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Methods for statistical inference on correlated data:
application to genomic data

Abstract

The availability of huge amounts of data has changed the role of physics
with respect to other disciplines. Within this dissertation I will explore the
innovations introduced in molecular biology thanks to statistical physics
approaches. In the last 20 years the size of genome databases has expo-
nentially increased, therefore the exploitation of raw data, in the scope of
extracting information, has become a major topic in statistical physics.
After the success in protein structure prediction, surprising results have
been finally achieved also in the related field of RNA structure character-
isation. However, recent studies have revealed that, even if databases are
growing, inference is often performed in the under sampling regime and
new computational schemes are needed in order to overcome this intrinsic
limitation of real data. This dissertation will discuss inference methods
and their application to RNA structure prediction. We will discuss some
heuristic approaches that have been successfully applied in the past years,
even if poorly theoretically understood. The last part of the work will
focus on the development of a tool for the inference of generative models,

hoping it will pave the way towards novel applications.

Keywords: inference, RNA, mean-field, Potts model, generative models,

regularisation, structure prediction






Résumé

La disponibilité de quantités énormes de données a changé le role de la
physique par rapport aux autres disciplines. Dans cette thése, je vais
explorer les innovations introduites dans la biologie moléculaire grace a
des approches de physique statistique. Au cours des 20 derniéres années,
la taille des bases de données sur le génome a augmenté de facon expo-
nentielle : I'exploitation des données brutes, dans le champ d’application
de l'extraction d’informations, est donc devenu un sujet majeur dans la
physique statistique. Aprés le succés dans la prédiction de la structure
des protéines, des résultats étonnamment bons ont été finalement obtenus
aussi pour ’ARN. Cependant, des études récentes ont révélé que, méme si
les bases de données sont de plus en plus grandes, I'inférence est souvent
effectuée dans le régime de sous-échantillonnage et de nouveaux systémes
informatiques sont nécessaires afin de surmonter cette limitation intrin-
séque des données réelles. Cette thése va discuter des méthodes d’inférence
et leur application & des prédictions de la structure de ’ARN. Nous allons
comprendre certaines approches heuristiques qui ont été appliquées avec
succes dans les derniéres années, méme si théoriquement mal comprises.
La derniére partie du travail se concentrera sur le développement d’un
outil pour I'inférence de modéles génératifs, en espérant qu’il ouvrira la

voie & de nouvelles applications.

Mots-clés: Inférence, ARN, champ moyen, modél de Potts, modéles

génératifs, régularisation, prédiction structurelle
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Motivations

In the last few years, the field of the molecular biology has experienced an almost
unbelievable improvement both in the quantity and in the quality of the data available.
The number of genome projects has increased as technological improvements continue
to lower the cost of sequencing, consequently since 1995, we have assisted at the
exponential growth of genome sequence databases. At the same time the profound
need for tools able to manage with this huge amount of data and, most importantly,
able to extract useful information from sequences analysis has interested scientists
with diverse backgrounds. Nowadays computational and quantitative biology are
cross-disciplinary fields and more and more innovative works have benefit from this
extremely heterogeneous framework.

From the physicist’s point of view, the task of exploiting data in order to infer
appropriate models is called inverse problem. As direct problems consist in computing
some observables from a known probability distribution, solving an inverse problem
means to estimate the probability distribution from which the observed data have
been drawn. For decades inverse problems have been extensively studied within the
theoretical and statistical physics community and a huge and ever growing literature
exists. Therefore physicists have played a double role in the exploration of genomic
data. On the one hand they have identified biological interesting topics eligible for
application of existing statistical physics methods. On the other hand some of these
topics have become extremely popular and, since they have been faced for the first
time, novel solutions have been developed to the scope of a direct application.

The application of comparative sequence analysis results to protein structure pre-
diction is nowadays a well established framework. Several works, making use of
diverse tools, have shown that the correct interpretation of correlations in sequenc-
ing data, can help in predicting protein structures. Can we use similar methods for
RNA structure prediction? Recent advances in molecular biology have revealed RNA
having a crucial role in the cell, thus the structural characterisation of RNAs has

become of general interest. Within this dissertation I will address this problem using



Direct-Couplings Analysis (DCA), a mean-field based inference method, proved to
give reliable results on protein data.

However, during my thesis, I have worked not only on the application of an ex-
isting tool to a novel problem (DCA applied to RNA) but also on the development
of a new approach to inverse problems: the Adaptive Cluster Expansion (ACE). Ini-
tially developed for binary variables, the generalisation of ACE to sequence-like data
promises to provide a powerful tool for comparative sequence analysis.

Chapter [l of this dissertation will be devoted to the introduction of inverse prob-
lems and of the existing approaches to their solution. I will formally define an inverse
problem and T will review some interesting works appeared in the field, focusing in
particular on the ones concerning application to biological data.

In chapter 2] I will present recent applications of statistical physics method to
diverse topics and fields, such as ecology, social science and economics. The aim of
this chapter is to stress that not only biology can benefit from advanced statistical
analysis: data are nowadays used to describe our everyday life.

In chapter Bl the work on the application of DCA to RNA structure prediction will
be exposed. The chapter starts with an exhaustive introduction on the problem from
both the biological and the computational point of view. The results are presented
within the related paper. Finally, after the reprint, some interesting open problems
are shown.

Chapter Ml will report a work we made on the role of regularisation on naive
mean-field inference. We tried to deeply understand pros and cons of mean-field
approximation and we showed that strong regularisation can only partially correct
the mean-field intrinsic errors. Also in this case, after a short introduction, the main
results will be included inside the reprinted paper.

In chapter [, finally, I will expose the work done on ACE. After a review on
the original algorithm, the main improvements we introduced will be studied. Note
how the knowledge we have about target systems (RNA, proteins, etc...) guided the
development of the algorithm. A paper on ACE and its application to biological data

is in preparation. The code of the algorithm will be contextually released.



Chapter 1

Review: inverse Ising and Potts

Recent developments in computational sciences have shown the importance of
inverse problems. The challenge in this field consists in trying to extract the rule gov-
erning a certain system from the statistics of samples of a large number of microscopic
variables. Often experimental measurements can access a reduced and usually biased
sample of the whole possible set of different behaviours of a given system. Advances
in statistical physics promise to provide, however, an ever increasing number of useful
tools to extract information from experimental data.

Formally, inverse problems try to describe the system estimating an unknown
probability distribution Py, (o), for a high-dimensional feature vector o = {01, 09, ...0n },
given a set of M observations of this vector.

The paradigm of inverse problems is the inverse Ising problem also known as
Boltzmann machine learning. Born to describe ferromagnetic materials, the Ising
model is nowadays applied to the description of a multitude of systems: from neural
networks [I] to protein fitness landscapes [2], from protein 3D structures 3] to gene
expression networks [4]. Tts straightforward generalisation, the Potts model, is the
most natural choice for systems with many states variables and it has been proved
enhance the system’s description.

Inverse and direct problems can be considered under a dual perspective: we can
compute averaged quantities, such as magnetisations and correlations (direct prob-
lem), given the full set of parameters of the model, meaning fields and couplings, or we
can infer the latter ones (inverse problem) such that the data statistics is recovered.
A huge amount of diverse approaches exists. Some approaches to the inverse problem
have been inspired by this duality and the solution of the inverse problem is faced as
the explicit inversion of the solution of the direct one (e.g. mean-field [5]). Others
methods are based, instead, on the fact that usually direct problems are easier than

inverse ones and thus the solution of the former is iteratively used to approximate the



solution of the latter: this was, for instance, the approach for the first Boltzmann ma-
chine learning solution [6]. Finally, some of them are rooted in the intrinsic differences
between direct and inverse problem (e.g. adaptive cluster expansion [7]). Mentioning
all the possible ways to face the problem is beyond the purpose of this thesis, and I
will focus on the techniques that have successfully been applied to biological inference
problems or that have even been specifically designed for such applications.

In this chapter I will first define the Ising and the Potts model and then show how
a very general principle justifies the choice for these models for the description of very
complex systems (e.g. protein structures, gene expression or neural networks). The
last section of this chapter will be dedicated to some of the most popular methods

developed for the solution of the inverse Ising model.

1.1 Ising and Potts models: definition

The Ising and the Potts models describe systems characterised by pairwise in-
teractions among their elements, called spins in the language of statistical physics.
While the former is characterised by binary spin variables (o; = —1,41) the latter
presents many colours for each spin: of where a = 1,...,q, the binary case being

recovered when ¢ = 2.

N
Hlsing = Z hiai + Z Jijaiaj
i=1

i<j
N g q
oo =33 o) + 303 (ot o) (11)
i=1 a=1 i<j a,b=1
where the h; are local fields and the J;; are couplings between pairs of spins. Eq.
[T shows the Ising and the Potts HamiltoniansH for a system with IV variables and,

in the Potts case, of ¢ colours.

1.2 Maximum entropy principle

An impressing point about inverse problems is that within the applied problems
I will describe in this thesis, Ising and Potts models emerge naturally from the ap-

plication of a very general tenet: the maximum entropy principle (MEP). According

1. Hpeys defined in LIl refers actually to the so called generalised Potts model in which couplings
and fields also depend on colours. The original Hamiltonian is H = >, J;;6(0;,0;) where o; and
o; can take ¢ possible values and ¢ is the Kronecker delta that is different from zero if and only if
o; = 0;. In the following I will always refer to the generalised Potts model as simply Potts model.
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to MEP we define the least constrained probability distribution reproducing the ob-
servables, i.e. a description of the data variability only in terms of the observables.
Imagine we want to characterise a whatever sample of data. We could extract
some information from data computing two simple quantities: the frequency of single
variables and the correlation between each pair of variables. Going beyond that is to
some extent hard and often useless [8]. Consider now the case of a system made of N
Ising variables. Our sample is composed by a set of observations o™ = {07, 07, ...,0% }

with 7 =1, .., M. Frequencies and correlations are thus defined as in Eq.

data o - data __ i T T
= Z [t = i Zal- o; (1.2)

However, taking into account ff** and fi** to describe the interaction existing
among spins gives us only a partial information about the system. A full description
is in fact contained in the probabilistic model Py, (o) from which these samples have
been drawn and to which, unfortunately, we do not have access. Thanks to MEP [9]
it is possible to compute a probability distribution P,,.,(o) satisfying the following
constraints:

flmep fdata fir;mep _ ic;ata (1_3)

where
70 = Pulelon 15 =3 Pl (1.4

Constraints in Eq. can be introduced into the entropy definition thanks to
Lagrangian multipliers and can be in principle generalised to any other observable
of P4t and P™_ In the specific case of the simplified description we have chosen,
we only need two types of Lagrangian multipliers: h; for frequencies and J;; for

correlations .



Pep is thus defined as the function maximising the entropy S in equation [L.3l
The result of this maximisation is the Boltzmann distribution in Eq. where
the Hamiltonian coincides with H'™9 or HP°"s  Note that the usual temperature

parameter [ is fixed to 1.

1
Pmep(0'> = EeiH(a) (1'6)

The normalisation Z is referred to as the partition function in the language of
statistical physics and contains all the information needed about the systems. Its
derivatives with respect to the fields and to the couplings coincide indeed to the

marginals of the distribution, i.e. the single- and two-site statistics f;"” and f;;".

1.3 Solving inverse problems

Within the described formulation, the first step towards the solution of an inverse
problem is the application of MEP, meaning to obtain the analytical form of a model
potentially describing the data. The main challenge is to solve the inverse problem
and compute a set of parameters fitting the input correlations and magnetisations.
Since applications of inverse problems are highly interdisciplinary, several solutions
exist having been developed within different communities (e.g. information theory,
computer science, physics) and can be formulated under different perspectives. For
instance, one can search for the set of parameters minimising the Kullback—Leibler
divergence between Pyu,(0) and P,.,(o) in Eq. L7

Pdata(o')

Dic1(Puata | Pney) =Y Puata() ln(m) (1.7)

or equivalently, the set of parameters minimising the negative log-likelihood L
(Eq. L) that the model P,,, can actually reproduce data.

M
1 T
L= ~ ;ln Prep(a7) (1.8)
N N
(Z) - S 3 (19
i=1 i<j

Moreover, thanks to Eqs. [LLI0 we know that the obtained distribution reproduces
the desired statistics, i.e. Eqs. are surely satisfied.



8DKL me ata aDKL me ata
o o, & 10

Given these general results, many different strategies have been designed. In

principle the minimisation of D, or of the negative log-likelihood can fully solve the
problem. The exact computation of these quantities implies a sum over all possible
configurations of the system and thus it becomes rapidly infeasible for an increasing
number of spins: the number of configurations scales as ¢ where N is the number
of spins in the system and q is the number of colours. Many approximated solutions
have been proposed in the past years in order to find the best equilibrium between

result reliability and computational feasibility.

1.3.1 Boltzmann machine learning

The Boltzmann machine learning, as presented in [6], is one of the first approaches
to the inverse Ising problem and it was developed within the Computer Science com-
munity. The authors’ purpose was to define a network able to learn some simple rules
and having learning properties similar to those of the Hopfield network [10]. How-
ever, differently from the Hopfield model, the stochasticity they have introduced with
a Metropolis-like Monte Carlo dynamics lets the system escape from local minima
and eventually reach thermal equilibrium.

The Boltzmann machine stores learned information in a set of weights being the
interactions between nodes. The learning process of the machine corresponds to the
solution of an inverse Ising problem, the weights between nodes being equivalent to
couplings between spins. The strategy introduced by the authors consists in a two-
step approach: first solve the direct problem using the Monte Carlo sampling, then
solve the inverse problem updating the weights according to Eq. [LIIl. These two
steps are iterated till convergence is reached.

Tl = Tt p(fiete — fMO) (1.11)

Eq. [LI1]is derived from the minimisation of the Kullback-Leibler distance be-
tween the Monte Carlo equilibrium distribution and the data distribution. Being
this minimisation a convex optimisation problem, gradient descent is guaranteed to
converge to the exact solution. Note that, even if in the original algorithm in [6] no
mention was given to fields updating, the generalisation of this algorithm to models

with local fields is straightforward and in chapter [5] we will see an example of this
kind.



Boltzmann machine learning is a very accurate way to fit parameters however it is
extremely expensive in term of computational time. Tt is still used to analyse diverse
types of biological data, from neurons recording to protein sequences [2] usually when
strong interactions exist among the variables in the system and fine information need

to be extracted from the sample.

1.3.2 Mean-field

Mean-field approximation (MFA) is an extremely widespread topic. The simplest
MFA is the so called naive MF entailing the approximation of the model free energy
in terms of averaged magnetisations m; = (o;) over the Gibbs measure in

The free energy can be written as:

s[5 (5) () (2]

i#j

The first two terms in Eq. correspond to terms of order zero in the well
known Plefka expansion [I1] [12] while the last term is the order-one term. Further
steps in the expansion can be done. For instance the second-order term (last term in
Eq. [LI3) corresponds to TAP approximation [I3], derived including also the Onsager

reaction term.

In Zrap =) Kl ‘Qm) In (1 —2m) _ (1 +2m) I (1 zm)]

7

1
i i#j

Differently from naive MF, where the probability distribution is fully factorised

(P™r(g) ~ [, P/"(0;)), the so called Bethe approximation considers a model

factorised over two-spin interactions only (Eq. [LI4), resulting thus exact on tree

graphs.
N
P (0y,0,)
pr(a) ~ || P/ (o e 1.14
=P el g e, (1
i=1 ij t J



Beside the analytical solutions [5], a very efficient algorithm for the inverse Ising
in Bethe approximation is the Susceptibility Propagation introduced by [14], inspired
by message-passing procedures.

Given the self-consistency equations (i.e. the relation between magnetisations and
parameters found minimising the free-energy with respect to magnetisations) of any
of the MF methods described above, non-trivial correlations between distant spins

can be derived from linear response theory:

0mi 1 8hz
o = 1.1
Cl] 8h2 (C )l] 8ml ( 5)
We therefore obtain:
. dij
(Conrr)ii = 1—m2 Jij (1.16)
(Crap)i = + Y I =m}) | 65 — (Jij + 2T mimy) (1.17)
K

Usually for applications diagonal terms are ignored and thus simplified relations
can be easily inverted. Note that for these types of MFA finding a solution for the
inverse problem depends our ability to invert the above relations and to find close
relations for couplings and fields. As far as nMF and TAP are concerned very simple

expressions can be derived:

JIME = —(C7); (1.18)
1—8my D=1
ity

where C' is the empirical correlation matrix. Another simple approximation can
be obtained by treating every pair of spins as if they were independent on the rest of
the system. This approximation is thus called the Independent pair approximation
(IP) [15] and, as you can see from Eq. and [[21] it is related to the small
correlation expansion (SCE) developed by Sessak and Monasson [16].

o _ Ly (4 m) (1 +my)Cy) (L —my)(1 —my)Cyy)
T M A=) (= my (A FmCy) P
Jich - _(C_l)ij + Jz‘IjP - o (1.21)

(L= md)(L— )



SCE consists in the extension of the approach developed in [12] based on a double
Legendre transform of the free energy in order to fix both the magnetisations (already
done by [12]) and the correlations. The result is eventually a high-temperature Plefka
expansion.

All the diverse MFAs guarantee a very fast implementation, whose time scales
in the worst case as O(N?) since the connected correlation matrix has to be in-
verted. However the reliability of results is not always ensured and in particular in
the low-temperature (strong-coupling) limit all these approximations fail. Recently
new approaches [17] [1I8] have proposed to correct these effects thanks to clustering of
configurations according to thermodynamic states. Both the two solutions rely on the
reconstruction of configuration space in the low temperature regime and thus result
to be unsuitable for those models with a highly non-trivial set of metastable states.
Alternatively the low-temperature regime can be overcome by the introduction of
regularisation terms helping to correct inference of strong couplings. As we will see
extensively in chapter 4l the introduction of a large regularisation, often necessary
to correct finite sample effects, turns out to be crucial also in the case of perfect

sampling and enlarges the reliability of MFA.

1.3.3 Pseudo-likelihood

Pseudo-likelihood maximisation (PLM) is nowadays one of the most powerful tools
for inverse problems and its application to protein structure prediction [I9] has proved
to outperform any other existing inference method.

PLM approach to inverse problems was developed within the mathematical statis-
tics community [20] [21]. It consists of an approximation of the maximum-likelihood
inference, obtained substituting the probability distribution in Eq. [L8 with the condi-
tional probability of observing one variable o; given the observations of all the other
variables o\;. The probability distribution of the model is therefore replaced by a
large set of conditional probabilities (Eq. [L22]) computed from M different samples

60':.— [h,-f—z;v:l JijO'}—]

Pi(o]loy,) = (1.22)
T 17\ N
2 cosh [hi + ZFl Jijo}
1M
= ;m Py(o7|07;) (1.23)

where 7 = 1,.., M. The parameters h; and J;; can be computed via the min-

imisation of the local log-likelihood [; in Eq. [L.23. However this procedure is not

10



fully consistent and returns two different values for the coupling J;;: J;3' and J;7,
respectively coming from the minimisation of /; and of [;. Since both the two values
are in agreement with all the other estimated parameters, a simple solution for this
issue is to replace J;; with J;; = %(JZ*JZ + JZ*]]) It is also possible to force to algorithm
to return equal values for these couplings by minimising Lseudo = vazl l; [22] under
this constraint.

In order to avoid finite samples problems and also to help the minimisation algo-
rithm, a regularisation term is usually added to L,scyqo. The most common types of
regularisation penalties are L1-norm and L2-norm, jointly to pseudocounts (cf. chap-
ter[). As far as pseudo-likelihood is concerned, the L1-norm was originally suggested
in [21], since it forces small parameters to zero and reduces effectively the number
of parameters to be fit. Within some application [19], also the L2-norm has been
successfully used.

Note that, differently from MFAs, pseudo-likelihood maximisation is a statistically
consistent method, meaning that the parameters estimated from an infinite i.i.d.
sample generated by the same model class are asymptotically exact. This is not the

case for MFA which makes significant errors even with perfect sampling.

1.3.4 Adaptive cluster expansion

The Adaptive Cluster Expansion (ACE) [7] [23] consists in a perturbative expan-
sion of the log-likelihood in small clusters, meaning sub-systems, built in a recursive
way and selected according to their contribution to the log-likelihood of the full model.
It has been proved that ACE, as Boltzmann machine learning, provides reliable re-
sults also in the low-temperature phase where many other inference methods fail.
Moreover, differently from Boltzmann machine learning, ACE does not suffer from
computational infeasibility on sparse systems (i.e. when the largest cluster size is
small) and can be used on reasonable system sizes (N ~ 100). The success of such
an approach relies on the intrinsic difference between direct and inverse problems.
Consider J = {h;, J;;} being the parameters of the model and f™eP = {f"", f'

ij
the correlations of the model. We define the susceptibility matrix and its inverse as:

_Ofmep Xl = oJ
aJ J 8fmep fmep

X tells us the response of correlations due to a small change in the parameters

(1.24)

and can be thus associated to errors in the direct problem solution. ! measures,

instead, the response of parameters due to a small variation of the correlations and

11



can be associated to the inverse problem. The crucial point here is that these two
matrices are far from being similar. x ! is usually much sparser and shorter-range
than y, meaning that, even if the system is characterised by many strong long-range
correlations, couplings still depend on a small number of correlations. This claim turns
out to be true also in the low-temperature regime and thus confirms the applicability
of ACE to critical models.

In chapter Bl I will extensively discuss about ACE and its application to biological
problems. I therefore postpone the detailed description of the algorithm to that part

of my dissertation.
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Chapter 2

Inverse models across disciplines

The emergence of a massive collection of data has definitely transformed fields such
as physics, informatics and biology. In the last decades we assisted to the explosion of
computational and quantitative studies about biological topics. Beside computational
biologists, an interesting role is played by several interdisciplinary profile scientists
applying usually a background in information theory and theoretical or statistical
physics to diverse subjects. Consequently nowadays departments of biophysics or
bioinformatics exist in almost every university. Conversely if one looks at the leading
disciplinary journals in sociology, economics or even political science only a minimal
evidence of the emergence of a computational social science can be observed. For
some years now big companies, such as Google, Facebook and Amazon, have been
appreciating the power of data collection and analysis. The development of machine
learning and inference techniques able to manage with tons of data (generally referred
to with the term Big Data) has enlarged the possibility of exploit information on
people habits till endangering everyone privacy. A question thus spontaneously arises:
do we have to expect that the computational revolution we assisted in biology will
spread to social science and after that directly to our day-to-day life? I would say yes,
but let me remark that the emergence of such a data-driven social science is happening
at a rate much slower than the one having been observed in biology. Probably the
need for appropriate authority manifested by some people has introduced an inertial
term in the process due to institutional reacting times.

