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Abstract

The thesis focuses on the experimental investigation of the optical hybrid approach for
quantum information processing. Specifically, two traditionally separated approaches, i.e.
the discrete and the continuous-variable ones, are combined in the same experiment with two
distinct quantum measurements based on photon counting (photon number) and homodyne
detection (quadrature components).

The optical hybrid approach is first applied to generate high-fidelity non-Gaussian states,
e.g. Fock states and Schrodinger cat states, which correspond to two types of qubit encodings
used in optical quantum information. The use of high-efficiency superconducting nanowire
single-photon detectors leads to an unprecedented preparation rate, which facilitates the
subsequent use of these states. For instance, the two types of states are combined to generate
for the first time a hybrid entanglement between particle-like and wave-like optical qubits, as
well as the extension to hybrid qutrit entanglement. These novel resources may pave the way
to implement heterogeneous networks where discrete and continuous-variable operations and
techniques can be efficiently combined. Additionally, we also experimentally demonstrate
for the first time the so-called squeezing-induced micro-macro entangled states.

During this PhD, efforts have also been dedicated to implement a high-efficiency and
low-noise frequency up-conversion system based on two synchronized fiber lasers. Such
quantum frequency converter not only permits to extend the spectra of quantum states
to difficultly accessible wavelengths with current technology, but also constitutes a high-
performance photon detector especially in the infrared regime. Based on the conversion
system, several applications are demonstrated, such as infrared photon-number-resolving
detection, and few-photon-level infrared imaging.

Keywords

optical quantum information, Fock state, Schrodinger cat state, non-Gaussian state, hybrid
entanglement, frequency up-conversion detection
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Résumeé

Cette thése s’intéresse a une approche dite hybride de I'information quantique. Deux ap-
proches traditionnellement séparées, variables discrétes et variables continues, sont com-
binées dans une méme expérience nécessitant a la fois comptage de photons (nombre de
photons) et détection homodyne (quadratures).

Cette architecture hybride a d’abord été utilisée pour générer des états non-gaussiens
de la lumiére de grande fidélité, par exemple état de Fock et chat de Schréodinger optique,
qui correspondent & deux types d’encodages utilisés en information quantique. L’utilisation
de détecteurs supraconducteurs & forte efficacité a permis d’obtenir un taux de préparation
sans précédent, ce qui facilite 'utilisation ultérieure de ces états. Ces deux types d’états
ont ensuite été combinés pour réaliser pour la premiére fois une intrication hybride entre
qubits optiques de nature différente. Son extension & des qutrits a également été obtenue.
Ces nouvelles ressources ouvrent la voie a la mise en ceuvre de réseau quantique hétérogéne
ou les opérations et les techniques propres aux variables discrétes et continues peuvent étre
efficacement combinées.

Ce travail de thése a également été consacré a la mise en ceuvre d’un systéme de conver-
sion de fréquence a haute efficacité et faible bruit, basé sur deux lasers a fibres synchronisés.
Ce convertisseur de fréquence quantique permet non seulement d’étendre les états quantiques
& des longueurs d’onde difficilement accessibles avec la technologie actuelle, mais constitue
également un détecteur de photons a haute performance, surtout dans le régime infrarouge.
Basé sur ce systéme, plusieurs applications ont ensuite été démontrées, comme la détection
infrarouge résolue en nombre de photons et I'imagerie infrarouge ultra-sensible.

Mots clés

information quantique, optique quantique, état de Fock, chat de Schrédinger, état non-
gaussien, intrication hybride, conversion de fréquence
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Introduction

Quantum information science

Historically, the idea of exploiting quantum phenomena in information technology was ini-
tiated in the 1970s, and rapidly attracted intensive interests among a small group of pio-
neer physicists, among others Richard Feynman, Charles Bennett, Paul Benioff, and David
Deutsch. The investigation of the foundational problems of quantum mechanics and the
physics of computation finally gave birth to a new fascinating field of research: quantum
information science [1, 2|. Since then, a large variety of quantum protocols and algorithms
as well as many revolutionary experimental demonstrations have been proposed and imple-
mented driven by the prospect to develop new processing and communication capabilities
from the quantum realm.

Quantum information science spans a wide variety of topics, including quantum commu-
nication, quantum computation, and quantum metrology. These three streams of researches
have progressed mostly in parallel but deeply connected. More specifically, quantum commu-
nication, the art of transferring a quantum state from one place to another [3], has recently
reached a level of maturity. For instance, the implementation of quantum cryptography pro-
tocols, allowing an absolutely secure exchange of information, has been demonstrated to the
extent that commercial products are now available. Besides of information transportation,
much attention has also been attracted in information processing to realize quantum com-
putation, which could dramatically improve computational power for particular tasks [4].
Many algorithms have hitherto been proposed to demonstrate the remarkable computing
capability beyond any classical computer, such as Shor’s algorithm for integer factorization,
and Grover’s algorithm for data searching. The third direction, quantum metrology, is fast
emerging, and would enable to reach an unprecedented precision beyond the classical limit
[5].

In general, all forms of information processing can be considered in a quantum mechanical
context. For instance the no-cloning theorem, which states that the creation of identical
copies of an arbitrary unknown quantum state is forbidden, leads to various applications,
including quantum cryptography, quantum teleportation, and quantum repeaters. Another
example can be highlighted with the quantum superposition, which leads to the realization
of a qubit state, as used in quantum information processing. The qubit is in a superposition
of both logical states at the same time, which powers quantum computation with a unique
property so-called parallelism. Additionally entanglement, one of the most striking feature
in quantum mechanics, is an extremely valuable resource for achieving many tasks such as
quantum teleportation [6] or quantum dense coding [7].

This thesis enters into this general context, and focuses on a specific approach for im-
plementing optical quantum information processing (QIP).

Optical hybrid architecture

In practical optical QIP, there are two complementary approaches for encoding information
with light, namely the discrete- and the continuous-variable approaches, each exploiting
only one aspect of the wave-particle duality of light. Some protocols harness the particle-
like discrete nature of light to encode quantum information on qubits, i.e. states of the form
¢o|0) + ¢1|1), which involve single-photons, and live in a two-dimensional space spanned for
example by orthogonal polarizations or the absence or presence of a single-photon [8]. In the

xiii
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continuous alternative, i.e. wave-like qubits, the encoding is realized with the quadrature
components (amplitude or phase) of a light field [9], in an inherently infinite-dimensional
space. The qubits can be implemented for instance as arbitrary superpositions of classical
light waves with opposite phases, known as optical Schrodinger cat states, co|a) + ¢1] — ),
where |a) is a coherent state with mean photon number |a/?.

Both encodings have advantages and drawbacks. Specifically discrete-variable QIP en-
ables the realization of operations with a nearly unity fidelity, but it usually involves prob-
abilistic implementations and mostly requires post-selection of successful events. On the
other side, the continuous-variable approach can benefit from high detection efficiency by
homodyne measurement and enables deterministic operations based on the on-demand en-
tanglement resources. However, it typically suffers from intrinsically limited operation fi-
delity due to the imperfection of the entanglement. A brief comparison between these two
encoding methods is summarized in Table 1 in terms of preparation, characterization, and
detection [10, 11].

Table 1: Comparison between discrete-variable (DV) and continuous-variable (CV)

QIP [11].
DV QIP CV QIP

Carrier Discrete degree of freedom of a photon® Quadratures of a light field
Source Photons by PDC? Squeezed light by PDC
Basis Photon number basis: {|n)} Quadrature basis: {|z)}
Dimensionality  Finite Infinite
Encoding 1) = al0,1) + BI1,0) ) = [ 9(@)l2)dz
Representation Density matrix Wigner function
Detector Photon detector (measure 7) Homodyne detector (measure )
Difficulty Two-qubit gate® Non-Gaussian gate?

%e.g. polarization, orbital angular momentum, photon number, time bin, spatial mode ...

YPDC: parametric down-conversion
“e.g. CNOT gate
de.g, cubic phase gate

Recently, a large effort has been dedicated to combining both approaches in a so-called
optical hybrid architecture that overcomes the current limitations of optical QIP [10, 11,
12, 13, 14]. Indeed the integration of the discrete- and continuous-variable toolboxes and
technologies has stimulated a series of new proposals and groundbreaking experiments.

Context and outline of the thesis

The general objective of the work during this thesis is to develop the required toolbox in the
hybrid approach for quantum information processing, where continuous variables of light and
photon counting are mixed. Specifically, we focus on the engineering of high-fidelity optical
quantum states (particularly non-Gaussian states) and the development of high-performance
photon detectors.

This PhD work has been accomplished in the framework of a co-tutored program be-
tween Laboratoire Kastler Brossel (Paris, France) and Laboratory of Precision Spectroscopy
(Shanghai, China). Benefiting from the bilateral research resources, we conduct three main
works:

e Experimental realization of high-purity non-Gaussian states, such as Fock states and
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Schrédinger cat states, which constitute respectively two different photonic qubits in
the quantum information processing.

e Laboratory generation of hybrid entanglement between particle-like and wave-like opti-
cal qubits, leading to the demonstration of a squeezing-induced micro-macro entangled
state.

e Experimental implementation of coincident frequency up-converter based on two syn-
chronized fiber lasers, with applications to infrared single-photon detection, infrared
photon-number-resolving detection and ultra-sensitive infrared imaging.

