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Chapter 1

Introduction

In this thesis we couple high order finite element discretizations with domain decomposition
preconditioners to design a precise and fast solver for the time-harmonic Maxwell’s equation
for the electric field. Maxwell’s equations are a system of partial differential equations which
model electromagnetic wave propagation. The time-harmonic formulation is derived when
the involved fields are sinusoidal (or ‘harmonic’) in time, varying with an angular frequency
ω; thus, the term frequency domain is commonly used, in opposition to the time domain.
The time-harmonic Maxwell’s equations present several difficulties when the frequency ω
is large, such as the sign-indefiniteness of their variational formulation, the pollution effect
which entails particularly fine meshes, and the consequent problematic construction of
efficient iterative solvers. Note that, on the contrary, for Maxwell’s equations in the time
domain, for which an implicit time discretization yields at each step a positive definite
problem, there are many good solvers and preconditioners in the literature (e.g. multigrid
methods).

This work is motivated by the application to brain imaging studied by the project MED-
IMAX (ANR-13-MONU-0012, financed by the French National Research Agency, ANR),
which gathers Mathematics Laboratories (LJAD in Nice, LJLL and MAP5 in Paris) and
the Electrical Engineering Laboratory LEAT (Nice-Sophia Antipolis). The purpose of this
project is the full numerical simulation of a microwave imaging system prototype, developed
by the medical imaging company EMTensor GmbH (Vienna, Austria) for the diagnosis and
monitoring of brain strokes (see Figure 1.1). The data acquired with this device are used
as input for an inverse problem associated with the time-harmonic Maxwell’s equations,
which makes it possible to estimate the complex electric permittivity of the brain tissues
of a patient affected by a stroke. Indeed, a stroke results in a variation of the complex
electric permittivity inside a region of the brain, thus it can be detected and monitored

Figure 1.1 – The microwave imaging system prototype developed by EMTensor GmbH and
the corresponding computational domain.
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10 Chapter 1. Introduction

by doctors thanks to an image of the brain displaying the values of this property. The
solution of the inverse problem requires to solve repeatedly the direct (or forward) prob-
lem of the time-harmonic Maxwell’s equations, i.e. the more familiar problem in which
material properties are given and the unknown is the electric field. Therefore an accurate
and fast solver for the direct problem is needed. Accuracy and computing speed are in-
deed essential in this application, for a precise detection of the stroke and the continuous
monitoring of the effects of medical treatment. Nevertheless, the methods studied in this
thesis are not specific solely to the imaging problem and have a more general extent of
applications. In our strategy, accuracy is provided by high order edge finite elements; the
linear system resulting from this discretization is then solved efficiently in parallel with
the iterative solver GMRES preconditioned with Schwarz domain decomposition methods.
We now briefly introduce these two ingredients, highlighting their advantages and also the
difficulties we will face, referring to the first sections of the subsequent Chapters for a more
detailed introduction and literature review.

High order finite elements methods make it possible, for a given precision, to reduce
significantly the number of unknowns, and they are particularly well suited to discretize
wave propagation problems since they can provide a solution with very low dispersion and
dissipation errors. For the time-harmonic Maxwell’s equation for the electric field in a
domain Ω ⊂ R3, the functional space on which the variational formulation is well defined
is Hcurl = {v ∈ L2(Ω)3,∇×v ∈ L2(Ω)3}. Discrete finite element subspaces of Hcurl, which
thus provide curl-conforming finite elements, are due to Nédélec [89]. They are often
termed edge elements because at the lowest order the degrees of freedom are associated
with the edges of the mesh, more precisely they are the circulations along the edges.
Instead of approximating each component of the field with the usual scalar node-based
finite elements, basis functions for edge elements are vector functions, which fit the physical
continuity properties of the electric field: its tangential component is continuous across
material discontinuities while the normal component can jump. One of the difficulties
with edge elements is that basis functions and degrees of freedom are associated with
the oriented edges of mesh tetrahedra, so that particular attention should be paid to
ensure that the contributions coming from tetrahedra sharing edges or faces are assembled
properly inside the global matrix of the finite element discretization. Moreover, the duality
property σi(wj) = δij between basis functions wj and degrees of freedom σi, on which the
standard approach to define a finite element basis is based, is not automatically granted
for high order edge elements. Recall that, for the standard node-based finite elements,
whose degrees of freedom are the values at the nodes of the mesh, this duality property
means that the value of each basis function at the associated node is 1 while it is 0 at
the other nodes. This ensures that the expansion coefficients for writing a function in
terms of the basis (which are also the unknowns of the algebraic system resulting from the
discretization) are given by the degrees of freedom applied to the function.

The algebraic linear system resulting from the high order discretization can be ill con-
ditioned, so that preconditioning becomes mandatory when using iterative solvers. Indeed
there are two main families of linear system solvers: iterative solvers and direct solvers.
On the one hand, direct solvers (such as SuperLU, UMFPACK, MUMPS, ...) are robust,
i.e. they find the solution in a finite number of operations no matter how hard the problem
is; but because of their high memory cost they are not suited for the very large systems
arising for instance from the complex three dimensional model of the imaging system pro-
totype. On the other hand, iterative solvers (such as the conjugate gradient method for
symmetric positive definite matrices, or GMRES for more general matrices) require less
memory and are easy to parallelize since they are based on matrix-vector products. Their
drawback is that they lack robustness, so that preconditioning the system is essential to
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Figure 1.2 – A decomposition of the computational domain into 128 subdomains.

ensure a good convergence. Namely, when one uses an iterative method to solve a linear
system Au = b, it is commonly far more efficient to design a suitable matrix M−1, called
preconditioner, that approximates A−1 and is not too hard to compute, and then solve the
system M−1Au = M−1b, where the condition number of M−1A is much lower than the
one of A.

Domain decomposition methods can be viewed as hybrid methods that take the advan-
tages of the two families of solvers: the problem defined on the global domain is decomposed
into smaller problems on subdomains (see for instance Figure 1.2), on which direct solvers
are applicable, and the solution is coordinated between neighboring subdomains itera-
tively. Domain decomposition methods are naturally suited to parallel computing because
the problems on subdomains can be solved concurrently. Moreover, rather than using these
methods as solvers, they can be used, more conveniently, as preconditioners for iterative
solvers such as GMRES. For a given problem, an efficient domain decomposition method is
defined by two main ingredients: the transmission conditions, i.e. the boundary conditions
imposed at the interfaces between neighboring subdomains that specify the information
exchanged between them; the coarse-grid correction, introduced in the so-called two-level
methods, that allows information to propagate through the whole domain in one step. The
construction and, even more, the convergence analysis of two-level domain decomposition
preconditioners for sign-indefinite problems is a challenging open issue.

1.1 Summary and contributions

In the following we detail for each Chapter the contributions of this thesis.

Mathematical models of electromagnetism. Chapter 2 provides an introduction to
Maxwell’s equations, starting from the full system of four equations in their integral and
differential forms. This system needs to be completed with constitutive laws, which model
at a macroscopic scale the field-matter interaction. Then the second order (or curl-curl)
equation for the electric field is derived, together with its time-harmonic formulation, which
is the equation on which we focus in this thesis. We highlight that, as a result of the chosen
sign convention in the time-harmonic assumption, the complex valued electric permittivity
appearing in the equation has negative imaginary part.

The second part of this Chapter is devoted to the boundary value problem (BVP) de-
scribing wave propagation inside a rectangular waveguide. It consists of the second order
time-harmonic Maxwell’s equation for the electric field together with boundary conditions
which are specific to electromagnetism: the metallic or PEC (Perfect Electric Conductor)
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boundary condition, which is a Dirichlet-type condition, and the impedance boundary con-
dition, which is a Robin-type and absorbing condition. Again, particular emphasis is placed
on the sign appearing in the absorbing condition that depends on the chosen time-harmonic
convention. Finally the variational (or weak) formulation of the waveguide boundary value
problem is derived, which is the first step to apply the finite element method. Note that,
even if the computational domain of the medical imaging application (Figure 1.1, right)
is much more complex than a single waveguide, the variational formulation described in
§2.2.5 has the same form as the one modeling the imaging system prototype.

A revisitation of high order curl-conforming finite elements. In Chapter 3 we
define high order finite elements for Hcurl on a simplicial mesh Th over the computational
domain Ω (simplicial means triangular in 2d and tetrahedral in 3d). This work is the object
of the publication [20]. Our finite elements are instances of the first family of Nédélec
finite elements [89], where the involved functions are vectors with incomplete or trimmed
polynomials as components (that is some of the top-degree monomials are removed to
satisfy some constraints).

With regard to basis functions, we adopt the high order generators presented in [97,
98]: their definition is rather simple since it only involves the barycentric coordinates of the
simplex and is associated with a geometrical construction, which helps to visualize the list of
generators. Here, we revisit the classical degrees of freedom defined by Nédélec [89], in order
to obtain a new expression which results to be more friendly in terms of the considered basis
functions. Moreover, we propose a general technique to restore duality between degrees of
freedom and basis functions for the high order case, thanks to a generalized Vandermonde
matrix. In the following we give an overview of these results, referring to Chapter 3 for
the detailed presentation.

First of all recall that, for a simplex T ∈ Th, the local lowest order basis functions for
the Nédélec curl-conforming space Vh ⊂ H(curl,Ω) are associated with the oriented edges
e = {ni, nj} of T as follows

we = λni∇λnj − λnj∇λni ,

where the λn`
are the barycentric coordinates of a point x ∈ T with respect to the node

n` of T of Cartesian coordinates x`. The degrees of freedom over T are the functionals

σe : w 7→ 1

|e|

∫
e
w · te, ∀ e ∈ E(T ),

where te = xj − xi is the tangent vector to the edge e, |e| = |te| the length of e and
E(T ) the set of edges of T . At the lowest order, the basis functions are in duality with the
degrees of freedom, that is σe(we′) = 1, resp. 0, if e = e′, resp. if e 6= e′.

To state the definition of the high order generators of [97, 98], we need to introduce
multi-index notations. A multi-index is an array k = (k1, . . . , kν) of ν integers ki ≥ 0,
and its weight k is

∑ν
i=1 ki. The set of multi-indices k with ν components and of weight

k is denoted I(ν, k). If d = 2, 3 is the ambient space dimension, we consider ν ≤ d + 1
and, given k ∈ I(ν, k), we set λk =

∏ν
i=1 (λni)

ki , where the ni are ν nodes of the d + 1
nodes of T . Now, in the generators definition we take ν = d+ 1 and k = r− 1, with r the
polynomial degree of the generators.
Definition of the generators. The generators for Nédélec edge element spaces W 1

h,r(T ) of
degree r ≥ 1 in a simplex T ∈ Th are the λkwe, with k ∈ I(d + 1, k), k = r − 1 and
e ∈ E(T ).
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We recast the degrees of freedom in [89] in a new more friendly form as follows.
The revisited degrees of freedom. For r ≥ 1, the functionals

σe : w 7→ 1

|e|

∫
e
(w · te) q, ∀ q ∈ Pr−1(e), ∀ e ∈ E(T ), (1.1)

σf : w 7→ 1

|f |

∫
f
(w · tf,i) q, ∀ q ∈ Pr−2(f), ∀ f ∈ F(T ), (1.2)

tf,i two independent sides of f, i = 1, 2,

σT : w 7→ 1

|T |

∫
T

(w · tT,i) q, ∀ q ∈ Pr−3(T ), (1.3)

tT,i three independent sides of T, i = 1, 2, 3,

are the degrees of freedom for a function w ∈ W 1
h,r(T ). F(T ) is the set of faces of T , the

norm of the vectors te, tf,i, tT,i is the length of the associated edge. We say that e, f, T are
the supports of the degrees of freedom σe, σf , σT . To make the computation of degrees of
freedom easier, a convenient choice for the polynomials q spanning the polynomial spaces
over (sub)simplices e, f, T is given by suitable products of the barycentric coordinates
associated with the nodes of the considered (sub)simplex. Indeed, the space Pρ(S) of
polynomials of degree ≤ ρ over a p-simplex S (i.e. a simplex of dimension 1 ≤ p ≤ d) can
be generated by the products λk =

∏p+1
i=1 (λni)

ki , with k ∈ I(p + 1, ρ) and ni being the
nodes of S.
Classification and selection of linearly independent generators. The classification of degrees
of freedom into edge-type, face-type, volume-type degrees of freedom can be done also for
generators: volume-type generators contain (inside λk or we) the barycentric coordinates
w.r.t. all the nodes of a tetrahedron T , face-type generators contain the ones w.r.t. all and
only the nodes of a face f , edge-type generators contain the ones w.r.t. only the nodes of an
edge e. Note that face-type (resp. volume-type) generators appear for r > 1 (resp. r > 2)
(and the same happens for face-type and volume-type degrees of freedom).

For the high order case (r > 1), the fields λkwe are generators for W 1
h,r(T ), but

some of the face-type or volume-type generators are linearly dependent. The selection of
generators that constitute an actual basis ofW 1

h,r(T ) can be guided by the revisited degrees
of freedom. More precisely, as face-type (resp. volume-type) generators keep the ones
associated with the two (resp. three) edges e chosen as the two sides tf,1, tf,2 (resp. three
sides tT,1, tT,2, tT,3) of face-type degrees of freedom (resp. volume-type degrees of freedom).
Restoring duality. The considered basis functions are not in duality with the degrees
of freedom when r > 1, namely, the matrix V with entries the weights Vij = σi(wj),
1 ≤ i, j ≤ ndofs = dim(W 1

h,r(T )) after a suitable renumbering of degrees of freedom, is
not the identity matrix for r > 1. Duality can be re-established by considering new basis
functions w̃j , 1 ≤ i, j ≤ ndofs: w̃j is built as a linear combination of the previous basis
functions with coefficients given by the entries in the j-th column of V −1. The matrix V is
a sort of generalized Vandermonde matrix and has some nice properties: its entries do not
depend on the metrics of the tetrahedron T for which they are calculated; V , and hence
its inverse V −1, are block lower triangular if we list generators and degrees of freedom in
the order dictated by increasing the dimension of the support of degrees of freedom; the
entries of V −1 are integer numbers.

The example in Section 3.7 illustrates explicitly all these notions for d = 3, r = 2.

Implementation of high order curl-conforming finite elements. The implemen-
tation of high order curl-conforming finite elements is quite delicate, especially in the
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three-dimensional case. In Chapter 4 (part of the submitted paper [18]) we explicitly de-
scribe an implementation strategy, which we embedded in the open source domain specific
language FreeFem++ (http://www.freefem.org/ff++/). Thus our high order edge finite
elements in 3d of degree 2, 3 are available for the scientific community. To add them to
FreeFem++ we define in a C++ plugin various ingredients, among which the principal
ones are: the basis functions (and their derivatives) in a simplex; an interpolation oper-
ator, which requires degrees of freedom in duality with the basis functions. Indeed, in
FreeFem++ the basis functions (and in some cases the coefficients of the interpolation op-
erator) are constructed locally, i.e. in each simplex T of the mesh Th, without the need of
a transformation from the reference simplex. Note that the chosen definition of high order
generators, which involves only the barycentric coordinates of the simplex, fits perfectly
this local construction feature of FreeFem++. Nevertheless, the local construction should
be done in such a way that the contributions coming from simplices sharing edges or faces
can be then assembled properly inside the global matrix of the finite element discretization.
Moreover, for the definition of the interpolation operator, in the high order edge elements
case we need the generalized Vandermonde matrix V to restore duality between degrees of
freedom and basis functions. Here, we carefully address the problem of applying the same
Vandermonde matrix to possibly differently oriented simplices of the whole mesh, in order
to be able to use in numerical experiments the concepts presented for just one simplex in
the previous Chapter. The strategy to fulfill these two requirements is implemented using
two permutations, based on the global numbers of the mesh nodes. We also describe in
detail the implementation of the interpolation operator. Section 4.4 shows how to use these
new finite elements in a FreeFem++ script.

Schwarz domain decomposition preconditioners. In Chapter 5 (also part of the
submitted paper [18]) we investigate the preconditioning for Maxwell’s equations in the
time-harmonic regime, which is an underdeveloped issue in the literature, particularly for
high order discretizations. We focus on the (one-level) Optimized Restricted Additive
Schwarz (ORAS) overlapping preconditioner, where the term ‘optimized’ refers to the use
of impedance boundary conditions as transmission conditions, proposed by Després in [38];
the algebraic formulation of optimized overlapping Schwarz methods like ORAS was in-
troduced in [35]. Note that we do not consider more sophisticated transmission conditions
because our aim in the next Chapter is to treat general decompositions into overlapping
subdomains, with quite rough interfaces, see Figure 1.2. We perform extensive experi-
ments to validate the ORAS preconditioner (and its symmetric version OAS) for different
values of physical and numerical parameters, both for 2d and 3d waveguide configurations;
in particular we study the effect of their variation on the spectrum of the preconditioned
matrix. This numerical investigation shows that Schwarz preconditioning significantly im-
proves GMRES convergence, and that the ORAS preconditioner always performs much
better than the OAS preconditioner. Moreover, in all the considered test cases, the num-
ber of iterations for convergence using the ORAS preconditioner does not vary when the
polynomial degree of the adopted high order finite elements increases. We see that it is
necessary to take an overlap of at least one layer of simplices from both subdomains of a
neighbors pair. All these convergence qualities are reflected by the spectrum of the pre-
conditioned matrix. Finally, the experiments varying the number of subdomains and the
frequency exhibit the need for a two-level preconditioner.

In the following we briefly report the algebraic definition of the ORAS preconditioner,
when applied to the time-harmonic Maxwell’s equation discretized with high order edge
finite elements. Consider a decomposition of the domain Ω into Nsub overlapping subdo-

http://www.freefem.org/ff++/
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mains Ωs that consist of a union of simplices of the mesh Th. Let N be an ordered set of the
degrees of freedom of the whole domain, and let N =

⋃Nsub
s=1 Ns be its decomposition into

the (non disjoint) ordered subsets corresponding to the different overlapping subdomains
Ωs: a degree of freedom belongs to Ns if its support (edge, face or volume) is contained in
Ωs. For edge finite elements, it is important to ensure that the orientation of the degrees
of freedom is the same in the domain and in the subdomains. Define the matrix Rs as the
restriction matrix from Ω to the subdomain Ωs: it is a #Ns×#N Boolean matrix, whose
(i, j) entry equals 1 if the i-th degree of freedom in Ns is the j-th one in N . Note that the
extension matrix from the subdomain Ωs to Ω is given by RTs . To deal with the unknowns
that belong to the overlap between subdomains, define for each subdomain a #Ns ×#Ns
diagonal matrix Ds that gives a discrete partition of unity, i.e.

Nsub∑
s=1

RTs DsRs = I.

Then the Optimized Restricted Additive Schwarz (ORAS) preconditioner can be expressed
as

M−1
ORAS =

Nsub∑
s=1

RTs DsA
−1
s,OptRs,

where the matrices As,Opt are the local matrices, stemmed from the discretization by
high order edge finite elements, of the subproblems with impedance boundary conditions
(∇×E)×n+iω̃n×(E×n) as transmission conditions at the interfaces between subdomains
(note that now the term ‘local’ refers to a subdomain and not to a mesh simplex). The
term ‘restricted’ corresponds to the presence of the partition of unity matrices Ds. The
construction of the partition of unity is intricate, especially for (high order) edge finite
elements. Here, suitable piecewise linear functions χs giving a continuous partition of unity
(
∑Nsub

s=1 χs = 1) are interpolated at the barycenters of the support (edge, face, volume) of
each degree of freedom of the (high order) edge finite elements. This interpolation is
obtained thanks to an auxiliary FreeFem++ scalar finite element space that has only the
interpolation operator and no basis functions. Note that when optimized conditions are
chosen as transmission conditions at the interfaces, it is essential that not only the function
χs but also its derivative are equal to zero on the border of the subdomain Ωs.

Application to brain microwave imaging. Chapter 6 shows the benefits of using a
discretization based on the high order edge finite elements coupled with the parallel domain
decomposition preconditioner, to simulate the microwave imaging system prototype of
EMTensor GmbH for the detection and monitoring of brain strokes. We have merged the
contributions [12, 112] into this Chapter and a related work is the invited paper [113].

We first introduce the medical context, the characteristics of microwave imaging, which
is a novel promising technique, and the operating principle of EMTensor GmbH imaging
system, which is composed of 5 rings of 32 antennas around a metallic cylindrical chamber
(see Figure 1.1). Each antenna is a ceramic-loaded rectangular waveguide. Then, the direct
problem that models this imaging system is described: there is one boundary value problem
for each transmitting antenna. We also explain how to compute the so-called scattering
coefficients, which are the data acquired by the imaging system, indeed the electric field is
not a measurable quantity. For the sake of completeness the inverse problem is presented,
as well as to clearly show where the solution of the direct problem intervenes in the inversion
tool.



16 Chapter 1. Introduction

In the numerical results section, in order to validate our numerical modeling, we first
compare the scattering coefficients given by the simulation with the measured values ob-
tained by EMTensor: they result to be in very good agreement. Then we demonstrate
the advantage, in terms of accuracy and computing time, of using high order edge fi-
nite elements compared to the standard lowest order edge elements: for instance, to
attain a given accuracy of ≈ 0.1 (see the details in the complete Chapter), the finite
element discretization of degree r = 1 requires 21 million unknowns and a computing
time of 130 seconds, while the high order finite element discretization (r = 2) only needs
5 million unknowns, with a corresponding computing time of 62 seconds. The paral-
lel implementation of the domain decomposition ORAS preconditioner in HPDDM [71]
(https://github.com/hpddm/hpddm, a High-Performance unified framework for Domain
Decomposition Methods) is essential to be able to solve the arising linear systems of up to
96 million complex-valued unknowns considered here. To assess the efficiency of the paral-
lel domain decomposition preconditioner we perform a strong scaling analysis: even if the
number of iterations increases with the number of subdomains, this experiment exhibits
very good time speedups up to 2048 subdomains. Here we studied efficient techniques for
the solution of the direct problem, that have been embedded in the inversion tool devel-
oped by the ANR MEDIMAX team: in the conclusion section we give a brief account of
the results obtained by the team for the inverse problem, showing the feasibility of this
microwave imaging technique for detection and monitoring of brain strokes.

Two-level preconditioners for the Helmholtz equation. Chapter 7 is based on [17],
which has been submitted to the proceedings of the DD24 International Conference on
Domain Decomposition Methods. The time-harmonic Maxwell’s equation presents similar
difficulties to those encountered with the (scalar) Helmholtz equation when the wavenumber
ω̃ is large, namely the sign-indefiniteness of their (standard) variational formulation, the
pollution effect, and the consequent problematic construction of fast iterative solvers [50].
Since, even for this scalar equation, there is no established and robust preconditioner,
whose behavior is independent of ω̃ for general decompositions into subdomains, before
facing the time-harmonic Maxwell’s equation we focus in Chapter 7 on the Helmholtz
equation.

In order to achieve independence of the iteration count on the number of subdomains
or, for wave propagation problems, on the wavenumber ω̃, two-level domain decomposition
preconditioners are generally introduced. One should define two ingredients: an algebraic
formula to combine the coarse grid correction with the one-level preconditioner (e.g. in
a additive or in a hybrid way); a rectangular full column rank matrix Z, whose columns
span what is called the coarse space. Our purpose is to compare numerically two different
coarse space definitions for the Helmholtz equation, which are currently the most robust
available in literature. In [34] the coarse space is built by solving local eigenproblems
on the interfaces involving the Dirichlet-to-Neumann (DtN) operator. In [62, 63] two-
level domain decomposition approximations of the Helmholtz equation with absorption
−∆u−(ω̃2 +iξ)u = f are used as preconditioners for the pure Helmholtz equation without
absorption; the coarse space is based on a coarser mesh, with diameter constrained by ω̃,
thus here we refer to it as “grid coarse space”.

In our numerical experiments, which are in two and three dimensions, we reach more
than 28 million complex-valued unknowns in the linear systems, resulting from a dis-
cretization (with piecewise linear finite elements) of the pure Helmholtz equation without
absorption, with an increasing wavenumber. For both coarse space definitions, the precon-
ditioners built with absorption ξprec = ω̃2 appear to perform much worse than those with

https://github.com/hpddm/hpddm
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absorption ξprec = ω̃. We see that, in most cases, for smaller coarse space sizes the grid
coarse space gives fewer iterations than the DtN coarse space, while for larger coarse space
sizes the grid coarse space gives generally more iterations than the DtN coarse space. Both
for the coarse grid space and the DtN coarse space, for appropriate choices of the method
parameters we obtain iteration counts which grow quite slowly with the wavenumber ω̃.
Further experiments to compare the two definitions of coarse space should be carried out
in the heterogenous case.

Two-level preconditioners for Maxwell’s equations. Chapter 8 is based on the
forthcoming paper [16] and on [15], also submitted to the proceedings of the DD24 Inter-
national Conference on Domain Decomposition Methods. We investigate how the two-level
domain decomposition preconditioners analyzed for the Helmholtz equation in [62] work
in the Maxwell case, both from the theoretical and numerical points of view. We aim
at finding a “good” preconditioner, which, in the present context, means that the num-
ber of iterations needed to solve the preconditioned system should be independent of the
wavenumber ω̃.

We present a new theory for the time-harmonic Maxwell’s equation with absorption
that provides rates of convergence for GMRES with a two-level Additive Schwarz (AS)
preconditioner, explicit in the wavenumber ω̃, the absorption ξ, the coarse-grid diameter
Hcs, the subdomain diameter Hsub and the overlap size δ. These theory uses a ω̃- and
ξ-explicit coercivity result for the underlying sesquilinear form and the main theorems give
an upper bound on the norm of the preconditioned matrix and a lower bound on its field
of values, so that Elman-type estimates for the convergence of GMRES can be applied.
Note that analyzing the convergence of GMRES is hard, since no convergence estimates
in terms of the condition number, as those we are used to with the conjugate gradient
method, are available for GMRES. An important particular case of the final convergence
estimate is the following. If the problem has absorption ξ ∼ ω̃2, δ ∼ Hcs (which is called
generous overlap), Hsub ∼ Hcs ∼ ω̃−1, then GMRES preconditioned with the two-level
Additive Schwarz method will converge with the number of iterations independent of the
wavenumber. Note that the detailed theory development is mainly due to Euan Spence.

Large scale numerical experiments are carried out not only in the setting covered by
the theory, but also for the time-harmonic Maxwell’s equation without absorption. This
extensive numerical study of the convergence of GMRES examines several versions of the
two-level preconditioner: additive and hybrid coarse correction formulas, standard and
optimized local solves, generous and minimal overlap, different scalings of the subdomain
diameter and the coarse grid diameter with respect to the wavenumber ω̃. Moreover, we
test various levels of absorption in the problem and in the preconditioner, and we consider
discretizations of the problem with degree 1 and 2 curl-conforming finite elements.

As a conclusion, some directions for future research are presented.



18 Chapter 1. Introduction

This thesis led to the following publications and presentations.

Journal and conference papers

• [12] M. Bonazzoli, V. Dolean, F. Rapetti, P.-H. Tournier. “Parallel preconditioners
for high order discretizations arising from full system modeling for brain microwave
imaging”. International Journal of Numerical Modelling: Electronic Networks, De-
vices and Fields, 2017 <hal-01328197>

• [20] M. Bonazzoli, F. Rapetti. “High-order finite elements in numerical electro-
magnetism: degrees of freedom and generators in duality”. Numerical Algorithms,
Springer, 2017 <hal-01260354>

• [21] M. Bonazzoli, F. Rapetti, C. Venturini. “Dispersion analysis of triangle-based
Whitney element methods for electromagnetic wave propagation”. Proceedings of
ESCO 2016, 5th European Seminar on Computing. Applied Mathematics and Com-
putation, 2017.

• [14] M. Bonazzoli, F. Rapetti, P.-H. Tournier, C. Venturini. “High order edge ele-
ments for electromagnetic waves: remarks on numerical dispersion”. Proceedings of
ICOSAHOM 2016 International Conference on Spectral and High Order Methods.
Accepted for publication

• [113] P.-H. Tournier, M. Bonazzoli, V. Dolean, F. Rapetti, F. Hecht, F. Nataf, I.
Aliferis, I. El Kanfoud, C. Migliaccio, M. de Buhan, M. Darbas, S. Semenov, C. Pi-
chot. “Numerical modelling and high speed parallel computing: new perspectives for
brain strokes detection and monitoring”. IEEE Antennas and Propagation Magazine,
Special issue on Electromagnetic Inverse Problems for Sensing and Imaging, invited
paper. Accepted for publication

• [19] M. Bonazzoli, V. Dolean, R. Pasquetti, and F. Rapetti. “Schwarz precondition-
ing for high order edge element discretizations of the time-harmonic Maxwell’s equa-
tions”. Proceedings of DD23 International Conference on Domain Decomposition
Methods 2015. Lecture Notes in Computational Science and Engineering, Springer,
2017 <hal-01250761>

• [13] M. Bonazzoli, E. Gaburro, V. Dolean, F. Rapetti. “High order edge finite element
approximations for the time-harmonic Maxwell’s equations”. Proceedings of 2014
IEEE Conference on Antenna Measurements and Applications (CAMA)

Preprints

• [15] M. Bonazzoli, V. Dolean, I.G. Graham, E.A. Spence, P.-H. Tournier. “A two-
level domain-decomposition preconditioner for the time-harmonic Maxwell’s equa-
tions”. Proceedings of DD24 International Conference on Domain Decomposition
Methods 2017. Submitted <hal-01525438>. These results will appear in full in [16],
in preparation.

• [17] M. Bonazzoli, V. Dolean, I.G. Graham, E.A. Spence, P.-H. Tournier. “Two-level
preconditioners for the Helmholtz equation”. Proceedings of DD24 International
Conference on Domain Decomposition Methods 2017. Submitted <hal-01525424>

https://hal.archives-ouvertes.fr/hal-01328197
https://hal.archives-ouvertes.fr/hal-01260354
https://hal.archives-ouvertes.fr/hal-01250761v2
https://hal.archives-ouvertes.fr/hal-01525438
https://hal.archives-ouvertes.fr/hal-01525424


1.1. Summary and contributions 19

• [18] M. Bonazzoli, V. Dolean, F. Hecht, F. Rapetti. “Explicit implementation strategy
of high order edge finite elements and Schwarz preconditioning for the time-harmonic
Maxwell’s equations”. Submitted <hal-01298938>

• [112] P.-H. Tournier, I. Aliferis, M. Bonazzoli, M. De Buhan, M. Darbas, V. Dolean,
F. Hecht, P. Jolivet, I. El Kanfoud, C. Migliaccio, F. Nataf, C. Pichot, S. Se-
menov. “Microwave tomographic imaging of cerebrovascular accidents by using High-
Performance Computing”. Submitted <hal-01343687>

• [7] I. Ben Gharbia, M. Bonazzoli, X. Claeys, P. Marchand, P.-H. Tournier. “Fast
solution of boundary integral equations for elasticity around a crack network: a
comparative study”. Proceedings of the summer school CEMRACS 2016 (CIRM,
Marseille, France, 6 weeks long), fruit of the project “Boundary integral methods for
elasticity around a crack network”, financed by LJLL-UPMC and IFPEN (Institut
Français du Pétrole Énergies Nouvelles). Submitted

Conference and workshop presentations

• “Solving numerically large scale electromagnetism problems using FreeFem++: high
order methods and parallel computing”, The 27th Biennial Numerical Analysis con-
ference 2017, Glasgow, UK

• “Two-level preconditioners for the Helmholtz equation”, DD24 International Confer-
ence on Domain Decomposition Methods 2017, Svalbard, Norway

• “High order edge element discretizations and preconditioning of the time-harmonic
Maxwell’s equations”, ICOSAHOM 2016, International Conference on Spectral and
High Order Methods, Rio de Janeiro, Brazil

• “High order edge elements and domain decomposition preconditioning for the time-
harmonic Maxwell’s equations”, MAFELAP 2016, 15th Conference on the Mathe-
matics of Finite Elements and Applications, London, UK

• “High order finite elements and domain decomposition methods for Maxwell’s equa-
tions”, Colloque des doctorants du Laboratoire J.A. Dieudonné 2016, Barcelonnette,
France

• “High performance computing for brain stroke imaging”, Athena Days 2016, Institut
Fresnel, Marseille, France

• “Domain decomposition preconditioning for high order finite element discretizations
of the time-harmonic Maxwell’s equations”, EMF 2016, 10th International Sympo-
sium on Electric and Magnetic Fields, Lyon, France

• “High order edge finite elements for the time-harmonic Maxwell’s equations”, 2015,
Laboratoire J.A. Dieudonné, Nice, France

• “Schwarz preconditioning of high order edge elements type discretisations for the
time-harmonic Maxwell’s equations”, DD23 International Conference on Domain De-
composition Methods 2015, Jeju Island, South Korea

• “High order edge elements for Maxwell’s equations: construction and properties”,
International CAE Conference 2014, Pacengo del Garda, Italy

https://hal.archives-ouvertes.fr/hal-01298938
https://hal.archives-ouvertes.fr/hal-01343687




Chapter 2

Mathematical models of
electromagnetism

Contents
2.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Gauss’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Gauss’ theorem for magnetism . . . . . . . . . . . . . . . . . . . 22
2.1.3 Ampère’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Faraday’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.5 Maxwell’s system and constitutive laws . . . . . . . . . . . . . . 24
2.1.6 First and second order formulations . . . . . . . . . . . . . . . . 25
2.1.7 Time-harmonic formulations . . . . . . . . . . . . . . . . . . . . 26

2.2 The waveguide problem . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Metallic boundary conditions . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Impedance boundary conditions . . . . . . . . . . . . . . . . . . 29
2.2.3 Waveguide modes . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 Two-dimensional problem . . . . . . . . . . . . . . . . . . . . . . 32
2.2.5 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Maxwell’s equations

The foundations of the electromagnetic theory are the four Maxwell’s equations [83]: Gauss’
theorem, Gauss’ theorem for magnetism, Ampère-Maxwell’s theorem and Faraday’s law.
In this section, we first present their integral form and deduce their differential form,
obtaining a system of differential equations involving the following physical quantities:

• E , the electric field intensity, also referred to as the electric field (measured in V m−1),

• H, the magnetic field intensity, also referred to as the magnetic field (in A m−1),

• D, the electric induction, also called the electric displacement (in A s m−2, i.e. C m−2),

• B, the magnetic induction, also called the magnetic flux density (in V s m−2, i.e. T),

• ρ, the electric charge density (in C m−3),
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• J , the electric current density (in A m−2),

(where V is the symbol for volt, A for ampère, C for coulomb, T for tesla 1). Then, using
suitable constitutive laws, we will get a system containing only E and H as unknowns. We
will also derive a second order formulation for the electric field E. Finally, we will present
its time-harmonic formulation, which is the focus of this work. Interesting introductions
about Maxwell’s equations can be found in the first chapter of the books [27, 85].

2.1.1 Gauss’ theorem

A distribution of static electric charges is one of the sources that come into play to create
an electromagnetic field. Gauss’ theorem states that the flux of the electric induction
through a closed surface S is equal to the enclosed electric charge Q:∫

S
D · n = Q, (2.1)

where n is the outward unit normal to S.
Denoting by V the volume bounded by the surface S, if we write the total charge Q in

V as a function of the electric charge density ρ, Q =
∫
V ρ dv, and we apply the divergence

theorem ∫
S
D · n =

∫
V
∇ ·D ,

we get: ∫
V
∇ ·D =

∫
V
ρ .

Since the volume V is arbitrary, this implies the differential form of Gauss’ theorem:

∇ ·D = ρ. (2.2)

2.1.2 Gauss’ theorem for magnetism

Gauss’ theorem for magnetism states that the flux of the magnetic induction through a
closed surface S is always zero: ∫

S
B · n = 0, (2.3)

which formally expresses the fact that there is currently no experimental evidence of the
existence of magnetic charges or magnetic monopoles.

Again, by applying the divergence theorem we get∫
V
∇ ·B = 0,

where V is the volume bounded by the surface S, and, since the volume V is arbitrary, we
obtain the differential form of Gauss’ theorem for magnetism:

∇ ·B = 0. (2.4)

1. Note that §5.2 of the SI brochure (8th edition), which defines the International System of Units,
states that in English the names of units start with a lower-case letter, even when the symbol for the unit
begins with a capital letter.
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2.1.3 Ampère’s theorem

Ampère’s original theorem

Ampère’s theorem in its original form expresses the relationship between magnetic fields
and electric currents that produce them, in absence of time-changing electric field. In
particular, it states that the circulation of the magnetic field H along a closed curve C is
equal to the current which crosses a surface S insisting on the curve C:∫

C
H · t =

∫
S
J · n, (2.5)

where t is the unit tangent to the oriented curve C and the normal n is oriented according
to the orientation of C following the right-hand rule.

Applying Stokes’ theorem to the left-hand side of this integral form, we get:∫
S

(∇×H) · n =

∫
S
J · n,

and, since the surface S is arbitrary, we obtain the differential form of Ampère’s original
theorem, namely

∇×H = J . (2.6)

Ampère-Maxwell theorem

Unless the electric charge density ρ does not vary in time (as in the magnetostatic case),
Ampère’s original theorem is not consistent with the law of conservation of the electric
charge. Indeed, this law states that the total current into a volume V with surface S must
be equal to the charge variation within the volume:∫

S
J · n = − d

dt

∫
V
ρ ;

equivalently, applying the divergence theorem on the left, and exchanging the order of
differentiation and integration on the right, we may write∫

V
∇ ·J = −

∫
V

∂ρ

∂t
,

that as usual implies:
∂ρ

∂t
+∇ ·J = 0. (2.7)

In order to see why equation (2.6) is in contradiction with the conservation of the electric
charge, we apply to it the divergence operator and, since ∇·(∇×H) = 0, we find ∇·J = 0,
which is not consistent with (2.7) if ∂ρ/∂t 6= 0.

Therefore, Maxwell’s main contribution was to introduce a correction to (2.6), by
adding what he called the displacement current JD = ∂D

∂t :

∇×H = J + JD.

This equation is now coherent with the charge conservation: applying the divergence op-
erator we get

0 = ∇ · (J + JD) = ∇ ·J +
∂(∇ ·D)

∂t
= ∇ ·J +

∂ρ

∂t
,

thus relation (2.7) holds. The corrected equation is now often called the Ampère-Maxwell
theorem:

− ∂D
∂t

+∇×H = J . (2.8)

In particular, a variation of the flux of the electric induction creates a magnetic field.
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2.1.4 Faraday’s law

Faraday’s law says that an electric current is induced in any closed circuit C when the flux
of the magnetic induction through a surface S bounded by the circuit changes in time.
The induced electromotive force is opposed to the variation of the magnetic flux:∫

C
E · t = − d

dt

∫
S
B · n. (2.9)

By applying Stokes’ theorem on the left and exchanging the order of differentiation and
integration on the right, we get:∫

S
(∇× E) · n = −

∫
S

∂B
∂t
· n.

Using again the fact that the surface S is arbitrary, we can write Faraday’s law in differ-
ential form:

∂B
∂t

+∇× E = 0. (2.10)

2.1.5 Maxwell’s system and constitutive laws

Equations (2.8), (2.10), (2.2) and (2.4) form the complete Maxwell’s system of electromag-
netism:

−∂D
∂t

+∇×H = J , (Ampère-Maxwell theorem) (2.11a)

∂B
∂t

+∇× E = 0, (Faraday’s law) (2.11b)

∇ ·D = ρ, (Gauss’ theorem) (2.11c)
∇ ·B = 0, (Gauss’ theorem for magnetism) (2.11d)

relating four vector fields E , H, D, B, and source terms ρ, J (which are also related by the
equation of charge conservation (2.7)). It turns out that these equations are not sufficient
to uniquely determine the electromagnetic field and that additional constitutive laws are
needed, which model at a macroscopic scale the field-matter interaction. They depend on
the properties of the materials in the domain occupied by the electromagnetic field.

