
HAL Id: tel-01663266
https://theses.hal.science/tel-01663266v1

Submitted on 13 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Algorithmic Complexity of Well-Quasi-Orders
Sylvain Schmitz

To cite this version:
Sylvain Schmitz. Algorithmic Complexity of Well-Quasi-Orders. Logic in Computer Science [cs.LO].
École normale supérieure Paris-Saclay, 2017. �tel-01663266�

https://theses.hal.science/tel-01663266v1
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

H
ab

ili
ta
ti
on

à
di
ri
ge

r
de

s
re
ch

er
ch

es

Algorithmic Complexity
of Well-Quasi-Orders

Habilitation à diriger des recherches
préparée à l’École Normale Supérieure Paris-Saclay
au sein du Laboratoire Spécification & Vérification

Présentée et soutenue à Cachan, le 27 novembre 2017, par

Sylvain Schmitz

Composition du jury :

Mikołaj Bojańczyk Rapporteur
Professeur, Universytet Warszawski

Javier Esparza Rapporteur
Professeur, Technische Universität München

Alain Finkel Examinateur
Professeur, École Normale Supérieure Paris-Saclay

Géraud Sénizergues Rapporteur
Professeur, Université de Bordeaux

Andreas Weiermann Examinateur
Professeur, Universiteit Gent

James B. Worrell Examinateur
Professeur, University of Oxford

Algorithmic Complexity
of Well-Quasi-Orders

Habilitation Thesis

Sylvain Schmitz

© Sylvain Schmitz
licensed under Creative Commons License CC-BY-ND

http://creativecommons.org/licenses/by-nd/4.0/

Acknowledgements *

I am indebted to a very large number of people who supported me on insti-
tutional, scientific, and personal levels while carrying this work.

My first thanks go to all the people I have worked along with at the Labora-
toire Spécification et Vérification in Cachan over the nine years I have spent there
since 2008: to the administrative and technical staff for their kindness and avail-
ability, to my current students Simon Halfon and Anthony Lick and my former
intern and visiting students for thought-provoking discussions, and to all my col-
leagues for creating such a supportive and stimulating environment—it has been
an incredibly formative experience, I have learned so much from all of you. Spe-
cial thanks go to Alain Finkel, Jean Goubault-Larrecq, and Philippe Schnoebelen,
who introduced me to the theory of well-quasi-orders when I arrived in Cachan.

Let me thank more generally all my co-authors over the years: it has been a
privilege to work by your side. My lasting collaborations with Ranko Lazić and
Philippe Schnoebelen have been especially influential: little of the work described
in this habilitation would have existed without you.

I also thank the members of the jury for their excellent comments and cor-
rections on the manuscript, and for their patience and goodwill during the entire
process.

I have also benefited from the fantastic opportunity to teach at École Normale
Supérieure Paris-Saclay all over these nine years; the demands of tutoring and
lecturing to such an exacting audience have had a deep influence. I thank my
students and everyone I shared a course with, and in particular Paul Gastin for
his guidance as head of the computer science department when I started on the
job, at what was then called ENS Cachan.

To end on a personal note, I give my heartful thanks to Marie Antczak, Claire
David, Laure Daviaud, Mahsa Shirmohammadi, and everyone else who joined in
the nudging and encouraged me to complete this habilitation thesis.

Thank you!

*I acknowledge the institutional and financial support of ENS Paris-Saclay, CNRS, Inria, ANR,
the Leverhulme Trust, the University of Warwick, and the University of Warsaw.

i

Contents

Chapter 1. Introduction 1
1.1. General Context 1

1.1.1. Verification of Infinite-state Systems 1
1.1.2. A Game Changer: Well-Structured Systems 1
1.1.3. Tools and Practical Applications 2
1.1.4. The Complexity Question 2

1.2. Contributions 3
1.2.1. Techniques for Upper Bounds 3
1.2.2. Techniques for Lower Bounds 4
1.2.3. Complexity Classes 5
1.2.4. A Challenge: the Complexity of VASS Reachability 5
1.2.5. Other Contributions 7

Chapter 2. Well-Quasi-Orders & Applications 9
2.1. Basic Definitions 10

2.1.1. Well-Quasi-Orders 10
2.1.2. Examples 11

2.2. Application: Program Termination 11
2.2.1. Ranking Functions 12
2.2.2. Quasi-Ranking Functions 13

2.3. Application: Well-Structured Transition Systems 14
2.3.1. Formal Definition 15
2.3.2. Example: Lossy Counter Machines 15
2.3.3. Verifying WSTS 16

Chapter 3. Length FunctionTheorems 19
3.1. Controlling Bad Sequences 20

3.1.1. Normed wqos 21
3.1.2. Controlled Sequences 21
3.1.3. Length Functions 22

3.2. Subrecursive Hierarchies 23
3.2.1. Fundamental Sequences and Predecessors 23
3.2.2. Hardy and Cichoń Hierarchies 23

3.3. Length Functions for Ordinals Below ε0 24
3.3.1. Residuals and a Descent Equation 25
3.3.2. Upper Bounds 25

3.4. Length Functions for Dickson’s Lemma 26
3.4.1. Polynomial Normed wqos 27
3.4.2. Reflecting Normed wqos 27
3.4.3. Maximal Order Types 29

iii

iv CONTENTS

3.4.4. Upper Bounds 30
3.5. Related Work & Perspectives 31

3.5.1. Length Functions for Ordinals 31
3.5.2. Length Functions for Well-Quasi-Orders 32
3.5.3. Further Applications 32
3.5.4. Perspectives 33

Chapter 4. Fast-Growing Complexity 35
4.1. Complexity Classes Beyond ELEMENTARY 36

4.1.1. The Extended Grzegorczyk Hierarchy 36
4.1.2. The Fast-Growing Complexity Hierarchy 38
4.1.3. Example: LCM Coverability is in ACKERMANN 42

4.2. Lower Bounds Through Hardy Computations 43
4.2.1. Hardy-like Computations 44
4.2.2. Weak Computation in Lossy Counter Machines 45
4.2.3. Lower Bound 47

4.3. Related Work & Perspectives 49
4.3.1. Lower Bounds Through Counter Objects 49
4.3.2. Provability in Theories of Arithmetic 50

Chapter 5. Reachability in Vector Addition Systems 53
5.1. Basic Definitions 54

5.1.1. Vector Addition Systems with States 54
5.1.2. Closely Related Models 56

5.2. The Decomposition Algorithm 56
5.2.1. Marked Witness Graph Sequences 57
5.2.2. An Example of a KLMST Decomposition 58
5.2.3. Termination 60

5.3. Complexity Upper Bound 61
5.3.1. An Ordinal Ranking Function 61
5.3.2. Applying the Length Function Theorems 61

5.4. Related Work & Perspectives 63
5.4.1. Tightness 63
5.4.2. Restrictions 64
5.4.3. Extensions 67

Chapter 6. Perspectives 69
6.1. Complexity of VASS Reachability 69
6.2. Parameterised Bounds 69
6.3. Algorithmic Applications of Ideals 70

6.3.1. Ideals 70
6.3.2. A Dual Backward Coverability Algorithm 71
6.3.3. Beyond Well-Quasi-Orders 72

6.4. Reachability in VASS Extensions 72
6.4.1. Branching VASS Reachability 73
6.4.2. Ideal Decomposition of the Set of Executions 73

Appendix A. Technical Appendix 75
A.1. Ordinals 75

A.1.1. Ordinals Terms 75

CONTENTS v

A.1.2. Maximal Order Types 76
A.2. Subrecursive Functions 76

A.2.1. Monotonicity Properties 76

References 79

List of Publications 93

CHAPTER 1

Introduction

1.1. General Context

The main motivations for this thesis are rooted in formal verification, and
in particular in model-checking techniques. This might come as a surprise, be-
cause the title seems centred on well-quasi-orders, which are a rather abstract
concept, whose invention can be tracked back to the early 1910s andwhose theory
was developed by mathematicians like Higman [1952], Kruskal [1972], de Jongh
and Parikh [1977], and many others. Model-checking on the other hand, while
certainly grounded on sound mathematical concepts [e.g. Vardi, 2009], is an emi-
nently practical field of computer science with a widespread adoption in the hard-
ware industry. At its core, it consists of a fully automated, algorithmic check that
a model of a system—like a concrete sequential circuit—satisfies its specification—
like a safety check that no bad configuration can ever be reached in the model.

1.1.1. Verification of Infinite-state Systems. Once the general underpin-
nings of model-checking for finite-state systems were well-understood, the focus
of the formal verification community turned in the 1990s to infinite-state systems.
Indeed, many critical systems worth the time and effort required by formal ver-
ification are infinite, due to unbounded variables: integer counters, number of
active threads in concurrent settings, real-time clocks, stacks, nonces, communi-
cation channels, etc. In some specific instances, these infinite-state systems are
‘essentially finite-state’ and can be faithfully abstracted into finite ones by finite
partitioning, i.e. by quotienting them using a bisimulation equivalence of finite
index—this method was notably behind the success of timed automata [Alur and
Dill, 1994]. But at that time this research area was lacking common methods and
general principles to cope with cases where finite partitioning failed.

1.1.2. A Game Changer: Well-Structured Systems. This situation was
remedied by Abdulla, Čerāns, Jonsson, and Tsay [2000] and Finkel and Schnoebe-
len [2001], who popularised the notion of well-structured systems. Their approach
can be understood as a generalisation of the finite partitioning method, using
instead simulation quasi-orders. The finiteness condition on the equivalence’s in-
dex was accordingly replaced by a much more flexible condition: this quasi-order
should be a well-quasi-order (a wqo).

The two landmark papers by Abdulla et al. and Finkel and Schnoebelen identi-
fied two generic algorithmic constructions, backward coverability and finite reach-
ability trees, which terminate in well-structured systems and allow to check prop-
erties like safety (through the coverability problem), inevitability, termination,
boundedness, simulation relations, etc. This provided a unifying explanation of
several existing decidability results, and guidelines for discovering similar results
in future classes of systems.

1

2 1. INTRODUCTION

Already in 2000, this simple abstract framework had been shown to cap-
ture varied concrete formalisms, including extensions of vector addition systems,
communicating finite-state machines, process algebra, or timed systems. Twenty
years later, this catalogue of applications still keeps growing, with unforeseen far-
reaching theoretical applications, like the decidability of logics—including metric
temporal logics [Ouaknine and Worrell, 2007], data logics [Figueira, 2012], inter-
val temporal logics [Bresolin et al., 2012], and substructural logics [J1; J4]. Thus
the title ‘Well-Structured Transition Systems Everywhere!’ of Finkel and Schnoe-
belen’s article has turned out to be a self-fulfilling prophecy.

1.1.3. Tools and Practical Applications. Well-structured systems are also
at the origin of numerous practical applications, which target among others the
automatic verification of parametric systems and of multi-threaded programs.
Infinite-state models like vector addition systems and their extensions are indeed
necessary in order to analyse systemswhere correctness should hold for any num-
ber of components, or where dynamic creation of processes or execution threads
can occur. These tools typically implement highly optimised versions of the back-
ward coverability principle, sometimes alongside forward pruning of the state
space, and are able to cope with practical instances extracted frommulti-threaded
programs, cache coherence protocols, communication protocols, memory man-
agers, etc. [Blondin et al., 2017b; Delzanno et al., 2001; Esparza et al., 2014; Geffroy
et al., 2016, 2017; Geeraerts et al., 2005; Kaiser et al., 2014, 2017].

1.1.4. The Complexity Question. Although the theory of well-structured
systems provides generic algorithms for numerous verification problems, it might
seem rather unclear, what the computational cost of running these generic algo-
rithms might be. Indeed, the underlying well-quasi-orders ensure that the algo-
rithm will eventually terminate, but the usual proofs of this fact are not construc-
tive and do not provide any information as to when that will happen.

What was however known thanks to Schnoebelen [2002] was that the worst-
case complexity could be considerable. Indeed, Schnoebelen showed that check-
ing safety in two of the main well-structured formalisms, namely lossy counter
systems and lossy channel systems, is not primitive-recursive. Thus the worst-
case complexity of checking even small systems exceeds the known estimates for
physical quantities like the number of atoms in the observable universe or the
number of nanoseconds since the Big Bang, and these problems might be better
labelled as ‘not undecidable.’

We could stop there on the question of the complexity of algorithms on well-
structured systems. Such lower bounds indicate that, as far as practical verifica-
tion goes, the problems are not that different from undecidable ones. That is, we
should not be deterred because those are worst-case bounds that say little about
the difficulty of solving practical instances, which presumably do not attempt to
implement complex computations of Turing or Minsky machines.

I can easily argue here that the point of complexity theory is very rarely to es-
timate the running times observed on implementations over realistic inputs.1 The
interest rather lies in finely understanding the computational problem at hand, in

1The exception being average-case complexity analysis for a suitable probability distribution
on the inputs, which is fiendishly difficult even for simple algorithms, not to mention how hard it
is to invent a ‘realistic’ probability distribution.

1.2. CONTRIBUTIONS 3

having at least a crude notion of optimality for it, in identifying its main sources
of complexity, in comparing the complexity of its different algorithms.

Additionally, in the context of well-structured systems where there are many
different families of systems using various wqos, computational complexity also
serves as a proxy for expressiveness, where algorithmic lower bounds allow to
prove that some classes of models cannot be efficiently encoded into others. From
this expressiveness perspective, a highly expressive but nevertheless not undecid-
able formalism also indicates an interesting modelling trade-off.

1.2. Contributions

In this thesis, I present a comprehensive assortment of results answering the
‘complexity question’ for algorithms that rely on well-quasi-orders for their ter-
mination, like the briefly mentioned backward coverability algorithm in well-
structured systems. I cover both upper bounds and lower bounds techniques,
the definition of suitable complexity classes, and provide applications in verifica-
tion (prominently for well-structured systems). Because wqos are in such wide
use, this topic is of relevance to a broad community with interests in complexity
theory and decision procedures for logical theories. As a testimony to this wide
applicability, I refer the reader to [J3, Section 6], which contains a surprisingly
large catalogue of decision problems shown complete for the complexity classes
described herein.

After a brief overview of the algorithmic applications of well-quasi-orders in
Chapter 2, I present some of my contributions to this recent research direction in
Chapters 3 to 5, which I summarise next.

1.2.1. Techniques for Upper Bounds. As shown in Chapter 2, many algo-
rithms rely on well-quasi-orderings for their proof of termination. Although the
classical proofs of Dickson’s Lemma, Higman’s Lemma, and other wqos, are of
non-constructive nature, the way they are typically applied in algorithms lends
itself to constructive proofs, from which complexity upper bounds can be ex-
tracted and applied to evaluate algorithmic complexities. The resulting combi-
natorial statements are dubbed length function theorems, as they allow to bound
the length of so-called ‘controlled bad sequences’ over the wqo at hand.

1.2.1.1. Length Function Theorems. I present in Chapter 3 how one can derive
complexity upper bounds for algorithms relying for their termination on ordinals
below ε0 [I3] or Dickson’s Lemma over tuples of natural numbers [C19]. The
techniques are however quite generic and apply to more complex wqos [Rosa-
Velardo, 2017; C18].

Contribution (I3; C18; C19). Length function theorems for several well-
quasi-orders: Dickson’s Lemma, Higman’s Lemma, ordinals below ε0, and their
combinations.

This topic had already been explored in research communities centred on
proof theory and rewriting theory [Cichoń and Tahhan Bittar, 1998; Ketonen and
Solovay, 1981; McAloon, 1984; Weiermann, 1994], and my results with Figueira,
Figueira, and Schnoebelen rely on the same mathematical tools—broadly speak-
ing, maximal order types and subrecursive functions [e.g. Buchholz et al., 1994]—,
but provide refined bounds and more general statements on the wqos we con-
sider. Importantly, we showed how to apply these techniques to the algorithms

4 1. INTRODUCTION

employed in the literature on well-structured systems, making them accessible to
the infinite-state verification community and fostering their adoption.

1.2.1.2. Monotone Descending Sequences. Length function theorems on con-
trolled bad sequences are however not able to account for some results. A case in
point is the coverability problem in vector addition systems, where length func-
tion theorems only provide Ackermannian upper bounds, although coverability
witnesses were shown to be of double exponential length by Rackoff [1978]. In
joint work with Lazić [W1], we showed how a dual view of the usual backward
coverability algorithm, that builds a descending sequence of downwards-closed
sets instead of an ascending sequence of upwards-closed sets, exhibits a mono-
tonicity invariant yielding the desired double exponential bound. The same ap-
proach has since been used to obtain tight bounds in ν-Petri nets [C5] and poly-
nomial automata [Benedikt et al., 2017]. I touch this subject in Section 6.3.2.

Contribution (C5; W1). Length function theorems for monotone descend-
ing sequences of downwards-closed sets over tuples of natural numbers and finite
multisets of such tuples.

1.2.2. Techniques for Lower Bounds. The complexity upper bounds pro-
vided by length function theorems are typically not primitive-recursive, and one
is bound to wonder whether they are useful at all, i.e. whether there exist natu-
ral decision problems that require Ackermannian resources for their resolution.
As shown in pioneering works by Mayr and Meyer [1981], Urquhart [1999], and
Schnoebelen [2002], such gigantic complexities are actually tight for problems on
counter machines.

1.2.2.1. HardyComputations. I illustrate these lower bound techniques in Sec-
tion 4.2 in the case of coverability in lossy counter machines. While the general
pattern of these lower bound proofs relies on weak computer implementations of
fast-growing functions and their inverses as in [Chambart and Schnoebelen, 2008;
Mayr and Meyer, 1981; Schnoebelen, 2002; 2010a; Urquhart, 1999], my contribu-
tion lies in the implementation of Hardy computations using robust encodings of
ordinals. This allows to considerably simplify the proofs, which quickly become
horrendously involved in more expressive formalisms like priority channel sys-
tems [J5], lossy channel systems [C14], ordered data nets [C16], nested counter
systems [Decker and Thoma, 2016], or unordered data nets [Rosa-Velardo, 2017].

Contribution (Theorem 4.9; J5; C14; C16; L1). Hardy-like computations for
proving complexity lower bounds in well-structured systems.

The particular lower bound statement inTheorem 4.9 of this thesis is an origi-
nal contribution: it slightly improves over the known lower bounds for the cover-
ability problem in lossy counter machines with a fixed number of counters [Sch-
noebelen, 2010a], and thus in other extensions of vector addition systems where
these bounds apply: reset Petri nets, transfer Petri nets, broadcast protocols, …

1.2.2.2. Counter Objects. The approach through weak computers fails to pro-
vide tight lower bounds in some cases, including prominently vector addition
systems. For the sake of completeness, I briefly discuss in Section 4.3.1 another
approach introduced by Lipton [1976] to show the EXPSPACE-hardness of cover-
ability in vector addition systems. This has been instrumental in obtaining lower
bounds for several classes of well-structured systems [J4; C5; C9; C21].

1.2. CONTRIBUTIONS 5

1.2.3. Complexity Classes. Complexity classes, along with the associated
notions of reductions and completeness, allow us to classify and compare compu-
tational problems.

1.2.3.1. Non-Elementary Problems. The complexity literature does not pro-
vide any intermediate stops where well-known non-elementary problems—like
WS1S, the satisfiability problem for the weak monadic theory of one succes-
sor [Meyer, 1975]—would fit adequately. Indeed,WS1S is not in ELEMENTARY, but
the next class is PRIMITIVE-RECURSIVE, which is far too big: WS1S is not hard for
PRIMITIVE-RECURSIVE under any reasonable notion of reduction. In other words,
we seem to be missing a ‘TOWER’ complexity class, which ought to sit somewhere
between ELEMENTARY and PRIMITIVE-RECURSIVE. Going higher, we find a simi-
lar uncharted area between PRIMITIVE-RECURSIVE and RECURSIVE, where all the
decision problems considered in this thesis should fit.2

1.2.3.2. Fast-Growing Complexity. In Section 4.1, I present a proposal for com-
plexity classes above ELEMENTARY, which has already proven suitable for many
decision problems [J3, Section 6].

Contribution (J3). The definition of fast-growing complexity classes (Fα)α
suitable for non-elementary complexity.

