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MARION Martine professeur ECL

MIRONESCU Elisabeth professeur ECL

MOUSSAOUI Mohand professeur ECL
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Abstract

Rammed earth is a vernacular building technique consisting in compacting succes-
sively layers of moist earth within formworks. This technique is present worldwide
and in particular in the region Auvergne-Rhône-Alpes in France. As no regulation
exists for rammed earth structures in France, the owners of such structures are
helpless at the time when repairing damages appearing in any aging heritage struc-
tures. Moreover, this lack of regulation tends to slow down the development of
such a constructive solution in new projects though this technique answers many
of the issues raised by the sustainable development. The work presented herein
is part of the national research project PRIMATERRE devoted to the study of
construction building involving earth.

Herein, an elasto-plastic constitutive law is developed for modeling the behavior of
rammed earth. It is based on a hierarchical approach of the modeling in relation
to the information available to identify the set of model parameters and the refine-
ment of phenomena to be modelled. This model was adapted from a pre-existing
CJS model used in advanced foundation engineering for the modelling of granular
soils. The necessary adaptation of some mechanisms of the model in the context of
rammed earth material which holds the characteristics of a quasi-brittle material
is highlighted.

Two levels for the model denoted CJS-RE which can be used in the context of
monotonous loadings are presented herein. The first level is a simple elastic per-
fectly plastic model (CJS-RE1) and the second model is an elasto-plastic model
with an isotropic hardening (CJS-RE2). Two mechanisms of plastic deformation
are involved, one related to purely deviatoric phenomena and one related to tensile
phenomena. The validation of the model was performed based on different sets
of actual tests including diagonal compression tests and pushover tests on wallets.
The simple elasto-plastic model CJS-RE1 was able to capture some basic features
for these two tests and may be used for a first estimate of the system resistance.
The more sophisticated model CJS-RE2 was found better to retrieve the non linear
behavior of rammed earth over a larger range of deformations throughout both a
diagonal compression test and a pushover test.

Finally, the modelling of interfaces between layers of earth seems oversized when
the resistance of the system is investigated. However, since they may influence
the simulated ductility of the system, they may be used to model the behavior of
rammed earth system more precisely.

Keywords: constitutive model, elasto-plastic, interfaces
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Resumé

Le pisé est une technique constructive vernaculaire consistant à compacter succes-
sivement des couches de terre humide entre des coffrages. Cette technique, présente
dans le monde entier, l’est en particulier en France dans la région Auvergne-
Rhône-Alpes. Comme il n’existe pas de réglementation attachée à cette technique
constructive, il est très difficile pour des propriétaires de réparer leur bien. Le
développement de cette tehnique pour de nouveaux projets souffre aussi de cette
absence alors qu’elle répond à certains enjeux posés par le Développement Durable.
Le travail présenté ici fait partie intégrante du projet national PRIMATERRE
dédié à l’étude des constructions impliquant de la terre.

Une loi de comportement élasto-plastique est développée dans ce travail pour
modéliser le comportement du pisé. Elle s’appuie sur une approche hiérarchisée
de la modélisation en lien avec le nombre d’essais disponibles pour identifier les
paramètres de modèle mais aussi en lien avec la complexité de phénomènes à pren-
dre en compte. Ce modèle s’inspire d’un modèle pré-existant, CJS, développé en
géotechnique pour modéliser le comportement mécanique des matériaux granu-
laires. Une adaptation s’est imposée pour prendre en compte les spécificités du
comportement mécanique du pisé qui possède de nombreuses similitudes avec celui
des matériaux quasi-fragiles.

Deux niveaux de modélisation pour le modèle de comportement appelé CJS-RE
sont présentés, pouvant être utilisés dans un contexte de sollicitation monotone. Le
premier niveau CJS-RE1 est un modèle élastique parfaitement plastique alors que
le second niveau CJS-RE2 est un modèle élasto-plastique à écrouissage isotrope.
Deux mécanismes de déformation plastique sont présents, l’un lié aux phénomènes
purement déviatoires et l’autre aux phénomènes de traction. La validation du
modèle a été entreprise sur la base de la simulation d’essais en laboratoire de
compression diagonale et de chargement latéral (pushover) sur des murets, issus
de la littérature. Le niveau CJS-RE1 a été capable de capturer les phénomènes
essentiels issus de ces deux tests et peut être utilisé comme une première approches
des problèmes. Le niveau CJS-RE2 a permis de retrouver plus précisément le
comportement non linéaire du pisé sur une large gamme de déformations, que ce
soit dans l’essai de compression diagonale ou dans le pushover.

Enfin, la prise en compte d’interfaces entre les couches dans la modélisation semble
constituer une approche surdimensionnée lorsque seule la résistance d’un système
constitué en pisé est recherchée. Cependant, parce qu’elles apportent une certaine
ductilité au système dans la modélisation, elles peuvent être utilisée lorsque des
résultats plus détaillés sont attendus.

Mots-clés: modèle constitutif, élasto-plastique, interfaces
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1.4 Soil profile with different layers [Dis16] . . . . . . . . . . . . . . . . 4

1.5 Range of suitable gradings for unstabilised rammed earth proposed
by several researchers [MW03] . . . . . . . . . . . . . . . . . . . . . 6

1.6 Formwork for rammed earth; (a): Traditional wooden formwork,
(b): Steel formwork . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Compaction tools; (a): hand rammer, (b): pneumatic rammer . . . 7

1.8 Cracks process zone [Maz86] . . . . . . . . . . . . . . . . . . . . . . 8

1.9 Typical compressive stress-strain curve for concrete [Che07] . . . . . 9

1.10 Cyclic compression test on concrete [KJ69] . . . . . . . . . . . . . . 10

1.11 Tensile stress-strain of concrete, after [HC66] . . . . . . . . . . . . . 10

1.12 Stress-strain of concrete in cyclic tension, after [Ter80] . . . . . . . 11

1.13 Cracking during loading of traction from acoustic emission method,
after [MS88] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.14 Triaxial data of concrete for low confinement pressures; (a): merid-
ian plane (θ = 0◦) and (a): deviatoric section [WW74] . . . . . . . . 12

1.15 Three scales for rammed earth studied by Bui [BMHM09] . . . . . . 14

1.16 Elastic modulus of rammed earth at three different scales [BMHM09] 15

1.17 Comparison of elastic modulus between a loading perpendicular and
parallel to the interfaces layer at a RVE scale [BM09] . . . . . . . . 16

1.18 Influence of water content on the compressive strength [BMHW14] . 16

1.19 Influence of suction on the compressive strength [BMHW14] . . . . 17

1.20 Compression behaviour of rammed earth within three different rel-
ative humidity for soil STR; (a): Stress-strain, (b): Volumetric
deformation [CFM+16] . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.21 Compression behaviour of rammed earth for soil STR (RH=25%)[CFM+16] 18

1.22 Young modulus as a function of the stress level for three different
relative humidity and different soil sources; (a): STR, (b): CRA,
(c): ALX [CFM+16] . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.23 Specimens after triaxial tests [CWHM12] . . . . . . . . . . . . . . . 19

1.24 Specimen and apparatus for unconfined tensile test [AKS16] . . . . 20

xvii



List of Figures

1.25 Specimen and apparatus for brazilian test [AKS16] . . . . . . . . . 21

1.26 Relationship between compressive and tensile strength in an earthen
layer [BBLM14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.27 Tensile strength as a function of water content for unstabilised
rammed earth [AKS16] . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.28 Three point bending test [CA13] . . . . . . . . . . . . . . . . . . . . 23

1.29 Flexural tensile strength of rammed earth interfaces from [CA13] . . 24

1.30 Diagonal compression test . . . . . . . . . . . . . . . . . . . . . . . 24

1.31 Internal stresses in the diagonal compression test; (a): Stress com-
ponents within distance x from center and (b): Horizontal force
within distance x from center [MLGB13] . . . . . . . . . . . . . . . 26

1.32 Mohr circle at the center of the wallet [MLGB13] . . . . . . . . . . 26

1.33 Shear stress vs shear distortion in a diagonal compression tests
[SOM+13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.34 Horizontal load vs horizontal displacement of the loading platen;
large shear box test [EN17] . . . . . . . . . . . . . . . . . . . . . . . 28

1.35 Typical cracking patterns of wall in the pushover test [Haa09] . . . 29

1.36 Displacement field of the wall [EN17] . . . . . . . . . . . . . . . . . 30

1.37 Pushover test results [EN17] . . . . . . . . . . . . . . . . . . . . . . 31

1.38 Crack pattern and load-displacement curve throughout a pushover
test; wall-2 [NBP+16] . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.39 Load-displacement responses throughout a pushover test [AEY17] . 32

1.40 Crack pattern after pushover test for unstabilised rammed earth
[AEY17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Typical loading and unloading responses for three different constitu-
tive models; (a) : elastic-damage model, (b): elastic-plastic model,
and (c): elastic-plastic-damage model [JHPCG06]. . . . . . . . . . . 36

2.2 a) Damage variables D as a function of κ, b) Stress-strain response
during uniaxial tension [PDBBG98] . . . . . . . . . . . . . . . . . . 37

2.3 Comparison between experiments and simulations of a compression
test on a rammed earth wallet using Mazars model [BBLM14] . . . 40

2.4 Energy absorbed in the wallets during the damage process; com-
parison simulations using Mazars model and experiments [BBLM14] 40

2.5 Loading and unloading responses with TSRCM [BV10] . . . . . . . 41

2.6 Total strain rotating crack model; (a): compression behaviour, (b):
tensile behaviour [MOS+14] . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Comparison between experiments and simulations (TSRCM model)
of a diagonal compression test on rammed earth wallets [MOS+14] . 43

2.8 Stress states at failure from actual triaxial tests on a dense sand
compared to Mohr Coulomb failure surface ([VDB84]) . . . . . . . . 45

2.9 Failure surface of Mohr-Coulomb model in the principal stress space
[VDB84] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10 Mohr Coulomb failure criterion in the plane σ1 and σ3 with tension
cut-off [Ita09] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xviii



List of Figures

2.11 Comparison between experiments and simulations; case of compres-
sion tests on wallets [BBLM16] . . . . . . . . . . . . . . . . . . . . 47

2.12 Comparison between experiments and simulations; case of the di-
agonal compression tests on wallet [BBLM16] . . . . . . . . . . . . 48

2.13 Failure surface for two different stress paths [JHPCG06] . . . . . . 50

2.14 Simulation of the cyclic compression test by using plastic damage
model [JHPCG06] . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.15 Influence zone in the averaging process [Sar15] . . . . . . . . . . . . 53

3.1 CJS-RE failure surface in the principal stress spaces . . . . . . . . 56

3.2 Shear yield/failure surface in CJS-RE model; (a): in the meridian
plane (θs =const) and (b): in the deviatoric plane (I1 =const).
In the case of CJS-RE1, the surface of the maximum volumetric
contraction state coincides with the failure surface. . . . . . . . . . 58

3.3 Influence of γ on the shape of the shear yield/failure surface . . . . 59

3.4 Evolution of the loading radius R in the CJS-RE model . . . . . . . 61

3.5 Shear softening function . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Tensile yield surface in CJS-RE model; (a): in the meridian plane
and (b): in the deviatoric plane . . . . . . . . . . . . . . . . . . . . 63

3.7 Failure surfaces of CJS-RE1; (a): in the meridian plane (θq =const)
and (b): in the deviatoric plane (I1 =const). I1 is the first invariant
of the stress tensor, sII is the second invariant of the deviatoric
stress tensor, s1, s2 and s3 are the principal stresses of the deviatoric
stress tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Simulation of a compression stress path with CJS-RE1 model; (a):
stress-strain response and (b): volumetric deformation. . . . . . . . 66

3.9 Uniaxial tensile test responses with CJS-RE1 model . . . . . . . . . 66

3.10 Failure surfaces of CJS-RE2; (a): in the meridian plane (θq =const)
and (b): in the deviatoric plane (I1 =const). I1 is the first invariant
of the stress tensor, sII is the second invariant of the deviatoric
stress tensor, s1, s2 and s3 are the principal stresses of the deviatoric
stress tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.11 Simulation of a compression stress path with CJS-RE2 model; (a):
stress-strain response and b: volumetric deformation. . . . . . . . . 68

3.12 Uniaxial tensile test responses with CJS-RE2 model . . . . . . . . . 68

4.1 PSD of soil before and after correction [SOS+14] . . . . . . . . . . . 72

4.2 Compression tests results [SOS+14] . . . . . . . . . . . . . . . . . . 72

4.3 (a): Shear stress-shear strain curve of diagonal compression tests,
(b): Crack pattern in the wall after the test [SOS+14] . . . . . . . . 73

4.4 PSD of soil [EN17] . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Pushover test results and crack patterns in the wall-3 [EN17] . . . . 75

4.6 Results of the identification of CJS-RE1 parameters; simulation of
a compression test; experiments from [SOS+14] . . . . . . . . . . . 77

4.7 3D numerical model for the diagonal compression of a wallet . . . . 78

xix



List of Figures

4.8 Stress-train response from a simulated diagonal compression test
using CJS-RE1; experiments from [SOS+14] . . . . . . . . . . . . . 79

4.9 Evolution of the plasticity states in a simulated diagonal compres-
sion tests using CJS-RE1 at different computation stages. . . . . . . 79

4.10 Stress path of an element in a simulated diagonal compression test
(CJS-RE1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.11 3D-Model for the pushover test on a wallet . . . . . . . . . . . . . . 82

4.12 Load-displacement response from a simulated pushover test on a
wallet; MAT-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.13 Evolution of the plasticity states in a simulated pushover tests using
CJS-RE1 at different computation stages . . . . . . . . . . . . . . . 84

4.14 Rotation of the wallet (state 1) . . . . . . . . . . . . . . . . . . . . 84

4.15 Simulation of a compression test with CJS-RE2 (MAT-1); experi-
ments from [SOS+14] . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.16 Stress-train response from a simulated diagonal compression test
using CJS-RE2; experiments from [SOS+14] . . . . . . . . . . . . . 87

4.17 Evolution of the plasticity states in a simulated diagonal compres-
sion tests using CJS-RE2 at different computation stages. . . . . . . 87

4.18 Stress path of an element in a simulated diagonal compression test
(CJS-RE2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.19 Load-displacement response from a simulated pushover test on wal-
let; MAT-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.20 Evolution of the plasticity states in a simulated pushover tests using
CJS-RE2 at different computation stages. . . . . . . . . . . . . . . . 91

4.21 Model of diagonal test with interfaces . . . . . . . . . . . . . . . . . 92

4.22 Diagonal compression test of CJS-RE2 model without and with
interfaces results; experiments from [SOS+14] . . . . . . . . . . . . 94

4.23 Stress state on the interfaces together with Mohr-Coulomb crite-
rion for the interfaces in the diagonal compression test; a: interface
group, b: reference states A and B, c: state A, d: state B. . . . . . 95

4.24 Model of pushover test on wallet with interfaces . . . . . . . . . . . 96

4.25 Simulation of a pushover test with CJS-RE1 and CJS-RE2 model
with interfaces; set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.26 Plastic points in the wallets at the peak response; (a): CJS-RE1 +
int2 (b): CJS-RE2 + int2 . . . . . . . . . . . . . . . . . . . . . . . 97

4.27 Simulation of a pushover test with CJS-RE2 with and without the
modelling of the interfaces . . . . . . . . . . . . . . . . . . . . . . . 98

4.28 Stress state of the interfaces compare with Mohr Coulomb crite-
rion in the pushover test; a: interface group, b: reference state, c:
interface stress state A, and d: interface stress state B. . . . . . . . 99

4.29 Result of the identification of CJS-RE1 parameters; simulation of a
compression test; experiments from [EN17] . . . . . . . . . . . . . . 101

4.30 3D-Model for the pushover test on a wallet with MAT-2 . . . . . . 101

4.31 Load-displacement response from a simulated pushover test on a
wallet vs experiments; MAT-2 . . . . . . . . . . . . . . . . . . . . . 102

xx



List of Figures

4.32 Plasticity states in a simulated pushover tests using CJS-RE1 at
different computation stages; MAT-2 . . . . . . . . . . . . . . . . . 103

4.33 Result of the identification of CJS-RE2 parameters for MAT-2; sim-
ulation of a compression test . . . . . . . . . . . . . . . . . . . . . . 104

4.34 Load-displacement response from a simulated pushover test on wal-
let; MAT-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.35 Plasticity states in a simulated pushover tests using CJS-RE2 at
different computation stages; MAT-2 . . . . . . . . . . . . . . . . . 105

4.36 Pushover test with CJS-RE2 model with interfaces for MAT-2 . . . 106

4.37 Plastic points in the wallettes at failure; (a) CJS-RE1 + int 2, (b)
CJS-RE2 + int 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.1 Identification of Tr max by two compression triaxial tests . . . . . . . 113

A.2 Identification of γ by a triaxial compression and extension test or a
same confining pressure . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.3 Influence of the parameter of dilatancy β in the behaviour through
the simulation of a compression test; (a): stress-strain, (b): volu-
metric deformation-strain . . . . . . . . . . . . . . . . . . . . . . . 115

A.4 Effect of the variation of isotropic hardening parameter A; (a):
stress-strain, (b): volumetric deformation . . . . . . . . . . . . . . . 116

A.5 Influence of the shear softening parameter αs on the stress strain
curve of a compression test . . . . . . . . . . . . . . . . . . . . . . . 117

B.1 Shape of the Mohr Coulomb model (φ = 37◦) and CJS-RE model
(γ = 0.84) in the deviatoric plane . . . . . . . . . . . . . . . . . . . 119

C.1 Model of the compression and extension tests . . . . . . . . . . . . 122

C.2 Response along a compression stress path for CJS-RE1 model . . . 123

C.3 Triaxial stress path in the meridian sII − p plane for CJS-RE1 model124

C.4 Responses in the extension stress path for CJS-RE1 model . . . . . 124

C.5 Response along a compression stress path for CJS-RE2 model . . . 125

C.6 Response along an extension stress path for CJS-RE2 model . . . . 126

C.7 Triaxial stress path with CJS-RE2 model . . . . . . . . . . . . . . . 126

D.1 3D numerical model of a diagonal compression test with three dif-
ferent mesh sizes; a: 20x20x10, b: 30x30x15, c: 40x40x20 . . . . . . 127

D.2 Stress-train response in a simulated diagonal compression test with
different mesh sizes (CJS-RE1) . . . . . . . . . . . . . . . . . . . . 128

E.1 Flowchart implementation of the constitutive model . . . . . . . . . 130

F.1 Effect of the isotropic hardening parameter A in the diagonal com-
pression test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

F.2 Effect of the radius at failure Rfail in the diagonal compression test . 141

F.3 Effect of shear softening parameter αs in the diagonal compression
test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

F.4 Effect of tensile parameter Tr in the diagonal compression test . . . 142

xxi



List of Figures

F.5 Effect of tensile softening parameter αt in the diagonal compression
test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

F.6 Non-dimensional relationship between the maximum shear stress
and the parameters assessed (x) for the homogeneous system in the
diagonal compression test. . . . . . . . . . . . . . . . . . . . . . . . 143

F.7 Effect of the isotropic hardening parameter A in the pushover test . 145

F.8 Effect of the radius at failure Rfail in the pushover test . . . . . . . 145

F.9 Effect of shear softening parameter αs in the pushover test . . . . . 146

F.10 Effect of tensile parameter Tr in the pushover test . . . . . . . . . . 146

F.11 Effect of tensile softening parameter αt in the pushover test . . . . . 147

F.12 Non-dimensional relationship between the maximum horizontal load
and the parameters assessed (x) for the homogeneous system in the
pushover test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xxii



List of Tables

1.1 Specimen details for compression test [MW03] . . . . . . . . . . . . 14

1.2 Soil used in the study by ([BMHW14]) . . . . . . . . . . . . . . . . 16

1.3 Soil used in the study (% by weight) [BBLM14] . . . . . . . . . . . 22

1.4 Direct shear test data [EN17] . . . . . . . . . . . . . . . . . . . . . 28

1.5 Young modulus of the wall based on image processing [EN17] . . . 30

3.1 Features in each level of the CJS-RE model . . . . . . . . . . . . . 64

4.1 Consistency limits and compaction properties of soils for rammed
earth ([SOS+14]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Compression tests data [EN17] . . . . . . . . . . . . . . . . . . . . . 75

4.3 Properties of MAT-2 from direct shear test data [EN17] . . . . . . . 75

4.4 Identified CJS-RE1 model parameters for MAT-1; experiments from
[SOS+14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Identified CJS-RE2 model parameters for MAT-1; experiments from
[SOS+14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Parameters assumed for the Mohr-Coulomb type model for the in-
terfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Identified CJS-RE1 model parameters for MAT-2; experiments from
[EN17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Identified CJS-RE2 model parameters for MAT-2; experiments from
[EN17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.9 Parameters assumed for the Mohr-Coulomb type model for the in-
terfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

F.1 Parameters considered in the parametric study for diagonal com-
pression test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

F.2 Parameters considered in the parametric study for pushover test . . 144

xxiii



List of Symbols

Latin:
A Parameter of isotropic hardening

C Cohesion of material (MPa)

Ci Cohesion of interfaces (MPa)

E Young’s modulus (MPa)

fc Compression strength of material (MPa)

fmvc Maximum volumetric contraction surface

f s Shear yield/failure surface

f t Tensile failure surface

ft Tensile strength of material (MPa)

f it Tensile strength of interfaces (MPa)

G Derivation of plastic potential in shear mechanism G =
∂gs

∂σ
g Gauge length of the wallet in the diagonal

compression test (mm)

Ge Shear modulus (MPa)

gs Plastic potential in shear mechanism

gt Plastic potential in tensile mechanism

h Height of the wallet (m)

Hmod Hardening modulus

∆H Horizontal extension of the wallet in the diagonal

compression test (mm)

I1 First invariant of stress tensor I1 = tr(σ)

Id Identity tensor

Ke Bulk modulus (MPa)

kn Interfaces normal stiffness (GPa)

ks Interfaces shear stiffness (GPa)

n Tangent vector of plastic potential surface

p Mean pressure (MPa) p =
tr(σ)

3
p Variable of isotropic hardening (CJS-RE)

PI Plasticity Index

q Local deviatoric stress tensor

qII Second invariant of local deviatoric stress tensor

xxiv



Symbols

Q Tensor deviator Q =
∂f s

∂σ
R Radius of the loading surface

Rc Radius at failure in compression stress path

Rfail Radius at failure

Rini Initial yield radius

Rmvc Radius in the maximum volumetric contraction state

Rt Radius at failure in extension stress path

sII Second invariant of global deviatoric stress tensor sII =
√
s.s

smvcII Second invariant of global deviatoric stress tensor

in the maximum volumetric contraction state

Smod Shear softening modulus

s Global deviatoric stress tensor s = σ − tr(σ)

3
Id

t Thickness of the wallet (m)

Tmod Tensile softening modulus

Tr Parameter which characterizes tensile

strength of the material (MPa)

Tr max Parameter which characterizes the maximum tensile

strength of the material (MPa)

T ini
r max Initial value of Tr max

T res
r max Residual value of Tr max

∆V Vertical shortening of the wallet in the diagonal

compression test (mm)

X Tensor which characterize the center of the loading surface

Greek:
αs Shear softening parameter

αt Tensile softening parameter

β Parameter of dilatancy

γ Parameter of disymmetry

γd Shear strain or shear distortion

δ Lateral displacements in the pushover test (m)

ε1 Axial deformation

εe Elastic deformations

εsp Plastic deformations generated from shear mechanism

εspdiff norms of the differences between current deviatoric

plastic strain and deviatoric plastic strain at peak

εp fail deviatoric plastic strain at peak

εtp Plastic deformations generated from tensile mechanism

εtotal Total deformations

εv Volumetric deformation

θq Lode angle in the local axis (◦)

xxv



Symbols

θs Lode angle in the global axis (◦)

λs Plastic multiplier in shear mechanism

λt Plastic multiplier in tensile mechanism

ν Poisson’s ratio

σ1 Major principal stress

σ2 Intermediate principal stress

σ3 Minor principal stress

τ Shear stress (MPa)

φ Friction angle (◦)

φi Friction angle of interfaces (◦)

ψ Dilatancy angle (◦)

ψi Dilatancy angle of interfaces (◦)

xxvi



General introduction

The constructions based on primal materials (earth, stone) are several millions in

Europe. Most of them have to be renovated or repair either for maintenance or

simply upgrading to modern standards. Moreover, the development of this type

of construction is hindered by scientific lack of knowledge (multiphysics and water

content dependent) and societal bottlenecks (non industrial heritage, unrecognized

skills).

