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Methods for statistial inferene on orrelated data:

appliation to genomi data

Abstrat

The availability of huge amounts of data has hanged the role of physis

with respet to other disiplines. Within this dissertation I will explore the

innovations introdued in moleular biology thanks to statistial physis

approahes. In the last 20 years the size of genome databases has expo-

nentially inreased, therefore the exploitation of raw data, in the sope of

extrating information, has beome a major topi in statistial physis.

After the suess in protein struture predition, surprising results have

been �nally ahieved also in the related �eld of RNA struture harater-

isation. However, reent studies have revealed that, even if databases are

growing, inferene is often performed in the under sampling regime and

new omputational shemes are needed in order to overome this intrinsi

limitation of real data. This dissertation will disuss inferene methods

and their appliation to RNA struture predition. We will disuss some

heuristi approahes that have been suessfully applied in the past years,

even if poorly theoretially understood. The last part of the work will

fous on the development of a tool for the inferene of generative models,

hoping it will pave the way towards novel appliations.

Keywords: inferene, RNA, mean-�eld, Potts model, generative models,

regularisation, struture predition





Résumé

La disponibilité de quantités énormes de données a hangé le r�le de la

physique par rapport aux autres disiplines. Dans ette thèse, je vais

explorer les innovations introduites dans la biologie moléulaire grâe à

des approhes de physique statistique. Au ours des 20 dernières années,

la taille des bases de données sur le génome a augmenté de façon expo-

nentielle : l'exploitation des données brutes, dans le hamp d'appliation

de l'extration d'informations, est don devenu un sujet majeur dans la

physique statistique. Après le suès dans la prédition de la struture

des protéines, des résultats étonnamment bons ont été �nalement obtenus

aussi pour l'ARN. Cependant, des études réentes ont révélé que, même si

les bases de données sont de plus en plus grandes, l'inférene est souvent

e�etuée dans le régime de sous-éhantillonnage et de nouveaux systèmes

informatiques sont néessaires a�n de surmonter ette limitation intrin-

sèque des données réelles. Cette thèse va disuter des méthodes d'inférene

et leur appliation à des préditions de la struture de l'ARN. Nous allons

omprendre ertaines approhes heuristiques qui ont été appliquées ave

suès dans les dernières années, même si théoriquement mal omprises.

La dernière partie du travail se onentrera sur le développement d'un

outil pour l'inférene de modèles génératifs, en espérant qu'il ouvrira la

voie à de nouvelles appliations.

Mots-lés: Inférene, ARN, hamp moyen, modèl de Potts, modèles

génératifs, régularisation, prédition struturelle
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Motivations

In the last few years, the �eld of the moleular biology has experiened an almost

unbelievable improvement both in the quantity and in the quality of the data available.

The number of genome projets has inreased as tehnologial improvements ontinue

to lower the ost of sequening, onsequently sine 1995, we have assisted at the

exponential growth of genome sequene databases. At the same time the profound

need for tools able to manage with this huge amount of data and, most importantly,

able to extrat useful information from sequenes analysis has interested sientists

with diverse bakgrounds. Nowadays omputational and quantitative biology are

ross-disiplinary �elds and more and more innovative works have bene�t from this

extremely heterogeneous framework.

From the physiist's point of view, the task of exploiting data in order to infer

appropriate models is alled inverse problem. As diret problems onsist in omputing

some observables from a known probability distribution, solving an inverse problem

means to estimate the probability distribution from whih the observed data have

been drawn. For deades inverse problems have been extensively studied within the

theoretial and statistial physis ommunity and a huge and ever growing literature

exists. Therefore physiists have played a double role in the exploration of genomi

data. On the one hand they have identi�ed biologial interesting topis eligible for

appliation of existing statistial physis methods. On the other hand some of these

topis have beome extremely popular and, sine they have been faed for the �rst

time, novel solutions have been developed to the sope of a diret appliation.

The appliation of omparative sequene analysis results to protein struture pre-

dition is nowadays a well established framework. Several works, making use of

diverse tools, have shown that the orret interpretation of orrelations in sequen-

ing data, an help in prediting protein strutures. Can we use similar methods for

RNA struture predition? Reent advanes in moleular biology have revealed RNA

having a ruial role in the ell, thus the strutural haraterisation of RNAs has

beome of general interest. Within this dissertation I will address this problem using
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Diret-Couplings Analysis (DCA), a mean-�eld based inferene method, proved to

give reliable results on protein data.

However, during my thesis, I have worked not only on the appliation of an ex-

isting tool to a novel problem (DCA applied to RNA) but also on the development

of a new approah to inverse problems: the Adaptive Cluster Expansion (ACE). Ini-

tially developed for binary variables, the generalisation of ACE to sequene-like data

promises to provide a powerful tool for omparative sequene analysis.

Chapter 1 of this dissertation will be devoted to the introdution of inverse prob-

lems and of the existing approahes to their solution. I will formally de�ne an inverse

problem and I will review some interesting works appeared in the �eld, fousing in

partiular on the ones onerning appliation to biologial data.

In hapter 2 I will present reent appliations of statistial physis method to

diverse topis and �elds, suh as eology, soial siene and eonomis. The aim of

this hapter is to stress that not only biology an bene�t from advaned statistial

analysis: data are nowadays used to desribe our everyday life.

In hapter 3 the work on the appliation of DCA to RNA struture predition will

be exposed. The hapter starts with an exhaustive introdution on the problem from

both the biologial and the omputational point of view. The results are presented

within the related paper. Finally, after the reprint, some interesting open problems

are shown.

Chapter 4 will report a work we made on the role of regularisation on naive

mean-�eld inferene. We tried to deeply understand pros and ons of mean-�eld

approximation and we showed that strong regularisation an only partially orret

the mean-�eld intrinsi errors. Also in this ase, after a short introdution, the main

results will be inluded inside the reprinted paper.

In hapter 5, �nally, I will expose the work done on ACE. After a review on

the original algorithm, the main improvements we introdued will be studied. Note

how the knowledge we have about target systems (RNA, proteins, et...) guided the

development of the algorithm. A paper on ACE and its appliation to biologial data

is in preparation. The ode of the algorithm will be ontextually released.
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Chapter 1

Review: inverse Ising and Potts

Reent developments in omputational sienes have shown the importane of

inverse problems. The hallenge in this �eld onsists in trying to extrat the rule gov-

erning a ertain system from the statistis of samples of a large number of mirosopi

variables. Often experimental measurements an aess a redued and usually biased

sample of the whole possible set of di�erent behaviours of a given system. Advanes

in statistial physis promise to provide, however, an ever inreasing number of useful

tools to extrat information from experimental data.

Formally, inverse problems try to desribe the system estimating an unknown

probability distribution Pdata(σ), for a high-dimensional feature vetor σ = {σ1, σ2, ...σN},

given a set of M observations of this vetor.

The paradigm of inverse problems is the inverse Ising problem also known as

Boltzmann mahine learning. Born to desribe ferromagneti materials, the Ising

model is nowadays applied to the desription of a multitude of systems: from neural

networks [1℄ to protein �tness landsapes [2℄, from protein 3D strutures [3℄ to gene

expression networks [4℄. Its straightforward generalisation, the Potts model, is the

most natural hoie for systems with many states variables and it has been proved

enhane the system's desription.

Inverse and diret problems an be onsidered under a dual perspetive: we an

ompute averaged quantities, suh as magnetisations and orrelations (diret prob-

lem), given the full set of parameters of the model, meaning �elds and ouplings, or we

an infer the latter ones (inverse problem) suh that the data statistis is reovered.

A huge amount of diverse approahes exists. Some approahes to the inverse problem

have been inspired by this duality and the solution of the inverse problem is faed as

the expliit inversion of the solution of the diret one (e.g. mean-�eld [5℄). Others

methods are based, instead, on the fat that usually diret problems are easier than

inverse ones and thus the solution of the former is iteratively used to approximate the
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solution of the latter: this was, for instane, the approah for the �rst Boltzmann ma-

hine learning solution [6℄. Finally, some of them are rooted in the intrinsi di�erenes

between diret and inverse problem (e.g. adaptive luster expansion [7℄). Mentioning

all the possible ways to fae the problem is beyond the purpose of this thesis, and I

will fous on the tehniques that have suessfully been applied to biologial inferene

problems or that have even been spei�ally designed for suh appliations.

In this hapter I will �rst de�ne the Ising and the Potts model and then show how

a very general priniple justi�es the hoie for these models for the desription of very

omplex systems (e.g. protein strutures, gene expression or neural networks). The

last setion of this hapter will be dediated to some of the most popular methods

developed for the solution of the inverse Ising model.

1.1 Ising and Potts models: de�nition

The Ising and the Potts models desribe systems haraterised by pairwise in-

terations among their elements, alled spins in the language of statistial physis.

While the former is haraterised by binary spin variables (σi = −1,+1) the latter

presents many olours for eah spin: σa
i where a = 1, ..., q, the binary ase being

reovered when q = 2.

HIsing =

N
∑

i=1

hiσi +
∑

i<j

Jijσiσj

HPotts =

N
∑

i=1

q
∑

a=1

hi(σ
a
i ) +

∑

i<j

q
∑

a,b=1

Jij(σ
a
i , σ

b
j) (1.1)

where the hi are loal �elds and the Jij are ouplings between pairs of spins. Eq.

1.1 shows the Ising and the Potts Hamiltonians

1

for a system with N variables and,

in the Potts ase, of q olours.

1.2 Maximum entropy priniple

An impressing point about inverse problems is that within the applied problems

I will desribe in this thesis, Ising and Potts models emerge naturally from the ap-

pliation of a very general tenet: the maximum entropy priniple (MEP). Aording

1. HPotts de�ned in 1.1 refers atually to the so alled generalised Potts model in whih ouplings

and �elds also depend on olours. The original Hamiltonian is H =
∑

i<j Jijδ(σi, σj) where σi and

σj an take q possible values and δ is the Kroneker delta that is di�erent from zero if and only if

σi = σj . In the following I will always refer to the generalised Potts model as simply Potts model.
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to MEP we de�ne the least onstrained probability distribution reproduing the ob-

servables, i.e. a desription of the data variability only in terms of the observables.

Imagine we want to haraterise a whatever sample of data. We ould extrat

some information from data omputing two simple quantities: the frequeny of single

variables and the orrelation between eah pair of variables. Going beyond that is to

some extent hard and often useless [8℄. Consider now the ase of a system made of N

Ising variables. Our sample is omposed by a set of observations στ = {στ
1 , σ

τ
2 , ..., σ

τ
N}

with τ = 1, ..,M . Frequenies and orrelations are thus de�ned as in Eq. 1.2.

f data
i =

1

M

M
∑

τ=1

στ
i f data

ij =
1

M

M
∑

τ=1

στ
i σ

τ
j (1.2)

However, taking into aount f data
i and f data

ij to desribe the interation existing

among spins gives us only a partial information about the system. A full desription

is in fat ontained in the probabilisti model Pdata(σ) from whih these samples have

been drawn and to whih, unfortunately, we do not have aess. Thanks to MEP [9℄

it is possible to ompute a probability distribution Pmep(σ) satisfying the following

onstraints:

fmep
i = f data

i fmep
ij = f data

ij (1.3)

where

fmep
i =

∑

σ

Pmep(σ)σi fmep
ij =

∑

σ

Pmep(σ)σiσj (1.4)

Constraints in Eq. 1.2 an be introdued into the entropy de�nition thanks to

Lagrangian multipliers and an be in priniple generalised to any other observable

of P data
and Pmep

. In the spei� ase of the simpli�ed desription we have hosen,

we only need two types of Lagrangian multipliers: hi for frequenies and Jij for

orrelations .

S = −
∑

σ

P (σ) lnP (σ) + λ
∑

σ

(P (σ)− 1)

+
N
∑

i=1

hi

(

∑

σ

P (σ)σi − f data
i

)

+
∑

i<j

Jij

(

∑

σ

P (σ)σiσj − f data
ij

)

(1.5)
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Pmep is thus de�ned as the funtion maximising the entropy S in equation 1.5.

The result of this maximisation is the Boltzmann distribution in Eq. 1.6 where

the Hamiltonian oinides with HIsing
or HPotts

. Note that the usual temperature

parameter β is �xed to 1.

Pmep(σ) =
1

Z
e−H(σ)

(1.6)

The normalisation Z is referred to as the partition funtion in the language of

statistial physis and ontains all the information needed about the systems. Its

derivatives with respet to the �elds and to the ouplings oinide indeed to the

marginals of the distribution, i.e. the single- and two-site statistis fmep
i and fmep

ij .

1.3 Solving inverse problems

Within the desribed formulation, the �rst step towards the solution of an inverse

problem is the appliation of MEP, meaning to obtain the analytial form of a model

potentially desribing the data. The main hallenge is to solve the inverse problem

and ompute a set of parameters �tting the input orrelations and magnetisations.

Sine appliations of inverse problems are highly interdisiplinary, several solutions

exist having been developed within di�erent ommunities (e.g. information theory,

omputer siene, physis) and an be formulated under di�erent perspetives. For

instane, one an searh for the set of parameters minimising the Kullbak�Leibler

divergene between Pdata(σ) and Pmep(σ) in Eq. 1.7.

DKL(Pdata ‖ Pmep) =
∑

σ

Pdata(σ) ln(
Pdata(σ)

Pmep(σ)
) (1.7)

or equivalently, the set of parameters minimising the negative log-likelihood L

(Eq. 1.9) that the model Pmep an atually reprodue data.

L = −
1

M

M
∑

τ=1

lnPmep(σ
τ ) (1.8)

= ln(Z)−

N
∑

i=1

hif
data
i −

N
∑

i<j

Jijf
data
ij (1.9)

Moreover, thanks to Eqs. 1.10 we know that the obtained distribution reprodues

the desired statistis, i.e. Eqs. 1.2 are surely satis�ed.
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∂DKL

∂hi

= fmep
i − f data

i

∂DKL

∂Jij

= fmep
ij − f data

ij (1.10)

Given these general results, many di�erent strategies have been designed. In

priniple the minimisation of DKL or of the negative log-likelihood an fully solve the

problem. The exat omputation of these quantities implies a sum over all possible

on�gurations of the system and thus it beomes rapidly infeasible for an inreasing

number of spins: the number of on�gurations sales as qN where N is the number

of spins in the system and q is the number of olours. Many approximated solutions

have been proposed in the past years in order to �nd the best equilibrium between

result reliability and omputational feasibility.

1.3.1 Boltzmann mahine learning

The Boltzmann mahine learning, as presented in [6℄, is one of the �rst approahes

to the inverse Ising problem and it was developed within the Computer Siene om-

munity. The authors' purpose was to de�ne a network able to learn some simple rules

and having learning properties similar to those of the Hop�eld network [10℄. How-

ever, di�erently from the Hop�eld model, the stohastiity they have introdued with

a Metropolis-like Monte Carlo dynamis lets the system esape from loal minima

and eventually reah thermal equilibrium.

The Boltzmann mahine stores learned information in a set of weights being the

interations between nodes. The learning proess of the mahine orresponds to the

solution of an inverse Ising problem, the weights between nodes being equivalent to

ouplings between spins. The strategy introdued by the authors onsists in a two-

step approah: �rst solve the diret problem using the Monte Carlo sampling, then

solve the inverse problem updating the weights aording to Eq. 1.11. These two

steps are iterated till onvergene is reahed.

Jn
ij = Jn−1

ij + η(f data
ij − fMC

ij ) (1.11)

Eq. 1.11 is derived from the minimisation of the Kullbak-Leibler distane be-

tween the Monte Carlo equilibrium distribution and the data distribution. Being

this minimisation a onvex optimisation problem, gradient desent is guaranteed to

onverge to the exat solution. Note that, even if in the original algorithm in [6℄ no

mention was given to �elds updating, the generalisation of this algorithm to models

with loal �elds is straightforward and in hapter 5 we will see an example of this

kind.
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Boltzmann mahine learning is a very aurate way to �t parameters however it is

extremely expensive in term of omputational time. It is still used to analyse diverse

types of biologial data, from neurons reording to protein sequenes [2℄ usually when

strong interations exist among the variables in the system and �ne information need

to be extrated from the sample.

1.3.2 Mean-�eld

Mean-�eld approximation (MFA) is an extremely widespread topi. The simplest

MFA is the so alled naive MF entailing the approximation of the model free energy

in terms of averaged magnetisations mi = 〈σi〉 over the Gibbs measure in 1.6.

The free energy an be written as:

lnZnMF =
∑

i

[(

1−mi

2

)

ln

(

1−mi

2

)

−

(

1 +mi

2

)

ln

(

1 +mi

2

)]

+
∑

i

himi +
∑

i 6=j

Jijmimj (1.12)

The �rst two terms in Eq. 1.12 orrespond to terms of order zero in the well

known Plefka expansion [11℄ [12℄ while the last term is the order-one term. Further

steps in the expansion an be done. For instane the seond-order term (last term in

Eq. 1.13) orresponds to TAP approximation [13℄, derived inluding also the Onsager

reation term.

lnZTAP =
∑

i

[(

1−mi

2

)

ln

(

1−mi

2

)

−

(

1 +mi

2

)

ln

(

1 +mi

2

)]

+
∑

i

himi +
∑

i 6=j

[

Jijmimj +
1

2
J2
ij(1−m2

i )(1−m2
j)

]

(1.13)

Di�erently from naive MF, where the probability distribution is fully fatorised

(Pmep(σ) ≃
∏N

i=1 P
mep
i (σi)), the so alled Bethe approximation onsiders a model

fatorised over two-spin interations only (Eq. 1.14), resulting thus exat on tree

graphs.

Pmep(σ) ≃
N
∏

i=1

Pmep
i (σi)

∏

ij

Pmep
ij (σi, σj)

Pmep
i (σi)P

mep
j (σj)

(1.14)
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Beside the analytial solutions [5℄, a very e�ient algorithm for the inverse Ising

in Bethe approximation is the Suseptibility Propagation introdued by [14℄, inspired

by message-passing proedures.

Given the self-onsisteny equations (i.e. the relation between magnetisations and

parameters found minimising the free-energy with respet to magnetisations) of any

of the MF methods desribed above, non-trivial orrelations between distant spins

an be derived from linear response theory:

Cij =
∂mi

∂hi

(C−1)ij =
∂hi

∂mi

(1.15)

We therefore obtain:

(C−1
nMF )ij =

δij
1−m2

i

− Jij (1.16)

(C−1
TAP )ij =

[

1

1−m2
i

+
∑

k

J2
ij(1−m2

k)

]

δij − (Jij + 2J2
ijmimj) (1.17)

Usually for appliations diagonal terms are ignored and thus simpli�ed relations

an be easily inverted. Note that for these types of MFA �nding a solution for the

inverse problem depends our ability to invert the above relations and to �nd lose

relations for ouplings and �elds. As far as nMF and TAP are onerned very simple

expressions an be derived:

JnMF
ij = −(C−1)ij (1.18)

JTAP
ij =

√

1− 8mimj(C−1)ij − 1

4mimj

(1.19)

where C is the empirial orrelation matrix. Another simple approximation an

be obtained by treating every pair of spins as if they were independent on the rest of

the system. This approximation is thus alled the Independent pair approximation

(IP) [15℄ and, as you an see from Eq. 1.20 and 1.21 it is related to the small

orrelation expansion (SCE) developed by Sessak and Monasson [16℄.

JIP
ij =

1

4
ln

((1 +mi)(1 +mj)Cij) ((1−mi)(1−mj)Cij)

((1 +mi)(1−mj)Cij) ((1−mi)(1 +mj)Cij)
(1.20)

JSCE
ij = −(C−1)ij + JIP

ij −
Cij

(1−m2
i )(1−m2

j)
(1.21)
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SCE onsists in the extension of the approah developed in [12℄ based on a double

Legendre transform of the free energy in order to �x both the magnetisations (already

done by [12℄) and the orrelations. The result is eventually a high-temperature Plefka

expansion.

All the diverse MFAs guarantee a very fast implementation, whose time sales

in the worst ase as O(N3) sine the onneted orrelation matrix has to be in-

verted. However the reliability of results is not always ensured and in partiular in

the low-temperature (strong-oupling) limit all these approximations fail. Reently

new approahes [17℄ [18℄ have proposed to orret these e�ets thanks to lustering of

on�gurations aording to thermodynami states. Both the two solutions rely on the

reonstrution of on�guration spae in the low temperature regime and thus result

to be unsuitable for those models with a highly non-trivial set of metastable states.

Alternatively the low-temperature regime an be overome by the introdution of

regularisation terms helping to orret inferene of strong ouplings. As we will see

extensively in hapter 4, the introdution of a large regularisation, often neessary

to orret �nite sample e�ets, turns out to be ruial also in the ase of perfet

sampling and enlarges the reliability of MFA.

1.3.3 Pseudo-likelihood

Pseudo-likelihood maximisation (PLM) is nowadays one of the most powerful tools

for inverse problems and its appliation to protein struture predition [19℄ has proved

to outperform any other existing inferene method.

PLM approah to inverse problems was developed within the mathematial statis-

tis ommunity [20℄ [21℄. It onsists of an approximation of the maximum-likelihood

inferene, obtained substituting the probability distribution in Eq. 1.8 with the ondi-

tional probability of observing one variable σi given the observations of all the other

variables σ\i. The probability distribution of the model is therefore replaed by a

large set of onditional probabilities (Eq. 1.22) omputed from M di�erent samples

Pi(σ
τ
i |σ

τ
\i) =

eσ
τ
i [hi+

∑N
j=1

Jijσ
τ
j ]

2 cosh
[

hi +
∑N

j=1 Jijστ
j

]
(1.22)

li = −
1

M

M
∑

τ=1

lnPi(σ
τ
i |σ

τ
\i) (1.23)

where τ = 1, ..,M . The parameters hi and Jij an be omputed via the min-

imisation of the loal log-likelihood li in Eq. 1.23. However this proedure is not
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fully onsistent and returns two di�erent values for the oupling Jij : J∗,i
ij and J∗,j

ij ,

respetively oming from the minimisation of li and of lj . Sine both the two values

are in agreement with all the other estimated parameters, a simple solution for this

issue is to replae Jij with Jij =
1
2
(J∗,i

ij +J∗,j
ij ). It is also possible to fore to algorithm

to return equal values for these ouplings by minimising Lpseudo =
∑N

i=1 li [22℄ under

this onstraint.

In order to avoid �nite samples problems and also to help the minimisation algo-

rithm, a regularisation term is usually added to Lpseudo. The most ommon types of

regularisation penalties are L1-norm and L2-norm, jointly to pseudoounts (f. hap-

ter 4). As far as pseudo-likelihood is onerned, the L1-norm was originally suggested

in [21℄, sine it fores small parameters to zero and redues e�etively the number

of parameters to be �t. Within some appliation [19℄, also the L2-norm has been

suessfully used.

Note that, di�erently from MFAs, pseudo-likelihood maximisation is a statistially

onsistent method, meaning that the parameters estimated from an in�nite i.i.d.

sample generated by the same model lass are asymptotially exat. This is not the

ase for MFA whih makes signi�ant errors even with perfet sampling.

1.3.4 Adaptive luster expansion

The Adaptive Cluster Expansion (ACE) [7℄ [23℄ onsists in a perturbative expan-

sion of the log-likelihood in small lusters, meaning sub-systems, built in a reursive

way and seleted aording to their ontribution to the log-likelihood of the full model.

It has been proved that ACE, as Boltzmann mahine learning, provides reliable re-

sults also in the low-temperature phase where many other inferene methods fail.

Moreover, di�erently from Boltzmann mahine learning, ACE does not su�er from

omputational infeasibility on sparse systems (i.e. when the largest luster size is

small) and an be used on reasonable system sizes (N ∼ 100). The suess of suh

an approah relies on the intrinsi di�erene between diret and inverse problems.

Consider J = {hi, Jij} being the parameters of the model and fmep = {fmep
i , fmep

ij }

the orrelations of the model. We de�ne the suseptibility matrix and its inverse as:

χ =
∂fmep

∂J

∣

∣

∣

∣

J

χ−1 =
∂J

∂fmep

∣

∣

∣

∣

fmep

(1.24)

χ tells us the response of orrelations due to a small hange in the parameters

and an be thus assoiated to errors in the diret problem solution. χ−1
measures,

instead, the response of parameters due to a small variation of the orrelations and
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an be assoiated to the inverse problem. The ruial point here is that these two

matries are far from being similar. χ−1
is usually muh sparser and shorter-range

than χ, meaning that, even if the system is haraterised by many strong long-range

orrelations, ouplings still depend on a small number of orrelations. This laim turns

out to be true also in the low-temperature regime and thus on�rms the appliability

of ACE to ritial models.

