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Methods for statisti
al inferen
e on 
orrelated data:

appli
ation to genomi
 data

Abstra
t

The availability of huge amounts of data has 
hanged the role of physi
s

with respe
t to other dis
iplines. Within this dissertation I will explore the

innovations introdu
ed in mole
ular biology thanks to statisti
al physi
s

approa
hes. In the last 20 years the size of genome databases has expo-

nentially in
reased, therefore the exploitation of raw data, in the s
ope of

extra
ting information, has be
ome a major topi
 in statisti
al physi
s.

After the su

ess in protein stru
ture predi
tion, surprising results have

been �nally a
hieved also in the related �eld of RNA stru
ture 
hara
ter-

isation. However, re
ent studies have revealed that, even if databases are

growing, inferen
e is often performed in the under sampling regime and

new 
omputational s
hemes are needed in order to over
ome this intrinsi


limitation of real data. This dissertation will dis
uss inferen
e methods

and their appli
ation to RNA stru
ture predi
tion. We will dis
uss some

heuristi
 approa
hes that have been su

essfully applied in the past years,

even if poorly theoreti
ally understood. The last part of the work will

fo
us on the development of a tool for the inferen
e of generative models,

hoping it will pave the way towards novel appli
ations.

Keywords: inferen
e, RNA, mean-�eld, Potts model, generative models,

regularisation, stru
ture predi
tion





Résumé

La disponibilité de quantités énormes de données a 
hangé le r�le de la

physique par rapport aux autres dis
iplines. Dans 
ette thèse, je vais

explorer les innovations introduites dans la biologie molé
ulaire grâ
e à

des appro
hes de physique statistique. Au 
ours des 20 dernières années,

la taille des bases de données sur le génome a augmenté de façon expo-

nentielle : l'exploitation des données brutes, dans le 
hamp d'appli
ation

de l'extra
tion d'informations, est don
 devenu un sujet majeur dans la

physique statistique. Après le su

ès dans la prédi
tion de la stru
ture

des protéines, des résultats étonnamment bons ont été �nalement obtenus

aussi pour l'ARN. Cependant, des études ré
entes ont révélé que, même si

les bases de données sont de plus en plus grandes, l'inféren
e est souvent

e�e
tuée dans le régime de sous-é
hantillonnage et de nouveaux systèmes

informatiques sont né
essaires a�n de surmonter 
ette limitation intrin-

sèque des données réelles. Cette thèse va dis
uter des méthodes d'inféren
e

et leur appli
ation à des prédi
tions de la stru
ture de l'ARN. Nous allons


omprendre 
ertaines appro
hes heuristiques qui ont été appliquées ave


su

ès dans les dernières années, même si théoriquement mal 
omprises.

La dernière partie du travail se 
on
entrera sur le développement d'un

outil pour l'inféren
e de modèles génératifs, en espérant qu'il ouvrira la

voie à de nouvelles appli
ations.

Mots-
lés: Inféren
e, ARN, 
hamp moyen, modèl de Potts, modèles

génératifs, régularisation, prédi
tion stru
turelle
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Motivations

In the last few years, the �eld of the mole
ular biology has experien
ed an almost

unbelievable improvement both in the quantity and in the quality of the data available.

The number of genome proje
ts has in
reased as te
hnologi
al improvements 
ontinue

to lower the 
ost of sequen
ing, 
onsequently sin
e 1995, we have assisted at the

exponential growth of genome sequen
e databases. At the same time the profound

need for tools able to manage with this huge amount of data and, most importantly,

able to extra
t useful information from sequen
es analysis has interested s
ientists

with diverse ba
kgrounds. Nowadays 
omputational and quantitative biology are


ross-dis
iplinary �elds and more and more innovative works have bene�t from this

extremely heterogeneous framework.

From the physi
ist's point of view, the task of exploiting data in order to infer

appropriate models is 
alled inverse problem. As dire
t problems 
onsist in 
omputing

some observables from a known probability distribution, solving an inverse problem

means to estimate the probability distribution from whi
h the observed data have

been drawn. For de
ades inverse problems have been extensively studied within the

theoreti
al and statisti
al physi
s 
ommunity and a huge and ever growing literature

exists. Therefore physi
ists have played a double role in the exploration of genomi


data. On the one hand they have identi�ed biologi
al interesting topi
s eligible for

appli
ation of existing statisti
al physi
s methods. On the other hand some of these

topi
s have be
ome extremely popular and, sin
e they have been fa
ed for the �rst

time, novel solutions have been developed to the s
ope of a dire
t appli
ation.

The appli
ation of 
omparative sequen
e analysis results to protein stru
ture pre-

di
tion is nowadays a well established framework. Several works, making use of

diverse tools, have shown that the 
orre
t interpretation of 
orrelations in sequen
-

ing data, 
an help in predi
ting protein stru
tures. Can we use similar methods for

RNA stru
ture predi
tion? Re
ent advan
es in mole
ular biology have revealed RNA

having a 
ru
ial role in the 
ell, thus the stru
tural 
hara
terisation of RNAs has

be
ome of general interest. Within this dissertation I will address this problem using

1



Dire
t-Couplings Analysis (DCA), a mean-�eld based inferen
e method, proved to

give reliable results on protein data.

However, during my thesis, I have worked not only on the appli
ation of an ex-

isting tool to a novel problem (DCA applied to RNA) but also on the development

of a new approa
h to inverse problems: the Adaptive Cluster Expansion (ACE). Ini-

tially developed for binary variables, the generalisation of ACE to sequen
e-like data

promises to provide a powerful tool for 
omparative sequen
e analysis.

Chapter 1 of this dissertation will be devoted to the introdu
tion of inverse prob-

lems and of the existing approa
hes to their solution. I will formally de�ne an inverse

problem and I will review some interesting works appeared in the �eld, fo
using in

parti
ular on the ones 
on
erning appli
ation to biologi
al data.

In 
hapter 2 I will present re
ent appli
ations of statisti
al physi
s method to

diverse topi
s and �elds, su
h as e
ology, so
ial s
ien
e and e
onomi
s. The aim of

this 
hapter is to stress that not only biology 
an bene�t from advan
ed statisti
al

analysis: data are nowadays used to des
ribe our everyday life.

In 
hapter 3 the work on the appli
ation of DCA to RNA stru
ture predi
tion will

be exposed. The 
hapter starts with an exhaustive introdu
tion on the problem from

both the biologi
al and the 
omputational point of view. The results are presented

within the related paper. Finally, after the reprint, some interesting open problems

are shown.

Chapter 4 will report a work we made on the role of regularisation on naive

mean-�eld inferen
e. We tried to deeply understand pros and 
ons of mean-�eld

approximation and we showed that strong regularisation 
an only partially 
orre
t

the mean-�eld intrinsi
 errors. Also in this 
ase, after a short introdu
tion, the main

results will be in
luded inside the reprinted paper.

In 
hapter 5, �nally, I will expose the work done on ACE. After a review on

the original algorithm, the main improvements we introdu
ed will be studied. Note

how the knowledge we have about target systems (RNA, proteins, et
...) guided the

development of the algorithm. A paper on ACE and its appli
ation to biologi
al data

is in preparation. The 
ode of the algorithm will be 
ontextually released.
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Chapter 1

Review: inverse Ising and Potts

Re
ent developments in 
omputational s
ien
es have shown the importan
e of

inverse problems. The 
hallenge in this �eld 
onsists in trying to extra
t the rule gov-

erning a 
ertain system from the statisti
s of samples of a large number of mi
ros
opi


variables. Often experimental measurements 
an a

ess a redu
ed and usually biased

sample of the whole possible set of di�erent behaviours of a given system. Advan
es

in statisti
al physi
s promise to provide, however, an ever in
reasing number of useful

tools to extra
t information from experimental data.

Formally, inverse problems try to des
ribe the system estimating an unknown

probability distribution Pdata(σ), for a high-dimensional feature ve
tor σ = {σ1, σ2, ...σN},

given a set of M observations of this ve
tor.

The paradigm of inverse problems is the inverse Ising problem also known as

Boltzmann ma
hine learning. Born to des
ribe ferromagneti
 materials, the Ising

model is nowadays applied to the des
ription of a multitude of systems: from neural

networks [1℄ to protein �tness lands
apes [2℄, from protein 3D stru
tures [3℄ to gene

expression networks [4℄. Its straightforward generalisation, the Potts model, is the

most natural 
hoi
e for systems with many states variables and it has been proved

enhan
e the system's des
ription.

Inverse and dire
t problems 
an be 
onsidered under a dual perspe
tive: we 
an


ompute averaged quantities, su
h as magnetisations and 
orrelations (dire
t prob-

lem), given the full set of parameters of the model, meaning �elds and 
ouplings, or we


an infer the latter ones (inverse problem) su
h that the data statisti
s is re
overed.

A huge amount of diverse approa
hes exists. Some approa
hes to the inverse problem

have been inspired by this duality and the solution of the inverse problem is fa
ed as

the expli
it inversion of the solution of the dire
t one (e.g. mean-�eld [5℄). Others

methods are based, instead, on the fa
t that usually dire
t problems are easier than

inverse ones and thus the solution of the former is iteratively used to approximate the

3



solution of the latter: this was, for instan
e, the approa
h for the �rst Boltzmann ma-


hine learning solution [6℄. Finally, some of them are rooted in the intrinsi
 di�eren
es

between dire
t and inverse problem (e.g. adaptive 
luster expansion [7℄). Mentioning

all the possible ways to fa
e the problem is beyond the purpose of this thesis, and I

will fo
us on the te
hniques that have su

essfully been applied to biologi
al inferen
e

problems or that have even been spe
i�
ally designed for su
h appli
ations.

In this 
hapter I will �rst de�ne the Ising and the Potts model and then show how

a very general prin
iple justi�es the 
hoi
e for these models for the des
ription of very


omplex systems (e.g. protein stru
tures, gene expression or neural networks). The

last se
tion of this 
hapter will be dedi
ated to some of the most popular methods

developed for the solution of the inverse Ising model.

1.1 Ising and Potts models: de�nition

The Ising and the Potts models des
ribe systems 
hara
terised by pairwise in-

tera
tions among their elements, 
alled spins in the language of statisti
al physi
s.

While the former is 
hara
terised by binary spin variables (σi = −1,+1) the latter

presents many 
olours for ea
h spin: σa
i where a = 1, ..., q, the binary 
ase being

re
overed when q = 2.

HIsing =

N
∑

i=1

hiσi +
∑

i<j

Jijσiσj

HPotts =

N
∑

i=1

q
∑

a=1

hi(σ
a
i ) +

∑

i<j

q
∑

a,b=1

Jij(σ
a
i , σ

b
j) (1.1)

where the hi are lo
al �elds and the Jij are 
ouplings between pairs of spins. Eq.

1.1 shows the Ising and the Potts Hamiltonians

1

for a system with N variables and,

in the Potts 
ase, of q 
olours.

1.2 Maximum entropy prin
iple

An impressing point about inverse problems is that within the applied problems

I will des
ribe in this thesis, Ising and Potts models emerge naturally from the ap-

pli
ation of a very general tenet: the maximum entropy prin
iple (MEP). A

ording

1. HPotts de�ned in 1.1 refers a
tually to the so 
alled generalised Potts model in whi
h 
ouplings

and �elds also depend on 
olours. The original Hamiltonian is H =
∑

i<j Jijδ(σi, σj) where σi and

σj 
an take q possible values and δ is the Krone
ker delta that is di�erent from zero if and only if

σi = σj . In the following I will always refer to the generalised Potts model as simply Potts model.

4



to MEP we de�ne the least 
onstrained probability distribution reprodu
ing the ob-

servables, i.e. a des
ription of the data variability only in terms of the observables.

Imagine we want to 
hara
terise a whatever sample of data. We 
ould extra
t

some information from data 
omputing two simple quantities: the frequen
y of single

variables and the 
orrelation between ea
h pair of variables. Going beyond that is to

some extent hard and often useless [8℄. Consider now the 
ase of a system made of N

Ising variables. Our sample is 
omposed by a set of observations στ = {στ
1 , σ

τ
2 , ..., σ

τ
N}

with τ = 1, ..,M . Frequen
ies and 
orrelations are thus de�ned as in Eq. 1.2.

f data
i =

1

M

M
∑

τ=1

στ
i f data

ij =
1

M

M
∑

τ=1

στ
i σ

τ
j (1.2)

However, taking into a

ount f data
i and f data

ij to des
ribe the intera
tion existing

among spins gives us only a partial information about the system. A full des
ription

is in fa
t 
ontained in the probabilisti
 model Pdata(σ) from whi
h these samples have

been drawn and to whi
h, unfortunately, we do not have a

ess. Thanks to MEP [9℄

it is possible to 
ompute a probability distribution Pmep(σ) satisfying the following


onstraints:

fmep
i = f data

i fmep
ij = f data

ij (1.3)

where

fmep
i =

∑

σ

Pmep(σ)σi fmep
ij =

∑

σ

Pmep(σ)σiσj (1.4)

Constraints in Eq. 1.2 
an be introdu
ed into the entropy de�nition thanks to

Lagrangian multipliers and 
an be in prin
iple generalised to any other observable

of P data
and Pmep

. In the spe
i�
 
ase of the simpli�ed des
ription we have 
hosen,

we only need two types of Lagrangian multipliers: hi for frequen
ies and Jij for


orrelations .

S = −
∑

σ

P (σ) lnP (σ) + λ
∑

σ

(P (σ)− 1)

+
N
∑

i=1

hi

(

∑

σ

P (σ)σi − f data
i

)

+
∑

i<j

Jij

(

∑

σ

P (σ)σiσj − f data
ij

)

(1.5)
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Pmep is thus de�ned as the fun
tion maximising the entropy S in equation 1.5.

The result of this maximisation is the Boltzmann distribution in Eq. 1.6 where

the Hamiltonian 
oin
ides with HIsing
or HPotts

. Note that the usual temperature

parameter β is �xed to 1.

Pmep(σ) =
1

Z
e−H(σ)

(1.6)

The normalisation Z is referred to as the partition fun
tion in the language of

statisti
al physi
s and 
ontains all the information needed about the systems. Its

derivatives with respe
t to the �elds and to the 
ouplings 
oin
ide indeed to the

marginals of the distribution, i.e. the single- and two-site statisti
s fmep
i and fmep

ij .

1.3 Solving inverse problems

Within the des
ribed formulation, the �rst step towards the solution of an inverse

problem is the appli
ation of MEP, meaning to obtain the analyti
al form of a model

potentially des
ribing the data. The main 
hallenge is to solve the inverse problem

and 
ompute a set of parameters �tting the input 
orrelations and magnetisations.

Sin
e appli
ations of inverse problems are highly interdis
iplinary, several solutions

exist having been developed within di�erent 
ommunities (e.g. information theory,


omputer s
ien
e, physi
s) and 
an be formulated under di�erent perspe
tives. For

instan
e, one 
an sear
h for the set of parameters minimising the Kullba
k�Leibler

divergen
e between Pdata(σ) and Pmep(σ) in Eq. 1.7.

DKL(Pdata ‖ Pmep) =
∑

σ

Pdata(σ) ln(
Pdata(σ)

Pmep(σ)
) (1.7)

or equivalently, the set of parameters minimising the negative log-likelihood L

(Eq. 1.9) that the model Pmep 
an a
tually reprodu
e data.

L = −
1

M

M
∑

τ=1

lnPmep(σ
τ ) (1.8)

= ln(Z)−

N
∑

i=1

hif
data
i −

N
∑

i<j

Jijf
data
ij (1.9)

Moreover, thanks to Eqs. 1.10 we know that the obtained distribution reprodu
es

the desired statisti
s, i.e. Eqs. 1.2 are surely satis�ed.
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∂DKL

∂hi

= fmep
i − f data

i

∂DKL

∂Jij

= fmep
ij − f data

ij (1.10)

Given these general results, many di�erent strategies have been designed. In

prin
iple the minimisation of DKL or of the negative log-likelihood 
an fully solve the

problem. The exa
t 
omputation of these quantities implies a sum over all possible


on�gurations of the system and thus it be
omes rapidly infeasible for an in
reasing

number of spins: the number of 
on�gurations s
ales as qN where N is the number

of spins in the system and q is the number of 
olours. Many approximated solutions

have been proposed in the past years in order to �nd the best equilibrium between

result reliability and 
omputational feasibility.

1.3.1 Boltzmann ma
hine learning

The Boltzmann ma
hine learning, as presented in [6℄, is one of the �rst approa
hes

to the inverse Ising problem and it was developed within the Computer S
ien
e 
om-

munity. The authors' purpose was to de�ne a network able to learn some simple rules

and having learning properties similar to those of the Hop�eld network [10℄. How-

ever, di�erently from the Hop�eld model, the sto
hasti
ity they have introdu
ed with

a Metropolis-like Monte Carlo dynami
s lets the system es
ape from lo
al minima

and eventually rea
h thermal equilibrium.

The Boltzmann ma
hine stores learned information in a set of weights being the

intera
tions between nodes. The learning pro
ess of the ma
hine 
orresponds to the

solution of an inverse Ising problem, the weights between nodes being equivalent to


ouplings between spins. The strategy introdu
ed by the authors 
onsists in a two-

step approa
h: �rst solve the dire
t problem using the Monte Carlo sampling, then

solve the inverse problem updating the weights a

ording to Eq. 1.11. These two

steps are iterated till 
onvergen
e is rea
hed.

Jn
ij = Jn−1

ij + η(f data
ij − fMC

ij ) (1.11)

Eq. 1.11 is derived from the minimisation of the Kullba
k-Leibler distan
e be-

tween the Monte Carlo equilibrium distribution and the data distribution. Being

this minimisation a 
onvex optimisation problem, gradient des
ent is guaranteed to


onverge to the exa
t solution. Note that, even if in the original algorithm in [6℄ no

mention was given to �elds updating, the generalisation of this algorithm to models

with lo
al �elds is straightforward and in 
hapter 5 we will see an example of this

kind.
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Boltzmann ma
hine learning is a very a

urate way to �t parameters however it is

extremely expensive in term of 
omputational time. It is still used to analyse diverse

types of biologi
al data, from neurons re
ording to protein sequen
es [2℄ usually when

strong intera
tions exist among the variables in the system and �ne information need

to be extra
ted from the sample.

1.3.2 Mean-�eld

Mean-�eld approximation (MFA) is an extremely widespread topi
. The simplest

MFA is the so 
alled naive MF entailing the approximation of the model free energy

in terms of averaged magnetisations mi = 〈σi〉 over the Gibbs measure in 1.6.

The free energy 
an be written as:

lnZnMF =
∑

i

[(

1−mi

2

)

ln

(

1−mi

2

)

−

(

1 +mi

2

)

ln

(

1 +mi

2

)]

+
∑

i

himi +
∑

i 6=j

Jijmimj (1.12)

The �rst two terms in Eq. 1.12 
orrespond to terms of order zero in the well

known Plefka expansion [11℄ [12℄ while the last term is the order-one term. Further

steps in the expansion 
an be done. For instan
e the se
ond-order term (last term in

Eq. 1.13) 
orresponds to TAP approximation [13℄, derived in
luding also the Onsager

rea
tion term.

lnZTAP =
∑

i

[(

1−mi

2

)

ln

(

1−mi

2

)

−

(

1 +mi

2

)

ln

(

1 +mi

2

)]

+
∑

i

himi +
∑

i 6=j

[

Jijmimj +
1

2
J2
ij(1−m2

i )(1−m2
j)

]

(1.13)

Di�erently from naive MF, where the probability distribution is fully fa
torised

(Pmep(σ) ≃
∏N

i=1 P
mep
i (σi)), the so 
alled Bethe approximation 
onsiders a model

fa
torised over two-spin intera
tions only (Eq. 1.14), resulting thus exa
t on tree

graphs.

Pmep(σ) ≃
N
∏

i=1

Pmep
i (σi)

∏

ij

Pmep
ij (σi, σj)

Pmep
i (σi)P

mep
j (σj)

(1.14)
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Beside the analyti
al solutions [5℄, a very e�
ient algorithm for the inverse Ising

in Bethe approximation is the Sus
eptibility Propagation introdu
ed by [14℄, inspired

by message-passing pro
edures.

Given the self-
onsisten
y equations (i.e. the relation between magnetisations and

parameters found minimising the free-energy with respe
t to magnetisations) of any

of the MF methods des
ribed above, non-trivial 
orrelations between distant spins


an be derived from linear response theory:

Cij =
∂mi

∂hi

(C−1)ij =
∂hi

∂mi

(1.15)

We therefore obtain:

(C−1
nMF )ij =

δij
1−m2

i

− Jij (1.16)

(C−1
TAP )ij =

[

1

1−m2
i

+
∑

k

J2
ij(1−m2

k)

]

δij − (Jij + 2J2
ijmimj) (1.17)

Usually for appli
ations diagonal terms are ignored and thus simpli�ed relations


an be easily inverted. Note that for these types of MFA �nding a solution for the

inverse problem depends our ability to invert the above relations and to �nd 
lose

relations for 
ouplings and �elds. As far as nMF and TAP are 
on
erned very simple

expressions 
an be derived:

JnMF
ij = −(C−1)ij (1.18)

JTAP
ij =

√

1− 8mimj(C−1)ij − 1

4mimj

(1.19)

where C is the empiri
al 
orrelation matrix. Another simple approximation 
an

be obtained by treating every pair of spins as if they were independent on the rest of

the system. This approximation is thus 
alled the Independent pair approximation

(IP) [15℄ and, as you 
an see from Eq. 1.20 and 1.21 it is related to the small


orrelation expansion (SCE) developed by Sessak and Monasson [16℄.

JIP
ij =

1

4
ln

((1 +mi)(1 +mj)Cij) ((1−mi)(1−mj)Cij)

((1 +mi)(1−mj)Cij) ((1−mi)(1 +mj)Cij)
(1.20)

JSCE
ij = −(C−1)ij + JIP

ij −
Cij

(1−m2
i )(1−m2

j)
(1.21)
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SCE 
onsists in the extension of the approa
h developed in [12℄ based on a double

Legendre transform of the free energy in order to �x both the magnetisations (already

done by [12℄) and the 
orrelations. The result is eventually a high-temperature Plefka

expansion.

All the diverse MFAs guarantee a very fast implementation, whose time s
ales

in the worst 
ase as O(N3) sin
e the 
onne
ted 
orrelation matrix has to be in-

verted. However the reliability of results is not always ensured and in parti
ular in

the low-temperature (strong-
oupling) limit all these approximations fail. Re
ently

new approa
hes [17℄ [18℄ have proposed to 
orre
t these e�e
ts thanks to 
lustering of


on�gurations a

ording to thermodynami
 states. Both the two solutions rely on the

re
onstru
tion of 
on�guration spa
e in the low temperature regime and thus result

to be unsuitable for those models with a highly non-trivial set of metastable states.

Alternatively the low-temperature regime 
an be over
ome by the introdu
tion of

regularisation terms helping to 
orre
t inferen
e of strong 
ouplings. As we will see

extensively in 
hapter 4, the introdu
tion of a large regularisation, often ne
essary

to 
orre
t �nite sample e�e
ts, turns out to be 
ru
ial also in the 
ase of perfe
t

sampling and enlarges the reliability of MFA.

1.3.3 Pseudo-likelihood

Pseudo-likelihood maximisation (PLM) is nowadays one of the most powerful tools

for inverse problems and its appli
ation to protein stru
ture predi
tion [19℄ has proved

to outperform any other existing inferen
e method.

PLM approa
h to inverse problems was developed within the mathemati
al statis-

ti
s 
ommunity [20℄ [21℄. It 
onsists of an approximation of the maximum-likelihood

inferen
e, obtained substituting the probability distribution in Eq. 1.8 with the 
ondi-

tional probability of observing one variable σi given the observations of all the other

variables σ\i. The probability distribution of the model is therefore repla
ed by a

large set of 
onditional probabilities (Eq. 1.22) 
omputed from M di�erent samples

Pi(σ
τ
i |σ

τ
\i) =

eσ
τ
i [hi+

∑N
j=1

Jijσ
τ
j ]

2 cosh
[

hi +
∑N

j=1 Jijστ
j

]
(1.22)

li = −
1

M

M
∑

τ=1

lnPi(σ
τ
i |σ

τ
\i) (1.23)

where τ = 1, ..,M . The parameters hi and Jij 
an be 
omputed via the min-

imisation of the lo
al log-likelihood li in Eq. 1.23. However this pro
edure is not
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fully 
onsistent and returns two di�erent values for the 
oupling Jij : J∗,i
ij and J∗,j

ij ,

respe
tively 
oming from the minimisation of li and of lj . Sin
e both the two values

are in agreement with all the other estimated parameters, a simple solution for this

issue is to repla
e Jij with Jij =
1
2
(J∗,i

ij +J∗,j
ij ). It is also possible to for
e to algorithm

to return equal values for these 
ouplings by minimising Lpseudo =
∑N

i=1 li [22℄ under

this 
onstraint.

In order to avoid �nite samples problems and also to help the minimisation algo-

rithm, a regularisation term is usually added to Lpseudo. The most 
ommon types of

regularisation penalties are L1-norm and L2-norm, jointly to pseudo
ounts (
f. 
hap-

ter 4). As far as pseudo-likelihood is 
on
erned, the L1-norm was originally suggested

in [21℄, sin
e it for
es small parameters to zero and redu
es e�e
tively the number

of parameters to be �t. Within some appli
ation [19℄, also the L2-norm has been

su

essfully used.

Note that, di�erently from MFAs, pseudo-likelihood maximisation is a statisti
ally


onsistent method, meaning that the parameters estimated from an in�nite i.i.d.

sample generated by the same model 
lass are asymptoti
ally exa
t. This is not the


ase for MFA whi
h makes signi�
ant errors even with perfe
t sampling.

1.3.4 Adaptive 
luster expansion

The Adaptive Cluster Expansion (ACE) [7℄ [23℄ 
onsists in a perturbative expan-

sion of the log-likelihood in small 
lusters, meaning sub-systems, built in a re
ursive

way and sele
ted a

ording to their 
ontribution to the log-likelihood of the full model.

It has been proved that ACE, as Boltzmann ma
hine learning, provides reliable re-

sults also in the low-temperature phase where many other inferen
e methods fail.

Moreover, di�erently from Boltzmann ma
hine learning, ACE does not su�er from


omputational infeasibility on sparse systems (i.e. when the largest 
luster size is

small) and 
an be used on reasonable system sizes (N ∼ 100). The su

ess of su
h

an approa
h relies on the intrinsi
 di�eren
e between dire
t and inverse problems.

Consider J = {hi, Jij} being the parameters of the model and fmep = {fmep
i , fmep

ij }

the 
orrelations of the model. We de�ne the sus
eptibility matrix and its inverse as:

χ =
∂fmep

∂J

∣

∣

∣

∣

J

χ−1 =
∂J

∂fmep

∣

∣

∣

∣

fmep

(1.24)

χ tells us the response of 
orrelations due to a small 
hange in the parameters

and 
an be thus asso
iated to errors in the dire
t problem solution. χ−1
measures,

instead, the response of parameters due to a small variation of the 
orrelations and
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an be asso
iated to the inverse problem. The 
ru
ial point here is that these two

matri
es are far from being similar. χ−1
is usually mu
h sparser and shorter-range

than χ, meaning that, even if the system is 
hara
terised by many strong long-range


orrelations, 
ouplings still depend on a small number of 
orrelations. This 
laim turns

out to be true also in the low-temperature regime and thus 
on�rms the appli
ability

of ACE to 
riti
al models.