Currently, there is no recommendation to guide the implementation of the primal

materials and in particular earthen materials in sustainable constructions. This

lack leads typically to use a method and renovation that might be unsuitable

and/or prefer other building materials which might be environmentally less effi-

cient but benefiting from standardized testing procedure.

One of the earthen material is rammed earth. It is essentially a structure made

from moist earth which is compacted layer by layer to form a wall. Understand-

ing the behaviour of rammed earth is compulsory to reduce some scientific lacks

previously mentioned. In the one hand, experimental tests are required to observe

phenomena at stake in the material. On the other hand, modelling is necessary

to optimise the design process. To achieve this goal, there is a need to define an

appropriate constitutive model for the material. A too simple model cannot be

sufficient to retrieve specific phenomena in the material (eg hardening, softening,

dilatancy). But a sophisticated model with numerous model parameters may be

oversized if experiment tests are limited for their identification.

The work presented herein is devoted to the design of a constitutive model which

can be adapted according to the level of complexity and the availability of the

experimental data for the identification of the model parameters.

This work is carried out within the framework of a national research of ANR

project (PRIMATERRE), ”Sustainable renovation and building: the challenge of

local materials”.
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General introduction

The content of this thesis is organized into four chapters:

Chapter 1 constitutes a state of the art of rammed earth as building materials.

Some previous research findings on quasi brittle materials are highlighted. Some

recent experimental results concerning the behaviour of rammed earth are also

presented.

Chapter 2 contains some modelling aspects related to the quasi-brittle materials.

It is presented some possible approaches that can be used for the modelling of

quasi-brittle materials complete and in particular for rammed earth.

Chapter 3 details the new hierarchical constitutive model CJS-RE. The general

equations of the model are presented together with the asociated features. Two

levels of the model are designed which can be choosen according to the level of

complexity of phenomena to be modelled and the availability of experimental data

to identify the model parameters.

Chapter 4 presents some numerical tests which covers the identification of the

model parameters and the validation procedure of CJS-RE. The identification of

the model parameters is carried out using some experiments on two different ma-

terials from the literature. The validation is performed for two different boundary

value problems for the two studied materials. In more detail, both a diagonal

compression test and a pushover are simulated for the two investigated materials.

Finally, the role of interfaces between layers on the global simulated behaviour of

wallets is highlighted.
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Chapter 1

Rammed earth: state of the art

1.1 Introduction

Rammed earth is a vernacular building technique consisting in compacting succes-

sively layers of moist earth within formworks. The target mechanical strength of

these structures is reached after some weeks of drying when the capillary tensions

within the pore networks provides a strong bonding effect between the different

particles constituting the material. Sometimes, rammed earth is mixed with ce-

mentitious materials to obtain impermeable and more durable walls.

This construction method is currently becoming more popular because it meets

the requirement of sustainable development such as a low embodied energy for

the production and the processing of the materials which are locally extracted

[WS13, TFL08]. In addition, recent studies tend to show that rammed earth walls

may contribute to the inner comfort of the houses [MMOW01].

Among two recent emblematic uses of this technique, we can cite the Nk’Mip

Desert Cultural Centre at the Osoyoos Indian Reserve in British Columbia, Canada

(Figure 1.1a) designed by Hotson Bakker Boniface Haden Architects and the Herb

Center for Ricola designed by Herzog & de Meuron in Laufen, Switzerland (Fig-

ure 1.1b). The former structure which was completed in 2006 was at that time

the largest insulated rammed earth wall in the world with 80m long, 5.5m high

and 0.60m thick. The second one (100m long, 11m high and 0.45m thick) was

completed in 2014 and has the particularity to have been built using 670 rammed

loam elements manufactured in a temporary nearby factory.

In France, rammed earth construction is essentially present in the region of Auvergne-

Rhône-Alpes (Figure 1.2) and it was a citizen from the city of Lyon from the 18t̂h

1
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Figure 1.1: Rammed earth construction in the world; (a): The Nk’Mip Desert
Cultural Centre in Canada [Tri10], (b): Herb Center in Switzerland [Ric14]

Figure 1.2: Rammed earth distribution in the region of Auvergne-Rhône-
Alpes [CRA17]
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century, Francois Cointereaux, that established the framework for such a building

technique in a design book that is still a reference. After decades of abandon, the

revival of this building technique in the region was motivated by the construction

of a social housing located in the district of l’Isle d’Abeau, near Lyon (Figure

1.3). These buildings take part of the pilot experiments carried out in 1982 on

earthen construction. The two earth buildings group are used for social housing

units which have three floor levels. Most of the roof load is born by the rammed

earth walls with a thickness of 0.5m including the six frontal columns.

Figure 1.3: Social housing in the district of l’Isle d’Abeau-Rhône in France
[Aur14]

Rammed earth has a significant contribution for historic preservation because of

two main reasons. First, it is an architectural style of structure which maintains

the traditions and utilizes the human resources. Secondly, it is inherently envi-

ronmentally suited since the material is based on local resources and can be used

again after demolition. Moreover, rammed earth walls which hold a typical thick-

ness of 0.5 to 0.6m have a phase shift temperature of twelve hours that tends to

damp out the effect of variations of exterior temperature. They minimize the need

for artificial air conditioning with its additional costs [Gra13].

Despite of rammed earth popularity recently, the development of rammed earth

technology is confronted to several barriers. The lack of scientific knowledge re-

lated to a complex multiphysics material behaviour and also to the lack of reference

documents for design, construction, and also maintenance purposes. This makes
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the owners of such structures helpless at the time when they have to repair dam-

ages and insurances are reluctant to provide a ten-year guarantee. However, a

given number of recent researches tends to bridge the gap between into both the

mechanical and thermo-hygrometric behaviour of earthen structures.

1.2 Method of construction

This section provides some important requirements in order to build rammed earth

structures. Generally, it involves the following steps:

• Choice of an adequate soil, with enough silt and clay to ensure the cohe-

sion of rammed earth. Here the study of the particle size distribution is

recommended but not mandatory;

• Screening of the soil to eliminate rock blocks and gravels;

• Preparation of the formwork;

• Wetting the soil at an ideal water content for compaction;

• Compaction of the soil in successive layers

1.2.1 Soil preparation

Figure 1.4: Soil profile with different layers [Dis16]
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The suitable material for rammed earth construction is an inorganic subsoil found

beneath the organic topsoil (Figure 1.4). The physical and chemical properties of

subsoil are dependent on the original parent rock geology and subsequent weath-

ering, including hydrological and hydro-geological processes, and other changes on

exposure to the atmosphere. Thus, the properties of subsoil are defined by the

region where the soil can be found.

1.2.2 Particle Size Distribution

Not all soil compositions are suitable for rammed earth construction and soil must

be tested prior to a use to verify its suitability. Subsoil structure is made up of

four main particle types. Classified according to size, they are gravel, sand, silt,

and clay [Gra13, McH84]. Each particle type plays an important role in the struc-

tural integrity of rammed earth. Gravel is the skeleton that provides underlying

structural stability. Together with the sand, it enhances weathering resistance of

exposed surfaces and shrinkage resistance. The clay and silt are the binding agents

that make possible the existence of strong capillary forces insuring the overall co-

hesion of the material.

For earth wall construction, the soil should contain all four elements. Ideally, the

soil should have a high sand and gravel content with some silt and just enough

clay to act as a binder and to assist soil compaction [Kea96]. Nevertheless, no soil

is likely to be conformable with regards to all of the aspects considered [Sax95].

Then, some researchers proposed a grading range to help the artisan maker. Figure

1.5 shows the lower range and upper range for clay, silt, sand and gravel (particle

size distribution by mass) for rammed earth construction as proposed by various

researchers. Generally, the minimum clay content is of 5-10% and the maximum

of 25-35%, then the minimum silt content is of 10-15% and the maximum of 30%.

Finally, the minimum content of sand and gravel are respectively of 45-70% and

of 70-80%.

1.2.3 Formwork

A formwork is used as a temporary support during soil compaction. The form-

work requirements are sufficient strength, stiffness, and stability to resist to pres-

sures during erection, placement of the soil, and demoulding. Unlike formwork for

concrete, formwork for rammed earth can be removed almost immediately after

compaction, enabling much faster reuse. There are several types of formwork and
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Figure 1.5: Range of suitable gradings for unstabilised rammed earth proposed
by several researchers [MW03]

the selection of the appropriate type of moulding system for each application is

important, since usually the time spent setting, aligning and stripping the forms

is greater than the time spent for transporting and compacting the earth [Eas07].

Figure 1.6: Formwork for rammed earth; (a): Traditional wooden formwork,
(b): Steel formwork

Figure 1.6 depicts typical formworks used in the past or at present for rammed

earth structures. Figure 1.6a is an example of wooden formwork which is the

traditional one. It can be used to create rammed earth layers of height 0.4-0.5m

high each step. At present, steel formworks are generally used. They prove to be

stiffer and enable the creation of higher wall elements at one time (Figure 1.6b).
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1.2.4 Compaction and density

Rammed earth should be compacted at or near to its optimum moisture content

for the method of compaction to maximise its dry density and its final strength.

The dry density depends on the soil type, the moisture content during compaction,

and the compaction energy. A broad range of dry density values for rammed earth

can be obtained from 1700 kg/m3 to 2200 kg/m3 [HGH94]. In order to achieve the

maximum density, it is important to define the optimum moisture content related

to the compaction energy used. Both the standard and modified Proctor tests are

routinely used to determine the optimum moisture content and the maximum dry

density of soils for rammed earth.

Figure 1.7: Compaction tools; (a): hand rammer, (b): pneumatic rammer

In the field, compaction for earth construction can be processed manually or by

using mechanical tools. A hand tamper composed of a heavy block of timber

fitted onto a handle is generally used to achieve it (Figure 1.7a). The most impor-

tant factors when considering using a manual rammer are the head material, the

weight of the rammer, the shape of the head and the area of the head-face and

finally the length of the handle [MW03]. This compaction method is less expen-

sive but need an extra effort. The second method lies on the use of mechanical

tools operated with compressed air to repeatedly lift and drop the striking head of

the rammer (Figure 1.7b). The ideal impact rammer should have long-stroke dis-

tance, moderate speed and weight to make it safe, especially when working at the

higher levels of the wall and slender tamper, to fit the corners of the forms [MW03].
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1.3 Behaviour of quasi-brittle materials

Rammed earth holds all the characteristics of a quasi-brittle material like con-

crete. They are both composed of a granular skeleton composed of sand and

gravels which are bent by smaller elements, obtained by the network of hydrates

of cement in the case of concrete and obtained by the capillary forces existing in

the network created by silt and clay. Quasi-brittle materials are characterized by

the existence of a non linear behavior due to the creation of micro-fractures up to

the maximum load followed by a post-peak softening. There is no yield plateau

on the stress-strain curve [BXR91]. In the following, we will see that these char-

acteristics will hold true for rammed earth and the general behavior of rammed

earth can be understood thanks to the analysis of the behavior of concrete.

Concrete is composed of aggregates and mortar. The aggregates contributes

mainly on concrete compressive strength while the binding agglomerates the ag-

gregates. In concrete, some microcracks may develop during the loading process

because of the difference in stiffness between aggregates and mortar. These differ-

ences can cause strain concentration along the interfaces between aggregates and

mortar. Since the interfaces has a lower strength than the mortar, the cement

matrix can be considered as the weakest link in the concrete.

Figure 1.8 shows the scheme of cracks process in the concrete [Maz86]. It can

be seen that damage appears far ahead in the front of the macrocrack (zone 2).

In addition, the part of the macrocrack which appears on the surface (zone 3) is

not significant compared with the zone of complete separation (zone 4) inside the

thickness of the material. A summary of some key facets of concrete behaviour is

given in the following subsection.

Figure 1.8: Cracks process zone [Maz86]
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Figure 1.9: Typical compressive stress-strain curve for concrete [Che07]

1.3.1 Compression behaviour

A typical behaviour of concrete submitted to a monotonous compression loading

is presented in Figure 1.9. The behaviour in the compression stress path shows

nearly an elastic response up to about 30% of its maximum compressive strength.

Beyond this point, the curves shows gradual increase in curvature up to about

80%, whereupon it bends more sharply and approaches the peak at fc. Beyond

this peak, the stress-strain curve has a descending part until crushing failure at

ultimate strain εu [Che07].

Figure 1.10 depicts the result of a cyclic compression test on concrete where non-

linear hardening and softening can be observed after it surpasses the elastic limit.

It is also observed that the unloading response of concrete exhibits non linearities.

At first, the loading and unloading part is similar with a similar initial stiffness,

but with the increasing of the deformation, it exhibits a strong nonlinearity and

a significant degradation of the stiffness can be observed. This degradation is

supposed to be induced by the accumulation of micro-cracks at the origin of the

internal damage of the material [Che07].

1.3.2 Tensile behaviour

The stress-strain response of concrete under a uniaxial tension can be seen in

Figure 1.11 where the influence of the type of aggregates in the resulting tensile

strength is reported. For example from curve 1 and 2 in Figure 1.11, the tensile
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Figure 1.10: Cyclic compression test on concrete [KJ69]

strength of concrete with granite as aggregate gives a higher strength than con-

crete with gravel aggregate. It is also shown that the longer age gives a higher

strength (curve 4 and 5 in the Figure 1.11). This inferred that concrete cementa-

tion (hardening process) is still active after 1 month of curing time.

Figure 1.11: Tensile stress-strain of concrete, after [HC66]

The behaviour of the concrete in tension shows similarities with the envelope of

the compression curves in Figure 1.10. For stress level less than 60% of the uni-

axial tensile strength, the creation of microcracks is negligible. Thus, until this

stress level the behaviour can be considered as elastic. Then, beyond 60% the

unstable crack propagation starts to grow. The direction of crack propagation is

perpendicular to the stress direction [Che07, NM07]. In uniaxial tension test, the

crack propagation occurs rapidly and it is difficult to follow the descending part
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(softening) of the stress-strain curve throughout the experiments. Nevertheless,

according to [Che07], the tensile strength of concrete can be taken between 0.05

to 0.1 of the corresponding compressive strength for the material.

Similar finding also observed in the experiments by Terrien (1980) [Ter80] on the

tensile behaviour of concrete as depicted in Figure 1.12. Before reaching the peak

of resistance of the specimen, the cracking is diffuse. Micro-cracks appear in many

parts of the test piece, mainly induced by a concentration of stresses in the vicinity

of defects or pores. In this first stage, from a macroscopic point of view the ma-

terial seems poorly affected by these microcracks. Hence, the uni-axial response

of the material remains almost linear (Figure 1.12). After reaching the peak re-

sistance of the specimen, the cracking is localized. The effect of the cracking are

then more important and the stiffness of the uni-axial response greatly degrades.

The loading-unloading responses in the descending part (dashed lines in the Figure

1.12) shows a decrease in the slope of the stress-strain response. Cracking develops

in planes orthogonal to the direction of loading (Mode I). As a result, in each of

these plans, the section capable of transmitting stress to ensure the cohesion of

the material is reduced, which explains the loss of stiffness.

Figure 1.12: Stress-strain of concrete in cyclic tension, after [Ter80]

The two types of before mentioned cracking can be demonstrated by using an

acoustic emission measurement technique by [MS88] as can be seen in Figure 1.13.

Based on Figure 1.13, the appearance of voids (cracks) are represented by a cross

on the different loading schemes. Micro-cracks first appear in a diffuse way before

subsequently concentrating and forming a macro-crack.
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Figure 1.13: Cracking during loading of traction from acoustic emission
method, after [MS88]

1.3.3 Confined compression behaviour

In a general triaxial stress path, concrete has a cone-shaped failure envelope with

a curved meridian plane and a non circular section in the deviatoric plane. Figure

1.14 depicts the shape of the failure surface of concrete based on experiments at

low compression regime (less than three times of the largest compressive stress)

[LG72]. In the meridian plane (Figure 1.14a), concrete has a maximum resistance

to compression which depends on the mean pressure. It is also can be observed

that there is some dissymmetry in the compression and extension stress path.

In the deviatoric plane (Figure 1.14b), the failure envelop holds a triangle-like

shape. Figures 1.14a-b compare the results provided by the constitutive model

from [WW74] with experiments where a good agreement is found at low confining

pressure.

Figure 1.14: Triaxial data of concrete for low confinement pressures; (a):
meridian plane (θ = 0◦) and (a): deviatoric section [WW74]
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1.4 Mechanical behaviour of rammed earth

The mechanical behaviour of rammed earth can be related to the density of the

soil after ramming, cohesive strength of fines content, aggregate strength, moisture

condition during testing. Their influence on the mechanical strength of rammed

earth can be evaluated from several tests in laboratory. This section investigates

three important mechanical characteristics for the material which are the com-

pression strength, the tensile strength, and the shear strength.

1.4.1 Compressive strength

1.4.1.1 Unconfined compression test

The laboratory tests used to determine the compressive strength (shear strength)

of rammed earth are similar to those used for concrete, bricks and blocks [Uni58].

A summary of the required specimen details for compression strength testing ac-

cording to various standards around the world is presented in Table 1.1. The

specimens can be either cylinders or prisms (including cubes) prepared with a

specified compaction effort. Specimens are capped using hardboard, plaster or

similar material. This additional interfaces becomes negligible when the samples

have a slenderness ratio equal to or higher than two [CG12]. A uniform load is

then applied continuously until failure occurs and the maximum load is recorded.

During testing, measurements of axial strain in the middle part of the sample allow

the modulus of elasticity and the stress-strain relationship to be determined.

Bui et al. [BMHM09] performed an experimental study of the compressive strength

at three scales including:

• Scale 1 : Full scale

• Scale 2 : Representative Volume Elements (RVE), and

• Scale 3 : Compressed Earth Block (CEB)

First, scale 1 corresponds to an on site wall (Figure 1.15a). Secondly, the RVE scale

is the smallest size of volume that where stabilized properties for a heterogenous

material can be found (Figure 1.15b). For the RVE scale, the sample dimensions

were close to those of the in situ walls. Thirdly, the CEB scale was carried out by

extracting a part of the layer in the RVE scale (Figure 1.15c). The idea was to

develop a simple test method in laboratory able to allow the elastic parameters of

rammed earth to be identified. For scale 1, the estimation of the elastic modulus
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Table 1.1: Specimen details for compression test [MW03]

was carried out by correlating of the natural frequencies measured from vibration

test to the natural frequencies obtained through modelling. For the two other

scales, the determination of the elastic modulus was carried out by using static

schemes through compression tests in the laboratory.

Figure 1.15: Three scales for rammed earth studied by Bui [BMHM09]

The summary of the results obtained with the three different approaches is pre-

sented in Figure 1.16. It can be seen that at first, when the preload is low (less

than 0.2 MPa) the elastic modulus obtained from CEB samples gives a higher

result than RVE samples. Nevertheless, on the average, the result from the CEB
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is close to that obtained at the RVE scale. The in-situ dynamic measurements

(full scale) give a higher result than with the two other approaches. This might

be related to the assumption of the homogeneous model in the modelling which

gives a higher natural frequency [BMHM09].

Figure 1.16: Elastic modulus of rammed earth at three different scales
[BMHM09]

By using compression test at the RVE scale, Bui [BM09] also studied the potential

anisotropic behaviour of earth material involved by the interfaces between each

layers of the rammed earth. Thus, they performed a compression test on rammed

earth with two different loading orientations with respect to the interfaces: perpen-

dicular and parallel to the interfaces. The elastic modulus is found to be similar

in both cases (Figure 1.17). Therefore, the elastic behavior of rammed earth can

be considered as isotropic [BMHM09].

Another study by Bui et al. [BMHW14] was conducted on the effect of the cur-

rent moisture content on the compressive strength of rammed earth. The moisture

content at compression test varies from the wet state directly after manufactur-

ing (11-13%) to dry state in atmospheric conditions (1-2%). Five types of soils

including stabilized soil were tested. The composition of each type of soil is pre-

sented in Table 1.2. The test results are depicted in Figure 1.18. The increase of

moisture content reduces the compressive strength systematically which was ex-

pected since capillary forces (suction) are only very active when the water content

is very low (Figure 1.19). These findings strengthened the results from Jaquin et

al. [JAGT09] in which they only performed tests on one type of soil.

Champire et al. 2016 [CFM+16] presented an experimental study focusing on the

influence of relative humidity on the compressive strength of rammed earth. Three

different specimen sources (STR, CRA and ALX) were used. They all come from
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Figure 1.17: Comparison of elastic modulus between a loading perpendicular
and parallel to the interfaces layer at a RVE scale [BM09]

Table 1.2: Soil used in the study by ([BMHW14])

Soil Clay(%) Silt(%) Sand(%) Gravel(%)
A 5 30 49 16
B 4 35 59 2
C 9 38 50 3
D 10 30 12 48
E 10 22 43 25

Figure 1.18: Influence of water content on the compressive strength
[BMHW14]
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Figure 1.19: Influence of suction on the compressive strength [BMHW14]

existing old rammed earth constructions (dating before the 20th century) located

in the Auvergne-Rhône-Alpes region in the South-East of France. Unconfined

compression test on cylinder samples were performed. The axial deformation field

was measured with a Digital Image Correlation (DIC) process. This approach was

also validated using non contact sensors in the axial and also radial direction.

Figure 1.20: Compression behaviour of rammed earth within three different
relative humidity for soil STR; (a): Stress-strain, (b): Volumetric deformation

[CFM+16]

Figure 1.20 presents results of monotonous compression tests on homogeneous

samples for three different relative humidities (25%, 75% , and 95%) for the soil

STR. Figure 1.20a presents the stress-strain response and Figure 1.20b shows the

volumetric deformation response. Figure 1.20a shows that the stress-strain relation

is non-linear and strongly dependent on the relative humidity. From Figure 1.20a
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it can also be observed that generally rammed earth has an elastic region 20 - 30%

of the compressive strength. Beyond the elastic region, it continues to undergoes

inelastic deformation before failure takes place. If we compare the stress-strain

of rammed earth with 25% relative humidity (Figure 1.20a) and the envelope of

concrete in Figure 1.10, then we can observed a similar patterns between them.

