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Chapter 1

Introduction

In this thesis we couple high order finite element discretizations with domain decomposition preconditioners to design a precise and fast solver for the time-harmonic Maxwell's equation for the electric field. Maxwell's equations are a system of partial differential equations which model electromagnetic wave propagation. The time-harmonic formulation is derived when the involved fields are sinusoidal (or 'harmonic') in time, varying with an angular frequency ω; thus, the term frequency domain is commonly used, in opposition to the time domain. The time-harmonic Maxwell's equations present several difficulties when the frequency ω is large, such as the sign-indefiniteness of their variational formulation, the pollution effect which entails particularly fine meshes, and the consequent problematic construction of efficient iterative solvers. Note that, on the contrary, for Maxwell's equations in the time domain, for which an implicit time discretization yields at each step a positive definite problem, there are many good solvers and preconditioners in the literature (e.g. multigrid methods).

This work is motivated by the application to brain imaging studied by the project MED-IMAX (ANR-13-MONU-0012, financed by the French National Research Agency, ANR), which gathers Mathematics Laboratories (LJAD in Nice, LJLL and MAP5 in Paris) and the Electrical Engineering Laboratory LEAT (Nice-Sophia Antipolis). The purpose of this project is the full numerical simulation of a microwave imaging system prototype, developed by the medical imaging company EMTensor GmbH (Vienna, Austria) for the diagnosis and monitoring of brain strokes (see Figure 1.1). The data acquired with this device are used as input for an inverse problem associated with the time-harmonic Maxwell's equations, which makes it possible to estimate the complex electric permittivity of the brain tissues of a patient affected by a stroke. Indeed, a stroke results in a variation of the complex electric permittivity inside a region of the brain, thus it can be detected and monitored Figure 1.1 -The microwave imaging system prototype developed by EMTensor GmbH and the corresponding computational domain.

Chapter 1. Introduction by doctors thanks to an image of the brain displaying the values of this property. The solution of the inverse problem requires to solve repeatedly the direct (or forward) problem of the time-harmonic Maxwell's equations, i.e. the more familiar problem in which material properties are given and the unknown is the electric field. Therefore an accurate and fast solver for the direct problem is needed. Accuracy and computing speed are indeed essential in this application, for a precise detection of the stroke and the continuous monitoring of the effects of medical treatment. Nevertheless, the methods studied in this thesis are not specific solely to the imaging problem and have a more general extent of applications. In our strategy, accuracy is provided by high order edge finite elements; the linear system resulting from this discretization is then solved efficiently in parallel with the iterative solver GMRES preconditioned with Schwarz domain decomposition methods. We now briefly introduce these two ingredients, highlighting their advantages and also the difficulties we will face, referring to the first sections of the subsequent Chapters for a more detailed introduction and literature review.

High order finite elements methods make it possible, for a given precision, to reduce significantly the number of unknowns, and they are particularly well suited to discretize wave propagation problems since they can provide a solution with very low dispersion and dissipation errors. For the time-harmonic Maxwell's equation for the electric field in a domain Ω ⊂ R 3 , the functional space on which the variational formulation is well defined is H curl = {v ∈ L 2 (Ω) 3 , ∇ × v ∈ L 2 (Ω) 3 }. Discrete finite element subspaces of H curl , which thus provide curl-conforming finite elements, are due to Nédélec [START_REF] Nédélec | Mixed finite elements in R 3[END_REF]. They are often termed edge elements because at the lowest order the degrees of freedom are associated with the edges of the mesh, more precisely they are the circulations along the edges. Instead of approximating each component of the field with the usual scalar node-based finite elements, basis functions for edge elements are vector functions, which fit the physical continuity properties of the electric field: its tangential component is continuous across material discontinuities while the normal component can jump. One of the difficulties with edge elements is that basis functions and degrees of freedom are associated with the oriented edges of mesh tetrahedra, so that particular attention should be paid to ensure that the contributions coming from tetrahedra sharing edges or faces are assembled properly inside the global matrix of the finite element discretization. Moreover, the duality property σ i (w j ) = δ ij between basis functions w j and degrees of freedom σ i , on which the standard approach to define a finite element basis is based, is not automatically granted for high order edge elements. Recall that, for the standard node-based finite elements, whose degrees of freedom are the values at the nodes of the mesh, this duality property means that the value of each basis function at the associated node is 1 while it is 0 at the other nodes. This ensures that the expansion coefficients for writing a function in terms of the basis (which are also the unknowns of the algebraic system resulting from the discretization) are given by the degrees of freedom applied to the function.

The algebraic linear system resulting from the high order discretization can be ill conditioned, so that preconditioning becomes mandatory when using iterative solvers. Indeed there are two main families of linear system solvers: iterative solvers and direct solvers. On the one hand, direct solvers (such as SuperLU, UMFPACK, MUMPS, ...) are robust, i.e. they find the solution in a finite number of operations no matter how hard the problem is; but because of their high memory cost they are not suited for the very large systems arising for instance from the complex three dimensional model of the imaging system prototype. On the other hand, iterative solvers (such as the conjugate gradient method for symmetric positive definite matrices, or GMRES for more general matrices) require less memory and are easy to parallelize since they are based on matrix-vector products. Their drawback is that they lack robustness, so that preconditioning the system is essential to ensure a good convergence. Namely, when one uses an iterative method to solve a linear system Au = b, it is commonly far more efficient to design a suitable matrix M -1 , called preconditioner, that approximates A -1 and is not too hard to compute, and then solve the system M -1 Au = M -1 b, where the condition number of M -1 A is much lower than the one of A.

Domain decomposition methods can be viewed as hybrid methods that take the advantages of the two families of solvers: the problem defined on the global domain is decomposed into smaller problems on subdomains (see for instance Figure 1.2), on which direct solvers are applicable, and the solution is coordinated between neighboring subdomains iteratively. Domain decomposition methods are naturally suited to parallel computing because the problems on subdomains can be solved concurrently. Moreover, rather than using these methods as solvers, they can be used, more conveniently, as preconditioners for iterative solvers such as GMRES. For a given problem, an efficient domain decomposition method is defined by two main ingredients: the transmission conditions, i.e. the boundary conditions imposed at the interfaces between neighboring subdomains that specify the information exchanged between them; the coarse-grid correction, introduced in the so-called two-level methods, that allows information to propagate through the whole domain in one step. The construction and, even more, the convergence analysis of two-level domain decomposition preconditioners for sign-indefinite problems is a challenging open issue.

Summary and contributions

In the following we detail for each Chapter the contributions of this thesis.

Mathematical models of electromagnetism. Chapter 2 provides an introduction to Maxwell's equations, starting from the full system of four equations in their integral and differential forms. This system needs to be completed with constitutive laws, which model at a macroscopic scale the field-matter interaction. Then the second order (or curl-curl) equation for the electric field is derived, together with its time-harmonic formulation, which is the equation on which we focus in this thesis. We highlight that, as a result of the chosen sign convention in the time-harmonic assumption, the complex valued electric permittivity appearing in the equation has negative imaginary part.

The second part of this Chapter is devoted to the boundary value problem (BVP) describing wave propagation inside a rectangular waveguide. It consists of the second order time-harmonic Maxwell's equation for the electric field together with boundary conditions which are specific to electromagnetism: the metallic or PEC (Perfect Electric Conductor) boundary condition, which is a Dirichlet-type condition, and the impedance boundary condition, which is a Robin-type and absorbing condition. Again, particular emphasis is placed on the sign appearing in the absorbing condition that depends on the chosen time-harmonic convention. Finally the variational (or weak) formulation of the waveguide boundary value problem is derived, which is the first step to apply the finite element method. Note that, even if the computational domain of the medical imaging application (Figure 1.1, right) is much more complex than a single waveguide, the variational formulation described in §2.2.5 has the same form as the one modeling the imaging system prototype.

A revisitation of high order curl-conforming finite elements. In Chapter 3 we define high order finite elements for H curl on a simplicial mesh T h over the computational domain Ω (simplicial means triangular in 2d and tetrahedral in 3d). This work is the object of the publication [START_REF] Bonazzoli | High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality[END_REF]. Our finite elements are instances of the first family of Nédélec finite elements [START_REF] Nédélec | Mixed finite elements in R 3[END_REF], where the involved functions are vectors with incomplete or trimmed polynomials as components (that is some of the top-degree monomials are removed to satisfy some constraints).

With regard to basis functions, we adopt the high order generators presented in [START_REF] Rapetti | High order edge elements on simplicial meshes[END_REF][START_REF] Rapetti | Whitney forms of higher degree[END_REF]: their definition is rather simple since it only involves the barycentric coordinates of the simplex and is associated with a geometrical construction, which helps to visualize the list of generators. Here, we revisit the classical degrees of freedom defined by Nédélec [START_REF] Nédélec | Mixed finite elements in R 3[END_REF], in order to obtain a new expression which results to be more friendly in terms of the considered basis functions. Moreover, we propose a general technique to restore duality between degrees of freedom and basis functions for the high order case, thanks to a generalized Vandermonde matrix. In the following we give an overview of these results, referring to Chapter 3 for the detailed presentation.

First of all recall that, for a simplex T ∈ T h , the local lowest order basis functions for the Nédélec curl-conforming space V h ⊂ H(curl, Ω) are associated with the oriented edges e = {n i , n j } of T as follows w e = λ n i ∇λ n j -λ n j ∇λ n i , where the λ n are the barycentric coordinates of a point x ∈ T with respect to the node n of T of Cartesian coordinates x . The degrees of freedom over T are the functionals σ e : w → 1 |e| e w • t e , ∀ e ∈ E(T ),

where t e = x j -x i is the tangent vector to the edge e, |e| = |t e | the length of e and E(T ) the set of edges of T . At the lowest order, the basis functions are in duality with the degrees of freedom, that is σ e (w e ) = 1, resp. 0, if e = e , resp. if e = e .

To state the definition of the high order generators of [START_REF] Rapetti | High order edge elements on simplicial meshes[END_REF][START_REF] Rapetti | Whitney forms of higher degree[END_REF], we need to introduce multi-index notations. A multi-index is an array k = (k 1 , . . . , k ν ) of ν integers k i ≥ 0, and its weight k is ν i=1 k i . The set of multi-indices k with ν components and of weight k is denoted I(ν, k). If d = 2, 3 is the ambient space dimension, we consider ν ≤ d + 1 and, given k ∈ I(ν, k), we set λ k = ν i=1 (λ n i ) k i , where the n i are ν nodes of the d + 1 nodes of T . Now, in the generators definition we take ν = d + 1 and k = r -1, with r the polynomial degree of the generators.

Definition of the generators. The generators for Nédélec edge element spaces W 1 h,r (T ) of degree r ≥ 1 in a simplex T ∈ T h are the λ k w e , with k ∈ I(d + 1, k), k = r -1 and e ∈ E(T ).
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We recast the degrees of freedom in [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] in a new more friendly form as follows. The revisited degrees of freedom. For r ≥ 1, the functionals σ e : w → 1 |e| e (w • t e ) q, ∀ q ∈ P r-1 (e), ∀ e ∈ E(T ), (1.1)

σ f : w → 1 |f | f (w • t f,i ) q, ∀ q ∈ P r-2 (f ), ∀ f ∈ F(T ), (1.2) 
t f,i two independent sides of f, i = 1, 2,

σ T : w → 1 |T | T (w • t T,i ) q, ∀ q ∈ P r-3 (T ), (1.3) 
t T,i three independent sides of T, i = 1, 2, 3, are the degrees of freedom for a function w ∈ W 1 h,r (T ). F(T ) is the set of faces of T , the norm of the vectors t e , t f,i , t T,i is the length of the associated edge. We say that e, f, T are the supports of the degrees of freedom σ e , σ f , σ T . To make the computation of degrees of freedom easier, a convenient choice for the polynomials q spanning the polynomial spaces over (sub)simplices e, f, T is given by suitable products of the barycentric coordinates associated with the nodes of the considered (sub)simplex. Indeed, the space P ρ (S) of polynomials of degree ≤ ρ over a p-simplex S (i.e. a simplex of dimension 1 ≤ p ≤ d) can be generated by the products λ k = p+1 i=1 (λ n i ) k i , with k ∈ I(p + 1, ρ) and n i being the nodes of S.

Classification and selection of linearly independent generators. The classification of degrees of freedom into edge-type, face-type, volume-type degrees of freedom can be done also for generators: volume-type generators contain (inside λ k or w e ) the barycentric coordinates w.r.t. all the nodes of a tetrahedron T , face-type generators contain the ones w.r.t. all and only the nodes of a face f , edge-type generators contain the ones w.r.t. only the nodes of an edge e. Note that face-type (resp. volume-type) generators appear for r > 1 (resp. r > 2) (and the same happens for face-type and volume-type degrees of freedom).

For the high order case (r > 1), the fields λ k w e are generators for W 1 h,r (T ), but some of the face-type or volume-type generators are linearly dependent. The selection of generators that constitute an actual basis of W 1 h,r (T ) can be guided by the revisited degrees of freedom. More precisely, as face-type (resp. volume-type) generators keep the ones associated with the two (resp. three) edges e chosen as the two sides t f,1 , t f,2 (resp. three sides t T,1 , t T,2 , t T,3 ) of face-type degrees of freedom (resp. volume-type degrees of freedom).

Restoring duality. The considered basis functions are not in duality with the degrees of freedom when r > 1, namely, the matrix V with entries the weights V ij = σ i (w j ), 1 ≤ i, j ≤ n dofs = dim(W 1 h,r (T )) after a suitable renumbering of degrees of freedom, is not the identity matrix for r > 1. Duality can be re-established by considering new basis functions wj , 1 ≤ i, j ≤ n dofs : wj is built as a linear combination of the previous basis functions with coefficients given by the entries in the j-th column of V -1 . The matrix V is a sort of generalized Vandermonde matrix and has some nice properties: its entries do not depend on the metrics of the tetrahedron T for which they are calculated; V , and hence its inverse V -1 , are block lower triangular if we list generators and degrees of freedom in the order dictated by increasing the dimension of the support of degrees of freedom; the entries of V -1 are integer numbers.

The example in Section 3.7 illustrates explicitly all these notions for d = 3, r = 2.

Implementation of high order curl-conforming finite elements. The implementation of high order curl-conforming finite elements is quite delicate, especially in the Chapter 1. Introduction three-dimensional case. In Chapter 4 (part of the submitted paper [START_REF] Bonazzoli | Explicit implementation strategy of high order edge finite elements and Schwarz preconditioning for the timeharmonic Maxwell's equations[END_REF]) we explicitly describe an implementation strategy, which we embedded in the open source domain specific language FreeFem++ (http://www.freefem.org/ff++/). Thus our high order edge finite elements in 3d of degree 2, 3 are available for the scientific community. To add them to FreeFem++ we define in a C++ plugin various ingredients, among which the principal ones are: the basis functions (and their derivatives) in a simplex; an interpolation operator, which requires degrees of freedom in duality with the basis functions. Indeed, in FreeFem++ the basis functions (and in some cases the coefficients of the interpolation operator) are constructed locally, i.e. in each simplex T of the mesh T h , without the need of a transformation from the reference simplex. Note that the chosen definition of high order generators, which involves only the barycentric coordinates of the simplex, fits perfectly this local construction feature of FreeFem++. Nevertheless, the local construction should be done in such a way that the contributions coming from simplices sharing edges or faces can be then assembled properly inside the global matrix of the finite element discretization. Moreover, for the definition of the interpolation operator, in the high order edge elements case we need the generalized Vandermonde matrix V to restore duality between degrees of freedom and basis functions. Here, we carefully address the problem of applying the same Vandermonde matrix to possibly differently oriented simplices of the whole mesh, in order to be able to use in numerical experiments the concepts presented for just one simplex in the previous Chapter. The strategy to fulfill these two requirements is implemented using two permutations, based on the global numbers of the mesh nodes. We also describe in detail the implementation of the interpolation operator. Section 4.4 shows how to use these new finite elements in a FreeFem++ script.

Schwarz domain decomposition preconditioners. In Chapter 5 (also part of the submitted paper [START_REF] Bonazzoli | Explicit implementation strategy of high order edge finite elements and Schwarz preconditioning for the timeharmonic Maxwell's equations[END_REF]) we investigate the preconditioning for Maxwell's equations in the time-harmonic regime, which is an underdeveloped issue in the literature, particularly for high order discretizations. We focus on the (one-level) Optimized Restricted Additive Schwarz (ORAS) overlapping preconditioner, where the term 'optimized' refers to the use of impedance boundary conditions as transmission conditions, proposed by Després in [START_REF] Després | A domain decomposition method for the harmonic Maxwell equations[END_REF]; the algebraic formulation of optimized overlapping Schwarz methods like ORAS was introduced in [START_REF] St-Cyr | Optimized multiplicative, additive, and restricted additive Schwarz preconditioning[END_REF]. Note that we do not consider more sophisticated transmission conditions because our aim in the next Chapter is to treat general decompositions into overlapping subdomains, with quite rough interfaces, see Figure 1.2. We perform extensive experiments to validate the ORAS preconditioner (and its symmetric version OAS) for different values of physical and numerical parameters, both for 2d and 3d waveguide configurations; in particular we study the effect of their variation on the spectrum of the preconditioned matrix. This numerical investigation shows that Schwarz preconditioning significantly improves GMRES convergence, and that the ORAS preconditioner always performs much better than the OAS preconditioner. Moreover, in all the considered test cases, the number of iterations for convergence using the ORAS preconditioner does not vary when the polynomial degree of the adopted high order finite elements increases. We see that it is necessary to take an overlap of at least one layer of simplices from both subdomains of a neighbors pair. All these convergence qualities are reflected by the spectrum of the preconditioned matrix. Finally, the experiments varying the number of subdomains and the frequency exhibit the need for a two-level preconditioner.

In the following we briefly report the algebraic definition of the ORAS preconditioner, when applied to the time-harmonic Maxwell's equation discretized with high order edge finite elements. Consider a decomposition of the domain Ω into N sub overlapping subdo-mains Ω s that consist of a union of simplices of the mesh T h . Let N be an ordered set of the degrees of freedom of the whole domain, and let N = N sub s=1 N s be its decomposition into the (non disjoint) ordered subsets corresponding to the different overlapping subdomains Ω s : a degree of freedom belongs to N s if its support (edge, face or volume) is contained in Ω s . For edge finite elements, it is important to ensure that the orientation of the degrees of freedom is the same in the domain and in the subdomains. Define the matrix R s as the restriction matrix from Ω to the subdomain Ω s : it is a #N s × #N Boolean matrix, whose (i, j) entry equals 1 if the i-th degree of freedom in N s is the j-th one in N . Note that the extension matrix from the subdomain Ω s to Ω is given by R T s . To deal with the unknowns that belong to the overlap between subdomains, define for each subdomain a #N s × #N s diagonal matrix D s that gives a discrete partition of unity, i.e.

N sub s=1 R T s D s R s = I.
Then the Optimized Restricted Additive Schwarz (ORAS) preconditioner can be expressed as

M -1 ORAS = N sub s=1 R T s D s A -1 s,Opt R s ,
where the matrices A s,Opt are the local matrices, stemmed from the discretization by high order edge finite elements, of the subproblems with impedance boundary conditions (∇×E)×n+iωn×(E×n) as transmission conditions at the interfaces between subdomains (note that now the term 'local' refers to a subdomain and not to a mesh simplex). The term 'restricted' corresponds to the presence of the partition of unity matrices D s . The construction of the partition of unity is intricate, especially for (high order) edge finite elements. Here, suitable piecewise linear functions χ s giving a continuous partition of unity ( N sub s=1 χ s = 1) are interpolated at the barycenters of the support (edge, face, volume) of each degree of freedom of the (high order) edge finite elements. This interpolation is obtained thanks to an auxiliary FreeFem++ scalar finite element space that has only the interpolation operator and no basis functions. Note that when optimized conditions are chosen as transmission conditions at the interfaces, it is essential that not only the function χ s but also its derivative are equal to zero on the border of the subdomain Ω s .

Application to brain microwave imaging. Chapter 6 shows the benefits of using a discretization based on the high order edge finite elements coupled with the parallel domain decomposition preconditioner, to simulate the microwave imaging system prototype of EMTensor GmbH for the detection and monitoring of brain strokes. We have merged the contributions [START_REF] Bonazzoli | Parallel preconditioners for high-order discretizations arising from full system modeling for brain microwave imaging[END_REF][START_REF] Tournier | Microwave Tomographic Imaging of Cerebrovascular Accidents by Using High-Performance Computing[END_REF] into this Chapter and a related work is the invited paper [START_REF] Tournier | Numerical Modeling and High Speed Parallel Computing: New Perspectives for Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring[END_REF].

We first introduce the medical context, the characteristics of microwave imaging, which is a novel promising technique, and the operating principle of EMTensor GmbH imaging system, which is composed of 5 rings of 32 antennas around a metallic cylindrical chamber (see Figure 1.1). Each antenna is a ceramic-loaded rectangular waveguide. Then, the direct problem that models this imaging system is described: there is one boundary value problem for each transmitting antenna. We also explain how to compute the so-called scattering coefficients, which are the data acquired by the imaging system, indeed the electric field is not a measurable quantity. For the sake of completeness the inverse problem is presented, as well as to clearly show where the solution of the direct problem intervenes in the inversion tool.

Chapter 1. Introduction

In the numerical results section, in order to validate our numerical modeling, we first compare the scattering coefficients given by the simulation with the measured values obtained by EMTensor: they result to be in very good agreement. Then we demonstrate the advantage, in terms of accuracy and computing time, of using high order edge finite elements compared to the standard lowest order edge elements: for instance, to attain a given accuracy of ≈ 0.1 (see the details in the complete Chapter), the finite element discretization of degree r = 1 requires 21 million unknowns and a computing time of 130 seconds, while the high order finite element discretization (r = 2) only needs 5 million unknowns, with a corresponding computing time of 62 seconds. The parallel implementation of the domain decomposition ORAS preconditioner in HPDDM [START_REF] Jolivet | Scalable domain decomposition preconditioners for heterogeneous elliptic problems[END_REF] (https://github.com/hpddm/hpddm, a High-Performance unified framework for Domain Decomposition Methods) is essential to be able to solve the arising linear systems of up to 96 million complex-valued unknowns considered here. To assess the efficiency of the parallel domain decomposition preconditioner we perform a strong scaling analysis: even if the number of iterations increases with the number of subdomains, this experiment exhibits very good time speedups up to 2048 subdomains. Here we studied efficient techniques for the solution of the direct problem, that have been embedded in the inversion tool developed by the ANR MEDIMAX team: in the conclusion section we give a brief account of the results obtained by the team for the inverse problem, showing the feasibility of this microwave imaging technique for detection and monitoring of brain strokes.

Two-level preconditioners for the Helmholtz equation. Chapter 7 is based on [START_REF] Bonazzoli | Twolevel preconditioners for the Helmholtz equation[END_REF], which has been submitted to the proceedings of the DD24 International Conference on Domain Decomposition Methods. The time-harmonic Maxwell's equation presents similar difficulties to those encountered with the (scalar) Helmholtz equation when the wavenumber ω is large, namely the sign-indefiniteness of their (standard) variational formulation, the pollution effect, and the consequent problematic construction of fast iterative solvers [START_REF] Ernst | Why it is difficult to solve Helmholtz problems with classical iterative methods[END_REF]. Since, even for this scalar equation, there is no established and robust preconditioner, whose behavior is independent of ω for general decompositions into subdomains, before facing the time-harmonic Maxwell's equation we focus in Chapter 7 on the Helmholtz equation.

In order to achieve independence of the iteration count on the number of subdomains or, for wave propagation problems, on the wavenumber ω, two-level domain decomposition preconditioners are generally introduced. One should define two ingredients: an algebraic formula to combine the coarse grid correction with the one-level preconditioner (e.g. in a additive or in a hybrid way); a rectangular full column rank matrix Z, whose columns span what is called the coarse space. Our purpose is to compare numerically two different coarse space definitions for the Helmholtz equation, which are currently the most robust available in literature. In [START_REF] Conen | A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator[END_REF] the coarse space is built by solving local eigenproblems on the interfaces involving the Dirichlet-to-Neumann (DtN) operator. In [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF][START_REF] Graham | Recent Results on Domain Decomposition Preconditioning for the High-Frequency Helmholtz Equation Using Absorption[END_REF] twolevel domain decomposition approximations of the Helmholtz equation with absorption -∆u-(ω 2 +iξ)u = f are used as preconditioners for the pure Helmholtz equation without absorption; the coarse space is based on a coarser mesh, with diameter constrained by ω, thus here we refer to it as "grid coarse space".

In our numerical experiments, which are in two and three dimensions, we reach more than 28 million complex-valued unknowns in the linear systems, resulting from a discretization (with piecewise linear finite elements) of the pure Helmholtz equation without absorption, with an increasing wavenumber. For both coarse space definitions, the preconditioners built with absorption ξ prec = ω2 appear to perform much worse than those with absorption ξ prec = ω. We see that, in most cases, for smaller coarse space sizes the grid coarse space gives fewer iterations than the DtN coarse space, while for larger coarse space sizes the grid coarse space gives generally more iterations than the DtN coarse space. Both for the coarse grid space and the DtN coarse space, for appropriate choices of the method parameters we obtain iteration counts which grow quite slowly with the wavenumber ω. Further experiments to compare the two definitions of coarse space should be carried out in the heterogenous case.

Two-level preconditioners for Maxwell's equations. Chapter 8 is based on the forthcoming paper [START_REF] Bonazzoli | Domain Decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption[END_REF] and on [START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF], also submitted to the proceedings of the DD24 International Conference on Domain Decomposition Methods. We investigate how the two-level domain decomposition preconditioners analyzed for the Helmholtz equation in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] work in the Maxwell case, both from the theoretical and numerical points of view. We aim at finding a "good" preconditioner, which, in the present context, means that the number of iterations needed to solve the preconditioned system should be independent of the wavenumber ω.

We present a new theory for the time-harmonic Maxwell's equation with absorption that provides rates of convergence for GMRES with a two-level Additive Schwarz (AS) preconditioner, explicit in the wavenumber ω, the absorption ξ, the coarse-grid diameter H cs , the subdomain diameter H sub and the overlap size δ. These theory uses a ω-and ξ-explicit coercivity result for the underlying sesquilinear form and the main theorems give an upper bound on the norm of the preconditioned matrix and a lower bound on its field of values, so that Elman-type estimates for the convergence of GMRES can be applied. Note that analyzing the convergence of GMRES is hard, since no convergence estimates in terms of the condition number, as those we are used to with the conjugate gradient method, are available for GMRES. An important particular case of the final convergence estimate is the following. If the problem has absorption ξ ∼ ω2 , δ ∼ H cs (which is called generous overlap), H sub ∼ H cs ∼ ω-1 , then GMRES preconditioned with the two-level Additive Schwarz method will converge with the number of iterations independent of the wavenumber. Note that the detailed theory development is mainly due to Euan Spence.

Large scale numerical experiments are carried out not only in the setting covered by the theory, but also for the time-harmonic Maxwell's equation without absorption. This extensive numerical study of the convergence of GMRES examines several versions of the two-level preconditioner: additive and hybrid coarse correction formulas, standard and optimized local solves, generous and minimal overlap, different scalings of the subdomain diameter and the coarse grid diameter with respect to the wavenumber ω. Moreover, we test various levels of absorption in the problem and in the preconditioner, and we consider discretizations of the problem with degree 1 and 2 curl-conforming finite elements.

As a conclusion, some directions for future research are presented.

Chapter 1. Introduction

This thesis led to the following publications and presentations.

Journal and conference papers 

• [12] M. Bonazzoli, V.

Maxwell's equations

The foundations of the electromagnetic theory are the four Maxwell's equations [START_REF] Maxwell | A Treatise on Electricity and Magnetism[END_REF]: Gauss' theorem, Gauss' theorem for magnetism, Ampère-Maxwell's theorem and Faraday's law.

In this section, we first present their integral form and deduce their differential form, obtaining a system of differential equations involving the following physical quantities:

• E, the electric field intensity, also referred to as the electric field (measured in V m -1 ),

• H, the magnetic field intensity, also referred to as the magnetic field (in A m -1 ),

• D, the electric induction, also called the electric displacement (in A s m -2 , i.e. C m -2 ),

• B, the magnetic induction, also called the magnetic flux density (in V s m -2 , i.e. T),

• ρ, the electric charge density (in C m -3 ),
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• J , the electric current density (in A m -2 ),
(where V is the symbol for volt, A for ampère, C for coulomb, T for tesla1 ). Then, using suitable constitutive laws, we will get a system containing only E and H as unknowns. We will also derive a second order formulation for the electric field E. Finally, we will present its time-harmonic formulation, which is the focus of this work. Interesting introductions about Maxwell's equations can be found in the first chapter of the books [START_REF] Bossavit | Computational electromagnetism. Electromagnetism. Variational formulations, complementarity, edge elements[END_REF][START_REF] Monk | Finite element methods for Maxwell's equations[END_REF].

Gauss' theorem

A distribution of static electric charges is one of the sources that come into play to create an electromagnetic field. Gauss' theorem states that the flux of the electric induction through a closed surface S is equal to the enclosed electric charge Q:

S D • n = Q, (2.1)
where n is the outward unit normal to S.

Denoting by V the volume bounded by the surface S, if we write the total charge Q in V as a function of the electric charge density ρ, Q = V ρ dv, and we apply the divergence theorem

S D • n = V ∇ • D , we get: V ∇ • D = V ρ .
Since the volume V is arbitrary, this implies the differential form of Gauss' theorem:

∇ • D = ρ.
(2.2)

Gauss' theorem for magnetism

Gauss' theorem for magnetism states that the flux of the magnetic induction through a closed surface S is always zero:

S B • n = 0, (2.3) 
which formally expresses the fact that there is currently no experimental evidence of the existence of magnetic charges or magnetic monopoles. Again, by applying the divergence theorem we get

V ∇ • B = 0,
where V is the volume bounded by the surface S, and, since the volume V is arbitrary, we obtain the differential form of Gauss' theorem for magnetism:

∇ • B = 0. (2.4)

Ampère's theorem

Ampère's original theorem Ampère's theorem in its original form expresses the relationship between magnetic fields and electric currents that produce them, in absence of time-changing electric field. In particular, it states that the circulation of the magnetic field H along a closed curve C is equal to the current which crosses a surface S insisting on the curve C:

C H • t = S J • n, (2.5) 
where t is the unit tangent to the oriented curve C and the normal n is oriented according to the orientation of C following the right-hand rule.

Applying Stokes' theorem to the left-hand side of this integral form, we get:

S (∇ × H) • n = S J • n,
and, since the surface S is arbitrary, we obtain the differential form of Ampère's original theorem, namely ∇ × H = J .

(2.6)

Ampère-Maxwell theorem

Unless the electric charge density ρ does not vary in time (as in the magnetostatic case), Ampère's original theorem is not consistent with the law of conservation of the electric charge. Indeed, this law states that the total current into a volume V with surface S must be equal to the charge variation within the volume:

S J • n = - d dt V ρ ;
equivalently, applying the divergence theorem on the left, and exchanging the order of differentiation and integration on the right, we may write

V ∇ • J = - V ∂ρ ∂t ,
that as usual implies:

∂ρ ∂t + ∇ • J = 0. (2.7) 
In order to see why equation (2.6) is in contradiction with the conservation of the electric charge, we apply to it the divergence operator and, since ∇•(∇×H) = 0, we find ∇•J = 0, which is not consistent with (2.7) if ∂ρ/∂t = 0. Therefore, Maxwell's main contribution was to introduce a correction to (2.6), by adding what he called the displacement current

J D = ∂D ∂t : ∇ × H = J + J D .
This equation is now coherent with the charge conservation: applying the divergence operator we get

0 = ∇ • (J + J D ) = ∇ • J + ∂(∇ • D) ∂t = ∇ • J + ∂ρ ∂t ,
thus relation (2.7) holds. The corrected equation is now often called the Ampère-Maxwell theorem:

- ∂D ∂t + ∇ × H = J . (2.8)
In particular, a variation of the flux of the electric induction creates a magnetic field.
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Faraday's law

Faraday's law says that an electric current is induced in any closed circuit C when the flux of the magnetic induction through a surface S bounded by the circuit changes in time.

The induced electromotive force is opposed to the variation of the magnetic flux:

C E • t = - d dt S B • n.
(2.9)

By applying Stokes' theorem on the left and exchanging the order of differentiation and integration on the right, we get:

S (∇ × E) • n = - S ∂B ∂t • n.
Using again the fact that the surface S is arbitrary, we can write Faraday's law in differential form:

∂B ∂t + ∇ × E = 0.
(2.10)

Maxwell's system and constitutive laws

Equations (2.8), (2.10), (2.2) and (2.4) form the complete Maxwell's system of electromagnetism:

- ∂D ∂t + ∇ × H = J , (Ampère-Maxwell theorem) (2.11a) ∂B ∂t + ∇ × E = 0, (Faraday's law) (2.11b) ∇ • D = ρ, (Gauss' theorem) (2.11c) ∇ • B = 0, (Gauss' theorem for magnetism) (2.11d)
relating four vector fields E, H, D, B, and source terms ρ, J (which are also related by the equation of charge conservation (2.7)). It turns out that these equations are not sufficient to uniquely determine the electromagnetic field and that additional constitutive laws are needed, which model at a macroscopic scale the field-matter interaction. They depend on the properties of the materials in the domain occupied by the electromagnetic field.