Before presenting the main results of these works, in Part I we first introduce some
theoretical and experimental tools required to understand the physical mechanisms and the
experimental realizations. Specifically, in Chapter 1 we give a general introduction about
the quantum theory of light, and provide two formalisms to describe quantum states, i.e.
the density matrix and the Wigner function. With the Wigner function, the quantum states
can be classified into two categories: Gaussian states and non-Gaussian states. The produc-
tion of Gaussian states, particularly squeezed states, or two-mode squeezed vacuum states,
are theoretically investigated in Chapter 2 based on nonlinear frequency down-conversion.
Its complementary process, frequency up-conversion, is also studied as the basis for the
implementation of quantum frequency converter. The transformation of Gaussian states
into non-Gaussian ones can result from the so-called measurement-induced nonlinearity, as
detailed in Chapter 3. Finally, Chapter 4 presents an automatic locking system based on mi-
crocontroller fully developed during this thesis. This system serves as a useful and versatile
tool for phase and cavity lockings in the various experiments.

Part II describes the experimental demonstrations of quantum state engineering. The
first example is the generation of heralded Fock states as shown in Chapter 5. Thanks
to the low loss of the whole optical system and the high performance of superconducting
single-photon detectors, quantum-optical state engineering up to the two-photon level is
experimentally demonstrated. These features are also applied to produce Schrédinger cat
states as detailed in Chapter 6. With the combination of the discrete-variable (Fock states)
and continuous-variable (cat states) resources, we then experimentally generate for the first
time a novel kind of optical entanglement, a so-called optical hybrid entanglement, as illus-
trated in Chapter 7. Beyond its fundamental significance, such hybrid entanglement opens
the promises for heterogeneous network implementation, where discrete and continuous-
variable operations and techniques can be efficiently combined. Additionally, based on this
resource, we investigate a so-called squeezing-induced micro-macro entangled state, which
is reminiscent of the original spirit of the Schrodinger cat state gedanken experiment.

In Part III, we report the parallel effort dedicated to the implementation of quantum
frequency up-converter, which has promising applications in QIP. First, this up-converter
can be used as an efficient photon detector, particularly at the infrared wavelengths. Second,
it enables to spectrally translate the quantum state. This functional capability can find ap-
plications as frequency converter in future quantum network. Third, the quantum converter
also provides an effective way to manipulate quantum states in the spectro-temporal domain.
In Chapter 8, a high-efficiency and low-noise coincidence frequency conversion system is pre-
sented. Applications based on this conversion system, e.g. infrared photon-number-resolving
detection and few-photon-level infrared imaging, are given in Chapter 9.
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1 ’ Quantum Theory of Light

In this first chapter, we will briefly introduce some basic concepts about the quantum theory
of light in order to make the whole thesis self-contained, and the manuscript more accessible
to non-specialists. These quantum description and the introduced mathematical notations
will also be useful for the explanations and expressions given in the following chapters. Here
the quantum states are described with two formalisms: the density matriz and the Wigner
function. From their general definitions, we derive some important mathematical properties.
Then Gaussian operations will be presented: they enable to obtain various common Gaussian
states starting from vacuum. Finally, we will give some examples of non-Gaussian states.

For more details about these concepts, the readers can refer to various textbooks with
systematic and rigorous derivations [15, 16, 17, 18, 19].
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4 1.1. PHOTONS

1.1 Photons

In the following, we provide the quantum formalism enabling the description of light. The
photon, with a defined energy E = hv, exhibits properties of both waves and particles, also
known as the wave-particle duality.

1.1.1 Creation and annihilation operators

The electromagnetic field is quantized by using the simple harmonic oscillator operators - the
annihilation operator & and the creation operator &'. We have the well-known single-mode
Hamiltonian and commutator,

The product of both operators forms the photon-number operator
n=a'a. (1.2)

The electric field is given by

EE(F, t) — Eo[de—i(wt—/;f) +&Tei(wt—E~F)] , (13)

where k is the the wave vector. Since the annihilation and creation operators are not
Hermitian, thus they are not observables. When working with real measurements it may be
preferable to use another frame of reference to describe the situation. This is the idea of
field quadratures to describe the light.

1.1.2 Quadrature operators

For constructing observables of light, we use the following Hermitian quadrature operators
1

& =oo(a" +a),
p=rioo(a’ —a).
Conversely, the annihilation/creation operators are thus given by
T+1ip
20’0
i x—ap

a' = .
20’0

d:

Using the commutation relation (1.1), we can deduce the commutator between the quadra-

ture operators,
[&,p] = i207 . (1.6)

The Heisenberg uncertainty relation follows and is given by

AzAp > o | (1.7)

INote that here we use the convention og introduced in [20]. In many other materials, Plank constant h
is used. They are identified as i = 203 .
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where Ax = /(22) — (£)? denotes a standard deviation.

The vacuum state saturates the Heisenberg inequality with the following identity
Az =Ap=oy . (1.8)

This relation highlights the statistical meaning of oy : it is the standard deviation of the
vacuum fluctuation.

It is worth noting that quadrature operators can be arbitrarily chosen via rotation by an
angle of # in phase space

Ty = cos O + sin Op
o (n—if At i (1.9)
=op(ae™"" +a'e") .

The orthogonal quadrature operator is given by ps = Zg4r/2-
Due to the Hermitian property of the quadrature operator &y, there exists a series of
orthonormal eigenvectors {|zg) }»,er satisfying the eigenvalue equation

i'9|.%'9> = .%'9‘.%‘9) s (1.10)

and the completeness condition

/|.’L‘9><$9| drg =1 . (1.11)
R

Note that these eigenvectors correspond to a fixed phase 6.

Strictly speaking these eigenstates are not truly normalized, thus they cannot be gener-
ated experimentally [19]. Nevertheless, they will appear in many mathematical tricks, for
instance, for the introduction of wave functions as

P(w9) = (ol ¥) (1.12)

The moduli square of the wave function |w(x9)|2 has the physical meaning of quadrature
probability distribution Py (xe) (also known as marginal distribution), which can be mea-
sured using homodyne detection, as will be detailed in Chapter 3.

The general quadrature eigenstate |z4) can be expressed in the Fock state basis,

zg) = 7~ Y4 exp[—Lad + V2exgal — Le*at?]|0) | (1.13)

from which one can obtain the quadrature representation of any pure state.

1.2 Representations of quantum states

In quantum optics, there are a number of different ways to describe the quantum state of
light. In principle, they can be reformulated from one to the other. Usually, for practical
convenience, one of them would be preferred in certain applications. In this section, two
commonly used formalisms will be introduced, namely the density matriz and the Wigner
Sfunction.

1.2.1 Density matrix

A pure state can be simply represented by a single state vector |¢), which is an element of
a Hilbert space H. However, because of the imperfection in the state preparation or due
to environmental decoherence for instance, the state of a quantum system will evolve to a
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statistical mixture of pure states, or mized state. For describing mixed state we resort to a
more general representation given by the density matriz (or the density operator):

p= ZPi i) (Wil (1.14)

where P; is the statistical weight of the pure state |1;), with the probability conservation
> P=1

1

A physically acceptable density matrix should satisfy some constraints:

Tr(p) =1 & Normalization
p=p' & Hermiticity (1.15)
(W plY)y =0 for ¥V |¥) & Positivity

From these requirements, the density matrix have many properties that lead to important

concepts.

Diagonalisation The density matrix can always be diagonalized into some orthogonal basis,

p= sz' i) (il - (1.16)

This can be seen as a weighted sum of probabilities across multiple pure states, where the
weights are given by the eigenvalues p; of the density matrix.

Purity The purity of a quantum state is defined as
Y (117)
i
For pure state P = 1; otherwise for mixed state, 0 < P < 1.

von Neumann entropy This is another criterion for purity given by
Sonv = —Tr[plnp] = — Zpi Inp; . (1.18)
i

This quantity is equal to 0 for pure states and positive otherwise. Additionally, this quantity
is often used as a measure of entanglement for pure states by treating p as the density matrix

for either of two entangled subsystems 2.

Fidelity This quantity enables to measure the similarity between two quantum states, gen-
erally defined as :

Fpr, p2) = (T{ ﬁam@]f : (1.19)

2 Actually, for pure states, the entanglement is directly linked to the purity of the subsystem density matrix
(after a partial trace of the full density matrix). A pure state is entangled if and only if the subsystem is in
a mixed state.