The classes Fα are related to the hierarchy (E k)k of Grzegorczyk [1953] and
the extended Grzegorczyk hierarchy (Fα)α of Löb andWainer [1970], which have
been used in most older complexity statements involving non-elementary bounds
in the literature. The (Fα)α classes are well-suited for characterising various
classes of functions, for instance computed by forms of ‘for’ programs [Meyer and
Ritchie, 1967] or terminating ‘while’ programs [Fairtlough and Wainer, 1992], or
provably total in fragments of Peano arithmetic [e.g. Fairtlough andWainer, 1998],
and they characterise some important milestones like the classes of elementary
or primitive-recursive decision problems. They are however too large to classify
decision problems arising from the use of wqos in algorithms: they do not lead to
completeness statements—in fact, one can show that there are no ‘ELEMENTARY-
complete’ nor ‘PRIMITIVE-RECURSIVE-complete’ problems.

1.2.4. A Challenge: the Complexity of VASS Reachability. Vector addi-
tion systems (VASS), or equivalently Petri nets, find a wide range of applications
in the modelling of concurrent, chemical, biological, or business processes. Their
algorithmics, and in particular the decidability of their reachability problem, is a
central component to many decidability results spanning from the verification of
asynchronous programs [Ganty and Majumdar, 2012] to the decidability of data
logics [Bojańczyk et al., 2011; Demri et al., 2016].

Considered as one of the great achievements of theoretical computer sci-
ence, the original 1981 decidability proof of Mayr is the culmination of more
than a decade of research into the topic, and builds notably on an incomplete
proof by Sacerdote and Tenney [1977]. The proof was simplified a year later by
Kosaraju [1982]. In spite of this success, as put by Lambert in his 1992 article
presenting his own simplification of the proof,

2Somewhat oddly, the complexities above RECURSIVE are better explored and can rely on the
arithmetical and analytical hierarchies.

6 1. INTRODUCTION

‘the complexity of the two proofs (especially in [Mayr, 1981])
wrapped the result in mystery,’

and no complexity upper bound was known for the general VASS reachability
problem, while the best known lower bound is EXPSPACE-hardness [Lipton, 1976].
The only known tight bounds pertain to the case of 2-dimensional VASS, which
were recently shown to have a PSPACE-complete reachability problemwhen using
binary encodings [Blondin et al., 2015], and even an NL-complete one with unary
encodings [Englert et al., 2016].

1.2.4.1. Upper Bound. I present in Chapter 5 the first known complexity up-
per bounds for the reachability problem, by analysing the algorithm of Mayr,
Kosaraju, and Lambert using the length function theorems presented in Chap-
ter 3.

Contribution (Theorem 5.1; C8). The first complexity upper bounds for
reachability in vector addition systems.

More precisely, the result in Theorem 5.1 is a small improvement over the
‘cubic Ackermann’ upper bound obtainedwith Leroux in [C8]: I show a ‘quadratic
Ackermann’ upper bound, in Fω2 in terms of the complexity classes of Chapter 4.
This bound is not expected to be tight. However, as observed e.g. by Müller [1985]
the algorithms of Mayr, Kosaraju, and Lambert are not primitive-recursive. Thus
the complexity gap for these particular algorithms, between Fω and Fω2 , is not
that wide.

1.2.4.2. Ideal Decompositions. At the heart of these decidability proofs lies a
decomposition technique, which is dubbed the Kosaraju-Lambert-Mayr-Sacerdote-
Tenney (KLMST) decomposition after its inventors. In a nutshell, the KLMST
decomposition defines both a structure and a condition for this structure to rep-
resent in some way the set of all runs witnessing reachability. The algorithms
advanced by Mayr, Kosaraju, and Lambert compute this decomposition by suc-
cessive refinements of the structure until the condition is fulfilled.

The ‘mystery’ that shrouds the KLMST decomposition algorithm does not re-
late to how these structures and conditions are used in the algorithms themselves,
nor to the fact that they indeed yield the decidability of VASS reachability. Rather,
the issue is to explain how these structures and conditions can be derived in a
principled manner. This is what Leroux and I attempt to address in [C8]; I give
a quick overview of this result in Section 6.4.2. Using a well-quasi-ordering on
VASS runs studied by Jančar [1990] and Leroux [2011], we showed a Decompo-
sition Theorem (Theorem 6.3): the KLMST algorithm computes the ideal decom-
position of the set of runs, i.e. a decomposition into irreducible downward-closed
sets (see Section 6.3.1). The effective representation of those ideals through finite
structures turns out to match exactly the structures and conditions expressed by
Lambert [1992].

Contribution (C8). Explain the KLMST decomposition algorithm in terms
of ideal decompositions of a well-quasi-order.

This provides a full formal framework in which the reachability problem in
various VASS extensions might be cast, offering some hope to see progress on
those open issues.

1.2. CONTRIBUTIONS 7

1.2.5. Other Contributions. Although it is the main focus of this docu-
ment, my work does not revolve exclusively around the complexity of wqo al-
gorithms. I would like to mention here a few significant contributions that could
not be presented in the remainder of this thesis.

1.2.5.1. Substructural Logics. One of the applications of counter systems is to
provide algorithmic techniques for other formalisms. For instance, strong con-
nections can be drawn between branching and alternating extensions of vector
addition systems on the one hand, and proof systems for substructural logics like
linear logic or relevance logic on the other hand. By reducing logic problems
to reachability problems in such extensions, I have been able to solve two long-
standing open problems.

Contribution (J1). The implicational implicational fragment of relevance
logic is 2-EXP-complete.

This fragment had been proven decidable by Kripke in 1959, and no progress had
been made since Urquhart’s 1990 EXPSPACE lower bound and 1999 ACKERMANN
upper bound. The problem is also equivalent to simple type inhabitation in the
λI-calculus.

Contribution (J4). Propositional affine linear logic is TOWER-complete.

This logic had been shown decidable by Kopylov in 1995, with no known upper
bound. This work with Lazić further provides the best known lower bound for
multiplicative exponential linear logic (MELL), whose decidability is a major open
problem since the 1990s [Lincoln et al., 1992]—see Section 6.4.

1.2.5.2. Energy Games. Alternating vector addition systems also capture a
class of ‘resource-conscious’ games calledmulti-dimensional energy parity games,
employed for the synthesis of reactive systems. The motivation here is to gen-
erate automatically a correct system against some functional requirements, that
furthermore guarantees that several discrete resources (e.g., available funds, items
in stock, units of fuel or time, …) will never get depleted.

Contribution (C1; C7; C9). Multi-dimensional energy parity games are
2-EXP-complete.

This series of articles, first with Courtois, and later in collaborations with Jurdz-
iński, Lazić, and Colcombet, also shows the problem to be in pseudo-polynomial
time in fixed dimension. Our results are based on geometric intuitions, which
we formalise by introducing perfect half-space games. They answer open prob-
lems for multi-dimensional energy games [Velner et al., 2015], extended games
on vector addition systems [Brázdil et al., 2010], simulation games in basic par-
allel processes [Lasota, 2009], multi-agent resource logics [Alechina et al., 2016],
an affine variant of (⊕, !)-Horn linear logic [Kanovich, 1995], and single-sided
µ-calculus model-checking on vector addition systems [Abdulla et al., 2013].

CHAPTER 2

Well-Quasi-Orders & Applications

A quasi order (qo) ⟨A,≤⟩ consists of a support set A along with a transitive
reflexive relation ≤ ⊆ A×A. We call a finite or infinite sequence x0, x1, x2, . . .
over A good if there exist two indices i < j such that xi ≤ xj , and bad oth-
erwise. A well-quasi-order (wqo) is a qo ⟨A,≤⟩ such that any infinite sequence
x0, x1, x2, . . . of elements over A is good. Equivalently, any bad sequence over
A is finite.

Thus well-quasi-orders are a means to proving finiteness statements. A typ-
ical application is program termination, which can be shown by mapping any
execution sequence of a program to a bad sequence of longer or equal length:
as bad sequences are finite, so are executions, and this shows that the program
terminates (see Section 2.2). A second application is found in well-structured tran-
sition systems (see Section 2.3), where configurations are ordered with a wqo com-
patible with the transitions: a large portfolio of algorithms relying on wqos for
termination is available on these systems [Abdulla et al., 2000; Finkel and Schnoe-
belen, 2001], with applications in verification, logic, distributed computing, etc.

The material in this chapter is mostly standard. The presentation is based
chiefly on the lecture notes [L1] and the invited papers [I4; I3].

Contents

2.1. Basic Definitions 10
2.1.1. Well-Quasi-Orders 10

2.1.1.1. Ascending Chain Condition 10
2.1.1.2. Finite Basis Property 10
2.1.1.3. Well-(Partial)-Orders 10

2.1.2. Examples 11
2.2. Application: Program Termination 11

2.2.1. Ranking Functions 12
2.2.1.1. Monolithic Ranking Functions 12
2.2.1.2. Lexicographic Ranking Functions 13
2.2.1.3. Ordinal Ranking Functions 13

2.2.2. Quasi-Ranking Functions 13
2.2.2.1. Termination byQuasi-Ranking 14
2.2.2.2. Disjunctive Termination Arguments 14

2.3. Application: Well-Structured Transition Systems 14
2.3.1. Formal Definition 15
2.3.2. Example: Lossy Counter Machines 15
2.3.3. Verifying WSTS 16

2.3.3.1. Coverability 16
2.3.3.2. Backward Coverability 17
2.3.3.3. Termination and Effectiveness of the Algorithm 17

9

10 2. WELL-QUASI-ORDERS & APPLICATIONS

2.1. Basic Definitions

The upward-closure ↑B of some B ⊆ A in a qo ⟨A,≤⟩ is defined as ↑B def=
{x ∈ A | ∃y ∈ B, x ≥ y}. We write ↑x instead of ↑{x} for singletons. When
B = ↑B, we say that B is upwards-closed. The downward-closure ↓B of B and
the notion of downwards-closed sets are defined symmetrically.

2.1.1. Well-Quasi-Orders. The definition of a wqo as enforcing finite bad
sequences is just one among many equivalent ones [Kruskal, 1972]. Notably,
⟨A,≤⟩ is a wqo if and only if

(1) ≤ is well-founded, i.e. there does not exist any infinite decreasing se-
quence x0 > x1 > x2 > · · · of elements in A, where < def= ≤ \ ≥,
and

(2) ≤ satisfies the finite antichain condition, i.e. there are no infinite sets of
mutually ≤-incomparable elements in A.

2.1.1.1. Ascending Chain Condition. Another equivalent characterisation is
that a qo ⟨A,≤⟩ is a wqo if and only if any increasing sequence U0 ⊆ U1 ⊆ U2 ⊆
· · · of upwards-closed subsets of A eventually stabilises, i.e.,

∪
i∈N Ui = Uk =

Uk+1 = Uk+2 = · · · for some k. Indeed, for the ‘only if’ direction, in a strictly
increasing sequence U0 ⊊ U1 ⊊ U2 ⊊ · · · of upwards-closed subsets of A, we
can extract at each step an element xi ∈ Ui+1 \ Ui. If i < j, then xi ≤ xj would
imply xj ∈ Ui+1 since Ui+1 is upwards-closed, but this contradicts xj ̸∈ Uj .
Hence the sequence of elements x0, x1, x2, . . . is bad and the strictly increasing
sequence U0 ⊊ U1 ⊊ U2 ⊊ · · · is finite. Note that we can assume each xi to be a
minimal element of Ui+1 in the previous argument: if every minimal element of
Ui+1 were in Ui, then Ui ⊇ Ui+1.

2.1.1.2. Finite Basis Property. Upwards- and downwards-closed sets of wqos
are important algorithmic tools: they are subsets of A that can be finitely repre-
sented and handled. The simplest generic representation is by minimal elements.
Indeed, the finite antichain condition ensures that, in any subset of A, there are
finitely many minimal elements up to the equivalence ≡ def= ≤ ∩ ≥. Thus any
upwards-closed U ⊆ A can be written as the upward-closure of finitely many el-
ements, i.e. U = ↑{x1, . . . , xn} for some x1, . . . , xn ∈ A. One can see how, using
this representation, the comparison of possibly infinite (but upwards-closed) sets
can be reduced to finitely many comparisons of elements.

The complement of a downwards-closed set D is upwards-closed. Hence
downwards-closed subsets of a wqo can be characterised by so-called excluded
minors. That is, every downwards-closed D can be associated with a finite set
{x1, . . . , xn} such that x ∈ D if and only if x1 ̸≤ x ∧ · · · ∧ xn ̸≤ x. Here
the xis are the excluded minors and D is ‘everything that does not have one of
them as a minor’. We will see another representation of downwards-closed sets
in Section 6.3.

2.1.1.3. Well-(Partial)-Orders. A wqo where ≤ is antisymmetric is called a
well-partial-order (wpo). Note that quotienting a wqo by the equivalence ≡ def=
≤ ∩≥, i.e. equating elements x and y whenever x ≤ y and y ≤ x, yields a wpo.

A wpo ⟨A,≤⟩ where ≤ is linear (aka total), is a well-order (wo). Because a
wo has antichains of cardinal at most 1, this coincides with the usual definition
as a well-founded linear order. Finally, any linearisation of a wpo ⟨A,≤⟩, i.e. any

2.2. APPLICATION: PROGRAM TERMINATION 11

linear order ⪯ ⊇ ≤, defines a wo ⟨A,⪯⟩. One can think of the linearisation
process as one of ‘orienting’ pairs of incomparable elements; such a linearisation
always exists thanks to the order-extension principle. Note that, over a linear
order, a bad sequence x0, x1, . . . is actually a decreasing sequence x0 > x1 > · · · .

2.1.2. Examples. For a basic example, consider any finite set Q along with
the equality relation, which is a wqo ⟨Q,=⟩ by the pigeonhole principle. As ex-
plained above, any wo is a wqo, which provides us with another basic example:
the set of natural numbers along with its natural ordering ⟨N,≤⟩.

Many more examples can be constructed using algebraic operations: for in-
stance, if ⟨A,≤A⟩ and ⟨B,≤B⟩ are wqos, then so are:

• their disjoint sum ⟨A⊔B,≤⊔⟩with the sum ordering: A⊔B def= {(x, 0) |
x ∈ A} ∪ {(y, 1) | y ∈ B} and (z, i) ≤⊔ (z′, j) if and only if i = j and
z ≤C z′ where C def= A if i = 0 and C def= B otherwise,

• their Cartesian product ⟨A×B,≤×⟩with the product ordering: (x, y) ≤×
(x′, y′) if and only if x ≤A x′ and y ≤B y′; in the case of ⟨Nd,≤×⟩ this
result is also known as Dickson’s Lemma [Dickson, 1913],

• ⟨A∗,≤∗⟩, the set of finite sequences over A along with subword embed-
ding: x1 · · ·xm ≤∗ y1 · · · yn if and only if there exists an increasing
f : {1, . . . ,m} → {1, . . . , n} such that xi ≤A yf(i) for all 1 ≤ i ≤ m;
this result is better known as Higman’s Lemma [Higman, 1952],

• the set of finite trees labelled by A with the homeomorphic embedding,
aka Kruskal’s Tree Theorem [Kruskal, 1960; Nash-Williams, 1963], and

• the set of finite graphs labelled by A with the minor ordering, aka the
Graph Minor Theorem [Robertson and Seymour, 2010].

Turning to well orders, an operation that preserves wos is the lexicographic
product ⟨A×B,≤lex⟩ where (x, y) ≤lex (x

′, y′) if and only if x <A x′, or x = x′

and y ≤B y′. This is typically employed in d-tuples of natural numbers ordered
lexicographically ⟨Nd,≤lex⟩: observe that this is a linearisation of ⟨Nd,≤×⟩.

Another classical well order employed in termination proofs is the multiset
order ⟨M(A),≤m⟩ of Dershowitz and Manna [1979]. There, M(A) denotes the
set of finite multisets over the wo ⟨A,≤⟩, i.e. of functionsm:A → Nwith finitely
many x in A such that m(x) > 0, and m ≤m m′ if and only if for all x in
A, if m(x) > m′(x), then there exists y >A x such that m(y) < m′(y) [see
also Jouannaud and Lescanne, 1982].

2.2. Application: Program Termination

A first application of well-quasi-orders and well-orders is to prove program
termination. The basic principle is to associate a decreasing sequence (over a
wo) or a bad sequence (over a wqo) to any sequence of execution steps of the
program, thereby showing that the execution must eventually terminate. This
is hardly a new idea: using a ranking function into a wo was already put forth
by Turing in 1949 (see Section 2.2.1). From there, it is natural to generalise to
quasi-ranking functions into wqos [I3], which provide a different viewpoint on
termination proofs by disjunctive termination arguments promoted by Podelski
and Rybalchenko [2004] (see Section 2.2.2).

We illustrate the main ideas in this section using a very simple program, given
in pseudo-code in Figure 2.1a. Formally, we see the operational semantics of a

12 2. WELL-QUASI-ORDERS & APPLICATIONS

ℓ0 : while x >= 0 and y > 0 do
i f x > 0 then

a : x : = x−1; n : = 2n ;
e l se

b : x : = n ; y : = y−1; n : = 2n ;
done ;
r e t u r n n ;

(a) A program over integer variables.

ℓ0

a:
assume(x>0);
assume(y>0);
x := x−1;
n := 2n;

b:
assume(x=0);
assume(y>0);
x := n;
y := y−1;
n := 2n;

(b)The associated control-flow graph.

Figure 2.1. A simple terminating program.

program like the one in Figure 2.1a as a transition system S = ⟨S,→⟩ where
S denotes the set of program configurations and → ⊆ S × S denotes execu-
tion steps. In such a simple non-recursive program, the set of configurations is a
variable valuation, including a program counter pc ranging over the finite set of
program locations. For our simple program a single location suffices and we set

(2.1) S = {ℓ0} × Z× Z× Z ,

where the last three components provide the values of x, y, and n, and the first
component the value of pc. The corresponding transition relation is the union
a−→∪ b−→ of the two possible updates, and contains for instance

(ℓ0, 3, 1, 4)
a−→ (ℓ0, 2, 1, 8)

using transition a in Figure 2.1b.

2.2.1. Ranking Functions. We say that a transition system S = ⟨S,→⟩
terminates if every execution s0 → s1 → · · · is finite. The standard method in
order to prove that a program terminates for all inputs is to exhibit a ranking func-
tion f into some well-order, such that →-related configurations have decreasing
rank [Floyd, 1967; Turing, 1949]: s → s′ must imply f(s) > f(s′).

2.2.1.1. Monolithic Ranking Functions. Observe that any deterministic termi-
nating program can be associated to a ranking function into N, which maps each
configuration to the number of steps before termination. We leave it as an exer-
cise to the reader to figure out such a ranking function for Figure 2.1—the answer
can be found in Remark 3.3. There are at least two motivations for considering
other wqos:

• Programs can be nondeterministic, for instance due to abstractions or
interactions with an environment. Then the supremum of the number of
steps along all the possible paths can be used as the range for a ranking
function; this is in general a countable well-order.

• Whether by automated means or by manual means, monolithic ranking
functions into N are often hard to synthesise, and hard to check once
found or guessed—note that the canonical ‘number of steps’ function is
not recursive in general. This motivates employing more complex well
(quasi-)orders in exchange for simpler ranking functions, as explained in
the following.

2.2. APPLICATION: PROGRAM TERMINATION 13

2.2.1.2. Lexicographic Ranking Functions. In order to prove the termination of
the program of Figure 2.1 by a ranking function, consider some (possibly infinite)
execution
(2.2) (ℓ0, x0, y0, n0) → (ℓ0, x1, y1, n1) → (ℓ0, x2, y2, n2) → · · ·
over S. Because a negative value for x or ywould lead to immediate termination,
the associated sequence of pairs
(2.3) (x0, y0), (x1, y1), (x2, y2), . . .

is actually overN2, and the successive pairs satisfy (yi, xi) >lex (yi+1, xi+1). This
shows that f(ℓ0, x, y, n) def= (y, x) ranging over the wo ⟨N2,≤lex⟩ is a ranking
function.