Here, we consider the case of linear isotropic materials (i.e. whose properties do not depend on the direction of the field), for which the constitutive laws are

D = εE, B = µH, (2.12) 
where the coefficients ε, called electric permittivity or dielectric constant, and µ, called magnetic permeability, are positive, bounded, scalar functions of position. If one considered instead an anisotropic material (e.g. a finely layered medium), ε and µ would be 3 × 3 positive definite matrix functions of position. In a vacuum we have ε = ε 0 = 8.85 • 10 -12 F/m, µ = µ 0 = 1.26 • 10 -6 H/m (F for farad and H for henry), and the speed of light is given by

c 0 = 1/ √ ε 0 µ 0 .
Another constitutive law is a generalized Ohm's law, namely

J = σE + J g , (2.13) 
which is composed of Ohm's law J = σE, valid for the regions of space occupied by conductors, and of an applied current density J g , imposed independently of the local electromagnetic field, in the regions of space called generators. The coefficient σ is a material dependent non negative function of position, called electrical conductivity and measured in siemens (S) per meter (the siemens unit is also called mho because it is defined as Ω -1 ). One has σ = 0 in insulators, as in a vacuum. Using constitutive laws (2.12), (2.13) (and considering time-independent coefficients), we can rewrite Maxwell's equations in the following form:

ε ∂E ∂t -∇ × H + σE = -J g , (2.14) 
µ ∂H ∂t + ∇ × E = 0, (2.15) ∇ • (εE) = ρ, (2.16 
)

∇ • (µH) = 0.
(2.17)

First and second order formulations

In order to obtain the first and second order formulations of Maxwell's equations, we assume that the initial conditions already satisfy the two Gauss' theorems: in this way they are automatically satisfied for all time. Indeed, by applying the divergence operator to (2.15), we obtain

∂ ∂t (∇ • (µH)) = 0,
which means that if (2.17) is verified at the initial time, then it is verified for all time t. Similarly, by applying the divergence operator to (2.14), we obtain

∂ ∂t (∇ • (εE)) + ∇ • J = 0, which gives, using (2.7), ∂ ∂t (∇ • (εE) -ρ) = 0, hence if (2.16
) is verified at the initial time, then it is verified for all time t. Nevertheless, a successful numerical scheme to discretize Maxwell's system must produce an approximation that satisfies discrete analogs of (2.16), (2.17). Therefore, if we don't include Gauss' theorems in the system of Maxwell's equations, we obtain the classical first order formulation of Maxwell's equations:

ε ∂E ∂t -∇ × H + σE = -J g , µ ∂H ∂t + ∇ × E = 0. (2.18) In component form, for E = (E x , E y , E z ), H = (H x , H y , H z ), J g = (J g x , J g y , J g z ), we can rewrite (2.18) as:                                          ε ∂E x ∂t - ∂H z ∂y + ∂H y ∂z + σE x = -J g x , ε ∂E y ∂t - ∂H x ∂z + ∂H z ∂x + σE y = -J g y , ε ∂E z ∂t - ∂H y ∂x + ∂H x ∂y + σE z = -J g z , µ ∂H x ∂t + ∂E z ∂y - ∂E y ∂z = 0, µ ∂H y ∂t + ∂E x ∂z - ∂E z ∂x = 0, µ ∂H z ∂t + ∂E y ∂x - ∂E x ∂y = 0.
(2.19)
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We can also eliminate the magnetic field H from (2.18), by applying the curl operator to the second equation divided by µ, and then using the first equation to express ∇ × H. This leads to the classical second order (or curl-curl) formulation of Maxwell's equations:

ε ∂ 2 E ∂t 2 + σ ∂E ∂t + ∇ × 1 µ ∇ × E = S g , (2.20) 
where S g = -∂J g ∂t .

Time-harmonic formulations

If we wish to analyze electromagnetic propagation at a single frequency, the time-dependent problem (2.18), also referred to as problem in the time domain, can be reduced to a timeharmonic problem, or problem in the frequency domain. This is the case, for instance, when the applied current density J g is sinusoidal in time (one often says 'harmonic' in time), that is, of the form

J g (x, t) = Re(J g (x)e iωt ), (2.21) 
where J g (x) is a complex-valued vector function of position x ∈ R 3 but not of time t ∈ R, and ω > 0 is the angular frequency (i denotes the imaginary unit). So, we restrict the analysis to a time-harmonic electromagnetic field varying with an angular frequency ω, i.e. we consider the representation of the electric field E and the magnetic field H as

E(x, t) = Re(E(x)e iωt ), H(x, t) = Re(H(x)e iωt ), (2.22) 
where E, H are the complex amplitudes (usually denoted by Ê, Ĥ), dependent only on position. Alternatively, the conversion from the time domain to the frequency domain can be done by applying to the equations the Fourier transform with respect to the time variable, defined as (for a function p in the time domain)

(Fp)(ω) = p(ω) = R e -iωt p(t) dt,
with the inverse Fourier transform given by

(F -1 p)(t) = p(t) = 1 2π R e iωt p(ω) dω.
Recall its property of linearity and behavior on derivatives:

F ∂p ∂t = iω p(ω).
Thus, either by substituting expressions (2.21), (2.22) into (2.18), or by applying the Fourier transform (and omitting the hat symbol), we obtain the first order time-harmonic formulation of Maxwell's equations:

iωεE -∇ × H + σE = -J g , iωµH + ∇ × E = 0.
(2.23)

Moreover, we can rewrite the first equation in (2.23) by factoring out iωE and introducing a complex-valued electric permittivity ε σ

ε σ = ε -i σ ω , (2.24) 
hollow conducting waveguides, and optical fibers.

In practice, the choice of structure is dictated by: (a) the desired operating frequency band, (b) the amount of power to be transferred, and (c) the amount of transmission losses that can be tolerated. Coaxial cables are widely used to connect RF components. Their operation is practical for frequencies below 3 GHz. Above that the losses are too excessive. For example, the attenuation might be 3 dB per 100 m at 100 MHz, but 10 dB/100 m at 1 GHz, and 50 dB/100 m at 10 GHz. Their power rating is typically of the order of one kilowatt at 100 MHz, but only 200 W at 2 GHz, being limited primarily because of the heating of the coaxial conductors and of the dielectric between the conductors (dielectric voltage breakdown is usually a secondary factor.) However, special short-length coaxial cables do exist that operate in the 40 GHz range.

Another issue is the single-mode operation of the line. At higher frequencies, in order to prevent higher modes from being launched, the diameters of the coaxial conductors must be reduced, diminishing the amount of power that can be transmitted.

Two-wire lines are not used at microwave frequencies because they are not shielded and can radiate. One typical use is for connecting indoor antennas to TV sets. Microstrip lines are used widely in microwave integrated circuits. 

∇ × H = iωε σ E, ∇ × E = -iωµH.
(2.25)

Now, we can eliminate the field H (by solving the second equation for H and substituting into the first equation), and, supposing that µ is constant, we obtain the second order (or curl-curl) time-harmonic formulation for the electric field:

∇ × (∇ × E) -γ 2 E = 0, (2.26) 
where the (complex-valued) coefficient γ is related to the physical parameters as follows

γ = ω √ µε σ = ω 2 µε -iωµσ, ε σ = ε -i σ ω .
Note that if σ = 0, we have γ = ω, ω = ω √ µε being the wavenumber. We can also write ω = ω/c introducing the propagation speed c = 1/ √ εµ. Working with a complex-valued electric permittivity ε σ makes it possible to include dissipative effects when σ > 0.

Remark 2.1 (Sign convention!). Note that in this work we chose the sign convention with e +iωt in the time-harmonic assumption, which results in a negative imaginary part in the complex valued electric permittivity ε σ = εiσ/ω. Some authors instead choose a time dependence of e -iωt , which gives, repeating similar calculations, a positive imaginary part in ε σ .

Remark 2.2. In the hypothesis ∇•E = 0, using the vector calculus identity ∇×(∇×A) = -∆A + ∇(∇ • A), we would get that (2.26) is equivalent to a vector Helmholtz equation with absorption (or damping):

-∆E -(ω 2 -iωµσ)E = 0. (2.27)

The waveguide problem

Waveguides are used to transfer electromagnetic power efficiently from one point in space to another. Some common guiding structures are shown in Figure 2.1 [START_REF] Orfanidis | Electromagnetic Waves and Antennas[END_REF], including coaxial cables, two-wire and microstrip transmission lines, hollow metallic waveguides, and dielectric waveguides as optical fibers. Here, we are interested in hollow metallic rectangular waveguides, of cross section given by the rectangle (0, a) × (0, b). The guide is typically filled with air, but any other dielectric material, with permittivity ε, permeability µ, conductivity σ, can be considered.

To simulate numerically the electromagnetic wave propagation in such waveguide structures, first of all consider as computational domain a bounded section Ω = (0, a) × (0, b) × Chapter 2. Mathematical models of electromagnetism The physical domain D is in thin line, with dashed style for those boundaries that should be extended to infinity. The computational domain Ω is in thick line, with dashed style for those boundaries where suitable absorbing conditions are imposed.

(0, c) of the physical domain D ⊂ R 3 , which is an infinite 'parallelepiped' parallel to the z direction, as shown in Figure 2.2. Then, we need to solve the following boundary value problem, consisting of equation (2.26) with suitable boundary conditions (described in the subsections below):

           ∇ × (∇ × E) -γ 2 E = 0, in Ω, E × n = 0, on Γ w , (∇ × E) × n + iη n × (E × n) = g in , on Γ in , (∇ × E) × n + iη n × (E × n) = g out , on Γ out , (2.28a) (2.28b) (2.28c) (2.28d) 
where n is the unit outward normal to Γ = ∂Ω. Considering the vector e z = (0, 0, 1) t , the border Γ is composed of Γ w = {x ∈ ∂Ω, n(x) • e z = 0} representing the border of the waveguide walls, Γ in = {x ∈ ∂Ω, n(x) • e z < 0} which is the waveguide entrance, and Γ out = {x ∈ ∂Ω, n(x) • e z > 0}, the waveguide exit. The parameter η is a positive real number, and the vector functions g in , g out depend on the incident wave.

In the following, we discuss the boundary conditions appearing in the boundary value problem, which are specific to electromagnetism. Then we find particular exact solutions (called modes of the waveguide) in the case σ = 0, for an infinitely long waveguide. We consider also a two-dimensional configuration of the problem. Finally, we derive the variational (or weak) formulation of the problem.

Metallic boundary conditions

Boundary conditions (2.28b) express the fact that the metallic walls of the waveguide are modeled as a perfect electric conductor (PEC).

Indeed, inside a perfect conductor the electric field vanishes: heuristically, from Ohm's law (J = σE) we see that if the conductivity σ → ∞ and if the current density J is to remain bounded, then E → 0.

Moreover, the electric field has continuous tangential component across a surface S (Γ w in our case) separating two regions with different materials. More precisely, if n is the unit normal to S pointing from region 1 to region 2, and if E 1 denotes the limiting value of the electric field as S is approached from region 1 and E 2 denotes the limiting value of the field from the other region, then we have:

E 1 × n = E 2 × n on S.
(2.29)

This property of tangential continuity of the electric field can be derived from the integral form of Faraday's law (2.9)2 ; furthermore, (2.29) is a requirement for ∇ × E to be well defined in a least squares sense, see Lemma 5.3 of [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF]. Note that the normal component can jump across material discontinuities instead. This must be taken into account when designing a numerical scheme for approximating Maxwell's equations. Now, if the material on one side (say region 2) of the interface S is a perfect conductor, like the waveguide walls in our case, then E 2 = 0 in (2.29), that is

E 1 × n = 0 on S,
where region 1 is the domain Ω and S is the border Γ w .

Impedance boundary conditions

Boundary conditions (2.28c), (2.28d) on the artificial boundaries Γ in , Γ out are called impedance boundary conditions, which are Robin-type boundary conditions. On one hand, they model the fact that the waveguide is connected to electronic components such as antennas. On the other hand, they are absorbing boundary conditions, first order approximations of transparent boundary conditions. Transparent boundary conditions are defined to let outgoing waves pass through the artificial boundaries of the domain unaffected, to obtain in the truncated domain Ω the same solution as in the infinite domain D; however, transparent boundary conditions involve non local operators, so they need to be approximated in order to be used in practice.

Consider the first order absorbing boundary condition

1 Z n × E -n × (H × n) = 0, (2.30) 
where Z = µ/ε is the wave impedance. This condition mimics the Silver-Müller radiation condition for the field scattered by an object. Now, by substituting H = -1 iωµ ∇ × E from the second equation of the time-harmonic system (2.23) inside (2.30) we get:

1 Z n × E + 1 iωµ n × ((∇ × E) × n) = 0,
that is, multiplying by iωµ and using iωµ/Z = iωµ µ/ε = iω

√ µε = iω, iω n × E + n × ((∇ × E) × n) = 0.
Therefore we have

((∇ × E) × n) × n + iω E × n = 0,
and, after vector product multiplication by n,

(∇ × E) × n + iω n × (E × n) = 0. (2.31)
Remark 2.3 (Sign convention!). Note that the adopted sign convention with e +iωt in the time-harmonic assumption (2.22) results in a positive sign +iω in the absorbing impedance boundary condition written as in (2.31). The opposite sign choice of e -iωt would give, repeating similar calculations, the parameter -iω in the condition.
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Waveguide modes

We look for particular exact solutions (also called modes) of Maxwell's equations, in the non dissipative case (σ = 0), that propagate along the (infinitely long) waveguide principal axis (the z direction). The complex amplitudes E, H in the time-harmonic representation (2.22) (of angular frequency ω) are assumed to have the form:

E(x) = E(x, y, z) = E(x, y)e -iβz , H(x) = H(x, y, z) = H(x, y)e -iβz , (2.32) 
where β > 0 is the propagation wavenumber along the guide direction. With these assumptions, the component form of the first order formulation of Maxwell's equations (2.19), with σ = 0, becomes (dropping the tilde symbol):

                                         iωεE x - ∂H z ∂y -iβH y = 0, iωεE y + iβH x + ∂H z ∂x = 0, iωεE z - ∂H y ∂x + ∂H x ∂y = 0, iωµH x + ∂E z ∂y + iβE y = 0, iωµH y -iβE x - ∂E z ∂x = 0, iωµH z + ∂E y ∂x - ∂E x ∂y = 0.
(2.33)

The metallic boundary condition (2.28b) on Γ w translates into E y = E z = 0, on x = 0 and x = a, E x = E z = 0, on y = 0 and y = b.

(2.34)

We are interested in finding the exact solutions in two particular cases: the transverse electric case (TE) in which the longitudinal component E z = 0, and the transverse magnetic case (TM) in which the longitudinal component H z = 0.

TE modes

If we take E z = 0, equations (2.33) become

                                 iωεE x - ∂H z ∂y -iβH y = 0, iωεE y + iβH x + ∂H z ∂x = 0, - ∂H y ∂x + ∂H x ∂y = 0, iωµH x + iβE y = 0, iωµH y -iβE x = 0, iωµH z + ∂E y ∂x - ∂E x ∂y = 0.
(2.35)

The last three equations in (2.35) yield:

H x = - β µω E y , H y = β µω E x , H z = 1 iωµ ∂E x ∂y - ∂E y ∂x , (2.36) 
and if we substitute these expressions of H x , H y , H z into the first three equations in (2.35) (and we multiply the first two by iωµ), we get:

β 2 -ω 2 µε E x - ∂ 2 E x ∂x 2 - ∂ 2 E x ∂y 2 = 0, β 2 -ω 2 µε E y - ∂ 2 E y ∂x 2 - ∂ 2 E y ∂y 2 = 0, ∂E x ∂x + ∂E y ∂y = 0.
To summarize, if we consider the boundary conditions given by (2.34) and we recall that ω = ω √ εµ is the wavenumber, it is enough to solve the following Helmholtz problems in two dimensions:

β 2 -ω2 E x -∆E x = 0 E x (x, 0) = E x (x, b) = 0 β 2 -ω2 E y -∆E y = 0 E y (0, y) = E y (a, y) = 0
where E x and E y are related by the divergence condition ∂Ex ∂x + ∂Ey ∂y = 0. The technique of separation of variables gives the following solutions of the above equations

E x = C nπ b cos mπx a sin nπy b , E y = -C mπ a sin mπx a cos nπy b ,
where m, n ∈ N, provided that To sum up, writing C = H 0 iωµ/(ω 2 -β 2 ), we conclude that the general form of the TE modes is (after multiplication by e -iβz of the previous solutions):

mπ a 2 + nπ b 2 = ω2 -β 2 , (2.37 
                                     E T E x = H 0 iωµ ω2 -β 2 nπ b cos mπx a sin nπy b e -iβz , E T E y = -H 0 iωµ ω2 -β 2 mπ a sin mπx a cos nπy b e -iβz , E T E z = 0, H T E x = H 0 iβ ω2 -β 2 mπ a sin mπx a cos nπy b e -iβz , H T E y = H 0 iβ ω2 -β 2 nπ b cos mπx a sin nπy b e -iβz , H T E z = H 0 cos mπx a cos nπy b e -iβz , (2.38) 
and given m, n ∈ N the corresponding TE mode is called TE mn mode.

Chapter 2. Mathematical models of electromagnetism Remark 2.4. In the calculations to obtain the field E T E = (E T E

x , E T E y , E T E z ) we have imposed the metallic boundary conditions on Γ w . Moreover, it satisfies impedance boundary conditions (2.28c), (2.28d) on Γ in , Γ out with parameter η = β and vector functions g in = (iβ + iβ)E T E = 2iβE T E and g out = (-iβ + iβ)E T E = 0. Remark 2.5. If we consider the definition of the cutoff frequency

ω c = 1 √ εµ mπ a 2 + nπ b 2 ,
from relation (2.37) we have

β 2 = ω2 - mπ a 2 + nπ b 2 = εµ ω 2 -ω 2 c .
So, for ω > ω c the propagation wavenumber β is real, i.e. the corresponding TE mn mode can propagate in the waveguide; for ω < ω c , β is imaginary, i.e. the corresponding TE mn mode can not propagate, it attenuates exponentially along the waveguide direction. Usually, waveguide systems are operated in a frequency range that ensures that only the mode with the lowest cutoff frequency can propagate. If the frequency ω is greater than the cutoff frequencies of several modes, then all of these modes can propagate. Conversely, if ω is less than all cutoff frequencies, then none of the modes can propagate. If we arrange the cutoff frequencies in increasing order, ω c1 < ω c2 < ω c3 < . . . , then, to ensure single-mode operation, the frequency should be restricted to the interval ω c1 < ω < ω c2 , so that only the lowest mode will propagate. This interval defines the operating bandwidth of the guide [START_REF] Orfanidis | Electromagnetic Waves and Antennas[END_REF]. If a > b, the mode with the lowest cutoff frequency (called the dominant mode) is the TE 10 mode, i.e. the one with m = 1, n = 0.

TM modes

Suppose that now we take H z = 0. In a similar way we can derive the TM solutions:

                                     E T M x = -E 0 iβ ω2 -β 2 mπ a cos mπx a sin nπy b e -iβz , E T M y = -E 0 iβ ω2 -β 2 nπ b sin mπx a cos nπy b e -iβz , E T M z = E 0 sin mπx a sin nπy b e -iβz , H T M x = E 0 iωε ω2 -β 2 nπ b sin mπx a cos nπy b e -iβz , H T M y = -E 0 iωε ω2 -β 2 mπ a cos mπx a sin nπy b e -iβz , H T M z = 0.
(2.39)

Two-dimensional problem

To write a simplified model in 2d, used for preliminary studies and computations, we consider the physical domain D ⊂ R 3 given by the space contained between two infinite parallel metallic plates, say y = 0, y = b (see Figure 2.3): the wave propagates in the x direction, and all physical parameters µ, σ, ε have to be assumed invariant in the third direction, which is neglected. The computational domain Ω ⊂ R 2 is a bounded section, say Ω = (0, c) × (0, b), of D. By writing E = (E x , E y , 0), we obtain the expression of the curl operator in the twodimensional setting: ∇ × E = (0, 0, ∂ x E y -∂ y E x ). Similarly, the vector product × is calculated by writing E = (E x , E y , 0), n = (n x , n y , 0).

The function E ex = (0, e -iγx ) verifies the equation of boundary value problem (2.28), the metallic boundary conditions on Γ w = {x ∈ ∂Ω, y = 0 or y = b}, and the impedance boundary conditions on Γ in = {x ∈ ∂Ω, x = 0}, Γ out = {x ∈ ∂Ω, x = c} with parameter η = ω and vector functions g in = (iγ + iω)E ex , g out = (-iγ + iω)E ex ; when σ = 0 we get g in = 2iωE ex and g out = 0. The real part of the propagation constant -iγ gives the rate at which the amplitude changes as the wave propagates, which corresponds to wave dissipation (note that if σ > 0, Re(-iγ) < 0, while if σ = 0, Re(-iγ) = 0).

Variational formulation

To cast in the variational (or weak) form the boundary value problem (2.28), one has to multiply equation (2.28a) by the complex conjugate of a complex-valued test function v of a suitable functional space V (specified below), and then integrate over the computational domain Ω using for the first term the integration by parts formula

Ω (∇ × w) • v = Ω w • (∇ × v) - ∂Ω (w × n) • v.
(2.40)

Thus we obtain:

Ω (∇ × E) • (∇ × v) -γ 2 E • v - ∂Ω (∇ × E) × n • v = 0.
Now, we can rewrite the boundary term by splitting it into the integrals on the different parts of the boundary:

∂Ω (∇ × E) × n • v = Γw (∇ × E) × n • v + Γ in ∪Γout (∇ × E) × n • v.
On Γ w , we choose test functions v such that v × n = 0, so we have

Γw (∇ × E) × n • v = - Γw (∇ × E) • (v × n) = 0,
Chapter 2. Mathematical models of electromagnetism and on Γ in ∪ Γ out we have

Γ in ∪Γout (∇ × E) × n • v = = - Γ in ∪Γout iη(n × (E × n)) • v + Γ in g in • v + Γout g out • v = - Γ in ∪Γout iη(E × n) • (v × n) + Γ in g in • v + Γout g out • v.
Therefore, the weak problem reads: find E ∈ V such that

Ω (∇ × E) • (∇ × v) -γ 2 E • v + Γ in ∪Γout iη(E × n) • (v × n) = Γ in g in • v + Γout g out • v ∀v ∈ V, (2.41) with V = {v ∈ H(curl, Ω), v × n = 0 on Γ w }.
For a detailed discussion about existence and uniqueness of solutions we refer to [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF] (note that the sign convention therein adopted is the opposite to ours, see Remarks 2.1, 2.3). The functional space H(curl, Ω) is a Sobolev space of vector-valued functions appropriate for analyzing Maxwell's equations for the electric field. It is the space of square integrable vector functions whose curl is also square integrable:

H(curl, Ω) = {v ∈ L 2 (Ω) 3 , ∇ × v ∈ L 2 (Ω) 3 },
where the derivatives are understood in the weak sense, so that ∇ × v satisfies

Ω (∇ × v) • φ = Ω v • (∇ × φ) ∀φ ∈ (C ∞ 0 (Ω)) 3 .
The norm and the associated inner product on the space H(curl, Ω) are defined as follows:

v H(curl,Ω) = v 2 L 2 (Ω) 3 + ∇ × v 2 L 2 (Ω) 3 1/2 , (u, v) H(curl,Ω) = (u, v) L 2 (Ω) 3 + (∇ × u, ∇ × v) L 2 (Ω) 3 .
Chapter 3

A revisitation of high order curl-conforming finite elements

The content of this chapter is partially extracted from [START_REF] Bonazzoli | High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality[END_REF], in collaboration with Francesca Rapetti, published in Numerical Algorithms (Springer). 

Introduction

When applying the finite element (FE) method to a given problem arising in science and engineering, one writes the variational (or weak) formulation of the problem to be discretized, defines the suitable discrete FE space on a mesh covering the computational domain, and selects the algorithm to solve the final algebraic system in an efficient way [START_REF] Quarteroni | Numerical approximation of partial differential equations[END_REF]. In Section 2.2.5 we have derived the variational formulation of the boundary value problem (2.28) on which we focus in this work, and where the equation is the second order time-harmonic formulation of Maxwell's equations for the electric field (2.26); we have introduced the functional space H curl on which the variational formulation of this problem is well defined. In this chapter, we will specify discrete FE spaces in H curl suitable for discretizing the considered problem.
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De Rham complex

Nevertheless, one should be aware that H curl belongs to a complex of functional spaces

H L = {u ∈ L 2 , L u ∈ L 2 }
, where L is one of the differential operators (the gradient, the curl and the divergence) appearing in the full Maxwell's system (2.11), and acting on scalar or vector fields:

H grad ∇ ----→ H curl ∇× ----→ H div ∇• ----→ L 2 ,
where the composition of two consecutive operators is 0. This de Rham complex summarizes, for example, the fact that if q ∈ H grad then ∇q ∈ H curl (indeed, ∇ × (∇q) = 0 ∈ L 2 and ∇q ∈ L 2 ). Note that the space H grad is usually denoted H 1 . Finite element spaces in H curl on suitable meshes are used to discretize the electric and magnetic fields, in H div to discretize the electric and magnetic inductions, in L 2 to discretize the electric charge density, in H grad to discretize for example the electric potential V E defined by E = -∇V E . Therefore, one should consider not only discrete FE subspaces

W 1 h of H curl , but also sub- spaces W 0 h of H grad , W 2 h of H div and W 3 h of L 2
, which also form for each h a complex with the same operators, h > 0 being the maximal diameter of the elements constituting a mesh T h over the computational domain Ω. Moreover, these two complexes are related by interpolation operators Π p h , 0 ≤ p ≤ 3, onto the discrete subspaces, forming a diagram

H grad ∇ ----→ H curl ∇× ----→ H div ∇• ----→ L 2 Π 0 h   Π 1 h   Π 2 h   Π 3 h   W 0 h ∇ ----→ W 1 h ∇× ----→ W 2 h ∇• ----→ W 3 h
that commutes, that is one can follow the arrows along any path between two spaces and obtain the same operator between these two spaces. After the use of the commuting diagram in the approximation of second order elliptic problems in mixed form [START_REF] Douglas | Mixed finite element methods for second order elliptic problems[END_REF], the central importance of this structure in the approximation of electromagnetism problems was first noticed by Bossavit [START_REF] Bossavit | Mixed finite elements and the complex of Whitney forms[END_REF][START_REF] Bossavit | Computational electromagnetism. Electromagnetism. Variational formulations, complementarity, edge elements[END_REF]. Then several works followed, e.g. [START_REF] Hiptmair | Canonical construction of finite elements[END_REF][START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF][START_REF] Boffi | A note on the de Rham complex and a discrete compactness property[END_REF][START_REF] Arnold | Differential complexes and stability of finite element methods. I. The de Rham complex[END_REF], see [11, §2.1.4] for more references.

For the construction of the generic FE subspace W h we follow the classical approach of Ciarlet [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]. One introduces first the triple (K, P, Σ), representing a finite element, where

• K is the kind of geometrical "tile" of the mesh T h over Ω (in our case a simplex, i.e. a triangle in 2d and a tetrahedron in 3d),

• P is a finite-dimensional space of functions (usually polynomials) defined on K,

• Σ is a set of linear functionals σ i , called degrees of freedom (dofs), acting on P .

The finite element (K, P, Σ) is said to be unisolvent if any element z of P is determined once the values σ i (z) are known. One then defines the FE space as

W p h,r = {u ∈ H L , u |K ∈ P, ∀K ∈ T h },
where the integer r denotes the maximal polynomial degree of u |K (resp. of the components of u |K ) for scalar (resp. vector) fields u ∈ H L , and the integer 0 ≤ p ≤ 3 refers to the geometrical dimension involved to define the dofs for u |K at the lowest degree. Note that P is a suitable approximation of H L locally, in each element K, and W p h,r respects globally, on the whole domain, the smoothness requirements of the underlying functional space H L , associated with the boundary value problem to be approximated:

• for H grad (i.e. H 1 ) the continuity of a global finite element function u is required,

• for H curl the continuity of the tangential trace u×n of a global finite element function u is required (see the proof in e.g. [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF], Lemma 5.3),

• for H div the continuity of the normal component u • n of a global finite element function u is required.

Indeed, here for a given functional space H L we consider finite elements (K, P, Σ) which are termed H L -conforming, that is, the corresponding global FE space is a subspace of H L .

In the case of H curl and H div one often says curl-conforming and div-conforming. The dofs line up to guarantee the needed global smoothness. Note that the tangential continuity is a physical property of the electric field, which is indeed discretized with curl-conforming finite elements.

Characteristics of Nédélec finite elements

FE subspaces W 0 h,r ⊂ H grad , and W 3 h,r ⊂ L 2 , are well documented in the literature, sets of basis functions of arbitrary order r on tetrahedra are explicitly detailed in books [START_REF] Szabó | Finite element analysis[END_REF][START_REF] Karniadakis | Spectral/hp element methods for CFD[END_REF]. FE subspaces W 1 h,r ⊂ H curl and W 2 h,r ⊂ H div are due to Nédélec [START_REF] Nédélec | Mixed finite elements in R 3[END_REF], where, for a simplex K, the space P is spanned by vectors with incomplete or trimmed polynomials of degree ≤ r as components: this means that some of the top-degree monomials are removed to satisfy some constraints. A second family of Nédélec FEs was introduced in [START_REF] Nédélec | A new family of mixed finite elements in R 3[END_REF], where the definition of P on a simplex K is simpler, as it is a set of vectors with complete polynomials of degree ≤ r as components. The second family offers superior error estimates for the interpolant compared to the first family, but at the cost of using more dofs for a mesh with a given h. Among the vast literature on high order Nédélec FEs on simplicial meshes we cite [START_REF] Ainsworth | Hierarchic finite element bases on unstructured tetrahedral meshes[END_REF][START_REF] Schöberl | High order Nédélec elements with local complete sequence properties[END_REF][START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF][START_REF] Fuentes | Orientation embedded high order shape functions for the exact sequence elements of all shapes[END_REF].

Degrees of freedom for Nédélec FEs are not of Lagrangian type (i.e., they are not the functionals giving the values at mesh nodes): they are functionals involving integrals along a curve or across a surface, with orientation to make things more complicated. For the lowest degree (r = 1), dofs are circulations for H curl , or fluxes for H div , of the considered field, but for higher orders (r > 1) dofs are moments, that are integrals over sub-simplices of the field (or of a component of it) against some function. Moreover, the duality property σ i (w j ) = δ ij between dofs σ i and basis functions w j of P is not automatically granted for r > 1, which is instead the case for the usual H 1 -conforming FEs with their nodal dofs. Duality would ensure, for instance, that dofs give the expansion coefficients for writing in terms of the basis a general function in the FE space; so, in particular, the coefficients of the solution vector u (of the algebraic system) for writing the FE approximation E h of the field could be interpreted as the dofs applied to E h .

In this chapter, we focus on high order finite elements for H curl , since it is the functional space needed for the considered boundary value problem (2.28). We published in [START_REF] Bonazzoli | High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality[END_REF] the complete study for all the spaces of De Rham complex. Nédélec curl-conforming FEs are often termed edge elements because at the lowest degree (r = 1) dofs and basis functions are associated with edges of the mesh. There are several reasons to rely on edge elements rather than on classical node-based vector-valued elements [START_REF] Bossavit | A rationale for 'edge-elements' in 3-D fields computations[END_REF]. For instance, besides fitting the continuity properties of the electric field, edge elements are known to avoid the pollution of the numerical solution by spurious modes (see §9.3.3 of [START_REF] Bossavit | Computational electromagnetism. Electromagnetism. Variational formulations, complementarity, edge elements[END_REF] and [START_REF] Bossavit | Solving Maxwell equations in a closed cavity, and the question of 'spurious modes[END_REF][START_REF] Boffi | Computational models of electromagnetic resonators: analysis of edge element approximation[END_REF]).

Here, we adopt the high order basis functions presented in [START_REF] Rapetti | High order edge elements on simplicial meshes[END_REF][START_REF] Rapetti | Whitney forms of higher degree[END_REF] (which belong to the first family of Nédélec FEs), whose definition is rather simple since it only involves the barycentric coordinates of the simplex (see also [START_REF] Gopalakrishnan | Nédélec spaces in affine coordinates[END_REF] for previous work in this direction). Their construction, characterized by a geometrical approach, is described in Section 3.4, after introducing in Section 3.2 some notation concerning mesh components and after Chapter 3. A revisitation of high order curl-conforming FEs recalling in Section 3.3 the definition and properties of the low order FEs. In Section 3.5 we revisit the definition of classical dofs by moments, obtaining a more friendly expression in terms of the considered basis functions. In Section 3.6 we propose a general technique to restore duality between dofs and basis functions for the high order case, thanks to a generalized Vandermonde matrix. We conclude with an example in Section 3.7 illustrating the notions introduced in this Chapter, and with a numerical study in Section 3.8 about the order of convergence of the high order finite element method.

Notation for mesh components and incidence matrices

Let Ω ⊂ R 3 be a bounded domain with piecewise smooth boundary Γ. We consider a simplicial mesh of Ω, that is a tessellation of Ω by tetrahedra, subject to the condition that any two of them may intersect along a common face, edge or node, but in no other way. We denote by N , E, F, T (resp. N N , N E , N F , N T ) the sets (resp. the cardinality of the sets) of nodes (0-simplices), edges (1-simplices), faces (2-simplices), and tetrahedra (3-simplices) thus obtained, and by T h the mesh itself, with h > 0 standing for the maximal diameter of the tetrahedra of T . Note that if a simplex s belongs to the mesh T h , all simplices that form the boundary of s also belong to T h ; each simplex appears only once in T h . Labels n, e, f, v are used for nodes, edges, faces, volumes (tetrahedra). The placement of the mesh stands for the function from N to Ω, giving for each node n i its position

x i in Ω. The tetrahedron v = {n 1 , n 2 , n 3 , n 4 } is defined as the non degenerate convex envelope of four points n 1 , n 2 , n 3 , n 4 in R 3 , where non degenerate means (x 2 -x 1 ) × (x 3 -x 1 ) • (x 4 -x 1 ) different from zero.
Similarly, a p-simplex s, 0 ≤ p ≤ 3, is the non degenerate convex envelope of p + 1 geometrically distinct points n 1 , . . . , n p+1 . The points n 1 , . . . , n p+1 are called vertices of s, and p is the dimension of the p-simplex s, which we shall denote s = {n 1 , . . . , n p+1 }. Any (p -1)-simplex that is a subset of {n 1 , . . . , n p+1 } is called (p -1)-face of s.

To make more compact the layout of a formula, the node n = n l can be denoted as e-n when e = {n i , n l }. The same node becomes f -e when e = {n i , n j } and f = {n i , n j , n l }, or v -f when v = {n i , n j , n l , n q } and f = {n i , n j , n q }.

Besides the list of nodes and of their positions, the mesh data structure also contains incidence matrices, saying which node belongs to which edge, which edge bounds which face, etc., and there is a notion of (inner) orientation of the simplices to consider. In short, an edge, face, etc., is not only a two-node, three-node, etc., subset of N , but such a set plus an orientation of the simplex it subtends [START_REF] Bossavit | Computational electromagnetism. Electromagnetism. Variational formulations, complementarity, edge elements[END_REF].

For example, e = {n i , n j }, where we assume that n i < n j for simplicity at the implementation step, denotes the edge that connects the global vertices n i and n j , oriented in such a way that the tangent vector goes from the vertex n i to the vertex n j . If e = {n i , n j }, the edge {n j , n i } is referred to as -e. One introduces the so-called incidence numbers ∂ e,n i = -1, ∂ e,n j = 1, and ∂ e,n k = 0 for nodes n k other than n i and n j . They form a rectangular matrix G = (∂ e,n ), with N E rows and N N columns, which describes how edges connect to nodes.

Faces are also oriented, not merely a collection of 3 nodes. For example, f = {n i , n j , n k }, where we assume that n i < n j < n k for simplicity, is the face with the three vertices n i , n j , n k , oriented such that the vectors x j -x i , x k -x i , form a reference frame in the plane supporting f . An orientation of f induces an orientation of its boundary and, with respect to this induced orientation, an edge runs along or not. Then one introduces the incidence number ∂ f,e , as +1 if e runs along the boundary of f , -1 otherwise, and 0 if e is not one of the edges of f . They form a rectangular matrix R = (∂ f,e ), with N F rows and N E columns. 

Low order curl-conforming finite elements

f 1 = {n 1 , n 3 , n 2 } is ∂(f 1 ) = -e 1 -e 5 + e 6 .
It can be identified with the vector (-1, 0, 0, 0, -1, 1) collecting the coefficients in front of each edge, which gives the first line of the incidence matrix R for v.