In hapter 5 I will extensively disuss about ACE and its appliation to biologial

problems. I therefore postpone the detailed desription of the algorithm to that part

of my dissertation.
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Chapter 2

Inverse models aross disiplines

The emergene of a massive olletion of data has de�nitely transformed �elds suh

as physis, informatis and biology. In the last deades we assisted to the explosion of

omputational and quantitative studies about biologial topis. Beside omputational

biologists, an interesting role is played by several interdisiplinary pro�le sientists

applying usually a bakground in information theory and theoretial or statistial

physis to diverse subjets. Consequently nowadays departments of biophysis or

bioinformatis exist in almost every university. Conversely if one looks at the leading

disiplinary journals in soiology, eonomis or even politial siene only a minimal

evidene of the emergene of a omputational soial siene an be observed. For

some years now big ompanies, suh as Google, Faebook and Amazon, have been

appreiating the power of data olletion and analysis. The development of mahine

learning and inferene tehniques able to manage with tons of data (generally referred

to with the term Big Data) has enlarged the possibility of exploit information on

people habits till endangering everyone privay. A question thus spontaneously arises:

do we have to expet that the omputational revolution we assisted in biology will

spread to soial siene and after that diretly to our day-to-day life? I would say yes,

but let me remark that the emergene of suh a data-driven soial siene is happening

at a rate muh slower than the one having been observed in biology. Probably the

need for appropriate authority manifested by some people has introdued an inertial

term in the proess due to institutional reating times.

In this hapter I will analyse some of the most studied appliations of inferene

methods and statistial physis tools to several di�erent topis, from biology to eo-

nomis. We will �rst fous on biomoleular struture predition, as it is one of the

main themes of this dissertation, then we will sketh gene expression analysis and

neurosiene. The last biologial topi onsidered will be eology, fousing on ol-

letive behaviour of both miro-organisms and higher-order speies ommunities. In
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the seond setion, I will introdue some soial siene appliations, suh as human

interations, diseases spreading and eonomis.

2.1 Appliation to biology

2.1.1 Moleular biology

The major interest of omputational biologists has been for several deades the

strutural and funtional haraterisation of important biomoleules suh as DNA,

RNA and proteins. For instane knowing the 3D struture of a membrane protein

helps understanding its moleular mehanism and aelerates the development of

pharmaologial agents targeting it. However solving three-dimensional strutures is

a hard experimental task and the strutural haraterisation of biomoleules has till

now proeeded quite slowly. Sequening results to be muh easier and heaper, thus we

assisted at the exponential inrease of available sequenes. Given sequening data, the

�rst step onsists in searhing for homologous sequenes, i.e. phylogenetially related

sequenes sharing a ommon anestor. Then, this set of homologous sequenes is

rearranged so to reate a Multiple Sequene Alignment (MSA), meaning a matrix

of nuleotides or amino aids having on di�erent lines di�erent homologs and on

di�erent olumns di�erent sites. Sequene sites must be plaed in the orret olumn

aording to some equivalene rule among speies. The best alignments tools existing

maximise omplex global sores depending on single-site frequeny of symbols. When

these methods were introdued the number of available sequenes was extremely poor,

thus it was entirely reasonable to ignore higher-order statistis, sine the amount of

data was insu�ient to estimate joint probabilities. MSAs urrently available on

databases ontain tens of thousands and even hundreds of thousands of sequenes.

Therefore the deep statistial investigation of MSA is now a ommon pratie and

diverse approahes exist [24℄ [2℄ [25℄ [26℄ [3℄ [27℄ [28℄ [29℄.

Several MSA analysis tools start from the assumption of the so alled o-evolution:

the funtion of biomoleules strongly depends on their three-dimensional struture

and the struture is stabilised thanks to interating residues or bases. Sine the

struture (and funtion) is often highly onserved aross speies, while the sequene

is not, the existene of ruial interations among distant sites entails orrelations

between MSA olumns. The huge omplexity of ooperative interations between

residues makes this problem highly non-trivial: amino aids are mostly pairwise ou-

pled within three dimensional strutures but also many three-way or higher-order

ouplings have been observed [30℄. The result is often a dense and omplex network
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of interations and loal measures of orrelation (e.g. Mutual Information) annot

disentangle diret from indiret ontributions. Global inverse models among those we

analysed in the previous hapter, have thus been suessfully employed [3℄ [31℄ [19℄.

Beside struture analysis, the problem of �tness haraterisation of proteins has

also been part of interesting joint works, both experimental and omputational. A

major hallenge in the �eld is the HIV-AIDS epidemi [25℄ [2℄. HIV is haraterised

by an extreme sequene variability. An aurate desription of its �tness landsape,

meaning the identi�ation of the network of deleterious, bene�ial and ompensatory

mutations, an inform the design of immunogens and therapies in the sope of tar-

geting the virus in its most vulnerable regions.

Moleular studies help us to understand how proteins, RNA and DNA work. How-

ever, the ell ativity is arried out through the ooperation of many genes and gene

produts. The genome is organised in regulatory modules or groups of o-regulated

genes ontributing to a ommon funtion. The identi�ation of suh a network of in-

terations is ruial for understanding ell response to internal and external stimuli.

The main assumption, underlying omputational studies in this �eld, is that regu-

lators are themselves transriptionally regulated, thus their expression pro�les arry

information about their ativity level [32℄. Gene expression is measured thanks to

sequening (e.g. RNAseq tehnologies) analysis, then several inferene methods are

applied in order to infer gene interation networks re�eting intraellular ommuni-

ation pathways [33℄ [4℄. The most ommon approah to this problem fouses on the

di�erenes in gene expression and aims to identify of meaningful subgroups of genes

with similar expression patterns. However, one again, orrelation measures annot

provide insight into the diret interations among genes underlying the observed ex-

pression pattern. Maximum entropy priniple has been suessfully applied here [34℄

to infer pairwise interations able to aurate desribe expression data. Moreover

some approahes have inorporated both gene expression analysis and strutural on-

siderations aiming at a more and more global model for living ell ativity [35℄.

2.1.2 Neurosiene

Populations of sensory neurons enode information about stimuli into sequenes of

ation potentials alled spikes [36℄. The representation of environment signals depends

on orrelations among neurons and on their ability to oordinate spike patterns. Spike

ativity an be measured and has been studied in many di�erent brain areas, however

the understanding of the ode mapping neurons �ring and response to stimuli is still

hallenging and diverse interpretations have been broadly debated.
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Correlations among neurons have been proved to govern both the onveyane

and the storage of information; moreover several measurements have revealed that

orrelated patterns exist [37℄ [38℄ [39℄, but their origin and importane for deoding

the neural ode still remains poorly understood. Several oding strategies have been

identi�ed [40℄: (i) independene where eah neuron responds independently to an

input, (ii) deorrelation where neurons interat in order to produe a deorrelated

representation of the input, (iii) error orretion where many neurons respond to

the same stimulus in a redundant way and (iv) synergisti oding where instead the

ooperation of neurons enodes information that a single neuron annot manage. Note

that the trade-o� between redundany and error orretion pervades many di�erent

biologial information proesses and not only neural networking.

As in the �eld of sequene analysis, the most important revolution in our un-

derstanding of these systems follows tehnial improvements from the experimental

side [41℄: from �rst attempts (i.e. single-neuron reording) the number of simultane-

ously reorded neurons has roughly doubled eah year. Nowadays experimentalists

an reord the ativity of many ells (from hundreds to thousands depending on the

loation in the brain) at the same time, and the spatial and temporal resolution

with whih these reordings an be done is inreasing. The advent of suh multi-

neuron reordings has paved the way to the development of analytial tools able to

model and interpret data, partially unveiling the omplexity of the brain. These stud-

ies [42℄ [43℄ [1℄ showed that the olletive behaviour of neurons in response to omplex,

naturalisti inputs an be quantitatively desribed by pairwise-based models assum-

ing no higher-order interations. Very reently the authors of [44℄ used an Ising-based

analysis to show that funtional onnetions between pairs of grid ells

1

show a pe-

uliar onnetivity with neurons with nearby phases exiting and those further apart

inhibiting eah other. Moreover the statistial model the authors built, allows them

to explain some soures of indiret orrelations as for instane overlapping �elds, that

ould lead to spurious onnetions.

2.1.3 Eology and swarming

Eologial systems are haraterised by a stohasti dynamis: random geneti

mutations and phenotypi hanges, randomness of births and deaths, external fores

suh as weather or other speies migrations. The result is therefore a non-trivial

average dynamis and, in priniple, several and aurate measurements on repliated

1. Grid ells are neurons in the medial entorhinal ortex, one synapse away from the hippoampus,

whose ativity lets the organism understand its position in spae
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systems should be needed in order to reognise a ommon trend [45℄ [46℄. Suh an

ideal framework is rarely available when we are dealing with eologial systems. One

again advanes in experimental tehniques, joint to our ability to extrat information

from diverse ensemble averages, play a fundamental role. In this work [47℄ the authors

reonstrut the full 3D dynamial trajetory of eah bird in a �ok of starlings by

using a 3-ameras setup and an impressive image analysis tool. The availability of

suh a detailed dataset let the authors deeply understand the olletive behaviour of

bird �oking: note that in this ase average quantities are omputed on the ensemble

of the di�erent birds in the �ok.

A related �eld in whih the amount of available data enabled the development

of omputational studies is mirobial eology. Indeed, it is well known that miro-

organisms (inluding viruses, bateria, arhaea and protists) form omplex eologial

interation networks. The lassi�ation of all possible interations among miro-

organisms is based on a ombination of win, loss and neutral outomes [48℄. Quite

reently people studying suh mirobial eosystems have begun to appreiate the

advantages of advaned omputational methods in order to predit the network of

interations among speies [49℄. An important step in exploring speies abundane

data was the identi�ation of dependenies among the members of the ommuni-

ties obtained with orrelations analysis [50℄. However, as in many other branhes

of biology, tools taken from statistial physis helps unveiling interesting ritial be-

haviours [48℄ promising to open the way towards the de�nition of new global models

for the mirobial eosystem dynamis.

2.2 Appliation to soial siene

2.2.1 Soiology

As far as human interations are onerned, reent years have seen the explosion of

omputational studies aiming at the understanding of interations among people from

data olleted by new tehnologies, suh as e-mail, soial networks, smart phones,

ad-ho traking tehnologies, et [51℄. For the past deades, network theory has

been widely applied to soial networks, yielding explanations for soial phenomena

from individual reativity to pro�tability [52℄: e.g. the unveiling of the underlying

network of interations among people has demonstrated the person-to-person spread

of obesity being one of the major fator of the obesity epidemi [53℄. Beside many

dynamis analysis [54℄, also inferene tehniques [55℄ play a fundamental role in the

�eld providing information about both the struture and the ontent of relationships.
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Moreover outside the aademi ommunity, the need for statistial models de-

sribing people interations is inreasing: epidemi spreading, viral marketing, de-

fault ontagion are just some of the already known appliations. The siene of data

promises to onern more and more aspets of our life. Several ompanies suh as

banks, transports, health servies and publi institutions have already hanged their

business models aording to a more aurate observation and analysis of ustomers

habits.

2.2.2 Eonomis

The appliation of sophistiated mathematial and physial methods to �nanial

topis is not reent [56℄ [57℄. Quantitative �nane is a well established �eld of applied

mathematis, onerning �nanial markets. The main goal of quantitative �nane is

to derive mathematial models desribing observed market pries in order to predit

the best strategy for future ativities (e.g. buy/sell something). Beside this approah,

leading to establish a link between mathematial modelling and �nanial theory,

the study of orrelated prie hanges of di�erent stoks or the time series analysis

has given rise to a novel disipline alled eonophysis [58℄ [59℄. Eonophysis has

ombined sienti� interest and pratial relevane in quantifying risks: being well

known that an inrease in demand should inrease pries, while an inrease in supply

should derease pries, the author of this paper [60℄ uses statistial methods in order

to reonstrut all large orders on the market, making use of information about single

broker transations.

Quite reently more sophistiated inferene theories inspired by stohasti matrix

theory have been developed. People and ompany interations turn out to be so om-

plex that no simple rule an be established able to reprodue the observed behaviour;

inferene methods [61℄ applied to available data have anyway been proved to explain

many well known phenomena ourring in �nanial markets.
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Chapter 3

RNA struture predition:

appliation of an inverse Potts model

Diret-oupling Analysis (DCA) was developed in order to predit ontats be-

tween amino aids in the folded struture of proteins [62℄. It is based on the assump-

tion of oevolution between struturally related sites and it has been proved to be a

powerful tool for protein ontat preditions. Given that no strutural information

about residues is needed to perform DCA, its generalisation to other biomoleules is

straightforward and within this hapter I will present a novel appliation: RNA se-

ondary and tertiary-struture predition. The seondary struture if RNAs is made

by the well known Watson-Crik base-pairs, the same found also in DNA. These pairs

strongly o-evolve: only three possible pairings are admitted A-U (or T in the ase

of DNA), G-C and G-U (alled wobble pair). Therefore the ovariation signal is in

this ase muh higher than the one of other pairs in ontat in the tertiary stru-

ture. Standard approahes to oevolution analysis, suh as Mutual Information (MI),

an predit almost only seondary struture base-pairs and just in a few ases some

tertiary-struture ontats. However I will show that, di�erently from MI, DCA signal

is enrihed in tertiary ontats and it improves both seondary and tertiary-struture

predition tools.

This hapter will be strutured in 6 setions. The �rst three will introdue the

state of the art in the �eld: I will �rst fous on the analysis of known rystal strutures

of RNA, then I will move to omparative sequene analysis, the most powerful ompu-

tational tool available to study biomoleules, and �nally I will introdue some existing

methods for struture predition. The fourth setion will present the pre-proessing of

data needed for DCA analysis, inluding both atual data (multiple sequene align-

ments) and struture for omparison and evaluation of results, and also the DCA

algorithm and soring systems. Within the �fth setion, the paper Diret-Coupling
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Analysis of nuleotide oevolution failitates RNA seondary and tertiary struture

predition is reprinted. Finally, the last setion will inlude suggestions about some

possible improvement based on a deeper analysis of DCA outputs.

3.1 RNA struture analysis

The main soure of rystal strutures of proteins and other important biologial

maromoleules is the well known PDB database. It ontains information about

the known 3D strutures of many proteins and nulei aids involved in the entral

proesses of life. Strutures ontaining the oordinates of eah atom belonging to the

moleule, are omputed experimentally using methods suh as X-ray rystallography,

NMR spetrosopy and ryo-eletron mirosopy. Last years have seen an important

inrease of the number of strutures stored on this repository, however tehnial

di�ulties have till now penalised nulei aids with respet to proteins. The amount

of information ontained in the PDB of a protein or an RNA is quite di�erent: protein-

PDBs ontain, among the other, information about the seondary struture, while

RNA-PDBs do not. Annotations about the seondary struture of an RNA an be

ahieved using software suh as RNAView [63℄, MC-annotate [64℄ or Assemble2 [65℄.

These tools are able, as we will see, also to lassify tertiary base-pairs.

In the following I will reall some basi onept about RNA struture and funtion,

then I will review some of the existing methods for extrating strutural information

from RNA-PDB strutures and �nally I will talk about the state of the art in RNA

struture predition.

3.1.1 Basi onepts

Ribonulei aids (RNAs) are the only known polymers able to both bring geneti

information and perform hemial atalysis. Even if they are hemially loser to

DNA, their ability to fold in omplex tertiary strutures and thus at as atalysts

makes them struturally akin to proteins. Similarly to protein RNA struture an be

desribed at four di�erent levels:

� the primary struture is the sequene and it is made of four basi building bloks

alled nuleotides. They are made by a ribose sugar ring, a phosphate group and

a purine or pyrimidine base. The most ommon purine bases found in RNAs are

Guanine and Adenine, while Cytosine and Urail are the pyrimidines. However

some non-standard bases exist.
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� The seondary struture is held together by hydrogen bonds between anonial

base-pairs suh as A-U and C-G, wobble base-pairs G-U, and base-staking

interations forming the so alled stems. The result is similar to the well known

DNA double helix proposed by Watson and Crik in 1953.

� The tertiary struture is haraterised by long-range non-anonial interations.

The existing base-pairs have been lassi�ed in [66℄, where the authors de�ne a

nomenlature system based on the observation that purines and pyrimidines

an be shematially represented as triangles, aording to the three available

edges for hydrogen bonding interations: Sugar, Hoogsteen and Watson-Crik.

In the following I will all this lassi�ation the Westhof-Leontis lassi�ation.

Eah edge an interat with any other edge of an other nuleotide giving rise

to a total of 12 possible geometries, inluding two di�erent orientations for the

glyosidi bond: is and trans. Beside anonial Watson-Crik is base-pairs,

forming seondary struture, the other non-anonial pairs are mainly involved

in the self-assembly of the moleule and also in RNA-protein interation.

� The quaternary struture involves bonding with proteins or with other RNAs.

As far as folding is onerned, it has been shown that RNA folds through a hier-

arhial pathway, in whih domains assemble sequentially [67℄. First Watson-Crik

base-paring and staking interations form the double helies of the seondary stru-

ture and then the resulting moleule is paked in a ompat 3D struture through

the mediation of tertiary arhitetural motifs [68℄. Also the stability of the two stru-

tures is quite di�erent: seondary struture turns out to be highly stable ontrary to

tertiary struture. This di�erene is mainly responsible for the di�ulties enoun-

tered in experimental determination of high-resolution RNA strutures, making the

struturally haraterisation of RNAs hallenging.

Besides the well known messenger RNA, bringing geneti information from DNA

to protein translation, many other RNAs have been disovered to perform diretly

their funtion. These ones are alled funtional RNAs. The �rst funtional RNAs

that have been disovered were the transfer RNA (tRNA) and the ribosomal RNA

(rRNA) always involved in protein synthesis. We know that many RNAs are found in

omplex with proteins (ribonuleoprotein omplexes RNP) to perform ruial tasks

inside the ell. Moreover there exist atalyti RNAs, alled ribosymes, that together

with enzymes, boost hemial reations. Thanks to the study of its atomi struture,

it has been proved that the ribosome itself is a ribozyme [69℄, on�rming that stru-

tural knowledge is extremely important in order to aess funtions and to enlarge

our omprehension about the ell system.
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Figure 3.1: Hierarhial strutures of RNA.

RNAs an also be involved in gene regulation. For instane, riboswithes are

small sequene of RNA that modify their struture to bind partiular metabolites.

They probably have played an important role in evolution before proteins [70℄ have

been "invented". Finally, in the last years, more and more non-oding

1

RNAs have

been disovered and understood thanks to both omputational and experimental

tools [71℄ [72℄ [73℄ . Funtion for the most part of these nRNAs remains unknown.

Inrease in the number of rystal strutures available together with the development

of omputational struture predition tools promises to �nd a map from sequene to

funtion.

Among n-RNAs some small RNAS, from 20 to 27 nuleotides, have been proved

to play essential roles in eukaryote ells: miroRNAs (miRNAs) and short interfering

RNAs (siRNAs). These small RNAs are involved in a variety of phenomena that

are essential for genome stability, development, and adaptive responses to bioti and

abioti stresses. Note that their mode of ation does not entail a three dimensional

struture but it is mainly based on linear sequene features.

3.1.2 MC-annotate

In order to understand RNA funtions, software for the analysis and the visuali-

sation of known strutures plays an important role. MC-annotate [64℄ is a software

for the analysis of PDB �les. The main aim of this kind of programs is to extrat

1. The distintion between non-oding RNA and funtional RNA is not universally aepted.

Someone refers to the two terms as synonymous, while someone prefers to onsider n-RNAs as a

sub-set of funtional RNAs. The solution for this nomenlature issues goes beyond the aim of this

dissertation, however note that for the rest of the hapter I will refer to funtional RNAs generally

as RNAs.
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information about nuleotides and their interations (given a native or predited rys-

tal struture) and deoding PDB language that is mainly made of 3D oordinates.

Outputs onsist of annotated strutural graphs, meaning representations of nulei

aid strutures in whih nodes orrespond to nuleotides and single nuleotides on-

formation and base-base interations are lassi�ed aording to some nomenlature.

MC-annotate output-�le example is shown in 3.2. The lasses of annotations are:

� Residue onformations

� Base-pairs, ontaining all the seondary and tertiary-struture base-pairs (an-

notated also in the Westhof-Leontis nomenlature)

� Base Triples

� Adjaent relations

� Helies

� Non-Adjaent stakings

� Strands

� Tertiary base-pairs

� Sequenes ontaining mapping between seondary and tertiary-struture and

RNA sequene

3.1.3 RNAview

RNAview [63℄ is a web server able to reognise and lassify, aording to the

Westhof-Leontis lassi�ation, base-pairs given a known rystal struture. The pro-

gram is designed suh that the lassi�ation is made through the aurate geometrial

haraterisation of eah nuleotide and of its position with respet to the other nu-

leotides. Distanes, angles and type of bonds are taken into aount for base-pairing

annotation. Results an easily be managed thanks to graphial and text outputs

ontaining information about both seondary and tertiary-struture.

3.1.4 Assemble2

The last program I will introdue is Assemble2. It is and interative graphial

tool for the analysis of 3D and 2D RNA strutures. Given a PDB input it annotates

seondary and tertiary-struture base-pairs on a 2D interative and modi�able pi-

ture of the RNA. Also in this ase the Westhof-Leontis notation is used. The main

advantage of Assemble2 is that very omplex strutures an be easily manipulated
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Figure 3.2: MC-annotate output �le. In this example only minimal information is

shown to �t spae. However all the lasses of annotations made by the program are

shown.

and visualised. Unfortunately the enumeration of the sites is di�erent from the one

in PDB and so some di�ulties in omparing results arise.

3.1.5 The distanes between nuleotides

A more naive way to analyse RNA strutures is to look at distanes between nu-

leotides. Among all possible de�nition for nuleotide-nuleotide distane, depending

on the atoms that have been onsidered for measuring (quite ommon is the C1'-C1'

distane), we hoose to look at the distane between the losest heavy atoms. This

kind of hoie fore us to intend the ontat between two nuleotides for as proximity

relation, di�erently from the more sophistiate analysis performed by the software I

desribed above, where ontat means a real physial bond existing between bases.

However having a preise de�nition for the distane does not solve the whole

problem: whih is the distane of two sites in ontat? The simple thing to do is

to hoose a ut-o� and de�ne as being ontats those pairs in whih nuleotides are

loser than the ut-o�. However the hoie of whatever threshold is de�nitely not

trivial. Protein struture predition literature [74℄ proposes two solutions (4Å or 8Å)

based on the distribution of distanes between amino aids in many protein families.

We have performed the same analysis on 20 RNAs whose struture is known with a
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Figure 3.3: Frequeny ounts of the distanes between nuleotides in 20 families

whose struture is known. X is the distane between the losest atoms measured in

Angstroms. Inset: zoom on the �rst 20Å.

su�ient (less than 3Å) resolution. As you an see in �gure 3.3 the histogram shows

some peaks inside the range from 2 to 20 Angstroms. Before that, at around 1.6Å, the

very high and sharp peak orresponds to bakbone ontats (|i− j| = 1). Moreover

Fig. 3.4 shows histogram of distanes of those pairs found by RNAView and lassi�ed

aording to Westhof-Leontis lassi�ation. Then, the �rst peak loated from 2.5Å

to 4Å inludes both Watson-Crik base-pairs, whose typial distane is 2.7Å, a few

stakings and non-anonial base-pairs.

Note that all the haraterised interations are found loser than 4Å and thus

they are in agreement with this hoie for ontat de�nition. Moreover, among all

possible pairs of nuleotides in the analysed dataset, the following perentages have

been found:

� 4% of pairs are loser than 4Å

� 10% of pairs are loser than 8Å

� 0.5% of pairs are reognised as non-anonial base-pairs

� 0.5% of pairs are reognised as anonial base-pairs

� 0.1% of pairs are reognised as staking interations
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Figure 3.4: Frequeny ounts of the distanes between nuleotides lassi�ed aording

to RNAview software. X is the distane between the losest atoms measured in

Angstroms.
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g(r)

r/σ

Figure 3.5: Radial distribution funtion for a liquid g(r), where r is the distane

between moleules and σ is the diameter of the diameter of moleules.