Cook, See, and Zuleger [2013] and Ben-Amram and Genaim [2014] consider
for instance the automatic synthesis of such lexicographic affine ranking func-
tions for integer loops like Figure 2.1a. Ranking functions into ⟨Nd,≤lex⟩ are
described there by d functions f1, f2, . . . , fd:S → N such that, whenever s → s′,
then (f1(s), f2(s), . . . , fd(s)) >lex (f1(s

′), f2(s
′), . . . , fd(s

′)); in our example
f1(s)

def= y and f2(s)
def= x; each function fi is an affine function of the values

of the program variables. This technique is implemented in automated termi-
nation provers like FuncTion [Courant and Urban, 2017] or T2 [Brockschmidt
et al., 2016].

2.2.1.3. Ordinal Ranking Functions. Beyond ⟨Nd,≤lex⟩, we can consider more
generally ranking functions into an ordinal [Turing, 1949]. For instance, write
⟨[k],≤⟩ for the initial segment [k] def= {0, . . . , k− 1} of the naturals; this is a finite
linear order for each k. We can then replace our previous lexicographic rank-
ing function for Figure 2.1 with a multiset ranking function into ⟨M([2]),≤m⟩:
the ranking function f(ℓ0, x, y,m) def= {1y, 0x} associates a multiset containing y
copies of the element ‘1’ and x copies of ‘0’ to the configuration (ℓ0, x, y, n).

This might seem like a rather artificial example of a multiset ranking func-
tion, and indeed more generally ⟨Nd,≤lex⟩ and ⟨M([d]),≤m⟩ are order-isomorphic
for every d: indeed, r(n1, . . . , nd)

def= {(d − 1)n1 , . . . , 0nd} is a bijection such
that (n1, . . . , nd) ≤lex (n′

1, . . . , n
′
d) in ⟨Nd,≤lex⟩ if and only if r(n1, . . . , nd) ≤m

r(n′
1, . . . , n

′
d) in ⟨M([d]),≤m⟩.

In order to pick a unique representative for each isomorphism class of well
orders, one can employ their order types, presented when they fall below ε0 as
ordinal terms in Cantor normal form. Using the order type computations recalled
in Appendix A.1.1.2, ωd is the order type of both ⟨Nd,≤lex⟩ and ⟨M([d]),≤m⟩, and
our ranking function can also be defined as f(ℓ0, x, y,m) def= o((y, x),≤lex) =
ω · y + x.

2.2.2. Quasi-Ranking Functions. We introduce now a generalisation of
ranking functions to work over wqos. Consider two indices i < j in a putative
infinite execution like (2.3) and observe that:

• either b is never fired throughout the execution between steps i and j,
and then yi = · · · = yj and xi > xj ,

• or b is fired at least once, and yi > yj .
In both cases (xi, yi) ̸≤× (xj , yj), i.e. the sequence (2.3) is bad for the product
ordering. Since ⟨N2,≤×⟩ is a wqo, this sequence is necessarily finite, and so is
the original sequence (2.2): the program of Figure 2.1 terminates on all inputs.

14 2. WELL-QUASI-ORDERS & APPLICATIONS

This termination argument for our example program easily generalises:
Definition 2.1. Given a transition system S = ⟨S,→⟩, a quasi-ranking func-

tion is a map f :S → A into a wqo ⟨A,≤⟩ such that, whenever s →+ s′ is a
non-empty sequence of transitions of S , f(s) ̸≤ f(s′).
In our treatment of the program of Figure 2.1 above, we picked f(ℓ0, x, y, z)

def=
(x, y) and ⟨A,≤⟩ def= ⟨N2,≤×⟩. Note that a ranking function can be seen as a
quasi-ranking function into a wo ⟨A,≤⟩. Indeed, if s → s′, then the condition
f(s) ̸≤ f(s′) of Definition 2.1 over a wo is equivalent to requiring f(s) > f(s′),
and then implies by transitivity f(s) > f(s′) whenever s →+ s′.

2.2.2.1. Termination byQuasi-Ranking. Theexistence of a quasi-ranking func-
tion always yields termination:

Proposition 2.2. Given a transition system S = ⟨S,→⟩, if there exists a quasi-
ranking function for S , then S terminates.

Proof. Let f be a quasi-ranking function of S into a wqo ⟨A,≤⟩. Any se-
quence of configurations s0 → s1 → · · · of S is associated by f to a bad sequence
f(s0), f(s1), . . . over A and is therefore finite. □
Note that the converse statement also holds, as seen in §2.2.1.1.

2.2.2.2. Disjunctive Termination Arguments. In order to prove a program tran-
sition relation → to be well-founded, Geser [1990, Section 3.1] and Podelski and
Rybalchenko [2004] show that it suffices to exhibit a finite set of well-founded re-
lations T1, . . . , Td ⊆ S × S and prove that the transitive closure →+ is included
in the union T1 ∪ · · · ∪ Td. This is also known as a Ramsey-based termination
proof, as the original arguments relied on Ramsey’s Theorem. Such termination
arguments are employed in automated termination provers like Terminator [Cook
et al., 2006] or CProver [Kroening et al., 2010]. An advantage of the technique over
ranking functions is that synthesising the termination arguments for each Tj can
be easier than finding a global ranking function over S; a disadvantage is that
checking the inclusion →+ ⊆ T1 ∪ · · · ∪ Td, which is typically encoded as an
assertion passed to a safety checker, can be costly.

In practice, we can assume each of the Tj for 1 ≤ j ≤ d to be proved well-
founded through a quasi-ranking function fj into a wqo ⟨Aj ,≤j⟩. In the case of
the program in Figure 2.1, choosing

T1
def= {((ℓ0, x, y, n), (ℓ0, x′, y′, n′)) | x > 0 ∧ x′ < x}(2.4)

T2
def= {((ℓ0, x, y, n), (ℓ0, x′, y′, n′)) | y > 0 ∧ y′ < y}(2.5)

yields such a disjunctive termination argument, with A1 = A2 = N.
Another way of understanding disjunctive termination arguments is that they

define a quasi-ranking function f into the product wqo ⟨A1×· · ·×Ad,≤×⟩, which
maps a configuration s to the tuple ⟨f1(s), . . . , fd(s)⟩, c.f. [C19, Section 7.1].

2.3. Application: Well-Structured Transition Systems

Well-structured transition systems (WSTS) form a family of computational
models where the (usually infinite) set of configurations is equipped with a well-
quasi-ordering that is ‘compatible’ with the computation steps. The existence of
this well-quasi-ordering allows for the decidability of some important behavioural
properties like termination (from a given initial configuration) or coverability.

2.3. APPLICATION: WELL-STRUCTURED TRANSITION SYSTEMS 15

Historically, the idea can be traced back to Finkel [1987] who gave a first def-
inition for WSTS abstracting from Petri nets and fifo nets, and who showed the
decidability of termination from an initial configuration and of finiteness of the
set of reachable configurations (aka boundedness). Then Finkel [1994] applied the
WSTS idea to decide termination from a given initial configuration in lossy chan-
nel systems, while Abdulla and Jonsson [1996] introduced the backward-chaining
algorithm for coverability. One will find a good survey of these early results, and
a score of WSTS examples, in [Abdulla et al., 2000; Abdulla, 2010; Finkel and Sch-
noebelen, 2001; Finkel and Goubault-Larrecq, 2012b]. Many new WSTS models
have been introduced since (in distributed computing, software verification, logic,
and other fields), using well-quasi-orderings based on trees, sequences of vectors,
or graphs, rather than the more traditional vectors of natural numbers or words
with the subword embedding.

2.3.1. Formal Definition. A transition system S = ⟨S,→⟩ is ordered when
it is further equipped with a quasi-ordering ≤ of its configurations. An ordered
transition system S = ⟨S,→,≤⟩ is well-structured if ⟨S,≤⟩ is a wqo and
(2.6)
∀s1, s2, t1 ∈ S,

(
s1 → s2 and s1 ≤ t1

)
implies ∃t2 ∈ S,

(
t1 → t2 and s2 ≤ t2

)
.

This last property is also called ‘compatibility’ (of the ordering with the transi-
tions). Formally, it just means that ≤ is a simulation relation for S , in precisely
the classical sense of Milner [1990]. The point of (2.6) is to ensure that a larger
configuration can do at least as much as a smaller configuration.

Remark 2.3. Equation (2.6) comes in many variants. For example, Finkel and
Schnoebelen [2001] consider strict compatibility (when <, the strict ordering un-
derlying ≤, is a simulation), transitive compatibility (when ≤ is a weak simula-
tion), and the definition can further extend to labelled transition systems. These
are all inessential variations of the main idea.

2.3.2. Example: Lossy Counter Machines. Let us consider lossy counter
machines (LCM) [Mayr, 2003] as an example of a family of WSTSs. Such counter
machines are syntactically identical to Minsky machines ⟨Q,C, δ, q0⟩, where the
transitions in δ ⊆ Q× C×{=0?,++,--}×Q operate on a finite set C of coun-
ters through zero-tests c=0?, increments c++ and decrements c--. The semantics
of an LCM differ however from the usual, ‘reliable’ semantics of a counter ma-
chine in that the counter values can decrease in an uncontrolled manner at any
point of the execution. These unreliable behaviours make several problems de-
cidable on LCMs, contrasting with the situation with Minsky machines [Schnoe-
belen, 2010b], the intuition being that, in order to compute anything, LCMs must
introduce considerable redundancy and robustness to losses, which makes their
analysis possible. These positive decidability results should however be taken
with a grain of salt: as we will see in Section 4.2, LCMs and related models like
reset Petri nets are the main source of decision problems with provably Acker-
mannian complexity [Schnoebelen, 2002, 2010a; Urquhart, 1999].

Formally, a configuration q,v associates a control location q in Q with a
counter valuation v in NC, i.e. counter values can never go negative. Observe
that the set of configurationsQ×NC is well-quasi-ordered by the product order-
ing: q,v ≤ q′,v′ if and only if q = q′ and v(c) ≤ v′(c) for all c ∈ C.

16 2. WELL-QUASI-ORDERS & APPLICATIONS

ℓ0 : while n mod 2 = 0 do
n := n / 2 ;
i f x = n then

b : y : = y +1 ; x : = 0 ;
e l se

a : x : = x +1 ;
done

(a) A program inversing Figure 2.1.

ℓ0

ba

n--

n--
n′++

n=0?

y++

x--

n′--n++

x=0?

n′=0?

x++n′--

n++

n′=0?

(b) A counter machine implementing Figure 2.2a.

Figure 2.2. The counter machine for Example 2.4.

Let the initial configuration be q0,0. A transition of the form (q, c, op, q′)
defines a reliable computation step q,v → q′,v′, where v(c′) = v′(c′) for all
c ̸= c′ in C and

• if op = =0?, then v(c) = v′(c) = 0,
• if op = ++, then v(c) + 1 = v′(c), and
• if op = --, then v(c) = v′(c) + 1.

A lossy computation step is then defined by allowing counter values to decrease ar-
bitrarily between reliable steps: (q,v) →ℓ (q

′,v′) if and only if there existw ≤ v
and w′ ≥ v′ such that (q,w) → (q′,w′). Now, lossy steps are visibly compatible
with≤ according to (2.6), and thus the transition system ⟨Q×NC,→ℓ,≤⟩ defined
by the lossy operational semantics is a WSTS.

Example 2.4 (Weak Inverse of Figure 2.1). Figure 2.2b displays a counter ma-
chine with counters C def= {x, y, n, n′}. Figure 2.2a shows the pseudo-code for the
computation performed by the machine, where an auxiliary counter n′ is used to
perform division by two. If started in configuration (ℓ0, 0, 0, N, 0) and assuming
reliable semantics, then this machine enumerates, each time it reaches the state
ℓ0 with n′ empty, the values of x, y, n such that the program of Figure 2.1 termi-
nates on input x, y, n and returns N . With lossy semantics, it might also reach
smaller values of x, y, n; as will be recalled more formally in Section 4.2, the LCM
of Figure 2.2b is a weak computer for the function defined by Figure 2.1.

2.3.3. Verifying WSTS. A number of decision problems can be solved in
WSTS using generic algorithms relying on the underlying wqo for termination
and on variants of compatibility (2.6) for correctness, including termination (from
a given initial configuration), inevitability, boundedness, regular simulations, etc.

2.3.3.1. Coverability. We focus here on the coverability problem.

Problem (Coverability).
instance: An ordered transition system ⟨S,→,≤⟩ and two configurations

s, t in S.
question: Is t coverable from s, i.e. is there a run s = s0 →∗ sn ≥ t?

This problem corresponds to the verification of safety properties, i.e. that no
bad configuration can ever be reached: here t models an error configuration, and
we assume that any configuration larger than t is also an error.

In the particular case of a WSTS over configuration space Q × A for some
finite set of control configurations Q and some wqo domain ⟨A,≤A⟩, control-
state reachability asks whether some state q can be reached, regardless of the

2.3. APPLICATION: WELL-STRUCTURED TRANSITION SYSTEMS 17

associated element of A. This immediately reduces to coverability of the finitely
many minimal elements of {q} × A for the product ordering over Q × A, i.e.
(q, x) ≤× (q′, x′) if and only if q = q′ and x ≤A x′.

2.3.3.2. Backward Coverability. The decidability of WSTS Coverability uses a
set-saturation method, whose termination relies on the Ascending Chain Condi-
tion mentioned in §2.1.1.1. This particular algorithm is called the backward cover-
ability algorithm, because it computes
(2.7) Pre∗∃(↑t) def= {s′ ∈ S | ∃t′ ≥ t, s′ →∗ t′}
by backward chaining; it only remains to check whether s ∈ Pre∗∃(↑t) in order to
answer the coverability instance. This idea is also at the heart of the algorithms for
many other properties defined by fixpoints, see [Bertrand and Schnoebelen, 2013].
The first known published instance of backward coverability seems to be due to
Arnold and Latteux [1978] for reset Petri nets, but the algorithm was indepen-
dently rediscovered by Abdulla and Jonsson [1996] for lossy channel systems and
its abstract formulationwas popularised in the surveys [Abdulla et al., 2000; Finkel
and Schnoebelen, 2001].

For a set of configurations U ⊆ S, define its (existential) predecessor set as
(2.8) Pre∃(U) def= {s ∈ S | ∃s′ ∈ U, s → s′} .

The backward coverability algorithm computes the limit of the sequence
↑t = U0 ⊆ U1 ⊆ · · · where Un+1

def= Un ∪ Pre∃(Un)(2.9)

where Un = {s′ ∈ S | ∃t′ ≥ t, s′ →≤n t′} is the set of configurations that cover
t in at most n steps.

2.3.3.3. Termination and Effectiveness of the Algorithm. There is no reason for
the chain in (2.9) to converge in general, but it does in the case of a WSTS.

Lemma 2.5. If U ⊆ S is an upwards-closed set of configurations, then Pre∃(U)
is upwards-closed.

Proof. Assume s ∈ Pre∃(U). Then s → t for some t ∈ U . By (2.6), if s′ ≥ s,
then s′ → t′ for some t′ ≥ t. Thus t′ ∈ U and s′ ∈ Pre∃(U). □

A corollary is that sequence (2.9) stabilises to
∪

i∈N Ui = Pre∗∃(↑t) after a
finite amount of time thanks to the Ascending Chain Condition.

Moreover, as seen in §2.1.1.2, the Finite Basis Property ensures that all the
sets Ui can be finitely represented using their minimal elements, and the union
or inclusion of two upwards-closed sets can be computed. The last ingredient is
an effectiveness assumption:

• ⟨S,≤⟩ should be effective, meaning that S is recursive and the ordering
≤ is decidable, and

• there exists an algorithm accepting any configuration s ∈ S and re-
turning pb(s), a finite basis for Pre∃(↑s); this is known as the effective
pred-basis assumption.

Remark 2.6 (Coverability Pseudo-Witnesses). For future reference, it is worth
detailing again the argument for the Ascending Chain Condition in the particular
setting of backward coverability: we can extract a sequence of minimal elements
t0, t1, . . . from U0 ⊊ U1 ⊊ · · · such that t0 def= t and ti+1 ∈ Ui+1 \ Ui for all i,
which entails that the sequence t0, t1, . . . is bad and therefore finite.

18 2. WELL-QUASI-ORDERS & APPLICATIONS

In fact, we can be more precise, and pick ti+1 at each step among the minimal
elements of Pre∃(↑ti). Indeed, we can picture the computation in (2.9) as a tree
rooted in t, where each node t′ has an edge to each minimal element of Pre∃(↑t′):
for each level i of this tree, the upward closure of the set of nodes at levels at
most i is exactly Ui. The tree is finitely branching by the Finite Basis Property,
and finite depth since every branch is a bad sequence, hence is finite by Kőnig’s
Lemma, and its height is exactly the number of steps before termination of the
backward coverability algorithm. We call such a bad sequence t0, t1, . . . , tn with

t0
def= t , ti+1 ∈ min Pre∃(↑ti) , tn ≤ s(2.10)

a pseudo-witness of the coverability of t from s.

Example 2.7 (Predecessors in Lossy Counter Machines). The previous two
effectiveness assumptions hold in all the ‘natural’ families of WSTS. In the case
of LCMs, ⟨Q × NC,≤⟩ is certainly effective, and a finite basis of predecessors of
a configuration q′,v′ can be computed by
pb(q′,v′) = min{q, prec op(v

′) | (q, c, op, q′) ∈ δ and v′(c) = 0 if op = =0?}

where prec op(v
′) is a vector in NC with prec op(v

′)(c′) def= v′(c′) for all c′ ̸= c in
C, and

prec=0?(v
′)(c) def= v′(c) = 0 ,

prec++(v
′)(c) def= max{0,v′(c)− 1} ,

prec--(v
′)(c) def= v′(c) + 1 .

Example 2.8 (Weak Inverse Computer and Coverability). Let us consider once
more Example 2.4 and Figure 2.2b with initial configuration s def= (ℓ0, 0, 0, N, 0).
Because it is a weak computer for inversing the program of Figure 2.1, the config-
uration t def= (ℓ0, x, y, n, 0) can be covered if and only if the program of Figure 2.1
would have returned at least N when started with x, y, n as inputs. Now, the
backward coverability algorithm with t as target is essentially simulating an exe-
cution of the program on input x, y, n, and will require at least as many steps as
it took the program to terminate.

CHAPTER 3

Length FunctionTheorems

This chapter presents some contributions to the complexity analysis of wqo-
based termination arguments published jointly with Figueira, Figueira, and Sch-
noebelen [C19; C18; I3]. We aim to extract complexity upper bounds on the run-
ning time of algorithms from their termination proof.

It turns out that, by suitably controlling how ‘large’ the elements can grow in
bad sequences (see Section 3.1), we can derive upper bounds on the time and space
required by the algorithms presented in Sections 2.2 and 2.3. I present two length
function theorems, which are combinatorial statements on the length of controlled
bad sequences: one for sequences of ordinals below ε0 in Section 3.3 and one for
tuples of natural numbers in Section 3.4, and how to apply them to the examples
from Chapter 2.

A major drawback of all these complexity bounds is that they are very high—
i.e., non-elementary except in trivial cases—, whereas practitioners are mostly
interested in polynomial bounds. This is the price to pay for the generality of the
approach: the class of programs terminating thanks to a quasi-ranking function
encompasses programs of high complexity.

Example 3.1. For instance, simple integer loops can already be deceivingly
simple: recall that the program of Figure 2.1 terminated using a straightforward
ranking function intoω2. Although this is just one notch above a ranking function
into ω, we can already witness fairly complex computations. Observe indeed that
the following steps can be executed in our program:

(ℓ0, x, y, 1)
axb−−→ (ℓ0, 2

x, y − 1, 2x+1)

a2
x
b−−−→ (ℓ0, 2

2x+x+1, y − 2, 22
x+x+2)

a2
2x+x+1

b−−−−−−→ (ℓ0, 2
22

x+x+1+2x+x+2, y − 3, 22
2x+x+1+2x+x+3) .

Continuing this execution, we see that our simple program exhibits executions
of length greater than a tower of exponentials in y, i.e. it is non-elementary. As
shown by Example 2.8, this non-elementary lower bound also applies to the num-
ber of steps required by the backward coverability algorithm to terminate on the
LCM of Figure 2.2b with target configuration (ℓ0, x, y, 1, 0).

Such high complexities justify the use of ordinal-indexed subrecursive func-
tions in order to denote non-elementary growths. We will recall the definitions
of two families of such functions in Section 3.2.

The presentation in this chapter is based chiefly on the lecture notes [L1] and
the invited papers [I4; I3].

