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Introduction

In recent works of fiction such as the movies “Avatar” and “Surrogates”, a system allows a
user, using only his thoughts, to experience and interact with the world through a physical
copy (e.g. a robot) as if it was her/his own experience. Although state-of-the-art technologies
do not allow to do this, recent technological advancements lay the initial bricks of such
a system as seen in Figure 1. In order to build a “surrogate” system, one would need to
combine these technologies in an efficient manner.

However, traditionally, reproducing the task at the will of the operator on a humanoid
robot or an avatar is done by capturing his/her movements. In this thesis, we wish to move
away from gesture and movement, which control a task, toward the interpretation of the
user’s thoughts. That is the translation of intention into action as seen in Figure 2. At first we
plan to achieve only simple control tasks that follow closely telepresence schemes between
an operator and a humanoid robot. The demonstrators we build and present in this thesis
progressively move away from this simple task to allow complex interactions between the
user and its environment through the embodied device.

Figure 2: Concept of the VERE project

This work is conducted in the framework of the European integrated project VERE (Vir-
tual Embodiment and Robotics re-Embodiment). Our goal in this project is to devise a soft-
ware architecture that integrates a set of control and sensory feedback strategies to physically
re-embody a human user into a humanoid robot surrogate or a virtual avatar using his/her
own thoughts. The demonstrator we aim to achieve can be described as the following: a
user is equipped with a brain-computer interface (BCI) that monitors brain waves activities
from which we want to extract intentions and translate them into robotic commands. Sen-
sory feedback should be delivered to the user so that s/he can embody the controlled device:
virtual or real.
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(a) The Geminoid robot aims at investing

the question of human presence by

mimicing the appearance of a human

being.

(b) A user equipped with several

physiological sensors allowing to

measure brain and body activity.

(c) Telesar V: a complex telexistence system.

Figure 1: Existing technologies towards a “surrogate” system.

Figure 3: VERE demonstrator with HRP-4

Figure 3 shows such a complex interaction. The operator is equipped with the sensors
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and feedback devices that compose the embodiment station built within the VERE project by
another partner (University of Pisa). The intentions of the operator are guessed from his/her
thinking and are then transformed into robotic tasks. The humanoid robot then executes
these tasks and its sensors outputs are interpreted and properly reproduced for the operator
in “close-loop” fashion. The research challenges involved within the realization of such a
system are numerous and we now explicit them.

1. Complexity in fully controlling the surrogate’s motion
With technologies currently available, we are not able to extract a precise (motor) in-
tention from the user’s brain activity. Hence, our approach requires an important level
of shared autonomy, that is the capacity for the robot to make decision on its own while
respecting the wishes of the user, and also requires the robot to be able to understand
its environment. This later statement involves many things: the robot should know–
or learn–how its environment is built, where it is located within this environment and
which tasks it can perform. This is made necessary by two equally important aspects.
First, the robot needs to understand its environment in order to interact with it in a
safe and efficient manner. Second, it also has to be able to communicate its knowl-
edge to the BCI so that it is used to better understand the user’s intentions and provide
meaningful feedback. In the case of a virtual avatar, this is easier to achieve as the
environment is simulated.

2. Minimal motion-based control/coupling
The technologies currently available to recover the user’s intentions from his/her brain
are far from achieving the kind of understanding that we can observe in fictional works.
They are actually very limited with regards to the number of recognizable intentions,
the available bit rate and the accuracy of the recognition. Therefore, we have to devise
a number of strategies to obtain the user’s intention through the B-BCI (Body-Brain
Computer Interface). Furthermore, these intentions should be mapped into surrogate
(robotic) actions.

3. Full synergy and beyond telepresence transparency
The notion of embodiment, central within the VERE project, goes beyond the classical
approaches of teleoperation and telepresence. In teleoperation and telepresence, a user
controls a remote device and receives feedback (e.g. visual feedback or haptic cues)
about the task s/he is executing through the device. In telepresence, this allows the
user to feel present at the scene where s/he is executing a task through the device.
In embodiment, the user should not only feel present at the remote location but s/he
should feel as if the device’s body was his/her own. This requires the introduction of
new sensory feedback strategies.

These issues are all dependent upon constantly evolving scientific fields that also drive
our overall progress. They cover a large number of research fields and go beyond the scope
of a single thesis. We however demonstrate significant progress on each of these issues.
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In the first chapter of this thesis, we introduce the general concept of brain-computer
interface (BCI) or brain-machine interface (BMI) based on the approach of the most promi-
nent frameworks in this field. That is the division between an acquisition layer, a signal
processing layer and an application layer. The following sections are organized based on
these layers. The most common brain signals’ acquisition technologies are presented and
the choice of the electroencephalogram (EEG) technology for the majority of the presented
work is justified. Then, an overview of the most common paradigm used in EEG-based BCI
to obtain the users’ intentions is presented. Finally, several applications of BCI are then
introduced with a particular emphasis on previous works for the control of robotic devices.
Based on the examination of those previous works, we propose a novel approach to BMI
within the context of humanoid robot and complex tasks execution through embodiment.

In the second chapter, we discuss the tools we developed and problems we encountered
within the context of BCI-based robot control. First, we tackle the need for dynamic appli-
cations by introducing a novel library to build a user interface for BCI that is (a) easy to use,
and (b) able to switch between different behaviors. Then, we show that steady-state visually
evoked potentials (SSVEP) recognition performance are affected when the stimuli used to
elicit the potentials are overlaid upon a dynamic feedback such as the video stream from
a robot’s embedded camera. Finally, we introduce several ways to overlay SSVEP stimuli
upon objects recognized by the robot’s vision system. These methods are compared based
on both objectives, e.g. recognition accuracy, and subjective ones, e.g. user appreciation,
criteria.

In the third chapter, we focus on the use of the SSVEP paradigm to perform whole-body
control of a humanoid robot and further introduce the concept of object-centric BMI. In
the first part, a general introduction of the object-centric BMI needs and principle is given.
Then, a framework to realize object-centric BMI is proposed and its components are intro-
duced individually. The second part of the chapter focuses on the technical modules that
are required to implement this framework on a humanoid robot; including SSVEP-based
paradigms allowing reliable and recursive selections, robot control bricks that allow us to
perform task-oriented control and finally the vision elements that permits objects recognition
and object-oriented navigation. Finally, several user experiments show that the framework
allows an efficient control of the humanoid robot using a BCI.

In the fourth chapter, we use the tools introduced in the previous two chapters to perform
embodiment studies using the humanoid robot controlled with BCI as a platform. The chap-
ter is particularly focused on two studies conducted in collaboration with the Fundazione
Santa Lucia (FSL). In the first study, the subjects control the robot while being subject to
different modalities of sound feedback. A second experiment is also introduced. In this
experiment, the subjects are equipped with a head-mounted display (HMD) which implies
that the experiment is more immersive from the get-go. Therefore, the effect of the differ-
ent sound modalities is different from the first experiment. Moreover, patients afflicted with
spinal cord injuries (SCI patients) participated in this later experiment.

The fifth and final chapter describes preliminary results obtained from experiments that
used electrocorticography (ECoG) to acquire the signals from the user’s brain. The experi-
ments were performed on two patients who had undergone surgery within an epilepsy-related
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treatment. The results of these initial experiments are presented and we discuss the chal-
lenges posed by ECoG-based BCI.

We end our thesis with a summary of our contribution and future works and openings. In
the next chapter, we present succinctly work from the state-of-art that serves as background
of our achievements.
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Chapter 1

Brain-Computer Interface as a
Control Interface: State of the Art

Brain-computer interfaces (BCI) [1] [2], or brain-machine interfaces (BMI), allow bypassing
the usual means of communication channels between a human and a computer or a machine
such as hand or voice input devices (e.g. keyboard, mouse, joysticks, voice command micro-
phones, etc.). Instead, they allow the users to communicate their intentions to the computer
by processing the source of the intentions: the brain activity. In return, the user is able to
control different application (software or device) systems connected to the BCI. Combining
this technology with a humanoid robot, we envision the possibility of incarnating one’s body
into a robotic avatar. Such a goal is pursued by the VERE project1 in which frame the present
work takes place. In many ways the problem at hands is reminiscent of telepresence technol-
ogy. However, the specificities that are brought by the use of a brain-computer interface goes
beyond telepresence aims and objectives while at the same time they backtrack substantially
the performances. Indeed, in the current state of technology, brain-computer interfaces dif-
fer from traditional control interfaces [3], as they have a low information rate, high input lag
and erroneous inputs. While the two terms–BCI and BMI–hold the same signification, in
this thesis, we prefer the later when referring to the common idea of a BCI while using the
second for BCI within the context of robot control.

In recent years, several frameworks such as OpenViBE [4], BCI2000 [5] or TOBI hBCI [6]
have introduced a similar three-layer model to produce BCI application as shown in Fig-
ure 1.1. The signal acquisition layer monitors the physiological signals from the brain
through one or several physical devices and digitizes these signals to pass them to the signal-
processing unit. The signal-processing unit is in charge of extracting features —e.g. power
spectrum, signal energy— from the raw signals, and pass them onto a classification algo-
rithm to distinguish the patterns of intentions of the user. Finally, these decoded intentions

1http://www.vereproject.eu/
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Figure 1.1: General design of a BCI system

are passed to the user application.

In this chapter we present each layer independently. We first present the different ac-
quisition technologies that have been used in the BCI context, we discuss their benefits and
limitations and we justify the choice of electroencephalography (EEG) in most of our works.
The second section focuses on the different paradigms that can be used in EEG-based BCI.
Finally, we review previous works that have used BCI as a control input, focusing on previ-
ous works in the robotics domain.

1.1 Acquisition technologies

The “reading” of one’s brain activity signals can be done by means of different technologies.
However, within the context of brain-computer interface only those that allow measuring the
brain activity in real-time or close to real-time are considered. In this section, we present
some invasive solutions that have been used and BCI and then we focus on the three most
used non-invasive technologies in BCI: functional near infrared spectroscopy (fNIRS), func-
tional magnetic resonance imaging (fMRI) and electroencephalography (EEG). The practical
pros of these technologies, e.g. the quality of the recorded signals or their spatial localiza-
tion accuracy — how precisely one can tell from where in the brain a signal originates, are
discussed together with other practical issues such as cost and more importantly the intru-
siveness level. Finally, we explain our choice to settle on EEG for most of the applications
developed within this work.
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Figure 1.2: A typical ECoG array with 20 electrodes, courtesy of Dr Kamada

1.1.1 Invasive solutions

In this section, we introduce a few invasive solutions that have been employed to read the
signals of the brain activity. We first introduce the electrocorticography (ECoG) technique, a
technology that is considered to be “semi-invasive” and we then present invasive solutions as
well as some of their achievements. Obviously those technologies have outstanding qualities
from the signal acquisition point of view. However, their very nature also limit their usage.

1.1.1.1 Electrocorticography (ECoG): a “semi-invasive” solution

Electrocorticography (ECoG), also known as intra-cranial EEG (iEEG), is an invasive tech-
nology used to measure the brain activity. In this case, the electrodes are placed directly
in contact with the surface of the brain, typically using electrodes encompassed in a silastic
membrane such as the one shown in Figure 1.2. This solution can be classified as “semi-
invasive” because while the ECoG array is put inside the cranium of the patient, the elec-
trodes do not penetrate the brain. Therefore it is considered relatively safe compared to the
invasive solutions we present later in this section.

Compared to non-invasive technologies the quality of the signal obtained from the ECoG
is much higher, offering a spatial resolution of 1cm [7] or even less, with an excellent signal
to noise ratio. Furthermore the acquisition rate is also very good: typically reaching 1 kHz.

Recently, ECoG has been featured in impressive works related to robotics [8]. However,
the main application of ECoG remains therapeutic as it is considered the “gold standard” for
defining epileptogenic zones, a key step in the resolution of severe epilepsy cases. It is most
often in this context that ECoG-based BCI experiments are conducted. Therefore, the use of
this technology in BCI remains exceptional and implantations last for a few weeks at most.

1.1.1.2 Neuroprosthetics

Neuroprosthetics is the science that deal with the development of neural prostheses. Those
prostheses are devices that can substitute a motor or sensory modality that was damaged
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Figure 1.3: The BrainGate system, a promising neural prosthesis in development, adapted from [9]

following a disease or an injury. A relatively common example of this kind of device are
cochlear implants which aim is to restore the auditory sense for deaf or severely hard of
hearing persons. Another notable device is the “Dobelle-eye” which aims at restoring the
vision of blind people by stimulating the visual cortex based on the images received by a
digital camera worn by the patient.

Motor neuroprosthetics aim to either restore movement capabilities for paralyzed patients
or to allow them to use computer and robotic devices to assist them. The first successful ex-
ample of such devices in humans goes back to 1998. However, in 2005, Matt Nagle became
the first tetraplegic patient able to control an artificial hand through a neural prosthesis: the
BrainGate system.

BrainGate consists of a sensor implanted in the brain and an external decoder device, the
signal acquisition and signal processing layers of the BCI model. The sensor uses 100 hair-
thin electrodes that sense the electromagnetic signature of neurons firing in specific areas of
the brain, for example, the area that controls arm movement.

Recently, in a remarkable work using the BrainGate system, a tetraplegic patient was able
to control a robotic device to grab a bottle of water and drink from her own volition [10]. We
discuss the details of this experiment later in this chapter.

1.1.2 Functional Near Infrared Spectroscopy (fNIRS)

Near-infrared spectroscopy is a general spectroscopic method that uses the near-infrared re-
gion of the electromagnetic spectrum. It is used in a wide variety of applications. In particu-
lar, it can be applied to perform functional neuroimaging, in which case it is called functional
near infrared spectroscopy (fNIRS). It measures the hemodynamic responses associated with
neuron behavior thus providing a reading of the brain activity.

fNIR is a non-invasive imaging method involving the quantification of chromophore con-
centration resolved from the measurement of near infrared (NIR) light attenuation, temporal
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or phasic changes. NIR spectrum light takes advantage of the optical window in which skin,
tissue, and bone are mostly transparent to NIR light in the spectrum of 700-900 nm, while
hemoglobin (Hb) and deoxygenated-hemoglobin (deoxy-Hb) are stronger absorbers of light.
Differences in the absorption spectra of deoxy-Hb and oxy-Hb allow the measurement of
relative changes in hemoglobin concentration through the use of light attenuation at multi-
ple wavelengths. Two or more wavelengths are selected, with one wavelength above and
one below the isobestic point of 810 nm at which deoxy-Hb and oxy-Hb have identical ab-
sorption coefficients. Using the modified Beer Lambert law (mBLL), relative concentration
can be calculated as a function of total photon path length. Typically the light emitter and
detector are placed ipsilaterally on the subjects skull so recorded measurements are due to
back-scattered (reflected) light following elliptical pathways. NIRS is functionally very sim-
ilar to MRI but it is less costly and more portable. However, it cannot be used to measure
cortical activity at more than 4cm deep and its spatial resolution is lower than MRI.

Finally, while fNIRS has been used in BCI, and particularly in robotics [11], it is not as
popular as EEG as it is more expensive and slower: as with fMRI, due to the nature of the
measured phenomenon, the system is able to detect the user intention a few seconds — 5 to
10 seconds — after this intention is formed in the user’s mind.

1.1.3 Functional Magnetic Resonance Imaging (fMRI)

Magnetic resonance imaging (MRI) is a non-invasive brain signal acquisition technology.
The primary form of MRI uses the blood-oxygen-level-dependent (BOLD) contrast. This
is a type of specialized brain and body scan used to map neural activity in the brain or
spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic
response) related to energy use by brain cells.

fMRI is primarily used in brain mapping research as, contrary to methods that can pro-
vide similar information, it does not require people to undergo shots, surgery, to ingest
substances (radioactive markers), or to be exposed to radiation [12]. However, it has also
been used to perform BCI activities. For example, in 2006, the Honda Research Insti-
tute Japan (HRI-J) and the Advanced Telecommunications Research Institute International
(ATR) presented a robotic hand controlled by fMRI [13]. However, they later switched to
an EEG/NIRS hybrid system to control the Asimo robot [14] mainly for practical reasons.
Furthermore, as mentioned earlier, the temporal resolution of fMRI makes it difficult to use
it effectively in applications requiring the control of multiple behaviors. Current research
aims at resolving this issue.

1.1.4 Electro-encephalography (EEG)

Electroencephalography (EEG) is the recording of electrical activity along the scalp. EEG
measures voltage fluctuations resulting from ionic current flows within the neurons of the
brain. The biggest drawback of this technology is its very poor signal-to-noise ratio, which
is mostly due to the fact that the electrical activity of the brain is measured through the skull
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Figure 1.4: An EEG user wearing a cap with mounted electrodes and obtained signals

of the subject. Therefore, the spatial resolution of the system is very low and sophisticated
signal processing techniques are required to extract useful information.

However, EEG also has significant advantages. First, it has a very high temporal reso-
lution. Typically, EEG is recorded between 250 and 2000Hz but the latest technologies are
able to achieve a 20000Hz sampling. Secondly, it is relatively tolerant to subject movement.
Finally, it is significantly cheaper than other technologies: for example, an fMRI machine
typically requires a large magnet and a magnetically shielded room, a very expensive setup.

This is why EEG is by far the most popular acquisition technology used in BCI research.

1.1.5 Summary

The following table shows, for each technology, the different qualities we are looking at
when considering our choice for acquisition technology. “Localization” designates the spatial-
localization accuracy. “SnR” designates the signal-to-noise ratio. “Cost” designates the cost
of the system. Finally “Real-Time” designates the real-time capability of the technology.

Technology Localization SnR Cost Real-Time Invasive
Brain implants +++ +++ – ++ ++

ECoG ++ ++ - ++ Yes
NIRS - - + + No
fMRI ++ ++ – - No
EEG – – ++ ++ No

For BCI applications, EEG has proven to be the most used technology, although it suffers
from poor spatial localization accuracy and signal to noise ratio, it has remarkable practi-
cal qualities such as low cost, real-time acquisition and most importantly non-invasiveness.
Moreover, a wide range of paradigms has been researched using EEG and provide as many
ways to understand the BCI user’s intentions.
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For those practical reasons we decided to adopt EEG in most of our work. However, the
framework we will introduce in Chapter 3 is independent of the acqusition technologies or
of the intentions’ extraction method employed on the BCI side.

1.2 Features used in EEG-based acquisition

In the field of neuroscience a tremendous work is made to identify brain signal patterns re-
lating to one’s intentions or emotions. Nevertheless, the state-of-the-art BCI stands very
far from being able to read, as in a book, one’s mind thoughts or intentions by any tech-
nology means existing today. The brain is still a mystery in many aspects despite the no-
table amount of research conducted in the field. Nevertheless, brain function understanding
progress substantially from year to year. Therefore, today’s BCI technology is still confined
in a stimuli-response monitoring scheme.

Three major methodologies are used in the BCI field because of their consistency among
different untrained users. In this section, we first focus on the motor imagery paradigm where
the system detects imagined movements. This paradigm is the only one where intention is
guessed from the strength of one’s thought. Then, an event related potential, the P300 is
presented. Then, we introduce the steady-state visually evoked potential (SSVEP) that we are
using extensively in this thesis. Finally, the error-related potential that could be potentially
very useful in control applications, is presented.

1.2.1 Motor Imagery

Motor imagery [15] consists in detecting so-called event related de-synchronization–ERD–
and event related synchronization–ERS–which are the decrease or increase of power in the
alpha (8–13Hz) and beta (14–30Hz) frequency ranges of the brain activity and which occurs
when the user executes or, more interestingly, imagines a movement.

In [16], Pfurtscheller et al. performed a study with 9 subjects to determine the feasibility
of 4-classes classification of motor imagery, namely: left-hand, right-hand, feet and tongue
movement imagination. In this study, the subjects were seated in an electrically shielded
cabin and watched a 15" monitor. A trial lasted 7 seconds. At the beginning, the screen was
blank then a cross was displayed in the middle of the screen at second 2. At second 3, an
arrow indicated the motor imagery task that should be performed by the subject. They were
asked to imagine the kinesthetic experience of movement rather than a visual representation
of it and to avoid any motion during the trial. An ERD/ERS is expressed as a percentage in
power decrease (ERD) or power increase (ERS) relatively to the 1 second interval prior to
the appearance of the cross in a trial at 2 second.

Figure 1.5 show the results of one subject for the 4 motor imagery tasks and 3 of the 60
electrodes as presented in [16]–where a more thorough discussion of the results is provided.

These results show that hand motor imagery induces significant ERD in the mu band
while foot and tongue motor imagery triggers significant ERS. Pfurtscheller et al. then
showed that it was possible to build a classifier for single trial detection with an accuracy
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Figure 1.5: Time-frequency maps that shows significant ERD-ERS for one subject, 4 motor imagery

tasks and 3 electrodes. Adapted from [16]

between 30% and 50%. However, it has been shown that the subjects could learn to control
ERD/ERS thus making such classifiers more accurate. This process is quite long though.

While progress has been made since this early work, this method still requires a long
training with the user to achieve useful performance when the system distinguishes multiple
classes of movement.

1.2.2 Event Related Potentials: P300

The P300 [17] is an event related potential (ERP). It describes a positive wave in the cerebral
activity which occurs 300ms after the occurrence of an expected event among other similar
events. It is thought to be related to the process of decision-making.

The P300 is well adapted for systems with a large number of choices - e.g. selecting keys
on a keyboard [18] —and has proven to provide very good performance with little training
among the population. In [19], a study conducted with 100 persons showed that 90% were
able to achieve an accuracy level between 80 and 100% after a 5 minutes training. However,
to obtain this kind of performance it is better to have the rare event occur multiple times to
properly detect the P300, therefore, while a high bit rate can be achieved with this paradigm,
the decision rate is rather low, typically reaching 6 decisions a minute [18].

In Figure 1.6, we can see how the paradigm works for a typical keyboard application.
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The user is shown a 6 × 6 grid with grayed letters. When the paradigm starts, each row
and column is highlighted successively. In this example, the user wishes to select the letter
‘N’. If the letter ‘N’ is not active then nothing particular can be observed from the brain
activity. However, when the ‘N’ letter is active, then we can see a positive wave around
300ms after the occurrence of the stimulus, this is the P300. Typically, each row and column
is highlighted multiple times to elicit as many potentials as possible and ensure the selection
of the user’s choice.

Figure 1.6: The P300 paradigm and associated brain answer: red indicates standard activity, blue

shows the P300 triggered, adapted from [20]

While we only presented the paradigm for visual stimuli, it can be noted that the paradigm
can also be applied with audio and tactile stimuli [21]. The principle is the same: for audio-
based P300, different audio-cues are used instead of the visual stimuli while in tactile-based
P300, different tactile stimuli are given to the user. However the performances of audio-
based and tactile-based P300 systems are much lower [22] since it is more difficult for the
user to distinguish the different stimuli.
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Figure 1.7: EEG spectrum when showing a 15Hz stimulus to the user, courtesy of [24].

1.2.3 Steady-States Visually Evoked Potentials (SSVEP)

The Steady-States Visually Evoked Potential (SSVEP) is elicited by presenting the subject
with a flickering stimulus. As the user focuses her/his visual attention on the stimulus, a peak
can be observed in the power spectrum of the EEG signal recorded from the primary visual
cortex at the frequency of the flickering stimulus and other local peaks at this frequency odd
harmonics as seen in Figure 1.7. By analyzing the signal we can predict whether the user
is attending to a particular stimulus or not. The stimuli can be of various types, including
physical LEDs to on-screen flickering objects. State-of-the-art detection systems [23] can
operate at a good success rate, i.e. above 80%. The method relies uniquely on the user’s
attention to the stimulus, it also allows to detect that the user is maintaining her/his attention
on a given stimulus and to detect a shift of attention in a few seconds. This makes SSVEP
our preferred feature for reactive control through BCI such as steering control.

Various parameters can affect the strength of the SSVEP answer: the stimulus color, the
stimulus shape and size [24] [25] [26] [27]. Moreover, the frequencies have to be carefully
selected to have neither common first or second harmonics and to be below 20Hz to minimize
the risk of eliciting an epileptic crisis in healthy subjects as advised in [28].

This paradigm can also be a bit tiring because of the annoying nature of the stimulus at
low frequencies–typically, because of technical and medical considerations, SSVEP frequen-
cies are chosen below 20Hz. It is possible to retrieve SSVEP at very high frequencies [29]
but the intensity of the response is much lower and therefore much more difficult to detect.

Given that we are extensively using SSVEP in our work we present the extraction method
we use to detect SSVEP from the user’s brain signals. Furthermore, we also introduce the
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specific method we used to display SSVEP stimuli on a computer screen instead of using a
separate flashing box.

1.2.3.1 Minimum Energy Method

To extract the SSVEP from the brain signals, we rely on the minimum energy classification
method presented in [30]. It has also been extended to implement a zero-class; that is a
classification output that indicates that the user is not attending any stimuli. The signal
acquired at a given electrode is modeled as:

yi(t) =
Nh∑

k=1
ai,k sin(2πkft + φi,k) +

∑

j
bi,jzj(t) + ei(t)

where yi(t) is the signal acquired at an i-th electrode. The first part of the equation is the
SSVEP response, consisting of sinusoids with frequencies of the stimulus frequency and
harmonics of this frequency. The second part of the equation represents the nuisance signals,
e.g. non SSVEP activity or movement artifacts. Those are common to all electrodes but
have different weight factors bi,j depending on the electrode i. Finally, ei(t) represents the
specific measurement noise of electrode i.

Consecutive Nt samples are regrouped into the vector form:

yi = Xai + Zbi + ei

where yi = [yi(1), · · · , yi(Nt)]
⊤ and ei is a similar vector. X is the SSVEP model matrix

of size Nt × 2Nh containing sin(2πkft) and cos(2πkft) pair in its columns. ai contains the
corresponding amplitudes. Z and bi are similar constructs for the nuisance signal. Finally,
given that the time segment is short enough, the noise can be assumed constant. Hence,
Ny electrodes can be written as a single matrix Y = [y1, · · · , yNy

] and the model can be
generalized to:

Y = XA + ZB + E

In order to maximize the SSVEP response while minimizing the noise, a channel is con-
structed by a weighted sum of Ny electrodes using a Ny × 1 vector of weights w, that is:

s =
Ny∑

i=1
wiyi = Yw.

furthermore, Ns channels can be combined by constructing different electrodes combination
S = YW where W is a Ny × Ns matrix containing the different weights combination. The
construction of W is the matter of the minimum energy combination technique.

The idea of this method is to build a combination that cancels the noise signals. To do
so, we first remove any potential SSVEP components from the electrode signals, hence:

Ỹ = Y − X(X⊤X)
−1

X⊤Y ≈ ZB + E
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then we have to find the weight vector ŵ that minimize the resulting energy of the electrodes
combination. Therefore, we are left with the optimization problem:

min
ŵ

‖Ỹŵ‖2 = min
ŵ

ŵ⊤Ỹ⊤Ỹŵ

the solution to this optimization problem is the smallest eigenvector v1 of the symmetric
matrix Ỹ⊤Ỹ and the energy of this combination is equal to the smallest eigenvalue λ1 of
this matrix. Moreover, as Ỹ⊤Ỹ is symmetric, its eigenvectors are orthogonal, thus providing
us with Ny uncorrelated channels with increasing noise energy. The number of channels Ns

retained from the minimum energy method is the smallest number that satisfies:

∑Ns

i=1 λi
∑Ny

i=1 λi

> 0.1

where the denominator is the total energy in the nuisance signals and noise, and the numera-
tor is the total energy retained when combinations are used, i.e. Ns discards close to 90% of
the nuisance signal energy. Finally, the channels being selected, the following test statistic is
used to test the presence of an SSVEP response:

T =
1

NsNh

Ns∑

l=1

Nh∑

k=1

P̂k,l

σ̂2
k,l

where P̂k,l is an estimate of the power in SSVEP harmonic frequency k in the channel sl and
σ̂2

k,l is an estimate of the noise in the same frequency and channel. Details regarding those
estimations are provided in [30].

The class that receives the highest score is normally selected. However, this does not
account for moments where the user does not look at a specific stimulus. To do so, the score
value for each class is converted to the corresponding probability value using a softmax
transformation. If the probability value of the class with the highest score and thus the
highest probability is less than a selected limit, the sample is assigned to the zero class
instead. Otherwise, the initial class assignment is kept. The limit is selected by defining the
residual error probability, i.e. the residual chance that the class assignment may be wrong,
which is empirically set to 3%.

This process requires a short training -typically under 10 minutes- and provides a 80%
accuracy rate [31]. However, 60% of errors are miss-classification as “no decision” when
a stimulus was actually attended, so the system is actually mistaken about the intent of the
user about 10% of the time. This low error rate makes this system somehow reliable in a
control context. The method implementation can provide a new command every 200ms,
which is a satisfactory performance for a BCI system [32]. However, as the method relies
on a 3 seconds window data input, a user shift of attention cannot be detected in less than 3
seconds.
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1.2.3.2 Displaying SSVEP Stimuli on Screen

In SSVEP-based BCI, different elements can be used to trigger the potential in the human
brain (namely at the visual cortex) [24]. Such methods include the use of a LED that flickers
at a chosen frequency or a graphical stimulus displayed on a computer screen.

However, the display of SSVEP on a computer screen is limited by the refresh frequency
of the screen as the display of the stimulus is locked to the frame display. Therefore, most
SSVEP-based BCI that use on-screen stimuli are limited to the choice of stimuli frequencies
that “fit” with the screen frequency. For example, on a monitor having a 60Hz refresh rate,
one can easily display 8.57Hz, 10Hz or 12Hz stimuli as they would respectively correspond
to 7, 6 and 5 frames per period. However, an 11Hz stimulus would require a 5.5 frames per
period which is not suitable. This is illustrated in Figure 1.8.

Figure 1.8: Square signals for 10 and 11Hz stimuli. The gray dotted-lines represent frames, as you

can see the 10Hz signal is synchronized with (reverse every 3 frames) while the 11Hz signal is not

(reverse every 2.72 frames)
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In [33], a new frame-based method is proposed to display SSVEP stimulus of any fre-
quency on a screen despite the refresh rate limitation. The idea is to approximate the presen-
tation rate (e.g. reverse the stimulus every 2.72 frames) by using a varying number of frames
in each cycle. So the stimulus signal for frequency f is given by:

stim(f, i) = square[2πf(i/RefreshRate)]

where square(2πft) generates a square wave with frequency f , and i is the frame index.
Figure 1.9 shows the results of this function for an 11Hz stimulus. A one second frame
sequence would be [3 3 3 2 3 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2] which includes 11 cycles
of a varying length of five or six frames. This approach allows any frequency, up to half the
refreshing frequency, to be displayed on-screen. In [33], the authors proposed this method
and demonstrated it by implementing a SSVEP-based BCI using 16 different frequencies.
Frequencies ranged from 9 to 12.75Hz with an interval of 0.25Hz. The system reached
97.2% accuracy.

Figure 1.9: Frame sequence corresponding to an 11Hz stimulus

1.2.4 The Error Potential (ErrP)

Interaction Error-related potentials (ErrPs) are special features that can be detected in the
EEG, after a wrong action selection by the BCI system or the user. After the onset of the
feedback indicating the selected action, these features can be distinguished by first, a sharp
negative peak after 250ms followed by a positive peak after 320ms and a second broader
negative peak after 450ms [34].

In [35], a protocol is proposed to observe and use ErrP. The user performs motor imagery
to control a cursor on the screen. Her/His goal is to move this cursor to a target area. When
the motor imagery detects the wrong intention the cursor would move in the wrong direction.
This normally triggers an ErrP, as seen in Figure 1.10, and the detection can be corrected.
In [36], this is extended and the motor imagery is re-trained online when an error occurs.
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Figure 1.10: Results from [35]: grand averages of error trials, of correct trials and the difference

error-minus-correct for channel FCz for both subjects. The ErrP is clearly visible in the difference (in

black) when an error occured.

The error potential is a very promising feature for the use of BCI as error recovery is very
important in any application that may be developed using these systems. However, ErrP shall
be 100% reliable to be effective and it does not appear to be the case in current trials. Finally,
to the best of our knowledge, it has yet to be found when using P300 or SSVEP paradigms.

1.3 BCI Applications

As stated in the introduction, the final purpose of the feature extraction is to use this transla-
tion of the brain activity as a command input for a controlled system. A BCI has been used
to control a very wide variety of applications [3]. In this section we present some of these
applications. We focus on EEG-based BCI and specifically on three categories of applica-
tions: BCI-based spelling devices, games and virtual reality applications and finally robotic
applications.

1.3.1 BCI-based spelling devices

Brain-Computer Interface research initially aims at allowing locked-in patients to regain
motor and social capabilities through the power of their brain. As such, many systems have
been devised to allow someone to communicate through a BCI. Here we introduce the three
most popular BCI-based spelling devices.

