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Résumé

L’apprentissage supervisé est un domaine de recherche majeur en apprentissage au-
tomatique. La qualité et la quantité des données d’apprentissage sont très importantes
en apprentissage supervisé. Cependant, dans la plupart des cas, les échantillons util-
isés pour l’apprentissage d’un modèle de classification sont insatisfaisants. Les données
bruitées, déséquilibrées, de grande dimension ou complexes sont des défis majeurs en ap-
prentissage automatique. Pour la plupart des classifieurs, la performance de classification
décroit plus ou moins selon le niveau de bruit et le taux de déséquilibre.

L’apprentissage d’ensemble est une méthode efficace pour développer des systèmes
de classification précis. Ce paradigme d’apprentissage est attrayant car il est capable
de booster des classifieurs faibles, dont la performance est légèrement meilleure qu’une
prédiction aléatoire, en des agrégations de classifieurs performantes capables d’effectuer
des prédictions très précises. En outre, la capacité de généralisation d’un ensemble (ou
classifieur multiple) est souvent plus forte que celle des classifieurs de base le com-
posant. Le boosting, le bagging et les forêts aléatoires sont des méthodes d’apprentissage
d’ensemble majeures. Les méthodes d’ensemble ont été appliquées avec succès dans de
nombreuses applications du monde réel telles que le diagnostic médical et la cartographie
d’occupation du sol.

La notion de marge, qui a été initialement utilisée pour développer la théorie des
SVM (Support Vector Machine) et pour expliquer le succès du boosting, joue un rôle
majeur de nos jours en apprentissage automatique. La marge d’ensemble est un concept
clé en apprentissage d’ensemble. Elle a été utilisée aussi bien pour l’analyse théorique que
pour la conception d’algorithmes d’apprentissage automatique. De nombreuses études
ont montré que la performance de généralisation d’un classifieur ensembliste est liée
à la distribution des marges de ses exemples d’apprentissage. Récemment, la marge
d’ensemble a été utilisée pour l’échantillonnage de données déséquilibrées, la suppression
d’erreurs d’étiquetage, la sélection de données, la sélection d’attributs et la conception
de classifieurs.

Ce travail se focalise sur l’exploitation du concept de marge pour améliorer la qual-
ité de l’échantillon d’apprentissage et ainsi augmenter la précision de classification de
classifieurs sensibles au bruit, et pour concevoir des ensembles de classifieurs efficaces
capables de gérer des données déséquilibrées.

Dans cette thèse, nous introduisons tout d’abord une définition alternative de la
marge d’ensemble.
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RÉSUMÉ

Une nouvelle définition de la marge d’ensemble

Nous proposons une nouvelle marge d’ensemble. C’est une version non supervisée
d’une marge d’ensemble populaire, elle ne requière pas d’étiquettes de classe. Par con-
séquent, elle est potentiellement plus robuste au bruit puisqu’elle n’est pas affectée par
les erreurs d’étiquetage. Une instance de forte marge est une instance qui a été classifiée
par la majorité des classifieurs de base en la même classe. Plus la marge d’une instance
est forte, plus la classification associée est fiable. De plus, la marge proposée a l’avantage
par rapport à une marge supervisée d’être utilisable pour l’évaluation ou la conception
de classifieurs en apprentissage d’ensemble semi ou non supervisé.

Notre marge d’ensemble, ainsi que trois autres marges d’ensemble, sont à la base de
ce travail dont les contributions sont présentées dans ce qui suit :

Filtrage du bruit d’étiquetage utilisant la marge d’ensemble

Les données d’apprentissage mal étiquetées sont un défi majeur pour la construction
d’un classifieur robuste que ce soit un ensemble ou pas. Une instance mal étiquetée
est une instance dont la valeur attribuée et la valeur de l’étiquette ne sont pas com-
patibles. Les limitations des travaux relatifs actuels suggèrent clairement qu’une piste
différente devrait être suivie pour le filtrage des données. La distribution des marges des
données d’apprentissage reflète efficacement la performance d’un algorithme d’ensemble.
Lorsqu’un modèle classifie correctement un jeu de données avec une forte probabilité,
ces instances devraient avoir de fortes marges. La présence de bruit peut affaiblir la
performance d’un classifieur et conduire à une distribution de marges plus faibles.

Pour gérer le problème d’étiquetage, une méthode d’identification et d’élimination
du bruit d’étiquetage utilisant la marge d’ensemble est proposée. Elle est basée sur un
algorithme existant d’ordonnancement d’instances erronées selon un critère de marge.
Cette méthode peut atteindre un taux élevé de détection des données mal étiquetées
tout en maintenant un taux de fausses détections aussi bas que possible. Elle s’appuie
sur les valeurs de marge des données mal classifiées, considérant quatre différentes marges
d’ensemble, incluant la nouvelle marge proposée. De plus, elle est étendue à la gestion
de la correction du bruit d’étiquetage qui est un problème plus complexe.

La principale différence entre notre filtre de bruit d’étiquetage et ceux existants, basés
aussi sur une approche ensembliste, est dans le fait qu’il n’adopte pas seulement le vote
d’ensemble pour distinguer les données mal classifiées de celles qui sont bien classifiées,
mais aussi, il prend en compte explicitement, à travers la marge d’ensemble, la probabilité
que des instances mal classifiées soient identifiables comme du bruit. Ainsi, cette méth-
ode pourrait aussi être considérée comme un filtre probabiliste. L’efficacité de nos méth-
odes d’élimination et de correction du bruit d’étiquetage, basées sur l’ordonnancement
d’instances, est démontrée sur la classification de données. Une analyse comparative est
menée par rapport au filtre basé sur le vote majoritaire, un filtre de bruit d’étiquetage
ensembliste de référence. Deux types de bruit d’étiquetage artificiel, bruit aléatoire et
bruit basé sur la matrice de confusion, sont utilisés dans nos expérimentations. Le bruit
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basé sur la matrice de confusion affecte principalement les bordures de classes. Par con-
séquent, il est plus difficile à identifier que le bruit aléatoire.

Elimination du bruit d’étiquetage basée sur la marge d’ensemble

La première étape de notre méthode de suppression de bruit implique un classi-
fieur ensembliste robuste : le bagging qui est construit en utilisant tout l’échantillon
d’apprentissage. La marge de chaque instance d’apprentissage est alors calculée. Notre
méthode ordonne les instances d’apprentissage mal classifiées selon leurs valeurs de
marge. Plus la marge est élevée (en valeur absolue), plus la probabilité que l’instance
correspondante mal classifiée soit mal étiquetée est forte. Les deux étapes suivantes de
notre algorithme s’appuient sur un classifieur ensembliste sensible au bruit : le boosting.
La seconde étape vise à sélectionner le meilleur échantillon d’apprentissage filtré, dont le
bruit d’étiquetage aura été éliminé. Le taux de bruit d’étiquetage est estimé automatique-
ment par une procédure itérative qui supprime une quantité M (de 0 à progressivement
40% de la taille totale de l’échantillon d’apprentissage) d’instances potentiellement mal
étiquetées ordonnées de l’échantillon d’apprentissage et évalue la précision de classifica-
tion du boosting, construit avec l’échantillon d’apprentissage filtré, sur un échantillon de
validation. Cette stratégie adaptative sélectionne alors l’échantillon d’apprentissage filtré
qui a conduit à la précision maximale sur l’échantillon de validation. A la dernière étape,
le boosting est impliqué encore pour évaluer la qualité de l’échantillon d’apprentissage
filtré obtenu via une procédure d’évaluation de la précision de classification. KNN (K-
Nearest Neighbours), un classifieur individuel sensible au bruit, est également utilisé (au
lieu du boosting) dans les deux dernières étapes de notre filtre de données d’apprentissage
mal étiquetées.

Une nouvelle version étendue de notre méthode d’élimination du bruit basée sur la
marge d’ensemble est proposée. Ce filtre itératif s’appuie sur un calcul adaptatif des
valeurs de marge de chaque instance d’apprentissage. Dans la version originale de notre
algorithme, les marges d’apprentissage sont déterminées en une seule fois, dans la pre-
mière étape. Les marges d’apprentissage étant à la base de notre procédure d’évaluation
du bruit, une stratégie sensée consisterait à les mettre à jour à chaque étape d’élimination
du bruit.

Correction du bruit d’étiquetage basée sur la marge d’ensemble

L’élimination du bruit peut écarter certaines données utiles, c’est pourquoi la cor-
rection automatique des instances d’apprentissage, identifiées comme mal étiquetées (in-
stances mal classifiées de forte marge), est aussi tentée. La correction du bruit a engendré
de meilleurs résultats que la simple élimination du bruit des données dans certains cas.
Dans un schéma de correction de données, les instances mal étiquetées sont identifiées
mais au lieu de les supprimer elles sont corrigées en substituant les étiquettes erronées par
des étiquettes plus appropriées. Les étiquettes des instances mal étiquetées les plus prob-
ables sont modifiées en utilisant les étiquettes de classe prédites. Ensuite, ces instances
corrigées sont réintroduites dans l’échantillon d’apprentissage. Notre méthode de correc-
tion du bruit d’étiquetage s’appuie sur une stratégie adaptative similaire à celle de notre
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RÉSUMÉ

méthode d’élimination du bruit d’étiquetage. Mais, au lieu de supprimer une quantité M
de bruit de l’échantillon d’apprentissage, elle corrige automatiquement le bruit détecté
en utilisant les étiquettes prédites par l’ensemble construit par bagging. Ainsi, contraire-
ment au schéma d’élimination, le nombre total d’échantillons d’apprentissage reste le
même.

Une version itérative de notre algorithme de correction du bruit est aussi proposée
dans cette thèse. Cette méthode automatique de correction du bruit s’appuie sur un
calcul répétitif des marges d’apprentissage qui est similaire à l’étape de mise à jour de
la distribution de marges de notre méthode de suppression du bruit d’étiquetage.

Les résultats de notre évaluation empirique démontrent que notre méthode basée sur
la marge est plus performante que le filtre basé sur le vote majoritaire. En outre, les
marges supervisées sont généralement plus performantes que les marges non supervisées,
et les marges basées sur un calcul de somme sont plus efficaces pour la gestion du bruit
d’étiquetage que les marges basées sur un calcul de maximum. De plus, notre approche
d’élimination du bruit est plus performante que le schéma de correction associé. Notre
méthode de filtrage de bruit basée sur un calcul itératif des marges d’apprentissage s’est
avérée utile pour améliorer la performance de classification de l’algorithme AdaBoost.M1.

Classification multiple de données déséquilibrées utilisant la marge
d’ensemble

Une distribution de classes déséquilibrées dans un échantillon d’apprentissage est un
défi à la conception d’un classifieur. Les méthodes d’ensemble sont plus efficaces que les
techniques d’échantillonnage de données pour améliorer la performance de classification
des données déséquilibrées. Les techniques de bagging sont non seulement robustes au
bruit mais aussi simples à développer. C’est pourquoi, nous avons choisi de fonder notre
nouvel algorithme de classification multiple de données déséquilibrées sur le bagging.

Sélectionner les instances d’apprentissage les plus pertinentes pour chaque classifieur
de base d’un ensemble est important pour gérer le problème de déséquilibre des données
et éviter la perte d’information. Les instances informatives, telles que les échantillons en
bordure de classes ou ceux appartenant à des classes difficiles, jouent un rôle majeur en
classification, en particulier dans un contexte de déséquilibre des données. Ces instances
ont généralement de faibles marges d’ensemble et sont plus importantes que les instances
de forte marge pour la construction d’un classifieur fiable. En conséquence, un nouvel
algorithme, basé sur une fonction d’évaluation de l’importance des données, qui s’appuie
encore sur la marge d’ensemble, est proposé pour traiter le problème de déséquilibre
des données. Dans cet algorithme, l’accent est mis sur les échantillons de faible marge.
De plus, en classification équilibrée, se focaliser sur les instances de faible marge selon
un ordonnancement global des marges devrait être bénéfique pour la performance d’un
classifieur ensembliste. Cependant, ce schéma n’est pas approprié pour améliorer un
modèle construit à partir d’un échantillon d’apprentissage déséquilibré. Même si la plu-
part des instances de classes minoritaires ont des valeurs de marge faibles, la sélection
d’instances pertinentes à partir d’un tri global des marges risque d’engendrer une perte
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d’échantillons des classes partiellement minoritaires, voire une détérioration de la per-
formance de classification. Par conséquent, notre algorithme sélectionne les instances
pertinentes de chaque classe de manière indépendante. Notre méthode est évaluée, en
utilisant encore une fois quatre différentes marges d’ensemble, vis à vis de sa capac-
ité à traiter le problème de déséquilibre des données, en particulier dans un contexte
multi-classes.

La méthode proposée consiste en trois étapes principales : 1) calculer les valeurs
de marge des échantillons d’apprentissage via un classifieur ensembliste; 2) construire
des sous-échantillons d’apprentissage équilibrés en se focalisant plus sur les instances de
faible marge; 3) entrainer les classifieurs de base sur les sous-échantillons d’apprentissage
équilibrés et construire un nouvel ensemble avec une meilleure capacité à gérer les don-
nées déséquilibrées.

Notre méthode est inspirée de l’algorithme SMOTEBagging (Synthetic Minority
Over-sampling Technique), une méthode d’ensemble majeure de sur-échantillonnage de
données déséquilibrées. Un taux de ré-échantillonnage a est également utilisé pour con-
trôler le nombre d’instances à sélectionner dans chaque classe pour engendrer un échan-
tillon équilibré. Cependant, notre algorithme combine l’apprentissage d’ensemble avec
du sous-échantillonnage, adoptant ainsi un schéma de combinaison similaire à celui de
l’algorithme UnderBagging. Mais, contrairement à ce dernier qui ré-équilibre les classes
de manière aléatoire, notre méthode s’attache à construire des sous-échantillons équili-
brés de meilleure qualité pour chaque classifieur de base. Cette approche pourrait éviter
les principaux inconvénients des algorithmes SMOTEBagging et UnderBagging. Elle a
une complexité calculatoire plus faible que celle de SMOTEBagging et se focalise plus
sur les instances importantes pour des tâches de classification que UnderBagging.

Pour évaluer l’efficacité de notre approche, le bagging standard, ainsi que UnderBag-
ging et SMOTEBagging qui ont inspiré notre méthode, ont été utilisés dans une analyse
comparative. Cette étude a mis en évidence la supériorité de la nouvelle méthode pro-
posée dans la prise en charge du problème de déséquilibre des données par rapport au
bagging, UnderBagging et SMOTEBagging. Les marges basées sur un calcul de somme
sont généralement plus performantes que les marges basées sur un calcul de maximum
en termes de précision moyenne. En revanche, ces dernières ont une meilleure perfor-
mance de classification minimum par classe. Les marges supervisées et les marges non
supervisées atteignent des performances similaires. En outre, l’efficacité de la nouvelle
marge proposée dans la gestion du problème des données déséquilibrées est démontrée.

Finalement, les méthodes d’ensemble proposées sont appliquées à la cartographie
d’occupation du sol, une tâche de classification majeure en télédétection.

Application à la cartographie d’occupation du sol

En télédétection, les erreurs d’étiquetage sont inévitables car les données d’apprentissage
sont typiquement issues de mesures de terrain. La présence de bruit dans les images de
télédétection dégrade la capacité d’interprétation des données. Le déséquilibre des don-
nées d’apprentissage est un autre problème fréquent en télédétection. Les deux méthodes
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RÉSUMÉ

d’ensemble proposées, intégrant la définition de marge la plus pertinente face à chacun
de ces deux problèmes majeurs affectant les données d’apprentissage, sont appliquées à
la cartographie d’occupation du sol.

Les forêts aléatoires sont des méthodes d’ensemble puissantes qui sont particulière-
ment pertinentes pour la classification de données de télédétection grâce à leur robustesse
au bruit et leur efficacité pour les données volumineuses et de grande dimension. C’est
pourquoi, nous avons opté pour les forêts aléatoires, au lieu du bagging, comme ensemble
robuste dans la conception de nos algorithmes, basés sur la marge d’ensemble, pour ré-
soudre les problèmes du bruit d’étiquetage et du déséquilibre des données d’apprentissage
dans le contexte difficile de la classification de données de télédétection. En outre, seuls
les taux de ré-échantillonnage a pouvant induire les meilleurs résultats sont adoptés dans
notre méthode de classification multiple de données déséquilibrées basée sur la marge.

Nos résultats expérimentaux montrent que notre approche de gestion du bruit d’étiquetage
des données d’apprentissage basée sur la marge est efficace pour la cartographie d’occupation
du sol. Cette méthode est significativement plus performante, aussi bien pour l’élimination
que pour la correction du bruit d’étiquetage, que la méthode de filtrage du bruit d’étiquetage
basée sur le vote majoritaire, en présence de bruit artificiel et de bruit réel. De plus, le
schéma itératif de calcul des marges est généralement plus efficace pour la prise en
charge du bruit d’étiquetage que la version basée sur une seule passe de calcul. En outre,
notre extension des forêts aléatoires, intégrant la marge d’ensemble et des taux de ré-
échantillonnage optimaux, est efficace pour la cartographie d’occupation du sol dans
un contexte de déséquilibre des données. Elle s’avère plus performante que les forêts
aléatoires traditionnelles et deux autre extensions, les forêts aléatoires combinées avec
du sous-échantillonnage de données et celles combinées avec du sur-échantillonnage de
données de type SMOTE, selon deux mesures d’évaluation, la précision moyenne et la
précision minimum par classe.
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1
Introduction

This chapter introduces the research directions of this thesis and points out the in-
vestigated issues that will be addressed in subsequent chapters. Section 1.1 introduces
machine learning concepts. Section 1.2 provides a brief introduction to ensemble learn-
ing. Section 1.3 presents the application of ensemble methods to remote sensing data
classification. Section 1.4 describes the research questions raised in this thesis. Section
1.5 summarizes the main contributions of this work. Section 1.6 outlines the content of
each subsequent chapter.

1.1 Machine Learning

Over the past two decades, Machine Learning (ML) has been recognized as central
to the success of Artificial Intelligence which involves the study and development of

computational models capable of learning processes [144]. It has been successfully used
in many application fields such as web page ranking [90], collaborative filtering [195],
entity recognition [16], speech recognition [67] and remote sensing [112, 185].

Supervised learning is a major research area in machine learning [144]. In super-
vised learning, a set of training examples (normally described by several features) with
known output values is used by a learning algorithm to generate a model. This model
is intended to approximate the mapping between the inputs and outputs. Finally, this
model can be used to predict the instances with unseen labels. The goal of supervised
learning is to provide a model which has low prediction error on future data that has not
been observed during training. Some well-known supervised classification systems are:
k-nearest neighbours (k-NN) [60], decision trees [27], neural networks [94], support vec-
tor machines (SVM) [30] and ensemble learning [21]. In this work, we focus on ensemble
learning.

1



CHAPTER 1. INTRODUCTION

1.2 Ensemble learning

Classification has been widely studied in machine learning. Ensemble learning, also
called committee-based learning, is an effective method to develop accurate classification
systems [21]. The ensemble concept originates from the famous Condorcet theorem (1785)
[43], which states that:

Even if the members of a group have just 50% of chance to individually take the right
decision, a majority voting of the same group has nearly 100% of chance to take the right
decision.

Ensemble learning has become a major learning paradigm since the 1990s. This
method is appealing because it is able to boost weak learners which are slightly better
than random guess to strong aggregated learners which can make very accurate predic-
tions [212]. Furthermore, the generalization ability of an ensemble (or multiple classifier)
is usually much stronger than that of base learners [212].

An ensemble is itself, in most case, a supervised learning algorithm (unsupervised
[41] or semi-supervised [81] ensembles exist but more marginally), because it can be
trained and then used to make predictions. An ensemble is constructed in two steps,
i.e., generating the base learners, and then combining them [51], [212]. Base learners are
usually generated from training data by a base learning algorithm which can be decision
tree, neural network or other kinds of machine learning algorithms. Ensemble methods
have already achieved great success in many real-world tasks, such as medical diagnosis
[210], [213] and remote sensing [36], [79], [89], [82].

Ensemble margin is a key concept in ensemble learning [176]. It has been applied
to both the theoretical analysis and the design of machine learning algorithms. Several
studies have shown that the generalization performance of an ensemble classifier is re-
lated to the distribution of its margins on the training examples. Recently, the ensemble
margin has been used in imbalanced data sampling [64], noise removal [82], instance
selection [82], [136], feature selection [7] and classifier design [76], [82], [137]. This major
concept in ensemble learning will be at the core of our ensemble learning framework.

1.3 Application to remote sensing data classification

Remote sensing image classification, which is an important topic in the field of re-
mote sensing, is an approach to distinguish class attributes and distribution of ground
objects based on the features of material electromagnetic radiation information in the
remote sensing images [139]. It can be used for information extraction, dynamic change
monitoring, cartography, remote sensing database construction and so on. The purpose
of classification is to estimate the different species of each geographic region in remote
sensing images.

In the past few decades, experts have been working on ways to improve the classi-
fication paradigm to obtain high remote sensing image classification accuracy [46, 91].
However, the classification accuracy is directly influenced by the quality of the train-
ing data used and real-world data often suffers from many problems which could de-
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grade the interpretation ability of the remote sensing data. In recent years, studies have
demonstrated the successful application of ensemble machine learning classifiers, such
as Random Forests [26] integrating remote sensing and ancillary spatial data, to im-
prove supervised classification accuracy of land cover maps [166], for which conventional
parametric statistical classification techniques might not be appropriate [143]. Random
forests is a powerful ensemble technique which is particularly suitable for remote sensing
classification [59, 80]. Thanks to its noise robustness and its efficiency for large size and
high dimensionality data.

1.4 Research questions and motivations

1.4.1 Research questions

The quality and quantity of training data is very important in supervised learning.
However, in most cases, samples used for training a classification model are unsatisfac-
tory. Noisy, imbalanced, high dimensionality and complex data are major challenges in
machine learning [82]. Mislabeled training data is a challenge to face in order to build a
robust classifier whether it is an ensemble or not. In remote sensing, where training data
are typically ground-based, mislabeled training data is inevitable. Imbalanced training
data is another problem frequently encountered in remote sensing. For most classifiers,
the classification performance more or less decreases with noise level and imbalance ratio.

Generally, there are two methods to deal with the above mentioned problems: data ad-
dressing and algorithm improvement [29, 95]. Data addressing methods [37, 104] improve
the classification performance of a model by changing the distribution of the training set
without modification of the construction of the classifier. Algorithm level schemes [9],
also named internal methods, try to adapt existing classifier learning algorithms to ob-
tain high classification accuracy. Ensemble learning can be considered as a combination
of data addressing and algorithm level schemes. It has been shown to be more suitable
to classify noisy and imbalanced data than single classifiers [73, 183]. Nevertheless, it
still receives some negative effects from such abnormal datasets to some extent. In this
work, we focus on the exploration of ensemble margin to improve the performance of
ensemble models in handling class noise and class imbalance training data issues.

1.4.2 Motivations

The main motivations for our work are:

1. Ensemble margin plays a crucial role in machine learning research as it provides a
strong indication of a learners performance in practice. Recently, there has been a
growing line of research in utilizing the concept of margin for algorithm design. Our
ensemble learning algorithms exploit the characteristics of the ensemble margin to
determine the type and quality of training instances.
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2. The limitations of existing research clearly suggest that we should pursue a different
framework in data cleaning. Hence, this work focuses on exploiting the margin
concept to improve the quality of the training set and therefore to increase the
classification accuracy of noise sensitive classifiers.

3. Using an appropriate training data selection preprocessing step is essential when
the prediction model is trained on an imbalanced data set. In such cases, traditional
ensemble methods fail to account for imbalanced class distributions, leading to
poor predictions for minority class samples. We select important instances for each
classifier in an ensemble using again the margin theory to face the class imbalance
issue and avoid loss of information.

1.5 Thesis Contributions
The contributions of this thesis are:

1. A novel ensemble margin definition. It is an unsupervised version of a popular
ensemble margin. Indeed, it does not involve the class labels.

2. An ensemble margin-based class noise identification and elimination method based
on an existing margin-based class noise ordering to handle the mislabeling problem.
This method can achieve a high mislabeled instance detection rate while keeping
the false detection rate as low as possible.

3. An extension of the margin based noise elimination method to tackle the class
noise correction which is a more challenging issue.

4. A novel bagging algorithm based on a data importance evaluation function relying
again on the ensemble margin to deal with the class imbalance problem.

The proposed ensemble algorithms, involving random forests, were applied to land cover
mapping tasks after being validated on diverse image and non-image data sets using
bagging as a robust ensemble.

1.6 Organization of the thesis
This thesis is divided into 6 chapters, besides the introduction and the conclusion,

organized as follows:

• Chapter 2

This chapter presents some theories in ensemble learning and commonly-used en-
semble approaches. Three ensemble creation methods are presented first. Then
ensemble diversity which is one of the major fundamental concepts in ensemble
learning is introduced. The focus of this chapter is on the margin theory as well
as on its application in machine learning.
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• Chapter 3

This chapter gives an overview of noise filtering methods. It presents class noise
handling methods especially the ensemble-based class noise handling methods in-
cluding class noise removal, correction and ensemble margin based methods, as
well as noise robust ensemble learners. Noise addressing methods for remote sens-
ing data are finally introduced.

• Chapter 4

In this chapter, we propose a novel unsupervised margin definition and study the
suitability of two popular ensemble margins as well as the proposed new margin
for class noise identification. Then an ensemble margin based method, which relies
on class noise ordering based on ensemble margin and involves noise removal and
correction, is presented to address the mislabeling problem.

• Chapter 5

This chapter gives a review on ensemble methods for the class imbalance problem.
It first introduces oversampling and undersampling based methods for imbalance
learning, then presents and highlights ensemble-based class balancing methods.
Imbalance learning methods for remote sensing data are finally presented.

• Chapter 6

This chapter proposes a novel algorithm based on ensemble margin to deal with
the class imbalance problem. We first carry out a feasibility study on adopting
the margin concept for imbalance ensemble learning. Then a novel algorithm, that
is based on a data importance function relying on the margin and forcing on the
usage of lowest margin samples, is presented in detail.

• Chapter 7

This chapter mainly focuses on the application of previously presented ensemble
learning methods in remote sensing. Both proposed ensemble methods involving
the best margin definition, for handling class noise and class imbalance training
data issues, and random forests are applied to the mapping of land covers.
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2
An introduction to ensemble learning

This chapter presents some theories in ensemble learning and commonly-used en-
semble approaches. Section 2.2 presents three ensemble creation methods. Section 2.3
introduces ensemble diversity which is one of the major fundamental concepts in ensem-
ble learning. Section 2.4 focuses on the margin theory as well as on its application in
machine learning. The final section gives a conclusion of this chapter.

2.1 Introduction

Ensemble methods use multiple models to obtain better predictive performance than
could be obtained from any of the constituent models. They can improve the clas-

sification accuracy and reduce the generalization error effectively. They can be built at
four different levels: data level, feature level, classifier level and combination level [82].
An ensemble contains a number of learners which are usually called base learners (single
classifiers) [51], [212]. The generalization ability of an ensemble (multiple classifier) is
usually much stronger than that of base learners [212]. Ensemble learning is appealing
because it is able to boost weak learners which are slightly better than random guess
to strong aggregated learners which can make very accurate predictions. So, base learn-
ers are also referred to as weak learners. It is noteworthy, however, that although most
theoretical analyses work on weak learners (typically high variance classifiers such as
decision trees), base learners used in practice are not necessarily weak since using not-
so-weak base learners often results in better classification performance though of higher
complexity.

Diversity among the members of an ensemble is known to be an important factor in
classifier combination. In other words, the key to the success of ensemble algorithms is
that, intuitively at least, they build a set of diverse classifiers. Intuitively, if there are
many different classifiers, it is sensible to expect an increase in the overall performance
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when combining them. Then, it is generally accepted that classifiers to be combined
should be diverse, since there is clearly no advantage to be gained from an ensemble
that is composed of a set of identical classifiers. Diversity has been utilized to determine
ensemble generalization error [145] and design classification models [35].

In the field of machine learning, the margin plays an important role. This concept
was first proposed by Vapnik, who applied it to build Support Vector Machines (SVM)
[44]. It can be used to measure the degree of confidence of the classification [136] and its
theory can also be used to guide the design of classification algorithms. Ensemble margin,
which is one kind of margin, is an interesting and important factor to the generalization
performance of voting classifiers. It has been argued that the smaller ensemble margin
instances have a major influence in forming an appropriate training set to build a reliable
ensemble classifier [82].

2.2 Ensemble creation methods

An ensemble classifier can be built through five steps: choice of base classifier, pro-
cessing of the training data, processing of the input features, fusion of base classifiers’
decisions, and injecting some randomness. Let us emphasize that the processing of the
training data and the processing of the input features themselves usually inject random-
ness into the ensemble learner. Boosting [175], bagging [21] and random forests [26] are
major ensemble learning methods.

2.2.1 Boosting

The term boosting refers to a family of algorithms that are able to convert weak
learners to strong learners. Intuitively, a weak learner is just slightly better than ran-
dom guess, while a strong learner is very close to perfect performance. The birth of
boosting algorithms originated from the answer to an interesting theoretical question
posed by Kearms and Valiant in 1989 [212]. That is, whether two complexity classes,
weakly learnable and strongly learnable problems, are equal. This question is of funda-
mental importance, since if the answer is positive, any weak learner is potentially able to
be boosted to a strong learner, particularly if we note that in real practice it is generally
very easy to obtain weak learners, but difficult to get strong learners [212]. Schapire
proved that the answer is positive, and the proof is a construction,i.e., boosting [175].

There are many variants of this powerful ensemble approach. It works by training a set
of learners sequentially and combining them for prediction, where the later learners focus
more on the mistakes of the earlier learners [212]. Adaboost [70] is the most influential
boosting algorithm, it is summarized in Algorithm 1.

Algorithm 1: Adaboost

Input: Data set S = (x1, y1), (x2, y2, ), · · · , (xn, yn);
Base learning algorithm ζ;
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Number of learning rounds T;
Initialization:

D1(x)= 1/m. %Initialize the weight distribution
Iterative process:

for t = 1 to T do
1. ht = ζ(S,Dt); %Construct base learner ht from S using distribution Dt
2. εt = Px∼Dt(ht(x) ̸= y); %Evaluate the error of ht
3. if εt > 0.5 then break
4. αt = 1

2 ln(1−εt
εt

); %Determine the weight of ht
5. Update:

(2.1) Dt+1(x)= Dt(x) · e−αtht(x)y

Zt

Zt is a normalization factor which enables Dt+1 to be a distribution
end

Output: H(x)= sign(
∑T

t=1αtht(x))

After obtaining the base learners, boosting combines them by majority voting, a
typical combination strategy, and the most-voted class is predicted.

