90 (4, 42%) 329 (16, 16%) 651 (31, 97%) 422 (20, 73%) 322 (15, 82%) 222 (10, 90%) 2036 (100%)

Table 4.1: Repartition in function of the number of tasks (|T |) and the nor-
malized standard deviation (NSD) of the jobs from Kavulya et al. [2010].

r ∈ {2, 3, 4, 5} where r is the number of time each chunk is replicated (r = 3
in default HDFS, Borthakur [2008]).

Makespan

We first focus on the makespan metric, i.e. the case where non-local tasks are
forbidden. As stated in Section 4.4.1, the asymptotically expected optimal
makespan is |T ||P | + 1 (small number of tasks per processor) or |T ||P | (large number
of tasks per processor) and as proven in Sections 4.4.2 and 4.4.3 BestAssign-
ment is optimal.

The results of our simulations are depicted on Figure 4.8. We present on
each figure the average overhead, i.e. the makespan minus |T ||P | (the perfect load-
balancing). First we can notice the reliability of the asymptotic theoretical
results for "small" values. Indeed, even in the case of small |P | or |T | the
makespan is below |T |

|P | + 1 (for more than 105 runs, there were only two cases
where the optimal makespan was |T ||P |+2). Moreover, we can see a three phases
behaviour of this optimal value (represented by BestAssignment). First,
for small |T | (i.e. small |T ||P |) the optimal is |T ||P | + 1. Then, during a transition
phase, the average of this optimal value is between |T ||P | and

|T |
|P | + 1 and finally,

for large values of |T | the optimal is |T ||P | . We clearly see what Theorem 4.5
states, the case |T | ≤ λ|P | log |P | at first and the case |T | ≥ c|P | log |P | at
the end. Note that according to our results, constants c and λ depend on the
value of r.

For the results of Greedy and Maestro we note that both are, in average,
above |T ||P | + 1 and, except sometimes for |T | = |P |, never optimal (i.e. equal
to BestAssignment result). Except for |P | = 10 and for small values of
|T |, both are really stable, in particular Maestro whose makespan is almost
always equal to |T |

|P | + 1 for |P | = 50 and |P | = 100. Globally we can see a
clear gain from the use of an optimal static strategy in place of a dynamic one
(Maestro strongly relies on its second wave, that is purely dynamic, when
|T | > |P |).

186 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

r = 2 r = 3

r = 4 r = 5

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0 10 20 30 40 50 0 10 20 30 40 50

|T|/|P|

A
ve

ra
ge

 O
ve

rh
ea

d

Strategies Greedy BestAssignment Maestro

(a) |P | = 10

r = 2 r = 3

r = 4 r = 5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 0 10 20 30 40 50

|T|/|P|

A
ve

ra
ge

 O
ve

rh
ea

d

Strategies Greedy BestAssignment Maestro

(b) |P | = 50

r = 2 r = 3

r = 4 r = 5

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 0 10 20 30 40 50

|T|/|P|

A
ve

ra
ge

 O
ve

rh
ea

d

Strategies Greedy BestAssignment Maestro

(c) |P | = 100

Figure 4.8: Results for the makespan metric and homogeneous settings.

Communication

We now focus on the case of the communication metric, i.e. the case where
we allow non-local tasks. Unlike the makespsan metric, there are few theo-
retical studies that we can relate to this problem. First we already proved
the optimality of BestAssignment (in Sections 4.4.2 and 4.4.3). Secondly,
Berenbrink et al. [2008] introduce the number of “holes” in an assignment,
which corresponds to

∑
pi∈P

max(0,
⌈
|T |
|P |

⌉
− |{tj assigned to pi}|). When |T |

|P | is

an integer, this is equal to the load imbalance. In Berenbrink et al. [2008], it

On the Effect of Replication of Input Files 187

4.5. Simulations

is proven that in the case of Balls-In-Bins processes with multiple choices
(or, as proven in Section 4.3.2, in the case of Greedy), the above metric is
bounded by a linear function of |P |. To finish, we notice that an assignment of
maximal degree |T ||P | has a load imbalance of 0. Thus, we know that there exists
a constant c such that, with high probability, there exists a solution with no
communication if |T | ≥ c|P | log |P |.

r = 2 r = 3

r = 4 r = 5

0

10

20

0

10

20

0
10

0
20

0
30

0
40

0
50

0 0
10

0
20

0
30

0
40

0
50

0

|T|/|P|

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 N

on
−

N
oc

al
 T

as
ks

Strategies Greedy BestAssignment Maestro

(a) |P | = 10

r = 2 r = 3

r = 4 r = 5

0

10

20

30

0

10

20

30

0
50

0
10

00
15

00
20

00
25

00 0
50

0
10

00
15

00
20

00
25

00

|T|/|P|

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 N

on
−

N
oc

al
 T

as
ks

Strategies Greedy BestAssignment Maestro

(b) |P | = 50

r = 2 r = 3

r = 4 r = 5

0

10

20

30

0

10

20

30

0
10

00
20

00
30

00
40

00
50

00 0
10

00
20

00
30

00
40

00
50

00

|T|/|P|

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 N

on
−

N
oc

al
 T

as
ks

Strategies Greedy BestAssignment Maestro

(c) |P | = 100

Figure 4.9: Results for the communication metric and homogeneous settings.

The results of our simulations are depicted on Figure 4.9. Like for the
makespan metric there are several phases for the BestAssignment strategy.
In the first phase there is not always a solution without communications, i.e.

188 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

there is not always a solution of MAKESPAN-MAPREDUCE with maximal
degree equal to |T |

|P | (there is superposition of this phase with the two first
observed in the makespan metric). In the second phase, BestAssignment
manages to completely avoid communications if there are enough tasks in
comparison of the number of processors. Note that even in the first case the
number of non-local-task is below 15% in the worst case and more likely below
10% or 5% when r is above 2.

Like for the makespan metric, there is a clear hierarchy between Greedy
and Maestro: Maestro performs slightly better, in particular for small
number of tasks per processor (where Greedy can reach more than 30%
of non-local-tasks). However if Maestro and Greedy seem to approach
BestAssignment in the case of high number of tasks per processor, the
percentage of non-local tasks is always strictly above 0. This fact can be seen
clearly in Figure 4.10 but also on Figure 4.8 (if there is no communication, then
the results would be optimal for the makespan metric). In addition, we also
notice the small impact of |T ||P | on the performance of Maestro and Greedy
(except for small values). Their performance seem to be more linked to |P |
and r, what is consistent with the claims from [Berenbrink et al., 2008].

r = 2 r = 3

r = 4 r = 5

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0
50

0
10

00
15

00
20

00
25

00 0
50

0
10

00
15

00
20

00
25

00

|T|/|P|

A
ve

ra
ge

 N
um

be
r

of
 N

on
−

lo
ca

l T
as

ks
 p

er
 P

ro
ce

ss
or

Strategies Greedy BestAssignment Maestro

Figure 4.10: Non-local tasks per processor for homogeneous settings and |P | =
50.

In a more general way, for both metrics, the increase of r slightly improves

On the Effect of Replication of Input Files 189

4.5. Simulations

the results (and mainly benefits to BestAssignment), but the gain becomes
less and less important. Therefore, the value r = 3 proposed by HDFS seems
to be a good trade-off between replication cost and communication-avoiding
parallel execution.

4.5.3 Heterogeneous Settings

●●●
●
●●
●
●●●●
●
●●●
●●●●
●
●●
●
●●●
●●●●●●
●
●●●●●●●
●

●●●●●

●

●

●
●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●

●

●●●●
●

●
●●

●
●

●●

●●●●●●●
●
●●●●

●

●

●●●●●●●●

●

●●●

●

●●●

●

●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●

●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●

●

●●●
●

●●

●●
●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●

●●●

●●●●●●●●

●

●●●

●

●●●

●

●

●●

●●●●●●●●●●●●

●●

●●●●●●

●

●
●●
●

●

●
●●●

●

●●●
●

●

●

●

●●●

●

●
●
●
●
●
●

●●

●●
●●●
●●

●

●●●●●●
●

●

●

●●
●
●
●●
●
●
●●
●●●
●
●

●

●●

●●●●

●

●●
●●●

●

●●●

●

●●

●

●●
●●
●●
●●●●●●●
●
●
●●●●
●
●
●
●
●

●●●●●

●●

●

●
●
●

●

●

●

●

●

●●
●●
●●

●●

●●●

●

●●

●

●●●
●
●
●
●●

●

●
●

●●●●
●
●●●●●●●
●
●●

●

●
●●
●●
●

●

●
●●

●

●

●

●●

●

●●●
●

●●

●

●●●●

●●●●

●

●●

●
●●●●

●

●●●●
●

●
●●
●●
●
●●●●
●
●●●
●
●●

●

●●●●●●
●●●
●
●●●
●
●●●●●●●
●
●●
●
●●
●

●
●
●

●

●●●●●●●
●●
●

●

●

●●●●●

●●

●●●●●●●●●●●
●●
●
●

●●

●●●

●●●

●
●●●●
●
●●
●

●●

●●●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●●
●
●

●●

●●
●

●●

●●●●●●●●

●

●●

●
●

●●

●

●●●●

●

●

●●

●

●●

●
●

●●●

●

●

●●

●

●●●

●●●●

●
●●●
●●
●

●●●●●
●

●
●●●●
●
●
●
●
●●●●●
●
●
●●

●

●●●●●●●●●●●●●●

●

●●●●

●

●

●●●●

●●●
●●
●
●

●

●●●●●

●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●

●

●●●●

●

●

●

●●●●

●●●

●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●●

●●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●

●●

●●●

●

●●
●●●

●

●●●
●

●●

●●
●●●●●●●●●●●●●●●●●●●●

●●

●
●●●

●

●●

●

●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●

●●●●●●●●●●●●

●●●●

●●●●●●●●

●

●●●

●

●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●
●●●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●
●●
●●●
●●●●
●●●

●●●●●
●

●●

●●

●●●●
●●

●
●
●
●●●●
●●●●

●●●●●
●●
●●

●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●

●●●●

●●●●●●

●

●●●●●●●●●

●

●●●●●●

●

●

●

●●●

●

●●●●●
●●

●●●

●●

●●

●

●●●

●●

●●●

●

●●

●●●●●●
●●●●●●●●●●

●

●●●●●●●●
●●●

●

●
●
●●●●●●●

●

●●●

●

●●

●●

●●●●●●●●●●●●●●●●

●●●●●
●●
●

●

●●●

●
●
●

●

●●

●●●
●
●

●

●

●

●

●

●●●●●●●
●

●

●●●
●●

●

●●●●

●

●●

●●●●●

●

●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●

●●

●●●●

●

●●●●●●●●●●●●
●
●
●●●●●
●

●

●●●●
●●
●

●

●
●●●●●●

●

●●●
●
●
●●●●

●

●

●●
●
●
●

●
●
●
●
●
●●●●
●●●●●●
●●●●●●●●
●●●●●
●
●●●●
●
●
●
●●
●

●

●

●

●●●●●
●●●●●●●
●●●●●●●

●

●●●●
●
●●●●●●
●●●●●●●●●●●●
●
●●●●●●

●●●●●

●
●●●●●
●
●●●●
●

●

●●●●●●●●●●●

●●

●

●●●

●

●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●

●●

●

●

●
●●●●●
●
●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●

●

●●

●

●●●●●●●●

●●

●

●●

●
●
●●●●

●●

●●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●●●●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●
●
●
●●

●

●●●●●

●●●●

●

●●●

●

●●●●

●●

●

●

●●●●

●●

●

●

●
●●●●●●●●●●

●

●●●

●●●

●

●●

●

●

●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●
●
●●●
●●●●
●
●
●●●●●
●
●
●
●●●
●
●●●●●●●●●

●

●●●●●●●●●●

●●

●

●●●●

●●●●●●●●●●●●●
●●●●●●●●
●●●●●●

●

●●●●●●

●●

●●●●●●●●●●●●●●

●

●●

●

●●

●●

●●●

●

●●

●

●●●●●●
●●●●●

●●●

●
●●
●
●●
●
●●●
●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●●●

●●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●

●●

●

●

●●

●●
●
●●
●
●●●
●●
●
●
●●●●●
●●●●●
●●
●●●●●
●
●
●
●●●
●
●●
●
●
●
●●
●

●
●●
●

●●●●●

●●

●●●●●●●●●●●●

●●

●●●●●
●●
●
●●●●
●●●●
●●●
●●●
●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●●

●

●●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●●●

●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●●

●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●

●
●
●●●●●●

●●

●

●

●

●
●●●

●

●●●●●●●

●●●●

●●●

●

●●

●
●●●●●

●

●
●
●

●

●●
●●●●●●●●●●●●●●●●
●●●
●
●●●●●●
●●●●
●●●
●
●●●●●●●
●
●
●●
●
●●
●●
●
●●●●
●●●●●●●
●●●●●●●●●●●
●
●
●●●●●●
●
●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●

●

●●●●●●●

●
●●

●

●●●●●
●

●

●●●●
●
●
●
●
●●●●●●●●

●

●●●●●
●●●●
●

●●●
●
●●●●●
●●●●●
●●●●●●●●●●●●
●●
●

●

●●●●●
●

●

●●

●●

●●●

●

●
●
●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●
●●●
●●●●●
●●●●●
●
●
●
●●●●●●●●●
●
●●●●●
●
●●●●●
●
●●●●●●
●
●
●●●●●●●●
●
●●
●
●●●●
●
●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●

●
●
●●●
●●●●●
●
●
●●
●

●
●●●●
●●●●●●●●●●●●●
●●●●
●●
●●●●
●●●●
●
●
●●
●●●
●●●●●●●●●●●●
●
●
●
●●
●
●
●●●●●
●
●●
●
●●●

●
●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●
●
●●●●
●
●●●
●●
●
●●●
●●●
●
●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●
●●●●●●●●●

●
●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●
●
●
●●●●
●
●
●●
●
●
●●
●
●
●●●
●

●
●

●●●
●●●●●
●●
●●●●●●●
●●●
●●
●●●●●
●
●
●
●

●●●●●●
●●●●●●
●
●●●●●●
●
●
●●●●●●
●
●
●●●●
●

●
●●●●●●●●
●●●●●●
●●●
●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●

●●

●●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●

●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●●
●
●●●
●●●●●●
●●●●
●●●●
●
●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●

●

●●
●

●●●●

●●

●●

●●●●●●●●●
●●●
●

●

●●

●●●
●
●
●●

●●
●

●●●

●●

●●
●
●●
●
●●●●●
●●●
●●●●●●
●
●●●●●
●●●
●
●
●
●
●
●●
●●●●●●●●●●●
●
●●
●
●●●●●●●●
●●●●●
●
●●●
●●●●
●●●●
●
●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●

●

●●
●●
●
●
●
●●
●
●
●
●●●●●●●●●
●
●●●
●●
●
●
●
●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●●●●●●●●

●

●

●●

●●
●●●

●●

●

●●

●

●

●●

●

●●●

●
●●

●

●●

●●●●●●●●

●●●

●

●

●

●●●●

●

●

●
●
●●●●●●●●
●●●●●●●
●●●●●●
●●
●
●●
●
●
●

●●●●●●●●●●●
●
●●●●●
●

●
●●●●●
●
●●●●●●●●
●●●
●
●●●●●
●●
●●●●●●●●●
●●●●●
●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●
●
●
●
●●●
●

●●●●●●●●●●

●

●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●
●
●●●●●●●
●
●
●●●●●
●
●●
●
●●●●●●●
●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●
●
●●
●
●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●

●

●●●●●●●●
●●●
●●
●
●●
●●
●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●

●●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●
●●●●
●●●●●●●●●
●●●●
●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●
●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●
●●●
●
●
●
●●●●●●●●●
●
●
●
●
●
●
●●

●●

●●●●

●

●

●●

●●●●

●

●●●●●

●

●●

●

●●●●●

●

●●

●

●●

●●

●●●●●

●●

●

●

●●

●●●●●●●●●●●
●
●●●●

●

●
●
●●●●
●
●●●●●●●●●●●
●

●●●●●●●

●

●●●
●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●
●●●●
●●●●●●●●●●●●●●
●●
●
●●
●●●●●
●
●●●●●●●●
●●●●●●●●●●●●
●●●
●
●
●●●
●
●
●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●
●●●

●
●●
●
●●
●
●●●
●
●●●●●●
●●●●●
●
●

●

●
●●●●
●

●

●●

●

●

●

●●●●●●
●●
●●
●●●●●

●

●●●
●

●●

●
●●
●●

●●

●●

●

●

●

●

●
●●●●●●
●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●●●●●●

●

●●
●●●●

●

●●●●●

●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●●

●●●●

●

●

●●●●

●●●

●●

●

●●●●●●●●●●●●
●●●●

●
●●

●●

●●●●●●●●●

●●●●●●
●
●
●●

●●

●
●

●

●
●
●

●●
●
●
●
●
●●●●

●
●
●

●●
●
●●

●

●

●

●●●

●

●
●
●

●

●●●●●●●●

●

●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●

●

●●
●
●●●●
●●●
●
●
●

●

●

●

●
●●
●
●
●
●●
●
●
●●●●
●●●●●●●●●●●
●

●
●●●●●
●
●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●

●●●
●
●●●●

●

●

●
●●●
●

●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●

●●●

●
●●●
●
●●●●●
●●●●●●
●●●●●●●●●
●
●●●●●
●●●
●●●●●●

●

●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●
●●
●●●●●●●●
●●
●●●
●
●●
●

●

●●

●
●●●●●●●●

●

●●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●●●●
●●●
●
●●●●
●●
●●
●
●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●

●●

●

●●●●

●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●●●●●

●●●

●
●●●●●●
●●
●●
●●●
●
●
●
●●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●●

●

●

●●

●●●

●●

●●●●●●●

●●

●

●●●●●●●●●●●●●
●●
●●
●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●●●●

●

●

●

●●●●●●●●●●●

●

●

●
●●

●

●●●●●●●●

●

●●●●●

●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●

●●

●●●●●●●

●●

●

●

●

●

●●●●●●●●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●

●

●●●

●●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●
●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●

●

●

●
●●
●
●●●●●●●●●●

●

●

●

●
●
●●
●●
●
●

●●

●

●
●
●●●●
●●●

●

●
●
●
●
●●
●

●●●

●
●●

●

●●●●●●●●●●●

●

●●●●●

●●

●●●

●

●●

●

●●

●

●●

●

●●●●●●

●

●●●●●

●

●

●

●●●●●●●
●●
●
●

●

●

●●

●●●●●●
●
●●

●

●

●

●●●

●●

●●●
●

●

●
●
●
●
●
●●●●●
●
●●●
●●
●●●●
●
●●
●●●●●
●●
●
●●
●●
●●●
●●

●
●●
●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●
●●●●

●●●●●●●●●●●●●●

●●

●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●

●●

●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●
●●●
●●●
●●
●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●●●

●●●●●●●●●●

●

●
●●●●●●●
●●●●●●●●●●●
●●●●●

●●●●●●

●●
●

●

●●●

●

●●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●●
●
●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●
●
●●

●●●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●
●
●
●
●
●
●
●●
●●●
●●●
●
●
●●●●
●
●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●

●●
●●
●●●●●●●●
●●●●
●●
●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●

●●●●

●

●●

●

●

●●●

●

●●●●●

●

●●

●

●●●

●

●●●●●●●●

●

●●●●●●

●

●●●●●

●

●

●

●●

●

●●

●

●

●●
●
●●
●
●

●
●
●

●●●
●

●
●●●

●

●
●
●●●●●●●●
●
●

●

●●

●●

●●●●

●

●●●●●●●●●●

●

●●

●●

●●●●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●
●●●
●
●●●●●
●●●●●●●●●
●
●
●
●
●
●
●

●●●●
●●●●●●●
●
●●●●

●●●●

●

●
●

●●

●

●

●

●●

●
●
●

●●

●

●●●●

●

●●●●

●●●

●

●●

●●●●

●●●

●●●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●

●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●

●●
●●
●●
●●●
●
●●
●●●
●●●●●
●
●●

●●●●●●
●●

●

●

●
●

●●●
●●●
●

●●●

●
●
●●
●●
●●

●
●
●
●●●●
●●

●

●
●
●

●
●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●
●●●
●●●●
●●
●●
●●●●●●●
●
●●
●
●●●●
●

●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●
●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●
●●●
●
●
●
●●●●

●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●

●●●●●●

●

●●●●●●●●●●●
●
●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●

●

●●●

●●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●

●●

●
●

●
●
●●●●
●
●●●●
●●

●
●
●

●

●

●●●●

●

●●●●●
●
●●●
●●●●●●●●●●●●●

●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●

●●

●

●

●●●●●

●

●

●
●

●
●●
●
●

●

●
●

●
●
●●●●
●●

●●
●●●
●
●
●
●
●●
●
●

●

●●

●●
●
●●
●●●
●

●

●

●●●●

●
●●

●●

●●●

●

●●●●●●

●●

●●

●●●●●

●●●●

●

●●●●●

●●

●●●

●●

●●●●●●

●●

●●

●●●
●●●
●●●
●
●●●
●
●
●●●
●
●●
●
●
●●●●●●
●●

●

●
●
●
●●
●
●●
●●●
●
●●●●●●
●●●●●●●●

●

●
●
●

●
●
●●●
●●●●●●●●
●●●●●●●●●

●
●●●●●●●●●●●●●
●●●●●●●
●
●●
●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●

●

●

●●
●●●
●
●
●
●●

●
●●●

●

●●●●
●●●
●●●●
●
●
●
●●●

●●

●
●●
●
●

●

●●●
●●
●●

●

●●●
●●
●●

●

●

●
●
●

●●●
●
●

●●
●●●
●●
●
●
●●
●
●

●●
●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●
●
●
●

●●●

●●

●
●
●●●

●

●●
●
●

●●●

●

●●●●●●

●

●●
●
●●●●

●

●●●●●●●●

●●

●

●

●
●
●●
●●

●

●

●●

●●
●

●

●

●●

●

●●

●
●
●●●
●
●●

●

●

●

●
●
●
●
●

●●●

●

●

●●●●

●

●●●●●

●

●●●●

●●
●
●
●●●●●
●●
●
●
●●●●●
●●●●●●

●

●

●

●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●●

●●●

●

●●●
●●●●
●●●
●●●
●
●●●

●

●
●
●●●
●
●
●●
●●●●●●
●
●●●
●●
●
●
●

●

●●●
●●●
●●

●

●

●●●●
●●●●●●

●
●

●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●

●

●●●
●
●●●
●
●●●●●●

●

●

●

●●●
●●●●●●●

●●●●
●●
●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●●●
●●●

●

●●●●●●●●

●●
●●●●●●
●●●●
●

●
●●●●●●●●●●●●●●●
●●
●
●●●●
●●●
●
●
●
●●●
●●
●
●
●●●●
●
●●●●●

●

●●●

●

●
●●●●●
●●●
●●●
●
●●
●
●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●●●●●●●●●●
●●●

●

●●●●●●●

●

●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●

●
●
●
●●
●●●●
●
●
●●●●●●
●●●●●

●

●●

●●●●

●

●●●●●

●

●●

●

●●●●

●

●

●

●●●●
●
●●●●●●●●●●●●●

●

●
●
●●●●●

●
●
●●●

●

●●
●
●
●●●●
●
●
●
●●
●●●
●●●●●●
●
●●
●●
●●●●
●●●●
●
●
●●
●
●●●●●●
●●●
●
●●●●

●

●
●
●
●
●

●
●●
●

●●●●
●
●

●

●●●●●
●
●●●●●●

●

●

●●

●

●●

●

●●●●●

●

●

●●

●●●
●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●
●
●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●●

●

●●●●

●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●

●

●

●

●

●
●●

●●

●

●●

●●●
●●

●●●●●

●

●●

●

●●

●●●●●

●●

●●●

●

●●
●
●

●

●

●●

●●

●
●

●

●●●

●●●

●●

●●●●●●

●●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●●●

●

●

●●●●

●

●●●●●●●●●
●
●●

●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●
●●●●●●

●●●

●

●

●

●●●●

●

●●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●●

●

●●●

●

●
●
●●●●●●

●

●
●
●
●●

●
●●
●

●

●●
●●●●
●
●
●
●●
●

●

●●

●

●●

●●●
●
●●●●●●●●●●●
●
●●
●●●●●●●●●●
●

●●●

●

●●●●●●●●●

●●

●

●

●●

●

●●●●●

●

●●

●

●

●●

●●●●●

●

●●●●●●●●

●

●●●

●
●●●

●

●●●●●●

●●

●●●●●●●●●●●●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●

●
●

●●

●

●●●●

●

●

●●

●●

●

●●●

●

●

●

●●●●●●●●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●

●

●●●●●●●●

●

●●●●

●●●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●●●

●●●

●

●●●

●●

●●●●●

●

●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●

●●

●

●●●●●●●

●
●●●●
●
●

●●

●●

●

●●●
●●
●
●

●●

●

●

●

●
●

●●●●
●
●●●
●
●●●●

●

●

●●

●●●●●●●●●

●

●●

●

●●●●●●

●●

●

●

●●●●●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●
●
●●
●●
●●

●

●●●
●●●●
●
●●●●●●●●●
●
●
●

●

●

●●●●●
●●●
●

●
●●

●
●
●
●●●●
●●
●●
●
●●●
●
●●
●●●
●
●●

●

●
●●
●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●●●●●
●●

●
●
●
●
●●

●

●●
●●
●
●

●

●

●
●

●●

●

●

●
●
●

●●●

●●●●
●
●●●

●●

●

●

●●●

●●●●●●

●
●●●

●●●●
●●
●●●●●●●

●●●●
●●●●●●●
●●●●●●●●

●

●●●●

●

●

●●

●

●

●●●

●

●●●

●

●●●●●●●●●●●●●

●●●

●●

●

●●●●

●
●
●
●
●●●

●●
●
●
●
●
●
●

●
●●●●●

●
●
●
●●
●●●
●●●●●●●
●
●●●
●
●
●●
●●●●●●
●

●

●

●●●

●

●●

●

●●

●

●●●

●●

●●●

●

●●●●●●●

●●

●●

●

●

●

●●●●●●●

●

●●

●

●●●

●
●●●●●●●
●●●●●●
●
●●●
●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●

●

●●●●

●
●●●●

●●

●●●

●●

●

●

●●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●

●●

●●
●●

●●●●●

●

●●●●
●
●

●

●

●

●●
●●
●●●●●●

●
●
●●

●

●●●

●

●●●

●●

●●●

●●●●●●●●●
●●●●●●●●●●

●

●
●●●●●

●

●●●●●
●●●●
●

●●●●●●●●●●●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●

●

●●

●

●

●●
●
●●
●
●

●●●
●
●●

●
●
●

●
●●●●●●●●●

●

●
●
●●●●●●●
●●
●●●
●
●●●●●●●●
●
●●●
●
●●●●●●●●●●●●
●●●

●

●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●
●
●●
●

●

●
●
●
●●
●
●●
●●

●

●
●
●

●

●●

●

●●
●
●

●

●

●
●●●

●
●●●
●

●

●

●

●●
●●
●●

●

●

●●

●●●
●

●
●

●●

●

●
●
●●●●●●●●●

●

●

●

●●●

●

●●●●
●
●●
●
●●

●

●●●

●●
●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●

●

●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●

●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●
●

●
●
●

●●●●
●●●
●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●

●
●●
●●
●
●
●●
●
●●
●
●●
●
●●
●
●●
●●●●●●●●●●●●●●●●●●
●
●
●
●●
●●●
●
●
●
●●●●
●
●●
●●●●●●
●
●●●●
●
●
●
●

●

●●

●

●●●●●
●
●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●
●
●
●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●

●●
●●●

●

●●●●●●●●●●

●●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●

●
●
●
●
●●●●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●●●●●

●

●
●
●
●
●
●●

●

●
●
●
●●
●

●

●

●●
●●●

●
●●

●●●●
●●●●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●

●

●●●●●

●

●●

●●●
●

●●●●●
●

●●●●●●●
●

●●●●●
●●
●●●●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●●

●●●

●

●●

●

●●●●

●

●●●●●●

●

●●●

●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●
●

●●
●●●●●

●
●●●●●●●●●
●●
●
●●
●
●●
●
●
●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●
●●●●
●
●●
●●●
●●●●
●

●

●
●
●
●
●
●●●●

●
●

●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●
●●●●●
●
●●●●
●●●●●●●●●●●●●●
●●
●
●
●
●●

●●

●

●●●●●●●●
●●
●
●
●●
●
●

●●
●
●●●
●●
●
●
●●
●
●●●

●
●
●

●

●
●
●●

●
●
●●●●

●●
●●●
●●
●

●
●●●
●
●
●●●●
●
●

●●
●
●●●●●●●

●

●●●
●●
●●●●●●●●●●●
●
●●●●●●●●
●
●

●●●●
●
●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●

●●

●

●●

●

●
●
●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●
●
●●●●●●●●●
●●●●●●

●

●●

●●

●●

●●

●

●●●●●●●●
●
●●●
●
●●

●

●
●
●
●
●
●
●●●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●●●●●●

●

●●●●●

●

●●●●●●●●

●●●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●●●●●
●●●●
●
●
●
●●
●●●●●●●
●●●●
●

●●●
●●
●
●●●

●
●●●●
●
●
●
●
●
●●●●●●
●
●●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●●

●

●●
●
●●●
●
●●●●●●●●●●●
●
●●●●●

●●●●

●●●●●
●●●●●
●●●●
●●●●●●●●●●●●●●
●●
●●●●●●

●

●●●

●

●

●

●●●●

●

●
●
●●●

●●

●●●●●●●●●●

●

●

●●●

●

●●

●●●

●

●

●

●●●●●●●●●●●
●
●

●

●
●
●
●●
●

●●

●●●●
●
●●●●

●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●

●

●●●●●

●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●

●

●●●
●●●●
●●
●●●●●●●●●●●●
●●
●●
●
●●●●●●
●●
●●
●●
●
●
●●
●
●●●●●●
●
●
●
●●
●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●

●

●●●

●

●●
●
●●●●●

●

●●

●

●
●●●
●
●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●
●
●●●
●
●●●
●●
●
●●●●●●●
●
●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●

●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●
●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●
●
●
●
●

●

●●
●●

●

●

●

●●
●●

●

●
●
●

●●●●
●
●

●

●●

●

●
●●●●●●●
●
●
●●●●

●

●
●●●●
●●
●
●●●
●
●
●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●
●
●
●
●●
●

●

●

●●
●
●●●

●
●●
●
●●
●
●
●
●

●

●●

●
●
●●

●

●

●

●

●●●

●

●

●

●
●

●●●●●

●

●●●●●●●●
●
●
●
●●●●●●●

●

●

●
●●●

●●●

●

●

●●
●
●●●

●●●●

●

●●

●
●●●
●●●

●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●●●

●●●●●

●

●●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●

●●●●●●

●

●●●

●●●●●●
●●●●●●●●
●●●●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●●●

●

●●●●●●●●●●●●●

●●●

●●●

●

●●●●
●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●
●●●●●
●

●
●
●

●●
●
●●●●●
●
●●●●●●●
●●
●
●
●●●●●●
●
●●
●●
●
●
●●●●●●●
●
●●
●
●●●

●
●●
●
●
●●
●
●
●
●●●●●
●
●●●
●●●
●●●
●
●●●●●●
●●
●
●
●
●●
●
●●
●
●●
●
●●
●●●
●●
●●●
●
●●

●●
●
●
●●●●●●

●●

●●●●
●
●

●

●●●●●

●●

●●●

●

●●●●●●●

●

●●●●●

●

●

●●

●●●●●●●●●●●●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●

●

●●●●

●

●●●●

●

●●●●●●

●●●

●

●

●●●

●

●●●●●●

●●●

●●

●

●

●

●●●●

●●

●●●●●

●

●●●●

●

●●●

●

●●●

●

●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●●

●●●

●

●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●

●●

●●
●
●

●●●●●

●

●
●
●

●

●

●

●
●
●●

●

●●

●

●●●

●

●●●●●●●
●
●
●
●●●●●●
●●

●●●●●●●●●●●●●
●●●●
●●●●●

●

●●●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●
●
●
●●●●●

●●
●

●
●

●

●
●●

●
●
●●●●●●●
●
●

●

●●

●

●

●

●●

●

●●●●●

●●

●●
●
●●●

●●●●

●●

●●●●●

●

●●●●

●

●●●●

●

●●●●

●●●●

●

●

●

●●

●●●●

●

●●

●

●●●●●

●●

●●●●●●●●●●●●●●
●
●
●●●●●●●●●●
●
●
●●●●●●
●
●
●●●●
●
●●
●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●

●

●●●●
●●●●●●
●
●
●●●
●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●
●
●●●
●
●●●●●●
●●●●●
●●●
●
●●●●●●
●●●●●
●●
●●
●●●
●

●●
●
●
●
●

●
●
●●
●●●
●
●
●●

●●

●
●
●●

●

●●
●
●
●●●
●
●
●
●●●●

●●

●
●
●
●
●
●
●
●
●●

●
●●
●
●●●●
●
●●●

●

●●●●●●●●
●●
●

●

●●

●●●●
●
●●●
●
●●●
●
●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●

●

●●●

●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●
●
●

●●

●●●●

●
●●●●●●●

●

●●●

●

●

●

●
●
●●●

●

●●●

●

●

●
●●●●●●
●
●●

●

●
●●●●●●●●●●●●●●●●

●

●●●

●
●●●

●

●

●

●

●●
●
●

●●●●
●
●●
●
●●

●●●
●

●●
●

●

●●

●

●●

●●●●●●●

●

●●●

●●●●●●●●●

●
●

●

●●●●●●
●
●

●●

●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●

●●●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●
●●
●
●
●●●
●
●
●
●
●●●

●
●●
●
●●●
●
●●
●
●
●

●

●●
●
●
●●●●●●●
●●

●●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●

●

●

●

●●

●

●
●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●
●
●
●
●●●●●●
●
●●●●●●
●
●●●●●
●●●●●●●●●●●●
●
●
●
●●●
●●●●
●●●●●
●●●●●●●●
●
●
●●●●
●●●●●●
●●●●●

●●

●●

●●●
●
●

●

●●●

●

●●●●

●

●●

●●

●●

●

●●●●●

●
●
●

●

●

●●●

●

●

●●

●

●

●●●
●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●

●●●●●
●

●●●●●●●●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●●●
●●●●●●●●

●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●
●
●●●●●●●●●●
●
●●
●●
●●●●●

●●

●●●●●●●
●
●

●

●●

●

●●

●

●●
●
●●

●●●●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●
●●●●●●
●●●●●●
●●●
●

●
●
●
●●●
●
●●●●●
●●●
●●
●●●
●●●
●●●●●●●
●●●

●

●

●

●
●
●

●

●

●

●●●

●

●

●

●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●
●
●●
●
●●●
●●●●●●

●●●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●
●
●●
●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●

●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●
●
●
●●
●●
●●●
●
●●●●●●●●●
●
●●
●
●●
●
●●
●●
●
●●●●●●
●
●●●●●●
●●●
●
●●●●●●●●●

●

●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●●●●●●●●●●●●
●
●
●
●●●●●●

●
●
●●●●●
●
●●●●●●●●●
●
●●●
●
●
●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●
●●
●
●●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●

●●
●
●●
●●●●
●●●●●●●●●
●
●●●
●●
●
●
●
●
●●●●
●
●●●●●●●●
●
●●●●●●
●●

●●●
●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●
●●
●●

●

●●●●●●●●●●●●●●
●
●●
●
●
●
●●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●

●●●
●
●●
●
●●●
●●●●●●●●
●
●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●

●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●
●●

●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●
●
●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●
●
●●●●
●
●
●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●
●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●

●●
●
●●●●
●
●●●●●●●

●

●
●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●

●●●

●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●
●●

●●
●
●●●●●●●●●●●●●●

●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●
●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●

●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●●●●●●●●●
●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●
●
●
●
●●●●
●●
●●●●●●●●●●●●
●

●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●
●
●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●
●
●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●
●●
●●●●●●●●
●●
●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●
●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●

●●●●●●
●
●●●●●
●●
●●●
●●●●●●●
●
●●●●●●●●
●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●
●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●

●●●●●●●●●●●●
●
●●●
●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●

●
●
●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●

●●●
●
●●
●
●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●
●●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●

●●●●●●

●
●
●
●
●●●●●●●●●●●●●●●●
●
●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●
●●

●

●
●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●
●●●
●●

●●●●
●
●●●

●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●
●●●●●
●●
●●●
●
●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●

●●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●

●●

●●●●●

●●●●●●●●●●
●
●●
●●●
●
●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●●●●
●
●●●●●●●●●
●●

●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●●
●●
●●
●●

●●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●

●●●●●●●●●●
●●

●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●

●●●●
●
●●●

●●

●●●
●
●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●
●●

●●

●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●

●●●●●●
●●

●●●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●

●●

●●●●●●●●●●●●●
●●

●●

●

●●

●●

●●
●
●●●
●●

●●
●●

●●●

●●
●●
●●●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●●

●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●
●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●

●●

●●

●●

●●

●

●●

●●●●●●●●●●●●●●
●●
●●

●●

●●●●●●

●●

●●

●●

●●

●●
●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●

●●

●●●●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●

●● ●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●

●● ●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●

●● ●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●

●●

NSD < 0.05 NSD in [0.05,0.1] NSD in [0.1,0.25]

NSD in [0.25,0.5] NSD in [0.5,1] NSD > 1

1.0

1.5

2.0

2.5

3.0

2.5

5.0

7.5

3

6

9

12

0

10

20

30

40

0

20

40

60

0

250

500

750

1000

1250

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Strategies

N
or

m
al

iz
ed

 M
ak

es
pa

n

(a) |T |
|P | = 1

●

●

●●●

●

●●

●●

●

●

●●●●
●●

●
●

●

●

●

●

●
●●
●
●●
●
●●●●●

●●

●
●●

●

●

●

●

●

●

●
●●
●●

●●
●
●

●

●
●
●●●●

●

●

●●

●●
●

●

●
●●
●

●

●

●●
●●

●

●
●

●

●●
●

●

●
●●●●●
●

●●

●
●
●●●●
●
●●●

●

●●
●●
●
●
●
●●
●●
●
●
●
●
●●●
●
●
●

●

●●●●●●
●●●●●

●

●
●
●●●
●●●●
●
●●●

●

●

●

●●●
●●
●
●●

●

●●●
●
●●●
●●
●●●●●
●
●●
●●
●
●
●●●●●●●

●
●●
●
●●
●●●
●●●
●●●●
●●●●●●●

●

●●●●●●●●●
●
●

●
●
●
●●

●
●●

●
●●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●

●

●●●●●
●●
●●
●●●●●●
●
●
●●●

●

●●●
●●
●●
●
●●●●
●
●●●●

●●

●●●●●●●●●●●
●●●
●
●●
●●●

●

●●

●

●●

●

●

●

●●●●●●●●●●●

●●

●●●●●

●

●●●
●●●●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●

●
●●

●

●●

●●

●
●●

●

●●

●●

●●

●

●●

●

●

●●●

●●

●

●●●

●

●●●●●●●●●●●●

●

●

●●●
●
●
●●
●●●
●●●●
●
●
●
●
●

●●●●●

●

●●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●

●

●●●●

●●

●●●
●●

●

●●

●

●●
●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●
●
●●
●●
●●●●
●
●●
●
●
●
●●
●●●●●●
●●●●
●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●
●●●●●
●●●●
●
●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●
●●●●●●●
●
●●
●●
●●●●●●●●

●●●●●
●
●●●●
●
●●

●

●
●
●●●●

●●●●●●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●

●●●●●
●●●●●●●●●●●

●
●
●●●

●

●

●
●

●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●

●
●●
●●●
●●●●

●

●

●

●
●●●●●●
●●●●●●●●●●●
●
●●●
●●●
●●●●●●●●●
●●●●
●
●
●
●
●●
●
●●●●●●●●
●●●●●●●
●
●●
●●
●
●
●●
●
●●●●●●●
●●
●
●
●●
●●●●●●
●●●●
●●●
●
●●●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●
●
●●
●●
●
●

●●

●

●
●●●
●
●
●●
●
●

●●

●

●●●●

●●●●●●●
●

●
●
●
●●●●●
●●●
●
●
●●●●●●●●●
●●●●
●
●●●
●●●●●●

●

●

●

●

●

●●●●●●●●
●●●●●
●●

●●●●●●●

●●

●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●
●
●
●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●
●●●●●●●●
●●●

●
●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●
●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●
●
●●●●●●●●●●●●●
●●
●
●

●●●
●●●●●●●●
●●●●●●●●●
●
●●●●
●●●●
●
●●●●●●●●●●●●
●●
●
●●●●●●
●
●●●
●
●●●●
●●
●●●●●●
●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●●●●
●
●
●
●●
●●●●
●
●
●
●
●●●●
●
●
●●
●●●●●●●●●●●●
●
●
●●●●
●
●
●
●●
●
●
●●●●●●
●●●●●●
●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●
●

●

●

●

●

●

●●●●●●●

●

●●

●●

●

●

●●●●●

●

●

●●

●

●●

●

●●●

●

●

●●●

●●●

●

●●●●●

●

●
●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●
●●●●●●●●
●
●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●
●●●●
●●
●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●●
●
●●
●
●
●
●●●●●●
●
●●●●
●

●●●●
●●●●●
●●
●
●●●●●●●
●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●
●
●
●●

●

●●●
●
●●●●●●●●●

●
●
●

●

●
●●

●●
●
●●

●

●●●

●

●●
●

●
●●
●●●●●
●●●●●●●●●●●
●●●●●
●●●

●

●●
●
●
●
●
●●●●●●
●
●●●
●●●●●●●●
●●
●●●●
●●●
●
●●●●
●●●
●●
●
●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●
●
●●●
●●
●●●
●●●●●●●●●
●
●
●
●●●●
●
●
●
●●●●
●●●●●●●
●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●

●

●●
●

●

●
●
●
●
●

●

●

●●

●●●●●●●
●

●●●
●●

●
●●●

●

●
●
●
●●

●●

●
●

●

●
●
●●
●
●
●
●
●
●●
●
●●●●●●●
●
●●●
●
●
●●●●●●●
●●●●
●●●●●●
●
●●●●●
●
●●●●●●●●●●●●
●●●●●●●●
●
●
●
●●●●●●●●●●
●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●
●●●●
●●
●●
●
●
●
●
●●●●●●●●●●
●●●
●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●
●●●●●●
●●●●●●●●●●●●
●
●

●

●

●

●●
●

●

●●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●
●●

●

●●●●
●●
●●
●

●●
●●●●●●
●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●
●●●●●●●●
●●●●●●
●
●
●
●
●●●●●●●
●●●●●●●
●●●●
●●●
●●●●
●
●●●●●●●●●●●
●●
●●
●●
●
●●●●●●
●
●●●●●●●
●●
●
●●●●●
●
●●●●●●
●●

●
●
●
●●
●●●●
●●●●●●●●●●●
●
●●
●
●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●
●

●
●●●●●●●●
●●●●
●●●●●●
●●●
●●●●
●
●●●●●●●
●●●
●●●
●●
●

●
●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●
●●
●
●●●●
●
●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●
●
●
●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●
●●●●●
●●●●
●●●●
●
●●●●●●●●●
●●
●●●●●●
●●●●
●

●
●●●
●
●●●
●●●
●●●●●
●●●
●
●
●●
●●●●
●●
●●●
●●●
●●●●
●
●●●●●●●●
●●●●
●
●

●
●

●●●●
●●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●●●●●●●
●

●●●●●
●●●●●
●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●

●●●●

●●●●●

●●●●●●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●●

●●●●●

●

●●

●

●●
●●●●●●●●●●●●●

●●●
●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●

●●●

●●●●●●●●●

●●
●●●●●●●●
●●

●

●●

●

●●

●●●●●●●●●

●●●

●

●●●

●●

●●

●

●●●

●

●

●●●

●

●●

●●

●●●

●●●

●●●

●

●●●
●●●●●●●
●●

●

●
●
●●●●●
●●●●●●●●●●●

●

●
●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●●●
●
●●●
●●●●●●
●
●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●●●●●●●●
●
●●

●

●
●
●

●●●
●
●●●

●
●
●

●●

●●●●

●

●
●●
●

●●

●

●
●

●
●●
●
●●●
●●●●●
●
●●●
●●
●●
●

●

●●●●●●●
●
●

●

●●●
●●
●
●●●●●●●●
●
●●●●●●●●●

●●●

●
●●●●●●●●●

●●●

●●●
●
●●●●●

●

●
●●●
●
●●
●●●●●
●
●●●●
●●●
●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●

●

●●●●●
●●●●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●

●●

●

●●

●●

●●

●●

●

●

●●

●●●

●●●

●●●

●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●

●
●

●

●●●

●

●●
●●●●●●●

●●●●●●

●●
●●

●

●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●

●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●
●

●

●●●●●

●

●

●●

●
●●●

●

●

●●●●●●●●

●●

●●

●

●

●

●●●●●●●

●

●

●●●●●●●
●
●●
●
●●●●

●●

●●●●●●●●

●
●

●

●

●

●●●●●

●●●

●

●●●

●

●●●

●●
●●

●

●●

●●

●●●

●●●

●

●

●●

●

●

●

●

●●

●●

●●

●

●
●●●

●

●●
●
●●
●
●●●
●
●
●
●●●●
●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●
●●●
●●●●●
●
●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●