So if all the lassi�ed interation are loser than 4Å a question spontaneously

arises: what about the other peaks in Fig. 3.3? Statistial mehanis suggests us an

answer: the radial distribution funtion of a dense gas or liquid [75℄. This density

funtion measures the probability for moleules in a gas, a liquid or a solid or even a

polymer to be at a given distane one from eah others. Intuitively, onsider a ertain

moleule, its volume onstrains the nearest neighbour partiles to stay at least at a

distane equal to its diameter. Fig. 3.5 shows on the left a piture explaining suh a

mehanism and, on the right, an example of the resulting radial distribution funtion.

In this example we onsider the simpler ase of a liquid, however, even if RNA is a

polymer, we would not expet this piture to dramatial hange and we an thus

explain the peaks seen in the distribution of nuleotide-nuleotide distanes with this

well known model.

3.2 RNA omparative sequene analysis

Beside strutural knowledge, a powerful tool used for understanding biomoleules

funtions is the searh of homology and omparative sequene analysis. Homologous

sequenes are de�ned as having a ommon anestor in evolution and are haraterised

by a onserved struture and funtion. The level of nuleotide onservation varies from

RNA to RNA and also from region to region inside the same RNA. Note that the

sequene onservation versus funtional importane does not hold so well in RNA,

sine 2D struture is frequently well onserved and plays an important role even

if nuleotides have high entropies. Di�erenes we observe between homologs have

aumulated sine the speiation due to random mutation of nuleotides. Constraints
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Figure 3.6: Cartoon of a MSA and the underlying onserved struture. The presene

of a ontat in the three dimensional struture of a protein, or an RNA, gives rise to

a orrelation between the involved sites.

linked to funtionality biased the probability for mutation to our, beause organisms

showing mutations that negatively a�et RNA behaviour are less likely to survive

during evolution. Indeed, remember that sequenes of the organisms we observe

today have been seleted under evolutionary pressure.

In order to ompare homologous sequenes it is neessary to juxtapose them suh

that residues desendent from the same anestor stays in the same olumn. Gaps

are inserted to align sequenes whose length is hanged during evolution. The most

ommon way to align sequenes is based on onservation: we want onserved nu-

leotides to be aligned. Often ompensatory mutations an our giving rise to the so

alled oevolution: Fig. 3.6 shows a fake multiple sequene alignment (MSA) and the

artoon of the underlying onserved struture. Consider two nuleotides interating

in the three dimensional struture of the anestral RNA. During evolution, they may

mutate, but only the RNAs in whih the mutated sites are still in ontat will be

funtional. This mehanism has been shown to work for Watson-Crik base-pairs [76℄

and an be used to obtain reliable strutural alignments.

The main soure of MSA for RNAs is Rfam. Being at the 12.0 version [77℄, this

database ontains multiple sequene alignments of RNAs obtained with a software,

alled Infernal [78℄, based on Covariane Models [79℄.
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A C G U

A 2 -1 -1 -1

C -1 2 -1 -1

G -1 -1 2 -1

U -1 -1 -1 2

Table 3.1: Example of substitution matrix.

In the following setions I will review �rst two well known algorithms for the

alignment of two sequenes (they are not RNA-spei�, but are used also for protein

sequene alignment), then I will move to MSA and explain the main features of Hidden

Markov Models (HMMs) and Covariane Models (CMs) and �nally I will sketh

Rfam database funtionalities fousing on the aspet of interest for RNA struture

predition.

3.2.1 Needleman-Wunsh: global alignment

The alignment of two sequenes onsists in reating a nuleotide to nuleotide

mapping between them inserting, if it is the ase, gaps when there is no mathing.

Needleman-Wunsh (introdued here [80℄ and improved here [81℄) was the �rst algo-

rithm to be developed for the alignment between two sequenes. The basi idea of this

algorithm is to build an optimal alignment from optimal alignments of sub-sequenes.

It onsists in two steps: �rst we ompute a La by Lb sore matrix F, where L is the

length of the sequene, and then we trae-bak in the matrix, looking for the optimal

path.

F is de�ned as follows:

Fij = max











F (i− 1, j − 1) + s(xi, yj)

F (i− 1, j)− d

F (i, j − 1)− d

(3.1)

where s is alled substitution matrix and assigns a di�erent sore depending on

the two nuleotides we want to math. d is the ost of a gap. The easiest substitution

matrix we an think of is shown in Table 3.1: it fores the algorithm to look for

the alignment entailing the highest number of mathes. In their work [80℄ authors

used a similar substitution matrix, however a large amount of subsequent works have

introdued more aurate soring systems based on observation of atual rates of

mutation or on hemial di�erenes between nuleotides.
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3.2.2 Smith-Waterman: loal alignment

Needleman-Wunsh algorithm is a global alignment method, meaning it aligns se-

quenes onsidering their full length. For instane, in ase the length of two sequenes

di�ers a lot, this algorithm may fail and spread out nuleotides of the shorter sequene

along the longer one. Therefore if just a subset of the two sequenes mathes, a di�er-

ent algorithm has to be used: loal algorithms. The Smith-Waterman [82℄ algorithm

belongs to this lass and it returns the optimal alignment of any sub-sequenes of the

two sequenes we want to align.

F of the Smith-Waterman loal alignment is de�ned as follows:

Fij = max



















0

F (i− 1, j − 1) + s(xi, yj)

F (i− 1, j)− d

F (i, j − 1)− d

(3.2)

Note that Smith-Waterman algorithm bak-traes from the highest entry in the

F matrix until it hits a zero sore. Moreover, the zero entries in F let us start the

alignment from whatever site and �nd the highest sored sub-alignment.

3.2.3 Pro�le Hidden Markov Models

One of the limitation of the algorithms introdued above, is that they use the same

soring systems disregarding the onsidered position inside the sequenes. It is lear

that mathing the �rst or the last positions is not as important as mathing the ore of

sequenes. Establishing the start and the end point for a ertain gene is de�nitely not

trivial and sequening errors often our. Therefore, position-spei� soring systems

have been introdued. The most powerful among those are pro�le Hidden Markov

Models [83℄. Pro�le HMMs are probabilisti models based on an hidden hain of states

that emit the symbols we observe. The full haraterisation of an HMM implies the

omputation of transition probabilities from state to state based on the statisti of the

observed symbols. Generally speaking a pro�le (introdued here [84℄) is the statistial

desription of MSA based on the frequeny of symbols in eah single if its olumn.

Formally, a HMM is spei�ed by the following two properties:

� the path is Markovian and the hain is represented by transition probabilities

akl between states k and l

akl = P (πi = l|πi−1 = k) (3.3)
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Figure 3.7: Sequenes of proteins belonging to the same family an be aligned using

a Pro�le Hidden Markov Model. From a subset of sequenes already aligned the

parameters of the model are inferred (the transition probabilities, i.e. the probability,

in orrespondene of eah site, of the emission of one partiular amino aid, of the

opening of a gap, of the deletion of a part of the original sequene et.). Then for eah

new sequene the alignment is given by the path maximizing the emission probability

for that partiular string of symbols (piture taken from [83℄)

� in eah state πi the visible symbol xi assumes one of the possible values aording

to the orrespondent emission probability ek(b)

ek(b) = P (xi = b|πi = k) (3.4)

where π is the sequene of the states, πi is the ith state in the path and xi is the

symbol emitted by the ith state. Is it then lear how a Hidden Markov Model an be

used to align a new sequene to the subset already analysed: the parameters of the

model (i.e. the probabilities of passing from a state to another one) are estimated

from the previously aligned sequenes, the residues being seen as the visible outputs

(math state Mj) whereas the possibility either of the opening of a gap in the new

sequene with respet to the others (insertion Ij) or of the removal of a part of the

sequene (deletion Dj) are represented as hidden states (f. Fig. 3.7). In order

to de�ne the probability for a sequene of states to emit a partiular sequene of

symbols, �nally, the emissions of amino aids given the hidden states are assumed to

be onditionally independent from eah other:

P (a1, ..., aN |x1, ..., xN ) =
N
∏

i=1

ei(ai|xi) (3.5)

Eah sequene is not univoally onneted to a path in the HMM as many of

them may generate the same sequene. The last part of the alignment onsists then
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in �nding the path maximizing the probability of obtaining the onsidered sequene

given the transition probabilities of the model.

Even if pro�le HMM have been suessfully used for protein MSA they annot

be adapted to RNA modelling beause they annot take into aount base-pairing.

However from the same family of probabilisti models good substitutes an be found:

Covariane Models

3.2.4 Covariane Models

Covariane models are a generalisation of pro�le HMMs developed for modelling

RNA sequenes. While pro�les HMM are developed on a unidimensional hain, a CM

is built on a tree, alled guide tree, whose nodes losely orresponds to the onsensus

seondary struture of the aligned RNAs. In Fig. 3.9 a shemati representation of a

CM is desribed. Guide trees are made of 4 di�erent types of nodes (f. to panel B

in the piture):

� a unique ROOT node showing the starting point for the struture

� 3 di�erent nodes for mathing: MATP for a mathing pair, MATL and MATR

for a left or right single-stranded residue mathing

� a bifuration node BIF

� two root nodes for the beginning of a new left (BEGL) or right (BEGR) stem

The emission and transition probabilities of CMs are set the same way as HMMs

(see Eq. 3.3 and Eq. 3.4). To build the guide tree and parametrise the model an

annotated alignment and its onsensus seondary struture are needed. The latter

being well-nested, thus not inluding triples of bases or pseudo-knots

2

.

Given a parametrised CM we an use it for homology detetion via the equiv-

alent of the Viterbi and Forward algorithms for HMM: the Coke-Younger-Kasami

(CYK) [85℄ and the Inside algorithm [83℄. In addition to the homology sore, CYK

algorithm determines also the most probable parse tree for a given sequene assign-

ing to eah nuleotide a position within the onsensus seondary struture. Therefore

the alignment of sequenes aording to the model onsists in aligning the sparse

trees and then in onverting mathes between states on the tree in mathes between

nuleotides in the same olumn.

2. A well-nested struture is suh if two pairs i − j and k − l with i < k < j < l do not exist.

When this rule is violated we say the struture presents a pseudo-knot. A pseudo-knot ours when

there are some base-pairs between a loop and positions outside the enlosing stem as in Fig. 3.8
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Figure 3.8: An example of seondary struture with pseudo-knots (piture taken

from [83℄). Cf. with the well nested seondary struture in Fig 3.1

3.2.5 Infernal and Rfam

Infernal [78℄ is the software used to build the MSAs found in Rfam database. It

uses CMs to searh nulei aid sequene databases for homologous RNAs, or to re-

ate new seondary-struture based multiple sequene alignments. Before searhing

for homologous through the CM a �rst BLAST �lter is applied. This step is nees-

sary beause CM are omputationally expensive and they annot be run on the full

database. Reently the new version of Infernal 1.1 [87℄ has overome this di�ulty

using a new �lter pipeline based on aelerated pro�le Hidden Markov Model meth-

ods and HMM-banded CM alignment methods. Results are quite impressive and the

software an searh for homologi 100-time faster than before.

These reent advanes allow the release of a new Rfam 12.0 [77℄ inluding more

families, more aurate and bigger, than the ones released with Rfam 11.0. Unfortu-

nately, given the huge size of some family, the full Stokholm alignment is no more

available for download. Only the seed alignment an be obtained and then users have

to run Infernal by themselves. Note that, as many of the analysis I will treat within

this dissertation were performed before the release of Rfam 12.0, all the results showed

refer to Rfam 11.0 alignment. More reliable MSAs would have improved inferene

results: in the following we will see, in fat, that inferene methods are quite sensible

to the alignment quality.
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Figure 3.9: Sheme of the steps needed to build a MSA with CMs. (A) An input

multiple sequene alignment with annotation about the onsensus seondary struture

is needed. (B) The guide tree is shown. It is based on the onsensus struture. (C)

The transition probability network needed for parametrisation. (D) Parse tree of

sequenes. When the CM is used to align sequenes �rst the sparse trees of eah

sequene are omputed, then they are aligned one to eah other and �nally nuleotides

belonging to the same node are plaed in the same olumn. Note that guide tree is

omputed from the initial alignment, while parse trees are omputed from the model

to align sequenes in the �nal MSA. Thus, even if for this toy model sequenes in

panel A are the same as in panel D, in real-life problems they are supposed to be

di�erent. This piture is extrated from [86℄

34



3.3 RNA seondary and tertiary strutures predi-

tion

During the last few deades a huge e�ort has been done for the development of

tools able to predit RNA seondary and tertiary strutures. Even though experi-

mental methods have improved, the most part of known funtional RNAs remains

struturally unresolved and often also funtionally unresolved. Advanes in struture

predition tools have shown it is possible to build reliable omputationally determined

strutures that an be used within probing experiments [88℄. Several tools have been

developed sine now, many of them have been reviewed here [89℄.

In this setion I will explain the problem of RNA struture predition. Firstly I

will desribe two seondary struture predition models, then I will rapidly redraw

the piture reently emerged from RNA 3D predition ompetition RNA-puzzle round

2 [90℄.

3.3.1 Seondary struture predition

Approahes for RNA seondary struture predition vary widely: the most sophis-

tiated available tools are based on free energy minimization algorithms. They were

originally introdued by Zuker [91℄. Free energy minimisation algorithms are based on

the observation that the best struture would be the one with the lowest equilibrium

free energy ∆G. The major limit of these methods is that they need experimental

knowledge about the magnitude of the atual interation between base-pairs [92℄ and

often these data are not preise enough. Also omparative sequene analysis plays a

role in this �eld [93℄ [94℄.

We know that even if sequenes an hange a lot, the seondary struture is

often well preserved thanks to ompensatory mutations. Sequenes, far away from

eah other in term of evolution, are very di�ult to be orretly aligned: the best

methods for multiple sequene analysis are based on pro�les and the auray of suh

methods dereases with inreasing divergene. Strutural information helps obtaining

better alignments, but good strutural preditions often rely on good alignments.

This senario opens to the development of iterative approahes as the one introdued

here [79℄ and inspired by a generalised version of the Nussinov algorithm [95℄.

Nussinov Nussinov algorithm is a dynami programming algorithm able to e�-

iently predit the optimal seondary struture for a RNA sequene. It is a reursive
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algorithm based on the idea that, given an optimal sub-struture, there are only 4

possible ways to obtain a longer sub-struture:

� adding a left single site

� adding a right single site

� adding a base pair

� linking two optimal substrutures

The predited struture is optimal in the sense that it maximises a ertain sore: in

the original version of the algorithm, taking as input only one sequene, the number

of base-pairs along the struture was maximised. Nevertheless, using information

from a MSA it is possible to ompute a ovariation sore for every pair of sites and

then use it for maximisation. A very well known sore able to estimate ompensatory

mutation events is Mutual Information (MI).

MIij =
∑

Ai,Aj

fij(Ai, Aj) log
fij(Ai, Aj)

fi(Ai)fj(Aj)

Coming from information theory, MI tells us the gain in information we have in

onsidering two sites together instead of separately. In Eq. 3.3.1 MI de�nition is

shown, where fi and fij are the single site frequeny ounts and the pair frequeny

ounts omputed from MSA (f. Eq. 1.2). In the generalised Nussinov MI is used.

Thus the optimal sore of the subMSA of olumns from i to j, Sij , is de�ned as

follows:

Sij = max



















Si+1,j

Si,j−1

Si+1,j−1 +MIij

maxi<k<j Si,k + Sk+1,j

(3.6)

As other dynami programming, one matrix Sij is omputed, Nussinov algorithm

makes use of a trae-bak proedure to look for the optimal path giving rise to the

best seondary struture for the onsidered sequene.

RNAalifold RNAalifold is a software for the predition of the seondary struture

of RNA ombining free energy minimisation and ovariation analysis. It inludes a o-

variation term in the folding energy suh that ompensatory mutations are taken into

aount for the evaluation of the energy of any sub-struture. Note that also free en-

ergy minimisation based models follow the same reursive proedure of the Nussinov
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algorithm: they build a longer optimal sub-sequene given the optimal sub-sequene

available. In a latest version of the algorithm [96℄ the ovariation sore is omputed

thanks to a modi�ed version of the statistially de�ned substitution matries alled

RIBOSUM, introdued here [97℄ in order to improve the homologous researh. RI-

BOSUM matries give the log-odds ratio for observing a given substitution relative

to bakground nuleotide frequenies and are de�ned for both single nuleotides and

base-pairs.

3.3.2 Tertiary struture predition

Prediting seondary-struture of RNAs is a ruial issue in the �eld and many

solutions already exist. Even though, the knowledge of the seondary struture give

us a blueprint of the RNA moleule, it is often not enough for a fully funtional har-

aterisation. Several methods for tertiary struture predition have been developed.

However high quality results are till now restrited to small sequenes onsisting

of simple helies and small loops. When more omplex strutures are onerned,

the reliability of the struture depends on experimental information available about

interations between nuleotides in the moleule. To probe the state of the art a

CASP(Critial Assessment of protein Struture Predition)-like experiment has been

performed [98℄ in 2012 and [90℄ in 2015. This kind of world-wide experiments, known

as RNA-puzzles, let groups developing software and pipelines for 3D RNA preditions

ompete on hidden known strutures. The sequene of the target struture is given

to eah group, plus some additional experimental information about, and the aim is

to predit a tertiary struture as lose as possible to the hidden rystal struture.

Last RNA-puzzle ompetition has involved seven researh groups. Three target

strutures have been proposed and the best results are haraterised by root-mean-

square deviations (RMSD) of atomi positions range between 6.8 and 11.7 Å

3

and

all display predited strutures topologially akin to native ones. If we ompare this

results to what is nowadays reahable in the related �eld of proteins, it seems to be

quite modest. However, given the size of the target sequenes (>160 nuleotides),

3. Results on three di�erent RNAs have been reported.

� The lariat-apping ribozyme: 24 strutures submitted, average RMSD 24.05, standard devi-

ation 4.91

� The adenosylobalamin riboswith: 34 strutures submitted, average RMSD 23.09, standard

deviation 6.87

� The T-box�tRNA omplex: 26 strutures submitted, average RMSD 11.52, standard devia-

tion 2.87
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results show a positive trend for RNA struture preditions. The best strutures

predited within this olletive experiment have been obtained by Das group, who

provides also to eah group tertiary ontat information obtained with a mutate-

and-map strategy based on systemati mutagenesis experiments and high-throughput

hemial mapping [99℄.

Rosetta Rosetta is a de novo

4

approah for 3D struture predition developed by

Das and Baker [100℄. It was initially introdued in the related �eld of proteins [101℄

and then generalised to di�erent maromoleules. Rosetta onsists in a fragment as-

sembly of RNA (FARNA) guided by a knowledge-based energy funtion taking into

aount experimental knowledge on bakbone onformation and side-hain intera-

tions. The fragment library inludes fragments made of 3 nuleotides extrated from

the large rRNA subunit. One interesting fragments are seleted, a Monte Carlo

routine is run to assemble them into a native-like folded struture. The main feature

of Rosetta is that it lets us inlude strutural knowledge suh as seondary struture

or even tertiary interations. Moreover it has been proved that suh information an

dramatially inrease the quality of the predition [102℄.

3.4 A new approah to predition: DCA

Having in mind the state of the art for RNA struture predition, the applia-

tion of DCA to suh a problem seems to be straightforward. An urgent need for

supplementary information in order to orret 3D folding emerges from RNA-puzzle

and opens new senarios: till now MI has not been able to substantially help 3D

predition and only experimental information have done the job. Can new and more

sophistiated approahes to statistial inferene of interations from MSA fae this

hallenge? This is the question my thesis will try to answer and roughly speaking the

answer is: "Yes, they an, results are promising but till now modest". I will show in

the following that, di�erently from protein, the DCA signal obtained from RNA MSA

shows a multi-sale omplexity opening to possible post-proessing improvement pro-

edures. The development of these proedures is not mature yet and needs more

theoretial e�orts for a better interpretation of the signal. I am anyway on�dent

4. de novo is to be intended in the sense that any information other than the sequene is needed

for folding. However in the spei� ase of RNA information about seondary struture or tertiary

interation an be introdued in the routine and turns out to be ruial to obtain good quality

preditions.
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that the results I will show in the next part of this hapter will be an interesting

starting point for further researhes.

In this setion I will desribe the full predition pipeline: from pre-proessing

of input alignments and struture for omparison to post-proessing of the output

signal. The latter orresponding to an unpublished e�ort to better understand DCA

signal and its omplexity with respet to strutural knowledge.

3.4.1 The omparison with the alignment

The main interest in struture predition is homology modelling: �nding a ho-

mologous sequene with struture, and modelling an unknown sequene using that

struture as a template. This is not very suessful in RNA due to the low number of

families with exemplary strutures. Therefore omputational approah for struture

predition are needed. A key point in order to test methods for the predition of

three dimensional struture of RNAs is the omparison with known native strutures.

When the predition is performed for biologial interests, the input of the proess

is the target sequene, as in the RNA-puzzle ompetitions. Then, depending on the

type of analysis one would perform, other soures of information an be used. Within

omparative sequene analysis the �rst step is to searh for homologous sequenes,

then sequenes are aligned and, only when a reasonable MSA is available, the pre-

dition an be performed. The problem I'm faing within this dissertation is slightly

di�erent: I want to develop and test the performane of a new tool. At date DCA

annot be used for homology detetion nor multiple sequene alignment, so the very

input of my work are MSAs obtained with the methods I've desribed in the previous

setions.

As we saw above, alignments and strutures ome from di�erent databases. Rfam

gives, for eah family, the PDB id of some available strutures, however the latter ones

may not be of the same length of the sequenes in the alignments. They usually don't

over the full length of the alignment or, otherwise, they inlude some engineering

needed for the realisation of the rystal struture. Moreover some PDBs inlude

proteins in omplex with the RNA or multiple hains. Therefore, to avoid all these

issues, we analyse available PDB �les for the onsidered family, we take the sequene

of the hosen struture and then we ompare this sequene and the alignment in order

to obtain a map between them.

The most e�ient way to �nd a map between the alignment and the struture

is to align them. Usually Rfam tells us the name of the speies whom the rystal

struture in PDB belongs to, thus it is in priniple possible to �nd the orresponding
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sequene and to align it to the PDB �le's one. Unfortunately this proedure needs a

diret human ontribution in reading the names, interpreting them et. In order to

automatise the proedure we align the PDB sequene to every sequene in the MSA

and keep the sequene whose alignment has the best sore. This one is the sequene

with the larger number of mathes with the PDB struture sequene.

The sore depends on the algorithm used for the pairwise alignment. We tested

2 algorithms: a global (Needleman-Wunsh) and a loal (Smith-Waterman) pairwise

alignment method. The advantage of a loal algorithm instead of a global one depends

on the di�erenes between the sequenes to be aligned: if the two sequenes are very

di�erent in size, the loal alignment gives better results. Sine many observations

on our dataset have shown that the loal alignment algorithm produes alignments

with the smallest number of gaps in the shortest sequene, we have inluded in our

pipeline the Smith-Waterman algorithm.

3.4.2 PDB - RFAM gold standard

We performed our analysis on the release 11.0 of Rfam. All the 51 available

families with more than 200 sequenes and annotated orresponding strutures in

PDB have been studied. From the analysis of the strutures we have found that only

40 of them were high quality X-ray strutures with a resolution smaller than 4Å, thus

we disarded the others in order to inrease the reliability of our results in term of

omparison with the native struture. Tab. 3.2 shows the full list of those families,

�tting our minimal quality requirements (> 200 sequenes and < 4Å resolution), for

whih a good mapping between PDB and Rfam is possible.