2.2.2 Bagging

The name Bagging came from the abbreviation of Bootstrap AGGregatING [21]. As
the name implies, the two key ingredients of bagging are bootstrap and aggregation
[212]. In bagging, the individual classifiers can be built in parallel, independently of
one another. Bagging trains a number of base learners each from a different bootstrap
sample by calling a base learning algorithm. Algorithm 2 summarizes the bagging proce-
dure. A bootstrap sample is obtained by uniformly subsampling the training data with
replacement. To predict a test instance, bagging feeds the instance to its base classifiers
and collects all of their outputs, and then uses the most popular strategies voting to
aggregate the outputs and takes the winner label as the prediction [212].

It is worth mentioning that the bootstrap sampling also offers bagging another advan-
tage. As Breiman indicated, a bootstrap sample is obtained by uniformly subsampling
the training data with replacement [21]. For a given bootstrapped sample, an instance
in the training set has typically a probability of approximately 63.2 % of being selected
at least once. The remaining 36.8% examples called out-of bag (OOB) will not be picked
up [22], [209]. The performance of the base learners can be estimated by using these
out-of-bag examples, and thereafter the generalization error of the bagged ensemble can
be estimated [212].

Algorithm 2: Bagging

Input: Data set S = (x1, y1), (x2, y2, ), · · · , (xn, yn);
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Base learning algorithm ζ;
Number of learning rounds T;

Iterative process:
for t = 1 to T do
ht = ζ(S,Dbs); %Dbs is the booststrap distribution
end

Output: H(x)= sign(
∑T

t=1 ht(x))

2.2.3 Random forests

A variant of bagging, random forests [26], has been deemed as one of the most
powerful ensemble methods up to date [212]. Random forests is a combination of tree
predictors in which decision trees are constructed using resampling with replacement,
they randomly sample the attributes and choose the best split among those variables
rather than the best split among all attributes. The suggested value of the number of
randomly selected features is the logarithm or the square root of the total number of
features [26]. Hence, randomness is not only injected into data sampling, as in bagging,
but also introduced into the feature selection process. The assignment of class label of an
unknown instance is generally performed using majority voting. Important advantages
such as running efficiently on large data bases, handling thousands of input variables
without variable deletion and low time cost make random forests widely attract the
interest of researchers.

2.2.4 Comparative analysis

There are many ensemble classification methods with good performance. However,
existing ensemble techniques have different drawbacks [209].

• Quinlan applied boosting and bagging to C4.5 [159] decision tree-based ensem-
bles. Experimental results show that they can reduce the generalization error, and
boosting has better effect than bagging. But in some cases, boosting can create
overfitting [14].

• In boosting, each base classifier is trained on data that is weighted based on the per-
formance of the previous classifier. The next base classifier focuses on the current
samples which are classified with difficulty.

• Boosting can not only reduce the bias but also reduce the variance [55], but bagging
can only reduce the variance. Bagging does nothing purposely to reduce the bias
so that any bias reduction is achieved solely by chance [21].

• Boosting is sensitive to noise and outliers [14]. The noise sensitivity of AdaBoost
is generally attributed to the exponential loss function which specifies that if an
instance were not classified as the same as its given label, the weight of the instance
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will increase drastically. Consequently, when a training instance is associated with
a wrong label, AdaBoost still tries to make the prediction resemble the given label,
and thus degenerates the performance [212].

• Random forest combines Breiman’s "bagging" idea and the random selection of
features. Randomness is introduced into the feature selection process [212]. Hence,
random forest generates more diversity than bagging.

2.3 Ensemble diversity

Ensemble diversity is a property of an ensemble with respect to a set of data. It has
been recognized as an important characteristic in classifier combination [122]. Diversity
is the difference among the individual learners [122]. It is greater when, all other factors
being equal, the classifiers that make incorrect decisions for a given example spread
their decisions more evenly over the possible incorrect decisions. The more uniformly
distributed the errors are, the greater the diversity, and vice versa [212]. Hence, ensemble
methods can effectively make use of such diversity to reduce the variance-error without
increasing the bias-error. In other words, ensemble learning is very effective, mainly due
to the phenomenon that base classifiers have different “biases” [212]. Accuracy is one of
the standard evaluations of the ensemble classification [205].

Though, measuring diversity is not straightforward because there is no generally
accepted formal definition [122], there are effective popular heuristic mechanisms for
diversity generation in ensemble construction [212], including processing the training
samples [21], manipulating the representation of the target attributes [26, 48], selecting
parameters [129], and output representations [25]. Their main idea is to inject random-
ness into the learning process:

1. Data sampling is the most popular method to increase the ensemble diversity.
Multiple different training sets are obtained by sampling approaches, then the
individual learners are trained from the generated different data sets [21].

2. In input feature manipulation, several classifiers with different and usually simpler
representations of the target attributes are induced. Different subsets of features
provide different views on the training data [169]. Therefore, individual learners
trained from different subsets of features are usually diverse.

3. Parameters learning tries to generate diverse individual learners by using different
parameter settings for the base learning algorithm [129].

4. In output methods, diverse individual learners are generated by combining different
output representations [25].
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2.4 Ensemble margin

2.4.1 Margin concept

Margins, which were originally applied to explain the success of boosting [176] and
to develop the Support Vector Machines (SVM) theory [196], play a crucial role in
modern machine learning research. The ensemble margin [176] is a fundamental concept
in ensemble learning. Several studies have shown that the generalization performance of
an ensemble classifier is related to the distribution of its margins on the training examples
[176]. A good margin distribution means that most examples have large margins [103].

Ensemble margin has been used for improving the performance of Boosting [176].
Adaboost is the most successful method in improved methods of boosting [212]. It is
known not to overfit since it tends to enlarge the ensemble margin even after the training
set error reaches zero [76]. Schapire et al. [176] attempted to explain this phenomenon in
terms of the ensemble margins the classifier achieves on training examples. Arc-Gv [24] is
a variant of Adaboost. It was designed by Breiman to doubt Schapire’s explanation. It is
very similar to AdaBoost, but different in calculating the coefficient associated with each
weak classifier. Arc-Gv always had a minimum ensemble margin that was provably larger
than AdaBoost but performed worse in terms of test error. Thus, Breiman concluded
that the ensemble margin theory could not explain AdaBoost completely.

Reyzin and Schapire reproduced Breiman’s main finding and found that a better en-
semble margin distribution was more important than the maximisation of the minimum
ensemble margin [163]. It was of importance to have a large minimum ensemble margin
and necessarily at the expense of other factors.

Figure 2.1: Sample margin (left) and hypothesis margin (right).

The margin region is the set of the contradiction samples of the information system.
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There are two main ways to define margins: sample margin and hypothesis margin [47]
(see Figure 2.1). The sample margin is defined as the distance between the instance
and the decision boundary induced by the classifier. For example, support vector ma-
chines [44] aim to find the separating hyper-plane with the sample margin. However,
the hypothesis margin requires the existence of a distance measure on the hypothesis
class, it measures how much can the hypothesis travel before it hits an instance without
changing the way it labels any of the sample points. This definition requires a distance
measure between classifiers [7], [47]. This type of margin is the ensemble margin used in
AdaBoost [70].

Margin-based classification is a growing line of research. In machine learning, the
ensemble margin has been used in imbalanced data sampling [64], noise removal [82],
[197], instance selection [82], [125], [136], feature selection [7] and classifier design [76],
[82], [126], [137], [163], [180], [206].

2.4.2 Ensemble margin definitions

Different definitions of ensemble margin have been proposed [47], [76], [82], [126],
[176].

2.4.2.1 Ensemble votes based definitions

The decision by an ensemble for each instance is made by voting. The ensemble
margin can be calculated as a difference between the votes [82] according to two different
well-known definitions [113] in both supervised [176] and unsupervised [83, 86] ways.

1. A popular ensemble margin, which has been introduced by Shapire et al. [176], is
defined by equation (2.2), where vy is the number of votes for the true class y and
vc is the number of votes for any other class c. This ensemble margin is in the
range [-1, +1] and the examples which are correctly classified have positive margin
values. A large positive ensemble margin can be interpreted as a confident correct
classification.

(2.2) margin(x) = vy −maxc=1,...,L∩c ̸=y(vc)∑L
c=1(vc)

where L represents the number of classes.
2. The ensemble margin of a sample can also be obtained by the difference between the

fraction of classifiers voting correctly and incorrectly, as in equation (2.3) [82, 113].
This second popular ensemble margin definition follows the same idea introduced
by Schapire [176] but instead of using a max operation, it uses a sum operation
[113].

(2.3) margin(x) =
vy −∑

c=1,...,L∩c ̸=y(vc)∑L
c=1(vc)
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This ensemble margin is also in the range [-1, +1]. However, correctly classified
samples have not necessarily positive margin values.

3. In [83, 86], the authors proposed an unsupervised version of Schapire’s margin
(equation (2.2)). This ensemble margin’s range is from 0 to 1. It is defined by
equation (2.4), where vc1 is the votes number of the most voted class c1 for sample
x, and vc2 is the votes number of the second most popular class c2.

(2.4) margin(x) = vc1 −vc2∑L
c=1(vc)

Naturally, for two-class problems these definitions are quite similar. However, a major
concern needs to be solved in relation to multi-class problems. For example, by equation
(2.3), the margins can represent a lower bound, since they can assume negative values
even when the correct label gets the most of votes (when there is a plurality, but not a
majority) [113].

Gao and Zhou show that although AdaBoost effectively maximizes the minimum
ensemble margin, compared with previous statistics on ensemble margin theory, the
average ensemble margin is one of the statistics that considers the whole ensemble margin
distribution and thus includes more information [76]. They proved that in the context
of binary classification (2.5):

margin (x)< 1
m

m∑
i=1

margin (xi)

=
∑T

t=1
∑m

i=1 yiαtht (xi)

m
∑T

t=1 |αt|

(2.5)

where margin (xi) is the margin of instance xi and yi its label, ht is the base learner,
αt is the corresponding weight, T is the number of learning rounds (base classifiers in
AdaBoost), m is the number of instances.

2.4.2.2 Other definitions

1. Crammer et al. [47] compute the ensemble margin of an instance x with respect to a
set of instances A by equation (2.6) where nearest missA (x) and nearest hitA (x)
denote the nearest instance to x in A with the same and different label, respectively.

(2.6) marginA (x)= 1
2

(
||x−nearest missA (x) ||− ||x−nearest hitA (x) ||

)
2. According to the well-established relationship the higher the classification confi-

dence provided by the classifier, the higher the probability that the classifier has
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correctly classified this sample, Li et al. gave a new definition of ensemble mar-
gin [126]. The ensemble margin of sample xi based on classification confidence is
denoted by equation (2.7):

(2.7) margin(xi)= S(yi)−max{S(yj)|i ̸= j}

where S(wi) means the sum of classification confidences whose corresponding clas-
sification decision is wi which is the true label of xi.

The authors proposed then the definition of the ensemble margin loss of xi based
on two different loss functions [126], the functions are respectively denoted as (2.8)
and (2.9):

l1(xi)=
(
1−margin(xi)

)2(2.8)

l2(xi)= log
(
1+exp

(−margin(xi)
))

(2.9)

2.5 Conclusion
In this chapter, we first introduced ensemble learning, and presented three popular

ensemble methods. Next, we described ensemble diversity. Accuracy and diversity are
standard evaluations of the ensemble classification [205]. According to the literature, if
we want to get a classifier with higher accuracy and good diversity, mainly two meth-
ods could be considered: choosing a good training set and/or a good ensemble classifier.
Finally, we provided an in depth description of the concept of ensemble margin. The en-
semble margin got more and more attention, and has been used in many fields of machine
learning. Many definitions of ensemble margin have been given. Different definitions have
different effects on the classification results. Hence, conducting a comprehensive analysis
and comparison of these definitions can be useful to ensemble learning.
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3
Addressing the mislabeling problem in ensemble

learning: a review

This chapter gives an overview of noise filtering methods. Section 3.1 presents the
types of noise and the consequences of class noise on learning. Section 3.2 introduces
class noise handling methods at both data level and algorithm level. Section 3.3 presents
ensemble-based class noise handling methods including class noise removal, correction
and ensemble margin based methods, as well as noise robust ensemble learners. Noise
addressing methods for remote sensing data are presented in section 3.4. Section 3.5
gives a summary of existing data cleaning techniques.

3.1 Introduction

Classification has been widely studied in machine learning. The standard approach
consists in obtaining a model inferred from training data to predict the class of new

samples. There exist important applications of classification in fields such as pattern
recognition, bioinformatics, physics, medecine, economics, etc. and are used for meteo-
rological forecasts, text classification, disease diagnosis, remote sensing, to name a few
[2]. The classification accuracy of a classifier is directly influenced by the quality of the
training data used [171]. However, real-world data is never perfect and often suffers from
noise [214]. The presence of noise in data is a common problem that produces several
negative consequences in classification problems [78]. However, effective noise handling
is one of the most difficult problems in inductive machine learning [75].

Mislabeled training data (class noise) is a challenge to face in order to build a robust
classifier whether it is an ensemble or not. It is particularly troublesome in supervised
problems, where it alters the relationship between the informative features and the mea-
sure outputs. Furthermore, learning from noisy data can create overfitting [197]. Labeling
training instances is a costly and rather subjective task that usually induces some label-
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ing errors in the training set [29, 75]. Therefore, how to reduce noise consequences and
form an efficient training set is a major issue in supervised classification [142].

Several approaches in literature have been devoted to the handling of class noise and
the development of robust techniques achieving higher classification accuracies on test
data [68]. They can be categorized into three main approaches [82]: making algorithms
that are more robust to noise [111, 158], filtering out the noise [29, 84] and correcting
noisy instances [192].

3.1.1 Types of noise

The class labels and the attribute values of training data directly influence the quality
of a classification although a large number of components can determine the quality of
a data set [214]. In literature, two types of noise are distinguished [75, 199, 214]:

1 Class noise (also referred to as label noise). It occurs when an example is incor-
rectly labeled. Class noise can be attributed to several causes, such as subjectivity
during the labeling process, data entry errors, or inadequacy of the information
used to label each example. Two types of class noise exist [34, 78] :

– Contradictory examples which refer to duplicate or similar examples in the
data set having different class labels [97].

– Misclassification examples which are labeled with class labels different from
their true labels [215].

In addition, some authors also consider outliers that are correctly labeled as class
noise [153]. Mislabeled instances may be outliers if their labels have a low probabil-
ity of occurrence in their vicinity. Similarly, some instances may also look abnormal,
with respect to the class that corresponds to their incorrect label. Hence, it is nat-
ural that many techniques in the class noise literature are very close to outlier and
anomaly detection techniques. Many of the methods that have been developed to
deal with outliers and anomalies can also be used for class noise. However, it must
be highlighted that mislabeled instances are not necessarily outliers, or anomalies,
which are subjective concepts [68]. For example, if labeling errors occur in a bound-
ary region where all classes are equiprobable, the mislabeled instances neither are
rare events nor look anomalous. Similarly, an outlier is not necessarily a mislabeled
sample since it can be due to attribute noise or simply be a low-probability event
[68].

2 Attribute noise It refers to corruptions in the values of one or more attributes.
Examples of attribute noise are: erroneous attribute values, missing or unknown
attribute values, and incomplete values [78].

It has been proved that class noise is potentially more harmful than attribute noise
on classifier capability [158]. Quinlan shows that removing higher levels of noise from
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attribute information decreases the predictive accuracy of the resulting classifier if the
same attribute noise is present when the classifier is subsequently used, but for class noise,
cleaning the training data will result in a classifier with a higher predictive accuracy [158].
In addition, the prevalence of the impact of class noise is explained by the fact that [68]:

1. There are many features, whereas there is only one class label.

2. The importance of each feature for learning is different, whereas labels always have
a large impact on learning.

Hence, this work put the emphasis on class noise and the different ways of addressing it.

3.1.2 Consequences of class noise on learning

Class noise is ubiquitous in real-world datasets and has several negative consequences
[68]:

• Class noise can decrease classification performances, which has been theoretically
proved for simple models like kNN, linear or quadratic classifiers [68].

• The presence of class noise can lead to the failure of supervised classifiers, including
ensemble classifiers [6]. Learning through multiple models becomes harder for large
levels of class noise, where some samples become more difficult for all models and
are therefore seldom correctly classified by an individual model [68].

• Class noise can increase the number of necessary training instances, the complexity
of learned models, the number of nodes of decision trees, the number of support
vectors in SVMs (Support Vector Machines) [68] and the size (number of base
classifiers) of an ensemble.

• Class noise can increase the difficulty to identify relevant features [214].

• Class noise can affect the estimated error rate in multiclass problems [102].

• Learning from noisy data can create overfitting [197].

3.2 Class noise handling methods

3.2.1 Dealing with class noise at data level

3.2.1.1 Class noise identification and removal

Problems corrupted by noise are complex and accurate solutions are often difficult to
achieve without using specialized techniques, particularly for noise-sensitive methods [78].
Noise filters, which are preprocessing mechanisms to detect and eliminate noisy instances
in the training set, are commonly applied to improve the classification performance [173].
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The preprocessing of noisy data is illustrated in Figure 3.1 [29]. The effectiveness of a
noise filter, i.e. whether its usage induces an improvement in classifier performance,
depends on the noise-robustness, the generalization capabilities of the classifier used
and the characteristics of the data especially the level of noise that affects them [173].

Figure 3.1: General procedure for learning in the presence of class noise with training
data cleansing [29].

A simple filtering method to deal with class noise is to remove instances that appear
to be mislabeled. Many such cleansing methods exist in the class noise literature. For
example, classification filtering uses the predictions of classifiers to identify mislabeled
instances [68]. Thongkam et al. learn a SVM using the available training data then all
training instances which are misclassified are simply removed [194]. The filtering ap-
proach is easy to implement and induces relatively low computational costs. Moreover,
it can simplify resulting models [178]. One major drawback of filtering the data is that
some valuable instances might be dropped from the data set [192] which can be partic-
ularly harmful on small and imbalanced data sets. However, according to [29], keeping
bad mislabeled instances may hinder performance more than removing too many cor-
rectly labeled samples. In addition, the noise filtering approach cannot fully overcome
the errors in the data for noise levels of 30% or greater [10].

Hughes et al. extend the above method, but instead of removing the misclassified
instances, they delete the label of these instances, for which experts are less reliable, then
use semi-supervised learning with both the labelled and the new unlabelled instances
[105]. The advantage of this method is keeping the distribution of the instances unaltered
[68]. However, this method also suffers from a chicken-and-egg dilemma. Good classifiers
are necessary for classification filtering, but learning in noisy environment may precisely
produce poor classifiers.

The Blame-Based Noise Reduction (BBNR) algorithm removes all instances that
contribute to the misclassification of their nearest neighbours and whose removal does
not cause any instance to be misclassified [49]. This method does not need more accurate
classifiers for filtering the noise but can increase the computational complexity.

3.2.1.2 Class noise identification and correction

All the above algorithms are mainly used for improving the data quality by detecting
and eliminating its class noise. Teng shows that a classifier built from corrected data
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should have a higher predictive power than filtered data [192]. He describes a different
approach called polishing. When noisy instances are identified, instead of removing them,
they are repaired by replacing the corrupted class label values with predicted class labels
then the corrected instances are reintroduced into the data set. In [10], the depuration
algorithm was proposed to iteratively modify the class label of the examples whose class
label disagrees with the class labels of most of their neighbours.

Clustering can be used to detect mislabeled instances, exploiting neighbourhood
consistency, as done in the depuration algorithm [10]. An instance whose label is not
consistent with the labels of nearby clusters is likely to be mislabeled [68]. In [155], this
neighbourhood consistency constraint is exploited to design a clustering-based algorithm
to correct the labels of mislabeled instances.

However, noise correction is only viable when data sets are small because it is gen-
erally time consuming [78]. Although several works claim that complete or partial noise
correction in training data, with test data still containing noise, improves test perfor-
mance results in comparison with no preprocessing [78, 192], it can introduce more noise
(correction failure) into the training data if too many truly clean examples are mislabeled
[161].

3.2.2 Dealing with class noise at classifier level

3.2.2.1 Robustness of learning algorithms

Robustness is the capability of an algorithm to build models that are insensitive to
data corruptions and suffer less from the impact of noise. Thus, a classification algorithm
is said to be more robust than another if the former builds classifiers which are less
influenced by noise than the latter, i.e. the more robust an algorithm is, the more similar
the models built from clean and noisy data are [78]. Robustness is considered more
important than performance results when dealing with noisy data, because it allows to
know a priori the expected behavior of a learning method against noise in cases where
the characteristics of noise are unknown [78].

3.2.2.2 Robust algorithms against noise

Decision trees are greatly impacted by class noise. This instability makes them very
suitable for ensemble methods though. A method for building robust decision trees
consists to carefully select an appropriate splitting criterion. In [1], different node split
criteria are compared for ensembles of decision trees in the presence of class noise. The
Imprecise Information-Gain based on imprecise probabilities and uncertainty measures,
is shown to improve accuracy, with respect to the Gini index, the Information Gain
Ratio and the Information Gain. Another approach typically described as useful to deal
with noise in decision trees is postpruning [1]. Tree pruning is a technique in machine
learning that reduces the size of decision trees by removing sections of the tree that
provide little power to classify instances. This procedure reduces the complexity of the
final classifier and hence improves predictive accuracy by the reduction of overfitting
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caused by the overspecialization over the isolated (and usually noisy) examples [78].
However, Gamberger et al. show that this approach is less effective than noise removal
and correction [75]. If the noise level is relatively high, even a robust learner may have
a poor performance [78].

The kNN (K Nearest Neighbours) classifiers [60] are sensitive to class noise in par-
ticular for small neighbourhood sizes [150]. It is unlikely to obtain a good performance
without data preprocessing in noisy environments. Sáez et al. proposed a computation
of data complexity measures to predict in advance when the usage of a noise filter will
statistically improve the prediction results of 1-NN [173].

3.3 Ensemble-based class noise handling methods

3.3.1 Ensemble methods for class noise filtering

3.3.1.1 Ensemble-based class noise removal

Classification filtering faces the risk to remove too many instances containing valuable
information. To alleviate this problem, the ensemble approach is widely used to filter
out mislabeled instances [29, 82, 84, 117, 182, 197, 215]. It attempts to improve the
quality of the training data as a preprocessing step in classification, by detecting and
eliminating mislabeled instances. The detection of mislabeled instances is performed by
considering the vote of each base classifier in the ensemble to each instance [82].

Two typical ensemble approaches that address the mislabeling problem are the ma-
jority vote filter and the consensus filter [29]. In the majority vote method, if more than
half of all the base classifiers of the ensemble classify an instance incorrectly, then this
instance is tagged as mislabeled. The consensus filter [29] requires that all base classifiers
fail to classify an instance as the class given by its training label for it to be eliminated
from the training data [82]. However, a majority vote filter not only eliminates misla-
beled instances but also all the clean training instances that have been wrongly classified
by the underlying ensemble classifier. It cannot distinguish these false positives from the
mislabeled instances (true positives). This is an important limitation as the clean train-
ing instances wrongly identified as noise contain critical information such as boundary
instances which play an important role in classifier design [82]. On the contrary, the
criterion of the consensus filter [29] is too strict. It removes just a little portion of noise.
Nonetheless, neither the majority filter nor the consensus filter are satisfying answers to
effective mislabeled instance filtering [82].

Verbaeten and Assche considered the problem of mislabeled training examples by
preprocessing the training set based on some well-known ensemble classification methods
(bagging and boosting) [197] using C4.5 as base classifier [159]. They proposed two
approaches:

1. Filtering based on voting (consensus vote and majority vote) of base classifiers of
a bagging ensemble.
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2. Filtering based on removing training examples that obtained high weights in the
boosting process. Indeed, mislabeled examples are assumed to have high weights.

Results show that majority vote filters are more accurate than consensus filters as dis-
cussed in the previous paragraph. In addition, bagging - majority vote filters outperform
the boosting filters. Boosting filter tends to incorrectly remove many important correctly
labeled instances with large weights.

Zhu et al. proposed a method for identifying and eliminating mislabeled instances in
large or distributed datasets by partitioning a dataset into subsets [215]. The main idea
is to partition a large dataset E into some subsets firstly, and learn a set of classification
rules Ri for any subset of E, then a special rule set GRi is selected from Ri and used to
evaluate all instances in E. For any instance in E, two error count variables, local error
count and global error count, are used to record how this instance behaves with the good
rule sets from all subsets. Due to the fact that exceptions usually do not fire GRi and
noise more likely denies GRi, the noise has a higher probability of receiving large error
values in comparison with non-noisy examples. They adopted two schemes, majority
and non-objection, to identify noise. After each round, the identified noise and a certain
portion of good examples are removed, and if the filtering result is not satisfactory, the
procedure can be repeated. This method was shown to be effectively useful for large
datasets.

Miranda et al. combine four classifiers, which are induced by different machine learn-
ing techniques, and hence constitute a heterogeneous ensemble, by voting to detect
mislabeled instances [147]. The identified noise was removed. Their results show that
the noise removal technique was significant to increase the accuracy. However, the disad-
vantage of this method is that it eliminates instances that lie on the wrong side of the
classification boundary, which can be dangerous [68, 88]. Moreover, lots of parameters
must be considered when choosing different techniques as base classifiers for a given data
set.

Edge analysis can be used to detect mislabeled instances [204]. The definition of the
edge of an instance is the sum of the weights of weak classifiers, composing a boosting
ensemble, that misclassified the instance [23]. Hence, it is the contrary of the ensem-
ble margin proposed by Schapire et al. [176]. An instance with a large edge is often
misclassified by the weak classifiers, i.e. it has a low confidence. In this method, the
observations which were initially classified correctly are classified incorrectly in later
rounds to classify harder observations correctly. Mislabeled data have edge values which
remain high due to persistent misclassification. It is therefore proposed to remove the
instances corresponding to the top edge values (typically 5%) [68].

In Outlier Removal Boosting (ORBoost) [114], data cleansing is performed while
learning and not after learning. Instance weights which are above a certain threshold are
set to zero during boosting. This method gets more robustness than adaboost because
of paying less attention to class noise. However, ORBoost only has good performance
in the case of low noise level. Furthermore, it is sensitive to the choice of the threshold,
which is performed using a validation set [68].
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Among all the mentioned ensemble-based class noise filters, it remains difficult to
appropriately select one of them for effective noise handling. Recently, Sluban et al. at-
tempted an answer to this major issue in ensemble learning. They investigated the rela-
tionship between the diversity of heterogeneous ensembles and their class noise detection
performance, with the hypothesis that ensemble diversity may be used as guidance for
selection of well performing noise detection ensembles [183]. The majority and the con-
sensus ensemble voting schemes were studied in empirical analysis. Their results show
that increased diversity in ensembles using the majority voting method does not lead to
better performance of heterogeneous ensembles in noise detection and may even degrade
the noise detection performance. On the other hand, for consensus voting-based noise
detection heterogeneous ensembles, more diverse ensembles achieve higher precision in
class noise detection.

3.3.1.2 Ensemble-based class noise correction

As discussed in section 3.2.1, noise removal can discard some useful data and noise
correction has been shown to give better results than simply removing the noise from
the data set in some cases [192]. Rebbapragada et al. use active learning to deal with the
problem of class noise [161]. They proposed two scores ALC (Active Label Correction)-
Mislabeled and ALC-Disagreement to identify mislabeled data. The ALC-Mislabeled score
estimates how likely an example x is mislabeled by calculating the difference in probabil-
ities of the existing and predicted labels. The larger the score, the more likely it is that
x is mislabeled. They sort the instances in descending order according to their scores
and choose the largest k scores for expert review. ALC-Disagreement chooses examples
for relabeling that are not obviously mislabeled; it selects examples that exhibit a large
degree of confusion as to the predicted label and thus can be viewed as selecting hard
to classify examples. This confusion is reflected by the probability distribution over the
class labels - the closer it is to a uniform distribution the more confusion [161]. Finally,
mislabeled examples are updated by their predicted class labels, which are the labels
receiving highest vote. Two fully-automated cleaning techniques (single-pass discarding
and correcting) are used for comparison. Single-pass discarding removes examples whose
probabilities or committee votes on the existing label are less than the probabilities or
votes on the predicted label. Single-pass correcting simply updates the misclassified ex-
amples to their predicted labels. The results show that active learning outperforms both
automated data cleaning methods. However, like any active leaning strategy, human
expertise is needed, which is a major shortcoming compared to automated class noise
handling.

Miranda et al. correct mislabeled data by extending their noise detection method
described in section 3.3.1.1 [147]. Instances identified as noise are relabelled by the
classes which are the most predicted by the noise-detection classifiers. As a comparison,
the authors also proposed a hybrid technique: if the data is identified as class noise, kNN
is used to decide whether it should be removed or corrected. The results demonstrate
that the classifiers constructed using both class noise handling methods can achieve a
higher accuracy than those using the original training set. Furthermore, the classification

24



3.3. ENSEMBLE-BASED CLASS NOISE HANDLING METHODS

accuracies achieved by noise correction and hybrid methods are similar for most data
sets although the authors hope the latter can obtain a better performance. However,
both methods are less effective than their noise removal technique described in section
3.3.1.1. Moreover, as discussed in section 3.3.1.1, their noise detection algorithm tends
to identify a lot of important correctly classified samples as noise. In other words, noise
detection plays a key role in the process of noise removal and correction. Imprecise noise
identification method will lead to less effective noise removal and correction no matter
how reasonable the noise identification strategy is.