●●●●●●●
●
●●●●●
●
●●●●●●●

●

●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

●●●

●

●●●●●●

●

●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●
●
●
●
●●●
●●●
●●

●
●●●
●
●

●
●

●

●●

●

●●●●●●

●

●●●●●●●●●●

●

●●
●
●●●●

●

●●●●●●
●●
●●
●●
●●
●●
●
●●●
●

●
●●●●
●●
●●
●●
●
●

●

●●●
●

●
●
●
●●

●●

●●●

●

●●

●

●

●

●●●

●

●
●

●
●
●
●

●
●●●
●●

●

●●

●
●●

●

●●

●
●●●
●
●
●

●

●
●●●
●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●
●
●●●●
●●●●●●●●●●●●●●●●●●●

●●●

●

●

●●
●●

●

●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●
●
●
●●●
●
●●●●●

●
●●
●●●●

●
●●

●

●●●●●
●
●

●
●●●

●

●●●
●●

●●●●

●

●

●

●

●

●●●
●●
●●

●

●●●

●
●●
●●
●

●●●●●●
●●●●●
●

●●

●

●●●
●●
●●
●
●●●●●●●

●
●
●
●●●
●●●
●
●
●
●●●●
●
●●●
●

●●
●
●●

●

●●●●

●

●●●●
●
●●●
●
●●●●
●
●●
●●
●
●
●●●●●●●●●●●●●●●●●●●

●●●●
●
●●●
●●●●●●
●●●●●●●●

●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●

●
●
●
●
●●
●●●
●●●
●
●●●
●●
●
●
●
●
●●●

●

●●●
●●●●●

●

●●●
●
●●
●
●●
●

●●
●●●●

●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●

●●●●

●

●
●
●●
●

●
●●
●

●●
●

●●
●●●●●●●●●●●●●●●●●●

●●

●●●
●●●●●●●●●●

●

●●

●

●●●●●●●●●●●

●●●

●

●
●

●●
●●
●
●
●●●●

●

●●●

●

●●●
●
●●●●

●

●●

●
●
●

●
●
●●
●
●●
●●●
●●
●

●
●
●●

●

●

●

●●

●

●●●●●

●

●●●

●

●●

●

●●●●●

●●

●

●

●●●●●

●

●●●●

●

●●●●●

●

●●●

●●
●●●●●
●
●●●
●
●●

●●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●●
●
●

●
●
●

●

●●
●
●●●

●

●
●●●●●●
●

●●
●
●●
●

●

●

●

●
●●
●
●

●

●

●
●
●●

●●
●
●●●●●
●

●

●

●
●●●●
●
●
●●●
●●●●●
●
●●●●●●
●●●●●
●
●●●

●
●
●

●●●●●●●●●●
●●

●●●●

●

●●●●●●●●●●
●●●●●●
●
●

●
●
●●

●

●●●
●
●●

●

●●

●

●●●

●●

●●

●

●●

●

●

●

●
●
●●●●

●●
●
●●

●
●

●

●●●●
●●●●

●●
●●
●●●●
●●●●

●

●●●●●●
●●●●
●●
●
●●●

●

●●

●

●●●●●●●●●●●●●

●

●●

●

●●

●
●

●●●

●
●●

●

●●
●
●

●

●
●●
●●●●●

●

●

●

●●●●●

●
●
●
●
●

●●

●●
●●●●
●

●

●

●

●●
●
●
●
●
●
●
●●●●●●●●
●●●●●●●●●●●●●●

●

●●●●●

●

●●

●

●●

●
●
●●
●
●●●●●

●

●●●
●

●
●

●

●

●●
●
●●
●●●●●●
●●●●
●●●●●●
●●●
●●●●●●●
●●
●●●●●
●
●
●●
●●●●●●●●
●

●
●
●●
●
●
●
●●●●●●●●

●

●●●●
●

●

●●●●●●●

●●

●●●●
●
●●●●●●●●
●●●●
●●●●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●●
●
●●●●

●

●

●●●
●
●●
●
●●●

●

●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●

●

●
●

●

●

●

●
●
●
●
●●
●●●●●●●●●●●
●
●

●●

●●

●●
●

●●●●●●●●●
●
●

●

●●●●

●●
●●●●●●●

●●●●

●
●

●●

●

●●●●

●

●●●●
●

●●●●●●

●●

●

●●●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●●

●●

●

●●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●
●
●●
●●●●●●
●●●
●
●●

●●

●●

●

●

●

●

●●

●

●●

●●●

●
●
●●
●●●●●●
●●
●
●
●●●●●
●●●
●
●
●
●●●●●●

●●

●

●
●●
●

●●
●
●
●

●

●●●●●●

●

●

●

●

●
●
●

●●

●

●●
●
●
●

●●●

●

●
●●

●●

●

●●
●
●●

●●

●

●●●●

●●●

●●●

●

●●

●

●●●●
●
●●●●

●

●●

●

●●
●
●●●

●

●●

●

●

●

●●●●

●●

●

●

●●

●●

●

●

●●

●

●●●

●

●

●●

●

●

●

●●●●

●

●●

●●

●●●●●●

●

●

●●

●
●

●

●
●

●

●

●

●

●●●●●●●●●●●
●
●●
●
●

●

●●

●●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●●

●●●
●●●

●●●

●

●

●●

●●

●

●

●
●●●●●

●●

●

●

●●
●●●

●

●●

●

●
●
●●

●
●●
●●

●●●●

●

●●
●●

●●
●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●

●

●●●●●

●

●
●
●●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●●
●●●●●

●

●●

●

●●●●●●

●

●●●●

●●

●●●
●

●

●
●
●●●
●●
●
●●●●●●●
●
●

●
●●

●

●●●●●●●●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●

●

●●
●●●

●

●●

●

●

●●

●

●●

●

●●

●

●●●
●
●
●
●●●
●
●●●●●●●●●●●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●●●

●

●●

●
●●●●●
●●●
●
●
●
●

●

●●●

●

●●

●

●●●
●●●
●
●●
●

●

●●
●

●●
●
●●

●

●●
●
●

●

●●

●

●●

●

●●

●

●●●●

●

●

●●

●
●●

●●

●

●

●

●

●

●

●●●●

●

●●

●●●●

●●

●

●

●

●

●●

●

●●
●●●●●●●●
●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●

●
●●

●
●
●●

●
●
●●●●●●
●
●
●
●

●●
●
●

●●●

●

●
●
●●●●

●●●●●●●●
●

●

●●
●
●●●
●
●
●
●
●●●

●●●
●●
●
●●
●●●●●●●●
●
●●●●●●●●

●
●
●

●●●●

●

●●●●●●●●●●●●●●
●
●●
●
●
●
●
●

●
●
●

●
●●
●
●●

●

●

●
●●

●

●●

●

●

●
●●●●

●

●●●
●●
●
●
●●

●●
●
●

●

●

●
●

●

●●

●●

●

●

●

●●●●●●●
●●●

●●
●●

●●●

●

●
●
●●●●●
●
●
●

●

●●●●
●●

●
●

●

●
●
●
●
●●
●●

●●●
●
●●●

●

●●●●
●●●
●
●●●●●●●●●●●●●
●
●

●●
●●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●

●

●●

●

●

●

●●●

●

●

●

●●●●

●●

●●
●●●
●
●●●●

●

●●●●●●
●●●●●
●●●●●●●●●●●●
●●●
●●●●●
●●●●●

●

●●●●
●●●●●

●

●●●●●

●

●

●

●●●
●●●●●●●●●●●●●

●●●

●

●●●●

●●

●

●

●●●

●●

●

●

●●

●●●

●●●●

●

●●

●●●

●●●

●●

●●

●●

●●●●

●

●●

●

●●
●●
●

●
●

●

●

●

●

●
●

●
●●●
●

●●
●

●

●●●●●
●
●

●
●●
●
●

●●

●●

●●

●

●●●
●●

●

●●
●

●
●●●●●●●●●●●●
●
●●

●

●

●

●

●●●

●

●

●

●●

●●
●●●●

●

●
●
●●●
●
●
●

●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●

●

●

●●●

●●

●●●●

●

●

●

●●●●●●●●

●

●●●●●●●

●●●

●●

●●●

●

●

●●●●●
●●●●●●●●●●
●
●●
●
●
●
●●

●
●●●●●
●●●
●●
●●
●●●●●●●●●●
●
●●●
●
●●●
●●
●●●
●

●●
●●●●
●●●●●●●

●
●
●●

●●
●●
●
●●

●

●●●

●
●
●

●

●

●

●

●

●●●●

●
●●●●

●
●●●●●●●
●
●●

●

●●●●

●
●
●
●●
●●
●

●●●

●

●●●●●●●●●
●●●
●
●
●
●
●

●●●●●●●●●●●●●
●

●●●●●

●

●

●

●●●●

●●

●●●●●●●●●●

●●●

●

●

●

●●●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●●●

●

●●●●●

●●●

●●●

●

●●

●●●

●

●●

●

●
●
●

●●●

●
●
●●
●
●
●
●

●●
●●●●
●
●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●●●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●●

●

●

●●●●●

●●

●

●

●

●●●
●
●

●
●
●

●

●

●

●●

●●
●●
●

●●●
●●

●
●●●
●
●
●
●

●

●
●●●
●●●●●●
●●
●

●
●

●
●
●
●
●
●
●●
●●●
●●
●●
●●
●●●●

●●●●●
●
●
●
●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●

●

●
●

●

●

●●

●●●●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●
●

●●●

●

●●●

●

●●●●

●●●

●

●●●●●

●

●●●

●●●

●●●●

●●●

●

●●●

●●●

●

●

●●

●●

●●●●●●●●●

●

●●

●

●●●●

●●●

●

●●●●

●●
●●
●

●●●●
●●●●

●
●●
●●

●

●●●●
●

●●

●●

●●

●

●●●●●

●

●●●●

●

●●●●●●

●

●

●●●

●

●

●

●

●

●●●●●●

●●

●

●●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●
●
●●●●

●●

●
●●●
●

●

●

●●

●●

●●●●

●●

●●

●

●●●

●

●●

●●

●

●

●

●●●
●●

●●●●●●

●●●●●●●●●

●

●●●

●●●

●

●
●
●
●
●●
●
●
●●
●

●
●●

●●

●

●●●●●

●
●●
●●●●
●●
●

●
●
●

●●
●●●●

●
●●●●●
●
●●

●●●

●

●

●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●●●●●
●●●●●
●
●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●
●
●●●●●●●●
●●
●●●

●●●●
●●

●
●●●
●

●●●●
●●●
●●●
●●
●
●

●
●
●●●
●
●
●
●●●●
●
●●●●●●●●●●
●
●

●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●

●
●

●●●●●

●

●
●●●●●●●●●●
●

●
●
●

●●●●
●●●●●●
●●●●
●●●●
●●●
●
●
●●●●●

●
●●
●

●

●●●

●

●●

●●
●

●

●
●
●

●
●
●●
●

●

●

●

●

●

●●
●●●●

●●●
●●
●
●
●●
●●●
●

●

●●

●●●

●

●●●●●

●

●
●
●●●●●●●

●●●●●●
●
●●
●
●●●
●●
●●●●●
●

●

●

●
●

●●●●

●

●
●●
●
●●●
●
●
●
●
●●●●
●●●●●
●●
●●
●●
●●●●●●●
●
●●
●
●●●
●●●●●●

●
●●●

●
●●
●●●●●●●●

●

●●●●●●●●
●
●●●●●●●●●
●
●●●

●

●●●●●●●●●●●
●
●

●●●
●●●●●●●●●●
●
●

●●●●●●●●●●●●●

●●●●
●●●●●
●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●●●
●
●

●

●●●●

●

●●●

●

●
●
●●
●
●●●●●●

●●●

●

●●●●●●●●

●

●●●
●
●●●●●

●●●
●●

●●●●

●●●●●●
●●●●

●

●●●

●

●●

●

●●

●●

●

●

●●●●●

●

●●

●●

●●●●●

●

●

●

●

●

●●

●

●●

●●●

●●

●

●●●●

●

●

●●●

●●●
●

●
●

●
●

●
●
●●
●
●●●●●

●●

●
●●

●
●
●●●●●●●●

●

●
●
●●
●
●●●●

●

●●●●
●●
●
●

●
●

●●●●●●●●●●

●

●●

●
●
●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●
●
●

●

●●●●
●

●●●●●
●●●●●●●●●

●
●●●●●●
●

●●
●●●
●
●

●

●
●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●●●●

●●

●

●●●

●

●●●●●

●

●●●●

●

●●

●

●●

●

●

●●●●

●●

●●

●

●

●●

●

●

●●

●

●

●

●●●●●●●●
●
●●●●
●
●●●
●●●
●●
●●●

●

●●●
●
●●
●
●●
●
●●

●

●●●●●●●●

●●

●

●●
●
●

●●●

●●

●●●●●●●
●
●●●
●

●●
●●●●

●

●●
●
●
●●●●

●
●●
●●●●●●●
●
●

●●

●

●●
●●●

●●

●
●

●●●

●

●
●
●

●

●

●●

●●●●

●
●
●
●

●●

●●●
●
●●
●●

●●

●●
●
●●●●●●●●
●●●●

●
●●●●●●
●
●●
●●●●●

●

●

●●
●
●

●●●●●●●●●
●●●●
●●●●●●●●●●●
●
●●●●

●

●

●

●●●●●●●●
●●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●●●●

●

●

●

●●

●●●●●

●

●

●

●

●●

●●●●

●

●●

●

●●

●●

●●●●

●

●

●●●

●●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●
●●

●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●
●●
●●
●
●●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●●

●●

●
●

●●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●●●●●
●
●
●
●
●
●●●●●●●
●
●●●

●●●

●

●

●
●

●●●
●
●●●
●
●●
●●

●
●
●●
●
●●●●●
●●

●●
●●

●
●
●
●
●
●
●
●●
●
●
●
●
●
●

●●
●●●
●●
●
●
●
●●
●●
●

●

●
●
●
●
●●●●●●●●
●
●●●●
●
●●●●
●●●●●
●
●●●●
●

●●●
●●●●●
●
●●●
●
●

●●

●●●●●●●●●●●

●

●●●
●
●●●●●
●

●●

●●●●●●●●●●●●●●●
●
●
●
●●
●
●●●
●●●●●●

●

●

●●

●

●

●●

●

●

●

●●

●●
●
●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●●

●●●●●
●
●●●●●●●●●●●●●
●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●●●

●●●

●

●

●

●●●●●

●●

●

●●●

●

●

●

●

●

●●●

●
●●
●

●

●

●●

●
●●
●

●

●

●

●●
●

●

●

●●●

●
●●●

●

●●

●●

●

●●●●

●

●●●●●

●

●
●
●●●●●●●

●●

●●●●

●

●

●●

●

●●

●

●●

●●●

●●●●

●●

●

●

●

●

●

●

●●

●●

●●●●

●●●

●

●●●●●●

●●●●●

●●●●

●●●●●
●●●●●●●
●●

●●

●●●●●●●●●●●●●●●

●

●●
●
●●●●●●
●
●●
●
●●
●
●
●
●●
●●●
●●
●
●●●

●●
●
●●●●●●●●●

●

●

●

●

●●●

●

●●

●

●●

●●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●

●

●

●

●●

●

●●

●●

●
●●●
●
●●●●●

●●

●
●
●●
●
●●●●

●

●
●

●

●
●
●●
●

●

●●●●
●
●

●

●●●

●

●
●●●

●
●
●●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●●●●

●●●

●●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●●●●●●
●●●●
●●
●
●●
●
●
●●●
●
●●
●●
●●
●
●●●
●
●●●●
●
●
●●
●●●●●●●

●

●●●●

●

●●●
●

●●●●●●
●●●●●●
●
●●
●●

●●

●●●

●
●●●●●
●●
●
●
●●●

●●
●
●●●

●

●●●●●●●●●
●●●●●●●
●
●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●
●

●

●
●●

●●

●
●●●●●●●●●
●
●●
●
●
●
●
●●

●●●●●●
●
●●
●●

●●●
●
●●

●●●●
●
●●●●

●●●●●

●●
●
●
●
●
●
●●●
●
●●
●
●
●●
●●●

●
●●

●●

●

●●
●●●●●●●●●●●●

●
●
●●●●●
●
●●●

●

●●●●
●
●●●●●●●●●

●

●

●

●●

●

●●●

●

●

●
●●●●

●

●●●●

●●

●

●●

●●

●

●●●●
●
●●●
●●
●

●

●●●
●
●●
●

●

●●
●
●●
●●

●●
●
●
●●●●

●●
●●●●
●●●●●●●●●●●●

●
●●●

●

●●
●

●●

●●●●●●

●

●●
●●
●●
●

●

●

●●●●●
●●●●●●●
●
●●
●

●

●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●

●●

●●●●

●●

●●

●

●

●●

●

●
●
●

●●●●

●

●●●●●

●

●●●

●●●●●

●

●●

●

●

●●

●
●●●●●●
●
●●

●

●●●●
●●●●●
●
●●●●●●●●●●●●●

●

●
●●●●●●

●
●●●●●●●
●
●

●
●●

●●

●

●

●

●●●●●

●

●●

●

●●●●
●

●
●●

●

●

●

●●

●

●●●

●●●●

●●●●●●●●●

●
●

●●

●

●

●●●●●●●●

●

●●●●●●●
●●●●
●

●●●
●●●●
●
●

●●●
●●
●●

●
●
●●●●●●●●
●
●●●●●●●

●

●●●●●●●●●●●
●
●
●●●
●●
●●●●●
●
●
●
●
●
●●●
●●
●●●●●●
●●●
●
●●
●●
●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●
●●
●

●
●●

●●

●●

●●

●●●

●●●●
●
●●●●●●●●●●●
●
●●●
●
●●●

●

●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●●

●

●
●
●

●●●

●

●●

●

●●

●●

●●

●●●

●

●

●
●

●

●●●●

●
●

●

●

●●

●

●●●

●●

●

●

●●
●●●●●

●
●
●●●●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●

●●●

●●

●

●

●

●

●●●●●●

●

●●●

●●

●●●●

●

●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●

●●
●●

●

●

●

●

●●
●
●●

●

●

●

●
●●●●
●

●

●

●

●
●

●

●
●
●
●●●●

●●

●

●

●

●

●●

●
●

●

●●●●●●

●
●
●
●●●●●●●●●●●

●

●●●●
●●
●●
●
●●●●●●●●
●
●
●
●●
●●●●●
●
●●●
●
●●
●●
●

●
●●●●
●●
●●●●
●
●

●●●
●●●
●●●●●●●●●
●
●●
●
●●●

●

●●●

●

●●●
●
●

●

●
●●
●
●●●●●
●
●●●●

●●●
●●●●●●●●
●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●
●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●
●●●
●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●

●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●
●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●
●●

●●●
●●●●●●●●
●
●●●●●●●●●●●
●●●●●
●
●●●●●●●●●
●●
●●●●●●
●
●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●
●●
●
●●●●●●●
●
●
●●●●●●●●●
●
●●●
●
●●●

●●●●●●
●
●
●●●●●●●●
●●●●●●
●
●●●
●
●●●●●●●●
●
●●●●●●●
●
●●●●●●
●●●●●
●
●
●●
●
●●●●●●●
●
●

●●●
●
●●●
●●●●
●●●●●
●
●
●●●
●●
●
●●
●
●
●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●
●
●●●●
●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●
●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●
●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●
●
●
●
●●●
●
●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●
●
●●●
●
●●
●●●●●●●
●●●●
●
●
●
●●
●
●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●●●●
●
●●●●●●●●
●
●●
●
●●●
●●●●●
●
●●●●●●●
●●●
●

●●
●
●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

●●●●
●
●●
●●
●●●

●●

●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●
●
●●●●●●●●●
●
●●
●
●●●●●●●●●

●●
●
●
●●
●
●●●●●●●●●●●●

●●●●●●●●●●●
●
●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●
●●●

●●●●●●●●●●

●●●
●
●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●●
●●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●
●●
●
●
●●●●●●●●●●●●●●

●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●
●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●
●
●

●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●
●●●●●●●●●
●
●●●●●●●●●●

●
●●●●●●●
●●●
●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●
●
●●●●●●●●●
●●●●●●●●●
●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●
●

●●●
●●●●●
●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●
●●●●●●●●●●●●
●●
●●
●
●●●●●●●●●●●
●●●●
●●●●●●●●●

●●●●●●●●●●

●●●●●
●
●●●●●
●●●●●●
●●●
●
●●
●●●●
●●●
●
●●●●●●●●●
●
●
●
●●●●●●
●
●●●
●●
●
●●
●
●
●●●
●
●●
●
●●●●●●●●●●●●●●
●●
●●
●
●●●●●●●
●●
●●●●●

●

●●●●●
●
●●
●
●●
●
●●●●●
●●
●
●●●●●●
●●
●●●●
●●
●●●
●
●●●●●●
●
●●●
●●
●●●●●●●●●
●●●●
●●●●●
●
●●●●
●●●
●●●●●
●●●●●●●●
●●
●●●●●●
●
●●

●
●
●
●●●●●●
●●●●●
●
●
●●
●●
●
●
●●●●
●
●●●●
●●●●
●●●●●●●●●
●●
●●●
●

●●●
●
●●●●●●●●
●
●●
●●●●●●●●●
●
●●●●
●
●●●●●
●●
●●●●

●

●●●●
●●●●

●
●
●●●●●
●
●●●●●●●●●
●●●●●●●
●●●●●●
●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●
●●●●
●●●●●
●
●●●
●
●●●●
●●●
●
●●●●●●●●
●
●●●●●
●●●●●●
●
●
●
●

●●●
●●
●
●●
●●●
●●
●
●
●●●●●●●●●
●
●●●●●●
●
●●●
●●●●●
●●●●●●●
●
●●

●
●●
●●●
●
●●●●●●●●●
●
●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●●●●
●
●
●

●●
●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●
●●●●●●●
●
●●●●●●●●
●●
●
●●●●●●
●
●●●●
●
●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●
●
●
●●
●●
●●●●●●●●●
●●●
●●
●
●●●●
●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●
●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●
●●●●●
●
●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●
●
●
●●●●●●●
●

●●
●●●●●
●●●●●●●●●●●
●●●
●●
●●
●●●●●●
●
●
●
●●●
●●●●●●●●
●
●
●●●

●●

●
●●●
●●
●●●●●●●●●●●●
●
●
●●●●●●
●●
●●●●●●●●●
●
●
●
●●
●
●
●●●●●●

●●●●●●●
●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●
●

●●●
●
●●●●
●
●●●
●●
●
●
●●●
●
●●
●●●
●
●
●●
●●●
●●●●●●●●●●●●
●●
●●●
●

●●●●●
●●●●
●●
●●●●
●●●
●●●
●
●●●●
●●●
●
●
●●●
●
●●●●●
●
●
●
●●●●●●
●

●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●
●●
●●●●●
●
●●●
●
●●

●●
●●
●●●●●●
●
●
●●●●●
●
●●●●●
●
●●●●●●●●●●
●●●●
●●●●●
●●●●
●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●
●
●
●●●●
●
●●●●●●●●

●●●●●●●●●●●
●●●●●
●●
●
●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●

●●●●●
●
●●●●●
●
●
●●●●●●●●●●●●●●
●●●●●●●●
●
●
●
●●●●●
●
●●●●●●

●●●●●●
●
●●●●
●●●
●
●●
●●●●●●
●
●●●●
●●
●●●
●●●●
●
●●●
●
●●
●●●●●●●●●
●
●●●●●●
●●●●●●●●●●
●●●
●●●●●●●
●●●●●
●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●
●●
●●
●
●●●●●●●●
●●●●●
●
●
●
●●
●●●●●●●●●●
●
●●●●

●●●●●●
●
●●●
●●
●●●●●●●
●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●

●●
●
●
●
●●●●●●●
●●●●●●●●●
●
●
●●
●
●●●●
●
●
●●●●●●●
●●
●●●
●●●●●●
●●●
●●●
●●
●●
●●●
●
●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●

●●
●●●●●●●●●●
●●●●
●●●●●
●●●
●●●●●
●
●●●●
●●●●●●
●●
●●●
●●●●●

●●●●●●

●

●
●
●●
●
●
●
●
●
●
●
●●●
●
●●●●●●●●
●
●●●
●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●
●●●
●●
●●●●●
●
●●●●
●●●●●
●
●●●
●●
●●●
●●●●●●●●●●●
●
●●●●
●
●●●
●●●
●
●●●●
●●
●
●●●
●
●
●
●●●
●
●
●●●●
●
●●●●
●
●●
●
●●●●
●●●
●
●
●●
●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●
●
●●●●●
●
●●●●●
●●●●●●●●
●●●●●●
●●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●●●●
●
●●●●●●●
●
●●
●●●●●●●●●
●●●●●
●●●●●●●●●
●●●

●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●
●●
●
●
●●●●●●
●
●●●●●●
●
●●
●
●●●●●●
●●●●
●
●●
●

●

●●●●●●●●●●●
●
●●●●●
●
●
●
●●●●●
●●
●●●●●
●
●●
●
●
●
●●●
●●
●
●●●●
●
●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●●●
●●
●●●●
●
●●●●●●●●

●●
●
●
●●
●
●●
●●●●
●●●
●●
●●
●●●●●●
●
●●●●
●●
●
●●
●
●●●●●●
●●
●●●●
●

●●●●●●●●●●●●
●
●●
●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●
●●
●
●
●
●●●●●
●
●●●●●●
●●
●
●●●
●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●
●●●●●
●
●
●●
●●●
●
●●●
●●
●
●●
●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●
●●
●●●
●
●●
●●●●●●●●●●
●
●●●●●
●●●●
●●●●
●
●●●●●●●
●●●●

●●●●●●●
●●●●●●●
●●●●●●●●●●
●●
●●●●●
●●●●●●●●
●●●●●●●●●
●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●

●●●●●
●●
●●●
●
●●●●
●●●●●●●●●●●
●
●●●
●●●●●●●●●●
●
●
●
●
●
●
●●●●
●●
●●●●●
●●●●●
●●●●●●●●●●●
●
●●
●●●●●
●
●●●
●
●●
●●●●●●
●●●●●●●●●●
●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●
●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●
●●●●●●
●●
●
●●●●●●
●●●●
●
●
●●●●●●●●
●●●●●●●●
●●●●
●●●
●
●
●●

●●●●

●●●●●●●●●●●●●
●
●●●●
●
●
●
●●●●●
●●
●●
●●
●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●
●●
●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●
●
●

●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●●●
●●●●●
●

●●
●
●●●●●●●●●●●
●
●●●●●
●
●
●●●●●●●●●●●●●●
●
●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●
●
●
●●●
●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●
●
●●●●●●
●●●●●●●●
●
●●●●●●
●●●●●●●
●●●●●●●●
●

●●●●●

●●●●
●●●●●
●
●●●●●●●
●●●●●●●●●●
●●●●●●●●
●
●●●●
●
●
●●●●●●●●

●●●●●●●●
●
●●
●
●●
●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●
●
●
●●
●●
●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●
●●●●●
●●●

●
●●●●●●●●●
●●●●
●●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●
●●
●
●
●●
●
●
●●
●
●●●●●
●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●
●
●
●
●●
●
●●●
●
●●●
●
●●
●●
●●●●●
●
●●●●
●●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●
●
●●
●●●●●●●●●●●
●
●●●●
●
●●●●
●
●●●●●●
●●●●●●●●●
●●●
●
●●●●
●●
●●●
●●●●●●
●●●●●
●●
●●●●
●
●
●
●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●
●
●●●●●●
●●
●
●●
●●●●
●
●●
●●●●●●
●●●●
●
●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●●●
●●●●
●
●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●
●●
●
●●●●●●●●
●●●●●●
●
●●
●
●
●●
●●
●●●
●
●●●
●●●●
●
●
●
●
●
●●●●
●●●●●●●
●
●

●●●

●
●●●●●
●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●
●●●
●
●
●●●●●●
●●●●
●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●
●●
●●●●●
●●●●●●●
●
●
●●●●●

●
●
●
●
●●●
●●
●●●
●
●●●●●
●
●
●●●●
●
●
●●●●●●
●●●●●●●●●
●●●
●●●
●●
●
●●
●
●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●
●●●●●●●●
●

●●
●●●●●●●●
●
●
●●●●●●●●●
●●●●
●●
●●●●●●●●●
●
●●●●
●
●●●●●
●●●●●
●
●●●●
●
●●●●●●
●
●●●●
●●●●●
●●
●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●
●
●
●
●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●
●

●●
●●●
●●●
●
●
●●
●●
●
●●
●
●
●●●●●●●
●
●●●●●
●
●
●●
●●●●●●
●
●
●
●●
●
●●

●●
●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●
●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●
●●
●●●●●●
●
●●
●●
●●●
●
●
●
●●●●
●
●●●●●●
●
●●●●
●●
●●●●●●●●●●●
●●
●●●
●●●
●●●●●●●●
●
●●●●●●●●●●●●●●
●
●
●
●●●●●
●●●●●●●●
●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●
●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●●●●●
●●
●●●●●●
●●●●●●●

●●●●
●
●●
●●
●●●●●
●●
●
●●●●●
●
●●●
●●●
●
●
●●●●●
●●●
●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●
●●●

●●●●●●●●
●
●●
●●●●●●●●●●
●●●●●●●
●
●●●●●●●●
●●

●●●●●
●●●
●●●●●
●
●●
●
●●
●
●●
●●●●●●●●●
●●●
●●
●
●●●●●
●●●●●●●●

●
●●●
●
●●●●●
●●●●●●●●
●
●●●
●●●●●●●●
●
●●●●●●●
●●
●●●●●
●●●●
●

●●
●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●
●
●●●
●
●●●●
●●
●●●
●●●●
●●●●●
●
●●●●●●●
●●●●●●●●
●●●●
●●
●
●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●
●
●
●●●●●●●●●
●●●●●
●●
●●●●
●●●●●●●
●
●
●
●
●●●●●●●●●●●●
●

●●●●●●

●●●●
●
●●●●●●●●
●●●●●●●
●●●
●●
●●●●
●●
●●●●
●
●●●●
●
●●
●●●●●●
●

●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●
●●●●●●
●●●
●●
●●●●

●●
●
●●●
●
●
●●●
●●●●●●
●●●●●●●●
●●●●●
●
●●●●●
●●●●●
●
●●●●●
●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●●
●
●
●●
●●●●●●●●
●
●●●
●
●●
●
●●●

●
●●
●●
●●●●●●
●●●●
●●●●●●●●●●●●●●
●
●●●
●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●
●●
●●●
●●
●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●
●
●●●●●
●
●●●●●●
●
●●●
●●
●●●●●●●●●●●
●●●●
●
●●●
●
●●●●
●●
●
●●●●●●●●●
●
●●●●●●●
●●●●●●●●
●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●
●
●●●●●●
●
●●●●
●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●

●●
●
●●
●
●
●●●●●●●
●●●●
●●●●●●
●
●
●●●
●●●●●
●
●●●●●●●
●●
●●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●
●
●●●●●●
●
●●●
●
●●●●●●

●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●

●
●●●●●●●●●●●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●

●

●

●●
●

●●

●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●

●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●
●●●●●●●●●●●
●●●●●●●
●●

●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●
●
●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●

●●●●●

●●

●●●●
●●●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●
●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●
●
●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●
●
●●●●●●●●●●

●●

●●●●
●
●●●●●
●
●●●●●●●●●●●●
●
●
●
●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●
●●●●●●●●●
●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●
●●●

●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●
●

●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●●●●●●
●
●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●
●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●

●●●

●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●

●
●
●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●
●
●●●●●●●●
●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●
●●●
●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●

●●

●●

●●

●●

●●
●●

●●

●●
●●●
●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●●
●●

●● ●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●●

●● ●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●●
●●

●● ●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●●

●●

NSD < 0.05 NSD in [0.05,0.1] NSD in [0.1,0.25]

NSD in [0.25,0.5] NSD in [0.5,1] NSD > 1

1.2

1.5

1.8

2.1

1

2

3

4

5

2

4

6

5

10

15

20

0

10

20

30

0

200

400

600

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Strategies

N
or

m
al

iz
ed

 M
ak

es
pa

n

(b) |T |
|P | = 2

●●●

●
●
●●

●

●●
●
●●

●
●●●

●
●
●
●

●

●
●
●
●

●
●●●●
●
●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●
●

●

●
●

●

●
●●
●

●
●●

●
●
●

●●
●

●
●●●

●●

●
●●
●●
●

●
●
●●
●
●

●

●

●

●

●
●●
●

●

●

●

●
●●

●

●●
●●

●

●

●●●●
●●●

●●

●
●
●
●●●

●
●

●

●●
●
●●
●●●

●

●
●
●

●●
●

●

●

●

●

●

●●

●

●●
●●●
●
●●

●

●●

●

●

●

●

●●●
●

●

●

●

●
●

●

●
●●
●

●
●
●●

●

●

●
●

●●●●

●

●

●

●

●

●

●●●
●●

●●

●
●
●

●

●●
●

●

●
●
●●●

●

●

●

●●●●

●
●●
●
●

●
●●
●
●●●
●
●
●
●●●●●●●●●
●●
●

●●

●
●

●●
●●●●●●●●●
●
●●●

●●
●

●
●

●

●

●
●

●
●●

●

●●
●
●
●
●

●

●
●
●

●
●

●

●
●
●
●●●
●
●●
●●

●
●

●●●
●

●●
●

●

●

●
●
●
●●

●●●

●

●●
●●●

●
●
●●

●

●●●
●
●●●

●●●
●

●●●●●
●●
●●●●●

●

●
●●

●●

●

●●

●●
●

●

●
●●

●
●●
●

●

●

●
●

●

●

●
●●
●●

●

●●●

●

●

●

●

●

●

●
●
●●

●

●●

●

●
●

●

●●
●
●
●

●

●
●

●
●●

●●

●●●●●

●

●

●●

●
●●
●
●

●●●
●

●

●

●

●
●●●●●●●
●●

●●
●
●

●●

●●●
●●●
●
●

●●
●

●

●●●●
●
●●
●●
●●●
●●●

●

●

●●●

●

●
●●●●●●
●●

●●
●●●●●●●●●●
●
●●●
●

●
●●●●●
●●
●●●
●●●
●●●
●
●
●
●
●
●●●

●●●●●●
●
●

●
●●●●●●
●
●●●●●
●
●
●●
●●●●●●●●●●●
●●●●●●●●●
●●
●●●
●
●●
●●●●
●
●●●●●
●●●
●●●

●●
●●●●
●
●
●●●
●
●
●●
●●●
●
●●●
●
●
●●●●●
●●●●●●●●●●●
●●●●
●●
●
●●●
●●●●
●
●
●●●●
●
●●●●●●●●
●●●●
●●●●●●●

●●
●●
●●●●

●

●●●●
●●
●●
●●●●
●●●●●
●●
●
●●
●
●●●●●●
●●●
●
●●●
●●●
●
●●●●●●
●
●●●
●●
●●●
●●
●
●●●●
●
●●●
●
●
●●●●●●●
●●
●●●
●●
●●●●●●●●
●●●●●●
●
●●●●●
●●●●

●

●
●●●
●●●●
●●●●●●●●
●
●●●●●
●

●
●●●●●

●
●
●
●
●●●
●
●
●●●●●
●●●●
●●
●
●
●●●
●

●
●●●
●
●●●●
●●●●
●●●●●●●●●
●
●
●
●
●●●
●
●●●●
●●
●●
●●●
●
●

●
●
●

●
●●

●
●
●

●

●
●●
●●●●
●●●
●

●

●

●

●

●●●●●
●
●●●●
●

●
●●

●

●
●
●
●

●

●
●

●●

●

●

●

●
●
●
●●

●●

●
●●
●●
●
●●●●
●
●●
●
●
●●

●
●●●

●

●

●
●
●●●
●

●

●
●

●

●

●
●
●
●

●

●●●
●

●

●●●●
●

●

●●●●●●●

●●

●
●
●
●
●
●●●

●

●●

●

●
●
●●●●●●●

●●
●

●
●

●
●

●●

●

●

●

●
●
●
●
●●●
●

●●

●
●

●

●

●●

●
●
●

●

●

●●●●
●●●

●
●
●●

●

●

●
●

●●●●

●

●

●

●

●

●

●●●
●●

●●

●
●
●

●

●●
●

●

●
●
●●●

●

●

●

●●●●

●
●●
●
●

●
●
●
●
●
●●●
●●●●●●●●●
●
●
●●●
●●

●
●

●●
●●
●
●
●
●●●●
●
●●●
●●●●
●

●●
●
●●
●●●
●●
●
●

●

●
●
●
●
●
●
●

●

●

●
●●●
●●

●●●
●●
●
●●
●
●●
●
●
●
●
●
●
●
●●●
●●
●●●●●●
●●●●●●
●●

●

●●●

●●●

●

●●
●●●
●
●●●
●
●
●
●
●
●
●

●●

●

●●

●
●●

●●●●●●●●●●●●●●●●
●
●
●●●●
●
●●●●●
●
●●●●●●●●
●
●
●●
●●●●●●●

●

●
●●●●
●●●●●●
●●●●●

●

●●
●●●●●
●
●●●
●●
●
●

●

●
●
●
●●●●●
●

●
●
●●●●
●
●
●
●●●●●
●
●
●●●
●
●●●●●●
●
●●●●●●

●

●●●●●●
●

●●
●●●●
●●●●●●●●●●●
●
●●
●●

●●●
●
●●●●
●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●

●

●

●

●●●
●

●

●
●●●●●●●

●

●●●
●●
●

●

●●●

●

●
●
●●
●●●●●●

●
●●●●
●●●

●●●●●
●
●●●●
●●●●●●
●●●

●●●●●
●●●●●●●●●
●
●●●

●●
●●●
●
●●
●
●●

●

●
●
●●●●●
●
●

●

●●●●
●

●●●
●●
●●●●●●●
●●●●●●●●●●
●●●
●
●●●
●

●

●
●●●●●●●●●●

●
●
●●

●

●

●

●●●●●●●●●●

●

●●●●●●
●
●
●●●●●
●●●●●●●●●●●●
●
●●●●●
●●●●
●
●
●●●

●

●
●
●●●
●●●●●
●●●●●

●

●
●

●

●

●

●●●
●
●●●●●
●●
●
●●
●●
●●●●●
●
●●●●●
●
●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●
●
●●
●
●●
●●●
●
●●●●
●
●●●●●

●
●●●●●
●
●●●●●●
●●●●●●●
●●●●●●
●●
●
●●●●

●
●
●●
●●
●●●●●●●●
●●●
●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●●
●
●●●●
●●●●●●●
●
●
●●●
●●
●
●●●●●●●●●●
●●●
●●●●●●●
●
●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●
●
●●●●●●
●●●●
●
●●●
●●●●●

●
●●●●●●

●

●
●●●●●
●●●●●●
●●
●
●
●
●●●
●
●●●●●
●
●●●●●●●●●●●●

●
●
●
●●●●●
●
●
●●●●●
●
●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●

●
●●●
●●●●●
●
●
●●●●●●●
●●●
●●
●●
●●●
●
●●
●●●●●●
●
●●
●
●●●●●●●
●●

●●●●
●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●
●●●●●●●
●●●●●●●●●●●●●
●●●
●
●●●●
●
●●
●●●●

●
●●
●
●●●
●●●
●
●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●
●
●●
●●
●●●●●●

●
●●
●●●
●

●●

●●●●
●
●
●
●
●●
●
●●
●
●
●

●
●●●●

●
●
●
●●●●●
●
●●●●

●●
●●●●●●●
●
●●●●●●●
●
●●●

●
●
●

●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●
●
●●
●●●●●
●●●●
●
●●●
●●●●●
●
●●●●●●
●●●
●
●●
●●
●●●●
●●
●●
●
●●●
●
●●●
●●
●●●●●●●
●●●●●●
●
●
●
●●●●●●●
●
●●●●
●●●●●
●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●
●●●●●
●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●
●
●●●●●●●●

●
●
●●●●●
●●●●
●
●●●●●●●●●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●

●●
●
●
●
●
●
●●●
●

●
●●●
●●●●●●
●
●
●●●

●

●●

●●
●●
●●
●

●
●
●
●
●●●
●●●●
●

●●●●●●●●●●
●●●
●●●●●●●
●
●●
●
●●
●●●
●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●
●●
●●●
●●●

●●
●●
●

●

●●

●

●●
●●
●
●●
●●

●
●
●

●

●●
●●
●
●●
●
●
●
●
●●●●
●

●

●

●

●●
●
●●●●●
●●●●●●
●
●●
●
●●
●●●●●
●●
●●●
●●
●
●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●
●●●
●●
●●
●
●●
●●
●●●●●
●●●
●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●
●
●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●

●
●●
●●
●●
●●●
●●
●
●●●●
●
●
●●●●●●
●
●
●

●
●●●●
●
●
●
●

●

●●●●
●●●●●●●●

●
●●
●
●●●●
●
●
●●●●●●●
●●
●●●●●●●●●
●●●●●●●●

●
●●
●●●

●

●

●

●●●
●●
●●●

●

●●●●

●
●●●●●

●

●●
●●

●

●●●●●●●
●●●●●●●●●●●●●●●●
●●●●
●
●●
●
●●●●●●
●●●●●
●●●
●
●●●●●●
●●●
●

●
●●●●

●
●
●●
●●●●●●●●●●
●●
●●
●
●●
●●●●●
●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●
●
●●●●
●●●●●
●
●
●

●●●●●●●●●●●
●
●●●
●●●●●
●●●●●●●●●
●
●●●●●●●
●
●●
●●●●●●
●
●●●●
●
●●
●
●●
●●●
●
●
●
●●●
●
●●●●●●●
●
●●●●●●●
●●●●

●
●●
●●
●●●
●
●●●●●●●●
●●●●
●
●
●●
●
●●●●●●
●●●●

●
●
●
●●●●

●

●●●●●●

●
●●●●
●●●●
●●
●●●●●●●
●●

●●●●
●
●
●
●

●

●
●
●●
●●
●
●●●●●
●
●
●
●
●
●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●
●●●
●
●●
●●●●
●●
●●●●●●
●●●●●●●●●
●
●●●
●●●●●●
●●●●●
●●●
●●
●
●●●
●●
●
●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●
●●
●
●
●●●●●
●
●●●●●●●
●●●●●●●●●
●
●●
●
●
●●
●●●●
●●●●●
●
●●●●●●●●●●●●●●

●●●
●
●●●
●●
●●
●●
●
●●●●●●●●●●
●●●●●●
●

●
●
●●●●
●
●●●●●
●●●●●●●●
●●●

●●●●●●●●●

●
●●
●●●●●
●●

●●●

●●
●
●
●●●●●
●
●●●●
●●
●●
●●
●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●
●
●
●

●

●
●●
●
●●●●
●
●●
●
●

●

●

●

●

●●●

●
●

●

●

●●●●
●●

●●●●●●●
●
●●●●
●●

●

●●
●●
●●●●●●●●●●
●
●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●

●●●●

●●
●●●●●
●
●●●●●●●
●●●●●●●
●
●●
●
●●●●●●●●●●●
●●●●●●●●●●
●
●●
●
●●●

●

●

●●●

●●
●●●●

●

●
●●
●●●
●●●
●

●●●●●
●
●
●●●●●●●
●
●●
●
●
●●●●●
●●●●
●
●●●●●●●
●
●●●
●
●●●
●
●
●

●●●●●●

●
●
●●●●●●

●

●
●●●●●●
●●●
●●●●●●●
●
●●
●●●●●●●●

●●●

●●●●●●●●
●●●●●●●●
●
●●
●●●●
●
●●●●●
●●●●●●●●●
●●●●●●

●●
●●

●●
●●●●●●●●●
●●●●●●
●●
●●●●
●●
●●
●●●●●●●
●●●●
●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●●
●●●●●●●
●●●●●●
●●
●●
●●●●
●
●
●●
●●
●●●●
●
●●●●●●●●●●●●
●●●
●
●

●

●●●●
●
●
●
●

●●●●●
●
●●

●●●●●●●●

●

●●●
●●●
●
●●●●●

●

●
●●●●●●
●●●●●
●●
●
●●●●
●●●●●●
●
●

●
●●●
●
●●●●●
●
●●

●

●

●

●●●●
●●●
●●

●

●

●●

●

●●●

●

●●
●
●●●●●●●●
●●●●●
●●●●●
●●●●
●
●●
●
●
●●●●●

●●

●
●
●●●●
●●●●●
●●●●
●
●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●
●
●
●●
●

●
●●
●
●●●●
●●●

●

●●
●●

●

●
●●

●

●●●●●

●

●●●●●●●●
●●●●

●●

●

●

●
●
●●●●
●●●●

●
●●●●●●●●●
●
●
●●●●
●
●●●●
●
●●
●●●●●●

●

●
●●●●●●●●●
●●
●
●
●●●●●●●
●
●●
●●●●●●●
●
●●
●
●●●●●
●●
●
●
●
●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●
●●●●

●●●

●

●

●

●●●●
●

●●●

●

●●

●
●●
●

●

●●●●●●●●●●

●●●

●●
●
●●●●●●●
●●●
●
●●●●
●●●●●●●
●
●●
●●●●
●●
●●
●
●●

●

●●●
●
●●
●

●●●
●●●●●●●●
●●●●●●●●●●
●●●

●●

●
●

●

●
●
●●●●
●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●
●●
●●●●●●●●
●●●
●
●●
●●●●●●
●
●●
●
●●●●
●●●●●
●●
●
●●
●●●●●
●
●●
●
●●●
●
●●●
●
●
●
●●●●