31f one state is pure, F = Tr[p1p2] ; if both are pure states, F = |{¢1 \w2>\2 [20]. Additionally, the fidelity
is bounded by [21]

F(p1,p2) = Tr(p1p2) + ﬂ\/[Tr(ﬁﬁQ)}Q + Tr(prp2p1p2) 5
F(p1,p2) < Tr(p1p2) + \/[1 — Tr(p)][1 — Tr(p3)] -

The above inequalities are saturated if at least one state is pure.
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Marginal distribution It corresponds to the probability distribution (non-negative real
number) of quadrature values for a given state

Pp(wo) = (wolplwo) - (1.20)

1.2.2 Wigner function

Besides of the density matrix, it is also possible to represent a given quantum state in phase
space by a quasi-probability distribution known as the Wigner function. It is called a quasi-
probability distribution because it can take negative values. The negativity of the Wigner
function is considered as a strong indication of non-classicality.

The Wigner function of a quantum state was firstly introduced by E.P. Wigner in 1932
in the context of quantum mechanical corrections for thermodynamic equilibrium. It can
be written as *:

1 ; .
Wiz, p) = >— / €/ (3 — y|pla + y) dy . (1.21)

Toq

For a pure state, the Wigner function can be expressed via the wave function

W(z,p) =

sne [ € e = i ) dy (122

With the parity operator P = e”‘ﬁd7 the Wigner function can also be written in the following

form [18]
1 1 . A R
Wp(z,p) = mwﬁ(a) = TU(Q)TT[D(—OK)PD(@)P] ; (1.23)
where = + ip = 20pa.
From the density matrix, the Wigner function can be calculated as

Wp(z,y) = Zﬂszm)(z\(Ly) ; (1.24)
k,l
where
(_1)l l! . k_l _ £L'2 2 20_2 k—1 2+ 2
aten - SUE () g (27)

with Lffl a associated Laguerre polynomial (cf. Appendix A). This equation is true for
k > [, otherwise, we can use the following relation

Wik (z,p) = Wiy (2, D) k<. (1.26)

Thanks to equation (1.25), it is possible to access each element of the density matrix from
the Wigner function

prt = Tr[plk)(l|] = 4#03/ dxdp Wy (x, p)Wikyq (2, p) - (1.27)

The equation (1.24) is very useful to calculate numerically the Wigner function associated
with a given density matrix. It can also be generalized to more than one modes with two
variables x;, p; for each mode i, for instance:

Wi(z1,y1522,y2) = Z Primn Wiy () (21, Y1) Wimy (n) (22, ¥2) (1.28)

k,;m,m

4QOriginally it was written with the convention using 7 :

1 ; N
Wow.p) = 5o | e/ —y/20ofe +/2) dy
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where pgimn is the density matrix element of a two-mode state.

Similarly to the density matrix, the Wigner function of a physical state should respect
some basic constraints:

//]R2 W(x,p)dedp =1 & Normalization
Ws(z,p) € R & Hermiticity (1.20)
Ps(ze) =20 for Vg & Positivity )
1
W (z,p)| < mo? =3 Bound
where the marginal distribution is given by
Ps(zg) = /dpg W (g cost — pgsinb, pg cos ) + xgsinf) . (1.30)

Besides of these relations, the Wigner function should be continuous in the phase space.
Unlike the density matrix, it seems that there is no simple sufficient condition for ensuring
that a function is the Wigner function of a physical state. One solution is to transform
the Wigner function back to the corresponding density matrix, and thus use the sufficient
condition (1.15). However this method needs a truncation of the Hilbert space.

Here are some important properties associated with the Wigner function:

Overlap formula This is a general formula for two Hermitian operators.

Tr[0104] = 4702 //dacdp We, (2, p)We, (z,p) . (1.31)

It is a very powerful tool for many calculations, such as the calculation of fidelity, purity,
and the study of conditional measurement.

Value at phase-space origin The value of the Wigner function at the phase-space origin
only depends on the diagonal elements of the density matrix:

2moaW5(0,0) = > (—1)"p - (1.32)
k

It is related to the expectation value of the parity operator °.

Symmetrically ordered operator The quantum mechanical expectation value for an oper-
ator function F(Z,p) that is symmetrically ordered with respect to & and p agrees with the
corresponding “classical” average, where W (z, p) plays the role of the weight function:

(F(2,p)) = / / W (. p) (. p)dedp (1.33)

Here, the classical function f is obtained from the operator function F by replacing & by x
and p by p.

51t can be obtained from 23 W;(0,0) = Tr[pP] .
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The relationship can be applied to the operator function based on the symmetrically
ordered photon creation and annihilation operators:

(F(a',a)) = // W(z,p)f(z,p)dxdp . (1.34)

The classical function f(z,p) is simply obtained from the following exchange:
T +1p . T —1ip
—_— — .

20’0 “ 20’0

al — (1.35)

1.3 Gaussian manipulations

Gaussian manipulations are primary tools for state preparation and analysis in continuous-
variable quantum information processing [22, 23]. In this section, we will introduce the
concept of Gaussianity and the realm of Gaussian operations will be presented as well.

1.3.1 Gaussianity

The famous Hudson-Piquet theorem [24] establishes an equivalence between the (quantum)
non-Gaussian character and the negativity of the Wigner function for pure states:

A necessary and sufficient condition for a pure quantum state being a Gaussian state is
that the corresponding Wigner function is positive (true probability distribution).

Although this relation cannot simply extend to mixed states [25], great effort is still dedi-
cated to find connection between Gaussianity and Wigner function properties for a general
state. It has been recently proved that for a Gaussian state, the value of the Wigner function
at the origin of phase space is bounded by a positive quantity, which is a function only of
the average photon number of the state [26]. Specifically, a quantum state is non-Gaussian
if

1 L
W(0,0) < —e~2n(r+1) (1.36)
™

where 7 is the mean photon number.

1.3.2 Gaussian operations

A quantum operation is said Gaussian when it maps Gaussian states into Gaussian states.
Gaussian operations are unitary and thus trace preserving. They can be described by inter-
action Hamiltonian with at maximum quadratic annihilation/creation operators.

Rotation The rotation operation can be achieved with the so-called phase shift operator

U(9) = e—04'a (1.37)

It can be realized by changing the phase of the quantum states, e.g. the temporal evolution,
which leads to the rotation of its Wigner function in phase space. The rotated Wigner
function W oot (x,p) and the original one Wj(z, p) are related by

W sot (@, p) = Ws(x cos§ — psin, pcos + zsin6) . (1.38)
The density matrix element of the phase shift operator in the Fock state basis is given by
Unn(0) = <m|f](€)|n> =e 0 (1.39)

where ,,, is the Kronecker delta symbol.
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Displacement The displacement operation is achieved with the displacement operator de-
fined as:

D(a) = ecd!
Experimentally, it can be realized by mixing a state with a bright coherent light on a highly
asymmetric beam-splitter. As it is called, the displacement operation will translate the
Wigner function in phase space in the following way

—ata (1.40)

W ,pi(2,p) = Wiz — 200R[a], p—200S[a]) . (1.41)

The density matrix element of the displacement operator in the Fock state basis is given by

Dyn(@) = (m| D(a)|n)

=\ erlel e o)

m!
under the condition of m > n. For m < n, we have Dp,,(a) = D}, (—a).

Beam-splitter The beam-splitter operation between two modes can be written as
B(9) = fa'b-ab") (1.43)

where ¢t = cosf and r = sinf are the transmission and reflection coefficients in amplitude
(thus ¢* and 7? for power coefficients).

A beam-splitter is one of the simplest elements in quantum optics experiments. It is
also very useful in the theoretical analysis of two-mode systems. Remarkably, the output
Wigner function W’ (x,, pa; p, pp) after a beam-splitter has a simple relationship with the
input Wigner function W (x4, pp; e, Db):

W/(xaapaQ xbvpb) = W(txa + 1Ty, tpg + TPa; tTy — 1Tq, tPp — Tpa) . (144)

The beam-splitter operation acts on a two-mode Fock state as

- UENE (k1 + k2)!(ny +n2 — k1 — ko) [ my Ny
Bni,ng) = klz:mg:o n1'mg! ( k1 ) ( ko ) (1.45)
x (—1)kegnathi=hepm—kithe \p 4 gy ny +ng — Ky — k)
where Z is the binomial coefficient. Equation (1.45) can be alternatively expressed as
[27]
Blni,na) = > By [Ny, N (1.46)
N1,Na
where
niy n2
]7\1711,’7;\?2 Z Z nrkrnl-;-nz—k—ltk-&-l
k=0 1=0 (1.47)

vV TL1!712!N1!N2!

SNy k10N ] -
" Tl (ny — k)l(ng — D)1 Ntk 0Nz~

When the total input photon number is N = n; + ng, the output state becomes (N +
1)—dimensional entangled state. By using the equation (1.46), it is not difficult to calculate
the density matrix for the beam-splitter operator in the Fock state basis.
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Squeezing The squeezing operation is defined as ©

N %(Az_aTZ)

S(¢) = €5 , (1.48)

where ( is the squeezing parameter. This operation is obtained by parametric interaction.
In contrast with all the previous operations, it requires non-linear optics, as will be seen in
the next chapter. The squeezing operation will deform the Wigner function as

W51 (x,p) = Wp(xe, pe™®) . (1.49)
The density matrix element of the squeezing operation in the Fock state basis is given by

Smn(C) = (m|S(C)[n)
Slnhé' (m+72L—2k) (_1) (m;k) (150)
—k

> ) R

T min{m,n}
min.