In this chapter I will analyse some of the most studied applications of inference
methods and statistical physics tools to several different topics, from biology to eco-
nomics. We will first focus on biomolecular structure prediction, as it is one of the
main themes of this dissertation, then we will sketch gene expression analysis and
neuroscience. The last biological topic considered will be ecology, focusing on col-

lective behaviour of both micro-organisms and higher-order species communities. In
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the second section, I will introduce some social science applications, such as human

interactions, diseases spreading and economics.

2.1 Application to biology

2.1.1 Molecular biology

The major interest of computational biologists has been for several decades the
structural and functional characterisation of important biomolecules such as DNA,
RNA and proteins. For instance knowing the 3D structure of a membrane protein
helps understanding its molecular mechanism and accelerates the development of
pharmacological agents targeting it. However solving three-dimensional structures is
a hard experimental task and the structural characterisation of biomolecules has till
now proceeded quite slowly. Sequencing results to be much easier and cheaper, thus we
assisted at the exponential increase of available sequences. Given sequencing data, the
first step consists in searching for homologous sequences, i.e. phylogenetically related
sequences sharing a common ancestor. Then, this set of homologous sequences is
rearranged so to create a Multiple Sequence Alignment (MSA), meaning a matrix
of nucleotides or amino acids having on different lines different homologs and on
different columns different sites. Sequence sites must be placed in the correct column
according to some equivalence rule among species. The best alignments tools existing
maximise complex global scores depending on single-site frequency of symbols. When
these methods were introduced the number of available sequences was extremely poor,
thus it was entirely reasonable to ignore higher-order statistics, since the amount of
data was insufficient to estimate joint probabilities. MSAs currently available on
databases contain tens of thousands and even hundreds of thousands of sequences.
Therefore the deep statistical investigation of MSA is now a common practice and
diverse approaches exist [24] [2] [25] [26] [3] [27] [28] [29].

Several MSA analysis tools start from the assumption of the so called co-evolution:
the function of biomolecules strongly depends on their three-dimensional structure
and the structure is stabilised thanks to interacting residues or bases. Since the
structure (and function) is often highly conserved across species, while the sequence
is not, the existence of crucial interactions among distant sites entails correlations
between MSA columns. The huge complexity of cooperative interactions between
residues makes this problem highly non-trivial: amino acids are mostly pairwise cou-
pled within three dimensional structures but also many three-way or higher-order

couplings have been observed [30]. The result is often a dense and complex network
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of interactions and local measures of correlation (e.g. Mutual Information) cannot
disentangle direct from indirect contributions. Global inverse models among those we
analysed in the previous chapter, have thus been successfully employed [3] [31] [19].

Beside structure analysis, the problem of fitness characterisation of proteins has
also been part of interesting joint works, both experimental and computational. A
major challenge in the field is the HIV-AIDS epidemic [25] [2]. HIV is characterised
by an extreme sequence variability. An accurate description of its fitness landscape,
meaning the identification of the network of deleterious, beneficial and compensatory
mutations, can inform the design of immunogens and therapies in the scope of tar-
geting the virus in its most vulnerable regions.

Molecular studies help us to understand how proteins, RNA and DNA work. How-
ever, the cell activity is carried out through the cooperation of many genes and gene
products. The genome is organised in regulatory modules or groups of co-regulated
genes contributing to a common function. The identification of such a network of in-
teractions is crucial for understanding cell response to internal and external stimuli.
The main assumption, underlying computational studies in this field, is that regu-
lators are themselves transcriptionally regulated, thus their expression profiles carry
information about their activity level [32]. Gene expression is measured thanks to
sequencing (e.g. RNAseq technologies) analysis, then several inference methods are
applied in order to infer gene interaction networks reflecting intracellular communi-
cation pathways [33] [4]. The most common approach to this problem focuses on the
differences in gene expression and aims to identify of meaningful subgroups of genes
with similar expression patterns. However, once again, correlation measures cannot
provide insight into the direct interactions among genes underlying the observed ex-
pression pattern. Maximum entropy principle has been successfully applied here [34]
to infer pairwise interactions able to accurate describe expression data. Moreover
some approaches have incorporated both gene expression analysis and structural con-

siderations aiming at a more and more global model for living cell activity [35].

2.1.2 Neuroscience

Populations of sensory neurons encode information about stimuli into sequences of
action potentials called spikes [36]. The representation of environment signals depends
on correlations among neurons and on their ability to coordinate spike patterns. Spike
activity can be measured and has been studied in many different brain areas, however
the understanding of the code mapping neurons firing and response to stimuli is still

challenging and diverse interpretations have been broadly debated.
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Correlations among neurons have been proved to govern both the conveyance
and the storage of information; moreover several measurements have revealed that
correlated patterns exist [37] [38] [39], but their origin and importance for decoding
the neural code still remains poorly understood. Several coding strategies have been
identified [40]: (i) independence where each neuron responds independently to an
input, (ii) decorrelation where neurons interact in order to produce a decorrelated
representation of the input, (iii) error correction where many neurons respond to
the same stimulus in a redundant way and (iv) synergistic coding where instead the
cooperation of neurons encodes information that a single neuron cannot manage. Note
that the trade-off between redundancy and error correction pervades many different
biological information processes and not only neural networking.

As in the field of sequence analysis, the most important revolution in our un-
derstanding of these systems follows technical improvements from the experimental
side [41]: from first attempts (i.e. single-neuron recording) the number of simultane-
ously recorded neurons has roughly doubled each year. Nowadays experimentalists
can record the activity of many cells (from hundreds to thousands depending on the
location in the brain) at the same time, and the spatial and temporal resolution
with which these recordings can be done is increasing. The advent of such multi-
neuron recordings has paved the way to the development of analytical tools able to
model and interpret data, partially unveiling the complexity of the brain. These stud-
ies [42] [43] [1] showed that the collective behaviour of neurons in response to complex,
naturalistic inputs can be quantitatively described by pairwise-based models assum-
ing no higher-order interactions. Very recently the authors of [44] used an Ising-based
analysis to show that functional connections between pairs of grid cells show a pe-
culiar connectivity with neurons with nearby phases exciting and those further apart
inhibiting each other. Moreover the statistical model the authors built, allows them
to explain some sources of indirect correlations as for instance overlapping fields, that

could lead to spurious connections.

2.1.3 Ecology and swarming

Ecological systems are characterised by a stochastic dynamics: random genetic
mutations and phenotypic changes, randomness of births and deaths, external forces
such as weather or other species migrations. The result is therefore a non-trivial

average dynamics and, in principle, several and accurate measurements on replicated

1. Grid cells are neurons in the medial entorhinal cortex, one synapse away from the hippocampus,
whose activity lets the organism understand its position in space

16



systems should be needed in order to recognise a common trend [45] [46]. Such an
ideal framework is rarely available when we are dealing with ecological systems. Once
again advances in experimental techniques, joint to our ability to extract information
from diverse ensemble averages, play a fundamental role. In this work [47] the authors
reconstruct the full 3D dynamical trajectory of each bird in a flock of starlings by
using a 3-cameras setup and an impressive image analysis tool. The availability of
such a detailed dataset let the authors deeply understand the collective behaviour of
bird flocking: note that in this case average quantities are computed on the ensemble
of the different birds in the flock.

A related field in which the amount of available data enabled the development
of computational studies is microbial ecology. Indeed, it is well known that micro-
organisms (including viruses, bacteria, archaea and protists) form complex ecological
interaction networks. The classification of all possible interactions among micro-
organisms is based on a combination of win, loss and neutral outcomes [48]. Quite
recently people studying such microbial ecosystems have begun to appreciate the
advantages of advanced computational methods in order to predict the network of
interactions among species [49]. An important step in exploring species abundance
data was the identification of dependencies among the members of the communi-
ties obtained with correlations analysis [50]. However, as in many other branches
of biology, tools taken from statistical physics helps unveiling interesting critical be-
haviours [48] promising to open the way towards the definition of new global models

for the microbial ecosystem dynamics.

2.2 Application to social science

2.2.1 Sociology

As far as human interactions are concerned, recent years have seen the explosion of
computational studies aiming at the understanding of interactions among people from
data collected by new technologies, such as e-mail, social networks, smart phones,
ad-hoc tracking technologies, etc [5I]. For the past decades, network theory has
been widely applied to social networks, yielding explanations for social phenomena
from individual creativity to profitability [52]: e.g. the unveiling of the underlying
network of interactions among people has demonstrated the person-to-person spread
of obesity being one of the major factor of the obesity epidemic [53]. Beside many
dynamics analysis [54], also inference techniques [55] play a fundamental role in the

field providing information about both the structure and the content of relationships.
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Moreover outside the academic community, the need for statistical models de-
scribing people interactions is increasing: epidemic spreading, viral marketing, de-
fault contagion are just some of the already known applications. The science of data
promises to concern more and more aspects of our life. Several companies such as
banks, transports, health services and public institutions have already changed their

business models according to a more accurate observation and analysis of customers

habits.

2.2.2 FEconomics

The application of sophisticated mathematical and physical methods to financial
topics is not recent [56] [57]. Quantitative finance is a well established field of applied
mathematics, concerning financial markets. The main goal of quantitative finance is
to derive mathematical models describing observed market prices in order to predict
the best strategy for future activities (e.g. buy/sell something). Beside this approach,
leading to establish a link between mathematical modelling and financial theory,
the study of correlated price changes of different stocks or the time series analysis
has given rise to a novel discipline called econophysics [58] [59]. Econophysics has
combined scientific interest and practical relevance in quantifying risks: being well
known that an increase in demand should increase prices, while an increase in supply
should decrease prices, the author of this paper [60] uses statistical methods in order
to reconstruct all large orders on the market, making use of information about single
broker transactions.

Quite recently more sophisticated inference theories inspired by stochastic matrix
theory have been developed. People and company interactions turn out to be so com-
plex that no simple rule can be established able to reproduce the observed behaviour;
inference methods [61] applied to available data have anyway been proved to explain

many well known phenomena occurring in financial markets.
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Chapter 3

RNA structure prediction:
application of an inverse Potts model

Direct-coupling Analysis (DCA) was developed in order to predict contacts be-
tween amino acids in the folded structure of proteins [62]. It is based on the assump-
tion of coevolution between structurally related sites and it has been proved to be a
powerful tool for protein contact predictions. Given that no structural information
about residues is needed to perform DCA, its generalisation to other biomolecules is
straightforward and within this chapter I will present a novel application: RNA sec-
ondary and tertiary-structure prediction. The secondary structure if RNAs is made
by the well known Watson-Crick base-pairs, the same found also in DNA. These pairs
strongly co-evolve: only three possible pairings are admitted A-U (or T in the case
of DNA), G-C and G-U (called wobble pair). Therefore the covariation signal is in
this case much higher than the one of other pairs in contact in the tertiary struc-
ture. Standard approaches to coevolution analysis, such as Mutual Information (MI),
can predict almost only secondary structure base-pairs and just in a few cases some
tertiary-structure contacts. However I will show that, differently from MI, DCA signal
is enriched in tertiary contacts and it improves both secondary and tertiary-structure
prediction tools.

This chapter will be structured in 6 sections. The first three will introduce the
state of the art in the field: I will first focus on the analysis of known crystal structures
of RNA, then I will move to comparative sequence analysis, the most powerful compu-
tational tool available to study biomolecules, and finally I will introduce some existing
methods for structure prediction. The fourth section will present the pre-processing of
data needed for DCA analysis, including both actual data (multiple sequence align-
ments) and structure for comparison and evaluation of results, and also the DCA

algorithm and scoring systems. Within the fifth section, the paper Direct-Coupling
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Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure
prediction is reprinted. Finally, the last section will include suggestions about some

possible improvement based on a deeper analysis of DCA outputs.

3.1 RNA structure analysis

The main source of crystal structures of proteins and other important biological
macromolecules is the well known PDB database. It contains information about
the known 3D structures of many proteins and nucleic acids involved in the central
processes of life. Structures containing the coordinates of each atom belonging to the
molecule, are computed experimentally using methods such as X-ray crystallography,
NMR spectroscopy and cryo-electron microscopy. Last years have seen an important
increase of the number of structures stored on this repository, however technical
difficulties have till now penalised nucleic acids with respect to proteins. The amount
of information contained in the PDB of a protein or an RNA is quite different: protein-
PDBs contain, among the other, information about the secondary structure, while
RNA-PDBs do not. Annotations about the secondary structure of an RNA can be
achieved using software such as RNAView [63], MC-annotate [64] or Assemble2 [65].
These tools are able, as we will see, also to classify tertiary base-pairs.

In the following I will recall some basic concept about RNA structure and function,
then I will review some of the existing methods for extracting structural information
from RNA-PDB structures and finally T will talk about the state of the art in RNA

structure prediction.

3.1.1 Basic concepts

Ribonucleic acids (RNAs) are the only known polymers able to both bring genetic
information and perform chemical catalysis. Even if they are chemically closer to
DNA, their ability to fold in complex tertiary structures and thus act as catalysts
makes them structurally akin to proteins. Similarly to protein RNA structure can be

described at four different levels:

— the primary structure is the sequence and it is made of four basic building blocks
called nucleotides. They are made by a ribose sugar ring, a phosphate group and
a purine or pyrimidine base. The most common purine bases found in RNAs are
Guanine and Adenine, while Cytosine and Uracil are the pyrimidines. However

some non-standard bases exist.
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— The secondary structure is held together by hydrogen bonds between canonical
base-pairs such as A-U and C-G, wobble base-pairs G-U, and base-stacking
interactions forming the so called stems. The result is similar to the well known
DNA double helix proposed by Watson and Crick in 1953.

— The tertiary structure is characterised by long-range non-canonical interactions.
The existing base-pairs have been classified in [66], where the authors define a
nomenclature system based on the observation that purines and pyrimidines
can be schematically represented as triangles, according to the three available
edges for hydrogen bonding interactions: Sugar, Hoogsteen and Watson-Crick.
In the following I will call this classification the Westhof-Leontis classification.
Each edge can interact with any other edge of an other nucleotide giving rise
to a total of 12 possible geometries, including two different orientations for the
glycosidic bond: cis and trans. Beside canonical Watson-Crick cis base-pairs,
forming secondary structure, the other non-canonical pairs are mainly involved

in the self-assembly of the molecule and also in RNA-protein interaction.
— The quaternary structure involves bonding with proteins or with other RNAs.

As far as folding is concerned, it has been shown that RNA folds through a hier-
archical pathway, in which domains assemble sequentially [67]. First Watson-Crick
base-paring and staking interactions form the double helices of the secondary struc-
ture and then the resulting molecule is packed in a compact 3D structure through
the mediation of tertiary architectural motifs [68]. Also the stability of the two struc-
tures is quite different: secondary structure turns out to be highly stable contrary to
tertiary structure. This difference is mainly responsible for the difficulties encoun-
tered in experimental determination of high-resolution RNA structures, making the
structurally characterisation of RNAs challenging.

Besides the well known messenger RNA, bringing genetic information from DNA
to protein translation, many other RNAs have been discovered to perform directly
their function. These ones are called functional RNAs. The first functional RNAs
that have been discovered were the transfer RNA (tRNA) and the ribosomal RNA
(rRNA) always involved in protein synthesis. We know that many RNAs are found in
complex with proteins (ribonucleoprotein complexes RNP) to perform crucial tasks
inside the cell. Moreover there exist catalytic RNAs, called ribosymes, that together
with enzymes, boost chemical reactions. Thanks to the study of its atomic structure,
it has been proved that the ribosome itself is a ribozyme [69], confirming that struc-
tural knowledge is extremely important in order to access functions and to enlarge

our comprehension about the cell system.
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Figure 3.1: Hierarchical structures of RNA.

RNAs can also be involved in gene regulation. For instance, riboswitches are
small sequence of RNA that modify their structure to bind particular metabolites.
They probably have played an important role in evolution before proteins [70] have
been "invented". Finally, in the last years, more and more non-codingli RNAs have
been discovered and understood thanks to both computational and experimental
tools [71] [72] [73] . Function for the most part of these ncRNAs remains unknown.
Increase in the number of crystal structures available together with the development
of computational structure prediction tools promises to find a map from sequence to
function.

Among nc-RNAs some small RNAS, from 20 to 27 nucleotides, have been proved
to play essential roles in eukaryote cells: microRNAs (miRNAs) and short interfering
RNAs (siRNAs). These small RNAs are involved in a variety of phenomena that
are essential for genome stability, development, and adaptive responses to biotic and
abiotic stresses. Note that their mode of action does not entail a three dimensional

structure but it is mainly based on linear sequence features.

3.1.2 MC-annotate

In order to understand RNA functions, software for the analysis and the visuali-
sation of known structures plays an important role. MC-annotate [64] is a software

for the analysis of PDB files. The main aim of this kind of programs is to extract

1. The distinction between non-coding RNA and functional RNA is not universally accepted.
Someone refers to the two terms as synonymous, while someone prefers to consider nc-RNAs as a
sub-set of functional RNAs. The solution for this nomenclature issues goes beyond the aim of this
dissertation, however note that for the rest of the chapter I will refer to functional RNAs generally
as RNAs.
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information about nucleotides and their interactions (given a native or predicted crys-
tal structure) and decoding PDB language that is mainly made of 3D coordinates.
Outputs consist of annotated structural graphs, meaning representations of nucleic
acid structures in which nodes correspond to nucleotides and single nucleotides con-
formation and base-base interactions are classified according to some nomenclature.

MC-annotate output-file example is shown in The classes of annotations are:
— Residue conformations

— Base-pairs, containing all the secondary and tertiary-structure base-pairs (an-

notated also in the Westhof-Leontis nomenclature)
— Base Triples
— Adjacent relations
— Helices
— Non-Adjacent stackings
— Strands
— Tertiary base-pairs

— Sequences containing mapping between secondary and tertiary-structure and

RNA sequence

3.1.3 RNAview

RNAview [63] is a web server able to recognise and classify, according to the
Westhof-Leontis classification, base-pairs given a known crystal structure. The pro-
gram is designed such that the classification is made through the accurate geometrical
characterisation of each nucleotide and of its position with respect to the other nu-
cleotides. Distances, angles and type of bonds are taken into account for base-pairing
annotation. Results can easily be managed thanks to graphical and text outputs

containing information about both secondary and tertiary-structure.

3.1.4 Assemble2

The last program I will introduce is Assemble2. It is and interactive graphical
tool for the analysis of 3D and 2D RNA structures. Given a PDB input it annotates
secondary and tertiary-structure base-pairs on a 2D interactive and modifiable pic-
ture of the RNA. Also in this case the Westhof-Leontis notation is used. The main

advantage of Assemble2 is that very complex structures can be easily manipulated
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A77-A78 : stack adjacent
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A79-A80 : adjacent Sequence 1 (length = 72):

A76 GGUGCCAGGU AACGCCUGGG CGGGGUAACC CGACGGAAAG UGCCACAGA

(Ceeeeee===--300) € (C----1) ))-)bb---b b(((--b-b
X

strand/bulge: Al176-A218
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H1, length = 4, type = A :

A76-GGUG-A79 A126  AAGAGACCGC CAGCGGCCGG GG

A234-CCAC-A231 b----- bb(( (-bbbb(((( ((

]
>

H2, length = 5, type
ABO-CCAGG-A84
A94-GGUCC-A9%0

ter  X----- XX-= = -XXXX---~ -~

Figure 3.2: MC-annotate output file. In this example only minimal information is
shown to fit space. However all the classes of annotations made by the program are
shown.

and visualised. Unfortunately the enumeration of the sites is different from the one

in PDB and so some difficulties in comparing results arise.

3.1.5 The distances between nucleotides

A more naive way to analyse RNA structures is to look at distances between nu-
cleotides. Among all possible definition for nucleotide-nucleotide distance, depending
on the atoms that have been considered for measuring (quite common is the C1’-C1’
distance), we choose to look at the distance between the closest heavy atoms. This
kind of choice force us to intend the contact between two nucleotides for as proximity
relation, differently from the more sophisticate analysis performed by the software I
described above, where contact means a real physical bond existing between bases.

However having a precise definition for the distance does not solve the whole
problem: which is the distance of two sites in contact? The simple thing to do is
to choose a cut-off and define as being contacts those pairs in which nucleotides are
closer than the cut-off. However the choice of whatever threshold is definitely not
trivial. Protein structure prediction literature [74] proposes two solutions (4A or 8A)
based on the distribution of distances between amino acids in many protein families.

We have performed the same analysis on 20 RNAs whose structure is known with a
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Figure 3.3: Frequency counts of the distances between nucleotides in 20 families
whose structure is known. X is the distance between the closest atoms measured in
Angstroms. Inset: zoom on the first 20A.

sufficient (less than SA) resolution. As you can see in figure the histogram shows
some peaks inside the range from 2 to 20 Angstroms. Before that, at around 1.6A, the
very high and sharp peak corresponds to backbone contacts (]i — j| = 1). Moreover
Fig. B.4lshows histogram of distances of those pairs found by RNAView and classified
according to Westhof-Leontis classification. Then, the first peak located from 2.5A
to 4A includes both Watson-Crick base-pairs, whose typical distance is 2.7A, a few
stackings and non-canonical base-pairs.

Note that all the characterised interactions are found closer than 4A and thus
they are in agreement with this choice for contact definition. Moreover, among all
possible pairs of nucleotides in the analysed dataset, the following percentages have
been found:

— 4% of pairs are closer than 4A

~ 10% of pairs are closer than 8A

— 0.5% of pairs are recognised as non-canonical base-pairs

— 0.5% of pairs are recognised as canonical base-pairs

~ 0.1% of pairs are recognised as stacking interactions
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Figure 3.4: Frequency counts of the distances between nucleotides classified according
to RNAview software. X is the distance between the closest atoms measured in
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Figure 3.5: Radial distribution function for a liquid g(r), where r is the distance
between molecules and o is the diameter of the diameter of molecules.