A matrix D = (∂ v,f ), indexed over T and F, is similarly defined: ∂ v,f = ±1 if face f bounds tetrahedron v, the sign depending on whether the orientations of f and of the boundary of v match or not. This makes sense only after the tetrahedron v itself has been oriented, and the convention will be that if v = {n i , n j , n k , n l }, the vectors x j -x i , x k -x i , and x l -x i , in this order, define a positive frame. So, the incidence number ∂ v,f = 1 (resp.

-1) if the normal of the oriented face f is outward (resp. inward). Implicitly, we have been orienting all nodes the same way, +1, up to now. 

G =         0 -1 1 0 0 1 0 -1 0 0 1 -1 -1 0 0 1 -1 1 0 0 -1 0 1 0         , R =     -1 0 0 0 -1 1 -1 -1 1 0 0 0 0 0 1 1 0 -1 0 1 0 1 -1 0     , D = (1 -1 1 -1).
The well known property of incidence matrices is here recalled. (Note that this, together with Remark 3.3, constitutes a sort of discrete version of the de Rham complex.) Proposition 3.2. We have DR = 0 and RG = 0.

Proof. Let e ∈ E and v ∈ T . By definition of matrix product, (DR

) v,e = f ∈F ∂ v,f ∂ f,e ,
where the only nonzero terms are for faces f that both contain the edge e and bound the volume v, which means that e is an edge of v. There are exactly two faces f and g of v sharing the edge e. If ∂ v,g = ∂ v,f , then their boundaries are oriented in such a way that e must run along one and counter the other, so ∂ g,e = -∂ f,e , and the sum is zero. If ∂ v,g = -∂ v,f , the opposite happens, that is ∂ g,e = ∂ f,e , with the same final result. The proof of RG = 0 is similar.

Low order curl-conforming finite elements

Before describing the curl-conforming FE of the lowest degree (r = 1), we get familiar with the approach of the triple (K, P, Σ), presented in Section 3.1 to define a finite element, by applying it to the well known continuous nodal FE. For each node n ∈ N , we denote by D n the cluster of tetrahedra in T which have a vertex at n. With the node n ∈ N , we associate the continuous, piecewise affine function w n defined as

w n (x) = λ n (x), x ∈ Dn , 0, otherwise,
where λ n (x) is the barycentric (or volume) coordinate of x with respect to n, computed in the tetrahedron of D n containing x (the functions w n are often called hat functions). By construction, Dn coincides with the support of w n and n∈N w n (x) = 1, for all x ∈ Dn . Let us denote P 1 (v) the vector space of first order polynomials defined in v: it is generated by the functions w n , with n a vertex of v. The nodal FE (K, P, Σ) for the approximation of scalar fields in v is given by K = v, P = P 1 (v), and

Σ = {σ n : z → z(x n ), n a vertex of v}.
Then, W 0 h,1 = span{w n , n ∈ N } and its functions are continuous over Ω. For a suitable subspace Y 0 [START_REF] Guermond | Finite element quasi-interpolation and best approximation[END_REF], the interpolation operator

Π 0 h : Y 0 ⊂ H grad → W 0 h,1 associates a function z ∈ Y 0 with its decomposition on the basis {w n } defined as Π 0 h z(x) = n∈N σ n (z)w n (x), for all x ∈ Ω.
Now, with the (oriented) edge e = {n i , n j }, we associate the vector field

w e = λ n i ∇λ n j -λ n j ∇λ n i . (3.1) 
It can be shown (see, e.g., Proposition 2 in [START_REF] Bossavit | Whitney forms, from manifolds to fields[END_REF]) that the w e , varying e among the edges of v, generate the vector space [START_REF] Nédélec | Mixed finite elements in R 3[END_REF]. The edge FE (K, P, Σ) for the approximation of vector fields in v is given by K = v, P = R(v), and

R(v) = {w ∈ R 3 , w(x) = a × x + b, a, b ∈ R 3 } of Nédélec first family
Σ = σ e : z → 1 |e| e z • t e , e an edge of v , (3.2) 
where t e = x j -x i for e = {n i , n j } is the tangent vector to the edge e, |e| = |t e | the length of e. One has W 1 h,1 = span{w e , e ∈ E} and its vectors have tangential component continuous across the inter-element faces (see Section 5.2.2, page 141, of [START_REF] Bossavit | Computational electromagnetism. Electromagnetism. Variational formulations, complementarity, edge elements[END_REF]). Accordingly, the dofs σ e are based on a tangential quantity. For a suitable subspace Y 1 [START_REF] Guermond | Finite element quasi-interpolation and best approximation[END_REF], the interpolation operator

Π 1 h : Y 1 ⊂ H curl (Ω) → W 1
h,1 assigns to a vector z ∈ Y 1 its decomposition on the basis {w e }, defined as Π 1 h z(x) = e∈E σ e (z)w e (x), for all x ∈ Ω. These definitions of the interpolation operators Π p h , p = 0, 1, are justified by the fact that the (scalar or vector) basis functions w j are in duality with the dofs σ i , that is

σ i (w j ) = δ ij 1 , 1 ≤ i, j ≤ N dofs = dim(W p h,1
). Indeed, the interpolant of a suitably smooth (scalar or vector) function z is defined to be the unique function

Π p h z ∈ W p h,1 such that σ i (Π p h z -z) = 0, 1 ≤ i ≤ N dofs , ( 
note that uniqueness holds because the FE is unisolvent), and by writing it as a linear combination with coefficients c j of the basis functions w j

Π p h z = N dofs j=1 c j w j , 1.
The Kronecker delta δij is the function whose value is δij = 1 if i = j, δij = 0 otherwise. For the nodal FE, the duality property σn i (w n j ) = λn j (xi) = δn i n j is satisfied thanks to properties of the barycentric coordinates λn. For the edge FE, the proof of the duality property σe i (w e j ) = 1 |e i | e i w e j • te i = δe i e j can be found, e.g., in Section 5.2.2, page 140, of [START_REF] Bossavit | Computational electromagnetism. Electromagnetism. Variational formulations, complementarity, edge elements[END_REF].

we get by linearity

N dofs j=1 c j σ i (w j ) = σ i (z), 1 ≤ i ≤ N dofs , that is, by duality, c i = σ i (z), 1 ≤ i ≤ N dofs .
So, for W 1 h,1 the coefficients are the circulations of z along the oriented edges e of the mesh. Another way to state the property of duality is by introducing a matrix of weights, a square matrix V with entries defined as

V ij = σ i (w j ), 1 ≤ i, j ≤ n dofs = dim(W 1 h,1 (v)
), in a tetrahedron v. When duality holds, the matrix of weights V is the identity. Duality won't be automatically granted when moving to higher order in the case of W 1 h,r , so in Section 3.6 we will propose a simple technique to restore duality.

Remark 3.3. The edge-to-node incidence matrix G is as a discrete analogue of the gradient operator. Indeed, if one sets, for example, z = ∇ϕ, where ϕ

= n∈N ϕ n w n is an element of W 0 h,1 , then z ∈ W 1 h,1 is expressed as e∈E z e w e ,
with

z e = σ e (z) = σ e (∇ϕ) = 1 |e| e ∇ϕ • t e = ϕ(x j ) -ϕ(x i ) = σ n j (ϕ) -σ n i (ϕ) = ϕ n j -ϕ n i ,
where e = {n i , n j } and we have used Stokes theorem. Therefore, remembering the definition of G, the relation between the vectors of coefficients (z e ) for z and

(ϕ n ) for ϕ, is (z e ) = G(ϕ n ).

Correspondence with Whitney forms

As pointed out in [START_REF] Bossavit | Computational electromagnetism. Electromagnetism. Variational formulations, complementarity, edge elements[END_REF], the generators of FE subspace W p h,1 correspond to constructs in algebraic topology known as Whitney forms [START_REF] Whitney | Geometric integration theory[END_REF] (see [START_REF] Bossavit | Whitney forms, from manifolds to fields[END_REF] for a short presentation). The following recursive definition of Whitney p-forms of lower degree in a simplex v has been firstly stated in [START_REF] Bossavit | Generating Whitney forms of polynomial degree one and higher[END_REF]. Definition 3.4. For p = 0, we set w n = λ n , for all 0-simplices n ∈ N . For any integer 0 < p ≤ 3, where 3 is the ambient dimension in Ω, the Whitney p-form w s associated with the p-simplex s of a mesh T h in Ω is

w s = σ∈{(p-1)-simplices} ∂ s,σ λ s-σ dw σ (3.3)
where ∂ s,σ is the incidence matrix entry linking σ to s, w σ is the (p -1)-form associated with σ, and d is the exterior derivative operator from (p -1)-forms to p-forms.

To recover from this definition the expression of the basis functions for W 1 h,1 (v), it is sufficient to replace the exterior derivative operator d by the gradient operator ∇. For the edge e = {l, m}, the Whitney 1-form w e = n∈N ∂ e,n λ e-n dw n becomes w e = λ l dw mλ m dw l , thus the vector function w e = λ l ∇λ m -λ m ∇λ l of (3.1).

Generators for high order curl-conforming finite elements

We recall the definition of the high order generators for W 1 h,r presented in [START_REF] Rapetti | High order edge elements on simplicial meshes[END_REF][START_REF] Rapetti | Whitney forms of higher degree[END_REF], which are indeed Whitney 1-forms of higher degree (r > 1). Adopting a geometrical approach to define higher order Whitney forms, we have to construct a finer description of sub-simplices in the volume v. 

Small simplices

An analogous procedure is classically used to define higher order nodal FEs for scalar fields [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]: it goes through the introduction of the principal lattice of order r ≥ 1 in the volume v ⊂ R d . It consists in the set of points

T r (v) = x ∈ v, λ j (x) ∈ 0, 1 r , 2 r , . . . , (r -1) r , 1 , 1 ≤ j ≤ d + 1 .
Recall that the cardinality of T r (v) is equal to the dimension of P r (v), the space of realvalued polynomials defined in R d , restricted to the volume v, of degree ≤ r (the proof is by recurrence on the ambient space dimension d). The functionals σ l : z → z(x l ), with x l ∈ T r (v), are classically taken as dofs for functions in P r (v).

Here, since we deal with fields whose physical meaning is specified by circulations along curves, we need to define dofs accordingly, even when we consider a high order approximation of those fields. Thus we have to create a sort of principal lattice of edges in v for r > 1. This is realized by connecting the points of T r (v) with planes parallel to the faces of v, (as in Figure 3.2, left). One thus obtains a partition of v including d-simplices homothetic to v (the so-called "small" d-simplices, visible in Figure 3.2, right) and other objects (the "holes", the objects with thick boundary in Figure 3.2, center) that can only be octahedra and reversed tetrahedra when v is a tetrahedron. Any p-simplex, 0 ≤ p < d, belonging to the boundary of a small d-simplex is called small p-simplex. For the case p = 1 in which we are interested here, we consider small 1-simplices, i.e. small edges.

To formalize the construction defined right above, we need to introduce multi-index notations. A multi-index is an array k = (k 1 , . . . , k ν ) of ν integers k i ≥ 0, and its weight k is ν i=1 k i . The set of multi-indices k with ν components and of weight k is denoted I(ν, k). If d = 2, 3 is the ambient space dimension, we consider ν ≤ d + 1. Now, in the following definition we take ν = d + 1 and k = r -1. Definition 3.5 (Small edges). Let us consider the principal lattice T r (v) of order r > 1 in the simplex v = {n 1 , ..., n d+1 }. The small 1-simplex or small edge {k, e}, with k ∈ I(d + 1, r -1), is a 1-simplex parallel and 1/r-homothetic to the (big) edge e of v, with vertices in T r (v). It belongs to the boundary of the small tetrahedron whose barycenter g has barycentric coordinates

λ n j (g) = 1 d+1 + k j k + 1 , 1 ≤ j ≤ d + 1.
Example 3.6. The barycenters of the small tetrahedra for a degree r > 1 can be used to localize the small edges. Referring to Figure 3.2, left and right, where v = {n 1 , n 2 , n 3 , n 4 } and r = 3, the small simplex {(0, 0, 2, 0), e = {n 3 , n 4 }} is the small edge parallel to e that belongs to the small tetrahedron in the bottom layer, corner position and touching the edge {n 3 , n 4 }. The barycenter g of this small tetrahedron verifies

λ n 1 (g) = 1 12 , λ n 2 (g) = 1 12 , λ n 3 (g) = 1 12 + 2 3 , λ n 4 (g) = 1 12 .
The small simplex {(1, 1, 0, 0), e = {n 3 , n 4 }} is the small edge parallel to e that belongs to the small tetrahedron in the bottom layer, middle position, touching the edge {n 1 , n 2 }.

The barycenter g of this latter small tetrahedron verifies

λ n 1 (g) = 1 12 + 1 3 , λ n 2 (g) = 1 12 + 1 3 , λ n 3 (g) = 1 12 , λ n 4 (g) = 1 12 .
In practice, we can think that each component of the multi-index k says how close the small tetrahedron is to each vertex of the big tetrahedron (the higher k i , the closer the small tetrahedron to n i ).

High order generators

The complex of small edges is not created in the reality, it is drawn to help to visualize the high order construction. The high order generators for W 1 h,r (v) in a tetrahedron v will be associated with the small edges identified in the principal lattice T r (v). Before defining these generators, which are Whitney 1-forms of high order, we need to introduce also the following notation for products of barycentric coordinates. Definition 3.7. Given k ∈ I(d + 1, k), we set λ k = d+1 i=1 (λ n i ) k i . These homogeneous polynomials of degree k in barycentric coordinates are in one-toone correspondence with polynomials of degree ≤ k in Cartesian coordinates. For this reason, we can say that P k (v) = span(λ k ) k∈I(d+1,k) on each volume v. We recall that dim(P k (v)) = k+d d . When revisiting dofs in the next section, it will occur that we adopt another version of Definition 3.7. Let s = {n 1 , ..., n p +1 } be a p -simplex, 0 ≤ p ≤ d, and let k s ∈ I(p + 1, k ) be a multi-index of weight k ; we introduce the notation

λ ks s = p +1 i=1 (λ n i ) (ks) i . (3.4)
For the same reason as before, we have that the space of polynomials of degree ≤ k on a p -simplex s can be spanned by the λ ks s with k s ∈ I(p + 1, k ):

P k (s) = span(λ ks s ) ks∈I(p +1,k ) . (3.5)
Now we can state the definition of the generators adopted here for W 1 h,r (v) in a tetrahedron v, firstly introduced in [START_REF] Rapetti | Whitney forms of higher degree[END_REF]. This definition is rather simple since it only involves the barycentric coordinates of the simplex. Chapter 3. A revisitation of high order curl-conforming FEs

Note that these generators for W 1 h,r (v) enjoy the same conformity properties as those for W 1 h,1 (v) since they are defined as products between w e ∈ W 1 h,1 (v) and the continuous function λ k (product of barycentric coordinates). They are indexed on the basis of the small edges {k, e} of Definition 3.5. If one makes the list of the small edges for a given k, this immediately and explicitly yields the list of all generators of W 1 h,r (v), with r = k + 1. However, the products λ k w e generate the space W 1 h,r , but do not actually constitute a basis as they are not all linearly independent when r > 1. This result is stated in [START_REF] Rapetti | Whitney forms of higher degree[END_REF], Proposition 3.5, which is recalled here. Due to (3.6), for each face there exists a combination with nonzero coefficients (±1) of forms λ k w e with certain multi-indices k ∈ I(d + 1, 1) that gives zero. These are the relations among the generators for r = 2. To get the relations for r > 2, it is sufficient to multiply these relations by the products λ k with k ∈ I(d + 1, r -2). As detailed later, the selection of generators that constitute an actual basis of W 1 h,r (v) can be guided by the degrees of freedom introduced in the next section. See the explicit list of the generators for d = 3, r = 2 in Example 3.22.

Dofs for high order curl-conforming finite elements

We now deal with possible degrees of freedom (dofs) for fields in W 1 h,r (v). Different sets of unisolvent dofs exist for high order elements. In [START_REF] Rapetti | Whitney forms of higher degree[END_REF] dofs associated with the small simplices have been analyzed: for W 1 h,r (v) they were defined as circulations along the small edges. Here, we revisit the classical dofs, referred to as moments, defined by Nédélec [START_REF] Nédélec | Mixed finite elements in R 3[END_REF], in order to obtain a new expression which results to be more friendly in terms of the considered generators.

We first recall the definition stated in [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] (Definition 4 therein). We denote by E(v) the set of edges of v and by F(v) the set of faces of v. Definition 3.10 (Classical dofs). The dofs for a vector function w ∈ W 1 h,r (v), for r ≥ 1, are the functionals

σ e : w → 1 |e| e (w • t e ) u, ∀ u ∈ P r-1 (e), ∀ e ∈ E(v), (3.7) 
σ f : w → 1 |f | f (w × n f ) • q, ∀ q ∈ (P r-2 (f )) 2 , ∀ f ∈ F(v), (3.8) 
σ v : w → 1 |v| v w • z, ∀ z ∈ (P r-3 (v)) 3 , (3.9) 
with t e (resp. n f ) the vector of length |e| (resp. 1), tangent to e (resp. normal to f ).

In Section 1.2 of [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] it is proved that dofs (3.7)-(3.9) are unisolvent. Note that in Definition 3.10 if r < 3, dofs given by (3.9) are not used, which is implicitly stated by the fact that it is not possible to define the elements of P r-3 (v) when r < 3, namely polynomials with negative degree. For the same reason, if r < 2, dofs given by (3.8) and (3.9) are not used. Note that if r = 1, dofs given by (3.7) reduce to the circulations (3.2). Now in the following Propositions we recast these dofs in a new more friendly form.

Proposition 3.11. Let us consider a vector w ∈ W 1 h,r (v) for r ≥ 1. Its moments on faces given by (3.8) are equivalent to

σ f : w → 1 |f | f (w • t f,i ) q, ∀ q ∈ P r-2 (f ), ∀ f ∈ F(v), (3.10) 
t f,i two independent sides of f, i = 1, 2.

Proof. Any vector q ∈ (P r-2 (f )) 2 for the face f = {n i , n j , n l } can be written as a linear combination of the two independent vectors

q 1 = λ k f f (t f,1 × n f ) and q 2 = λ k f f (t f,2 × n f ) with t f,1 = x j -x i , t f,2 = x l -x i two independent sides of the face f , n f its unit normal, k f ∈ I(3, r -2) and λ k f
f defined in (3.4), recalling (3.5). We use the vector identity

(a × b) • (c × d) = (a • c)(b • d) -(a • d)(b • c)
to see that

(w × n f ) • q 1 = λ k f f (w × n f ) • (t f,1 × n f ) = λ k f f [(w • t f,1 )(n f • n f ) -(w • n f )(n f • t f,1 )] = λ k f f [(w • t f,1 )(1) -(w • n f )(0)] = λ k f f (w • t f,1 )
and similarly with q 2 . The proof ends as P r-2 (f ) = span(λ

k f f ) k∈I(3,r-2) .
Proposition 3.12. Let us consider a vector w ∈ W 1 h,r (v) for r ≥ 1. Its moments in the volume given by (3.9) are equivalent to

σ v : w → 1 |v| v (w • t v,i ) q, ∀ q ∈ P r-3 (v), (3.11) 
t v,i three independent sides of v, i = 1, 2, 3.

Proof. Any vector z ∈ (P r-3 (v)) 3 for the volume v = {n 1 , n 2 , n 3 , n 4 } can be written as a linear combination of the three independent vectors

q 1 = λ k t v,1 , q 2 = λ k t v,2
, and

q 3 = λ k t v,3 ,
where t v, = x +1 -x 1 , for = 1, 2, 3, and k ∈ I(3 + 1, r -3). In the definition of the q i , the part λ k allows to specify the polynomial degree r -3 and the polynomial variables (barycentric coordinates with respect to vertices of v), whereas the (constant) t v, determine the vector nature. Recall that P r-3 (v) = span(λ k ) k∈I(3+1,r-3) .

Summing up the content of the two Propositions to rewrite σ f and σ v , we state the new definition of dofs.

Chapter 3. A revisitation of high order curl-conforming FEs Definition 3.13 (Revisited dofs). The dofs for a vector function w ∈ W 1 h,r (v), for r ≥ 1, are the functionals

σ e : w → 1 |e| e (w • t e ) q, ∀ q ∈ P r-1 (e), ∀ e ∈ E(v), (3.12 
)

σ f : w → 1 |f | f (w • t f,i ) q, ∀ q ∈ P r-2 (f ), ∀ f ∈ F(v), (3.13) 
t f,i two independent sides of f, i = 1, 2,

σ v : w → 1 |v| v (w • t v,i ) q, ∀ q ∈ P r-3 (v), (3.14) 
t v,i three independent sides of v, i = 1, 2, 3,
where the norm of the vectors t e , t f,i , t v,i is the length of the associated edge. We say that e, f, v are the supports of the dofs σ e , σ f , σ v .

Remark 3.14. To make the computation of dofs easier, a convenient choice for the polynomials q spanning the polynomial spaces over (sub)simplices e, f, v that appear in Definition 3.13 is given by suitable products of the barycentric coordinates associated with the vertices of the considered (sub)simplex. Remember indeed (3.5).

Selection of linearly independent generators

The classification of dofs into edge-type, face-type, volume-type dofs can be done also for generators: volume-type generators contain (inside λ k or w e ) the barycentric coordinates w.r.t. all the nodes of a tetrahedron v, face-type generators contain the ones w.r.t. all and only the nodes of a face f , edge-type generators contain the ones w.r.t. only the nodes of an edge e. Note that face-type (resp. volume-type) generators appear for r > 1 (resp. r > 2) (and the same happens for face-type and volume-type dofs). See the explicit list of generators and dofs for the case d = 3, r = 2 in Example 3.22. It turns out that dofs σ e are 0 on face-type and volume-type generators, and dofs σ f are 0 on volume-type generators.

As mentioned at the end of the previous Section, for the high order case (r > 1) the fields λ k w e in Definition 3.8 are generators for W 1 h,r (v), but some of them are linearly dependent. Note that all the relations are among face-type or volume-type generators. The selection of generators that constitute an actual basis of W 1 h,r (v) can be guided by the dofs in Definition 3.13. More precisely, as face-type (resp. volume-type) generators keep the ones associated with the two (resp. three) edges e chosen as the two sides t f,1 , t f,2 (resp. three sides t v,1 , t v,2 , t v,3 ) of face-type dofs (3.13) (resp. volume-type dofs (3.14)). A convenient choice of sides is described in Section 4.2 and is the one adopted in Example 3.22. One can check that the total number of dofs

σ e , σ f , σ v in a simplex v is equal to dim(W 1 h,r (v)) = (r + d)(r + d -1) • • • (r + 2)r/(d -1)!.

Restoring duality between generators and dofs

The considered basis functions are not in duality with the dofs in Definition 3.13 when r > 1. This means that, after a suitable renumbering of dofs, the matrix V with entries the weights

V ij = σ i (w j ), 1 ≤ i, j ≤ n dofs = dim(W 1 h,r (v)) is not the identity matrix for r > 1, that is σ i (w j ) = δ ij .
Here the {w j } are a linearly independent subset of the generators given in Definition 3.8. In the following we propose a technique to restore duality, considering new basis functions wj built as suitable linear combinations of the w j , such that σ i ( wj ) = δ ij .

This technique is related with the well known polynomial fitting of a scalar function f at n = r + 1 points x i of a real interval I. Considering the canonical basis {x j-1 } j=1,...,n of P r (I), it consists in finding a polynomial I r f (x) = n j=1 a j x j-1 such that I r f (x i ) = f (x i ) for all i = 1, ..., n. The coefficients a j results to be the entries of a, solution of the linear system V a = f where V is the Vandermonde matrix with entries V ij = x j-1 i , and

f i = f (x i ).
More generally, considering a basis {ψ j } for P r (I) (different from the canonical one) and dofs σ i : P r (I) → R (e.g. σ i (f ) = f (x i )), we have the following result. Proposition 3.15. Let {ψ j } j be a basis for P r (I) and {σ i } i suitable dofs for functions in P r (I). Writing

I r f (x) = n j=1 u j ψ j (x), the vector u such that σ i (I r f ) = σ i (f ), for all i = 1, ..., n, is solution of the algebraic system V u = f ,
where V is a generalized Vandermonde matrix with entries

V ij = σ i (ψ j ) and f has (known) components f i = σ i (f ).
Proof. Let us apply σ i on both sides of the equality I r f = n j=1 u j ψ j . Since σ i is linear, we obtain

σ i (I r f ) = n j=1 u j σ i (ψ j ), which gives, using σ i (I r f ) = σ i (f ) = f i , and V ij = σ i (ψ j ), n j=1 u j V ij = f i , for all i = 1, ..., n, that is V u = f in matrix form.
In particular, if we consider cardinal (dual) functions {φ j } in P r (I) defined by σ i (φ j ) = δ ij , we have u = f , thus

I r f (x) = n j=1 σ j (f ) φ j (x).
The φ j have to be determined as linear combinations of chosen basis functions ψ j . The same reasoning applies for vector field interpolation, replacing the ψ j with w j , and φ j with wj : thus the interpolation operator Π 1 h,r is defined by

Π 1 h,r : Y 1 ⊂ H(curl, v) → W 1 h,r (v), u → u h = n dofs i=1 c i wi , with c i := σ i (u), (3.15) 
provided σ i ( wk ) = δ ik (Y 1 is a suitable subspace of H(curl, v), see [START_REF] Guermond | Finite element quasi-interpolation and best approximation[END_REF]). Now, to determine the wk , written as linear combinations wk = n dofs j=1 c k j w j , we need to find coefficients c k j such that σ i ( wk ) = δ ik . For a given k, the coefficients c k j turn out to be the entries of the k-th column of V -1 , the inverse of the generalized Vandermonde matrix V with entries V ij = σ i (w j ). This is proved in the following Proposition. Proposition 3.16. Let {w j } j be a basis for W 1 h,r (v) and {σ i } suitable dofs for functions in W 1 h,r (v), as the ones in Definition 3.13. The vector c k = (c k 1 , c k 2 , ..., c k n dofs ) , one per each function wk , such that

σ i ( wk ) = δ ik , wk (x) = n dofs j=1 c k j w j (x),
is solution of the algebraic system

V c k = e k , (3.16) 
where V is the generalized Vandermonde matrix with entries V ij = σ i (w j ) and e k is the k-th column of the n dofs -identity matrix (i.e., (e k ) i = δ ik ). Thus

c k = V -1 e k , which determines c k as the k-th column of V -1 .
Proof. Let us apply σ i on both sides of the equality wk = n dofs j=1 c k j w j . Using the linearity of σ i and the duality property of wk (that is σ i ( wk ) = δ ik ), we obtain

n dofs j=1 c k j σ i (w j ) = δ ik i.e. n dofs j=1 V ij c k j = δ ik ,
which gives, fixing k and varying i, the relation

V c k = e k .
Remark 3.17. Unisolvence of the finite element is equivalent to the unique invertibility of the linear systems (3.16).

Remark 3.18. If M is the local mass matrix on a tetrahedron v for the basis functions w j , i.e. M ij = v w i • w j , then the local mass matrix M for the basis functions wj is M = V -T M V . Indeed, calling B = V -1 , for given i, j, since wi = n dofs k=1 B ki w k and wj = n dofs =1 B j w , we have

Mij = v wi • wj = n dofs k=1 n dofs =1 B ki B j v w k • w = n dofs k=1 n dofs =1 (B T ) ik M k B j = (B T M B) ij .

Properties of the generalized Vandermonde matrix

Some nice properties characterize the square matrix V of size n dofs (which depends on the values of r and d).

Property 3.19. The entries of V can be calculated explicitly by a combinatorial formula and do not depend on the metrics of the tetrahedron v for which they are computed.

Indeed, first of all, note that dofs in Definition 3.13 are conveniently normalized. Moreover, the σ i (w j ) are integrals of two addends of the type λ k ∇λ n i • t e (here λ k gathers the products of barycentric coordinates appearing in the basis functions and in q, and t e stands also for t f,i , t v,i ). Now, we have ∇λ n i • t e = -1 if n i is the first node of e, +1 if it is its second node, 0 if it isn't a node of e. So, in the end, only terms of the type λ k survive in the integral and the value of σ i (w j ) can be calculated using the well known 'magic formula' (see for instance [START_REF] Rapetti | High order edge elements on simplicial meshes[END_REF] for a proof): if s is a p -simplex, 

1 |s| s p +1 i=1 (λ n i ) k i = p ! p +1 i=1 k i ! p + p +1 i=1 k i ! .
f 1 = {2, 3, 4}, f 2 = {1, 3, 4}, f 3 = {1, 2, 4}, f 4 = {1, 2, 3} (note that the face f i is the one opposite the node i).
This value is clearly independent of the metrics of s. The independence from the metrics of the p -face s of v for which they are calculated means that the entries of V can be computed once on a generic volume v and are valid in any other volume v different from v, up to a suitable orientation of the edges and choice of independent sides in v (see Section 4.2). For a quicker but still precise calculation, high order quadrature formula can also be used to compute σ i (w j ).

Property 3.20. The matrix V , and hence its inverse V -1 , are block lower triangular.

The matrix V can be written in a block lower triangular form, if dofs, indexing the rows i, and generators, indexing the columns j, are suitably numbered. On the one hand, dofs can be ordered block-wisely, depending on the dimension p of their support (domain of integration), from the lowest allowed (p = p = 1) to the highest one (which depends on the degree r). On the other hand, as already mentioned, also the generators can be classified into edge-type, face-type, volume-type generators: edge-type generators contain (inside λ k or w e ) the barycentric coordinates w.r.t. only the nodes of an edge e, face-type generators contain the ones w.r.t. all and only the nodes of a face f , volume-type generators contain the ones w.r.t. all the nodes of a tetrahedron v. Face-type (resp. volume-type) generators appear for r > 1 (resp. r > 2) and the same happens for face-type and volume-type dofs. It turns out that dofs σ e are 0 on face-type and volume-type generators, and dofs σ f are 0 on volume-type generators. If we list generators and dofs in the order dictated by increasing the dimension of the support of dofs, we may use a unique array of integers to list (thus to order) both dofs and generators. Following this order, the matrix V with entries V ij = σ i (w j ) is block triangular.

Property 3.21. The entries of the matrix V -1 are integer numbers. This is related to the meaning of the entries of V -1 , to the considered generators, relying on linear combinations of products λ k ∇λ i , with k a multi-index and λ i a barycentric coordinate, and to the considered dofs, integrals over entire simplices of dimension 0 ≤ p ≤ d. With dofs on small-simplices, the entries of V -1 would not be integers, indeed small-simplices are portions of mesh (big) simplices.

Illustration of the notions with an example

In the following example we illustrate the notions introduced in this Chapter for the case d = 3, r = 2. Note that in order to get a basis, i.e. a set of linearly independent generators, we have chosen to eliminate the (face-type) generators w 21 = λ n 2 w e 6 , w 22 = λ n 1 w e 6 , w 23 = λ n 1 w e 5 , w 24 = λ n 1 w e 4 . The corresponding edge-type dofs are:

σ 1 : w → 1 |e 1 | e 1 (w • t e 1 ) λ n 1 , σ 2 : w → 1 |e 1 | e 1 (w • t e 1 ) λ n 2 , . . . σ 11 : w → 1 |e 6 | e 6 (w • t e 6 ) λ n 3 , σ 12 : w → 1 |e 6 | e 6 (w • t e 6 ) λ n 4 ,
and the face-type dofs are:

σ 13 : w → 1 |f 1 | f 1 (w • t e 4 ), σ 14 : w → 1 |f 1 | f 1 (w • t e 5 ), . . . σ 19 : w → 1 |f 4 | f 4 (w • t e 1 ), σ 20 : w → 1 |f 4 | f 4 (w • t e 2 ).
For this ordering and choice of generators and dofs, the inverse of the generalized Vandermonde matrix, whose columns give the coefficients to restore duality between generators and dofs as in Proposition 3.16, is: 
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Convergence order

To complete the presentation, we report the preliminary numerical study of the proceedings paper [START_REF] Bonazzoli | High order edge finite element approximations for the time-harmonic Maxwell's equations[END_REF] about the order of (h-and r-) convergence of the high order edge finite element method. This was joint work with Victorita Dolean, Elena Gaburro and Francesca Rapetti and the routines were coded in Matlab. Note that in [START_REF] Bonazzoli | High order edge finite element approximations for the time-harmonic Maxwell's equations[END_REF] we did not consider basis functions in duality with the degrees of freedom, which were those of [START_REF] Rapetti | Whitney forms of higher degree[END_REF] associated with small edges and not the revisited moments studied here. The test case is the two-dimensional waveguide problem described in Paragraph 2.2.4, for which the function E ex = (0, e -iγx ) is the exact solution, with suitable data in the impedance boundary conditions. We take a two-dimensional waveguide with b = 0.00127 m, c = 0.0502 m and physical parameters ε = ε 0 = 8.85 • 10 -12 F m -1 , µ = µ 0 = 1.26 • 10 -6 H m -1 and σ = 0 S m -1 . We consider three high angular frequencies ω 1 = 75 Ghz, ω 2 = 95 GHz and ω 3 = 110 GHz, and for each frequency we take k = r -1 = 0, 1, 2, 3, 4 and five discretization triangle diameters h 1 = 1.2614 • 10 -2 , h 2 = 6.4022 • 10 -3 , h 3 = 3.3848 • 10 -3 , h 4 = 2.0184 • 10 -3 and h 5 = 1.0092 • 10 -3 ; these diameters have been obtained by doubling the discretization points over the long side of the rectangle. The corresponding total number of dofs is reported in Table 3.1.

To analyze the numerical error on the real part of the numerical solution E h with respect to the exact solution E, we take the maximum over all the triangles of the modulus of the difference between E and E h , considering their values at the triangle barycentres. In Table 3.2 we report the numerical errors for ω 1 , ω 2 and ω 3 for the different values of h and k. Looking at the bold numbers along the diagonals we can see that to obtain an error of the same order of magnitude we can take a coarser mesh if we use higher order elements. We notice also that with the same total number of dofs we get a remarkably smaller error using higher order elements (see the boxed entries in Table 3.1 and Table 3.2).

In Figure 3.4a we show the log-log plot of the error for the considered choices of k: the convergence to the exact solution is of algebraic type and achieved with an order of accuracy equal to r = k + 1 with respect to h. In Figure 3.4b we show as well the semi-log plot of the error for the considered choices of h: a super-algebraic convergence is achieved with respect to r. These convergence orders are in agreement with those found in [START_REF] Rapetti | High order edge elements on simplicial meshes[END_REF] (in which the tested boundary value problem was slightly different).

The superiority, in terms of accuracy and running time, of the high order finite elements presented in this Chapter over the lowest order ones will be illustrated in Section 6.3.2 for a large scale three-dimensional problem, arising from the application described in Chapter 6. The implementation of these finite elements is examined in the next Chapter.