Here, we consider the case of linear isotropic materials (i.e. whose properties do not
depend on the direction of the field), for which the constitutive laws are

D = εE, B = µH, (2.12)

where the coefficients ε, called electric permittivity or dielectric constant, and µ, calledmag-
netic permeability, are positive, bounded, scalar functions of position. If one considered
instead an anisotropic material (e.g. a finely layered medium), ε and µ would be 3×3 pos-
itive definite matrix functions of position. In a vacuum we have ε = ε0 = 8.85 · 10−12 F/m,
µ = µ0 = 1.26 · 10−6 H/m (F for farad and H for henry), and the speed of light is given by
c0 = 1/

√
ε0µ0.

Another constitutive law is a generalized Ohm’s law, namely

J = σE + J g, (2.13)

which is composed of Ohm’s law J = σE , valid for the regions of space occupied by
conductors, and of an applied current density J g, imposed independently of the local
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electromagnetic field, in the regions of space called generators. The coefficient σ is a
material dependent non negative function of position, called electrical conductivity and
measured in siemens (S) per meter (the siemens unit is also called mho because it is
defined as Ω−1). One has σ = 0 in insulators, as in a vacuum.

Using constitutive laws (2.12), (2.13) (and considering time-independent coefficients),
we can rewrite Maxwell’s equations in the following form:

ε
∂E
∂t
−∇×H + σE = −J g, (2.14)

µ
∂H
∂t

+∇× E = 0, (2.15)

∇ · (εE) = ρ, (2.16)
∇ · (µH) = 0. (2.17)

2.1.6 First and second order formulations

In order to obtain the first and second order formulations of Maxwell’s equations, we
assume that the initial conditions already satisfy the two Gauss’ theorems: in this way
they are automatically satisfied for all time. Indeed, by applying the divergence operator
to (2.15), we obtain

∂

∂t
(∇ · (µH)) = 0,

which means that if (2.17) is verified at the initial time, then it is verified for all time t.
Similarly, by applying the divergence operator to (2.14), we obtain

∂

∂t
(∇ · (εE)) +∇ ·J = 0,

which gives, using (2.7),
∂

∂t
(∇ · (εE)− ρ) = 0,

hence if (2.16) is verified at the initial time, then it is verified for all time t. Nevertheless, a
successful numerical scheme to discretize Maxwell’s system must produce an approximation
that satisfies discrete analogs of (2.16), (2.17).

Therefore, if we don’t include Gauss’ theorems in the system of Maxwell’s equations,
we obtain the classical first order formulation of Maxwell’s equations:

ε
∂E
∂t
−∇×H + σE = −J g, µ

∂H
∂t

+∇× E = 0. (2.18)

In component form, for E = (Ex, Ey, Ez), H = (Hx,Hy,Hz), J g = (Jgx,Jgy,Jgz), we can
rewrite (2.18) as: 

ε
∂Ex
∂t
− ∂Hz

∂y
+
∂Hy
∂z

+ σEx = −Jgx,

ε
∂Ey
∂t
− ∂Hx

∂z
+
∂Hz
∂x

+ σEy = −Jgy,

ε
∂Ez
∂t
− ∂Hy

∂x
+
∂Hx
∂y

+ σEz = −Jgz,

µ
∂Hx
∂t

+
∂Ez
∂y
− ∂Ey

∂z
= 0,

µ
∂Hy
∂t

+
∂Ex
∂z
− ∂Ez

∂x
= 0,

µ
∂Hz
∂t

+
∂Ey
∂x
− ∂Ex

∂y
= 0.

(2.19)
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We can also eliminate the magnetic field H from (2.18), by applying the curl operator
to the second equation divided by µ, and then using the first equation to express ∇×H.
This leads to the classical second order (or curl-curl) formulation of Maxwell’s equations:

ε
∂2E
∂t2

+ σ
∂E
∂t

+∇×
(

1

µ
∇× E

)
= Sg, (2.20)

where Sg = −∂J g

∂t .

2.1.7 Time-harmonic formulations

If we wish to analyze electromagnetic propagation at a single frequency, the time-dependent
problem (2.18), also referred to as problem in the time domain, can be reduced to a time-
harmonic problem, or problem in the frequency domain. This is the case, for instance,
when the applied current density J g is sinusoidal in time (one often says ‘harmonic’ in
time), that is, of the form

J g(x, t) = Re(Jg(x)eiωt), (2.21)

where Jg(x) is a complex-valued vector function of position x ∈ R3 but not of time t ∈ R,
and ω > 0 is the angular frequency (i denotes the imaginary unit). So, we restrict the
analysis to a time-harmonic electromagnetic field varying with an angular frequency ω,
i.e. we consider the representation of the electric field E and the magnetic field H as

E(x, t) = Re(E(x)eiωt), H(x, t) = Re(H(x)eiωt), (2.22)

where E, H are the complex amplitudes (usually denoted by Ê, Ĥ), dependent only on
position. Alternatively, the conversion from the time domain to the frequency domain
can be done by applying to the equations the Fourier transform with respect to the time
variable, defined as (for a function p in the time domain)

(Fp)(ω) = p̂(ω) =

∫
R
e−iωtp(t) dt,

with the inverse Fourier transform given by

(F−1p̂)(t) = p(t) =
1

2π

∫
R
eiωtp̂(ω) dω.

Recall its property of linearity and behavior on derivatives:

F
(
∂p

∂t

)
= iωp̂(ω).

Thus, either by substituting expressions (2.21), (2.22) into (2.18), or by applying the
Fourier transform (and omitting the hat symbol), we obtain the first order time-harmonic
formulation of Maxwell’s equations:

iωεE−∇×H + σE = −Jg, iωµH +∇×E = 0. (2.23)

Moreover, we can rewrite the first equation in (2.23) by factoring out iωE and introducing
a complex-valued electric permittivity εσ

εσ = ε− i
σ

ω
, (2.24)
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8.14. Problems 361

improving liquid crystal displays, and other products, such as various optoelectronic
components, cosmetics, and ”hot” and ”cold” mirrors for architectural and automotive
windows.

8.14 Problems

8.1 Prove the reflectance and transmittance formulas (8.4.6) in FTIR.

8.2 Computer Experiment—FTIR. Reproduce the results and graphs of Figures 8.4.3–8.4.5.

8.3 Computer Experiment—Surface Plasmon Resonance. Reproduce the results and graphs of
Figures 8.5.3–8.5.7.

8.4 Working with the electric and magnetic fields across an negative-index slab given by Eqs. (8.6.1)
and (8.6.2), derive the reflection and transmission responses of the slab given in (8.6.8).

8.5 Computer Experiment—Perfect Lens. Study the sensitivity of the perfect lens property to the
deviations from the ideal values of ϵ = −ϵ0 and µ = −µ0, and to the presence of losses by
reproducing the results and graphs of Figures 8.6.3 and 8.6.4. You will need to implement
the computational algorithm listed on page 329.

8.6 Computer Experiment—Antireflection Coatings. Reproduce the results and graphs of Figures
8.7.1–8.7.3.

8.7 Computer Experiment—Omnidirectional Dielectric Mirrors. Reproduce the results and graphs
of Figures 8.8.2–8.8.10.

8.8 Derive the generalized Snel’s laws given in Eq. (8.10.10). Moreover, derive the Brewster angle
expressions given in Eqs. (8.11.4) and (8.11.5).

8.9 Computer Experiment—Brewster angles. Study the variety of possible Brewster angles and
reproduce the results and graphs of Example 8.11.1.

8.10 Computer Experiment—Multilayer Birefringent Structures. Reproduce the results and graphs
of Figures 8.13.1–8.13.2.

9
Waveguides

Waveguides are used to transfer electromagnetic power efficiently from one point in
space to another. Some common guiding structures are shown in the figure below.
These include the typical coaxial cable, the two-wire and mictrostrip transmission lines,
hollow conducting waveguides, and optical fibers.

In practice, the choice of structure is dictated by: (a) the desired operating frequency
band, (b) the amount of power to be transferred, and (c) the amount of transmission
losses that can be tolerated.

Fig. 9.0.1 Typical waveguiding structures.

Coaxial cables are widely used to connect RF components. Their operation is practi-
cal for frequencies below 3 GHz. Above that the losses are too excessive. For example,
the attenuation might be 3 dB per 100 m at 100 MHz, but 10 dB/100 m at 1 GHz, and
50 dB/100 m at 10 GHz. Their power rating is typically of the order of one kilowatt at
100 MHz, but only 200 W at 2 GHz, being limited primarily because of the heating of
the coaxial conductors and of the dielectric between the conductors (dielectric voltage
breakdown is usually a secondary factor.) However, special short-length coaxial cables
do exist that operate in the 40 GHz range.

Another issue is the single-mode operation of the line. At higher frequencies, in order
to prevent higher modes from being launched, the diameters of the coaxial conductors
must be reduced, diminishing the amount of power that can be transmitted.

Two-wire lines are not used at microwave frequencies because they are not shielded
and can radiate. One typical use is for connecting indoor antennas to TV sets. Microstrip
lines are used widely in microwave integrated circuits.

Figure 2.1 – Typical waveguiding structures.

so that system (2.23) with Jg = 0 becomes

∇×H = iωεσE, ∇×E = −iωµH. (2.25)

Now, we can eliminate the field H (by solving the second equation for H and substitut-
ing into the first equation), and, supposing that µ is constant, we obtain the second order
(or curl-curl) time-harmonic formulation for the electric field:

∇× (∇×E)− γ2E = 0, (2.26)

where the (complex-valued) coefficient γ is related to the physical parameters as follows

γ = ω
√
µεσ =

√
ω2µε− iωµσ, εσ = ε− i

σ

ω
.

Note that if σ = 0, we have γ = ω̃, ω̃ = ω
√
µε being the wavenumber. We can also write

ω̃ = ω/c introducing the propagation speed c = 1/
√
εµ. Working with a complex-valued

electric permittivity εσ makes it possible to include dissipative effects when σ > 0.

Remark 2.1 (Sign convention!). Note that in this work we chose the sign convention with
e+iωt in the time-harmonic assumption, which results in a negative imaginary part in the
complex valued electric permittivity εσ = ε − iσ/ω. Some authors instead choose a time
dependence of e−iωt, which gives, repeating similar calculations, a positive imaginary part
in εσ.

Remark 2.2. In the hypothesis ∇·E = 0, using the vector calculus identity ∇×(∇×A) =
−∆A + ∇(∇ ·A), we would get that (2.26) is equivalent to a vector Helmholtz equation
with absorption (or damping):

−∆E− (ω̃2 − iωµσ)E = 0. (2.27)

2.2 The waveguide problem

Waveguides are used to transfer electromagnetic power efficiently from one point in space
to another. Some common guiding structures are shown in Figure 2.1 [93], including
coaxial cables, two-wire and microstrip transmission lines, hollow metallic waveguides,
and dielectric waveguides as optical fibers. Here, we are interested in hollow metallic
rectangular waveguides, of cross section given by the rectangle (0, a)× (0, b). The guide is
typically filled with air, but any other dielectric material, with permittivity ε, permeability
µ, conductivity σ, can be considered.

To simulate numerically the electromagnetic wave propagation in such waveguide struc-
tures, first of all consider as computational domain a bounded section Ω = (0, a)× (0, b)×
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x

y

z

a

b c

Figure 2.2 – Rectangular waveguide configuration with wave propagation in the z direction.
The physical domain D is in thin line, with dashed style for those boundaries that should
be extended to infinity. The computational domain Ω is in thick line, with dashed style
for those boundaries where suitable absorbing conditions are imposed.

(0, c) of the physical domain D ⊂ R3, which is an infinite ‘parallelepiped’ parallel to the
z direction, as shown in Figure 2.2. Then, we need to solve the following boundary value
problem, consisting of equation (2.26) with suitable boundary conditions (described in the
subsections below): 

∇× (∇×E)− γ2E = 0, in Ω,

E× n = 0, on Γw,

(∇×E)× n + iη n× (E× n) = gin, on Γin,

(∇×E)× n + iη n× (E× n) = gout, on Γout,

(2.28a)
(2.28b)

(2.28c)
(2.28d)

where n is the unit outward normal to Γ = ∂Ω. Considering the vector ez = (0, 0, 1)t,
the border Γ is composed of Γw = {x ∈ ∂Ω, n(x) · ez = 0} representing the border of
the waveguide walls, Γin = {x ∈ ∂Ω, n(x) · ez < 0} which is the waveguide entrance, and
Γout = {x ∈ ∂Ω, n(x) · ez > 0}, the waveguide exit. The parameter η is a positive real
number, and the vector functions gin, gout depend on the incident wave.

In the following, we discuss the boundary conditions appearing in the boundary value
problem, which are specific to electromagnetism. Then we find particular exact solutions
(called modes of the waveguide) in the case σ = 0, for an infinitely long waveguide. We
consider also a two-dimensional configuration of the problem. Finally, we derive the vari-
ational (or weak) formulation of the problem.

2.2.1 Metallic boundary conditions

Boundary conditions (2.28b) express the fact that the metallic walls of the waveguide are
modeled as a perfect electric conductor (PEC).

Indeed, inside a perfect conductor the electric field vanishes: heuristically, from Ohm’s
law (J = σE) we see that if the conductivity σ → ∞ and if the current density J is to
remain bounded, then E→ 0.

Moreover, the electric field has continuous tangential component across a surface S (Γw
in our case) separating two regions with different materials. More precisely, if n is the unit
normal to S pointing from region 1 to region 2, and if E1 denotes the limiting value of
the electric field as S is approached from region 1 and E2 denotes the limiting value of the
field from the other region, then we have:

E1 × n = E2 × n on S. (2.29)
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This property of tangential continuity of the electric field can be derived from the integral
form of Faraday’s law (2.9) 2; furthermore, (2.29) is a requirement for ∇ × E to be well
defined in a least squares sense, see Lemma 5.3 of [85]. Note that the normal component
can jump across material discontinuities instead. This must be taken into account when
designing a numerical scheme for approximating Maxwell’s equations.

Now, if the material on one side (say region 2) of the interface S is a perfect conductor,
like the waveguide walls in our case, then E2 = 0 in (2.29), that is

E1 × n = 0 on S,

where region 1 is the domain Ω and S is the border Γw.

2.2.2 Impedance boundary conditions

Boundary conditions (2.28c), (2.28d) on the artificial boundaries Γin, Γout are called
impedance boundary conditions, which are Robin-type boundary conditions. On one hand,
they model the fact that the waveguide is connected to electronic components such as
antennas. On the other hand, they are absorbing boundary conditions, first order ap-
proximations of transparent boundary conditions. Transparent boundary conditions are
defined to let outgoing waves pass through the artificial boundaries of the domain unaf-
fected, to obtain in the truncated domain Ω the same solution as in the infinite domain D;
however, transparent boundary conditions involve non local operators, so they need to be
approximated in order to be used in practice.

Consider the first order absorbing boundary condition

1

Z
n×E− n× (H× n) = 0, (2.30)

where Z =
√
µ/ε is the wave impedance. This condition mimics the Silver-Müller radiation

condition for the field scattered by an object. Now, by substituting H = − 1
iωµ∇×E from

the second equation of the time-harmonic system (2.23) inside (2.30) we get:

1

Z
n×E +

1

iωµ
n× ((∇×E)× n) = 0,

that is, multiplying by iωµ and using iωµ/Z = iωµ
√
µ/ε = iω

√
µε = iω̃,

iω̃ n×E + n× ((∇×E)× n) = 0.

Therefore we have
((∇×E)× n)× n + iω̃E× n = 0,

and, after vector product multiplication by n,

(∇×E)× n + iω̃ n× (E× n) = 0. (2.31)

Remark 2.3 (Sign convention!). Note that the adopted sign convention with e+iωt in the
time-harmonic assumption (2.22) results in a positive sign +iω̃ in the absorbing impedance
boundary condition written as in (2.31). The opposite sign choice of e−iωt would give,
repeating similar calculations, the parameter −iω̃ in the condition.

2. Thanks to (2.9), it can be proven that E1 · t = E2 · t on S for any tangential direction t. Note that
E× n is actually the tangential trace of E, while the tangential component is n× (E× n) = E− (E · n)n.
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2.2.3 Waveguide modes

We look for particular exact solutions (also calledmodes) of Maxwell’s equations, in the non
dissipative case (σ = 0), that propagate along the (infinitely long) waveguide principal axis
(the z direction). The complex amplitudes E, H in the time-harmonic representation (2.22)
(of angular frequency ω) are assumed to have the form:

E(x) = E(x, y, z) = Ẽ(x, y)e−iβz, H(x) = H(x, y, z) = H̃(x, y)e−iβz, (2.32)

where β > 0 is the propagation wavenumber along the guide direction. With these assump-
tions, the component form of the first order formulation of Maxwell’s equations (2.19), with
σ = 0, becomes (dropping the tilde symbol):

iωεEx −
∂Hz

∂y
− iβHy = 0,

iωεEy + iβHx +
∂Hz

∂x
= 0,

iωεEz −
∂Hy

∂x
+
∂Hx

∂y
= 0,

iωµHx +
∂Ez
∂y

+ iβEy = 0,

iωµHy − iβEx −
∂Ez
∂x

= 0,

iωµHz +
∂Ey
∂x
− ∂Ex

∂y
= 0.

(2.33)

The metallic boundary condition (2.28b) on Γw translates into

Ey = Ez = 0, on x = 0 and x = a,

Ex = Ez = 0, on y = 0 and y = b.
(2.34)

We are interested in finding the exact solutions in two particular cases: the transverse
electric case (TE) in which the longitudinal component Ez = 0, and the transverse magnetic
case (TM) in which the longitudinal component Hz = 0.

TE modes

If we take Ez = 0, equations (2.33) become

iωεEx −
∂Hz

∂y
− iβHy = 0,

iωεEy + iβHx +
∂Hz

∂x
= 0,

− ∂Hy

∂x
+
∂Hx

∂y
= 0,

iωµHx + iβEy = 0,

iωµHy − iβEx = 0,

iωµHz +
∂Ey
∂x
− ∂Ex

∂y
= 0.

(2.35)

The last three equations in (2.35) yield:

Hx = − β

µω
Ey, Hy =

β

µω
Ex, Hz =

1

iωµ

(
∂Ex
∂y
− ∂Ey

∂x

)
, (2.36)
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and if we substitute these expressions of Hx, Hy, Hz into the first three equations in (2.35)
(and we multiply the first two by iωµ), we get:(

β2 − ω2µε
)
Ex −

∂2Ex
∂x2

− ∂2Ex
∂y2

= 0,

(
β2 − ω2µε

)
Ey −

∂2Ey
∂x2

− ∂2Ey
∂y2

= 0,

∂Ex
∂x

+
∂Ey
∂y

= 0.

To summarize, if we consider the boundary conditions given by (2.34) and we recall
that ω̃ = ω

√
εµ is the wavenumber, it is enough to solve the following Helmholtz problems

in two dimensions:{ (
β2 − ω̃2

)
Ex −∆Ex = 0

Ex(x, 0) = Ex(x, b) = 0

{ (
β2 − ω̃2

)
Ey −∆Ey = 0

Ey(0, y) = Ey(a, y) = 0

where Ex and Ey are related by the divergence condition ∂Ex
∂x +

∂Ey

∂y = 0. The technique
of separation of variables gives the following solutions of the above equations

Ex = C
nπ

b
cos
(mπx

a

)
sin
(nπy

b

)
, Ey = −Cmπ

a
sin
(mπx

a

)
cos
(nπy

b

)
,

where m,n ∈ N, provided that(mπ
a

)2
+
(nπ
b

)2
= ω̃2 − β2, (2.37)

which is called dispersion relation.
If we plug the expressions we have just obtained of Ex and Ey in equation (2.36), we

see that:

Hx = C
β

ωµ

mπ

a
sin
(mπx

a

)
cos
(nπy

b

)
,

Hy = C
β

ωµ

nπ

b
cos
(mπx

a

)
sin
(nπy

b

)
,

Hz = C
1

iωµ

[(mπ
a

)2
+
(nπ
b

)2
]

cos
(mπx

a

)
cos
(nπy

b

)
.

To sum up, writing C = H0 iωµ/(ω̃
2 − β2), we conclude that the general form of the TE

modes is (after multiplication by e−iβz of the previous solutions):

ETEx = H0
iωµ

ω̃2 − β2

nπ

b
cos
(mπx

a

)
sin
(nπy

b

)
e−iβz,

ETEy = −H0
iωµ

ω̃2 − β2

mπ

a
sin
(mπx

a

)
cos
(nπy

b

)
e−iβz,

ETEz = 0,

HTE
x = H0

iβ

ω̃2 − β2

mπ

a
sin
(mπx

a

)
cos
(nπy

b

)
e−iβz,

HTE
y = H0

iβ

ω̃2 − β2

nπ

b
cos
(mπx

a

)
sin
(nπy

b

)
e−iβz,

HTE
z = H0 cos

(mπx
a

)
cos
(nπy

b

)
e−iβz,

(2.38)

and given m,n ∈ N the corresponding TE mode is called TEmn mode.
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Remark 2.4. In the calculations to obtain the field ETE = (ETEx , ETEy , ETEz ) we have
imposed the metallic boundary conditions on Γw. Moreover, it satisfies impedance bound-
ary conditions (2.28c), (2.28d) on Γin, Γout with parameter η = β and vector functions
gin = (iβ + iβ)ETE = 2iβETE and gout = (−iβ + iβ)ETE = 0.

Remark 2.5. If we consider the definition of the cutoff frequency

ωc =
1
√
εµ

√(mπ
a

)2
+
(nπ
b

)2
,

from relation (2.37) we have

β2 = ω̃2 −
((mπ

a

)2
+
(nπ
b

)2
)

= εµ
(
ω2 − ω2

c

)
.

So, for ω > ωc the propagation wavenumber β is real, i.e. the corresponding TEmn mode can
propagate in the waveguide; for ω < ωc, β is imaginary, i.e. the corresponding TEmn mode
can not propagate, it attenuates exponentially along the waveguide direction. Usually,
waveguide systems are operated in a frequency range that ensures that only the mode with
the lowest cutoff frequency can propagate. If the frequency ω is greater than the cutoff
frequencies of several modes, then all of these modes can propagate. Conversely, if ω is
less than all cutoff frequencies, then none of the modes can propagate. If we arrange the
cutoff frequencies in increasing order, ωc1 < ωc2 < ωc3 < . . . , then, to ensure single-mode
operation, the frequency should be restricted to the interval ωc1 < ω < ωc2, so that only
the lowest mode will propagate. This interval defines the operating bandwidth of the guide
[93]. If a > b, the mode with the lowest cutoff frequency (called the dominant mode) is
the TE10 mode, i.e. the one with m = 1, n = 0.

TM modes

Suppose that now we take Hz = 0. In a similar way we can derive the TM solutions:

ETMx = −E0
iβ
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mπ

a
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(mπx

a

)
sin
(nπy

b

)
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b
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)
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iωε
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)
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)
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iωε
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a
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(mπx
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)
sin
(nπy
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)
e−iβz,

HTM
z = 0.

(2.39)

2.2.4 Two-dimensional problem

To write a simplified model in 2d, used for preliminary studies and computations, we
consider the physical domain D ⊂ R3 given by the space contained between two infinite
parallel metallic plates, say y = 0, y = b (see Figure 2.3): the wave propagates in the x
direction, and all physical parameters µ, σ, ε have to be assumed invariant in the third
direction, which is neglected. The computational domain Ω ⊂ R2 is a bounded section,
say Ω = (0, c)× (0, b), of D.
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x

y

z

b c

Figure 2.3 – Simplified two-dimensional configuration with wave propagation in the x
direction. The physical domain D is in thin line, with dashed style for those boundaries
that should be extended to infinity. The computational domain Ω is in thick line, with
dashed style for those boundaries where suitable absorbing conditions are imposed.

By writing E = (Ex, Ey, 0), we obtain the expression of the curl operator in the two-
dimensional setting: ∇ × E = (0, 0, ∂xEy − ∂yEx). Similarly, the vector product × is
calculated by writing E = (Ex, Ey, 0), n = (nx, ny, 0).

The function Eex = (0, e−iγx) verifies the equation of boundary value problem (2.28),
the metallic boundary conditions on Γw = {x ∈ ∂Ω, y = 0 or y = b}, and the impedance
boundary conditions on Γin = {x ∈ ∂Ω, x = 0}, Γout = {x ∈ ∂Ω, x = c} with parameter
η = ω̃ and vector functions gin = (iγ + iω̃)Eex, gout = (−iγ + iω̃)Eex; when σ = 0 we
get gin = 2iω̃Eex and gout = 0. The real part of the propagation constant −iγ gives the
rate at which the amplitude changes as the wave propagates, which corresponds to wave
dissipation (note that if σ > 0, Re(−iγ) < 0, while if σ = 0, Re(−iγ) = 0).

2.2.5 Variational formulation

To cast in the variational (or weak) form the boundary value problem (2.28), one has to
multiply equation (2.28a) by the complex conjugate of a complex-valued test function v of
a suitable functional space V (specified below), and then integrate over the computational
domain Ω using for the first term the integration by parts formula∫

Ω
(∇×w) · v =

∫
Ω
w · (∇× v)−

∫
∂Ω

(w × n) · v. (2.40)

Thus we obtain:∫
Ω

[
(∇×E) · (∇× v)− γ2E · v

]
−
∫
∂Ω

(
(∇×E)× n

)
· v = 0.

Now, we can rewrite the boundary term by splitting it into the integrals on the different
parts of the boundary:∫

∂Ω

(
(∇×E)× n

)
· v =

∫
Γw

(
(∇×E)× n

)
· v +

∫
Γin∪Γout

(
(∇×E)× n

)
· v.

On Γw, we choose test functions v such that v × n = 0, so we have∫
Γw

(
(∇×E)× n

)
· v = −

∫
Γw

(∇×E) · (v × n) = 0,
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and on Γin ∪ Γout we have∫
Γin∪Γout

(
(∇×E)× n

)
· v =

= −
∫

Γin∪Γout

iη(n× (E× n)) · v +

∫
Γin

gin · v +

∫
Γout

gout · v

= −
∫

Γin∪Γout

iη(E× n) · (v × n) +

∫
Γin

gin · v +

∫
Γout

gout · v.

Therefore, the weak problem reads: find E ∈ V such that∫
Ω

[
(∇×E) · (∇× v)− γ2E · v

]
+

∫
Γin∪Γout

iη(E× n) · (v × n)

=

∫
Γin

gin · v +

∫
Γout

gout · v ∀v ∈ V, (2.41)

with V = {v ∈ H(curl,Ω),v × n = 0 on Γw}. For a detailed discussion about existence
and uniqueness of solutions we refer to [85] (note that the sign convention therein adopted
is the opposite to ours, see Remarks 2.1, 2.3). The functional space H(curl,Ω) is a Sobolev
space of vector-valued functions appropriate for analyzing Maxwell’s equations for the
electric field. It is the space of square integrable vector functions whose curl is also square
integrable:

H(curl,Ω) = {v ∈ L2(Ω)3,∇× v ∈ L2(Ω)3},

where the derivatives are understood in the weak sense, so that ∇× v satisfies∫
Ω

(∇× v) · φ =

∫
Ω
v · (∇× φ) ∀φ ∈ (C∞0 (Ω))3.

The norm and the associated inner product on the space H(curl,Ω) are defined as follows:

‖v‖H(curl,Ω) =
(
‖v‖2L2(Ω)3 + ‖∇ × v‖2L2(Ω)3

)1/2
,

(u,v)H(curl,Ω) = (u,v)L2(Ω)3 + (∇× u,∇× v)L2(Ω)3 .



Chapter 3

A revisitation of high order
curl-conforming finite elements

The content of this chapter is partially extracted from [20], in collaboration with Francesca
Rapetti, published in Numerical Algorithms (Springer).
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3.1 Introduction

When applying the finite element (FE) method to a given problem arising in science and
engineering, one writes the variational (or weak) formulation of the problem to be dis-
cretized, defines the suitable discrete FE space on a mesh covering the computational
domain, and selects the algorithm to solve the final algebraic system in an efficient way
[96]. In Section 2.2.5 we have derived the variational formulation of the boundary value
problem (2.28) on which we focus in this work, and where the equation is the second order
time-harmonic formulation of Maxwell’s equations for the electric field (2.26); we have
introduced the functional space Hcurl on which the variational formulation of this problem
is well defined. In this chapter, we will specify discrete FE spaces in Hcurl suitable for
discretizing the considered problem.

35
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3.1.1 De Rham complex

Nevertheless, one should be aware that Hcurl belongs to a complex of functional spaces
HL = {u ∈ L2, Lu ∈ L2}, where L is one of the differential operators (the gradient, the
curl and the divergence) appearing in the full Maxwell’s system (2.11), and acting on scalar
or vector fields:

Hgrad
∇−−−−→ Hcurl

∇×−−−−→ Hdiv
∇·−−−−→ L2,

where the composition of two consecutive operators is 0. This de Rham complex summa-
rizes, for example, the fact that if q ∈ Hgrad then ∇q ∈ Hcurl (indeed, ∇× (∇q) = 0 ∈ L2

and ∇q ∈ L2). Note that the space Hgrad is usually denoted H1. Finite element spaces
in Hcurl on suitable meshes are used to discretize the electric and magnetic fields, in Hdiv
to discretize the electric and magnetic inductions, in L2 to discretize the electric charge
density, in Hgrad to discretize for example the electric potential VE defined by E = −∇VE .
Therefore, one should consider not only discrete FE subspaces W 1

h of Hcurl, but also sub-
spaces W 0

h of Hgrad, W 2
h of Hdiv and W 3

h of L2, which also form for each h a complex
with the same operators, h > 0 being the maximal diameter of the elements constituting
a mesh Th over the computational domain Ω. Moreover, these two complexes are related
by interpolation operators Πp

h, 0 ≤ p ≤ 3, onto the discrete subspaces, forming a diagram

Hgrad
∇−−−−→ Hcurl

∇×−−−−→ Hdiv
∇·−−−−→ L2

Π0
h

y Π1
h

y Π2
h

y Π3
h

y
W 0
h

∇−−−−→ W 1
h

∇×−−−−→ W 2
h

∇·−−−−→ W 3
h

that commutes, that is one can follow the arrows along any path between two spaces
and obtain the same operator between these two spaces. After the use of the commuting
diagram in the approximation of second order elliptic problems in mixed form [43], the
central importance of this structure in the approximation of electromagnetism problems
was first noticed by Bossavit [24, 27]. Then several works followed, e.g. [68, 69, 9, 3], see
[11, §2.1.4] for more references.

For the construction of the generic FE subspace Wh we follow the classical approach of
Ciarlet [32]. One introduces first the triple (K,P,Σ), representing a finite element, where

• K is the kind of geometrical “tile” of the mesh Th over Ω̄ (in our case a simplex, i.e. a
triangle in 2d and a tetrahedron in 3d),

• P is a finite-dimensional space of functions (usually polynomials) defined on K,

• Σ is a set of linear functionals σi, called degrees of freedom (dofs), acting on P .

The finite element (K,P,Σ) is said to be unisolvent if any element z of P is determined
once the values σi(z) are known. One then defines the FE space as

W p
h,r = {u ∈ HL, u|K ∈ P, ∀K ∈ Th},

where the integer r denotes the maximal polynomial degree of u|K (resp. of the components
of u|K) for scalar (resp. vector) fields u ∈ HL, and the integer 0 ≤ p ≤ 3 refers to the
geometrical dimension involved to define the dofs for u|K at the lowest degree. Note that
P is a suitable approximation of HL locally, in each element K, andW p

h,r respects globally,
on the whole domain, the smoothness requirements of the underlying functional space HL,
associated with the boundary value problem to be approximated:

• for Hgrad (i.e. H1) the continuity of a global finite element function u is required,
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• forHcurl the continuity of the tangential trace u×n of a global finite element function
u is required (see the proof in e.g. [85], Lemma 5.3),

• for Hdiv the continuity of the normal component u · n of a global finite element
function u is required.

Indeed, here for a given functional space HL we consider finite elements (K,P,Σ) which
are termed HL-conforming, that is, the corresponding global FE space is a subspace of HL.
In the case of Hcurl and Hdiv one often says curl-conforming and div-conforming. The dofs
line up to guarantee the needed global smoothness. Note that the tangential continuity is
a physical property of the electric field, which is indeed discretized with curl-conforming
finite elements.

3.1.2 Characteristics of Nédélec finite elements

FE subspaces W 0
h,r ⊂ Hgrad, and W 3

h,r ⊂ L2, are well documented in the literature, sets of
basis functions of arbitrary order r on tetrahedra are explicitly detailed in books [109, 73].
FE subspaces W 1

h,r ⊂ Hcurl and W 2
h,r ⊂ Hdiv are due to Nédélec [89], where, for a simplex

K, the space P is spanned by vectors with incomplete or trimmed polynomials of degree
≤ r as components: this means that some of the top-degree monomials are removed to
satisfy some constraints. A second family of Nédélec FEs was introduced in [88], where the
definition of P on a simplex K is simpler, as it is a set of vectors with complete polynomials
of degree ≤ r as components. The second family offers superior error estimates for the
interpolant compared to the first family, but at the cost of using more dofs for a mesh with
a given h. Among the vast literature on high order Nédélec FEs on simplicial meshes we
cite [1, 101, 4, 55].

Degrees of freedom for Nédélec FEs are not of Lagrangian type (i.e., they are not the
functionals giving the values at mesh nodes): they are functionals involving integrals along
a curve or across a surface, with orientation to make things more complicated. For the
lowest degree (r = 1), dofs are circulations for Hcurl, or fluxes for Hdiv, of the considered
field, but for higher orders (r > 1) dofs are moments, that are integrals over sub-simplices
of the field (or of a component of it) against some function. Moreover, the duality property
σi(wj) = δij between dofs σi and basis functions wj of P is not automatically granted for
r > 1, which is instead the case for the usual H1-conforming FEs with their nodal dofs.
Duality would ensure, for instance, that dofs give the expansion coefficients for writing in
terms of the basis a general function in the FE space; so, in particular, the coefficients of
the solution vector u (of the algebraic system) for writing the FE approximation Eh of the
field could be interpreted as the dofs applied to Eh.

In this chapter, we focus on high order finite elements for Hcurl, since it is the functional
space needed for the considered boundary value problem (2.28). We published in [20] the
complete study for all the spaces of De Rham complex. Nédélec curl-conforming FEs are
often termed edge elements because at the lowest degree (r = 1) dofs and basis functions
are associated with edges of the mesh. There are several reasons to rely on edge elements
rather than on classical node-based vector-valued elements [22]. For instance, besides
fitting the continuity properties of the electric field, edge elements are known to avoid the
pollution of the numerical solution by spurious modes (see §9.3.3 of [27] and [25, 10]).

Here, we adopt the high order basis functions presented in [97, 98] (which belong to
the first family of Nédélec FEs), whose definition is rather simple since it only involves the
barycentric coordinates of the simplex (see also [59] for previous work in this direction).
Their construction, characterized by a geometrical approach, is described in Section 3.4,
after introducing in Section 3.2 some notation concerning mesh components and after
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recalling in Section 3.3 the definition and properties of the low order FEs. In Section 3.5
we revisit the definition of classical dofs by moments, obtaining a more friendly expression
in terms of the considered basis functions. In Section 3.6 we propose a general technique
to restore duality between dofs and basis functions for the high order case, thanks to a
generalized Vandermonde matrix. We conclude with an example in Section 3.7 illustrating
the notions introduced in this Chapter, and with a numerical study in Section 3.8 about
the order of convergence of the high order finite element method.

3.2 Notation for mesh components and incidence matrices

Let Ω ⊂ R3 be a bounded domain with piecewise smooth boundary Γ. We consider a
simplicial mesh of Ω̄, that is a tessellation of Ω̄ by tetrahedra, subject to the condition
that any two of them may intersect along a common face, edge or node, but in no other way.
We denote byN , E , F , T (resp.NN , NE , NF , NT ) the sets (resp. the cardinality of the sets)
of nodes (0-simplices), edges (1-simplices), faces (2-simplices), and tetrahedra (3-simplices)
thus obtained, and by Th the mesh itself, with h > 0 standing for the maximal diameter of
the tetrahedra of T . Note that if a simplex s belongs to the mesh Th, all simplices that form
the boundary of s also belong to Th; each simplex appears only once in Th. Labels n, e, f, v
are used for nodes, edges, faces, volumes (tetrahedra). The placement of the mesh stands
for the function from N to Ω̄, giving for each node ni its position xi in Ω̄. The tetrahedron
v = {n1, n2, n3, n4} is defined as the non degenerate convex envelope of four points n1, n2,
n3, n4 in R3, where non degenerate means (x2 − x1)× (x3 − x1) · (x4 − x1) different from
zero. Similarly, a p-simplex s, 0 ≤ p ≤ 3, is the non degenerate convex envelope of p + 1
geometrically distinct points n1, . . . , np+1. The points n1, . . . , np+1 are called vertices of s,
and p is the dimension of the p-simplex s, which we shall denote s = {n1, . . . , np+1}. Any
(p− 1)-simplex that is a subset of {n1, . . . , np+1} is called (p− 1)-face of s.

To make more compact the layout of a formula, the node n = nl can be denoted as e−n
when e = {ni, nl}. The same node becomes f − e when e = {ni, nj} and f = {ni, nj , nl},
or v − f when v = {ni, nj , nl, nq} and f = {ni, nj , nq}.

Besides the list of nodes and of their positions, the mesh data structure also contains
incidence matrices, saying which node belongs to which edge, which edge bounds which
face, etc., and there is a notion of (inner) orientation of the simplices to consider. In short,
an edge, face, etc., is not only a two-node, three-node, etc., subset of N , but such a set
plus an orientation of the simplex it subtends [27].

For example, e = {ni, nj}, where we assume that ni < nj for simplicity at the imple-
mentation step, denotes the edge that connects the global vertices ni and nj , oriented in
such a way that the tangent vector goes from the vertex ni to the vertex nj . If e = {ni, nj},
the edge {nj , ni} is referred to as −e. One introduces the so-called incidence numbers
∂e,ni = −1, ∂e,nj = 1, and ∂e,nk

= 0 for nodes nk other than ni and nj . They form a
rectangular matrix G = (∂e,n), with NE rows and NN columns, which describes how edges
connect to nodes.

Faces are also oriented, not merely a collection of 3 nodes. For example, f = {ni, nj , nk},
where we assume that ni < nj < nk for simplicity, is the face with the three vertices ni,
nj , nk, oriented such that the vectors xj −xi, xk −xi, form a reference frame in the plane
supporting f . An orientation of f induces an orientation of its boundary and, with respect
to this induced orientation, an edge runs along or not. Then one introduces the incidence
number ∂f,e, as +1 if e runs along the boundary of f , −1 otherwise, and 0 if e is not one
of the edges of f . They form a rectangular matrix R = (∂f,e), with NF rows and NE
columns.
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Figure 3.1 – The oriented tetrahedron v = {n1, n2, n3, n4} with oriented p-faces, 0 < p < 3.
The boundary of the face f1 = {n1, n3, n2} is ∂(f1) = −e1 − e5 + e6. It can be identified
with the vector (−1, 0, 0, 0,−1, 1) collecting the coefficients in front of each edge, which
gives the first line of the incidence matrix R for v.

A matrix D = (∂v,f ), indexed over T and F , is similarly defined: ∂v,f = ±1 if face
f bounds tetrahedron v, the sign depending on whether the orientations of f and of the
boundary of v match or not. This makes sense only after the tetrahedron v itself has been
oriented, and the convention will be that if v = {ni, nj , nk, nl}, the vectors xj−xi, xk−xi,
and xl−xi, in this order, define a positive frame. So, the incidence number ∂v,f = 1 (resp.
−1) if the normal of the oriented face f is outward (resp. inward). Implicitly, we have
been orienting all nodes the same way, +1, up to now.

