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Abstract

The thesis focuses on the experimental investigation of the optical hybrid approach for
quantum information processing. Specifically, two traditionally separated approaches, i.e.
the discrete and the continuous-variable ones, are combined in the same experiment with two
distinct quantum measurements based on photon counting (photon number) and homodyne
detection (quadrature components).

The optical hybrid approach is first applied to generate high-fidelity non-Gaussian states,
e.g. Fock states and Schrödinger cat states, which correspond to two types of qubit encodings
used in optical quantum information. The use of high-efficiency superconducting nanowire
single-photon detectors leads to an unprecedented preparation rate, which facilitates the
subsequent use of these states. For instance, the two types of states are combined to generate
for the first time a hybrid entanglement between particle-like and wave-like optical qubits, as
well as the extension to hybrid qutrit entanglement. These novel resources may pave the way
to implement heterogeneous networks where discrete and continuous-variable operations and
techniques can be efficiently combined. Additionally, we also experimentally demonstrate
for the first time the so-called squeezing-induced micro-macro entangled states.

During this PhD, efforts have also been dedicated to implement a high-efficiency and
low-noise frequency up-conversion system based on two synchronized fiber lasers. Such
quantum frequency converter not only permits to extend the spectra of quantum states
to difficultly accessible wavelengths with current technology, but also constitutes a high-
performance photon detector especially in the infrared regime. Based on the conversion
system, several applications are demonstrated, such as infrared photon-number-resolving
detection, and few-photon-level infrared imaging.

Keywords

optical quantum information, Fock state, Schrödinger cat state, non-Gaussian state, hybrid
entanglement, frequency up-conversion detection
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Résumé

Cette thèse s’intéresse à une approche dite hybride de l’information quantique. Deux ap-
proches traditionnellement séparées, variables discrètes et variables continues, sont com-
binées dans une même expérience nécessitant à la fois comptage de photons (nombre de
photons) et détection homodyne (quadratures).

Cette architecture hybride a d’abord été utilisée pour générer des états non-gaussiens
de la lumière de grande fidélité, par exemple état de Fock et chat de Schrödinger optique,
qui correspondent à deux types d’encodages utilisés en information quantique. L’utilisation
de détecteurs supraconducteurs à forte efficacité a permis d’obtenir un taux de préparation
sans précédent, ce qui facilite l’utilisation ultérieure de ces états. Ces deux types d’états
ont ensuite été combinés pour réaliser pour la première fois une intrication hybride entre
qubits optiques de nature différente. Son extension à des qutrits a également été obtenue.
Ces nouvelles ressources ouvrent la voie à la mise en œuvre de réseau quantique hétérogène
où les opérations et les techniques propres aux variables discrètes et continues peuvent être
efficacement combinées.

Ce travail de thèse a également été consacré à la mise en œuvre d’un système de conver-
sion de fréquence à haute efficacité et faible bruit, basé sur deux lasers à fibres synchronisés.
Ce convertisseur de fréquence quantique permet non seulement d’étendre les états quantiques
à des longueurs d’onde difficilement accessibles avec la technologie actuelle, mais constitue
également un détecteur de photons à haute performance, surtout dans le régime infrarouge.
Basé sur ce système, plusieurs applications ont ensuite été démontrées, comme la détection
infrarouge résolue en nombre de photons et l’imagerie infrarouge ultra-sensible.

Mots clés

information quantique, optique quantique, état de Fock, chat de Schrödinger, état non-
gaussien, intrication hybride, conversion de fréquence
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摘摘摘要要要

本论文致力于从实验上探究光量子信息科学中一种新兴的研究框架，其整合了传统上
分隔已久的两种分别基于离散变量与连续变量的路线，将光子探测（光子数）和平衡零拍
探测（光场位相及振幅分量）结合在一个实验当中，充分利用了各自在光量子信息处理中
的特点和优势。

在这种混合架构下，我们首先在实验上制备了两种高纯度的非高斯态，即光子数态和
薛定谔猫态，他们分别对应着光量子信息中两种不同的量子比特载体。得益于高探测效率
的超导纳米线单光子探测器，量子态的制备率达到了前所未有的水平，这极大地促进了其
在后续量子信息协议中的应用。比如，基于上述两种量子态，我们首次在实验上实现了一
种包含“类粒子”和“类波动”量子比特的杂化纠缠态，并将其拓展到量子三元之间的杂
化纠缠态。这种全新的纠缠态为异质光量子信息网络的实现铺平了道路，从而有效地结合
基于离散和连续变量的操作和技术。此外，我们也首次在实验上展示了一种光场压缩致使
的微观—宏观纠缠态。

除了所述量子态的制备，基于时域同步的光纤激光器，我们还搭建了一套高效率低噪
声的频率上转换系统。这套转换系统不仅能够将量子态的频谱延伸到现有技术难以实现的

波长，而且其本身也可以作为一个高效率的红外光子探测器。基于这套系统，我们分别实
现了红外光子可分辨探测和少光子水平红外灵敏成像。

关关关键键键字字字

光量子信息，光子数态，薛定谔猫态，非高斯态，杂化纠缠态，频率上转换探测
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Introduction

Quantum information science

Historically, the idea of exploiting quantum phenomena in information technology was ini-
tiated in the 1970s, and rapidly attracted intensive interests among a small group of pio-
neer physicists, among others Richard Feynman, Charles Bennett, Paul Benioff, and David
Deutsch. The investigation of the foundational problems of quantum mechanics and the
physics of computation finally gave birth to a new fascinating field of research: quantum
information science [1, 2]. Since then, a large variety of quantum protocols and algorithms
as well as many revolutionary experimental demonstrations have been proposed and imple-
mented driven by the prospect to develop new processing and communication capabilities
from the quantum realm.

Quantum information science spans a wide variety of topics, including quantum commu-
nication, quantum computation, and quantum metrology. These three streams of researches
have progressed mostly in parallel but deeply connected. More specifically, quantum commu-
nication, the art of transferring a quantum state from one place to another [3], has recently
reached a level of maturity. For instance, the implementation of quantum cryptography pro-
tocols, allowing an absolutely secure exchange of information, has been demonstrated to the
extent that commercial products are now available. Besides of information transportation,
much attention has also been attracted in information processing to realize quantum com-
putation, which could dramatically improve computational power for particular tasks [4].
Many algorithms have hitherto been proposed to demonstrate the remarkable computing
capability beyond any classical computer, such as Shor’s algorithm for integer factorization,
and Grover’s algorithm for data searching. The third direction, quantum metrology, is fast
emerging, and would enable to reach an unprecedented precision beyond the classical limit
[5].

In general, all forms of information processing can be considered in a quantum mechanical
context. For instance the no-cloning theorem, which states that the creation of identical
copies of an arbitrary unknown quantum state is forbidden, leads to various applications,
including quantum cryptography, quantum teleportation, and quantum repeaters. Another
example can be highlighted with the quantum superposition, which leads to the realization
of a qubit state, as used in quantum information processing. The qubit is in a superposition
of both logical states at the same time, which powers quantum computation with a unique
property so-called parallelism. Additionally entanglement, one of the most striking feature
in quantum mechanics, is an extremely valuable resource for achieving many tasks such as
quantum teleportation [6] or quantum dense coding [7].

This thesis enters into this general context, and focuses on a specific approach for im-
plementing optical quantum information processing (QIP).

Optical hybrid architecture

In practical optical QIP, there are two complementary approaches for encoding information
with light, namely the discrete- and the continuous-variable approaches, each exploiting
only one aspect of the wave-particle duality of light. Some protocols harness the particle-
like discrete nature of light to encode quantum information on qubits, i.e. states of the form
c0|0〉+ c1|1〉, which involve single-photons, and live in a two-dimensional space spanned for
example by orthogonal polarizations or the absence or presence of a single-photon [8]. In the

xiii
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continuous alternative, i.e. wave-like qubits, the encoding is realized with the quadrature
components (amplitude or phase) of a light field [9], in an inherently infinite-dimensional
space. The qubits can be implemented for instance as arbitrary superpositions of classical
light waves with opposite phases, known as optical Schrödinger cat states, c0|α〉+ c1| − α〉,
where |α〉 is a coherent state with mean photon number |α|2.

Both encodings have advantages and drawbacks. Specifically discrete-variable QIP en-
ables the realization of operations with a nearly unity fidelity, but it usually involves prob-
abilistic implementations and mostly requires post-selection of successful events. On the
other side, the continuous-variable approach can benefit from high detection efficiency by
homodyne measurement and enables deterministic operations based on the on-demand en-
tanglement resources. However, it typically suffers from intrinsically limited operation fi-
delity due to the imperfection of the entanglement. A brief comparison between these two
encoding methods is summarized in Table 1 in terms of preparation, characterization, and
detection [10, 11].

Table 1: Comparison between discrete-variable (DV) and continuous-variable (CV)
QIP [11].

DV QIP CV QIP

Carrier Discrete degree of freedom of a photona Quadratures of a light field
Source Photons by PDCb Squeezed light by PDC
Basis Photon number basis: {|n〉} Quadrature basis: {|x〉}
Dimensionality Finite Infinite
Encoding |ψ〉 = α|0, 1〉+ β|1, 0〉 |ψ〉 = ∫ ψ(x)|x〉dx
Representation Density matrix Wigner function
Detector Photon detector (measure n̂) Homodyne detector (measure x̂)
Difficulty Two-qubit gatec Non-Gaussian gated

ae.g. polarization, orbital angular momentum, photon number, time bin, spatial mode . . .
bPDC: parametric down-conversion
ce.g. CNOT gate
de.g. cubic phase gate

Recently, a large effort has been dedicated to combining both approaches in a so-called
optical hybrid architecture that overcomes the current limitations of optical QIP [10, 11,
12, 13, 14]. Indeed the integration of the discrete- and continuous-variable toolboxes and
technologies has stimulated a series of new proposals and groundbreaking experiments.

Context and outline of the thesis

The general objective of the work during this thesis is to develop the required toolbox in the
hybrid approach for quantum information processing, where continuous variables of light and
photon counting are mixed. Specifically, we focus on the engineering of high-fidelity optical
quantum states (particularly non-Gaussian states) and the development of high-performance
photon detectors.

This PhD work has been accomplished in the framework of a co-tutored program be-
tween Laboratoire Kastler Brossel (Paris, France) and Laboratory of Precision Spectroscopy
(Shanghai, China). Benefiting from the bilateral research resources, we conduct three main
works:

• Experimental realization of high-purity non-Gaussian states, such as Fock states and
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Schrödinger cat states, which constitute respectively two different photonic qubits in
the quantum information processing.

• Laboratory generation of hybrid entanglement between particle-like and wave-like opti-
cal qubits, leading to the demonstration of a squeezing-induced micro-macro entangled
state.

• Experimental implementation of coincident frequency up-converter based on two syn-
chronized fiber lasers, with applications to infrared single-photon detection, infrared
photon-number-resolving detection and ultra-sensitive infrared imaging.

Before presenting the main results of these works, in Part I we first introduce some
theoretical and experimental tools required to understand the physical mechanisms and the
experimental realizations. Specifically, in Chapter 1 we give a general introduction about
the quantum theory of light, and provide two formalisms to describe quantum states, i.e.
the density matrix and the Wigner function. With the Wigner function, the quantum states
can be classified into two categories: Gaussian states and non-Gaussian states. The produc-
tion of Gaussian states, particularly squeezed states, or two-mode squeezed vacuum states,
are theoretically investigated in Chapter 2 based on nonlinear frequency down-conversion.
Its complementary process, frequency up-conversion, is also studied as the basis for the
implementation of quantum frequency converter. The transformation of Gaussian states
into non-Gaussian ones can result from the so-called measurement-induced nonlinearity, as
detailed in Chapter 3. Finally, Chapter 4 presents an automatic locking system based on mi-
crocontroller fully developed during this thesis. This system serves as a useful and versatile
tool for phase and cavity lockings in the various experiments.

Part II describes the experimental demonstrations of quantum state engineering. The
first example is the generation of heralded Fock states as shown in Chapter 5. Thanks
to the low loss of the whole optical system and the high performance of superconducting
single-photon detectors, quantum-optical state engineering up to the two-photon level is
experimentally demonstrated. These features are also applied to produce Schrödinger cat
states as detailed in Chapter 6. With the combination of the discrete-variable (Fock states)
and continuous-variable (cat states) resources, we then experimentally generate for the first
time a novel kind of optical entanglement, a so-called optical hybrid entanglement, as illus-
trated in Chapter 7. Beyond its fundamental significance, such hybrid entanglement opens
the promises for heterogeneous network implementation, where discrete and continuous-
variable operations and techniques can be efficiently combined. Additionally, based on this
resource, we investigate a so-called squeezing-induced micro-macro entangled state, which
is reminiscent of the original spirit of the Schrödinger cat state gedanken experiment.

In Part III, we report the parallel effort dedicated to the implementation of quantum
frequency up-converter, which has promising applications in QIP. First, this up-converter
can be used as an efficient photon detector, particularly at the infrared wavelengths. Second,
it enables to spectrally translate the quantum state. This functional capability can find ap-
plications as frequency converter in future quantum network. Third, the quantum converter
also provides an effective way to manipulate quantum states in the spectro-temporal domain.
In Chapter 8, a high-efficiency and low-noise coincidence frequency conversion system is pre-
sented. Applications based on this conversion system, e.g. infrared photon-number-resolving
detection and few-photon-level infrared imaging, are given in Chapter 9.



xvi Introduction



Publications and awards

Publications

1. K. Huang, H. Le Jeannic, V.B. Verma, M.D. Shaw, F. Marsili, S.W. Nam, E Wu,
H. Zeng, O. Morin, J. Laurat, “Experimental quantum state engineering with time-
separated heraldings from a continuous-wave light source: a temporal-mode analysis,”
arXiv:1511.02122 (2015).

2. K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W.
Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Synthesis of
large squeezed coherent-state superpositions with minimal resources,” Physical Review
Letters 115, 023602 (2015). doi: 10.1103/PhysRevLett.115.023602

3. K. Huang, H. Le Jeannic, J. Ruaudel, O. Morin, and J. Laurat, “Microcontroller-based
locking in optics experiments,” Review of Scientific Instruments 85, 123112 (2014).
doi: 10.1063/1.4903869

4. O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation
of hybrid entanglement between particle-like and wave-like optical qubits,” Nature
Photonics 8, 570-574 (2014). doi: 10.1038/nphoton.2014.137

5. O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum State
Engineering of Light with Continuous-Wave Optical Parametric Oscillators”, Journal
of Visualized Experiments 87, e51224 (2014). doi: 10.3791/51224

6. K. Huang, X. Gu, Q. Zhou, H. Pan, E Wu, and H. Zeng, “Efficient generation of mid-
infrared photons at 3.16 µm by coincidence frequency downconversion,” Laser Physics
23, 045401 (2013). doi: 10.1088/1054-660X/23/4/045401

7. Q. Zhou, K. Huang, H. Pan, E Wu, and H. Zeng, “Ultrasensitive mid-infrared up-
conversion imaging at few-photon level,” Applied Physics Letters 102, 241110 (2013).
doi: 10.1063/1.4811826

8. X. Gu, K. Huang, H. Pan, E Wu, and H. Zeng, “Efficient mid-infrared single-photon
frequency upconversion detection with ultra-low background counts,” Laser Physics
Letters 10, 055401 (2013). doi: 10.1088/1612-2011/10/5/055401

9. K. Huang, X. Gu, H. Pan, E Wu, and H. Zeng, “Few-photon-level two-dimensional
infrared imaging by coincidence frequency upconversion,” Applied Physics Letters 100,
151102 (2012). doi: 10.1063/1.3703610

10. K. Huang, X. Gu, H. Pan, E Wu, and H. Zeng, “Synchronized fiber lasers for efficient
coincidence single-photon frequency upconversion,” IEEE Journal of Selected Topics
in Quantum Electronics 18, 562 (2012). doi: 10.1109/JSTQE.2010.2102005

11. K. Huang, E Wu, X. Gu, H. Pan, and H. Zeng, “Ultrashort Laser Pulses for Fre-
quency Upconversion”, in chapter 16 of book Laser Pulses - Theory, Technology, and
Applications, edited by Igor Peshko, ISBN 978-953-51-0796-5, October 17, 2012. doi:
10.5772/48541

12. X. Gu, K. Huang, H. Pan, E Wu, and H. Zeng, “Photon correlation in single-photon
frequency upconversion,” Optics Express 20, 2399 (2012). doi: 10.1364/OE.20.002399

xvii

http://arxiv.org/abs/1511.02122
http://dx.doi.org/10.1103/PhysRevLett.115.023602
http://dx.doi.org/10.1063/1.4903869
http://dx.doi.org/10.1038/nphoton.2014.137
http://dx.doi.org/10.3791/51224
http://dx.doi.org/10.1088/1054-660X/23/4/045401
http://dx.doi.org/10.1063/1.4811826
http://dx.doi.org/10.1088/1612-2011/10/5/055401
http://dx.doi.org/10.1063/1.3703610
http://dx.doi.org/10.1109/JSTQE.2010.2102005
http://dx.doi.org/10.5772/48541
http://dx.doi.org/10.1364/OE.20.002399


xviii

13. K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E Wu, and H. Zeng, “Photon-
number-resolving detection at 1.04 µm via coincidence frequency upconversion,” Optics
Letters 36, 9 (2011). doi: 10.1364/OL.36.001722

14. X. Gu, K. Huang, Y. Li, H. Pan, E Wu, and H. Zeng, “Temporal and spectral control
of single-photon frequency upconversion for pulsed radiation,” Applied Physics Letters
96, 131111 (2010). doi: 10.1063/1.3374330

Conferences

1. K. Huang, O. Morin, H. Le Jeannic, J. Liu, C. Fabre, and J. Laurat, Photons Beyond
Qubits, Palacky University, Olomouc, Czech Republic, Apr. 14 -17, 2014.

2. K. Huang, O. Morin, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, 3rd Workshop of
the GDR-IQFA, Université Paris 7, Nov. 20-22, 2013.

3. K. Huang, O. Morin, J. Liu, C. Fabre, and J. Laurat, 3rd workshop of the Sino-French
Research Network on “Quantum Manipulation of Atoms and Photons”, Palaiseau,
France, Sep. 23-27, 2013.

4. K. Huang, X. Gu, H. Pan, E Wu, and H. Zeng, CLEO/QELS, California, U. S., May
6-11, 2012.

5. K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, E Wu, G. Wu, and H. Zeng, Nonlinear
Optics conference, Hawaii, U. S., July 17-22, 2011.

6. K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, E Wu, and H. Zeng, CLEO/QELS,
Maryland, U. S., May 1-6, 2011.

Awards

1. National Scholarship for postgraduate students (2013)

2. Foundation for the Author of National Excellent Doctoral Dissertation of China, East
China Normal University (2012)

3. Second prize of 12th National “Challenge Cup” competition (2011)

4. Award for Excellent Doctors in Academics, East China Normal University, (2011)

5. Second prize of 12th Shanghai “Challenge Cup” (2011)

http://dx.doi.org/10.1364/OL.36.001722
http://dx.doi.org/10.1063/1.3374330


Part I

Theoretical and Experimental

Tools

1





1 | Quantum Theory of Light

In this first chapter, we will briefly introduce some basic concepts about the quantum theory
of light in order to make the whole thesis self-contained, and the manuscript more accessible
to non-specialists. These quantum description and the introduced mathematical notations
will also be useful for the explanations and expressions given in the following chapters. Here
the quantum states are described with two formalisms: the density matrix and the Wigner
function. From their general definitions, we derive some important mathematical properties.
Then Gaussian operations will be presented: they enable to obtain various common Gaussian
states starting from vacuum. Finally, we will give some examples of non-Gaussian states.

For more details about these concepts, the readers can refer to various textbooks with
systematic and rigorous derivations [15, 16, 17, 18, 19].

1.1 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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4 1.1. PHOTONS

1.1 Photons

In the following, we provide the quantum formalism enabling the description of light. The
photon, with a defined energy E = hν, exhibits properties of both waves and particles, also
known as the wave-particle duality.

1.1.1 Creation and annihilation operators

The electromagnetic field is quantized by using the simple harmonic oscillator operators - the
annihilation operator â and the creation operator â†. We have the well-known single-mode
Hamiltonian and commutator,

Ĥ = ~ω

(

ââ† +
1

2

)

,

[â, â†] = 1 .

(1.1)

The product of both operators forms the photon-number operator

n̂ = â†â . (1.2)

The electric field is given by

Ê~k(~r, t) = E0[âe
−i(ωt−~k·~r) + â†ei(ωt−

~k·~r)] , (1.3)

where ~k is the the wave vector. Since the annihilation and creation operators are not
Hermitian, thus they are not observables. When working with real measurements it may be
preferable to use another frame of reference to describe the situation. This is the idea of
field quadratures to describe the light.

1.1.2 Quadrature operators

For constructing observables of light, we use the following Hermitian quadrature operators
1:

x̂ = σ0(â
† + â) ,

p̂ = iσ0(â
† − â) .

(1.4)

Conversely, the annihilation/creation operators are thus given by

â =
x̂+ ip̂

2σ0
,

â† =
x̂− ip̂

2σ0
.

(1.5)

Using the commutation relation (1.1), we can deduce the commutator between the quadra-
ture operators,

[x̂, p̂] = i2σ2
0 . (1.6)

The Heisenberg uncertainty relation follows and is given by

∆x∆p > σ2
0 , (1.7)

1Note that here we use the convention σ0 introduced in [20]. In many other materials, Plank constant ~

is used. They are identified as ~ = 2σ2
0 .
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where ∆x =
√

〈x̂2〉 − 〈x̂〉2 denotes a standard deviation.
The vacuum state saturates the Heisenberg inequality with the following identity

∆x = ∆p = σ0 . (1.8)

This relation highlights the statistical meaning of σ0 : it is the standard deviation of the
vacuum fluctuation.

It is worth noting that quadrature operators can be arbitrarily chosen via rotation by an
angle of θ in phase space

x̂θ = cos θx̂+ sin θp̂

= σ0(âe
−iθ + â†eiθ) .

(1.9)

The orthogonal quadrature operator is given by p̂θ = x̂θ+π/2.
Due to the Hermitian property of the quadrature operator x̂θ, there exists a series of

orthonormal eigenvectors {|xθ〉}xθ∈❘ satisfying the eigenvalue equation

x̂θ|xθ〉 = xθ|xθ〉 , (1.10)

and the completeness condition
∫

R

|xθ〉〈xθ| dxθ = ✶ . (1.11)

Note that these eigenvectors correspond to a fixed phase θ.
Strictly speaking these eigenstates are not truly normalized, thus they cannot be gener-

ated experimentally [19]. Nevertheless, they will appear in many mathematical tricks, for
instance, for the introduction of wave functions as

ψ(xθ) = 〈xθ| ψ〉 . (1.12)

The moduli square of the wave function |ψ(xθ)|2 has the physical meaning of quadrature
probability distribution P|ψ〉(xθ) (also known as marginal distribution), which can be mea-
sured using homodyne detection, as will be detailed in Chapter 3.

The general quadrature eigenstate |xθ〉 can be expressed in the Fock state basis,

|xθ〉 = π−1/4 exp[− 1
2x

2
θ +

√
2eiθxθâ

† − 1
2e

2iθâ†2] |0〉 , (1.13)

from which one can obtain the quadrature representation of any pure state.

1.2 Representations of quantum states

In quantum optics, there are a number of different ways to describe the quantum state of
light. In principle, they can be reformulated from one to the other. Usually, for practical
convenience, one of them would be preferred in certain applications. In this section, two
commonly used formalisms will be introduced, namely the density matrix and the Wigner
function.

1.2.1 Density matrix

A pure state can be simply represented by a single state vector |ψ〉, which is an element of
a Hilbert space H. However, because of the imperfection in the state preparation or due
to environmental decoherence for instance, the state of a quantum system will evolve to a



6 1.2. REPRESENTATIONS OF QUANTUM STATES

statistical mixture of pure states, or mixed state. For describing mixed state we resort to a
more general representation given by the density matrix (or the density operator):

ρ̂ =
∑

i

Pi |ψi〉 〈ψi| , (1.14)

where Pi is the statistical weight of the pure state |ψi〉, with the probability conservation
∑

i
Pi = 1.

A physically acceptable density matrix should satisfy some constraints:

Tr(ρ̂) = 1 ⇔ Normalization

ρ̂ = ρ̂† ⇔ Hermiticity

〈ψ| ρ̂ |ψ〉 > 0 for ∀ |ψ〉 ⇔ Positivity

(1.15)

From these requirements, the density matrix have many properties that lead to important
concepts.

Diagonalisation The density matrix can always be diagonalized into some orthogonal basis,

ρ̂ =
∑

i

pi |ψi〉 〈ψi| . (1.16)

This can be seen as a weighted sum of probabilities across multiple pure states, where the
weights are given by the eigenvalues pi of the density matrix.

Purity The purity of a quantum state is defined as

P = Tr[ρ̂2] =
∑

i

p2i . (1.17)

For pure state P = 1; otherwise for mixed state, 0 < P < 1.

von Neumann entropy This is another criterion for purity given by

SvN = −Tr[ρ̂ ln ρ̂] = −
∑

i

pi ln pi . (1.18)

This quantity is equal to 0 for pure states and positive otherwise. Additionally, this quantity
is often used as a measure of entanglement for pure states by treating ρ̂ as the density matrix
for either of two entangled subsystems 2.

Fidelity This quantity enables to measure the similarity between two quantum states, gen-
erally defined as 3:

F(ρ̂1, ρ̂2) =

(

Tr

[
√

√

ρ̂2ρ̂1
√

ρ̂2

])2

. (1.19)

2Actually, for pure states, the entanglement is directly linked to the purity of the subsystem density matrix
(after a partial trace of the full density matrix). A pure state is entangled if and only if the subsystem is in
a mixed state.

3If one state is pure, F = Tr[ρ̂1ρ̂2] ; if both are pure states, F = |〈ψ1|ψ2〉|2 [20]. Additionally, the fidelity
is bounded by [21]

F(ρ̂1, ρ̂2) > Tr(ρ̂1ρ̂2) +
√
2

√

[Tr(ρ̂1ρ̂2)]
2 +Tr(ρ̂1ρ̂2ρ̂1ρ̂2) ,

F(ρ̂1, ρ̂2) 6 Tr(ρ̂1ρ̂2) +
√

[1− Tr(ρ̂21)][1− Tr(ρ̂22)] .

The above inequalities are saturated if at least one state is pure.
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Marginal distribution It corresponds to the probability distribution (non-negative real
number) of quadrature values for a given state

Pρ̂(xθ) = 〈xθ|ρ̂|xθ〉 . (1.20)

1.2.2 Wigner function

Besides of the density matrix, it is also possible to represent a given quantum state in phase
space by a quasi-probability distribution known as the Wigner function. It is called a quasi-
probability distribution because it can take negative values. The negativity of the Wigner
function is considered as a strong indication of non-classicality.

The Wigner function of a quantum state was firstly introduced by E.P. Wigner in 1932
in the context of quantum mechanical corrections for thermodynamic equilibrium. It can
be written as 4:

Wρ̂(x, p) =
1

2πσ2
0

∫

eiyp/σ
2
0 〈x− y|ρ̂|x+ y〉 dy . (1.21)

For a pure state, the Wigner function can be expressed via the wave function

Wρ̂(x, p) =
1

2πσ2
0

∫

eiyp/σ
2
0ψ∗(x− y)ψ(x+ y) dy . (1.22)

With the parity operator P̂ = eiπâ
†â, the Wigner function can also be written in the following

form [18]

Wρ̂(x, p) =
1

4σ2
0

Wρ̂(α) =
1

2πσ2
0

Tr[D̂(−α)ρ̂D̂(α)P̂] , (1.23)

where x+ ip = 2σ0α.
From the density matrix, the Wigner function can be calculated as

Wρ̂(x, y) =
∑

k,l

ρklW|k〉〈l|(x, y) , (1.24)

where

W|k〉〈l|(x, p) =
(−1)l

2πσ2
0

√

l!

k!

(

x−ip
σ0

)k−l
e−(x2+p2)/2σ2

0Lk−ll

(

x2+p2

σ2
0

)

, (1.25)

with Lk−ll a associated Laguerre polynomial (cf. Appendix A). This equation is true for
k > l, otherwise, we can use the following relation

W|k〉〈l|(x, p) =W ∗
|l〉〈k|(x, p) k 6 l . (1.26)

Thanks to equation (1.25), it is possible to access each element of the density matrix from
the Wigner function

ρkl = Tr[ρ̂|k〉〈l|] = 4πσ2
0

∫∫

dxdp Wρ̂(x, p)W|k〉〈l|(x, p) . (1.27)

The equation (1.24) is very useful to calculate numerically the Wigner function associated
with a given density matrix. It can also be generalized to more than one modes with two
variables xi, pi for each mode i, for instance:

Wρ̂(x1, y1;x2, y2) =
∑

k,l;m,n

ρklmnW|k〉〈l|(x1, y1)W|m〉〈n|(x2, y2) , (1.28)

4Originally it was written with the convention using ~ :

Wρ̂(x, p) =
1

2π~

∫

R

eipy/~〈x− y/2|ρ̂|x+ y/2〉 dy
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where ρklmn is the density matrix element of a two-mode state.

Similarly to the density matrix, the Wigner function of a physical state should respect
some basic constraints:

∫∫

R2

Wρ̂(x, p)dxdp = 1 ⇔ Normalization

Wρ̂(x, p) ∈ R ⇔ Hermiticity

Pρ̂(xθ) > 0 for ∀ xθ ⇔ Positivity

|W (x, p)| 6 1

2πσ2
0

⇔ Bound

(1.29)

where the marginal distribution is given by

Pρ̂(xθ) =
∫

dpθWρ̂(xθ cos θ − pθ sin θ, pθ cos θ + xθ sin θ) . (1.30)

Besides of these relations, the Wigner function should be continuous in the phase space.
Unlike the density matrix, it seems that there is no simple sufficient condition for ensuring
that a function is the Wigner function of a physical state. One solution is to transform
the Wigner function back to the corresponding density matrix, and thus use the sufficient
condition (1.15). However this method needs a truncation of the Hilbert space.

Here are some important properties associated with the Wigner function:

Overlap formula This is a general formula for two Hermitian operators.

Tr[Ô1Ô2] = 4πσ2
0

∫∫

dxdp WÔ1
(x, p)WÔ2

(x, p) . (1.31)

It is a very powerful tool for many calculations, such as the calculation of fidelity, purity,
and the study of conditional measurement.

Value at phase-space origin The value of the Wigner function at the phase-space origin
only depends on the diagonal elements of the density matrix:

2πσ2
0Wρ̂(0, 0) =

∑

k

(−1)kρkk . (1.32)

It is related to the expectation value of the parity operator 5.

Symmetrically ordered operator The quantum mechanical expectation value for an oper-
ator function F(x̂, p̂) that is symmetrically ordered with respect to x̂ and p̂ agrees with the
corresponding “classical” average, where W (x, p) plays the role of the weight function:

〈F(x̂, p̂)〉 =
∫∫

W (x, p)f(x, p)dxdp . (1.33)

Here, the classical function f is obtained from the operator function F by replacing x̂ by x
and p̂ by p.

5It can be obtained from 2πσ2
0Wρ̂(0, 0) = Tr[ρ̂P̂] .
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The relationship can be applied to the operator function based on the symmetrically
ordered photon creation and annihilation operators:

〈

F(â†, â)
〉

=

∫∫

W (x, p)f(x, p)dxdp . (1.34)

The classical function f(x, p) is simply obtained from the following exchange:

â† → x+ ip

2σ0
â→ x− ip

2σ0
. (1.35)

1.3 Gaussian manipulations

Gaussian manipulations are primary tools for state preparation and analysis in continuous-
variable quantum information processing [22, 23]. In this section, we will introduce the
concept of Gaussianity and the realm of Gaussian operations will be presented as well.

1.3.1 Gaussianity

The famous Hudson-Piquet theorem [24] establishes an equivalence between the (quantum)
non-Gaussian character and the negativity of the Wigner function for pure states:

A necessary and sufficient condition for a pure quantum state being a Gaussian state is
that the corresponding Wigner function is positive (true probability distribution).

Although this relation cannot simply extend to mixed states [25], great effort is still dedi-
cated to find connection between Gaussianity and Wigner function properties for a general
state. It has been recently proved that for a Gaussian state, the value of the Wigner function
at the origin of phase space is bounded by a positive quantity, which is a function only of
the average photon number of the state [26]. Specifically, a quantum state is non-Gaussian
if

W (0, 0) <
1

π
e−2n̄(n̄+1), (1.36)

where n̄ is the mean photon number.

1.3.2 Gaussian operations

A quantum operation is said Gaussian when it maps Gaussian states into Gaussian states.
Gaussian operations are unitary and thus trace preserving. They can be described by inter-
action Hamiltonian with at maximum quadratic annihilation/creation operators.

Rotation The rotation operation can be achieved with the so-called phase shift operator

Û(θ) = e−iθâ
†â . (1.37)

It can be realized by changing the phase of the quantum states, e.g. the temporal evolution,
which leads to the rotation of its Wigner function in phase space. The rotated Wigner
function WÛ ρ̂Û†(x, p) and the original one Wρ̂(x, p) are related by

WÛ ρ̂Û†(x, p) =Wρ̂(x cos θ − p sin θ, p cos θ + x sin θ) . (1.38)

The density matrix element of the phase shift operator in the Fock state basis is given by

Umn(θ) = 〈m|Û(θ)|n〉 = e−iθnδmn , (1.39)

where δmn is the Kronecker delta symbol.



10 1.3. GAUSSIAN MANIPULATIONS

Displacement The displacement operation is achieved with the displacement operator de-
fined as:

D̂(α) = eαâ
†−α∗â . (1.40)

Experimentally, it can be realized by mixing a state with a bright coherent light on a highly
asymmetric beam-splitter. As it is called, the displacement operation will translate the
Wigner function in phase space in the following way

WD̂ρ̂D̂†(x, p) =Wρ̂(x− 2σ0ℜ[α], p− 2σ0ℑ[α]) . (1.41)

The density matrix element of the displacement operator in the Fock state basis is given by

Dmn(α) = 〈m|D̂(α)|n〉

=

√

n!

m!
e−|α|2/2αm−nLm−n

n (|α|2) ,
(1.42)

under the condition of m > n. For m 6 n, we have Dmn(α) = D∗
nm(−α).

Beam-splitter The beam-splitter operation between two modes can be written as

B̂(θ) = eθ(â
†b̂−âb̂†) , (1.43)

where t = cos θ and r = sin θ are the transmission and reflection coefficients in amplitude
(thus t2 and r2 for power coefficients).

A beam-splitter is one of the simplest elements in quantum optics experiments. It is
also very useful in the theoretical analysis of two-mode systems. Remarkably, the output
Wigner function W ′(xa, pa;xb, pb) after a beam-splitter has a simple relationship with the
input Wigner function W (xa, pb;xa, pb):

W ′(xa, pa;xb, pb) =W (txa + rxb, tpa + rpa; txb − rxa, tpb − rpa) . (1.44)

The beam-splitter operation acts on a two-mode Fock state as

B̂ |n1, n2〉 =
n1
∑

k1=0

n2
∑

k2=0

√

(k1 + k2)!(n1 + n2 − k1 − k2)

n1!n2!

(

n1
k1

)(

n2

k2

)

× (−1)k2tn2+k1−k2rn1−k1+k2 |k1 + k2, n1 + n2 − k1 − k2〉 ,
(1.45)

where

(

n
k

)

is the binomial coefficient. Equation (1.45) can be alternatively expressed as

[27]

B̂ |n1, n2〉 =
∑

N1,N2

Bn1,n2

N1,N2
|N1, N2〉 , (1.46)

where

Bn1,n2

N1,N2
=

n1
∑

k=0

n2
∑

l=0

(−1)
n1−krn1+n2−k−ltk+l

×
√
n1!n2!N1!N2!

k!l!(n1 − k)!(n2 − l)!
δN1,n2+k−lδN2,n1−k+l .

(1.47)

When the total input photon number is N = n1 + n2, the output state becomes (N +
1)−dimensional entangled state. By using the equation (1.46), it is not difficult to calculate
the density matrix for the beam-splitter operator in the Fock state basis.
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Squeezing The squeezing operation is defined as 6

Ŝ(ζ) = e
ζ
2 (â

2−â†2) , (1.48)

where ζ is the squeezing parameter. This operation is obtained by parametric interaction.
In contrast with all the previous operations, it requires non-linear optics, as will be seen in
the next chapter. The squeezing operation will deform the Wigner function as

WŜρ̂Ŝ†(x, p) =Wρ̂(xe
ζ , pe−ζ) . (1.49)

The density matrix element of the squeezing operation in the Fock state basis is given by

Smn(ζ) = 〈m|Ŝ(ζ)|n〉

=

√
m!n!

m+n+1
2 cosh ζ

min{m,n}
∑

k

(
sinh ζ

2
)

(m+n−2k)
2 (−1)

(m−k)
2

k!(m−k
2 )!(n−k2 )!

,
(1.50)

where

k =

{

0, 2, 4, ... if m,n is even

1, 3, 5, ... if m,n is odd .

Smn(ζ) = 0 when |m− n| is odd.

1.4 Gaussian states

Gaussian states are at the heart of quantum information processing with continuous vari-
ables, which are used in a wide variety of tasks and applications, including quantum commu-
nication, quantum cryptography, quantum computation, quantum teleportation, and quan-
tum state and channel discrimination [23]. With the Gaussian operations, one can map
a Gaussian state into another. Specifically, all pure Gaussian states can be obtained by
applying these operations on a vacuum state.

1.4.1 Coherent state

The coherent state is the most common state used in the lab. It can be generated by a laser
operating largely above threshold. Here are some basic properties about the single-mode
coherent state.

Definition

|α〉 = D̂(α)|0〉 (α = |α|eiφ ∈ C) . (1.51)

Fock state expansion

|α〉 = e−|α|2/2
+∞
∑

n=0

αn√
n!
|n〉 . (1.52)

Wave function

〈xθ|α〉 =
1

4
√

2πσ2
0

ei|α| sin(φ−θ)xθ/σ0e−[xθ/2σ0−|α| cos(φ−θ)]2 . (1.53)

6If ζ = |ζ|eiθ is a complex number, the operator is written as Ŝ(ζ) = exp[ ζ
2
â2− ζ∗

2
â†2]. With a phase-shift

operator we have Ŝ(ζ) = Û†(θ/2)Ŝ(|ζ|)Û(θ/2) .
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Wigner function

W|α〉(x, p) =
1

2πσ2
0

e−(x−2σ0ℜ[α])2/2σ2
0−(p−2σ0ℑ[α])2/2σ2

0 . (1.54)

1.4.2 Squeezed vacuum state

The simplest single-mode squeezed state |ζ〉 can be generated by applying the squeezing
operator on the vacuum state |0〉.

Definition

|ψsq〉 = Ŝ(ζ)|0〉 (ζ = |ζ|eiφ ∈ C) . (1.55)

Fock state expansion

|ψsq〉 = 4
√

1− λ2
∞
∑

n=0

√

(

2n

n

)(

λ

2

)n

|2n〉 , (1.56)

where λ = tanh ζ. We can see that the squeezed vacuum state only contains even-photon
number states 7.

Wave function

〈x|ψsq〉 =
1

(sπ)1/4
e−x

2/2s , (1.57)

where s = e−2ζ is the squeezing factor. It is often given in a logarithmic scale:

sdB = −10 log10 s = −10 log10

(

1− λ

1 + λ

)

=
20

ln 10
ζ . (1.58)

Wigner function

Wsq(x, p) =
1

2πσ2
0

e
− x2

2σ2
x
− p2

2σ2
p , (1.59)

where σ2
x = sσ2

0 and σ2
p = 1

sσ
2
0 .

The Wigner function of a squeezed vacuum state is plotted in figure 1.1. We can notice
that it corresponds to the Wigner function of the vacuum state squeezed along one axis and
“anti-squeezed” along the orthogonal axis. This is the result of the Heisenberg inequality
σxσp > σ2

0 .

1.4.3 Two-mode squeezed vacuum state

This two-mode state is also called two-mode squeezed vacuum since it can be simply obtained
by mixing two squeezed vacua on a 50:50 beam-splitter and vice versa.

7This leads to a strong photon bunching effect, which is usually quantified by the second-order correlation

function g(2)(0) =
〈

â†â†ââ
〉

/
〈

â†â
〉2

. For the squeezed vacuum state we have g(2)(0) = 3 + 1/sinh2(ζ) .
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Figure 1.1: Wigner function of vacuum state on the left and squeezed vacuum
state of 4 dB on the right.

Definition

|ψsq〉ab = Ŝab(ζ)|0〉 (ζ = |ζ|eiφ ∈ C) . (1.60)

where the two-mode squeezing operator is defined as 8

Ŝab(ζ) = eζ(âb̂−â
†b̂†) .

The two-mode squeezing operator can be equivalently written as the mixing of two squeezing
operators by a balanced beam-splitter:

Ŝab(ζ) = B̂(
π

4
)Ŝa(ζ)Ŝb(−ζ)B̂†(

π

4
) .

Fock state expansion

|ψsq〉ab =
√

1− λ2
∞
∑

n=0

λn|n〉a|n〉b . (1.61)

Wigner function

W (xa, pa, xb, pb) =
1

(2πσ2
0)

2
e
− (xa−xb)

2

4σ2
0s

− (xa+xb)
2

4σ2
0/s

− (pa−pb)
2

4σ2
0/s

− (pa+pb)
2

4σ2
0s . (1.62)

If we only consider one local mode, i.e. we lose the information about one of them, the
resulting state is thus obtained by a partial trace:

∫

a

WŜab(ζ)
=

1

π

1

σ2
x + σ2

p

e−(x2+p2)/(σ2
x+σ

2
p) , (1.63)

which is actually a thermal state as described now.

8Here we assume that ζ is a real number for simplicity.
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1.4.4 Thermal state

As shown above, a thermal state can be obtained by tracing over one mode of a two-mode
squeezed vacuum. Since the two-mode squeezed vacuum is a Gaussian state, the thermal
state is thus necessarily Gaussian.

Density matrix

ρ̂th =
∑

n

1

nth + 1

(

nth
nth + 1

)n

|n〉〈n| , (1.64)

where nth is the mean photon number.

Wigner function

W (x, p) =
1

2πσ2
th

e−(x2+p2)/2σ2
th . (1.65)

The variance of this state is σ2
th = (2nth+1)σ2

0 , which is larger than the vacuum fluctuation.

1.4.5 Covariance matrix

All the states discussed above are Gaussian states and consequently share many common
properties. Indeed all the Gaussian states can be produced through the four mentioned
Gaussian operations. In the general case, one can write:

ρ̂gauss = D̂(α)Ŝ(ζ)ρ̂thŜ
†(ζ)D̂†(α) , (1.66)

which leads to a general Wigner function 9

Wgauss(x, p) =
1

2πσxσp
e
− (x−x0)2

2σ2
x

− (p−p0)2

2σ2
p . (1.67)

Remarkably, any Gaussian state can be fully described with a real, symmetric and positive
covariance matrix Σ, which only contains first and second moments:

Σmn = ℜ[(Xm −Xm)(Xn −Xn)] , (1.68)

where

X =









x̂1
p̂1
·
·









, X =









〈x̂1〉
〈p̂1〉
·
·









. (1.69)

For a single-mode Gaussian state with zero mean values, its covariance matrix simply reads

Σ =

(

〈x̂2〉 〈 12{x̂, p̂}〉
〈 12{x̂, p̂}〉 〈p̂2〉

)

. (1.70)

1.5 Non-Gaussian states

Recently, non-Gaussian states of light attract more and more attention in the quantum com-
puting and communication communities. Indeed, it has been shown that many operations
require non-Gaussian states and operations [28]. For instance, non-Gaussian operations
are required to distill Gaussian entanglement [29]. In this section, some commonly seen
non-Gaussian states are introduced.

9With the help of rotation operation, it can cover all the single-mode Gaussian states.
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1.5.1 Fock states

Fock states (also known as a number states) contain a well-defined number of photons, which
can be generated from the vacuum state by iterative application of the creation operator 10.

Definition

|n〉 = (â†)n√
n!

|0〉 . (1.71)

Wave function

〈n|xθ〉 = einθ
1

(
√
2πσ02nn!)1/2

Hn

(

x

σ0
√
2

)

e−x
2/4σ2

0 , (1.72)

with Hn the n-th Hermite polynomial.