1.3.1.1 “Thought Translation Device”

The “Thought Translation Device” (TTD) was introduced in 1999 by the university of Tübin-
gen [18]. It is one of the first major BCI applications. The goal of this application is to allow
a paralyzed user to spell words, which is done by allowing the user to select letters in a bi-
nary tree. Before using the system, the user learned to control her/his brain’s slow cortical
potentials (SCP) so that s/he can trigger positive or negative variations.
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Figure 1.11: The P300 speller interface used by [18]

In this application, the alphabet has been recursively divided into two parts and dis-
tributed as leaves of a binary tree. At each node of the tree, the user selects the left or right
leaf by modulating its brain activity accordingly. At the end of the tree the user has selected
a letter. The letter selection process took approximately 2 minutes.

1.3.1.2 P300 Speller

The P300 speller uses the P300 paradigm to allow the user to spell words. It was first intro-
duced in 1988 by [37], see also [18]. In this application, the subject is shown a 6 by 6 matrix
on a computer screen. The matrix contains all the Latin alphabet letters, digits (from 1 to 9)
and a space character (see Figure 1.11).

During a trial, each row and column of the matrix is highlighted several times. The user’s
task is to focus attention on the letter s/he wishes to select and count the number of time this
letter is highlighted. The highlight of this letter is an uncommon but expected event among
the highlighting events and thus triggers a P300 response. Detecting the P300 allows to find
which line and which column contains the letter that the user wants to select and thus the
letter s/he wants to select. In this first iteration, the system allowed the user to spell up to
3–4 letters per minute.

This application being based on P300 it requires very little training to be used effec-
tively [19]. This application has been very popular within the BCI community and is already
widely used by paralyzed patients to communicate with other people [38].

1.3.1.3 Hex-o-Spell

The Hex-o-Spell interface [39] is a prime example of the integration of user application
design and BCI technology. It can be considered as an evolution to the TDD system but
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application is designed to overcome the bit rate issues of the BCI.
In this application, the user controls the rotation and length of an arrow using motor

imagery. The rotation of the arrow is associated to one class of motor imagery while the
length of the arrow is associated to another class. The interface displays a hexagon. Each
cell contains either another hexagon or a letter. By rotating the arrow the user can point
to a specific hexagon and by extending the arrow’s length the user can select this specific
hexagon as seen in Figure 1.12.

Figure 1.12: The interface of the Hex-o-Spell application (from [39])

Once a cell has been selected, the interface evolves:

• If the cell contains another hexagon, then the content of this hexagon is spread and the
selection process restarts

• If the cell contains a letter, then this letter is selected by the system.

Using this system, the user can type up to 7.6 letters per minute.

1.3.2 Entertainment, Games and Virtual Reality Applications

Brain-Computer Interfaces were initially designed to help disabled people, however, the
technology has recently been used in virtual reality applications and video games [40]. These
applications are very interesting to researchers in the BCI community because they provide
a safe, predictable and reliable control environments for applications but they also provide
meaningful insight to the principles of BCI.

For example, in [41], Leeb et al. designed an application to allow a user to navigate a
virtual apartment using the motor imagery paradigm. During this study, the user was first
trained using the standard cue-based feedback; then the user would be put within the virtual
environment. This team observed a clear improvement of the BCI performance during the
virtual reality experiments and the subjects reported a motivational effect. This shows that
virtual environments and gaming applications can be beneficial to the user of the BCI because
of their highly engaging nature.
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Furthermore, the successful use of visual stimuli-based paradigm, such as SSVEP, in
rich and distracting environment show that these paradigms are well suited for use in real
world application. For example, in [42], Legény et al. show that the SSVEP stimuli can be
seamlessly integrated in the virtual environment without performance depreciation.

In the next paragraphs we present some games and virtual reality applications developed
with BCI to illustrate the principles behind BCI driven applications. Finally, we present
some recent successful commercial applications using BCI showing a future trend towards
the integration of BCI powered devices in the real world.

1.3.2.1 MindBalance: an SSVEP-based game

In [43], Lalor et al. introduced an SSVEP-based game called “MindBalance”. In the
“MindBalance” game, the user has to be able to control a virtual character walking along
a tightrope. Two checkerboard patterns are shown on the left and the right hand of the char-
acter, flickering at 17 and 20Hz. A brief training period occurs at the beginning of the game
where the user has to focus successively on the left and the right stimuli for 15 seconds (see
Figure 1.13a), three times each.

Afterwards, the virtual character walks toward the user. Periodically, the character loses
balance (see Figure 1.13b). The BCI user then has 3 seconds to shift her/his attention either to
the left or the right stimulus to equilibrate the character. If s/he failed this time, the character
loses his equilibrium even more, the user then has 3 more seconds to bring the character
back. If s/he fails again, the character falls and the game is lost.

(a) Training phase (b) During game

Figure 1.13: Screen captures, courtesy of [43], from the MindBalance video game: (a) Training

phase (b) Game phase

1.3.2.2 “Use the Force”: an ERS-based game

In [44], Lotte et al. used a self-paced BCI system that can detect real or imagined foot
movements by detecting a Beta Event Related Synchronization (ERS) that occurs after the
real or imagined foot movements [45]. Based on this, they let the user control the “Use the
Force” application.
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In this application, the goal of the user is to lift the Tie-Fighter, a space vessel from the
famous Star Wars franchise, using only the provided BCI. This application into trial, which
timeline is shown in Figure 1.14. Each trial lasts 10 seconds. The first phase lasts 4 seconds
and is a resting phase with no specific instructions given to the user. The second phase lasts
3 seconds. A green text saying “MOVE” appears on screen and the user is instructed to
perform real foot movements to move the vessel. Finally, the last phase also lasts 3 seconds
and this time a red text reading “STOP MOVING” appears and the user should stop moving
the vessel. If the user was successful is score is increased as shown by the growing yellow
gauge in the bottom-left corner on the screen.

A second version of the application exists which is identical except that in the second
phase the vessel should be moved only by imagining foot movements.

Figure 1.14: Temporal structure of the game presented in [44]

This experiment was performed during the Laval Virtual 2008 VR exhibition with 21
novice subjects. It shows that despite a noisy environments and distracting conditions, the
users were able to perform well in the application.

1.3.2.3 Navigation in virtual environments using the SSVEP paradigm

In [46] and [47], the user is placed within a virtual environment using a head-mounted dis-
play. Several applications were designed to show the BCI capacity of controlling an avatar
using the SSVEP paradigm. In each of these scenarios, the stimuli are integrated interactively
within the environment.

In the “Button Scenario”, shown in Figure 1.15a, the world is shown through the first
person perspective. The avatar is facing down at her/his feet and two SSVEP stimuli are
attached to the arms of the avatar. The goal for the user is to activate the button by three
successive selections of the left or right stimulus and alternating the buttons selection as fast
as possible.

In the “Slalom Scenario”, shown in Figure 1.15b, the avatar is shown in third person
perspective and has three SSVEP stimuli attached to it. Each stimulus is associated to a
control command for the avatar: the stimulus on the left side of the avatar is used to turn the
avatar 45°in the left direction, the stimulus on the right side of the avatar is used to turn the
avatar 45°to the right and the stimulus placed on the top of the avatar’s head is used to move
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(a) Button scenario (b) Slalom scenario

(c) Appartment scenario (d) AR slalom scenario

Figure 1.15: Virtual Reality Applications developped using the SSVEP paradigm: scenarios,

courtesy of [46]

the avatar forward. The goal of the BCI user is to move the avatar through the slalom shown
to him in less than 10 minutes.

In the “Apartment Scenario”, shown in Figure 1.15c, the control scheme is similar to the
“Slalom Scenario”. The goal is similar too as the user has to reach a target in the apartment
in less than 10 minutes. Two sessions were recorded, in the first one the user had to reach
the center of the apartment while in the second one the user had to reach a target placed in
the corner opposite of the avatar starting position in the house.

Finally, in the “Augmented Reality Slalom Scenario”, shown in Figure 1.15d, a fourth
button and a secondary goal was added compared to the “Slalom Scenario” and “Apartment
Scenario”. The fourth button is used to enable and disable the avatar’s control buttons. The
secondary task of the user is to stop in two designated areas at the beginning and at the end
of the slalom for 30 seconds.

While this work demonstrates the possibility of controlling an avatar using SSVEP to
complete a variety of somewhat complex tasks, it does not consider the combination of these
different scenarios to achieve more realistic and practical tasks in the virtual environment.

1.3.2.4 Commercial Applications

In the most recent years, some BCI systems have been commercialized for the general public.
These applications are often simple compared to what can be achieved in laboratories but
their success and popularity show the attraction of thought-powered devices for the public
and the potential for BCI to come out of the laboratories.
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The Mindflex [48] device, shown in Figure 1.16a and developed by NeuroSky [49], is
one of this popular device. It was released in 2009. In this game the user can control a
fan’s speed using her/his brain activity. The goal is to use the fan to guide a ball through an
obstacle course that can be customized to regulate the difficulty of the game.

The NecoMimi device [50], shown in Figure 1.16b, also relies on technology from Neu-
roSky. It was released in 2012. It measures the relaxation state of the user using EEG and
the move fake ears attached to the device accordingly.

(a) The Mindflex

application

(b) The NecoMimi headset

Figure 1.16: Two successfull commercial BCI applications, courtesy of [48] and [50]

Finally, BCI have become more and more popular in the video game industry. In 2013,
the first Neuro Gaming Conference and Expo was held [51], showing the increase in pop-
ularity of these technologies. As we have seen in previous examples, the BCI can be used
as the sole mean of control for the game or, as shown in more recent examples such as the
upcoming Son of Nor [52] video game, it can be used as a complementary input.

In the Son of Nor game, the control of the avatar’s movements and gaze is done through
the usual keyboard and mouse. However, casting magic spells and terraforming the world
presented to the user is done using BCI [53].

1.3.3 Robotic Applications

In this last section we review some robotic applications in which various robots are con-
trolled by a BCI system. BCI has not been a very popular device for robotic control as its
main issues–high latency, low bit rate and unreliability mostly–make the control of robotic
systems difficult. In this section we first focus on a very successful and notable application
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of BCI technology in robotics: the brain-actuated wheelchair that was developed by Mil-
làn et al. [54]. This application essentially uses the motor imagery paradigm. Therefore we
also present two simple robotic applications: one that uses the SSVEP paradigm and an-
other that uses the P300 paradigm. Finally, we present the only, to our best knowledge, BMI
application preceding our work that focused on the control of a humanoid robot.

1.3.3.1 Brain-Actuated Wheelchair

The Brain-Actuated Wheelchair project takes its root from the work presented in [55]. This
paper presents the first robotic device controlled through non-invasive brain-computer inter-
face. Despite the low bit rate of BMI protocols available at that time–around one bit per
second–the authors demonstrate the ability to control a simple mobile robot through a set of
mental tasks recognized in the EEG activity of the user. The authors attribute their success
to three key features present in their work:

1. The use of high-level commands to control the robot, such as “turn right at the next
occasion”, that are autonomously executed by the robot.

2. The use of an asynchronous BMI protocol, allowing the user to pass command to the
system without the need of an external cue and to let the robot executes the currently
selected behavior until the user chooses to modify it.

3. The use of behavior-based control [56] to allow the robot to execute the high-level
commands with obstacle avoidance and smooth turns.

The EEG protocol used in this work relies on the statistical analysis of the EEG spectrum
of the user [57]. It is able to recognize 3 mental tasks with an accuracy of 70%. However,
it also possesses the ability to recognize an “idle” state through the use of a statistical rejec-
tion criterion; therefore, while the accuracy of the system may seem low, it actually miss-
recognize the user’s mental state only 5% of the time. It requires the users of the system to
train over a few days to obtain satisfactory performance. Theoretically, the system is able
to reach an information rate of 1 bit/s and 2 commands per second in a mode called “Mode
I” by the authors or 0.85 bit/s and 1 command per second in a mode called “Mode II” that
further reduce the error rate of the system by analyzing the EEG spectrum state over a longer
period of time.

Regarding the particular case of [55], two subjects took part in the experiment. They
trained for 5 and 3 days respectively. The first step of the training is to let the user decide
which mental tasks they should perform among the following ones:

• “Relax”: the task of getting relaxed.

• “Left” and “Right” hand (or arm) movement: the task of imagining repetitive self-
paced movements of the limb.

• “Cube rotation”: the task of visualizing a spinning cube.
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• “Subtraction”: the task of performing successive elementary subtractions by a fixed
number.

• “Word association”: the task of concatenating related words.

In the end, one subject chooses the “relax-left-cube” set of tasks while the other chooses
the “relax-left-right” set. Afterwards, the user performs four consecutive training sessions of
5 minutes, separated by a 5 to 10 minutes break, during which the user randomly performs
one of the mental tasks for 10 to 15 seconds and receives feedback on a computer screen.
The feedback consists of three buttons: each button is associated with one mental task and
the button starts flashing if the mental task is recognized. After each training session, the
statistical classifier is optimized off-line. Finally, the user learns to control the robot for two
days using “Mode II” in the BMI protocol.

The robot used in these experiments is the Khepera robot, shown in Figure 1.17a. It
shares some features with a motorized wheelchair. It is a two-wheeled vehicle that moves at
a maximum speed of one third of its diameter per second–same as a wheelchair in an office
building. Furthermore, it is equipped with 8 infrared sensors to detect obstacles. However,
the limitations of the sensors led the authors of the paper to use a multilayer perceptron
mapping the 8 sensors into 6 classes of environmental states: wall to the left, wall to the
right, obstacle to the left, obstacle to the right, wall or obstacle in front, and free space.

The robot is also equipped with three colored lights to mimic the feedback obtained
on the computer screen during the training session. The lights are also used as a mean to
communicate the behavior that the robot applies as it approaches a possible turn for example.
Thus allowing the user to correct the robot’s behavior if necessary.

The robot’s controller uses both the user’s mental state and the robot’s perceptual state
as inputs to a finite state machine with 6 states that dictate the robot’s behaviors, as seen
in Figure 1.17b. In this figure, #1, #2 and #3 represent the 3 different mental states of
the user recognized by the BMI, and, |o, o| and ô represent 3 different perceptual state,
respectively: left wall, right wall and wall or obstacle in front (the additional perceptual
states of the robot are used internally to implement the obstacle avoidance routine). The
different behaviors that are implemented are “forward movement”, “left turn”, “follow left
wall”, “right turn”, “follow right wall” and “stop”. The interpretation of the user’s mental
state by the robot controller thus depends on its current perceptual state. For example, mental
state #2 is associated to the “left turn” behavior in open space but it is interpreted as “follow
left wall” if the robot currently perceives a left wall. Finally, the robot automatically transits
to the “stop” behavior if it senses an obstacle in front of it to avoid collision.

In the robot’s control sessions, the user’s task is to mentally drive the robot towards a
randomly selected room. Once this room has been reached, another room is selected and the
user should drive the robot to this new room. This initial experiment was very successful
as both users were able to drive the robot from room to room at the end of the two days of
training. Furthermore, the users reported that the control scheme adopted by the research
team was easy to learn and intuitive to use. Finally, the experiment was repeated but the
EEG input was replaced by a keyboard input. In this case, the performance of the users were
better but by a fairly low factor–below 1.5.
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(a) The Khepera robot used in Millán’s

initial experiment

(b) A simplified view of the Finite State

Machine driving the Khepera robot in

Millán’s initial experiment

Figure 1.17: Illustrations used in the initial EEG-based robotic experiment by Millán et al. as seen

in [55]

Following this initial robotic device, the next work focused on a simulated wheelchair [58].
In [58], the authors wished to establish the superiority of a shared-control approach, that is a
system where the controlled device and the controller (in this case the simulated wheelchair
and the human through the BMI) work together to achieve a task. Therefore they devised two
different controllers. The first one, labeled “A0”, only allows the wheelchair to detect obsta-
cles and stop to avoid collision. The second one, labeled “A1”, enables a higher intelligence
level and avoids the obstacle when detected rather than stopping.

The authors performed an experiment with 4 novice subjects. The task performed is
shown in Figure 1.18. They had to navigate the wheelchair through a corridor where two
obstacles are present. Each subject performed the task 25 times using both controllers. When
using the controller “A0”, the subjects were unable to guide the wheelchair to the goal.
However, when using the “A1” controller, the users were able to drive the wheelchair to the
destination despite their inexperience with the BMI system, reaching the target, respectively,
16, 9, 10 and 11 times out of 25.

The knowledge gathered through the previous experiments finally led to the development
of an actual brain-controlled wheelchair that was first presented in [59] and in [54]. In [54],
3 users were trained to use the BMI system, two of them had previous experience with the
simulated wheelchair and the third one had no experience neither with the wheelchair nor
the use of BMI. The EEG protocol used by the authors is similar to the one presented in
their previous work. Therefore, the BMI can only outputs three commands: Forward, Left
and Right. Thus, as seen in previous works, a shared-control approach is necessary to allow
both a better driving of the wheelchair and to recover from the BMI mistakes. However, the
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Figure 1.18: The task presented in [58]: the starting point is in the bottom left of the figure; the

optimal trajectory is the one labeled “4”, a trial is considered successful if the wheelchair ends within

50cm from the target. “1” is a trajectory obtained with an “A0” controller. “2” is an unsuccessful trial

with controller “A1” and “3” shows a successful trial with the same controller.

control scheme is more complex than before in this case and is briefly introduced here.
Figure 1.19 shows the approach developed by the authors. The inputs of the system are

two-fold:

1. A probability distribution over the three mental commands generated from the EEG
data of the user

2. The sensory readings from the wheelchair which is equipped with a laser range finder

The controllers generate the linear velocity v and the angular velocity ω of the wheelchair.
First, (v, ω) is generated from the mental input. Then, this input is merged with the current
velocity command to generate a smoother trajectory. Finally, this command is merged with
the sensory readings of the wheelchair to select the proper assistive behavior and adjust the
resulting velocity accordingly. Three different assistive behavior are proposed by the authors
in [60]:

A0 Collision avoidance: the linear velocity of the wheelchair is reduced until the wheelchair
stops in order to avoid collision with an obstacle. This behavior is triggered if the
system detects obstacles too close to it.

A1 Obstacle avoidance: calculates (v, ω) to steer the wheelchair away from the obstacle.
The user input and the sensory readings are taken into account to calculate proper
values of v and ω.
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Figure 1.19: The shared-control scheme used in [54] to generate the linear and angular velocity

(v, ω) of the wheelchair.

A2 Orientation recovery: corrects the orientation of the wheelchair if it is too misaligned
with respect to a goal orientation.

Given this system, two tasks were performed by the subjects. The first task, executed
only by the two experimented subjects, is illustrated in Figure 1.20a. The goal is for the
user to drive the wheelchair through a corridor where obstacles are present. The second task,
executed by all subjects, is illustrated in Figure 1.20b. The goal is for the user to drive the
wheelchair to a target position (three targets are proposed) while avoiding obstacles in the
scene. A trial is considered successful if the user stops the wheelchair less than 2 meters
away from the target. The second task was also performed by a “random” BMI to be used as
a baseline for performance comparison and assess the control of the wheelchair by the users.

These experiments were very successful in showing the ability of the users to drive the
wheelchair in a real environment despite a lack of experience and BMI training. During the
task 1, the users were able to drive the wheelchair from one extremity of the corridor to the
other even at first trial. However, each trial would take about 6 minutes and the users reported
fatigue due to the long usage of the BMI system. Nevertheless, control was mostly achieved
by the user and not the assistive system as the assistance was active 20 to 35% of the time
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(a) Task 1: the user goes from one

extreme of the room (in the background

on this picture) to another

(b) Task 2: the user has to drive the

wheelchair to target 1, 2 and 3. In the

figure, the starting position and the ideal

trajectory are shown.

Figure 1.20: Tasks performed on the brain-controlled wheelchair in [54]

depending on the trial.
In task 2, the 37%, 53% and 27% of the targets while the “random” BMI only reached

13% of the targets. This shows a high degree of control of the wheelchair, even by an
inexperienced user, in a more difficult task that requires fast and precise actions. Interestingly
though, the users also had to adapt their strategy for reaching the targets to the wheelchair
shared-control system as they first tried to reach targets 1 and 2 through a straight line which
was then modified by the obstacle avoidance routine, thus leading to unsuccessful trials.

The brain-controlled wheelchair project is important within the context of our work be-
cause it was the first work demonstrating the ability to control a complex robotic device in a
real environment with a non-invasive BMI. They also explicitly demonstrated the importance
of the shared-control approach in such context as a way to work around the limitations of
the BMI. Using similar principles, other projects have successfully allowed disabled people
to control a wheelchair with a BCI. Notably, in [61], the user can select a pre-defined desti-
nation using P300 and the wheelchair automatically drives to this destination while ensuring
its safety and the safety of its passenger. However the user can still stop the wheelchair using
a faster BCI paradigm. This enables the user to move the wheelchair to the destination of
her/his choice in an efficient way.

1.3.3.2 Using SSVEP to control a robot

While the SSVEP modality has been used in a wide variety of applications as we have seen
in an earlier section, it was merely used in robotic applications. In this regard, the work
presented in [31] is rather unique as in this work the SSVEP modality is used to drive a
simple robotic device, as seen in Figure 1.21.

The system relies on the use of an external box–seen on the left side of Figure 1.21–to
elicit the SSVEP in the user’s brain’s signals. The box has a LED mounted on each corner,
each LED flickers at a different frequency that the system was trained to recognize. Each
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Figure 1.21: The robot and SSVEP control device used in [31]

LED is associated to a command that is sent to the robot: the upward LED moves the robot
forward, the right LED turns the robot to the right, the downward LED moves the robot
backward and finally the left LED turns the robot to the left. Using such a system 3 subjects
were able to move the robot along a path designed by the experimenters with a high degree
of accuracy.

This performance was made possible by two major features of the BMI system:

• A fast-pace (dubbed “quasi-continuous” by the authors)–4Hz–classification output
with a low error-rate–below 10%.

• A “zero-class” implementation that allows the BMI to understand that the user wishes
to do nothing at some point of the control.

1.3.3.3 Using P300 to control a robot

P300 has proven to be more popular for the control of robotic device through a BMI than the
SSVEP modality as many teams tried to tackle this issue through a P300-based BMI [62] [63] [64].

In this section, we focus on the work presented by Escolano et al. in [63] as some of the
principles employed in the design of the interface and the teleoperation architecture that was
setup by this team have been inspirational to our work.

The robot controlled in [63] is a commercial Pioneer P3-DX, seen in the bottom part of
Figure 1.23, a two-wheeled robot equipped with a laser sensor for obstacle detection and a
video camera to provide video feedback to the robot’s user. The robot is steered through a
high-level controller that allows it to go to a selected point in space while avoiding obstacles.
The experiment involved 5 subjects who were given two tasks to execute. The first task
was to go from a starting position to a goal position; however, an indicator present on the
path of the robot conditions the attitude that should be observed regarding an obstacle on
the road, moving around the object either through the left or right side. The second task
displayed a similar scenario but with a different and longer room as well as a different cue



1.3 BCI Applications 41

for the indication. These scenarios were designed to enforce the use of both control schemes
offered to the user: navigation and camera control.

The two specificities of this work are:

• The “switching” interface that allows the system’s user to switch between two control
schemes autonomously.

• The teleoperation aspect of the experiment as the user of the BMI and the robot were
separated by roughly 300 km.

Figure 1.22: P300 interface devised in [63] to control a mobile robot. Left side shows robot

navigation mode. Right side shows camera orientation mode.

One of the advantages of the P300 protocol is to allow the BMI to choose among a large
number of possible outputs with a high degree of success. The work presented in [63] makes
good use of this feature by offering a rich interface to the user of the system.

The interface that is displayed to the user is shown in Figure 1.22. On the left side, the
interface is in “navigation mode” while on the right side it is in “camera control mode”.
In both cases, the screen is divided into a 5x4 grid. The upper part of the screen is used
to display the image coming from the robot’s camera. The grid-division allows the user to
select one out of 15 points in the image. The bottom part is reserved for the control of the
interface.

In navigation mode, selecting one of the points in the robot’s field of view moves the
robot to this position. However, you can notice in Figure 1.22 that some parts of the grid are
covered by a red layer. This red layer is there to indicate that the robot cannot navigate to
this specific point because of an obstacle. The interface buttons have the following function,
from left to right: (a) turn the robot left by 45°, (b) refresh the camera picture to get the
current view as well as updated obstacles, (c) switch to camera control mode, (d) validate
the previous selection, this is explained later, and (e) turn the robot right by 45°.
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In camera control mode, selecting one of the points in the robot’s field-of-view directs
the robot’s camera to this point. This is not limited by the presence or absence of obsta-
cles; hence, all points are available for selection. The interface buttons have the following
function, from left to right: (a) align the robot with the horizontal camera orientation and
switch to navigation mode, (b) refresh the camera picture to get the current view, (c) switch
to navigation mode, (d) validate the previous selection and (e) set the camera to its initial
orientation.

In both modes, the execution of any action, except the “refresh” option, is conditioned by
the validation of the action through the use of the validation button. The authors do this in
order to ensure high fidelity between the intention of the user and the actions executed by the
robot. Once an action has been validated, the interface waits for the execution of the action
by the robot and performs another round of P300 stimulation to let the user select the next
action.

The use of such a switching interface is an interesting feature that shows that a single
BMI command does not have to be related to a single robotic command and thus can be
dynamically modified to increase the range of actions that can be executed by the user. The
integration of sensor information in a visual way done in navigation mode is also an interest-
ing feature as it increases the degree of collaboration between the robot and the user. Finally,
the confirmation is another important idea as it allows overcoming one of the limitations of
the BMI–a relatively high error rate compared to traditional input interfaces–that could limit
the interest of such a high-level controller.

The teleoperation scheme used in [63] is shown in Figure 1.23.
The interesting features to notice are:

• All interface logic, including the augmented reality overlay, and the signals treatment
are executed on the BMI site

• All robot logic is executed on the robot site

The only information transferred between the two sites is the video and obstacle infor-
mation coming from the robot to the BMI on the one hand and on the other hand, high-level
commands issued by the BMI that transit from the BMI to the robot.

The main drawback with P300 control of robotic devices is the lack of reactivity that the
interface provides. To elicit a P300, it is necessary to display the flashing stimuli a certain
number of times so that the event expected by the user is indeed uncommon. Therefore,
the BMI system usually reaches two to three decisions per minute [65]. This issue could
be partly tackled through the development of asynchronous P300 paradigm such as the one
proposed in [66]. However, such paradigms do not allow reactive behavior as the decision is
still locked to the many repetitions of the P300 pattern necessary to elicit an answer.

1.3.3.4 Humanoid Robot Control Using P300

Finally, we present the only work prior to ours that focused on the control of a humanoid
robot using a BMI system. In [64], Bell et al. introduce a P300-based BMI that is used to
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Figure 1.23: The BMI teleoperation architecture presented in [63].

control a humanoid robot. The goal of the experiment is fairly simple: pick up an object and
place it on one of two possible destinations.

The robot used in this experiment is a Fujitsu HOAP-2 humanoid robot. It is equipped
with a pan-tilt camera that is used to provide visual feedback to the user and locate objects
in the environment. The robot is able to walk autonomously, navigate based on visual in-
formation and pick up and place objects. Furthermore, the robot has prior knowledge of the
room layout. Finally, a second camera observes the scene from above and is used to locate
the destinations available for the robot. The room layout can be seen in the upper picture of
Figure 1.24. The red and green bricks that can be seen are the objects the robot should grasp
and the blue zones are the “tables” where the robot should put the object.

The robot starts the experiment in front of the objects that the user should select. As
the robot moves forward these objects, the image is being analyzed and segmented by the
robot to detect the objects of interest. This information is then transferred to the interface
and a P300 selection cycle begins. As seen in the bottom left picture in Figure 1.24, the
detected segments are displayed with a fine red border around them. This border flashes–
the timing of those flashes are discussed in [64]–and thus elicit a P300. Once the BMI
has reached a conclusion about which object should be grasped, the robot autonomously
grasps the object–bottom right picture in Figure 1.24. Afterwards, the interface switches to
the overview camera. Then the user can select the dropping zone in the same way as with
the objects. Once this selection has been made, the robot autonomously moves to the drop
position and put the object on the table.
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Figure 1.24: Overview of the humanoid control application (from [64]): (A) The robot in its arena:

two objects can be chosen and two destination tables; (B) The interface shows the robot view and

the detected objects; (C) The robot executes the action mandated by the user

The experiment conducted by Bell et al. can be seen in [67].
While this experiment is interesting for being the first work where a humanoid robot

is controlled through a BMI, it is very far from exploiting further possibilities in using a
humanoid robot. The interface offers very few choices to the user and the user has no control
over the execution of tasks carried out by the robot. However, it shows that, using high-level
commands, BMI can be a practical way to control a humanoid robot to perform complex
tasks.

1.3.3.5 Robotic Arm Control using a brain implant

In a recent remarkable work [10], the motor activity of a subject’s brain, acquired through an
intra-cortical implant (BrainGate system), was decoded into movement inputs for a robotic
arm, allowing the subject to move the arm freely in its operating space, grasp a bottle and
bring it to the subject’s mouth, as seen in Figure 1.25. This is made in a quasi-closed-loop
fashion.

This study exposes the results of robotic arm control in 3D space performed by two
subjects, later referred to as S3 and T2. Both of them have experience controlling a mouse
cursor for point and click actions that they practiced weekly prior to the experiments for a
long time–respectively 5.3 years for S3 and 5 months for T2. Two robotic arms were used
during the experiments: the “DLR Light-Weight Robot III” and the “DEKA Arm System”.
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Figure 1.25: A subject controls a robotic arm through implanted electrodes to reach a bottle, grasp

it, move it towards her mouth and put it back on the table (taken from [10]).

However, both subjects had little experiment with the robotic arms other than the assistance
they provided during the development of the control algorithm and interface testing. The
BMI system has to be calibrated before their use in robotic applications. On average, this
procedure took about 30 minutes. The system allows the subjects to control the arm speed in
3D and trigger grasping/relaxing of the hand. Additional constraints are placed on the robotic
arm movements to avoid collision with the table and the subject. Notably, the subjects cannot
control the hand orientation.

The main experiment consisted in reaching and grasping targets–foam balls maintained
in a fixed position in space through motorized levers–within the operational space of the
robotic arms. Since the subjects were unable to control the orientation of the hand and
since touching the rods maintaining the balls in the air would move the balls, the task was
fairly complicated to achieve. A successful “touch” trial occurred when the subject touched
the target with the hand, while a successful “grasp” trial occurred when the subject closed
the hand while any part of the target or the top of support were in the hand. Given these
conditions, S3 achieved 48.8% with the DLR arm and 69.2% with the DEKA arm of “touch”
success–given 80 trials with the DLR arm and 78 with the DEKA arm. T3 achieved 95.6%
“touch” success over 45 trials with the DEKA arm. Of these successful touches, S3 achieved
successful grasps in 43.6% of DLR trials (21.3% of total DLR trials) and 66.7% of DEKA
trials (46.2% of total DEKA trials). T2 achieved successful grasps in 66.7% of trials (62.2%
of total trials).
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The second experiment, shown in Figure 1.25, consisted of reaching and grasping a bottle
with a straw inside, bring the bottle with the straw towards the mouth of the subject, let the
subject drink from it and put the object back. Only Subject S3 performed this experiment.
The control was restricted to the two-dimensional plan of the table and grasping control was
used to trigger transitions between different hand actions that depended upon the phase of
the task and the position of the hand. Out of six trials, the subject was able to perform the
task four times. In the two failed attempts, the task was aborted, as the hand was about to
push the bottle off the table because it was not properly aligned with it to allow the hand to
grasp it.

1.4 Conclusion

Independently of the technology used to acquire the user’s brain activity, all BMI-based
control application can be divided into two categories.

Neurofeedback based

This is the case of applications that try to understand the activity –
often the motor activity – of the brain and translate it to the controlled
device. This includes works that we have presented previously such
as the intelligent wheelchair for EEG-based BMI [54] or arm control
in ECoG-based neurofeedback [10], but also the control of a huma-
noid robot in fMRI-based BMI [68]. We later refer to this family of
application as “NF-based” applications.

Menu based

This is the case of applications that use stimuli, usually visual: P300
or Steady-State Visually Evoked Potentials (SSVEP), to map a behav-
ior on the robot through the use of a “menu”. For example, among
the works we presented, one can cite the work done in [31] where
a mobile robot is controlled through SSVEP stimuli or [63] where
a complex P300 interface allows the user to remotely control a mo-
bile robot and its embedded camera. We later refer to this family of
application as “menu-based” applications.