In 
hapter 5 I will extensively dis
uss about ACE and its appli
ation to biologi
al

problems. I therefore postpone the detailed des
ription of the algorithm to that part

of my dissertation.
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Chapter 2

Inverse models a
ross dis
iplines

The emergen
e of a massive 
olle
tion of data has de�nitely transformed �elds su
h

as physi
s, informati
s and biology. In the last de
ades we assisted to the explosion of


omputational and quantitative studies about biologi
al topi
s. Beside 
omputational

biologists, an interesting role is played by several interdis
iplinary pro�le s
ientists

applying usually a ba
kground in information theory and theoreti
al or statisti
al

physi
s to diverse subje
ts. Consequently nowadays departments of biophysi
s or

bioinformati
s exist in almost every university. Conversely if one looks at the leading

dis
iplinary journals in so
iology, e
onomi
s or even politi
al s
ien
e only a minimal

eviden
e of the emergen
e of a 
omputational so
ial s
ien
e 
an be observed. For

some years now big 
ompanies, su
h as Google, Fa
ebook and Amazon, have been

appre
iating the power of data 
olle
tion and analysis. The development of ma
hine

learning and inferen
e te
hniques able to manage with tons of data (generally referred

to with the term Big Data) has enlarged the possibility of exploit information on

people habits till endangering everyone priva
y. A question thus spontaneously arises:

do we have to expe
t that the 
omputational revolution we assisted in biology will

spread to so
ial s
ien
e and after that dire
tly to our day-to-day life? I would say yes,

but let me remark that the emergen
e of su
h a data-driven so
ial s
ien
e is happening

at a rate mu
h slower than the one having been observed in biology. Probably the

need for appropriate authority manifested by some people has introdu
ed an inertial

term in the pro
ess due to institutional rea
ting times.

In this 
hapter I will analyse some of the most studied appli
ations of inferen
e

methods and statisti
al physi
s tools to several di�erent topi
s, from biology to e
o-

nomi
s. We will �rst fo
us on biomole
ular stru
ture predi
tion, as it is one of the

main themes of this dissertation, then we will sket
h gene expression analysis and

neuros
ien
e. The last biologi
al topi
 
onsidered will be e
ology, fo
using on 
ol-

le
tive behaviour of both mi
ro-organisms and higher-order spe
ies 
ommunities. In
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the se
ond se
tion, I will introdu
e some so
ial s
ien
e appli
ations, su
h as human

intera
tions, diseases spreading and e
onomi
s.

2.1 Appli
ation to biology

2.1.1 Mole
ular biology

The major interest of 
omputational biologists has been for several de
ades the

stru
tural and fun
tional 
hara
terisation of important biomole
ules su
h as DNA,

RNA and proteins. For instan
e knowing the 3D stru
ture of a membrane protein

helps understanding its mole
ular me
hanism and a

elerates the development of

pharma
ologi
al agents targeting it. However solving three-dimensional stru
tures is

a hard experimental task and the stru
tural 
hara
terisation of biomole
ules has till

now pro
eeded quite slowly. Sequen
ing results to be mu
h easier and 
heaper, thus we

assisted at the exponential in
rease of available sequen
es. Given sequen
ing data, the

�rst step 
onsists in sear
hing for homologous sequen
es, i.e. phylogeneti
ally related

sequen
es sharing a 
ommon an
estor. Then, this set of homologous sequen
es is

rearranged so to 
reate a Multiple Sequen
e Alignment (MSA), meaning a matrix

of nu
leotides or amino a
ids having on di�erent lines di�erent homologs and on

di�erent 
olumns di�erent sites. Sequen
e sites must be pla
ed in the 
orre
t 
olumn

a

ording to some equivalen
e rule among spe
ies. The best alignments tools existing

maximise 
omplex global s
ores depending on single-site frequen
y of symbols. When

these methods were introdu
ed the number of available sequen
es was extremely poor,

thus it was entirely reasonable to ignore higher-order statisti
s, sin
e the amount of

data was insu�
ient to estimate joint probabilities. MSAs 
urrently available on

databases 
ontain tens of thousands and even hundreds of thousands of sequen
es.

Therefore the deep statisti
al investigation of MSA is now a 
ommon pra
ti
e and

diverse approa
hes exist [24℄ [2℄ [25℄ [26℄ [3℄ [27℄ [28℄ [29℄.

Several MSA analysis tools start from the assumption of the so 
alled 
o-evolution:

the fun
tion of biomole
ules strongly depends on their three-dimensional stru
ture

and the stru
ture is stabilised thanks to intera
ting residues or bases. Sin
e the

stru
ture (and fun
tion) is often highly 
onserved a
ross spe
ies, while the sequen
e

is not, the existen
e of 
ru
ial intera
tions among distant sites entails 
orrelations

between MSA 
olumns. The huge 
omplexity of 
ooperative intera
tions between

residues makes this problem highly non-trivial: amino a
ids are mostly pairwise 
ou-

pled within three dimensional stru
tures but also many three-way or higher-order


ouplings have been observed [30℄. The result is often a dense and 
omplex network

14



of intera
tions and lo
al measures of 
orrelation (e.g. Mutual Information) 
annot

disentangle dire
t from indire
t 
ontributions. Global inverse models among those we

analysed in the previous 
hapter, have thus been su

essfully employed [3℄ [31℄ [19℄.

Beside stru
ture analysis, the problem of �tness 
hara
terisation of proteins has

also been part of interesting joint works, both experimental and 
omputational. A

major 
hallenge in the �eld is the HIV-AIDS epidemi
 [25℄ [2℄. HIV is 
hara
terised

by an extreme sequen
e variability. An a

urate des
ription of its �tness lands
ape,

meaning the identi�
ation of the network of deleterious, bene�
ial and 
ompensatory

mutations, 
an inform the design of immunogens and therapies in the s
ope of tar-

geting the virus in its most vulnerable regions.

Mole
ular studies help us to understand how proteins, RNA and DNA work. How-

ever, the 
ell a
tivity is 
arried out through the 
ooperation of many genes and gene

produ
ts. The genome is organised in regulatory modules or groups of 
o-regulated

genes 
ontributing to a 
ommon fun
tion. The identi�
ation of su
h a network of in-

tera
tions is 
ru
ial for understanding 
ell response to internal and external stimuli.

The main assumption, underlying 
omputational studies in this �eld, is that regu-

lators are themselves trans
riptionally regulated, thus their expression pro�les 
arry

information about their a
tivity level [32℄. Gene expression is measured thanks to

sequen
ing (e.g. RNAseq te
hnologies) analysis, then several inferen
e methods are

applied in order to infer gene intera
tion networks re�e
ting intra
ellular 
ommuni-


ation pathways [33℄ [4℄. The most 
ommon approa
h to this problem fo
uses on the

di�eren
es in gene expression and aims to identify of meaningful subgroups of genes

with similar expression patterns. However, on
e again, 
orrelation measures 
annot

provide insight into the dire
t intera
tions among genes underlying the observed ex-

pression pattern. Maximum entropy prin
iple has been su

essfully applied here [34℄

to infer pairwise intera
tions able to a

urate des
ribe expression data. Moreover

some approa
hes have in
orporated both gene expression analysis and stru
tural 
on-

siderations aiming at a more and more global model for living 
ell a
tivity [35℄.

2.1.2 Neuros
ien
e

Populations of sensory neurons en
ode information about stimuli into sequen
es of

a
tion potentials 
alled spikes [36℄. The representation of environment signals depends

on 
orrelations among neurons and on their ability to 
oordinate spike patterns. Spike

a
tivity 
an be measured and has been studied in many di�erent brain areas, however

the understanding of the 
ode mapping neurons �ring and response to stimuli is still


hallenging and diverse interpretations have been broadly debated.
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Correlations among neurons have been proved to govern both the 
onveyan
e

and the storage of information; moreover several measurements have revealed that


orrelated patterns exist [37℄ [38℄ [39℄, but their origin and importan
e for de
oding

the neural 
ode still remains poorly understood. Several 
oding strategies have been

identi�ed [40℄: (i) independen
e where ea
h neuron responds independently to an

input, (ii) de
orrelation where neurons intera
t in order to produ
e a de
orrelated

representation of the input, (iii) error 
orre
tion where many neurons respond to

the same stimulus in a redundant way and (iv) synergisti
 
oding where instead the


ooperation of neurons en
odes information that a single neuron 
annot manage. Note

that the trade-o� between redundan
y and error 
orre
tion pervades many di�erent

biologi
al information pro
esses and not only neural networking.

As in the �eld of sequen
e analysis, the most important revolution in our un-

derstanding of these systems follows te
hni
al improvements from the experimental

side [41℄: from �rst attempts (i.e. single-neuron re
ording) the number of simultane-

ously re
orded neurons has roughly doubled ea
h year. Nowadays experimentalists


an re
ord the a
tivity of many 
ells (from hundreds to thousands depending on the

lo
ation in the brain) at the same time, and the spatial and temporal resolution

with whi
h these re
ordings 
an be done is in
reasing. The advent of su
h multi-

neuron re
ordings has paved the way to the development of analyti
al tools able to

model and interpret data, partially unveiling the 
omplexity of the brain. These stud-

ies [42℄ [43℄ [1℄ showed that the 
olle
tive behaviour of neurons in response to 
omplex,

naturalisti
 inputs 
an be quantitatively des
ribed by pairwise-based models assum-

ing no higher-order intera
tions. Very re
ently the authors of [44℄ used an Ising-based

analysis to show that fun
tional 
onne
tions between pairs of grid 
ells

1

show a pe-


uliar 
onne
tivity with neurons with nearby phases ex
iting and those further apart

inhibiting ea
h other. Moreover the statisti
al model the authors built, allows them

to explain some sour
es of indire
t 
orrelations as for instan
e overlapping �elds, that


ould lead to spurious 
onne
tions.

2.1.3 E
ology and swarming

E
ologi
al systems are 
hara
terised by a sto
hasti
 dynami
s: random geneti


mutations and phenotypi
 
hanges, randomness of births and deaths, external for
es

su
h as weather or other spe
ies migrations. The result is therefore a non-trivial

average dynami
s and, in prin
iple, several and a

urate measurements on repli
ated

1. Grid 
ells are neurons in the medial entorhinal 
ortex, one synapse away from the hippo
ampus,

whose a
tivity lets the organism understand its position in spa
e
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systems should be needed in order to re
ognise a 
ommon trend [45℄ [46℄. Su
h an

ideal framework is rarely available when we are dealing with e
ologi
al systems. On
e

again advan
es in experimental te
hniques, joint to our ability to extra
t information

from diverse ensemble averages, play a fundamental role. In this work [47℄ the authors

re
onstru
t the full 3D dynami
al traje
tory of ea
h bird in a �o
k of starlings by

using a 3-
ameras setup and an impressive image analysis tool. The availability of

su
h a detailed dataset let the authors deeply understand the 
olle
tive behaviour of

bird �o
king: note that in this 
ase average quantities are 
omputed on the ensemble

of the di�erent birds in the �o
k.

A related �eld in whi
h the amount of available data enabled the development

of 
omputational studies is mi
robial e
ology. Indeed, it is well known that mi
ro-

organisms (in
luding viruses, ba
teria, ar
haea and protists) form 
omplex e
ologi
al

intera
tion networks. The 
lassi�
ation of all possible intera
tions among mi
ro-

organisms is based on a 
ombination of win, loss and neutral out
omes [48℄. Quite

re
ently people studying su
h mi
robial e
osystems have begun to appre
iate the

advantages of advan
ed 
omputational methods in order to predi
t the network of

intera
tions among spe
ies [49℄. An important step in exploring spe
ies abundan
e

data was the identi�
ation of dependen
ies among the members of the 
ommuni-

ties obtained with 
orrelations analysis [50℄. However, as in many other bran
hes

of biology, tools taken from statisti
al physi
s helps unveiling interesting 
riti
al be-

haviours [48℄ promising to open the way towards the de�nition of new global models

for the mi
robial e
osystem dynami
s.

2.2 Appli
ation to so
ial s
ien
e

2.2.1 So
iology

As far as human intera
tions are 
on
erned, re
ent years have seen the explosion of


omputational studies aiming at the understanding of intera
tions among people from

data 
olle
ted by new te
hnologies, su
h as e-mail, so
ial networks, smart phones,

ad-ho
 tra
king te
hnologies, et
 [51℄. For the past de
ades, network theory has

been widely applied to so
ial networks, yielding explanations for so
ial phenomena

from individual 
reativity to pro�tability [52℄: e.g. the unveiling of the underlying

network of intera
tions among people has demonstrated the person-to-person spread

of obesity being one of the major fa
tor of the obesity epidemi
 [53℄. Beside many

dynami
s analysis [54℄, also inferen
e te
hniques [55℄ play a fundamental role in the

�eld providing information about both the stru
ture and the 
ontent of relationships.
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Moreover outside the a
ademi
 
ommunity, the need for statisti
al models de-

s
ribing people intera
tions is in
reasing: epidemi
 spreading, viral marketing, de-

fault 
ontagion are just some of the already known appli
ations. The s
ien
e of data

promises to 
on
ern more and more aspe
ts of our life. Several 
ompanies su
h as

banks, transports, health servi
es and publi
 institutions have already 
hanged their

business models a

ording to a more a

urate observation and analysis of 
ustomers

habits.

2.2.2 E
onomi
s

The appli
ation of sophisti
ated mathemati
al and physi
al methods to �nan
ial

topi
s is not re
ent [56℄ [57℄. Quantitative �nan
e is a well established �eld of applied

mathemati
s, 
on
erning �nan
ial markets. The main goal of quantitative �nan
e is

to derive mathemati
al models des
ribing observed market pri
es in order to predi
t

the best strategy for future a
tivities (e.g. buy/sell something). Beside this approa
h,

leading to establish a link between mathemati
al modelling and �nan
ial theory,

the study of 
orrelated pri
e 
hanges of di�erent sto
ks or the time series analysis

has given rise to a novel dis
ipline 
alled e
onophysi
s [58℄ [59℄. E
onophysi
s has


ombined s
ienti�
 interest and pra
ti
al relevan
e in quantifying risks: being well

known that an in
rease in demand should in
rease pri
es, while an in
rease in supply

should de
rease pri
es, the author of this paper [60℄ uses statisti
al methods in order

to re
onstru
t all large orders on the market, making use of information about single

broker transa
tions.

Quite re
ently more sophisti
ated inferen
e theories inspired by sto
hasti
 matrix

theory have been developed. People and 
ompany intera
tions turn out to be so 
om-

plex that no simple rule 
an be established able to reprodu
e the observed behaviour;

inferen
e methods [61℄ applied to available data have anyway been proved to explain

many well known phenomena o

urring in �nan
ial markets.
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Chapter 3

RNA stru
ture predi
tion:

appli
ation of an inverse Potts model

Dire
t-
oupling Analysis (DCA) was developed in order to predi
t 
onta
ts be-

tween amino a
ids in the folded stru
ture of proteins [62℄. It is based on the assump-

tion of 
oevolution between stru
turally related sites and it has been proved to be a

powerful tool for protein 
onta
t predi
tions. Given that no stru
tural information

about residues is needed to perform DCA, its generalisation to other biomole
ules is

straightforward and within this 
hapter I will present a novel appli
ation: RNA se
-

ondary and tertiary-stru
ture predi
tion. The se
ondary stru
ture if RNAs is made

by the well known Watson-Cri
k base-pairs, the same found also in DNA. These pairs

strongly 
o-evolve: only three possible pairings are admitted A-U (or T in the 
ase

of DNA), G-C and G-U (
alled wobble pair). Therefore the 
ovariation signal is in

this 
ase mu
h higher than the one of other pairs in 
onta
t in the tertiary stru
-

ture. Standard approa
hes to 
oevolution analysis, su
h as Mutual Information (MI),


an predi
t almost only se
ondary stru
ture base-pairs and just in a few 
ases some

tertiary-stru
ture 
onta
ts. However I will show that, di�erently from MI, DCA signal

is enri
hed in tertiary 
onta
ts and it improves both se
ondary and tertiary-stru
ture

predi
tion tools.

This 
hapter will be stru
tured in 6 se
tions. The �rst three will introdu
e the

state of the art in the �eld: I will �rst fo
us on the analysis of known 
rystal stru
tures

of RNA, then I will move to 
omparative sequen
e analysis, the most powerful 
ompu-

tational tool available to study biomole
ules, and �nally I will introdu
e some existing

methods for stru
ture predi
tion. The fourth se
tion will present the pre-pro
essing of

data needed for DCA analysis, in
luding both a
tual data (multiple sequen
e align-

ments) and stru
ture for 
omparison and evaluation of results, and also the DCA

algorithm and s
oring systems. Within the �fth se
tion, the paper Dire
t-Coupling
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Analysis of nu
leotide 
oevolution fa
ilitates RNA se
ondary and tertiary stru
ture

predi
tion is reprinted. Finally, the last se
tion will in
lude suggestions about some

possible improvement based on a deeper analysis of DCA outputs.

3.1 RNA stru
ture analysis

The main sour
e of 
rystal stru
tures of proteins and other important biologi
al

ma
romole
ules is the well known PDB database. It 
ontains information about

the known 3D stru
tures of many proteins and nu
lei
 a
ids involved in the 
entral

pro
esses of life. Stru
tures 
ontaining the 
oordinates of ea
h atom belonging to the

mole
ule, are 
omputed experimentally using methods su
h as X-ray 
rystallography,

NMR spe
tros
opy and 
ryo-ele
tron mi
ros
opy. Last years have seen an important

in
rease of the number of stru
tures stored on this repository, however te
hni
al

di�
ulties have till now penalised nu
lei
 a
ids with respe
t to proteins. The amount

of information 
ontained in the PDB of a protein or an RNA is quite di�erent: protein-

PDBs 
ontain, among the other, information about the se
ondary stru
ture, while

RNA-PDBs do not. Annotations about the se
ondary stru
ture of an RNA 
an be

a
hieved using software su
h as RNAView [63℄, MC-annotate [64℄ or Assemble2 [65℄.

These tools are able, as we will see, also to 
lassify tertiary base-pairs.

In the following I will re
all some basi
 
on
ept about RNA stru
ture and fun
tion,

then I will review some of the existing methods for extra
ting stru
tural information

from RNA-PDB stru
tures and �nally I will talk about the state of the art in RNA

stru
ture predi
tion.

3.1.1 Basi
 
on
epts

Ribonu
lei
 a
ids (RNAs) are the only known polymers able to both bring geneti


information and perform 
hemi
al 
atalysis. Even if they are 
hemi
ally 
loser to

DNA, their ability to fold in 
omplex tertiary stru
tures and thus a
t as 
atalysts

makes them stru
turally akin to proteins. Similarly to protein RNA stru
ture 
an be

des
ribed at four di�erent levels:

� the primary stru
ture is the sequen
e and it is made of four basi
 building blo
ks


alled nu
leotides. They are made by a ribose sugar ring, a phosphate group and

a purine or pyrimidine base. The most 
ommon purine bases found in RNAs are

Guanine and Adenine, while Cytosine and Ura
il are the pyrimidines. However

some non-standard bases exist.
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� The se
ondary stru
ture is held together by hydrogen bonds between 
anoni
al

base-pairs su
h as A-U and C-G, wobble base-pairs G-U, and base-sta
king

intera
tions forming the so 
alled stems. The result is similar to the well known

DNA double helix proposed by Watson and Cri
k in 1953.

� The tertiary stru
ture is 
hara
terised by long-range non-
anoni
al intera
tions.

The existing base-pairs have been 
lassi�ed in [66℄, where the authors de�ne a

nomen
lature system based on the observation that purines and pyrimidines


an be s
hemati
ally represented as triangles, a

ording to the three available

edges for hydrogen bonding intera
tions: Sugar, Hoogsteen and Watson-Cri
k.

In the following I will 
all this 
lassi�
ation the Westhof-Leontis 
lassi�
ation.

Ea
h edge 
an intera
t with any other edge of an other nu
leotide giving rise

to a total of 12 possible geometries, in
luding two di�erent orientations for the

gly
osidi
 bond: 
is and trans. Beside 
anoni
al Watson-Cri
k 
is base-pairs,

forming se
ondary stru
ture, the other non-
anoni
al pairs are mainly involved

in the self-assembly of the mole
ule and also in RNA-protein intera
tion.

� The quaternary stru
ture involves bonding with proteins or with other RNAs.

As far as folding is 
on
erned, it has been shown that RNA folds through a hier-

ar
hi
al pathway, in whi
h domains assemble sequentially [67℄. First Watson-Cri
k

base-paring and staking intera
tions form the double heli
es of the se
ondary stru
-

ture and then the resulting mole
ule is pa
ked in a 
ompa
t 3D stru
ture through

the mediation of tertiary ar
hite
tural motifs [68℄. Also the stability of the two stru
-

tures is quite di�erent: se
ondary stru
ture turns out to be highly stable 
ontrary to

tertiary stru
ture. This di�eren
e is mainly responsible for the di�
ulties en
oun-

tered in experimental determination of high-resolution RNA stru
tures, making the

stru
turally 
hara
terisation of RNAs 
hallenging.

Besides the well known messenger RNA, bringing geneti
 information from DNA

to protein translation, many other RNAs have been dis
overed to perform dire
tly

their fun
tion. These ones are 
alled fun
tional RNAs. The �rst fun
tional RNAs

that have been dis
overed were the transfer RNA (tRNA) and the ribosomal RNA

(rRNA) always involved in protein synthesis. We know that many RNAs are found in


omplex with proteins (ribonu
leoprotein 
omplexes RNP) to perform 
ru
ial tasks

inside the 
ell. Moreover there exist 
atalyti
 RNAs, 
alled ribosymes, that together

with enzymes, boost 
hemi
al rea
tions. Thanks to the study of its atomi
 stru
ture,

it has been proved that the ribosome itself is a ribozyme [69℄, 
on�rming that stru
-

tural knowledge is extremely important in order to a

ess fun
tions and to enlarge

our 
omprehension about the 
ell system.
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Figure 3.1: Hierar
hi
al stru
tures of RNA.

RNAs 
an also be involved in gene regulation. For instan
e, riboswit
hes are

small sequen
e of RNA that modify their stru
ture to bind parti
ular metabolites.

They probably have played an important role in evolution before proteins [70℄ have

been "invented". Finally, in the last years, more and more non-
oding

1

RNAs have

been dis
overed and understood thanks to both 
omputational and experimental

tools [71℄ [72℄ [73℄ . Fun
tion for the most part of these n
RNAs remains unknown.

In
rease in the number of 
rystal stru
tures available together with the development

of 
omputational stru
ture predi
tion tools promises to �nd a map from sequen
e to

fun
tion.

Among n
-RNAs some small RNAS, from 20 to 27 nu
leotides, have been proved

to play essential roles in eukaryote 
ells: mi
roRNAs (miRNAs) and short interfering

RNAs (siRNAs). These small RNAs are involved in a variety of phenomena that

are essential for genome stability, development, and adaptive responses to bioti
 and

abioti
 stresses. Note that their mode of a
tion does not entail a three dimensional

stru
ture but it is mainly based on linear sequen
e features.

3.1.2 MC-annotate

In order to understand RNA fun
tions, software for the analysis and the visuali-

sation of known stru
tures plays an important role. MC-annotate [64℄ is a software

for the analysis of PDB �les. The main aim of this kind of programs is to extra
t

1. The distin
tion between non-
oding RNA and fun
tional RNA is not universally a

epted.

Someone refers to the two terms as synonymous, while someone prefers to 
onsider n
-RNAs as a

sub-set of fun
tional RNAs. The solution for this nomen
lature issues goes beyond the aim of this

dissertation, however note that for the rest of the 
hapter I will refer to fun
tional RNAs generally

as RNAs.
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information about nu
leotides and their intera
tions (given a native or predi
ted 
rys-

tal stru
ture) and de
oding PDB language that is mainly made of 3D 
oordinates.

Outputs 
onsist of annotated stru
tural graphs, meaning representations of nu
lei


a
id stru
tures in whi
h nodes 
orrespond to nu
leotides and single nu
leotides 
on-

formation and base-base intera
tions are 
lassi�ed a

ording to some nomen
lature.

MC-annotate output-�le example is shown in 3.2. The 
lasses of annotations are:

� Residue 
onformations

� Base-pairs, 
ontaining all the se
ondary and tertiary-stru
ture base-pairs (an-

notated also in the Westhof-Leontis nomen
lature)

� Base Triples

� Adja
ent relations

� Heli
es

� Non-Adja
ent sta
kings

� Strands

� Tertiary base-pairs

� Sequen
es 
ontaining mapping between se
ondary and tertiary-stru
ture and

RNA sequen
e

3.1.3 RNAview

RNAview [63℄ is a web server able to re
ognise and 
lassify, a

ording to the

Westhof-Leontis 
lassi�
ation, base-pairs given a known 
rystal stru
ture. The pro-

gram is designed su
h that the 
lassi�
ation is made through the a

urate geometri
al


hara
terisation of ea
h nu
leotide and of its position with respe
t to the other nu-


leotides. Distan
es, angles and type of bonds are taken into a

ount for base-pairing

annotation. Results 
an easily be managed thanks to graphi
al and text outputs


ontaining information about both se
ondary and tertiary-stru
ture.

3.1.4 Assemble2

The last program I will introdu
e is Assemble2. It is and intera
tive graphi
al

tool for the analysis of 3D and 2D RNA stru
tures. Given a PDB input it annotates

se
ondary and tertiary-stru
ture base-pairs on a 2D intera
tive and modi�able pi
-

ture of the RNA. Also in this 
ase the Westhof-Leontis notation is used. The main

advantage of Assemble2 is that very 
omplex stru
tures 
an be easily manipulated
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Figure 3.2: MC-annotate output �le. In this example only minimal information is

shown to �t spa
e. However all the 
lasses of annotations made by the program are

shown.

and visualised. Unfortunately the enumeration of the sites is di�erent from the one

in PDB and so some di�
ulties in 
omparing results arise.

3.1.5 The distan
es between nu
leotides

A more naive way to analyse RNA stru
tures is to look at distan
es between nu-


leotides. Among all possible de�nition for nu
leotide-nu
leotide distan
e, depending

on the atoms that have been 
onsidered for measuring (quite 
ommon is the C1'-C1'

distan
e), we 
hoose to look at the distan
e between the 
losest heavy atoms. This

kind of 
hoi
e for
e us to intend the 
onta
t between two nu
leotides for as proximity

relation, di�erently from the more sophisti
ate analysis performed by the software I

des
ribed above, where 
onta
t means a real physi
al bond existing between bases.

However having a pre
ise de�nition for the distan
e does not solve the whole

problem: whi
h is the distan
e of two sites in 
onta
t? The simple thing to do is

to 
hoose a 
ut-o� and de�ne as being 
onta
ts those pairs in whi
h nu
leotides are


loser than the 
ut-o�. However the 
hoi
e of whatever threshold is de�nitely not

trivial. Protein stru
ture predi
tion literature [74℄ proposes two solutions (4Å or 8Å)

based on the distribution of distan
es between amino a
ids in many protein families.

We have performed the same analysis on 20 RNAs whose stru
ture is known with a
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Figure 3.3: Frequen
y 
ounts of the distan
es between nu
leotides in 20 families

whose stru
ture is known. X is the distan
e between the 
losest atoms measured in

Angstroms. Inset: zoom on the �rst 20Å.

su�
ient (less than 3Å) resolution. As you 
an see in �gure 3.3 the histogram shows

some peaks inside the range from 2 to 20 Angstroms. Before that, at around 1.6Å, the

very high and sharp peak 
orresponds to ba
kbone 
onta
ts (|i− j| = 1). Moreover

Fig. 3.4 shows histogram of distan
es of those pairs found by RNAView and 
lassi�ed

a

ording to Westhof-Leontis 
lassi�
ation. Then, the �rst peak lo
ated from 2.5Å

to 4Å in
ludes both Watson-Cri
k base-pairs, whose typi
al distan
e is 2.7Å, a few

sta
kings and non-
anoni
al base-pairs.