19

20 3. LENGTH FUNCTION THEOREMS

Contents

3.1. Controlling Bad Sequences 20
3.1.1. Normed wqos 21
3.1.2. Controlled Sequences 21

3.1.2.1. Example: Controlled Quasi-Rankings 22
3.1.2.2. Example: Controlled Minimal Predecessors 22

3.1.3. Length Functions 22
3.2. Subrecursive Hierarchies 23

3.2.1. Fundamental Sequences and Predecessors 23
3.2.2. Hardy and Cichoń Hierarchies 23

3.3. Length Functions for Ordinals Below ε0 24
3.3.1. Residuals and a Descent Equation 25
3.3.2. Upper Bounds 25

3.4. Length Functions for Dickson’s Lemma 26
3.4.1. Polynomial Normed wqos 27
3.4.2. Reflecting Normed wqos 27

3.4.2.1. Inductive Reflection of Residuals 28
3.4.2.2. Derivation Relation 28

3.4.3. Maximal Order Types 29
3.4.4. Upper Bounds 30

3.5. Related Work & Perspectives 31
3.5.1. Length Functions for Ordinals 31
3.5.2. Length Functions for Well-Quasi-Orders 32
3.5.3. Further Applications 32
3.5.4. Perspectives 33

3.1. Controlling Bad Sequences

Both in the case of quasi-ranking functions of Section 2.2.2 and in that of the
backward coverability algorithm of Section 2.3.3, the running time of the algo-
rithm is essentially bounded by the length of the bad sequences constructed by
the termination argument. By definition, bad sequences in a wqo are always fi-
nite, but no statement is made regarding how long they can be. This is for a very
good reason: they can be arbitrarily long.

For instance, over the wo ⟨N,≤⟩,
(3.1) n, n− 1, . . . , 1, 0

is a bad sequence of length n + 1 for every n. Arguably, this is not so much of
an issue, since what we are really interested in is the length as a function of the
initial configuration—which includes the inputs to the program. Thus (3.1) is the
maximal bad sequence over ⟨N,≤⟩ with initial element of ‘size n.’

However, as soon as wemove to more complex wqos, we can exhibit arbitrary
bad sequence lengths even with fixed initial configurations. For instance, over
⟨N2,≤lex⟩,
(3.2) (1, 0), (0, n), (0, n− 1), . . . , (0, 1), (0, 0)

is a bad sequence of length n + 2 for every n starting from the fixed (1, 0).
Nonetheless, the behaviour of a program exhibiting such a sequence of ranks is

3.1. CONTROLLING BAD SEQUENCES 21

rather unusual: such a sudden ‘jump’ from (1, 0) to an arbitrary (0, n) is not pos-
sible in a deterministic program once the user inputs have been provided.

In the following, we will assume that no such arbitrary jump can occur. This
comes at the price of some loss of generality in the context of termination analysis,
where nondeterministic assignments of arbitrary values are typically employed to
model values provided by the environment—for instance interactive user inputs
or concurrently running programs—, or because of abstracted operations. Thank-
fully, in most cases it is easy to control how large the program variables can grow
during the course of an execution.

3.1.1. Normed wqos. Given a wqo ⟨A,≤A⟩, we posit a norm function |.|A
from A to N on the elements of A. In order to be able to derive combinatorial
statements, we require
(3.3) A≤n

def= {x ∈ A | |x|A ≤ n}
to be finite for every n. We call the resulting structure ⟨A,≤A, | · |A⟩ a normed
wqo (nqo).

We will use the following norms on some of the wqos defined earlier:
• in a finite Q, all the elements have the same norm 0;
• in N or [d], n has norm |n|N = n;
• in disjoint sums A0 ⊔ A1, (x, i) uses the norm |x|Ai of the underlying

set;
• in Cartesian or lexicographic products with support A × B, (x, y) has

the infinity norm max(|x|A, |y|B); finally,
• in multisets M(A), m has norm maxx∈A,m(x)>0(max(m(x), |x|A)).

Regarding ordinals, recall that ε0 is the smallest fixed point of the equation
ωx = x, and consider some γ < ε0. We define the norm of an ordinal α < γ
as the maximal coefficient that appears in its associated Cantor normal form: if
α = ωα1 · c1 + · · ·+ ωαp · cp < γ with α1 > · · · > αp and c1, . . . , cp > 0, then
(3.4) Nα def= max{c1, . . . , cp, Nα1, . . . , Nαp} .

Observe that this definition essentiallymatches the previously defined norms over
multisets and tuples of vectors: in ⟨Nd,≤lex⟩, we have

No((n1, . . . , nd),≤lex) = N(ωd−1 · n1 + · · ·+ ω0 · nd)

= max(d− 1, |(n1, . . . , nd)|Nd) ,

and in ⟨M(Nd),≤m⟩ for multisets of lexicographically-ordered tuples,
No(m,≤m) = max(d− 1, |m|M(Nd)) .

3.1.2. Controlled Sequences. Let g:N → N be a monotone and inflation-
ary function: for all x, x′, x ≤ x′ implies g(x) ≤ g(x′) and x ≤ g(x).

Definition 3.2 (Controlled Sequence; Cichoń and Tahhan Bittar, 1998). We
say that a sequence x0, x1, x2, . . . of elements in A is amortised controlled by
(g, n0) for some n0 in N if
(3.5) |xi|A ≤ gi(n0)

for all i, where gi denotes the ith iterate of g. We say that it is strongly controlled
by (g, n0) for some n0 in N if
(3.6) |x0|A ≤ n0 and |xi+1|A ≤ g(|xi|)A

22 3. LENGTH FUNCTION THEOREMS

for all i.

Observe that by definition a strongly controlled sequence is also amortised
controlled: |x0|A ≤ g0(n0) = n0, which prompts the name of initial norm for
n0, and amortised steps cannot grow faster than g the control function. In the
following we simply write ‘(g, n0)-controlled’ instead of ‘amortised controlled by
(g, n0)’.

3.1.2.1. Example: Controlled Quasi-Rankings. The notion of control can be
lifted to the level of the quasi-ranking functions that generate them. Let us posit
a configuration norm ι:S → N. Then a quasi-ranking function f :S → A for a
transition system S = ⟨S,→⟩ and a normed wqo ⟨A,≤A, |.|A⟩ is (g, ι)-controlled
if, for any execution s0 → s1 → · · · of S , for all i,

(3.7) |f(si)|A ≤ gi(ι(s0)) .

This ensures that any sequence f(s0), f(s1), . . . of ranks associated to the exe-
cution is (g, ι(s0))-controlled.

For instance, our ranking function f(ℓ0, x, y, n)
def= (y, x) for the program

of Figure 2.1 into ⟨N2,≤lex⟩ is g-controlled for g(x) def= 2x and ι(ℓ0, x, y, n)
def=

max(x, y, n). Observe that having a configuration norm ι(s0) rather than simply
using the norm of the initial rank |f(s0)|A gives us some extra flexibility: in our
example, the latter equals max(x, y), and the sequences of ranks f(s0), f(s1), . . .
are in general not (g, |f(s0)|A)-controlled because the value of n has been lost.

3.1.2.2. Example: Controlled Minimal Predecessors. Let us see how this setting
applies to the backward coverability algorithm of §2.3.3.2. In order to control the
bad sequence of configurations extracted from the Ascending Chain Condition
applied to (2.9), observe that the initial norm n0 can be taken as |t|S . Regarding
the control function g, the ith iterate gi(n0) of control function should then bound
the norm of the minimal elements of Ui.

In the case of lossy counter machines, the computation of minimal predeces-
sors in Example 2.7 shows that a strong control by H(x) def= x+ 1 suffices.

3.1.3. Length Functions. The point of controlled sequences is that their
length can be bounded. Consider for this the tree one obtains by sharing the
common prefixes of all the (g, n0)-controlled bad sequences over a normed wqo
⟨A,≤A, |.|A⟩. This tree has

• finite branching by (3.3) and (3.5), more precisely of branching degree
bounded by the cardinal of A≤gi(n0) for a node at depth i, and

• no infinite branches thanks to the wqo property.
By Kőnig’s Lemma, this tree of bad sequences is therefore finite, of some height
Lg,n0,A representing the length of the maximal (g, n0)-controlled bad sequence(s)
overA. In the following, sincewe aremostly interested in this length as a function
of the initial norm n0, we will see this as a length function Lg,A(n0).

Observe that Lg,A bounds the asymptotic execution length in a program en-
dowed with a g-controlled quasi-ranking function into ⟨A,≤A, |.|A⟩. It similarly
bounds the number of steps required by the backward coverability algorithm for
a WSTS over ⟨A,≤A, |.|A⟩ with a target configuration of norm |t|A ≤ n0 when
minimal elements in Ui are of norm at most gi(n0).

3.2. SUBRECURSIVE HIERARCHIES 23

Our purpose will thus be to obtain explicit complexity bounds on Lg,A de-
pending on g and A. We call such combinatorial statements length function the-
orems. But first we need to make a detour via subrecursive functions, which we
employ in order to express those explicit upper bounds.

3.2. Subrecursive Hierarchies

As we saw with the example of Figure 2.1, even simple terminating programs
can have a very high complexity. In order to express such high bounds, a conve-
nient tool is found in subrecursive hierarchies, which employ induction over ordi-
nal indices to define faster and faster growing functions. We recall the definition
of two such hierarchies [see e.g. Cichoń and Tahhan Bittar, 1998; Fairtlough and
Wainer, 1998; Schwichtenberg and Wainer, 2012; Wainer, 1972]. We shall strive
to employ notations compatible with those of Schwichtenberg and Wainer [2012,
Chapter 4], and refer the interested reader to their monograph for proofs and
additional material.

3.2.1. Fundamental Sequences and Predecessors. Let us first introduce
some notions on ordinal terms. Consider an ordinal term α in Cantor normal
form ωα1 + · · · + ωαp . In this representation, α = 0 if and only if p = 0. An
ordinal α of the form α′ + 1 (i.e. with p > 0 and αp = 0) is called a successor
ordinal, and otherwise if α > 0 it is called a limit ordinal, and can be written as
γ + ωβ by setting γ = ωα1 + · · · + ωαp−1 and β = αp. We usually write ‘λ’ to
denote a limit ordinal.

A fundamental sequence for a limit ordinal λ is a sequence (λ(x))x<ω of or-
dinal terms with supremum λ. We use the standard assignment of fundamental
sequences to limit ordinals in Cantor normal form, defined inductively by

(γ + ωβ+1)(x) def= γ + ωβ · (x+ 1) , (γ + ωλ)(x) def= γ + ωλ(x) .(3.8)
This particular assignment satisfies e.g. 0 < λ(x) < λ(y) for all x < y. For
instance, ω(x) = x + 1, (ωω4

+ ωω3+ω2
)(x) = ωω4

+ ωω3+ω·(x+1). We also
define a fundamental sequence for ε0 itself, so that we may be able to use it in our
hierarchies: ε0(0) def= ω and ε0(i + 1) def= ωε0(i), so that ε0(i) is a tower of ω’s of
height i+ 1.

The predecessor Px(α) of an ordinal term α > 0 at a value x in N is defined
inductively by

Px(α+ 1) def= α , Px(λ)
def= Px(λ(x)) .(3.9)

In essence, the predecessor of an ordinal is obtained by repeatedly taking the xth
element in the fundamental sequence of limit ordinals, until we finally reach a
successor ordinal and remove 1. For instance, Px(ω

2) = Px(ω · (x + 1)) =
Px(ω · x+ x+ 1) = ω · x+ x.

3.2.2. Hardy andCichońHierarchies. In the context of controlled sequen-
ces, the hierarchies of Hardy and Cichoń turn out to be especially well-suited [Ci-
choń and Tahhan Bittar, 1998]. Let h:N → N be a function. The Hardy hierarchy
(hα)α∈ε0 is defined for all 0 < α < ε0 by1

h0(x) def= x , hα(x) def= hPx(α)(h(x)) ,(3.10)

1Note that this is equivalent to defining hα+1(x) def= hα(h(x)) and hλ(x) def= hλ(x)(x).

24 3. LENGTH FUNCTION THEOREMS

and the Cichoń hierarchy (hα)α∈ε0 is similarly defined for all 0 < α < ε0 by

h0(x)
def= 0 , hα(x)

def= 1 + hPx(α)(h(x)) .(3.11)

Observe that hk for some finite k is the kth iterate of h. This intuition carries
over: hα is a transfinite iteration of the function h, using diagonalisation in the
fundamental sequences to handle limit ordinals.

We should emphasise that hα and hα are defined for any function h; thus
later we will see gα meaning ‘the αth Cichoń function based on g.’ This pro-
vides quite some flexibility, but one standard choice for the initial function is the
successor function, noted H(x) def= x + 1. In that case, we see that a first diago-
nalisation yieldsHω(x) = Hx(x+1) = 2x+1. The next diagonalisation occurs
at Hω·2(x) = Hω+x(x+ 1) = Hω(2x+ 1) = 4x+ 3. Fast-forwarding a bit, we
get for instance a function of exponential growth Hω2

(x) = 2x+1(x + 1) − 1,
and later a non-elementary function Hω3

(x) akin to a tower of exponentials of
height x, an ‘Ackermannian’ non primitive-recursive functionHωω , and a ‘hyper-
Ackermannian’ non multiply recursive-function Hωωω

.
The Hardy functions also enjoy some nice identities: for all h, α, β, and x

hα ◦ hβ(x) = hα+β(x) , (hα)β(x) = hα·β(x) ,(3.12)

provided α+ β (resp. α · β) satisfies specific conditions like being tree-structured
[see, e.g., Cichoń and Tahhan Bittar, 1998; Fairtlough and Wainer, 1998]; this will
always be the case in our applications of these identities.

Regarding the Cichoń functions, an induction on α shows that Hα(x) =
Hα(x) + x. More generally, if h is strictly inflationary, i.e. if h(x) > x for all
x, then

(3.13) hα(x) ≥ hα(x) + x .

Remark 3.3 (Measuring Control and Length). On the one hand, Hardy func-
tions are well-suited for expressing large iterates of a control function, and there-
fore for bounding the norms of elements in a controlled sequence. For instance,
the program in Figure 2.1 computes gω·y+x(n) for the function g(x) def= 2x when
run on non-negative inputs x, y, n. Note that gx(n) = 2xn and gω·y(n) is greater
than a tower of exponentials of height y.

On the other hand, Cichoń functions are well-suited for expressing the length
of controlled sequences. For instance, gω·y+x(n) is the length of the execution of
the program. This relation is a general one: we can compute how many times
we should iterate h in order to compute hα(x) using the corresponding Cichoń
function [Cichoń and Tahhan Bittar, 1998]:

(3.14) hα(x) = hhα(x)(x) .

3.3. Length Functions for Ordinals Below ε0

Our first length function theorem, which was proven in [I3], relies on two
main ingredients: a descent equation established in [C18] for all normedwqos, and
an alternative characterisation of the Cichoń hierarchy in terms of maximisations
as observed in [Buchholz et al., 1994; Cichoń, 1993].

3.3. LENGTH FUNCTIONS FOR ORDINALS BELOW ε0 25

3.3.1. Residuals and a Descent Equation. Let ⟨A,≤, |.|A⟩ be a normed
wqo and x be an element of A. We write
(3.15) A/x def= {y ∈ A | x ̸≤ y}
for the residual of A in x. Observe that by the wqo property, there cannot be
infinite sequences of residuationsA/x0/x1/x2/ · · · because xi ̸≤ xj for all i < j.

Consider now a (g, n)-controlled bad sequence x0, x1, x2, . . . over A. As-
suming the sequence is not empty, then because this is a bad sequence we see
that for all i > 0, x0 ̸≤ xi, i.e. that the suffix x1, x2, . . . is actually a bad sequence
over A/x0. This suffix is now (g, g(n))-controlled, and thus of length bounded
by Lg,A/x0

(g(n)). This yields the following descent equationwhen considering all
the possible (g, n)-controlled bad sequences [C18]:
(3.16) Lg,A(n) = max

x∈A≤n

1 + Lg,A/x(g(n)) .

In the case of a wo ⟨α,≤, N⟩, residuals can be expressed more simply for
β ∈ α, because

α/β = {γ ∈ α | β > γ} = β .(3.17)
Thus in this case the descent equation simplifies into

Lg,α(n) = max
β<α,Nβ≤n

1 + Lg,β(g(n)) .(3.18)

3.3.2. Upper Bounds. We are now equipped to prove a length function the-
orem for all ordinals α below ε0, i.e. an explicit expression for Lg,α for the wo
⟨α,≤, N⟩. The reader might have noticed a resemblance between the ordinal de-
scent equation (3.18) and the definition of the Cichoń hierarchy (3.11). It turns out
that they are essentially the same functions: indeed, we are going to see in Propo-
sition 3.4 that a fundamental insight of Cichoń [1993] and Buchholz, Cichoń, and
Weiermann [1994] applies perfectly to our particular setting: if Nα ≤ x, then
choosing β = Px(α) maximises hβ(h(x)) among those β < α with Nβ ≤ x.

Proposition 3.4 (I3). Let α < ε0 and x ≥ Nα. Then

hα(x) = max
β<α,Nβ≤x

1 + hβ(h(x)) .

Theorem 3.5 (Length Function Theorem for Ordinals). Let α < ε0 and x ≥
Nα. Then Lg,α(x) = gα(x).

Proof. We use the ordinal descent equation (3.18) and Proposition 3.4. □
As an immediate corollary, we can bound the asymptotic complexity of programs
proven to terminate through a (g, ι)-controlled ranking function:

Corollary 3.6. Given a transition system S = ⟨S,→⟩ with initial configura-
tion s0, if there exists a (g, ι)-controlled ranking function into α < ε0, then S runs
in time O(gα(ι(s0))).

Example 3.7 (Lexicographic Ranking Functions). As an illustration, a pro-
gram proven to terminate thanks to a (g, ι)-controlled ranking function ranging
over ⟨Nd,≤lex, |.|Nd⟩ has therefore anO(gωd(n)) bound on its worst-case asymp-
totic time complexity for n = ι(s0).

In the case of the program of Figure 2.1, Corollary 3.6 yields an upper bound
on its time complexity in O(gω2(m)) = O(gω·m+m(m)), where g(x) def= 2x and

26 3. LENGTH FUNCTION THEOREMS

m = ι(ℓ0, x, y, n)
def= max(x, y, n). This is very close to its actual complexity,

which is exactly gω·y+x(n). Regarding its space complexity, by (3.14) it is in
O(log(gω2

(m))).

Remark 3.8 (Abstractions). The bound gωd(n) provided by Corollary 3.6 in
the case of lexicographic ranking functions into Nd is primitive-recursive (in the
control function g). This might be taken to imply that non-primitive recursive
programs are beyond the reach of the current automated termination methods,
which usually rely on the synthesis of affine ranking functions.

This is not the case, as for instance the Ackermann function is correctly anal-
ysed as terminating by termination checkers. We can better understand this ap-
parent paradox with the example of size-change termination proofs: Lee, Jones,
and Ben-Amram [2001] consider as their Example 3 a program computing the
two-arguments Ackermann function:

a (m, k) = i f m = 0 then k + 1 e l se
i f k = 0 then a (m−1 , 1)

e l se a (m−1 , a (m, k−1))

They construct a size-change graph on two variables to prove its termination. The
longest decreasing sequence in such a graph is of length O(n2); more generally,
Colcombet, Daviaud, and Zuleger [2014] showed that the asymptotic worst-case
complexity in a size-change graph is Θ(nr) for a computable rational r. Here we
witness a large gap between the actual program complexity and the complexity
derived from its termination argument: the Ackermann function vs. an O(n2)
bound.

The source of this apparent paradox is abstraction: the size-change graph for
a(m, k) terminates if and only if the original program does, but the time com-
plexity is not preserved by this abstraction. In the example of the Ackermann
function, the call stack is abstracted away, whereas we should include it in order
for Theorem 3.5 to apply. This is done by Dershowitz and Manna [1979, Exam-
ple 3], who prove the termination of the Ackermann function by exhibiting an
H-controlled ranking function into ⟨M(N2),≤m⟩, for which Theorem 3.5 yields
anO(H

ωω2 (max(m, k))) complexity upper bound—where a more accurate bound
would be O(Hωm(k)). More generally, Ben-Amram [2002] showed that the pro-
grams that can be proven to terminate by size change abstraction are multiply
recursive in the complexity of the basic operations.