The impressive works we introduced earlier illustrate a dominant trend in current BMI-
based control. On the one hand, decoding the brain activity in order to map it onto the
controlled device; this is constrained by the fact that controlling the Cartesian motion of a
robotic arm by neuro-feedback requires a long and sustained training for the subject and
usually perform with less than perfect accuracy and slowly compared to the capacity of
the controlled robotic systems they use as substitutes or surrogates. Furthermore, we can
question the actual need–beyond therapeutic benefits–of controlling an external device with
such a degree of precision to perform simple tasks.

On the other hand, menu-based control, while closer to what we will introduce as object-
centric BMI, still limit the capacities of the robot to a few pre-programmed behaviors.
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1.4.1 Limitations of menu-based control

Menu-based BMI are easy to learn. In both cases we presented here–and other menu-based
BMI studies–novice subjects are able to control the device with ease and perform well within
the evaluation scenarios after a few minutes of training. However, through these examples,
we can also see the two major drawbacks of menu-based control as they have been conceived
until now.

On the one hand, the case of the SSVEP-based control of a mobile robot or a humanoid
robot highlights the inability of the users to gain precise control over the movements of
the robot. This is due to the input limitations brought on by the use of BMI technologies.
The mapping between a discrete number of stimuli and the speed of the robot–a continuous
value–has to limit the ability of the user to control the device to its full capacities. While in
the case of a simple mobile device, such as the one presented in [31], the mapping can be
satisfying enough, in order to allow more complex devices to be controlled, the interface has
to become more complex.

On the other hand, complexity has a cost. In the fairly simple case of humanoid robot
steering, the users struggled to understand and use the extra-capabilities offered by the in-
terface, making it pointless compared to the simpler version. In the P300 interface we have
presented, all the robot’s capabilties can be controlled through the BMI interface. That is,
the user can move the mobile platform almost everywhere it can go and the user can look
almost everywhere the mobile platform can look. However, this is a fairly simple device
with limited capacities. Especially, it is not capable of interacting with the environment in
any way. Nevertheless, the interface to control the device is complex and tedious to use:
moving somewhere requires to first select a point on the grid and then confirm this selection,
this requires two accurate selections with P300 which can take up to a minute or even more
if the BMI makes a mistake: the interface has to be simplified.

A menu-based BMI has to tackle a fundamental problem: it has to be simple to allow an
efficient control of the device but it also has to be complex to offer all the capacities of the
controlled device to the user.

1.4.2 Limitations of NF-based control

Within NF-based BMI, we include another common trend that is the use of motor intentions
to guide a complex controller. For example, in [69], a humanoid robot is controlled by a NF-
based BMI. In this case, a humanoid robot is controlled by an optimization-based controller
that takes into account an initial configuration and a final configuration–given manually by
the user–and autonomously plan the appropriate movements to go between those two con-
figurations. The user of the BMI intervenes to adjust the position of the waypoints in the
movement. In that case, the controller was designed first and the controller was adapted to
include BMI inputs.

On the other hand, in [70], the authors designed a language to devise planar trajectory for
a mobile aircraft with high-latency and low bit-rate input devices in mind, such as a BMI.
As a result, the users of the BMI were able to guide a virtual airplane along fairly complex
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paths. However, the controller is also quite complicated and some users were unable to guide
the airplane. Moreover, the navigation did not take obstacles into account.

In the end, these systems are limited to simple locomotion task because EEG-based BMI
and neurofeedback do not allow understanding the motor intentions with sufficient precision,
and the BMI, whether the applications are adapted to it or designed for it, is used a binary
input device. To obtain a better recording of the motor area, it is possible to record it through
intra-cortical devices such as ECoG. Since it is an invasive acquisition technology, the use of
ECoG in such applications has been rare.

The results presented in the ECoG studies are amazing: it shows the viability of such
implants for rehabilitation, it allowed the people involved in this study to physically interact
with the world from their own will for the first time since they became paralyzed and, it might
be possible to use MI signals to reanimate the paralyzed muscles [71]. Yet, the results are also
a bit unsatisfactory. Reaching and grasping an object is a simple task to achieve for a robot.
The difficulty and the length of the task, as well as the eventual failure at realizing it, come
from the difficulty to achieve an accurate decoding. Improvements are mostly expected from
resolving all the issues revolving around the acquisition to achieve higher accuracy, faster
decoding and natural control.

1.4.3 Introducing “object-centric” BMI

Nowadays, many teams have successfully achieved the control of a robotic device through
BMI. However, the control has been limited to either simple devices that cannot achieve
much or simple tasks that do not exploit the full capabilities of the controlled device. Our
practical objective is to allow the BMI user to control the device as a surrogate to accomplish
tasks on her/his behalf that s/he is not able to achieve by himself anymore. In this context,
we believe the decoding of motor intentions to map it onto the operational space of the
controlled device is cumbersome. As seen in [10], even using state-of-the-art method to
decode the motor intentions, the results are still far from a full-proof and intuitive ways to
control robotic devices for surrogate purposes. Without questioning the therapeutic benefits
of this work, we can question the interest of achieving control through motor intentions
detection as this is not such a conscious process that guides our actions but rather objectives.
For example, assuming that we could understand the full movement intentions of a hand, i.e.
decoding the full translation and orientation intentions, and assuming that we had a robotic
hand capable of executing such movements, would this be practical to use?

This comes down to the general issue of goal selection versus process control strategies
in BMI. In a goal selection strategy, the BMI is used to select the goal of the process while
in a process control strategy (e.g. select an object that is grasped by a robotic hand), the
BMI is used to control the details of the process (e.g. control the robotic hand trajectory to
grasp an object). In [72], it was shown that the former leads to faster, more reliable and more
accurate BMI applications. Given these considerations, we introduce “object-centric” BMI
for robotic control.

“Object-centric” BMI aims at channeling the interaction between the BCI and the robot
through the objects within the environment of the robot. This allows the user to perform



1.4 Conclusion 49

complex robotic tasks despite the intrinsic limitations of EEG-based BCI. Rather than map-
ping the motor intentions of the user to equivalent robotic actions or mapping external stimuli
to single tasks, we chose to let the user interact directly the objects and infer the task s/he
wishes to perform from the environment state perceived by the robot. It is achieved by a
tight integration of artificial intelligence and computer vision tools and shared-autonomy ap-
proach such as those employed in previous BCI works that we have presented here. It is
thoroughly described in Chapter 3.

Following this state-of-the-art (that is far from being exhaustive), we discuss in the next
chapter the specific aspects of building rich BMI applications that we have developed. This
includes a presentation of the interface framework to build complex and brain-controlled
robotic applications and two studies we conducted that highlight particular aspects of BMI
performance under typical conditions for robot control.
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Chapter 2

Building Interface for
Robot Control with SSVEP

As discussed in the previous chapter, BCI have been used in many different applications
including the control of robotic systems. However, early robotic systems controlled by BCI
remained proof of concepts work (some advanced) and as such have not dived into all the
problems raised by the use of BCI to perform complex robotic systems’ control. In order to
achieve this, we introduce the “object-centric” BMI, a novel approach of BCI for complex
robotic systems’ control. This approach, thoroughly discussed in Chapter 3, benefits from
the task-function based approach and a tight integration between the environment perceived
by the robot through its sensors and the interface that we propose to the user in order to
obtain her/his intentions. In this chapter, we introduce the base of such an interface as well
as BCI issues, which are specific to the robotic context (and peculiarly to humanoids) and
the “object-centric” BMI context.

The interface that realizes the link between the robot, its environment and the user of the
system should achieve the following objectives:

Multi-task capability
In order to achieve complex robotic missions, we have to be able to perform a suc-
cession of elementary tasks. For example, a task such as “fetch X object from the
cupboard” requires to be able to (a) navigate the robot and (b) fetch an object. This
means that the interface has to be able to chain multiple tasks within a single run.

Dynamic interface
Interacting with the objects in the environment is a key-feature of the “object-centric”
BMI framework. In order to achieve this, we need to report in real-time the capacities
of the robot within its environment. Therefore the interface should allow us to display
stimuli or information in a dynamic way, that is, based on the current environment of
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the robot.

Reliable goal selection
Since the “object-centric” BMI relies on the selection of object or goal to autono-
mously realize the intention of the user, it is important to ensure that this selection is
accurate. While we may recover from a mistake, by using ErrP or a manual cancella-
tion mechanism for example, it is obviously more desirable to initially understand the
right intention to ensure a smooth experience for the user.

To achieve these goals, we introduce a novel framework to develop BCI applications in
the first section of this chapter.

Although the later framework is agnostic on the underlying BCI paradigm that is used to
understand the user’s intentions, we showed in Chapter 1 that, within the current EEG-based
BCI paradigms, the SSVEP paradigm fits our needs better. Indeed, on the one hand, P300
does not allow to generate the kind of dynamic interfaces we envision and does not provide
a reactive interaction due to the nature of the stimulation. On the other hand, motor imagery
does not rely on visual stimuli and thus, while well adapted for locomotion tasks, does not fit
well within the “object-centric” BMI. However, while SSVEP allows us to build a reactive
and dynamic interface, it is also prone to interpretation errors which is in conflict with our
reliability objective. Therefore, in the second and third section of this chapter, we address
two important SSVEP performance issues related to the use of this paradigm in robotic con-
trol. First we look at the performance problem induced by having SSVEP stimuli displayed
as an overlay on (often jerky) video feedback, e.g. video feedback from a robot’s embed-
ded camera. We propose several solutions to limit the latter drawback. Then, and finally,
we present a study that we conducted regarding the best way to display SSVEP stimuli for
object selection, which is obviously of prime importance within the “object-centric” BMI
framework.

2.1 Introducing the bci-interface:
A Framework for Dynamic BCI Application

Several BCI frameworks, such as OpenViBE [4] or BCI2000 [5], are developed to produce
high-quality BCI applications. The three layers model introduced earlier is implemented by
almost any BCI framework. Yet, most of the development effort is put towards the signal
acquisition and signal processing layers leaving the user application to the user. Therefore
we developed a framework to address this issue and easily write BCI applications: the bci-
interface.

This framework is developed with two important goals in mind.
First, it should be simple to use: the application developer should only worry about what

s/he wishes the BCI user to accomplish. This is realized by providing simple bricks to the
developer that s/he can arrange and interact with easily without considering the underlying
mechanisms of the interface. We introduce our approach later in this section and showcase
the framework simplicity through examples.
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Figure 2.1: The bci-interface focuses on the user application layer in the BCI2000 model

Secondly, we want to be able to write dynamic BCI applications. Usual BCI applications
are aimed at achieving one simple task: steering an avatar, controlling a cursor, selecting
objects or bins. However, our goal is to allow a BCI user to take control of a humanoid
robot and perform complex tasks. This implies using multiple paradigms as one interface
cannot fit all of our needs. For example, displaying SSVEP arrows to control the humanoid
steering may be satisfactory. Yet, these same arrows become cumbersome when we want to
achieve grasping and another method has to be developed–as we see later–or these arrows
could also be used to control the humanoid’s gaze or a limb. More importantly, we definitely
want to be able to control all of these within a single application. It is then necessary to be
able to dynamically switch between different BCI control schemes, a possibility offered by
bci-interface that is also showcased in the examples.

The implementation details of the library are provided in Appendix A.

2.2 Dynamic Background and SSVEP Stimuli Interactions

In this section we present an experiment we carried out to determine the influence of the
video feedback on the brain-computer interface performance of a system we designed to steer
a humanoid robot. First, we introduce the interface used for the control and the motivation
of the study. Then we present the experiment that was conducted, the results it brought and
how we adapted our interface to reduce SSVEP false positives.

2.2.1 Motivation

At the very start of the project, our aim was to try out simple set-up to catch-up with the state-
of-the-art. The first BCI application we designed [73] uses the g.tec system and is based on
the SSVEP paradigm that we adapted to steer a humanoid robot. In this application, we made
so that the SSVEP stimuli are blended into the video feedback from the robot in order to offer
an immersive experience to the user. Indeed, the interface provided by g.tec consisted in a
separate box composed of four flashing LEDs, which was nearly impossible to envision in
an immersive set-up. Our interface can be seen in Figure 2.2. At that time we hypothesized
that the SSVEP classification performance is not affected by the video feedback.

Initially, the user of the BCI is trained with a still image from the robot’s camera. Indeed,
as the robot doesn’t move during the training, the background video is nearly static. To make



54 Building Interface for Robot Control with SSVEP

Figure 2.2: The interface used to steer the robot. Each arrow is rendered with own frequency that is

different from the others. Stimuli are integrated within the video feedback of the robot’s embedded

camera. The robot moves to the direction pointed by the arrow the user is focusing onto. If no arrow

is currently emphasized, the robot stops moving.

sure that the training is successful, the user tries to “activate” each stimulus successively by
focusing on each designated–by another user–flickering arrow. If the user deems the perfor-
mance of the interface satisfactory s/he can try to control the robot by thought, otherwise
s/he undergoes another training session until success.

This demonstration was performed several times with different users. However, while
the users might feel confident about the performance of the interface during this test run,
they often complained as the interface was less responsive during the actual control of the
robot. This led us to reconsider the hypothesis that the performances of the classifier were
not affected by the video feedback provided during the control of the robot. We later refer
to “video feedback” as the background video displayed to the user in the interface that is fed
back from the robot’s embedded cameras. The term “static video feedback” refers to a still
image shown to the user, i.e. while the robot is not moving, while the term “dynamic video
feedback” refers to moving images due to the robot movement.

The study we investigated aims at measuring the effect of dynamic video feedback on the
performance of our BCI system; if this effect is indeed observable, we propose the “natural”
solution of training the user with dynamic video feedback to account for the modification
in the background that might affect the SSVEP response such as variation in luminosity
and distraction induced by the moving background. This solution is tested in parallel with
the initial study. In the following section we present the experimental protocol designed to
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measure the effect of the dynamic feedback and our proposed solution to solve this issue.
The results of this experiment are then presented. Finally, we discuss the outcomes of this
experiment and introduce an alternative solution.

2.2.2 Material and Methods

The following section presents the experiment we conducted with five subjects regarding the
impact of video feedback on BCI performance during steering control.

2.2.2.1 Subjects & Material

Five healthy volunteers participated in the experiments, four males and one female, aged
24±1.4 y. One of them, later referred to as Subject 1, had previous experiences with the BCI
steering interface, the others however had no experience of BCI usage.

We use a g.USBamp (24 Bit biosignal amplification unit, g.tec Medical Engineering
GmbH, Austria) to acquire the EEG data from the user’s brain at a sampling frequency of
256Hz, bandpass filtered between 0.5 and 60Hz with a notch filter at 50Hz to get rid of the
power line noise. The electrodes positioning is shown in Figure 2.3. We use 8 Ag/AgCl
active electrodes. The electrodes are placed on the POz, PO3, PO4, PO7, PO8, O1, O2 and
Oz positions of the international 10-20 system [74], Fpz is used as the ground electrode and
the earlobe as a reference.

The experiments are conducted with a HRP-2 humanoid robot running the control system
described in the previous section.

During the experiment, the user is comfortably seated in an armchair about 1 meter away
from a 17" LCD screen operating at a refresh rate of 60Hz upon which the user interface
described in the previous section is displayed.

2.2.2.2 Experiment Protocol

These experiments have two goals:

• Assess the negative impact of video feedback on BCI performance in the experimental
conditions described in [73], and

• explore the effect of training the user with dynamic video feedback.

Therefore we evaluate the performance of the BCI system under two conditions: (i) static
video feedback and (ii) dynamic video feedback, when the user has been trained under two
conditions: (a) train with static video feedback and (b) train with dynamic video feedback.

Training under static video feedback condition
In this condition, the robot is static and the user is showed the feedback from the robot’s

camera. The user sees the interface described earlier and s/he is given visual instructions
to attend to one specific arrow. The user has to look to the arrow for 10 seconds, there is a
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Figure 2.3: Electrodes positions for the experiment

3 seconds break between each arrow and each arrow has to be attended 5 times, therefore
the whole training takes about 4 minutes and 30 seconds. The order of the indications is
pre-defined (a cycle is always up, right, left and down) and known to the user. Even though
the classifier–computed from previous experiments–is also running during this training, the
user is shown no feedback.

Training under dynamic video feedback condition
This condition is similar to the training under static video feedback except that when the

visual indication is given to the user the robot starts moving toward this direction to repro-
duce real dynamic conditions.

Performance evaluation under static condition
This condition is also similar to the training under static video feedback but the display

order of the arrows is random and unknown to the user. The user is given feedback about
his performance; if the classifier’s output is different from zero, the corresponding arrow is
highlighted.

Performance evaluation under dynamic condition
This condition is similar to the previous one but the output of the classifier is used to

drive the robot.
As BCI performances tend to decrease over a unique session, the experimental conditions

are shuffled between the subjects in order to give unbiased results. However, for practical
reasons, performance evaluations under a similar training are done consecutively. Therefore,
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one starts training with either static or dynamic video feedback then undergoes performance
evaluation under static and dynamic condition (in whichever order), then trains with the
other video feedback condition and finally undergoes performance evaluation under both
conditions.

2.2.3 Experimental Results

We present the results of previously described experiments. In Figure 2.4, the individual re-
sults of each subject are given. For each training condition we give the average performance
of the classifier for all classes. False positive rates, however, are not reported, as they are
similar across all conditions and fall below the 10% rate.

Figure 2.4: Individual results of the experiment

The first result that pops up is that, in accordance with our users’ feedback, the classifier
performances are indeed reduced when it is evaluated under dynamic feedback condition. In
average we can observe a significant 14.2% (± 3.2) performance loss between static video
feedback performance and dynamic video feedback performance. This clearly explains the
difficulties our users encountered when steering the robot in spite of otherwise good perfor-
mances.
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On the other hand, while we still witness a performance loss between static and dynamic
conditions, the dynamic training had the positive effect we expected. The average perfor-
mance loss falls to 4% (± 1.5) which is much more manageable.

Finally, the performance of the classifier trained under dynamic conditions is on par with
the performance of the classifier trained under static conditions with regard to the evaluations
under static conditions. Thus, it seems recommendable to train under dynamic conditions to
ensure maximum performance under all conditions.

2.2.4 Discussion

The previous investigation shows that the dynamic video feedback negatively impacts the
performance of the BCI system. We identified, at least, three possible causes of this issue:

• Distraction due to what is happening in the video

• Distraction due to what is happening around the user

• Variation in luminosity below the stimuli shown to the user

The first hypothetical cause is unlikely. In recent works [47] [42] in virtual environment,
SSVEP stimuli were integrated inside the environment in a way similar to what we did with
live video feedback. In these works, no performance loss is reported to support this first
hypothesis.

The second hypothesis is also unlikely. While the user might indeed be distracted by
the robot’s movements that are happening next to her/him and, while it may impact the
performance, this would affect both training conditions in the same way and there would be
no difference between the two as the dynamic training does not address this issue.

Finally, the luminosity variation in the scene is the most likely hypothetical candidate
cause as this would affect the shape of the SSVEP generated by the brain. This also explains
the difference we can observe from similar experiments in virtual reality environment as the
lighting of the scene is much more controlled in those environments than in live environment.
The gain obtained by training under dynamic conditions can then be explained by the fact
that the classifier is trained with a wider variety of SSVEP shapes and therefore performs
better at handling variations in the scene’s lighting.

2.2.4.1 Hybrid solution

While training under dynamic conditions is very much feasible, the slight performance loss
observed under static conditions for some subjects can be damageable, especially with sub-
jects who are already performing below average.

For such cases, we propose a hybrid interface that isolates the SSVEP stimuli so that they
are not affected by the video feedback. In this interface, the video feedback is not given in
full screen but is embedded into a static interface as illustrated in Figure 2.5. The SSVEP
controls are laid around the video feedback and therefore blink above a static background;
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Figure 2.5: Proposed interface to compensate performance reduction with dynamic background; the

video shown can be dynamic but the arrows are blinked on a static background

this removes the influence of the background luminosity on the SSVEP response. However,
some users, especially those who obtain good performance, do not like this interface as much
as the previous ones because they feel it is more difficult to realize what is happening in the
robot environment.

2.2.5 Conclusion

We performed performance evaluations of the SSVEP-based BCI system during the steering
of a humanoid robot based on negative feedback received from users during other experi-
ments. This evaluation shows that dynamic video feedback induces a loss of performance
but training under a similarly dynamic feedback can lessen this effect. An alternative solution
is also proposed to render the SSVEP stimuli above static background while still showing
live dynamic images from the robot. In future works, we hope to further investigate the
causes of these performances loss and find novel solutions to address this issue.

It is important to consider this issue if the user interface is displayed upon an HMD since
their resolution is usually rather low. Thus the “feed-in” solution is not applicable. For
example, with the Oculus Rift SDK-1, that we used significantly, we have an 800 × 480
resolution for each eye which almost fits the resolution of the robot’s embedded camera.
Thus, the interface shown in Figure 2.6 has to be used with the proper cautions that we
highlighted in this section.
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Figure 2.6: SSVEP stimuli displayed in the Oculus interface. All of the horizontal space and most of

the vertical space that can be shown to the user is used by the camera feedback which prevents the

use of a “feed-in” rendering solution.

2.3 SSVEP stimuli design for object-centric BCI

In Chapter 3, we propose a novel framework, the “object-centric” BMI framework, to per-
form whole-body humanoid robot control using a combination of techniques: task-oriented
control, object recognition and SSVEP blending. When objects seen by the robot’s embed-
ded camera are recognized, SSVEP stimuli are overlapped on those objects to allow the user
to select the object of interest through SSVEP, and let the robot autonomously perform the
appropriate task using affordance techniques. A similar technique is used to perform tasks
that are not related to objects. For example, arrows are overlaid on the embedded’s camera
feedback to allow the user to steer the robot freely. In order to overcome classification er-
rors –that are unavoidable– we introduce an enforced selection scheme which requires the
users to maintain their object’s selection for a certain amount of time in order to trigger a
robotic action. In our first implementation [75], the certain time was set to 3 seconds and we
reported a 100% successful objects’ selection.

We believe this approach can be promising to allow BCI users to perform complex robotic
tasks despite the limitations of EEG-based BCI. However, in order to make the control ex-
perience smoother, the design of the SSVEP stimuli has to be improved to allow a faster
selection of the objects and a better experience for the user. Indeed, various parameters can
affect the strength of the SSVEP answer: the stimulus color, shape and size [24][25][26][27].
Improving the strength of the SSVEP answer can thus be done through a “better” presenta-
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tion of the stimulus which should allow the recognition process to be more reliable and
faster.

In this section, we investigate different designs for the SSVEP stimuli and evaluate them
based on two criterions:

1. the stimulus design that provides the most accurate and fast selection;

2. the stimulus design that is most preferred by the users.

We report on two user studies we conducted:

1. The first study paves the way for the second. It considers 6 different stimuli design
and involves 3 subjects. The results of this pilot study are presented together with the
discussions which led to the design of the second experiment.

2. In the second study, 5 different stimuli design are proposed, 3 kept from the pilot study
and the new 2 others being considered by this study alone. The design and results of an
experiment performed over 10 subjects are presented. We could identify two stimuli
as being relatively better for the purpose of object-centric BMI.

We believe that providing the best stimulus design allows one to build a more reliable
interface and provide a more interactive experience to the user.

2.3.1 Material and methods

At first, we ran a set of pilot experiments to narrow the scope prior to an in-depth investiga-
tion. This is due to the high number of the conditions we considered and the higher number
of factors involved in the results: frequency, color and inter-subjects variability are accounted
in this pilot study. As a result, we qualified few promising conditions to be explored more
deeply, and gained a better understanding of the experimental protocol. In this section, we
introduce the methods we adopted in our work. The SSVEP display and extraction methods
we employed in these studies were introduced in the previous chapter. When relevant, a
distinction is made between the pilot study and the following in-depth one.

2.3.1.1 SSVEP “enforced-selection” paradigm

The “enforced-selection” paradigm is chosen in this experiment. This paradigm tackles pos-
sible interpretation errors (false positives) which are prone to happen during a BCI session.
Indeed, the user can be distracted or introduce noise in the EEG data by moving involuntarily.

A typical SSVEP classification algorithm delivers a new classification a few times per
second. In the “enforced-selection” paradigm, the user has to sustain her/his selection for a
“given” time prior to a firm validation by the classifier. In other words, the classifier has to
continuously provide the same output for a “given” time. For example, using our classifier
and a “given” time of 2 seconds, the classifier has to give the same output 10 times in a row.
This “given” time can be tuned to fit the user performance. In later sections, we refer to this
time as Tselection.
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2.3.1.2 About code-modulated visually evoked potentials (c-VEP)

Code-modulated visually evoked potentials (c-VEP) rely on a pseudorandom code to mod-
ulate visual stimuli. While they originate from the same neurophysiological background as
SSVEP, they also outperform them in terms of accuracy and training times [76]. We had the
opportunity to try a c-VEP system. However, in our —rather limited– experience, it did not
perform exceptionally well in our robotic context. After training a user with the c-VEP sys-
tem and assessing his ability to trigger stimuli selection, we asked him to perform objects’
selection that he was not able to achieve unless we adopted a specific stimulation pattern
for the object that is introduced as the “Strong hard-mask condition” in Section 2.3.1.3. Us-
ing this display method, the user was able to perform selections with the c-VEP system.
This empirical observation suggests that, in order to use a c-VEP detection system in our
experiment, we would have to train the subject for each pattern.

2.3.1.3 Considered SSVEP display methods

Pilot study The following display conditions are considered in this pilot study:

Reference
Simple square-shaped stimulus located at the center of the object recognized within
the camera image flow.

Hard mask
The “mask", i.e. the shape of the object, is flickered, the stimulus is a hard color.

Transparent mask
The mask is flickered, the stimulus is a transparent color, thus the user always sees a
part of the actual background, the transparency value of the mask can be parameter-
ized, in this study we considered a 0.5 composition value.

Inverted color
The mask is flickered, the stimulus inverts the color of the area covered by the mask
thus creating high contrast.

Brightness modulation
The mask is flickered, the stimulus rises and lowers the luminosity of the area covered
by the mask.

Brightness modulation with black and white background
The stimulus acts as in the previous condition, but the background is displayed in black
and white to create more contrast.

The Figure 2.7 illustrates all the stimuli design that we implemented and tested in the
pilot study.
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(a) Reference condition (b) Hard mask

(c) Transparent mask (d) Inverted color condition

(e) Brightness modulation condition (f) Brightness modulation with B&W bg

Figure 2.7: Stimuli conditions considered in the pilot study as seen by the users during the

experiment.
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SSVEP display optimization study Based on the results of the pilot study, including feed-
back from the users, we decided to restrain the stimuli presentation to few promising ones
and exclude the least performing ones.

Excluded conditions

We decided to exclude two of the conditions that were initially considered:
– The “Transparent” condition: since despite being well received by the users, this condition
performed poorly during the pilot study.
– The “Invert color” condition: as this condition performed poorly both in the quantitative
and subjective parts of the pilot study.

Finally given the low difference between “Brightness modulation” and “Brightness mod-
ulation with black and white background”, we decided to also exclude the former one from
this study.

New conditions

Since the design of the pilot experiment, we gained the ability to project the 3D graphical
(mesh) model of the object onto the scene, offering a new presentation modality that we test
in this study. The stimulus alternates between two states: the “model” state that can be seen
in Figure 2.8 and the “hard mask” state. This condition is later referred to as the “hybrid”
condition. It is important to notice that the “hybrid” condition totally hides the real object
from the user. However, it shows a realistic representation of the object in place of the real
one. We believe that this method helps us to present the object in an “interactive” way as the
object stands out due to the difference in lighting conditions between the learned models and
the objects presented to the user.

Figure 2.8: The model of the object is superposed on the actual image and flickered to trigger an

SSVEP from the user.

We also introduce another alternating condition based on our observation with the c-VEP
system reported in Section 2.3.1.2. In that condition, the stimulus alternates between two
states: the “hard mask” state where the color of the mask is chosen according to the object
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(a) “Active” stimuli (b) “Inactive” stimuli

Figure 2.9: Strong hard mask condition: a condition based on the “hard mask” one but aimed at

creating a higher contrast.

and another “hard mask” state with a black mask. It limits the differences that can exist
between the training stimulus –usually red patches over a black screen– and the stimulus
that can be recognized. This condition is later referred as “strong-hard mask” and similarly
to the previous one, it totally hides the real object from the user. However, in that condition,
no realistic representation of the object is shown to the user. This condition is shown in
Figure 2.9.

In conclusion, the following conditions are studied in the SSVEP display optimization
experiment: “Reference”, “Hard mask”, “Brightness modulation”, “Hybrid” and “Strong-
hard mask”.

2.3.1.4 Material

We use a g.USBamp (24 Bit biosignal amplification unit, g.tec Medical Engineering GmbH,
Austria) to acquire the EEG data from the user’s brain at a sampling frequency of 256Hz,
bandpass filtered between 0.5 and 30Hz with a notch filter at 50Hz to get rid of the power
line noise. We use 8 Ag/AgCl active electrodes. The electrodes are placed on the POz, PO3,
PO4, PO7, PO8, O1, O2 and Oz positions of the international 10-20 system [74], Fpz is used
as the ground electrode and the right earlobe as a reference.

2.3.1.5 Subjects

Pilot study
Three male subjects with normal vision capabilities (i.e. without sight correction glasses

or contact lenses), tagged A, B and C, aged 26±1.2 yo, carried out this pilot study. During
each experiment, each subject is comfortably seated in an armchair, about 1 meter away
from a 17′′ LCD screen with a 60Hz refresh rate operating at a 1920 × 1080 resolution. In
the pilot experiment, we only recorded the EEG signals without displaying any feedback on
their choices, since all what we wanted at this stage, is to process their answer to the SSVEP
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stimuli. Subject A had extensive experience of SSVEP-based BCI while the other two had
none.

Additionally, a fourth subject, referred to as Subject D, participated in the pilot study.
But he had difficulty to focus on the task and thus, his EEG records are discarded; yet his
subjective answers are accounted for in the discussion.

SSVEP display optimization study
10 subjects, aged 26±2.6 yo, 2 female, 1 left-handed, were involved in this study. They

all had normal or corrected to normal vision. During the experiment, the user was comfort-
ably seated in an armchair about one meter in front of a 17′′ LCD screen with a 60Hz refresh
rate, upon which the testing interface was displayed at a 1920 × 1080 resolution. Five sub-
jects had prior experience with SSVEP-based BCI and the five other subjects were complete
novices. 6 of them play video games frequently or very frequently.

2.3.1.6 Experimental protocol

Pilot study
For each subject, experiments are divided into several trials: 3 for each condition (×6)

and for each object (×3), that is 3 × 6 × 3 = 54 trials. The following is an example of a
single trial.

A scene is presented to the user with several objects in it. The experimenter tells the
subject which objects are in the scene and in which order s/he should select by thought each
object. The objects then start flickering using the “Reference” condition presented above.
The flickering occurs for 10 seconds then stop for 5 seconds and restart with a different
condition. When all the conditions for the current object are made, the subject switches
her/his attention to the following object in a predefined order. The experiments ends when
all the objects with all conditions are performed.

During a trial the frequency and color of the stimulus displayed on an object are known
to the experimenter. We perform several trials with one subject to shuffle frequencies and
colors. We also introduce a short break between each trial to allow the subject to rest as the
experiments can be exhausting. The frequencies considered in this experiment are 6, 7, 8, 9,
10, 11 and 12Hz. The visual angle between the stimuli is about 10°.

SSVEP display optimization study
First, each subject performs a training session on BCI allowing her/him to use the SSVEP

paradigm. The training is based on the presentation of rectangular shapes flickering at the
different frequencies we wish to train, i.e. we are not using the shapes that will be used in
the experiment. The reason of the latter choice is to reflect the variety of shapes that may
be presented to them during actual robotic control scenarios. The training system uses 4
different frequencies: 6, 8, 10, and 14Hz. The frequencies were carefully selected to have
neither common first or second harmonics and to be below 20Hz to minimize the risk of
eliciting an epileptic crisis in healthy subjects as advised in [28] while remaining displayable
on 60Hz monitors using the method we described above.

The user then undergoes an experimental trial that is presented to her/him as a game to
reduce the “boredom” issue reported in the pilot study. A trial is limited in time: Ttrial. During
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the trial, the user is presented with three objects and is prompted to select one among the
three within a certain time limit: Tlimit. The objects are presented using one of the techniques
discussed previously whereas flickering frequencies are chosen randomly among those used
in the training phase. The objects, flickering frequencies and presentation conditions are
chosen randomly to span all the conditions we wish to test. To select an object, the BCI uses
the “enforced-selection” paradigm introduced earlier and Tselection refers to the “given” time
to trigger a selection. If the user selects an object successfully, s/he scores points. If s/he fails
to select an object within Tlimit, no point are awarded nor deduced. However, if the wrong
object is selected, points are deduced. This highlights the fact that a wrong selection is more
harmful than no selection. After either an object has been selected or Tlimit is reached, a new
target object is selected by the system and the “game” goes on. The goal for the subject is
to achieve the best possible score and to improve her/his score from trial to trial. After each
trial, we change the timing criteria: Ttrial, Tlimit and Tselection.