Figure 1.20b shows that for low axial strains, contractancy can be observed while

at larger axial deformations, the volumetric strain reaches its peak value and de-

creases afterwards. Thus, the behavior becomes dilative due to decohesion of

grains and the generation of numerous micro-cracks across the sample. When the

axial stress is equal to fc, the sample has a volume higher than its initial volume

(εv negative). It is also observed that sharp dilatancy can be observed and mainly

related to a structural increase of volume due to the opening of cracks.

Under some stress reversal, rammed earth shows some permanent deformation

which is also observed in concrete. For example, Figure 1.21 depicts test results

of a compression test on STR (RH=25%) with an unload and reload process

which points out plastic phenomena. In addition, the Young modulus has slightly

degraded. This reduction of elasticity is also observed for other soil types as shown

in Figure 1.22 where the rate of elastic degradation is important for STR soil, but

not significant for CRA and ALX. This different level of damage is influenced by

the nature of the earth source. Figure 1.22 also indicates that for the same soil

type, the level of damage is influenced by the relative humidity.

Figure 1.21: Compression behaviour of rammed earth for soil STR
(RH=25%)[CFM+16]
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Figure 1.22: Young modulus as a function of the stress level for three different
relative humidity and different soil sources; (a): STR, (b): CRA, (c): ALX

[CFM+16]

.

1.4.1.2 Confined compression test

Figure 1.23: Specimens after triaxial tests [CWHM12]

Confined triaxial test can be used to estimate the shear strength of rammed earth

and the influence of the mean pressure on it. Cheah et al. [CWHM12] used a

triaxial test to obtained the shear strength of unstabilised rammed earth and a

stabilised rammed earth material reinforced with sisal and flax fibres. It is found

that the friction angle of unstabilised rammed earth is equal 45◦ and cohesion of

724kPa. Whereas, the friction angle measured for the stabilised rammed earth test

specimens ranged between 47◦ and 56◦ with ranges of cohesion between 554kPa

and 758kPa. It can be inferred that the addition of sisal and flax fibres might

can increase the friction angle. But, on the other hand, it tends to reduces the

cohesion of rammed earth. Figure 1.23 shows the specimen condition after the

tests where failure along a diagonal shear plane can be observed.
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1.4.2 Tensile strength

Like in the case of soil, generally the tensile strength of rammed earth is neglected

due to its low value. But in the case of extreme loading conditions such as earth-

quakes, neglecting this tensile strength could be disadvantageous for the design

purpose. As for many granular materials, an experimental tensile strength is dif-

ficult to process (unconfined tensile test). It can be estimated indirectly through

a Brazilian test or a flexural tensile test.

1.4.2.1 Unconfined tensile test

Figure 1.24: Specimen and apparatus for unconfined tensile test [AKS16]

In this test, the specimen is directly tensioned until it reaches failure. One diffi-

culty performing this test is to avoid failure in the fixed portions in which tensile

stresses might concentrated. [AKS16] used a cylinder specimen and trimmed it

at the middle height as counter measure. It is also used an epoxy resin in the

interfaces between the specimen and the loading platen to ensure strong bond-

ing between the sample and the loading platen. Figure 1.24 depict specimen and

apparatus for the unconfined tensile test. The axial displacement was measured

by a pair of external displacement transducers set at an opposed position around

the loading shaft, as schematically in Figure 1.24 and a pair of LDTs (Local De-

formation Transducers) attached directly on the side of the specimens at middle

height with a reduced diameter. A tensile load was applied to the specimen at an

axial strain rate of 0.005%/min, so that the peak tensile strength was measured

accurately [KTN+08].
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Figure 1.27 gives the relationship between tensile strength of rammed earth as a

function of water content ([AKS16]). Araki et al. [AKS16] found a tensile strength

of rammed earth in the range of 7.5% until 12.5% of the compressive strength (Fig-

ure 1.27). In Figure 1.27, one can note that the tensile strength is influenced by

the water content which was expected.

1.4.2.2 Brazilian test

In the Brazilian test (or splitting test), a cylinder specimen is loaded uniformly in

compression along the length. This condition creates tensile forces perpendicular

to the loading direction and one can evaluate the tensile strength indirectly. Due

to scale effects, the tensile strength is supposed to be slightly overestimated by

the brazilian test. In fact, in this latter test, the failure surface is imposed while

in a uniaxial tensile test, the main crack will initiate around a local heterogeneity

(defects) within the composite material.

Figure 1.25: Specimen and apparatus for brazilian test [AKS16]

Bui et al. [BBLM14] performed brazilian tests on three different soils as men-

tioned in Table 1.3. According to the study, the tensile strength of rammed earth

(including stabilised rammed earth) is roughly equal to 11% of the corresponding

compression strength (Figure 1.26). as previously mentioned, Araki et al. [AKS16]

found a tensile strength of rammed earth in the range of 7.5% until 12.5% of the

compressive strength (Figure 1.27)
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Table 1.3: Soil used in the study (% by weight) [BBLM14]

Soil Clay(%) Silt(%) Sand(%) Gravel(%)
A 10 25 18 47
B 5 30 49 16
C 8 34 8 50

Figure 1.26: Relationship between compressive and tensile strength in an
earthen layer [BBLM14]

Figure 1.27: Tensile strength as a function of water content for unstabilised
rammed earth [AKS16]

22



Chapter 1. Rammed earth: state of the art

1.4.2.3 Flexural tensile test

Figure 1.28: Three point bending test [CA13]

The tensile strength of rammed earth can be obtained by means of a flexural ten-

sile test. It can be undertaken by three or four points bending test. In this test,

a beam specimen of earth is subjected with line load in the out of plane direction

on the upper center. Under this type of boundary condition, the top layer of the

beam will experiences a compression stress whereas the lower layer undergoes a

tensile stress leading to failure.

Ciancio et al.[CA13] used this test to obtain the tensile strength of an interface

in rammed earth as depicted in Figure 1.28 where point load acting on the inter-

face (ramming line). It is found that tensile strength at the interfaces is smaller

than the indirect tensile strength. Figure 1.29 depicts the flexural tensile strength

(FTS) of samples for three batches. It is shown that there are some variation of

results between the 3 batches and within the samples from batch 2. This sup-

posed to be arise from the specimens sampling for this test that were cored from

the walls. The coring process might have damaged the structure of the samples

[CA13].

In conclusion, it is recommended to use the Brazillian test to identify the tensile

strength of an earth layer because the tensile stress is mobilized inside the com-

pacted layers [AKS16]. In order to estimate the tensile strength of the interfaces

between layers, the uniaxial tensile test or the flexural tensile test may be more

appropriate.

23



Chapter 1. Rammed earth: state of the art

Figure 1.29: Flexural tensile strength of rammed earth interfaces from [CA13]

Figure 1.30: Diagonal compression test

1.4.3 Shear strength of rammed earth panels

1.4.3.1 Diagonal compression test on wallets

The shear strength can also be measured at a scale larger than the Representative

Volumetric Element by means of a diagonal compression test which involves more

clearly the possible influence of the interfaces between compacted layers. In this

test, a wallet is inclined to 45◦ and loaded vertically using a loading shoe along the

diagonal of the wallet (Figure 1.30). This test corresponds to the one defined in

the standard of ASTM E-519. The diagonal compression test is used to determine

the diagonal tensile or shear strength of 1200 x 1200mm2 masonry assemblages.

The deformations can be measured by using compressometers and extensometers
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or by using strain gauges mounted along the two diagonals as close to their inter-

section as possible [AE02].

In this test, the diagonal loading induces a diagonal tension failure with the spec-

imen splitting apart along the loading direction [AE02]. This splitting starts at

the center where tensile stress is higher and then propagates to the upper and

lower part of the wall. This failure mode is analytically established in the works

of [MLGB13] as shown in Figure 1.31.

It is assumed that for square specimens, the vertical component of the stresses σv
in the horizontal diagonal (perpendicular to loading) is equal to the applied load

divided by the area. In addition, the stress vector along horizontal diagonal is

supposed to be proportional to the ratio between the distance from the center of

the panel to the point along diagonal horizontal considered (x) with the distance

from center to the top corner where the load is applied (Figure 1.31a). This leading

to the relation of the horizontal σh(x) and vertical σv components of the stress as:

σh(x)

σv
=

x

h
√

2/2

Figure 1.31b shows that the horizontal force (Nx) assume to spreads at 45◦ on the

vertical diagonal along a length of 2x. Thus the horizontal stresses σH(x) on the

vertical axis along 2x can be written as:

σH(x) =
Nx

2xt
(1.2)

At the intersection of the diagonal where the tensile stress is higher, the total

tensile stress σt can be obtained by the summation of the contributions on each

part of the horizontal diagonal as follows:

σt =

∫ h
√

2/2

0

σH(x)dx =

∫ h
√

2/2

0

P

h2t
dx =

P

h
√

2t
= σv (1.3)

The corresponding Mohr circle for a point at the center of the wallet is centered

at the origin of the Cartesian system of axis and the shear stress τ is equal to the

principal tensile stress σt (Figure 1.32 [MLGB13]).
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Figure 1.31: Internal stresses in the diagonal compression test; (a): Stress
components within distance x from center and (b): Horizontal force within

distance x from center [MLGB13]

Figure 1.32: Mohr circle at the center of the wallet [MLGB13]

Then, the shear stress can be calculated by using the following relationship:

τ =
P

h
√

2t
(1.4)

where τ is the shear stress on the net area (MPa), P is the applied load (kN), h is

specimen height (mm), and t is specimen thickness (mm). The shear strain (shear

distortion) can be calculated by using following equation:
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γ =
∆V + ∆H

g
(1.5)

where γ is shear strain, ∆V is vertical shortening (mm), ∆H is horizontal extension

(mm), and g is gauge length (mm).

Figure 1.33: Shear stress vs shear distortion in a diagonal compression tests
[SOM+13]

Diagonal compression test is a typical test to study the shear strength of rammed

earth panels. For example, Silva et al. and Miccoli et al. [SOS+14, MOS+14] used

a diagonal compression test to study the shear strength of unstabilised rammed

earth. The diagonal compression tests allowed verifying a large shear deformation

capacity which is thought to result from friction and interlocking of the coarse

aggregates. Silva et al.[SOM+13] used a diagonal compression test on rammed

earth stabilised by fly ash. The fly ash content varied from 2.5%, to 7.5% of

the soil weight. The results from diagonal compression tests are given in Figure

1.33. It is found that stabilisation with fly ash gives a shear strength higher than

that reported for URE (0.037MPa) and significantly higher than that reported for

adobe masonry (0.022-0.032MPa)[SOM+13].

1.4.4 Role of interfaces in rammed earth systems

Interfaces between different layers are produced from the consecutive compaction

process in rammed earth. In general, the existence of interfaces is supposed to

constitute a weaker zone in the rammed earth system under loading. It may be

due to a smaller density as in the layer where the material is better compacted.
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To investigate the interfaces strength in rammed earth, El Nabouch et al. [EN17]

carried out a direct shear test on a large shear box with samples size measuring

49cm x 49cm x 45cm. The test results is depicted in Table 1.4. The author found

that the interfaces friction angle is about 90% of the friction angle in the layers.

In addition, the cohesion of interfaces is found to be approximately equal to 80%

of the cohesion in the layer. From the direct shear tests, the shear stiffness (ks)

were estimated (Figure 1.34). It led to a value of about 16.7MPa/m which is

significantly lower than the one suggested by Miccoli et al. [MOS+14] which is in

the order of 76GPa/m for E=760MPa. A possible cause of this small value of this

elastic interface stiffness is due to the value of water content of the material at the

time when the test was carried out which was on the order of 4-6%. This level of

water content is quite different from typical on site water content which is on the

order of 3% [EN17].

Table 1.4: Direct shear test data [EN17]

Type of test Dimensions of φlayer φinterface Clayer Cinterface

specimens (cm) (◦) (◦) (kPa) (kPa)
Large shear box 49 x 49 x 45 35.3 32.9 30.3 24.7

Note: water content at test 4-6%

Figure 1.34: Horizontal load vs horizontal displacement of the loading platen;
large shear box test [EN17]

Finally, another study was conducted by Holur et al. [Hol16] on the influence of

the moisture content on the interface shear strength. Three conditions of moisture

were defined; oven dry (0% moisture at test), ambient state (w = 1 − 2%), and

moist state (water content > 4%). From the study, it is shown that the specimen

at the dry state had the higher mechanical strength. The shear strength at the
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interface was lower in the case of the specimen with the higher moisture content at

the testing time. This is not surprising, since the more water content is introduces

the lower suction will be obtained and hence the lower strength will be observed.

1.4.5 Lateral resistance of wallets

A pushover test can be used to estimate the resistance of wallets under a lateral

loading. In this test, a wallet with a certain dimension is loaded uniformly in the

upper part then laterally pushed on the wall head until failure. The walls sub-

jected to this kind of loading are known as shear walls due to the predominance of

the shear efforts. A shear wall behaves as a free standing cantilever or fixed end

structural element and its stiffness depends on its aspect ratio which is defined as

the relation between the height and length of the wall. In fact, the aspect ratio

has a great influence on the failure mode of the walls. For low aspect ratios, shear

failure predominates, whereas flexural behaviour governs the in-plane behaviour

of slender walls [Haa09]. Figure 1.35 shows the distinct crack patterns associated

to different stress states exhibited by shear walls.

Figure 1.35: Typical cracking patterns of wall in the pushover test [Haa09]

1.4.5.1 Pushover test - monotonous

El Nabouch et al. [NBP+16] used this type of pushover test to estimate the seismic

performance of a rammed earth wall. In this pushover test, a wallet is pushed later-

ally until failure. Two different wallet dimensions were used; 1500x1500x250mm3

(Wall-2 and Wall-3) and 1000x1500x250mm3 (Wall-1 and Wall-4). A vertical pres-

sure equal to 0.3MPa was used to represent the typical pressure for a two storeys
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house. During the test, the displacements field on the wallet are captured by us-

ing image processing (Figure 1.36). This method allows to obtain Young modulus

using the following formula:

Ewall =
∆F.H

A.∆H
(1.6)

where ∆F is the force increment, H is the reference height, A is the area loaded by

the vertical loading, and ∆H is the vertical change of reference height. Table 1.5

shows the Young modulus for the material obtained from image processing method.

Figure 1.36: Displacement field of the wall [EN17]

Table 1.5: Young modulus of the wall based on image processing [EN17]

Wall number Young modulus (MPa)
Wall 1 375 MPa ±20
Wall 2 391 MPa ±30
Wall 3 435 MPa ±25
Wall 4 440 MPa ±15

The pushover tests results are depicted in Figure 1.37. An unexpected wallet

weakness was revealed during the test on wall-1 at the bottom of the wallet which

led to a lower loading capability compared to the other walls. The initial curves

for wall-2 and wall-3 that hold the same dimensions are similar but after a hori-

zontal displacement of 3mm, wall-2 become less resistant than wall-3. This might

be caused by some defects that appears somewhere in the body of the wall.

Figure 1.38 shows the force-displacement curve and also the crack pattern in the

wall-2 at different loading stages from image processing. The maximum resistance

was reached at the level of 40kN with a corresponding displacement of 15mm. In
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Figure 1.37: Pushover test results [EN17]

addition, three stages of crackings are shown in Figure 1.38. At first, some cracks

are observed at the bottom left of the wall (loading is at top right). Then at the

second stage, a vertical but slightly inclined crack appears and crushing at bottom

left develops. Finally, the main crack developed with quasi diagonal pattern and

a detachment were reported at the lower right base of the wallet.

Figure 1.38: Crack pattern and load-displacement curve throughout a
pushover test; wall-2 [NBP+16]
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1.4.5.2 Pushover test - cyclic

In the cyclic pushover test, the horizontal loading is applied within two opposite

directions. This type of test is close to the loading conditions of a wall subjected

to an earthquake. Arslan et al. [AEY17] and Miccoli et al. [MDM16] used this

type of pushover test on rammed earth wall to evaluate seismic behaviour of earth

wall.

In the works of [AEY17], rammed earth wall measuring 1500x1500x200mm3 is

used and loaded horizontally with a drift ratio ranging from 0.15% to 6.5%. Hys-

teretic load-displacement curves obtained from a lateral reversed cyclic loading

are given in Figure 1.39 for an unstabilised rammed earth panel. The behavior of

the test wall are symmetrical for push and pull directions in the range of tested

displacements.

The load carrying capacities and the corresponding displacements of unstabilised

rammed earth for push and pull directions are 52kN-37mm and 54kN-39mm, re-

spectively. In addition, the average load values at 1.0% and 3.5% drift ratios were

respectively found equal to 40kN and to 50kN. The crack patterns after a pushover

test are shown in Figure 1.40 where horizontal cracks are observed through some

layers of the wallet. This might be occur due to the absence of confining pressure

on the upper part of the wall and due to the lower resistance of the interfaces

between compacted layers.

Figure 1.39: Load-displacement responses throughout a pushover test
[AEY17]
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Figure 1.40: Crack pattern after pushover test for unstabilised rammed earth
[AEY17]
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1.5 Conclusion

Rammed earth construction is created by mechanically compacting in several lay-

ers locally collected humid earth. This vernacular building technique is present

worldwide and specifically in the Auvergne-Rhône-Alpes region (France). Though

answering some issues raised by the Sustainable Development, several barriers

have to be solved for the use of this technique for new buildings or for the repair

of existing ones. This technology has not benefited from a century of studies, re-

searches and feedback like more conventional techniques including concrete. How-

ever, lately, a certain number of scientific works devoted on the basic mechanical

of rammed earth including compression, tensile, and other deviatoric stress paths

emerged.

In relation to the mechanical behavior of rammed earth, in a first approach, it

can be considered that the material behaves as a quasi-brittle material like con-

crete. Although it has different material constituents, the compression and tensile

test results show similar pattern that were found for concrete. The particularity

of rammed earth lies in the strong influence of the humidity or the water content

that allows suction (capillary forces) to bind the different elements of the material.

Other particularity lies in the existence of interfaces between the compacted layers

that tend to weaken the resistance of rammed earth panels. The similarities and

differences of behavior between rammed earth and concrete has not been totally

addressed so far. However, the set of existing tests in the literature allows the

design of a constitutive model relevant to rammed earth to be performed.
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Modelling system with

quasi-brittle materials

2.1 Constitutive models

Apart from laboratory tests and site measurements that help to understand the be-

havior of materials and of structures at different scales, modelling helps to estimate

safety factors against failure and to optimise sections. At this stage a constitutive

model for the material is required, which is in this work rammed earth. At service,

the earth has a very low water content, typically on the order of 2-4% [BMHW14].

In this range of water content, where suction plays the role of a strong binder be-

tween particles, rammed earth has some basic features of a quasi-brittle material

such as concrete. Then, even if the strength of rammed earth is far lower than

that of an usual concrete, one may be inclined to use a constitutive model valid

for quasi-brittle materials (with probable adaptations) in this case. This chapter

describes typical continuum constitutive models for quasi-brittle materials that

can be used to model the mechanical behaviour of rammed earth.

There are mainly three approaches that can be taken at the macroscopic level as

depicted in Figure 2.1 [JHPCG06]. First, there are models built upon the contin-

uum damage mechanics theory (elastic theory) where elastic properties decrease

according to damage variables (Figure 2.1a). Secondly, there exist models based

on the plasticity theory where permanent deformations can be generated when

the system is at yield (including possible failure) (Figure 2.1b). Finally, the last

approach couples the continuum damage theory to plasticity (Figure 2.1c).
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Figure 2.1: Typical loading and unloading responses for three different con-
stitutive models; (a) : elastic-damage model, (b): elastic-plastic model, and (c):

elastic-plastic-damage model [JHPCG06].

2.1.1 Damage model

A damage model involves constitutive relationships in which the mechanical effect

of cracking and void growth is introduced through internal state variables which

monitor the decrease of the elastic stiffness of the material [TB12] when load-

ing. Generally, the underlying damage variable is defined as the ratio between the

damage area surface of a tested sample to the overall material surface area of this

sample. It can be a scalar, a set of scalars, or a tensor. Damage can be isotropic

as in the work of Mazars [Maz86, MHG15] or anisotropic as proposed by Zhou

[ZZLY02] or Cicekli et al. [CVAR07].

A simple isotropic damage continuum model describes the material degradation

by means of a single scalar damage parameter D which grows monotonously from

zero (undamaged material) to one (completely damaged material). The growth of

damage is controlled by a threshold parameter κ which is defined as the maximum

equivalent strain ε̃ reached during the load history up to time t. The equivalent

strain ε̃ can be defined based on the maximum principal effective stress as [JM05]:
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ε̃ =
max(σeff

i )

E
(2.1)

or by modified Rankine criterion as:

ε̃ =
σeff

1 − c(−σeff
2 )

E
(2.2)

with σeff
1 and σeff

2 are respectively the first and second principal effective stress

(σeff
1 > σeff

2 ). c is a non-negative coefficient. If c is equal to zero, Equation (2.2)

degenerates into Equation (2.1). Note that effective stress is defined as the stress

acting in the undamaged material.

The general loading function of a damage model writes:

f(ε̃, κ) = ε̃− (max(κ, κ0)) (2.3)

where κ0 is the initial value of κ when damage begins. Damage develops if the

loading function f is positive. Throughout a monotonous loading, the variable

κ increases (it coincides with ε̃ ) and during unloading and reloading it remains

constant. Peerlings [PDBBG98] defines a damage evolution in the tensile regime

as:

Figure 2.2: a) Damage variables D as a function of κ, b) Stress-strain response
during uniaxial tension [PDBBG98]

D = 1− κ0

κ
(1− α + α ∗ e−β(κ−κ0)) (2.4)

with κ0 is the damage threshold parameter and α, β are model parameters. Pa-

rameter β determines the rate at which damage grows. A higher value results in a

faster growth of damage and thus in a more brittle response. The use of Equation

(2.4) gives a typical stress-strain response as in Figure 2.2 where damage starts

37



Chapter 2. Modelling system with quasi-brittle materials

once the system reaches failure.

In the following subsection, two typical damage models which are used to capture

the behaviour of quasi-brittle materials are discussed. First, Mazars model is

described followed by the Total Strain Rotating Crack model.

2.1.1.1 Mazars model

One of the most famous damage models for concrete was designed by Jacky Mazars

and is called Mazars model [Maz86]. The relationship between stress and strain

in Mazars model is given by the following equation:

σ = (1−D)Eεe (2.5)

where E is the Hooke matrix, D is the damage variable, and εe is the elastic strain.

The elastic strain is computed as:

εe = ε− εth − εrd − εre (2.6)

with εth is the thermal dilation, εre is the shrinkage related to hydration, and εrd

is the shrinkage related to drying. Both are strain components of phenomena that

are known to initiate cracks within concrete. In order to model different responses

along a tensile and compression stress path, the damage variable D in Equation

(2.5) is split into a tensile part Dt and compression part Dc:

D = αtDt + αcDc (2.7)

with weight coefficients αt and αc defined as functions of principal strains in tension

εti and principal strains in compression εci .