3.3.1.3 Exploiting the ensemble margin for class noise filtering

Ensemble margins, which have been described detailedly in chapter 2, can be used
for noise filter design. In [82], noisy instances are defined as instances that are either
mislabeled in the training data, or are inherently ambiguous and hard to categorize
because their label value conflicts with most of the other instance label values while
having similar attribute values. Using an unsupervised version of ensemble margin, Guo
defined a class noise as an instance that most base classifiers in the ensemble classified
as another class. In other words, this instance was classified wrongly with high margin.
Guo’s ensemble margin-based noise removal algorithm removes a portion of the highest
margin examples that have been misclassified. In this method, all the training instances,
that have been misclassified, are sorted in descending order according to their unsu-
pervised margin values. Then, two noise removal strategies, adaptive filtering (adaptive
estimation of the noise level) and fixed filtering (removal of a fixed amount of noise that
is assumed to be known) are experimented to estimate or confirm the amount of noise.
The results show that ensemble margin is relevant to identify class noise. Moreover, al-
though the classification accuracies obtained by adaptive filtering and by fixed filtering
are similar for most data sets, the adaptive strategy has a great advantage over the fixed
alternative in case of uncertain amount of noise which is generally the case in real-world
applications.

A reverse boosting algorithm is proposed in [32]. In this method, safe, noisy and
borderline patterns are distinguished, whose weights are respectively increased, decreased
and unaltered during boosting. Samples are classified into these three categories using
parallel perceptrons, a specific type of committee machine whose ensemble margin allows
to separate the input space into three regions: a safe (beyond the margin), a noisy (before
the margin), and a borderline region (inside the margin). The approach improves the
results of parallel perceptrons in the presence of noisy labels, but is most often dominated
by classical perceptrons [68].

3.3.2 Class noise tolerant ensemble learners

AdaBoost [69] is one of the most popular techniques for generating ensembles due
to its adaptability and simplicity [33]. However, AdaBoost tends to overfit class noise
because it obtains large weights for mislabeled instances in late stages of learning [68].
Several methods propose to update weights more carefully to reduce the sensitivity of
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boosting to class noise [68, 198]. For example, AveBoost2 [151] algorithms replace the
weight wi

(t+1) of ith instance at step t+1 by the following expression (equation 3.1):

(3.1)
twi

(t) +wi
(t+1)

t+1

AveBoost2 obtains larger training errors, but smaller generalization errors than Ad-
aBoost. Besides, it is more robust to class noise than AdaBoost through slowing down
the growth of the weights of misclassified instances. Similarly, MadaBoost [54] imposes
an upper bound for each instance weight, which is equal to the initial probability. Hence,
the weights of the examples cannot become arbitrarily large as it happens in AdaBoost.
This method has been shown not to overfit on noisy data. Averaged Boosting (A-Boost)
[118] uses the average of the product of the base hypotheses and weights while AdaBoost
uses the sum of it, and calculates the weight based on the error rate of the current hypo-
thesis on the original training examples while the AdaBoost algorithm uses the updated
weights. This approach performs similarly to bagging on noisy data. However, common
losses (modification of weights) in machine learning are not always effective, especially
in the case of high noise level [12].

Cao et al. proposed a new boosting approach named Noise-Detection based Adaboost
(ND-Adaboost) [33]. They gave an analysis of class noise detection based loss function
and ensemble margin respectively, then proposed a new loss function. The proposed
algorithm was designed by integrating the class noise-detection based loss function into
Adaboost to adjust the weight distribution at each iteration and added a regeneration
condition to control the ensemble training error bound [33].

In [121], two approaches are proposed to reduce the consequences of class noise
in boosting. One way to prevent Adaboost from overfitting is to limit the number of
iterations. However, the authors did not investigate any effective ways of choosing the
appropriate number of iterations. A second approach is to smooth the boosted classifier
by bagging. This algorithm combines bagging and boosting paradigms in the following
way: 1) K bootstrapped training subsets consisting of p percents of the training set are
created; 2) K boosted classifiers are trained for M iterations; 3) the K predictions are
aggregated. This method can increase the diversity of boosting and be less sensitive to
class noise than Adaboost [121].

Bagging has better performance than boosting in the presence of class noise. Since
each mislabeled sample impacts the classifier, bagging gets some quite different models by
repeatedly selecting different subsets of training set using bootstrap sampling. Hence, the
diversity of base classifiers is improved in bagging [68]. Abellan and Masegosa show that
the employment of bagging ensembles of credal decision trees, a special type of decision
trees, which are based on imprecise probabilities and information based uncertainty
measures, can be a successful tool in classification problems with a high level of noise
in the class variable [2]. A comparative empirical analysis about the accuracy of both
bagging-C4.5 and bagging-credal decision trees show that bagging-C4.5 wins in most
data sets with 0∼20% of noise and fails when 30% of noise is added.

Several studies show that the choice of sampling size is arbitrary in terms of gen-
eralization performance of the ensemble. The optimal size of the bootstrap samples is

26



3.4. ADDRESSING THE MISLABELING PROBLEM IN REMOTE SENSING

application dependent in noisy tasks, so it is worth to explore the possibility of sub-
sampling [170]. Sabzevari et al. show that bagging composed of unpruned decision trees
trained on bootstrap samples whose size is between 10% and 40% of the size of the
original training set are more robust to class noise than standard bagging (i.e. using a
100% sampling ratio of the size of the original data) [170].

The more classes in a problem, the more complex it is. Multi-class learning can also
increase the chances of incorrect classifications and hinder the prediction capabilities of
the classifiers in noisy problems [78]. Several works have demonstrated that decomposing
the multi-class problem into several binary subproblems is an easy way to reduce their
complexity and the effects caused by noise [171]. This method includes two steps:

• Problem division: the problem is decomposed into several binary subproblems
which are solved by independent binary classifiers,

• Combination of the outputs

The One-Vs-One (OVO) [171] decomposition strategy consists of dividing a classification
problem with M classes into M(M −1)/2 binary subproblems. A classifier is trained for
each new subproblem only considering the examples from the training data correspond-
ing to the pair of classes (λi,λ j), with i < j, considered. In [171], the C4.5 and RIPPER
(Repeated Incremental Pruning to Produce Error Reduction) [42] robust learners and
the noise-sensitive k-NN method are evaluated with and without the usage of OVO.
Their results show that the OVO decomposition improves all the baseline classifiers in
terms of accuracy when the data are corrupted by class noise, which could be due to
the distribution of the noisy examples in the subproblems, and collection of information
from different classifiers [171].

3.4 Addressing the mislabeling problem in remote
sensing

.
Remote sensing with sensors mounted on satellites or aircrafts is much needed for dis-

aster response, homeland defense, resource management and environmental monitoring
[40]. Remote sensing data considered include those from multispectral, hyperspectral,
radar, optical, and infrared sensors.

Classification is often one or the major tasks in remote sensing information processing.
However, the presence of noise in remote sensing data degrades the interpretation ability
of the data. In particular, mislabeled training data is inevitable in remote sensing where
training data sources are typically ground-based [107, 142]. The quality of supervised
land cover mapping methods depends on the accuracy of the classifier used to produce the
map, and the quality of the labeled data used to train the classifier [162]. Unfortunately,
labeling instances to create training sets is time-consuming. Human interpretation and
labeling of training sites can require several person-hours of effort per site, depending
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on the complexity of the regional land cover and the quality of source data. Despite this
level of labor intensity, labeling errors (class noise) still occur, the source of which are
subjectivity in data interpretation, inadequacy of source information used for labeling,
and other human errors [143]. As a result, creation of training data is one of the most
costly, error-prone, and subjective parts of the classification process [162]. Several class
noise handling methods presented above have been successfully used in remote sensing.
Their goal is to improve the ability to interpret the remote sensing data, often of high
complexity, and increase the classification accuracy.

3.4.1 Class noise handling methods

Artificial Neural Network (ANN) is a nonparametric method, which has been used
successfully for the classification of diverse remote sensing data, mainly because neural
network classifiers are believed to out-perform standard statistical classifiers [101, 202].
Rogan et al. gave a comparison of the performance of a fuzzy artificial neural network
and two classification tree algorithms (S-Plus and C4.5) in the context of mapping land-
cover changes using Landsat-5 TM (Thematic Mapper) multispectral images [168]. The
performances of three methods were assessed using classification accuracy measures and
the model data set was modified to test the effect of training data errors (i.e., class noise).
Their results show that artificial neural network is the most robust and most accurate
classifier in mapping land-cover changes in the presence of class noise compared to S-Plus
and C4.5 when the noise level is below 30%.

Hosseini et al. eliminate class noise in remote sensing imagery through a moving
window and majority local filter. A multi-spectral image

(
low spatial resolution Land-

sat ETM+ (Enhanced Thematic Mapper Plus)
)
, including cultivation, forest and urban

sites, is used in this study [101]. However, the size of neighbourhood for the noise filter
has to be very large for noise to be sufficiently removed, while a large size neighbour-
hood may alter the boundaries between classes and create zigzag bounding polygons.
Moreover, meaningful information in classified data is ignored because of the geometric
and dimensional non-correspondence to real objects with the moving window implemen-
tation matrix [157]. To avoid these drawbacks, Qian et al. use the K-mutual neighbours
graph to separate the data points into noisy and true data. K-nearest neighbours and
majority voting methods are used to correct the class labels of noisy data [157].

Class noise in remote sensing imagery can also be tackled by semi-supervised lean-
ing. In [124], context-sensitive semi-supervised SVMs (Support Vector Machines) first
use labeled instances to label unlabeled instances that are spatially close to them and
then these new semi-labels and a fixed window-based postfiltering are used to reduce
the effects of mislabeled training instances in the classification map. Semi-supervised
learning can keep the distribution of the instances unaltered. Hence, it is more suitable
for remote sensing data processing. Indeed, training data imbalance in remote sensing
data can hinder the efficiency of data cleansing methods. This is due to the fact that
minority instances, which are also more likely to be misclassified, may be more likely
to be wrongly (false positives) removed by classification filtering, which makes learning
even more difficult in noisy classification tasks [68].
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3.4.2 Ensemble-based class noise handling methods

Studies have demonstrated the successful application of ensemble classification tech-
niques to land cover mapping [19, 87, 167]. Du et al. [59] evaluated the effectiveness of
two popular ensemble algorithms, bagging and boosting, against noise on multi-source
remotely sensed images, including a QuickBird multispectral image, a hyperspectral im-
age (OMISII) and a multi-spectral image (low spatial resolution Landsat ETM+). The
accuracy assessment demonstrates that bagging is more robust to class noise in remote
sensing image classification [59].

As discussed in section 3.3.2, boosting methods tend to overfit class noise. Le Saux
tried to find an appropriate loss function to improve the robustness of boosting [123].
The capacities to handle mislabeled data of five different loss functions are tested on a
QuickBird multispectral image. The results show that DoomII loss [184] has the highest
performance with a limited amount of labeling noise, while with an increased mislabeling
level (> 20% of mislabeled inputs) Savage loss [138] performs better. However, Frenay
and Verleysen show that the class noise-robust methods are adequate only for simple
cases of class noise that can be safely managed by overfitting avoidance [68].

Random forest [26], a powerful machine learning classifier, combines the bagging idea
and random selection of features [3, 80, 87, 208]. It has been successfully applied to multi-
class classification tasks in remote sensing [3, 57, 87, 143]. Some studies demonstrated
that random forest has very good performance in noisy multispectral remote sensing
imagery. [119, 167] which does not come as a surprise as random forest is well-known in
ensemble learning for its robustness to noise [17]. In [167], the effectiveness of random
forests for land-cover classification on Landsat-5 TM data is assessed. The results show
that random forest has low overtraining probability and provides robustness to class
noise. In [119], the authors also successfully addressed the presence of class noise in
multispectral aerial imagery. Their study confirms that random forests can tolerate some
mislabeling of the data.

Ensemble noise filtering has been successfully used on remote sensing data. An em-
pirical evaluation of the consensus filter, which has been presented in section 3.3.1.1,
demonstrated that this class noise removal method improves classification accuracy for a
land-cover mapping task on a high resolution multi-source image

(
each pixel is described

by a time series of twelve NDVI (Normalized Difference Vegetation Index) values and
by its latitude

)
for which the training data contains mislabeled samples [28]. For noise

levels up to 20%, noise filtering allows the base-line accuracy to be retained. However,
an evaluation of the precision of the approach shows that consensus filters are conserva-
tive in throwing away good data at the expense of keeping mislabeled data. Hence, it
removes just a little portion of noise [82] making this method less effective in presence of
high levels of class noise. Besides, retaining noisy data hinders performance more than
throwing out good data [29].

The effectiveness of an ensemble margin-based class noise removal method [82, 84],
described in section 3.3.1.3, is demonstrated in performing mapping of land covers [82].
An airborne urban image of 25cm spatial resolution, a multi-source dataset combining
lidar and image data and a multispectial Landsat data of 80m spatial resolution are used
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to evaluate this algorithm. Boosting, a well-known noise sensitive ensemble classifier, is
used to assess the quality of the resulting filtered training sets. The results show that
this ensemble method for noise removal is effective for land cover mapping from noisy
remotely sensed data with noise levels between 10 and 30 % [82].

3.5 Conclusion

Class noise is a complex phenomenon with many potential consequences on classifi-
cation outcome especially in remote sensing where training data usually present a signif-
icant amount of mislabeled instances. There exist many different techniques to address
class noise, which can be classified as noise removal, noise correction or class noise-robust
methods. Not a single method is completely effective for all noisy data. So, the machine
learning practitioner has to choose the method whose definition of class noise appears
as the most relevant in his particular field of application. For example, if class noise
is only marginal, class noise-robust methods could be sufficient. Eventually, most data
cleansing methods are easy to implement and have been shown to be efficient and to
be good candidates in many noisy situations. In addition, in several works, it has been
observed that simply removing mislabeled instances is more efficient than correcting
them. However, instance removal methods may remove too many uncorrupted instances.
The overcleansing problem is of particular importance for imbalanced datasets which are
common in remote sensing. On the other hand, keeping mislabeled instances may harm
more than removing too many correctly labeled samples. Therefore, a compromise has
to be found.

Ensemble learners, especially random forest, are more robust than single classi-
fiers and have been successfully used to deal with the mislabeling problem. Indeed, all
ensemble-based class noise handling methods can be interpreted as making particular
assumptions. First, in data cleansing methods, different heuristics are used to distin-
guish mislabeled instances from exceptions. Each heuristic is a definition of what is class
noise. Second, in class noise-robust methods, overfitting avoidance is assumed to be suffi-
cient to deal with class noise. Therefore, the success of ensemble-based methods against
noise contributes to a good compromise between directly using instances as they are and
finding any instance that is possibly mislabeled.

There are many open research questions related to class noise and many avenues
remain to be explored. Semi-supervised learning has the advantage of not altering the
distribution of the instances and it could be interesting to investigate whether this scheme
does improve the class noise handling performances with respect to simply removing
suspicious instances from noisy data. Decomposition in multiclass problems can change
the distribution of noisy examples in resulting subproblems and increase the separability
of the classes, and hence can be used for noise detection or, more generally, for data
selection. Ensemble margin has also great potential for classifier design against noise
and for noise identification as demonstrated by some recent work that appeared in
literature. Indeed, the generalization performance of an ensemble classifier is related
to the distribution of its margins on the training examples. In addition, random forest
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has been proved to be the most robust method in ensemble learning. The effectiveness
of noise filtering in random forest classification is an interesting research direction to
explore.
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4
Class noise filtering using ensemble margin

This chapter presents an ensemble margin-based method to address the mislabeling
problem. Two kinds of artificial class noise which will be used in our experiments are
described in section 4.2. A novel unsupervised margin definition is proposed in section
4.3. In section 4.4, we study the suitability of two popular ensemble margins as well as
the proposed new margin for class noise identification. Section 4.5 presents the ensem-
ble margin based class noise ordering which is an important step in noise filter design.
Sections 4.6 and 4.7 describe our margin based noise removal and correction schemes res-
pectively. The experimental results are reported in section 4.9. Section 4.10 summarizes
our work.

4.1 Introduction

This chapter focuses on the classification of noisy datasets. In the previous chapter,
we have presented different data cleaning algorithms such as ensemble based class

noise filtering [29], [204], [33], which considers the fusion of classifiers to address the
classification of noisy instances and has already been highlighted as having a better
behavior with noisy data in the field of classification compared with single filters [68],
[194] as well as noise robust classifiers [1], [121].

In ensemble learning, ensemble margin [86] is acknowledged as an important fac-
tor for improving the generalization performance of classifiers [4, 83]. In the following,
we present an ensemble margin-based class noise elimination method to deal with the
class noise problem of real world data sets. This method can achieve a high mislabeled
instance detection rate (true positives) while keeping the false detection rate (false pos-
itives) as low as possible. The main difference between our margin based and existing
ensemble-based noise filters [29], [197] is that it not only adopts the ensemble vote to
distinguish misclassified and correctly classified instances, but also explicitly takes into
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account, through the ensemble margin, the probability of the misclassified instances be-
ing identified as noise. Hence, this method could also be considered as a probability
based noise filter.

There are two major ensemble margin definitions, both supervised, which are pre-
sented in chapter 2. But, which margin is the most suited for noise filter design? We
propose a novel unsupervised margin in this chapter. This margin has the appealing
property of not involving the class labels and thus should be potentially more robust to
class noise.

Since noise removal is known for its risk of removing useful instances, noise correction
methods which are designed via relabeling noisy instances [147], [161] are proposed to
avoid the reduction of informational samples. However, the noise correction methods
reported in the previous chapter do not fully satisfy the demands of most applications
due to a variety of reasons such as low automation or imprecise identification of noise. Our
margin based noise removal method has the advantage of more accurately distinguishing
mislabeled instances and corrected classified instances. Therefore, we extend the margin
based mislabeled instance elimination by tackling the class noise correction.

Two well-known noise sensitive classifiers, boosting [175] and K-Nearest Neighbors
(KNN) [45], are used to assess the quality of the resulting filtered training sets. A
comparative analysis is conducted with respect to the majority vote filter [29], also
an ensemble-based mislabeled training data identification approach. Although the ma-
jority vote filter [29] misidentifies some clean instances as noise, its easy implementation
makes this popular method still attractive [174, 183, 197].

4.2 Introducing artificial noise into the data

A class noise (or mislabeling) is an instance whose label value conflicts with most
of the other instance label values while having the same or similar attribution values.
It implies that most base classifiers in the ensemble classified this instance as another
class. In other words, this instance was classified wrongly with high confidence [82]. Noisy
distributions are application dependent and are generally unknown. In our research work,
two kinds of artificial noise are used to simulate mislabeled data.

4.2.1 Standard approaches for artificial noise generation

In the binary classification mislabelling experiment of [143], training data mislabelling
was undertaken by randomly re-assigning a proportion of A class instances as B class
and B instances as A. While introducing artificial noise into binary class training data
is a straightforward process, it is not always the case for multiclass problems. Studies
typically use random class-label switching to simulate noise in a classification [29, 85,
182, 197, 214]. They randomly chose a subset of a% from the whole training set. The
class label values of these randomly selected examples are randomly labeled to another
label.
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4.2.2 Confusion-matrix based artificial noise

In [143], an alternative approach is proposed for artificial mislabeling designed to
replicate realistic real-world operator misclassification (mislabelling) of reference data
instances [134], that results in a more reliable analysis of noise effects on a supervised
classifier performance. In its multi-class mislabelling experiment, a preliminary random
forest model was built using a multi-class training data. A confusion matrix derived from
the OOB (Out of Bag) data (not used in the bootstrap training samples) was used to
determine, for each class ci, the class to which it was most frequently misclassified l i ,
i.e. the most frequent erroneous class predicted by the model from the OOB data. For
the multi-class classification, starting with a training data set with more or less ”real”
noisy labels whose amount is unknown in practice, the introduction of artificial noise in
class labels is performed by mislabelling a proportion of each class ci to l i.

In the process of producing random noise, all instances have the same probability
to be mislabeled. However, confusion matrix based noise mainly affects class decision
boundaries. Hence, confusion matrix based noise is more difficult to be identified than
random noise.

4.3 New ensemble margin

In this section, we propose a novel unsupervised ensemble margin alternative defined
as equation (4.1), where vc1 is the votes number of the most voted class for sample x and
T represents the number of base classifiers in the ensemble. The proposed margin is an
unsupervised version of the classic sum-margin referred to as equation (2.3), it does not
require the true class label of instance x. Hence, it is potentially more robust to class
noise. This new margin will be named as unsupervised sum-margin. The range of this
margin is from 0 to 1.

(4.1)

margin(x) =
vc1 −

∑
c=1,...,L∩c ̸=c1

(vc)∑L
c=1(vc)

= 2vc1 −T
T

The proposed margin also has the advantage to be considered as a classifier evaluation
function or adopted for classifier design in unsupervised or semi-supervised ensemble
learning.
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4.4 Ensemble margin for class noise filtering

4.4.1 Effect of class noise on ensemble margin distribution
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Figure 4.1: Training margin distribution of bagging with clean and noisy training set on
data set Pendigit using a new ensemble margin.

The margin distribution of training instances effectively reflects the performance of
an ensemble algorithm [176]. When a model classifies a data set correctly with high
probability, these instances should obtain high margin values. The presence of noise
can weaken the performance of a classifier and lead to a smaller margin distribution.
Figure 4.1 shows the training margin distribution of bagging involving decision tree as
base learner on data set Pendigit (table 7.1) using the new ensemble margin in the case
of both clean and altered with 20% of random and confusion-matrix based artificial
noise respectively. From the margin plots, it can be seen that both kinds of noise result
expectedly in smaller training margins compared with the use of a clean training set
for ensemble construction. Moreover, random noise leads to more instances with lower
margin values compared with confusion-matrix based class noise in the new margin
distribution, i.e. the former leads to a lower mean margin than the latter.
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4.4.2 Max-margin versus sum-margin
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Figure 4.2: Max-margin and sum-margin distributions of true random class noise on
data sets Pendigit and Segment.
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Figure 4.3: Max-margin and sum-margin distributions of true confusion-matrix based
artificial noise on data sets Pendigit and Segment.

The main difference between max-margin (equation 2.2) and sum-margin (equation
2.3) is indicated in [113]. While the definition of sum-margin applies a sum operation
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on ensemble votes, the definition of max-margin uses a maximum operation. In this
section, we aim to compare the performances of max-margin and sum-margin in class
noise identification. The ideal margin distribution for effective class noise identification
is a margin distribution where all true mislabeled samples obtain high absolute values.
According to the definitions of the two margins (equations 2.2 and 2.3), a true mislabeled
instance could obtain a higher margin (in absolute value) with a sum operation and
thus be identified with higher probability. For example, in a multi-class problem, let us
assume the number of ensemble votes of a noisy sample for the true class is 20, and
the number of votes for any other class is 40, with an ensemble size of 100. Then, while
the max-margin (in absolute value) of the sample is 0.2, the sum-margin (in absolute
value) of the sample achieves 0.6. Consequently, among the two possible definitions of
ensemble margin, the second one, based on a sum operation, should be potentially more
successful in mislabeled data identification. Figures 4.2 and 4.3, which show the margin
distribution histograms of true class noise on data sets Pendigit and Segment (table 7.1)
with 20% noise level in the cases of random and confusion-matrix based artificial noise
respectively, confirm our assumption. The usage of sum-margin could result in cleaner
training set as well as more accurate classification as will be shown in our experimental
results later.

4.4.3 Supervised versus unsupervised margin

The main objective of this section is to carry out a feasibility analysis of exploiting
the margin for noise identification. Because an unsupervised margin does not require
the true class label of an instance, it has an appealing advantage over a supervised
margin: it can be involved in a semi-supervised ensemble learning scheme. Moreover, an
unsupervised margin is potentially more robust to noise as it is not affected by errors
occurring on the class label itself. Figures 4.4 and 4.5 perform a comparison of the sum-
based margin and its unsupervised version that we have proposed (equation 4.1) on
data sets Pendigit and Segment which are corrupted by random and confusion-matrix
based artificial noise with 20% level respectively. The supervised margin tends to make
more mislabeled instances obtain high margin (in absolute value) with respect to the
unsupervised margin on the two data sets, suggesting potentially greater capability in
mislabeled data identification.
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Figure 4.4: Supervised and unsupervised margin distributions of true random class noise
on data sets Pendigit and Segment.

40



4.5. ENSEMBLE MARGIN-BASED CLASS NOISE ORDERING

 S u m - m a r g i n
 U n s u p e r v i s e d  s u m - m a r g i n

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

 

 
Nu

mb
er 

of 
mi

sla
be

led
 in

sta
nc

es

M a r g i n  v a l u e s
(a) Pendigit

 S u m - m a r g i n
 U n s u p e r v i s e d  s u m - m a r g i n

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

 

 

Nu
mb

er 
of 

mi
sla

be
led

 in
sta

nc
es

M a r g i n  v a l u e s
(b) Segment

Figure 4.5: Supervised and unsupervised margin distributions of true confusion-matrix
based artificial noise on data sets Pendigit and Segment.

4.5 Ensemble Margin-based class noise ordering

Each training instance has a probability of being mislabeled. However, these proba-
bilities are different depending on instance features and behavior in the training process.
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The objective of noise removal is to eliminate the most likely noisy instances. Ordering
training instances according to their probability of being mislabeled is a simple and effi-
cient method for noise removal [82]. In [82], these probabilities rely on the margin values
of training instances involving an unsupervised ensemble margin (equation (2.3)) which
is an unsupervised version of the classic max-margin [82].

Let us consider an ensemble classifier C, and a set of n training data denoted as
S = {(x1, y1), . . . , (xn, yn)}, where xi is a vector with feature values and yi is the value of
the class label. The mislabeled instance ordering approach, introduced in [82], simply
relies on an ensemble margin’s definition as a class noise evaluation function, slightly
modified here, defined as (4.2). This method assesses only the training instances xi whose
attribution and label values are not consistent.

(4.2) N(xi)= |margin(xi)| ∀(xi, yi) ∈ S | C(xi) ̸= yi

The higher N(xi), the higher the probability of xi being mislabeled.

4.6 Ensemble margin based class noise removal

4.6.1 Noise filter

Our mislabeled training data identification method is based on noise ordering [82]
and relies on the ensemble margin. The first step of our noise removal method involves
a robust ensemble classifier: bagging (with pruned decision trees) which is constructed
using the whole training set. The margin value of each training instance is then calculated.
Our method orders misclassified training instances according to their margin values.
The higher the margin (in absolute value) of a misclassified instance, the higher the
probability this instance is being mislabeled. The two following steps of our algorithm
rely on a noise-sensitive ensemble classifier: boosting. The second step aims at selecting
the best filtered training set cleaned out of any mislabeled data. Using a more robust
ensemble classifier such as bagging or random forests to estimate the noise rate and
select the best training set is not the best choice. Indeed, robust ensembles tolerate a
certain amount of noise and therefore would fail to detect it.

The class noise rate is automatically estimated through an iterative procedure that
removes an amount M (from 0 to gradually 40% of the total training set size) of ordered
potential mislabeled instances from training set and assesses the classification accuracy
of boosting, built with the filtered training set, on a validation set. This adaptive strat-
egy selects then the filtered training set that led to maximum accuracy on validation
set. In the last step, boosting is involved again to assess the quality of the resulting
filtered training set via a classification accuracy assessment procedure. A single noise-
sensitive classifier, namely KNN, is also used (instead of boosting) in the last steps of
our mislabeled training data filter.

Relying on the margin-based noise evaluation function 4.1, the ordering-based misla-
beled instance elimination algorithm consists of the following steps:
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Algorithm 3: Margin based noise removal

Inputs:

1. Training set S = (x1, y1), (x2, y2, ), · · · , (xn, yn);

2. Validation set V ;

3. Ensemble creation algorithm C;

4. Number of iterations M (noise amount);

Process:

1. Constructing an ensemble classifier C with all the n training data (xi, yi) ∈ S.

2. Computing the margin of each training instance xi.

3. Ordering all the training instances xi, that have been misclassified, according to
their noise evaluation values N(xi), in descending order.

4. For m = 1 to M do

a) Eliminating the first m most likely mislabeled instances xi to form a new
cleaner training set S′

m.

b) Evaluating the cleaned training set S′
m by classification performance, on a

validation set V .

End

5. Selecting the best filtered training set S′ which led to maximum accuracy on
validation set V .

Output: Best filtered training set S′.

4.6.2 Iterative guided noise filter

A novel extended version of our margin-based noise removal method is proposed
here. This iterative guided noise filter relies on an adaptive calculation of the margin
values of each training instance. In the original version of our algorithm (Algorithm 3),
the training margins are determined once only, in the first step. The training margins
being at the core of our noise evaluation procedure, a sensible strategy (though more
costly) would consist in updating them at each noise removal step (second step of our
algorithm). Hence, a robust ensemble is constructed again (at each iteration) with the
reduced filtered training set, cleaned out of a fixed (1% of the current training set size)
amount of potential noise. New training margins are then calculated to use as inputs in
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the next step. This adaptive strategy selects then the filtered training set that led to
maximum accuracy on validation set. In the last step, boosting is involved again to assess
the quality of the resulting filtered training set via a classification accuracy assessment
procedure.

Algorithm 4: Iterative margin-based class noise removal

Input:

1. Training set S = (x1, y1), (x2, y2, ), · · · , (xn, yn);

2. Validation set V ;

3. Ensemble creation algorithm C;

4. Number of iterations M (noise amount);

Iterative process:

1. For m = 1 to M do

If m=1

a) Constructing an ensemble classifier C1 with the n training data (xi, yi) ∈ S.
b) Evaluating the original training set S by classification performance, on a

validation set V .
c) Training data S′

1=S

else

a) Constructing an ensemble classifier Cm with the training set S′
m.

b) Computing the margin of each training instance xi of S′
m.

c) Ordering all the training instances xi of S′
m, that have been misclassified,

according to their noise evaluation values Nm(xi), in descending order.
d) Eliminating the first 1% most likely mislabeled instances xi to form a new

cleaner training set S′′
m.

e) Evaluating the cleaned training set S′′
m by classification performance, on a

validation set V .
f) New training set S′

m+1=S′′
m

End

2. Select the best filtered training set S′′ which led to maximum accuracy on valida-
tion set V .

Output: Best filtered training set S′′.
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4.7 Ensemble margin based class noise correction

4.7.1 Noise filter

Noise removal can discard some useful data, so we also attempt to automatically
correct the training instances that have been identified as mislabeled (highest margin
misclassified instances). Noise correction has been shown to give better results than
simply removing the noise from the data set in some cases [192]. In a data correction
scheme, the noisy instances are identified, but instead of removing these instances out,
they are repaired by replacing corrupted values with more appropriate ones [192]. The
labels of the most likely mislabeled instances are changed to the predicted classes. Then,
these corrected instances are reintroduced into the training set. Our class noise correc-
tion method relies on an adaptive strategy that is similar to our class noise removal
method. But, instead of removing an amount M of noise from training set at each step,
it automatically corrects the detected noise using the predicted labels by the constructed
bagging ensemble. This ordering-based mislabeled instance correction algorithm consists
of the following steps summarized in Algorithm 5:

Algorithm 5: Margin based noise correction

Inputs:

1. Training set S = (x1, y1), (x2, y2, ), · · · , (xn, yn);

2. Validation set V ;

3. Ensemble creation algorithm C;

4. Number of iterations M (noise amount);

Process:

1. Constructing an ensemble classifier C with all the n training data (xi, yi) ∈ S.

2. Computing the margin of each training instance xi.

3. Ordering all the training instances xi, that have been misclassified, according to
their noise evaluation values N(xi), in descending order.