Wigner function

W|n〉(x, p) =
(−1)n

2πσ2
0

e−(x2+p2)/2σ2
0Ln

(

x2+p2

σ2
0

)

. (1.73)

Figure 1.2: Wigner function of Fock states |1〉 (left) and |2〉 (right).

The corresponding plots are given in figure 1.2. From these Wigner functions, it is easy to
see that the Fock states are phase invariant and as a consequence the marginal distributions
do not depend on the phase.

1.5.2 Qubit state

A qubit is a quantum system having two distinct, that is, orthogonal, logical states. We
label these states with a zero and a one, |0〉 and |1〉. And the qubit state can be expressed
in the following form

|ψ〉 = cos(
θ

2
) |0〉+ eiϕ sin(

θ

2
) |1〉 , (1.74)

10Here we only consider excited Fock states with n > 1 for non-Gaussian states.
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corresponding to a point with spherical polar coordinates θ and ϕ in the Bloch sphere. In
particular, here we consider a photonic qubit where |1〉 and |0〉 are two Fock states, so the
information is encoded in presence or absence of a single photon.

Definition We rewrite the state in the following form with two real numbers α and β (
α2 + β2 = 1) and a relative phase φ:

α|0〉+ βeiφ|1〉 . (1.75)

Wave function

〈xθ|ψ〉 =
e−x

2
θ/4σ

2
0

(
√
2πσ0)1/2

(

α+ β
xθ
σ0
ei(θ+φ)

)

. (1.76)

Wigner function

W|ψ〉(x, p) =
1

2πσ2
0

e−(x2+p2)/2σ2
0

[

α2 + β2
(

x2+p2

σ2
0

− 1
)

+ 2αβ x
σ0

]

. (1.77)

Figure 1.3: Wigner function of qubit state with equal weights (left) and equal
mixture of vacuum and single-photon state (right).

The plot given in figure 1.3 corresponds a qubit state with equal weights (α = β = 1/
√
2).

The Wigner function of the qubit state is phase dependent, unlike the one of a statistical
mixture of vacuum and single-photon state. Additionally the marginal distribution along
the p−direction is asymmetric while the one along the x−direction is symmetric 11. Such
behavior is due to the cross terms (or coherence terms) |1〉〈0| and |0〉〈1|.

Note that the negative part of the Wigner function of such a qubit state is preserved as
long as β > 0. Since the state is pure, the Hudson-Piquet theorem states that it is indeed
non-Gaussian. In contrast, the statistically mixed state of vacuum and single photon can

11As will be presented in Chapter 5, this property shows up quite often in the single-photon generation
experiment due to the contamination by backscattered photons.
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not keep the negativity of its Wigner function after 50% of loss 12. However we can not
immediately judge that it is Gaussian or not since it is a mixed state. In this case we can
resort to a recently proposed witness for the quantum non-Gaussian character, which is only
based on the knowledge of photon number probabilities, yet it can detect a wide class of
states with positive Wigner functions that are not mixtures of Gaussian states [30]. It can
been proven that the single-photon state after finite losses always keeps the non-Gaussian
property.

1.5.3 Schrödinger cat state

Schrödinger’s cat is a thought experiment, sometimes described as a paradox, devised by
the Austrian physicist Erwin Schrödinger in 1935. It described a cat apparently held in a
superposition of alive and dead states. Many researchers now refer the Schrödinger’s cat state
to a quantum state in a superposition of two highly distinguishable classical states. Here
the Schrödinger cat state is considered as coherent state superposition (CSS), specifically,
superposition of two coherent states with same amplitudes but opposite phases.

Definition

|cat±〉 = 1
N±

(|α〉 ± | − α〉) , (1.78)

where |α〉 is a coherent state with an amplitude α and N± =
√

2(1± e−2|α|2) are the
normalization factors. |cat+〉 and |cat−〉 denote the even and odd cat states, respectively.

Fock state expansion

|cat+〉 =
2

N+
e−|α|2/2

+∞
∑

n=0

α2n

√

(2n)!
|2n〉

|cat−〉 =
2

N−
e−|α|2/2

+∞
∑

n=0

α2n+1

√

(2n+ 1)!
|2n+ 1〉 .

(1.79)

We can see that the even (odd) cat state only contains even (odd) photon number states.

Wigner function

W|cat±〉(x, p) =
e−(x2+p2)/2σ2

0

2πσ2
0(1± e−2α2)

[

e−2α2

cosh(2αx/σ0)± cos(2αp/σ0)
]

=
1

1± e−2α2

[

1

2
W|α〉(x, p) +

1

2
W|−α〉(x, p)±W|0〉(x, p) cos(2αp/σ0)

]

,

(1.80)

where the amplitude α is assumed to be real.
As shown in figure 1.4, the associated Wigner functions exhibit negativities. Also we

can notice that the interference fringes occur in the p−quadrature direction due to the
interference terms between |α〉 and | − α〉. This property makes the Schrödinger cat state
strongly differ from a statistical mixture of two coherent states. The fringes become more
pronounced when the amplitude increases. It is worth noting that for Schrödinger cat states
with small amplitudes (also called “kitten” states), the even kitten state can be faithfully
approximated with a squeezed vacuum with an appropriate squeezing; the odd kitten state

12Such state can been seen as a single-photon state after losses. When the losses exceed 50%, its Wigner
function will lose its negativity, as shown in figure 1.3.
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Figure 1.4: Wigner functions of the even cat states |cat+〉 in the top line and odd
cat states |cat−〉 in the bottom line, for an amplitude α = 1 on the left and α = 2
on the right. The interference fringes between the two coherent state peaks at α
and −α quickly become more pronounced when the amplitude increases.

is close to a squeezed single-photon state 13. In Chapter 6 we will use protocols based on
these approximations to experimentally generate Schrödinger kitten states.

1.6 Conclusion

In this chapter we gave a general description of quantum states following two different
formalism: the density matrix and the Wigner function. Importantly the quantum states
have been classified in two complementary classes: Gaussian states and non-Gaussian states.
Gaussian states can be obtained with only Gaussian operations, while the realization of
non-Gaussian states should resort to non-Gaussian operations, such as Kerr effect or photon
subtraction. Both classes will be experimentally demonstrated in this thesis work. In the
next chapter, we will first introduce the generation of Gaussian states, specifically squeezed
vacuum states resulting from nonlinear frequency conversion.

13Squeezed single-photon state can be reformulated as single-photon-subtracted squeezed vacuum. Specif-
ically, âŜ(ζ)|0〉 = − sinh(ζ)Ŝ(ζ)|1〉 .
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The invention of the laser triggers the fast development of nonlinear optics, which studies
the response of media to strong optical fields. Nowadays nonlinear effects are investigated
and applied over a wide range of energies and powers, from single-photons to zettawatts
and above, and over broad spectral regimes, from THz to Gamma-ray frequencies. In this
chapter we will only focus on nonlinear frequency conversion based on three-wave mixing, a
well-known nonlinear process that leads to the generation of new optical frequencies. Such
nonlinear interaction plays the key role in quantum optics experiments for quantum state
preparation and manipulation.

We first give a general theoretical description of optical nonlinear conversion processes.
Then several specific cases will be discussed, including spontaneous down-conversion, coher-
ent up-conversion and coherent down-conversion. Since these processes have been widely
studied in many textbooks [31, 32, 15] and PhD works [20, 33, 34], the aim of this chapter
is to present and emphasize some important points for our further experiments, and provide
a conceptual and experimental toolbox.
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2.1 Introduction

The optical frequency conversion is a second-order process based on a nonlinear medium
with a χ(2) susceptibility. It can be divided into two complementary categories: frequency
down-conversion, where a high frequency photon is “split” into two lower frequency photons
with energy conservation; or frequency up-conversion, where two photons are “fused” into one
of higher frequency. Since these processes always involve three modes, they are usually called
three-wave mixing. The three-wave mixing can efficiently happen when the two following
requirements are fulfilled:

ω3 = ω1 + ω2 energy conservation

k3 = k1 + k2 momentum conservation,

where ω1,2,3 are the angular frequencies of the fields, and k1,2,3 the corresponding wave
vectors. The second requirement is usually called phase matching. Typically the phase
matching can be obtained by one of the two following methods:

• Birefringence phase matching : We can rewrite the phase matching condition as ∆k =
n1ω1 + n2ω2 − n3ω3 = 0, where n1,2,3 are the refractive indexes. Thanks to the
birefringence feature of the medium (different refractive indexes for two polarizations),
the difference due to dispersion can be compensated by the difference in phase velocity
of orthogonally polarized waves. Practically, this can be obtained by rotating the
crystal to a given angle (angle tuning), setting the crystal to a given temperature
(temperature tuning), or both.

• Quasi-phase matching (QPM) : If no particular effort is made to match the refractive
indexes, the conversion process will gradually shift to its complementary process after
a so-called coherence length. As a result, there is no net nonlinear effect after prop-
agation of twice the coherence length. In QPM materials, the nonlinear coefficient
χ(2) is periodically inverted every coherence length, so that the undesired process is
suppressed and the desired process continues. QPM has many practical advantages:
for instance, all the involved optical fields can propagate collinearly and can have the
same polarization. This not only permits a much longer interaction length, but also
enable to access the largest nonlinear coefficient of the material.

For a perfect nonlinear medium without loss and absorption, the Hamiltonian of three-
wave mixing can be expressed as

Ĥ = i~g(â†1â
†
2â3 + â1â2â

†
3) , (2.1)

where g is a coupling constant determined by the second-order susceptibility of the nonlinear
material. The first coupling term (â†1â

†
2â3) corresponds to the down-conversion process while

the Hermitian conjugate term corresponds to the opposite process, i.e. up-conversion. Inter-
estingly, regardless of these processes, there are conversion laws about the photon number
operator N̂i = â†i âi. It is easy to check that N̂1− N̂2, N̂1+ N̂3, N̂2+ N̂3 and N̂1+ N̂2− 2N̂3

are invariant during the evolution of the system. These conservation laws are also called the
Manley-Rowe relations and tell us that the photons in mode 1 and 2 are always pairwise
created (or destroyed) as a consequence of a photon creation (or destruction) in mode 3.
Such an intriguing behavior will be more elaborated in the next section.

2.2 Spontaneous down-conversion

It can be rigorously called spontaneous parametric down-conversion (also known as SPDC or
parametric fluorescence). This is a very special case among the three-wave mixing processes



CHAPTER 2. NONLINEAR FREQUENCY CONVERSION 21

since classically it seems to only involve one pump field. The down-converted photon pairs
are indeed created from the vacuum, a phenomenon that can only be explained by quantum
optics. In this section, we will show that the down-converted photons pairs are strongly
correlated.

2.2.1 Theoretical description

Figure 2.1: Simple scheme for spontaneous
parametric down-conversion. Disappearance
of one pump photon leads to the simultane-
ously creation of two photons, usually called
signal and idler.

In order to investigate the dynamics of spontaneous down-conversion as shown in figure
2.1, we resort to the interaction Hamiltonian as

Ĥint = i~gâ†1â
†
2â3 − h.c. , (2.2)

where h.c. denotes the Hermitian conjugate. In the non-degenerate case, the down-converted
photons often refer to “signal” and “idler” photons for historical reasons. In the case of a
strong coherent pump field, there is negligible depletion of the pump power. Hence the
amplitude of the pump field can be classically treated as 〈â3〉 = α . With this assumption
the Hamiltonian can be simplified as

Ĥint = i~κâ†1â
†
2 − h.c. where κ = gα , (2.3)

therefore, resulting in:
d

dt
â1,2 = − i

~
[â1,2,Hint] = κâ†2,1 . (2.4)

This leads to the evolution equations for this parametric process:

â1(t) = â1(0) cosh(ζ) + â†2(0) sinh(ζ) ,

â2(t) = â2(0) cosh(ζ) + â†1(0) sinh(ζ) .
(2.5)

where ζ = κt (we will see later it is actually the squeezing parameter).
Using the expressions for the quadrature operators (with the convention σ0 = 1):

x̂ = â† + â

p̂ = i(â† − â) ,
(2.6)

we can get the following correlations between the two-mode quadrature observables

x̂1(t)± x̂2(t) = [x̂1(0)± x̂2(0)]e
±ζ

p̂1(t)± p̂2(t) = [p̂1(0)± p̂2(0)]e
∓ζ .

(2.7)
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Initially, the two modes are both in vacuum states and the quadrature observables in these
modes are uncorrelated. But after a certain interaction time, there appear correlation be-
tween the position observables and anti-correlation between the momentum observables.
This property is the basis of the famous EPR paradox [35], thus the generated state is also
called EPR state.

We can write down the evolution operator for this spontaneous down-conversion process:

Ŝ12(ζ) = e−
Ĥt
i~ = eζ(â1â2−â

†
1â

†
2) , (2.8)

which is usually called two-mode squeezing operator, as introduced in Chapter 1.
For better illustrating the squeezing feature, we can consider the simpler degenerate case.

With â1 = â2 = â we obtain

â(t) = â(0) cosh(κt) + â†(0) sinh(κt) . (2.9)

Similarly, we can get the evolution of the quadrature operators as:

x̂(t) = x̂(0)e−ζ

p̂(t) = p̂(0)eζ ,
(2.10)

from which we deduce a so-called squeezing factor s = e−2ζ . The evolution operator in this
case becomes the squeezing operator Ŝ(ζ) = eζ(â

2−â†2), also presented in Chapter 1.
Additionally, we can use the intensity correlation function g(2)(0) to study the photon

statistics of the down-converted light. For the light produced from an initial vacuum state,
we have

g(2)(0) =
〈â†(t)â†(t)â(t)â(t)〉

〈â†(t)â(t)〉2

= 3 +
1

sinh2 ζ
.

(2.11)

This expression indicates that the generated squeezed vacuum state exhibits photon bunching
effect (g(2)(0) > 1). This feature is well expected as the state must contain pairs of photons.

2.2.2 Optical parametric oscillator

Obtaining a strong nonlinear effect usually requires a large nonlinear coefficient and an
intense pump power. Therefore, one possible way to enhance the nonlinear effect is to use
nonlinear mediums with QPM structures or resort to new nonlinear materials. The other
way is to enhance the pump power either by using a pulsed pump or utilizing a cavity for
pump recycling. To work in the continuous-wave regime, the second solution is required. By
inserting a nonlinear crystal into a resonant cavity, one forms a so-called optical parametric
oscillator (or OPO). Figure 2.2 shows an OPO sketch.

L T

In

Out

Figure 2.2: Loop of the fields inside
the OPO cavity. L denotes the intra
cavity losses, T stands for the transmit-
tance of the output coupler. “In” repre-
sents the input field (a priori vacuum)
and “Out” denotes the output field.

To describe the dynamical relationships of the fields inside the cavity, we use the follow-
ing notations:
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— T intensity transmission of the output coupler

— L intra-cavity loss

— τ round-trip time

— g effective nonlinear gain

For the degenerate case and under the assumption of a strong coherent pump field, the
dynamical relationship after one round-trip is given by [20]

τ
dâ(t)

dt
= −(T ′/2)â(t) + g|α|â†(t) +

√
LâL(t) +

√
T âin(t) , (2.12)

where T ′ = L+T , â the signal mode in the cavity, âp the pump mode, âL the mode coupled
to the vacuum by the loss, and âin the input mode outside of the cavity. The first and
second terms in the right side of the equation correspond to annihilate and create a photon
in the signal mode, respectively. Therefore, there exists a pumping threshold αth where the
gain compensates the cavity losses: −T ′/2 + g|α|th = 0. Consequently, we can introduce a
parameter ε = |α|/|α|th = |α|2g/T ′ defined as the ratio of the pump to the threshold, which
can be interpreted as the pumping strength.

In order to investigate the noise spectrum of the OPO output, we use the following
rotation to obtain the quadrature observable

x̂(t) = e−iθâ(t) + eiθâ†(t) , (2.13)

where θ = ωt + φp/2 and use the convention σ0 = 1. This yields to the loop equation for
the quadrature observable:

τ
dx̂(t)

dt
= −T ′/2x̂(t) + g|α|x̂(t) +

√
Lx̂L(t) +

√
T x̂in(t) . (2.14)

After a Fourier transformation, we get

(1 + ε− iω/ωc) x̂(ω) =
√
L

T ′/2 x̂L(ω) +
√
T

T ′/2 x̂in(ω) , (2.15)

where ωc = T ′/(2τ) corresponds to the bandwidth of the cavity.
The following relation enables us to access the quadrature of the output mode

x̂out =
√
T x̂−

√
1− T x̂in . (2.16)

With the help of equations (2.15), (2.16) and the fact x̂L(ω), x̂in(ω) act on vacuum, we can
finally obtain the spectral density of noise sx = 〈x̂out(ω)x̂out(−ω)〉 :

sx(ω) = 1 + η
4ε

(1− ε)2 + 4(ω/ωc)2

sp(ω) = 1− η
4ε

(1 + ε)2 + 4(ω/ωc)2
,

(2.17)

where η = T/(T + L) is the escape efficiency of the OPO. This very important quantity
gives the probability for a generated photon to go out of the cavity and not to disappear
due to the losses.
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Figure 2.3: Squeezing map as a func-
tion of the normalized pump power
P/Pth and escape efficiency η. The
green contour line shows the bound-
ary for obtaining 10 dB squeezing. The
analysis frequency ω is 0.

Figure 2.3 gives the squeezing map versus the pump power and escape efficiency at zero
analysis frequency. The green line shows the boundary for obtaining 10 dB squeezing. It
is important to stress that the escape efficiency impose the limit for the squeezing that
one can maximally obtain by increasing the pump power. For instance, to get 10 dB,
the escape efficiency should be higher than 90%. This is clear with the help of equation
(2.17), smax− = s−(ω = 0, ε = 1) = 1 − η. In addition, we can also notice that for a low
escape efficiency, the squeezing increase slowly with the pump power. The evolution is more
significant for larger escape efficiency.

Another important aspect for squeezed state is its purity, which is defined as P =
1/
√
s+s− as for any Gaussian states. As shown in figure 2.4, the purity of the state decreases

with the pump power. When the pump power goes to the threshold, the purity degrades
to zero since the anti-squeezing diverges to +∞. Also, it is worth noting that larger escape
efficiency provides higher purity for a given pump power.
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Figure 2.4: Purity map of squeezed
light as a function of the normalized
pump power P/Pth and escape effi-
ciency η . The analysis frequency ω
is 0.

In a nutshell, high escape efficiency indicates a “good” OPO.

2.2.3 Building an OPO

In terms of cavity design, there exits many methods to conceive OPOs for generating
squeezed light. Bow-tie configuration is used in many experiments as it offers many de-
grees of freedom for alignment and phase matching, many injection and output ports and
single-direction propagation. Ref. [36] employed this cavity configuration and observed 9
dB squeezing at 860 nm. Due to the relative long cavity length (a nonlinear crystal and
four mirrors are needed), the squeezing bandwidth is however very often limited around 10
MHz. For obtaining a broader bandwidth but also reduced losses, monolithic OPO provides
a solution where both end surfaces of the crystal are polished and mirror-coated. Addi-
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tionally, it has extremely low intracavity losses due to the absence of extra optical elements
in the cavity. So far the highest squeezing level was reported to be -11.5 dB in R. Schn-
abel’s group with a bandwidth of about 170 MHz [37]. However, it is quite challenging for
a monolithic OPO to simultaneously satisfy the conditions of cavity resonance and phase
matching. Therefore, as a compromised case, a semi-monolithic configuration is often used
in the experiment, where the cavity is formed by one of the crystal ends and a curved bulk
coupling mirror [38]. We use this specific scheme both for type-I and type-II 1 OPOs as
shown in figure 2.5.

Type II: 3×3×10 KTP

Type I : 1×2×10 PPKTP

HR @ 1064

T=5% @ 532

T=10% @ 1064

HR @ 532

Figure 2.5: Configuration of a semi-
monolithic OPO. The cavity is formed
by one end face of crystal and a curved
output mirror with a radius of curvature
of 38 mm.

Coating The OPO is made of a semi-monolithic linear cavity. One face of the crystal is
directly coated with an intensity reflection of 95% for the 532 nm pump and high reflection
at 1064 nm. A mirror with 38-mm radius of curvature is used for output coupler, which has
a reflection of 90% for the infrared and is highly reflective for the pump. Therefore, the free
spectral range I is about 4 GHz. With an estimation of 0.5% of intracavity losses, we can
obtain a cavity finesse F = 60, which finally gives us the cavity bandwidth ∆ = 60 MHz.
Additionally the escape efficiency is thus given by η = T/(T + L) ≈ 95%.

Pump source The pump source at 532 nm is from a continuous-wave frequency-doubled
Nd:YAG laser at 1064 nm. Actually, both the pump light and seed light are directly acces-
sible from our laser system 2.

Phase matching As explained at the beginning of this chapter, there are two possible ways
to realize phase matching with birefringent crystals: angle tuning and temperature tuning.
In our case of a semi-monolithic configuration, it is not possible to tilt the crystal to obtain
the phase matching. As described in [20, 33], phase-matching condition around the room
temperature can be realized by optimizing the crystal cutting angle. Usually the acceptable
bandwidth of phase matching is about 10◦C, which makes it possible to simultaneously
achieve the aforementioned cavity resonance with the help of other degrees of freedom.

Resonance The OPOs used in our experiment are resonant for all the interacting fields,
resulting in a threshold as low as 50 mW. Specifically, for type-I OPO, the cavity is set on
resonance both for the signal and the pump by adjusting the cavity length via a PZT and
the crystal temperature. For type-II OPO, there are three involved modes: signal and idler
with orthogonal polarizations, and the pump. The triple resonance is thus more difficult to
achieve since it needs another degree of freedom. As the cavity is semi-monolithic, the angle
of the crystal is fixed for all the beams with a normal incidence. Fortunately, by tuning the
temperature of the crystal in the Nd:YAG laser, we can modify the output laser frequency,

1Type-I phase matching: o←→ e+ e Type-II phase matching: e←→ o+ e
2Diabolo Laser from Innolight



26 2.2. SPONTANEOUS DOWN-CONVERSION

which gives the possibility to obtain the triple resonance. However this method has two
problems. First the tuning process is slow. Second the tuning range is limited (about 6
GHz/K). Indeed for some crystals, the triple resonance condition cannot be found, it is then
necessary to change the incident point on the crystal.

Locking Since the cavity is resonant for all modes, in principle we can use any of them
to lock the cavity. We choose to use the pump to lock the cavity, otherwise it would be
necessary to inject an additional infrared seed beam. The length of the cavity is locked by
using the Pound-Drever-Hall technique (12 MHz phase modulation frequency). Thanks to
the microcontroller-based hybrid locking system (which will be detailed in Chapter 4), the
cavity locking is totally automatic.
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Figure 2.6: (a) Squeezing and anti-squeezing versus analysis frequency for differ-
ent values of the pump power. The dashed line is theoretical fitting using equation
(2.17) with parameters η = 91% and ωc=65 MHz. All traces are normalized to
the vacuum noise. (b) Arches of squeezing when the phase of the local oscillator is
scanned, at pump power P= 40 mW. The trace is recorded at a Fourier frequency
of F = 4 MHz with a resolution bandwidth RBW = 300 kHz and a video bandwidth
VBW = 3 kHz, and it is normalized to the vacuum noise.

Results The highest measured squeezing in our experiment occurs close to the threshold
Pth = 50 mW. Figure 2.6(a) shows the corresponding squeezing and anti-squeezing as a
function of the analysis frequency. The theoretical curves are fitted according to equation
(2.17), with a global efficiency of η = 91% and a bandwidth of ωc=65 MHz. The recorded
arches of squeezing at an analysis frequency of 4 MHz are shown in figure 2.6(b) when the
phase of local oscillator is scanned. The measured squeezing as high as 10.5 dB indicates
overall losses below 10%. After correction for the propagation and detection losses of 93%,
we estimate a squeezing of 16.5 dB at the output of the OPO.

It is worth noting that even though many state engineering protocols don’t need so high
level of squeezing (3dB is very often enough), the maximum squeezing obtained here is not
useless. Indeed the maximum squeezing an OPO can obtain indicates how “good” an OPO
is as it is related to the escape efficiency, as stressed previously. Better is an OPO, purer is
the output squeezing at a specific level. In figure 2.6(a), we also give the case of P = 5 mW,
showing a high-purity 3 dB squeezing over a bandwidth of 30 MHz. Such a pure squeezed
state will be an essential source for our experiments.
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2.3 Coherent frequency up- and down-conversion

Besides of generating squeezed light, nonlinear frequency conversion has also great poten-
tial for manipulating and controlling quantum states. For instance, coherent frequency up-
conversion is essentially a sum frequency generation (SFG) process where a signal photon is
translated to the one with a higher frequency while completely preserving all the quantum
characteristics [39]. Such coherent conversion can be used as a photonic quantum informa-
tion interface, which plays a critical role in the development of future quantum networks
[40]. For example, photons at telecommunications wavelengths of 1310 nm and 1550 nm are
preferable to transmit information in optical fibers for distribution over long distances. How-
ever, efficient quantum memories typically are realized with alkaline atoms, which require
wavelengths near 800 nm. Hence in order to bridge the spectral gap between the channels
for quantum communication and nodes for storage and quantum processing, quantum inter-
faces are required. Here we will introduce a photonic interface based on coherent frequency
up-conversion.

2.3.1 Coherent up-conversion

Figure 2.7: Simple scheme of coherent fre-
quency up-conversion process where a single
photon at ω1 is annihilated with the creation
of a higher energy photon at ω3. Since the
pump at ω2 is strong, this process can be
seen as a one-to-one conversion.

Figure 2.7 depicts a simple scheme of the coherent frequency up-conversion process where
a single photon at ω1 is annihilated with the creation of a higher energy photon at ω3. Since
the pump field at ω2 is strong, this process can be seen as a one-to-one conversion. For
describing the evolution of this conversion process, we can revisit the equation (2.1) and
focus on the up-conversion part of the interaction Hamiltonian:

Ĥint = i~gâ1â2â
†
3 − h.c. . (2.18)

If the pump field is very strong with negligible depletion, we can classically treat the operator
for pump mode as 〈â2〉 = α. With this assumption the Hamiltonian can be simplified as

Ĥint = i~κâ1â
†
3 − h.c. where κ = gα . (2.19)

The evolution equation is thus given by

d

dt
â1,3 = − i

~
[â1,3,Hint] = κâ3,1 . (2.20)

This leads to the evolution equations for this conversion process:

â1(t) = â1(0) cos(κt) + â3(0) sin(κt)

â3(t) = â3(0) cos(κt)− â1(0) sin(κt) .
(2.21)
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Compared to equations (2.5) for spontaneous parametric down-conversion, here there is no
creation operator in the evolution equation, which means that no spurious “noisy” photon
is generated during the process. After an interaction time fulfilling κtc = π/2, we can get
â1(tc) = â3(0) and â3(tc) = â1(0), which shows a complete state transfer from one frequency
to the other.

Let us elaborate this property with a simple example. Assuming initially there is no
photon in the SFG mode 3, and a single-photon state in the signal mode 1, hence the initial
state can be expressed as |ψ〉 = |1, 0〉1,3 = â†1|0, 0〉1,3 . After an amount of time tc, the finally

state is |ψ〉tc = â†3|0, 0〉1,3 = |0, 1〉1,3 . Clearly the single photon state at low frequency ω1 is
completely transferred to the one at higher frequency ω3 .

Interestingly, from equation (2.21) we can notice that the coherent up-conversion process
is actually a beam splitter with a transmittance t = cosκt and a reflectance r = sinκt [41].
Continuing with the above example, we can see that generally after a time t the final state
is |ψ〉t = (tâ†1 + râ†3)|0, 0〉1,3 = t|0, 1〉1,3 + r|1, 0〉1,3 . It is a single-photon entangled state
spanning between two colors.

With an initial state |ψ〉 = |φ〉1 ⊗ |0〉3, the evolution of the average photon number in
the signal mode 1 is given by

N1(t) = 〈ψ|â†1(t)â1(t)|ψ〉
= t2〈φ|â†1(0)â1(0)|φ〉
= t2N0

1 ,

(2.22)

where N0
1 denotes the average photon number of the input signal. Similarly, the average

photon number for the SFG mode 3 is

N3(t) = r2N0
1 . (2.23)

It is easy to check N1(t) +N3(t) = N0
1 . Hence a conversion efficiency can be defined as

η =
N3(t)

N0
1

= r2 = sin2 κt = sin2(

√

P

Pc
) , (2.24)

where Pc is the pump power for the complete conversion. The evolution of average photon
number with the pump power is illustrated in figure 2.8. We notice that the conversion
efficiency shows an oscillation behavior with the increase of pump power.
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Figure 2.8: The correlation be-
tween average photon numbers in
SFG mode 3 and signal mode 1.

The joint probability P13 of simultaneously detecting a photon in mode 1 and mode 3 at
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the frequency converter is given by

P13 ∝ 〈â†1(t)â†3(t)â3(t)â1(t)〉
= (〈n̂2

0〉 − 〈n̂0〉)η(1− η) ,
(2.25)

which depends on the conversion efficiency and has a maximum value at 50% efficiency.
Additionally the intensity cross-correlation function at zero delay is obtained by

g
(2)
13 (0) =

〈n̂1n̂3〉
〈n̂1〉〈n̂3〉

=
〈n̂20〉 − 〈n̂0〉

〈n̂0〉2
= g

(2)
0 (0) , (2.26)

where g(2)0 (0) is the intensity auto-correlation function 3 for the initial state in the single
mode. Note that the cross-correlation function does not depend on the conversion efficiency.
It is expected by noticing that the frequency conversion process acts as a beam-splitter. The
cross-correlation function g(2)13 (0) between the converted and unconverted mode is equivalent
to the auto-correlation function g(2)(0) of the input quantum state. Since g(2)(0) is invariant

to the beam-splitting ratio (cf. Appendix B), hence g(2)13 (0) is independent of conversion

efficiency. In particular, if the input state is a single-photon state, g(2)13 (0) = 0; if the input

is a coherent state, g(2)13 (0) = 1.

2.3.2 Multimode regime

In this section, we will consider a more general case where both pump and signal have multi-
longitudinal modes. This is the case of coincidence pumping frequency up-conversion that
will be used in one of our experiments (cf. Chapter 8). In this case, the frequency conversion
process becomes much more complicated due to the commutative coupling between the pump
and signal modes. The corresponding Hamiltonian can be reformulated as

Ĥint = i~g
∑

ij

αi(â1j â
†
3ij + h.c.) , (2.27)

where we assume that the nonlinear coupling coefficient is constant and all the modes are
in the phase-matching window. αi is the pump filed related to each longitudinal mode
numbered by i; â1j is the annihilation operator of signal photons related to longitudinal mode
labeled by j; and â†3ij is the creation operator of SFG photons related to the longitudinal
modes of both pump and signal fields. Then the dynamics of the involved modes is given
by the coupled mode equations as

d

dt
â1j = − i

~
[â1j ,Hint] = g

∑

i

αiâ3ij

d

dt
â3ij = − i

~
[â3ij ,Hint] = gαiâ1j .

(2.28)

It is convenient to introduce the following annihilation operators corresponding to the su-
permodes of signal and SFG fields [42, 43]:

â1 =
∑

j

â1j

â3 =
∑

ij

ciâ3ij ,
(2.29)

3The intensity auto-correlation function at zero is defined as

g(2)(0) =
〈â†(t)â†(t)â(t)â(t)〉
〈â(t)†â(t)〉2 =

〈n̂2〉 − 〈n̂〉
〈n̂〉2 .
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where ci = αi/α and α2 =
∑

i
α2
i (α ∈ R), which means that each probability amplitude is

weighted by its corresponding pump field amplitude. This leads to the evolution equations
for the conversion process:

â1(t) = â1(0) cos(κt) + â3(0) sin(κt)

â3(t) = â3(0) cos(κt)− â1(0) sin(κt) ,
(2.30)

which is exactly the same as equation (2.21) in the single-mode regime. It indicates that
we can coherently manipulate the SFG output field by classical modification of the pump
fields. This is very desirable for quantum state engineering and control. Indeed it has been
shown that with proper dispersion engineering of the converter, a quantum pulse gate can be
realized [41]. Additionally, using a pump field with specific phase chirping, one can effectively
compress a chirped single photon while keeping the quantum properties and coherence [44].

In the next section, we will introduce a complementary process for quantum state ma-
nipulation, i.e. coherent frequency down-conversion.

2.3.3 Coherent down-conversion

Although experimental demonstrations of coherent up-conversion are very successful since
the late 90’s [39], the opposite process, i.e. coherent down-conversion, has been proposed
and experimentally demonstrated only very recently [45, 46]. As we already know, there
is a mismatch between the atomic transition wavelength for quantum memory and optical
transmission wavelength for information distribution in optical fiber [47, 48]. Quantum
interface based on coherent down-conversion can turn to be a critical resource for building
a quantum network [49, 50].

Figure 2.9: Simple scheme of coherent
down up-conversion process where a single
photon at ω3 is annihilated with the creation
of a higher energy photon at ω1. Since the
pump at ω2 is strong, the spontaneous emis-
sion for frequency down-conversion is negli-
gible, which leads to a noiseless frequency
down-conversion.

It is commonly believed that frequency down-conversion is noisy and cannot preserve
quantum coherence because the appearance of the â† terms in equation (2.5) leads to spon-
taneous quantum noise. Therefore quantum frequency down-conversion cannot be realized
with three-wave mixing process. However, there is another operation regime as shown in
figure 2.9. Here we inject a strong field at lower frequency ω2 instead of higher frequency
ω3 as in spontaneous down-conversion process. This process will not be encountered as a
parametric amplification for signal field due to the gain saturation. In the other words, the
amplification of the strong signal field at ω2 requires more energy from the pump field at
ω3, which eventually will be depleted.

For describing this specific case, we can use the Hamiltonian of three-wave mixing (2.1)
and focus on the down-conversion part:

Ĥint = i~gâ†1â
†
2â3 − h.c. . (2.31)

In our case, the approximation 〈â2〉 = α is valid, which results in

Ĥint = i~κâ†1â3 − h.c. where κ = gα . (2.32)
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The first term in this equation shows that the annihilation of a photon at ω3 will lead to
the creation of a photon at ω1 with lower energy. If we write down the full expression of the
interaction Hamiltonian, we can realize that it is the same as the one used for coherent up-
conversion (2.19). Indeed we just emphasize the different parts of this coupling Hamiltonian
that originally includes the two processes, up- and down-conversion. Therefore, it is natural
to obtain the same dynamics equations:

â1(t) = â1(0) cos(κt) + â3(0) sin(κt)

â3(t) = â3(0) cos(κt)− â1(0) sin(κt) .

Interestingly we can show that the conversion direction depends on the initial state. As
we already demonstrated, if the initial state is in |ψ〉 = |1, 0〉1,3, we will get |ψ〉tc = |0, 1〉1,3 .
This is the up-conversion process. Now if we set the initial state in |ψ〉 = |0, 1〉1,3, then
we have |ψ〉tc = |1, 0〉1,3 , which is the down-conversion process. This is not difficult to
understand if we notice the photon-number oscillation behavior during the up-conversion
process as shown in figure 2.8. When the pump power reaches the complete up-conversion
conversion point at Pc, the reverse process, down-conversion, will start.

Coherent down-conversion not only allows a quantum conversion of a state to lower
frequency, but also permits a realization of a full quantum frequency translation that we
will present right now.

2.3.4 Quantum frequency translation

Ideally, quantum frequency translation (QFT) should satisfy the following requirements [51]:

— Allow translation by any small or large frequency shift (usually in the visible and near
infrared regimes).

— Preserve the full quantum properties of the original state, e.g., coherence, and entan-
glement.

— Must be highly efficient while not introducing additional spurious “noise” photons.

QFT based on the three-wave mixing (either coherent up-conversion or coherent down-
conversion) can only satisfy the latter two requirements. For example, if we rely on a
quantum memory 4 that absorbs and emits at a 795-nm wavelength, and we want to store
photons at 808 nm 5, it is not possible to directly use the above mentioned converter due
to the small difference between the signal and target frequencies. One solution is to use
four-wave mixing (FWM) where the two pump fields are designed to have a frequency
difference equal to that by which one aims to translate the quantum state of interest [51].
An alternative solution is to combine the aforementioned coherent up- and down-conversion
as illustrated in figure 7.1.

The signal photon at ωin is first converted to an intermediate photon at ωi by coherent
up-converter with a pump field at ωp1. Subsequently a down-converter pumped at ωp2
translates the intermediate photon to a target frequency at ωout. Therefore the frequency
shift ∆ω between input and output photons is equal to the frequency difference between
the two pump fields, i.e. ∆ω = ωout − ωin = ωp1 − ωp2 . Therefore, we can engineer the
frequencies of pump fields to finely translate the signal state by a small frequency shift.
Such fine frequency translation of quantum states can find useful applications in practical
quantum networks.

4using atomic Rb ensembles
5Typical laser wavelength from Ti:sapphire oscillator. This laser is used in many experiments for gener-

ating entangled photon-pairs.
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Figure 2.10: Illustration of quantum frequency converter with the combination of
a coherent up-converter and a coherent down-converter. After an up-converter the
signal photon at ωin is converted to an intermediate photon at ωi which is then
down-converted to the target photon at ωout. The small frequency shift can be
realized by finely tuning the frequencies of the two pump fields.

2.4 Conclusion

In this chapter we have introduced some basic concepts about nonlinear frequency conversion
and discussed the corresponding main properties for frequency down-conversion and up-
conversion. The spontaneous down-conversion is the core process of an OPO which enables
the generation of squeezed vacuum states. These squeezed states can be used as initial
Gaussian sources for the subsequent generation of non-Gaussian states (e.g. Fock states and
Schrödinger cat states) with the help of conditioning measurement. This is the focus of the
next chapter.

Besides of preparing quantum states, nonlinear frequency conversion can also be used
as an essential tool for quantum state manipulation. Specifically, coherent up- and down-
conversion allow to translate the quantum states into a higher or lower frequency while
maintaining the quantum properties. Combination of these two coherent processes gives the
possibility to implement a quantum frequency translator, which will play an important role
as quantum interface in quantum information processing. The experimental implementation
of coherent converters will be given in part III.
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Quantum measurement not only gives some information about a system, but also modi-
fies the system. Therefore, in many quantum information protocols measurements play an
important role for both characterizing and engineering quantum states. In this chapter, it
will be shown that with linear optical elements and photon detectors, non-Gaussian states
can be obtained through measurement-induced interaction [52]. Here the quantum mea-
surements are described with the well-known Positive Operator Valued Measures (POVM).
The formalism provides a powerful and general description of both the probabilities associ-
ated with measurement outcomes and the quantum states of the measured system after the
observation [1, 53].

We will start with an introduction of the POVM formalism, which is then used to describe
two types of detectors: photon detectors that give “clicks” related to photon numbers, and
homodyne detectors that provide photocurrents related to quadratures. Next, a general
strategy at the heart of this work , i.e. conditional state preparation, will be presented in
detail. Finally we will present a typical technique for quantum state tomography based on
Maximum likelihood algorithm.
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3.1 Positive Operator Valued Measures

Quantum measurements are usually described by a collection of measurement operators
{M̂m} where each index m refers to a possible measurement outcome. The measurement
operator acting on a state |ψ〉 will result in the state 1

|ψm〉 = M̂m|ψ〉
√

P(m)
, (3.1)

where P(m) is the probability for obtaining the result m, which is given by

P(m) = 〈ψ|M̂†
mM̂m|ψ〉 . (3.2)

There is a special measurement operator, called a projector P̂m, which is defined as

P̂m = |ψλ〉〈ψλ| , (3.3)

where {|ψλ〉} are the eigenstates of an observable with each eigenvalue λ. Hence, if one
measures λ and the eigenvalue is not degenerate, the state after the measurement will be
in the eigenstate |ψλ〉. This kind of measurement refers to projective measurement (or von
Neumann measurement).

In practice, if we are only interested in determining the probability of possible measure-
ments, it is very convenient to define a set of Hermitian operators, i.e. Positive Operator
Valued Measures (POVM). Based on measurement operators, each POVM element is defined
as

Π̂m = M̂†
mM̂m . (3.4)

Therefore the measurement probability is given by

P(m) = Tr[Π̂mρ̂] . (3.5)

These POVM operators follow the completeness relation for the conservation of probability:

∑

m

Π̂m = ✶̂ . (3.6)

3.2 Photon detectors

Photon detector is a device that can detect at least a single photon. These detectors are
basically characterized by two parameters: quantum efficiency and dark counts 2. Practi-
cally, the quantum efficiency often strongly depends on the wavelength. On the other hand,
the noise is intrinsic to the detector: it does not depend on the impinging light. A “good”
detector should have a high efficiency and low dark counts.

The Wigner functions of POVM elements associated with the photon detectors can take
negative values, thus demonstrating the non-Gaussian property. In this sense, these detectors
are usually categorized as non-Gaussian detectors [22, 54]. In the following, we present
different photon detectors and give expressions of their POVM elements.

1These expressions can be extended to the density matrix formalism

ρ̂m =
M̂mρ̂M̂

†
m

P(m)
.

2Background light can also contribute to unwanted photon-detection events and hence is practically
included into this parameter.



CHAPTER 3. QUANTUM THEORY OF MEASUREMENTS 35

3.2.1 Photon number resolved detectors

Photon number resolved detectors(PNRDs) are also called photon counters since they can
distinguish photon numbers of the incident light. In the ideal case of unity quantum efficiency
and no dark counts, the POVM operator associated to the measurement k is the projector
|k〉〈k| in the Fock state basis. For realistic detectors with quantum efficiency η and dark
noise ν 3, the corresponding operator Π̂n can be rewritten as a sum of projectors 4:

Π̂n =
∞
∑

k=0

rk,n|k〉〈k| , (3.7)

where the coefficient rk,n corresponds to the probability to have the outcome “n” when
measuring the state |k〉. This non-negative term can be expressed as:

rk,n =

min{n,k}
∑

m=0

Cmk η
m(1− η)k−mP (n−m) , (3.8)

where P (n) gives the probability to have n noisy photons (assuming a Poisson distribution
5)

P (n) =
νn

n!
e−ν . (3.9)

The corresponding Wigner function of the POVM element (assuming no dark noise) is finally
given by

WΠ̂n
=

−x2+p2

2σ2
0

η
2−η

2πσ2
0

(−η)n
(2− η)n+1

Ln[
x2 + p2

(2− η)σ2
0

] , (3.10)

where Ln is the n-th Laguerre polynomial.

3.2.2 on/off detectors

These so-called on/off detectors have only two possible outcomes. Avalanche photodiode
(APD) belongs to this type, as it can only tell if no photon or at least one photon. Ideally,
the output “off” corresponds to the projector on the vacuum state, i.e. Π̂off = |0〉〈0|. In
reality, the “off” measurement is generally described with POVM operator as

Π̂off =

∞
∑

k=0

rk,off |k〉〈k| , (3.11)

where the coefficient reads
rk,off = e−ν(1− η)k . (3.12)

The POVM operator of “on” measurement is thus given by Π̂on = ✶ − Π̂off due to the
completeness of the POVM set.

The corresponding Wigner functions for the two POVMs are given by [20, 22]

WΠ̂off
=

1

2πσ2
0

e−ν

2− η
e
− x2+p2

2σ2
0

η
2−η

WΠ̂on
=W✶ −WΠ̂off

=
1

2πσ2
0

(

1

2
− e−ν

2− η
e
− x2+p2

2σ2
0

η
2−η

)

.

(3.13)

3The dark noise is defined as the mean photon number of noise counts in the detection windows.
4For phase insensitive detector, the density matrix of a POVM element only has diagonal terms [55, 56].
5If considering a thermal dark noise, we have

P (n) =
νn

(ν + 1)n+1
.
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3.2.3 Two-photon detection

Optical quantum state engineering usually requires detectors with photon-number-resolving
ability. By using only on/off detectors, it is also possible to emulate photon-number resolu-
tion via spatial multiplexing [57] or time multiplexing [58].

As depicted in figure 3.1, we consider a device made of a 50:50 beam-splitter and two
on/off detectors. When there are two photons in the incident light, they have 50% probability
to be split by the beam-splitter. Each photon is then detected by the on/off detector. In
the case of small average photon number of the incident light, coincidence events indicate
two incident photons. The ability of heralding two-photon state will be essential in the
conditional preparation of quantum states discussed in the next section of this chapter. With
N detectors, such spatial multiplexing device can potentially distinguish photon numbers
up to N .

50:50 beam-splitt
er

on/off detector

Figure 3.1: Two-photon detector
based on spatial multiplexing. The
measured beam is sent to a 50:50
beam-splitter with two single-photon
detector connected at each output.
This device can be treated as a single
detector with POVM elements Π̂m.