Example 3.1. For the tetrahedron in Figure 3.1, the three incidence matrices are

G =



0 −1 1 0
0 1 0 −1
0 0 1 −1
−1 0 0 1
−1 1 0 0
−1 0 1 0

 , R =


−1 0 0 0 −1 1
−1 −1 1 0 0 0

0 0 1 1 0 −1
0 1 0 1 −1 0

 , D = (1 − 1 1 − 1).

The well known property of incidence matrices is here recalled. (Note that this, together
with Remark 3.3, constitutes a sort of discrete version of the de Rham complex.)

Proposition 3.2. We have DR = 0 and RG = 0.

Proof. Let e ∈ E and v ∈ T . By definition of matrix product, (DR)v,e =
∑

f∈F ∂v,f∂f,e,
where the only nonzero terms are for faces f that both contain the edge e and bound the
volume v, which means that e is an edge of v. There are exactly two faces f and g of v
sharing the edge e. If ∂v,g = ∂v,f , then their boundaries are oriented in such a way that
e must run along one and counter the other, so ∂g,e = −∂f,e, and the sum is zero. If
∂v,g = −∂v,f , the opposite happens, that is ∂g,e = ∂f,e, with the same final result. The
proof of RG = 0 is similar.

3.3 Low order curl-conforming finite elements

Before describing the curl-conforming FE of the lowest degree (r = 1), we get familiar with
the approach of the triple (K,P,Σ), presented in Section 3.1 to define a finite element, by
applying it to the well known continuous nodal FE. For each node n ∈ N , we denote by
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Dn the cluster of tetrahedra in T which have a vertex at n. With the node n ∈ N , we
associate the continuous, piecewise affine function wn defined as

wn(x) =

{
λn(x), x ∈ D̄n,

0, otherwise,

where λn(x) is the barycentric (or volume) coordinate of x with respect to n, computed in
the tetrahedron of Dn containing x (the functions wn are often called hat functions). By
construction, D̄n coincides with the support of wn and

∑
n∈N w

n(x) = 1, for all x ∈ D̄n.
Let us denote P1(v) the vector space of first order polynomials defined in v: it is generated
by the functions wn, with n a vertex of v. The nodal FE (K,P,Σ) for the approximation
of scalar fields in v is given by K = v, P = P1(v), and

Σ = {σn : z 7→ z(xn), n a vertex of v}.

Then, W 0
h,1 = span{wn, n ∈ N} and its functions are continuous over Ω̄. For a suitable

subspace Y 0 [65], the interpolation operator Π0
h : Y 0 ⊂ Hgrad →W 0

h,1 associates a function
z ∈ Y0 with its decomposition on the basis {wn} defined as Π0

hz(x) =
∑

n∈N σn(z)wn(x),
for all x ∈ Ω̄.

Now, with the (oriented) edge e = {ni, nj}, we associate the vector field

we = λni∇λnj − λnj∇λni . (3.1)

It can be shown (see, e.g., Proposition 2 in [28]) that the we, varying e among the edges
of v, generate the vector space R(v) = {w ∈ R3, w(x) = a ×x+b, a,b ∈ R3} of Nédélec
first family [89]. The edge FE (K,P,Σ) for the approximation of vector fields in v is given
by K = v, P = R(v), and

Σ =

{
σe : z 7→ 1

|e|

∫
e
z · te, e an edge of v

}
, (3.2)

where te = xj−xi for e = {ni, nj} is the tangent vector to the edge e, |e| = |te| the length of
e. One has W 1

h,1 = span{we, e ∈ E} and its vectors have tangential component continuous
across the inter-element faces (see Section 5.2.2, page 141, of [27]). Accordingly, the dofs
σe are based on a tangential quantity. For a suitable subspace Y 1 [65], the interpolation
operator Π1

h : Y 1 ⊂ Hcurl(Ω) → W 1
h,1 assigns to a vector z ∈ Y1 its decomposition on the

basis {we}, defined as Π1
hz(x) =

∑
e∈E σe(z)we(x), for all x ∈ Ω̄.

These definitions of the interpolation operators Πp
h, p = 0, 1, are justified by the fact

that the (scalar or vector) basis functions wj are in duality with the dofs σi, that is
σi(w

j) = δij
1, 1 ≤ i, j ≤ Ndofs = dim(W p

h,1). Indeed, the interpolant of a suitably smooth
(scalar or vector) function z is defined to be the unique function Πp

hz ∈W
p
h,1 such that

σi(Π
p
hz − z) = 0, 1 ≤ i ≤ Ndofs,

(note that uniqueness holds because the FE is unisolvent), and by writing it as a linear
combination with coefficients cj of the basis functions wj

Πp
hz =

Ndofs∑
j=1

cjw
j ,

1. The Kronecker delta δij is the function whose value is δij = 1 if i = j, δij = 0 otherwise. For the nodal
FE, the duality property σni(w

nj ) = λnj (xi) = δninj is satisfied thanks to properties of the barycentric
coordinates λn. For the edge FE, the proof of the duality property σei(w

ej ) = 1
|ei|

∫
ei
wej · tei = δeiej can

be found, e.g., in Section 5.2.2, page 140, of [27].
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we get by linearity
Ndofs∑
j=1

cjσi(w
j) = σi(z), 1 ≤ i ≤ Ndofs,

that is, by duality,
ci = σi(z), 1 ≤ i ≤ Ndofs.

So, for W 1
h,1 the coefficients are the circulations of z along the oriented edges e of the

mesh. Another way to state the property of duality is by introducing a matrix of weights,
a square matrix V with entries defined as

Vij = σi(w
j), 1 ≤ i, j ≤ ndofs = dim(W 1

h,1(v)),

in a tetrahedron v. When duality holds, the matrix of weights V is the identity. Duality
won’t be automatically granted when moving to higher order in the case of W 1

h,r, so in
Section 3.6 we will propose a simple technique to restore duality.

Remark 3.3. The edge-to-node incidence matrix G is as a discrete analogue of the gra-
dient operator. Indeed, if one sets, for example, z = ∇ϕ, where ϕ =

∑
n∈N ϕnw

n is an
element of W 0

h,1, then z ∈W 1
h,1 is expressed as

∑
e∈E zew

e, with

ze = σe(z) = σe(∇ϕ) =
1

|e|

∫
e
∇ϕ · te = ϕ(xj)− ϕ(xi) = σnj (ϕ)− σni(ϕ) = ϕnj − ϕni ,

where e = {ni, nj} and we have used Stokes theorem. Therefore, remembering the defi-
nition of G, the relation between the vectors of coefficients (ze) for z and (ϕn) for ϕ, is
(ze) = G(ϕn).

3.3.1 Correspondence with Whitney forms

As pointed out in [27], the generators of FE subspace W p
h,1 correspond to constructs in

algebraic topology known as Whitney forms [114] (see [28] for a short presentation). The
following recursive definition of Whitney p-forms of lower degree in a simplex v has been
firstly stated in [23].

Definition 3.4. For p = 0, we set wn = λn, for all 0-simplices n ∈ N . For any integer
0 < p ≤ 3, where 3 is the ambient dimension in Ω, the Whitney p-form ws associated with
the p-simplex s of a mesh Th in Ω̄ is

ws =
∑

σ∈{(p−1)−simplices}

∂s,σλs−σdwσ (3.3)

where ∂s,σ is the incidence matrix entry linking σ to s, wσ is the (p− 1)-form associated
with σ, and d is the exterior derivative operator from (p− 1)-forms to p-forms.

To recover from this definition the expression of the basis functions for W 1
h,1(v), it is

sufficient to replace the exterior derivative operator d by the gradient operator ∇. For the
edge e = {l,m}, the Whitney 1-form we =

∑
n∈N ∂e,n λe−ndwn becomes we = λldw

m −
λmdwl, thus the vector function we = λl∇λm − λm∇λl of (3.1).

3.4 Generators for high order curl-conforming finite elements

We recall the definition of the high order generators for W 1
h,r presented in [97, 98], which

are indeed Whitney 1-forms of higher degree (r > 1). Adopting a geometrical approach to
define higher order Whitney forms, we have to construct a finer description of sub-simplices
in the volume v.
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Figure 3.2 – For d = 3 and r = 3, the edges connecting the points of T3(v) (left), the holes
in thick line (center), the small d-simplices in the exploded configuration (right). The small
0-simplices are nothing else than the nodes of T3(v). Starting from the nodes of T3(v), we
may construct 60 small edges, 40 small faces, 10 small tetrahedra.

3.4.1 Small simplices

An analogous procedure is classically used to define higher order nodal FEs for scalar fields
[32]: it goes through the introduction of the principal lattice of order r ≥ 1 in the volume
v ⊂ Rd. It consists in the set of points

Tr(v) =

{
x ∈ v, λj(x) ∈

{
0,

1

r
,

2

r
, . . . ,

(r − 1)

r
, 1

}
, 1 ≤ j ≤ d+ 1

}
.

Recall that the cardinality of Tr(v) is equal to the dimension of Pr(v), the space of real-
valued polynomials defined in Rd, restricted to the volume v, of degree ≤ r (the proof is
by recurrence on the ambient space dimension d). The functionals σl : z 7→ z(xl), with
xl ∈ Tr(v), are classically taken as dofs for functions in Pr(v).

Here, since we deal with fields whose physical meaning is specified by circulations
along curves, we need to define dofs accordingly, even when we consider a high order
approximation of those fields. Thus we have to create a sort of principal lattice of edges in
v for r > 1. This is realized by connecting the points of Tr(v) with planes parallel to the
faces of v, (as in Figure 3.2, left). One thus obtains a partition of v including d-simplices
homothetic to v (the so-called “small” d-simplices, visible in Figure 3.2, right) and other
objects (the “holes”, the objects with thick boundary in Figure 3.2, center) that can only
be octahedra and reversed tetrahedra when v is a tetrahedron. Any p-simplex, 0 ≤ p < d,
belonging to the boundary of a small d-simplex is called small p-simplex. For the case
p = 1 in which we are interested here, we consider small 1-simplices, i.e. small edges.

To formalize the construction defined right above, we need to introduce multi-index
notations. A multi-index is an array k = (k1, . . . , kν) of ν integers ki ≥ 0, and its weight
k is

∑ν
i=1 ki. The set of multi-indices k with ν components and of weight k is denoted

I(ν, k). If d = 2, 3 is the ambient space dimension, we consider ν ≤ d + 1. Now, in the
following definition we take ν = d+ 1 and k = r − 1.

Definition 3.5 (Small edges). Let us consider the principal lattice Tr(v) of order r > 1
in the simplex v = {n1, ..., nd+1}. The small 1-simplex or small edge {k, e}, with k ∈
I(d + 1, r − 1), is a 1-simplex parallel and 1/r-homothetic to the (big) edge e of v, with
vertices in Tr(v). It belongs to the boundary of the small tetrahedron whose barycenter g
has barycentric coordinates

λnj (g) =

(
1
d+1 + kj

)
k + 1

, 1 ≤ j ≤ d+ 1.
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Example 3.6. The barycenters of the small tetrahedra for a degree r > 1 can be used to
localize the small edges. Referring to Figure 3.2, left and right, where v = {n1, n2, n3, n4}
and r = 3, the small simplex {(0, 0, 2, 0), e = {n3, n4}} is the small edge parallel to e that
belongs to the small tetrahedron in the bottom layer, corner position and touching the
edge {n3, n4}. The barycenter g of this small tetrahedron verifies

λn1(g) =
1

12
, λn2(g) =

1

12
, λn3(g) =

1

12
+

2

3
, λn4(g) =

1

12
.

The small simplex {(1, 1, 0, 0), e = {n3, n4}} is the small edge parallel to e that belongs
to the small tetrahedron in the bottom layer, middle position, touching the edge {n1, n2}.
The barycenter g of this latter small tetrahedron verifies

λn1(g) =
1

12
+

1

3
, λn2(g) =

1

12
+

1

3
, λn3(g) =

1

12
, λn4(g) =

1

12
.

In practice, we can think that each component of the multi-index k says how close the
small tetrahedron is to each vertex of the big tetrahedron (the higher ki, the closer the
small tetrahedron to ni).

3.4.2 High order generators

The complex of small edges is not created in the reality, it is drawn to help to visualize
the high order construction. The high order generators for W 1

h,r(v) in a tetrahedron v will
be associated with the small edges identified in the principal lattice Tr(v). Before defining
these generators, which are Whitney 1-forms of high order, we need to introduce also the
following notation for products of barycentric coordinates.

Definition 3.7. Given k ∈ I(d+ 1, k), we set λk =
∏d+1
i=1 (λni)

ki .

These homogeneous polynomials of degree k in barycentric coordinates are in one-to-
one correspondence with polynomials of degree ≤ k in Cartesian coordinates. For this
reason, we can say that Pk(v) = span(λk)k∈I(d+1,k) on each volume v. We recall that
dim(Pk(v)) =

(
k+d
d

)
. When revisiting dofs in the next section, it will occur that we adopt

another version of Definition 3.7. Let s = {n1, ..., np′+1} be a p′-simplex, 0 ≤ p′ ≤ d, and
let ks ∈ I(p′ + 1, k′) be a multi-index of weight k′; we introduce the notation

λks
s =

p′+1∏
i=1

(λni)
(ks)i . (3.4)

For the same reason as before, we have that the space of polynomials of degree ≤ k′ on a
p′-simplex s can be spanned by the λks

s with ks ∈ I(p′ + 1, k′):

Pk′(s) = span(λks
s )ks∈I(p′+1,k′). (3.5)

Now we can state the definition of the generators adopted here for W 1
h,r(v) in a tetra-

hedron v, firstly introduced in [98]. This definition is rather simple since it only involves
the barycentric coordinates of the simplex.

Definition 3.8 (Generators for W 1
h,r(v)). Whitney 1-forms of high order r = k+ 1 (where

k ≥ 0) in a volume v are the
λkwe,

for all small edges {k, e}, with k ∈ I(d+1, k) and e an edge of v. The we are the Whitney
1-forms of polynomial degree 1 as stated in Definition 3.4 (p = 1), corresponding to (3.1).
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Note that these generators for W 1
h,r(v) enjoy the same conformity properties as those

for W 1
h,1(v) since they are defined as products between we ∈ W 1

h,1(v) and the continuous
function λk (product of barycentric coordinates). They are indexed on the basis of the
small edges {k, e} of Definition 3.5. If one makes the list of the small edges for a given k,
this immediately and explicitly yields the list of all generators of W 1

h,r(v), with r = k + 1.
However, the products λkwe generate the space W 1

h,r, but do not actually constitute
a basis as they are not all linearly independent when r > 1. This result is stated in [98],
Proposition 3.5, which is recalled here.

Proposition 3.9. For any face f we have∑
e∈E

∂f,e λf−ew
e = 0, (3.6)

Proof. Replacing we by its expression given in Definition 3.4 we get
∑

e ∂f,e λf−ew
e =∑

n,e λf−eλe−n ∂f,e ∂e,n dwn. This equals 0 since for a fixed n vertex of f , λf−eλe−n is the
same for all e in ∂f and (∂f,e)(∂e,n) = 0 (Proposition 3.2).

Due to (3.6), for each face there exists a combination with nonzero coefficients (±1)
of forms λkwe with certain multi-indices k ∈ I(d + 1, 1) that gives zero. These are the
relations among the generators for r = 2. To get the relations for r > 2, it is sufficient to
multiply these relations by the products λk with k ∈ I(d + 1, r − 2). As detailed later,
the selection of generators that constitute an actual basis of W 1

h,r(v) can be guided by the
degrees of freedom introduced in the next section. See the explicit list of the generators
for d = 3, r = 2 in Example 3.22.

3.5 Dofs for high order curl-conforming finite elements

We now deal with possible degrees of freedom (dofs) for fields in W 1
h,r(v). Different sets

of unisolvent dofs exist for high order elements. In [98] dofs associated with the small
simplices have been analyzed: forW 1

h,r(v) they were defined as circulations along the small
edges. Here, we revisit the classical dofs, referred to as moments, defined by Nédélec [89],
in order to obtain a new expression which results to be more friendly in terms of the
considered generators.

We first recall the definition stated in [89] (Definition 4 therein). We denote by E(v)
the set of edges of v and by F(v) the set of faces of v.

Definition 3.10 (Classical dofs). The dofs for a vector function w ∈ W 1
h,r(v), for r ≥ 1,

are the functionals

σe : w 7→ 1

|e|

∫
e
(w · te)u, ∀u ∈ Pr−1(e), ∀ e ∈ E(v), (3.7)

σf : w 7→ 1

|f |

∫
f
(w × nf ) · q, ∀q ∈ (Pr−2(f))2, ∀ f ∈ F(v), (3.8)

σv : w 7→ 1

|v|

∫
v
w · z, ∀ z ∈ (Pr−3(v))3, (3.9)

with te (resp. nf ) the vector of length |e| (resp. 1), tangent to e (resp. normal to f).

In Section 1.2 of [89] it is proved that dofs (3.7)-(3.9) are unisolvent. Note that in
Definition 3.10 if r < 3, dofs given by (3.9) are not used, which is implicitly stated by
the fact that it is not possible to define the elements of Pr−3(v) when r < 3, namely
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polynomials with negative degree. For the same reason, if r < 2, dofs given by (3.8) and
(3.9) are not used. Note that if r = 1, dofs given by (3.7) reduce to the circulations (3.2).

Now in the following Propositions we recast these dofs in a new more friendly form.

Proposition 3.11. Let us consider a vector w ∈W 1
h,r(v) for r ≥ 1. Its moments on faces

given by (3.8) are equivalent to

σf : w 7→ 1
|f |
∫
f (w · tf,i) q, ∀ q ∈ Pr−2(f), ∀ f ∈ F(v), (3.10)

tf,i two independent sides of f, i = 1, 2.

Proof. Any vector q ∈ (Pr−2(f))2 for the face f = {ni, nj , nl} can be written as a linear
combination of the two independent vectors

q1 = λ
kf

f (tf,1 × nf ) and q2 = λ
kf

f (tf,2 × nf )

with tf,1 = xj −xi, tf,2 = xl−xi two independent sides of the face f , nf its unit normal,
kf ∈ I(3, r − 2) and λkf

f defined in (3.4), recalling (3.5). We use the vector identity

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

to see that

(w × nf ) · q1 = λ
kf

f (w × nf ) · (tf,1 × nf )

= λ
kf

f [(w · tf,1)(nf · nf )− (w · nf )(nf · tf,1)]

= λ
kf

f [(w · tf,1)(1)− (w · nf )(0)] = λ
kf

f (w · tf,1)

and similarly with q2. The proof ends as Pr−2(f) = span(λ
kf

f )k∈I(3,r−2).

Proposition 3.12. Let us consider a vector w ∈ W 1
h,r(v) for r ≥ 1. Its moments in the

volume given by (3.9) are equivalent to

σv : w 7→ 1
|v|
∫
v(w · tv,i) q, ∀ q ∈ Pr−3(v), (3.11)

tv,i three independent sides of v, i = 1, 2, 3.

Proof. Any vector z ∈ (Pr−3(v))3 for the volume v = {n1, n2, n3, n4} can be written as a
linear combination of the three independent vectors

q1 = λk tv,1, q2 = λk tv,2, and q3 = λk tv,3,

where tv,` = x`+1 − x1, for ` = 1, 2, 3, and k ∈ I(3 + 1, r − 3). In the definition of
the qi, the part λk allows to specify the polynomial degree r − 3 and the polynomial
variables (barycentric coordinates with respect to vertices of v), whereas the (constant)
tv,` determine the vector nature. Recall that Pr−3(v) = span(λk)k∈I(3+1,r−3).

Summing up the content of the two Propositions to rewrite σf and σv, we state the
new definition of dofs.
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Definition 3.13 (Revisited dofs). The dofs for a vector function w ∈ W 1
h,r(v), for r ≥ 1,

are the functionals

σe : w 7→ 1

|e|

∫
e
(w · te) q, ∀ q ∈ Pr−1(e), ∀ e ∈ E(v), (3.12)

σf : w 7→ 1

|f |

∫
f
(w · tf,i) q, ∀ q ∈ Pr−2(f), ∀ f ∈ F(v), (3.13)

tf,i two independent sides of f, i = 1, 2,

σv : w 7→ 1

|v|

∫
v
(w · tv,i) q, ∀ q ∈ Pr−3(v), (3.14)

tv,i three independent sides of v, i = 1, 2, 3,

where the norm of the vectors te, tf,i, tv,i is the length of the associated edge. We say that
e, f, v are the supports of the dofs σe, σf , σv.

Remark 3.14. To make the computation of dofs easier, a convenient choice for the poly-
nomials q spanning the polynomial spaces over (sub)simplices e, f, v that appear in Defi-
nition 3.13 is given by suitable products of the barycentric coordinates associated with the
vertices of the considered (sub)simplex. Remember indeed (3.5).

3.5.1 Selection of linearly independent generators

The classification of dofs into edge-type, face-type, volume-type dofs can be done also for
generators: volume-type generators contain (inside λk or we) the barycentric coordinates
w.r.t. all the nodes of a tetrahedron v, face-type generators contain the ones w.r.t. all
and only the nodes of a face f , edge-type generators contain the ones w.r.t. only the
nodes of an edge e. Note that face-type (resp. volume-type) generators appear for r > 1
(resp. r > 2) (and the same happens for face-type and volume-type dofs). See the explicit
list of generators and dofs for the case d = 3, r = 2 in Example 3.22. It turns out that
dofs σe are 0 on face-type and volume-type generators, and dofs σf are 0 on volume-type
generators.

As mentioned at the end of the previous Section, for the high order case (r > 1) the
fields λkwe in Definition 3.8 are generators for W 1

h,r(v), but some of them are linearly
dependent. Note that all the relations are among face-type or volume-type generators.
The selection of generators that constitute an actual basis of W 1

h,r(v) can be guided by the
dofs in Definition 3.13. More precisely, as face-type (resp. volume-type) generators keep
the ones associated with the two (resp. three) edges e chosen as the two sides tf,1, tf,2
(resp. three sides tv,1, tv,2, tv,3) of face-type dofs (3.13) (resp. volume-type dofs (3.14)). A
convenient choice of sides is described in Section 4.2 and is the one adopted in Example
3.22. One can check that the total number of dofs σe, σf , σv in a simplex v is equal to
dim(W 1

h,r(v)) = (r + d)(r + d− 1) · · · (r + 2)r/(d− 1)!.

3.6 Restoring duality between generators and dofs

The considered basis functions are not in duality with the dofs in Definition 3.13 when
r > 1. This means that, after a suitable renumbering of dofs, the matrix V with entries
the weights

Vij = σi(wj), 1 ≤ i, j ≤ ndofs = dim(W 1
h,r(v))

is not the identity matrix for r > 1, that is σi(wj) 6= δij . Here the {wj} are a linearly
independent subset of the generators given in Definition 3.8. In the following we propose
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a technique to restore duality, considering new basis functions w̃j built as suitable linear
combinations of the wj , such that σi(w̃j) = δij .

This technique is related with the well known polynomial fitting of a scalar function f
at n = r+ 1 points xi of a real interval I. Considering the canonical basis {xj−1}j=1,...,n of
Pr(I), it consists in finding a polynomial Irf(x) =

∑n
j=1 ajx

j−1 such that Irf(xi) = f(xi)
for all i = 1, ..., n. The coefficients aj results to be the entries of a, solution of the linear
system V a = f where V is the Vandermonde matrix with entries Vij = xj−1

i , and fi = f(xi).
More generally, considering a basis {ψj} for Pr(I) (different from the canonical one) and
dofs σi : Pr(I)→ R (e.g. σi(f) = f(xi)), we have the following result.

Proposition 3.15. Let {ψj}j be a basis for Pr(I) and {σi}i suitable dofs for functions in
Pr(I). Writing

Irf(x) =
n∑
j=1

ujψj(x),

the vector u such that σi(Irf) = σi(f), for all i = 1, ..., n, is solution of the algebraic
system

V u = f ,

where V is a generalized Vandermonde matrix with entries Vij = σi(ψj) and f has (known)
components fi = σi(f).

Proof. Let us apply σi on both sides of the equality Irf =
∑n

j=1 ujψj . Since σi is linear,
we obtain

σi(Irf) =
n∑
j=1

ujσi(ψj),

which gives, using σi(Irf) = σi(f) = fi, and Vij = σi(ψj),

n∑
j=1

ujVij = fi, for all i = 1, ..., n,

that is V u = f in matrix form.

In particular, if we consider cardinal (dual) functions {φj} in Pr(I) defined by σi(φj) =
δij , we have u = f , thus

Irf(x) =
n∑
j=1

σj(f)φj(x).

The φj have to be determined as linear combinations of chosen basis functions ψj . The
same reasoning applies for vector field interpolation, replacing the ψj with wj , and φj with
w̃j : thus the interpolation operator Π1

h,r is defined by

Π1
h,r : Y 1 ⊂ H(curl, v)→W 1

h,r(v), u 7→ uh =

ndofs∑
i=1

ciw̃i, with ci := σi(u), (3.15)

provided σi(w̃k) = δik (Y 1 is a suitable subspace of H(curl, v), see [65]).
Now, to determine the w̃k, written as linear combinations w̃k =

∑ndofs
j=1 ckjwj , we need

to find coefficients ckj such that σi(w̃k) = δik. For a given k, the coefficients ckj turn out
to be the entries of the k-th column of V −1, the inverse of the generalized Vandermonde
matrix V with entries Vij = σi(wj). This is proved in the following Proposition.
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Proposition 3.16. Let {wj}j be a basis for W 1
h,r(v) and {σi} suitable dofs for functions

in W 1
h,r(v), as the ones in Definition 3.13. The vector ck = (ck1, c

k
2, ..., c

k
ndofs

)>, one per
each function w̃k, such that

σi(w̃k) = δik, w̃k(x) =

ndofs∑
j=1

ckjwj(x),

is solution of the algebraic system
V ck = ek, (3.16)

where V is the generalized Vandermonde matrix with entries Vij = σi(wj) and ek is the
k-th column of the ndofs-identity matrix (i.e., (ek)i = δik). Thus ck = V −1ek, which
determines ck as the k-th column of V −1.

Proof. Let us apply σi on both sides of the equality w̃k =
∑ndofs

j=1 ckjwj . Using the linearity
of σi and the duality property of w̃k (that is σi(w̃k) = δik), we obtain

ndofs∑
j=1

ckjσi(wj) = δik i.e.

ndofs∑
j=1

Vijc
k
j = δik,

which gives, fixing k and varying i, the relation V ck = ek.

Remark 3.17. Unisolvence of the finite element is equivalent to the unique invertibility
of the linear systems (3.16).

Remark 3.18. If M is the local mass matrix on a tetrahedron v for the basis functions
wj , i.e. Mij =

∫
vwi · wj , then the local mass matrix M̃ for the basis functions w̃j is

M̃ = V −TMV . Indeed, calling B = V −1, for given i, j, since w̃i =
∑ndofs

k=1 Bkiwk and
w̃j =

∑ndofs
`=1 B`jw`, we have

M̃ij =

∫
v
w̃i · w̃j =

ndofs∑
k=1

ndofs∑
`=1

BkiB`j

∫
v
wk ·w` =

ndofs∑
k=1

ndofs∑
`=1

(BT )ikMk`B`j = (BTMB)ij .

3.6.1 Properties of the generalized Vandermonde matrix

Some nice properties characterize the square matrix V of size ndofs (which depends on the
values of r and d).

Property 3.19. The entries of V can be calculated explicitly by a combinatorial formula
and do not depend on the metrics of the tetrahedron v for which they are computed.

Indeed, first of all, note that dofs in Definition 3.13 are conveniently normalized. Moreover,
the σi(wj) are integrals of two addends of the type λk′∇λni · te (here λk′ gathers the
products of barycentric coordinates appearing in the basis functions and in q, and te
stands also for tf,i, tv,i). Now, we have ∇λni · te = −1 if ni is the first node of e, +1 if
it is its second node, 0 if it isn’t a node of e. So, in the end, only terms of the type λk′

survive in the integral and the value of σi(wj) can be calculated using the well known
‘magic formula’ (see for instance [97] for a proof): if s is a p′-simplex,

1

|s|

∫
s

p′+1∏
i=1

(λni)
ki =

p′!
(∏p′+1

i=1 ki!
)

(
p′ +

∑p′+1
i=1 ki

)
!
.
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Figure 3.3 – For the tetrahedron in the figure, the edges are e1 = {1, 2}, e2 = {1, 3},
e3 = {1, 4}, e4 = {2, 3}, e5 = {2, 4}, e6 = {3, 4}, the faces are f1 = {2, 3, 4}, f2 = {1, 3, 4},
f3 = {1, 2, 4}, f4 = {1, 2, 3} (note that the face fi is the one opposite the node i).

This value is clearly independent of the metrics of s. The independence from the metrics of
the p′-face s of v for which they are calculated means that the entries of V can be computed
once on a generic volume v and are valid in any other volume v′ different from v, up to
a suitable orientation of the edges and choice of independent sides in v′ (see Section 4.2).
For a quicker but still precise calculation, high order quadrature formula can also be used
to compute σi(wj).

Property 3.20. The matrix V , and hence its inverse V −1, are block lower triangular.

The matrix V can be written in a block lower triangular form, if dofs, indexing the rows
i, and generators, indexing the columns j, are suitably numbered. On the one hand, dofs
can be ordered block-wisely, depending on the dimension p′ of their support (domain of
integration), from the lowest allowed (p′ = p = 1) to the highest one (which depends on the
degree r). On the other hand, as already mentioned, also the generators can be classified
into edge-type, face-type, volume-type generators: edge-type generators contain (inside λk

or we) the barycentric coordinates w.r.t. only the nodes of an edge e, face-type generators
contain the ones w.r.t. all and only the nodes of a face f , volume-type generators contain
the ones w.r.t. all the nodes of a tetrahedron v. Face-type (resp. volume-type) generators
appear for r > 1 (resp. r > 2) and the same happens for face-type and volume-type dofs.
It turns out that dofs σe are 0 on face-type and volume-type generators, and dofs σf
are 0 on volume-type generators. If we list generators and dofs in the order dictated by
increasing the dimension of the support of dofs, we may use a unique array of integers
to list (thus to order) both dofs and generators. Following this order, the matrix V with
entries Vij = σi(wj) is block triangular.

Property 3.21. The entries of the matrix V −1 are integer numbers.

This is related to the meaning of the entries of V −1, to the considered generators, relying
on linear combinations of products λk∇λi, with k a multi-index and λi a barycentric
coordinate, and to the considered dofs, integrals over entire simplices of dimension 0 ≤
p′ ≤ d. With dofs on small-simplices, the entries of V −1 would not be integers, indeed
small-simplices are portions of mesh (big) simplices.

3.7 Illustration of the notions with an example

In the following example we illustrate the notions introduced in this Chapter for the case
d = 3, r = 2.
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Example 3.22 (Generators, dofs, ‘dualizing’ matrix for d = 3, r = 2). Recalling Defini-
tion 3.8 of generators, for r = 2 the product of barycentric coordinates λk reduces to one
barycentric coordinate because each multi-index k ∈ I(4, 1) has just one nonzero compo-
nent, equal to 1. If the edges and the faces of a tetrahedron are numbered as in Figure 3.3,
the basis functions are

wj = λnrj
wesj , 1 ≤ j ≤ 20,

where the 12 edge-type basis functions have

(rj)
12
j=1 = (1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 3, 4) and (sj)

12
j=1 = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6),

and the 8 face-type basis functions have

(rj)
20
j=13 = (4, 3, 4, 3, 4, 2, 3, 2) and (sj)

20
j=13 = (4, 5, 2, 3, 1, 3, 1, 2).

Note that in order to get a basis, i.e. a set of linearly independent generators, we have chosen
to eliminate the (face-type) generators w21 = λn2w

e6 , w22 = λn1w
e6 , w23 = λn1w

e5 ,
w24 = λn1w

e4 . The corresponding edge-type dofs are:

σ1 : w 7→ 1

|e1|

∫
e1

(w · te1)λn1 , σ2 : w 7→ 1

|e1|

∫
e1

(w · te1)λn2 , . . .

σ11 : w 7→ 1

|e6|

∫
e6

(w · te6)λn3 , σ12 : w 7→ 1

|e6|

∫
e6

(w · te6)λn4 ,

and the face-type dofs are:

σ13 : w 7→ 1

|f1|

∫
f1

(w · te4), σ14 : w 7→ 1

|f1|

∫
f1

(w · te5), . . .

σ19 : w 7→ 1

|f4|

∫
f4

(w · te1), σ20 : w 7→ 1

|f4|

∫
f4

(w · te2).

For this ordering and choice of generators and dofs, the inverse of the generalized Vander-
monde matrix, whose columns give the coefficients to restore duality between generators
and dofs as in Proposition 3.16, is:

V −1 =



4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4 −2 2 −2 2 4 8 −4 0 0 0 0 0 0
0 0 0 0 0 0 2 −2 −4 −2 −4 −2 −4 8 0 0 0 0 0 0
0 0 −4 −2 2 −2 0 0 0 0 2 4 0 0 8 −4 0 0 0 0
0 0 2 −2 −4 −2 0 0 0 0 −4 −2 0 0 −4 8 0 0 0 0
−4 −2 0 0 2 −2 0 0 2 4 0 0 0 0 0 0 8 −4 0 0
2 −2 0 0 −4 −2 0 0 −4 −2 0 0 0 0 0 0 −4 8 0 0
−4 −2 2 −2 0 0 2 4 0 0 0 0 0 0 0 0 0 0 8 −4
2 −2 −4 −2 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 −4 8



.
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Number of dofs k = 0 k = 1 k = 2 k = 3 k = 4

h1 17 58 123 212 325
h2 33 114 243 420 645
h3 65 226 483 836 1285

h4 129 450 963 1668 2565

h5 450 1668 3654 6408 9930

Table 3.1 – Total number of dofs for the chosen values of h and r = k + 1.

3.8 Convergence order

To complete the presentation, we report the preliminary numerical study of the proceedings
paper [13] about the order of (h- and r-) convergence of the high order edge finite element
method. This was joint work with Victorita Dolean, Elena Gaburro and Francesca Rapetti
and the routines were coded in Matlab. Note that in [13] we did not consider basis functions
in duality with the degrees of freedom, which were those of [98] associated with small edges
and not the revisited moments studied here.

The test case is the two-dimensional waveguide problem described in Paragraph 2.2.4,
for which the function Eex = (0, e−iγx) is the exact solution, with suitable data in
the impedance boundary conditions. We take a two-dimensional waveguide with b =
0.00127m, c = 0.0502m and physical parameters ε = ε0 = 8.85 · 10−12 Fm−1, µ =
µ0 = 1.26 · 10−6 Hm−1 and σ = 0 Sm−1. We consider three high angular frequen-
cies ω1 = 75Ghz, ω2 = 95GHz and ω3 = 110GHz, and for each frequency we take
k = r − 1 = 0, 1, 2, 3, 4 and five discretization triangle diameters h1 = 1.2614 · 10−2,
h2 = 6.4022 · 10−3, h3 = 3.3848 · 10−3, h4 = 2.0184 · 10−3 and h5 = 1.0092 · 10−3; these
diameters have been obtained by doubling the discretization points over the long side of
the rectangle. The corresponding total number of dofs is reported in Table 3.1.

To analyze the numerical error on the real part of the numerical solution Eh with
respect to the exact solution E, we take the maximum over all the triangles of the modulus
of the difference between E and Eh, considering their values at the triangle barycentres. In
Table 3.2 we report the numerical errors for ω1, ω2 and ω3 for the different values of h and
k. Looking at the bold numbers along the diagonals we can see that to obtain an error of
the same order of magnitude we can take a coarser mesh if we use higher order elements.
We notice also that with the same total number of dofs we get a remarkably smaller error
using higher order elements (see the boxed entries in Table 3.1 and Table 3.2).

In Figure 3.4a we show the log-log plot of the error for the considered choices of k:
the convergence to the exact solution is of algebraic type and achieved with an order of
accuracy equal to r = k+ 1 with respect to h. In Figure 3.4b we show as well the semi-log
plot of the error for the considered choices of h: a super-algebraic convergence is achieved
with respect to r. These convergence orders are in agreement with those found in [97] (in
which the tested boundary value problem was slightly different).

The superiority, in terms of accuracy and running time, of the high order finite elements
presented in this Chapter over the lowest order ones will be illustrated in Section 6.3.2 for a
large scale three-dimensional problem, arising from the application described in Chapter 6.
The implementation of these finite elements is examined in the next Chapter.
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ω1 k = 0 k = 1 k = 2 k = 3 k = 4

h1 3.31 · 10−1 2.84 · 10−2 5.50 · 10−3 4.05 · 10−4
h2 4.67 · 10−1 3.45 · 10−2 3.10 · 10−3 2.74 · 10−4 1.10 · 10−5

h3 2.07 · 10−1 8.10 · 10−3 5.13 · 10−4 1.53 · 10−5 7.81 · 10−7

h4 1.30 · 10−1 2.80 · 10−3 1.09 · 10−4 1.27 · 10−6 4.80 · 10−8

h5 6.21 · 10−2 7.14 · 10−4 1.37 · 10−5 7.94 · 10−8 1.52 · 10−9

ω2 k = 0 k = 1 k = 2 k = 3 k = 4

h1 6.21 · 10−1 7.99 · 10−2 1.78 · 10−2 1.70 · 10−3
h2 6.23 · 10−1 7.24 · 10−2 7.90 · 10−3 7.70 · 10−4 5.06 · 10−5

h3 2.66 · 10−1 1.33 · 10−2 1.10 · 10−3 4.04 · 10−5 2.74 · 10−6

h4 1.75 · 10−1 4.50 · 10−3 2.23 · 10−4 3.27 · 10−6 1.59 · 10−7

h5 8.10 · 10−2 1.20 · 10−3 2.78 · 10−5 2.04 · 10−7 4.98 · 10−9

ω3 k = 0 k = 1 k = 2 k = 3 k = 4

h1 7.19 · 10−1 1.67 · 10−1 3.47 · 10−2 4.20 · 10−3
h2 7.28 · 10−1 1.23 · 10−1 1.42 · 10−2 1.50 · 10−3 1.07 · 10−4

h3 3.23 · 10−1 1.86 · 10−2 1.70 · 10−3 7.42 · 10−5 5.71 · 10−6

h4 2.07 · 10−1 6.10 · 10−3 3.46 · 10−4 5.86 · 10−6 3.31 · 10−7

h5 9.61 · 10−2 1.50 · 10−3 4.32 · 10−5 3.67 · 10−7 1.04 · 10−8

Table 3.2 – Numerical errors for the chosen values of h and r = k + 1.
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Figure 3.4 – Convergence orders for ω = ω3.



Chapter 4

Implementation of high order
curl-conforming finite elements

This Chapter is the result of a collaboration with Victorita Dolean, Frédéric Hecht and
Francesca Rapetti. The corresponding submitted preprint [18] is available on arXiv and
HAL (<hal-01298938>).
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4.3.1 Implementation of the interpolation operator for d = 3, r = 2 . . 58
4.4 Using the new finite elements in a FreeFem++ script . . . . . 60

4.1 Addition of new finite elements to FreeFem++

The implementation of high order curl-conforming finite elements (also called edge finite
elements) is quite delicate, especially in the three-dimensional case. Here, we explicitly
describe an implementation strategy, which has been embedded in FreeFem++ (http://
www.freefem.org/ff++/). FreeFem++ is an open source domain specific language (DSL)
specialized in solving boundary value problems by using variational methods, and it is
based on a natural transcription of the weak formulation of the considered problem [67].

The user can add new finite elements to FreeFem++ by writing a C++ plugin that
defines various ingredients, among which the principal ones are:

• the basis functions (and their derivatives) in a simplex,

• an interpolation operator, which requires dofs in duality with the basis functions.