4. For m = 1 to M do

a) Correcting the labels of the first m most likely mislabeled instances xi to form
a new cleaner training set.

b) Evaluating the cleaned training set S′
m by classification performance, on a

validation set V .

End
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5. Select the best corrected training set S′ which led to maximum accuracy on vali-
dation set V .

Output: Best corrected training set S′.

4.7.2 Iterative guided noise filter

An iterative version of our noise correction algorithm is also proposed in this chapter.
This iterative guided noise correction method relies on a repetitive calculation of the
training margins that is similar to the margin distribution update step involved in our
iterative class noise removal method. But, instead of removing a portion of potential
mislabeled instances (at each iteration), it relabels the detected class noise using the
predicted labels by the constructed bagging ensemble. Hence, unlike the removal scheme,
the total number of training samples remains the same. The main steps of our iterative
guided noise correction method are summarized in the following algorithm.

Algorithm 6: Iterative margin based noise correction

Inputs:

1. Training set S = (x1, y1), (x2, y2, ), · · · , (xn, yn);

2. Validation set V ;

3. Ensemble creation algorithm C;

4. Number of iterations M (noise amount);

Iterative process:

1. For m = 1 to M do

If m=1

a) Constructing an ensemble classifier C1 with the n training data (xi, yi) ∈ S.

b) Evaluating the original training set S by classification performance, on a
validation set V .

c) Training data S′
1=S

else

a) Constructing an ensemble classifier Cm with the training set S′
m.

b) Computing the margin of each training instance xi of S′
m.

c) Ordering all the training instances xi of S′
m, that have been misclassified,

according to their noise evaluation values Nm(xi), in descending order.
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d) Correcting the labels of the first 1% most likely mislabeled instances xi to
form a new cleaner training set S′′

m.

e) Evaluating the cleaned training set S′′
m by classification performance, on a

validation set V .

f) New training data S′
m+1=S′′

m

End

2. Select the best corrected training set S′ which led to maximum accuracy on vali-
dation set V .

Output: Best corrected training set S′.

4.8 Discussion
1. Unlike traditional class noise processing methods which remove hypothetical mis-

labeled instances according to some simple rules such as the majority vote or
the consensus noise filters [29], the margin based algorithm, which can also be
categorized as a probability based method, identifies noisy samples depending on
the associated margin values that result from a majority voting of a noise robust
ensemble.

2. Class decision boundary and minority class instances, which are the most informa-
tive in classification, are easy to be misclassified in machine learning. Thus, they
have a high risk of being treated as noise and removed by simple noise filters such
as the filter reported in [194] where all the misclassified instances are removed or
the weight based ensemble based filter [197] which removes all the high weight
samples consequently affecting boundary data and minority class samples. In the
margin ordering based approach, class decision boundary and minority samples
have low margin values. Therefore, they are at low risk of being discarded while
the mislabeling problem is alleviated effectively by targeting high margin misclas-
sified instances.

3. Robust ensembles such as bagging are more suitable to obtain with high accuracy
misclassified samples as well as their margin values in the proposed margin-based
class noise identification algorithm. Noise sensitive learners have higher risk of
misclassifying difficult instances in corrupted environment, that will lead to some
unnecessary complications to data cleaning work and poorer class noise identifica-
tion performance.

4. Theoretically, the margin based noise correction approach should achieve better
performance than the margin based noise removal because it keeps all the training
samples. However, the correction scheme has a high requirement on the predicted
labels of class noise, i.e. the produced label from an ensemble should be close to
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the true class of a mislabeled instance with high confidence. Hence, the ensemble
learner whose main task is to produce an appropriate training margin distribution
for noise identification has a significant impact on the success of our noise correction
scheme.

5. The extended iterative guided approach identifies class noise by taking into consid-
eration the margin distribution of a different training set in each iteration. In other
words, instead of using one ensemble to produce margin values of potential noise
once, the iterative scheme aims to improve the accuracy of noise identification via
the fusion of diverse ensembles. It is noteworthy, however, that the iterative scheme
has higher computational costs.

A comparative analysis is conducted between our margin-based mislabeled data iden-
tification method and the majority filter [29]. Both class noise removal and correction
schemes are involved in the comparison. Each of the three different ensemble margins,
defined in chapter 2 as well as the new margin introduced in this chapter, are involved
in the validation of our algorithms.

4.9 Experimental results

4.9.1 Data sets

We applied the class noise removal and correction methods on 10 data sets including
5 image data sets (top 5) and 5 non image data sets (bottom 5) from UCI Machine
Learning repository [8] (table 7.1) including two imbalanced data sets (Glass and Wine
quality-red). Each data set has been divided into three parts: training set, validation set
and test set, as shown on table 7.1. For a fairer comparison, we included the validation in
the training data when the validation set was not necessary (fixed and majority filters).

In all the tables of the following experiments, the best performance for each data set
is highlighted in bold. The asterisk is utilized to mark the margin which has the best
performance among the four margin definitions in adaptive noise filtering.
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Dataset Training set Validation set Test set Variables Classes

Letter 5000 2500 5000 16 26
Optdigits 1000 500 1000 64 10
Pendigit 2000 1000 2000 16 10
Vehicle 200 100 200 18 4
Segment 800 400 800 19 7
Abalone 1500 750 1500 8 3
Glass 80 40 80 10 6

Waveform 2000 1000 2000 21 3
Wine quality-red 600 300 600 11 6

Texture 2000 1000 2000 40 11

Table 4.1: Data sets.

4.9.2 Class noise filtering using random noise

In this section, we test the performances of both noise removal and correction based
on one step training margins calculation in the presence of random noise. We randomly
chose a subset of 20% from the whole training set and whole validation set respectively.
The class label values of these selected examples were randomly labeled to another label.
Two noise filtering strategies are experimented. The first one is adaptive and involves the
elimination (Algorithm 3) or correction (Algorithm 5) of an amount of ordered potential
mislabeled instances equal to the one that led to maximum accuracy on validation set.
The second one just eliminates or corrects a fixed amount equal to the noise rate (20%).
The margin-based approach involves the two popular definitions of ensemble margin:
equations 2.2 and 2.3 and their unsupervised versions including the novel proposed
margin (equations 2.4 and 4.1).

4.9.2.1 Noise removal assessment

4.9.2.1.1 Overall classification accuracy
Tables 4.2 and 4.3 show respectively the accuracy of AdaBoost.M1 and 1-NN without

noise filtering, and by noise filtering for both majority vote and margin-based methods
in the presence of random noise. These tables show that the margin-based mislabeled
data removal scheme significantly outperforms the majority vote filter. The accuracies
achieved by adaptive filtering and by a fixed amount of filtering are slightly in favor of
the fixed strategy (at least for the best performances, indicated in bold). However, the
adaptive strategy does not require the knowledge of the noise rate (which is generally
unknown) and leads to a more automated noise filtering procedure.

Supervised margins are more effective for class noise identification than unsupervised
margins. Among the two possible definitions of ensemble margin, the second one, based

49



CHAPTER 4. CLASS NOISE FILTERING USING ENSEMBLE MARGIN

on a sum operation, is the most successful for mislabeled data removal. This result is
rather expected as a sum operation is more robust to noise than a max operation, at
the core of the 1st definition of ensemble margin. The new introduced margin (equation
(4.1)), although not as efficient as its supervised counterpart (equation (2.3)), is also ef-
fective to identify mislabeled data and outperforms the majority vote filter. Additionally,
the two unsupervised margins achieve similar performances for noise removal.

Data No Majority

Margin-based noise removal

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 46.7 47.8 49.9 52.0 49.9 49.6 52.4 56.9* 48.5 50.5

Optdigit 89.3 90.8 94.5 93.4 93.1 93.2 94.7 94.1* 93.9 93.2

Pendigit 90.3 93.0 93.2 95.3 92.7 94.2 95.9 95.4* 92.8 93.9

Vehicle 72.2 73.7 73.5 72.3 72.6 72.1 74.1 72.1 72.8 73.0*

Segment 92.1 91.1 93.6 94.0 93.5 94.2 93.4 94.9* 93.3 94.2

Abalone 54.2 54.1 53.9 54.5* 54.3 54.1 54.7 54.4 54.7 54.0

Glass 97.7 97.5 97.5 96.8* 98.8 96.6 97.5 96.3 97.5 96.5

Waveform 81.6 79.0 82.2 82.4* 81.6 81.8 82.7 80.9 81.8 82.1

Wine qual
60.7 59.8 62.0 60.5 62.0 59.7 61.4 60.6* 61.6 59.3

-ity-red

Texture 86.3 89.5 88.5 91.7 86.9 90.4 94.0 93.9* 87.2 90.5

Average
77.1 77.6 78.9 79.3 78.5 78.6 80.1 79.9* 78.4 78.7

accuracy

Table 4.2: Accuracy of AdaBoost.M1 classifier with no filter, with majority vote filtered
and with four margin-based filtered training sets, using both an adaptive and a fixed
amount of filtering in the presence of random noise.
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Data No Majority

Margin-based noise removal

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 74.6 59.1 81.1 79.9 78.1 78.2 87.1 85.1* 79.2 77.6

Optdigit 77.9 93.3 92.5 93.0 91.1 92.9 93.6 93.1* 91.0 93.0

Pendigit 79.8 95.1 94.9 96.3* 94.1 95.9 96.2 95.9 93.5 94.2

Vehicle 59.0 66.5 68.5 63.0 68.5 64.0 70.0 70.0* 69.0 66.0

Segment 81.5 90.3 90.3 91.6 90.5 91.5 92.9 93.3* 90.0 91.8

Abalone 45.1 53.2 51.3 49.7 49.9 49.7 52.7 51.3* 49.8 49.5

Glass 63.8 73.8 75.0 71.3* 75.0 68.8 75.0 68.8 75.0 65.0

Waveform 62.8 78.1 76.6 75.5 74.6 77.6* 76.9 75.8 74.7 76.7

Wine qual
49.7 60.3 56.3 57.8* 56.5 56.8 55.3 56.5 55.5 55.7

-ity-red

Texture 80.2 94.4 93.4 93.9* 92.9 93.2 95.5 93.8 92.5 93.2

Average
67.4 76.4 78.0 77.2 77.1 76.8 79.5 78.3* 77.0 76.2

accuracy

Table 4.3: Accuracy of 1−NN classifier with no filter, with majority vote filtered and
with four margin-based filtered training sets, using both an adaptive and a fixed amount
of filtering in the presence of random noise.

4.9.2.1.2 Per-class classification accuracy
Tables 4.4 and 4.5 compare respectively the classification accuracy achieved by Ad-

aBoost.M1 and 1-NN, on test set, for the most difficult class with no filter, with majority
vote filtered and with four margin-based filtered training sets, using both an adaptive
and a fixed amount of filtering. These tables show that the margin-based mislabeled data
removal scheme significantly increases the accuracy on the most difficult class for almost
all the data sets while the majority vote method is less effective and even decreases the
per-class accuracy of some data sets. Difficult class instances have typically low margin
values and hence are at low risk of being removed, our potential mislabeled training
data being the highest margin misclassified instances. The new unsupervised margin
outperforms the unsupervised max-margin in boosting per-class accuracy performances
but is significantly less effective for 1-NN classifier. In addition, the accuracies of the
most difficult class achieved by an adaptive filtering are higher than by a fixed amount
of filtering for boosting classification but significantly lower for 1-NN classification. Fur-
thermore, tables 4.2, 4.3, 4.4 and 4.5 show that the sum operation based margin noise
filter induces a faster rise in classification accuracy and per-class accuracy than other
margin based noise filters for both ensemble and single classifiers.

51



CHAPTER 4. CLASS NOISE FILTERING USING ENSEMBLE MARGIN

Data No Majority

Margin-based noise removal

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Optdigit 77.0 79.3 87.4 82.4 84.6 82.9* 90.2 81.4 86.0 79.5

Pendigit 75.4 79.4 78.9 82.5 78.4 82.0 86.6 89.3* 78.6 82.1

Vehicle 47.3 51.4 43.6 43.1* 43.2 42.6 48.0 39.3 49.6 39.6

Segment 77.8 77.0 84.7 85.0 83.7 85.7 80.7 86.5* 83.6 85.8

Abalone 26.4 26.2 34.9 40.2 34.7 39.6 34.7 44.0* 33.3 33.5

Glass 5.0 0.0 0.0 50.0 50.0 50.0 0.0 50.0 0.0 50.0

Waveform 78.2 73.9 79.6 82.1* 78.6 80.5 80.2 79.4 78.9 80.2

Wine qual
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0

-ity-red

Texture 63.1 64.2 69.8 85.6 65.1 74.2 84.9 89.6* 71.2 81.5

Average
45.0 45.1 47.9 55.1 51.8 53.7 50.5 55.9* 48.2 53.2

accuracy

Table 4.4: Classification accuracy of AdaBoost.M1 classifier for the most difficult class
with no filter, with majority vote filtered and with four margin-based filtered training
sets, using both an adaptive and a fixed amount of filtering in the presence of random
noise.
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Data No Majority

Margin-based noise removal

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 66.1 0.0 38.0 63.2 38.0 64.7 73.1 75.4* 40.9 64.2

Optdigit 58.9 83.0 74.1 81.3 77.7 82.1* 83.0 81.3 73.2 81.3

Pendigit 70.8 83.4 86.1 89.8* 81.9 86.5 90.6 89.3 80.0 85.1

Vehicle 30.9 41.8 41.8 32.7 41.8 30.9 41.8 38.2* 40.0 32.7

Segment 70.3 76.9 75.4 81.8 79.0 77.9 82.5 84.3* 79.0 81.4

Abalone 39.0 30.3 35.6 38.4 32.0 34.3 42.6 40.7* 31.4 35.4

Glass 50.0 0.0 50.0 33.3* 50.0 33.3* 50.0 33.3* 50.0 0.0

Waveform 61.1 73.7 73.5 75.0* 71.6 75.0* 74.0 74.6 71.5 73.7

Wine qual
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-ity-red

Texture 72.5 85.1 86.2 81.6 81.6 78.7 90.8 82.2* 81.6 79.3

Average
52.0 47.4 56.1 57.7 55.4 56.4 62.8 59.9* 54.8 53.3

accuracy

Table 4.5: Classification accuracy of 1−NN classifier for the most difficult class with no
filter, with majority vote filtered and with four margin-based filtered training sets, using
both an adaptive and a fixed amount of filtering in the presence of random noise.

4.9.2.2 Noise correction assessment

4.9.2.2.1 Overall classification accuracy
In tables 4.6 and 4.7, organized as tables 4.2 and 4.3, we attempt to correct the

training data identified by margin-based or majority vote methods as mislabeled. A
comparison of the overall accuracies of AdaBoost.M1 and 1-NN on the original training
data (no noise correction) and on the corrected training data reveals that margin-based
algorithms reach higher accuracy while the ability of the majority vote correction to
retain the baseline accuracy decreases particularly for AdaBoost.M1. Unlike in noise
removal, while the fixed scheme still outperforms the adaptive one for noise correction
in 1-NN, the adaptive scheme turns out more effective in boosting classification. While
the sum-based definition of ensemble margin (equation (2.3)) remains beyond all doubt
the most appropriate for 1-NN classifier, it is not the case for AdaBoost.M1 classifier for
which the max-margin achieves the best noise correction performance. Unsurprisingly,
the class noise removal scheme outperforms its correction counterpart, for both majority
vote and margin-based methods, the noise correction being a more challenging task.
Indeed, noise correction algorithms are at high risk of inducing additional noise, and
retaining bad data hinders performance more than throwing out good data.
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Data No Majority

Margin-based noise correction

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 46.7 45.6 43.7 50.4* 43.6 50.4* 43.6 48.4 43.6 50.3

Optdigit 89.3 88.0 91.7 93.2* 89.2 92.3 92.4 92.2 87.8 91.3

Pendigit 90.3 89.6 91.9 93.6* 90.5 91.8 94.0 93.6* 89.3 91.6

Vehicle 72.2 74.3 72.2 73.9* 72.3 72.0 72.6 73.6 72.1 72.8

Segment 92.1 91.1 94.0 94.0 93.8 94.4* 93.6 94.1 94.0 94.4*

Abalone 54.2 54.5 53.7 54.5* 54.6 54.3 54.3 54.1 54.7 54.0

Glass 97.7 97.5 97.5 96.5 97.5 96.9* 97.5 96.9* 97.5 96.6

Waveform 81.6 78.9 81.9 82.2* 80.6 81.8 82.0 81.3 80.4 82.1

Wine qual
60.7 60.6 61.8 61.0 61.1 61.1* 62.3 58.5 61.2 60.4

-ity-red

Texture 86.3 85.8 87.5 89.5 86.2 87.9 91.4 91.2* 86.3 88.1

Average
77.1 76.6 77.6 78.9* 76.9 78.3 78.4 78.4 76.7 78.2

accuracy

Table 4.6: Accuracy of AdaBoost.M1 classifier with no corrected, with majority vote
corrected and with four margin-based corrected training sets, using both an adaptive
and a fixed amount of filtering in the presence of random noise.
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Data No Majority

Margin-based noise correction

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 74.6 63.2 73.4 76.4 71.3 75.7 78.5 80.4* 72.7 76.0

Optdigit 77.9 88.7 90.4 89.1 89.2 89.2 91.1 90.4* 89.7 88.0

Pendigit 79.8 89.8 93.5 92.6 92.1 91.8 94.3 93.7* 91.4 92.1

Vehicle 59.0 66.5 67.5 64.0 67.0 63.5 68.0 64.5* 65.5 61.5

Segment 81.5 89.1 90.8 92.3 89.3 91.1 91.4 93.0* 89.4 92.3

Abalone 45.1 53.5 53.0 51.4 52.3 50.5 54.4 51.9* 52.3 50.6

Glass 63.8 76.3 76.3 71.3* 76.3 68.8 76.3 68.8 76.3 65.0

Waveform 62.8 75.4 76.6 76.4* 75.3 75.5 76.9 75.8 75.3 74.9

Wine qual
49.7 61.2 57.5 58.5 58.2 58.7* 57.2 56.5 57.7 54.3

-ity-red

Texture 80.2 87.3 90.7 90.0 90.0 88.7 93.2 91.7* 89.9 87.5

Average
67.4 75.1 76.9 76.2 76.1 75.3 78.1 76.7* 76.0 74.2

accuracy

Table 4.7: Accuracy of 1−NN classifier with no corrected, with majority vote corrected
and with four margin-based corrected training sets, using both an adaptive and a fixed
amount of filtering in the presence of random noise.

4.9.2.2.2 Per-class classification accuracy

Tables 4.8 and 4.9 compare respectively the classification accuracy achieved by Ad-
aBoost.M1 and 1-NN, on test set, for the most difficult class with no corrected, with
majority vote corrected and with four margin-based corrected training sets, using both
an adaptive and a fixed amount of filtering. These tables show that the margin-based
mislabeled data correction scheme significantly increases the accuracy on the most diffi-
cult class for almost all the data sets with respect to no correction classification as well
as the majority vote correction. Moreover, tables 4.6, 4.7, 4.8 and 4.9 confirm again the
effectiveness of supervised margins in data cleaning. In addition, although the positive
performance of the new margin based mislabeled instances correction is not very obvi-
ous in 1-NN classification, tables 4.6 and 4.8 demonstrate the success of using our new
margin in the design of noise filter in increasing the classification accuracy and per-class
accuracy for ensemble classifiers.
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Data No Majority

Margin-based noise correction

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Optdigit 77.0 78.0 80.5 80.8* 79.4 78.9 81.3 78.8 75.6 77.5

Pendigit 75.4 69.5 76.9 82.2 72.4 78.7 82.4 83.2* 74.8 78.4

Vehicle 47.3 44.3 42.3 43.6 43.6 46.0 44.1 43.6 42.7 47.8*

Segment 77.8 77.9 86.8 86.1 86.3 86.7 85.2 85.2 88.0 87.3*

Abalone 26.4 23.5 33.3 39.8 33.8 29.9 31.6 41.1* 34.0 39.8

Glass 5.0 0.0 0.0 50.0 0.0 50.0 0.0 50.0 0.0 50.0

Waveform 78.2 74.3 79.5 80.8 77.2 81.2 80.2 79.8 77.0 81.5*

Wine qual
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ity-red

Texture 63.1 51.8 73.9 68.1 68.6 69.0 83.5 78.7* 68.2 65.7

Average
45.0 41.9 47.3 53.1 46.1 52.0 48.8 54.1* 46.0 52.8

accuracy

Table 4.8: Classification accuracy of AdaBoost.M1 classifier for the most difficult class
with no corrected, with majority vote corrected and with four margin-based corrected
training sets, using both an adaptive and a fixed amount of filtering in the presence of
random noise.
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Data No Majority

Margin-based noise correction

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 66.1 18.4 23.4 61.0 26.9 59.3 50.9 63.6* 32.2 63.6*

Optdigit 58.9 67.0 69.6 69.6 73.2 69.6 70.5 72.3* 70.5 69.6

Pendigit 70.8 65.3 81.9 79.5 78.2 77.6 84.2 82.3* 76.3 77.7

Vehicle 30.9 45.5 45.5 36.4 43.6 32.7 43.6 38.2* 34.6 29.1

Segment 70.3 76.3 77.2 81.8 72.8 75.4 78.1 85.1* 73.7 81.8

Abalone 39.0 20.1 31.8 32.6 30.5 30.1 37.5 36.4* 30.1 28.4

Glass 50.0 0.0 0.0 33.3* 0.0 33.3* 0.0 33.3* 0.0 0.0

Waveform 61.1 69.9 70.5 73.9* 69.9 71.6 70.8 73.0 70.0 71.1

Wine qual
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ity-red

Texture 72.5 58.1 75.3 67.2 73.6 61.5 83.3 81.3* 73.0 58.1

Average
52.0 42.1 47.5 53.5 46.9 51.1 51.9 56.6* 46.0 47.9

accuracy

Table 4.9: Classification accuracy of 1−NN classifier for the most difficult class with no
corrected, with majority vote corrected and with four margin-based corrected training
sets, using both an adaptive and a fixed amount of filtering in the presence of random
noise.

4.9.3 Class noise filtering using confusion matrix based noise

The confusion matrix based noise affects more class decision boundary instances than
in the case of random noise. Therefore, it is more difficult to be identified and addressed
than random noise. In this section, we test the performances of our margin based noise
filter in the presence of this second type of class noise. The considered level of noise is
20% as in the former experiments involving random noise.

4.9.3.1 Noise removal assessment

4.9.3.1.1 Overall classification accuracy
Tables 4.10 and 4.11 display respectively the overall accuracy of AdaBoost.M1 and

1-NN without noise filtering, and by noise filtering for both majority vote and margin-
based methods in the case of confusion matrix based noise. Compared with the no filter
case, the results achieved by our class noise removal method confirm once again that
the classification accuracy would improve when noise is removed from the misclassified
instances which are ordered in decreasing order based on their margin values. The best
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increase in accuracy with respect to the unfiltered case is over 17% on data set Optdig-
its with 1-NN classifier. Our margin-based mislabeled data removal scheme still achieve
a better performance than the majority vote filter. While the unsupervised margins
outperform supervised margins with AdaBoost.M1, it is the opposite for 1-NN classi-
fier. Moreover, sum operation based margins are statistically more effective for class
noise identification than max-margins as in our random noise study. Furthermore, in the
process of adaptive noise removal for AdaBoost.M1 classification, the novel introduced
margin (unsupervised sum-margin) clearly outperforms the three other margins. Finally,
while the fixed scheme turns out slightly more effective than the adaptive one for confu-
sion matrix based noise removal in AdaBoost.M1, they achieve similar performances in
1-NN classification.

Data No Majority

Margin-based noise removal

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 45.7 47.2 45.7 49.8 48.8 48.5 51.1 52.9* 46.0 48.2

Optdigits 88.8 92.6 92.9 89.0 92.8 89.4 92.7 88.0 92.6 89.5*

Pendigit 88.7 90.3 91.1 92.5* 92.3 92.4 92.5 91.7 91.3 92.0

Vehicle 69.2 72.6 74.8 66.0 74.8 66.1 74.8 66.3 74.8 66.4*

Segment 93.4 92.3 92.5 91.4 93.1 91.8 92.4 90.8 93.6 93.0*

Abalone 54.9 54.7 54.8 54.1 55.0 55.0 55.0 53.4 55.1 55.2*

Glass 87.0 95.0 89.1 82.3 89.3 88.5 88.1 78.4 88.4 91.3*

Waveform 78.5 81.1 82.2 82.1 82.5 82.7* 82.0 82.6 82.7 82.5

Wine qual
50.7 59.6 59.4 59.6 59.7 59.9* 59.7 57.6 60.2 58.7

ity-red

Texture 87.6 88.4 90.6 90.4 89.9 90.7* 89.7 90.2 90.1 90.7*

Average
74.5 77.4 77.3 75.7 77.8 76.5 77.8 75.2 77.5 76.8*

accuracy

Table 4.10: Accuracy of AdaBoost.M1 classifier with no filter, with majority vote filtered
and with four margin-based filtered training sets, using both an adaptive and a fixed
amount of filtering in the presence of confusion matrix based noise.
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Data No Majority

Margin-based noise removal

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 74.1 60.1 76.2 75.2 76.3 75.5 78.1 78.5* 76.4 76.6

Optdigits 76.5 93.6 94.0 91.8 91.3 92.0 94.1 92.1* 91.6 91.3

Pendigit 81.7 92.1 92.5 93.8* 92.1 93.0 93.1 93.6 92.5 92.7

Vehicle 63.5 69.0 70.5 65.0* 70.5 64.5 70.5 64.0 70.5 64.5

Segment 77.8 92.5 91.5 88.9* 92.3 88.1 91.5 86.0 92.5 87.1

Abalone 46.9 55.0 52.7 54.1 52.1 53.9 52.8 53.4 52.1 54.3*

Glass 56.3 71.3 70.0 60.0 70.0 65.0* 70.0 58.8 70.0 63.8

Waveform 63.9 78.2 76.1 78.1 75.6 77.9 76.4 78.3* 75.6 78.1

Wine qual
50.7 58.8 56.8 56.7 56.7 56.8 57.3 56.8 57.2 57.3*

-ity-red

Texture 78 92.7 92.4 93.2* 91.5 92.8 92.4 92.6 91.7 91.9

Average
66.9 76.3 77.3 75.7 76.8 75.9* 77.6 75.4 77.0 75.7

accuracy

Table 4.11: Accuracy of 1−NN classifier with no filter, with majority vote filtered and
with four margin-based filtered training sets, using both an adaptive and a fixed amount
of filtering in the presence of confusion matrix based noise.

4.9.3.1.2 Per-class classification accuracy

Tables 4.12 and 4.13 present respectively the classification accuracy of AdaBoost.M1
and 1-NN for the most difficult class, on test set. Those tables show that although
the positive effect of margin-based noise removal scheme is hidden to some extent in
the performance of average accuracy mainly because of the worst recognition for the
most difficult class of the imbalanced data Glass, our margin-based class noise removal
method is still effective in increasing the accuracy of the most difficult class for most data
sets compared with the no filter case (increase in accuracy of up to 24% on data set
Abalone with AdaBoost.M1 classifier) and statistically outperforms the majority vote
method (increase in accuracy of up to 28% on data set Abalone in the classification
of AdaBoost.M1). Hence, the ability of our algorithm in the classification of difficult
classes is demonstrated again. A similar conclusion as in section 4.9.3.1.1 can be drawn
again here: sum operation based margins still lead to better results compared with the
margins depending on a max operation. Additionally, supervised margins statistically
exhibit better per-class performances with respect to their unsupervised versions.
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Data No Majority

Margin-based noise removal

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Optdigits 76.7 83.8 85.6 76.6 83.6 81.6* 82.5 71.0 85.6 81.3

Pendigit 71.6 69.1 75.2 73.9 71.1 74.3 78.4 81.2* 72.2 73.5

Vehicle 54.2 55.1 54.9 43.8* 54.9 43.5 54.9 42.7 54.9 43.6

Segment 86.5 80.6 82.0 83.8 82.6 81.3 82.2 84.0* 84.1 83.6

Abalone 20.7 17.0 33.0 42.3 27.5 40.8 39.1 45.3* 28.3 43.7

Glass 50.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.6*

Waveform 71.6 73.9 79.3 75.1 80.0 76.4* 78.2 76.1 81.5 76.3

Wine qual
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ity-red

Texture 75.8 80.6 79.0 79.7* 78.7 79.4 71.3 77.6 76.9 78.9

Average
50.7 51.0 48.9 47.5 47.9 47.7 48.7 47.8 48.4 50.9*

accuracy

Table 4.12: Classification accuracy of AdaBoost.M1 classifier for the most difficult class
with no filter, with majority vote filtered and with four margin-based filtered training
sets, using both an adaptive and a fixed amount of filtering in the presence of confusion
matrix based noise.
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Data No Majority

Margin-based noise removal

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 65.5 0.0 51.9 65.2 50.3 64.7 66.8 67.5* 47.5 65.2

Optdigits 64.3 75.9 79.5 76.8 76.8 79.5* 79.5 79.5* 82.1 77.7

Pendigit 78.3 73.5 76.7 78.1 76.3 79.1 79.1 80.5* 75.8 78.6

Vehicle 43.6 47.3 45.5 38.2 45.5 41.8* 45.5 40.0 45.5 38.2

Segment 69.0 80.2 76.9 77.9* 81.8 73.5 76.9 71.7 81.8 71.1

Abalone 43.6 20.6 33.9 42.6 31.6 38.6 35.2 44.3* 31.8 39.0

Glass 28.6 28.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.3

Waveform 60.4 73.4 70.6 71.9 70.2 71.6 70.5 72.1* 69.7 71.9

Wine qual
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ity-red

Texture 72.8 79.9 83.9 82.8* 81.0 82.2 84.5 80.5 81.0 80.7

Average
52.6 47.9 51.9 53.4 51.3 53.1 53.8 53.6 51.5 53.7*

accuracy

Table 4.13: Classification accuracy of 1−NN classifier for the most difficult class with no
filter, with majority vote filtered and with four margin-based filtered training sets, using
both an adaptive and a fixed amount of filtering in the presence of confusion matrix
based noise.