αt =
3∑
i=1

(
〈εti〉〈εei 〉+

ε̃2

)β
and αc =

3∑
i=1

(
〈εci〉〈εei 〉+

ε̃2

)β
(2.8)

Therefore if the stress state corresponds to a compressive state then αt = 0.0 and

if the stress state corresponds to a tensile state then αc = 0.0. ε̃ is the equivalent

strain which is given by:

ε̃ =

√∑
i

〈εei 〉2+ (2.9)
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with εi is the principal strain and 〈〉+ is the positive operator where:

if εi < 0.0 then 〈εi〉+ = 0.0

if εi ≥ 0.0; then 〈εi〉+ = εi.
(2.10)

β is the parameter used to reduce the effect of damage under a shear loading

compared to a tensile loading. The evolution of damage is ruled by the following

relationships:

Dt = 1− κ0(1− At)
κ

− At
exp(Bt(κ− κ0))

Dc = 1− κ0(1− Ac)
κ

− Ac
exp(Bc(κ− κ0))

(2.11)

where κ0 is the initial value of κ when damage begins as in Equation (2.3). The

value of κ is related to the equivalent strain ε̃.

Mazars model holds eight model parameters: two elastic parameters (E and ν)

and six damage parameters (κ0, β, At, Bt, Ac, and Bc). The set of parameters

can be obtained from compression and tensile tests.

The latest improvements in Mazars model were aimed to take into account strain

rate effects and confinement effects [MHG15]. It was designed to handle concrete

responses under severe loading cases such as blasts, earthquakes and impact loads.

Indeed, such aspects can be critical in the case of like power plant, nuclear reactor,

or concrete dam.

Bui et al. [BBLM14] used Mazars model to simulate the behavior of rammed

earth wallets under a compression loading. Figure 2.3 shows the comparison of

the load-displacements between experiments and the simulation. Is is shown that

Mazars model was able to retrieve the initial stiffness and the level of the maximum

response of the stress-strain curve that was found throughout experiments. Mazars

model also captured well the absorbed energy during the damage process (Figure

2.4). On the other hand, the pre-peak and post-peak behaviour was not retrieved

correctly. In Mazars model, no permanent strain can be generated, thus when

unloading, the stress-strain response will return to the origin. This feature can be

acceptable when unloading after a tensile loading path but not when unloading

after a compression loading path [Jir11]. Nevertheless, Mazars model remains

popular in terms of applications because it is relatively simple to handle, stable

and computationally efficient.
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Figure 2.3: Comparison between experiments and simulations of a compres-
sion test on a rammed earth wallet using Mazars model [BBLM14]

Figure 2.4: Energy absorbed in the wallets during the damage process; com-
parison simulations using Mazars model and experiments [BBLM14]

2.1.1.2 Total strain rotating crack model

The Total Strain Rotating Crack Model (TSRCM) is another constitutive model

based on damage which is induced by cracks. The TSRCM follow a smeared cracks

approach for the fracture energy [BV10]. It corresponds to a model of distributed

and rotating cracks based on total strains, where the crack direction rotates with

the principal strain axes [Fig83, Póv91, JZ98].

TSRCM belongs to the class of elastic-damage models since it involves the degrada-

tion of the elastic properties like in Mazars model. In the TSRCM, the degradation

of the material due to cracking and crushing is monitored by six internal damage
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variables αk, collected through the vector α. Internal variables k = 1,...,nstr mon-

itor the maximum strain whereas variables k = nstr+1,..., 2 x nstr monitor the

minimum strain (Figure 2.5). It is assumed that damage is irrecoverable which

implies that the absolute values of the internal damage variables are increasing.

The loading-unloading-reloading condition is monitored by rk which is determined

for both tension and compression to model the stiffness degradation in tension and

compression. In a tension loading path rk is given by:

if εk > αk then rk = 0.0

if εk ≤ αk then rk = 1.0
(2.12)

and in a compression loading path, rk is written:

if εk < αk then rk = 0.0

if εk ≥ αk then rk = 1.0
(2.13)

Figure 2.5: Loading and unloading responses with TSRCM [BV10]

In the rotating crack model, the strain is decomposed into an elastic strain and a

crack strain. The elastic strain is related to the elasticity, while the crack strain

is generated from up to three mutually orthogonal cracks that keep aligned with

the principal direction [JZ98]:

ε̇ = ε̇e + ε̇c (2.14)

where ε̇e is the increment of the elastic deformation and ε̇c is the increment of the

cracks deformation. The latter one is defined by:

ε̇c = T eec (2.15)
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with T e the strain transformation matrix which transforms the principal strain

into global strain components. ec is the crack strain tensor corresponding to the

individual principal strain directions. The TSRCM model can involve several pos-

sible non-linear stress-strain relationships according to the type of involved stress,

either of compression or tensile type.

Along a compression stress path, a parabolic relationship of the stress-strain curve

is used which is based on the fracture energy concept (Figure 2.6a). The second

point of the parabolic relationship was defined at the level of 0.3fc by taking into

account the experimental Young modulus. The prepeak response in the compres-

sion regime is formulated by the following relationships:

f = fc

(
1

3

)(
1 + 4

(
αj − αc/3
αc − αc/3

)
− 2

(
αj − αc/3
αc − αc/3

)2)
(2.16)

with αc/3 is the strain for the stress state corresponding to one-third of the maxi-

mum compressive strength fc:

αc/3 =
1

3

fc
E

(2.17)

and αc is the strain when the maximum compressive strength fc is reached.

The peak and the post-peak responses is obtained through a parabolic curve:

f = fc

(
1−

(
αj − αc
αu − αc

)2)
(2.18)

with αu the strain at the residual state when softening does not evolve anymore:

αu = αc
3

2

Gc

hfc
(2.19)

where Gc is the fracture energy due to a compression loading and h is the char-

acteristic length. The latter one can be defined by taking the square root of the

element area for 2-D problem.

A stress-strain response along a compression stress path can also be retrieved using

multilinear relationships. The tensile softening is assumed to be exponential as

depicted in Figure 2.6b. The area under the tensile curve corresponds to a tensile

I-mode fracture energy (GI
f ).

The TSRCM model involves six parameters: two elastic parameters (E and ν)

and four parameters associated with cracks in the compression and tensile loading

path (fc, Gc, ft, and GI
f ).
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Figure 2.6: Total strain rotating crack model; (a): compression behaviour,
(b): tensile behaviour [MOS+14]

The TSRCM has less number of parameters than Mazars model which gives less

effort for the identification process. The introduction of the characteristic length

(h) which is dependent on the mesh size is also useful to obtain mesh independent

results. On the other hand, as in the Mazars model, the rotating crack model can

not generate permanent deformations (Figure 2.5) which does not match experi-

mental evidence.

Figure 2.7: Comparison between experiments and simulations (TSRCM
model) of a diagonal compression test on rammed earth wallets [MOS+14]

There are some existing works that used this model for rammed earth problem

modelling, for example [MOS+14, SOS+14]. They used the TSRCM to model

the behaviour of a rammed earth wallet throughout a diagonal compression test.
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The wallet was modelled as a homogeneous model (macro-model) and also as non-

homogeneous medium by introducing interfaces (micro-model) between compacted

layers. Figure 2.7 shows the comparison between experiments and simulations by

using these two approaches [MOS+14]. The results from the simulations were

found within the average of the experiments envelope. One can note the broad

departure of experimental responses between the different wallets due to the diffi-

culty to create similar wallets with a same material. It is shown that interfaces did

not bring about a significant improvement of the simulation of the experimental

wallet response. It may be due to the chosen set of model parameters for the inter-

faces that is not enough different from the one for the layer (the parameters were

stated) but one must also remind that the interfaces are partly loaded normally

in the case of diagonal compression test. On that case, their role is less significant

than when they are loaded parallel to them.

2.1.2 Elasto - plastic model

The second approach related to the constitutive models belongs to the framework

of plasticity. The classical theory of plasticity grew out of the study of metals in

the late nineteenth century. It started with the works of Tresca in 1864, when he

undertook an experimental program into the extrusion of metals and published

his famous Tresca yield criterion for metals [Hil98]. In metals and other crys-

talline materials the occurrence of plastic deformations at the micro-scale level is

due to the motion of dislocations and the migration of grain boundaries on the

micro-level. In sands and other granular materials plastic flow is due both to the

irreversible rearrangement of individual particles and to the irreversible crushing

of individual particles. In quasi brittle materials, permanent deformation might

be exists due to the irreversible process of cracks opening in the system.

The basic assumption of plasticity is that the increment of the total deformation

is decomposed into an elastic and a plastic part as:

ε̇total = ε̇e + ε̇p (2.20)

where ε̇e is the increment of the elastic deformation and ε̇p is the increment of the

plastic deformation. Mohr-Coulomb model and Drucker-Prager model are two of

typical plastic models used for modeling the behavior of geomaterials. According

to [VDB84], Drucker-Prager model is suitable for the case of soft clay with a low

friction angle. In other cases, Mohr-Coulomb model is generally used as a first

approach to model possible irreversible strains in geotechnical boundary value

problems. There is also the Cam-Clay model for clay which is very typical.
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Figure 2.8: Stress states at failure from actual triaxial tests on a dense sand
compared to Mohr Coulomb failure surface ([VDB84])

2.1.2.1 Mohr-Coulomb model

The popular elasto-plastic constitutive Mohr-Coulomb model is a constitutive

model used to represent shear failure in soils and rocks. Vermeer and de Borst

[VDB84] reported laboratory test results for sand and concrete that match well

with Mohr-Coulomb model (Figure 2.8). Mohr-Coulomb model holds five model

parameters: two related to Hooke law (Young modulus and Poisson ratio) and

three plastic parameters (friction angle φ, cohesion c, dilatancy angle ψ). Mohr-

Coulomb failure surface which is a plastic surface writes:

f = −σ1 + σ3(Nφ)− 2c
√
Nφ with Nφ =

(1 + sinφ)

(1− sinφ)
(2.21)

where σ1 is the major principal stress, σ3 is the minor principal stress. In Equa-

tion (2.21), the intermediate principal stres is not involved in the plastic criterion

which is the characteristics and the drawback of Mohr-Coulomb model [VDB84].

Figure 2.9 shows the shape of the Mohr-Coulomb failure surface in the principal

stress space. It is noticed that the irregular shape of Mohr-Coulomb model gives a

problem of numerical convergence. This problem can be overcome using a modified

Mohr-Coulomb model, such in Abbo et al. [AS95]. Nevertheless, several authors

used Mohr-Coulomb model to study the behaviour of rammed earth systems, for

example [Jaq08] and [BBLM16]. Jaquin et al. [Jaq08] used this model to capture

the in-plane failure of rammed earth walls observed in the lab tests. According

to these authors, it is possible to used Mohr Coulomb model to represent the be-

haviour of rammed earth walls including a refinement by modelling the interfaces

between different compacted layers. In this latter case, it was assumed that the
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strength of the interface layer was proportional to the normal load across it.

Figure 2.9: Failure surface of Mohr-Coulomb model in the principal stress
space [VDB84]

Bui et al. [BBLM16] studied the behaviour of rammed earth walls by using a three

dimensional Discrete Element Method (3D-DEM). The failure envelope used in

their study was the Mohr-Coulomb criterion with a tension cut-off (Figure 2.10).

The failure surface consists of two sub-surfaces which correspond to a shear plastic

failure (line A-B) and tensile plastic failure (line B-C). The basic version of Mohr-

Coulomb model does not involve either hardening or softening in the shearing

mechanism. Moreover, by default, the tensile failure is characterized as a sudden

softening where the tensile strength σt is reset to zero. By using Mohr Coulomb

model for the earth mass and the interfaces, Bui et al. [BBLM16] found that Mohr

Coulomb model could capture the peak response and also the initial stiffness of

the stress-strain curve throughout a compression test on a wallet (Figure 2.11).

Simulations were also performed for the case of a diagonal compression test on

wallets. The experiments reference for the study was taken from the works of

[SOM+13] on rammed earth walls stabilised by fly ashes. Two modellings were

performed, one considering the wallet as a homogenous material and another ap-

proach were the interfaces between successive compacted layers of earth were mod-

elled. The result of the simulations is given in Figure 2.12. The pre-peak behaviour

of the wall using interfaces leads to a softer behaviour than when the wall is con-

sidered as a homogenous system, which fits the experiments better. However, it

induces an oversized softening. The fluctuations of the simulations are generally

due to a too large loading velocity in the simulations or to a state that is far

from the equilibrium. However, on the overall, there is no significant differences

between a simulation with and without interfaces.
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Figure 2.10: Mohr Coulomb failure criterion in the plane σ1 and σ3 with
tension cut-off [Ita09]

Figure 2.11: Comparison between experiments and simulations; case of com-
pression tests on wallets [BBLM16]

2.1.3 Elastic - plastic - damage model

Damage mechanics models or plasticity models cannot retrieve, when they are

used separately, the different phenomena at stake in quasi brittle materials. Plas-

ticity is based on constant elastic properties and cannot model any evolution of

reversible properties due to damage mechanisms (stiffness degradation due to the

accumulation of microcracks). On the other hand, damage mechanics is not able

to model irreversible deformations due to the creation of cracks when loading the

material.
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Figure 2.12: Comparison between experiments and simulations; case of the
diagonal compression tests on wallet [BBLM16]

A plastic damage model takes into account both plasticity and degradation of the

elastic properties. This class of constitutive model was used for studies involving

concrete. For example, Lee and Fenves [LF98] developed a plastic damage consti-

tutive model for the seismic analysis of concrete dams. A simple scalar degradation

model was used to simulate the effects of damage on the elastic stiffness and the

stiffness recovery after cracks closure. The plastic part was written on the basis of

the effective stresses (undamaged part) and damage is monitored by a function of

the plastic strain. Similar works were also performed by Grassl and Jirasek [GJ06].

The general stress-strain relationship for this class of models writes:

σ = (1− ω)De : (ε− εp) = (1− ω)σ̄ (2.22)

where ω is the damage variable (which evolves between 0 and 1), De is the elastic

stiffness and σ̄ is the effective stress.

If ω = 0, Equation (2.22) reduces to the stress strain of an elasto-plastic model,

whereas if εp = 0, the model becomes a purely elastic damage model. The plastic

part of the model is based on the standard theory of plasticity, where all the

equations are written in terms of the effective stress while damage is generated

through a function involving the plastic strain. The plastic damage model in the

work of [JHPCG06] belongs to this class of model, and therefore will be further

studied.
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2.1.3.1 Plasticity mechanism

The plastic mechanism is formulated in a three-dimensional framework with a

pressure-sensitive yield surface, hardening, and non-associated flow rule. The com-

ponents of it are the yield function, the flow rule, and the evolution law for the

hardening variable.

The yield function is defined as:

F = ρ2 − k̂ρ2
c

r2
(2.23)

with ρ is the normalised deviatoric effective stress invariant. k̂ is the hardening

function which quantifies the growth of the loading surface with respect to the

plastic deformation which reads:

k̂ = k2p

(
1− ξ

2

ξ2
h

)
(2.24)

with

ξ2
h =

A

1− k
and k = k0 + (1− k0

√
kh(2− kh)) (2.25)

where p, A, and k0 are three parameters of the model. ρc is the deviatoric invariant

given as

ρc =

(
1

6

)γ√
2

3

(
− n+

√
n2 − 12

√
3nξ + 36

)γ
(2.26)

with

n =
3(1− f

2

γ
t )

f t + f

1

γ
t

and f t =
rt
rc

(2.27)

where γ, rt, and rc are model constants. r is the deviatoric shape function which

corresponds to an elliptic surface as:

r =
2d0

d1 −
√
d2

1 − 4d0d2

(2.28)

where d0, d1, and d2 are the geometric variables depending on the Lode angle (θ).

Figure 2.13 shows the shape of the failure surface for different stress paths. At

49



Chapter 2. Modelling system with quasi-brittle materials

this stage, the internal variable kh has reached the limit and thus the hardening

process is over.

Figure 2.13: Failure surface for two different stress paths [JHPCG06]

2.1.3.2 Damage part

Damage within the material is defined based on the isotropic damage model from

Mazars. The damage evolution was controlled by equivalent strain εeq. The dam-

age loading surface is defined as

g(εe, D) = d̃(εe)−D (2.29)

where D is a variable taking the maximum value of d̃ during a loading process

given by

D = max(d̃, 0) (2.30)

with d̃ is the evolution law which separates the mechanical responses in tension

and compression. Thus,

if εeq ≥ εD0 then d̃ 6= 0.0

else then d̃ = 0.0
(2.31)

For the complete description of the plastic damage model by [JHPCG06], seven-

teen model parameters must be identified with two elastic parameters (E and ν),

five damage parameters (At, Bt, Ac, Bc, and εD0) and ten plastic parameters (rc,

50



Chapter 2. Modelling system with quasi-brittle materials

rt, p, Bh, Ch, A, α, γ, Ah, and k0). This large amount of parameters are directly

related to the refinement of the model and the phenomena that are supposed to

be retrieved.

It can be noted that for tensile loading, damage and plasticity are initiated when

the equivalent applied stress reaches the uniaxial tensile strength ft. Whereas un-

der compressive loading, damage is initiated earlier than ultimate stress [CVAR07]

when the yield surface is activated.

Figure 2.14 depicts the results of a simulation of a cyclic compression test by us-

ing a plastic damage model. As can be seen, damage part contributes to induce

a global softening of the behaviour while plasticity contributes to the generate

permanent deformations. Therefore, it is shown that plastic damage model is ap-

propriate to capture both degradation of elastic stiffness and also non reversible

phenomena in the material. Nevertheless, the model from [JHPCG06] still depen-

dent on the mesh size. In a more general context, regularization method should

be included in the formulation to give a result that tends to be mesh independent.

Figure 2.14: Simulation of the cyclic compression test by using plastic damage
model [JHPCG06]

2.2 Regularization method

Simulations of the behaviour of materials with strain localization within continuum

mechanics cannot describe properly both the thickness of localization and distance

between them. They suffer from mesh sensitivity (its size and alignment) and

produce unreliable results. The strains concentrate in one wide element and the
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computed force-displacement curves are mesh dependent (especially in the post-

peak part). There are two possible approaches to solve this problem including a

partial regularization or a full regularization.

2.2.1 Partial regularization

Partial regularization essentially means that the energy based adjustment of the

stress-strain diagram depends on the size of the element in the model. In this

regard, the model makes use of the softening law which depends on the character-

istic length (lc) of the fractured domain. This characteristic length of the fractured

domain actually partially contributes to regularize the model.

The characteristic length of the element can be computed from the dimensions of

the element. In two-dimensional analysis, for instance, the characteristic length lc
of the element can be defined as the diameter of the circle that contains the area

of the element Ac as:

lc =

√
4Ac
π

(2.32)

Namikawa et al. [NM07] used partial regularization by inserting the characteristic

length in the tensile softening part of the elasto-plastic model. The tensile criterion

is defined as:

σ3 = −(1− ω)Tf (2.33)

where ω is the internal variable for softening defined in such a way

if 0 ≤ ω ≤ 0.75 then ω = lc
Tf
Gf

(εp3 − ε
p
3 peak)

if 0.75 ≤ ω ≤ 1.0 then ω =
12

17
− 1

17
lc
Tf
Gf

(εp3 − ε
p
3 peak)

(2.34)

where Tf is tensile strength of material, Gf is tensile fracture energy, εp3 is current

minor principal stress, and εp3 peak is minor principal stress at peak.

By using partial regularization, a correct energy dissipation in a localized damage

band might be obtained, but the width of the numerically resolved fracture pro-

cess zone depends on the element size and tends to zero as the mesh is refined.

Thus, this approach cannot be considered as a true localization limiter [Sar15]. It

only provides a partial regularization of the problem in the sense that the global
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response characteristics do not exhibit spurious mesh sensitivity, but the mesh-

induced directional bias is still present. Nevertheless, this method is quite popular

because of less effort in the computation technique.

2.2.2 Full regularization

Full regularization is achieved by a proper generalization of the underlying con-

tinuum theory. One popular approach consists in using an integral type non-local

approach where it is assumed that the stress at a certain point does not only de-

pends on the state variables at that point, but also on the distribution of the state

variables over the whole body, or over a finite neighbourhood of the point under

consideration.

For example, the equivalent strain ε̃eq in Mazars model is transformed into a non-

local measurement by using a weighted spatial average

ε̃eq =

∫
V

α(x, ξ)εeq(ξ)dξ (2.35)

where α(x, ξ) is the non-local weighting function. It holds the meaning of an

influence function which is calculated based on the distance D = ‖x − ξ‖, where

x is the receiver point and ξ is the source point. The closer the distance of D, the

bigger the influence value is. Figure 2.15 shows an example of the influence radius

of an element on its neighbourhood.

Figure 2.15: Influence zone in the averaging process [Sar15]

This method needs huge effort in the computation technique since it requires to

find all the Gauss points ξ whose distance from x is smaller than R.
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2.3 Conclusion

Within the framework of a continuum approach of the behaviour of quasi brittle

materials, there are three families of constitutive modeling that can be used for

rammed earth. First, we can find an elastic damage approach, secondly an elastic-

plastic model, and finally a mixed damage and plasticity model.

It is shown that plastic damage model can better capture the behaviour of the

quasi brittle material. But, it involves large amount of the parameters which is

sometimes not available or difficult to obtain. To bridge the number of available

experiments to identify the model parameters and the complexity of the model,

a hierarchical approach is proposed in this work. This approach can be used as

a basis for the development of a new constitutive model for rammed earth. Ob-

viously, one cannot expect to model sophisticated phenomena if few experimental

tests are available and any user must keep in mind this aspect when solving a

boundary value problem.
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New elasto-plastic model for

rammed earth

3.1 Model CJS-RE

CJS model is a constitutive model based on the elasto-plasticity theory. This

model was initially created by three authors (Cambou, Jafari, and Sidoroff) and

the primary relationships can be found in the PhD thesis of Jafari [CJE89]. This

constitutive model which was developed several decades ago at Ecole Centrale de

Lyon has initially been developed to model the behaviour of sandy soils. Different

works have improved or extend the usage of this model to embrace more complex

granular materials or loading conditions [Ela92, MDC00, Pur06, Bag11, DV15].

In this work, a new hierarchical constitutive model denoted CJS-RE (stands for

CJS for Rammed Earth) was developed on the basis of CJS model for the mod-

eling of the behavior of rammed earth. The failure surface of CJS-RE model in

the three dimensional principal stress space can be seen in Figure 3.1. It holds a

conical shape with a non-circular base section. This shape is typical of granular

material or quasi brittle material (eg concrete) where there exists a dissymetry of

behavior along a compression stress path and an extension stress path. Moreover,

there is a linear dependency of the maximum shearing resistance on the mean

pressure. For the sake of simplicity, there is no cap closing the failure surface in

this model. It is justified by the range of typical stresses in rammed earth houses

which is low (ie: around 0.3 MPa for two storey house [NBP+16]), which implies

that failure cannot result from an excessive mean pressure.

Basically, CJS-RE model consists of an elastic mechanism of deformation and two

plastic mechanisms of deformation. The plastic mechanisms cover two possible
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Figure 3.1: CJS-RE failure surface in the principal stress spaces

modes for the creation of irreversible strains: shearing and tension. Thus, the

increment of deformation writes:

ε̇total = ε̇e + ε̇sp + ε̇tp (3.1)

where ε̇total is the increment of deformation, ε̇e is the increment of elastic defor-

mation, ε̇sp is the increment of plastic deformation due to shearing and ε̇tp is the

increment of plastic deformation due to tension.