Note that all the 
hara
terised intera
tions are found 
loser than 4Å and thus

they are in agreement with this 
hoi
e for 
onta
t de�nition. Moreover, among all

possible pairs of nu
leotides in the analysed dataset, the following per
entages have

been found:

� 4% of pairs are 
loser than 4Å

� 10% of pairs are 
loser than 8Å

� 0.5% of pairs are re
ognised as non-
anoni
al base-pairs

� 0.5% of pairs are re
ognised as 
anoni
al base-pairs

� 0.1% of pairs are re
ognised as sta
king intera
tions
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Figure 3.4: Frequen
y 
ounts of the distan
es between nu
leotides 
lassi�ed a

ording

to RNAview software. X is the distan
e between the 
losest atoms measured in

Angstroms.
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g(r)

r/σ

Figure 3.5: Radial distribution fun
tion for a liquid g(r), where r is the distan
e

between mole
ules and σ is the diameter of the diameter of mole
ules.

So if all the 
lassi�ed intera
tion are 
loser than 4Å a question spontaneously

arises: what about the other peaks in Fig. 3.3? Statisti
al me
hani
s suggests us an

answer: the radial distribution fun
tion of a dense gas or liquid [75℄. This density

fun
tion measures the probability for mole
ules in a gas, a liquid or a solid or even a

polymer to be at a given distan
e one from ea
h others. Intuitively, 
onsider a 
ertain

mole
ule, its volume 
onstrains the nearest neighbour parti
les to stay at least at a

distan
e equal to its diameter. Fig. 3.5 shows on the left a pi
ture explaining su
h a

me
hanism and, on the right, an example of the resulting radial distribution fun
tion.

In this example we 
onsider the simpler 
ase of a liquid, however, even if RNA is a

polymer, we would not expe
t this pi
ture to dramati
al 
hange and we 
an thus

explain the peaks seen in the distribution of nu
leotide-nu
leotide distan
es with this

well known model.

3.2 RNA 
omparative sequen
e analysis

Beside stru
tural knowledge, a powerful tool used for understanding biomole
ules

fun
tions is the sear
h of homology and 
omparative sequen
e analysis. Homologous

sequen
es are de�ned as having a 
ommon an
estor in evolution and are 
hara
terised

by a 
onserved stru
ture and fun
tion. The level of nu
leotide 
onservation varies from

RNA to RNA and also from region to region inside the same RNA. Note that the

sequen
e 
onservation versus fun
tional importan
e does not hold so well in RNA,

sin
e 2D stru
ture is frequently well 
onserved and plays an important role even

if nu
leotides have high entropies. Di�eren
es we observe between homologs have

a

umulated sin
e the spe
iation due to random mutation of nu
leotides. Constraints
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Figure 3.6: Cartoon of a MSA and the underlying 
onserved stru
ture. The presen
e

of a 
onta
t in the three dimensional stru
ture of a protein, or an RNA, gives rise to

a 
orrelation between the involved sites.

linked to fun
tionality biased the probability for mutation to o

ur, be
ause organisms

showing mutations that negatively a�e
t RNA behaviour are less likely to survive

during evolution. Indeed, remember that sequen
es of the organisms we observe

today have been sele
ted under evolutionary pressure.

In order to 
ompare homologous sequen
es it is ne
essary to juxtapose them su
h

that residues des
endent from the same an
estor stays in the same 
olumn. Gaps

are inserted to align sequen
es whose length is 
hanged during evolution. The most


ommon way to align sequen
es is based on 
onservation: we want 
onserved nu-


leotides to be aligned. Often 
ompensatory mutations 
an o

ur giving rise to the so


alled 
oevolution: Fig. 3.6 shows a fake multiple sequen
e alignment (MSA) and the


artoon of the underlying 
onserved stru
ture. Consider two nu
leotides intera
ting

in the three dimensional stru
ture of the an
estral RNA. During evolution, they may

mutate, but only the RNAs in whi
h the mutated sites are still in 
onta
t will be

fun
tional. This me
hanism has been shown to work for Watson-Cri
k base-pairs [76℄

and 
an be used to obtain reliable stru
tural alignments.

The main sour
e of MSA for RNAs is Rfam. Being at the 12.0 version [77℄, this

database 
ontains multiple sequen
e alignments of RNAs obtained with a software,


alled Infernal [78℄, based on Covarian
e Models [79℄.
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A C G U

A 2 -1 -1 -1

C -1 2 -1 -1

G -1 -1 2 -1

U -1 -1 -1 2

Table 3.1: Example of substitution matrix.

In the following se
tions I will review �rst two well known algorithms for the

alignment of two sequen
es (they are not RNA-spe
i�
, but are used also for protein

sequen
e alignment), then I will move to MSA and explain the main features of Hidden

Markov Models (HMMs) and Covarian
e Models (CMs) and �nally I will sket
h

Rfam database fun
tionalities fo
using on the aspe
t of interest for RNA stru
ture

predi
tion.

3.2.1 Needleman-Wuns
h: global alignment

The alignment of two sequen
es 
onsists in 
reating a nu
leotide to nu
leotide

mapping between them inserting, if it is the 
ase, gaps when there is no mat
hing.

Needleman-Wuns
h (introdu
ed here [80℄ and improved here [81℄) was the �rst algo-

rithm to be developed for the alignment between two sequen
es. The basi
 idea of this

algorithm is to build an optimal alignment from optimal alignments of sub-sequen
es.

It 
onsists in two steps: �rst we 
ompute a La by Lb s
ore matrix F, where L is the

length of the sequen
e, and then we tra
e-ba
k in the matrix, looking for the optimal

path.

F is de�ned as follows:

Fij = max











F (i− 1, j − 1) + s(xi, yj)

F (i− 1, j)− d

F (i, j − 1)− d

(3.1)

where s is 
alled substitution matrix and assigns a di�erent s
ore depending on

the two nu
leotides we want to mat
h. d is the 
ost of a gap. The easiest substitution

matrix we 
an think of is shown in Table 3.1: it for
es the algorithm to look for

the alignment entailing the highest number of mat
hes. In their work [80℄ authors

used a similar substitution matrix, however a large amount of subsequent works have

introdu
ed more a

urate s
oring systems based on observation of a
tual rates of

mutation or on 
hemi
al di�eren
es between nu
leotides.
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3.2.2 Smith-Waterman: lo
al alignment

Needleman-Wuns
h algorithm is a global alignment method, meaning it aligns se-

quen
es 
onsidering their full length. For instan
e, in 
ase the length of two sequen
es

di�ers a lot, this algorithm may fail and spread out nu
leotides of the shorter sequen
e

along the longer one. Therefore if just a subset of the two sequen
es mat
hes, a di�er-

ent algorithm has to be used: lo
al algorithms. The Smith-Waterman [82℄ algorithm

belongs to this 
lass and it returns the optimal alignment of any sub-sequen
es of the

two sequen
es we want to align.

F of the Smith-Waterman lo
al alignment is de�ned as follows:

Fij = max



















0

F (i− 1, j − 1) + s(xi, yj)

F (i− 1, j)− d

F (i, j − 1)− d

(3.2)

Note that Smith-Waterman algorithm ba
k-tra
es from the highest entry in the

F matrix until it hits a zero s
ore. Moreover, the zero entries in F let us start the

alignment from whatever site and �nd the highest s
ored sub-alignment.

3.2.3 Pro�le Hidden Markov Models

One of the limitation of the algorithms introdu
ed above, is that they use the same

s
oring systems disregarding the 
onsidered position inside the sequen
es. It is 
lear

that mat
hing the �rst or the last positions is not as important as mat
hing the 
ore of

sequen
es. Establishing the start and the end point for a 
ertain gene is de�nitely not

trivial and sequen
ing errors often o

ur. Therefore, position-spe
i�
 s
oring systems

have been introdu
ed. The most powerful among those are pro�le Hidden Markov

Models [83℄. Pro�le HMMs are probabilisti
 models based on an hidden 
hain of states

that emit the symbols we observe. The full 
hara
terisation of an HMM implies the


omputation of transition probabilities from state to state based on the statisti
 of the

observed symbols. Generally speaking a pro�le (introdu
ed here [84℄) is the statisti
al

des
ription of MSA based on the frequen
y of symbols in ea
h single if its 
olumn.

Formally, a HMM is spe
i�ed by the following two properties:

� the path is Markovian and the 
hain is represented by transition probabilities

akl between states k and l

akl = P (πi = l|πi−1 = k) (3.3)
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Figure 3.7: Sequen
es of proteins belonging to the same family 
an be aligned using

a Pro�le Hidden Markov Model. From a subset of sequen
es already aligned the

parameters of the model are inferred (the transition probabilities, i.e. the probability,

in 
orresponden
e of ea
h site, of the emission of one parti
ular amino a
id, of the

opening of a gap, of the deletion of a part of the original sequen
e et
.). Then for ea
h

new sequen
e the alignment is given by the path maximizing the emission probability

for that parti
ular string of symbols (pi
ture taken from [83℄)

� in ea
h state πi the visible symbol xi assumes one of the possible values a

ording

to the 
orrespondent emission probability ek(b)

ek(b) = P (xi = b|πi = k) (3.4)

where π is the sequen
e of the states, πi is the ith state in the path and xi is the

symbol emitted by the ith state. Is it then 
lear how a Hidden Markov Model 
an be

used to align a new sequen
e to the subset already analysed: the parameters of the

model (i.e. the probabilities of passing from a state to another one) are estimated

from the previously aligned sequen
es, the residues being seen as the visible outputs

(mat
h state Mj) whereas the possibility either of the opening of a gap in the new

sequen
e with respe
t to the others (insertion Ij) or of the removal of a part of the

sequen
e (deletion Dj) are represented as hidden states (
f. Fig. 3.7). In order

to de�ne the probability for a sequen
e of states to emit a parti
ular sequen
e of

symbols, �nally, the emissions of amino a
ids given the hidden states are assumed to

be 
onditionally independent from ea
h other:

P (a1, ..., aN |x1, ..., xN ) =
N
∏

i=1

ei(ai|xi) (3.5)

Ea
h sequen
e is not univo
ally 
onne
ted to a path in the HMM as many of

them may generate the same sequen
e. The last part of the alignment 
onsists then
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in �nding the path maximizing the probability of obtaining the 
onsidered sequen
e

given the transition probabilities of the model.

Even if pro�le HMM have been su

essfully used for protein MSA they 
annot

be adapted to RNA modelling be
ause they 
annot take into a

ount base-pairing.

However from the same family of probabilisti
 models good substitutes 
an be found:

Covarian
e Models

3.2.4 Covarian
e Models

Covarian
e models are a generalisation of pro�le HMMs developed for modelling

RNA sequen
es. While pro�les HMM are developed on a unidimensional 
hain, a CM

is built on a tree, 
alled guide tree, whose nodes 
losely 
orresponds to the 
onsensus

se
ondary stru
ture of the aligned RNAs. In Fig. 3.9 a s
hemati
 representation of a

CM is des
ribed. Guide trees are made of 4 di�erent types of nodes (
f. to panel B

in the pi
ture):

� a unique ROOT node showing the starting point for the stru
ture

� 3 di�erent nodes for mat
hing: MATP for a mat
hing pair, MATL and MATR

for a left or right single-stranded residue mat
hing

� a bifur
ation node BIF

� two root nodes for the beginning of a new left (BEGL) or right (BEGR) stem

The emission and transition probabilities of CMs are set the same way as HMMs

(see Eq. 3.3 and Eq. 3.4). To build the guide tree and parametrise the model an

annotated alignment and its 
onsensus se
ondary stru
ture are needed. The latter

being well-nested, thus not in
luding triples of bases or pseudo-knots

2

.

Given a parametrised CM we 
an use it for homology dete
tion via the equiv-

alent of the Viterbi and Forward algorithms for HMM: the Co
ke-Younger-Kasami

(CYK) [85℄ and the Inside algorithm [83℄. In addi
tion to the homology s
ore, CYK

algorithm determines also the most probable parse tree for a given sequen
e assign-

ing to ea
h nu
leotide a position within the 
onsensus se
ondary stru
ture. Therefore

the alignment of sequen
es a

ording to the model 
onsists in aligning the sparse

trees and then in 
onverting mat
hes between states on the tree in mat
hes between

nu
leotides in the same 
olumn.

2. A well-nested stru
ture is su
h if two pairs i − j and k − l with i < k < j < l do not exist.

When this rule is violated we say the stru
ture presents a pseudo-knot. A pseudo-knot o

urs when

there are some base-pairs between a loop and positions outside the en
losing stem as in Fig. 3.8

32



Figure 3.8: An example of se
ondary stru
ture with pseudo-knots (pi
ture taken

from [83℄). Cf. with the well nested se
ondary stru
ture in Fig 3.1

3.2.5 Infernal and Rfam

Infernal [78℄ is the software used to build the MSAs found in Rfam database. It

uses CMs to sear
h nu
lei
 a
id sequen
e databases for homologous RNAs, or to 
re-

ate new se
ondary-stru
ture based multiple sequen
e alignments. Before sear
hing

for homologous through the CM a �rst BLAST �lter is applied. This step is ne
es-

sary be
ause CM are 
omputationally expensive and they 
annot be run on the full

database. Re
ently the new version of Infernal 1.1 [87℄ has over
ome this di�
ulty

using a new �lter pipeline based on a

elerated pro�le Hidden Markov Model meth-

ods and HMM-banded CM alignment methods. Results are quite impressive and the

software 
an sear
h for homologi 100-time faster than before.

These re
ent advan
es allow the release of a new Rfam 12.0 [77℄ in
luding more

families, more a

urate and bigger, than the ones released with Rfam 11.0. Unfortu-

nately, given the huge size of some family, the full Sto
kholm alignment is no more

available for download. Only the seed alignment 
an be obtained and then users have

to run Infernal by themselves. Note that, as many of the analysis I will treat within

this dissertation were performed before the release of Rfam 12.0, all the results showed

refer to Rfam 11.0 alignment. More reliable MSAs would have improved inferen
e

results: in the following we will see, in fa
t, that inferen
e methods are quite sensible

to the alignment quality.
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Figure 3.9: S
heme of the steps needed to build a MSA with CMs. (A) An input

multiple sequen
e alignment with annotation about the 
onsensus se
ondary stru
ture

is needed. (B) The guide tree is shown. It is based on the 
onsensus stru
ture. (C)

The transition probability network needed for parametrisation. (D) Parse tree of

sequen
es. When the CM is used to align sequen
es �rst the sparse trees of ea
h

sequen
e are 
omputed, then they are aligned one to ea
h other and �nally nu
leotides

belonging to the same node are pla
ed in the same 
olumn. Note that guide tree is


omputed from the initial alignment, while parse trees are 
omputed from the model

to align sequen
es in the �nal MSA. Thus, even if for this toy model sequen
es in

panel A are the same as in panel D, in real-life problems they are supposed to be

di�erent. This pi
ture is extra
ted from [86℄
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3.3 RNA se
ondary and tertiary stru
tures predi
-

tion

During the last few de
ades a huge e�ort has been done for the development of

tools able to predi
t RNA se
ondary and tertiary stru
tures. Even though experi-

mental methods have improved, the most part of known fun
tional RNAs remains

stru
turally unresolved and often also fun
tionally unresolved. Advan
es in stru
ture

predi
tion tools have shown it is possible to build reliable 
omputationally determined

stru
tures that 
an be used within probing experiments [88℄. Several tools have been

developed sin
e now, many of them have been reviewed here [89℄.

In this se
tion I will explain the problem of RNA stru
ture predi
tion. Firstly I

will des
ribe two se
ondary stru
ture predi
tion models, then I will rapidly redraw

the pi
ture re
ently emerged from RNA 3D predi
tion 
ompetition RNA-puzzle round

2 [90℄.

3.3.1 Se
ondary stru
ture predi
tion

Approa
hes for RNA se
ondary stru
ture predi
tion vary widely: the most sophis-

ti
ated available tools are based on free energy minimization algorithms. They were

originally introdu
ed by Zuker [91℄. Free energy minimisation algorithms are based on

the observation that the best stru
ture would be the one with the lowest equilibrium

free energy ∆G. The major limit of these methods is that they need experimental

knowledge about the magnitude of the a
tual intera
tion between base-pairs [92℄ and

often these data are not pre
ise enough. Also 
omparative sequen
e analysis plays a

role in this �eld [93℄ [94℄.

We know that even if sequen
es 
an 
hange a lot, the se
ondary stru
ture is

often well preserved thanks to 
ompensatory mutations. Sequen
es, far away from

ea
h other in term of evolution, are very di�
ult to be 
orre
tly aligned: the best

methods for multiple sequen
e analysis are based on pro�les and the a

ura
y of su
h

methods de
reases with in
reasing divergen
e. Stru
tural information helps obtaining

better alignments, but good stru
tural predi
tions often rely on good alignments.

This s
enario opens to the development of iterative approa
hes as the one introdu
ed

here [79℄ and inspired by a generalised version of the Nussinov algorithm [95℄.

Nussinov Nussinov algorithm is a dynami
 programming algorithm able to e�-


iently predi
t the optimal se
ondary stru
ture for a RNA sequen
e. It is a re
ursive
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algorithm based on the idea that, given an optimal sub-stru
ture, there are only 4

possible ways to obtain a longer sub-stru
ture:

� adding a left single site

� adding a right single site

� adding a base pair

� linking two optimal substru
tures

The predi
ted stru
ture is optimal in the sense that it maximises a 
ertain s
ore: in

the original version of the algorithm, taking as input only one sequen
e, the number

of base-pairs along the stru
ture was maximised. Nevertheless, using information

from a MSA it is possible to 
ompute a 
ovariation s
ore for every pair of sites and

then use it for maximisation. A very well known s
ore able to estimate 
ompensatory

mutation events is Mutual Information (MI).

MIij =
∑

Ai,Aj

fij(Ai, Aj) log
fij(Ai, Aj)

fi(Ai)fj(Aj)

Coming from information theory, MI tells us the gain in information we have in


onsidering two sites together instead of separately. In Eq. 3.3.1 MI de�nition is

shown, where fi and fij are the single site frequen
y 
ounts and the pair frequen
y


ounts 
omputed from MSA (
f. Eq. 1.2). In the generalised Nussinov MI is used.

Thus the optimal s
ore of the subMSA of 
olumns from i to j, Sij , is de�ned as

follows:

Sij = max



















Si+1,j

Si,j−1

Si+1,j−1 +MIij

maxi<k<j Si,k + Sk+1,j

(3.6)

As other dynami
 programming, on
e matrix Sij is 
omputed, Nussinov algorithm

makes use of a tra
e-ba
k pro
edure to look for the optimal path giving rise to the

best se
ondary stru
ture for the 
onsidered sequen
e.

RNAalifold RNAalifold is a software for the predi
tion of the se
ondary stru
ture

of RNA 
ombining free energy minimisation and 
ovariation analysis. It in
ludes a 
o-

variation term in the folding energy su
h that 
ompensatory mutations are taken into

a

ount for the evaluation of the energy of any sub-stru
ture. Note that also free en-

ergy minimisation based models follow the same re
ursive pro
edure of the Nussinov
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algorithm: they build a longer optimal sub-sequen
e given the optimal sub-sequen
e

available. In a latest version of the algorithm [96℄ the 
ovariation s
ore is 
omputed

thanks to a modi�ed version of the statisti
ally de�ned substitution matri
es 
alled

RIBOSUM, introdu
ed here [97℄ in order to improve the homologous resear
h. RI-

BOSUM matri
es give the log-odds ratio for observing a given substitution relative

to ba
kground nu
leotide frequen
ies and are de�ned for both single nu
leotides and

base-pairs.

3.3.2 Tertiary stru
ture predi
tion

Predi
ting se
ondary-stru
ture of RNAs is a 
ru
ial issue in the �eld and many

solutions already exist. Even though, the knowledge of the se
ondary stru
ture give

us a blueprint of the RNA mole
ule, it is often not enough for a fully fun
tional 
har-

a
terisation. Several methods for tertiary stru
ture predi
tion have been developed.

However high quality results are till now restri
ted to small sequen
es 
onsisting

of simple heli
es and small loops. When more 
omplex stru
tures are 
on
erned,

the reliability of the stru
ture depends on experimental information available about

intera
tions between nu
leotides in the mole
ule. To probe the state of the art a

CASP(Criti
al Assessment of protein Stru
ture Predi
tion)-like experiment has been

performed [98℄ in 2012 and [90℄ in 2015. This kind of world-wide experiments, known

as RNA-puzzles, let groups developing software and pipelines for 3D RNA predi
tions


ompete on hidden known stru
tures. The sequen
e of the target stru
ture is given

to ea
h group, plus some additional experimental information about, and the aim is

to predi
t a tertiary stru
ture as 
lose as possible to the hidden 
rystal stru
ture.

Last RNA-puzzle 
ompetition has involved seven resear
h groups. Three target

stru
tures have been proposed and the best results are 
hara
terised by root-mean-

square deviations (RMSD) of atomi
 positions range between 6.8 and 11.7 Å

3

and

all display predi
ted stru
tures topologi
ally akin to native ones. If we 
ompare this

results to what is nowadays rea
hable in the related �eld of proteins, it seems to be

quite modest. However, given the size of the target sequen
es (>160 nu
leotides),

3. Results on three di�erent RNAs have been reported.

� The lariat-
apping ribozyme: 24 stru
tures submitted, average RMSD 24.05, standard devi-

ation 4.91

� The adenosyl
obalamin riboswit
h: 34 stru
tures submitted, average RMSD 23.09, standard

deviation 6.87

� The T-box�tRNA 
omplex: 26 stru
tures submitted, average RMSD 11.52, standard devia-

tion 2.87

37



results show a positive trend for RNA stru
ture predi
tions. The best stru
tures

predi
ted within this 
olle
tive experiment have been obtained by Das group, who

provides also to ea
h group tertiary 
onta
t information obtained with a mutate-

and-map strategy based on systemati
 mutagenesis experiments and high-throughput


hemi
al mapping [99℄.

Rosetta Rosetta is a de novo

4

approa
h for 3D stru
ture predi
tion developed by

Das and Ba
ker [100℄. It was initially introdu
ed in the related �eld of proteins [101℄

and then generalised to di�erent ma
romole
ules. Rosetta 
onsists in a fragment as-

sembly of RNA (FARNA) guided by a knowledge-based energy fun
tion taking into

a

ount experimental knowledge on ba
kbone 
onformation and side-
hain intera
-

tions. The fragment library in
ludes fragments made of 3 nu
leotides extra
ted from

the large rRNA subunit. On
e interesting fragments are sele
ted, a Monte Carlo

routine is run to assemble them into a native-like folded stru
ture. The main feature

of Rosetta is that it lets us in
lude stru
tural knowledge su
h as se
ondary stru
ture

or even tertiary intera
tions. Moreover it has been proved that su
h information 
an

dramati
ally in
rease the quality of the predi
tion [102℄.

3.4 A new approa
h to predi
tion: DCA

Having in mind the state of the art for RNA stru
ture predi
tion, the appli
a-

tion of DCA to su
h a problem seems to be straightforward. An urgent need for

supplementary information in order to 
orre
t 3D folding emerges from RNA-puzzle

and opens new s
enarios: till now MI has not been able to substantially help 3D

predi
tion and only experimental information have done the job. Can new and more

sophisti
ated approa
hes to statisti
al inferen
e of intera
tions from MSA fa
e this


hallenge? This is the question my thesis will try to answer and roughly speaking the

answer is: "Yes, they 
an, results are promising but till now modest". I will show in

the following that, di�erently from protein, the DCA signal obtained from RNA MSA

shows a multi-s
ale 
omplexity opening to possible post-pro
essing improvement pro-


edures. The development of these pro
edures is not mature yet and needs more

theoreti
al e�orts for a better interpretation of the signal. I am anyway 
on�dent

4. de novo is to be intended in the sense that any information other than the sequen
e is needed

for folding. However in the spe
i�
 
ase of RNA information about se
ondary stru
ture or tertiary

intera
tion 
an be introdu
ed in the routine and turns out to be 
ru
ial to obtain good quality

predi
tions.
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that the results I will show in the next part of this 
hapter will be an interesting

starting point for further resear
hes.

In this se
tion I will des
ribe the full predi
tion pipeline: from pre-pro
essing

of input alignments and stru
ture for 
omparison to post-pro
essing of the output

signal. The latter 
orresponding to an unpublished e�ort to better understand DCA

signal and its 
omplexity with respe
t to stru
tural knowledge.

3.4.1 The 
omparison with the alignment

The main interest in stru
ture predi
tion is homology modelling: �nding a ho-

mologous sequen
e with stru
ture, and modelling an unknown sequen
e using that

stru
ture as a template. This is not very su

essful in RNA due to the low number of

families with exemplary stru
tures. Therefore 
omputational approa
h for stru
ture

predi
tion are needed. A key point in order to test methods for the predi
tion of

three dimensional stru
ture of RNAs is the 
omparison with known native stru
tures.

When the predi
tion is performed for biologi
al interests, the input of the pro
ess

is the target sequen
e, as in the RNA-puzzle 
ompetitions. Then, depending on the

type of analysis one would perform, other sour
es of information 
an be used. Within


omparative sequen
e analysis the �rst step is to sear
h for homologous sequen
es,

then sequen
es are aligned and, only when a reasonable MSA is available, the pre-

di
tion 
an be performed. The problem I'm fa
ing within this dissertation is slightly

di�erent: I want to develop and test the performan
e of a new tool. At date DCA


annot be used for homology dete
tion nor multiple sequen
e alignment, so the very

input of my work are MSAs obtained with the methods I've des
ribed in the previous

se
tions.

As we saw above, alignments and stru
tures 
ome from di�erent databases. Rfam

gives, for ea
h family, the PDB id of some available stru
tures, however the latter ones

may not be of the same length of the sequen
es in the alignments. They usually don't


over the full length of the alignment or, otherwise, they in
lude some engineering

needed for the realisation of the 
rystal stru
ture. Moreover some PDBs in
lude

proteins in 
omplex with the RNA or multiple 
hains. Therefore, to avoid all these

issues, we analyse available PDB �les for the 
onsidered family, we take the sequen
e

of the 
hosen stru
ture and then we 
ompare this sequen
e and the alignment in order

to obtain a map between them.

The most e�
ient way to �nd a map between the alignment and the stru
ture

is to align them. Usually Rfam tells us the name of the spe
ies whom the 
rystal

stru
ture in PDB belongs to, thus it is in prin
iple possible to �nd the 
orresponding
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sequen
e and to align it to the PDB �le's one. Unfortunately this pro
edure needs a

dire
t human 
ontribution in reading the names, interpreting them et
. In order to

automatise the pro
edure we align the PDB sequen
e to every sequen
e in the MSA

and keep the sequen
e whose alignment has the best s
ore. This one is the sequen
e

with the larger number of mat
hes with the PDB stru
ture sequen
e.

The s
ore depends on the algorithm used for the pairwise alignment. We tested

2 algorithms: a global (Needleman-Wuns
h) and a lo
al (Smith-Waterman) pairwise

alignment method. The advantage of a lo
al algorithm instead of a global one depends

on the di�eren
es between the sequen
es to be aligned: if the two sequen
es are very

di�erent in size, the lo
al alignment gives better results. Sin
e many observations

on our dataset have shown that the lo
al alignment algorithm produ
es alignments

with the smallest number of gaps in the shortest sequen
e, we have in
luded in our

pipeline the Smith-Waterman algorithm.

3.4.2 PDB - RFAM gold standard

We performed our analysis on the release 11.0 of Rfam. All the 51 available

families with more than 200 sequen
es and annotated 
orresponding stru
tures in

PDB have been studied. From the analysis of the stru
tures we have found that only

40 of them were high quality X-ray stru
tures with a resolution smaller than 4Å, thus

we dis
arded the others in order to in
rease the reliability of our results in term of


omparison with the native stru
ture. Tab. 3.2 shows the full list of those families,

�tting our minimal quality requirements (> 200 sequen
es and < 4Å resolution), for

whi
h a good mapping between PDB and Rfam is possible.