4.9.3.2 Noise correction assessment

4.9.3.2.1 Overall classification accuracy
Tables 4.14 and 4.15 present the accuracy of AdaBoost.M1 and 1-NN without noise

correction, and with noise correction for both majority vote and margin-based methods
in the case of confusion matrix based noise, respectively. The comparison of our margin
based class noise correction and no filter performances demonstrates the feasibility and
effectiveness of adopting the ensemble margin for the correction of mislabeled instances
that lie likely on class decision boundaries (confusion matrix based artificial noise). Our
method significantly outperforms the majority vote noise correction scheme with Ad-
aBoost.M1 (8 wins over 10). However, the majority vote filter performs better than
our method in 1-NN classification (6 wins over 10). Nevertheless, our method is still
effective to distinguish the confusion matrix based noise and significantly increases the
prediction accuracy of 1-NN with respect to the no correction case. The fixed filtering
scheme achieves a similar performance with respect to the adaptive one for both Ad-
aBoost.M1 and 1-NN classifications. Moreover, two concordant conclusions with random
noise based analysis (section 4.9.2 ) can be drawn: 1) the class noise removal scheme
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outperforms its correction counterpart, for both majority vote and margin-based meth-
ods, 2) supervised margins are more effective than unsupervised margins. Additionally,
while the sum margins outperform the max margins for 1-NN, it is the opposite for Ad-
aBoost.M1, which is coincident with our discussion in section 4.9.2.2.1. Furthermore, in
the process of adaptive noise correction for AdaBoost.M1 classification, the unsupervised
max-margin achieves better performance than the other margins.

Data No Majority

Margin-based noise correction

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 45.7 45.7 43.1 47.8 41.7 49.0* 40.9 46.3 44.9 46.3

Optdigits 88.8 89.5 91.4 89.5* 91.5 89.4 91.2 89.2 88.5 89.1

Pendigit 88.7 88.6 91.0 92.1* 89.5 91.7 91.6 91.4 89.1 91.5

Vehicle 69.2 73.3 72.5 66.4 72.5 68.3* 72.5 66.4 72.5 66.0

Segment 93.4 92.2 92.5 92.8* 92.2 92.6 91.6 91.0 92.8 92.4

Abalone 54.9 54.8 55.2 54.7 54.9 54.9* 55.2 53.9 55.0 54.9*

Glass 87.0 95.0 89.5 82.6 89.5 85.6* 89.5 82.4 89.5 84.0

Waveform 78.5 79.6 82.4 81.6 81.5 81.7* 82.4 81.7* 81.5 81.4

Wine qual
50.7 58.0 60.2 60.2* 60.1 58.9 59.8 58.9 59.8 58.4

-ity-red

Texture 87.6 85.8 89.1 90.3 89.6 90.7* 89.2 90.5 88.9 90.7*

Average
74.4 76.2 76.7 75.8 76.3 76.3* 76.4 75.2 76.3 75.5

accuracy

Table 4.14: Accuracy of AdaBoost.M1 classifier with no filter, with majority vote filtered
and with four margin-based corrected training sets, using both an adaptive and a fixed
amount of filtering in the presence of confusion matrix based noise.
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Data No Majority

Margin-based noise correction

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 74.1 73.9 69.0 74.3 69.1 74.0 69.8 75.1* 68.6 74.0

Optdigits 76.5 91.4 91.1 87.7* 89.9 86.8 91.2 86.7 89.0 85.8

Pendigit 81.7 92.6 91.0 91.5 90.7 90.9 91.4 91.8* 90.4 90.9

Vehicle 63.5 70.0 69.5 65.0 69.5 64.0 69.5 67.0* 69.5 64.0

Segment 77.8 90.1 89.5 89.8 89.8 89.8 89.9 90.0* 90.6 89.6

Abalone 46.9 55.3 52.7 53.9 52.7 53.9 54.3 54.3* 52.6 53.7

Glass 56.3 68.8 67.5 61.3* 67.5 61.3* 67.5 61.3* 67.5 60.0

Waveform 63.9 76.1 76.0 77.7 75.7 77.6 76.6 77.8* 75.7 77.7

Wine qual
50.7 59.5 58.5 57.2 58.5 57.5* 57.8 57.2 58.0 56.3

ity-red

Texture 78.0 88.2 90.9 90.1* 89.4 89.7 90.2 89.3 88.8 89.4

Average
66.9 76.6 75.6 74.8 75.3 74.5 75.8 75.0* 75.1 74.1

accuracy

Table 4.15: Accuracy of 1− NN classifier with no filter, with majority vote filtered
and with four margin-based corrected training sets, using both an adaptive and a fixed
amount of filtering in the presence of confusion matrix based noise.

4.9.3.2.2 Per-class classification accuracy
Tables 4.16 and 4.17 present the classification accuracy of AdaBoost.M1 and 1-NN

for the most difficult class on test set, respectively. A failure of our approach to recognize
the most difficult class of the imbalanced data Glass makes the mean accuracy become
unsuitable as a fair evaluation measure. When compared with the no filter case, the
effectiveness of our margin-based class noise correction method is clearly demonstrated
(6 wins over 8 on AdaBoost.M1 and 5 wins over 9 on 1-NN). Moreover, our method still
significantly outperforms the majority vote filter (7 wins over 8 for AdaBoost.M1 and
7 wins over 9 for 1-NN). Additionally, with respect to no filter classification, while the
majority vote filter obtains lower classification accuracy of the most difficult class on most
of the datasets, the new margin effectively leads to more positive results, particularly
for AdaBoost.M1 classification (5 wins over 8).

With respect to unsupervised margins, supervised margins achieve relatively better
performances in AdaBoost.M1. However, both kinds of margins provide quite similar per-
formances for 1-NN. In addition, while max-margins slightly outperform sum-margins
in AdaBoost.M1, sum-margins lead to better results in 1-NN. Finally, tables 4.12, 4.13,
4.16 and 4.17 demonstrate that both our margin based mislabeled data removal and

63



CHAPTER 4. CLASS NOISE FILTERING USING ENSEMBLE MARGIN

correction algorithms are statistically more effective in increasing the prediction accu-
racy of the most difficult class with respect to the no filter case and the majority vote
method in artificially corrupted data with confusion matrix based noise. Meanwhile, the
effectiveness and the contribution of our new margin is demonstrated and emphasized
once again.

Data No Majority

Margin-based noise correction

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Optdigits 76.7 80.8 83.8 83.1* 83.1 82.2 81.1 77.3 71.5 75.3

Pendigit 71.6 71.1 73.0 75.9 70.8 74.4 77.2 78.0* 70.7 74.3

Vehicle 54.2 53.1 57.1 43.8 57.1 41.6 57.1 45.3* 57.1 40.2

Segment 86.5 79.7 83.8 82.6 80.7 82.6 81.0 83.5* 84.3 83.5*

Abalone 20.7 16.1 47.4 40.6* 39.6 35.9 33.2 40.0 43.9 34.3

Glass 50.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Waveform 71.6 71.7 78.2 78.4 77.9 79.2* 78.8 79.2* 77.8 79.2*

Wine qual
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ity-red

Texture 75.8 51.8 75.5 78.2 77.4 80.1* 74.3 79.2 75.1 78.9

Average
50.7 47.4 49.9 48.3* 48.7 47.6 48.3 48.3* 48.0 46.6

accuracy

Table 4.16: Classification accuracy of AdaBoost.M1 classifier for the most difficult class
with no corrected, with majority vote corrected and with four margin-based corrected
training sets, using both an adaptive and a fixed amount of filtering in the presence of
confusion matrix based noise.

64



4.9. EXPERIMENTAL RESULTS

Data No Majority

Margin-based noise correction

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

filter filter Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Adapt.

Letter 65.5 24.0 36.1 59.9 32.4 60.4 54.2 62.6* 36.9 59.9

Optdigits 64.3 77.7 78.6 76.8* 75.0 76.8* 73.2 66.1 75.0 73.2

Pendigit 78.3 74.9 80.0 80.3 77.2 80.8* 78.6 79.5 77.2 80.8*

Vehicle 43.6 45.5 40.0 40.0* 40.0 40.0* 40.0 38.2 40.0 40.0*

Segment 69.0 77.0 76.0 75.2 77.7 75.2 76.0 75.2 77.9 75.2

Abalone 43.6 20.3 31.1 34.3 30.9 33.5 33.9 36.9* 31.4 33.9

Glass 28.6 28.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Waveform 60.4 69.6 70.8 71.6 69.6 72.2 70.9 72.4 69.6 72.5*

Wine qual
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ity-red

Texture 72.8 63.2 77.6 66.7 71.3 67.8* 77.0 67.8* 71.3 63.2

Average
52.6 48.1 49.0 50.5 47.4 50.7* 50.4 49.9 47.9 49.9

accuracy

Table 4.17: Classification accuracy of 1−NN classifier for the most difficult class with no
corrected, with majority vote corrected and with four margin-based corrected training
sets, using both an adaptive and a fixed amount of filtering in the presence of confusion
matrix based noise.

4.9.4 Iterative guided versus one step training margin
calculation noise filtering

To test the performances of our iterative guided noise filter based on a repetitive
calculation of training margins (Algorithm 4), this section carries out a comparison of
this algorithm and our one step training margin calculation noise filter (Algorithm 3)
for both noise removal and correction using confusion matrix based artificial class noise.
Because of the need of a validation set for the iterative method, only the adaptive filtering
strategy is considered for the one step noise filter in the comparison. The margins that
have achieved the best performances for AdaBoost.M1 classification in section 4.9.3.1.1
(unsupervised sum-margin) and section 4.9.3.2.1 (unsupervised max-margin) are utilized
for the design of both iterative and one step noise filters.

4.9.4.1 Comparative study on noise removal

Tables 4.18 and 4.19 respectively present the overall accuracy and prediction accu-
racy on the most difficult class using AdaBoost.M1 without noise filtering, and with
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noise filtering for both our iterative guided and our one step training margin calculation
methods using the novel unsupervised sum-margin and confusion matrix based noise.
Table 4.18 shows that although the one step filter outperforms the iterative filter, the
latter still outperforms without noise filtering classification. In the process of iterative
guided noise removal scheme, the removal of the instances which are identified as misla-
beled data in the current training set may result in more false positive samples in the
next iteration. Consequently, the iterative filter faces a higher risk of throwing out good
samples than the one step filter. Table 4.19 shows that the iterative noise filter statisti-
cally outperforms the one step noise removal and the classification without any filtering.
Indeed, difficult class instances have low margin values. Hence, while these samples are
difficult to be accurately distinguished from noisy samples by the one step filter, these
instances may be retained with a higher probability because of the conservative nature
of the iterative filter.

Data No filter One step removal Iterative removal

Letter 45.7 48.2 51.7

Optdigit 88.8 89.5 89.5

Pendigit 88.7 92.0 92.7

Vehicle 69.2 66.4 67.0

Segment 93.4 93.0 90.6

Abalone 54.9 55.2 54.4

Glass 87.0 91.3 82.3

Waveform 78.5 82.5 81.8

Wine quality-red 50.7 58.7 55.8

Texture 87.6 90.7 91.0

Average accuracy 74.4 76.8 75.7

Table 4.18: Classification accuracy of AdaBoost.M1 classifier with no filtered, one step
filtered and iteratively filtered training sets using the unsupervised sum-margin and
confusion-matrix based noise.

4.9.4.2 Comparative study on noise correction

Tables 4.20 and 4.21 give the overall accuracy and prediction accuracy on the most
difficult class using AdaBoost.M1 without noise correction, and with noise correction
for both iterative guided and one step training margin calculation noise filters using
the unsupervised max-margin and confusion matrix based artificial noise. These tables
exhibit some similar conclusions to the ones drawn in the previous comparative study
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Data No filter One step removal Iterative removal

Letter 0.0 0.0 13.5

Optdigit 76.7 81.3 78.9

Pendigit 71.6 73.5 77.0

Vehicle 54.2 43.6 53.8

Segment 86.5 83.6 84.3

Abalone 20.7 43.7 36.0

Glass 50.0 28.6 14.3

Waveform 71.6 76.3 79.7

Wine quality-red 0.0 0.0 0.0

Texture 75.8 78.9 79.7

Average accuracy 50.7 50.9 51.7

Table 4.19: Classification accuracy of AdaBoost.M1 classifier for the most difficult class
with no filtered, one step filtered and iteratively filtered training sets using the unsuper-
vised sum-margin and confusion-matrix based noise.

on noise removal. Table 4.20 shows that the iterative filter still statistically outperforms
the classification without noise filtering. Moreover, while the one step filter achieves
relatively better performance than the iterative method on most of the data sets, the
iterative correction obtains the best results on the two imbalanced noisy data (Glass
and Wine quality-red). Table 4.21 shows that the iterative noise correction statistically
leads to a faster increase in accuracy for the most difficult class compared with the one
step correction as well as without correction classifications. Although the mislabeled
instance correction technique significantly improves the data quality, it still has a risk
of producing additional noise which really needs to be overcame.

4.10 Conclusion

Ensemble margin is acknowledged as an important factor for improving the gen-
eralization performance of classifiers in ensemble learning. This chapter presented an
ensemble margin-based method to address the mislabeling problem. We have proposed
a novel ensemble margin definition. This margin is an unsupervised version of the classic
sum-margin and was used throughout all our experiments.

Our mislabeled training data identification algorithm exploits the ensemble margin
and handles both the removal and the correction of noisy labels by both one step and
iterative training margins calculation schemes. The effectiveness of our method is eval-
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Data No filter One step correction Iterative correction

Letter 45.7 49.0 46.4

Optdigit 88.8 89.4 88.1

Pendigit 88.7 91.7 91.1

Vehicle 69.2 68.3 66.6

Segment 93.4 92.6 90.9

Abalone 54.9 54.9 54.0

Glass 87.0 85.6 87.6

Waveform 78.5 81.7 82.0

Wine quality-red 50.7 58.9 59.7

Texture 87.6 90.7 90.6

Average accuracy 74.4 76.3 75.7

Table 4.20: Classification accuracy of AdaBoost.M1 classifier with no corrected, one step
corrected and iteratively corrected training sets using the unsupervised max-margin and
confusion-matrix based noise..

Data No filter One step correction Iterative correction

Letter 0.0 0.0 0.0

Optdigit 76.7 82.2 77.1

Pendigit 71.6 74.4 74.5

Vehicle 54.2 41.6 61.3

Segment 86.5 82.6 79.7

Abalone 20.7 35.9 35.7

Glass 50.0 0.0 29.3

Waveform 71.6 79.2 79.7

Wine quality-red 0.0 0.0 0.0

Texture 75.8 80.1 81.2

Average accuracy 50.7 47.6 51.8

Table 4.21: Classification accuracy of AdaBoost.M1 classifier for the most difficult class
with no corrected, one step corrected and iteratively corrected training sets using the
unsupervised max-margin and confusion-matrix based noise.
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uated via analyzing the classification performances of two noise sensitive classification
models AdaBoost.M1 and 1-NN, which are trained from our margin based filtered data.

The results of our empirical evaluation demonstrated that, our margin based method
outperforms the majority vote noise filter. Moreover, we compared the performances of
4 different ensemble margins including the novel unsupervised margin in our margin
based noise filter design. The analysis results show that supervised margins generally
outperform unsupervised margins, and sum-operation based margins are more effective
in class noise handling than max-margins.

In our work, we also compared the performances of our noise removal and noise
correction methods. Our experimental results show that our noise removal outperforms
its corresponding correction. Although our noise correction achieves better classification
accuracy for noise sensitive classifiers than the majority vote method due to providing
a more accurate prediction label for identified mislabeled instances, it still has a risk
of producing additional noise. This weakness has to be alleviated as retaining bad data
hinders performance more than throwing out good data.

Finally, we tested the performance of our iterative guided training margin calcu-
lation noise filtering method. This method is demonstrated as useful to improve the
classification performance of AdaBoost.M1. In addition, iterative data clean algorithms
are conservative. Such characteristic can benefit the quality of prediction of small and
difficult class instances. Hence, in our experiments, the iterative filter was effective for
the classification of the most difficult class in diverse classification problems.
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5
A review on ensemble methods for the class

imbalance problem

This chapter gives a review on ensemble methods for the class imbalance problem. Sec-
tion 5.1 presents the characteristic of imbalanced data. Section 5.2 introduces oversam-
pling and undersampling methods for imbalance learning. Section 5.3 presents ensemble-
based class balancing methods. The limitations of each of these existing imbalance learn-
ing techniques are also described. Imbalance learning methods for remote sensing data are
presented in section 5.4. Finally, a summary of existing imbalance classification methods
is presented in section 5.5.

5.1 Introduction

Class distribution, i.e., the proportion of instances belonging to each class in a data-
set, plays a key role in any kind of machine-learning and data-mining research.

Binary imbalanced data classification problems occur when one class, usually the one
that refers to the concept of interest (positive or minority class), is underrepresented in
the data-set; in other words, the number of negative (majority) instances outnumbers
the amount of positive class instances [73, 104, 108]. Processing minority class instances
as noise can reduce classification accuracy. In addition, the degradation of classification
performance is also linked to other difficulty factors related to data distribution, such
as decomposition of the minority class into many rare sub-concepts [110], the effect of
too strong overlapping between the classes [172] or the presence of too many minority
examples inside the majority class regions [18, 200]. When these factors occur together
with class imbalance, the recognition of the minority class is hindered more seriously [18].
Moreover, dealing with multi-class tasks with different misclassification costs of classes
is harder than dealing with two-class ones [120, 172, 200].

Some traditional classification algorithms, such as K-Nearest Neighbors (KNN) [45],
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Support Vector Machines (SVM) [44], and decision trees [159], which show good behavior
in problems with balanced classes, do not necessarily achieve good performance in class
imbalance problems. There are several reasons behind this behavior [133, 135], some
causes are:

(1) Patterns that predict the minority class are often highly specific and thus their
support is very low, hence they are prone to be discarded in favor of more general
patterns that predict the majority class.

(2) Many approaches, like divide-and-conquer [189], divide the training sample into
small partitions, which contain even less instances from the minority class, which
makes more difficult the extraction of regularities.

(3) The use of global performance measures for guiding the learning process, such as
the standard classification accuracy rate, may bias the classification results towards
the majority class.

(4) Some minority class instances might be identified as noise, and therefore they could
be wrongly discarded by the classifier. Conversely, some actual noisy instances can
degrade the identification of the minority class, since it has only a few instances
to train.

The class imbalance case has been reported to exist in a wide variety of real-world
domains, such as face recognition [132], text mining [148], software defect prediction
[181], and remote sensing [187]. Moreover, it is generally more important to accurately
predict or identify the rarer case than the more common case, and this is reflected in
the costs associated with errors in the predictions and classifications [95]. Consequently,
how to classify imbalanced data effectively has emerged as one of the biggest challenges
in machine learning.

Typically, there are four methods for imbalanced learning [96]: sampling methods
[77], cost-sensitive methods [108, 128], kernel-based methods [108] and active learning
methods [62].

• Sampling methods The objective of these non-heuristic methods is to provide a
balanced distribution by considering the representative proportions of class exam-
ples. They are carried out before training starts. These methods will be presented
in detail in section 5.2.

• Cost-sensitive methods These methods incorporate both data level transforma-
tions (by adding costs to instances) and algorithm level modifications (by mod-
ifying the learning process to accept costs). They generally use the cost matrix
to consider the costs associated with misclassifying samples [96]. Cost-sensitive
neural network [211] with threshold-moving technique was proposed to adjust the
output threshold toward inexpensive classes, such that high-cost samples are un-
likely to be misclassified. Three cost-sensitive boosting methods, AdaC1, AdaC2,
and AdaC3 were proposed [188] and cost items were used to weight the updating
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strategy in the boosting algorithm. The disadvantage of these approaches is the
need to define misclassification costs, which are not usually available in the data
sets [73].

• Kernel-based methods The principles of kernel-based learning are centered on
the theories of statistical learning and Vapnik-Chervonenkis dimensions [196]. In
kernel-based methods, there have been many works to apply sampling and ensem-
ble techniques to the support vector machine (SVM) concept [30]. Different error
costs [5] were suggested for different classes to bias the SVM to shift the decision
boundary away from positive instances and make positive instances more densely
distributed.

• Active learning methods Traditional active learning methods were used to solve
the imbalanced training data problem. Recently, various approaches on active learn-
ing from imbalanced data sets were proposed [62]. Active learning effectively selects
the instances from a random set of training data, therefore significantly reducing
the computational costs when dealing with large imbalanced data sets. The major
drawback of these approaches is large computation costs for large datasets [62].

5.2 Sampling methods for learning from imbalanced
data

The sampling approach rebalances the class distribution by resampling the data space.
This method avoids the modification of the learning algorithm by trying to decrease
the effect caused by data imbalance with a preprocessing step, so it is usually more
versatile than the other imbalance learning methods. Many works have been studying
the suitability of data preprocessing techniques to deal with imbalanced data-sets [63, 73].
Their studies have shown that for several base classifiers, a balanced data set provides
an improved overall classification performance compared to an imbalanced data set. He
[96] and Galar et al. [73] give a good overview of these sampling methods, among which
random undersampling [77] and random oversampling [37] are the most popular.

5.2.1 Oversampling techniques

Random oversampling tries to balance class distribution by randomly replicating
minority class instances. But several authors agree that this method can increase the
likelihood of occurring overfitting, since it makes exact copies of existing instances [13],
[73], [108].

SMOTE (Synthetic Minority Over-sampling Technique), the most popular over-sampling
method, was proposed by Chawla et al. [37]. Its main idea is to create new minority class
examples by interpolating several minority class instances that lie together. SMOTE cre-
ates new instances by randomly selecting one (or more depending on the oversampling
ratio) of the K-Nearest Neighbors (KNN) of a minority class instance and generating the
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new instance values from a random interpolation of both (or more) instances. SMOTE
can avoid the over fitting problem [13]. However, its procedure is inherently dangerous
since it blindly generalizes the minority class without regard to the majority class and
this strategy is particularly problematic in the case of highly skewed class distributions
since, in such cases, the minority class is very sparse with respect to the majority class,
thus resulting in a greater chance of class mixture [65].

Many improved oversampling algorithms attempt to retain SMOTE’s advantages
and reduce its shortcomings. MSMOTE (Modified SMOTE) [104] is a modified version
of SMOTE. The main idea of this algorithm is to divide the instances of the minority
class into three groups, safe, border and latent noise instances, by the calculation of
distances among all examples. When MSMOTE generates new examples, the strategy
to select the nearest neighbors is changed with respect to SMOTE and depends on the
group previously assigned to the instance. For safe instances, the algorithm randomly
selects a data point from the K nearest neighbors; for border instances, it only selects
the nearest neighbor; finally, for latent noise instances, it does nothing. This method
is effective to reduce the risk of introducing artificially mislabeled instances. Hence, it
can lead to more accurate classification than SMOTE. Sáez et al. try to increase the
effectiveness of SMOTE by dividing the data set into four groups: safe, borderline, rare
and outliers [172]. In fact, it is another version of MSMOTE which considers a fourth
group in the underlying instance categorisation: rare instances. Their results show that
borderline examples are usually preprocessed. The preprocessing of outliers depends
on whether the safe examples are representative enough within the core of the class:
if the amount of safe examples is rather low, preprocessing outliers is usually a good
alternative. Finally, the preprocessing of rare examples mainly depends on the amounts
of safe examples and outliers.

5.2.2 Undersampling techniques

Random undersampling aims to balance class distribution through the random elim-
ination of majority class examples. Its major drawback is that it can discard potentially
useful data, which could be important for the induction process [13], [73], [108].

Zhang and Mani used the KNN classifier [45] to achieve undersampling [207]. Based
on the characteristics of the given data distribution, four KNN undersampling meth-
ods were proposed in [207], namely, NearMiss-1, NearMiss-2, NearMiss-3, and the most
distant method. Instead of using the entire set of over-represented majority training
examples, a small subset of these examples is selected such that the resulting training
data is less skewed. The NearMiss-1 method selects those majority examples whose av-
erage distance to the three closest minority class examples is the smallest, while the
NearMiss-2 method selects the majority class examples whose average distance to the
three farthest minority class examples is the smallest. NearMiss-3 selects a given num-
ber of the closest majority examples for each minority example to guarantee that every
minority example is surrounded by some majority examples. Finally, the most distant
method selects the majority class examples whose average distance to the three closest
minority class examples is the largest. Experimental results suggest that the NearMiss-2
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method can provide competitive results with respect to SMOTE and random undersam-
pling methods for imbalanced learning. This method is effective to clean the decision
surface by increasing the distance between minority class and majority class. In addition,
it is useful to reduce class overlapping.

5.2.3 Oversampling versus undersampling

At first glance, the oversampling and undersampling methods appear to be func-
tionally equivalent since they both alter the size of the original data set and can actu-
ally provide the same proportion of class balance. However, this commonality is only
superficial, each method introduces its own set of problematic consequences that can
potentially hinder learning [100], [141]. In the case of undersampling, the problem is
relatively obvious: removing examples from the majority class may cause the classifier
to miss important concepts pertaining to the majority class. In regards to oversampling,
the problem is a little more opaque: the computational complexity is increased rapidly
with the production of more positive samples, especially in dealing with large data such
as remote sensing data. In addition, oversampling has risk of over-fitting [13]. For ex-
ample, since random oversampling simply appends replicated data to the original data
set, multiple instances of certain examples become tied leading to overfitting [13]. In
particular, overfitting in oversampling occurs when classifiers produce multiple clauses
in a rule for multiple copies of the same example which causes the rule to become too
specific; although the training accuracy will be high in this scenario, the classification
performance on the unseen testing data is generally far worse [100].

Despite some limitations, oversampling and undersampling schemes have their own
strengths. For example, one of the main advantages of undersampling techniques lies in
the reduction of the training time, which is especially significant in the case of highly im-
balanced large data sets [66]. Oversampling can provide a balanced distribution without
losing information on majority class. Furthermore, both approaches provide competitive
results compared with more complex methods such as ensemble methods [73]. However,
when considering whether it is preferable to “add” or “remove” instances from the train-
ing set, several authors have shown the superiority of oversampling over undersampling
[13, 66].

5.3 Ensemble-based imbalanced data classification
methods

5.3.1 Class imbalance ensemble learning at data level

Ensemble classifiers are known to increase the accuracy of single classifiers by com-
bining several of them and have been successfully applied to imbalanced data-sets
[64, 130, 156]. Ensemble learning methods have been shown to be more effective than
data sampling techniques to enhance the classification performance of imbalanced data
[115]. However, as the standard techniques for constructing ensembles are rather too
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overall accuracy oriented, they still have difficulty to sufficiently recognize the minority
class [18]. So, the ensemble learning algorithms have to be designed specifically to effec-
tively handle the class imbalance problem [73]. The combination of ensemble learning
with imbalanced learning techniques (such as sampling methods presented in section
5.2) to tackle the class imbalance problem has led to several proposals in the literature,
with positive results [73]. Hence, aside from conventional categories such as kernel-based
methods, ensemble-based methods can be classified into a new category in imbalanced
domains [73]. In addition, the idea of combining multiple classifiers itself can reduce
the probability of overfitting [154]. In the following, we will present two popular ap-
proaches combining the ensemble paradigm and the sampling scheme to deal with the
class imbalance problem.

5.3.1.1 Oversampling combined ensembles

In oversampling combined ensembles, a new minority training set is sampled (with
or without replacement) from the original minority class training instances such that
|Nmin| =|Nma j|, where |Nmin| is the size of the minority class and |Nma j| is the size of the
majority class, then ensemble learning algorithms such as adaboost, bagging or random
forests can be trained from the new balanced dataset [96]. He and Garcia compared the
performances of random forests and adaboost, combined with random oversampling, on
binary class imbalanced data sets [96]. Their results show random forests outperforms
adaboost.

For multi-class imbalance problems, except using oversampling to balance the num-
ber of samples for each class, another approach [66, 201] is decomposing the multi-
class problem into several binary subproblems by one-versus-one [92] or one-versus-all
approaches [164]. Wang and Yao compared the performances of adaboost.NC and ad-
aboost combined with random oversampling with or without using classes decomposition
for multi-class imbalanced data sets [201]. Adaboost.NC [201] is an improved version of
adaboost algorithm. It updates the weights of training examples by considering both
difference among the current classifiers and the misclassification information. Their re-
sults in the case of classes decomposition show adaboost.NC and adaboost have similar
performance. One-versus-all decomposition approach does not provide any advantages
for both boosting ensembles in their multi-class imbalance learning experiments. The
reason seems to be the loss of global information of class distributions in the process
of class decomposition. The results achieved without using classes decomposition show
although adaBoost.NC outperforms adaboost, their performances are degraded as the
number of imbalanced classes increases. For the data sets with more classes, despite the
increased quantity of minority class examples by oversampling, the class distribution in
data space is still imbalanced, which seems to be dominated by the majority class [201].

The methods consisting of first pre-processing data and then using standard ensem-
bles on balanced data cannot absolutely avoid the shortcomings of sampling. Moreover,
internal imbalance sampling based ensemble approaches should work better [131]. This
technique balances the data distribution in each iteration when constructing the ensem-
ble. It can obtain more diversity than the mere use of an sampling process before learning
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a model [73]. SMOTEBoost [38] proposed by Chawla et al. improves the over-sampling
method SMOTE [37] by combining it with AdaBoost.M2 [177]. They used SMOTE data
preprocessing algorithm before evaluating the prediction error of the base classifier. The
weights of the new instances are proportional to the total number of instances in the new
data-set. Hence, their weights are always the same. Whereas original data-sets instances
weights are normalized in such a way that they form another distribution with the new
instances. After training a classifier, the weights of the original data-set instances are
updated; then another sampling phase is applied (again, modifying the weight distribu-
tion). The basic idea is to let the base learners focus more and more on difficult yet rare
class examples. In each round, the weights for minority class examples are increased.
However, SMOTE has high risk of producing mislabeled instances in noisy environment,
and boosting is very sensitive to class noise. Hence, how to increase its robustness should
not be overlooked.