Indeed, in FreeFem++ the basis functions (and in some cases the coefficients of the interpo-
lation operator) are constructed locally, i.e. in each simplex T (triangle in 2d, tetrahedron
in 3d) of the mesh Th, without the need of a transformation from the reference simplex.
Note that the chosen definition of high order generators (Definition 3.8), which involves
only the barycentric coordinates of the simplex, fits perfectly this local construction fea-
ture of FreeFem++. Nevertheless, the local construction should be done in such a way
that the contributions coming from simplices sharing edges or faces can be then assembled

53
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2

12

32

42

22

Figure 4.1 – Orientation of edges (‘filled’ arrows) and choice of 2 edges (‘empty’ arrows)
of the face shared by two adjacent tetrahedra using the numbering of mesh nodes.

properly inside the global matrix of the FE discretization. Moreover, for the definition of
the interpolation operator, in the high order edge elements case we need the generalized
Vandermonde matrix V introduced in Section 3.6 to restore duality between dofs and basis
functions. Here, we carefully address the problem of applying the same Vandermonde ma-
trix to possibly differently oriented simplices (triangles, tetrahedra) of the whole mesh, in
order to be able to use in numerical experiments the concepts presented for just one sim-
plex in the previous Chapter. The strategy developed to deal with these issues for the high
order edge elements is described in Section 4.2. The definition and the implementation of
the interpolation operator are detailed in Section 4.3.

We added in this way the edge elements in 3d of degree 2, 3 presented before. The
code of the C++ plugin Element_Mixte3d.cpp, in which they are defined, is visible if
FreeFem++ sources are downloaded (from http://www.freefem.org/ff++/) and is thus
found in the folder examples++-load. Section 4.4 shows how to use these new finite
elements in a FreeFem++ script.

4.2 Local implementation strategy for the global assembling

The implementation of edge finite elements is quite delicate. Indeed, basis functions and
dofs are associated with the oriented edges of mesh simplices: note that the low order we

and the high order λkwe generators change sign if the orientation of the edge e is reversed.
Moreover, recall that for r > 1, in order to get a set of linearly independent generators, we
also have to choose 2 edges for each face f . Here we wish to construct basis functions locally,
i.e. in each simplex T of Th, in such a way that the contributions coming from simplices
sharing edges or faces could be assembled properly inside the global matrix of the FE
discretization. For this purpose, it is essential to assign the same orientation to edges shared
by simplices and to choose the same 2 edges for faces shared by adjacent tetrahedra. We
have this need also to construct dofs giving the coefficients for the interpolation operator.

This need is satisfied using the global numbers of the mesh nodes (see Figure 4.1). More
precisely, to assign an orientation to the edges e of the basis functions and to the vectors
te, tf,i, i = 1, 2, tT,i, i = 1, 2, 3 of the dofs, we go from the node with the smallest global
number to the node with the biggest global number. Similarly, to choose 2 edges per face
for the face-type basis functions and dofs, we take the 2 edges going out from the node
with the smallest global number in the face (and the 1st edge goes to the node with the
2nd smallest global number, the 2nd edge goes to the node with the biggest global number
in the face).

Moreover, when we want basis functions w̃j in duality with the dofs, a second need

http://www.freefem.org/ff++/


4.2. Local implementation strategy for the global assembling 55

1
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32
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T

Figure 4.2 – Using global numbers to examine edges and faces, the ‘structure of orientation’
of T = {12, 32, 42, 22} is the one of T̂ = {1, 2, 3, 4} up to a rotation.

should be satisfied: we wish to use for all mesh simplices T the ‘dualizing’ coefficients of
the matrix V̂ −1 calculated, once for all, for the reference simplex T̂ with a certain choice
of orientation and choice of edges (recall that V −1 already does not depend on the metrics
of the simplex for which it is calculated, see Property 3.19). To be allowed to do this, it
is sufficient to use the nodes global numbers to decide the order in which the non dual wj

(from which we start to then get the w̃j) are constructed locally on T . More precisely, for
the edge-type (resp. face-type) basis functions the edges (resp. faces) are examined in the
order written in the caption of Figure 3.3, but replacing the nodes numbers 1, 2, 3, 4 with
the increasing global numbers of the nodes of T : the 1st examined edge is from the node
with the 1st smallest global number to the one with the 2nd smallest global number, the
2nd examined edge is from the node with the 1st smallest global number to the one with
the 3rd smallest global number, and so on, then the 1st examined face is the one opposite
the node with the smallest global number, and so on. Indeed, in this way the first need
is respected and the ‘structure of orientation’ of T is the one of T̂ up to a rotation (see
Figure 4.2): then we are allowed to use the coefficients of V̂ −1 for the linear combinations
giving the w̃j .

Note that in 3d (resp. in 2d), to assemble the global linear system matrix, it is not
essential which volume-type (resp. face-type) generators are chosen since they are not
shared between tetrahedra (resp. triangles). On the contrary, also this choice is important
when we want to use for all mesh simplices the coefficients of V̂ −1 calculated for a simplex
with a certain choice of orientation and choice of edges.

4.2.1 Implementation of the basis functions

To implement the strategy introduced to construct locally the basis functions w̃j while
respecting the two requirements just described, two permutations can be used; note that
in this paragraph the numberings start from 0, and no more from 1, in order to comply
with the C++ plugin written for the insertion in FreeFem++ of the new FE space. First,
to construct the non dual wj , we define a permutation pd+1 of d + 1 elements as follows:
pd+1[i] is the local number (it takes values among 0, . . . , d) of the node with the i-th
smallest global number in the simplex T , so we can say that pd+1 is the permutation
for which the nodes of T are listed with increasing global number. For instance, for the
tetrahedron T = {12, 32, 42, 22} in Figure 4.2, we have p4 = {0, 3, 1, 2}. So, in the first step
of construction of the wj , we replace each λi appearing in their expression with λpd+1[i].
In the code of the FreeFem++ plugin, the permutation p4 is called perm.

int k0=0, k1=1, k2=2, k3=3;
if(tV[k0]>tV[k1]) Exchange(k0,k1);
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if(tV[k1]>tV[k2]) Exchange(k1,k2);
if(tV[k2]>tV[k3]) Exchange(k2,k3);
if(tV[k0]>tV[k1]) Exchange(k0,k1);
if(tV[k1]>tV[k2]) Exchange(k1,k2);
if(tV[k0]>tV[k1]) Exchange(k0,k1);
int perm[4] = {k0,k1,k2,k3};

Then, in the second step of construction of the w̃j as linear combinations of the wj , we
use a permutation Pndofs of ndofs = dim(W 1

h,r(T )) elements to go back to the local order of
edges and faces. For instance for the tetrahedron T = {12, 32, 42, 22}, the order in which
edges are examined in the first step is

{{12, 22}, {12, 32}, {12, 42}, {22, 32}, {22, 42}, {32, 42}},

while the local order of edges would be

{{12, 32}, {12, 42}, {12, 22}, {32, 42}, {22, 32}, {22, 42}}

(the local order is given by how the nodes of T are listed); similarly, the order in which
faces are examined in the first step is

{{22, 32, 42}, {12, 32, 42}, {12, 22, 42}, {12, 22, 32}},

while the local order of faces would be

{{22, 32, 42}, {12, 22, 42}, {12, 22, 32}, {12, 32, 42}}.

So for this tetrahedron, if r = 2 (for which there are 2 basis functions for each edge and 2
basis functions for each face, 20 basis functions in total listed in Example 3.22), we have

P20 = {4, 5, 0, 1, 2, 3, 8, 9, 10, 11, 6, 7; 12, 13, 18, 19, 14, 15, 16, 17},

(note that inside each edge or face the 2 related dofs remain ordered according to the
global numbers). This permutation (r = 2) is built with the following code. There,
edgesMap corresponds to a map that associates the pair {a, b} of nodes of an edge ei
with its number 0 ≤ i ≤ 5; this map is rather implemented with an array defined as
edgesMap[(a+ 1)(b+ 1)] = i, where (a+ 1)(b+ 1) results to be unique and symmetric for
a pair (a, b), 0 ≤ a, b ≤ 3, representing a tetrahedron edge.

int edgesMap[13] = {-1,-1,0,1,2,-1,3,-1,4,-1,-1,-1,5};
// static const int nvedge[6][2] = {{0,1},{0,2},{0,3},{1,2},{1,3},{2,3}};
int p20[20];
for(int i=0; i<6; ++i) // edge dofs
{

int ii0 = Element::nvedge[i][0], ii1 = Element::nvedge[i][1];
int i0 = perm[ii0]; int i1 = perm[ii1];
int iEdge = edgesMap[(i0+1)*(i1+1)]; // i of the edge [i0,i1]
p20[i*2] = iEdge*2;
p20[i*2+1] = iEdge*2+1;

}
for(int j=0; j<4; ++j) // face dofs
{

int jFace = perm[j];
p20[12+j*2] = 12+jFace*2;
p20[12+j*2+1] = 12+jFace*2+1;

}
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Then, we will save the linear combinations of the w`, with coefficients given by the
j-th column of V̂ −1 (see Example 3.22), in the final basis functions w̃P20[j], thus in duality
with the chosen dofs:

wtilde[p20[0]] = +4*w[0]-2*w[1]-4*w[16]+2*w[17]-4*w[18]+2*w[19];
wtilde[p20[1]] = -2*w[0]+4*w[1]-2*w[16]-2*w[17]-2*w[18]-2*w[19];
wtilde[p20[2]] = +4*w[2]-2*w[3]-4*w[14]+2*w[15]+2*w[18]-4*w[19];
wtilde[p20[3]] = -2*w[2]+4*w[3]-2*w[14]-2*w[15]-2*w[18]-2*w[19];
wtilde[p20[4]] = +4*w[4]-2*w[5]+2*w[14]-4*w[15]+2*w[16]-4*w[17];
wtilde[p20[5]] = -2*w[4]+4*w[5]-2*w[14]-2*w[15]-2*w[16]-2*w[17];
wtilde[p20[6]] = +4*w[6]-2*w[7]-4*w[12]+2*w[13]+2*w[18]-4*w[19];
wtilde[p20[7]] = -2*w[6]+4*w[7]-2*w[12]-2*w[13]+4*w[18]-2*w[19];
wtilde[p20[8]] = +4*w[8]-2*w[9]+2*w[12]-4*w[13]+2*w[16]-4*w[17];
wtilde[p20[9]] = -2*w[8]+4*w[9]-2*w[12]-2*w[13]+4*w[16]-2*w[17];
wtilde[p20[10]] = +4*w[10]-2*w[11]+2*w[12]-4*w[13]+2*w[14]-4*w[15];
wtilde[p20[11]] = -2*w[10]+4*w[11]+4*w[12]-2*w[13]+4*w[14]-2*w[15];
wtilde[p20[12]] = +8*w[12]-4*w[13];
wtilde[p20[13]] = -4*w[12]+8*w[13];
wtilde[p20[14]] = +8*w[14]-4*w[15];
wtilde[p20[15]] = -4*w[14]+8*w[15];
wtilde[p20[16]] = +8*w[16]-4*w[17];
wtilde[p20[17]] = -4*w[16]+8*w[17];
wtilde[p20[18]] = +8*w[18]-4*w[19];
wtilde[p20[19]] = -4*w[18]+8*w[19];

4.3 The interpolation operator

Duality of the basis functions with the dofs is needed in FreeFem++ to provide an in-
terpolation operator onto a desired FE space of a function given by its analytical expres-
sion (or of a function belonging to another FE space). We define for a (vector) function
u ∈ Y 1 ⊂ H(curl, T ) (where Y 1 is a suitable subspace, see [65]) its finite element approxi-
mation uh = Πh(u) using the interpolation operator (3.15), which is recalled here:

Πh : Y 1 ⊂ H(curl, T )→W 1
h,r(T ), u 7→ uh =

ndofs∑
i=1

ciw̃i, with ci := σi(u). (4.1)

The interpolant coefficients ci = σi(u) are computed in FreeFem++ with suitable quadra-
ture formulas (on edges, faces or volumes) to approximate the values of the dofs in Defini-
tion 3.13 applied to u.

Now, denote by g the whole integrand inside the dof expression, by nQFi
the number

of quadrature points of the suitable quadrature formula (on a segment, triangle or tetra-
hedron) to compute the integral (of precision high enough so that the integral is computed
exactly when the dof is applied to a basis function), and by xp, ap, 1 ≤ p ≤ nQFi

the
quadrature points and their weights. Then we have

ci = σi(u) =

nQFi∑
p=1

ap g(xp) =

nQFi∑
p=1

ap

d∑
j=1

βj(xp)uj(xp), (4.2)

where for the second equality we have factorized g(xp) in order to highlight the d compo-
nents of u, denoted by uj , 1 ≤ j ≤ d (see the paragraph below).

Therefore, by substituting the expression of the coefficients (4.2) in the interpolation
operator definition (4.1), we have the following expression of the interpolation operator

Πh(u) =

ndofs∑
i=1

nQFi∑
p=1

d∑
j=1

ap βj(xp)uj(xp) w̃i =

nind∑
`=1

α` uj`(xp`) w̃i` , (4.3)
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where we have set α` equals each ap βj(xp) for the right triple (i, p, j) = (i`, p`, j`). Indeed,
a FreeFem++ plugin to introduce a new finite element (represented with a C++ class)
should implement (4.3) by specifying the quadrature points, the indices i` (dof indices), p`
(quadrature point indices), j` (component indices), which do not depend on the simplex
and are defined in the class constructor, and the coefficients α`, which can depend on the
simplex (if so, which is in particular the edge elements case, the α` are defined with the
class function set).

4.3.1 Implementation of the interpolation operator for d = 3, r = 2

We report here the code (extracted from the plugin Element_Mixte3d.cpp mentioned
before) defining first the indices of (4.3) for the Edge13d finite element, i.e. for d = 3,
r = 2. There QFe, QFf are the edge, resp. face, quadrature formulas, and ne=6, nf=4, are
the number of edges, resp. faces, of the simplex (tetrahedron); we have nind = d · QFe.n ·
2 ne + d · QFf.n · 2 nf. Note that in the code the numberings start from 0, and no more
from 1.

int i=0, p=0, e=0; // i is l
for(e=0; e<(Element::ne)*2; e++) // 12 edge dofs
{

if (e%2==1) {p = p-QFe.n;}
// if true, the quadrature pts are the ones of the previous dof (same edge)
for(int q=0; q<QFe.n; ++q,++p) // 2 edge quadrature pts

for (int c=0; c<3; c++,i++) // 3 components
{

this->pInterpolation[i]=p; // p_l
this->cInterpolation[i]=c; // j_l
this->dofInterpolation[i]=e; // i_l
this->coefInterpolation[i]=0.; // alfa_l (filled with the function set)

}
}
for(int f=0; f<(Element::nf)*2; f++) // 8 face dofs
{

if (f%2==1) {p = p-QFf.n;}
// if true, the quadrature pts are the ones of the previous dof (same face)
for(int q=0; q<QFf.n; ++q,++p) // 3 face quadrature pts

for (int c=0; c<3; c++,i++) // 3 components
{

this->pInterpolation[i]=p; // p_l
this->cInterpolation[i]=c; // j_l
this->dofInterpolation[i]=e+f; // i_l
this->coefInterpolation[i]=0.; // alfa_l (filled with the function set)

}
}

Then, the coefficients α` are defined as follows. We start by writing (4.2) for one
edge-type dof, with e = {n1, n2}:

ci = σi(u) =
1

|e|

∫
e
(u · te)λn1 =

QFe.n∑
p=1

ap (u(xp) · te)λn1(xp)

=

QFe.n∑
p=1

ap

d∑
j=1

uj(xp)(xn2j − xn1j)λn1(xp)

so βj(xp) = (xn2j − xn1j)λn1(xp) and α` = ap` βj`(xp`) = (xn2j`
− xn1j`

) ap` λn1(xp`).
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Similarly for one face-type dof, with f = {n1, n2, n3}, e = {n1, n2}:

ci = σi(u) =
1

|f |

∫
f
(u · te) =

QFf.n∑
p=1

ap (u(xp) · te) =

QFf.n∑
p=1

ap

d∑
j=1

uj(xp)(xn2j − xn1j)

so βj(xp) = (xn2j − xn1j) and α` = ap` βj`(xp`) = (xn2j`
− xn1j`

) ap` . The code that
generalizes this calculations for all the dofs is the following, extracted from the function
set of the plugin (note that also here we have to pay particular attention to the orientation
and choice issues).

int i=0, p=0;
for(int ee=0; ee<Element::ne; ee++) // loop on the edges
{

R3 E=K.Edge(ee);
int eo = K.EdgeOrientation(ee);
if(!eo) E=-E;

for(int edof=0; edof<2; edof++) // 2 dofs for each edge
{

if (edof==1) {p = p-QFe.n;}
for(int q=0; q<QFe.n; ++q,++p)
{

double ll=QFe[q].x; // value of lambda_0 or lambda_1
if( (edof+eo) == 1 ) ll = 1-ll;
for(int c=0; c<3; c++,i++)
{

M.coef[i] = E[c]*QFe[q].a*ll;
}

}
}

}
for(int ff=0; ff<Element::nf; ff++) // loop on the faces
{

const Element::Vertex * fV[3] = {& K.at(Element::nvface[ff][0]), ...
// (one unique line with the following)
... & K.at(Element::nvface[ff][1]), & K.at(Element::nvface[ff][2])};
int i0=0, i1=1, i2=2;
if(fV[i0]>fV[i1]) Exchange(i0,i1);

if(fV[i1]>fV[i2]) { Exchange(i1,i2);
if(fV[i0]>fV[i1]) Exchange(i0,i1); }

// now local numbers in the tetrahedron:
i0 = Element::nvface[ff][i0], i1 = Element::nvface[ff][i1], ...
... i2 = Element::nvface[ff][i2];
for(int fdof=0; fdof<2; ++fdof) // 2 dofs for each face
{

int ie0=i0, ie1 = fdof==0? i1 : i2;
// edge for the face dof (its endpoints local numbers)
R3 E(K[ie0],K[ie1]);
if (fdof==1) {p = p-QFf.n;}
for(int q=0; q<QFf.n; ++q,++p) // loop on the 3 face quadrature pts

for (int c=0; c<3; c++,i++) // loop on the 3 components
{

M.coef[i] = E[c]*QFf[q].a;
}

}
}
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4.4 Using the new finite elements in a FreeFem++ script

The edge elements in 3d of degree 2, 3 can be used (since FreeFem++ version 3.44) by
loading in the edp script the plugin (load "Element_Mixte3d"), and using the keywords
Edge13d, Edge23d respectively. The edge elements of the lowest degree 1 were already
available and called Edge03d. After generating a tetrahedral mesh Th, complex vector
functions E, v in, e.g., the Edge03d space on Th are declared with the commands:

fespace Vh(Th,Edge03d); Vh<complex> [Ex,Ey,Ez], [vx,vy,vz];

Then the weak formulation (2.41) of the problem is naturally transcribed as:

macro Curl(ux,uy,uz) [dy(uz)-dz(uy),dz(ux)-dx(uz),dx(uy)-dy(ux)] // EOM
macro Nvec(ux,uy,uz) [uy*N.z-uz*N.y,uz*N.x-ux*N.z,ux*N.y-uy*N.x] // EOM

problem waveguide([Ex,Ey,Ez], [vx,vy,vz], solver=sparsesolver) =
int3d(Th)(Curl(Ex,Ey,Ez)’*Curl(vx,vy,vz))

- int3d(Th)(gamma^2*[Ex,Ey,Ez]’*[vx,vy,vz])
+ int2d(Th,in,out)(1i*eta*Nvec(Ex,Ey,Ez)’*Nvec(vx,vy,vz))
- int2d(Th,in)([vx,vy,vz]’*[Gix,Giy,Giz])
+ on(guide,Ex=0,Ey=0,Ez=0);

Note that Dirichlet-type boundary conditions, as in this case the metallic (or PEC) bound-
ary condition, are imposed in FreeFem++ by using the keyword on: by the penalty method,
it acts on the unknowns corresponding to FE dofs whose support belongs to the boundary.
Thus, even if the code writing seems to impose E = 0, in fact, since the present dofs (3.13)
have tangential nature, the imposed condition is properly E× n = 0.

See more details about the use of the new finite elements in the example waveguide.edp
available in examples++-load folder of every FreeFem++ distribution and in the more
elaborated codes of Appendix A.

The interpolation operator in FreeFem++ is simply called with the = symbol: for exam-
ple one can define analytical functions func f1 = 1+x+2*y+3*z; func f2 = -1-x-2*y+2*z;
func f3 = 2-2*x+y-2*z; and call [Ex,Ey,Ez]=[f1,f2,f3];.
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This Chapter is the result of a collaboration with Victorita Dolean, Frédéric Hecht and
Francesca Rapetti. The corresponding submitted preprint [18] is available on arXiv and
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5.1 Introduction

In this thesis, we are interested in solving the time-harmonic Maxwell’s equation (2.26),
that is we work in the frequency domain. The time-harmonic formulation of Maxwell’s
equations has the same nature and presents the same difficulties as the Helmholtz equa-
tion −∆u− ω̃2u = f , the simplest possible model of wave propagation 1. Indeed, when the
wavenumber ω̃ is large, the (standard) variational formulation of these equations is sym-
metric but sign-indefinite 2. This is one of the reasons why the linear systems arising from
FE discretizations of these equations are difficult to solve with classical iterative methods
(see the review [50] for more details in the case of the Helmholtz equation). Moreover, as
the wavenumber ω̃ increases the matrix of the linear system becomes very large because

1. The Helmholtz equation can be derived from the wave equation 1
c2

∂2U
∂t2
− ∆U = F (where c is

the propagation speed), by looking for solutions in the form U(x, t) = Re(u(x)eiωt) when the source
F(x, t) = Re(f(x)eiωt) is harmonic in time. Recall that the wavenumber can be expressed as ω̃ = ω/c.

2. See [84] for a non standard positive definite variational formulation of the Helmholtz equation and
also for a complete review of the properties of the equation.
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a higher wavenumber entails a finer discretization. Indeed, an accurate approximation of
waves that oscillates on a scale of ω̃−1 requires, at least, the mesh size h to be proportional
to ω̃−1 as ω̃ increases; furthermore, the pollution effect means that this is still not enough
to control the finite element method discretization error (a mesh size h ∼ ω̃−3/2 is generally
required, see [70]).

Note that in literature there are many good solvers and preconditioners for another
class of Maxwell’s problems, as the ones arising from an implicit time discretization of
the time-dependent Maxwell’s equations (see, e.g., the introduction of [40]), which yield
positive definite matrices. Such solvers include multigrid or auxiliary space methods, see
e.g. [99, 8, 76, 26] for low order finite elements, [77] for high order ones, and domain
decomposition methods, see e.g. [111, 39].

For the time-harmonic Maxwell’s equations, Domain Decomposition (DD) methods or
preconditioners are currently the most promising solution techniques. The first domain de-
composition method for these equations was proposed by Després in [38], where impedance
boundary conditions are used as transmission conditions at the interfaces between subdo-
mains, instead of the classical Dirichlet conditions. Further improvements can be found
in [33] where new transmission conditions are studied. Over the last decade, these opti-
mized Schwarz methods were further developed: for the first order formulation (2.23) of the
equations complete optimization results are known, also in the case of conductive medium
[39, 48], while for the second order formulation (2.26) partial optimization results were
obtained in various works. Recently it has been shown in [40] that the convergence factors
and the optimization process for the two formulations are the same.

Nevertheless, the development of Schwarz domain decomposition solvers and precon-
ditioners is still an open issue for high order discretizations. A recent work for the non
overlapping case is reported in [82], see also [110]. In this chapter, we use overlapping
Schwarz DD preconditioners based on impedance transmission conditions to solve the al-
gebraic system resulting from equation (2.41), discretized with the high order edge finite
elements defined in Chapters 3 and 4. Recall that equation (2.41) is the variational formu-
lation of the boundary value problem (2.28), which models electromagnetic wave propaga-
tion in waveguides (see Section 2.2.4 for the simplified 2d model). Before presenting the
preconditioners suited to the time-harmonic Maxwell’s equations in Section 5.3, we intro-
duce the classical Schwarz domain decomposition methods in Section 5.2. In Section 5.4
numerical experiments, both in two and three dimensions, are performed to validate the
preconditioners.

5.2 Classical Schwarz domain decomposition methods

Among the Domain Decomposition (DD) methods, we focus on the family of Schwarz
methods, named after Hermann A. Schwarz, who in 1869 invented the first DD method,
but rather as an analytical tool [102]. See [56] for a detailed historical presentation of
Schwarz methods and book [41] for a complete overview of DD methods.

Schwarz wanted to find a rigorous proof of the Dirichlet principle, which states that,
for a bounded domain Ω, a function satisfying Laplace’s problem{

−∆u = 0 in Ω,

u = g on ∂Ω,
(5.1)

gives the infimum of the integral
∫

Ω|∇v|
2 over all functions v satisfying v = g on ∂Ω;

Schwarz had to show that the infimum is attained on arbitrary domains. Thus, he con-
sidered a complicated domain Ω, composed of two overlapping simple ones Ω1 and Ω2,
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Ω1 Ω2

Figure 5.1 – A complicated domain Ω, composed of a disk Ω1 and a rectangle Ω2, for which
the first domain decomposition method was introduced by Schwarz. Nowadays it is used
as the logo of the DD community.

like a disk and a rectangle (see Figure 5.1), where solutions can be obtained using Fourier
series. He proposed an iterative method, called the alternating Schwarz method, which
converges to the solution of problem (5.1). It consists in solving the problem alternately
in each subdomain, using at the interfaces (∂Ω1∩Ω2 and ∂Ω2∩Ω1) Dirichlet transmission
conditions coming from the solution just computed by the neighbour subdomain. More
precisely it updates (un1 , u

n
2 )→ (un+1

1 , un+1
2 ) by:

−∆un+1
1 = 0 in Ω1

un+1
1 = g on ∂Ω1 ∩ ∂Ω

un+1
1 = un2 on ∂Ω1 ∩ Ω2

then

−∆un+1
2 = 0 in Ω2

un+1
2 = g on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

(5.2)

More than a century later, a small modification by Pierre Louis Lions [80] of this
algorithm made it suited to parallel architectures, which were becoming more and more
available. The parallel Schwarz method solves the subdomain problems concurrently, the
only change with respect to the alternating Schwarz method is the iteration index in the
second transmission condition:

−∆un+1
1 = 0 in Ω1

un+1
1 = g on ∂Ω1 ∩ ∂Ω

un+1
1 = un2 on ∂Ω1 ∩ Ω2

−∆un+1
2 = 0 in Ω2

un+1
2 = g on ∂Ω2 ∩ ∂Ω

un+1
2 = un1 on ∂Ω2 ∩ Ω1.

(5.3)

While the convergence of these methods depends on the underlying partial differential
equation (PDE) to be solved, similar methods can be defined for any PDE, their funda-
mental idea of decomposition and iteration is completely general. They can also be easily
extended to a decomposition of the domain Ω into more than two overlapping subdomains
Ωs, s = 1, . . . , Nsub.

If we look at the algebraic level, considering the linear system Au = f arising from the
discretization of the PDE, Theorem 3.5 of [56] shows that a discretization of the parallel
Schwarz method is equivalent to the Restricted Additive Schwarz method (RAS), introduced
by Cai and Sarkis [30]. To define discrete Schwarz methods, we consider an ordered set
N of the unknowns (on the whole domain), and its decomposition N =

⋃Nsub
s=1 Ns into the

(non disjoint) ordered subsets corresponding to the different overlapping subdomains Ωs.
Then one builds the following matrices:

• the restriction matrix Rs from Ω to the subdomain Ωs: it is a #Ns ×#N Boolean
matrix whose (i, j) entry equals 1 if the i-th unknown in Ns is the j-th one in N ;

• the extension (by zero) matrix from the subdomain Ωs to Ω, which is given by RTs ;
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• the matrix R̃s, a #Ns × #N restriction matrix like Rs, but with some of the unit
entries corresponding to the overlap replaced by zeros: this would correspond to a de-
composition into non overlapping subdomains Ω̃s ⊂ Ωs (completely non overlapping,
not even along their boundaries). Thus we have

Nsub∑
s=1

R̃Ts Rs = I, (5.4)

that is the matrices R̃s give a discrete partition of unity, which properly deals with
the unknowns belonging to the overlap between subdomains.

Finally, we can give the definition of the restricted additive Schwarz method: it is the
preconditioned fixed point iteration defined by

un+1 = un +M−1
RAS r

n, rn = f −Aun,

where the matrix

M−1
RAS =

Nsub∑
s=1

R̃Ts (RsAR
T
s )−1Rs (5.5)

is called the RAS preconditioner. Note that here the local matrix As := RsAR
T
s is the

minor of the matrix A corresponding to the subset of unknowns Ns (in this Chapter the
term ‘local’ refers to a subdomain and not to a mesh simplex).

As explained in the introduction of [30], the RAS method was found by modifying acci-
dentally another discrete Schwarz method, the Additive Schwarz method (AS) introduced
in [44]:

un+1 = un +M−1
AS r

n, rn = f −Aun,
where the matrix

M−1
AS =

Nsub∑
s=1

RTs (RsAR
T
s )−1Rs (5.6)

is called the AS preconditioner, and is symmetric if A is symmetric, contrarily to the RAS
preconditioner. However, the additive Schwarz iteration fails to converge in the overlap
(see, e.g., Paragraph 3.2 of [56] for more details).

When applying matrices (5.5) or (5.6) to the vector rn in the fixed point iteration
defining the discrete Schwarz methods, the local linear systems of matrices As are solved
with a direct solver. Domain decomposition methods can be viewed indeed as hybrid
methods that take the advantages of the two families of linear system solvers: iterative
solvers and direct solvers. On the one hand, direct solvers are robust, i.e. they find the
solution in a finite number of operations no matter how hard the problem is; but they
are not suited for very large systems because of their high memory cost. On the other
hand, iterative solvers require less memory and are easy to parallelize since they are based
on matrix-vector products; their drawback is that they lack robustness, indeed for ill
conditioned problems the use of a preconditioner is essential for fast convergence. Domain
decomposition methods are naturally suited to parallel computing and they use the robust
direct solvers on subproblems of a smaller size.

Moreover, rather than using Schwarz methods as iterative solvers, the matrices M−1
RAS

or M−1
AS can be conveniently used as preconditioners for Krylov type iterative solvers,

which are faster than the fixed point iterations. Krylov type iterative solvers include the
CG (Conjugate Gradient) method, which can be applied just in the case of symmetric
positive definite matrices A, or the GMRES (Generalized Minimal RESidual) method for
more general matrices, for which M−1

RAS should be always preferred to M−1
AS .
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5.3 Schwarz preconditioners for Maxwell’s equations

A drawback of classical Schwarz methods is that, as iterative solvers, they are not conver-
gent for some PDEs, like the Helmholtz equation: as shown for instance in Paragraph 2.2.1
of [41] or graphically in Paragraph 4.2 of [56], the classical methods remove the high fre-
quency components in the error, but not the low frequency ones. This lack of convergence
is one of the reasons why optimized Schwarz methods were originally proposed: in these
methods the classical Dirichlet transmission conditions at the interfaces between subdo-
mains are replaced with more effective conditions, like Robin conditions in the case of the
Helmholtz equation [37, 58]. A good choice of transmission conditions is given by absorbing
boundary conditions, that approximate the non local operators appearing in transparent
boundary conditions. For bibliography references about transmission conditions for the
time-harmonic Maxwell’s equations see the introduction of this Chapter.

The discrete formulation of optimized Schwarz methods was introduced in [35]: the
Optimized Restricted Additive Schwarz (ORAS) preconditioner is

M−1
ORAS =

Nsub∑
s=1

R̃Ts A
−1
s,OptRs, (5.7)

where the local matrices As,Opt are now the matrices arising from discretizations of the
problem in the subdomain Ωs with the optimized transmission conditions as boundary
conditions at the interfaces.

In our case, for the time-harmonic Maxwell’s equation (2.26), the matrices As,Opt
are the local matrices of the subproblems with homogeneous impedance boundary con-
ditions (2.31) as transmission conditions at the interfaces between subdomains. The sign
of the parameter in the impedance transmission conditions is important, see Remark 2.3.
These local matrices stem from the discretization of the variational formulation (2.41) by
the high order edge finite elements defined in Chapters 3 and 4. To build the subset of
unknowns Ns corresponding to the subdomain Ωs, note that each unknown corresponds
to a degree of freedom (dof), of the type of Definition 3.13; so, an unknown belongs to
Ns if the dof support (edge, face or volume) is contained in Ωs. For edge finite elements,
it is important to ensure that the orientation of the dofs is the same in the domain and
in the subdomains. As an illustration of the construction, in the following example we
write explicitly the restriction matrices Rs, R̃s for the simple two-dimensional case shown
in Figure 5.2, considering edge elements of degree r = 1.

Example 5.1 (d = 2, r = 1). The domain Ω is decomposed into two overlapping sub-
domains Ω1, Ω2, and edge finite elements of degree r = 1 are considered: the degrees of
freedom are in correspondence with the edges of the mesh, so their order inside N , N1, N2

is given by the edges numbering of the figure. Here, since #N1 = #N2 = 13, #N = 17,
all restriction matrices have dimension 13×17. The matrices R̃1, R̃2 are constructed using
the non overlapping subdomains Ω̃1, Ω̃2 shown in the figure (note that the edge 11 of Ω is
contained in Ω̃2 and not in Ω̃1). In the matrices below, if an entry is empty it should be
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1 5 9 13

3 7 11 152 6 10 14 17

4 8 12 16

Ω

Ω1 Ω2

Ω̃1 Ω̃2

1 5 9

3 7 112 6 10

4 8 12

13Ω1

Ω̃1

1 5 9

3 7 112 6 10

4 8 12

13Ω2

Ω̃2

Figure 5.2 – Edges numbering for a domain Ω decomposed into two overlapping subdo-
mains Ω1, Ω2 (above), and edges numbering for Ω1 and Ω2 (below). The non overlapping
decomposition into Ω̃1, Ω̃2 is used to construct the matrices R̃1, R̃2.

equal to 0, and the bold zeros in R̃1, R̃2 are the zeros that replace unit entries in R1, R2:

R1 =



1
1

1
1

1
1

1
1

1
1

1
1

0 0 1 0 0


, R2 =



0 0 0 0 1
1

1
1

1
1

1
1

1
1

1
1

1


,

R̃1 =



1
1

1
1

1
1

1
1

0
0

0
0

0 0 0 0 0


, R̃2 =



0 0 0 0 0
0

0
0

1
1

1
1

1
1

1
1

1


.

5.3.1 Partition of unity

In FreeFem++ we implemented a slightly different form of the ORAS preconditioner,
writing the matrices R̃s in (5.4) as R̃s = DsRs, where we have highlighted diagonal matrices
Ds (of size #Ns ×#Ns), such that

Nsub∑
s=1

RTs DsRs = I. (5.8)
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Then preconditioner (5.7) becomes

M−1
ORAS =

Nsub∑
s=1

RTs DsA
−1
s,OptRs. (5.9)

The construction of the partition of unity matrices Ds is intricate, especially for (high
order) edge finite elements. The starting point is considering continuous partition of unity
functions {χi}16i6Nsub for the classical piecewise linear nodal finite element, whose dofs
are (the functional giving) the values at the nodes of the mesh. Denote by {T 0

i }16i6Nsub

the meshes of the auxiliary non overlapping subdomains, and {T δi }16i6Nsub the meshes of
the overlapping subdomains. In order to define the function χi, for i = 1, . . . , Nsub, we
define first the function χ̃i as the continuous piecewise linear function on the global mesh,
with support contained in T δi , such that

χ̃i =

{
1 at all nodes of T 0

i ,

0 at all nodes of T δi \ T 0
i .

The function χi can be then defined as the continuous piecewise linear function on the
global mesh, with support contained in T δi , such that its discrete value for each dof is
evaluated by

χi =
χ̃i

Nsub∑
j=1

χ̃j

. (5.10)

Thus, we have
∑Nsub

i=1 χi = 1, both at the discrete and continuous level. Note that in
the practical implementation the functions χ̃i and χi are constructed locally on T δi , the
relevant contribution of the χ̃j in (5.10) being on T δj ∩ T δi . This removes all dependency
on the global mesh, which could be otherwise problematic at large scales.

Now, for the high order edge finite elements, we can build a geometric partition of unity
based on the support of the dofs (given in Definition 3.13): the entries of the diagonal
matrix Di, i = 1, . . . , Nsub, are obtained by interpolating the piecewise linear function χi
at the barycenters of the support (edge, face, volume) of each dof. The partition of unity
property (5.8) is then satisfied since

∑Nsub
i=1 χi = 1.

This interpolation is obtained thanks to an auxiliary FreeFem++ scalar FE space
that has only the interpolation operator and no basis functions, available in the plugin
Element_Mixte3d already mentioned in Section 4.1: these scalar FE spaces are called
Edge03ds0, Edge13ds0, Edge23ds0, respectively for the FE spaces Edge03d, Edge13d,
Edge23d of degree r = 1, 2, 3.

Remark 5.2. When impedance conditions are chosen as transmission conditions at the
interfaces, it is essential that not only the function χs but also its derivative are equal to
zero on the border of the subdomain Ωs. Indeed, if this property is satisfied, the continuous
version of the ORAS method is equivalent to the continuous method where the datum of
the optimized transmission conditions comes from the neighbor subdomain (see the details
in [41] §2.3.2).

5.4 Numerical experiments

We validate the ORAS preconditioner (5.9) for different values of physical and numerical
parameters, and compare it with a symmetric variant without the partition of unity (called
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Ω1

Ω2

Ω3
δovr

Figure 5.3 – The stripwise decomposition of the two-dimensional domain.

k Ndofs NiterNp Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}

0 282 179 5(10) 1.04e−1(1.38e+1) 0(4) 0(12)
1 884 559 6(15) 1.05e−1(1.63e+1) 0(8) 0(40)
2 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
3 3048 1946 6(21) 1.05e−1(8.36e+2) 0(16) 0(144)
4 4610 2950 6(26) 1.05e−1(1.57e+3) 0(20) 0(220)

Table 5.1 – Influence of the polynomial degree r = k+1 on the convergence of ORAS(OAS)
preconditioner for ω = ω2, Nsub = 2, δovr = 2h.

Optimized Additive Schwarz):

M−1
OAS =

Nsub∑
s=1

RTs A
−1
s,OptRs.

The numerical experiments are performed for a waveguide configuration in 2d and 3d.

5.4.1 Results for the two-dimensional problem

We present the results obtained for a two-dimensional waveguide as in Figure 2.3 with
c = 0.0502m, b = 0.00254m, with the physical parameters: ε = 8.85 · 10−12 Fm−1,
µ = 1.26 · 10−6 Hm−1 and σ = 0.15 Sm−1. We consider three angular frequencies ω1 =
16GHz, ω2 = 32GHz, and ω3 = 64GHz, varying the mesh size h according to the relation
h2 · ω̃3 = 2 (which is generally believed to remove the pollution effect, see the introduction
of this Chapter).

Here we solve the linear system resulting from the finite element discretization with
GMRES (with a stopping criterion based on the relative residual and a tolerance of 10−6),
starting with a random initial guess, which ensures, unlike a zero initial guess, that all
frequencies are present in the error. We compare the ORAS and OAS preconditioners,
taking a stripwise subdomains decomposition, along the wave propagation, as shown in
Figure 5.3.

To study the convergence of GMRES preconditioned by ORAS or OAS we vary first
the polynomial degree r = k + 1 of the basis functions given in Definition 3.8 (Table 5.1,
Figures 5.4–5.5, Figure 5.13), then the angular frequency ω (Table 5.2, Figures 5.6–5.7,
Figure 5.14), the number of subdomains Nsub (Table 5.3, Figures 5.8–5.9, Figure 5.15)
and finally the overlap size δovr (Table 5.4, Figures 5.10–5.12, Figure 5.16). Here, δovr =
1h, 2h, 4h means that we consider a total overlap between two subdomains of 1, 2, 4 mesh
triangles along the horizontal direction (see Figure 5.3). Note that usually in literature
the overlap size indicates just half of δovr, since that would say of how many layers each
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ω Ndofs NiterNp Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}

ω1 339 232 5(11) 2.46e−1(1.33e+1) 0(6) 0(45)
ω2 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
ω3 7335 4068 9(24) 3.03e−1(2.73e+1) 0(18) 0(123)

Table 5.2 – Influence of the angular frequency ω on the convergence of ORAS(OAS) pre-
conditioner for k = 2, Nsub = 2, δovr = 2h.