Each subject undergoes three trials with a 2 minutes break between each of them; the
trials were performed in different order by different subject:

Trial A Ttrial is 8 minutes, Tlimit is 10 seconds and Tselection is 3 seconds.

Trial B Ttrial is 7 minutes, Tlimit is 7 seconds and Tselection is 2 seconds.

Trial C Ttrial is 4 minutes, Tlimit is 4 seconds and Tselection is 1 seconds.

While the trials only span 3 possible values of Tselection, we also record the potential results
under smaller values of Tselection. For example, in Trial 2, while Tselection is set to 2 seconds,
we have the ability to determine the capacity of the user to perform object selection with
Tselection below 2 seconds as well. In particular, Tselection = 0s is similar to removing the
“enforced-selection” paradigm.

After completing the third trial, the user is asked a series of questions in order to pool
her/his subjective impressions on the different timing conditions and on the stimuli that are
presented. This questionnaire is given in the Appendix C.1.

2.3.2 Pilot study – Results and discussion

2.3.2.1 Results computation

We define an observation as the 10 second period during a trial when the user is focusing on a
particular object (and hence a particular frequency) in a given condition. After several trials
with a subject we have a collection of observations with different frequencies and conditions.

For a given observation we compute the power spectrum density, in either an electrode
channel or a combination channel, from 3 seconds after the beginning of the observation.
Then we re-compute it every 200ms until 4 seconds before the end of the observation. Thus,
an observation provides us with 15 values for the associated (frequency, condition) couple.

The computation was done on the following channels, which should deliver the best
SSVEP response [31]:
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(a) Subject A (b) Subject B

(c) Subject C

Figure 2.10: Normalized response intensity (power value at the L2 derivation) for subjects A, B and

C, at the stimulation frequency for each condition and each frequency considered in the pilot.

• L1 = 2 × OZ − O1 − O2

• L2 = 4 × OZ − O1 − O2 − PO7 − PO8

• L3 = 4 × OZ − O1 − O2 − PO3 − PO4

• L4 = 2 × OZ − PO7 − PO8

2.3.2.2 Power analysis

We present the results of the pilot study based on the power analysis obtained previously.
As the results are similar for the different channels we considered, we report only those
processed from L2. Given the low number of participants in the pilot study and the issues
we encountered with the experimental protocol, we only considered these results to identify
conditions that performed poorly and exclude them from the final study. Therefore, we
consider the amplitude of the SSVEP generated by each condition at the different frequencies
we elected.

In Figure 2.10, we report the average intensity of the power spectrum over the L2 deriva-
tion at the stimulation frequency, computed as described previously, for Subject A, B and
C. The intensity is normalized by the median intensity at the stimulation frequency for each
subject.
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For each subject and frequency considered, the difference in response intensity between
the conditions is significant (p < 0.001). Although there is some variation among the sub-
jects in the intensity of the answer to the stimuli and the ranking of those stimuli, the follo-
wing trends emerged:

• The “Hard mask” and the “Reference” conditions performed well at all frequencies. It
is expected that they would perform similarly since both are patches of color flickering
on the screen.

• Both “Brightness Modulation” conditions performed well at low frequencies —below
10Hz– but poorly at higher frequencies.

• The “Transparent mask” and “Invert Color” conditions perform poorly at all frequen-
cies, except 10 and 12Hz for the “Invert color” condition in Subject A’s case, and 6
and 7Hz for the “Transparent” condition in Subject C’s case.

These observations led to the exclusion of the “Transparent mask” and “Invert color”
conditions from further study.

2.3.2.3 Subjects’ feedback

We present results of the pilot study based on subjective feedback obtained from the partici-
pants. These results guided our choices in the design of the next in-depth investigations. We
first present the suggested rankings of the stimuli. We then address user’s remarks regarding
the experimentation protocol.

Ranking of stimuli conditions Subjects A, B, C unanimously ranked the stimulus simi-
larly, that is (from the most to least preferred ones):

1. Luminosity variation
2. Luminosity variation with black and white background
3. Transparent mask
4. Hard mask
5. Reference condition
6. Color inversion condition

The fourth subject D, however, suggested a different ranking only for the 4 first stimuli
relatively to previous A, B, C subjects ranking, that is:

1. Transparent mask
2. Hard mask
3. Luminosity variation
4. Luminosity variation with black and white background
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First, even if they did not always consider this criterion as the most important, all the
users reported that the luminosity variation condition was the one they found less tiring. The
“Transparent” and “Hard” color condition were always ranked in that order for that reason.

It is interesting to notice that all subjects had similar remarks about the different stimuli
but choose to rank them differently. Subject D chooses to rank the luminosity conditions
below because, while s/he preferred them esthetically, s/he felt it was easier to focus on the
simpler masks that are the “Hard” and “Transparent” conditions.

Finally, the color inversion condition was unanimously pointed as being the worst condi-
tion; the color scheme resulting in the RGB components inversion was perceived as difficult
to look at and aggressive for the eyes. Furthermore, as all the objects look similar in this con-
dition, the subjects felt it was difficult to focus on one specific object during this condition
because all objects tend to blend within their field-of-view.

Remarks concerning the experiment protocol Two issues concerning directly the exper-
iment protocol are raised by the participants: (a) the duration, and (b) the boredom. However,
it appears that both issues are related.

Regarding the timing during a trial: the subjects have to look at each object flickering
with each condition. For each object and condition, each subject has to look for 10 seconds.
Then, a 5 seconds break is allowed. That is 15 seconds per object and condition. For three
objects and six conditions, as considered in this pilot study, this represents 270 seconds. We
round up to 5 minutes to account for the breaks between each trial. To accumulate more data,
we perform similar trials three times, hence 15 minutes. If we wish to study each object for
each frequency –i.e. from 6Hz to 12Hz– one needs 105 minutes experiments, i.e. 1 hour and
45 minutes. This is indeed a very long experimental duration especially given that it is tiring
to look at the stimuli for such a long time.

The boredom is a consequence of the long duration of the experiment and the lack of
feedback during the experiment. Indeed, the only goal of the experimenter is to gather infor-
mation about the effectiveness of the different stimuli conditions and thus no feedback was
given to the subject while s/he is performing the experiment. The subject simply stares at
the flickering stimuli for a long period of time without any visible results of her/his actions,
which is certainly boring.

This was taken into account when designing the next experimental protocol as we tried
to make it shorter and more engaging for the users.

2.3.3 SSVEP display optimization – Results and discussion

In this section, we first discuss the quantitative results of the in-depth experiments based on
the selection accuracy and analysis of the EEG data. Then, we present the qualitative results
regarding subjective appreciations of the stimuli obtained from analyzing the questionnaire
answers and remarks. We finally present and discuss the most pertinent free answers to the
questionnaire.
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2.3.3.1 Selection accuracy based on stimuli design

The conditions are ranked depending on the amount of correct selections the subjects made
and on the average time they needed to make them.

Figure 2.11: Average time to achieve a selection per condition and Tselection for all the subjects.

We report the average selection time per condition in Figure 2.11. An analysis of vari-
ance reveals that the stimulus condition does not influence the selection time for successful
selections (for all Tselection, p > 0.2). Hence, we will focus on the effect of the stimuli condi-
tions on selection accuracy. The average selection accuracy for all the subjects is shown in
Figure 2.12.

The accuracy that we obtained is below what is traditionally reported in the literature (for
other contexts). This is mostly due to two factors we explain hereafter.

On the one hand, the existence of the zero-class and the introduction of the “enforced-
selection” paradigm induce the possibility of false negatives. A false negative occurs when
Tlimit is reached before the user could hold a selection for Tselection, whereas a false positive
occurs when the user holds a selection that is different from the assigned target for a time
longer than Tselection. Figure 2.13 illustrates the effect of the “enforced-selection” paradigm.
It shows that as Tselection grows, it becomes more and more difficult to perform a wrong
selection such that for Tselection = 1s, false positives account for about 68% of unsuccessful
trials, whereas for Tselection = 2s false positives account for about 10% of unsuccessful trials
and 80% of subjects performed less than 1 wrong selection at Tselection = 3s.

This means that the difference in selection accuracy does not simply measure the user’s
ability to trigger a selection with a given stimulus condition but also her/his ability to main-
tain her/his selection of that stimulus. This is shown in Figure 2.14 where one can see that
as Tselection increases, the selection accuracies of the “Reference”, “Brightness modulation”
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Figure 2.12: Average selection accuracy per condition and Tselection for all the subjects.

Figure 2.13: Overall repartition of true positive and false positive/negative depending on Tselection,

s.e.m. for each category is below 5%.

and “Strong-hard mask” conditions are stable or decrease while the selection accuracies of
the “Hard mask” and “Hybrid” conditions increase. This indicates that these two conditions
allow the user to maintain a selection more easily.

On the other hand, the low accuracy at Tselection ≤ 1s can be explained by the SSVEP
extraction method we use. In fact, we noted that, the classifier tends to favor one or two
classes over the others as soon as the user starts observing an SSVEP stimulus. This leads
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(a) Tselection = 1s (b) Tselection = 3s

Figure 2.14: Repartition of true positive and false positive/negative per stimulus condition for two

values of Tselection. In (a), all s.e.m. are below 5%. In (b), s.e.m. for false positives are below 3%,

other s.e.m. are below 7%.

to a large number of false positives for Tselection ≤ 1s. At Tselection = 0s, the first non-null
outcome of the classifier is considered as the selection result, selections are thus confirmed
quickly and errors are common. That is why the “enforced-selection” paradigm is introduced
in the first place.

This effect can be seen in Figure 2.15 where one can see that false positives selection
times correspond with the beginning of a round at Tselection = 0s. The favored classes vary
from subject to subject hence we first ranked the classes depending on the number of bad
selections that they triggered. For each subject, this ranking was the same for all values of
Tselection. We then report in Figure 2.15 the proportion of false positives caused by the class
ranked from 1 to 4. Rank 1 being the class that triggered the most false positives for a specific
subject.

Note that, at Tselection ≥ 2s, three subjects –30% of all subjects– account for 69% of the
errors.

Other factors may also affect the performance such as subject’s fatigue, mistakes or frus-
tration –e.g. following a sequence of unsuccessful trials. However, we believe those played
a minor role in this study.

Finally, for every Tselection, we perform an analysis of variance on the proportion of good
selections performed by the user depending on the stimulus conditions. We found no signif-
icant difference for Tselection < 1s (F(4,45) < 1.5, p > 0.25). However, we found a significant
difference in selection accuracy for Tselection ≥ 1s (for Tselection < 2s, F(4,45) > 2.6, p < 0.05
and for Tselection ≥ 2s, F(4,45) > 5.5, p < 0.001). A Tukey HSD test reveals three homoge-
neous subsets at Tselection ≥ 2s for alpha = 0.05. The first group includes the “Hard mask”
and “Hybrid” conditions. The second group includes the “Hybrid”, “Brightness modulation”
and “Reference” conditions. The third and last group includes the “Brightness modulation”,
“Reference” and “Strong-hard mask” conditions. Pair-wise tests results are reported in Ta-
ble 2.1.

We can, therefore, conclude the following results:

• The “Hard mask” and “Hybrid” stimuli conditions provide a better selection accuracy
and fewer false positives. It seems that these conditions allow the user to better main-
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Figure 2.15: Average false positives selection time for all values of Tselection and repartition of

classes causing a false-positive.

Table 2.1: Statistical comparison of the studied stimuli methods based on selection accuracy. Green

indicates that the stimuli in the current row is allowing more good selections than the stimuli in the

current column, orange indicates an indecisive outcome and red indicates that the stimuli in the

current row allows fewer good selections than the stimuli in the current column. B. M. refers to

“Brightness Modulation”, S-h Mask refers to “‘Strong-hard Mask”.

Reference Hard Mask B. M. Hybrid S-h Mask

Reference

Hard Mask

B. M.

Hybrid

S-h Mask

tain her/his attention on the stimulus.

• Other conditions cannot be distinguished from each other.
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2.3.3.2 EEG analysis

Method The goal of this analysis is to confirm that the conditions that performed the best
during the selection “game” did so because they triggered better SSVEP responses. Since
the analysis window of the EEG data used by the classifier lasts 2 seconds, we only use the
trials where Tselection ≥ 2s and we only consider successful selections. We then define as an
observation the 4 seconds period that starts two seconds before the command detection that
triggered a successful selection. This is done for each frequency and condition. Thus, we
gather a collection of observations.

An example of observation is given in Figure 2.16 where Tselection = 3s. In this case, the
user was prompted with a target selection at t = 0 corresponding to the classifier output 3.
The classifier starts recognizing the user’s intention from t = 3s and the user was able to
maintain that command for Tselection thus triggering a selection. The observation window is
then [1000 : 5000]ms.

Figure 2.16: Example of an observation window.

Within an observation, we compute the spectral density on an interval of 2 seconds every
125 milliseconds, thus in the previous example the first window is [1000 : 3000]ms and the
sixteenth and last window is [3000 : 5000]ms. The computation is made for each electrode
as well as for the Laplacian combinations of electrodes that we introduced earlier: L1, L2,
L3, and L4; we refer to those as channels. From this spectral density, we obtain the spectral
power at the stimulation frequency. Hence, for each observation and channel we obtain 16
values. A graphical representation of an observation and of the sliding computation windows
is given in Figure 2.16.

The results we present in the following section are obtained as follows:
First, for each frequency and channel, we observe the mean of the spectral density seeking
for a general tendency. We then compute the average spectral density for each subject indi-
vidually as well as the grand average. For each subject, frequency, channel and computation
window, we put the spectral density power at the stimulation frequency on a scatter graph
along with the mean value and standard deviation of this dataset. This allows us to observe
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the tendency for each condition and channel. Finally, we use these values to perform two-
sample z-tests and compare the conditions pairwise per channel and per frequency. This
allows us to validate whether or not a particular condition is better than the other. The null
hypothesis of this test is “both conditions have the same average power value at the stimu-

lation frequency”. The two-sample z-test is performed with α = 0.01.

Results In this section, we analyze the results of the power analysis described above. The
results do not vary much between each frequency and channel therefore we will first present
the general trend of the results rather than the results per channel and then discuss some
specific differences at the end of the section.

Analyzing the grand average indicates that for each frequency, the “Hybrid” and “Hard
mask” conditions perform better than the others. The third ranking is achieved by different
conditions depending on the frequency that is considered. For 6Hz and 9Hz, it is “Refer-
ence”, for 8Hz it is “Brightness modulation” and for 10Hz it is “Strong-hard mask”. This
outcome is coherent with the previous results. We then focused on the individual results to
confirm this dominance.

The ranking of each condition is checked through a two-sample z-test. When the null
hypothesis can be rejected, we consider that the condition that provided a higher stimulation
“beats” the other. If the null hypothesis cannot be rejected, the two conditions are considered
equivalent for this particular channel and frequency. For each frequency, we rank the condi-
tions depending on the number of channels where they were able to outperform the others.
If a condition does not outperform another by 3 channels, i.e. 25% of channels, we consider
them as equivalent.

For 90% of the subjects, the order established as described previously is identical from
one frequency to another. In Table 2.2, we report this ranking. “Hard mask ” and “Hy-
brid” perform better than the others but can be considered as equivalent. “Reference” per-
forms better than “Strong-hard mask” and “Brightness modulation” but is worse than “Hard
mask” and “Hybrid”. Finally, both “Strong-hard mask” and “Brightness modulation” per-
form worse than the others.

These results are coherent with those of the previous observations: the EEG ranking of
the stimuli conditions we found is coherent with the ranking we obtained from selection
accuracies.

Finally, one subject –10% of subjects– had different results as “Brightness modulation”
came in the first or second place on every channel, i.e. as well as “Hard mask” and “Hybrid”
conditions scores for all the other subjects. However, this is coherent with the score this
subject obtained with the “Brightness modulation” condition since it is the one with which
s/he scored the most for Tselection ≥ 2s.

2.3.3.3 Questionnaire results

The first two questions address the subjective preference ranking of the stimuli. From each
of these questions we compute a score: the preference score and the enjoyment score. We
now explain how we compute these scores and we present the results we obtained.
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Table 2.2: Statistical comparison of the studied stimuli methods based on the EEG analysis. Green

indicates that the stimuli in the current row elicits a stronger SSVEP response than the stimuli in the

current column, orange indicates an indecisive outcome and red indicates that the stimuli in the

current row elicits a weaker SSVEP than the stimuli in the current column. B.M. refers to “Brightness

Modulation”, S-h Mask refers to “‘Strong-hard Mask”.

Reference Hard Mask B. M. Hybrid S-h Mask

Reference

Hard Mask

B. M.

Hybrid

S-h Mask

The first question asks the user to rank the stimuli according to her/his preference for use:
‘1’ mark being the preferred method and the ‘5’ mark is the least liked method. Given this
ranking we attribute a preference score of 5 to the stimulus that was ranked 1 by the user, 4
to the stimulus that was ranked 2, 3 to the stimulus that was ranked 3, 2 to the stimulus that
was ranked 4 and 1 to the stimulus that was ranked 5. The second question asks the user to
rank the stimuli according to their annoyance level. Hence, mark ‘1’ is the most annoying
and the mark ‘5’ is the least annoying. The enjoyment score is equal to the rank given by the
user. The average scores for these questions are shown in Figure 2.17.

Figure 2.17: Average preference and enjoyment scores obtained by each stimulus condition. The

higher the score, the better the users perceives the stimulus.

The “Reference”, “Brightness Modulation” and “Strong-hard Mask” are consistently
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ranked among the three most annoying conditions without any particular order. However,
there is a clear preference for “Brightness Modulation” over the other two, as well as for
“Reference” over “Strong-hard Mask”. Therefore, we propose the following “subjective”
ranking of the stimuli methods:

1. “Hard Mask”
2. “Hybrid”
3. “Brightness Modulation”
4. “Reference”
5. “Strong-hard Mask”

The other parts of the questionnaire focused on different criteria with respect to each
stimulus. These questions allow us to compare a stimulus with the other stimuli, but they
also provide an objective result. The scores are simply deduced from the marks given by
the user. The results are shown in the Figure 2.18. The categories in this figure follow the
order of the questionnaire but may have been reworded so that the “higher is better” precept
appears more naturally.

We can see from the results that the “Reference” and “Strong-hard Mask” conditions are
mildly appreciated with an average score around three in each category. Meanwhile, the
other three conditions scored sensibly higher especially regarding the ability, for the users,
to focus on these stimuli that are consistently rated higher up to five. These results are also
coherent with the objective ones, i.e. the stimuli that “worked” better scored higher on the
questionnaire. However, since the questionnaire was carried out after the experiment, the ob-
jective performance might have influenced some of the subjects’ answers (which is normal).
If these studies are to be reproduced by the reader, we advice taking care of conducting an
additional round of such questions priori to the objective measurements.

While there is a certain degree of variation among the subjects, some trends can be de-
duced from the results of the questionnaire. A very important issue noted from the users’
feedback is that most of the subjects tried to focus on a feature of an object to make a selec-

tion. Which explains that the “Strong-hard Mask” condition is not easy to be focused since
it totally hides the original appearance. Similarly, since the square used in the “Reference”
condition does not cover the entirety of the object made it difficult for the subject to focus
on their chosen object’s feature (namely if it is outside the graphical square). Finally, some
subjects chose “Brightness Modulation” over other conditions because it was softer to their
sight. However, the selection performance and the appreciation of the stimuli by the subject
did not match the users’ preference.

We now discuss the most unique and instructive answer to the questionnaire free remarks
parts. There were several different issues raised. However, almost all of them do not relate
to a specific SSVEP stimuli. We will now discuss the two most relevant remarks.

“Keep an outline of the object to help maintaining the focus”
This remark is relevant to all stimuli methods we tested. Indeed, when an object is

selected, the user gets feedback in the form of an outline of the object to indicate which
object is being selected. This users’ comment suggests that we keep the outline active at all
time and change its color when it is activated in order to ease the attention focus on the object
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Figure 2.18: Average score obtained by each stimulus condition in each category of the

questionnaire. The higher the score, the better the users perceive the stimulus.

of interest. This seems like a good idea and may help the stimuli to stand out even more.
If we were to detect stimuli that flicker above the perception limit [29] this would even be
necessary in order to differentiate “interactive” objects from the scene.

However, it is questionable whether this change would impact performance. In a sense,
this outline is already available when the SSVEP selection starts thus it is already here to
help “maintaining” the focus. It may be interesting to study the effect of such a permanent
outline on the selection speed in a future study specific to this issue.

“It was frustrating when the selection disappeared then came back”
This remark refers, in layman terms, to the false-negative phenomenon. For example, at

Tselection = 2s, the typical timeline of such an event is: (1) the user focuses on an object,
(2) it is recognized by the system for tS = 1.5s, (3) the system does not recognize it; or
it recognizes the wrong object for a short time tF N = 0.4s, (4) the system goes back to
selecting the object that is the focus of the user. Two things can happen at this point. Either
the user is able to finish his selection. Or, there is not enough time left to confirm the selection
and we reach Tlimit before the user can hold the selection for Tselection, resulting in a null trial.

Intuitively, it might seem possible to counteract this effect by handling short switches in
the classification output using a “tolerant” enforced-SSVEP selection that we introduce now.

In the enforced SSVEP-selection algorithm that was used in the study, if the classifier
output goes to zero while then the timer restarts and the user has to redo the entire selection.
For example, with Tselection = 2s, the user holds a selection for 1s but the classification
drops to zero, e.g. because the user lost his focus, for tdrop = 200ms, then s/he would have
to hold the selected command for another 2s in order to achieve the right selection. This
algorithm, dubbed the “tolerant” enforced SSVEP-selection algorithm, tolerates such short
falls to a zero class output. Going back to the example, if the selection drops to zero after the
user was focused for 1s then s/he only has to focus for 1s to trigger a selection. A possible
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implementation for this algorithm is shown in Algorithm 1, the following new notations are
introduced in the algorithm pseudo-code:

• TF N is the maximum time we allow for a zero-class drop
• tcommand is the current holding time of a non-zero command
• tzero is the current holding time for the zero-class
• command is the current output of the classifier
• previous_command is the previous output of the classifier

Algorithm 1 The “tolerant” enforced-SSVEP selection algorithm

1: function INTERPRETCOMMAND(command)
2: ⊲ Called by the interface to interpret the classifier output
3: ⊲ The function returns True when a selection is triggered
4: if command = 0 then
5: if previous_command Ó= 0 then
6: UPDATE(tzero)
7: if tzero ≥ TF N then
8: ⊲ 0 was hold for TF N discard previously hold command
9: previous_command ← 0

10: tcommand ← 0
11: tzero ← 0
12: end if
13: end if
14: else
15: if previous_command = command then
16: UPDATE(tcommand)
17: if tcommand ≥ Tselection then
18: return True
19: end if
20: else
21: previouscommand ← command
22: tcommand ← 0
23: tzero ← 0
24: end if
25: end if
26: return False
27: end function

We applied this algorithm to the classification data we recorded during the experiment for
all subjects. The results on the overall accuracy, at Tselection = 2s, are shown in Figure 2.19.
We can see that it generally has a null or negative effect for all TF N Ó= 0 and all conditions
that we considered, with the exception of the “Reference” condition for which we observe a
marginally positive effect for 250ms ≤ TF N ≤ 750ms.
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Figure 2.19: Overall effect of TF N on accuracy.

Figure 2.20 shows the effect of different values of TF N on two subjects who both reported
that they felt the selection was going away and coming back quickly. Yet we can observe
distinct effects of TF N on each subject. For Subject A, shown in Figure 2.20a, who has
rather poor performance initially–below 70%, the addition of a tolerance time significantly
improves the selection performance for all conditions. However, for Subject B, shown in
Figure 2.20b, who has a good level of selection performance initially and whose question-
naire had the commented answer, the addition of a tolerance time has a completely opposite
effect. This may due to an important rate of false positive selections that may not be visible
to the subject since s/he is focused on one particular object at the time of the experiment
and thus may miss short feedback on other objects. Finally, since the study was conducted
without tolerance time for false negatives, the feedback on the object of interest would drop
during the experiment which may have led to a drop of attention and thus make it difficult to
come back to a proper selection.

(a) “Bad” subject (b) “Good” subject

Figure 2.20: Effects of different TF N values on selection accuracy for individual subjects.

In the end, this opens up a new issue to find a good balance on this topic since an optimal
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choice of TF N would be guided by the rate of false positives and false negatives for each
particular subject. A thorough study on this topic may be of interest for future research.

2.3.4 SSVEP Display Optimization: Conclusion

This study brings two major results regarding the use of SSVEP stimuli for object selec-
tion. On the one hand, we have shown which display models allow better performances
both objectively, accuracy-wise, and subjectively, at the subject’s preference level. On the
other hand, we have shown both the effectiveness of the enforced-selection approach and the
existence of performance’s “plateau”.

Regarding the design of stimuli, we have shown that:

• The “hard-mask” and “hybrid” performed better on both the objective and subjective
criteria;

• The conditions that slightly altered the properties of the object to create a flickering,
i.e. the “transparent mask” condition and the “brightness modulation” conditions, per-
formed well at the subjective level but poorly functionally;

• The conditions that strongly affected the perception of the object, i.e. the “invert color”
condition and the “strong hard-mask” condition performed poorly on both criteria.

Although we tested only a limited number of stimuli methods, we can assess some prop-
erties that effective stimuli design should follow for optimal selection accuracy and approval
by the BCI users: the stimuli should cover the entire object but allow the user to see the
entirety of it so that s/he can focus on particular elements when performing the selection.
Furthermore, the stimulus design should keep a simple and bright design to maintain the
SSVEP properties.

Regarding the selection time, it seems that we reach a “plateau” in the selection perfor-
mance around Tselection = 2s as longer selection are more difficult to maintain due to false
negatives and shorter selections are unreliable due to false positives. However, having iso-
lated two sensibly better stimuli, it may be interesting to measure the information transfer
rate (ITR) of those two conditions under the “enforced-selection” paradigm and different
values of Tselection in order to better estimate an optimal Tselection regarding the speed-accuracy
trade-off.

Future research on this topic could focus on the issues raised by the questionnaire analy-
sis. In particular, the impact of “sustained” objects’ highlighting should be carefully evalu-
ated since it was only requested by one subject of the experiment. The most important issue
to face in the future would be those of false negatives and false positives which are responsi-
ble for unresponsive selections and false selections. We have shown by looking back at the
data we acquired during the second experiment that those were difficult issues to tackle yet
we did not have the opportunity to also address them at the user feedback level, which may
be beneficial.
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2.4 Conclusion

We have shown in this chapter several improvements that we brought to the BCI for robot
control and to the use of SSVEP for control purpose in general.

• We introduced a novel framework to design BCI applications with frequent paradigm
shifts at the core. This framework shows its value in the upcoming chapters where it
is extensively used;

• We demonstrated the negative effects of dynamic visual feedback in SSVEP applica-
tions and proposed a simple solution to counteract this effect. This solution is applied
throughout the experiments we conducted after its introduction except when using an
HMD due to technical limitations that we have addressed;

• We determined appropriate time criterion and an effective way to display SSVEP stim-
uli on top of real-world object to allow selection with both a high degree of accuracy
and a good user experience.

In the following chapter, we bring the use of SSVEP to perform whole-body control of a
humanoid control. The presented work takes advantage of all the issues we have raised and
resolved in this chapter.
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Chapter 3

Whole-Body Control with Steady-State
Visually Evoked Potentials (SSVEP)

As we explained in Chapter 1, independently of the technology used to acquire the user’s
brain activity, all BMI-based control application can be divided into two categories:

Neurofeedback based

This is the case of applications that try to understand the activity –
often the motor activity – of the brain and translate it to the controlled
device. This includes works that we have presented previously such
as the intelligent wheelchair for EEG-based BMI [54] or arm control
in ECoG-based neurofeedback [10], but also the control of a huma-
noid robot in fMRI-based BMI [68]. We later refer to this family of
application as “NF-based” applications.

Menu based

This is the case of applications that use stimuli, usually visual: P300
or Steady-State Visually Evoked Potentials (SSVEP), to map a behav-
ior on the robot through the use of a “menu”. For example, among
the works we presented, one can cite the work done in [31] where
a mobile robot is controlled through SSVEP stimuli or [63] where
a complex P300 interface allows the user to remotely control a mo-
bile robot and its embedded camera. We later refer to this family of
application as “menu-based” applications.

The impressive works we introduced earlier illustrate a dominant trend in current BMI-
based control. On the one hand, decoding the brain activity in order to map it onto the
controlled device; this is constrained by the fact that controlling the Cartesian motion of a
robotic arm by neuro-feedback requires a long and sustained training for the subject and
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usually perform with less than perfect accuracy and slowly compared to the capacity of
the controlled robotic systems they use as substitutes or surrogates. Furthermore, we can
question the actual need–beyond therapeutic benefits–of controlling an external device with
such a degree of precision to perform simple tasks. On the other hand, menu-based control,
while closer to what we are going to introduce as object-centric BMI in this chapter, still
limit the capacities of the robot to a few pre-programmed behaviors.

In this chapter, we introduce a novel approach to control a (humanoid) robot using
BMI. Moving away from the classical approaches–menu/icons selection or understanding
the motor intentions of the human to translate it to a device–we propose to move towards an
object-centric methodology. This is motivated by current development in neuroscience and
task-space control that will lead to such a possibility. We also assessed the viability of our
approach in an EEG-based demonstrator. We call this approach “object-centric” BMI.

3.1 Introducing Object-Centric BMI

Object-centric BMI

Object-centric BMI designs the extension of menu-based control to
the use of objects as a central point in the control of a robotic device
through BMI. The development of this framework originates from
the well-known task-space control paradigm employed in robotics,
the improvements of environment perception techniques in robotics
and recent developments in stimuli-based BMI. Those are introduced
here along possible limitations of object-centric BMI that we foresee.

3.1.1 From Cartesian-Motion to Task-Space Control

The task-function based control is a powerful control paradigm to design complex behaviors
for robots without explicit trajectory planning at the joint or Cartesian level. A task can
be seen as motion primitives or constraints that can be defined directly or indirectly in the
robot’s sensory space. The desired task can be defined simply as a state or a state error
vector in the sensory space, which is mapped into the robot’s motor space (joint actuators)
using an appropriate projection operator, e.g. the robot’s Jacobian in kinematics. A complex
behavior can then be planned as a succession of tasks, which can in turn be structured into
a hierarchical way: a stack of tasks. This formalism proved to be particularly suited for the
control of highly redundant robots; several complex scenarios have been setup using this
powerful control tool with a humanoid robot [77]. It has been extended to address issues
such as tasks scheduling and the fundamental issue of control continuity under discrete tasks
scheduling operations in the stack, such as tasks insertion, removal and swapping. Such a
controller is well suited to enable and disable behaviors based on the limited inputs of a BMI.

Indeed, contrary to other interfaces used to control a robot, a BMI is a rather unreliable
and very slow interface. As we have seen before, it is very difficult for the user of a BMI
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to gain accurate control of a robotic device. However, selecting a stimulus among many
can be reliably achieved. This observation leads to considering tasks as affordances on the
surrounding objects/environment. Thus, controlling a robot with a BMI becomes a problem
of selecting an (object, task) pair, which is simpler to achieve than closed-loop brain-motor
control.

3.1.2 From menu-based BMI to object-centric BMI

Object-centric BMI premises can be seen in works such as [64] and [75]. In those works, the
BMI is menu-based ([64] relies on the P300 paradigm while we chose to rely on SSVEPs).
These works originate from the menu-based applications but deviate in the sense that the
stimuli are not mapped to a single robotic command anymore but are adapted along the
course of the demonstration and actions. We discuss the pioneer experiment of [64] to illus-
trate this point.

The robot used in this experiment is a Fujitsu HOAP-2 humanoid robot. It is equipped
with a pan-tilt camera that is used to provide visual feedback to the user and locate objects
in the environment. The robot is able to walk autonomously, navigate based on visual in-
formation and pick up and place objects. Furthermore, the robot has prior knowledge of the
room layout. Finally, a second camera observes the scene from above and is used to locate
the destinations available for the robot.

Two important features distinguish this work from other menu-based BMI:

1. Stimuli are associated to different actions depending on the state of the robot and the
global task that the user wishes to accomplish.

2. The stimuli are not associated to a single motor action but rather trigger tasks selection
for the robot. The selected task is then executed independently of the user actions–he
merely observes the results of his selection–based on the sensory inputs of the robot.