We have en
ountered some te
hni
al issues regarding input �les: some PDB or

FASTA �les were too big for laun
hing analysis on desktop ma
hines or some Sto
k-

holm �les were broken. Moreover some families has a very simple stru
ture, made of

a single hairpin loop, with no interesting tertiary 
onta
ts. Dimers have also been

ex
luded from the �nal list. Further analyses have revealed that some of these fami-

lies, even if they seemed showing a good mat
hing between alignment and stru
ture,

a
tually mismat
h if we 
onsider the 
onsensus se
ondary stru
ture. This very spe-


ial issue 
an be a sign of bad alignment probably due to the presen
e of sub-families

of sequen
es. The magnitude of this kind of errors 
an vary a lot depending on the

number of sites involved and also on their position in the native stru
ture. Sometimes

we observe the 
onsensus se
ondary stru
ture to be predi
ted on sites that are not


lose in the native stru
ture. Although smaller displa
ements 
an also o

ur within

sites being a
tually 
lose and thus it is impossible to see a priori these errors from the

40



Family Meff PDB ID Chain(, Residues) 
omment

RF00002 1k8a A broken gz �le (RFAM)

RF00005 2
sx C broken gz �le (RFAM)

RF00001 57991.33 3

2 9 in
luded in the Gold Standard

RF00028 7922.93 1hr2 A probably bad quality alignment

RF00029 3339.51 1kxk A hairpin loop

RF00163 3009.92 2oeu A in
luded in the Gold Standard

RF01118 498.83 2j01 A, 2166-2273 hairpin loop

RF00017 8145.33 1l9a B in
luded in the Gold Standard

RF00059 3347.9 2gdi X in
luded in the Gold Standard

RF00015 3728.6 2ozb C hairpin loop

RF00061 61.92 3t4b A hairpin loop

RF00177 2vqe A, 1-1519 too big (PDB)

RF01959 1vs5 A, 28-1537 too big (PDB)

RF00504 1828.54 3owi A in
luded in the Gold Standard

RF00010 2309.67 1u9s A in
luded in the Gold Standard

RF00023 2143.3 4abr Y, 42-89 in
luded in the Gold Standard

RF00169 1318.68 2xxa F hairpin loop

RF00162 1165.56 2gis A in
luded in the Gold Standard

RF00050 1045.85 3f2q X in
luded in the Gold Standard

RF00175 13.64 1nl
 A hairpin loop

RF00037 224.59 3snp C hairpin loop

RF02001 636.43 3bwp A in
luded in the Gold Standard

RF00167 588.88 1y26 X in
luded in the Gold Standard

RF00168 552.38 3dil A in
luded in the Gold Standard

RF01051 983.21 3irw R in
luded in the Gold Standard

RF01852 340.63 3rg5 A probably bad quality alignment

RF01998 459.8 4ds6 A probably bad quality alignment

RF00380 206.7 2qbz X in
luded in the Gold Standard

RF00011 215.14 2a64 A probably bad quality alignment

RF01734 532.03 3vrs A in
luded in the Gold Standard

RF00522 106.59 3k1v A in
luded in the Gold Standard

RF00234 259.49 2g
s B in
luded in the Gold Standard

RF00524 107.66 3u5d 1, 2174-2229 hairpin loop

RF00618 288.94 3siv C dimer

RF00164 28.35 1xjr A hairpin loop

RF01831 192.15 3suh X probably bad quality alignment

RF00094 4.77 1sj3 R in
luded in the Gold Standard

RF01960 111.82 4a18 1,334-389 too big (FASTA)

RF01857 154.61 1lng B in
luded in the Gold Standard

RF01786 108.33 3q3z A in
luded in the Gold Standard

Table 3.2: Table showing the list of families for whi
h a good mat
h between Rfam

and PDB is found. The upper part of the table 
ontains families with more than 1000

sequen
es in the alignment, while the bottom part those families with less than 1000

sequen
es.
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Figure 3.10: Frequen
y 
ounts of the fra
tion of gaps in ea
h 
olumn of the alignment.

Data 
ontain 
olumns from the Gold Standard alignments.


omparison between the native stru
ture and the 
onsensus se
ondary stru
ture in

the alignment. An a posteriori analysis on predi
tions is indeed needed to understand

if false positives 
an depend on bad alignment of sequen
es or not. In the next se
-

tions I will refer to those families sele
ted a

ording to what said above as the Gold

Standard. It in
ludes 20 families and all the analysis showed within this 
hapter has

been performed on this restri
ted list of families.

3.4.3 Pre-pro
essing of the alignment

As we saw above, Rfam alignments are made with Infernal software and, di�erently

from the equivalent software for proteins (Hmmer), it does not give us information

about the origin of gapped region. However, if we analyse the number of gaps per


olumn, we obtain the histogram in �gure 3.10.

This means that the 90% of the 
olumns is either a site with almost no gaps

or it has almost only gaps. Thus we 
an argue that those sites with a lot of gaps

are insertion sites and 
ould be removed from the alignment losing no fundamental

information for stru
ture predi
tion. The 
hoi
e of a pre
ise threshold is arbitrary:

we 
hoose to �x the threshold to 50% of gaps, taking 
are that no se
ondary stru
ture

sites have been lost.

3.4.4 Removing phylogeneti
 bias

From MSAs we 
an 
ompute the frequen
y per site of ea
h nu
leotide. However,

MSA sequen
es set up a biased sample of all possible sequen
es sin
e the spe
ies are
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evolutionarily related. In order to redu
e this bias we 
luster sequen
es a

ording to

similarity and we assign them a weight equal to one over the number of sequen
es

in the 
luster. We 
an adjust this re-weighting 
hoosing the per
entage of similarity

needed to insert two sequen
es in the same 
luster, e.g. if we �x the similarity to

100% we will assign a weight 1/l to l identi
al sequen
es. The value of the similarity

we use for the analysis is 90% and it has been empiri
ally 
hosen. Note that results

are quite robust with respe
t to the re-weighing threshold.

3.4.5 Dire
t Coupling Analysis: a brief re
all

Mutual Information 
an measure 
orrelation between two nu
leotides, but it 
an-

not distinguish 
orrelations 
oming from a dire
t 
oupling and 
orrelation 
oming

from indire
t relations. For instan
e, two sites in the sequen
e 
ould be 
orrelated if

there exists, for both of them, a 
oupling with a third site. This indire
t 
orrelation


annot be distinguished from the dire
t ones by Mutual Information. In order to

disentangle the two e�e
ts we need to fo
us on 
ouplings instead of 
orrelations: this

is the aim of Dire
t Coupling Analysis.

We 
onsider the sequen
es in the MSA as sampled from a global statisti
al model

P (A1, ..., AL), where ea
h Ai represents the nu
leotide at site i and L is the length of

the sequen
e. We want this model to reprodu
e the empiri
al 
ounts fi and fij:

∑

{Ak|k 6=i}

P (A1, ..., AL) = fi(Ai) ;
∑

{Ak|k 6=i,j}

P (A1, ..., AL) = fij(Ai, Aj)

(3.7)

Eq. 3.7 guarantees 
oheren
e of data and model up to the level of pair 
orrela-

tions. Finally, as we have seen in the �st 
hapter, we apply the maximum entropy

prin
iple and we obtain a q-states Potts model, being eij(Ai, Aj) the 
oupling be-

tween nu
leotide Ai in site i with nu
leotide Aj in site j and hi(Ai) the �eld due to

the presen
e of nu
leotide Ai in site i.

P (A1, ..., AL) =
1

Z
exp

{

∑

i<j

eij(Ai, Aj) +
∑

i

hi(Ai)

}

(3.8)

In mean-�eld approximation an immediate relation between the 
ouplings e and

the 
onne
ted 
orrelation matrix C 
an be found:

eij(Ai, Aj) = −((Cemp)−1)ij(Ai, Aj) (3.9)
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C
emp

is the empiri
al 
onne
ted 
orrelation matrix and it is de�ned as follows:

Cemp
ij (Ai, Aj) = f

′

ij(Ai, Aj)− f
′

i (Ai)f
′

j(Aj) (3.10)

for i 6= j, while Cemp
ii is a diagonal matrix with Cemp

ii (Ai, Ai) = f
′

i (Ai).

Having in mind that real data are not i.i.d. and 
ome from a �nite (usually small)

size sample, we need a regularisation s
heme to 
orre
t �nite-sampling e�e
ts (we will

extensively analyse the role of regularisation in the next 
hapter). The regularisation


hosen here is a pseudo
ount regularisation.

{

f
′

i (Ai) = (1− θ)fi(Ai) +
θ
q

f
′

ij(Ai, Aj) = (1− θ)fij(Ai, Aj) +
θ
q2

(3.11)

Equation 3.11 shows the use of pseudo
ounts as a 
orre
tion over the single site

frequen
y 
ounts and the pair frequen
y 
ounts. Parameter θ allows us to set the

strength of the 
orre
tion. A

ording to what we will see in the next 
hapter, we


hoose θ = 0.5.

3.4.6 The s
ores

Dire
t Coupling Analysis gives us the 
oupling matrix e, but in order to �nd base-

pairs with the highest 
oupling we de�ne a s
alar s
ore for ea
h pair: we 
ompress

information that in prin
iple 
an be useful in order to 
lassify 
onta
ts. We use the

Frobenius Norm (Eq. 3.12) of the matrix eij(Ai, Aj) with i and j �xed.

Fij =

√

∑

Ai

∑

Aj

|eij(Ai, Aj)|2 (3.12)

F apc
ij = Fij −APCij = Fij −

〈Fij〉i 〈Fij〉j
〈Fij〉ij

(3.13)

Interesting improvements 
an be obtained 
orre
ting Fij with the so 
alled average

produ
t 
orre
tion (Eq. 3.13). APC [103℄ estimates the ba
kground 
oupling between

two sites due to random and phylogeneti
 reasons and thus 
an be removed from the

s
ore so to obtain a more 
lear signal 
oming from 
oevolving pairs.

On
e we have a s
alar s
ore for ea
h pair of sites, the simplest thing to do is to

sort them: the higher is the s
ore the more reliable is the predi
tion. A
tually, the

reliability of the predi
tion is not fully understood. TP (n) tells us the fra
tion of

true 
onta
ts we �nd if we 
onsider the n pairs with the highest s
ore and it is an

useful tool in order to 
ompare the predi
tive power of di�erent s
ores. However,
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how do we a
tually 
ompute the best value of n su
h that our predi
tion is still

reliable? Meaning, how 
an we estimate till whi
h value of TP (n) our model is still

predi
tive and not random? Trying to answer these questions we studied the p-value

of true positive rates. The p-value shows the enri
hment of true positives 
onsidering

a 
ertain number X of predi
tions and is 
omputed using a binomial null model:

� We 
onsider the list of all possible pairs of sites ranked a

ording to a given

s
ore

� For ea
h position X in the rank we 
ompute T(X,Y) being the number of TP

(True Positives) within a window in
luding the next Y predi
tions, where Y

equals 10% of all elements of the 
onsidered list. The size of the window Y is

a 
ompromise between lo
al resolution (small Y) and reliability of the p-value

(large Y).

� The binomial null model uses a random TP rate, determined from the remaining

(from X+1 to the end) list of pairs, taking into a

ount that the native 
onta
t

we have found within the �rst X predi
tions 
annot be found again.

� The p-value is determined as the probability that this null model a
hieves at

least T(X,Y) 
onta
ts within a random i.i.d. sample of size Y.

The aim of this kind of analysis is to 
on�rm that, even if s
ores of se
ondary-

stru
ture base-pairs have a mu
h stronger 
ovariation signal than tertiary base-pairs,

DCA s
ore 
ontains information about non-
anoni
al base-pairing that MI does not.

3.5 Arti
le: Dire
t-Coupling Analysis of nu
leotide


oevolution fa
ilitates RNA se
ondary and ter-

tiary stru
ture predi
tion

Results about DCA se
ondary and tertiary-stru
ture predi
tion are shown it the

following paper. Sin
e for this work we also run some 3D predi
tions with Rosetta the

list of RNA on whi
h we test our tool is shorter than the Gold Standard introdu
ed

above. Rosetta segment assembly software needs a big 
omputational e�ort and thus

the length of the sequen
e to be folded has to be smaller than 100 nu
leotides. We

thus redu
ed our target set to 6 Riboswit
hes.
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3.6 Open problems and future improvements

One of the points made in the paper above is that two di�erent s
ales exist within

the DCA s
ore: there is a stronger part, probably due to Watson-Cri
k 
oevolution,

and a weaker one due to non-
anoni
al base-paring. It as been argue that non-


anoni
al base-pairs show mu
h less 
orrelation [104℄. We have shown that this pi
ture


hanges when DCA is used instead of a measure for 
orrelation as MI. Anyway it seems

reasonable, and TP rates in Fig 4 in the paper 
on�rm, that the 
oevolution signal

from tertiary base-pairs is weaker and disentangling it from noise is absolutely non

trivial. In the following I will propose two strategies to in
rease the signal-to-noise

ratio based on a deeper analysis of the s
ore.

3.6.1 Filtering matri
es

When we use a s
alar s
ore, we are for
ed to waste a large part of the information


ontained in the 
oupling matrix e. For instan
e, 
onsider (i,j) being a Watson-Cri
k

base pair in the se
ondary stru
ture. We know that the substitution of a C with a

A in site i has to be probably followed by a substitution of a G with a U in site j.

Using this information we 
an in prin
iple 
lean up the se
ondary-stru
ture signal

from noise: we 
an de�ne a weight matrix based on the knowledge of base-pairs that

are possible as in the table 3.3.

Finally, we weight ea
h element eij(Ai, Aj) with the 
orresponding value of the

pair of nu
leotides Ai and Aj as in 3.14:

Sij =
∑

Ai

∑

Aj

eij(Ai, Aj)w(Ai, Aj) (3.14)

This weighted s
ore is a good alternative to the simple Fapc. However it solves

the easiest part of the problem: �lter out non-
anoni
al intera
tions. One 
an argue

that a similar approa
h 
an also be used the other way round, that is to �lter out

se
ondary-stru
ture signal. However results 
ontradi
t this hypothesis 
on�rming the


omplexity of the problem or revealing some intrinsi
 limitation of the mean-�eld.

This parti
ular topi
 will be treated more in details in Chapter 4.

3.6.2 Lo
al 
oheren
e matrix

Even if protein DCA strongly improves the a

ura
y of residue-
onta
t predi
-

tions, we have seen in the previous se
tions that, when RNAs samples are used,


omparing the number of true positive predi
tions within the n highest DCA s
ores
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A C G U

A 0 0 0 1

C 0 0 1 0

G 0 1 0 1

U 1 0 1 0

Table 3.3: Matrix w(Ai, Aj) values based on the possible Watson-Cri
k base-pairs

plus the wobble pair

with the number of true positives within the �rst n mutual informations, only a weak

improvement is a
hieved (Fig. 4 in the paper). A
tually, if we remove from the rank-

ing all se
ondary-stru
ture base-pairs, results are quite di�erent. Fo
us for instan
e

on a true positive rate equal to 0.6 (i.e. we admit 40% of predi
tion errors): MI with

average produ
t 
orre
tion predi
ts on average around 3 true 
onta
t if the inter-

nu
leotide distan
es is up to 4Å or 4 up to 8Å , while DCA predi
ts 5 up to 4Å or

10 up to 8Å . Thus, DCA 
an in
rease signi�
antly the number of 
orre
t predi
tions

within the tertiary stru
ture, in parti
ular when a less stringent threshold for 
onta
t

de�nition is 
hosen.

The 
lear prevalen
e of se
ondary-stru
ture base-pairs among the top predi
tions

shows that tertiary-stru
ture 
onta
ts have a weaker 
oupling s
ale than se
ondary-

stru
ture 
onta
ts. This weak 
oupling 
an be partially hidden by the noise generated

due to insu�
ient sampling and the strong se
ondary-stru
ture 
ouplings. Moreover

usually �rst false positives appear quite 
lose to native 
onta
ts. Therefore we 
om-

pute for ea
h pairs of nu
leotides a lo
al 
oheren
e s
ore as the average of the s
ore

of the 
onsidered pair with the s
ores of the 8 nearest neighbours in the 
onta
t map.

Being Fapc the 
oevolution s
ore, we de�ne the lo
al 
oheren
e s
ore C as:

Cij =
∑

l∈i,i±1

∑

k∈j,j±1

F apc
kl (3.15)

i.e., for ea
h pair (i, j), we in
lude also (i, j ± 1), (i± 1, j) and (i± 1, j ± 1) into

the average. As an immediate 
onsequen
e, ba
kground noise is almost homogeneous,

while around existing 
onta
ts, some 
ompa
t 
lusters of pairs with higher s
ore arise.

In Fig. 3.11 we show results of the averaged pro
edure for the 6 Riboswit
hes analysed

in the paper.

In prin
iple it would be possible to reinfor
e lo
al 
oheren
e by an averaging

pro
edure over larger neighbourhoods of ea
h pair (i,j), however we observed that the

proposed environment is a good 
ompromise between the noise redu
tion due to lo
al

signal 
oheren
e, and the loss of spe
i�
ity of the s
ores due to averaging.
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Figure 3.11: Conta
t maps: Yellow s
ale shows both the DCA (Fapc) and its lo
al


oheren
e ranking. In the bottom-right triangle of ea
h map DCA s
ore is shown. In

the top-left triangle instead we show lo
al 
oheren
e s
ore. Red and blue dots indi
ate

true 
onta
ts and se
ondary-stru
ture base-pairs. The same set of six Riboswit
hes

analysed in the paper is shown.
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3.6.3 Clustering pro
edure

Given the lo
al 
oheren
e s
ores, we need to de�ne a pro
edure to separate po-

tential 
oevolutionary signal from ba
kground noise. Average s
ores are divided into

four 
lasses using a simple K-means 
lustering, 
f. insets in Fig. 3.12. Empiri
ally we

�nd that the two 
lasses of highest s
ores 
orrespond to residue pairs inside or 
lose to

the se
ondary stru
ture. The fourth 
lass of lowest s
ores 
ontains ba
kground noise,

it will be dis
arded from further analysis. Potential tertiary-stru
ture 
onta
ts are

mainly restri
ted to the third 
lass, more pre
isely to 
lusters of third-
lass position

pairs whi
h are isolated from the se
ondary stru
ture.

Sin
e we know the se
ondary stru
ture a priori, we 
an sele
t, among pairs be-

longing to the third 
lass, tertiary stru
ture predi
tions. Indeed, being the se
ondary-

stru
ture signal so strong, one 
an expe
t the averaged pro
edure produ
ing high

s
ore pairs nearby all predi
ted Watson-Cri
k base-pairs. We observe this e�e
t be-

ing propagated till the se
ond nearest neighbour of ea
h base-pair. Thus, being (i, j)

a se
ondary-stru
ture base-pair, we remove from the ranking pair itself and all pos-

sible pair 
ombination among sites (i, j, i ± 1, j ± 1, i ± 2, j ± 2). The e�e
ts of this

removal are shown in Fig. 3.13. Finally, we rank the remaining pairs using the origi-

nal s
ore Fap
 (i.e. the average s
ore is used to dis
ard lo
ally in
oherent predi
tions,

the original s
ore for the �nal ranking of maintained position pairs).

With the above des
ribed pro
edure we produ
e a 
lustered DCA s
ore ready to

be used in stru
tural predi
tions and extra
ting the best part of information from the

original DCA: the lo
al 
oheren
e method produ
es a signal that is lo
ally homoge-

neous and 
lustering �lters out noise.

Unfortunately, even if the 
omparison between the two s
ores in Fig 3.11 suggests

that a post-pro
essing of the signal is possible, �nal results obtained with Rosetta

were generally in
on
lusive and very similar to simple DCA ones: some of the fam-

ilies bene�ts of the post-pro
essing, some others not. The absen
e of a systemati


improvement entails the impossibility of an automati
 pipeline in
luding the lo
al


oheren
e analysis. For instan
e the 
hoi
e of the number of 
lasses, de�ned within

the K-means 
lustering, seems to be suboptimal for RF00162 and RF01734 (
f. Fig.

3.12) or even the de�nition of the lo
al 
oheren
e s
ore 
an be probably improved

in
luding more neighbours in the average or weighted in a smooth way. However

in the �eld of RNA stru
ture predi
tion a human intervention and optimisation of

te
hniques is still 
ommon and 
annot be a priori dis
arded.
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Figure 3.12: K-means 
lustering results. Pair of sites belonging to di�erent s
ore


lasses are shown with di�erent 
olours in the maps. Darker 
olours (bla
k and

green) 
orrespond to se
ondary stru
ture and its neighbours plus, in some 
ases,

some tertiary 
onta
ts. The most part of tertiary true predi
tions belong to the

yellow 
lass. The fourth 
lass represents ba
kground. Insets: K-means 
lustering


lassi�
ation is shown with respe
t to the s
ore frequen
y 
ounts.
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Figure 3.13: Conta
t maps: Yellow s
ale shows DCA s
ores for ea
h pair of sites

in
luded in the 
lustering sele
tion (both true and false positives) after removing the

�rst and the se
ond nearest neighbours of se
ondary stru
ture base-pairs. The �rst

n pairs with the highest s
ore have been in
luded in the stru
ture predi
tion. In the

bottom-right triangle true positive predi
tions are shown with 
losed red squares while

all the other 
onta
ts in the 
rystal stru
ture with open red squares, the 
onsensus

se
ondary stru
ture is shown with blue squares. In the top-left triangle 
lusters


ontaining true positives are shown.
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3.7 Con
lusions

Within this 
hapter we have fa
ed the problem of fun
tional RNA stru
ture pre-

di
tion. Given its intrinsi
 �exibility, the experimental determination of reliable RNA

stru
tures is still 
hallenging and 
omputational approa
hes have been developed to

solve the problem. However the quality of 3D predi
tions still depends on the ex-

perimental knowledge of tertiary intera
tions. Outperforming MI and its adjusted

version MIap
, DCA is proposed as a novel method for 
omparative sequen
e anal-

ysis. It has been proved that 
ombined to standard and very well known tools as

Nussinov algorithms and Rosetta, DCA systemati
ally improves predi
tions on a 6-

RNA ben
hmark. Results shown in this 
hapter open to further appli
ation of DCA

to a diverse range of software already in
luding 
ovariational s
oring systems or not.
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Chapter 4

Limits of mean-�eld inferen
e and the

role of regularisation

In the previous 
hapter we have seen how mean-�eld (MF) inferen
e 
an be su
-


essfully applied to RNA 
ovariational sequen
e analysis. Moreover results on RNAs

poorly represent the real potential of DCA, whose performan
es are 
onsiderably bet-

ter on proteins [3℄ [31℄. However, these results still depend on the use of a parti
ular

type of regularisation s
heme, 
alled pseudo
ounts, needed to ensure that the inverse

problem is always well de�ned. As we have seen in the previous 
hapter, the empiri
al


ovarian
e matrix Cemp
ij in Eq. 3.10 is de�ned on the transformed 
ounts f

′

i and f
′

ij :

{

f
′

i (Ai) = (1− θ)fi(Ai) +
θ
q

f
′

ij(Ai, Aj) = (1− θ)fij(Ai, Aj) +
θ
q2

(4.1)

being θ the strength of the pseudo
ount regularisation and q the number of 
olours

on the Potts model. From a Bayesian point of view the optimal value for θ should

depend on the level of noise in the sample (i.e. θ ∼ 1
B

for a sample of size B)

and should vanish for perfe
t a sampling. However several empiri
al studies [26℄ [3℄

[105℄ [106℄ have shown that it is not the 
ase for MF inferen
e. As large (θ ≫ 1
B
)

pseudo
ounts are in this 
ase used, no dependen
e of θ on the sample size is observed.

In the following paper we have analyti
ally studied MF inferen
e performan
e on

diverse systems in the perfe
t sampling 
ase. We observe that large regularisation

terms help 
orre
ting the bias introdu
ed by MF approximation: MF approximation

over-estimates large 
ouplings, while with a strong regularisation we under-estimate

them. The result is that for medium-range values of 
ouplings the quality of the

inferen
e is dramati
ally improved with θ ≫ 1
B

ompared to θ ∼ 1

B
. We show that

both large pseudo
ounts and L2-norm regularisations yield 
ouplings whi
h 
orrelate

better with the true ones.
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Moreover we have 
laimed that the strength of the regularisation depends on the

number of 
olours in the model and even substantial di�eren
es exist between the

Ising and the Potts 
ase: thanks to some toy-models made of 2 spins, we have shown

that on Potts models the inferen
e is poorer than on the Ising model 
ase be
ause

terms in the 
oupling matrix Jij are di�erently biased by the MF approximation.

In parti
ular we have observed that the hardness of the inferen
e depends on how


ouplings matri
es within the Potts model are de�ned. Note that on
e we have

de
ided that an intera
tion exists among site i and size j of the graph we need to

spe
ify the form of matrix Jij. The size of this matrix is q × q and thus for ea
h

intera
ting pair q2 parameters have to be drawn from a 
ertain distribution. We have

distinguished two variants:

� Homogeneous variant: For ea
h intera
ting pair (i, j), we randomly draw a

number, J0, and we de�ne Jij as follows:

Jij =













JA JB JB . . . JB

JB JA JB . . . JB

JB JB JA . . . JB

. . . . . . . . . . . . JB

JB JB JB JB JA













with JA =
q − 1

q
J0 , JB = −

J0

q
. (4.2)

This model is su
h that the q Potts 
olours have equal frequen
ies fi(a) =
1
q
.

� Heterogeneous variants: The simpler extension of this model to non-equal fre-

quen
ies 
an be easily obtained by adding some lo
al �elds hi(a) on ea
h site

and for ea
h 
olour. Fields introdu
e a bias on some parti
ular 
olour on ea
h

site and entail a heterogeneous distribution for frequen
ies. In the following we

will 
all this model heterogenous-A model. Moreover, one 
an indu
e an even

more heterogeneous distribution for frequen
ies with the addi
tion of randomly


hosen elements in Jij . This is the most general 
ase of a random 
hara
terisa-

tion of a Potts model, sin
e no 
onstraints exist among parameters. We refer

to this model as the heterogeneous-B model.

We have noti
ed that signi�
ant di�eren
es exist between these two 
lasses of

models: we have analyti
ally 
omputed the relation between true 
ouplings and MF

inferred 
ouplings for a toy-model 
ontaining only 2 spins. However analyti
al results

have been numeri
ally 
on�rmed on larger systems of size N = 50 and results on

both q = 5 and q = 21 will be shown below. Parameters are drawn from a uniform

distribution between −L and L. These results (Figs. 4.1 4.2 and 4.3) are obtained in
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Figure 4.1: S
atter plot of the 
ouplings Jij(a, b) for the homogenous Potts model

for q = 5 (�lled 
ir
les) and for q = 21 (triangles) 
olours; perfe
t sampling. (a) No

pseudo
ount. (b) With pseudo
ount (in the �gure θ 
orrespond to the pseudo
ount

strength 
alled θ in the text). Ea
h panel shows results from three realizations with

di�erent sets of 
ouplings (L = 10). Bla
k solid lines 
orrespond to the analyti
al

predi
tions made with the 2-spin toy model. Colours show values of fi(a)fj(a) (
alled
in the �gure pai and paj ), here equal to q−2

for all intera
ting sites and for all symbols,

see right s
ale.

the perfe
t sampling regime (B = ∞) on a system with nearest-neighbour intera
tions

on a 1D latti
e. The exa
t solution for frequen
ies and 
orrelations is obtained

through a transfer matrix 
al
ulation.