CJS-RE model is designed in a hierarchical way from a simple and basic version

to more complex one according to the available experiment data for the identi-

fication of the model parameters and the sophistication of the phenomena that

are to be modeled. In this work, two levels (degrees of complexity) of the model

are designed to model the behavior of rammed earth. For the sake of simplicity,

all of the main constitutive equations will be presented first before addressing the

different hierarchies of the model.

3.2 Elastic mechanism

The elastic deformations are computed according to Hooke’s law:

ε̇e =
Ṡ

2Ge
+

İ1

9Ke
Id (3.2)

with S the deviatoric stress tensor, I1 the first invariant of the stress tensor, and

Id the identity tensor. Herein, the elastic properties (Ge and Ke) are taken as
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constants which lead to a linear elasticity. The alternative form of Equation (3.2)

can be written as

ε̇e =

(
1 + ν

E

)
σ −

(
ν

E

)
tr(σ)Id (3.3)

with E the Young modulus and ν the Poisson ratio.

3.3 Plastic mechanisms

In this model, plasticity is generated by two different modes including shearing

and tension. The relationships for these two plastic mechanisms are described

briefly in the following subsection.

3.3.1 Shear yield surface

The shear yield surface limits the elastic domain and can isotropically and/or

kinematically expands depending of the kind of considered hardening. It can also

soften after the maximum shearing resistance is reached. For the sake of simplicity,

the shape of the shear yield surface is similar to that of the shear failure surface

(Figure 3.2). Figure 3.2a depicts the typical section of the model in the meridian

plane and Figure 3.2b depicts that in the deviatoric plane. In Figure 3.2, the

initial state of stress is supposed to be isotropic which implies that the shear yield

surface is centered on the hydrostatic axis. Rini is the initial yield radius, Rmvc is

the maximum volumetric contraction radius (see below for the physical meaning)

and Rfail is the radius of the shear failure surface. Note that, in the level-1 model

(CJS-RE1), for the sake of simplicity, Rini and Rmvc are supposed to be equal to

Rfail.

3.3.1.1 Plastic criterion

The yield function of the shear or deviatoric mechanism writes:

f s(σ, Rfail) = qIIh(θq)−Rfail(I1 + 3Tr max) ≤ 0 (3.4)

where qII is the second invariant of the local deviatoric stress tensor written as

qII =
√
q.q with q = s− I1X (3.5)
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Figure 3.2: Shear yield/failure surface in CJS-RE model; (a): in the meridian
plane (θs =const) and (b): in the deviatoric plane (I1 =const). In the case of
CJS-RE1, the surface of the maximum volumetric contraction state coincides

with the failure surface.

In Equation (3.5)

s = σ − tr(σ)

3
Id (3.6)

where s is the deviatoric stress tensor, Rfail is the average radius of the shear

failure surface, h(θq) is the shape factor of the yield surface, I1 the first invariant

of the stress tensor, X is a tensor which defines the center of yield surface, and

Tr max is a model parameter corresponding to the apex of the yield surface.

In Equation (3.4), the shape factor h(θq) is defined as a function of Lode angle as

follows:

h(θq) = (1− γcos(3θq))
1/6 (3.7)

where θq is the Lode angle in the deviatoric plane such that when 0o, the stress

path corresponds to a compression stress path and 60o to an extension stress path.

The reference direction of the Lode angle can be seen in Figure 3.2b. γ is model

parameter which quantifies the dissymmetry of the failure surface. It is supposed

to take into account the different behaviour along the compression and extension

stress path as found in the experiments of quasi brittle materials (Figure 1.14).

Figure 3.3 depict the influence of γ on the shape of the shear yield/failure. If γ is

equal to zero, the failure surface (and the yield surface) is a circular cone equiva-

lent to Drucker-Prager model. There is some limits in the use of such relationship

for the shape factor since it is not warranty the convexity for any value of γ. The

yield surface is still convex if γ is smaller than 0.85 (Figure 3.3). Other shape

functions that do not hold such limitation can be found in [BP04].
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Figure 3.3: Influence of γ on the shape of the shear yield/failure surface

3.3.1.2 Flow rule

The flow rule of the plastic shear mechanism is non-associated and the direction

of the plastic deformation induced by this mechanism is derived from a potential

surface gs. The flow rule is defined by the following relationship:

ε̇sp = λ̇sG
s = λ̇s

∂gs

∂σ
(3.8)

with λs the plastic multiplier for the shear plastic mechanism. Instead of defining

the potential surface, the direction G of the increment of plastic deformation is

directly computed. To allow phases of contractancy and dilatancy to be generated

when shearing, G is computed in order to satisfy the following dilatancy law:

ε̇spv = β

(
sII
smvc
II

− 1

)
|s : ˙esp|
sII

(3.9)

where β is a parameter that controls the dilatancy rate. smvcII is the second devia-

toric stress at the Maximum Volumetric Contraction (MVC) state. The Maximum

Volumetric Contraction surface is an isotropic surface defined as:

fmvc = smvc
II h(θq)−Rmvc(I1 + 3Tr max) (3.10)
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For the sake of simplicity, the shape of the MVC surface is similar to that of

the shear failure surface and its size is controlled by the radius Rmvc which is a

model parameter. Volumetric deformations are associated to contraction when

sII < smvc
II otherwise to dilation. In Equation 3.9, β is a model parameter that

ensures that positive volumetric deformations take place for contraction, according

to the chosen convention. In fact, tensor Gs is defined in such a way the increment

of plastic deviatoric deformation is orthogonal to the tangent vector n of the

potential plastic surface . In other words, the following kinematic condition must

be satisfied:

ε̇spn = 0 (3.11)

The expression of n can be described as follows:

n =
β′ S

SII
− Id√

β′2 + 3
with β′ = β

(
sII
smvcII

− 1

)
sign(s : ˙esp) (3.12)

Tensor G can be therefore expressed as a function of the yield surface f s.

G =
∂f s

∂σ
−

(
∂f s

∂σ
.n

)
n (3.13)

3.3.1.3 Hardening

The size of the yield surface can initially be set to limit the domain of reversible

deformations and can isotropically expand depending on the chosen degree of

sophistication (level) of the model. Herein, for monotonous loading modelling, the

hardening is isotropic and allows the yield surface radius R to increase according

to:

Ṙ = A(Rfail −Rini)exp(−Ap)ṗ (3.14)

where ṗ is the increment of the hardening variable and A is a model parameter

which controls the velocity of the isotropic hardening. Rini and Rfail represent the

initial value of yield radius and the maximal size of the yield surface. ṗ is given

by the normality relationship:

ṗ = −λ̇s
∂f s

∂R
= λ̇s(I1 + 3Tr max) (3.15)
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Equation (3.14) can be integrated which allows to directly determine the yield

radius by:

R = Rfail − (Rfail −Rini)exp(−Ap) (3.16)

Therefore, at the beginning when the system is at elastic state (p = 0), R is equal

to Rini and when p → ∞ R tends to Rfail. The evolution of the loading radius

according to the proposed hardening function is depicted in Figure 3.4.

Figure 3.4: Evolution of the loading radius R in the CJS-RE model

3.3.1.4 Shear softening

In a quasi brittle materials like rammed earth, softening of the mechanical be-

haviour can occur from the development of cracks and decohesion of grains. In

this study, shear softening is modelled by decreasing the maximum tensile re-

sistance Tr max associated to both the shear yield surface and the shear failure

surface. Thus, Tr max will degrade exponentially from T ini
r max to the residual value

T res
r max (Figure 3.5). The shear softening law writes:

Tr max = (T ini
r max − T res

r max).exp(αsε
sp
diff) + T res

r max (3.17)

εspdiff = ‖εsp − εp fail
s ‖ (3.18)

with T ini
r max is the initial value of Tr max and T res

r max is the residual value of Tr max

which in our study is stated to be equal to 20% T ini
r max. This residual level is also the

one used by Namikawa et al. [NM07] in the modelling of quasi brittle materials.

αs is the shear softening parameter that controls the rate of shear softening and

εspdiff is the norm of the difference between the current deviatoric plastic strain εsp
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and the deviatoric plastic strain at peak εp fail
s . The latter tensor is first set to zero

and then is equal to the tensor of plastic deformation when the stress path reaches

any failure surface, either tensile failure surface or shear failure surface. It implies

that if the tensile failure surface is first reached, the capacity of the material to

resist to shearing decreases according to the model.

Figure 3.5: Shear softening function

3.3.2 Tensile yield surface

The tensile yield surface which is also a failure surface corresponds to another

mechanism of plastic deformation which is different from that observed under a

shear loading. The tensile yield surface is similar to the maximum tensile stress

criterion of Rankine for brittle fracture in concrete [Che07]. It reduces the domain

of acceptable stresses given by the shear failure surface (Figure 3.6). Figure 3.6a

gives a typical section in the meridian plane while Figure 3.6b gives the tensile

yield surface of the constitutive model in the deviatoric plane. The relationships

for the tensile plastic mechanism, flow rule, and also the tensile softening rule are

described in the following subsection.

3.3.2.1 Plastic criterion

The tensile yield surface is confounded with the tensile failure surface. This yield

surface is able to soften when the tensile failure is triggered. This yield surface

writes:

f t(σ3) = σ3 − Tr ≤ 0 (3.19)

with σ3 is the minor principal stress and Tr is a model parameter which charac-

terizes the tensile strength of the material. Therefore, once σ3 reaches Tr, then
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Figure 3.6: Tensile yield surface in CJS-RE model; (a): in the meridian plane
and (b): in the deviatoric plane

tensile failure occurs. The determination of σ3 in CJS-RE model can be seen in

Appendix E.1.

3.3.2.2 Flow rule

Based on the experiments evidence in the quasi-brittle material, tensile failure

zones tend to be perpendicular to the direction of the minor principal stress,

indicating that the tensile plastic strain occurs in the same direction as the minor

principal stress. It tends to justify that the plastic flow rule for this mechanism is

associated.

ε̇tp = λ̇tG
t = λ̇t

∂gt

∂σ3

(3.20)

where λt is the plastic multiplier for the tensile mechanism and Gt is a tensor

defining the direction of the plastic deformations.

3.3.2.3 Tensile softening

After the tensile stress reaches its maximum resistance, then tensile softening

occurs. Tensile softening is modelled as a degradation of tensile strength (Tr) by

using exponential function as:
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Tr = T ini
r exp(αt

∫
ε̇tpdt) (3.21)

with T ini
r is the initial value of Tr and αt is a tensile softening parameter that will

be set to a default value for different levels of model.

3.4 Different hierarchies for the constitutive model

CJS-RE model is designed in a hierarchical way which depends on the complexity

of the phenomena that need to be modeled together with the amount of informa-

tion available to identify the model parameters. In this work, two levels of the

model are created with general features given in Table 3.1. They concern mod-

elling involving monotonous loadings and not cyclic loadings.

3.4.1 CJS-RE1

The level-1 (CJS-RE1 model) is the basic level for the model. It holds the basic fea-

tures of an elasto-plastic model such as Mohr-Coulomb model adapted to take into

account the specificities of quasi brittle materials. The advantage of CJS-RE1 is

that the shear failure surface is continuously derivable contrary to Mohr-Coulomb

model. Plasticity is generated when the current state of stress reaches the yield

surfaces that are also failure surfaces. The shape of the failure surface in CJS-

RE1 is depicted in Figure 3.7. The inner envelop of these two surfaces (solid

lines) splits the stress space into an inner space where the state of stress is ac-

ceptable for the material from an outer space that is not physically reachable for it.

Table 3.1: Features in each level of the CJS-RE model

Plasticity
Model Elasticity Shear Tensile

Hardening Softening Softening
CJS-RE1 Linear No (perfectly plastic) No Yes (stated)
CJS-RE2 Linear Yes (isotropic hardening) Yes* Yes (identified)
*Note: Shear softening is triggered either by shear failure or tensile failure

The typical responses of CJS-RE1 throughout a compression stress path can be

seen in Figure 3.8 where the yield shear surface is activated. Figure 3.8a shows
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Figure 3.7: Failure surfaces of CJS-RE1; (a): in the meridian plane
(θq =const) and (b): in the deviatoric plane (I1 =const). I1 is the first in-
variant of the stress tensor, sII is the second invariant of the deviatoric stress
tensor, s1, s2 and s3 are the principal stresses of the deviatoric stress tensor.

the stress-strain curve and Figure 3.8b shows the corresponding volumetric de-

formation curve. In the first level of the model, the volumetric deformations are

depicted by a bilinear curve associated to successive phases of contractancy and

dilatancy. Dilatancy is generated when the shear yield surface is reached and its

rate is controlled by the parameter β.

In CJS-RE1 model, the tensile behaviour is elastic until the tensile failure surface

is reached. When the tensile strength of the material is reached, the tensile failure

surface softens sharply (Figure 3.9). A default value for αt which is equal to -1.0

is given and no identification is allowed. Therefore, for the use of the first level of

the model, eight parameters with seven to identify:

• 2 elastic parameters : E and ν

• 6 plastic parameters : γ, Rfail, Tr, Tr max, β, and αt

The process for the identification of the parameters is given in Appendix A where

some model parameters can be identified through relationships with Mohr-Coulomb

model and others which hold less significance in the stress strain response can be

stated.
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Figure 3.8: Simulation of a compression stress path with CJS-RE1 model;
(a): stress-strain response and (b): volumetric deformation.

Figure 3.9: Uniaxial tensile test responses with CJS-RE1 model
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3.4.2 CJS-RE2

The second level of the model is an elasto-plastic model having the same features

as CJS-RE1 but a refinement is introduced with the use of a shear yield surface

different from the shear failure surface. It allows the domain of elasticity to be

far smaller than that of CJS-RE1 (Figure 3.10). An isotropic hardening of the

deviatoric yield surface is added which is suitable when just monotonous loadings

are to be simulated. Beside hardening, CJS-RE2 model can also exhibit a shear

softening and a controlled tensile softening which was not the case of CJS-RE1.

Figure 3.10: Failure surfaces of CJS-RE2; (a): in the meridian plane
(θq =const) and (b): in the deviatoric plane (I1 =const). I1 is the first in-
variant of the stress tensor, sII is the second invariant of the deviatoric stress
tensor, s1, s2 and s3 are the principal stresses of the deviatoric stress tensor.

The typical response of CJS-RE2 throughout a compression stress path can be

seen in Figure 3.11. Figure 3.11a shows the stress-strain curve and Figure 3.11b

shows the corresponding volumetric deformation curve. In this level of model,

the maximum volumetric contraction state that separates contractive plastic volu-

metric deformations from dilative plastic volumetric deformations can be different

from the shear failure state (Figure 3.11b). The tensile behaviour in CJS-RE2 is

characterized by a softening which may be more gradual than in the first level of

the model (Figure 3.12).

The use of CJS-RE2 requires twelve model parameters to identify:

• 2 elastic parameters : E and ν

• 10 plastic parameters : γ, Rfail, T
ini
r max, T res

r max, T ini
r , β, Rini, A, αs and αt
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Figure 3.11: Simulation of a compression stress path with CJS-RE2 model;
(a): stress-strain response and b: volumetric deformation.

Figure 3.12: Uniaxial tensile test responses with CJS-RE2 model
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The process for the identification of the parameters is given in Appendix A where

some model parameters can be identified through relationships with Mohr-Coulomb

model and others which hold less significance in the stress strain response can be

stated.
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Chapter 4

Validation tests

4.1 Reference tests

The validation of the hierarchical model CJS-RE is based on two sets of experi-

ment references, one from Silva et al. [SOS+14], the second one from El Nabouch

[EN17]. For the sake of simplicity, the first material will be denoted MAT-1 and

the second one MAT-2.

4.1.1 MAT-1

The soil that was used for creating samples was not supposed to be suitable to be

used for rammed earth structure due to an excessive clay content. Furthermore,

the Particle Size Distribution (PSD) did not conform with the recommendations

from [HGH94]. A correction of particle size distribution was carried out by adding

some river sand and gravel into the original soil. The consistency limits and com-

paction properties before and after correction can be seen in Table 4.1. After

correction, the plasticity index reduced almost by 50% and the dry density in-

creased by about 20%. The corresponding particle size distribution is given in

Figure ?? where the addition of sand and gravel was able to conform the material

to the PSD recommended by [HGH94]. Six compression tests were performed on

rammed earth samples made with this corrected material in order to investigate

the repeatability of the tests (Figure 4.2).

The second test which will be used to validate CJS-RE model is a diagonal com-

pression test which is a non homogenous test. More precisely, eleven wallets sized

550x550x200mm3 were produced and tested under displacement control conditions
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Table 4.1: Consistency limits and compaction properties of soils for rammed
earth ([SOS+14])

Soil LL PL PI ρdmax OWC Gs

(%) (%) (%) (gr/cm3) (%)
before correction 30 18 12 1.83 13.4 2.68
after correction 23 16 7 2.1 10.1 2.68

Figure 4.1: PSD of soil before and after correction [SOS+14]

Figure 4.2: Compression tests results [SOS+14]
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with a rate of 2 µm/s. The results are given in Figure 4.3a. It can be observed

there are three possible types of behavior from the eleven tested samples. First,

for some tests a first peak has been reached at small deformations (about 1mm/m)

followed by a small softening; eventually, the shear resistance slightly re-increased

with peak level similar to the first local peak. In the second case, for other tests

there is no softening after the first peak and eventually, the shear resistance re-

increased with a peak higher than the first local peak. In the third case, the first

peak is followed by softening without re-increase of resistance. One must note that

the upper and lower limits of the envelope of this set of tests are very different

from 0.11MPa to 0.18MPa. This great departure implies that the repeatability of

tests seems hard to achieve due to inherent heterogeneity of the wallet composed

of different layers of compacted material. At the end of test, the crack pattern

shows a vertical cracks along the wallet and also some cracks at the edge of the

specimen (Figure 4.3b).

Figure 4.3: (a): Shear stress-shear strain curve of diagonal compression tests,
(b): Crack pattern in the wall after the test [SOS+14]
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4.1.2 MAT-2

MAT-2 material was used by El Nabouch to perform a series of pushover tests.

Rammed earth materials were sourced from the demolition of an old farmhouse

that was no longer in use. It is located in Dagneux, a village located in the

Auvergne-Rhone-Alpes where many existing earth structures are found in this re-

gion. The PSD is depicted in Figure 4.4. From Figure 4.4, the soil consists mostly

of fine particles (clay and silt). According to [EN17], the distribution of particles

consists of sand (15%), silt (65%), and clay (20%).

Figure 4.4: PSD of soil [EN17]

Three compression tests were performed using the soil. The results are presented

in Table 4.2.

Then, a direct shear test was performed to identify some properties of the layers.

A layer of material was extracted at mid-height wall and three different slices were

identified: an upper slice, a mid-height slice and a bottom slice. The direct shear

tests were performed to identified the properties of the upper slice and the mid-

height slice. The resulting properties of MAT-2 are given in Table 4.3.

The third type of tests that was performed was a monotonous pushover tests

on a wallets. In the pushover test, a wallet is pushed laterally until failure. A

wallet measuring 1000x1500x250mm3 (Wall-3) is used. A vertical pressure equal

to 0.3MPa was used to represent the typical pressure of a two storey houses. The

pushover tests results are depicted in Figure 4.5. In Figure 4.5a, the curve for
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Table 4.2: Compression tests data [EN17]

Specimen Dimensions of Dry density Water content fc E
specimens (cm) (gr/cm3) (%) (MPa) (MPa)

Cylinder d=20, h=40 1.878 3.4 2.0 760

Note: properties are averaged from three specimens

Table 4.3: Properties of MAT-2 from direct shear test data [EN17]

Type of test Dimensions of φus φms Cus Cms

specimens (cm) (◦) (◦) (kPa) (kPa)
Small shear box 10 x 10 x 4 44.1 45.6 263 135

us: upper slice of a layer, ms: mid-height slice of a layer

wall-3 reaches a peak for 40kN with a corresponding horizontal displacement of

9mm. The cracks pattern shows that shear failure at the bottom left and a quasi

diagonal cracks can be observed (Figure 4.5b).

Figure 4.5: Pushover test results and crack patterns in the wall-3 [EN17]
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4.2 Validation of CJS-RE1 model for MAT-1

The first validation of CJS-RE involves the first level of the model (CJS-RE1).

First, some parameters are derived from compression tests on small samples (Fig-

ure 4.2). Due to the scarcity of available reference tests required to identify the

whole set of model parameters (a compression and an extension test with a con-

fining pressure different from zero, a tensile test), some relationships or usual

equivalence with the Mohr-Coulomb model are used (Appendix B.1). Then, the

proper validation of the model is carried out on the basis of a diagonal compression

test which is a non homogeneous test and then very different from the test used

to identify the model parameters. Finally, to investigate the lateral resistance of

the wall, a simulation of a pushover test is carried out.

4.2.1 Identification of model parameters

The basic level for the model involves eight parameters (in fact, one of them holds

a default value). A compression test allows the two elastic model parameters E

and ν to be identified. They are defined as the initial tangential properties of

the experimental stress-strain curves. The parameters related to the shear plastic

mechanism (Rfail, Tr max, and γ) can be determined from two compression tests

with different confining pressures and from a confined extension test. In the ab-

sence of a confined compression test and of the extension test, Rfail, γ and Tr max

can be estimated from Mohr-Coulomb model following the process shown in Ap-

pendix B.1. For the level-1 model, the maximum volumetric contraction state

coincides with the failure state. It means that dilation takes place at the moment

when shear failure is reached. Parameter β involved in the flow rule can be esti-

mated from the volumetric deformation curve of the compression test. The initial

slope of dilation after the maximum volumetric contraction state is just taken into

account since after this short regime, dilation mainly results from opening cracks

in a strong discontinuous medium.

The tensile strength property Tr can directly be obtained from a tensile test. If the

tensile test is not available, the usual relationship between the maximum uniaxial

compression resistance fc and maximum uniaxial tensile resistance ft of rammed

earth can be used where ft lies between 5% fc and 12.5% fc [AKS16]. In this

study, it is stated that ft or Tr is equal to 8% fc which is an average trend.

From the reference of compression test mentioned in section 4.1.1, the set of model

parameters for CJS-RE1 model was identified and is given in Table 4.4. One must
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note that the relationships in Appendix B.1 were used to identify Rfail, γ, Trmax,

and β.

Table 4.4: Identified CJS-RE1 model parameters for MAT-1; experiments
from [SOS+14]

Elastic Plastic
E = 1036 MPa β = 3.0
ν = 0.25 MPa γ = 0.84

Rfail = 0.22
Tr = 100.8 kPa
Trmax = 730 kPa
αt = -1.0 kPa

The result of the identification process is given in Figure 4.6. To achieve it, the

model was implemented in FLAC-3D (code ITASCA) software and a compression

test was simulated. As expected, the model fairly succeeded in retrieving the ini-

tial tangent of the stress strain curve and the peak of response, but the general

stress path is excessively stiff. This feature is related to the linear elastic behavior

that is imposed as long as the actual stress state has not reached the shear failure

surface. A parametric study is proposed in Appendix C.1 to better reveal the

characteristics of the model response under different triaxial stress paths.

Figure 4.6: Results of the identification of CJS-RE1 parameters; simulation
of a compression test; experiments from [SOS+14]
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4.2.2 Validation: Diagonal compression test

A numerical simulation of a diagonal compression test was then performed. The

material used for the construction of the wallets is the same as the one used for

the compression tests. The geometry of the model together with the imposed

boundary conditions are depicted in Figure 4.7. The quantities monitored in the

simulation are those indicated by [AE02] where:

τ =
P

h
√

2t
(4.1)

τ is the shear stress acting on the net area of the specimen (MPa), P is the applied

load (kN), h is the specimen height (mm), and t is the specimen thickness (mm).