Thanathamathee et al. proposed a method combining synthetic boundary data gener-
ation and boosting procedures to handle imbalanced data sets [193]. They first eliminate
imbalanced error domination effect by measuring the distance between class sets with
Hausdorff distance [203], and identify all relevant class boundary data, which have min-
imum distance value with the instances of other classes. Then, they synthesize new
boundary data using a bootstrapping re-sampling technique on original boundary in-
stances [61]. Finally, they proceed to learning the synthesized data by a boosting neural
network [93]. Their method outperforms KNN, AdaBoost.M1 and SMOTEBoost. How-
ever, the method relies mainly on boundary definition; if the boundary is not correctly
detected, the results may be deteriorated.

Bagging significantly outperforms boosting over noisy and imbalanced data [116].
Moreover, bagging techniques are not only easy to develop, but also powerful when deal-
ing with class imbalance if they are properly combined [73]. Most of related works in the
literature indicate good performance of bagging extensions versus the other ensembles
[106, 131]. OverBagging [200] is a method for the management of class imbalance that
merges bagging and data preprocessing. It increases the cardinality of the minority class
by replication of original examples (random oversampling), while the examples in the
majority class can be all considered in each bag or can be resampled to increase the
diversity. This method outperforms original bagging in dealing with binary imbalanced
data problems [73].

SMOTEBagging has been proposed to deal with multi-class imbalance problems [200].
It is another different manner to oversample minority class instances by the usage of the
SMOTE preprocessing algorithm [37]. But the way it creates each bag is significantly
different. A SMOTE resampling rate (a) is set in each iteration (ranging from 10% in the
first iteration to 100% in the last, always being multiple of 10) and this ratio defines the
number of minority class instances (a · Nma j) randomly resampled (with replacement)
from the original data-set in each iteration. The rest of the minority class instances are
generated by the SMOTE algorithm. The reported results show that this method can get
better performance than OverBagging for both binary class and multi-class imbalance
problems [73, 106].

Blaseczynski and Stefanowski proposed a Neighbourhood Balanced Bagging [18] for
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binary class imbalance problems. In this method, the sampling probabilities of training
examples are modified according to the class distribution in their neighbourhood. Then
it consists in keeping a larger size of bootstrap samples by a probability-based oversam-
pling. Their experiments prove that their extended bagging is significantly better than
OverBagging and SMOTEBagging.

5.3.1.2 Undersampling combined ensembles

Undersampling combined ensembles are similar to oversampling combined ensembles,
but instead of increasing the number of minority class instances, random sampling from
majority class instances is used in data pre-processing. The results reported in [96]
show that random forests outperforms adaboost when combined with under-sampling
for binary class imbalance problems. In addition, undersampling outperforms random
oversampling when combined with random forest for binary imbalanced data sets in [96].

Wang and Yao studied the performance of undersampling combined adaboost for
two types of multi-class imbalance problems, multi-minority and multi-majority cases,
and used oversampling combined adaboost and adaboost.NC as comparison [201]. Their
results show that undersampling combined adaboost can obtain better recognition for
minority classes but produce worse performance for majority classes than oversampling
combined adaboost and adaboost.NC. In other word, if the evaluation of an imbalance
classification algorithm is simply based on the recognition ability of the minority class,
undersampling combined adaboost is the winner among them. Moreover, this method
is sensitive to the number of minority classes. This is because undersampling explicitly
empties some space for recognizing minority classes by removing examples from the
majority class region. When there is only one minority class, a classifier is very likely
to assign the space to this class. When there are many minority classes, they have to
share the same space. Hence, the effect of undersampling is reduced [201]. In addition,
the results related to undersampling combined adaboost seem to be more sensitive to
multi-minority than multi-majority class.

RUSBoost (Random UnderSampling Boosting) [179] is an algorithm that combines
data sampling and boosting. It realizes a random undersampling by removing examples
from the majority class while SMOTEBoost creates synthetic examples for the minority
class by using SMOTE. Compared to SMOTEBoost, this algorithm is less complex
and time-consuming, and easier to be operated [73]. Moreover, it is reported as the best
approach in [73] with less computational complexity and higher performances than many
other more complex algorithms such as BalanceCascade (presented in section 5.3.1.3) in
dealing with binary class imbalance problems [73]. Further, it outperforms other two
best methods, SMOTEBagging and UnderBagging, in [73].

UnderBagging was first proposed by Barandela et al. [11]. In this method, the num-
ber of the majority class examples in each bootstrap sample is randomly reduced to
the cardinality of the minority class. Simple versions of undersampling combined with
bagging are proved to work better than more complex solutions such as EasyEnsemble
and BalanceCascade [131] (presented in section 5.3.1.3) [18]. Another popular extended
version of bagging is Roughly Balanced Bagging (RBBag) [98]. It results from the crit-
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ics of the original UnderBagging algorithm and its variants which use exactly the same
number of majority and minority class examples in each bootstrap sample. Instead of
fixing a constant sample size, RBBag equalizes the sampling probability of each class.
For each iteration, the size of the majority class in the bootstrap sample is set accord-
ing to the minority class binomial distribution. The class distribution of the resulting
bootstrap samples may be slightly imbalanced and varies over iterations. This approach
is more consistent with the nature of the original bagging and better uses the informa-
tion about the minority examples. Both under-sampling bagging extensions outperform
SMOTEBagging and OverBagging for binary class imbalance problems in [18]. In ad-
dition, according to [18, 98], RBBag performs better than the original UnderBagging.
However, the performances of the two methods were not tested for multi-class imbalance
learning.

Neighbourhood Balanced Bagging has another version [18]. The difference with the
presented method in the previous section is in reducing the sample size with a probability-
based undersampling. The reported experiments prove that this method is competitive
with RBBag for binary-class imbalance tasks and outperforms the first version that was
involving an oversampling scheme.

Inverse Random Under Sampling (IRUS) was proposed by Tahir et al. for the binary
class imbalance problem in which the ratio of the majority and minority class cardi-
nalities is inversed [190]. The main idea is to severely undersample the majority class
multiple times with each subset having fewer examples than the minority class. For each
training set, the authors assume a decision boundary which should separate the major-
ity class from the minority class [190]. As the number of minority class samples in each
training set is greater than the number of majority class samples, the focus in machine
learning is on the minority class and consequently it can invariably be successfully sep-
arated from the majority class training samples. By combining multiple classifiers, the
authors construct a composite decision boundary between the majority class and the mi-
nority class. Their results show this method outperforms UnderBagging, OverBagging,
SMOTE and EasyEnsemble [130]. Hence, inversing the ratio of different class is effective
to strengthen the decision boundary and improve the performance of bagging (subagging
[72]) in imbalance learning. However, this method performs effectively only in the case
of a small ratio (<11) between majority and minority classes.

Random forest is a major ensemble method [26]. It is more effective than data sam-
pling techniques to enhance classification performance, especially for big data imbalanced
classification, and its success does not rely on the choice of base learner [115, 165]. It
is the most successful version of bagging resulting from the combination of the latter
with random subspaces [99]. Consequently, random forest dealing with imbalanced data
should be extended from all bagging-based imbalance learning methods, and may out-
perform these methods especially for multi-class tasks. Balanced Random Forests (BRF)
[39] adapts random forests to imbalanced data. This method is similar to UnderBagging.
To learn a single tree (CART) in each iteration, it first draws a bootstrap sample from
the minority class, and then draws the same number of examples from the majority class.
BRF outperforms the original random forest ensemble in binary-class imbalance learn-
ing. However, Liu et al. report that it does not perform as well as the BalanceCascade
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algorithm (introduced in the following section) when dealing with two-class imbalance
problems [130, 131].

5.3.1.3 Hybrid combined ensembles

Random balance boost [52] follows the same philosophy as SMOTEBoost and RUS-
Boost. Each base classifier is trained with a data set obtained through random balance.
The random balance is designed to be used in an ensemble and relies on randomness and
repetition. It conserves the size of the original dataset but varies the class proportions in
the training sample of each base classifier using a random ratio. This includes the case
where the minority class is overrepresented and the imbalance ratio is inverted. SMOTE
and random undersampling (resampling without replacement) are used to respectively
increase or reduce the size of the classes to achieve the desired ratios. The combination
of SMOTE and undersampling provides more diversity and leads to better performance
compared with other state-of-the-art combined ensemble methods such as SMOTEBoost
and RUSBoost for binary-class imbalance problem [52, 53] .

Qian et al. proposed a resampling bagging algorithm [156] which is another version
of UnderOverBagging [200], a combination of UnderBagging and OverBagging. In that
method, small classes are oversampled and large classes are undersampled. The resam-
pling scale is determined by the ratio of the minimum class size and the maximum class
size. For binary class imbalance problems, the bayesian classifier algorithm [56] is used as
base learner. The reported experimental results show that this method is more efficient
than bagging, adaboost, random forests and some popular extended versions of bag-
ging (UnderBagging, SMOTEBagging, OverBagging) and some hybrid ensembles [131].
However, the algorithm performance is highly related to the ratio of minority class size
and features number. When this ratio is less than 3, the probability of obtaining a worse
performance can increase significantly. For multi-class imbalance problems, KNN, Bayes,
and BP (Back Propagation) neural networks are performed as base learning algorithms
separately (homogeneous ensembles) and combined together (heterogeneous ensemble).
The heterogeneous ensemble has the best performances in the reported experiments

EasyEnsemble [131] was proposed by Liu and Zhou in the context of imbalanced
data sampling. The main motivation of this method was to keep the high efficiency of
under-sampling but reduce the risk of ignoring potentially useful information contained
in majority class examples. It adopts a very simple strategy. First, it randomly generates
multiple subsamples Sma j 1,Sma j 2, ...,Sma j n from the majority class sample. The size of
each subsample is the same as that of the minority class sample Smin, i.e., |Sma ji|
= |Smin|, 1 ≤ i ≤ n. Then, the union of each possible pair (Sma ji, Smin) is used to
train an adaboost ensemble. The final ensemble is formed by combining all the base
learners in all the adaboost ensembles. It can get better results than adaboost, bagging,
random forest, SMOTEBoost and BRF for binary imbalance problems [130]. It seems
that using an ensemble as base classifier is more effective (though less efficient) for
imbalance classification than using a single classifier.

BalanceCascade [131] tries to use guided rather than random deletion of majority
class examples. In contrast to EasyEnsemble, it works in a supervised manner. In the
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ith round, a subsample Sma j i is randomly generated from the current majority class
data set Sma j with sample size |Sma j i|=Smin. Then, an ensemble Hi is trained from the
union of Sma j i and Smin by adaboost. After that, the majority class data examples that
are correctly classified by Hi are removed from Sma j. Since BalanceCascade removes
correctly classified majority class examples in each iteration, it should be more efficient
on highly imbalanced data sets. The method outperforms adaboost and random forest
combined with both random undersampling and oversampling schemes on binary-class
imbalanced data sets. But, despite the underlying guided sampling procedure, the re-
ported results are not better than those achieved by EasyEnsemble. Furthermore, some
borderline instances of majority class face the risk of being removed.

5.3.1.4 Discussion

(1) Compared to binary classification data imbalance problems, multi-class imbalance
problems increase the data complexity and negatively affect the classification per-
formance regardless of whether the data is imbalanced or not. Hence, multi-class
imbalance problems cannot be simply solved by rebalancing the number of exam-
ples among classes in the pre-processing step [200]. A hybrid sampling strategy
solution, which can overcome the problems of oversampling but not by cutting
down the size of majority classes through undersampling should be investigated.

(2) Oversampling combined ensembles construct larger trees (base classifiers) and un-
dersampling combined ensembles need more base classifiers to minimize the loss
of information. Hence, the trade-off between computational complexity and perfor-
mance of ensemble learning algorithms should be considered, especially in dealing
with the imbalance problem of big datasets such as remote sensing images.

(3) There are many other boosting-based algorithms designed to address imbalance
problems at data level such as EUSBoost (Evolutionary UnderSampling Boosting)
[74], cost-sensitive boosting [149, 188] and so on. However, most boosting-based
methods face the threat of noise as the original boosting method [52]. In addition,
most boosting-based imbalanced learning techniques only focus on two-class im-
balance problems and are difficult to extend to multi-class imbalance problems.
They generally rely on class decomposition to simplify the multi-class imbalance
problem. However, each individual classifier is trained without full data knowledge.
Consequently, class decomposition can cause classification ambiguity or uncovered
data regions [109, 191].

(4) The combination of bagging with data preprocessing techniques has shown com-
petitive results, the key issue of these methods residing in properly exploiting the
diversity when each bootstrap replica is formed [73]. As the most successful version
of bagging, random forest has the best performance when balancing training in-
stances before learning. But, there is relatively less investigation of random forest
when combined with internal sampling schemes.
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5.3.2 Class imbalance ensemble learning at classifier level

Classifier level approaches try to adapt existing classifier learning algorithms to bias
the learning toward the minority class [127]. Sometimes these methods require special
knowledge of both the corresponding classifier and the application domain, comprehend-
ing why the classifier fails when the class distribution is uneven [73]. For example, Park
et Ghosh introduce a method by bagging a novel kind of decision α-Tree for imbalanced
classification problems [152]. First, a novel splitting criterion parameterized by a scalar
α is shown to generalize several well-known splitting criteria such as those used in C4.5
[159]. When applied to imbalanced data, different values of α induce different splitting
variables in a decision tree. Those introduced decision trees tend to be less correlated.
This increased diversity in an ensemble of such trees improves imbalance classification
performance across a range of minority class priors. Experimental results show that their
approach has better performance than bagging C4.5 and UnderBagging C4.5 in dealing
with binary imbalance problems. However, base classifier variation based approaches
have a disadvantage of difficultly being carried out and improved.

Weighted Random Forest (WRF) [39] has been proposed to make random forest
more suitable for learning from extremely imbalanced data which follows the idea of cost
sensitive learning [128]. Since the random forests classifier tends to be biased towards
the majority class, Chen et al. place a heavier penalty on misclassifying the minority
class. They assign a weight to each class, with the minority class given a larger weight
(i.e., higher misclassification cost). The class weights are incorporated into the random
forests algorithm in two places. In the tree induction procedure, class weights are used
to weight the Gini criterion [146] on finding splits. In the terminal nodes of each tree,
class weights are again taken into consideration. The class prediction of each terminal
node is determined by weighted majority vote; i.e., the weighted vote of a class is the
weight for that class multiplied by the number of cases for that class at the terminal
node. The final class prediction for random forests is then determined by aggregating
the weighted vote from each individual tree, where the weights are average weights in
the terminal nodes. This method has similar performance as Balanced Random Forests.
However, it is computationally less efficient.

5.3.3 Exploiting the ensemble margin for imbalanced data

Fan et al. showed that there was an inherently potential risk associated with the
over-sampling algorithms in terms of the large ensemble margin principle [64]. Some
over-sampling methods would decrease neighbor-based ensemble margins for the major-
ity class. For example, SMOTE [37] would not only bias towards the minority class but
also might be detrimental to the majority class. So, Fan et al. proposed a new syn-
thetic over-sampling method, based on the ensemble margin. They seek a good balance
between maximizing the ensemble margins gain for the minority class and minimizing
the ensemble margins loss for the majority class. This algorithm generates the synthetic
instances using the SMOTE algorithm, then chooses some instances as the final train-
ing set according to the margin-based imbalanced data sampling method. The resulting

82



5.4. ADDRESSING THE CLASS IMBALANCE PROBLEM IN REMOTE SENSING

balance was better than when only maximizing the ensemble margins gain for the mi-
nority class or only minimizing the ensemble margins loss for the majority class and the
computational complexity was reduced compared to SMOTE [37].

5.4 Addressing the class imbalance problem in
remote sensing

5.4.1 Imbalanced data classification methods

Although class imbalance has been extensively studied for binary classification prob-
lems, few approaches deal with multi-class imbalanced data sets, as is usually the case
in remote sensing applications [31]. Johnson et al. adopt SMOTE (presented in section
5.2.1) to generate artificial training samples for the minority classes to address the chal-
lenge of multi-class imbalanced remote sensing imagery classification [112]. Landsat 8
Normalized Difference Vegetation Index (NDVI) image with 30 m resolution is used in
their experiment. Naive bayes [71] and decision tree are used to get land cover mapping.
The reported result shows both classifiers can get higher classification accuracy with
balanced training set. And Naive bayes outperforms decision tree when combined with
SMOTE. It is worth mentioning that, although SMOTE increases the time complexity
compared with undersampling in dealing with such big data problem, it should offer
more advantages in the case of remote sensing classification with limited labeled and
imbalanced training samples.

5.4.2 Ensemble-based imbalanced data classification methods

Sampling combined ensembles have been introduced for remote sensing applications
and demonstrated promising results [112]. For example, SMOTE combined random forest
is used to classify a multi-class imbalanced remote sensing imagery [112]. The reported
result shows this combination is more accurate than training a random forest with orig-
inal imbalanced training set and also outperforms using a single classifier on the same
balanced data set. Moreover, this combination, to some extent, alleviates the problem
of high time complexity produced by SMOTE.

Stumpf et al. proposed an iterative sampling method to deal with two-class imbalance
problems on very-high resolution optical remote sensing images with multispectral 4-
bands and 10 m spatial resolution [185]. To estimate the class ratio in the training
sample that leads to a balance of commission and omission errors, an iterative procedure
was implemented and tested for landslide mapping, where the training set was split
repeatedly into subsets for training and validation. The parameter ai was defined as
the ratio of minority class and majority class in the current training set at step i, and
changed systematically to reach a target value an. In each iteration, all the minority class
|Smin|, and ai-fold number of the majority class, |Sma j i| = ai · |Smin|, which had been
sampled randomly from training set, were used to train a random forest and assess the
classification accuracies on the remaining validation set. The procedure started from a
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balanced class distribution (ai=1) and in each step ai increased by 0.1. Notice that, with
the update of a, the imbalance ratio of validation set was decreasing. Finally, the best
class sampling ratio is applied to adjust the class-balance for the entire training set. The
results show that this method can improve random forest’s classification performance
compared to the use of the original imbalanced training data.

Stumpf et al. extended their iterative class balancing method by combining active
learning with random forests and applying it on the same remote sensing images [186].
In each iteration, Balanced Random Forests is used to generate a tree ensemble with
the current training set. The vote entropy for each unlabeled sample is computed by
the votes of random forest. Then, the mean local vote entropy at each position of the
image is obtained with a sliding window, whose size is close to the mean effective range.
Afterwards, the windows maximizing the mean local vote entropy are found. The labels
of samples contained within those windows are queried. All new labeled samples are
added to the training set as inputs in the next step.

The ensemble margin, which has been described detailedly in chapter 2, is a fun-
damental concept in ensemble learning. Mellor et al. introduce new ensemble margin
criteria to evaluate the performance of random forests in the context of large area land
cover classification and examine the effect of imbalanced training data characteristics on
classification accuracy and uncertainty [143]. They also proposed a new margin weighted
confusion matrix, which used in combination with the traditional confusion matrix, pro-
vides confidence estimates associated with correctly and misclassified instances in the
random forests classification model. Landsat TM satellite imagery, topographic and cli-
mate ancillary data are used to build binary (forest/non-forest) and multiclass (forest
canopy cover classes) classification models. For the binary classification, the imbalance
experiment involved adjusting balance as a ratio of minority class to majority class. For
the multi-class imbalance experiment, two sampling methods were used to get training
sets. The first one adjusted the ratio of best to worst class training samples in each
random forest model. The second method involved generating imbalance in the train-
ing data samples by increasing the proportion of the worst class while simultaneously
decreasing the proportion of the best class by the same amount. For every iteration
of both multi-class imbalance experiments, the number of samples representing the re-
maining classes was kept constant. Both binary and multi-class imbalance experiments
maintain the same total number of original training samples. The reported experiments
show that this margin based classification performance evaluation method is successful
for the investigation of imbalance problems in land cover ensemble classification.

Sun et al. proposed an Ensemble Method based on the Maximum Margin (EMMM)
for binary imbalanced hyperspectral image classification [187]. This method involves bag-
ging for ensemble construction. The authors expected that the final ensemble scheme
corresponds to the largest maximum margin. To keep the same size between the minority
class and the majority class, the EMMM algorithm partitions the majority class sample
into different subsets with kernelized K-means clustering [50]. Then, two different sam-
pling methods are adopted by comparing the size of each subset and the minority class
size: random under-sampling is adopted for the subsets with larger sizes and SMOTE
oversampling algorithm is adopted for the subsets with smaller sizes. The one-versus-one
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decomposition rule is used in the multiclassification solver. The EMMM method obtains
better performances than other competing imbalance learning methods namely SMOTE
and under-sampling for multi-class hyperspectral images. However, the clustering ap-
proach, involved in the partition of the majority class, may be not applicable to the
class overlapping problem.

5.5 Conclusion

Imbalanced data is a challenge in machine learning. The skewed distribution makes
many conventional machine learning algorithms less effective, especially in predicting
minority class examples. Hence, the objective of imbalance learning can be generally
described as obtaining a classifier that will provide high accuracy for the minority class
without severely jeopardizing the accuracy of the majority class. There exist many dif-
ferent techniques to address the class imbalance problem. The simplest techniques are
random oversampling and random undersampling. Despite some limitations, they are
still competitive with other rebalancing methods.

Ensemble learners are more robust than single classifiers and have been certificated
more effective than sampling methods to deal with the imbalance problem. Depending
on how to deal with the imbalance problem, ensemble-based imbalance learning tech-
niques can be categorized into two major groups, data level, including oversampling
combined ensembles and undersampling combined ensembles, and classifier level. Accord-
ing to the used ensemble method, they can also be divided into three sub-categories:
boosting-based, bagging-based and random forests-based extended ensembles. Among
them, boosting-based methods are the most sensitive to noisy instances. Hence, data
cleaning methods might be necessary for boosting-based algorithms to handle noisy
samples. Bagging-based methods are the most popular in dealing with class imbalance
problems thanks to the good generalization ability, the easy operation, the robustness
and the high scalability of bagging.

Multi-class imbalance classification is not as well-developed as its binary-class coun-
terpart. Simple re-balancing towards the biggest or smallest class is not a proper ap-
proach. So, new sampling strategies should be investigated for multi-class imbalance
problems. Additionally, some methods rely on a multi-class decomposition scheme in ad-
dressing multi-class imbalanced data classification. Hence, it seems worthwhile to design
new fusion approaches suitable for cases with skewed distributions. This way it may be
possible to compensate for the class imbalance both on decomposed class level (data
level) and on final output combination level (classifier level).

There are many other open research questions related to imbalanced data learning
and many avenues remain to be explored. The understanding of the relationship between
data imbalance ratio and learning model complexity, and the best levels of balance ratio
for a given base learning algorithm, especially for multi-class imbalance problems, will
be useful to provide fundamental insights into the imbalance learning problem and criti-
cal technical tools to many practical real imbalance learning applications like in remote
sensing. Another interesting future line of research would be to investigate whether it
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is possible to find an optimal combination of class balancing and diversity techniques.
Ensemble margin has great potential for classifier design by identifying important in-
stances as demonstrated by some recent work that appeared in the literature. Minority
class instances having small ensemble margin values, the effectiveness of combining en-
semble learning with margin theory for imbalanced data is also an interesting research
direction to explore.
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6
Class imbalance ensemble learning based on the

margin theory

This chapter proposes a novel algorithm based on ensemble margin to deal with the
class imbalance problem. In section 6.2, we carry out a feasibility study on adopting
the margin concept for imbalance ensemble learning. In section 6.3, a data importance
function relying on the margin is proposed. Then a novel data importance ordering based
algorithm is presented in detail. The experimental results are reported in section 6.4. The
conclusion of this chapter is given in section 6.5.

6.1 Introduction

The proportion of instances belonging to each class in a data-set plays an important
role in machine learning. However, the real world data ofter suffer from class imbal-

ance. In this chapter, we propose a new algorithm to handle the class imbalance problem.
Several methods proposed in the literature to address the problem of class imbalance
as well as their strengths and weaknesses have been presented in the previous chapter.
Undersampling and oversampling are two of the most popular data preprocessing tech-
niques dealing with imbalanced data-sets [108], [37], [73]. However ensemble classifiers
have been shown to be more effective than data sampling techniques to enhance the clas-
sification performance of imbalanced data [115]. Moreover, the combination of ensemble
learning with sampling methods to tackle the class imbalance problem has led to several
proposals in the literature, with positive results [73].

Ensemble-based imbalance learning techniques can be divided mainly into boosting-
based and bagging-based extended ensembles [73]. However, as mentioned in the previous
chapter, boosting based methods are sensitive to noise. On the contrary, bagging tech-
niques are not only robust to noise but also easy to develop. Galar et al. pointed out
that bagging ensembles would be powerful when dealing with class imbalance if they
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are properly combined [73], [106]. Consequently, we chose to found our new imbalance
ensemble learning method on bagging.

Ensemble margin theory is a proven effective way to improve the performance of
classification models [32], [64]. It can be used to detect the most important instances
and thus help ensemble classifiers to avoid the negative effects of redundant and noisy
samples. The margin concept has been successfully used to address the class noise prob-
lem in chapter 4. Low margin instances are more important than high margin instances
for training an accurate ensemble classifier as stated in chapter 4. In this chapter, we
propose a novel ensemble margin based algorithm, which handles imbalanced classifi-
cation by employing more low margin examples which are more informative than high
margin samples. This algorithm combines ensemble learning with undersampling, but
instead of balancing classes randomly such as UnderBagging [11] and margin theory, our
method pays attention to construct higher quality balanced sets for each base classifier.
In order to demonstrate the effectiveness of the proposed method in handling class imbal-
anced data, UnderBagging [11] and SMOTEBagging [200], which have been presented
detailedly in the previous chapter, are used in a comparative analysis. As in our class
noise handling work, we also compare the performances of different ensemble margin
definitions, including the new margin proposed in chapter 4, in class imbalance learning.

6.2 Ensemble margin for imbalance learning

The main purpose of this section is to carry out a feasibility study on exploiting
the ensemble margin concept for imbalanced classification as was done in section 4.4
of chapter 4 to explore the margin for class noise filtering. In this section, we first
analyze the effect of class imbalance on the margin distribution of training data. Then
the relationships of different kind of instances with their corresponding margin values
are explored.

6.2.1 Effect of class imbalance on ensemble margin distribution

Class Balanced data Imbalanced data

Class 1 218 218

Class 2 212 50

Class 3 217 217

Class 4 199 199

Total samples 846 684

Table 6.1: Imbalanced and balanced versions of data set Vehicle.
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Figure 6.1: Margin distribution of correctly classified training instances by bagging with
both balanced and imbalanced versions of data set Vehicle using a new ensemble margin.

We have previously stated that the margin distribution of training instances effec-
tively reflects the performance of an ensemble algorithm. In this section, we analyze the
effect of class imbalance on the margin distribution of the training set, as what we did in
our class noise handling work (section 4.4.1 of chapter 4). During the process of classify-
ing a balanced multi-class data, each class has the same number of instances. However,
class imbalance makes the learning task more complex. Figure 6.1 shows the margin
distribution of correctly classified training instances by bagging involving decision tree
as base learner on data set Vehicle (table 6.1) in both balanced and imbalanced cases,
using our new ensemble margin (equation 4.1). The margin values should be as high as
possible for correctly classified instances. From the margin plot, we can see that imbal-
anced data lead to more instances obtaining high margin values and less instances with
low margin values. In fact, the existing of one or more minority classes in a classification
task results in majority classes obtaining more space. Thus this makes a classifier bias to
the classification of majority classes and causes an illusory optimized margin distribution
for imbalance learning.
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6.2.2 Max-margin versus sum-margin

The difference between max-margin (equation 2.2) and sum-margin (equation 2.3)
has been indicated when handling the mislabeling problem in section 4.4.2 of chapter 4.
In this section, we analyze the relevance of the two major margin definitions for imbalance
learning design. According to the definitions of the max-margin and the sum-margin, the
margin values of easily classified instances are robust to the margin calculation method,
i.e. those data obtain high margin values no matter what margin definition is used. The
difference between the two margin definitions should appear in the margin values of class
decision boundary instances and minority class instances which are difficultly predicted
by a classification model. In chapter 2 (section 2.4.2.1), we have mentioned that when
dealing with multi-class problems, the sum-margin can represent a lower bound, since it
can assume negative margin values even when the correct label gets the most of votes
(when there is a plurality, but not a majority) [113] unlike the max-margin for which
all the correctly classified instances get positive margin values. Hence, for the difficult
instances, while their margins are near zero with a max operation, their margin values
can be more or less far from zero with a sum operation.

In order to illustrate the differences between the max-margin and the sum-margin
in imbalance learning, figures 6.2 and 6.3 respectively exhibit the margin distribution
histograms of correctly and wrongly classified training instances for each class of the
imbalanced data set Vehicle. The smallest class (class 2) is misclassified completely, and
class 4 is the easiest class to predict. The histograms of observable training margin
distributions clearly indicate that the differences between the max-margin and sum-
margin are mainly reflected in the classification of the minority class (class 2) and a
small proportion of majority class instances. Sum-margin leads to significantly more
misclassified instances with high margins (in absolute value), especially for the minority
class. In a good margin distribution, the margins should be as high as possible for
correctly classified instances but as low as possible for misclassified instances. Hence,
the max-margin exhibits a better margin distribution than sum-margin for data set
Vehicle.

6.2.3 Supervised versus unsupervised margin

The main objective of this section is to compare the relevance of supervised and
unsupervised ensemble margins for imbalance learning, as done in our class noise han-
dling work in section 4.4.3 of chapter 4. When an instance is correctly classified by
an ensemble, the votes number of the most voted class equals to the number of votes
for the true class of this instance. According to the definitions of the supervised and
unsupervised sum-margins (equation 2.3 and 4.1), there is no difference between both
margin definitions on the margin values of correctly predicted instances. In imbalance
learning, minority class instances are easily misclassified. For a misclassified sample, the
votes number of the most voted class is greater than the number of votes for the true
class, according to equations 2.3 and 4.1, the supervised sum-margin could lead to bigger
margin (in absolute value) for the instance. Figures 6.4 and 6.5 perform a comparison of
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(b) Class 2 (minority class)
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Figure 6.2: Max-margin and sum-margin distributions of correctly classified training
instances using bagging with imbalanced data Vehicle

the sum-based margin and its unsupervised version that we have proposed (equation 4.1)
respectively on the correctly predicted and misclassified instances of the imbalanced data
set Vehicle. The supervised margin tends to make more misclassified instances obtain
high margin (in absolute value) compared to the unsupervised margin especially for the
minority class. Hence, the unsupervised margin might be more suitable to distinguish
the important samples (lower margins) from other instances (higher margins) in margin
based imbalance classifier design.