:72(

m+n+1
S cosh ¢

where
_0,2,4, ... if m,nis even
~11,3,5, ... ifm,nisodd.

Smn(¢) = 0 when |m — n| is odd.

1.4 Gaussian states

Gaussian states are at the heart of quantum information processing with continuous vari-
ables, which are used in a wide variety of tasks and applications, including quantum commu-
nication, quantum cryptography, quantum computation, quantum teleportation, and quan-
tum state and channel discrimination [23]. With the Gaussian operations, one can map
a Gaussian state into another. Specifically, all pure Gaussian states can be obtained by
applying these operations on a vacuum state.

1.4.1 Coherent state

The coherent state is the most common state used in the lab. It can be generated by a laser
operating largely above threshold. Here are some basic properties about the single-mode
coherent state.

Definition R _
|o) = D(a)[0)  (a=]ale® € C). (1.51)

Fock state expansion

+oo
ja) = 17237 %W . (1.52)

Wave function

1 . )
<19‘Oé> _ 4726'404\ sin(¢p—0)zg /o0 67[19/2007@\ cos(¢p—0)]? ) (153)
V/2rag

61f ¢ = ||’ is a complex number, the operator is written as S(¢) = exp[%&z - %dw]. With a phase-shift

operator we have S(¢) = UT(6/2)S(|¢))U(8/2) .
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Wigner function

1 —(x—20 2/202 —(p—200S 2 /202
Wiey(:9) = 5 e (2—200R(0])? /203 — (p—200S(a])? /207 (1.54)

1.4.2 Squeezed vacuum state

The simplest single-mode squeezed state |{) can be generated by applying the squeezing
operator on the vacuum state |0).

Definition

[Ysq) = S(O)I0) (¢ =[¢le"* €C) . (1.55)

Fock state expansion

= V=2 (1) (5) o (156)

2

where A = tanh (. We can see that the squeezed vacuum state only contains even-photon
number states .

Wave function

1 2
<x|¢sq> = (871')1/4 67z /28 9 (157)

where s = e~2¢ is the squeezing factor. It is often given in a logarithmic scale:

1—A 20
SdB — —10 loglos =—10 logw <1—|—A) = m . (158)
Wigner function
1 22 P2
.
Weq(z,p) = 2702 RCIE A (1.59)

where 02 = sof and 0127 = %0’3.

The Wigner function of a squeezed vacuum state is plotted in figure 1.1. We can notice
that it corresponds to the Wigner function of the vacuum state squeezed along one axis and
“anti-squeezed” along the orthogonal axis. This is the result of the Heisenberg inequality
0z0p 2 08 .

1.4.3 Two-mode squeezed vacuum state

This two-mode state is also called two-mode squeezed vacuum since it can be simply obtained
by mixing two squeezed vacua on a 50:50 beam-splitter and vice versa.

"This leads to a strong photon bunching effect, which is usually quantified by the second-order correlation

2
function ¢(® (0) = <deJr[1d> /<&Td> . For the squeezed vacuum state we have g(2)(0) = 3 + 1/sinh?(() .
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Figure 1.1: Wigner function of vacuum state on the left and squeezed vacuum
state of 4 dB on the right.

Definition X '
[Ysq)ap = Sab(Q)I0)  ((=[(le"? €C) . (1.60)

where the two-mode squeezing operator is defined as
() = ecab=a18)

The two-mode squeezing operator can be equivalently written as the mixing of two squeezing
operators by a balanced beam-splitter:

~ LT

)84(¢)Su(—C) BT (—

Sab(C)ZB( 4) ’

1

Fock state expansion

[Vsadap = VI = A2 YN[ |n), - (1.61)
n=0

Wigner function

1  (@a—zp)?  (@atrp)?  Ba—pp)2  (Patpp)?
e 4633 4(78 /s 403/3 4688 (1 62)

W(xaapmxb’pb) = W

If we only consider one local mode, i.e. we lose the information about one of them, the
resulting state is thus obtained by a partial trace:

]. ]. 2 2 2 2
. — —(@"+p7) /(o2 +0,)
/(;Wsab(c) = = O_g + 0_]2)6 p ) (1-63)

which is actually a thermal state as described now.

8Here we assume that ¢ is a real number for simplicity.
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1.4.4 Thermal state

As shown above, a thermal state can be obtained by tracing over one mode of a two-mode
squeezed vacuum. Since the two-mode squeezed vacuum is a Gaussian state, the thermal
state is thus necessarily Gaussian.

Density matrix

~ 1 Tith "
= E 1.64
Pth N 1 (nth 1) |n><n| ) ( )

n

where nyy, is the mean photon number.

Wigner function
1

—(@*+p%) /207, 1.65
27T0t2h6 . (1.65)

W(z,p) =

The variance of this state is 07, = (2n4, +1)o3a, which is larger than the vacuum fluctuation.

1.4.5 Covariance matrix

All the states discussed above are Gaussian states and consequently share many common
properties. Indeed all the Gaussian states can be produced through the four mentioned
Gaussian operations. In the general case, one can write:

ﬁgauss = D(O‘)S(C)ﬁth‘gT (C)ZA)T(O‘) ) (166)
which leads to a general Wigner function °
1 _(wfwé))2_(pfpg)2
Wgauss(x;p) = € 27 b (167)
2moL0p

Remarkably, any Gaussian state can be fully described with a real, symmetric and positive
covariance matriz X, which only contains first and second moments:

where
)
x= ||, x=|W]|. (1.69)

For a single-mode Gaussian state with zero mean values, its covariance matrix simply reads

(@ G
2‘<<;{azx}> @) ) (1.70)

1.5 Non-Gaussian states

Recently, non-Gaussian states of light attract more and more attention in the quantum com-
puting and communication communities. Indeed, it has been shown that many operations
require non-Gaussian states and operations [28]. For instance, non-Gaussian operations
are required to distill Gaussian entanglement [29]. In this section, some commonly seen
non-Gaussian states are introduced.

9With the help of rotation operation, it can cover all the single-mode Gaussian states.
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1.5.1 Fock states

Fock states (also known as a number states) contain a well-defined number of photons, which
can be generated from the vacuum state by iterative application of the creation operator *°.

Definition

In) = 0) . (1.71)

Wave function

; 1 x 2 2
nlzg) = ™ H, e v /470 1.72
(nlzo) (V2mog2nn!)t/2 " (aox/é) ( )

with H,, the n-th Hermite polynomial.

Wigner function

_ (_l)n —(x24p?) /202 z24p?
Winy (2, p) = nge 0Ly (T) . (1.73)

Figure 1.2: Wigner function of Fock states |1) (left) and |2) (right).

The corresponding plots are given in figure 1.2. From these Wigner functions, it is easy to
see that the Fock states are phase invariant and as a consequence the marginal distributions
do not depend on the phase.

1.5.2 Qubit state

A qubit is a quantum system having two distinct, that is, orthogonal, logical states. We
label these states with a zero and a one, |0) and |1). And the qubit state can be expressed
in the following form

[0 = cos(5)[0) + ¢ sin(5) 1), (1.74)

10Here we only consider ezxcited Fock states with n > 1 for non-Gaussian states.
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corresponding to a point with spherical polar coordinates # and ¢ in the Bloch sphere. In
particular, here we consider a photonic qubit where |1) and |0) are two Fock states, so the
information is encoded in presence or absence of a single photon.

Definition We rewrite the state in the following form with two real numbers a and S (
o® + 3% = 1) and a relative phase ¢:

a|0) + Be|1) . (1.75)
Wave function
(wolit) = (o p22ees)) (1.76)
x =——|a+8—¢ . .
0 (V2mog)l/2 00
Wigner function
1 2 2 2 2 2
_ —(z*+p?) /20, 2 2 (z%4p” T
Wiy (z,p) 3a7 G [a +8 (—Ug 1) —|—2aﬁao} . (1.77)

10) O+ 1)1

<

Figure 1.3: Wigner function of qubit state with equal weights (left) and equal
mixture of vacuum and single-photon state (right).

The plot given in figure 1.3 corresponds a qubit state with equal weights (a = 8 = 1/V/2).
The Wigner function of the qubit state is phase dependent, unlike the one of a statistical
mixture of vacuum and single-photon state. Additionally the marginal distribution along
the p—direction is asymmetric while the one along the z—direction is symmetric '*. Such
behavior is due to the cross terms (or coherence terms) |1)(0] and |0)(1].