3.4. Length Functions for Dickson’s Lemma

Our second length function theorem pertains to the length of bad sequences
over ⟨Nd,≤×⟩, which is relevant to both the disjunctive termination arguments
from §2.2.2.2 and coverability in LCMs as seen in Example 2.7.

The starting point for the analysis is again the descent equation (3.16). How-
ever, we are no longer in the comfortable situation of ordinals, where we could
work with the residual α/β directly as the ordinal β. In the case of Nd, it is not
immediately clear how to analyse the length Lg,Nd/(n1,...,nd)

(g(n)) of controlled
bad sequences in the residual of Nd by a tuple (n1, . . . , nd).

The key idea introduced in [C19] is to ‘over-approximate’ Nd/(n1, . . . , nd) as
a disjoint sum of tuples of lower dimension. Thus, instead of working just with

3.4. LENGTH FUNCTIONS FOR DICKSON’S LEMMA 27

tuples in Nd, we shall consider more generally polynomial nwqos, where disjoint
sums are also allowed (see Section 3.4.1). Then, the notion of ‘over-approximation’
of residuals of polynomial nwqos is captured formally by showing the existence
of a normed reflection into another polynomial nwqo (see Section 3.4.2). The final
step lifts this analysis to ordinals through the maximal order types of polyno-
mial nwqos, allowing to relate Lg,Nd(n) with functions in the Cichoń hierarchy
(see Section 3.4.3). We follow the presentation from [C18], where the arguments
were cleaned-up and generalised to obtain a length function theorem for Hig-
man’s Lemma.

3.4.1. Polynomial Normedwqos. We shall use the empty nwqo 0 def= ∅, and
a singleton nwqo 1with equality and constant norm 0. The exact element found in
this singleton is actually irrelevant; it could be for instance a letter in an alphabet,
or a configuration in a finite configuration set.

Definition 3.9. The set of polynomial nwqos is the smallest set of normed
wqos containing 0, 1, and N and closed under the ⊔ and × operations.

We shall work up to isomorphism: we write A ≡ B when the two nwqos A
and B are isomorphic structures. Let us stress that, in particular, norm functions
must be preserved by nwqo isomorphisms. For all practical purposes, isomorphic
nwqos can be identified; in particular, the length functions Lg,A and Lg,B are the
same for isomorphic nwqos. Observe that the definitions are such that all the
expected identities of ⊔ and × hold up to isomorphism: the class of all normed
wqos when considered up to isomorphism forms a commutative semiring with 0
as zero and 1 as one.

We write A · k for
k times︷ ︸︸ ︷

A ⊔ · · · ⊔A; then, any finite normed wqo with k elements
equipped with equality is isomorphic to 1 · k; also, A · 0 ≡ 0 is the empty normed
wqo.

We also write Ad for
d times︷ ︸︸ ︷

A× · · · ×A the d-fold Cartesian product of a normed
wqo A with itself; in particular A0 ≡ 1 is a singleton set containing only the
empty tuple ‘()’.

Remark 3.10 (Polynomial Normal Form). Any polynomial normedwqoA can
be put in a polynomial normal form (PNF)
(3.19) A ≡ Nd1 ⊔ · · · ⊔ Ndm

for m, d1, · · · , dm ≥ 0. In the following we will deal exclusively with normed
wqos in PNF; since A ≡ A′ implies Lg,A = Lg,A′ this will be at no loss of gener-
ality.

Example 3.11 (LCMs Configurations). The set of configurations Q × NC of
an LCM with |Q| = p control states and |C| = d counters, along with its ordering
and infinity norm, is isomorphic to the polynomial nwqo Nd · p in PNF.

3.4.2. Reflecting Normed wqos. We may now tackle our main problem:
computing residuals A/x. The descent equation (3.16), though it offers a way of
computing the length function, quickly leads to complex expressions: the nwqos
A/x0/x1/ · · · /xn become ‘unstructured’, i.e. have no nice definition in terms of
⊔ and ×. As we are going to see, residuation allows us to approximate these

28 3. LENGTH FUNCTION THEOREMS

sets, so that the computation can be carried out without leaving the realm of
polynomial nwqos, leading to an inductive computation ofA/x over the structure
of the polynomial nwqo A.

Definition 3.12. A nwqo reflection is a mapping r:A → B between two
nwqos that satisfies the two following properties:

∀x, x′ ∈ A : r(x) ≤B r(x′) implies x ≤A x′ ,(3.20)
∀x ∈ A : |r(x)|B ≤ |x|A .(3.21)

In otherwords, a nwqo reflection is an order reflection that is not norm-increasing.
Wewrite r:A ↪→ B when r is a nwqo reflection and say thatB reflectsA. This

induces a quasi-ordering between nwqos, written A ↪→ B. Any nwqo reflects its
induced substructures since Id:X ↪→ A when X is a substructure of A. Thus
0 ↪→ A for any A, and 1 ↪→ A for any non-empty A. Remark that reflections are
compatible with products and sums:

A ↪→ A′ and B ↪→ B′ imply A ⊔B ↪→ A′ ⊔B′ and A×B ↪→ A′ ×B′ .

(3.22)

Crucially, reflections preserve controlled bad sequences. Indeed, let r:A ↪→
B, and consider a sequence x0, x1, . . . over A. Then by (3.20), r(x0), r(x1), . . .
is bad when x0, x1, . . . is, and by (3.21), it is (g, n)-controlled when x0, x1, . . . is.
Hence

(3.23) A ↪→ B implies Lg,A(n) ≤ Lg,B(n) for all g, n .

3.4.2.1. Inductive Reflection of Residuals. The base cases of the inductive re-
flection of A/x over the structure of the polynomial nwqo A are

N0/() ↪→ 0 ,(3.24)
N/k ↪→ N0 · k ,(3.25)

because N/k = [k] by the ordinal descent equation (3.18), and then [k] ↪→ N0 · k.
Regarding disjoint sums A ⊔B, it is plain that

(3.26) (A ⊔B)/(x,A) = (A/x) ⊔B , (A ⊔B)/(y,B) = A ⊔ (B/y) ,

and reflections are not required.
Turning to Cartesian products, the key insight is that any element (x′, y′) in

(A×B)/(x, y) is by definition (3.15) such that (x, y) ̸≤× (x′, y′), hence x ̸≤A x′

or y ̸≤B y′:

(3.27) (A×B)/(x, y) ↪→
(
(A/x)×B

)
⊔
(
A× (B/y)

)
.

3.4.2.2. Derivation Relation. Wefinally combine the inductive residuation and
reflection operations into a derivation relation ∂n: intuitively, the relationA ∂n A′

is included in the relation ‘A/x ↪→ A′ for some x ∈ A≤n’ (see Lemma 3.13 for the
formal statement). More to the point, the derivation relation captures a particular
way of reflecting residuals, which enjoys some good properties: for every n, given
A a nwqo in polynomial normal form (recall Remark 3.10), ∂nA is a finite set of

3.4. LENGTH FUNCTIONS FOR DICKSON’S LEMMA 29

polynomial nwqos also in PNF, defined inductively by
∂n0 def= ∅ ,(3.28)

∂nN0 def= {0} ,(3.29)
∂nNd def= {Nd−1 · nd} ,(3.30)

∂n(A ⊔B) def=
(
(∂nA) ⊔B

)
∪
(
A ⊔ (∂nB)

)
,(3.31)

for d > 0 and A,B in PNF; in these definitions the ⊔ operations are lifted to act
upon nwqo sets S by A ⊔ S def= {A ⊔A′ | A′ ∈ S} and symmetrically.

Lemma 3.13 (C18). Let A be a polynomial nwqo in PNF and x ∈ A≤n for some
n. Then there exists A′ in ∂nA such that A/x ↪→ A′.

3.4.3. Maximal Order Types. As it is more convenient to reason with or-
dinal arithmetic rather than with polynomial nwqos, we map polynomial nwqos
⟨A,≤, |.|A⟩ to ordinals in ωω using the maximal order type o(A) of the underly-
ing wqo ⟨A,≤⟩ [de Jongh and Parikh, 1977]; see Appendix A.1.2 for details. The
map o is a bijection (but not an order isomorphism) between polynomial (n)wqos
and ωω :

o(0) = 0 , o(1) = 1 , o(N) = ω ,

o(A ⊔B) = o(A)⊕ o(B) , o(A×B) = o(A)⊗ o(B) ,

where ‘⊕’ and ‘⊗’ denote the natural sum and natural product on ordinals (see
Appendix A.1.1.1). Thus, given a polynomial nwqo in PNF A ≡

⊔m
i=1Ndi , its

associated maximal order type is o(A) =
⊕m

i=1 ω
di .

Let us accordingly lift the definition of ∂n to ordinals in ωω , so that o(A′) ∈
∂no(A) if and only if A′ ∈ ∂nA. We restate equations (3.29) to (3.31) using maxi-
mal order types: for all α > 0 in ωω and all d, n in N

∂nα
def=
{
γ ⊕ ∂nω

d | α = γ ⊕ ωd
}
, ∂nω

d def=

{
0 if d = 0,

ωd−1 · (nd) otherwise.

Observe thatα′ ∈ ∂nα impliesα′ < α, thus
∪

n ∂n is a well-founded relation. This
leads to the definition of an over-approximation of the length function Lg,A(n):

(3.32) Mg,α(n)
def= max

α′∈∂nα

{
1 +Mg,α′(g(n))

}
.

Proposition 3.14 (C18). For any polynomial nwqo A, any control function g,
and any initial control n,

Lg,A(n) ≤ Mg,o(A)(n) .

Proof. Either A≤n is empty and then Lg,A(n) = 0 ≤ Mg,o(A)(n), or there
exists some x ∈ A≤n that maximises Lg,A/x(g(n)) in the descent equation (3.16):

Lg,A(n) = 1 + Lg,A/x(g(n)) .

By Lemma 3.13 there exists A′ ∈ ∂nA such that A/x ↪→ A′, thus by (3.23)
Lg,A(n) ≤ 1 + Lg,A′(g(n)) .

By well-founded induction on A′ ∈ ∂nA,
Lg,A′(g(n)) ≤ Mg,o(A′)(g(n)) .

30 3. LENGTH FUNCTION THEOREMS

Thus by definition of M ,
Lg,A(n) ≤ 1 +Mg,o(A′)(g(n)) ≤ Mg,o(A)(n) □

3.4.4. Upper Bounds. As Mg,α(n) is a subrecursive function, it only re-
mains to compare it with more ‘standard’ functions like the Cichoń functions.
We refer the reader to [L1] for the details of these finishing touches. To sum-
marise those, we use the resemblance between ∂nα and Pdn(α) to show that, for
α < ωd+1 [L1, Corollary 2.33]:
(3.33) Mg,α(n) ≤ gα(n) assuming (γ + ωβ+1)(x) def= γ + ωβ · (dx+ 1) .

This extra twist of using an assignment of fundamental sequences different from
the standard one of (3.8) can be avoided: (3.33) can be converted to the standard
assignment of fundamental sequences at the price of some contortions, yield-
ing [L1, Theorem 2.34]:

Theorem 3.15 (Length Function Theorem for Polynomial nwqos). Let d > 0,
g be a control function and select a monotone function h such that h(x ·d) ≥ g(x) ·d
for all x. IfA is a polynomial nwqo with o(A) < ωd+1, then Lg,A(n) ≤ ho(A)(nd).

Setting h(x) def= g(x)d always satisfies the conditions of the theorem. There
are however examples where setting h def= g suffices: e.g., g(x) def= 2x, g(x) def=
x2, or g(x) def= 2x; more generally, Theorem 3.15 can use h def= g whenever g is
super-homogeneous, i.e. satisfies g(dx) ≥ g(x)d for all d, x ≥ 1—then Lg,A(n) ≤
go(A)(nd).

Example 3.16 (Coverability in LCMs). Consider an instance of the coverability
problem for a LCM with |Q| = p control states, |C| = d counters, and a target
configuration q,v with maxc∈C v(c) = n. As seen in Example 3.11, o(Q×NC) =
ωd · p.

Recall from §3.1.2.2 that we can use n as initial norm and H(x) def= x + 1 as
control function on the bad sequences extracted from the Ascending Chain Con-
dition on Equation (2.9). Setting h(x) def= x + d = Hd(x) satisfies the conditions
of Theorem 3.15. Hence the backward coverability computation on this instance
converges after at most hωd·p(nd) steps. We will analyse the complexity of the
algorithm itself in Section 4.1.3 in the next chapter.

Example 3.17 (Disjunctive Termination Arguments into Nd). Let us consider
disjunctive termination arguments as in §2.2.2.2, where each of the d relations Tj

has a ranking function fj into N, i.e. the argument defines a quasi-ranking func-
tion f(s) def= (f1(s), . . . , fd(s)) into ⟨Nd,≤×⟩. Assume f to be (g, ι)-controlled
and let h(x) def= g(x) · d. By Theorem 3.15, the program will terminate in time
hωd(ι(s0)d) from configuration s0.

For the program of Figure 2.1, the invariants in equations (2.4) and (2.5) are
shown well-founded by f1(ℓ0, x, y, n)

def= x and f2(ℓ0, x, y, n)
def= y respectively.

Then g(x) def= 2x and ι(ℓ0, x, y, n)
def= max(x, y, n) can be used to control the

sequence of ranks
(f1(s0), f2(s0)), (f1(s1), f2(s1)), . . .

As g is super-homogeneous, the program terminates in time gω2(d ·max(x, y, n)).
Note that this is nearly the same bound as in Example 3.7, which used lexico-
graphic ranking functions instead.

3.5. RELATED WORK & PERSPECTIVES 31

Remark 3.18 (Comparison with the Lexicographic Ordering). Examples 3.7
and 3.17 show that the boundswe obtain by applyingTheorem 3.5 to lexicographic
ranking functions into ⟨Nd,≤lex⟩ and Theorem 3.15 to disjunctive termination
arguments into ⟨Nd,≤×⟩ are quite similar. Furthermore, as noted by Blass and
Gurevich [2008], attempting to differentiate the two approaches through their
maximal order types is inconclusive, since ωd is both the order type of ⟨Nd,≤lex⟩
and the maximal order type of ⟨Nd,≤×⟩. As Theorem 3.5 gives an exact measure
of the length function butTheorem 3.15 only provides an upper bound, one might
wonder whether there is a difference between the two length functions.

It turns out that the two length functions are different: since ⟨Nd,≤lex⟩ ↪→
⟨Nd,≤×⟩, by (3.23) controlled bad sequences are at most as long in ⟨Nd,≤lex⟩ as in
⟨Nd,≤×⟩. The following example taken from [C19, Remark 6.2] shows that they
can be strictly shorter: the following sequence is a (g, 1)-controlled bad sequence
over ⟨N2,≤×⟩, which is good for ⟨N2,≤lex⟩, where g(x) def= x+ 2:

(3.34) (1, 1), (3, 0), (2, 0), (1, 0), (0, 9), (0, 8), . . . , (0, 1), (0, 0)

This sequence has length 14 whereas the maximal (g, 1)-controlled bad sequence
for ⟨N2,≤lex⟩ is of length gω2(1) = 8:

(3.35) (1, 1), (1, 0), (0, 5), (0, 4), . . . , (0, 1), (0, 0) .

3.5. Related Work & Perspectives

The length function theorems we proved in this chapter are instances of a
more general concern: whenever we prove the termination of a procedure using
a wqo, we might also expect to gain some information about its complexity.

Put more abstractly, we seek to answer Kreisel’s question ‘What more than
its truth do we know if we have a proof of a theorem in a given formal system?’ in
the particular setting of termination proofs and complexity analysis. This ques-
tion can be understood in a strict sense, as requiring the termination proof to
be carried in a proof system. For instance, Buchholz [1995] derives complex-
ity bounds for term rewriting systems terminating using the multiset and lexi-
cographic path orderings by showing that such termination proofs can be car-
ried into ‘small’ fragments of Peano arithmetic, for which complexity bounds
have long been known to exist [Kreisel, 1952]; Steila [2016] similarly analyses
the Ramsey-based proof of termination by disjunctive termination arguments in
several systems of arithmetic. More generally, the same question can be asked
without necessarily referring to a precise proof system, e.g. for termination or-
derings [Buchholz, 1995; Hofbauer, 1992; Lepper, 2001; Weiermann, 1994, 1995],
polynomial interpretations [Bonfante et al., 2001], dependency pairs [Hirokawa
andMoser, 2008], size-change abstractions [Ben-Amram, 2002], abstract interpre-
tation [Gulwani, 2009], disjunctive termination invariants [Steila, 2016], or rank-
ing functions [Alias et al., 2010] to cite a few.

3.5.1. Length Functions for Ordinals. When focusing on ordinals below
ε0, Theorem 3.5 will probably not surprise anyone familiar with ordinal recursive
functions. In particular, Proposition 3.4 is a particular case of a connection estab-
lished more generally by Cichoń [1993] and Buchholz et al. [1994] between the
definition of Hardy functions through fundamental sequences on the one hand,
and through maximisation over ordinals of bounded norm on the other hand.

32 3. LENGTH FUNCTION THEOREMS

Nevertheless, the fact that we obtain an exact equality—not up to a primitive-
recursive function—is worth mentioning, especially since the applications to pro-
gram termination and coverability in LCMs require such a fine-grained statement
if we wish to distinguish e.g. the d-dimensional case from the d+ 1-dimensional
one.

Two specific cases ofTheorem 3.5 are also considered in the literature: the lex-
icographic ordering ⟨Nd,≤lex⟩ is analysed in [C19], and an upper bound for the
multiset ordering over the lexicographic ordering ⟨M(Nd),≤m⟩ is shown by Abri-
ola, Figueira, and Senno [2015].

3.5.2. Length Functions for Well-Quasi-Orders. The first upper bounds
for bad sequences over ⟨Nd,≤×⟩ were proven by McAloon [1984] using an ar-
guably complex combinatorial argument on large intervals. Clote [1986] later
published a simpler proof based on an analysis by Ketonen and Solovay [1981],
but with coarser bounds thanMcAloon’s and no parametricity in the control func-
tion.2 In the context of commutative algebra, Moreno Socías [1992] shows sim-
ilar bounds for chains of polynomial ideals. Friedman [2001, Theorem 6.2] also
shows that the length functions for fixed d are primitive-recursive. Since the
publication of [C19], Abriola et al. [2015] have obtained bounds similar to those
of Theorem 3.15 by relating directly the product ordering with the lexicographic
ordering.

Regarding other wqos, Cichoń and Tahhan Bittar [1998] proved upper bounds
for Higman’s Lemma and arbitrary control functions. The presentation in Sec-
tion 3.4 follows the framework of [C18], where tight bounds for Higman’s Lemma
are proven. The same framework has also been employed by Rosa-Velardo [2017]
to derive a length function theorem for finite multisets of tuples in ⟨Nd,≤×⟩,
where multisets are ordered by multiset embedding.

Weiermann [1994] proved a length function theorem for Kruskal’s TreeTheo-
rem when using affine control functions. Weiermann’s result encompasses many
wqos, and it might be interesting to develop specialised versions for simpler wqos
and to allow arbitrary control functions. As Kruskal’s Tree Theorem is seldom
needed in its full generality, to my knowledge this very general result has never
been applied in the WSTS literature: indeed, this literature rather focuses on
bounded-depth trees [e.g., D’Osualdo et al., 2017; Genest et al., 2008; Meyer, 2008;
Wies et al., 2010], which are within the reach of the techniques of this chapter
using nested applications of Higman’s Lemma [C18], with Fε0 upper bounds [J5].

3.5.3. Further Applications. As wqos are pervasive in termination proofs,
the upper bounds offered by length function theorems find applications in many
fields. Besides the verification of infinite-state systems, the bounds in Sections 3.3
and 3.4 have been applied for instance to obtain small (inverse Ackermann) certifi-
cates in distributed decision systems [Fraigniaud et al., 2016], and sharp bounds
for instance for the reverse mathematics of disjunctive termination arguments
[Steila, 2016], for proof search in sequent calculi for substructural logics like rel-
evance logic or contractive linear logic [Urquhart, 1999; J4], or for algorithms

2In terms of the extended Grzegorczyk hierarchy [Löb andWainer, 1970; see also Section 4.1.1],
Clote places his bound at level Fd+6 and McAloon’s at level Fd+1 for successor-controlled bad
sequences in fixed dimension d; Theorem 3.15 provides an upper bound Hωd·d(dn) in Fd in this
case.