The POVM elements of this two-photon detector are given by

Π̂0 =
∑

n

e−2ν(1− η)n|n〉〈n| , (3.14)

Π̂1 = 2
∑

n

(

e−ν(1− η/2)n − e−2ν(1− η)n
)

|n〉〈n| , (3.15)

Π̂>2 =
∑

n

(

1 + e−2ν(1− η)n − 2e−ν(1− η/2)n
)

|n〉〈n| , (3.16)

where η and ν are the quantum efficiency and dark noise of each on/off detector. These
POVM operators satisfy the completeness relation Π̂0 + Π̂1 + Π̂>2 = ✶.

Note that there is another commonly used method for distinguishing two photons via
temporal multiplexing. Specifically, such scheme relies on a time delay τ in one output of
a beam-splitter. After recombining the two outputs with another 50:50 beam-splitter, light
can be detected with a on/off detector. Consequently, if there are two photons in the incident
light, they have a chance to be temporally separated with a time delay τ in the detected
port. Hence, the on/off detector can count the two photons at two different time windows
at an interval of τ . The scheme provides a simple and efficient solution in the pulsed regime
[58]. However such time-multiplexed detector is not suitable in continuous-wave regime due
to the random arrival time of photons.

Now we turn to another kind of detector, the homodyne detector, which is the central
instrument in the continuous-variable toolbox.
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3.3 Homodyne detector

Homodyne detector is devised to provide the measurement of a single-mode quadrature
xθ for characterization of an optical quantum state or conditional preparation of quantum
states. We will see that the Wigner function of its POVM element is Gaussian, thus the
homodyne detector can be categorized as a Gaussian detector [22].

3.3.1 Basic properties

The scheme is illustrated in figure 3.2. A signal under investigation ρ̂s is mixed with a
classical field |α〉 (local oscillator) by a balanced (50/50) beam-splitter 6. The phase of the
local oscillator is adjusted by a PZT for accessing quadrature values with different phases
θ. The two interfering modes after the beam splitter are then detected by a pair of identical
photodetectors (typically linear photodiodes). Finally the difference of the generated pho-
tocurrents is obtained by an electronic subtraction. This difference is directly linked to the
field quadrature with a scaling factor.

-

Figure 3.2: A scheme of balanced homo-
dyne detector. The signal beam under in-
vestigation is mixed with a bright coherent
state (local oscillator) on a 50:50 beam-
splitter. The two outputs are measured
with a pair of identical photodiodes. The
subtraction of the photocurrents is propor-
tional to the field quadrature value. To ac-
cess the various phases of quadrature mea-
surements, the phase of the local oscillator
is scanned via a PZT.

Now we will present a simple calculation for highlighting the main features about the
homodyne detector. The two-mode interaction between the signal ρ̂s and the classical local
oscillator on a beam-splitter is given by

â1 = (âLO + âs)/
√
2 ,

â2 = (âLO − âs)/
√
2 .

(3.17)

The two output modes after the beam-splitter are measured with photodiodes. The resulting
photocurrents are proportional to the incident photon numbers, thus î ∝ n̂:

n̂1,2 = 1
2 (â

†
LOâLO + â†sâs ± â†LOâs ± â†sâLO) . (3.18)

The subtraction of the two photocurrents results in a signal proportional to

n̂1 − n̂2 = âLOâ
†
s + â†LOâs . (3.19)

In the approximation of strong coherent state, the local oscillator can be classically treated
as 〈âLO〉 = αeiθ, leading to

n̂1 − n̂2 ≈ αeiθâ†s + αe−iθâs . (3.20)

6For the purpose of accessing quadrature values, here we consider the balanced homodyne detector. Note
that unbalanced homodyne detector is also commonly used in quantum optics experiment as an alternative
way to measure the statistics (moments) of the field quadratures [22].
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The homodyne signal is thus given by

i1 − i2 ∝ αx̂θ , (3.21)

which is proportional to a quadrature observable with an amplifying factor depending on
the magnitude α of the local oscillator. The larger is α, the better is the sensitivity of
the measurement. Additionally, the phase of the measured quadrature can be adjusted by
changing the phase of the local oscillator.

It is worth mentioning that the homodyne detector only detects the optical states having
the same spatialtemporal mode defined by the local oscillator 7. Therefore high visibility
V between the signal and local oscillator is required for achieving large detection efficiency
ηvis. Specifically ηvis = V 2.

3.3.2 POVM of homodyne detector

For a perfect homodyne detector, the POVM elements are given by

Π̂(xθ) = |xθ〉〈xθ| , (3.22)

where x̂θ|xθ〉 = xθ|xθ〉. For a given phase, the POVM elements associated with the outcome
xθ satisfy the completeness relation:

∫

Π̂(xθ)dxθ =

∫

|xθ〉〈xθ|dxθ = ✶ . (3.23)

The density matrix element in the Fock basis is given by

Πnm = 〈n|Π̂(xθ)|m〉 = 〈n|xθ〉〈xθ|m〉 , (3.24)

which can be computed with the wave function of Fock state

〈n|xθ〉 = einθ
1

(
√
2πσ02nn!)1/2

Hn

(

x

σ0
√
2

)

e−(x/σ0

√
2)2/2 , (3.25)

where Hn is the n-th Hermite polynomial.
The corresponding Wigner function is thus written as:

WΠ̂(xθ)
(x, p) =

1

2πσ2
0

1

2
δ(x cos θ + p sin θ − xθ) . (3.26)

Practically, the detection efficiency of homodyne detector is never 100% due to many
factors, for instance the limited visibility of the interference, limited quantum efficiency of
the photodiodes. The losses can be modeled as an imaginary beam-splitter (with an intensity
transmission η) before a perfect detector. For an initial state ρ̂0, the state after the beam
splitter can be obtained from the so-called generalized Bernoulli transformation:

〈m|ρ̂η|n〉 =
∞
∑

k=0

Bm+k,m(η)Bn+k,n(η)〈m+ k|ρ̂0|n+ k〉 , (3.27)

where

Bn+k,n =
√

(

n+k
n

)

ηn(1− η)k . (3.28)

7This important feature can be obtained with a more rigorous and comprehensive model [59]
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In this case, the probability of obtaining a quadrature value xθ is given by

Pη(x) = 〈xθ|ρ̂η|xθ〉

=

∞
∑

m,n=0

∞
∑

k=0

Bm+k,m(η)Bn+k,n(η)〈n|xθ〉〈xθ|m〉〈m+ k|ρ̂0|n+ k〉 . (3.29)

Therefore, the POVM element of a lossy homodyne detector is given by

Π̂η(xθ) =
∑

m,n,k

Bm+k,m(η)Bn+k,n(η)〈n|xθ〉〈xθ|m〉|n+ k〉〈m+ k| . (3.30)

The corresponding Wigner function reads as:

WΠ̂η(xθ)
(x, p) =

1

2πσ2
0

1

2

1
√

2πσ2
0(1− η)

exp

(

− (xθ −√
η(x cos θ + p sin θ))2

2σ2
0(1− η)

)

. (3.31)

3.4 Conditional state preparation

A unique property of quantum measurement is that it allows to modify states by appropri-
ately choosing a measurement strategy. This kind of method for state engineering is thus
called conditional state preparation for highlighting the probabilistic but heralded character
of this technique.

3.4.1 Composite system

Conditional preparation of a quantum state always involves at least two-mode composite
system, the conditional mode and the signal mode. In particular, measurement is made on
one part of a bipartite correlated system; the action of this measurement is to project the
other part to a target state as shown in figure 3.3.

Figure 3.3: Conceptual scheme of a
conditional preparation. A measure-
ment is performed on one mode of
an entangled state. The measurement
outcome then heralds the preparation
of a new state.

We start with a two-mode state ρ̂ina,b. On one of the mode, we perform a measurement
Π̂a. When the measurement apparatus gives the desired answer, the other mode will be
projected into ρ̂cond,b. Using measurement theory based on the introduced POVM formalism,
this conditional state can be written as

ρ̂cond,b =
Tra[Π̂a ⊗ ✶bρ̂ab]

Tr[Π̂a ⊗ ✶bρ̂ab]
, (3.32)

where Tra demotes the partial trace over mode a, and ρ̂cond,b is called reduced density matrix.
Similar to the expression based on the density matrix, we have an equivalent one based

on the Wigner function:

Wρ̂cond,b
(xb, pb) =

∫∫

❘2 dxadpaWΠ̂a
(xa, pa)Wρ̂ab

(xa, pa, xb, pb)
∫∫∫∫

❘4 dxadpadxbdpbWΠ̂a
(xa, pa)Wρ̂ab

(xa, pa, xb, pb)
, (3.33)
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where the partial integration takes the place of partial trace. As we use the product of
WΠ̂a

(xa, pa) and Wρ̂ab
, one of them needs to exhibit negativity if we want to prepare a state

with negative values at the end.

3.4.2 Beam-splitter model

The simplest example for conditional state preparation of light can rely on a beam-splitter
for mixing two optical modes. Combination of beam-splitters with detectors in one output
mode indeed provides a promising way for engineering quantum states of traveling optical
fields.

Figure 3.4: Simple scheme for
conditional preparation of quantum
state.

Les us consider the scheme shown in figure 3.4. A single mode ρ̂(in) is mixed with a
reference mode ρ̂(ref) at a beam-splitter with r (amplitude reflectance) and t (amplitude
transmittance), and a measurement Π̂(meas)(l) is performed on the output reference mode.
Since the two output modes are entangled in general, the measurement will influence the
output signal mode ρ̂(out). The reduced output state can be expressed in the more general
case as:

ρ̂(out) =
Trb[Π̂

(meas)(l)B̂ρ̂(in) ⊗ ρ̂(ref)B̂†]

p(l)
, (3.34)

where the conditional probability p(l) of obtaining the result l is

p(l) = Tra,b[Π̂
(meas)(l)B̂ρ̂(in) ⊗ ρ̂(ref)B̂†] . (3.35)

For simplicity, we assume that all the involved states are pure states 8. So the output state
is a pure state that can be written as:

|ψ(out)〉 = Ŷ |ψ(in)〉
‖Ŷ |ψ(in)〉‖

, (3.36)

where

Ŷ = 〈ψ(meas)|B̂|ψ(ref)〉 , (3.37)

is the non-unitary conditional beam-splitter operator. The success probability is thus given
by

p(ψ(meas)) = ‖Ŷ |ψ(in)〉‖2 = 〈ψ(in)|Ŷ †Ŷ |ψ(in)〉 . (3.38)

8For the calculation on mixed states, please refer to the seminal paper [60]
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Let us take a very simple example where |ψ(meas)〉 = |n〉 and |ψ(ref)〉 = |0〉. In this case the
non-unitary operator is given by 9

Ŷ = 〈n|B̂|0〉 = (−r)n
tn
√
n!
ântn̂ . (3.39)

In the case of highly asymmetric beam splitter (t→ 1), we have Ŷ → ân, which corresponds
to a photon subtraction operation.

3.4.3 Calculation based on density matrix

Generally, it is not easy to analytically calculate the non-unitary beam-splitter operator,
especially in the case of mixed states. An alternative way for obtaining the conditional
state is to truncate the involved states into a finite-dimension Hilbert space, and then to use
matrix manipulation and simple linear algebra.

Therefore, the first step is to represent all the involved quantum states, quantum channels
and quantum measurements by density matrices with truncated Fock state dimensions. As
shown in equation (1.46), the beam-splitter operator on the two-mode Fock state results in

B̂|n1, n2〉 =
∑

N1,N2

Bn1,n2

N1,N2
|N1, N2〉 , (3.40)

where

Bn1,n2

N1,N2
=

n1
∑

k=0

n2
∑

l=0

(−1)
n1−krn1+n2−k−ltk+l

×
√
n1!n2!N1!N2!

k!l!(n1 − k)!(n2 − l)!
δN1,n2+k−lδN2,n1−k+l .

(3.41)

Rewriting the involved states in the Fock states basis, we also have

ρ̂(in) =
∑

µ,ν

ρ(in)µ,ν |µ〉〈ν| ,

ρ̂(ref) =
∑

µ′,ν′

ρ
(ref)
µ′,ν′ |µ′〉〈ν′| ,

ρ̂
(in)
ab = ρ̂(in) ⊗ ρ̂(ref) =

∑

µ,ν,µ′,ν′

ρ(in)µ,ν ρ
(ref)
µ′,ν′ |µ, µ′〉〈ν, ν′| ,

ρ̂
(meas)
ab = Î ⊗

∑

j,k

ρ
(meas)
j,k |j〉〈k| =

∑

i,j,k

ρ
(meas)
j,k |i, j〉〈i, k| .

(3.42)

With the above matrix forms, the second step is to compute the matrix product and partial
trace according to equation (3.34). Finally the matrix element of the output mode is given

9For the general case, |ψ(meas)〉 = |n〉 and |ψ(ref)〉 = |m〉, it is shown that the mode in the output
channel is prepared in either a photon-subtracted (when m < n) or a photon-added (when m > n) Jacobi
polynomial state [61].
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by 10

ρ(out)m,n = 〈m|ρ̂(out)|n〉
=

∑

l

∑

µ,ν,µ′,ν′

∑

i,j,k

ρ(in)µ,ν ρ
(ref)
µ′,ν′ ρ

(meas)
j,k

× 〈m, l|B̂|µ, µ′〉〈ν, ν′|B̂†|i, j〉〈i, k|n, l〉

=
∑

l,j

m+l
∑

µ=0

n+j
∑

ν=0

Bm,lµ,m+l−µB
n,j
ν,n+j−νρ

(in)
µ,ν ρ

(ref)
m+l−µ,n+j−νρ

(meas)
j,l ,

(3.43)

where the last step is achieved by noting that non-zeros terms only exist for m+ l = µ+µ′,
n+ j = ν + ν′, i = n, and k = l.

Now let us discuss some specific cases:

1. If there is no measurement in the mode b, then the measurement can be described by
an identity operator

ρ̂(meas) = Î . (3.44)

Inserting the matrix element of the operator

ρ
(meas)
j,k = δj,k (3.45)

into equation (3.43), we can get

ρ(out)m,n =
∑

l

m+l
∑

µ=0

n+l
∑

ν=0

Bm,lµ,m+l−µB
n,l
ν,n+l−νρ

(in)
µ,ν ρ

(ref)
m+l−µ,n+l−ν . (3.46)

2. If there is no input for the reference mode b, that is

ρ̂(ref) = |0〉〈0| . (3.47)

Inserting

ρ
(ref)
µ′,ν′ =

{

1, µ′ = ν′ = 0
0, others

(3.48)

into equation (3.43), we can get

ρ(out)m,n =
∑

l,j

Bm,lm+l,0B
n,j
n+j,0ρ

(in)
m+l,n+jρ

(meas)
j,l . (3.49)

3. If there is no measurement and no reference in mode b, we can insert equations (3.45)
and (3.48) into equation (3.43), resulting in

ρ(out)m,n =
∑

l

Bm,lm+l,0B
n,l
n+l,0ρ

(in)
m+l,n+l , (3.50)

where

Bm,lm+l,0 =

√

(

m+ l
m

)

ηm(1− η)
l
. (3.51)

η = t2 is the power transmittance of the beam splitter. This transformation is called
generalized Bernoulli transformation. Actually, this simplest case describes the evolu-
tion of a quantum state after losses modeled by a fictitious beam-splitter.

10Note that here we omit the normalization factor, which can be found back using the requirement of
unitary trace of the density matrix. The normalization factor is also interpreted as the heralding probability.
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We can see that some realistic assumptions can help to simplify the computation pro-
cesses. Actually, even for the general case, the calculation is easy and fast with the help of
simple programming. With the above proposed method, we can directly access to certain
matrix entries of interest instead of calculating the whole density matrix. This is favorable
for some cases, for instance, if we are only interested in the photon-number distribution of
the output conditional state.

Note that the simplest way for obtaining the output density matrix is to directly handle
the computation based on matrix operation, which can avoid the complex summation shown
in equation (3.43). It makes the programming even simpler since most of programming
languages already provide powerful libraries about linear algebra.

3.4.4 Qmixer

Based on numerical calculation with truncated density matrices, we developed during this
PhD work a simple but very useful software, aiming at providing a theoretical tool for
studying quantum state evolution under conditional measurements. The software is named
“Qmixer” because the core of the calculation model is a beam-splitter (two-mode mixer).

Figure 3.5: Interface of Qmixer, a versatile tool developed during this PhD for
studying quantum state evolution under conditional measurements. The example
shown in the figure is single-photon subtraction from a squeezed vacuum state.

As shown in figure 3.5, Qmixer is programmed with LabView as it provides a very simple
way to access various graphical interfacing tools. The software user interface mainly consists
of two parts: parameters setting (left panel) and results display (right panel). In each panel,
there are several sub-panels for specific purposes. In the following, we will present the user
interface of Qmixer.

Left panel In this panel, we can set the parameters according to our needs. It contains
four sub-panels: “BS”, “Operations”, “Fidelity” and “Mixer”.

� In “BS” panel, we can set parameters of the beam-splitter model, such as incident
quantum states (ρ̂A and ρ̂B), involved quantum measurement (Π̂Meas), beam-splitter
power transmission (t) and truncated photon number (Hilbert space dimension). Some
commonly used quantum states (Fock states, coherent states, squeezed states and cat
states) and quantum measurements (APD, PNR detector, Homodyne detector) can
be conveniently selected from the drop-down list.



44 3.5. MAXLIK FOR QUANTUM STATE TOMOGRAPHY

� In “Operations” panel, we can apply any of the single-mode Gaussian operations (ro-
tation, displacement and squeezing) to a quantum state.

� In “Fidelity” panel, we can compute the fidelity between a quantum state of interest
and a target state.

� In “Mixer” panel, we can synthesize a statistical mixture of two states with user-defined
weights.

Right panel In this panel, we can display the results associated with the user’s settings in
the left panel. It contains four sub-panels: “Photon”, “Wigner”, “Marginal” and “Fidelity”.

� In “Photon” panel, it shows the photon number distribution of the output conditional
state.

� In “Wigner” panel, it gives the Wigner function of the output state and some important
values for the state such as state purity and the value at the origin of the Wigner
function. Note that we can also change the normalization convention σ0.

� In “Marginal” panel, it displays the marginal distribution of the output state with a
user-defined projection angle.

� In “Fidelity” panel, it provides the plot of the fidelity as a function of certain parameters
(e.g. state amplitude) set in the left “Fidelity” sub-panel.

Qmixer provides therefore a simple but very useful tool to model our experiments related
to conditional measurement. For more details and examples, readers can refer to Appendix
D.

3.5 MaxLik for quantum state tomography

Quantum state tomography is a technique for extracting the full information of a quantum
state by subjecting it to an ensemble of quantum measurements. As we know, a quantum
state can be completely described by its density matrix (or equivalently by its Wigner
function). For quantum optics in free space, the reconstruction of quantum sates is usually
implemented by a set of quadrature values from homodyne measurements. In this case, the
measurements of the quadrature x̂θ give the marginal distribution P(xθ) = ∫ dyθW (xθ, yθ).
The next step is to reconstruct the Wigner function W .

There exit several algorithms for quantum tomography [59], such as inverse Radon trans-
formation, pattern functions, and Maximum-likelihood algorithm (MaxLik algorithm) . The
most commonly used technique henceforth is the MaxLik algorithm due to three main ad-
vantages [62]. First, MaxLik algorithm enables us to compensate the optical losses; second,
it allows us to incorporate the positivity and unity-trace constraints into the reconstruction
procedure, thus always leading to a physically state; third, it gives the highest accuracy
(with an intrinsic numerical noise defined by the Cramer-Rao bound). Nevertheless, Max-
Lik algorithm also has some limitations, such as the truncation of the Hilbert space and the
requirement of more computational resources. Here we will give a brief introduction about
this MaxLik algorithm, which has been extensively used during this PhD work.

The measurement outcomes of the homodyne detection can be organized as {θj , xj , fj}
where fj is the frequency of occurrence for each outcome {θj , xj}. The likelihood is then
given by

L(ρ̂) =
∏

j

P(θj , xj)
fj , (3.52)
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where P(θj , xj) = Tr[Π̂(θj , xj)ρ̂] is the probability to obtain the result {θj , xj} for a quantum
state ρ̂ and Π̂(θj , xj) is the POVM element of homodyne detector (cf. equation (3.22)).

In order to find a state ρ̂ that maximizes the likelihood as the name of MaxLik algorithm
suggests, an iteration operator is thus introduced:

R̂(ρ̂) =
∑

j

fj
P(θj , xj)

Π̂j(θj , xj) . (3.53)

Since the experimental data {θj , xj} is discrete, one can always reduce the bin size such that
fj only takes the values of either 0 or 1. As a result, the iteration operator is simply given
by

R̂(ρ̂) =
∑

j

Π̂j(θj , xj)

P(θj , xj)
. (3.54)

The most compatible density matrix ρ̂ can be found by the following iterations:

ρ̂(k+1) = N
[

R̂(ρ̂(k)) ρ̂(k) R̂(ρ̂(k))
]

, (3.55)

where N denotes the normalization factor to a unitary trace. The initial state is given by
a normalized unitary matrix ρ̂(0) = N [✶]. For each iteration the likelihood given by the
currently estimated density matrix will monotonically increase. At last it will approach to
the maximum-likelihood density matrix ρ̂0. In this case, we have fj ∝ Pj and

∑

j
Π̂j ∝ ✶.

Hence R̂(ρ̂0) ∝ ✶, i.e.
R̂(ρ̂0) ρ̂0 R̂(ρ̂0) ∝ ρ̂0 . (3.56)

One important feature for the MaxLik algorithm is the possibility to incorporate the loss.
In a practical experiment, due to the propagation loss and imperfect quantum efficiency of
homodyne detector, the quadrature distribution will be distorted. Therefore, to estimate
the state before the losses, the projector Π̂(θ, x) should be replaced by (cf. equation (3.30))

Π̂η(θ, x) =
∑

m,n,k

Bm+k,m(η)Bn+k,n(η)〈n|θ, x〉〈θ, x|m〉|n+ k〉〈m+ k| . (3.57)

It is worth mentioning that the MaxLik algorithm can be extended to the reconstruction
of a two-mode state [20], which is intensively used in our experiments for hybrid entanglement
generation in Chapter 7.

3.6 Conclusion

In this chapter, we introduced the basic concepts of the POVM formalism, which was then
used to describe two types of detectors: photon detector and homodyne detector. The
click detectors belong to the non-Gaussian detector family usually used in the conditional
preparation of non-Gaussian states while the homodyne detector as a Gaussian detector
is typically used for quantum state tomography together with the technique of Maximum
likelihood algorithm. All the performed experiments in part II will involve these two types
of measurements for conditional preparation and state characterization.
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4 | Automatic Locking System

The locking of optical cavities or interferometer phases is very often requested in quantum
optics experiments. This task is traditionally achieved with analog systems based on various
techniques, such as the Pound-Drever-Hall (PDH) locking, the dither-and-lock, or the tilt-
locking method. Although such analog locking systems are very mature, yet certain other
desirable features, such as automatic relocking when the lock is lost or sequential locking
by a sample-and-hold behavior, can quickly make the analog design cumbersome. However,
with the advances of digital locking systems, these features can be easily accomplished in
software, enabling rapid development and modification. In this chapter, we will present a
microcontroller-based locking system that does not require any modulations or external error
signals [63]. The implementation of the locking system can enable, for instance, long-term
data acquisition or just simpler functioning on a daily basis.

The algorithm for digital locking will be first presented as well as a simple model for
characterizing the locking behavior. Next we will demonstrate the performances for lock-
ing optical cavities with a moderate finesse (100) and a high finesse (1000). The possible
combination of this technique with analog devices will also be discussed. Finally integration
of locking system into a compact box and implementation of an user interface for remote
monitor will be presented.
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4.1 Introduction

Digital locking has attracted more and more attention in optics experiments [64, 65, 66, 67]
since its first demonstration in laser frequency stabilization at the end of 1990s [68, 69].
Especially, the application of digital system has been recently boosted by the rapid develop-
ment of high-speed and low-cost field programmable gate arrays (FPGA) and microcontroller
units (MCU). For example, Ref. [70] generated a modulation signal by a FPGA programmed
with LabView, which was then applied to an electro-optic modulator in a Pound-Drever-
Hall scenario. The FPGA enabled automatic relocking and included some inbuilt locking
analysis tools. Similarly, in Ref. [71], a microcontroller unit was also used in such a scenario
to lock a fiber laser to an optical cavity. In these implementations, the logic unit is usually
combined with traditional locking processes. It enables the digitalization and processing of
the signal, replacing the usual PID control and lock-in-amplifier, and adds novel capabilities
and further scalability.

There are ongoing discussions between choosing a FPGA or a conventional MCU for
locking purpose. Generally speaking, FPGA can be much faster. However, for many lock-
ings, fast digital controller is not necessary since the frequency bandwidth of the system is
usually limited by the sensors, actuators and/or transducers. For instance, the bandwidth
of typical piezoelectric transducers (PZT) used for controlling the optical path length is only
tens of kHz, which makes FPGAs largely exceed the needs. Last but not least, microcon-
trollers can be programmed in C language, which makes them easily accessible by relatively
inexperienced users.

Here, we present a microcontroller-based locking system that does not require any mod-
ulation or external error signal [63]. The microcontroller chip used in our experiment is the
ADuC7020 from Analog Devices, which already contains five 12-bit ADCs (with sampling
rate of 1 MHz) and four 12-bit DACs (with voltage output settling time of 10 µs) [72].
Additionally the evaluation board (EVALADUC7020QSZ, around 50 euros) is commercially
available, thus making its use very simple as no additional electrical soldering is required.

4.2 Algorithm and model

The core process for locking is based on a maximum (or minimum) -searching algorithm
without requirement of any modulation or external error signal, which makes the way to
lock extremely simple and intuitive. In this section we will detail the implemented algorithms
and show the performances obtained for locking a Mach-Zehnder interferometer.

4.2.1 Searching algorithm

As a first example, we consider the case of a 1.5 m-arm Mach-Zehnder interferometer, as
illustrated in figure 4.1(a). The interference signal is measured by a photodiode and this
photocurrent is sent to the MCU. After processing, the output of the unit is fed back to the
PZT actuator.

A flowchart of the program execution is given in figure 4.1(b). The voltage on the PZT is
increased with a constant step unless the signal value (Y1) is smaller than the previous one,
which would lead to a sign-flip of the sweep. As a result, the locked signal can always stay at
its maximal value. To avoid high-frequency noise the signal is averaged over a user-defined
numbers of ADC sampling (typically 50).

Importantly, in such long-arm interferometers, fluctuations can lead to a change of the
paths by many wavelengths, larger than the limited range of typical actuators. In order
to keep the locking, one has thus to shift back the position of the PZT. Usual analog
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Figure 4.1: (a) Experimental setup: locking a 1.5-meter-arm Mach-Zehnder in-
terferometer with a microcontroller unit. HR stands for high-reflective mirror, BS
for beam-splitter, PZT for piezoelectric transducer and PD for photodiode. (b)
Flowchart of the program execution for the maximum-searching algorithm. (c)
Long-term stability. The inset gives a one-second zoom and the associated stan-
dard deviation. (d) Noise spectrum at low frequencies with and without locking.

PID controllers do not have this kind of feature, and would need elaborated developments.
In contrast, this can be easily achieved by a programmable device. The recentering can
indeed be trivially taken into account with simple codes in the locking program. Specifically,
when the detected peak position is near the ends of the DAC output range, the output is
shifted back to the center (not shown on the flowchart). As a result, the phase can be
automatically relocked around the center of the DAC range. After a certain time (usually
a few milliseconds), a stable locking is recovered. Such automatic locking enables a very
long-term stability, as shown in figure 4.1(c) for a 7-hour recording. Typically, recentering
occurred once per hour.

The inset in figure 4.1(c) corresponds to a one-second zoom. The standard deviation
(with a sampling rate of 250 kHz) is 0.50 ± 0.05 mV, which can be translated into a phase
fluctuation of 1.7◦ ± 0.1◦ (1.5◦ if corrected from detector noise). Over 1 hour, the standard
deviation raises to 1.7 ± 0.3 mV, corresponding to 3.1◦ ± 0.2◦. The MCU-based locking
enables thus a very good phase stability on the short as well as on the long time scales,
compatible with most applications, including for instance the use of high squeezing levels
[36, 73, 74] in demanding quantum optics and quantum information experiments.

4.2.2 Simple model and set parameters

A simple model can be used to estimate the locking performances based on this algorithm.
The phase stability is indeed limited by the ADC resolution ǫ of the microcontroller. In
our case, with a number of bits N =12 and a maximum reference voltage V0 = 2.5 V, the
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resolution is given by ǫ = V0/2
12 ≃ 0.61 mV. Only the voltage fluctuations larger than ǫ can

be detected, leading to a minimum detectable phase change ∆θ0.
To minimize this value, the best strategy is to use the full dynamic range, and thus

having a fringe with close to unity visibility, i.e. a detected voltage V = V0 sin
2(ϕ/2). In

this case, the minimum detectable phase change is given by:

∆θ0 ≃ 2

√

ǫ

V0
= 2

√
2−N ≃ 1.8◦ . (4.1)

For step sizes in the algorithm leading to phase changes smaller than this value, the locking
noise, i.e. the measured standard deviation, is expected to be constant, with a value slightly
smaller than ǫ. In the general case of a non-unit visibility, V0 has to be replaced by the
fringe amplitude (2.2 V in our case). One way to increase the locking performance would
be to combine two 12-bit ADCs to obtain a 24-bit system [71]. Another possibility is to use
a logarithmic amplifier in order to increase the resolution around the set point.

We now consider step sizes leading to phase changes larger than the previous one. The
resulting phase increment depends on the number of bits N of the DAC, the number n of
fringe periods for a full scan and an integer M defined by the user:

∆θ =M.
2πn

2N
. (4.2)

When the phase step ∆θ is larger than ∆θ0, the phase fluctuation scales with ∆θ. The noise
is thus driven by the steps. For proper functioning, this regime should be avoided.
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Figure 4.2: (a) Standard deviation as a function of the step size given by the
integer M . The solid line is a guide for the eyes, following the model given in the
text. (b) Standard deviation as a function of the delay between the output (DAC)
and the acquisition (ADC).

For a full characterization of the locking system, and to illustrate this simple model, we
studied in a systematic way the behavior obtained for various parameters in the algorithm.
Figure 4.2(a) shows the standard deviation for one second as a function of the step size. As
predicted, the measured voltage noise exhibits first a plateau and then scales as the square of
the step. If the step size is increased further, a stable locking cannot be obtained anymore.

One parameter more difficult to include in this simple model is the temporal delay
between the output (DAC) and read (ADC) blocks. With a fixed step size, the delay plays
an important role in the locking behavior as shown in figure 4.2(b). Specifically, when
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the delay is too long, the bandwidth is too much reduced and cannot compensate for the
fluctuations. When the delay is too short, there is not enough time for the PZT to respond.
Because the locking algorithm relies on the comparison of the two sequential signal values,
the improper response of PZT will produce some disturbance for each step, finally altering
the locking. A 1 ms-delay is typically added in the program. A bandwidth around a few
kHz is achieved here, limited by the PZT.

4.3 Cavity locking

The microcontroller-based locking is now applied to a more complicated task, i.e. the locking
of optical cavities. Two cavities with moderate and high finesse, respectively around 100
and 1000, will be considered, requiring two different execution programs.

4.3.1 Low-finesse cavity
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Figure 4.3: (a) Flowchart of the program execution to lock a low-finesse cavity,
including peak searching and automatic relocking. (b) Long-term stability. The
inset gives a one-second zoom. The standard deviation is normalized to the cavity
peak height. (c) Noise spectra for maximum-searching locking, PI-like locking and
for locking with the standard analog Pound-Drever-Hall technique.

The locking of a cavity specifically requires a scanning mode to first identify the peak
heights and positions. This function can be easily realized with simple programming for
the generation of triangle signal. The flowchart of the program execution is given in figure
4.3(a). The microcontroller first sweeps the cavity length and subsequently defines a high
and low threshold (Yth1 and Yth2). It then sweeps again the length to reach an initial start
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point above the high threshold. If the locked signal becomes smaller than the low threshold,
the microcontroller will get out of the locking mode and go back to the scanning mode.

To test this method, we used an optical parametric oscillator [74]. The finesse for the
pump is around 100 and the 4 cm-long cavity was previously locked by the PDH technique
[75], with a phase-modulation at 12 MHz. Figure 4.3(b) confirms the long-term stability and
the inset shows a one-second zoom. The standard deviation normalized to the peak height
is equal to 7.0× 10−4, similar to what is obtained here with the PDH locking (6.6× 10−4).
For 15 minutes, the normalized standard deviation raises to 4× 10−3.

To obtain this result, the locking algorithm has been slightly modified. Indeed, with the
maximum-searching algorithm presented previously in Section 4.2.1, the standard deviation
is a bit larger (8.0×10−4). This simple approach is however sufficient for many applications.
Here, the control has been improved by implementing some proportional feedback using more
sophisticated programming. For instance, one can numerically calculate the corresponding
derivative of the signal, or simply use the signal difference between the sequential steps, as
the gain of the feedback signal. We call this method the PI-like algorithm. The measured
noise spectra are finally given in figure 4.3(c) for the three different techniques.

4.3.2 High-finesse cavity

Compared to a low-finesse cavity, locking a high-finesse cavity is more challenging due to the
limited resolution of the ADC. For instance, for a finesse of 1000, the number of sampling
points to cover the whole peak is around 4096/1000 ≃ 4 which is obviously insufficient to
lock the cavity. To overcome this problem, one can combine two 12-bit ADCs in order to
obtain a 24-bit ones as mentioned previously. Another way to address the problem is to use
two different scanning modes, namely a long scan and a short scan, as explained now.

Start
DAC0=4096/2

Long scan 
DAC1

No

Lock?

Start point
(coarse)

Short scan
DAC0

Start point
(fine)

Locking

Yes

Figure 4.4: Flowchart of the program
execution to lock a high-finesse cavity.
This scheme includes two different scan-
ning modes controlled by two outputs in
order to use the full DAC resolution.

The flowchart of the program execution is given in figure 4.4. One output of the DAC
(DAC1) is used for the long scan, which spans over more than a free spectral range in order
to identify the rough peak position. Another output (DAC0) is used for the short scan
around the peak position identified by the long scan mode and also used for the locking.
The two outputs are summed with different gains. Such uneven allocation of sampling over
the free spectral range enables the full use of the DAC resolution. Since there are four DACs
available in the microcontroller development board, this method can be easily implemented
without the need of any additional electronic building.

Figure 4.5 gives an example of the process for locking a 0.5 mm-long cavity [38] with
a finesse of 1000. Note that in order to make the re-lock process faster when the cavity
is unlocked, the program goes firstly to the short-scan mode instead of directly using the
long-scan one. If the short scan still cannot find the peak after 10 sweeps then the program
jumps to the long-scan mode.

The performances are displayed in figure 4.6. Figure 4.6(a) provides the temporal sta-
bility using the PI-like algorithm for the locking, while figure 4.6(b) gives the spectra for
PI-like, maximum-searching and analog dither-and-lock (DTH) techniques. For one second,
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Figure 4.5: Experimental locking process of a cavity with a finesse equal to 1000.
The light is measured in reflexion. (I) Cavity is locked. (II) Light is blocked to
disrupt the lock and the program goes thus to the short-scan mode. (III) As the
short-scan did not enable the relocking in this specific example, the long-scan is
started in order to learn the rough peak position. (IV) The output is set at a rough
start point determined in the previous step. (V) A short-scan is started to find
the precise peak position. (VI) The output is set to the precise start point. (VI)
Locking is on.

the standard deviation normalized to the peak height is found to be 4.8×10−3 for the PI-like,
which is slightly better than the 5.6× 10−3 given by DTH. The direct maximum-searching
provides a standard deviation of 6×10−3. For 15 minutes, the normalized standard deviation
reaches 8 × 10−3. These results show the suitability and efficiency of the microcontroller-
based locking with high-finesse cavities.
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Figure 4.6: (a) Long-term stability for the high-finesse cavity. The inset gives
a one-second zoom. The standard deviation is normalized to the cavity peak
height. (b) Noise spectrum for maximum-searching locking, PI-like locking and
the traditional analog dither-and-lock technique.

As an additional illustration of functions easily implemented by programming, figure 4.7
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Figure 4.7: Sequential locking for
the high-finesse cavity. The light is
switched off by mechanical shutters
during 50 ms between locking periods.
The DAC output holds the last value.
This sequential functioning is very use-
ful in many experiments where data ac-
quisitions have to be done in the ab-
sence of strong lights, such as in exper-
iments involving photon counting.

finally shows the temporal trace obtained for a sequential locking. The cavity is locked for
50 ms and the light is then blocked. The unit keeps the last output value for a specified
time, until the light is switched on again. This sample-and-hold functioning is central to
many experiments: for instance, it enables to lock an experiment and then to proceed to
acquisition in the photon-counting regime where locking lights have to be off [76].

4.3.3 Hybrid locking

The MCU-based locking as shown previously exhibits almost equivalent performances in
many lockings for our experiment. To obtain these results, there are two factors needed to
be considered:

1. The feedback of the the locking system should be fast enough. In our case, the feedback
bandwidth is mainly limited by the slow response of PZT actuators. With special
design of the PZT-actuated mirror, it is possible to achieve a 180 kHz servo bandwidth
[77].

2. The interferometer phase or cavity length should show a good passive stability. MCU-
based locking based on maximum-searching algorithm cannot compensate fast devi-
ations in an effective way. This condition can be reached with an optimized cavity
design for better isolation from mechanical noise and temperature fluctuations.

When the above two conditions are not fulfilled, one can either employ a more sophisti-
cated algorithm or resort to a more robust analog locking system. Here we will introduce
a compromised solution where we use analog devices for the locking and the MCU for the
re-locking (or initialization). This kind of hybrid locking enables us to benefit the robustness
of analog locking system and automatic re-locking feature by digital control.

The simple flowchart of hybrid locking system is shown in figure 4.8. When the analog
locking is lost, we use the MCU to output a digital signal for resetting the PID, and then
output a triangle analog signal for sweeping the cavity. Once the peak is identified, we use
the MCU to turn on the PID again. Since the PID parameters are already optimized, the
locking of the cavity can be engaged without difficulty. Actually, this is similar to what we
usually do when there is no MCU. Instead of using MCU, we manually reset PID and then
find back the peak for initializing the locking. The functionality of MCU here in hybrid
locking system is to monitor and initialize the locking.

The hybrid locking system is used in our experiment to lock an OPO cavity, which is
doubly resonant for the pump at 532 nm and the seed light at 1064 nm as shown in figure
4.8. The error signal of the PDH locking is obtained from the demodulation of the reflected
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Figure 4.8: (Left) A flowchart for hybrid locking. (Right) Hybrid locking for a
double resonant OPO. ISO: isolator; DM: dichroic mirror; IF: interference filter;
PD: photodiode; HV: high voltage box. A and B in the high voltage box are two
input channels, which will be summed up before amplification. Channel A has a
variable attenuation.

phase-modulated pump light. Hence, once the OPO cavity is locked, it must be resonant for
pump light. However, the cavity may not be resonant for the seed light due to the different
wavelengths.

Figure 4.9 shows the responses of the cavity to the pump and seed when the cavity
is scanned with a triangle waveform from a function generator. The peaks of the seed
occur at the same position with every other peaks of pump after optimization of the crystal
temperature and the laser frequency. As depicted in figure 4.8, the transmitted seed light
from the OPO cavity is therefore used to monitor the status of the locking instead of directly
using the pump.

Figure 4.9: (a) Responses of the OPO cavity to the pump and seed when the
cavity is scanned with a triangle waveform from a function generator. (b) The
peaks for the pump and seed when the phase-matching temperature is optimized.
I and II denote the threshold levels for switching to the locking mode.

It is worth noting that the threshold for identifying the seed peak should be carefully set
in the experiment. When the cavity is tuned (by changing the temperature of crystal) to be
perfectly doubly resonant, then we unlock and sweep the cavity. We find that the relative
positions between the pump and seed peaks are slightly different when the cavity is locked or
unlocked. When the cavity is locked, the pump power inside the cavity is enhanced, which
may lead to thermal effects. As a result, if the threshold is set to be the level I (c.f. figure
4.9) as usual, the cavity might not be locked since the peak of pump is far away from the
resonant point. Instead we use the level II for the threshold, which corresponds the peak
of pump. Note that the cavity can only be locked at the position located at left side of the
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seed peak.
Interestingly, with the same monitored signal from the seed we can also lock the phase

between the pump and the seed with fringes due to the parametric interaction. Such phase
locking can be conveniently realized with the aforementioned MCU-based digital locking
based maximum-searching algorithm. Note that in this scenario, the threshold for identifying
the locking status should be set carefully as the parametric interaction will alter the peak
value.

4.4 Integration and remote monitor

In order to make the MCU locking system more accessible for daily use, we integrate the
“naked” MCU board into a control box. Figure 4.10 shows one of these locking boxes recently
used in our lab. The switches, buttons, LEDs, and BNC connectors make it very easy to
operate. For example, it enables us to switch from scanning mode to locking mode, and
vice versa; to know the locking status via LEDs; to record the locking status with a TTL
output; to remotely control (sampling & hold) with a TTL input. With these features,
the integrated locking box would facilitate more complex quantum experiments which need
many cavities and phase lockings. For the details about the configuration of these boxes,
readers can refer to the Appendix E.

Figure 4.10: Integration box of MCU-
based automatic locking system.

In order to realize remote monitor and control of the lockings operating in the lab, we
use a Labjack (low cost USB/Ethernet/WiFi based measurement and automation device)
1 to collect the information of each locking and then display the locking status on a com-
puter screen at distance as shown in figure 4.11. These lockings are implemented with the
different aforementioned methods. The continuous band indicates a status of locking while
the dropping line indicates a loss of locking. Note that it is the infrared light from the
transmission of the filtering cavity that is used for locking the OPOs and micro-cavities in
the down stream. Therefore, in figure 4.11 it is expected that when the filtering cavity is
not locked, all the downstream cavities get unlocked.

1Here we use LabJack U6, which offers 14 Analog Inputs, 2 Analog Outputs (12-Bit, 0-5 Volts), 20
Digital I/O. Command/response (software timed) analog input and output typically take 1-4 ms depending
on number of channels and communication configuration.
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Figure 4.11: Remote monitor of the locking status of the various locking systems.
These lockings are implemented with different methods. The continuous bands
indicate a state of locking while the dropping line indicates a loss of locking. When
the filtering cavity is not locked, all the downstream cavities will get unlocked.

4.5 Conclusion

In this chapter we have presented a microcontroller-based locking system that allows for
automatic and sequential locking and is easily scalable. Its applicability to various lock-
ings, including interferometers and optical cavities, has been well demonstrated, offering
comparable performances compared to traditional analog locking systems. For some cases
that MCU could not achieve desirable performances, a hybrid locking system was proposed,
where MCU played the role of monitoring and initiating the locking. Additionally the in-
formation of locking status was collected in one location, which not only enabled remote
monitor and control of locking, but also allowed to post-process the acquired data. All the
experiments implemented in Part II have benefited from such automatic locking system.
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5 | Heralded Fock States

Single-photon source only emits one photon at a time, excluding the effect of multi-photon
components that occurs with the attenuated coherent light. This anti-bunching effect makes
it as a critical source for investigating many quantum phenomena. Single photons are
also regarded as ideal carriers for encoding information in quantum key distribution (QKD)
protocols due to low decoherence and easy transmission. Additionally, single photons are at
the heart of linear-optical quantum computation (LOQC) for instance the seminal proposal
by Knill, Laflamme and Milburn [28]. More generally, Fock states are the key ingredients in
many optical quantum state engineering protocols. For example, they are used as quantum-
optical catalysis for generating nonclassical states of light by means of linear optics [78].
Besides, high-fidelity large squeezed Schödinger cat states can be generated using Fock
states as initial resources [79].

In this chapter, we will first present the generation of high-fidelity Fock states up to two
photons based on a type-II optical parametric oscillator. Then, a novel way to synthesize
quantum superposition of the form α|0〉+β|2〉 will be introduced as well as its experimental
realization. Finally we will investigate a two-photon generation heralded by two-photon
detection with a temporal delay between the events and highlight the importance of temporal
modes when working in the continuous-wave regime.
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5.1 Single-photon state generation

The way to produce single photons can be divided into two categories: deterministic, and
probabilistic but heralded. In principle, deterministic emission can be realized using single
emitters such as atoms [80], Nitrogen-vacancy center [81], Quantum dot [82]. However, till
so far these sources are often limited by the low collection efficiency. As a result, they have
a low probability to actually get a single photon on demand. The other way to obtain
single-photon source is to use a probabilistic but heralded scheme. One possibility is to use
photon pairs emitted in two distinct modes: the detection of a single photon in one mode
heralds the generation of a single photon in the other mode [83].