The work we produced in [75] adopts similar principles but extends the capacities offered
to the user and improves the embodiment experience. In this present work, we formalize this
initial work into the object-centric BMI framework.

Object-centric BMI moves away from the standard association between a brain com-
mand and a robotic command. It is centered around the interaction between the robot and
its environment through the objects available within this environment based on the robot’s
capacities. In the end, we wish to extract an (object, task) pair that can be executed by the
robot and realizes the user’s intention. Ultimately, this allows the user to perform complex
tasks through her/his robotic avatar while maintaining the complexity of the control minimal.

3.1.2.1 Limitations of object-centric control

The principle of object-centric BMI applications is to move away from the mapping of stim-
uli to robotic actions towards the selection of (object, task) couples to provide better func-
tionalities to the user of such systems. However, not all tasks are suitable to this formalism.
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The simplest example that comes to mind is navigation. Yet, navigation can be thought
of as an object-oriented task. For example, in the work of [64], the robot autonomously
navigates towards a selected object without input from the user. Moreover, if no object is
available to guide the navigation, we can resort to using a shared-control approach that has
proven successful in previous works to navigate the robot until an object is available to switch
back to object-centric BMI control.

3.2 A framework for object-centric BMI

In this section, we introduce the main elements that compose the object-centric BMI fra-
mework that we envision. An important goal of each of these elements is to be as inde-
pendent of each other–and most importantly of the underlying techniques and technologies
that support them–as possible. Indeed, the control of a robot through BMI is inherently a
cross-disciplinary problem and thus advances in one field should be adoptable as soon as
possible.

We first give a general overview of the framework and then go into the guiding intentions
of each module that compose the framework. For each module, we give a description of its
function and discuss how they relate to other modules.

3.2.1 Overview

An overview of the framework can be seen in Figure 3.1. Some purely technical elements
or trivial links are not displayed for the sake of clarity, though they are mentioned in the
text when relevant. The modules are voluntarily presented in a non-technical fashion as the
implementation of these modules is discussed later in this chapter.

The modules that are discussed in the following sections are shown in a bold and un-
derlined font. The inputs and outputs of these modules are also introduced. The other parts
of this framework–the robot sensors and the robot controller–are out of the scope of this
chapter.

3.2.2 BCI Module

The BCI Module inherits from the general BCI framework introduced for example by Open-
VIBE or BCI2000 that we introduced in Chapter 1.

In those frameworks, the BCI is divided within three layers:

1. Signal Acquisition, where the signals are acquired from the user’s brain through vari-
ous technologies: EEG, fMRI, ECoG...

2. Signal Processing, where the brain’s signals that were acquired in the previous step are
transformed from their raw values to the user’s “intentions”.

3. User Interface, where the intentions obtained in the previous step is used to drive any
kind of user interface, including a robot.
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Figure 3.1: Overview of the object-centric BMI framework. The modules which are in bold and

underlined are presented in this section.

However, within this work, we have only encapsulated the first two within the BCI Mod-

ule in order to focus the attention on the core of our contribution, the SSVEP Interface

Module, that we introduce next. The most important aspect here is that the BCI Module

is unaware of the true “intentions” of the user and is merely a black box that can extract
information related to the stimulation of the brain provided by the SSVEP Interface Module.

An optional feedback link also exists between the SSVEP Interface Module and the BCI
Module as some paradigms, e.g. P300 or code-based VEP, require a synchronization between
the signal processing unit and the process that is in charge of displaying the stimuli. This is
a purely technical/implementation point, therefore it is not represented on Figure 3.1.

A link between this module and the Robot Controller is shown on Figure 3.1. This is
related to error monitoring. Other than cancelling an action based on a user’s input, it is also
possible to rely on a brain phenomenon to detect errors made by the user or the robot. This
phenomenon is the Error Potential (ErrP) [34] that we introduced in Chapter 1. However,
there are different types of ErrP which depend on the trigger of the error:

• An erroneous interpretation of the user’s intention by the BCI, i.e. a false positive;
• The user made an error and made a wrong selection; for example, the user may select

to steer the controlled device to the left and then realize that s/he needs to steer it to
the right;

• An error in the execution of the process triggered by the correct interpretation of the
intention by the BCI; for example, if the user selected an object to grasp but the robot
then fails to grasp the object.

The first kind of ErrP can be easily monitored and only requires a link between the BCI

Module and the SSVEP Interface Module that we evoked previously. On the contrary, the
second type of ErrP is much more difficult to detect automatically as in this case, the error
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has a much higher semantic sense. In our work, we opted for a “manual” solution in these
cases where the user has to either deal with the consequences of his error, e.g. in the case of
steering, or trigger an action cancellation, e.g. in the case of grasping. Finally, the last kind
of ErrP can be detected as long as we can monitor the action executed by the robot to detect
failures to perform the current task.

Finally, the module outputs the user’s “raw” intentions. We call “raw” intentions, the
outcome of a BCI classifier that does not necessarily translate to an actual intention. For
example, it may be the output of a SSVEP classifier that detects that the user is focused on
a 6Hz stimulus or a “left-hand” output in motor-imagery paradigms. The BCI Module itself
does not know what actual intentions those outcomes map. This is the role of the SSVEP

Interface Module that we introduce now.

3.2.3 SSVEP Interface Module

The SSVEP Interface Module is in charge of gathering sensors’ data from the Robot Sensors

and environment perception data from the Objects and Affordance Extraction Module and
synthesize the appropriate user interface that let the user performs as much actions as possi-
ble through the robot. Furthermore, the SSVEP Interface Module holds the state of the robot
and the previous actions done by the robot, offering a way to cancel past actions and execute
appropriate behaviors on the robot. In the interface, we distinguish two types of tasks: (i)
affordable tasks that are related to objects and (ii) “free tasks” that cannot be related to an
object – a typical example is the control of the robot’s gaze. We now give a “high-level”
example of interface building that illustrates the role of the SSVEP Interface Module.

If the Objects and Affordance Extraction Module has already detected some object and
did not detect any obstacle yet, then, the role of the SSVEP Interface Module is to build an
interface where:

• Appropriate stimuli are displayed upon the objects;
• “Free tasks” related stimuli, e.g. looking around or steering, are displayed;
• Additional information on the environment are provided.

In that example, the SSVEP Interface Module takes care of filtering out some of the
stimuli if necessary. For example, if the BCI is only able to recognize a few stimuli–typically
around 5. It then only displays a limited number of objects and leave one stimulus for a
“cycle” switch that allows the user to get more possibilities. Furthermore, this filtering can be
refined by including user preferences into the SSVEP Interface Module. For example, when
selecting products within a cupboard, the stimuli could be placed upon the user’s favorite
products initially.

Finally, on a technical note, the interface itself relies on the bci-interface library that we
introduced in Chapter 2. The link between the SSVEP Interface Module and the BCI Module

that may exist for synchronization purpose is therefore hidden within the implementation
and interactable objects can be displayed independently of the underlying BCI paradigm.
Moreover, the library is designed to facilitate switches between different control modalities
which is obviously a fundamental capability in this framework.
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3.2.4 Objects and Affordance Extraction Module

The role of the Objects and Affordance Extraction Module is to provide information about
environment to both the robot and the SSVEP Interface Module. It operates in two major
phases:

1. Extract objects from the observed scene, this can be done through different computer
vision methods that give different levels of detail regarding the objects in the scene;

2. From knowledge acquired offline and the observation of the scene, synthesize a list of
affordable objects and affordable tasks related to this object;

The vision algorithms that were used in our demonstrators and fall within the scope of
the Objects and Affordance Extraction Module are presented in Section 3.4. For example,
the Blocks World Robotic Vision Toolbox (BLORT), introduced in Section 3.4.3, is able
to detect several objects in the scene, label them and even detect if an object is partially
hidden. In a case where two objects are present within the scene, if one of them is visible
and another is seen by the system but partially hidden by the first one, the Objects and

Affordance Extraction Module provides a set of two objects, one of which has many tasks
associated with it–including a task to move it in order to access the second one–while the
other has no task associated.

3.2.5 Task selection module

The role of the Task Selection Module is to select the most appropriate task considering the
object that was selected by the user and the affordable tasks associated to this object. In our
initial implementation of multi-task humanoid robot control with BCI the role of this module
was limited to executing the behavior associated to a fixed stimulus, e.g. move the robot
towards the arrow selected by the user or grasp the object that was associated. However, the
addition of probabilistic tools within this module allows to relieve the user from most of the
tedious control involved by the use of BCI in this context.

Moreover, the Task Selection Module can persist throughout the experiments involving
the same user which allows learning strategies to be applied and thus a better experience for
the user of the system.

A proof-of-concept implementation of this module based on a Bayesian network is pro-
posed in Section 3.5 along with an experiment that highlights the benefits of this method.

In the following sections we focus on the technical elements that allow to achieve the
object-centric BMI framework we introduce in this section. The final section of this chapter
is dedicated to user experiments conducted at different implementation stage of the frame-
work that highlights the benefits of our approach and the modularity of the framework.

3.3 SSVEP Interface Module for Object-Centric BMI

In the object-centric BMI, the user selects an object and the system automatically infers the
task that corresponds to the user’s intention based on the current state of the robot and its
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environment. The selection of the object by the user should be as certain as possible in
order to ensure a pleasant interaction. Furthermore, the interface should provide relevant
information based on the task that is being executed. In the object-centric BMI framework,
this is ensured by the SSVEP Interface Module. In this section, we introduce the elements
that provide these two features.

3.3.1 Recursive and Enforced SSVEP Selection

The brain features we decided to exploit are the steady-state visually evoked potentials
(SSVEP). The SSVEP describe the activities that the brain generates when the user observes
a flickering stimulus. The method relies uniquely on the user’s attention to the stimulus. It
also allows detecting that the user is maintaining his attention on a given stimulus and to de-
tect a shift of attention in a few seconds. The process we used to extract the SSVEP is based
upon the minimum energy classifier approach introduced in [30] and detailed in Chapter 1.
It provides a zero-class implementation that allows to detect that the user is not interested in
interacting with the system. After a short training, about 6 minutes, it is able to operate at an
80% recognition rate [31] for 4 classes and can provide a new command every 200ms. This
is a satisfactory performance for an SSVEP-based BCI system [32].

As mentioned previously, our SSVEP extraction process can reach an 80% successful
recognition rate with a short training phase. However, given the nature of the SSVEP stim-
uli, errors are bound to happen over the course of the experiment due to distraction or fa-
tigue [24]. Therefore, the 100% mark would be difficult to reach. This unreliability of the
decision outcome becomes an important problem when using the BCI to control an avatar,
especially if the decision that was taken cannot be reversed. Moreover we aim at minimi-
zing the number of frequencies that we can detect to ensure high accuracy while keeping the
training time as short as possible. Therefore we devised an SSVEP-based selection paradigm
that allows for a large number of commands and puts an emphasis on accuracy.

To increase the number of commands we used a simple recursive selection algorithm.
For example, if we have sixteen commands available but only trained the system to detect
four different frequencies we split each command into four groups. The user then selects one
of these groups and finally selects a command among the four commands in this group. This
recursive selection in illustrated in Figure 3.2.

To enforce the selection we ask the user to maintain her/his attention on the command
s/he wants to select for a certain time. We consider this command as the actual intention of
the user only if s/he was able to maintain her/his attention “long enough”. For example, it
could mean three seconds, i.e. fifteen successive classifications.

3.3.2 State Transition in BMI

The interface relies on the library we introduced in Chapter 2. A finite state machine is used
to switch between the different control schemes involved in a particular scenario. To over-
come the limitations of BCI, object-centric BMI relies heavily on the capacity of the robot
to realize the intention of the user autonomously while s/he monitors the proper execution
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Figure 3.2: Principle of the recursive selection with SSVEP: here the user first selects the “A”

quarter which is zoomed in, then s/he selects the “3” quarter, therefore the final selection is “A.3”.

of her/his intention. Therefore the transitions in the FSM are triggered either by the user,
through the selection of a stimulus, or by the robot, following the completion of a task.

For example, to realize a pick-and-place task, we distinguished three main phases which
are of different natures, i.e. “free tasks” or objet-oriented tasks:

• Grasping phase: the user selects an object with the BCI and the robot grasps it;
• Walking phase: the user steers the robot to the destination table;
• Drop phase: the user selects a spot where to drop the object and the robot drops the

object.

These phases and their natures are reflected in the FSM presented in Figure 3.3. Yet, they
can be divided into multiple states.

3.4 Objects and Affordance Extraction Module

The Objects and Affordance Extraction Module is built around the well-known Robot Oper-
ating System (ROS) middleware that is used to acquire the image from the robot embedded
camera and diffuse it on the network for further treatment. Within the context of the object-
oriented BCI framework, the images are streamed to the SSVEP Interface Module for a
display within an immersive interface on the one hand and on the other hand, the images are
streamed to various vision algorithms that compose the Objects and Affordance Extraction

Module. We present here the most used vision methods that compose this module and that
we have employed throughout our demonstrators.
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Figure 3.3: Finite State Machine of a pick-and-place demonstrator in object-centric BMI

3.4.1 Objects Recognition - 2D Recognition: Algorithm

The object recognition method is based on the work presented in [78] and its extension to
account for color properties of objects in [79]. This method relies on the construction of
a vocabulary set of texture-related features and color-related features. These features are
trimmed down to a restricted set through a k-means clustering algorithm, associated to the
relevant objects and organized in a kd-tree for efficient closest neighbor research needed by
the recognition algorithm. This allows this method to scale very well as when the objects
database grows, the vocabulary itself does not grow but evolves and enriches itself.

The recognition algorithm then consists in (i) extracting interest points in the scene, (ii)
computing color and texture features at those interest points, (iii) match those features with
the ones from the vocabulary, (iv) each feature from the vocabulary then casts a vote for
the relevant object - this voting mechanism is further explained afterward - (v) the object
presence is decided based upon its best score value. The score each object gives is determined
from a training set where the algorithm knows the objects present in the scene. The votes
are computed so that the more specific to an object a feature is the bigger vote it casts. For
example, if the same feature is extracted from 10 images with 10 different objects in the
scene it contributes a 0.1 vote to each object. However, among the same set, if a feature
is found only twice, it casts a 0.5 vote for the two objects involved in these two scenes.
Finally, a second pass over the training set allows us to define threshold score above which
the object presence is assumed. Thanks to the sharing of features among different objects,
the recognition algorithm can operate very efficiently, above 15Hz even in rich scenes, and
the features selected for classification permit a consistent detection of the objects.
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3.4.2 Objects Recognition - 2D Recognition: Shape Extraction

In order to allow a smooth integration of the detected objects within the user interface, we
extended this method to detect the objects’ shapes.

To do so, we need to collect more data when we build the vocabulary as well as during
the course of the algorithm. During the training run, when we create a link between a feature
and the object, we register two information from the training image: the shape of the object
and the position of the feature point. During the recognition process, we maintain a list of all
voters for each object. For each voter, we register the point of interest position in the image
being processed, the link it is associated with and where the vote is casted.

Once an object and its center have been detected, we extract the voters that voted for
the object around the object’s center. Each voter is ultimately linked to an object’s mask
from the vocabulary set through the link it holds. For each of these masks, we compute a
homography from the points in the vocabulary set to the matched points in the processed
image. The points are filtered before the homography computation. If multiple points in
the processed image match the same point in the vocabulary set, we keep the one for which
the distance between the point and the center of the object is closest to the same distance
for the vocabulary point. The same selection criterion is applied when the same point in the
processed image matches different points in the vocabulary set, which can happen when the
texture match and the color match are different points from the same image of the vocabulary
set. The vocabulary object that retains the most matching points in the end is selected and its
shape is deformed thanks to the computed homography which allows us to match the shape
of the object in the processed image.

3.4.3 Objects Recognition - 3D Recognition

BLORT, the Blocks World Robotic Vision Toolbox, is proposed in [80]. It is an open source
software that aims at providing a set of tool for robotics to:

• recognize known objects in the environment, and
• track those objects over a sequence of images.

An object is learned by providing a 3D model of the object, semi-manually matching
this model to a real view of the object and acquiring features from the object. The object
recognition and tracking mechanism then operates in two phases. First, using Scale-Invariant
Feature Transforms (SIFT) [81] associated to the objects, and learned prior to operation, it
tries to recognize the known objects. Then, the object is tracked over a sequence of images,
using a bootstrap filter method [82]. A sample from the outcome of the first phase can be
seen in Figure 3.4a, while the Figure 3.4b illustrates the result of the tracking phase.

3.4.4 Robot localization in indoor environments

SLAM (Simultaneous Localization and Mapping) [83] provides recently a very mature tech-
nology [84] and allows the robot to simultaneously and continually build the map of the
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(a) Recognition result for a single object in

the robot’s field-of-view. The circles represent

the SIFT features. Green circles represent

match with the cookbook of the object, yellow

circles represent partial matches and red

circles represent non-matching features.

(b) Tracking result for a single object in the

robot’s field-of-view. The blue, red and green

lines represent the object’s frame. Thus

reflecting the object’s position and orientation

in the current view.

Figure 3.4: Example of BLORT usage on a printer.

environments. Recent experiments conducted on our humanoid HRP-2 and HRP-4 robots
with our colleagues’ software in [85], demonstrate an amazing precision in localization with
real-time performances. SLAM however builds a “rigid model” of the surrounding without
semantics nor the possibility to distinguish objects that composes the environment. SLAM
can also be used in closed-loop navigation to reach a given target defined as desired 3D co-
ordinate point in the model. If previously mapped objects composing the entire scene as
moved w.r.t to their mapped position, they are considered as outliers, yet the rigid map can
be corrected to integrate this change in the position, see recent work in [86].

We adopted the SLAM software D6DSLAM that is presented in [85] and outlined in Fig-
ure 3.5. D6DSLAM unifies volumetric 3D modeling and image-based key-frame modeling,
to provide and update a rich 3D map of an unknown environment as well as provide accurate
localization of the robot in its surrounding environment. D6DSLAM proved to be very ro-
bust and accurate in robotic scenarios, and in particular, it handles very well the typical sway
motion of a humanoid robot during walking, that is usually problematic for visual servoing
applications [87].

3.5 Implementation of the Task Selection Module

The Task Selection Module implementation we present here is based on a Bayesian network.
Therefore we first introduce the mathematical concept that is a Bayesian network and how
we can use it to serve our purpose.
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Figure 3.5: A view of the environment map generated by the D6DSLAM software and the robot’s

localization within this map. The nodes of the purple graph represents key-frames while the blue line

indicates the current dislocation of the robot compared to the key-frame that is used as a reference

for localization.

3.5.1 Definition

A Bayesian network is a directed acyclic graph whose nodes are random variables Xi and
edges are conditional dependencies. Nodes that are not connected represent conditionally
independent variables. A probability function can be associated to each node. This function
takes as input a particular set of values for the node’s parents and gives the probability of the
variable represented by the node. A simple example to consider is a case where the node has
n parents which are Boolean node, i.e. the values they can take are simply true or false, then
the probability function is a 2n table that give the value of the node for each combination of
the parents’ variables.

Given this graph, the probabilities of a given node can be inferred. Furthermore re-
inforcement learning methods can be used to improve the Bayesian network’s predicition
capabilities from failed and successful predictions.

3.5.2 Using a Bayesian network as a Task Selection Module

We have previously discussed how a user can easily and reliably select an object to interact
with through a BCI. The next step, to allow a smoother control of the robot through BCI,
is to autonomously determine and execute the task that the user wants to execute with this
object through the robot. In this iteration of the network we include the following tasks:

• Move the object to reach other (hidden) objects;
• Move the object to a new location;
• Bring the object to a person;
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• Throw the object;
• Poor the content of the object into a glass;

Some of this actions obviously share similarities. For example, many require the robot
to first grasp the object and then navigate towards an object, a location or a person. The
availability of these actions also depends on the context, e.g. if no hidden objects are detected
then the first action is very unlikely, on the nature of the object, e.g. not all objects can be
“poured” into a glass, or on their status, e.g. an empty can is likely to be thrown out. These
additional information can be modeled within the Bayesian network. Therefore, when an
object has been selected, the Bayesian network can compute the most probable action to
perform depending on the current observations that determine the value of certain nodes.
Furthermore, these nodes’ values can be updated in real-time to reflect new information. For
example, it may be impossible to know from the vision only if a bottle is empty or not, e.g.
if it is an opaque container, however, once the robot grasps the object it is able to evaluate its
weight from the force sensors equipped in its hands. Finally, if the Bayesian network does
not select the right action, the system can propose corrections to the user and “plug-in” the
new task upon the one that was being executed. For example, if the selected task was to bring
a can to a person but the actual intention of the user is to move the can to a new location then
only the destination of the “moving” task needs to be updated. Such a network is illustrated
in Figure 3.6.

Figure 3.6: Bayesian network used to infer the intention of the user from the object’s and

environment’s properties.

3.5.3 Improving the network

The Bayesian network can be updated upon wrong and right predictions of the user’s inten-
tion so that the user’s preferences can be taken into account within the model in a natural
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fashion. However, this requires the execution of a large number of experiments to finely tune
the network.

3.6 Object-oriented Robot Control

We discuss here some specific aspect of the stack-of-tasks (SoT) controller that we introdu-
ced earlier. In particular, we present the modifications to the controller that permit object-
oriented control.

3.6.1 Walking with a Humanoid Robot in BMI

The walking control part of this work relies on the pattern generator presented in [88]. In
this work, the robot is modeled as a linear inverse pendulum and a Linear Model Predictive
Control scheme is applied to compute the footsteps which minimize the input, a reference
and the previewed center of mass (CoM) velocity. These footsteps are then passed onto the
robot controller that executes them as illustrated in Figure 3.7.

Figure 3.7: Pattern generator overview

The advantages of this pattern generator specific to the context of BCI control are twofold.
First, it takes a simple input: the CoM speed; this makes the mapping between BCI com-
mands and robotic commands very simple as we simply have to associate a static speed to
each available BCI command; yet it also permits more complex schemes [73]. The other ad-
vantage is that it is highly reactive; it can handle rapid switches between speeds and “burst”
commands, e.g. the command is set to a null speed, then for 200ms (less than the time for
a step which is 800ms) it is set to 0.2m/s forward and finally set back to zero, without com-
promising the equilibrium of the robot; those are both desirable qualities for BCI control
as the interpretation of the user’s intention can be mistaken and result in this kind of input
to the pattern generator. On the HRP-2 robot, this pattern generator is implemented as part
of the stack-of-tasks controller [77], therefore we can remotely interact with it through the
network.

However, while controlling the speed of the robot through BCI using the CoM speed as
an input is possible [73], it is a difficult task because (a) precision is difficult to achieve using
the SSVEP paradigm as lag and errors are difficult to account for and (b) the user only gets
feedback from a camera on a 2D screen so depth perception is very poor. This results in an
important training effect during the control of the robot as the user gets better and better at
both handling the SSVEP steering controls and locating her/himself within the experimental
space.
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3.6.2 Navigation assistance for humanoid control through BMI

The difficulty of manually steering the robot through a BCI naturally leads–as in previous
works in the field, particularly, regarding the control of a wheelchair–to the addition of nav-
igation assistance mechanisms. In this section we present two methods that we used in our
experiments: a simple depth information provider and a more fleshed-out object-oriented
navigation scheme.

3.6.2.1 Providing depth information to the user

In order to improve the performance in this phase we mounted an Asus Xtion Pro Live on
top of the robot’s head to add depth perception to the robot. The robot is walking with
the head directed towards the ground to allow the user to see upcoming obstacles. As the
robot approaches the table it can be clearly seen in the depth map of the robot’s camera
as seen in Figure 3.8a. We can then apply a Canny edge detection algorithm and a Hough
transformation on the image to locate the corner of the table. Given the intrinsic and extrinsic
parameters of the camera we are then able to locate the position of the table within the robot’s
frame. This information is used to restrain the robot’s movements when it is near the table.

(a) Obstacle seen in the depth camera.
(b) Table information integrated in the user

interface, green indicates the table is not

close to the robot yet.

Figure 3.8: Providing depth information to the user for navigation assistance.

Finally, the information about the table position can be figuratively fed back to the user:
displaying a simple icon - as shown in Figure 3.8b - the user can be informed about the
proximity which allows her/him to know when to stop the robot.

3.6.2.2 Object-oriented navigation in indoor environments

Recent advances in robotic visual tracking [89] [90] is demonstrated in complex tasks that
are achieved in robust closed-loop fashion among which reaching, manipulation, navigation,
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when targets of interest are totally or partially in the field-of-view of the robot’s embedded
camera(s). However, closed-loop visual servoing is still difficult to solve with humanoid
robots due to many aspects: weak odometry, important blur caused by rapid movements or
the sway motion and the feet impacts generated during walking movements [91] [92] [93].
In order to overcome these limitations, we combine the 3D SLAM developed in [85] and
the visual object recognition and tracking provided by BLORT [80] to allow the robot to
autonomously retrieve and reach known objects in indoor environment which model is built
from SLAM. This is an important step to enable robots to competently perform everyday
manipulation activities [94].

In order to provide information for navigation, the SLAM software was augmented with
a pixel tracker. It is possible to select a pixel in the current image obtained from the camera.
Once this pixel has been selected then its 3D position is tracked and streamed on the network
continuously as the robot progresses and the software builds a larger and more complex map.

Limitations of object recognition for navigation
A toolbox such as BLORT is not limited to object recognition, but can provide tracking

capabilities, as we have mentioned previously. Thus, we might also rely on the tracking
capability of BLORT to navigate and reach the object or spot of interest. This is however
limited for mainly two reasons:

1. On one hand, the tracker obviously requires the object or the image of interest to be in
the field-of-view of the camera in order to operate. Unfortunately, in some cases, e.g.
fulfill a robotic or task constraints such as obstacle avoidance, it may be necessary to
have the object temporarily out of the camera field-of-view.
It is also possible to recognize the object of interest when it re-enters the image, by
reinitializing the BLORT tracker. However, this may require additional object learn-
ing, since the recognition accuracy varies tremendously with the distance to the object.
Therefore, the robot should navigate towards the object by relaxing the field-of-view
inclusion constraints whenever needed without jeopardizing the navigation robustness.

2. On the other hand, an object tracker provides information only about the object of
interest. This is not sufficient to provide a safe route in a changing environment com-
prised of obstacles, walls, doors, humans, etc.

Previously described causes, suggest that we use object recognition and tracking to
search and first retrieve an object of interest in the environment, and eventually updating
this position if the latter changes, but we rely solely on SLAM for vision-based navigation.

Combining object tracking and SLAM
In order to retrieve known objects in the humanoid surrounding environment, we propose

to follow a two-phase strategy:

1. The research phase consists in trying to first locate the object within the environment
2. The object-oriented navigation phase where we autonomously go towards the object

of interest that was previously detected.
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We now describe each of these phases: how the recognition information is transmitted
to the localization software and finally, how the localization information is provided to the
autonomous navigation scheme.

Search phase
The goal of this phase is to locate the object. The first step is to query BLORT about

the presence of the object within the current field of view of the robot. If the object has
been detected by BLORT then we can retrieve the position of the object and dispatch it to
the SLAM software. If the object has not been detected, we have to search for the object in
another location. This constitutes the core behavior of this ‘Search phase’.

At the moment, two cases are to be considered:

1. either the robot has not “seen” everything around it. Then it should rotate on itself and
try to find the object in its field-of-view; or

2. the robot has “seen” everything around it, in which case it goes towards other unex-
plored locations or request help from the human user. This location can be determined
either randomly or provided by the SLAM–for example, an unknown part of the map
behind a wall.

However, in our opinion the search phase shall be seriously considered under a semantic
SLAM search. Indeed, if we are able to structure SLAM memory in a way where objects
are labeled and associated with SLAM data structure, then the object search can boil into
a search within the data structure which then provides (at least) a preliminary guess of the
location that BLORT would confirm. This would then require the possibility for the robot to
plan and reach the presupposed location containing the object of interest using only SLAM
data structure. For example, if we are starting at the entry of a corridor with multiple rooms,
the current implementation checks in the room on the left, then the room on the right then
continue forwards into the corridor to check the following rooms. However, this is definitely
not the optimal way. In that case, a semantical approach would allow the robot to first search
the rooms that are more likely to contain the object thus saving time in the achievement of
its mission [95].

From recognition to autonomous navigation
Once the object has been recognized, we determine which pixel corresponds to the cen-

troid of the object. This pixel is then transmitted to the localization software which then
starts to track this pixel within the egocentric frame of the robot, in real-time. This tracking
information is then used by the robot for autonomous navigation.

Note that if the object position is not conform to the current SLAM memory –for exam-
ple, in the case where the robot had already processed the object of interest in a previous
mission as part of its current SLAM and meanwhile, the object has changed its position–, it
is detected as an outlier and the SLAM updated comfortably to its current arrangement in the
updated SLAM data. It is this update that is used for tracking.

Object-oriented navigation phase
Given the localization information, the robot starts walking towards the object, using the

navigation algorithm described in [96]. This navigation scheme allows us to set a navigation
goal, but also to specify way-points that should be reached prior to the destination, and are
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used to avoid obstacles. Once the object is reached, the task is achieved, and other tasks can
be performed to interact with the reached object.

Implementation results
In [97], we demonstrated the feasibility of this approach through simple demonstrations

that did not include the BCI. However, since it only requires the selection of an objective,
we believe this method is particularly well-suited for BCI control of humanoid robots, in
particular within the context of object-oriented BCI.

3.6.3 Object soft-drop with guarded motion

In our introductory work [75], the robot dropped the selected object on the spot selected
by the user in the final phase of the demonstrator. In this initial version, the robot would
simply put the gripper holding the object over the spot selected by the user and then open
the gripper. This solution was not very elegant and we propose a friendlier strategy to softly
drop the object using the force sensors within the robot’s wrists. In the remainder of this
section, the term “drop spot” refers to the point selected by the user where the grasped object
is to be released.

3.6.3.1 Drop Spot Selection and Drop Height Estimation

The selection of the drop spot is done through the recursive selection presented earlier. How-
ever, this is done through the image provided by the RGB-D camera mounted on the robot.
This means that we are able to obtain an estimation of the height of the drop spot.

3.6.3.2 Soft-drop Implementation

First, we go to the situation of the initial implementation of the demonstration: the robot’s
gripper is put above the spot. The soft-drop strategy then consists in moving the arm towards
the drop surface, e.g. a table; the arm is speed-controlled in this case, using the algorithm
presented below. In the following algorithm, ẑ is the estimated height from the vision, zc is
the current height of the robot’s hand, zmin is the minimum allowed height, corresponding
to the robot’s physical limitations, ż is the velocity command for the robot’s hand, żd is
the desired reference velocity given before-hand, Fs is the force read from the wrist’s force
sensor and Fσ is a force threshold defined before-hand.

While the hand goes down it starts to decelerate as it approaches the estimated contact
height ẑ. The deceleration starts as the height of the hand, zc, reaches certain thresholds
which are the following:

• ẑ + 0.1; the 10cm constant was chosen because, while we control the gripper height,
we have to take into account the fact that the gripper is holding an object, therefore the
contact height might be lower than expected and so we start to decelerate early;

• ẑ + 0.02; if the contact has not occurred yet 2cm above the estimated height, we
considerably decelerate to avoid a strong shock with the table.
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Algorithm 2 The soft-drop algorithm

1: if Fs > Fσ or zc < zmin then
2: ⊲ Drop the object if a contact is detected or the hand has reached a low position
3: Open the gripper
4: ż = −ż
5: else
6: ⊲ Lower the speed command as the hand approaches the estimated contact height
7: if zc > ẑ + 0.1 then
8: ż = żd

9: else if zc > ẑ + 0.02 then
10: ż = żd

2

11: else
12: ż = żd

10

13: end if
14: end if

Using this approach, we can ensure that the object is softly put on its destination spot. On
the one hand, this is a more natural behavior and therefore the robot’s actions can be better
perceived as their own by the users of the system. On the other hand, it is also a necessary
step for more complex scenarios, for example, a serving scenario where the robot would
serve drinks to guest in which case it is essential to be able to put drinks on the table softly.

3.6.4 Action Cancellation

To ensure that the action the robot performs reflects the intention of the user, we make use of
the enforced selection introduced earlier. However, this might still prove to be wrong if the
user mistakenly focuses on the wrong stimulus, or the user might simply change his mind.
Another issue is that the enforced selection method artificially slows down the process when
the SSVEP detection algorithm performs well for a subject, in such cases we would like to
reduce the “given” time of the enforced selection but this might result in wrong decisions
(false positives).

In such situations it is important to be able to recover a wrong grasp and that is why we
introduce here a grasp cancel capability. To illustrate this issue, we discuss the specific case
of grasping in this section.