Chapter 3. A revisitation of high order curl-conforming FEs 
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Chapter 4

Implementation of high order curl-conforming finite elements

This Chapter is the result of a collaboration with Victorita Dolean, Frédéric Hecht and Francesca Rapetti. The corresponding submitted preprint [START_REF] Bonazzoli | Explicit implementation strategy of high order edge finite elements and Schwarz preconditioning for the timeharmonic Maxwell's equations[END_REF] is available on arXiv and HAL (<hal-01298938>). 

Addition of new finite elements to FreeFem++

The implementation of high order curl-conforming finite elements (also called edge finite elements) is quite delicate, especially in the three-dimensional case. Here, we explicitly describe an implementation strategy, which has been embedded in FreeFem++ (http:// www.freefem.org/ff++/). FreeFem++ is an open source domain specific language (DSL) specialized in solving boundary value problems by using variational methods, and it is based on a natural transcription of the weak formulation of the considered problem [START_REF] Hecht | New development in FreeFem++[END_REF].

The user can add new finite elements to FreeFem++ by writing a C++ plugin that defines various ingredients, among which the principal ones are:

• the basis functions (and their derivatives) in a simplex,

• an interpolation operator, which requires dofs in duality with the basis functions. Indeed, in FreeFem++ the basis functions (and in some cases the coefficients of the interpolation operator) are constructed locally, i.e. in each simplex T (triangle in 2d, tetrahedron in 3d) of the mesh T h , without the need of a transformation from the reference simplex. Note that the chosen definition of high order generators (Definition 3.8), which involves only the barycentric coordinates of the simplex, fits perfectly this local construction feature of FreeFem++. Nevertheless, the local construction should be done in such a way that the contributions coming from simplices sharing edges or faces can be then assembled 54 Chapter 4. Implementation of high order curl-conforming FEs properly inside the global matrix of the FE discretization. Moreover, for the definition of the interpolation operator, in the high order edge elements case we need the generalized Vandermonde matrix V introduced in Section 3.6 to restore duality between dofs and basis functions. Here, we carefully address the problem of applying the same Vandermonde matrix to possibly differently oriented simplices (triangles, tetrahedra) of the whole mesh, in order to be able to use in numerical experiments the concepts presented for just one simplex in the previous Chapter. The strategy developed to deal with these issues for the high order edge elements is described in Section 4.2. The definition and the implementation of the interpolation operator are detailed in Section 4.3.

We added in this way the edge elements in 3d of degree 2, 3 presented before. The code of the C++ plugin Element_Mixte3d.cpp, in which they are defined, is visible if FreeFem++ sources are downloaded (from http://www.freefem.org/ff++/) and is thus found in the folder examples++-load. Section 4.4 shows how to use these new finite elements in a FreeFem++ script.

Local implementation strategy for the global assembling

The implementation of edge finite elements is quite delicate. Indeed, basis functions and dofs are associated with the oriented edges of mesh simplices: note that the low order w e and the high order λ k w e generators change sign if the orientation of the edge e is reversed. Moreover, recall that for r > 1, in order to get a set of linearly independent generators, we also have to choose 2 edges for each face f . Here we wish to construct basis functions locally, i.e. in each simplex T of T h , in such a way that the contributions coming from simplices sharing edges or faces could be assembled properly inside the global matrix of the FE discretization. For this purpose, it is essential to assign the same orientation to edges shared by simplices and to choose the same 2 edges for faces shared by adjacent tetrahedra. We have this need also to construct dofs giving the coefficients for the interpolation operator.

This need is satisfied using the global numbers of the mesh nodes (see Figure 4.1). More precisely, to assign an orientation to the edges e of the basis functions and to the vectors t e , t f,i , i = 1, 2, t T,i , i = 1, 2, 3 of the dofs, we go from the node with the smallest global number to the node with the biggest global number. Similarly, to choose 2 edges per face for the face-type basis functions and dofs, we take the 2 edges going out from the node with the smallest global number in the face (and the 1st edge goes to the node with the 2nd smallest global number, the 2nd edge goes to the node with the biggest global number in the face).

Moreover, when we want basis functions wj in duality with the dofs, a second need should be satisfied: we wish to use for all mesh simplices T the 'dualizing' coefficients of the matrix V -1 calculated, once for all, for the reference simplex T with a certain choice of orientation and choice of edges (recall that V -1 already does not depend on the metrics of the simplex for which it is calculated, see Property 3.19). To be allowed to do this, it is sufficient to use the nodes global numbers to decide the order in which the non dual w j (from which we start to then get the wj ) are constructed locally on T . More precisely, for the edge-type (resp. face-type) basis functions the edges (resp. faces) are examined in the order written in the caption of Figure 3.3, but replacing the nodes numbers 1, 2, 3, 4 with the increasing global numbers of the nodes of T : the 1st examined edge is from the node with the 1st smallest global number to the one with the 2nd smallest global number, the 2nd examined edge is from the node with the 1st smallest global number to the one with the 3rd smallest global number, and so on, then the 1st examined face is the one opposite the node with the smallest global number, and so on. Indeed, in this way the first need is respected and the 'structure of orientation' of T is the one of T up to a rotation (see Figure 4.2): then we are allowed to use the coefficients of V -1 for the linear combinations giving the wj . Note that in 3d (resp. in 2d), to assemble the global linear system matrix, it is not essential which volume-type (resp. face-type) generators are chosen since they are not shared between tetrahedra (resp. triangles). On the contrary, also this choice is important when we want to use for all mesh simplices the coefficients of V -1 calculated for a simplex with a certain choice of orientation and choice of edges.

Implementation of the basis functions

To implement the strategy introduced to construct locally the basis functions wj while respecting the two requirements just described, two permutations can be used; note that in this paragraph the numberings start from 0, and no more from 1, in order to comply with the C++ plugin written for the insertion in FreeFem++ of the new FE space. First, to construct the non dual w j , we define a permutation p d+1 of d + 1 elements as follows: p d+1 [i] is the local number (it takes values among 0, . . . , d) of the node with the i-th smallest global number in the simplex T , so we can say that p d+1 is the permutation for which the nodes of T are listed with increasing global number. For instance, for the tetrahedron T = {12, 32, 42, 22} in Figure 4.2, we have p 4 = {0, 3, 1, 2}. So, in the first step of construction of the w j , we replace each λ i appearing in their expression with λ p d+1 [i] . In the code of the FreeFem++ plugin, the permutation p 4 is called perm. Then, in the second step of construction of the wj as linear combinations of the w j , we use a permutation P n dofs of n dofs = dim(W 1 h,r (T )) elements to go back to the local order of edges and faces. For instance for the tetrahedron T = {12, 32, 42, 22}, the order in which edges are examined in the first step is

{{12, 22}, {12, 32}, {12, 42}, {22, 32}, {22, 42}, {32, 42}},
while the local order of edges would be

{{12, 32}, {12, 42}, {12, 22}, {32, 42}, {22, 32}, {22, 42}}
(the local order is given by how the nodes of T are listed); similarly, the order in which faces are examined in the first step is {{22, 32, 42}, {12, 32, 42}, {12, 22, 42}, {12, 22, 32}}, while the local order of faces would be {{22, 32, 42}, {12, 22, 42}, {12, 22, 32}, {12, 32, 42}}.

So for this tetrahedron, if r = 2 (for which there are 2 basis functions for each edge and 2 basis functions for each face, 20 basis functions in total listed in Example 3.22), we have P 20 = {4, 5, 0, 1, 2, 3, 8, 9, 10, 11, 6, 7; 12, 13, 18, 19, 14, 15, 16, 17}, (note that inside each edge or face the 2 related dofs remain ordered according to the global numbers). This permutation (r = 2) is built with the following code. There, edgesMap corresponds to a map that associates the pair {a, b} of nodes of an edge e i with its number 0 ≤ i ≤ 5; this map is rather implemented with an array defined as edgesMap[(a + 1)(b + 1)] = i, where (a + 1)(b + 1) results to be unique and symmetric for a pair (a, b), 0 ≤ a, b ≤ 3, representing a tetrahedron edge.

int edgesMap [START_REF] Bonazzoli | High order edge finite element approximations for the time-harmonic Maxwell's equations[END_REF] = {-1,-1,0,1,2,-1,3,-1,4,-1,-1,-1,5}; // static const int nvedge [START_REF] Beckermann | Some remarks on the Elman estimate for GMRES[END_REF][2] = {{0,1},{0,2},{0,3},{1,2},{1,3},{2,3}}; int p20 [START_REF] Bonazzoli | High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality[END_REF]; for(int i=0; i<6; ++i) // edge dofs { int ii0 = Element::nvedge [START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF]; wtilde[p20 [START_REF] Bonazzoli | Parallel preconditioners for high-order discretizations arising from full system modeling for brain microwave imaging[END_REF]] = +8*w [START_REF] Bonazzoli | Parallel preconditioners for high-order discretizations arising from full system modeling for brain microwave imaging[END_REF]-4*w [START_REF] Bonazzoli | High order edge finite element approximations for the time-harmonic Maxwell's equations[END_REF]; wtilde[p20 [START_REF] Bonazzoli | High order edge finite element approximations for the time-harmonic Maxwell's equations[END_REF]] = -4*w [START_REF] Bonazzoli | Parallel preconditioners for high-order discretizations arising from full system modeling for brain microwave imaging[END_REF]+8*w [START_REF] Bonazzoli | High order edge finite element approximations for the time-harmonic Maxwell's equations[END_REF]; wtilde[p20 [START_REF] Bonazzoli | High order edge elements for electromagnetic waves: remarks on numerical dispersion[END_REF]] = +8*w[14]-4*w [START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF]; wtilde[p20 [START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF]] = -4*w [START_REF] Bonazzoli | High order edge elements for electromagnetic waves: remarks on numerical dispersion[END_REF]+8*w [START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF]; wtilde[p20 [START_REF] Bonazzoli | Domain Decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption[END_REF]] = +8*w[16]-4*w [START_REF] Bonazzoli | Twolevel preconditioners for the Helmholtz equation[END_REF]; wtilde[p20 [START_REF] Bonazzoli | Twolevel preconditioners for the Helmholtz equation[END_REF]] = -4*w [START_REF] Bonazzoli | Domain Decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption[END_REF]+8*w [START_REF] Bonazzoli | Twolevel preconditioners for the Helmholtz equation[END_REF]; wtilde[p20 [START_REF] Bonazzoli | Explicit implementation strategy of high order edge finite elements and Schwarz preconditioning for the timeharmonic Maxwell's equations[END_REF]] = +8*w[18]-4*w [START_REF] Bonazzoli | Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations[END_REF]; wtilde[p20 [START_REF] Bonazzoli | Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations[END_REF]] = -4*w [START_REF] Bonazzoli | Explicit implementation strategy of high order edge finite elements and Schwarz preconditioning for the timeharmonic Maxwell's equations[END_REF]+8*w [START_REF] Bonazzoli | Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations[END_REF];

The interpolation operator

Duality of the basis functions with the dofs is needed in FreeFem++ to provide an interpolation operator onto a desired FE space of a function given by its analytical expression (or of a function belonging to another FE space). We define for a (vector) function u ∈ Y 1 ⊂ H(curl, T ) (where Y 1 is a suitable subspace, see [START_REF] Guermond | Finite element quasi-interpolation and best approximation[END_REF]) its finite element approximation u h = Π h (u) using the interpolation operator (3.15), which is recalled here:

Π h : Y 1 ⊂ H(curl, T ) → W 1 h,r (T ), u → u h = n dofs i=1 c i wi , with c i := σ i (u). (4.1) 
The interpolant coefficients c i = σ i (u) are computed in FreeFem++ with suitable quadrature formulas (on edges, faces or volumes) to approximate the values of the dofs in Definition 3.13 applied to u. Now, denote by g the whole integrand inside the dof expression, by n QF i the number of quadrature points of the suitable quadrature formula (on a segment, triangle or tetrahedron) to compute the integral (of precision high enough so that the integral is computed exactly when the dof is applied to a basis function), and by x p , a p , 1 ≤ p ≤ n QF i the quadrature points and their weights. Then we have

c i = σ i (u) = n QF i p=1 a p g(x p ) = n QF i p=1 a p d j=1 β j (x p ) u j (x p ), (4.2) 
where for the second equality we have factorized g(x p ) in order to highlight the d components of u, denoted by u j , 1 ≤ j ≤ d (see the paragraph below). Therefore, by substituting the expression of the coefficients (4.2) in the interpolation operator definition (4.1), we have the following expression of the interpolation operator

Π h (u) = n dofs i=1 n QF i p=1 d j=1 a p β j (x p ) u j (x p ) wi = n ind =1 α u j (x p ) wi , (4.3) 

Using the new finite elements in a FreeFem++ script

The edge elements in 3d of degree 2, 3 can be used (since FreeFem++ version 3.44) by loading in the edp script the plugin (load "Element_Mixte3d"), and using the keywords Edge13d, Edge23d respectively. The edge elements of the lowest degree 1 were already available and called Edge03d. After generating a tetrahedral mesh Th, complex vector functions E, v in, e.g., the Edge03d space on Th are declared with the commands: Note that Dirichlet-type boundary conditions, as in this case the metallic (or PEC) boundary condition, are imposed in FreeFem++ by using the keyword on: by the penalty method, it acts on the unknowns corresponding to FE dofs whose support belongs to the boundary. Thus, even if the code writing seems to impose E = 0, in fact, since the present dofs (3.13) have tangential nature, the imposed condition is properly E × n = 0.

See more details about the use of the new finite elements in the example waveguide.edp available in examples++-load folder of every FreeFem++ distribution and in the more elaborated codes of Appendix A.

The interpolation operator in FreeFem++ is simply called with the = symbol: for example one can define analytical functions func f1 = 1+x+2*y+3*z; func f2 = -1-x-2*y+2*z; func f3 = 2-2*x+y-2*z; and call [Ex,Ey,Ez]=[f1,f2,f3];.

Chapter 5

Schwarz domain decomposition preconditioners

This Chapter is the result of a collaboration with Victorita Dolean, Frédéric Hecht and Francesca Rapetti. The corresponding submitted preprint [START_REF] Bonazzoli | Explicit implementation strategy of high order edge finite elements and Schwarz preconditioning for the timeharmonic Maxwell's equations[END_REF] is available on arXiv and HAL (<hal-01298938>). A preliminary study was published in the proceedings paper [START_REF] Bonazzoli | Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations[END_REF] of the DD23 International Conference on Domain Decomposition Methods, in collaboration with Victorita Dolean, Richard Pasquetti, Francesca Rapetti. Paragraph 5.3.1 comes from a collaboration also with Frédéric Nataf and Pierre-Henri Tournier. 

Introduction

In this thesis, we are interested in solving the time-harmonic Maxwell's equation (2.26), that is we work in the frequency domain. The time-harmonic formulation of Maxwell's equations has the same nature and presents the same difficulties as the Helmholtz equation -∆u -ω2 u = f , the simplest possible model of wave propagation 1 . Indeed, when the wavenumber ω is large, the (standard) variational formulation of these equations is symmetric but sign-indefinite 2 . This is one of the reasons why the linear systems arising from FE discretizations of these equations are difficult to solve with classical iterative methods (see the review [START_REF] Ernst | Why it is difficult to solve Helmholtz problems with classical iterative methods[END_REF] for more details in the case of the Helmholtz equation). Moreover, as the wavenumber ω increases the matrix of the linear system becomes very large because 1. The Helmholtz equation can be derived from the wave equation 1

c 2 ∂ 2 U ∂t 2 -∆U = F (
where c is the propagation speed), by looking for solutions in the form U(x, t) = Re(u(x)e iωt ) when the source F(x, t) = Re(f (x)e iωt ) is harmonic in time. Recall that the wavenumber can be expressed as ω = ω/c.

2. See [START_REF] Moiola | Is the Helmholtz equation really sign-indefinite?[END_REF] for a non standard positive definite variational formulation of the Helmholtz equation and also for a complete review of the properties of the equation.
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Chapter 5. Schwarz domain decomposition preconditioners a higher wavenumber entails a finer discretization. Indeed, an accurate approximation of waves that oscillates on a scale of ω-1 requires, at least, the mesh size h to be proportional to ω-1 as ω increases; furthermore, the pollution effect means that this is still not enough to control the finite element method discretization error (a mesh size h ∼ ω-3/2 is generally required, see [START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM[END_REF]).

Note that in literature there are many good solvers and preconditioners for another class of Maxwell's problems, as the ones arising from an implicit time discretization of the time-dependent Maxwell's equations (see, e.g., the introduction of [START_REF] Dolean | Effective transmission conditions for domain decomposition methods applied to the time-harmonic curlcurl Maxwell's equations[END_REF]), which yield positive definite matrices. Such solvers include multigrid or auxiliary space methods, see e.g. [START_REF] Reitzinger | An algebraic multigrid method for finite element discretizations with edge elements[END_REF]8,[START_REF] Kolev | Auxiliary space AMG for H(curl) problems[END_REF][START_REF] Bossavit | A prolongation/restriction operator for Whitney elements on simplicial meshes[END_REF] for low order finite elements, [START_REF] Lai | Algebraic multigrid for high-order hierarchical H(curl) finite elements[END_REF] for high order ones, and domain decomposition methods, see e.g. [START_REF] Toselli | Overlapping Schwarz methods for Maxwell's equations in three dimensions[END_REF][START_REF] Dolean | Optimized Schwarz methods for Maxwell's equations[END_REF].

For the time-harmonic Maxwell's equations, Domain Decomposition (DD) methods or preconditioners are currently the most promising solution techniques. The first domain decomposition method for these equations was proposed by Després in [START_REF] Després | A domain decomposition method for the harmonic Maxwell equations[END_REF], where impedance boundary conditions are used as transmission conditions at the interfaces between subdomains, instead of the classical Dirichlet conditions. Further improvements can be found in [START_REF] Collino | A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations[END_REF] where new transmission conditions are studied. Over the last decade, these optimized Schwarz methods were further developed: for the first order formulation (2.23) of the equations complete optimization results are known, also in the case of conductive medium [START_REF] Dolean | Optimized Schwarz methods for Maxwell's equations[END_REF][START_REF] Bouajaji | Optimized Schwarz methods for the time-harmonic Maxwell equations with dampimg[END_REF], while for the second order formulation (2.26) partial optimization results were obtained in various works. Recently it has been shown in [START_REF] Dolean | Effective transmission conditions for domain decomposition methods applied to the time-harmonic curlcurl Maxwell's equations[END_REF] that the convergence factors and the optimization process for the two formulations are the same.

Nevertheless, the development of Schwarz domain decomposition solvers and preconditioners is still an open issue for high order discretizations. A recent work for the non overlapping case is reported in [START_REF] Marsic | Domain Decomposition Methods for Time-Harmonic Electromagnetic Waves With High-Order Whitney Forms[END_REF], see also [START_REF] Thierry | GetDDM: an open framework for testing optimized Schwarz methods for time-harmonic wave problems[END_REF]. In this chapter, we use overlapping Schwarz DD preconditioners based on impedance transmission conditions to solve the algebraic system resulting from equation (2.41), discretized with the high order edge finite elements defined in Chapters 3 and 4. Recall that equation (2.41) is the variational formulation of the boundary value problem (2.28), which models electromagnetic wave propagation in waveguides (see Section 2.2.4 for the simplified 2d model). Before presenting the preconditioners suited to the time-harmonic Maxwell's equations in Section 5.3, we introduce the classical Schwarz domain decomposition methods in Section 5.2. In Section 5.4 numerical experiments, both in two and three dimensions, are performed to validate the preconditioners.

Classical Schwarz domain decomposition methods

Among the Domain Decomposition (DD) methods, we focus on the family of Schwarz methods, named after Hermann A. Schwarz, who in 1869 invented the first DD method, but rather as an analytical tool [START_REF] Schwarz | Über einen Grenzübergang durch alternierendes Verfahren[END_REF]. See [START_REF] Gander | Schwarz methods over the course of time[END_REF] for a detailed historical presentation of Schwarz methods and book [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF] for a complete overview of DD methods.

Schwarz wanted to find a rigorous proof of the Dirichlet principle, which states that, for a bounded domain Ω, a function satisfying Laplace's problem

-∆u = 0 in Ω, u = g on ∂Ω, (5.1) 
gives the infimum of the integral Ω |∇v| 2 over all functions v satisfying v = g on ∂Ω;

Schwarz had to show that the infimum is attained on arbitrary domains. Thus, he considered a complicated domain Ω, composed of two overlapping simple ones Ω 1 and Ω 2 ,

• the matrix R s , a #N s × #N restriction matrix like R s , but with some of the unit entries corresponding to the overlap replaced by zeros: this would correspond to a decomposition into non overlapping subdomains Ω s ⊂ Ω s (completely non overlapping, not even along their boundaries). Thus we have

N sub s=1 R T s R s = I, (5.4) 
that is the matrices R s give a discrete partition of unity, which properly deals with the unknowns belonging to the overlap between subdomains.

Finally, we can give the definition of the restricted additive Schwarz method: it is the preconditioned fixed point iteration defined by

u n+1 = u n + M -1 RAS r n , r n = f -Au n ,
where the matrix

M -1 RAS = N sub s=1 R T s (R s AR T s ) -1 R s (5.5)
is called the RAS preconditioner. Note that here the local matrix A s := R s AR T s is the minor of the matrix A corresponding to the subset of unknowns N s (in this Chapter the term 'local' refers to a subdomain and not to a mesh simplex).

As explained in the introduction of [START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF], the RAS method was found by modifying accidentally another discrete Schwarz method, the Additive Schwarz method (AS) introduced in [START_REF] Dryja | Some domain decomposition algorithms for elliptic problems[END_REF]:

u n+1 = u n + M -1 AS r n , r n = f -Au n ,
where the matrix

M -1 AS = N sub s=1 R T s (R s AR T s ) -1 R s (5.6)
is called the AS preconditioner, and is symmetric if A is symmetric, contrarily to the RAS preconditioner. However, the additive Schwarz iteration fails to converge in the overlap (see, e.g., Paragraph 3.2 of [START_REF] Gander | Schwarz methods over the course of time[END_REF] for more details). When applying matrices (5.5) or (5.6) to the vector r n in the fixed point iteration defining the discrete Schwarz methods, the local linear systems of matrices A s are solved with a direct solver. Domain decomposition methods can be viewed indeed as hybrid methods that take the advantages of the two families of linear system solvers: iterative solvers and direct solvers. On the one hand, direct solvers are robust, i.e. they find the solution in a finite number of operations no matter how hard the problem is; but they are not suited for very large systems because of their high memory cost. On the other hand, iterative solvers require less memory and are easy to parallelize since they are based on matrix-vector products; their drawback is that they lack robustness, indeed for ill conditioned problems the use of a preconditioner is essential for fast convergence. Domain decomposition methods are naturally suited to parallel computing and they use the robust direct solvers on subproblems of a smaller size.

Moreover, rather than using Schwarz methods as iterative solvers, the matrices M -1

RAS

or M -1 AS can be conveniently used as preconditioners for Krylov type iterative solvers, which are faster than the fixed point iterations. Krylov type iterative solvers include the CG (Conjugate Gradient) method, which can be applied just in the case of symmetric positive definite matrices A, or the GMRES (Generalized Minimal RESidual) method for more general matrices, for which M -1

RAS should be always preferred to M -1 AS .
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Schwarz preconditioners for Maxwell's equations

A drawback of classical Schwarz methods is that, as iterative solvers, they are not convergent for some PDEs, like the Helmholtz equation: as shown for instance in Paragraph 2.2.1 of [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF] or graphically in Paragraph 4.2 of [START_REF] Gander | Schwarz methods over the course of time[END_REF], the classical methods remove the high frequency components in the error, but not the low frequency ones. This lack of convergence is one of the reasons why optimized Schwarz methods were originally proposed: in these methods the classical Dirichlet transmission conditions at the interfaces between subdomains are replaced with more effective conditions, like Robin conditions in the case of the Helmholtz equation [START_REF] Deprés | Méthodes de décomposition de domains pour les problèms de propagation d'ondes en régime harmonique[END_REF][START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF]. A good choice of transmission conditions is given by absorbing boundary conditions, that approximate the non local operators appearing in transparent boundary conditions. For bibliography references about transmission conditions for the time-harmonic Maxwell's equations see the introduction of this Chapter.

The discrete formulation of optimized Schwarz methods was introduced in [START_REF] St-Cyr | Optimized multiplicative, additive, and restricted additive Schwarz preconditioning[END_REF]: the Optimized Restricted Additive Schwarz (ORAS) preconditioner is

M -1 ORAS = N sub s=1 R T s A -1 s,Opt R s , (5.7) 
where the local matrices A s,Opt are now the matrices arising from discretizations of the problem in the subdomain Ω s with the optimized transmission conditions as boundary conditions at the interfaces.

In our case, for the time-harmonic Maxwell's equation (2.26), the matrices A s,Opt are the local matrices of the subproblems with homogeneous impedance boundary conditions (2.31) as transmission conditions at the interfaces between subdomains. The sign of the parameter in the impedance transmission conditions is important, see Remark 2.3. These local matrices stem from the discretization of the variational formulation (2.41) by the high order edge finite elements defined in Chapters 3 and 4. To build the subset of unknowns N s corresponding to the subdomain Ω s , note that each unknown corresponds to a degree of freedom (dof), of the type of Definition 3.13; so, an unknown belongs to N s if the dof support (edge, face or volume) is contained in Ω s . For edge finite elements, it is important to ensure that the orientation of the dofs is the same in the domain and in the subdomains. As an illustration of the construction, in the following example we write explicitly the restriction matrices R s , R s for the simple two-dimensional case shown in Figure 5.2, considering edge elements of degree r = 1.

Example 5.1 (d = 2, r = 1). The domain Ω is decomposed into two overlapping subdomains Ω 1 , Ω 2 , and edge finite elements of degree r = 1 are considered: the degrees of freedom are in correspondence with the edges of the mesh, so their order inside N , N 1 , N 2 is given by the edges numbering of the figure. Here, since #N 1 = #N 2 = 13, #N = 17, all restriction matrices have dimension 13 × 17. The matrices R 1 , R 2 are constructed using the non overlapping subdomains Ω 1 , Ω 2 shown in the figure (note that the edge 11 of Ω is contained in Ω 2 and not in Ω 1 ). In the matrices below, if an entry is empty it should be equal to 0, and the bold zeros in R 1 , R 2 are the zeros that replace unit entries in R 1 , R 2 :

R 1 =                               , R 2 =                0 0 0 0 1                , R 1 =                1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0                , R 2 =                0 0 0 0 0 0 0 0                .

Partition of unity

In FreeFem++ we implemented a slightly different form of the ORAS preconditioner, writing the matrices R s in (5.4) as R s = D s R s , where we have highlighted diagonal matrices D s (of size #N s × #N s ), such that

N sub s=1 R T s D s R s = I.
(5.8)
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Then preconditioner (5.7) becomes

M -1 ORAS = N sub s=1 R T s D s A -1 s,Opt R s .
(5.9)

The construction of the partition of unity matrices D s is intricate, especially for (high order) edge finite elements. The starting point is considering continuous partition of unity functions {χ i } 1 i N sub for the classical piecewise linear nodal finite element, whose dofs are (the functional giving) the values at the nodes of the mesh. Denote by {T 0 i } 1 i N sub the meshes of the auxiliary non overlapping subdomains, and {T δ i } 1 i N sub the meshes of the overlapping subdomains. In order to define the function χ i , for i = 1, . . . , N sub , we define first the function χ i as the continuous piecewise linear function on the global mesh, with support contained in T δ i , such that

χ i = 1 at all nodes of T 0 i , 0 at all nodes of T δ i \ T 0 i .
The function χ i can be then defined as the continuous piecewise linear function on the global mesh, with support contained in T δ i , such that its discrete value for each dof is evaluated by

χ i = χ i N sub j=1 χ j . (5.10) 
Thus, we have N sub i=1 χ i = 1, both at the discrete and continuous level. Note that in the practical implementation the functions χ i and χ i are constructed locally on T δ i , the relevant contribution of the χ j in (5.10) being on T δ j ∩ T δ i . This removes all dependency on the global mesh, which could be otherwise problematic at large scales. Now, for the high order edge finite elements, we can build a geometric partition of unity based on the support of the dofs (given in Definition 3.13): the entries of the diagonal matrix D i , i = 1, . . . , N sub , are obtained by interpolating the piecewise linear function χ i at the barycenters of the support (edge, face, volume) of each dof. The partition of unity property (5.8) is then satisfied since N sub i=1 χ i = 1. This interpolation is obtained thanks to an auxiliary FreeFem++ scalar FE space that has only the interpolation operator and no basis functions, available in the plugin Element_Mixte3d already mentioned in Section 4.1: these scalar FE spaces are called Edge03ds0, Edge13ds0, Edge23ds0, respectively for the FE spaces Edge03d, Edge13d, Edge23d of degree r = 1, 2, 3.

Remark 5.2. When impedance conditions are chosen as transmission conditions at the interfaces, it is essential that not only the function χ s but also its derivative are equal to zero on the border of the subdomain Ω s . Indeed, if this property is satisfied, the continuous version of the ORAS method is equivalent to the continuous method where the datum of the optimized transmission conditions comes from the neighbor subdomain (see the details in [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF] §2.3.2).

Numerical experiments

We validate the ORAS preconditioner (5.9) for different values of physical and numerical parameters, and compare it with a symmetric variant without the partition of unity (called Optimized Additive Schwarz):

k N dofs N iterNp N iter max|λ -(1, 0)| #{λ ∈ C \ D1 } #{λ ∈ ∂D 1 } 0 
M -1 OAS = N sub s=1 R T s A -1 s,Opt R s .
The numerical experiments are performed for a waveguide configuration in 2d and 3d.

Results for the two-dimensional problem

We present the results obtained for a two-dimensional waveguide as in Figure 2.3 with c = 0.0502 m, b = 0.00254 m, with the physical parameters: ε = 8.85 • 10 -12 F m -1 , µ = 1.26 • 10 -6 H m -1 and σ = 0.15 S m -1 . We consider three angular frequencies ω 1 = 16 GHz, ω 2 = 32 GHz, and ω 3 = 64 GHz, varying the mesh size h according to the relation h 2 • ω3 = 2 (which is generally believed to remove the pollution effect, see the introduction of this Chapter).

Here we solve the linear system resulting from the finite element discretization with GMRES (with a stopping criterion based on the relative residual and a tolerance of 10 -6 ), starting with a random initial guess, which ensures, unlike a zero initial guess, that all frequencies are present in the error. We compare the ORAS and OAS preconditioners, taking a stripwise subdomains decomposition, along the wave propagation, as shown in Figure 5.3.

To study the convergence of GMRES preconditioned by ORAS or OAS we vary first the polynomial degree r = k + 1 of the basis functions given in Definition 3.8 (Table 5.1, Figures 5.4 Here, δ ovr = 1h, 2h, 4h means that we consider a total overlap between two subdomains of 1, 2, 4 mesh triangles along the horizontal direction (see Figure 5.3). Note that usually in literature the overlap size indicates just half of δ ovr , since that would say of how many layers each auxiliary non overlapping subdomain has been extended in each direction to obtain the overlapping subdomain. In Tables 5.1-5.4, N dofs is the total number of degrees of freedom, N iterNp is the number of iterations necessary to attain the prescribed convergence for GMRES without any preconditioner, and N iter is the number of iterations for GMRES preconditioned by ORAS (OAS). Moreover, denoting by

ω N dofs N iterNp N iter max|λ -(1, 0)| #{λ ∈ C \ D1 } #{λ ∈ ∂D 1 }
D 1 = {z ∈ C : |z -z 0 | < 1}
the unit disk centered at z 0 = (1, 0) in the complex plane, we measure also the maximum distance to (1, 0) of the eigenvalues λ of the preconditioned matrix, the number of eigenvalues that have distance greater than 1, and the number of eigenvalues that have distance equal to 1 (up to a tolerance of 10 -10 ). This information is useful to characterize the convergence. Indeed, if A is the matrix of the system to solve and M -1 is the domain decomposition preconditioner, then I -M -1 A is the iteration matrix of the Schwarz method used as an iterative solver: indeed, the preconditioned fixed point iteration can be written as u n+1 = u n -M -1 Au n + M -1 f . So, a measure of the convergence of the Schwarz solver would be to check whether the eigenvalues of the preconditioned matrix M -1 A are contained in D 1 . When the Schwarz method is used, like here, as a preconditioner, the distribution of the spectrum remains qualitatively a good indicator of the convergence. Note that the matrix of the linear system doesn't change when N sub or δ ovr vary, therefore in Tables 5.3-5.4 (where k = 2, ω = ω 2 ) we don't report N dofs = 1806 and N iterNp = 1138 again. In all Tables 5.1-5.4, we don't mention the condition number of the preconditioned matrix: indeed, no convergence rate estimates in terms of the condition number of the matrix, as those we are used to with the conjugate gradient method, are available for the GMRES method. Figures 5.4, 5.6, 5.8, 5.10, respectively Figures 5.5, 5.7, 5.9, 5.11, show the whole spectrum in the complex plane of the matrix preconditioned by ORAS, respectively by OAS (note that many eigenvalues are multiple), together with ∂D 1 . Figures 5. 13-5.16 show the evolution of the relative residual during the iterations of GMRES preconditioned with ORAS (left) and OAS (right).

δ ovr N iter max|λ -(1, 0)| #{λ ∈ C \ D1 } #{λ ∈ ∂D 1 } 1h 
Looking at the tables and figures, we can see that the non preconditioned GMRES method is very slow, and the ORAS preconditioner gives much faster convergence than the OAS preconditioner. As expected, the convergence becomes slower when ω or N sub increase, or when δ ovr decreases. In these tests, when varying k (which here gives the polynomial degree r = k + 1 of the FE basis functions), the number of iterations for convergence using the ORAS preconditioner is equal to 5 for k = 0 and then it stays equal to 6 for k > 0; this is reflected by the corresponding spectra in Figure 5.4, which indeed remain quite similar when k varies, and by the convergence history in Figure 5.13, left.

Note also that, when using the ORAS preconditioner, for 2 subdomains the spectrum is always well clustered inside the unit disk, except for the case with δ ovr = 1h (see Figure 5.12), in which 3 eigenvalues are outside with distances from (1, 0) equal to 19.5, 19.4, 14.4. This case δ ovr = 1h corresponds to adding a layer of triangles just to one of the two non overlapping subdomains to obtain the overlapping decomposition; hence it appears necessary to add at least one layer from both subdomains. Then we see that for 4 and 8 subdomains the spectrum becomes less well clustered. In the convergence history plot in Figure 5.15 where N sub varies, the typical plateaux appear, whose length is proportional to the number of subdomains in one direction. With the OAS preconditioner we can see that there are always eigenvalues outside the unit disk. For all the considered cases, we observe that the less clustered the spectrum, the slower the convergence.

Results for the three-dimensional problem

We complete the presentation showing some results for the full 3d simulation, for a waveguide as in or σ = 0 S m -1 . We take a stripwise subdomains decomposition along the wave propagation, with δ ovr = 2h; however, note that in FreeFem++ very general subdomains decompositions can be considered, as the ones obtained with the automatic graph partitioners SCOTCH [START_REF] Pellegrini | SCOTCH: A Software Package for Static Mapping by Dual Recursive Bipartitioning of Process and Architecture Graphs[END_REF] or METIS [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] (see Chapter 6).