Commonly such photon pairs can be obtained with spontaneous down-conversion as ex-
plained in Chapter 2, either by pulsed single-pass configuration [84, 85, 86] or by continuous-
wave OPOs [87]. For the latter case, two methods can be used to obtain the two distinct
modes. The first one is based on tapping a very small fraction of a squeezed vacuum [88],
leading intrinsically to a low count rate. The other method consists in using non-degenerate
modes emitted by the OPO. With a type-I nonlinear interaction, signal and idler have the
same polarization, thus the only degree of freedom is the frequency. The two correlated
modes can be then two modes with frequencies separated by multiples of the cavity free
spectral range, as demonstrated in [89]. However, this configuration requires a frequency
shift of the local oscillators for the homodyne tomography. Here we use another possibil-
ity with a type-II interaction, hence the frequency-degenerate signal and idler modes have
orthogonal polarizations and can be easily separated [38].

5.1.1 Principle and model

We start with a two-mode squeezed vacuum state with a squeezing parameter λ 1:

|ψsq〉ab = (1− λ2)1/2
∞
∑

n=0

λn|n〉a|n〉b , (5.1)

where a and b denote the two correlated modes. These modes have orthogonal polarizations
at the output of a type II OPO and can be spatially separated with a polarizing beam-
splitter. Due to the photon-number correlation, detection of n-photons in one mode will
project the other mode into the corresponding Fock state |n〉. Such conditional preparation
of Fock states is thus probabilistic but heralded.

Unfortunately, in reality many imperfections will degrade the fidelity of the generated
state. In order to understand and model our experiment, three experimental defects will be
discussed:

• conditional detector: photon-number resolution, efficiency, and dark noise

• light source: squeezing level and purity

• general optical losses in the setup

In the following, we are going to consider the defects of each part more or less indepen-
dently, in order to estimate the importance of each of them. The goal is not to give here
a precise and exhaustive model of this experiment but more a study of the “symptomatic”
effects of the different parts. For this purpose, we are going to use the POVM formalism (cf
Chapter 3) where the heralded sate is given by:

ρ̂cond,b = Tra[Π̂a ⊗ ✶bρ̂ab]/Tra,b[Π̂a ⊗ ✶bρ̂ab] . (5.2)

1linked to squeezing factor by σ2
x/σ

2
0 = s = (1− λ)/(1 + λ).
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Practically we will employ the “Qmixer” (cf. Section 3.4.4) to numerically calculate the
fidelity of the generated state depending on various parameters 2. For the details about
this simulation, readers can refer to Appendix D (Qmixer). When necessary, analytical
expressions will be given for better illustrating the physical meaning.

Conditional detector The detector used in our experiment is not perfect in terms of photon-
number-resolving ability, detection efficiency and dark noise. Figure 5.1 shows the fidelity
of the conditionally prepared single-photon state and two-photon state as a function of
squeezing levels of the initial source. Here we consider two types of detectors, APD and
PNRD, with limited detection efficiency and no dark noise. For both types of detectors,
the fidelity of the heralded single-photon state decreases as the input squeezing increase.
For APD-type detectors, they can not distinguish photon numbers larger than one. Thus
the firing of detectors in the conditional path will herald high photon-number states. It
seems that such a problem can be effectively solved by using PNRDs. However, due to
the limited detection efficiency, they can not neither perfectly distinguish the high photon-
number components. Even though they enable to reach a higher fidelity compared to APDs,
yet this advantage will fade out as squeezing goes smaller. This is because the high-photon
number components |n〉〈n| in the initial state are scaled as λn. The dark noise of the
detectors is omitted here, which is quite fair since we use very low-noise superconducting
single-photon detectors (SSPDs) in our experiment.
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Figure 5.1: Fidelity of the conditionally prepared single-photon state (left) and
two-photon state (right) as a function of squeezing levels of the initial EPR source.
These plots are done with two types of detectors, APD and PNRD, with various
detection efficiencies. Here we consider detectors without dark noise.

Light source In the above discussion, the squeezing is assumed perfectly pure. Actually
for an OPO, the purity of squeezing degrades as the pump power increases (cf. Section
2.2). Figure 5.2 shows the fidelity of the conditional state as a function of anti-squeezing of
the initial source when the squeezing level is fixed. We can see that as the anti-squeezing
increases, the purity of squeezing will decease accordingly. As a result, the fidelity of the
prepared Fock state will degrade. Indeed the degradation of squeezing purity is due to the
losses. Specifically the output squeezed state can be regarded as a perfect one after a given

2We can also resort to the version based on the Wigner function, as did in [20] for obtaining corresponding
analytical results.



64 5.1. SINGLE-PHOTON STATE GENERATION

loss η:

s′x = (1− η) + ηsx

s′p = (1− η) + ηsp .
(5.3)

Therefore, the loss on the initial squeezing can be seen as an equivalent one on the state
prepared from a pure squeezed state.
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Losses Losses on the Fock state |n〉 will result in a statistical mixture of Fock states with
lower photon numbers:

|n〉 Losses−−−−→
n
∑

k=0

(

n

k

)

ηk(1− η)n−k|k〉〈k| , (5.4)

where

(

n

k

)

is binomial coefficient and η is the power transmission. This equation gives the

fidelity of ηn for Fock states |n〉, which is plotted in figure 5.3.
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Figure 5.3: Decoherence of
Fock states |n〉 under losses.

Clearly Fock states with higher photons suffers more from the losses. For instance, to
achieve fidelity above 50%, the losses should be less that 50%, ∼ 30% and ∼ 20% for states
|1〉, |2〉 and |3〉, respectively. The losses here can occur in any stages, including the state
preparation, propagation and characterization.

We now turn to the experimental realization.
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5.1.2 Experimental setup

The experimental setup is sketched in figure 5.4. The two-mode squeezed vacuum state
is generated by a semi-monolithic OPO, as detailed in Chapter 2. Then the two orthogo-
nally polarized modes are spatially separated with a polarizing beam-splitter. One mode
is directed to the conditioning path where the light is detected by a SSPD after a series of
spectral filtering. The detection event will herald the presence of a single-photon state in
the other mode, which is then characterized by quantum state tomography via a homodyne
detection. The isolator in the signal path is used to eliminate the backscattered photons
from entering into the conditional path. All the measurements are acquired and processed
by an oscilloscope/computer. In the following, we will get into more details about each part
of the experimental setup.

Figure 5.4: Experiment setup for generating single-photon state. A two-mode
squeezed state is prepared by a type-II OPO operating far below the threshold. The
signal and idler modes are separated via a polarizing beam-splitter. The idler light
is sent through a set of spectral filtering including an interferential filter (IF) and a
Fabry-Pérot cavity (FP) before being detected by a superconducting single-photon
detector. The detection event in the conditional path heralds a single-photon state,
which is then characterized by homodyne measurement.

Conditioning path In the conditional path there are two main stages: frequency filtering
and single-photon detection. Here we give a brief discussion about their configurations and
the effects on the prepared state.

� Filtering stage: The down-converted photon pairs out of an OPO can occur in any
combination of two frequencies ω0 − n∆ and ω0 + n∆ within the phase-matching
window, where ω0 is the central frequency of down-converted light, ∆ is the free
spectral range of the OPO cavity and n is an integer. Since the optical frequency of
the local oscillator in the homodyne detection is ω0, it can only detect the mode at this
specific degenerate frequency. In the other words, detection of a photon at ω0 − n∆
(n 6= 0) will herald a vacuum state 3 at ω0 since the actual single photon is at ω0+n∆

3Strictly speaking it should be a thermal state, but quite closed to vacuum due to the very low pump
power of the OPO.



66 5.1. SINGLE-PHOTON STATE GENERATION

being ignored by the homodyne detector. Therefore, in order to make sure that the
photons detected in the conditioning path come from the degenerate frequency, it is
necessary to eliminate those photons at other frequencies. The filtering stage consists
of an interferential filter and a µCavity (450-µm cavity length), which finally gives a
-25 dB rejection of the non-degenerate modes (cf. [38] for more details).
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Figure 5.5: Steps for experiment running. (a) During the locking period, the
shutter for the seed is open while the path to the SSPD is blocked. The microcon-
troller is set to be in the “sampling” mode, thus completing locking feedback. (b)
In the measurement time, the status of the two shutters are exchanged and the
microcontroller is set to be in the “hold” mode. It will output constantly the very
last value onto the PZT thus “freezing” the cavity to stay on resonance.

� Conditional detector : In the experiment we use a superconducting single-photon de-
tector (SSPD). it enables high detection efficiency at 1064 nm (70%), negligible dark
counts (< 10 Hz) and low timing jitter (30 ps). In principle, heralded preparation of
single-photon states does not require an efficient detector when the pump power is very
low, as can be seen in figure 5.1. However in practice, highly efficient detector is fa-
vorable for increasing the preparation rate. Moreover, higher count rates will improve
the signal to noise ratio for the conditioning because the dark noise of the detector will
give out false triggers, thus degrading the fidelity of the generated state. Timing jitter
of the detector is also important due to the fact that the heralded single-photon state



CHAPTER 5. HERALDED FOCK STATES 67

in our experiment is temporally spread within a temporal mode defined by the OPO
cavity (∼ 20 ns). If the timing of the heralded detection has a large uncertainty, then
the generated state will have a poor overlap with the given temporal mode centered
at a fixed position, thus degrading the fidelity of the heralded single-photon state. For
more details about SSPDs, readers can refer to the Appendix F.

� Sampling and locking : The µCavity used in the conditional path is locked with a
microcontroller, as detailed in Chapter 4. In order to avoid any extended cavity with
the OPO, an optical isolator (not shown in figure 5.4) is inserted in the conditional
path. Additionally, to eliminate the scattered photons from the locking beam, the
experiment is designed to operate in a cyclic fashion as shown in figure 5.5 with a
locking period and a measurement period. In the “locking” period, the shutter 4 for
the seed is open while the path to SSPD is blocked. The microcontroller is set to be
in the “sampling” mode, thus completing locking. In the “measurement” period, the
status of the two shutters are exchanged and the microcontroller is set to be in the
“hold” mode. It will constantly output the very last value onto the PZT thus “freezing”
the cavity to keep it on resonance.

Figure 5.6: Diagram of timing setting for control signals.

� Timing : Since the experiment is operated alternately between “locking” and “mea-
surement” periods, hence controlling the timing of various TTL signals are necessary.
Figure 5.6 shows the timing setting for those signals. The temporal delays between the
signals are set in purpose. From “locking” to “measurement”, first the microcontroller
is set to be in “hold” before closing the shutter for the seed to make sure that a proper
value for cavity resonance is taken. Then the shutter for SSPD can be opened since the
seed beam is already blocked. From “measurement” to “locking”, these steps should be
reversed, namely in the following order: close the shutter for SSPD, open the shutter
for seed and set microcontroller to be in “sampling” mode. Note that there is another
periodical signal called “cycle” as shown in figure 5.6, which is used for as triggers

4The shutter used here is a mechanical beam blocker (SR475 from Stanford Research System), which has
a 3-mm aperture and can operate up to 100 Hz.
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together with pulsed signal from the SSPD for heralding the single-photon generation.
This “cycle” triggering signal can be replaced directly by the “shutter SSPD” signal if
we can properly estimate the rising time and falling time of the shutter.

Signal path The heralded single-photon state will propagate into this path. Therefore
the loss in this channel should be as low as possible: for instance we should use very good
anti-reflection coatings (typically ∼ 1%) for optics elements in the path, or simply use less
elements. The total intensity transmittance of propagation ηprop is estimated to be 93%
mainly limited by the required optical isolator. The other origin of losses is the detection
efficiency of the homodyne detection. To achieve high-fidelity states, there are two critical
points:
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⊥∥ ⊥

⊥ ∥ ⊥
⊥ ∥
∥ ∥

⊥∥ ∥

A

B

C

D

E

F

Isolator

OPO

PBS

Half wave plate

Figure 5.7: Various configurations for the optical isolator have been tested to
reduce the backscattered photons from homodyne detection. ⊥ denotes the iso-
lation of photons with a polarization orthogonal to the one of the local oscillator
in homodyne detection, while ‖ denotes the isolation of photons with the same
polarization. The configuration F gives out the best isolation performance since
majority of the backscattered photons are in the same polarization as the local
oscillator one.

� Isolator configuration: There is an optical isolator in the signal path, which is nec-
essary in the experiment in order to get rid of the backscattered photons from the
homodyne detection. The scattering effect can occur from any surfaces impinged with
a high power local light, such as lenses after the beam splitter (not shown in the figure
5.4) and photodiodes. Since the scattered photons in normal direction of surfaces are
perfectly mode-matched with the signal, thus they can efficiently propagate into the
conditional path. Even worse, these scattered photons are indistinguishable with the
real heralding photons. This coherent contamination results in asymmetric marginal
distributions [20]. Two ways are used to reduce the scattering: tilting the elements’
surfaces to avoid normal incidence and using Ion-Beam-Sputtered (IBS) coating. Var-
ious configurations for the optical isolator have been tested as shown in figure 5.7.
The best isolation performance is obtained with the configuration F since majority of
backscattered photons are in the same polarization as the local oscillator one.

� Homodyne detection: The homodyne detection includes a local oscillator provided by
the output of a “mode cleaner” cavity (with a finesse of 1000) and a pair of InGaAs pho-
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todiodes 5 with a quantum efficiency ηphot = 97%. There are mainly three parts limit-
ing the detection efficiency of homodyne detector: mode-matching between the signal
and local oscillator, quantum efficiency of photodiodes, and distance between shot noise
and electronic background. The efficiency due to the mode overlap ηvis is quadratically
linked to visibility of the oscillator-signal interference V : ηvis = V 2 = 0.982 ≈ 0.96.
An electronic noise being N dB below the vacuum noise at the central frequency leads
to an effective efficiency ηnoise = 1 − 10−N/10 [90]. The spectrum of our homodyne
detector with a 6-mW local oscillator is given in figure 5.8. The distance between the
short noise and electronic noise is more than 20 dB at low analysis frequency and 16
dB at the frequency of 50 MHz. Considering an OPO bandwidth about 50 MHz, it
translates to an effective efficiency of ηnoise = 96%. All the contributions finally lead
to an overall detection efficiency: ηHD = ηphot × ηvis × ηnoise ≃ 90%.
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Figure 5.8: (Left) Spectrum of the homodyne detection. The yellow region high-
lights the 50 MHz bandwidth of the OPO cavity. (Right) Effective efficiency as a
function of the distance between the shor noise and electronic noise.

We now explain how the data are acquired and finally processed.

Data acquisition and processing Each detection event in the conditional path heralds
the preparation of a single photon in the signal path, which is then sent to the homodyne
detection. The output homodyne signal is recorded automatically by a designed software
and then post-processed for obtaining corresponding quadrature values. Here we will detail
these two steps: data acquisition and data processing.

� Data acquisition: The homodyne signal is acquired with a high-speed oscilloscope
(Lecroy WaveRunner 610Zi) remotely controlled by a master computer via a LAN
connection 6. The sampling rate is set to 10 Gs/s. For each trigger, it will register
100-ns homodyne signal called a “segment”. The time of acquisition window is large
enough comparing to the temporal mode of the heralded single-photon state (∼ 20 ns).
The oscilloscope is run in a so-called “sequence mode”. N (typically 1000) segments
are accumulated in the oscilloscope memory before data transferring.

5Fermionics, 500-µm diameter of detection area
6Actually there is another operation mode used in our experiment. Instead of transferring data from

the oscilloscope to a computer via LAN connection, we can directly run the software in the oscilloscope
and transfer data from a shared memory managed by the operating system. This operation mode can
strongly minimize the time of data transferring (cf. Appendix in [20]). However for experiments that
require the some phase information, we will use another oscilloscope (Lecroy WaveSurfer 434). In this case,
these two oscilloscopes should be synchronized and this can only be realized with the technique based on
LAN connection. In this manuscript, we only use this general technique for all the experiments mentioned
afterwards.
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� Data processing : Due to the limited bandwidth of the OPO cavity, the heralded photon
is spread in a given temporal mode of a finite duration. The generated single photon
is defined by the creation operator:

Â†
f =

∫

f(t)â†(t)dt , (5.5)

where f(t) is the temporal mode function and â†(t) represents the instantaneous cre-
ation operator at time t.

The output signal from the homodyne detector is continuous and each measurement
corresponds to a quadrature measurement at time t, which is given by

Î−(t) ∝ αLO(t)[â(t)e
−iθ + â†(t)eiθ] . (5.6)

To infer the quadrature value of the state, we can multiply the instantaneous signal
from the homodyne detection with the mode function and integrate it over time:

∫

f(t)Î−(t)dt ∝ αLO[Âfe
−iθ + Â†

fe
iθ] ∝ X̂θ , (5.7)

where we consider a local oscillator with a constant amplitude. This approach works
if the temporal response of the acquisition electronics (typically on a scale of nanosec-
onds) is fast compared to the duration of the mode of interest 7.

In the ideal case of very low pump power and no additional filtering in the conditioning
path, the temporal mode is given by a double-decaying exponential profile, f(t) =√
πγe−πγ|t|, where γ is the FWHM bandwidth of the OPO cavity. In practice the

temporal mode function can be arbitrarily chosen for maximizing the single-photon
fidelity. The effect of temporal modes on the reconstructed state is presented in the
next section.

5.1.3 Results and discussion

Since the single-photon state is phase invariant, the phase of each measured quadrature is
not required for the state tomography. In this experiment, the phase of the local oscillator is
thus scanned for obtaining a random distribution of the phases. The accumulated quadra-
ture measurements (typically 50,000 data points) after post-processing with an appropriate
temporal mode are used for the state reconstruction with a C++ written MaxLik algorithm.
For the state generated in the experiment, a truncation of the Fock space up to |6〉 is enough,
and 200 iterations of the algorithm gives a reasonable accuracy.

High fidelity single-photon state The diagonal elements of the reconstructed density ma-
trix is given in figure 5.9 as well as the corresponding Wigner function. Without any cor-
rection, the obtained single-photon component reaches 78.0%. By taking into account the
detection loss of 15%, a single-photon fidelity of 91.5% is inferred. Thanks to the low
pumping power (1 mW for a threshold of 80 mW), the two-photon component is limited to
1%. Benefited from the highly efficient SSPD (70%) the heralding rate for single-photon
generation reaches 300 kHz.

7For pulsed parametric down-conversion, the temporal mode is defined by the pulse shape. In this case,
αLO(t) ∝ f(t), and hence ∫ Î−(t)dt ∝ X̂θ. Because of the slow electronics’ response, the integration occurs
in this setting automatically. The output of the homodyne detector is an electrical pulse whose shape is
determined by the response function, and magnitude is proportional to the quadrature. Here the bandwidth
of homodyne detection has to be larger than the repetition rate of the pulses (typically ∼100 MHz) in order
to distinguish the adjacent pulses.
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Figure 5.9: High-fidelity single-photon state. (a) Marginal distribution from
50,000 quadrature measurements with average phases. The red solid line is a
fit of the experimental data while the blue solid line indicates a perfect single-
photon state. (b) Photon-number distribution of the generated state, with and
without correction for the 15% detection loss. (c) Corresponding Wigner function
without loss correction.

Fidelity and temporal modes For the low pumping assumption, the heralded single-photon
state in a temporal mode f(t) can be expressed as

|Ψ〉 =
∫

f(t)â†(t)dt . (5.8)

If we apply another mode function, say g1(t), in the multiplication with the homodyne
signal, then what kind of measurement results can we get?

We can always find a series of norm-orthogonal functions gk(t) among which the first
one is g1(t). They satisfy the orthogonality and completeness relations:

∫

gk(t)g
∗
k′(t)dt = δkk′ ,

∑

k

gk(t)gk(t
′) = δ(t− t′) .

(5.9)

Then we can decompose the single-photon state in this basis:

|Ψ〉 =
∫

∑

k

ckgk(t)â
†(t)dt =

∑

k

ck|1〉k , (5.10)

where |1〉k means there is one photon in the mode gk and vacuum in the other modes and
the coefficient ck is given by

ck =

∫

f(t)g∗k(t)dt . (5.11)

So the corresponding density matrix is given by

ρ̂ =
∑

k,k′

ρkk′ |1〉kk′ 〈1| , (5.12)
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where
ρkk′ = ckc

∗
k = |ck|2 . (5.13)

If we only focus on the state in the mode g1(t), then we can trace over the other modes,
which results in

ρ̂′ = ρ11|1〉11 〈1|+ (1− ρ11)|0〉11 〈0| . (5.14)

Clearly the single photon fidelity is given by

F = |c1|2 =

∣

∣

∣

∣

∫

f(t)g∗1(t)dt

∣

∣

∣

∣

2

, (5.15)

which is determined by the overlap between the actual temporal mode and the mode on
which we project.

Particularly, when there is only temporal mismatch between the temporal modes (i.e.
temporal delay), the temporal modes are given by:

f(t) =
√
πγe−πγ|t|

g(t) =
√
πγe−πγ|t−∆t| .

(5.16)

Thus the fidelity reads as

I = e−πγ|∆t|(1 + πγ |∆t|)
F = I2 .

(5.17)

In the other case where these only exits a spectral mismatch (i.e. temporal duration),
we can consider the following temporal modes:

f(t) =
√
πγe−πγ2|t|

g(t) =
√
πγe−πγ1|t| .

(5.18)

The fidelity can thus be obtained as

F =
4γ1γ2

(γ1 + γ2)2
. (5.19)

Figure 5.10 shows the experimental results for these two cases where the fitted lines are
given by assuming an OPO bandwidth of 53 MHz.
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Figure 5.10: Effect on single-photon fidelity in the cases of temporal mismatch
(a) and spectral mismatch (b). The fitting curves are given by using an OPO cavity
bandwidth of 53 MHz.
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5.2 Two-photon state generation

As introduced at the beginning of this chapter, the detection of two photons in the con-
ditional path will herald the generation of two-photon Fock state. The effects of various
imperfections in the experiment are shown in figures 5.1, 5.2 and 5.3. Generally speaking,
the two-photon state is more sensitive to the losses. In this section, we will present the
experimental realization of high-fidelity two-photon Fock state. The photon statistics in the
conditional path will also be discussed, such as the photon bunching effect of the heralding
photons.

5.2.1 Experimental setup

The experimental setup is presented in figure 5.11. It is very close to the one used for single-
photon generation except for the conditional detector. The two-photon detector is realized by
two SSPDs after a 50:50 beam-splitter. The coincident gate is configured in the oscilloscope.
The accepted coincidence window between the two heralding triggers is set to be 1 ns, which
imposes a negligible effect on the fidelity of conditional state. Given coincidence event in the
conditioning path, the heralded state is then characterized by quantum state tomography
performed via a homodyne detection. Note that in order to increase the heralding rate, the
pump power is increased up to 2 mW which is still far below the threshold (about 80 mW).

Figure 5.11: Experiment setup for generating two-photon Fock state. The two-
photon detection in the conditional path is realized with two SSPDs after a 50:50
beam-splitter.

5.2.2 High fidelity two-photon state

The homodyne signal is acquired and processed using the same way as in single-photon
case. Figure 5.12 presents the results of a high-fidelity two-photon Fock state obtained in
our experiment: the histogram of the measured quadrature values, the diagonal elements
of the reconstructed density matrix and the corresponding Wigner function. Due to the
very low pump power, the three-photon component is limited around 3%. The two-photon
component is 58.3% without any corrections. To the best of our knowledge, this is the
highest value reported to date. By taking into account the detection losses of 15%, we
infer a value as high as 79.0%. Assuming of a single-photon fidelity of 78%, the expected
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two-photon fidelity is (78%)2 ≈ 60% which is in good agreement with the value obtained in
our experiment. The two-photon state is indeed more sensitive to the losses. Thanks to the
highly efficient SSPDs, the heralding count rate reaches 150 Hz and the total acquisition
time only takes around 20 minutes for accumulating 50,000 quadrature measurements.
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Figure 5.12: Generation of high-fidelity two-photon Fock state. (a) Marginal
distribution from 50,000 quadrature measurements with phase averaging. The red
solid line is a fit of the experimental data while the blue solid line indicates a perfect
two-photon state. (b) Photon-number distribution of the generated state, with and
without correction for detection losses of 15%. (c) Corresponding Wigner function
without loss correction.

5.2.3 Properties of the photon statistics

The down-conversion process is a stochastic process, or rather a Poisson process. For such
a process, the interval time between each pair of consecutive down-conversion events follows
an exponential distribution and all of these inter-arrival times are independent from each
other. To investigate this photon statistics, we use only one SSPD in the conditional path.
Given the dead time between segment acquisition (≈ 1 µs) in our oscilloscope, the measured
count rate is attenuated to about 1.3 kHz. Figure 5.13(a) presents the probability density
as a function of the inter-arrival time between two events. The fitting line is given by

P (t) = λ2te−λt , (5.20)

with a mean value of 2/λ. The parameter λ used in the fitting is 1/0.36(ms), thus giving a
mean interval time of 0.72 ms. The average count rate is inferred to be about 1.4 kHz which
is consistent to the measured value.

Another aspect about photon statistics is the photon-bunching effect in the conditional
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Figure 5.13: (a) Probability density as a function of inter-arrival times between two
consecutive events in the down-conversion process. (b) Second-order correlation
function g(2)(|t2 − t1|) in the conditional path.

path. Theoretically, the second-order correlation function g(2) is given by [91]:

g(2)(t2 − t1) =

〈

â†(t1)â†(t2)â(t2)â(t1)
〉

〈â†(t1)â(t1)〉 〈â†(t2)â(t2)〉

= 1 + (
e−µ|t2−t1|

2µ
− e−λ|t2−t1|

2λ
)2/(

1

2µ
− 1

2λ
)2 ,

(5.21)

where

λ = πγ + ε

µ = πγ − ε ,
(5.22)

ε is the nonlinear gain coefficient and γ is the FWHM bandwidth of the OPO cavity. In the
approximation of low pumping power (ε≪ γ), we have

g(2)(t2 − t1) = e−2πγ|t2−t1|(1 + πγ |t2 − t1|)2 + 1 . (5.23)

From the above equation we can notice that g(2)(t2−t1) increases from 1 to 2 when |t2−t1|γ
decreases from infinity to zero, which means that the trigger events are bunched in time.
Such bunching effect will favor our two-photon experiment.

Figure 5.13(b) shows the measured g(2)(t2− t1) with two SSPDs in the conditional path.
The fitting curve is obtained with the parameter γ = 50 MHz. The slight mismatch of
g(2)(0) is due to the imperfect separation of the signal and idler modes. In ideal case, the
state in conditional path is a thermal state, thus giving g(2)(0) = 2. For the general case,
we detail it in the next section.

5.3 Engineering of two-photon superposition states

The slight deviation of g(2)(0) leads us to notice that mixing the signal and idler modes can
provide a way to engineer states of the form α|0〉 + β|2〉. In the section, we will discuss
about this technique from basic principles to the experimental implementation.
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5.3.1 General protocol

As shown in figure 5.14(a), we start with a two-mode squeezed vacuum state |ψ〉 from a
type-II OPO:

|ψ〉 ∝
∑

n

λn|n, n〉a,b =
∑

n

λn
â†nb̂†n

n!
|0, 0〉a,b , (5.24)

where λ is the squeezing parameter, â† and b̂† are creation operators for the orthogonal
modes a and b, respectively.

Figure 5.14: (a) General scheme for generating states of the form α|n−2〉+β|n〉,
which is a superposition of two Fock states with the same parity. (b) Two equivalent
ways for calculation with a 45◦ rotation in phase space. Note that the two-mode
squeezed state (TMSS) is equivalent to two squeezed states.

A half-wave plate (HWP) and a polarization beam splitter form a polarization-dependent
beam splitter with an amplitude reflectance r′ and transmittance t′. In the Heisenberg
picture, the evolution of operators are given by

â† = t′â† + r′b̂†

b̂† = t′b̂† − r′â† .
(5.25)

In the limit of small squeezing parameter λ → 0 and small reflectivity r′ → 0, the state
heralded by a n-photon detection in the conditional path is given by

|φn〉 ∝
√

n(n− 1)r′|n− 2〉+ λ|n〉 , (5.26)

which is a superposition of two highest Fock states with the same parity depending on the
conditional photon number n. By adjusting the reflectivity r′, arbitrary weights can be
obtained. Note that the relative phase between the superposition terms can be controlled
with a birefringent material, which leads to the preparation of quantum bits.

Equivalently, the two-mode squeezed vacuum state can produced via two single-mode
squeezed vacuum states as shown in figure 5.14(b). The corresponding squeezing parameters
have the same magnitudes but opposite phases. This fact can simplify our calculation to
model this state preparation. Therefore the conditional states can be computed as following:

ρ̂ ∝ Tr[B̂(r)|ψ〉〈ψ|B̂†(r)Π̂] , (5.27)
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where B̂ is the beam-splitter mixing operator, the input state is |ψ〉 = Ŝ(ζ)|0〉a⊗Ŝ(ζeiπ)|0〉b ,
and the measurement operator is Π̂ = |n〉〈n| . Using this rotation picture of our state prepa-
ration, it is very easy to use the “Qmixer” software to numerically simulate the conditional
states.

5.3.2 g
(2)(0) in the conditioning path

In particular, we consider here the case n = 2 . As shown in figure 5.14(b), two squeezed
vacua are brought to interfere on a beam-splitter with an amplitude reflectance r and trans-
mittance t. This kind of two-mode mixing can be conveniently described with the Wigner
function, giving the output state as

W ′
ab(xa, pa;xb, pb) =

1

(2π)2
e−

(txa+rxb)
2

2s − (tpa+rpb)
2

2/s
− (txb−rxa)2

2/s
− (tpb−rpa)2

2s , (5.28)

where s = e−2ζ is the squeezing factor.
If we only focus on the state in the conditional path 8, we can trace out the mode a

leading to

W ′
b(x, p) =

1

2πσxσp
e
− x2

2σ2
x
− p2

2σ2
p , (5.29)

where

σ2
x = sr2 + t2/s , σ2

p = st2 + r2/s . (5.30)

The resulting state is still a Gaussian state with

〈x2〉 = σ2
x , 〈p2〉 = σ2

p , (5.31)

which gives the average photon number

〈n̂〉 = 〈x2〉+ 〈p2〉 − 2

4
=

1

4
(s+

1

s
− 2) . (5.32)

For Gaussian states with zero offset, the second-order correlation function (cf. Appendix B)
is given by 9

g(2)(0) = (
σ2
x − σ2

p

σ2
x + σ2

p − 2
)2 + 2 =

(t2 − r2)2

λ2
+ 2 , (5.34)

where λ = (1− s)/(1 + s) = tanh ζ .
Clearly, when t = 0 or r = 0 the g(2)(0) corresponds to a squeezed vacuum state; when

t = r = 1/
√
2 the g(2)(0) corresponds to a thermal state. This can explain that the g(2)(0)

shown in figure 5.13(b) is slightly higher than 2 as this value is very sensitive to the mixing
of the two modes.

8If we trace out the mode b, what we get is

W ′
a(x, p) =

1

2πσxσp
e
− x2

2σ2
p
− p2

2σ2
a ,

which is just the 90◦-rotation of W ′
b(x, p).

9If we use the coefficients in the left scheme shown in figure 5.14, then we have

g(2)(0) = (
2t′r′

λ
)2 + 2 . (5.33)
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5.3.3 Superposition between |0〉 and |2〉
The previously demonstrated two-photon Fock state has been obtained in the condition of
perfect alignment of HWP (r′ = 0). As shown in the protocol, a superposition of vacuum
and two-photon Fock state can be synthesized by adjusting the HWP angle. Figure 5.15
demonstrates the evolution of the heralded states with the angle of HWP. It is clearly shown
that the weights of superposition terms can be conveniently controlled. The superposition
can be understood in the following way: the two photons in the conditional path are ether
both from the idler mode or one from idler mode and the other one from signal mode. The
former heralds a two-photon state while the latter heralds a vacuum state. The distin-
guishability of these two events leads to a coherently superposed state. This novel method
for state engineering does not need ancilla beams [92, 93]. It is also worth mentioning that
the proposed protocol takes the advantage of the polarization non-degeneracy of the type-II
OPO. The PBS used to mix the two modes will erase the polarization information for the
signal and idler photons entering the conditional path. For experiments based on OPOs
with frequency non-degeneracy [89, 94], the mixing of signal and idler modes will not result
in a superposition state due to the spectral distinguishability.

1.5° 2.5° 3.5° 4.5°θ = 0.5° 

Figure 5.15: Evolution of the heralded states with incremental values of the half-
wave plate angle θ. The Wigner functions are phase sensitive due the superposition
property of the generated states. The Absolute values of density matrices are also
shown in the top-right corner, which clearly demonstrate the dynamic change of
superposition weights. The results are corrected for 15% losses.

The angle tuning of HWP not only enables to engineer the states, but also changes
the heralding probability. Since the average photon number in the conditioning path is
independent on the HWP angle (cf. equation (5.32)), the joint probability in the coincidence
measurement only relies on the second-order correlation function g(2)(0) of the state in the
conditioning path. According to equation (B.17), the value of g(2)(0) increases with larger
HWP angle, thus giving a higher heralding probability.

Note that the superposition state is phase dependent, hence the reconstruction of the
density matrix requires the phase information of the quadrature values. The technique for
obtaining this information will be detailed in Chapter 6.

5.3.4 Approximation of Schrödinger cat state

It is well known that superposition of Fock states with the same parity can approximate
Schödinger’s cat states |α〉 ± | − α〉. Furthermore, if one can arbitrarily synthesize the
superposition coefficients, large amplitude of the target states can be obtained. Let us
consider the following state

|φn〉 = bn|n〉+ bn−2|n− 2〉+ . . . , (5.35)
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and the targeted squeezed Schödinger’s cat given by

|Scatα±〉 =
1

√

2(1± e−2α2)
Ŝ(ζ)(|α〉 ± | − α〉) . (5.36)

With the photon number distribution of a squeezed coherent state

Ŝ(ζ)|α〉) = 4
√

(1− λ2)e
(λ−1)α2

2

∞
∑

n=0

√

λn

2nn!
Hn(±

√

1− λ2

2λ
α)|n〉 (5.37)

where λ = tanh ζ , we can express the squeezed Schödinger’s cat in the Fock state basis

|Scatα±〉 = cn|n〉+ cn−2|n− 2〉+ . . . . (5.38)

Therefore the fidelity between them is described as

F = |〈Scatα±|φn〉|2 = (bncn + bn−2cn−2 + . . .)2 , (5.39)

which is maximized when the coefficients are proportional to each other (Cauchy-Schwarz
inequality)

Fmax = c2n + c2n−2 + . . . . (5.40)

The fidelity between engineered states and cat states are plotted in figures 5.16. The
fidelity is optimized by the squeezing and size of the targeted squeezed cat state. This
method enables to reach a cat size |α|2 ≈ 3 for n=2 or |α|2 ≈ 5 for n=3 with a fidelity above
98%.
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Figure 5.16: Fidelity between photon-number superposition state and cat state
as a function of r′/λ. (a) Fidelity with an even cat state F = |〈Scatα+|φ2〉|2. (b)
Fidelity with an odd cat state F = |〈Scatα−|φ3〉|2. The fidelity is maximized by
the squeezing and size of the targeted squeezed cat state. The inset shows the
evolution of photon-number distribution.

Figure 5.17 shows the experimentally obtained fidelity between the engineered states
(cf. figure 5.15) and ideal squeezed cat states. For HWP angle θ = 1.5◦, a fidelity F =
0.67 ± 0.01 is obtained for a size |α|2 = 3 and a squeezing of 4 dB. The generated state
thereby exhibits the highest amplitude and fidelity reported to date for free-propagating cat
states. Furthermore, the demonstrated scheme is very versatile. Indeed, by simply adjusting
the HWP angle, the properties of the state can be engineered. For instance, as can be seen in
figure 5.17(b), the state generated with θ = 2.5◦ exhibits a maximal fidelity F = 0.68± 0.01
for a state |α|2 = 1.9 and a squeezing of 3 dB. Given the loss in the experiment, the corrected
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Figure 5.17: Fidelity between the generated state and an ideal squeezed even
coherent-state superposition, for (a) θ = 1.5◦ (b) θ = 2.5◦. The plots give
the calculated fidelity as a function of the size |α|2 of the superposition and the
squeezing in dB. The green crosses indicate the maximal fidelities. For θ = 1.5◦,
the fidelity reaches 0.67 with an even cat state with a size |α|2 = 3 and a 4-dB
squeezing.

fidelity is expected to reach a value around 80%, similarly to the one obtained for the two-
photon state displayed in figure 5.12. The discrepancy mainly comes from the strong phase
sensitivity of such states.

Note that the demonstrated state engineering relied on two-mode squeezed vacuum and
a conditioning operation performed on one of the two modes. No ancilla beam was required,
in contrast to previous works relying on coherent-state-injected photon detectors [92, 95].
Additionally only two conditional detections were used in our experiment, instead of three
conditionings shown in [79]. Therefore the protocol demonstrated here indeed enables the
heralded generation of large-size squeezed cat states with the minimal required resources.

5.4 Heralding photons with temporal separation

In contrast to the single-photon state scheme, the generation of two-photon states involves
two conditioning photon-detection events. Till so far, in the above experiments the delay
between the two detection events was set to zero. In this section, we will investigate how the
generated states can be affected by the temporal separation of the conditional detections.
To avoid any confusion, we emphasize here that the HWP is aligned to be in the “perfect”
position such that the signal and idler modes are separated without any mixing.

5.4.1 Temporal modes

Generally speaking, in the approximation of low pump power, the generated state condi-
tioned on the n-photon detection is given by [91]

|Ψn〉 ∝
n
∏

i=1

∫

dtgi(t)â
†(t) |0〉 . (5.41)
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Specifically, the heralded two-photon state cab be written as:

|Ψ2〉 =
1√
N

∫∫

dtdt′g1(t)g2(t
′)â†(t)â†(t′) |0〉 , (5.42)

where
gi(t) =

√
πγe−πγ|t−ti| (5.43)

are the single-photon wave packets corresponding to two temporally separated trigger pho-
tons.

The normalization constant N can be determined by the normalization of the state 10,

N = 1 + I2 , (5.44)

where I is the overlap between the two temporal modes

I =

∫

g1(t)g2(t)dt = e−πγ|t1−t2|(1 + πγ|t1 − t2|) . (5.45)

If we use a specific mode f1(t) as our interest mode, what can we measure at the end
from the homodyne signal? To answer this question, we can construct a series of normal-
orthogonal functions fk(t) among which f1(t) is the first mode. So the two-photon state can
be rewritten as:

|Ψ2〉 =
1√
N

∑

m,n

Cmn[

∫

dtfm(t)â†(t)][

∫

dt′fn(t
′)â†(t′)] |0〉

=
1√
N

∑

m,n

CmnÂ
†
mÂ

†
n |0〉

=
1√
N

[
∑

m

√
2Cmm|2〉fm +

∑

m>n

(Cmn + Cnm)|1〉fm |1〉fn] ,

(5.46)

where the decomposition coefficients are

Cmn = [

∫

f∗m(t)g1(t)dt][

∫

f∗n(t
′)g2(t

′)dt′] = αmβn . (5.47)

If we consider a temporal mode of interest f1(t) equal to g1(t), we can obtain Cmn =
δ1,mβn. After tracing over other modes, the measurement probabilities for different photon-
number states are given by

P2 =
2

N
|C11|2 =

2|β1|2
1 + I2

=
2I2

1 + I2
, (5.48)

P1 =
1

N

∑

m>1

|Cm1 + C1m|2

=
1

N

∑

m>1

|C1m|2 =
1

N

∑

m>1

|βn|2

=
1

N
(1− |β1|2) =

1− I2

1 + I2
.

(5.49)

10We use the relation

〈0| â(t′2)â(t′1)â†(t1)â†(t2) |0〉
= 〈0| â(t′2)[â†(t1)â(t′1) + δ(t1 − t′1)]â†(t2) |0〉
=δ(t1 − t′2)δ(t2 − t′1) + δ(t1 − t′)δ(t2 − t′2) .



82 5.4. HERALDING PHOTONS WITH TEMPORAL SEPARATION

Since the target mode is always occupied by one heralded single photon, the probability to
find no photon in this mode is thus zero, which is confirmed by:

P0 = 1− P1 − P2 = 0 . (5.50)

For more general cases, as shown in equation (5.49) the probability to find just one
photon in the target mode is very complicated due to the coherent superposition between
two probability amplitudes (Cmn and Cnm).

Note that the mode f1(t) = g1(t) is not the optimal temporal mode, because we can
find other modes that will give a higher two-photon fidelity. To demonstrate this point,
we can reformulate the state |Ψ2〉 with two orthogonal mode functions, symmetric and
antisymmetric, which are constructed in the following way:

f1(t) =
1

√

2(1 + I)
[g1(t1) + g2(t2)] ,

f2(t) =
1

√

2(1− I)
[g1(t1)− g2(t2)] .

(5.51)

Therefore the resulting state can be expressed as

|Ψ2〉 =
1 + I

2
√

(1 + I2)
[

∫

dtf1(t)â
†(t)]2 |0〉 − 1− I

2
√

(1 + I2)
[

∫

dtf2(t)â
†(t)]2 |0〉

=
1 + I

√

2(1 + I2)
|2, 0〉1,2 −

1− I
√

2(1 + I2)
|0, 2〉1,2 .

(5.52)

It indicates that the two photons can be either in the mode f1(t) or in mode f2(t). The two-
photon fidelity in mode f1(t) can be easily obtained from the norm square of the coefficient

F =
(1 + I)

2

2(1 + I2)
. (5.53)

It can be proved that F > P2 . Recall that P2 is the two-photon fidelity using g1(t) as the
temporal mode, which is given by equation (5.48).

Actually, it has been shown that for low gain pump, the mode f1(t) is the optimal mode
for obtaining the highest two-photon fidelity. Figure 5.18 depicts the four modes functions
g1(t), g2(t), f1(t), and f2(t).
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Figure 5.18: Mode functions
g1(t), g2(t), f1(t), and f2(t).

5.4.2 Results and discussion

For illustrating the experimental effect of temporal modes on the conditional states, the
conditional detections from the two SSPDs are set to have a 40-ns delay. The acquired
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homodyne signal is then processed with the four aforementioned temporal modes shown in
figure 5.18.
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Figure 5.19: Photon-number distributions of reconstructed states by choosing
different temporal mode functions g1(t), g2(t), f1(t), and f2(t), respectively. The
state tomography is done without loss correction.

Figure 5.19 shows photon-number distributions of the reconstructed states by choosing
different temporal mode functions g1(t), g2(t), f1(t), and f2(t), respectively. Due to the
losses, the single-photon fidelity is about 76% which gives an expected optimal two-photon
fidelity about 76%2 ≈ 58% when heralded by zero-delay coincident triggers. In the exper-
iment, the two trigger times are well separated by 40 ns, which is much larger than the
coherence time of the heralded photons (about 20 ns). According to equation (5.53), the
expected two-photon fidelity in the symmetric mode f1(t) and asymmetric mode f2(t) will
decrease to half compared to the case of t1 − t2 = 0. It leads to a two-photon fidelity of
58%/2 = 29%, which is in good agreement with what we measure.

The above example illustrated how the reconstructed states are affected by using dif-
ferent temporal modes. In the next example, we will demonstrate how, with the same
temporal mode, the reconstructed states are affected by using various temporal delays for
the coincident triggers.

In our experiment, the homodyne signal is acquired given coincident clicks with a given
delay ∆t. If we use a temporal mode g1(t) centered at the same time with one click, what
we expect is thus given by (cf. Section 5.4.1)

ρ̂ = P1|1〉〈1|+ P2|2〉〈2| , (5.54)

where P1 and P2 are given by

P1 =
1− I2

1 + I2
,

P2 =
2I2

1 + I2
.

(5.55)
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Recall that I is defined by
I = e−πγ∆t(1 + πγ∆t) . (5.56)

After taking account into the losses on the state (modeled with a fictitious beam-splitter
with a power transmittance η), the resulting state ρ̂′ is thus written as

ρ̂′ = P2η
2|2〉〈2|+ [P22η(1− η) + P1η]|1〉〈1|+ [P2(1− η)2 + P1(1− η)]|0〉〈0| . (5.57)
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Figure 5.20: Reconstructed states
as a function of the temporal sep-
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triggers. The fitting parameters are
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Figure 5.20 shows the reconstructed states as a function of the temporal separation ∆t
between the coincident triggers. The fitted curves are obtained by using the parameters γ
= 53 MHz and η = 0.76 . The slight discrepancy may be due to the high photon-number
components.