During the grasping phase, the objects within the field of view of the robot are recognized
using computer vision pattern recognition techniques. The information provided by the vi-
sion are then merged within the interface to display the SSVEP stimuli upon the objects that
are graspable by the robot. Then, the user focuses her/his attention on one of the objects and
the robot autonomously grasps the selected object.
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3.6.4.1 Grasping Strategy

Before introducing our approach to canceling a wrong grasp, we have to introduce our ap-
proach to grasping. First, the arm that performs the grasping movement is automatically se-
lected depending on the current position of the robot relatively to the selected object. Then,
the grasping movement executed by the robot can be decomposed into 5 phases:

1. Replan the robot’s footprints respectively to the selected object to prepare the arm
motion for the grasp;

2. Put the selected arm at the position of the selected object through a checkpoint tra-
jectory, the robot first lifts its arm close to its body–to avoid collisions with the table
where the objects are–and then moves the arm towards the object;

3. Close the correct gripper;

4. Lift-up the object;

5. Put the arm in its original position through a checkpoint trajectory, the robot first moves
back its arm close to its body and then moves the arm back to its initial position.

3.6.4.2 Canceling a grasping task

Given the strategy for grasping, canceling the grasping task is simply a matter of rewinding
the different phases of the movement. For example, if the grasp was canceled during the
last phase of the grasping movement: the return of the arm to the initial position, then the
canceling follows this sequence:

1. Go back through the checkpoints that led to the current position of the arm;
2. Put the arm down;
3. Open the gripper;
4. Go back through the first checkpoint trajectory: moving the arm back to the robot’s

body then put the arm in its original position;
5. Execute the opposite steps to get back to the original position of the robot.

The final issue is to be able to trigger such a cancellation. Currently, this is implemented
in the user interface by displaying a flickering cross during the grasping executed by the
robot to let the user cancel the grasp movement as seen in Figure 3.9. However, in the
future, we would like to be able to use the error-related potential. Error-related potentials
(ErrPs) are special features that can be detected in the EEG, after a wrong action selection
by the BCI system or the user. After the onset of the feedback indicating the selected action,
these features can be distinguished by first, a sharp negative peak after 250ms followed by
a positive peak after 320ms and a second broader negative peak after 450ms [34]. Using
this brain pattern in the frame of this work would allow a much smoother integration of
task canceling strategies and offer premises to closing the loop in action realization and
perception.



106 Whole-Body Control with Steady-State Visually Evoked Potentials (SSVEP)

Figure 3.9: Interface displayed to the user during the grasping phase executed by the robot. If the

user focuses on the cross in the bottom of the screen, the grasp is canceled.

3.6.4.3 Reverting Issue

While the proposed canceling strategy works well in the work presented here, it does not
address the general issue of canceling a movement. For example, in the case of grasping,
it does not take into account the dynamic properties of the grasped object, especially when
those properties affect the dynamic properties of the robot’s arm. The primary problem is
that this method assumes that the trajectory to grasp the object and to put the object back
is the same. However, this assumption is wrong. For example, if the object is particularly
heavy then these two movements are different. However, the general principle behind this
canceling strategy remains valid: decompose the task that has to be canceled into elementary
tasks and then rewind these elementary tasks. In our case, this means that we add a memory
to our stack-of-task controller.

3.7 User Experiments

In this section we present and discuss three user experiments that were conducted at different
stage of the implementation of the object-centric BMI framework. We refer to the above
technical sections when relevant.
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3.7.1 Initial User Experiment

3.7.1.1 Experiment Scenario

The scenario is designed to illustrate multi-task control, i.e. locomotion and manipulation,
via BCI.

At first, the user is presented, through the robot’s eyes, with multiple objects - known
from the recognition system - put on a cupboard. In this phase, the user selects the object
s/he wishes to interact with. The selection relies on an SSVEP paradigm: the objects are
blinked as discussed in the previous section. Once this selection happens, the robot grasps
the object and the second phase of the experiment begins.

In the second phase, the user steers the robot freely in its environment to a location of
his choice. The steering is done through SSVEP. Three stimuli allow the user to control the
robot orientation and make it move forward, a fourth one allows her/him to stop the robot.
Once the robot is stopped, the final phase begins.

In the final phase, the user recursively selects a position within the visual field of the
robot. The selection of a position makes the robot drop the object above this position thus
achieving the experiment.

To confirm the usability of the interface, the user is given two instructions that define
her/his mission: (a) which object to pick up from the cupboard and (b) which sixteenth of
the screen to select at the end. To evaluate the objective performances of the interface we
measure the time taken to achieve each phase and the success rate of the missions.

3.7.1.2 Experiments

Material and System Setup
We use a g.USBamp (24 Bit biosignal amplification unit, g.tec Medical Engineering

GmbH, Austria) to acquire the EEG data from the user’s brain at a sampling frequency of
256Hz, bandpass filtered between 0.5 and 30Hz with a notch filter at 50Hz to get rid of the
power line noise. The electrodes positioning is shown in Figure 3.10. We use 8 Ag/AgCl
active electrodes. The electrodes are placed on the POz, PO3, PO4, PO7, PO8, O1, O2 and
Oz positions of the international 10-20 system [74], Fpz is used as the ground electrode and
the earlobe as a reference.

The experiment was carried out using the HRP-2 humanoid robot. The subject, equipped
with an EEG cap, is comfortably seated in an armchair, about 1 meter away from of a 17"
LCD screen. In such setup the accurate display of SSVEP stimuli is ensured thanks to the
method proposed in [33] and detailed in Chapter 1. The SSVEP stimuli frequencies that
were used in this work are: 6, 8, 9 and 10Hz. Those were carefully selected to have neither
common first or second harmonics and are below 20Hz to minimize the risk of eliciting an
epileptic crisis in healthy subjects as advised in [28].
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Figure 3.10: Electrodes positions for the experiment

3.7.1.3 Results

A video showing the interface in action as well as the robotic counterpart can be retrieved at
the following URL: http://dinauz.org/~pbs/Videos/ISER-2012.avi.

Four users performed the scenario that we described. Each of them performed the sce-
nario five times with different conditions, i.e. different objects and different drop locations.
Over the 20 trials, the users’ selections were consistently accurate thanks to the enforcing
of SSVEP selection we setup. In Figure 3.11 we report their average performance over the
multiple trials.

The phase 1 and phase 3 times are consistent with the performance of our SSVEP clas-
sification method and the adoption of the enforced SSVEP selection process. The system
operates on a 3 seconds window of EEG data and we require the user to maintain her/his
attention on the stimulus for 3 seconds before we make a conclusion about her/his inten-
tion. The phase 3 involves the recursive SSVEP paradigm described earlier and thus the time
needed to reach a conclusion in phase 3 is about twice the time needed in phase 1 – due to
a technical issue, the time reported includes the time the robot took to stop its walking and
orient its head toward the table, hence about 10 seconds should be discarded.

The enforced SSVEP selection paradigm also proved its usefulness during the trials as
no misinterpretation of the user’s intentions occurred during these phases for all subjects
across all trials. However, in this specific experiment, we chose to enforce the selection a 3
seconds period which covers 15 decisions by the SSVEP extraction process. To achieve a
more reactive experience, this activation time could be tuned down according to the classifier
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Figure 3.11: Average performance of each user over the experiment trials

performance with the user. This would allow the system to reach a conclusion more rapidly
while keeping a very high-level of accuracy.

Finally, the phase 2 times illustrate interesting effects of training and motivation on the
scenario performance. The performance of each subject over each trial can be seen in Fig-
ure 3.12. It shows that the user’s performance in the navigation phase improve after each
trial. Two factors, reported by the users, can explain this phenomenon. On the one hand, the
users felt more and more comfortable with the interface. They progressively learned how to
compensate for the lag of the SSVEP extraction process and they also acquainted themselves
with the environment and the way it is perceived through the robot’s camera. Indeed, this
camera has a rather constrained field of view which is well suited for the stereo application
it is used for but makes it particularly difficult for the user to understand the robot’s location
in space. On the other hand, the user also used more ‘aggressive’ strategy to reach their des-
tination because they felt more comfortable steering the robot but most importantly because
they wished to ‘beat’ their previous time which illustrates the importance of motivation in
the context of BCI applications [41].

3.7.2 Assessing the benefits of Navigation Assistance

This experiment focuses on the addition of a navigation assistance mechanism to the pre-
viously described experiment implementation and highlight its benefits towards the user’s
ability to control the robot.
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Figure 3.12: Walking phase performance for each subject and trial

In the user study we presented previously, the most difficult phase is the navigation phase.
In this phase the user has to reach a table where s/he drops the object. The steering is done
using flickering arrows that allow steering the robot left, right, backward and forward. A
fifth stimulus lets the user stops the robot. The user has to get close enough to the table to
allow the robot to drop the object on it afterwards.

3.7.2.1 Expectations

In this experiment, we reproduce the same setting as in the previous one, however, we use the
simple navigation assistance provided by depth perception and introduced in Section 3.6.2.1.
We expect the benefits of this detection to be twofold:

Safety and reliability
The user instructions cannot make the robot collide with its environment anymore
(that was the case when we let the humanoid robot freely steered by the BCI), and no
training is required for the user to steer the humanoid robot into the proper position.

Performance
The improved reliability may allow us to speed up the robot during the walking phase,
it also eases the learning of the robot control through BCI and thus the overall perfor-
mance is increased.
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3.7.2.2 User Experiments

To assess our expectations, we performed a user experiment using the technical elements
presented in the previous section.

Material and Methods
Eight healthy volunteers participated in the experiments, six males and two females, aged

21.5 ± 1.07 y. None of them had previous experience regarding BCI control or robotics.
We use a g.USBamp (24 Bit biosignal amplification unit, g.tec Medical Engineering

GmbH, Austria) to acquire the EEG data from the user’s brain at a sampling frequency of
256Hz, bandpass filtered between 0.5 and 30Hz with a notch filter at 50Hz to get rid of the
power line noise. We use 8 Ag/AgCl active electrodes. The electrodes are placed on the
POz, PO3, PO4, PO7, PO8, O1, O2 and Oz positions of the international 10-20 system, Fpz
is used as the ground electrode and the right earlobe as a reference.

The experiments are conducted with a HRP-2 humanoid robot running the control system
described in the previous section.

During the experiment, the users are located in Rome (Italy) while the robot is located in
Tsukuba (Japan). The user is comfortably seated in an armchair, about 1 meter away from
a 19" LCD screen operating at a refresh rate of 60Hz upon which the user interface is dis-
played.

Experimental Conditions
First, the SSVEP classifier is trained for the user. Then, a short video is presented to the

user to explain the task and the goal of the task. In this experiment, the distance between the
grasped object and the destination table is about 4 meters, much shorter than in the initial
user experiment. A target is positioned on the final table to give a clear goal to the user.

A trial consists of the successful execution of the entire demonstration: from the selec-
tion of the object to the drop on the destination table. Each subject performed the task 4
times. These experiments were conducted within the scope of the embodiment study that is
described later in Chapter 4.

For each trial, we measure the time taken by each phase and the distance between the
object and the target once it has been dropped. In this section, we only report the results re-
garding the navigation phase time, the error between the target and the final object’s position
are discussed in a later section.

Results
Some trials failed due to network connection problems during the experiments, in such

cases the trial was restarted and thus was not included in the results. In the end, all users
successfully completed the task 4 times with varying degree of success regarding the accurate
drop of the object on the target.

In Figure 3.13, we report the average time taken by the subject to perform the navigation
phase.

We can notice that the walking phase time is much less variable than in the previous user
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Figure 3.13: Average walking phase time for each subject, the vertical bar represents standard

deviation.

experiment. This shows that the addition of the obstacle detection brought confidence to the
user as s/he was told there were no risks of collision between the robot and the destination.
The users all reported that they felt in control of the robot’s actions and that the control of
the robot through the BCI was easy.

3.7.3 A Bayesian-network assisted BCI for Humanoid Robot Control

In the experiments we presented in this chapter so far we gradually introduced more com-
plexity within the demonstrator while improving the control capabilities of the user. How-
ever, the Task Selection Module remained fairly simple as only one task–“Grasp”–was known
to the Objects and Affordance Extraction Module and thus each object was associated with
a single task.

In this section, we introduce a complete implementation of the object-oriented BCI fra-
mework and show the benefits it can introduce within the context of BCI controlled humanoid
robots.

3.7.3.1 User Experiments

We expect the addition of a complete Task Selection Module to significantly simplify the
control of humanoid robot using a BCI in a complex multi-task scenario. Therefore, the
experimental protocol we introduce assess the difference in performance between a complete
and non-complete object-oriented BCI in such a scenario. The Bayesian network that is
employed in this scenario was introduced in the previous section. We now focus on the
experimental protocol and the results of the experiments.
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Experimental Protocol
The objective of this experiment is to evaluate the impact of adding a decision tool within

the “pick-and-place” scenario that we introduced earlier. Therefore, the experiment scenario
is based on this one, then:

• The user selects an object;
• The Bayesian network infers the most probable task based on the object properties;
• The task starts being executed while the user monitors its progress;
• If necessary, the user can select where the object s/he carried to a location should be

dropped.

Each user is given a set of two tasks to realize and s/he should realize them two times: one
time with the Bayesian network assistance and the object-oriented navigation scheme and
another time without the Bayesian network or the object-oriented navigation scheme. For
each task, we observe whether it was successfully accomplished or not and we measure the
time that was taken to complete it. This allows us to compare the two methods objectively.
The first task–Task 1–is to grasp an object from a shelf and put it on another shelf in the
room. The second task–Task 2–is to grasp an object and throw it in a garbage can that is also
in the room.

Finally, we ask the users to fill out a questionnaire following the experiment. This ques-
tionnaire is presented thereafter.

User Questionnaire
The questionnaire presented in Table C.2 in Appendix C.2 is proposed to the subjects

after the experiment. It aims at assessing the preferred control scheme as well as receiving
meaningful feedback regarding our approach.

Results
Three subjects, aged 32.3±7.57 y, all male, took part in this experiment. They performed

the same tasks but the tasks and the experimental conditions–with or without Bayesian net-
work assistance–were shuffled. The first two subjects, Subject A and Subject B, had previous
experience with BCI while Subject C had none.

Task 1 was achieved successfully for each subject and condition. Task 2 was failed by
Subject A and Subject B in the “Manual” condition because they stopped the robot too close
to the garbage can and could not select it.

During the experiments, we recorded the time they took to complete each task. In Fig-
ure 3.14, we report the time they took to complete the navigation phase of those tasks de-
pending on the user and the experimental condition. In the “Assisted” condition, the robot
uses the autonomous navigation scheme described earlier to reach the place chosen by the
Bayesian network. In the “Manual” condition, the user steers the robot freely to reach the
place where the task should be executed.

The following observations can be drawn from this data:

• The assisted scheme performed similarly across the subjects (Task 1: 58.50 ± 0.88s,
Task 2: 84.66 ± 10.89s).
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Figure 3.14: Time to complete the navigation phase of the task per subject, task and experimental

condition. Subject B took a long time to stop the robot when performing Manual Task 1, hence this

time is abnormally high. Before attempting to stop the robot, Subject B’s performance in manual

navigation was close the assisted navigation scheme.

• Subject A outperformed the assisted scheme in navigation. This is explained by both
excellent BCI performances–no false-positive or false-negative during navigation–and
assistive navigation limitations that are discussed later.

• Subject B performed equally well using either scheme. The stopping issue that hap-
pened when performing Task 1 did however lead to some frustration that was not
present in other trials.

• Subject C, a BCI novice, could not reach the same level of performance using the
manual navigation scheme.

The questionnaire answers do not provide an interesting metric to compare the two
schemes as they were equally positively received.

Discussion and Perspectives
The addition of the Bayesian network and the assisted navigation scheme generally al-

lowed the task to be performed efficiently and accurately. However, time-wise, a BCI user
with good performance could outperform the assisted navigation scheme using manual nav-
igation. This is explained by two limitations of this work that need to be investigated.

First, the assistive navigation scheme we used is slow. Most of that time is spent trying to
find the object of interest. This time could be cut down by either using the semantic SLAM
approach we described earlier or relying on user’s inputs–through BCI or through head’s
movements for example–to guide the search for the object. The latter solution would also
help to keep the user engaged into the control of the robot and thus hopefully improve the
embodiment property.

Finally, the Bayesian network that we implemented for this experiment is still rudimen-
tary and the experiment’s environment is too small to allow it to surpass the manual approach.
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In future works, we would like to expand the scope of these experiments to realistic settings,
for example, performing complex tasks in a house-like environment–multiple rooms, many
objects to interact with, many tasks to perform–where this decision tool could truly provide
assistance.

3.8 Conclusion

We demonstrated that brain signals can be used to command a sophisticated mobile device
such as a humanoid robot to perform useful tasks like navigating to a desired location and
interacting with different objects through grasping/pressing etc. We used computer vision to
discover objects of interest in the environment, a dynamic immersive interface that commu-
nicates the corresponding actions to the user and a humanoid robot controlled by the user in
an immersive environment using BCI. In principle, the robot could execute a wide range of
actions instructed by the user in a multi-task scenario.

This problem was solved by the introduction of the object-centric BCI framework that
allows the user to perform complex interactions with the environment without the need to
gain low-level control of the robotic device which is an impractical solution to achieve with
BCI. We implemented increasingly complex demonstrators based upon this framework. This
was made possible by incremental improvements to the framework’s modules which show
its extendibility. However, we wish to continue to extend the capabilities of this system to
provide a more immersive experience. In particular, some issues have still to be figured
out and would tremendously improve the capacities of the interface and the embodiment
sensations:

Improving the field of view feedback
One of the most detriment limitation of the current system is the limited field of view
proposed to the user. That is a consequence of two things: (i) the limited FoV of
the HMD we use and (ii) the limited FoV of the camera. While there is not much
that can be done regarding the first issue, we can virtually extend the field of view by
integrating the actual image from the robot’s sensors into a SLAM map that we are
building online during the demonstration [83] [85].

Improving the Bayesian network capabilities
The Bayesian network experiment we presented remains at an early stage and could
be improved. In particular, the states that compose the nodes of the network should be
discovered from the perception system rather than pre-programmed as in the experi-
ment we presented.

Merging multiple BCI paradigms
To improve the embodiment capacity of the interface some of the tasks parameters
should be decided by the user. Using multiple BCI paradigms, for example motor-
imagery, could allow additional inputs that could then be used to customize the task
execution based on user preferences.
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Closing the framework
At the moment, no satisfying error potential implementation that work concurrently
with SSVEP has been made available by g.tec. Hence we relied on alternative ways
to close the loop in the framework such as the user inputs presented in Section 3.6.4.
However, the use of error potentials would lead to a much more immersive experience.

In the following chapter, we show how the object-oriented BCI framework that we have
introduced in this chapter can be used to study different aspects of embodiment in the case
of auditory feedback.



Chapter 4

Humanoid Control with a
Brain-Computer Interface: Applications

The tools we developed along the course of the work presented in this thesis gave us a good
experience on both the robotic aspect and the BCI aspect of the control of a humanoid robot
with a brain-computer interface. This experience was used to perform several studies that
were not directly related to solving the problem of controlling a humanoid robot through a
BCI but rather used the BCI and the humanoid robot as tools to perform studies that goes
beyond this scope.

In this chapter, we present the most thorough application of our work: the study of the
impact of sound on the embodiment quality. This study is conducted through two experi-
ments that are both presented here. In the first study, we determined the most appropriate
auditory feedback we could provide and we proposed a scenario to test different feedback
modalities and their effect on the robotic control within a simple “pick-and-place” scenario
with an intentionally limited visual feedback. This study led to significant results regarding
the role of sound in the embodiment process [98] which are reported here. Following these
results, we designed a new study with two major modifications. On the first hand, the sub-
jects have to perform a significantly more complex navigation task. On the other hand, visual
feedback is provided through an head-mounted display (HMD) which provides a more im-
mersive setting. A thorough study was conducted within this setting involving both healthy
subjects and patients suffering from spinal cord injury (SCI). Although this study has been
inconclusive so far, we discuss further analyses that may lead to significant results.
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4.1 Studying the Impact of Sound in Embodiment Experi-
ence

One main goal of the VERE project is to allow people with limited mobility to interact with
the environment using a robot remotely controlled through BCI technologies. One important
point of novelty of VERE is the possibility to make people with motor and sensory disabili-
ties perceive the body of an external agent (physical or virtual) as if it were their own body.
In this section, we describe a novel experimental task aimed at evaluating how auditory feed-
back can increase the sense of presence and the performance of a user in Rome controlling
via BCI the actions of a humanoid robot located in Japan. We also report preliminary data
collected on a small sample of healthy subjects. The experiment is an upgrade of the pre-
viously designed scenarios. In the original scenario, a BCI user steers a robot from a starting
position to a final target location while hearing a footstep sound either synchronously or
asynchronously with the real footsteps of the robot. In the present experiment, to increase
the participants’ engagement we added to the original plan an additional phase in which par-
ticipants instruct the robot via BCI to grasp a bottle, walk for some meters and place the
bottle on a table. From a robotic point of view, the experiment is very similar to the one
we introduced in [75] and in Chapter 3 of this document hence the technical details of the
experiment are not further discussed in this chapter.

Figure 4.1: A BCI user controlling the robot from Italy.
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4.1.1 Material and Methods

4.1.1.1 Participants

A total of 28 healthy subjects took part in the study. Nine subjects (3 women; age range,
20–26 years) participated in the main experiment and 19 subjects (12 women; age range,
21–33 years) were tested in one of the two pilot studies. All the subjects were right handed
according to a standard handedness inventory [99] had normal or corrected-to-normal visual
acuity in both eyes, and were naive as to the purposes of the experiments. None of the partici-
pants had any contraindication for the BCI study [28]. Participants provided written informed
consent and the procedures were approved by the ethics committee at the Fondazione Santa
Lucia and were in accordance with the ethical standards of the 1964 Declaration of Helsinki.
Participants received reimbursement for their participation and were debriefed on the pur-
pose of the study at the end of the experimental procedure. In the SSVEPs-BCI experiment
no discomfort or adverse effects were reported or noticed.

4.1.1.2 Pilot Studies - Footsteps Sounds Selection

Two independent groups of subjects have been tested in different pilot studies (Group 1, 12
subjects, 7 female, range 21–33 years; Group 2, 7 subjects, 5 female, range 20–23 years).
In Pilot 1, eight different human footsteps audio files were interleaved by a variable number
(min 5, max 10) of pure tones to avoid habituation and randomly heard by participants.
Subjects were asked to guess what the sound was and type the answer within a text box.
Participants listened to each sound only once. The sound represented two “hits” with the
ground (e.g., right-left foot). In Pilot 2 participants rated on a 0–100Visual Analog Scale
(VAS) how much the sound they heard was reproducible by the human body. The sounds
were the same as in Pilot 1 and interleaved by pure tones. The selected sound was freely
categorized as “footstep” by 91% of the sample from Pilot 1 and rated as reproducible by the
human body at the 93.7 ± 2.57 (mean ± s.e.m.) on the 0–100VAS scale from Pilot 2. In this
way we chose the most recognizable footstep sound that was judged as highly reproducible
by the human body.

4.1.1.3 Main Experiment - Task Description

Participants located in Rome (Italy) controlled a HRP-2 humanoid robot located in Tsukuba
(Japan, see Figure 4.1) by a SSVEPs-BCI system. The task had four sub-goals (SGs). First
the BCI user had to steer the robot from a starting position to a table (SG1) and command
HRP-2 to grasp a bottle (SG2). Then, the participant guided the robot as close as possible to a
second table (SG3) and tried to drop the bottle as close as possible to a target location marked
with two concentric circles (SG4, see Figure 4.2A). Participants were asked to complete the
task as fast and accurate as possible. An enforced- (for all SGs) and a recursive-selection
(SG4) were adopted to allow the user to complete the task. In half experimental conditions,
we placed a mirror behind the second table to provide additional information about the spa-
tial proximity between the table and the robot. During the task the BCI user heard a footstep
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sound either synchronous or asynchronous with the real footsteps of the robot (during SG1
and SG3) and could see or not the robot’s body reflected in a mirror placed behind the sec-
ond table (SG3 and SG4). In this way we had a 2×2 design with Footstep (Synchronous,
Asynchronous) and Mirror (Present, Absent) as within subjects factors for a total of four ex-
perimental conditions. After each condition the subject answered questions concerning the
experience they had (see the questionnaire presented below). Importantly auditory feedback
was delivered in Italy. Data regarding robot’s feet contact were streamed from Japan along
with the video stream. Hence when a foot touched the ground we could deliver an audi-
tory feedback to the user located in Italy synchronously or asynchronously with the video
feedback.

Figure 4.2: (A) A sequence of images depicting the different sub-goals (SGs). (B) A state-flow

diagram showing the Finite State Machine (FSM). Yellow arrows represent transitions initiated by

the user while green arrows represent transitions initiated by the robot.

4.1.1.4 Procedure

The user was comfortably sitting in an armchair about 75cm away from a 19′′ LCD screen
operating at a refresh rate of 60Hz upon which the user interface was displayed. The SSVEP
classifier was trained on individual EEG data and a short video was presented to explain the
goals to accomplish during the experiment. A trial consisted of the execution of the entire
demonstration: from grasping to dropping the bottle on the second table. Two concentric
circles indicated the target position on the second table. At the end of the trial, participants
answered 4 questions to assess the quality of their interaction with the robot. An initial
practice trial was performed before the experimental conditions. Note that we have been
able to set the classifier error rate at 0% for all subjects. After training the error rate was null
after 7.52 ± 0.22s (mean ± s.e.m.). All participants completed successfully the training and
were able to use the SSVEP.

4.1.1.5 Data Analysis

The Total time to complete the task, Walking time (i.e., time to steer the robot from the first
table to the second one; SG3) and Place Accuracy (i.e., displacement between the target lo-
cation and dropped bottle position; SG4) were used as measures of behavioral performance.
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We discarded from the main analysis one participant who did not follow task instructions
and presented a Walking time 202% higher relative to the other participants. Thus, the fi-
nal sample was of 8 subjects (2 female, 21.5 ± 1.06, range 20–23 years). An ANOVA
with Mirror (present, absent) and Footstep sound (Synchronous, Asynchronous) as between
subjects’ factors was performed after checking for normality distribution (using the Shapiro-
Wilk test). Subjective answers to the quality of the interaction were analyzed by means of
non-parametric tests Friedman ANOVA and Wilcoxon test for within-group comparisons.

4.1.2 Hardware and software integration

Brain computer interface
EEG signals were acquired at 256Hz by means of a g.USBamp (24 Bit biosignal amplifi-

cation unit, g.tec Medical Engineering GmbH, Austria).We applied a band-pass (0.5–30Hz)
and a notch filter at 50Hz. Eight Ag/AgCl active electrodes were placed on the POz, PO3,
PO4, PO7, PO8, O1, O2, and Oz positions of the international 10–20 system. Fpz was used
as ground electrode and the right earlobe as a reference.

Feature extraction
SSVEPs were extracted from the EEG signal using a minimum energy classifier [30].

The system categorized 6 different classes with 100% accuracy in all participants after a
short training (6 min). Five classes were implemented to steer the robot (forward, 6Hz;
backward, 9Hz; turn right, 8Hz; turn left, 14Hz; stop, 10Hz) and an additional zero-class
detected when the user was not attending to any flashing stimuli. The frequencies were se-
lected to avoid first or second harmonics and to minimize the risk of eliciting seizures in
healthy subjects (Fisher et al., 2005). Critical frequencies fall in the range of 15–2Hz. It is
worth noting that some individuals may result sensitive also to higher rapidity of the flashing
stimuli [28]. Moreover, frequencies higher than 25Hz are difficult to render properly on a
60Hz monitor. Thus, the selected frequencies of the flashing stimuli were 6, 8, 9, 10, and
14Hz.

Graphical user interface
During walking phases, four flickering arrows allowed the participant to send the robot

instructions to move leftward, rightward, backward, or forward. A fifth flashing square was
added in the bottom-left of the interface and was meant to stop the robot. When the BCI
recognized one of these possible commands, the corresponding arrow or square’s border
changed color (from black to green, see Figure 4.3).

From that moment, participants observed a change in robot’s video feedback after about
800ms (400ms to send information to Japan, 400ms to receive robot’s cameras feedback in
Italy). Moreover, color-change signaled to the BCI users whether the system was correctly
or incorrectly categorizing their intentions. This may be relevant for the experienced sense
of control over robot’s actions in addition to the audio-visual temporal matching. It is also
worth noting that distal intention increases the sense of agency as measured by intentional
binding [100] [101]. Finally a simplified table-icon changed color (from green to red) when
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Figure 4.3: Within the implemented graphical user interface whenever the BCI recognized a

command (e.g., top arrow, forward-command), the corresponding icon’s border changed color (from

black to green).

the proximity of the robot to the table was too close and potentially dangerous.

Sub-goals transitions
Transitions between different phases of the SGs were achieved by the implementation of

a finite state machine (FSM, Figure 4.2B). In this way we combined both user’ and robot’s
autonomy. The BCI user freely decided for the robot’s walking directions, the moment to
grasp the bottle and the place for dropping it. HRP-2 followed BCI-users’ intention and
autonomously implemented the correct movements for walking (SGs1-3), grasping (SG2)
and dropping (SG4). Therefore, transitions between different SGs were triggered either by
the user or the robot with a FSM as shown in Figure 4.2B.

4.1.3 Results

4.1.3.1 Performance Assessment

Total time
Data were normally distributed (Shapiro-Wilk test for all conditions: p > 0.20). The

ANOVA did not reveal any main effect [all F(1,7) < 0.62, p > 0.45, η2 < 0.08] or interac-
tion [F(1,7) = 4.53, p = 0.07, η2 = 0.39]. We performed an additional ANOVA to check
any learning effect with the Order of the conditions as 4 level factor (Trial1, Trial2, Trial3,
Trial4). We did not observed any learning effect [F(3,21) = 1.38, p = 0.27, η2 = 0.16].

Walking time
Data were normally distributed (Shapiro-Wilk test for all conditions: p > 0.15). The

ANOVA revealed a main effect of Footstep [F(1,7) = 10.10, p = 0.01, η2 = 0.59] with
faster time in the Synchronous (mean ± S.E., 60.00s ± 2.62) relative to the Asynchronous
condition (68.36s ± 3.42; Figure 4.4). No main effect of Mirror [F(1,7) = 3.96, p = 0.09,
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η2 = 0.36] or interaction [F(1,7) = 0.01, p = 0.97, η2 < 0.01] was found. We additionally
checked for any learning effect. The ANOVA performed with Order as a 4 level factor
(Trial1, Trial2, Trial3, Trial4) did not reveal any effect [F(3,21) = 0.86, p = 0.47, η2 = 0.11].
To rule out any role of distraction or drop of attention during the asynchronous condition
we checked the total commands sent to the robot and the times the robot stopped (i.e., the
BCI classifier categorized a “zero class”) as index of participants’ uncertainty that may have
explained the result.

Figure 4.4: Mean walking time to drive the robot from the first to the second table and drop the

bottle. Light-gray and dark-gray columns represent Synchronous and Asynchronous footstep sound

heard by participants. Error bars represent s.e.m. Asterisk indicate significant comparisons

(p < 0.05)

Due to technical failure for one subject the number of commands and stops sent to the
robot were missing in the Sound Asynchronous—Mirror Absent condition. The missing cell
was substituted by the mean of commands and stops the subjects (n = 7) sent to the robot
in that condition. Neither the number of sent commands in the Synchronous (25.87 ± 4.00)
and Asynchronous (29.55 ± 3.00) condition [t(7) = −1.53, p = 0.16, r = 0.06] nor the
times the robot stopped in the Synchronous (4.44 ± 0.89) and Asynchronous (4.29 ± 0.67)
condition [t(7) = 0.27, p = 0.79, r = 0.28] did differ.

Place accuracy

Data were not normally distributed (Shapiro-Wilk test in two out of four conditions:
p < 0.05).Non-parametric Friedman ANOVA did not reveal any differences in the Place
accuracy (χ3 = 5.07, p = 0.16).
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4.1.3.2 Quality of the Interaction

Table 4.1 describes the questions participants answered after each experimental condition.
Participants were asked to answer on a 0-100 scale (where 0 indicates “nothing” and 100
indicates “very much”).

Questions aimed at investigating Item

Sense of Presence

1
I had the sensation to be where the robot was. Where
100 represents normal experience of being in a place.

2
There were moments that the images I saw were the
reality.

3 There were moments that the laboratory was the reality.

4
During the control of the robot, there were moments
when I actually thought I was where the robot was.

5
(eyes closed) When you think back to the experience,
do you recall it as you personally did it.

6
(eyes closed) Mentally rehearsing the experience makes
me feel like I actually were where the robot was.