Fig. 4.1 shows the relation found between true and inferred 
ouplings for the

homogeneous model. Note that, di�erently from what is found in the Ising 
ase,

the two 
urves exist as two di�erent values of 
ouplings (JA and JB) are found in

the 
oupling matrix 4.2. The quality of the inferen
e is extremely improved with

pseudo
ount as 
ouplings in the range from nearly zero to �ve are well estimated.

However some signi�
ant mistakes are made: the pi
k in zero found in panel B of

Fig. 4.1 is due to the fa
t that pseudo
ount regularisation entails a res
aling of 
olour

frequen
ies indu
ing some fake intera
tion among 
ouples that are not in 
onta
t in

the real model. The points found under the right side of 
urves are a 
ompensation

of this e�e
t.

When the heterogeneous variant is 
onsidered (Figs. 4.2 and 4.3) analyti
al 
om-

puted 
urves are no more distinguishable, even if in Fig. 4.2 the overall trend is still

visible. This is no more true for Fig. 4.3. The point is that a 
urve of the type seen

in 4.1 exists for any di�erent entry of matrix Jij and follows a slightly di�erent path.
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Figure 4.2: S
atter plot of the 
ouplings Jij(a, b) for the heterogenous-A Potts model

for q = 5 symbols, with perfe
t sampling. (a) No pseudo
ount. (b)With pseudo
ount

(θ = 0.4). Ea
h panel shows results from �ve realizations with di�erent sets of


ouplings and �elds (L = 2). Insets: distributions of the frequen
ies fi(a). Bla
k

solid lines 
orrespond to the analyti
al predi
tions made with the 2-spin toy model.

Colors show values of fi(a)fj(a) (
alled in the �gure pai and paj ), see right s
ale.
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Figure 4.3: S
atter plot of the 
ouplings Jij(a, b) for the heterogenous-B Potts model

for q = 5 symbols, with perfe
t sampling. (a) No pseudo
ount. (b)With pseudo
ount

(θ = 0.4). Ea
h panel shows results from �ve realizations with di�erent sets of


ouplings and �elds (L = 2). Insets: distributions of the frequen
ies fi(a). Bla
k

solid lines 
orrespond to the analyti
al predi
tions made with the 2-spin toy model.

Colors show values of fi(a)fj(a) (
alled in the �gure pai and paj ), see right s
ale.
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Figure 4.4: Heterogenous-B Potts model for q = 5 symbols, for various depths of

sampling. (a) Small pseudo
ount θ = θB = 1
B
. (b) Large (optimal) pseudo
ount

θ = θMF = 0.4. Ea
h panel shows results from one realization of the Potts model

with random 
ouplings and �elds (L = 2), and three sets of B sampled 
on�gurations

(for �nite B).

Consider now the 
ase of �nite sampling. We know that in prin
iple the main role

of regularisation is to 
orre
t from �nite-sampling e�e
ts. This is true, and 
on�rmed

by our analysis, when the regularisation is tuned a

ording to bayesian 
onsiderations:

panel A of Fig. 4.4 shows how �nite samples entail diverging inferred 
ouplings: the

smaller the sample is, the larger �nite-sampling errors are. In this 
ase we use a

small pseudo
ount, θ = 1/B, in order to 
orre
t these e�e
ts, and therefore a 
ertain

dependen
e on the sample size is visible. Conversely, when large pseudo
ounts are

used, no dependen
e on the sample 
an be observed (
f. with panel B in Fig 4.4).

Finally note that in Fig. 4.4 a Potts model on an Erdos-Reniy random graph is

shown. No signi�
ant di�eren
es with the heterogeneous B model shown above exist.

As a �nal, but signi�
ant, remark let us observe in Fig. 4.5 the behaviour of

the Frobenius norm 
omputed with the 
ouplings shown in Fig. 4.4. Even if the

inferen
e of the 
oupling values seemed to be 
onfused, the inferen
e of the intera
tion

network is de�nitely ensured by the use of large pseudo
ounts. Probably the su

ess of

methods su
h as DCA mainly depends on the surprising synergy among pseudo
ounts,

MF and Frobenius norm.
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Figure 4.5: S
atter plot of the Frobenius norms of the inferred 
ouplings vs. their true

values for the pseudo
ount strengths θ = 1
B
(a) and θ = 0.4 (b). Same heterogeneous-

B model and same 
onditions as in Fig. 4.4. Lines lo
ate the largest Frobenius norm


orresponding to a pair of sites (i, j) whi
h are not neighbours on the one-dimensional

graph, i.e. whi
h have zero true 
oupling.

4.1 Arti
le: Large pseudo
ounts and L2-norm penal-

ties are ne
essary for the mean-�eld inferen
e of

Ising and Potts models

The full work on MF inferen
e and regularisation s
hemes is reported in the fol-

lowing paper. After a short reminder on the main topi
s of the paper, we 
ompare the

e�e
t of pseudo
ounts and L2-norm regularisation on small toy-model systems 
om-

puting the analyti
al form for MF 
ouplings given the value of the true ones. Both

the Ising and the Potts 
ases are treated. Note that in the Potts 
ase the relation

between MF and true 
ouplings is made of at least two di�erent 
urves: ea
h term

in the 
oupling matrix J has a di�erent dependen
y on the true 
ouplings. We then

show that on bigger systems (N = 50) the proliferation of these 
ontributes makes

Potts inferen
e systemati
ally worse than Ising one. In the last se
tion we use the

O(m) model, a generalisation of the Ising model, to estimate the error on the inferred


ouplings due to the MF approximation and how this error 
an be 
orre
ted for with

an appropriate regularisation.
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4.2 Con
lusions

With this paper we have shown that MF inferen
e introdu
es strong errors on

large 
ouplings. These errors 
an be partially 
orre
ted thanks to strong regularisa-

tion terms and in parti
ular a large pseudo
ount turns out to be the best approa
h.

Moreover we better understand why DCA needs pseudo
ount regularisation for pre-

di
ting the network of long-range intera
tions in proteins: �rstly the use of large

pseudo
ounts dramati
ally redu
es the dependen
e of the inferen
e quality on the

sample size. Se
ondly, thanks to the large pseudo
ount 
orre
tion on inferen
e, the

Frobenius norm of 
ouplings matri
es averages out di�eren
es between diverse 
ou-

plings keeping separated in ranking intera
ting and non-intera
ting pairs. Anyway

note that results in the paper are shown for arti�
ial models, where only the pairs

of sites a
tually intera
ting have non-zero 
oupling matri
es, but this is absolutely

not true for real data. The relations we 
ompute here are true if we assume the in-

ferred model to be a Potts model, that is obviously not the 
ase for sequen
e analysis.

Therefore additional errors depending on the 
hoi
e of the model have to be taken

into a

ount.

This last point opens a huge debate on how 
ould be possibly assess a 
ertain

inferen
e method to be better than another. The �rst question to ask is probably

whi
h is the task we want to a

omplish. For instan
e, sin
e we know the Potts

model is just our interpretation and simpli�
ation of the evolution pro
ess, we 
ould

argue that having a method able to perfe
tly �t Potts parameters does not imply

that it will also be the best in predi
ting the 
onta
t map. Furthermore, we saw

that a MF approximated solution for the Potts model gives modest results, while

DCA is a very powerful tool for 
onta
t predi
tions. Therefore inferen
e methods

are 
ommonly tested on real data taken from diverse biologi
al topi
s, in order to


ompare performan
es on real-world 
ases. Conta
t map predi
tion is one of the task


ommonly used for 
omparison, as several di�erent tools exist and standard results are

known. However a more 
omplex task having interested a large part of the s
ienti�



ommunity is the possibility of building a model able to reprodu
e data statisti
s.

Experimental studies on arti�
ial sequen
e folding [28℄ have stressed the importan
e

of 
omputationally predi
ting whether a given sequen
e will fold or not depending on

the amino a
ids of the sequen
e itself.

MF is not statisti
ally 
onsistent, meaning that even in 
ase of perfe
t sampling

MF parameters 
annot produ
e a model able to generate a sample whose statisti
s

re
alls the one of the sample from whi
h the parameters have been inferred. As we
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saw in the �rst 
hapter, two examples of statisti
ally 
onsistent methods are pseudo-

likelihood and ACE. In the following 
hapter I will introdu
e ACE and how it has

been adapted to Potts inferen
e. We will see that, keeping the quality of 
onta
t maps

almost at the same level, ACE infers parameters reprodu
ing data statisti
s with a

pre
ision 
ompatible with the size of �nite-sampling errors, di�erently from pseudo-

likelihood. We will 
ompare DCA, plmDCA (pseudo-likelihood) and ACE a

ording

to both the 
riteria of 
onta
t map predi
tion and statisti
al of 
onsisten
e. We will

�rst fo
us on arti�
ial models and then we will 
onsider the same set of riboswit
hes

we analysed in the �rst 
hapter in order to test inferen
e methods on real data.
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Chapter 5

An inferen
e tool for generative

models: The adaptive 
luster

expansion

In 
hapter 1 we have analysed some of the existing algorithms for the solution

of the inverse Ising and Potts model. The last tool I des
ribed was the Adaptive

Cluster Expansion [7℄ [23℄. This algorithm has been introdu
ed and tested for the

Ising model. Its extension to the Potts model is straightforward from the analyti
al

point of view, while entails some 
omputational issues that need to be handled more


arefully. Re
all that, even in the MF 
ase, Potts inferen
e turns out to be harder

than Ising one.

In this 
hapter a many 
olours Potts model (e.g. 21 
olours as it is the number of

protein amino a
ids plus the gap symbol) will be treated. The �rst part of the 
hapter

will be dedi
ated to a short review of the original algorithm and to its adaptation

to the formalism of Potts model. Then, I will introdu
e the numeri
al pro
edures

we designed in order to improve results and to redu
e 
omputational e�orts. Finally

some interesting results on arti�
ial models and RNA data will be reported.

5.1 The ACE algorithm

As we have seen in 
hapter 1, the solution of inverse models entails the min-

imisation of the negative log-likelihood L, introdu
ed in Eq. 1.8, equivalent to the


ross-entropy S between the data and the model, that for the Potts model is de�ned

as follows:
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S ≡ L = logZ −

N
∑

i=1

q
∑

a=1

hi(a)fi(a)

−

N
∑

i<j

q
∑

a=1

q
∑

b=1

Jij(a, b)fij(a, b)

(5.1)

where from now on fi ≡ f data
i and fij ≡ f data

ij in order to simplify notation. The

in
lusion of a prior distribution 
an be helpful for avoiding over-�tting. A Gaussian

prior distribution for the parameters is a typi
al 
hoi
e:

SL2 = S − γ′
N
∑

i=1

qi
∑

a=1

hi(a)
2 − γ

N−1
∑

i=1

N
∑

j=i+1

qi
∑

a=1

qj
∑

b=1

Jij(a, b)
2

(5.2)

where γ′ = 0.01γ as we expe
t �elds need a smaller regularisation 
ompared to


ouplings.

Monasson and Co

o [7℄ have proposed an expansion of S based on a graphi
al

subdivision of the target network of intera
tions in small sub-systems 
alled 
lusters

and de�ned as Γ = {i1, . . . , ik}, k ≤ N ,

S =
∑

Γ

∆SΓ, (5.3)

where the summation is made over all possible sub-systems of the N-spin system.

∆SΓ is the 
luster entropy and 
an be re
ursively 
omputed thanks to the following

relation:

∆SΓ = SΓ −
∑

Γ′⊂Γ

∆SΓ′ . (5.4)

The term SΓ represents the minimum of Eq. 5.1 restri
ted to those spins in
luded

in the 
luster Γ. As we will see, the authors have 
laimed that this sum 
an be

trun
ated, with a minor loss of information, to a restri
ted number of sele
ted 
lusters

for 
omputational feasibility. Groups of strongly intera
ting spins in the system


ontribute more to the overall 
ross-entropy, than weakly intera
ting ones. Therefore

the sele
tion of 
lusters is possible on the basis of 
luster absolute 
ontribution to S

and a trun
ated sum 
an be de�ned. The 
onvergen
e of the series is ensured by the

fa
t that 
ontributes from 
lusters of spins within the same integration path partially


an
elled ea
h other out [23℄. However, the numeri
al minimisation of the 
luster


ross-entropy entails a sum over qk terms, where q is the number of 
olours of the

model and k is the size of the sub-system. The great advantage of this algorithm is
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that the exponential 
omplexity of this 
omputation is moved from the size of the

system to the size of the 
onsidered 
luster, ensuring reasonable exe
ution times also

for large (i.e. N ∼ 100) systems, as long as the size of the 
lusters having been

in
luded in the sum remains small (i.e. k ∼ 10). Note that the summation on the

full set of 
lusters bring to the exa
t 
omputation of the log-likelihood.

Being re
ursive, Eq. 5.4 ensures that the minimisation of the log-likelihood of a

given 
luster depends only on the frequen
ies and the 
orrelations of the variables in

the sub-system. For instan
e, the 
luster of size one Γ = {i1} depends only on the

frequen
ies of observations of ea
h 
olour on site i1 and its entropy is de�ned as:

SΓ = −

q
∑

a=1

fi1(a) log(fi1(a)) (5.5)

Clusters of size two, as Γ = {i1, i2}, depend on fi1(σi1), fi2(σi2) and fi1i2(σi1 , σi2)

and their 
luster entropy ∆SΓ 
orresponds to the mutual information between sites

i1 and i2. More generally the 
luster entropy of a 
luster of size k represents the gain

in information when the k variables are 
onsidered to be mutually intera
ting. When

the two variables in a 2-variable 
luster are independent their ∆SΓ vanishes.

The full algorithm is des
ribed below:

1. We de�ne a threshold t on the overall 
ross-entropy. We will use it in order to

dis
riminate 
lusters signi�
antly 
ontributing to the log-likelihood from those

whi
h 
an be negle
ted.

2. We 
ompute analyti
ally the entropy and the parameters of all 
lusters of size

1

3. We de�ne a list Lk of 
lusters of size k = 2

4. For ea
h 
luster Γ ∈ Lk

(a) We 
ompute SΓ by the numeri
al minimisation of 5.1 restri
ted to Γ.

(b) We re
ord the parameters (�elds and 
ouplings) minimising 5.1.

(
) We 
ompute ∆SΓ using 5.4.

5. We sele
t signi�
ant 
lusters among Γ ∈ Lk with |∆SΓ| > t.

6. We 
onstru
t a list Lk+1 of 
lusters of size k + 1 from overlapping 
lusters

sele
ted during the previous step.

7. We lower t and iterate from step 4.

67



The 
onstru
tion of lists Lk+1, given sele
ted 
lusters in Lk, 
an be performed

a

ording to two di�erent rules: the so 
alled lax rule implies a new 
luster Γ to be

added to the list Lk+1 if there is at least a pair of 
lusters Γ1,Γ2 in Lk of size k su
h

that Γ1 ∪ Γ2 = Γ; the stri
t rule implies, instead, only the sub-
lusters of Γ to be

in
luded in Lk.

At ea
h step not only the 
ontribution to the entropy is 
omputed, but also the

approximated value of the parameters minimising the 
ross-entropy:

J(t) =
∑

k

∑

Γ∈Lk(t)

∆JΓ, ∆JΓ = JΓ −
∑

Γ′⊂Γ

∆JΓ′ . (5.6)

where J is an array representing both �eld and 
ouplings. As in 5.3 and 5.4 JΓ

is obtained via the numeri
al optimisation of the log-likelihood, while ∆JΓ′
is the


ontribution due to smaller 
lusters. At ea
h step the sparsity of the obtained graph

is thus guaranteed by the fa
t that the sum in Eq. 5.6 is restri
ted over those 
lusters

with |∆SΓ| > t.

Given inferred parameters, we test them 
omputing 
orresponding frequen
ies

and 
orrelations with the Monte Carlo sampling. To avoid over-�tting we stop the

algorithm when the di�eren
e between the observed and the Monte Carlo 
orrelations

stays in the error bars due to �nite-sampling approximation (
f. Eq. 5.7). When the

observed 
orrelations are not yet well reprodu
ed, the algorithm is iterated de
reasing

the threshold t in order to in
lude more 
lusters in the 
omputation of parameters.

The typi
al un
ertainties for frequen
ies and 
orrelations 
an be determined simply

from the sus
eptibility matrix χ (i.e. the hessian of the 
ross-entropy, also known as

Fisher information matrix)

δfi =

√

1

B
χi,i =

√

fi(σi)(1− fi(σi))

B
,

δfij =

√

1

B
χij,ij =

√

fij(σi, σj)(1− fij(σi, σj))

B
.

(5.7)

The estimation of the quality of the inferen
e is made re
ording at ea
h value of t the

average error ǫP on frequen
ies, the average error ǫP2 on 
orrelations (alternatively

also the error on 
onne
ted 
orrelations ǫC) and the maximum error ǫmax among all

terms in
luded in ǫP and ǫP2 as shown in Eqs. 5.8, where fMC
represent the statisti
s
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of the Monte Carlo sampling run with inferred parameters.

ǫP2 =

√

√

√

√

1
N(N−1)

2
q2

∑

i<j

∑

σi,σj

(fij(σi, σj)− fMC
ij (σi, σj)− (2γJij(σi, σj)))2

δf 2
ij(σi, σj)

(5.8a)

ǫP =

√

√

√

√

1

Nq

∑

i

∑

σi

(fi(σi)− fMC
i (σi)− (2γ′hi(σi)))2

δf 2
i (σi)

(5.8b)

ǫmax =

√

√

√

√

√

maxij

(

(fMC
ij (σi,σj)−fij(σi,σj))2

δf2

ij (σi,σj)
,
(fMC

i (σi)−fi(σi))2

δf2

i (σi)

)

2 ∗ ln(N(N−1)
2

q2 +Nq)
(5.8
)

These errors represent �nite-sampling errors. The term depending on γ (or γ′ =

0.01γ) at the numerator was introdu
ed to prevent from over-�tting small frequen
ies

and 
orrelations. Note that δfi and δfij are found in Eq. 5.8 at the denominator,

thus they need to be treated 
arefully in 
ase of zero 
orrelations: taking into a

ount

de�nitions 5.7, we �x a lower bound for both fi and fij equal to

1
B
. Another possi-

ble 
orre
tion 
onsists in 
omputing χ from the L2-regularised 
ross-entropy adding

thus a regularisation term 2γ at the numerator of Eqs. 5.7. However, we noti
ed

that di�eren
es between the two approa
hes are negligible for typi
al values of the

regularisation strength and we prefer the �rst solution from a pra
ti
al point of view:

errors are well de�ned also when the algorithm is run with γ = 0.

Pra
ti
ally the algorithm starts with a large threshold (t = 1) and only 1-spin


lusters are taken into a

ount, then the threshold is lowered t → t/1.05 until a set

of parameters �tting the 1- and 2-point statisti
s is found. The 
omputation of ǫP ,

ǫC and ǫmax is performed at ea
h iteration of the algorithm. The 
onvergen
e point

is rea
hed when ǫP , ǫC and ǫmax are lower than 1. The quality of the inferen
e 
an

be also tested on non-�t statisti
s as 3-point 
orrelations and mutational probability.

The latter is a biologi
al interesting observable, sin
e it represents the probability of

mutation

1

of a given number of sites per sequen
e. Note that, sequen
e similarity,

as we dis
ussed in 
hapter 3, plays a fundamental role in the 
lassi�
ation and in the

modelling of sequen
e homology and a good 
hara
terisation of related quantities,

su
h as the mutational probability, remains 
hallenging in the �eld. In next se
tions

1. Consider a MSA. The sequen
e 
omposed by the most frequent symbol on ea
h 
olumn is


alled 
onsensus sequen
e. A mutation o

urs when on a 
ertain site a sequen
e express a symbol

di�erent from the 
onsensus. Within an experimental framework mutations are usually 
omputed

with respe
t to the wild-type sequen
e.
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I will often 
onsider the so 
alled generative test, meaning the 
omparison between

the statisti
s 
omputed from the data and the statisti
s 
omputed with the Monte

Carlo sampling. Quantities 
onsidered within the generative test are:

� 2-point 
onne
ted 
orrelations

2

� 3-point 
onne
ted 
orrelations

� P (k), is the probability of observe k mutation per sequen
e with respe
t to a

referen
e sequen
e, 
alled 
onsensus sequen
e, in whi
h on ea
h site the most

probable a.a. for that site is taken.

Lastly, also the ability to reprodu
e the network of intera
tions is veri�ed and

therefore true positive rates and 
onta
t maps, similar to those we analysed in 
hapter

3, will be 
onsidered.

5.2 Computational re�nements for the Potts 
ase

As dis
ussed before, the 
omplexity of ACE algorithm depends exponentially on

the number of 
olours in the model, therefore the extension of this method to the

Potts model requires some adjustments of existing routines and the introdu
tion of

new intermediate steps between the extra
tion of data and the exploitation of results.

In the following se
tion I will present the improvements we have introdu
ed in

the last version of the ACE algorithm in order to easily manage many 
olour Potts

data. I will �rst fo
us on some possible re�nements of input data in the s
ope of

redu
ing 
omputational 
osts, then I will introdu
e the 
on
ept of referen
e stru
ture

and the di�erent ways it 
an be used to guide the inferen
e. Moreover, we will

analyse two improvements of the 
ode a
ting on the exa
t 
omputation of the 
luster

log-likelihood, being the latter the bottlene
k of the algorithm. Finally, I will explain

how we have 
ombined our algorithm with Boltzmann Ma
hine Learning when the


onvergen
e of the ACE results to be too slow.

5.2.1 Colour 
ompression

A �rst pro
edure we have introdu
ed 
onsists in �tting the minimal number of

parameters per site. Observing real data, su
h as MSAs of RNAs and proteins,

several sites 
ontain mu
h less than 5 or 21 symbols. Fun
tional 
onstraints, joint to

2. This quantity is a
tually �t by our algorithm, thus, to some extent, it 
an be 
onsidered as

a lax generative test. We introdu
e it in the analysis to remark the di�eren
e with other inferen
e

methods (e.g. mean-�eld approa
hes) not able to reprodu
e these observables, even if they are used

to �t the model.
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the �niteness of samples, prevent us from observing all the possible amino a
ids or

nu
leotides at least one time per 
olumn. Being the number of 
olours so 
ru
ial in

terms of 
omputational time, we have de
ided to for
e the algorithm to �t a restri
ted

Potts model, where the number of 
olours per site qi depends on the 
onsidered site

and it 
orresponds to the number of e�e
tively observed symbols.

Dis
arding non-observed 
olours, meaning 
olours with frequen
y equal to zero,

does not entail any loss of information. However, frequen
y thresholds larger than

zero 
an be 
onsidered and we have demonstrated they give rise to reasonable ap-

proximations: the need for 
omputational feasibility 
an be fruitfully paid in term

of information about the system. We 
ompress all those 
olours whose frequen
y is

smaller than a threshold p in a single grouped 
olour q̃i. We leave all the other 
olours

un
hanged. The threshold p 
an be �xed 
hoosing for instan
e a minimum number of

required observations within the sample, or su
h that a 
ertain fra
tion of the overall

entropy of the site has been reprodu
ed:

Sqi = −

qi−1
∑

a=1

fi(a) log fi(a)−

(

1−

qi−1
∑

a=1

fi(a)

)

log

(

1−

qi−1
∑

a=1

fi(a)

)

≥ fSq .

(5.9)

Contributions to Sqi are progressively added a

ording to de
reasing frequen
y.

We will see in the results se
tion that this 
olour 
ompression s
heme barely de
reases

the quality of the inferen
e, entailing instead a huge gain in 
omputational tra
tability

of diverse systems. Moreover we have observed on protein data that the use of 
olour


ompression helps avoiding over-�tting and improves inferen
e quality.

5.2.2 Referen
e stru
ture

The 
olour 
ompression redu
es the amount of information about the system for

speed, 
onversely a similar gain in term of 
omputational feasibility 
an be a
hieved

adding more information, when available. Within many appli
ations of interest, in-

deed, some partial information on the system are sometimes available: RNA align-

ments usually 
ontain a 
onsensus se
ondary stru
ture, experimental knowledges

about the intera
tion network 
an be found in the literature and even faster inferen
e

methods 
an be used for 
onta
t map predi
tion.

Unveiling the network of intera
tions underlying a 
ertain system is often the �rst

aim of inferen
e on biologi
al data [3℄. However also the strength of intera
tions,

the 
on�guration probabilities or in general a more detailed 
hara
terization of the
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distribution of symbols turns out to be of interest in many 
ases, for instan
e when

experimental measurements about sequen
e folding probability are available [28℄. In

those situations the ACE 
an be used to re�ne the des
ription of the system, given

the intera
tion network as referen
e stru
ture. We 
onsider a restri
ted sele
tion of

sites for the 
onstru
tion of 
lusters based on the known intera
tion graph: we �rstly

in
lude all the 
lusters of size two whose sites are dire
tly intera
ting and then we

build larger 
lusters using only those sites in
luded in the initial list.

Similarly, one 
an use ACE with di�erent levels of data 
ompression: �rst we run

the ACE with an high 
ompression threshold for 
olours: in the extreme 
ase, an

Ising model, where σ = 1 
orresponds to the most frequent 
olour and σ = 0 to the


ompression of all the other ones, 
an be inferred. At 
onvergen
e the �nal list of

sele
ted 
lusters is re
orded and then submitted to a se
ond run of the algorithm,

whose target is a non-
ompressed (or less-
ompressed) model. The gain in term of

time depends on the fa
t that only the 
lusters in the list will be 
omputed and no

sele
tion will be performed: all the 
omputed 
lusters will 
ontribute to the overall


ross-entropy.

Finally, in the original Ising version of the ACE [23℄ an expansion of the 
ross-

entropy around the mean-�eld solution has been introdu
ed in order to help the

numeri
al optimisation of the log-likelihood. Note that the result of this pro
edure

is that ACE provides an expansion around a referen
e Gaussian model instead of

around a referen
e stru
ture.

5.2.3 Analyti
al 
omputation of 2-site 
lusters

When q is of order 20, the 
omputation of 
lusters of size two still requires a

long 
omputational time. However, the exa
t solution for the q-state Potts model

inferen
e when N = 2 is known: the probability of a 
on�guration (σ1, σ2) for the

two variables is expressed as

P12(σ1, σ2) = eh1(σ1)+h2(σ2)+J12(σ1,σ2)
(5.10)

The 
onditional probability of having σ2 in position 2 given σ1 in position 1 is in-

stead P (2, σ2|1, σ1) = eh2(σ2)+J12(σ1,σ2)
; by rewriting P12(σ1, σ2) = f1(σ1)P (2, σ2|1, σ1) =

f1(σ1)e
h2(σ2)+J12(σ1,σ2)

and 
omparing with Eq. (5.10) we obtain f1(σ1) = eh1(σ1)
thus:

h1(σ1) = log f1(σ1) (5.11)
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an analogous expression is obtained for h2(σ2). Substituting expression (5.11) for

h1(σ1) and h2(σ2) in (5.10) we obtain

J12(σ1, σ2) = log
f12(σ1, σ2)

f1(σ1) f2(σ2)
(5.12)

It is easy to verify that the 
onservations of probabilities

∑q

a=1 fi(a) = 1,
∑q

a=1 fij(a, b) =

fj(b), and
∑q

a=1

∑q

b=1 fij(a, b) = 1 are satis�ed by the above 
hoi
e of parameters

h1(σ1), h2(σ2) and J12(σ1, b).