The data in the impedance boundary conditions (2.28c)-(2.28d) of the considered BVP are those given in Remark 2.4. Since the propagation constant in 3d is β and no more ω, we compute the mesh size h using the relation h Again, the linear system is solved with preconditioned GMRES, with a stopping criterion based on the relative residual and a tolerance of 10 -6 , starting with a random initial guess. To apply the preconditioner, the local problems in each subdomain of matrices A s,Opt are solved with the direct solver MUMPS [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF].

In Tables 5.5, 5.6 we show the number of iterations N iter for convergence, for the problem with σ = 0.15 S m -1 and σ = 0 S m -1 respectively, varying first the polynomial degree r = k + 1 (for N sub = 2), and then the number of subdomains N sub (for k = 1). Like in the 2d case, the number of iterations using the ORAS preconditioner does not vary with the polynomial degree of the FE basis functions, while using the OAS preconditioner it varies and is much higher. Again, the convergence becomes slower when the number of subdomains increases, both with ORAS and OAS. We see that for more than 2 subdomains the number of iterations for the non dissipative problem (σ = 0) is higher than for the problem with σ = 0.15 S m -1 . In Figure 5.17 we plot the norm of the real part of the solution, which decreases as the wave propagates since there σ = 0.15 S m -1 is different from zero. See Appendix A for the FreeFem++ scripts giving these results.

Conclusion

Numerical experiments have shown that Schwarz preconditioning significantly improves GMRES convergence for different values of physical and numerical parameters, and that the ORAS preconditioner always performs much better than the OAS preconditioner. Indeed, the only advantage of the OAS method is to preserve symmetry for symmetric problems: that is why it should be used only for symmetric positive definite matrices as a preconditioner for the conjugate gradient method. Moreover, in all the considered test cases, the number of iterations for convergence using the ORAS preconditioner does not vary when the polynomial degree of the adopted high order finite elements increases. We have also seen that it is necessary to take an overlap of at least one layer of simplices from both subdomains of a neighbors pair. All these convergence qualities are reflected by the spectrum of the preconditioned matrix.

For higher order discretizations the computational cost per iteration grows since matrices become very large, therefore a parallel implementation as the one of HPDDM [START_REF] Jolivet | Scalable domain decomposition preconditioners for heterogeneous elliptic problems[END_REF] (a high-performance unified framework for domain decomposition methods which is interfaced with FreeFem++) is considered for large scale problems, as those arising from the application described in Chapter 6. A two-level preconditioner via a coarse space correction will be studied in Chapter 8 in order to fix the dependence on the number of subdomains or on the frequency of the iteration count. 

Application to brain microwave imaging

We have merged the following contributions into this Chapter:

• [START_REF] Bonazzoli | Parallel preconditioners for high-order discretizations arising from full system modeling for brain microwave imaging[END_REF] in collaboration with Victorita Dolean, Francesca Rapetti, Pierre-Henri Tournier, published in International Journal of Numerical Modelling: Electronic Networks, Devices and Fields;

• the submitted paper [START_REF] Tournier | Microwave Tomographic Imaging of Cerebrovascular Accidents by Using High-Performance Computing[END_REF] Microwave Tomographic Imaging of Cerebrovascular Accidents by Using High-Performance Computing, in collaboration with Pierre-Henri Tournier, Iannis Aliferis, Maya de Buhan, Marion Darbas, Victorita Dolean, Frédéric Hecht, Pierre Jolivet, Ibtissam El Kanfoud, Claire Migliaccio, Frédéric Nataf, Christian Pichot, Serguei Semenov, available on arXiv and HAL (<hal-01343687>).

The related work [START_REF] Tournier | Numerical Modeling and High Speed Parallel Computing: New Perspectives for Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring[END_REF] has been accepted for publication as an invited paper in the Special issue on "Electromagnetic Inverse Problems for Sensing and Imaging" of IEEE Antennas and Propagation Magazine, in collaboration with Pierre-Henri 

Introduction

We apply the methods studied in the previous Chapters to simulate the microwave imaging system prototype shown in Figure 6.1, developed by the medical imaging company EMTen- sor GmbH for the detection and diagnosis of brain strokes. In the following, we describe the medical context as well as the application motivating the numerical simulation.

Strokes (also referred to as cerebrovascular accidents, CVA) can be classified into two major categories, ischemic (80% of strokes) and hemorrhagic (20% of strokes). During an ischemic stroke the blood supply to a part of the brain is interrupted by the formation of a blood clot inside a vessel, while a hemorrhagic stroke occurs when a blood vessel bursts inside the brain. It is essential to determine the type of stroke in the shortest possible time in order to start the correct treatment, which is opposite in the two situations: in the first case the blood flow should be restored, while in the second one the blood pressure should be lowered. Note that it is vital to make a clear distinction between the two types of stroke before treating the patient: the treatment that suits an ischemic stroke would be fatal if applied to a hemorrhagic stroke and vice versa. Moreover, it is desirable to be able to monitor continuously the effect of the treatment on the evolution of the stroke during the hospitalization. Strokes can be detected by estimating the variable complex-valued electric permittivity ε σ (2.24) of the brain tissues of the patient. Indeed, ischemic and hemorrhagic strokes result in opposite variations of the real and imaginary parts of ε σ in a region of the brain (more precisely, in a reduction, respectively increase, of about 10% of the baseline tissue values for ischemic, respectively hemorrhagic, strokes). An image here consists in a map of the electric permittivity at different points of the brain.

Usually stroke diagnosis relies mainly on two types of imaging techniques: MRI (magnetic resonance imaging) and CT scan (computerized tomography scan). These are very precise techniques, especially the MRI with a spatial resolution of 1 mm. However, a MRI machine is too big to be carried in ambulance vehicles and it is also too expensive; a CT scan, which consists in measuring the absorption of X-rays by the brain, is harmful and thus cannot be used to monitor continuously the patient in hospital.

A novel competitive technique with these traditional imaging modalities is microwave tomography. With microwave imaging, at frequencies of the order of 1 GHz, the tissues are well differentiated and they can be imaged on the basis of their dielectric properties. The electromagnetic emissions are lower than the ones from mobile phones and the spatial resolution is good. The first works on microwave imaging date back to 1982, when Lin and Clarke [START_REF] Lin | Microwave imaging of cerebral edema[END_REF] tested experimentally the detection of cerebral edema (an excessive accumulation of water in the brain) using a signal of frequency 2.4 GHz in a head phantom. Other works followed, almost always on phantoms or synthetic simplified models [START_REF] Semenov | Microwave Tomography for Brain Imaging: feasibility Assessment for Stroke Detection[END_REF]. Despite these encouraging results, there is still no microwave device for medical diagnosis. The new techniques designed by the University of Chalmers (Gothenburg, Sweden) [START_REF] Persson | Microwave-Based Stroke Diagnosis Making Global Prehospital Thrombolytic Treatment Possible[END_REF] and by EMTensor GmbH [START_REF] Semenov | Electromagnetic tomography for brain imaging: From virtual to human brain[END_REF] rely on technologies and softwares developed only in recent years: in both cases the improvement in terms of reliability, price and miniaturization of electromagnetic sensors is a key factor. In the approach of EMTensor GmbH, the microwave measurement system is lightweight and can be carried in ambulance vehicles. The acquired measurements are transferred wirelessly to a remote computing center, where a HPC (High-Performance Computing) machine computes the images of the patient's brain. Once obtained, these images can be quickly transmitted from the computing center to the hospital, see Figure 6.2.

The simulation results presented in this work have been obtained on the microwave imaging system prototype shown in Figure 6.1, developed by EMTensor GmbH. It is composed of 5 rings of 32 antennas around a metallic cylindrical chamber of diameter 28.5 cm and total height 28 cm, into which the patient's head is inserted. The antennas are ceramicloaded rectangular waveguides. The metallic chamber is filled with a matching solution and a membrane is used to isolate the head. Each of the 160 antennas alternately transmits a signal at a fixed frequency, typically 1 GHz. The electromagnetic wave propagates inside the chamber and in the object to be imaged according to its electromagnetic properties. The retrieved data then consist in the reflection and transmission coefficients measured by the 160 receiving antennas (see Section 6.2.2).

These coefficients are used as input for the inverse problem associated with the timeharmonic Maxwell's equations: the unknown of the inverse problem is the complex-valued electric permittivity ε σ at the points of the computational domain, knowing the measured reflection and transmission coefficients. The solution of the inverse problem requires to solve repeatedly the direct (or forward) problem of the time-harmonic Maxwell's equations, i.e. the problem in which ε σ is given and one wants to determine the electric field and then the reflection and transmission coefficients. Therefore an accurate and fast solver for the direct problem is needed. Accuracy is provided by the high order edge finite elements defined in Chapters 3 and 4; the linear system resulting from this discretization is then solved efficiently in parallel with GMRES preconditioned with the Schwarz domain decomposition methods presented in Chapter 5.

Γ w Γ i
This thesis is focused on the direct problem and the Chapter is organized as follows. In Section 6.2 the boundary value problems that model the EMTensor imaging system are first described (there is one boundary value problem for each transmitting antenna), then we explain how to compute the reflection and transmission coefficients (which are the measurable quantities), and finally, for the sake of completeness, the inverse problem is presented. Section 6.3 is dedicated to numerical results for the direct problem. In order to validate our numerical modeling, we first compare the coefficients given by the simulation with the measured values obtained by EMTensor (for the simple configuration where the chamber contains just the matching solution). Then we demonstrate the advantage, in terms of accuracy and computing time, of using high order edge finite elements compared to the standard lowest order edge elements. In the last part of the numerical results section, we perform a strong scaling analysis to assess the efficiency of the parallel domain decomposition preconditioner. Finally, we conclude in Section 6.4, giving also a brief account of the results obtained by the ANR MEDIMAX team for the inverse problem, showing the feasibility of this microwave imaging technique for detection and monitoring of brain strokes.

Mathematical model

The direct problem

Consider the second order time-harmonic Maxwell's equation (2.26) in the computational domain Ω ⊂ R 3 shown in Figure 6.3, with variable complex-valued electric permittivity ε σ (x) = ε(x)i σ(x)/ω at each point x ∈ Ω, and a constant magnetic permeability µ equal to the free space magnetic permeability µ 0 . Note that the object inserted in the imaging chamber (the head in the complete application) does not need to be represented in the domain Ω, because it is described by the variable coefficient ε σ (x).

Since alternately each waveguide j = 1, . . . , 160 transmits a signal, we denote by E j the solution of the corresponding boundary value problem, which differs only in the boundary conditions on the waveguides ports. Indeed, for each j = 1, . . . , 160, we solve the equation

∇ × ∇ × E j -γ 2 E j = 0, (6.1)
with metallic boundary conditions

E j × n = 0 on Γ w , (6.2) 
on the cylinder and waveguides walls Γ w , and with the following impedance boundary conditions on the port Γ j of the j-th waveguide, which transmits the signal, and on the ports Γ i of the receiving waveguides, i = 1, . . . , 160, i = j:

(∇ × E j ) × n + iβn × (E j × n) = g j on Γ j , (6.3) 
(∇ × E j ) × n + iβn × (E j × n) = 0 on Γ i , i = j. (6.4)
Here n is the unit outward normal to ∂Ω and β > 0 is the propagation wavenumber along the waveguides. Equation ( 6.3) imposes an incident wave which corresponds to the excitation of the TE 10 fundamental mode E j 0 of the j-th waveguide, with

g j = (∇ × E j 0 ) × n + iβn × (E j 0 × n). Equation (6.4
) is an absorbing boundary condition on the outer port of the receiving waveguides i = 1, . . . , 160, with i = j. The bottom of the chamber is considered metallic, and we impose an impedance boundary condition on the top of the chamber. Therefore we end up with the following boundary value problem for each transmitting waveguide j:

           ∇ × ∇ × E j -γ 2 E j = 0, in Ω, E j × n = 0, on Γ w , (∇ × E j ) × n + iβn × (E j × n) = g j , on Γ j , (∇ × E j ) × n + iβn × (E j × n) = 0, on Γ i , i = j. (6.5)
To derive the variational formulation of (6.5) we proceed as in Section 2.2.5, and we obtain: find

E j ∈ V such that Ω (∇ × E j ) • (∇ × v) -γ 2 E j • v + 160 i=1 Γ i iβ(E j × n) • (v × n) = Γ j g j • v ∀v ∈ V, with V = {v ∈ H(curl, Ω), v × n = 0 on Γ w }.
After discretizing these variational problems with the finite element method, we obtain 160 linear systems, one for each transmitting waveguide j and differing only in the right-hand side:

Au j = b j . (6.6)
For the discretization we use the high order edge finite elements defined in Chapters 3-4. Direct solvers are not suited for such large linear systems arising from complex three dimensional models because of their high memory cost. Therefore, we use an iterative solver (GMRES), which, on the other hand, is not robust and requires preconditioning. Domain decomposition preconditioners are naturally suited to parallel computing and make it possible to deal with smaller subproblems, on which direct solvers are applicable. Here we use the Optimized Restricted Additive Schwarz preconditioner (ORAS) in equation (5.9).

Reflection and transmission coefficients

The physical quantity that can be acquired by the measurement system of the imaging system shown in Figures 6.1-6.3 is the scattering matrix (also referred to as S matrix), which gathers the complex-valued reflection and transmission coefficients measured by the 160 receiving antennas for a signal transmitted by one of these 160 antennas successively. A set of measurements then consists in a complex matrix of size 160 × 160. In order to compute the numerical counterparts of these reflection and transmission coefficients, we use the following formula, which is appropriate in the case of open-ended waveguides:

S ij = Γ i E j • E i 0 Γ i |E i 0 | 2 , i, j = 1, . . . , 160, (6.7) 
where E j is the solution of the boundary value problem (6.5) where the j-th waveguide transmits the signal, and E i 0 is the TE 10 fundamental mode of the i-th receiving waveguide (E j denotes the complex conjugate of E j ). The S ij with i = j are the transmission coefficients, and the S jj are the reflection coefficients.

The inverse problem

Even if this thesis is focused on the direct problem, we present now the inverse problem, in order to provide a complete description of the mathematical model for the imaging application, as well as to clearly show where the solution of the direct problem intervenes in the inversion tool.

The inverse problem that we consider consists in finding the unknown complex-valued electric permittivity ε σ (x) = ε(x)i σ(x)/ω in Ω, such that the solutions E j , j = 1, . . . , N of problem (6.5) lead to corresponding scattering coefficients S ij (6.7) that coincide with the measured scattering coefficients S mes ij , for i, j = 1, . . . , N . Here N denotes the number of antennas.

Let κ := γ 2 = ω 2 µε σ be the unknown complex parameter of our inverse problem. Let us denote by E j (κ) the solution of the direct problem (6.5) with complex electric permittivity ε σ . The corresponding scattering coefficients will be denoted by S ij (κ):

S ij (κ) = Γ i E j (κ) • E i 0 Γ i |E i 0 | 2 , i, j = 1, . . . , N.
The misfit of the parameter κ to the data can be defined through the following functional:

J(κ) = 1 2 N j=1 N i=1 S ij (κ) -S mes ij 2 = 1 2 N j=1 N i=1 Γ i E j (κ) • E i 0 Γ i |E i 0 | 2 -S mes ij 2 . (6.8)
In a classical way, solving the inverse problem consists in minimizing the functional J with respect to the parameter κ. Computing the differential of J in a given arbitrary direction δκ yields:

DJ(κ, δκ) = N j=1 N i=1 Re     S ij (κ) -S mes ij Γ i δE j (κ) • E i 0 Γ i |E i 0 | 2     , δκ ∈ C,
where δE j (κ) is the solution of the following linearized problem:

     ∇ × (∇ × δE j ) -κδE j = δκE j in Ω, δE j × n = 0 on Γ w , (∇ × δE j ) × n + iβn × (δE j × n) = 0 on Γ i , i = 1, . . . , N.
(6.9)

We now use the adjoint approach in order to simplify the expression of DJ. This will allow us to compute the gradient efficiently after discretization, with a number of computations independent of the size of the parameter space. Considering the variational formulation of problem (6.9) with a test function F and integrating by parts, we get

Ω δκE j • F = Ω ∇ × (∇ × δE j ) -κδE j • F = Ω (∇ × (∇ × F) -κF) • δE j - ∂Ω ((∇ × δE j ) × n) • F + ∂Ω ((∇ × F) × n) • δE j = Ω (∇ × (∇ × F) -κF) • δE j + N i=1 Γ i iβ(n × (F × n)) • δE j + Γw (∇ × δE j ) • (F × n) + N i=1 Γ i ((∇ × F) × n) • δE j .
Introducing the solution F j (κ) of the following adjoint problem

               ∇ × (∇ × F j ) -κF j = 0
in Ω,

F j × n = 0 on Γ w , (∇ × F j ) × n + iβn × (F j × n) = (S ij (κ) -S mes ij ) Γ i |E i 0 | 2 E i 0 on Γ i , i = 1, . . . , N, (6.10) 
we get

Ω δκE j • F j = N i=1 (S ij (κ) -S mes ij ) Γ i E i 0 • δE j Γ i |E i 0 | 2 .
Finally, the differential of J can be computed as

DJ(κ, δκ) = N j=1 Re Ω δκ E j • F j .
We can then compute the gradient to use in a gradient-based local optimization algorithm. The images in Figure 6.10 are obtained using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Note that every evaluation of J requires the solution of the direct (or state) problem (6.5), while the computation of the gradient requires the solution of (6.5) as well as the solution of the adjoint problem (6.10). Moreover, the state and adjoint problems use the same operator. Therefore, the computation of the gradient only needs the assembly of one matrix and its associated domain decomposition preconditioner.

Chapter 6. Application to brain microwave imaging

The functional J considered in the numerical simulation of the inverse problem is slightly different from (6.8), as we add a normalization term for each pair (i, j) as well as a Tikhonov regularizing term: (6.11) where S empty ij refers to the coefficients computed from the simulation of the chamber filled only with the homogeneous matching solution. In this way, the contribution of each pair (i, j) in the misfit functional is normalized and does not depend on the amplitude of the coefficient, which can greatly vary between pairs (i, j) as displayed in Figure 6.5. The Tikhonov regularizing term aims at reducing the effects of noise in the data. For now, the regularization parameter α is chosen empirically so as to obtain a visually good compromise between reducing the effects of noise and keeping the reconstructed image pertinent. All calculations carried out in this section can be accommodated in a straightforward manner to definition (6.11) of the functional.

J(κ) = 1 2 N j=1 N i=1 S ij (κ) -S mes ij 2 S empty ij 2 + α 2 Ω |∇κ| 2 ,
In tomographic imaging the reconstruction is done layer by layer. For the imaging chamber of EMTensor considered here, one layer corresponds to one of the five rings of 32 antennas, and we solve an inverse problem independently for each of the five rings. More precisely, each of these inverse problems is solved in a domain truncated around the corresponding ring of antennas, containing at most two other rings (one ring above and one ring below). We impose absorbing boundary conditions on the artificial boundaries of the truncated computational domain. For each inverse problem, only the coefficients S ij with transmitting antennas j in the corresponding ring are taken into account: we consider 32 antennas as transmitters and at most 96 antennas as receivers.

Numerical results

The linear systems (6.6), resulting from the high order edge finite elements discretizations, are solved by GMRES preconditioned with the ORAS preconditioner (5.9), as implemented in HPDDM [START_REF] Jolivet | Scalable domain decomposition preconditioners for heterogeneous elliptic problems[END_REF] (https://github.com/hpddm/hpddm), a High-Performance unified framework for Domain Decomposition Methods. Domain decomposition methods naturally offer good parallel properties on distributed architectures. The computational domain is decomposed into subdomains in which concurrent computations are performed. The coupling between subdomains requires communications between computing nodes, which are based on the Message Passing Interface (MPI) in HPDDM. The assembly of the preconditioner involves the concurrent factorization of the local matrices A s,Opt , which are stored on different processes in the distributed computing context. Likewise, applying the preconditioner to a distributed vector only requires peer-to-peer communications between neighboring subdomains, and a local forward elimination and backward substitution. See Chapter 8 of [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF] for more details about the parallel implementation.

We solve for multiple right-hand sides (corresponding to the different transmitting antennas) simultaneously using a pseudo-block method implemented inside GMRES: this consists in fusing the multiple arithmetic operations associated with each right-hand side (matrix-vector products, dot products), in order to achieve higher arithmetic intensity (see [72, §V.B.1] for more details). The GMRES algorithm is stopped once the relative residual is lower than 10 -8 .

All the simulations are performed in FreeFem++, which is interfaced with HPDDM. The overlapping decomposition into subdomains of the domain Ω is obtained by partitioning the global mesh into non-overlapping submeshes with the automatic graph partitioner SCOTCH [START_REF] Pellegrini | SCOTCH: A Software Package for Static Mapping by Dual Recursive Bipartitioning of Process and Architecture Graphs[END_REF], and by adding then layers of adjacent tetrahedra. The resulting decomposition is quite general, like the one in Figure 6.4, and interfaces between subdomains are rough. The construction of the partition of unity matrices appearing in preconditioner (5.9) for (high order) edge finite elements is described in Paragraph 5.3.1.

In the following subsections, we first validate our numerical modeling of the imaging system prototype by comparing the results of the simulation with experimental measurements obtained by EMTensor. Then, we illustrate the superiority of the high order finite elements presented in Chapters 3-4 over the classical lowest order ones in terms of running time and accuracy. Finally, we perform a strong scaling analysis in order to assess the efficiency of preconditioner (5.9). Results were obtained on the Curie supercomputer (at TGCC-CEA, http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm).

Comparison with experimental measurements

Recall that the measurable quantity is not the electric field but the reflection and transmission coefficients S ij defined in Section 6.2.2. In this Section we compare the coefficients (6.7) given by the simulation of the direct problem with the measured values obtained by EMTensor, for a configuration in which the imaging chamber is filled with a homogenous matching solution. The electric permittivity ε of the matching solution is chosen by EMTensor in order to minimize contrasts with the ceramic-loaded waveguides and with the different brain tissues. The choice of the conductivity σ of the matching solution is a compromise between the minimization of reflection artifacts from metallic boundaries and the desire to have best possible signal-to-noise ratio. Here the relative complex permittivity of the matching solution at frequency f = 1 GHz is ε gel r = 44 -20i. The relative complex permittivity inside the ceramic-loaded waveguides is ε cer r = 59 -0i. Here with ε r we mean the ratio between the complex permittivity ε σ = εi σ/ω and the permittivity of free space ε 0 .

For this test case, the set of experimental data given by EMTensor consists in transmission coefficients for transmitting antennas in the second ring from the top. Figure 6.5 shows the normalized magnitude (dB) and phase (degree) of the complex-valued coefficients S ij corresponding to a transmitting antenna in the second ring from the top and to the 31 receiving antennas in the middle ring (note that the measured coefficients are available only for 17 receiving antennas). The magnitude in dB is calculated as 20 log 10 (|S ij |). The computed coefficients are obtained by solving the direct problem with edge finite elements of polynomial degree r = 2. We can see that the computed transmission coefficients are in very good agreement with the measurements. 

Efficiency of high order finite elements

The goal of the following numerical experiments is to assess the efficiency of the high order finite elements described in Chapters 3-4 compared to the classical lowest order edge elements in terms of accuracy and computing time, which are of great importance for such an application in brain imaging.

For this test case, a non-dissipative plastic-filled cylinder of diameter 6 cm and relative permittivity ε cyl r = 3 is inserted in the imaging chamber and surrounded by matching solution of relative complex permittivity ε gel r = 44 -20i (see Figure 6.6). We consider the 32 antennas of the second ring from the top as transmitting antennas at frequency f = 1 GHz, and all 160 antennas are receiving. Slices in Figures 6.6 and 6.7 show the computational domain and the solution E j for one transmitting antenna j in the second ring from the top.

We evaluate the relative error on the reflection and transmission coefficients S ij with respect to the coefficients S ref ij computed from a reference solution. The relative error is calculated with the following formula:

E = j,i |S ij -S ref ij | 2 j,i |S ref ij | 2 . ( 6.12) 
The reference solution is computed on a fine mesh of approximately 18 million tetrahedra, which corresponds to 20 points per wavelength, and using edge finite elements of degree r = 2, resulting in 114 million unknowns. We compare the computing time and the relative error (6.12) for different numbers of unknowns corresponding to several mesh sizes, for approximation degrees r = 1 and r = 2. All these simulations are done using 512 subdomains with one MPI process and two OpenMP threads per subdomain, for a total of 1024 cores on the Curie supercomputer. We summarize all the results in Table 6.1 and in Figure 6.8. In the plot, each bullet corresponds to one simulation with a certain mesh size and degree: we report next to each bullet the corresponding total number of unknowns, on the vertical axis the relative error, and on the horizontal axis the computing time. As we can see, the high order approximation (r = 2) 90 Chapter 6. Application to brain microwave imaging Figure 6.7 -Slices showing the norm of the real part of the total field E j in the imaging chamber with the plastic-filled cylinder inside, for one transmitting antenna j in the second ring from the top. Figure 6.8 -Time to solution (seconds) and relative error on the computed S ij with respect to the reference solution, using edge finite elements of degree 1 and degree 2 for different mesh sizes. The total number of unknowns in millions is also reported for each simulation.
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allows to attain a given accuracy with much fewer unknowns and much less computing time than the lowest order approximation (r = 1). For example, at a given accuracy of E ≈ 0.1, the finite element discretization of degree r = 1 requires 21 million unknowns and a computing time of 130 seconds, while the high order finite element discretization (r = 2) only needs 5 million unknowns, with a corresponding computing time of 62 seconds.

Strong scaling analysis

There are two common metrics to evaluate the performances of a parallel code: strong scaling and weak scaling. Strong scaling shows how a code performs when the number of processing units is increased for solving a fixed size global problem: ideally the elapsed time should be inversely proportional to the number of processing units. Weak scaling shows how a code behaves when the number of processing units increases, while maintaining local problems with constant size: ideally the elapsed time should be constant.

Here we consider the setting of Section 6. mogeneous matching solution, and a transmitting antenna in the second ring from the top. For a strong scaling analysis, given a fine mesh of the domain composed of 82 million tetrahedra, we increase the number of MPI processes to solve a linear system of 96 million double-precision complex unknowns. The direct solver for the local problems in the subdomains is PARDISO [START_REF] Schenk | Solving unsymmetric sparse systems of linear equations with PARDISO[END_REF] from Intel MKL. We use one subdomain and two OpenMP threads per MPI process.

Results are reported in Table 6.2 and illustrated in Figure 6.9, with a plot of the time to solution including both the setup and solution phases, on 256 up to 2048 subdomains. The setup time corresponds to the maximum time spent for the factorization of the local matrices in the preconditioner over all subdomains, while the solve time corresponds to the time needed to solve the linear system with GMRES. In the plot the number of GMRES iterations is reported in parentheses. In the table, the speedup for N sub subdomains is the ratio between the total time with 256 subdomains and the total time with N sub subdomains. Even if the number of iterations increases with the number of subdomains, we are able to obtain very good speedups up to 4096 cores (2048 subdomains) on Curie, with a superlinear speedup of 9.5 between 256 and 2048 subdomains (with 'superlinear' we mean that 9.5 > 8 = 2048/256).

Conclusion

This work shows the benefits of using a discretization based on high order edge finite elements coupled with a parallel domain decomposition preconditioner, for the simulation of the EMTensor microwave imaging system in Figure 6.1. In such complex systems, accu-Figure 6.10 -Top row: imaginary part of the exact permittivity used to produce noisy data as input for the inverse problem, for three phases of the evolution of a simulated hemorrhagic stroke, from the healthy brain (left column) to a large stroke (right column). Bottom row: corresponding reconstructions obtained with the inversion tool developed by the ANR MEDIMAX team. racy and computing speed are of paramount importance, especially for the application of diagnosis and monitoring of brain strokes. The high order approximation makes it possible to attain a given accuracy with much fewer unknowns and much less computing time than the lowest order approximation. The parallel implementation in HPDDM of the domain decomposition preconditioner is essential to be able to solve the arising linear systems of up to 96 million complex-valued unknowns considered here. Even if the number of iterations increases with the number of subdomains, the strong scaling experiment exhibits very good time speedups up to 2048 subdomains.

Here we studied efficient techniques for the solution of the direct problem, that have been applied in the inversion tool developed by the ANR MEDIMAX team (recall that the solution of the inverse problem requires repeated solves of the direct problem). The team thus managed to reconstruct a microwave tomographic image of the brain (the third one in Figure 6.10) in less than 2 minutes using 4096 cores. This computational time corresponds to clinician acceptance for rapid diagnosis or medical monitoring in hospital. Each reconstructed image in Figure 6.10 corresponds to the solution of an inverse problem with noisy synthetic data as input. More precisely, these data were obtained as follows: starting from a very accurate model of the complex-valued permittivity ε σ (x) of a healthy brain, a hemorrhagic stroke was simulated by adding an ellipsoid in which the value of ε σ (x) was increased; then for this ε σ (x) the direct problem was solved to compute the corresponding coefficients S ij using (6.7) and finally a 10% noise was added to these synthetic coefficients. The evolution of the stroke was simulated by increasing the size of the ellipsoid. Although the reconstructed images do not feature the complex heterogeneities of the brain, which is in accordance with what we expect from microwave imaging methods, they allow the characterization of the stroke and its monitoring. The next step would be the validation of the inversion tool on clinical measured data.

The domain decomposition preconditioner employed here is a one-level method, which cannot scale well beyond thousands of subdomains since the number of iterations deteriorates. The introduction of a two-level preconditioner with an adequate coarse space for Maxwell's equations would maintain very good speedups even for decompositions into a larger number of subdomains. This is a challenging open problem for equations yielding indefinite matrices, which is investigated in the next Chapters.

Chapter 7

Two-level preconditioners for the Helmholtz equation

This Chapter is based on [START_REF] Bonazzoli | Twolevel preconditioners for the Helmholtz equation[END_REF], in collaboration with Victorita Dolean, Ivan G. Graham, Euan A. Spence, and Pierre-Henri Tournier, which has been submitted to the proceedings of the DD24 International Conference on Domain Decomposition Methods. A preprint is available on arXiv and HAL (<hal-01525424>). 

Introduction

We have already pointed out in Section 5.1 that the time-harmonic Maxwell's equation (2.26) presents similar difficulties to those encountered with the (scalar) Helmholtz equation

-∆u -ω2 u = f (7.1)
when the wavenumber ω is large, namely the sign-indefiniteness of their (standard) variational formulation, the pollution effect, and the consequent problematic construction of fast iterative solvers [START_REF] Ernst | Why it is difficult to solve Helmholtz problems with classical iterative methods[END_REF]. Although there have been different attempts to solve the highfrequency Helmholtz equation efficiently, we believe that there is no established and robust preconditioner, whose behavior is independent of ω, for general decompositions into subdomains. Therefore, before facing the time-harmonic Maxwell's equation, in this Chapter we focus on the Helmholtz equation (7.1).

In order to achieve independence of the iteration count on the number of subdomains or, for wave propagation problems, on the wavenumber ω, two-level domain decomposition 96 Chapter 7. Two-level preconditioners for the Helmholtz equation preconditioners are generally introduced: a so-called coarse-grid correction is combined with the one-level preconditioners (5.5), (5.6), (5.7) presented in Chapter 5. A two-level preconditioner is defined by two ingredients:

• an algebraic formula to combine the coarse grid correction with the one-level preconditioner (e.g. in a additive or in a hybrid way),

• a rectangular full column rank matrix Z, whose columns span what is called the coarse space.

In addition to the local solves in the subdomains, the application of a two-level domain decomposition preconditioner implies solving a reduced size problem built with Z called the coarse problem. The construction of effective two-level preconditioners and coarse spaces is a difficult task. After introducing in Section 7.2 these methods for Symmetric Positive Definite (SPD) problems, in the rest of the Chapter we concentrate on the Helmholtz equation. Our purpose is to compare numerically, both in two and three dimensions, two different coarse space definitions for this equation, which are currently the most robust available in literature.

Two-level preconditioners for positive definite problems

For one-level domain decomposition preconditioners, which are based solely on local solves in the subdomains, the iteration count grows with the number of subdomains and plateaux appear in the convergence history plots. These plateaux can be observed for instance in Figure 5.15 of Chapter 5, but this is the case even for a simple model such as the Poisson problem:

-∆u = f, in Ω, u = g, on ∂Ω.
The problem of one-level methods is a lack of global communication. Data are exchanged only from one subdomain to its direct neighbors, but the solution in each subdomain depends on the right-hand side in all subdomains. If we denote by N d the number of subdomains in one direction, then the leftmost domain of Figure 7.1 needs at least N d iterations before being aware of the value of the right-hand side f in the rightmost subdomain. The length of the plateau is thus typically related to the number of subdomains in one direction (see for instance §4.1 of [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF]).

In order to achieve scalability with respect to the number of subdomains, two-level domain decomposition preconditioners with a coarse-grid correction are introduced: the coarse problem, built using the coarse space matrix Z, couples all subdomains at each iteration. Defining R 0 = Z T , the most natural correction for the Additive Schwarz preconditioner (5.6) is of additive type: the two-level additive Schwarz preconditioner is defined 7.3. Two-level preconditioners for the Helmholtz equation 97 as

M -1 2,AS = N sub j=1 R T j (R j AR T j ) -1 R j + R T 0 (R 0 AR T 0 ) -1 R 0 ,
where R 0 AR T 0 is the coarse problem matrix. For the Poisson problem, an adequate coarse space is the Nicolaides coarse space [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF]: the columns of the matrix Z are vectors that have local support in the subdomains and such that the constant function 1 belongs to the vector space spanned by them, i.e. the i-th column of Z is R T i D i R i 1 for 1 ≤ i ≤ N sub . Indeed, the constant functions are the modes, lying in the kernel of the Laplace operator, that hamper the convergence of the one-level method.

This classical coarse space should be enriched with more than one vector per subdomain when the problem to be solved gets more complex, for instance as a result of highly heterogeneous coefficients. Jumps in the coefficients along subdomain interfaces (rather than across the interfaces or inside the subdomains far from their boundaries) are particularly problematic. In [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF] a robust coarse space was introduced and analyzed for the scalar elliptic equation -∇ • (α(x)∇u) = f (also known as the Darcy equation), based on local generalized eigenvalue problems involving the Dirichlet-to-Neumann (DtN) operator on the subdomains interfaces. This method is efficient for arbitrary domain decompositions and jumps in the coefficients, leading to an automatic preconditioning method for SPD scalar heterogenous problems.

The arguments of the analysis in [START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF] cannot be easily generalized to the case of SPD systems of partial differential equations. Thus in [START_REF] Spillane | A robust two-level domain decomposition preconditioner for systems of PDEs[END_REF][START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF] a robust coarse space based on Generalized Eigenproblems in the Overlap (referred to as the GenEO coarse space) was studied. Its convergence can be proved by reformulating the domain decomposition method in an abstract setting in order to apply the fictitious space lemma of [START_REF] Nepomnyaschikh | Mesh theorems on traces, normalizations of function traces and their inversion[END_REF][START_REF] Nepomnyaschikh | Decomposition and fictitious domains methods for elliptic boundary value problems[END_REF][START_REF] Griebel | On the abstract theory of additive and multiplicative Schwarz algorithms[END_REF] (see for instance Chapter 7 of [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF]). The considered generalized eigenvalue problems are closely related but different from those proposed in [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF].