Nsub Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}

2 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4 10(27) 5.33e−1(1.96e+1) 0(38) 0(252)
8 19(49) 7.73e−1(1.96e+1) 0(87) 0(588)

Table 5.3 – Influence of the number of subdomains Nsub on the convergence of ORAS(OAS)
preconditioner for k = 2, ω = ω2, δovr = 2h.

auxiliary non overlapping subdomain has been extended in each direction to obtain the
overlapping subdomain.

In Tables 5.1–5.4, Ndofs is the total number of degrees of freedom, NiterNp is the num-
ber of iterations necessary to attain the prescribed convergence for GMRES without any
preconditioner, and Niter is the number of iterations for GMRES preconditioned by ORAS
(OAS). Moreover, denoting by

D1 = {z ∈ C : |z − z0| < 1}

the unit disk centered at z0 = (1, 0) in the complex plane, we measure also the maximum
distance to (1, 0) of the eigenvalues λ of the preconditioned matrix, the number of eigen-
values that have distance greater than 1, and the number of eigenvalues that have distance
equal to 1 (up to a tolerance of 10−10). This information is useful to characterize the
convergence. Indeed, if A is the matrix of the system to solve and M−1 is the domain de-
composition preconditioner, then I−M−1A is the iteration matrix of the Schwarz method
used as an iterative solver: indeed, the preconditioned fixed point iteration can be written
as un+1 = un − M−1Aun + M−1f . So, a measure of the convergence of the Schwarz
solver would be to check whether the eigenvalues of the preconditioned matrix M−1A are
contained in D1. When the Schwarz method is used, like here, as a preconditioner, the
distribution of the spectrum remains qualitatively a good indicator of the convergence.
Note that the matrix of the linear system doesn’t change when Nsub or δovr vary, therefore
in Tables 5.3–5.4 (where k = 2, ω = ω2) we don’t report Ndofs = 1806 and NiterNp = 1138
again. In all Tables 5.1–5.4, we don’t mention the condition number of the preconditioned
matrix: indeed, no convergence rate estimates in terms of the condition number of the

δovr Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}

1h 10(20) 1.95e+1(1.96e+1) 3(12) 0(39)
2h 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4h 5(14) 1.06e−1(1.96e+1) 0(12) 0(174)

Table 5.4 – Influence of the overlap size δovr on the convergence of ORAS(OAS) precondi-
tioner for k = 2, ω = ω2, Nsub = 2.
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Figure 5.4 – Influence of the polynomial degree r = k + 1 on the spectrum of the ORAS-
preconditioned matrix for ω = ω2, Nsub = 2, δovr = 2h.

matrix, as those we are used to with the conjugate gradient method, are available for the
GMRES method.

Figures 5.4, 5.6, 5.8, 5.10, respectively Figures 5.5, 5.7, 5.9, 5.11, show the whole
spectrum in the complex plane of the matrix preconditioned by ORAS, respectively by
OAS (note that many eigenvalues are multiple), together with ∂D1. Figures 5.13–5.16
show the evolution of the relative residual during the iterations of GMRES preconditioned
with ORAS (left) and OAS (right).

Looking at the tables and figures, we can see that the non preconditioned GMRES
method is very slow, and the ORAS preconditioner gives much faster convergence than
the OAS preconditioner. As expected, the convergence becomes slower when ω or Nsub
increase, or when δovr decreases. In these tests, when varying k (which here gives the
polynomial degree r = k + 1 of the FE basis functions), the number of iterations for
convergence using the ORAS preconditioner is equal to 5 for k = 0 and then it stays equal
to 6 for k > 0; this is reflected by the corresponding spectra in Figure 5.4, which indeed
remain quite similar when k varies, and by the convergence history in Figure 5.13, left.

Note also that, when using the ORAS preconditioner, for 2 subdomains the spec-
trum is always well clustered inside the unit disk, except for the case with δovr = 1h
(see Figure 5.12), in which 3 eigenvalues are outside with distances from (1, 0) equal to
19.5, 19.4, 14.4. This case δovr = 1h corresponds to adding a layer of triangles just to one
of the two non overlapping subdomains to obtain the overlapping decomposition; hence
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Figure 5.5 – Influence of the polynomial degree r = k + 1 on the spectrum of the OAS-
preconditioned matrix for ω = ω2, Nsub = 2, δovr = 2h.
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Figure 5.6 – Influence of the angular frequency ω on the spectrum of the ORAS-
preconditioned matrix for k = 2, Nsub = 2, δovr = 2h.
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Figure 5.7 – Influence of the angular frequency ω on the spectrum of the OAS-
preconditioned matrix for k = 2, Nsub = 2, δovr = 2h.
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Figure 5.8 – Influence of the number of subdomains Nsub on the spectrum of the ORAS-
preconditioned matrix for k = 2, ω = ω2, δovr = 2h.
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Figure 5.9 – Influence of the number of subdomains Nsub on the spectrum of the OAS-
preconditioned matrix for k = 2, ω = ω2, δovr = 2h.
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Figure 5.10 – Influence of the overlap size δovr on the spectrum of the ORAS-preconditioned
matrix for k = 2, ω = ω2, Nsub = 2.
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Figure 5.11 – Influence of the overlap size δovr on the spectrum of the OAS-preconditioned
matrix for k = 2, ω = ω2, Nsub = 2.
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Figure 5.12 – The spectrum of the ORAS-preconditioned matrix for k = 2, ω = ω2,
Nsub = 2, δovr = 1h.
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Figure 5.13 – Convergence history of GMRES preconditioned with ORAS (left) and OAS
(right), for different polynomial degrees r = k + 1 (ω = ω2, Nsub = 2, δovr = 2h).
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Figure 5.14 – Convergence history of GMRES preconditioned with ORAS (left) and OAS
(right), for different angular frequencies ω (k = 2, Nsub = 2, δovr = 2h).
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Figure 5.16 – Convergence history of GMRES preconditioned with ORAS (left) and OAS
(right), for different overlap sizes δovr (k = 2, ω = ω2, Nsub = 2).

it appears necessary to add at least one layer from both subdomains. Then we see that
for 4 and 8 subdomains the spectrum becomes less well clustered. In the convergence
history plot in Figure 5.15 where Nsub varies, the typical plateaux appear, whose length is
proportional to the number of subdomains in one direction. With the OAS preconditioner
we can see that there are always eigenvalues outside the unit disk. For all the considered
cases, we observe that the less clustered the spectrum, the slower the convergence.

5.4.2 Results for the three-dimensional problem

We complete the presentation showing some results for the full 3d simulation, for a waveg-
uide as in Figure 2.2 of dimensions a = 0.01016m, b = 0.00508m, and c = 0.1004m. The
physical parameters are: ε = 8.85 · 10−12 Fm−1, µ = 1.26 · 10−6 Hm−1 and σ = 0.15 Sm−1

or σ = 0Sm−1. We take a stripwise subdomains decomposition along the wave propaga-
tion, with δovr = 2h; however, note that in FreeFem++ very general subdomains decom-
positions can be considered, as the ones obtained with the automatic graph partitioners
SCOTCH [94] or METIS [74] (see Chapter 6).

The data in the impedance boundary conditions (2.28c)–(2.28d) of the considered BVP
are those given in Remark 2.4. Since the propagation constant in 3d is β and no more
ω̃, we compute the mesh size h using the relation h2 · β3 = 1 (to avoid the pollution
effect), taking β = ωβ

√
µε, with ωβ = 32GHz. Then the dispersion relation (2.37) gives

ω̃ =
√
β2 + (mπ/a)2 + (nπ/b)2 (where we choose m = 1, n = 0), and we get ω = ω̃/

√
µε.

Again, the linear system is solved with preconditioned GMRES, with a stopping crite-
rion based on the relative residual and a tolerance of 10−6, starting with a random initial
guess. To apply the preconditioner, the local problems in each subdomain of matrices
As,Opt are solved with the direct solver MUMPS [2].

In Tables 5.5, 5.6 we show the number of iterations Niter for convergence, for the
problem with σ = 0.15 Sm−1 and σ = 0 Sm−1 respectively, varying first the polynomial
degree r = k + 1 (for Nsub = 2), and then the number of subdomains Nsub (for k = 1).
Like in the 2d case, the number of iterations using the ORAS preconditioner does not vary
with the polynomial degree of the FE basis functions, while using the OAS preconditioner
it varies and is much higher. Again, the convergence becomes slower when the number of
subdomains increases, both with ORAS and OAS. We see that for more than 2 subdomains
the number of iterations for the non dissipative problem (σ = 0) is higher than for the
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k Ndofs Niter Nsub Ndofs Niter

0 62283 8(40) 2 324654 8(70)
1 324654 8(70) 4 324654 11(106)
2 930969 8(99) 8 324654 17(168)

Table 5.5 – Results in 3d, σ = 0.15 Sm−1: influence of the polynomial degree r = k + 1
(for Nsub = 2), and of the number of subdomains Nsub (for k = 1), on the convergence of
ORAS(OAS) preconditioner (β = ωβ

√
µε with ωβ = 32GHz, δovr = 2h).

k Ndofs Niter Nsub Ndofs Niter

0 62283 7(40) 2 324654 8(67)
1 324654 8(67) 4 324654 13(114)
2 930969 8(97) 8 324654 23(201)

Table 5.6 – Results in 3d, σ = 0 Sm−1: influence of the polynomial degree r = k + 1 (for
Nsub = 2), and of the number of subdomains Nsub (for k = 1), on the convergence of
ORAS(OAS) preconditioner (β = ωβ

√
µε with ωβ = 32GHz, δovr = 2h).

problem with σ = 0.15 Sm−1.
In Figure 5.17 we plot the norm of the real part of the solution, which decreases as the

wave propagates since there σ = 0.15 Sm−1 is different from zero. See Appendix A for the
FreeFem++ scripts giving these results.

5.5 Conclusion

Numerical experiments have shown that Schwarz preconditioning significantly improves
GMRES convergence for different values of physical and numerical parameters, and that
the ORAS preconditioner always performs much better than the OAS preconditioner. In-
deed, the only advantage of the OAS method is to preserve symmetry for symmetric
problems: that is why it should be used only for symmetric positive definite matrices as
a preconditioner for the conjugate gradient method. Moreover, in all the considered test
cases, the number of iterations for convergence using the ORAS preconditioner does not
vary when the polynomial degree of the adopted high order finite elements increases. We
have also seen that it is necessary to take an overlap of at least one layer of simplices from
both subdomains of a neighbors pair. All these convergence qualities are reflected by the
spectrum of the preconditioned matrix.

For higher order discretizations the computational cost per iteration grows since ma-
trices become very large, therefore a parallel implementation as the one of HPDDM [71] (a
high-performance unified framework for domain decomposition methods which is interfaced
with FreeFem++) is considered for large scale problems, as those arising from the applica-
tion described in Chapter 6. A two-level preconditioner via a coarse space correction will
be studied in Chapter 8 in order to fix the dependence on the number of subdomains or
on the frequency of the iteration count.
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Figure 5.17 – The norm of the real part of the solution for σ = 0.15 Sm−1, with two
sections of the waveguide.





Chapter 6

Application to brain microwave
imaging

We have merged the following contributions into this Chapter:

• [12] in collaboration with Victorita Dolean, Francesca Rapetti, Pierre-Henri Tournier,
published in International Journal of Numerical Modelling: Electronic Networks,
Devices and Fields;

• the submitted paper [112] Microwave Tomographic Imaging of Cerebrovascular Ac-
cidents by Using High-Performance Computing, in collaboration with Pierre-Henri
Tournier, Iannis Aliferis, Maya de Buhan, Marion Darbas, Victorita Dolean, Frédéric
Hecht, Pierre Jolivet, Ibtissam El Kanfoud, Claire Migliaccio, Frédéric Nataf, Chris-
tian Pichot, Serguei Semenov, available on arXiv and HAL (<hal-01343687>).

The related work [113] has been accepted for publication as an invited paper in the
Special issue on “Electromagnetic Inverse Problems for Sensing and Imaging" of IEEE
Antennas and Propagation Magazine, in collaboration with Pierre-Henri Tournier, Ian-
nis Aliferis, Maya de Buhan, Marion Darbas, Victorita Dolean, Frédéric Hecht, Ibtissam
El Kanfoud, Claire Migliaccio, Frédéric Nataf, Christian Pichot, Francesca Rapetti, Serguei
Semenov.
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6.1 Introduction

We apply the methods studied in the previous Chapters to simulate the microwave imaging
system prototype shown in Figure 6.1, developed by the medical imaging company EMTen-
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(a) Operating principle.

(b) Imaging system prototype. (c) Computational domain.

Figure 6.1 – The microwave imaging system prototype (courtesy of EMTensor GmbH) and
the corresponding computational domain.

sor GmbH for the detection and diagnosis of brain strokes. In the following, we describe
the medical context as well as the application motivating the numerical simulation.

Strokes (also referred to as cerebrovascular accidents, CVA) can be classified into two
major categories, ischemic (80% of strokes) and hemorrhagic (20% of strokes). During an
ischemic stroke the blood supply to a part of the brain is interrupted by the formation of
a blood clot inside a vessel, while a hemorrhagic stroke occurs when a blood vessel bursts
inside the brain. It is essential to determine the type of stroke in the shortest possible
time in order to start the correct treatment, which is opposite in the two situations: in
the first case the blood flow should be restored, while in the second one the blood pressure
should be lowered. Note that it is vital to make a clear distinction between the two types
of stroke before treating the patient: the treatment that suits an ischemic stroke would be
fatal if applied to a hemorrhagic stroke and vice versa. Moreover, it is desirable to be able
to monitor continuously the effect of the treatment on the evolution of the stroke during
the hospitalization. Strokes can be detected by estimating the variable complex-valued
electric permittivity εσ (2.24) of the brain tissues of the patient. Indeed, ischemic and
hemorrhagic strokes result in opposite variations of the real and imaginary parts of εσ in a
region of the brain (more precisely, in a reduction, respectively increase, of about 10% of
the baseline tissue values for ischemic, respectively hemorrhagic, strokes). An image here
consists in a map of the electric permittivity at different points of the brain.

Usually stroke diagnosis relies mainly on two types of imaging techniques: MRI (mag-
netic resonance imaging) and CT scan (computerized tomography scan). These are very
precise techniques, especially the MRI with a spatial resolution of 1mm. However, a MRI
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Figure 6.2 – A representation of the diagnosis technology (courtesy of EMTensor GmbH).

machine is too big to be carried in ambulance vehicles and it is also too expensive; a CT
scan, which consists in measuring the absorption of X-rays by the brain, is harmful and
thus cannot be used to monitor continuously the patient in hospital.

A novel competitive technique with these traditional imaging modalities is microwave
tomography. With microwave imaging, at frequencies of the order of 1GHz, the tissues
are well differentiated and they can be imaged on the basis of their dielectric properties.
The electromagnetic emissions are lower than the ones from mobile phones and the spatial
resolution is good. The first works on microwave imaging date back to 1982, when Lin
and Clarke [79] tested experimentally the detection of cerebral edema (an excessive accu-
mulation of water in the brain) using a signal of frequency 2.4GHz in a head phantom.
Other works followed, almost always on phantoms or synthetic simplified models [103].
Despite these encouraging results, there is still no microwave device for medical diagnosis.
The new techniques designed by the University of Chalmers (Gothenburg, Sweden) [95]
and by EMTensor GmbH [104] rely on technologies and softwares developed only in recent
years: in both cases the improvement in terms of reliability, price and miniaturization of
electromagnetic sensors is a key factor. In the approach of EMTensor GmbH, the mi-
crowave measurement system is lightweight and can be carried in ambulance vehicles. The
acquired measurements are transferred wirelessly to a remote computing center, where a
HPC (High-Performance Computing) machine computes the images of the patient’s brain.
Once obtained, these images can be quickly transmitted from the computing center to the
hospital, see Figure 6.2.

The simulation results presented in this work have been obtained on the microwave
imaging system prototype shown in Figure 6.1, developed by EMTensor GmbH. It is com-
posed of 5 rings of 32 antennas around a metallic cylindrical chamber of diameter 28.5 cm
and total height 28 cm, into which the patient’s head is inserted. The antennas are ceramic-
loaded rectangular waveguides. The metallic chamber is filled with a matching solution
and a membrane is used to isolate the head. Each of the 160 antennas alternately transmits
a signal at a fixed frequency, typically 1GHz. The electromagnetic wave propagates inside
the chamber and in the object to be imaged according to its electromagnetic properties.
The retrieved data then consist in the reflection and transmission coefficients measured by
the 160 receiving antennas (see Section 6.2.2).

These coefficients are used as input for the inverse problem associated with the time-
harmonic Maxwell’s equations: the unknown of the inverse problem is the complex-valued
electric permittivity εσ at the points of the computational domain, knowing the measured
reflection and transmission coefficients. The solution of the inverse problem requires to
solve repeatedly the direct (or forward) problem of the time-harmonic Maxwell’s equations,
i.e. the problem in which εσ is given and one wants to determine the electric field and
then the reflection and transmission coefficients. Therefore an accurate and fast solver
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Γw

Γi

Figure 6.3 – The computational domain with the (red) metallic boundary Γw and the
ports Γi, i = 1, . . . , 160, of the waveguides, on which impedance boundary conditions are
imposed.

for the direct problem is needed. Accuracy is provided by the high order edge finite
elements defined in Chapters 3 and 4; the linear system resulting from this discretization
is then solved efficiently in parallel with GMRES preconditioned with the Schwarz domain
decomposition methods presented in Chapter 5.

This thesis is focused on the direct problem and the Chapter is organized as follows.
In Section 6.2 the boundary value problems that model the EMTensor imaging system
are first described (there is one boundary value problem for each transmitting antenna),
then we explain how to compute the reflection and transmission coefficients (which are the
measurable quantities), and finally, for the sake of completeness, the inverse problem is
presented. Section 6.3 is dedicated to numerical results for the direct problem. In order to
validate our numerical modeling, we first compare the coefficients given by the simulation
with the measured values obtained by EMTensor (for the simple configuration where the
chamber contains just the matching solution). Then we demonstrate the advantage, in
terms of accuracy and computing time, of using high order edge finite elements compared
to the standard lowest order edge elements. In the last part of the numerical results
section, we perform a strong scaling analysis to assess the efficiency of the parallel domain
decomposition preconditioner. Finally, we conclude in Section 6.4, giving also a brief
account of the results obtained by the ANR MEDIMAX team for the inverse problem,
showing the feasibility of this microwave imaging technique for detection and monitoring
of brain strokes.

6.2 Mathematical model

6.2.1 The direct problem

Consider the second order time-harmonic Maxwell’s equation (2.26) in the computational
domain Ω ⊂ R3 shown in Figure 6.3, with variable complex-valued electric permittivity
εσ(x) = ε(x) − iσ(x)/ω at each point x ∈ Ω, and a constant magnetic permeability µ
equal to the free space magnetic permeability µ0. Note that the object inserted in the
imaging chamber (the head in the complete application) does not need to be represented
in the domain Ω, because it is described by the variable coefficient εσ(x).

Since alternately each waveguide j = 1, . . . , 160 transmits a signal, we denote by Ej the
solution of the corresponding boundary value problem, which differs only in the boundary
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conditions on the waveguides ports. Indeed, for each j = 1, . . . , 160, we solve the equation

∇×
(
∇×Ej

)
− γ2Ej = 0, (6.1)

with metallic boundary conditions

Ej × n = 0 on Γw, (6.2)

on the cylinder and waveguides walls Γw, and with the following impedance boundary
conditions on the port Γj of the j-th waveguide, which transmits the signal, and on the
ports Γi of the receiving waveguides, i = 1, . . . , 160, i 6= j:

(∇×Ej)× n + iβn× (Ej × n) = gj on Γj , (6.3)

(∇×Ej)× n + iβn× (Ej × n) = 0 on Γi , i 6= j. (6.4)

Here n is the unit outward normal to ∂Ω and β > 0 is the propagation wavenumber
along the waveguides. Equation (6.3) imposes an incident wave which corresponds to the
excitation of the TE10 fundamental mode Ej0 of the j-th waveguide, with gj = (∇×Ej0)×
n + iβn × (Ej0 × n). Equation (6.4) is an absorbing boundary condition on the outer
port of the receiving waveguides i = 1, . . . , 160, with i 6= j. The bottom of the chamber
is considered metallic, and we impose an impedance boundary condition on the top of
the chamber. Therefore we end up with the following boundary value problem for each
transmitting waveguide j:

∇×
(
∇×Ej

)
− γ2Ej = 0, in Ω,

Ej × n = 0, on Γw,

(∇×Ej)× n + iβn× (Ej × n) = gj , on Γj ,

(∇×Ej)× n + iβn× (Ej × n) = 0, on Γi , i 6= j.

(6.5)

To derive the variational formulation of (6.5) we proceed as in Section 2.2.5, and we
obtain: find Ej ∈ V such that∫

Ω

[
(∇×Ej) · (∇×v)− γ2Ej ·v

]
+

∫
⋃160

i=1 Γi

iβ(Ej ×n) · (v×n) =

∫
Γj

gj ·v ∀v ∈ V,

with V = {v ∈ H(curl,Ω),v×n = 0 on Γw}. After discretizing these variational problems
with the finite element method, we obtain 160 linear systems, one for each transmitting
waveguide j and differing only in the right-hand side:

Auj = bj . (6.6)

For the discretization we use the high order edge finite elements defined in Chapters 3–
4. Direct solvers are not suited for such large linear systems arising from complex three
dimensional models because of their high memory cost. Therefore, we use an iterative
solver (GMRES), which, on the other hand, is not robust and requires preconditioning.
Domain decomposition preconditioners are naturally suited to parallel computing and make
it possible to deal with smaller subproblems, on which direct solvers are applicable. Here we
use the Optimized Restricted Additive Schwarz preconditioner (ORAS) in equation (5.9).
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6.2.2 Reflection and transmission coefficients

The physical quantity that can be acquired by the measurement system of the imaging
system shown in Figures 6.1–6.3 is the scattering matrix (also referred to as S matrix),
which gathers the complex-valued reflection and transmission coefficients measured by the
160 receiving antennas for a signal transmitted by one of these 160 antennas successively.
A set of measurements then consists in a complex matrix of size 160 × 160. In order to
compute the numerical counterparts of these reflection and transmission coefficients, we
use the following formula, which is appropriate in the case of open-ended waveguides:

Sij =

∫
Γi
Ej ·Ei0∫

Γi
|Ei0|2

, i, j = 1, . . . , 160, (6.7)

where Ej is the solution of the boundary value problem (6.5) where the j-th waveguide
transmits the signal, and Ei0 is the TE10 fundamental mode of the i-th receiving waveguide
(Ej denotes the complex conjugate of Ej). The Sij with i 6= j are the transmission
coefficients, and the Sjj are the reflection coefficients.

6.2.3 The inverse problem

Even if this thesis is focused on the direct problem, we present now the inverse problem,
in order to provide a complete description of the mathematical model for the imaging
application, as well as to clearly show where the solution of the direct problem intervenes
in the inversion tool.

The inverse problem that we consider consists in finding the unknown complex-valued
electric permittivity εσ(x) = ε(x)−iσ(x)/ω in Ω, such that the solutions Ej , j = 1, . . . , N
of problem (6.5) lead to corresponding scattering coefficients Sij (6.7) that coincide with
the measured scattering coefficients Smes

ij , for i, j = 1, . . . , N . Here N denotes the number
of antennas.

Let κ := γ2 = ω2µεσ be the unknown complex parameter of our inverse problem. Let us
denote by Ej(κ) the solution of the direct problem (6.5) with complex electric permittivity
εσ. The corresponding scattering coefficients will be denoted by Sij(κ):

Sij(κ) =

∫
Γi

Ej(κ) ·Ei0∫
Γi

|Ei0|2
, i, j = 1, . . . , N.

The misfit of the parameter κ to the data can be defined through the following functional:

J(κ) =
1

2

N∑
j=1

N∑
i=1

∣∣Sij(κ)− Smes
ij

∣∣2 =
1

2

N∑
j=1

N∑
i=1

∣∣∣∣∣∣∣∣
∫

Γi

Ej(κ) ·Ei0∫
Γi

|Ei0|2
− Smes

ij

∣∣∣∣∣∣∣∣
2

. (6.8)

In a classical way, solving the inverse problem consists in minimizing the functional J with
respect to the parameter κ. Computing the differential of J in a given arbitrary direction
δκ yields:

DJ(κ, δκ) =
N∑
j=1

N∑
i=1

Re

(Sij(κ)− Smes
ij

)∫
Γi

δEj(κ) ·Ei0∫
Γi

|Ei0|2

 , δκ ∈ C,
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where δEj(κ) is the solution of the following linearized problem:
∇× (∇× δEj)− κδEj = δκEj in Ω,

δEj × n = 0 on Γw,

(∇× δEj)× n + iβn× (δEj × n) = 0 on Γi , i = 1, . . . , N.

(6.9)

We now use the adjoint approach in order to simplify the expression of DJ . This
will allow us to compute the gradient efficiently after discretization, with a number of
computations independent of the size of the parameter space. Considering the variational
formulation of problem (6.9) with a test function F and integrating by parts, we get∫

Ω
δκEj · F =

∫
Ω

(
∇× (∇× δEj)− κδEj

)
· F

=

∫
Ω

(∇× (∇× F)− κF) · δEj −
∫
∂Ω

((∇× δEj)× n) · F

+

∫
∂Ω

((∇× F)× n) · δEj

=

∫
Ω

(∇× (∇× F)− κF) · δEj +
N∑
i=1

∫
Γi

iβ(n× (F× n)) · δEj

+

∫
Γw

(∇× δEj) · (F× n) +

N∑
i=1

∫
Γi

((∇× F)× n) · δEj .

Introducing the solution Fj(κ) of the following adjoint problem

∇× (∇× Fj)− κFj = 0 in Ω,

Fj × n = 0 on Γw,

(∇× Fj)× n + iβn× (Fj × n) =
(Sij(κ)− Smes

ij )∫
Γi

|Ei0|2
Ei0 on Γi , i = 1, . . . , N,

(6.10)

we get ∫
Ω
δκEj · Fj =

N∑
i=1

(Sij(κ)− Smes
ij )

∫
Γi

Ei0 · δE
j∫

Γi

|Ei0|2
.

Finally, the differential of J can be computed as

DJ(κ, δκ) =
N∑
j=1

Re

[∫
Ω
δκEj · Fj

]
.

We can then compute the gradient to use in a gradient-based local optimization algo-
rithm. The images in Figure 6.10 are obtained using a limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm. Note that every evaluation of J requires the solu-
tion of the direct (or state) problem (6.5), while the computation of the gradient requires
the solution of (6.5) as well as the solution of the adjoint problem (6.10). Moreover, the
state and adjoint problems use the same operator. Therefore, the computation of the
gradient only needs the assembly of one matrix and its associated domain decomposition
preconditioner.
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The functional J considered in the numerical simulation of the inverse problem is
slightly different from (6.8), as we add a normalization term for each pair (i, j) as well as
a Tikhonov regularizing term:

J(κ) =
1

2

N∑
j=1

N∑
i=1

∣∣Sij(κ)− Smes
ij

∣∣2∣∣Sempty
ij

∣∣2 +
α

2

∫
Ω
|∇κ|2, (6.11)

where Sempty
ij refers to the coefficients computed from the simulation of the chamber filled

only with the homogeneous matching solution. In this way, the contribution of each pair
(i, j) in the misfit functional is normalized and does not depend on the amplitude of the
coefficient, which can greatly vary between pairs (i, j) as displayed in Figure 6.5. The
Tikhonov regularizing term aims at reducing the effects of noise in the data. For now, the
regularization parameter α is chosen empirically so as to obtain a visually good compromise
between reducing the effects of noise and keeping the reconstructed image pertinent. All
calculations carried out in this section can be accommodated in a straightforward manner
to definition (6.11) of the functional.

In tomographic imaging the reconstruction is done layer by layer. For the imaging
chamber of EMTensor considered here, one layer corresponds to one of the five rings of
32 antennas, and we solve an inverse problem independently for each of the five rings.
More precisely, each of these inverse problems is solved in a domain truncated around the
corresponding ring of antennas, containing at most two other rings (one ring above and
one ring below). We impose absorbing boundary conditions on the artificial boundaries of
the truncated computational domain. For each inverse problem, only the coefficients Sij
with transmitting antennas j in the corresponding ring are taken into account: we consider
32 antennas as transmitters and at most 96 antennas as receivers.

6.3 Numerical results

The linear systems (6.6), resulting from the high order edge finite elements discretizations,
are solved by GMRES preconditioned with the ORAS preconditioner (5.9), as implemented
in HPDDM [71] (https://github.com/hpddm/hpddm), a High-Performance unified frame-
work for Domain Decomposition Methods. Domain decomposition methods naturally offer
good parallel properties on distributed architectures. The computational domain is decom-
posed into subdomains in which concurrent computations are performed. The coupling
between subdomains requires communications between computing nodes, which are based
on the Message Passing Interface (MPI) in HPDDM. The assembly of the preconditioner
involves the concurrent factorization of the local matrices As,Opt, which are stored on differ-
ent processes in the distributed computing context. Likewise, applying the preconditioner
to a distributed vector only requires peer-to-peer communications between neighboring
subdomains, and a local forward elimination and backward substitution. See Chapter 8
of [41] for more details about the parallel implementation.

We solve for multiple right-hand sides (corresponding to the different transmitting
antennas) simultaneously using a pseudo-block method implemented inside GMRES: this
consists in fusing the multiple arithmetic operations associated with each right-hand side
(matrix-vector products, dot products), in order to achieve higher arithmetic intensity (see
[72, §V.B.1] for more details). The GMRES algorithm is stopped once the relative residual
is lower than 10−8.

All the simulations are performed in FreeFem++, which is interfaced with HPDDM.
The overlapping decomposition into subdomains of the domain Ω is obtained by partition-
ing the global mesh into non-overlapping submeshes with the automatic graph partitioner

https://github.com/hpddm/hpddm
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Figure 6.4 – The decomposition of the computational domain into 128 subdomains.

SCOTCH [94], and by adding then layers of adjacent tetrahedra. The resulting decompo-
sition is quite general, like the one in Figure 6.4, and interfaces between subdomains are
rough. The construction of the partition of unity matrices appearing in preconditioner (5.9)
for (high order) edge finite elements is described in Paragraph 5.3.1.

In the following subsections, we first validate our numerical modeling of the imaging
system prototype by comparing the results of the simulation with experimental measure-
ments obtained by EMTensor. Then, we illustrate the superiority of the high order finite
elements presented in Chapters 3–4 over the classical lowest order ones in terms of running
time and accuracy. Finally, we perform a strong scaling analysis in order to assess the
efficiency of preconditioner (5.9). Results were obtained on the Curie supercomputer (at
TGCC-CEA, http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm).

6.3.1 Comparison with experimental measurements

Recall that the measurable quantity is not the electric field but the reflection and transmis-
sion coefficients Sij defined in Section 6.2.2. In this Section we compare the coefficients (6.7)
given by the simulation of the direct problem with the measured values obtained by EMTen-
sor, for a configuration in which the imaging chamber is filled with a homogenous matching
solution. The electric permittivity ε of the matching solution is chosen by EMTensor in
order to minimize contrasts with the ceramic-loaded waveguides and with the different
brain tissues. The choice of the conductivity σ of the matching solution is a compromise
between the minimization of reflection artifacts from metallic boundaries and the desire
to have best possible signal-to-noise ratio. Here the relative complex permittivity of the
matching solution at frequency f = 1 GHz is εgel

r = 44 − 20i. The relative complex per-
mittivity inside the ceramic-loaded waveguides is εcerr = 59 − 0i. Here with εr we mean
the ratio between the complex permittivity εσ = ε − iσ/ω and the permittivity of free
space ε0.

For this test case, the set of experimental data given by EMTensor consists in transmis-
sion coefficients for transmitting antennas in the second ring from the top. Figure 6.5 shows
the normalized magnitude (dB) and phase (degree) of the complex-valued coefficients Sij
corresponding to a transmitting antenna in the second ring from the top and to the 31
receiving antennas in the middle ring (note that the measured coefficients are available
only for 17 receiving antennas). The magnitude in dB is calculated as 20 log10(|Sij |). The
computed coefficients are obtained by solving the direct problem with edge finite elements
of polynomial degree r = 2. We can see that the computed transmission coefficients are in
very good agreement with the measurements.

http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
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Figure 6.5 – The normalized magnitude (top) and phase (bottom) of the transmission
coefficients computed with the simulation and measured experimentally.
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Figure 6.6 – Slice of the imaging chamber, showing the non-dissipative plastic-filled cylinder
and some isolines of the norm of the real part of the total field Ej .

6.3.2 Efficiency of high order finite elements

The goal of the following numerical experiments is to assess the efficiency of the high
order finite elements described in Chapters 3–4 compared to the classical lowest order edge
elements in terms of accuracy and computing time, which are of great importance for such
an application in brain imaging.

For this test case, a non-dissipative plastic-filled cylinder of diameter 6 cm and relative
permittivity εcyl

r = 3 is inserted in the imaging chamber and surrounded by matching
solution of relative complex permittivity εgel

r = 44 − 20i (see Figure 6.6). We consider
the 32 antennas of the second ring from the top as transmitting antennas at frequency
f = 1 GHz, and all 160 antennas are receiving. Slices in Figures 6.6 and 6.7 show the
computational domain and the solution Ej for one transmitting antenna j in the second
ring from the top.

We evaluate the relative error on the reflection and transmission coefficients Sij with
respect to the coefficients Sref

ij computed from a reference solution. The relative error is
calculated with the following formula:

E =

√∑
j,i |Sij − Sref

ij |2√∑
j,i |Sref

ij |2
. (6.12)

The reference solution is computed on a fine mesh of approximately 18 million tetrahedra,
which corresponds to 20 points per wavelength, and using edge finite elements of degree
r = 2, resulting in 114 million unknowns.

We compare the computing time and the relative error (6.12) for different numbers
of unknowns corresponding to several mesh sizes, for approximation degrees r = 1 and
r = 2. All these simulations are done using 512 subdomains with one MPI process and two
OpenMP threads per subdomain, for a total of 1024 cores on the Curie supercomputer. We
summarize all the results in Table 6.1 and in Figure 6.8. In the plot, each bullet corresponds
to one simulation with a certain mesh size and degree: we report next to each bullet the
corresponding total number of unknowns, on the vertical axis the relative error, and on the
horizontal axis the computing time. As we can see, the high order approximation (r = 2)
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Figure 6.7 – Slices showing the norm of the real part of the total field Ej in the imaging
chamber with the plastic-filled cylinder inside, for one transmitting antenna j in the second
ring from the top.
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Degree 1

# unknowns time (s) error

2 373 214 22 0.384
8 513 191 53 0.184

21 146 710 130 0.117
42 538 268 268 0.083
73 889 953 519 0.068

Degree 2

# unknowns time (s) error

1 508 916 39 0.243
5 181 678 62 0.099

12 693 924 122 0.057
26 896 130 236 0.036
45 781 986 396 0.019

Table 6.1 – Total number of unknowns, time to solution (seconds) and relative error on
the computed Sij with respect to the reference solution for edge finite elements of degree
1 and 2 on different meshes.
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Figure 6.8 – Time to solution (seconds) and relative error on the computed Sij with respect
to the reference solution, using edge finite elements of degree 1 and degree 2 for different
mesh sizes. The total number of unknowns in millions is also reported for each simulation.

allows to attain a given accuracy with much fewer unknowns and much less computing
time than the lowest order approximation (r = 1). For example, at a given accuracy of
E ≈ 0.1, the finite element discretization of degree r = 1 requires 21 million unknowns and
a computing time of 130 seconds, while the high order finite element discretization (r = 2)
only needs 5 million unknowns, with a corresponding computing time of 62 seconds.

6.3.3 Strong scaling analysis

There are two common metrics to evaluate the performances of a parallel code: strong
scaling and weak scaling. Strong scaling shows how a code performs when the number of
processing units is increased for solving a fixed size global problem: ideally the elapsed time
should be inversely proportional to the number of processing units. Weak scaling shows
how a code behaves when the number of processing units increases, while maintaining local
problems with constant size: ideally the elapsed time should be constant.

Here we consider the setting of Section 6.3.1, where the chamber is filled with a ho-
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Nsub Setup time Solve time Niter Speedup

256 293.36 73.06 43 1
512 95.11 36.92 53 2.8

1024 35.13 20.55 64 6.6
2048 25.89 12.77 81 9.5

Table 6.2 – Strong scaling experiment. For Nsub subdomains, timings (in seconds) of the
setup and solution phases, number of iterations Niter, and speedup.

Figure 6.9 – Strong scaling experiment. Colors indicate the fraction of the total time
spent in the setup and solution phases. The number of GMRES iterations is reported in
parentheses.

mogeneous matching solution, and a transmitting antenna in the second ring from the
top. For a strong scaling analysis, given a fine mesh of the domain composed of 82 million
tetrahedra, we increase the number of MPI processes to solve a linear system of 96 mil-
lion double-precision complex unknowns. The direct solver for the local problems in the
subdomains is PARDISO [100] from Intel MKL. We use one subdomain and two OpenMP
threads per MPI process.

Results are reported in Table 6.2 and illustrated in Figure 6.9, with a plot of the time
to solution including both the setup and solution phases, on 256 up to 2048 subdomains.
The setup time corresponds to the maximum time spent for the factorization of the local
matrices in the preconditioner over all subdomains, while the solve time corresponds to the
time needed to solve the linear system with GMRES. In the plot the number of GMRES
iterations is reported in parentheses. In the table, the speedup for Nsub subdomains is the
ratio between the total time with 256 subdomains and the total time withNsub subdomains.
Even if the number of iterations increases with the number of subdomains, we are able to
obtain very good speedups up to 4096 cores (2048 subdomains) on Curie, with a superlinear
speedup of 9.5 between 256 and 2048 subdomains (with ‘superlinear’ we mean that 9.5 >
8 = 2048/256).

6.4 Conclusion

This work shows the benefits of using a discretization based on high order edge finite ele-
ments coupled with a parallel domain decomposition preconditioner, for the simulation of
the EMTensor microwave imaging system in Figure 6.1. In such complex systems, accu-
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Figure 6.10 – Top row: imaginary part of the exact permittivity used to produce noisy
data as input for the inverse problem, for three phases of the evolution of a simulated
hemorrhagic stroke, from the healthy brain (left column) to a large stroke (right column).
Bottom row: corresponding reconstructions obtained with the inversion tool developed by
the ANR MEDIMAX team.

racy and computing speed are of paramount importance, especially for the application of
diagnosis and monitoring of brain strokes. The high order approximation makes it possible
to attain a given accuracy with much fewer unknowns and much less computing time than
the lowest order approximation. The parallel implementation in HPDDM of the domain
decomposition preconditioner is essential to be able to solve the arising linear systems of up
to 96 million complex-valued unknowns considered here. Even if the number of iterations
increases with the number of subdomains, the strong scaling experiment exhibits very good
time speedups up to 2048 subdomains.

Here we studied efficient techniques for the solution of the direct problem, that have
been applied in the inversion tool developed by the ANR MEDIMAX team (recall that the
solution of the inverse problem requires repeated solves of the direct problem). The team
thus managed to reconstruct a microwave tomographic image of the brain (the third one
in Figure 6.10) in less than 2 minutes using 4096 cores. This computational time corre-
sponds to clinician acceptance for rapid diagnosis or medical monitoring in hospital. Each
reconstructed image in Figure 6.10 corresponds to the solution of an inverse problem with
noisy synthetic data as input. More precisely, these data were obtained as follows: starting
from a very accurate model of the complex-valued permittivity εσ(x) of a healthy brain, a
hemorrhagic stroke was simulated by adding an ellipsoid in which the value of εσ(x) was
increased; then for this εσ(x) the direct problem was solved to compute the corresponding
coefficients Sij using (6.7) and finally a 10% noise was added to these synthetic coefficients.
The evolution of the stroke was simulated by increasing the size of the ellipsoid. Although
the reconstructed images do not feature the complex heterogeneities of the brain, which
is in accordance with what we expect from microwave imaging methods, they allow the
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characterization of the stroke and its monitoring. The next step would be the validation
of the inversion tool on clinical measured data.