●●●●●●●●
●●

●
●
●●
●
●●●●●●●●●
●●●
●
●
●●●●●●●●●
●●●
●
●●●●●
●●
●

●●●●●●●●

●●●●●
●●
●●

●●●●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●●●●●
●●
●

●

●●●●●●●

●●

●
●●

●

●●●

●●●●●●●
●●
●●●●●●
●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●

●
●●●●●●●
●●●
●
●●●●●●
●●
●
●
●●●
●

●●●●

●●●

●●●●●

●

●●

●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●
●●

●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●
●
●●
●●●●●●●●●●●
●●●●●
●●
●●

●

●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●
●●●

●

●●●●●

●

●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●●●●●●●●●●
●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●

●

●●

●

●●●●●

●

●●●●

●

●
●
●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●
●●●●●●●●
●
●●●
●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●
●
●●●●●
●
●●
●●
●●●
●
●●●●●
●●
●

●

●
●

●

●●

●
●
●
●●●●
●
●
●
●

●
●
●●

●●
●

●●
●●
●
●●●
●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●
●
●
●●●●●
●

●
●
●

●

●

●

●●
●
●
●

●●●
●●
●
●●
●
●
●●●●●●●
●●
●
●
●●●
●●●●●●●●

●●
●●
●

●●●●
●
●●●

●

●

●●

●●●●●●●●●
●

●●●●
●
●●●

●

●●●●●●●●●

●
●
●●●●●●●●●●●●●
●●●●●
●●
●●●●
●●●●●●●
●●●
●
●●
●
●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●
●
●●

●

●●●●●●●●●●●●

●

●●●
●
●●
●●

●
●●
●
●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●●

●

●●●●

●

●

●

●●●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●
●
●●●
●●●●
●
●●
●
●
●●●●●●●●●●
●●
●
●
●
●
●●●●●
●
●

●

●
●●
●
●
●●
●
●●●
●●●
●
●●●
●
●●
●
●
●
●
●

●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●
●●●●
●●
●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●
●●

●

●

●
●

●

●
●
●

●

●

●

●●●●●
●

●●●●
●●●

●

●●●●●●

●

●
●
●●●●●●●
●
●●●●●●●
●●
●●●●●
●
●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●

●
●
●
●●
●
●
●
●●
●
●
●●●●●●●
●
●
●●●
●
●●●●●●●●●

●
●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●

●

●●●

●

●

●

●●●

●

●●

●

●

●●

●●●●●●●●●●●●●●●

●

●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●●●●●

●

●●●

●

●
●
●●

●

●

●

●

●●

●

●

●
●
●●●
●●●●●●●
●
●●●●●●●●●
●
●

●
●●●
●
●
●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●●●
●

●●●●●●●

●●
●●

●●
●
●

●

●

●

●●

●

●

●

●
●●●●●
●
●●
●●
●●
●●
●●●●●
●
●

●●
●
●●●

●

●
●
●●●
●
●
●●

●●●●●●●●●

●●●●

●

●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●
●
●
●
●
●
●
●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●●●
●

●●●●●●●●●●

●●

●●●
●●●

●

●●●●●●●●●●●●●●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●
●●●●

●

●

●

●●●●●●

●●

●●

●●●
●●●●
●●●

●●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●

●

●●

●●
●●
●●
●●●
●
●●●●●

●

●
●●●●●
●

●

●●●

●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●

●●●●●●●●●●●●●●●●
●●●

●
●

●
●
●●
●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●
●

●
●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●
●●●
●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●
●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●
●
●●●●●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●
●●●
●

●
●●●●●●●●●●●●●●●
●●●●●●●●●

●
●
●●
●●●
●●●●
●
●●

●
●●
●
●●
●
●●●●
●●●●●●●
●
●●
●●
●
●●●●●
●●
●
●●●
●
●●
●●
●
●
●
●
●
●

●

●●●●●●●●●●

●

●●
●●●●●
●
●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●

●●●●●●
●●●●●●●
●
●
●●●●●
●●
●●●●●●●
●●●●●
●
●
●
●●●
●
●
●●
●●
●
●●
●●
●●●●●●●●●●●●
●
●●

●
●●●●
●●
●
●

●

●●●●●
●●●●●●
●●●
●●●●
●●●●●●●●●●
●
●●

●

●
●

●
●
●
●
●
●

●●●●●●●
●
●●●
●●●

●

●●●

●

●●●
●
●●●●
●●●●●●
●
●
●●●●●

●

●
●
●
●●●●●●

●
●

●
●

●●●

●

●●●●●●●
●
●●
●●
●
●●●
●●
●●●●
●
●●●●
●●
●
●
●●●
●
●●●●

●

●●

●●●●
●●●●●●●
●
●
●
●
●
●
●
●

●
●●●●●
●●●●●●●●
●●●
●
●●
●
●
●

●

●●●●●●●●
●●●●●●

●
●●●●●●●
●●●
●●●●
●
●●
●
●●●●
●●
●●●●●
●
●●●
●●●●

●●●●●●●
●
●●●●
●
●
●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●
●
●
●●●

●●●
●
●●●
●●
●●●●●●●
●
●●●●●
●●●●●●●●●
●●●●
●●●●●●●●
●
●●●●●●

●

●

●●

●
●

●
●
●●●
●●●●●

●

●
●
●
●●●
●●●●
●●●●●
●

●
●
●●
●
●
●●●
●
●●●●
●

●
●●●●●●●●

●

●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●

●

●
●●●●●●●●●

●●●●
●●
●
●●●●●●●
●
●●●●●

●
●●●

●
●●
●●●●

●

●●●●●●
●●●●●●●
●
●●●●●●●

●

●

●●●

●

●●●●●●●●●●
●●●

●

●
●
●

●●

●
●●●●
●
●●●●
●●●●
●
●●●●●●●●●●●

●
●●
●●
●

●

●
●
●

●

●
●

●

●●●●●●
●●
●
●
●●●●●●●●
●
●●●●●●
●

●

●●

●

●

●
●

●●●●
●
●●●●

●
●●●
●●●
●●●
●●●●●
●●
●●●●●●●●
●●●
●
●●●●
●●
●

●

●

●
●

●
●

●
●●

●

●

●
●●
●●●

●
●

●
●
●

●●

●●

●●
●●
●●
●
●
●
●
●●●
●
●
●●●●
●●●●
●
●●●●
●
●

●

●●●●●●●●

●

●
●●●●●
●
●●●●●
●●●●
●●●●●●●●●●●●
●
●

●●●●●●●●●●●
●●●●●

●●●●●
●
●
●●●●●●●●●●●●●●

●

●●●●●●
●●●●●

●

●●●●●●●●●●
●●●●●●

●●●

●●

●

●

●●●●
●●
●●●●
●
●●●●●
●●●●●●●●●●●●●
●
●

●●●
●
●●●●
●●●●●●●

●●●●●●

●

●

●●

●

●
●
●●●●●

●●

●
●
● ●

●
●●●●●

●

●●
●
●

●

●●●
●

●

●●

●

●

●

●
●●

●

●●

●●●

●●●●●

●

●

●
●●●●●
●
●
●
●
●●●●●
●
●●●●●
●●

●●●●●
●

●

●
●●●
●
●
●●●●●●
●●
●●
●●●
●
●●

●●●●
●●●●
●

●
●●

●

●●●
●●
●
●●

●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●
●

●
●

●
●
●

●●
●

●
●

●
●

●

●●

●
●

●●
●

●
●
●
●
●

●

●●
●●

●

●●

●
●

●
●
●●●
●

●
●

●●

●
●●●●●●●●●●
●

●
●●
●

●

●

●

●
●

●

●
●
●●
●

●

●

●

●
●
●

●

●

●

●
●

●●

●●

●

●
●●

●●

●

●●

●●

●
●
●●

●

●●●

●

●

●

●
●●●●
●●●●●●●
●●
●●●
●
●
●●●●●●●●●●●●●●●
●
●
●●●●●
●●

●

●●●

●

●
●

●

●
●

●
●

●●
●

●

●

●●
●
●

●

●

●

●

●
●●
●

●
●

●

●●●●

●●
●
●
●

●

●

●●

●

●

●

●●
●
●

●

●

●●●●
●

●●
●●●●●●

●
●
●●
●
●
●
●●●●●●
●
●
●●
●
●●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●●

●

●●●●

●

●

●

●

●
●

●

●

●

●
●
●
●●
●●●
●
●●
●●
●●●●●

●

●
●

●●

●●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●●

●●
●●

●

●

●
●●●●●●
●
●●●

●

●●●●●●●
●
●
●
●●●
●●
●
●
●
●●●●

●

●●●
●
●

●●

●●●

●

●●

●

●●●●

●

●

●

●

●
●

●

●
●●

●●●
●●

●

●●

●

●●

●

●

●●

●

●●

●

●●●●●●●
●
●●●●
●●
●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●
●
●
●●●●
●
●

●

●●
●●●●●
●●●●●
●●●●
●

●●●●●
●

●
●
●●
●
●
●●●●
●●●
●
●●●●
●
●●●●●●●
●●●●
●

●●●
●
●
●●
●●
●
●

●●
●
●●
●●●●●●

●●●
●

●
●

●
●

●

●

●●

●
●●

●
●●

●
●
●
●
●
●●●●
●●
●

●

●

●
●
●

●●
●
●

●

●●
●
●●

●

●●●
●
●

●

●
●

●
●●●
●●
●●●●

●
●
●
●
●
●
●

●
●
●●●
●
●
●●
●●●
●

●
●
●
●●
●
●●●
●●●●●●●●●●●
●
●
●●●●●
●●
●
●●●
●●●
●●●●●●●

●

●
●
●●●

●
●●●●●●●●●●

●

●●●●●●●●●
●●●●
●
●●●●●●●●●●
●●●●●●●●●●●
●●●●

●

●●●●●
●

●
●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●●

●
●

●

●
●
●

●
●

●

●●●●
●

●●
●
●

●

●●

●●

●

●
●

●●
●

●

●
●

●
●
●

●

●

●●
●

●

●

●

●
●
●●
●

●

●

●●●●●
●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●
●●●●
●
●
●●
●

●●

●
●

●

●

●

●

●

●
●

●●

●

●●

●
●●

●●

●

●

●

●

●

●●

●●●

●●

●●

●

●●
●
●●●●●●●●●●●●
●●●●
●●●
●
●
●
●
●●
●
●

●●●●●●●●●●●●●●●
●●
●●
●
●
●●
●

●

●●
●●●
●●
●

●●
●

●

●
●
●●●●
●
●●
●●●
●
●

●

●

●
●●●

●

●
●
●

●

●

●

●

●

●●

●●

●
●●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●●●

●●

●
●

●

●
●
●●
●●●●

●
●
●●●●●●●●●●●●●●●●●●●●
●●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●●
●

●●

●

●

●

●
●

●

●●
●●

●●

●
●
●

●

●●●
●
●

●
●
●
●

●

●●●●
●●●
●
●
●●●
●●
●

●●●
●●●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●
●●●●

●

●
●

●
●

●
●
●●

●

●

●

●

●

●

●
●
●●●

●●

●

●
●

●●

●

●
●
●●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●●●

●

●

●●
●

●

●
●
●
●●●●●●●●
●●

●●
●●
●
●
●●
●●●●●●

●

●●

●●●
●
●
●

●

●
●●
●

●●

●●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●●●●

●

●
●

●

●

●

●

●●

●
●●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●
●●●●●●●●
●●●●●●●●●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●
●●

●●●
●●●

●

●
●●●●●●

●●
●●●
●●●
●

●●
●
●●
●●
●
●●
●●
●●
●
●
●

●

●●●

●●

●●

●

●
●

●
●

●

●

●
●
●●
●●●

●

●

●

●

●●●
●

●●

●

●

●
●
●●

●●●

●

●●

●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●
●
●●●
●

●
●●
●

●

●

●
●●
●●●
●
●●●
●●
●●●
●
●●●●●●●
●●●●
●
●
●
●
●●●
●

●●
●●●
●
●●
●
●●
●
●●●●
●
●●●●●●●●●●●●●●●

●
●●
●
●●●●●●
●●●●●●●●
●
●●●●

●
●●●●●●

●
●●●

●

●
●
●
●
●

●

●
●

●

●
●●

●

●●●
●●
●
●

●

●
●

●
●●●
●●●●

●●

●

●

●
●

●
●

●

●●

●

●
●

●●●●●●
●●●

●●●●●●●●
●
●●
●
●●
●●●●
●●
●●●
●●
●
●●
●
●●

●
●●
●
●
●
●
●●
●●
●

●
●
●
●
●●
●
●●
●●●●●●
●●●●●●●●●●●

●

●●●●
●
●●●
●●●
●
●●●●●●
●
●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●
●
●●●●●●●
●
●
●●●●
●●●

●
●

●

●

●

●

●
●●●●

●

●

●
●
●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●
●

●
●

●

●

●

●

●
●
●●●
●
●
●
●●
●●

●

●●
●●

●

●

●

●

●

●
●●●●
●

●●

●
●

●

●

●

●
●●●●

●

●

●●
●●●●●●●
●●●●●●●
●●●
●
●
●

●
●●●●●●
●
●
●●

●

●●●●● ●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●●
●
●●

●

●
●●
●

●●●●
●

●

●

●
●●

●●

●

●●
●
●●●●●
●
●●
●
●
●
●●●●●●●●●●●●
●
●●
●●
●

●

●
●●
●●●●●●●●
●●
●●

●●●
●●●●●●
●
●
●
●●●●●

●

●●●●●●●●●●
●

●●
●●
●●●
●
●
●●
●

●

●●●●
●●
●●●
●

●●

●

●
●
●●
●
●
●●●●
●
●
●

●●●●●●●●●●●●●●●●●●●●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●

●

●
●●
●●●●
●●●

●●●
●
●
●
●●
●●

●●
●
●●●●●●●●
●
●●●●

●
●●
●
●

●

●

●
●
●
●
●
●
●

●●
●●●●

●

●
●
●

●
●

●●●

●

●

●●
●
●

●
●

●

●
●

●

●
●
●●

●

●

●

●

●
●

●
●
●●●●●●
●●

●
●●●●
●
●●●
●

●

●
●
●

●

●●
●●●●●
●
●
●●●
●●●●
●●
●

●

●
●●●●●
●
●
●●
●
●●●●●●●●●●●●
●●
●
●●●●
●●●●●●●●●●●●●
●●
●
●●●
●
●●●●●●●●●
●
●●●●●●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●●●●
●

●

●

●●
●

●
●
●

●
●

●●●
●

●
●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●●●
●●●

●

●
●●

●●●

●

●
●

●●

●●
●
●●●●●●

●

●●

●●●
●
●●
●●
●●

●
●

●●●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●●
●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●●
●●●●
●●
●●
●
●●●
●
●●
●
●●●●●
●●●●●
●●
●●●●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●●●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●●●

●●●
●
●●
●●●●●●
●
●

●
●●
●
●
●
●
●●●●
●
●
●

●●
●
●
●
●●
●
●●●
●
●

●●●●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●●●

●●

●
●
●
●

●

●

●
●●

●

●●

●

●

●

●●
●●

●
●●●

●●
●●●●●●●
●●
●●●●●●●●●●●●●
●●●●●
●
●
●●●●●●

●
●●
●●
●●●●●●●●●●●●
●
●●
●●●●●●●●●●
●●
●●●

●
●●

●

●
●
●
●●●●●●●
●
●●●
●●●●●●●
●
●●
●●
●

●
●●
●
●
●
●●
●

●●

●●
●
●●●●
●

●
●●●●
●●●●

●
●
●

●
●●●
●●●●●●●
●
●●●●
●
●●
●●●●●●
●●
●●●
●
●●
●●
●
●
●●
●●
●
●
●●●●●
●
●

●●
●
●
●●●●●

●●●

●
●●
●
●●

●●
●●●
●

●

●

●
●●●

●

●●●
●
●

●

●

●
●●●●
●●●

●

●●●

●

●

●
●
●

●●

●

●●●●●●●
●●●●●●●●●●●●

●●●
●●
●
●
●
●
●
●●
●
●
●●●●●●●●
●
●●●●●●
●●●●
●
●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●
●●●
●●
●
●●●

●

●●●
●●●●●●●●●●

●

●●●●
●●

●
●●
●
●●
●●●●
●●●●●●●

●
●●●
●
●●●●●●●●

●

●●●●
●●●●●●●●●●●
●●●●●●●
●
●●●
●
●●●●●
●
●●●
●
●
●
●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●
●
●●
●
●

●●●●
●●
●
●●
●

●
●

●

●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●
●

●●

●●●

●

●

●●●

●

●

●●

●
●●

●
●●

●

●●●●●

●●●
●

●●

●●
●

●

●

●

●

●●

●
●
●
●

●

●

●

●●

●

●
●
●●

●
●●

●
●
●
●

●
●
●

●
●●

●

●

●

●

●

●

●
●
●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●●●●
●●
●
●●●●

●

●

●

●
●
●

●●
●●●●●●●●

●●●●●●●●●●●●●●

●
●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●
●●●●
●
●
●●●●●
●●●
●●

●

●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●
●
●●●●●●●

●●●●●●
●
●●●
●
●●●
●
●●●●
●

●●●●
●
●●●●●
●
●●●●●●●
●●●
●●●●●●
●

●●
●
●●●●●
●●●●●●
●
●
●
●●●
●●
●●●●●●

●

●●
●●●●
●●●
●
●●●●●●●●●

●

●●
●●●●

●●●
●
●
●
●●●
●●
●
●●●●●
●●●
●
●●●●●●
●
●●●
●●●●●●
●●
●●
●

●●●
●
●●●
●
●
●●●●●●●
●
●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●
●●●
●●
●
●●●●●●●●●●●
●●●●●●
●
●●●●●●
●●
●●●●
●
●●●●●●●
●
●●●●●●
●
●●●●●●
●●●
●●●●●●●●●●
●
●●●
●
●●●
●●●
●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●

●●●●●

●●●●
●
●●●●●●●●●
●
●●
●
●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●
●●●

●

●●
●
●
●

●
●
●

●

●
●

●

●●●●●●●
●●
●●●●●●
●●
●●
●●●●●●
●
●●
●●●●●
●
●
●●●
●
●
●●●●●●●●●●●
●●
●●
●●●
●
●●
●●
●
●●●●●●
●
●●

●
●●●
●●●
●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●
●
●●
●●
●●●
●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●●●●●●●●●
●
●●●●●

●
●●●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●
●

●●●●
●●●●●●●●●
●●
●
●●
●

●●●●●
●●●●

●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●●●●●
●
●
●●
●●●
●
●●
●●●●●●●
●
●●

●
●
●●●●●●●●●

●

●●●

●

●●●●●●●●
●

●

●●●●●
●●
●
●
●
●
●●●●●●●●●●●●●
●●
●
●●●●
●●
●
●●
●

●
●●●
●
●●
●●●●●●●●
●
●●
●●●
●

●
●●●●
●
●●●●●●●●●

●●●●●●●●
●
●
●

●●●●●
●
●●

●

●●●●●●●●●
●
●●
●
●●●●●●●
●
●●●
●●●●●
●
●●●●
●
●●●●●●

●
●
●
●
●●●●●
●●●●
●
●●●●●●●●●●●

●

●
●●●
●●●●
●

●●●
●●
●●●●●
●
●
●
●●

●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●
●●●●●
●
●●●●●
●
●●●●●

●●●●●
●●
●

●●●●●●●●●●●

●
●
●●●●●●
●●●
●●●●●●●●
●
●
●●●●●●●●●●

●●●●●●
●
●●●●●●●●●
●●●●●●
●
●●●●
●●
●●●●●●●●

●
●
●
●●●
●
●
●
●●

●
●●●●●
●
●
●●●●●●●●●●●

●

●●●●●●●●●●

●

●●
●
●
●
●

●
●●●●●●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●
●●●●
●●
●
●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●
●●●
●
●●
●●●●
●
●●●●●●
●
●●●●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●

●●●●●
●
●●●●
●●●●●●
●●
●●●●●●●●●●

●

●●●●●●●●●●
●
●●●●
●
●●●●●●●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●●●●●●●●
●●●
●●
●

●

●

●
●●
●

●●●●●●●●●
●●
●●
●●●

●●

●

●●●
●
●
●
●●●●●●
●●●
●●●
●●●
●●
●●

●

●

●

●
●●
●
●
●
●
●
●

●
●●
●●
●●
●

●

●
●

●

●
●●●●
●●●
●
●●

●
●●
●

●●●●●
●●●●●●●●

●●

●●●

●●●
●
●
●

●
●
●

●●
●
●●
●

●

●
●
●

●

●
●●
●
●
●●●

●
●

●

●
●
●
●

●●
●●
●●
●
●

●
●
●
●
●●●●●
●
●●●●
●●●
●●●●●
●●●●●
●●●●●●
●●●●
●●●
●
●●
●●●●
●●●●●

●

●●
●
●
●●●●
●
●●
●

●
●
●
●

●●

●

●●

●

●
●

●

●●●

●

●
●●

●●

●●●
●

●

●

●

●
●
●

●

●

●

●
●
●●
●●●●
●

●●

●
●●
●●
●
●●
●
●●●

●

●
●
●●
●

●●●
●

●
●●●

●

●

●
●●

●●
●●●
●
●
●●●
●
●●
●
●●●●●●●●
●●●
●
●●●●●●●●
●
●
●●●●
●
●●●
●
●●
●
●
●●●
●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●
●
●
●
●●●●
●●●●●●●●●

●
●
●
●●●●
●
●●

●

●

●

●

●●
●●

●●●

●●●
●●

●
●●
●

●●

●
●
●

●●●●
●
●●●
●
●

●

●
●

●●

●
●
●
●●
●●●●
●●●●●
●●

●
●
●
●●●●●●
●

●
●●
●●●
●●●●

●

●●

●●
●●
●
●●
●

●
●
●

●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●

●●●
●●

●
●
●

●

●

●
●●
●
●

●

●

●

●

●

●
●
●
●
●

●●
●●●
●

●●
●
●
●●
●●

●
●
●
●●●

●
●

●

●
●
●
●●●
●●●●●

●

●
●●●●●●
●●
●
●●●●●●●
●●●●●●
●●●●●●●
●
●
●●●●●
●●●

●●

●●
●

●●●
●●
●

●

●
●●
●
●
●●●●●●
●

●

●

●

●●●

●

●●●●
●●●

●●●●

●

●●
●

●
●

●

●

●●●●
●
●
●●●●●●●●●
●●
●●●
●●●
●●

●●●●●●●●●●
●●
●●●
●
●
●
●●●●●●
●

●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●
●●●●
●●●●●
●●●●●●●
●●
●●
●
●●●●●
●●●●●
●
●●●●●
●●
●●●●

●●
●
●

●
●
●●

●

●

●
●
●
●
●
●
●●
●

●
●

●

●
●
●●●
●●
●●

●

●

●●●
●●●
●

●

●●●
●●
●●
●●

●●●

●
●
●●
●●
●

●
●●
●●

●●

●●●

●

●●

●

●●
●
●
●

●

●●
●
●
●
●
●
●●●
●
●
●
●
●

●
●
●●
●

●

●
●●
●
●●●●●●●●●●
●
●
●●
●●●●●●●
●●●●●
●
●●●●●●

●●●●

●

●
●

●
●●
●

●●

●●
●

●

●●
●

●

●●
●
●

●
●

●●●
●
●
●
●

●

●
●●●
●●
●
●
●
●●
●
●●
●

●●●●●●
●
●●
●
●●●●●
●●
●
●
●
●●
●
●●●●
●

●●
●

●

●

●

●
●●●●
●
●
●●●●●●●●
●
●
●●●

●●

●●
●●●
●●
●

●
●
●
●●●●
●●●
●
●●
●
●
●●
●●●●●
●●●
●
●●
●●
●
●●
●
●
●●●●●●●
●

●
●●●
●

●

●

●
●●●●●●
●
●●●

●
●
●

●●●●●●●●●●●●●●●●●

●●●
●
●●

●●●●
●

●●
●●●
●

●

●●

●

●●●●

●

●

●●
●
●
●●●
●●
●
●
●

●
●●
●●●

●●●●●

●●●●

●●●
●

●

●●●
●●

●

●
●

●
●
●●

●

●

●●
●
●●
●●
●
●

●
●
●●●●

●

●●●●
●
●
●
●●

●

●
●
●●

●●
●
●●●
●●●●●
●
●●●●
●●
●
●●●●●●●
●
●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●
●
●
●●●●●
●●●
●
●●●●●
●●
●
●●●
●●●

●

●

●●
●
●●

●●●●●
●

●●

●
●

●
●●
●
●●
●
●●
●●
●●

●

●

●
●

●●●●●●●
●●●●●●●●●●
●●●●●
●●●
●
●●●●●
●●●●●●
●●

●●
●●
●

●
●●●
●●
●●●●●●●●●●
●
●
●
●●●●
●●●●
●
●

●●

●
●
●
●
●
●●
●●
●●●●●

●●●●●●●●●●●●●●
●
●
●
●●
●●
●●
●●●
●●●
●●●●●●●
●●●●●●●●●●

●
●●
●●
●●●
●●
●
●
●
●
●●●●●●●●●

●
●●
●

●

●

●
●

●●●
●●
●
●●●
●●
●
●●
●●
●
●●
●●

●●
●●
●●
●
●

●
●
●
●
●
●●●

●●●

●●
●●
●●●●
●
●
●
●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●
●
●

●

●●●
●

●
●●
●

●●

●●●●●
●●●
●●●

●
●●
●●
●
●●●

●

●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●
●
●
●
●●●
●

●●

●●
●

●
●●●

●

●●●

●

●

●
●●

●●
●●
●
●●●●
●●

●

●●
●●●

●●●●●●●●●●●

●●
●

●
●
●●●●
●●●●●
●
●
●●●●●●
●●
●
●
●
●

●●

●

●●●●●
●
●●
●
●●
●●
●●●
●●●●●●●

●

●

●

●

●
●
●
●
●
●
●
●

●●

●●●
●
●●●
●●
●

●●
●
●●
●●
●●
●●●●●●
●●●●
●
●●
●●●●●

●●

●
●
●

●●●
●
●●
●●●
●●
●
●
●
●

●

●
●
●
●●
●●●
●
●●●

●
●

●
●
●

●●

●●
●
●●●
●●●
●●
●
●
●●●●●●●
●
●
●
●●
●
●
●
●●●
●●
●●●
●
●●●●
●●●●
●●
●●
●●
●
●
●●●
●●●
●●●●

●
●
●
●
●
●●
●
●●
●●
●

●
●●●
●
●
●

●

●●
●
●●●
●●
●

●
●
●
●
●●

●
●●
●

●
●
●
●●●
●

●

●
●
●
●●
●●
●●●●●
●●●●●
●
●●
●
●●●

●

●●

●
●●●
●

●●
●●●●●

●

●

●●

●
●●●
●

●

●
●●
●●
●●
●
●●●
●●●
●
●
●●
●
●●●●
●
●●●
●●●●●
●●●
●●
●
●
●●
●
●●●●
●
●●
●
●
●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●●
●●
●
●
●●●●●
●●●
●
●
●
●

●●
●
●
●
●
●●●●

●

●●●

●●
●●

●●●

●●●

●

●
●●
●
●

●●

●
●
●
●●
●●
●
●
●●
●
●
●●
●
●●

●●
●

●●
●●●●
●●●●
●
●●
●
●

●
●
●●●●●
●
●●●
●
●
●
●●●●●●●●●
●●●●●
●

●
●
●

●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●
●●
●
●●

●
●●

●
●
●●

●

●
●

●

●

●

●

●

●●●
●

●

●
●●●●
●

●●
●
●
●
●●●
●●

●
●●
●

●

●

●

●

●●
●●
●●●●●●●●
●●●●●●●●
●●
●●●●●
●
●
●●●●●●●●●●●●
●
●●●●●●●
●●
●●

●
●●

●●●●
●
●
●
●
●
●●
●●
●●●
●

●●

●

●

●
●●●

●

●●●
●
●
●
●
●●
●
●●
●
●
●

●●
●

●

●●
●
●
●●●●●●●●●
●●●●●●●
●
●●
●
●●●●●
●
●●●●●
●●●●●
●●
●
●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●
●●●●
●●●●
●
●●●●●●●●●
●●●●●●●●●
●
●
●●●
●●
●●●●●●●●●●●

●●
●●
●
●
●●

●
●
●
●

●
●
●
●
●●
●
●
●
●

●
●
●●●

●●●●
●

●

●
●●●●
●
●
●
●
●●

●

●●●
●●

●●●●●●

●
●

●
●
●
●●

●
●
●●●

●
●

●●●

●
●
●

●●●●
●
●

●

●●●
●●
●●

●

●●
●
●
●
●
●
●
●

●

●●

●

●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●
●●

●
●●●

●

●●
●
●●
●

●●

●●●

●

●
●●

●
●●
●
●
●●

●●●

●●
●●
●

●●
●
●

●

●●●
●

●
●●
●
●●

●●●●●●
●
●

●●
●
●●
●
●●
●●
●
●
●
●●●●●●
●●●
●●

●●
●
●
●
●
●●●
●●

●●

●●
●
●●●●●
●●
●●●
●●●●●●●
●●
●

●
●●●
●
●
●
●●●
●
●●
●●●●
●●
●
●
●
●
●
●●●●●●●
●●
●
●
●
●
●●●
●●

●

●
●
●
●●
●
●●●
●
●
●

●●●
●●●
●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●●
●●
●●●
●
●
●●●
●
●●
●
●
●
●●●●●●
●

●
●●●●●
●●
●●
●●●●
●●

●●
●

●
●

●●●●●

●
●●
●

●

●●
●
●
●

●
●

●

●●●●
●
●
●●
●
●●
●●

●

●

●
●●
●
●
●
●
●
●
●●●●●●●
●
●
●●
●

●●
●
●●
●●●●●
●●●●●
●●●
●●
●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●●
●
●
●
●
●●
●●
●●

●

●●

●
●
●

●
●
●
●
●●
●●
●●
●
●

●

●●●
●

●●
●●

●●
●
●●
●●●●●
●
●●●
●

●

●

●

●

●●
●●●●●●●●●
●
●●●●
●●●●
●●●
●●
●
●
●
●
●●●●●●
●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●
●●●
●
●●●
●
●
●●●●●
●
●
●●●●●●●●●
●
●●
●

●●
●

●●
●●
●●●●●●●
●●
●
●●

●●●●●●
●●●
●
●●●●●
●●●
●
●
●●●
●●●●●●●●●
●●●●
●●●●●●●●●●
●●●
●●
●●●●
●
●●●●●
●●●●
●

●
●
●●●
●
●●●

●

●

●
●●
●
●
●
●●
●
●●●
●
●
●●●
●

●

●
●

●

●
●

●

●

●●
●
●●●●

●
●●
●

●

●●
●●
●
●●
●
●

●●

●●
●●
●
●
●●
●●●●
●●
●

●
●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●
●
●
●●●●●●
●●
●●

●
●●
●

●
●
●●●
●●●●

●

●
●●●●
●

●

●●●
●
●●●●●●●
●

●●
●

●●
●●●

●●●●●●●●●●●●●●●●●●●

●●
●●
●
●●●

●●

●
●
●●
●

●●
●
●●
●●●
●

●

●
●
●

●
●●●●
●●
●●
●
●
●
●
●

●●

●

●●●●●

●●●●●●●●●●●●●●

●●

●●
●●●
●●●
●●
●●
●
●
●●●●
●●●●
●

●
●●

●
●●●●●●
●●●●●
●●
●●●●
●
●●●
●
●●
●●●●●
●●
●●●

●

●●
●

●

●
●●
●

●
●
●
●
●
●

●

●●
●

●
●●
●●●●

●

●

●●●
●●●●
●●
●●●●●●●●●

●
●

●●
●●●
●

●●
●

●●

●

●
●
●●●
●

●●

●
●

●

●
●●

●●
●
●

●●
●●

●●●●●

●

●●
●
●●●
●
●
●
●
●
●●
●

●
●
●
●
●●●●●●●●
●

●●
●
●
●
●●

●
●●●●
●●●●
●
●●●

●
●
●
●
●●
●●●●●●
●
●

●

●
●
●
●
●
●
●●●●●

●●
●●
●●●
●
●●●

●

●
●
●
●●
●
●●
●

●●
●●●
●

●

●
●
●

●
●
●

●

●●

●●

●

●

●●●
●●●●●
●●

●●

●●●
●

●●

●●●●

●●

●●●
●
●
●
●
●●
●●●

●●
●
●●

●
●
●

●●●●●●
●
●●●
●
●●
●●●●●●●●●●●
●
●
●●
●
●●●●●●
●●●●●●●
●
●●●●
●
●●●
●
●●●●●●
●
●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●
●●●
●●●●●●●●●
●●●
●●●●●●●
●
●●●

●
●●

●
●
●
●
●
●

●

●●
●
●

●●

●

●
●●

●
●
●●●●
●●●
●
●●

●●
●●●
●
●●
●
●●
●
●●●●
●●

●
●
●●●●
●
●
●●
●

●
●
●●●
●●●●
●●
●●●
●●●
●
●●●
●
●●●●●
●●●
●

●●
●●●
●
●
●

●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●

●
●
●
●●●

●
●
●●
●●
●

●
●
●
●
●

●
●
●●●

●
●●●
●
●
●

●

●
●
●

●
●
●●

●
●
●
●●●●

●●
●
●
●●
●
●
●●●●●
●
●●●●
●
●
●●
●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●
●●

●●
●
●
●

●

●

●●●

●●●

●●
●●
●

●
●
●●

●
●●
●
●●
●

●

●
●
●

●●●●

●●
●
●
●
●
●●●
●

●

●

●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●
●●●

●●
●●
●
●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●
●●●
●
●
●●●●●
●
●
●
●●●●●●●●●●●
●●●●
●●●●●

●
●●●

●●●

●●
●●
●●

●●●
●●●

●
●
●
●
●

●
●●

●
●
●
●●

●●●●
●●
●●●
●●

●

●

●
●

●

●●

●●●●●●●

●●

●●

●
●●●●
●

●
●
●●●
●●

●●

●
●
●
●
●●
●●●●
●

●
●●●
●●

●

●●●
●●

●●
●●●
●

●

●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●
●●●

●
●
●●

●●
●
●●●●
●

●

●

●●

●
●
●

●

●

●●

●●●

●●

●●
●●
●
●
●●

●
●●●●

●
●

●

●●

●

●●●

●●●●●●●●●●●●●
●●●
●●
●●●
●●
●●
●●●
●
●
●●●
●
●●
●●●
●

●●●
●

●
●●
●
●

●
●●●
●
●

●

●
●
●
●
●●
●●
●
●
●
●
●●●
●
●●●
●●●

●
●●
●

●

●
●●
●
●●●

●●
●●●●
●
●●
●
●
●●●●●
●●●

●
●
●●

●
●
●
●●●●●●●

●
●●●●
●●

●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●

●●
●●
●
●●●●●
●
●●●●
●
●
●●
●
●●●●●●●
●●
●●

●
●●
●
●●
●
●●●●●●
●

●●●●●

●●
●●●●●●●●●

●

●

●

●

●

●

●●
●●

●

●●

●●●
●●
●

●

●

●

●
●●

●

●●

●
●
●

●●
●
●

●●

●●●●●
●
●
●
●

●

●●
●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●
●
●●
●
●
●●
●
●
●●
●●●
●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●
●●●●●
●●●
●
●●●
●●●●●●
●●●●●●●
●
●●
●●
●
●
●
●●
●●●
●●●
●●
●●

●

●●●
●

●

●

●
●
●●

●●●

●●●

●
●
●●

●
●
●●●

●

●
●●●
●
●

●

●●●●
●
●
●
●●
●●●●●●●●●●●●●●●●
●●
●
●●●●●
●●
●●●
●●
●
●●
●●

●●●●●●●
●
●●
●●
●●●●●●●●
●●
●●●●●
●

●
●●
●●●●
●●●●●●●●
●●●●●
●
●

●●●●●●●●
●●●●●
●●●●●●●●●●
●
●●●
●●
●●●●●
●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●
●
●●
●
●●

●

●
●
●
●
●

●

●●●
●
●
●
●●
●●●
●
●●●
●●
●●
●●●
●
●●
●●●

●●

●
●
●
●●●
●●

●
●

●
●
●●
●●

●
●●●
●
●●●

●●
●●

●
●
●
●●●●
●●

●

●●●

●●●
●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●
●
●●
●●●
●●
●●
●●●
●

●
●●
●

●

●●●
●●
●●●●
●

●●●●●
●●
●●●●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●
●
●
●●
●
●

●
●●●
●
●
●
●
●

●
●●

●●

●
●

●●
●
●
●●●

●

●
●●

●
●
●

●
●

●●

●●●

●

●●●●
●●●●●●●●●●●
●
●●
●
●●●

●

●●●●●●●●
●
●●●
●
●●●●●
●
●●●●●●●●

●●●●●
●
●●●●

●

●●●
●●
●

●●
●
●●●●●●●●●●
●
●●●

●
●●

●

●●
●
●●●●
●
●
●
●
●
●●●

●

●●●
●
●
●●●

●
●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●
●●●●●●●●●

●

●
●●
●●●●●●●●●●●●
●
●●●●●●
●
●●●●●
●
●
●
●●●●●●●●●●●●
●●●
●●●
●
●●●●●●●●
●●●
●
●●●●●●●●●●
●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●●

●
●●
●
●●
●●
●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●
●●●●

●
●●●●●
●

●●●●●●●●●●●
●
●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●

●●●●
●

●

●

●
●

●●●●
●●●●●●●●
●
●●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●
●
●
●●●
●●
●●●●
●●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●
●●●●
●
●●●●●
●

●●●●●●●●
●●●●●

●●●
●
●●●●●●●●●●●●
●
●●
●●●●●
●
●●
●●●●●●●●
●●●●●●
●●
●
●●
●

●
●●

●
●
●●●●●
●
●●

●●

●

●●●●

●
●
●●●●●●
●●
●

●●●

●
●
●●●
●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●
●
●●●●
●
●●●

●●●●●

●
●●●

●
●●
●●
●
●●●●●
●
●
●●●●●●
●
●
●●●●●
●●●●●●
●●
●●
●
●●●●
●
●
●
●
●

●●●●●●●
●
●●
●●●●●●●●●●●
●
●●
●●●●●●●●●
●●●
●●●●●●●●●
●
●●●●●●●●●●●●●
●
●
●
●●●
●
●●●●●●●●●●●

●
●
●●●●
●●●●
●●
●●●●●●●
●
●●
●
●●●●●
●●●●●●
●●●●●●●●●
●●●
●●●
●●
●●●●
●
●●●●
●
●
●●
●
●●
●●●
●
●●
●●●●●
●●
●●●●●●
●●●●●●●●

●
●●●●●●●●
●●●●●
●●●●
●
●
●●●●●
●
●●
●●●●
●●
●●●●●
●●●●
●●●●
●●●
●●●
●
●●

●
●●●
●
●
●●
●
●
●
●●●●●●●●●●
●
●
●●
●●●●●
●

●

●

●
●●
●

●●
●
●
●●
●●
●
●
●
●●●
●●●●●●●●●●●●●●●
●●●
●●
●●
●●●●●●
●

●
●●
●●
●
●●●●●●
●●
●●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●
●
●
●
●
●●●●
●●●
●
●
●●
●
●
●
●●●
●
●●
●●
●●●●
●
●●●
●●
●●
●●
●

●
●●●●●
●●●●●●
●●●
●
●●●
●
●●
●
●
●
●●
●●●●
●
●
●●
●
●●●●
●●●
●●●●
●●
●
●●●
●●
●
●●
●
●
●
●●●●
●
●●
●
●●●●
●●●●
●●
●
●●●●●●
●●●●●●
●
●●●
●●●●●
●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●
●●●●●●●
●●
●
●●●●
●
●●
●●
●
●●●
●
●●●●●●
●●●●●●●●●
●●●
●
●●●
●
●
●
●●●●
●●
●●●●
●●●
●
●●●●●●
●●●
●●●●●●
●●●●
●●
●
●●●
●●●●●●●●●●●●
●
●
●●●
●●●
●
●
●
●●●●
●●●●●
●●
●●
●
●
●
●
●
●●
●
●●●
●●●
●●
●
●
●●●
●
●●
●●●
●
●
●
●●

●
●
●●●
●●
●
●●●●●●
●●
●
●●●
●
●●●●●
●

●●●●

●●●●●●
●
●●
●●●●●●●
●●●
●●●●●●●
●●●●●●●●
●
●
●●●●●
●●●●●●●
●●●●
●●●●●●●
●
●●●●
●●●
●●●●●●●●●
●●●
●
●●●●●●●●
●●●●●●
●
●●●●●●
●
●●●●●●

●●
●●●●●●●
●
●●
●●●
●
●●
●
●●●●
●●
●●
●
●
●●
●
●

●

●
●●●●
●●
●●●
●
●●●●●

●●
●
●●
●●●
●
●●●●●●●●
●●
●●●●
●●
●●
●
●●
●
●
●●●●
●●●
●

●
●
●
●
●●●●
●●
●
●●●
●
●●●●●
●●●●●●●●
●
●●●●●
●●
●
●●●●●
●●●
●
●●
●●●●●
●●●●
●
●●

●●●
●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●●
●●●
●
●●●●
●●●●
●●●
●●
●●
●●
●●●●●●
●
●●●●●
●
●
●
●●●
●
●●●●●●●●●●●●
●●
●●●●
●●
●●●●
●
●●●●●
●●
●
●●●●●●●●●
●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●
●●
●●●●●●●●●●
●●●●
●

●
●●
●
●●●
●●●●●●●
●●●
●
●
●●●
●●●●
●
●●
●●●●●
●
●●●
●●●●
●●
●
●

●
●●●

●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●
●
●
●
●
●●●●
●
●●●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●●●
●●●●●●●●●

●●●●●●●
●●
●●
●●
●
●
●
●
●●●●
●●
●
●
●●●
●●
●●●
●●
●
●
●●●●●●
●
●
●●●●
●

●●●●

●●●●

●
●●
●●●●●
●
●●
●
●
●●
●●●●
●
●●●●●●
●●●●●
●●●●●●●●●●
●●●
●
●

●●●●●●●
●
●
●●●●●●
●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●●●
●
●
●●●●●●●●●●
●●●
●●●
●
●●●●
●
●●●●●●●
●●●●●●●●
●●
●●●●●●●●●●●
●●
●●●●
●●
●
●●
●●●
●
●●
●●●●●●●●●●●●
●●●
●●●●●●
●
●●●●
●
●●
●●●
●●●●●●●
●●
●
●
●●●
●

●●
●●●
●
●●●
●●
●●●
●●●●●
●
●●●
●
●●●
●
●●

●
●●●
●
●●

●
●
●●●●●●
●●●●●●
●●●
●●
●●●●
●
●
●
●
●●
●
●
●●
●
●
●
●●●●●
●●●
●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●
●
●
●●●
●
●●●●●
●●
●
●●●
●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●●●●
●
●●●●
●●●
●●●●
●
●●●
●
●
●
●●
●●
●●●
●
●
●
●
●
●●
●●
●
●
●
●●●●●
●●●

●●●●●●
●●●●●
●
●●●
●
●

●
●●
●
●●●
●●●
●●
●
●●
●●
●●
●
●
●●
●
●●●●
●
●●
●●
●●●●
●
●●●●
●
●
●●●●●
●●
●
●●
●●
●
●●●●
●●●●
●●
●●
●●●●●
●●●●●●●●●●
●
●
●●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●
●●●●●●●●●●●●
●
●
●
●●●●
●●●
●●●●
●●
●●●●●
●
●●●●●●●●●●●●●●
●●●
●
●●●●
●●●●●●
●●
●●●●
●●●●●●
●●●●●●●
●●●●
●
●●●
●
●
●●
●
●●●
●●
●
●●●●●●
●
●
●●
●
●
●●●●
●●
●●
●●●●
●●
●●●
●●●●
●
●●
●●●●
●●●●●●●
●●
●
●
●●●●●●
●●●●
●
●
●●

●
●
●●●●
●
●
●
●●●●●●●
●●
●●
●●●●●●●
●●●●

●●●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●●●●●
●●
●●●●●
●●●
●●●●●●
●
●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●
●
●●●●●●
●●●●●

●
●
●
●
●
●●●
●
●●●●
●●●●●●●●
●
●
●●●
●
●
●
●●
●
●
●
●●●
●
●
●●●●●●●●●●●

●●
●●●
●●●
●
●●●
●
●
●●
●
●●●●●
●●●
●●

●
●●●●
●●●●●●●
●
●●●●●
●●●●
●

●●●●●●●
●
●
●●●●●
●
●
●●
●
●●
●●●●
●
●
●●
●●
●●●●
●●●●●●
●
●
●●
●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●
●
●●
●●

●
●●●●●
●●
●
●●
●●
●●
●●
●●
●●●●●●●
●●
●●●
●●
●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●
●
●●●●●●
●●●●●●
●●●●●
●
●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●
●●
●●●
●●●●●●●
●
●●●
●
●●
●●
●
●●●

●●●
●
●●
●●●●●●●●●
●●
●●●●●
●●●●
●
●●●●
●●●
●
●●●
●●●●
●●
●
●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●
●●●
●●●
●
●
●
●
●●
●
●●
●
●●
●
●
●●
●●●
●●●●
●
●
●●●●●
●
●
●
●
●●●
●●