Note that in the experiment, all the data is acquired once, which covers the trigger delays
up to 70 ns. Therefore we can continuously post-select the temporal delay between triggers
within this range. The total data number is 1000,000 and the selected data number with any
trigger separation is above 15,000 that is enough to realize the accurate state tomography.

5.5 Conclusion

In conclusion, we have experimentally generated high-fidelity heralded Fock states based
on the type-II optical parametric oscillator operated below threshold. 78.0% single-photon
fidelity and 58.3% two-photon fidelity have been achieved, mainly limited by the losses in
the detection part. Thanks to the highly efficient SSPDs, the heralding count rates for
single-photon generation is close to MHz, which permits tomography as well as optimization
of the experimental setup in real time [96]. For two-photon state generation, the heralding
rate reaches 150 Hz. The obtained states will benefit to quantum optical engineering and
information processing that require Fock states with high fidelity and importantly in a well-
defined spatial mode. For instance, these states will be used in the generation of hybrid
entanglement, which will be presented in Chapter 7.

Additionally, we proposed a novel method to engineer quantum states with the form
of α|n〉 + β|n − 2〉. As a proof of principle, we experimentally demonstrated a superposi-
tion of vacuum and two-photon Fock state. Arbitrary weights of the superposition terms
can be synthesized by only rotating the HWP. The generated states can be optimized to
approximate large-amplitude squeezed even cat states [97, 98, 99].

Finally we have experimentally investigated that in our continuous-wave experiment the
temporal separation between conditioning detections indeed largely affected the generated
states. Another example will be given in the next chapter as a large-size cat state can be
generated with a time-separated two-photon subtraction from a squeezed vacuum.



6 | Schrödinger Cat States

Schrödinger’s cat is a gedanken experiment that originally described a cat existing in a
superposition of alive and dead states. Nowadays, the term Schrödinger’s cat usually refer
to a quantum superposition between two highly distinguishable classical states. A typical
example in quantum optics is a coherent state superposition (CSS), i.e. |α〉 ± | − α〉. As
shown in Chapter 1, the CSS exhibits the quantum interference feature that cannot be
observed with a statistical mixture of coherent states. Even with a modest amplitude α,
the coherent states |α〉 and | − α〉 are almost orthogonal 1. This property attracts great
attention in continuous-variable quantum computation where qubits can be encoded with
such states [100, 101]. Additionally, CSSs can also be useful in high-precision measurements
[102, 103].

In this chapter, we will first demonstrate the generation of an odd cat state, which is then
transformed to an even cat states by a π-phase gate. At the end, larger-size cat states will be
generated using time-separated two-photon subtraction. In contrast to the previous chapter,
here the state generation is based on conditional preparation operated on the single-mode
squeezed vacuum from a type-I OPO.
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1The overlap between two coherent states |〈α| − α〉|2 = e−4|α|2 is already below 2% for |α|2 > 1
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6.1 Generation of odd cat states

Generation of Schrödinger cat states is a nontrivial task, since it requires large nonlinearity.
The nonlinearity in principle can be provided by cross-Kerr effect [104, 105], yet with cur-
rently available material and technology, realization of a pronounced Kerr effect at the single-
photon level is still very challenging. To overcome this difficulty, measurement-induced non-
linearity is used at the expense of probabilistic implementation [106, 107]. Specifically, the
cat state can be generated with photon subtraction from a squeezed vacuum state [108]. This
protocol has been successfully demonstrated in many experiments [99, 109, 110, 111, 112].
For a review of methods for producing optical cat states, readers can refer to [113].

6.1.1 Principle and model

� Basic principle

As introduced in Chapter 1, the Schrödinger cat state is given by the superposition of
two coherent states with opposite phases:

|catα±〉 =
|α〉 ± | − α〉

√

2(1± e−2|α|2)
, (6.1)

where |α〉 is a coherent state with an amplitude α. |catα−〉 is called an odd cat state because
it only contains odd photon-number states in the Fock state expansion. Similarly, |catα+〉 is
thus called an even cat state.

Generation of an odd cat state can be approximated with a superposition of photon-
number states with only odd parity. A commonly used strategy is to subtract a single
photon from a squeezed vacuum state, as initially proposed by Dakna et al. [108]. The
single-photon subtraction from a squeezed vacuum results in 2

|1PS〉 , âŜ(ζ)|0〉
‖âŜ(ζ)|0〉‖

= Ŝ(ζ)|1〉

=
(1− λ2)3/4

λ

∑

n=1

√

(2n)!

n!
(λ/2)n

√
2n|2n− 1〉 ,

(6.2)

where λ = tanh ζ . The resulting state is actually a squeezed single photon.
The fidelity between a single-photon-subtracted state |1PS〉 and an odd cat state |catα−〉

is given by [114]

F1 =
∥

∥〈catα−|1PS〉
∥

∥

2

=
(1− λ2)3/2α2eλα

2

sinhα2
.

(6.3)

For a specific amplitude α, the maximum fidelity is obtained by an optimized squeezing
parameter λopt given by

λopt =

√
9 + 4α4 − 3

2α2
. (6.4)

Figure 6.1 gives the contour plot of the fidelity between |1PS〉 and |catα−〉. By optimizing
the squeezing, the approximation is valid up to |α|2 = 1.4 with F > 99%. Note that the
overlap between two coherent states |〈α| − α〉|2 = e−4|α|2 is below 2% for |α|2 > 1.

2Single-photon addition to a squeezed vacuum will result in the same state, which is clear by noting that
â†Ŝ|0〉 ∝ ŜŜ†â†Ŝ|0〉 = Ŝ(â† cosh r − â sinh r)|0〉 ∝ Ŝ|1〉.
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Figure 6.1: Contour plot of
the fidelity between single-photon-
subtracted squeezed vacuum and
odd Schrödinger cat state. Sopt in-
dicates the optimal squeezing that
maximizes the fidelity for a given
cat size |α|2.

� Model of the experiment

Figure 6.2 presents an experimental scheme for generating an odd cat state based on pho-
ton subtraction from a squeezed vacuum produced by a type-I OPO. In the experiment,
the photon-subtraction operation is realized with a highly asymmetric beam splitter (cf.
Section 3.4.2). Indeed, with an approximation of a small reflection r (r = sin θ ≈ θ), the

beam-splitter operator can be written as B̂ = eθ(âb̂
†−â†b̂) ≈ 1+ θ(b̂†â− b̂â†) . Then we have

B̂Ŝ|0〉a|0〉b ≈ Ŝ|0〉a|0〉b + θâŜ|0〉a|1〉b . (6.5)

Therefore, detecting one photon in the conditioning mode b leads to a single-photon sub-
traction from the signal mode a, i.e. âŜ|0〉a.

Figure 6.2: Experimental scheme for generating an odd cat state based on photon
subtraction from a squeezed vacuum prepared by a type-I OPO. The beam splitter
(BS) with an intensity reflectivity R is used to tap a part of squeezing for the
conditional measurement (with a measurement operator Π̂). The losses in the
signal path is modeled with the other BS with an intensity reflectivity L. The
finally generated state is then characterized by a homodyne detection (HD).

Practically, there are three aspects needed to be taken into account in the experiment.
The first one is the tapping ratio R. It can not be very small or it will dramatically decrease
the heralding probability. However, a large tapping ratio will introduce large losses. The
second one is the losses L in the signal path including the propagation losses and efficiency
of homodyne detection. The third one is the realistic photon detector in the conditional
path with limited efficiency and unavoidable dark counts.
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In order to model all this defects, the “Qmixer” software introduced in Section 3.4.4 is
used to obtain numerical simulations. Therefore the conditioning states can be computed
as following:

ρ̂ ∝ Tr[B̂(θ)|ψ〉〈ψ|B̂†(θ)Π̂] , (6.6)

where B̂(θ) is the beam-splitter operator with a tapping ratio R = sin2 θ; the input state is
|ψ〉 = Ŝ(ζ)|0〉a ⊗ |0〉b ; and the measurement operator of a realistic APD is given by

Π̂ = ✶−
∞
∑

k=0

e−ν(1− η)k |k〉〈k| .

For the details about parameter setting in “Qmixer” for modeling the cat state generation,
readers can refer to the Appendix D.

For the experiments of Fock state generation, the “quality” of prepared states can be
easily judged from the photon number. However, assessing the “quality” of the generated
cat states is more complicated. One way is to calculate the fidelity with ideal odd cat states.
The other way is to compare the negativity of the Wigner function. The latter method is
based on the fact that the negativity of the Wigner function will degrade in the case of
imperfect experimental conditions [115, 20]. These two methods are linked with a statement
that the negativity of the Wigner function at the origin of phase space is presented if the
fidelity exceeds 50% [116].

Figure 6.3(a) presents the Wigner function at the origin of phase space 3 as a function
of the tapping ratio R for different losses L in the signal path. The simulation is done with
a pure 3-dB squeezed vacuum state and a perfect APD. We can see that as the increase
of tapping ratio, the negativity of the Wigner function will gradually disappear. It is the
result of the combined effect of non-photon-number resolving of the conditional detector and
limited tapping ratio.
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Figure 6.3: (a) Wigner function at the origin of phase space W (0, 0) as a function
of the tapping ratio R for different losses L in the signal path. The simulation is
done with a pure 3-dB squeezed vacuum state and a perfect APD. (b) In the limit
cases of L = 0 (red solid line) and R → 0 (blue solid line), W (0, 0) is given as a
function of losses (R or L). The solid curves are given for an APD with a unity
efficiency while the dashed red line is given for an APD with an efficiency of 10%.

Interestingly, in the case of no losses in the signal path (L = 0%), even when the tapping
ratio reaches 50% the negativity is still maintained. It means that in general we cannot
simply regard the tapping ratio as losses on the state. This feature is emphasized in figure

3Here we use the normalized version 2πσ2
0W (0, 0), which gives a value at the origin between -1 to 1 and

is independent from the choice of conventions.
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6.3(b). It is worth noting that for an APD with an efficiency as low as 10% (dashed red
line), the tapping ratio R and the loss L in the signal path almost impose the same impact
on the state. We also note that in the limit of R → 0, the conditional state is independent
of the detection efficiency of the heralding detector. In this case, the probability of high
photon-number states in the conditional path is negligible since the reflection of n photons
scales as Rn.

So far the dark noise of the conditioning detector has not been considered for simplicity.
Indeed the dark noise induces some “false” events. These “false” triggers will herald squeezed
vacuum states, which are orthogonal to the odd cat states, thus degrading the fidelity.
Therefore, in practice the dark counts have to be as small as possible compared to the
counts of “true” events.

Now we turn to the experimental realization for the generation of an odd cat state.

6.1.2 Experimental realization

The corresponding experimental setup is presented in figure 6.4. A type-I OPO is used to
prepare the initial light, a high-purity 3 dB squeezed vacuum state (cf. figure 2.6). A small
fraction (≈ 5%) is tapped by a beam-splitter towards the conditioning path. Practically, the
variable beam-splitter is made of a half-wave plate and a polarizing beam-splitter. In order to
get rid of the non-degenerate spectral mode, an interferential filter and a Fabry-Perot cavity
are employed in the conditioning path as detailed in Chapter 5. Finally the filtered light is
detected by a superconducting single-photon detector (SSPD) with an efficiency as high as
70%. The detection of a single photon will probabilistically apply a single-photon subtraction
on the squeezed vacuum. The heralded state in the signal path is finally characterized by
a homodyne detection. The measured homodyne signals are post-processed with a defined
temporal mode for extracting the corresponding quadrature values which are used for the
quantum state tomography.

Figure 6.4: Experimental setup for the odd cat state generation. The initial
source is a high-purity 3 dB squeezed vacuum state from a type-I OPO. Via a
beam-splitter (BS), a small portion (≈ 5%) of squeezing is tapped towards the
conditioning path. After a set of frequency filtering, only photons at the carrier
frequency can be detected by a superconducting single-photon detector (SSPD)
with an efficiency as high as 70%. Given a detection event in the conditioning
path, the heralded state in the signal path is recorded by a homodyne detection
(HD). The measured homodyne signals are then post-processed with a defined
temporal mode to extract the corresponding quadrature values, which are finally
used for the optical quantum tomography.
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Since the cat state is phase dependent in phase space, thus the state tomography requires
the phase information of the measured quadrature values. The next section explains how
this phase information can be acquired 4.

6.1.3 Phase information

In order to get the phase information of the quadrature measurement, a weak coherent light
(seed beam, 5 mW) is injected into the OPO cavity as shown in figure 6.4. The seed beam
will be amplified or deamplified by the pump depending on their relative phase. When
the phase of the seed is scanned, we can observe a sinusoid signal in the photodiode P2
(Thorlabs PDA10CS). The relative phase between the seed and the pump is then locked
with the microcontroller-based locking introduced in Chapter 4.

Since the polarization of the seed is the same as the signal one, only a small part (≈ 5%)
of the seed light goes to the conditional path. Furthermore, the tapping ratio of the beam-
splitter in the conditional path is typically ≈ 10%, thus even smaller part of seed light
is detected by the photodiode P2. To obtain a large enough signal for the locking, the
photodiode P2 is chosen to have a large amplification gain and a low offset.

The majority of the seed light goes into the signal path and then interferes with the local
oscillator in the homodyne detection. The output of the homodyne detection is divided into
the DC part and AC part. The AC part is used for quadrature measurement while the
DC part is used for inferring the relative phase between the seed and the local oscillator.
Specifically, the DC part is given by

i1 − i2 = 2αseedαLOcos(φseed − φLO) . (6.7)

In the experiment, the phase of the local oscillator is swept via a PZT. Then the resulting
interference fringe is fitted with a sine function. Taking into account the PZT nonlinearity,
we keep the terms up to second order, i.e. at2 + bt + c. The parameters a and b are
intrinsic to the PZT and remain constant when the scanning parameters (e.g. scanning
frequency, amplitude and offset) are kept unchanged. Hence they can be used in the whole
measurements for one state tomography. The parameter c corresponds to the phase drift
(e.g. due to mechanical relaxation, thermal expansion of the optical elements in the path)
and varies slowly.

Figure 6.5: Phase estimation
based on the interference fringes
between the seed light and the lo-
cal oscillator.

Similar to the experiment for Fock state generation, the experiment here is also run
in a cyclic fashion with two steps (cf. figure 5.6): µCavity locking and data acquisition.

4Note that for the optical quantum tomography of the superposition state α|0〉 + β|2〉 demonstrated in
Chapter 5, we already implemented the phase acquisition part in the experiment.
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To generate cat states, an extra part of phase fitting is implemented within the µCavity
locking window as shown in figure 6.5. Specifically, the scanning voltage V of PZT and the
fringes from DC part of homodyne detector are recorded, then fitted with a sine function
sin(AV 2 + BV + C). In the period of data acquisition, the seed light is blocked. For each
conditioning trigger, the AC part of homodyne detection and the corresponding scanning
voltage are acquired, which are post-processed to give the measured field quadrature and
the corresponding phase.

Due to slow variation of the local oscillator phase, it is not necessary to do the fitting
for each experimental cycle. In practice, the phase fitting is implemented at the beginning
of each sequence acquisition in the oscilloscope. Each sequence contains 1000 segments, and
each segment corresponds to one trigger event. In our experiment, the phase is very stable
during the experiment as shown in figure 6.6. In principle, the phase information can be
extracted directly from the variance of the quadrature measurements even without the seed
light [20]. However this strategy is only valid under the condition that the phase is stable
over the acquisition time for one tomography. For many long-term experiments (30 minutes
to 3 hours) as we will present later, the seed light is used in order to obtain an accurate
phase information.
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Figure 6.6: Stable interference
fringes between the seed and lo-
cal oscillator during one tomog-
raphy containing data acquisition
of 50 sequences. Only interfer-
ence fringes for every 10 sequence
are given. The total acquisition
time for one tomography is about
2 minutes.

6.1.4 Results and discussion

The experimental results are summarized in figure 6.7. The generated odd cat state here is
a squeezed single-photon state. Indeed the Wigner function not only exhibits a pronounced
negative region at the origin, but also shows squeezing in the p-quadrature direction (cf.
contour plot in figure 6.7(c)). Due to this squeezing property, the Wigner function is appar-
ently phase dependent. The two “ears” in the Wigner function of the odd cat state is due to
the losses. It is worth noting that the losses no only degrades the negativity of the Wigner
function, but also deforms its shape. Here we obtain a negativity of 2πσ2

0W (0, 0) = −0.37
and 2πσ2

0W (0, 0) = −0.62 without and with correction of 15% losses, respectively.
The Wigner function at the origin is directly linked to the photon number distribution

as 2πσ2
0W (0, 0) =

∑

n
(−1)nρnn. For a perfect odd cat state, it only contains odd photon-

number states. However, due to the losses the pure odd cat state becomes a statistical
mixture of an odd cat state and an even cat state with smaller amplitudes (cf. equation
(6.12)), which leads to the appearance of all the photon numbers as shown in figure 6.7(b).
After correcting 15% losses, we can clearly see the oscillation behavior of the photon numbers.

The fidelity between the experimentally generated state and an ideal odd cat state is given
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in figure 6.8 as a function of the cat size. The fidelity is maximal for a cat size |α|2 ≈ 1.
Specifically, without any correction, the fidelity is 67.5% for |α|2 = 1; with correction of 15%
losses, the fidelity reaches 80.0% for the same size.
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Figure 6.8: Fidelity between
the experimentally generated state
and an ideal odd cat state as a
function of the cat size |α|2.

To achieve larger-size odd cat states, one can extend the scheme to three-photon sub-
traction from a squeezed vacuum state [111, 112]. It will become very demanding due to
two aspects: requirement of higher squeezing as the initial resource and much lower success
probability due the three-fold coincidence. To overcome this difficulty, there are some pro-
posals for cat state amplification by combining two small cat states [117, 118]. Note that
mixing two small odd cat states with sizes α and β will result in an even cat state with an
amplified size

√

α2 + β2.
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6.2 π-phase gate for generating even cat state

In the Bloch sphere, a coherent state qubit can be expressed in the form |ψθ,φ〉 = Nθ,φ(cos
θ
2 |α〉+

eiφ sin θ
2 | − α〉) with spherical coordinates θ and φ. Therefore starting from an odd cat state,

generation of an even cat can be realized with a π-phase rotation along the equator of Bloch
sphere [119]. Such rotation is described by a π-phase gate operation, which can be realized
by a photon subtraction [120].

6.2.1 Theoretical calculation

� Fidelity of even cat states

An even cat state |catα+〉 with a small amplitude can be well approximated by a squeezed
vacuum state Ŝ|0〉. The fidelity is given by

F0 =
∥

∥

∥〈catα+|Ŝ|0〉
∥

∥

∥

2

=

√
1− λ2eλα

2

coshα2
.

(6.8)

For a specific amplitude α, the maximum fidelity is obtained by an optimized squeezing
parameter λ given by

λopt =

√
1 + 4α4 − 1

2α2
. (6.9)

The fidelity as a function of the squeezing and the cat size |α|2 is shown in a figure 6.9 (left).
We can see that for small sizes |α|2 . 1, the fidelity is above 95%.
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Figure 6.9: Contour plots of the fidelity with ideal even Schrödinger cat states
for a squeezed vacuum state (left) and a two-photon subtracted squeezed vacuum
state (right). Sopt indicates the optimal squeezing to maximize the fidelity with a
given cat size |α|2.

To obtain an even cat state with a larger size, one can apply a two-photon subtraction
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onto a squeezed vacuum 5:

|2PS〉 , â2Ŝ(ζ)|0〉
‖â2Ŝ(ζ)|0〉‖

= N [− cosh ζ sinh ζŜ(ζ)|0〉+
√
2 sinh2 ζŜ(ζ)|2〉]

=
(1− λ2)5/4

λ
√
1 + 2λ2

∞
∑

n=1

√
2n!

n!

(

λ

2

)n
√

2n(2n− 1) |2(n− 1)〉 ,
(6.10)

where λ = tanh ζ.
The fidelity between a two-photon subtracted state |2PS〉 and an odd cat state |catα+〉 is

given by

F2 =
∥

∥〈catα+|2PS〉
∥

∥

2

=
(1− λ2)5/2(1 + λα2)2eλα

2

(1 + 2λ2) coshα2
.

(6.11)

The fidelity as a function of the squeezing and the cat size |α|2 is shown in figure 6.9 (right).
The cat size |α|2 can reach a value of 2 while the fidelity stays above 95%. Moreover, the
optimal squeezing for maximizing the fidelity is lower compared to the one in the approxi-
mation based on the squeezed vacuum.

� Cat state decoherence

It is well known that the cat state is extremely sensitive to losses. Here we dedicate more
discussion to the decoherence effect of the cat state. Recall that the cat state is given by

|catα±〉 =
|α〉 ± | − α〉
√

N±(α)
,

where N±(α) = 2± 2e−2α2

.
Typically the main source of decoherence in the experiment is the optical loss and can

be modeled as a fictitious beam-splitter. The cat state after the beam splitter (with an
amplitude reflection r and transmission t) is given by:

B̂|catα±〉a ⊗ |0〉b ∝ B̂(D̂a(α)± D̂a(−α))|0, 0〉a,b
= B̂(D̂a(α)± D̂a(−α))B̂†B̂|0, 0〉a,b
= (D̂a(tα)D̂b(rα) + D̂a(−tα)D̂b(−rα))|0, 0〉a,b
= |tα, rα〉a,b + | − tα,−rα〉a,b ,

where D̂(α) is the displacement operator, and the normalization factor is omitted for clarity.
Apparently, the resulting two-mode state is an entangled coherent state. Tracing out the
unwanted mode b will result in a mixed state in the signal mode a given by

ρ̂(α, η) = (1− P±)|cat
√
ηα

± 〉〈cat
√
ηα

± |+ P±|cat
√
ηα

∓ 〉〈cat
√
ηα

∓ | , (6.12)

5Generally, a n-photon subtracted squeezed vacuum state is generally given by [121]

|nPS〉 , ânŜ(ζ)|0〉
‖ânŜ(ζ)|0〉‖

∝ Ŝ(ζ)Hn(−
√

tanh ζ

2
â†)|0〉 ,

where Hn is the Hermite polynomials.
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where

P± =
N∓(

√
ηα)

2N±(α)
(1− e−2(1−η)α2

) . (6.13)

From equation (6.12), we can find that the amplitude of the coherent states is decreased
from α to

√
ηα due to the losses. Additionally, the decoherence of the cat state results in

a parity flip with a certain chance: for instance, the even cat state becomes an odd cat
state with a probability of P+. The flipping probability dramatically increases with a larger
amplitude α [122].

The degradation of the fidelity due to the decoherence can be finally given by

F(α, η) = 〈catα±|ρ̂(α, η)|catα±〉

= (1− P±)
4e−(1+η)α2

N±(α)N±(
√
ηα)

(e
√
ηα2 ± e−

√
ηα2

)2 .
(6.14)
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Figure 6.10: Fidelity degradation of cat as a function of the loss for different cat
sizes and cat parities. For large cat states, the fidelity is very sensitive to the losses.

Figure 6.10 shows the dependence of this fidelity on the loss for different size |α|2 and
cat parities. For a small size (e.g. |α|2 = 1), the odd cat state is much more sensitive to
the loss than the even cat state. The even cat state can be approximated by a squeezed
vacuum state while the odd cat states is closed to a squeezed single-photon state. Indeed
maintaining the negativity of Wigner function is indeed more challenging. Additionally, for
a small-size odd cat state, the dependence of fidelity on the loss is almost linear, which is
very similar to the behavior of single-photon state. Actually in the approximation of small
α, the odd cat state |catα−〉 ∝ |α〉 − | − α〉 ≈ (|0〉+ α|1〉)− (|0〉 − α|1〉) ≈ |1〉 .

For a relatively large size (e.g. |α|2 = 5), the behavior of fidelity degradation becomes
similar for even and odd cat states and both of them are extremely sensitive to the loss. For
a 10% loss, the fidelity will decrease to 67.5%. Indeed for a large α, the fidelity quickly drops
to 1/2 even for a small loss (cf. equation (6.13)), hence the initial pure cat state becomes a
mixed state 1/2(|catα+〉〈catα+|+ |catα−〉〈catα−|).

Next we will present the experimental realization for generating even cat states based on
the two-photon-subtracted squeezed vacuum.



96 6.2. π-PHASE GATE FOR GENERATING EVEN CAT STATE

6.2.2 Experimental realization

The two-photon-subtracted squeezed vacuum can be generated by a π-phase gate on the
previously generated odd cat state. The corresponding experimental setup shown in figure
6.11 is similar to the one used for generating the odd cat state. The seed beams for the
locking are not shown here for simplicity. The tapping ratio of the two beam-splitters is
set to be 5%. The π-phase gate is realized with an additional single-photon subtraction by
a SSPD. Given a coincident event (with a coincident window of 2 ns), an even cat state is
heralded in the signal path and then characterized by a homodyne detection. Thanks to the
efficient SSPDs, accumulation of 50,000 quadrature measurements only takes about 1 hour.

Figure 6.11: Experimental realization of an even cat state with a π-phase gate
on the previously generated odd cat state. The π-phase gate is implemented by an
additional single-photon subtraction. Given a coincident event, the even cat state
is heralded and then characterized by a homodyne detection.

6.2.3 Results and discussion

The marginal distribution is built from 50,000 acquired quadratures as shown in figure
6.12(a). The distribution is very similar to the one obtained for a squeezed vacuum state.
The generated state exhibits a photon-number oscillation as shown in 6.12(b). Ideally an
even cat state only contains even photon numbers, similar to the squeezed vacuum. Addi-
tionally, for an even cat state, its Wigner function is squeezed as show in the contour plot
of figure 6.12(c). Note that even for a small cat size (|α|2 ≈ 1), the Wigner function of the
cat state already demonstrates some regions with slight negative values, which is a direct
signature of the non-Gaussianity.

Figure 6.13 gives the fidelity between the generated state with an ideal even cat state
as a function of the cat size. The fidelity is above 70% for cat sizes |α|2 . 1.5 without any
correction. Particularly, the fidelity for the size |α|2 = 1 reaches 80% and 85% without and
with correction of 15% losses. The loss correction does not greatly improve the fidelity, in
contrast to the case of odd cat states as shown in figure 6.8. Indeed for small sizes, the even
cat states have much slower degradation of fidelity due to the loss than odd cat states (cf.
figure 6.10).

We also compute the overlap between the generated even cat state here and the previously
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obtained odd cat state according to the fidelity defined by

F(ρ̂1, ρ̂2) =

(

Tr

[
√

√

ρ̂2ρ̂1
√

ρ̂2

])2

. (6.15)

The fidelity can be also interpreted as a measure of “orthogonality” between the two states. In
our experiment, the “orthogonality” is 0.63 (without correction) and 0.42 (with correction).
The result is surprising since the fidelities of the prepared odd and even cat state is 80%
and 85% for |α|2 = 1.
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Figure 6.13: Fidelity between
the experimentally generated state
and an ideal even cat state as a
function of the cat size.

In order to investigate the “orthogonality” dependance with the loss, in figure 6.14 we
list several groups of useful states: cat states, coherent states, and qubit states. Indeed
“orthogonality” between an even cat state and an odd cat state degrades extremely fast even
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Figure 6.14: The overlap between two states ρ̂1 and ρ̂2 as a function of the loss.

for a small cat size |α|2 = 1. In the presence of only 20% loss, the overlap (in terms of
fidelity) is already about 60%.

Contrast to cat states, “orthogonality” between two coherent states with same amplitudes
but opposite phases is very resistant to the loss. Moreover, larger is the amplitude, stronger
is the immunity to the loss. In principle, coherent states to cat states only need a Hadamard
gate [123]. Yet Hadamard gate for coherent state qubits cannot be implemented just with
Gaussian operations due to the no-go theorem that distilling Gaussian states with Gaussian
operations is impossible [29]. Indeed the non-Gaussian state (especially for the one with
negative Wigner function) is more sensitive to the loss. Interestingly, we can find that in
figure 6.14 the solid curves corresponding to cat states and the dashed lines corresponding
to coherent states have a 2-fold rotational symmetry to the point (0.5,0.5) 6.

Besides of the qubit based on continuous-variables, we also study the behavior of the
qubit based on discrete variable, e.g. a superposition of vacuum and single-photon state.
The decoherence behaviors are exactly the same for two pairs of orthogonal states |0〉+ |1〉,
|0〉 − |1〉 and |0〉, |1〉.

6.3 State engineering with time-separated conditioning

In our experiments, the conditional state preparation is implemented with a continuous
OPO cavity. Generally, the heralding photon-detection events can occur in random times,
a distinct feature compared to the pulsed scheme. Consequently, one can exploit temporal
delays between the heralding events to engineer the quantum states. One example has been
already demonstrated in Chapter 5 for investigating the effect of time-separation condition-
ing on the heralded two-photon Fock state. Here we will give another example applied to
two-photon subtracted squeezed vacuum. It will lead to the generation of a large-size cat
state of traveling light, which would be an essential resource in various quantum information
applications [100, 101].

6This symmetry holds for not too small sizes of coherent state amplitudes, e.g. |α|2 > 1 .
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6.3.1 Towards larger cat states

As mentioned before, the two-photon-subtracted squeezed vacuum state is given by

|2PS〉 ∝ â2Ŝ(λ)|0〉 = βŜ(λ)(λâ†2 − 1)|0〉 = βŜ(λ)(
√
2λ|2〉 − |0〉) , (6.16)

where β = λ/(1− λ2).
As shown in the previous experiment, |2PS〉 is already a good approximation to an

even cat state. If one wants to go beyond the cat size, one possible way is to engineer the
superposition weights shown in equation (6.16). As mentioned in Section 5.3.3, the optimal
superposition coefficients for maximizing the fidelity are proportional to those of the even
cat states |catα+〉, thus giving a superposition state as [97]

|ψ2〉 ∝ Ŝ(λ)(
(1− λ2)α2 − λ√

2
|2〉 − |0〉) . (6.17)

With a given squeezing, |ψ2〉 optimizes the superposition coefficients according to the cat
size. As shown in figure 6.15(a), the fidelity is above 95% for a wide range up to |α|2 = 5.
Particularly, for a 3-dB squeezing level, the fidelity can be maintained above 95% up to
|α|2 = 3.
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Figure 6.15: Contour plots of the fidelity compared to ideal even Schrödinger cat

states for F2 =
∥
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∥

∥

2
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∥
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∥

∥

2
(b). Sopt indicates

the optimal squeezing to maximize the fidelity with a given cat size |α|2.

Such state engineering can be realized with a two-photon subtraction from a continuous-
wave squeezed vacuum by controlling the temporal separation between two triggers [99].
The theoretical investigation about this protocol can be found in [97, 98]. Here we only
present a brief summary of the main results.

We consider that the two-photon-subtraction events occur at time t1 and t2, respectively.
The corresponding temporal wave packets in the signal path are thus given by ψ(t− t1,2) =√
πγe−πγ|t−t1,2|. As detailed in Section 5.4.1, the heralded state can be characterized by

two orthogonal modes Ψ±(t) = [ψ(t− t1)±ψ(t− t2)]/
√

2(1± I∆) with I∆ = e−πγ|t1−t2|(1+
πγ|t1−t2|). The temporal two-mode model can be translated into a spatial one as illustrated
in figure 6.16. The symmetric mode Ψ+(t) acts as the main mode to be measured while
the asymmetric mode Ψ−(t) serves as an ancilla. Therefore such state engineering scheme
is also named ancilla-assisted photon subtraction [99].

The two coincident photon detections can only occur when the two single photons are
both from either Ψ+(t) or Ψ−(t) due to the Hong-Ou-Mandel interference effect. The two
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Figure 6.16: Schematic of the
ancilla-assisted photon subtrac-
tion. Extracted from [99].

subtraction events are indistinguishable, thus resulting in a superposition state:

|Φ〉 = (â2+ − â2−)Ŝ+(λ+)Ŝ−(λ−)|0〉+|0〉− , (6.18)

where the subscripts ± denote the modes Ψ±. The λ± represent the effective squeezing in
each mode, which are determined by the temporal separation ∆, OPO bandwidth γ and the
pump power.

Typically, for γ∆ . 1, the squeezing parameter λ− is relatively small. With equation
(6.16) and neglecting terms proportional to λ2− and higher, we can get

|Φ〉 ≈ β+Ŝ+(λ+)(λ+â
†2
+ − 1 +

λ−
β+

)|0〉+Ŝ−(λ−)|0〉− , (6.19)

where β+ = λ+/(1− λ2+).
Compared to equation (6.16), the ancillary mode provides an extra degree of control for

adjusting the superposition weights in the main mode. Experimentally, the parameter λ−
can be tuned by changing the time separation ∆. As a result the photon statistics in the
main mode can be modified. Particularly the weights of small photon-number components
are effectively reduced aiming at achieving larger cat size.

6.3.2 Experimental realization

Figure 6.17: Experimental setup for generating large even cat states via ancilla-
assisted photon subtraction. The cat size can be increased by playing with the
time separation between the coincident detections in the conditional path.
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The corresponding experiment setup for generating large even cat states is simply the
extension of the single-photon-subtraction experiment shown in figure 6.4. As depicted in
figure 6.17, the conditioning beam is divided by a fiber beam-splitter into two parts that are
detected by two SSPDs. Given a coincidence between the two detections, the heralded state
in the signal path is characterized with a homodyne detection. The time separation can be
encoded into the trigger configuration of an advanced oscilloscope (Teledyne LeCroy, Wa-
veRunner 610 Zi). Practically, to investigate the effect of time separation of the conditioning
triggers, we acquire all the quadrature values corresponding to a wide coincident window
(e.g. ∆ 6 60 ns). Then we can post-process the experimental data to select a specific time
separation. The symmetric temporal mode Ψ+ is used to extract the quadrature values
corresponding to the state in this temporally spread wave packet.

6.3.3 Results and discussion

In the experiment, we use a nearly pure 3 dB squeezed vacuum as the initial source, and
the tapping ratio is set to be about 10% for increasing the conditioning coincident rate.
The data acquisition takes 4 hours for accumulating 1000,000 quadrature measurements
covering all the coincident delays ∆ 6 60 ns. The reconstructed Wigner functions as well as
photon-number distributions are given in figure 6.18 for the time separations of ∆ = 0 ns
and ∆ = 10 ns, respectively. These Wigner functions are reconstructed without any losses
corrections. As expected, the Wigner function of two-photon subtracted state with ∆ = 0
is the same with the one obtained by a π-phase gate on an odd cat state as demonstrated
in the previous experiment (cf. figure 6.12).
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Figure 6.18: Wigner functions of the generated states without any correction in
the main mode Ψ+ for two different temporal separations of coincident detections,
∆ = 0 ns (a) and ∆ = 10 ns (b), respectively. The corresponding photon-
number distributions are shown in the up-right corners as well as the average
photon numbers. The initial source has a pure 3 dB squeezing.

For the case of ∆ = 10 ns, the Wigner function shows two distinct peaks (cf. the contour
plot in figure 6.18(b)), which correspond to the peaks for | ± α〉. With a time separation of
coincident triggers, the even-photon number distribution extends to n = 4. The increase of
state energy can also been seen from the increase of the average photon number from 0.65
(∆ = 0 ns) to 1.49 (∆ = 10 ns) with correction of 15% losses. This reveals the mechanism
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of such ancilla-assisted photon subtraction for modification of photon numbers.
The fidelity compared to an ideal even cat state is shown in figure 6.19. We can see that

the fidelity is enhanced for a large cat size |α|2 & 1.7. For instance, the fidelity increase
from 60% (∆ = 0 ns) to 70% (∆ = 10 ns) for |α|2 = 2.0 with correction of 15% losses. For
such a large size, the fidelity is limited due to the strong sensitivity to the residual losses
(cf. figure 6.10).
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Figure 6.19: Fidelity between
the experimentally generated state
and an ideal even cat state as a
function of cat size for the time
separations of ∆ = 0 ns and ∆ =
10 ns, respectively. Here we use a
nearly pure 3 dB squeezed vacuum
as the initial source.

The effect of ancilla-assisted photon subtraction becomes more pronounced with a higher
initial squeezing level. The results presented in figure 6.20(b) are obtained with a squeezing
of -4 dB/5 dB. With a time separation ∆ = 10 ns, the Wigner function clearly shows two
distinct positive peaks as a signature of the macroscopic nature of a large-size cat state.
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the main mode Ψ+ for two different temporal separations of coincident detections,
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number distributions are shown in the up-right corners as well as the average
photon numbers. The initial source has a squeezing/anti-squeezing of -4 dB/5 dB.

As given in figure 6.21, the fidelity is above 50% for the cat size |α|2 from about 1.5
to 3.0 without loss correction. Indeed generating a large cat state |α|2 & 3 with a modest
fidelity F ≈ 60% is extremely challenging since it require a total losses L . 20% (cf. figure
6.10).
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6.4 Conclusion

In conclusion, we have experimentally demonstrated the generation of a high-fidelity odd
cat state (F = 80% for |α|2 = 1 after correction). With an additional subsequent photon
subtraction, a π-phase gate has been implemented for producing a high-fidelity even cat
state (F = 85% for |α|2 = 1 after correction). Additionally a larger-size even cat state
(F ≈ 60% for |α|2 ≈ 3 after correction) was obtained using the technique of time-separated
conditioning. These cat states, together with the Fock states presented in the previous
chapter, will be the essential sources for generating hybrid entangled states as will be shown
in the next chapter.



104 6.4. CONCLUSION



7 | Hybrid entangled states

In optical quantum information processing, there exit two different approaches, namely the
discrete- and the continuous-variable ones. They make use of either aspect of the wave-
particle duality of light [124, 125]. In the discrete-variable approach, the information is
carried by photonic qubits based on single photons as expressed as c0|0〉 + c1|1〉, which
live in a finite dimensional Hilbert space [8]. In the continuous alternative, encoding is
implemented in the field quadratures, for instance as a superpositions of two coherent states
with opposite phases, c0|α〉+c1|α〉. Such qubits are also called qumodes and span an infinite
Hilbert space [126]. Both encodings have advantages and drawbacks [10].

Recently, there has been a significant progress in combining both approaches with a view
to realizing a hybrid architecture that overcomes the current limitations [12, 11, 127]. In this
endeavor, hybrid entanglement between particle-like and wave-like qubits, i.e. of the form
|0〉|α〉 + |1〉| − α〉, becomes a crucial resource to link two computational bases of different
nature. Here we devise and experimentally demonstrate a scheme to generate such hybrid
entanglement with measurement-induced nonlinearity [76].

In this chapter, first we will highlight the motivation for generating hybrid entangled
states by giving an example of a hybrid converter. Then a proposed scheme for generating a
hybrid particle-like and wave-like qubit will be theoretically investigated and experimentally
realized. Beyond the demonstration of hybrid qubit state, a hybrid qutrit entanglement will
also be experimentally generated using the same scheme but with two-photon heralding
detections. Finally, we will extend our scheme with an additional local photon subtraction
and experimentally demonstrate a so-called squeezing-induced micro-macro state.
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7.1 Hybrid qubit entanglement

Generation of a hybrid entanglement between discrete-variable states (single photons) and
continuous-variable states (coherent states) has special interest in fundamental quantum
mechanics. In quantum optics, single photons are treated as quantum particle while coherent
states are considered as the most classical field [17]. Entangling these two states is therefore
reminiscent of the original idea of the Schrödinger cat state. Besides this conceptual interest,
such hybrid entangled state also has a great potential in quantum key distribution protocols
[128], nearly deterministic quantum teleportation [129], and loophole-free Bell inequality
test [130].

7.1.1 An example: the hybrid qubit converter

In order to highlight its importance as an essential resource in the optical hybrid quantum
information approach, here we give an example of hybrid converter enabling the mapping
from discrete qubits to coherent state qubits.

Figure 7.1: Scheme of a qubit-qumode converter using the hybrid entangled state.

The scheme is presented in figure 7.1. An intuitive picture can be given for this mapping
process. The detected single photon can either originates from mode a or mode b since the
simultaneous presence of single photons in both modes will result in the Hong-Ou-Mandel
bunching effect. If the single photon comes from the input qubit state, then the heralded
state will be c1|α〉; or the single photon is from the hybrid state, c0| − α〉 will be obtained.
Due to the indistinguishibility between these two events, a superposition state is expected
as c0| − α〉+ c1|α〉.

Rigorously, this result can be obtained with the following calculation. As shown in
figure 7.1, a single-rail qubit c0|0〉 + c1|1〉 based on single photon is prepared in mode a as
the input of a qubit-qumode converter. In this converter, the essential teleportation resource
is a hybrid entangled state |0〉b|α〉c + |1〉b| − α〉c. Via a 50:50 beam-splitter, the modes a
and b are mixed according to the operator evolutions:

â†a → â†a + â†b√
2

â†b →
â†b − â†a√

2
.

The resulting three-mode state is given by

|ψ〉 ∝ c0|0, 0, α〉+
c0√
2
(|0, 1,−α〉 − |1, 0,−α〉)

+
c1√
2
(|1, 0, α〉+ |0, 1, α〉) + c1(|0, 2,−α〉 − |2, 0,−α〉) .

(7.1)

If we take a single-photon projection measurement on the mode b and trace out the mode
a, then we can obtain

|φ〉 ∝ c0| − α〉+ c1|α〉 , (7.2)
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which is the qubit (also called qumode) in the basis of coherent states | ± α〉.
Note that the reverse conversion from qumode to qubit can be realized by using Bell-

state measurements for coherent-state qubits [131, 132]. In these converters, the hybrid
entanglement is the critical resource for mapping the two computational bases.

7.1.2 Scheme for hybrid entanglement generation

Traveling hybrid entangled states can be deterministically generated with a cross-Kerr type
interaction between a single photon and a coherent state [104, 105]. However till so far
there are still many problems for obtaining a clean and suitable interaction of this kind
[133]. Therefore, a measurement-induced nonlinearity is proposed to generate such an en-
tangled state at a distance, in a similar way than the Duan-Lukin-Cirac-Zoller protocol in the
discrete-variable regime [134], or the remote generation of quasi-Bell states in the continuous-
variable framework [135]. The scheme relies on a probabilistic preparation heralded by the
detection of a single photon in an indistinguishable fashion. The fragile components remain
local, and only single photons propagate between the two distant nodes. In this way, a
lossy channel affects the count rate but not the fidelity of the resulting state. Therefore, the
proposed method is very suitable to establish entanglement connection over a long distance.

Figure 7.2: Scheme for measurement-induced generation of the hybrid entangled
state. The small fraction subtracted from an even cat state is mixed with one mode
of a weak two-mode squeezed vacuum state via a beam splitter. The detection of
n photons will herald the generation of hybrid entanglement.

The experimental scheme is illustrated in figure 7.2. It requires as initial resources an
even cat state and a two-mode squeezed vacuum state. First we tap a small fraction of the
cat state with an amplitude reflectivity sin θ ≈ θ ≪ 1, which results in

B̂(θ)|cat+〉a|0〉b = eθ(âb̂
†−â†b̂)|cat+〉a|0〉b

≈ 1 + θâb̂†|cat+〉a|0〉b .
(7.3)

On the other side, we have a week two-mode squeezed vacuum state (λ ≪ 1) which can be
approximated as

|TMSS〉 ≈ |0〉c|0〉d + λ|1〉c|1〉d
= (1 + λĉ†d̂†)|0〉c|0〉d .