The shear distortion or shear strain can be calculated as follows:

γd =
∆V + ∆H

g
(4.2)

where γd is the shear strain, ∆V is the vertical shortening (mm), ∆H is the

horizontal extension (mm) and g is gauge length (mm). The gauge length is

taken to be equal to h
√

2/3 [SOS+14]. The loading is applied as a downward

displacement acting on the upper part of the wallet with the velocity of 0.01µm/s.

Figure 4.7: 3D numerical model for the diagonal compression of a wallet

The global stress-strain response is given in Figure 4.8. The simulation with CJS-

RE1 model shows a local peak at about 0.16MPa before a small drop of the shear
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resistance. This value is 20% higher compared with the average first peak of the

experiments which is of 0.13MPa. Afterwards, it can be observed a re-increase of

shear strength in the simulation which was not found in the experiments.

Figure 4.8: Stress-train response from a simulated diagonal compression test
using CJS-RE1; experiments from [SOS+14]

Figure 4.9: Evolution of the plasticity states in a simulated diagonal compres-
sion tests using CJS-RE1 at different computation stages.

Figure 4.9 shows the evolution of the plasticity states throughout the simulation

of a diagonal compression test. At state 1 which corresponds to a transitory peak

of resistance, a tensile failure emerges from the the center (on the outer surface)
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of the wallet. At the top and bottom edge of the specimen, some elements of the

meshing experience a shear failure. Between state 1 and state 2, when the drop

of resistance is completed, the tensile failure has propagated upwards and down-

wards respecting the symmetry of the system crossing the whole wallet. While

the extent of the pattern is important in the simulation, the phenomena are much

more concentrated in the actual experiments (Figure 4.3b). This pattern is typical

of the continuum approaches as can also be seen in [MOS+14] and [SOS+14]. The

propagation of the tensile failure zones splits into two parts close to the top and

bottom edges of the specimens in the direction of the previously mentioned zones

at failure by shearing. Eventually, the tensile failure extents laterally and devel-

oped at the edges which can be observed at state 3. Between state 3 and state 4,

the extent of the zones that reached the tensile failure is not significant indicating

a rather stabilized process. At state 4, zone that already reached the tensile failure

surface touched the shear failure surface. The evolution of the number of zones

experiencing tensile failure shows that the behavior of the wallet throughout a

diagonal compression tests is mainly monitored by the tensile failure criterion.

To get more insight onto the stress path of a typical element of the wallet, Figure

4.10 depicts the stress path of an element at the center but outer surface of the

wallet. While Figures 4.10a-c-e-g give information throughout the simulation in

the meridian plane, Figure 4.10b-d-f-h give other information in a given deviatoric

plane indicated in the former figures.

Figures 4.10a-b give the stress path of the chosen element until reaching state 1.

The stress path is elastic and this element reaches the tensile failure criterion at

state 1. From state 1 to state 2 (Figures 4.10c-d), the tensile failure surface softens

until Tr is equal to zero (state 2). The drop of resistance in Figure 4.8 is then

related to the softening of the tensile failure surface of the elements at failure by

tension. Finally from state 2 to state 3 (Figures 4.10e-f), the stress path follows

the tensile failure surface while the mean pressure increases due to the processing

compression of the wallet (consequently there is an increase of the overall resis-

tance due to the increase of the actual mean pressure). In Figures 4.10g-h, one

can see that at state 4, the chosen element reaches the shear failure surface. From

now, the state of stress can only evolve at the junction of the two failure surfaces.

The stabilisation of the response in Figure 4.9 can be explained by an existing

continuous chains of zones crossing the wallet that reached the shear failure sur-

face.

As a conclusion, even if the main features of a homogeneous compression test were

retrieved by the elastoplastic model CJS-RE1, the validation of the model using

a non homogeneous test shows its limitations. Even if the local peak of resistance
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Figure 4.10: Stress path of an element in a simulated diagonal compression
test (CJS-RE1).
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was obtained with a correct value, the overall resistance at large deformation ob-

tained throughout the diagonal compression test is highly overestimated. A higher

order of CJS-RE is then required to better model phenomena at large deformations.

The result of the simulation may be mesh size dependent and even more when

strong discontinuities of behavior are generated in a system when failure is reached.

A mesh sensitivity study was then performed and is shown in Appendix D.1 but

we showed that, considered the size of the mesh chosen herein a greater refinement

does not modify excessively the general response.

4.2.3 Validation: Pushover test

To investigate the resistance of the wallet against lateral load, the simulation of

a quasi-static pushover test is carried out. In this test, a wallet is pushed later-

ally until it reaches failure. The model parameters are taken from the one in the

simulation of the diagonal compression test involving MAT-1. The three dimen-

sional model of the pushover test is shown in Figure 4.11. The bottom part of

the wallet is restrained in the three principal directions while in the upper part

just the vertical direction is set free. Since, the lateral direction is restrained while

vertical direction is free to move, thus the upper part of the wallet is able to rotate.

Figure 4.11: 3D-Model for the pushover test on a wallet
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In this pushover test simulation, the wallet is first loaded by a vertical pressure of

0.3MPa on the upper part. This vertical pressure is supposed to model a normal

stress acting on the wall in a typical 2-storeys rammed earth building. After the

system reaches equilibrium, the lateral load is then applied on the upper part of

the wallet with a velocity rate of 0.01 µm/s. In the experiments, a beam is usually

used as a casket for the wall and will transfer the movement of the actuator to the

wallet. Herein, the loading is directly applied to the top wallet nodes with a rigid

body movement.

Throughout the simulation, the wallet resistance is obtained by cumulating the

reaction forces at the top wallet nodes while the lateral displacement is measured

on the upper left side of the wallet. Figure 4.12 shows the load displacement curve

of the wallet where three different states are put out. The simulation with CJS-

RE1 model shows a global resistance of 13kN for the wallet (MAT-1) associated

to a displacement of about 1mm.

Figure 4.12: Load-displacement response from a simulated pushover test on
a wallet; MAT-1

The evolution of the plastic points throughout the test are shown in Figure 4.13

at state 1 to 3 (Figure 4.12). At state 1, a tensile failure is obtained at the bottom

right of the wallet. Such detachment of the wallet base was also found in actual

experiments [EN17]. Along with the propagation of detachments at the bottom

right, the wallet exhibits a rotation counterclockwise (Figure 4.14). This condition

induces a further compression load at the left side of the wallet and shear failure

can be observed at the bottom left. Then, at state 2, a tensile failure can be

observed vertically on the left part of the wallet. Finally at state 3, the tensile

failure propagated upwards and crosses the whole sample.
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Figure 4.13: Evolution of the plasticity states in a simulated pushover tests
using CJS-RE1 at different computation stages

Figure 4.14: Rotation of the wallet (state 1)

The results of a simulated pushover test using CJS-RE1 show some basic features

that can be observed in actual pushover tests where the wallet exhibits some de-

tachments at the bottom part and also an overturning movement. Since no actual

experimental tests were performed on this material it is difficult to draw a conclu-

sion concerning the type of failure (more tensile type or shear type).
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4.3 Validation of CJS-RE2 model for MAT-1

4.3.1 Further identification of parameters

The second level of the model need four additional parameters apart from those

which were already identified in the first level of the model. These parameters are

the initial elastic radius (Rini) of the yield surface which gives the extent of the

elastic domain, the isotropic hardening parameter A, and αs which control the

shear softening curves. Rini can be identified from a compression test as the zone

where a linear behavior is observed. A and αs are determined by a trial-and-error

method. From the analysis of different experiments and due to the less significance

of the volumetric deformations in the behavior of quasi brittle materials, the max-

imum volumetric contraction state is stated to be equal to Rmvc = 0.85Rfail. The

set of model parameters for CJS-RE2 model are given in Table 4.5. Simulation

with the second level of the model need twelve parameters to be identified with two

elastic parameters (E and ν) and ten plastic parameters (γ, Rfail, T
ini
r max, T res

r max,

T ini
r , β, Rini, A, αs and αt). Two plastic parameters (T res

r max and αt) are stated

therefore not need to be identified.

The result of the identification process is shown in Figure 4.15. It can be seen that

the second level of the model and specially the isotropic hardening function which

is exponential has been able to capture the nonlinear behavior before reaching

failure.

The basic features for CJS-RE2 obtained throughout the simulation of different

triaxial stress paths is given in Appendix C.2.

Table 4.5: Identified CJS-RE2 model parameters for MAT-1; experiments
from [SOS+14]

Elastic Plastic
E = 1036 MPa β = 3.0
v = 0.25 MPa γ = 0.84

Rfail = 0.22
T ini
r = 100.8 kPa
T ini

r max = 730 kPa
T res

r max = 146 kPa
Rini = 0.08
A = 0.00013
αt = -0.5
αs = -0.0003
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Figure 4.15: Simulation of a compression test with CJS-RE2 (MAT-1); ex-
periments from [SOS+14]

4.3.2 Validation: Diagonal compression test

A numerical simulation of the diagonal compression test on the wallet is simu-

lated as in the level-1 model. The global response of the wallet is given in Figure

4.16. The initial stiffness is similar to the one found with CJS-RE1, which means

that the limited dimension of the elastic domain and the possible plastic behavior

generated when the actual stress state reaches the shear yield surface may not

greatly contribute to the overall behavior of the wallet. Accordingly, the first local

peak dropped from 0.15 MPa with CJS-RE1 to 0.13 MPa (15% drop). This local

peak of resistance is followed by a small drop of resistance as previously found

with CJS-RE1. The main difference between the simulation using CJS-RE1 and

CJS-RE2 lies in the limited increase of shear stress with CJS-RE2 which remains

in the range of values found throughout actual experiments. It may be due to the

existence of softening for the shear failure surface in CJS-RE2.

Figure 4.17 shows the evolution of the plasticity states during the simulation of

diagonal compression test. Many elements in the vertical central zone of the wallet

reached first the shear yield surface before the central elements at the surface of

the wallet reached the tensile failure surface (state 1). Between state 1 and state

2, the tensile failure (elements are at the junction of the yield surface and the

tensile failure surface) propagated to the upper and lower part of the wallet. At

state 3, there is a continuous chain of elements at tensile failure (while at shear

yield). It can be seen that some plastic points at state 3 are consistent with the

crack pattern observed in the wall (Figure 4.3b). Finally, at state 4, the tensile
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Figure 4.16: Stress-train response from a simulated diagonal compression test
using CJS-RE2; experiments from [SOS+14]

failure extents with a larger domain than at state 3.

Figure 4.17: Evolution of the plasticity states in a simulated diagonal com-
pression tests using CJS-RE2 at different computation stages.

Figure 4.18 shows the evolution of stress path in the central surface element of the

wallet. Figures 4.18a-c-e-g are view sections of stress path in the meridian plane

and Figure 4.18b-d-f-h are sections in the deviatoric plane.

The stress state reached first the yield surface. Eventually, tensile failure started

at the central core of the wallet before the studied element. It led to a relaxation

of stresses and then to a drop of the mean pressure before the stress path of the

studied element reaches state 1 (Figure 4.18a-b). This deviation of the mean stress
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Figure 4.18: Stress path of an element in a simulated diagonal compression
test (CJS-RE2).
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towards smaller values explains why the tensile failure surface is reached by the

studied element for a smaller value of sII which is revealed in Figure 4.16 than

in the case of CJS-RE1. From point state to state 2 (Figure 4.18c-d), the tensile

failure surface softens (same feature for the yield surface) but during this period,

the average radius of the yield surface keeps constant (softening is obtained by a

reduction of the tensile resistance Tr and of the maximum tensile resistance Trmax).

From state 2 to state 3 (Figure 4.18e-f), the stress path keeps on the tensile failure

surface and just a small increase of the mean pressure is required to reach the

shear yield surface. From now on, the stress path keeps at the junction of the

tensile failure surface and of the shear yield surface. The softening of Tr max (that

started previously when the tensile failure surface was reached) and the hardening

of the mean radius R (the mean pressure increases due to the reserve of resistance

of the wallet) are then again activated. Note that between state 2 to state 3, the

rate of hardening (rotation of yield surface) is greater than the shear softening

(translation of the yield surface).

From state 3 to state 4 (Figure 4.18g-h), the rate of hardening is getting slower

(as plastic deformation are generated) than throughout the previous stage, while

the shear softening process keep moving. This condition force the stress path to

move from point 3 to point 4. From state 3 to 4, the softening of Tr max monitored

the behavior of the element which can also be noticed at the scale of the wallet

(many of the elements in the wallet hold this behavior). The drop is supposed to

go on until the residual value for Tr max is reached.

To conclude, the shear softening in CJS-RE2 model has an important contribu-

tion to limit the re-increase of the shearing resistance which is excessive when

using CJS-RE1 model. In CJS-RE2, the shear plastic mechanism (together with

the shear failure surface) is coupled with the tensile plastic mechanism through

the softening law driving the loss of the maximum resistance Tr max. CJS-RE2

model was able to retrieve the average stress strain curve obtained throughout

experiments within a wide range of deformations. However, one can note that the

general ductility of the wallet is not well modeled with CJS-RE2 model with in

particular a too high initial stiffness and a peak of the curve that is obtained for

smaller deformations than in actual experiments. This effect may be attributed

to the absence of interfaces when modeling the wallet [BBLM16].

89



Chapter 4. Validation tests

4.3.3 Validation: Pushover test

A further simulation is carried out for the pushover test on a wallet with MAT-1 set

of parameters as previously done with CJS-RE1. The resulting load-displacement

responses is shown in Figure 4.19. It can be observed that the peak response is

reached at a larger deformation than in the level-1 model (2mm with CJS-RE2

while 1mm with CJS-RE1). This higher ductility provided by CJS-RE2 is due

to the limited domain of elasticity and the generation of plasticity earlier in the

simulation.

Figure 4.19: Load-displacement response from a simulated pushover test on
wallet; MAT-1

The evolution of plastic points throughout the test is shown in the Figure 4.20

using the reference points in Figure 4.19. At state 1, the majority of the elements

in the wallet are at shear yield. Nevertheless, there are some elements at tensile

failure at the bottom right of the wallet like. At state 2, the tensile failure de-

velops further at the bottom right. The tensile failure propagates vertically (pale

blue elements). At this state, the wallet has lost more than 50% of its footholding

compared to the beginning of the test. The value of the load carrying capacity

is similar to what was found with CJS-RE1. Finally, at state 3, the wallet has

exhibited a loss of its load carrying capacity while a large extent of elements have

reached the tensile failure at the left side of the wallet. The zones affected by

tensile failure are more extended in the case of CJS-RE2 than for CJS-RE1 but

the capacity to resist to the horizontal loading is not greatly different (decrease of

10%) than with CJS-RE1.

For conclusion, CJS-RE2 model gives a general load-displacement softer than the

one simulated by CJS-RE1 model without a significant modification of the loading
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Figure 4.20: Evolution of the plasticity states in a simulated pushover tests
using CJS-RE2 at different computation stages.

capacity. A general softening of the load carrying capacity is obtained, that was

not observed in the simulation using CJS-RE1 model.
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4.4 Simulations with interfaces for MAT-1

The interfaces existing in the actual wallet result from the construction technique

(successively compacted layers of earth of about 10cm each one). In this section,

interfaces will be modeled to identify their possible contribution to the overall

behavior of the wallet during a diagonal compression test and pushover test. A

Mohr-Coulomb model will be used as the constitutive model for the interfaces

[Ita09]. For the homogeneous material constituting the layers, a CJS-RE2 model

will be used together with the set of model parameters previously identified. The

geometrical model is shown in Figure 4.21 where nine earth layers separated by

interfaces are depicted.

Figure 4.21: Model of diagonal test with interfaces

4.4.1 Identification of the interface parameters

Two sets of parameters will be used for the interfaces. The first one corresponds to

the recommendation of Miccoli et al. [MOS+14]. In fact, there is no available data

for the interfaces for MAT-1 since no experimental tests to identify their behavior

were carried out. The elastic normal stiffness kn is then equal to 100E, E being

the Young modulus of the material constituting the layers. As recommended by

the same authors, we suppose that ks=kn/2(1 + ν).

The second set is derived from recommendation by Itasca [Ita09] but considering

that interfaces provide ductility in the system. Then, it is stated that the elastic
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stiffness kn is equal to 1/5 times the usual recommended value given by the rela-

tionship:

kn = max

[
(Ke + 4/3Ge)

∆zmin

]
(4.3)

where ∆zmin is the smallest element size within the modelling. In this case, kn
is found equal to 15E. It models the loss of stiffness within interface as shearing

takes place. Indeed, a Mohr-Coulomb model generally provides a too stiff behavior.

The interface angle of friction φi was assumed to be 37◦ and the dilatancy angle

ψi equal to zero according to Miccoli et al. [MOS+14]. As recommended by these

authors, the cohesion (Ci) was estimated as a function of the tensile strength,

namely as 1.8ft. By using this relationship, the cohesion of the interfaces is about

60% of the layers cohesion. Finally, the tensile strength of the interface (f it ) is set

equal to 90% of the layers tensile strength [MOS+14]. The set of model parameters

for the interfaces model are given in Table 4.6.

Table 4.6: Parameters assumed for the Mohr-Coulomb type model
for the interfaces

Elastic (Int 1† ) Elastic (Int 2‡) Plastic‡)
kn = 104 GPa kn = 16.3 GPa φi = 37◦

ks = 41.4 GPa ks = 6.5 GPa Ci = 181.4 kPa
f it = 90.72 kPa
ψi = 0

† ref [MOS+14]
‡ kn equation (4.3) reduced by 5

4.4.2 Diagonal compression test

The geometry and boundary condition for diagonal compression test are imposed

as in the homogeneous model (Figure 4.7). The global stress-strain response of the

model CJS-RE2 without interfaces and with interfaces (set 1: CJS-RE2+int 1 and

set 2: CJS-RE2+int 2) are given in Figure 4.22. The simulation (CJS-RE2+int

1) does not bring about news features in the global response of the wallet with a

ductility of the overall system which is quite similar to that was previously found

in Figure 4.16. In the case of model (CJS-RE2+int 2), the initial stiffness is less

steep than what was found in Figure 4.16 and closer to what was found in the

experiments. For the set of parameters that are equal for set 1 and set 2 except

the elastic stiffnesses of the interfaces, one can note that the overall strength of the
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wallet decreased for set 2 but keeps in the range of values found in the different

actual tests.

Figure 4.22: Diagonal compression test of CJS-RE2 model without and with
interfaces results; experiments from [SOS+14]

Figure 4.23 depict the interfaces stress state (shear stress-normal stress) for model

CJS-RE2+int 2 together with the Mohr Coulomb criterion associated to the in-

terfaces. The interfaces are grouped into four separated groups. Group 1 contains

the two interfaces in the lower part of the system, group 2 and 3 at the midheight

of the wallet (Figure 4.23a) and group 4 two interfaces at the top of the system.

Two references state are defined in the Figure 4.23b which are the state at the

first peak (state A) and the state at the end of simulation (state B). Each point

in Figure 4.23c,d represent the shear-normal stress state at a point of an interface

belonging to a group i. At state A and B, no interfaces failed either in a shearing

or in a tensile mode. Moreover, one can note that the stress states on interface 1

and on interface 4 are similar. The same condition also observed between stress

states on interface 2 and 3. This inferred that the boundary condition and also

the loading condition are symmetrical.
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Figure 4.23: Stress state on the interfaces together with Mohr-Coulomb cri-
terion for the interfaces in the diagonal compression test; a: interface group, b:

reference states A and B, c: state A, d: state B.
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4.4.3 Pushover test

A pushover test is simulated with the set of parameters corresponding to MAT-1.

The geometry is similar to the one previously used but here interfaces are also

modelled (Figure 4.24). Two different simulations are carried out by using two

levels of the model and interfaces with set 2.

The global load-displacement response is given in Figure 4.25. As expected CJS-

RE2, gives a softer behaviour than CJS-RE1 model. It can be observed that after

the peak of response, CJS-RE1 curve presents a small drop followed by a stabili-

sation. On the other hand, CJS-RE2 curve exhibit a huge softening. This implies

that the shear softening plays a role in the post peak behaviour.

Figure 4.24: Model of pushover test on wallet with interfaces

Figure 4.26 depicts the corresponding plastic points at displacement of 3mm (point

A in the Figure 4.25). Simulation with CJS-RE1 + int2 shows a tensile failure

propagating from the bottom left to the upper right (Figure 4.26a). It is also seen

detachments at the bottom right of the wall as previously can be observed in the

homogeneous model. Using CJS-RE2 + int2 (Figure 4.26b), the tensile failure

appears to be along a vertical on the left side of the wall.

Figure 4.27 shows a comparison between model CJS-RE2 and CJS-RE2 + int2.

It can be seen that interfaces contribute to give a softer response than the cor-

responding homogeneous model. It results from the reduced stiffness parameters
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Figure 4.25: Simulation of a pushover test with CJS-RE1 and CJS-RE2 model
with interfaces; set 2

Figure 4.26: Plastic points in the wallets at the peak response; (a): CJS-RE1
+ int2 (b): CJS-RE2 + int2
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chosen for the interfaces. Nevertheless, they do not modified the overall resistance

of the wallet to the lateral loading.

Figure 4.27: Simulation of a pushover test with CJS-RE2 with and without
the modelling of the interfaces

Figure 4.28 shows the stress state (shear vs normal stress) at the different points

of the interfaces for state A and state B. The groups are similar to the ones defined

in subsection 4.4.2. According to Figure 4.28c, at peak state, the interfaces that

exhibits most shearing belong to group 1 while the interface stress points that

are closer to the maximum tensile resistance belongs to group 2. In Figure 4.28d,

as expected, the influence of the shear softening in the layers is visible in the

interfaces. This softening tends

As a conclusion to this part, if one follows the recommendations by Miccoli et

al.[MOS+14] where the interface parameters are very different from those of the

layers, there is no clear influence of the interfaces in the behavior since the Mohr-

Coulomb model used to model their behavior remains very stiff before reaching

the Mohr-Coulomb criterion. A decrease of the normal and tangential stiffnesses

interfaces seems to be necessary to better model the actual behavior of a wallet

in a diagonal compression tests inducing a softer behavior at the beginning of the

test. However, it does not significantly modifies the simulated resistance of the

wallet. Therefore, in practice, due to the uncertainties in the experiments related

to the intrinsic heterogeneity of the wallets and to the lack of a straightforward

procedure to identify the parameters for the interfaces, the use of a homogeneous

model to simulate the behavior of a diagonal compression test in a rammed earth

context is recommended.
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Figure 4.28: Stress state of the interfaces compare with Mohr Coulomb cri-
terion in the pushover test; a: interface group, b: reference state, c: interface

stress state A, and d: interface stress state B.

The resistance of the wall is not modified when interfaces are taking into account

in the modelling of a pushover test. However, the effect of interfaces is more clear

than through a diagonal compression test where they allows to greatly increase

the ductility of the system. Here again, when the global resistance of the wallet is

investigated, we do not recommend the use of interfaces.
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4.5 Validation of CJS-RE1 for MAT-2

To get a better insight into the relevance of the previous validations, a second

validation is provided using MAT-2. The first level of the model (CJS-RE1) is

first used with the appropriated set of parameters for MAT-2. Some parameters

are identified from compression tests and also from a direct shear test. Because

of the deficiency of available experiment tests required to identify all the model

parameters, some relationships with the Mohr-Coulomb model are used (Appendix

B.2). Then, the validation of the model is undertaken on the pushover test.