We have enountered some tehnial issues regarding input �les: some PDB or

FASTA �les were too big for launhing analysis on desktop mahines or some Stok-

holm �les were broken. Moreover some families has a very simple struture, made of

a single hairpin loop, with no interesting tertiary ontats. Dimers have also been

exluded from the �nal list. Further analyses have revealed that some of these fami-

lies, even if they seemed showing a good mathing between alignment and struture,

atually mismath if we onsider the onsensus seondary struture. This very spe-

ial issue an be a sign of bad alignment probably due to the presene of sub-families

of sequenes. The magnitude of this kind of errors an vary a lot depending on the

number of sites involved and also on their position in the native struture. Sometimes

we observe the onsensus seondary struture to be predited on sites that are not

lose in the native struture. Although smaller displaements an also our within

sites being atually lose and thus it is impossible to see a priori these errors from the
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Family Meff PDB ID Chain(, Residues) omment

RF00002 1k8a A broken gz �le (RFAM)

RF00005 2sx C broken gz �le (RFAM)

RF00001 57991.33 32 9 inluded in the Gold Standard

RF00028 7922.93 1hr2 A probably bad quality alignment

RF00029 3339.51 1kxk A hairpin loop

RF00163 3009.92 2oeu A inluded in the Gold Standard

RF01118 498.83 2j01 A, 2166-2273 hairpin loop

RF00017 8145.33 1l9a B inluded in the Gold Standard

RF00059 3347.9 2gdi X inluded in the Gold Standard

RF00015 3728.6 2ozb C hairpin loop

RF00061 61.92 3t4b A hairpin loop

RF00177 2vqe A, 1-1519 too big (PDB)

RF01959 1vs5 A, 28-1537 too big (PDB)

RF00504 1828.54 3owi A inluded in the Gold Standard

RF00010 2309.67 1u9s A inluded in the Gold Standard

RF00023 2143.3 4abr Y, 42-89 inluded in the Gold Standard

RF00169 1318.68 2xxa F hairpin loop

RF00162 1165.56 2gis A inluded in the Gold Standard

RF00050 1045.85 3f2q X inluded in the Gold Standard

RF00175 13.64 1nl A hairpin loop

RF00037 224.59 3snp C hairpin loop

RF02001 636.43 3bwp A inluded in the Gold Standard

RF00167 588.88 1y26 X inluded in the Gold Standard

RF00168 552.38 3dil A inluded in the Gold Standard

RF01051 983.21 3irw R inluded in the Gold Standard

RF01852 340.63 3rg5 A probably bad quality alignment

RF01998 459.8 4ds6 A probably bad quality alignment

RF00380 206.7 2qbz X inluded in the Gold Standard

RF00011 215.14 2a64 A probably bad quality alignment

RF01734 532.03 3vrs A inluded in the Gold Standard

RF00522 106.59 3k1v A inluded in the Gold Standard

RF00234 259.49 2gs B inluded in the Gold Standard

RF00524 107.66 3u5d 1, 2174-2229 hairpin loop

RF00618 288.94 3siv C dimer

RF00164 28.35 1xjr A hairpin loop

RF01831 192.15 3suh X probably bad quality alignment

RF00094 4.77 1sj3 R inluded in the Gold Standard

RF01960 111.82 4a18 1,334-389 too big (FASTA)

RF01857 154.61 1lng B inluded in the Gold Standard

RF01786 108.33 3q3z A inluded in the Gold Standard

Table 3.2: Table showing the list of families for whih a good math between Rfam

and PDB is found. The upper part of the table ontains families with more than 1000

sequenes in the alignment, while the bottom part those families with less than 1000

sequenes.

41



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
re

q
u
e
n
c
y

Gap frequency per column

Figure 3.10: Frequeny ounts of the fration of gaps in eah olumn of the alignment.

Data ontain olumns from the Gold Standard alignments.

omparison between the native struture and the onsensus seondary struture in

the alignment. An a posteriori analysis on preditions is indeed needed to understand

if false positives an depend on bad alignment of sequenes or not. In the next se-

tions I will refer to those families seleted aording to what said above as the Gold

Standard. It inludes 20 families and all the analysis showed within this hapter has

been performed on this restrited list of families.

3.4.3 Pre-proessing of the alignment

As we saw above, Rfam alignments are made with Infernal software and, di�erently

from the equivalent software for proteins (Hmmer), it does not give us information

about the origin of gapped region. However, if we analyse the number of gaps per

olumn, we obtain the histogram in �gure 3.10.

This means that the 90% of the olumns is either a site with almost no gaps

or it has almost only gaps. Thus we an argue that those sites with a lot of gaps

are insertion sites and ould be removed from the alignment losing no fundamental

information for struture predition. The hoie of a preise threshold is arbitrary:

we hoose to �x the threshold to 50% of gaps, taking are that no seondary struture

sites have been lost.

3.4.4 Removing phylogeneti bias

From MSAs we an ompute the frequeny per site of eah nuleotide. However,

MSA sequenes set up a biased sample of all possible sequenes sine the speies are
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evolutionarily related. In order to redue this bias we luster sequenes aording to

similarity and we assign them a weight equal to one over the number of sequenes

in the luster. We an adjust this re-weighting hoosing the perentage of similarity

needed to insert two sequenes in the same luster, e.g. if we �x the similarity to

100% we will assign a weight 1/l to l idential sequenes. The value of the similarity

we use for the analysis is 90% and it has been empirially hosen. Note that results

are quite robust with respet to the re-weighing threshold.

3.4.5 Diret Coupling Analysis: a brief reall

Mutual Information an measure orrelation between two nuleotides, but it an-

not distinguish orrelations oming from a diret oupling and orrelation oming

from indiret relations. For instane, two sites in the sequene ould be orrelated if

there exists, for both of them, a oupling with a third site. This indiret orrelation

annot be distinguished from the diret ones by Mutual Information. In order to

disentangle the two e�ets we need to fous on ouplings instead of orrelations: this

is the aim of Diret Coupling Analysis.

We onsider the sequenes in the MSA as sampled from a global statistial model

P (A1, ..., AL), where eah Ai represents the nuleotide at site i and L is the length of

the sequene. We want this model to reprodue the empirial ounts fi and fij:

∑

{Ak|k 6=i}

P (A1, ..., AL) = fi(Ai) ;
∑

{Ak|k 6=i,j}

P (A1, ..., AL) = fij(Ai, Aj)

(3.7)

Eq. 3.7 guarantees oherene of data and model up to the level of pair orrela-

tions. Finally, as we have seen in the �st hapter, we apply the maximum entropy

priniple and we obtain a q-states Potts model, being eij(Ai, Aj) the oupling be-

tween nuleotide Ai in site i with nuleotide Aj in site j and hi(Ai) the �eld due to

the presene of nuleotide Ai in site i.

P (A1, ..., AL) =
1

Z
exp

{

∑

i<j

eij(Ai, Aj) +
∑

i

hi(Ai)

}

(3.8)

In mean-�eld approximation an immediate relation between the ouplings e and

the onneted orrelation matrix C an be found:

eij(Ai, Aj) = −((Cemp)−1)ij(Ai, Aj) (3.9)

43



C
emp

is the empirial onneted orrelation matrix and it is de�ned as follows:

Cemp
ij (Ai, Aj) = f

′

ij(Ai, Aj)− f
′

i (Ai)f
′

j(Aj) (3.10)

for i 6= j, while Cemp
ii is a diagonal matrix with Cemp

ii (Ai, Ai) = f
′

i (Ai).

Having in mind that real data are not i.i.d. and ome from a �nite (usually small)

size sample, we need a regularisation sheme to orret �nite-sampling e�ets (we will

extensively analyse the role of regularisation in the next hapter). The regularisation

hosen here is a pseudoount regularisation.

{

f
′

i (Ai) = (1− θ)fi(Ai) +
θ
q

f
′

ij(Ai, Aj) = (1− θ)fij(Ai, Aj) +
θ
q2

(3.11)

Equation 3.11 shows the use of pseudoounts as a orretion over the single site

frequeny ounts and the pair frequeny ounts. Parameter θ allows us to set the

strength of the orretion. Aording to what we will see in the next hapter, we

hoose θ = 0.5.

3.4.6 The sores

Diret Coupling Analysis gives us the oupling matrix e, but in order to �nd base-

pairs with the highest oupling we de�ne a salar sore for eah pair: we ompress

information that in priniple an be useful in order to lassify ontats. We use the

Frobenius Norm (Eq. 3.12) of the matrix eij(Ai, Aj) with i and j �xed.

Fij =

√

∑

Ai

∑

Aj

|eij(Ai, Aj)|2 (3.12)

F apc
ij = Fij −APCij = Fij −

〈Fij〉i 〈Fij〉j
〈Fij〉ij

(3.13)

Interesting improvements an be obtained orreting Fij with the so alled average

produt orretion (Eq. 3.13). APC [103℄ estimates the bakground oupling between

two sites due to random and phylogeneti reasons and thus an be removed from the

sore so to obtain a more lear signal oming from oevolving pairs.

One we have a salar sore for eah pair of sites, the simplest thing to do is to

sort them: the higher is the sore the more reliable is the predition. Atually, the

reliability of the predition is not fully understood. TP (n) tells us the fration of

true ontats we �nd if we onsider the n pairs with the highest sore and it is an

useful tool in order to ompare the preditive power of di�erent sores. However,
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how do we atually ompute the best value of n suh that our predition is still

reliable? Meaning, how an we estimate till whih value of TP (n) our model is still

preditive and not random? Trying to answer these questions we studied the p-value

of true positive rates. The p-value shows the enrihment of true positives onsidering

a ertain number X of preditions and is omputed using a binomial null model:

� We onsider the list of all possible pairs of sites ranked aording to a given

sore

� For eah position X in the rank we ompute T(X,Y) being the number of TP

(True Positives) within a window inluding the next Y preditions, where Y

equals 10% of all elements of the onsidered list. The size of the window Y is

a ompromise between loal resolution (small Y) and reliability of the p-value

(large Y).

� The binomial null model uses a random TP rate, determined from the remaining

(from X+1 to the end) list of pairs, taking into aount that the native ontat

we have found within the �rst X preditions annot be found again.

� The p-value is determined as the probability that this null model ahieves at

least T(X,Y) ontats within a random i.i.d. sample of size Y.

The aim of this kind of analysis is to on�rm that, even if sores of seondary-

struture base-pairs have a muh stronger ovariation signal than tertiary base-pairs,

DCA sore ontains information about non-anonial base-pairing that MI does not.

3.5 Artile: Diret-Coupling Analysis of nuleotide

oevolution failitates RNA seondary and ter-

tiary struture predition

Results about DCA seondary and tertiary-struture predition are shown it the

following paper. Sine for this work we also run some 3D preditions with Rosetta the

list of RNA on whih we test our tool is shorter than the Gold Standard introdued

above. Rosetta segment assembly software needs a big omputational e�ort and thus

the length of the sequene to be folded has to be smaller than 100 nuleotides. We

thus redued our target set to 6 Riboswithes.
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3.6 Open problems and future improvements

One of the points made in the paper above is that two di�erent sales exist within

the DCA sore: there is a stronger part, probably due to Watson-Crik oevolution,

and a weaker one due to non-anonial base-paring. It as been argue that non-

anonial base-pairs show muh less orrelation [104℄. We have shown that this piture

hanges when DCA is used instead of a measure for orrelation as MI. Anyway it seems

reasonable, and TP rates in Fig 4 in the paper on�rm, that the oevolution signal

from tertiary base-pairs is weaker and disentangling it from noise is absolutely non

trivial. In the following I will propose two strategies to inrease the signal-to-noise

ratio based on a deeper analysis of the sore.

3.6.1 Filtering matries

When we use a salar sore, we are fored to waste a large part of the information

ontained in the oupling matrix e. For instane, onsider (i,j) being a Watson-Crik

base pair in the seondary struture. We know that the substitution of a C with a

A in site i has to be probably followed by a substitution of a G with a U in site j.

Using this information we an in priniple lean up the seondary-struture signal

from noise: we an de�ne a weight matrix based on the knowledge of base-pairs that

are possible as in the table 3.3.

Finally, we weight eah element eij(Ai, Aj) with the orresponding value of the

pair of nuleotides Ai and Aj as in 3.14:

Sij =
∑

Ai

∑

Aj

eij(Ai, Aj)w(Ai, Aj) (3.14)

This weighted sore is a good alternative to the simple Fapc. However it solves

the easiest part of the problem: �lter out non-anonial interations. One an argue

that a similar approah an also be used the other way round, that is to �lter out

seondary-struture signal. However results ontradit this hypothesis on�rming the

omplexity of the problem or revealing some intrinsi limitation of the mean-�eld.

This partiular topi will be treated more in details in Chapter 4.

3.6.2 Loal oherene matrix

Even if protein DCA strongly improves the auray of residue-ontat predi-

tions, we have seen in the previous setions that, when RNAs samples are used,

omparing the number of true positive preditions within the n highest DCA sores
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A C G U

A 0 0 0 1

C 0 0 1 0

G 0 1 0 1

U 1 0 1 0

Table 3.3: Matrix w(Ai, Aj) values based on the possible Watson-Crik base-pairs

plus the wobble pair

with the number of true positives within the �rst n mutual informations, only a weak

improvement is ahieved (Fig. 4 in the paper). Atually, if we remove from the rank-

ing all seondary-struture base-pairs, results are quite di�erent. Fous for instane

on a true positive rate equal to 0.6 (i.e. we admit 40% of predition errors): MI with

average produt orretion predits on average around 3 true ontat if the inter-

nuleotide distanes is up to 4Å or 4 up to 8Å , while DCA predits 5 up to 4Å or

10 up to 8Å . Thus, DCA an inrease signi�antly the number of orret preditions

within the tertiary struture, in partiular when a less stringent threshold for ontat

de�nition is hosen.

The lear prevalene of seondary-struture base-pairs among the top preditions

shows that tertiary-struture ontats have a weaker oupling sale than seondary-

struture ontats. This weak oupling an be partially hidden by the noise generated

due to insu�ient sampling and the strong seondary-struture ouplings. Moreover

usually �rst false positives appear quite lose to native ontats. Therefore we om-

pute for eah pairs of nuleotides a loal oherene sore as the average of the sore

of the onsidered pair with the sores of the 8 nearest neighbours in the ontat map.

Being Fapc the oevolution sore, we de�ne the loal oherene sore C as:

Cij =
∑

l∈i,i±1

∑

k∈j,j±1

F apc
kl (3.15)

i.e., for eah pair (i, j), we inlude also (i, j ± 1), (i± 1, j) and (i± 1, j ± 1) into

the average. As an immediate onsequene, bakground noise is almost homogeneous,

while around existing ontats, some ompat lusters of pairs with higher sore arise.

In Fig. 3.11 we show results of the averaged proedure for the 6 Riboswithes analysed

in the paper.

In priniple it would be possible to reinfore loal oherene by an averaging

proedure over larger neighbourhoods of eah pair (i,j), however we observed that the

proposed environment is a good ompromise between the noise redution due to loal

signal oherene, and the loss of spei�ity of the sores due to averaging.
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Figure 3.11: Contat maps: Yellow sale shows both the DCA (Fapc) and its loal

oherene ranking. In the bottom-right triangle of eah map DCA sore is shown. In

the top-left triangle instead we show loal oherene sore. Red and blue dots indiate

true ontats and seondary-struture base-pairs. The same set of six Riboswithes

analysed in the paper is shown.

49



3.6.3 Clustering proedure

Given the loal oherene sores, we need to de�ne a proedure to separate po-

tential oevolutionary signal from bakground noise. Average sores are divided into

four lasses using a simple K-means lustering, f. insets in Fig. 3.12. Empirially we

�nd that the two lasses of highest sores orrespond to residue pairs inside or lose to

the seondary struture. The fourth lass of lowest sores ontains bakground noise,

it will be disarded from further analysis. Potential tertiary-struture ontats are

mainly restrited to the third lass, more preisely to lusters of third-lass position

pairs whih are isolated from the seondary struture.

Sine we know the seondary struture a priori, we an selet, among pairs be-

longing to the third lass, tertiary struture preditions. Indeed, being the seondary-

struture signal so strong, one an expet the averaged proedure produing high

sore pairs nearby all predited Watson-Crik base-pairs. We observe this e�et be-

ing propagated till the seond nearest neighbour of eah base-pair. Thus, being (i, j)

a seondary-struture base-pair, we remove from the ranking pair itself and all pos-

sible pair ombination among sites (i, j, i ± 1, j ± 1, i ± 2, j ± 2). The e�ets of this

removal are shown in Fig. 3.13. Finally, we rank the remaining pairs using the origi-

nal sore Fap (i.e. the average sore is used to disard loally inoherent preditions,

the original sore for the �nal ranking of maintained position pairs).

With the above desribed proedure we produe a lustered DCA sore ready to

be used in strutural preditions and extrating the best part of information from the

original DCA: the loal oherene method produes a signal that is loally homoge-

neous and lustering �lters out noise.

Unfortunately, even if the omparison between the two sores in Fig 3.11 suggests

that a post-proessing of the signal is possible, �nal results obtained with Rosetta

were generally inonlusive and very similar to simple DCA ones: some of the fam-

ilies bene�ts of the post-proessing, some others not. The absene of a systemati

improvement entails the impossibility of an automati pipeline inluding the loal

oherene analysis. For instane the hoie of the number of lasses, de�ned within

the K-means lustering, seems to be suboptimal for RF00162 and RF01734 (f. Fig.

3.12) or even the de�nition of the loal oherene sore an be probably improved

inluding more neighbours in the average or weighted in a smooth way. However

in the �eld of RNA struture predition a human intervention and optimisation of

tehniques is still ommon and annot be a priori disarded.
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Figure 3.12: K-means lustering results. Pair of sites belonging to di�erent sore

lasses are shown with di�erent olours in the maps. Darker olours (blak and

green) orrespond to seondary struture and its neighbours plus, in some ases,

some tertiary ontats. The most part of tertiary true preditions belong to the

yellow lass. The fourth lass represents bakground. Insets: K-means lustering

lassi�ation is shown with respet to the sore frequeny ounts.
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Figure 3.13: Contat maps: Yellow sale shows DCA sores for eah pair of sites

inluded in the lustering seletion (both true and false positives) after removing the

�rst and the seond nearest neighbours of seondary struture base-pairs. The �rst

n pairs with the highest sore have been inluded in the struture predition. In the

bottom-right triangle true positive preditions are shown with losed red squares while

all the other ontats in the rystal struture with open red squares, the onsensus

seondary struture is shown with blue squares. In the top-left triangle lusters

ontaining true positives are shown.
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3.7 Conlusions

Within this hapter we have faed the problem of funtional RNA struture pre-

dition. Given its intrinsi �exibility, the experimental determination of reliable RNA

strutures is still hallenging and omputational approahes have been developed to

solve the problem. However the quality of 3D preditions still depends on the ex-

perimental knowledge of tertiary interations. Outperforming MI and its adjusted

version MIap, DCA is proposed as a novel method for omparative sequene anal-

ysis. It has been proved that ombined to standard and very well known tools as

Nussinov algorithms and Rosetta, DCA systematially improves preditions on a 6-

RNA benhmark. Results shown in this hapter open to further appliation of DCA

to a diverse range of software already inluding ovariational soring systems or not.
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Chapter 4

Limits of mean-�eld inferene and the

role of regularisation

In the previous hapter we have seen how mean-�eld (MF) inferene an be su-

essfully applied to RNA ovariational sequene analysis. Moreover results on RNAs

poorly represent the real potential of DCA, whose performanes are onsiderably bet-

ter on proteins [3℄ [31℄. However, these results still depend on the use of a partiular

type of regularisation sheme, alled pseudoounts, needed to ensure that the inverse

problem is always well de�ned. As we have seen in the previous hapter, the empirial

ovariane matrix Cemp
ij in Eq. 3.10 is de�ned on the transformed ounts f

′

i and f
′

ij :

{

f
′

i (Ai) = (1− θ)fi(Ai) +
θ
q

f
′

ij(Ai, Aj) = (1− θ)fij(Ai, Aj) +
θ
q2

(4.1)

being θ the strength of the pseudoount regularisation and q the number of olours

on the Potts model. From a Bayesian point of view the optimal value for θ should

depend on the level of noise in the sample (i.e. θ ∼ 1
B

for a sample of size B)

and should vanish for perfet a sampling. However several empirial studies [26℄ [3℄

[105℄ [106℄ have shown that it is not the ase for MF inferene. As large (θ ≫ 1
B
)

pseudoounts are in this ase used, no dependene of θ on the sample size is observed.

In the following paper we have analytially studied MF inferene performane on

diverse systems in the perfet sampling ase. We observe that large regularisation

terms help orreting the bias introdued by MF approximation: MF approximation

over-estimates large ouplings, while with a strong regularisation we under-estimate

them. The result is that for medium-range values of ouplings the quality of the

inferene is dramatially improved with θ ≫ 1
B
ompared to θ ∼ 1

B
. We show that

both large pseudoounts and L2-norm regularisations yield ouplings whih orrelate

better with the true ones.
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Moreover we have laimed that the strength of the regularisation depends on the

number of olours in the model and even substantial di�erenes exist between the

Ising and the Potts ase: thanks to some toy-models made of 2 spins, we have shown

that on Potts models the inferene is poorer than on the Ising model ase beause

terms in the oupling matrix Jij are di�erently biased by the MF approximation.

In partiular we have observed that the hardness of the inferene depends on how

ouplings matries within the Potts model are de�ned. Note that one we have

deided that an interation exists among site i and size j of the graph we need to

speify the form of matrix Jij. The size of this matrix is q × q and thus for eah

interating pair q2 parameters have to be drawn from a ertain distribution. We have

distinguished two variants:

� Homogeneous variant: For eah interating pair (i, j), we randomly draw a

number, J0, and we de�ne Jij as follows:

Jij =













JA JB JB . . . JB

JB JA JB . . . JB

JB JB JA . . . JB

. . . . . . . . . . . . JB

JB JB JB JB JA













with JA =
q − 1

q
J0 , JB = −

J0

q
. (4.2)

This model is suh that the q Potts olours have equal frequenies fi(a) =
1
q
.

� Heterogeneous variants: The simpler extension of this model to non-equal fre-

quenies an be easily obtained by adding some loal �elds hi(a) on eah site

and for eah olour. Fields introdue a bias on some partiular olour on eah

site and entail a heterogeneous distribution for frequenies. In the following we

will all this model heterogenous-A model. Moreover, one an indue an even

more heterogeneous distribution for frequenies with the addition of randomly

hosen elements in Jij . This is the most general ase of a random haraterisa-

tion of a Potts model, sine no onstraints exist among parameters. We refer

to this model as the heterogeneous-B model.

We have notied that signi�ant di�erenes exist between these two lasses of

models: we have analytially omputed the relation between true ouplings and MF

inferred ouplings for a toy-model ontaining only 2 spins. However analytial results

have been numerially on�rmed on larger systems of size N = 50 and results on

both q = 5 and q = 21 will be shown below. Parameters are drawn from a uniform

distribution between −L and L. These results (Figs. 4.1 4.2 and 4.3) are obtained in
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Figure 4.1: Satter plot of the ouplings Jij(a, b) for the homogenous Potts model

for q = 5 (�lled irles) and for q = 21 (triangles) olours; perfet sampling. (a) No

pseudoount. (b) With pseudoount (in the �gure θ orrespond to the pseudoount

strength alled θ in the text). Eah panel shows results from three realizations with

di�erent sets of ouplings (L = 10). Blak solid lines orrespond to the analytial

preditions made with the 2-spin toy model. Colours show values of fi(a)fj(a) (alled
in the �gure pai and paj ), here equal to q−2

for all interating sites and for all symbols,

see right sale.

the perfet sampling regime (B = ∞) on a system with nearest-neighbour interations

on a 1D lattie. The exat solution for frequenies and orrelations is obtained

through a transfer matrix alulation.

Fig. 4.1 shows the relation found between true and inferred ouplings for the

homogeneous model. Note that, di�erently from what is found in the Ising ase,

the two urves exist as two di�erent values of ouplings (JA and JB) are found in

the oupling matrix 4.2. The quality of the inferene is extremely improved with

pseudoount as ouplings in the range from nearly zero to �ve are well estimated.

However some signi�ant mistakes are made: the pik in zero found in panel B of

Fig. 4.1 is due to the fat that pseudoount regularisation entails a resaling of olour

frequenies induing some fake interation among ouples that are not in ontat in

the real model. The points found under the right side of urves are a ompensation

of this e�et.