Note that the negative part of the Wigner function of such a qubit state is preserved as
long as B > 0. Since the state is pure, the Hudson-Piquet theorem states that it is indeed
non-Gaussian. In contrast, the statistically mixed state of vacuum and single photon can

1 As will be presented in Chapter 5, this property shows up quite often in the single-photon generation
experiment due to the contamination by backscattered photons.
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not keep the negativity of its Wigner function after 50% of loss 2. However we can not

immediately judge that it is Gaussian or not since it is a mixed state. In this case we can
resort to a recently proposed witness for the quantum non-Gaussian character, which is only
based on the knowledge of photon number probabilities, yet it can detect a wide class of
states with positive Wigner functions that are not mixtures of Gaussian states [30]. It can
been proven that the single-photon state after finite losses always keeps the non-Gaussian

property.

1.5.3 Schrédinger cat state

Schrédinger’s cat is a thought experiment, sometimes described as a paradox, devised by
the Austrian physicist Erwin Schrodinger in 1935. It described a cat apparently held in a
superposition of alive and dead states. Many researchers now refer the Schrédinger’s cat state
to a quantum state in a superposition of two highly distinguishable classical states. Here
the Schrédinger cat state is considered as coherent state superposition (CSS), specifically,
superposition of two coherent states with same amplitudes but opposite phases.

Definition
lcaty) = - (la) £| - ) , (1.78)

where |a) is a coherent state with an amplitude a and No = 4/2(1 £ e~2l2*) are the
normalization factors. |caty) and |cat_) denote the even and odd cat states, respectively.

Fock state expansion

|caty) = —eilo“ /QZW
1.79
2'IL+1 ( )

~laf? /22
¢V (@2n+1)!

We can see that the even (odd) cat state only contains even (odd) photon number states.

|cat_) = \Qn—i— 1)

Wigner function
e—(@*+p%) /205
2mod(1 £ e—207)
1

1 1
— | 3Wio @0) + 5 Wi (o,p) & Wiy o) cos(Zap/ow)|

Wicats) (@,p) = 722" cosh(2a/a0) + cos(2ap/ o) |

(1.80)

where the amplitude « is assumed to be real.

As shown in figure 1.4, the associated Wigner functions exhibit negativities. Also we
can notice that the interference fringes occur in the p—quadrature direction due to the
interference terms between |a) and | — «). This property makes the Schrédinger cat state
strongly differ from a statistical mixture of two coherent states. The fringes become more
pronounced when the amplitude increases. It is worth noting that for Schrédinger cat states
with small amplitudes (also called “kitten” states), the even kitten state can be faithfully
approximated with a squeezed vacuum with an appropriate squeezing; the odd kitten state

123uch state can been seen as a single-photon state after losses. When the losses exceed 50%, its Wigner
function will lose its negativity, as shown in figure 1.3.
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-5

Figure 1.4: Wigner functions of the even cat states |cat. ) in the top line and odd
cat states |cat_) in the bottom line, for an amplitude o = 1 on the left and a = 2
on the right. The interference fringes between the two coherent state peaks at «
and —« quickly become more pronounced when the amplitude increases.

is close to a squeezed single-photon state 3. In Chapter 6 we will use protocols based on
these approximations to experimentally generate Schrédinger kitten states.

1.6 Conclusion

In this chapter we gave a general description of quantum states following two different
formalism: the density matrix and the Wigner function. Importantly the quantum states
have been classified in two complementary classes: Gaussian states and non-Gaussian states.
Gaussian states can be obtained with only Gaussian operations, while the realization of
non-Gaussian states should resort to non-Gaussian operations, such as Kerr effect or photon
subtraction. Both classes will be experimentally demonstrated in this thesis work. In the
next chapter, we will first introduce the generation of Gaussian states, specifically squeezed
vacuum states resulting from nonlinear frequency conversion.

13Squeezed single-photon state can be reformulated as single-photon-subtracted squeezed vacuum. Specif-

ically, a.5(¢)[0) = —sinh(¢)S(¢)|1) .



2 ’ Nonlinear Frequency Conversion

The invention of the laser triggers the fast development of nonlinear optics, which studies
the response of media to strong optical fields. Nowadays nonlinear effects are investigated
and applied over a wide range of energies and powers, from single-photons to zettawatts
and above, and over broad spectral regimes, from THz to Gamma-ray frequencies. In this
chapter we will only focus on nonlinear frequency conversion based on three-wave mixing, a
well-known nonlinear process that leads to the generation of new optical frequencies. Such
nonlinear interaction plays the key role in quantum optics experiments for quantum state
preparation and manipulation.

We first give a general theoretical description of optical nonlinear conversion processes.
Then several specific cases will be discussed, including spontaneous down-conversion, coher-
ent up-conversion and coherent down-conversion. Since these processes have been widely
studied in many textbooks [31, 32, 15] and PhD works [20, 33, 34], the aim of this chapter
is to present and emphasize some important points for our further experiments, and provide
a conceptual and experimental toolbox.
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2.1 Introduction

The optical frequency conversion is a second-order process based on a nonlinear medium
with a X(2) susceptibility. It can be divided into two complementary categories: frequency
down-conversion, where a high frequency photon is “split” into two lower frequency photons
with energy conservation; or frequency up-conversion, where two photons are “fused” into one
of higher frequency. Since these processes always involve three modes, they are usually called
three-wave mizing. The three-wave mixing can efficiently happen when the two following
requirements are fulfilled:

w3 = w1 + wsy energy conservation

ks =k; + ko momentum conservation,

where w23 are the angular frequencies of the fields, and k; 53 the corresponding wave
vectors. The second requirement is usually called phase matching. Typically the phase
matching can be obtained by one of the two following methods:

e Birefringence phase matching : We can rewrite the phase matching condition as Ak =
niwy + nows — n3ws = 0, where n; 23 are the refractive indexes. Thanks to the
birefringence feature of the medium (different refractive indexes for two polarizations),
the difference due to dispersion can be compensated by the difference in phase velocity
of orthogonally polarized waves. Practically, this can be obtained by rotating the
crystal to a given angle (angle tuning), setting the crystal to a given temperature
(temperature tuning), or both.

e Quasi-phase matching (QPM) : If no particular effort is made to match the refractive
indexes, the conversion process will gradually shift to its complementary process after
a so-called coherence length. As a result, there is no net nonlinear effect after prop-
agation of twice the coherence length. In QPM materials, the nonlinear coefficient
X(2) is periodically inverted every coherence length, so that the undesired process is
suppressed and the desired process continues. QPM has many practical advantages:
for instance, all the involved optical fields can propagate collinearly and can have the
same polarization. This not only permits a much longer interaction length, but also
enable to access the largest nonlinear coeflicient of the material.

For a perfect nonlinear medium without loss and absorption, the Hamiltonian of three-
wave mixing can be expressed as

H = ihg(alalas + araqal) (2.1)
where g is a coupling constant determined by the second-order susceptibility of the nonlinear
material. The first coupling term (d{&;dg) corresponds to the down-conversion process while
the Hermitian conjugate term corresponds to the opposite process, i.e. up-conversion. Inter-
estingly, regardless of these processes, there are conversion laws about the photon number
operator N = aTaZ It is easy to check that Nl Ng, Nl +N3, N2 +N3 and N1 +N2 — 2N3
are invariant during the evolution of the system. These conservation laws are also called the
Manley-Rowe relations and tell us that the photons in mode 1 and 2 are always pairwise

created (or destroyed) as a consequence of a photon creation (or destruction) in mode 3.
Such an intriguing behavior will be more elaborated in the next section.

2.2 Spontaneous down-conversion

It can be rigorously called spontaneous parametric down-conversion (also known as SPDC or
parametric fluorescence). This is a very special case among the three-wave mixing processes
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since classically it seems to only involve one pump field. The down-converted photon pairs
are indeed created from the vacuum, a phenomenon that can only be explained by quantum
optics. In this section, we will show that the down-converted photons pairs are strongly
correlated.

2.2.1 Theoretical description

ha)l Figure 2.1: Simple scheme for spontaneous

parametric down-conversion. Disappearance

hw of one pump photon leads to the simultane-
3 ously creation of two photons, usually called

hwz signal and idler.

In order to investigate the dynamics of spontaneous down-conversion as shown in figure
2.1, we resort to the interaction Hamiltonian as

Hins = ihgalalas — h.c. (2.2)
where h.c. denotes the Hermitian conjugate. In the non-degenerate case, the down-converted
photons often refer to “signal” and “idler” photons for historical reasons. In the case of a
strong coherent pump field, there is negligible depletion of the pump power. Hence the
amplitude of the pump field can be classically treated as (a3) = a . With this assumption
the Hamiltonian can be simplified as

Hint = ihmdiég — h.c.  where Kk = ga , (2.3)
therefore, resulting in: .
%am - f%[alyz,mm} — kb, . (2.4)
This leads to the evolution equations for this parametric process:
i1 (t) = @1(0) cosh(¢) 4 ab (0) sinh(¢) , 25)
ao(t) = a2(0) cosh(¢) + af (0) sinh(C) . '

where ¢ = xt (we will see later it is actually the squeezing parameter).
Using the expressions for the quadrature operators (with the convention ooy = 1):

A ,\T ~
r=a' +a
R (2.6)
p= Z( - a) )
we can get the following correlations between the two-mode quadrature observables
1) £ &o(t) = [21(0) + £2(0)]e™ @7)

P1(t) £ pa(t) = [p1(0) £ p2(0)]eTC .
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Initially, the two modes are both in vacuum states and the quadrature observables in these
modes are uncorrelated. But after a certain interaction time, there appear correlation be-
tween the position observables and anti-correlation between the momentum observables.
This property is the basis of the famous EPR paradoz [35], thus the generated state is also
called EPR state.