So if all the classified interaction are closer than 4A a question spontaneously
arises: what about the other peaks in Fig. B.3? Statistical mechanics suggests us an
answer: the radial distribution function of a dense gas or liquid [75]. This density
function measures the probability for molecules in a gas, a liquid or a solid or even a
polymer to be at a given distance one from each others. Intuitively, consider a certain
molecule, its volume constrains the nearest neighbour particles to stay at least at a
distance equal to its diameter. Fig. shows on the left a picture explaining such a
mechanism and, on the right, an example of the resulting radial distribution function.
In this example we consider the simpler case of a liquid, however, even if RNA is a
polymer, we would not expect this picture to dramatical change and we can thus
explain the peaks seen in the distribution of nucleotide-nucleotide distances with this

well known model.

3.2 RNA comparative sequence analysis

Beside structural knowledge, a powerful tool used for understanding biomolecules
functions is the search of homology and comparative sequence analysis. Homologous
sequences are defined as having a common ancestor in evolution and are characterised
by a conserved structure and function. The level of nucleotide conservation varies from
RNA to RNA and also from region to region inside the same RNA. Note that the
sequence conservation versus functional importance does not hold so well in RNA,
since 2D structure is frequently well conserved and plays an important role even
if nucleotides have high entropies. Differences we observe between homologs have

accumulated since the speciation due to random mutation of nucleotides. Constraints
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Figure 3.6: Cartoon of a MSA and the underlying conserved structure. The presence
of a contact in the three dimensional structure of a protein, or an RNA, gives rise to
a correlation between the involved sites.

linked to functionality biased the probability for mutation to occur, because organisms
showing mutations that negatively affect RNA behaviour are less likely to survive
during evolution. Indeed, remember that sequences of the organisms we observe
today have been selected under evolutionary pressure.

In order to compare homologous sequences it is necessary to juxtapose them such
that residues descendent from the same ancestor stays in the same column. Gaps
are inserted to align sequences whose length is changed during evolution. The most
common way to align sequences is based on conservation: we want conserved nu-
cleotides to be aligned. Often compensatory mutations can occur giving rise to the so
called coevolution: Fig. shows a fake multiple sequence alignment (MSA) and the
cartoon of the underlying conserved structure. Consider two nucleotides interacting
in the three dimensional structure of the ancestral RNA. During evolution, they may
mutate, but only the RNAs in which the mutated sites are still in contact will be
functional. This mechanism has been shown to work for Watson-Crick base-pairs [76]
and can be used to obtain reliable structural alignments.

The main source of MSA for RNAs is Rfam. Being at the 12.0 version [77], this
database contains multiple sequence alignments of RNAs obtained with a software,
called Infernal 78], based on Covariance Models [79].
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A C G U
Al2 -1 -1 -1
cl-1 2 -1 -1
G|l-1 -1 2 -1
vuj-1 -1 -1 2

Table 3.1: Example of substitution matrix.

In the following sections I will review first two well known algorithms for the
alignment of two sequences (they are not RNA-specific, but are used also for protein
sequence alignment), then I will move to MSA and explain the main features of Hidden
Markov Models (HMMs) and Covariance Models (CMs) and finally I will sketch
Rfam database functionalities focusing on the aspect of interest for RNA structure

prediction.

3.2.1 Needleman-Wunsch: global alignment

The alignment of two sequences consists in creating a nucleotide to nucleotide
mapping between them inserting, if it is the case, gaps when there is no matching.
Needleman-Wunsch (introduced here [80] and improved here [81]) was the first algo-
rithm to be developed for the alignment between two sequences. The basic idea of this
algorithm is to build an optimal alignment from optimal alignments of sub-sequences.
It consists in two steps: first we compute a L, by L; score matrix F, where L is the
length of the sequence, and then we trace-back in the matrix, looking for the optimal
path.

F is defined as follows:

F(Z— 1,]— 1)+8<l’l,y]>
Fj =max < F(i—1,5)

—d (3.1)
F(i,j—1)—d

where s is called substitution matrix and assigns a different score depending on
the two nucleotides we want to match. d is the cost of a gap. The easiest substitution
matrix we can think of is shown in Table 3.1t it forces the algorithm to look for
the alignment entailing the highest number of matches. In their work [80] authors
used a similar substitution matrix, however a large amount of subsequent works have
introduced more accurate scoring systems based on observation of actual rates of

mutation or on chemical differences between nucleotides.
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3.2.2 Smith-Waterman: local alignment

Needleman-Wunsch algorithm is a global alignment method, meaning it aligns se-
quences considering their full length. For instance, in case the length of two sequences
differs a lot, this algorithm may fail and spread out nucleotides of the shorter sequence
along the longer one. Therefore if just a subset of the two sequences matches, a differ-
ent algorithm has to be used: local algorithms. The Smith-Waterman [82] algorithm
belongs to this class and it returns the optimal alignment of any sub-sequences of the
two sequences we want to align.

F of the Smith-Waterman local alignment is defined as follows:

0
Fli—1,j—1 -
Fij = max <Z ! ) + s(@i, ;) (3.2)
F<Z_17j)_d
Fli,j—1)—d

Note that Smith-Waterman algorithm back-traces from the highest entry in the
F' matrix until it hits a zero score. Moreover, the zero entries in F' let us start the

alignment from whatever site and find the highest scored sub-alignment.

3.2.3 Profile Hidden Markov Models

One of the limitation of the algorithms introduced above, is that they use the same
scoring systems disregarding the considered position inside the sequences. It is clear
that matching the first or the last positions is not as important as matching the core of
sequences. Establishing the start and the end point for a certain gene is definitely not
trivial and sequencing errors often occur. Therefore, position-specific scoring systems
have been introduced. The most powerful among those are profile Hidden Markov
Models [83]. Profile HMMs are probabilistic models based on an hidden chain of states
that emit the symbols we observe. The full characterisation of an HMM implies the
computation of transition probabilities from state to state based on the statistic of the
observed symbols. Generally speaking a profile (introduced here [84]) is the statistical
description of MSA based on the frequency of symbols in each single if its column.

Formally, a HMM is specified by the following two properties:

— the path is Markovian and the chain is represented by transition probabilities

ai; between states k£ and [

QA = P(TFZ = l‘ﬂ'l;l = /{Z) (33)

30



Begin —— —i M. |—>p| —p] End

Figure 3.7: Sequences of proteins belonging to the same family can be aligned using
a Profile Hidden Markov Model. From a subset of sequences already aligned the
parameters of the model are inferred (the transition probabilities, i.e. the probability,
in correspondence of each site, of the emission of one particular amino acid, of the
opening of a gap, of the deletion of a part of the original sequence etc.). Then for each
new sequence the alignment is given by the path maximizing the emission probability
for that particular string of symbols (picture taken from [83])

— in each state m; the visible symbol x; assumes one of the possible values according

to the correspondent emission probability ey (b)

where 7 is the sequence of the states, 7; is the it state in the path and z; is the
symbol emitted by the i*" state. Is it then clear how a Hidden Markov Model can be
used to align a new sequence to the subset already analysed: the parameters of the
model (i.e. the probabilities of passing from a state to another one) are estimated
from the previously aligned sequences, the residues being seen as the visible outputs
(match state M;) whereas the possibility either of the opening of a gap in the new
sequence with respect to the others (insertion [;) or of the removal of a part of the
sequence (deletion D;) are represented as hidden states (cf. Fig. B.7). In order
to define the probability for a sequence of states to emit a particular sequence of
symbols, finally, the emissions of amino acids given the hidden states are assumed to

be conditionally independent from each other:

N
Play,...,an|z1, ...,xn) = Hez‘(ai|$z‘) (3.5)
i=1

Each sequence is not univocally connected to a path in the HMM as many of

them may generate the same sequence. The last part of the alignment consists then
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in finding the path maximizing the probability of obtaining the considered sequence
given the transition probabilities of the model.

Even if profile HMM have been successfully used for protein MSA they cannot
be adapted to RNA modelling because they cannot take into account base-pairing.
However from the same family of probabilistic models good substitutes can be found:

Covariance Models

3.2.4 Covariance Models

Covariance models are a generalisation of profile HMMs developed for modelling
RNA sequences. While profiles HMM are developed on a unidimensional chain, a CM
is built on a tree, called guide tree, whose nodes closely corresponds to the consensus
secondary structure of the aligned RNAs. In Fig. a schematic representation of a
CM is described. Guide trees are made of 4 different types of nodes (cf. to panel B

in the picture):
— a unique ROOT node showing the starting point for the structure
— 3 different nodes for matching: MATP for a matching pair, MATL and MATR

for a left or right single-stranded residue matching
— a bifurcation node BIF
— two root nodes for the beginning of a new left (BEGL) or right (BEGR) stem

The emission and transition probabilities of CMs are set the same way as HMMs
(see Eq. B3 and Eq. B4). To build the guide tree and parametrise the model an
annotated alignment and its consensus secondary structure are needed. The latter
being well-nested, thus not including triples of bases or pseudo—knots.

Given a parametrised CM we can use it for homology detection via the equiv-
alent of the Viterbi and Forward algorithms for HMM: the Cocke-Younger-Kasami
(CYK) [85] and the Inside algorithm [83]. In addiction to the homology score, CYK
algorithm determines also the most probable parse tree for a given sequence assign-
ing to each nucleotide a position within the consensus secondary structure. Therefore
the alignment of sequences according to the model consists in aligning the sparse
trees and then in converting matches between states on the tree in matches between

nucleotides in the same column.

2. A well-nested structure is such if two pairs ¢ — j and k — [ with ¢ < k < j < [ do not exist.
When this rule is violated we say the structure presents a pseudo-knot. A pseudo-knot occurs when
there are some base-pairs between a loop and positions outside the enclosing stem as in Fig. [3.§

32



A\
G,
A G
RN A
C N ““ * ]
\ AR S—UUCCG/
A“““‘\“ N s s 0 00
So NI, (AGGGCAACUCGA
CoC \“\“\““‘.“\‘ A L R I
C'G NN VW N \A/A’UGAGCU-3'
U.G “‘\“‘\ “\“\ s
A RaanUGAGCU-3

Figure 3.8: An example of secondary structure with pseudo-knots (picture taken
from [83]). Cf. with the well nested secondary structure in Fig B.]

3.2.5 Infernal and Rfam

Infernal [78] is the software used to build the MSAs found in Rfam database. It
uses CMs to search nucleic acid sequence databases for homologous RNAs, or to cre-
ate new secondary-structure based multiple sequence alignments. Before searching
for homologous through the CM a first BLAST filter is applied. This step is neces-
sary because CM are computationally expensive and they cannot be run on the full
database. Recently the new version of Infernal 1.1 [87] has overcome this difficulty
using a new filter pipeline based on accelerated profile Hidden Markov Model meth-
ods and HMM-banded CM alignment methods. Results are quite impressive and the
software can search for homologi 100-time faster than before.

These recent advances allow the release of a new Rfam 12.0 [77] including more
families, more accurate and bigger, than the ones released with Rfam 11.0. Unfortu-
nately, given the huge size of some family, the full Stockholm alignment is no more
available for download. Only the seed alignment can be obtained and then users have
to run Infernal by themselves. Note that, as many of the analysis I will treat within
this dissertation were performed before the release of Rfam 12.0, all the results showed
refer to Rfam 11.0 alignment. More reliable MSAs would have improved inference
results: in the following we will see, in fact, that inference methods are quite sensible

to the alignment quality.
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Figure 3.9: Scheme of the steps needed to build a MSA with CMs. (A) An input
multiple sequence alignment with annotation about the consensus secondary structure
is needed. (B) The guide tree is shown. It is based on the consensus structure. (C)
The transition probability network needed for parametrisation. (D) Parse tree of
sequences. When the CM is used to align sequences first the sparse trees of each
sequence are computed, then they are aligned one to each other and finally nucleotides
belonging to the same node are placed in the same column. Note that guide tree is
computed from the initial alignment, while parse trees are computed from the model
to align sequences in the final MSA. Thus, even if for this toy model sequences in
panel A are the same as in panel D, in real-life problems they are supposed to be
different. This picture is extracted from [86]
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3.3 RNA secondary and tertiary structures predic-
tion

During the last few decades a huge effort has been done for the development of
tools able to predict RNA secondary and tertiary structures. Even though experi-
mental methods have improved, the most part of known functional RNAs remains
structurally unresolved and often also functionally unresolved. Advances in structure
prediction tools have shown it is possible to build reliable computationally determined
structures that can be used within probing experiments [88]. Several tools have been
developed since now, many of them have been reviewed here [89).

In this section I will explain the problem of RNA structure prediction. Firstly I
will describe two secondary structure prediction models, then I will rapidly redraw
the picture recently emerged from RNA 3D prediction competition RNA-puzzle round
2 [90].

3.3.1 Secondary structure prediction

Approaches for RNA secondary structure prediction vary widely: the most sophis-
ticated available tools are based on free energy minimization algorithms. They were
originally introduced by Zuker [91]. Free energy minimisation algorithms are based on
the observation that the best structure would be the one with the lowest equilibrium
free energy AG. The major limit of these methods is that they need experimental
knowledge about the magnitude of the actual interaction between base-pairs [92] and
often these data are not precise enough. Also comparative sequence analysis plays a
role in this field [93] [94].

We know that even if sequences can change a lot, the secondary structure is
often well preserved thanks to compensatory mutations. Sequences, far away from
each other in term of evolution, are very difficult to be correctly aligned: the best
methods for multiple sequence analysis are based on profiles and the accuracy of such
methods decreases with increasing divergence. Structural information helps obtaining
better alignments, but good structural predictions often rely on good alignments.
This scenario opens to the development of iterative approaches as the one introduced

here [79] and inspired by a generalised version of the Nussinov algorithm [95].

Nussinov Nussinov algorithm is a dynamic programming algorithm able to effi-

ciently predict the optimal secondary structure for a RNA sequence. It is a recursive
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algorithm based on the idea that, given an optimal sub-structure, there are only 4

possible ways to obtain a longer sub-structure:

adding a left single site

— adding a right single site

— adding a base pair

— linking two optimal substructures

The predicted structure is optimal in the sense that it maximises a certain score: in
the original version of the algorithm, taking as input only one sequence, the number
of base-pairs along the structure was maximised. Nevertheless, using information
from a MSA it is possible to compute a covariation score for every pair of sites and
then use it for maximisation. A very well known score able to estimate compensatory

mutation events is Mutual Information (MI).

fij(Ai, Aj)

My = 2 folAlos 3 G0 L
Coming from information theory, MI tells us the gain in information we have in
considering two sites together instead of separately. In Eq. B30 MI definition is
shown, where f; and f;; are the single site frequency counts and the pair frequency
counts computed from MSA (cf. Eq. [L2). In the generalised Nussinov MI is used.
Thus the optimal score of the subMSA of columns from i to j, S;;, is defined as

follows:

Sit1
Sij—1
Sit1,j-1 + M1

MaX;ck<; Sik + Skil

(3.6)

Sl'j = Imax

As other dynamic programming, once matrix S;; is computed, Nussinov algorithm
makes use of a trace-back procedure to look for the optimal path giving rise to the

best secondary structure for the considered sequence.

RNAalifold RNAalifold is a software for the prediction of the secondary structure
of RNA combining free energy minimisation and covariation analysis. It includes a co-
variation term in the folding energy such that compensatory mutations are taken into
account for the evaluation of the energy of any sub-structure. Note that also free en-

ergy minimisation based models follow the same recursive procedure of the Nussinov
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algorithm: they build a longer optimal sub-sequence given the optimal sub-sequence
available. In a latest version of the algorithm [96] the covariation score is computed
thanks to a modified version of the statistically defined substitution matrices called
RIBOSUM, introduced here [97] in order to improve the homologous research. RI-
BOSUM matrices give the log-odds ratio for observing a given substitution relative
to background nucleotide frequencies and are defined for both single nucleotides and

base-pairs.

3.3.2 Tertiary structure prediction

Predicting secondary-structure of RNAs is a crucial issue in the field and many
solutions already exist. Even though, the knowledge of the secondary structure give
us a blueprint of the RNA molecule, it is often not enough for a fully functional char-
acterisation. Several methods for tertiary structure prediction have been developed.
However high quality results are till now restricted to small sequences consisting
of simple helices and small loops. When more complex structures are concerned,
the reliability of the structure depends on experimental information available about
interactions between nucleotides in the molecule. To probe the state of the art a
CASP(Critical Assessment of protein Structure Prediction)-like experiment has been
performed [98] in 2012 and [90] in 2015. This kind of world-wide experiments, known
as RNA-puzzles, let groups developing software and pipelines for 3D RNA predictions
compete on hidden known structures. The sequence of the target structure is given
to each group, plus some additional experimental information about, and the aim is
to predict a tertiary structure as close as possible to the hidden crystal structure.

Last RNA-puzzle competition has involved seven research groups. Three target
structures have been proposed and the best results are characterised by root-mean-
square deviations (RMSD) of atomic positions range between 6.8 and 11.7 AP and
all display predicted structures topologically akin to native ones. If we compare this
results to what is nowadays reachable in the related field of proteins, it seems to be

quite modest. However, given the size of the target sequences (>160 nucleotides),

3. Results on three different RNAs have been reported.

— The lariat-capping ribozyme: 24 structures submitted, average RMSD 24.05, standard devi-
ation 4.91

— The adenosylcobalamin riboswitch: 34 structures submitted, average RMSD 23.09, standard
deviation 6.87

— The T-box—tRNA complex: 26 structures submitted, average RMSD 11.52, standard devia-
tion 2.87
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results show a positive trend for RNA structure predictions. The best structures
predicted within this collective experiment have been obtained by Das group, who
provides also to each group tertiary contact information obtained with a mutate-
and-map strategy based on systematic mutagenesis experiments and high-throughput

chemical mapping [99].

Rosetta Rosetta is a de novo approach for 3D structure prediction developed by
Das and Backer [100]. It was initially introduced in the related field of proteins [T0T]
and then generalised to different macromolecules. Rosetta consists in a fragment as-
sembly of RNA (FARNA) guided by a knowledge-based energy function taking into
account experimental knowledge on backbone conformation and side-chain interac-
tions. The fragment library includes fragments made of 3 nucleotides extracted from
the large TRNA subunit. Once interesting fragments are selected, a Monte Carlo
routine is run to assemble them into a native-like folded structure. The main feature
of Rosetta is that it lets us include structural knowledge such as secondary structure
or even tertiary interactions. Moreover it has been proved that such information can

dramatically increase the quality of the prediction [102].

3.4 A new approach to prediction: DCA

Having in mind the state of the art for RNA structure prediction, the applica-
tion of DCA to such a problem seems to be straightforward. An urgent need for
supplementary information in order to correct 3D folding emerges from RNA-puzzle
and opens new scenarios: till now MI has not been able to substantially help 3D
prediction and only experimental information have done the job. Can new and more
sophisticated approaches to statistical inference of interactions from MSA face this
challenge? This is the question my thesis will try to answer and roughly speaking the
answer is: "Yes, they can, results are promising but till now modest". I will show in
the following that, differently from protein, the DCA signal obtained from RNA MSA
shows a multi-scale complexity opening to possible post-processing improvement pro-
cedures. The development of these procedures is not mature yet and needs more

theoretical efforts for a better interpretation of the signal. T am anyway confident

4. de novo is to be intended in the sense that any information other than the sequence is needed
for folding. However in the specific case of RNA information about secondary structure or tertiary
interaction can be introduced in the routine and turns out to be crucial to obtain good quality
predictions.
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that the results I will show in the next part of this chapter will be an interesting
starting point for further researches.

In this section I will describe the full prediction pipeline: from pre-processing
of input alignments and structure for comparison to post-processing of the output
signal. The latter corresponding to an unpublished effort to better understand DCA

signal and its complexity with respect to structural knowledge.

3.4.1 The comparison with the alignment

The main interest in structure prediction is homology modelling: finding a ho-
mologous sequence with structure, and modelling an unknown sequence using that
structure as a template. This is not very successful in RNA due to the low number of
families with exemplary structures. Therefore computational approach for structure
prediction are needed. A key point in order to test methods for the prediction of
three dimensional structure of RNAs is the comparison with known native structures.
When the prediction is performed for biological interests, the input of the process
is the target sequence, as in the RNA-puzzle competitions. Then, depending on the
type of analysis one would perform, other sources of information can be used. Within
comparative sequence analysis the first step is to search for homologous sequences,
then sequences are aligned and, only when a reasonable MSA is available, the pre-
diction can be performed. The problem I'm facing within this dissertation is slightly
different: T want to develop and test the performance of a new tool. At date DCA
cannot, be used for homology detection nor multiple sequence alignment, so the very
input of my work are MSAs obtained with the methods I've described in the previous
sections.

As we saw above, alignments and structures come from different databases. Rfam
gives, for each family, the PDB id of some available structures, however the latter ones
may not be of the same length of the sequences in the alignments. They usually don’t
cover the full length of the alignment or, otherwise, they include some engineering
needed for the realisation of the crystal structure. Moreover some PDBs include
proteins in complex with the RNA or multiple chains. Therefore, to avoid all these
issues, we analyse available PDB files for the considered family, we take the sequence
of the chosen structure and then we compare this sequence and the alignment in order
to obtain a map between them.

The most efficient way to find a map between the alignment and the structure
is to align them. Usually Rfam tells us the name of the species whom the crystal

structure in PDB belongs to, thus it is in principle possible to find the corresponding

39



sequence and to align it to the PDB file’s one. Unfortunately this procedure needs a
direct human contribution in reading the names, interpreting them etc. In order to
automatise the procedure we align the PDB sequence to every sequence in the MSA
and keep the sequence whose alignment has the best score. This one is the sequence
with the larger number of matches with the PDB structure sequence.

The score depends on the algorithm used for the pairwise alignment. We tested
2 algorithms: a global (Needleman-Wunsch) and a local (Smith-Waterman) pairwise
alignment method. The advantage of a local algorithm instead of a global one depends
on the differences between the sequences to be aligned: if the two sequences are very
different in size, the local alignment gives better results. Since many observations
on our dataset have shown that the local alignment algorithm produces alignments
with the smallest number of gaps in the shortest sequence, we have included in our

pipeline the Smith-Waterman algorithm.