4.5.1 Identification of the model parameters

Following the procedure given in subsection 4.2.1 and the data given in subsection

4.1.2, the set of model parameters for CJS-RE1 model was identified and is given

in Table 4.7.

Table 4.7: Identified CJS-RE1 model parameters for MAT-2; experiments
from [EN17]

Elastic Plastic
E = 760MPa β = 1.0
ν = 0.25MPa γ = 0.85

Rfail = 0.39
Tr = 160kPa
Trmax = 350kPa
αt = -1.0

The result of the identification process for a compression test is given in Figure

4.29. There is no available curve for the experiment in compression.

4.5.2 Pushover test

A simulation of a pushover test, with the material, the geometry and the boundary

conditions imposed by El Nabouch [EN17] is carried out (Figure 4.30).

Figure 4.31 shows the load-displacement curve of the pushover test with three

reference states and also the response recorded throughout the experiments. The

simulation with CJS-RE1 reaches its peak at the level of 50kN with a correspond-

ing displacement of 7mm. The curve is generally stiffer than in the experiments

which was expected and the estimation of the ultimate loading capacity is higher
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Figure 4.29: Result of the identification of CJS-RE1 parameters; simulation
of a compression test; experiments from [EN17]

Figure 4.30: 3D-Model for the pushover test on a wallet with MAT-2

25% than the average of the experiments. The use of CJS-RE1 may be useful

to have a first estimate of the loading capacity of the system with few effort to

identify the model parameters.

Figure 4.32 depicts the plastic states at three different computation stages (refer-

ence states given in Figure 4.31. At state 1, a detachment at the wallet bottom

right is noticeable together with a zone at shear failure in the bottom left part.

At state 2, a tensile failure is found to propagate from the bottom left to top left

of the wallet. This condition is stabilise until state 3. The general failure mode

is quite the same as in the wallet of MAT-1. Nevertheless, the pattern of plastic
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Figure 4.31: Load-displacement response from a simulated pushover test on
a wallet vs experiments; MAT-2

points is different with the experimental evidences where a quasi diagonal crack

was observed for wall-3.

4.6 Validation of CJS-RE2 for MAT-2

4.6.1 Further identification of parameters

Three further model parameters must be identified for CJS-RE2: Rini which gives

the limit of the elastic domain, the isotropic hardening parameter A, and αs which

controls the shear softening curves. Due to the limited data of compression stress-

strain curve, A and αs are defined as in the MAT-1. It will seen that these

parameters are of less influence in the result of the simulation (Appendix F). The

set of model parameters for CJS-RE2 model are given in Table 4.8. A simulation

of a compression test is also given in Figure 4.33.

4.6.2 Pushover test

Figure 4.34 shows the result of the simulation of the pushover test performed by

El Nabouch [EN17] with three reference states. The result is closer to the experi-

mental curve than for CJS-RE1 qualitatively and quantitatively. The response is

softer than first level of the model. In addition, the maximum resistance is lower
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Figure 4.32: Plasticity states in a simulated pushover tests using CJS-RE1 at
different computation stages; MAT-2

Table 4.8: Identified CJS-RE2 model parameters for MAT-2; experiments
from [EN17]

Elastic Plastic
E = 760MPa β = 1.0
v = 0.25MPa γ = 0.85

Rfail = 0.39
T ini
r = 160.0kPa
T ini

r max = 350kPa
T res

r max = 70kPa
Rini = 0.16
A = 0.00013
αt = -0.5
αs = -0.0003
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Figure 4.33: Result of the identification of CJS-RE2 parameters for MAT-2;
simulation of a compression test

than CJS-RE1.

Figure 4.34: Load-displacement response from a simulated pushover test on
wallet; MAT-2

Figure 4.35 depict the plastic states at three different computation stages (point

1,2, and 3 in the Figure 4.34). At state 1, most of the wall is at shear yield.

Detachment (tensile failure) is here again found at the bottom right of the wallette.

At state 2 and 3, a tensile failure appears at the bottom left of the wallette, then

it develop vertically at the left part of the wallette. The pattern of plastic points

are still different from the experimental evidences where a quasi diagonal crack

was observed in wall-3.
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Figure 4.35: Plasticity states in a simulated pushover tests using CJS-RE2 at
different computation stages; MAT-2

For conclusion, CJS-RE2 model gives a general load-displacement which is softer

than CJS-RE1 with a slightly lower load carrying capacity. Simulation with CJS-

RE2 model gives a result closer to the actual experimental curve compared with

CJS-RE1, but the features of failure are different than those found in the experi-

ments. Further effort is to see whether the interfaces might have a role in the case

of the pushover test.

4.6.3 Pushover test with the modelling of interfaces

Two set of parameters is proposed for the interfaces. The first set is taken by using

interfaces elastic stiffness derived from the reduced elastic properties of the layer

with reduction factor of 5. The second set is taken by using a reduction factor of

2.

The interface friction angle φi was assumed to be equal to 45◦ as in the layer.

This assumption is based on the results of direct shear test (large shear box) from

El Nabouch [EN17], where the interface friction angle and layer friction angle are

found to be almost the same. The interface dilatancy angle ψi is taken as zero as
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in the MAT-1. The interfaces cohesion (Ci) was taken as 80% of the layer cohe-

sion according to the direct shear test result with large shear box [EN17]. Finally,

the tensile strength of the interface (f it ) is set equal to 90% of the layers tensile

strength. The set of model parameters for the interfaces model (Mohr-Coulomb

model with linear elasticity) are given in Table 4.9.

Table 4.9: Parameters assumed for the Mohr-Coulomb type model
for the interfaces

Elastic (Int 1† ) Elastic (Int 2‡) Plastic‡)
kn = 4.38GPa kn = 10.9GPa φi = 45◦

ks = 1.75GPa ks = 4.4GPa Ci = 160kPa
f it = 144kPa
ψi = 0

† kn equation (4.3) reduced by 5
‡ kn equation (4.3) reduced by 2

Figure 4.36 depicts the result for the simulation of the pushover test for MAT-2

with interfaces. Based on the Figure 4.36, it is shown that interfaces significantly

influences the ductility of the system without any important effect in terms of

the loading capacity. It seems that, a reduction of the interface elastic stiffnesses

derived from the layers properties by a factor of 2 would be more suitable to

conform the experimental results.

Figure 4.36: Pushover test with CJS-RE2 model with interfaces for MAT-2

Figure 4.37 depict plastic states at the end of simulation by using two differents

model. The first is modelled by using CJS-RE1 + interfaces set 2 and the second

CJS-RE2 + interfaces set 2. It is shown that the result is similar to what was

found for the simulation of the pushover with homogeneous system.
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Figure 4.37: Plastic points in the wallettes at failure; (a) CJS-RE1 + int 2,
(b) CJS-RE2 + int 2

To conclude this chapter, a validation of CJS-RE was proposed by simulating two

different boundary value problems after an identification of the model parameters

on homogeneous tests. These reference experimental tests involve a diagonal com-

pression test and a pushover test on wallettes. CJS-RE1 was able to qualitatively

retrieve the resistance of the rammed earth systems and may be used as a first

estimate of the problem (in terms of initial stiffness and loading capacity). CJS-

RE2 model allowed a fairly good estimate of the resistance of the rammed earth

systems. However, in the simulations, the cracking pattern was different than the

one observed in the experiments.

The modelling of interfaces was carried out to refine the simulations even if in ex-

periments their properties were not found that different than those of the layers.

The Mohr-Coulomb model used for modelling their mechanical behavior being too

stiff. A reduction of the elastic interface stiffness was proposed. Even if the chosen

value was excessively low, interfaces may only give some extra ductility without

playing a significant role in terms of redistribution of stresses. A more refined

model for them would have give more precise information of their role.

A parametric study shown in Appendix F is undertaken to better understand the

sensitivity of the model parameters of the layer throughout the diagonal compres-

sion test and the pushover test.
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Conclusion and perspectives

General conclusion

In this works, an elastoplastic plastic model for studying the mechanical behaviour

of rammed earth has been presented and implemented in a commercial code (FLAC

and FLAC 3D). This model holds two plastic mechanisms of deformation, one re-

lated to phenomena associated to purely deviatoric stresses and the other related

to tensile phenomena. Two levels of complexity of the model are designed and

can be selected according to the amount of information available to identify the

model parameters. The first level holds the features of an elastic perfectly plastic

model, the second level is an elasto-plastic model with hardening and softening

rule. They are supposed to be used for context where only monotonous loadings

are acting on the system.

The identification of the model parameters was performed on the basis of some

experiments existing in the literature related to rammed earth. Generally, four ex-

periments are required to identify the set of model parameters. Two compression

tests with different confining pressures, a uniaxial tensile test, and an extension

test for a enough high confining pressure. Nevertheless, in this study, just some of

the parameters could be obtained from experiments due to limited kinds of avail-

able experiments. Then, some parameters were stated from relationships existing

with the Mohr-Coulomb model.

A validation is then proposed by using a diagonal compression test and pushover

test on a homogeneous and non-homogeneous system (taking into account inter-

faces) of a wallet. Based on the simulation, the simple elasto-plastic CJS-RE1

model was able to capture some basic features of the diagonal compression test at

low deformations related to a tensile failure. But, subsequently a large reincrease

of the resistance is observed. In the case of the pushover test, the first level of

model can fairly capture the mechanism of failure with a detachment at the base
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of the wallet and an overturning movement.

A better prediction of loading capacity of the wallet is obtained using CJS-RE2

model. More ductility is obtained by the existence of a limited domain of elasticity

and by a softening of the shear yield surface. The shear softening law creates a

coupling between the tensile failure surface and the shear yield surface (and also

with the shear failure surface) where both the yield surface evolution and the max-

imum shear resistance are influenced by the existence of a tensile failure in the

material.

Finally, the role of interfaces on the behaviour of rammed earth in diagonal com-

pression test is considered. If the identification is processed according to the

recommended values by [MOS+14], the modelling of the interfaces does not bring

about much in the prediction of the ultimate loading capacity of the system or on

its ductility. A reduction of the interface elastic stiffness may be required to bet-

ter reflect the apparent reduction of ductility of the interfaces throughout loading.

An elasto-plastic model for the modelling the behavior of interface would be more

relevant. On the overall, we found that the modelling of interfaces in rammed

earth systems is oversized if the loading capacity is the only property that needs

to be estimate. The use of a homogenous system may be quite sufficient in most

of cases for rammed earth systems loaded monotonously.

Perspectives

The simulation results of this study is based on the hypothesis that rammed earth

behaves like a quasi brittle material (ie:concrete). Further experimental tests

will be require to clearly identify the dissymetry of the deviatoric failure surface.

Compression tests showed that the material may experience a degradation of the

elastic properties when subjected to cycles together with permanent deformations.

This aspect can only be retrieved if a damage elasticity is involved in the model.

A further sophistication of CJS-RE (a third level) could then be introduced with

a CJS-RE3 model, where the cyclic behavior of the material could be taken into

account. In that case, a kinematic harding should be introduced together with

damage elasticity. Finally, the use of a more refined model (than a Mohr-Coulomb

model) for the interfaces between layers may improve the quality of the prediction.

More precisely, there is a need to model the decrease of the apparent stiffness of

the interfaces when they are loaded together with the possibility of irreversible

slippage within the interfaces.
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Identification of CJS-RE

parameters

This section provides the method to identify the model parameters. Most of the

parameters can be identified through experiments and only two parameters need

to be obtained by a trial-and-error method. In all the cases, two compression

tests with two different confining pressures, a tensile test and an extension test

would be required. If some experiments are not available, it is possible to estimate

some parameters from correlations involving the Mohr-Coulomb model or to use

usual relationships. In the latter case, it may just give a rough estimate for them.

Herein, the presentation of the identification process is given according to the na-

ture of the parameters, related to the elastic mechanism or the plastic mechanism.

A.1 Elastic parameters

A.1.1 Young modulus E

The Young modulus can be identified from the initial slope of the stress-strain

curves in the uniaxial compression test (Figure 3.11a). Therefore, it can be ex-

pressed as:

E =
σ̇+
axial

ε̇1

(A.1)

with σ+
axial is the axial compressive stress (MPa) and ε1 is the corresponding axial

strain.
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A.1.2 Poisson ratio ν

The Poisson ratio is identified from the initial slope of the volumetric deformation

curve in the uniaxial compression test (Figure 3.11b). This ratio is equal to:

(1− 2ν) =
ε̇v
ε̇1

(A.2)

with ε̇v the increment of the volumetric deformation and ε̇1 the increment of the

axial strain.

A.2 Plastic parameters

There exists five plastic parameters for CJS-RE1 and eight plastic parameters for

CJS-RE2. The identification of the plastic parameters must be done in a sequential

way as shown in the following section.

A.2.1 Maximum tensile strength Trmax

This parameter is associated to the apex of CJS-RE model. It is necessary to have

at least two compression tests as indicated in Figure A.1 to identify Tr max. Figure

A.1 shows a triaxial stress path with a zero confining pressure (p = 0) and another

one with a non-zero confining pressure (p 6= 0). Both are depicted in the SII and

I1 stress space.

A.2.2 Dissymetry of the failure surface γ

Parameter γ which gives the intensity of the dissymmetry of the shear yield surface,

the maximum volumetric contraction surface and the shear failure surface can be

determined through a triaxial compression and extension test for a same confining

pressure. Parameter γ can obtained by following expression:

γ =
1− F 6

1 + F 6
with F =

seII(I
c
1 + 3Tr max)

scII(I
e
1 + 3Tr max)

(A.3)
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Figure A.1: Identification of Tr max by two compression triaxial tests

In Equation (A.3), sII =

√
2

3
|σ1−σ3| and I1 = σ1 +2σ3 for triaxial axissymmetric

conditions. Superscripts c corresponds to a compression stress path and e to an

extension stress path.

Figure A.2: Identification of γ by a triaxial compression and extension test
or a same confining pressure

A.2.3 Failure radius Rfail

Once Tr max and the parameter dissymmetry (γ) determined, then the radius at

failure (Rfail) can be obtained by using failure criteria in shearing as:
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Rfail =

√
2

3

(
qfail(1− γ)

1
6

I fail
1 + 3Tr max

)
(A.4)

where qfail is a deviatoric stress at failure and I fail
1 is the first invariant of stress

tensor at failure. In the unconfined compression test qfail = fc and I fail
1 = fc.

A.2.4 Initial elastic radius Rini

The determination of the initial radius of the shear yield surface that delimits the

initial extent of the elastic deformations can be approximated from the state in

the stress-strain curve when there is a loss of linearity between stress and defor-

mation. However, in the case of rammed earth, this limit state occurs when the

compression stress reaches approximately 25% - 30% of the compression resistance

of the sample. Therefore, the value of Rini is roughly equal to 25% - 30% of Rfail.

A.2.5 Radius of the maximum volumetric contraction Rmvc

This value can be identified as the maximum of the volumetric deformation when

contractancy takes place. However, due to the less importance of this volumetric

deformations in a quasi-brittle material, this parameter can be roughly estimate

to 0.85.

A.2.6 Parameter of dilatancy β

The parameter of dilatancy included in the flow rule of the shear plastic mecha-

nism can be determined from the volumetric deformation curve. In fact, most of

dilatancy appears in the experiences is related to the opening of the larger cracks

that cross the sample. Then, dilatancy is mainly related to structural deforma-

tions and not related to phenomena experienced by the material. However, we

can consider that before failure dilatancy that may generated can be related to

phenomena that take place uniformly in the sample due to the decohesion of grains

and to micro-cracks.

Parameter β can be obtained from the state of stress at failure [Bag11]:

ε̇spv = β

(
sfail
II

smvc
II

− 1

)
|s ˙esp|
sII

(A.5)
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By simplifying the terms |s ˙esp| for triaxial condition we get:

|s ˙esp| = 6

9
(σ1 − σ3)(ε̇1 − ε̇3) with ε̇3 =

ε̇v − ε̇1

2
(A.6)

and injecting equation (A.6) into equation (A.5) we have:

β

(
sfailII

smvcII

− 1

)√
6

9
=

2gv
3− gv

with gv =
ε̇v
ε̇1

(A.7)

with sfail
II =

√
2

3
|σfail

1 − σfail
3 | and smvc

II =

√
2

3
|σmvc

1 − σmvc
3 |.

Figure A.3 shows the effect of the variation of β on the compression behaviour.

According to Figure A.3a, β has little effect on the stress strain response. On the

other hand, as expected, it greatly influences the dilatancy rate in the volumetric

deformation curve (Figure A.3b).

Figure A.3: Influence of the parameter of dilatancy β in the behaviour
through the simulation of a compression test; (a): stress-strain, (b): volumetric

deformation-strain
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A.2.7 Isotropic hardening A

The parameter ruling the isotropic hardening (A) can be obtained by means of

a trial-and-error method. This can be done by fitting the nonlinear part of the

stress strain curve of a compression test prior it reaches failure. Figure A.4 shows

the effect of parameter A on the stress-strain curve. Based on Figure A.4a, the

larger A, the stiffer response will be obtained. Since it influences the stress strain

response, it necessarily influences the volumetric deformation path through the

flow rule of the shear mechanism (Figure A.4b).

Figure A.4: Effect of the variation of isotropic hardening parameter A; (a):
stress-strain, (b): volumetric deformation

A.2.8 Shear softening parameter αs

αs can be determined by a trial-and-error method on the basis of the softening

part of the compression stress strain curve. Figure A.5 shows the influence of αs
on the stress-strain curve. After a parametric study, the acceptable value of αs for

unstabilised rammed earth ranges between -0.0001 to -0.0005.
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Figure A.5: Influence of the shear softening parameter αs on the stress strain
curve of a compression test

A.2.9 Tensile strength T r

The tensile strength of earthen layer can be identified from a Brazilian test or

uniaxial tensile test. If no tensile experiment is available, then the tensile strength

of the rammed earth can be taken in the range of 5%-12.5% of the compression

strength [AKS16].

A.2.10 Tensile softening parameter αt

Tensile softening parameter αt possible to be identified by using trial and error

method from Brazilian test. αt related with the descending part of the stress strain

in Brazilian test.
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Relationship between CJS-RE

and Mohr-Coulomb model

Mohr Coulomb model which parameters may be easier to identify can help for the

determination of some parameters of CJS-RE. Four CJS-RE parameters can be

estimated with the help of Mohr-Coulomb model: Trmax, γ, Rfail, and β.

B.1 MAT-1

Maximum tensile strength parameter (Trmax) can be obtained by comparing

the apex of the CJS-RE model and the Mohr Coulomb model as

Trmax =
√

3(c)cot(φ) (B.1)

where cohesion (c) is estimated based on the Plasticity Index (PI)[FH73] as

ft
c

= 0.34 + 0.01(PI) (B.2)

Therefore, by setting the tensile strength in the range of 5%fc-12.5%fc [AKS16]

and given the Plasticity Index from the experiments references (PI=0.7), we will

get acceptable cohesion between 182 - 454kPa. Finally, the value of C = 318kPa

was taken according to the average value of the acceptable cohesion. By using this

value, we get Trmax equal to 730kPa.

Parameter of dissymmetry γ can be estimated by comparing the ratio of the

radius at failure in the tensile and compression meridian (Rt/Rc) between the
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Appendix B. Relationship between CJS-RE and Mohr Coulomb model

Figure B.1: Shape of the Mohr Coulomb model (φ = 37◦) and CJS-RE model
(γ = 0.84) in the deviatoric plane

model (Equation (B.3)). This method however is only an approximation based

on the comparison between the radius at the corner state. Thus, it will produce

a surface of failure that coincides with the six corner points of Mohr-Coulomb

model. For example, Figure B.1 shows a comparison between the shape of the

Mohr-Coulomb model with φ = 37◦ and the corresponding shear failure surface of

CJS-RE model (γ = 0.84). It can be seen that the shape of the CJS-RE model

gives more convexity than Mohr-Coulomb model. This convexity assures a stable

material behaviour according to the postulate of Drucker [Dru57].

(
Rt

Rc

)CJS−RE

=

(
1− γ
1 + γ

) 1
6

(
Rt

Rc

)MC

=
(3− sinφ)

(3 + sinφ)

(B.3)

Radius at failure can be deduced by comparing the shear failure surface of

CJS-RE model and Mohr-Coulomb model. Mohr-Coulomb criterion is written as:

σ1 = σ3(Nφ)− 2c
√
Nφ with Nφ =

(1 + sinφ)

(1− sinφ)
(B.4)
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By using the shear failure criterion from CJS-RE model (Equation (3.4)) for Rfail,

assuming sII =

√
2

3
|σ1−σ3|, I1 = σ1 +2σ3 (triaxial axissymmetry condition), and

injecting Equation (B.1) and (B.4) in Rfail relationship we obtain

Rfail =

√
2

3

(
(σ3(Nφ − 1)− 2c

√
Nφ)(1− γ)

1
6

σ3(Nφ + 2)− 2c
√
Nφ + 3

√
3(c)cot(φ)

)
(B.5)

We can also directly obtained Rfail by using Trmax and γ that was already identified

as:

Rfail =

√
2

3

(
qfail(1− γ)

1
6

Ifail1 + 3Trmax

)
(B.6)

where qfail the deviatoric stress at failure and I fail
1 the first invariant of stress tensor.

In an unconfined compression test, q = σ1 = fc and I1 = σ1 = fc.

.

Parameter of dilatancy β can be correlated with the dilatancy angle (ψ) ac-

cording to [Pur06] as

β =
2
√

6sinψ

(r − 1)(3− sinψ)
with r =

Rfail

Rmvc

(B.7)

According to our definition that the Maximum Volumetric Contraction (MVC)

state reaches when Rmvc = 0.85Rfail, then we have r = 1.18. By taking the dila-

tancy angle (ψ) between 0◦ and 20◦ whether dealing with soils, concrete, or rocks

[VDB84] then we will get acceptable β value around 0.0 - 3.5. However, the dila-

tancy angle did not play an important role in the behavior of rammed earth walls

[BBLM16].

B.2 MAT-2

Experiments reference are taken from [EN17]. Elastic modulus (E) is taken from

the average of the three compression test (on cylinder) which is equal to 760 MPa.

Poisson ratio is taken to be equal to 0.25.

The plastic parameters are estimated from known cohesion (C) which is around

135 - 260 kPa, φ between 44◦ − 45◦ (small shear box tests [EN17]), and average

compression strength on tested rammed earth cylinder of 2.0 MPa[EN17].

Maximum tensile strength parameter (Trmax) can be obtained by comparing

the apex of the CJS-RE model and the Mohr Coulomb model as
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Appendix B. Relationship between CJS-RE and Mohr Coulomb model

Trmax =
√

3(c)cot(φ) (B.8)

where cohesion (c) is obtained from experiments of direct shear tests which is

around 135 - 260 kPa. Using this ranges of value then Trmax will fall between 233

and 450 kPa for φ = 45◦. Finally, the average value of Trmax of 350 kPa is taken.

Parameter of dissymmetry (γ) is stated considering the maximum convexity

of shear criterion to be equal to 0.85.