●●●
●
●
●●
●●●●●●
●
●●
●●●●●●
●●
●
●
●
●●●
●●
●
●●
●
●
●●
●
●

●
●
●
●●
●●●
●

●●●●

●●●●●
●●
●
●
●
●●●●●●●●●●●
●●
●
●
●●
●
●

●

●●●
●●
●●●
●
●●●
●●
●
●
●
●
●●

●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●
●●●
●
●
●●
●●●●●●●●
●●
●●
●●●●●●
●●●●
●
●●●●
●
●
●●
●●●●●
●
●
●●
●●●●●●●●
●●●●●●●
●
●●●●●●
●●●
●●
●●●●●
●●●●
●
●●●●●●
●●
●
●
●
●
●
●●●
●●●
●●●
●●●
●●●●●
●●
●●
●
●
●●●●●
●
●●●
●●
●
●
●●●●●●
●
●
●
●●
●●●●
●
●
●
●●
●
●●●
●●●●●
●
●●
●
●
●●●
●
●●
●●●●●
●●
●●●●
●

●
●●●●●●
●●●
●
●●

●●●●●●●●●●●
●
●●●●●
●●●●
●
●●●
●
●●●●●●
●●●
●●
●
●●●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●
●●●●
●●
●●●●●●
●●●●●●●●●●●●
●●●●●
●●
●
●●●●●
●●
●●
●
●●
●●
●
●●●
●
●
●
●
●
●●●
●●●●●●●●
●●●●
●●●
●●●●●
●●●●●
●●●●●
●
●
●●●●●●●●
●●●●●
●●
●●
●●
●
●●●
●
●
●●
●
●●●●
●●
●
●

●

●●
●
●
●●●●●●●
●
●
●●
●●
●●●●●●●●●●●●
●●●●●●●
●●
●
●●●●
●●●
●●●●●●●
●●●
●●●●●
●●●●●●●●●
●
●●●●
●●●●●●●●●
●●
●●●●●●●
●●●●●●●●●●

●●●
●
●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●
●
●
●
●●
●

●●●
●●●
●
●
●●●●●●
●●●●●
●
●
●●●
●●●●●●●
●●
●●●●
●●●●●●●
●
●
●

●●●●●●●●
●●●
●●●●
●●
●

●
●
●
●●●
●●
●●●●
●●●
●
●●●●
●
●●
●

●
●
●
●●
●
●
●●
●
●
●
●
●
●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●
●●●
●
●●●
●●●●
●●●●●
●
●●●●●
●●●●●●
●●●
●
●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●
●
●●●
●
●●
●
●
●
●
●●●
●
●●●●●●●
●
●●
●●●●
●●●●●●
●●●
●●●
●

●
●●
●●
●
●
●●
●
●

●
●
●●
●
●
●●●
●●
●
●●●
●
●●●
●●
●●●
●●●
●
●●●●●
●●●
●
●●

●●●●●●●
●
●
●●
●●●
●●●
●
●●●
●
●
●●●
●●●●●●●
●
●
●●
●
●
●●●
●
●●●
●●
●
●

●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●●●
●
●
●
●●
●
●
●
●●
●●
●●●●
●●●
●●
●●
●●
●●
●
●
●●
●●
●●●●●●●
●●

●●
●●●●●●●●●●●●
●
●●●
●●●●
●
●●●●●
●●●●●
●●●
●
●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●
●●●
●●●●●
●●●●●
●●●●●
●
●●●
●●●●●
●
●●●●●

●
●●●
●●
●●●●
●●●
●
●
●●
●
●
●●●●●●
●
●●
●●●●●
●
●
●
●●●●
●
●●●●
●
●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●●●●
●
●
●
●
●●●●●●
●●●●●●●●
●
●
●
●●●●
●
●●
●●
●●●●
●●
●

●●●●

●●●
●●
●●

●●
●
●●●
●●
●
●
●
●●●
●●
●●
●
●
●
●●●
●
●
●●●
●●
●
●●●●●●●
●●●
●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●●
●●
●●

●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●
●
●●●

●●
●●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●

●●●
●●●

●● ●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●

●● ●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●

●● ●●

●●

●●

●●●●●●●●●●●●●●●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●●
●●●

●●

NSD < 0.05 NSD in [0.05,0.1] NSD in [0.1,0.25]

NSD in [0.25,0.5] NSD in [0.5,1] NSD > 1

1.0

1.1

1.2

1.3

1.4

1.0

1.5

2.0

2.5

1

2

3

4

2.5

5.0

7.5

5

10

15

0

50

100

150

200

250

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Strategies

N
or

m
al

iz
ed

 M
ak

es
pa

n

(c) |T |
|P | = 5

●●●

●
●●●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●●

●

●●●
●

●

●

●

●

●

●
●●●●

●

●

●
●

●

●●●

●
●

●

●
●
●●

●

●
●●●●●
●●●
●●●
●●●
●

●●●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●●●
●●
●

●
●●
●
●
●
●
●●●●●●
●●●

●

●

●
●

●

●

●●

●

●●

●●

●

●●
●

●

●
●
●●

●

●

●

●●
●
●●●
●
●●
●
●●●
●●
●●
●
●●
●●

●●
●●●●●
●

●●
●●●
●
●

●
●
●

●
●●●

●

●

●●●●●
●

●

●

●

●
●
●
●●●
●
●●
●

●
●
●
●●
●
●●●
●●●●●

●

●●●

●

●

●

●
●

●●●●

●
●●●●
●●●
●●
●
●
●●●
●●●
●●
●●●
●
●●●●●●●
●

●

●

●

●●●●●●●●●

●
●●●
●
●
●
●●
●
●●
●●●●
●
●●
●
●●●●●●●●
●●●●
●●●●
●
●●●
●●●●●

●
●●
●●●●
●
●
●●●●
●
●●●●●
●●

●
●

●●

●●

●

●●●●●
●
●
●●●●
●
●

●

●●
●

●

●
●
●

●●
●
●●●
●●●●●●●
●●●
●●●●
●●
●
●
●
●
●●
●

●

●

●

●
●

●

●
●

●
●

●
●●●
●●
●
●
●●●●●
●
●●●

●●
●●

●

●
●
●●
●●
●
●
●
●
●

●
●●●●●
●

●

●●
●

●

●

●
●●
●
●

●
●●●●●

●

●●●
●●

●
●
●

●●

●●

●

●●●
●●
●●●
●
●
●
●
●
●●●●●
●●●●●
●
●
●●●●●●
●●●
●
●
●
●●
●●
●●●

●

●

●●
●

●
●

●
●●
●
●●
●●●●●
●
●●●

●●●

●
●●●●
●
●

●

●

●
●

●
●
●●

●

●

●

●●●●

●●

●

●●●
●

●

●

●

●

●

●
●●●●

●
●

●
●

●

●●●

●●●

●
●
●●

●

●
●●●●●
●●●
●●●
●●●
●

●●●●

●

●
●●

●●●

●

●

●

●
●
●●●●●●
●
●
●
●

●
●●
●

●
●●●
●
●
●●●●●●
●●●●
●
●●●

●●●
●●●●
●
●

●

●
●
●
●

●●

●●
●
●
●●●
●
●●●●●●●
●●●●●●

●●

●
●●

●

●●●

●
●
●
●
●
●
●
●●●●

●
●

●

●
●
●●
●●●●●
●●●●●

●

●

●
●

●

●
●
●●

●

●
●
●

●●
●
●
●●
●

●
●
●
●

●
●
●
●●●●
●
●●

●

●
●●●
●

●
●●
●●●●●
●●●●●

●
●●●●●
●

●●
●
●
●
●●●●●●●●●●
●●●
●
●
●
●

●
●●●●●
●●●
●●●●●
●●●
●●

●

●
●
●
●●

●
●●
●
●
●
●
●
●●

●

●●
●
●●●
●●●●●●
●●
●●●●●
●●
●
●●
●●●
●
●
●●

●

●●●●●●
●
●●●●
●●●●
●●●●●
●
●
●●●●
●●●●●●●●●●●
●●
●
●

●
●●●●

●
●
●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●
●●

●●●●
●
●●
●
●

●●●●●
●
●●●●
●
●●
●
●
●●●●●●●
●
●●
●
●●
●
●●
●
●
●
●●●●●●
●

●●●
●●
●
●●●
●●●●●●●●
●●●●●●
●
●●●●
●
●●

●
●
●●●●
●●●●
●●●
●

●

●●
●
●●
●

●

●●
●●●

●

●
●●●●
●●
●
●
●●●●●●●
●
●●
●
●●●
●
●
●●
●
●●●

●●
●●●●
●
●
●●
●
●
●●●

●

●●●●●
●●
●●●
●●●●●●
●●●
●
●●●●●●●
●●●●
●●
●●
●
●●●●●●●
●●●●●
●
●
●●
●●●●●●
●●●●
●
●●●●
●●●
●●●●●●●●●●
●
●●●●●●

●●●●
●●●●●●●●●
●
●●●
●●●
●
●●●●●●●●●●
●●
●●●●
●●●●
●●●●●●●
●
●
●●
●●
●●
●
●
●●●●●
●
●
●
●

●

●
●●
●

●●●●●
●
●●●●●

●
●

●

●
●

●●
●
●

●

●

●●
●●
●●●
●●●
●●●
●
●●●●●●●
●
●
●

●

●●
●
●●
●
●●●
●●
●●●●●●●
●●
●●●●●
●
●●●●

●

●●
●
●●
●●●●●
●●●●●●●●
●
●
●●
●
●
●

●
●●●
●
●
●
●
●
●
●●

●●
●●●●
●●

●

●●

●

●
●●●●●●●●●●●
●●
●●●●
●
●●●●●●●●●●
●
●●●
●
●

●

●

●
●
●●●
●●●●●
●
●
●●●●●●●●●●●
●
●
●●●●

●●
●
●
●
●●
●●
●
●●●●●●●●●●
●

●
●
●●●
●●●
●
●
●●●●
●●●
●●
●
●●
●●

●
●●●

●

●●
●

●

●●
●
●●

●

●
●●
●
●
●●●
●●
●
●●●●●●
●●
●●●
●●
●●●●
●

●●●●
●
●●●●
●
●●●
●
●●●●
●
●
●●●
●

●●
●
●●●●
●
●
●
●●●●
●
●●
●
●●●●

●

●●
●
●●
●●●●●●●●●●
●
●
●
●

●
●
●
●●●●
●

●

●●

●●●●●●●●●●●●●●●●

●

●
●

●
●

●●

●●

●●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●
●
●●●●●
●
●●●
●

●●●●
●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●●

●
●

●

●

●

●

●

●
●●●●●●●

●
●
●●

●
●●
●●●

●
●●●●●●

●

●●●●

●
●●

●

●
●
●●●●
●●●●●
●●
●
●●●●
●●●●●
●●●●●●

●●
●●●

●

●●●●
●●

●
●
●
●●
●
●●●●●
●●●●●
●

●●
●
●

●
●●●
●
●

●
●
●●●

●

●

●
●
●●
●●●●●●●

●
●
●●
●●●●●●

●

●●

●●●

●●●●●
●●●●●●●●●●●●●●●●
●●

●●●●●●●
●

●●●●●

●

●
●

●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●
●
●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●

●
●

●

●

●
●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●
●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●
●●●●
●●●

●
●

●●

●

●

●●●●●●●●●●●●●
●
●
●●●●●●
●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●
●●●
●●●

●

●

●

●●

●
●●

●●
●
●

●
●
●
●
●

●●

●
●

●●●

●●

●●●●●

●

●

●
●●●
●
●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●

●●

●

●●

●

●●

●

●

●

●●●●●●●
●●

●

●●
●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●
●●●
●●●●●●●●●
●
●
●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●●
●

●
●

●

●●

●●●
●

●●●
●●
●
●
●●●
●
●
●●●●
●●
●
●
●●
●●●●●●●
●
●●●
●
●●
●
●●●●
●●●●●●●●●

●

●●●
●
●●●●●●

●

●
●●
●

●
●●
●
●●

●

●●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●●
●
●
●●●●

●

●●
●

●
●●●●●
●●
●●●●●●
●●
●●●●●●●●●●●
●●●●
●
●●●
●●
●

●

●●●●●
●
●●●●●

●
●
●●●
●

●
●●
●●
●
●●
●
●

●●●●●●
●
●●
●
●

●

●
●

●●
●●
●●
●
●

●●●●

●

●●●

●
●
●
●

●

●●●●
●●●
●
●
●
●
●●●●●
●

●
●

●

●

●●
●
●●●●
●●
●
●●●

●
●
●●
●
●
●●
●

●

●
●●●●●●●●●
●
●●

●●●●
●
●●●●●●
●●●●●●●
●
●●●●
●●●●●●●●
●●●●●●●●
●
●
●●●●●●●●
●

●
●●
●●
●●●
●
●
●
●●●
●
●●●

●●

●

●

●●●
●
●
●

●
●
●

●

●

●
●
●

●
●●

●●
●
●
●
●●●●●●●
●
●●
●
●●
●●●●●●●●●

●
●●
●

●

●
●

●

●

●●
●

●●

●●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●●

●

●

●

●
●●●

●
●
●

●

●

●●

●

●
●●●●●
●●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●
●
●●
●

●
●●●
●
●●
●

●

●●
●●●●●●
●●
●●●

●
●●

●●
●
●
●
●

●
●
●●●

●

●
●
●

●●
●●

●
●
●

●
●●
●
●

●

●

●●●

●

●
●
●

●

●●
●●
●
●●●

●●●
●●●
●

●●●●

●●●●
●●●●
●
●●●●●
●●
●

●

●●

●
●
●●●●●
●
●●

●

●●
●●●●●●
●●●
●●
●●●●
●●

●

●●●
●
●●

●

●

●
●●
●
●

●●●
●

●
●
●●●●●●●●
●

●

●●

●
●●●●●●●●

●●
●
●
●●●●●

●
●
●
●
●●
●●●
●●●●
●●
●●
●
●
●●●●
●
●●●
●●
●
●●●
●
●●●
●
●

●
●

●●

●●●●●●●

●
●●
●
●
●
●
●●●●
●
●●

●●●
●●
●●
●
●
●●

●●
●
●●
●●●●
●
●●
●
●

●●

●
●
●
●●

●

●
●●

●
●●
●
●

●

●
●

●
●●●
●●

●

●
●
●●
●●●●

●

●

●

●●

●●●

●
●
●●

●

●
●
●

●

●

●●●●●●

●●●●●●●●
●●●●●●●●
●
●●●●●●
●
●●

●

●●●●●
●

●

●●●●●
●
●

●●●●
●
●●●
●

●●●●●●

●
●●
●●●
●
●●●●●●●

●

●●●

●
●
●●●●●●●●●
●
●●●●
●●
●●●

●
●

●

●
●●
●

●

●
●

●●●
●

●

●●

●
●

●

●

●

●●

●
●●●●
●
●
●●●●
●
●
●●
●

●

●

●

●
●
●●●●

●

●●●
●
●
●

●

●
●●
●●●
●●
●
●●
●
●

●

●

●

●

●

●

●

●
●●
●

●

●
●●●
●●
●●●
●

●

●●●●

●

●
●
●●

●

●●
●●
●●

●
●
●

●

●
●

●
●
●
●●●

●

●

●

●
●●
●●●
●

●

●

●

●

●

●
●

●

●

●

●●
●
●●

●

●
●
●
●
●
●
●
●
●
●●●
●
●●

●

●●●
●

●

●●●
●
●
●
●●●
●
●

●

●
●
●●

●

●

●
●
●

●

●

●●●●

●

●

●

●
●●
●●
●

●●●

●

●
●●●●●●●●
●

●
●
●

●

●●
●

●

●
●●●
●

●●

●
●●
●●●
●●●
●●
●●
●

●

●●●
●

●

●●●

●

●
●

●●

●
●●●●●
●●●●●
●
●
●
●●●●●●
●
●

●
●●●
●●
●●●●●●●●
●
●●●
●●
●
●●●●

●●

●
●●
●
●

●

●

●
●●
●●

●

●●

●

●●●
●●

●

●

●●●●

●

●

●

●
●●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●
●●
●●
●●●●●●●●●

●

●●●
●●●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●
●●●
●

●

●

●●

●●
●●
●
●
●
●●
●

●

●

●●
●●

●

●●●●
●●●●●
●

●

●●●●●●

●
●●●

●
●
●
●●●●
●●●
●●
●●
●●●●●●
●
●

●
●
●

●
●
●●●

●●
●
●●●

●

●

●
●●●

●

●
●

●

●

●●●

●

●

●
●●
●●
●
●●●
●●
●●●●
●●
●●
●
●●
●

●

●●

●
●
●

●
●●
●●
●

●
●●●
●●

●

●

●●●
●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●
●

●

●●
●

●

●

●

●
●
●●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●●
●
●
●
●●

●
●

●●●●
●●●●●

●
●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●●

●
●
●
●●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●●

●
●
●
●
●
●●
●●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●
●
●
●
●

●
●
●●●
●●
●
●
●
●
●●●●
●●●

●

●●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●●
●
●●

●●●

●
●

●●●●●

●

●●
●
●●●●●●●●●●
●●●●
●
●●
●●
●●●
●

●●
●
●●
●●
●
●●●

●
●
●
●
●●

●
●●

●●
●●

●●

●●

●

●
●
●●
●

●
●●

●

●
●●●

●

●●●●●●
●●●●●
●
●●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●
●●
●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●
●

●
●●

●
●

●●●
●

●
●
●●●
●

●
●●●
●
●●●●●●●●
●
●●●●
●●

●
●●
●●
●
●
●
●
●●●
●
●

●●
●

●
●
●
●
●
●●●

●●●●●●●

●
●●●●●●●●
●●
●●
●●
●
●●●
●
●

●

●
●
●●●●●

●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●●●

●
●

●
●
●●●
●

●●●●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●●●●●
●

●●●
●
●

●●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●
●●

●

●

●

●
●

●
●●●●●●
●●●●●
●●●●●●●

●●●●

●

●
●
●●
●●●
●●●
●
●●●●
●
●●
●
●●●
●
●●●
●
●
●

●

●●
●

●●●

●

●●●●
●
●
●
●

●

●

●
●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●●●●●●●●

●

●
●
●●●●
●
●●
●
●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●
●
●

●●

●●

●

●

●

●●

●

●

●●

●

●
●
●

●
●

●

●

●
●
●
●
●●●

●
●●
●

●

●
●
●
●
●●●●●
●●

●
●
●
●●●●
●
●●●●●●●●●●●●
●
●
●●●●●
●
●●
●●

●

●●

●

●●●●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●
●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●

●●

●●

●

●

●

●

●●

●
●

●
●

●

●
●
●●●
●
●

●

●●

●
●

●
●
●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●●●●
●●
●
●●
●●
●●●●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●
●
●

●

●●

●

●
●

●

●●●●

●●
●●
●

●●

●●

●
●
●
●●
●●●
●●
●
●

●

●●

●●●
●●

●
●
●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●●
●●●●●●
●●●●●●●●●●
●
●●●
●
●●●●●●●
●●●●●
●●●●●●●●●●
●●●●
●
●●●●

●●●
●

●

●●
●
●●

●

●
●●
●
●●

●
●●

●

●

●

●●

●
●

●●

●●
●●
●●

●

●●●●

●

●

●

●

●

●●●
●

●●●
●
●●
●
●
●
●
●
●●●●●●●●
●
●●●●●●●●

●
●

●

●

●

●
●●●

●●●
●●
●●●●

●

●

●
●
●

●

●
●
●●●
●●
●

●
●
●

●
●

●

●
●
●

●●

●
●●
●
●●

●

●

●●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●
●
●●
●
●

●
●●●
●

●●
●●
●●●
●
●●
●
●●

●
●
●

●●
●
●●●
●

●
●
●

●
●●

●●
●●

●

●●
●
●●
●
●
●
●●●●●

●●
●

●●●●●
●●●
●
●

●

●
●●
●

●●●●●
●
●

●●
●
●
●●●
●●●●
●●●
●●●●
●●
●
●●●●●
●●●●●●
●
●●●

●●
●●●●●●●●●
●
●●●●

●
●
●
●●

●

●

●
●
●●
●

●
●

●
●
●
●

●

●

●
●
●
●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●
●

●
●

●
●●

●

●
●

●

●

●●
●

●

●

●●●
●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●●●●●●●●●
●
●●●
●
●●●●●●
●

●

●●

●

●

●●

●●
●●
●●

●●
●●●●●

●●●●●

●

●

●●●
●

●

●

●
●●

●

●

●
●

●●●●

●

●

●

●

●●●

●

●
●
●

●

●●

●
●
●●
●
●●
●
●●●●
●●●
●●●
●●
●
●●
●●●●
●
●

●●●
●

●
●
●●●
●●●
●
●

●

●

●●●

●●
●
●

●
●●

●●

●

●●●

●

●●
●●
●●●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●●●
●

●●

●

●●
●●●

●●

●

●

●●
●

●
●
●
●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●●●●●
●●●

●
●

●
●

●●●
●

●●
●

●

●

●

●

●

●

●
●●
●
●

●
●●

●

●●●
●●
●
●
●
●●●●
●●
●●●●●
●
●●
●
●●
●

●

●

●●●●●●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●
●
●●

●●

●

●●●●
●

●

●
●

●●
●
●●
●
●●

●●

●
●
●
●

●

●
●●

●●

●●●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●●
●

●
●●

●

●

●

●

●

●●●

●

●
●
●
●●
●●

●●●
●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●●

●
●●
●
●●●
●

●●
●
●
●●

●

●
●

●●
●

●

●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●●
●
●
●
●

●●

●
●

●

●
●●

●

●

●
●
●●●
●●●●●●
●●●●●●●●
●●
●●
●
●●●●●●●●
●●
●
●
●●●●●●●
●
●
●

●
●●●
●●●●

●

●

●
●
●●
●
●●
●

●

●
●

●
●●
●●

●

●
●
●

●●

●●
●

●

●
●
●

●

●
●
●

●
●
●

●
●

●

●

●
●●●

●

●
●
●●●●
●●●
●
●
●●
●
●
●●

●●

●●

●
●
●
●
●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●●
●●

●

●
●
●

●

●

●

●●
●
●
●●
●●●●●●●
●●●
●
●

●●
●
●●
●
●●
●

●●

●
●
●●
●

●●

●
●
●

●
●●●●●●

●

●●
●●●

●●●●
●●
●

●
●●●●
●
●●●●●●
●●●

●

●
●
●

●

●
●
●

●
●
●
●●

●
●●
●
●
●●●●●●●●●
●●●●●
●
●●
●
●●●
●
●
●

●●

●
●●
●●●●●●●●●●
●●

●

●
●

●●
●●
●●

●●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●●●

●

●●

●

●●●

●●●

●

●

●

●
●

●

●
●
●

●

●
●
●

●●●●●●●●●●●●●●●●
●

●
●
●
●●
●
●●●
●
●
●
●

●●●●
●●

●●●●●

●●●●●●●●●

●●
●●●●●●●●●●
●
●●●
●●●●●●●●●
●●●●●●
●●●●●●
●
●●
●
●
●
●●●●
●
●●●●●●●
●●●●●●
●●●●
●
●●●
●●●●●
●
●
●●●●
●●
●
●●●●●●
●
●●
●●●●●
●●●●●
●●
●
●●●●

●●●
●
●●●●●
●

●

●
●●
●●
●
●●●
●●●
●●●
●●
●
●●●
●●

●

●●●
●●
●●●
●●●●●●●●
●
●●●
●
●●
●
●●●●●●●●●
●
●●
●●
●●
●●●

●
●●●
●●
●●●●
●
●●

●

●●

●

●
●

●●●●●●

●
●●

●

●
●●●●●

●

●●
●
●●
●
●●
●●●

●
●
●●●
●
●●●
●●
●
●

●
●●●●

●
●●●
●

●
●
●
●●
●●●
●●
●
●●●●●●●●
●
●
●●●●●●
●●●●
●●
●
●
●
●●●●●●●●
●
●●●●●●
●
●●●●●●●
●
●●●●
●
●●
●
●●●●●●●
●
●●●●
●●●
●●●●
●●●●●●●●●
●
●●●●●
●●●●
●
●●●

●

●
●
●●

●●

●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●
●
●
●
●●●
●●●●●●
●
●●●●●
●
●●
●●●●●

●

●
●●●●●●
●●●●
●
●●●●
●
●
●
●●

●

●
●●

●

●
●●●●●
●
●

●
●●●●●

●
●
●●
●●●

●

●●●
●

●

●
●

●
●
●

●

●●
●●
●
●●

●
●●

●

●●●
●
●
●●●●●●●
●
●
●●●●●
●●●●●

●

●
●

●
●●●●
●●
●●●
●●●
●
●
●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●
●
●
●●
●●●●
●●
●●●
●
●
●●
●●
●
●
●●
●
●
●
●

●
●●●●
●●●
●●●
●
●●
●
●
●●●

●
●●●●●
●
●●

●
●
●●●
●
●
●●●●
●
●

●

●
●
●●
●
●●●●●
●
●●●●●●●●●
●
●●●
●
●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●
●●●
●
●●●●●
●
●●
●
●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●

●●
●●
●
●

●●
●
●
●
●
●

●

●

●

●

●

●
●●
●●

●
●
●●
●
●
●●
●
●

●

●
●
●●
●●
●
●●
●
●●
●

●

●●

●●
●

●

●●●
●

●

●
●●
●

●●
●
●●
●

●
●

●

●
●
●
●
●●●●●●●
●●●
●

●●
●●●

●

●

●
●
●
●
●

●

●●●●
●●●

●●
●●●●●
●

●●●●●●●
●●●
●●●●●
●●●
●●●●●
●●●●●●
●●●●●●
●
●

●●●
●
●

●●●
●●●
●
●●●●

●
●●●●
●
●●
●●
●●
●
●
●
●●
●●

●●●
●●
●
●●
●
●
●
●●●
●●●
●●

●●●
●
●●●●●●●●●●●
●●
●●●●●
●
●●
●●●
●
●
●
●●
●●
●●●●
●●●
●●
●●
●
●
●●●●●
●
●●
●

●
●●●●●●

●

●●●
●
●●
●●●●●●
●●●●●●
●●
●●●●
●●●●●●
●
●●●

●
●●

●

●●
●
●

●●●

●
●●●●●
●●●●●●

●

●●●●●●●●●
●●●●
●
●●

●

●

●
●●●●

●
●●
●●
●
●●●●●●●
●
●●●

●

●●●●
●●

●

●●
●●
●
●
●●●●●●●●●
●
●
●●
●●
●
●
●●●●●
●
●●●
●●●●●●●
●●●●●●●
●●●●●●
●
●●●
●
●●●●●●
●●●
●●●●
●●●●
●●●●●●●
●
●●●
●
●
●
●
●
●●
●●
●
●●
●●
●●
●
●●
●●●

●●
●●●●●
●●
●●●●●●●●●●●●
●
●●

●

●
●
●
●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●
●
●
●●●
●

●

●●●
●

●
●●●

●●

●
●
●

●
●●●
●
●●
●
●
●●
●●●

●
●
●●●
●●●●●

●

●●●
●
●

●
●

●

●●
●●

●
●●●●●●
●
●●●

●●

●
●
●
●●
●
●
●

●●●●●●●

●
●
●
●

●●
●●
●

●
●●●
●
●
●
●
●●

●
●●●●
●
●●

●
●
●●●

●
●●●
●●●●●
●

●
●
●●

●

●●

●

●●●
●●
●●●●
●●
●●
●●●●

●●

●

●
●
●
●

●●
●●

●

●

●●●●●

●●

●

●
●●
●●

●●

●
●

●
●●●
●

●●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●●

●
●●
●

●●●●●●

●

●

●●

●●

●

●
●
●

●
●

●

●●
●●●
●

●●●●●

●

●●

●●●●●●●●
●●
●
●●●●●
●
●●
●
●●●
●●
●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●
●
●●●
●
●●●
●●
●
●●●●●●

●
●

●

●●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●

●

●
●●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●
●

●

●

●

●●●
●●

●
●

●

●●●●

●
●
●
●
●●●
●●

●

●

●●
●
●
●

●

●●●●●
●
●●

●

●●●
●●

●

●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●
●●

●
●●

●●●

●

●

●

●

●
●
●
●●

●
●

●
●
●
●

●●
●●
●●●●
●●●●

●

●●
●●
●●●●
●●
●
●●●

●●

●●
●
●

●●

●
●●
●

●

●●●●
●
●
●●●●●
●

●
●

●●●●
●
●

●●

●●

●●
●●●●●●●
●
●
●
●

●

●●
●●
●●

●●●
●
●●●
●●●●●●●●●●
●●
●
●●●●
●
●●●●
●
●●●
●
●
●
●

●
●
●

●

●●

●

●●●
●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●
●●
●●●●
●●
●●
●●
●●●●
●●●●●●
●
●●
●
●●
●●
●●

●

●●

●
●

●
●

●

●●

●

●●●●●
●

●
●

●●

●

●
●
●

●

●
●
●

●
●
●

●●

●
●

●
●

●●

●●●●●●

●
●

●
●

●

●
●●

●

●

●●
●

●●

●
●

●

●

●

●

●
●
●
●

●●

●
●
●●
●

●

●
●

●●●●●●
●●●●●●●●●●●
●●●●●
●

●
●
●

●
●●
●

●

●
●

●

●

●

●●

●

●●

●
●

●

●

●●
●
●
●

●

●
●●●
●
●●●
●
●●●●●●●●
●
●●
●●
●

●●●●
●

●
●
●
●●●●
●●

●●●
●●
●
●
●
●
●

●
●●●
●
●●

●
●
●●●●●●
●●●●●●●●
●
●
●
●●
●●
●

●

●●●

●
●
●●
●
●

●

●

●
●●
●●
●
●●

●

●
●
●●

●
●
●●
●●●
●

●

●
●●

●

●●

●●
●
●
●

●●●●●
●●●

●

●

●●●●●

●

●●

●
●

●

●
●●
●
●

●●

●

●●

●

●●

●●

●

●
●

●●

●

●●●

●

●●

●
●
●●
●

●●
●●

●

●●●

●●●

●●

●●
●●

●

●
●
●

●●●
●

●●

●
●●●

●

●
●

●
●●

●

●

●

●
●
●●●
●
●
●
●●

●●

●
●●
●●●
●●
●●●
●
●●
●●
●
●●●●
●●●
●●●●
●●●●●●●
●●●●
●
●●●●●●●●●●●●●
●●
●●●
●
●●●
●●●●●●●●
●
●

●●
●●

●

●

●

●

●●

●
●
●
●
●

●
●
●

●
●
●
●

●

●●●

●

●
●

●●
●

●●
●
●

●●●●●●●
●●●
●
●●
●●
●
●
●●●
●●●●●
●
●●
●●●●●●●●●●●●●●●

●●
●

●
●
●

●

●
●

●
●

●●●
●
●●●●

●

●●
●●●

●
●●
●●
●

●

●

●
●●●●●●
●
●●●●●
●
●
●●
●●
●
●●●●●●●●
●
●●●●●
●
●
●●●●
●
●

●
●
●●
●

●●
●
●

●●●

●
●
●●●●●
●
●
●
●
●●
●
●
●
●
●

●

●●●
●●

●●
●
●

●

●

●

●

●

●

●●
●

●●
●●
●
●
●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●
●●●●●●
●
●
●
●●●●●●
●●

●

●
●
●

●●

●

●●●
●●●
●●

●●
●
●

●●●●
●
●●●●●●●●●●●●●●

●●

●●●●●
●●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●●●●●●●●●

●

●
●
●●
●
●
●
●
●
●

●
●
●
●

●

●

●●●●●
●●●●●
●

●

●
●●●
●●

●
●
●●

●

●
●
●
●
●●

●
●

●
●
●
●

●●

●
●●
●
●●

●
●●
●

●

●
●

●

●●
●

●●

●
●
●
●
●●

●●

●
●
●●●●●

●
●

●
●

●
●

●
●
●●●

●
●●

●
●●
●
●●●
●●●●
●

●●

●
●
●
●
●

●
●

●●●●●●●●
●●●
●●

●
●
●

●
●●●●
●●●●●●
●
●●●
●
●●●●●
●●
●
●●
●
●●●●●
●
●

●

●
●●

●●

●●
●

●

●●
●
●
●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●●●●●●●●

●
●●
●

●●

●
●
●
●
●

●

●

●●
●
●

●
●●
●
●
●
●●
●

●
●
●

●●●●●●●●●●●
●●●
●
●●●
●
●●●
●
●●●●
●●
●

●●
●●●
●●
●
●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●

●
●
●
●
●
●●●
●
●●
●●●
●●●●●●●●●●●●

●
●●

●●

●
●

●

●

●

●

●
●●●
●

●

●
●
●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●●

●
●

●
●
●
●
●●●●●
●●

●
●
●●
●

●

●
●●
●●●

●

●
●
●
●
●●
●
●
●

●
●
●
●
●●●

●
●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●

●●
●●
●

●●●

●

●
●
●

●
●
●
●●
●
●
●

●
●●●
●

●
●
●
●

●●●
●●●
●●

●
●●
●
●●
●●
●
●
●●●
●

●●

●
●
●
●●●
●●
●
●
●●
●●
●

●

●●●●●●●●

●

●●●●
●
●

●●●
●
●

●

●
●

●
●●

●●
●

●●

●
●

●
●●●●●

●●
●

●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●
●
●
●
●

●
●
●
●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●
●
●
●●●●●●●●●●●
●●●●●●
●
●●
●●
●●
●

●

●

●
●
●
●

●

●●

●

●●●
●
●

●

●

●●

●
●
●
●
●●

●

●
●●
●●●

●

●●
●
●

●●

●
●●●●●●●●●●

●●
●
●

●

●

●
●●
●●●

●
●
●
●

●

●

●
●

●

●

●

●
●
●
●
●

●●

●
●
●
●

●

●

●●●●●●●●●●
●●●●●●●●●●●
●
●●●
●●●●●
●
●●

●●
●

●
●
●●
●

●

●●
●
●

●

●
●
●

●

●●

●
●

●

●

●
●
●
●●
●●
●●
●●
●
●
●●
●
●●●●
●
●
●
●●●
●
●●

●●●●

●●●●●
●●●
●●●●●●
●●
●
●

●●●
●●●

●
●●
●●
●
●●
●●●●●●
●
●●
●
●

●

●

●
●
●
●●●

●
●

●
●
●
●
●
●

●
●

●

●
●●●●
●●

●
●●
●
●●
●

●
●
●●●
●

●
●

●

●
●
●●
●
●●
●
●●●

●●●●●●●●●●●●
●●●●

●

●

●●●●

●

●

●
●

●●

●

●●●
●●
●●

●

●
●

●

●●

●
●

●

●
●

●
●
●

●
●●

●

●

●

●
●

●
●

●
●
●●●●

●●

●

●

●
●

●●

●●

●●

●
●
●●

●
●

●
●

●●

●
●●●
●

●
●

●
●●

●

●●

●
●
●

●

●●●
●
●●●

●

●●●
●●●●●●
●●●
●
●●●●●●
●●

●●

●●●
●●●●
●
●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●
●
●●
●●
●
●
●●
●

●

●

●

●

●
●
●

●

●●
●●

●

●
●

●
●
●

●●
●●●●

●

●
●
●

●

●●●

●●

●

●●

●●
●●
●
●
●●●●●
●●
●●
●●●
●●
●●
●●●●●
●
●
●
●
●●●●●
●●●●●●●
●●●●●●●●●●

●
●
●
●●
●

●

●
●

●
●

●
●
●
●
●
●

●
●
●
●
●

●●●
●●●●●
●

●●●●
●●●
●●●●
●●
●
●
●●
●
●

●●●●●
●●●
●
●●
●●
●●●●●●●
●●●●●●●
●

●

●
●●
●●●●●
●●
●
●

●
●●●●●●●
●

●
●●
●
●
●
●
●
●
●●
●●●
●
●●

●

●
●

●
●●

●●
●

●

●●●●●
●●
●

●●
●●●●●●●
●●●●●●●●
●
●●●●
●●●●●●●
●●●●●

●●●●
●
●●●●
●●●

●

●

●●●
●
●●

●

●●
●●●●
●●

●
●

●
●●
●
●●●●
●●●●●●●●●●●●●●●●●●
●

●
●

●
●
●●●
●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●●

●

●●

●

●

●

●
●

●

●
●●
●

●

●●●●●●●●●●●●●
●
●
●●
●
●●
●
●
●
●
●
●●●
●●●
●

●

●

●●●●●
●
●
●

●
●●
●
●●●

●
●
●
●●

●

●●●
●
●●
●

●●
●●●
●●

●

●
●
●

●

●●
●
●
●

●●

●

●
●●
●●●●
●●
●
●

●
●
●●

●

●
●●●●●●●●●●

●

●

●
●

●

●

●
●
●●

●●

●

●●●●
●
●

●●●

●

●

●●

●
●●

●
●●
●●●

●

●●●●

●
●
●

●
●●
●●
●
●
●
●●
●●
●●●
●
●●
●
●●●●
●
●●
●
●

●
●●

●●

●●●●●

●●
●

●
●

●

●

●
●
●

●
●

●●

●
●
●

●●●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●●
●

●●

●

●

●●

●
●●

●●

●
●

●
●
●●●
●●
●

●
●

●
●●
●

●

●

●
●

●
●●●●●●●●●●●
●
●●●●
●●●
●●

●
●●●●
●●
●
●

●

●●
●●●●
●●●●●●
●●
●●●●
●
●●●●●●●●
●●●●●●
●
●●●●
●●●●●●
●
●●
●●●●
●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●
●
●
●
●
●

●●
●
●●●●

●
●

●
●

●
●

●●
●
●

●●

●●●
●
●●●

●
●
●

●
●

●

●

●
●●
●

●

●
●
●
●●

●

●

●
●

●
●●●

●●

●

●
●●

●
●
●

●
●
●

●

●●●
●
●
●

●
●●●
●●
●●

●

●

●
●●

●

●●
●●
●
●
●

●

●●

●

●●●●●

●

●●
●

●
●
●●●●
●
●●●●●
●●●●●●●●●
●
●●
●●●●●●●
●
●

●●
●
●●
●
●

●

●

●

●●

●●

●

●

●●
●

●●

●

●

●
●●

●

●●

●

●

●
●●
●●●●
●
●●●●
●●
●●●●
●
●●
●●●●
●
●

●●●●●
●
●●●●●
●●
●●●
●●●●
●
●
●
●
●

●
●

●
●
●●●
●
●
●●
●

●

●
●●
●
●
●
●●●
●
●

●

●
●
●●●
●
●●
●●●●●●
●●
●

●
●●●
●
●●●
●●
●
●
●●●
●●●●●●
●

●

●
●
●●●
●●
●●●●
●

●●
●
●●●●
●●●●
●●
●●●●●●
●●
●●
●
●●●●●●
●●●
●
●●
●
●●●
●●●
●●●●

●
●
●
●

●

●

●

●●

●

●

●

●●

●
●

●
●
●●

●

●●●

●●

●

●●

●

●

●

●

●

●

●●
●●●
●
●
●

●●●●●●●
●

●●

●
●●

●●

●●

●

●

●

●

●●

●

●
●

●●●
●●●
●●

●

●●
●

●●
●●
●

●

●●●●
●
●●
●
●●●
●●●
●●●●
●
●●●
●
●
●
●●●
●●●●●●●●
●

●
●●●

●●

●

●

●
●
●
●

●

●

●

●

●
●
●
●

●●

●
●

●
●

●●

●

●

●

●●●

●

●

●
●●
●
●●●●●●●
●

●●●●
●
●●●●●●●
●●
●●
●
●
●●●
●●●
●●

●

●●●
●
●●
●●●
●

●●●●●●●

●
●
●

●
●

●

●
●●●
●
●●

●

●
●
●
●
●●

●

●●●●

●●
●
●

●
●
●●
●●

●
●●
●
●●
●

●

●
●●
●●

●
●●●

●

●●
●
●

●●
●
●

●
●
●

●

●
●
●
●●●
●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●

●●●●●

●●

●
●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●●

●●

●

●●●

●●

●●

●

●

●●
●

●●●●●●●

●
●

●

●

●

●

●

●

●

●
●●
●●

●

●●●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●
●

●●

●
●●

●
●

●●●
●
●
●
●●●
●●
●
●●
●
●
●
●●●●●●●●
●●●
●
●●●●●●
●●●●●●
●●●●●●
●
●
●●●●●
●●●
●●●
●●●●●
●
●●●●●●●●
●●●
●●

●

●
●
●

●

●
●●
●
●
●
●

●

●
●●●
●●

●
●

●
●
●

●

●●●

●●
●
●
●
●

●

●

●●

●

●

●

●
●●●●●
●●●●●●●
●
●
●
●●
●
●
●
●●
●●
●●
●
●●●
●●●●●●
●●●●●●●
●●●●●●
●●●
●●●●●●●●●

●●●●●

●

●
●●
●
●●

●
●
●●
●

●●●

●

●

●

●●●●
●●●●●

●
●
●
●

●
●●
●
●

●

●
●●
●●

●
●●
●●

●
●●
●
●●●●●●
●
●
●
●

●●●●
●
●●●●
●●●●●●●●
●
●

●

●
●
●●●●●
●●

●
●
●

●
●●
●●●

●●●●●
●●●
●
●
●●●●
●●●●●

●

●
●
●
●
●
●●●

●
●
●●●●●●●
●

●
●

●●●
●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●
●
●●
●●●
●●
●
●●

●
●●
●
●
●●
●●
●
●●

●
●
●
●●
●●
●
●
●●●
●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●●●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●
●
●

●●

●●●
●
●●

●

●●●●●●
●
●
●
●●
●
●●

●
●
●●
●●●

●

●●●●●●●●

●

●●●

●
●●

●
●●●●●●●●●●●
●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●
●
●●●●●
●
●●●
●

●

●
●
●●●

●●
●●
●●
●

●●
●
●●
●
●●●

●

●

●

●
●●
●●●●

●
●

●

●
●
●●●●
●
●●
●
●
●●●●
●●
●●●●

●

●●●

●
●●●
●●
●
●●●●●●●●●
●●●●●●●
●
●
●
●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●●●
●●●●
●
●●●●●●●●
●
●●●

●

●●●●●●●●●●

●

●●●
●
●●●●●

●

●●

●

●●

●

●●●
●●

●
●●●●●
●●●●●●●●●●
●●●●●●●●
●
●
●
●
●●●●●●●●●●●●
●
●●●●●●●
●
●
●
●●●●●●●
●●●●●●●●●●●●●●
●
●●●●
●
●●●

●

●●●●●●●●●●●

●

●●●

●

●
●
●●●●●

●●●●●

●●
●
●●●

●

●●
●
●●

●

●●●
●
●
●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●
●●●●●●●●●●●
●
●●●●
●
●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●
●
●
●
●

●
●
●
●●

●

●
●
●
●
●
●
●
●●●
●
●
●
●●●●
●●
●●
●
●●●
●
●
●

●
●
●

●

●●●●
●

●

●●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●

●●●
●
●
●●
●

●
●
●●●●●●●●●●●●

●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●
●●●●
●
●●●
●
●●●
●
●
●
●●
●
●●●●●●●●●
●
●●
●
●●●●●●●

●●
●

●●

●
●
●●
●

●

●

●

●●●
●
●

●

●

●●●●
●
●
●
●●
●

●
●●
●●

●●●
●
●●
●
●
●●●

●
●
●
●
●●

●

●●●●●
●
●●●●●●●●●
●●●●
●
●●●●●●●●
●
●●●●
●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●
●●●●
●●●
●
●●●●
●●
●

●

●●●
●
●●
●
●●

●
●●●
●
●●
●
●●
●
●
●●

●
●
●
●
●●●●
●

●

●●●●●●●●
●

●●●

●

●
●●
●
●

●

●

●
●●
●●
●
●●
●
●

●●●

●

●

●
●●
●●

●
●●
●
●●

●
●●
●
●
●
●

●●●
●●●●●●●
●●
●●●
●
●

●●
●

●
●
●●●

●
●
●
●●●
●
●
●
●
●

●

●●

●
●
●
●

●●

●●●

●
●
●

●

●
●
●●
●
●
●●
●
●
●
●
●●
●●

●●

●●
●

●●●
●●●●
●●●●

●●

●
●●
●
●●●
●●
●●
●●●●●
●

●
●●
●●●●●●●●
●●●●
●

●

●●●
●●
●

●

●

●●●●●●
●

●
●●●

●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●

●

●

●

●●●
●
●

●

●
●
●

●●●●
●●●
●
●●
●
●
●
●
●●●
●
●

●

●

●●

●●

●

●
●●

●

●●

●
●●●
●
●
●●●●●●●●

●
●●●●●●●
●
●●●
●
●
●
●

●
●
●●●●
●●

●
●
●●
●
●●●●
●●●●●
●
●
●

●
●●●●●●
●
●
●●
●●
●●
●●●●●●●
●
●●●●
●●●●
●

●
●●●
●

●
●●●
●●●●

●

●●●●
●
●●●●●●●
●●
●●●●●●●●●●●
●●●●●●●
●
●●●●
●●●●●
●
●
●●●●●●●●●
●●●●●●
●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●
●
●
●●●●●●●●
●
●●●
●
●
●●●
●●
●●
●
●●●
●
●
●●●
●
●●●●●
●●●●●
●

●●
●●
●●
●
●
●
●●●●●●
●●●●
●●
●●●●●●●
●●●●
●
●
●●●

●
●
●●●●

●
●

●

●●

●●

●
●
●●

●
●●
●●
●
●

●

●●●

●

●
●
●
●●

●●

●●●

●

●●●
●
●

●
●●
●

●

●
●●
●

●●●●●
●
●●
●●
●
●●●
●●●●●
●●
●
●
●●●
●●●
●●●●●
●●●●
●●●●●●
●●
●
●●●●●●●●●●
●
●●
●
●●
●●●●
●
●●
●●●●●●●●
●●●●
●
●●●●●●●●●●●