3.4.2 PDB - RFAM gold standard

We performed our analysis on the release 11.0 of Rfam. All the 51 available
families with more than 200 sequences and annotated corresponding structures in
PDB have been studied. From the analysis of the structures we have found that only
40 of them were high quality X-ray structures with a resolution smaller than 4A, thus
we discarded the others in order to increase the reliability of our results in term of
comparison with the native structure. Tab. shows the full list of those families,
fitting our minimal quality requirements (> 200 sequences and < 4A resolution), for
which a good mapping between PDB and Rfam is possible.

We have encountered some technical issues regarding input files: some PDB or
FASTA files were too big for launching analysis on desktop machines or some Stock-
holm files were broken. Moreover some families has a very simple structure, made of
a single hairpin loop, with no interesting tertiary contacts. Dimers have also been
excluded from the final list. Further analyses have revealed that some of these fami-
lies, even if they seemed showing a good matching between alignment and structure,
actually mismatch if we consider the consensus secondary structure. This very spe-
cial issue can be a sign of bad alignment probably due to the presence of sub-families
of sequences. The magnitude of this kind of errors can vary a lot depending on the
number of sites involved and also on their position in the native structure. Sometimes
we observe the consensus secondary structure to be predicted on sites that are not
close in the native structure. Although smaller displacements can also occur within

sites being actually close and thus it is impossible to see a priori these errors from the
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Family M.ss | PDB ID | Chain(, Residues) comment
RF00002 1k8a A broken gz file (RFAM)
RF00005 2csx C broken gz file (RFAM)
RF00001 | 57991.33 3cc2 9 included in the Gold Standard
RF00028 | 7922.93 1hr2 A probably bad quality alignment
RF00029 | 3339.51 1kxk A hairpin loop
RF00163 | 3009.92 20eu A included in the Gold Standard
RFO1118 | 498.83 2j01 A, 2166-2273 hairpin loop
RF00017 | 8145.33 119a B included in the Gold Standard
RF00059 | 3347.9 2gdi X included in the Gold Standard
RF00015 | 3728.6 20zb C hairpin loop
RF00061 61.92 3t4b A hairpin loop
RF00177 2vae A, 1-1519 too big (PDB)
RF01959 1vsh A, 28-1537 too big (PDB)
RF00504 | 1828.54 3owi A included in the Gold Standard
RF00010 | 2309.67 1u9s A included in the Gold Standard
RF00023 | 2143.3 4abr Y, 42-89 included in the Gold Standard
RF00169 | 1318.68 2xxa, F hairpin loop
RF00162 | 1165.56 2gis A included in the Gold Standard
RF00050 | 1045.85 3f2q X included in the Gold Standard
RF00175 13.64 Inlc A hairpin loop
RF00037 | 224.59 3snp C hairpin loop
RF02001 | 636.43 3bwp A included in the Gold Standard
RF00167 | 588.88 1y26 X included in the Gold Standard
RF00168 | 552.38 3dil A included in the Gold Standard
RF01051 | 983.21 3irw R included in the Gold Standard
RF01852 | 340.63 3rgb A probably bad quality alignment
RF01998 | 459.8 4ds6 A probably bad quality alignment
RF00380 206.7 2qbz X included in the Gold Standard
RF00011 | 215.14 2a64 A probably bad quality alignment
RF01734 | 532.03 3vrs A included in the Gold Standard
RF00522 | 106.59 3klv A included in the Gold Standard
RF00234 | 259.49 2gcs B included in the Gold Standard
RF00524 | 107.66 3ubd 1, 2174-2229 hairpin loop
RF00618 | 288.94 3siv C dimer

RF00164 28.35 1xjr A hairpin loop

RF01831 | 192.15 3suh X probably bad quality alignment
RF00094 4.77 1sj3 R included in the Gold Standard
RF01960 | 111.82 4a18 1,334-389 too big (FASTA)
RF01857 | 154.61 llng B included in the Gold Standard
RF01786 | 108.33 3q3z A included in the Gold Standard

Table 3.2: Table showing the list of families for which a good match between Rfam
and PDB is found. The upper part of the table contains families with more than 1000
sequences in the alignment, while the bottom part those families with less than 1000

sequences.
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Figure 3.10: Frequency counts of the fraction of gaps in each column of the alignment.
Data contain columns from the Gold Standard alignments.

comparison between the native structure and the consensus secondary structure in
the alignment. An a posteriori analysis on predictions is indeed needed to understand
if false positives can depend on bad alignment of sequences or not. In the next sec-
tions I will refer to those families selected according to what said above as the Gold
Standard. Tt includes 20 families and all the analysis showed within this chapter has

been performed on this restricted list of families.

3.4.3 Pre-processing of the alignment

As we saw above, Rfam alignments are made with Infernal software and, differently
from the equivalent software for proteins (Hmmer), it does not give us information
about the origin of gapped region. However, if we analyse the number of gaps per
column, we obtain the histogram in figure 3.10.

This means that the 90% of the columns is either a site with almost no gaps
or it has almost only gaps. Thus we can argue that those sites with a lot of gaps
are insertion sites and could be removed from the alignment losing no fundamental
information for structure prediction. The choice of a precise threshold is arbitrary:
we choose to fix the threshold to 50% of gaps, taking care that no secondary structure

sites have been lost.

3.4.4 Removing phylogenetic bias

From MSAs we can compute the frequency per site of each nucleotide. However,

MSA sequences set up a biased sample of all possible sequences since the species are
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evolutionarily related. In order to reduce this bias we cluster sequences according to
similarity and we assign them a weight equal to one over the number of sequences
in the cluster. We can adjust this re-weighting choosing the percentage of similarity
needed to insert two sequences in the same cluster, e.g. if we fix the similarity to
100% we will assign a weight 1/ to [ identical sequences. The value of the similarity
we use for the analysis is 90% and it has been empirically chosen. Note that results

are quite robust with respect to the re-weighing threshold.

3.4.5 Direct Coupling Analysis: a brief recall

Mutual Information can measure correlation between two nucleotides, but it can-
not distinguish correlations coming from a direct coupling and correlation coming
from indirect relations. For instance, two sites in the sequence could be correlated if
there exists, for both of them, a coupling with a third site. This indirect correlation
cannot be distinguished from the direct ones by Mutual Information. In order to
disentangle the two effects we need to focus on couplings instead of correlations: this
is the aim of Direct Coupling Analysis.

We consider the sequences in the MSA as sampled from a global statistical model
P(Ay,...,ApL), where each A; represents the nucleotide at site i and L is the length of

the sequence. We want this model to reproduce the empirical counts f; and f;;:

Z P(Al,...,AL) :fz(Az) X Z P(Al,...,AL) :fU(A“A])
{Ag|k#i} {Aklk#i,5}
(3.7)

Eq. B.7 guarantees coherence of data and model up to the level of pair correla-
tions. Finally, as we have seen in the fist chapter, we apply the maximum entropy
principle and we obtain a g-states Potts model, being e;;(A;, A;) the coupling be-
tween nucleotide A; in site ¢ with nucleotide A; in site j and h,;(A;) the field due to

the presence of nucleotide A; in site 1.

P(Al, ceey AL) = %exp {Zeij(Ai, AJ) + Z hz<Al)} (38)

i<j i
In mean-field approximation an immediate relation between the couplings e and

the connected correlation matrix C can be found:

eij(Ai, Aj) = —=((C™)71)i5(Ai, A)) (3.9)

43



C™ is the empirical connected correlation matrix and it is defined as follows:

O (s, A7) = fij(Ai Ay) = Fi(A) f5(A) (3.10)

for i # j, while C{™ is a diagonal matrix with C"P(A;, A;) = f;(A;).
Having in mind that real data are not i.i.d. and come from a finite (usually small)
size sample, we need a regularisation scheme to correct finite-sampling effects (we will

extensively analyse the role of regularisation in the next chapter). The regularisation

chosen here is a pseudocount regularisation.

{f£ (A) = (1 0) fi(A) +° (3.11)

fi(Ai Aj) = (1= 0) fiy(Ai, A45) + &

Equation 311 shows the use of pseudocounts as a correction over the single site

frequency counts and the pair frequency counts. Parameter 6 allows us to set the

strength of the correction. According to what we will see in the next chapter, we
choose 6 = 0.5.

3.4.6 The scores

Direct Coupling Analysis gives us the coupling matrix e, but in order to find base-
pairs with the highest coupling we define a scalar score for each pair: we compress
information that in principle can be useful in order to classify contacts. We use the
Frobenius Norm (Eq. B.I2) of the matrix e;;(A;, A;) with ¢ and j fixed.

Fy= >0 lei(As, A (3.12)
A A,

(Fij); (Fij);
<Fz‘j>z‘j
Interesting improvements can be obtained correcting F;; with the so called average

product correction (Eq. BI3). APC [103] estimates the background coupling between

two sites due to random and phylogenetic reasons and thus can be removed from the

F* = Fyj — APCyy = Fjj —

ij

(3.13)

score so to obtain a more clear signal coming from coevolving pairs.

Once we have a scalar score for each pair of sites, the simplest thing to do is to
sort them: the higher is the score the more reliable is the prediction. Actually, the
reliability of the prediction is not fully understood. T'P(n) tells us the fraction of
true contacts we find if we consider the n pairs with the highest score and it is an

useful tool in order to compare the predictive power of different scores. However,
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how do we actually compute the best value of n such that our prediction is still
reliable? Meaning, how can we estimate till which value of T'P(n) our model is still
predictive and not random? Trying to answer these questions we studied the p-value
of true positive rates. The p-value shows the enrichment of true positives considering

a certain number X of predictions and is computed using a binomial null model:

— We consider the list of all possible pairs of sites ranked according to a given

score

— For each position X in the rank we compute T(X,Y) being the number of TP
(True Positives) within a window including the next Y predictions, where Y
equals 10% of all elements of the considered list. The size of the window Y is
a compromise between local resolution (small Y) and reliability of the p-value
(large Y).

— The binomial null model uses a random TP rate, determined from the remaining
(from X+1 to the end) list of pairs, taking into account that the native contact

we have found within the first X predictions cannot be found again.

— The p-value is determined as the probability that this null model achieves at

least T(X,Y) contacts within a random i.i.d. sample of size Y.

The aim of this kind of analysis is to confirm that, even if scores of secondary-
structure base-pairs have a much stronger covariation signal than tertiary base-pairs,

DCA score contains information about non-canonical base-pairing that MI does not.

3.5 Article: Direct-Coupling Analysis of nucleotide
coevolution facilitates RINA secondary and ter-
tiary structure prediction

Results about DCA secondary and tertiary-structure prediction are shown it the
following paper. Since for this work we also run some 3D predictions with Rosetta the
list of RNA on which we test our tool is shorter than the Gold Standard introduced
above. Rosetta segment assembly software needs a big computational effort and thus
the length of the sequence to be folded has to be smaller than 100 nucleotides. We

thus reduced our target set to 6 Riboswitches.
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3.6 Open problems and future improvements

One of the points made in the paper above is that two different scales exist within
the DCA score: there is a stronger part, probably due to Watson-Crick coevolution,
and a weaker one due to non-canonical base-paring. It as been argue that non-
canonical base-pairs show much less correlation [I04]. We have shown that this picture
changes when DCA is used instead of a measure for correlation as MI. Anyway it seems
reasonable, and TP rates in Fig 4 in the paper confirm, that the coevolution signal
from tertiary base-pairs is weaker and disentangling it from noise is absolutely non
trivial. In the following I will propose two strategies to increase the signal-to-noise

ratio based on a deeper analysis of the score.

3.6.1 Filtering matrices

When we use a scalar score, we are forced to waste a large part of the information
contained in the coupling matrix e. For instance, consider (i,j) being a Watson-Crick
base pair in the secondary structure. We know that the substitution of a C with a
A in site i has to be probably followed by a substitution of a G with a U in site j.
Using this information we can in principle clean up the secondary-structure signal
from noise: we can define a weight matrix based on the knowledge of base-pairs that
are possible as in the table 3.3l

Finally, we weight each element e;;(A;, A;) with the corresponding value of the
pair of nucleotides A; and A; as in B.14t

Sij = AZAZGU(A“AJ)U}(AZ,A]) (314)

This weighted score is a good alternative to the simple F,,.. However it solves
the easiest part of the problem: filter out non-canonical interactions. One can argue
that a similar approach can also be used the other way round, that is to filter out
secondary-structure signal. However results contradict this hypothesis confirming the
complexity of the problem or revealing some intrinsic limitation of the mean-field.

This particular topic will be treated more in details in Chapter [l

3.6.2 Local coherence matrix

Even if protein DCA strongly improves the accuracy of residue-contact predic-
tions, we have seen in the previous sections that, when RNAs samples are used,

comparing the number of true positive predictions within the n highest DCA scores
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Table 3.3: Matrix w(A;, A;) values based on the possible Watson-Crick base-pairs
plus the wobble pair

with the number of true positives within the first n mutual informations, only a weak
improvement is achieved (Fig. 4 in the paper). Actually, if we remove from the rank-
ing all secondary-structure base-pairs, results are quite different. Focus for instance
on a true positive rate equal to 0.6 (i.e. we admit 40% of prediction errors): MI with
average product correction predicts on average around 3 true contact if the inter-
nucleotide distances is up to 4A or 4 up to 84 , while DCA predicts 5 up to 4A or
10 up to 8A . Thus, DCA can increase significantly the number of correct predictions
within the tertiary structure, in particular when a less stringent threshold for contact
definition is chosen.

The clear prevalence of secondary-structure base-pairs among the top predictions
shows that tertiary-structure contacts have a weaker coupling scale than secondary-
structure contacts. This weak coupling can be partially hidden by the noise generated
due to insufficient sampling and the strong secondary-structure couplings. Moreover
usually first false positives appear quite close to native contacts. Therefore we com-
pute for each pairs of nucleotides a local coherence score as the average of the score
of the considered pair with the scores of the 8 nearest neighbours in the contact map.

Being F,,. the coevolution score, we define the local coherence score C as:

Cij= Y. Y FF (3.15)

l€i,i+1 kej,j+1

i.e., for each pair (7, j), we include also (i,7 £ 1), (i £ 1,7) and (i £ 1,5 £+ 1) into
the average. As an immediate consequence, background noise is almost homogeneous,
while around existing contacts, some compact clusters of pairs with higher score arise.
In Fig. B. 11 we show results of the averaged procedure for the 6 Riboswitches analysed
in the paper.

In principle it would be possible to reinforce local coherence by an averaging
procedure over larger neighbourhoods of each pair (i,j), however we observed that the
proposed environment is a good compromise between the noise reduction due to local

signal coherence, and the loss of specificity of the scores due to averaging.
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3.6.3 Clustering procedure

Given the local coherence scores, we need to define a procedure to separate po-
tential coevolutionary signal from background noise. Average scores are divided into
four classes using a simple K-means clustering, cf. insets in Fig. 3.12 Empirically we
find that the two classes of highest scores correspond to residue pairs inside or close to
the secondary structure. The fourth class of lowest scores contains background noise,
it will be discarded from further analysis. Potential tertiary-structure contacts are
mainly restricted to the third class, more precisely to clusters of third-class position
pairs which are isolated from the secondary structure.

Since we know the secondary structure a priori, we can select, among pairs be-
longing to the third class, tertiary structure predictions. Indeed, being the secondary-
structure signal so strong, one can expect the averaged procedure producing high
score pairs nearby all predicted Watson-Crick base-pairs. We observe this effect be-
ing propagated till the second nearest neighbour of each base-pair. Thus, being (i, j)
a secondary-structure base-pair, we remove from the ranking pair itself and all pos-
sible pair combination among sites (¢,7,7 = 1,7 & 1,7 & 2, j + 2). The effects of this
removal are shown in Fig. B.I3. Finally, we rank the remaining pairs using the origi-
nal score Fapc (i.e. the average score is used to discard locally incoherent predictions,
the original score for the final ranking of maintained position pairs).

With the above described procedure we produce a clustered DCA score ready to
be used in structural predictions and extracting the best part of information from the
original DCA: the local coherence method produces a signal that is locally homoge-
neous and clustering filters out noise.

Unfortunately, even if the comparison between the two scores in Fig B.I1] suggests
that a post-processing of the signal is possible, final results obtained with Rosetta
were generally inconclusive and very similar to simple DCA ones: some of the fam-
ilies benefits of the post-processing, some others not. The absence of a systematic
improvement entails the impossibility of an automatic pipeline including the local
coherence analysis. For instance the choice of the number of classes, defined within
the K-means clustering, seems to be suboptimal for RF00162 and RF01734 (cf. Fig.
BI2) or even the definition of the local coherence score can be probably improved
including more neighbours in the average or weighted in a smooth way. However
in the field of RNA structure prediction a human intervention and optimisation of

techniques is still common and cannot be a priori discarded.
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The most part of tertiary true predictions belong to the
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3.7 Conclusions

Within this chapter we have faced the problem of functional RNA structure pre-
diction. Given its intrinsic flexibility, the experimental determination of reliable RNA
structures is still challenging and computational approaches have been developed to
solve the problem. However the quality of 3D predictions still depends on the ex-
perimental knowledge of tertiary interactions. Outperforming MI and its adjusted
version MIapc, DCA is proposed as a novel method for comparative sequence anal-
ysis. It has been proved that combined to standard and very well known tools as
Nussinov algorithms and Rosetta, DCA systematically improves predictions on a 6-
RNA benchmark. Results shown in this chapter open to further application of DCA

to a diverse range of software already including covariational scoring systems or not.
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Chapter 4

Limits of mean-field inference and the
role of regularisation

In the previous chapter we have seen how mean-field (MF) inference can be suc-
cessfully applied to RNA covariational sequence analysis. Moreover results on RNAs
poorly represent the real potential of DCA, whose performances are considerably bet-
ter on proteins [3] [31]. However, these results still depend on the use of a particular
type of regularisation scheme, called pseudocounts, needed to ensure that the inverse
problem is always well defined. As we have seen in the previous chapter, the empirical

covariance matrix Cf;" in Bq. BI0is defined on the transformed counts f; and fi

{f; (Ai) = (1= 0)fi(A;) + ¢ (4.1)

fi(Ai, Aj) = (1= 0) fiy(Ai, A)) + 5

being 6 the strength of the pseudocount regularisation and ¢ the number of colours

on the Potts model. From a Bayesian point of view the optimal value for 6 should
depend on the level of noise in the sample (i.e. 6 ~ % for a sample of size B)
and should vanish for perfect a sampling. However several empirical studies [26] [3]
[105] [106] have shown that it is not the case for MF inference. As large (6 > =)
pseudocounts are in this case used, no dependence of # on the sample size is observed.
In the following paper we have analytically studied MF inference performance on
diverse systems in the perfect sampling case. We observe that large regularisation
terms help correcting the bias introduced by MF approximation: MF approximation
over-estimates large couplings, while with a strong regularisation we under-estimate
them. The result is that for medium-range values of couplings the quality of the
inference is dramatically improved with 6 > % compared to 6 ~ %. We show that
both large pseudocounts and L2-norm regularisations yield couplings which correlate

better with the true ones.
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Moreover we have claimed that the strength of the regularisation depends on the
number of colours in the model and even substantial differences exist between the
Ising and the Potts case: thanks to some toy-models made of 2 spins, we have shown
that on Potts models the inference is poorer than on the Ising model case because
terms in the coupling matrix J;; are differently biased by the MF approximation.
In particular we have observed that the hardness of the inference depends on how
couplings matrices within the Potts model are defined. Note that once we have
decided that an interaction exists among site i and size j of the graph we need to
specify the form of matrix J;;. The size of this matrix is ¢ X ¢ and thus for each
interacting pair ¢ parameters have to be drawn from a certain distribution. We have

distinguished two variants:

— Homogeneous variant: For each interacting pair (i,j), we randomly draw a

number, Jy, and we define J;; as follows:

Ji Js Jp ... Jp
Jg Ja Jp ... JB g—1 Jo
Jy=| T Jo Ja o Jp | with Ja=T—=do, Jp=—. (42)
Jp

JB JB JB JB JA

This model is such that the g Potts colours have equal frequencies f;(a) = %.

— Heterogeneous variants: The simpler extension of this model to non-equal fre-
quencies can be easily obtained by adding some local fields h;(a) on each site
and for each colour. Fields introduce a bias on some particular colour on each
site and entail a heterogeneous distribution for frequencies. In the following we
will call this model heterogenous-A model. Moreover, one can induce an even
more heterogeneous distribution for frequencies with the addiction of randomly
chosen elements in J;;. This is the most general case of a random characterisa-
tion of a Potts model, since no constraints exist among parameters. We refer

to this model as the heterogeneous-B model.

We have noticed that significant differences exist between these two classes of
models: we have analytically computed the relation between true couplings and MF
inferred couplings for a toy-model containing only 2 spins. However analytical results
have been numerically confirmed on larger systems of size N = 50 and results on
both ¢ = 5 and ¢ = 21 will be shown below. Parameters are drawn from a uniform
distribution between —L and L. These results (Figs. and [43)) are obtained in
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Figure 4.1: Scatter plot of the couplings J;;(a,b) for the homogenous Potts model
for ¢ = 5 (filled circles) and for ¢ = 21 (triangles) colours; perfect sampling. (a) No
pseudocount. (b) With pseudocount (in the figure 6 correspond to the pseudocount
strength called € in the text). Each panel shows results from three realizations with
different sets of couplings (L = 10). Black solid lines correspond to the analytical
predictions made with the 2-spin toy model. Colours show values of f;(a)f;(a) (called
in the figure p¢ and p‘}), here equal to ¢=2 for all interacting sites and for all symbols,
see right scale.

the perfect sampling regime (B = o) on a system with nearest-neighbour interactions
on a 1D lattice. The exact solution for frequencies and correlations is obtained
through a transfer matrix calculation.

Fig. [41] shows the relation found between true and inferred couplings for the
homogeneous model. Note that, differently from what is found in the Ising case,
the two curves exist as two different values of couplings (J4 and Jp) are found in
the coupling matrix The quality of the inference is extremely improved with
pseudocount as couplings in the range from nearly zero to five are well estimated.
However some significant mistakes are made: the pick in zero found in panel B of
Fig. is due to the fact that pseudocount regularisation entails a rescaling of colour
frequencies inducing some fake interaction among couples that are not in contact in
the real model. The points found under the right side of curves are a compensation
of this effect.