Two-level preconditioners for the Helmholtz equation

The construction and, even more, the convergence analysis of two-level domain decomposition preconditioners for sign-indefinite problems are a challenging open issue. In this work we compare numerically two different definitions of the coarse space matrix Z for the Helmholtz equation (7.1), both in two and three dimensions. More precisely, we are interested in solving the interior Helmholtz problem of the following form: let

Ω ⊂ R d , d = 2, 3, be a polyhedral, bounded domain; find u : Ω → C such that    -∆u -ω2 u = f, in Ω, ∂u ∂n -iωu = 0, on Γ = ∂Ω. (7.2a) (7.2b) 
The two-level domain decomposition preconditioners compared here are both built from the corresponding problem with absorption (or damping), given by a parameter ξ1 :

   -∆u -(ω 2 + iξ)u = f, in Ω, ∂u ∂n -iηu = 0, on Γ = ∂Ω. (7.3a) (7.3b) 
Chapter 7. Two-level preconditioners for the Helmholtz equation

The variational formulation of this problem is:

find u ∈ V = H 1 (Ω) such that a ξ (u, v) = F (v), ∀v ∈ V,
where the sesquilinear form2 a ξ : V × V → C and F : V → C are defined by

a ξ (u, v) = Ω ∇u • ∇v -(ω 2 + iξ)uv - Γ iηuv, F (v) = Ω f v.
Note that if ξ = 0 and the Robin parameter η = sign(ξ)ω in (7.3b), then a ξ is coercive (see §2 in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF]). We consider a discretization of the variational problem using piecewise linear finite elements on a uniform simplicial mesh T h of Ω. Denoting by V h ⊂ V the corresponding finite element space and by {φ i } n i=1 its basis functions, n := dim(V h ), the discretized problem reads: find

u h ∈ V h such that a ξ (u h , v h ) = F (v h ), ∀v h ∈ V h , that is, in matrix form, A ξ u = f , (7.4) 
where the coefficients of the matrix A ξ ∈ C n×n and the right-hand side f ∈ C n are given by (A ξ ) i,j = a(φ i , φ j ) and (f ) i = F (φ i ). The matrix A ξ is complex, symmetric (but not Hermitian), and sign-indefinite if ξ = 0. Consider a decomposition of the domain Ω into a set of overlapping subdomains {Ω j } N sub j=1 , with each subdomain consisting of a union of elements of the mesh T h . The one-level preconditioner, on which the tested two-level preconditioners are based, is the Optimized Restricted Additive Schwarz (ORAS) preconditioner (5.7) presented in detail in Chapter 5, but built from the problem with absorption:

M -1 1,ξ = N sub j=1 R T j A -1 j,ξ R j (7.5)
(in the subscript, 1 stands for one-level and ξ indicates the presence of absorption in the preconditioner). In (7.5) the local matrix A j,ξ is the matrix stemming from the discretization of the following Robin boundary value problem with absorption in the subdomain

Ω j :    -∆u j -(ω 2 + iξ)u j = f, in Ω j , ∂u j ∂n j -iηu j = 0, on ∂Ω j .
In order to achieve weak dependence on the wavenumber ω, we combine the one-level preconditioner (7.5) with a coarse correction. The two-level preconditioners considered in this work can be written in a generic way as follows:

M -1 2,ξ = QM -1 1,ξ P + ZE -1 Z * , (7.6) 
where * denotes the conjugate transpose. The matrices appearing in (7.6) are:

• M -1 1,ξ is the one-level preconditioner,

• Z is a rectangular matrix with full column rank, whose columns span the coarse space (abbreviated CS in the numerical experiments tables),

• E = Z * A ξ Z is the so-called coarse grid matrix (note that here it is built from the problem with absorption),

• Ξ = ZE -1 Z * is the so-called coarse grid correction matrix, and the matrices P , Q are defined according to the chosen correction formula:

• if P = Q = I this is an additive two-level preconditioner,

• if P = I -A ξ Ξ and Q = I -ΞA ξ , this is a hybrid two-level preconditioner; for special choices of M -1 1 and Z it is also known as the Balancing Neumann-Neumann (BNN) preconditioner introduced in [START_REF] Mandel | Balancing domain decomposition[END_REF].

The two-level preconditioner is characterized by the choice of Z: we will consider the coarse space definitions of [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] and [START_REF] Conen | A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator[END_REF], which are currently the most robust available in literature.

The grid coarse space

The most natural coarse space would be one based on a coarser mesh, in this work we subsequently call it "grid coarse space". Let us consider T Hcs a simplicial mesh of Ω with mesh diameter H cs and V Hcs ⊂ V the corresponding piecewise linear finite element space. Let I 0 : V Hcs → V h be the nodal interpolation operator from the coarse grid finite element space to the fine grid finite element space and define Z as the corresponding matrix. Then in this case E = Z * A ξ Z is really the matrix of the problem (with absorption) discretized on the coarse mesh.

This definition was studied in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF][START_REF] Graham | Recent Results on Domain Decomposition Preconditioning for the High-Frequency Helmholtz Equation Using Absorption[END_REF], where, in the numerical experiments, two-level domain decomposition approximations of the Helmholtz problem with absorption (7.3) were used as preconditioners for the pure Helmholtz problem without absorption (7.2); in this method the coarse mesh diameter is constrained by the wavenumber ω. The theory developed in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] concerns the solution of the problem with absorption (7.3), using GM-RES with a two-level Additive Schwarz preconditioner: it provides rigorous convergence estimates, explicit in the wavenumber ω, the absorption ξ, the coarse-grid diameter H cs , the subdomain diameter H sub , the overlap size δ. We report here the final theorem: Theorem 7.1 (GMRES convergence for left preconditioning in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF]). Consider the weighted GMRES method where the residual is minimized in a suitable ω-weighted norm • D ω . Let r m denote the mth iterate of GMRES applied to the system A ξ , left preconditioned with the two-level Additive Schwarz preconditioner. Then

r m D ω r 0 D ω 1 -1 + H cs δ -2 |ξ| ω2 6 m/2
, provided the following condition holds

max ωH sub , ωH cs 1 + H cs δ ω2 |ξ| 2 ≤ C 1 1 + H cs δ -1 |ξ|
ω2 .

An important special case of this theory is that, for the problem with absorption ξ ∼ ω2 , the number of GMRES iterates is bounded independently of ω, provided H cs ∼ H sub ∼ ω-1 and δ ∼ H cs ("generous overlap"). The rigorous analysis of the earlier work [START_REF] Gander | Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?[END_REF] focused on the choice of the absorption parameter ξ when discretizations of (7.3) are used as preconditioners for problem (7.2). This technique is called shifted Laplacian preconditioning (see §1.1 of [START_REF] Gander | Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?[END_REF] for a complete literature survey), and is motivated by the fact that, as ξ increases, the problem with absorption (the "shifted" problem) becomes easier to solve iteratively. In [START_REF] Gander | Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?[END_REF] it was shown that if ξ/ω is bounded above by a sufficiently small constant, then GMRES with the shifted Laplacian preconditioner converges in a ω-independent number of iterations. Note that this sufficient condition on ξ (for the shifted Laplacian to be a good preconditioner for problem (7.2)) does not overlap with the one of [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] (for the domain decomposition method to be a good preconditioner for the shifted problem). Thus the combination of [START_REF] Gander | Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?[END_REF] with [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] does not provide a complete theory for preconditioning problem (7.2); nevertheless, these are among the few rigorous convergence theory results available in literature about preconditioners for wave propagation problems.

The DtN coarse space

The second definition of Z we consider is the one introduced in [START_REF] Conen | A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator[END_REF], where the coarse space is built by solving local eigenproblems involving the Dirichlet-to-Neumann (DtN) operator on the subdomains interfaces. This is an adaptation of the idea for scalar elliptic problems developed in [START_REF] Nataf | A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF][START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF]. This method proved to be very robust, with respect to heterogeneous coefficients, compared to the reference coarse space based on plane waves. Plane waves were originally used in the multigrid context [START_REF] Brandt | Wave-ray multigrid method for standing wave equations[END_REF] and later applied to domain decomposition methods [START_REF] Farhat | A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems[END_REF][START_REF] Farhat | FETI-DPH: a dual-primal domain decomposition method for acoustic scattering[END_REF][START_REF] Kimn | Restricted overlapping balancing domain decomposition methods and restricted coarse problems for the Helmholtz problem[END_REF][START_REF] Li | Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems[END_REF], but mainly for homogeneous problems. Moreover, contrarily to the plane waves coarse space, the DtN coarse space construction in [START_REF] Conen | A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator[END_REF] is completely automatic, refraining from the need for parameter tuning, which is crucial for indefinite problems since even slight deviations from the optimal choice can be fatal [START_REF] Fish | Global-basis two-level method for indefinite systems. I. Convergence studies[END_REF]. However, note that a complete convergence theory for the DtN coarse space for the Helmholtz equation is missing.

We recall now in detail the definition of this coarse space but note that here, contrarily to the original definition in [START_REF] Conen | A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator[END_REF], it is built from problems with absorption in order to compare it with the grid coarse space under the same conditions.

On each interface Γ i = ∂Ω i \ ∂Ω, we solve the local DtN eigenproblem: find the eigenvalues λ and the eigenfunctions u Γ i such that

DtN Ω i (u Γ i ) = λu Γ i , (7.7) 
where the operator DtN Ω i is defined as follows. For

v Γ i : Γ i → C, define DtN Ω i (v Γ i ) = ∂u ∂n Γ i ,
where u : Ω i → C is the Helmholtz extension to Ω i of v Γ i given by

     -∆u -(ω 2 + iξ)u = 0, in Ω i , ∂u/∂n -iηu = 0, on ∂Ω i ∩ ∂Ω, u = v Γ i , on Γ i .
In other words, given a function defined on Γ i , the operator DtN Ω i extends it to the interior of the subdomain using the Helmholtz extension, and then returns the normal derivative of the extension at Γ i . This is indeed a map between Dirichlet and Neumann data. To constitute the coarse space, for each subdomain Ω i we choose m i eigenfunctions of the DtN eigenproblem (7.7) according to the following automatic selection criterion: choose all eigenfunctions for which the associated eigenvalue λ satisfies Re(λ) < max

x∈Ω i ω(x). (7.8) 
Note that this criterion respects local variations in the wavenumber and is hence suited also for heterogeneous problems. Now, in order to define the discrete formulation of the DtN eigenproblem, for a subdomain Ω i , first of all consider a (i) :

H 1 (Ω i ) × H 1 (Ω i ) → R a (i) (v, w) = Ω i ∇v • ∇w -(ω 2 + iξ)vw - ∂Ω i ∩∂Ω iηuv,
and the associated matrix (A (i) ) kl = a (i) (φ k , φ l ). Let I and Γ i be the sets of indices corresponding, respectively, to the interior and boundary degrees of freedom on Ω i , with n I and n Γ i their cardinalities. With the usual block notation, the subscripts I and Γ i for the matrices A and A (i) denote the entries of these matrices associated with the respective degrees of freedom. Let

M Γ i = Γ i φ k φ l k,l∈Γ i
be the mass matrix on the interface Γ i of subdomain Ω i . Following a procedure analogous to the one in [START_REF] Dolean | Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps[END_REF], the discrete formulation of the DtN eigenproblem (7.7) is: find

(λ, u) ∈ C n Γ i × C, such that (A (i) Γ i Γ i -A Γ i I A -1 II A IΓ i )u = λM Γ i u. (7.9) 
Now, the matrix Z of the DtN coarse space is a rectangular, block-diagonal matrix with blocks W i , associated with the subdomain Ω i , 1 ≤ i ≤ N sub , given by Algorithm 7.3.1. If m i is the number of eigenvectors selected by the automatic criterion (7.8) and n i is the number of dofs in the subdomain Ω i , the block W i has dimensions n i × m i , and the matrix Z has dimensions n × N sub j=1 m i . Due to the overlap in the decomposition, the blocks may share some rows inside the matrix Z. Algorithm 7.3.1 Construction of the block W i of the DtN coarse space matrix Z 1: Solve the discrete DtN eigenproblem (7.9) on subdomain Ω i for the eigenpairs (λ j , g j i ). 2: Choose m i eigenvectors g j i ∈ C n Γ i using criterion (7.8). 3: for j = 1 to m i do 4:

Compute the discrete Helmholtz extension u j i ∈ C n i to Ω i of g j i as u j i = [-A -1 II A IΓ i g j i , g j i ] T . 5: end for 6: Define the matrix

W i ∈ C n i ×m i as W i = D i u 1 i , . . . , D i u m i i .
Since this construction is based on local problems only, it is possible to construct the coarse space efficiently in parallel. Note that the sparsity of the coarse grid matrix E = Z * A ξ Z results from the sparsity of Z, the non zero components of E corresponding to adjacent subdomains.

Numerical experiments

We solve the pure Helmholtz problem (7.2) on the unit square (d = 2) or cube (d = 3). We consider a uniform simplicial (triangular in 2d, tetrahedral in 3d) mesh of diameter h ∼ ω-3/2 , thus the number of degrees of freedom grows quite rapidly with the wavenumber (recall that this is the discretization level which is generally believed to remove the pollution effect). The right-hand side is given by f = -exp(-100((x -0.5) 2 + (y -0.5) 2 )) for d = 2, f = -exp(-400((x -0.5) 2 + (y -0.5) 2 + (z -0.5) 2 )) for d = 3.

We use GMRES with right preconditioning, starting with a random initial guess, which ensures, unlike a zero initial guess, that all frequencies are present in the error; the stopping criterion is based on the relative residual with a tolerance τ = 10 -6 . The maximum number of iterations allowed is 500 in 2d, 200 in 3d. We consider a regular decomposition into subdomains (squares/cubes), the overlap for each subdomain is of size O(2h) in all directions and the two-level preconditioner (7.6) is used with the hybrid formula, which results to be more effective than the additive one. This hybrid two-level preconditioner, based on the one-level ORAS preconditioner, is called ImpHRAS in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF]: the prefix O for Optimized is replaced with Imp, which stands for impedance (i.e. Robin) transmission conditions, and H stands for hybrid.

All the computations are done in FreeFem++. The code for 3d computations is parallelized and run on the Curie supercomputer (at TGCC-CEA, http://www-hpc.cea.fr/ en/complexe/tgcc-curie.htm). We assign each subdomain to one processor. So the number of processors increases if the number of subdomains increases. To apply the preconditioner, the local problems in each subdomain (with matrices A j,ξ in (7.5)) and the coarse space problem (with matrix E in (7.6)) are solved with a direct solver (UMFPACK [START_REF] Davis | Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal method[END_REF] in 2d, MUMPS [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF] on one processor in 3d).

As in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF][START_REF] Graham | Recent Results on Domain Decomposition Preconditioning for the High-Frequency Helmholtz Equation Using Absorption[END_REF], in the experiments we take the subdomain diameter H sub and the coarse mesh diameter H cs constrained by ω:

H sub ∼ ω-α , H cs ∼ ω-α ,
for some choices of 0 < α, α <= 1 detailed in the following; if not differently specified, we take α = α , which is the setting of all numerical experiments in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF]. For a given ω, the smaller is α the more (and the smaller) are the subdomains; the smaller is α , the coarser is the mesh for the grid coarse space. Note that H cs does not appear as a parameter in the DtN coarse space! We denote by n CS the size of the coarse space i.e. the dimension of the matrix E in (7.6). For the grid coarse space since E is really the matrix of the problem (with absorption) discretized on the coarse mesh, we have n CS = (1/H cs + 1) d , the number of dofs for the nodal linear finite elements in the unit square/cube. For the DtN coarse space we have n CS = N sub j=1 m i , the total number of computed eigenvectors for all the subdomains. While we solve the pure Helmholtz problem without absorption, both the one-level preconditioner (7.5) and the two-level preconditioner (7.6) are built from problems which have non zero absorption given by ξ prec = ωβ .

In the experiments we put β = 1 or β = 2.

In the following tables we compare the one-level preconditioner, the two-level preconditioner with the grid coarse space and the two-level preconditioner with the DtN coarse space in terms of number of iterations of GMRES and size of the coarse space (n CS ), for different values of the wavenumber ω and of the parameters α, β. We also report the number of subdomains N sub , which is controlled by ω and α as mentioned above. Since h ∼ ω-3/2 , the size n of the linear system matrix is of order ω3d/2 ; for 3d experiments we report n explicitly. Tables 7.1, 7.2 concern the 2d problem, Table 7.3 the 3d problem.

Note that the points of view about the aim of a two-level preconditioner adopted by [START_REF] Conen | A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator[END_REF] and [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] are different. The DtN coarse space in [START_REF] Conen | A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator[END_REF] is built to reach the classical scalability with respect to the number of subdomains, while the grid coarse space in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] seeks independence with respect to the wavenumber ω and for that considers a number of subdomains constrained by ω. In the following comparison we adopt the second point of view.

Experiment 1

In Table 7.1, we let the DtN coarse space size be determined by the automatic selection criterion (7.8) and the grid coarse space size by H cs ∼ ω-α .

We see that the DtN coarse space is much larger than the grid coarse space and gives fewer iterations. The preconditioners with absorption ξ prec = ω2 (β = 2) perform much worse than those with absorption ξ prec = ω (β = 1) independently of the coarse space size. For ξ prec = ω, when α = 1 the number of iterations grows mildly with the wavenumber ω for both coarse spaces (but at the cost of an increasing coarse space size), while the one-level preconditioner performs poorly. When α < 1, i.e. for coarser coarse meshes, the growth with ω is higher, and for α = 0.6 the two-level preconditioner is not much better than the one-level preconditioner because the coarse grid problem is too coarse; for α = 0.8 with the DtN coarse space the growth with ω degrades less than with the grid coarse space.

Experiment 2

We have seen in Table 7.1 that the DtN coarse space gives fewer iterations than the grid coarse space, but their sizes differed significantly. Therefore, in Table 7.2 we compare the two methods forcing n CS to be similar.

On the left, we force the DtN coarse space to have a smaller size, similar to the one of the grid coarse space, by taking just m i = 2 eigenvectors for each subdomain. On the right, we do the opposite, we force the grid coarse space to have the size of the DtN coarse space obtained in Table 7.1, by prescribing a smaller coarse mesh diameter H cs , while keeping the same number of subdomains as in Table 7.1 with H sub ∼ ω-α . In this experiment we take ξ prec = ω, which proved to give better iteration counts than ξ prec = ω2 in the previous experiment. We can observe that for smaller coarse space sizes (left) the grid coarse space gives fewer iterations than the DtN coarse space, while for larger coarse space sizes (right) the result is reversed.

Experiment 3

We have seen that the coarse mesh obtained with H cs ∼ ω-α , α = α can be too coarse if α = 0.6. At the same time, for α = 1 the number of subdomains gets quite large since H sub ∼ ω-α , especially in 3d; this is not desirable because in our parallel implementation we assign each subdomain to one processor, so communication among them would prevail and each processor would not be fully exploited since the subdomains would become very small. Therefore, in this 3d experiment, to improve convergence with the grid coarse space while maintaining a reasonable number of subdomains, we consider separate coarse mesh diameter and subdomain diameter, taking α = α.

For load balancing, meant as local problems having the same size as the grid coarse space problem, in 3d we choose α = 3/2 -α. Indeed, the number of degrees of freedom in Chapter 7. Two-level preconditioners for the Helmholtz equation 

β = 1 α = 0.6 ω N sub 1-
H sub ∼ ω-α , ξ prec = ω.
each subdomain ignoring the overlap is around (h -1 /H -1 sub ) 3 ∼ ω9/2-3α and the number of degrees of freedom in the grid coarse space problem is (H -1 cs ) 3 ∼ ω3α , so for load balancing in the sense described above we require 3α = 9/2 -3α. The DtN coarse space size is still determined by the automatic choice criterion (among 20 computed local eigenvectors) in each subdomain. In Table 7.3 we report the results of this experiment. Note that the size n of the global matrix, which should depend just on the wavenumber ω (with h ∼ ω-3/2 ), in fact appears to vary also for different α: this is due to the fact that we modify the number of points in each direction to be an exact multiple of the number of subdomains in that direction, so as to have smooth cubes as subdomains.

As expected, for the grid coarse space the best iteration counts are obtained for α = 0.5 because then α = 1 gives the coarse mesh with the smallest diameter among the experimented ones: the number of iterations grows slowly, with O(ω 0.61 ) ∼ = O(n 0.13 ). With higher α the iteration counts get worse quickly, and α = 0.8 is not usable.

For the DtN coarse space, the larger coarse space size is obtained by taking α bigger (recall that α is not a parameter in the DtN case): for α = 0.8 the number of iterations grows slowly, with O(ω 0.2 ) ∼ = O(n 0.04 ), but this value may be optimistic, there is a decrease in iteration number between ω = 20 and 30. We believe that for the other values of α, where the iteration counts are not much better or worse than with the one-level preconditioner, we did not compute enough eigenvectors in each subdomain to build the DtN coarse space.

Chapter 7. Two-level preconditioners for the Helmholtz equation 

α = 0.5, α = 1 ω n N sub 1-

Conclusion

We tested numerically two different coarse space definitions for two-level domain decomposition preconditioners for the pure Helmholtz equation (discretized with piecewise linear finite elements), both in 2d and 3d, reaching more than 28 million complex-valued unknowns in the resulting linear systems. The preconditioners built with absorption ξ prec = ω2 appear to perform much worse than those with absorption ξ prec = ω. We have seen that in most cases for smaller coarse space sizes the grid coarse space gives fewer iterations than the DtN coarse space, while for larger coarse space sizes the grid coarse space gives generally more iterations than the DtN coarse space. The best iterations counts for the grid coarse space are obtained by separating the coarse mesh diameter H cs ∼ ω-α from the subdomain diameter H sub ∼ ω-α , taking α > α. Both for the coarse grid space and the DtN coarse space, for appropriate choices of the method parameters we have obtained iteration counts which grow quite slowly with the wavenumber ω.

Further experiments to compare the two definitions of coarse space should be carried out in the heterogenous case. Note that the DtN coarse space construction naturally respects local variations in the wavenumber, and paragraphs 6.6 -6.7 of [START_REF] Conen | A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator[END_REF] present numerical experiments for some simple heterogenous configurations. Also for the grid coarse space the heterogeneous case is under investigation and preliminary results can be found in paragraph 5.3 of [START_REF] Graham | Recent Results on Domain Decomposition Preconditioning for the High-Frequency Helmholtz Equation Using Absorption[END_REF].

Introduction

After focusing on the Helmholtz equation in Chapter 7, we now face the time-harmonic Maxwell's equation (2.26). The construction of fast iterative solvers for both these equations in the high-frequency regime is a challenging problem. Here we investigate how the two-level domain decomposition preconditioners rigorously analyzed in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] for the Helmholtz equation (see §7.3.1) work in the Maxwell case, both from the theoretical and numerical points of view. In the context considered here, we wish to find a "good" preconditioner in the sense that the number of iterations needed to solve the preconditioned system should be independent of the wavenumber ω.

We present a new theory for the time-harmonic Maxwell's equation with absorption, which physically corresponds to the case of dissipative materials with non zero conductivity σ > 0. This theory provides rates of convergence for GMRES with a two-level Additive Schwarz (AS) preconditioner, explicit in the wavenumber ω, the absorption ξ, the coarsegrid diameter, the subdomain diameter and the overlap size. It uses a ω-and ξ-explicit coercivity result for the underlying sesquilinear form and the main theorems give an upper bound on the norm of the preconditioned matrix and a lower bound on its field of values, so that Elman-type estimates for the convergence of GMRES can be applied. Note that analyzing the convergence of GMRES is hard, since no convergence estimates in terms of the condition number, as those we are used to with the conjugate gradient method, are available for GMRES.

Extensive large scale numerical experiments are carried out not only in the setting covered by the theory, but also for the time-harmonic Maxwell's equation without absorption, and with more efficient two-level preconditioners, considering for instance impedance transmission conditions at interfaces between subdomains.

In paragraph 8.1.1 below we specify which are the boundary value problems (BVPs) considered in this work; then the Chapter is organized as follows. Section 8.2 introduces the variational formulation of the BVP studied by the theory, and also of its adjoint, which intervenes in the analysis; then it provides the continuity and coercivity properties of the corresponding sesquilinear form, using a norm induced by a wavenumber-dependent inner product (•, •) curl,ω , and states regularity properties of their solutions. Section 8.3 fixes the notation for the domain decomposition set-up and identifies the assumptions on the subdomains; it recalls the discrete Helmholtz decomposition of the (global and local) curl-conforming finite element spaces, and the Poincaré-Friedrichs type-inequality of [START_REF] Gopalakrishnan | Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations[END_REF], which holds just for a term of the direct sum.

In Section 8.4 we state all the intermediate theorems for the theory about the twolevel Additive Schwarz method. We report only partially the proofs which will be part of the forthcoming paper [START_REF] Bonazzoli | Domain Decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption[END_REF]. The analysis in based on expressing the action of the domain decomposition preconditioner on the matrix as an operator T ξ , sum of projection operators onto the local and coarse finite element spaces. Our goal is to bound from above the norm of the operator T ξ and from below its field of values. Then in Section 8.5 we convert these bounds into estimates for the norm and field of values of the preconditioned matrix (in the induced weighted Euclidean inner product). Thus the Elman-type estimates for convergence of GMRES recalled in §8.5.2 can be applied to obtain the final convergence rate for GMRES (left-or right-) preconditioned with the two-level Additive Schwarz method. Note that the detailed theory development is mainly due to Euan Spence.

Finally, in Section 8.6 we report an extensive numerical study of the convergence of GMRES, with several versions of the two-level preconditioner: additive and hybrid coarse correction formulas, standard and optimized local solves, generous and minimal overlap, different scalings of the subdomain diameter and the coarse grid diameter with respect to the wavenumber ω. Moreover, we test various levels of absorption in the problem and in the preconditioner, and discretizations with degree 1 and 2 curl-conforming finite elements.

Maxwell boundary value problems

The time-harmonic Maxwell's equation (2.26) with a source term F is

∇ × (∇ × E) -(ω 2 µε -iωµσ)E = F. (8.1)
In the case of propagation through a homogeneous medium, µ = µ 0 , ε = ε 0 , and σ = σ 0 , where µ 0 , ε 0 , and σ 0 are all positive constants. Then, with the wavenumber ω defined as usual by ω = ω √ ε 0 µ 0 > 0, (8.1) becomes

∇ × (∇ × E) -ω2 -iωσ 0 µ 0 ε 0 E = F. (8.2) 
In this work, we consider domain decomposition preconditioning for finite element discretizations of the boundary value problems involving the PDE

∇ × (∇ × E) -(ω 2 + iξ)E = F (8.3)
with the absorption parameter ξ ∈ R \ {0}. Our theory is for the PDE (8.3) posed in a bounded Lipschitz polyhedron Ω with the PEC boundary conditions

E × n = 0, on ∂Ω. (8.4) 
Nevertheless, we give numerical experiments in the case that the BVP has impedance boundary conditions

(∇ × E) × n -i sign(ξ) ω n × (E × n) = 0, on ∂Ω, (8.5) 
and we discuss in Remark 8.13 the prospects of extending our theory to this case.

In the case that the absorption parameter ξ equals -ωσ 0 µ 0 /ε 0 , (8.3) becomes (8.2). However, our main motivation for considering discretizations of (8.3) is as preconditioners for the indefinite Maxwell problem

∇ × (∇ × E) -ω2 E = F, (8.6) 
with the same boundary conditions as prescribed for (8.3).

In the case of PEC boundary conditions, the solution of the BVP with the PDE (8.6) (i.e. with ξ = 0) is not unique for a countable set of values of ω (this values are called cavity eigenvalues or resonances of Ω, see, e.g, [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF]Corollary 4.19]), whereas the solution of the BVP with the PDE (8.3) (i.e. with ξ = 0) is unique for every ω (see Corollary 8.5). In the case of impedance boundary conditions, the solutions to (8.6) and (8.3) are unique for all ω.

8.2

The variational formulation and some preliminary results

Variational formulation

Let Ω be a bounded Lipschitz domain in R 3 ; the vast majority of our results will be for the particular case that Ω is a Lipschitz polyhedron, but we indicate below when we make this assumption. Recall that

H(curl, Ω) = v ∈ L 2 (Ω) : ∇ × v ∈ L 2 (Ω) .
The theory concerns the PDE (8.3) in Ω with the PEC boundary condition E × n = 0 on ∂Ω. We therefore work in the space

H 0 (curl, Ω) = {v ∈ L 2 (Ω), ∇ × v ∈ L 2 (Ω), v × n = 0}.
We define the ω-weighted inner product and norm on H 0 (curl, Ω) by

(v, w) curl,ω = (∇ × v, ∇ × w) L 2 (Ω) + ω2 (v, w) L 2 (Ω) and v curl,ω = (v, v) 1/2 curl,ω . (8.7)
As in Section 2.2.5, the standard variational formulation of the BVP

∇ × (∇ × E) -(ω 2 + iξ)E = F, in Ω, E × n = 0, on ∂Ω (8.8) is: given F ∈ L 2 (Ω), ξ ∈ R and ω > 0, find E ∈ H 0 (curl, Ω) such that a ξ (E, v) = F (v) for all v ∈ H 0 (curl, Ω), (8.9) 
where

a ξ (E, v) = Ω ∇ × E • ∇ × v - Ω (ω 2 + iξ)E • v (8.10)
and

F (v) = Ω F • v. (8.11) 
When ξ = 0 and the PDE is (8.6), we simply write a(•, •) instead of a ξ (•, •). We will also need the adjoint of the sesquilinear form a ξ (•, •), denoted by a * ξ (•, •), which is given by

a * ξ (E, v) = Ω ∇ × E • ∇ × v - Ω (ω 2 -iξ)E • v, (8.12) 
and one can check that the variational problem (8.9) with a ξ (•, •) replaced by a

* ξ (•, •) is equivalent to the BVP ∇ × (∇ × E) -(ω 2 -iξ)E = F, in Ω, E × n = 0, on ∂Ω, (8.13) 
we refer to this BVP as the adjoint BVP. Now, with Ω a Lipschitz polyhedron, let T h be a family of conforming tetrahedral meshes that are shape-regular as the mesh diameter h → 0. We define our approximation space Q h ⊂ H 0 (curl, Ω) as the curl-conforming finite element space defined in Chapter 3, of some fixed degree r, on the mesh T h with functions whose tangential trace is zero on ∂Ω. The Galerkin method applied to the variational problem (8.9) is find

E h ∈ Q h such that a ξ (E h , v h ) = F (v h ) for all v h ∈ Q h .
Let I h be a set of indices associated with the degrees of freedom for the subspace Q h . Then the Galerkin matrix A ξ is defined by

(A ξ ) ij = a ξ (w i , w j ), i, j ∈ I h , (8.14) 
and the Galerkin method is equivalent to solving the linear system A ξ U = G, where

G i = F (w i ).
Hence, dividing through by |z| = p 2 + q 2 and setting Θ = -z/|z|, we have

Im [Θa ξ (v, v)] = Im(z) |z| ∇ × v 2 L 2 (Ω) + |z| 2 v 2 L 2 (Ω) .
The second inequality in (8.19) then follows from the two estimates in (8.18). The first one holds since |Θ| = 1.

The result about the adjoint form a * ξ (•, •) follows immediately after noticing that the third equation in (8.17) implies that Im z(ω, -ξ) = Im z(ω, ξ). Corollary 8.5 (Bound on the solutions of (8.8) and (8.13) via Lax-Milgram). The solution of the variational problem (8.9) exists, is unique, and satisfies the bound.

E curl,ω ω |ξ| F L 2 (Ω) (8.20)
for all ω > 0. The same is true if the sesquilinear form a ξ (•, •) in (8.9) is replaced by a * ξ (•, •) given by (8.12).

Proof. The Lax-Milgram theorem, the continuity result of Lemma 8.1, and the coercivity result of Lemma 8.4 imply that the solution of the variational problem (8.9) satisfies

E curl,ω ω2 |ξ| F (curl,ω) ,
where • (curl,ω) denotes the norm on the dual-space of H 0 (curl, Ω) defined by

F (curl,ω) := sup v∈H 0 (curl,Ω)\{0} |F (v)| v curl,ω . 
From the definition (8.11),

|F (v)| ≤ F L 2 (Ω) v L 2 (Ω) ≤ 1 ω F L 2 (Ω) v curl,ω
and the inequality (8.20) follows. The result about the solution to the adjoint problem follows in a similar way.

Regularity of the BVP and its adjoint

In order to estimate the approximation properties of the coarse grid operator in Lemma 8.17 below, we need H 1 -regularity of both E and ∇ × E.

Assumption 8.6 (ω-and ξ-explicit H 1 regularity). The domain Ω is such that, given

F ∈ L 2 (Ω)∩H(div 0 , Ω) := u ∈ L 2 (Ω) : ∇ • u = 0 , ξ ∈ R \ {0}
, and ω > 0, the solution of the BVP (8.8) is such that ∇ × E ∈ H 1 (Ω) and E ∈ H 1 (Ω). Moreover, if ξ satisfies (8.15) then, given ω0 > 0,

∇ × E H 1 (Ω) + ω E H 1 (Ω) ω ∇ × E L 2 (Ω) + ω E L 2 (Ω) + F L 2 (Ω) , (8.21) 
for all ω ≥ ω0 . [START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF], and ω > 0, then, given ω0 > 0,

∈ L 2 (Ω) ∩ H(div 0 , Ω), ξ ∈ R \ {0} satisfying (8.
∇ × E H 1 (Ω) + ω E H 1 (Ω) ω2 |ξ| F L 2 (Ω) , (8.22) 
for all ω ≥ ω0 .

Domain decomposition set-up

To define appropriate subspaces of the edge finite element space Q h ⊂ H 0 (curl, Ω), we start with a collection of open subsets { Ω : = 1, . . . , N } of R d that form an overlapping cover of Ω, and we set Ω = Ω ∩ Ω. Each Ω is assumed to be non-empty and to consist of a union of elements of the mesh T h . Then, for each = 1, . . . , N , we set

Q h := Q h ∩ H 0 (curl, Ω ), (8.23) 
i.e. the tangential traces of elements of Q h vanish on the internal boundary ∂Ω \∂Ω (as well as on ∂Ω ∩∂Ω). In writing the definition of Q h , we are using the fact that H 0 (curl, Ω ) can be considered as a subset of H 0 (curl, Ω) by extending functions in H 0 (curl, Ω ) by zero (such extensions are in H 0 (curl, Ω) by, e.g., [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF]Lemma 5.3]). We make the following assumptions on the subdomains:

1. Shape regularity: the subdomains are shape-regular Lipschitz polyhedra of diameter H sub , in the sense that the volume is of order H 3 sub and surface area of order H 2 sub (with omitted constants independent of all parameters).