The domain decomposition preconditioner employed here is a one-level method, which
cannot scale well beyond thousands of subdomains since the number of iterations deteri-
orates. The introduction of a two-level preconditioner with an adequate coarse space for
Maxwell’s equations would maintain very good speedups even for decompositions into a
larger number of subdomains. This is a challenging open problem for equations yielding
indefinite matrices, which is investigated in the next Chapters.



Chapter 7

Two-level preconditioners for the
Helmholtz equation

This Chapter is based on [17], in collaboration with Victorita Dolean, Ivan G. Graham,
Euan A. Spence, and Pierre-Henri Tournier, which has been submitted to the proceedings
of the DD24 International Conference on Domain Decomposition Methods. A preprint is
available on arXiv and HAL (<hal-01525424>).
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7.1 Introduction

We have already pointed out in Section 5.1 that the time-harmonic Maxwell’s equa-
tion (2.26) presents similar difficulties to those encountered with the (scalar) Helmholtz
equation

−∆u− ω̃2u = f (7.1)

when the wavenumber ω̃ is large, namely the sign-indefiniteness of their (standard) vari-
ational formulation, the pollution effect, and the consequent problematic construction of
fast iterative solvers [50]. Although there have been different attempts to solve the high-
frequency Helmholtz equation efficiently, we believe that there is no established and robust
preconditioner, whose behavior is independent of ω̃, for general decompositions into sub-
domains. Therefore, before facing the time-harmonic Maxwell’s equation, in this Chapter
we focus on the Helmholtz equation (7.1).

In order to achieve independence of the iteration count on the number of subdomains
or, for wave propagation problems, on the wavenumber ω̃, two-level domain decomposition
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Figure 7.1 – Decomposition into several subdomains.

preconditioners are generally introduced: a so-called coarse-grid correction is combined
with the one-level preconditioners (5.5), (5.6), (5.7) presented in Chapter 5. A two-level
preconditioner is defined by two ingredients:

• an algebraic formula to combine the coarse grid correction with the one-level pre-
conditioner (e.g. in a additive or in a hybrid way),

• a rectangular full column rank matrix Z, whose columns span what is called the
coarse space.

In addition to the local solves in the subdomains, the application of a two-level domain
decomposition preconditioner implies solving a reduced size problem built with Z called the
coarse problem. The construction of effective two-level preconditioners and coarse spaces
is a difficult task. After introducing in Section 7.2 these methods for Symmetric Positive
Definite (SPD) problems, in the rest of the Chapter we concentrate on the Helmholtz
equation. Our purpose is to compare numerically, both in two and three dimensions, two
different coarse space definitions for this equation, which are currently the most robust
available in literature.

7.2 Two-level preconditioners for positive definite problems

For one-level domain decomposition preconditioners, which are based solely on local solves
in the subdomains, the iteration count grows with the number of subdomains and plateaux
appear in the convergence history plots. These plateaux can be observed for instance in
Figure 5.15 of Chapter 5, but this is the case even for a simple model such as the Poisson
problem: {

−∆u = f, in Ω,

u = g, on ∂Ω.

The problem of one-level methods is a lack of global communication. Data are exchanged
only from one subdomain to its direct neighbors, but the solution in each subdomain
depends on the right-hand side in all subdomains. If we denote by Nd the number of
subdomains in one direction, then the leftmost domain of Figure 7.1 needs at least Nd

iterations before being aware of the value of the right-hand side f in the rightmost subdo-
main. The length of the plateau is thus typically related to the number of subdomains in
one direction (see for instance §4.1 of [41]).

In order to achieve scalability with respect to the number of subdomains, two-level
domain decomposition preconditioners with a coarse-grid correction are introduced: the
coarse problem, built using the coarse space matrix Z, couples all subdomains at each
iteration. Defining R0 = ZT , the most natural correction for the Additive Schwarz precon-
ditioner (5.6) is of additive type: the two-level additive Schwarz preconditioner is defined
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as

M−1
2,AS =

Nsub∑
j=1

RTj (RjAR
T
j )−1Rj +RT0 (R0AR

T
0 )−1R0,

where R0AR
T
0 is the coarse problem matrix. For the Poisson problem, an adequate coarse

space is the Nicolaides coarse space [92]: the columns of the matrix Z are vectors that
have local support in the subdomains and such that the constant function 1 belongs to
the vector space spanned by them, i.e. the i-th column of Z is RTi DiRi1 for 1 ≤ i ≤ Nsub.
Indeed, the constant functions are the modes, lying in the kernel of the Laplace operator,
that hamper the convergence of the one-level method.

This classical coarse space should be enriched with more than one vector per subdomain
when the problem to be solved gets more complex, for instance as a result of highly het-
erogeneous coefficients. Jumps in the coefficients along subdomain interfaces (rather than
across the interfaces or inside the subdomains far from their boundaries) are particularly
problematic. In [86, 87, 42] a robust coarse space was introduced and analyzed for the
scalar elliptic equation −∇ · (α(x)∇u) = f (also known as the Darcy equation), based on
local generalized eigenvalue problems involving the Dirichlet-to-Neumann (DtN) operator
on the subdomains interfaces. This method is efficient for arbitrary domain decompositions
and jumps in the coefficients, leading to an automatic preconditioning method for SPD
scalar heterogenous problems.

The arguments of the analysis in [42] cannot be easily generalized to the case of SPD
systems of partial differential equations. Thus in [107, 106] a robust coarse space based
on Generalized Eigenproblems in the Overlap (referred to as the GenEO coarse space)
was studied. Its convergence can be proved by reformulating the domain decomposition
method in an abstract setting in order to apply the fictitious space lemma of [91, 90, 64]
(see for instance Chapter 7 of [41]). The considered generalized eigenvalue problems are
closely related but different from those proposed in [45].

7.3 Two-level preconditioners for the Helmholtz equation

The construction and, even more, the convergence analysis of two-level domain decom-
position preconditioners for sign-indefinite problems are a challenging open issue. In this
work we compare numerically two different definitions of the coarse space matrix Z for
the Helmholtz equation (7.1), both in two and three dimensions. More precisely, we are
interested in solving the interior Helmholtz problem of the following form: let Ω ⊂ Rd,
d = 2, 3, be a polyhedral, bounded domain; find u : Ω→ C such that−∆u− ω̃2u = f, in Ω,

∂u

∂n
− iω̃u = 0, on Γ = ∂Ω.

(7.2a)

(7.2b)

The two-level domain decomposition preconditioners compared here are both built from
the corresponding problem with absorption (or damping), given by a parameter ξ 1:−∆u− (ω̃2 + iξ)u = f, in Ω,

∂u

∂n
− iηu = 0, on Γ = ∂Ω.

(7.3a)

(7.3b)

1. Note that the usual notation for the absorption parameter ξ is ε, but in this thesis ε already denotes
the electric permittivity; the wavenumber ω̃ is often called k.
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The variational formulation of this problem is: find u ∈ V = H1(Ω) such that

aξ(u, v) = F (v), ∀v ∈ V,

where the sesquilinear form 2 aξ : V × V → C and F : V → C are defined by

aξ(u, v) =

∫
Ω

(
∇u · ∇v − (ω̃2 + iξ)uv

)
−
∫

Γ
iηuv, F (v) =

∫
Ω
fv.

Note that if ξ 6= 0 and the Robin parameter η = sign(ξ)ω̃ in (7.3b), then aξ is coercive
(see §2 in [62]). We consider a discretization of the variational problem using piecewise
linear finite elements on a uniform simplicial mesh Th of Ω. Denoting by Vh ⊂ V the
corresponding finite element space and by {φi}ni=1 its basis functions, n := dim(Vh), the
discretized problem reads: find uh ∈ Vh such that

aξ(uh, vh) = F (vh), ∀vh ∈ Vh,

that is, in matrix form,
Aξu = f , (7.4)

where the coefficients of the matrix Aξ ∈ Cn×n and the right-hand side f ∈ Cn are given
by (Aξ)i,j = a(φi, φj) and (f)i = F (φi). The matrix Aξ is complex, symmetric (but not
Hermitian), and sign-indefinite if ξ = 0.

Consider a decomposition of the domain Ω into a set of overlapping subdomains
{Ωj}Nsub

j=1 , with each subdomain consisting of a union of elements of the mesh Th. The
one-level preconditioner, on which the tested two-level preconditioners are based, is the
Optimized Restricted Additive Schwarz (ORAS) preconditioner (5.7) presented in detail
in Chapter 5, but built from the problem with absorption:

M−1
1,ξ =

Nsub∑
j=1

R̃Tj A
−1
j,ξRj (7.5)

(in the subscript, 1 stands for one-level and ξ indicates the presence of absorption in the
preconditioner). In (7.5) the local matrix Aj,ξ is the matrix stemming from the discretiza-
tion of the following Robin boundary value problem with absorption in the subdomain
Ωj : 

−∆uj − (ω̃2 + iξ)uj = f, in Ωj ,

∂uj
∂nj
− iηuj = 0, on ∂Ωj .

In order to achieve weak dependence on the wavenumber ω̃, we combine the one-level
preconditioner (7.5) with a coarse correction. The two-level preconditioners considered in
this work can be written in a generic way as follows:

M−1
2,ξ = QM−1

1,ξ P + ZE−1Z∗, (7.6)

where ∗ denotes the conjugate transpose. The matrices appearing in (7.6) are:

• M−1
1,ξ is the one-level preconditioner,

2. A map ϕ : V × V → C over a complex vector space V is sesquilinear if ϕ(x + y, z + w) = ϕ(x, z) +
ϕ(x,w) +ϕ(y, z) +ϕ(y, w), and ϕ(ax, by) = abϕ(x, y), i.e. it is linear in one variable and semilinear in the
other (the Latin prefix sesqui means “one and a half”).
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• Z is a rectangular matrix with full column rank, whose columns span the coarse
space (abbreviated CS in the numerical experiments tables),

• E = Z∗AξZ is the so-called coarse grid matrix (note that here it is built from the
problem with absorption),

• Ξ = ZE−1Z∗ is the so-called coarse grid correction matrix,

and the matrices P , Q are defined according to the chosen correction formula:

• if P = Q = I this is an additive two-level preconditioner,

• if P = I−AξΞ and Q = I−ΞAξ, this is a hybrid two-level preconditioner; for special
choices of M−1

1 and Z it is also known as the Balancing Neumann-Neumann (BNN)
preconditioner introduced in [81].

The two-level preconditioner is characterized by the choice of Z: we will consider the
coarse space definitions of [62] and [34], which are currently the most robust available in
literature.

7.3.1 The grid coarse space

The most natural coarse space would be one based on a coarser mesh, in this work we
subsequently call it “grid coarse space”. Let us consider THcs a simplicial mesh of Ω with
mesh diameter Hcs and VHcs ⊂ V the corresponding piecewise linear finite element space.
Let I0 : VHcs → Vh be the nodal interpolation operator from the coarse grid finite element
space to the fine grid finite element space and define Z as the corresponding matrix. Then
in this case E = Z∗AξZ is really the matrix of the problem (with absorption) discretized
on the coarse mesh.

This definition was studied in [62, 63], where, in the numerical experiments, two-level
domain decomposition approximations of the Helmholtz problem with absorption (7.3)
were used as preconditioners for the pure Helmholtz problem without absorption (7.2); in
this method the coarse mesh diameter is constrained by the wavenumber ω̃. The theory
developed in [62] concerns the solution of the problem with absorption (7.3), using GM-
RES with a two-level Additive Schwarz preconditioner: it provides rigorous convergence
estimates, explicit in the wavenumber ω̃, the absorption ξ, the coarse-grid diameter Hcs,
the subdomain diameter Hsub, the overlap size δ. We report here the final theorem:

Theorem 7.1 (GMRES convergence for left preconditioning in [62]). Consider the weighted
GMRES method where the residual is minimized in a suitable ω̃-weighted norm ‖ ·‖Dω̃ . Let
rm denote the mth iterate of GMRES applied to the system Aξ, left preconditioned with the
two-level Additive Schwarz preconditioner. Then

‖rm‖Dω̃

‖r0‖Dω̃

.

(
1−

(
1 +

Hcs

δ

)−2 ( |ξ|
ω̃2

)6
)m/2

,

provided the following condition holds

max

{
ω̃Hsub, ω̃Hcs

(
1 +

Hcs

δ

)(
ω̃2

|ξ|

)2
}
≤ C1

(
1 +

Hcs

δ

)−1( |ξ|
ω̃2

)
.
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An important special case of this theory is that, for the problem with absorption ξ ∼ ω̃2,
the number of GMRES iterates is bounded independently of ω̃, provided Hcs ∼ Hsub ∼ ω̃−1

and δ ∼ Hcs (“generous overlap”).
The rigorous analysis of the earlier work [57] focused on the choice of the absorption

parameter ξ when discretizations of (7.3) are used as preconditioners for problem (7.2).
This technique is called shifted Laplacian preconditioning (see §1.1 of [57] for a complete
literature survey), and is motivated by the fact that, as ξ increases, the problem with
absorption (the “shifted” problem) becomes easier to solve iteratively. In [57] it was shown
that if ξ/ω̃ is bounded above by a sufficiently small constant, then GMRES with the
shifted Laplacian preconditioner converges in a ω̃-independent number of iterations. Note
that this sufficient condition on ξ (for the shifted Laplacian to be a good preconditioner for
problem (7.2)) does not overlap with the one of [62] (for the domain decomposition method
to be a good preconditioner for the shifted problem). Thus the combination of [57] with
[62] does not provide a complete theory for preconditioning problem (7.2); nevertheless,
these are among the few rigorous convergence theory results available in literature about
preconditioners for wave propagation problems.

7.3.2 The DtN coarse space

The second definition of Z we consider is the one introduced in [34], where the coarse
space is built by solving local eigenproblems involving the Dirichlet-to-Neumann (DtN)
operator on the subdomains interfaces. This is an adaptation of the idea for scalar elliptic
problems developed in [86, 87, 42]. This method proved to be very robust, with respect to
heterogeneous coefficients, compared to the reference coarse space based on plane waves.
Plane waves were originally used in the multigrid context [29] and later applied to domain
decomposition methods [53, 52, 75, 78], but mainly for homogeneous problems. Moreover,
contrarily to the plane waves coarse space, the DtN coarse space construction in [34] is
completely automatic, refraining from the need for parameter tuning, which is crucial
for indefinite problems since even slight deviations from the optimal choice can be fatal
[54]. However, note that a complete convergence theory for the DtN coarse space for the
Helmholtz equation is missing.

We recall now in detail the definition of this coarse space but note that here, contrarily
to the original definition in [34], it is built from problems with absorption in order to
compare it with the grid coarse space under the same conditions.

On each interface Γi = ∂Ωi \ ∂Ω, we solve the local DtN eigenproblem: find the eigen-
values λ and the eigenfunctions uΓi such that

DtNΩi (uΓi) = λuΓi , (7.7)

where the operator DtNΩi is defined as follows. For vΓi : Γi → C, define

DtNΩi (vΓi) =
∂u

∂n

∣∣∣∣
Γi

,

where u : Ωi → C is the Helmholtz extension to Ωi of vΓi given by
−∆u− (ω̃2 + iξ)u = 0, in Ωi,

∂u/∂n− iηu = 0, on ∂Ωi ∩ ∂Ω,

u = vΓi , on Γi.

In other words, given a function defined on Γi, the operator DtNΩi extends it to the interior
of the subdomain using the Helmholtz extension, and then returns the normal derivative
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of the extension at Γi. This is indeed a map between Dirichlet and Neumann data. To
constitute the coarse space, for each subdomain Ωi we choose mi eigenfunctions of the
DtN eigenproblem (7.7) according to the following automatic selection criterion: choose
all eigenfunctions for which the associated eigenvalue λ satisfies

Re(λ) < max
x∈Ωi

ω̃(x). (7.8)

Note that this criterion respects local variations in the wavenumber and is hence suited
also for heterogeneous problems.

Now, in order to define the discrete formulation of the DtN eigenproblem, for a subdo-
main Ωi, first of all consider a(i) : H1(Ωi)×H1(Ωi)→ R

a(i)(v, w) =

∫
Ωi

(
∇v · ∇w − (ω̃2 + iξ)vw

)
−
∫
∂Ωi∩∂Ω

iηuv,

and the associated matrix (A(i))kl = a(i) (φk, φl). Let I and Γi be the sets of indices
corresponding, respectively, to the interior and boundary degrees of freedom on Ωi, with
nI and nΓi their cardinalities. With the usual block notation, the subscripts I and Γi for
the matrices A and A(i) denote the entries of these matrices associated with the respective
degrees of freedom. Let

MΓi =

(∫
Γi

φkφl

)
k,l∈Γi

be the mass matrix on the interface Γi of subdomain Ωi. Following a procedure analogous
to the one in [42], the discrete formulation of the DtN eigenproblem (7.7) is: find (λ,u) ∈
CnΓi × C, such that

(A
(i)
ΓiΓi
−AΓiIA

−1
II AIΓi)u = λMΓiu. (7.9)

Now, the matrix Z of the DtN coarse space is a rectangular, block-diagonal matrix with
blocks Wi, associated with the subdomain Ωi, 1 ≤ i ≤ Nsub, given by Algorithm 7.3.1. If
mi is the number of eigenvectors selected by the automatic criterion (7.8) and ni is the
number of dofs in the subdomain Ωi, the block Wi has dimensions ni×mi, and the matrix
Z has dimensions n×

∑Nsub
j=1 mi. Due to the overlap in the decomposition, the blocks may

share some rows inside the matrix Z.

Algorithm 7.3.1 Construction of the block Wi of the DtN coarse space matrix Z

1: Solve the discrete DtN eigenproblem (7.9) on subdomain Ωi for the eigenpairs (λj ,g
j
i ).

2: Choose mi eigenvectors g
j
i ∈ CnΓi using criterion (7.8).

3: for j = 1 to mi do
4: Compute the discrete Helmholtz extension uji ∈ Cni to Ωi of gji as uji =

[−A−1
II AIΓig

j
i , gji ]

T .
5: end for
6: Define the matrix Wi ∈ Cni×mi as Wi =

(
Diu

1
i , . . . , Diu

mi
i

)
.

Since this construction is based on local problems only, it is possible to construct
the coarse space efficiently in parallel. Note that the sparsity of the coarse grid matrix
E = Z∗AξZ results from the sparsity of Z, the non zero components of E corresponding
to adjacent subdomains.
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7.4 Numerical experiments

We solve the pure Helmholtz problem (7.2) on the unit square (d = 2) or cube (d = 3).
We consider a uniform simplicial (triangular in 2d, tetrahedral in 3d) mesh of diameter
h ∼ ω̃−3/2, thus the number of degrees of freedom grows quite rapidly with the wavenumber
(recall that this is the discretization level which is generally believed to remove the pollution
effect). The right-hand side is given by f = − exp(−100((x− 0.5)2 + (y − 0.5)2)) for d = 2,
f = − exp(−400((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)) for d = 3.

We use GMRES with right preconditioning, starting with a random initial guess, which
ensures, unlike a zero initial guess, that all frequencies are present in the error; the stopping
criterion is based on the relative residual with a tolerance τ = 10−6. The maximum
number of iterations allowed is 500 in 2d, 200 in 3d. We consider a regular decomposition
into subdomains (squares/cubes), the overlap for each subdomain is of size O(2h) in all
directions and the two-level preconditioner (7.6) is used with the hybrid formula, which
results to be more effective than the additive one. This hybrid two-level preconditioner,
based on the one-level ORAS preconditioner, is called ImpHRAS in [62]: the prefix O
for Optimized is replaced with Imp, which stands for impedance (i.e. Robin) transmission
conditions, and H stands for hybrid.

All the computations are done in FreeFem++. The code for 3d computations is par-
allelized and run on the Curie supercomputer (at TGCC-CEA, http://www-hpc.cea.fr/
en/complexe/tgcc-curie.htm). We assign each subdomain to one processor. So the
number of processors increases if the number of subdomains increases. To apply the pre-
conditioner, the local problems in each subdomain (with matrices Aj,ξ in (7.5)) and the
coarse space problem (with matrix E in (7.6)) are solved with a direct solver (UMFPACK
[36] in 2d, MUMPS [2] on one processor in 3d).

As in [62, 63], in the experiments we take the subdomain diameter Hsub and the coarse
mesh diameter Hcs constrained by ω̃:

Hsub ∼ ω̃−α, Hcs ∼ ω̃−α
′
,

for some choices of 0 < α,α′ <= 1 detailed in the following; if not differently specified, we
take α = α′, which is the setting of all numerical experiments in [62]. For a given ω̃, the
smaller is α the more (and the smaller) are the subdomains; the smaller is α′, the coarser
is the mesh for the grid coarse space. Note that Hcs does not appear as a parameter in the
DtN coarse space!

We denote by nCS the size of the coarse space i.e. the dimension of the matrix E
in (7.6). For the grid coarse space since E is really the matrix of the problem (with
absorption) discretized on the coarse mesh, we have nCS = (1/Hcs + 1)d, the number
of dofs for the nodal linear finite elements in the unit square/cube. For the DtN coarse
space we have nCS =

∑Nsub
j=1 mi, the total number of computed eigenvectors for all the

subdomains. While we solve the pure Helmholtz problem without absorption, both the
one-level preconditioner (7.5) and the two-level preconditioner (7.6) are built from problems
which have non zero absorption given by

ξprec = ω̃β.

In the experiments we put β = 1 or β = 2.
In the following tables we compare the one-level preconditioner, the two-level precon-

ditioner with the grid coarse space and the two-level preconditioner with the DtN coarse
space in terms of number of iterations of GMRES and size of the coarse space (nCS), for
different values of the wavenumber ω̃ and of the parameters α, β. We also report the

http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
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number of subdomains Nsub, which is controlled by ω̃ and α as mentioned above. Since
h ∼ ω̃−3/2, the size n of the linear system matrix is of order ω̃3d/2; for 3d experiments we
report n explicitly. Tables 7.1, 7.2 concern the 2d problem, Table 7.3 the 3d problem.

Note that the points of view about the aim of a two-level preconditioner adopted by
[34] and [62] are different. The DtN coarse space in [34] is built to reach the classical
scalability with respect to the number of subdomains, while the grid coarse space in [62]
seeks independence with respect to the wavenumber ω̃ and for that considers a number of
subdomains constrained by ω̃. In the following comparison we adopt the second point of
view.

7.4.1 Experiment 1

In Table 7.1, we let the DtN coarse space size be determined by the automatic selection
criterion (7.8) and the grid coarse space size by Hcs ∼ ω̃−α.

We see that the DtN coarse space is much larger than the grid coarse space and gives
fewer iterations. The preconditioners with absorption ξprec = ω̃2 (β = 2) perform much
worse than those with absorption ξprec = ω̃ (β = 1) independently of the coarse space size.
For ξprec = ω̃, when α = 1 the number of iterations grows mildly with the wavenumber
ω̃ for both coarse spaces (but at the cost of an increasing coarse space size), while the
one-level preconditioner performs poorly. When α < 1, i.e. for coarser coarse meshes, the
growth with ω̃ is higher, and for α = 0.6 the two-level preconditioner is not much better
than the one-level preconditioner because the coarse grid problem is too coarse; for α = 0.8
with the DtN coarse space the growth with ω̃ degrades less than with the grid coarse space.

7.4.2 Experiment 2

We have seen in Table 7.1 that the DtN coarse space gives fewer iterations than the grid
coarse space, but their sizes differed significantly. Therefore, in Table 7.2 we compare the
two methods forcing nCS to be similar.

On the left, we force the DtN coarse space to have a smaller size, similar to the one of
the grid coarse space, by taking justmi = 2 eigenvectors for each subdomain. On the right,
we do the opposite, we force the grid coarse space to have the size of the DtN coarse space
obtained in Table 7.1, by prescribing a smaller coarse mesh diameter Hcs, while keeping
the same number of subdomains as in Table 7.1 with Hsub ∼ ω̃−α. In this experiment we
take ξprec = ω̃, which proved to give better iteration counts than ξprec = ω̃2 in the previous
experiment. We can observe that for smaller coarse space sizes (left) the grid coarse space
gives fewer iterations than the DtN coarse space, while for larger coarse space sizes (right)
the result is reversed.

7.4.3 Experiment 3

We have seen that the coarse mesh obtained with Hcs ∼ ω̃−α
′ , α′ = α can be too coarse

if α = 0.6. At the same time, for α = 1 the number of subdomains gets quite large since
Hsub ∼ ω̃−α, especially in 3d; this is not desirable because in our parallel implementation
we assign each subdomain to one processor, so communication among them would prevail
and each processor would not be fully exploited since the subdomains would become very
small. Therefore, in this 3d experiment, to improve convergence with the grid coarse space
while maintaining a reasonable number of subdomains, we consider separate coarse mesh
diameter and subdomain diameter, taking α′ 6= α.

For load balancing, meant as local problems having the same size as the grid coarse
space problem, in 3d we choose α′ = 3/2−α. Indeed, the number of degrees of freedom in
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β = 1

α = 0.6

ω̃ Nsub 1-level grid CS nCS DtN CS nCS
10 9 22 19 16 11 39
20 36 48 46 49 26 204
40 81 78 98 100 37 531
60 121 109 114 144 94 875

α = 0.8

ω̃ Nsub 1-level grid CS nCS DtN CS nCS
10 36 35 19 49 10 122
20 100 71 35 121 13 394
40 361 158 88 400 22 1440
60 676 230 187 729 39 2700

α = 1

ω̃ Nsub 1-level grid CS nCS DtN CS nCS
10 100 65 26 121 11 324
20 400 122 26 441 14 1120
40 1600 286 33 1681 20 4640
60 3600 445 45 3721 29 10560

β = 2

α = 0.6

ω̃ Nsub 1-level grid CS nCS DtN CS nCS
10 9 28 27 16 23 40
20 36 67 56 49 40 220
40 81 121 114 100 72 578
60 121 169 165 144 135 758

α = 0.8

ω̃ Nsub 1-level grid CS nCS DtN CS nCS
10 36 39 27 49 28 86
20 100 83 51 121 41 362
40 361 182 95 400 71 1370
60 676 268 150 729 103 2698

α = 1

ω̃ Nsub 1-level grid CS nCS DtN CS nCS
10 100 57 30 121 23 324
20 400 130 49 441 42 1120
40 1600 296 80 1681 72 4640
60 3600 455 112 3721 101 10560

Table 7.1 – (d=2) Number of iterations (and coarse space size nCS) for the one-level
preconditioner and the two-level preconditioners with the grid coarse space/DtN coarse
space, with Hsub = Hcs ∼ ω̃−α, ξprec = ω̃β .
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nCS forced by grid CS
α = 0.6

ω̃ Nsub grid CS nCS DtN CS nCS
10 9 19 16 18 18
20 36 46 49 44 72
40 81 98 100 85 162
60 121 114 144 109 242

α = 0.8

ω̃ Nsub grid CS nCS DtN CS nCS
10 36 19 49 26 72
20 100 35 121 61 200
40 361 88 400 139 722
60 676 187 729 191 1352

α = 1

ω̃ Nsub grid CS nCS DtN CS nCS
10 100 26 121 52 200
20 400 26 441 43 800
40 1600 33 1681 157 3200
60 3600 45 3721 338 7200

nCS forced by DtN CS
α = 0.6

grid CS nCS DtN CS nCS
17 36 11 39
24 196 26 204
50 529 37 531
104 841 94 875

α = 0.8

grid CS nCS DtN CS nCS
15 121 10 122
20 361 13 394
35 1369 22 1440
52 2601 39 2700

α = 1

grid CS nCS DtN CS nCS
17 324 11 324
23 1089 14 1120
22 4624 20 4640
26 10404 29 10560

Table 7.2 – (d=2) Number of iterations (and coarse space size nCS) for the two-level
preconditioners with the grid coarse space/DtN coarse space forcing similar nCS, with
Hsub ∼ ω̃−α, ξprec = ω̃.

each subdomain ignoring the overlap is around (h−1/H−1
sub)3 ∼ ω̃9/2−3α and the number of

degrees of freedom in the grid coarse space problem is (H−1
cs )3 ∼ ω̃3α′ , so for load balancing

in the sense described above we require 3α′ = 9/2− 3α. The DtN coarse space size is still
determined by the automatic choice criterion (among 20 computed local eigenvectors) in
each subdomain.

In Table 7.3 we report the results of this experiment. Note that the size n of the global
matrix, which should depend just on the wavenumber ω̃ (with h ∼ ω̃−3/2), in fact appears
to vary also for different α: this is due to the fact that we modify the number of points in
each direction to be an exact multiple of the number of subdomains in that direction, so
as to have smooth cubes as subdomains.

As expected, for the grid coarse space the best iteration counts are obtained for α =
0.5 because then α′ = 1 gives the coarse mesh with the smallest diameter among the
experimented ones: the number of iterations grows slowly, with O(ω̃0.61) ∼= O(n0.13).
With higher α the iteration counts get worse quickly, and α = 0.8 is not usable.

For the DtN coarse space, the larger coarse space size is obtained by taking α bigger
(recall that α′ is not a parameter in the DtN case): for α = 0.8 the number of iterations
grows slowly, with O(ω̃0.2) ∼= O(n0.04), but this value may be optimistic, there is a decrease
in iteration number between ω̃ = 20 and 30. We believe that for the other values of α, where
the iteration counts are not much better or worse than with the one-level preconditioner,
we did not compute enough eigenvectors in each subdomain to build the DtN coarse space.
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α = 0.5, α′ = 1

ω̃ n Nsub 1-level grid CS nCS DtN CS nCS
10 39304 27 25 12 1331 14 316
20 704969 64 39 17 9261 31 1240
30 5000211 125 55 21 29791 54 2482
40 16194277 216 74 29 68921 80 4318

α = 0.6, α′ = 0.9

ω̃ n Nsub 1-level grid CS nCS DtN CS nCS
10 39304 27 25 15 512 14 316
20 912673 216 61 24 3375 41 2946
30 4826809 343 73 34 10648 65 6226
40 16194277 729 98 48 21952 108 13653

α = 0.7, α′ = 0.8

ω̃ n Nsub 1-level grid CS nCS DtN CS nCS
10 46656 125 34 19 343 11 896
20 912673 512 73 35 1331 18 4567
30 5929741 1000 103 57 4096 65 12756
40 17779581 2197 139 89 8000 116 30603

α = 0.8, α′ = 0.7

ω̃ n Nsub 1-level grid CS nCS DtN CS nCS
10 50653 216 39 23 216 19 1354
20 1030301 1000 46 86 729 23 7323
30 5929741 3375 137 116 1331 21 26645
40 28372625 6859 189 200 2744 27 54418

Table 7.3 – (d=3) Number of iterations (and coarse space size nCS) for the one-level
preconditioner and the two-level preconditioners with the grid coarse space/DtN coarse
space, with Hsub ∼ ω̃−α, Hcs ∼ ω̃−α

′ , ξprec = ω̃.
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7.5 Conclusion

We tested numerically two different coarse space definitions for two-level domain decom-
position preconditioners for the pure Helmholtz equation (discretized with piecewise linear
finite elements), both in 2d and 3d, reaching more than 28 million complex-valued un-
knowns in the resulting linear systems.

The preconditioners built with absorption ξprec = ω̃2 appear to perform much worse
than those with absorption ξprec = ω̃. We have seen that in most cases for smaller coarse
space sizes the grid coarse space gives fewer iterations than the DtN coarse space, while for
larger coarse space sizes the grid coarse space gives generally more iterations than the DtN
coarse space. The best iterations counts for the grid coarse space are obtained by separating
the coarse mesh diameter Hcs ∼ ω̃−α

′ from the subdomain diameter Hsub ∼ ω̃−α, taking
α′ > α. Both for the coarse grid space and the DtN coarse space, for appropriate choices
of the method parameters we have obtained iteration counts which grow quite slowly with
the wavenumber ω̃.

Further experiments to compare the two definitions of coarse space should be carried out
in the heterogenous case. Note that the DtN coarse space construction naturally respects
local variations in the wavenumber, and paragraphs 6.6 – 6.7 of [34] present numerical
experiments for some simple heterogenous configurations. Also for the grid coarse space
the heterogeneous case is under investigation and preliminary results can be found in
paragraph 5.3 of [63].
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8.1 Introduction

After focusing on the Helmholtz equation in Chapter 7, we now face the time-harmonic
Maxwell’s equation (2.26). The construction of fast iterative solvers for both these equa-
tions in the high-frequency regime is a challenging problem. Here we investigate how
the two-level domain decomposition preconditioners rigorously analyzed in [62] for the
Helmholtz equation (see §7.3.1) work in the Maxwell case, both from the theoretical and
numerical points of view. In the context considered here, we wish to find a “good” pre-
conditioner in the sense that the number of iterations needed to solve the preconditioned
system should be independent of the wavenumber ω̃.

We present a new theory for the time-harmonic Maxwell’s equation with absorption,
which physically corresponds to the case of dissipative materials with non zero conductivity
σ > 0. This theory provides rates of convergence for GMRES with a two-level Additive
Schwarz (AS) preconditioner, explicit in the wavenumber ω̃, the absorption ξ, the coarse-
grid diameter, the subdomain diameter and the overlap size. It uses a ω̃- and ξ-explicit
coercivity result for the underlying sesquilinear form and the main theorems give an upper
bound on the norm of the preconditioned matrix and a lower bound on its field of values,
so that Elman-type estimates for the convergence of GMRES can be applied. Note that
analyzing the convergence of GMRES is hard, since no convergence estimates in terms of
the condition number, as those we are used to with the conjugate gradient method, are
available for GMRES.

Extensive large scale numerical experiments are carried out not only in the setting
covered by the theory, but also for the time-harmonic Maxwell’s equation without absorp-
tion, and with more efficient two-level preconditioners, considering for instance impedance
transmission conditions at interfaces between subdomains.

In paragraph 8.1.1 below we specify which are the boundary value problems (BVPs)
considered in this work; then the Chapter is organized as follows. Section 8.2 introduces
the variational formulation of the BVP studied by the theory, and also of its adjoint,
which intervenes in the analysis; then it provides the continuity and coercivity properties
of the corresponding sesquilinear form, using a norm induced by a wavenumber-dependent
inner product (·, ·)curl,ω̃, and states regularity properties of their solutions. Section 8.3
fixes the notation for the domain decomposition set-up and identifies the assumptions on
the subdomains; it recalls the discrete Helmholtz decomposition of the (global and local)
curl-conforming finite element spaces, and the Poincaré–Friedrichs type-inequality of [60],
which holds just for a term of the direct sum.

In Section 8.4 we state all the intermediate theorems for the theory about the two-
level Additive Schwarz method. We report only partially the proofs which will be part of
the forthcoming paper [16]. The analysis in based on expressing the action of the domain
decomposition preconditioner on the matrix as an operator Tξ, sum of projection operators
onto the local and coarse finite element spaces. Our goal is to bound from above the norm
of the operator Tξ and from below its field of values. Then in Section 8.5 we convert
these bounds into estimates for the norm and field of values of the preconditioned matrix
(in the induced weighted Euclidean inner product). Thus the Elman-type estimates for
convergence of GMRES recalled in §8.5.2 can be applied to obtain the final convergence rate
for GMRES (left- or right-) preconditioned with the two-level Additive Schwarz method.
Note that the detailed theory development is mainly due to Euan Spence.

Finally, in Section 8.6 we report an extensive numerical study of the convergence of
GMRES, with several versions of the two-level preconditioner: additive and hybrid coarse
correction formulas, standard and optimized local solves, generous and minimal overlap,
different scalings of the subdomain diameter and the coarse grid diameter with respect to
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the wavenumber ω̃. Moreover, we test various levels of absorption in the problem and in
the preconditioner, and discretizations with degree 1 and 2 curl-conforming finite elements.

8.1.1 Maxwell boundary value problems

The time-harmonic Maxwell’s equation (2.26) with a source term F is

∇× (∇×E)− (ω2µε− iωµσ)E = F. (8.1)

In the case of propagation through a homogeneous medium, µ = µ0, ε = ε0, and σ = σ0,
where µ0, ε0, and σ0 are all positive constants. Then, with the wavenumber ω̃ defined as
usual by ω̃ = ω

√
ε0µ0 > 0, (8.1) becomes

∇× (∇×E)−
(
ω̃2 − iω̃σ0

√
µ0

ε0

)
E = F. (8.2)

In this work, we consider domain decomposition preconditioning for finite element
discretizations of the boundary value problems involving the PDE

∇× (∇×E)− (ω̃2 + iξ)E = F (8.3)

with the absorption parameter ξ ∈ R \ {0}. Our theory is for the PDE (8.3) posed in a
bounded Lipschitz polyhedron Ω with the PEC boundary conditions

E× n = 0, on ∂Ω. (8.4)

Nevertheless, we give numerical experiments in the case that the BVP has impedance
boundary conditions

(∇×E)× n− i sign(ξ) ω̃ n× (E× n) = 0, on ∂Ω, (8.5)

and we discuss in Remark 8.13 the prospects of extending our theory to this case.
In the case that the absorption parameter ξ equals −ω̃σ0

√
µ0/ε0, (8.3) becomes (8.2).

However, our main motivation for considering discretizations of (8.3) is as preconditioners
for the indefinite Maxwell problem

∇× (∇×E)− ω̃2E = F, (8.6)

with the same boundary conditions as prescribed for (8.3).
In the case of PEC boundary conditions, the solution of the BVP with the PDE (8.6)

(i.e. with ξ = 0) is not unique for a countable set of values of ω̃ (this values are called
cavity eigenvalues or resonances of Ω, see, e.g, [85, Corollary 4.19]), whereas the solution
of the BVP with the PDE (8.3) (i.e. with ξ 6= 0) is unique for every ω̃ (see Corollary 8.5).
In the case of impedance boundary conditions, the solutions to (8.6) and (8.3) are unique
for all ω̃.

8.2 The variational formulation and some preliminary results

8.2.1 Variational formulation

Let Ω be a bounded Lipschitz domain in R3; the vast majority of our results will be for
the particular case that Ω is a Lipschitz polyhedron, but we indicate below when we make
this assumption. Recall that

H(curl,Ω) =
{
v ∈ L2(Ω) : ∇× v ∈ L2(Ω)

}
.
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The theory concerns the PDE (8.3) in Ω with the PEC boundary condition E× n = 0 on
∂Ω. We therefore work in the space

H0(curl,Ω) = {v ∈ L2(Ω),∇× v ∈ L2(Ω),v × n = 0}.