When the heterogeneous variant is considered (Figs. and [L3) analytical com-
puted curves are no more distinguishable, even if in Fig. the overall trend is still
visible. This is no more true for Fig. [£3l The point is that a curve of the type seen
in exists for any different entry of matrix J;; and follows a slightly different path.
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Figure 4.2: Scatter plot of the couplings J;;(a, b) for the heterogenous-A Potts model
for ¢ = 5 symbols, with perfect sampling. (a) No pseudocount. (b) With pseudocount
(0 = 0.4). Each panel shows results from five realizations with different sets of
couplings and fields (L = 2). Insets: distributions of the frequencies f;(a). Black
solid lines correspond to the analytical predictions made with the 2-spin toy model.
Colors show values of fi(a)f;(a) (called in the figure p¢ and p§), see right scale.
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Figure 4.3: Scatter plot of the couplings J;;(a, b) for the heterogenous-B Potts model
for ¢ = 5 symbols, with perfect sampling. (a) No pseudocount. (b) With pseudocount
(0 = 0.4). Each panel shows results from five realizations with different sets of
couplings and fields (L = 2). Insets: distributions of the frequencies f;(a). Black
solid lines correspond to the analytical predictions made with the 2-spin toy model.
Colors show values of f;(a)f;(a) (called in the figure p¢ and p§), see right scale.
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Figure 4.4: Heterogenous-B Potts model for ¢ = 5 symbols, for various depths of
sampling. (a) Small pseudocount § = 6% = L. (b) Large (optimal) pseudocount
0 = 0MF = 0.4. Each panel shows results from one realization of the Potts model

with random couplings and fields (L = 2), and three sets of B sampled configurations
(for finite B).

Consider now the case of finite sampling. We know that in principle the main role
of regularisation is to correct from finite-sampling effects. This is true, and confirmed
by our analysis, when the regularisation is tuned according to bayesian considerations:
panel A of Fig. [4.4] shows how finite samples entail diverging inferred couplings: the
smaller the sample is, the larger finite-sampling errors are. In this case we use a
small pseudocount, # = 1/B, in order to correct these effects, and therefore a certain
dependence on the sample size is visible. Conversely, when large pseudocounts are
used, no dependence on the sample can be observed (cf. with panel B in Fig [£4).
Finally note that in Fig. [£4] a Potts model on an Erdos-Reniy random graph is
shown. No significant differences with the heterogeneous B model shown above exist.

As a final, but significant, remark let us observe in Fig. the behaviour of
the Frobenius norm computed with the couplings shown in Fig. [£4l Even if the
inference of the coupling values seemed to be confused, the inference of the interaction
network is definitely ensured by the use of large pseudocounts. Probably the success of
methods such as DCA mainly depends on the surprising synergy among pseudocounts,

MF and Frobenius norm.
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Figure 4.5: Scatter plot of the Frobenius norms of the inferred couplings vs. their true
values for the pseudocount strengths = + (a) and 6 = 0.4 (b). Same heterogeneous-
B model and same conditions as in Fig.[4.4l Lines locate the largest Frobenius norm
corresponding to a pair of sites (7, j) which are not neighbours on the one-dimensional
graph, ¢.e. which have zero true coupling.

4.1 Article: Large pseudocounts and L2-norm penal-
ties are necessary for the mean-field inference of
Ising and Potts models

The full work on MF inference and regularisation schemes is reported in the fol-
lowing paper. After a short reminder on the main topics of the paper, we compare the
effect of pseudocounts and L2-norm regularisation on small toy-model systems com-
puting the analytical form for MF couplings given the value of the true ones. Both
the Ising and the Potts cases are treated. Note that in the Potts case the relation
between MF and true couplings is made of at least two different curves: each term
in the coupling matrix J has a different dependency on the true couplings. We then
show that on bigger systems (N = 50) the proliferation of these contributes makes
Potts inference systematically worse than Ising one. In the last section we use the
O(m) model, a generalisation of the Ising model, to estimate the error on the inferred
couplings due to the MF approximation and how this error can be corrected for with

an appropriate regularisation.
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4.2 Conclusions

With this paper we have shown that MF inference introduces strong errors on
large couplings. These errors can be partially corrected thanks to strong regularisa-
tion terms and in particular a large pseudocount turns out to be the best approach.
Moreover we better understand why DCA needs pseudocount regularisation for pre-
dicting the network of long-range interactions in proteins: firstly the use of large
pseudocounts dramatically reduces the dependence of the inference quality on the
sample size. Secondly, thanks to the large pseudocount correction on inference, the
Frobenius norm of couplings matrices averages out differences between diverse cou-
plings keeping separated in ranking interacting and non-interacting pairs. Anyway
note that results in the paper are shown for artificial models, where only the pairs
of sites actually interacting have non-zero coupling matrices, but this is absolutely
not true for real data. The relations we compute here are true if we assume the in-
ferred model to be a Potts model, that is obviously not the case for sequence analysis.
Therefore additional errors depending on the choice of the model have to be taken
into account.

This last point opens a huge debate on how could be possibly assess a certain
inference method to be better than another. The first question to ask is probably
which is the task we want to accomplish. For instance, since we know the Potts
model is just our interpretation and simplification of the evolution process, we could
argue that having a method able to perfectly fit Potts parameters does not imply
that it will also be the best in predicting the contact map. Furthermore, we saw
that a MF approximated solution for the Potts model gives modest results, while
DCA is a very powerful tool for contact predictions. Therefore inference methods
are commonly tested on real data taken from diverse biological topics, in order to
compare performances on real-world cases. Contact map prediction is one of the task
commonly used for comparison, as several different tools exist and standard results are
known. However a more complex task having interested a large part of the scientific
community is the possibility of building a model able to reproduce data statistics.
Experimental studies on artificial sequence folding [28] have stressed the importance
of computationally predicting whether a given sequence will fold or not depending on
the amino acids of the sequence itself.

MF is not statistically consistent, meaning that even in case of perfect sampling
MF parameters cannot produce a model able to generate a sample whose statistics

recalls the one of the sample from which the parameters have been inferred. As we
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saw in the first chapter, two examples of statistically consistent methods are pseudo-
likelihood and ACE. In the following chapter I will introduce ACE and how it has
been adapted to Potts inference. We will see that, keeping the quality of contact maps
almost at the same level, ACE infers parameters reproducing data statistics with a
precision compatible with the size of finite-sampling errors, differently from pseudo-
likelihood. We will compare DCA, plmDCA (pseudo-likelihood) and ACE according
to both the criteria of contact map prediction and statistical of consistence. We will
first focus on artificial models and then we will consider the same set of riboswitches

we analysed in the first chapter in order to test inference methods on real data.
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Chapter 5

An inference tool for generative
models: The adaptive cluster
expansion

In chapter [I] we have analysed some of the existing algorithms for the solution
of the inverse Ising and Potts model. The last tool I described was the Adaptive
Cluster Expansion [7] [23]. This algorithm has been introduced and tested for the
Ising model. Its extension to the Potts model is straightforward from the analytical
point of view, while entails some computational issues that need to be handled more
carefully. Recall that, even in the MF case, Potts inference turns out to be harder
than Ising one.

In this chapter a many colours Potts model (e.g. 21 colours as it is the number of
protein amino acids plus the gap symbol) will be treated. The first part of the chapter
will be dedicated to a short review of the original algorithm and to its adaptation
to the formalism of Potts model. Then, I will introduce the numerical procedures
we designed in order to improve results and to reduce computational efforts. Finally

some interesting results on artificial models and RNA data will be reported.

5.1 The ACE algorithm

As we have seen in chapter [Il the solution of inverse models entails the min-
imisation of the negative log-likelihood L, introduced in Eq. [L.8 equivalent to the
cross-entropy S between the data and the model, that for the Potts model is defined

as follows:
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N q
S=L=logZ~Y Y hia)fi(a)
i=1 a=1

_ Z Z Z Jij(a, b)fz] (a’ b)

1<j a=1 b=1

(5.1)

data
ij
inclusion of a prior distribution can be helpful for avoiding over-fitting. A Gaussian

where from now on f; = f%% and f;; = in order to simplify notation. The

prior distribution for the parameters is a typical choice:

SL2 = S—’lezlhz(a)Q - Z Jij(a, b)2 (52)

i=1 a=1 i=1 j=i+1 a=1 b=1

N-1

where v/ = 0.01vy as we expect fields need a smaller regularisation compared to
couplings.
Monasson and Cocco [7] have proposed an expansion of S based on a graphical

subdivision of the target network of interactions in small sub-systems called clusters
and defined as I' = {iy, ... it },k < N,

S=> AS, (5.3)

where the summation is made over all possible sub-systems of the N-spin system.
ASr is the cluster entropy and can be recursively computed thanks to the following

relation:

ASp=Sr— Y ASp. (5.4)
rcr

The term St represents the minimum of Eq. Bl restricted to those spins included
in the cluster I'. As we will see, the authors have claimed that this sum can be
truncated, with a minor loss of information, to a restricted number of selected clusters
for computational feasibility. Groups of strongly interacting spins in the system
contribute more to the overall cross-entropy, than weakly interacting ones. Therefore
the selection of clusters is possible on the basis of cluster absolute contribution to S
and a truncated sum can be defined. The convergence of the series is ensured by the
fact that contributes from clusters of spins within the same integration path partially
cancelled each other out [23]. However, the numerical minimisation of the cluster
cross-entropy entails a sum over ¢* terms, where ¢ is the number of colours of the

model and k is the size of the sub-system. The great advantage of this algorithm is
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that the exponential complexity of this computation is moved from the size of the
system to the size of the considered cluster, ensuring reasonable execution times also
for large (i.e. N ~ 100) systems, as long as the size of the clusters having been
included in the sum remains small (i.e. k& ~ 10). Note that the summation on the
full set of clusters bring to the exact computation of the log-likelihood.

Being recursive, Eq. [5.4] ensures that the minimisation of the log-likelihood of a
given cluster depends only on the frequencies and the correlations of the variables in
the sub-system. For instance, the cluster of size one I' = {i;} depends only on the

frequencies of observations of each colour on site i; and its entropy is defined as:

Sp == fu(a)log(f;,(a)) (5.5)

Clusters of size two, as I' = {41,142}, depend on f;,(04,), fi,(0s,) and fi i, (0i,, 04,)
and their cluster entropy ASr corresponds to the mutual information between sites
71 and i5. More generally the cluster entropy of a cluster of size k represents the gain
in information when the k variables are considered to be mutually interacting. When
the two variables in a 2-variable cluster are independent their ASr vanishes.

The full algorithm is described below:

1. We define a threshold t on the overall cross-entropy. We will use it in order to
discriminate clusters significantly contributing to the log-likelihood from those

which can be neglected.

2. We compute analytically the entropy and the parameters of all clusters of size
1

3. We define a list Lj of clusters of size k = 2

4. For each cluster I' € L;,

(a) We compute Sr by the numerical minimisation of 5.1 restricted to T
(b) We record the parameters (fields and couplings) minimising .11
(c) We compute ASr using (.41

5. We select significant clusters among I' € Ly with |ASp| > t.

6. We construct a list Ly, of clusters of size k + 1 from overlapping clusters

selected during the previous step.

7. We lower ¢t and iterate from step 4.
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The construction of lists Lg.1, given selected clusters in L, can be performed
according to two different rules: the so called lax rule implies a new cluster I' to be
added to the list Ly, if there is at least a pair of clusters I'y, 'y in Lj, of size k such
that I'y UT's = I'; the strict rule implies, instead, only the sub-clusters of I' to be
included in Lj.

At each step not only the contribution to the entropy is computed, but also the

approximated value of the parameters minimising the cross-entropy:

=> ) AT, AJr=Jp- ) Ay, (5.6)

k TeLg(t) r/crT

where J is an array representing both field and couplings. As in 5.3 and Jr
is obtained via the numerical optimisation of the log-likelihood, while AJy is the
contribution due to smaller clusters. At each step the sparsity of the obtained graph
is thus guaranteed by the fact that the sum in Eq. is restricted over those clusters
with |ASp| > t.

Given inferred parameters, we test them computing corresponding frequencies
and correlations with the Monte Carlo sampling. To avoid over-fitting we stop the
algorithm when the difference between the observed and the Monte Carlo correlations
stays in the error bars due to finite-sampling approximation (cf. Eq. 7). When the
observed correlations are not yet well reproduced, the algorithm is iterated decreasing
the threshold ¢ in order to include more clusters in the computation of parameters.

The typical uncertainties for frequencies and correlations can be determined simply
from the susceptibility matrix y (i.e. the hessian of the cross-entropy, also known as

Fisher information matrix

)
5f;i = X“ \/fz 2 fz )
0fi; = \/ Xijij = \/fm 73) f”(a“a])) .

The estimation of the quality of the inference is made recording at each value of ¢ the

(5.7)

average error €p on frequencies, the average error epy on correlations (alternatively

also the error on connected correlations €¢) and the maximum error €,,,, among all

terms included in ep and €p2 as shown in Eqs. 5.8, where fM¢ represent the statistics
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of the Monte Carlo sampling run with inferred parameters.

1 (fij(oi,05) = fi (01, 05) = (2vJij(03, 04)))?

€Epo = 7N(N—1) 5 ZZ 5 '2'<0' 0'-) (5.8&)
— 5 q i<j 0i,0; ig\Yiy Y j

1 (filo:) — £ (01) — (29'hi(03)))?

e o
(F}(01,05) = fij(01,05)%  (FMC(07)—fi(0:))?

ma, (G, U )

€maz = N(N-1) 5 (58C)

These errors represent finite-sampling errors. The term depending on « (or 7/ =
0.01v) at the numerator was introduced to prevent from over-fitting small frequencies
and correlations. Note that 0f; and ¢f;; are found in Eq. 5.8 at the denominator,
thus they need to be treated carefully in case of zero correlations: taking into account
definitions [0.7] we fix a lower bound for both f; and f;; equal to %. Another possi-
ble correction consists in computing y from the L2-regularised cross-entropy adding
thus a regularisation term 2v at the numerator of Eqs. .71 However, we noticed
that differences between the two approaches are negligible for typical values of the
regularisation strength and we prefer the first solution from a practical point of view:
errors are well defined also when the algorithm is run with v = 0.

Practically the algorithm starts with a large threshold (¢t = 1) and only 1-spin
clusters are taken into account, then the threshold is lowered ¢ — t/1.05 until a set
of parameters fitting the 1- and 2-point statistics is found. The computation of €p,
€c and €,,,, is performed at each iteration of the algorithm. The convergence point
is reached when €p, ¢¢ and €,,,, are lower than 1. The quality of the inference can
be also tested on non-fit statistics as 3-point correlations and mutational probability.
The latter is a biological interesting observable, since it represents the probability of
mutation of a given number of sites per sequence. Note that, sequence similarity,
as we discussed in chapter [3] plays a fundamental role in the classification and in the
modelling of sequence homology and a good characterisation of related quantities,

such as the mutational probability, remains challenging in the field. In next sections

1. Consider a MSA. The sequence composed by the most frequent symbol on each column is
called consensus sequence. A mutation occurs when on a certain site a sequence express a symbol
different, from the consensus. Within an experimental framework mutations are usually computed
with respect to the wild-type sequence.
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I will often consider the so called generative test, meaning the comparison between
the statistics computed from the data and the statistics computed with the Monte

Carlo sampling. Quantities considered within the generative test are:
— 2-point connected correlationsH
— 3-point connected correlations

— P(k), is the probability of observe k& mutation per sequence with respect to a
reference sequence, called consensus sequence, in which on each site the most

probable a.a. for that site is taken.

Lastly, also the ability to reproduce the network of interactions is verified and
therefore true positive rates and contact maps, similar to those we analysed in chapter

B, will be considered.

5.2 Computational refinements for the Potts case

As discussed before, the complexity of ACE algorithm depends exponentially on
the number of colours in the model, therefore the extension of this method to the
Potts model requires some adjustments of existing routines and the introduction of
new intermediate steps between the extraction of data and the exploitation of results.

In the following section I will present the improvements we have introduced in
the last version of the ACE algorithm in order to easily manage many colour Potts
data. I will first focus on some possible refinements of input data in the scope of
reducing computational costs, then I will introduce the concept of reference structure
and the different ways it can be used to guide the inference. Moreover, we will
analyse two improvements of the code acting on the exact computation of the cluster
log-likelihood, being the latter the bottleneck of the algorithm. Finally, T will explain
how we have combined our algorithm with Boltzmann Machine Learning when the

convergence of the ACE results to be too slow.

5.2.1 Colour compression

A first procedure we have introduced consists in fitting the minimal number of
parameters per site. Observing real data, such as MSAs of RNAs and proteins,

several sites contain much less than 5 or 21 symbols. Functional constraints, joint to

2. This quantity is actually fit by our algorithm, thus, to some extent, it can be considered as
a lax generative test. We introduce it in the analysis to remark the difference with other inference
methods (e.g. mean-field approaches) not able to reproduce these observables, even if they are used
to fit the model.
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the finiteness of samples, prevent us from observing all the possible amino acids or
nucleotides at least one time per column. Being the number of colours so crucial in
terms of computational time, we have decided to force the algorithm to fit a restricted
Potts model, where the number of colours per site ¢; depends on the considered site
and it corresponds to the number of effectively observed symbols.

Discarding non-observed colours, meaning colours with frequency equal to zero,
does not entail any loss of information. However, frequency thresholds larger than
zero can be considered and we have demonstrated they give rise to reasonable ap-
proximations: the need for computational feasibility can be fruitfully paid in term
of information about the system. We compress all those colours whose frequency is
smaller than a threshold p in a single grouped colour ¢;. We leave all the other colours
unchanged. The threshold p can be fixed choosing for instance a minimum number of
required observations within the sample, or such that a certain fraction of the overall

entropy of the site has been reproduced:

Sy = — z_: fi(a)log fi(a) — (1 - i fi<a>> log (1 - z_: fi(a)) (5.9)
> qu_- _ _

Contributions to S,, are progressively added according to decreasing frequency.
We will see in the results section that this colour compression scheme barely decreases
the quality of the inference, entailing instead a huge gain in computational tractability
of diverse systems. Moreover we have observed on protein data that the use of colour

compression helps avoiding over-fitting and improves inference quality.

5.2.2 Reference structure

The colour compression reduces the amount of information about the system for
speed, conversely a similar gain in term of computational feasibility can be achieved
adding more information, when available. Within many applications of interest, in-
deed, some partial information on the system are sometimes available: RNA align-
ments usually contain a consensus secondary structure, experimental knowledges
about the interaction network can be found in the literature and even faster inference
methods can be used for contact map prediction.

Unveiling the network of interactions underlying a certain system is often the first
aim of inference on biological data [3]. However also the strength of interactions,

the configuration probabilities or in general a more detailed characterization of the
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distribution of symbols turns out to be of interest in many cases, for instance when
experimental measurements about sequence folding probability are available [28]. In
those situations the ACE can be used to refine the description of the system, given
the interaction network as reference structure. We consider a restricted selection of
sites for the construction of clusters based on the known interaction graph: we firstly
include all the clusters of size two whose sites are directly interacting and then we
build larger clusters using only those sites included in the initial list.

Similarly, one can use ACE with different levels of data compression: first we run
the ACE with an high compression threshold for colours: in the extreme case, an
Ising model, where ¢ = 1 corresponds to the most frequent colour and ¢ = 0 to the
compression of all the other ones, can be inferred. At convergence the final list of
selected clusters is recorded and then submitted to a second run of the algorithm,
whose target is a non-compressed (or less-compressed) model. The gain in term of
time depends on the fact that only the clusters in the list will be computed and no
selection will be performed: all the computed clusters will contribute to the overall
cross-entropy.

Finally, in the original Ising version of the ACE [23| an expansion of the cross-
entropy around the mean-field solution has been introduced in order to help the
numerical optimisation of the log-likelihood. Note that the result of this procedure
is that ACE provides an expansion around a reference Gaussian model instead of

around a reference structure.

5.2.3 Analytical computation of 2-site clusters

When ¢ is of order 20, the computation of clusters of size two still requires a
long computational time. However, the exact solution for the g-state Potts model
inference when N = 2 is known: the probability of a configuration (oq,09) for the
two variables is expressed as

P12(0'1, 02) _ 6h1(01)+h2(02)+Jl2(01’02) (510)

The conditional probability of having o, in position 2 given ¢y in position 1 is in-
stead P(2, 0|1, 1) = el2(@2)+12(01.02) by vewriting Pro(01, 02) = fi1(01)P(2,09|1,01) =
fi(oy)er2te2)+12(0102) and comparing with Eq. (5.10) we obtain fi(0;) = €"(°) thus:

hi(o1) =log fi(o1) (5.11)
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an analogous expression is obtained for hy(oy). Substituting expression (5.11)) for
hi(o1) and hy(o3) in (I0) we obtain

fi2(01, 09)
fi(01) fa(02)
It is easy to verify that the conservations of probabilities > ! | fi(a) = 1,27, fij(a,b) =

fi(b), and Y2 M1 . fii(a,b) = 1 are satisfied by the above choice of parameters
hl(CTl), hQ(CTQ) and J12(0'1, b)
Note that the above equations for the couplings and fields are also obtained by

J12(0'1,0'2) = 10g (512)

deriving the minimal cross-entropy, for a system of 2 spins with respect to the fields

and couplings, which can be rewritten as

f12(a, b)
=2 fele e O

+Zf1 ) log fi(a +Zf2 ) log fa(b)

(5.13)

where I' = {1, 2} is the considered sub—system of size two. Thus in order to speed
the algorithm we introduce the analytical computation of 2-site clusters. However,
as we have already seen, we introduce in the computation of the cross-entropy a
L2-norm regularisation term, as in Eq. (.2, to compensate finite-sampling errors.
Therefore the analytical solution S4” turns out to be different from the regularised
cluster entropy Sr. Anyway, in principle, parameters in Eqs. 511l and can be
used as an initial guess for minimisation of the regularised Sr. The optimisation of the
cluster cross-entropy is performed using both the gradient descent and the Newton
method, depending on the value of the gradlentH and several tests we have performed
on artificial data have shown that this non-zero guess does not reduce significantly
the computational time: within the very first steps the gradient descent reaches an
approximation of the final results that is extremely close to the one computed from
Sn.