When the heterogeneous variant is onsidered (Figs. 4.2 and 4.3) analytial om-

puted urves are no more distinguishable, even if in Fig. 4.2 the overall trend is still

visible. This is no more true for Fig. 4.3. The point is that a urve of the type seen

in 4.1 exists for any di�erent entry of matrix Jij and follows a slightly di�erent path.
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Figure 4.2: Satter plot of the ouplings Jij(a, b) for the heterogenous-A Potts model

for q = 5 symbols, with perfet sampling. (a) No pseudoount. (b)With pseudoount

(θ = 0.4). Eah panel shows results from �ve realizations with di�erent sets of

ouplings and �elds (L = 2). Insets: distributions of the frequenies fi(a). Blak

solid lines orrespond to the analytial preditions made with the 2-spin toy model.

Colors show values of fi(a)fj(a) (alled in the �gure pai and paj ), see right sale.
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Figure 4.3: Satter plot of the ouplings Jij(a, b) for the heterogenous-B Potts model

for q = 5 symbols, with perfet sampling. (a) No pseudoount. (b)With pseudoount

(θ = 0.4). Eah panel shows results from �ve realizations with di�erent sets of

ouplings and �elds (L = 2). Insets: distributions of the frequenies fi(a). Blak

solid lines orrespond to the analytial preditions made with the 2-spin toy model.

Colors show values of fi(a)fj(a) (alled in the �gure pai and paj ), see right sale.
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Figure 4.4: Heterogenous-B Potts model for q = 5 symbols, for various depths of

sampling. (a) Small pseudoount θ = θB = 1
B
. (b) Large (optimal) pseudoount

θ = θMF = 0.4. Eah panel shows results from one realization of the Potts model

with random ouplings and �elds (L = 2), and three sets of B sampled on�gurations

(for �nite B).

Consider now the ase of �nite sampling. We know that in priniple the main role

of regularisation is to orret from �nite-sampling e�ets. This is true, and on�rmed

by our analysis, when the regularisation is tuned aording to bayesian onsiderations:

panel A of Fig. 4.4 shows how �nite samples entail diverging inferred ouplings: the

smaller the sample is, the larger �nite-sampling errors are. In this ase we use a

small pseudoount, θ = 1/B, in order to orret these e�ets, and therefore a ertain

dependene on the sample size is visible. Conversely, when large pseudoounts are

used, no dependene on the sample an be observed (f. with panel B in Fig 4.4).

Finally note that in Fig. 4.4 a Potts model on an Erdos-Reniy random graph is

shown. No signi�ant di�erenes with the heterogeneous B model shown above exist.

As a �nal, but signi�ant, remark let us observe in Fig. 4.5 the behaviour of

the Frobenius norm omputed with the ouplings shown in Fig. 4.4. Even if the

inferene of the oupling values seemed to be onfused, the inferene of the interation

network is de�nitely ensured by the use of large pseudoounts. Probably the suess of

methods suh as DCA mainly depends on the surprising synergy among pseudoounts,

MF and Frobenius norm.
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Figure 4.5: Satter plot of the Frobenius norms of the inferred ouplings vs. their true

values for the pseudoount strengths θ = 1
B
(a) and θ = 0.4 (b). Same heterogeneous-

B model and same onditions as in Fig. 4.4. Lines loate the largest Frobenius norm

orresponding to a pair of sites (i, j) whih are not neighbours on the one-dimensional

graph, i.e. whih have zero true oupling.

4.1 Artile: Large pseudoounts and L2-norm penal-

ties are neessary for the mean-�eld inferene of

Ising and Potts models

The full work on MF inferene and regularisation shemes is reported in the fol-

lowing paper. After a short reminder on the main topis of the paper, we ompare the

e�et of pseudoounts and L2-norm regularisation on small toy-model systems om-

puting the analytial form for MF ouplings given the value of the true ones. Both

the Ising and the Potts ases are treated. Note that in the Potts ase the relation

between MF and true ouplings is made of at least two di�erent urves: eah term

in the oupling matrix J has a di�erent dependeny on the true ouplings. We then

show that on bigger systems (N = 50) the proliferation of these ontributes makes

Potts inferene systematially worse than Ising one. In the last setion we use the

O(m) model, a generalisation of the Ising model, to estimate the error on the inferred

ouplings due to the MF approximation and how this error an be orreted for with

an appropriate regularisation.
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4.2 Conlusions

With this paper we have shown that MF inferene introdues strong errors on

large ouplings. These errors an be partially orreted thanks to strong regularisa-

tion terms and in partiular a large pseudoount turns out to be the best approah.

Moreover we better understand why DCA needs pseudoount regularisation for pre-

diting the network of long-range interations in proteins: �rstly the use of large

pseudoounts dramatially redues the dependene of the inferene quality on the

sample size. Seondly, thanks to the large pseudoount orretion on inferene, the

Frobenius norm of ouplings matries averages out di�erenes between diverse ou-

plings keeping separated in ranking interating and non-interating pairs. Anyway

note that results in the paper are shown for arti�ial models, where only the pairs

of sites atually interating have non-zero oupling matries, but this is absolutely

not true for real data. The relations we ompute here are true if we assume the in-

ferred model to be a Potts model, that is obviously not the ase for sequene analysis.

Therefore additional errors depending on the hoie of the model have to be taken

into aount.

This last point opens a huge debate on how ould be possibly assess a ertain

inferene method to be better than another. The �rst question to ask is probably

whih is the task we want to aomplish. For instane, sine we know the Potts

model is just our interpretation and simpli�ation of the evolution proess, we ould

argue that having a method able to perfetly �t Potts parameters does not imply

that it will also be the best in prediting the ontat map. Furthermore, we saw

that a MF approximated solution for the Potts model gives modest results, while

DCA is a very powerful tool for ontat preditions. Therefore inferene methods

are ommonly tested on real data taken from diverse biologial topis, in order to

ompare performanes on real-world ases. Contat map predition is one of the task

ommonly used for omparison, as several di�erent tools exist and standard results are

known. However a more omplex task having interested a large part of the sienti�

ommunity is the possibility of building a model able to reprodue data statistis.

Experimental studies on arti�ial sequene folding [28℄ have stressed the importane

of omputationally prediting whether a given sequene will fold or not depending on

the amino aids of the sequene itself.

MF is not statistially onsistent, meaning that even in ase of perfet sampling

MF parameters annot produe a model able to generate a sample whose statistis

realls the one of the sample from whih the parameters have been inferred. As we
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saw in the �rst hapter, two examples of statistially onsistent methods are pseudo-

likelihood and ACE. In the following hapter I will introdue ACE and how it has

been adapted to Potts inferene. We will see that, keeping the quality of ontat maps

almost at the same level, ACE infers parameters reproduing data statistis with a

preision ompatible with the size of �nite-sampling errors, di�erently from pseudo-

likelihood. We will ompare DCA, plmDCA (pseudo-likelihood) and ACE aording

to both the riteria of ontat map predition and statistial of onsistene. We will

�rst fous on arti�ial models and then we will onsider the same set of riboswithes

we analysed in the �rst hapter in order to test inferene methods on real data.
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Chapter 5

An inferene tool for generative

models: The adaptive luster

expansion

In hapter 1 we have analysed some of the existing algorithms for the solution

of the inverse Ising and Potts model. The last tool I desribed was the Adaptive

Cluster Expansion [7℄ [23℄. This algorithm has been introdued and tested for the

Ising model. Its extension to the Potts model is straightforward from the analytial

point of view, while entails some omputational issues that need to be handled more

arefully. Reall that, even in the MF ase, Potts inferene turns out to be harder

than Ising one.

In this hapter a many olours Potts model (e.g. 21 olours as it is the number of

protein amino aids plus the gap symbol) will be treated. The �rst part of the hapter

will be dediated to a short review of the original algorithm and to its adaptation

to the formalism of Potts model. Then, I will introdue the numerial proedures

we designed in order to improve results and to redue omputational e�orts. Finally

some interesting results on arti�ial models and RNA data will be reported.

5.1 The ACE algorithm

As we have seen in hapter 1, the solution of inverse models entails the min-

imisation of the negative log-likelihood L, introdued in Eq. 1.8, equivalent to the

ross-entropy S between the data and the model, that for the Potts model is de�ned

as follows:
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S ≡ L = logZ −

N
∑

i=1

q
∑

a=1

hi(a)fi(a)

−

N
∑

i<j

q
∑

a=1

q
∑

b=1

Jij(a, b)fij(a, b)

(5.1)

where from now on fi ≡ f data
i and fij ≡ f data

ij in order to simplify notation. The

inlusion of a prior distribution an be helpful for avoiding over-�tting. A Gaussian

prior distribution for the parameters is a typial hoie:

SL2 = S − γ′
N
∑

i=1

qi
∑

a=1

hi(a)
2 − γ

N−1
∑

i=1

N
∑

j=i+1

qi
∑

a=1

qj
∑

b=1

Jij(a, b)
2

(5.2)

where γ′ = 0.01γ as we expet �elds need a smaller regularisation ompared to

ouplings.

Monasson and Coo [7℄ have proposed an expansion of S based on a graphial

subdivision of the target network of interations in small sub-systems alled lusters

and de�ned as Γ = {i1, . . . , ik}, k ≤ N ,

S =
∑

Γ

∆SΓ, (5.3)

where the summation is made over all possible sub-systems of the N-spin system.

∆SΓ is the luster entropy and an be reursively omputed thanks to the following

relation:

∆SΓ = SΓ −
∑

Γ′⊂Γ

∆SΓ′ . (5.4)

The term SΓ represents the minimum of Eq. 5.1 restrited to those spins inluded

in the luster Γ. As we will see, the authors have laimed that this sum an be

trunated, with a minor loss of information, to a restrited number of seleted lusters

for omputational feasibility. Groups of strongly interating spins in the system

ontribute more to the overall ross-entropy, than weakly interating ones. Therefore

the seletion of lusters is possible on the basis of luster absolute ontribution to S

and a trunated sum an be de�ned. The onvergene of the series is ensured by the

fat that ontributes from lusters of spins within the same integration path partially

anelled eah other out [23℄. However, the numerial minimisation of the luster

ross-entropy entails a sum over qk terms, where q is the number of olours of the

model and k is the size of the sub-system. The great advantage of this algorithm is
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that the exponential omplexity of this omputation is moved from the size of the

system to the size of the onsidered luster, ensuring reasonable exeution times also

for large (i.e. N ∼ 100) systems, as long as the size of the lusters having been

inluded in the sum remains small (i.e. k ∼ 10). Note that the summation on the

full set of lusters bring to the exat omputation of the log-likelihood.

Being reursive, Eq. 5.4 ensures that the minimisation of the log-likelihood of a

given luster depends only on the frequenies and the orrelations of the variables in

the sub-system. For instane, the luster of size one Γ = {i1} depends only on the

frequenies of observations of eah olour on site i1 and its entropy is de�ned as:

SΓ = −

q
∑

a=1

fi1(a) log(fi1(a)) (5.5)

Clusters of size two, as Γ = {i1, i2}, depend on fi1(σi1), fi2(σi2) and fi1i2(σi1 , σi2)

and their luster entropy ∆SΓ orresponds to the mutual information between sites

i1 and i2. More generally the luster entropy of a luster of size k represents the gain

in information when the k variables are onsidered to be mutually interating. When

the two variables in a 2-variable luster are independent their ∆SΓ vanishes.

The full algorithm is desribed below:

1. We de�ne a threshold t on the overall ross-entropy. We will use it in order to

disriminate lusters signi�antly ontributing to the log-likelihood from those

whih an be negleted.

2. We ompute analytially the entropy and the parameters of all lusters of size

1

3. We de�ne a list Lk of lusters of size k = 2

4. For eah luster Γ ∈ Lk

(a) We ompute SΓ by the numerial minimisation of 5.1 restrited to Γ.

(b) We reord the parameters (�elds and ouplings) minimising 5.1.

() We ompute ∆SΓ using 5.4.

5. We selet signi�ant lusters among Γ ∈ Lk with |∆SΓ| > t.

6. We onstrut a list Lk+1 of lusters of size k + 1 from overlapping lusters

seleted during the previous step.

7. We lower t and iterate from step 4.
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The onstrution of lists Lk+1, given seleted lusters in Lk, an be performed

aording to two di�erent rules: the so alled lax rule implies a new luster Γ to be

added to the list Lk+1 if there is at least a pair of lusters Γ1,Γ2 in Lk of size k suh

that Γ1 ∪ Γ2 = Γ; the strit rule implies, instead, only the sub-lusters of Γ to be

inluded in Lk.

At eah step not only the ontribution to the entropy is omputed, but also the

approximated value of the parameters minimising the ross-entropy:

J(t) =
∑

k

∑

Γ∈Lk(t)

∆JΓ, ∆JΓ = JΓ −
∑

Γ′⊂Γ

∆JΓ′ . (5.6)

where J is an array representing both �eld and ouplings. As in 5.3 and 5.4 JΓ

is obtained via the numerial optimisation of the log-likelihood, while ∆JΓ′
is the

ontribution due to smaller lusters. At eah step the sparsity of the obtained graph

is thus guaranteed by the fat that the sum in Eq. 5.6 is restrited over those lusters

with |∆SΓ| > t.

Given inferred parameters, we test them omputing orresponding frequenies

and orrelations with the Monte Carlo sampling. To avoid over-�tting we stop the

algorithm when the di�erene between the observed and the Monte Carlo orrelations

stays in the error bars due to �nite-sampling approximation (f. Eq. 5.7). When the

observed orrelations are not yet well reprodued, the algorithm is iterated dereasing

the threshold t in order to inlude more lusters in the omputation of parameters.

The typial unertainties for frequenies and orrelations an be determined simply

from the suseptibility matrix χ (i.e. the hessian of the ross-entropy, also known as

Fisher information matrix)

δfi =

√

1

B
χi,i =

√

fi(σi)(1− fi(σi))

B
,

δfij =

√

1

B
χij,ij =

√

fij(σi, σj)(1− fij(σi, σj))

B
.

(5.7)

The estimation of the quality of the inferene is made reording at eah value of t the

average error ǫP on frequenies, the average error ǫP2 on orrelations (alternatively

also the error on onneted orrelations ǫC) and the maximum error ǫmax among all

terms inluded in ǫP and ǫP2 as shown in Eqs. 5.8, where fMC
represent the statistis
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of the Monte Carlo sampling run with inferred parameters.

ǫP2 =

√

√

√

√

1
N(N−1)

2
q2

∑

i<j

∑

σi,σj

(fij(σi, σj)− fMC
ij (σi, σj)− (2γJij(σi, σj)))2

δf 2
ij(σi, σj)

(5.8a)

ǫP =

√

√

√

√

1

Nq

∑

i

∑

σi

(fi(σi)− fMC
i (σi)− (2γ′hi(σi)))2

δf 2
i (σi)

(5.8b)

ǫmax =

√

√

√

√

√

maxij

(

(fMC
ij (σi,σj)−fij(σi,σj))2

δf2

ij (σi,σj)
,
(fMC

i (σi)−fi(σi))2

δf2

i (σi)

)

2 ∗ ln(N(N−1)
2

q2 +Nq)
(5.8)

These errors represent �nite-sampling errors. The term depending on γ (or γ′ =

0.01γ) at the numerator was introdued to prevent from over-�tting small frequenies

and orrelations. Note that δfi and δfij are found in Eq. 5.8 at the denominator,

thus they need to be treated arefully in ase of zero orrelations: taking into aount

de�nitions 5.7, we �x a lower bound for both fi and fij equal to

1
B
. Another possi-

ble orretion onsists in omputing χ from the L2-regularised ross-entropy adding

thus a regularisation term 2γ at the numerator of Eqs. 5.7. However, we notied

that di�erenes between the two approahes are negligible for typial values of the

regularisation strength and we prefer the �rst solution from a pratial point of view:

errors are well de�ned also when the algorithm is run with γ = 0.

Pratially the algorithm starts with a large threshold (t = 1) and only 1-spin

lusters are taken into aount, then the threshold is lowered t → t/1.05 until a set

of parameters �tting the 1- and 2-point statistis is found. The omputation of ǫP ,

ǫC and ǫmax is performed at eah iteration of the algorithm. The onvergene point

is reahed when ǫP , ǫC and ǫmax are lower than 1. The quality of the inferene an

be also tested on non-�t statistis as 3-point orrelations and mutational probability.

The latter is a biologial interesting observable, sine it represents the probability of

mutation

1

of a given number of sites per sequene. Note that, sequene similarity,

as we disussed in hapter 3, plays a fundamental role in the lassi�ation and in the

modelling of sequene homology and a good haraterisation of related quantities,

suh as the mutational probability, remains hallenging in the �eld. In next setions

1. Consider a MSA. The sequene omposed by the most frequent symbol on eah olumn is

alled onsensus sequene. A mutation ours when on a ertain site a sequene express a symbol

di�erent from the onsensus. Within an experimental framework mutations are usually omputed

with respet to the wild-type sequene.
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I will often onsider the so alled generative test, meaning the omparison between

the statistis omputed from the data and the statistis omputed with the Monte

Carlo sampling. Quantities onsidered within the generative test are:

� 2-point onneted orrelations

2

� 3-point onneted orrelations

� P (k), is the probability of observe k mutation per sequene with respet to a

referene sequene, alled onsensus sequene, in whih on eah site the most

probable a.a. for that site is taken.

Lastly, also the ability to reprodue the network of interations is veri�ed and

therefore true positive rates and ontat maps, similar to those we analysed in hapter

3, will be onsidered.

5.2 Computational re�nements for the Potts ase

As disussed before, the omplexity of ACE algorithm depends exponentially on

the number of olours in the model, therefore the extension of this method to the

Potts model requires some adjustments of existing routines and the introdution of

new intermediate steps between the extration of data and the exploitation of results.

In the following setion I will present the improvements we have introdued in

the last version of the ACE algorithm in order to easily manage many olour Potts

data. I will �rst fous on some possible re�nements of input data in the sope of

reduing omputational osts, then I will introdue the onept of referene struture

and the di�erent ways it an be used to guide the inferene. Moreover, we will

analyse two improvements of the ode ating on the exat omputation of the luster

log-likelihood, being the latter the bottlenek of the algorithm. Finally, I will explain

how we have ombined our algorithm with Boltzmann Mahine Learning when the

onvergene of the ACE results to be too slow.

5.2.1 Colour ompression

A �rst proedure we have introdued onsists in �tting the minimal number of

parameters per site. Observing real data, suh as MSAs of RNAs and proteins,

several sites ontain muh less than 5 or 21 symbols. Funtional onstraints, joint to

2. This quantity is atually �t by our algorithm, thus, to some extent, it an be onsidered as

a lax generative test. We introdue it in the analysis to remark the di�erene with other inferene

methods (e.g. mean-�eld approahes) not able to reprodue these observables, even if they are used

to �t the model.
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the �niteness of samples, prevent us from observing all the possible amino aids or

nuleotides at least one time per olumn. Being the number of olours so ruial in

terms of omputational time, we have deided to fore the algorithm to �t a restrited

Potts model, where the number of olours per site qi depends on the onsidered site

and it orresponds to the number of e�etively observed symbols.

Disarding non-observed olours, meaning olours with frequeny equal to zero,

does not entail any loss of information. However, frequeny thresholds larger than

zero an be onsidered and we have demonstrated they give rise to reasonable ap-

proximations: the need for omputational feasibility an be fruitfully paid in term

of information about the system. We ompress all those olours whose frequeny is

smaller than a threshold p in a single grouped olour q̃i. We leave all the other olours

unhanged. The threshold p an be �xed hoosing for instane a minimum number of

required observations within the sample, or suh that a ertain fration of the overall

entropy of the site has been reprodued:

Sqi = −

qi−1
∑

a=1

fi(a) log fi(a)−

(

1−

qi−1
∑

a=1

fi(a)

)

log

(

1−

qi−1
∑

a=1

fi(a)

)

≥ fSq .

(5.9)

Contributions to Sqi are progressively added aording to dereasing frequeny.

We will see in the results setion that this olour ompression sheme barely dereases

the quality of the inferene, entailing instead a huge gain in omputational tratability

of diverse systems. Moreover we have observed on protein data that the use of olour

ompression helps avoiding over-�tting and improves inferene quality.

5.2.2 Referene struture

The olour ompression redues the amount of information about the system for

speed, onversely a similar gain in term of omputational feasibility an be ahieved

adding more information, when available. Within many appliations of interest, in-

deed, some partial information on the system are sometimes available: RNA align-

ments usually ontain a onsensus seondary struture, experimental knowledges

about the interation network an be found in the literature and even faster inferene

methods an be used for ontat map predition.

Unveiling the network of interations underlying a ertain system is often the �rst

aim of inferene on biologial data [3℄. However also the strength of interations,

the on�guration probabilities or in general a more detailed haraterization of the
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distribution of symbols turns out to be of interest in many ases, for instane when

experimental measurements about sequene folding probability are available [28℄. In

those situations the ACE an be used to re�ne the desription of the system, given

the interation network as referene struture. We onsider a restrited seletion of

sites for the onstrution of lusters based on the known interation graph: we �rstly

inlude all the lusters of size two whose sites are diretly interating and then we

build larger lusters using only those sites inluded in the initial list.

Similarly, one an use ACE with di�erent levels of data ompression: �rst we run

the ACE with an high ompression threshold for olours: in the extreme ase, an

Ising model, where σ = 1 orresponds to the most frequent olour and σ = 0 to the

ompression of all the other ones, an be inferred. At onvergene the �nal list of

seleted lusters is reorded and then submitted to a seond run of the algorithm,

whose target is a non-ompressed (or less-ompressed) model. The gain in term of

time depends on the fat that only the lusters in the list will be omputed and no

seletion will be performed: all the omputed lusters will ontribute to the overall

ross-entropy.

Finally, in the original Ising version of the ACE [23℄ an expansion of the ross-

entropy around the mean-�eld solution has been introdued in order to help the

numerial optimisation of the log-likelihood. Note that the result of this proedure

is that ACE provides an expansion around a referene Gaussian model instead of

around a referene struture.

5.2.3 Analytial omputation of 2-site lusters

When q is of order 20, the omputation of lusters of size two still requires a

long omputational time. However, the exat solution for the q-state Potts model

inferene when N = 2 is known: the probability of a on�guration (σ1, σ2) for the

two variables is expressed as

P12(σ1, σ2) = eh1(σ1)+h2(σ2)+J12(σ1,σ2)
(5.10)

The onditional probability of having σ2 in position 2 given σ1 in position 1 is in-

stead P (2, σ2|1, σ1) = eh2(σ2)+J12(σ1,σ2)
; by rewriting P12(σ1, σ2) = f1(σ1)P (2, σ2|1, σ1) =

f1(σ1)e
h2(σ2)+J12(σ1,σ2)

and omparing with Eq. (5.10) we obtain f1(σ1) = eh1(σ1)
thus:

h1(σ1) = log f1(σ1) (5.11)
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an analogous expression is obtained for h2(σ2). Substituting expression (5.11) for

h1(σ1) and h2(σ2) in (5.10) we obtain

J12(σ1, σ2) = log
f12(σ1, σ2)

f1(σ1) f2(σ2)
(5.12)

It is easy to verify that the onservations of probabilities

∑q

a=1 fi(a) = 1,
∑q

a=1 fij(a, b) =

fj(b), and
∑q

a=1

∑q

b=1 fij(a, b) = 1 are satis�ed by the above hoie of parameters

h1(σ1), h2(σ2) and J12(σ1, b).

Note that the above equations for the ouplings and �elds are also obtained by

deriving the minimal ross-entropy, for a system of 2 spins with respet to the �elds

and ouplings, whih an be rewritten as

SAn
Γ =

∑

a,b

f12(a, b) log
f12(a, b)

f1(a)f2(b)

+
∑

a

f1(a) log f1(a) +
∑

b

f2(b) log f2(b)
(5.13)

where Γ = {1, 2} is the onsidered sub-system of size two. Thus in order to speed

the algorithm we introdue the analytial omputation of 2-site lusters. However,

as we have already seen, we introdue in the omputation of the ross-entropy a

L2-norm regularisation term, as in Eq. 5.2, to ompensate �nite-sampling errors.

Therefore the analytial solution SAn
turns out to be di�erent from the regularised

luster entropy SΓ. Anyway, in priniple, parameters in Eqs. 5.11 and 5.12 an be

used as an initial guess for minimisation of the regularised SΓ. The optimisation of the

luster ross-entropy is performed using both the gradient desent and the Newton

method, depending on the value of the gradient

3

and several tests we have performed

on arti�ial data have shown that this non-zero guess does not redue signi�antly

the omputational time: within the very �rst steps the gradient desent reahes an

approximation of the �nal results that is extremely lose to the one omputed from

SAn
Γ .