Note that the above equations for the 
ouplings and �elds are also obtained by

deriving the minimal 
ross-entropy, for a system of 2 spins with respe
t to the �elds

and 
ouplings, whi
h 
an be rewritten as

SAn
Γ =

∑

a,b

f12(a, b) log
f12(a, b)

f1(a)f2(b)

+
∑

a

f1(a) log f1(a) +
∑

b

f2(b) log f2(b)
(5.13)

where Γ = {1, 2} is the 
onsidered sub-system of size two. Thus in order to speed

the algorithm we introdu
e the analyti
al 
omputation of 2-site 
lusters. However,

as we have already seen, we introdu
e in the 
omputation of the 
ross-entropy a

L2-norm regularisation term, as in Eq. 5.2, to 
ompensate �nite-sampling errors.

Therefore the analyti
al solution SAn
turns out to be di�erent from the regularised


luster entropy SΓ. Anyway, in prin
iple, parameters in Eqs. 5.11 and 5.12 
an be

used as an initial guess for minimisation of the regularised SΓ. The optimisation of the


luster 
ross-entropy is performed using both the gradient des
ent and the Newton

method, depending on the value of the gradient

3

and several tests we have performed

on arti�
ial data have shown that this non-zero guess does not redu
e signi�
antly

the 
omputational time: within the very �rst steps the gradient des
ent rea
hes an

approximation of the �nal results that is extremely 
lose to the one 
omputed from

SAn
Γ .

The use of a pseudo
ount regularisation instead of the L2-norm 
an be useful in

this framework. Pseudo
ounts 
onsist in a res
aling of 
orrelations and frequen
ies

able to 
orre
t �nite-sampling e�e
ts and do not need further regularisations (in Eq.

5.2 γ = 0 and γ′ = 0). Being SAn
Γ = SΓ 2-site 
lusters 
an a
tually be 
omputed

analyti
ally dramati
ally in
reasing the speed of the algorithm.

3. The advantage of using gradient des
ent or Newton method depends on the value of the

gradient of the target fun
tion: when the gradient is too small gradient des
ent steps be
ome

negligible and the algorithm gets stu
k, so in those 
ases we prefer to 
ompute also the hessian

term and perform Newton steps in order to speed the optimisation.
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5.2.4 Sparse regularisation

A 
omputational re�nement, suggested by J.P Barton, is to perform an e�
ient

expansion of the partition fun
tion in order to use sparsity of 
ouplings in the s
ope of

de
reasing 
omputational 
osts. We �rstly observe that, given the Potts Hamiltonian

in 1.1, the partition fun
tion 
an be written in a trivial form in 
ase of independent

spins:

Z =

N
∏

i=1

(

qi
∑

a=1

ehi(a)

)

(5.14)

Sin
e �elds hi(a) make independent 
ontributions to the energy, the sum over all


on�gurations 
an be rewritten as a produ
t of terms from ea
h site. The gain in term

of 
omplexity is evident: 5.14 requires only

∑N

i=1 qi operations rather than
∏N

i=1 qi.

If we assume the sparsity of the intera
tion graph, we 
an expand the partition

fun
tion ignoring loops in a tree-like expansion.

Finally is it also possible to use a L0-norm regularization, whi
h 
an be very useful

in the 
ase of a large number of e�e
tive 
olours per site. This regularisation, applied

on 
oupling only, enfor
es the sparsity of the inferred model:

∆ℓ = −γ0

N−1
∑

i=1

N
∑

j=i+1

qi
∑

a=1

qj
∑

b=1

‖Jij(a, b)‖0 . (5.15)

L0-regularization for
e those 
ouplings that do not in
rease the log-likelihood of

the model by at least γ0 to be exa
tly zero. The form of the regularization was

implemented following the adaptive forward-ba
kward algorithm of [107℄.

5.2.5 MC-learning re�nement

The ACE pro
edure is extremely fast as long as it does not rea
h 
luster sizes for

whi
h the 
omputational 
ost for the 
al
ulation of the partition fun
tion be
omes

prohibitive. As I have already dis
ussed, 
omputational time grows exponentially on

average as qkeff , where qeff = 1
N

∑N

i=1 qi. Typi
ally the 
al
ulation of the partition

fun
tion requires a sum over 105 
on�gurations for 
lusters of about size 16, 8, 5 for

q = 2, 5, 10, respe
tively. When the ACE enters this regime it is better to stop

the algorithm, even if ǫmax is not yet of order one, and to use the output �elds and


ouplings as initial guess for a MC-learning pro
edure. This values of the parameters

are usually good initial guesses and the MC-learning rapidly 
onverges.
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The learning algorithm we implemented is a Potts-adapted version of RPROP al-

gorithm for neural network learning [108℄. Given an input set of �elds and 
ouplings,

we �rst 
ompute the model 
orrelations fMC
i (a), fMC

ij (a, b) through Monte Carlo sim-

ulations, implemented in the 
ode by J.P. Barton. The 
ouplings and �elds are then

updated a

ording to the gradient of the log-likelihood, multiplied by a parameter-

spe
i�
 weight fa
tor

hi(a) → hi(a)−
(

fMC
i (a)− fi(a)

)

wi(a) ,

Jij(a, b) → Jij(a, b)−
(

fMC
ij (a, b)− fij(a, b)

)

wij(a, b)
(5.16)

Regularization 
an also be in
orporated by adding 2γJij(a, b), or the analogous

term for �elds, to the gradient.

The use of the MC-learning re�nement goes beyond those 
ases when 
onvergen
e


annot be found. Sometimes, indeed, a quite good solution is found, then, lowering

t, the error rises and we have to wait long time before a new set of parameters

providing a smaller error has been found. It has been proved in [23℄ that the error is

not a monotonous fun
tion of t and several lo
al minima of the error exist: remember

that the entropy summation needs the 
an
ellation of many 
luster 
ontributions

to 
onverge. Therefore, we not only re
ord parameters at 
onvergen
e, but also in


orresponden
e of some lo
al minima of the error. This intermediate t values 
an be

used to run the MC-learning re�nement and thus to obtain reliable parameters in a

shorter time.

5.3 Gauge 
hoi
e

As many other models in theoreti
al physi
s the Potts model is invariant under

so 
alled gauge transformations, meaning for any K the following transformations

Jij(a, b) → Jij(a, b) +Kij(b)

hi(a) → hi(a)−
∑

j 6=i

Ki(a)
(5.17)

entail no 
hanges on the probability distribution 1.6 and thus on all those quan-

tities that are related to it. The gauge invarian
e 
omes from the 
onservation laws

of probabilities we have 
ited in se
tion 5.2.3, responsible for removing some degrees

of freedom from the system. Thus, the number of independent �elds at ea
h site i is

(qi − 1) instead of qi, and the number of independent 
ouplings for ea
h pair of sites
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is (qi − 1)(qj − 1). Given a set of 
ouplings Jij(a, b) and �elds hi(a) and 
hosen a


ertain 
olour ci we 
an �x the gauge su
h that

Jij(σi, cj) = Jij(ci, σj) = Jij(ci, cj) = hi(ci) = 0 (5.18)

To implement these 
onstraints we de�ne the transformed 
ouplings J̃ij(a, b) as

follows

J̃ij(σi, σj) = Jij(σi, σj)− Jij(ci, σj)− Jij(σi, cj) + Jij(ci, cj) (5.19)

Thus, we are for
ed to modify �elds a

ording to equation 5.19 su
h that for

ea
h 
on�guration the energy is un
hanged, unless for 
onstant terms. The original

hamiltonian is H(σ) =
∑

j>i Jij(σi, σj) +
∑

i hi(σi), while after the gauge �xation of

the 
ouplings we obtain:

H̃(σ) =
∑

j>i

Jij(σi, σj)−
∑

j>i

Jij(ci, σj)−
∑

j>i

Jij(σi, cj) +
∑

j>i

Jij(ci, cj) + �eld terms

(5.20)

dis
arding the last J term that does not depend on a or b, there are still two terms

to be 
an
elled out with a suitable transformation of �elds:

h̃i(σi) = hi(σi)−hi(ci)+
∑

j>i

[Jij(σi, cj)−Jij(ci, cj)]+
∑

j<i

[Jji(cj , σi)−Jji(cj, ci)] (5.21)

Note that, sin
e any transformation of the type 5.17 is permitted, it is important

to �rst 
hoose a parti
ular gauge before 
omparing inferred parameters, e.g. when we


onsider arti�
ial data and we plot true parameters versus inferred ones or when we


ompare results from two di�erent inferen
e methods. The 
hoi
e of the gauge 
an

be di�erent between the true and the inferred model (typi
ally in arti�
ial model we

draw the parameters from some random distribution for the 
omplete q-state Potts

model and then we infer a model in a 
ertain gauge with q − 1 
olours).

When we infer 
ouplings and �elds with ACE, we are for
ed to regularise the


ross-entropy to solve �nite-sampling issues and also to help the gradient des
ent

optimisation to �nd rapidly the maximum of the log-likelihood. Even if the inferen
e

itself is gauge invariant, and thus the result does not depend on the 
hoi
e for the

gauge, the regularisation term is not. Thus, depending on the studied model, an

appropriately 
hoi
e for gauge 
an help or not 
onvergen
e. In this se
tion we will

analyse some results about the role of the gauge in ACE inferen
e. We will analyti
ally
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ompute �nite-sampling errors for small models (i.e. N = 15) and we will average

results on 100 di�erent and randomly 
hosen realisations with similar 
hara
teristi
s

in term of number of sites, number of 
olours and sample size.

In order to understand better the point of this analysis, 
onsider the 
ase of an

arti�
ial model whose inferen
e has been performed with the 
olour 
ompression ap-

proximation: we have obtained a model that is slightly di�erent from the original one

and we need to spe
ify a 
ertain gauge in order to understand results. Usually, we

perform the inferen
e in gauge of Eq. 5.18 where the 
olour �xed to zero, ci, 
orre-

sponds to the grouped 
olour q̃i on ea
h site. This is the most natural 
hoi
e be
ause

it does not need any rearrangement of magnetisations and 
orrelations. However,

sin
e we do not have for parameters a 
losed relation linking the grouped 
olour and

the 
olours inside the group, we 
annot easily 
onvert the true 
ouplings and �elds

to this gauge. We have to 
onvert both the inferred and the true parameters into

another gauge, hoping it will not spread too mu
h errors (we will see extensively in

the next se
tion how errors propagate from one gauge to the others). When no 
om-

pression is performed there is no need, in prin
iple, for 
hosing two di�erent gauges

for the inferen
e and the 
omparison. Anyway, we will show that some advantages


an derive from the 
hoi
e of an appropriate gauge, di�erent from the usual zero-sum

gauge, before 
omputing the Frobenius.

In the following we will 
onsider a set of simple toy models on whi
h we 
an

analyti
ally 
ompute �nite-sampling errors and we will 
ompare results on di�erent


hoi
es for the gauge, both for the inferen
e and for the 
omparison between true and

inferred parameters.

5.3.1 Finite-sampling error on parameters and its propagation

The information about �nite-sampling errors made on inferred parameters, is


ontained, equivalently to errors on frequen
ies and 
orrelations, in the so 
alled

Fisher Information Matrix χ, 
orresponding to the sus
eptibility matrix of the sys-

tem. When the model is small (N ∼ 10 and qi ∼ 5) and the sample too (B ∼ 104)

the sus
eptibility matrix 
an be easily inverted and thus errors over 
ouplings and

�elds 
an be analyti
ally 
omputed

δJij(σi, σj) =

√

1

B
(χ−1)ij,ij (5.22)

δHi(σi) =

√

1

B
(χ−1)i,i (5.23)
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The above de�ned errors are gauge invariant quantities, but, given the �niteness of

the sampling, some regularisation of χ is needed. Thus, before inversion, the following

term (resulting from a L2 regularisation of the 
ross-entropy with γ = 1
B
for 
ouplings

and γ′ = 0.01γ for �elds) is added to the diagonal elements of χ:

χij,ij → χij,ij + γ (5.24)

χi,i → χi,i + γ′
(5.25)

These regularised errors are no more gauge invariant, thus also in this 
ase the


hoi
e of the gauge 
an modify results. Moreover, in the s
ope of 
omparing results,

we 
hange the gauge of parameters also after the inferen
e, thus we have to propagate

errors 
omputed in the inferen
e gauge into the gauge 
hosen for 
omparison. The

gauge transformations 5.19 and 5.21 
an be rewritten in matrix form, where JH is

the ve
tor 
ontaining the list of all �elds and 
ouplings, as:

J̃H = A ∗ JH (5.26)

where A is a

(

N(N−1)
2

q2 +Nq
)

×
(

N(N−1)
2

q2 +Nq
)

binary matrix sele
ting terms

in the ve
tor JH a

ording to 5.19 and 5.21.

Given matrix χ−1
we 
an sele
t the elements in the JH list (in 
ase some 
om-

pression of 
olours has been performed) and, �nally, propagate errors a

ording to

usual rule:

χ̃−1 = A ∗ χ−1 ∗At
(5.27)

5.3.2 Small systems analysis

We 
onsider 100 di�erent toy models with N = 15, Q = 5 and Erdos-Renyi inter-

a
tion network with parameters similar to the ones showed in the following pi
ture:
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Figure 5.1: (A) and (B): Gaussian distributions from whi
h true parameters have been

drawn. We �x µ = 0 and σ2 = 2 for both 
ouplings and �elds. (C) The intera
tion

network is a Erdos-Renyi random graph with p = 0.05, where p is the probability to

have a link between two sites. In the following we will 
all the intera
tion network


onta
t map in analogy to biologi
al 
ases.

To 
ompute 
orrelations we use Monte Carlo sampling 
olle
ting 104 di�erent


on�gurations. Given the small size of these systems we easily 
ompute analyti
al

errors on 
ouplings and �elds and thus we use them to estimate the relative average

errors on the inferen
e, in analogy to what we do with 
orrelations and magnetisation

within the ACE.

ǫJ =

√

√

√

√

1
N(N−1)

2
q2

∑

i<j

∑

σi,σj

(J inf
ij (σi, σj)− J true

ij (σi, σj))2

δJ2
ij(σi, σj)

(5.28)

ǫH =

√

√

√

√

1

Nq

∑

i

∑

σi

(H inf
i (σi)−H true

i (σi))2

δH2
i (σi)

(5.29)

Then, being in real-life 
ases interested in the inferen
e of the 
onta
t map of the

system, we 
ompress the information inside 
ouplings with a s
alar s
ore of intera
-

tion: the Frobenius norm of the matrix Jij(σi, σj). We add the so 
alled Average

Produ
t Corre
tion to redu
e entropi
 
ontribution to the s
ore. Therefore we obtain

the s
ore F apc
ij de�ned as follows:

Fij =

√

∑

σi,σj

Jij(σi, σj)2 F apc
ij = Fij −

〈Fij〉i〈Fij〉j
〈Fij〉ij

(5.30)

Before 
omputing Fij we usually �x 
ouplings in the the zero-sum gauge: the

latter ensures the minimum value for Fij (see 
hapter 3 for details).

Given the list of all F apc
ij we 
onsider the rank 
orrelation between F apc

true and F apc
inf .

When su
h simple arti�
ial models are 
on
erned, the true positive rate is indeed

poorly informative be
ause it rea
hes rapidly its maximum value. A �nest observable

is then needed to measure inferen
e performan
e. We de�ne ρ as follows:

ρ =
1

σr(F
apc
true)σr(F

apc
inf )nz

nz
∑

k=1

(

k −
nz + 1

2

)

(

r((F apc
true)ik,jk)− r̄true

)

(5.31)

where nz is the number of non-zero 
oupled pairs and r is the ranking of the pair

a

ording to true 
ouplings (
f. with paper in 
hapter 4).
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Finally we 
onsider also the performan
e of the inferred parameters in reprodu
ing

the input statisti
s 
omputing their Root Mean Square Deviation with respe
t to input

magnetisations, 2-point 
onne
ted 
orrelations and 3-point 
onne
ted 
orrelations.

All the above des
ribed quantities are 
omputed on 4 di�erent sets of parameters


oming from the same model, but obtained running the ACE with a di�erent gauge

�xing of the type in Eq. 5.18:

� Last: ci is 
hosen to be the last 
olour (it 
orrespond to a random 
hoi
e)

� Less: ci is 
hosen to be the least frequent 
olour

� Cons: ci is 
hosen to be the most frequent (
onsensus) 
olour

� Entr: ci is 
hosen to be the maximum entropy 
olour

Di�erent inferen
e gauges In �gure 5.2 we show results obtained using di�erent

gauges within the inferen
e.

As you 
an see the 4 gauges perform similarly on average on the datasets, both

within the inferen
e (Fig. 5.2a) and within the generative test (Fig. 5.2b). Note that

for small θ (Fig. 5.2a top left) the 
onsensus gauge performs worse than the others for

�elds inferen
e: the 
onsensus gauge, indeed, for
es true �elds to be negative, while

the inferred ones are less negative than expe
ted thanks to regularisation. Regarding


ouplings (Fig. 5.2a top right), the least frequent gauge seems to be signi�
antly worse

than the others, sin
e �nite-sampling e�e
ts are more pronoun
ed in this parti
ular

gauge. However ranking (Fig. 5.2a bottom) is well inferred in any 
ase, even if there

is a huge variation (from 0.6 to 0.9) depending on the model. Finally, as expe
ted,

neither the ranking nor the statisti
s depends on the 
hoi
e for the inferen
e gauge.

Di�erent 
omparison gauges Chosen a 
ertain gauge for the inferen
e we 
an

then 
hange the gauge before 
omparing results with true parameters and before


omputing the F apc
inf , F apc

true and the ρ (see Fig. 5.3 and 5.4). However with this

study we show that the 
hoi
e of 
omparison gauge is not 
ru
ial: there are some

small di�eren
es among di�erent gauges but we 
annot re
ognise a signi�
ant trend

in our results. Comparing ρ 
urves in Figs. 5.3, 5.4 with in Fig. 5.2 we 
an anyway

say that the 
onsensus gauge 
an a
tually produ
e better results in term of ranking

than the zero-sum gauge. This eviden
e has suggested that 
onta
t map predi
tions

on biologi
al data 
an be improved thanks to the use of the 
onsensus gauge. We

have tested the 
onsensus gauge on protein data and we have obtained better 
onta
t

predi
tions with respe
t to the usual zero-sum gauge, the same used also within DCA.
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Figure 5.2: Points: results obtained on 100 models. Lines: smooth averages of points

to guide eye. Couplings and �elds are 
ompared in the gauge used for the inferen
e.

To 
ompute ρ 
ouplings have been moved to the zero-sum gauge.
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Figure 5.3: Points: results obtained on 100 models. Lines: smooth averages of points.

Inferen
e has been made in a 
ertain gauge ((a) most frequent 
olour, (b) least fre-

quent 
olour) and then parameter have been moved to the other gauges before 
om-

puting of ǫJ , ǫH and F apc
.
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Figure 5.4: Points: results obtained on 100 models. Lines: smooth averages of points.

Inferen
e has been made in a 
ertain gauge ((a) maximum entropy 
olour, (b) last


olour) and then parameter have been moved to the other gauges before 
omputing

of ǫJ , ǫH and F apc
.
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5.3.3 Gauge invariant regularization of the 
ouplings

As we have seen above, the non-gauge-invarian
e of the L2-norm regularisation

and 
onsequently the arbitrary 
hoi
e of the inferen
e and the 
omparison gauge


an modify results, in parti
ular when a strong regularisation is used. Therefore we

have in
luded in the 
ode a gauge-invariant modi�
ation of the L2-norm so to ensure

gauge-invariant results.

Instead of an L2-norm penalty on Jij(a, b), we introdu
e the regularisation on a

transformed 
oupling value

Kij(a, b) = Jij(a, b)−
1

qj

qj
∑

c=1

Jij(a, c)−
1

qi

qi
∑

c=1

Jij(c, b)

+
1

qiqj

qi
∑

c=1

qj
∑

d=1

Jij(c, d) .

(5.32)

One 
an then verify that Kij(a, b) is invariant under gauge transformations, and thus

an L2-norm regularization of the form

γ

N−1
∑

i=1

N
∑

j=i+1

qi
∑

a=1

qj
∑

b=1

Kij(a, b)
2

(5.33)

does not depend on the 
hoi
e of gauge. As far as �elds are 
on
erned, the regulari-

sation parameter γ′
has to be set to zero to ensure the gauge-invarian
e of the �nal

model. Unfortunately we empiri
ally observe that the gauge-invariant regularisation

has a negative impa
t on the routine optimisation of the log-likelihood: optimisation

results to be slightly slower than the standard L2-norm.

5.3.4 Approximated error on the inferred parameters

We have seen at beginning of this se
tion that the 
ovarian
e matrix χ 
an be used

to estimate �nite-sampling errors on both 
orrelations and parameters. However the

inversion of χ is 
omputationally infeasible for long sequen
es and for large q, sin
e

it has size

(

qN + q2(N(N−1)
2

)
)

×
(

qN + q2(N(N−1)
2

)
)

. Some approximate values for

errors are needed in most biologi
ally interesting 
ases (protein sequen
es typi
ally

have N ∼ 100 and q & 10). Having observed that a strong 
ontribution to the

varian
es 
omes from out-diagonal terms of χ, meaning 
ouplings and �elds are far

from being independent variables, we ex
lude from putative 
andidates the approx-

imation χ−1
iajb,iajb =

1

χiajb,iajb

. Considering intera
tions among 
olours more relevant

than intera
tions among di�erent pairs of sites, we de�ne for ea
h pair ij a redu
ed
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χ̂ij 
orresponding to the hessian of a two-spin model. From the inversion of all the

possible χ̂ij , whose size is (2q + q2)× (2q + q2), we obtain, indeed, a reliable approx-

imation for the δJij(a, b). As regard to �elds, this approximation does not give us a

unique value: the same term δH1(a) 
an be found inverting χ̂1i for whatever i > 1,

thus we 
an, for instan
e, 
onsider the average value among all the possible ones.

Alternatively we 
an 
hoose to propagate the errors on magnetisations δfi(a) and


orrelations δfij(a, b) using the 2-variable approximation seen before:

Jij(a, b) = log

(

fij(a, b)

fi(a)fj(b)

)

, hi(a) = log fi(a)

Note that be
ause of the �niteness of the sample a regularisation term is needed:

fi(a) → fi(a) +
1

B
, fij(a, b) → fij(a, b) +

1

B

We then propagate errors on the gauge transformations des
ribed in 5.17 and

obtain an approximate formula for inferred �elds and 
ouplings in the 
omparison

gauge on 
olour ci:

hi(a) = log fi(a)− log fi(ci) +
N
∑

j=1

(

log

(

fij(a, cj)

fi(a)fj(cj)

)

− log

(

fij(ci, cj)

fi(ci)fj(cj)

))

Jij(a, b) = log fij(a, b)− log fij(ci, b)− log fij(a, cj) + log fij(ci, cj)

(5.34)

Finally, the 
orresponding error terms for the �elds and 
ouplings due to �nite-

sampling are given by

δhi(a) = (N − 2)

√

1− fi(a)

B fi(a)
+ (N − 2)

√

1− fi(ci)

B fi(ci)

∑

j 6=i

(
√

1− fij(a, cj)

B fij(a, cj)
+

√

1− fij(ci, cj)

B fij(ci, cj)

)

,

(5.35)

δJij(a, b) =

√

1− fij(a, b)

B fij(a, b)
+

√

1− fij(ci, b)

B fij(ci, b)

+

√

1− fij(a, cj)

B fij(a, cj)
+

√

1− fij(ci, cj)

B fij(ci, cj)
.

(5.36)
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Type of approximation �elds 
ouplings

Analyti
al errors

(independent variables propagation)

0.583± 0.007 0.784± 0.004

2-site inversion of χ 0.665± 0.006 0.938± 0.002
2-site inversion of χ

(independent variables propagation)

0.600± 0.007 0.788± 0.004

2-variable approximation 0.919± 0.004 0.953± 0.001

Table 5.1: Table showing the Pearson 
orrelation between the di�erent error approx-

imations and the analyti
al errors. Averages are made on a sample of 100 di�erent

Erdos-Renyi models whose parameters are de�ned in Fig. 5.1

In table 5.1 we 
ompare the Pearson 
orrelation between the approximated error

estimations and the analyti
al one. Note that approximations are made at two di�er-

ent levels: we approximate the inversion of the χ in Eq. 5.23 and 5.22 (2-site inversion

of χ) and we approximate the propagation of errors on the 
omparison gauge shown

in Eq. 5.27. We use the independent variables approximation, i.e. only varian
es are


onsidered and any 
ovarian
e is dis
arded. Remember, indeed, that the gauge we use

within the inferen
e is usually di�erent from the gauge we use to 
ompare true and

inferred parameters, thus errors on the inferred parameters have to be propagated to

the �nal gauge. As far as the 2-variable approximation is 
on
erned the propagation

on the gauge is 
omputed analyti
ally in 5.36 and 5.35.

Results shown here 
on�rm our 
hoi
e: in the following we will use the 2-variable

approximated errors. As you 
an see from table 5.1 the 2-site inversion of χ and the

2-variable approximation are, as may be expe
ted, almost equivalent for 
ouplings,

but the latter outperforms the former for �elds. Note, �nally, that the independent

variable approximation for the error propagation on the gauge highly deteriorates

results even if the analyti
al errors are 
onsidered.

5.4 ACE appli
ations

5.4.1 Arti�
ial data

In order to test the quality of the inferen
e made by the ACE, we study some

arti�
ial models whose parameters (
ouplings and �elds) are randomly 
hosen from

Gaussian distributions; we �xed µ = 0 and σ2 = 5 for �elds and µ = 0 and σ2 = 1 for


ouplings, a

ording to what we has been observed on protein data inferen
e. The

networks of intera
tions are Erdos-Renyi random graphs with 50 nodes generated with

p = 0.05 and p = 0.1, respe
tively 
alled ER005 and ER010, where p is the probability
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to have a link between two sites. Regarding 
olours, no preferential s
heme is imposed,

i.e. if i and j intera
t then Jij is a 21×21 matrix whose elements are 
hosen a

ording

to the above de�ned Gaussian distribution. The models we obtained have a maximum


onne
tion equal to 7 for ER005 and 12 for ER010; the number of intera
ting sites is

61 for ER005 and 121 for ER010.

Given the set of 
ouplings and �elds, a Monte Carlo routine is used to generate

data in the form of a Multiple Sequen
e Alignment with B = 102, B = 103, B = 104

and B = 105 unbiased sequen
es. Then, two di�erent 
olour 
ompressions have been

applied to the dataset: for ea
h site, 
olours with magnetisation fi(ai) < 0.05 and

fi(ai) < 0.01, are 
ompressed in a single gauge 
olour ci, �xed su
h that Jij(ai, cj) =

Jji(aj , ci) = hi(ci) = 0. Consequently an e�e
tive number of 
olours (qeffi ≤ 21) for

ea
h site is de�ned and only qeffi − 1 
olours will be used in the inferen
e of this


olour-
ompressed model. Finally a small (γ = 1
B
) L2-regularisation is in
luded in the


omputation of the 
ross-entropy.

Results for model ER005 with fi(ai) > 0.05 In the following I will summarise

the results obtained running ACE on the ER005 model with 
olour redu
tion fi(ai) >

0.05.