(7.4)

The modes b and c are then spatially combined by a beam splitter with an amplitude
reflection r and a transmission t, leading to the transformation b̂† → tb̂† + rĉ† and ĉ† →
tĉ† − rb̂†. Moreover we have to consider the phase evolution during the propagation by
simply doing the replacement b̂† → eiϕ1 b̂† and ĉ† → eiϕ2 ĉ†. This leads to

(1 + eiϕ1θrâĉ† + eiϕ1θtâb̂†)(1 + eiϕ2λtĉ†d̂† − eiϕ2λrb̂†d̂†)|cat+〉a|0〉b|0〉c|0〉d . (7.5)
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We only keep first-order terms in θ and λ, and the terms containing b̂†. This yields to

(−eiϕ2λrb̂†d̂† + eiϕ1θtâb̂†)|cat+〉a|0〉b|0〉c|0〉d , (7.6)

By detecting one photon in mode b and tracing out mode c, the state is reduced to

λr|cat+〉a|1〉d − ei∆ϕθtâ|cat+〉a|0〉d , (7.7)

where ∆ϕ = ϕ1 − ϕ2.
As â|cat+〉 = α|cat−〉 1, the heralded state can be rewritten as

θtα|0〉d|cat−〉a + λr|1〉d|cat+〉a , (7.8)

where we assume of ∆ϕ = π for simplicity.
The superposition weighs can be balanced with the beam-splitter ratio for obtaining a

maximally hybrid entangled state 2:

|Ψ〉 = 1√
2
(|0〉d|cat−〉a + |1〉d|cat+〉a) , (7.9)

In the limit of large α, the above entangled state can also be expressed with the rotated
qubit basis in the discrete mode d, e.g. {|+〉 = (|0〉+ |1〉)/

√
2, |−〉 = (|0〉 − |1〉)/

√
2}:

|Ψ〉 = 1√
2
(|+〉d|α〉a − |−〉d| − α〉a) . (7.10)

7.1.3 Model of the experiment

� Density matrix

In our experiment, we use the squeezed vacuum Ŝ(ζ)|0〉 to emulate the even cat state.
This is a good approximation for α ∼ 1. In this case, equation (7.7) provides:

Ŝ(ζ) (λr|1〉II |0〉I + θt sinh ζ|0〉II |1〉I) , (7.11)

where we use the identity âŜ(ζ)|0〉 = − sinh Ŝ(ζ)|1〉 and the subscripts a, d are replaced by
I, II to emphasize that the states are experimental prepared by a type-I OPO and a type-II
OPO, respectively.

Since the local squeezing operation will not change the entanglement neither the neg-
ativity of the Wigner function, thus it is convenient to consider the following state for
investigating the main properties:

λr|1〉II |0〉I + θt sinh ζ|0〉II |1〉I . (7.12)

Moreover, we can use the following definition to further simplify the expression:

µ =
λr

θt sinh ζ
=

√

nII
nI

=

√

NII
NI

=
√
ε , (7.13)

1Rigorously, we have

â |cat+〉 = α
N−

N+
|cat−〉 ,

where
N−

N+
=

√

1− e−2|α|2

1 + e−2|α|2
∈ (0, 1). And for a not too small α, the ratio is close to 1.

2Note that to obtain the state |0〉d|α〉a + |1〉d| − α〉a, one can use a Hadamard gate that can be realized
with a non-gaussian ancilla and projective measurements [120].
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where nI(II) is the average photon number from each mode, and µ can be easily determined
experimentally with photon counts NI(II) from each mode.

Finally we can investigate the state given by the following expression:

|Ψ〉 = 1
√

1 + µ2
(|0, 1〉II,I + µ|1, 0〉II,I) . (7.14)

Assuming that ηI(II) is the intensity transmittance in mode I (II), the state after these
losses is finally given by:

ρ̂ =
1

1 + ε
×









(1− ηI) + (1− ηII)ε 0 0 0
0 ηI

√
ηIηIIε 0

0
√
ηIηIIε ηIIε 0

0 0 0 0









. (7.15)

Figure 7.3 shows a hybrid representation of the density matrix for the case of single-
photon balancing (µ = 1) and no losses (ηI = ηII = 1). Here we use the Wigner function
(well adapted to continuous-variable states) to present the reduced density matrices 〈k|ρ̂|l〉
(|k〉 and |l〉 indicating discrete-qubit states). Note that here we omit the local squeezing in
the mode I. In fact, the diagonal blocks are corresponding to the single-photon subtracted
squeezed vacuum (〈0|ρ̂|0〉) and squeezed vacuum (〈1|ρ̂|1〉) which in principle live in an infinite
Hilbert space. Such hybrid representation provides a visual and illustrative way for the
hybrid states containing discrete and continuous modes.

Figure 7.3: Hybrid presentation of
the single-photon heralded hybrid en-
tangled state. µ = 1, ηI = 1 and
ηII = 1. The blocks provide the
Wigner functions associated with the
reduced density matrices 〈k|ρ̂|l〉 with
k, l ∈ {0, 1}. The components with
k 6= l being not hermitian, the corre-
sponding Wigner functions are not nec-
essarily real, but conjugate. The plot
gives therefore the real part for k > l
and the imaginary part for k < l.

� Negativity of Wigner function

The 〈0|ρ̂|0〉 corresponds to the state when the conditioning single photon comes from the
mode I. Generally, the negativity of its Wigner function (defined as the origin value of the
Wigner function) is given by 3:

WN =
(1− 2ηI) + (1− ηII)ε

1 + ε− ηIIε
. (7.17)

3If we globally look at the Wigner function negativity in the two-mode hybrid representation, then we
should consider the balancing factor between the diagonal blocks, which results in

WN2 =
(1− 2ηI) + (1− ηII)ε

1 + ε
. (7.16)
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Specifically, the negativity for the single-photon balancing case, i.e. µ = 1, is

WN |ε=1 =
2− ηII − 2ηI

2− ηII
. (7.18)

The boundary of negativity is defined by

WN |ε=1 ≤ 0 ⇔ ηI
2− ηII

≥ 1

2
. (7.19)

This shows that it is experimentally challenging to show negativity in such two-mode ex-
periments as both local efficiencies matter. To achieve negativity of the Wigner function,
the losses (assuming symmetric losses in both channels) should be less than 1/3. Figure 7.4
shows the negativity of the Wigner function of the state 〈0|ρ̂|0〉 as function of the losses in
both modes and the balancing parameter.
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Figure 7.4: (Left) Negativity of the Wigner function of the state 〈0|ρ̂|0〉 as a
function of the intensity transmittance of the two modes in the condition of single-
photon balancing µ = 1. The blue solid line indicates the boundary of negativity.
(Right) Negativity of the Wigner function as a function of the balancing factor
with the assumption of symmetric losses in the two modes.

� Negativity of Entanglement

To quantitatively assess the generated entanglement, we compute the negativity 4 given
by N =

(

||ρTA ||1 − 1
)

/2 [136], where TA stands for the partial transposition. Here, we have
used the useful form

N (ρ̂) =
1

2

∑

i

(|λi| − λi) , (7.20)

where λi are the eigenvalues of the partial transpose. We remind that for a qubit the
maximal value of the negativity is 0.5 given this definition.

The density matrix of the entangled state (cf. equation (7.15)) enables to calculate the
negativity of entanglement as:

EN =

√

4ηIηIIε+ [(1− ηI) + (1− ηII)ε]
2 − [(1− ηI) + (1− ηII)ε]

2(1 + ε)
. (7.21)

4we can also use the logarithmic negativity EN (ρ̂) = log2 ‖ρTA‖1 = log2(2N + 1) .
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In the case of single-photon balancing and symmetric losses in the two modes, we have

EN |ε=1,ηI=ηII=η =

√

η2 + (1− η)
2 − (1− η)

2
. (7.22)

Figure 7.5 plots the negativity of entanglement as a function of the intensity transmit-
tance of the two modes and balancing factor.
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Figure 7.5: (Left) Negativity of entanglement as a function of the intensity trans-
mittance of the two modes in the condition of single-photon balancing, µ = 1.
(Right) Negativity of entanglement as a function of the balancing factor with the
assumption of symmetric losses in the two modes.

We now turn to the experimental realization.

7.1.4 Experimental setup

As shown in figure 7.6, the experimental setup for generating hybrid entanglement con-
sists of three parts: preparation of the discrete-variable source (Alice), preparation of the
continuous-variable source (Bob), and common conditioning path (Router). On Bob’s site,
a single-mode squeezer (type-I OPO) is used to generate a 3-dB squeezed vacuum, which
has a nearly unity fidelity with an even cat state |cat+〉 with a small size |α|2 . 1. Via a
highly asymmetric beam-splitter (R = 5%), a single-photon subtraction can be realized for
producing an odd cat state (cf. Chapter 6). On Alice’s side, a week two-mode squeezed
vacuum state is prepared with a two-mode squeezer (type-II OPO) operating very far below
threshold (around 100 times below). The output signal and idler modes have orthogonal
polarizations, which are spatially separated via a polarization beam-splitter (PBS). Single-
photon detection in the idler mode heralds a presence of single-photon state in the signal
mode (cf. Chapter 5). The Router combines the two conditional paths in an indistinguish-
able fashion. After a set of spectral filtering, the heralding photons are finally detected by
a superconducting single-photon detector (SSPD) working at cryogenic temperature (≈ 1.8
K). Given a detection event, which heralds entanglement generation, the hybrid entangled
state is characterized by two high-efficiency homodyne detections.

Entanglement is very sensitive to the indistinguishablility of heralding modes. In the
experiment, the OPOs are designed to have the same configuration (e.g. coating of mirror,
and cavity length) to match the output spectral bandwidth. In the conditioning path, a PBS
is used to erase the polarization information of the two orthogonally-polarized heralding
modes. Thanks to a µCavity (Fabry-Perot cavity) in the filtering stage, the spectral and
spatial modes are made to be indistinguishable.
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Figure 7.6: Experimental setup for the generation of hybrid entanglement be-
tween particle-like and wave-like optical qubits. Alice and Bob locally prepare the
required resources with a two-mode squeezer (type-II OPO) and a single-mode
squeezer (type-I OPO), respectively. The idler beam in Alice node and the small
tapped part of Bob’s squeezed vacuum are mixed at a central station (Router) in
an indistinguishable way, which enables the generation of entanglement given a
conditioning detection by a superconducting single photon detector (SSPD). The
heralded entangled state is characterized by two high-efficiency homodyne detec-
tors. Photodiodes P1, P2 and P3 are used for phase control and stabilization. The
beam-splitter ratio in the central station enables to choose the relative weights in
the superposition. FP stands for Fabry-Perot cavity, IF for interferential filter, PBS
for polarizing beam-splitter and LO for local oscillator.

Besides of indistinguishablility, the relative phase between the superposed states has to be
controlled. The drift of the superposition phase will indeed result in a statistical mixture of
the form |1〉〈1|⊗|cat+〉〈cat+|+|0〉〈0|⊗|cat−〉〈cat−|. In the experiment, auxiliary seed beams
are injected into both OPOs as phase references. The active stabilization is implemented
with the microcontroller-based automatic locking system presented in Chapter 4.

Similar to the experiments for generating Fock states and cat states, the experiment here
is also conducted in a cyclic fashion: 50 ms are used for phase locking and µCavity locking
with the presence of seed beams, and the subsequent 50 ms are used for data acquisition
with seed beams blocked (cf. Section 6.1.3).

7.1.5 Results and discussion

In order to achieve a maximally entangled state, the detection probabilities from the two
conditioning modes are balanced by adjusting the beam-splitter ratio in the central station.
The heralded entangled state is reconstructed by a two-mode maximum likelihood algorithm
with the accumulated 200,000 data points (100,000 quadrature values for each modes).

The obtained quantum states without and with correction of 15% detection losses are
shown in figures 7.7(a) and (b), respectively. We can see that the discrete mode of the hybrid
entangled state is contained in the qubit subspace spanned by |0〉, |1〉. Higher photon-number
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components are here limited to 2%. The diagonal elements 〈0|ρ̂|0〉 and 〈1|ρ̂|1〉, correspond
respectively to a photon-subtracted squeezed vacuum (odd cat state) and to a squeezed
vacuum (even cat state) while the non-zero off-diagonal terms demonstrate the coherence
of the superposition. Without any correction, the odd cat state 〈0|ρ̂|0〉 exhibits a notable
negativity of Wigner function with W (0, 0) = −0.14 (ideally -1).

Figure 7.7: Experimental quantum state tomography of maximally entangled sates
without (a) and with (b) correction for 15% detection losses. (c) Hybrid represen-
tation in the rotated basis of discrete mode. Wigner functions are associated with
the reduced density matrices 〈k|ρ̂|l〉 with k, l ∈ {+,−}, corrected for detection
losses.

Corrected for detection losses, we can obtain a fidelity of 74% with the target state
|0〉A|cat

|α|=1
− 〉

B
− |1〉A|cat

|α|=1
+ 〉

B
(62% for uncorrected case). According to equation (7.20),

the negativity of entanglement is also computed to 0.37 (corrected) and 0.26 (uncorrected).
Ideally the value is 0.5 for a maximally entangled qubit. The generated state can also be
represented using rotated projection basis 5 as shown in figure 7.7(c). In the contour plots,
the two projections 〈+|ρ̂|+〉 and 〈−|ρ̂|−〉 exhibit an opposite displacement in phase space,
corresponding with large fidelity to two coherent states |α〉 and | − α〉.

One can also observe that the projected states are not completely round as they are
expected. This feature arises from the initial approximation of an even cat state by a
squeezed vacuum. Consequently, the projection states are actually squeezed qubit states
Ŝ(|0〉 ± |1〉). To go beyond this approximation, Bob can perform a local single-photon
subtraction to initially prepare an odd cat state, as will be later detailed in Section 7.4 in
this chapter.

Additionally, with a slight extension of the experimental setup presented above, we can
generate a hybrid qutrit entanglement as detailed now.

7.2 Hybrid qutrit entanglement

The experimental scheme shown in figure 7.2 can be readily extended to generate hybrid
qutrit entanglement by using a two-photon detection as heralding. The generated hybrid
entangled state would occupy a higher dimensional Hilbert space, i.e. the discrete modes
span the {|0〉, |1〉, |2〉} space. In this section, we will present a theoretical model as well as
its experimental realization for the hybrid qutrit entanglement.

5|+〉 = (|0〉+ |1〉)/
√
2 and |−〉 = (|0〉 − |1〉)/

√
2 .
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7.2.1 Principles and model

� Principles

We will continue to use the scheme shown in figure 7.2. In order to consider a two-photon
detection in the conditioning path, the approximation of the beam-splitter operator in equa-
tion (7.3) should be extended to the second order as:

B̂(θ) = eθ(âb̂
†−â†b̂) ≈ 1 + θ(âb̂† − â†b̂) +

θ2(âb̂† − â†b̂)
2

2
. (7.23)

Similarly, the two-mode squeezed vacuum state in equation (7.4) is approximated by

|TMSS〉 = |0〉c|0〉d + λ|1〉c|1〉d + λ2|2〉c|2〉d

= (1 + λĉ†d̂† +
λ2

2
ĉ†2d̂†2)|0〉c|0〉d .

(7.24)

Following the same procedure as detailed in Section 7.1.2, we can finally write the entangled
state resulting from by two-photon detection:

λ2r2√
2
|cat+〉a|2〉d − ei∆ϕθλtrâ|cat+〉a|1〉d + ei2∆ϕ

θ2t2

2
â2|cat+〉a|0〉d , (7.25)

In our experiment, the even cat state is emulated with a squeezed vacuum, thus leading to

Ŝ(ζ)

(

µ2|0〉a|2〉d +
√
2µ|1〉a|1〉d + |2〉a|0〉d −

1√
2 tanh ζ

|0〉a|0〉d
)

, (7.26)

where we use the following relations

âŜ(ζ)|0〉 = − sinh ζŜ(ζ)|1〉
â2Ŝ(ζ)|0〉 = − cosh ζ sinh ζŜ(ζ)|0〉+

√
2 sinh2 ζŜ(ζ)|2〉 .

(7.27)

� Density matrix

The local squeezing shown in equation (7.26) will be neglected in the following discussion
since it doesn’t change the main properties of interest (e.g. entanglement, or negativity of
the Wigner function). In particular, we will focus on the state 6:

|Ψ〉 = 1
√

c2 + (1 + µ2)
2
(µ2|2, 0〉II,I +

√
2µ|1, 1〉II,I + |0, 2〉II,I − c|0, 0〉II,I) , (7.28)

where

c =
1√

2 tanh ζ
. (7.29)

6Note that here we replace the subscripts a and d with I and II, respectively.
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The corresponding density matrix is given by

ρ̂ =
1

c2 + (1 + µ2)
2 ×































c2 0 −c 0 −
√
2cµ 0 −cµ2 0 0

0 0 0 0 0 0 0 0 0

−c 0 1 0
√
2µ 0 µ2 0 0

0 0 0 0 0 0 0 0 0

−
√
2cµ 0

√
2µ 0 2µ2 0

√
2µ3 0 0

0 0 0 0 0 0 0 0 0

−cµ2 0 µ2 0
√
2µ3 0 µ4 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0































. (7.30)

Figure 7.8 presents the theoretical hybrid qutrit entanglement in the condition of two-
photon balancing µ4 = 1 + c2. This condition maximizes the entanglement. Note that
here we omit the local squeezing in mode I. In fact, the diagonal blocks 〈0|ρ̂|0〉, 〈1|ρ̂|1〉
and 〈2|ρ̂|2〉 correspond to the two-photon subtracted squeezed vacuum, the single-photon
subtracted squeezed vacuum and the squeezed vacuum, respectively.

Figure 7.8: Hybrid representation
of the two-photon heralded hybrid
entangled state with µ4 = 1 + c2

and 3 dB squeezing.

� Negativity of entanglement

With equation (7.20), the negativity of entanglement can be calculated as 7:

EN =

µ

[

µ+

√

1 + c2 + µ4 −
√

c4 + 2c2 (µ4 + 1) + (µ4 − 1)
2
+
√

1 + c2 + µ4 +
√· · ·

]

c2 + (µ2 + 1)
2 .

(7.31)
It can be proven that the maximum negativity is achieved under the condition:

1 + c2 = µ4 . (7.32)

This condition corresponds to the two-photon balancing case where the two conditioning
photons come from two modes with equal probabilities.

7Here “ · · ·” denotes c4 + 2c2
(

µ4 + 1
)

+
(

µ4 − 1
)2

due to the limited space in one line.
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The maximum negativity is thus given by

ENmax(c) =

√

2(1 + c2)(
√√

1 + c2 − c+
√√

1 + c2 + c) +
√
1 + c2

2
(

1 + c2 +
√
1 + c2

) , (7.33)

which monotonously decreases with the parameter c (or increases with the local squeezing).
In the limit of infinite squeezing, the maximum negativity is given by

ENmax|c=0 =
1 + 2

√
2

4
≈ 0.96. (7.34)

The corresponding state can be obtained with c = 0 and µ = 1, i.e. |Ψ〉 ∝ |2, 0〉II,I +√
2|1, 1〉II,I + |0, 2〉II,I .

Note that for a maximally entangled qutrit, e.g. |Ψ〉 ∝ |2, 0〉II,I + |1, 1〉II,I + |0, 2〉II,I ,
the negativity of entanglement is 1.

Figure 7.9 presents the negativity of entanglement as a function of the balancing factor
with different squeezing levels. We can see that larger negativity of entanglement can be
obtained with a higher squeezing level.
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Figure 7.10 plots the negativity of entanglement depending on the losses and balancing
factor. Note that the plots are obtained by numerical calculations since there is no simple
analytical expression for the negativity of entanglement in the presence of losses.
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Figure 7.10: (Left) Negativity of entanglement as a function of the intensity
transmittance of the two modes in the condition of two-photon balancing, 1+c2 =
µ4. (Right) Negativity of entanglement as a function of the balancing factor with
the assumption of symmetric losses in the two modes. 3-dB squeezing is used for
the numerical simulation.
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� Two-photon balancing

Actually we can understand the condition (7.32) in another way. Let’s denote N I,II
C the

coincidence counts when two conditioning detectors fire at the same time. NI,II denote the
single-photon counts for each detector. Interestingly, the coincident counts are linked with
the single-photon counts by second-order correlation functions denoted as gI,II2 :

N I
C

N II
C

=
gI2
gII2

× (
NI
NII

)2. (7.35)

For two-photon balancing case we have
N I
C

N II
C

= 1, leading to

gI2
gII2

= (
NII
NI

)2 = µ4, (7.36)

where we use the definition in equation (7.13).
Since the mode I is in a thermal state, thus

gI2 = 2 , (7.37)

while the mode II is in a squeezed vacuum state, thus

gII2 = 3 +
1

sinh2ζ
. (7.38)

Therefore equation (7.36) gives the condition as

µ4 =
3

2
+

1

2sinh2ζ
⇔ µ4 = 1 + c2 , (7.39)

where we use the hyperbolic function identity cosh2ζ − sinh2ζ = 1 .

7.2.2 Experimental realization

The experimental setup for generating hybrid qutrit entanglement is almost the same as
the one shown in figure 7.6. Now the conditioning detection is realized with a two-photon
detection. As already demonstrated in the experiment of two-photon Fock state generation,
a 50:50 fiber beam-splitter is used to spatially multiplex the conditioning photons towards
two superconducting single-photon detectors (SSPDs). Given a coincidence event (|t1 −
t2| 6 1.5 ns), the heralded entangled state is characterized by two high-efficiency homodyne
detections. After an accumulation of 100,000 quadrature measurements for each mode, the
total data is then processed with a two-mode MaxLik algorithm to reconstruct the full
two-mode density matrix.

According to equation (7.32), a two-photon balancing is required to obtain the maximal
negativity of entanglement. In the experiment, this condition is achieved by balancing the
acquisition time for accumulating a given number of coincident triggers 8 when either of the
conditioning paths from type-I OPO and type-II OPO is blocked.

The reconstructed hybrid qutrit state is given in figure 7.11 after correcting 15% detection
losses. Indeed the generated entangled state occupies a higher dimension of Hilbert space

8The oscilloscope (Teledyne LeCroy - WaveRunner 610 Zi) provides the possibility to read the timing of
each trigger event.
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Figure 7.11: Experimental quan-
tum state tomography of hybrid
qutrit entanglement with correc-
tion of 15% detection losses. The
state is prepared with two-photon
balancing and 3-dB initial squeez-
ing.

up to |2〉 for the discrete mode. The diagonal projections correspond to the two-photon sub-
tracted squeezed vacuum (〈0|ρ̂|0〉), the single-photon subtracted squeezed vacuum (〈1|ρ̂|1〉),
and the squeezed vacuum (〈2|ρ̂|2〉). The negativity of entanglement is calculated to be 0.3
with the correction (0.2 without correction). This value is lower than the one we estimate
theoretically (around 0.4) with the model built in Section 7.2.1. This discrepancy is still
under investigation. We suspect that the degradation of entanglement may be due to the
stability of the initial sources since the total acquisition time here lasts about three hours.

7.3 Additional subtraction for hybrid qubit entanglement

In this section we will further extend the experimental setup to implement a local single-
photon subtraction in Bob’s side (type-I OPO) to initially prepare an odd cat state. Con-
sequently a hybrid qubit state |1〉A|cat−〉B + |0〉A|cat+〉B is expected given a conditioning
detection in the Router station. The prepared state can be regarded as the result of op-
erating a π-phase gate on the previously demonstrated hybrid qubit state. In this newly
prepared state, the even cat is approximated by a two-photon subtracted state instead of a
squeezed vacuum. Consequently, we can expect a higher achievable fidelity with the target
hybrid state. Here we will present in detail a theoretical model as well as the corresponding
experimental realization.

7.3.1 Theoretical consideration

� Principle

As shown in figure 7.12, n photons are first subtracted from the initial even cat state.
Then the remaining part is mixed with one mode of the two-mode squeezed vacuum on a
beam splitter, still in a indistinguishable fashion. The detection of single photon will her-
ald the generation of the hybrid entanglement. Therefore, this scheme combines local and
non-local photon detections.

In the following, we will consider the case of using a single-photon local subtraction. For
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Figure 7.12: Scheme to generate hybrid entangled states with an additional local
subtraction.

the type-I OPO side (initially preparing an even cat states), we have

B̂ab(θ0)B̂ae(θ)|cat+〉a|0〉b|0〉e
≈ (1 + θ0âb̂

†)(1 + θâê†)|cat+〉a|0〉b|0〉e ,
(7.40)

where B̂(θ) is the beam splitter operator with an amplitude reflectivity sin θ ≈ θ ≪ 1.
For the type-II OPO side, the prepared two-mode squeezed vacuum state (λ ≪ 1) can

be approximated as

|TMSS〉 ≈ |0〉c|0〉d + λ|1〉c|1〉d
= (1 + λĉ†d̂†)|0〉c|0〉d .

(7.41)

The modes b and c are then spatially combined by another beam splitter with an am-
plitude reflection r and a transmission t, which gives the transformation b̂† → tb̂† + rĉ† and
ĉ† → tĉ† − rb̂†. Moreover, we can include the phase evolution during the propagation by
simply doing the replacement b̂† → eiϕ1 b̂† and ĉ† → eiϕ2 ĉ†, leading to

(1 + eiϕ1θrâĉ† + eiϕ1θtâb̂†)(1 + θ0âê
†)(1 + eiϕ2λtĉ†d̂† − eiϕ2λrb̂†d̂†)|cat+〉a|0〉b|0〉c|0〉d|0〉e .

(7.42)
We only keep the first-order terms in θ and λ, and the terms containing b̂† and ê†. This

yields to
(eiϕ1θtâ2b̂†ê† − eiϕ2λrâb̂†d̂†ê†)|cat+〉a|0〉b|0〉c|0〉d|0〉e . (7.43)

We detect one photon on mode b and one photon on mode e, and trace out the mode c,
resulting in

ei∆ϕθtâ2|cat+〉a|0〉d − λrâ|cat+〉a|1〉d , (7.44)

where ∆ϕ = ϕ1 − ϕ2.
In our experiment, we use a squeezed vacuum Ŝ(ζ) to approximate the initial even cat

state. Therefore, the output state can be rewritten as 9

√

3 + 1/ sinh2 ζ|2PS〉a|0〉d + µ|1PS〉a|1〉d , (7.45)

9where we use the following relations

âŜ(ζ)|0〉 = − sinh ζŜ(ζ)|1〉
â2Ŝ(ζ)|0〉 = − cosh ζ sinh ζŜ(ζ)|0〉+

√
2 sinh2 ζŜ(ζ)|2〉 ,

and the definition of

µ =
λr

θt sinh ζ
=

√

nII

nI
=

√

NII

NI
=
√
ε .
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where |1PS〉 and |2PS〉 are normalized single-photon and two-photon subtracted vacuum
states, respectively.

� Balancing

To balance the superposition weights, it requires

µ2 = 3 +
1

sinh2 ζ
. (7.46)

There is another way to obtain the balancing condition from the point view of photon
counting. Assume that N0 is the count due to the local subtraction in the type-I OPO side;
NI (NII) is the count in the conditional path when the photons are only from type-I OPO
(type-II OPO). Then the coincidence counts needed to be balanced are given by

C0I = g1N0NI

C0II = g2N0NII ,
(7.47)

where g1,2 is the degree of correlation for the coincident detections.
Since the counts N0 and N1 are from the same squeezed vacuum source, the auto-

correlation function is thus given by

g1 = 3 +
1

sinh2 ζ
. (7.48)

The counts N0 and N2 are from two uncorrelated sources (one from type-I OPO and the
other from type-II OPO), hence the cross-correlation function is simply given by

g2 = 1 . (7.49)

Finally the balancing of coincident counts between two modes requires

C01 = C02 ⇒ g1
g2

=
NII
NI

⇒ 3 +
1

sinh2 ζ
= µ2 , (7.50)

which is the condition we got previously.

� Density matrix

If we apply a local squeezing operation Ŝ(−ζ) on mode a in equation (7.45), then the
resulting state is simply represented by

|Ψ〉 = 1
√

1 + c2 + µ2/2
(|0, 2〉II,I +

µ√
2
|1, 1〉II,I − c|0, 0〉II,I) , (7.51)

where

c =
1√

2tanhζ
. (7.52)

The corresponding density matrix is thus given by

ρ̂ =
1

1 + c2 + µ2/2
×



























c2 0 −c 0 − cµ√
2

0

0 0 0 0 0 0

−c 0 1 0
µ√
2

0

0 0 0 0 0 0

− cµ√
2

0
µ√
2

0
µ2

2
0

0 0 0 0 0 0



























. (7.53)
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Figure 7.13: Hybrid representa-
tion of the single-photon heralded
hybrid entangled state with a local
subtraction.

Figure 7.13 shows the hybrid representation of the density matrix with a 3-dB initial
squeezing from the type-I OPO. Note that here we omit the local squeezing in mode I.
In fact, the diagonal blocks correspond to the single-photon-subtracted squeezed vacuum
(〈0|ρ̂|0〉) and the two-photon-subtracted squeezed vacuum (〈1|ρ̂|1〉), which in principle live
in an infinite Hilbert space.

� Negativity of entanglement

The negativity of entanglement is thus computed to be

EN =
µ
√
2 + 2c2

2 + 2c2 + µ2
. (7.54)

It is easy to prove that the maximum negativity (0.5) can be always obtained when the
two-photon balancing condition is satisfied, namely,

µ2 = 2 + 2c2 . (7.55)

In this case, the generated state corresponds to a maximally entangled qubit state.

� Fidelity

With an additional local subtraction, the even cat state in the generated hybrid state is
approximated by a two-photon-subtracted squeezed vacuum (instead of a squeezed vacuum
in the case of no local subtraction). Therefore we can expect a higher fidelity between the
generated hybrid entangled qubit and the target hybrid state (for a cat size |α|2 ≃ 1).

To rigorously illustrate this point, we consider a maximally entangled hybrid qubit ob-
tained with a local subtraction:

|Φ1〉 =
1√
2
(|0〉|2PS〉+ |1〉|1PS〉) , (7.56)

where |1PS〉 and |2PS〉 are normalized single-photon and two-photon subtracted squeezed
vacuum states, respectively.

And the target hybrid state is given by:

|Ψ1〉 =
1√
2
(|0〉|catα+〉+ |1〉|catα−〉) . (7.57)
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The fidelity can be thus obtained by

Fn=1 = |〈Ψ1|Φ1〉|2 =
1

4
|〈catα+|2PS〉+ 〈catα−|1PS〉|2

=
1

4
|
√

F2 +
√

F1|2 ,
(7.58)

where F1 and F2 are given by equations (6.3) and (6.11), respectively.
As a comparison, we also consider a maximally entangled hybrid qubit obtained without

local subtraction:

|Φ0〉 =
1√
2
(|1〉|0PS〉+ |0〉|1PS〉) , (7.59)

where |0PS〉 is a squeezed vacuum state.
Compared to the target hybrid state

|Ψ0〉 =
1√
2
(|1〉|catα+〉+ |0〉|catα−〉) , (7.60)

the corresponding fidelity is thus calculated by

Fn=0 = |〈Ψ0|Φ0〉|2 =
1

4
|〈catα+|0PS〉+ 〈catα−|1PS〉|2

=
1

4
|
√

F0 +
√

F1|2 ,
(7.61)

where F0 is given by equation (6.8).
These fidelities are plotted in figure 7.14 as a function of cat size |α|2 for different values

of squeezing. We can see that the fidelity with the targeted hybrid state can indeed be
improved by the additional local subtraction for a cat size |α|2 & 1. Specifically, in the case
of 3 dB squeezing, we have Fn=0 ≈ 92% and Fn=1 ≈ 99% for |α|2 = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

Fi
de

lit
y

|α|2

Fn=0 (3dB)
Fn=1 (3dB)
Fn=0 (4dB)
Fn=1 (4dB)

Figure 7.14: Fidelity Fn=0 and
Fn=1 as a function of cat size |α|2
for different squeezing levels.

7.3.2 Experimental realization

The experimental setup is shown in figure 7.15, which is the same as the one shown in figure
7.6 except for the additional implementation of a local single-photon subtraction in Bob’s
side. In Alice node, a weak two-mode squeezed vacuum state is prepared with a type-II
OPO. Then the orthogonally-polarized signal and idler modes are spatially separated by a
polarization beam-splitter. In Bob’s node, a pure 3 dB squeezed vacuum is produced by
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Figure 7.15: Experimental setup for generating hybrid entanglement with a local
subtraction in Bob’s node.

a type-I OPO. A highly-transmitted beam-splitter (R = 10%) is used to implement the
local photon subtraction together with a SSPD for the conditional detection. Hence Bob
locally prepares an odd cat state (single-photon-subtracted squeezed vacuum) as the initial
resource.

Then another beam-splitter is used to tap off a small fraction (R = 10%) from the odd
cat state, which is directed to the central station and mixed with the idler mode from Alice’s
side. The combined beams are then sent through a frequency filtering stage to remove the
non-degenerate modes. The filtered light is then detected with another SSPD. Given a
coincident detection of the two SSPDs, the heralded entangled hybrid state is characterized
by two homodyne detections. After accumulating 100,000 quadrature measurements for
each mode, the recorded the homodyne data is then processed with the two-mode MaxLik
algorithm to reconstruct the density matrix.

To generate a maximally entangled state, the superposition weights are required to be
equal. This condition can be realized by adjusting the beam-splitter ratio in the central
station. Practically, we can balance the coincident counts between the local detection and
non-local detections either from the type-I OPO or the type-II OPO.

Figure 7.16 shows the reconstructed hybrid entangled state with correction for 20%
detection losses. In this hybrid representation, the diagonal Wigner functions correspond
to the two-photon subtracted squeezed vacuum (〈0|ρ̂|0〉) and the single-photon subtracted
squeezed vacuum (〈1|ρ̂|1〉) as expected. The presence of the off-diagonal terms indicate the
coherence terms of the superposition state. The demonstrated state has a fidelity of 73.5%
compared to the targeted state |0〉A|catα=1

+ 〉
B
− |1〉A|catα=1

− 〉
B

(60.3% without correction).
The corresponding negativity of entanglement is 0.31 (0.18 without correction).

There are at least two factors limiting the state fidelity. First, to collect sufficient herald-
ing events (typically 100,000 quadratures for each mode) for the two-mode quantum state
tomography in a reasonable time (typically 3 hours), the tapping ratios of two beam-splitters
in Bob’s side are both set to be 10%, leading to effective losses on the prepared state. Sec-
ond, it is hard to passively maintain the quality of the prepared states from the two OPOs.
Specifically, the purity of the produced squeezing from type-I OPO needs to be optimized
by adjusting the crystal temperature about every 30 minutes. The triple resonance of the
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Figure 7.16: (a) Experimental quantum state tomography of hybrid entangled
quibit state after correction of 20% detection losses. (b) Hybrid representation in
the rotated basis of the discrete mode. Wigner functions are associated with the
reduced density matrices 〈k|ρ̂|l〉 with k, l ∈ {+,−}.

type-II OPO cavity also requires optimization.
The obtained state can also be expressed in the rotated basis of the discrete mode, e.g.

|±〉 = (|0〉 ± |1〉)/
√
2. As can be seen, the Wigner functions of the diagonal elements are

positive and almost round. Indeed they exhibit a higher fidelity to coherent states compared
to the previously obtained state without this additional local subtraction (cf. figure 7.7).

Moreover, by playing with the initial squeezing in Bob’s node, the displacement of two
coherent states can be increased, as further investigated in the following.

7.4 Squeezing-induced micro-macro states

In this section, we will investigate the optical hybrid entanglement generated here in the
framework of the recent micro-macro description. With the additional subtraction in the
Bob’s side, we already observed that the diagonal elements in the rotation basis corresponded
to two coherent states and they were well separated in phase space. The “macroscopicity”
of these two states can be characterized by the mean distance in phase space, which can
be discriminated with homodyne detection with a large success probability [137]. Moreover
the separation can be further enlarged by increasing the squeezing level and the number of
locally subtracted photons, in contrast to recently reported results based on displaced single-
photon entanglement [138, 139]. In the following we will dedicate a theoretical investigation
about the so-called squeezing-induced micro-macro states.

7.4.1 Basic principles

Let us start to examine the following maximally hybrid entangled state

|Ψ〉 = 1√
2
(|0〉A|cat−〉B + |1〉A|cat+〉B) , (7.62)

which can be rewritten in the rotated qubit basis 10, e.g. |±〉 = (|0〉 ± |1〉)/
√
2:

|Ψ〉 = 1√
2
(|+〉A|α〉B − |−〉A| − α〉B) . (7.63)

10The reformulation is valid for not too small amplitudes, such as α & 1.
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The states |±〉 (discrete variables) can be regarded as microscopic states while | ± α〉 (con-
tinuous variables) can be macroscopically distinguished in phase space for an amplitude
α & 1. Actually the micro-macro state corresponds to the initial spirit of the Schrödinger
cat state gedanken experiment.

Here the macroscopicity of the states is interpreted through their amplitude quadratures.
Specifically one can define the mean distance between the two superposed macroscopic states
|Φ±〉 in phase space [137]:

D =
1

σ0
|〈Φ+|x̂|Φ+〉 − 〈Φ−|x̂|Φ−〉| , (7.64)

where x̂ = σ0(â + â†) is the amplitude quadrature operator. The introduction of factor σ0
will normalize the parameter D in the unit of short noise σ2

0 .
Additionally the success probability for discriminating the two states by a homodyne

detector is define as

P =
1

2
(〈Φ+|Π̂+|Φ+〉+ 〈Φ−|Π̂−|Φ−〉) , (7.65)

where the measurement projectors are given by Π̂+ =

∫ ∞

0

|x〉〈x|dx and Π̂− =

∫ 0

−∞
|x〉〈x|dx.

Using these witness parameters, the two coherent states shown in equation (7.63) has
a mean phase-space separation D = 4α and a discrimination success probability P = (1 +

erf(
√
2α))/2 [140]. Apparently, with an increase of the amplitude α, the macroscopicity will

become more pronounced with a success probability close to unit.
In our experiment, we use photon-subtracted states to emulate the cat states. The state

shown in equation (7.62) is thus generally given by

|Ψ〉 = 1√
2
(|0〉A|φ−〉B + |1〉A|φ+〉B) , (7.66)

where |φ±〉 denotes the even- and odd-photon-number subtracted squeezed states, which are
orthogonal.

Similarly the state can also expressed in the rotated basis

|Ψ〉 = 1√
2
(|+〉A|Φ+〉B − |−〉A|Φ−〉B) . (7.67)

where |Φ±〉 = (|φ+〉 ± |φ−〉)/
√
2.

It is well known that using higher photon-number subtraction together with higher initial
squeezing can approximate larger cat states [114]. In the following we will investigate the
macroscopicity of the states |Φ±〉 using the two introduced parameters.

For the case with no local subtraction in the Bob’s node (cf. scheme in figure 7.12), we
have

|φ+〉 = Ŝ|0〉 , |φ−〉 = N [âŜ|0〉] = Ŝ|1〉 ,
which results in

|Φ±〉 =
1√
2
Ŝ(|0〉 ± |1〉) = Ŝ|±〉 . (7.68)

The marginal distribution along the amplitude quadrature of state |Φ+〉 is given by 11

P(x) =

√
s
(√

sxe−sx
2/4 + e−sx

2/4
)2

2
√
2π

, (7.69)

11The marginal distribution of state |Φ−〉 is simply given by P(−x). In the calculation of the marginal
distribution for squeezed photon-number superposition, we use the relation:

PŜρ̂Ŝ† (x) = e−ζPρ̂(xe
−ζ) .
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with the squeezing factor s = e−2ζ .
Therefore the two parameters for measuring the macroscopicity are given by 12

D = 2

∫ ∞

−∞
xP(x)dx =

2√
s
= 2eζ ,

P =

∫ ∞

0

P(x)dx =
1

2
+

1√
2π

≈ 0.9 .

(7.70)

For the case with a local single-photon subtraction, we have

|φ+〉 = N [â2Ŝ|0〉] = 1√
2λ2 + 1

Ŝ(
√
2λ|2〉+ |0〉)

|φ−〉 = N [âŜ|0〉] = Ŝ|1〉 ,

leading to

|Φ±〉 =
1

√

2(2λ2 + 1)
Ŝ(

√
2λ|2〉+ |0〉 ±

√

2λ2 + 1|1〉) . (7.71)

The marginal distribution along the amplitude quadrature of state |Φ+〉 is given by

P(x) =

√
se−sx

2/2
(

λ
(

sx2 − 1
)

+
√
2λ2 + 1

√
sx+ 1

)2

2
√
2π (2λ2 + 1)

, (7.72)

where λ = tanh ζ.
Therefore the two parameters are given by

D =
2 + 4λ

√

s(1 + 2λ2)
,

P =
1

2
+

1 + λ
√

2π(1 + 2λ2)
.

(7.73)

Figure 7.17 shows such entangled hybrid states for different photon-number subtractions
and squeezing levels. We can clearly observe that the separation between the two micro-
macro states |Φ±〉 is enlarged in phase space as the increase of the squeezing level. Moreover,
the separation can be further enhanced by applying a local subtraction, as presented in the
corresponding marginal distributions.

To quantitatively describe such squeezing-induced macroscopicity, we plot the mean
phase-space distance D and success probability P in figure 7.18. In the case without local
subtraction (n = 0), the probability of successful discrimination by a dichotomic homodyne
detector is constant (≈ 0.9) independent from the squeezing level in spite of a larger phase-
space separation. Only a single-photon subtraction (n = 1) can break this limit, leading to a
discrimination probability close to unit even for a modest squeezing (∼ 3 dB). Particularly,
for a 5-dB squeezing, a distance D ≈ 6, corresponding to six shot noise units, is obtained
with a success probability P ≈ 99%.

Note that for the states based on displaced single-photon entanglement [138, 139], e.g.

|Ψ〉 = 1√
2
(|0〉AD̂(α)|1〉B + |1〉AD̂(α)|0〉B), the states in the rotated basis are given by:

|Φ±〉 =
1√
2
D̂(α)(|0〉 ± |1〉) = D̂(α)|±〉 . (7.74)

12Here we use the convention σ2
0 = 1.
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Figure 7.17: Squeezing induced micro-macro states. The contour plots give the
Wigner functions of the two macroscopic states |Φ±〉 for a given photon-number
subtraction and squeezing level. The corresponding marginal distributions along
the amplitude quadrature are given in the right column.

Since they are just translated in phase space, the effective parameters D and P can be
obtained by shifting them back to the origin. According to equation (7.73) we can obtain

D|λ=0 = 2 ,

P |λ=0 =
1

2
+

1√
2π

≈ 0.9 .
(7.75)
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7.4.2 Experimental realization and discussion

Experimental realization of the squeezing induced micro-macro states can be realized using
the setup shown in figure 7.15. The different squeezing levels can be obtained by changing
the pump power in the single-mode squeezer (type-I OPO). Thanks to the high escape
efficiency (≈ 95%) and low intra-cavity losses (≈ 0.5%), the single-mode squeezer can in
principle provide a squeezing of 16.5 dB (corrected for detection losses) with a pump power
close to threshold (cf. Section 2.2.3). To maintain the purity of squeezing, usually the pump
power is set to be much below the threshold. In this experiment, the pump power is chosen
to be (5 mW, 10 mW, 15 mW, 20 mW, 30 mW), corresponding to measured squeezing/anti-
squeezing of (-3 dB/3.5 dB, -3.5 dB/5.0 dB, -4.0 dB/6.0 dB, -5.0 dB/8.0 dB, -5.5 dB/10.0
dB).

Figure 7.19: Experimental demonstration of squeezing induced micro-macro
states for different photon-number local subtractions and various pump power for
squeezing generation. The contour plots in left columns present the Wigner func-
tions of two macroscopic states 〈±|ρ̂|±〉. The corresponding marginal distributions
along the amplitude quadrature are also given in the right column as well as the
parameters D and P for quantitatively measuring the macroscopicity. These results
are obtained without any loss correction.

For a given degree of squeezing, two hybrid maximally entangled states are obtained
respectively with and without a local single-photon subtraction in the Bob’s side. Then
the hybrid entangled states are rewritten in the rotated basis of the discrete modes, e.g.
|±〉 = (|0〉± |1〉)/

√
2. As pointed out in the previous section, the diagonal elements 〈±|ρ̂|±〉

exhibit the macroscopic feature in phase space by increasing the local squeezing and applying
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the local photon-subtraction, which is verified by the experimental results as shown in figure
7.19. The contour plots in the left columns correspond to the Wigner functions of the two
macroscopic states 〈±|ρ̂|±〉. It can be seen that as the increase of the power pump (leading
to higher squeezing) the two states are further away from each other in phase space.

In order to quantitatively investigate the squeezing-induced macroscopicity, the values of
phase-space separation D and successful discrimination probability P are computed from the
corresponding marginal distributions along the amplitude quadrature. With a single-photon
local subtraction (n = 1), both parameter values are higher than the ones obtained without
local subtraction (n = 0). In particular, at the pump of 30 mW, the distance is D = 5.24
corresponding to more than five short noise units, while the discrimination probability P
reaches 83.4%. Note that all these values are obtained without any loss correction. After
correcting 20% detection losses, these values increases to D = 6.52 and P = 87.4%. In
principle, larger phase-space separations between the two macroscopic states are achievable
by implementing higher photon-number subtraction [137], resulting in more pronounced
creation of macroscopicity.