We define the ω̃-weighted inner product and norm on H0(curl,Ω) by

(v,w)curl,ω̃ = (∇× v,∇×w)L2(Ω) + ω̃2(v,w)L2(Ω) and ‖v‖curl,ω̃ = (v,v)
1/2
curl,ω̃. (8.7)

As in Section 2.2.5, the standard variational formulation of the BVP{
∇× (∇×E)− (ω̃2 + iξ)E = F, in Ω,

E× n = 0, on ∂Ω
(8.8)

is: given F ∈ L2(Ω), ξ ∈ R and ω̃ > 0, find E ∈ H0(curl,Ω) such that

aξ(E,v) = F (v) for all v ∈ H0(curl,Ω), (8.9)

where
aξ(E,v) =

∫
Ω
∇×E · ∇ × v −

∫
Ω

(ω̃2 + iξ)E · v (8.10)

and
F (v) =

∫
Ω
F · v. (8.11)

When ξ = 0 and the PDE is (8.6), we simply write a(·, ·) instead of aξ(·, ·).
We will also need the adjoint of the sesquilinear form aξ(·, ·), denoted by a∗ξ(·, ·), which

is given by

a∗ξ(E,v) =

∫
Ω
∇×E · ∇ × v −

∫
Ω

(ω̃2 − iξ)E · v, (8.12)

and one can check that the variational problem (8.9) with aξ(·, ·) replaced by a∗ξ(·, ·) is
equivalent to the BVP{

∇× (∇×E)− (ω̃2 − iξ)E = F, in Ω,
E× n = 0, on ∂Ω,

(8.13)

we refer to this BVP as the adjoint BVP.
Now, with Ω a Lipschitz polyhedron, let T h be a family of conforming tetrahedral

meshes that are shape-regular as the mesh diameter h→ 0. We define our approximation
space Qh ⊂ H0(curl,Ω) as the curl-conforming finite element space defined in Chapter 3,
of some fixed degree r, on the mesh T h with functions whose tangential trace is zero on
∂Ω. The Galerkin method applied to the variational problem (8.9) is

find Eh ∈ Qh such that aξ(Eh,vh) = F (vh) for all vh ∈ Qh.

Let Ih be a set of indices associated with the degrees of freedom for the subspace Qh.
Then the Galerkin matrix Aξ is defined by

(Aξ)ij = aξ(wi,wj), i, j ∈ Ih, (8.14)

and the Galerkin method is equivalent to solving the linear system AξU = G, where
Gi = F (wi).
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8.2.2 Properties of the sesquilinear form

In this section we provide the key properties of the sesquilinear form aξ given in (8.10).
This form depends on both parameters ξ and ω̃, but only the first of these is reflected in
the notation. We will assume throughout that

|ξ| . ω̃2. (8.15)

Here the notation A . B means that A/B is bounded above by a constant independent of
ω̃, ξ, and mesh diameters h,Hsub, Hcs (the latter two introduced below). We write A ∼ B
when A . B and B . A.

The continuity result follows from the Cauchy-Schwarz inequality.

Lemma 8.1 (Continuity of aξ(·, ·) and a∗ξ(·, ·)).

|aξ(v,w)| . ‖v‖curl,ω̃ ‖w‖curl,ω̃ (8.16)

for all ω̃ > 0 and v,w ∈ H0(curl,Ω). Furthermore, the inequality (8.16) holds with aξ
replaced by a∗ξ .

We now give a result about the coercivity of aξ(·, ·). Before stating this result, we need
to define

√
ω̃2 + iξ, taking care to allow ξ to be positive or negative. Indeed, we need

to consider both positive and negative ξ since, whichever choice we make for the problem
(8.8), the other forms the adjoint problem, and we need estimates on the solutions and
sesquilinear forms for both problems (in particular, this is essential for analyzing both left
and right preconditioning).

Definition 8.2. z(ω̃, ξ) :=
√
ω̃2 + iξ where the square root is defined with the branch

cut on the positive real axis. Note that this definition implies that, when ξ 6= 0,

Im(z) > 0, sign(ξ) Re(z) > 0, and z(ω̃,−ξ) = −z(ω̃, ξ). (8.17)

Lemma 8.3. [62, Proposition 2.3] With z(ω̃, ξ) defined above, for all ω̃ > 0,

|z| ∼ ω̃ and
Im(z)

|z|
∼ |ξ|
ω̃2
. (8.18)

Lemma 8.4 (Coercivity of aξ(·, ·) and a∗ξ(·, ·)). There exists a constant ρ > 0 independent
of ω̃ and ξ such that

|aξ(v,v)| ≥ Im (Θaξ(v,v)) ≥ ρ

(
|ξ|
ω̃2

)
‖v‖2curl,ω̃ (8.19)

for all ω̃ > 0 and v ∈ H0(curl,Ω), where Θ = −z/|z|. Furthermore the inequality (8.19)
holds with aξ(·, ·) replaced by a∗ξ(·, ·).

Proof. Writing z = p+ iq and using the definition of aξ, we have

aξ(v,v) =
∥∥∇× v

∥∥2

L2(Ω)
− (p+ iq)2

∥∥v∥∥2

L2(Ω)
.

Therefore

Im [−(p− iq)aξ(v,v)] = q
∥∥∇× v

∥∥2

L2(Ω)
+ q(p2 + q2)

∥∥v∥∥2

L2(Ω)
.
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Hence, dividing through by |z| =
√
p2 + q2 and setting Θ = −z/|z|, we have

Im [Θaξ(v,v)] =
Im(z)

|z|

[∥∥∇× v
∥∥2

L2(Ω)
+ |z|2

∥∥v∥∥2

L2(Ω)

]
.

The second inequality in (8.19) then follows from the two estimates in (8.18). The first
one holds since |Θ| = 1.

The result about the adjoint form a∗ξ(·, ·) follows immediately after noticing that the
third equation in (8.17) implies that Im z(ω̃,−ξ) = Im z(ω̃, ξ).

Corollary 8.5 (Bound on the solutions of (8.8) and (8.13) via Lax–Milgram). The solution
of the variational problem (8.9) exists, is unique, and satisfies the bound.

‖E‖curl,ω̃ .

(
ω̃

|ξ|

)∥∥F∥∥
L2(Ω)

(8.20)

for all ω̃ > 0. The same is true if the sesquilinear form aξ(·, ·) in (8.9) is replaced by a∗ξ(·, ·)
given by (8.12).

Proof. The Lax–Milgram theorem, the continuity result of Lemma 8.1, and the coercivity
result of Lemma 8.4 imply that the solution of the variational problem (8.9) satisfies

‖E‖curl,ω̃ .

(
ω̃2

|ξ|

)
‖F‖(curl,ω̃)′ ,

where ‖ · ‖(curl,ω̃)′ denotes the norm on the dual-space of H0(curl,Ω) defined by

‖F‖(curl,ω̃)′ := sup
v∈H0(curl,Ω)\{0}

|F (v)|
‖v‖curl,ω̃

.

From the definition (8.11),

|F (v)| ≤
∥∥F∥∥

L2(Ω)

∥∥v∥∥
L2(Ω)

≤ 1

ω̃

∥∥F∥∥
L2(Ω)

‖v‖curl,ω̃

and the inequality (8.20) follows. The result about the solution to the adjoint problem
follows in a similar way.

8.2.3 Regularity of the BVP and its adjoint

In order to estimate the approximation properties of the coarse grid operator in Lemma
8.17 below, we need H1-regularity of both E and ∇×E.

Assumption 8.6 (ω̃- and ξ-explicit H1 regularity). The domain Ω is such that, given
F ∈ L2(Ω)∩H(div0,Ω) :=

{
u ∈ L2(Ω) : ∇·u = 0

}
, ξ ∈ R \ {0}, and ω̃ > 0, the solution of

the BVP (8.8) is such that ∇×E ∈ H1(Ω) and E ∈ H1(Ω). Moreover, if ξ satisfies (8.15)
then, given ω̃0 > 0,

‖∇ ×E‖H1(Ω) + ω̃ ‖E‖H1(Ω) . ω̃
(∥∥∇×E

∥∥
L2(Ω)

+ ω̃
∥∥E∥∥

L2(Ω)

)
+ ‖F‖L2(Ω) , (8.21)

for all ω̃ ≥ ω̃0.

The bound (8.21) can be viewed as a rigorous expression of the idea that taking a derivative
of a solution of the PDE (8.6) incurs a power of ω̃. A quite long and involved proof shows
that Assumption 8.6 holds in the following situations.
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Lemma 8.7. If Ω is either a bounded C1,1 domain or a convex polyhedron, then Assump-
tion 8.6 holds.

If Assumption 8.6 holds, the bound (8.20) from the Lax–Milgram theorem immediately
implies the following corollary.

Corollary 8.8. If Assumption 8.6 holds, and E is the solution to either the BVP (8.8) or
the adjoint BVP (8.13) with F ∈ L2(Ω) ∩H(div0,Ω), ξ ∈ R \ {0} satisfying (8.15), and
ω̃ > 0, then, given ω̃0 > 0,

‖∇ ×E‖H1(Ω) + ω̃ ‖E‖H1(Ω) .

(
ω̃2

|ξ|

)
‖F‖L2(Ω) , (8.22)

for all ω̃ ≥ ω̃0.

8.3 Domain decomposition set-up

To define appropriate subspaces of the edge finite element space Qh ⊂ H0(curl,Ω), we
start with a collection of open subsets {Ω̂` : ` = 1, . . . , N} of Rd that form an overlapping
cover of Ω, and we set Ω` = Ω̂` ∩ Ω. Each Ω` is assumed to be non-empty and to consist
of a union of elements of the mesh Th. Then, for each ` = 1, . . . , N , we set

Q`
h := Qh ∩H0(curl,Ω`), (8.23)

i.e. the tangential traces of elements of Q`
h vanish on the internal boundary ∂Ω`\∂Ω (as

well as on ∂Ω`∩∂Ω). In writing the definition ofQ`
h, we are using the fact thatH0(curl,Ω`)

can be considered as a subset of H0(curl,Ω) by extending functions in H0(curl,Ω`) by zero
(such extensions are in H0(curl,Ω) by, e.g., [85, Lemma 5.3]). We make the following
assumptions on the subdomains:

1. Shape regularity: the subdomains are shape-regular Lipschitz polyhedra of diameter
Hsub, in the sense that the volume is of order H3

sub and surface area of order H2
sub

(with omitted constants independent of all parameters).

2. Uniform overlap of order δ: For each ` = 1, . . . , N , let Ω̊` denote the part of Ω` that
is not overlapped by any other subdomains, and for µ > 0 let Ω`,µ denote the set of
points in Ω` that are a distance no more than µ from the boundary ∂Ω`. Then we
assume that for some δ > 0 and some 0 < c < 1 fixed,

Ω`,cδ ⊂ Ω`\Ω̊` ⊂ Ω`,δ;

the case δ ∼ Hsub is called generous overlap.

3. Finite overlap assumption: as h,Hsub → 0,

#Λ(`) . 1, where Λ(`) =
{
`′ : Ω` ∩ Ω`′ 6= ∅

}
. (8.24)

Let Ih(Ω`) be the set of indices of the degrees of freedom whose support is contained
in Ω`. We then have that Ih =

⋃N
`=1 Ih(Ω`). We define the restriction matrices (R`)N`=1

and partition of unity matrices (D`)N`=1 as in §5.2 and §5.3.1.
For the coarse space, let {T Hcs} be a sequence of shape-regular, tetrahedral meshes on

Ω, with mesh diameter Hcs. Let IH be an index set for the degrees of freedom on the
coarse mesh. The space Q0 is the curl-conforming finite element space on the mesh T Hcs
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with functions whose tangential trace is zero on ∂T Hcs . Similarly to §7.3.1, the coarse
space matrix Z is the matrix corresponding to the interpolation operator I0 : Q0 → Qh

from the coarse grid finite element space to the fine grid finite element space, and we set
the “restriction” matrix R0 = ZT .

With the restriction matrices (R`)N`=0 we define

A`ξ := R`Aξ(R
`)T . (8.25)

For ` = 1, . . . , N , the matrix A`ξ is then just the minor of Aξ corresponding to rows and
columns taken from Ih(Ω`) and the matrix A0

ξ is the Galerkin matrix for the variational
problem (8.9) discretized in Q0. The coercivity result Lemma 8.4 implies that the matrices
A`ξ, ` = 0, . . . , N , are invertible for all mesh sizes h and all choices of ξ 6= 0. Indeed, if
A0
ξV = 0, where V is a vector such that vH :=

∑
p∈IH Vpw

H
p ∈ Q0, then 0 = V∗A0

ξV =
aξ(vH ,vH). Therefore,

0 = |aξ(vH ,vH)| ≥ ρ
(
|ξ|
ω̃2

)
‖vH‖2curl,ω̃,

which immediately implies vH = 0, and thus V = 0. Similar arguments apply to A`ξ and
to the adjoints (A`ξ)

∗, ` = 0, . . . , N .
As in §7.3 we combine the one-level preconditioner with the coarse correction using an

additive or hybrid formula to write a two-level preconditioner. The theory concerns the
two-level Additive Schwarz preconditioner for Aξ, based on the one-level AS preconditioner
with an additive correction:

M−1
ξ,AS =

N∑
`=0

(R`)T (A`ξ)
−1R` (8.26)

(note that in this Chapter we omit the subscript 2 standing for two-level).
In the numerical experiments we will also consider:

• the two-level Restricted Additive Schwarz preconditioner based on the one-level RAS
preconditioner with an additive correction:

M−1
ξ,RAS =

N∑
`=1

(R`)TD`(A
`
ξ)
−1R` + Ξ, Ξ = (R0)T (A0

ξ)
−1R0, (8.27)

• M−1
ξ,ImpRAS, which is similar toM−1

ξ,RAS but it is based on the one-level ORAS precon-
ditioner (in the terminology of the Helmholtz paper [62] the prefix O for Optimized
is replaced with Imp, for impedance transmission conditions),

• the two-level hybrid version of RAS

M−1
ξ,HRAS = (I − ΞAξ)

(
N∑
`=1

(R`)TD`(A
`
ξ)
−1R`

)
(I −AξΞ) + Ξ, (8.28)

• M−1
ξ,ImpHRAS, the two-level hybrid version of ImpRAS.
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8.3.1 Discrete Helmholtz decomposition and associated results

Recall that H(div,Ω) is defined by

H(div,Ω) =
{
u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)

}
and H0(div,Ω) by

H0(div,Ω) =
{
u ∈ L2(Ω) : ∇ · u ∈ L2(Ω) and u · n = 0 on ∂Ω

}
(recall that the normal trace is well-defined on H(div,Ω) by, e.g., [85, Thereom 3.24]).

Let Vh denote the Raviart-Thomas finite element subspaces of H0(div,Ω) of index r
based on the fine mesh T h. Let Wh denote the subspace of H1

0 (Ω) consisting of piecewise
polynomials of degree r + 1, also on the fine mesh T h. For Ω simply connected, we have
the discrete Helmholtz decomposition

Qh = curlhVh ⊕∇Wh, (8.29)

see, e.g., [5, §2, in particular Remark 2.1] [85, §7.2.1, in particular Lemma 7.4], where
curlh is the L2-adjoint of the map curl : Qh → Vh, and the decomposition is orthogonal
both in L2(Ω) and in H(curl,Ω).

We define V0
H and W 0

H in the same way as Vh and Wh, but using the coarse mesh
{T H}. We also set

V`
h := Vh ∩H0(div,Ω`) and W `

h := Wh ∩H1
0 (Ω`) for ` = 1, . . . , N,

where fields on Ω` are identified as fields on Ω by extension by zero. We then have the
analogue of the decomposition (8.29):

Q`
h = curl`hV

`
h ⊕∇W `

h, (8.30)

where curl`h is the L2-adjoint of the map curl : Q`
h → V`

h.
For fields in curl`hV

`
h we have the following Poincaré–Friedrichs inequality from [60].

Lemma 8.9. (Poincaré–Friedrichs type-inequality [60, Lemma 4.1]) If Ω` is polyhedral,

‖q‖L2(Ω`)
. Hsub ‖∇ × q‖L2(Ω`)

for all q ∈ curl`hV
`
h, (8.31)

where the omitted constant is independent of h and Hsub.

Finally, we recall the following result from, e.g., [60, Equation 4.10] (with a similar
result in [5, Lemma 5.2]).

Lemma 8.10. If Ω is either a convex polyhedron or C1,1 then, given qh ∈ curlhVh, there
exists a unique field in H0(curl,Ω), which we denote by Sqh, such that

∇× (Sqh) = ∇× qh and ∇ · Sqh = 0.

Furthermore,
‖qh − Sqh‖L2(Ω) . h ‖∇ × qh‖L2(Ω) . (8.32)

The key point from Lemma 8.10 is that although qh is not divergence-free, Sqh provides
an approximation to qh that is divergence-free and has the same curl.
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8.4 Theory of two-level Additive Schwarz methods

The following theory establishes rigorous convergence estimates for the preconditioner (8.26)
applied to Aξ. While Sections 8.4.1, 8.4.2, and 8.4.4 are very similar to the Helmholtz the-
ory in [62], Section 8.4.3 is very different, in that we need to use and adapt the arguments
of [60] (see the discussion at the beginning of Section 8.4.3).

8.4.1 Stable splitting and associated results

The first lemma is a “stable splitting” property in the ω̃-weighted H0(curl,Ω) norm.

Lemma 8.11 (Stable splitting in the curl, ω̃-norm). For all vh ∈ Qh, there exist v` ∈ Q`

for each ` = 0, . . . , N such that

vh =

N∑
`=0

v` and
N∑
`=0

∥∥∥v`∥∥∥2

curl,ω̃
.

(
1 +

(
Hcs

δ

)2
)
‖vh‖2curl,ω̃. (8.33)

The next lemma is a kind of converse to Lemma 8.11. Here the energy of a sum of
components is estimated above by the sum of the energies.

Lemma 8.12. For all choices of v` ∈ Q` , ` = 0, . . . , N , we have∥∥∥∥∥
N∑
`=0

v`

∥∥∥∥∥
2

curl,ω̃

.
N∑
`=0

∥∥∥v`∥∥∥2

curl,ω̃
. (8.34)

Remark 8.13 (Impedance boundary conditions). The main obstacle to extending the
theory in this work to the BVP (8.8) with the PEC boundary condition replaced by the
impedance boundary condition (8.5) on ∂Ω is that the rigorous Hilbert space for the
variational formulation of the impedance problem is not H(curl,Ω), but Himp(curl,Ω) =
{v ∈ H(curl,Ω),v × n ∈ L2

t (∂Ω)} (see, e.g., [85, §3.8]). The first step towards extending
the theory to the impedance BVP would be to establish a stable-splitting in the norm on
Himp(curl,Ω).

8.4.2 Definition of the projection operators and the path towards the
bound on the field of values

Now for each ` = 0, . . . , N , we define linear projection operators T`
ξ : H0(curl,Ω)→ Q` as

follows. For each v ∈ H0(curl,Ω), T`
ξv is defined to be the unique solution of the equation

aξ(T
`
ξv,w

`
h) = aξ(v,w

`
h), w`

h ∈ Q`. (8.35)

Recall from the discussion underneath (8.23) that Q`
h can be considered as a subspace

of H0(curl,Ω) by extension by zero, and we can therefore consider T`
ξv as an element of

H0(curl,Ω) with support on Ω`. We then define

Tξ =
N∑
`=0

T`
ξ.

We will show in Theorem 8.22 below that the matrix representation of Tξ corresponds to
the action of the preconditioner (8.26) on the matrix Aξ.



8.4. Theory of two-level Additive Schwarz methods 119

Our goal is to bound from above the norm of the operator Tξ and from below its field
of values (or numerical range)

(vh,Tξvh)curl,ω̃

‖vh‖2curl,ω̃

for all vh ∈ Qh. (8.36)

Note that the field of values is computed with respect to the wavenumber-dependent
(·, ·)curl,ω̃ inner product.

The upper bound is given by the following theorem.

Theorem 8.14 (Upper bound on the norm of Tξ).

‖Tξvh‖curl,ω̃ .

(
ω̃2

|ξ|

)
‖vh‖curl,ω̃ for all vh ∈ Qh.

The next two results are two of the three ingredients we use to obtain a bound on the
field of values from below. (The third ingredient is provided in §8.4.3, and the bound is
proved in §8.4.4.)

Lemma 8.15.

N∑
`=0

‖T`
ξvh‖2curl,ω̃ &

(
1 +

(
Hcs

δ

)2
)−1(

|ξ|
ω̃2

)2

‖vh‖2curl,ω̃ for all vh ∈ Qh. (8.37)

The bound (8.37) in Lemma 8.15 means that to bound the field of values (8.36) from
below it is sufficient to bound (vh,Tξvh)curl,ω̃ below by

∑N
`=0 ‖T`

ξvh‖2curl,ω̃. The next
lemma expresses (vh,Tξvh)curl,ω̃ in terms of

∑N
`=0 ‖T`

ξvh‖2curl,ω̃ plus a sum of “remainder”
terms R`ξ(vh).

Lemma 8.16. For ` = 0, . . . , N , set

R`ξ(vh) :=
(
(I−T`

ξ)vh,T
`
ξvh
)

curl,ω̃
.

Then

(vh,Tξvh)curl,ω̃ =
N∑
`=0

‖T`
ξvh‖2curl,ω̃ +

N∑
`=0

R`ξ(vh). (8.38)

and
R`ξ(vh) = (2ω̃2 + iξ)

(
(I−T`

ξ)vh,T
`
ξvh
)
L2(Ω`)

. (8.39)

8.4.3 The key result about the projection operators adapted from [60]

Lemma 8.16 above shows that we can bound the field of values of Tξ from below, provided
that we can get good estimates for the remainder terms

R`ξ(vh) = (2ω̃2 + iξ)
(
(I−T`

ξ)vh,T
`
ξvh
)
L2(Ω`)

. (8.40)

It is at this point that our Maxwell theory deviates substantially from the Helmholtz theory
in [62]. There, the Cauchy-Schwarz inequality was used on (8.40),

(a) the analogue of ‖(I−T0
ξ)vh‖L2(Ω`) was estimated using a duality argument, and
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(b) the analogue of ‖T`
ξvh‖L2(Ω`), ` = 1, . . . , N , was estimated using the standard scalar

Poincaré–Friedrichs inequality.

This approach does not immediately carry over to the Maxwell case because (a) duality
arguments for Maxwell’s equations require divergence-free right-hand sides (since we want
to use the bound (8.21)), and (b) the appropriate analogue of the Poincaré–Friedrichs
inequality does not hold for gradient fields (see Lemma 8.9 above).

Nevertheless, one of the main technical results obtained by Gopalakrishnan and Pasciak,
[60, Lemma 4.3], involves estimating ((I−T`

ξ)vh,w
`
h)L2(Ω`) for w

`
h ∈ Q` and ` = 0, . . . , N .

Lemma 8.18 below is essentially this result, adapted to our situation by (i) making every-
thing explicit in ω̃ and ξ, and (ii) using coercivity of aξ(·, ·) instead of an error estimate
on the Galerkin solution in the duality argument.

Before stating this key result, we need the following result about approximability of
the adjoint problem on the coarse grid.

Lemma 8.17 (Coarse-grid approximability of the adjoint problem). If Assumption 8.6
holds, then, if E is the solution of the adjoint problem (8.13) with F ∈ L2(Ω) and ∇·F = 0,
then

inf
φ0

H∈Q0
H

∥∥E− φ0
H

∥∥
curl,ω̃

. Hcs

(
ω̃2

|ξ|

)
‖F‖L2(Ω) . (8.41)

We now state the key result that will allow us to estimate the remainder terms R`ξ(vh).

Lemma 8.18. (ω̃- and ξ-explicit version of [60, Lemma 4.3])
(i) For any vh ∈ Qh and w`

h ∈ Q`
h,(

(I−T`
ξ)vh,w

`
h

)
L2(Ω`)

. Hsub‖(I−T`
ξ)vh

∥∥
L2(Ω`)

∥∥∇×w`
h

∥∥
L2(Ω`)

(8.42)

for ` = 1, . . . , N ,
(ii) If Assumption 8.6 holds, then, given ω̃0 > 0, and for any vh ∈ Qh and w0

H ∈ Q0
H ,(

(I−T0
ξ)vh,w

0
H

)
L2(Ω)

. Hcs

(
ω̃

|ξ|

)∥∥(I−T0
ξ)vh

∥∥
curl,ω̃

∥∥w0
H

∥∥
curl,ω̃

, (8.43)

for all ω̃ ≥ ω̃0.

8.4.4 Bound on the field of values

We can now give the estimates on the remainder terms R`ξ(vh).

Lemma 8.19 (Bound on R0
ξ(vh)). Under Assumption 8.6, given ω̃0 > 0 and for any γ ≥ 0

and any vh ∈ Qh,

∣∣R0
ξ(vh)

∣∣ . ω̃Hcs

(
ω̃2

|ξ|

)[(
ω̃2

|ξ|

)γ ∥∥T0
ξvh
∥∥2

curl,ω̃
+

(
ω̃2

|ξ|

)−γ
‖vh‖2curl,ω̃

]
, (8.44)

for all ω̃ ≥ ω̃0.

Lemma 8.20 (Bound on
∑
R`ξ(vh)). For any γ′ ≥ 0 and any vh ∈ Qh,

N∑
`=1

∣∣R`ξ(vh)
∣∣ . ω̃Hsub

[(
ω̃2

|ξ|

)γ′ N∑
`=1

∥∥∥T`
ξvh

∥∥∥2

curl,ω̃
+

(
ω̃2

|ξ|

)−γ′
‖vh‖2curl,ω̃

]
. (8.45)
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Finally, the bound from below on the field of values of Tξ is given by the following
theorem.

Theorem 8.21 (Lower bound on the field of values of Tξ). Under Assumption 8.6 and
given ω̃0 > 0, there exists a constant C1 > 0 such that

|(vh,Tξvh)curl,ω̃|
‖vh‖2curl,ω̃

&

(
1 +

(
Hcs

δ

)2
)−1(

|ξ|
ω̃2

)2

for all vh ∈ Qh (8.46)

and for all ω̃ ≥ ω̃0, when

max

{
(ω̃Hsub), (ω̃Hcs)

(
ω̃2

|ξ|

)}
≤ C1

(
1 +

(
Hcs

δ

)2
)−1(

|ξ|
ω̃2

)
. (8.47)

8.5 Matrices and convergence of GMRES

In this section we convert the results of Theorems 8.14 and 8.21 into results about matrices.

8.5.1 From projection operators to matrices

We now interpret the operators T`
ξ defined in (8.35) in terms of matrices.

Lemma 8.22. Let vh =
∑

j∈Ih Vjφj ∈ Qh. Then

(i) T`
ξvh =

∑
j∈Ih(Ω`)

(
(R`)T (A`ξ)

−1R`AξV
)
j
φj , ` = 1, . . . , N,

(ii) T0
ξvh =

∑
p∈IH

(
RT0 (A0

ξ)
−1R0AξV

)
p

Φp,

where A`ξ , ` = 0, . . . , N is defined in (8.25).

Proof. For (i), let ` ∈ {1, . . . , N}, let wh,` and yh,` be arbitrary elements of Q`
h, and

denote their coefficient vectors W and Y (with degrees of freedom on all of Ih). Then
W = (R`)Tw and Y = (R`)Ty, where w,y have degrees of freedom on Ih(Ω`). The
definitions of Aξ and A`ξ, (8.14) and (8.25), then imply that aξ(yh,`,wh,`) = W∗AξY =

w∗A`ξy. So if y := (A`ξ)
−1R`AξV for some V ∈ Cn, we have

aξ(yh,`,wh,`) = w∗R`AξV = ((R`)Tw)∗AξV = W∗AξV = aξ(vh,wh,`),

where yh,` is the finite element function with degrees of freedom y. Thus, by definition of
T`
ξ, we have yh,` = T`

ξvh, which implies the result (i). The proof of (ii) is similar.

The main results of the previous section - Theorems 8.14 and 8.21 - give estimates for
the norm and the field of values of the operator Tξ on the space Qh, with respect to the
inner product (·, ·)curl,ω̃ and its associated norm. The next lemma shows that, in order
to translate these results into norm and field of values estimates for the preconditioned
matrix M−1

ξ,ASAξ, we need to work in the weighted inner product 〈·, ·〉Dω̃ defined such that
if vh,wh ∈ Qh with coefficient vectors V,W then

(vh,wh)curl,ω̃ = 〈V,W〉Dω̃ ; (8.48)

note that the definition of (·, ·)curl,ω̃ (8.7) means that 〈V,W〉Dω̃ depends on the wavenum-
ber ω̃.
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Lemma 8.23. Let vh =
∑

j∈Ih Vjφh ∈ Qh. Then

(i) (vh,Tξvh)curl,ω̃ = 〈V,M−1
ξ,ASAξV〉Dω̃ , and

(ii) ‖Tξvh‖curl,ω̃ = ‖M−1
ξ,ASAξV‖Dω̃ .

Proof. For arbitrary wh,vh ∈ Qh, with coefficient vectors W and V, we use Lemma 8.22
and (8.48) to find that

(wh,T
`
ξvh)curl,ω̃ = 〈W, (R`)T (A`ξ)

−1R`AξV〉Dω̃ , ` = 0, . . . , N.

Summing these over ` = 0, . . . , N and using the definition of M−1
ξ,AS (8.26), we obtain

(wh,Tξvh)curl,ω̃ = 〈W,M−1
ξ,ASAξV〉Dω̃ ,

from which (i) and (ii) follow immediately.

8.5.2 Recap of Elman-type estimates for convergence of GMRES

We consider the abstract linear system

Cx = d

in Cn, where C is an n × n nonsingular complex matrix. Given an initial guess x0, we
introduce the residual r0 = d− Cx0 and the usual Krylov spaces:

Km(C, r0) := span{Cjr0 : j = 0, . . . ,m− 1}.

Let 〈·, ·〉D denote the inner product on Cn induced by some Hermitian positive definite
matrix D, i.e.

〈V,W〉D := W∗DV

with induced norm ‖ · ‖D, where ∗ denotes Hermitian transpose. For m ≥ 1, define xm to
be the unique element of Km satisfying the minimal residual property:

‖rm‖D := ‖d− Cxm‖D = min
x∈Km(C,r0)

‖d− Cx‖D.

When D = I this is just the usual GMRES algorithm, and we write ‖ · ‖ = ‖ · ‖I , but for
more general D it is the weighted GMRES method [51] in which case its implementation
requires the application of the weighted Arnoldi process [66].

The following theorem is a simple generalization of the GMRES convergence result
of Beckermann Goreinov and Tyrtyshnikov [6] to the weighted setting. This result is an
improvement of the so-called “Elman estimate”, originally due to Elman [49]; see also [47],
[108, Theorem 3.2], [46, Corollary 6.2], and the review [105, §6].

Theorem 8.24 (Elman-type estimate for weighted GMRES). Let C be a matrix with
0 /∈WD(C), where

WD(C) :=
{
〈Cv,v〉D : v ∈ CN , ‖v‖D = 1

}
is the field of values or numerical range of C with respect to the inner product 〈·, ·〉D. Let
θ ∈ [0, π/2) be defined such that

cos θ =
dist

(
0,WD(C)

)
‖C‖D

,
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let γθ be defined by

γθ := 2 sin

(
θ

4− 2θ/π

)
, (8.49)

and let rm be defined as above. Then

‖rm‖D
‖r0‖D

≤
(

2 +
2√
3

)(
2 + γθ

)
γmθ . (8.50)

When we apply the estimate (8.50) to M−1
ξ,AS in §8.5.3 below, we find that θ = π/2− ε,

where (for fixed δ,H) ε = ε(ω̃, ξ) is such that ε→ 0 as ω̃ →∞. It is therefore convenient
to specialize the result (8.50) to this particular situation in the following corollary.

Corollary 8.25. If θ = π/2− ε then, given 0 < ε0 < π/2, there exists C > 0 (independent
of ε) such that, for 0 < a < 1,

if m ≥ C
ε

log

(
12

a

)
then

‖rm‖D
‖r0‖D

≤ a. (8.51)

for all 0 < ε < ε0.

8.5.3 The main results

With the classical two-level additive Schwarz preconditioner M−1
ξ,AS in (8.26) for Aξ and

the inner product 〈·, ·〉Dω̃ defined by (8.48) above, we have the following results.
Combining the bounds for the operator Tξ in Theorems 8.14 and 8.21, with the matrix

interpretation in Lemma 8.23, we obtain the following upper bound on the norm of the
preconditioned matrix M−1

ξ,ASAξ and lower bound on its field of values.

Theorem 8.26 (Bounds for left preconditioning).
(i) ∥∥∥M−1

ξ,ASAξ

∥∥∥
Dω̃

.

(
ω̃2

|ξ|

)
for all Hcs, Hsub.

(ii) If Ω is a convex polyhedron, then, given ω̃0 > 0, there exists a constant C1 such that if

max

{
(ω̃Hsub), (ω̃Hcs)

(
ω̃2

|ξ|

)}
≤ C1

(
1 +

(
Hcs

δ

)2
)−1(

|ξ|
ω̃2

)
, (8.52)

then ∣∣∣∣〈V,M−1
ξ,ASAξV

〉
Dω̃

∣∣∣∣
‖V‖2Dω̃

&

(
1 +

(
Hcs

δ

)2
)−1(

|ξ|
ω̃2

)2

,

for all V ∈ Cn and for all ω̃ ≥ ω̃0.

Observe that, just as in the Helmholtz theory in [62], the condition on the coarse mesh
diameter Hcs in (8.52) is more stringent than the condition on the subdomain diameter
Hsub; one finds similar criteria in domain decomposition theory for coercive elliptic PDEs
(see, e.g., [61]).

Combining Theorem 8.26 with the result about GMRES convergence in Corollary 8.25,
we obtain the final convergence estimate.
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Theorem 8.27 (GMRES convergence for left preconditioning). Let Ω be a convex poly-
hedron. Consider the weighted GMRES method applied to M−1

ξ,ASAξ, where the residual is
minimized in the norm induced by Dω̃ (as described in §8.5.2).

Given ω̃0 > 0, there exists C > 0, independent of all parameters such that, if (i) ω̃ ≥ ω̃0,
(ii) condition (8.52) holds, and (iii)

m ≥ C
(
ω̃2

|ξ|

)3
(

1 +

(
Hcs

δ

)2
)

log

(
12

a

)
, (8.53)

then
‖rm‖Dω̃

‖r0‖Dω̃

≤ a

for any 0 < a < 1.

Two particular cases of Theorem 8.27 are

1. When |ξ| ∼ ω̃2 (maximum absorption) and δ ∼ Hcs (generous overlap), Condition
(8.52) is satisfied withHsub ∼ Hcs ∼ ω̃−1, and then the bound (8.53) implies GMRES
will converge with the number of iterations independent of the wavenumber.

2. When |ξ| ∼ ω̃ and δ ∼ Hcs, Condition (8.52) is satisfied with Hsub ∼ ω̃−2, Hcs ∼
ω̃−3, and then the bound (8.53) implies GMRES will converge with the number of
iterations growing at most like ω̃3 as ω̃ →∞.

Using coercivity of the adjoint form in Lemma 8.4, we can obtain the following result
about right preconditioning, however in the inner product induced by D−1

ω̃ . From this, the
analogue of Theorem 8.27, with Dω̃ replaced by D−1

ω̃ , follows.

Theorem 8.28 (Bounds for right preconditioning).
(i)

‖AξM−1
ξ,AS‖D−1

ω̃
.

(
ω̃2

|ξ|

)
for all Hcs, Hsub.

(ii) With the same assumptions as Part (ii) of Theorem 8.26, given ω̃0 > 0 and provided
Condition (8.52) holds,∣∣∣∣〈V, AξM−1

ξ,ASV
〉
D−1

ω̃

∣∣∣∣
‖V‖2

D−1
ω̃

&

(
1 +

(
Hcs

δ

)2
)−1(

|ξ|
ω̃2

)2

,

for all V ∈ Cn and for all ω̃ ≥ ω̃0.

Theorem 8.29 (GMRES convergence for right preconditioning). The result of Theorem
8.27 holds when left preconditioning is replaced by right preconditioning (M−1

ξ,ASAξ is re-
placed by AξM−1

ξ,AS in the statement of the theorem).

8.6 Numerical experiments

We solve equation (8.3) (with ξ 6= 0 or ξ = 0) in the unit cube Ω = (0, 1)3, with PEC
boundary conditions (8.4) or with impedance boundary conditions (8.5) on its boundary
∂Ω. The right-hand side function F in (8.3) is given by the point source

F = [f, f, f ], where f = − exp(−400((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)).
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The discretization is by curl-conforming finite elements (see Chapters 3 and 4) on a regular
mesh of tetrahedra. We will give results for both degree 1 and degree 2 elements. The fine
mesh diameter is either chosen as h ∼ ω̃−3/2 (the discretization level generally believed to
remove the pollution effect, by analogy with Helmholtz problems), or with a fixed number
g of grid-points per wavelength, i.e. h ∼ 2π/(gω̃), when degree 2 elements are used.

The resulting linear system (see (8.14)) is solved using GMRES without restarts with
right preconditioning. For each solve we use a random initial guess, aiming to ensure that all
frequencies are present in the error. The stopping criterion is based on a reduction of the rel-
ative residual by 10−6 and the maximum number of iterations allowed is 200. All the com-
putations are done in FreeFem++. The code is parallelized and run on the supercomput-
ers Curie (at TGCC-CEA, http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm) and
OCCIGEN (at CINES, https://www.cines.fr/en/occigen-the-new-supercomputeur/).
Note that we do not use the library HPDDM, because the coarse space based on a coarse
grid is not available yet there, thus the computing times shown in the following tables
could be further optimized.

We consider a regular decomposition into overlapping subdomains (cubes). Even if
the theoretical result is optimal for “generous overlap” (δ ∼ Hsub), this would require sub-
stantial communication between subdomains, therefore, apart from the first experiments,
we take an overlap of size O(2h) in all directions (which we call “minimal overlap”). The
examined two-level domain decomposition preconditioners are defined at the end of Sec-
tion 8.3; their one-level version is considered if “1-level” is specified in the tables. To apply
the preconditioner, the local problems in each subdomain and the coarse space problem
(where used) are each solved with a direct solver (in this case MUMPS [2]) on a single
processor. When describing the properties of the preconditioners, it is useful to introduce
the parameters:

• Nsub, the number of subdomains (previously denoted just by N),

• n, the total number of degrees of freedom in the (fine grid) problem,

• nsub, the number of degrees of freedom per subdomain without considering the over-
lap contribution (which could be substantial, especially for generous overlap),

• ncs, the number of degrees of freedom in the coarse grid problem.

In the following we will consider experiments on solving (8.3) where the given problem
may (or may not) have absorption and where the preconditioner may be built from an
absorptive problem. Without loss of generality we assume that the absorption parameter
ξ in (8.3) is non-negative and so we will have two parameters

0 ≤ ξprob ≤ ξprec

which define absorption in the problem being solved and in the preconditioner. In the
following tables we use # to denote the number of iterations for any given methods (e.g.
#HRAS for the HRAS method). “Time” denotes the total time (in seconds) for the solution
of the problem.

Throughout this section we will be interested in the effect of various scaling of the
subdomain diameter and the coarse grid diameter with respect to the wavenumber ω̃, thus
we shall refer to parameters (α, α′) such that

Hsub ∼ ω̃−α and Hcs ∼ ω̃−α
′
.

For a given ω̃, the smaller is α the more (and the smaller) are the subdomains; the smaller
is α′, the coarser is the coarse grid.

http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
https://www.cines.fr/en/occigen-the-new-supercomputeur/
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α = 1 = α′ α = 0.9 = α′

ω̃ #AS #RAS #HRAS #AS #RAS #HRAS
10 53(57) 26(37) 12 41(42) 23(25) 13
15 59(64) 28(42) 12 46(48) 26(32) 13
20 76(105) 29(57) 17 74(84) 34(43) 19

α = 0.8 = α′

ω̃ #AS #RAS #HRAS
10 37(38) 21(21) 13
15 37(38) 22(22) 14
20 62(63) 31(31) 20

Table 8.1 – Iteration numbers for the two-level preconditioners (one-level preconditioners)
with δ ∼ Hsub, ξprob = ξprec = ω̃2 and PEC boundary condition on ∂Ω.

α = 1 = α′ α = 0.9 = α′

ω̃ n Nsub nsub ncs n Nsub nsub ncs

10 4.6 ×105 1000 4.6 ×102 7.9×103 3.1 ×105 343 9.1 ×102 2.9×103

15 1.5 ×106 3375 4.6 ×102 2.6×104 2.1 ×106 1331 1.5 ×103 1.0 ×104

20 1.2 ×107 8000 1.5 ×103 6.0×104 9.9 ×106 2744 3.6 ×103 2.1× 104

α = 0.8 = α′

ω̃ n Nsub nsub ncs

10 3.4 ×105 216 1.6 ×103 1.9 ×103

15 1.9 ×106 512 3.7 ×103 4.2 ×103

20 7.1 ×106 1000 7.1 ×103 7.9 ×103

Table 8.2 – Sizes of problems and number of subdomains for methods in Table 8.1.