We can write down the evolution operator for this spontaneous down-conversion process:

$12(¢) = e W = fma—alay) (2.8)

which is usually called two-mode squeezing operator, as introduced in Chapter 1.

For better illustrating the squeezing feature, we can consider the simpler degenerate case.
With a; = as = a we obtain

a(t) = a(0) cosh(kt) 4 a'(0) sinh(kt) . (2.9)

Similarly, we can get the evolution of the quadrature operators as:

(2.10)

from which we deduce a so-called squeezing factor s = e~2¢. The evolution operator in this
case becomes the squeezing operator S €)= eC(dz_&Tz), also presented in Chapter 1.

Additionally, we can use the intensity correlation function g(2) (0) to study the photon
statistics of the down-converted light. For the light produced from an initial vacuum state,
we have

@) _ (@ f(t)al(t)a

0= G
1

sinh? ¢

(H)a(t))
t

®) (2.11)

=3+

This expression indicates that the generated squeezed vacuum state exhibits photon bunching
effect (9 (0) > 1). This feature is well expected as the state must contain pairs of photons.

2.2.2 Optical parametric oscillator

Obtaining a strong nonlinear effect usually requires a large nonlinear coefficient and an
intense pump power. Therefore, one possible way to enhance the nonlinear effect is to use
nonlinear mediums with QPM structures or resort to new nonlinear materials. The other
way is to enhance the pump power either by using a pulsed pump or utilizing a cavity for
pump recycling. To work in the continuous-wave regime, the second solution is required. By
inserting a nonlinear crystal into a resonant cavity, one forms a so-called optical parametric
oscillator (or OPO). Figure 2.2 shows an OPO sketch.

Figure 2.2: Loop of the fields inside

U T the OPO cavity. L denotes the intra

A B | cavity losses, T' stands for the transmit-
n o

/7 tance of the output coupler. “In” repre-

> = Out sents the input field (a priori vacuum)

and “Out” denotes the output field.

To describe the dynamical relationships of the fields inside the cavity, we use the follow-
ing notations:
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— T intensity transmission of the output coupler
— L intra-cavity loss
— 7 round-trip time

— g effective nonlinear gain

For the degenerate case and under the assumption of a strong coherent pump field, the
dynamical relationship after one round-trip is given by [20]

daf(t)

L — (T /2)a(t) + glelal (1) + VIaL(t) + VTan () | (212)

T

where 7" = L+ T, a the signal mode in the cavity, a, the pump mode, dr, the mode coupled
to the vacuum by the loss, and ay, the input mode outside of the cavity. The first and
second terms in the right side of the equation correspond to annihilate and create a photon
in the signal mode, respectively. Therefore, there exists a pumping threshold a;; where the
gain compensates the cavity losses: —71"/2 + glay, = 0. Consequently, we can introduce a
parameter € = |a|/|alg = ||2g/T" defined as the ratio of the pump to the threshold, which
can be interpreted as the pumping strength.

In order to investigate the noise spectrum of the OPO output, we use the following
rotation to obtain the quadrature observable

(t) = e a(t) +e”al(t) , (2.13)

where 6 = wt + ¢,/2 and use the convention oy = 1. This yields to the loop equation for
the quadrature observable:
dz(t)
dt

= —T'/2i(t) + glal@(t) + VLiL(t) + VTim(t) . (2.14)
After a Fourier transformation, we get
(1+e = iw/fwe) #(w) = W) + Phdn(w) | (2.15)

where w. = T"/(27) corresponds to the bandwidth of the cavity.
The following relation enables us to access the quadrature of the output mode

Fout = VT3 =1 =Ty, . (2.16)

With the help of equations (2.15), (2.16) and the fact &1 (w), Zin(w) act on vacuum, we can
finally obtain the spectral density of noise s, = (Zout(wW)Tout(—w)) :

4e
Sz(w)=14n 5 o)
S[)(w) =1- 77(1 +<€)2 +4(UJ/UJC)2 )

where n = T/(T + L) is the escape efficiency of the OPO. This very important quantity
gives the probability for a generated photon to go out of the cavity and not to disappear
due to the losses.
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Figure 2.3 gives the squeezing map versus the pump power and escape efficiency at zero
analysis frequency. The green line shows the boundary for obtaining 10 dB squeezing. It
is important to stress that the escape efficiency impose the limit for the squeezing that
one can maximally obtain by increasing the pump power. For instance, to get 10 dB,
the escape efficiency should be higher than 90%. This is clear with the help of equation
(2.17), s™* = s_(w = 0,e = 1) = 1 —n. In addition, we can also notice that for a low
escape efficiency, the squeezing increase slowly with the pump power. The evolution is more
significant for larger escape efficiency.

Another important aspect for squeezed state is its purity, which is defined as P =
1//555_ as for any Gaussian states. As shown in figure 2.4, the purity of the state decreases
with the pump power. When the pump power goes to the threshold, the purity degrades
to zero since the anti-squeezing diverges to +o0o. Also, it is worth noting that larger escape
efficiency provides higher purity for a given pump power.
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In a nutshell, high escape efficiency indicates a “good” OPO.

2.2.3 Building an OPO

In terms of cavity design, there exits many methods to conceive OPOs for generating
squeezed light. Bow-tie configuration is used in many experiments as it offers many de-
grees of freedom for alignment and phase matching, many injection and output ports and
single-direction propagation. Ref. [36] employed this cavity configuration and observed 9
dB squeezing at 860 nm. Due to the relative long cavity length (a nonlinear crystal and
four mirrors are needed), the squeezing bandwidth is however very often limited around 10
MHz. For obtaining a broader bandwidth but also reduced losses, monolithic OPO provides
a solution where both end surfaces of the crystal are polished and mirror-coated. Addi-
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tionally, it has extremely low intracavity losses due to the absence of extra optical elements
in the cavity. So far the highest squeezing level was reported to be -11.5 dB in R. Schn-
abel’s group with a bandwidth of about 170 MHz [37]. However, it is quite challenging for
a monolithic OPO to simultaneously satisfy the conditions of cavity resonance and phase
matching. Therefore, as a compromised case, a semi-monolithic configuration is often used
in the experiment, where the cavity is formed by one of the crystal ends and a curved bulk
coupling mirror [38]. We use this specific scheme both for type-I and type-II ' OPOs as
shown in figure 2.5.

T=10% @ 1064
HR @ 532

HR @ 1064 . ) _ _
T=56% @532 Figure 2.5: Configuration of a semi-
monolithic OPO. The cavity is formed
i by one end face of crystal and a curved
output mirror with a radius of curvature

of 38 mm.

KTP
- . 3x3x10 P
Type ‘:‘_ Y 2x10 PPKT
Type -

Coating The OPO is made of a semi-monolithic linear cavity. One face of the crystal is
directly coated with an intensity reflection of 95% for the 532 nm pump and high reflection
at 1064 nm. A mirror with 38-mm radius of curvature is used for output coupler, which has
a reflection of 90% for the infrared and is highly reflective for the pump. Therefore, the free
spectral range Z is about 4 GHz. With an estimation of 0.5% of intracavity losses, we can
obtain a cavity finesse F = 60, which finally gives us the cavity bandwidth A = 60 MHz.
Additionally the escape efficiency is thus given by n = T/(T 4+ L) ~ 95%.

Pump source The pump source at 532 nm is from a continuous-wave frequency-doubled
Nd:YAG laser at 1064 nm. Actually, both the pump light and seed light are directly acces-
sible from our laser system 2.

Phase matching As explained at the beginning of this chapter, there are two possible ways
to realize phase matching with birefringent crystals: angle tuning and temperature tuning.
In our case of a semi-monolithic configuration, it is not possible to tilt the crystal to obtain
the phase matching. As described in [20, 33], phase-matching condition around the room
temperature can be realized by optimizing the crystal cutting angle. Usually the acceptable
bandwidth of phase matching is about 10°C, which makes it possible to simultaneously
achieve the aforementioned cavity resonance with the help of other degrees of freedom.