The use of a pseudocount regularisation instead of the L2-norm can be useful in
this framework. Pseudocounts consist in a rescaling of correlations and frequencies
able to correct finite-sampling effects and do not need further regularisations (in Eq.
v = 0 and 7 = 0). Being S{i" = Sp 2-site clusters can actually be computed

analytically dramatically increasing the speed of the algorithm.

3. The advantage of using gradient descent or Newton method depends on the value of the
gradient of the target function: when the gradient is too small gradient descent steps become
negligible and the algorithm gets stuck, so in those cases we prefer to compute also the hessian
term and perform Newton steps in order to speed the optimisation.

73



5.2.4 Sparse regularisation

A computational refinement, suggested by J.P Barton, is to perform an efficient
expansion of the partition function in order to use sparsity of couplings in the scope of
decreasing computational costs. We firstly observe that, given the Potts Hamiltonian
in [[LTl the partition function can be written in a trivial form in case of independent,

spins:

7 = f[l (qzl ehi(“)> (5.14)

Since fields h;(a) make independent contributions to the energy, the sum over all
configurations can be rewritten as a product of terms from each site. The gain in term
of complexity is evident: 5.14] requires only Zf\il q; operations rather than Hf\il qi-

If we assume the sparsity of the interaction graph, we can expand the partition
function ignoring loops in a tree-like expansion.

Finally is it also possible to use a LO-norm regularization, which can be very useful
in the case of a large number of effective colours per site. This regularisation, applied

on coupling only, enforces the sparsity of the inferred model:

g 9

A= 30Y YSS al. (5.15)

i=1 j=i+1a=1 b=1
L0O-regularization force those couplings that do not increase the log-likelihood of
the model by at least 7y to be exactly zero. The form of the regularization was

implemented following the adaptive forward-backward algorithm of [T07].

5.2.5 MC-learning refinement

The ACE procedure is extremely fast as long as it does not reach cluster sizes for
which the computational cost for the calculation of the partition function becomes
prohibitive. As I have already discussed, computational time grows exponentially on
average as qfff, where g.rf = % Zf\il ¢;- Typically the calculation of the partition
function requires a sum over 10° configurations for clusters of about size 16, 8, 5 for
qg = 2, 5, 10, respectively. When the ACE enters this regime it is better to stop
the algorithm, even if €,,,, is not yet of order one, and to use the output fields and
couplings as initial guess for a MC-learning procedure. This values of the parameters

are usually good initial guesses and the MC-learning rapidly converges.
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The learning algorithm we implemented is a Potts-adapted version of RPROP al-
gorithm for neural network learning [I08]. Given an input set of fields and couplings,
we first compute the model correlations % (a), £} (a,b) through Monte Carlo sim-
ulations, implemented in the code by J.P. Barton. The couplings and fields are then
updated according to the gradient of the log-likelihood, multiplied by a parameter-

specific weight factor

hi(a) = hi(a) = (f(a) = fi(a)) wila),

5.16
Jijla,b) = Jij(a,b) = (f(a,b) — fi;(a,b)) wi;(a,b) (5.16)

Regularization can also be incorporated by adding 2v.J;;(a,b), or the analogous
term for fields, to the gradient.

The use of the MC-learning refinement goes beyond those cases when convergence
cannot be found. Sometimes, indeed, a quite good solution is found, then, lowering
t, the error rises and we have to wait long time before a new set of parameters
providing a smaller error has been found. It has been proved in [23] that the error is
not a monotonous function of ¢ and several local minima of the error exist: remember
that the entropy summation needs the cancellation of many cluster contributions
to converge. Therefore, we not only record parameters at convergence, but also in
correspondence of some local minima of the error. This intermediate ¢ values can be
used to run the MC-learning refinement and thus to obtain reliable parameters in a

shorter time.

5.3 Gauge choice

As many other models in theoretical physics the Potts model is invariant under

so called gauge transformations, meaning for any K the following transformations

Jij(a,b) = Jij(a,b) + K;;(b)
hi(a) = hi(a) = 3 Ki(a) (5.17)
J#
entail no changes on the probability distribution and thus on all those quan-
tities that are related to it. The gauge invariance comes from the conservation laws
of probabilities we have cited in section [5.2.3] responsible for removing some degrees
of freedom from the system. Thus, the number of independent fields at each site i is

(¢; — 1) instead of ¢;, and the number of independent couplings for each pair of sites
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is (¢ — 1)(¢; — 1). Given a set of couplings J;;(a,b) and fields h;(a) and chosen a

certain colour ¢; we can fix the gauge such that

Jij(aiacj) = Jij(ciao-j) = Jij(ciacj) = hz(cz) =0 (518)

To implement these constraints we define the transformed couplings jl-j(a, b) as

follows

Jij(01,05) = Jij(04,05) = Jij(ei, 05) = Jig(oi, ¢5) + Ty (cir ;) (5.19)

Thus, we are forced to modify fields according to equation such that for
each configuration the energy is unchanged, unless for constant terms. The original
hamiltonian is H(o) = ., Jij(0i,05) + >, hi(0;), while after the gauge fixation of

the couplings we obtain:

ﬁ(a) = Z Jij(o-ia 0']') - Z Jz‘j(Cz‘, 0']') - Z Jz‘j(O'z‘, Cj) + Z Jij(ci7 Cj) + field terms
7> 7> 7> 7>t
(5.20)
discarding the last J term that does not depend on a or b, there are still two terms

to be cancelled out with a suitable transformation of fields:

hi(os) = hi(ow) —hales) + Y [ ig(0s, ¢5) = Tig (e, )]+ Y _le, 00) = Jjaley )] (5.21)
j>i j<i

Note that, since any transformation of the type G.17 is permitted, it is important
to first choose a particular gauge before comparing inferred parameters, e.g. when we
consider artificial data and we plot true parameters versus inferred ones or when we
compare results from two different inference methods. The choice of the gauge can
be different between the true and the inferred model (typically in artificial model we
draw the parameters from some random distribution for the complete ¢-state Potts
model and then we infer a model in a certain gauge with ¢ — 1 colours).

When we infer couplings and fields with ACE, we are forced to regularise the
cross-entropy to solve finite-sampling issues and also to help the gradient descent
optimisation to find rapidly the maximum of the log-likelihood. Even if the inference
itself is gauge invariant, and thus the result does not depend on the choice for the
gauge, the regularisation term is not. Thus, depending on the studied model, an
appropriately choice for gauge can help or not convergence. In this section we will

analyse some results about the role of the gauge in ACE inference. We will analytically
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compute finite-sampling errors for small models (i.e. N = 15) and we will average
results on 100 different and randomly chosen realisations with similar characteristics
in term of number of sites, number of colours and sample size.

In order to understand better the point of this analysis, consider the case of an
artificial model whose inference has been performed with the colour compression ap-
proximation: we have obtained a model that is slightly different from the original one
and we need to specify a certain gauge in order to understand results. Usually, we
perform the inference in gauge of Eq. B.I8 where the colour fixed to zero, ¢;, corre-
sponds to the grouped colour ¢; on each site. This is the most natural choice because
it does not need any rearrangement of magnetisations and correlations. However,
since we do not have for parameters a closed relation linking the grouped colour and
the colours inside the group, we cannot easily convert the true couplings and fields
to this gauge. We have to convert both the inferred and the true parameters into
another gauge, hoping it will not spread too much errors (we will see extensively in
the next section how errors propagate from one gauge to the others). When no com-
pression is performed there is no need, in principle, for chosing two different gauges
for the inference and the comparison. Anyway, we will show that some advantages
can derive from the choice of an appropriate gauge, different from the usual zero-sum
gauge, before computing the Frobenius.

In the following we will consider a set of simple toy models on which we can
analytically compute finite-sampling errors and we will compare results on different
choices for the gauge, both for the inference and for the comparison between true and

inferred parameters.

5.3.1 Finite-sampling error on parameters and its propagation

The information about finite-sampling errors made on inferred parameters, is
contained, equivalently to errors on frequencies and correlations, in the so called
Fisher Information Matriz x, corresponding to the susceptibility matrix of the sys-
tem. When the model is small (N ~ 10 and ¢; ~ 5) and the sample too (B ~ 10%)
the susceptibility matrix can be easily inverted and thus errors over couplings and

fields can be analytically computed

1
0Jij(03,05) = E(X_l)ij,ij (5.22)
1 1
0H;(0i) = E(X_ )isi (5.23)
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The above defined errors are gauge invariant quantities, but, given the finiteness of
the sampling, some regularisation of x is needed. Thus, before inversion, the following
term (resulting from a L2 regularisation of the cross-entropy with v = % for couplings

and ' = 0.01~ for fields) is added to the diagonal elements of :
7 7 g X
Xijij = Xijij T (5.24)

Xii = Xii+ 7 (5.25)

These regularised errors are no more gauge invariant, thus also in this case the
choice of the gauge can modify results. Moreover, in the scope of comparing results,
we change the gauge of parameters also after the inference, thus we have to propagate
errors computed in the inference gauge into the gauge chosen for comparison. The
gauge transformations and [5.21] can be rewritten in matrix form, where JH is

the vector containing the list of all fields and couplings, as:

JH = AxJH (5.26)

where A is a (Wgz + Nq) X <Wq2 + Nq) binary matrix selecting terms
in the vector JH according to £.19 and £.211

! we can select the elements in the JH list (in case some com-

Given matrix y~
pression of colours has been performed) and, finally, propagate errors according to

usual rule:
Y r=Axy txAt (5.27)

5.3.2 Small systems analysis

We consider 100 different toy models with N = 15, ) = 5 and Erdos-Renyi inter-

action network with parameters similar to the ones showed in the following picture:

A B C

n=0 F=2 p=0 a=2 Mean number of neighbors per site = 3.2

0.35 0.35

2
0.3 03
4
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6
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0.1 0.1 1 12
0.05 ﬂ h} 0.05 h 1 14
il [ __.df" nes
0 5 -5

0 5 10 5 10 15

0
0 -5 _
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Figure 5.1: (A) and (B): Gaussian distributions from which true parameters have been
drawn. We fix g = 0 and 0 = 2 for both couplings and fields. (C) The interaction
network is a Erdos-Renyi random graph with p = 0.05, where p is the probability to
have a link between two sites. In the following we will call the interaction network
contact map in analogy to biological cases.

To compute correlations we use Monte Carlo sampling collecting 10* different
configurations. Given the small size of these systems we easily compute analytical
errors on couplings and fields and thus we use them to estimate the relative average

errors on the inference, in analogy to what we do with correlations and magnetisation
within the ACE.

mf O.“ O'] Jit]rue(o.i’ O'j))2

7 ZZ 5T (0 0) (529
H”lf Uz Htrue( ))2
=\ Na Z Z S0 (5.29)

Then, being in real-life cases interested in the inference of the contact map of the
system, we compress the information inside couplings with a scalar score of interac-
tion: the Frobenius norm of the matrix J;;(0;,0;). We add the so called Average
Product Correction to reduce entropic contribution to the score. Therefore we obtain

the score Fi‘;p ¢ defined as follows:

> Jijloi,04)? Fire = Fy — (F)ilFg)s (5.30)

0,0

Before computing F;; we usually fix couplings in the the zero-sum gauge: the
latter ensures the minimum value for Fj; (see chapter [3 for details).

Given the list of all /7 we consider the rank correlation between 7. and Fi’7.

When such simple artificial models are concerned, the true positive rate is indeed

poorly informative because it reaches rapidly its maximum value. A finest observable

is then needed to measure inference performance. We define p as follows:

nz

_ 1 _nz+ 1 vy _ v
a (Fapc> (Fapc)nz Z (k 2 ) ( <<Ft7"ue)2k,Jk) ) (531)

true inf

where nz is the number of non-zero coupled pairs and r is the ranking of the pair

according to true couplings (cf. with paper in chapter [).

79



Finally we consider also the performance of the inferred parameters in reproducing
the input statistics computing their Root Mean Square Deviation with respect to input
magnetisations, 2-point connected correlations and 3-point connected correlations.

All the above described quantities are computed on 4 different sets of parameters
coming from the same model, but obtained running the ACE with a different gauge
fixing of the type in Eq. .18

— Last: ¢; is chosen to be the last colour (it correspond to a random choice)

— Less: ¢; is chosen to be the least frequent colour

Cons: ¢; is chosen to be the most frequent (consensus) colour

— Entr: ¢; is chosen to be the maximum entropy colour

Different inference gauges In figure we show results obtained using different
gauges within the inference.

As you can see the 4 gauges perform similarly on average on the datasets, both
within the inference (Fig. £.2a) and within the generative test (Fig. £.2h). Note that
for small 0 (Fig. 5.2al top left) the consensus gauge performs worse than the others for
fields inference: the consensus gauge, indeed, forces true fields to be negative, while
the inferred ones are less negative than expected thanks to regularisation. Regarding
couplings (Fig. B2altop right), the least frequent gauge seems to be significantly worse
than the others, since finite-sampling effects are more pronounced in this particular
gauge. However ranking (Fig. [0.2al bottom) is well inferred in any case, even if there
is a huge variation (from 0.6 to 0.9) depending on the model. Finally, as expected,

neither the ranking nor the statistics depends on the choice for the inference gauge.

Different comparison gauges Chosen a certain gauge for the inference we can
then change the gauge before comparing results with true parameters and before
computing the Fj’7, Fi70 and the p (see Fig. (.3 and 5.4). However with this
study we show that the choice of comparison gauge is not crucial: there are some
small differences among different gauges but we cannot recognise a significant trend
in our results. Comparing p curves in Figs. 5.3 5.4l with in Fig. we can anyway
say that the consensus gauge can actually produce better results in term of ranking
than the zero-sum gauge. This evidence has suggested that contact map predictions
on biological data can be improved thanks to the use of the consensus gauge. We
have tested the consensus gauge on protein data and we have obtained better contact

predictions with respect to the usual zero-sum gauge, the same used also within DCA.
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Figure 5.2: Points: results obtained on 100 models. Lines: smooth averages of points
to guide eye. Couplings and fields are compared in the gauge used for the inference.
To compute p couplings have been moved to the zero-sum gauge.
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Figure 5.3: Points: results obtained on 100 models. Lines: smooth averages of points.
Inference has been made in a certain gauge ((a) most frequent colour, (b) least fre-
quent, colour) and then parameter have been moved to the other gauges before com-
puting of €5, ey and F°.
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Figure 5.4: Points: results obtained on 100 models. Lines: smooth averages of points.
Inference has been made in a certain gauge ((a) maximum entropy colour, (b) last
colour) and then parameter have been moved to the other gauges before computing
of €5, ey and F°,

83



5.3.3 Gauge invariant regularization of the couplings

As we have seen above, the non-gauge-invariance of the L2-norm regularisation
and consequently the arbitrary choice of the inference and the comparison gauge
can modify results, in particular when a strong regularisation is used. Therefore we
have included in the code a gauge-invariant modification of the L2-norm so to ensure
gauge-invariant results.

Instead of an L2-norm penalty on J;;(a,b), we introduce the regularisation on a

transformed coupling value
Kij(a,b) = J;j(a,b) — ZJUac——ZJUcb

ZZZJJU (c,d).

q’qﬂc1d1

(5.32)

One can then verify that K;;(a,b) is invariant under gauge transformations, and thus

an L2-norm regularization of the form
N .
1D Kij(a,b)? (5.33)

does not depend on the choice of gauge. As far as fields are concerned, the regulari-
sation parameter 7’ has to be set to zero to ensure the gauge-invariance of the final
model. Unfortunately we empirically observe that the gauge-invariant regularisation
has a negative impact on the routine optimisation of the log-likelihood: optimisation

results to be slightly slower than the standard L2-norm.

5.3.4 Approximated error on the inferred parameters

We have seen at beginning of this section that the covariance matrix y can be used
to estimate finite-sampling errors on both correlations and parameters. However the
inversion of y is computationally infeasible for long sequences and for large ¢, since
it has size (qN +4q (M)) X (qN + q%%)) Some approximate values for
errors are needed in most biologically interesting cases (protein sequences typically
have N ~ 100 and ¢ = 10). Having observed that a strong contribution to the
variances comes from out-diagonal terms of x, meaning couplings and fields are far
from being independent variables, we exclude from putative candidates the approx-
imation Xz‘;;b,mjb = ———. Considering interactions among colours more relevant

Xiajb,iagb
than interactions among different pairs of sites, we define for each pair 75 a reduced
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Xij corresponding to the hessian of a two-spin model. From the inversion of all the
possible y;;, whose size is (2¢ + ¢*) X (2¢ + ¢*), we obtain, indeed, a reliable approx-
imation for the §J;;(a,b). As regard to fields, this approximation does not give us a
unique value: the same term §H;(a) can be found inverting xi; for whatever i > 1,
thus we can, for instance, consider the average value among all the possible ones.
Alternatively we can choose to propagate the errors on magnetisations d f;(a) and

correlations 6 f;;(a, b) using the 2-variable approximation seen before:

hi(a) = log fi(a)

Jii(a,b) = 1og< fij(a,0) )

fi(a)f;(b)

Note that because of the finiteness of the sample a regularisation term is needed:

@) > f@+ 5 aleh) = flat)+ 5

We then propagate errors on the gauge transformations described in (.17 and
obtain an approximate formula for inferred fields and couplings in the comparison

gauge on colour ¢;:

hi(a) = log fi(a) —log fi(c:) + i (log ( fﬁjg?fjijci)) ~loe (%»

J

Jij(a, b) = log fij ((l, b) — IOg fij(cia ) — IOg fij ((l, Cj) + log fij(ci7 Cj)
(5.34)

Finally, the corresponding error terms for the fields and couplings due to finite-

sampling are given by

5hi(a) = (N — 2) 1Bffz$) (N —2) }_fif(g)
el , [ o
; (\/ Bfij(a/,’cj) +\/ sz‘j(cz‘a’cj) ) ’
1— fij(a,b) 1 — fij(ci, b)
6.Jij(a,b) = \/ -»]a - \/ ‘.jc
B fij(a,b) B fij(ci; b) (5.36)

1= fijla, ) 1= fi(ei o)
Jr\/ B fij(a; ¢;) Jr\/ B fij(ci,¢i)
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Type of approximation fields couplings
. Analytical errors ) seq 1 007 | 0,784 + 0,004
(independent variables propagation)
2-site inversion of y 0.665 + 0.006 | 0.938 4 0.002
. 2esite inversion of X 600 1007 | 0.788 % 0.004
(independent variables propagation)
2-variable approximation 0.919 £ 0.004 | 0.953 £0.001

Table 5.1: Table showing the Pearson correlation between the different error approx-
imations and the analytical errors. Averages are made on a sample of 100 different
Erdos-Renyi models whose parameters are defined in Fig. [5.1]

In table 5.1l we compare the Pearson correlation between the approximated error
estimations and the analytical one. Note that approximations are made at two differ-
ent levels: we approximate the inversion of the y in Eq. (.23 and (2-site inversion
of x) and we approximate the propagation of errors on the comparison gauge shown
in Eq. 5.27. We use the independent variables approximation, i.e. only variances are
considered and any covariance is discarded. Remember, indeed, that the gauge we use
within the inference is usually different from the gauge we use to compare true and
inferred parameters, thus errors on the inferred parameters have to be propagated to
the final gauge. As far as the 2-variable approximation is concerned the propagation
on the gauge is computed analytically in and

Results shown here confirm our choice: in the following we will use the 2-variable
approximated errors. As you can see from table [5.1] the 2-site inversion of x and the
2-variable approximation are, as may be expected, almost equivalent for couplings,
but the latter outperforms the former for fields. Note, finally, that the independent
variable approximation for the error propagation on the gauge highly deteriorates

results even if the analytical errors are considered.

5.4 ACE applications

5.4.1 Artificial data

In order to test the quality of the inference made by the ACE, we study some
artificial models whose parameters (couplings and fields) are randomly chosen from
Gaussian distributions; we fixed y = 0 and 0 = 5 for fields and = 0 and 0% = 1 for
couplings, according to what we has been observed on protein data inference. The
networks of interactions are Erdos-Renyi random graphs with 50 nodes generated with
p = 0.05 and p = 0.1, respectively called ER005 and ER010, where p is the probability
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to have a link between two sites. Regarding colours, no preferential scheme is imposed,
i.e. if 7 and j interact then J;; is a 21 x 21 matrix whose elements are chosen according
to the above defined Gaussian distribution. The models we obtained have a maximum
connection equal to 7 for ER005 and 12 for ER010; the number of interacting sites is
61 for ER005 and 121 for ER010.

Given the set of couplings and fields, a Monte Carlo routine is used to generate
data in the form of a Multiple Sequence Alignment with B = 102, B = 10®, B = 10*
and B = 10° unbiased sequences. Then, two different colour compressions have been
applied to the dataset: for each site, colours with magnetisation f;(a;) < 0.05 and
fi(a;) < 0.01, are compressed in a single gauge colour ¢;, fixed such that J;;(a;, ¢;) =
Jii(aj, ¢;) = hi(e;) = 0. Consequently an effective number of colours (¢// < 21) for
each site is defined and only ¢/

77 — 1 colours will be used in the inference of this

colour-compressed model. Finally a small (y = %) L2-regularisation is included in the

computation of the cross-entropy.

Results for model ER005 with f;(a;) > 0.05 In the following I will summarise
the results obtained running ACE on the ER005 model with colour reduction f;(a;) >
0.05.

The behaviour of the inference depending on threshold for the cluster selection can
be appreciated in Figls.h and Fig[5.6l We show how the cross-entropy of the inferred
model, errors on the statistics, the number and the size of the selected clusters have
changed depending on ¢ within the 4 different sample sizes analysed. Firstly note
that the intermediate plateau in the cross-entropy (we can easily see it for B = 10,
but it is still there also for the other samples) corresponds to a similar plateau in
the number of selected 2-site clusters. The interpretation of this effect is linked to
the fact that in this case we are inferring a real Potts model with reasonably high
couplings, differently from what we do on biological data. Indeed in this simple case
any 3- or more site interaction exists and the presence of this plateau confirms the
algorithm is effectively selecting the interacting 2-site clusters first. To reach the lower
plateau of the entropy, meaning the point after that no more significant contribution
to the entropy can be added, bigger clusters have to be selected so to correct network
effects. However it is important to stress that the full network of interactions is
generally recovered before the convergence of the algorithm, for the example shown
here, at the end of the intermediary plateau. This effect depends on the strength of
interactions and it could be more pronounced here than in other models depending on

the choice for the variance o2 of the Gaussian distribution from which the parameters
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Figure 5.5: ERO005 fi(a;) > 0.05 ACE inference. Row A: errors on the statistics
obtained with the inferred model. Errors on magnetisations (ep) are plotted in red,
errors on 2-point connected correlations (éc2) in blue and the maximum overall error
(€maz) in green. Row B: the red line represents the value of the overall cross-entropy.