6.3 Ensemble margin based imbalanced data
classification

Enhancing the classification of class decision boundary instances is useful to improve
the classification accuracy. Hence, for a balanced classification, focusing on the usage of
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Figure 6.3: Max-margin and sum-margin distributions of wrongly classified training in-
stances using bagging with imbalanced data Vehicle

the small margin instances of a global margin ordering should benefit the performance
of an ensemble classifier. However, the same scheme is not suited to improve the model
built from an imbalanced training set. Although most of the minority class instances
have low margin values, selecting useful instances from a global margin sorting still has
a risk to lose partial minority class samples, even causes the classification performance
to deteriorate. Hence, the most appropriate method for the improvement of imbalanced
classification is to choose useful instances from each class independently.

6.3.1 Ensemble margin based data ordering

In chapter 4, we have used a data ordering method based on a class noise evalua-
tion function, which relies on an ensemble margin’s definition, to identify noise. Two
characteristics of the data ordering are 1) confirming the importance of small margin
instances 2) focusing on identifying the high margin instances among the misclassified
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(b) Class 2 (minority class)
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Figure 6.4: Supervised and unsupervised margin distributions of correctly classified train-
ing data using bagging with imbalanced data Vehicle

instances which are considered as potential class noise. The informative instances such
as class decision boundary samples and difficult class instances play an important role
in classification particularly when it is imbalanced classification. These instances gener-
ally have low ensemble margins, that is coincident to the first characteristic of the noise
evaluation function. To utilize the relationship between the importance of instances and
their margins effectively in imbalance learning, we designed our class imbalance sampling
algorithm based on margin ordering. However, unlike the data ordering procedure used
for noise identification, the margin ordering for imbalance learning pays more attention
to low margin instances.

Let us consider a training set denoted as S = {(x1, y1), . . . , (xn, ym)}, where xi is a vector
with feature values and yi is the value of the class label. The importance of a training
instance xi could be assessed by an importance evaluation function which relies on an
ensemble margin’s definition and is defined by equation 6.1. The lower the margin value
(in absolute value), the more informative the instance xi is and the more important it is
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(b) Class 2 (minority class)
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Figure 6.5: Supervised and unsupervised margin distributions of wrongly classified train-
ing data using bagging with imbalanced data Vehicle

considered for our imbalance sampling scheme.

(6.1) W(xi)= 1−|margin(xi)|

To solve the problem previously mentioned related to the margins (both supervised
and unsupervised) based on a sum operation, a shift is performed before data importance
calculation. The shifted margin values are achieved by subtracting the minimum margin
value of the samples of the training set which are correctly classified from their original
margin values. An example is used to explain the margin shift procedure in figure 6.6.

6.3.2 A novel bagging method based on ensemble margin

We propose a novel ensemble margin based imbalance learning method to the quest
for a classifier that is more robust when dealing with imbalanced datasets. This method is
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Misclassified instances Correctly classified instances 

Margin -1 -0.65 -0.60 1

Misclassified instances Correctly classified instances 

Margin’ -0.4 -0.05 0 1.6

Margin’= Margin +0.6

Figure 6.6: Shift procedure for sum operation based margin.

inspired by SMOTEBagging [200] a major oversampling method which has been defined
in the previous chapter. It combines under sampling, ensemble and margin concepts. It
could overcome the shortcomings of both SMOTEBagging [200] and UnderBagging [11].
This method has lower computational complexity than SMOTEBagging and focuses more
on important instances for classification tasks than UnderBagging. Thus, our method is
a boosting-like strategy which pays more attention on low margin instances.

The proposed method has three main steps:

1. Computing the ensemble margin values of the training samples via an ensemble
classifier.

2. Constructing balanced training subsets by focusing more on small margin in-
stances.

3. Training base classifiers on balanced training subsets and constructing a new en-
semble with a better capability for imbalance learning.

Denote S = {X ,Y } = {xi, yi}n
i=1 as training samples. The first step of our method in-

volves a robust ensemble classifier: bagging which is constructed using the whole training
set. The margin value of each training instance is then calculated. In the second phase,
we aim to select the most significant training samples for classification to form several
new balanced training subsets. Suppose L is the number of classes and Ni the number of
training instances of the ith class. We sort those classes in descending order according
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Figure 6.7: Flowchart of margin based imbalanced ensemble classification (ensemble size
T, range of resampling rate a 10%−100%).
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to their number of instances. Therefore, NL is the training size of class L, which is the
smallest, and N1 is the training size of class 1 which is the largest. The training instances
of each class, 1 6 c 6 L, are sorted in descending order according to the margin based
importance evaluation function (equation 6.1) previously introduced. For each class c,
the higher the importance value W(xi) of an instance xi ∈ c, the more important this
instance is for classification decision. Then, as in SMOTEBagging [200], a resampling
rate a is used to control the amount of instances which should be chosen in each class
to contract a balanced data set. All the instances of the smallest class are kept.

The range of a is set from 10 to 100 first, always being multiple of 10. For each
class c ̸= L, L representing the smallest class, NL instances are bootstrapped from the
first N1 ·a% of the importance ordered samples of class c to construct subset Sc1. All
the subsets are balanced. When the amount of class c (2 6 c 6 L−1) is under N1 ·a%,
NL instances are bootstrapped from the first Nc samples of class c, which is the same
as in UnderBagging. Then the NL smallest class samples are combined with Sc1 (c =
1, ...,L−1) to construct the first balanced data. In the next phase, the first base classifier
is built using the obtained balanced training set. Figure 6.7 presents the flowchart of
our method with an ensemble size T and a range of 10%−100% for a. The elements
in the range of a could construct a geometric progression denoted as A. If we build
T = 100 classifiers as ensemble members, every 10 classifiers will be built with different
resampling rates a ranging from 10% to 100%, as in SMOTEBagging. However, while
SMOTEBagging uses N1, the training size of the largest class 1, as a standard for carrying
out oversampling (SMOTE) on other relative minority classes, our method use NL, the
training size of the smallest class L, as a standard for performing an instance importance
based undersampling on other relative majority classes.

6.3.3 Algorithm

Algorithm 7: A novel bagging method based on ensemble margin

Inputs:

1. Training set S = (x1, y1), (x2, y2, ), · · · , (xn, yn);

2. Number of classes L;

3. Ni is the number of training instances of ith class NL 6 Ni 6 N1 (L = smallest class,1=
largest class);

4. Ensemble creation algorithm ζ;

5. Number of classifiers T;

6. Range of resampling rate a.

Iterative process:
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1. Construct an ensemble classifier H with all the n training data (xi, yi) ∈ S and
compute the margin of each training instance xi.

2. Obtain the weight W(xi) of each training instance xi.

3. Order separately the training instances xi of each class, according to the instance
importance evaluation function W(xi), in descending order.

4. For t = 1 to T do

a) Keep all the NL instances of the smallest class L

b) For c = 1 to L−1

i. If Nc > a% ·N1
Get a subset Sct of size NL by performing a boostrap from first N1 ·a%
ordered samples of the training set Sc.

ii. else
Get a subset Sct of size NL by performing a boostrap from Nc samples
of Sc.

End
c) Construct a new balanced data set St by combining the NL smallest class

training instances with Sct (c = 1, ...,L−1).
d) Train a classifier ht = ζ(St).
e) Change percentage a%.

End

Output: H(x)= sign(
∑T

t=1 ht(x))

6.3.4 Discussion

1. Imbalanced classification can not be simply treated as a data redundancy prob-
lem. While our imbalance learning algorithm tries its utmost to achieve the main
objective of imbalanced classification, improve a classifier’s recognition on minor-
ity class instances meanwhile keep the accuracy of majority class not decreasing,
it does not need to remove any instances from training set as in training data
reduction algorithms.

2. We have mentioned in previous chapter that classic undersampling based ensem-
ble approach [179], [190] such as UnderBagging [11] samples instances randomly
from majority classes to achieve a balance ratio. However, in imbalance learning,
not only the imbalance ratio needs to be considered, but also the quality of the
sampled instances. Our method focuses more on class decision boundary and diffi-
cult instances (lower margin instances) which are more informative for imbalance
learning while safe samples (higher margin instances) give less contribution.
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3. Most methods presented in previous chapter such as [52], [38] deal with binary
imbalanced problems. Due to the difficult extension of these methods, class decom-
position, such as OVO (One-vs-One) [92] or OVA (One-vs-All) [164], is the way to
extend these methods to multi-class classification. However, those class decompo-
sition based schemes are not suitable when a large number of classes is considered.
The novel proposed method trains each base classifier with the most important
instances selected from each class, hence, this method has better generalization
ability for addressing both binary and multi-class imbalance problems.

4. The change in ensemble diversity [122] depends on many factors, such as ensemble
learning algorithm, size of training data set and training data complexity. Both the
size and the distribution of the training set for constructing a base classifier are
different in the margin ordering based bagging ensemble with respect to the original
training set. Hence, our algorithm can result in increased diversity compared with
the bagging built on original imbalanced data. Furthermore, under the condition of
training base classifiers with a fixed amount of the training set, the employment of
low margin instances can provide more diversity compared with random sampling
involved in UnderBagging.

5. Our algorithm selects important instances from each class according to their mar-
gin values and does not produce additional instances in the training process. There-
fore, our method avoids the potential noise effect induced by new interpolated
samples (SMOTE) which is difficultly addressed in SMOTEBagging [200].

6.4 Experimental results

6.4.1 Data sets

We applied our margin-based imbalance learning method on 10 UCI [8] data sets
including 9 multi-class and 1 binary data (table 6.2). Among these imbalanced data,
Optdigit, Pendigit and Vehicle are artificially imbalanced data with imbalanced Vehicle
used, as in [82]. The top 5 data are image data sets and the bottom 5 are non image data
sets. The 10 data sets are characterized by different sizes, class numbers and features.
Furthermore they differ in class imbalance ratio.

Table 6.2 summaries the properties of the selected data-sets, including the number
of classes (CL), the number of attributes (AT), the number of examples (EX) as well as
the number of instances for each class (Ci).

6.4.2 Experimental setup

In all our experiments, Classification and Regression Trees (CART) [27] are used as
base classifiers for training all the classification models. Standard Bagging [21] is utilized
to obtain the margin values of training instances. All the ensembles are implemented
with 100 trees. Each data set has been randomly divided into two parts: training set and
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Table 6.2: Imbalanced data sets

Data EX AT CL C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Covtype 8000 54 7 2985 3843 481 33 139 241 278

Optdigit 1642 64 10 187 224 196 191 210 197 180 20 197 40

Pendigit 3239 16 10 20 426 408 379 437 397 362 20 394 396

Vehicle 684 17 4 218 50 217 199

Wilt 4839 5 2 4578 261

Cleveland 297 13 5 160 54 35 35 13

Hayes-roth 160 4 3 65 64 31

Newthyroid 215 5 3 150 35 30

Glass 214 10 6 70 76 17 13 9 29

Wine quality-red 1599 11 6 10 53 681 638 199 18

test set. The range of sampling parameter a is set to [10-100]. All the reported results
are mean values of a 10-time calculation.

.

6.4.3 Evaluation methods

In the framework of imbalanced data-sets, standard metrics such as overall accuracy
are not the most appropriate, since they do not distinguish between the classification
rates of different classes, which might lead to erroneous conclusions [66]. Therefore we
adopt minimum accuracy per class (also used for the evaluation of class noise iden-
tification algorithms in chapter 4) and average accuracy as performance measures in
our experiments.

• Recall, also called per class accuracy, is the percentage of instances correctly
classified in each class. [172] strongly recommends to use the dedicated performance
measure Recall to evaluate classification algorithms, especially when dealing with
multi class imbalance problems. Let nii and ni j represent the true prediction of
the ith class and the false prediction of the ith class into jth class respectively.
The per class accuracy for class i can be defined as (6.2).

(6.2) Recall i = nii∑L
j=1 ni j

where L stands for the number of classes

• Average accuracy is a performance metric that gives the same weight to each of
the classes of the problem, independently of the number of examples it has. It can
be calculated as the following equation:
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(6.3) AverageAccuracy =
∑L

i=1 Recall i
L

6.4.4 Imbalance learning performance comparative analysis

These experiments evaluate the classification performance of the proposed ensemble
margin based imbalance learning algorithm, and its comparison to original bagging as
well as state of the art algorithms UnderBagging [11] and SMOTEBagging [200]. In
addition, the performances of four ensemble margin definitions including the new margin
(equation 4.1) in our margin based ensemble are compared as in chapter 5. The best
results are marked in bold and the asterisk is utilized to highlight the margin definition
with the best performance in the proposed method.

6.4.4.1 Average accuracy

Table 6.3 shows the average accuracy achieved by the proposed margin based ex-
tended bagging algorithm, bagging, UnderBagging as well as SMOTEBagging on the
10 imbalanced data sets of table 6.2. The experimental results in this table show that
all the imbalance learning algorithms lead to an improved classification with respect to
traditional bagging. Moreover, undersampling based ensemble classifiers such as margin
based bagging and UnderBagging outperform oversampling based ensemble classifiers
(SMOTEBagging). This result is consistent with the state-of-the-art work presented in
the previous chapter, where we have explained that oversampling based methods have
a risk to inject additional noise into the training set. The ensemble model based on
margin achieves the best performance, especially in addressing the imbalance problem
of many-majority and less-minority classes, that often occurs in the real world. These
results put a clear emphasis on the importance of preprocessing the training set prior
to building a base classifier by focusing on the examples with low margin values and
not treating them uniformly. Although there are not obvious differences between the
performances of the four ensemble margin definitions, sum margins, both supervised
and unsupervised, perform slightly better than max margins, with a slight advantage
to the supervised sum-margin. Supervised margins have very similar performances with
unsupervised margins unlike in the class noise handling performance analysis conducted
in chapter 4.

6.4.4.2 Minimum accuracy per class

Table 6.4 organized as the previous table, presents the results on minimum accuracy
per class obtained on the 10 imbalanced data sets of table 6.2 by margin based bagging,
traditional bagging, UnderBagging as well as SMOTEBagging. This table shows that
our extended bagging algorithm significantly outperforms traditional bagging on the
recognition of the most difficult class. With respect to UnderBagging, the win frequency
of our method is 7/10 and its improvement in per class classification accuracy is up to
15% (data set Hayes-roth). When compared with SMOTEBagging, the margin based
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Data Bagging
Under- SMOTE-

Margin-based bagging

Bagging Bagging Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

Covtype 32.0 67.9 65.7 67.4 67.6 67.9 68.1*

Optdigit 69.4 87.5 80.4 89.7 90.5* 89.6 90.0

Pendigit 62.4 88.0 76.9 90.2 90.3 90.4* 90.0

Vehicle 71.2 72.8 73.4 76.1 76.4 76.2 76.6*

Wilt 87.2 94.7 95.0 95.5 95.5 95.6* 95.5

Cleveland 28.1 29.2 28.9 29.2 28.0 29.5* 28.4

Hayes-roth 77.3 76.8 76.1 79.2 79.9 82.9* 79.9

Newthyroid 81.7 93.6 85.6 94.0 94.0 94.2 94.3*

Glass 91.6 92.9 91.2 93.4* 93.4* 93.1 93.1

Wine quality-red 27.9 33.8 36.7 33.3* 31.6 30.6 33.1

Mean accuracy 62.9 73.7 71.0 74.8 74.7 75.0* 74.9

Table 6.3: Average accuracy of standard bagging, UnderBagging, SMOTEBagging and
margin-based bagging with four margins.

method obtains also a win frequency of 7/10 and improves the minimum accuracy per
class of up to 39% (data set Pendigit). Unlike in the previous average accuracy margin
analysis, max margins perform better than sum margins in our margin based method
for the classification of the most difficult class. In addition, supervised margins slightly
outperform unsupervised margins.

6.4.5 Influence of model parameters on classification
performance

6.4.5.1 Influence of the ensemble size

In order to study the influence of ensemble size on bagging construction, we present
in figure 6.8 and 6.9 the evaluation of the average accuracy and minimum accuracy per
class on data sets Wilt (image data) and Hayes-roth (non image data) with respect to
ensemble size throughout the bagging induction processes, i.e. from 1 up to 200 trees for
all the bagging methods.

From figure 6.8, we can see that our margin based bagging shows higher average
accuracies than Bagging as well as the other two state of the art methods UnderBagging
and SMOTEBagging for both datasets. In our margin based method, unsupervised mar-
gins present relatively smoother curves with respect to supervised margin definitions
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Data Bagging
Under- SMOTE-

Margin-based bagging

Bagging Bagging Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

Covtype 0.0 41.0 46.4 31.4 30.8 31.8* 31.0

Optdigit 0.0 71.4 61.3 78.1 79.6* 76.7 79.3

Pendigit 0.0 70.8 33.3 72.8* 71.9 71.0 70.9

Vehicle 31.3 44.0 47.0 40.8 39.1 41.7* 39.3

Wilt 74.0 92.8 94.4 95.4* 95.3 95.2 95.3

Cleveland 0.0 0.0 0.0 7.4* 4.4 5.7 3.4

Hayes-roth 47.6 53.5 41.1 68.1 69.2* 67.8 64.4

Newthyroid 61.8 88.0 72.4 85.0* 85.0* 84.2 84.2

Glass 80.0 79.8 80.0 80.0* 80.0* 79.8 79.8

Wine quality-red 0.00 15.9 0.00 15.9 19.6* 14.2 16.9

Mean accuracy 19.5 55.7 47.6 57.5* 57.5* 56.8 56.4

Table 6.4: Minimum accuracy per class of standard bagging, UnderBagging, SMOTE-
Bagging and margin-based bagging with four margins.

for Hayes-roth. Additionally, in section 2.4.2.1 of chapter 2, we have stated that, the
different margin definitions under consideration for our margin-based ensemble learning
framework are quite similar for two-class problems. Hence, expectedly, the four margins
present very similar performances in our margin based method on the binary class data
set Wilt.

Figure 6.9 shows that our method obtains significantly higher minimum accuracy
per class with respect to Bagging, UnderBagging and SMOTEBagging for both datasets.
Unlike the above average accuracy margin analysis, while the curves of the four margins
are still very similar on data set Wilt, the curves associated to sum margin definitions are
relatively smoother than those of max margins on data set Hayes-roth, and sum-margin
(supervised) obtains the smoothest curve.

6.4.5.2 Influence of the resampling rate

This section aims to study the influence of the resampling rate a on margin-based
bagging performance in imbalanced classification. We first employ the following example
to illustrate our experimental design. The maximum value of the resampling rate a should
be equal to or less than 100. When the size of A, the associated set of a values, is set to
5, the elements of A are {20,40,60,80,100}, i.e. the range of a is 20-100. When A = {1},
our margin based method becomes similar to UnderBagging.

In this experiment, the size T of the bagging ensemble is set to 100 and the tested
number of elements in A is set from 1 to 40. Figure 6.10 exhibits the optimal range of a
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Figure 6.8: Evolution of the average accuracy according to the ensemble size.
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Figure 6.9: Evolution of the minimum accuracy per class according to the ensemble size.
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which leads to the best average accuracy for each of the four margin definitions, on all
the data sets. Almost all the classification results are improved compared with those of
tables 6.3 and 6.4. The best increase in average accuracy is about 1.5% for most of the
non image data (bottom of table 6.3). The best increase in minimum accuracy per class
is about 10% for image datasets Covtype and Vehicle. Hence, it is interesting to further
optimize our algorithm by the selection of an optimal resampling range.

Tables 6.5 and 6.6 respectively present the average accuracy and minimum accu-
racy per class, achieved by our margin-based bagging algorithm using respectively max-
margin, unsupervised max-margin, sum-margin and unsupervised sum-margin with op-
timal resampling ranges, on the ten data sets. The exhibited results correspond to the
classification results presented in figure 6.10. From these tables, we can see that while
sum margins obtain slightly better results compared with max margins for the improve-
ment of average accuracy, it is the opposite in minimum accuracy per class performances.
Supervised and unsupervised margins achieve relatively similar performances.

Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

Covtype 67.8 68.1 67.9 68.1

Optdigit 90.5 90.9 90.9 90.9

Pendigit 91.8 91.5 91.8 91.3

Vehicle 77.1 77.5 77.0 77.5

Wilt 96.0 96.0 95.6 96.0

Cleveland 30.6 28.0 31.0 29.4

Hayes-roth 84.3 83.8 84.3 83.4

Newthyroid 95.8 95.7 95.9 95.1

Glass 94.8 94.9 94.2 94.7

Wine quality-red 34.0 34.4 34.5 34.8

Mean accuracy 76.3 76.1 76.3 76.1

Table 6.5: Average accuracy of margin-based bagging involving four margins with optimal
resampling range.
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Max- Unsupervised Sum- Unsupervised

margin max-margin margin sum-margin

Covtype 40.1 39.9 39.9 40.8

Optdigit 80.4 81.1 80.4 81.1

Pendigit 75.8 73.3 72.7 73.7

Vehicle 51.2 48.6 50.4 47.7

Wilt 95.5 95.5 95.5 95.5

Cleveland 11.2 10.1 10.3 8.3

Hayes-roth 72.8 73.1 72.6 70.7

Newthyroid 90.9 90.9 92.0 92.2

Glass 80.0 80.0 80.0 80.0

Wine quality-red 17.5 20.3 27.3 19.9

Mean accuracy 61.5 61.3 62.1 61.0

Table 6.6: Minimum accuracy per class of margin-based bagging involving four margins
with optimal resampling range.

6.5 Conclusion

Ensembles of classifiers have shown very good properties for addressing the problem
of imbalanced classification. They work in line with baseline solutions for this task such
as data preprocessing for an ensemble or for each classifier of the ensemble. However,
selecting more informative instances should benefit ensemble construction and better
handle multi class imbalanced classification. Our answer to this data selection problem
consists of carrying out an estimation of instance importance which relies on the ensemble
margin. More specifically, instances can be focused on or not by an ensemble of base
classifiers according to their margin values. We consider the lowest margin instances as
the most informative in classification tasks.

In this work, we have proposed a novel margin ordering based bagging method based
on an under sampling scheme for imbalanced classification. To evaluate the effectiveness
of our approach, standard bagging as well as two state of the art imbalance learning
ensemble methods UnderBagging and SMOTEBagging that inspired our method were
used in comparative analysis. From this study, we have emphasized the superiority of
the new proposed method, in handling the imbalance learning problem compared with
bagging, UnderBagging and SMOTEBagging.

The performances of four margin definitions involved in our algorithm were also com-
pared. While the sum-margins generally outperform max margins in terms of average
accuracy, the latter have better performance in minimum accuracy per class. The super-
vised margins achieve similar performance with the unsupervised margins. In addition,
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Figure 6.10: Optimal range of resampling rate a in margin based bagging involving four
different margins for all the data sets.
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6.5. CONCLUSION

the effectiveness of the new proposed margin in addressing the class imbalance problem
is demonstrated.

As future research we plan to extend the margin-based ensemble framework to
an oversampling scheme, such as producing minority class instances by adopting the
SMOTE procedure on the small margin instances.
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7
Application to land cover mapping

This chapter mainly focuses on the application of previously presented ensemble learn-
ing methods to land cover mapping. The application of margin based class noise filtering
involving random forests to the classification of noisy remote sensing data is presented
in section 7.2. Section 7.3 applies the proposed imbalance learning ensemble algorithm
based on margin concept and random forests to the classification of imbalanced remotely
sensed data. Conclusions are drawn in section 7.4.

7.1 Introduction

Remotely sensed image data is widely used in a range of oceanographic, terrestrial, and
atmospheric applications, such as land cover mapping, environmental modeling and

monitoring, and the updating of geographical databases [140]. Supervised classification
is an important task in remote sensing image analysis. A significant attention has focused
on multiple classifier systems or ensemble classifiers [58]. However, the problems of class
mislabeling and class imbalance often exist in remote sensing data and result in negative
effect on the performance of supervised classifiers even in ensemble models.

The presence of noise in remote sensing imagery degrades the interpretation ability
of the data. In particular, mislabeled training data is inevitable in remote sensing where
training data sources are typically ground-based [107, 142, 143]. Several methods such as
[123], [101], [124], [28] for addressing the problem of class noise on remote sensing datasets
have been presented in chapter 3. However, those methods are either only effective for
simple cases of class noise that can be safely managed by overfitting avoidance, or tend
to treat too many clean instances as noise.

Class imbalance decreases the prediction accuracies of the minority classes, which are
usually more important than the majority classes in land-cover mapping. In chapter 5, we
introduced the existing algorithms proposed for the imbalanced classification of remote
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sensing data [112, 185–187]. Among these methods, the sampling combined ensemble
methods are the most popular [112]. However, the simple sampling combined ensemble
method such as [112] just increases the training data size of minority classes by over
sampling without considering the negative effect of sampling schemes such as producing
additional noise. Some improved methods such as [185], [187] have been proposed for
addressing binary imbalance problems. For multi-class classification, these methods can
be carried out only by One versus One and One versus All schemes which have been
mentioned in chapter 5 and proved not necessary for multi-class imbalance learning in
[201].

In chapters 4 and 6, we respectively proposed ensemble margin based methods to
handle the class noise and class imbalance training data issues. These methods have
potential effectiveness to improve the classification of the remote sensing data, which
is more difficultly addressed because of various reasons such as big size and high im-
balance ratio. Hence, this chapter will further test the generalization abilities of the
proposed algorithms on remote sensing imagery. Additionally, although the novel un-
supervised sum-margin (equation 4.1) has been demonstrated effective to address both
class mislabeling and class imbalance problems, this chapter will apply for remote sens-
ing classification the margin definition sum-margin (equation 2.3), which led to the best
performances in handling both training data issues as reported in chapters 4 and 6.

Random forests, presented detailedly in chapter 2, is a powerful ensemble technique
in particular for remote sensing classification [59, 80]. It has the advantages of noise
robustness and fast for classification of big data. So, in this chapter, we adopt random
forests instead of bagging as a robust ensemble to design our margin based ensemble
learning algorithms to solve the class mislabeling and class imbalance problems in the
difficult context of remote sensing classification.

7.2 Dealing with mislabeled training data using
margin based ensemble methods for land cover
classification

This section handles the mislabeling problem of remote sensing data by using the
proposed ensemble margin based methods including both class noise removal and correc-
tion (chapter 4). The effectiveness of the class noise handling methods is demonstrated
in performing mapping of land covers. As in chapter 4, boosting [175] and K-Nearest
Neighbors (KNN) [45], are used to assess the quality of the resulting filtered training
sets. A comparative analysis is also conducted with respect to the majority vote filter
[29]. Two cases, artificial class noise and actual class noise, are considered in the experi-
ments. The considered artificial class noise has been presented in chapter 4. The actual
class noise always exists in real world data, especially in remotely sensed data, but its
amount is unknown, hence, it is more difficult to be addressed than artificial class noise
whose amount is controlled.
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7.2.1 Material

Four remote sensing datasets (table 7.1) were involved in the experiments.

1 The first dataset is a Quickbird multispectral forest image of 2.4 m spatial reso-
lution with 4 spectral bands: Red, Green, Blue and Near-Infra-Red. Five forest
structure classes have been defined to describe different forest structure growth
stages [15]. The variables of this highly imbalanced data set include five 1st order
texture features extracted from the four spectral bands using a window size of 7×7
pixels: mean, variance, median, kurtosis, skewness.

2 The second dataset is an airborne urban image of 25cm spatial resolution. This
orthoimage is composed of three spectral bands in the visible domain: Red, Green,
Blue. It exhibits 4 classes to identify [19]: buildings, artificial ground, natural
ground and vegetation which have been defined by photo-interpretation.

3 The third dataset is a Landsat MSS (Multispectral Scanner System) satellite mul-
tispectral data from UCI Repository [8] with 4 spectral bands (Red, Green and
two Near-Infra-Red bands) and 80m spatial resolution. It represents different soils
in relation to cropping practices: red soil, cotton crop, gray soil, damp gray soil,
soil with vegetation stubble and very damp gray soil. This data consists of the mul-
tispectral reflectance values of pixels in 3×3 neighbourhoods in the satellite image,
and the classification associated with the central pixel in each neighbourhood. This
data is given in random order and certain lines of data have been removed so the
original image cannot be reconstructed from this data set.

4 The fourth dataset is a highly imbalanced Landsat Satellite multispectral Lake
image (figure 7.1) of size 1190×2351 pixels with 7 spectral bands (Red, Green,
Blue, Near-infrared, mid-infrared, far-infrared) and a spatial resolution of 28.5
m/pixel. Seven classes have been defined by geologist expertise to describe different
geological structures. The variables of this highly imbalanced data set include, as
in the first dataset, 5 1st order texture features extracted from the spectral bands
using a window size of 3×3 pixels: mean, variance, median, kurtosis, skewness of the
mid-infrared band, and means of Red, Green, Blue, Near-infrared and far-infrared
bands.

All datasets were randomly selected from the original data. Each data set was divided
into three parts: training set, validation set and test set. Artificial class noise was injected
by randomly choosing a subset of 20% (noise rate) from original datasets, then randomly
labeling the class label values of these selected examples to another label.
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(a) (b)

Figure 7.1: (a) Three-band color composite of Lake Landsat Satellite image (b) Ground
truth.
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ENSEMBLE METHODS FOR LAND COVER CLASSIFICATION

Dataset Training Validation Test Variables classes

Forest 2512 1238 2512 20 5

Urban 6800 3400 6800 3 4

Statlog 2000 1000 2000 36 6

Lake 22630 11317 22630 10 7

Table 7.1: Data sets.

7.2.2 Results and discussion

In our experiments, we used random forests [26] to create an ensemble involving Clas-
sification and Regression Trees (CART) [27] as base classifiers. Boosting [69] and KNN
[45] noise-sensitive classifiers were used to assess the quality of both class noise removal
and class noise correction algorithms. Random forests and boosting ensembles were im-
plemented with 100 pruned trees. Minimum size of terminal nodes of pruned trees was
7. K value of KNN was set to 1. Other parameters of random forests, boosting and KNN
were kept to their default values in R-project packages [160]. All the reported results
are mean values of 10-time calculations. According to the comparative analysis involving
four different ensemble margins in chapter 4, sum-margin (equation 2.3), which turned
out the most effective margin for class noise handling, is adopted in these experiments.
We applied our margin-based class noise removal and correction methods on the 4 satel-
lite image data sets (table 7.1). For a fairer comparison, the validation set was included
in the training data when the majority vote method was used.