The use of a pseudoount regularisation instead of the L2-norm an be useful in

this framework. Pseudoounts onsist in a resaling of orrelations and frequenies

able to orret �nite-sampling e�ets and do not need further regularisations (in Eq.

5.2 γ = 0 and γ′ = 0). Being SAn
Γ = SΓ 2-site lusters an atually be omputed

analytially dramatially inreasing the speed of the algorithm.

3. The advantage of using gradient desent or Newton method depends on the value of the

gradient of the target funtion: when the gradient is too small gradient desent steps beome

negligible and the algorithm gets stuk, so in those ases we prefer to ompute also the hessian

term and perform Newton steps in order to speed the optimisation.

73



5.2.4 Sparse regularisation

A omputational re�nement, suggested by J.P Barton, is to perform an e�ient

expansion of the partition funtion in order to use sparsity of ouplings in the sope of

dereasing omputational osts. We �rstly observe that, given the Potts Hamiltonian

in 1.1, the partition funtion an be written in a trivial form in ase of independent

spins:

Z =

N
∏

i=1

(

qi
∑

a=1

ehi(a)

)

(5.14)

Sine �elds hi(a) make independent ontributions to the energy, the sum over all

on�gurations an be rewritten as a produt of terms from eah site. The gain in term

of omplexity is evident: 5.14 requires only

∑N

i=1 qi operations rather than
∏N

i=1 qi.

If we assume the sparsity of the interation graph, we an expand the partition

funtion ignoring loops in a tree-like expansion.

Finally is it also possible to use a L0-norm regularization, whih an be very useful

in the ase of a large number of e�etive olours per site. This regularisation, applied

on oupling only, enfores the sparsity of the inferred model:

∆ℓ = −γ0

N−1
∑

i=1

N
∑

j=i+1

qi
∑

a=1

qj
∑

b=1

‖Jij(a, b)‖0 . (5.15)

L0-regularization fore those ouplings that do not inrease the log-likelihood of

the model by at least γ0 to be exatly zero. The form of the regularization was

implemented following the adaptive forward-bakward algorithm of [107℄.

5.2.5 MC-learning re�nement

The ACE proedure is extremely fast as long as it does not reah luster sizes for

whih the omputational ost for the alulation of the partition funtion beomes

prohibitive. As I have already disussed, omputational time grows exponentially on

average as qkeff , where qeff = 1
N

∑N

i=1 qi. Typially the alulation of the partition

funtion requires a sum over 105 on�gurations for lusters of about size 16, 8, 5 for

q = 2, 5, 10, respetively. When the ACE enters this regime it is better to stop

the algorithm, even if ǫmax is not yet of order one, and to use the output �elds and

ouplings as initial guess for a MC-learning proedure. This values of the parameters

are usually good initial guesses and the MC-learning rapidly onverges.
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The learning algorithm we implemented is a Potts-adapted version of RPROP al-

gorithm for neural network learning [108℄. Given an input set of �elds and ouplings,

we �rst ompute the model orrelations fMC
i (a), fMC

ij (a, b) through Monte Carlo sim-

ulations, implemented in the ode by J.P. Barton. The ouplings and �elds are then

updated aording to the gradient of the log-likelihood, multiplied by a parameter-

spei� weight fator

hi(a) → hi(a)−
(

fMC
i (a)− fi(a)

)

wi(a) ,

Jij(a, b) → Jij(a, b)−
(

fMC
ij (a, b)− fij(a, b)

)

wij(a, b)
(5.16)

Regularization an also be inorporated by adding 2γJij(a, b), or the analogous

term for �elds, to the gradient.

The use of the MC-learning re�nement goes beyond those ases when onvergene

annot be found. Sometimes, indeed, a quite good solution is found, then, lowering

t, the error rises and we have to wait long time before a new set of parameters

providing a smaller error has been found. It has been proved in [23℄ that the error is

not a monotonous funtion of t and several loal minima of the error exist: remember

that the entropy summation needs the anellation of many luster ontributions

to onverge. Therefore, we not only reord parameters at onvergene, but also in

orrespondene of some loal minima of the error. This intermediate t values an be

used to run the MC-learning re�nement and thus to obtain reliable parameters in a

shorter time.

5.3 Gauge hoie

As many other models in theoretial physis the Potts model is invariant under

so alled gauge transformations, meaning for any K the following transformations

Jij(a, b) → Jij(a, b) +Kij(b)

hi(a) → hi(a)−
∑

j 6=i

Ki(a)
(5.17)

entail no hanges on the probability distribution 1.6 and thus on all those quan-

tities that are related to it. The gauge invariane omes from the onservation laws

of probabilities we have ited in setion 5.2.3, responsible for removing some degrees

of freedom from the system. Thus, the number of independent �elds at eah site i is

(qi − 1) instead of qi, and the number of independent ouplings for eah pair of sites
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is (qi − 1)(qj − 1). Given a set of ouplings Jij(a, b) and �elds hi(a) and hosen a

ertain olour ci we an �x the gauge suh that

Jij(σi, cj) = Jij(ci, σj) = Jij(ci, cj) = hi(ci) = 0 (5.18)

To implement these onstraints we de�ne the transformed ouplings J̃ij(a, b) as

follows

J̃ij(σi, σj) = Jij(σi, σj)− Jij(ci, σj)− Jij(σi, cj) + Jij(ci, cj) (5.19)

Thus, we are fored to modify �elds aording to equation 5.19 suh that for

eah on�guration the energy is unhanged, unless for onstant terms. The original

hamiltonian is H(σ) =
∑

j>i Jij(σi, σj) +
∑

i hi(σi), while after the gauge �xation of

the ouplings we obtain:

H̃(σ) =
∑

j>i

Jij(σi, σj)−
∑

j>i

Jij(ci, σj)−
∑

j>i

Jij(σi, cj) +
∑

j>i

Jij(ci, cj) + �eld terms

(5.20)

disarding the last J term that does not depend on a or b, there are still two terms

to be anelled out with a suitable transformation of �elds:

h̃i(σi) = hi(σi)−hi(ci)+
∑

j>i

[Jij(σi, cj)−Jij(ci, cj)]+
∑

j<i

[Jji(cj , σi)−Jji(cj, ci)] (5.21)

Note that, sine any transformation of the type 5.17 is permitted, it is important

to �rst hoose a partiular gauge before omparing inferred parameters, e.g. when we

onsider arti�ial data and we plot true parameters versus inferred ones or when we

ompare results from two di�erent inferene methods. The hoie of the gauge an

be di�erent between the true and the inferred model (typially in arti�ial model we

draw the parameters from some random distribution for the omplete q-state Potts

model and then we infer a model in a ertain gauge with q − 1 olours).

When we infer ouplings and �elds with ACE, we are fored to regularise the

ross-entropy to solve �nite-sampling issues and also to help the gradient desent

optimisation to �nd rapidly the maximum of the log-likelihood. Even if the inferene

itself is gauge invariant, and thus the result does not depend on the hoie for the

gauge, the regularisation term is not. Thus, depending on the studied model, an

appropriately hoie for gauge an help or not onvergene. In this setion we will

analyse some results about the role of the gauge in ACE inferene. We will analytially
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ompute �nite-sampling errors for small models (i.e. N = 15) and we will average

results on 100 di�erent and randomly hosen realisations with similar harateristis

in term of number of sites, number of olours and sample size.

In order to understand better the point of this analysis, onsider the ase of an

arti�ial model whose inferene has been performed with the olour ompression ap-

proximation: we have obtained a model that is slightly di�erent from the original one

and we need to speify a ertain gauge in order to understand results. Usually, we

perform the inferene in gauge of Eq. 5.18 where the olour �xed to zero, ci, orre-

sponds to the grouped olour q̃i on eah site. This is the most natural hoie beause

it does not need any rearrangement of magnetisations and orrelations. However,

sine we do not have for parameters a losed relation linking the grouped olour and

the olours inside the group, we annot easily onvert the true ouplings and �elds

to this gauge. We have to onvert both the inferred and the true parameters into

another gauge, hoping it will not spread too muh errors (we will see extensively in

the next setion how errors propagate from one gauge to the others). When no om-

pression is performed there is no need, in priniple, for hosing two di�erent gauges

for the inferene and the omparison. Anyway, we will show that some advantages

an derive from the hoie of an appropriate gauge, di�erent from the usual zero-sum

gauge, before omputing the Frobenius.

In the following we will onsider a set of simple toy models on whih we an

analytially ompute �nite-sampling errors and we will ompare results on di�erent

hoies for the gauge, both for the inferene and for the omparison between true and

inferred parameters.

5.3.1 Finite-sampling error on parameters and its propagation

The information about �nite-sampling errors made on inferred parameters, is

ontained, equivalently to errors on frequenies and orrelations, in the so alled

Fisher Information Matrix χ, orresponding to the suseptibility matrix of the sys-

tem. When the model is small (N ∼ 10 and qi ∼ 5) and the sample too (B ∼ 104)

the suseptibility matrix an be easily inverted and thus errors over ouplings and

�elds an be analytially omputed

δJij(σi, σj) =

√

1

B
(χ−1)ij,ij (5.22)

δHi(σi) =

√

1

B
(χ−1)i,i (5.23)
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The above de�ned errors are gauge invariant quantities, but, given the �niteness of

the sampling, some regularisation of χ is needed. Thus, before inversion, the following

term (resulting from a L2 regularisation of the ross-entropy with γ = 1
B
for ouplings

and γ′ = 0.01γ for �elds) is added to the diagonal elements of χ:

χij,ij → χij,ij + γ (5.24)

χi,i → χi,i + γ′
(5.25)

These regularised errors are no more gauge invariant, thus also in this ase the

hoie of the gauge an modify results. Moreover, in the sope of omparing results,

we hange the gauge of parameters also after the inferene, thus we have to propagate

errors omputed in the inferene gauge into the gauge hosen for omparison. The

gauge transformations 5.19 and 5.21 an be rewritten in matrix form, where JH is

the vetor ontaining the list of all �elds and ouplings, as:

J̃H = A ∗ JH (5.26)

where A is a

(

N(N−1)
2

q2 +Nq
)

×
(

N(N−1)
2

q2 +Nq
)

binary matrix seleting terms

in the vetor JH aording to 5.19 and 5.21.

Given matrix χ−1
we an selet the elements in the JH list (in ase some om-

pression of olours has been performed) and, �nally, propagate errors aording to

usual rule:

χ̃−1 = A ∗ χ−1 ∗At
(5.27)

5.3.2 Small systems analysis

We onsider 100 di�erent toy models with N = 15, Q = 5 and Erdos-Renyi inter-

ation network with parameters similar to the ones showed in the following piture:
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Figure 5.1: (A) and (B): Gaussian distributions from whih true parameters have been

drawn. We �x µ = 0 and σ2 = 2 for both ouplings and �elds. (C) The interation

network is a Erdos-Renyi random graph with p = 0.05, where p is the probability to

have a link between two sites. In the following we will all the interation network

ontat map in analogy to biologial ases.

To ompute orrelations we use Monte Carlo sampling olleting 104 di�erent

on�gurations. Given the small size of these systems we easily ompute analytial

errors on ouplings and �elds and thus we use them to estimate the relative average

errors on the inferene, in analogy to what we do with orrelations and magnetisation

within the ACE.

ǫJ =

√

√

√

√

1
N(N−1)

2
q2

∑

i<j

∑

σi,σj

(J inf
ij (σi, σj)− J true

ij (σi, σj))2

δJ2
ij(σi, σj)

(5.28)

ǫH =

√

√

√

√

1

Nq

∑

i

∑

σi

(H inf
i (σi)−H true

i (σi))2

δH2
i (σi)

(5.29)

Then, being in real-life ases interested in the inferene of the ontat map of the

system, we ompress the information inside ouplings with a salar sore of intera-

tion: the Frobenius norm of the matrix Jij(σi, σj). We add the so alled Average

Produt Corretion to redue entropi ontribution to the sore. Therefore we obtain

the sore F apc
ij de�ned as follows:

Fij =

√

∑

σi,σj

Jij(σi, σj)2 F apc
ij = Fij −

〈Fij〉i〈Fij〉j
〈Fij〉ij

(5.30)

Before omputing Fij we usually �x ouplings in the the zero-sum gauge: the

latter ensures the minimum value for Fij (see hapter 3 for details).

Given the list of all F apc
ij we onsider the rank orrelation between F apc

true and F apc
inf .

When suh simple arti�ial models are onerned, the true positive rate is indeed

poorly informative beause it reahes rapidly its maximum value. A �nest observable

is then needed to measure inferene performane. We de�ne ρ as follows:

ρ =
1

σr(F
apc
true)σr(F

apc
inf )nz

nz
∑

k=1

(

k −
nz + 1

2

)

(

r((F apc
true)ik,jk)− r̄true

)

(5.31)

where nz is the number of non-zero oupled pairs and r is the ranking of the pair

aording to true ouplings (f. with paper in hapter 4).
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Finally we onsider also the performane of the inferred parameters in reproduing

the input statistis omputing their Root Mean Square Deviation with respet to input

magnetisations, 2-point onneted orrelations and 3-point onneted orrelations.

All the above desribed quantities are omputed on 4 di�erent sets of parameters

oming from the same model, but obtained running the ACE with a di�erent gauge

�xing of the type in Eq. 5.18:

� Last: ci is hosen to be the last olour (it orrespond to a random hoie)

� Less: ci is hosen to be the least frequent olour

� Cons: ci is hosen to be the most frequent (onsensus) olour

� Entr: ci is hosen to be the maximum entropy olour

Di�erent inferene gauges In �gure 5.2 we show results obtained using di�erent

gauges within the inferene.

As you an see the 4 gauges perform similarly on average on the datasets, both

within the inferene (Fig. 5.2a) and within the generative test (Fig. 5.2b). Note that

for small θ (Fig. 5.2a top left) the onsensus gauge performs worse than the others for

�elds inferene: the onsensus gauge, indeed, fores true �elds to be negative, while

the inferred ones are less negative than expeted thanks to regularisation. Regarding

ouplings (Fig. 5.2a top right), the least frequent gauge seems to be signi�antly worse

than the others, sine �nite-sampling e�ets are more pronouned in this partiular

gauge. However ranking (Fig. 5.2a bottom) is well inferred in any ase, even if there

is a huge variation (from 0.6 to 0.9) depending on the model. Finally, as expeted,

neither the ranking nor the statistis depends on the hoie for the inferene gauge.

Di�erent omparison gauges Chosen a ertain gauge for the inferene we an

then hange the gauge before omparing results with true parameters and before

omputing the F apc
inf , F apc

true and the ρ (see Fig. 5.3 and 5.4). However with this

study we show that the hoie of omparison gauge is not ruial: there are some

small di�erenes among di�erent gauges but we annot reognise a signi�ant trend

in our results. Comparing ρ urves in Figs. 5.3, 5.4 with in Fig. 5.2 we an anyway

say that the onsensus gauge an atually produe better results in term of ranking

than the zero-sum gauge. This evidene has suggested that ontat map preditions

on biologial data an be improved thanks to the use of the onsensus gauge. We

have tested the onsensus gauge on protein data and we have obtained better ontat

preditions with respet to the usual zero-sum gauge, the same used also within DCA.
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Figure 5.2: Points: results obtained on 100 models. Lines: smooth averages of points

to guide eye. Couplings and �elds are ompared in the gauge used for the inferene.

To ompute ρ ouplings have been moved to the zero-sum gauge.
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Figure 5.3: Points: results obtained on 100 models. Lines: smooth averages of points.

Inferene has been made in a ertain gauge ((a) most frequent olour, (b) least fre-

quent olour) and then parameter have been moved to the other gauges before om-

puting of ǫJ , ǫH and F apc
.
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Figure 5.4: Points: results obtained on 100 models. Lines: smooth averages of points.

Inferene has been made in a ertain gauge ((a) maximum entropy olour, (b) last

olour) and then parameter have been moved to the other gauges before omputing

of ǫJ , ǫH and F apc
.
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5.3.3 Gauge invariant regularization of the ouplings

As we have seen above, the non-gauge-invariane of the L2-norm regularisation

and onsequently the arbitrary hoie of the inferene and the omparison gauge

an modify results, in partiular when a strong regularisation is used. Therefore we

have inluded in the ode a gauge-invariant modi�ation of the L2-norm so to ensure

gauge-invariant results.

Instead of an L2-norm penalty on Jij(a, b), we introdue the regularisation on a

transformed oupling value

Kij(a, b) = Jij(a, b)−
1

qj

qj
∑

c=1

Jij(a, c)−
1

qi

qi
∑

c=1

Jij(c, b)

+
1

qiqj

qi
∑

c=1

qj
∑

d=1

Jij(c, d) .

(5.32)

One an then verify that Kij(a, b) is invariant under gauge transformations, and thus

an L2-norm regularization of the form

γ

N−1
∑

i=1

N
∑

j=i+1

qi
∑

a=1

qj
∑

b=1

Kij(a, b)
2

(5.33)

does not depend on the hoie of gauge. As far as �elds are onerned, the regulari-

sation parameter γ′
has to be set to zero to ensure the gauge-invariane of the �nal

model. Unfortunately we empirially observe that the gauge-invariant regularisation

has a negative impat on the routine optimisation of the log-likelihood: optimisation

results to be slightly slower than the standard L2-norm.

5.3.4 Approximated error on the inferred parameters

We have seen at beginning of this setion that the ovariane matrix χ an be used

to estimate �nite-sampling errors on both orrelations and parameters. However the

inversion of χ is omputationally infeasible for long sequenes and for large q, sine

it has size

(

qN + q2(N(N−1)
2

)
)

×
(

qN + q2(N(N−1)
2

)
)

. Some approximate values for

errors are needed in most biologially interesting ases (protein sequenes typially

have N ∼ 100 and q & 10). Having observed that a strong ontribution to the

varianes omes from out-diagonal terms of χ, meaning ouplings and �elds are far

from being independent variables, we exlude from putative andidates the approx-

imation χ−1
iajb,iajb =

1

χiajb,iajb

. Considering interations among olours more relevant

than interations among di�erent pairs of sites, we de�ne for eah pair ij a redued
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χ̂ij orresponding to the hessian of a two-spin model. From the inversion of all the

possible χ̂ij , whose size is (2q + q2)× (2q + q2), we obtain, indeed, a reliable approx-

imation for the δJij(a, b). As regard to �elds, this approximation does not give us a

unique value: the same term δH1(a) an be found inverting χ̂1i for whatever i > 1,

thus we an, for instane, onsider the average value among all the possible ones.

Alternatively we an hoose to propagate the errors on magnetisations δfi(a) and

orrelations δfij(a, b) using the 2-variable approximation seen before:

Jij(a, b) = log

(

fij(a, b)

fi(a)fj(b)

)

, hi(a) = log fi(a)

Note that beause of the �niteness of the sample a regularisation term is needed:

fi(a) → fi(a) +
1

B
, fij(a, b) → fij(a, b) +

1

B

We then propagate errors on the gauge transformations desribed in 5.17 and

obtain an approximate formula for inferred �elds and ouplings in the omparison

gauge on olour ci:

hi(a) = log fi(a)− log fi(ci) +
N
∑

j=1

(

log

(

fij(a, cj)

fi(a)fj(cj)

)

− log

(

fij(ci, cj)

fi(ci)fj(cj)

))

Jij(a, b) = log fij(a, b)− log fij(ci, b)− log fij(a, cj) + log fij(ci, cj)

(5.34)

Finally, the orresponding error terms for the �elds and ouplings due to �nite-

sampling are given by

δhi(a) = (N − 2)

√

1− fi(a)

B fi(a)
+ (N − 2)

√

1− fi(ci)

B fi(ci)

∑

j 6=i

(
√

1− fij(a, cj)

B fij(a, cj)
+

√

1− fij(ci, cj)

B fij(ci, cj)

)

,

(5.35)

δJij(a, b) =

√

1− fij(a, b)

B fij(a, b)
+

√

1− fij(ci, b)

B fij(ci, b)

+

√

1− fij(a, cj)

B fij(a, cj)
+

√

1− fij(ci, cj)

B fij(ci, cj)
.

(5.36)
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Type of approximation �elds ouplings

Analytial errors

(independent variables propagation)

0.583± 0.007 0.784± 0.004

2-site inversion of χ 0.665± 0.006 0.938± 0.002
2-site inversion of χ

(independent variables propagation)

0.600± 0.007 0.788± 0.004

2-variable approximation 0.919± 0.004 0.953± 0.001

Table 5.1: Table showing the Pearson orrelation between the di�erent error approx-

imations and the analytial errors. Averages are made on a sample of 100 di�erent

Erdos-Renyi models whose parameters are de�ned in Fig. 5.1

In table 5.1 we ompare the Pearson orrelation between the approximated error

estimations and the analytial one. Note that approximations are made at two di�er-

ent levels: we approximate the inversion of the χ in Eq. 5.23 and 5.22 (2-site inversion

of χ) and we approximate the propagation of errors on the omparison gauge shown

in Eq. 5.27. We use the independent variables approximation, i.e. only varianes are

onsidered and any ovariane is disarded. Remember, indeed, that the gauge we use

within the inferene is usually di�erent from the gauge we use to ompare true and

inferred parameters, thus errors on the inferred parameters have to be propagated to

the �nal gauge. As far as the 2-variable approximation is onerned the propagation

on the gauge is omputed analytially in 5.36 and 5.35.

Results shown here on�rm our hoie: in the following we will use the 2-variable

approximated errors. As you an see from table 5.1 the 2-site inversion of χ and the

2-variable approximation are, as may be expeted, almost equivalent for ouplings,

but the latter outperforms the former for �elds. Note, �nally, that the independent

variable approximation for the error propagation on the gauge highly deteriorates

results even if the analytial errors are onsidered.

5.4 ACE appliations

5.4.1 Arti�ial data

In order to test the quality of the inferene made by the ACE, we study some

arti�ial models whose parameters (ouplings and �elds) are randomly hosen from

Gaussian distributions; we �xed µ = 0 and σ2 = 5 for �elds and µ = 0 and σ2 = 1 for

ouplings, aording to what we has been observed on protein data inferene. The

networks of interations are Erdos-Renyi random graphs with 50 nodes generated with

p = 0.05 and p = 0.1, respetively alled ER005 and ER010, where p is the probability
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to have a link between two sites. Regarding olours, no preferential sheme is imposed,

i.e. if i and j interat then Jij is a 21×21 matrix whose elements are hosen aording

to the above de�ned Gaussian distribution. The models we obtained have a maximum

onnetion equal to 7 for ER005 and 12 for ER010; the number of interating sites is

61 for ER005 and 121 for ER010.

Given the set of ouplings and �elds, a Monte Carlo routine is used to generate

data in the form of a Multiple Sequene Alignment with B = 102, B = 103, B = 104

and B = 105 unbiased sequenes. Then, two di�erent olour ompressions have been

applied to the dataset: for eah site, olours with magnetisation fi(ai) < 0.05 and

fi(ai) < 0.01, are ompressed in a single gauge olour ci, �xed suh that Jij(ai, cj) =

Jji(aj , ci) = hi(ci) = 0. Consequently an e�etive number of olours (qeffi ≤ 21) for

eah site is de�ned and only qeffi − 1 olours will be used in the inferene of this

olour-ompressed model. Finally a small (γ = 1
B
) L2-regularisation is inluded in the

omputation of the ross-entropy.

Results for model ER005 with fi(ai) > 0.05 In the following I will summarise

the results obtained running ACE on the ER005 model with olour redution fi(ai) >

0.05.