Row C: lines represent the number of computed clusters. The darker the colour the

smaller the cluster size starting from 2-site clusters. Results for B = 10 and B = 103

are shown.
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Frobenius norm
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Figure 5.7: ER005 f;(a;) > 0.05 Contact maps obtained with inferred couplings. In
the top-left triangle red squares represent true positives, green squares false positives
and grey squares false negatives. In the bottom-right triangle the full Frobenius Norm
matrix is shown.

are extracted. Secondly, looking again at the cross-entropy behaviour, note that the
under-sampled case (B = 100) shows a peculiar minimum value corresponding to
very high errors on the statistics. This behaviour is quite similar to what we have
observed many times when performing analysis on real data and it probably means
that the regularisation strength is too large.

Given the inferred model the first observation we make regards contact prediction.
As we have already stressed in the previous chapters this is a major topic in statistical
physics and many other efficient inference methods have been used to this scope. Here
we show that also ACE can be successfully used to infer the network of interactions
of the given model: Fig. .7 shows the contact maps obtained with the inferred
couplings compressing information on different colours with the Frobenius Norm.
Compare Fig. 5.7 with Fig. B.8 where the Frobenius norms are corrected with the
Average Product Correction. Good samplings do not need the correction to recover
the whole interaction network, while smaller samples take great advantages from
APC: for B = 100 the precision is almost doubled from 0.38 to 0.62.

Being this analysis made on artificial data we can quantify the goodness of the
inference performed by ACE in comparing inferred parameters with the true ones.
Fig. shows the reconstruction of the true couplings and fields. In this picture the
inferred and the true parameters have been converted to the consensus gauge and
the grouped colour is not shown, because it simply does not exist within the true
parameters. It corresponds, to same extent, to an effective coupling or field for all
those colours that have been grouped together. As it is clear from Fig. 5.9 the other

parameters are not influenced by the inference of such an effective colour and they
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Frobenius norm with APC
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Figure 5.8: ER005 f;(a;) > 0.05 Contact maps obtained with inferred couplings. In
the top-left triangle red squares represent true positives, green squares false positives
and grey squares false negatives. In the bottom-right triangle the full Frobenius Norm
with APC matrix is shown.

can systematically reproduce true values within the predicted error bars. We claim
that, in the sense explained above, the colour compression does not effect the quality
of the inference. Note that for B = 100 the inferred couplings are smaller than the
true ones because of the regularization strength which is, as already remarked, too
large.

Finally the main result we obtained concern the fact that ACE inferred model
are generative, meaning they can be used to produce new samples reproducing the
statistics of input data (Fig[5.10). Here we consider the 2— and the 3—point connected
correlations and the mutational probability of sequences. Note that in any case
correlations obtained with the inferred model stay in the error bars. As far as 3-point
correlations are concerned, a good sampling (at least B = 10%) is needed in order to
have good results: for B < 10* the 3-point correlations are small with respect to error
bars and therefore the reconstruction cannot be good.

In order to better understand ACE pros and cons let us focus now on the small-
sample case in Fig[B.5l first column. In this particular case the algorithm has run (on
a standard desktop) for more than 2 days before converging. However, in order to
reduce time consuming we can stop the algorithm long before the convergence point
and run the MC-learning refinement of parameters. The same procedure can be used
also in case the algorithm gets stuck far away from convergence and a reliable model
is required. Here, we have chosen the threshold value ¢ = 0.00108 as it is the first
local minimum of the €,,,, (cf. with Fig. B3] in a region where the cross-entropy
is already flat. We have launched the MC-learning algorithm with this parameters

as initial conditions. Fig. [B.I1] shows the comparison in term of generative test
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Figure 5.9: ER005 f;(a;) > 0.05 Left column: inferred fields are shown against true
fields. Right column: inferred couplings are shown against true couplings. Rows show
different sample results. Errors are computed propagating errors on magnetisation
and correlations through the approximated formulas: h; = log(f;) and J;; = log( ff 'J{])
as shown in and B.35] True and inferred parameters are compared in the con-
sensus gauge, and the grouped colour is neglected.
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among (A) the final converged parameters at t = 3-107%, (B) the ACE parameters
at ¢ = 0.00108 and (C) the same parameters after MC-learning. As you can see ACE
plus the MC-learning refinement shows results quite similar to ACE at convergence,
even if the cost in term of computational time is significantly smaller. Note that
ACE and ACE plus MC-learning recover the statistics highly better than the other
intermediate case, where parameters are far from convergence. We can argue that,
thanks to appropriate initial conditions, MC-learning gives us a generative model as
good as ACE in a more reasonable time. Finally if we compare the inferred couplings
and fields with the true ones, we do not see any substantial difference from the first
row of Fig. 5.9 meaning that indeed the MC-learning cannot improve the inference

of the interaction network.

Results for model ER005 with f;(a;) > 0.01 In the following section we will
show results for the ER005 model when a weaker (f;(a;) > 0.01) colour-compression
is applied. What we observed in this case is that ACE cannot easily converge as in
the previous case: none of the four samples has converged in a reasonable time (about
a day) since the lower reduction entails a bigger computational time, however final
results (cf. Fig. £.12) are quite similar to those obtained with reduction f;(a;) > 0.05.
Note that the inference from the smallest sample (B = 100) results in this case quite
hard: the errors on statistics remains very large disregarding the value of ¢t and only
a MC-learning refinement can in this case produce a meaningful generative model.
The other three samples show instead a behaviour similar to the respective curves
in Fig and 5.6 but without reaching convergence. It is important to stress that
within this artificial model analysis we have not selected the model so to give the
best results, or fine-tuned parameters for the best inference. Our aim here is in fact
to show how ACE works with standard options and on a random, and as general as

possible, model.

Results for model ER010 with f;(a;) > 0.05 We analyse in this part a more
connected model. Note that ACE is based on the idea to infer the sparser network
compatible with the data: it is not useful to infer couplings different from zero when
their error bars are extremely large. Consider in fact that fully connected inference
methods still exist and have proved to produce good results [3] [22]. However the
choice of the best coupling threshold in order to consider two sites as interacting is
quite heuristic and often challenging. With the ACE we aim to solve this problem

considering the errors on the statistics. We have tested the algorithm to infer a
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Figure 5.11: ER005 f;(a;) > 0.05 B = 100 First column: 2-point connected corre-
lations. Second column: 3-point connected correlations. Third column: probability
to see a given number of mutated sites with respect to the consensus sequence. Rows
show different threshold results: (A): results for the convergence threshold ¢t = 3-1079,
(B): results for ¢t = 0.00108, (C): results for ¢ = 0.00108 plus MC-learning. Error bars
represent the finite-sampling error in (.71
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more connected network with maximum connection of 12, meaning that in principle
clusters of size 12 are needed to correctly infer the model. What we observed is
that very large clusters have indeed been selected, meaning the the computational
time needed for convergence is infeasible: also in this case any sample has reached
convergence. Anyway, even if the convergence is not reached without MC-learning
for such a connected model, results shown in Fig. 513 are in general quite good and
comparable to those obtained for ER005.

Results for model ER010 with f;(a;) > 0.05: refinement with MC-learning
Results shown in the last paragraph stressed the computational limitations of ACE:
even if the system size of ER010 is the same of ER005, here a more connected network
entails bigger clusters and thus ACE enters its computational infeasible regime. As
discussed in the introduction, we have developed a MC-learning routine in order to
find convergence parameters also when the ACE gets stuck. The output parameters
available result to be good input parameters for the MC-learning refinement. In
particular we force the algorithm to save parameter within some fixed interval, when
€maz 18 minimum. Note, indeed, that the adaptive nature of ACE entails errors not
to be monotonic functions of ¢, thus it is possible to choose a posteriori the best
t and use the corresponding parameters within the MC-learning. Here we use ¢
corresponding to the last local minimum of €,,,,, being sure that at that value the
entropy has already found the final plateau. Comparing Fig. (.14l with Fig. (.13l we
note that MC-learning produces a reliable generative model, substantially improved

with respect to the one ACE has inferred.

Comparison with DCA and plmDCA This paragraph is devoted to the compar-
ison of ACE with two existing methods: DCA [3] and plmDCA [22]. Note that DCA
and plmDCA are run on the full alphabet while ACE has been run with reduction
fi(a;) > 0.05.

Compare Fig. and Fig. with Fig. B.I0 As expected, DCA cannot
reasonably reproduce even the 2-point connected correlations used to fit the model,
while pImDCA and ACE can. Anyway ACE outperforms plmDCA both on 2-point
correlations and on 3-point correlations. Also the P(k) is very well reproduced by
ACE, while it is not reproduced by DCA and poorly reproduced by plmDCA. The
latter performs in any case considerably better than DCA in inferring generative

models. As far as contact map prediction the three methods are quite similar (cf.
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Inference methods | B=10> | B=10> | B=10* | B =10°
ACE 0.38 0.79 0.98 0.98
ACE + APC 0.62 0.95 1 1
DCA 0.36 0.8 0.98 0.98
DCA + APC 0.56 0.95 0.98 1
plmDCA 0.39 0.69 1 1
plmDCA + APC 0.59 0.97 1 1

Table 5.2: Table showing the precision of the contact prediction of the three inference
methods analysed on the model ER005. Scalar scores for interactions ranking are
computed with the Frobenius norm of the inferred coupling and then also the effect
of average product corrections (APC) is shown.

Table[£.2)) and slightly improvement are reached for small samples adding the average
product correction.

The following analysis wants to show that, a part from the inference of the contact
map, DCA and plmDCA are outperformed by ACE. Of course from the computational
point of view both DCA and plmDCA are much faster than our algorithm. However
we claim that, when more sophisticated results have to be achieved, as for generative
models, ACE ensures a very good inference in many sample and connectivity regimes,
while DCA and plmDCA almost fail.

Finally, as we have seen that MC-learning refinement remarkably improves genera-
tive test results, one can use DCA and plmDCA inferred parameter as MC-learning in-
put and obtain, also in these cases, generative models. However, for the model ER005
considered above, when we use the parameters inferred with DCA and plmDCA as
input parameters for the MC-learning we do not reach convergence and errors on
the statistics saturates to values higher than one. The saturation value for €,,,, de-
pends on the considered model and it varies from 10 to 50 for DCA and from 4 to 12
for plmDCA. These difficulties encountered in reaching convergence with DCA and

plmDCA input parameters have also been observed on biological data.
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5.4.2 Biological data application: RNA

As promising results on artificial data have been shown, I will present in this
section the application of ACE to the same selection of six riboswiches studied in
chapter Bl The following ones have to be considered as preliminary tests, since RNA
peculiarities stressed in the dedicated chapter have not been taken into account to
improve results. Application to proteins and neuronal data will be exploited in the
article (in preparation) which this chapter refers to.

This section will report some tests done in order to estimate the correct strength
of the gamma regularisation parameter for RNA data. Tests are motivated by the
observation that typical value for the gamma ~ ~ % used for artificial data produces
over-estimated couplings in the first steps of the algorithm and then, it takes long time
before the correct value for parameters is recovered. Intuitively we can understand
this effect as an erroneous estimation of the sample noise: bayesian analysis of i.i.d.
samples estimate in % the best regularisation strength, anyway MSA are far from
being i.i.d. samples, even when the re-weighting correction is applied. This empirical
refinement, we successfully applied in the case of DCA, does not provide here a reliable
correction of the alignment and we need an accurate choice of the regularisation
strength.

Once some good values for v have been chosen, we run ACE on our RNA dataset
and compare results on contact predictions, in the form of true positive rates, and

generative tests.

Gamma selection We have observed on artificial data that usually a very good
fit of the parameters is found when the convergence of cross-entropy is reached, even
if errors, in particular €,,,, are still quite far from 1. Precisely we have showed that
parameters computed at this point of the iteration usually rapidly converge, if im-
proved with MC-learning. This effect is due to the fact that the biggest contributions
to the log-likelihood have, at this point, already been included in the calculation. The
very last iterations of the algorithm are needed in order to correct intrinsic errors in
the cluster expansion. Remember that the selection of a particular cluster does not
depend on the other selected clusters. Therefore, as explained in [23], after that a
cluster is selected, errors on statistics usually rise and a sort of cascade of sub-clusters
needs to be selected before seeing errors dropping down again. The selection of this
cascade is hard because contributions can be small and it takes usually a long time.
However observing the emergence of a plateau in the cross-entropy can help detecting

this situations.
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Being interested in define a pipeline, as fast as possible, in order to understand the
best value for the regularisation strength v we decided to launch the algorithm with
many different values of v for a reasonable amount of time (within this particular
case ACE was left running for 20 minutes on a standard desktop). The aim of this
procedure is to understand which is the regularisation strength favouring the most
the convergence of the algorithm. Outputs of these procedure let us make some

observations:

— The most time-consuming routine is the computation of the cluster cross-entropy
and it consists of two main parts: the computation of the partition function via
the sum over all the ¢* configurations and the numerical evaluation of the clus-
ter parameters optimising the cross-entropy. Monitoring the number and the
size of selected clusters gives us a good estimate about the first part. Keep-
ing fixed these quantities, the speed of the algorithm turns out to tell us, to
some extent, whether the optimisation routine is well regularised or not. The
regularisation helps the optimisation routine, thus a fast convergence of the
optimisation algorithm needs an appropriate regularisation. However, this con-
siderations usually lead to high v as gradient descent significantly benefit from

large L2-norm regularisations.

— If the cross-entropy has reached or it seems close to a plateau, often parameters
are still quite good regardless of errors. Otherwise, when the cross-entropy is
still oscillating important changes in the model are happening: the algorithm
is selecting highly significant clusters and, even for similar value of ¢, output

parameters change a lot.

— For very large v the cross-entropy rapidly saturates as too many clusters are
selected thanks to the contribution of the regularisation term. Since in this
regime the regularisation term in Eq. is larger than the other contributions,

the algorithm cannot reasonably fit the data.

Given this considerations it is clear that the a priori estimation of the best value
for v is definitely not trivial. For the concerned RNA Fig. 517, showing the cross-
entropy curves for different v, cannot suggest us an optimal value: for ¢ > 0.012 no
more oscillations appear, moreover till £ = 0.1 the algorithm is running relatively
fast. Consider now the number and the size of selected clusters (.18 decreasing
means computing greater clusters already with large t. Therefore the algorithm gets
stuck quite soon when a few clusters have been selected, preventing from an accurate

inference of parameters. Otherwise large v values allow the selection of a huge number
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Figure 5.17: The final cross-entropy of one among the six riboswiches, RF00162, is
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family is made of 4757 sequences and the B, ;s obtained with a re-weighting threshold
equal to 0.1 is 1165.98. For the run of ACE no colour compression is performed,
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of small clusters; to some extend in this case almost no selection is performed: the
huge regularisation term in the cross-entropy prevents the algorithm from distinguish

useful and useless contributions.
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Figure 5.18: Left: the number of selected clusters. Right: the maximum size of
selected clusters. Again different values for v are showed.

Finally consider Figure (.19l If gamma is too large (dark blue curves) the algo-
rithm produces small errors but it is too slow to converge till a reasonable ¢. Otherwise
if the v is too small (dark green curves) errors diverge for small v and, also in this
case, we cannot observe the convergence of the algorithm.

Let me stress that this heuristic method for finding the best ~ is absolutely not
proposed as a definitive solution for the problem of correctly estimate how good (i.e.
how akin to a i.i.d. sample) an alignment of sequences is. The hardness of the
problem is well known and phylogenetic-based methods [I09] promise to improve
results. However, till now, the most sophisticated tools require a huge computational
effort and are usually infeasible for reasonable size sequences. Our approach is instead
extremely practical. We actually test our algorithm for any v and look for the best
depending on the observed performance of ACE. Obviously the result is not pretended
to be of any generality, but it is restricted to the use within ACE itself. Moreover
even for ACE we often run the algorithm for more than one value of v before inferring

a promising generative model.

Riboswiches results The same analysis showed for RF00162 was performed also

on the other five RNAs and produced similar results: the choice of the optimal value
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Family | 7 | 7 Iz Vo
RF00162 | 0.05 | 0.006 | 2-10~* | 8-10~*
RF00167 | 0.05 | 0.003 | 4-10~* | 0.002
RF01051 | 0.1 | 0.05 | 5-10~*| 0.001
RF01734 | 0.1 |0.003 | 8-10~*| 0.002
RF00504 | 0.2 [ 0.012|1-107*|5-10"*
RF00059 | 0.1 [0.025]9-10°|3-107*

Table 5.3: Table showing the chosen strengths for the regularisation (with 7 > 7»)
for the six riboswiches. B is the number of sequences in the alignment, while B,y is
the effective number after re-weighting.

for v is hard and painful. In the following we show results for two different value of
7, called 77 and 73, shown in Table 5.3l DCA and plmDCA were also used to infer
parameters.

We confirm what has been observed on artificial models: the choice of the best
algorithm depends on the type of information one need to extract from alignments.
Contact map prediction clearly does not need either ACE analysis or plmDCA, the
naive-MF solution gives almost always the best results in the shortest time, generative
tests showed, instead, that ACE is the only algorithm giving reasonable results. As far
as contact predictions are concerned, we show only results for the higher value of the
regularisation 7, since differences with results obtained with ~, are negligible. MC-
learning, as showed before, do not change significantly the inference of the network of
interactions, therefore, in Figs. and [5.2T], couplings used for predictions belong
to the last set of parameters recorded by the ACE. In these two figures we show that
lowering ¢, and thus including more terms in the cross-entropy series, we improve
the true positive rate with respect to native structures. Anyway DCA and plmDCA
represent, almost in any case, the upper bound of this progressive improvement.

Comparing Fig. and Fig. [5.23] the role of regularisation in the inference
is evident: when we use 7; the way the inferred parameters reproduce the 2-point
and 3-point connected correlations is strongly biased towards smaller values. Large
regularisations force the inferred model into an high temperature regime characterised
by small interactions (cf. chapter H). However small regularisations entail longer
computational time and, therefore, we cannot decrease the value of ~ till %.

The complexity of RNA data inference is again well represented here: results from

one riboswich to the others significantly change.

— RF00162: DCA, plmDCA and low ¢t ACE true positive rates are comparable.
DCA and plmDCA perform slightly better when the secondary structure is
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Figure 5.20: True positive rates for riboswiches RF00162, RF00167 and RF00504.
Lines coloured from blue to green represent ACE results for decreasing threshold t.
DCA and plmDCA are performed on the full alphabet model, while ACE includes
only observed colours. 4 A threshold is used for contacts definition (cf. chapter ()
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Figure 5.21: True positive rates for riboswiches RF01051, RF01734 and RF00059.
Lines coloured from blue to green represent ACE results for decreasing threshold t.
DCA and plmDCA are performed on the full alphabet model, while ACE includes
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Figure 5.22: Results for v ACE 4+ MC-learning. First column 2-point con-
nected correlations. Second column 3-point connected correlations. Third column
probability to see a given number of mutated sites with respect to the consensus

sequence.
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Figure 5.23: Results for v, ACE 4 MC-learning. First column 2-point con-
nected correlations. Second column 3-point connected correlations. Third column
probability to see a given number of mutated sites with respect to the consensus
sequence.
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included while ACE is preferable for tertiary structure predictions only (ACE
results are worse for 75. Data not shown here). The model inferred with ACE
with 7, is extremely good: both 2- and 3-point connected correlations are well
inferred and the match between the predicted and the observed P(k) is almost
perfect. In this case Fig. clearly shows that ~; over-estimates the optimal

regularisation.

RF00167: same as RF00162 a part from the fact that DCA and plmDCA
give better results in term of contact predictions also when only the tertiary

structure is considered.

RF01051: this is the only case in which ACE works considerably better than
DCA and plmDCA for tertiary-structure predictions. Conversely 3-point con-
nected correlations show the worst correlation coefficient R = 0.54 and also the
tails of the P(k) have not been recognised by the model. Probably the value of
7o is still high.

RF01734: here ACE performs worse than the other methods for contact pre-
diction in general. Moreover, the choice of a smaller regularisation seems not
to improve generative test results: both Fig. and Fig. £.23 show strongly
biased 2- and 3-point connected correlations and the P(k) is not correctly re-

produced. Probably a lower + has to be tested.
RF00504: DCA and plmDCA preform better than ACE for contact predic-

tions. In Fig. [B.23] predicted 2- and 3-point connected correlations are ex-
tremely similar to those observed within the MSA, however the model cannot

recover the P(k): large part of tails is missing.

RF00059: for contact prediction similar to RF00504, while the generative test
gives different results. In this case with 75, indeed, the P(k) is surprisingly well
reproduced, even if the 2- and 3-point statistics are not: probably, also in this

case, we can decrease more the value of .

5.5 Conclusions

Within this chapter we have explored the ACE algorithm and tested its perfor-

mance on both artificial and real data. We claim that ACE is a good alternative to

mean-field method when a fine information about the system is needed. Moreover

ACE guarantees the inference of a sparse graph and it is reasonably robust to the

choice of the stopping threshold. We showed that, even when errors on correlations
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are large, the output parameters can be successfully used as input for a MC-learning
able to reach convergence. Applications on artificial data have proved ACE producing
generative models whose quality is highly better than mean-field and even pseudo-
likelihood models. However the larger computational cost of ACE is not justified for
the inference of the interaction network only: both mean-field and pseudo-likelihood
can equivalently infer interactions in a much shorter time.

Application to RNA confirm artificial model results. ACE is a powerful tool and
provide generative models able to extremely well reproduce the statistics of biologi-
cal data. Competitive results reached by DCA in the framework of RNA structure
prediction promise to open a novel exploration of RNA-related topics. ACE has been
developed in the scope of application on a wide range of problems and RNA will
probably be one of them.