3.5. RELATED WORK & PERSPECTIVES 33

relying on Hilbert’s Basis Theorem in algebraic geometry [Benedikt et al., 2017;
León Sánchez and Ovchinnikov, 2016]. This is only a small sample, as length func-
tion theorems have a surprisingly large number of applications, and rather than
attempting to list them here, we refer the reader to the catalog of problems in [J3,
Section 6].

3.5.4. Perspectives. A natural direction to extend the results presented in
this chapter is to attempt to prove length function theorems for other wqos and
to refine the existing bounds when possible.

Trees andGraphs. Among the little-known consequences ofWeiermann’s 1994
result, it might for instance be worthwhile re-visiting the case of binary trees
(with ε0 as maximal order type [Schmidt, 1979]) and of series-parallel partial or-
ders (with the Schütte-Feferman ordinal Γ0 as maximal order type [Pouzet and
Sobrani, 2003]).

A contrario, one could attempt to go beyond Kruskal’s Tree Theorem and
to investigate more general wqos, like graph minors; here, computing the max-
imal order type is already an issue [Van der Meeren, 2015]. Note however that
the WSTS literature seems to consider the graph minor ordering as too permis-
sive [e.g. König and Stückrath, 2017], and rather considers the subgraph or in-
duced subgraph orderings on restricted classes of graphs [Delzanno et al., 2010;
König and Stückrath, 2017], for instance with bounded path lengths [Ding, 1992]
or bounded shrub-depth [Ganian et al., 2012]—which can again be analysed using
nested applications of Higman’s Lemma.

Genericity. A systematic way of relating maximal order types with the length
of controlled bad sequences is also missing. The work of Abriola et al. [2015]
on Nd, which analyses the combinatorics of controlled reifications—one of the
main techniques for proving upper bounds on maximal order types—might be a
first step in that direction.

Refinements. Finally, the length function theorems in this chapter all deal with
amortised controlled sequences. It would be interesting to obtain tighter bounds
for strongly controlled sequences. Recall for instance that the sequences arising
in LCMs were in fact strongly controlled (see §3.1.2.2), and this could be a way of
closing the complexity gap for their coverability problem in fixed dimension (see
the next chapter).

CHAPTER 4

Fast-Growing Complexity

The previous chapter has shown how to derive complexity upper bounds for
algorithms relying on wqos for their termination. For instance, for the backward
coverability algorithm for LCMs, Example 3.16 extracted primitive-recursive up-
per bounds in terms of Cichoń functions when the number of counters was fixed,
but only an upper bound of Ackermannian growth in general. We also saw with
Example 3.1 that these bounds were rather tight.

However, when considering decision problems like Coverability rather than
algorithms like Backward Coverability, the analysed algorithm itself might not be
optimal. The standard tools to tackle such questions are complexity classes, along
with the associated notions of reductions and completeness.

This chapter first summarises [J3] and proposes in Section 4.1 a suitable defini-
tion for the non-elementary complexities often encountered when working with
wqos. As an application, I show in Section 4.1.3 how the length function theorem
of the previous chapter entail that the Backward Coverability algorithm for LCMs
yields an upper bound in ‘ACKERMANN’, a complexity class for decision problems
of Ackermannian complexity.

The point of these fast-growing complexity classes is however to be able to
prove completeness statements. I therefore present in Section 4.2 a proof that
LCM Coverability is ACKERMANN-hard, meaning that the Backward Coverability
algorithm is essentially optimal for this model.

This hardness proof follows essentially the proof using weak computations
due to Schnoebelen [2010a]. The presentation in this chapter uses a clearer, tail
recursive formulation using Hardy functions, which I introduced in joint publica-
tions with Haase, Haddad, and Schnoebelen [C16; L1; I4; J5]. This formulation is
easier to adapt to more complex settings, and has been successfully employed for
proving lower bounds for Coverability in several families of WSTS (c.f. Table 4.1
on page 49). Furthermore, I introduce here a variant of theHardy functions, which
allows to derive slightly tighter lower bounds in fixed dimension than the original
hardness proofs of Urquhart [1999] and Schnoebelen [2002, 2010a].

Contents

4.1. Complexity Classes Beyond ELEMENTARY 36
4.1.1. The Extended Grzegorczyk Hierarchy 36

4.1.1.1. Computational Characterisation 36
4.1.1.2. Main Properties 37
4.1.1.3. Decision Problems 38

4.1.2. The Fast-Growing Complexity Hierarchy 38
4.1.2.1. Milestones 39
4.1.2.2. Strictness 39

35

36 4. FAST-GROWING COMPLEXITY

4.1.2.3. Reduction Classes 40
4.1.2.4. Basic Complete Problem 40
4.1.2.5. Robustness 41
4.1.2.6. Relativised Hierarchies 42

4.1.3. Example: LCM Coverability is in ACKERMANN 42
4.1.3.1. Analysis of Backward Coverability 42
4.1.3.2. A Combinatorial Algorithm 43

4.2. Lower Bounds Through Hardy Computations 43
4.2.1. Hardy-like Computations 44

4.2.1.1. Basic Properties 44
4.2.1.2. Connection with the Ackermann Hierarchy 45

4.2.2. Weak Computation in Lossy Counter Machines 45
4.2.3. Lower Bound 47

4.3. Related Work & Perspectives 49
4.3.1. Lower Bounds Through Counter Objects 49
4.3.2. Provability in Theories of Arithmetic 50

4.1. Complexity Classes Beyond ELEMENTARY

We define in this section an ordinal-indexed hierarchy (Fα)α<ε0 of complexity
classes. We rely for this on the Hardy functions (Hωα

)α<ε0 from Section 3.2.2 as
a standard against which we can measure high complexities.

In logic and recursion theory, the functions (Hωα
)α<ε0 are used to gener-

ate the extended Grzegorczyk hierarchy (Fα)α<ε0 [Löb and Wainer, 1970], when
closed under substitution and limited primitive recursion. We shall start by recall-
ing the definition of this hierarchy and some of it main properties in Section 4.1.1.
As we shall argue, the classes in the extended Grzegorczyk hierarchy are however
not suitable for our complexity classification objectives.

We define instead in Section 4.1.2 another hierarchy (Fα)α<ε0 , where each Fα
class is the class of problems decidable within time bounded by a single applica-
tion ofHωα composed with any function p already defined in the lower levels Fβ

for β < α. We succinctly describe the main properties of these classes here, but
the main argument in their favour is the catalogue of complete problems for sev-
eral levels of the hierarchy, arising from the literature, and compiled in Section 6
of [J3].

4.1.1. The Extended Grzegorczyk Hierarchy is an ordinal-indexed infi-
nite hierarchy of classes (Fα)α<ε0 of functions with argument(s) and images inN
and was defined by Löb and Wainer [1970]. It has multiple natural characterisa-
tions: for instance via loop programs for α < ω [Meyer and Ritchie, 1967], via
ordinal-recursive functions with bounded growth [Wainer, 1970], via functions
computable with restricted resources as we will see in Equation (4.2), via func-
tions that can be proven total in fragments of Peano arithmetic [Fairtlough and
Wainer, 1998], etc.

4.1.1.1. Computational Characterisation. The extended Grzegorczyk hierar-
chy itself is defined by means of recursion schemes with the (Hωα

)α as genera-
tors. Nevertheless, for α ≥ 2, each of its levels Fα is also characterised as a class
of functions computable with bounded resources [Wainer, 1970].

Formally, it is arguably more natural to first define a slight variant (F<α)α
of the extended Grzegorczyk hierarchy. Each class F<α for α > 2 is the class

4.1. COMPLEXITY CLASSES BEYOND ELEMENTARY 37

of functions computable by deterministic Turing machines in time bounded by
O(Hγ(n)) for some ordinal γ < ωα, when given an input of size n. Using stan-
dard notations for complexity classes (where ‘F’ denotes as usual a class of func-
tions, ‘D’ that we use deterministic Turing machines, and ‘TIME’ that we consider
time-bounded computations), this translates as

(4.1) F<α
def=

∪
γ<ωα

FDTIME (Hγ(n)) .

Note that the choice between deterministic and nondeterministic, or between
time- and space-bounded computations in (4.1) is irrelevant, because α > 2 and
Hω2 is already a function of exponential growth.

We find among others in this hierarchy F<3 = FELEMENTARY the set of
Kalmar-elementary functions,F<ω = FPRIMITIVE-RECURSIVE the set of primitive-
recursive functions, and F<ωω = FMULTIPLY-RECURSIVE the set of multiply-
recursive functions.

4.1.1.2. Main Properties. The classes Fα are then simply defined for α ≥ 2 as

Fα
def= F<α+1 =

∪
γ<ωα+1

FDTIME (Hγ(n)) .(4.2)

This is equivalent to the computational characterisation of Wainer [1970]

Fα =
∪
c<ω

FDTIME
(
(Hωα

)c(n)
)
.(4.3)

Indeed, by Equation (3.12), Hωα·c is the same as the cth iterate (Hωα
)c of Hωα ,

and ωα · c < ωα+1. Conversely we can rely on the fact that, for each γ < ωα+1,
there exists c < ω such that γ ≤ ωα · c, and then for all large enough n,Hγ(n) ≤
Hωα·c(n) (c.f. Lemma A.1). Note that this also yields

F<α =
∪
β<α

Fβ .(4.4)

Each class Fα is closed under (finite) composition. Every function f in Fα

is honest, i.e. can be computed in time bounded by some function also inFα [Fairt-
lough andWainer, 1998;Wainer, 1970]—this is a relaxation of the time constructible
condition, which asks instead for computability in time O(f(n)). Since each f in
Fα is also bounded by Hωα·c for some c [Löb and Wainer, 1970, Theorem 2.10],
this means that

(4.5) Fα =
∪

f∈Fα

FDTIME (f(n)) .

In particular, for every α the function Hωα belongs to Fα, and therefore, for
every c, Hωα·c also belongs to Fα.

Every f in Fβ is also eventually bounded by Hωα if β < α [Löb and Wainer,
1970], i.e. there exists a rank x0 such that, for all x1, . . . , xn, if maxi xi ≥ x0, then
f(x1, . . . , xn) ≤ Hωα

(maxi xi). However, for all α > β > 0, Hωα ̸∈ Fβ , and
the hierarchy (Fα)α is therefore strict for α > 0.

38 4. FAST-GROWING COMPLEXITY

F ∗
<3 = ELEMENTARY

F3 = TOWER

F ∗
<ω = PRIMITIVE-RECURSIVE Fω = ACKERMANN

F ∗
<ωω = MULTIPLY-RECURSIVE

Fωω =HYPER-ACKERMANN

· · ·

Figure 4.1. Some complexity classes beyond ELEMENTARY.

4.1.1.3. Decision Problems. We have been dealing this far with classes of func-
tions, but writing F ∗

α for the restriction of Fα to {0, 1}-valued functions, i.e.

F ∗
α =

∪
γ<ωα+1

DTIME (Hγ(n)) , F ∗
<α

def=
∪

γ<ωα

DTIME (Hγ(n)) ,(4.6)

we obtain the corresponding classes of decision problems F ∗
<3 = ELEMENTARY,

F ∗
<ω = PRIMITIVE-RECURSIVE, and F ∗

<ωω = MULTIPLY-RECURSIVE.

4.1.2. The Fast-Growing Complexity Hierarchy. Unfortunately, the F ∗
α

classes in the extended Grzegorczyk hierarchy are not suitable for many inter-
esting decision problems, which are non elementary (or non primitive-recursive,
or non multiply-recursive, etc.), but only barely so. The issue is that complexity
classes like e.g. F ∗

3 , which is the first class to contain non elementary problems,
are very large: F ∗

3 contains for instance problems that require spaceHω3·100(n),
more than a hundred-fold compositions of towers of exponentials. As a result,
hardness for F ∗

3 cannot be obtained for many classical examples of non elemen-
tary problems. In fact, as we shall see at the end of §4.1.2.2, there are no complete
problems for F ∗

α under reasonable notions of reduction.
We therefore introduce smaller classes of decision problems for 3 ≤ α < ε0:

(4.7) Fα def=
∪

p∈F<α

DTIME
(
Hωα

(p(n))
)
.

In contrast with F ∗
α in (4.6), only a single application of Hωα is possible, com-

posed with some ‘lower’ reduction function p from F<α. This definition is in-
tended to be used with reductions from F<α in hardness or completeness state-
ments.

As previously, because we assume α ≥ 3 and F<α contains all the elemen-
tary functions, we can derive the robustness of the Fα classes under changes in
the model of computation—e.g. RAM vs. Turing machines vs. Minsky machines,
deterministic or nondeterministic or alternating—or the type of resources under
consideration—time or space; e.g.

(4.8) Fα =
∪

p∈F<α

NTIME
(
Hωα

(p(n))
)
=

∪
p∈F<α

SPACE
(
Hωα

(p(n))
)
.

4.1. COMPLEXITY CLASSES BEYOND ELEMENTARY 39

4.1.2.1. Milestones. The definition of the (Fα)α complexity classes yields for
instance a class

TOWER def= F3 =
∪

p∈FELEMENTARY
DTIME

(
Hω3

(p(n))
)

closed under elementary reductions (i.e., reductions from F2), a class

ACKERMANN def= Fω =
∪

p∈FPRIMITVE-RECURSIVE
DTIME

(
Hωω

(p(n))
)

of Ackermannian problems closed under primitive-recursive reductions (i.e., re-
ductions from F<ω), and a class

HYPER-ACKERMANN def= Fωω =
∪

p∈FMULTIPLY-RECURSIVE
DTIME

(
Hωωω

(p(n))
)

of hyper-Ackermannian problems closed undermultiply-recursive reductions (i.e.,
reductions from F<ωω), etc. In each case, we can think of Fα as the class of prob-
lems not solvable with resources in F<α, but barely so: non elementary problems
for F3, non primitive-recursive ones for Fω , non multiply-recursive ones for Fωω ,
and so on. As a consequence of Corollary 4.2 below, the classes (Fα)α also yield
another definition of the primitive-recursive and multiply-recursive problems:

PRIMITIVE-RECURSIVE = F ∗
<ω =

∪
k

Fk ,

MULTIPLY-RECURSIVE = F ∗
<ωω =

∪
k

Fωk .

See Figure 4.1 for the first main stops of the hierarchy.
4.1.2.2. Strictness. For an ordinal α > 2 and a finite k, let us define the class

of decision problems

(4.9) k-Fα def=
∪

γ<ωα·(k+1)

DTIME
(
Hγ(n)

)
.

By arguments similar to those sketched for (4.3), we see that

(4.10) Fα = 1-Fα ,

and the hierarchy (k-Fα)k,α is thus a generalisation of the (Fα)α one. The hi-
erarchy (k-Fα)k,α captures the decision problems in the extended Grzegorczyk
hierarchy: by definition of F ∗

α and F ∗
<α in (4.6),

F ∗
α =

∪
k

k-Fα , F ∗
<α = 0-Fα .(4.11)

The (k-Fα)k,α hierarchy is proven to be strict in [J3, Theorem 5.3] by a standard
diagonalisation argument.

Theorem 4.1 (Strictness). For all k and 2 < β < α,

k-Fβ ⊊ (k + 1)-Fβ ⊊ F ∗
β ⊊ Fα .

A consequence ofTheorem 4.1 is that (Fα)α ‘catches up’ with (F ∗
α)α at every limit

ordinal.

40 4. FAST-GROWING COMPLEXITY

Corollary 4.2. Let λ be a limit ordinal, then

F ∗
<λ =

∪
β<λ

Fβ ⊊ Fλ .

Proof. The equality F ∗
<λ =

∪
β<λ Fβ and the inclusion F ∗

<λ ⊆ Fλ can be
checked by considering a problem in some F ∗

β for β < λ: it is in k-Fβ for some
k > 0 by Equation (4.11), hence in Fβ+1 by Theorem 4.1, where β + 1 < λ since
λ is a limit ordinal and therefore the problem is in Fλ, again by Theorem 4.1. The
strictness of the inclusion follows from (4.11) and Theorem 4.1 with k = 0. □

Note that strictness implies that there are no ‘F ∗
α -complete’ problems under

F<α reductions, since by Equation (4.11) such a problem would necessarily be-
long to some k-Fα level, which would in turn entail the collapse of the (k-Fα)k
hierarchy at the k-Fα level and contradict Theorem 4.1.

Similarly, fix a limit ordinal λ and some reduction class Fα for some α < λ:
there cannot be any meaningful ‘F ∗

<λ-complete’ problem under Fα reductions,
since such a problem would be in F ∗

β for some α < β < λ, hence would con-
tradict the strictness of the (F ∗

β)β<α hierarchy. Just like the Time Hierarchy
Theorem entails that there are no ‘ELEMENTARY-complete’ problems, there are
no ‘PRIMITIVE-RECURSIVE-complete’ nor ‘MULTIPLY-RECURSIVE-complete’ prob-
lems either.

4.1.2.3. Reduction Classes. In order to be used together with reductions in
F<α, the classes Fα need to be closed under such functions. Formally, for a func-
tion f :N → N and two languages A and B, we say that A many-one reduces to
B in time f(n), written A ≤f

m B, if there exists a Turing transducer T working
in deterministic time f(n) such that, for all x, x is in A if and only if T (x) is in
B. For a class of functions C, we write A ≤C

m B if there exists f in C such that
A ≤f

m B. We write similarly that A ≤f
T B if there exists a Turing machine for A

working in deterministic time f(n) with oracle calls to B, and A ≤C
T B if there

exists f in C such that A ≤f
T B.

As could be expected given the definitions, each class Fα is closed both under
many-one and Turing F<α reductions [J3, Theorems 4.7 and 4.8].

Theorem 4.3. Let A and B be two languages with B ∈ Fα. If A ≤F<α
m B or

A ≤F<α

T B, then A ∈ Fα.

Of course, we could replace in (4.7) the class of reductions F<α by a more
traditional one, like logarithmic space (FL) or polynomial time (FP) functions. We
feel however that our definition in (4.7) better captures the intuition we have of
a problem being ‘complete for Hωα .’ Moreover, using at least F2 as our class of
reductions allows to efficiently compute Hωα itself within Fα bounds, leading to
interesting combinatorial algorithms (see §4.1.3.2 for an example).

We always assume many-one F<α reductions when discussing hardness for
Fα in the remainder of this manuscript.

4.1.2.4. Basic Complete Problem. By (4.7), Fα-hardness proofs for many-one
F<α reductions can reduce from the acceptance problem of some input string x
by some deterministic Turing machineM working in timeHωα

(p(n)) for some p
inF<α. This can be simplified to amachineM ′ working in timeHωα

(n) by a basic
padding argument. Indeed, because p in F<α is honest, p(n) can be computed in

4.1. COMPLEXITY CLASSES BEYOND ELEMENTARY 41

F<α. Thus the acceptance of x by M can be reduced to the acceptance problem
of a #-padded input string x′ def

= x#p(|x|)−|x| of length p(|x|) by a machineM ′ that
simulates M , and treats # as a blank symbol—now M ′ works in time Hωα

(n).
To sum up, we have by definition of the (Fα)α classes the following basic

Fα-complete problem.
Problem (Acceptance of Hωα-Bounded Turing Machines).
instance: A deterministic Turing machine M working in time Hωα and

an input x.
question: Does M accept x?

This problem or slight variations of it has been used in most of the master
reductions in the literature in order to prove non primitive-recursiveness, non
multiple-recursiveness, and other hardness results [Chambart and Schnoebelen,
2008; Jančar, 2001; Lazić et al., 2016; Rosa-Velardo, 2017; Schnoebelen, 2010a;
Urquhart, 1999; C16; J5]. Section 6 in [J3] presents a catalogue of ‘natural’ com-
plete problems at various levels of the (Fα)α hierarchy, which should be easier to
employ in reductions.

4.1.2.5. Robustness. In the applications of fast-growing classes, one often re-
lies on their ‘robustness’ to minor changes in their definition. More precisely, we
can employ alternative generative functions; there are indeed many variants for
the definition of the Hardy functions (Hωα

)α, but they are all known to generate
essentially the same hierarchy (Fα)α.1 The same holds for the hierarchy (Fα)α,
as shown in Section 4 of [J3]; we shall see an example of this behaviour in §4.1.2.6.