The behaviour of the inferen
e depending on threshold for the 
luster sele
tion 
an

be appre
iated in Fig.5.5 and Fig.5.6. We show how the 
ross-entropy of the inferred

model, errors on the statisti
s, the number and the size of the sele
ted 
lusters have


hanged depending on t within the 4 di�erent sample sizes analysed. Firstly note

that the intermediate plateau in the 
ross-entropy (we 
an easily see it for B = 103,

but it is still there also for the other samples) 
orresponds to a similar plateau in

the number of sele
ted 2-site 
lusters. The interpretation of this e�e
t is linked to

the fa
t that in this 
ase we are inferring a real Potts model with reasonably high


ouplings, di�erently from what we do on biologi
al data. Indeed in this simple 
ase

any 3- or more site intera
tion exists and the presen
e of this plateau 
on�rms the

algorithm is e�e
tively sele
ting the intera
ting 2-site 
lusters �rst. To rea
h the lower

plateau of the entropy, meaning the point after that no more signi�
ant 
ontribution

to the entropy 
an be added, bigger 
lusters have to be sele
ted so to 
orre
t network

e�e
ts. However it is important to stress that the full network of intera
tions is

generally re
overed before the 
onvergen
e of the algorithm, for the example shown

here, at the end of the intermediary plateau. This e�e
t depends on the strength of

intera
tions and it 
ould be more pronoun
ed here than in other models depending on

the 
hoi
e for the varian
e σ2
of the Gaussian distribution from whi
h the parameters
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Figure 5.5: ER005 fi(ai) > 0.05 ACE inferen
e. Row A: errors on the statisti
s

obtained with the inferred model. Errors on magnetisations (ǫP ) are plotted in red,

errors on 2-point 
onne
ted 
orrelations (ǫC2) in blue and the maximum overall error

(ǫmax) in green. Row B: the red line represents the value of the overall 
ross-entropy.

Row C: lines represent the number of 
omputed 
lusters. The darker the 
olour the

smaller the 
luster size starting from 2-site 
lusters. Results for B = 102 and B = 103

are shown.

88



10
-2

10
-1

10
0

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ε

B=10
4

A

εP εC2 εMax

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ε

B=10
5

εP εC2 εMax

 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
n
tr

o
p
y

B

 57
 58
 59
 60
 61
 62
 63
 64
 65
 66

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
n
tr

o
p
y

10
0

10
1

10
2

10
3

10
4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0N

u
m

b
e
r 

o
f 
c
lu

s
te

rs

t

C

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0N

u
m

b
e
r 

o
f 
c
lu

s
te

rs

t

Figure 5.6: ER005 fi(ai) > 0.05 ACE inferen
e. Row A: errors on the statisti
s

obtained with the inferred model. Errors on magnetisations (ǫP ) are plotted in red,

errors on 2-point 
onne
ted 
orrelations (ǫC2) in blue and the maximum overall error

(ǫmax) in green. Row B: the red line represents the value of the overall 
ross-entropy.

Row C: lines represent the number of 
omputed 
lusters. The darker the 
olour the

smaller the 
luster size starting from 2-site 
lusters. Results for B = 104 and B = 105

are shown.
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Figure 5.7: ER005 fi(ai) > 0.05 Conta
t maps obtained with inferred 
ouplings. In

the top-left triangle red squares represent true positives, green squares false positives

and grey squares false negatives. In the bottom-right triangle the full Frobenius Norm

matrix is shown.

are extra
ted. Se
ondly, looking again at the 
ross-entropy behaviour, note that the

under-sampled 
ase (B = 100) shows a pe
uliar minimum value 
orresponding to

very high errors on the statisti
s. This behaviour is quite similar to what we have

observed many times when performing analysis on real data and it probably means

that the regularisation strength is too large.

Given the inferred model the �rst observation we make regards 
onta
t predi
tion.

As we have already stressed in the previous 
hapters this is a major topi
 in statisti
al

physi
s and many other e�
ient inferen
e methods have been used to this s
ope. Here

we show that also ACE 
an be su

essfully used to infer the network of intera
tions

of the given model: Fig. 5.7 shows the 
onta
t maps obtained with the inferred


ouplings 
ompressing information on di�erent 
olours with the Frobenius Norm.

Compare Fig. 5.7 with Fig. 5.8 where the Frobenius norms are 
orre
ted with the

Average Produ
t Corre
tion. Good samplings do not need the 
orre
tion to re
over

the whole intera
tion network, while smaller samples take great advantages from

APC: for B = 100 the pre
ision is almost doubled from 0.38 to 0.62.

Being this analysis made on arti�
ial data we 
an quantify the goodness of the

inferen
e performed by ACE in 
omparing inferred parameters with the true ones.

Fig. 5.9 shows the re
onstru
tion of the true 
ouplings and �elds. In this pi
ture the

inferred and the true parameters have been 
onverted to the 
onsensus gauge and

the grouped 
olour is not shown, be
ause it simply does not exist within the true

parameters. It 
orresponds, to same extent, to an e�e
tive 
oupling or �eld for all

those 
olours that have been grouped together. As it is 
lear from Fig. 5.9, the other

parameters are not in�uen
ed by the inferen
e of su
h an e�e
tive 
olour and they
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Figure 5.8: ER005 fi(ai) > 0.05 Conta
t maps obtained with inferred 
ouplings. In

the top-left triangle red squares represent true positives, green squares false positives

and grey squares false negatives. In the bottom-right triangle the full Frobenius Norm

with APC matrix is shown.


an systemati
ally reprodu
e true values within the predi
ted error bars. We 
laim

that, in the sense explained above, the 
olour 
ompression does not e�e
t the quality

of the inferen
e. Note that for B = 100 the inferred 
ouplings are smaller than the

true ones be
ause of the regularization strength whi
h is, as already remarked, too

large.

Finally the main result we obtained 
on
ern the fa
t that ACE inferred model

are generative, meaning they 
an be used to produ
e new samples reprodu
ing the

statisti
s of input data (Fig.5.10). Here we 
onsider the 2− and the 3−point 
onne
ted


orrelations and the mutational probability of sequen
es. Note that in any 
ase


orrelations obtained with the inferred model stay in the error bars. As far as 3-point


orrelations are 
on
erned, a good sampling (at least B = 104) is needed in order to

have good results: for B < 104 the 3-point 
orrelations are small with respe
t to error

bars and therefore the re
onstru
tion 
annot be good.

In order to better understand ACE pros and 
ons let us fo
us now on the small-

sample 
ase in Fig 5.5 �rst 
olumn. In this parti
ular 
ase the algorithm has run (on

a standard desktop) for more than 2 days before 
onverging. However, in order to

redu
e time 
onsuming we 
an stop the algorithm long before the 
onvergen
e point

and run the MC-learning re�nement of parameters. The same pro
edure 
an be used

also in 
ase the algorithm gets stu
k far away from 
onvergen
e and a reliable model

is required. Here, we have 
hosen the threshold value t = 0.00108 as it is the �rst

lo
al minimum of the ǫmax (
f. with Fig. 5.5) in a region where the 
ross-entropy

is already �at. We have laun
hed the MC-learning algorithm with this parameters

as initial 
onditions. Fig. 5.11 shows the 
omparison in term of generative test
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Figure 5.9: ER005 fi(ai) > 0.05 Left 
olumn: inferred �elds are shown against true

�elds. Right 
olumn: inferred 
ouplings are shown against true 
ouplings. Rows show

di�erent sample results. Errors are 
omputed propagating errors on magnetisation

and 
orrelations through the approximated formulas: hi = log(fi) and Jij = log(
fij
fifj

)

as shown in 5.36 and 5.35. True and inferred parameters are 
ompared in the 
on-

sensus gauge, and the grouped 
olour is negle
ted.
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Figure 5.10: ER005 fi(ai) > 0.05 First 
olumn: 2-point 
onne
ted 
orrelations. Se
-

ond 
olumn: 3-point 
onne
ted 
orrelations. Third 
olumn: probability to see a

given number of mutated sites with respe
t to the 
onsensus sequen
e. Four di�erent

sample-sizes are shown. Error bars represent the �nite-sampling error in 5.7
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among (A) the �nal 
onverged parameters at t = 3 · 10−6
, (B) the ACE parameters

at t = 0.00108 and (C) the same parameters after MC-learning. As you 
an see ACE

plus the MC-learning re�nement shows results quite similar to ACE at 
onvergen
e,

even if the 
ost in term of 
omputational time is signi�
antly smaller. Note that

ACE and ACE plus MC-learning re
over the statisti
s highly better than the other

intermediate 
ase, where parameters are far from 
onvergen
e. We 
an argue that,

thanks to appropriate initial 
onditions, MC-learning gives us a generative model as

good as ACE in a more reasonable time. Finally if we 
ompare the inferred 
ouplings

and �elds with the true ones, we do not see any substantial di�eren
e from the �rst

row of Fig. 5.9, meaning that indeed the MC-learning 
annot improve the inferen
e

of the intera
tion network.

Results for model ER005 with fi(ai) > 0.01 In the following se
tion we will

show results for the ER005 model when a weaker (fi(ai) > 0.01) 
olour-
ompression

is applied. What we observed in this 
ase is that ACE 
annot easily 
onverge as in

the previous 
ase: none of the four samples has 
onverged in a reasonable time (about

a day) sin
e the lower redu
tion entails a bigger 
omputational time, however �nal

results (
f. Fig. 5.12) are quite similar to those obtained with redu
tion fi(ai) > 0.05.

Note that the inferen
e from the smallest sample (B = 100) results in this 
ase quite

hard: the errors on statisti
s remains very large disregarding the value of t and only

a MC-learning re�nement 
an in this 
ase produ
e a meaningful generative model.

The other three samples show instead a behaviour similar to the respe
tive 
urves

in Fig 5.5 and 5.6, but without rea
hing 
onvergen
e. It is important to stress that

within this arti�
ial model analysis we have not sele
ted the model so to give the

best results, or �ne-tuned parameters for the best inferen
e. Our aim here is in fa
t

to show how ACE works with standard options and on a random, and as general as

possible, model.

Results for model ER010 with fi(ai) > 0.05 We analyse in this part a more


onne
ted model. Note that ACE is based on the idea to infer the sparser network


ompatible with the data: it is not useful to infer 
ouplings di�erent from zero when

their error bars are extremely large. Consider in fa
t that fully 
onne
ted inferen
e

methods still exist and have proved to produ
e good results [3℄ [22℄. However the


hoi
e of the best 
oupling threshold in order to 
onsider two sites as intera
ting is

quite heuristi
 and often 
hallenging. With the ACE we aim to solve this problem


onsidering the errors on the statisti
s. We have tested the algorithm to infer a
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Figure 5.11: ER005 fi(ai) > 0.05 B = 100 First 
olumn: 2-point 
onne
ted 
orre-

lations. Se
ond 
olumn: 3-point 
onne
ted 
orrelations. Third 
olumn: probability

to see a given number of mutated sites with respe
t to the 
onsensus sequen
e. Rows

show di�erent threshold results: (A): results for the 
onvergen
e threshold t = 3·10−6
,

(B): results for t = 0.00108, (C): results for t = 0.00108 plus MC-learning. Error bars

represent the �nite-sampling error in 5.7
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Figure 5.12: ER005 fi(ai) > 0.01 First 
olumn: 2-point 
onne
ted 
orrelations. Se
-

ond 
olumn: 3-point 
onne
ted 
orrelations. Third 
olumn: probability to see a

given number of mutated sites with respe
t to the 
onsensus sequen
e. Four di�erent

samples are shown. Error bars represent the �nite-sampling error in 5.7
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more 
onne
ted network with maximum 
onne
tion of 12, meaning that in prin
iple


lusters of size 12 are needed to 
orre
tly infer the model. What we observed is

that very large 
lusters have indeed been sele
ted, meaning the the 
omputational

time needed for 
onvergen
e is infeasible: also in this 
ase any sample has rea
hed


onvergen
e. Anyway, even if the 
onvergen
e is not rea
hed without MC-learning

for su
h a 
onne
ted model, results shown in Fig. 5.13 are in general quite good and


omparable to those obtained for ER005.

Results for model ER010 with fi(ai) > 0.05: re�nement with MC-learning

Results shown in the last paragraph stressed the 
omputational limitations of ACE:

even if the system size of ER010 is the same of ER005, here a more 
onne
ted network

entails bigger 
lusters and thus ACE enters its 
omputational infeasible regime. As

dis
ussed in the introdu
tion, we have developed a MC-learning routine in order to

�nd 
onvergen
e parameters also when the ACE gets stu
k. The output parameters

available result to be good input parameters for the MC-learning re�nement. In

parti
ular we for
e the algorithm to save parameter within some �xed interval, when

ǫmax is minimum. Note, indeed, that the adaptive nature of ACE entails errors not

to be monotoni
 fun
tions of t, thus it is possible to 
hoose a posteriori the best

t and use the 
orresponding parameters within the MC-learning. Here we use t


orresponding to the last lo
al minimum of ǫmax, being sure that at that value the

entropy has already found the �nal plateau. Comparing Fig. 5.14 with Fig. 5.13 we

note that MC-learning produ
es a reliable generative model, substantially improved

with respe
t to the one ACE has inferred.

Comparison with DCA and plmDCA This paragraph is devoted to the 
ompar-

ison of ACE with two existing methods: DCA [3℄ and plmDCA [22℄. Note that DCA

and plmDCA are run on the full alphabet while ACE has been run with redu
tion

fi(ai) > 0.05.

Compare Fig. 5.15 and Fig. 5.16 with Fig. 5.10. As expe
ted, DCA 
annot

reasonably reprodu
e even the 2-point 
onne
ted 
orrelations used to �t the model,

while plmDCA and ACE 
an. Anyway ACE outperforms plmDCA both on 2-point


orrelations and on 3-point 
orrelations. Also the P(k) is very well reprodu
ed by

ACE, while it is not reprodu
ed by DCA and poorly reprodu
ed by plmDCA. The

latter performs in any 
ase 
onsiderably better than DCA in inferring generative

models. As far as 
onta
t map predi
tion the three methods are quite similar (
f.
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Figure 5.13: ER010 fi(ai) > 0.05 First 
olumn: 2-point 
onne
ted 
orrelations. Se
-

ond 
olumn: 3-point 
onne
ted 
orrelations. Third 
olumn: probability to see a

given number of mutated sites with respe
t to the 
onsensus sequen
e. Four di�erent

samples are shown. Error bars represent the �nite-sampling error in 5.7
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Figure 5.14: ER010 fi(ai) > 0.05 with MC-learning First 
olumn: 2-point 
on-

ne
ted 
orrelations. Se
ond 
olumn: 3-point 
onne
ted 
orrelations. Third 
olumn:

probability to see a given number of mutated sites with respe
t to the 
onsensus se-

quen
e. Four di�erent samples are shown. Error bars represent the �nite-sampling

error in 5.7. Di�erently from Fig. 5.14, here ACE output parameters are re�ned with

MC-learning before the generative test is performed.
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Figure 5.15: ER005 DCA First 
olumn 2-point 
onne
ted 
orrelations. Se
ond 
ol-

umn 3-point 
onne
ted 
orrelations. Third 
olumn probability to see a given number

of mutated sites with respe
t to the 
onsensus sequen
e. Four di�erent samples are

shown.
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Figure 5.16: ER005 plmDCA First 
olumn 2-point 
onne
ted 
orrelations. Se
ond


olumn 3-point 
onne
ted 
orrelations. Third 
olumn probability to see a given num-

ber of mutated sites with respe
t to the 
onsensus sequen
e. Four di�erent samples

are shown.
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Inferen
e methods B = 102 B = 103 B = 104 B = 105

ACE 0.38 0.79 0.98 0.98

ACE + APC 0.62 0.95 1 1

DCA 0.36 0.8 0.98 0.98

DCA + APC 0.56 0.95 0.98 1

plmDCA 0.39 0.69 1 1

plmDCA + APC 0.59 0.97 1 1

Table 5.2: Table showing the pre
ision of the 
onta
t predi
tion of the three inferen
e

methods analysed on the model ER005. S
alar s
ores for intera
tions ranking are


omputed with the Frobenius norm of the inferred 
oupling and then also the e�e
t

of average produ
t 
orre
tions (APC) is shown.

Table 5.2) and slightly improvement are rea
hed for small samples adding the average

produ
t 
orre
tion.

The following analysis wants to show that, a part from the inferen
e of the 
onta
t

map, DCA and plmDCA are outperformed by ACE. Of 
ourse from the 
omputational

point of view both DCA and plmDCA are mu
h faster than our algorithm. However

we 
laim that, when more sophisti
ated results have to be a
hieved, as for generative

models, ACE ensures a very good inferen
e in many sample and 
onne
tivity regimes,

while DCA and plmDCA almost fail.

Finally, as we have seen that MC-learning re�nement remarkably improves genera-

tive test results, one 
an use DCA and plmDCA inferred parameter as MC-learning in-

put and obtain, also in these 
ases, generative models. However, for the model ER005


onsidered above, when we use the parameters inferred with DCA and plmDCA as

input parameters for the MC-learning we do not rea
h 
onvergen
e and errors on

the statisti
s saturates to values higher than one. The saturation value for ǫmax de-

pends on the 
onsidered model and it varies from 10 to 50 for DCA and from 4 to 12

for plmDCA. These di�
ulties en
ountered in rea
hing 
onvergen
e with DCA and

plmDCA input parameters have also been observed on biologi
al data.
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5.4.2 Biologi
al data appli
ation: RNA

As promising results on arti�
ial data have been shown, I will present in this

se
tion the appli
ation of ACE to the same sele
tion of six riboswi
hes studied in


hapter 3. The following ones have to be 
onsidered as preliminary tests, sin
e RNA

pe
uliarities stressed in the dedi
ated 
hapter have not been taken into a

ount to

improve results. Appli
ation to proteins and neuronal data will be exploited in the

arti
le (in preparation) whi
h this 
hapter refers to.

This se
tion will report some tests done in order to estimate the 
orre
t strength

of the gamma regularisation parameter for RNA data. Tests are motivated by the

observation that typi
al value for the gamma γ ∼ 1
B
used for arti�
ial data produ
es

over-estimated 
ouplings in the �rst steps of the algorithm and then, it takes long time

before the 
orre
t value for parameters is re
overed. Intuitively we 
an understand

this e�e
t as an erroneous estimation of the sample noise: bayesian analysis of i.i.d.

samples estimate in

1
B

the best regularisation strength, anyway MSA are far from

being i.i.d. samples, even when the re-weighting 
orre
tion is applied. This empiri
al

re�nement, we su

essfully applied in the 
ase of DCA, does not provide here a reliable


orre
tion of the alignment and we need an a

urate 
hoi
e of the regularisation

strength.

On
e some good values for γ have been 
hosen, we run ACE on our RNA dataset

and 
ompare results on 
onta
t predi
tions, in the form of true positive rates, and

generative tests.

Gamma sele
tion We have observed on arti�
ial data that usually a very good

�t of the parameters is found when the 
onvergen
e of 
ross-entropy is rea
hed, even

if errors, in parti
ular ǫmax are still quite far from 1. Pre
isely we have showed that

parameters 
omputed at this point of the iteration usually rapidly 
onverge, if im-

proved with MC-learning. This e�e
t is due to the fa
t that the biggest 
ontributions

to the log-likelihood have, at this point, already been in
luded in the 
al
ulation. The

very last iterations of the algorithm are needed in order to 
orre
t intrinsi
 errors in

the 
luster expansion. Remember that the sele
tion of a parti
ular 
luster does not

depend on the other sele
ted 
lusters. Therefore, as explained in [23℄, after that a


luster is sele
ted, errors on statisti
s usually rise and a sort of 
as
ade of sub-
lusters

needs to be sele
ted before seeing errors dropping down again. The sele
tion of this


as
ade is hard be
ause 
ontributions 
an be small and it takes usually a long time.

However observing the emergen
e of a plateau in the 
ross-entropy 
an help dete
ting

this situations.
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Being interested in de�ne a pipeline, as fast as possible, in order to understand the

best value for the regularisation strength γ we de
ided to laun
h the algorithm with

many di�erent values of γ for a reasonable amount of time (within this parti
ular


ase ACE was left running for 20 minutes on a standard desktop). The aim of this

pro
edure is to understand whi
h is the regularisation strength favouring the most

the 
onvergen
e of the algorithm. Outputs of these pro
edure let us make some

observations:

� The most time-
onsuming routine is the 
omputation of the 
luster 
ross-entropy

and it 
onsists of two main parts: the 
omputation of the partition fun
tion via

the sum over all the qk 
on�gurations and the numeri
al evaluation of the 
lus-

ter parameters optimising the 
ross-entropy. Monitoring the number and the

size of sele
ted 
lusters gives us a good estimate about the �rst part. Keep-

ing �xed these quantities, the speed of the algorithm turns out to tell us, to

some extent, whether the optimisation routine is well regularised or not. The

regularisation helps the optimisation routine, thus a fast 
onvergen
e of the

optimisation algorithm needs an appropriate regularisation. However, this 
on-

siderations usually lead to high γ as gradient des
ent signi�
antly bene�t from

large L2-norm regularisations.

� If the 
ross-entropy has rea
hed or it seems 
lose to a plateau, often parameters

are still quite good regardless of errors. Otherwise, when the 
ross-entropy is

still os
illating important 
hanges in the model are happening: the algorithm

is sele
ting highly signi�
ant 
lusters and, even for similar value of t, output

parameters 
hange a lot.

� For very large γ the 
ross-entropy rapidly saturates as too many 
lusters are

sele
ted thanks to the 
ontribution of the regularisation term. Sin
e in this

regime the regularisation term in Eq. 5.2 is larger than the other 
ontributions,

the algorithm 
annot reasonably �t the data.

Given this 
onsiderations it is 
lear that the a priori estimation of the best value

for γ is de�nitely not trivial. For the 
on
erned RNA Fig. 5.17, showing the 
ross-

entropy 
urves for di�erent γ, 
annot suggest us an optimal value: for t > 0.012 no

more os
illations appear, moreover till t = 0.1 the algorithm is running relatively

fast. Consider now the number and the size of sele
ted 
lusters 5.18: de
reasing γ

means 
omputing greater 
lusters already with large t. Therefore the algorithm gets

stu
k quite soon when a few 
lusters have been sele
ted, preventing from an a

urate

inferen
e of parameters. Otherwise large γ values allow the sele
tion of a huge number
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Figure 5.17: The �nal 
ross-entropy of one among the six riboswi
hes, RF00162, is

showed. Di�erent 
olours refer to di�erent values of γ. The alignment for this RNA

family is made of 4757 sequen
es and the Beff obtained with a re-weighting threshold

equal to 0.1 is 1165.98. For the run of ACE no 
olour 
ompression is performed,

however only observed 
olours are in
luded in the inferred Potts model.
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of small 
lusters; to some extend in this 
ase almost no sele
tion is performed: the

huge regularisation term in the 
ross-entropy prevents the algorithm from distinguish

useful and useless 
ontributions.
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Figure 5.18: Left: the number of sele
ted 
lusters. Right: the maximum size of

sele
ted 
lusters. Again di�erent values for γ are showed.

Finally 
onsider Figure 5.19. If gamma is too large (dark blue 
urves) the algo-

rithm produ
es small errors but it is too slow to 
onverge till a reasonable t. Otherwise

if the γ is too small (dark green 
urves) errors diverge for small γ and, also in this


ase, we 
annot observe the 
onvergen
e of the algorithm.

Let me stress that this heuristi
 method for �nding the best γ is absolutely not

proposed as a de�nitive solution for the problem of 
orre
tly estimate how good (i.e.

how akin to a i.i.d. sample) an alignment of sequen
es is. The hardness of the

problem is well known and phylogeneti
-based methods [109℄ promise to improve

results. However, till now, the most sophisti
ated tools require a huge 
omputational

e�ort and are usually infeasible for reasonable size sequen
es. Our approa
h is instead

extremely pra
ti
al. We a
tually test our algorithm for any γ and look for the best γ

depending on the observed performan
e of ACE. Obviously the result is not pretended

to be of any generality, but it is restri
ted to the use within ACE itself. Moreover

even for ACE we often run the algorithm for more than one value of γ before inferring

a promising generative model.

Riboswi
hes results The same analysis showed for RF00162 was performed also

on the other �ve RNAs and produ
ed similar results: the 
hoi
e of the optimal value
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Figure 5.19: Errors on the statisti
s. From top: ǫP , ǫC and ǫmax. Di�erent 
olours

represent di�erent values of γ
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Family γ1 γ2
1
B

1
Beff

RF00162 0.05 0.006 2 · 10−4 8 · 10−4

RF00167 0.05 0.003 4 · 10−4 0.002
RF01051 0.1 0.05 5 · 10−4 0.001
RF01734 0.1 0.003 8 · 10−4 0.002
RF00504 0.2 0.012 1 · 10−4 5 · 10−4

RF00059 0.1 0.025 9 · 10−5 3 · 10−4

Table 5.3: Table showing the 
hosen strengths for the regularisation (with γ1 > γ2)
for the six riboswi
hes. B is the number of sequen
es in the alignment, while Beff is

the e�e
tive number after re-weighting.

for γ is hard and painful. In the following we show results for two di�erent value of

γ, 
alled γ1 and γ2, shown in Table 5.3. DCA and plmDCA were also used to infer

parameters.

We 
on�rm what has been observed on arti�
ial models: the 
hoi
e of the best

algorithm depends on the type of information one need to extra
t from alignments.

Conta
t map predi
tion 
learly does not need either ACE analysis or plmDCA, the

naive-MF solution gives almost always the best results in the shortest time, generative

tests showed, instead, that ACE is the only algorithm giving reasonable results. As far

as 
onta
t predi
tions are 
on
erned, we show only results for the higher value of the

regularisation γ1, sin
e di�eren
es with results obtained with γ2 are negligible. MC-

learning, as showed before, do not 
hange signi�
antly the inferen
e of the network of

intera
tions, therefore, in Figs. 5.20 and 5.21, 
ouplings used for predi
tions belong

to the last set of parameters re
orded by the ACE. In these two �gures we show that

lowering t, and thus in
luding more terms in the 
ross-entropy series, we improve

the true positive rate with respe
t to native stru
tures. Anyway DCA and plmDCA

represent, almost in any 
ase, the upper bound of this progressive improvement.

Comparing Fig. 5.22 and Fig. 5.23 the role of regularisation in the inferen
e

is evident: when we use γ1 the way the inferred parameters reprodu
e the 2-point

and 3-point 
onne
ted 
orrelations is strongly biased towards smaller values. Large

regularisations for
e the inferred model into an high temperature regime 
hara
terised

by small intera
tions (
f. 
hapter 4). However small regularisations entail longer


omputational time and, therefore, we 
annot de
rease the value of γ till

1
B
.

The 
omplexity of RNA data inferen
e is again well represented here: results from

one riboswi
h to the others signi�
antly 
hange.

� RF00162: DCA, plmDCA and low t ACE true positive rates are 
omparable.

DCA and plmDCA perform slightly better when the se
ondary stru
ture is
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Figure 5.20: True positive rates for riboswi
hes RF00162, RF00167 and RF00504.

Lines 
oloured from blue to green represent ACE results for de
reasing threshold t.
DCA and plmDCA are performed on the full alphabet model, while ACE in
ludes

only observed 
olours. 4 Å threshold is used for 
onta
ts de�nition (
f. 
hapter 3)
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Figure 5.21: True positive rates for riboswi
hes RF01051, RF01734 and RF00059.

Lines 
oloured from blue to green represent ACE results for de
reasing threshold t.
DCA and plmDCA are performed on the full alphabet model, while ACE in
ludes

only observed 
olours. 4 Å threshold is used for 
onta
ts de�nition (
f. 
hapter 3)
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Figure 5.22: Results for γ1 ACE + MC-learning. First 
olumn 2-point 
on-

ne
ted 
orrelations. Se
ond 
olumn 3-point 
onne
ted 
orrelations. Third 
olumn

probability to see a given number of mutated sites with respe
t to the 
onsensus

sequen
e.
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Figure 5.23: Results for γ2 ACE + MC-learning. First 
olumn 2-point 
on-

ne
ted 
orrelations. Se
ond 
olumn 3-point 
onne
ted 
orrelations. Third 
olumn

probability to see a given number of mutated sites with respe
t to the 
onsensus

sequen
e.
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in
luded while ACE is preferable for tertiary stru
ture predi
tions only (ACE

results are worse for γ2. Data not shown here). The model inferred with ACE

with γ2 is extremely good: both 2- and 3-point 
onne
ted 
orrelations are well

inferred and the mat
h between the predi
ted and the observed P (k) is almost

perfe
t. In this 
ase Fig. 5.22 
learly shows that γ1 over-estimates the optimal

regularisation.