The behaviour of the inferene depending on threshold for the luster seletion an

be appreiated in Fig.5.5 and Fig.5.6. We show how the ross-entropy of the inferred

model, errors on the statistis, the number and the size of the seleted lusters have

hanged depending on t within the 4 di�erent sample sizes analysed. Firstly note

that the intermediate plateau in the ross-entropy (we an easily see it for B = 103,

but it is still there also for the other samples) orresponds to a similar plateau in

the number of seleted 2-site lusters. The interpretation of this e�et is linked to

the fat that in this ase we are inferring a real Potts model with reasonably high

ouplings, di�erently from what we do on biologial data. Indeed in this simple ase

any 3- or more site interation exists and the presene of this plateau on�rms the

algorithm is e�etively seleting the interating 2-site lusters �rst. To reah the lower

plateau of the entropy, meaning the point after that no more signi�ant ontribution

to the entropy an be added, bigger lusters have to be seleted so to orret network

e�ets. However it is important to stress that the full network of interations is

generally reovered before the onvergene of the algorithm, for the example shown

here, at the end of the intermediary plateau. This e�et depends on the strength of

interations and it ould be more pronouned here than in other models depending on

the hoie for the variane σ2
of the Gaussian distribution from whih the parameters
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Figure 5.5: ER005 fi(ai) > 0.05 ACE inferene. Row A: errors on the statistis

obtained with the inferred model. Errors on magnetisations (ǫP ) are plotted in red,

errors on 2-point onneted orrelations (ǫC2) in blue and the maximum overall error

(ǫmax) in green. Row B: the red line represents the value of the overall ross-entropy.

Row C: lines represent the number of omputed lusters. The darker the olour the

smaller the luster size starting from 2-site lusters. Results for B = 102 and B = 103

are shown.
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Figure 5.6: ER005 fi(ai) > 0.05 ACE inferene. Row A: errors on the statistis

obtained with the inferred model. Errors on magnetisations (ǫP ) are plotted in red,

errors on 2-point onneted orrelations (ǫC2) in blue and the maximum overall error

(ǫmax) in green. Row B: the red line represents the value of the overall ross-entropy.

Row C: lines represent the number of omputed lusters. The darker the olour the

smaller the luster size starting from 2-site lusters. Results for B = 104 and B = 105

are shown.
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Figure 5.7: ER005 fi(ai) > 0.05 Contat maps obtained with inferred ouplings. In

the top-left triangle red squares represent true positives, green squares false positives

and grey squares false negatives. In the bottom-right triangle the full Frobenius Norm

matrix is shown.

are extrated. Seondly, looking again at the ross-entropy behaviour, note that the

under-sampled ase (B = 100) shows a peuliar minimum value orresponding to

very high errors on the statistis. This behaviour is quite similar to what we have

observed many times when performing analysis on real data and it probably means

that the regularisation strength is too large.

Given the inferred model the �rst observation we make regards ontat predition.

As we have already stressed in the previous hapters this is a major topi in statistial

physis and many other e�ient inferene methods have been used to this sope. Here

we show that also ACE an be suessfully used to infer the network of interations

of the given model: Fig. 5.7 shows the ontat maps obtained with the inferred

ouplings ompressing information on di�erent olours with the Frobenius Norm.

Compare Fig. 5.7 with Fig. 5.8 where the Frobenius norms are orreted with the

Average Produt Corretion. Good samplings do not need the orretion to reover

the whole interation network, while smaller samples take great advantages from

APC: for B = 100 the preision is almost doubled from 0.38 to 0.62.

Being this analysis made on arti�ial data we an quantify the goodness of the

inferene performed by ACE in omparing inferred parameters with the true ones.

Fig. 5.9 shows the reonstrution of the true ouplings and �elds. In this piture the

inferred and the true parameters have been onverted to the onsensus gauge and

the grouped olour is not shown, beause it simply does not exist within the true

parameters. It orresponds, to same extent, to an e�etive oupling or �eld for all

those olours that have been grouped together. As it is lear from Fig. 5.9, the other

parameters are not in�uened by the inferene of suh an e�etive olour and they
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Figure 5.8: ER005 fi(ai) > 0.05 Contat maps obtained with inferred ouplings. In

the top-left triangle red squares represent true positives, green squares false positives

and grey squares false negatives. In the bottom-right triangle the full Frobenius Norm

with APC matrix is shown.

an systematially reprodue true values within the predited error bars. We laim

that, in the sense explained above, the olour ompression does not e�et the quality

of the inferene. Note that for B = 100 the inferred ouplings are smaller than the

true ones beause of the regularization strength whih is, as already remarked, too

large.

Finally the main result we obtained onern the fat that ACE inferred model

are generative, meaning they an be used to produe new samples reproduing the

statistis of input data (Fig.5.10). Here we onsider the 2− and the 3−point onneted

orrelations and the mutational probability of sequenes. Note that in any ase

orrelations obtained with the inferred model stay in the error bars. As far as 3-point

orrelations are onerned, a good sampling (at least B = 104) is needed in order to

have good results: for B < 104 the 3-point orrelations are small with respet to error

bars and therefore the reonstrution annot be good.

In order to better understand ACE pros and ons let us fous now on the small-

sample ase in Fig 5.5 �rst olumn. In this partiular ase the algorithm has run (on

a standard desktop) for more than 2 days before onverging. However, in order to

redue time onsuming we an stop the algorithm long before the onvergene point

and run the MC-learning re�nement of parameters. The same proedure an be used

also in ase the algorithm gets stuk far away from onvergene and a reliable model

is required. Here, we have hosen the threshold value t = 0.00108 as it is the �rst

loal minimum of the ǫmax (f. with Fig. 5.5) in a region where the ross-entropy

is already �at. We have launhed the MC-learning algorithm with this parameters

as initial onditions. Fig. 5.11 shows the omparison in term of generative test
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Figure 5.9: ER005 fi(ai) > 0.05 Left olumn: inferred �elds are shown against true

�elds. Right olumn: inferred ouplings are shown against true ouplings. Rows show

di�erent sample results. Errors are omputed propagating errors on magnetisation

and orrelations through the approximated formulas: hi = log(fi) and Jij = log(
fij
fifj

)

as shown in 5.36 and 5.35. True and inferred parameters are ompared in the on-

sensus gauge, and the grouped olour is negleted.
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Figure 5.10: ER005 fi(ai) > 0.05 First olumn: 2-point onneted orrelations. Se-

ond olumn: 3-point onneted orrelations. Third olumn: probability to see a

given number of mutated sites with respet to the onsensus sequene. Four di�erent

sample-sizes are shown. Error bars represent the �nite-sampling error in 5.7
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among (A) the �nal onverged parameters at t = 3 · 10−6
, (B) the ACE parameters

at t = 0.00108 and (C) the same parameters after MC-learning. As you an see ACE

plus the MC-learning re�nement shows results quite similar to ACE at onvergene,

even if the ost in term of omputational time is signi�antly smaller. Note that

ACE and ACE plus MC-learning reover the statistis highly better than the other

intermediate ase, where parameters are far from onvergene. We an argue that,

thanks to appropriate initial onditions, MC-learning gives us a generative model as

good as ACE in a more reasonable time. Finally if we ompare the inferred ouplings

and �elds with the true ones, we do not see any substantial di�erene from the �rst

row of Fig. 5.9, meaning that indeed the MC-learning annot improve the inferene

of the interation network.

Results for model ER005 with fi(ai) > 0.01 In the following setion we will

show results for the ER005 model when a weaker (fi(ai) > 0.01) olour-ompression

is applied. What we observed in this ase is that ACE annot easily onverge as in

the previous ase: none of the four samples has onverged in a reasonable time (about

a day) sine the lower redution entails a bigger omputational time, however �nal

results (f. Fig. 5.12) are quite similar to those obtained with redution fi(ai) > 0.05.

Note that the inferene from the smallest sample (B = 100) results in this ase quite

hard: the errors on statistis remains very large disregarding the value of t and only

a MC-learning re�nement an in this ase produe a meaningful generative model.

The other three samples show instead a behaviour similar to the respetive urves

in Fig 5.5 and 5.6, but without reahing onvergene. It is important to stress that

within this arti�ial model analysis we have not seleted the model so to give the

best results, or �ne-tuned parameters for the best inferene. Our aim here is in fat

to show how ACE works with standard options and on a random, and as general as

possible, model.

Results for model ER010 with fi(ai) > 0.05 We analyse in this part a more

onneted model. Note that ACE is based on the idea to infer the sparser network

ompatible with the data: it is not useful to infer ouplings di�erent from zero when

their error bars are extremely large. Consider in fat that fully onneted inferene

methods still exist and have proved to produe good results [3℄ [22℄. However the

hoie of the best oupling threshold in order to onsider two sites as interating is

quite heuristi and often hallenging. With the ACE we aim to solve this problem

onsidering the errors on the statistis. We have tested the algorithm to infer a
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Figure 5.11: ER005 fi(ai) > 0.05 B = 100 First olumn: 2-point onneted orre-

lations. Seond olumn: 3-point onneted orrelations. Third olumn: probability

to see a given number of mutated sites with respet to the onsensus sequene. Rows

show di�erent threshold results: (A): results for the onvergene threshold t = 3·10−6
,

(B): results for t = 0.00108, (C): results for t = 0.00108 plus MC-learning. Error bars

represent the �nite-sampling error in 5.7
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Figure 5.12: ER005 fi(ai) > 0.01 First olumn: 2-point onneted orrelations. Se-

ond olumn: 3-point onneted orrelations. Third olumn: probability to see a

given number of mutated sites with respet to the onsensus sequene. Four di�erent

samples are shown. Error bars represent the �nite-sampling error in 5.7
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more onneted network with maximum onnetion of 12, meaning that in priniple

lusters of size 12 are needed to orretly infer the model. What we observed is

that very large lusters have indeed been seleted, meaning the the omputational

time needed for onvergene is infeasible: also in this ase any sample has reahed

onvergene. Anyway, even if the onvergene is not reahed without MC-learning

for suh a onneted model, results shown in Fig. 5.13 are in general quite good and

omparable to those obtained for ER005.

Results for model ER010 with fi(ai) > 0.05: re�nement with MC-learning

Results shown in the last paragraph stressed the omputational limitations of ACE:

even if the system size of ER010 is the same of ER005, here a more onneted network

entails bigger lusters and thus ACE enters its omputational infeasible regime. As

disussed in the introdution, we have developed a MC-learning routine in order to

�nd onvergene parameters also when the ACE gets stuk. The output parameters

available result to be good input parameters for the MC-learning re�nement. In

partiular we fore the algorithm to save parameter within some �xed interval, when

ǫmax is minimum. Note, indeed, that the adaptive nature of ACE entails errors not

to be monotoni funtions of t, thus it is possible to hoose a posteriori the best

t and use the orresponding parameters within the MC-learning. Here we use t

orresponding to the last loal minimum of ǫmax, being sure that at that value the

entropy has already found the �nal plateau. Comparing Fig. 5.14 with Fig. 5.13 we

note that MC-learning produes a reliable generative model, substantially improved

with respet to the one ACE has inferred.

Comparison with DCA and plmDCA This paragraph is devoted to the ompar-

ison of ACE with two existing methods: DCA [3℄ and plmDCA [22℄. Note that DCA

and plmDCA are run on the full alphabet while ACE has been run with redution

fi(ai) > 0.05.

Compare Fig. 5.15 and Fig. 5.16 with Fig. 5.10. As expeted, DCA annot

reasonably reprodue even the 2-point onneted orrelations used to �t the model,

while plmDCA and ACE an. Anyway ACE outperforms plmDCA both on 2-point

orrelations and on 3-point orrelations. Also the P(k) is very well reprodued by

ACE, while it is not reprodued by DCA and poorly reprodued by plmDCA. The

latter performs in any ase onsiderably better than DCA in inferring generative

models. As far as ontat map predition the three methods are quite similar (f.
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Figure 5.13: ER010 fi(ai) > 0.05 First olumn: 2-point onneted orrelations. Se-

ond olumn: 3-point onneted orrelations. Third olumn: probability to see a

given number of mutated sites with respet to the onsensus sequene. Four di�erent

samples are shown. Error bars represent the �nite-sampling error in 5.7
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Figure 5.14: ER010 fi(ai) > 0.05 with MC-learning First olumn: 2-point on-

neted orrelations. Seond olumn: 3-point onneted orrelations. Third olumn:

probability to see a given number of mutated sites with respet to the onsensus se-

quene. Four di�erent samples are shown. Error bars represent the �nite-sampling

error in 5.7. Di�erently from Fig. 5.14, here ACE output parameters are re�ned with

MC-learning before the generative test is performed.
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Figure 5.15: ER005 DCA First olumn 2-point onneted orrelations. Seond ol-

umn 3-point onneted orrelations. Third olumn probability to see a given number

of mutated sites with respet to the onsensus sequene. Four di�erent samples are

shown.
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Figure 5.16: ER005 plmDCA First olumn 2-point onneted orrelations. Seond

olumn 3-point onneted orrelations. Third olumn probability to see a given num-

ber of mutated sites with respet to the onsensus sequene. Four di�erent samples

are shown.
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Inferene methods B = 102 B = 103 B = 104 B = 105

ACE 0.38 0.79 0.98 0.98

ACE + APC 0.62 0.95 1 1

DCA 0.36 0.8 0.98 0.98

DCA + APC 0.56 0.95 0.98 1

plmDCA 0.39 0.69 1 1

plmDCA + APC 0.59 0.97 1 1

Table 5.2: Table showing the preision of the ontat predition of the three inferene

methods analysed on the model ER005. Salar sores for interations ranking are

omputed with the Frobenius norm of the inferred oupling and then also the e�et

of average produt orretions (APC) is shown.

Table 5.2) and slightly improvement are reahed for small samples adding the average

produt orretion.

The following analysis wants to show that, a part from the inferene of the ontat

map, DCA and plmDCA are outperformed by ACE. Of ourse from the omputational

point of view both DCA and plmDCA are muh faster than our algorithm. However

we laim that, when more sophistiated results have to be ahieved, as for generative

models, ACE ensures a very good inferene in many sample and onnetivity regimes,

while DCA and plmDCA almost fail.

Finally, as we have seen that MC-learning re�nement remarkably improves genera-

tive test results, one an use DCA and plmDCA inferred parameter as MC-learning in-

put and obtain, also in these ases, generative models. However, for the model ER005

onsidered above, when we use the parameters inferred with DCA and plmDCA as

input parameters for the MC-learning we do not reah onvergene and errors on

the statistis saturates to values higher than one. The saturation value for ǫmax de-

pends on the onsidered model and it varies from 10 to 50 for DCA and from 4 to 12

for plmDCA. These di�ulties enountered in reahing onvergene with DCA and

plmDCA input parameters have also been observed on biologial data.
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5.4.2 Biologial data appliation: RNA

As promising results on arti�ial data have been shown, I will present in this

setion the appliation of ACE to the same seletion of six riboswihes studied in

hapter 3. The following ones have to be onsidered as preliminary tests, sine RNA

peuliarities stressed in the dediated hapter have not been taken into aount to

improve results. Appliation to proteins and neuronal data will be exploited in the

artile (in preparation) whih this hapter refers to.

This setion will report some tests done in order to estimate the orret strength

of the gamma regularisation parameter for RNA data. Tests are motivated by the

observation that typial value for the gamma γ ∼ 1
B
used for arti�ial data produes

over-estimated ouplings in the �rst steps of the algorithm and then, it takes long time

before the orret value for parameters is reovered. Intuitively we an understand

this e�et as an erroneous estimation of the sample noise: bayesian analysis of i.i.d.

samples estimate in

1
B

the best regularisation strength, anyway MSA are far from

being i.i.d. samples, even when the re-weighting orretion is applied. This empirial

re�nement, we suessfully applied in the ase of DCA, does not provide here a reliable

orretion of the alignment and we need an aurate hoie of the regularisation

strength.

One some good values for γ have been hosen, we run ACE on our RNA dataset

and ompare results on ontat preditions, in the form of true positive rates, and

generative tests.

Gamma seletion We have observed on arti�ial data that usually a very good

�t of the parameters is found when the onvergene of ross-entropy is reahed, even

if errors, in partiular ǫmax are still quite far from 1. Preisely we have showed that

parameters omputed at this point of the iteration usually rapidly onverge, if im-

proved with MC-learning. This e�et is due to the fat that the biggest ontributions

to the log-likelihood have, at this point, already been inluded in the alulation. The

very last iterations of the algorithm are needed in order to orret intrinsi errors in

the luster expansion. Remember that the seletion of a partiular luster does not

depend on the other seleted lusters. Therefore, as explained in [23℄, after that a

luster is seleted, errors on statistis usually rise and a sort of asade of sub-lusters

needs to be seleted before seeing errors dropping down again. The seletion of this

asade is hard beause ontributions an be small and it takes usually a long time.

However observing the emergene of a plateau in the ross-entropy an help deteting

this situations.
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Being interested in de�ne a pipeline, as fast as possible, in order to understand the

best value for the regularisation strength γ we deided to launh the algorithm with

many di�erent values of γ for a reasonable amount of time (within this partiular

ase ACE was left running for 20 minutes on a standard desktop). The aim of this

proedure is to understand whih is the regularisation strength favouring the most

the onvergene of the algorithm. Outputs of these proedure let us make some

observations:

� The most time-onsuming routine is the omputation of the luster ross-entropy

and it onsists of two main parts: the omputation of the partition funtion via

the sum over all the qk on�gurations and the numerial evaluation of the lus-

ter parameters optimising the ross-entropy. Monitoring the number and the

size of seleted lusters gives us a good estimate about the �rst part. Keep-

ing �xed these quantities, the speed of the algorithm turns out to tell us, to

some extent, whether the optimisation routine is well regularised or not. The

regularisation helps the optimisation routine, thus a fast onvergene of the

optimisation algorithm needs an appropriate regularisation. However, this on-

siderations usually lead to high γ as gradient desent signi�antly bene�t from

large L2-norm regularisations.

� If the ross-entropy has reahed or it seems lose to a plateau, often parameters

are still quite good regardless of errors. Otherwise, when the ross-entropy is

still osillating important hanges in the model are happening: the algorithm

is seleting highly signi�ant lusters and, even for similar value of t, output

parameters hange a lot.

� For very large γ the ross-entropy rapidly saturates as too many lusters are

seleted thanks to the ontribution of the regularisation term. Sine in this

regime the regularisation term in Eq. 5.2 is larger than the other ontributions,

the algorithm annot reasonably �t the data.

Given this onsiderations it is lear that the a priori estimation of the best value

for γ is de�nitely not trivial. For the onerned RNA Fig. 5.17, showing the ross-

entropy urves for di�erent γ, annot suggest us an optimal value: for t > 0.012 no

more osillations appear, moreover till t = 0.1 the algorithm is running relatively

fast. Consider now the number and the size of seleted lusters 5.18: dereasing γ

means omputing greater lusters already with large t. Therefore the algorithm gets

stuk quite soon when a few lusters have been seleted, preventing from an aurate

inferene of parameters. Otherwise large γ values allow the seletion of a huge number

104



 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0.0001  0.001  0.01  0.1  1

c
ro

s
s
-e

n
tr

o
p
y

t

RF00162

0.5
0.2

0.1
0.05

0.025
0.012

0.006
0.003

0.001
0.0008

Figure 5.17: The �nal ross-entropy of one among the six riboswihes, RF00162, is

showed. Di�erent olours refer to di�erent values of γ. The alignment for this RNA

family is made of 4757 sequenes and the Beff obtained with a re-weighting threshold

equal to 0.1 is 1165.98. For the run of ACE no olour ompression is performed,

however only observed olours are inluded in the inferred Potts model.
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of small lusters; to some extend in this ase almost no seletion is performed: the

huge regularisation term in the ross-entropy prevents the algorithm from distinguish

useful and useless ontributions.
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Figure 5.18: Left: the number of seleted lusters. Right: the maximum size of

seleted lusters. Again di�erent values for γ are showed.

Finally onsider Figure 5.19. If gamma is too large (dark blue urves) the algo-

rithm produes small errors but it is too slow to onverge till a reasonable t. Otherwise

if the γ is too small (dark green urves) errors diverge for small γ and, also in this

ase, we annot observe the onvergene of the algorithm.

Let me stress that this heuristi method for �nding the best γ is absolutely not

proposed as a de�nitive solution for the problem of orretly estimate how good (i.e.

how akin to a i.i.d. sample) an alignment of sequenes is. The hardness of the

problem is well known and phylogeneti-based methods [109℄ promise to improve

results. However, till now, the most sophistiated tools require a huge omputational

e�ort and are usually infeasible for reasonable size sequenes. Our approah is instead

extremely pratial. We atually test our algorithm for any γ and look for the best γ

depending on the observed performane of ACE. Obviously the result is not pretended

to be of any generality, but it is restrited to the use within ACE itself. Moreover

even for ACE we often run the algorithm for more than one value of γ before inferring

a promising generative model.

Riboswihes results The same analysis showed for RF00162 was performed also

on the other �ve RNAs and produed similar results: the hoie of the optimal value
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Figure 5.19: Errors on the statistis. From top: ǫP , ǫC and ǫmax. Di�erent olours

represent di�erent values of γ
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Family γ1 γ2
1
B

1
Beff

RF00162 0.05 0.006 2 · 10−4 8 · 10−4

RF00167 0.05 0.003 4 · 10−4 0.002
RF01051 0.1 0.05 5 · 10−4 0.001
RF01734 0.1 0.003 8 · 10−4 0.002
RF00504 0.2 0.012 1 · 10−4 5 · 10−4

RF00059 0.1 0.025 9 · 10−5 3 · 10−4

Table 5.3: Table showing the hosen strengths for the regularisation (with γ1 > γ2)
for the six riboswihes. B is the number of sequenes in the alignment, while Beff is

the e�etive number after re-weighting.

for γ is hard and painful. In the following we show results for two di�erent value of

γ, alled γ1 and γ2, shown in Table 5.3. DCA and plmDCA were also used to infer

parameters.

We on�rm what has been observed on arti�ial models: the hoie of the best

algorithm depends on the type of information one need to extrat from alignments.

Contat map predition learly does not need either ACE analysis or plmDCA, the

naive-MF solution gives almost always the best results in the shortest time, generative

tests showed, instead, that ACE is the only algorithm giving reasonable results. As far

as ontat preditions are onerned, we show only results for the higher value of the

regularisation γ1, sine di�erenes with results obtained with γ2 are negligible. MC-

learning, as showed before, do not hange signi�antly the inferene of the network of

interations, therefore, in Figs. 5.20 and 5.21, ouplings used for preditions belong

to the last set of parameters reorded by the ACE. In these two �gures we show that

lowering t, and thus inluding more terms in the ross-entropy series, we improve

the true positive rate with respet to native strutures. Anyway DCA and plmDCA

represent, almost in any ase, the upper bound of this progressive improvement.

Comparing Fig. 5.22 and Fig. 5.23 the role of regularisation in the inferene

is evident: when we use γ1 the way the inferred parameters reprodue the 2-point

and 3-point onneted orrelations is strongly biased towards smaller values. Large

regularisations fore the inferred model into an high temperature regime haraterised

by small interations (f. hapter 4). However small regularisations entail longer

omputational time and, therefore, we annot derease the value of γ till

1
B
.

The omplexity of RNA data inferene is again well represented here: results from

one riboswih to the others signi�antly hange.

� RF00162: DCA, plmDCA and low t ACE true positive rates are omparable.

DCA and plmDCA perform slightly better when the seondary struture is
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Figure 5.20: True positive rates for riboswihes RF00162, RF00167 and RF00504.

Lines oloured from blue to green represent ACE results for dereasing threshold t.
DCA and plmDCA are performed on the full alphabet model, while ACE inludes

only observed olours. 4 Å threshold is used for ontats de�nition (f. hapter 3)
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Figure 5.21: True positive rates for riboswihes RF01051, RF01734 and RF00059.

Lines oloured from blue to green represent ACE results for dereasing threshold t.
DCA and plmDCA are performed on the full alphabet model, while ACE inludes

only observed olours. 4 Å threshold is used for ontats de�nition (f. hapter 3)
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Figure 5.22: Results for γ1 ACE + MC-learning. First olumn 2-point on-

neted orrelations. Seond olumn 3-point onneted orrelations. Third olumn

probability to see a given number of mutated sites with respet to the onsensus

sequene.
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Figure 5.23: Results for γ2 ACE + MC-learning. First olumn 2-point on-

neted orrelations. Seond olumn 3-point onneted orrelations. Third olumn

probability to see a given number of mutated sites with respet to the onsensus

sequene.
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inluded while ACE is preferable for tertiary struture preditions only (ACE

results are worse for γ2. Data not shown here). The model inferred with ACE

with γ2 is extremely good: both 2- and 3-point onneted orrelations are well

inferred and the math between the predited and the observed P (k) is almost

perfet. In this ase Fig. 5.22 learly shows that γ1 over-estimates the optimal

regularisation.