●

●
●

●●●
●
●

●

●●
●●
●

●

●
●

●
●
●
●

●●

●

●

●
●
●
●●
●
●●
●●
●
●●
●
●●
●●

●
●

●

●

●●●

●
●●●
●
●●

●●
●
●●
●●
●
●
●
●

●

●●
●●●
●
●
●
●●
●
●
●●●●●

●

●
●●
●●●
●●●
●●
●●●●

●●●●●●
●
●
●
●●
●●
●

●
●
●

●

●●●●
●●
●
●

●
●
●

●

●
●●

●

●●●●●●●●●●●●●●●●●●

●
●
●

●

●
●

●
●●
●●

●

●

●

●●●

●

●●

●
●
●●●
●●●
●

●
●
●●●
●
●●

●

●

●●

●●
●
●●●
●
●

●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●
●●
●●●●
●
●●
●
●

●●●
●●
●
●
●

●
●
●●●●●●●●
●
●
●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●
●●
●
●●●
●●●
●
●●●
●
●●●●●●●
●
●●
●
●●
●
●
●●●
●

●

●

●

●

●●●

●●

●

●
●
●●
●●●

●

●

●●
●●
●
●
●●●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●●●

●
●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●
●●
●●
●
●
●●●
●●●●
●
●
●●●
●
●

●
●
●
●

●
●
●
●
●●
●
●
●●
●

●●
●
●●

●

●

●
●●
●
●
●●
●
●
●
●●
●
●●

●

●

●
●
●
●●●

●

●●

●

●

●●

●●

●
●●
●●
●●●●●●

●●●●

●

●●

●
●
●

●

●

●

●

●
●●

●
●
●

●

●
●
●
●●
●
●

●●●
●
●●

●●●
●●●●●
●●●
●●●
●
●●
●●●

●

●●●
●
●

●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●●●
●
●●●
●●●●
●
●●

●

●●
●

●
●●
●
●●

●
●●●
●
●
●

●

●
●
●
●
●●
●●●
●
●
●

●
●
●
●
●●
●●
●●
●●
●

●
●

●

●

●●●
●●●●

●
●●

●

●●
●●●●●●●

●

●●
●●●●

●●
●●
●●

●
●●
●

●

●
●

●●●
●
●●●
●
●●●●●●●
●
●
●

●
●
●
●●
●●●●●
●
●
●
●
●
●●
●●
●●

●
●

●●

●
●
●●●

●
●
●

●

●
●
●●
●
●●

●

●
●
●●
●●
●●

●●

●●
●

●
●●
●●●●
●
●

●
●

●
●
●●●
●
●●●●●
●●
●●●●●●
●
●●
●
●●●●
●●●
●●●●
●

●
●
●
●
●
●●●
●●●●●●●
●
●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●
●●

●
●●

●●●●
●

●

●
●
●

●●
●
●
●●●
●

●●
●
●
●●
●●●
●
●

●

●

●●

●●

●

●
●●
●

●●

●

●●
●

●
●
●●●●

●
●
●●
●

●
●●●●●

●
●
●
●
●
●

●
●●
●
●●
●●●●●
●●●●●
●●●

●

●

●
●

●
●●●●●●●
●
●●
●
●●●
●
●●●
●
●●●
●●
●●
●●
●
●

●

●

●

●
●
●
●
●
●
●●
●
●
●●●
●
●●●●●●●●●
●●●●●●
●●●●●●●
●●
●●●●●
●
●●●●
●
●
●
●
●
●●●
●●●●●●●●●●●
●●●●
●●●●●●●
●●●
●●
●●●●●●●●●●

●●●
●●●
●●

●
●●●●●
●
●
●●●
●●●●●●●●●
●
●
●
●
●
●●●
●
●●●●●●
●●●●●
●●
●

●●●●
●
●
●●●
●
●
●●
●●●●●●●●●●●●●●
●●
●
●●●●●●
●
●●●●●
●
●

●

●●

●●
●
●
●
●

●●
●

●●
●
●

●

●●●

●

●●●●

●●
●●●
●
●●●

●

●

●
●●
●

●

●●
●
●

●●●●●
●●●●●
●●
●
●●●●●●●●
●●
●●
●●●●
●●●●
●
●●●
●●
●
●●●●
●●●●●●●
●
●●
●
●●●●●
●●●
●
●●●●●●●
●●●
●●●
●●●●●●●●●●●

●

●
●

●●●
●

●

●

●
●

●●●
●

●●

●●

●
●

●
●
●
●

●
●
●
●●
●

●●
●●
●●
●●●
●●●

●
●

●

●

●
●●

●●●
●●
●
●●●●
●
●
●●●

●
●●
●
●
●
●
●
●●●●●
●●

●
●
●
●●●●

●
●●
●
●●●●●●
●●
●
●●●
●●
●●●●
●

●
●●
●●
●●
●

●
●

●

●

●
●●●●●●
●

●●
●

●●
●

●

●●
●
●●●●●●●●●
●●●●●●
●

●

●

●

●
●
●●●
●
●

●
●
●

●●●

●

●●

●
●
●●
●

●●●
●

●

●

●
●
●
●
●●

●

●

●
●

●●●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●
●●
●●●●
●
●●●●
●●●●
●
●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●
●
●
●
●
●
●
●

●●●
●
●

●
●●●●●●
●
●●
●●

●

●

●

●

●●
●
●
●
●

●
●
●●
●●
●
●

●

●●●
●●
●
●●
●
●●

●●

●
●
●
●
●
●
●

●

●

●

●

●●
●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●
●

●●
●●●●
●●●
●
●●
●●●●●●●
●

●●●●

●

●
●
●
●
●●
●●

●

●
●

●●●
●●
●

●
●
●●
●
●

●●

●

●●

●●●

●
●

●

●

●
●
●
●
●●

●

●●
●
●
●●

●●

●
●●

●
●
●●
●●●●

●●●●●●

●

●●

●
●
●
●
●●●
●●
●●●

●
●
●

●

●
●
●
●
●●
●
●

●
●●
●
●●

●
●
●●●
●●
●
●
●

●●●●●
●
●

●

●●●●●●●●●
●●
●
●●●
●
●
●●●●
●
●●●
●●●●●
●●●●
●
●●●●●●●●●●●●●●
●●●●●
●●●●
●●●

●●●

●

●
●
●

●●
●
●
●●●
●●●
●
●●●
●

●

●
●
●●●●
●●●●
●
●

●
●
●●
●

●

●

●
●●

●

●●
●●

●●●●
●●●
●

●●
●●●●
●

●

●●
●
●
●

●●

●●

●●●
●
●
●

●
●●●
●
●
●

●

●●
●

●

●●●

●
●
●
●
●
●
●
●

●
●●
●●
●
●

●

●
●●●●●
●
●

●●●●●
●●

●

●
●
●
●
●

●
●
●

●●●●●●
●
●●

●
●
●●
●

●
●●
●●●●

●●

●●

●

●●
●
●
●●●

●●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●
●

●
●
●●●
●●
●
●
●
●
●
●

●
●●
●
●

●
●●
●
●
●●
●●●●●
●●●
●
●●●●●
●●●

●

●
●
●
●

●
●●●
●
●

●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●
●

●

●●
●

●

●●

●

●●

●

●●

●●

●

●
●●●
●

●●
●
●

●●●●

●●●

●
●
●

●

●●●●●●

●

●●
●●●●●●●●
●●●●

●
●●
●
●
●●●
●
●●
●
●●

●
●
●●
●
●
●
●●●
●
●●

●

●
●
●
●●
●
●
●●
●
●●●●
●
●
●●

●
●●

●●

●

●

●●●●
●●●●●●●●●●

●

●●
●●●●
●●●●
●●
●●●●●●●
●
●●●●●●●
●●●●●●
●●●●●
●
●●
●
●●●●●●●●●●
●●●●
●
●
●●
●●●●
●
●
●●
●
●●●●
●
●●●●●●
●●
●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●

●
●●
●
●

●
●●●●●●●●●●●●●
●●●●●

●

●
●●

●●●
●●
●●
●
●●

●
●●
●
●●●●●●
●●●
●
●●●
●
●
●●●●●●
●●●●●●
●
●
●●
●●●●
●
●●
●●
●
●
●
●●●●
●●
●
●●●●
●
●●

●●

●

●

●
●●●
●●

●

●

●●●

●●
●
●●
●
●
●
●
●●
●●
●

●

●
●

●●
●●
●●

●
●●
●●
●
●●●●●●●●●
●●●
●●
●
●
●●
●●
●
●
●●●
●
●●
●
●●
●
●●
●●●●
●●●●●●
●●●●●●●●
●
●●
●●
●●
●
●
●●●
●
●
●
●●
●●
●
●●
●
●
●●●
●●
●
●●●●●●●

●●
●

●
●
●
●●
●●
●
●●

●●
●

●

●
●●●●

●●
●
●

●●
●
●
●●●●

●

●
●
●

●

●●

●

●●●
●
●
●

●●

●●
●●●●●
●●
●
●
●
●●
●

●
●
●●●
●
●

●

●
●
●●
●
●

●

●●

●

●●
●
●●●
●
●●
●

●

●

●

●

●●●●

●
●
●

●
●
●

●●●
●●●●●
●
●●
●●●
●
●●
●●●●●●
●

●

●●●●●●●●●●●

●

●
●
●●

●

●
●
●●

●

●

●

●
●

●●●●

●●

●

●●
●
●

●
●●

●●

●

●
●
●●●
●
●●

●●●●●
●●●
●
●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●
●
●●●
●●
●●
●●
●
●
●●●●●●●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●
●●
●●
●●●●●●●
●
●
●
●●
●●●●
●

●
●●

●
●
●
●
●
●
●

●
●
●
●

●
●●●

●

●
●●

●●

●●
●
●●

●

●

●
●

●

●
●
●●

●

●

●

●●●●
●
●

●

●
●

●●●●
●●●●
●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●
●
●●●
●●
●
●●●●●●●

●
●
●●
●●

●
●
●

●●
●●

●

●
●●●●

●
●
●●
●●

●
●
●●●

●●

●
●
●

●
●
●

●

●
●
●●

●

●
●●●●
●
●●

●
●●●●
●●●●
●●
●

●
●●
●●

●●●●●

●

●●●

●●●
●
●●●●

●●
●●
●●

●●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●●
●●
●●●●●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●
●●
●●●

●
●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●●

●● ●●●

●●

●●
●●
●●

●●

●●●
●●

●●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●

●● ●●●

●●

●●
●●
●●

●●

●●

●

●●●●●●●
●●

●●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●
●●

●● ●●●

●●

●●
●●
●●

●●

●●●
●●

●●●

●●

●●

●●

●●

●●
●●
●●
●●
●●

●●

●●●
●●●

●●

NSD < 0.05 NSD in [0.05,0.1] NSD in [0.1,0.25]

NSD in [0.25,0.5] NSD in [0.5,1] NSD > 1

1.00

1.05

1.10

1.15

1.20

1.0

1.2

1.4

1.6

1.2

1.5

1.8

1

2

3

4

2

4

6

8

0

25

50

75

100

125

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Sta
tic

−B
es

tA
ss

ign
m

en
t

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Strategies

N
or

m
al

iz
ed

 M
ak

es
pa

n

(d) |T |
|P | = 10

Figure 4.11: Results for the makespan metric and heterogeneous settings.

In this section we propose simulation on the traces presented in Section 4.5.1.
As stated the scheduling algorithms do not use the information we have on the

190 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

execution time (neither for static or dynamic part) in order to emulate the
online aspect of MapReduce scheduling. In this section we also set the repli-
cation ratio r to 3. Furthermore, for each job, we perform simulations for
different values of |T ||P | , |T | being set by the traces. Finally, for each job, each
|T |
|P | ∈ {1, 2, 5, 10} and each strategy we perform 50 simulations.

Makespan

In order to provide a fair comparison between jobs with different average com-
putational times, we use the normalized makespan, i.e. the actual makespan
divided by the ideal one (the purely sequential makespan divided by the num-
ber of processors), as a metric. The results are shown on Figure 4.11.

Many outliers can be noticed in these results, with important normalized
makespan in particular in the case of high variance. The explanation is that,
in high variance jobs, there are tasks that last really longer than the other
ones. Therefore these tasks have a significantly more important impact on the
makespan than the others and then they partially cancel the efforts made to
balance the number of tasks between processors (this is also why the outliers
are present on every strategy when the variance is high enough).

Globally the general behaviour is more or less the same for all |T ||P | . For small
variance (NSD ≤ 0.1), we are close to the result for homogeneous settings.
Thus BestAssignment and Static-BestAssignment are more efficient than
Greedy and Maestro. Otherwise, all three strategies with dynamic part
have similar efficiency and Static-BestAssignment suffers from the homo-
geneity assumption.

Therefore, in any case, BestAssignment, with its dynamic part, appears
to be the better choice. It is the best strategy for small variances and it
performs as well as the other dynamic strategies for large variances.

Communications

As for the homogeneous settings we use the percentage of non-local tasks as a
metric. Results can be found on Figure 4.12.

Let us first have a look at the case |T | = |P | (Figure 4.12(a)). According
to our strategies there can be no idle processor as soon as there is at least
one unprocessed task. Therefore each processor executes exactly one task (if
the assignment gives no tasks to a processor, this one will automatically steal
one to another processor). Thus, the heterogeneity of the computational times
has no effect here on communication cost. Thus, for all standard deviation,
BestAssignment performs well with an average cost around 7.5% of non-
local tasks against 11.4% for Maestro and 25.8% for Greedy. Note that the
small differences that appear between the results of two classes with different
standard deviations might probably come from the repartition of the value |T |

On the Effect of Replication of Input Files 191

4.5. Simulations

(the number of tasks of a job, which, according to the results with homogeneous
settings, impacts the communication ratio, even with |T | = |P |) inside each
class, which differs from a class to another (see Table 4.1).

●
●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●

●●●●

●

●●●

●

●●
●

●

●

●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●●●
●

●

●

●

●

●●●●●●
●●●

●

●●
●●●

●

●●●●●

●

●●

●

●●●
●●●
●

●●

●●●●●

●●

●

●

●

●●●

●●●
●
●●●●

●

●●
●●●
●●

●

●●●●

●●

●
●●
●●●

●

●●●●

●

●●

●●●

●

●

●

●●●

●●
●
●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●

●

●●●
●

●●●●
●●●●
●●●
●
●●●●●●●●
●●
●●●
●●●

●

●●●●●

●

●●●●●●
●●●●●●●●●●
●
●
●
●●
●
●
●●●●
●●●●●●●●●●●●●●●●●●
●

●

●●
●●●●●
●●
●●●●●
●
●
●●●●
●
●●●●
●
●●●
●●●●●
●
●
●
●●●●●●●●
●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●
●
●

●

●

●
●
●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●●

●●●●●●●●●

●

●●●●●●●●●
●

●

●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●

●●●

●●

●●

●

●●●●●●●●●●●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●

●●●●●●
●●●●●

●

●●●●●●●●●●●●●
●
●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●
●●
●

●

●

●●

●

●●●●●●

●

●●●●●●●●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●
●

●

●●

●
●

●●

●●●●●

●

●

●

●

●●

●

●

●
●●●●●

●●●

●

●●●●

●

●

●
●
●

●

●

●

●●
●

●●

●

●●●●●●●

●

●

●
●
●

●

●

●

●

●
●

●
●●●●●●
●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●
●
●●●●●

●

●

●

●

●

●

●

●●
●●●●●●

●

●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●
●

●
●

●
●

●

●

●

●●

●

●●●

●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●●●●●

●●

●●

●

●

●

●

●●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●●●●

●

●●●●●

●

●

●

●●

●●●●

●●●

●●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●●●●

●

●
●
●

●

●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●
●
●

●
●

●
●
●

●●●

●

●

●

●

●

●●

●
●
●

●●●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●
●

●●

●

●

●

●

●●

●

●●

●●
●

●●

●

●

●

●●

●
●

●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●●●●
●

●

●●
●

●

●●

●●●●

●

●

●

●●

●

●

●

●

●●●●●●●●

●

●

●●

●●

●

●

●●

●●

●●

●

●●●

●●●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●
●
●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●●●●

●

●●●

●

●●●●

●

●

●

●●

●

●●

●

●
●●

●●

●

●

●●●

●●●●

●

●●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●●●●●

●●

●

●

●

●

●

●●

●●
●

●●

●●
●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●●●

●●

●

●

●
●
●●

●

●

●
●
●●

●

●

●
●
●●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●
●
●●

●

●

●●

●

●

●●●

●

●●

●

●

●

●●
●

●

●●●●

●●
●

●
●
●
●
●●

●●

●●●

●

●●●●

●

●●
●
●●●●●●●●●●

●
●

●●●
●
●
●
●●●●●●●●●

●●

●●

●

●

●

●
●●

●

●
●
●●

●

●

●●●●●
●

●

●

●

●●

●●

●
●●●●●●

●

●

●●

●●

●
●
●

●●

●

●

●●
●

●

●●●
●●●●●
●●

●●●●

●

●●

●

●●

●●

●

●

●●●●

●

●●●●●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●●●

●●

●

●

●●●●●●

●●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●

●

●

●●●●●

●

●

●

●●●●●●●●

●

●●●

●
●

●●●●●●●●●●●●●●●●●●●

●
●

●

●
●

●●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●●●●

●●

●●

●

●

●
●

●

●
●

●

●
●

●●●●●●

●

●

●

●●●●

●●

●

●

●●●●●

●

●●

●●

●

●

●●

●●

●●●●

●

●●●●

●

●●

●

●●●●●●●●●●●

●

●
●

●

●
●
●
●
●
●
●
●

●●

●●

●●●●●●●

●

●●●●●

●●●

●●●

●

●

●

●●●●●●

●

●●●●●●●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●●●●●●

●●

●●●●●●●●●●●●

●

●●

●●●●●

●●●●

●

●●

●●●●●

●●

●●●

●

●
●●●●

●

●●

●

●

●●●●●●

●

●●

●

●

●●

●

●●●●

●●●●●●●●●●

●

●

●●●

●

●●

●

●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●

●●

●●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●●●●

●

●

●●

●

●●
●

●

●

●●

●●●

●●●●

●●

●●

●

●●

●●●

●●●●

●●

●

●●●●●●●●●

●

●●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●●●●

●

●

●

●●

●●●●

●

●●●●●●●

●●

●●●●●●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●●●●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●

●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●●●●

●●

●

●

●●

●●

●

●●

●

●

●●

●

●●●

●
●

●●●●●●●●

●

●●●

●●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●●
●

●

●●

●

●

●

●●

●●

●
●
●
●
●
●

●●

●●●●●●●●

●

●●
●
●●●●●
●
●

●
●
●●●●●●

●

●●●
●
●
●
●●●●

●

●

●

●

●

●●●●
●●
●
●
●
●
●

●

●

●

●●●
●

●

●
●
●
●

●

●●
●●

●●

●●●
●
●●●

●

●
●
●●●

●

●

●

●●
●●
●●●

●

●
●●●
●

●

●●●

●●●●

●●●
●

●

●

●●

●●●●●●●●●
●
●●

●

●

●

●●
●
●●●●

●●

●●●●

●

●
●

●

●

●

●●

●

●

●●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●●●
●
●●●

●

●●●●●

●

●
●

●

●●●●●
●
●●●

●

●
●●●●

●

●●

●

●●●●●●●

●

●
●

●

●

●

●●●●
●
●●

●

●●

●

●
●
●●●
●

●

●

●

●●●●●●

●

●●●●

●

●

●
●
●●●●

●

●●

●

●
●

●

●●●●●●

●●

●●●●●●

●

●●

●

●●●

●

●●
●●●●●
●●

●

●●●

●

●

●●

●

●
●●

●

●

●

●

●●●

●

●●

●

●

●●●●●●●●●●●●●

●

●●●
●
●●

●

●
●

●

●●

●

●
●
●●

●

●
●

●

●●

●

●
●
●●

●

●
●

●

●●

●

●
●
●●

●

●
●

●

●●

●

●
●
●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●

●

●

●

●

●●●

●

●

●
●●●●●●

●

●●●●

●
●
●●
●
●●

●●

●

●

●

●●

●

●

●

●●

●●●●●●

●●

●●

●●●

●
●
●●
●
●●

●●

●
●
●●
●
●●

●

●

●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●
●
●●
●
●●

●

●●

●

●

●●

●●

●

●

●●●●●

●

●

●

●

●●●●●●

●

●●

●

●

●●●●●●●

●●

●

●●●●

●

●

●●

●

●●●
●●
●

●●●
●●
●●●●●●●

●●

●●●●●●●

●

●●●●

●●●●

●●

●

●

●●●●●

●

●

●

●●●●●●

●

●●●

●

●●

●

●●

●●●

●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●●●

●●

●●

●●●●

●

●

●

●●

●●

●

●

●

●

●●

●●●●

●●

●●●

●●

●

●

●

●●

●●

●●●

●●●●

●

●●

●●

●●

●●●●

●

●

●

●●●

●

●●
●

●

●●●

●●●

●

●

●●
●

●

●●●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●

●●

●●

●

●●●●
●

●●

●
●●

●●●

●●

●

●

●

●●

●●

●
●●

●●●

●●

●

●

●

●

●

●

●●

●

●●

●●
●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●●

●

●
●●●●●●●●

●

●●●●●●●●●●●
●

●●

●

●●

●●

●

●
●

●

●

●●

●

●●

●●●

●●●

●●●

●●●●●●●●●●

●

●●●

●

●

●●●

●●

●

●●●●●

●

●

●●

●

●

●●●

●

●

●●●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●●
●●●

●●

●

●

●

●●●●

●

●

●●●●

●●●●

●●

●

●

●●●

●●

●

●●●

●
●●●●

●

●

●●

●●●

●●

●

●

●●●

●

●●
●

●●●●●●

●

●●●●●●●●●●

●

●●
●●●

●●

●

●●

●

●

●●

●●

●●●●

●

●●

●

●●●●●●●

●●●●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●●

●
●
●

●●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●●●●●●

●

●●●●●●●●●

●●

●
●
●
●●
●
●●
●
●●
●
●●●●
●

●

●
●
●●

●●●

●

●

●

●●

●●●●

●

●

●

●

●●

●

●

●●

●●

●●●●●●
●

●

●

●●●

●●●●●●●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●●

●

●

●

●●

●●

●●

●●

●●●

●●●●●

●●

●●●●

●●

●●●

●●

●●

●

●●

●

●●

●●●

●●

●●

●

●●

●

●●

●●

●

●●
●●
●●

●
●

●●

●

●

●●

●
●●

●

●
●
●

●

●●

●●●

●
●●

●

●

●

●
●●

●

●

●●●●●

●

●

●
●

●●●

●
●

●

●●

●

●

●

●●●

●●
●●
●●●

●
●

●●●●●●

●

●

●●
●

●

●

●

●

●
●

●

●
●
●
●

●
●

●

●

●

●
●●

●
●
●
●

●●●

●●

●

●

●●
●

●

●●

●

●
●

●

●●●

●

●

●●●●●

●
●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●●

●

●
●
●

●

●

●●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●
●●
●

●

●

●

●●
●

●
●
●●
●●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●
●
●
●
●●●
●

●

●●

●

●
●

●

●
●●

●

●●
●

●

●

●
●●●

●
●
●

●

●●

●

●●

●●
●

●
●

●
●
●
●
●
●

●

●

●
●

●●●

●●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●

●

●●●

●

●●

●

●

●
●

●●●

●

●

●●

●
●
●

●●●

●

●

●

●
●

●●●●

●

●●●

●

●
●

●
●
●

●
●

●●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●

●●
●
●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●
●
●

●

●●●

●

●

●

●
●
●
●
●
●●●

●

●

●●●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●●●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●●

●●●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●●

●

●
●

●

●

●
●●

●
●
●

●

●

●

●●

●

●●●●●●
●

●

●

●

●

●●

●●

●●●
●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●●

●●●●

●
●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●
●
●●
●

●●●

●

●

●

●●●
●
●●
●●●

●●●

●●
●

●

●●●●●●●●

●
●

●

●
●

●●

●

●

●

●

●

●●●

●

●

●

●

●●●●
●
●
●

●
●

●

●

●

●

●

●

●
●
●●
●●

●
●
●
●

●

●●

●

●●

●
●

●

●

●
●
●

●●●
●
●
●●●●
●

●●
●

●●●●●

●●

●

●

●
●
●●
●
●●

●

●●

●

●

●●
●

●
●

●

●

●●
●
●●●

●
●●●
●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●●

●

●●●●●●●●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●●

●●

●●●

●●●●

●●●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●●●●●

●

●

●●●●

●

●●●●●

●

●
●●

●

●●

●●

●●●

●●●●

●●●●●

●●

●

●
●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●●●●

●

●●●●●

●

●
●
●

●

●
●●●

●●●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●
●

●
●

●●●

●

●

●●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●

●

●●

●

●

●●●●●●●

●

●●●●●●●

●

●●

●

●

●

●

●
●
●

●
●

●

●●●●●

●●●

●

●

●

●

●

●●●●●

●

●

●
●
●

●
●

●●

●
●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●
●
●
●●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●

●

●●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●
●

●●
●●●

●
●
●
●
●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●●
●
●

●

●
●●

●

●

●

●

●
●

●

●
●●
●
●

●●●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●●

●●●

●●

●

●

●

●●●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●●

●

●

●●

●

●

●

●●

●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●●

●

●

●

●
●

●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●●
●●●
●●
●●●
●
●
●
●●●

●

●

●●

●

●●

●

●●

●

●

●●

●●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●●●●

●

●

●●

●●
●

●

●

●●

●

●

●●●

●

●●●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●●●●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●●●●●

●

●●

●

●●●

●●

●

●

●
●

●

●

●

●
●
●

●

●

●●
●
●

●

●

●

●
●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●

●
●●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●
●●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●
●●

●
●
●

●

●

●●

●

●

●●●●

●

●●
●
●●
●●
●

●

●
●●

●
●
●

●

●

●●

●●

●●

●●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●
●●

●
●
●

●

●

●●●●

●

●

●●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●●
●●

●

●

●●●
●

●

●

●●

●

●●
●

●

●●
●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●
●●
●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●
●●
●

●

●●

●

●●

●
●●
●

●

●●

●

●

●●

●

●●

●●●●●

●

●

●

●

●●

●
●●
●

●

●●

●

●●

●
●●
●

●

●●

●

●●

●

●

●●

●

●

●

●●●

●●●

●●

●

●●

●●

●
●●
●

●

●●

●

●●●●

●

●●

●

●

●●●

●●●●

●●

●
●●
●

●

●●

●
●

●

●

●

●

●

●●●●

●●

●

●●

●

●●●●

●●

●

●●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●
●●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●●

●●

●●

●

●●●●

●
●

●●●●●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●●
●
●●

●
●

●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●●

●

●
●
●●

●
●

●●

●●●

●

●●●
●
●●

●

●●

●●●●●●

●

●●●●●●

●

●

●

●

●●●●

●

●

●●

●●

●●

●

●

●●●
●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●●
●
●●●●●●●●●

●

●

●●

●

●

●●

●

●

●

●●●●●●

●●●

●

●●●●●●●

●

●

●●●●

●

●

●●
●●●

●
●

●●

●

●●●●●●●
●●

●

●
●●●●●

●

●

●

●

●●●●●●

●

●●
●
●●●●●●●●

●●

●
●
●
●
●●●●

●
●●●●

●●●●●●●●●

●

●

●

●

●

●●●
●
●

●

●●●●
●●

●

●

●

●

●●

●

●
●●

●●

●●

●●

●

●●

●

●●●

●●

●●

●

●●●●●
●
●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●●

●●

●

●

●
●●●

●●

●

●

●
●●●

●●

●

●●●
●

●●

●
●
●

●
●

●

●●●

●●

●●

●

●

●●●

●
●
●●

●

●●

●

●●
●

●●

●●

●
●●●

●●●
●

●
●
●
●

●

●

●●●●

●

●

●
●

●

●

●

●
●

●

●●

●

●●●

●

●●
●●
●

●

●●

●

●
●

●

●●

●●●●

●●
●

●●●●●

●●

●●
●

●

●
●
●●

●●●

●

●

●●●●●

●

●
●●●

●●

●

●
●
●
●●
●●
●●●

●
●

●●

●

●●●●●●●

●●

●

●●

●●

●

●●●●●
●●

●
●●●
●

●

●

●
●
●●●
●●
●

●

●●

●

●●●●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●●

●●●

●●

●●●

●

●●

●

●●

●
●

●

●

●●●

●

●●

●

●
●●

●

●

●

●

●●

●●●●●●

●●●●
●

●

●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●●

●

●●

●

●

●
●
●●●

●

●

●

●
●●

●

●
●

●

●
●●

●●●

●●●●●●●

●●

●●
●
●
●
●
●●●●●●

●

●●
●
●

●

●●

●●●●●●

●

●
●
●
●●

●

●
●

●●●

●
●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●

●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●
●●●
●
●

●●●

●●
●
●●

●
●
●
●
●

●
●

●●●

●

●
●●●●

●●●●●
●●
●●●

●

●

●
●

●

●
●
●

●

●●

●

●
●
●●●●
●

●

●●●●
●

●●●
●

●●●●

●

●

●

●
●
●●●●

●
●

●●

●●●

●●●

●

●●

●●●●

●
●

●●

●

●

●
●

●●●

●●●

●

●●●

●
●●●
●
●●

●

●●

●

●

●

●

●
●
●
●

●

●●

●●

●

●

●●●

●

●●●

●●

●

●●

●
●●
●●
●●
●

●

●●

●

●

●
●●

●●

●

●

●

●

●●

●●●●

●●●●

●

●●●●
●
●
●
●
●
●

●
●●●
●
●

●

●

●●

●●●●

●

●

●

●
●
●

●●

●●●●●●

●

●●●●

●

●

●

●

●

●
●

●●

●

●●

●●
●●

●

●●●●

●

●●●●
●

●

●

●
●

●

●
●

●

●

●●●●

●●

●

●

●

●

●

●

●
●●

●●●
●●●
●●
●

●●●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●●●

●

●●

●●
●●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●●

●

●●●
●
●●

●

●●
●
●
●●●
●

●

●●●

●

●
●

●

●

●

●●●●

●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●
●

●

●

●

●
●
●

●

●●●

●

●

●●

●●●●●

●

●

●

●●●

●

●●●

●

●●

●●

●

●

●●●●

●

●●●●●●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●●●

●

●●●●●

●

●●●●

●

●●●

●●●

●●●●●●●

●●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●

●●●

●●●●●●●

●●

●●●●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●●●

●

●●

●●

●●●●●●●●●●●●●●

●

●●●●

●

●●

●●

●
●●

●

●●

●

●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●●
●

●
●

●

●

●●●

●

●●●

●

●

●

●

●●●●●●●●

●

●

●●

●●●●●

●

●

●●

●●●●●●●●●●●●●

●

●

●●

●●●●●

●

●

●●

●●●●●●

●●

●

●
●

●

●
●●

●●
●●●●●●●●

●

●

●

●

●●

●

●●●●●●●●●●

●●

●

●
●

●

●
●●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●●●●●●●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●
●

●

●

●

●●●●

●●

●

●

●●●●●

●

●●

●●

●

●

●●

●●

●●●●

●

●●●
●

●

●●

●

●
●
●

●

●●

●●●

●

●

●

●

●

●
●●
●●

●●

●

●

●

●

●●●

●●
●
●●●
●

●

●
●
●

●
●

●●

●

●
●
●

●
●

●●

●

●●●

●

●

●

●
●●●

●
●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●●

●●

●

●

●

●

●●

●●

●

●

●
●●

●

●●●●●●●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●

●

●

●

●●

●●●●●

●

●●

●

●●

●

●

●●

●

●
●●

●●

●

●●
●
●●●
●
●●

●●

●

●
●

●●●●●

●

●●

●●

●●●
●
●
●
●
●

●
●

●

●

●●
●
●

●

●●

●

●
●

●

●

●●●●●●

●●

●●●●●●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●●

●●

●

●

●●

●

●

●

●
●●●●●

●

●

●

●

●●●

●●

●
●●

●

●

●●●●●

●

●

●●

●

●
●

●

●●●

●

●

●

●●●●
●●

●

●

●

●

●●

●

●●

●

●

●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●

●

●
●●●●●●

●

●

●●

●●●●●

●●

●

●●

●●

●

●●●

●

●

●

●

●
●
●

●

●●●

●

●

●●

●●●●●●

●

●

●

●●●

●
●
●●●

●●
●

●●●

●●

●

●

●

●●

●

●●

●

●●

●

●●●●●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●●●●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●●●●●

●●●

●●●●●●●●

●

●

●●●

●

●

●

●

●●●●●
●
●●
●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●●

●●

●

●●●●●●

●

●

●

●●●

●●

●●

●

●●●●●●

●

●
●
●

●

●
●

●
●

●
●

●

●●●●

●
●●

●●

●

●●
●●●●

●

●

●

●

●

●●●●

●●

●

●●●●●●

●

●

●

●●●

●●

●●

●

●●●●●●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●●●

●●
●
●
●●

●●

●

●

●●

●

●
●
●

●

●
●

●
●

●●●

●●

●

●●●●●●

●

●

●

●●●

●●

●●

●

●●●●●●

●●●

●●

●

●●
●●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●

●●●

●●

●

●●
●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●

●●

●

●●
●●

●

●

●

●
●

●●

●
●
●
●●●●
●

●

●

●

●●●
●
●

●●●

●●

●

●●
●●

●●

●●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●

●

●●●

●●

●

●●●

●●

●

●●
●●

●●●●

●

●●●●

●●

●

●

●●

●●

●
●

●

●

●●●●

●
●
●

●●●●

●

●●●●

●

●

●

●
●

●
●
●●●●●

●

●●

●

●

●

●●●●
●●
●●●●

●

●

●

●●●●
●
●
●

●●

●
●
●

●

●

●

●●●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●●●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●●●

●●

●●

●●

●●

●●●●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●●

●

●●

●

●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●
●●

●

●
●
●
●

●●

●

●

●●●●●●●

●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●

●
●

●
●
●

●

●●
●

●

●●●

●

●

●●

●

●●

●●●

●

●●●

●

●●●●

●

●●

●

●●

●

●●

●

●

●

●●●

●

●●

●●

●
●

●
●
●

●

●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●●●●

●●

●●●●●●●●●●

●

●●

●●

●●●●●●●●
●●●
●
●
●
●

●

●

●
●

●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●
●●●

●

●●●

●●

●●●●●

●

●●

●●●

●

●

●●●

●

●

●●

●●●●●●

●

●
●●

●●

●●●●●

●

●

●

●
●●●●●●
●
●●●●

●

●●

●●

●●

●

●●●●●●●●

●

●
●●●●

●●

●
●

●●●

●●●

●

●

●

●●●

●●
●

●●●●●

●

●●
●

●

●●
●
●

●●

●

●●

●●●●●

●
●

●

●

●●

●●●

●●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●
●
●
●
●

●

●●

●●

●

●

●

●

●●

●●

●

●

●
●●
●
●●

●●●

●

●

●●●

●

●●

●

●

●

●●

●

●●●
●
●
●
●●●
●
●●

●

●●●●●●

●

●
●
●

●

●
●●●●●

●

●
●●●
●●
●

●
●

●●

●
●

●

●

●

●
●●●

●

●

●

●●●

●

●●●

●●
●

●●●●●

●●

●●

●

●

●●

●

●●
●
●
●●●●●
●
●●●●●●●●●●●●●
●
●●●
●
●

●

●●●

●●

●●●

●●

●

●●●

●●

●●

●

●●

●●

●●
●●
●
●●●
●●

●●

●●
●
●●

●

●
●●
●
●
●●

●

●
●●●

●

●●●

●

●

●●●

●●
●
●●●●●

●

●
●●

●

●●

●

●●●
●

●●

●●●

●●●

●
●

●●

●

●

●●●●

●

●

●

●
●

●

●

●●●●●

●

●●●
●
●●

●●
●

●●

●●

●

●●●

●●●●●●●

●

●

●●
●
●●●

●

●●●

●●

●
●●●●●●
●
●●
●●●●●

●●

●

●

●●●●●

●●●
●

●●●

●

●●

●

●●●
●

●

●●

●●●

●●●

●

●●

●

●

●

●

●●●●●
●●
●●●●●
●●●●●

●●●

●●●●

●

●

●

●

●

●●

●●●

●

●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●

●

●●●

●●

●●

●

●

●

●●

●●

●●●●●

●●●

●●

●

●●●●

●●

●

●●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●●

●●

●

●●

●●

●

●

●
●●●

●●

●

●●

●

●

●

●

●●●

●

●●●●

●

●

●●●●●●●

●

●

●

●●

●

●

●●●

●●

●

●●

●●●●

●●●●●●

●

●
●

●

●●

●

●

●

●●●●

●

●
●●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●●●●

●●●●

●●●●

●

●●●●

●

●
●
●●
●
●●

●●

●
●
●●
●
●●

●
●●●●

●

●

●

●

●
●
●●
●
●●

●

●●

●

●

●●

●●●●●●

●●

●

●

●●
●

●●●●●●

●
●●

●

●

●

●

●●

●

●●●
●●
●

●●●
●●●

●

●

●●

●●●

●

●

●

●●

●

●

●
●

●

●●●

●●

●●●●

●

●●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●

●●

●●

●●●●●●●

●●

●●

●

●

●●●

●

●

●

●●●●●●
●

●

●
●
●●●

●●

●●

●

●

●

●●

●

●

●●●●●●●●●●

●

●

●
●

●

●●

●

●●●●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●●●●

●

●

●

●

●

●●●

●
●

●

●

●

●●●●

●

●●●●●●

●

●●

●

●●●●●●

●

●

●●●

●●

●●●●●●●●

●

●●●●●●●

●
●●

●●

●●
●

●●

●●

●

●

●

●●●

●

●

●

●●●●

●

●
●
●

●●●●
●●●

●

●●●●

●●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●●●●

●

●

●●

●●●●

●

●●

●●

●

●

●

●

●●●

●

●

●●●●●

●●●

●●●●

●

●●●

●

●

●
●

●

●

●
●●

●

●●

●

●

●●●

●

●●

●

●●
●
●

●●

●

●●

●

●

●

●●●

●●

●

●●●

●●●

●

●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●

●●

●

●

●●●

●●●

●●●

●

●●●●●

●

●●●●●

●

●

●

●

●●

●●●

●●●

●●●●

●

●

●

●●

●●

●

●

●●●●

●

●●

●●

●●●●●●●●

●

●●●●

●●●

●●●●●●●●●●

●●●

●●●

●

●●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●●●

●●●

●●

●●

●●●

●

●

●

●●●●●
●●●

●●

●

●

●

●●●

●
●
●
●

●

●●

●●

●●●

●

●●
●

●
●●●

●●

●

●

●●●

●
●
●

●●

●
●
●
●

●

●●●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●
●

●●●●●●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●●●●

●●●●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●●●●●

●

●

●●●●●

●

●

●

●
●●●●●●●●●●●●●●●●●●
●
●
●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●●●●●●●●●

●

●●●

●

●

●

●

●●●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●●

●

●

●●●

●

●●●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●

●●

●●

●

●●

●

●

●●●

●

●
●●●●●

●

●●●●●●●●●●●

●

●●●●●

●●

●●

●●●●

●●

●

●●

●●●●●

●●

●

●●

●●

●●●

●

●

●

●
●
●●

●●
●

●
●

●
●

●

●

●

●

●
●

●●

●

●●

●●●●●

●●●●

●

●●

●

●●

●

●

●
●

●●●●●●●●●
●

●
●
●

●

●

●

●

●

●
●
●

●

●●●
●

●

●

●

●

●

●
●●

●

●●
●

●

●
●●
●
●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●●

●
●
●●●

●●

●●
●

●●

●●●●
●

●●
●
●

●
●
●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●
●●●

●●

●●

●

●
●
●
●
●●●
●
●
●
●
●

●

●●●●

●

●●

●

●
●
●

●●●

●

●

●
●

●
●●

●●

●

●

●

●
●

●

●●●

●

●●

●●●

●

●

●●

●

●●

●

●

●

●
●●●

●

●●

●

●

●●

●

●●

●●●

●

●●
●

●
●
●

●

●

●

●●

●

●

●

●

●●●

●●●●

●●●●●

●

●

●

●

●●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●●●
●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●
●●

●

●●

●
●●

●

●

●

●
●
●
●●●●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●
●●
●
●

●●

●

●●●
●●●●●●

●●

●●
●●
●

●●

●
●
●

●

●●

●●

●●●

●
●

●

●

●
●
●

●

●●

●
●
●●●●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●
●

●

●●●●

●●

●

●●

●

●
●

●●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●●

●
●

●

●●●

●

●

●●●

●

●●●●●●

●
●

●

●

●●●●●●
●

●●●

●
●

●
●

●

●

●●

●●●

●

●

●●

●
●●
●

●

●●

●

●

●
●

●
●

●

●
●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●
●●●●●

●
●

●

●
●

●
●

●

●●●●●

●

●●

●●

●
●

●

●●

●

●

●

●●●
●
●●●
●
●●

●●

●

●
●
●

●●●

●

●●●

●●

●
●

●
●●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●●●

●
●

●
●●●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●●

●●

●●

●

●●●●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●●●●●

●●●

●

●

●

●

●

●●●●●

●

●●●●●●●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●●●

●

●

●

●●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●●

●

●

●●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●

●●

●

●●●
●

●

●

●●

●●●

●

●
●

●
●

●

●

●●●
●

●

●

●●

●●●

●

●
●

●
●

●

●●

●

●

●

●●

●●●

●

●●●

●

●

●●●

●●

●

●

●●

●●●

●●

●●●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●
●●

●
●

●●
●
●

●

●
●

●

●

●●

●

●

●

●●●●●

●

●

●●

●●
●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

●●
●●

●

●
●
●●

●

●

●
●

●
●

●
●●●

●●●

●
●●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●●

●
●●
●

●

●●

●

●

●

●

●

●

●

●●●

●●●●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●

●

●●

●

●

●

●●

●●●

●

●●●

●●●●●●

●

●

●

●●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●●●●●

●

●●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●
●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●
●●

●
●

●●

●●●

●

●
●
●

●

●
●

●

●

●
●●

●

●

●

●

●●●

●●●

●

●●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●●●●●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●●

●

●●●●●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●●

●

●●●●●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●●

●

●●●●●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●●●

●

●●●

●●

●

●

●

●●

●●●
●

●
●
●

●●

●

●●

●

●●

●●

●●●

●●●

●

●
●
●●●●●

●

●

●

●

●

●

●

●●
●
●

●

●●●

●

●
●●●

●

●
●

●

●
●

●

●
●

●●●

●
●

●

●●

●●●●●
●

●

●
●

●●●●

●

●●●

●●

●●●

●

●

●●

●

●
●
●

●●●
●
●

●
●

●●
●

●●

●●●●

●
●

●●

●

●

●

●

●●

●

●

●●

●

●●●●●

●

●

●

●●●●●●
●●●●
●

●●●●

●●

●●●
●
●●●●

●●●

●●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●●

●

●●●●

●●

●
●
●
●●

●

●●

●

●
●

●

●

●●●●●
●
●●●

●●

●●

●●●

●

●●

●
●

●●●●●●

●
●●●●●

●●●●

●

●

●

●●

●●
●

●●

●

●

●

●

●●●●●

●

●●

●
●
●

●

●

●

●
●

●

●●●●●●

●

●●●●

●

●●

●

●●●
●●

●

●●

●

●
●●

●

●
●

●

●

●

●●●

●

●●

●

●

●●

●●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●

●

●●
●●

●

●

●

●
●●●●

●

●

●●●

●●

●

●
●●

●●

●●●●
●●
●●●

●●

●

●

●

●

●

●●●●

●

●

●
●●
●

●

●●
●

●●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●●

●●●●
●●●

●

●●

●●

●●●●
●
●●●

●
●

●●

●●
●●●●

●

●

●

●

●●

●
●●
●●●●●

●

●
●●

●

●
●

●

●
●

●●●●●●●

●●●
●●●●●●●

●●

●●

●●

●

●●●

●

●●
●

●●●

●●

●

●●●

●
●
●
●
●

●

●
●

●

●●
●

●

●
●
●

●●

●

●

●●●

●

●
●●

●

●

●●

●

●

●

●●●●
●●

●
●
●●
●●●

●●

●

●●●

●

●
●

●

●●●

●●

●

●

●●

●

●
●
●

●

●
●●●

●

●

●●

●

●●

●●●●

●

●
●
●
●
●●

●●
●
●●●●●●●

●●

●
●●

●
●

●●

●●

●

●●●●

●

●
●
●●
●

●

●

●●

●

●

●

●

●●●●
●
●

●●
●

●

●●
●●●

●●●●●

●●

●●●

●

●

●

●

●●●

●

●●

●●●●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●

●●
●
●
●

●

●

●●

●

●●

●

●●●●●

●●

●

●●●

●

●

●

●

●●
●●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●

●●●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●●●●●●●

●

●●●
●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●●●●

●

●●

●

●●●

●

●●

●

●
●

●

●
●●

●

●●●
●

●
●

●
●

●

●

●
●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●
●

●

●
●●

●

●

●
●
●

●●

●
●

●

●●

●

●

●●●●●●

●

●

●

●

●●●

●●●●

●●

●●●

●

●●●

●

●●

●

●●●●●●

●●

●●●

●

●

●●

●●●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●●

●●

●

●●●

●

●

●●

●●●●

●●●

●

●
●

●●

●●●

●

●
●

●

●

●

●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●

●●

●

●●●

●
●
●
●●●●

●

●●●●●●

●●

●●

●●●●●

●

●

●

●●

●●●

●

●

●

●●●

●●

●

●●●●●●

●

●

●

●●●

●●

●●

●

●●●●●●

●
●

●

●

●

●

●

●●

●
●●

●

●●

●
●

●

●●

●
●●
●
●

●●
●●●

●●

●

●●
●●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●

●
●
●

●●●●

●

●
●
●●●●

●
●
●●

●

●
●
●

●

●●

●●●●●

●

●●

●●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●

●

●●

●

●●

●●

●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●

●

●●●

●●

●

●●

●

●

●

●

●●●●●●

●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●●●●

●●

●

●●●●●

●

●●●●●●●

●●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●
●●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●●