Resonance The OPOs used in our experiment are resonant for all the interacting fields,
resulting in a threshold as low as 50 mW. Specifically, for type-I OPO, the cavity is set on
resonance both for the signal and the pump by adjusting the cavity length via a PZT and
the crystal temperature. For type-II OPO, there are three involved modes: signal and idler
with orthogonal polarizations, and the pump. The triple resonance is thus more difficult to
achieve since it needs another degree of freedom. As the cavity is semi-monolithic, the angle
of the crystal is fixed for all the beams with a normal incidence. Fortunately, by tuning the
temperature of the crystal in the Nd:YAG laser, we can modify the output laser frequency,

I Type-1 phase matching: 0 +— e+ e Type-II phase matching: e +— o+ e
2Diabolo Laser from Innolight
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which gives the possibility to obtain the triple resonance. However this method has two
problems. First the tuning process is slow. Second the tuning range is limited (about 6
GHz/K). Indeed for some crystals, the triple resonance condition cannot be found, it is then
necessary to change the incident point on the crystal.

Locking Since the cavity is resonant for all modes, in principle we can use any of them
to lock the cavity. We choose to use the pump to lock the cavity, otherwise it would be
necessary to inject an additional infrared seed beam. The length of the cavity is locked by
using the Pound-Drever-Hall technique (12 MHz phase modulation frequency). Thanks to
the microcontroller-based hybrid locking system (which will be detailed in Chapter 4), the
cavity locking is totally automatic.
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Figure 2.6: (a) Squeezing and anti-squeezing versus analysis frequency for differ-
ent values of the pump power. The dashed line is theoretical fitting using equation
(2.17) with parameters n = 91% and w.=65 MHz. All traces are normalized to
the vacuum noise. (b) Arches of squeezing when the phase of the local oscillator is
scanned, at pump power P= 40 mW. The trace is recorded at a Fourier frequency
of F = 4 MHz with a resolution bandwidth RBW = 300 kHz and a video bandwidth
VBW = 3 kHz, and it is normalized to the vacuum noise.

Results The highest measured squeezing in our experiment occurs close to the threshold
Py, = 50 mW. Figure 2.6(a) shows the corresponding squeezing and anti-squeezing as a
function of the analysis frequency. The theoretical curves are fitted according to equation
(2.17), with a global efficiency of n = 91% and a bandwidth of w.=65 MHz. The recorded
arches of squeezing at an analysis frequency of 4 MHz are shown in figure 2.6(b) when the
phase of local oscillator is scanned. The measured squeezing as high as 10.5 dB indicates
overall losses below 10%. After correction for the propagation and detection losses of 93%,
we estimate a squeezing of 16.5 dB at the output of the OPO.

It is worth noting that even though many state engineering protocols don’t need so high
level of squeezing (3dB is very often enough), the maximum squeezing obtained here is not
useless. Indeed the maximum squeezing an OPO can obtain indicates how “good” an OPO
is as it is related to the escape efficiency, as stressed previously. Better is an OPO, purer is
the output squeezing at a specific level. In figure 2.6(a), we also give the case of P = 5 mW,
showing a high-purity 3 dB squeezing over a bandwidth of 30 MHz. Such a pure squeezed
state will be an essential source for our experiments.
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2.3 Coherent frequency up- and down-conversion

Besides of generating squeezed light, nonlinear frequency conversion has also great poten-
tial for manipulating and controlling quantum states. For instance, coherent frequency up-
conversion is essentially a sum frequency generation (SFG) process where a signal photon is
translated to the one with a higher frequency while completely preserving all the quantum
characteristics [39]. Such coherent conversion can be used as a photonic quantum informa-
tion interface, which plays a critical role in the development of future quantum networks
[40]. For example, photons at telecommunications wavelengths of 1310 nm and 1550 nm are
preferable to transmit information in optical fibers for distribution over long distances. How-
ever, efficient quantum memories typically are realized with alkaline atoms, which require
wavelengths near 800 nm. Hence in order to bridge the spectral gap between the channels
for quantum communication and nodes for storage and quantum processing, quantum inter-
faces are required. Here we will introduce a photonic interface based on coherent frequency
up-conversion.

2.3.1 Coherent up-conversion

hwl Figure 2.7: Simple scheme of coherent fre-
quency up-conversion process where a single
h(l) photon at w; is annihilated with the creation
3 of a higher energy photon at ws3. Since the
hwz pump at ws is strong, this process can be

seen as a one-to-one conversion.

Figure 2.7 depicts a simple scheme of the coherent frequency up-conversion process where
a single photon at w; is annihilated with the creation of a higher energy photon at ws. Since
the pump field at wy is strong, this process can be seen as a one-to-one conversion. For
describing the evolution of this conversion process, we can revisit the equation (2.1) and
focus on the up-conversion part of the interaction Hamiltonian:

Hint = ihganagal, — h.c. . (2.18)

If the pump field is very strong with negligible depletion, we can classically treat the operator
for pump mode as (G2) = . With this assumption the Hamiltonian can be simplified as

Hine = ihndld; — h.c. where kK = ga . (2.19)

The evolution equation is thus given by

d . T R
s = —ﬁ[al,&?’lmt} = Ka3,1 - (2.20)

This leads to the evolution equations for this conversion process:

Q>

a1(t) = a1(0) cos(kt) +
as(t) = as(0) cos(kt) —

3(0) sin(kt)

1(0) sin(kt) . (221)

Q>
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Compared to equations (2.5) for spontaneous parametric down-conversion, here there is no
creation operator in the evolution equation, which means that no spurious “noisy” photon
is generated during the process. After an interaction time fulfilling xt. = 7/2, we can get
a1 (te) = a3(0) and as(t.) = a1(0), which shows a complete state transfer from one frequency
to the other.

Let us elaborate this property with a simple example. Assuming initially there is no
photon in the SFG mode 3, and a single-photon state in the signal mode 1, hence the initial
state can be expressed as [¢)) = [1,0), 3 = d{ 0,0), 5 . After an amount of time ¢, the finally

state is [¢), = a3|0,0), 3 =10,1), 5 . Clearly the single photon state at low frequency wy is
completely transferred to the one at higher frequency ws .

Interestingly, from equation (2.21) we can notice that the coherent up-conversion process
is actually a beam splitter with a transmittance ¢ = cos st and a reflectance r = sin st [41].
Continuing with the above example, we can see that generally after a time ¢ the final state
is [¢), = (tal + rd§)|0,0>1,3 = t[0,1), 3 +7[1,0); 3 . It is a single-photon entangled state
spanning between two colors.

With an initial state [¢)) = |¢); ® |0)5, the evolution of the average photon number in
the signal mode 1 is given by

Ni(t) = (la] (H)a (b))
= t*(¢lal (0)a1(0)|) (2.22)
=N}

where N{) denotes the average photon number of the input signal. Similarly, the average
photon number for the SFG mode 3 is

Ns(t) = r2NY . (2.23)
It is easy to check Ni(t) + N3(t) = NY. Hence a conversion efficiency can be defined as

Ns(t P
n= Jif({)) = r? = sin® wt = sin?( Fc) , (2.24)

where P, is the pump power for the complete conversion. The evolution of average photon
number with the pump power is illustrated in figure 2.8. We notice that the conversion
efficiency shows an oscillation behavior with the increase of pump power.

0.8 .

SFG mode —
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= Figure 2.8: The correlation be-
Z o4t . tween average photon numbers in

SFG mode 3 and signal mode 1.
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PIP,

The joint probability P;s of simultaneously detecting a photon in mode 1 and mode 3 at
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the frequency converter is given by
Py oc (@] (1)} (t)as(£)aa (1))
= ((Ag) — (Ro))n(1 —n) ,

which depends on the conversion efficiency and has a maximum value at 50% efficiency.
Additionally the intensity cross-correlation function at zero delay is obtained by

(2.25)

30 = el = B =0 g2 (220
(2)

where g,”’(0) is the intensity auto-correlation function 3 for the initial state in the single
mode. Note that the cross-correlation function does not depend on the conversion efficiency.
It is expected by noticing that the frequency conversion process acts as a beam-splitter. The
cross-correlation function gg) (0) between the converted and unconverted mode is equivalent
to the auto-correlation function ¢ (0) of the input quantum state. Since g‘®(0) is invariant

to the beam-splitting ratio (cf. Appendix B), hence gg)(()) is independent of conversion

efficiency. In particular, if the input state is a single-photon state, gg) (0) = 05 if the input
- X )0} —
is a coherent state, g;5' (0) = 1.

2.3.2 Multimode regime

In this section, we will consider a more general case where both pump and signal have multi-
longitudinal modes. This is the case of coincidence pumping frequency up-conversion that
will be used in one of our experiments (cf. Chapter 8). In this case, the frequency conversion
process becomes much more complicated due to the commutative coupling between the pump
and signal modes. The corresponding Hamiltonian can be reformulated as

Hine = ihg Y ai(anzaly; + h.c.) (2.27)
ij

where we assume that the nonlinear coupling coefficient is constant and all the modes are
in the phase-matching window. «; is the pump filed related to each longitudinal mode
numbered by 7; @, ; is the annihilation operator of signal photons related to longitudinal mode
labeled by j; and d;ij is the creation operator of SFG photons related to the longitudinal
modes of both pump and signal fields. Then the dynamics of the involved modes is given
by the coupled mode equations as

d . i N
0 = _ﬁ[ 15, Hint] = gzaia&'j
v (2.28)
d . i N
770813 = *ﬁ[amﬁ"ﬂmt] = goyan; -

It is convenient to introduce the following annihilation operators corresponding to the su-
permodes of signal and SFG fields [42, 43]:

a; = E Qa1j
J
az = E Cit3ij »
ij
3The intensity auto-correlation function at zero is defined as

(@@at®a@a@) _ (2 — @)
(a()ta(t))?