The experimental implementation here for generating micro-macro states has two distinct
features. First, the hybrid entangled state is heralded and is thus generated a priori, in
contrast to the proposal [141]. Additionally the entangled state is generated remotely. The
losses in the conditioning channel has no effect on the state, only reducing the heralding
rate [76]. Second, the generated states here can demonstrate the macroscopic property lying
in the phase-space separation induced by squeezing [142], which is not the case for the
experimental realizations based on displaced single-photon entanglement [138, 139]. Such
displacement merely adds a classical amplitude to the state without increasing the quantum
macroscopicity [143].

7.5 Conclusion

In summary, we have experimentally generated the hybrid qubit entanglement between two
remote nodes using two different information encodings. Such resource allows the mapping
between particle qubits |0〉, |1〉 and coherent state wave quibits |α〉, | − α〉. Additionally, the
hybrid qutrit entanglement has also been experimentally demonstrated by the two-photon
conditioning detection. Furthermore, using an additional local photon-subtraction, we have
investigated the squeezing-induced micro-macro entanglement. The diagonal states in the
rotated basis representation indeed exhibited the increasing phase-space separation with the
larger squeezing and the higher-photon-number local subtraction.

In future work, the obtained hybrid entangled states will be used to carry out a quan-
tum state teleportation between different degrees of freedom of light based on discrete and
continuous variables (cf. the hybrid converter detailed in Section 7.1.1).
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8 | Coincident Frequency Up-conversion System

Infrared single-photon detection with high efficiency and low dark noise played a crucial
role of the conditioning measurement in the previously reported experiments. The infrared
photon detection (specifically at 1064 nm in our experiments) was achieved with super-
conducting nanowire single-photon detectors (Appendix F). Although the SSPDs already
demonstrate an excellent performance, yet the requirement of cryogenic operation inevitably
increases the complication of the detection system. Parallel to the development of efficient
infrared photon detectors, a large effort is therefore dedicated to the so-called single-photon
frequency up-conversion detectors[144, 145, 146]. Such up-conversion detectors convert the
infrared photons to the visible regime where Silicon avalanche photodiodes (Si-APDs) can
be harnessed [147]. Compared to SSPDs, Si-APDs have distinct advantages: they are more
compact, relatively inexpensive and operate at room temperature [148].

In this chapter, we will first give a general introduction of the single-photon frequency
up-conversion detection. Next we will detail the experimental realization of a frequency
up-conversion system based on synchronously pulsed pumping. The single-photon detec-
tion performance will then be evaluated in terms of the detection efficiency and dark noise.
Finally the photon-number correlation during the up-conversion process will also be inves-
tigated.
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8.1 Introduction

8.1.1 Motivation

Single-photon frequency up-conversion is a nonlinear process where the incident single pho-
ton is spectrally converted to one with higher frequency while keeping all the coherence
properties (cf. Section 2.3), such as photon correlation [43], entanglement [149], and photon
statistics [150]. Generally speaking, the coherent up-conversion process can mainly benefit
to three purposes.

– Efficient photon detection: One promising application of the single-photon fre-
quency up-conversion is to convert infrared photons to the desired spectral regime (usu-
ally visible regime) where high-performance detectors (usually Si-APDs) are available
[145, 147, 151, 152, 153]. Compared to conventional detectors, the up-conversion detec-
tors have some unique features owing to the phase-matching condition in the frequency
up-conversion process, for instance narrow-band wavelength acceptance [154] and po-
larization selectivity [155]. The efficient detection of infrared photons by up-conversion
detector has been successfully demonstrated in various applications, such as infrared
imaging [156, 157, 158] and infrared ultra-sensitive spectroscopy [159, 160, 161]. Addi-
tionally, such up-conversion detectors also play an important role in optical quantum
computation and communication which stringently require efficient photon detection,
like quantum key distribution [162].

– Photonic quantum interface: Coherent frequency up-conversion can preserve the
quantum characteristics of the “flying” qubits where the information is encoded with
photons. This feature enables the frequency up-convertor to be a photonic quantum
information interface between the transferring channel (e.g. optical fiber) and the
processing node (e.g. alkaline memory) in quantum information networks [40, 163].

– Spectro-temporal manipulation of quantum states: As a nonlinear process, effi-
cient frequency up-conversion requires energy and momentum conservation. Therefore,
one can engineer the spectral and temporal properties of the pump field to manipu-
late the pulsed quantum states [164]. For instance, the frequency up-conversion has
recently been demonstrated to compress a quantum light pulse by using a chirped
classical pump [44, 165, 166]. Additionally a dispersion-tailored frequency conver-
sion can lead to the realization of a quantum pulse gate that can be used to select
time-frequency Schmidt modes of ultrafast quantum states [41, 167].

8.1.2 Classical description

The quantum description of coherent frequency up-conversion has already been detailed
in Section 2.3. Here we will present its complementary description in the perspective of
classical nonlinear optics.

Indeed the frequency up-conversion is basically a sum frequency generation (SFG) pro-
cess. With the approximation of ideal plane waves and lossless nonlinear media, the coupling
equations for the three involved fields are

dEs
dz

= i
ωsdeff

nsc
EupE

∗
p exp(i∆kz)

dEp
dz

= i
ωpdeff

npc
EupE

∗
s exp(i∆kz)

dEup

dz
= i

ωupdeff

noc
EsEp exp(i∆kz) ,

(8.1)
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where Es, Ep, and Eup are the electric field amplitudes of the signal, pump and up-converted
light, respectively; ns, np and nup are the indices of refraction at the three wavelengths; deff

is the effective nonlinear coefficient of the crystal; c is the speed of light, and z is the
longitudinal position along the propagation direction of the output light within the crystal.
∆k represents the phase mismatch, which is defined by:

∆k = 2π(
nup
λup

− np
λp

− ns
λs

) . (8.2)

By solving the wave equations [32], the conversion efficiency can be derived as

η =
Pup
Ps

=
λs
λup

(1 + γ−2
0 )

2
p−sn2[

√

1
2 (1 + γ20)p+(L/LNL), γ] ,

γ2 =
p−
p+

, γ20 =
λsPs(0)

λpPp(0)
,

LNL =
1

4πdeff

√

2ε0npnsnupcλsλup
Ip(0)

,

p± = 1 +
(∆kL/2)

2
(LNL/L)

2

1 + γ20
±
√

[1 + (∆kL/2)2(LNL/L)
2

1+γ2
0

]
2
− ( 2γ0

1+γ2
0
)
2
,

(8.3)

where sn(x, γ) is the Jacobi elliptic sine function depending on the parameter γ 1, known
as the modulus; Ps,p(0) is the input power of the signal or the pump; Ip(0) is the input
intensity of the signal; LNL is the characteristic length of the nonlinear interaction.

For an up-conversion process where the power of the signal is much lower than the one
of the pump, γ0 → 0. Consequently, the conversion efficiency is simplified as

η =
λs
λup

1

1 + (∆kLNL
2 )

2 sin
2
√

( L
LNL

)
2
+ (∆kL2 )

2
. (8.4)

Usually the conversion efficiency is also defined as the ratio of the photon fluxes between
the up-converted field and input signal field:

η = ( L
LNL

)2 sinc2
√

( L
LNL

)
2
[1 + (∆kLNL

2 )
2
] , (8.5)

where the sinc(x) function is defined as sin(x)/x.
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Figure 8.1: SFG conversion effi-
ciency as a function of position in
nonlinear medium including the ef-
fect of phase mismatch.

1For γ → 1, sn(x, γ)→ tanh(x); for γ → 0, sn(x, γ)→ sin(x) .
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Figure 8.1 gives the SFG conversion efficiency as a function of position in the nonlinear
medium under different phase mismatch conditions. We can seen that a unit conversion
efficiency can only be obtained in the case of perfect phase matching (∆k = 0). Therefore,
momentum conservation on the phase velocities of the three beams should be satisfied to
obtain efficient frequency conversion.

With perfect phase-matching condition, the conversion efficiency can be simplified as

η = sin2( L
LNL

) . (8.6)

For a given nonlinear crystal, the interaction length is fixed. The conversion efficiency
usually varies with the pump power. Therefore, we can finally rewrite the above equation
as:

η = sin2(
π

2

√

P

Pm
) ,

Pm =
ε0npnsnupcλsλupAeff

32d2effL
2

,

(8.7)

where Pm is the required pump power for complete conversion and Aeff is the effective area of
the pump beam. The obtained expression for the conversion efficiency is consistent with the
one obtained previously within the frame of quantum description (cf. Section 2.3). Through
the above discussion, we can see that unit conversion efficiency can only be obtained under
the conditions of perfect phase matching and sufficiently strong pump field.

With realistic experimental parameters 2, the pump power required to achieve unity
conversion efficiency is typically around 20 W. Such intense pump power can be achieved by
using cavity enhancement, waveguide confinement or pulsed excitation. In the next section,
we will introduce these methods and give a general comparison.

8.1.3 Comparison of pumping schemes

In order to realize a quantum up-converter, it requires a perfect phase matching and suffi-
ciently intense pump field. Phase-matching condition can be usually obtained by optimizing
the interacting wavelengths, crystal alignment, and operating temperature. Moreover, use
of a QPM nonlinear crystal can even make it easier to obtain phase matching via choosing
an appropriate poling period.

Figure 8.2: Three typical schemes for frequency up-conversion.

To achieve strong pump intensity, there are three methods: cavity enhancement, waveg-
uide confinement, and pulsed pumping. Cavity enhancement is suitable for continuous-wave

2λp = 1550 nm, λs = 1064 nm, L = 50 mm, Aeff ≈ π × 502 µm2, and deff ≈ 17 pm/V.
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regime, yet the strong average power would inevitably bring severe background noise due
to parasitic nonlinear interactions [147, 151]. Use of a waveguide medium can reduce the
required average power due to the strong spatial confinement, but the coupling loss is not
satisfying [163]. Frequency conversion with pulsed pumping can be another option to de-
crease the background noise, as the pulse energy is concentrated within a very narrow time
window to produce a high peak power [168]. However, as shown in figure 8.2, pulsed pumping
for a continuous stream of signal photons will result in a very low overall detection efficiency
due to the extremely low duty cycle ratio of the escorting pump. Hence, coincident pumping
up-conversion, where the signal and pump sources are temporally synchronized, enables to
make sure that every signal photon can be converted with the pulsed pump field.

To realize the temporal synchronization between the pump and the signal sources, one
can use electrooptics intensity modulator to obtain a stream of pulses synchronized with an
external lock [152]. Another way is to use an optical parametric oscillator that can produce
dual-color beams by parametric down-conversion [169]. In our experiment, an alternative
solution is used based on two temporally synchronized mode-locked fiber lasers [145, 144].
This technique can benefit from recent advances in dispersion management of fiber laser
cavity, enabling us to control the temporal and spectral properties of pulses. We will detail
the implementation of such synchronized fiber lasers in the next section.

8.2 Synchronized fiber lasers

8.2.1 Overall configuration

WDM 
980/1557

OC
80%

PC PCISO-P

Er

LD PumpLD Pump

DSF

WDM 
980/1040

Yb

WDM 
1040/1557ISO

Col Col

Cir

EDFA2

λ/4

PC

PBS

λ/4λ/2

EDFA1

Col Col

WDM 
1040/1557 PPLN

SPCMAttn

FBG @ 
1557 nm

Col

Cir

FBG @ 
1040 nm

Filtering

Figure 8.3: Experimental setup of the synchronization pumping system. LD, laser
diode; Cir, circulator; Col, collimator; PC, polarization controller; DSF dispersion-
shifted fiber; OC, output coupler; ISO, optical isolator; ISO-P, polarization-
dependent isolator; PBS, polarization beam splitter; Attn, attenuator; SPCM,
single-photon counting module.

As depicted in figure 8.3, the frequency up-conversion system mainly consists of two parts:
a passive master-slave synchronization fiber-laser system and a single-photon frequency up-
conversion counting system.

In the fiber-laser synchronization system, the master laser is an Er-doped fiber laser
(EDFL) while the slave laser is an Yb-doped fiber laser (YDFL) with a mixed fiber-space
configuration. The gain media are pumped by laser diodes emitting at 980 nm through
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wavelength-division multiplexers. Both two fiber lasers are passively mode-locked by the
nonlinear polarization rotation in the fiber cavity, operating at a repetition rate of 17.6
MHz to enable a high-speed detection. The initialization of the mode-locking is realized
by adjusting the angles of the polarization controller (in EDFL) or wave plates (in YDFL).
The two fiber lasers are then used to provide signal and pump sources in the sum frequency
generation after appropriate engineering and control.

Frequency conversion as a nonlinear process is only significant for a sufficiently intense
pump excitation. In our experiment, the pulsed pump is used to provide a high peak power
since the energy is concentrated within an extremely short temporal window. Additionally,
in order to reduce the required pump power for the complete conversion, a nonlinear crystal
with a large effective nonlinear coefficient and a long interaction length will be preferable
(cf. equation (8.7)). Thanks to the quasi-phase-matching (QPM) technique, a periodically
poled lithium niobate (PPLN) crystal is utilized in our experiment. However, a long crystal
length length (50 mm) leads to a quite narrow acceptance bandwidth (≈ 0.3 nm) 3, which
cannot be matched by typical mode-locked fiber lasers with a relatively broad bandwidth of
a few nm. To realize an efficient frequency conversion, specific control of the pulses in the
spectrum domain is therefore required to satisfy the requisite QPM.

8.2.2 Spectro-temporal engineering
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Figure 8.4: (a) The Er-doped fiber laser spectrum. (b) Spectrum of the FBG
transmission. Inset: zoomed spectrum around 1557 nm. (c) Spectrum of the FBG
reflection. (d) Spectrum of the signal source from the Yb-doped fiber laser.

As shown in figure 8.3, the EDFL includes a section of dispersion-shifted fiber (DSF) for
the dispersion management in the ring cavity, which not only facilitates the mode-locking,
but also tailors the output spectrum. Figure 8.4(a) shows the corresponding spectrum

3The acceptance bandwidth of the crystal can be estimated by

∆λ =
2λΛ

πL
,

where L is the crystal length and Λ is the grating period.



CHAPTER 8. COINCIDENT FREQUENCY UP-CONVERSION SYSTEM 139

centered at 1563.8 nm with a full width at half maximum (FWHM) of 6.2 nm. The EDFL
output is then spectrally filtered by a fiber Bragg grating (FBG) to approach the QPM
bandwidth of the PPLN crystal. As a result, a narrow spectral portion of the EDFL is
filtered out by the FBG reflection as shown in figure 8.4(b). The FBG reflection is further
amplified by an Er-doped fiber amplifier (EDFA) as the pump source for the frequency
conversion. The maximum average power after amplification reaches about 60 mW. The
corresponding spectrum is centered at 1557.6 nm with a 0.56-nm FWHM bandwidth as
shown in figure 8.4(c).

The FBG transmission is then injected into the slave laser cavity (YDFL) through a fiber
wavelength-division multiplexer. The light injection is used to trigger the mode-locking of
YDFL that will be synchronized with the master laser. Similarly, another FBG is used at
the output of YDFL to realize spectral matching of the signal pulse. The filtered spectrum
is centered at 1040.0 nm with a FWHM bandwidth about 0.35 nm as shown in figure 8.4(d).
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Figure 8.5: Autocorrelation pulse profiles of the signal source (a) and the pump
source (b), respectively. Solid symbols in black are the experimental data and solid
curves in red are the Gaussian fits to the data.

The pulse duration of the signal pulse is measured by an autocorrelator. Figure 8.5(a)
gives an autocorrelation trace with a FWHM bandwidth of 7.9 ps, which corresponds to
the actual pulse duration of 5.6 ps by assuming a Gaussian temporal profile (with a scaling
factor of

√
2). In order to optimize the up-conversion efficiency, the pump pulse duration

relative to the signal pulse needs to be carefully adjusted. The total conversion efficiency is
indeed dependent on the pulse overlap as given by

Poverlap =

∫ +∞

−∞
P0(Ip(t))Is(t)dt , (8.8)

where P0 is the conversion efficiency dependent on the temporal distribution of the pump

intensity IP as sin2(
√

Ip(t)), and Is(t) is the normalized input pulse profile ∫ Is(t)dt = 1 .
Figure 8.6 gives the simulated conversion efficiency as a function of the pump pulse

duration for the 5.6-ps signal pulse duration. When the pulse duration of the pump is much
shorter than the one of the signal, the conversion efficiency is very low as expected since the
signal photons have large probability to appear outside of the temporal window of pump
pulses. Hence the increase of the pump pulse duration can lead to a higher conversion
efficiency. However, the conversion efficiency will finally saturate when the pump pulse
duration is about twice as the signal one. Practically, too long pump pulse duration will not
favor the experiment due to the reduction of the peak energy and an increase of background
counts.

Thanks to the spectral filtering by the FBGs in the experiment, the pulse durations of the
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Figure 8.6: Simulated conver-
sion efficiency as a function of the
pump pulse duration by assuming
a signal pulse with a FWHM of 5.6
ps. The circle shows the experi-
mental situation.

master and slave lasers are almost stretched according to the time-frequency Fourier trans-
form. Via cavity dispersion management in the master laser cavity, the spectro-temporal
property of the output pulses can be precisely optimized. Consequently, a 8.8-ps pump pulse
duration is inferred from the autocorrelation trace with a 12.4-ps bandwidth as shown in
figure 8.5(b). Theoretically the conversion efficiency can reach 95.6% as shown by the circle
in figure 8.6. The pump pulse duration (8.8 ps) is chosen to be slightly longer than the
signal pulse duration (5.6 ps), which not only permits an efficient frequency up-conversion,
but also mitigate the background noise indued by the intense pump field.

8.2.3 Passive injection locking

To implement a coincident pumping up-conversion, the signal pulses have to be synchronized
with the pump pulses. In other words, the two fiber lasers (YDFL and EDFL) used as pump
and signal sources need temporal synchronization. To this end, the two independently
lasers should be mode-locked at exactly the same repetition rate. This generally requires
a feed-back locking system to compensate the unavoidable laser cavity variation 4. In our
experiment, a passive synchronization is used due to its simplicity without the need of any
electronic phase-loop devices [170].

The passive synchronization is realized via light injection in a master-slave configuration
[171, 172]. Specifically, the master pulses (from EDFL) are injected into the slave cavity
(YDFL), initiating a nonlinear interaction due to the cross-phase modulation. Consequently
the pulse generation in the slave cavity is affected by the co-propagating injected pulses.
This nonlinear coupling finally leads to the generation of synchronized pulses [173]. The
master-slave injection configuration is well-suited for the fiber-laser synchronization because
the cross-phase modulation effect is largely enhanced by the tight confinement of light in
a single mode fiber. Additionally, the two synchronized lasers are independent from each
other, thus eliminating the mutual perturbation.

In the experiment, when the two fiber lasers operate in free-running mode, their repetition
rates are manually tuned to be roughly the same (∆fr . 5 Hz) by precisely moving the fiber
collimator on a translational stage (YDFL in figure 8.3). Then, in the presence of light
injection, the slave laser can be mode-locked by carefully aligning the quarter- and half-
wave plates in the laser cavity thanks to the nonlinear polarization evolution. Eventually,
synchronized pulse trains are obtained as shown in figure 8.7. Practically the stability of
the synchronization can be improved by optimizing the polarization of the master injection
light. As a result, a cavity mismatch tolerance of 25 µm is obtained, which corresponds to

4Note that the repetition rate fr is inversely proportional to the effective cavity length Leff as fr = c/Leff,
where c is the speed of light in vacuum.
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Figure 8.7: Pulse trains from the synchronized fiber lasers with a repetition rate
of 17.6 MHz.

a repetition frequency tuning of 40 Hz. Such a large mismatch tolerance enables the stable
synchronization of two fiber lasers for several hours.

8.2.4 Timing jitter

To quantitatively evaluate the synchronization precision, the concept of timing jitter is used.
This quantity describes the temporal fluctuation between the two synchronous optical pulses.
The measurement of timing jitter is carried out with a widely-used method so-called optical
cross-correlation technique [174]. This technique is based on sum frequency generation
between the synchronous pulses. By scanning the relative time delay, a cross-correlation
trace is obtained as shown in figure 8.8(b). For the jitter measurement, the temporal delay
is adjusted to the point where the SFG intensity is at its half maximum. In this situation,
the intensity fluctuation has a linear relationship with the relative timing delay. Then the
SFG signal is recorded by a spectrum analyzer (SRS, SR760), which can be translated into
the time fluctuation (timing jitter).
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Figure 8.8: (a) Timing jitter power spectral density and the integrated timing
jitter in Fourier domain. (b) Cross-correlation trace of the synchronized lasers.

Specifically the RMS (Root Mean Square) timing jitter σRMS is given by [174]:

σRMS =

√

∫ f2

f1

[
S(f)

2πf0A0
]2df , (8.9)

where S(f) is the measured jitter spectral density, f0 is the cavity repetition rate and A0 is
the amplitude of the correlation trace.
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Figure 8.8(a) gives the power spectral density over the Fourier frequency from 1 Hz to
the Nyquist frequency of 100 kHz. It can be seen that the phase noise is mostly concentrated
at low frequency (below 100 Hz) due to the mechanical disturbance and thermal expansion.
The integrated timing jitter is inferred to be as low as 45 fs, which is negligible compared
to the pulse duration. Thus the timing jitter has no influence on the temporal distribution
of the signal photons within the pump pulse window.

Besides, the FWHM bandwidth of the cross-correlation trace τc is related with the timing
jitter τj as:

τc =
√

τ2s + τ2p + τ2j . (8.10)

Inserting τs = 5.6 ps, τp= 8.8 ps and τj=45 fs into the above equation, we can obtain τc=10.4
ps. As shown in figure 8.8(b) the measured cross-correlation bandwidth is 9 ps in agreement
with the calculated value.

8.3 Up-conversion system

As shown in figure 8.3, the synchronized pulses from the two fiber lasers are spatially mixed
into a single-mode fiber using a 1064/1557-nm wavelength division multiplexer in order to
achieve a good spatial overlap and beam quality. The combined beam is collimated to the
free space via a fiber collimator, and then focused into a 50 mm long bulk PPLN in the up-
conversion system. To improve the conversion efficiency, the quasi-phase matching needs to
be fulfilled. Additionally, the spectral filtering in the up-conversion counting system should
be concerned to reduce the background noise of the frequency up-convertor.

8.3.1 Phase matching

Various phase-matching techniques have been developed heretofore, such as angle tuning,
temperature tuning, and quasi-phase matching (QPM). Contrast to the others, QPM fulfills
the required momentum conservation by introducing a periodic modulation of nonlinear
medium properties instead of matching the phase velocities in the birefringent medium
[175]. Therefore, QPM has some strong advantages that explain its now widespread use.
For instance QPM has no constraints on finding wavelengths and beam orientation angles
to satisfy the phase matching, thus allowing to access the highest nonlinear coefficient.
Additionally QPM permits a long interaction distance without suffering from the spatial
walk-off.

QPM technique is also used in our experiment. The PPLN crystal is based on multiple
grating domains varying from 11.0 to 12.0 µm with a step of 0.2 µm. The ends of the PPLN
crystal are anti-reflection coated (R < 1%) for the three wavelengths involved in the sum
frequency generation process. To stabilize the operating temperature, the nonlinear crystal
is housed in an oven with a Peltier temperature controller. The temperature fluctuation is
less than 0.1 ◦C. In particular, the sum-frequency mixing of the input signal at 1040 nm
with the pump at 1557 nm is performed with a grating period of 11.0 µm at a temperature
of 130.4 ◦C.

8.3.2 Spectral filtering

An issue plaguing most implementations of single-photon up-conversion detectors is detri-
mental dark noise induced by the strong pump. The scattered pump photons within the
bandwidth of the phase-matching acceptance can be efficiently up-converted leading to the
“false” counts. In our experiment, the pump power for maximum conversion is about 50
mW, which corresponds to about 1018 photons per second. Hence even extremely weak
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scattering will induce noise count rates that can be prohibitively high for applications in
quantum state engineering or quantum communication.

There are two primary sources for these noises: spontaneous parametric down-conversion
(SPDC) and spontaneous Raman scattering (SRS) [176]. Specifically SPDC only produces
noise photons with energy lower than the pump while SRS produces both red- and blue-
shifted scattered photons as Stokes or anti-Stokes sidebands. The anti-Stokes shifted scatter-
ing is weaker than the Stokes scattering by a ratio given by the Boltzmann factor e−h∆ν/kT

owing to the thermal occupation of phonons [177]. Therefore choosing a longer pump wave-
length can effectively reduce the noise photons for an up-conversion detector [168].
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Figure 8.9: Background spec-
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out the signal injection. Inset:
the detailed background spectrum
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length.

For this reason, a long-wavelength-pumped technique is used in our experiment, where
the pump wavelength is 1557 nm and the signal wavelength is 1040 nm. Figure 8.9 presents
the pump-induced noise spectrum without the injection of signal light. Thanks to the long-
wavelength pumping, there is no observable peaks near the targeted SFG wavelength (∼
623 nm) as shown in the inset of figure 8.9. The pronounced peak at 780 nm is due to the
frequency doubling of the pump. The pump-induced parametric fluorescence is then filtered
out via a spectral filtering system based on a dispersive prism, a spatial filter system, and
a bandpass filter. The filtered beam is finally recorded by a Si-APD single-photon counting
module (SPCM, PerkinElmer) as shown in figure 8.3

8.4 Results and discussion

8.4.1 System efficiency and background noise

To emulate single-photon souce, the signal at 1040 nm is attenuated to single-photon level
about 0.4± 0.1 photons per pulse for the up-conversion. The temporal overlap between the
signal photons and the pump pulses is optimized by finely tuning the time delay (cf. figure
8.3). Eventually a maximum photon counting of 1.86 MHz is achieved at the pump power
of 59 mW as shown in figure 8.10, which indicates a photon detection efficiency (PDE) of
31%. Accordingly, the up-conversion efficiency is inferred to be 92% after taking into ac-
count the transmittance of the filtering system (49%) and the quantum efficiency (70%) of
the Si-APD SPCM. The conversion efficiency is slightly smaller than the theoretical value
(96%). This slight discrepancy may be due to the spatial mode mismatching of the focused
pump and signal beams in the PPLN crystal. Thanks to the long-wavelength pumping, the
corresponding background counts are reduced to 2.8 kHz. Taking into account the repetition
rate of 17.6 MHz, the noise probability per pulse is about 1.6× 10−4.
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Figure 8.10: Signal counts
recorded by the Si-APD SPCM
and noise equivalent power (NEP)
divided by the repetition rate f as
a function of the pump power.

The performance of an optical detector can be generally described by a figure of merit
so-called noise equivalent power (NEP) defined as:

NEP = hν
√

2RBC/η , (8.11)

where hν, RBC and η are the energy of the signal photon, the dark noise rate and the
detection efficiency, respectively. At the peak detection efficiency, the NEP is as low as
4.6×10−17 W/Hz1/2, corresponding to -133 dBm (power in a 1-Hz bandwidth). In quantum
cryptography, the sensitivity of the detection system for a single pulse is more significant
since the information is encoded into the individual photon pulse. The parameter NEP/fr is
thus used to evaluate the performance of the photon-counting systems by taking into account
the operation rate fr [177]. For our up-conversion detector, a NEP/fr of 2.6×10−24 W/Hz3/2

is obtained.
The compact fiber-laser synchronization system is not only suitable for the efficient

infrared single-photon detection, but can also benefit to applications such as infrared photon-
number-resolving detection and ultra-sensitive infrared imaging (both will be detailed in
Chapter 9).

8.4.2 Photon correlation
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In addition to the demonstration of efficient single-photon detection, we also investigate
the intensity cross-correlation between the unconverted photons and up-converted photons.
In order to separate the unconverted infrared light at 1064 nm and visible SFG photons at
622 nm, a dispersive prism is used at the output of the PPLN crystal. Then the spatially
separated beams are recorded by two power-meters for an input infrared signal set at few
µW. Figure 8.11 shows the SFG light power and the unconverted infrared signal power as
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a function of the pump power. An anti-correlation between the two channels can be clearly
seen. When the pump power is about 70 mW, the SFG signal power increases to the peak
point while the infrared unconverted signal power accordingly drops to the valley position.
The corresponding maximum conversion efficiency can be inferred from the depletion of the
infrared signal, giving a value of 80.5%.
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Figure 8.12: (a) Coincidence measurement between the SFG photons and the un-
converted infrared photons as a function of the conversion efficiency. (b) Intensity
cross-correlation of the SFG photons and unconverted infrared photons at different
conversion efficiencies.

To measure the photon-number correlation during the sum frequency generation, the
incident infrared signal is attenuated to few-photon level (∼ 10 photons/pulse). The power-
meters are then replaced by two single-photon detectors with quantum efficiencies of 6%
and 70% at 1040 nm and 622 nm, respectively. The outputs of detectors are connected
to a coincidence counters. The coincident window is set to be 2 ns, which is large enough
to include all the effective photon counts within the pump pulse envelope. The recorded
coincidence counts are shown in figure 8.12(a) as a function of the conversion efficiency. The
maximum coincidence counts is found at a conversion efficiency of 43%, i.e. around half of
the maximum conversion efficiency ηmax. The fitted line is given by equation (2.25):

C ∝ η(ηmax − η) , (8.12)

with the fitting variable 0 6 η 6 ηmax.
Additionally the coincidence rateNc can be used to calculate the intensity cross-correlation

function g(2)(0) after a proper normalization [178] given by:

g(2)(0) =
Nc

N1N3RT
, (8.13)

where N1,3 are the counting rates on each detector, R is the repetition period and T is
the acquisition time. According to the equation (2.26), g(2)(0) is equal to 1 independent
of conversion efficiency when the input signal is a coherent state. This prediction is well
verified from the experimental result as shown in figure 8.12(b).

The result can be understood in the following way. As discussed in Chapter 2, the up-
conversion process can be regarded as a special beam-splitter (one-color input and two-color
output) with a transmittance depending on the conversion efficiency [41]. Therefore, the
cross-correlation intensity measurement for the two outputs can be treated as the Hanbury
Brown and Twiss (HBT) measurement with a variable beam-splitter. It is well known that
such g(2)(0) measurement is independent of the losses and beam-splitting ratio (cf. Appendix
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B). As a result, what we measure in the experiment is actually g(2)(0) of the input coherent
state, which equals to 1.

The beam-splitter feature of the up-conversion process indicates that there is no noisy
photon introduced, thus maintaining the second-order intensity correlation. It is this fea-
ture that makes the up-convertor potentially useful as a quantum interface in a quantum
communication networks [40].

8.5 Conclusion

In this Chapter, we have demonstrated the implementation of a coincident frequency up-
conversion system with a synchronous pumping. A peak conversion efficiency of 92% has
been achieved via spectro-temporal engineering of the signal and pump pulses. Due to the
pulsed excitation together with the long-wave-pump technique, the dark noise probability
per pulse of the up-conversion system was reduced to 1.6× 10−4. Based on the coincidence
frequency conversion system, the extension to infrared photon-number-resolving detection
and ultra-sensitive infrared imaging will be discussed in the next chapter.



9 | Applications of Frequency Conversion Sys-

tem

Besides of the single-photon infrared detection presented in Chapter 8, the developed co-
incidence frequency up-conversion system can be easily adapted to other applications. For
instance, infrared photon-number-resolving detection is readily implemented by replacing the
Si-APD with a silicon multipixel photon counter (Si-MPPC) in the up-conversion system.
With a silicon electron multiplying charged coupled devices (EMCCD), single-photon-level
infrared up-conversion imaging can also be realized. Finally, a coincidence frequency down-
conversion system can be similarly constructed based on the synchronized fiber lasers. All
the details about these three applications will be given in this chapter.
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9.1 Infrared photon-number-resolving detection

9.1.1 Introduction

Photon-number-resolving (PNR) detectors play an important role in many applications, in-
cluding low-light-level detection, measurement of nonclassical photon statistics [179] and
quantum states engineering with multi-photon subtraction [112]. Additionally, the photon-
number-resolving functionality is critical for many protocols in quantum information pro-
cessing and quantum computation, such as the implementation of quantum repeaters [180]
and linear-optics quantum computing [28].

PNR detectors working in the infrared can be efficiently realized with transistor edge sen-
sors (TES) and superconducting parallel nanowires detectors [57]. However the requirement
of cryogenic cooling makes them expensive and prevents them from working as plug-and-
play systems. Compared to those detectors, a silicon multipixel photon counter (Si-MPPC)
can operate at temperatures achievable by thermoelectric cooling and also demonstrate a
high efficiency and low dark noise [181]. Therefore, it is interesting to develop a system
based on Si-MPPC for infrared PNR detection. This idea can be realized via the frequency
convertor to bridge the gap between the operating wavelength of Si-MPPC (visible light)
and the wavelength of interest (infrared light).

In this section, we will modify the frequency up-conversion system presented in the previ-
ous chapter to implement a frequency up-conversion PNR detector targeting at wavelengths
around 1 µm [150].

9.1.2 Experimental setup

The up-conversion system implemented in Chapter 8 can be modified for infrared PNR
detection by replacing the Si-APD detector with a Si-MPPC. For the sake of simplicity,
here we only give details about the modified part.

� Synchronized fiber laser system

Figure 9.1: Experimental setup for the photon-number-resolved detection at 1.04
µm. Cir, circulator; Col, collimator; BS, beam slitter; DM, dichroic mirror; IF,
interference filter; GP, Glan prism; Atten, attenuator; Si-MPPC, silicon multipixel
photon counter; SPCM, single-photon counting module.

Figure 9.1 gives the corresponding experimental configuration. Limited by the reset time
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of Si-MPPC (8 MHz), the repetition frequency of the synchronized fiber lasers is set to be 3.6
MHz in this experiment. To meet the requirement of the phase-matching bandwidth of the
nonlinear crystal, the output of the YDFL is filtered by a FBG with a bandwidth (FWHM)
of 0.3 nm, which is then used as the signal source. The pulse duration is estimated to be
about 6 ps from the auto-correlation measurement. Instead of using a FBG, the spectro-
temporal control of the pump source is realized by inserting a 3-nm fiber band-pass filter
into the ring cavity of a EDFL. The resulting bandwidth of the output spectrum is about
0.2 nm with a pulse duration of 23 ps.

� Up-conversion PNR detection

The signal and pump beams are then combined via a dichroic mirror before being injected
into the crystal. The quasi-phase-matching condition for the involved optical fields is sat-
isfied by choosing a 11-µm grating period of PPLN crystal and stabilizing the operation
temperature at 100.4 ◦C.

The up-converted light is steered through spectral filtering with a transmittance ηF =
48%. To compare the detection performances of the PNR detector and the on/off detector,
the filtered light is spatially split by a beam-splitter with a reflectance ηBS = 35%. The
transmitted portion is detected by a conventional Si-APD-based single-photon counting
module (SPCM) while the reflected part is recorded by a Si-MPPC pigtailed with a mul-
timode fiber. The Si-MPPC (Hamamatsu Photonics S10362-11-100U) is made of 10 × 10
APD pixels on an effective area of 1 mm2 with a detection efficiency ηD = 16% at 622 nm.
When the light illuminates the different APD pixels, the Si-MPPC will output a summa-
tion voltage of all the pixels. The amplitude of the summed voltage is proportional to the
incident photon number [182]. To reduce the effect of thermal noise, the detector is Peltier
cooled to -35 ◦C.

9.1.3 Results and discussion

� Photon-number resolving

The waveforms of the output voltage from Si-MPPC are accumulated to give the histogram
of the corresponding voltage amplitudes. Figure 9.2 presents the typical histogram of peak
voltage, which is fitted by the sum of a series of Gaussian functions. The integration of
each Gaussian function is proportional to the event number for different photon-number
detection. Hence the area under each Gaussian peak normalized with the total area gives
corresponding photon-number distribution of the incident light as shown in the inset of
figure 9.2. Since the input light is a coherent state, the up-converted photon statistics
should follow the Poissonian distribution. The likelihood between the experimental data
and expected Poissonian statistics is optimized to give a detected photon number per pulse
of 3.19± 0.01. Due to the pulsed pumping and long-wavelength pump scheme, a low noise
probability per pulse of 2×10−4 is obtained in the experiment, which is close to the intrinsic
dark noise of the detector itself.

� Dynamic detection range

Figure 9.2(b) gives the detected photon number as a function of the incident photon number
for SPCM and Si-MPPC, respectively. Since SPCM cannot discriminate more than one
photon per shot, a saturation in the case of large incident photon numbers is observed
due to the increase of multi-photon components. In contrast, the Si-MPPC exhibits a linear
dependance with the incident photon numbers owing to the PNR ability. The total detection
efficiency ηA is inferred to be 1.3% from the slope of the fitted straight line. After correcting
the reflectance of the beam-splitter, the actual detection efficiency of the up-conversion PND
detector is 3.7%. Consequently, the conversion efficiency ηC is estimated to be 47.9%. The
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Figure 9.2: (a) Output voltage amplitude histogram for the up-converted pho-
tons. The photon number distribution is shown in the inset. (b) Detected photon
numbers by SPCM (dots) and Si-MPPC (squares) as a function of incident photon
numbers. Solid curves are the fits to the data.

limiting factor of the conversion efficiency may be the temporal mismatching due to the
deformed profile of signal pulses from a all-normal-dispersion YDFL operating at a low
repetition rate [183].

� An example

Figure 9.3: Output voltage amplitude histograms of frequency up-conversion
PNRD with one arm of the interferometer blocked (a) and with constructive in-
terference (b). The corresponding photon number distributions are shown in the
insets.

As shown in figure 9.1 a Michelson interferometer is inserted after the signal source
for modulating the signal intensity. In the case of one arm blocked the photon number is
measured to be 1.21 as shown in figure 9.3(a) while in the case of constructive interference,
a photon number of 4.84 is obtained. The ratio of the photon numbers is found to be 1/4
in agreement with the theoretical expectation. The example here indicates the competence
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of such up-conversion PNR detector for correctly identifying the photon numbers.
We now turn to another application of the frequency up-conversion system.

9.2 Few-photon-level infrared imaging

9.2.1 Introduction

Ultra-sensitive infrared imaging is of great importance in various applications such as astron-
omy, biology, medical diagnosis and two-dimensional (2D) infrared spectroscopy [160, 184].
The integration of InGaAs avalanche photodiode (APD) detectors with CMOS technology
makes it possible to realize a massively parallel photon counting image sensor [185]. How-
ever, the sensitivity of such imaging detector is largely limited by its severe dark current,
preventing its use for wider applications [186]. Compared to infrared imaging detectors,
silicon charged coupled devices (CCDs) operating in the visible regime exhibit a superior
performance for high-efficiency and low-noise imaging. The current fabrication technology
enables to integrate active pixels as many as 1024 × 1024, making it suitable for full 2D
imaging. Moreover, single-photon-level imaging has seen important developments, particu-
larly the introduction of the electron multiplying CCDs (EMCCDs). Therefore, it would be
desirable if we can use the multiplexing capability and high sensitivity of EMCCDs for ultra-
sensitive infrared imaging. For this end, frequency transduction from the infrared light to
visible regime is required to bridge the spectral gap. Thanks to the frequency up-conversion
technique, spectral translation in single-photon level has been accomplished with high effi-
ciency and low noise [147, 168], which provides an effective solution for the achievement of
ultra-sensitive infrared imaging [156, 157, 158, 187].

9.2.2 Theoretical model

� Simple consideration

The conceptual scheme for the infrared frequency up-conversion imaging is depicted in figure
9.4. The experimental configuration is based on a 4-f imaging system consisting of an
object plane, a Fourier plane, an image plane and two lenses (with focal lengths f1 and f2,
respectively). In the following, we will present a simple description about an ideal imaging
conversion.

Figure 9.4: 4-f system configuration for infrared imaging by frequency up-
conversion. The Fourier plane is centered in a nonlinear crystal where it interacts
with a strong pump field. Due to the sum frequency generation, an up-converted
field is generated at the image plane.

First, let us assume that the optical field of the image in the image plane is given by
E1(x, y) where x,y represent two-dimensional coordinates. After passing through the first
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lens in the 4-f imaging system, the diffracted image at the Fourier plane is simply defined
by the Fourier transformation of the object image:

ET (ξ, η) ∝
∫∫

E1(x, y) exp(−ik1
xξ + yη

f1
)dxdy , (9.1)

where k1 = 2π/λ1 denotes the wave number of the input field.
Then the generated diffracted image at the Fourier plane is transformed by the second

lens, resulting in an image at the image plane as

E2(x
′, y′) ∝

∫∫

ET (ξ, η) exp(−ik2
x′ξ + y′η

f2
)dξdη , (9.2)

where k2 = 2π/λ2 denotes the wave number of the converted field.
With equation (9.1), the input image can be expressed as

E1(x, y) ∝
∫∫

ET (ξ, η) exp(ik1
xξ + yη

f1
)dξdη . (9.3)

Comparing equations (9.2) and (9.3), we can obtain the following relationship between the
input field and the up-converted field:

E2(x, y) ∝ E1(−
λ1f1
λ2f2

x,−λ1f1
λ2f2

y) . (9.4)

It indicates that the up-converted image is conjugate to the input one with a scaling factor
−λ2f2
λ1f1

� Filtering effect

Till so far, we only consider a perfect frequency conversion without taking into account
the spatial modulation due to the Gaussian pump field. According to equation (8.7), the
conversion efficiency is dependent on the spatial distribution of the pump intensity

η(x, y) = sin2(
π

2

√
P ) , (9.5)

where P is the spatial intensity distribution given by

P = e−2 x2+y2

w2 . (9.6)

Therefore the up-converted field can be rewritten with a convolution product [156]

E2(x, y) ∝ E1(−
λ1f1
λ2f2

x,−λ1f1
λ2f2

y)⊗ (
πw2

λ22f
2
2

e
− x2+y2

(
λ2f2
πw

)2 ) , (9.7)

demonstrating a spatial filtering due to the Gaussian pump field. In the limit of infinitely
large beam waist w, the normalized convolution function is approaching to a delta-function.
The effective transformation is then reduced to a perfect up-converted replica of the input
image with a scaling factor of −λ2f2

λ1f1
as shown in (9.4).

In the analysis of optical imaging, the point spread function P (x, y, x0, y0) is frequently
used to describe the impulsed response of an optical system to a delta function input located
at the coordinates (x0, y0). The point spread function of the up-conversion imaging system
is thus given by

P (x, y, x0, y0) ∝ e
− (x−x0)2+(y−y0)2

(
λ2f2
πw

)2 . (9.8)
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It can be seen that the waist size of the pump beam determines the shape of the point
spread function, thus defining the resolution of the imaging process. Increasing the size of
Gaussian pump beam can effectively improve the imaging resolution. However it will lead
to the reduction of the pump intensity, thus decreasing the conversion efficiency accordingly.

Note that the limited size of the nonlinear crystal (in our case the thickness is 0.5 mm)
acts as an iris, which will also impose a filtering effect.

9.2.3 Experimental realization

� Synchronized fiber lasers

The experimental setup mainly consists of two parts: a synchronized fiber laser system and
an up-conversion imaging system as shown in figure 9.5. In the synchronized laser system,
two independent fibers are arranged in a master-slave configuration. The master is a mode-
locked ytterbium-doped fiber laser (YDFL) with a repetition frequency of 19.1 MHz. The
output from YDFL is spectrally filtered by a 0.3-nm bandwidth fiber Bragg grating (FBG) to
approach the acceptance bandwidth of the PPLN crystal. The corresponding pulse duration
is inferred to be 6 ps from the auto-correlation measurement. The transmitted portion from
the FBG is then injected into an erbium-doped fiber laser (EDFL), which leads to the
realization of passive synchronization between the two fiber lasers.

Figure 9.5: Experimental setup for infrared imaging by coincidence frequency
upconversion. YDFL, ytterbium-doped fiber laser; YDFA, ytterbium-doped fiber
amplifier; EDFL, erbium-doped fiber laser; EDFA, erbium-doped fiber amplifier;
Cir, circulator; Col, collimator; Atten, attenuator; DM, dichroic mirror; GP, Glan
prism; PPLN, periodically poled lithium niobate crystal; CCD, charged coupled
device. Transmission masks were shown in the bottom-right corner.

Besides of the temporal synchronization, efficient frequency conversion also requires an
appropriate control of the spectro-temporal property of the pulses. In the laser cavity of the
EDFL, a 3-nm bandwidth band-pass filter is inserted to obtain a narrow output spectrum.
The output of the EDFL is then amplified by an EDFA as the pump source, which has a
maximum power of 40.0 mW. The corresponding spectrum is centered at 1549 nm with a
bandwidth of 0.7 nm. The pulse duration is measured to be 16 ps, which is longer than that
of the signal source. Therefore the signal photons are tightly enwrapped within the envelope
of the pump field.