●

●●

●●●

●●

●
●

●
●
●

●

●●●●●●

●

●

●

●
●●
●

●
●

●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●

●●●

●

●●

●

●

●●●●●

●●●●

●

●

●●

●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●●●●●

●

●●

●●

●●●●●●

●●

●

●●●
●

●

●

●

●
●

●

●●●●●●●

●

●●
●●●

●●
●

●
●
●

●
●●

●●

●●

●●●●●

●

●
●
●●●●

●

●
●
●
●
●
●
●●●●●
●
●●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●

●

●●●●
●
●
●
●●●

●●

●●●●●●●●●

●●

●

●●

●

●

●

●●

●●●●●●●

●

●●●●●●
●
●●

●●

●
●●

●●

●●●●●●●

●

●

●

●
●●●

●

●
●●
●●
●

●

●●●●●
●

●

●

●

●

●

●

●

●
●●●●●●●●●

●●

●

●

●
●
●●●

●
●

●●

●
●●

●

●●●
●
●●●●●●●

●

●
●
●

●●

●
●
●●

●

●●
●
●

●●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●●
●●

●

●●
●
●●●
●
●●

●

●●

●

●●●

●

●
●●
●
●
●
●
●
●
●

●

●●
●●●
●
●

●

●●●●●

●●

●●●●●
●
●●

●

●
●●
●
●●

●●

●●

●

●●●
●
●●●●●●
●

●

●

●

●●●●●●
●●●

●

●

●

●●

●

●●

●

●

●
●
●●

●

●●●●

●●

●●

●

●

●

●●●●●●●
●
●●

●

●

●

●●●●●●●●●●●●
●
●
●
●●●

●●

●●

●

●●●●●

●●

●

●

●

●

●

●

●

●●

●●●●●●
●
●

●

●●●
●●●●

●●

●
●●

●

●●●
●●
●
●●

●●●

●

●

●●●●●●●●
●
●
●

●●

●

●

●

●

●

●

●
●●●
●●

●

●●●●●
●●
●●●

●

●

●

●●

●

●

●

●●●●●●●

●●

●

●

●●●●●●

●

●

●
●

●●●●●

●

●
●●

●

●●

●

●

●●●

●●

●

●●
●●
●
●
●●●●
●
●

●●

●●●●

●

●
●●●●●●●
●●
●●●

●●

●●●
●●●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●
●●
●
●●●

●

●
●

●

●

●

●

●●●

●

●●

●●

●

●●●

●

●●●

●

●

●

●
●
●●

●

●
●

●

●●

●

●
●

●

●●●●
●

●

●●
●

●●

●

●

●●

●●

●

●●

●

●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●●

●●

●

●●

●●●●●●●

●

●

●

●●●

●●

●

●
●

●

●●●●

●

●●

●

●

●

●

●●

●

●●●●●

●●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●
●

●

●●●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●
●

●

●

●

●
●
●

●

●
●●
●
●●●
●
●

●●●●

●

●

●

●

●●●●●●●●

●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●●●

●

●

●

●●●●

●●

●●●

●

●●●●●
●

●●

●●●●

●

●

●

●
●

●

●

●

●

●

●●●●●
●

●●

●●●●

●

●

●

●
●

●

●

●

●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●

●

●●

●

●●

●

●●

●

●●●●●

●

●●●●

●●
●
●

●

●●
●
●

●

●●●●

●

●

●●

●●●●

●

●●

●●

●

●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●
●

●●

●

●

●

●●
●
●

●

●

●
●
●●●
●●●●
●
●

●●
●
●
●●●

●●●

●

●

●●●

●●

●●●●●

●

●●●●●●●●●●●

●

●●●●
●

●

●

●
●

●

●●

●

●

●●●●●

●●

●

●

●

●

●

●●●
●

●●
●
●

●
●
●

●

●●

●
●

●●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●●●●●●

●

●●●●●●●●●

●●

●
●

●●●●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●

●

●●

●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●
●
●
●●

●

●●●●

●

●

●●

●●

●

●

●●●

●●●●●

●

●
●

●

●
●
●●●●
●●●●●●●●●

●

●

●

●●●●●●●●●●
●

●

●

●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●

●●

●●

●
●

●●

●

●

●●
●

●

●
●●

●●●●

●

●

●

●

●

●

●

●

●●●●●

●●

●●●

●
●

●

●

●●

●

●

●
●

●●
●

●

●

●

●●

●●

●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●●

●
●

●
●

●●
●●

●●

●

●

●●
●●

●
●

●

●●
●●
●
●
●

●●

●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●
●

●●

●

●

●

●

●●●●

●
●●

●●

●

●●●
●●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●
●

●●

●
●●●●●

●●

●

●

●

●●

●

●

●●
●

●●
●
●

●
●●

●●

●

●
●●

●

●

●

●

●
●
●

●●

●●●

●

●●

●●●●
●

●

●
●
●●●●●●●

●

●●●

●

●

●●
●

●

●

●
●

●●●●

●●●
●

●

●

●●
●
●●●●●

●

●
●●
●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●
●
●
●

●

●●●

●●
●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●●●

●

●
●
●

●●●●

●

●
●

●

●
●

●●

●●

●

●

●

●

●●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●
●●

●

●●

●
●

●
●

●

●

●●

●●

●
●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●
●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●

●

●●

●

●
●

●
●
●

●●

●●

●●
●

●●●●

●●
●

●
●●

●●●●

●

●●

●

●●●●●●

●

●●●
●

●
●

●●
●●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●●

●

●

●

●●●

●

●

●●

●●

●

●

●

●

●●

●

●
●●●

●●

●●
●

●●

●●

●
●

●●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●●●

●

●

●
●●

●
●

●

●

●
●
●
●
●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●
●
●
●

●

●

●

●
●●
●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●●

●

●

●●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●●

●

●●

●

●

●

●

●

●

●
●
●
●

●
●

●●●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●●
●
●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●●●●

●●

●

●●●

●●

●●

●

●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●●
●●
●

●

●

●●●●

●

●

●

●

●

●

●

●
●●

●

●●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●
●

●
●
●

●●●

●
●

●●
●

●

●

●

●

●

●●●
●
●●●●●

●

●
●●
●●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●

●
●
●

●●●

●
●
●
●
●
●

●

●

●

●
●●
●●

●
●

●●
●
●

●

●
●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●●

●●

●●●

●

●

●●

●

●

●

●

●●

●●●●●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●●●●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●●●●

●

●

●

●●●

●●
●

●

●

●●●

●●

●

●

●●

●

●

●

●●

●●●

●

●●●

●●●●●●

●

●

●
●

●●●

●

●
●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●●

●●

●●
●●

●

●●

●●

●
●

●●

●
●●
●

●●

●

●●

●

●●●

●●●

●

●●

●
●

●

●●●
●

●
●●

●

●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●

●●●

●

●

●

●●
●

●●

●

●●

●●

●

●

●●
●

●

●●●●●●●●
●

●

●

●

●●●
●
●

●●●

●●

●

●

●

●●●●

●●

●●

●●●●

●●●
●

●
●

●●

●●●

●

●
●

●

●

●●

●●●

●

●
●

●

●

●●●

●●
●

●

●

●
●

●●●

●●●●●

●

●

●

●

●●

●

●

●
●●●●

●

●●●●●●

●

●

●

●

●

●

●

●●

●●

●

●
●●●

●
●
●

●
●

●
●

●●●●

●●●

●
●●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●●●●●●●

●

●●
●
●●

●

●

●
●●●●

●

●●●

●

●●●
●
●●●●●
●
●●
●
●

●●●●
●
●

●

●

●

●

●●●

●

●

●

●

●
●
●●

●●●●●

●
●

●●●
●

●●

●●●

●●

●

●●
●
●

●

●

●

●●●●

●

●

●

●
●
●

●

●

●

●
●●●

●

●●

●●●

●

●

●

●●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●●●●
●●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●
●

●
●
●

●●
●

●●
●
●●
●
●
●

●

●

●

●
●●●●●
●●

●●

●●

●

●●●●●●●●●●

●
●●●●●●●●●●●●

●

●●●●●●
●

●

●●●

●

●

●●●●

●

●

●●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●●●

●●

●●●●

●

●

●

●●●●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●

●●

●

●●●●●

●

●

●

●

●●

●●●●●●●

●

●●

●

●●●●●

●

●

●●

●

●●

●●

●

●

●●●●●

●

●
●

●

●
●●

●●
●

●●●

●●

●

●●●●●

●

●●●

●
●

●●●

●●

●

●

●

●●●

●

●

●●●

●

●

●

●●

●

●

●●

●

●●●●●

●●

●●●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●●

●●●●

●

●

●

●●

●

●●●●●●●●●●

●

●●

●

●●
●

●●

●

●

●

●
●
●

●
●

●●

●

●
●
●

●
●

●●
●

●

●●●●

●

●●

●

●

●●●●

●●

●●

●●

●

●●

●
●

●

●

●

●●

●

●
●

●●

●●●

●

●●

●●

●

●●●●

●

●●

●

●

●●

●

●●
●

●●

●
●

●

●
●

●

●
●
●
●●●●

●

●●●●●●

●●

●
●

●

●●●●
●●●●

●●

●●●●●●●●●

●

●●●●●

●●

●●

●

●●

●●

●

●

●●

●●●●●

●

●

●

●●

●●●

●

●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●

●

●●●

●

●

●●

●

●●●

●

●●

●

●●●●

●

●

●

●

●●

●●

●

●

●

●●●●

●
●
●

●●●●

●

●●●

●●●●

●●

●

●●●●●●●●●

●

●●

●

●
●
●●●●

●
●
●●

●

●
●
●

●●●●

●●

●●

●

●
●

●

●●

●●●●

●●●●●

●

●●●●●

●

●●

●

●●

●●

●
●

●
●
●

●

●●
●●●

●

●

●

●●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●

●
●●●●●
●

●
●●

●

●●●●

●

●
●
●●●

●●●

●
●●

●●

●
●●●●

●

●●
●
●

●

●
●●
●●●●
●

●●

●●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●

●

●

●

●●

●

●

●●●

●●

●

●●

●

●●●

●

●

●

●

●

●●
●●●●●●●●●●●

●●

●●●●●●●●●

●

●●
●
●●

●

●

●

●●

●●

●●●

●

●●●

●

●●●●

●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●●●

●

●

●

●●

●

●

●●●●●●

●

●

●

●●●

●

●●●●●

●

●

●

●●

●●

●
●●●●●●●●●●●●

●

●●●

●
●

●●

●

●●

●

●●●●
●
●
●

●●●●

●
●
●●

●

●●

●

●●●
●
●●
●
●●●●

●

●●●

●

●●
●●●●●●●
●

●

●●●●●●●●●

●

●●

●

●
●●●●●●●
●
●●●
●●
●●
●
●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●
●
●

●
●

●
●●●

●

●

●
●●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●
●●●
●●

●

●●●●
●
●●●
●

●●●

●
●
●●●●●

●

●

●

●
●
●

●

●●
●
●
●
●
●●●●
●●●
●

●●●

●●●●●●

●

●

●●

●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●
●●

●
●

●●●●
●
●●

●
●

●●●●●●●

●●●

●

●

●●

●

●●
●
●
●
●●

●

●

●●●

●●●●

●

●●●●●

●●●●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●
●
●●

●

●
●

●

●●

●

●
●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●●

●●

●

●

●

●●

●

●●●●●

●●●

●

●●●●●

●●

●●●●

●●

●

●

●

●

●

●

●●●

●●●●

●

●●●●

●●

●

●

●

●

●

●

●●●●

●
●

●

●●●●

●

●●●●

●

●

●●●●●●●●

●

●●●●
●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●

●

●●●
●
●

●

●

●

●●
●●

●

●●●●●●●●●●

●

●

●

●●●

●

●●

●

●●●

●

●●

●●

●

●●●●●●●

●

●

●

●

●●●●●

●

●

●●

●
●

●●

●

●

●●●●

●●

●●
●
●

●

●●
●●
●●

●

●●●
●●
●

●●●
●●
●

●●

●

●

●

●●

●●●●●

●●

●
●

●

●●●

●

●

●

●●
●
●

●●

●●

●●

●●●
●

●

●●

●

●●●

●

●

●●

●●

●

●●●●

●

●

●

●●
●

●

●●

●●

●

●●●●●

●

●●●●

●●
●
●

●

●●
●
●

●
●

●

●

●

●●●

●●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●●●

●

●●

●

●

●

●●●●

●

●●●●●

●

●●●●

●

●
●●●●

●

●

●●

●●●●

●

●●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●●●

●

●

●●●

●●

●

●●●●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●●●●

●●

●

●

●

●

●

●

●●

●

●●●●●

●

●●●

●

●

●●

●

●●●

●

●●

●

●

●●

●●●

●

●●●

●●

●

●

●

●●

●●●●

●

●

●

●

●●●
●

●●
●
●

●
●
●

●

●●

●
●

●●●

●

●

●●

●●●

●●
●

●●●●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●

●

●
●

●

●

●●●

●●●●

●

●●

●

●

●●

●

●●

●

●

●

●

●●●

●●

●●

●

●●

●●

●●

●
●

●

●
●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●
●
●●
●●●

●

●●

●●●

●
●

●●●

●●●●

●

●●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●●

●

●

●

●●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●●
●

●

●
●
●●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●
●

●
●

●

●●●●

●

●

●

●●

●

●
●●●

●

●●

●●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●●

●
●●●

●
●●
●

●

●

●●●

●●

●●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●●
●
●

●
●

●
●

●

●●●●

●

●

●

●
●
●●

●

●
●

●

●

●●●

●
●

●

●

●●●●

●●●

●

●●

●●

●
●

●

●

●

●●

●

●●

●
●

●
●

●
●
●●

●

●

●●
●

●

●
●

●

●●

●

●

●

●
●●●

●

●●
●●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●
●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●●●
●

●

●●●●●●

●●●

●●●

●
●
●

●
●

●

●

●

●

●●

●
●●●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●●

●●

●●

●

●

●
●

●●

●

●

●

●●●●●

●●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●

●

●

●●●
●●
●
●

●

●●
●

●

●
●
●

●

●
●

●

●

●

●
●
●

●

●

●

●●●

●
●

●

●
●●
●

●
●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●●

●
●●

●●

●
●

●

●
●
●

●●
●
●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●●

●●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●●●

●●●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●
●

●

●

●
●

●●

●●●●●●

●

●

●●

●●●●●●●

●●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●●●

●

●●

●

●

●●

●●●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●●
●
●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●●
●
●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●●

●
●

●●●

●

●
●

●

●●
●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●●●●●●

●

●

●

●

●●●●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●●●

●●●
●●●●

●

●

●●●●●
●

●

●●

●

●●●
●

●●
●

●
●●
●

●

●●

●

●●●●●●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●●●●●●

●

●

●

●
●

●

●

●●●
●●

●

●●

●

●

●●

●●●●

●

●●●●●

●

●●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●
●
●

●

●

●●●

●●●

●

●

●

●●●●

●●

●

●●●

●

●
●

●
●
●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●●
●
●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●
●

●●

●

●●

●

●

●●●
●
●
●●

●

●

●●●

●

●

●●

●●●

●
●
●
●

●

●

●
●

●

●

●
●
●●
●
●

●

●

●

●●

●

●

●

●●

●
●
●●
●●

●

●●
●●

●●●●
●

●
●

●

●

●
●

●

●●

●

●

●

●●●●

●

●●

●

●●●

●

●●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●

●●

●●●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●●

●
●
●

●

●

●

●

●

●

●●●
●●

●

●

●

●●●
●
●●

●
●●●●

●●
●

●●●●
●●●●
●

●
●
●
●

●●

●

●
●
●
●
●
●
●
●
●
●●●●●

●

●●●
●
●

●●

●
●

●●

●●●

●

●
●

●

●
●

●

●
●

●●●

●

●●●
●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●●

●

●
●
●
●

●
●
●●

●

●●●

●

●●●●●

●

●●

●
●
●
●●

●●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●●

●●

●●●

●●●

●●

●

●
●

●

●

●●●●●

●●

●

●●●●

●
●

●

●●

●●

●

●

●
●

●

●

●
●
●

●●

●●

●●●●●

●

●

●

●●

●●

●
●●
●
●●●
●

●

●

●

●

●●
●●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●
●
●

●

●
●

●

●●

●

●
●
●
●●●●●●

●●

●●●●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●●●●●

●●

●●
●
●
●

●
●
●
●●

●●

●

●

●

●●

●
●

●

●
●●●

●●●
●

●

●

●
●

●●
●●
●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●●●●●●●

●

●●●

●●

●●

●

●

●

●

●
●

●●

●

●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●●●●

●●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●●●

●

●

●

●●●

●●●

●

●

●●

●

●

●●

●

●●●●●

●●

●●

●●

●

●

●

●

●

●●●●●●●

●

●●●●●●

●

●

●

●

●

●●●

●●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●●●●

●

●

●

●●

●

●●●●●●●●●●

●

●●

●

●●●

●
●

●●●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●

●

●●●

●●

●

●●●

●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●

●●

●

●

●●

●

●●●

●

●●●●●

●

●●●●●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●●●

●●●

●●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●●

●

●●●●●

●●

●

●●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●●

●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●

●●

●

●●

●
●

●

●
●

●
●●
●

●●
●
●

●
●

●●●
●

●

●
●
●

●

●●●●

●

●●

●

●●●●●●

●

●

●

●●●●●

●

●●

●●●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●

●

●●●●●●

●

●

●

●●

●●●●●●●

●●

●

●●

●●●●●●

●●

●

●
●
●

●●
●

●

●●
●
●●●
●

●

●●●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●●
●
●

●●●
●

●

●●

●

●
●

●

●

●
●●
●

●●

●
●●

●●

●●●●●●

●

●●●

●

●●●●●●●
●

●

●

●●●●

●●

●
●
●

●

●●●●
●

●●

●

●
●
●

●

●

●

●

●●●
●●

●

●

●●●●●

●●●

●

●●●

●

●●

●●●

●

●●

●

●
●
●●●
●●

●●

●
●●

●

●

●●●●

●
●
●●

●

●●●

●

●
●

●

●
●
●

●

●

●

●

●●●●
●

●

●●

●

●

●●●●

●

●●●●●

●

●

●

●●●●●●●●●

●●

●●

●●

●

●●●

●●●

●●●●●

●

●●●●●

●

●

●

●
●
●●

●●

●
●●●●●
●●●

●

●●

●

●
●
●
●
●
●
●●●

●

●

●

●

●
●
●
●●●

●

●●

●

●
●●

●

●
●

●
●

●

●●●

●●

●
●
●

●●●
●
●●

●●●

●
●
●

●

●
●

●

●●
●

●●

●●●●

●
●
●

●●●
●●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●●

●

●●
●
●●●
●

●

●●
●

●
●●●●●●●

●●●●

●

●

●

●

●

●●

●

●

●●
●●
●●●●●
●

●
●

●
●
●●●●

●

●

●

●●●●●●
●
●●●

●

●●●

●

●●
●
●●

●

●

●

●

●
●
●●

●

●
●
●
●

●

●
●
●
●

●

●●
●
●●●●●

●

●●●●
●
●●
●●●
●●
●

●

●●●●●

●

●

●

●
●
●

●
●

●●

●

●

●
●●

●
●

●

●

●

●
●●
●●

●●

●
●

●

●●

●

●

●
●
●●●●
●

●●●●

●●●

●

●
●●

●

●

●

●

●

●●●●●●
●●
●

●●

●
●
●●

●

●

●●●●

●

●

●

●
●
●

●●

●

●

●●●●
●
●●
●
●●

●

●
●
●●●
●
●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●●●●

●

●●

●●

●

●●

●

●
●

●
●●
●

●●

●●

●

●

●
●

●

●●●●

●

●

●

●
●

●●●

●

●●

●

●

●

●●

●

●●

●

●

●●●●●

●

●●

●

●

●●●

●

●

●●

●●●

●

●●

●●●

●●●●●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●

●

●
●

●●

●

●

●●●●●●●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●●●

●●●●

●

●●

●

●●●●●●

●●

●

●●●

●

●

●

●

●●

●

●

●●●●

●●

●
●

●

●
●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●●●●●●

●●

●●●●●

●

●●●●●●●●●●

●●●●●

●

●●

●

●●●●●●

●

●

●

●●●

●

●●●●●

●

●

●

●

●●

●

●●●●●

●

●●●●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●

●●●●●●●●

●●●

●●●●●●

●●●●

●●

●●●●●

●

●

●

●●●●●

●●

●●●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●●

●●●●●

●

●

●●

●

●

●
●

●
●

●●

●
●
●●

●
●●

●
●●

●●●

●

●

●●

●

●

●
●

●
●

●●

●
●
●●

●
●●

●
●●

●●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●●●●

●

●●●

●●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●●●●●●●●●●●●●●●●●●

●●

●●

●

●
●

●
●

●●
●

●●
●●

●

●

●

●

●

●

●●

●●●

●

●●●●●

●●

●●

●

●

●●

●

●●

●

●●●●●●●●●●●●

●

●●●

●●●

●●●●

●

●

●

●

●●●●●●●●●●

●●●●●

●●●

●

●●●

●

●●

●●●

●

●

●●

●●

●●

●●

●

●●

●

●

●

●

●●●●●●●●●

●

●

NSD < 0.05 NSD in [0.05,0.1] NSD in [0.1,0.25]

NSD in [0.25,0.5] NSD in [0.5,1] NSD > 1

0

20

40

0

10

20

30

40

50

0

20

40

0

20

40

0

10

20

30

40

50

0

10

20

30

40

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Strategies

P
er

ce
nt

ag
e

of
 N

on
−

Lo
ca

l T
as

ks

(a) |T |
|P | = 1

●●

●●●●

●●

●●●●●●●●●●●
●●
●●●●

●

●●
●●●●

●

●

●●●●
●

●

●

●

●●

●

●

●

●●●

●●●●●●

●

●●

●●

●

●●

●

●●

●●

●

●
●

●●●●●
●●

●●●

●
●●●

●

●●
●

●

●●

●

●
●●
●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●●

●

●

●

●

●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●

●●

●

●

●●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●●●

●●●●

●

●●

●●●●●

●●

●●●●●●●●●●●●●

●●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●

●

●●

●

●●

●

●

●

●●

●

●●

●●

●●●

●

●
●

●

●

●

●

●

●
●
●

●●

●●

●
●●●

●●●

●●

●

●

●

●

●●

●
●●

●●

●
●

●●

●●

●

●●

●●●

●
●

●●●

●●

●

●

●●

●

●●●●

●●

●

●●●

●

●

●●
●

●●

●
●●●●●●●●●

●●

●

●

●

●

●
●

●●
●

●●
●●

●
●

●●●

●
●

●●
●

●

●
●●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●●●●●

●●

●●●●

●

●●

●

●●
●
●

●

●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●
●●
●
●

●●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●

●

●●●●●●●

●

●

●

●●

●●

●●●●●

●

●●●●●

●

●●●

●

●●

●

●

●

●●
●●

●

●●●●●●●●●●●●●●●

●

●

●
●
●

●

●
●

●

●

●

●●●●

●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●●●●

●●

●●

●

●●

●

●

●

●●●●●

●

●●

●

●●●●●●

●

●●●●

●

●
●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●●●●●●●●●●

●●

●

●

●●●

●

●

●●●●●

●

●

●

●●●

●

●●●●

●

●●●●●●●●

●

●●●

●

●

●

●●

●●

●

●●

●

●●●●●●●

●

●

●
●●
●●●●●

●

●●●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●●●●

●

●●●●●

●

●●●●

●

●●

●

●

●

●●●

●

●

●

●●●●

●●

●

●●

●

●●

●

●●●

●●

●

●

●●●

●

●●●

●

●
●
●
●●●●●●
●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●

●
●

●●●

●

●

●

●●●●

●

●

●
●●●

●

●●●

●

●

●●

●●

●

●

●●

●

●

●●

●●

●

●●●

●

●●●●●●●

●●

●●●

●

●●●●●

●

●

●

●●●

●●●

●

●

●●

●

●

●

●●●●

●

●

●●●

●●●●

●

●●●

●

●●

●●

●●●

●

●

●

●●●●●●●

●●

●●●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●●●

●

●●

●●

●●●●●●

●

●

●

●●●●●●●●●

●●●●

●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●

●

●

●●

●

●●●●●●●●

●

●●●●●●

●●

●●●●●

●●

●●

●

●●●

●

●●

●●●●

●●

●

●

●

●●

●

●●●

●

●●

●●

●

●

●●●

●●

●●
●
●●

●●

●●●

●●●●●●●●●●●●●●●●●●

●●
●
●●●●●

●●

●●●●
●●

●●

●●●●●●●

●●

●●●

●●

●

●

●●

●●

●

●●
●

●

●

●

●

●●

●

●

●●●

●

●●
●●

●
●

●●

●
●●●●●●

●

●●●●
●●●●●

●

●●●●●●

●

●

●

●●

●

●

●●●●

●●●●●

●

●

●

●●●●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●●●

●

●●●

●

●●●●●
●
●●●●●●●●●●
●
●
●
●●●●●●

●

●●
●
●●●●
●●
●●
●●●●●
●
●●●
●
●●●●
●
●●●●●●●
●
●

●

●●●

●
●
●●
●
●●

●

●●●●●●●●●
●
●●●●
●
●
●

●

●●●
●
●●●●●●●●●●
●●
●
●●
●

●●

●●●●●●
●
●

●

●
●
●
●●●
●●
●

●

●●

●

●

●●
●●
●●●

●
●●●
●
●●

●

●●●●●●
●
●●●●●●●

●

●●●●●

●

●●●
●●

●

●
●

●
●●●

●

●
●
●●
●
●

●

●●●
●●
●●●

●

●●

●●●●●●●●
●

●

●●●●●●

●

●●●

●

●
●
●
●
●●●

●

●●●
●

●●●
●●●●
●

●

●
●
●●●●●

●
●
●

●

●
●●

●

●●●
●

●

●
●

●

●●

●

●●●●
●●

●
●
●●●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●●

●

●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●●●

●

●●●

●

●

●●

●
●

●●

●

●●●

●

●●●●●●

●

●●●●●●

●

●

●

●●

●●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●

●

●

●

●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●

●●

●●●

●

●●

●

●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●●

●●●

●
●
●●●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●

●●●

●

●

●●

●

●●

●●

●

●●
●

●
●

●
●●
●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●

●●
●
●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●●●
●
●
●
●

●

●

●
●

●

●●●●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●●

●

●●
●
●●
●
●●●

●

●

●
●

●

●●

●
●●
●●

●

●

●●●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

●●

●
●●

●●●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●
●
●●

●

●

●

●●●●
●●

●

●
●
●●●
●●

●●

●

●

●

●
●

●

●

●●●●●

●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●●●

●

●

●●

●
●●
●

●

●

●

●
●
●

●

●●

●
●

●●

●

●

●

●

●●●

●●

●●
●

●

●●

●●●

●●

●

●

●●●

●

●●
●

●

●

●
●

●

●

●●●●●●

●

●

●

●●

●●

●●●●
●

●

●
●●●
●
●

●

●
●
●
●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●●

●
●●●●

●

●●

●●●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●●
●

●
●●

●

●
●

●

●
●

●

●

●
●
●●●
●●
●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●
●

●

●
●

●

●
●●
●
●●

●●

●

●

●

●
●

●

●
●●

●
●

●●●

●

●●●●
●●

●●
●

●●●

●
●

●

●

●

●

●●●●

●●

●

●

●

●

●●

●

●

●
●
●

●

●●●

●

●

●●●

●●

●

●
●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●
●
●
●
●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●●●

●

●●●●●●

●

●●●

●

●
●●

●

●

●

●

●●

●●

●

●●

●●●

●●

●

●

●●●●●●●●●●●

●●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●

●●●●●●●

●

●●●●●●

●●●●

●

●●●●●●●●●●

●

●

●●

●●●●

●

●●●

●

●●

●

●●●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●●

●

●●

●●

●●

●●●●

●

●

●

●

●●●●●

●

●●

●

●●

●

●●●

●

●●●●●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●●●

●●●●●

●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●

●

●●

●●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●●

●

●●●●

●●

●●

●

●

●

●

●

●

●●

●●●●

●●

●

●●

●

●●

●●●●

●●●

●

●

●

●

●

●●●●●●

●●

●●●●●

●

●

●●

●

●●●●●

●

●

●

●●●
●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●●●●

●●●●●

●

●

●●●

●●●

●●

●

●●

●

●●

●

●●●●●●●●●●●●

●●

●●

●●●

●●

●●

●

●●

●

●

●

●●●

●

●●●●

●●

●

●●●

●●

●

●●

●

●●

●

●●

●

●

●
●

●

●●●

●

●

●

●●●●●●●

●●

●●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●●

●

●●●

●●

●●●●●●

●

●

●

●

●●

●●●●●●

●

●●

●

●●●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●●

●●●

●

●

●

●

●●●

●

●●

●

●

●

●●

●●

●●●●●●

●●

●●●●

●●

●●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●●

●

●●

●●

●

●●●

●

●●

●

●

●●●
●●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●
●

●●

●

●●●

●●●●●

●●

●●

●●

●

●●

●●

●

●●

●●●

●

●

●

●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●

●

●

●

●●
●

●

●●●●●●●

●

●●

●●●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●●●●●
●●

●

●●●

●

●

●

●●●●

●

●

●

●●

●

●●●

●

●●●

●●

●●●

●●

●●●
●●●

●

●●●

●

●●●

●●

●

●

●●

●

●

●●●●

●

●

●●●

●●

●

●●

●

●

●

●

●●●●

●

●●●

●

●

●

●●●●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●●●●●●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●●●●

●●●

●●●
●

●

●●●●●●

●●

●●●●●

●

●

●

●

●●

●

●●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●●●●●

●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●●

●●

●●

●●

●

●

●●

●●

●

●●●

●

●●

●●●●●●●●

●●●

●

●●●●●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●●●

●

●●●●

●

●

●●

●

●

●●●

●

●

●

●●

●●●

●

●●

●●●

●●●●●

●

●●

●

●

●

●●

●

●●●●

●

●●

●

●●●

●

●●

●●
●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●●

●●

●●●●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●●

●●

●●●●●

●

●

●●

●●

●

●●

●●●●●

●

●●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●

●

●●

●

●●●●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●●
●●

●●

●

●●

●

●●●●●●●●●●

●

●

●●

●●

●

●●●●●●●●
●

●

●

●●●●●●●

●●

●●●●

●

●

●●

●

●●●

●

●●●●●

●

●●●●●●●●

●

●●

●●●●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●●

●

●

●

●●●●

●

●

●

●

●●

●●●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●

●

●●●

●

●●●●●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●●●●●

●●

●

●

●

●●●●

●

●●●

●

●

●●●

●●●●●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●●●

●

●●●●●●●●●●●●

●

●

●

●

●●●●●●●

●●

●●●●●●●●●●●●●●●
●●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●●●●●

●●

●

●●

●●

●

●

●

●●

●●●

●

●●●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●●

●

●●

●

●●

●●

●●

●

●●●●

●●

●

●

●●

●

●

●

●

●●●●●●●

●●●

●●

●

●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●
●
●
●
●
●●
●
●●●●●●
●
●

●

●●●
●
●●●
●●
●

●

●
●
●
●●●●
●
●●●●
●●●●●
●

●

●

●●
●
●●●●●

●●

●●●●●●●
●
●●
●
●

●●●●●●

●
●
●

●
●
●●
●
●
●●●●●●●
●●

●

●●
●●●●●●●●●●●●●●●●●●

●●

●●●

●
●

●

●●●●●

●
●
●●
●●
●●
●
●

●

●
●
●●
●
●
●
●●
●●●

●●●

●
●●●●

●

●●
●●●●●●
●●
●●●●
●
●

●

●●
●
●●
●
●

●●●
●
●
●●
●
●●
●●
●●
●
●

●

●
●●●●●

●
●
●

●
●
●●●●
●
●

●

●●●●
●●●
●●
●
●

●

●

●

●●●●●●●
●

●

●●●
●●●●●●
●●●●

●●
●
●

●●●●●●
●
●
●
●●●
●●
●
●
●●●●●●
●●
●●
●
●

●

●

●

●

●

●●●●●●●●●
●
●

●

●
●
●
●
●●●

●

●●●●●●
●
●●●●

●

●
●●●●●●
●●●

●

●●●●●●
●●

●

●●

●

●

●

●●●●

●

●

●

●●

●
●●●●●●●
●●●●●
●
●
●
●
●●●●

●
●●●●●●

●

●●●●

●

●

●●

●

●

●

●

●●●●●●●●

●

●●●●●●

●
●

●
●
●

●

●●●●●●●●●●●●

●●

●●●●
●
●●●●●●●●

●

●●

●

●●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●●

●

●●●

●
●●

●

●
●●●

●●
●●
●●●●●●

●

●

●

●●●●●●

●●

●

●●●

●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●
●●●●
●●●
●●●

●●

●●●●●●●●●●●●●

●

●●●●●
●●●
●

●●

●

●

●●

●

●

●●
●●●●●●●●

●

●

●●

●

●●●

●●

●

●
●●●●●

●

●
●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●●

●

●●●●●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●
●

●●

●●

●

●●
●●

●

●

●

●●●

●

●

●●●●

●

●

●
●

●
●●

●

●●

●

●●

●

●

●

●●●●

●
●

●

●●●

●

●●
●
●
●

●●●●●●
●

●

●

●●
●●●

●●

●●●

●

●●
●
●●

●●

●●

●●
●●

●
●
●●

●●●●●●●

●

●●

●●

●●
●

●●

●●

●

●●●

●

●●

●●

●●●●●●

●
●

●
●

●

●

●

●●

●

●

●
●●●

●●

●●
●
●
●●

●●●
●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●
●
●●

●

●

●●●●

●●●
●●

●

●●
●
●

●●●●●

●

●●●●

●

●

●

●

●

●
●

●
●
●

●●●●

●●
●

●

●
●

●●

●

●

●●●●●●●
●
●●

●
●●

●

●

●

●
●

●
●

●●●

●
●●

●

●

●●

●●●●●

●

●

●●

●

●

●●

●

●●●●

●●●

●

●●●●

●

●

●

●
●●

●●
●
●●●

●●●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●
●●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●

●●●

●●●●●

●

●
●

●●

●

●

●

●

●

●●

●●●

●

●

●

●●
●
●

●

●

●

●

●

●●●

●●

●

●

●●●

●
●

●
●
●

●
●
●●●●
●

●

●●
●
●
●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●●●●

●

●
●
●

●

●●

●

●
●

●

●

●●

●

●

●
●●●

●

●
●●

●

●

●●

●●●

●●

●

●
●
●

●

●

●

●

●●

●

●●●●

●●

●

●●●●●●

●

●●●

●

●

●

●●

●

●●●●

●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●

●

●

●●●●

●

●●

●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●●●

●

●

●●●●

●

●

●

●●

●
●

●

●

●●●●●

●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●●

●●●

●

●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●●

●●

●

●●●●●●●●

●

●●

●

●●

●●●

●
●

●

●

●●

●●●●●●

●

●●●

●

●

●●

●

●●●

●●●●●●

●

●●●●●●

●●●

●●●●

●

●

●●●

●●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●

●

●●●●●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●●

●

●

●●●●

●●

●

●

●

●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●

●

●●

●●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●

●

●●

●

●●

●●●●●●●●

●●

●●

●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●●●●●●●

●●●

●

●

●●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●

●●●

●

●●●

●

●●●●
●●

●

●●

●●

●●●●●

●

●●

●

●

●

●

●●

●

●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●

●

●

●

●

●●●

●●

●

●

●●

●

●●

●●●

●

●●

●

●●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●

●●●

●●●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●

●

●

●●●

●

●●●●

●●

●

●

●

●

●●●

●●●●

●●●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●

●

●

●●●

●

●●●

●

●

●●

●

●

●●●●●●●●●●●

●●

●

●

●●●

●

●

●●

●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●●●●●●●

●●

●●

●

●●●●

●

●●●●●●

●

●

●

●●●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●
●●●●●●●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●●●

●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●

●

●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●●●●

●

●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●

●●
●
●

●
●
●

●
●

●

●

●
●

●

●●

●

●
●●

●●
●
●
●
●
●
●●
●

●

●●●

●

●

●

●●

●

●

●
●

●

●
●
●
●
●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●
●●●
●

●

●

●●
●

●●

●

●●

●

●

●●

●

●●
●

●

●●
●●●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●●●

●●●●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●
●

●

●

●

●
●●
●●

●●

●

●
●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●
●
●●●●

●
●
●

●

●
●●●
●

●●

●
●

●

●

●

●●●●●●●
●

●

●
●

●●
●

●●
●
●●

●

●●●

●

●

●●

●
●

●●
●

●●

●●●

●

●●●●

●

●
●

●

●
●
●

●

●●●

●
●

●

●
●

●●●
●

●
●
●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●
●●●
●

●

●

●

●

●●●

●

●●

●●●

●●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●
●●
●
●
●

●

●

●

●
●

●

●●

●
●●●

●
●

●●

●●

●●

●●●●
●
●●
●
●

●

●

●●●●
●●

●

●●

●

●●

●

●
●

●

●

●●●●
●

●

●

●

●

●

●

●

●●

●

●●
●
●●●

●●●●
●●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●
●

●●●●●●●●

●

●●
●
●

●●
●
●●

●

●
●
●

●

●

●
●

●●●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●●
●
●●
●●

●

●
●●●

●
●

●

●●●

●●●

●●

●

●

●
●●

●

●

●●
●
●

●
●

●

●

●●

●

●●

●

●●
●

●

●

●●●●

●

●●

●●●

●

●●●
●●●

●

●
●

●

●

●●

●

●

●

●

●
●●●

●

●●

●●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●●●

●

●

●
●

●

●

●

●●●●

●●

●

●

●●

●

●

●●

●

●●●

●

●●●●●

●

●●

●

●

●

●●●●

●

●

●

●●●●

●

●●●

●●●●

●●●

●

●●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●●●
●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●●

●

●

●

●

●●
●●

●

●●

●

●●●

●●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●

●

●

●

●●

●

●●

●●

●

●

●●●

●

●●

●

●

●●●●

●

●●

●

●●●

●●●●●●●●●

●

●

●

●●●

●

●

●

●●

●●●

●

●

●●●
●●

●

●

●

●●●●●
●●

●●

●

●●

●

●

●●●●●

●

●●

●

●●●●●●

●

●●

●

●●●●●●●●●●

●●●●●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●●

●

●

●●●●●

●

●

●●●●●

●●●●●●

●

●●●

●

●

●●●
●●●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●●

●●●●

●●●

●

●●

●

●●●●

●●

●

●

●

●●

●●●●●

●●

●●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●●●●

●

●●●●●●

●●●●●

●●●●

●

●●

●

●

●●●●●

●

●●●●

●

●

●●●●●

●

●

●●

●

●●

●

●●

●

●

●●●

●●
●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●●●●

●

●●●●

●●

●●●●●●●●●

●

●

●

●●

●

●●●●

●

●

●●

●

●●

●

●●

●

●

●

●●●

●

●●

●

●●●

●

●●●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●●●

●●●

●

●

●

●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●●●●●

●

●●●

●

●●

●

●●

●

●

●●●

●

●

●

●●●●●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●●

●

●●●●●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●●

●●

●●●●●

●

●

●

●●●●●

●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●●●●

●

●●●●●●

●

●

●●●

●

●

●●

●●●

●●●●●

●

●

●

●

●

●

●

●●

●●●

●

●●

●●

●●

●

●

●

●●●●

●●●●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●●●

●

●●●●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●●

●

●●

●●●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●
●
●●●●●●
●●
●●

●●●
●
●
●●

●

●●●●●
●●●
●●●●

●

●●●
●●●●●

●

●●

●

●●

●

●
●
●
●●

●

●●●●●

●●

●●●

●●●●●●●

●

●●
●●
●

●

●●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●
●●

●

●●●

●

●

●

●
●●●●
●
●●●

●

●
●

●
●
●

●●

●●

●

●●
●●●●

●

●●●

●●

●●

●

●

●●●

●●

●●●●●

●●
●

●●●●●●
●●●
●

●●
●

●●
●●

●
●●●

●

●

●

●

●●

●

●●
●
●●

●●

●
●

●
●
●

●●

●

●●

●
●

●
●
●
●●

●●

●

●

●
●
●●

●
●

●

●
●●
●
●
●
●

●●●

●●

●

●

●●●

●

●●
●
●

●

●
●

●

●

●●●

●

●●

●

●

●●
●

●

●●

●●●●●

●

●

●●

●
●

●

●
●●●●●

●●●●●●

●
●
●●
●●

●

●

●

●●

●●
●
●
●
●
●
●●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●●●●●
●●
●●●
●
●
●●