The main rationale for this robustness is that each fast growing function class
Fα features enough ‘wiggle room’ to accommodate small computational over-
heads, where ‘small’ means ‘in F<α’. A possible formal translation of this in-
tuition is proven in [J3, Lemma 4.6].

Lemma 4.4. Let f and f ′ be two functions in F<α. Then there exists p in F<α

such that f ◦Hωα ◦ f ′ ≤ Hωα ◦ p.
Lemma 4.4 justifies for instance Equation (4.8), since the overhead of work-

ing with different models of computation is elementary (hence in F<3) and α is
always assumed to be at least 3.

Another application of Lemma 4.4 pertains to the computational resources
required to compute Hωα itself. The functions Hωα are known to be honest, i.e.
to be computable in time Fα [Fairtlough and Wainer, 1998; Wainer, 1970]. This
is however not tight enough to allow us to compute Hωα as part of an algorithm
and retain an upper bound in Fα. We use the following refinement instead: let us
call a function f elementarily constructible if there exists an elementary function
e in FELEMENTARY = F<3 such that f(n) can be computed in time e(f(n)) for
all n.

Theorem 4.5 (J3). Let h:N → N be an elementarily constructible strictly in-
creasing function and α be an ordinal, then hα is also elementarily constructible.

Together with Lemma 4.4, Theorem 4.5 shows that algorithms can afford to
compute Hγ for γ < ωα · 2 and still end with a complexity in Fα.

1See [Ritchie, 1965] and [Löb and Wainer, 1970, pp. 48–51] for such results—and the works
of Weiermann et al. on phase transitions for investigations of when changes do have an im-
pact [e.g. Omri and Weiermann, 2009].

42 4. FAST-GROWING COMPLEXITY

4.1.2.6. Relativised Hierarchies. One means of defining a variant of the fast-
growing complexity classes is to pick a base function h different from H(x) def=
x + 1 for the Hardy hierarchy. The corresponding relativised complexity classes
are then defined by

(4.12) Fh,α def=
∪

γ<ωα·2
DTIME (hγ(n)) .

It is easy to check that, if g ≤ h, then gα ≤ hα for all α. Because we assumed h to
be strictly increasing, this entails Hα ≤ hα, and we have the inclusion Fα ⊆ Fh,α
for all strictly increasing h.

The converse inclusion does not hold, since for instance hω is non elementary
for h(x) = 2x. Observe however that, in this instance, h ≤ Hω2 and (Hω2

)ω =

Hω3 by Equation (3.12). This entails that Fh,1 ⊆ F3 when h(x) = 2x. Thus, when
working with relativised classes, one should somehow ‘offset’ the ordinal index
by an appropriate amount. This idea is formalised in [J3, Theorem 4.2] and allows
to show:

Theorem 4.6. Let h:N → N be a strictly increasing function and α, β be two
ordinals.

(i) If h ∈ Fβ , then Fh,α ⊆ Fβ+1+α.
(ii) If h ≤ Hωβ

, then Fh,α ⊆ Fβ+α.

The statement of Theorem 4.6 is somewhat technical, but easy to apply to
concrete situations; for instance:

Corollary 4.7. Let h:N → N be a strictly increasing primitive recursive func-
tion and α ≥ ω. Then Fh,α = Fα.

Proof. The function h is in Fk for some k < ω, thus Fh,α ⊆ Fk+1+α = Fα by
Theorem 4.6. Conversely, since h is strictly increasing, Fα ⊆ Fh,α. □

4.1.3. Example: LCMCoverability is in ACKERMANN. As an application
of the fast growing complexity classes, let us consider again the Coverability prob-
lem for lossy counter machines (c.f. Example 2.7). We have seen in Example 3.16
that the backward coverability algorithm terminates after at most L def= hωd·p(nd)
steps for an LCMwith d counters and p states and a target configuration q,v with
maxc∈C v(c) = n, where h(x) def= x+ d = Hd(x).

4.1.3.1. Analysis of Backward Coverability. At this point, we can analyse more
closely the computational cost of each step of the backward algorithm. By Equa-
tion (3.14), each of the vectors in the minimal bases for Ui has norm at most

(4.13) N def= hω
d·p(nd) ≤ Hωd·dp(nd) ≤ Hωd+1

(ndp) ,

and Ui contains therefore at most p · (N +1)d minimal configurations. As seen in
Example 2.7, the computation of the minimal elements of Ui+1 can therefore be
performed in time e(N) for some elementary function e ∈ F<3. Hence the total
time of the computation is bounded by e(N) ·L, which is an elementary function
of N since L ≤ N by Equation (3.13). By Lemma 4.4, this is in Fd+1 when the
dimension d = |C| is fixed, and in Fω when d is part of the input.

Theorem 4.8 (C19, Sec. VII-B). LCM Coverability is in Fω , and in F|C|+1 if the
number of counters is fixed.

4.2. LOWER BOUNDS THROUGH HARDY COMPUTATIONS 43

4.1.3.2. A Combinatorial Algorithm. Another way of obtaining the bound of
Theorem 4.8 is to rely on the existence of pseudo-witnesses pointed out in Re-
mark 2.6. Indeed, instead of the backward coverability algorithm, we can leverage
pseudo-witnesses to obtain a non-deterministic forward algorithm. The argument
is that a pseudo-witness must have length bounded by the same N defined just
before in Equation (4.13). The algorithm therefore

(1) computes N in a first phase: as seen with Theorem 4.5, this can be per-
formed in time (and space) Hωd+1

(e(ndp)) for some elementary func-
tion e,

(2) then nondeterministically explores the reachable configurations, start-
ing from the initial configuration q0,0 and attempting to reach the tar-
get configuration q,v—but aborts if the upper bound on the length is
reached. This second phase uses at most N steps, and each step can be
performed in space polynomial in the size of the current configuration
and of an N -bounded counter, thus in O(d log(N + 1) + log p). The
whole phase can thus be performed using space polynomial inN , which
is bounded by Hωd+1

(f(ndp)) for some f in Fd by Lemma 4.4.

This algorithm thus works in space Hωd+1
(f(ndp)) for some f in Fd, which by

Equation (4.8) yields again Theorem 4.8.

4.2. Lower Bounds Through Hardy Computations

The main purpose of the fast-growing complexity classes (Fα)α is to provide
the means to prove completeness statements. As an illustration, first of the fact
that such high complexities can arise naturally in computer science, and sec-
ond of how such lower bounds can be proven, we show here that Coverability
is ACKERMANN-hard in lossy counter machines, thus matching the upper bound
of Theorem 4.8.

Theorem 4.9. LCM Coverability is Fω-hard, and F|C|-hard if the number of
counters |C| ≥ 3 is fixed.

This result was first shown by Urquhart [1999] for a related model of expan-
sive alternating counter machines, and independently by Schnoebelen [2002] for
lossy counter machines. The proof in this section follows the same general prin-
ciple of implementing weak computers for fast-growing functions and their in-
verses (see Section 4.2.2), but works in the arguably more elegant setting of Hardy
computations developed in [C16; L1; I4; J5]. Furthermore, we employ a variant of
theHardy functions (Hα)α defined Section 4.2.1, which allows to slightly improve
over the F|C|−2 lower bound proven by Schnoebelen [2010a] when the number of
counters is fixed.

Remark 4.10 (Reset VASS). As explained by Schnoebelen [2010a], the bounds
of Theorem 4.9 apply directly to reset vector addition systems with states, which
are Minsky machines where the zero test operation is replaced by a reset oper-
ation that assigns zero to the counter; this is true even with a fixed number of
counters. The Fω lower bound holds more generally for transfer vector addition
systems [Schnoebelen, 2010a] and broadcast protocols [I4].

44 4. FAST-GROWING COMPLEXITY

4.2.1. Hardy-like Computations. We start with a variant of the Hardy hi-
erarchy, that differs from the definition of (Hα)α in (3.10) on several counts:

• in successor cases, the argument is incremented by two instead of one,
and

• in limit cases, the argument is reset to 2 and the index descends slightly
faster through the fundamental sequence, with an update of ω to x − 1
instead of x+ 1.

We define the aα function for α < ωω and x > 0 by

a0(x) def= x , aα+1(x) def= aα(x+ 2) , aλ(x) def= aλ(x−2)(2) .(4.14)

The last two cases of (4.14) read left-to-right define a rewriting system over pairs
(α, n) where 0 ≤ α < ωω is an ordinal and n > 0 is a natural number:

(α+ 1, n) → (α, n+ 2)(4.15)
(λ, n) → (λ(n− 2), 2)(4.16)

We call a rewriting sequence (α0, n0) → (α1, n1) → · · · → (αℓ, nℓ) a Hardy-like
computation. It enforces the invariant aαi(ni) = aα0(n0) for all i. Observe that
α0 > α1 > · · · > αℓ, thus such a computation must terminate, and that if αℓ = 0
(in which case we say that the computation is complete), then nℓ = aα0(n0).

4.2.1.1. Basic Properties. The point of using superscripts for the ordinal in-
dices in the (aα)α hierarchy is that these functions satisfy the same identity for
composition as the Hardy hierarchy (c.f. Equation (3.12)).

Lemma 4.11 (Composition). Let α + β < ωω be an ordinal term in Cantor
normal form and x > 0. Then aα

(
aβ(x)

)
= aα+β(x).

Proof. By transfinite induction overβ. For the zero case, aα(a0(x)) = aα(x).
For the successor case, aα

(
aβ+1(x)

)
= aα

(
aβ(x + 2)

)
= aα+β(x + 2) =

aα+β+1(x). For the limit case, aα
(
aλ(x)

)
= aα

(
aλ(x−2)(2)

)
= aα+λ(x−2)(2) =

aα+λ(x). □

They also enjoy similar monotonicity properties.

Lemma 4.12 (Inflationary). For all 0 < x and 0 < α < ωω , x < aα(x).

Proof. By transfinite induction over α. For the base case, a1(x) = x+2 > x.
For the successor case, aα+1(x) = aα(x+2) > x+2 ≥ x by induction hypothesis.
For the limit case aλ(x) = aλ(x−2)(x) > x by induction hypothesis. □

Lemma 4.13 (Monotone). For all 0 < x < y and 0 ≤ α < ωω , aα(x) < aα(y).

Proof. By transfinite induction over α. For the base case, a0(y) = y >
x = a0(x). For the successor case, aα+1(y) = aα(y + 2) > aα(x + 2) =
aα+1(x) by induction hypothesis. For the limit case, define z def= y − x > 0
and write the limit ordinal λ as γ+ωd+1 for some d and γ ≥ ωd+1; then aλ(y) =

aλ(y−2)(2) = aγ+ωd·(y−1)(2) = aγ+ωd·(x−1)+ωd·z(2) = aγ+ωd·(x−1)
(
aω

d·z(2)
)
>

aγ+ωd·(x−1)(2) = aλ(x), where we applied Lemma 4.11, followed by Lemma 4.12
to show that aωd·z is strictly inflationary and the induction hypothesis to show
that aγ+ωd·(x−1) is strictly monotone. □

4.2. LOWER BOUNDS THROUGH HARDY COMPUTATIONS 45

4.2.1.2. Connectionwith the AckermannHierarchy. Thehierarchy (aα)α yields
in the case of the ordinal indices (ωd)d>0 a hierarchy of ‘hyper-operations’ that
appears quite often in the literature, with multiplication by two appearing as the
base case for d = 1 and the higher levels defined through iteration.

Lemma 4.14 (Ackermann Hierarchy). For all x > 0, aω(x) = 2x, and for all
x, d > 0, aω

d+1
(x) = (aω

d
)x(1).

Proof. Indeed, regarding the first equation,
aω(x) = ax−1(2) = 2 + 2(x− 1) = 2x .

Let us also note that, for all d > 0, aωd
(1) = 2; indeed by definition (4.14),

aω
d+1

(1) = aω
d·0(2) = a0(2) = 2 .

Thus, regarding the second equation, and using Lemma 4.11

aω
d+1

(x) = aω
d·(x−1)(2) = aω

d·(x−1)
(
aω

d
(1)

)
= (aω

d
)x(1) . □

The definition in (4.14) thus results for instance in aω
2
(x) = 2x and aω

3
(x) =

tower(x), and is typically used in lower bound proofs. Nevertheless, the definition
in (4.14) offers a tail-recursive viewpoint instead of an iterative viewpoint, which
makes it easier to handle for our proofs.

We can define a hierarchy of classes of decision problems generated by the
(aω

d
)d>2 functions by analogy with (4.7):

Ad
def=

∪
p∈F<d

DTIME
(
aω

d
(p(n))

)
, Aω

def=
∪

p∈F<ω

DTIME
(
aω

p(n)+1
(p(n))

)
.(4.17)

It turns out that this defines the same class of problems as Fd, and thus that the
halting problem of aωd-bounded Minsky machines suffices to prove Fd-hardness.

Theorem 4.15 (J3, Theorem 4.1). For all 2 < α ≤ ω, Aα = Fα.
Therefore, using a padding argument as in §4.1.2.4, a basic Fd-complete prob-

lem is the halting problem for Minsky machines where the sum of the counter
values is bounded by aω

d
(n) along the execution. Two counters suffice here, as

the halting problem of 2-counters Minsky machines with counters bounded by
22

s(n) is hard for SPACE(s(n)) [Fischer et al., 1968], and the double exponential
can be dealt with padding as we always assume d ≥ 3.

Problem (Halting of aωd-Bounded Minsky Machines).
instance: A deterministic 2-counters Minsky machine M where the sum

of counters is bounded by aω
d
(|M |).

question: Does M halt?
Finally, the version of the problem with d = |M |+ 1 is Fω-complete.

4.2.2. Weak Computation in Lossy Counter Machines. Let us fix some
d > 0. We are going to implement Hardy-like computations and their inverses
in Minsky machines, using an encoding of ordinals below ωd in a subset of their
counters. The implementations in these Minsky machines will be perfect, in that
theywill compute aωd and its inverse exactly. When the samemachines are run as
lossy countermachines, wewill see that the lossy behaviour can only yield smaller
or equal results: the implementations are weak computers for the functions.

46 4. FAST-GROWING COMPLEXITY

ℓin
c0--

c0=0?

c1--

n--

c0++
n=0?

n++

n++

c1=0?

c2--

n--

c1++
n=0?

...
...

ℓa

c2=0?

cd−2=0?

cd−1--

n--

cd−2++
n=0?cd−1=0?

Figure 4.2. A Minsky machine Ma implementing direct Hardy-
like computations as in equations (4.19) and (4.20).

Codes. We construct Minsky machines with counters Cd
def= {cd−1, . . . , c0, n}.

A valuation v = (cd−1, . . . , c0, n) in NCd encodes a pair (α, n) from ωd×ω with

α(v) def= ωd−1 · cd−1 + · · ·+ ω0 · c0 .(4.18)

Direct Computations. We translate the rewriting rules of (4.15) in terms of
valuations (cd−1, . . . , c0, n) in NCd , and unwrap the definition of the assignment
of fundamental sequences from Equation (3.8):

(cd−1, . . . , c0 + 1, n) →a (cd−1, . . . , c0, n+ 2)(4.19)
(cd−1, . . . , cj + 1, 0, 0, . . . , 0, n) →a (cd−1, . . . , cj , n− 1, 0, . . . , 0, 2)(4.20)

for 0 < j ≤ d− 1. These rules are straightforward to implement in a Minsky ma-
chineMa shown in Figure 4.2. Starting in ℓin with valuation v = (cd−1, . . . , c0, n)
with n > 0, Ma reaches ℓa exactly when it has performed the complete Hardy-
like computation starting from the pair (α(v), n), and thus with a final resulting
valuation (0, . . . , 0, aα(v)(n)).

Inverse Computations. We also need to translate the inverse rewriting rules
of (4.15) in terms of valuations (cd−1, . . . , c0, n) inNCd . This now yields the rules

(cd−1, . . . , c0, n+ 2) →a−1 (cd−1, . . . , c0 + 1, n)(4.21)
(cd−1, . . . , cj , n, 0, . . . , 0, 2) →a−1 (cd−1, . . . , cj + 1, 0, 0, . . . , 0, n+ 1)(4.22)

for 0 < j ≤ d−1. Note that the inverse rules are not deterministic, as for a given
N there exist many pairs (α, n) such that aα(n) = N . However, for each fixed α,
aα is injective since it is strictly monotone by Lemma 4.13.

The rules are again implemented in a Minsky machine Ma−1 depicted in Fig-
ure 4.3. Starting in ℓa−1 with valuation v = (cd−1, . . . , c0, n) with n > 0, Ma−1

performs inverse Hardy-like computation steps, and when reaching ℓout must
have found a valuation (c′d−1, 0, . . . , 0, n

′) such that aω
d−1·c′d−1(n′) = aα(v)(n).

4.2. LOWER BOUNDS THROUGH HARDY COMPUTATIONS 47

ℓa−1

n--

n=0?
n++

c0--

c0=0? c1++

n--

c0++

c0=0? n++

c1--

c1=0? c2++

...
...

ℓout

c1=0?

cd−3=0? n++

cd−2--

cd−2=0? cd−1++

Figure 4.3. A Minsky machine Ma−1 implementing inverse
Hardy-like computations as in equations (4.21) and (4.22).

Robustness. When running the two machines Ma and Ma−1 of Figures 4.2
and 4.3 with lossy semantics, we need to ensure that, if two valuations v and v′

from NCd are such that v ≤ v′ (for the product ordering), then

(4.23) aα(v)(v(n)) ≤ aα(v
′)(v′(n)) .

By Lemmas 4.11 to 4.13, (4.23) holds. We say that our codes are robust; they ensure
that losses can only yield results smaller than the perfect results we would have
obtained with reliable semantics.

Claim 4.16 (Weak Hardy-like Computations). In an LCM, the systems Ma

and Ma−1 are such that, for all valuations v1,v2,v3,v4 in NCd ,
(1) if (ℓin,v1) →∗

ℓ (ℓa,v2), then aα(v1)(v1(n)) ≥ v2(n) and v2(cj) = 0 for
all 0 ≤ j < d;

(2) if aα(v1)(v1(n)) = v2(n) with v2(cj) = 0 for all 0 ≤ j < d, then an
execution (ℓin,v1) →∗

ℓ (ℓa,v2) is possible;
(3) if (ℓa−1 ,v3) →∗

ℓ (ℓout,v4), then v4(cj) = 0 for all 0 ≤ j < d − 1 and
aα(v3)(v3(n)) ≥ aα(v4)(v4(n));

(4) if (α(v4),v4(n)) →∗ (α(v3),v3(n)) is a Hardy-like computation with
v4(cj) = 0 for all 0 ≤ j < d − 1, then an execution (ℓa−1 ,v3) →∗

ℓ
(ℓout,v4) is possible.

4.2.3. Lower Bound. We prove now Theorem 4.9 for a number of counters
d = |C| > 2. We start from an instance M = ⟨Q, {c0, c1}, δ, ℓ0⟩ of the halting
problem for aωd-bounded Minsky machines, where we further assume the coun-
ters are initially valued to 0, and are zero-tested right before reaching the halting
state ℓh.

Counter Machine on a Budget. We modify M by adding a new counter n and
by splitting transitions (introducing new intermediary states) so that any incre-
ment ci++ for i ∈ {0, 1} is preceded by a decrement n--, and any decrement ci--
for i ∈ {0, 1} is followed by an increment n++. The resulting machineM ′ is thus

48 4. FAST-GROWING COMPLEXITY

ℓin ℓa ℓ0 ℓh ℓa−1 ℓout
Ma M ′ Ma−1

Figure 4.4. The LCM Md constructed in the proof of Theorem 4.9.

put on a budget; its sum of counters is bounded by the initial value of n, and
any losses along a halting execution will result in a smaller valuation for n upon
reaching qh.

Claim 4.17 (Minsky Machine on a Budget). For all N,N ′, c0, c1 in N,
(1) if (ℓ0, 0, 0, N) →∗

ℓ (ℓh, c0, c1, N
′) inM ′, then c0 = c1 = 0 andN ′ ≤ N ;

(2) if (ℓ0, 0, 0) →∗ (ℓh, 0, 0) inM andN ≥ aω
d
(|M |), then (ℓ0, 0, 0, N) →∗

ℓ
(ℓh, 0, 0, N) in M ′;

(3) if (ℓ0, 0, 0, N) →∗
ℓ (ℓh, 0, 0, N) inM ′, then (ℓ0, 0, 0) →∗ (ℓh, 0, 0) inM .