2. Uniform overlap of order δ: For each = 1, . . . , N , let Ω denote the part of Ω that is not overlapped by any other subdomains, and for µ > 0 let Ω ,µ denote the set of points in Ω that are a distance no more than µ from the boundary ∂Ω . Then we assume that for some δ > 0 and some 0 < c < 1 fixed,

Ω ,cδ ⊂ Ω \ Ω ⊂ Ω ,δ ;
the case δ ∼ H sub is called generous overlap.

Finite overlap assumption: as

h, H sub → 0, #Λ( ) 1, where Λ( ) = : Ω ∩ Ω = ∅ . ( 8 

.24)

Let I h (Ω ) be the set of indices of the degrees of freedom whose support is contained in Ω . We then have that I h = N =1 I h (Ω ). We define the restriction matrices (R ) N

=1

and partition of unity matrices (D ) N =1 as in §5.2 and §5.3.1. For the coarse space, let {T Hcs } be a sequence of shape-regular, tetrahedral meshes on Ω, with mesh diameter H cs . Let I H be an index set for the degrees of freedom on the coarse mesh. The space Q 0 is the curl-conforming finite element space on the mesh T Hcs with functions whose tangential trace is zero on ∂T Hcs . Similarly to §7.3.1, the coarse space matrix Z is the matrix corresponding to the interpolation operator I 0 : Q 0 → Q h from the coarse grid finite element space to the fine grid finite element space, and we set the "restriction" matrix R 0 = Z T .

With the restriction matrices (R ) N =0 we define

A ξ := R A ξ (R ) T . (8.25) 
For = 1, . . . , N , the matrix A ξ is then just the minor of A ξ corresponding to rows and columns taken from I h (Ω ) and the matrix A 0 ξ is the Galerkin matrix for the variational problem (8.9) discretized in Q 0 . The coercivity result Lemma 8.4 implies that the matrices A ξ , = 0, . . . , N , are invertible for all mesh sizes h and all choices of ξ = 0. Indeed, if

A 0 ξ V = 0, where V is a vector such that v H := p∈I H V p w H p ∈ Q 0 , then 0 = V * A 0 ξ V = a ξ (v H , v H ). Therefore, 0 = |a ξ (v H , v H )| ≥ ρ |ξ| ω2 v H 2 curl,ω ,
which immediately implies v H = 0, and thus V = 0. Similar arguments apply to A ξ and to the adjoints (A ξ ) * , = 0, . . . , N . As in §7.3 we combine the one-level preconditioner with the coarse correction using an additive or hybrid formula to write a two-level preconditioner. The theory concerns the two-level Additive Schwarz preconditioner for A ξ , based on the one-level AS preconditioner with an additive correction:

M -1 ξ,AS = N =0 (R ) T (A ξ ) -1 R (8.26) 
(note that in this Chapter we omit the subscript 2 standing for two-level).

In the numerical experiments we will also consider:

• the two-level Restricted Additive Schwarz preconditioner based on the one-level RAS preconditioner with an additive correction:

M -1 ξ,RAS = N =1 (R ) T D (A ξ ) -1 R + Ξ, Ξ = (R 0 ) T (A 0 ξ ) -1 R 0 , (8.27) 
• M -1 ξ,ImpRAS , which is similar to M -1 ξ,RAS but it is based on the one-level ORAS preconditioner (in the terminology of the Helmholtz paper [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] the prefix O for Optimized is replaced with Imp, for impedance transmission conditions),

• the two-level hybrid version of RAS

M -1 ξ,HRAS = (I -ΞA ξ ) N =1 (R ) T D (A ξ ) -1 R (I -A ξ Ξ) + Ξ, (8.28) 
• M -1 ξ,ImpHRAS , the two-level hybrid version of ImpRAS.

Chapter 8. Two-level preconditioners for Maxwell's equations (b) the analogue of T ξ v h L 2 (Ω ) , = 1, . . . , N , was estimated using the standard scalar Poincaré-Friedrichs inequality.

This approach does not immediately carry over to the Maxwell case because (a) duality arguments for Maxwell's equations require divergence-free right-hand sides (since we want to use the bound (8.21)), and (b) the appropriate analogue of the Poincaré-Friedrichs inequality does not hold for gradient fields (see Lemma 8.9 above). Nevertheless, one of the main technical results obtained by Gopalakrishnan and Pasciak, [60, Lemma 4.3], involves estimating ((I -T ξ )v h , w h ) L 2 (Ω ) for w h ∈ Q and = 0, . . . , N . Lemma 8.18 below is essentially this result, adapted to our situation by (i) making everything explicit in ω and ξ, and (ii) using coercivity of a ξ (•, •) instead of an error estimate on the Galerkin solution in the duality argument.

Before stating this key result, we need the following result about approximability of the adjoint problem on the coarse grid. Lemma 8.17 (Coarse-grid approximability of the adjoint problem). If Assumption 8.6 holds, then, if E is the solution of the adjoint problem (8.13) with F ∈ L 2 (Ω) and ∇•F = 0, then

inf φ 0 H ∈Q 0 H E -φ 0 H curl,ω H cs ω2 |ξ| F L 2 (Ω) . (8.41) 
We now state the key result that will allow us to estimate the remainder terms R ξ (v h ). 

i) For any v h ∈ Q h and w h ∈ Q h , (I -T ξ )v h , w h L 2 (Ω ) H sub (I -T ξ )v h L 2 (Ω ) ∇ × w h L 2 (Ω ) ( 
for = 1, . . . , N , (ii) If Assumption 8.6 holds, then, given ω0 > 0, and for any v h ∈ Q h and w 0

H ∈ Q 0 H , (I -T 0 ξ )v h , w 0 H L 2 (Ω) H cs ω |ξ| (I -T 0 ξ )v h curl,ω w 0 H curl,ω , (8.43) 
for all ω ≥ ω0 .

Bound on the field of values

We can now give the estimates on the remainder terms R ξ (v h ).

Lemma 8.19 (Bound on R 0 ξ (v h )). Under Assumption 8.6, given ω0 > 0 and for any γ ≥ 0 and any

v h ∈ Q h , R 0 ξ (v h ) ωH cs ω2 |ξ| ω2 |ξ| γ T 0 ξ v h 2 curl,ω + ω2 |ξ| -γ v h 2 curl,ω , (8.44) 
for all ω ≥ ω0 .

Lemma 8.20 (Bound on R ξ (v h )). For any γ ≥ 0 and any Finally, the bound from below on the field of values of T ξ is given by the following theorem.

v h ∈ Q h , N =1 R ξ (v h ) ωH sub ω2 |ξ| γ N =1 T ξ v h 2 curl,ω + ω2 |ξ| -γ v h 2 
Theorem 8.21 (Lower bound on the field of values of T ξ ). Under Assumption 8.6 and given ω0 > 0, there exists a constant C 1 > 0 such that 

|(v h , T ξ v h ) curl,ω | v h 2 curl,ω 1 + H cs δ 2 -1 |ξ| ω2 2 for all v h ∈ Q h ( 8 

Matrices and convergence of GMRES

In this section we convert the results of Theorems 8.14 and 8.21 into results about matrices.

From projection operators to matrices

We now interpret the operators T ξ defined in (8.35) in terms of matrices.

Lemma 8.22. Let v h = j∈I h V j φ j ∈ Q h . Then (i) T ξ v h = j∈I h (Ω ) (R ) T (A ξ ) -1 R A ξ V j φ j , = 1, . . . , N, (ii) T 0 ξ v h = p∈I H R T 0 (A 0 ξ ) -1 R 0 A ξ V p Φ p ,
where A ξ , = 0, . . . , N is defined in (8.25).

Proof. For (i), let ∈ {1, . . . , N }, let w h, and y h, be arbitrary elements of Q h , and denote their coefficient vectors W and Y (with degrees of freedom on all of I h ). Then W = (R ) T w and Y = (R ) T y, where w, y have degrees of freedom on I h (Ω ). The definitions of A ξ and A ξ , (8.14) and (8.25), then imply that a ξ (y h, , w

h, ) = W * A ξ Y = w * A ξ y. So if y := (A ξ ) -1 R A ξ V for some V ∈ C n , we have a ξ (y h, , w h, ) = w * R A ξ V = ((R ) T w) * A ξ V = W * A ξ V = a ξ (v h , w h, ),
where y h, is the finite element function with degrees of freedom y. Thus, by definition of T ξ , we have y h, = T ξ v h , which implies the result (i). The proof of (ii) is similar.

The main results of the previous section -Theorems 8.14 and 8.21 -give estimates for the norm and the field of values of the operator T ξ on the space Q h , with respect to the inner product (•, •) curl,ω and its associated norm. The next lemma shows that, in order to translate these results into norm and field of values estimates for the preconditioned matrix M -1 ξ,AS A ξ , we need to work in the weighted inner product

•, • D ω defined such that if v h , w h ∈ Q h with coefficient vectors V, W then (v h , w h ) curl,ω = V, W D ω ; (8.48)
note that the definition of (•, •) curl,ω (8.7) means that V, W D ω depends on the wavenumber ω.

r m D r 0 D ≤ 2 + 2 √ 3 2 + γ θ γ m θ . (8.50) 
When we apply the estimate (8.50) to M -1 ξ,AS in §8.5.3 below, we find that θ = π/2 -, where (for fixed δ, H) = (ω, ξ) is such that → 0 as ω → ∞. It is therefore convenient to specialize the result (8.50) to this particular situation in the following corollary.

Corollary 8.25. If θ = π/2 -then, given 0 < 0 < π/2, there exists C > 0 (independent of ) such that, for 0 < a < 1,

if m ≥ C log 12 a then r m D r 0 D ≤ a. (8.51) 
for all 0 < < 0 .

The main results

With the classical two-level additive Schwarz preconditioner M -1 ξ,AS in (8.26) for A ξ and the inner product •, • D ω defined by (8.48) above, we have the following results.

Combining the bounds for the operator T ξ in Theorems 8.14 and 8.21, with the matrix interpretation in Lemma 8.23, we obtain the following upper bound on the norm of the preconditioned matrix M -1 ξ,AS A ξ and lower bound on its field of values.

Theorem 8.26 (Bounds for left preconditioning).

(i)

M -1 ξ,AS A ξ D ω ω2 
|ξ| for all H cs , H sub .

(ii) If Ω is a convex polyhedron, then, given ω0 > 0, there exists a constant C 1 such that if

max (ωH sub ), (ωH cs ) ω2 |ξ| ≤ C 1 1 + H cs δ 2 -1 |ξ| ω2 , (8.52) 
then

V, M -1 ξ,AS A ξ V D ω V 2 D ω 1 + H cs δ 2 -1 |ξ| ω2 2 ,
for all V ∈ C n and for all ω ≥ ω0 .

Observe that, just as in the Helmholtz theory in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF], the condition on the coarse mesh diameter H cs in (8.52) is more stringent than the condition on the subdomain diameter H sub ; one finds similar criteria in domain decomposition theory for coercive elliptic PDEs (see, e.g., [START_REF] Graham | Domain decomposition for multiscale PDEs[END_REF]). Combining Theorem 8.26 with the result about GMRES convergence in Corollary 8.25, we obtain the final convergence estimate. Theorem 8.27 (GMRES convergence for left preconditioning). Let Ω be a convex polyhedron. Consider the weighted GMRES method applied to M -1 ξ,AS A ξ , where the residual is minimized in the norm induced by D ω (as described in §8.5.2).

Given ω0 > 0, there exists C > 0, independent of all parameters such that, if (i) ω ≥ ω0 , (ii) condition (8.52) 

V, A ξ M -1 ξ,AS V D -1 ω V 2 D -1 ω 1 + H cs δ 2 -1 |ξ| ω2 2 ,
for all V ∈ C n and for all ω ≥ ω0 .

Theorem 8.29 (GMRES convergence for right preconditioning). The result of Theorem 8.27 holds when left preconditioning is replaced by right preconditioning (M -1 ξ,AS A ξ is replaced by A ξ M -1 ξ,AS in the statement of the theorem).

Numerical experiments

We solve equation (8.3) (with ξ = 0 or ξ = 0) in the unit cube Ω = (0, 1) 3 , with PEC boundary conditions (8.4) or with impedance boundary conditions (8.5) on its boundary ∂Ω. The right-hand side function F in (8.3) is given by the point source

F = [f, f, f ],
where f = -exp(-400((x -0.5) 2 + (y -0.5) 2 + (z -0.5) 2 )).
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The discretization is by curl-conforming finite elements (see Chapters 3 and 4) on a regular mesh of tetrahedra. We will give results for both degree 1 and degree 2 elements. The fine mesh diameter is either chosen as h ∼ ω-3/2 (the discretization level generally believed to remove the pollution effect, by analogy with Helmholtz problems), or with a fixed number g of grid-points per wavelength, i.e. h ∼ 2π/(g ω), when degree 2 elements are used. The resulting linear system (see (8.14)) is solved using GMRES without restarts with right preconditioning. For each solve we use a random initial guess, aiming to ensure that all frequencies are present in the error. The stopping criterion is based on a reduction of the relative residual by 10 -6 and the maximum number of iterations allowed is 200. All the computations are done in FreeFem++. The code is parallelized and run on the supercomputers Curie (at TGCC-CEA, http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm) and OCCIGEN (at CINES, https://www.cines.fr/en/occigen-the-new-supercomputeur/). Note that we do not use the library HPDDM, because the coarse space based on a coarse grid is not available yet there, thus the computing times shown in the following tables could be further optimized.

We consider a regular decomposition into overlapping subdomains (cubes). Even if the theoretical result is optimal for "generous overlap" (δ ∼ H sub ), this would require substantial communication between subdomains, therefore, apart from the first experiments, we take an overlap of size O(2h) in all directions (which we call "minimal overlap"). The examined two-level domain decomposition preconditioners are defined at the end of Section 8.3; their one-level version is considered if "1-level" is specified in the tables. To apply the preconditioner, the local problems in each subdomain and the coarse space problem (where used) are each solved with a direct solver (in this case MUMPS [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF]) on a single processor. When describing the properties of the preconditioners, it is useful to introduce the parameters:

• N sub , the number of subdomains (previously denoted just by N ),

• n, the total number of degrees of freedom in the (fine grid) problem,

• n sub , the number of degrees of freedom per subdomain without considering the overlap contribution (which could be substantial, especially for generous overlap),

• n cs , the number of degrees of freedom in the coarse grid problem.

In the following we will consider experiments on solving (8.3) where the given problem may (or may not) have absorption and where the preconditioner may be built from an absorptive problem. Without loss of generality we assume that the absorption parameter ξ in (8.3) is non-negative and so we will have two parameters 0 ≤ ξ prob ≤ ξ prec which define absorption in the problem being solved and in the preconditioner. In the following tables we use # to denote the number of iterations for any given methods (e.g. #HRAS for the HRAS method). "Time" denotes the total time (in seconds) for the solution of the problem.

Throughout this section we will be interested in the effect of various scaling of the subdomain diameter and the coarse grid diameter with respect to the wavenumber ω, thus we shall refer to parameters (α, α ) such that H sub ∼ ω-α and H cs ∼ ω-α .

For a given ω, the smaller is α the more (and the smaller) are the subdomains; the smaller is α , the coarser is the coarse grid. 

Illustrations of the theory for conductive media

In this subsection we illustrate the theory in §8.5 by solving problem (8.3) with PEC boundary condition on ∂Ω. We take ξ prob = ω2 and h ∼ ω-3/2 .

In the first experiment (Table 8.1) we set H sub ∼ ω-α , H cs ∼ ω-α for various α = α and ξ prob = ω2 = ξ prec and use generous overlap (δ ∼ H sub ). We compare the performance of AS, RAS and HRAS. The results in Table 8.1 give the iteration numbers for the two-level methods, with the one-level methods in brackets. The sizes of the fine grid problem and the subdomain and coarse grid problems, solved in the preconditioners in Table 8.1, are given in Table 8.2

In Table 8.1 we see that RAS is always superior to AS as expected, and the hybrid version (HRAS) is superior to both additive methods. When α = α = 1 (which corresponds to the optimal case described underneath Theorem 8.27) the coarse grid solve is bringing down the iteration count noticeably. When α = α = 0.8 it is having little effect. For a given ω, the number of iterations of the additive versions seems to improve a little as α and α are reduced, but we should note (Table 8.2) that the problems being solved sometimes get a little smaller as α, α are reduced. Indeed, the size of the global matrix, which should depend just on the wavenumber ω, varies also for different α: this is due to the fact that we modify the number of points in each direction to be an exact multiple of the number of subdomains in that direction, so as to have smooth cubes as subdomains. In Table 8 has not yet reached stability. Indeed, the theory in Theorems 8.27 and 8.29 covers only the AS case and proves stability asymptotically as ω → ∞.

Because our parallel code solves each subdomain problem on an individual processor and H sub ∼ ω-α , a too large number of processors is required when α is close to 1 and ω increases (for α = 1, we have N sub = ω3 ). Thus relatively small values of ω are presented in Table 8.1. In Table 8.3 we present more results for this example with α = 1 and α = 0.8, 0.6, so that there are fewer subdomains in this case. However note that α = 0.6 for k = 40 gives too large subdomain problems considering the generous overlap and the memory requirement for this test was too high. Again, RAS is superior to AS, and the hybrid version HRAS is superior to both additive methods. Comparing the results for α = 0.8 of Table 8.3 with the ones of Table 8.1 (the common lines are for ω = 10, 20), we see that α = 1, which corresponds to a finer coarse grid, gives better iteration counts than α = 0.8.

In the experiment in Table 8.4 we extend the one in Table 8.1, exploring the effect of reducing the overlap to minimal (δ ∼ 2h). We choose the best case in Table 8.1, namely (α, α ) = (0.8, 0.8). The number of iterations with minimal overlap is worse than the one with generous overlap, but the method still performs well: the number of iterations grows slightly with ω. We see that this time, with respect to the same case in Table 8.1, the coarse grid solve has a larger effect on the iteration count (in brackets we report the iteration count of the one-level method).

Finally, keeping the problem with ξ prob = ω2 and PEC boundary conditions on ∂Ω, we test the use of impedance transmission conditions on ∂Ω \ ∂Ω in the local solves. We take an overlap δ ∼ 2h and (α, α ) = (0.8, 0.8). The results in Table 8.5 show that impedance transmission conditions improve the iteration counts. Moreover the hybrid versions (HRAS and ImpHRAS) are superior to the additive versions (RAS and ImpRAS), and to the onelevel preconditioners. 

Lower absorption with impedance boundary conditions

In this subsection we solve problem (8.3) with impedance boundary conditions on ∂Ω and also as transmission conditions on ∂Ω \ ∂Ω in the local solves. We consider absorption ξ prob = ω. We take h ∼ ω-3/2 and overlap δ ∼ 2h.

We set H sub ∼ ω-α , H cs ∼ ω-α with (α, α ) = (0.8, 0.8), and examine preconditioners built with ξ prec = ξ prob = ω or with higher absorption ξ prec = ω2 . We report the results in Table 8.6. We see that when ω increases the iteration count of the one-level method deteriorates much faster than the two-level methods. Moreover the hybrid version (ImpHRAS) is always superior to the additive version (ImpRAS). The iteration counts with the same level of absorption in the problem and in the preconditioner (above) are generally better than the ones with higher absorption in the preconditioner (below). The iteration numbers may be improved by separating the coarse grid diameter from the subdomain diameter, making the coarse grid finer, for instance taking α = 1. α = 0.6, α = 0.9 8.7 -ImpHRAS and the corresponding one-level method for δ ∼ 2h, ξ prob = 0, impedance boundary condition on ∂Ω, degree 1 elements and h ∼ ω-3/2 , ξ prec = ω (we report also the execution time for GMRES in parentheses).
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Maxwell's equations in non-conductive media

In this subsection we solve the pure Maxwell problem without absorption, i.e. ξ prob = 0, and with impedance boundary conditions on ∂Ω. We take an overlap δ ∼ 2h.

Results for degree 1 curl-conforming finite elements with h ∼ ω-3/2 and with ξ prec = ω are given in Table 8.7, for two choices of (α, α ), with α + α = 3/2. For this relation between α and α the methods are close to being load balanced in the sense that the coarse grid and subdomain problem sizes are very similar (see §7.4.3 in the Helmholtz Chapter). Out of the methods tested, the 2-level method (ImpHRAS) with (α, α ) = (0.6, 0.9) gives the best iteration count, but is more expensive. The method (α, α ) = (0.7, 0.8) is faster in time but its iteration count grows more quickly, so its advantage will diminish as ω increases further.

In Table 8.8 we repeat the same experiment but switching off the absorption also in the preconditioner, i.e. putting ξ prec = 0. We observe that the resulting iteration counts are almost identical to the ones with absorption ξ prec = ω.

Finally, in Table 8.9 we repeat the experiment with ξ prec = ω for degree 2 curlconforming finite elements, considering a fixed number g = 20 of grid-points per wavelength, i.e. h ∼ 2π/(g ω). Here we take H sub ∼ (g ω/(2π)) -α , H cs ∼ (g ω/(2π)) -α and the methods are close to being load balanced when α + α = 1. We obtain quite good iteration counts for the two-level preconditioner.

Note that in the current implementation a sequential direct solver on one processor is used to factorize the coarse problem matrix, which is clearly a limiting factor for the scalability of the algorithm. The timings could be significantly improved by using a distributed direct solver, or by adding a further level of domain decomposition for the coarse problem solve. α = 0.6, α = 0.9 8.9 -ImpHRAS and the corresponding one-level method for δ ∼ 2h, ξ prob = 0, ξ prec = ω, impedance boundary condition on ∂Ω, degree 2 elements and h ∼ 2π/(g ω), H sub ∼ (g ω/(2π)) -α , H cs ∼ (g ω/(2π)) -α .

k
Chapter 9

Perspectives

Quite extensive numerical experiments about the two-level preconditioners for Maxwell's equations have been carried out in Chapter 8, but still we need to test their performance when applied to more realistic configurations. Not only we should consider more general geometries, starting for instance with waveguides, but also problems with heterogeneous coefficients. A particularly interesting test case would be the MEDIMAX problem with a model of the human head inside the imaging chamber: the tissues of the brain are indeed highly heterogenous. The absorption in this problem is given naturally by the complexvalued electric permittivity of these tissues: the imaginary part is typically of the same order as the real part.

For the Helmholtz equation we have compared two different definitions of coarse space: the DtN coarse space and the grid coarse space. Also this comparison should be extended to heterogeneous test cases. Moreover, both for the Helmholtz problem in three dimensions and the Maxwell problem we could try to rise further the frequency to test robustness for higher frequencies. The problem is that the constraint h ∼ ω-3/2 results in very large problems: in the considered experiments, ω = 40 gives for Helmholtz around 20 million complex-valued unknowns, for Maxwell 130 millions. Thus we should perform new tests relaxing the constraint on the mesh size h with respect to ω.

For what concerns the convergence analysis, note that a complete theory for the DtN coarse space is missing. For the grid coarse space for the Maxwell problem, we could try to extend the theory in Chapter 8 to the following cases: impedance boundary conditions on ∂Ω (see Remark 8.13); impedance transmission conditions in the local solves, following the very recent work [START_REF] Chung | Domain Decompositon with local Impedance conditions for the Helmholtz equation[END_REF] about the Helmholtz problem; problem with heterogeneous coefficients. Currently we are trying to cast the analysis in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] and our Maxwell analysis in a common abstract framework, in order to state a more general fictitious space lemma (see the references at the end of §7.2) that is suited to wave propagation problems. In this way we could design a new robust coarse space by adapting what is done for positive definite problems in [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF]Chapter 7].

Résumé. Les équations de Maxwell en régime harmonique comportent plusieurs difficultés lorsque la fréquence est élevée. On peut notamment citer le fait que leur formulation variationnelle n'est pas définie positive et l'effet de pollution qui oblige à utiliser des maillages très fins, ce qui rend problématique la construction de solveurs itératifs efficaces. Ici nous proposons une stratégie de solution précise et rapide, qui associe une discrétisation par des éléments finis d'ordre élevé à des préconditionneurs de type décomposition de domaine. Les éléments finis d'ordre élevé permettent, pour une précision donnée, de réduire considérablement le nombre d'inconnues du sytème linéaire à résoudre. Ensuite, des méthodes de décomposition de domaine sont employées comme préconditionneurs du sytème linéaire pour le solveur itératif : le problème défini sur le domaine global est décomposé en des problèmes plus petits sur des sous-domaines, qui peuvent être résolus en parallèle et avec des solveurs directs robustes. Cependant la conception, l'implémentation et l'analyse des deux méthodes sont assez difficiles pour les équations de Maxwell. Les éléments finis adaptés à l'approximation du champ électrique sont les éléments finis H(rot)-conformes ou d'arête. Ici nous revisitons les degrés de liberté classiques définis par Nédélec, afin d'obtenir une expression plus pratique par rapport aux fonctions de base d'ordre élevé choisies. De plus, nous proposons une technique pour restaurer la dualité entre les fonctions de base et les degrés de liberté. Nous décrivons explicitement une stratégie d'implémentation qui a été appliquée dans le langage spécialisé et open source FreeFem++. Dans une deuxième partie, nous nous concentrons sur les techniques de préconditionnement du système linéaire résultant de la discrétisation par éléments finis. Nous commençons par la validation numérique d'un préconditionneur à un niveau, de type Schwarz avec recouvrement, avec des conditions de transmission d'impédance entre les sous-domaines. Ensuite, nous étudions comment des préconditionneurs à deux niveaux, analysés récemment pour l'équation de Helmholtz, se comportent pour les équations de Maxwell, des points de vue théorique et numérique. Nous appliquons ces méthodes à un problème à grande échelle qui découle de la modélisation d'un système d'imagerie micro-onde, pour la détection et le suivi des accidents vasculaires cérébraux. En effet, la précision et la vitesse de calcul sont essentielles dans cette application.

Mots-clés : équations de Maxwell en régime harmonique, éléments finis d'ordre élevé, éléments d'arête, éléments finis H(rot)-conformes, décomposition de domaine, préconditionneurs de Schwarz, préconditionneurs à deux niveaux, grille grossière, équation de Helmholtz, calcul haute performance, FreeFem++, imagerie micro-onde.

Abstract. The time-harmonic formulation of Maxwell's equations presents several difficulties when the frequency is large, such as the sign-indefiniteness of their variational formulation, the pollution effect which entails particularly fine meshes, and the consequent problematic construction of efficient iterative solvers. Here we propose a precise and efficient solution strategy that couples high order finite element discretizations with domain decomposition preconditioners. High order finite elements methods make it possible, for a given precision, to reduce significantly the number of unknowns of the algebraic linear system to be solved. Domain decomposition methods are then used as preconditioners for the iterative solver for the linear system: the problem defined on the global domain is decomposed into smaller problems on subdomains, which can be solved concurrently and using robust direct solvers. Nevertheless, the design, implementation and analysis of both these methods are particularly challenging for Maxwell's equations. Finite elements suited for the approximation of the electric field are the curl-conforming (or edge) finite elements. Here, we revisit the classical degrees of freedom defined by Nédélec, in order to obtain a new more friendly expression in terms of the chosen high order basis functions. Moreover, we propose a general technique to restore duality between degrees of freedom and basis functions. We explicitly describe an implementation strategy, which we embedded in the open source domain specific language FreeFem++. In the second part, we focus on the preconditioning of the system resulting from the finite element discretization, starting with a numerical validation of a one-level overlapping Schwarz preconditioner, with impedance transmission conditions between subdomains. Then we investigate how two-level preconditioners recently analyzed for the Helmholtz equation work in the Maxwell case, both from the theoretical and numerical points of view. We apply these methods to the large scale problem arising from the modeling of a microwave imaging system, for the detection and monitoring of brain strokes. In this application accuracy and computing speed are indeed of paramount importance.

Keywords: time-harmonic Maxwell's equations, high order finite elements, curl-conforming finite elements, edge elements, domain decomposition, Schwarz preconditioners, two-level preconditioners, coarse space, sign-indefinite problems, Helmholtz equation, high performance computing, FreeFem++, microwave imaging.
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 12 Figure 1.2 -A decomposition of the computational domain into 128 subdomains.
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 901 Fig. 9.0.1 Typical waveguiding structures.
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 21 Figure 2.1 -Typical waveguiding structures.

Figure 2 . 2 -

 22 Figure 2.2 -Rectangular waveguide configuration with wave propagation in the z direction.The physical domain D is in thin line, with dashed style for those boundaries that should be extended to infinity. The computational domain Ω is in thick line, with dashed style for those boundaries where suitable absorbing conditions are imposed.
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 23 Figure 2.3 -Simplified two-dimensional configuration with wave propagation in the x direction. The physical domain D is in thin line, with dashed style for those boundaries that should be extended to infinity. The computational domain Ω is in thick line, with dashed style for those boundaries where suitable absorbing conditions are imposed.
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 31 Figure 3.1 -The oriented tetrahedron v = {n 1 , n 2 , n 3 , n 4 } with oriented p-faces, 0 < p < 3. The boundary of the facef 1 = {n 1 , n 3 , n 2 } is ∂(f 1 )= -e 1 -e 5 + e 6 . It can be identified with the vector (-1, 0, 0, 0, -1, 1) collecting the coefficients in front of each edge, which gives the first line of the incidence matrix R for v.
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 31 For the tetrahedron in Figure3.1, the three incidence matrices are

Chapter 3 .Figure 3 . 2 -

 332 Figure 3.2 -For d = 3 and r = 3, the edges connecting the points of T 3 (v) (left), the holes in thick line (center), the small d-simplices in the exploded configuration (right). The small 0-simplices are nothing else than the nodes of T 3 (v). Starting from the nodes of T 3 (v), we may construct 60 small edges, 40 small faces, 10 small tetrahedra.
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 38 Generators for W 1 h,r (v)). Whitney 1-forms of high order r = k + 1 (where k ≥ 0) in a volume v are the λ k w e , for all small edges {k, e}, with k ∈ I(d + 1, k) and e an edge of v. The w e are the Whitney 1-forms of polynomial degree 1 as stated in Definition 3.4 (p = 1), corresponding to (3.1).
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 39 For any face f we have e∈E ∂ f,e λ f -e w e = 0, (3.6) Proof. Replacing w e by its expression given in Definition 3.4 we get e ∂ f,e λ f -e w e = n,e λ f -e λ e-n ∂ f,e ∂ e,n dw n . This equals 0 since for a fixed n vertex of f , λ f -e λ e-n is the same for all e in ∂f and (∂ f,e )(∂ e,n ) = 0 (Proposition 3.2).

3. 7 .Figure 3 . 3 -

 733 Figure 3.3 -For the tetrahedron in the figure, the edges are e 1 = {1, 2}, e 2 = {1, 3}, e 3 = {1, 4}, e 4 = {2, 3}, e 5 = {2, 4}, e 6 = {3, 4}, the faces aref 1 = {2, 3, 4}, f 2 = {1, 3, 4}, f 3 = {1, 2, 4}, f 4 = {1, 2,3} (note that the face f i is the one opposite the node i).
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 3 [START_REF] Bossavit | A rationale for 'edge-elements' in 3-D fields computations[END_REF] (Generators, dofs, 'dualizing' matrix for d = 3, r = 2). Recalling Definition 3.8 of generators, for r = 2 the product of barycentric coordinates λ k reduces to one barycentric coordinate because each multi-index k ∈ I(4, 1) has just one nonzero component, equal to 1. If the edges and the faces of a tetrahedron are numbered as in Figure3.3, the basis functions arew j = λ nr j w es j , 1 ≤ j ≤ 20,where the 12 edge-type basis functions have(r j ) 12 j=1 = (1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 3, 4) and (s j ) 12 j=1 = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6), and the 8 face-type basis functions have (r j ) 20 j=13 = (4, 3, 4, 3, 4, 2, 3, 2) and (s j ) 20 j=13 = (4, 5, 2, 3, 1, 3, 1, 2).
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 832 70 • 10 -3 7.42 • 10 -5 5.71 • 10 -6 h 2.07 • 10 -1 6.10 • 10 -3 3.46 • 10 -4 5.86 • 10 -6 3.31 • 10 -7 h 9.61 • 10 -2 1.50 • 10 -3 4.32 • 10 -5 3.67 • 10 -7 1.04 • 10 -Numerical errors for the chosen values of h and r = k + 1.

  h-convergence of the numerical error.

  k-convergence of the numerical error.
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 34 Figure 3.4 -Convergence orders for ω = ω 3 .
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 41 Figure 4.1 -Orientation of edges ('filled' arrows) and choice of 2 edges ('empty' arrows) of the face shared by two adjacent tetrahedra using the numbering of mesh nodes.
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 2242 Figure 4.2 -Using global numbers to examine edges and faces, the 'structure of orientation' of T = {12, 32, 42, 22} is the one of T = {1, 2, 3, 4} up to a rotation.