●●●●●

●●●

●●

●●

●●

●

●
●
●

●

●
●●●●

●●

●

●

●

●

●

●
●
●●●

●

●
●
●
●

●

●
●
●
●●

●

●●●●●●●●

●

●

●

●●

●●●

●

●
●
●

●●●●
●

●

●●●

●

●

●
●●●●●●●

●
●●
●
●●

●

●●

●

●●●
●
●
●

●

●

●●

●●
●●

●

●●
●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●●

●

●

●

●

●●●

●

●

●

●●

●
●
●
●●
●●●
●●

●

●

●●
●
●
●●

●●

●

●

●●
●
●●
●
●

●
●
●
●

●
●●
●●

●●

●

●
●

●●●●

●

●●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●●●●
●●
●●●●●
●
●●

●
●

●●

●
●●
●
●
●●

●
●

●

●
●●●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●●
●
●●

●

●
●●●●

●●●●●

●

●

●●●

●●
●●
●

●
●

●

●●
●
●
●

●

●●

●●

●

●

●●●
●

●

●

●

●
●●

●●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●
●
●
●
●

●
●
●
●
●●
●●
●

●

●
●●●●

●

●●
●

●

●

●
●●●●
●

●

●
●

●

●●

●●

●●

●
●

●●●
●

●

●
●

●

●

●

●

●●

●

●●●●
●
●●
●
●●

●

●

●

●

●●

●

●

●

●●●●

●●●●●

●

●

●
●

●

●●

●●

●

●●●●●●

●

●

●

●

●
●●

●●●●

●
●

●●●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●
●

●

●●

●

●●

●

●●●

●●●●

●
●●

●●●●●●●●●

●

●

●●

●

●

●●

●

●

●

●●●●●

●

●●

●●●

●

●

●

●

●

●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●●

●

●

●●●●

●

●●●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●●●●●●●●●●

●

●●●●●●●●●

●

●

●●

●●

●

●●●●●

●

●●●●●●●●●●●

●●

●

●●●

●

●

●●●●●●

●

●●●●●●●

●●●●●●

●

●●

●

●

●

●●

●

●

●

●●●●●

●

●●
●●

●●

●

●●

●

●

●●●●

●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●●

●●●●

●

●

●●●

●●

●

●●
●

●

●●●●●●●●●

●

●
●

●●

●

●

●●●●

●

●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●

●●

●●●●●●●

●

●

●

●●

●●

●

●

●

●●●●

●

●

●

●●●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●●

●●●

●

●

●●

●●

●

●

●

●●

●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●●●●●●●●●●

●

●

●●

●●

●●●

●●

●

●●

●

●

●

●

●

●●●●

●

●●●

●

●●

●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●

●

●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●

●

●

●

●●

●

●●●

●●

●●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●

●●

●●●

●

●

●

●

●

●●

●●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●

●

●●

●●

●●●●●●●

●

●

●

●●

●

●●●●●●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●

●●
●

●●

●

●

●

●

●
●●
●
●●●●●●

●●●●

●

●●
●

●

●
●●●
●
●

●

●

●

●●

●

●

●●
●

●●

●

●
●
●

●●

●

●
●
●●

●

●●●●

●

●●●
●
●

●

●●●●●●●●●●●●
●
●●

●

●
●

●

●

●
●
●●
●

●●●

●

●●●●●

●

●●
●
●●●●

●
●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●●●●●
●
●●
●
●●●
●
●●●

●●

●●

●●●

●●●
●●●
●

●●●●

●
●●

●
●

●

●

●
●

●
●
●
●●●
●

●

●

●

●●

●

●
●●
●
●
●
●

●
●●
●
●●

●

●
●
●●

●

●
●
●●

●

●●

●

●●●

●

●●●
●

●

●
●
●

●

●

●
●
●

●

●
●●
●

●

●
●

●●●●●

●●●

●

●
●

●●

●●●

●
●

●
●●
●
●●

●
●●●

●

●●

●

●
●

●

●●●●
●
●●

●
●

●●●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●●

●●●●

●●

●●●

●
●
●
●●
●●

●

●●●●●●

●

●●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●●

●

●●

●●

●●●

●

●

●

●●●

●

●

●●

●●●●●●

●●●●●●●

●

●●

●

●●

●●

●●●

●

●

●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●●●●

●●

●

●●●●

●

●

●

●●●●●●

●

●●●

●●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●●

●●●●●

●

●
●
●●
●●●

●

●●

●

●

●

●●●●
●
●●

●●

●
●
●

●

●

●●●●●

●

●

●

●●

●

●●

●

●

●

●●●●●

●

●
●
●●●

●

●

●

●

●

●●●●

●

●
●

●

●

●●●●

●●

●

●●

●

●●

●

●

●●●

●

●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●

●●

●●●

●●●●●●●

●●

●

●●●●●●●

●

●

●

●

●

●

●●●

●

●●●●
●●

●●

●

●

●

●

●●●

●

●●●●●●●

●

●●●
●

●

●

●

●●

●●●

●●

●

●●●

●

●●●●

●

●●

●●

●

●

●

●●

●●

●●

●

●●●●

●

●●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●●●
●
●

●●

●
●
●●●
●
●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●

●

●●●●

●

●●●

●

●

●
●
●
●●
●

●●
●●
●●●●

●

●

●

●

●●●●●●

●

●

●

●●●

●●

●

●

●●
●

●●

●●●●
●

●●

●

●

●

●

●●

●

●●

●

●●
●

●
●
●●●●●●
●●
●●●●
●
●●
●●●●
●●
●●●●●●●●

●

●

●
●
●●●●●
●●●
●
●●
●●●●●●
●

●

●●●●

●

●●
●
●●
●
●●●●
●
●●●●●

●

●

●●
●●
●●●

●

●●
●
●
●●●●
●
●
●●●

●

●●●●
●
●●
●

●●

●

●
●
●●●
●●

●
●●

●●●●

●
●●●●

●

●●●
●●
●●

●●●

●

●●

●

●

●
●●
●●
●
●●●
●●

●

●
●
●●
●●●●
●●
●
●
●●●●
●●
●●
●
●
●●
●

●
●
●
●
●●●
●●●●
●
●●●●
●
●●

●

●●

●●●●●●
●
●

●
●●
●●
●
●●
●

●

●

●
●

●
●
●

●
●

●

●●

●●●●

●●●●●●

●●

●

●
●
●

●

●●

●●
●

●
●●●

●

●●
●
●●●●
●●

●●●●●●

●

●

●
●

●

●●

●●

●
●

●
●●●

●
●●

●

●
●

●●
●●●

●●

●

●

●●●
●

●

●

●

●●●●●
●
●●

●

●●

●●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●
●●●●

●

●●●●●

●●●

●

●●●

●

●

●

●

●●

●

●

●●●●

●

●●

●●●

●

●

●

●●

●

●●●

●●●●●
●●●●

●

●

●●●●●●●

●●
●●

●

●●
●

●

●

●●●●●

●

●

●

●

●
●●●●
●●

●●●

●

●

●●

●

●

●●●●

●●●

●●●●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●

●●

●●●●

●

●●●

●●●●●●●

●●●●●●●●●●●●●
●

●

●

●●●

●●

●

●

●

●●●●●●●●●●●●●●
●●

●
●
●●
●
●

●

●●●

●

●

●●
●●
●

●

●

●●●●

●

●
●

●

●

●

●

●
●●●●

●
●●●
●
●●●●
●
●●●●●●●
●
●
●

●

●●●●●

●

●●

●
●
●●
●●●●●●
●●●●●

●●
●
●
●
●

●●●●
●
●●
●

●

●●
●
●

●●
●
●

●

●●

●●●

●

●

●
●●
●

●●
●●

●

●●●
●

●
●
●●●
●
●●

●

●●●●●
●●●
●●
●

●

●●●●●●●
●
●
●

●●
●

●●●

●
●

●●
●
●

●

●●●●●●●
●●●●●●●●●●●●●
●●
●
●●●●

●●●●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●
●●
●
●●
●

●
●
●●

●

●●●●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●●●

●

●●

●

●●●●●

●

●

●

●●●

●●

●●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●●

●

●

●●

●

●●●●

●

●

●

●

●●●
●●●

●

●

●

●

●●●●●●●

●●

●●●

●●

●

●

●

●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●●●●●●●

●

●

●

●●●●●●●
●●

●

●●

●

●●●

●

●●●●●●

●●

●

●●

●

●

●

●●●●●

●

●●

●

●●

●

●

●●●

●

●●

●

●●

●●●●

●

●

●

●●●●

●

●

●●●

●

●

●●●

●

●

●●

●●●●●●●●●
●
●

●

●
●

●

●●●

●

●●●

●

●●●

●

●●●●●●●●●●●

●●

●●●●

●

●●

●●
●
●
●

●
●
●●

●

●●●●

●

●●●●●●●●●●●●●●

●●
●
●

●

●●●●

●

●●●

●

●●

●

●

●●

●

●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●●

●

●●●

●

●

●

●●

●

●●●●●

●

●

●●●●

●

●

●●●●●

●

●

●●
●●

●

●

●

●●●

●

●

●●●●●●
●

●●●●●

●●
●

●●●●

●●●
●

●●
●
●
●●
●

●●●

●
●
●●●●●

●

●
●●●●●●
●●
●
●
●
●●●●

●

●●
●
●
●
●●●
●●
●
●
●
●●●●

●

●●●●●
●
●●●●●
●
●●
●●●

●

●●

●
●
●●●●●
●
●●●
●
●●●
●
●●●●●
●
●
●●●
●●●●●●
●●
●
●●●●●●

●

●●●●●
●

●●

●●

●

●

●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●●●

●●●

●

●●●
●●
●

●●

●

●

●●
●
●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●
●●●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

NSD < 0.05 NSD in [0.05,0.1] NSD in [0.1,0.25]

NSD in [0.25,0.5] NSD in [0.5,1] NSD > 1

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

40

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Strategies

P
er

ce
nt

ag
e

of
 N

on
−

Lo
ca

l T
as

ks

(b) |T |
|P | = 2

●
●

●

●

●

●●●●●●
●
●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●

●

●
●●●
●
●●●
●
●
●
●●●●
●
●●

●
●●
●

●

●

●

●●

●

●●

●●●●

●
●

●●●●●●
●
●

●●●●

●

●●●●●●

●

●●

●

●●

●

●

●●
●
●
●●
●
●
●●●●●

●

●●

●

●

●

●
●

●

●
●
●
●
●
●●●●

●

●

●

●
●
●●●●●●
●●●●●●●●●
●
●
●●
●●
●●
●●

●●
●

●
●

●

●

●●
●
●
●●●
●
●●●
●
●
●

●

●
●

●
●

●

●

●●●●●●
●
●
●●●

●
●●
●
●●●●●●●●●●

●

●●●●
●

●
●
●
●
●●

●

●
●●●
●
●
●●●●●●●●
●●●
●●●
●●●
●●
●●

●

●
●●●
●
●●
●
●●
●
●●

●

●●●

●

●

●●

●

●

●

●
●●
●●
●●●●
●
●●●●●●●●●●●●

●

●●
●

●●

●●●

●●

●●●●●

●

●

●

●●●●●●●●●

●

●●●●

●

●
●

●

●

●

●●●●●●●

●

●●

●

●

●●●●●●

●

●

●

●

●●●●●●●●●●●●●

●

●●

●●

●

●●

●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●

●

●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●
●●

●
●
●●●

●
●
●●
●
●
●
●

●
●●
●
●●
●●
●
●
●
●

●

●
●
●
●
●
●
●
●●
●
●
●●●●●
●
●●
●
●●●
●●
●●
●●
●
●
●●●●●
●●●●●●●●
●
●●●
●
●●●●●●
●
●

●●●

●

●●●●
●
●

●

●
●

●●●

●●●●●●

●

●

●

●●

●●

●

●●●●
●
●●●●●●
●
●
●
●
●●
●
●●
●

●

●●
●

●
●●
●
●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●
●●●●●

●

●●●●●
●●●

●●

●●
●
●●
●●
●●
●●●●●●●
●●●●●●●●
●
●●

●●

●●●●●●
●
●●●●●●●

●

●●●●
●
●●●

●

●
●

●
●●●●●●●
●●●
●●
●●●●

●
●●●●●●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●
●

●

●
●●●●●

●●

●●

●
●●●●
●●●●●
●●●●●

●

●●●●●
●●●●
●

●
●
●●●
●
●
●
●

●

●●●
●

●

●
●
●
●
●
●

●

●

●
●
●
●
●
●●
●
●●
●
●
●

●

●●●

●

●
●

●

●
●●●

●

●
●
●
●●
●

●●

●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●●●●●●●●●●
●●●
●

●●
●●●

●

●●●●●●

●

●●●

●●

●●●●
●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●
●
●●
●
●●●●●●●

●

●

●●
●
●●
●●

●

●
●
●●●
●
●
●●

●

●●
●
●●

●

●

●

●

●

●

●●●
●
●

●●●
●
●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●
●
●●●●●●●

●

●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●●
●
●●
●
●
●
●
●●
●
●

●

●
●
●●
●●
●●●●●●●
●●

●

●●●●●●●●
●●
●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●

●●
●
●
●●
●

●
●
●●●●●●●
●
●
●
●●
●
●●●

●

●●●

●
●
●●●●●
●●
●

●
●

●

●●
●
●
●
●●
●●
●●
●

●●●
●
●
●●●●
●
●●
●

●●●
●

●

●

●
●

●●●●
●
●●
●●
●●

●●

●●●
●
●●●●●
●
●●
●
●●
●

●●●●●●●●●●●
●●●●

●

●
●
●●●●
●

●

●
●●●●
●
●●●●
●

●

●●
●
●
●●
●
●

●●●
●
●
●●
●
●
●
●●●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●●●
●●
●●
●●
●

●●●●●●●●●●●●●
●●
●●
●
●

●
●
●
●●
●●●●●

●

●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●
●●●●●●●
●
●●●
●
●

●

●

●

●●
●●●
●

●●●
●●●●

●

●●●●●
●●●
●●
●●●●●●●●●

●●

●
●

●●
●
●●
●●
●

●●●●●●
●
●
●●
●●
●

●●●

●

●●

●

●●
●

●

●

●

●●●●●●
●●
●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●

●●

●●●
●
●●
●
●●●
●
●●●●●●●
●
●●
●

●●●

●

●●
●●
●●●●●
●

●

●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●
●●●●●●●
●●●●●●●
●

●

●

●

●

●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●

●●

●

●●●●●

●●

●

●

●●●●●●●●●
●●●

●

●

●

●●
●
●
●
●●
●
●

●

●
●
●●

●

●
●●
●
●●
●

●
●
●
●
●●●●●●●●●
●
●●●

●
●●●●
●
●●●●

●●●

●●●
●
●●●●

●

●●●●●●
●
●●

●

●●

●

●
●
●●●●●●●●●●●
●

●

●●●●●
●
●

●●●

●

●●
●
●

●

●

●

●

●●

●

●

●●●
●
●
●●●
●
●
●
●●

●

●●
●
●
●
●
●●
●●●
●
●●

●

●●●
●●

●●●

●

●

●

●
●
●
●
●
●●
●
●

●
●
●
●
●●●●●●●●
●
●●
●
●
●●●
●●●●●●●

●●●●
●●●●●●●●●●●●●

●
●●●

●

●
●●●●●●●●
●●●

●

●

●

●●●●●●●●●●
●●●●●●●
●
●●●
●
●
●
●●
●
●
●
●

●
●●●
●●
●
●
●
●

●

●

●

●●●●●●●●

●

●●●●

●
●●●

●

●
●
●

●

●
●
●
●

●

●

●
●
●●
●●
●
●
●

●

●
●●

●

●

●

●●●●●

●

●●
●●●●●●●●●
●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●
●●●●●●●

●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●

●

●

●●●

●

●

●

●●●●●
●●●●●
●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●
●
●●
●
●

●
●
●
●
●

●

●●

●

●
●●
●●●●
●
●●●
●
●
●
●●
●●

●

●
●●●
●

●

●●●●
●●
●

●

●●●●●
●
●●

●

●●
●●
●

●●

●●

●

●

●

●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●
●●
●
●●
●
●

●

●

●
●

●

●
●
●●●●●●●

●

●

●
●
●

●

●
●
●
●
●●●●

●●●●
●

●

●

●●●●

●●●

●

●

●
●●●
●
●●

●

●

●
●●●●●●●●●●●
●
●
●●
●●

●

●

●●

●

●●●●●●●●●●●
●
●
●●
●●●●●●

●

●
●

●●●●●●
●●
●●●
●
●

●●●

●

●

●

●●

●
●

●
●

●●●●

●

●●●●

●

●

●●●●

●

●●

●●

●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●

●●

●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●

●●

●

●

●

●

●

●●
●●
●
●
●●
●●●
●●●●●
●
●●●
●
●●
●●

●

●●
●●●●●●
●

●

●●●●●

●

●●
●

●

●●●●●
●●●
●
●●●
●
●●●●●●

●

●●

●●

●●●●●●

●

●

●

●●

●

●●●

●●

●●●●●
●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●
●●●

●

●
●
●

●●●

●

●●
●

●

●

●●
●

●●

●●●

●●

●

●
●●

●

●●

●

●

●●●●●

●●

●●●●

●●

●

●

●

●●●

●

●●

●

●

●●●

●

●
●●

●

●

●

●
●

●●●●●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●

●●

●●

●●

●

●

●●

●

●●●

●●

●

●

●

●●

●●

●

●●●

●●●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●●

●●

●●●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●●

●

●●

●●

●

●●●

●

●

●●●●●●●

●●

●●

●●●●

●

●

●●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●
●●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●

●

●●●

●

●

●

●

●●●

●

●●●●●●●●●●

●

●●●

●

●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●●●●●●●

●●

●●●●●

●

●

●

●●

●

●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●

●●●

●●

●

●●●

●

●●●

●

●●●

●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●●

●●

●●

●●●●●●●●●●●

●

●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●●●

●

●●●●●

●

●
●●

●

●●●
●
●●
●

●●●

●●
●
●
●
●
●●

●

●

●●●
●

●

●

●

●

●

●●
●●●●●

●

●●
●
●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●
●●
●●
●
●
●●●

●

●

●
●

●●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●
●●
●

●

●

●
●●●●●
●
●●

●

●

●
●●●

●

●●●●●
●

●●●●
●

●

●●
●
●
●●
●
●
●●

●●●●
●●
●●

●
●
●
●

●

●
●●

●

●●
●●●●●●

●●

●
●

●

●
●
●●●●●●●●●●
●
●
●●
●

●

●

●

●
●●
●●●
●
●●
●
●

●●

●●
●●●
●●●
●●●●●
●
●
●●●
●

●

●

●

●●●

●
●●●●●●●
●●

●

●
●

●

●●●
●

●

●
●
●

●●
●

●

●

●●
●●●●●●●●●
●
●●●

●●
●●●●●●

●

●●●

●●

●
●●

●●●●

●●●

●●●

●

●●●●●●

●●

●●●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●

●●

●●●●●

●

●●●●

●●

●

●●●
●

●

●●
●
●

●

●

●

●●

●

●●

●

●●

●●●●●

●

●●

●●●●
●
●

●●●●●●

●

●●●●●

●

●●●●●●

●

●●●●

●

●●●●

●●

●●

●

●●
●●

●

●●

●

●

●●●

●●●

●●

●

●

●

●●

●
●

●

●●●

●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●●

●●

●●

●

●●●●

●

●●●

●

●●

●

●●●

●

●●●●●

●

●●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●●●●

●

●

●●

●●

●

●

●

●●

●●

●
●
●

●

●

●●●●●●●●●●

●

●

●

●●

●
●

●●●

●

●●

●

●●

●

●●●

●

●

●

●
●
●
●

●
●

●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●

●●●●●●●●

●●●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●

●

●
●●●●●●●

●

●●●●●●●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●●
●

●●

●

●●

●

●●●
●
●●

●●●

●

●●●●

●

●●●●

●

●●●

●
●

●●

●

●

●

●●●

●●

●
●

●●●●●●●●

●●●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●●

●●

●●●

●

●●●●

●

●●

●

●●●

●
●

●

●●

●

●

●
●

●●●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●●●●

●

●

●●●

●
●●●●

●●

●

●

●

●

●

●●●

●

●
●

●
●

●●
●
●

●

●
●

●

●

●●●●●●●

●

●●●●

●

●

●

●
●
●

●●

●

●●●●

●

●

●●

●

●●

●

●

●

●●●

●●

●●

●

●●●●●●

●●●

●

●

●

●●
●●●●●●●●●●

●

●●●

●

●

●

●●

●

●

●●●

●●

●

●

●
●

●●

●●

●●●●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●●

●
●

●

●

●●●

●●

●

●

●

●●

●

●●

●●

●●●

●

●

●

●●●●●●●●●●●●
●

●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●●●●

●●●

●●

●

●●●●●●●●●●●

●

●

●

●●●

●

●●

●

●●●

●

●●

●

●●●●

●

●●●●●

●●●

●

●●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●●●●●●●●●●●

●●●●●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●●

●●●●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●

●

●

●

●

●●

●●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●●

●

●●●

●●

●

●●●●●●●●●●●

●●●

●

●●●●●●●●

●

●●●●

●

●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●●●●●●●●●●

●●●●

●●●●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●

●

●

●●● ●

●

●●●

●

●●●●●●●●●●●●●

●
●●

●

●●●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●●

●●●●

●●●●●

●●
●

●●

●

●●●●●●●

●

●

●

●

●

●●
●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●●●●●●●●

●

●

●●●●
●
●

●●●●

●

●

●

●●●●●

●

●●●

●●●●●
●

●●●

●

●●

●

●

●●●●

●●●●●●●●●●

●

●●

●●●●●

●

●●

●

●●●●●●●

●

●

●●●●

●●●●●●●●●●●●●●●●●

●●●
●●

●●●●

●

●●
●

●●●●

●

●●

●●

●●●●●●●●●●●●●

●●●●●●●
●

●●●●●●●

●

●●●●

●

●●

●

●

●

●

●●●●
●●

●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●

●

●

●

●●●

●●
●

●

●

●●●●●●●●●●●

●
●

●●

●

●

●●●●
●
●
●
●●●

●

●●
●●
●
●

●●

●●

●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●

●●

●
●●

●

●
●

●●●●●

●
●

●

●

●●●●●●●●

●
●

●

●

●

●

●

●

●

●
●

●●●●

●●●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●

●●

●●●●●●

●

●●●

●

●

●

●●●

●

●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●

●

●

●

●●●

●
●

●●●●●●

●

●●●

●●
●
●●
●
●●●
●
●

●

●●

●●●

●

●
●

●

●
●●
●●●

●●●●●●●●

●

●

●

●●●●●

●●

●●

●●

●●

●●

●

●
●
●

●●

●●

●●●●

●●

●●

●

●

●

●●●

●●●
●

●●

●

●●●●●●

●

●●●●●●●

●
●

●●●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●

●
●●

●●●●●●●

●

●●●

●

●●●●●●

●●●●

●

●●

●●●●

●

●●●

●●

●●●●●●●●●●●●●●

●●

●●

●
●

●●●●●●

●

●

●

●

●●
●●

●

●

●●●●●

●

●

●

●●●

●

●●●

●●

●●●●●

●●
●

●

●

●●●

●

●●●

●
●●

●

●

●●●●●●●●●

●●

●●●●●●●●●●●

●
●

●●●

●●

●●

●

●●●

●

●●●●

●●

●

●●

●●●●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●●●●●●

●●
●

●●

●

●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●

●●
●●

●

●

●●●

●

●●●●●●●●

●

●

●

●●

●

●●●

●

●

●●

●●●●●●●●

●

●●

●●

●●●●

●

●

●

●

●●●
●●
●

●●

●
●●
●

●●●●●●●

●

●●●●

●●
●

●

●

●

●

●●

●
●

●

●

●●

●

●●●
●

●

●
●

●

●
●

●

●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●●●

●●●●●●●●●●

●●●●

●

●

●

●

●●●●●●●●●●●●

●●

●●●●

●●●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●

●

●●●

●

●

●●

●●●

●

●

●

●●●●

●

●●●●●●●●●●●●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●
●
●●●●

●
●

●

●●●●●●●

●●
●●
●●

●

●

●●●
●●●●

●
●

●

●

●

●

●●●●
●

●

●

●●●●●●●●●

●

●

●●●
●●

●
●

●
●
●

●

●

●

●

●
●
●

●

●
●
●●
●
●
●
●
●
●
●
●●
●
●

●

●●●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●●

●

●

●

●

●●●●
●●●
●

●

●
●

●
●
●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●●

●

●●●●●●

●●

●●●●●●●
●
●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●●

●

●●●●●

●

●●
●●

●

●

●

●

●●●●●●●●●●

●

●

●●●

●●●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●●●

●

●●●●●

●

●●●●●●●

●

●

●

●●●●●●●

●

●●●●●●

●●●

●
●●●

●

●●

●

●●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●

●
●

●●

●
●
●

●

●

●

●

●●●

●

●●

●

●●

●

●●●●●●●●●

●

●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●

●

●●

●

●●●●●

●

●●

●

●●●

●●
●

●

●●
●●
●
●

●●
●●
●
●●
●●
●
●
●
●
●
●●
●
●●●
●

●

●

●

●●●●
●
●●●
●

●

●
●

●

●
●
●

●●●
●●
●

●
●●

●●

●●●
●●

●

●
●
●
●
●
●
●

●

●

●
●

●●●

●●

●
●

●●

●●●●●●

●

●●●

●●●

●●

●
●●
●●●
●

●
●
●●●●●

●●●●●●

●
●
●●●
●
●

●

●
●●
●●●
●
●

●●
●
●●●●
●

●

●●●

●

●●●
●
●●●●●●●
●●
●

●●

●
●●●
●●

●●●●●●●●●●●

●●●
●●
●●●●●

●●●●

●●
●●
●
●
●

●

●●
●
●

●

●●●●●●●●

●●

●

●
●●●●
●
●

●

●●●●●●
●●
●●

●

●●
●
●

●

●

●

●●●

●

●

●

●

●
●
●

●
●
●
●

●●●●

●●●

●●

●

●●●●●●●●●●●●●●

●●●●●●●●

●

●
●

●

●

●

●
●
●

●

●
●

●●

●●●
●●
●●●●●●
●

●●●●●●●

●●
●●
●●●
●
●
●
●

●●●●

●●●

●●●
●●

●●●●●●●●●●

●

●

●●●
●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●●●●●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●
●●

●●●●●●●●●●

●●

●

●●

●

●●●
●
●
●

●●●●●●●●

●

●●●●●●

●●
●

●

●●●

●●

●

●●

●●

●●●●●●●●

●

●

●●●●

●●●●●●●●●●●●●

●

●●●●●

●
●

●●●

●

●

●

●
●
●
●
●
●
●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●

●

●

●●●●●●●●●●●

●

●●

●

●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●
●●
●
●●
●●●●●●●
●●
●●
●
●●
●
●●●
●
●
●●●●●
●●●
●●●●

●
●●●●●●●
●●●●
●
●
●
●
●
●
●
●
●
●●●●●●
●●
●●●
●●●●●●●
●
●●●●●●
●
●●●
●●●
●
●●●●●●●●●●●
●●
●●
●

●●●

●

●●●
●

●●●●

●
●●●●●●●

●

●●●●
●●●●●
●
●●●●●●●●
●●●●●●
●
●●
●●
●
●●●●●●●●
●●●●●
●
●●●●●
●
●
●
●
●●
●●●●
●
●●●●●●●
●●●
●
●●
●

●
●
●●●
●
●
●
●

●

●●

●

●

●

●
●
●
●
●

●●

●●●
●●
●●●●
●
●●●
●
●

●
●
●

●●
●

●
●●
●
●
●

●
●●●●●
●●●

●

●
●
●●●
●●

●
●●

●●

●

●

●●
●

●●
●

●●●

●
●
●●
●●●

●

●
●●●
●
●●●●
●
●●●●●●●
●
●

●
●
●●
●

●

●
●●

●

●
●
●●●●●●●●●●●●●●●●
●
●
●●●
●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●
●●

●

●●
●

●●●
●●
●

●●
●
●●●●
●●●●●
●
●
●
●
●
●●●●
●
●●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●●
●●●
●●
●●●●●●●●●●●●●
●●
●●●●●
●●●
●
●●●●●●
●●●●●●●●●●
●
●
●
●●

●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●
●●
●
●●
●●●
●●
●●●●●
●
●●●●●●●●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●
●
●

●

●
●●●●

●

●●●
●●

●●●●

●●
●
●●
●
●

●●

●

●●
●●●●●●
●●●●●●●
●●●●●●●
●●●
●●●●●●●
●
●
●●●●●●●●●
●
●●
●●●●
●
●

●●●●●

●

●●●
●●
●●●●

●
●

●
●
●

●●

●

●

●
●●●

●
●

●

●

●●●●

●
●●
●

●

●
●
●
●●

●
●

●●●
●
●●●
●
●●
●●●●●
●
●●
●●●●●●
●
●●●●●●●
●
●●●
●●●

●

●●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●
●●
●
●●
●
●●
●

●
●●●
●

●

●●
●●
●
●●
●
●●
●●●●
●●
●
●●●●●●

●
●●
●

●

●

●

●●

●

●●
●●
●●●
●●●●●●●
●
●●
●●●
●●●●
●
●
●
●●●●●●●
●●●
●
●●
●
●●

●●●
●●
●●
●●
●●
●

●

●

●●
●
●
●
●
●

●

●

●

●
●●●●

●

●

●●●●●
●●●
●●
●
●●●●●●●●
●●●●●●●●●●●●
●●●
●●●●
●
●
●
●●
●
●●
●●
●●●●●

●

●●

●

●

●●●●●●

●●

●

●

●

●●

NSD < 0.05 NSD in [0.05,0.1] NSD in [0.1,0.25]

NSD in [0.25,0.5] NSD in [0.5,1] NSD > 1

0

5

10

0

5

10

0

5

10

15

0

5

10

15

20

0

5

10

15

20

25

0

10

20

30

40

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Strategies

P
er

ce
nt

ag
e

of
 N

on
−

Lo
ca

l T
as

ks

(c) |T |
|P | = 5

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●

●
●●

●

●

●●●

●
●●

●●
●
●●

●●
●
●●●●●
●●
●
●
●
●
●●
●
●●●
●
●
●

●

●●●●●●●●
●●●●●●

●

●●●●●●●●●

●

●●

●

●●●

●

●

●

●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●

●

●
●●●
●●●●●
●
●
●
●
●

●

●●●●
●
●●

●

●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●
●
●●●
●●●●●●●●●●
●●●●●●●●

●

●●●

●

●●
●●●●

●

●●●
●
●

●
●
●●●●●
●
●●●

●●●●●●●

●●●●●●

●

●●●

●

●

●

●●●●●●●●
●●●●●●

●

●

●●●

●●

●●●
●●●
●●●●
●
●●●●●
●
●●●
●

●

●●●●●●●●●●

●

●

●

●

●

●
●●
●●

●

●●●●
●
●

●

●●
●●

●

●●●

●●
●
●●●●

●

●
●

●

●●
●
●
●
●●
●●●●

●
●
●
●●●●●●

●

●
●
●●●●●
●●●

●

●●●●●

●

●
●●●●●●
●●●●●●●●●

●
●

●●
●●
●
●
●●●●
●●
●

●●

●●●

●●●●●●●●●●●●

●

●●
●●
●●●●●
●
●
●●
●●●●●●
●
●
●
●●●●●

●

●●

●

●
●
●●●
●
●●●●●●
●●
●●
●●
●●

●

●●
●
●

●

●

●

●

●●

●
●●●●●
●
●●
●
●●●●●●
●
●●
●
●
●

●

●●●●●●●
●●
●

●

●●●●●●●●●
●

●

●
●
●●

●

●●●●●●

●
●●

●
●
●●
●
●●
●
●
●
●●●●●
●
●●

●

●
●●●●
●●●●●●●●●●●●●
●●
●●
●●●●
●
●●
●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●
●●●●●●●
●
●
●
●●●●
●
●●●●●

●●

●●●

●

●●●●●●●

●

●

●●●

●●●●

●

●

●
●●
●●●●
●●
●●
●●
●

●●

●

●●●

●
●
●
●
●●
●
●●
●●●●●

●

●●●●
●

●

●●
●
●●
●●●
●

●
●
●

●

●

●●●●●●●●●●

●●●

●

●

●●●●●●●

●

●●●●●

●

●

●

●●●

●

●●●●●
●
●
●
●●●

●
●
●●

●

●●●●
●●●●
●●
●
●
●●
●●●●●●●
●
●●●●●
●●●●
●

●
●●
●
●
●●●
●
●●●
●
●
●●
●●●●●●●
●
●
●
●●●
●●
●
●●●
●
●●
●
●
●
●

●

●
●
●●●●●
●
●●
●●●●●●
●●●●
●●
●●●●●●●●●●
●
●●
●●●●●●
●
●●●●●●●●
●●
●●●●●
●●
●
●●●●
●
●●●
●●●●●●●●
●
●●●●●●
●●

●●●

●
●●●
●
●
●
●●●
●●
●
●
●
●●
●●●●●●

●

●

●
●●●●●●

●

●

●

●●●●●

●

●●

●●

●
●●●●●●●●●●●●●●

●●

●●●●
●●●●●
●
●●●
●●●●●●
●●
●●●●●●●
●
●
●●●●●●●●●
●●●●●

●

●
●●
●●
●●
●●
●
●●

●●
●

●
●
●●
●
●
●
●●
●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●●●●●●●●●

●●●

●
●●●●●●●●●●●●●●

●

●

●●●●●●●●●
●●●●●●
●●●
●●●
●

●

●

●●

●●●
●●
●●
●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●
●●
●
●
●●

●
●
●
●●●
●
●
●
●
●●

●
●●●
●●

●

●●●●
●
●●●●
●
●●●●●●●●
●
●
●
●
●
●●
●
●●
●
●●●

●

●

●

●●●●●●●●●●●●●●

●

●●
●●
●●
●
●

●
●
●●●●●●●
●
●●

●

●●●
●
●●●
●●●●●
●●
●●
●
●
●
●
●
●
●
●
●●●

●

●●●●●
●
●

●

●●●
●●
●●

●

●
●
●●
●
●
●●●●●●●●●●●●●●●●●●

●

●●
●

●●●
●
●●●●●●●●●
●
●
●
●

●

●●●●
●●●
●●
●●●●●●●●●●●●●●

●

●●●

●

●●●●●
●
●
●●

●

●●●●
●
●

●●●●
●●
●

●
●
●
●
●●
●
●●●●●●
●●
●

●

●
●
●●●
●
●●●●

●●

●●
●
●●
●
●●●
●●
●●●●
●
●●●●●●●●
●●●●●●●●●●●

●
●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●
●●●●●●●●●●
●●●●●●●●
●
●
●●●●●●●
●●
●
●
●●●●●●●●●●●●
●●

●

●●●

●

●●
●
●
●
●●●
●
●●

●

●
●
●
●

●

●

●
●●
●●●●●●●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●●●

●

●●●
●
●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●
●
●●●●●●
●
●●●●●●
●
●●●●●●●

●

●●
●●
●
●
●●●●●●●●●●●

●●●●●●●

●●●●●

●

●●●●

●

●●

●

●●

●

●

●

●●●
●
●●●●
●●
●●●●●●
●
●●●●●
●●●●
●●●●●●
●
●●●●
●
●
●
●●
●
●●●●●●

●

●

●●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●

●●

●

●

●●
●
●

●

●●

●

●
●●●
●
●●●

●●●

●
●

●

●

●

●●●●

●

●

●
●
●●●●

●

●

●

●
●●●

●

●

●

●●●●●●

●

●

●

●●●●

●

●

●●

●●

●

●●●

●

●

●

●
●

●

●

●

●●
●
●●●●●●

●●●

●●●●●●●●
●
●●

●
●
●
●●
●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●
●●
●
●●
●
●●●●●●●
●
●

●

●

●●●

●

●●●●
●

●●

●

●

●

●

●

●

●●
●
●
●

●

●●●●
●●
●●●●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●●
●
●
●●●
●●●
●●●●●
●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●●●●

●
●

●

●●

●

●●●

●●

●
●●●●●●●●

●●●●●●

●

●●
●

●
●

●●●●

●●
●●

●
●●●
●●

●●●
●●
●●●●●●●●●

●

●

●

●●●●

●

●

●

●●●
●●●●●●●

●

●
●

●●

●

●
●

●
●
●

●

●

●
●
●

●

●

●●
●
●●●

●●
●●

●
●
●●●●●●
●●●

●●

●

●

●

●●●●

●
●
●

●

●●

●

●

●

●●●●●●●●●●●
●
●●●
●
●●●●
●●●●
●●●●
●●●●
●●●

●●●●●

●

●●●●●

●●●●●●
●●

●●

●●●
●●●●●●
●●
●●
●
●
●
●●

●●
●
●
●
●●●●
●●●●●

●●
●
●

●●

●

●
●●●●●●●●●●●●●●●

●
●●●●●●●

●

●●●●●
●

●

●●●●

●●
●

●

●●●●●●●
●●
●●
●

●●●
●●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●●

●
●●●
●
●
●
●
●
●●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●
●
●●●●●
●●
●
●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●
●
●
●
●
●
●

●

●

●

●●
●
●

●

●●●
●

●

●
●●

●

●
●●
●●●●●

●●
●
●●

●

●

●●●

●

●

●

●
●
●
●

●

●●

●

●●
●●

●

●●

●

●●●●

●●

●●●

●

●
●

●

●
●●●●
●
●●
●

●

●●●

●●

●●

●●

●

●

●●●

●●
●
●
●●●●

●●

●

●

●●
●●●●●
●
●

●

●●
●

●●

●

●

●

●

●

●

●●●●●●●
●●

●

●●

●●
●●

●●●
●
●●

●●

●●●
●

●

●
●
●
●
●●
●●●●
●●
●
●

●
●
●●
●
●●
●
●
●●●
●
●●
●●
●
●●●●
●
●●

●
●
●

●

●
●●
●

●●
●●
●
●

●

●

●
●
●

●●
●
●●●●●●
●●●
●
●●●●
●
●
●●
●

●●●

●

●

●

●

●

●

●●
●
●
●

●

●●●●

●
●●●●●●
●

●

●●●●●
●●●
●

●

●●
●●●
●●
●
●
●
●●
●
●●●●

●●
●
●●●●●●●●●●
●
●●●●●●●●
●●●●●●
●
●●●●●●●

●●
●●
●
●●
●
●
●●
●
●●●●●●
●●●●●●●●●●●●●●●
●
●

●●
●●●
●
●●●●●
●●●
●

●●●●●
●●
●
●
●
●
●

●●
●
●●●●●●
●●●●●●●●●
●●●
●
●
●
●
●●●
●
●
●
●●●●●
●●●●
●●●
●●
●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●
●

●
●
●
●●●

●
●
●
●●
●
●●●
●

●●●●●●●

●
●

●

●
●●
●
●

●●
●●●●●●●●●●●
●
●●
●
●
●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●
●●●●

●

●

●

●●

●

●
●

●
●

●

●
●●

●

●

●●
●

●●
●●
●

●

●●
●●
●●
●
●
●
●
●
●●●
●●●
●●

●

●
●
●●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●
●
●
●
●●

●●
●
●

●
●●
●
●

●

●
●
●●
●
●●
●

●
●●●●
●

●
●
●
●●●●●●

●

●
●
●
●●
●
●
●
●
●●●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●●

●●●

●

●●
●
●●

●

●
●●●

●
●●
●

●

●

●

●
●

●
●●

●●●

●

●●
●

●

●
●●

●●

●●

●
●
●

●
●
●

●
●●●●
●

●
●

●●
●

●

●
●
●
●

●

●●●●●

●

●●●●

●

●
●
●
●●
●
●

●●
●

●
●●

●

●

●

●
●●

●
●
●
●

●

●

●

●●

●

●
●
●

●
●
●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●
●●●●

●●

●
●●

●●●
●●●

●

●●

●●

●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●●
●
●

●

●
●

●
●

●

●

●

●

●

●
●
●
●●

●
●

●●●●●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●

●●
●
●●●●
●●
●
●
●●●
●

●

●●
●

●●●●●●
●●
●
●●●●●
●

●
●●●●
●●●●
●

●●
●●●●
●●●●
●
●●
●●
●
●●
●●●●
●●●
●●●

●

●●●●●●
●
●●
●

●●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●
●
●●
●●
●
●
●●●●●●

●
●
●
●

●

●
●

●

●●
●
●

●

●●●
●

●
●●
●
●●
●
●
●

●

●

●

●
●
●
●●

●

●

●

●●
●●
●
●●●

●
●●
●●
●

●
●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●
●

●●
●

●

●

●

●

●●
●

●●

●

●

●

●
●●
●●
●

●
●
●●
●
●

●●
●●
●

●●

●
●
●●

●

●●

●

●

●

●●
●●

●
●
●●●
●

●●●
●

●●
●●
●
●

●
●

●●

●
●

●●

●
●●

●

●
●●●

●●

●●●●●

●
●
●●●●
●●
●
●●●

●
●

●●

●
●

●

●

●●
●●

●●
●●

●●●

●

●●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●●
●●
●●●
●

●
●●

●
●
●
●
●●
●●

●●

●
●

●
●
●
●

●

●●●
●
●
●
●●

●

●
●

●

●

●●
●●●●●
●
●

●

●
●●●●●
●●
●
●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●●●●●●●

●
●●●
●●
●●
●
●

●●●
●
●●
●●●●
●
●●●
●

●●●●
●●●●●●●●●●●●●●
●●
●●●●
●
●●●
●●●
●
●●●

●●●●●

●
●●
●
●
●●●●

●●
●●●●
●
●●●
●●●
●●●●●
●
●●
●●●●●●●

●
●
●●●
●●●●●
●
●●●
●
●●●●
●●●

●●
●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●●●

●

●

●●●

●●

●

●

●

●

●

●●
●
●
●

●

●
●●
●
●
●

●
●

●
●
●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●
●
●
●●●●
●
●
●
●●
●●
●●●

●

●
●●

●
●●●
●
●●●
●●
●●●●
●
●
●●●
●
●
●
●●
●
●●●●●
●●

●

●

●

●

●
●
●

●
●
●●

●

●●●●

●

●

●

●
●
●

●
●●
●

●
●
●

●●

●
●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●●

●●●

●

●
●
●●

●●

●
●
●●
●●●
●
●
●

●

●
●●

●

●

●
●

●
●

●

●

●

●
●●●
●
●
●●
●

●

●●●●

●●

●●
●

●

●●
●
●

●

●
●
●●
●
●
●●
●
●●
●

●
●●●
●

●●●●●
●
●

●●
●
●
●●
●
●●●

●●●

●
●
●
●
●

●
●

●
●
●●

●
●
●

●●

●●

●●

●
●

●
●

●●

●●
●●●
●●
●

●
●
●●
●●
●
●
●●
●
●
●
●
●●
●
●●

●
●●●
●●
●

●●
●

●●

●
●●
●●
●

●

●●●
●●●

●
●

●

●

●

●
●
●
●
●
●●
●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●

●
●
●●
●●
●●
●●

●

●●
●
●●
●●
●●
●

●●
●

●

●●●●

●
●

●●
●●●●
●●

●

●

●
●●●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●
●
●●

●

●●

●
●
●●

●
●

●
●
●●
●●●●

●●
●●●●●

●

●●●●●
●

●●●
●

●

●
●

●
●●

●

●●

●

●

●

●

●
●

●
●●●●
●
●●

●

●
●
●

●
●

●

●

●

●

●
●
●
●
●
●

●●
●
●
●
●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●●
●

●

●
●
●

●

●
●
●
●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●
●
●
●

●

●●
●
●
●

●●

●
●
●
●●●

●
●●●●●●●●●
●
●●●●

●
●
●●

NSD < 0.05 NSD in [0.05,0.1] NSD in [0.1,0.25]

NSD in [0.25,0.5] NSD in [0.5,1] NSD > 1

0

2

4

6

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0.0

2.5

5.0

7.5

10.0

0

10

20

30

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Strategies

P
er

ce
nt

ag
e

of
 N

on
−

Lo
ca

l T
as

ks

(d) |T |
|P | = 10

Figure 4.12: Results for the communication metric and heterogeneous settings.

In the other cases, |T ||P | > 1, the results are not as one-sided. First, as
expected, the lower is the variance, the better BestAssignment is (the as-
sumption stating that every task has the same computational time, assumption
made by the static scheduler, becomes wrong when standard deviation in-
creases). For the two mostly-dynamic strategies, Greedy and Maestro, we

192 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

can notice a stability of the results that are no so much impacted by the hetero-
geneity. This stability added with the degradation of the results of BestAs-
signment implies that Maestro can be more efficient in the case of a huge
variance. For example, in the case |T ||P | = 5 (Figure 4.12(c)), for NSD < 0.1,
BestAssignment is close to its results in the homogeneous settings with,
on average, only 0.13% of non-local-tasks when Maestro reaches 2.61% and
Greedy is close to 4.75%. However the gap decreases for NSD ∈ [0.1, 0.25[
(1.51% against 2.67%) and finally, for greater NSD, Maestro performs bet-
ter (5.13% for BestAssignment against 3.96% for Maestro). Note that
jobs with NSD below 0.25 represent slightly more than half of the jobs (see
Table 4.1).

The other important factor on the efficiency of the different strategies is
the ratio |T ||P | . It appears clearly that the strategy globally produce less com-
munication (proportional to the number of tasks) when the ratio |T ||P | increases
(this is not strict, for example, for NSD > 1, BestAssignment has only, in
average, 7.62% of non-local tasks when |T |

|P | = 1 against 9.28% when |T |
|P | = 2).

This was already the case for homogeneous settings, but here, coupled with
the influence of variance, this makes BestAssignment’s efficiency decreases
in comparison to dynamic strategies. For example, for |T ||P | = 1 and |T |

|P | = 2,
BestAssignment is the most effective strategy even for large standard devi-
ation. However, as stated above, for |T ||P | = 5 there are cases where BestAs-

signment is less efficient than Maestro and for |T ||P | = 10 BestAssignment
is even challenged by Greedy in the case NSD > 1. In order to see if this
degradation of performance for BestAssignment continues for larger ratio
|T |
|P | , we propose in Figure 4.13 an illustration of the case |T ||P | = 50. In this case,
the only case where BestAssignment is the indisputably better strategy is
when NSD < 0.05, that represents few cases.

This phenomenon comes from the opposition between static and dynamic.
In BestAssignment the scheduler, in its first phase, tries to assign to each
processor exactly |T ||P | tasks. In Maestro or Greedy, tasks are assigned when
a processor needs one. When heterogeneity increases, the flexibility of dynamic
strategies is compulsory, BestAssignment is too rigid and its dynamic wave
starts too late. However, even in the case where BestAssignment is no the
best strategy, its performance is not so bad. For example, in the case |T ||P | = 50,
BestAssignment is on average below 2% of non local tasks. More generally,
a number of tasks below 10% is a good expectation (on Figure 4.12, the only
time the average is above 10% is for |T ||P | = 2 and NSD > 0.5, but in this case
Maestro is even worse).