� RF00167: same as RF00162 a part from the fat that DCA and plmDCA

give better results in term of ontat preditions also when only the tertiary

struture is onsidered.

� RF01051: this is the only ase in whih ACE works onsiderably better than

DCA and plmDCA for tertiary-struture preditions. Conversely 3-point on-

neted orrelations show the worst orrelation oe�ient R = 0.54 and also the

tails of the P (k) have not been reognised by the model. Probably the value of

γ2 is still high.

� RF01734: here ACE performs worse than the other methods for ontat pre-

dition in general. Moreover, the hoie of a smaller regularisation seems not

to improve generative test results: both Fig. 5.22 and Fig. 5.23 show strongly

biased 2- and 3-point onneted orrelations and the P (k) is not orretly re-

produed. Probably a lower γ has to be tested.

� RF00504: DCA and plmDCA preform better than ACE for ontat predi-

tions. In Fig. 5.23, predited 2- and 3-point onneted orrelations are ex-

tremely similar to those observed within the MSA, however the model annot

reover the P (k): large part of tails is missing.

� RF00059: for ontat predition similar to RF00504, while the generative test

gives di�erent results. In this ase with γ2, indeed, the P (k) is surprisingly well

reprodued, even if the 2- and 3-point statistis are not: probably, also in this

ase, we an derease more the value of γ.

5.5 Conlusions

Within this hapter we have explored the ACE algorithm and tested its perfor-

mane on both arti�ial and real data. We laim that ACE is a good alternative to

mean-�eld method when a �ne information about the system is needed. Moreover

ACE guarantees the inferene of a sparse graph and it is reasonably robust to the

hoie of the stopping threshold. We showed that, even when errors on orrelations
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are large, the output parameters an be suessfully used as input for a MC-learning

able to reah onvergene. Appliations on arti�ial data have proved ACE produing

generative models whose quality is highly better than mean-�eld and even pseudo-

likelihood models. However the larger omputational ost of ACE is not justi�ed for

the inferene of the interation network only: both mean-�eld and pseudo-likelihood

an equivalently infer interations in a muh shorter time.

Appliation to RNA on�rm arti�ial model results. ACE is a powerful tool and

provide generative models able to extremely well reprodue the statistis of biologi-

al data. Competitive results reahed by DCA in the framework of RNA struture

predition promise to open a novel exploration of RNA-related topis. ACE has been

developed in the sope of appliation on a wide range of problems and RNA will

probably be one of them.

The analysis I have shown here represents the general set of studies that an be

performed thanks to ACE. As it is extensively explained in Appendix A, the ACE

pakage is made of three ore programs: ACE, MC-learning and the generative test

routine. The ACE pakage ode will be released in the next days with the relative

paper ontaining test on di�erent datasets (neurons, proteins, arti�ial models).
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Conlusions

All the projets introdued within this dissertation, related to inverse statistial

methods used for interesting appliations on biologial subjets, are di�erent from

eah other with respet to some fundamental aspets. As disussed in the Motivations,

indeed, two di�erent ways to approah multidisiplinary topis exist: one an apply

an existing tool to a new topi or develop a new tool in order to solve a known

problem. The former ase has been explored within this thesis in hapter 3, where

the appliation of DCA to RNA struture predition has been disussed.

In the last years DCA has been applied in the �eld of protein struture harater-

isation and amazing results have been ahieved. However, we have shown that DCA

an be suessfully applied on RNA data in the sope of omputing a oevolution

sore more reliable than the existing ones. In the related paper we have employed

DCA sore to improve performane of known algorithms for RNA seondary and

tertiary struture predition. The proedure we designed has been proved to be

onvining and ompetitive. However, the results we have ahieved, far from being

onlusive, have to be intended as a preliminary evidene of the fat that the use

of DCA within existing software for struture predition would bring signi�ant im-

provements. Enlarging the use of DCA within the moleular biology ommunity is

our future hallenge. These days we are implementing a web-server for RNA struture

predition. In the �rst version it will implement the same software we employed in

the analysis performed in the paper, but releases based on the appliation of DCA

within diverse algorithms will follow.

From the theoretial point of view, the paper of hapter 4 has on�rmed that DCA

is a reliable tool for the inferene of interations in networks, but at the same time it

has stressed the weaknesses of mean-�eld inferene. Going beyond ontat predition

towards more general and generative models for biomoleules would require a reliable

inferene of interations that mean-�elds annot ahieve. The development of new

tools to fae these problems remains hallenging. In the last hapter I introdued

the ACE algorithm and its generalisation to the Potts model. The analysis both on
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arti�ial and on RNA data on�rmed that ACE provides full generative models and

omputational limitations an be overome thanks to MC-learning re�nements. Also

in this ase the work on the ACE has not to be onsidered onluded. The algo-

rithm, even if reliable and re�ned from di�erent perspetives, is not yet ompetitive

with respet to other more naive approximations due to the huge omputational ef-

fort needed. Despite the important improvements introdued, disussed within this

manusript, there is still a great deal of work to be done. In partiular a theoretial

understanding of some of the proedures introdued is still missing. For instane

we have empirially proved that the olour ompression, fundamental for reduing

the otherwise limiting omputational ost of Potts implementation, does not entail

a signi�ant deterioration of the inferene performane. However, the onsequenes

on the ross-entropy expansion of using e�etive olours substituting some of the

original ones and ompressing the information stored in these latter are still poorly

understood. Knowledge on suh theoretial aspets of the algorithm is the �rst step

towards novel improvements or even novel methods.
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Appendix A

ACE: short user manual

Beside analytial e�orts for the development of an e�ient new inferene algo-

rithm, my major interest was that this algorithm was performed by an intuitive

software, ensuring people oming from diverse bakgrounds an easily run it. Thus,

we hardly work at some side-odes performing analysis on ACE output or preparing

inputs starting from the most ommon formats used in the ommunity of moleular

biology or neurosiene. This appendix shematially lists all the analysis our ode

performs, all the di�erent parameters one an set and all the output �les produed.

A.1 The full analysis sript

In order to perform full analysis, of the type showed in the previous setion, on

both real and arti�ial data, we built a bash sript RunSript_2.0.sh running the

programs ontained in the ACE pakage and some interfaing Matlab sripts. To

launh the analysis both Matlab and a ++ ompiler are requested. Main options

an be spei�ed to the bash sript or diretly to one of the programs in the pakage.

A.1.1 ACE pakage software

The ACE pakage ontains the three main programs for performing the inferene,

run the MC-learning and run the generative test analysis.

� se , the ACE algorithm performing inferene on data

� qls , the MC-learning algorithm used to improve parameters till onvergene in

ase ACE only does not sueed

� qgt , the algorithm performing the generative tests on output parameters

All these programs are written in ++. To ompile and install them a standard

Make�le is used, thus to run the program from within the ACE folder type:
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$ . /  on f i gu r e

$ make

Or equivalently to run ACE from whatever folder type:

$ . /  on f i gu r e

$ make i n s t a l l

After installation programs have to be individually run. Command line instru-

tions tell the program where to look for input �les and where to send output, as well

as the setting of various parameters (gamma, theta, et) and �ags (useSparse, et).

Note that numerial parameters may be entered in either sienti� (reommended)

or standard deimal notation. True/false swithes are o� by default - if entered in

the ommand line, the orresponding option is set to true. The onventions are given

below:

se The most part of the implementation of se ode has been done by J.P. Barton.

� -(�ag name): (type of input expeted)

� -d: string

Default: "." (urrent diretory)

Path to the diretory where the data �le is loated, and where output will be

written.

� -i: string

Default: "input"

The loation of the �le ontaining a set of orrelations from whih to infer Ising

model parameters.

� -o: string

Default: "output"

The loation of the �le where output is to be sent. Eah di�erent type of output

�le will have a di�erent �le type, e.g. .j for ouplings.

� -map: string

Default: none

When the network of interations (e.g. ontat map) is known, a list of prese-

leted 2-site lusters an be given. "string" represent the name and the loation

of the �le from whih lusters are read. The extension of the �le has to be .l

(indexing from 0)
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� -inputl: string

Default: none

When a list of interesting lusters (e.g. from previously runs) is known, this

list of preseleted n-site lusters an be given and used for inferene. "string"

represent the name and the loation of the �le from whih lusters are read.

The extension of the �le has to be .l (indexing from 0)

� -l: none

Print the list of seleted lusters in a �le .l in the output folder

� -b: real number

Default: 1.0e+ 4

Number of samples used to ompute the orrelations. Used to determine the

inferene error.

� -kmin: integer

Default: 1

Minimum luster size, useful for avoiding the inferene of models that are too

sparse. The algorithm will ontinue to lower the threshold until lusters of at

least this size are seleted.

� -kmax: integer

Default: N (system size)

Maximum luster size. The algorithm will halt when lusters of this size are

seleted.

� -max: integer

Default: 10e+ 8

Maximum number of on�gurations per luster. The algorithm will halt when

lusters of size k (where k is de�ned suh that 〈qeff〉
k = 10e + 8) are seleted.

This ommand is redundant with kmax, but it is helps users to better estimate

a time limit for runs.

� -t: real number

Default: none

Run the algorithm at the input value of t, in sienti� or standard deimal

notation. This line is intended to be used when inferene is to be done only

for a single value of t, and will be overridden if thetaMax and thetaMin are set

di�erent from t.
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� -tmin: real number

Default: 1.0e− 10

The minimum value of t. See desription of -ts below for more information.

� -tmax: real number

Default: 1.0e+ 0

The maximum value of t. See desription of -ts below for more information.

� -ts: real number

Default: 1.05

The logarithmi step size to use for suessive updates of t. When the program

loops over di�erent values of t, it begins by running the algorithm at the largest

value of the uto� and stores the luster information. The algorithm is then

re-run for suessively smaller values of the uto�, ti+1 = ti
thetastep

, until t <

thetaMin. These re-runs use the previously stored luster information, so they

take onsiderably less time to run.

� -tre: real number

Default: 3.0 (set 0 to avoid reording)

The logarithmi step size for t to reord the inferred parameters. Given this

interval the hosen value orresponds the t produing the minimum error on

orrelations.

� -mb: integer

Default: 4.0e+ 4

Number of Monte Carlo samples to take to hek inferene error.

� -mr: integer

Default: 1

Number of independent Monte Carlo runs to perform.

� -g0: real number

Default: 1.0e− 4

The L0 regularization strength. Using this �ag also turns on L0 regularization.

� -g2: real number

Default: 0.0

The L2 regularization strength. L2 regularization is enabled by setting the

regularization strength to a nonzero value using this �ag, or by using the -ag

�ag below.

� -gi: none

Use gauge invariant L2 regularization for ouplings.
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� -ag: none

Attempt to set the L0 and L2 regularization strengths to their optimal values,

based on the number of samples (input) in the data.

� -l0: none

If seleted, L0-norm (sparse) regularization is used.

� -lax: none

If seleted, use a laxer luster onstrution rule.

� -v: none

Enable verbose output.

qls The implementation of qls ode has been done by J.P. Barton.

� -(�ag name): (type of input expeted)

� -d: string

Default: "." (urrent diretory)

Path to the diretory where the data �le is loated, and where output will be

written.

� -i: string

Default: "input"

The loation of the �le ontaining a set of ouplings, the starting values for the

Monte Carlo learning algorithm.

� -o: string

Default: "output"

The loation of the �le where output is to be sent. Eah di�erent type of output

�le will have a di�erent �le type, e.g. .j for ouplings.

� -: string

Default: "input"

The loation of the �le ontaining the set of orrelations to reprodue (i.e. the

orrelations obtained from the data).

� -s: string

Default: none

Starting on�guration for MC simulations. (File extension requested .dat)

� -g2: real number

Default: 0.0

The L2 regularization strength. L2 regularization is enabled by setting the
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regularization strength to a nonzero value using this �ag, or by using the -ag

�ag below.

� -gi: none

Use gauge invariant L2 regularization for ouplings.

� -ag: none

Attempt to set the L2 regularization strengths to its optimal value, based on

the number of samples (input) in the data.

� -b: real number

Default: 1.0e+ 4

Number of samples used to ompute the orrelations. Used to determine the

inferene error.

� -mb: integer

Default: 8.0e+ 5

Number of Monte Carlo samples to take to hek inferene error.

� -mr: integer

Default: 1

Number of independent Monte Carlo runs to perform.

� -e: real number

Default: 1.0

Maximum tolerable error threshold. The MC learning algorithm will ontinue

to run until the error on the one- and two-point orrelations falls below this

level.

� -v: none

Enable verbose output.

qgt

� -(�ag name): (type of input expeted)

� -d: string

Default: "." (urrent diretory)

Path to the diretory where the data �le is loated, and where output will be

written.

� -i: string

Default: "input"

The loation of the �le ontaining a set of ouplings for the Monte Carlo sam-

pling.
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� -o: string

Default: "output"

The loation of the �le where output is to be sent.

� - or -ons: string

Default: "input" The loation of the �le ontaining the referene sequene for

mutation probability. e.g. onsensus or wildtype sequene

� -m or -msa: string

Default: "input"

The loation of the �le ontaining the ompressed alignment .msa

� -w: string

Default: "input"

The loation of the �le ontaining the re-weighting vetor

� -s: string

Default: none

Starting on�guration for MC simulations.

� -b: real number

Default: 1.0e+ 4

Number of samples used to ompute the orrelations. (MSA size)

� -g2: real number

Default: 0.0

The L2 regularization strength. L2 regularization is enabled by setting the

regularization strength to a nonzero value using this �ag, or by using the -ag

�ag below.

� -ag: none

Attempt to set the L2 regularization strengths to its optimal value, based on

the number of samples (input) in the data.

� -mb: integer

Default: 8.0e+ 5

Number of Monte Carlo samples to take to hek inferene error.

� -mr: integer

Default: 1

Number of independent Monte Carlo runs to perform.

� -msaout: none

If seleted, print Monte Carlo alignment in output�le.msa and energies of se-

quenes in output�le.e

123



� -p3: none

Default: false (needed for VERY large systems)

Compute also 3-point orrelations and print all of them in an output �les

� -p3red: none

Default: false (needed for large systems)

Compute also 3-point orrelations and print all of those that are larger than

〈p〉3. Among the other ones print only 1 over 50.

� -err: none

Compute and write onneted orrelation errors on statistis. (Written in the

orresponding �le)

� -v: none

Enable verbose output.

Input and output �les Files are distinguished thanks to their extension referring

to a partiular type or formatting of data found inside. Standard extension are the

following:

� *.p

Contains the input frequenies and orrelations. Frequenies are listed before,

olours belonging to the same site stays on the same line. Then orrelations for

pair of sited ij are listed. Again the same line ontains all olour ombinations

existing for the onsidered pair of site. Colours are ordered aording to site i

�rst and then site j. Only j > i pairs are inluded and ordered aording to

site i �rst and then to site j.

� *.j

Contains output parameters. Fields and ouplings are listed in the same format

as frequenies and orrelations.

� *.se

Contains supplementary information about ae iterations and onvergene. Columns

ontain in the order: t, epsilonP , epsilonC , epsilonmax, �nal ross-entropy, max-

imum luster size, total number of omputed lusters, total number of signi�ant

lusters, L2-norm regularisation term for both J and h.

� *.l

Contains a list of lusters. Eah luster has to ontain more than one site. Sites

belonging to the same luster are written on the same line.
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� *.�t

Contains MC-learning iteration outputs. Columns ontain in the order: itera-

tion , epsilonP , epsilonP2, epsilonmax,L∞-norm of weights.

� *.msa

Contains the MSA in a ompressed format made of a single olumn. Only

symbols seen at least one are reported. −1 �ags divide di�erent sites and

olours. After the �ag the full set of sequenes ontaining that olours on than

site is listed using di�erent numbers to represent di�erent sequenes. Sites are

listed �rst and then olours.

� *.ons

Contains the onsensus sequene needed for the omputation of P (k).

� *.wgt

Contains the re-weighting vetor assigning a weight to eah sequene aording

to sequene similarity.

� *.m

Contains both input and output magnetisations. Input on the �rst olumn

output on the seond one.

� *.p2

Contains both input and output 2-point orrelations. Input on the �rst olumn

output on the seond one.

� *.2

Contains both input and output 2-point onneted orrelations. Input on the

�rst olumn output on the seond one.

� *.p3

Contains both input and output 3-point orrelations. Input on the �rst olumn

output on the seond one.

� *.3

Contains both input and output 3-point onneted orrelations. Input on the

�rst olumn output on the seond one.

� *.pk

Contains the P (k) distribution. In the �rst olumn k is listed, in the seond

olumn the input P (k) and in the third one the output P (k).

� *.msa

Contains the output MSA made of MC sequenes.
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� *.e

Contains the energies of the sequenes in *.msaout

� *.msae

Contains the energies of the sequenes in *.msa aording to the inferred model.

A.1.2 RunSript_2.0.sh pakage software

The bash sript RunSript_2.0.sh runs both ACE programs and some Matlab

sripts for pre- and post-proessing of data. The major advantage given by the use

of this sripts is that it parallelises the algorithm and output analysis. After that

all input �les are ready and also DCA and plmDCA have run (if required), the ACE

is launhed on input data. If the option for t reording is hosen eah time a new

set of parameters is reorded at a ertain t the sript runs �rst the MC-learning

and then the generative tests on both learned and non-learned parameters. The

minimum number of ores required is thus two. This parallelisation of inferene

and analysis is partiularly interesting in order to monitor the onvergene of the

algorithm: omparing the generative tests of learned and non-learned parameter one

an easily understand if it is the ase to stop the algorithm or if a better approximation

of the ross-entropy is needed to obtain reasonable results. For arti�ial models also

the ontat map and the parameter omparison is performed at eah reorded t.

RunSript_2.0.sh ontains and manages runs for the following programs:

CreateModel this Matlab funtion build arti�ial models. It extrats random

parameters from Gaussian or Uniform distributions and assign them to di�erent types

of graphs suh as 1D hains, Erdos-Renyi random graphs or spei� RNA-based

graphs.

qDataMC It is a ++ program preforming a MC-sampling of a given q-state Potts

model.

rnaDCA Again a Matlab funtion for the DCA mean-�eld inferene starting from

a MSA.

plmDCA_symmetri This program belongs to the plmDCA_symmetri_v2 pak-

age for the plmDCA. This software have not been developed by the author of this

dissertation but the orresponding referene is [19℄.
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ComputeErrors This Matlab funtion takes as input a MSA and ompute all the

statistial observable needed by the ACE algorithm. All ACE input �les are written

in the orret format from this funtion. It performs the olour ompression and

ompute exat or approximated (depending on system size and user input) errors on

inferred parameters. The arti�ial model version map ompressed orrelations to the

full original model to prepare omparison among inferred parameters.

GaugeFixing It is a Matlab funtion to move both inferred parameters and input

ones, for arti�ial models, to a given lattie-gas gauge.

PreditMap A Matlab funtion for the omputation of salar sores from oupling

and true positive rates based on the input network of interations. When real data

are used a ontat map has to be spei�ed.

ACE pakage All the programs in the ACE pakage an be run within Run-

Sript_2.0.sh. Only the most ommon option have anyway been inluded. For a

more personal use we reommend to launh ACE programs individually.

A.1.3 RunSript_2.0.sh input options

The following list ontains all the input options one an give to RunSript_2.0.sh:

� -g: real number

Regularisation strength

� -i: string

Input diretory

� -o: string

Output diretory

� -p: real number

Colour ompression threshold

� -m: string

Colour ompression method: one an both speify a threshold on the frequeny

"pmin� or on the entropy ontribution "entr�

� -r: real number

Re-weighting threshold

� -f: real number

Frequeny for t reording of parameters within ACE
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� -M: string

Matlab path

� -S: string

ACE path

� -N: integer

Number of sites in the model

� -q: integer

Max number of olours per site. For arti�ial model spei�es the number of

olours of the input Potts model.

� -B: integer

Sample size

� -b: integer

Change the number of samples omputed by the MC for generative tests

� -J: real number

Couplings variane. For arti�ial models only.

� -H: real number

Field variane. For arti�ial model only.

� -h: real number

Fields extra-mean for bimodal distribution. For arti�ial models only.

� -t: string

Type of model.

� '1D' = 1D Potts ring

� 'ER00' = Erdos Renyi graph

The two numbers that follow ER represent the p probability to reate a

link between two nodes. Examples: ER20 , p=0.2, ER59, p=0.59, et.

� 'SS' = Hairpin loop graph with Watson-Crik base pairs

Base pairs start from 1 - N and ome up (2 - (N-1), 3 - (N-2), et.).

The number of W-C base pais has to be expressed in the two numbers

that follows the type. Also a ertain numbers of tertiary ontats an be

added, use other two numbers in the name.

Adding an S to the end of the type name means "solve analytially the model".

For 1D model this is quite fast (transfer matrix method), but for the other

models is omputationally very expensive. Adding an U means "do not solve
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analytially the model". Between the type and the SU it is possible to put a

whatever name. Some examples: ER40_test1_U = Erdos Renyi p=0.4 un-

solved alled "test1", SS1708bS = seondary struture with 17 W-C base pairs

and 8 tertiary.

� -x: string

Use a selet list of lusters as input. Speify the �le ontaining the list

� -: 1

Create model. For arti�ial models only.

� -n: 1

Run MC-sampling form input parameters. For arti�ial models only.

� -e: 1

Run ComputeErrors

� -d: 1

Run mean-�eld analysis on the olour-ompressed model

� -s: 1

Run ACE

� -a: 1

Run the full analysis on output of ACE algorithm. It inludes qls and qgt for

all reorded value of t

� -O: 1

Run other algorithms (DCA and plmDCA) on the non-ompressed model in the

original alignment.

� -R: 1

Run analysis with real parameters to hek thermalisation of MC routines.
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Methods for statistial inferene on orrelated data:

appliation to genomi data

Abstrat

The availability of huge amounts of data has hanged the role of physis

with respet to other disiplines. Within this dissertation I will explore the

innovations introdued in moleular biology thanks to statistial physis

approahes. In the last 20 years the size of genome databases has expo-

nentially inreased, therefore the exploitation of raw data, in the sope of

extrating information, has beome a major topi in statistial physis.

After the suess in protein struture predition, surprising results have

been �nally ahieved also in the related �eld of RNA struture harater-

isation. However, reent studies have revealed that, even if databases are

growing, inferene is often performed in the under sampling regime and

new omputational shemes are needed in order to overome this intrinsi

limitation of real data. This dissertation will disuss inferene methods

and their appliation to RNA struture predition. We will disuss some

heuristi approahes that have been suessfully applied in the past years,

even if poorly theoretially understood. The last part of the work will

fous on the development of a tool for the inferene of generative models,

hoping it will pave the way towards novel appliations.

Keywords: inferene, RNA, mean-�eld, Potts model, generative models,

regularisation, struture predition



Résumé

La disponibilité de quantités énormes de données a hangé le r�le de la

physique par rapport aux autres disiplines. Dans ette thèse, je vais

explorer les innovations introduites dans la biologie moléulaire grâe à

des approhes de physique statistique. Au ours des 20 dernières années,

la taille des bases de données sur le génome a augmenté de façon expo-

nentielle : l'exploitation des données brutes, dans le hamp d'appliation

de l'extration d'informations, est don devenu un sujet majeur dans la

physique statistique. Après le suès dans la prédition de la struture

des protéines, des résultats étonnamment bons ont été �nalement obtenus

aussi pour l'ARN. Cependant, des études réentes ont révélé que, même si

les bases de données sont de plus en plus grandes, l'inférene est souvent

e�etuée dans le régime de sous-éhantillonnage et de nouveaux systèmes

informatiques sont néessaires a�n de surmonter ette limitation intrin-

sèque des données réelles. Cette thèse va disuter des méthodes d'inférene

et leur appliation à des préditions de la struture de l'ARN. Nous allons

omprendre ertaines approhes heuristiques qui ont été appliquées ave

suès dans les dernières années, même si théoriquement mal omprises.

La dernière partie du travail se onentrera sur le développement d'un

outil pour l'inférene de modèles génératifs, en espérant qu'il ouvrira la

voie à de nouvelles appliations.

Mots-lés: Inférene, ARN, hamp moyen, modèl de Potts, modèles

génératifs, régularisation, prédition struturelle
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