7.2.2.1 Experiments on artificial class noise

Tables 7.2 and 7.3 show the accuracies of boosting and KNN on satellite image test
sets, using randomly mislabeled training data (noise rate of 20%), without class noise
filtering, and by both noise removal and noise correction using respectively margin-based
and majority vote filters. The margin-based result columns of these tables (as well as
in all the tables to follow) are split into two sub-columns. The first one indicates that
the training margins calculation is done in a single step, and the second one refers to a
repetitive calculation of the training margins (iterative scheme).

Table 7.2 shows that, for the classification of boosting, margin-based mislabeled data
removal and correction have significantly better performances than majority vote filters
for the four datasets. The increase in accuracy compared with the majority vote method
is over 4% for all the remote sensing data. Our iterative scheme always outperforms
the single step margins calculation alternative (up to 3% of increase in accuracy) for
both noise removal and noise correction thanks to its greater flexibility and ability to
distinguish between correct and noisy samples. The increase in accuracy with respect to
the unfiltered case is over 5% for most data sets. Table 7.3 demonstrates that the margin
based method is still the most effective for the classification of KNN compared to both
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no filtering and majority vote based class noise filtering. The best increase in accuracy
achieved by our method with respect to the unfiltered case and the majority vote filter is
about 16% for data set Lake. Moreover, our iterative scheme still outperforms the single
step margins calculation alternative (up to 5% of increase in accuracy) for both noise
removal and noise correction, which is consistent with the previous class noise handling
performance assessment based on boosting. Our margin-based noise correction appears
overall as a better alternative than our noise removal.

Data

Removal Correction

No
Majority

Margin
Majority

Margin

filter One step Iterative One step Iterative

Forest 84.0 82.9 85.1 86.5 82.6 85.7 87.1

Urban 64.4 64.1 68.5 69.8 64.3 68.6 69.3

Statlog 83.6 84.2 86.3 88.7 83.2 84.8 88.4

Lake 73.9 74.1 74.8 76.7 73.1 75.1 78.2

Table 7.2: Accuracy of boosting classifier with no filter, majority vote filtered and margin-
based filtered training sets on artificially corrupted data sets (noise rate=20%)

Data

Removal Correction

No
Majority

Margin
Majority

Margin

filter One step Iterative One step Iterative

Forest 67.2 82.4 74.4 80.1 81.0 75.2 80.4

Urban 54.8 65.4 68.4 70.0 64.0 68.5 70.2

Statlog 73.4 85.2 82.7 86.5 82.0 83.5 88.0

Lake 65.0 65.4 76.0 79.7 60.4 77.1 81.2

Table 7.3: Accuracy of KNN classifier with no filter, majority vote filtered and margin-
based filtered training sets on artificially corrupted data sets (noise rate=20%)

Tables 7.4 compares the classification accuracy achieved by boosting, on test set, for
the most difficult class of each dataset with noisy training data. This table shows that
our method significantly increases the accuracy of boosting on the most difficult class
for the three datasets (up to 33% for Forest) while the majority vote method is less
effective and even decreases the per-class accuracy of data set Urban. Difficult class
instances have typically low margin values and hence are at low risk of being removed
or incorrectly repaired, our potential mislabeled training data being the highest margin
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misclassified instances. The iterative class noise removal method generally outperforms
its single step counterpart in per-class accuracy (increase in accuracy of up to 25%). The
iterative calculation of the training margins also turned out more successful, in terms of
per-class accuracy, than the single step alternative in our class noise correction algorithm.
Furthermore, both our removal and correction schemes appear useful for the handling
of the mislabeling problem in our satellite data. Let us notice that the particularly low
minimum per-class accuracy for data set Forest is related to a rare forest structure class
(only over 2% of the training data) of this highly imbalanced data set [20]. The imbalance
ratio of data Lake is even higher (up to 53.8) leading to the failure of all alternatives in
the identification of the most difficult class of this data set.

In table 7.5, we carried out a comparative analysis of the classification accuracy
achieved by KNN for the most difficult class of each noisy dataset for both majority
vote and margin-based class noise filters. As in the previous per-class performance com-
parative analysis, while the majority vote method decreases the minimum accuracy per
class of most datasets, our method gets similar or better accuracy (increases the accu-
racy of up to 9% for Statlog) on the most difficult class for most datasets. However, the
iterative margin-based method is not as effective for KNN. Indeed, it outperforms its
single step counterpart (for both noise removal and correction) on just half the data sets
(which are the most imbalanced).

In conclusion, tables 7.2, 7.3, 7.4 and 7.5 show that with respect to our single step
noise filter, our iterative noise filter induces a higher rise in per-class accuracy especially
for ensemble classification and generally obtains higher overall classification accuracy for
both ensemble and single classifiers at a high level of noise.

Data

Removal Correction

No
Majority

Margin
Majority

Margin

filter One step Iterative One step Iterative

Forest 0.3 2.7 8.7 33.2 0 13.2 33.2

Urban 43.6 41.6 56.6 55.5 41.4 53.6 51.3

Statlog 27.5 35.5 43.9 48.5 16.0 36.3 54.8

Lake 0 0 0 0 0 0 0

Table 7.4: Classification accuracy of boosting classifier for the most difficult class with
no filter, majority vote filtered and margin-based filtered training sets on artificially
corrupted data sets (noise rate=20%)
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Data

Removal Correction

No
Majority

Margin
Majority

Margin

filter One step Iterative One step Iterative

Forest 18.9 0 18.9 16.2 0 18.9 16.2

Urban 46.7 44.2 51.6 55.1 41.6 52.9 54.4

Statlog 51.3 21.0 55.4 61.0 8.7 54.4 61.0

Lake 14.5 15.6 9.0 0.6 12.0 8.8 0

Table 7.5: Classification accuracy of KNN classifier for the most difficult class with
no filter, majority vote filtered and margin-based filtered training sets on artificially
corrupted data sets (noise rate=20%)

7.2.2.2 Experiments on actual class noise

In our experiments, the actual class noise rate, which is unknown, was assumed to be
smaller than the considered artificial class noise. Consequently, M (ratio of the removed
or corrected instances) was set to a lower range (from 0 to 20%).

In table 7.6, organised as table 7.2, we attempt to identify, then remove or correct
the actual noisy labels, whose amount is unknown, eventually contained in the satellite
image data sets. A comparison of the results of boosting with no filter shows that our
margin-based algorithms get higher or similar accuracy. While our method was generally
successful to handle actual mislabeled data, using both removal and correction schemes,
(maximum gain in accuracy of over 3% on Urban data set), it does not degrade the
accuracy on data set Statlog, which might be less corrupted by noisy labels. Moreover,
the margin based method significantly outperforms the majority vote scheme for both
class noise removal and correction. The best increase in accuracy with respect to the
majority vote method is about 7% on data set Urban. Unlike the class noise simulation
results presented in table 7.2, the results of our margin-based filters are relatively similar
in the case of actual noisy data. This might be attributed to the small amount of actually
misclassified instances. Indeed, random forests is robust against small to moderate class
noise rates but is sensitive to higher levels of noise [166].

Table 7.7 shows the accuracy of KNN on the four original satellite image datasets.
The obtained results are consistent with the artificial class noise experiment results (table
7.3). The best performance achieved by our margin-based approach is still for the Urban
data set (increase in accuracy of about 6% with respect to the majority vote method
and of about 7% with respect to the no filtering alternative).
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Data

Removal Correction

No
Majority

Margin
Majority

Margin

filter One step Iterative One step Iterative

Forest 88.0 85.0 88.4 88.3 84.2 88.5 88.4

Urban 67.2 63.6 69.9 69.9 63.9 69.3 70.4

Statlog 90.0 88.2 89.9 89.8 85.2 89.9 90.0

Lake 75.9 75.8 76.6 77.4 73.8 76.8 77.6

Table 7.6: Accuracy of boosting classifier with no filter, majority vote filtered and margin-
based filtered training sets on original data sets

Data

Removal Correction

No
Majority

Margin
Majority

Margin

filter One step Iterative One step Iterative

Forest 81.1 83.4 80.3 80.5 81.3 79.8 80.5

Urban 64.4 65.7 71.3 71.2 64.0 71.3 70.8

Statlog 89.5 89.1 89.7 89.7 86.0 89.4 89.8

Lake 80.0 80.1 80.8 81.6 72.2 80.9 81.7

Table 7.7: Accuracy of KNN classifier with no filter, majority vote filtered and margin-
based filtered training sets on original data sets

Table 7.8 presents the classification accuracy of boosting for the most difficult class,
on test set, by using the original training sets. It shows that margin-based methods
significantly outperform majority vote methods, especially for data set Forest (gain in
per-class accuracy of almost 40%). Our margin-based noise removal methods generally
outperform our noise correction method for improving boosting’s recognition ability on
difficult classes. However, in contrast to table 7.4, our single step noise removal method
has generally a better performance (the maximum improvement in accuracy being over
4%) than the iterative scheme. Indeed, the latter is more appropriate for higher levels
of noise (see table 7.4 which exhibits a gain in minimum per-class accuracy with respect
to the single step filter of up to 25%), for which the uncertainty in noise rate estimation
would have less impact than for low levels of noise. Nonetheless, the iterative noise filter
is still effective to increase the accuracy on difficult classes compared with the no filter
case.

The predictive performances of KNN for the most difficult class in actual noise case
are displayed in table 7.9. It can be noticed that, as in the previous table, the iterative
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scheme is less effective than the single step margin calculation method. With respect to
no filtering classification, while the majority vote filter decreases the prediction accuracy
of the most difficult class for most data sets, the margin based method obtains similar or
even better results for most remote sensing data. The increase in minimum accuracy per
class with respect to the majority vote filter is over 11% for data set Urban. In addition,
our margin-based noise correction obtains a relatively better performance (increase in
per-class accuracy of up to 3% for Urban data set) than our noise removal methods
compared with no filter performances. Hence, the correction of mislabeled data has
relatively more impact than throwing assumptive noise on KNN performances in low
noise level classification tasks.

Data

Removal Correction

No
Majority

Margin
Majority

Margin

filter One step Iterative One step Iterative

Forest 46.8 13.5 52.7 50.8 3.2 48.4 44.3

Urban 55.8 40.9 59.0 58.0 41.3 58.8 57.9

Statlog 59.8 52.9 59.9 60.8 49.9 59.7 63.1

Lake 0 0 0 0 0 0 0

Table 7.8: Classification accuracy of boosting classifier for the most difficult class with
no filter, majority vote filtered and margin-based filtered training sets on original data
sets

Data

Removal Correction

No
Majority

Margin
Majority

Margin

filter One step Iterative One step Iterative

Forest 24.3 18.9 24.3 27.0 8.1 27.0 27.0

Urban 55.6 47.5 58.6 57.3 44.3 58.7 56.8

Statlog 72.3 63.6 69.2 70.3 49.7 72.3 68.7

Lake 16.3 17.0 7.2 2.9 13.8 6.1 0.6

Table 7.9: Classification accuracy of KNN classifier for the most difficult class with no
filter, majority vote filtered and margin-based filtered training sets on original data sets

Finally, tables 7.4, 7.5, 7.8 and 7.9 highlight the strength of our margin-based ap-
proach in handling difficult and/or rare classes. Indeed, our per-class accuracy results
outperform majority vote and no filtering per-class accuracy performances especially for
ensemble classifiers, in presence of both artificial and actual noise.
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To visually exhibit the effectiveness of our margin based class noise handling method
on the improvement of data quality, in the final part of these experiments, we carry out
a comparison of our method with no filtering and majority vote filtering on the classifica-
tion map of remote sensing data. Figure 7.2 presents the classification maps of boosting
obtained without class noise filtering and by both majority vote based and margin based
noise correction methods on Lake Landsat Satellite image with artificial class noise rate
of 20%. As shown in this figure, with respect to no filtering, the margin based filter
reduces the class noise and achieves a better classification map quality. When compared
with the classification map provided by the majority vote method, the classification map
obtained by the margin based method has more homogeneous regions and is closer to
the ground truth of the clean Lake image.
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(a) Reference geological map (b) No filtering

(c) Majority vote correction (d) Margin based noise correc-
tion

Figure 7.2: Classification maps of boosting with no filtering, majority vote based and
margin based noise correction methods on Lake Landsat Satellite image with artificial
class noise rate of 20%.
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7.3 Margin-based ensemble method for imbalanced
land cover classification

In this section, the proposed margin based class imbalance ensemble learning method
is applied to classify imbalanced remote sensing data. As in chapter 6, undersampling [13,
108] and SMOTE oversampling [37] combined ensembles will be used in the comparative
analysis. However, instead of using bagging for ensemble construction, random forests
will be used, as in our approach.

7.3.1 Material

Four multi-class remote sensing data sets, which have been previously used for class
noise handling (table 7.1) but in reduced size, are presented in table 7.10, along with
the number of features, the number of classes and the number of examples. These data
sets present an unequal distribution of the number of examples among the classes. The
number of examples for every one of the classes of each dataset are sorted from the class
with the lowest amount of examples (smallest class) up to the class with the highest
amount of examples (largest class). In our experiments, each data set was divided into
two parts: training set and test set.

Data Train. Test. Var. Class C1 C2 C3 C4 C5 C6 C7

Forest 3131 3131 20 5 106 604 1130 1194 2430

Urban 98556 98556 3 4 4323 8597 91138 93054

Statlog 2500 2500 36 6 485 539 540 1061 1169 1206

Lake 28288 28289 10 7 408 453 738 1024 14972 17033 21949

Table 7.10: Imbalanced data sets.

7.3.2 Results and discussion

As in the previous experiments related to the mislabeling problem, we used random
forests [26] to create an ensemble involving Classification and Regression Trees (CART)
[27] as base classifiers. For all the imbalanced ensemble classification methods, the size
of the ensemble was set to 100. The range of the sampling ratio a for the margin based
ensemble method was set from 10 to 100. All of the results shown in this section are the
mean values of 10 time calculations. According to the comparative analysis involving
four different ensemble margins carried out in chapter 6, sum-margin (equation 2.3),
which turned out the most effective margin for class imbalance learning, is adopted in
these experiments. Average accuracy and minimum accuracy per class are employed to
assess the performance of the imbalance ensemble learning algorithms.
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7.3.2.1 Average accuracy

Table 7.11 presents the average classification accuracy obtained on the four imbal-
anced remote sensing data sets of table 7.10 by margin based extended random forests
(Margin based RF) with optimal resampling ranges, traditional random forests (RF),
under sampling combined (Under-RF) as well as SMOTE combined random forests
(SMOTE-RF). The results show that, all the three imbalance ensemble learning schemes
are effective to increase the average accuracy with respect to traditional random forests.
However, our margin based undersampling RF ensemble method outperforms random
under sampling based and SMOTE oversampling based random forests. Our margin
based algorithm is particularly effective on the highly imbalanced dataset Lake with an
improved average accuracy of over 22% with respect to RF.

Data RF Under-RF SMOTE-RF Margin based RF

Forest 81.0 81.9 84.3 83.4

Urban 63.7 72.5 71.1 73.9

Statlog 87.8 87.4 88.7 89.0

Lake 42.1 60.4 57.1 64.3

Table 7.11: Average accuracy of margin based random forests, traditional random forests,
under sampling combined as well as SMOTE combined random forests.

7.3.2.2 Minimum accuracy per class

Table 7.12 organized as the previous table, exhibits the results on minimum accuracy
per class obtained on the four imbalanced remote sensing data sets of table 7.10 by
margin based extended random forests (Margin based RF) with optimal resampling
ranges, traditional random forests (RF), under sampling combined (Under-RF) as well
as SMOTE combined random forests (SMOTE-RF). This table shows that our extended
random forests algorithm significantly outperforms traditional random forests on per-
class imbalance learning performance. Our method is also better than Under-RF (for all
data sets), exhibiting an improvement in per class classification accuracy of up to 10%
(data set Forest). With respect to SMOTEBagging, the margin based method obtains a
win frequency of 3/4 and improves the minimum accuracy per class of up to 12% (data
set Lake).

Figure 7.3(a) exhibits the ground truth of three minority classes (very fine sands,
fine sand, sand and gravels) of the Lake Landsat Satellite image (figure 7.1) and figures
,7.3(b), 7.3(c), 7.3(d) and 7.3(e) show the classification maps respectively obtained by
standard random forests, random undersampling based, SMOTE based random forests
and our margin based method. Figure 7.3(b) shows that although random forest is
popular and effective for the classification of remote sensing data [3, 57, 143], it is
not as effective for highly imbalanced classification. Under sampling based imbalance
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Data RF Under-RF SMOTE-RF Margin based RF

Forest 59.3 58.9 68.3 69.5

Urban 42.8 59.0 52.4 59.2

Statlog 61.5 70.1 65.5 76.1

Lake 0 33.7 22.4 34.5

Table 7.12: Minimum accuracy per class of margin based random forests, standard ran-
dom forests, under sampling combined as well as SMOTE combined random forests.

learning ensemble methods including the random undersampling based and our margin
based random forests are more accurate to classify minority class instances than the
oversampling based scheme (SMOTE combined RF). However, our margin based method
results in a better classification map (figure 7.3(e)), which is closer to the ground truth
than the classification map provided by the random undersampling based imbalance
learning ensemble method.

7.3.2.3 Influence of model parameters on classification performance

In order to study the influence of ensemble size on random forests construction, we
present in figure 7.4 the evaluation of the average accuracy and minimum accuracy
per class on Landsat Satellite data Statlog with respect to ensemble size throughout the
random forests induction processes, i.e. from 20 up to 200 trees for all the random forests
methods.

From figure 7.4(a), we can see that our margin based random forests show higher
average accuracies than standard random forests as well as the other two state of the
art methods undersampling based and SMOTE oversampling based random forests for
data set Statlog especially when the ensemble size is over 140. In addition, our margin
based method presents a relatively smoother curve with respect to standard RF and
Under-RF.

Figure 7.4(b) shows that our method obtains a significantly higher minimum accuracy
per class with respect to standard random forests, undersampling based and SMOTE
based random forests for data set Statlog. In addition, the curve of the margin based
imbalance learning method is once again smoother than the curve associated to random
undersampling combined random forests.

7.4 Conclusion

In this chapter, we first applied our ensemble margin based class noise filters to deal
with the mislabeling problem in land cover classification. Several conclusions can be
summarized based on our experimental evaluations and comparative studies.
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(a) Reference geological
map

(b) Standard random
forests

(c) Undersampling based
random forests

(d) SMOTE based random
forests

(e) Margin based random
forests

Figure 7.3: Ground truth, and classification maps of margin based random forests, stan-
dard random forests, undersampling based and SMOTE based random forests, on mi-
nority classes of Lake Landsat Satellite image.
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Figure 7.4: Evolution of the average accuracy and the minimum accuracy per class on
data set Statlog according to the random forests size.
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• Our margin based class noise handling approach is effective for land cover mapping.

• Our method is significantly more effective for both class noise removal and cor-
rection than the majority vote class noise filtering method in the cases of both
artificial class noise and actual class noise.

• The margin calculation iterative scheme is generally more effective for class noise
handling than its one step-based version.

• The usage of the random forests makes our method distinguish clean data from
mislabeled instances more accurately, hence leading to a better noise correction.

• Our noise filter adopts automatic noise detection and cleaning schemes, hence, it
has better applicability in remote sensing than traditional noise filters.

Then our novel proposed margin based extended random forests method was applied
to address the imbalance problem in remote sensing classification. The conclusions of
our experimental results and comparative analysis could be summarized as follows:

• Our margin based imbalanced ensemble classification method is effective for im-
balanced land cover mapping.

• Our method outperforms traditional random forests in class imbalance remote
sensing classification tasks. With respect to other two state of the art methods, un-
dersampling combined and SMOTE oversampling combined random forests, our
extended random forests, involving optimal resampling rates is the most effective
through both average accuracy and minimum accuracy per class evaluation mea-
sures.
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Conclusion

There are two major challenges in machine learning, class noise and class imbalance,
which are encountered in many real world applications. The goal of this thesis was

to investigate the role of the margin theory in ensemble classifier design, and thus to
handle the two problems. The final part of this dissertation summarizes the contributions
of the thesis and gives directions for future work. This thesis consists of two main parts
handling the two major training data issues in the context of ensemble learning:

1. The first part focuses on the main current research issues arising in class noise
filtering, and claims that data cleaning for supervised machine learning tasks can be
effectively accomplished on the basis of the training margin distribution produced
by a robust ensemble algorithm. In particular, this work investigates the hypothesis
that the true class noise is a misclassified instance which obtains a high ensemble
margin (in absolute value).

2. The second part proposes a novel imbalance learning algorithm by merging ensem-
ble learning and margin theory with undersampling. We argue that this combina-
tion for imbalanced classification is more effective than more traditional imbalance
learning schemes for several reasons. Firstly, ensemble margin has been used for
both algorithm evaluation and as a guideline for finding class decision boundaries,
and thus, a natural goal would be to improve the distribution of the training set by
utilizing the instances with small margin values. Secondly, current sampling-based
ensemble methods alter the overall training data distribution by using data sam-
pling schemes to decrease the imbalance ratio among the different classes simply
without exploring the potential for imbalance learning of the instances composing
the training set such as class decision boundary instances.
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8.1 Main contributions
This thesis enhances the current state-of-the-art in class noise filtering and class

imbalance learning and makes key contributions to the following areas:

1. A novel ensemble margin definition is proposed. This margin is an unsupervised
version of the classic sum-margin.

2. We give an overview of the noise removal and correction state-of-the-art methods
and a summary of existing data cleaning techniques that are related to our research.
This is essential to raise the limitations of each of these techniques. The famous
ensemble-based majority vote filter has been chosen for our comparative analysis.

3. Class noise filtering using ensemble margin

a) An ensemble margin-based method is proposed to address the mislabeling
problem. Our mislabeled training data identification algorithm exploits the
ensemble margin and handles both the removal and the correction of noisy
labels by both one step and iterative training margins calculation schemes.
The effectiveness of our method is evaluated via analyzing the classification
performances of two noise sensitive classification models Adaboosting.M1 and
1-NN, which are trained from our margin based filtered data. The results
of our empirical evaluation demonstrated that, our margin based method is
effective for the classification of both image data and non image data, and
significantly outperforms the majority vote noise filter.

b) Two popular ensemble margin definitions, as well as their unsupervised alter-
natives including the novel unsupervised margin, were assessed in our margin-
based handling of the mislabeling problem. The comparative analysis results
show that supervised margins generally outperform unsupervised margins,
and sum-operation based margins are more effective in class noise handling
than max operation based margins.

c) We compared the performances of our noise removal and noise correction
methods. Our experimental results show that, expectedly, our noise removal
algorithm outperforms our noise correction algorithm. Although the latter
achieves better classification accuracy for noise sensitive classifiers than the
majority vote method due mainly to providing a more accurate prediction
label for identified mislabeled instances, it still has a risk of producing addi-
tional noise. This weakness has to be alleviated as retaining bad data hinders
performance more than throwing out good data.

d) We tested the performance of our iterative guided training margin calculation
noise filtering method. This method was demonstrated as useful to improve
the classification performance of Adaboosting.M1. In addition, iterative data
clean algorithms are conservative. Such characteristic can benefit the quality
of prediction of small and difficult class instances. Hence, in our experiments,
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the iterative filter was effective for the classification of the most difficult class
in diverse classification problems.

4. We introduced the research ground of imbalance learning and gave a review of
existing methods for imbalanced classification. Then, the limitations of each of
these imbalance learning techniques were raised, as done for the analysis of the class
noise handling issue. Finally, a summary of existing imbalance learning approaches
was presented and two of the most famous algorithms were highlighted and selected
for our comparative analysis.

5. A novel bagging method based on ensemble margin for imbalanced classification

a) We proposed an original margin ordering based bagging method based on an
under sampling scheme for imbalanced classification. This algorithm selects
more informative training instances, which should benefit ensemble construc-
tion and better handle multi class imbalanced classification, by carrying out
an estimation of training instance importance which relies on the ensemble
margin. We consider the lowest margin instances as the most informative in
classification tasks. In other words, instances can be focused on or not by an
ensemble of base classifiers according to their margin values. From that study,
we have emphasized the superiority of the new proposed bagging method, in
handling the imbalance learning problem compared with bagging, UnderBag-
ging and SMOTEBagging.

b) The performances of four margin definitions involved in our algorithm were
also compared. While the sum-margins generally outperform max margins in
terms of average accuracy, the latter have better performance in minimum
accuracy per class. The supervised margins achieve similar performance with
the unsupervised margins. In addition, the effectiveness of the new proposed
margin in addressing the class imbalance problem was demonstrated.

6. Application to land cover mapping

a) We applied our ensemble margin based class noise filters to deal with the
mislabeling problem in land cover classification. Our experimental evaluations
and comparative studies show that our margin based class noise handling
approach is not only effective for land cover mapping but also significantly
more effective for both class noise removal and correction than the majority
vote class noise filtering method in the cases of both artificial class noise and
actual class noise. Moreover, our noise filter adopts automatic noise detection
and cleaning schemes, hence, it has better applicability in remote sensing than
traditional noise filters. In addition, the margin calculation iterative scheme
turned out generally more effective for class noise handling than its one step-
based version. The usage of the random forests makes our method distinguish
clean data from mislabeled instances more accurately, hence leading to a
better noise correction.
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b) The novel proposed margin based extended random forests was applied to
address the imbalance problem in remote sensing classification. Our experi-
mental results showed that our method is effective for imbalanced land cover
mapping and outperforms the traditional random forests in class imbalance
remote sensing classification tasks. Furthermore, with respect to two state of
the art methods, undersampling combined and SMOTE oversampling com-
bined random forests, our extended random forests, based on an optimal re-
sampling rate, obtains better results in both average accuracy and minimum
accuracy per class performance evaluation measures for all the considered
remote sensing data.

8.2 Future work

8.2.1 Class noise filtering

The proposed ensemble margin-based class noise filter is an effective method to im-
prove the classification accuracy on a corrupted data. There are still a few explorations
that can be carried out in future work, in particular the following research directions:

• Traditional noise filters tend to remove too much significant data from the training
set such as small class instances. Our extended ensemble margin based approach
has lower risk of discarding minority class instances, however, it still faces the
challenge of addressing the mislabeling problem in imbalanced data. Hence, it
can be relevant to investigate how to improve the classification performance on
noisy imbalanced data by combining our margin based filter with a data sampling
scheme.

• Semi-supervised learning is a learning paradigm which improves the learning per-
formance by taking into account both labeled and unlabeled data. The main idea
of semi-supervised learning is increasing the training set size by utilizing labeled
data to mark unlabeled data with high confidence. The combination of ensem-
ble margin theory and semi-supervised learning could be interesting to investigate
whether this semi-supervised ensemble learning scheme can improve the class noise
handling performances with respect to simply removing suspicious instances from
noisy training data. In this context, our new ensemble margin would be particularly
relevant as it is unsupervised.

• Decomposition in multi-class problems can change the distribution of noisy exam-
ples in resulting subproblems and increase the separability of the classes. Hence,
a potential research direction is to incorporate a decomposition scheme in our
ensemble approach to produce a stronger class noise filter.
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8.2.2 Class imbalance learning

Our margin-based class imbalance learning method has been demonstrated as effec-
tive for the classification of imbalanced data sets. In future work, there are some potential
extensions of the proposed method to investigate.

• We plan to extend the margin-based ensemble framework for class imbalance han-
dling to an oversampling scheme, such as producing additional minority class in-
stances by adopting the SMOTE procedure on small margin instances. Producing
minority class instances according to class decision boundary samples (small mar-
gin values) can result in more diversity in the created ensembles. This method
would alleviate some of the weaknesses of SMOTE which tends to inject redun-
dant and noisy samples into the training set. This extension of our algorithm
would be relevant for the classification of imbalanced data sets with limited labels
encountered in many application domains especially in remote sensing.

• The proposed method can also be extended by combining it with semi-supervised
learning. The idea is to improve the classification of an imbalanced data by increas-
ing the minority class size of the training set. In each ensemble learning iteration,
the predicted labels of minority class instances with high margins could be added
to the current training set and potentially improve its minority class information
significance.
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Abstract

Classification has been widely studied in machine learning. Ensemble methods, which build a
classification model by integrating multiple component learners, achieve higher performances
than a single classifier. The classification accuracy of an ensemble is directly influenced by the
quality of the training data used. However, real-world data often suffers from class noise and
class imbalance problems.

Ensemble margin is a key concept in ensemble learning. It has been applied to both the
theoretical analysis and the design of machine learning algorithms. Several studies have shown
that the generalization performance of an ensemble classifier is related to the distribution of
its margins on the training examples. This work focuses on exploiting the margin concept to
improve the quality of the training set and therefore to increase the classification accuracy of
noise sensitive classifiers, and to design effective ensemble classifiers that can handle imbalanced
datasets. A novel ensemble margin definition is proposed. It is an unsupervised version of a
popular ensemble margin. Indeed, it does not involve the class labels.

Mislabeled training data is a challenge to face in order to build a robust classifier whether
it is an ensemble or not. To handle the mislabeling problem, we propose an ensemble margin-
based class noise identification and elimination method based on an existing margin-based class
noise ordering. This method can achieve a high mislabeled instance detection rate while keeping
the false detection rate as low as possible. It relies on the margin values of misclassified data,
considering four different ensemble margins, including the novel proposed margin. This method
is extended to tackle the class noise correction which is a more challenging issue.

The instances with low margins are more important than safe samples, which have high
margins, for building a reliable classifier. A novel bagging algorithm based on a data importance
evaluation function relying again on the ensemble margin is proposed to deal with the class
imbalance problem. In our algorithm, the emphasis is placed on the lowest margin samples. This
method is evaluated using again four different ensemble margins in addressing the imbalance
problem especially on multi-class imbalanced data.

In remote sensing, where training data are typically ground-based, mislabeled training data
is inevitable. Imbalanced training data is another problem frequently encountered in remote
sensing. Both proposed ensemble methods involving the best margin definition for handling
these two major training data issues are applied to the mapping of land covers.

Keywords

Bagging, classification, ensemble learning, ensemble margin, imbalanced data, mislabeled data,
random forests, remote sensing.
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