The analysis I have shown here represents the general set of studies that can be
performed thanks to ACE. As it is extensively explained in Appendix [A] the ACE
package is made of three core programs: ACE, MC-learning and the generative test
routine. The ACE package code will be released in the next days with the relative

paper containing test on different datasets (neurons, proteins, artificial models).
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Conclusions

All the projects introduced within this dissertation, related to inverse statistical
methods used for interesting applications on biological subjects, are different from
each other with respect to some fundamental aspects. As discussed in the Motivations,
indeed, two different ways to approach multidisciplinary topics exist: one can apply
an existing tool to a new topic or develop a new tool in order to solve a known
problem. The former case has been explored within this thesis in chapter [3] where
the application of DCA to RNA structure prediction has been discussed.

In the last years DCA has been applied in the field of protein structure character-
isation and amazing results have been achieved. However, we have shown that DCA
can be successfully applied on RNA data in the scope of computing a coevolution
score more reliable than the existing ones. In the related paper we have employed
DCA score to improve performance of known algorithms for RNA secondary and
tertiary structure prediction. The procedure we designed has been proved to be
convincing and competitive. However, the results we have achieved, far from being
conclusive, have to be intended as a preliminary evidence of the fact that the use
of DCA within existing software for structure prediction would bring significant im-
provements. Enlarging the use of DCA within the molecular biology community is
our future challenge. These days we are implementing a web-server for RNA structure
prediction. In the first version it will implement the same software we employed in
the analysis performed in the paper, but releases based on the application of DCA
within diverse algorithms will follow.

From the theoretical point of view, the paper of chapter 4 has confirmed that DCA
is a reliable tool for the inference of interactions in networks, but at the same time it
has stressed the weaknesses of mean-field inference. Going beyond contact prediction
towards more general and generative models for biomolecules would require a reliable
inference of interactions that mean-fields cannot achieve. The development of new
tools to face these problems remains challenging. In the last chapter I introduced

the ACE algorithm and its generalisation to the Potts model. The analysis both on
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artificial and on RNA data confirmed that ACE provides full generative models and
computational limitations can be overcome thanks to MC-learning refinements. Also
in this case the work on the ACE has not to be considered concluded. The algo-
rithm, even if reliable and refined from different perspectives, is not yet competitive
with respect to other more naive approximations due to the huge computational ef-
fort needed. Despite the important improvements introduced, discussed within this
manuscript, there is still a great deal of work to be done. In particular a theoretical
understanding of some of the procedures introduced is still missing. For instance
we have empirically proved that the colour compression, fundamental for reducing
the otherwise limiting computational cost of Potts implementation, does not entail
a significant deterioration of the inference performance. However, the consequences
on the cross-entropy expansion of using effective colours substituting some of the
original ones and compressing the information stored in these latter are still poorly
understood. Knowledge on such theoretical aspects of the algorithm is the first step

towards novel improvements or even novel methods.
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Appendix A

ACE: short user manual

Beside analytical efforts for the development of an efficient new inference algo-
rithm, my major interest was that this algorithm was performed by an intuitive
software, ensuring people coming from diverse backgrounds can easily run it. Thus,
we hardly work at some side-codes performing analysis on ACE output or preparing
inputs starting from the most common formats used in the community of molecular
biology or neuroscience. This appendix schematically lists all the analysis our code

performs, all the different parameters one can set and all the output files produced.

A.1 The full analysis script

In order to perform full analysis, of the type showed in the previous section, on
both real and artificial data, we built a bash script RunSecript_2.0.sh running the
programs contained in the ACE package and some interfacing Matlab scripts. To
launch the analysis both Matlab and a c+-+ compiler are requested. Main options

can be specified to the bash script or directly to one of the programs in the package.

A.1.1 ACE package software

The ACE package contains the three main programs for performing the inference,

run the MC-learning and run the generative test analysis.
— sce , the ACE algorithm performing inference on data

— qls, the MC-learning algorithm used to improve parameters till convergence in

case ACE only does not succeed

— qgt , the algorithm performing the generative tests on output parameters

All these programs are written in c+-+. To compile and install them a standard

Makefile is used, thus to run the program from within the ACE folder type:
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$ ./configure
$ make

Or equivalently to run ACE from whatever folder type:

$ ./configure
$ make install

After installation programs have to be individually run. Command line instruc-
tions tell the program where to look for input files and where to send output, as well
as the setting of various parameters (gamma, theta, etc) and flags (useSparse, etc).
Note that numerical parameters may be entered in either scientific (recommended)
or standard decimal notation. True/false switches are off by default - if entered in
the command line, the corresponding option is set to true. The conventions are given

below:

sce The most part of the implementation of sce code has been done by J.P. Barton.

— -(flag name): (type of input expected)

— -d: string
Default: "." (current directory)
Path to the directory where the data file is located, and where output will be
written.

— -i: string
Default: "input"
The location of the file containing a set of correlations from which to infer Ising
model parameters.

— -0: string
Default: "output"
The location of the file where output is to be sent. Each different type of output
file will have a different file type, e.g. .j for couplings.

— -cmap: string
Default: none
When the network of interactions (e.g. contact map) is known, a list of prese-
lected 2-site clusters can be given. "string" represent the name and the location
of the file from which clusters are read. The extension of the file has to be .cl

(indexing from 0)
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-inputcl: string

Default: none

When a list of interesting clusters (e.g. from previously runs) is known, this
list of preselected n-site clusters can be given and used for inference. "string"
represent the name and the location of the file from which clusters are read.

The extension of the file has to be .cl (indexing from 0)

-cl: none

Print the list of selected clusters in a file .cl in the output folder

-b: real number

Default: 1.0e + 4

Number of samples used to compute the correlations. Used to determine the
inference error.

-kmin: integer

Default: 1

Minimum cluster size, useful for avoiding the inference of models that are too
sparse. The algorithm will continue to lower the threshold until clusters of at

least this size are selected.

-kmax: integer
Default: N (system size)
Maximum cluster size. The algorithm will halt when clusters of this size are

selected.

-cmax: integer

Default: 10e 4+ 8

Maximum number of configurations per cluster. The algorithm will halt when
clusters of size k (where k is defined such that (g.;;)* = 10e + 8) are selected.
This command is redundant with kmax, but it is helps users to better estimate

a time limit for runs.

-t: real number

Default: none

Run the algorithm at the input value of ¢, in scientific or standard decimal
notation. This line is intended to be used when inference is to be done only
for a single value of ¢, and will be overridden if thetaMax and thetaMin are set

different from ¢.
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-tmin: real number
Default: 1.0e — 10

The minimum value of ¢. See description of -ts below for more information.

-tmax: real number
Default: 1.0e +0

The maximum value of ¢. See description of -ts below for more information.

-ts: real number

Default: 1.05

The logarithmic step size to use for successive updates of £. When the program
loops over different values of ¢, it begins by running the algorithm at the largest
value of the cutoff and stores the cluster information. The algorithm is then

re-run for successively smaller values of the cutoff, ¢;;; = until ¢ <

t;
thetastep’
thetaMin. These re-runs use the previously stored cluster information, so they

take considerably less time to run.

-trec: real number

Default: 3.0 (set 0 to avoid recording)

The logarithmic step size for ¢ to record the inferred parameters. Given this
interval the chosen value corresponds the ¢ producing the minimum error on
correlations.

-mcb: integer

Default: 4.0e + 4

Number of Monte Carlo samples to take to check inference error.

-mcr: integer

Default: 1

Number of independent Monte Carlo runs to perform.
-g0: real number

Default: 1.0e — 4

The LO regularization strength. Using this flag also turns on L0 regularization.

-g2: real number

Default: 0.0

The L2 regularization strength. L2 regularization is enabled by setting the
regularization strength to a nonzero value using this flag, or by using the -ag
flag below.

-gi: none

Use gauge invariant L2 regularization for couplings.
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qls

-ag: none
Attempt to set the LO and L2 regularization strengths to their optimal values,

based on the number of samples (input) in the data.

-10: none

If selected, LO-norm (sparse) regularization is used.

-lax: none

If selected, use a laxer cluster construction rule.

-V none

Enable verbose output.

The implementation of qls code has been done by J.P. Barton.

-(flag name): (type of input expected)

-d: string

Default: "." (current directory)

Path to the directory where the data file is located, and where output will be
written.

-1: string

Default: "input"

The location of the file containing a set of couplings, the starting values for the
Monte Carlo learning algorithm.

-o: string

Default: "output"

The location of the file where output is to be sent. Each different type of output
file will have a different file type, e.g. .j for couplings.

-c: string

Default: "input"

The location of the file containing the set of correlations to reproduce (i.e. the
correlations obtained from the data).

-s: string

Default: none

Starting configuration for MC simulations. (File extension requested .dat)

-g2: real number
Default: 0.0
The L2 regularization strength. L2 regularization is enabled by setting the
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qgt

regularization strength to a nonzero value using this flag, or by using the -ag
flag below.

-gi: none

Use gauge invariant L2 regularization for couplings.

-ag: none

Attempt to set the L2 regularization strengths to its optimal value, based on

the number of samples (input) in the data.

-b: real number

Default: 1.0e + 4

Number of samples used to compute the correlations. Used to determine the
inference error.

-mcbh: integer

Default: 8.0e +5

Number of Monte Carlo samples to take to check inference error.

-mcr: integer

Default: 1

Number of independent Monte Carlo runs to perform.

-e: real number

Default: 1.0

Maximum tolerable error threshold. The MC learning algorithm will continue
to run until the error on the one- and two-point correlations falls below this

level.

-V: none

Enable verbose output.

-(flag name): (type of input expected)

-d: string

Default: "." (current directory)

Path to the directory where the data file is located, and where output will be
written.

-i: string

Default: "input"

The location of the file containing a set of couplings for the Monte Carlo sam-

pling.
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— -0: string
Default: "output"

The location of the file where output is to be sent.

— -c or -cons: string
Default: "input" The location of the file containing the reference sequence for
mutation probability. e.g. consensus or wildtype sequence
— -m or -msa: string
Default: "input"
The location of the file containing the compressed alignment .cmsa
— -w: string
Default: "input"
The location of the file containing the re-weighting vector
— -s: string
Default: none

Starting configuration for MC simulations.

— -b: real number
Default: 1.0e +4

Number of samples used to compute the correlations. (MSA size)

— -g2: real number
Default: 0.0
The L2 regularization strength. L2 regularization is enabled by setting the
regularization strength to a nonzero value using this flag, or by using the -ag
flag below.

— -ag: none
Attempt to set the L2 regularization strengths to its optimal value, based on
the number of samples (input) in the data.

— -mcb: integer
Default: 8.0e +5
Number of Monte Carlo samples to take to check inference error.

— -mcr: integer
Default: 1

Number of independent Monte Carlo runs to perform.

— -msaout: none
If selected, print Monte Carlo alignment in outputfile.msa and energies of se-

quences in outputfile.e
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— -p3: none
Default: false (needed for VERY large systems)

Compute also 3-point correlations and print all of them in an output files

— -p3red: none
Default: false (needed for large systems)
Compute also 3-point correlations and print all of those that are larger than

(p)3. Among the other ones print only 1 over 50.

— -err: none
Compute and write connected correlation errors on statistics. (Written in the

corresponding file)

— -V none

Enable verbose output.

Input and output files Files are distinguished thanks to their extension referring
to a particular type or formatting of data found inside. Standard extension are the

following:

_ *p

Contains the input frequencies and correlations. Frequencies are listed before,
colours belonging to the same site stays on the same line. Then correlations for
pair of sited 75 are listed. Again the same line contains all colour combinations
existing for the considered pair of site. Colours are ordered according to site i
first and then site j. Only 7 > ¢ pairs are included and ordered according to
site i first and then to site j.
— K
Contains output parameters. Fields and couplings are listed in the same format

as frequencies and correlations.

— *.sce
Contains supplementary information about ace iterations and convergence. Columns
contain in the order: t, epsilonp, epsilonc, epsilon, .., final cross-entropy, max-
imum cluster size, total number of computed clusters, total number of significant
clusters, L2-norm regularisation term for both J and h.

— *cl

Contains a list of clusters. Each cluster has to contain more than one site. Sites

belonging to the same cluster are written on the same line.
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* fit
Contains MC-learning iteration outputs. Columns contain in the order: itera-

tion , epsilonp, epsilonp2, epsilon,,q.,L.oo-norm of weights.

*.cmsa

Contains the MSA in a compressed format made of a single column. Only
symbols seen at least once are reported. —1 flags divide different sites and
colours. After the flag the full set of sequences containing that colours on than
site is listed using different numbers to represent different sequences. Sites are

listed first and then colours.

*.cons
Contains the consensus sequence needed for the computation of P(k).

* wgt

Contains the re-weighting vector assigning a weight to each sequence according
to sequence similarity.

*m

Contains both input and output magnetisations. Input on the first column
output on the second one.

* p2

Contains both input and output 2-point correlations. Input on the first column

output on the second one.

*.c2
Contains both input and output 2-point connected correlations. Input on the
first column output on the second one.

*p3

Contains both input and output 3-point correlations. Input on the first column

output on the second one.

*.c3

Contains both input and output 3-point connected correlations. Input on the
first column output on the second one.

* pk

Contains the P(k) distribution. In the first column k is listed, in the second
column the input P(k) and in the third one the output P(k).

* msa

Contains the output MSA made of MC sequences.
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— *a

Contains the energies of the sequences in *.msaout

— * msae

Contains the energies of the sequences in *.cmsa according to the inferred model.

A.1.2 RunScript_2.0.sh package software

The bash script RunScript_2.0.sh runs both ACE programs and some Matlab
scripts for pre- and post-processing of data. The major advantage given by the use
of this scripts is that it parallelises the algorithm and output analysis. After that
all input files are ready and also DCA and plmDCA have run (if required), the ACE
is launched on input data. If the option for ¢ recording is chosen each time a new
set, of parameters is recorded at a certain ¢ the script runs first the MC-learning
and then the generative tests on both learned and non-learned parameters. The
minimum number of cores required is thus two. This parallelisation of inference
and analysis is particularly interesting in order to monitor the convergence of the
algorithm: comparing the generative tests of learned and non-learned parameter one
can easily understand if it is the case to stop the algorithm or if a better approximation
of the cross-entropy is needed to obtain reasonable results. For artificial models also
the contact map and the parameter comparison is performed at each recorded t.

RunScript_ 2.0.sh contains and manages runs for the following programs:

CreateModel this Matlab function build artificial models. It extracts random
parameters from Gaussian or Uniform distributions and assign them to different types
of graphs such as 1D chains, Erdos-Renyi random graphs or specific RNA-based
graphs.

qDataMC It is a ¢c++ program preforming a MC-sampling of a given g-state Potts

model.

rnaDCA Again a Matlab function for the DCA mean-field inference starting from
a MSA.

plmDCA symmetric This program belongs to the plmDCA_ symmetric_ v2 pack-
age for the plmDCA. This software have not been developed by the author of this

dissertation but the corresponding reference is [19].
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ComputeErrors This Matlab function takes as input a MSA and compute all the
statistical observable needed by the ACE algorithm. All ACE input files are written
in the correct format from this function. It performs the colour compression and
compute exact or approximated (depending on system size and user input) errors on
inferred parameters. The artificial model version map compressed correlations to the

full original model to prepare comparison among inferred parameters.

GaugeFixing It is a Matlab function to move both inferred parameters and input

ones, for artificial models, to a given lattice-gas gauge.

PredictMap A Matlab function for the computation of scalar scores from coupling
and true positive rates based on the input network of interactions. When real data

are used a contact map has to be specified.

ACE package All the programs in the ACE package can be run within Run-
Script_ 2.0.sh. Only the most common option have anyway been included. For a

more personal use we recommend to launch ACE programs individually.

A.1.3 RunScript 2.0.sh input options

The following list contains all the input options one can give to RunScript_ 2.0.sh:
— -g: real number
Regularisation strength
— -i: string
Input directory
— -0: string
Output directory

— -p: real number
Colour compression threshold

— -m: string
Colour compression method: one can both specify a threshold on the frequency
"pmin“ or on the entropy contribution "entr”

— -r: real number

Re-weighting threshold

— -f: real number

Frequency for ¢ recording of parameters within ACE
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-M: string

Matlab path

-S: string

ACE path

-N: integer

Number of sites in the model

-q: integer

Max number of colours per site. For artificial model specifies the number of
colours of the input Potts model.

-B: integer

Sample size

-b: integer

Change the number of samples computed by the MC for generative tests

-J: real number

Couplings variance. For artificial models only.

-H: real number

Field variance. For artificial model only.

-h: real number
Fields extra-mean for bimodal distribution. For artificial models only.
-t: string
Type of model.
— 1D’ = 1D Potts ring
— "ER00” = Erdos Renyi graph

The two numbers that follow ER represent the p probability to create a
link between two nodes. Examples: ER20 , p=0.2, ER59, p=0.59, etc.

— ’SS’ = Hairpin loop graph with Watson-Crick base pairs
Base pairs start from 1 - N and come up (2 - (N-1), 3 - (N-2), etc.).
The number of W-C base pais has to be expressed in the two numbers
that follows the type. Also a certain numbers of tertiary contacts can be

added, use other two numbers in the name.

Adding an S to the end of the type name means "solve analytically the model".
For 1D model this is quite fast (transfer matrix method), but for the other

models is computationally very expensive. Adding an U means "do not solve
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analytically the model". Between the type and the SU it is possible to put a
whatever name. Some examples: ER40 testl U — Erdos Renyi p—0.4 un-
solved called "test1", SS1708bS = secondary structure with 17 W-C base pairs
and 8 tertiary.

-X: string

Use a select list of clusters as input. Specify the file containing the list

-c: 1

Create model. For artificial models only.

-n: 1

Run MC-sampling form input parameters. For artificial models only.

-e: 1

Run ComputeErrors

-d: 1

Run mean-field analysis on the colour-compressed model

s 1

Run ACE

-ar 1

Run the full analysis on output of ACE algorithm. It includes qls and qgt for
all recorded value of ¢

-O:1

Run other algorithms (DCA and plmDCA) on the non-compressed model in the
original alignment.

-R: 1

Run analysis with real parameters to check thermalisation of MC routines.
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Methods for statistical inference on correlated data:
application to genomic data

Abstract

The availability of huge amounts of data has changed the role of physics
with respect to other disciplines. Within this dissertation I will explore the
innovations introduced in molecular biology thanks to statistical physics
approaches. In the last 20 years the size of genome databases has expo-
nentially increased, therefore the exploitation of raw data, in the scope of
extracting information, has become a major topic in statistical physics.
After the success in protein structure prediction, surprising results have
been finally achieved also in the related field of RNA structure character-
isation. However, recent studies have revealed that, even if databases are
growing, inference is often performed in the under sampling regime and
new computational schemes are needed in order to overcome this intrinsic
limitation of real data. This dissertation will discuss inference methods
and their application to RNA structure prediction. We will discuss some
heuristic approaches that have been successfully applied in the past years,
even if poorly theoretically understood. The last part of the work will
focus on the development of a tool for the inference of generative models,

hoping it will pave the way towards novel applications.

Keywords: inference, RNA, mean-field, Potts model, generative models,

regularisation, structure prediction



Résumé

La disponibilité de quantités énormes de données a changé le role de la
physique par rapport aux autres disciplines. Dans cette thése, je vais
explorer les innovations introduites dans la biologie moléculaire grace a
des approches de physique statistique. Au cours des 20 derniéres années,
la taille des bases de données sur le génome a augmenté de fagon expo-
nentielle : Iexploitation des données brutes, dans le champ d’application
de l'extraction d’informations, est donc devenu un sujet majeur dans la
physique statistique. Aprés le succés dans la prédiction de la structure
des protéines, des résultats étonnamment bons ont été finalement obtenus
aussi pour ’ARN. Cependant, des études récentes ont révélé que, méme si
les bases de données sont de plus en plus grandes, 'inférence est souvent
effectuée dans le régime de sous-échantillonnage et de nouveaux systémes
informatiques sont nécessaires afin de surmonter cette limitation intrin-
séque des données réelles. Cette thése va discuter des méthodes d’inférence
et leur application & des prédictions de la structure de I’ARN. Nous allons
comprendre certaines approches heuristiques qui ont été appliquées avec
succes dans les derniéres années, méme si théoriquement mal comprises.
La derniére partie du travail se concentrera sur le développement d’un
outil pour l'inférence de modéles génératifs, en espérant qu’il ouvrira la

voie & de nouvelles applications.

Mots-clés: Inférence, ARN, champ moyen, modél de Potts, modéles

génératifs, régularisation, prédiction structurelle

142



	Review: inverse Ising and Potts
	Ising and Potts models: definition
	Maximum entropy principle
	Solving inverse problems
	Boltzmann machine learning
	Mean-field
	Pseudo-likelihood
	Adaptive cluster expansion


	Inverse models across disciplines
	Application to biology
	Molecular biology
	Neuroscience
	Ecology and swarming

	Application to social science
	Sociology
	Economics


	RNA structure prediction: application of an inverse Potts model
	RNA structure analysis
	Basic concepts
	MC-annotate
	RNAview
	Assemble2
	The distances between nucleotides

	RNA comparative sequence analysis
	Needleman-Wunsch: global alignment
	Smith-Waterman: local alignment
	Profile Hidden Markov Models
	Covariance Models
	Infernal and Rfam

	RNA secondary and tertiary structures prediction
	Secondary structure prediction
	Tertiary structure prediction

	A new approach to prediction: DCA
	The comparison with the alignment
	PDB - RFAM gold standard
	Pre-processing of the alignment
	Removing phylogenetic bias
	Direct Coupling Analysis: a brief recall
	The scores

	Article: Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction
	Open problems and future improvements
	Filtering matrices
	Local coherence matrix
	Clustering procedure

	Conclusions

	Limits of mean-field inference and the role of regularisation
	Article: Large pseudocounts and L2-norm penalties are necessary for the mean-field inference of Ising and Potts models
	Conclusions

	An inference tool for generative models: The adaptive cluster expansion
	The ACE algorithm
	Computational refinements for the Potts case
	Colour compression
	Reference structure
	Analytical computation of 2-site clusters
	Sparse regularisation
	MC-learning refinement

	Gauge choice
	Finite-sampling error on parameters and its propagation
	Small systems analysis
	Gauge invariant regularization of the couplings
	Approximated error on the inferred parameters

	ACE applications
	Artificial data
	Biological data application: RNA

	Conclusions

	ACE: short user manual
	The full analysis script
	ACE package software
	RunScript_2.0.sh package software
	RunScript_2.0.sh input options


	References