Therefore, in conclusion of this section, BestAssignment appears to be
a good solution if either:

• the number of tasks per processor is low,

On the Effect of Replication of Input Files 193

4.6. Conclusion and Perspectives

●

●
●

●

●

●

●

●●
●
●
●

●

●
●

●●
●

●

●
●

●

●
●

●

●
●
●

●●

●

●

●●

●
●●

●●

●
●
●●
●
●

●
●
●
●
●
●

●

●

●

●●●●●●●●

●
●●

●

●●●

●●●●●●●●●●●●●●

●●●

●

●●●●●

●

●●

●
●

●●●●●●●●

●●●

●

●●●●●
●

●●●

●●

●●

●

●

●

●●●●●●●●●●●●
●
●

●

●●●

●

●●
●●

●

●●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●●

●●●
●

●

●

●

●

●●●

●

●

●●●●●●●●

●

●

●
●
●●●●●

●

●

●

●

●

●

●

●
●●●

●

●●●●●

●

●
●

●

●

●

●

●●●

●

●
●

●

●●●

●

●●●●

●

●●

●

●

●●
●
●●
●
●●●
●●
●

●
●●
●●

●

●

●●

●

●

●
●

●●●●●

●

●

●

●●●

●●

●

●●●●●

●
●●●
●

●

●●

●●

●
●

●

●
●●●●●●

●●
●●

●
●●●●●●

●●●●●●
●
●
●

●
●●●●●●●
●
●●●●●●●●
●●
●●●
●
●

●●●●●●●●●●
●
●●
●
●

●
●●
●
●
●●●●●●
●
●●●●●●
●
●
●
●
●

●
●

●
●●
●●●●●●●

●●

●

●●
●●●
●
●
●
●
●●●
●
●●
●
●●

●
●
●●
●●
●●●●
●
●●●
●●●●●
●
●●
●
●●
●●●●●
●●●●●
●●●●
●●
●

●

●

●●
●
●
●

●

●

●

●●

●

●●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●
●
●●

●

●●
●
●

●

●

●
●
●
●

●

●

●
●

●
●

●

●●

●●

●

●
●
●●

●
●

●
●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●●

●

●
●●●
●●

●
●●
●
●
●●●

●●

●

●

●

●●●
●

●
●
●

●●●

●

●
●
●

●

●
●●
●

●
●
●
●
●
●

●
●
●

●●
●●●●
●

●
●
●

●

●

●●
●

●●●

●

●

●
●●
●

●

●
●
●●
●●
●
●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●●●●●●●●
●●●●

●
●
●
●●
●●
●
●●●●
●
●●●●●
●
●
●●●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●●
●
●●●●
●
●
●●
●●●●●●●●●●
●●
●●●●●●
●

●
●

●
●

●

●

●●

●

●
●
●
●

●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●●●

●●

●
●

●

●●
●
●
●●
●
●●●
●●●

●●

●

●●

●

●
●●●●●
●
●
●

●

●
●●●●●
●●

●
●●

●●

●
●
●●●
●

●
●●
●

●●

●

●●
●●
●●●

●

●●●●●

●
●
●●

●

●
●
●●●●●
●●●●
●

●
●●

●●

●●
●
●●●●●●

●

●●
●●
●
●●●●●
●●●●●●
●
●●●
●
●
●●●
●
●
●●●
●
●●●
●
●●●●
●
●●●●●●●

●

●●●●●●●
●
●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●●

●
●●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●
●
●

●

●
●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●
●
●

●
●
●

●

●●
●●
●●●

●

●●●

●

●
●

●●
●

●●
●
●

●
●
●

●
●
●
●
●●

●
●

●●●

●●

●
●
●

●

●●

●

●●
●●●
●

●
●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●●●●

●●
●

●

●

●

●

●

●

●

●

●

●●
●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●
●●
●

●●●●
●

●

●
●●●●
●
●●●

●
●●●

●

●

●
●●
●

●●
●
●
●

●●●
●●

●

●
●

●●
●●

●
●●

●
●
●

●
●
●
●

●
●

●●

●

●
●
●
●●
●
●

●

●●●●●●●●
●●●●●●●●●●●●●●●●
●●●
●
●
●●●●●●●●●
●
●●●●●●●●
●●●

●●●●●
●
●●
●●
●●●
●
●
●●●●●
●●●
●

●
●●●
●●●
●
●●
●
●
●
●●●

●
●●
●
●●●
●●●

●●●
●●
●
●●●●
●●
●●●
●

●
●●●●●●●●●●●●●●
●●●●●●
●●
●●●●
●●●●●●
●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●●

●

●●●●●

●●●●●●●
●●

●

●●●
●

●
●●●●●●●

●●
●●

●

●

●

●

●
●
●

●

●

●
●
●●●

●

●

●●

●
●

●●

●●●
●
●

●●
●

●

●
●
●
●

●
●
●
●

●
●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●
●

●

●●
●

●
●

●●
●
●
●●
●
●●●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●
●

●
●●

●

●
●

●

●●
●
●●

●●
●●●●●

●

●●

●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●
●●●

●

●●
●●●●●

●

●
●●●●●

●●

●
●

●

●
●
●●
●

●●

●●
●●●●●●●●
●
●
●●

●
●
●
●●
●

●

●●
●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●
●
●●

●●

●

●●

●

●

●●●●

●

●●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●
●
●
●●●●●
●
●
●

●
●●●
●
●●
●
●
●
●●●●●
●
●
●
●

●

●●●●●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●●

●

●

●
●●

●●●

●

●
●
●●

●
●
●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●●
●
●
●
●

●
●
●

●●●●●●●●
●●●●●●●●●●●●●
●●●●●●

●
●

●
●●●

●

●
●

●

●●
●●
●●●●●●
●
●●●●
●●
●●●
●
●
●●●
●

●●●
●●
●
●●
●
●
●
●

●
●

●

NSD < 0.05 NSD in [0.05,0.1] NSD in [0.1,0.25]

NSD in [0.25,0.5] NSD in [0.5,1] NSD > 1

0.0

0.3

0.6

0.9

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

0

1

2

3

0

5

10

15

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Gre
ed

y

Bes
tA

ss
ign

m
en

t

M
ae

str
o

Strategies

P
er

ce
nt

ag
e

of
 N

on
−

Lo
ca

l T
as

ks

Figure 4.13: Results for the communication metric for |T ||P | = 50.

• the task can be guaranteed to have similar computation time.

If one or two of these conditions apply, BestAssignment outperforms Mae-
stro. Otherwise, BestAssignment may not be the best strategy but still
ensures few communications.

4.6 Conclusion and Perspectives
In this chapter, during Section 4.1, we first introduced MAKESPAN-MAPREDUCE
and COMMUNICATION-MAPREDUCE, the two theoretical problems we
studied to improve makespan and data locality during the Map phase in
MapReduce. We also provided a modelling purely based on bipartite graph
that use a simple object, assignment, to solve MAKESPAN-MAPREDUCE
and COMMUNICATION-MAPREDUCE. Then, in Section 4.2 we presented
pre-existing studies on similar problems and on matching in bipartite graph, a
problem that we used later to solve MAKESPAN-MAPREDUCE and COMMUNICATION-
MAPREDUCE. In Section 4.3 we proposed a theoretical study of a basic
dynamic scheduler, Greedy, by relating it to the classical Balls-In-Bins
process, allowing to use important probabilistic results from the literature,
in particular an expected makespan of |T ||P | + O(log log |P |). In Section 4.4
we related MAKESPAN-MAPREDUCE to the GRAPH-ORIENTIABILITY
problem. From GRAPH-ORIENTIABILITY we deduced a polynomial time
algorithm and adapt a result from the literature to prove the existence, with

194 T. Lambert

4. Matching-Based Assignment Strategies for Improving Data Locality of
Map Tasks in MapReduce

high probability, of near-perfect assignment (i.e. with maximum degree inferior
to
⌈
|T |
|P |

⌉
+1). Then, in the same section, using techniques close to the ones used

in flow problems, we proposed FindAssignment and BestAssignment,
two polynomial algorithms that are optimal for both problems, MAKESPAN-
MAPREDUCE and COMMUNICATION-MAPREDUCE. Finally, in Section 4.5,
we provided simulation results and proved that with the addition of a small dy-
namic part, BestAssignment provides very efficient schedules, except when
the variance between computation times in a same job is too high, where it
can be outperformed by a (mostly) dynamic scheduler like Maestro.

For the continuation of this work there are several work directions. First,
if optimal solutions can be quickly computed on static settings, Section 4.5
shows that these solutions can suffer in the case of heterogeneous processing
times (but supposed homogeneous during the scheduling). An intuitive im-
provement of the model to solve this problem could be to add weights on task
nodes representing computation times of each task. We can even be more gen-
eral and consider a computation time for each task on each processor. Note
that in both cases, the problems of minimizing makespan or communication
(in the second case the condition "with optimal makespan" shall become "with
makespan below a given deadline") are NP-Complete as they contain P ||Cmax,
the problem of scheduling tasks on P machines minimizing the makespan, that
is itself NP-complete with heterogeneous task-durations, see Garey and John-
son [2002]. The resolution of such problems makes a use of the literature on
weighted Balls-In-Bins, see Berenbrink et al. [2008]. However the literature
on weighted matching on bipartite graphs, see Chapter 3 of West et al. [2001],
is more focused on weights on edges.

However the design of MapReduce is based on equal splitting of the work-
load, aiming at homogeneous tasks. The heterogeneity observed in practice is
often a consequence of unexpected behaviour and thus unpredictable. There-
fore, having this computation time as input is unrealistic (the problem can still
be interesting to look at, but its direct application to the Map phase scheduling
might not be the good motivation). Therefore another approach might be to
work on more resilient algorithms, probably with improvement of the dynamic
part of hybrid algorithms.

Among the other changes we can make to the model is the addition of
weights on edges (and not on task nodes). As stated in the introduction,
the processors are split into racks, and the communication inside a rack is
cheaper than the communication between racks. Therefore, to refine the model,
weighted edges can bring this new information. In return, the bipartite graph
will have more edges (we need to add edges between tasks and non-local pro-
cessors with a weight that depend on the presence of this processor on a rack
that owns the corresponding data chunk).

Always on this same problem of Map phase scheduling, the transformation

On the Effect of Replication of Input Files 195

4.6. Conclusion and Perspectives

of our model into one closer of the one of Isard et al. [2009] and Gog et al.
[2016], i.e. a model with only a makespan objective (more precisely a dead-
line) where each communication has a cost expressed in time, is an interesting
perspective. In addition, the model is also made to consider concurrent jobs
on a same cluster (with different begin times), which our model does not take
into account.

To conclude this section, we propose another perspective with a new prob-
lem that could be considered as a merge of the problem of this chapter and the
one of Chapter 1. Let us now assume that each task needs two data chunks
as input instead of one. In this case, to process a task on a processor, this
processor has to own both data chunks. If we now suppose that we are in
a HDFS-like system, i.e. with data chunks already replicated and distributed
among the processors, several questions can be asked. First, assuming we
cannot dynamically add replicates (assumption that is equivalent to the in-
terdiction of non-local tasks in MAKESPAN-MAPREDUCE), what level of
replication is necessary to be able to compute the whole set of tasks with high
probability? Indeed, each task needs two data chunks and if no processor si-
multaneously owns the two chunks, then this task cannot be processed in this
configuration. Secondly, assuming it is possible to compute this set, or at least
a part of it, what are the schedules that minimize the makespan or the number
of duplicates created during the execution?

196 T. Lambert

Conclusion

Contributions

The contributions of this thesis are the following.

In Chapter 1, we focus on PERI-SUM, a square partitioning problem that
is used as model for communication-avoiding parallel matrix multiplication.
The main contribution of this chapter is the improvement of the theoretical
results of the literature on PERI-SUM with the design of two approximation
algorithms, NRRP and SFCP. In addition, we propose comparison between
static and dynamic approaches for this problem thanks to a set of simulations.
We proved that static strategies, augmented with work-stealing technique, can
be reliable for the particular problem of parallel matrix multiplication.

In Chapter 2, we introduce MSCubeP, an alternative model for communication-
avoiding parallel matrix multiplication. Shortly, in MSCubeP model, the entire
set of elementary tasks is partitioned while, with PERI-SUM, only the output
matrix is partitioned. In this chapter, we provide an NP-completeness proof for
MSCuboidP, a more general variant of MSCubeP. In addition, we also design
two approximation algorithms: 3D-NRRP and 3D-SFCP, the 3D-counterparts
of SNRRP (a simplified version of NRRP) and SFCP respectively. Finally, we
compare the efficiency of solutions of PERI-SUM with solutions of MSCubeP
and prove that the second ones are significantly better than the first ones in
terms of induced communications, except for small instances where solutions
of PERI-SUM perform slightly better.

The algorithms from Chapter 1 and Chapter 2 are compared in Chapter 3 in
a practical implementation of a parallel matrix multiplication scheduler using
the StarPU library (Augonnet et al. [2011]). We propose a set of experiments
on a computational platform (PlaFRIM2). From these experiments, we show
that our mixed approach (a static scheduler augmented with work-stealing
strategies) brings a small speed-up and a significant decrease in communica-
tions if compared with the default dynamic scheduler.

In Chapter 4, we introduce MAKESPAN-MAPREDUCE and COMMUNICATION-
MAPREDUCE, two graph problems used as models of scheduling of the Map
phase of MapReduce. These two problems differ only in their objective func-
tions (makespan versus communication) and both output an assignment, i.e.

197

for each task an assigned processor. We relate MAKESPAN-MAPREDUCE
with the probabilistic Balls-In-Bins model and with GRAPH-ORIENTIABILITY,
allowing us to use the existing literature, in particular the existence of an op-
timal algorithm with polynomial computation time. In addition, we provide
two algorithms with polynomial computation time (FindAssignment and
BestAssignment) that are optimal for both MAKESPAN-MAPREDUCE
and COMMUNICATION-MAPREDUCE. In the case of heterogeneous set-
tings (different computation times for the tasks), we use simulations to evaluate
the reliability of BestAssignment. In this case, the results are very encour-
aging: the number of non-local tasks decreases when the variance between the
computation times is small enough.

In a more general way, one of the common threads between the different
chapters is the static/dynamic opposition, as stated in the introduction. One of
the goals of this thesis was to use the strengths of static strategies while limiting
their weaknesses, notably by using dynamic components. In this respect, the
results of the first three chapters are strong. In particular, in Chapter 3, we
obtain with a practical implementation a clear gain both in terms of speed-
up and communication decrease. In the matrix multiplication case, the very
good quality of performance evaluation might partially explain the positive
results (note that Section 1.3 seems to indicate a good reliability even with
less favourable scenario on the quality of performance evaluation). Another
explanation might also be the myopic vision of dynamic strategies.

In Chapter 4, we obtain more mitigated results for the Map phase schedul-
ing problem. In a perfect scenario, with all tasks being exactly the same, we
achieve optimal results. In a more realistic scenario, that we emulate with
traces from a real Hadoop cluster, our static approach, even with a dynamic
component, is sometimes less effective than pre-existing dynamic strategies,
especially when the variance on the expected computation times is very large.
Therefore we partially fail to avoid all the problems related to the static ap-
proach in this case. In addition to the good quality of the pre-existing algo-
rithms, that make competition harder, another explanation might be that this
time the assumption we made to work on our static strategy was too strict.
More precisely, we assume a strong homogeneity and our strategy has impor-
tant difficulties to recover when this assumption happens to be wrong. Yet,
this pessimistic statement has to be tempered by the globally good results, in
particular for low to medium variance cases.

Perspectives

In the different chapters we already elaborate many perspectives.

198 T. Lambert

Conclusion

In Chapter 1, we first propose a possible theoretical improvement of parti-
tioning algorithm by aiming at rectangles with lower aspect ratio. Secondly,
we propose an extension of the PERI-SUM problem by adding heterogeneity
in communication and computation costs. This extension could be used as a
model of parallel sparse matrix multiplication or parallel FMM (Fast Multipole
Method) computation.

In Chapter 2, in addition to further work on MSCubeP, we propose to
extend the problem to hypercube (or hyperrectangle) partitioning. The main
motivation of this future work would be the study of tensor contraction, an
operation that can be seen as a generalisation of matrix product for multi-
dimensional arrays.

In Chapter 3, we propose additional analysis in order to have a more com-
plete view of the effect of our partitioning strategy, notably by working on
different platforms.

In Chapter 4, there are two main perspectives. The first one is to work on
the heterogeneity problem we encounter. This could be done by extending the
model to heterogeneous computation times or by reinforcing hybrid strategies.
The second perspective is an extension of the problem with each task having
more than one input files, similarly to the tasks in the matrix multiplication
case.

More generally, the strong results of static/dynamic mixed approach lead
us to encourage the use of this strategy in other problems. This approach is
more expensive than the use of a general dynamic scheduler, mainly because
it requires important studies of a particular problem to design efficient static
strategies. However, the gain from this theoretical work is significant and we
want to keep going on this track, enjoying the many problems that parallel
computing has to offer.

In addition, as stated in introduction, communication is a crucial issue
that is common to HPC and Cloud computing. To make a perfect use of data,
notably when replicated, the scheduler needs a large vision of the problem,
that is in general one of the main limitations of dynamic approaches. With
our static approach, i.e. augmented with work-stealing, we propose a research
track to overrun this weakness, even in the case of general enough program-
ming models like MapReduce. An interesting starting point for future studies
would be to work on more general or complex models of parallel computing,
with a focus on replication. Although building efficient static algorithms on
general models can be difficult, the challenge is promising if we can provide
reliable communication-avoiding solutions on models that could be, with the
convergence between the two worlds, adapted to both HPC and Cloud com-
puting.

On the Effect of Replication of Input Files 199

200 T. Lambert

Bibliography

Agullo, Emmanuel, Bramas, Bérenger, Coulaud, Olivier, Khannouz,
Martin and Stanisic, Luka, 2016a. Task-Based Fast Multipole Method for
Clusters of Multicore Processors. Technical report, Inria Bordeaux Sud-
Ouest.

Agullo, Emmanuel, Buttari, Alfredo, Guermouche, Abdou and Lopez,
Florent, 2016b. Implementing Multifrontal Sparse Solvers for Multicore Ar-
chitectures with Sequential Task Flow Runtime Systems. Transactions on
Mathematical Software (TOMS), 43(2):13:1–13:22.

Albers, Susanne, 2003. Online algorithms: A survey. Mathematical Program-
ming, 97(1):3–26.

Anderson, Michael, Ballard, Grey, Demmel, James and Keutzer, Kurt,
2011. Communication-avoiding QR Decomposition for GPUs. In Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 48–58.
IEEE.

Augonnet, Cédric, Thibault, Samuel, Namyst, Raymond and Wacre-
nier, Pierre-André, 2011. StarPU: A Unified Platform for Task Scheduling
on Heterogeneous Multicore Architectures. Concurrency and Computation:
Practice and Experience, 23(2):187–198.

Badia, R. M., Herrero, J. R., Labarta, J., Pérez, J. M., Quintana-
Ortí, E. S. and Quintana-Ortí, G., 2009. Parallelizing Dense and Banded
Linear Algebra Libraries Using SMPSs. Concurrency and Computation:
Practice and Experience, 21(18):2438–2456.

Ballard, Grey, Demmel, James and Gearhart, Andrew, 2011a. Commu-
nication Bounds for Heterogeneous Architectures. Technical report, Univer-
sity of California at Berkeley.

Ballard, Grey, Demmel, James, Holtz, Olga, Lipshitz, Benjamin and
Schwartz, Oded, 2012. Communication-optimal Parallel Algorithm for
Strassen’s Matrix Multiplication. In Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pages 193–204. ACM.

201

BIBLIOGRAPHY

Ballard, Grey, Demmel, James, Holtz, Olga and Schwartz, Oded,
2011b. Minimizing Communication in Linear Algebra. Journal on Matrix
Analysis and Applications, 32(3):866–901.

Baptiste, Philippe, Le Pape, Claude and Nuijten, Wim, 2012. Constraint-
Based Scheduling: Applying Constraint Programming to Scheduling Prob-
lems, volume 39. Springer.

Beaumont, Olivier, Boudet, Vincent, Petitet, Antoine, Rastello,
Fabrice and Robert, Yves, 2001a. A Proposal for a Heterogeneous
Cluster ScaLAPACK (dense linear solvers). Transactions on Computers,
50(10):1052–1070.

Beaumont, Olivier, Boudet, Vincent, Rastello, Fabrice and Robert,
Yves, 2002. Partitioning a Square into Rectangles: NP-completeness and
Approximation Algorithms. Algorithmica, 34(3):217–239.

Beaumont, Olivier, Cojean, Terry, Eyraud-Dubois, Lionel, Guer-
mouche, Abdou and Kumar, Suraj, 2016a. Scheduling of Linear Algebra
Kernels on Multiple Heterogeneous Resources. In International Conference
on High Performance Computing (HiPC 2016). IEEE.

Beaumont, Olivier, Eyraud-Dubois, Lionel, Guermouche, Abdou and
Lambert, Thomas, 2015. Comparison of Static and Dynamic Resource
Allocation Strategies for Matrix Multiplication. In International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD),
2015, pages 170–177. IEEE.

Beaumont, Olivier, Eyraud-Dubois, Lionel and Lambert, Thomas,
2016b. A New Approximation Algorithm for Matrix Partitioning in Pres-
ence of Strongly Heterogeneous Processors. In International Parallel and
Distributed Processing Symposium (IPDPS), pages 474–483. IEEE.

Beaumont, Olivier, Eyraud-Dubois, Lionel and Lambert, Thomas,
2016c. Cuboid Partitioning for Parallel Matrix Multiplication on Hetero-
geneous Platforms. In International European Conference on Parallel and
Distributed Computing (Euro-Par), pages 171–182. Springer.

Beaumont, Olivier, Lambert, Thomas, Marchal, Loris and Thomas,
Bastien, 2017. Matching-Based Assignement Strategies for Improving Data
Locality of Map Tasks in MapReduce. Technical Report RR-8968, Inria-
Research Centre Grenoble–Rhône-Alpes; Inria Bordeaux Sud-Ouest.
URL https://hal.inria.fr/hal-01386539v4/document

Beaumont, Olivier, Larchevêque, Hubert and Marchal, Loris, 2013.
Non Linear Divisible Loads: There is No Free Lunch. In International Par-
allel and Distributed Processing Symposium (IPDPS), pages 863–873.

202 T. Lambert

https://hal.inria.fr/hal-01386539v4/document

BIBLIOGRAPHY

Beaumont, Olivier, Legrand, Arnaud, Rastello, Fabrice and Robert,
Yves, 2001b. Static LU Decomposition on Heterogeneous Platforms. Inter-
national Journal of High Performance Computing Applications (IJHPCA),
15(3):310–323.

Beaumont, Olivier and Marchal, Loris, 2014. Analysis of Dynamic
Scheduling Strategies for Matrix Multiplication on Heterogeneous Platforms.
In International Symposium on High-Performance Parallel and Distributed
Computing (HPDC), pages 141–152. ACM.

Berenbrink, Petra, Czumaj, Artur, Steger, Angelika and Vöcking,
Berthold, 2000. Balanced Allocations: The Heavily Loaded Case. In Sym-
posium on Theory of Computing (STOC), pages 745–754. ACM.

Berenbrink, Petra, Friedetzky, Tom, Hu, Zengjian and Martin, Russell,
2008. On weighted Balls-into-Bins Games. Theoretical Computer Science
(TCS), 409(3):511–520.

Berge, Claude, 1957. Two theorems in Graph Theory. Proceedings of the
National Academy of Sciences, 43(9):842–844.

Blackford, L Susan, Choi, Jaeyoung, Cleary, Andy, D’Azevedo, Ed-
uardo, Demmel, James, Dhillon, Inderjit, Dongarra, Jack, Hammar-
ling, Sven, Henry, Greg, Petitet, Antoine et al., 1997. ScaLAPACK
Users’ Guide, volume 4. SIAM.

Bleuse, Raphael, Kedad-Sidhoum, Safia, Monna, Florence, Mounié, Gré-
gory and Trystram, Denis, 2015. Scheduling Independent Tasks on Multi-
Cores with GPU Accelerators. Concurrency and Computation: Practice and
Experience, 27(6):1625–1638.

Blumofe, Robert D and Leiserson, Charles E, 1999. Scheduling Multi-
threaded Computations by Work Stealing. Journal of the ACM (JACM),
46(5):720–748.

Bollobás, Béla, 2013. Modern Graph Theory, volume 184. Springer.

Borthakur, Dhruba, 2008. HDFS Architecture Guide. HADOOP
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, page 39.

Bosilca, George, Bouteiller, Aurélien, Danalis, Anthony, Faverge,
Mathieu, Hérault, Thomas and Dongarra, Jack, 2013. PaRSEC: A
Programming Paradigm Exploiting Heterogeneity for Enhancing Scalabil-
ity. Computing in Science and Engineering, 15(6):36–45.

On the Effect of Replication of Input Files 203

BIBLIOGRAPHY

Breinholt, Greg and Schierz, Christoph, 1998. Algorithm 781: Generating
Hilbert’s Space-filling Curve by Recursion. Transactions on Mathematical
Software (TOMS), 24(2):184–189.

Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X.,
Ayguade, E. and Labarta, J., 2012. Productive Programming of GPU
Clusters with OmpSs. In International Parallel and Distributed Processing
Symposium (IPDPS), pages 557–568.

Butz, Arthur R, 1971. Alternative Algorithm for Hilbert’s Space-Filling
Curve. Transactions on Computers, 100(4):424–426.

Cain, Julie Anne, Sanders, Peter and Wormald, Nick, 2007. The random
graph threshold for k-orientiability and a fast algorithm for optimal multiple-
choice allocation. In Symposium on Discrete Algorithms (SODA), pages
469–476. SIAM.

Chervenak, Ann, Foster, Ian, Kesselman, Carl, Salisbury, Charles and
Tuecke, Steven, 2000. The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific Datasets. Journal
of Network and Computer Applications, 23(3):187–200.

Choi, Jaeyoung, Demmel, James, Dhillon, Inderjiit, Dongarra, Jack,
Ostrouchov, Susan, Petitet, Antoine, Stanley, Ken, Walker, David
and Whaley, R Clinton, 1996. ScaLAPACK: A Portable Linear Algebra
Library for Distributed Memory Computers: Design Issues and Performance.
In Computer Physics Communications, volume 97, pages 1 – 15. Elsevier.

Chowdhury, Mosharaf and Stoica, Ion, 2012. Coflow: A Networking Ab-
straction for Cluster Applications. In Workshop on Hot Topics in Networks
(HotNets), pages 31–36.

Chowdhury, Mosharaf and Stoica, Ion, 2015. Efficient Coflow Schedul-
ing Without Prior Knowledge. Computer Communication Review (CCR),
45(5):393–406.

Cirne, Walfredo, Brasileiro, Francisco, Paranhos, Daniel, Góes, Luís
Fabrício W and Voorsluys, William, 2007. On the Efficacy, Efficiency
and Emergent Behavior of Task Replication in Large Distributed Systems.
Parallel Computing, 33(3):213–234.

Clarke, David, Ilic, Aleksandar, Lastovetsky, Alexey and Sousa,
Leonel, 2012. Hierarchical Partitioning Algorithm for Ccientific Comput-
ing on Highly Heterogeneous CPU + GPU Clusters. In International Euro-
pean Conference on Parallel and Distributed Computing (Euro-Par), pages
489–501. Springer.

204 T. Lambert

BIBLIOGRAPHY

Cojean, Terry, Guermouche, Abdou, Hugo, Andra, Namyst, Ray-
mond and Wacrenier, P-A, 2016. Resource Aggregation for Task-Based
Cholesky Factorization on Top of Heterogeneous Machines. In International
European Conference on Parallel and Distributed Computing (Euro-Par)
Workshop. Springer.

Coppersmith, Don and Winograd, Shmuel, 1990. Matrix Multiplication
via Arithmetic Progressions. Journal of symbolic Computation, 9(3):251–
280.

Czumaj, Artur, Riley, Chris and Scheideler, Christian, 2003. Perfectly
Balanced Allocation. Approximation, Randomization, and Combinatorial
Optimization (APPROX), pages 240–251.

Dean, Jeffrey and Ghemawat, Sanjay, 2008. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM, 51(1):107–113.

DeFlumere, Ashley, 2014. Optimal Partitioning for Parallel Matrix Compu-
tation on a Small Number of Abstract Heterogeneous Processors. Thèse de
doctorat, University College Dublin.

DeFlumere, Ashley and Lastovetsky, Alexey, 2014. Searching for the
Optimal Data Partitioning Shape for Parallel Matrix-Matrix Multiplication
on 3 Heterogeneous Processors. In International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 17–28. IEEE.

DeFlumere, Ashley, Lastovetsky, Alexey and Becker, Brett, 2014. Op-
timal Data Partitioning Shape for Matrix Multiplication on Three Fully
Connected Heterogeneous Processors. In International European Confer-
ence on Parallel and Distributed Computing (Euro-Par) Workshop, pages
201–214. Springer.

DeFlumere, Ashley, Lastovetsky, Alexey and Becker, Brett A, 2012.
Partitioning for Parallel Matrix-Matrix Multiplication with Heterogeneous
Processors: The Optimal Solution. In International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 125–139. IEEE.

Demmel, James, Hoemmen, Mark, Mohiyuddin, Marghoob and Yelick,
Katherine, 2008. Avoiding Communication in Sparse Matrix Computations.
In International Parallel and Distributed Processing Symposium (IPDPS),
pages 1–12. IEEE.

Deveci, Mehmet, Rajamanickam, Sivasankaran, Devine, Karen D and
Çatalyürek, Ümit V, 2016. Multi-Jagged: A Scalable Parallel Spatial
Partitioning Algorithm. Transactions on Parallel and Distributed Systems
(TPDS), 27(3):803–817.

On the Effect of Replication of Input Files 205

BIBLIOGRAPHY

Dongarra, Jack and Sullivan, Francis, 2000. Guest Editors’ Introduction:
The Top 10 Algorithms. Computing in Science & Engineering, 2(1):22–23.

Dufossé, Fanny, Kaya, Kamer and Uçar, Bora, 2015. Two Approximation
Algorithms for Bipartite Matching on Multicore Architectures. Journal of
Parallel and Distributed Computing, 85:62 – 78.

Erdös, P and Rényi, A, 1964. On Random Matrices. Studia Scientiarum
Mathematicarum Hungarica, 8:455–461.

Fiala, David, Mueller, Frank, Engelmann, Christian, Riesen, Rolf, Fer-
reira, Kurt and Brightwell, Ron, 2012. Detection and Correction of
Silent Data Corruption for Large-Scale High-Performance Computing. In
International Conference on High Performance Computing (HiPC 2016),
page 78. IEEE.

Ford, Lester R and Fulkerson, Delbert R, 1956. Maximal Flow through a
Network. Canadian Journal of Mathematics, 8(3):399–404.

Ford, Lester Randolph and Fulkerson, Delbert Ray, 2015. Flows in Net-
works. Princeton University Press.

Fu, Huansong, Zhu, Yue and Yu, Weikuan, 2015. A Case Study of MapRe-
duce Speculation for Failure Recovery. In International Workshop on Data-
Intensive Scalable Computing Systems (DISCS), pages 7:1–7:8. ACM.

Fügenschuh, Armin, Junosza-Szaniawski, Konstanty and Lonc, Zbig-
niew, 2014. Exact and Approximation Algorithms for a Soft Rectangle
Packing Problem. Optimization, 63(11):1637–1663.

Garey, Michael R and Johnson, David S, 2002. Computers and Intractabil-
ity, volume 29. W.H. Freeman.

Gautier, Thierry, Besseron, Xavier and Pigeon, Laurent, 2007. KAAPI: A
Thread Scheduling Runtime System for Data Flow Computations on Clus-
ter of Multi-processors. In International Workshop on Parallel Symbolic
Computation (PASCO), pages 15–23. ACM.

Geist, Al and Lucas, Robert, 2009. Major Computer Science Challenges at
Exascale. International Journal of High Performance Computing Applica-
tions (IJHPCA), 23(4):427–436.

Goel, Ashish, Kapralov, Michael and Khanna, Sanjeev, 2013. Perfect
Matchings in O(n log n) Time in Regular Bipartite Graphs. SIAM Journal
on Computing (SICOMP), 42(3):1392–1404.

206 T. Lambert

BIBLIOGRAPHY

Gog, Ionel, Schwarzkopf, Malte, Gleave, Adam, Watson, Robert NM
and Hand, Steven, 2016. Firmament: Fast, Centralized Cluster Scheduling
at Scale. In Symposium on Operating Systems Design and Implementation
(OSDI), pages 99–115. USENIX.

Goto, Kazushige and Geijn, Robert A, 2008. Anatomy of High-Performance
Matrix Multiplication. Transactions on Mathematical Software (TOMS),
34(3):12:1–12:25.

Graham, Susan L, Patterson, Cynthia A, Snir, Marc et al., 2005. Getting
Up to Speed: The Future of Supercomputing. National Academies Press.

Greengard, Leslie and Rokhlin, Vladimir, 1987. A Fast Algorithm for
Particle Simulations. Journal of Computational Physics, 73(2):325–348.

Guo, Zhenhua and Fox, Geoffrey, 2012. Improving MapReduce Performance
in Heterogeneous Network Environments and Resource Utilization. In In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGrid),
pages 714–716. IEEE.

Guo, Zhenhua, Fox, Geoffrey C. and Zhou, Mo, 2012. Investigation of Data
Locality in MapReduce. In International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), pages 419–426. IEEE/ACM.

Hall, Philip, 1935. On Representatives of Subsets. Journal of the London
Mathematical Society, s1-10(1):26–30.

Hammoud, Mohammad and Sakr, Majd F., 2011. Locality-Aware Reduce
Task Scheduling for MapReduce. In International Conference on Cloud
Computing Technology and Science (CloudCom), pages 570–576. IEEE.

Heinecke, Alexander and Bader, Michael, 2008. Parallel Matrix Multiplica-
tion Based on Space-Filling Curves on Shared Memory Multicore Platforms.
InWorkshop on Memory access on Future Processors (Maw), pages 385–392.
ACM.

Hilbert, David, 1891. Ueber die stetige Abbildung einer Line auf ein Flächen-
stück. Mathematische Annalen, 38(3):459–460.

Hoemmen, Mark, 2010. Communication-avoiding Krylov Subspace Methods.
Thèse de doctorat, University of California, Berkeley.

Hopcroft, John E. and Karp, Richard M., 1973. An n5/2 Algorithm for
Maximum Matchings in Bipartite Graphs. SIAM Journal on Computing
(SICOMP), 2(4):225–231.

On the Effect of Replication of Input Files 207

BIBLIOGRAPHY

Huang, Jianyu, Matthews, Devin A. and van de Geijn, Robert A., 2017.
Strassen’s Algorithm for Tensor Contraction. Computing Research Reposi-
tory (CoRR), abs/1704.03092.

Ibrahim, Shadi, Jin, Hai, Lu, Lu, He, Bingsheng, Antoniu, Gabriel and
Wu, Song, 2012. Maestro: Replica-Aware Map Scheduling for MapReduce.
In International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), pages 435–442. IEEE/ACM.

Isard, Michael, Prabhakaran, Vijayan, Currey, Jon, Wieder, Udi, Tal-
war, Kunal and Goldberg, Andrew, 2009. Quincy: Fair Scheduling for
Distributed Computing Clusters. In Symposium on Operating Systems Prin-
ciples (SOSP), pages 261–276. ACM.

Kalinov, Alexey and Lastovetsky, Alexey, 2001. Heterogeneous Distri-
bution of Computations Solving Linear Algebra Problems on Networks of
Heterogeneous Computers. Journal of Parallel and Distributed Computing,
61(4):520–535.

Kavulya, Soila, Tan, Jiaqi, Gandhi, Rajeev and Narasimhan, Priya, 2010.
An Analysis of Traces from a Production MapReduce Cluster. In Interna-
tional Conference on Cluster, Cloud and Grid Computing (CCGrid), pages
94–103. IEEE/ACM.

Kenyon, Richard, 1996. Tiling a Rectangle with the Fewest Squares. Journal
of Combinatorial Theory, Series A, 76(2):272–291.

Langguth, Johannes, Manne, Fredrik and Sanders, Peter, 2010. Heuristic
Initialization for Bipartite Matching Problems. Journal of Experimental
Algorithmics (JEA), 15:1.3:1.1–1.3:1.22.

Lima, Joao V. F., Gautier, Thierry, Maillard, Nicolas and Danjean,
Vincent, 2012. Exploiting Concurrent GPU Operations for Efficient Work
Stealing on Multi-GPUs. In International Symposium on Computer Archi-
tecture and High Performance Computing (SBAC-PAD), pages 75–82.

Litke, Antonios, Skoutas, Dimitrios, Tserpes, Konstantinos and Var-
varigou, Theodora, 2007. Efficient Task Replication and Management for
Adaptive Fault Tolerance in Mobile Grid Environments. Future Generation
Computer Systems, 23(2):163–178.

Lyons, Robert E and Vanderkulk, Wouter, 1962. The Use of Triple-
Modular Redundancy to Improve Computer Reliability. IBM Journal of
Research and Development, 6(2):200–209.

208 T. Lambert

BIBLIOGRAPHY

Manne, Fredrik and Sørevik, Tor, 1996. Partitioning an Array onto a Mesh
of Processors. Applied Parallel Computing Industrial Computation and Op-
timization, pages 467–477.

Mitzenmacher, Michael, 2001. The Power of Two Choices in Randomized
Load Balancing. Transactions on Parallel and Distributed Systems (TPDS),
12(10):1094–1104.

Nagamochi, Hiroshi and Abe, Yuusuke, 2007. An Approximation Algorithm
for Dissecting a Rectangle into Rectangles with Specified Areas. Discrete
Applied Mathematics, 155(4):523 – 537.

Napoli, Edoardo Di, Fabregat-Traver, Diego, Quintana-OrtÃ, Gre-
gorio and Bientinesi, Paolo, 2014. Towards an Efficient Use of the BLAS
Library for Multilinear Tensor Contractions. Applied Mathematics and Com-
putation, 235:454 – 468.

Nelson, Thomas, Rivera, Axel, Balaprakash, Prasanna, Hall, Mary,
Hovland, Paul D., Jessup, Elizabeth and Norris, Boyanna, 2015. Gen-
erating Efficient Tensor Contractions for GPUs. In International Conference
on Parallel Processing (ICPP), pages 969–978.

Ouelhadj, Djamila and Petrovic, Sanja, 2009. A Survey of Dynamic
Scheduling in Manufacturing Systems. Journal of Scheduling, 12(4):417–
431.

Peise, Elmar, Fabregat-Traver, Diego and Bientinesi, Paolo, 2014. On
the Performance Prediction of BLAS-based Tensor Contractions. In Interna-
tional Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), pages 193–212. Springer.

Peres, Yuval, Talwar, Kunal and Wieder, Udi, 2010. The (1+ β)-Choice
Process and Weighted Balls-into-Bins. In Symposium on Discrete Algorithms
(SODA), pages 1613–1619. SIAM.

Pilkington, John R., Baden, Scott B. and Baden, Scott B., 1994. Parti-
tioning with Spacefilling Curves. Technical report, University of California,
San Diego.

PlaFRIM2, 2009. Plateforme Fédérative pour la Recherche en Informatique et
Mathématiques.
URL https://www.plafrim.fr/fr/accueil/

Qiu, Zhen, Stein, Cliff and Zhong, Yuan, 2015. Minimizing the Total
Weighted Completion Time of Coflows in Datacenter Networks. In Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), pages 294–
303. ACM.

On the Effect of Replication of Input Files 209

https://www.plafrim.fr/fr/accueil/

BIBLIOGRAPHY

Raab, Martin and Steger, Angelika, 1998. Balls into Bins: A Simple and
Tight Analysis. In Randomization and Approximation Techniques in Com-
puter Science (RANDOM), pages 159–170. Springer.

Ranganathan, Kavitha and Foster, Ian, 2001. Identifying dynamic repli-
cation strategies for a high-performance data grid. Grid Computing—GRID,
pages 75–86.

Reed, Daniel A and Dongarra, Jack, 2015. Exascale Computing and Big
Data. Communications of the ACM, 58(7):56–68.

Richa, Andrea W, Mitzenmacher, M and Sitaraman, R, 2001. The Power
of Two Random Choices: A Survey of Techniques and Results. Combinato-
rial Optimization, 9:255–304.

Sanders, Peter, 2004. Algorithms for Scalable Storage Servers. In Interna-
tional Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM), pages 82–101. Springer.

Sanders, Peter, Egner, Sebastian and Korst, Jan, 2003. Fast Concurrent
Access to Parallel Disks. Algorithmica, 35(1):21–55.

Semar Shahul, Ahmed Zaki and Sinnen, Oliver, 2010. Scheduling Task
Graphs Optimally with A*. The Journal of Supercomputing, 51(3):310–332.

Sen, Tapan and Gupta, Sushil K, 1984. A State-of-Art Survey of Static
Scheduling Research Involving Due Dates. Omega, 12(1):63–76.

Shalf, John, Dosanjh, Sudip and Morrison, John, 2011. Exascale Com-
puting Technology Challenges. High Performance Computing for Computa-
tional Science (VECPAR), pages 1–25.

Shams, Ramtin and Sadeghi, Parastoo, 2011. On Optimization of Finite-
difference Time-domain (FDTD) Computation on Heterogeneous CPU and
GPU clusters. Journal of Parallel and Distributed Computing, 71(4):584–
593.

Shi, Yang, Niranjan, Uma Naresh., Anandkumar, Animashree and
Cecka, Cris, 2016. Tensor Contractions with Extended BLAS Kernels on
CPU and GPU. In International Conference on High Performance Comput-
ing (HiPC 2016), pages 193–202.

Skilling, John, Erickson, Gary J and Zhai, Yuxiang, 2004. Programming
the Hilbert Curve. In AIP Conference Proceedings, volume 707, pages 381–
387. AIP.

210 T. Lambert

BIBLIOGRAPHY

Solomonik, Edgar and Demmel, James, 2011. Communication-optimal Par-
allel 2.5 D Matrix Multiplication and LU factorization Algorithms. In Inter-
national European Conference on Parallel and Distributed Computing (Euro-
Par), pages 90–109. Springer.

Spark, Apache, 2016. Apache Spark: Lightning-Fast Cluster Computing.
URL http://spark.apache.org

Stockinger, Heinz, Samar, Asad, Allcock, Bill, Foster, Ian, Holtman,
Koen and Tierney, Brian, 2001. File and Object Replication in Data Grids.
In International Symposium on High Performance Distributed Computing
(HPDC), pages 76–86. IEEE.

Strassen, Volker, 1969. Gaussian Elimination is Not Optimal. Numerische
mathematik, 13(4):354–356.

Tan, Jian, Meng, Shicong, Meng, Xiaoqiao and Zhang, Li, 2013. Improving
ReduceTask data locality for sequential MapReduce jobs. In International
Conference on Computer Communications (INFOCOM), pages 1627–1635.
IEEE.

Topcuoglu, Haluk, Hariri, Salim and Wu, Min-you, 2002. Performance-
Effective and Low-Complexity Task Scheduling for Heterogeneous Comput-
ing. Transactions on Parallel and Distributed Systems (TPDS), 13(3):260–
274.

Walkup, David W, 1980. Matchings in Random Regular Bipartite Digraphs.
Discrete Mathematics, 31(1):59–64.

Walters, Mark, 2009. Rectangles as Sums of Squares. Discrete Mathematics,
309(9):2913 – 2921.

Wang, Fuxing, Ramamritham, Krithi and Stankovic, John A, 1995. De-
termining Redundancy Levels for Fault Tolerant Real-Time Systems. Trans-
actions on Computers, 44(2):292–301.

Wang, Weina, Zhu, Kai, Ying, Lei, Tan, Jian and Zhang, Li, 2013. Map
Task Scheduling in MapReduce with Data Locality: Throughput and Heavy-
Traffic Optimality. In International Conference on Computer Communica-
tions (INFOCOM), pages 1609–1617. IEEE.

West, Douglas Brent et al., 2001. Introduction to Graph Theory, volume 2.
Prentice Hall.

White, Tom, 2012. Hadoop: The Definitive Guide. O’Reilly Media.

On the Effect of Replication of Input Files 211

http://spark. apache. org

BIBLIOGRAPHY

Xie, Qiaomin and Lu, Yi, 2012. Degree-Guided Map-Reduce Task Assignment
with Data Locality Constraint. In International Symposium on Information
Theory (ISIT), pages 985–989. IEEE.

Yekkehkhany, Ali, 2017. Near Data Scheduling for Data Centers with
Multi Levels of Data Locality. Computing Research Repository (CoRR),
abs/1702.07802.

Zaharia, Matei, Borthakur, Dhruba, Sen Sarma, Joydeep, Elmeleegy,
Khaled, Shenker, Scott and Stoica, Ion, 2010. Delay Scheduling: A
Simple Technique for Achieving Locality and Fairness in Cluster Scheduling.
In European Conference on Computer Systems (EuroSys), pages 265–278.
ACM.

Zaharia, Matei, Konwinski, Andy, Joseph, Anthony D, Katz, Randy H
and Stoica, Ion, 2008. Improving MapReduce Performance in Hetero-
geneous Environments. In Symposium on Operating Systems Design and
Implementation (OSDI), pages 29–42.

Zarei Zefreh, Ebrahim, Lotfi, Shahriar, Mohammad Khanli, Leyli and
Karimpour, Jaber, 2016. 3-D data partitioning for 3-level perfectly nested
loops on heterogeneous distributed systems. Concurrency and Computation:
Practice and Experience.

212 T. Lambert

	Contents
	Introduction
	Square Partitioning for Communication-Avoiding Parallel Matrix Multiplication
	Introduction
	Formal Definition of the Problem

	Related Work
	Lower Bound
	Column-Based
	Rectangular Recursive Partitioning
	Optimal Solutions for 2 and 3 processors
	Dynamic Strategies

	Comparison Between Static, Dynamic and Hybrid Strategies in Static and Dynamic Settings
	Presentation of the Targeted Platforms
	Discrete Aspect of Matrix Partitioning
	Presentation of the strategies
	Experimental Results

	NRRP (Non-Rectangular Recursive Partitioning)
	SNRRP (Simple Non-Rectangular Recursive Partitioning)
	NRRP

	SFCP (Space-Filling Curve Partitioning)
	Presentation of Space-Filling Curves
	Approximation Ratio
	Complexity

	Conclusion and Perspectives

	Cube Partitioning for Communication-Avoiding Parallel Matrix Multiplication
	Introduction
	Related Work
	SCR (Slice-Column-Row)
	NP-Completeness Proof of PERI-SUM

	NP-Completeness of MSCuboidP
	3D-NRRP (3D Non-Rectangular Recursive Partitioning)
	Presentation of the Algorithm
	Correctness
	Approximation Ratio
	Complexity

	3D-SFCP (3D Space-Filling Curve Partitioning)
	Presentation of 3D-SFCP
	Approximation Ratio

	Comparison Between Square and Cube Partitioning
	Theoretical Comparison
	Simulation Comparison

	Conclusion and Perspectives

	Implementation of Square and Cuboid Partitioning with the StarPU Software
	Introduction
	Presentation of StarPU
	Tasks
	Workers
	Scheduler

	Implementation and Strategies
	Static Allocations
	Dynamic Strategies
	Scheduler Implementation

	Experimental Results
	Trace Analysis
	Makespan
	Communication

	Conclusion and Perspectives

	Matching-Based Assignment Strategies for Improving Data Locality of Map Tasks in MapReduce
	Introduction
	MapReduce and HDFS
	Metric: Communication vs Makespan

	Related Work
	Locality in Map-Reduce
	Matchings in Bipartite Graphs

	Greedy Approach
	Balls-into-Bins
	Reduction to Balls-into-Bins

	Matching-Based Approach
	Results for Makepan Metric
	A First Communication-Optimal Algorithm
	A Faster Communication-Optimal Algorithm

	Simulations
	Settings
	Homogeneous Settings
	Heterogeneous Settings

	Conclusion and Perspectives

	Conclusion
	Bibliography