(2.29)

92 (0) =
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where ¢; = a; /o and a® = Z a? (a € R), which means that each probability amplitude is
K3

weighted by its corresponding pump field amplitude. This leads to the evolution equations
for the conversion process:

a1 (t) = a1(0) cos(kt) + a3(0) sin(kt)

as(t) = az(0) cos(kt) — a,(0) sin(kt) , (2.30)

which is exactly the same as equation (2.21) in the single-mode regime. It indicates that
we can coherently manipulate the SFG output field by classical modification of the pump
fields. This is very desirable for quantum state engineering and control. Indeed it has been
shown that with proper dispersion engineering of the converter, a quantum pulse gate can be
realized [41]. Additionally, using a pump field with specific phase chirping, one can effectively
compress a chirped single photon while keeping the quantum properties and coherence [44].

In the next section, we will introduce a complementary process for quantum state ma-
nipulation, i.e. coherent frequency down-conversion.

2.3.3 Coherent down-conversion

Although experimental demonstrations of coherent up-conversion are very successful since
the late 90’s [39], the opposite process, i.e. coherent down-conversion, has been proposed
and experimentally demonstrated only very recently [45, 46]. As we already know, there
is a mismatch between the atomic transition wavelength for quantum memory and optical
transmission wavelength for information distribution in optical fiber [47, 48]. Quantum
interface based on coherent down-conversion can turn to be a critical resource for building
a quantum network [49, 50].

h Figure 2.9: Simple scheme of coherent
(1)1 down up-conversion process where a single
photon at w3 is annihilated with the creation

h(l)S of a higher energy photon at w;. Since the
hwz pump at wo is strong, the spontaneous emis-

sion for frequency down-conversion is negli-
gible, which leads to a noiseless frequency
down-conversion.

It is commonly believed that frequency down-conversion is noisy and cannot preserve
quantum coherence because the appearance of the al terms in equation (2.5) leads to spon-
taneous quantum noise. Therefore quantum frequency down-conversion cannot be realized
with three-wave mixing process. However, there is another operation regime as shown in
figure 2.9. Here we inject a strong field at lower frequency we instead of higher frequency
w3 as in spontaneous down-conversion process. This process will not be encountered as a
parametric amplification for signal field due to the gain saturation. In the other words, the
amplification of the strong signal field at ws requires more energy from the pump field at
ws, which eventually will be depleted.

For describing this specific case, we can use the Hamiltonian of three-wave mixing (2.1)
and focus on the down-conversion part:

Hine = ihgalabas — h.c. . (2.31)
In our case, the approximation (ds) = « is valid, which results in

Hine = ihndidg — h.c.  where Kk = ga . (2.32)
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The first term in this equation shows that the annihilation of a photon at w3 will lead to
the creation of a photon at wy with lower energy. If we write down the full expression of the
interaction Hamiltonian, we can realize that it is the same as the one used for coherent up-
conversion (2.19). Indeed we just emphasize the different parts of this coupling Hamiltonian
that originally includes the two processes, up- and down-conversion. Therefore, it is natural
to obtain the same dynamics equations:

1(0) cos(kt) + a5(0) sin(kt)
a3(0) cos(kt) — a

I
Q>

ay(t)

as(t)

—_
—
=)
=
w0
.
=
—
)
~
~—

Interestingly we can show that the conversion direction depends on the initial state. As
we already demonstrated, if the initial state is in [¢)) = [1,0), 5, we will get [¢)), =0,1), 5.
This is the up-conversion process. Now if we set the initial state in [¢)) = |0,1), 5, then
we have [¢), = [1,0), 5 , which is the down-conversion process. This is not difficult to
understand if we notice the photon-number oscillation behavior during the up-conversion
process as shown in figure 2.8. When the pump power reaches the complete up-conversion
conversion point at P., the reverse process, down-conversion, will start.

Coherent down-conversion not only allows a quantum conversion of a state to lower
frequency, but also permits a realization of a full quantum frequency translation that we
will present right now.

2.3.4 Quantum frequency translation

Ideally, quantum frequency translation (QFT) should satisfy the following requirements [51]:

— Allow translation by any small or large frequency shift (usually in the visible and near
infrared regimes).

— Preserve the full quantum properties of the original state, e.g., coherence, and entan-
glement.

— Must be highly efficient while not introducing additional spurious “noise” photons.

QFT based on the three-wave mixing (either coherent up-conversion or coherent down-
conversion) can only satisfy the latter two requirements. For example, if we rely on a
quantum memory * that absorbs and emits at a 795-nm wavelength, and we want to store
photons at 808 nm °, it is not possible to directly use the above mentioned converter due
to the small difference between the signal and target frequencies. One solution is to use
four-wave mizing (FWM) where the two pump fields are designed to have a frequency
difference equal to that by which one aims to translate the quantum state of interest [51].
An alternative solution is to combine the aforementioned coherent up- and down-conversion
as illustrated in figure 7.1.

The signal photon at w;, is first converted to an intermediate photon at w; by coherent
up-converter with a pump field at wp;. Subsequently a down-converter pumped at wpo
translates the intermediate photon to a target frequency at wy,:. Therefore the frequency
shift Aw between input and output photons is equal to the frequency difference between
the two pump fields, i.e. Aw = wout — Win = wp1 — wp2 . Therefore, we can engineer the
frequencies of pump fields to finely translate the signal state by a small frequency shift.
Such fine frequency translation of quantum states can find useful applications in practical
quantum networks.

4using atomic Rb ensembles
5Typical laser wavelength from Ti:sapphire oscillator. This laser is used in many experiments for gener-
ating entangled photon-pairs.
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Up-conversion Down-conversion

Figure 2.10: lllustration of quantum frequency converter with the combination of
a coherent up-converter and a coherent down-converter. After an up-converter the
signal photon at wj;, is converted to an intermediate photon at w; which is then
down-converted to the target photon at w,¢. The small frequency shift can be
realized by finely tuning the frequencies of the two pump fields.

2.4 Conclusion

In this chapter we have introduced some basic concepts about nonlinear frequency conversion
and discussed the corresponding main properties for frequency down-conversion and up-
conversion. The spontaneous down-conversion is the core process of an OPO which enables
the generation of squeezed vacuum states. These squeezed states can be used as initial
Gaussian sources for the subsequent generation of non-Gaussian states (e.g. Fock states and
Schrodinger cat states) with the help of conditioning measurement. This is the focus of the
next chapter.

Besides of preparing quantum states, nonlinear frequency conversion can also be used
as an essential tool for quantum state manipulation. Specifically, coherent up- and down-
conversion allow to translate the quantum states into a higher or lower frequency while
maintaining the quantum properties. Combination of these two coherent processes gives the
possibility to implement a quantum frequency translator, which will play an important role
as quantum interface in quantum information processing. The experimental implementation
of coherent converters will be given in part III.



3 ’ Quantum Theory of Measurements

Quantum measurement not only gives some information about a system, but also modi-
fies the system. Therefore, in many quantum information protocols measurements play an
important role for both characterizing and engineering quantum states. In this chapter, it
will be shown that with linear optical elements and photon detectors, non-Gaussian states
can be obtained through measurement-induced interaction [52]. Here the quantum mea-
surements are described with the well-known Positive Operator Valued Measures (POVM).
The formalism provides a powerful and general description of both the probabilities associ-
ated with measurement outcomes and the quantum states of the measured system after the
observation [1, 53].

We will start with an introduction of the POVM formalism, which is then used to describe
two types of detectors: photon detectors that give “clicks” related to photon numbers, and
homodyne detectors that provide photocurrents related to quadratures. Next, a general
strategy at the heart of this work , i.e. conditional state preparation, will be presented in
detail. Finally we will present a typical technique for quantum state tomography based on
Mazimum likelihood algorithm.
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3.1 Positive Operator Valued Measures

Quantum measurements are usually described by a collection of measurement operators
{M,,} where each index m refers to a possible measurement outcome. The measurement
operator acting on a state |¢) will result in the state !

_ Vi) -
) = (3.1)

where P(m) is the probability for obtaining the result m, which is given by
P(m) = (| M}, M) (3.2)
There is a special measurement operator, called a projector P,,, which is defined as

Py = [0A)(¥n] (3.3)

where {|¢))} are the eigenstates of an observable with each eigenvalue . Hence, if one
measures A and the eigenvalue is not degenerate, the state after the measurement will be
in the eigenstate |1)). This kind of measurement refers to projective measurement (or von
Neumann measurement).

In practice, if we are only interested in determining the probability of possible measure-
ments, it is very convenient to define a set of Hermitian operators, i