The synchronized pump and signal beams are then spatially expanded into free space
after fiber collimators. The (e−2 intensity) beam radii of the signal and pump are measured
to be 1.7 and 1.0 mm. The larger beam waist of the signal source leads to a tighter focus
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after a lens so that the image at the Fourier plane can be covered by the focused pump
beam.

� Up-conversion imaging system

The signal beam then illuminates a transmission mask carved with letters “E’, “C”, “N”, and
“U” to form the object images, which are presented in the bottom-right corner in figure
9.5. Via a dichroic mirror the object image and pump beam are spatially combined, and
then sent into the up-conversion imaging system. The imaging system is arranged in a 4-f
imaging configuration using lens L1 (f1 = 250 mm) and L2 (f2 = 300 mm). The mask is
placed at the object plane while a CCD detector is located at the image plane. The center
of the PPLN crystal is aligned with the Fourier plane.

To facilitate the type-I quasi-phase matching, a Glan prism is inserted after lens L1
to enforce the proper polarization. A grating period of 11.0 µm is chosen to perform the
nonlinear mixing between the object beam at 1040 nm and pump beam at 1549 nm. The
operation temperature of the PPLN crystal is stabilized at 104.3 ◦C. As a result, an up-
converted image is generated at 622 nm, and recorded by a CCD camera. To reduce the
background noise, a set of filtering is used, including a dispersion prism and a band-pass
interferential filter.

9.2.4 Results and discussion

� Conversion efficiency

To evaluate the conversion efficiency of the up-conversion imaging system, it is more con-
venient to use a strong signal light that can been precisely measured with a power-meter.
The power detection efficiencies are measured to 41%, 36%, 45%, and 41% for the character
“E”, “C”, “N”, and “U”, respectively. After correction of 20% propagation loss due to the
filtering system, the conversion efficiencies for the corresponding character are inferred to
be 31%, 27%, 34%, and 31%, respectively. The variation of the conversion efficiency in the
up-conversion imaging process is due to the different Fraunhofer diffraction patterns at the
Fourier plane as shown in figures 9.7(a)-(d). Only the low spatial frequency components at
the center of the focused pump can be efficiently up-converted. Indeed the focused pump
beam acts as a Gaussian spatial filter, which results in filtered Fourier transformation pat-
terns as shown in figures 9.7(e)-(h). Without the mask, the conversion efficiency could reach
57% because the signal beam with a Gaussian profile is more focused at the center of the
Fourier plane. Figure 9.6 gives the conversion efficiency as a function of the pump power.

Figure 9.6: Conversion efficiency
as a function of the pump power
without inserting the mask.

� Up-converted images

Figures 9.7(m)-(p) show the up-converted images from which the four characters can be
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recognized in spite of blurred edges. As discussed in the theoretical section, the deformation
of the image is due to the intrinsic point spread function (PSF). For the coherent imaging in
our experiment, the up-converted field at the image plane can be expressed as a convolution
between a scaled copy of the object field, and the PSF of the imaging system. The main
part of PSF is given by

PSF ∝ e
− x2+y2

(
λ2f2
πw

)2 , (9.9)

where λ2 is the wavelength of the up-converted field, and w is the radius of the pump beam
at the Fourier plane.

The theoretically simulated up-converted images are presented in figures 9.7(i)-(l) using
the realistic parameters in the experiment. The smearing of the images due to the effect of
PSF is indeed observed, in agreement with the experimental results.

Figure 9.7: Distribution of electric field of the signal beams at the Fourier plane
with (a-d) and without (e-h) the filtering effect due to the Gaussian pump beam.
Theoretical simulation of upconverted images (i-l) and experimental results (m-p).

� Few-photon-level imaging

In our coincidence frequency up-conversion system, the background noise due to the para-
metric florescence is effectively reduced thanks to the pulsed excitation of the pump. Ad-
ditionally, the long-wave-pump technique helps to further reduce the dark noise to 1.5 kHz,
indicating a noise probability per pulse of 8× 10−5. Such a low noise enables to realize an
ultra-sensitive imaging without suffering from the smearing effect due to background counts.



156 9.2. FEW-PHOTON-LEVEL INFRARED IMAGING

To investigate the sensitivity limit of the up-conversion imaging system, the object beam
is attenuated to the few-photon level. Specifically, the average photon numbers per pulse for
“E”, “C”, “N”, and “U” are estimated to be 1.9, 2.0, 2.4, and 2.6, respectively. These photon
numbers are optimized according to the resolution of the corresponding up-converted images.
To capture the visible up-converted images, we use an EMCCD (Andor iXon3 897) capable
for single-photon imaging. The EMCCD is operated at -85 ◦C via a thermal-electrical
cooling in order to lower the dark noise. The EMCCD is a silicon-based semiconductor chip
containing 512 × 512 pixels. Each pixel has a size of 16 µm × 16 µm, which is suitable for
the high spatial resolution imaging.

Figure 9.8: Measured upconverted images with few-photon-level object beam
light.

To recover the up-converted images at the single-photon level, it is necessary to accu-
mulate enough photons. For object beams “E”, “C”, “N”, “U” we set the integration time to
be 30 s, 30 s, 35 s, 30 s, and the accumulation number of 50, 50, 50, 30, respectively. The
obtained images are shown in figure 9.8, which are similar to the ones obtained with strong
signal light illumination.

The formation of the up-converted image can be regarded as an imaging process through
a small soft aperture with an effective size defined by the the pump profile according to
equation (9.9). The enhancement of the imaging resolution requires the efficient conversion
of spatial components at the Fourier plane as much as possible. Indeed the loss of the high-
frequency components will result in the blurring of the converted image. To this end, we
can use either a larger pump size at the beam waist or a tighter focusing of the infrared
object image. However the increasing of the pump beam size will lead to the reduction of the
intensity (assuming a constant power), thus lowering the conversion efficiency. Additionally,
the focusing of the object image is ultimately limited by the angular acceptance of the
nonlinear crystal. The problem can be solved either by boosting the pump power or resorting
to nonlinear crystals with a larger nonlinear coefficient and a wider acceptance angle. In
addition to the improvement of the up-conversion imaging system, post-processing of the up-
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converted images may provide another solution for obtaining a sharper image. For instance,
one can choose a suitable PSF to deconvolve the up-converted image since the PSF is fixed
for a given up-conversion system.

Now we turn to another possible application in the next section.

9.3 Generation of mid-infrared light

9.3.1 Introduction

� Motivation

Mid-infrared light plays an important role in many applications such as biomolecular sensing,
trace-gas detection, pollution monitoring, and mid-infrared spectroscopy. Typically, coher-
ent radiation in the mid-infrared regime can be generated using quantum cascade lasers
[188] or optical parametric oscillators [189]. Recently nonclassical lights, e.g. squeezed
states and entangled states in the mid-infrared spectral region, are increasingly demanded
due to their great potential in quantum-enhanced metrology and free-space quantum com-
munication. However squeezed states are currently generated in the near-infrared spectral
regime [36, 190, 191]. Via the coherent up-conversion technique, Ref. [192] demonstrated a
quantum spectral translation of squeezed vacuum states from 1550 nm to 532 nm. Follow-
ing the same idea, one can obtain the squeezed vacuum in the longer wavelength with the
recently proposed coherent down-conversion [45, 46].

Quantum frequency translation can be efficiently realized by two optical nonlinear pro-
cesses. The first one is based on the four-wave mixing effect via Bragg scattering in photonic
crystal fibers [51]. In this case, the amount of frequency shift is limited by the low-energy
phonon level transition (e.g within the visible regime). In contrast, the second way based
on difference frequency generation (DFG) can provide a much wider shift band (e.g from
visible to telecom wavelengths) [50, 47, 49]. The DFG-based frequency down-conversion is
thus used in our experiment.

� Basic theory

Although the coherent up-conversion was proposed [39] and implemented [147] long time ago,
its counterpart, i.e. coherent down-conversion, was brought up very recently [45, 46] because
of the common belief that the spontaneous down-conversion would inevitably introduce
noisy photons. Actually, noise-free down-conversion can be realized in the gain saturation
regime where the pump field is provided by the optical mode with lower photon energy. For
details about the theoretical description of the coherent down-conversion, readers can refer
to Chapter 2. Here we only give some important results used for explaining the experimental
results presented afterwards.

Let us consider the simplest case where all the involved fields are single-mode, e.g. input
pump and signal fields are at frequencies ωp and ωs, respectively. The DFG interaction in
a nonlinear χ(2) crystal will result in a converted field at frequency ωc, fulfilling the energy
conservation condition: ωs=ωp+ωc. For perfect phase-matching and non-depleted pump,
the corresponding interaction Hamiltonian reads:

Ĥ = i~gEp(âsâ
†
c − h.c.) , (9.10)

where â and â† denote the annihilation and creation operators; g is the nonlinear coupling
constant; Ep is the pump electric filed. After a given interaction length L, the down-
converted mode is given by:

âc(L) = sin(|gEp|L)âs(0) + cos(|gEp|L)âc(0) . (9.11)
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From the above equation, we can see that a complete frequency conversion indeed occurs
when |gEp|L = π/2. Thanks to the operation in the gain saturation regime where the pump
field at ωp is much stronger than the signal field at ωs (ωs> ωp), the noise photons from the
spontaneous parametric down-conversion are effectively suppressed [45, 46].

9.3.2 Experimental setup

The experimental setup is illustrated in figure 9.9. It is based on three parts: synchro-
nized fiber lasers, frequency down-conversion and mid-infrared detection. The output of an
ytterbium-doped fiber (YDFL) is used as the signal source at 1.04 µm with a spectral band-
width of 0.3 nm and a pulse duration of 6 ps. The pump source at 1.55 µm is provided by an
erbium-doped fiber laser (EDFL) with a spectral bandwidth of 0.5 nm and a pulse duration
of 39.5 ps. Both two fiber lasers operate at 19.1 MHz, which are then passively synchronized
in a master-slave configuration. For details about the synchronous laser system, readers can
refer to Chapter 8.

Figure 9.9: Experimental setup for generating mid-infrared photon source by coin-
cidence frequency downconversion. FBG, fiber Bragg grating; Cir, circulator; Col,
collimator; Atten, attenuator; L1,2, lens; DM, dichroic mirror; GP, Glan prism;
PPLN, periodically poled lithium niobate crystal; FM, flipping mirror; MO, mi-
croscope objective; MF, multimode fiber; F, filter; SPCM, single photon counting
module.

The pump and signal beams are spatially overlapped by a dichroic mirror. The mixed
beams then pass through a Glan prism to obtain a proper linear polarization. After an
achromatic doublet lens (f = 200 mm), the mixed beams are focused at the center of a
50-mm MgO:PPLN crystal. The ends of the PPLN crystal are fabricated with an anti-
reflection coating at all three involved wavelengths. To satisfy the phase matching between
the involved optical fields, the grating period of the nonlinear crystal is chosen to be 30.49
µm with an optimal operation temperature of 23.5 ◦C.

To calibrate the conversion efficiency during the down-conversion process, we measure
the depletion of the infrared signal at 1.04 µm by a Si-APD or a power-meter. This trick
is necessary especially in the single-photon level due the absence of efficient single-photon
detectors in the mid-infrared regime. Moreover, the indirect calibration of conversion effi-
ciency has a unique advantage that it does not require a loss calibration. Experimentally,
the beams out of the PPLN crystal are sent through a dichroic mirror for removing the
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pump light. To suppress the parametric fluorescence, a long-pass filter cutting at 1 µm is
inserted before the signal light being coupled into a multimode fiber. Then the unconverted
signal at 1.04 µm is detected by a silicon single-photon counting module (Si-SPCM). Note
that no effort is dedicated to filter out the mid-infrared light, since the Si-SPCM is almost
blind in this spectral regime.

9.3.3 Results and discussion

� Conversion efficiency

The signal source at 1.04 µm is attenuated to the single-photon level. In this case, the power
of the signal field is much smaller than that of the pump field, thus satisfying the condition
for the coherent down-conversion. The down-conversion process can be confirmed by the
decrease of the unconverted signal photons recorded with the Si-SPCM.

Table 9.1 shows a list of notations for the count rates in the presence or absence of signal
and pump pulses.

Table 9.1: List of notations for the count rates in the presence (✓) or absence
(✗) of signal and pump pulses.

N1 N2 N3 N4

Pump ✓ ✗ ✓ ✗

Signal ✗ ✓ ✓ ✗

N1 is the background noise of the down-converter including the pump-induced noise, ambient
noise and detector dark noise while N4 only corresponds to the last two terms. Therefore,
the down-conversion efficiency η is given by

η = 1− N3 −N1

N2 −N4
. (9.12)

Note that the conversion efficiency can be precisely inferred without the need to correct the
losses due to the filtering system and the SPCM.

Figure 9.10 shows the down-conversion efficiency as a function of the pump power. The
fitting to the experimental data is given by the function

η = ηm sin2(
π

2

√

P

Pm
) ,

where ηm is the expected maximum conversion efficiency and Pm is the required pump
power. In the experiment, a maximum conversion efficiency of 65% is obtained at 80 mW,
which can be further increased by boosting the pump power, as indicated by the solid fitted
line.

Figure 9.10: Conversion effi-
ciency as a function of the pump
power. Inset: conversion efficiency
dependent on the working temper-
ature of the MgO:PPLN.
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� Mid-infrared spectrum

To directly witness the generation of the mid-infrared light, the down-converted idler light is
reflected by a flipping mirror (cf. figure 9.9) into a monochromator (iHR550, HORIBA Jobin
Yvon) to record its spectrum. The measured spectrum is centered at 3.16 µm as expected
with a FWHM bandwidth of 3.7 nm. Without the signal light, there is no observable
peaks around the target DFG wavelength in the background spectrum. Indeed the spectral
separation between the pump and target DFG wavelength is about 3300 cm−1, which is
much larger than the Stokes Raman band of the MgO:PPLN crystal(≈ 1000 cm−1) [193].

Figure 9.11: Spectrum of mid-
infrared photon source with back-
ground correction.

Since the signal pulse duration (6 ps) is much smaller than the one of the pump source
(39.5 ps), the pulse duration of the generated mid-infrared light is estimated to be around 6
ps. The product of the temporal and spectral bandwidth is thus calculated to be 0.67, which
is slightly larger than the Fourier transform limit of 0.44 in the assumption of a Gaussian
profile. Therefore, the mid-infrared pulse is inferred to be chirped, which may be due to the
phase superposition by the chirped pump pulse during the nonlinear mixing process.

9.4 Conclusion

In this chapter we have demonstrated three applications based on the coincidence frequency
conversion system. The first one was infrared PNR detection. The infrared light was spec-
trally converted into the visible regime where a high-performance Si-MPPC was used. The
detection efficiency of the up-conversion PNR detector was measured to 3.7% with a noise
probability as low as 2 × 10−5. The second application was ultra-sensitive infrared imag-
ing. Accordingly a Si-EMCCD was utilized for the single-photon-level imaging for the up-
converted visible fields. Such imaging system performed a full 2D image without the need
of time-consuming scanning devices, thus gaining simplicity and speed. The last application
was a proof-of-principle demonstration of coherent down-converter. The near infrared signal
at 1.04 µm was coherently converted to the mid-infrared regime with a peak conversion
efficiency of 65%.

It is worth noting that both the up-converter and down-converter can maintain the
quantum properties of the input states. Therefore, the demonstrated up-conversion PNR
detection and imaging can be used to directly demonstrate the nonclassicality [194] or in-
tensity correlation [195]. Additionally the coherent frequency conversion of quantum states
provides a bridge between different wavelengths within a sequence of downstream applica-
tions and also allows to prepare quantum states at currently inaccessible wavelengths [192].
Moreover the combination of the coherent up-converter and down-converter paves the way
to build a quantum frequency translator as mentioned in Section 2.3.4, which enables the
fine tuning of the central frequency of the input quantum state.
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The works demonstrated in this thesis focused on quantum state engineering and state
manipulation. They aimed at developing some useful resources and tools in the emerging
optical hybrid approach of quantum information processing. The presented results relied on
two essential nonlinear processes: frequency down-conversion and frequency up-conversion.

The frequency down-conversion was experimentally implemented with optical parametric
oscillators (OPOs) in the continuous-wave regime. They provided an efficient way to prepare
non-classical light, for instance single-mode or two-mode squeezed vacuum states depending
on the phase-matching condition of the nonlinear crystal [74]. Thanks to the OPO cavity,
a well-defined and controllable spatio-temporal mode was obtained for the traveling optical
field. This feature not only facilitates the mode matching with local oscillator in homodyne
detection for state characterization, but also permits the generated states to be subsequently
used in protocols.

Specifically, we have generated with high fidelity a single-photon state and an odd
Schrödinger cat state based on the type-II and type-I OPOs, respectively. In contrast
to the initial squeezed state, which was a Gaussian state, these prepared states exhibited
strongly negative Wigner functions [38, 74]. It is worth mentioning that direct observation of
non-Gaussian states with negative Wigner functions is practically challenging, and typically
requires a high efficiency throughout the system including preparation, propagation and
measurement. A directly measured negativity of the Wigner function can thus be regarded
as the signature of the high “quality” of the prepared states. This quantum feature not only
constitutes the requisite resource to perform certain quantum computation tasks, but can
also benefit other fields like quantum communication and metrology.

The transformation from Gaussian states to non-Gaussian states requires over-quadratic
nonlinearity, and it cannot be accomplished only with Gaussian operations. In our case,
the nonlinearity was induced by photon-counting-based measurements. Such conditional
preparation technique has been used in all the experiments for quantum state engineering.
Specifically, the photon counting was carried out by superconducting nanowire single-photon
detectors (SNSPDs), which demonstrated high performances at 1064 nm, with a high de-
tection efficiency (> 80%) and a very low dark count rate (< 10 Hz). Based on the type-II
OPO, the remarkable detection capability enabled to prepare heralded single-photon state
with an unprecedented rate above MHz and a very high fidelity about 76% (without correc-
tion). The single-photon source would benefit many down-stream applications in quantum
communication, such as quantum key distribution or heralded noiseless amplification of
quantum states.

The high-performance SNSPDs have also led to generating the heralded two-photon Fock
state with a preparation rate as high as 150 Hz. The achieved fidelity reached 58% (without
correction), which is the highest value to date. Furthermore, a two-photon state engineering
has been presented based on the mode mixing between the down-converted orthogonally-
polarized modes, allowing to access an arbitrary superposition of the form c0|0〉+c2|2〉. With
the synthesis of the coefficients, a squeezed even cat state of a large size |α|2 = 3 has been
obtained with a fidelity of 67% (after 15% loss correction). To the best of our knowledge, the
state demonstrated here already represents the largest cat state and highest fidelity reported
so far. Additionally, we have also investigated how the generated states were affected by
the time separation of the conditional detections, leading to a deeper understanding of the
temporal modes in which the states are generated.
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For the type-I OPO side, a π-phase gate was applied on the previously obtained odd cat
state to flip the superposition sign between two coherent states, resulting in the even cat
state of a size |α|2 = 1 with a fidelity as high as 80% (without correction). Moreover, the cat
size was further enlarged via a time-separated two-photon subtraction from the continuous-
wave squeezed light. As a result, a large-size cat state (|α|2 = 2.0) was obtained with a
fidelity of 60% (without correction).

The prepared Fock states and Schrödinger cat states were then combined to generate
for the first time hybrid entanglement between particle-like and wave-like optical qubits
[76]. This novel resource would permit via teleportation the mapping between two remote
quantum processors based on different encodings. Interestingly, we have also demonstrated
hybrid qutrit entanglement with two-photon conditioning, enabling to extend the hybrid
quantum information processing to higher dimensions. Furthermore, squeezing-induced
micro-macro entangled states have been investigated by implementing additional local sub-
tractions. Specifically, with a larger squeezing and higher-photon-number local subtraction,
the diagonal states represented in the rotated basis exhibited an increasing phase-space
distance, thus indicating the growth of the macroscopicity in phase space.

All the experiments summarized so far were performed with OPOs exploiting down-
conversion. In this thesis, its complementary process, quantum frequency up-conversion,
has also been investigated theoretically and experimentally. The coherent frequency up-
converter in principle maintains the quantum properties of the input state. Therefore, it
can be used to broaden the accessible spectra of quantum states, enabling to bridge the
spectral discrepancy within a sequence of downstream applications in quantum information
science. Besides of the coherent manipulation of quantum states, frequency up-conversion
is also useful to implement an up-conversion detector, particularly in the infrared regime.
The efficient photon counting would constitute an essential tool in the hybrid architecture
as conditioning measurement. It would benefit our previously demonstrated experiments.

Experimentally, we have implemented a coincidence frequency conversion system based
on two synchronized fiber lasers, which exhibited a detection efficiency as high as 30%.
Thanks to the long-wavelength-pump technique, the dark noise probability per pulse was
reduced to 1.6× 10−4 [144]. Then the conversion system has been adapted to demonstrate
infrared photon-number-resolving detection and few-photon-level infrared imaging [150, 158].
These capabilities would provide effective tools to directly demonstrate the nonclassicality
of infrared optical quantum states.

Outlook

As mentioned before, the frequency conversion may find useful applications for quantum
state engineering and manipulation. First, one can use the capability for efficient infrared
photon detection. Particularly, photon-number-resolving detection can be used to perform
various protocols based on multi-photon subtraction, for instance the generation of large-
size cat states or higher-photon-number Fock states. Additionally, Such photon-number
counter can also be used to directly verify the non-Gaussianity of quantum states from the
measured photon-number distributions [196]. To this end, quantum tomography of the up-
conversion detector should be performed in advance. Second, one can exploit the feature
of quantum frequency translation during the conversion process, which allows to extend
the spectra of quantum states to the wavelengths difficult to access [192]. Such coherent
spectral manipulation of quantum states has great potential in quantum communication and
quantum metrology applications.

Quantum computing requires the ability to prepare qubits in a given state and to make
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them evolve and interact in a controlled way thanks to quantum gates. The high-fidelity
non-Gaussian states presented in this thesis addressed the first requirement, i.e. the prepa-
ration of the qubits based on superposed coherent states. The second step is to manipulate
the qubits. A challenge is to implement elementary quantum gates in this regime. Note that
only a few probabilistic gates have been realized [119, 123] heretofore. The ongoing work
will demonstrate some quantum gates and test the principles of quantum information pro-
cessing with superposed coherent states [120]. Meanwhile, based on the generated hybrid
entangled state, we are developing a teleportation experiment to map a discrete-variable
qubit into a continuous-variable one [76, 137], a first application of this novel kind of optical
entanglement.
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A | Mathematical formula

A.1 Gauss integrals

∫

❘

e−ax
2+bx+cdx =

√

π

a
e

b2

4a+c (A.1)

∫

❘

x2e−ax
2+bxdx =

(

1

2a
+

b2

4a2

)∫

❘

e−ax
2+bxdx (A.2)

∫

❘

x2ne−ax
2

dx =

√

π

a

(2n− 1)!!

(2a)n
(A.3)

A.2 Laguerre polynomials

The Laguerre polynomials satisfy the recurrence relation:

Ln(x) =
2n− 1− x

n
Ln−1(x)−

n− 1

n
Ln−2(x) , (A.4)

with L0(x) = 1, L1(x) = −x+ 1, L2(x) =
1

2
(x2 − 4x+ 2) .

Actually, they are the specific case of associated Laguerre polynomials Lαn (α ∈ ❘)
with α = 0. The associated Laguerre polynomials generally satisfy the following recurrence
relations:

Lαn(x) =
2n− 1 + α− x

n
Lαn−1(x)−

n− 1 + α

n
Lαn−2(x) , (A.5)

with Lα0 (x) = 1, Lα1 (x) = −x+ 1 + α .

Lk−ll (x) =
k − l + 1− x

l
L
k−(l−1)
l−1 − x

l
L
k−(l−2)
l−2 (x) , (A.6)

with Lk0 = 1, Lk−1
1 = −x+ k .

A.3 Hermite polynomials (physicists’ version)

This is the definition used in the whole manuscript

Hn+1(x) = 2xHn(x)− 2nHn−1(x) , (A.7)

with H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2 .
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B | g
(2)(0) invariance to loss

Here we calculate the second-order correlation function at zero delay g(2)(0) for a general
Gaussian state. The technique is based on the Wigner function representation. Note that
sometimes using the density matrix in the Fock state basis may be a better choice. Here we
want to underline a link between the Wigner function and g(2)(0).

B.1 Expectation value for symmetric ordered operator

For an operator function F(x̂, p̂) that is symmetrically ordered with respect to x̂ and p̂, the
quantum mechanical expectation value agrees with the corresponding “classical” average,
where the Wigner function W (x, p) plays the role of the weight function:

〈F(x̂, p̂)〉 =
∫∫

W (x, p)f(x, p)dxdp . (B.1)

Here, the classical function f(x, p) is obtained from the operator function F(x̂, p̂) by replacing
x̂ by x and p̂ by p.

The relationship can be generalized to the operator function based on the symmetrically
ordered photon creation and annihilation operators, â† and â:

〈F (â†, â)〉 =
∫

W (x, p)f(x, p)dxdp . (B.2)

The classical function f(x, p) is simply obtained with the flowing substitutes:

â† → x+ ip

2σ0
,

â→ x− ip

2σ0
.

(B.3)

σ0 is associated with the standard deviation of the vacuum fluctuation:

〈0|x̂|0〉 = σ2
0 . (B.4)

This also leads to the commutator for the quadrature operators:

[x̂, p̂] = i2σ2
0 . (B.5)

B.2 Symmetric ordering of field operator

First we construct the following operators:

n̂W = {â†, â}sym =
1

2
(â†â+ ââ†) = n̂+

1

2
, (B.6)

and

n̂2
W = {â†2, â2}sym

=
1

6
(â†â†ââ+ âââ†â† + ââ†ââ† + â†ââ†â+ â†âââ† + ââ†â†â)

= â†â†ââ+ 2â†â+
1

2

= n̂2 + n̂+
1

2
.

(B.7)
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Therefore, the g(2)(0) is given by:

g(2)(0) =
〈â†â†ââ〉
〈â†â〉2

=
〈n̂2〉 − 〈n̂〉

〈n̂〉2
=

〈n̂2
W 〉 − 2〈n̂W 〉+ 1

2

(〈n̂W 〉 − 1
2 )

2 . (B.8)

B.3 Single-mode Gaussian state

The Wigner function of a single-mode Gaussian state is generally given by

WG(x, p) =
1

2πσxσp
e
− (x−x0)2

2σ2
x

− (p−p0)2

2σ2
p . (B.9)

Therefore we have

〈n̂W 〉 = 1

4σ2
0

∫

(x2 + p2)WG(x, p)dxdp

=
1

4σ2
0

(〈x2〉+ 〈p2〉) ,
(B.10)

and

〈n̂2
W 〉 = 1

16σ4
0

∫

(x4 + 2x2p2 + p4)WG(x, p)dxdp

=
1

16σ4
0

∫

(x4 + 2x2p2 + p4)WG(x, p)dxdp

=
1

16σ4
0

(〈x4〉+ 2〈x2〉〈p2〉+ 〈p4〉) .

(B.11)

For multivariate normal distribution, by using the Isserlis’ theorem:

〈xn〉 = (n− 1)〈x2〉〈xn−2〉 , (B.12)

we can obtain

〈x2n〉 = (2n− 1)!

2n−1(n− 1)!
〈x2〉n . (B.13)

Hence equation (B.11) can be rewritten as

〈n̂2
W 〉 = 1

16σ4
0

(3〈x2〉2 + 2〈x2〉〈p2〉+ 3〈p2〉2) . (B.14)

As a result, we just need to calculate the second moment of x and p, which are trivially
obtained by:

〈x2〉 = σ2
x + x20 ,

〈p2〉 = σ2
p + p20 .

(B.15)

Finally, the g(2)(0) is given by

g(2)(0) =

2(σ2
p+p

2
0)(σ

2
x+x

2
0)+3(σ2

x+x
2
0)

2
+3(σ2

p+p
2
0)

2

16σ4
0

− σ2
x+x

2
0+σ

2
p+p

2
0

2σ2
0

+ 1
2

(
σ2
x+x

2
0+σ

2
p+p

2
0

4σ2
0

− 1
2 )

2 . (B.16)
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If we consider a Gaussian state with zero offset, then we can have the following concise form:

g(2)(0) = (
σ2
x − σ2

p

σ2
x − 2σ2

0 + σ2
p

)2 + 2

= (
sx − sp

sx + sp − 2
)2 + 2 ,

(B.17)

where sx and sp are normalized variance to the vacuum fluctuation.
Now we can apply this expression to some usual Gaussian states to justify the result we

obtained.

B.3.1 Thermal state

For a thermal state, we have σ2
x = σ2

p, leading to g(2)(0) = 2.

B.3.2 Squeezed state

For a single-mode pure squeezed state (with a squeezing parameter ζ), we have

sx = e−2ζ

sp = e2ζ ,

resulting in

g(2)(0) = 3 +
1

sinh2r
. (B.18)

B.4 Loss on single-mode Gaussian state

For simplicity, we consider a Gaussian state with zero offset:

WG(x, p) =
1

2πσxσp
e
− x2

2σ2
x
− p2

2σ2
p . (B.19)

A fictitious beam splitter is used to model the loss, thus the state after tracing out the
unused mode is given by:

WLoss(x, p) =
1

2π
√

(r2σ2
0 + t2σ2

x)(r
2σ2

0 + t2σ2
p)
e
− x2

2(r2σ2
0+t2σ2

x)
− p2

2(r2σ2
0+t2σ2

p) , (B.20)

where t and r are the amplitude transmittance and reflectance of beam splitter, respectively.
We can see that the resulting state is still a Gaussian state with new variances for x and

p quadratures:

σ′2
x = r2σ2

0 + t2σ2
x ,

σ′2
p = r2σ2

0 + t2σ2
p .

(B.21)

Inserting the above equations into equation (B.17), we can get the same value of g(2)(0) with
the one for the initial state. More generally, it can be shown that for any state (pure or
mixed), g(2)(0) is invariant to the loss.
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B.5 g
(2)(0) invariant to loss

In this section, we will prove that g2(0) is invariant to the loss. Let us recall the definition
of g2(0):

g(2)(0) =
〈â†2â2〉
〈â†â〉2

=
〈n̂2〉 − 〈n̂〉

〈n̂〉2
.

(B.22)

We consider an initial state ρ̂, and model the loss by a beam splitter. Then the first-
and second-order momentums of the photon number operator are calculated by:

〈n̂〉 = Tra[Trb(B̂abρ̂aB̂
†
ab)n̂a]

= Tr(ρ̂aB̂
†
abn̂aB̂ab)

= Tr[ρ̂a(tâ
† + rb̂†)(tâ+ rb̂)]

= t2 Tr(ρ̂aâ
†â)

= t2〈n̂〉0 ,

(B.23)

〈n̂2〉 = Tra[Trb(B̂abρ̂aB̂
†
ab)n̂

2
a]

= Tr(ρ̂aB̂
†
ab(â

†2â2 + â†â)B̂ab)

= Tr[ρ̂a(tâ
† + rb̂†)2(tâ+ rb̂)2] + Tr[ρ̂a(tâ

† + rb̂†)(tâ+ rb̂)]

= t4〈â†2â2〉0 + t2〈n̂〉0 .

(B.24)

Therefore, it can be seen that the g2(0) is independent from the loss:

g(2)(0) =
〈â†2â2〉0
〈â†â〉0

2 = g0
(2)(0) . (B.25)



C | Homodyne data simulation

Numerical simulation of quadrature values for a given quantum state not only enables to test
data-processing programs, but also provides a way to evaluate the accuracy of reconstruction
algorithms. Moreover, one can easily investigate the quantum state properties with the
simulated data by controlling certain parameters.

C.1 Intuitive method

Ref. [20] has demonstrated a nice way for the homodyne data simulation. Here we present
an alternative method that is simpler and more intuitive. Specifically, the idea is realized
with the following steps:

1. Discretization of the phase-quadrature space into grids with bin sizes of δθ and δx as
shown in figure C.1.

2. For a given coordinate (θi, xj), the expected probability density is given by P(θi, xj) =
Tr(|θi, xj〉〈θi, xj |ρ̂), which can be easily obtained with a numerical calculation based
on the truncated density matrix.

3. The number of data contained within the square as shown in the figure is thus given
by N × P × δx, where N is a user-defined integer. The coordinate values (θ′, x′) of
the data points (shown with blue dots) are random numbers evenly distributed in the
ranges of [θi − δθ/2, θi + δθ/2] and [xi − δx/2, xi + δx/2]. These random numbers,
which can be rescaled to the interval [0, 1], are readily available in most programming
languages. Note that N should be large enough to avoid the truncation error of the
integer number format.

4. Repeat the steps 2 and step 3 till fulfilling the defined phase-quadrature space. Finally
we can obtain a set of simulated quadrature values corresponding to the state under
investigation.

Figure C.1: Intuitive method for numerically simulating quadrature values for a
given quantum state.
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C.2 Homodyne signal simulation

The method proposed here have three advantages. First it doesn’t require the effort to obtain
random numbers following a specific distribution. The quadrature probability is numerically
calculated from the given density matrix without needing the analytical expression of the
marginal distribution. Second, the flatness of phase distribution is intrinsically guaranteed
due to the algorithm. Third the intuitive and simple method can be easily extended to
multi-mode states using P(xa, θa, xb, θb) = Tr[(|θa, xa〉〈θa, xa| ⊗ |θb, xb〉〈θb, xb|)ρ̂ab].

Figure C.2 gives the simulated homodyne signal for an odd cats state |cat|α|
2=3

− 〉.
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Figure C.2: Example of generating 100,000 quadrature values for an odd cat state

|cat|α|
2=3

− 〉. (a) Histogram of the phase distribution. (b) Marginal distribution
along the phase.

C.3 Quantum state reconstruction

The simulated data is then processed with a MaxLik algorithm for the quantum state to-
mography. The results of the reconstructed state are given in figure C.3, which corresponds
to the odd cat states as expected.
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Figure C.3: Reconstructed state from the simulated quadrature values. (a)
Marginal distribution from 100,000 quadrature values. (b) Photon-number dis-
tribution of the reconstructed state. (c) Corresponding Wigner function.



D | Qmixer

Here we give some examples of modeling quantum state engineering based on the “Qmixer”
software.

D.1 Fock states generation

� Generating Fock states with a two-mode squeezed vacuum state [92, 86]:

|ψ〉 ∝ Trb[B̂(
π

4
)|φ〉ab〈φ|B̂†(

π

4
)|n〉b〈n|] ,

where |φ〉ab = Ŝa(ζ)|0〉 ⊗ Ŝb(−ζ)|0〉 is the input state.

Figure D.1: Generation of Fock states. Two squeezed vacua are mixed on a
50:50 beam splitter. The measurement in the conditional path is performed with a
photon-number-resolving detector. Detection of n photons heralds the generation
of n-photon Fock state. The generated state here is a two-photon Fock state.

D.2 Superposition of |0〉 and |2〉
� Generating α|0〉+ β|2〉 with a two-mode squeezed vacuum state:

|ψ〉 ∝ Trb[B̂(θ)|φ〉ab〈φ|B̂†(θ)|2〉b〈2|] ,

where |φ〉ab = Ŝa(ζ)|0〉 ⊗ Ŝb(−ζ)|0〉 is the input state.
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Figure D.2: Generation of α|0〉 + β|2〉. Two squeezed vacua are mixed on a
slightly asymmetric beam splitter. The measurement in the conditional path is
performed with a PNR detector. Detection of 2 photons heralds the generation of
α|0〉+ β|2〉. The generated state here is |0〉+ |2〉.

D.3 Photon-subtracted squeezed vacuum states

� Photon-subtracted squeezed vacuum state ânŜ(ζ)|0〉 is usually used to approximate a
Schrödinger cat state [109, 111]:

|ψ〉 ∝ Trb[B̂(θ → 0)|φ〉ab〈φ|B̂†(θ → 0)|n〉b〈n|] ,

where |φ〉ab = Ŝa(ζ)|0〉 is the input state.

Figure D.3: Generation of photon-subtracted squeezed vacuum states. A beam
splitter is used to tap a small fraction from the squeezed vacuum. The tapped part
is then detected by a PNR detector. Detection of n photons heralds the generation
of ânŜ(ζ)|0〉. The generated state here is âŜ(ζ)|0〉 ∝ Ŝ(ζ)|1〉.
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D.4 Squeezed cat states from |n〉
� Squeezed Schrödinger cat state can be generated from a Fock state conditioned with
homodyne detection given a small acceptance window for the quadrature values [79]:

|ψ〉 ∝ Trb[B̂(
π

4
)|φ〉ab〈φ|B̂†(

π

4
)|ε→ 0〉b〈ε→ 0|] , where |φ〉ab = |n〉a .

Quadrature

Figure D.4: Generation of squeezed Schrödinger cat states from Fock states. A
Fock state |n〉 impinges on a 50:50 beam splitter. The measurement in the condi-
tional path is performed by a homodyne detection. Detection of small quadrature
values within an acceptance window heralds the generation of squeezed cat states.
The generated state here is

√

2/3|2〉 −
√

1/3|0〉.

D.5 Quantum-optical catalysis

� The so-called quantum catalysis can be obtained by the heralded interference between a
Fock state |n〉 and a coherent state |α〉, which is useful for engineering exotic nonclassical
states [197, 78]. For instance, a single photon state interferes with a week coherent state on
a highly asymmetric beam-splitter: α ∼ t≪ 1. The coherent state is thus approximated by
|α〉 ≈ |0〉 + α|1〉. The detection of a single photon in one output of the beam-splitter will
result in a superposition state:

ψ ≈ t|0〉+ α|1〉 .

Figure D.5: Generation of nonclassical states based on quantum catalysis. The
Fock state plays the role of “catalysis”. The generated state here is a qubit state,
|0〉+ |1〉.
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D.6 Amplification of cat states

� Amplification of small cat states can be realized by mixing them in a beam-splitter
[117, 118]:

|catα±〉a ⊗ |catα±〉b → |cat
√
2α

+ 〉
a
⊗ |0〉b ± |0〉a ⊗ |cat

√
2α

+ 〉
b
.

When α is large enough, the overlap 〈0|cat
√
2α

+ 〉 is negligible. Therefore we can use a homo-
dyne measurement of quadrature x = 0 to discriminate them.

Quadrature

Figure D.6: Amplification of Schrödinger cat states by homodyne heralding. Two
small cat states with amplitudes of α interfere on a 50:50 beam-splitter. The
measurement in the conditional path is performed with a homodyne detection.
Detection of a small quadrature value (x → 0) heralds the generation of a cat

state with a larger amplitude of
√
2α. Here we obtain an amplified even cat state

with an amplitude of 2
√
2, which is verified by the fidelity compared to an ideal

even cat state as shown in the “Fidelity” sub-panel.



E | MCU locking

E.1 Pseudo code for multi-locking

A single evaluation board can be used to lock two cavities with a proper programming.
Specifically, we use a main loop in the program, and break every event loop (e.g long sweep,
short sweep, lock) into pieces. The following gives a possible pseudo-code:

1 #de f i n e EVENT1 1
2 #de f i n e EVENT2 2
3
4 in t main ( void )
5 {
6 in t Flag_locking1 , Flag_locking2 ,
7 Locking1_delay_event1 , Locking1_delay_event2 ,
8 Locking1_timer_event1 , Locking1_timer_event2 ,
9 Locking2_delay_event1 , Locking2_delay_event1 ,

10 Locking2_timer_event1 , Locking2_timer_event2 ;
11
12 whi le (1){
13 // Cavity I
14 Switch ( Flag_locking1 ){
15 case EVENT1:
16 i f ( Locking1_timer_event1==Locking1_delay_event1 ){
17 codes ;
18 Locking1_timer_event1=0;
19 }
20 Locking1_timer_event1++;
21 break ;
22
23 case EVENT2:
24 i f ( lockingL_timer_event2==Locking_delay_event2 ){
25 codes ;
26 Locking1_timer_event2=0;
27 }
28 Locking1_timer_event2++;
29 break ;
30 }
31 // Cavity I I
32 Switch ( Flag_locking2 ){
33 case EVENT1:
34 i f ( Locking2_timer_event1==Locking2_delay_event1 ){
35 codes ;
36 Locking2_timer_event1=0;
37 }
38 Locking2_timer_event1++;
39 break ;
40
41 case EVENT2:
42 i f ( Locking2_timer_event2==Locking2_delay_event2 ){
43 codes ;
44 Locking2_timer_event2=0;
45 }
46 Locking2_timer_event2++;
47 break ;
48 }
49 }
50 }

The “delay_event” defines the time delay of each step executed in the event. It enables
to control the execution time for each event, for example how fast the long sweep will be,
how much time each step will take for the locking. These delays should be adapted with the
specific locking system.

E.2 Configuration of integration box

E.2.1 Locking of OPO & Gain

We integrate the lockings of OPO and Gain 1 into one box. The corresponding configuration
is illustrated in figure E.1.

1Here the locking of Gain refers to the locking of the relative phase between the seeded signal and the
pump light.
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Figure E.1: Integration box for OPO & Gain locking. Front panel (up) and back
panel (bottom) of the box.

E.2.2 Locking of µCavities

We integrate two µCavities lockings in one box. The corresponding configuration is illus-
trated in figure E.2.

Figure E.2: Integration box for locking two µCavities. Front panel (up) and back
panel (bottom) of the box.



F | SSPD

Photon detectors play a crucial role in our experiment to efficiently and correctly herald the
generation of the desirable states, such as Fock states (Chapter 5), Schrödinger cat stats
(Chapter 6) and hybrid entangled states (Chapter 7). In general, the generation of high-
quality states requires high-performance detectors in terms of three aspects: high detection
efficiency, low dark noise, and small timing jitter. Remarkably, superconducting nanowire
single-photon detectors (SNSPDs or SSPDs) satisfy all these requirements at our working
wavelength of 1064 nm.

F.1 Structure

The SSPDs used in our experiments is fabricated and provided by NIST and JPL 1 in the
framework of a collaboration. The configuration of the detector is illustrated in figure F.1.
The material used for the SSPD is tungsten silicide (WSi), different from the conventional
fabrication using niobium nitride (NbN). Because the crystal structure of WSi is homoge-
neously disordered, this property enables to fabricate a detector meander with a large area
about 20× 20 µm2 [198]. Thus it is very easy to bring the light onto the detector by a fiber
(typically with a core diameter < 10 µm) without the need of precise alignment.
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Figure F.1: (Left) Configuration of a superconducting nanowire single-photon
detector. The detection area is about 20×20 µm2. (Right) Detection efficiency as
a function of the bias DC current for different tested SSPDs. Number 98 and 118
are the detectors used in this thesis. Number 152 is one of the optimized detector
for 1064 nm, which will boost the experiments in the future.

1NIST: National Institute of Standards and Technology; JPL: Jet Propulsion Laboratory.
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F.2 Performance

The nanowire is cooled down to about 2K with liquid helium, well below its superconducting
critical temperature. Then the nanowire is biased with a DC current that is close but less
than the superconducting critical current. The impinging photons on the nanowire will form
a localized hotspot which has a electrical resistance larger than the 50 Ω input impedance
of the readout amplifier. Consequently the bias current is shunted to the amplifier resulting
in a measurable voltage pulse.

Figure F.1 shows the behavior of detection efficiency as a function of the bias DC current.
Generally speaking, larger bias current leads to higher efficiency, but the bias current too
close to the critical current of the nanowire will produce severe dark counts. Practically, the
operation current is chosen to be near the beginning of the plateau, which gives maximum
efficiency and reasonable dark noise (typically below 10 Hz).

Additionally, we find that the WSi SSPD has a slight polarization dependency, at most
10%. Usually, it is not a problem for the single-click experiments since detection efficiency
only affects the heralding probability instead of the conditioned state. As for the two-click
experiments needing the balance of photon counting, fixing the fibers can help to achieve a
stable count rate for hours 2.

F.3 Optimization

WSi SSPDs have great potential for the efficient photon detection within a broad spectral
range from visible to mid-infrared light [199]. The detection performance at a specific
wavelength can be optimized by engineering the structure of nanowires, such as thickness,
width and pitch. As shown in figure F.1, the detection efficiency has been recently improved
up to 90% at 1064 nm. Note that the SSPDs used during this thesis were not yet fully
optimized, with a detection efficiency about 50%.

2Fortunately, the balancing condition of the two-click experiments (e.g. two-click hybrid entanglement
generation) presented in this thesis are independent from the variation of the detection efficiency.
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