Sense of Embodiment

1
(mirror condition only) When I saw the robot in the mir-
ror I was surprised not to see my body.

2 It was as if the robot were my body.

3
It was as if parts of the robot (legs, limbs, hands...) were
part of my body.

4 It was as if I had two bodies (one here, one there).

5 It was as if my body were becoming robotic.

Sense of Agency

1 The robot executed my commands.

2 I was in control of robot’s actions.

BCI Interface

1 I paid attention to the images displayed.
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2
It was easy to instruct the robot about the direction
where to move.

3 Looking at the flashing arrows was difficult .

Plausibility

1
Displayed images conveyed a sense of real-
ism/plausibility.

2
The actions (walking, grasping, placing) conveyed a
sense of being really executed (it was not a pre-recorded
movie).

Illusionary Movement

1
It was like walking (as if my legs were actually mo-
ving).

2 I had the feeling of swaying along with the robot.

Table 4.1: List of the questions participants answered after each experimental condition.

The results are summed up in Table 4.2. We assessed the felt agency (Q1) over robot’s
actions and no differences between experimental conditions (Friedman ANOVA, χ3 = 3.08,
p = 0.38) were found. Throughout all the experiment, participants did pay attention to the
images while they were controlling the robot (Q2, χ3 = 1.19, p = 0.75) and found easy to
steer HRP-2 (Q3, χ3 = 3.65, p = 0.30). Importantly, participants reported no discomfort
due to the flashing stimuli (Q4, χ3 = 1.26, p = 0.73) in any condition.

Sound Sync Sound Async

Mirror no-Mirror Mirror no-Mirror

Q1 I was in control of robot’s actions

66.88±6.74 73.13±5.08 67.50±7.07 71.88±5.50

Q2 I paid attention to the images displayed

71.88±6.40 71.88±6.54 74.38±8.10 77.50±7.91

Q3 It was easy to instruct the robot about the direction where to move

64.38±7.99 68.75±5.49 65.63±10.41 62.50±5.00
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Q4 Looking at the flashing arrows was difficult

25.99±8.02 27.50±7.96 28.13±9.54 28.13±7.44

Numbers represent values comprised between 0 and 100 (mean ± s.e.m.)

Table 4.2: Participants answers to questions assessing the quality of the experience.

4.1.4 Discussion

Since the SSVEPs BCI system is a rather stable one, we adopted it to test the role of vi-
sual and auditory feedback during the remote control of a humanoid robot (HRP-2). More
specifically, we explored whether temporal congruency of seen and heard input can mod-
ify the ability to steer a robot and the perceived quality of the human-robot interaction. We
designed an easy way to use graphical interface sending to participants information about ob-
stacles’ proximity. Participants continuously controlled the walking directions of the robot
by means of the SSVEPs flashing commands. The manipulation of audio-visual feedback
was effective in modifying the participants’ performance. More specifically, footstep audi-
tory feedback delivered synchronously with the seen robot’s steps allowed the participant to
use less time for correctly driving the robot from the first to the second table. This effect was
limited to the walking phase and did not generalize to the total time required to complete
the task. It is worth noting that the overall time is composed of transitions autonomously
initiated by the robot and that only the walking phase required an accurate control to turn
and drive the robot to the second table. These factors may have flattened the overall time
required to accomplish the task resulting in a non-statistical difference of the total time be-
tween the experimental manipulations. Importantly participants did not differ in the total
number of commands and stops sent to the robot. This indicates that participants were not
more imprecise or erroneous in sending commands to the robot in the asynchronous relative
to the synchronous condition. The ability to efficiently decide when an action has to be per-
formed within a given environment may be affected by the reliability of sensory information.
Feedback uncertainty may indeed affect this decision making process [102]. The sound of
synchronous footsteps may have improved the ability to decide “when” changing command.
In other words, the use of audio-visual synchrony may have helped BCI-controllers’ deci-
sions to better coordinate the robot. This result is relevant for current research in BCI the
aim of which is to improve the human control over artificial devices either physical (e.g.,
humanoids robots) or virtual (e.g., avatars). Furthermore we showed that participants could
maximize the performance (faster walking) taking advantage of audio-visual feedback. The
observed advantage did not parallel any change in the perceived effort as indicated by the
absence of differences in the questionnaire concerning the synchronous versus asynchronous
experimental conditions.

Our data expand a previous study that showed that background noise did not affect the
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users’ BCI performance [103]. Indeed the overall performance (total time and place ac-
curacy) in the asynchronous conditions did not differ from synchronous conditions. Impor-
tantly, the increased ability to move the robot did not affect the dropping accuracy. Moreover
the mirror did influence neither the speed nor the drop accuracy suggesting that spatial in-
formation from the mirror did not facilitate dropping ability. It is worth noting, however,
that participants may need additional training or more time to actually learn to use mirrored
images for a better control of robot’s orientation respect to the external environment. Related
to this, we also note that the relative narrow field-of-view (FoV) may indeed represent a lim-
iting aspect of teleoperation [75]. FoV can affect the ability to discriminate distances and
consequently the ability of subjects to avoid obstacles and stop the robot at the right distance
to perform an action. Moreover we applied recursive and enforced selection, a camera depth
perception and combined user and robot’s autonomy to facilitate the interaction with the en-
vironment. All these advancements were implemented in a graphical interface that allowed
participants to pay attention to the environment while controlling the robot.

Overall we obtained two main results: (i) maintaining a good level of users’ experience
and (ii) improving the navigational performance. More specifically, the performance and
quality of the interaction were assessed in this study involving eight healthy people who
successfully teleoperated the robot through BCI. Importantly it has been reported the auto-
matic tendency of the central nervous system to integrate tactile and auditory feedback even
when presented with a slight temporal asynchrony [104]. This may be in keeping with the
result that in our setup asynchronous auditory feedback did not affect the perceived sense of
agency. It is also worth noting that this result might also have been positively influenced by
the visual feedback provided by coloring the selected command. The combination of these
two factors may explain why our participants maintained a good sense of agency throughout
the task and experimental conditions.

Finally we did not observe a learning effect as previously reported [75] although the
setups were different. Participants were not faster in the last trials relative to the initial ones.
This may indicate that the asynchronous auditory feedback may have disrupted a possible
learning curve. Our results are relevant for current BCI research in that they highlight how
congruent sensory information can improve human-machine interaction without affecting
the quality of the experience.

4.1.5 Conclusion

The continuous technological advancement in the field of controlling external devices in-
troduced several possibilities to actually act on the environment through a surrogate. The
advancement of peripheral devices made possible the combination of BCI and eye tracking
technologies [105] [106]. Here we designed and tested an application that used SSVEPs BCI
system to decode user’s intentions. Future works should combine EEG and eye tracker sys-
tems to integrate robot’s navigation and action to interact in the world. An example may be
the use of eye gaze for navigation and object-integrated SSVEPs for action. This would in-
crease the options to perform different actions on the same object. Eye tracker might indeed
perform a rough recognition of user’s navigational purposes and SSVEPs, through recursive
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and enforced selections, might categorize the action to be executed on a specific object. This
line of improvement should also parallel the development of the same application scenarios
with more immersive systems like head mounted displays and very immersive virtual reality
experience of the type one can experience in CAVE systems. Moreover, more detailed ques-
tionnaire may shed new light about the feeling of control and comfort that remote BCI users
may experience during similar human-robot interface. All in all, our data are important for
designing user-friendly interfaces that allow people who cannot control their body anymore
(e.g., spinal cord injured patients) to re-enter to the world in the most efficient possible way.
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4.2 Impact of Sound in Embodiment Experience with a Strong
Visual Component

4.2.1 Introduction

This second study represents an upgrade compared to the one we presented previously. From
a technical point of view, all but one of the elements that compose this study remain the same
than in the previous study. Thus we only highlight the changes regarding the scenario and the
experimental method. However, its scope is different. In the previous scenario, a BCI user
steered a robot from a starting position to grasp a bottle, then walked for some meters and
placed the bottle on a table. In the present scenario, the user starts by grasping a bottle but
the difficulty of the walking task has been increased by putting a gate in the robot’s path, as
seen in Figure 4.5. Furthermore, the interface is now displayed on a head-mounted display
(HMD), the Oculus Rift, instead of a LCD screen. This creates a much more immersive
experience for the user.

Figure 4.5: Setup of the second embodiment experience. The path to the table is “blocked” by

obstacles and the user has to navigate through it. Marks are placed on the ground to help the user

navigate and on the table to indicate the drop location.

As in the previous study, we provide sound feedback during the walking task but in
this study we oppose four conditions and we wish to understand the impact, if any, on the
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embodiment and control performance of the system. The four conditions that we study are:

1. Biological sound synchronized with the walking;
2. Biological sound unsynchronized with the walking;
3. Non-biological sound synchronized with the walking;
4. Non-biological sound unsynchronized with the walking.

Finally, a group of spinal cord injury (SCI) patients also participated in this study and
performed the same experiment as a group of healthy subjects, allowing us to compare each
group performance as well as the impact of sound feedback on each group.

4.2.2 Participants

Two groups of participants are involved in this study. A group composed of healthy subjects
and a group composed of SCI patients.

4.2.2.1 Healthy participants

Participants (n = 14, mean age 24.66 ± 2.96, 6 females) seated comfortably in a chair in
front of a monitor. A g.tec EEG-cap was mounted (8 channels with the same configuration
than the previous study) and the task explained. All the participants had normal or corrected
to normal vision.

4.2.2.2 SCI patients

At the moment of writing, we tested two patients with SCI that we refer to as Patient1 and
Patient2. Patient1 had a lesion level C4-C5 (age 22), Patient2 had a lesion level of C3-C4(age
31).

4.2.3 Methods

We trained the g.tec-SSVEP classifier and we have been able to select 0% error rate for each
participant. We presented a short video to explain the task and the goal of the task which
consisted in grasping a bottle placed on a table and then place the very same bottle as close as
possible to a target position on another table located about 4 meters from the first. The BCI
user during the remote control could see through HMD in Rome the video streamed images
from the Japan robot’s first person perspective. Further, we allowed BCI user to observe the
robot’s body by placing a mirror close to the second table.

We manipulated the audio-visual synchronization and the type of sound participants lis-
tened though earphones. Thus, the experimental design consisted in 4 conditions with sound
Onset (Synchronous, Asynchronous) and Sound (Footsteps, Beep) as within-subjects Fac-
tors.

As dependent variables we collected:

1. the total time to complete the task;
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2. the time to steer the robot from the first table to the second one;
3. the distance between the target position and the actual position of the bottle at the end

of the task.

The experiment consisted of 5 sessions namely:

1. one SSVEP training phase;
2. a trial to learn the task;
3. a baseline phase where participant completed the task and no auditory feedback was

provided;
4. the 4 experimental sessions;
5. a final baseline phase.

The experimental conditions involved in step 4 were shuffled among subjects. And, at
the end of each experimental condition, participants answered questions concerning his/her
experience interacting with the robot as seen in Table 4.3.

4.2.4 Data Analysis: Current Results

All performance data were baseline corrected (ratio between actual value and the mean of
the first and second Baseline). Patients’ performance was compared with the control sample.

4.2.4.1 Total time, walking time and placing accuracy

We now introduce the definition of the different metrics that we report here.

Total time
The time from beginning of the experiment to the end of the experiment.

Walking time
The time from the moment the user gain control of the robot’s steering until the user
stops the robot in front of the table.

Placing accuracy
The distance between the final object’s center position and the target on the table.

Healthy Participants (HP) - Total time
We observed no differences between conditions [F1, 13 < 2.02; P > 0.19].

HP - Walking time
We observed no difference between conditions [F1, 13 < 3.36; P > 0.09].

HP - Placing accuracy
We observe a better accuracy, see Figure 4.6, during the Foot sound (mean = 1.481)
relative to the Beep sound (mean = 1.975) [F1, 13 = 6.71; P = 0.022].
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Figure 4.6: A better placement accuracy (lower values) is obtained with Footstep sound feedback

during the control of the humanoid robot.

Patient1 (P1)
Patient1 was able to conclude only the conditions with the biological sound. We found
that during the Foot Asynchronous condition Patient1 took more time during the walk-
ing phase relative to controls (p = 0.043).
No other comparisons (Total Time, Place Accuracy) with the control sample were
close to significance (all t < 1.70, p > 0.112).

Patient2 (P2)
We found a tendency to have longer time to complete the task in the Foot- (t =
1.15, p = 0.054) and Beep-Asynchronous conditions (t = 1.86, p = 0.085).
No other comparisons (Total Time, Place Accuracy) with the control sample were
close to significance (all t < 1.48, p > 0.165).

4.2.4.2 Subjective Measures

Table 4.3 describes the questions participants answered after each experimental condition.
Participants were asked to answer on a 0 − 100 scale (where 0 indicates “nothing” and 100
indicates “very much”; see also Table 4.4 for Patients’ raw data).

Questions aimed at investigating Item

Place illusion

1 I had the sensation to be where the robot was.
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2
There were moments that the images I saw were the
reality.

Embodiment

1 It was as if the robot were my body.

Embodiment Control

1 It was as if I had two bodies (here and there).

Agency

1 The robot executed my commands.

2 I felt in control of robot’s / avatar’s actions.

BCI Interface

1 I could pay attention to the environment displayed.

2 It was easy commanding through the BCI interface.

3 It was hard looking at the flashing stimuli.

Illusory Movement

1
It was like walking (as if my legs were actually mo-
ving).

2 I had the feeling of swaying along with the robot.

Table 4.3: List of the questions participants answered after each experimental condition.

We found no difference between the experimental conditions (F1,13 < 3.82, p > 0.072).
Overall participants perceived low level of Place Illusion (meanPI1,2 = 35.67 ± 3.80),

low level of Embodiment (mean = 25.44±3.42) and Illusionary Movement (meanIM1,2 =
28.25 ± 3.12), high level of Agency (meanA1,2 = 74.96 ± 2.29).

Importantly subjects were able to pay attention to the environment (mean = 64.95 ±
2.91), reported that commanding the robot was relatively easy (mean = 67.83 ± 3.13) and
that looking at the flashing arrows was not hard (mean = 34.12 ± 4.10).

The same trend was observed for Patient1 and Patient2 as seen in Table 4.4.

Patient1 Patient2
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Place Illusion 62.50 ± 7.50 28.75 ± 10.48

Embodiment 60.00 ± 0.00 12.50 ± 2.50

Embodiment Control 60.00 ± 0.00 20.00 ± 10.00

Agency 70.00 ± 0.00 68.75 ± 3.15

BCI Interface 53.33 ± 3.33 58.33 ± 2.89

Illusory Movement 52.50 ± 2.50 13.75 ± 2.39

Numbers represent values comprised between 0 and 100 (mean ± s.e.m.)

Table 4.4: Patients’ answers to questions.

4.2.5 Discussion and Perspectives

Data suggest that SSVEP-BCI does not limit the possibility to observe the environment and
that the designed interface allows participants to easily control robot’s movements. Further,
the SSVEP reliability allows participants to experience high levels agency on the robot’s
actions. The low level of place illusion and embodiment may be driven by the absence of
sensorimotor congruency [107] for head movements as the robot’s head remained fixed and
subjects were asked to remain still with the head.

Importantly, comparison of patients’ answers may suggest the higher the spinal lesion
the lower is the perceived place illusion and embodiment. Moreover data from healthy sub-
jects suggest the role of human-related sounds to control a robot. Moreover the observed
interference effect of the asynchronous footstep sound condition in SCI people may suggest
a reduced ability of patients to manage multi-sensory conflicts when related to lower body
parts.

While no notable effect is seen on the entirety of the subjects, we are starting to consider
sub-groups of subjects in order to observe different effect based on the individual levels of
performance. Indeed, we have seen during our experiments that some subjects were per-
forming the task “well” and some were performing it “badly” based on how well the subject
was able to steer the robot to reach its destination.

An example of one “bad” and one “good” subjects is shown in Figure 4.7. In those
figures:

• the dotted line links the start at position (x, y) = (0, 0) and the arrival position;
• a single blue point and a red line represent the robot and its facing orientation;
• the transparency of the red line indicates time progression: it starts almost transparent

at t = 0 and ends opaque at the arrival;
• to build this figure, a point was recorded every time the speed input "dropped", i.e.

each time the BCI selection dropped to zero;
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• the “n = N” indicator in the top-right corner of the image is the number of recorded
points in the figure, due to the scale of the picture and short drops, this number is
higher than the number of points that can be actually seen.

(a) “Bad” subject

(b) “Good” subject

Figure 4.7: Comparison of trajectory for two different subjects with very different performance levels.

A “bad” subject, such as the one seen in Figure 4.7a, is characterized by a large number
of points that indicate a difficulty to control the robot during the steering. In the example we
show, the subject first moves forward, i.e. s/he goes toward the table where the object s/he
just grasped was, then turn left and moves forward. However, s/he is at this point too close
to the barrier that we setup so s/he need to turn around and get the robot in a position that
allows it to cross the gate. Once s/he has crossed this gate and s/he can see the table, s/he
stops the robot.

On the other hand, the “good” subject we show also wrongly walk a bit forward in the
beginning but s/he is then able to steer the robot left, move it toward a position where s/he can
cross the gate, cross the gate and stop near the table and finally adjust the robot’s orientation
and stop it.

At the moment, we are still figuring an objective criterion that reflects this control quality.
We expect one of the following effects:

1. The sounds have no effect on “good” subjects. For “bad subjects”, it has a similar effect
to what we demonstrated in our previous study, i.e. synchronized footstep sounds help
the subject to control the robot compared to the other conditions;

2. Similar effects than the previous but the “good” and “bad” groups are reversed.

Finally, we plan to perform more experiments with SCI patients in order to confirm, or
infirm, the initial observations we have made.



136 Humanoid Control with a Brain-Computer Interface: Applications

4.3 Conclusion

In this chapter we have shown that, thanks to the framework introduced in Chapter 3 and to
the low-level BCI work shown in Chapter 2, we can implement rich paradigms that allow to
test embodiment parameters involving multiple sites. Indeed, in those cases, the robot was
operated in Japan but controlled from Italy.

Overall both studies we have introduced in this chapter suggest the importance of an
embodied-BCI perspective where sensorimotor-related information may help BCI users to
control an external devices. However, we have to pursue the analysis of the second exper-
iment data in order to understand the impact of the sound feedback when immersive visual
feedback strategies are involved.

Furthermore, the same framework can be applied to study other embodiment parameters.
In particular, we are planning to observe the effect of tactile feedback in SCI patients. For
healthy patients, it has already been shown that stimulating the tendons through a vibro-
stimulator can lead to illusory movements [108]. However, for SCI patients who lack sensa-
tions below the neck, this is not a practical solution. Yet, a similar observation was made in a
tetraplegic patient when stimulating his face [109]. A similar stimulation for walking could
be engineered but it is unknown whether this would be beneficial or not.

Finally, the fairly important number of people involved in these studies, n = 23(9 + 14),
and the generally positive reception of the demonstrators involved show that robots can be
practically controlled using EEG-based BCI. In the next chapter, we steer away from EEG-
based BCI and present some preliminary results obtained in controlling a humanoid robot
using an ECoG-based BCI.



Chapter 5

ECoG-based BCI using a humanoid
robot

The previous chapter closes our contribution in SSVEP object-centric BMI and its applica-
tion to humanoid robot for the purpose of embodiment. We discussed thoroughly the limita-
tions of the EEG technology and the difficulty to bypass the poor signal-to-noise ratio. This
chapter presents the (still ongoing) work that has been started regarding the use of a huma-
noid robot in ECoG-based BCI. This was made possible because we had the opportunity to
pair with a hospital at Hokkaido and access to patients on which ECoG is implanted as part
of an investigation of potential brain disorder. We first give a more descriptive explanation
than what we introduced in Chapter 1 concerning the ECoG technology/ We also present
the method that is most commonly used to exploit the data obtained from the brain using
this ECoG. We then discuss the few experiments that we performed with two patients: a one
degree of freedom neurofeedback experiment and a two degrees of freedom neurofeedback
experiment. These two latter experiments were conducted in collaboration with g.tec and
Dr. Kamada from Asahikawa University Hospital in Hokkaido, Japan. Finally, we discuss
future works in this field as well as some of the issues and limitations of such experiments.
Please note that having such an opportunity is rather rare and we had to wait for the timing
and the consent and the ethical procedure to establish. We had only two short windows in
time where it is possible to conduct such kind of experiment. We cannot choose this window
opportunity and also we cannot “reuse” the patients. The latter has to be ready and in the
mood on the D day otherwise the opportunity is lost. It is really difficult to organize such
experimentations.
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5.1 An introduction to ECoG-based BCI

In this section, we discuss the ECoG technology and a commonly used method to perform
BCI based on this technique.

5.1.1 ECoG technology

The EEG technology has many advantages: it is cheap, widely available and researched,
easy to setup and provides a very high temporal resolution. However, it has two important
drawbacks: (i) a very low spatial resolution, and (ii) a very low signal-to-noise ratio. These
drawbacks are detrimental to most BCI applications that require a good spatial resolution
such as motor-imagery paradigms.

To overcome these limitations one can use when possible the more invasive ECoG tech-
nique. Contrary to non-invasive EEG that can only provide information in the range of 0–
40Hz; whereas ECoG can provide information up to 500Hz [110]. This broader bandwidth
allows to retrieve the movement related–and motor-imagery related–increases in bandpower
that occurs above 40Hz, that is the high-gamma activation (HGA) [111]. Furthermore, the
HGA is strongly focused at specific cortical regions related to the executed–or imagined–
task.

5.1.2 ECoG-based BCI: the CSP method

The method we described here is reported in [112], g.tec since then improved it to perform
the classification online by reducing the dimensions of the features space and by automating
the classifier selection. This allows trials to be chained effectively with improved classifier’s
and user’s performances. We report here the information relative to the common spatial
pattern (CSP) method in ECoG-based BCI for hand poses classification.

5.1.2.1 Data Acquisition

The ECoG data is recorded at bedside using a g.HIamp biosignal amplifier (g.tec medical
engineering GmbH, Schiedlberg, Austria) with a sampling rate of 1200Hz and its built-in
band-pass filter set to the range 0.5–500Hz.

5.1.2.2 Pre-processing

The data acquired from the subject is band-pass filtered from 100 to 500Hz (high gamma
range) with additional notch filters at all harmonics hi of the 50Hz power line frequency. All
filters were designed as Butterworth filter of order 5 with a notch width of hi ± 5Hz.

5.1.2.3 CSP Feature Extraction and Classification

Common Spatial Patterns (CSPs) are a standard method for EEG data to extract optimal
discriminant features in movement (or movement imagination) tasks. In the case of hand
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poses classifications, a two-stage process is employed where, in a first step, the movement
state is told apart from the idle state and in a second step the three different hand poses are
decoded in a “one versus all” comparison [113].

To prevent influence of visual or auditory stimuli onto the classification, the CSPs are
run exclusively on the electrode grids covering the motor cortex. Error rate based search
algorithms allow to select optimal parameters regarding the CSP window size.

The CSP weight matrix calculated with the optimal window size is then used to spatially
filter the ECoG signal, and the four most discriminant feature channels are selected per
decision pair (two largest eigenvalues from each side of the spectrum). Then the signal
variances are computed and the resulting channels are normalized and have their logarithm
taken for numeric stability.

Based on those features a two-class linear discriminant analysis (LDA) for the case
“movement” versus “idle”, or a multi-class LDA (MLDA) for the hand pose description
is calculated using 10×10 fold cross-validation [114].

5.2 One degree of freedom ECoG-based BCI

The first ECoG-based BCI experiment we performed allowed a patient (female) implanted
with an ECoG array over the left-hand motor area to control a robotic arm by using thoughts
alone. The implementation location and the CSP map for hand motor imagination are shown
in Figure 5.1. This experiment is illustrated in Figure 5.2 and is described thereafter.

Please note that for practical reasons, the number and duration of these experiments were
limited. The number of possible experiments is limited by the therapeutic process within
which the patient is involved. Furthermore, in the case of this patient, she had suffered some
postoperative complications. Thus, we first had to wait for her to fully recover from the
surgery, and then, following the doctors’ direction, we were able to work with her only one
hour per day–including the time required to set-up the recording–over a period of three days.
These practical issues are further discussed in Section 5.4.

The patient is placed in front of a computer screen where the video from the robot’s head-
mounted camera is shown. The robot is placed near a cupboard where an object is standing.
The robot has its hand raised, ready to grasp the object. A cue is shown to the user. The cue
has two states as seen in Figure 5.2:

Rest
A red hexagon with the Japanese character for rest (left side).

Move
A green circle with the Japanese character for move (right side).

The BCI system is able to detect these two state: rest and move. For the patient, the
mental strategy for rest is to keep a relaxed state in her mind while the move state corresponds
to the imagination of a grasping movement with the left hand.
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Figure 5.1: ECoG grids implemented on the right-hemisphere of the patient’s brain and CSP map

for hand motor imagination in Patient 1. The main grid used in this experiment, framed in red here,

is placed over the left-hand motor area and is composed of 60 electrodes.

When the cue is set to rest, the patient should stay relaxed. When it is set to move, the
patient should imagine a grasping action with the left hand. The robot transits between the
following states:

1. Rest
2. Move the hand towards the object
3. Close the gripper to grasp the object
4. Lift the object
5. Maintain the object in the air

Once the BCI has detected the move intention for 500 ms, the robot transits from its
current state to the next state or stays in the final state. The execution of each state takes
roughly 500 ms, therefore, if the patient is able to maintain the move state for 2 seconds, the
robot executes a smooth “grasp and lift” movement. If the BCI detects a relax state then the
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current movement is immediately canceled–the robot moves backward and transits from the
current state to the previous state–then transits from its current state to the previous state as
long as the relax state is maintained.

The patient was able to perform such control over 4 neurofeedback sessions in total: 3 of
those were performed consecutively over one day and the last one was performed two days
afterwards. After each session, the distance between the features associated to each mental
state increased and thus the recognition performance improved.

Figure 5.2: ECoG patient during the neurofeedback experiment we conducted. On the left side, the

patient is in relax state. As soon as the cue comes, she imagines hand grasping movement and the

robot starts moving as seen on the right side.

This experiment showed that ECoG-based motor imagery performed very well despite a
very short training period compared to similar paradigms in EEG-based BCI: a few sessions
were enough to reach a good level of performance (> 80%) whereas EEG-based MI requires
a long period of training before reaching such performances [16]. The patient was also
able to maintain a motor imagery state for extended period of times. Finally, the use of the
humanoid robot in the neurofeedback was beneficial to the training of the BCI.

5.3 Two degrees of freedom ECoG-based BCI

The second patient’s (also female) implantation was much larger than the first one. We
hoped that this would allow us to perform multiple kind of motor imagery simultaneously
with a short training period and a high degree of accuracy compared to EEG-based BCI [16].
Indeed, while multi-class motor imagery is possible in EEG, it is usually performing at a low-
level of performance–around 60%–and only after lengthy periods of training. Furthermore,
the higher accuracy of ECoG recordings should allow us to perform multi-class simultaneous
detection. Therefore, we proposed a synchronized motor imagery paradigm that illustrates
these capabilities. We will see in this section that the patient was ultimately unsuccessful in
the realization of this task but the experience was nonetheless insightful with regards to the
ECoG-based BCI.
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5.3.1 Patient implantation

The second patient was implanted with a large number of ECoG electrodes, as seen in Fig-
ure 5.3, we initially aimed to understand the following intentions:

• Left-hand motor imagery
• Right-hand motor imagery
• Tongue motor imagery

Figure 5.3: ECoG grids implemented on the left hemisphere, right hemisphere and sub-parietal

region–respectively top left, top right and bottom part of the figure.

5.3.2 Results of Brain Mapping

All figures in this section reports the activation maps of the brain during performance of the
real reported movement when compared to a resting condition, referred to as “Rest” later.
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Figure 5.4: Left-hand versus Rest activation patterns. Most of the activity clearly originates from the

motor cortex in the right hemisphere.

In Figure 5.4, we report the activation of left-hand movement versus “Rest”. As ex-
pected, most of the activity is retrieved in the right motor cortex area. Motor imagery of this
movement follows a similar pattern yet activation is weaker.

Figure 5.5: Right-hand versus Rest activation patterns. Most of the activity clearly originates from

the motor cortex in the left hemisphere.



144 ECoG-based BCI using a humanoid robot

In Figure 5.5, we report the activation of right-hand movement versus rest. As expected,
most of the activity is retrieved in the left motor cortex area. Motor imagery of this movement
follows a similar pattern yet activation is weaker.

Figure 5.6: Tongue versus Rest activation patterns. The activity is mostly located in the right motor

cortex area and the sub-parietal areas.

In Figure 5.6, we report the activation of tongue movement versus rest. Most of the ac-
tivity is retrieved in the right motor cortex area and the sub-parietal areas. Motor imagery of
tongue movement is notably difficult to perform hence activation in that case is less notice-
able.

5.3.3 A synchronized motor-imagery paradigm

The paradigm we present here investigates the possibility to use the features intensities as an
input to the system rather than the classification output. It also tries to exploit coordinated
motor imagery. Hence, we propose to let the patient perform a two hands coordination-
oriented task. We now discuss this task while the following section details the schedule we
proposed to achieve this task.

The task to perform is illustrated in Figure 5.7: it is an assembly task. The goal of the
robot is to insert a peg, held by one hand, into a hole, held by the opposite hand. The full
task is composed of three sub-tasks:
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1. The robot grasps each object independently and hold them at a random and different
height (but otherwise properly aligned).

2. The robot aligns the object coordinately.
3. The robot assembles the object (i.e. move them towards each other).

Figure 5.7: An illustration of the assembly task we propose to realize through ECoG-based motor

imagery.

For each sub-task we propose the following mental strategies of control:

1. Left-hand motor imagery triggers the grasping and lifting of the peg, right-hand motor
imagery triggers the grasping and lifting of the circle (similarly to the first experiment).

2. Simultaneous, and only simultaneous, activation of left- and right-hand motor imagery
move the hand in opposite direction. Initially, simultaneous activation triggers a sym-
metric movement of both hands. If the performance of the patient allow it, we could
increase the independence of each hand control through the use of the features’ values.

3. Tongue motor-imagery triggers the assembling, this step is optional and assembly can
be triggered autonomously once the objects are properly aligned.
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5.3.4 Experiments

We initially planned to follow the following schedule:

1. Training on one degree of freedom motor-imagery paradigms using the robot’s arms
as feedback for left-hand and right-hand in a fashion similar to the first experiment we
presented earlier;

2. Training on two degrees of freedom motor-imagery with left-hand and right-hand mo-
tor imagery, feedback is provided using the robot’s arms;

3. Training on two degrees of freedom motor-imagery with left-hand and right-hand mo-
tor imagery as well as simultaneous activation of the two classes, feedback is provided
using the robot’s arms;

4. Free session on the assembly task described earlier where the assembly is automati-
cally triggered when the objects are properly aligned, the subject’s goal is to perform
the assembly task as many times as possible over the trial duration;

5. Free session on the assembly task described earlier where the assembly task is trig-
gered by tongue imagination, the subject’s goal is the same as in the previous step.

5.3.5 Results

The patient was able to perform the Step 1 well after the first session with a high degree of
accuracy as in the case of the first patient. We were very confident at this point that the patient
would be able to tackle the following steps since she was very responsive and enthusiast with
respect to the experiments with the robot.

Unfortunately, a setup issue during the training recordings for the Step 2 led to a mix-up
between the different ECoG channels. Because of this issue, the system was unable to build
a good enough classifier to discriminate between the three states–(i) rest, (ii) left-hand imag-
ination and (iii) right-hand imagination–as the classifier would systematically favor either
the left or the right hand class. As a result we could not meet the proposed schedule.

In fact, as in the previous experiment, we had, once again, limited time to work with
the patient. In this case, the patient recovered very well from the surgery and we had the
chance to work with her over four days during lengthier–about 2 hours–sessions. However,
following the “failed” session, the patient seemed disheartened by the lack of results. In
the following session, after noticing our mistake of the previous day, we repeated the ex-
periments corresponding to the Step 2 in order to obtain a suitable two degrees of freedom
motor-imagery classifier. However, the patient was not able to remain as focused as pre-
viously during these sessions. Thus, the classification accuracy was not very satisfying and
the resulting feedback was jerky. This led to a more frustrating experiment and did not help
to improve the performance of the classifier over the training sessions.

We have since envisioned different feedback conditions when performing this kind of
experiments to lead to a smoother feedback. In the experiment we presented, the “rest”
activity is favored over other movement activities since the user does not need to maintain
the “rest” activity to trigger the return of the robot to a neutral position. We may adapt the
paradigm to remove this favoritism. We would also like to consider using the features’ value
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to drive the robot rather than the outcome of the classifier. We hope to be able to test these
new modalities with future patients.