Radius at failure calculated from the known value of Trmax and γ using equation

(B.6), where qfail = σ1 = fc and I fail
1 = σ1 = fc. According to the average of

compression strength on cylinder of tested rammed earth of 2 MPa, then Rfail is

equal to 0.39.

Parameter of dilatancy (β) is taken as 1.0 considering that the density of MAT-

2 is lower than MAT-1. Nevertheless, dilatancy did not play a role in rammed

earth wall. Note that dilatancy in rammed earth is mainly related with structural

increases of volume due to opening of cracks and not related to the material itself.
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A parametric study for

compression-extension tests

In order to give some trends for the behavior of rammed earth through CJS-RE,

some simulations of a compression and extension path are performed. The model

for the triaxial test is shown in Figure C.1 where the earth sample is represented

by a brick element. The compression stress path test shown in Figure C.1a. In

this test, a confining pressure is first applied laterally in the direction y+ and x-,

before a deviatoric stress compresses the specimen vertically. A similar method

is used for extension tests (Figure C.1b), but with a vertical stress that tends to

decrease.

Figure C.1: Model of the compression and extension tests
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C.1 CJS-RE1

Two simulations with CJS-RE1 for a compression stress path with two different

confining pressures (p=250kPa and p=1MPa in Figure C.3) were performed and

the result is given in Figure C.2. As expected, the maximum resistance increases

as the confining pressure increases. In general, CJS-RE1 gives a large domain of

elasticity which is the drawback of this model. This gives a stiff response along the

compression stress path. Nevertheless, this model is sufficient for the prediction

of the limit load of quasi brittle materials in compression.

Figure C.2: Response along a compression stress path for CJS-RE1 model

Then, the results for an extension loading path are depicted in Figure C.4. In the

extension tests, the stress path can either lead to a tensile failure or a shear failure

depending on the confining pressure. For the case of zero confining pressure, the

tensile resistance reaches the peak at 0.1MPa (Tr) and then a softening towards

zero is activated. In the case of a confining pressure of 250kPa, the tensile failure

reaches at higher level of stress (0.35MPa) and then it drops until the residual

stress state associated with to the confining stress. With a confining pressure of

1MPa, the extension path leads the system to fail in shearing without any soften-

ing (Figure C.3 and Figure C.4).
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Figure C.3: Triaxial stress path in the meridian sII − p plane for CJS-RE1
model

Figure C.4: Responses in the extension stress path for CJS-RE1 model
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C.2 CJS-RE2

As in the first level of the model, a simulation along a compression and an exten-

sion stress path is performed. The same geometrical model and loading condition

are used as depicted in Figure C.1. Figure C.5 gives the results for the compression

stress path, whereas Figure C.6 shows the results for the extension loading path.

Figure C.5: Response along a compression stress path for CJS-RE2 model

As expected, the second level of the model induces a non linear behavior earlier

when loading than CJS-RE1 does which is more consistent with experiment ev-

idence. It is also seen that confining pressure gives an influence on the global

stiffness of the system and also on the maximum resistance. All the three systems

fail by shearing as for CJS-RE1 but with a lower residual stress due to the shear

softening.

Along the extension loading path, a different stress-strain pattern can be observed

for each loading condition. For unconfined tensile test (p=0), the system reaches

a tensile failure at the level of 0.1MPa before it drops to zero strength. In the case

of an extension test with a confining pressure of p=250kPa, the system exhibits a

certain hardening before reaching a tensile failure at the level of 0.35MPa before

it softens (tensile softening) and stabilizes. Finally, for a higher confining pressure

(p=1MPa), the element fails in shearing at a level of 1MPa before softening (shear

softening).

The corresponding triaxial stress path in the meridian plane can be seen in Figure

C.7. The distinguished feature compared to CJS-RE1 is that the final points of

125



Appendix C. A parametric study for compression-extension tests

Figure C.6: Response along an extension stress path for CJS-RE2 model

shear failure (C1, C2, C3, and E3) are not at the intersection of the stress path

and of the shear failure surface (f sfail), but on the crossing between the stress path

and the residual shear failure surface (f sres) which represents the final state after

the shear softening process.

Figure C.7: Triaxial stress path with CJS-RE2 model
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Mesh sensitivity

D.1 Mesh sensitivity

A too refine mesh can be time consuming process if it involves a complex geomet-

rical model. To get an acceptable numerical result with optimum time, a mesh

sensitivity study is taken. In this work, the mesh study is carried out by per-

forming different diagonal compression tests for different refining for the meshing:

20x20x10, 30x30x15, and 40x40x20 in the wall (Figures D.1). For the sake of sim-

plicity, CJS-RE1 is used for the simulation.

Figure D.1: 3D numerical model of a diagonal compression test with three
different mesh sizes; a: 20x20x10, b: 30x30x15, c: 40x40x20

Figures D.2 give the strain stress curve of a simulation of a diagonal compression

test with three different mesh sizes. Until the shear strain of 0.05%, the model

with the mesh size of 20x20 gives the largest first peak response following by the

mesh 30x30 and the mesh 40x40. However, the difference is unsignificant. This

difference is a little bit more significant when the tensile softening is triggered
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though acceptable. Therefore, considering the quality of results and the compu-

tation time, the minimum 30x30 mesh will be generally used to address boundary

value problems such that of a diagonal compression test with a wallet size similar

to the one that was simulated herein.

Figure D.2: Stress-train response in a simulated diagonal compression test
with different mesh sizes (CJS-RE1)
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Computational procedure

In CJS-RE model, the shearing failure criterion (ft) is written with the stress

invariants (sII and I1) which does not require the computation of the principal

stresses, whereas the tensile failure criterion (ft) involves the minor principal stress

σ3. This difference of the reference coordinates needs to be handle in the com-

putation. For the sake of simplicity, all of the stress states were defined in the

principal axes of stress which will be identified when plasticity is generated. The

general computation procedure of the constitutive model is given in the form of

flowchart shown in Figure E.1 with some part of important step explained in the

following section.

E.1 Calculation of the principal stresses

Principal stresses for three dimensional problem case can be calculated by using

following formula:

σ1 =
I1

3
+

2

3

(√
I2

1 − 3I2

)
cosφ

σ2 =
I1

3
+

2

3

(√
I2

1 − 3I2

)
cos

(
φ− 2π

3

)
σ3 =

I1

3
+

2

3

(√
I2

1 − 3I2

)
cos

(
φ− 4π

3

) (E.1)

where
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Figure E.1: Flowchart implementation of the constitutive model
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φ =
1

3
cos−1

(
2I3

1 − 9I1I2 + 27I3

2(I2
1 − 3I2)3/2

)
I1 = σ11 + σ22 + σ33 = tr(σ)

I2 = σ11σ22 + σ22σ33 + σ33σ11 − σ2
12 − σ2

23 − σ2
13

I3 = σ11σ22σ33 − σ11σ
2
23 − σ22σ

2
13 − σ33σ

2
12 + 2σ12σ13σ23 = det(σ)

(E.2)

Minor principal stresses σ3 is determined by using some conditional as follows:

if σ33 > σ1 then σ33 = σ1 =⇒(major principal stress)

if σ33 < σ3 then σ33 = σ3 =⇒(minor principal stress)

else then σ33 = σ2 =⇒(intermediate principal stress)

(E.3)

E.2 Calculation of hardening and softening mod-

ulus

The movement of the yield or failure surface is controlled by the hardening/soft-

ening modulus. The determination of the hardening/softening modulus can be

obtained by using the consistency relationship.

E.2.1 Hardening modulus (Hmod)

Consistency equation in the hardening process can be written as

ḟ s =
∂f s

∂σ
σ̇ +

∂f s

∂R
Ṙ = 0 (E.4)

Failure criteria is written as

f s(σ, R) = qIIh(θq)−R(I1 + 3Tr max) ≤ 0 (E.5)

and the increments of the yield radius given as

Ṙ = A(Rfail −Rini)exp(−Ap)ṗ (E.6)
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The increment of hardening of variable ṗ is given by the normality relationship:

ṗ = −λ̇s
∂f s

∂R
= λ̇s(I1 + 3Tr max) (E.7)

So from (E.4),(E.6) and (E.7) we get

∂f s

∂σ
σ̇ = −∂f

s

∂R
Ṙ (E.8)

∂f s

∂σ
σ̇ = λ̇sA(I1 + 3Tr max)2(Rfail −Rini)exp(−Ap) (E.9)

with

Hmod = A(I1 + 3Tr max)2(Rfail −Rini)exp(−Ap) (E.10)

E.2.2 Shear softening modulus (Smod)

Consistency equation in the shear softening process can be written as

ḟ s =
∂f s

∂σ
σ̇ +

∂f s

∂Tr max

Ṫr max = 0 (E.11)

Degradation of Tr max is written as an exponential function as

Tr max = (T ini
r max − T res

r max)exp(αsε
p
diff) + T res

r max (E.12)

Because the shear softening defined as a function of plastic shear deformation then

we get the derivation with plastic shear deformation as follows

Ṫr max

ε̇ps
= αs(T

ini
r max − T res

r max)exp(αsε
p
diff) (E.13)

with

ε̇ps = λ̇s

∥∥∥∥∂gs∂σ

∥∥∥∥ (E.14)

and
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εspdiff = ‖εsp − εp fail
s ‖ (E.15)

∂f s

∂Tr max

= −3R (E.16)

So from (E.11),(E.13) and (E.16) we get

ḟ s =
∂f s

∂σ
σ̇ = − ∂fs

∂Tr max

Ṫr max (E.17)

ḟ s =
∂f s

∂σ
σ̇ = λ̇s

(
αs(3R)(T ini

r max − T res
r max)exp(αsε

p
diff)

∥∥∥∥∂gs∂σ

∥∥∥∥) (E.18)

with

Smod = αs(3R)(T ini
r max − T res

r max)exp(αsε
p
diff)

∥∥∥∥∂gs∂σ

∥∥∥∥ (E.19)

E.2.3 Tensile softening modulus (Tmod)

The expression of the consistency equation for the tensile failure can be written

as follows:

ḟ t =
∂f t

∂σ
σ̇ +

∂ft
∂Tr

Ṫr = 0 (E.20)

with
∂f t

∂Tr
= −1 (E.21)

Degradation of Tr is made as a function of plastic tensile strain and described by

using exponential function as follows

Tr = T ini
r exp(αt

∫
ε̇tpdt) (E.22)

The derivation of (E.22) with respect of plastic tensile deformation gives

Ṫr
ε̇pt

= αtT
ini
r exp(αt

∫
ε̇tpdt) (E.23)
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with

ε̇pt = λ̇t
∂gt

∂σ3

= λ̇t (E.24)

Combining equation (E.23) and also equation (E.21) into consistency equation

gives:

∂f t

∂σ
σ̇ = −∂f

t

∂Tr
Ṫr (E.25)

∂f t

∂σ
σ̇ = λ̇t

(
αtT

ini
r exp(αt

∫
ε̇tpdt)

)
(E.26)

λ̇t =
1

Tmod

(
∂f t

∂σ
σ̇

)
(E.27)

Where Tmod is a plastic tensile modulus expressed as

Tmod = (αtT
ini
r )exp(αt

∫
ε̇tpdt) (E.28)

E.3 Determination of plastic multiplier

The plastic strain increment is defined by a derivation of the plastic potential ∂g

with respect to the stress tensor:

ε̇p = λ̇
∂g

∂σ
(E.29)

Using the hardening/softening rules and the consistency condition in Equation

(E.29), we obtain the following expression for the plastic strain increment [NM07]:

ε̇p =
(∂f/∂σ)σ̇

H

(
∂g

∂σ

)
(E.30)

At the moment when the stress state passes away the failure criterion (explicit

scheme), then it is necessary to perform a stress correction. It can be done by

substracting to the current stress state the plastic correction part as follows:
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f s(σ − σ̇) = f s(σ)− ∂f s

∂σ
σ̇

f t(σ − σ̇) = f t(σ)− ∂f t

∂σ
σ̇

(E.31)

The elastic stress increment can be written as

σ̇ = C
=

(ε̇total − ε̇p) (E.32)

where C
=

is an elastic stiffness tensor for the three dimensional case. By expanding

the increments of plastic strain in Equation (E.32) as a summation of the flow rule

of the shearing and of the tensile plastic deformation, we obtain

σ̇ = C
=

(
ε̇total − λ̇s

∂gs

∂σ
− λ̇t

∂gt

∂σ

)
(E.33)

The variables λ̇s and λ̇t may now be defined by requiring that the new stress point

must be located on the yield or failure surface. This implies that the left terms

in Equation (E.31) must equal to zero. By multiplying the Equation (E.33) with

(∂f s/∂σ) for shearing and (∂f t/∂σ) for tensile and replace (∂f/∂σ)σ̇ with λ̇sH

where H is a hardening/softening modulus. Then we have:

λ̇s(Hmod + Smod) = C
=

∂fs
∂σ

(
ε̇total − λ̇s

∂gs

∂σ
− λ̇t

∂gt

∂σ

)
λ̇tTmod = C

=

∂ft
∂σ

(
ε̇total − λ̇s

∂gs

∂σ
− λ̇t

∂gt

∂σ

) (E.34)

by arrangements we have

λ̇s

(
Hmod + Smod + C

=

∂fs
∂σ

∂gs

∂σ

)
+ λ̇t

(
C
=

∂fs
∂σ

∂gt

∂σ

)
= C

=

∂fs
∂σ

ε̇total

λ̇s

(
C
=

∂ft
∂σ

∂gs

∂σ

)
+ λ̇t

(
Tmod + C

=

∂ft
∂σ

∂gt

∂σ

)
= C

=

∂ft
∂σ

ε̇total
(E.35)
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Suppose that (
Hmod + Smod + C

=

∂fs
∂σ

∂gs

∂σ

)
= A(

C
=

∂fs
∂σ

∂gt

∂σ

)
= B(

C
=

∂ft
∂σ

∂gs

∂σ

)
= C(

Tmod + C
=

∂ft
∂σ

∂gt

∂σ

)
= D

C
=

∂fs
∂σ

ε̇total = fs(σ)

C
=

∂ft
∂σ

ε̇total = ft(σ)

(E.36)

where C
=

is an elastic stiffness matrix (Hooke’s law) and note that A,B,C, and D

are scalar quantity which can be obtained from

A = Hmod + Smod +



α1 α2 α2 0 0 0

α2 α1 α2 0 0 0

α2 α2 α1 0 0 0

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G





∂gs11/∂σ11

∂gs22/∂σ22

∂gs33/∂σ33

∂gs12/∂σ12

∂gs13/∂σ13

∂gs23/∂σ23





∂fs11/∂σ11

∂fs22/∂σ22

∂fs33/∂σ33

∂fs12/∂σ12

∂fs13/∂σ13

∂fs23/∂σ23


(E.37)

B =



α1 α2 α2 0 0 0

α2 α1 α2 0 0 0

α2 α2 α1 0 0 0

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G





∂gt11/∂σ11 = 0.0

∂gt22/∂σ22 = 0.0

∂gt33/∂σ33 = 1.0

∂gt12/∂σ12 = 0.0

∂gt13/∂σ13 = 0.0

∂gt23/∂σ23 = 0.0





∂fs11/∂σ11

∂fs22/∂σ22

∂fs33/∂σ33

∂fs12/∂σ12

∂fs13/∂σ13

∂fs23/∂σ23


(E.38)

136



Appendix E. Computational procedure

C =



α1 α2 α2 0 0 0

α2 α1 α2 0 0 0

α2 α2 α1 0 0 0

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G





∂gs11/∂σ11

∂gs22/∂σ22

∂gs33/∂σ33

∂gs12/∂σ12

∂gs13/∂σ13

∂gs23/∂σ23





∂ft11/∂σ11 = 0.0

∂ft22/∂σ22 = 0.0

∂ft33/∂σ33 = 1.0

∂ft12/∂σ12 = 0.0

∂ft13/∂σ13 = 0.0

∂ft23/∂σ23 = 0.0


(E.39)

D = Tmod +



α1 α2 α2 0 0 0

α2 α1 α2 0 0 0

α2 α2 α1 0 0 0

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G





∂gt11/∂σ11 = 0.0

∂gt22/∂σ22 = 0.0

∂gt33/∂σ33 = 1.0

∂gt12/∂σ12 = 0.0

∂gt13/∂σ13 = 0.0

∂gt23/∂σ23 = 0.0





∂ft11/∂σ11 = 0.0

∂ft22/∂σ22 = 0.0

∂ft33/∂σ33 = 1.0

∂ft12/∂σ12 = 0.0

∂ft13/∂σ13 = 0.0

∂ft23/∂σ23 = 0.0


(E.40)

The value of Hmod, Smod, and Tmod can be calculated from the equation (E.10),

equation (E.19), and equation (E.28). Therefore, by using assumptions from equa-

tion (E.36) and put it into equation (E.35), we have two equations with two un-

knowns (λ̇s and λ̇t) as follows

λ̇sA+ λ̇tB = fs(σ)

λ̇sC + λ̇tD = ft(σ)
(E.41)

Some possible solutions of the equations (E.41) can be solved by certain condition

as follows

if fs(σ) ≥ 0.0 and ft(σ) ≥ 0.0 then

λ̇s =
fs(σ)D − ft(σ)B

AD −BC

λ̇t =
ft(σ)A− fs(σ)C

AD −BC

(E.42)

if fs(σ) ≥ 0.0 and ft(σ) ≤ 0.0 then

λ̇s =
fs(σ)

A

λ̇t = 0.0

(E.43)
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if fs(σ) ≤ 0.0 and ft(σ) ≥ 0.0 then

λ̇s = 0.0

λ̇t =
ft(σ)

D

(E.44)

if fs(σ) < 0.0 and ft(σ) < 0.0 then

λ̇s = 0.0

λ̇t = 0.0

(E.45)

E.4 Plastic corrections in principal stress base

The computation of the new stresses is made by adding to the old stress compo-

nents the plastic correction part as follows:

σnew1 = σold1 − λtα2 + λs

(
2Ge(G11) + α2tr(G)

)
σnew2 = σold2 − λtα2 + λs

(
2Ge(G22) + α2tr(G)

)
σnew3 = σold3 − λtα1 + λs

(
2Ge(G33) + α2tr(G)

) (E.46)

where Ge is the shear modulus and G is the derivation of the plastic potential of

the shear mechanism with respect to stress tensor.
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A parametric study in the

boundary value problem

A parametric study is carried out to see the effect of some layer parameters on

the behaviour of wallette throughout the diagonal compression test and pushover

test. The main objective of this study is to investigate the impact of these pa-

rameters and how they affect the response of the calibrated homogeneous system.

The parametric study was performed by changing parameters accounting in the

plastic shear mechanism and plastic tensile mechanism.

F.1 Diagonal compression test

Table F.1 shows parameters that considered in the parametric study in the diag-

onal compression test. The references value are taken from the calibrated homo-

geneous system. The lower and upper value are taken considering the possible

variability in the identification of the parameters.

Figure F.1 shows the result of the diagonal compression test by using three differ-

ents hardening parameter (A). According to Figure F.1, A gives small influence

on the first peak and slightly at the second part of the curves. In general, the

global impact is not significant in the diagonal compression test. Figure F.2 de-

pict influence of the radius at failure Rfail. It is shown that the higher Rfail gives

a more ductile responses and higher resistance. On the other hand the lower Rfail

makes peak responses reached earlier. The role of αs (Figure F.3) shows no effect

at the first part of the curves, but it gives an impact at the second part of the

curves.
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In terms of tensile strength, Figure F.4 depict influence of tensile parameter Tr. As

expected, Tr gives an important effect on the first peak in the diagonal compres-

sion test. This is due to the governing mechanism in the diagonal compression test

which is tensile mechanism. Finally, variations on the tensile softening parameter

αt (Figure F.5) shows no effect in the global behaviour of the pushover test.

Table F.1: Parameters considered in the parametric study for diagonal com-
pression test

Parameters reference value lower value upper value
A 0.00013 0.00010 0.00016
Rfail 0.22 0.18 0.26
αs -0.0003 -0.0001 -0.0005
Tr 8%fc 5%fc 12%fc
αt -0.5 -0.02 -1.0

Figure F.1: Effect of the isotropic hardening parameter A in the diagonal
compression test

Figure F.6 depict the non-dimensional measure of first peak in diagonal compres-

sion test (normalised by the first peak in the calibrated system (τ/τref)) compared

with the non-dimensional parameters tested in the parametric study (normalised

by the respective parameter of the calibrated system (x/xref)). According to the

Figure F.6, the parameter Rfail, Tr, and αt are the parameters with the important

impact in terms of the first peak in diagonal compression test. Similar results

also found in [MOS+14] where compression strength, tensile strength, and tensile

fracture energy are the parameters with the greatest influence on the maximum

shear stress. Nevertheless, parameter A and αs gives a little effect in terms of first
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Figure F.2: Effect of the radius at failure Rfail in the diagonal compression
test

Figure F.3: Effect of shear softening parameter αs in the diagonal compression
test
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Figure F.4: Effect of tensile parameter Tr in the diagonal compression test

Figure F.5: Effect of tensile softening parameter αt in the diagonal compres-
sion test
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peak in the diagonal compression test.

Figure F.6: Non-dimensional relationship between the maximum shear stress
and the parameters assessed (x) for the homogeneous system in the diagonal

compression test.
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F.2 Pushover test

The next part is the parametric study on the pushover test. The reference param-

eters are taken from calibrated homogeneous system in the context of experiments

from El Nabouch [EN17]. Table F.2 shows parameters considered in the paramet-

ric study in the pushover test.

Table F.2: Parameters considered in the parametric study for pushover test

Parameters reference value lower value upper value
A 0.00013 0.00010 0.00016
Rfail 0.39 0.38 0.41
αs -0.0003 -0.0001 -0.0005
Tr 8%fc 5%fc 12%fc
αt -0.5 -0.02 -1.0

Figure F.7 shows the result of pushover test by using differents hardening param-

eter A. It can be seen that A not gives significant impact in terms of maximum

responses. Figure F.8 depict simulation with differents of the radius at failure

Rfail. It is shown that the higher Rfail gives a higher resistance. Variations on the

tensile softening parameters αt (Figure F.11) shows essentially no effect. Figure

F.10 depict influence of tensile parameter Tr. It is seen that from tensile strength

of 5%fc to 8.0%fc indicate no effects. But, when Tr set equal to 12%fc, system

failed at higher resistance. Finally, impact of αs (Figure F.9) is negligible in the

pushover test

Figure F.12 shows the non-dimensional maximum horizontal load in the pushover

test (normalised by the maximum horizontal load of the calibrated system (H/Href))

compared with the non-dimensional parameters tested in the parametric study

(normalised by the respective parameter of the calibrated system (x/xref)). Ac-

cording to the Figure F.12, the parameter Rfail and Tr are the parameters with

important role on the maximum responses in the pushover test. On the other

hand the A, αs, and αt showed little effect in terms of the maximum responses.
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Figure F.7: Effect of the isotropic hardening parameter A in the pushover
test

Figure F.8: Effect of the radius at failure Rfail in the pushover test
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Figure F.9: Effect of shear softening parameter αs in the pushover test

Figure F.10: Effect of tensile parameter Tr in the pushover test
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Figure F.11: Effect of tensile softening parameter αt in the pushover test

Figure F.12: Non-dimensional relationship between the maximum horizon-
tal load and the parameters assessed (x) for the homogeneous system in the

pushover test.
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