� RF00167: same as RF00162 a part from the fa
t that DCA and plmDCA

give better results in term of 
onta
t predi
tions also when only the tertiary

stru
ture is 
onsidered.

� RF01051: this is the only 
ase in whi
h ACE works 
onsiderably better than

DCA and plmDCA for tertiary-stru
ture predi
tions. Conversely 3-point 
on-

ne
ted 
orrelations show the worst 
orrelation 
oe�
ient R = 0.54 and also the

tails of the P (k) have not been re
ognised by the model. Probably the value of

γ2 is still high.

� RF01734: here ACE performs worse than the other methods for 
onta
t pre-

di
tion in general. Moreover, the 
hoi
e of a smaller regularisation seems not

to improve generative test results: both Fig. 5.22 and Fig. 5.23 show strongly

biased 2- and 3-point 
onne
ted 
orrelations and the P (k) is not 
orre
tly re-

produ
ed. Probably a lower γ has to be tested.

� RF00504: DCA and plmDCA preform better than ACE for 
onta
t predi
-

tions. In Fig. 5.23, predi
ted 2- and 3-point 
onne
ted 
orrelations are ex-

tremely similar to those observed within the MSA, however the model 
annot

re
over the P (k): large part of tails is missing.

� RF00059: for 
onta
t predi
tion similar to RF00504, while the generative test

gives di�erent results. In this 
ase with γ2, indeed, the P (k) is surprisingly well

reprodu
ed, even if the 2- and 3-point statisti
s are not: probably, also in this


ase, we 
an de
rease more the value of γ.

5.5 Con
lusions

Within this 
hapter we have explored the ACE algorithm and tested its perfor-

man
e on both arti�
ial and real data. We 
laim that ACE is a good alternative to

mean-�eld method when a �ne information about the system is needed. Moreover

ACE guarantees the inferen
e of a sparse graph and it is reasonably robust to the


hoi
e of the stopping threshold. We showed that, even when errors on 
orrelations
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are large, the output parameters 
an be su

essfully used as input for a MC-learning

able to rea
h 
onvergen
e. Appli
ations on arti�
ial data have proved ACE produ
ing

generative models whose quality is highly better than mean-�eld and even pseudo-

likelihood models. However the larger 
omputational 
ost of ACE is not justi�ed for

the inferen
e of the intera
tion network only: both mean-�eld and pseudo-likelihood


an equivalently infer intera
tions in a mu
h shorter time.

Appli
ation to RNA 
on�rm arti�
ial model results. ACE is a powerful tool and

provide generative models able to extremely well reprodu
e the statisti
s of biologi-


al data. Competitive results rea
hed by DCA in the framework of RNA stru
ture

predi
tion promise to open a novel exploration of RNA-related topi
s. ACE has been

developed in the s
ope of appli
ation on a wide range of problems and RNA will

probably be one of them.

The analysis I have shown here represents the general set of studies that 
an be

performed thanks to ACE. As it is extensively explained in Appendix A, the ACE

pa
kage is made of three 
ore programs: ACE, MC-learning and the generative test

routine. The ACE pa
kage 
ode will be released in the next days with the relative

paper 
ontaining test on di�erent datasets (neurons, proteins, arti�
ial models).
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Con
lusions

All the proje
ts introdu
ed within this dissertation, related to inverse statisti
al

methods used for interesting appli
ations on biologi
al subje
ts, are di�erent from

ea
h other with respe
t to some fundamental aspe
ts. As dis
ussed in the Motivations,

indeed, two di�erent ways to approa
h multidis
iplinary topi
s exist: one 
an apply

an existing tool to a new topi
 or develop a new tool in order to solve a known

problem. The former 
ase has been explored within this thesis in 
hapter 3, where

the appli
ation of DCA to RNA stru
ture predi
tion has been dis
ussed.

In the last years DCA has been applied in the �eld of protein stru
ture 
hara
ter-

isation and amazing results have been a
hieved. However, we have shown that DCA


an be su

essfully applied on RNA data in the s
ope of 
omputing a 
oevolution

s
ore more reliable than the existing ones. In the related paper we have employed

DCA s
ore to improve performan
e of known algorithms for RNA se
ondary and

tertiary stru
ture predi
tion. The pro
edure we designed has been proved to be


onvin
ing and 
ompetitive. However, the results we have a
hieved, far from being


on
lusive, have to be intended as a preliminary eviden
e of the fa
t that the use

of DCA within existing software for stru
ture predi
tion would bring signi�
ant im-

provements. Enlarging the use of DCA within the mole
ular biology 
ommunity is

our future 
hallenge. These days we are implementing a web-server for RNA stru
ture

predi
tion. In the �rst version it will implement the same software we employed in

the analysis performed in the paper, but releases based on the appli
ation of DCA

within diverse algorithms will follow.

From the theoreti
al point of view, the paper of 
hapter 4 has 
on�rmed that DCA

is a reliable tool for the inferen
e of intera
tions in networks, but at the same time it

has stressed the weaknesses of mean-�eld inferen
e. Going beyond 
onta
t predi
tion

towards more general and generative models for biomole
ules would require a reliable

inferen
e of intera
tions that mean-�elds 
annot a
hieve. The development of new

tools to fa
e these problems remains 
hallenging. In the last 
hapter I introdu
ed

the ACE algorithm and its generalisation to the Potts model. The analysis both on
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arti�
ial and on RNA data 
on�rmed that ACE provides full generative models and


omputational limitations 
an be over
ome thanks to MC-learning re�nements. Also

in this 
ase the work on the ACE has not to be 
onsidered 
on
luded. The algo-

rithm, even if reliable and re�ned from di�erent perspe
tives, is not yet 
ompetitive

with respe
t to other more naive approximations due to the huge 
omputational ef-

fort needed. Despite the important improvements introdu
ed, dis
ussed within this

manus
ript, there is still a great deal of work to be done. In parti
ular a theoreti
al

understanding of some of the pro
edures introdu
ed is still missing. For instan
e

we have empiri
ally proved that the 
olour 
ompression, fundamental for redu
ing

the otherwise limiting 
omputational 
ost of Potts implementation, does not entail

a signi�
ant deterioration of the inferen
e performan
e. However, the 
onsequen
es

on the 
ross-entropy expansion of using e�e
tive 
olours substituting some of the

original ones and 
ompressing the information stored in these latter are still poorly

understood. Knowledge on su
h theoreti
al aspe
ts of the algorithm is the �rst step

towards novel improvements or even novel methods.
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Appendix A

ACE: short user manual

Beside analyti
al e�orts for the development of an e�
ient new inferen
e algo-

rithm, my major interest was that this algorithm was performed by an intuitive

software, ensuring people 
oming from diverse ba
kgrounds 
an easily run it. Thus,

we hardly work at some side-
odes performing analysis on ACE output or preparing

inputs starting from the most 
ommon formats used in the 
ommunity of mole
ular

biology or neuros
ien
e. This appendix s
hemati
ally lists all the analysis our 
ode

performs, all the di�erent parameters one 
an set and all the output �les produ
ed.

A.1 The full analysis s
ript

In order to perform full analysis, of the type showed in the previous se
tion, on

both real and arti�
ial data, we built a bash s
ript RunS
ript_2.0.sh running the

programs 
ontained in the ACE pa
kage and some interfa
ing Matlab s
ripts. To

laun
h the analysis both Matlab and a 
++ 
ompiler are requested. Main options


an be spe
i�ed to the bash s
ript or dire
tly to one of the programs in the pa
kage.

A.1.1 ACE pa
kage software

The ACE pa
kage 
ontains the three main programs for performing the inferen
e,

run the MC-learning and run the generative test analysis.

� s
e , the ACE algorithm performing inferen
e on data

� qls , the MC-learning algorithm used to improve parameters till 
onvergen
e in


ase ACE only does not su

eed

� qgt , the algorithm performing the generative tests on output parameters

All these programs are written in 
++. To 
ompile and install them a standard

Make�le is used, thus to run the program from within the ACE folder type:
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$ . / 
 on f i gu r e

$ make

Or equivalently to run ACE from whatever folder type:

$ . / 
 on f i gu r e

$ make i n s t a l l

After installation programs have to be individually run. Command line instru
-

tions tell the program where to look for input �les and where to send output, as well

as the setting of various parameters (gamma, theta, et
) and �ags (useSparse, et
).

Note that numeri
al parameters may be entered in either s
ienti�
 (re
ommended)

or standard de
imal notation. True/false swit
hes are o� by default - if entered in

the 
ommand line, the 
orresponding option is set to true. The 
onventions are given

below:

s
e The most part of the implementation of s
e 
ode has been done by J.P. Barton.

� -(�ag name): (type of input expe
ted)

� -d: string

Default: "." (
urrent dire
tory)

Path to the dire
tory where the data �le is lo
ated, and where output will be

written.

� -i: string

Default: "input"

The lo
ation of the �le 
ontaining a set of 
orrelations from whi
h to infer Ising

model parameters.

� -o: string

Default: "output"

The lo
ation of the �le where output is to be sent. Ea
h di�erent type of output

�le will have a di�erent �le type, e.g. .j for 
ouplings.

� -
map: string

Default: none

When the network of intera
tions (e.g. 
onta
t map) is known, a list of prese-

le
ted 2-site 
lusters 
an be given. "string" represent the name and the lo
ation

of the �le from whi
h 
lusters are read. The extension of the �le has to be .
l

(indexing from 0)
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� -input
l: string

Default: none

When a list of interesting 
lusters (e.g. from previously runs) is known, this

list of presele
ted n-site 
lusters 
an be given and used for inferen
e. "string"

represent the name and the lo
ation of the �le from whi
h 
lusters are read.

The extension of the �le has to be .
l (indexing from 0)

� -
l: none

Print the list of sele
ted 
lusters in a �le .
l in the output folder

� -b: real number

Default: 1.0e+ 4

Number of samples used to 
ompute the 
orrelations. Used to determine the

inferen
e error.

� -kmin: integer

Default: 1

Minimum 
luster size, useful for avoiding the inferen
e of models that are too

sparse. The algorithm will 
ontinue to lower the threshold until 
lusters of at

least this size are sele
ted.

� -kmax: integer

Default: N (system size)

Maximum 
luster size. The algorithm will halt when 
lusters of this size are

sele
ted.

� -
max: integer

Default: 10e+ 8

Maximum number of 
on�gurations per 
luster. The algorithm will halt when


lusters of size k (where k is de�ned su
h that 〈qeff〉
k = 10e + 8) are sele
ted.

This 
ommand is redundant with kmax, but it is helps users to better estimate

a time limit for runs.

� -t: real number

Default: none

Run the algorithm at the input value of t, in s
ienti�
 or standard de
imal

notation. This line is intended to be used when inferen
e is to be done only

for a single value of t, and will be overridden if thetaMax and thetaMin are set

di�erent from t.
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� -tmin: real number

Default: 1.0e− 10

The minimum value of t. See des
ription of -ts below for more information.

� -tmax: real number

Default: 1.0e+ 0

The maximum value of t. See des
ription of -ts below for more information.

� -ts: real number

Default: 1.05

The logarithmi
 step size to use for su

essive updates of t. When the program

loops over di�erent values of t, it begins by running the algorithm at the largest

value of the 
uto� and stores the 
luster information. The algorithm is then

re-run for su

essively smaller values of the 
uto�, ti+1 = ti
thetastep

, until t <

thetaMin. These re-runs use the previously stored 
luster information, so they

take 
onsiderably less time to run.

� -tre
: real number

Default: 3.0 (set 0 to avoid re
ording)

The logarithmi
 step size for t to re
ord the inferred parameters. Given this

interval the 
hosen value 
orresponds the t produ
ing the minimum error on


orrelations.

� -m
b: integer

Default: 4.0e+ 4

Number of Monte Carlo samples to take to 
he
k inferen
e error.

� -m
r: integer

Default: 1

Number of independent Monte Carlo runs to perform.

� -g0: real number

Default: 1.0e− 4

The L0 regularization strength. Using this �ag also turns on L0 regularization.

� -g2: real number

Default: 0.0

The L2 regularization strength. L2 regularization is enabled by setting the

regularization strength to a nonzero value using this �ag, or by using the -ag

�ag below.

� -gi: none

Use gauge invariant L2 regularization for 
ouplings.
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� -ag: none

Attempt to set the L0 and L2 regularization strengths to their optimal values,

based on the number of samples (input) in the data.

� -l0: none

If sele
ted, L0-norm (sparse) regularization is used.

� -lax: none

If sele
ted, use a laxer 
luster 
onstru
tion rule.

� -v: none

Enable verbose output.

qls The implementation of qls 
ode has been done by J.P. Barton.

� -(�ag name): (type of input expe
ted)

� -d: string

Default: "." (
urrent dire
tory)

Path to the dire
tory where the data �le is lo
ated, and where output will be

written.

� -i: string

Default: "input"

The lo
ation of the �le 
ontaining a set of 
ouplings, the starting values for the

Monte Carlo learning algorithm.

� -o: string

Default: "output"

The lo
ation of the �le where output is to be sent. Ea
h di�erent type of output

�le will have a di�erent �le type, e.g. .j for 
ouplings.

� -
: string

Default: "input"

The lo
ation of the �le 
ontaining the set of 
orrelations to reprodu
e (i.e. the


orrelations obtained from the data).

� -s: string

Default: none

Starting 
on�guration for MC simulations. (File extension requested .dat)

� -g2: real number

Default: 0.0

The L2 regularization strength. L2 regularization is enabled by setting the
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regularization strength to a nonzero value using this �ag, or by using the -ag

�ag below.

� -gi: none

Use gauge invariant L2 regularization for 
ouplings.

� -ag: none

Attempt to set the L2 regularization strengths to its optimal value, based on

the number of samples (input) in the data.

� -b: real number

Default: 1.0e+ 4

Number of samples used to 
ompute the 
orrelations. Used to determine the

inferen
e error.

� -m
b: integer

Default: 8.0e+ 5

Number of Monte Carlo samples to take to 
he
k inferen
e error.

� -m
r: integer

Default: 1

Number of independent Monte Carlo runs to perform.

� -e: real number

Default: 1.0

Maximum tolerable error threshold. The MC learning algorithm will 
ontinue

to run until the error on the one- and two-point 
orrelations falls below this

level.

� -v: none

Enable verbose output.

qgt

� -(�ag name): (type of input expe
ted)

� -d: string

Default: "." (
urrent dire
tory)

Path to the dire
tory where the data �le is lo
ated, and where output will be

written.

� -i: string

Default: "input"

The lo
ation of the �le 
ontaining a set of 
ouplings for the Monte Carlo sam-

pling.
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� -o: string

Default: "output"

The lo
ation of the �le where output is to be sent.

� -
 or -
ons: string

Default: "input" The lo
ation of the �le 
ontaining the referen
e sequen
e for

mutation probability. e.g. 
onsensus or wildtype sequen
e

� -m or -msa: string

Default: "input"

The lo
ation of the �le 
ontaining the 
ompressed alignment .
msa

� -w: string

Default: "input"

The lo
ation of the �le 
ontaining the re-weighting ve
tor

� -s: string

Default: none

Starting 
on�guration for MC simulations.

� -b: real number

Default: 1.0e+ 4

Number of samples used to 
ompute the 
orrelations. (MSA size)

� -g2: real number

Default: 0.0

The L2 regularization strength. L2 regularization is enabled by setting the

regularization strength to a nonzero value using this �ag, or by using the -ag

�ag below.

� -ag: none

Attempt to set the L2 regularization strengths to its optimal value, based on

the number of samples (input) in the data.

� -m
b: integer

Default: 8.0e+ 5

Number of Monte Carlo samples to take to 
he
k inferen
e error.

� -m
r: integer

Default: 1

Number of independent Monte Carlo runs to perform.

� -msaout: none

If sele
ted, print Monte Carlo alignment in output�le.msa and energies of se-

quen
es in output�le.e
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� -p3: none

Default: false (needed for VERY large systems)

Compute also 3-point 
orrelations and print all of them in an output �les

� -p3red: none

Default: false (needed for large systems)

Compute also 3-point 
orrelations and print all of those that are larger than

〈p〉3. Among the other ones print only 1 over 50.

� -err: none

Compute and write 
onne
ted 
orrelation errors on statisti
s. (Written in the


orresponding �le)

� -v: none

Enable verbose output.

Input and output �les Files are distinguished thanks to their extension referring

to a parti
ular type or formatting of data found inside. Standard extension are the

following:

� *.p

Contains the input frequen
ies and 
orrelations. Frequen
ies are listed before,


olours belonging to the same site stays on the same line. Then 
orrelations for

pair of sited ij are listed. Again the same line 
ontains all 
olour 
ombinations

existing for the 
onsidered pair of site. Colours are ordered a

ording to site i

�rst and then site j. Only j > i pairs are in
luded and ordered a

ording to

site i �rst and then to site j.

� *.j

Contains output parameters. Fields and 
ouplings are listed in the same format

as frequen
ies and 
orrelations.

� *.s
e

Contains supplementary information about a
e iterations and 
onvergen
e. Columns


ontain in the order: t, epsilonP , epsilonC , epsilonmax, �nal 
ross-entropy, max-

imum 
luster size, total number of 
omputed 
lusters, total number of signi�
ant


lusters, L2-norm regularisation term for both J and h.

� *.
l

Contains a list of 
lusters. Ea
h 
luster has to 
ontain more than one site. Sites

belonging to the same 
luster are written on the same line.
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� *.�t

Contains MC-learning iteration outputs. Columns 
ontain in the order: itera-

tion , epsilonP , epsilonP2, epsilonmax,L∞-norm of weights.

� *.
msa

Contains the MSA in a 
ompressed format made of a single 
olumn. Only

symbols seen at least on
e are reported. −1 �ags divide di�erent sites and


olours. After the �ag the full set of sequen
es 
ontaining that 
olours on than

site is listed using di�erent numbers to represent di�erent sequen
es. Sites are

listed �rst and then 
olours.

� *.
ons

Contains the 
onsensus sequen
e needed for the 
omputation of P (k).

� *.wgt

Contains the re-weighting ve
tor assigning a weight to ea
h sequen
e a

ording

to sequen
e similarity.

� *.m

Contains both input and output magnetisations. Input on the �rst 
olumn

output on the se
ond one.

� *.p2

Contains both input and output 2-point 
orrelations. Input on the �rst 
olumn

output on the se
ond one.

� *.
2

Contains both input and output 2-point 
onne
ted 
orrelations. Input on the

�rst 
olumn output on the se
ond one.

� *.p3

Contains both input and output 3-point 
orrelations. Input on the �rst 
olumn

output on the se
ond one.

� *.
3

Contains both input and output 3-point 
onne
ted 
orrelations. Input on the

�rst 
olumn output on the se
ond one.

� *.pk

Contains the P (k) distribution. In the �rst 
olumn k is listed, in the se
ond


olumn the input P (k) and in the third one the output P (k).

� *.msa

Contains the output MSA made of MC sequen
es.
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� *.e

Contains the energies of the sequen
es in *.msaout

� *.msae

Contains the energies of the sequen
es in *.
msa a

ording to the inferred model.

A.1.2 RunS
ript_2.0.sh pa
kage software

The bash s
ript RunS
ript_2.0.sh runs both ACE programs and some Matlab

s
ripts for pre- and post-pro
essing of data. The major advantage given by the use

of this s
ripts is that it parallelises the algorithm and output analysis. After that

all input �les are ready and also DCA and plmDCA have run (if required), the ACE

is laun
hed on input data. If the option for t re
ording is 
hosen ea
h time a new

set of parameters is re
orded at a 
ertain t the s
ript runs �rst the MC-learning

and then the generative tests on both learned and non-learned parameters. The

minimum number of 
ores required is thus two. This parallelisation of inferen
e

and analysis is parti
ularly interesting in order to monitor the 
onvergen
e of the

algorithm: 
omparing the generative tests of learned and non-learned parameter one


an easily understand if it is the 
ase to stop the algorithm or if a better approximation

of the 
ross-entropy is needed to obtain reasonable results. For arti�
ial models also

the 
onta
t map and the parameter 
omparison is performed at ea
h re
orded t.

RunS
ript_2.0.sh 
ontains and manages runs for the following programs:

CreateModel this Matlab fun
tion build arti�
ial models. It extra
ts random

parameters from Gaussian or Uniform distributions and assign them to di�erent types

of graphs su
h as 1D 
hains, Erdos-Renyi random graphs or spe
i�
 RNA-based

graphs.

qDataMC It is a 
++ program preforming a MC-sampling of a given q-state Potts

model.

rnaDCA Again a Matlab fun
tion for the DCA mean-�eld inferen
e starting from

a MSA.

plmDCA_symmetri
 This program belongs to the plmDCA_symmetri
_v2 pa
k-

age for the plmDCA. This software have not been developed by the author of this

dissertation but the 
orresponding referen
e is [19℄.
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ComputeErrors This Matlab fun
tion takes as input a MSA and 
ompute all the

statisti
al observable needed by the ACE algorithm. All ACE input �les are written

in the 
orre
t format from this fun
tion. It performs the 
olour 
ompression and


ompute exa
t or approximated (depending on system size and user input) errors on

inferred parameters. The arti�
ial model version map 
ompressed 
orrelations to the

full original model to prepare 
omparison among inferred parameters.

GaugeFixing It is a Matlab fun
tion to move both inferred parameters and input

ones, for arti�
ial models, to a given latti
e-gas gauge.

Predi
tMap A Matlab fun
tion for the 
omputation of s
alar s
ores from 
oupling

and true positive rates based on the input network of intera
tions. When real data

are used a 
onta
t map has to be spe
i�ed.

ACE pa
kage All the programs in the ACE pa
kage 
an be run within Run-

S
ript_2.0.sh. Only the most 
ommon option have anyway been in
luded. For a

more personal use we re
ommend to laun
h ACE programs individually.

A.1.3 RunS
ript_2.0.sh input options

The following list 
ontains all the input options one 
an give to RunS
ript_2.0.sh:

� -g: real number

Regularisation strength

� -i: string

Input dire
tory

� -o: string

Output dire
tory

� -p: real number

Colour 
ompression threshold

� -m: string

Colour 
ompression method: one 
an both spe
ify a threshold on the frequen
y

"pmin� or on the entropy 
ontribution "entr�

� -r: real number

Re-weighting threshold

� -f: real number

Frequen
y for t re
ording of parameters within ACE
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� -M: string

Matlab path

� -S: string

ACE path

� -N: integer

Number of sites in the model

� -q: integer

Max number of 
olours per site. For arti�
ial model spe
i�es the number of


olours of the input Potts model.

� -B: integer

Sample size

� -b: integer

Change the number of samples 
omputed by the MC for generative tests

� -J: real number

Couplings varian
e. For arti�
ial models only.

� -H: real number

Field varian
e. For arti�
ial model only.

� -h: real number

Fields extra-mean for bimodal distribution. For arti�
ial models only.

� -t: string

Type of model.

� '1D' = 1D Potts ring

� 'ER00' = Erdos Renyi graph

The two numbers that follow ER represent the p probability to 
reate a

link between two nodes. Examples: ER20 , p=0.2, ER59, p=0.59, et
.

� 'SS' = Hairpin loop graph with Watson-Cri
k base pairs

Base pairs start from 1 - N and 
ome up (2 - (N-1), 3 - (N-2), et
.).

The number of W-C base pais has to be expressed in the two numbers

that follows the type. Also a 
ertain numbers of tertiary 
onta
ts 
an be

added, use other two numbers in the name.

Adding an S to the end of the type name means "solve analyti
ally the model".

For 1D model this is quite fast (transfer matrix method), but for the other

models is 
omputationally very expensive. Adding an U means "do not solve
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analyti
ally the model". Between the type and the SU it is possible to put a

whatever name. Some examples: ER40_test1_U = Erdos Renyi p=0.4 un-

solved 
alled "test1", SS1708bS = se
ondary stru
ture with 17 W-C base pairs

and 8 tertiary.

� -x: string

Use a sele
t list of 
lusters as input. Spe
ify the �le 
ontaining the list

� -
: 1

Create model. For arti�
ial models only.

� -n: 1

Run MC-sampling form input parameters. For arti�
ial models only.

� -e: 1

Run ComputeErrors

� -d: 1

Run mean-�eld analysis on the 
olour-
ompressed model

� -s: 1

Run ACE

� -a: 1

Run the full analysis on output of ACE algorithm. It in
ludes qls and qgt for

all re
orded value of t

� -O: 1

Run other algorithms (DCA and plmDCA) on the non-
ompressed model in the

original alignment.

� -R: 1

Run analysis with real parameters to 
he
k thermalisation of MC routines.
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Methods for statisti
al inferen
e on 
orrelated data:

appli
ation to genomi
 data

Abstra
t

The availability of huge amounts of data has 
hanged the role of physi
s

with respe
t to other dis
iplines. Within this dissertation I will explore the

innovations introdu
ed in mole
ular biology thanks to statisti
al physi
s

approa
hes. In the last 20 years the size of genome databases has expo-

nentially in
reased, therefore the exploitation of raw data, in the s
ope of

extra
ting information, has be
ome a major topi
 in statisti
al physi
s.

After the su

ess in protein stru
ture predi
tion, surprising results have

been �nally a
hieved also in the related �eld of RNA stru
ture 
hara
ter-

isation. However, re
ent studies have revealed that, even if databases are

growing, inferen
e is often performed in the under sampling regime and

new 
omputational s
hemes are needed in order to over
ome this intrinsi


limitation of real data. This dissertation will dis
uss inferen
e methods

and their appli
ation to RNA stru
ture predi
tion. We will dis
uss some

heuristi
 approa
hes that have been su

essfully applied in the past years,

even if poorly theoreti
ally understood. The last part of the work will

fo
us on the development of a tool for the inferen
e of generative models,

hoping it will pave the way towards novel appli
ations.

Keywords: inferen
e, RNA, mean-�eld, Potts model, generative models,

regularisation, stru
ture predi
tion



Résumé

La disponibilité de quantités énormes de données a 
hangé le r�le de la

physique par rapport aux autres dis
iplines. Dans 
ette thèse, je vais

explorer les innovations introduites dans la biologie molé
ulaire grâ
e à

des appro
hes de physique statistique. Au 
ours des 20 dernières années,

la taille des bases de données sur le génome a augmenté de façon expo-

nentielle : l'exploitation des données brutes, dans le 
hamp d'appli
ation

de l'extra
tion d'informations, est don
 devenu un sujet majeur dans la

physique statistique. Après le su

ès dans la prédi
tion de la stru
ture

des protéines, des résultats étonnamment bons ont été �nalement obtenus

aussi pour l'ARN. Cependant, des études ré
entes ont révélé que, même si

les bases de données sont de plus en plus grandes, l'inféren
e est souvent

e�e
tuée dans le régime de sous-é
hantillonnage et de nouveaux systèmes

informatiques sont né
essaires a�n de surmonter 
ette limitation intrin-

sèque des données réelles. Cette thèse va dis
uter des méthodes d'inféren
e

et leur appli
ation à des prédi
tions de la stru
ture de l'ARN. Nous allons


omprendre 
ertaines appro
hes heuristiques qui ont été appliquées ave


su

ès dans les dernières années, même si théoriquement mal 
omprises.

La dernière partie du travail se 
on
entrera sur le développement d'un

outil pour l'inféren
e de modèles génératifs, en espérant qu'il ouvrira la

voie à de nouvelles appli
ations.

Mots-
lés: Inféren
e, ARN, 
hamp moyen, modèl de Potts, modèles

génératifs, régularisation, prédi
tion stru
turelle
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