5.4 Challenges of ECoG-based BCI

In this section we discuss some of the challenges posed by ECoG-based BCI.

5.4.1 Problems induced by the surgery

The first step of ECoG-based BCI is to implant the electrode grids within the patient’s scalp.
This obviously requires surgery however this surgery is relatively simple and safe to perform.
It may be difficult for the surgeon to place the grids with a very high accuracy during the
procedure but the localization of the electrodes is checked in a postoperative procedure.
Thus we can obtain a ground-truth regarding this localization issue, though, in some cases,
it may not be sufficient.

For example, the first patient had been implanted with a grid on the occipital lobe in
order to record the signals from the visual cortex and possibly perform ECoG-based SSVEP
experiments, similar to those we introduced in Chapter 3. Since the main grids were inserted
over the motor cortex area, the surgeon had to slide the grid towards the occipital lobe, which
is a difficult surgical act. As a result it was nearly impossible to record SSVEP activities for
the patient and the insertion resulted in various complications.

Because of these complications, the first patient’s cognitive abilities were reduced during
the first week following the surgery. In particular, it was initially difficult for her to under-
stand the instructions she was given and as a result the experiments did not progress as fast
as they could have.

5.4.2 Experimenting within the therapeutic process

To implement a patient with ECoG electrodes, a surgical operation has to be performed. We
have seen previously that this already induces multiple risks. However, it also means that
the patient who is undergoing the operation is following a therapeutic process and this raises
two additional issues.

5.4.2.1 A restrained time-frame

The patients we had the opportunity to work with suffer from severe cases of epilepsy that
could not be properly managed by medication alone. In order to–hopefully–get rid of their
seizures they need to undergo surgery [115] [116] to resect the parts of the brain that are
triggering the seizures. Prior to this resection, the incriminated zones have to be identified
which is done through ECoG monitoring.

The patient then keeps the ECoG grids implanted for about two weeks. However, during
the first week, the patient is constantly monitored so that when a seizure occurs the surgeons
are able to identify the responsible regions of the brain. It usually requires two to three
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seizures in order to get an accurate location. Once this localization has happened, the patient
is able to participate in BCI studies until the removal. Furthermore, ECoG BCI is quite
demanding and thus recording sessions can only last about one hour per day.

Those factors result in a fairly short time-frame to conduct experiments which may
limit the success we are able to obtain. In another case, unrelated to our work, a volun-
tary tetraplegic patient underwent surgery to get ECoG grids implanted for a duration of 30
days–the legal limit in Pennsylvania–and he was able to gain control of the 3D movements
of a robotic arm [117].

5.4.2.2 Working in a hospital environment

Experimenting within the therapeutic process also means that all the experiments have to be
done within the hospital environment. This brings up a number of technical issues that are
difficult to take into account: network availability or connection quality, rooms that have high
levels of electrical noise due to the presence of heavy machinery in nearby rooms or rooms
that are electronically shielded. While these issues can be worked around this sometimes
requires time, for example, to move to a different room. Yet, as mentioned above time is a
precious resource in this context.

5.5 Perspectives and Conclusion

The ECoG experiment was very interesting in showing the possibilities of such devices. Un-
fortunately, the limited time allowed to perform experiments on human patients has reduced
the extent of the success we could achieve. However, it also raises the question of the rele-
vance of this type of interface given its inherent flaws. Is ECoG worth it?

The ECoG technology is impressive and, as of today, has provided the experience of
“mind-control” that is the closest to what we might envision. However, its success has been
limited to the 3D control of devices. Early works conducted with “truly invasive” devices,
such as the BrainGate system, suggest that these devices surpass ECoG-based BCI for con-
trol applications. Furthermore, patients have had these devices for extended period of time,
i.e. several years, whereas this is currently not possible with ECoG grids.

Furthermore, it remains unclear whether evoked potentials, such as P300 or SSVEP, can
be retrieved from the ECoG signals. This would be a significant downgrade to the object-
centric BCI control of humanoid robot framework that we introduced in Chapter 3 as the
control of position and orientation of a robotic limb in a one-to-one way is not, in our opinion,
a relevant way to control a robotic avatar. However, we could envision the use of such
paradigms as an additional input within the framework to refine the robotic behaviors that
are executed. Of course, the benefits of ECoG-based BCI for rehabilitation and the positive
affect of a robotic device for feedback in this context should also be considered.

In conclusion, these initial experiments were quite successful. Although we are now
only envisioning ECoG as a supplementary input or as a therapeutic tool, the experience
we gained during these experiments may be later levered into following experiments with
this kind of devices. We are still on-going the research with Dr. Kamada and we are in
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expectation for additional patients to redo some experiments as we gained enough expertise
to optimize their set-up.
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Conclusion and Perspectives

This thesis has allowed us to explore the use of BCI to control a humanoid robot. Along this
work we have been able to solve several problems specific to our context and to introduce
novel concepts within the field.

We have shown several improvements that we brought to the BCI for robot control and
to the use of SSVEP for control purpose in general. In particular:

• We have introduced a novel framework to design BCI applications with frequent
paradigm shifts at the core;

• We have demonstrated the negative effects of dynamic visual feedback in SSVEP ap-
plications and proposed a simple solution to counteract this effect;

• We have determined appropriate time criterion and an effective way to display SSVEP
stimuli on top of real-world object to allow selection with both a high degree of accu-
racy and a good user experience.

Based on those elements we proposed in the previous chapters, we demonstrated that
brain signals can be used to command a sophisticated mobile device such as a humanoid
robot to perform useful tasks like navigating to a desired location and interacting with dif-
ferent objects through grasping/pressing etc. We used computer vision to discover objects
of interest in the environment, a dynamic immersive interface that communicates the cor-
responding actions to the user and a humanoid robot controlled by the user in an immersive
environment using BCI. In principle, the robot could execute a wider range of actions in-
structed by the user in a multi-task scenario.

This problem was solved by the introduction of the object-centric BCI framework that al-
lows the user to perform complex interactions with the environment without the need to gain
low-level control of the robotic device which is an impractical solution to achieve with BCI.
The power of this framework was illustrated through various demonstrators that illustrate its
extendibility since each demonstrator systematically improved on the previous one by en-
hancing the capacities of one of the framework’s modules. However, we wish to continue to
extend the capabilities of this system to provide a more immersive experience.

Thanks to this framework, we can implement rich paradigms that allow to test embodi-
ment parameters such as the effect of sound feedback that we studied in both healthy subjects
and CSI-afflicted patients.
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Finally, we were able to present preliminary results using ECoG, an invasive brain signals
recording technique, to control a humanoid robot. Those experiments were very interesting
in showing the possibilities of such devices. Unfortunately, the limited time allowed to
perform experiments has reduced the extent of the success we can achieve. However, the
experience gained from these experiments can be levered into the next ones and thus allow
us to gradually improve over those initial success.

Perspectives

There is still a lot of work to achieve within this topic at different levels. We organize
these perspectives around three axes: the technical improvements to pursue, the embodiment
questions to study and finally some novel signals to involve.

Technical improvements

Those improvements were mostly discussed in Chapter 3, we recall the most prominent here:

Improving the field of view feedback
One of the most detriment limitation of the current system is the limited field of view
proposed to the user. That is a consequence of two things: (i) the limited FoV of
the HMD we use and (ii) the limited FoV of the camera. While there is not much
that can be done regarding the first issue, we can virtually extend the field of view by
integrating the actual image from the robot’s sensors into a SLAM map that we are
building online during the demonstration [83] [85].

Improving the task selection module capabilities
We have introduced an experiment that uses a Bayesian network to infer the affordable
task associated to an object. This leads to a BMI that is convenient for the user as
s/he only has to make a few choices to trigger complex behaviors. However, this can
be significantly improved to (a) automatically generate affordable tasks and (b) allow
more personalization within the realization of the task.

Closing the framework
At the moment, no satisfying error potential implementation that work concurrently
with SSVEP has been made available by g.tec. Hence we relied on alternative ways to
close the loop in the framework. However, the use of error potentials would lead to a
much more immersive experience and open new ways for the user to interact with the
controlled device.

Embodiment Question

We had the opportunity to study the effect of sound on embodiment and the robot’s control
performance. However, the framework we have developed and introduced throughout this
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work is well suited to pursue other questions within this field. Some of these questions
are currently addressed by my colleagues within the Joint-Robotic Laboratories and futures
experiments are also planned with our colleagues within the VERE project. However, given
that these studies requires a large amount of subjects and time, they can only be tackled
successively.

In the near future, we would particularly like to study the effects of tactile feedback
during robotic embodiment.

Addition of other signals

In this thesis we focused our effort on the use of the BCI technology to achieve the control
of the robot. However, many other physiological signals can be acquired and processed in
real-time to bring additional information to the system. Unfortunately we did not have the
time to incorporate such signals within our studies.

In particular, physiological signals, such as the skin conductance or the hearth-rate, could
be used to measure the “emotions” of the user and affect the way the robot realizes its move-
ments based on this information.

Finally, using an eye-tracking technology would be a logical step to improve the SSVEP
performance as it would allow to significantly reduce the false-positive rate which has been
the source of many problems through this thesis.
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Appendix A

A Framework for Dynamic BCI
Application: bci-interface

This appendix completes the presentation of bci-interface that was introduced in Chapter 2.
We review the motivation and goals that were presented in this earlier chapter and dive into
the internals of the library. Finally, examples are introduced in Appendix B.

A.1 Motivation and Goals

Several frameworks, such as OpenViBE [4] or BCI2000 [5], have already been developed
to produce high-quality BCI applications. The three layer model introduced earlier is im-
plemented by these, however, most of the development effort is put towards the signal ac-
quisition and signal processing layers leaving the user application to the user. Therefore we
developed a framework to tackle this issue and easily write BCI applications: bci-interface.

Figure A.1: bci-interface focuses on the user application layer in the BCI2000 model

This framework is developed with two important goals in mind.
First, it should be simple to use: the application writer should only worry about what s/he

wishes the BCI user to accomplish. This is realized by providing simple elements to the de-
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veloper that s/he can arrange and interact with easily without worrying about the underlying
mechanisms of the interface. We introduce this elements later in this section and showcase
the framework simplicity through examples.

Secondly, we want to be able to write dynamic BCI applications. Usual BCI applications
are aimed at achieving one simple task: steering an avatar, controlling a cursor, selecting
objects or bins. However, our goal is to allow a BCI user to take control of a humanoid robot
and perform complex tasks. This implies the use of multiple paradigms as one interface
cannot fit all of our needs. For example, displaying SSVEP arrows to control the humanoid
steering may be satisfactory. Yet, these same arrows become cumbersome when we want to
achieve grasping and another method has to be developed. These arrows could also be used
to control the humanoid’s gaze or a limb. More importantly, we definitely want to be able to
control all of these within a single application. It is then necessary to be able to dynamically
switch between different BCI control scheme, a possibility offered by bci-interface that is
also showcased in the examples.

A.2 Command Model in bci-interface

In bci-interface the commands are represented by integer values. So for examples, if a BCI
system is setup to detect 4 different SSVEP frequencies and has implemented the zero-class
principle–a no-command implementation. Then the following mapping occurs:
- 0 is no command
- 1 is the first frequency setup in the BCI system
- 2 is the second frequency setup in the BCI system
- 3 is the third frequency setup in the BCI system
- 4 is the fourth frequency setup in the BCI system

A.3 Framework Elements

The library relies on a set of basic elements that each participate in a single part of the
process. These elements are coordinated by a core class: BCIInterface. In this section we
introduce the core class and the other elements of the interface and their respective roles.
Except for BCIInterface which is fully implemented and provided as-is, all these elements
are virtual classes that should be implemented to meet the developer needs. The specific
functions that should be implemented by each element and, when relevant, some sample
implementations are presented here.

A.3.1 BCIInterface

BCIInterface is the core of the bci-interface library. Its role is to create the graphical inter-
face, handle drawings, distribute events and manage the other objects. It is only in charge of
managing the threads that may be initiated by other elements of the library. We focus more
specifically on this class later to discuss its workflow.
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A.3.2 EventHandler

An EventHandler is in charge of handling events received by the windows, e.g. keyboard
inputs or mouse movements. This is mostly used for debugging as the actual inputs that
matter for the interface are those from the BCI.

The developer only has to implemented one function in this case:

void EventHandler::Process(sf::Event & event);

Where sf::Event is a class provided by the SFML library that stores the event type and
properties.

An EventHandler is added to the interface by calling the following function:

/* Add an event handler,

the interface assumes ownership of the object */

void BCIInterface::AddEventHandler(EventHandler * handler);

A.3.3 Background

A Background implementation has two goals:
- Draw the interface background
- Get updates of the background, e.g. if the background is fed from a network source
Therefore, three functions should be implemented by the developer to use a Background in
a bci-interface application.

virtual void Background::Draw(sf::RenderWindow * app);

As we explain it later, this function is called at each frame to draw the background on
screen. It is possible to use either SFML calls to draw to the screens or to use OpenGL. In
the later case the following function should be implemented to return true when one wishes
to use OpenGL to draw the background.

virtual bool Background::DrawWithGL();

The second role of a Background implementation is ensured by two functions:

virtual void Background::UpdateLoop();

virtual void Background::Close();

The UpdateLoop function is executed in its own thread. Its role is to update the image
that is drawn to the background. For example, it can be a function receiving images streamed
on the network by a remote camera. The Close function is called by BCIInterface to signal
the end of life of the Background implementation.

A Background is added to the interface by calling the following function:

void BCIInterface::SetBackground(Background * background);
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A.3.4 DisplayObject

The DisplayObject designates an object that is displayed on screen in the interface. This cov-
ers both the stimuli and the “decoration” objects in the interface such as speed or proximity
indicators.

Two categories of objects are considered by the interface:
- Active objects are stimuli used by the interface, this is the objects the user interacts with
- Inactive objects are used for decoration purpose
Therefore there is two functions to add a DisplayObject:

/* This function is used to add an active object */

void BCIInterface::AddObject(DisplayObject * object);

/* This function is used to add an inactive object */

void BCIInterface::AddNonOwnedObject(DisplayObject * object);

The following function should be implemented to draw the object:

virtual void DisplayObject::Display(sf::RenderWindow * app,

unsigned int frameCount, sf::Clock & clock);

As for Background, the display function can be written using either SFML calls to draw to
the screens or using OpenGL. In the later case the following function should be implemented
to return true when one wishes to use OpenGL to draw the object.

virtual bool DisplayObject::DrawWithGL();

The following functions can also be re-implemented, if necessary, to let the Command-

Interpreter–or another external mechanism–control the object:

virtual void DisplayObject::SetPosition(float X, float Y);

virtual void DisplayObject::SetRotation(float deg_angle);

virtual void DisplayObject::Resize(float size_x, float size_y);

The DisplayObject can also provide Highlight and Unhighlight functions. These can be
particularly useful for active objects as these functions can be used to provide feedback to
the user about the command selected by the BCI.

Finally, DisplayObject can also react to windows events, e.g. keyboard actions or mouse
movements. To do so, one simply has to implement the same function as for an Even-

tHandler:

virtual void DisplayObject::Process(sf::Event & event,

const BCIInterface & iface);
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Two examples of DisplayObject that are provided with the distributed code are:
- TextObject

- SSVEPStimulus

A TextObject is designed to be an inactive object. Its only purpose is to display text
within the interface.

A SSVEPStimulus on the other hand is specifically designed to be an active object. It can
display an SSVEP stimulus of any frequency on the screen, using the method introduced in
the first chapter. Using different constructors it is possible to use a rectangle shape, a circle
or a specific sprite.

A.3.5 CommandReceiver

A CommandReceiver is used to receive commands from the BCI system. Like the Back-

ground, the CommandReceiver can receive its commands asynchronously. To do so, the
developer should implement the following functions:

virtual void CommandReceiver::CommandLoop();

virtual void CommandReceiver::Close();

The CommandLoop function is launched in its own thread by BCIInterface and the Close

function is called when the interface is closing or the interface wishes to switch the Com-

mandReceiver. As the receiving occurs asynchronously, the BCIInterface calls the following
function during the execution to receive the current command of the BCI system, note that
this can also be used to receive the command synchronously:

virtual int CommandReceiver::GetCommand();

A CommandReceiver is added to the interface by calling the following function:

void BCIInterface::SetCommandReceiver(CommandReceiver * receiver);

Two CommandReceiver are implemented in the distributed code:
- UDPReceiver is an UDP server that receives commands asynchronously
- TCPReceiver is a TCP server that receives commands asynchronously

A.3.6 CommandInterpreter

A CommandInterpreter is used to interpret the commands sent by the BCI and received
through a CommandReceiver. To do so, the following function should be implemented:

virtual bool CommandInterpreter::InterpretCommand(int command,

const std::vector<DisplayObject*> & objects);
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In this function, command refers to the command received by the CommandReceiver,
a “zero” value indicates that no command is currently selected. The CommandInterpreter

also receives a copy of the currently active DisplayObject in the interface. The aim of this
function is to allow the interface built by the programmer to interact with the controlled
system depending on the command input. Furthermore, providing the DisplayObject allow
to provide feedback to the user. The return value provided by the CommandInterpreter

indicates wether or not the current paradigm is over or not, which is further explained in the
next section.

A CommandInterpreter is added to the interface by calling the following function:

void SetCommandInterpreter(CommandInterpreter * receiver);

Finally, a CommandInterpreter can also react to windows events, e.g. keyboard actions
or mouse movements. To do so, one simply has to implement the same function as for an
EventHandler:

virtual void CommandInterpreter::Process(sf::Event & event,

const BCIInterface & iface);

Two simple interpreters are implemented in the distributed code that we present now to
further illustrate the goal of the CommandInterpreter class:
- SimpleInterpreter only highlights the DisplayObject corresponding to the current com-
mand.
- HoldInterpreter returns true to the InterpretCommand function if a selected com-
mand has been hold for a certain time that can be configured when creating the interpreter.

A.3.7 CommandOverrider

The final element we introduce here is the CommandOverrider. It is mostly useful for de-
bugging and its goal is to override the commands received by the CommandReceiver by
commands sent through the keyboard, mouse or joypad. The commands are added using the
following functions:

/* Handle keyboards events */

void CommandOverrider::AddOverrideCommand(sf::Keyboard::Key ekey,

int command);

/* Handle mouse click events */

void CommandOverrider::AddOverrideCommand(sf::Mouse::Button ebutton,

int command);

/* Handle joypad button events */

void CommandOverrider::AddOverrideCommand(unsigned int button,

int command);
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The first argument of these functions correspond to the key that should be pushed to
trigger the command while the command corresponds to the command that is sent to the
CommandInterpreter. When the interface is running, if the interface is receiving an event
that is handled by the CommandOverrider then it sends the command attached to this event
to the current CommandInterpreter independently of the command currently received by the
CommandReceiver.

A CommandOverrider is added to the interface by calling the following function:

void SetCommandOverrider(CommandOverrider * receiver);

A.4 Workflow

The workflow of BCIInterface, the core of the library, is shown in Figure A.2. This Figure
shows what happens each time a frame is being drawn on the screen. The library was con-
ceived so that this workflow would run efficiently, i.e. at least at the frequency of the screen
upon which the interface is displayed. However, this may run faster but the core provides
the current number of frame actually displayed on screen in case it is relevant for the object
being treated by the interface, e.g. in the case of the SSVEP stimuli.

Figure A.2: bci-interface workflow: all of this occurs in a single iteration
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During a frame, the workflow of BCIInterface can be described as follow:

1. Get all events that occured since the last drawing.

2. Pass these events to: the EventHandlers, the DisplayObjects, the CommandOverrider

and finally the CommandInterpreter.

3. Get the command from the BCI system through the CommandReceiver.

4. Check the CommandOverrider status, if it is currently overriding the command, i.e.
one of the registered inputs is active, then override the command received from the
CommandReceiver.

5. Pass the command to the CommandInterpreter, if the CommandInterpreter returns
true then change the paradigm status–as explained later. Note that Steps 3 through 5
are only executed if both a CommandReceiver and a CommandInterpreter have been
setup with the interface. Identically, Step 4 is only executed if a CommandOverrider

has been set in the interface.

6. Draw the Background if any is present.

7. Draw the DisplayObjects. The order of drawing for the different kind of DisplayObject

is: active objects drawn with SFML calls, inactive objects drawn with SFML calls,
active objects drawn with OpenGL and inactive objects drawn with OpenGL; objects
are also drawn in the order they were added to the interface.

This is repeated until the application is exited, which can be triggered by calling the
following function:

void BCIInterface::Close();

A.4.1 The paradigm workflow approach

In bci-interface, a paradigm is represented by the combination of two elements:

• A set of active DisplayObjects that are used to elicit the correct answer in the subject’s
brain.

• A CommandInterpreter that interprets the commands sent by the BCI into commands
for the controlled system, e.g. a robot.

A switch between two paradigms is triggered by the end of life of a CommandInterpreter.
This is signaled by the CommandInterpreter itself when it returns true as it is interpreting
a command or by an external stimulus that calls the BCIInterface::StopParadigm() function.
After this is done, the interface continues to display the objects; however, no command is
interpreted until a new CommandInterpreter is set and the BCIInterface::StartParadigm()

function is called.
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Algorithm 3 High-level approach of the paradigm workflow in bci-interface

1: while iface not closed do
2: ⊲ While the interface has not been closed
3: if iface has an interpreter then
4:

5: Start the display loop with the interpreter until it is ended
6: else
7:

8: Start the display loop with no interpreter until a new paradigm is started.
9: end if

10: end while

The way the paradigm workflow is done in bci-interface at the highest level is shown in
Algorithm 3. In this algorithm, iface designates an instance of BCIInterface.

From outside, the paradigm state is manipulated using three functions:

void BCIInterface::StartParadigm();

void BCIInterface::StopParadigm();

bool BCIInterface::ParadigmStatus();

BCIInterface::StartParadigm() is used to start a new paradigm after setting a new Com-

mandInterpreter. BCIInterface::StopParadigm() is used to stop a paradigm even if it is not
finished. For example, if a paradigm switch should be triggered by an external stimulus
rather than a decision of the user. Finally, BCIInterface::ParadigmStatus() is used to get the
current status of the paradigm. This is particularly useful to wait for the end of a paradigm
before launching a new one as we show in the examples.

A.5 Examples

Finally, we give two simple examples of the usage of the library. The first one is a very
simple application used to steer a humanoid robot while the other one is used to control both
steering and gazing. The first example illustrates the basic principles of the library while
the second one focus on the paradigm workflow approach. These example can be find in
Appendix B.
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Appendix B

Example uses of the bci-interface library

In this chapter, we give two simple examples of the usage of the library. The first one is a
very simple application used to steer a humanoid robot while the other one is used to control
both steering and gazing. The first example illustrates the basic principles of the library while
the second one focus on the paradigm workflow approach.

B.1 Minimal example: an application for steering

In this example, we show how to build a simple BCI interface to control a robot steering. The
only element that has not been introduced is the WalkingInterpreter. A WalkingInterpreter

is a CommandInterpreter that does two things:

1. Highlight the object selected by the BCI

2. Send a speed to the robot, assuming the stimuli correspond to: 1–forward, 2–right,
3–backward and 4–right.

The video streaming part of the interface is excluded from this example to simplify it.
This is typically done by using a specialized instance of Background that receives the video
through a network connection.

#include <SFML/Graphics.hpp>

#include <bci-interface/BCIInterface.h>

#include <bci-interface/CommandReceiver/UDPReceiver.h>

#include <bci-interface/CommandInterpreter/WalkInterpreter.h>

#include <bci-interface/DisplayObject/SSVEPStimulus.h>

/* Everything in the lib lives in the bciinterface namespace,

this makes this example more readable */
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using namespace bciinterface;

int main(int argc, char * argv[])

{

/* First you need some information about window size

and fullscreen mode */

int width = 1024;

int height = 768;

bool fullscreen = false;

/* N.B: we create pointer here to show an important aspect

of objects ownership in the library; this is not mandatory

and this example could be written with normal objects */

/* We create a new BCIInterface with the width/height specified */

/* Note that this line alone does not start any display */

BCIInterface * bciinterface = new BCIInterface(width, height);

/* We setup a UDP server on port 1111 to receive commands */

UDPReceiver * receiver = new UDPReceiver(1111);

/* And set this as the receiver for the interface */

bciinterface->SetCommandReceiver(receiver);

/* We create a WalkingInterpreter to handle BCI commands */

WalkingInterpreter * interpreter = new WalkingInterpreter();

/* And set this as the interpreter for the interface */

bciinterface->SetCommandInterpreter(interpreter);

/* Create a few SSVEP stimuli on the screen, we show only

one of the different constructors that can be used */

/* Sprite stimulus:

args(freq, screenfreq, center_x, center_y, size_x, size_y,

sprite_img, sprite_hl_img) */

bciinterface->AddObject(new SSVEPStimulus(6, 60, width/2, 100,

200,200, "UP.png", "UP_HL.png"));

/* [snipped] Repeat to add the other three arrows */

/* And finally start the interface */

bciinterface->DisplayLoop(fullscreen);

/* This exits when the user exits the interface */

delete bciinterface;

delete interpreter;

delete receiver;

}
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B.2 Switching example: control steering and gazing

In this example, we show how to build a simple BCI interface to control a robot steering and
gazing. Another CommandInterpreter is introduced by this example the GazeInterpreter. A
GazeInterpreter is a CommandInterpreter that does two things:

1. Highlight the object selected by the BCI

2. Send a pan/tilt command to the robot’s head to control it, assuming the following
correspondance between stimuli and command: 1–look up, 2–look right, 3–look down
and 4–look right.

Both WalkingInterpreter and GazeInterpreter interpret the command “5” as the intention
to switch between the two control paradigms.

#include <SFML/Graphics.hpp>

#include <bci-interface/BCIInterface.h>

#include <bci-interface/CommandReceiver/UDPReceiver.h>

#include <bci-interface/CommandInterpreter/WalkInterpreter.h>

#include <bci-interface/CommandInterpreter/GazeInterpreter.h>

#include <bci-interface/DisplayObject/SSVEPStimulus.h>

/* Additional includes needed for paradigm switch */

#include <boost/thread.hpp>

/* Everything in the lib lives in the bciinterface namespace,

this makes this example more readable */

using namespace bciinterface;

/* This function is called to setup the interface */

void SetupInterface(BCIInterface * iface)

{

/* Add the arrow objects */

iface->AddObject(new SSVEPStimulus(6, 60, width/2, 100,

200,200, "UP.png", "UP_HL.png"));

/* [snipped] Repeat to add the other three arrow and switch */

}

int main(int argc, char * argv[])

{

/* Same as the first example to begin with */

int width = 1024;

int height = 768;

bool fullscreen = false;

BCIInterface * bciinterface = new BCIInterface(width, height);
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UDPReceiver * receiver = new UDPReceiver(1111);

bciinterface->SetCommandReceiver(receiver);

WalkingInterpreter * wInterpreter = new WalkingInterpreter();

GazeInterpreter * gInterpreter = new GazeInterpreter();

/* This boolean holds wether current mode is walking or gazing */

bool walking = true;

/* And now things change to allow paradigm switch */

/* out_cmd is the command retained by the interface

after a paradigm switch was triggered */

int out_cmd = -1;

/* Time during which commands are ignored after a switch */

float timeout = 2;

/* And we launch the interface in its own thread */

boost::thread th(boost::bind(

&bciinterface::BCIInterface::DisplayLoop, bciinterface,

(sf::RenderWindow*)0, fullscreen, &out_cmd, timeout));

/* Launch the paradigm loop */

while(out_cmd != 0)

{

/* out_cmd will be set to 0 if we exit manually */

/* Prepare the interface dislpay */

bciinterface->Clean();

SetupInterface(bciinterface);

/* Setup the command interpreter according to the

current paradigm */

if(walking)

{

bciinteface->SetCommandInterpreter(wInterpreter);

}

else

{

bciinterface->SetCommandInterpreter(gInterpreter);

}

walking = !walking;

/* Launch paradigm */

bciinterface->StartParadigm();

/* Wait for the current paradigm to be over */

while(bciinterface->ParadigmStatus())

{
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usleep(100000);

}

}

delete bciinterface;

delete wInterpreter;

delete gInterpreter;

delete receiver;

}
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Appendix C

Users’ questionnaires employed

C.1 SSVEP display optimization – user experience ques-
tionnaire

The questionnaire presented in Table C.1 is proposed to the subjects after the SSVEP display
optimization experience presented in Chapter 2 – Section 2.3.

Table C.1: Questionnaire proposed to the user after the SSVEP display optimization experience.

Sex Male / Female

Age

Left handed / Right handed / Ambidextrous

How often do you play videogames?

Very frequently Frequently Occasionally Rarely Very Rarely Never

If you had to use this method to select objects very often,
which condition would you prefer to use? Why?

Please rank the five conditions regarding preference for its use:
1 is first, 5 is last.

� Reference � Hard mask � Brightness � Hybrid � Strong-hard

Which condition was the most annoying? Why?
Please describe as much as possible.
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Please rank the five conditions
1 being the most annoying, 5 being the least annoying

� Reference � Hard mask � Brightness � Hybrid � Strong-hard

Please rate how easy it was to stay focused on the target in each condition:

Reference Very hard 1 2 3 4 5 6 7 Very easy

Hard color Very hard 1 2 3 4 5 6 7 Very easy

Brightness Very hard 1 2 3 4 5 6 7 Very easy

Hybrid Very hard 1 2 3 4 5 6 7 Very easy

Strong-hard Very hard 1 2 3 4 5 6 7 Very easy

Please rate how comfortable was each condition:

Reference Not at all 1 2 3 4 5 6 7 Very much

Hard color Not at all 1 2 3 4 5 6 7 Very much

Brightness Not at all 1 2 3 4 5 6 7 Very much

Hybrid Not at all 1 2 3 4 5 6 7 Very much

Strong-hard Not at all 1 2 3 4 5 6 7 Very much

Please rate how engaging was each condition:

Reference Not at all 1 2 3 4 5 6 7 Very much

Hard color Not at all 1 2 3 4 5 6 7 Very much

Brightness Not at all 1 2 3 4 5 6 7 Very much

Hybrid Not at all 1 2 3 4 5 6 7 Very much

Strong-hard Not at all 1 2 3 4 5 6 7 Very much

Please rate how challenging was each condition:

Reference Very much 1 2 3 4 5 6 7 Not at all

Hard color Very much 1 2 3 4 5 6 7 Not at all

Brightness Very much 1 2 3 4 5 6 7 Not at all

Hybrid Very much 1 2 3 4 5 6 7 Not at all

Strong-hard Very much 1 2 3 4 5 6 7 Not at all

Please rate how boring was each condition:

Reference Very boring 1 2 3 4 5 6 7 Very enjoyable

Hard color Very boring 1 2 3 4 5 6 7 Very enjoyable

Brightness Very boring 1 2 3 4 5 6 7 Very enjoyable
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Hybrid Very boring 1 2 3 4 5 6 7 Very enjoyable

Strong-hard Very boring 1 2 3 4 5 6 7 Very enjoyable

Overall, how difficult did you find to perform the task?

Very difficult 1 2 3 4 5 6 7 Very easy

Please describe how you felt during the experiment:

What did bother you the most during the achievement of the task?

Do you have previous experience in BCI? If yes, please explain

Do you have any other comment?

C.2 – user experience questionnaire

The questionnaire presented in Table C.2 is proposed to the subjects after the Bayesian-
network assisted BCI for humanoid robot control experience presented in Chapter 3 – Sec-
tion 3.7.3.

Table C.2: Questionnaire proposed to the user after the Bayesian-network assisted BCI control

experience.

Sex Male / Female

Age

Left handed / Right handed / Ambidextrous

How often do you play videogames?
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Very frequently Frequently Occasionally Rarely Very Rarely Never

Between Assisted and Manual,
which condition would you prefer to use? Why?

Please rate how easy it was to complete the task in each condition:

Assisted Very hard 1 2 3 4 5 6 7 Very easy

Manual Very hard 1 2 3 4 5 6 7 Very easy

Please rate how comfortable was each condition:

Assisted Not at all 1 2 3 4 5 6 7 Very much

Manual Not at all 1 2 3 4 5 6 7 Very much

Please rate how tiring was each condition:

Assisted Very much 1 2 3 4 5 6 7 Not at all

Manual Very much 1 2 3 4 5 6 7 Not at all

Please rate how frustrating was each condition:

Assisted Very much 1 2 3 4 5 6 7 Not at all

Manual Very much 1 2 3 4 5 6 7 Not at all

Please describe how you felt during the experiment:

What did bother you the most during the performance of the task?

Do you have previous experience in BCI? If yes, please explain

Do you have any other comment?
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