  [i][0], ii1 = Element::nvedge[i][1]; int i0 = perm[ii0]; int i1 = perm[ii1]; int iEdge = edgesMap[(i0+1)*(i1+1)]; // i of the edge [i0,i1] p20[i*2] = iEdge*2; p20[i*2+1] = iEdge*2+1; } for(int j=0; j<4; ++j) // face dofs { int jFace = perm[j]; p20[12+j*2] = 12+jFace*2; p20[12+j*2+1] = 12+jFace*2+1; } 4.3. The interpolation operator 57 Then, we will save the linear combinations of the w , with coefficients given by the j-th column of V -1 (see Example 3.22), in the final basis functions wP 20 [j] , thus in duality with the chosen dofs: wtilde[p20[0]] = +4*w[0]-2*w[1]-4*w[16]+2*w[17]-4*w[18]+2*w[19]; wtilde[p20[1]] = -2*w[0]+4*w[1]-2*w[16]-2*w[17]-2*w[18]-2*w[19]; wtilde[p20[2]] = +4*w[2]-2*w[3]-4*w[14]+2*w[15]+2*w[18]-4*w[19]; wtilde[p20[3]] = -2*w[2]+4*w[3]-2*w[14]-2*w[15]-2*w[18]-2*w[19]; wtilde[p20[4]] = +4*w[4]-2*w[5]+2*w[14]-4*w[15]+2*w[16]-4*w[17]; wtilde[p20[5]] = -2*w[4]+4*w[5]-2*w[14]-2*w[15]-2*w[16]-2*w[17]; wtilde[p20[6]] = +4*w[6]-2*w[7]-4*w[12]+2*w[13]+2*w[18]-4*w[19]; wtilde[p20[7]] = -2*w[6]+4*w[7]-2*w[12]-2*w[13]+4*w[18]-2*w[19]; wtilde[p20[8]] = +4*w[8]-2*w[9]+2*w[12]-4*w[13]+2*w[16]-4*w[17]; wtilde[p20[9]] = -2*w[8]+4*w[9]-2*w[12]-2*w[13]+4*w[16]-2*w[17]; wtilde[p20[10]] = +4*w[10]-2*w[11]+2*w[12]-4*w[13]+2*w[14]-4*w[15]; wtilde[p20[11]] = -2*w[10]+4*w[11]+4*w[12]-2*w[13]+4*w[14]-2*w
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 8354 Figure 5.4 -Influence of the polynomial degree r = k + 1 on the spectrum of the ORASpreconditioned matrix for ω = ω 2 , N sub = 2, δ ovr = 2h.
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 1355 Figure 5.5 -Influence of the polynomial degree r = k + 1 on the spectrum of the OASpreconditioned matrix for ω = ω 2 , N sub = 2, δ ovr = 2h.
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 56578858859510511512513 Figure 5.6 -Influence of the angular frequency ω on the spectrum of the ORASpreconditioned matrix for k = 2, N sub = 2, δ ovr = 2h.
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 4123514515 Figure 5.14 -Convergence history of GMRES preconditioned with ORAS (left) and OAS (right), for different angular frequencies ω (k = 2, N sub = 2, δ ovr = 2h).
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 516 Figure 5.16 -Convergence history of GMRES preconditioned with ORAS (left) and OAS (right), for different overlap sizes δ ovr (k = 2, ω = ω 2 , N sub = 2).
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 2 2 of dimensions a = 0.01016 m, b = 0.00508 m, and c = 0.1004 m. The physical parameters are: ε = 8.85 • 10 -12 F m -1 , µ = 1.26 • 10 -6 H m -1 and σ = 0.15 S m -1

  2 • β 3 = 1 (to avoid the pollution effect), taking β = ω β √ µε, with ω β = 32 GHz. Then the dispersion relation (2.37) gives ω = β 2 + (mπ/a) 2 + (nπ/b) 2 (where we choose m = 1, n = 0), and we get ω = ω/ √ µε.
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 517 Figure 5.17 -The norm of the real part of the solution for σ = 0.15 S m -1 , with two sections of the waveguide.
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 806 Application to brain microwave imaging (a) Operating principle. (b) Imaging system prototype.(c) Computational domain.
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 61 Figure 6.1 -The microwave imaging system prototype (courtesy of EMTensor GmbH) and the corresponding computational domain.
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 62 Figure 6.2 -A representation of the diagnosis technology (courtesy of EMTensor GmbH).
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 63 Figure 6.3 -The computational domain with the (red) metallic boundary Γ w and the ports Γ i , i = 1, . . . , 160, of the waveguides, on which impedance boundary conditions are imposed.
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 64 Figure 6.4 -The decomposition of the computational domain into 128 subdomains.
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 65 Figure 6.5 -The normalized magnitude (top) and phase (bottom) of the transmission coefficients computed with the simulation and measured experimentally.
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 66 Figure 6.6 -Slice of the imaging chamber, showing the non-dissipative plastic-filled cylinder and some isolines of the norm of the real part of the total field E j .
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 69 Figure 6.9 -Strong scaling experiment. Colors indicate the fraction of the total time spent in the setup and solution phases. The number of GMRES iterations is reported in parentheses.
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 71 Figure 7.1 -Decomposition into several subdomains.
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  4δ ∼ 2h, ξ prob = ξ prec = ω2 , PEC boundary condition on ∂Ω, (α, α ) = (0.8, 0.8).

Table 3 .

 3 1 -Total number of dofs for the chosen values of h and r = k + 1.

	h 1	17	58	123	212	325
	h 2	33	114	243	420	645
	h 3	65	226	483	836	1285
	h 4	129	450	963	1668 2565
	h 5	450	1668 3654 6408 9930

  Then the weak formulation (2.41) of the problem is naturally transcribed as:

	fespace Vh(Th,Edge03d);	Vh<complex> [Ex,Ey,Ez], [vx,vy,vz];
	macro Curl(ux,uy,uz) [dy(uz)-dz(uy),dz(ux)-dx(uz),dx(uy)-dy(ux)] // EOM
	macro Nvec(ux,uy,uz) [uy*N.z-uz*N.y,uz*N.x-ux*N.z,ux*N.y-uy*N.x] // EOM
	problem waveguide([Ex,Ey,Ez], [vx,vy,vz], solver=sparsesolver) =
	int3d(Th)(Curl(Ex,Ey,Ez)'*Curl(vx,vy,vz))
	-int3d(Th)(gamma^2*[Ex,Ey,Ez]'*[vx,vy,vz])
	+ int2d(Th,in,out)(1i*eta*Nvec(Ex,Ey,Ez)'*Nvec(vx,vy,vz))
	-int2d(Th,in)([vx,vy,vz]'*[Gix,Giy,Giz])
	+ on(guide,Ex=0,Ey=0,Ez=0);

  Figure 5.2 -Edges numbering for a domain Ω decomposed into two overlapping subdomains Ω 1 , Ω 2 (above), and edges numbering for Ω 1 and Ω 2 (below). The non overlapping decomposition into Ω 1 , Ω 2 is used to construct the matrices R 1 , R 2 .

						Ω 1					Ω 2					
						4		8		12		16				
			Ω	3	2	7	6	11	10	15	14	17			
					1		5			9		13				
					Ω 1							Ω 2				
			Ω 1										Ω 2			
			4		8		12				4		8		12	
	Ω 1	3	2	7	6	11	10	13	Ω 2	3	2	7	6	11	10	13
		1			5		9			1		5		9		

Table 5 .

 5 

		282	179 5(10) 1.04e-1(1.38e+1)	0(4)	0(12)
	1	884	559 6(15) 1.05e-1(1.63e+1)	0(8)	0(40)
	2 1806	1138 6(17) 1.05e-1(1.96e+1)	0(12)	0(84)
	3 3048	1946 6(21) 1.05e-1(8.36e+2)	0(16)	0(144)
	4 4610	2950 6(26) 1.05e-1(1.57e+3)	0(20)	0(220)

1 -Influence of the polynomial degree r = k +1 on the convergence of ORAS(OAS) preconditioner for ω = ω 2 , N sub = 2, δ ovr = 2h.

Table 5 .

 5 2 -Influence of the angular frequency ω on the convergence of ORAS(OAS) preconditioner for k = 2, N sub = 2, δ ovr = 2h.

	ω 1	339	232 5(11) 2.46e-1(1.33e+1)	0(6)	0(45)
	ω 2 1806	1138 6(17) 1.05e-1(1.96e+1)	0(12)	0(84)
	ω 3 7335	4068 9(24) 3.03e-1(2.73e+1)	0(18)	0(123)
		N sub	N iter	max|λ -(1, 0)|	#{λ ∈ C \ D1 } #{λ ∈ ∂D 1 }
		2	6(17) 1.05e-1(1.96e+1)	0(12)	0(84)
		4	10(27) 5.33e-1(1.96e+1)	0(38)	0(252)
		8	19(49) 7.73e-1(1.96e+1)	0(87)	0(588)

Table 5 .

 5 3 -Influence of the number of subdomains N sub on the convergence of ORAS(OAS) preconditioner for k = 2, ω = ω 2 , δ ovr = 2h.

Table 5 .

 5 

		10(20) 1.95e+1(1.96e+1)	3(12)	0(39)
	2h	6(17) 1.05e-1(1.96e+1)	0(12)	0(84)
	4h	5(14) 1.06e-1(1.96e+1)	0(12)	0(174)

[START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF] 

-Influence of the overlap size δ ovr on the convergence of ORAS(OAS) preconditioner for k = 2, ω = ω 2 , N sub = 2.

Table 5 .

 5 [START_REF] Arnold | Multigrid in H(div) and H(curl)[END_REF] -Results in 3d, σ = 0.15 S m -1 : influence of the polynomial degree r = k + 1 (for N sub = 2), and of the number of subdomains N sub (for k = 1), on the convergence of ORAS(OAS) preconditioner (β = ω β √ µε with ω β = 32 GHz, δ ovr = 2h).

	Chapter 5. Schwarz domain decomposition preconditioners
	k	N dofs N iter	N sub	N dofs	N iter
	0 62283 8(40)	2	324654	8(70)
	1 324654 8(70)	4	324654 11(106)
	2 930969 8(99)	8	324654 17(168)
	k	N dofs N iter	N sub	N dofs	N iter
	0 62283 7(40)	2	324654	8(67)
	1 324654 8(67)	4	324654 13(114)
	2 930969 8(97)	8	324654 23(201)

Table 5 . 6

 56 

-Results in 3d, σ = 0 S m -1 : influence of the polynomial degree r = k + 1 (for N sub = 2), and of the number of subdomains N sub (for k = 1), on the convergence of ORAS(OAS) preconditioner (β = ω β √ µε with ω β = 32 GHz, δ ovr = 2h).
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Table 6 .

 6 1 -Total number of unknowns, time to solution (seconds) and relative error on the computed S ij with respect to the reference solution for edge finite elements of degree 1 and 2 on different meshes.

	Degree 1		Degree 2	
	# unknowns time (s) error	# unknowns time (s) error
	2 373 214	22 0.384	1 508 916	39 0.243
	8 513 191	53 0.184	5 181 678	62 0.099
	21 146 710	130 0.117	12 693 924	122 0.057
	42 538 268	268 0.083	26 896 130	236 0.036
	73 889 953	519 0.068	45 781 986	396 0.019

Table 6 .

 6 Chapter 6. Application to brain microwave imaging N sub Setup time Solve time N iter Speedup 2 -Strong scaling experiment. For N sub subdomains, timings (in seconds) of the setup and solution phases, number of iterations N iter , and speedup.

	256	293.36	73.06	43	1
	512	95.11	36.92	53	2.8
	1024	35.13	20.55	64	6.6
	2048	25.89	12.77	81	9.5

3.1

, where the chamber is filled with a ho-

Table 7 .

 7 level grid CS n CS DtN CS 1 -(d=2) Number of iterations (and coarse space size n CS ) for the one-level preconditioner and the two-level preconditioners with the grid coarse space/DtN coarse space, with H sub = H cs ∼ ω-α , ξ prec = ωβ .

	n CS

Table 7 .

 7 2 -(d=2) Number of iterations (and coarse space size n CS ) for the two-level preconditioners with the grid coarse space/DtN coarse space forcing similar n CS , with

Table 7 .

 7 3 -(d=3) Number of iterations (and coarse space size n CS ) for the one-level preconditioner and the two-level preconditioners with the grid coarse space/DtN coarse space, with H sub ∼ ω-α , H cs ∼ ω-α , ξ prec = ω.

				level grid CS	n CS	DtN CS	n CS
		39304	27	25	12	1331	14	316
		704969	64	39	17	9261	31	1240
		5000211	125	55	21	29791	54	2482
		16194277 216	74	29	68921	80	4318
					α = 0.6, α = 0.9
	ω	n	N sub 1-level grid CS	n CS	DtN CS	n CS
		39304	27	25	15	512	14	316
		912673	216	61	24	3375	41	2946
		4826809	343	73	34	10648	65	6226
		16194277 729	98	48	21952	108	13653
					α = 0.7, α = 0.8
	ω	n	N sub 1-level grid CS	n CS	DtN CS	n CS
		46656	125	34	19	343	11	896
		912673	512	73	35	1331	18	4567
		5929741 1000	103	57	4096	65	12756
		17779581 2197	139	89	8000	116	30603
					α = 0.8, α = 0.7
	ω	n	N sub 1-level grid CS	n CS	DtN CS	n CS
		50653	216	39	23	216	19	1354
		1030301 1000	46	86	729	23	7323
		5929741 3375	137	116	1331	21	26645
		28372625 6859	189	200	2744	27	54418

  Lemma 8.7. If Ω is either a bounded C 1,1 domain or a convex polyhedron, then Assumption 8.6 holds. If Assumption 8.6 holds, the bound (8.20) from the Lax-Milgram theorem immediately implies the following corollary. Corollary 8.8. If Assumption 8.6 holds, and E is the solution to either the BVP (8.8) or the adjoint BVP (8.13) with F

The bound

(8.21) 

can be viewed as a rigorous expression of the idea that taking a derivative of a solution of the PDE (8.6) incurs a power of ω. A quite long and involved proof shows that Assumption 8.6 holds in the following situations.

  holds, and (iii) Two particular cases of Theorem 8.27 are 1. When |ξ| ∼ ω2 (maximum absorption) and δ ∼ H cs (generous overlap), Condition (8.52) is satisfied with H sub ∼ H cs ∼ ω-1 , and then the bound (8.53) implies GMRES will converge with the number of iterations independent of the wavenumber. 2. When |ξ| ∼ ω and δ ∼ H cs , Condition (8.52) is satisfied with H sub ∼ ω-2 , H cs ∼ ω-3 , and then the bound (8.53) implies GMRES will converge with the number of iterations growing at most like ω3 as ω → ∞.Using coercivity of the adjoint form in Lemma 8.4, we can obtain the following result about right preconditioning, however in the inner product induced by D -1 ω . From this, the analogue of Theorem 8.27, with D ω replaced by D -1 ω , follows.

		m ≥ C	ω2 |ξ|	3	1 +	H cs δ	2	log	12 a	,	(8.53)
	then				r m D ω r 0 D ω ≤ a				
	for any 0 < a < 1.									
	Theorem 8.28 (Bounds for right preconditioning).				
	(i)	A ξ M -1 ξ,AS D -1 ω		ω2 |ξ|	for all H		

cs , H sub .

(ii) With the same assumptions as Part (ii) of Theorem 8.26, given ω0 > 0 and provided Condition (8.52) holds,

Table 8 .

 8 8. Two-level preconditioners for Maxwell's equations 1 -Iteration numbers for the two-level preconditioners (one-level preconditioners) with δ ∼ H sub , ξ prob = ξ prec = ω2 and PEC boundary condition on ∂Ω. ×10 5 1000 4.6 ×10 2 7.9×10 3 3.1 ×10 5 343 9.1 ×10 2 2.9×10 3 15 1.5 ×10 6 3375 4.6 ×10 2 2.6×10 4 2.1 ×10 6 1331 1.5 ×10 3 1.0 ×10 4 20 1.2 ×10 7 8000 1.5 ×10 3 6.0×10 4 9.9 ×10 6 2744 3.6 ×10 3 2.1 × 10 4 α = 0.8 = α ω n N sub n sub n cs 10 3.4 ×10 5 216 1.6 ×10 3 1.9 ×10 3 15 1.9 ×10 6 512 3.7 ×10 3 4.2 ×10 3 20 7.1 ×10 6 1000 7.1 ×10 3 7.9 ×10 3

				α = 1 = α			α = 0.9 = α	
		ω	#AS	#RAS #HRAS	#AS #RAS #HRAS
		10	53(57) 26(37)	12	41(42) 23(25)	13
		15	59(64) 28(42)	12	46(48) 26(32)	13
		20 76(105) 29(57)	17	74(84) 34(43)	19
						α = 0.8 = α		
				ω	#AS #RAS #HRAS	
				10 37(38) 21(21)	13	
				15 37(38) 22(22)	14	
				20 62(63) 31(31)	20	
			α = 1 = α				α = 0.9 = α
	ω	n	N sub	n sub		n cs	n	N sub	n sub	n cs
	10 4.6								

Table 8 .

 8 2 -Sizes of problems and number of subdomains for methods in Table8.1.

Table 8 .

 8 .1 we see that RAS appears close to being stable with respect to ω but that AS 3δ ∼ H sub , ξ prob = ξ prec = ω2 , PEC boundary condition on ∂Ω, α = 1.

				α = 0.8, α = 1	
	ω	n	N sub	n cs	#AS #RAS #HRAS
	10 3.4 ×10 5 216 7.9 ×10 3	37	20	11
	20 7.1 ×10 6 1000 6.0 ×10 4	57	24	11
	30 4.1 ×10 7 3375 2.0 ×10 5	53	32	16
	40 2.0 ×10 8 6859 4.6 ×10 5	53	33	16
				α = 0.6, α = 1	
	ω	n	N sub	n cs	#AS #RAS #HRAS
	10 2.6 ×10 5	27	7.9 ×10 3	27	15	10
	20 6.3 ×10 6 216 6.0 ×10 4	50	19	11
	30 3.3 ×10 7 343 2.0 ×10 5	40	20	12
			ω	#AS	#RAS	
			10 52 (58) 34 (39)	
			15 57 (65) 39 (47)	
			20 61 (71) 43 (51)	

Table 8 .

 8 

Table 8 .

 8 Chapter 8. Two-level preconditioners for Maxwell's equations × 10 5 216 1.8 × 10 3 34 23 39 20 7.1 × 10 6 1000 7.9 × 10 3 43 31 51 30 4.1 × 10 7 3375 2.5 × 10 4 47 34 59 40 1.3 × 10 8 6859 5.1 × 10 4 × 10 5 216 1.8 × 10 3 27 20 32 20 7.1 × 10 6 1000 7.9 × 10 3 35 28 37 30 4.1 × 10 7 3375 2.5 × 10 4 39 32 42 40 1.3 × 10 8 6859 5.1 × 10 4 42 35 43 5δ ∼ 2h, ξ prob = ξ prec = ω2 , PEC boundary condition on ∂Ω, (α, α ) = (0.8, 0.8). × 10 5 216 1.8 × 10 3 40 29 58 20 7.1 × 10 6 1000 7.9 × 10 3 83 60 125 30 4.1 × 10 7 3375 2.5 × 10 4 123 90 >200 40 1.3 × 10 8 6859 5.1 × 10 4

	Classical local solves

Table 8 .

 8 6δ ∼ 2h, ξ prob = ω, impedance boundary condition on ∂Ω, (α, α ) = (0.8, 0.8).

Table 8 .

 8 8 -ImpHRAS and the corresponding one-level method for δ ∼ 2h, ξ prob = 0, impedance boundary condition on ∂Ω, degree 1 elements and h ∼ ω-3/2 , ξ prec = 0 (we report also the execution time for GMRES in parentheses).

		n	N sub 2-level	n cs		Time	1-level	Time
	10 2.6 × 10 5	27	20	2.9 × 10 3	17.1(1.8)	37	13.7(2.6)
	15 1.5 × 10 6 125	26	1.0 × 10 4	25.4(3.9)	71	26.5(9.1)
	20 5.2 × 10 6 216	29	2.1 × 10 4	53.0(9.0)	95	60.8(25.9)
	25 1.4 × 10 7 216	33	4.4 × 10 4 145.0(29.6)	107	189.3(90.5)
	30 3.3 × 10 7 343	39	6.9 × 10 4 387.9(132.7)	134	669.4(444.7)
						α = 0.7, α = 0.8
	k	n	N sub 2-level	n cs		Time	1-level	Time
	10 3.1 × 10 5 125	28	1.9 × 10 3	8.2(1.2)	58	7.7(2.0)
	15 1.5 × 10 6 216	39	4.2 × 10 3	19.3(3.7)	82	19.7(7.2)
	20 6.3 × 10 6 512	58	7.9 × 10 3	42.6(10.0)	124	49.1(21.0)
	25 1.4 × 10 7 729	60	1.7 × 10 4	75.1(17.8)	150	98.2(43.0)
	30 3.5 × 10 7 1000	81	2.6 × 10 4 223.5(86.7)	181	320.7(199.0)
						g = 20, α = 0.6, α = 0.6
			ω	n	N sub 2-level	n cs	1-level
			10 1.7 ×10 6 343	30	1.5 ×10 4	85
			20 1.4 ×10 7 1728	33	7.0 ×10 4	158
			30 4.4 ×10 7 3375	34	1.4 ×10 5 >200
						g = 20, α = 0.5, α = 0.5
			ω	n	N sub 2-level	n cs	1-level
			10 1.7 ×10 6 125	28	5.5 ×10 3	66
			20 9.6 ×10 6 343	32	1.5 ×10 4	99
			30 3.7 ×10 7 729	40	3.0 ×10 4	135

Table

  

Note that §5.2 of the SI brochure (8th edition), which defines the International System of Units, states that in English the names of units start with a lower-case letter, even when the symbol for the unit begins with a capital letter.

Thanks to (2.9), it can be proven that E1 • t = E2 • t on S for any tangential direction t. Note that E × n is actually the tangential trace of E, while the tangential component is n ×(E × n) = E -(E • n)n.

Note that the usual notation for the absorption parameter ξ is ε, but in this thesis ε already denotes the electric permittivity; the wavenumber ω is often called k.

A map ϕ : V × V → C over a complex vector space V is sesquilinear if ϕ(x + y, z + w) = ϕ(x, z) + ϕ(x, w) + ϕ(y, z) + ϕ(y, w), and ϕ(ax, by) = ab ϕ(x, y), i.e. it is linear in one variable and semilinear in the other (the Latin prefix sesqui means "one and a half").

L 2 (Ω) .

Remerciements

where we have set α equals each a p β j (x p ) for the right triple (i, p, j) = (i , p , j ). Indeed, a FreeFem++ plugin to introduce a new finite element (represented with a C++ class) should implement (4.3) by specifying the quadrature points, the indices i (dof indices), p (quadrature point indices), j (component indices), which do not depend on the simplex and are defined in the class constructor, and the coefficients α , which can depend on the simplex (if so, which is in particular the edge elements case, the α are defined with the class function set). We report here the code (extracted from the plugin Element_Mixte3d.cpp mentioned before) defining first the indices of (4.3) for the Edge13d finite element, i.e. for d = 3, r = 2. There QFe, QFf are the edge, resp. face, quadrature formulas, and ne=6, nf=4, are the number of edges, resp. faces, of the simplex (tetrahedron); we have

Note that in the code the numberings start from 0, and no more from 1. int i=0, p=0, e=0; // i is l for(e=0; e<(Element::ne)*2; e++) // [START_REF] Bonazzoli | Parallel preconditioners for high-order discretizations arising from full system modeling for brain microwave imaging[END_REF] Then, the coefficients α are defined as follows. We start by writing (4.2) for one edge-type dof, with e = {n 1 , n 2 }:

u j (x p )(x n 2 j -x n 1 j )λ n 1 (x p ) so β j (x p ) = (x n 2 j -x n 1 j )λ n 1 (x p ) and α = a p β j (x p ) = (x n 2 j -x n 1 j ) a p λ n 1 (x p ).

The interpolation operator

Similarly for one face-type dof, with f = {n 1 , n 2 , n 3 }, e = {n 1 , n 2 }:

QFf.n p=1 a p d j=1 u j (x p )(x n 2 j -x n 1 j ) so β j (x p ) = (x n 2 j -x n 1 j ) and α = a p β j (x p ) = (x n 2 j -x n 1 j ) a p . The code that generalizes this calculations for all the dofs is the following, extracted from the function set of the plugin (note that also here we have to pay particular attention to the orientation and choice issues). like a disk and a rectangle (see Figure 5.1), where solutions can be obtained using Fourier series. He proposed an iterative method, called the alternating Schwarz method, which converges to the solution of problem (5.1). It consists in solving the problem alternately in each subdomain, using at the interfaces (∂Ω 1 ∩ Ω 2 and ∂Ω 2 ∩ Ω 1 ) Dirichlet transmission conditions coming from the solution just computed by the neighbour subdomain. More precisely it updates

2

) by:

More than a century later, a small modification by Pierre Louis Lions [START_REF] Lions | On the Schwarz alternating method. I[END_REF] of this algorithm made it suited to parallel architectures, which were becoming more and more available. The parallel Schwarz method solves the subdomain problems concurrently, the only change with respect to the alternating Schwarz method is the iteration index in the second transmission condition:

(5.3)

While the convergence of these methods depends on the underlying partial differential equation (PDE) to be solved, similar methods can be defined for any PDE, their fundamental idea of decomposition and iteration is completely general. They can also be easily extended to a decomposition of the domain Ω into more than two overlapping subdomains Ω s , s = 1, . . . , N sub .

If we look at the algebraic level, considering the linear system Au = f arising from the discretization of the PDE, Theorem 3.5 of [START_REF] Gander | Schwarz methods over the course of time[END_REF] shows that a discretization of the parallel Schwarz method is equivalent to the Restricted Additive Schwarz method (RAS), introduced by Cai and Sarkis [START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF]. To define discrete Schwarz methods, we consider an ordered set N of the unknowns (on the whole domain), and its decomposition N = N sub s=1 N s into the (non disjoint) ordered subsets corresponding to the different overlapping subdomains Ω s . Then one builds the following matrices:

• the restriction matrix R s from Ω to the subdomain Ω s : it is a #N s × #N Boolean matrix whose (i, j) entry equals 1 if the i-th unknown in N s is the j-th one in N ;

• the extension (by zero) matrix from the subdomain Ω s to Ω, which is given by R T s ;

Chapter 8

Two-level preconditioners for Maxwell's equations

This Chapter is based on the forthcoming paper [START_REF] Bonazzoli | Domain Decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption[END_REF] and on [START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF], in collaboration with Victorita Dolean, Ivan G. Graham, Euan A. Spence, and Pierre-Henri Tournier. The preparatory paper [START_REF] Bonazzoli | A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[END_REF] has been submitted to the proceedings of the DD24 International Conference on Domain Decomposition Methods and a preprint is available on arXiv and HAL (<hal-01525438>). 

Properties of the sesquilinear form

In this section we provide the key properties of the sesquilinear form a ξ given in (8.10). This form depends on both parameters ξ and ω, but only the first of these is reflected in the notation. We will assume throughout that |ξ| ω2 . (8.15)

Here the notation A B means that A/B is bounded above by a constant independent of ω, ξ, and mesh diameters h, H sub , H cs (the latter two introduced below). We write A ∼ B when A B and B A.

The continuity result follows from the Cauchy-Schwarz inequality.

for all ω > 0 and v, w ∈ H 0 (curl, Ω). Furthermore, the inequality (8.16) holds with a ξ replaced by a * ξ .

We now give a result about the coercivity of a ξ (•, •). Before stating this result, we need to define ω2 + iξ, taking care to allow ξ to be positive or negative. Indeed, we need to consider both positive and negative ξ since, whichever choice we make for the problem (8.8), the other forms the adjoint problem, and we need estimates on the solutions and sesquilinear forms for both problems (in particular, this is essential for analyzing both left and right preconditioning). Definition 8.2. z(ω, ξ) := ω2 + iξ where the square root is defined with the branch cut on the positive real axis. Note that this definition implies that, when ξ = 0, Im(z) > 0, sign(ξ) Re(z) > 0, and z(ω, -ξ) = -z(ω, ξ).

(8.17)

There exists a constant ρ > 0 independent of ω and ξ such that

for all ω > 0 and v ∈ H 0 (curl, Ω), where Θ = -z/|z|. Furthermore the inequality (8. [START_REF] Bonazzoli | Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations[END_REF])

Proof. Writing z = p + iq and using the definition of a ξ , we have

Therefore

Discrete Helmholtz decomposition and associated results

Recall that H(div, Ω) is defined by

and H 0 (div, Ω) by

(recall that the normal trace is well-defined on H(div, Ω) by, e.g., [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF]Thereom 3.24]). Let V h denote the Raviart-Thomas finite element subspaces of H 0 (div, Ω) of index r based on the fine mesh T h . Let W h denote the subspace of H 1 0 (Ω) consisting of piecewise polynomials of degree r + 1, also on the fine mesh T h . For Ω simply connected, we have the discrete Helmholtz decomposition

see, e.g., [5, §2, in particular Remark 2.1] [85, §7.2.1, in particular Lemma 7.4], where curl h is the L 2 -adjoint of the map curl : Q h → V h , and the decomposition is orthogonal both in L 2 (Ω) and in H(curl, Ω).

We define V 0 H and W 0 H in the same way as V h and W h , but using the coarse mesh {T H }. We also set

where fields on Ω are identified as fields on Ω by extension by zero. We then have the analogue of the decomposition (8.29):

where curl h is the L 2 -adjoint of the map curl :

For fields in curl h V h we have the following Poincaré-Friedrichs inequality from [START_REF] Gopalakrishnan | Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations[END_REF].

Lemma 8.9. (Poincaré-Friedrichs type-inequality [60, Lemma 4.1]) If Ω is polyhedral,

where the omitted constant is independent of h and H sub .

Finally, we recall the following result from, e.g., [60, Equation 4.10] (with a similar result in [5, Lemma 5.2]). Lemma 8.10. If Ω is either a convex polyhedron or C 1,1 then, given q h ∈ curl h V h , there exists a unique field in H 0 (curl, Ω), which we denote by Sq h , such that

The key point from Lemma 8.10 is that although q h is not divergence-free, Sq h provides an approximation to q h that is divergence-free and has the same curl.

Theory of two-level Additive Schwarz methods

The following theory establishes rigorous convergence estimates for the preconditioner (8.26) applied to A ξ . While Sections 8.4.1, 8.4.2, and 8.4.4 are very similar to the Helmholtz theory in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF], Section 8.4.3 is very different, in that we need to use and adapt the arguments of [START_REF] Gopalakrishnan | Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations[END_REF] (see the discussion at the beginning of Section 8.4.3).

Stable splitting and associated results

The first lemma is a "stable splitting" property in the ω-weighted H 0 (curl, Ω) norm.

The next lemma is a kind of converse to Lemma 8.11. Here the energy of a sum of components is estimated above by the sum of the energies. Lemma 8.12. For all choices of v ∈ Q , = 0, . . . , N , we have ). The first step towards extending the theory to the impedance BVP would be to establish a stable-splitting in the norm on H imp (curl, Ω).

Definition of the projection operators and the path towards the bound on the field of values

Now for each = 0, . . . , N , we define linear projection operators T ξ : H 0 (curl, Ω) → Q as follows. For each v ∈ H 0 (curl, Ω), T ξ v is defined to be the unique solution of the equation

Recall from the discussion underneath (8.23) that Q h can be considered as a subspace of H 0 (curl, Ω) by extension by zero, and we can therefore consider T ξ v as an element of H 0 (curl, Ω) with support on Ω . We then define

We will show in Theorem 8.22 below that the matrix representation of T ξ corresponds to the action of the preconditioner (8.26) on the matrix A ξ .

Theory of two-level Additive Schwarz methods
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Our goal is to bound from above the norm of the operator T ξ and from below its field of values (or numerical range)

Note that the field of values is computed with respect to the wavenumber-dependent (•, •) curl,ω inner product.

The upper bound is given by the following theorem.

Theorem 8.14 (Upper bound on the norm of T ξ ).

The next two results are two of the three ingredients we use to obtain a bound on the field of values from below. (The third ingredient is provided in §8.4.3, and the bound is proved in §8.4.4.) Lemma 8.15.

The bound (8.37) 

,ω plus a sum of "remainder" terms R ξ (v h ). Lemma 8.16. For = 0, . . . , N , set

8.4. [START_REF] Arnold | Differential complexes and stability of finite element methods. I. The de Rham complex[END_REF] The key result about the projection operators adapted from [START_REF] Gopalakrishnan | Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations[END_REF] Lemma 8.16 above shows that we can bound the field of values of T ξ from below, provided that we can get good estimates for the remainder terms

It is at this point that our Maxwell theory deviates substantially from the Helmholtz theory in [START_REF] Graham | Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF]. There, the Cauchy-Schwarz inequality was used on (8.40), (a) the analogue of (I -T 0 ξ )v h L 2 (Ω ) was estimated using a duality argument, and Chapter 8. Two-level preconditioners for Maxwell's equations

Proof. For arbitrary w h , v h ∈ Q h , with coefficient vectors W and V, we use Lemma 8.22 and (8.48) to find that

Summing these over = 0, . . . , N and using the definition of M -1 ξ,AS (8.26), we obtain

from which (i) and (ii) follow immediately.

Recap of Elman-type estimates for convergence of GMRES

We consider the abstract linear system

, where C is an n × n nonsingular complex matrix. Given an initial guess x 0 , we introduce the residual r 0 = d -Cx 0 and the usual Krylov spaces: When D = I this is just the usual GMRES algorithm, and we write • = • I , but for more general D it is the weighted GMRES method [START_REF] Essai | Weighted FOM and GMRES for solving nonsymmetric linear systems[END_REF] in which case its implementation requires the application of the weighted Arnoldi process [START_REF] Güttel | Some observations on weighted GMRES[END_REF].

The following theorem is a simple generalization of the GMRES convergence result of Beckermann Goreinov and Tyrtyshnikov [START_REF] Beckermann | Some remarks on the Elman estimate for GMRES[END_REF] to the weighted setting. This result is an improvement of the so-called "Elman estimate", originally due to Elman [START_REF] Elman | Iterative Methods for Sparse Nonsymmetric Systems of Linear Equations[END_REF]; see also [START_REF] Eisenstat | Variational iterative methods for nonsymmetric systems of linear equations[END_REF] 

is the field of values or numerical range of C with respect to the inner product •, • D . Let θ ∈ [0, π/2) be defined such that

FreeFem++ scripts

We report here the sequential codes written to obtain the numerical results of Section 5.4.2. These scripts contain the methodological developments illustrated in the first chapters of these thesis and are partly based on routines developed during the last years by several collaborators.

The main program main.edp first calls the file dataWaveguide.edp, which contains the physical and numerical parameters, builds the mesh of the domain, defines the variational formulation of the problem to be solved and of the local subproblems appearing in the domain decomposition preconditioner. Note that the data script contains many macros, whose general syntax is macro <identifier>(<parameter list>) <replacement token list> // where <parameter list> is optional; this will make it possible to replace every subsequent occurrence of <identifier>() with <replacement token list>, by using the passed arguments if <parameter list> is present in the macro definition. This use of macros permits to use the same scripts for different (two or three dimensional) problems, by changing only the data script.

Then, the main program needs the routines (of decomp.idp and createPartition.idp) to create a decomposition of the domain and to build the restriction and partition of unity matrices. Finally, it builds the local problems matrices that constitute the preconditioner for the (complex) GMRES method called to solve the problem; in particular the GMRES.idp routine requires the matrix-vector product with the problem matrix and with the preconditioner.

main.edp

// Call in terminal with // FreeFem++ main.edp -ns -partitioner 0 -my_schwarz_method oras -medit include "getARGV.idp" load "medit" load "metis" load "scotch" load "thresholdings" load "MUMPS_seq" string prec = getARGV("-my_schwarz_method", "oras"); int overlap = getARGV("-overlap", 1); // number of overlap layers /2 int partitioner = getARGV("-partitioner", 1); // 0: simple (regular), 1: metis, 2: scotch Appendix A. FreeFem++ scripts int bmedit = usedARGV("-medit") > -1 ? 1 : 0; // to activate medit plots // build the mesh //medit("mesh", Th); // plot the mesh //load "mymsh3" // not needed in new FF versions load "Element_Mixte3d" // for Edge13d, Edge23d // and for FF spaces Edge03ds0, Edge13ds0, Edge23ds0 used to build the // partition of unity for resp Edge03d, Edge13d, Edge23d: / * Edge03d: edge finite elements of degree 1 Edge13d: edge finite elements of degree 2

Edge23d: edge finite elements of degree cout << "It: "<< it+1 << " Residual = " << relres << " Rel res = " << relres/normb << " Relative L2 Error = "<< relerr << endl; else cout << "It: "<< it+1 << " Residual = " << relres << " Rel res = " << relres/normb << endl; int j = it+2; filei << "relres("+j+")=" << relres << ";" << endl; if(relres/normb < eps) { cout << "GMRES has converged in " + (it+1) + " iterations " << endl; cout << "The relative residual is " + relres/normb << endl; break; } } return un[]; }