8.6.1 Illustrations of the theory for conductive media

In this subsection we illustrate the theory in §8.5 by solving problem (8.3) with PEC
boundary condition on ∂Ω. We take ξprob = ω̃2 and h ∼ ω̃−3/2.

In the first experiment (Table 8.1) we set Hsub ∼ ω̃−α, Hcs ∼ ω̃−α
′ for various α = α′

and ξprob = ω̃2 = ξprec and use generous overlap (δ ∼ Hsub). We compare the performance
of AS, RAS and HRAS. The results in Table 8.1 give the iteration numbers for the two-level
methods, with the one-level methods in brackets. The sizes of the fine grid problem and
the subdomain and coarse grid problems, solved in the preconditioners in Table 8.1, are
given in Table 8.2

In Table 8.1 we see that RAS is always superior to AS as expected, and the hybrid
version (HRAS) is superior to both additive methods. When α = α′ = 1 (which corre-
sponds to the optimal case described underneath Theorem 8.27) the coarse grid solve is
bringing down the iteration count noticeably. When α = α′ = 0.8 it is having little effect.
For a given ω̃, the number of iterations of the additive versions seems to improve a little
as α and α′ are reduced, but we should note (Table 8.2) that the problems being solved
sometimes get a little smaller as α, α′ are reduced. Indeed, the size of the global matrix,
which should depend just on the wavenumber ω̃, varies also for different α: this is due to
the fact that we modify the number of points in each direction to be an exact multiple of
the number of subdomains in that direction, so as to have smooth cubes as subdomains.
In Table 8.1 we see that RAS appears close to being stable with respect to ω̃ but that AS
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α = 0.8, α′ = 1

ω̃ n Nsub ncs #AS #RAS #HRAS
10 3.4 ×105 216 7.9 ×103 37 20 11
20 7.1 ×106 1000 6.0 ×104 57 24 11
30 4.1 ×107 3375 2.0 ×105 53 32 16
40 2.0 ×108 6859 4.6 ×105 53 33 16

α = 0.6, α′ = 1

ω̃ n Nsub ncs #AS #RAS #HRAS
10 2.6 ×105 27 7.9 ×103 27 15 10
20 6.3 ×106 216 6.0 ×104 50 19 11
30 3.3 ×107 343 2.0 ×105 40 20 12

Table 8.3 – δ ∼ Hsub, ξprob = ξprec = ω̃2, PEC boundary condition on ∂Ω, α′ = 1.

ω̃ #AS #RAS
10 52 (58) 34 (39)
15 57 (65) 39 (47)
20 61 (71) 43 (51)

Table 8.4 – δ ∼ 2h, ξprob = ξprec = ω̃2, PEC boundary condition on ∂Ω, (α, α′) = (0.8, 0.8).

has not yet reached stability. Indeed, the theory in Theorems 8.27 and 8.29 covers only
the AS case and proves stability asymptotically as ω̃ →∞.

Because our parallel code solves each subdomain problem on an individual processor
and Hsub ∼ ω̃−α, a too large number of processors is required when α is close to 1 and ω̃
increases (for α = 1, we have Nsub = ω̃3). Thus relatively small values of ω̃ are presented
in Table 8.1. In Table 8.3 we present more results for this example with α′ = 1 and
α = 0.8, 0.6, so that there are fewer subdomains in this case. However note that α = 0.6
for k = 40 gives too large subdomain problems considering the generous overlap and the
memory requirement for this test was too high. Again, RAS is superior to AS, and the
hybrid version HRAS is superior to both additive methods. Comparing the results for
α = 0.8 of Table 8.3 with the ones of Table 8.1 (the common lines are for ω̃ = 10, 20), we
see that α′ = 1, which corresponds to a finer coarse grid, gives better iteration counts than
α′ = 0.8.

In the experiment in Table 8.4 we extend the one in Table 8.1, exploring the effect of
reducing the overlap to minimal (δ ∼ 2h). We choose the best case in Table 8.1, namely
(α, α′) = (0.8, 0.8). The number of iterations with minimal overlap is worse than the
one with generous overlap, but the method still performs well: the number of iterations
grows slightly with ω̃. We see that this time, with respect to the same case in Table 8.1,
the coarse grid solve has a larger effect on the iteration count (in brackets we report the
iteration count of the one-level method).

Finally, keeping the problem with ξprob = ω̃2 and PEC boundary conditions on ∂Ω, we
test the use of impedance transmission conditions on ∂Ω` \∂Ω in the local solves. We take
an overlap δ ∼ 2h and (α, α′) = (0.8, 0.8). The results in Table 8.5 show that impedance
transmission conditions improve the iteration counts. Moreover the hybrid versions (HRAS
and ImpHRAS) are superior to the additive versions (RAS and ImpRAS), and to the one-
level preconditioners.
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Classical local solves
ω̃ n Nsub ncs #RAS #HRAS #1-level
10 3.4× 105 216 1.8× 103 34 23 39
20 7.1× 106 1000 7.9× 103 43 31 51
30 4.1× 107 3375 2.5× 104 47 34 59
40 1.3× 108 6859 5.1× 104 49 36 62

Impedance local solves
ω̃ n Nsub ncs #ImpRAS #ImpHRAS #1-level
10 3.4× 105 216 1.8× 103 27 20 32
20 7.1× 106 1000 7.9× 103 35 28 37
30 4.1× 107 3375 2.5× 104 39 32 42
40 1.3× 108 6859 5.1× 104 42 35 43

Table 8.5 – δ ∼ 2h, ξprob = ξprec = ω̃2, PEC boundary condition on ∂Ω, (α, α′) = (0.8, 0.8).

ξprec = ξprob = ω̃

ω̃ n Nsub ncs #ImpRAS #ImpHRAS #1-level
10 3.4× 105 216 1.8× 103 40 29 58
20 7.1× 106 1000 7.9× 103 83 60 125
30 4.1× 107 3375 2.5× 104 123 90 >200
40 1.3× 108 6859 5.1× 104 >200 154 >200

ξprec = ω̃2

ω̃ n Nsub ncs #ImpRAS #ImpHRAS #1-level
10 3.4× 105 216 1.8× 103 55 37 65
20 7.1× 106 1000 7.9× 103 104 70 130
30 4.1× 107 3375 2.5× 104 147 101 >200
40 1.3× 108 6859 5.1× 104 193 137 >200

Table 8.6 – δ ∼ 2h, ξprob = ω̃, impedance boundary condition on ∂Ω, (α, α′) = (0.8, 0.8).

8.6.2 Lower absorption with impedance boundary conditions

In this subsection we solve problem (8.3) with impedance boundary conditions on ∂Ω and
also as transmission conditions on ∂Ω` \ ∂Ω in the local solves. We consider absorption
ξprob = ω̃. We take h ∼ ω̃−3/2 and overlap δ ∼ 2h.

We set Hsub ∼ ω̃−α, Hcs ∼ ω̃−α
′ with (α, α′) = (0.8, 0.8), and examine preconditioners

built with ξprec = ξprob = ω̃ or with higher absorption ξprec = ω̃2. We report the results in
Table 8.6. We see that when ω̃ increases the iteration count of the one-level method dete-
riorates much faster than the two-level methods. Moreover the hybrid version (ImpHRAS)
is always superior to the additive version (ImpRAS). The iteration counts with the same
level of absorption in the problem and in the preconditioner (above) are generally better
than the ones with higher absorption in the preconditioner (below). The iteration numbers
may be improved by separating the coarse grid diameter from the subdomain diameter,
making the coarse grid finer, for instance taking α′ = 1.
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α = 0.6, α′ = 0.9

k n Nsub 2-level ncs Time 1-level Time
10 2.6× 105 27 20 2.9× 103 16.2(1.6) 37 13.7(2.6)
15 1.5× 106 125 26 1.0× 104 25.5(4.0) 70 26.1(8.9)
20 5.2× 106 216 29 2.1× 104 52.0(9.1) 94 60.6(25.6)
25 1.4× 107 216 33 4.4× 104 145.5(29.5) 105 191.2(88.1)
30 3.3× 107 343 38 6.9× 104 380.4(128.4) 132 673.5(443.1)

α = 0.7, α′ = 0.8

k n Nsub 2-level ncs Time 1-level Time
10 3.1× 105 125 28 1.9× 103 8.2(1.2) 58 7.7(2.0)
15 1.5× 106 216 39 4.2× 103 19.0(3.7) 82 20.1(7.2)
20 6.3× 106 512 58 7.9× 103 42.4(9.9) 123 49.7(20.8)
25 1.4× 107 729 60 1.7× 104 80.6(17.8) 148 94.1(42.2)
30 3.5× 107 1000 80 2.6× 104 251.9(95.2) 179 328.0(190.8)

Table 8.7 – ImpHRAS and the corresponding one-level method for δ ∼ 2h, ξprob = 0,
impedance boundary condition on ∂Ω, degree 1 elements and h ∼ ω̃−3/2, ξprec = ω̃ (we
report also the execution time for GMRES in parentheses).

8.6.3 Maxwell’s equations in non-conductive media

In this subsection we solve the pure Maxwell problem without absorption, i.e. ξprob = 0,
and with impedance boundary conditions on ∂Ω. We take an overlap δ ∼ 2h.

Results for degree 1 curl-conforming finite elements with h ∼ ω̃−3/2 and with ξprec = ω̃
are given in Table 8.7, for two choices of (α, α′), with α + α′ = 3/2. For this relation
between α and α′ the methods are close to being load balanced in the sense that the coarse
grid and subdomain problem sizes are very similar (see §7.4.3 in the Helmholtz Chapter).
Out of the methods tested, the 2-level method (ImpHRAS) with (α, α′) = (0.6, 0.9) gives
the best iteration count, but is more expensive. The method (α, α′) = (0.7, 0.8) is faster
in time but its iteration count grows more quickly, so its advantage will diminish as ω̃
increases further.

In Table 8.8 we repeat the same experiment but switching off the absorption also in
the preconditioner, i.e. putting ξprec = 0. We observe that the resulting iteration counts
are almost identical to the ones with absorption ξprec = ω̃.

Finally, in Table 8.9 we repeat the experiment with ξprec = ω̃ for degree 2 curl-
conforming finite elements, considering a fixed number g = 20 of grid-points per wave-
length, i.e. h ∼ 2π/(gω̃). Here we take Hsub ∼ (gω̃/(2π))−α, Hcs ∼ (gω̃/(2π))−α

′ and the
methods are close to being load balanced when α+α′ = 1. We obtain quite good iteration
counts for the two-level preconditioner.

Note that in the current implementation a sequential direct solver on one processor is
used to factorize the coarse problem matrix, which is clearly a limiting factor for the scala-
bility of the algorithm. The timings could be significantly improved by using a distributed
direct solver, or by adding a further level of domain decomposition for the coarse problem
solve.
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α = 0.6, α′ = 0.9

k n Nsub 2-level ncs Time 1-level Time
10 2.6× 105 27 20 2.9× 103 17.1(1.8) 37 13.7(2.6)
15 1.5× 106 125 26 1.0× 104 25.4(3.9) 71 26.5(9.1)
20 5.2× 106 216 29 2.1× 104 53.0(9.0) 95 60.8(25.9)
25 1.4× 107 216 33 4.4× 104 145.0(29.6) 107 189.3(90.5)
30 3.3× 107 343 39 6.9× 104 387.9(132.7) 134 669.4(444.7)

α = 0.7, α′ = 0.8

k n Nsub 2-level ncs Time 1-level Time
10 3.1× 105 125 28 1.9× 103 8.2(1.2) 58 7.7(2.0)
15 1.5× 106 216 39 4.2× 103 19.3(3.7) 82 19.7(7.2)
20 6.3× 106 512 58 7.9× 103 42.6(10.0) 124 49.1(21.0)
25 1.4× 107 729 60 1.7× 104 75.1(17.8) 150 98.2(43.0)
30 3.5× 107 1000 81 2.6× 104 223.5(86.7) 181 320.7(199.0)

Table 8.8 – ImpHRAS and the corresponding one-level method for δ ∼ 2h, ξprob = 0,
impedance boundary condition on ∂Ω, degree 1 elements and h ∼ ω̃−3/2, ξprec = 0 (we
report also the execution time for GMRES in parentheses).

g = 20, α = 0.6, α′ = 0.6

ω̃ n Nsub 2-level ncs 1-level
10 1.7 ×106 343 30 1.5 ×104 85
20 1.4 ×107 1728 33 7.0 ×104 158
30 4.4 ×107 3375 34 1.4 ×105 >200

g = 20, α = 0.5, α′ = 0.5

ω̃ n Nsub 2-level ncs 1-level
10 1.7 ×106 125 28 5.5 ×103 66
20 9.6 ×106 343 32 1.5 ×104 99
30 3.7 ×107 729 40 3.0 ×104 135

Table 8.9 – ImpHRAS and the corresponding one-level method for δ ∼ 2h, ξprob = 0,
ξprec = ω̃, impedance boundary condition on ∂Ω, degree 2 elements and h ∼ 2π/(gω̃),
Hsub ∼ (gω̃/(2π))−α, Hcs ∼ (gω̃/(2π))−α

′ .
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Perspectives

Quite extensive numerical experiments about the two-level preconditioners for Maxwell’s
equations have been carried out in Chapter 8, but still we need to test their performance
when applied to more realistic configurations. Not only we should consider more general
geometries, starting for instance with waveguides, but also problems with heterogeneous
coefficients. A particularly interesting test case would be the MEDIMAX problem with a
model of the human head inside the imaging chamber: the tissues of the brain are indeed
highly heterogenous. The absorption in this problem is given naturally by the complex-
valued electric permittivity of these tissues: the imaginary part is typically of the same
order as the real part.

For the Helmholtz equation we have compared two different definitions of coarse space:
the DtN coarse space and the grid coarse space. Also this comparison should be extended
to heterogeneous test cases. Moreover, both for the Helmholtz problem in three dimensions
and the Maxwell problem we could try to rise further the frequency to test robustness for
higher frequencies. The problem is that the constraint h ∼ ω̃−3/2 results in very large
problems: in the considered experiments, ω̃ = 40 gives for Helmholtz around 20 million
complex-valued unknowns, for Maxwell 130 millions. Thus we should perform new tests
relaxing the constraint on the mesh size h with respect to ω̃.

For what concerns the convergence analysis, note that a complete theory for the DtN
coarse space is missing. For the grid coarse space for the Maxwell problem, we could try
to extend the theory in Chapter 8 to the following cases: impedance boundary conditions
on ∂Ω (see Remark 8.13); impedance transmission conditions in the local solves, following
the very recent work [31] about the Helmholtz problem; problem with heterogeneous coef-
ficients. Currently we are trying to cast the analysis in [62] and our Maxwell analysis in a
common abstract framework, in order to state a more general fictitious space lemma (see
the references at the end of §7.2) that is suited to wave propagation problems. In this way
we could design a new robust coarse space by adapting what is done for positive definite
problems in [41, Chapter 7].
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Appendix A

FreeFem++ scripts

We report here the sequential codes written to obtain the numerical results of Section 5.4.2.
These scripts contain the methodological developments illustrated in the first chapters of
these thesis and are partly based on routines developed during the last years by several
collaborators.

The main program main.edp first calls the file dataWaveguide.edp, which contains the
physical and numerical parameters, builds the mesh of the domain, defines the variational
formulation of the problem to be solved and of the local subproblems appearing in the
domain decomposition preconditioner. Note that the data script contains many macros,
whose general syntax is

macro <identifier>(<parameter list>) <replacement token list> //

where <parameter list> is optional; this will make it possible to replace every subsequent
occurrence of <identifier>() with <replacement token list>, by using the passed ar-
guments if <parameter list> is present in the macro definition. This use of macros per-
mits to use the same scripts for different (two or three dimensional) problems, by changing
only the data script.

Then, the main program needs the routines (of decomp.idp and createPartition.idp)
to create a decomposition of the domain and to build the restriction and partition of unity
matrices. Finally, it builds the local problems matrices that constitute the preconditioner
for the (complex) GMRES method called to solve the problem; in particular the GMRES.idp
routine requires the matrix-vector product with the problem matrix and with the precon-
ditioner.

main.edp
1 // Call in terminal with
// FreeFem++ main.edp −ns −partitioner 0 −my_schwarz_method oras −medit

include "getARGV.idp"
load "medit"

6 load "metis"
load "scotch"
load "thresholdings"
load "MUMPS_seq"

11 string prec = getARGV("−my_schwarz_method", "oras");
int overlap = getARGV("−overlap", 1); // number of overlap layers /2
int partitioner = getARGV("−partitioner", 1);
// 0: simple (regular), 1: metis, 2: scotch
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16 int bmedit = usedARGV("−medit") > −1 ? 1 : 0; // to activate medit plots

include "dataWaveguide.edp"

fespace Vh(Th,Pk); // in data Pk = Edge03d...
21 int Ndof = Vh.ndof;

cout << "ndof = " << Ndof << endl;
fespace Ph(Th,P0); // for part in decomp.idp

Varf(vaglobal,Th,Ph)
26 Varfrhs(vaglobalrhs,Th,Ph)

matrix<complex> Aglobal;
Vh<complex> def(rhsglobal);
// data: macro def(u)[u,u#y,u#z]//
Aglobal = vaglobal(Vh,Vh); // global matrix

31 rhsglobal[] = vaglobalrhs(0,Vh); // global rhs

Ph part; // piecewise constant function giving the decomposition
int[int] lpart(Ph.ndof);
include "decomp.idp"

36 if (bmedit)
medit("partition",Th,part);

include "createPartition.idp" // defines SubdomainsPartitionUnity function

41 // Domain decomposition data structures
meshN[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rihreal(npart); // restriction matrices
matrix[int] Dihreal(npart); // partition of unity matrices
matrix<complex>[int] Rih(npart); // restriction matrices

46 matrix<complex>[int] Dih(npart); // partition of unity matrices
int[int] Ndeg(npart); // number of dofs for each mesh
real[int] VolumeThi(npart); // area of each subdomain
matrix<complex>[int] aR(npart); // local matrices

51 SubdomainsPartitionUnity(Th,part[],overlap,aTh,Rihreal,Dihreal,Ndeg,VolumeThi);
for (int i=0; i<npart; i++) {

Rih[i] = Rihreal[i];
Dih[i] = Dihreal[i];

}
56

for(int i = 0;i<npart;++i)
{

cout << " Domain :" << i << "/" << npart << endl;
meshN Thi = aTh[i];

61 fespace Vhi(Thi,Pk);

if (prec == "oras" || prec == "oas") {
VarfOpt(RobinInt,Thi,PhOpt)
aR[i] = RobinInt(Vhi,Vhi,solver=GMRES);

66 set(aR[i],solver = sparsesolver);
}
else if (prec == "ras") {

matrix<complex> aT = Aglobal∗Rih[i]’;
aR[i] = Rih[i]∗aT;

71 set(aR[i],solver = sparsesolver);
}
else if (prec != "none")

assert(0);
}

76
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include "GMRES.idp"
//(data: macro minit(u)[u,u,u]// EOM)
Vh<complex> def(un), def(sol) = minit(0); // initial guess, final solution

81 un[] = 0; // initial guess
// random initial guess:
for(int j=0; j<Vh.ndof; j++)
{

un[][j] = randreal3()+ 1i∗randreal3();
86 }

un[] /= un[].l2;

// GMRES solver
sol[] = GMRES(un[], tol, maxit);

91 if (bmedit)
medit("Final_solution",Th,[real(sol),real(soly),real(solz)]);

dataWaveguide.edp
/∗ Domain decomposition parameters ∗/
int nn = 1, mm = 1; // number of sudomains in each direction

3 int ll = getARGV("−ll", 2);
int npart = nn∗mm∗ll;

/∗ Iterative method parameters ∗/
real tol = 1e−6; // tolerance for the iterative method

8 int maxit = 200; // maximum number of iterations

/∗ The equation parameters ∗/
real sigma = getARGV("−sigma",0.15);
real mu = 1.26e−6;

13 real epsilon = 8.85e−12;
real vel = 1/sqrt(epsilon∗mu);
real beta = 32e9/vel;
real a = 0.00254∗4, b = 0.00127∗4, c = 0.0502∗2; // waveguide dimensions
int m = 1, n = 0;

18 real wtilde = sqrt(beta^2+(m∗pi/a)^2+(n∗pi/b)^2); // wavenumber
real w = wtilde∗vel; // angular frequency
complex mukappa = mu∗1i∗w∗sigma − wtilde^2;

/∗ Mesh for beta ∗/
23 real hfreq = sqrt(1/beta^3); // relation h^2∗beta^3=1

include "cube.idp"
int mx, my, mz;
mx = a/hfreq+1;
my = b/hfreq+1;

28 mz = c/hfreq+1;
int[int] NN = [mx, my, mz]; // the number of seg in the 3 directions
int guide = 1, in = 2, out = 3; // labels for the waveguide
real [int,int] BB = [[0,a],[0,b],[0,c]]; // bounding box
int [int,int] L = [[guide,guide],[guide,guide],[in,out]];

33 // labels of the 6 parallelipiped faces
mesh3 Th = Cube(NN,BB,L); // build the mesh
//medit("mesh", Th); // plot the mesh

//load "mymsh3" // not needed in new FF versions
38 load "Element_Mixte3d" // for Edge13d, Edge23d

// and for FF spaces Edge03ds0, Edge13ds0, Edge23ds0 used to build the
// partition of unity for resp Edge03d, Edge13d, Edge23d:
/∗ Edge03d: edge finite elements of degree 1

Edge13d: edge finite elements of degree 2
43 Edge23d: edge finite elements of degree 3 ∗/
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macro mtrunc trunc// EOM //macro mtrunc truncvord// EOM
macro def(u)[u,u#y,u#z]// EOM
macro minit(u)[u,u,u]// EOM

48 func Pk = Edge13d;
func PkP0 = Edge13ds0;
macro defpart(u)u// EOM
macro initpart(u)u// EOM

53 macro meshN()mesh3// EOM
macro intN()int3d// EOM
macro intbN()int2d// EOM
macro measureN()volume// EOM
macro K complex // EOM

58

// used in decomp.idp for regular decomposition case:
macro simple(PhGlobal, part, comm)
{

if (nn∗mm∗ll != npart)
63 cout << "PB SIMPLE PARTITIONING : nn∗mm∗ll != npart" << endl;

assert (nn∗mm∗ll == npart);
PhGlobal xx=x,yy=y, zz=z;
part=int(xx/a∗nn)∗mm∗ll + int(zz/c∗ll)∗mm + int(yy/b∗mm);

}
68 // EOM

searchMethod = 1;

/∗ Exact solution if sigma=0 and functions for the impedance conditions ∗/
73 complex Cc = 1i∗w∗mu/(wtilde^2−beta^2);

func expbz = exp(−1i∗beta∗z);
func ExTE = Cc∗(n∗pi)/b∗cos(m∗pi∗x/a)∗sin(n∗pi∗y/b)∗expbz;
func EyTE = −Cc∗(m∗pi)/a∗sin(m∗pi∗x/a)∗cos(n∗pi∗y/b)∗expbz;
func EzTE = 0;

78 // the parameter p in the impedance boundary conditions
// (curl E)xn + 1ip∗ nx(Exn) = G
real impParam = beta;
// For the impedance condition at the waveguide entrance:
func Gix = 1i∗(beta+impParam)∗ExTE;

83 func Giy = 1i∗(beta+impParam)∗EyTE;
func Giz = 0;
// For the impedance condition at the waveguide exit
// (it is 0 with impParam = beta):
func Gox = 1i∗(−beta+impParam)∗ExTE;

88 func Goy = 1i∗(−beta+impParam)∗EyTE;
func Goz = 0;
real transmImpParam = wtilde; // in the impedance transmission condition

// Macros: Curl and cross product by the normal
93 macro Curl(ux,uy,uz) [dy(uz)−dz(uy),dz(ux)−dx(uz),dx(uy)−dy(ux)] // EOM

macro CrossN(ux,uy,uz) [uy∗N.z−uz∗N.y,uz∗N.x−ux∗N.z,ux∗N.y−uy∗N.x] // EOM
macro Curlabs(ux,uy,uz) [abs(dy(uz)−dz(uy)),abs(dz(ux)−dx(uz)),

abs(dx(uy)−dy(ux))] // EOM

98 // Variational formulation for the pb matrix
macro Varf(varfName, meshName, PhName)

varf varfName([Ex,Ey,Ez],[vx,vy,vz]) =
intN(meshName)(Curl(vx,vy,vz)’∗Curl(Ex,Ey,Ez))
+ intN(meshName)(mukappa∗[vx,vy,vz]’∗[Ex,Ey,Ez])

103 + intbN(meshName,in,out)(1i∗impParam∗CrossN(vx,vy,vz)’∗CrossN(Ex,Ey,Ez))
+ on(guide, Ex=0, Ey=0, Ez=0);



137

// EOM

// Variational formulation for the local matrices of the preconditioner
108 macro VarfOpt(varfName, meshName, PhName)

varf varfName([Ex,Ey,Ez],[vx,vy,vz]) =
intN(meshName)(Curl(vx,vy,vz)’∗Curl(Ex,Ey,Ez))
+ intN(meshName)(mukappa∗[vx,vy,vz]’∗[Ex,Ey,Ez])
+ intbN(meshName,in,out)(1i∗impParam∗CrossN(vx,vy,vz)’∗CrossN(Ex,Ey,Ez))

113 + intbN(meshName,10)(1i∗transmImpParam∗CrossN(vx,vy,vz)’∗CrossN(Ex,Ey,Ez))
+ on(guide, Ex=0, Ey=0, Ez=0);

// EOM

// Variational formulation for the pb right−hand side
118 macro Varfrhs(varfName, meshName, PhName)

varf varfName([Ex,Ey,Ez],[vx,vy,vz]) =
intbN(meshName,in)([vx,vy,vz]’∗[Gix,Giy,Giz])
+ intbN(meshName,out)([vx,vy,vz]’∗[Gox,Goy,Goz])
+ on(guide, Ex=0, Ey=0, Ez=0);

123 // EOM

decomp.idp
if (npart == 1) {

2 part[] = 0.;
}
else if(partitioner != 0) {
if(partitioner == 2) {

scotch(lpart,Th,npart);
7 for(int i=0;i<lpart.n;++i)

part[][i]=lpart[i];
}

else {
metisdual(lpart,Th,npart);

12 for(int i=0;i<lpart.n;++i)
part[][i]=lpart[i];

}
}
else {

17 simple(Ph, part, comm)
}

createPartition.idp
func bool SubdomainsPartitionUnity(meshN & Th, real[int] & partdof,

2 int sizeoverlaps, meshN[int] & aTh, matrix[int] & Rih, matrix[int] & Dih,
int[int] & Ndeg, real[int] & VolumeThi)

{
int npart=partdof.max+1;
meshN Thi=Th; // freefem’s trick, formal definition

7 fespace Vhi(Thi,Pk); // freefem’s trick, formal definition
fespace Whpart(Thi,PkP0);

if (npart == 1) {
aTh[0]=Th;

12 real[int] one(Vhi.ndof);
one=1.;
Rih[0]=one;
Ndeg[0] = Vh.ndof;
VolumeThi[0] = int2d(Th)(1.);

17 Dih[0]=one;
}
else {
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for(int ii=0;ii<npart;++ii)
22 {

int[int] arrayIntersection;
int[int][int] restrictionIntersection(0);
real[int] D;
int numberIntersection = 0;

27

meshN overlapName=Th;
fespace VhGlobal(overlapName, P1);
fespace PhGlobal(overlapName, P0);
PhGlobal part;

32 part[]=partdof;

PhGlobal supp = abs(part − ii) < 0.1;
VhGlobal suppSmooth;
AddLayers(overlapName, supp[], sizeoverlaps ∗ 2, suppSmooth[]);

37 {
meshN neighbors = mtrunc(overlapName, suppSmooth > 0.001

&& (suppSmooth < 0.999));
fespace Oh(neighbors, P0);
Oh partOverlap = part;

42 Unique(partOverlap[], arrayIntersection);
}
fespace Vhl(Thi, P1);
Vhl[int] partitionIntersection(arrayIntersection.n),

partitionIntersectionbase(arrayIntersection.n);
47

overlapName = mtrunc(overlapName, suppSmooth > 0.001);
supp = supp;
suppSmooth = suppSmooth;
Thi = mtrunc(overlapName, suppSmooth> 0.501, label = 10);

52

Vhl khi = max(suppSmooth∗2 − 1.0, 0.) ;
if(usedARGV("−steep") != −1)
khi = khi > 0.001 ? 1.0 : 0.0;

57 else if (usedARGV("−raspart") != −1) {
VhGlobal phir;
PhGlobal suppP0 = abs(ii − part) < 0.1;

varf vSuppi(u,v) = intN(overlapName,qforder=1)(suppP0∗v);
phir[] = vSuppi(0,VhGlobal);

62 phir = phir > 0.;
khi = phir;

}

Vhl sum = khi;
67 VhGlobal phi = 0, phibase = 0;;

real eps=int2d(overlapName)(1.);
for(int i = 0; i < arrayIntersection.n; ++i) {
PhGlobal suppPartition = abs(arrayIntersection[i] − part) < 0.1;

72 PhGlobal suppP0;
suppP0[] = suppPartition[];

AddLayers(overlapName, suppPartition[], sizeoverlaps, phi[]);
phibase[] = phi[];

77

if(usedARGV("−steep") != −1)
phi = phi > 0.001 ? 1.0 : 0.0;
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else if (usedARGV("−raspart") != −1) {
82 VhGlobal phir;

varf vSuppi(u,v) = intN(overlapName,qforder=1)(suppP0∗v);
phir[] = vSuppi(0,VhGlobal);
phir = phir > 0.;
phi = phir;

87 }

real intersection=intN(overlapName)(phibase)/eps;
if( intersection>1e−6)
{

92 partitionIntersection[numberIntersection] = phi;
partitionIntersectionbase[numberIntersection] = phibase;
sum[] += partitionIntersection[numberIntersection][];
arrayIntersection[numberIntersection++] = arrayIntersection[i];

}
97 }

khi[] = khi[] ./= sum[];
Whpart defpart(func2vec) = initpart(khi); // partition of unity

102 aTh[ii]=Thi;
Dih[ii]=func2vec[];
Dih[ii].thresholding(1e−10);
Rih[ii]=interpolate(Vhi,Vh);

107 {
int[int] I(1),J(1);
real[int] Kc(1);
[I,J,Kc] = Rih[ii];
for (int i=0;i<Kc.n;i++)

112 if (Kc[i] > 0.99)
Kc[i] = 1.;

Rih[ii] = [I,J,Kc];
}

117 Rih[ii].thresholding(1e−10);
Ndeg[ii] = Vhi.ndof;
VolumeThi[ii] = intN(Thi)(1.);

}
}

122 return true;
}

GMRES.idp
func K[int] A(K[int] &x)

2 {
// Matrix vector product with the problem matrix
K[int] Ax(x.n);
Ax = 0;
Ax = Aglobal∗x;

7 return Ax;
}

func complex[int] PREC(complex[int] &l)
{

12 // Application of the preconditioner
K[int] s(l.n);
s = 0;
if (prec == "none") {

s = l;
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17 }
else {

for(int i=0; i<npart; ++i) {
complex[int] bi = Rih[i]∗l; // restriction
complex[int] ui = aR[i] ^−1 ∗ bi; // local solves

22 if(prec == "oas")
bi = ui;

else
bi = Dih[i]∗ui; // partition of unity

s += Rih[i]’∗bi; // prolongation
27 }

}
return s;

}

32 func complex[int] GMRES(complex[int] x0, real eps, int nbiter)
{
ofstream filei(foldername+"Convprec.m");
Vh<complex> def(r), def(z), def(v), def(w), def(ver), def(un);
Vh<complex>[int] def(V)(nbiter+1); // orthonormal basis

37 complex[int,int] Hn(nbiter+2,nbiter+1); // Hessenberg matrix
Hn = 0.;
complex[int,int] rot(2,nbiter+2);
rot = 0.;
complex[int] g(nbiter+1),g1(nbiter+1);

42 g = 0.; g1 = 0.;
r[] = PREC(rhsglobal[]);
real normb = r[].l2;
if (normb < 1.e−20) normb = 1.;
r[] = A(x0);

47 r[] −= rhsglobal[];
r[] ∗= −1.0;
z[] = PREC(r[]); // z= M^{−1}(b−A∗x0)
g[0] = z[].l2; // initial residual norm
filei << "relres("+1+")=" << g[0] << ";" << endl;

52 V[0][]=1/g[0]∗z[]; // first basis vector
for(int it=0; it<nbiter; it++){

v[] = A(V[it][]);
w[] = PREC(v[]); // w = M^{−1}A∗V_it

57 for(int i=0; i<it+1; i++) {
Hn(i,it) = w[]’∗V[i][];
w[] −= conj(Hn(i,it))∗V[i][];

}
Hn(it+1,it) = w[].l2;

62 complex aux = Hn(it+1,it);
V[it+1][]=1/aux∗w[];

for(int i=0; i<it; i++){ // QR decomposition of Hn
complex aa = conj(rot(0,i))∗Hn(i,it)+conj(rot(1,i))∗Hn(i+1,it);

67 complex bb = −rot(1,i)∗Hn(i,it)+rot(0,i)∗Hn(i+1,it);
Hn(i,it) = aa;
Hn(i+1,it) = bb;

}
complex sq = sqrt( conj(Hn(it,it))∗Hn(it,it) + Hn(it+1,it)∗Hn(it+1,it) );

72 rot(0,it) = Hn(it,it)/sq;
rot(1,it) = Hn(it+1,it)/sq;

Hn(it,it) = conj(rot(0,it))∗Hn(it,it)+conj(rot(1,it))∗Hn(it+1,it);
Hn(it+1,it) = 0.;

77 g[it+1] = −rot(1,it)∗g[it];
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g[it] = conj(rot(0,it))∗g[it];
complex[int] y(it+1); // Reconstruct the solution
for(int i=it; i>=0; i−−) {
g1[i] = g[i];

82 for(int j=i+1; j<it+1; j++){
g1[i] = g1[i]−Hn(i,j)∗y[j];

}
y[i]=g1[i]/Hn(i,i);

}
87 un[] = x0;

for(int i=0;i<it+1;i++){
un[]= un[]+ conj(y[i])∗V[i][];

}
real relerr=0;

92 if (bdirect){
ver[] = un[] − uglob[];
relerr = ver[].l2/uglob[].l2;

}
real relres = abs(g[it+1]);

97

if (bdirect)
cout << "It: "<< it+1 << " Residual = " << relres << " Rel res = " <<
relres/normb << " Relative L2 Error = "<< relerr << endl;

else cout << "It: "<< it+1 << " Residual = " << relres << " Rel res = "
102 << relres/normb << endl;

int j = it+2;
filei << "relres("+j+")=" << relres << ";" << endl;
if(relres/normb < eps) {

107 cout << "GMRES has converged in " + (it+1) + " iterations " << endl;
cout << "The relative residual is " + relres/normb << endl;
break; }

}
return un[];

112 }
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Résumé. Les équations de Maxwell en régime harmonique comportent plusieurs difficultés lorsque la
fréquence est élevée. On peut notamment citer le fait que leur formulation variationnelle n’est pas définie
positive et l’effet de pollution qui oblige à utiliser des maillages très fins, ce qui rend problématique
la construction de solveurs itératifs efficaces. Ici nous proposons une stratégie de solution précise et
rapide, qui associe une discrétisation par des éléments finis d’ordre élevé à des préconditionneurs de type
décomposition de domaine. Les éléments finis d’ordre élevé permettent, pour une précision donnée, de
réduire considérablement le nombre d’inconnues du sytème linéaire à résoudre. Ensuite, des méthodes de
décomposition de domaine sont employées comme préconditionneurs du sytème linéaire pour le solveur
itératif : le problème défini sur le domaine global est décomposé en des problèmes plus petits sur des
sous-domaines, qui peuvent être résolus en parallèle et avec des solveurs directs robustes. Cependant
la conception, l’implémentation et l’analyse des deux méthodes sont assez difficiles pour les équations
de Maxwell. Les éléments finis adaptés à l’approximation du champ électrique sont les éléments finis
H(rot)-conformes ou d’arête. Ici nous revisitons les degrés de liberté classiques définis par Nédélec, afin
d’obtenir une expression plus pratique par rapport aux fonctions de base d’ordre élevé choisies. De plus,
nous proposons une technique pour restaurer la dualité entre les fonctions de base et les degrés de liberté.
Nous décrivons explicitement une stratégie d’implémentation qui a été appliquée dans le langage spécialisé
et open source FreeFem++. Dans une deuxième partie, nous nous concentrons sur les techniques de
préconditionnement du système linéaire résultant de la discrétisation par éléments finis. Nous commençons
par la validation numérique d’un préconditionneur à un niveau, de type Schwarz avec recouvrement, avec
des conditions de transmission d’impédance entre les sous-domaines. Ensuite, nous étudions comment
des préconditionneurs à deux niveaux, analysés récemment pour l’équation de Helmholtz, se comportent
pour les équations de Maxwell, des points de vue théorique et numérique. Nous appliquons ces méthodes
à un problème à grande échelle qui découle de la modélisation d’un système d’imagerie micro-onde, pour
la détection et le suivi des accidents vasculaires cérébraux. En effet, la précision et la vitesse de calcul
sont essentielles dans cette application.

Mots-clés : équations de Maxwell en régime harmonique, éléments finis d’ordre élevé, éléments d’arête,
éléments finis H(rot)-conformes, décomposition de domaine, préconditionneurs de Schwarz, précondition-
neurs à deux niveaux, grille grossière, équation de Helmholtz, calcul haute performance, FreeFem++,
imagerie micro-onde.

Abstract. The time-harmonic formulation of Maxwell’s equations presents several difficulties when the
frequency is large, such as the sign-indefiniteness of their variational formulation, the pollution effect
which entails particularly fine meshes, and the consequent problematic construction of efficient iterative
solvers. Here we propose a precise and efficient solution strategy that couples high order finite element
discretizations with domain decomposition preconditioners. High order finite elements methods make it
possible, for a given precision, to reduce significantly the number of unknowns of the algebraic linear
system to be solved. Domain decomposition methods are then used as preconditioners for the iterative
solver for the linear system: the problem defined on the global domain is decomposed into smaller
problems on subdomains, which can be solved concurrently and using robust direct solvers. Nevertheless,
the design, implementation and analysis of both these methods are particularly challenging for Maxwell’s
equations. Finite elements suited for the approximation of the electric field are the curl-conforming (or
edge) finite elements. Here, we revisit the classical degrees of freedom defined by Nédélec, in order to
obtain a new more friendly expression in terms of the chosen high order basis functions. Moreover,
we propose a general technique to restore duality between degrees of freedom and basis functions. We
explicitly describe an implementation strategy, which we embedded in the open source domain specific
language FreeFem++. In the second part, we focus on the preconditioning of the system resulting from
the finite element discretization, starting with a numerical validation of a one-level overlapping Schwarz
preconditioner, with impedance transmission conditions between subdomains. Then we investigate how
two-level preconditioners recently analyzed for the Helmholtz equation work in the Maxwell case, both
from the theoretical and numerical points of view. We apply these methods to the large scale problem
arising from the modeling of a microwave imaging system, for the detection and monitoring of brain
strokes. In this application accuracy and computing speed are indeed of paramount importance.

Keywords: time-harmonic Maxwell’s equations, high order finite elements, curl-conforming finite ele-
ments, edge elements, domain decomposition, Schwarz preconditioners, two-level preconditioners, coarse
space, sign-indefinite problems, Helmholtz equation, high performance computing, FreeFem++, mi-
crowave imaging.
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