Reduction. We finally plug M ′ with Ma as an initialisation phase and Ma−1

as a finalisation phase, resulting in the machine Md depicted in Figure 4.4. This
machine uses d+ 1 counters, but we will see later that we can remove one of its
counters.

We define the source configuration for our instance of the Coverability prob-
lem to be (ℓin,v) where v(cd−1)

def= |M | − 1, v(cj) def= 0 for 0 ≤ j < d − 1, and
v(n) def= 2. This satisfies α(v) = ωd−1 · (|M |−1), hence aωd

(|M |) = aα(v)(v(n)).
We define the target configuration for our instance to be (ℓout,v). The LCM for
our instance is Md.

Let us first check the correctness of our reduction. First assume that M
halts, i.e. that it reaches (ℓh, 0, 0) from (ℓ0, 0, 0) with sum of counters bounded
by aω

d
(|M |). Then by Claim 4.16.(2), there is a (reliable) execution in Md from

the source (ℓin, |M |−1, 0, . . . , 0, 2) to (ℓa, 0, 0, . . . , 0, aω
d
(|M |)). Since this bud-

get is sufficient by hypothesis on M , by Claim 4.17.(2) there is a (reliable) ex-
ecution of M ′ that reaches the configuration (ℓa−1 , 0, 0, . . . , 0, aω

d
(|M |)). By

Claim 4.16.(4), there is a (reliable) execution in Ma−1 to the target (ℓout, |M | −
1, 0, . . . , 0, 2), which is therefore covered.

Conversely, assume the target is covered from the source in Md, i.e. that
(ℓin,v) →∗

ℓ (ℓout,v
′′′) with v′′′ ≥ v. By Claim 4.16.(3) and the robustness of our

encoding (4.23), this means that we entered Ma−1 in a configuration (ℓa−1 ,v′′)

such that aα(v′′)(v′′(n)) ≥ aω
d
(|M |). By Claim 4.17.(1), this implies that v′′(cj) =

0 for all 0 ≤ j < d and that we entered M ′ with a configuration (ℓa,v
′) with

aα(v
′)(v′(n)) ≥ aα(v

′′)(v′′(n)). By Claim 4.16.(1), this entails that v′(cj) = 0 for
all 0 ≤ j < d and that

(4.24) aω
d
(|M |) ≥ aα(v

′)(v′(n)) ≥ aα(v
′′)(v′′(n)) ≥ aω

d
(|M |) .

ThusM ′ had a budget of v′(n) = v′′(n) = aω
d
(|M |) at both the start and the end

of its execution, which therefore had to be reliable: by Claim 4.17.(3), (ℓ0, 0, 0)
can reach (ℓh, 0, 0) in M .

The construction of Md can eschew the use of cd−1 by maintaining its value
as part of its state space. Indeed, in any reliable execution that covers the target,
this counter value must remain less than |M |. This shows the Fd-hardness of LCM
Coverability for |C| = d > 2.

4.3. RELATED WORK & PERSPECTIVES 49

Table 4.1. The complexity of Coverability in a few families of WSTS.

WSTS Complexity Reference for lower bound
Lossy Counter Machines Fω-complete [Schnoebelen, 2002, 2010a;

Urquhart, 1999; Th. 4.9]
Lossy Channel Systems Fωω -complete [Chambart and Schnoebe-

len, 2008; C14]
Unordered Data nets Fωω -complete [Rosa-Velardo, 2017]
Ordered Data nets Fωωω -complete [C16]
Timed-arc Petri nets Fωωω -complete [C16]
Nested Counter Systems Fε0-complete [Decker and Thoma, 2016]
Priority Channel Systems Fε0-complete [J5]

Finally, when the number of counters is not fixed, we can reduce from the halt-
ing problem for aω|M|+1-bounded Minsky machines; it suffices to set d def= |M |+1
in the reduction above. This shows the Fω-hardness of coverability and concludes
the proof of Theorem 4.9.

4.3. Related Work & Perspectives

Together with the upper bounds provided by length function theorems such
as the ones presented in Chapter 3, we have with the complexity classes (Fα)α
from Section 4.1 and the template for proving lower bounds using Hardy compu-
tations from Section 4.2 a complete toolbox for pinpointing the exact complexity
of many decision problems. Table 4.1 presents the results obtained using this
toolbox on the coverability problem for several classes of WSTS.

I would however like to emphasise that many more problems have now been
successfully classified with the (Fα)α classes, which can be found in the catalogue
of problems in [J3, Section 6]. While these problems all rely at some point on a
wqo for their decidability, many do not explicitly involve WSTS nor coverability
at all. In most cases, the lower bounds were obtained through reductions from
coverability problems rather than going through the pains of a direct reduction
from a halting problem as in Section 4.2.

4.3.1. Lower Bounds Through Counter Objects. The hardness proof of
Section 4.2 usingweak implementations of Hardy computations and their inverses
is not the only means to prove hardness statements for WSTS Coverability. In
several classes of WSTS, weak computers for inverse Hardy computations are not
known to exist—and there might even be evidence that they do not exist [Leroux
and Schnoebelen, 2014].

Hardnesss proofs for coverability can rely instead on the implementation of
counter objects. These should really be understood as an ‘object-oriented’ style of
implementing bounded counters in the system at hand. Given a natural number
n ∈ N, a counter object allows to manipulate an internal, private representation
of a counter in the range [0, n− 1] through an interface allowing to

init: construct an instance with initial value 0,
min: check whether the internal state represents 0,
max: check whether the internal state represents n− 1,

50 4. FAST-GROWING COMPLEXITY

incr: increment the represented counter by 1,
decr: decrement the represented counter by 1.

These operations deadlock if the check fails or the counter value would go outside
the range [0, n−1]. When an implementation of counter objects for n is available,
reducing from the halting problem for n-bounded multicounter Minsky machines
is straightforward.

Given a counter object for n, one is sometimes able to implement a counter
object for f(n) for some specific function f :N → N, using internally references
to instances of the counter object for n. This mechanism allows therefore compo-
sitions of functions, or even iterations of functions.

This technique was introduced in by Lipton [1976] to prove the EXPSPACE-
hardness of Coverability in vector addition systems, where one can start with a
counter object for 220 and compose it d times with the squaring function f(n) def=

n2 to implement a counter object for 22
d for any d. The more recent uses of

counter objects in several hardness proofs are due notably to Lazić [Lazić et al.,
2016; Lazić and Totzke, 2017; J4; C5]. The complexity lower bounds in Table 5.2 on
page 65 and in Table 6.1 on page 72 have all been obtained through applications
of this idea.

The main difficulty, with both weak Hardy computations and counter ob-
jects, lies with the implementation in systems of restricted capabilities, which
can quickly become very hard to manage [e.g. C16; C5]. The usage of proof as-
sistants to ensure the correctness of the implementations would sometimes seem
warranted.

4.3.2. Provability in Theories of Arithmetic. We have heavily relied in
this chapter and the previous one on definitions and results—including the sub-
recursive functions like the Hardy functions (Hα)α, the subrecursive hierarchies
like the extended Grzegorczyk hierarchy (Fα)α, and more generally ordinal no-
tation systems—that have been studied in mathematical logic and proof theory
to analyse the strength of logical theories and find ‘natural’ mathematical state-
ments independent from a theory [e.g. Fairtlough and Wainer, 1998; Ketonen and
Solovay, 1981; Schwichtenberg and Wainer, 2012].

The ‘proof-theoretic ordinal’ of a logical theory is, very informally, the least
ordinal whose notation is not provable in the theory [Rathjen, 2006]. For instance,
Gentzen’s proof of the consistency of Peano arithmetic PA entails that it has proof-
theoretic ordinal ε0; similarly, the fragments IΣi of PA, which are restricted to
use the induction scheme on Σ0

i formulæ, have proof-theoretic ordinal ε0(i), i.e.
a tower of ω’s of height i + 1. It turns out that the proof-theoretic ordinal of a
theory may also inform us on which qos can be proven to be wqo [Simpson, 1988],
and which functions of the Hardy hierarchy (Hα)α can be proven total in the
theory: for a well-studied instance, IΣi can prove the totality ofHα if and only if
α < ε0(i) [e.g. Schwichtenberg and Wainer, 2012, Theorem 4.3.4].

Thus Fα-complete problems like the coverability problems in Table 4.1 are a
likely source of natural ‘decidability statements’ independent from various theo-
ries: I mean here the statement that there is (an encoding of) a Turing machine
that decides the problem, i.e. terminates on all inputs with the correct acceptance
or rejection verdict. I conjecture that the decidability of Fω-complete coverabil-
ity problems like LCM Coverability is independent from IΣ1, that the decidability

4.3. RELATED WORK & PERSPECTIVES 51

of Fωω -complete problems like Coverability in Lossy Channel Machines or Un-
ordered Data Nets is independent from IΣ2, …, and that the decidability of Cov-
erability in Priority Channel Systems is independent from PA. The consequence
would be that, while these problems are decidable, their decidability proofs re-
quire strong logical theories. The same conjecture can be made for fragments of
second-order arithmetic like RCA0 (with proof-theoretic ordinal ωω) and ACA0

(with proof-theoretic ordinal ε0).

CHAPTER 5

Reachability in Vector Addition Systems

Vector addition systems with states (VASS) are essentially multi-counter Min-
sky machines without zero tests. These systems are equivalent to Petri nets, and
find a wide range of applications in the modelling of concurrent, chemical, bio-
logical, or business processes.

ACornerstone Problem. Thedecidability of their reachability problem is consid-
ered as one of the greatest achievements of theoretical computer science. Its 1981
decidability proof for the reachability problem byMayr is the culmination of more
than a decade of research into the topic, and the algorithm has since been revisited
and simplified by Kosaraju [1982] and Lambert [1992].

The centrality of the problem was recognised long before it was shown decid-
able; what is remarkable however is the regularitywithwhich decision problems—
in seemingly unrelated areas, in logic [Bojańczyk et al., 2011; Demri et al., 2016;
Kanovich, 1995], automata [Crespi-Reghizzi and Mandrioli, 1977; Gischer, 1981;
Render and Kambites, 2009], verification [Esparza et al., 2017; Ganty and Majum-
dar, 2012; German and Sistla, 1992], etc.—turn out to be interreducible with the
reachability problem. In fact, given its importance in many fields, it would be
no exaggeration to define a complexity class REACHABILITY for the class of prob-
lems inter-reducible with VASS reachability; a representative sample can be found
in [I2, Section 5].

Complexity. In spite of its importance, fairly little is known about the com-
putational complexity of the reachability problem. Regarding the general case,
the inclusive surveys on the complexity of decision problems on VASS by Es-
parza and Nielsen [1994; 1998] could only point to the EXPSPACE lower bound
of Lipton [1976] and to the fact that the running time of the known algorithms
is not primitive recursive: no complexity upper bound was known, not even a
coarse one, besides decidability—Bouziane claimed to have found an algorithm
with primitive-recursive complexity in 1998, but it was shown incorrect by Jančar
in 2008.

In [C8], I have shown with Leroux that reachability has a ‘cubic Ackermann’
upper bound, i.e. is in Fω3 , by analysing the complexity of the classical algorithm
developed and refined byMayr, Kosaraju, and Lambert. Recall fromChapter 4 that
Fω3 is a non primitive-recursive complexity class, but among the lower multiply-
recursive ones; see Figure 5.1. The main ingredients for the analysis performed
in [C8] are the fast-growing complexity bounds for termination proofs by well-
quasi-orders and ordinal ranking functions from [C19; I3] and presented in Chap-
ter 3.

In this chapter, I present a slightly improved version of the result from [C8],
with a ‘quadratic Ackermann’ upper bound.

53

54 5. REACHABILITY IN VECTOR ADDITION SYSTEMS

Theorem 5.1 (Upper Bound Theorem). VASS Reachability is in Fω2 , and in
Fω·(d+1) if the dimension d is fixed.

I give here a high-level presentation based chiefly on the invited column [I2],
with pointers to [C8] for the detailed arguments. The algorithm used by Mayr,
Kosaraju, and Lambert for the reachability problem is explained semi-formally
on an example in Section 5.2, before we can work out how to apply the length
function theorems from Chapter 3 and derive an Fω2 upper bound. Let us first
recall the basic definitions in the upcoming section.

Contents

5.1. Basic Definitions 54
5.1.1. Vector Addition Systems with States 54
5.1.2. Closely Related Models 56

5.1.2.1. Petri Nets 56
5.1.2.2. Vector Addition Systems 56

5.2. The Decomposition Algorithm 56
5.2.1. Marked Witness Graph Sequences 57
5.2.2. An Example of a KLMST Decomposition 58

5.2.2.1. Flow Constraints 58
5.2.2.2. Pumpability 59

5.2.3. Termination 60
5.3. Complexity Upper Bound 61

5.3.1. An Ordinal Ranking Function 61
5.3.2. Applying the Length Function Theorems 61

5.3.2.1. Controlling Decompositions for Flow Constraints 62
5.3.2.2. Controlling Decompositions for Pumpability 62
5.3.2.3. Fast-Growing Complexity Bounds 62

5.4. Related Work & Perspectives 63
5.4.1. Tightness 63

5.4.1.1. Language Inclusion Problems 63
5.4.1.2. Inductive Presburger Invariants 64

5.4.2. Restrictions 64
5.4.2.1. Related Problems 66
5.4.2.2. Fixed Dimension 66

5.4.3. Extensions 67
5.4.3.1. Zero Tests 67
5.4.3.2. Recursion and Nesting 67
5.4.3.3. Data 68

5.1. Basic Definitions

5.1.1. Vector Addition Systems with States. Formally, a VASS [Hopcroft
and Pansiot, 1979] is a tuple V = ⟨Q, d, T ⟩ where Q is a finite set of ‘control’
states, d in N is a non-negative dimension, and T ⊆ Q× Zd ×Q is a finite set of
transitions.

The operational semantics of such a system is captured by an infinite tran-
sition system SV over the set of configurations ConfsV

def= Q × Nd, with a step
(q,u)

t−→V (q′,u+a) definedwhenever t = (q,a, q′) belongs toT ; note thatu+a
must belong to Nd for such a step to be possible. A run from a configuration c0 to

5.1. BASIC DEFINITIONS 55

ELEMENTARY

F3 = TOWER

∪
k Fk=PRIMITIVE-RECURSIVE

FωFω2
Fω3

∪
k Fωk = MULTIPLY-RECURSIVE

Fωω

Figure 5.1. Pinpointing Fω2 among the complexity classes be-
yond ELEMENTARY.

q0 q1

t1 : (1, 1,−1)

t2 : (−1, 0, 1)

t3 : (1, 0, 0)

t5 : (0, 0, 0)

t4 : (0,−1, 0)

Figure 5.2. A 3-dimensional VASS.

a configuration cℓ is a finite sequence of steps c0
t1−→V c1

t2−→V c2 · · · cℓ−1
tℓ−→V cℓ,

which can also be written c0
t1···tℓ−−−→V cℓ. Finally, let us write c0 →∗

V cℓ if there
exists a finite sequence of transitions σ ∈ T ∗ such that c0

σ−→V cℓ.
Note that SV = ⟨ConfsV ,→V ,≤⟩, where (q,u) ≤ (q′,u′) if and only if q = q′

and u(i) = u′(i) for all 1 ≤ i ≤ d, is a WSTS as defined in Section 2.3, and
VASS Coverability is decidable. We focus here on a more difficult problem: exact
reachability in the infinite system SV .

Problem (VASS Reachability).
instance: A VASS V and two configurations c and c′ in ConfsV ,
question: Can c reach c′, i.e. does c →∗

V c′?

Example 5.2. Consider for instance the 3-dimensional VASS of Figure 5.2 with
Q def= {q0, q1} and T def= {t1, t2, t3, t4, t5}. One can check that (q0, 1, 0, 1) reaches
(q1, 2, 2, 1), for instance by the run

(q0,1,0,1)
t1−→(q0,2,1,0)

t2−→(q0,1,1,1)
t1−→(q0,2,2,0)

t2−→(q0,1,2,1)
t3−→(q1,2,2,1) .

This is just one example of a run witnessing reachability; observe that any se-
quence of transitions in {t1t2, t2t1}n+2t3t

n
4 for n ≥ 0 would similarly do.

Remark 5.3 (Binary Encodings). Regarding complexity, one typically assumes
a binary encoding of the integers of a VASS and of the source and target configu-
rations. If we let ∥a∥ def= max1≤i≤d |a(i)| denote the infinity norm of a vector a in
Zd, then the maximal effect ∥T∥ def= max(q,a,q′)∈T ∥a∥ can be exponential in the

56 5. REACHABILITY IN VECTOR ADDITION SYSTEMS

p1

p2

p3 Q−q q

t1

t2

t5

t4

t3

Figure 5.3. A Petri net equivalent to the VASS of Figure 5.2.

size of a VASS V = ⟨Q, d, T ⟩. The choice of a binary rather than a unary encoding
has no impact in the general case—because there is a LOGSPACE reduction to the
case where T ⊆ Q×{−1, 0, 1}d×Q (at the expense of increasing the dimension)
and c = (q,0) and c′ = (q′,0) for some states q, q′—, but is important in fixed
dimension, see §5.4.2.2.

5.1.2. Closely Related Models. Historically, VASS do not seem to have
been studied before theworks of Greibach [1978] andHopcroft and Pansiot [1979].
Nevertheless, equivalent models had been investigated before, in particular Petri
nets [Petri, 1962] and vector addition systems (VAS) [Karp and Miller, 1969]. The
absence of explicit control states makes these two classes of models rather con-
venient for the modelling of concurrent or distributed systems.

5.1.2.1. Petri Nets. A Petri net is a tuple N = ⟨P, T,W ⟩ where P is a finite
set of places, T is a finite set of transitions, and W : (P × T) ∪ (T × P) → N is
a (weighted) flow function. It defines a transition system with configurations in
NP—i.e. multisets of places, also called markings—and steps m t−→ m′ whenever
m(p) ≥ W (p, t) and m′(p) = m(p) −W (p, t) +W (t, p) for all p in P . A Petri
net can be encoded as an equivalent |P |-dimensional VASS with |T | + 1 states,
and conversely a d-dimensional VASS can be encoded as an equivalent Petri net
with d + 2 places (see Figure 5.3 for the result of this construction on the VASS
of Figure 5.2, where places are depicted as circles, transitions as rectangles, and
flows as arrows)—‘equivalence’ here should be understood as far as the decision
problems like reachability are concerned.

5.1.2.2. Vector Addition Systems. A VAS is a pair ⟨d,A⟩ where A is a finite
subset of actions in Zd [Karp and Miller, 1969]. It defines a transition system with
configurations u inNd and steps u → u+a for a inA, again implicitly checking
that u + a ≥ 0. Put differently, a VAS can be seen as a VASS with a singleton
state set. Conversely, the finite control of a d-dimensional VASS can be encoded
in an equivalent VAS by increasing the system’s dimension to d+3 [Hopcroft and
Pansiot, 1979, Lemma 2.1].

5.2. The Decomposition Algorithm

The reachability problemwas famously shown to be decidable byMayr [1981],
building notably on an incomplete proof by Sacerdote and Tenney [1977].

5.2. THE DECOMPOSITION ALGORITHM 57

Theorem 5.4 (Decidability Theorem; Mayr, 1981). VASS Reachability is decid-
able.

This proof has since been simplified twice: one year later by Kosaraju [1982],
and another ten years later by Lambert [1992]. At the heart of these proofs lies a
decomposition technique, which is called the ‘Kosaraju-Lambert-Mayr-Sacerdote-
Tenney’ (KLMST) decomposition. In a nutshell, the KLMST decomposition de-
fines both

• a structure (resp. regular constraint graphs for Mayr, generalised VASS for
Kosaraju, and marked graph-transition sequences for Lambert) and

• a condition for this structure to represent in some way the set of all runs
witnessing reachability (resp. consistent marking, the θ condition, and the
perfect condition).

The algorithms proposed by Mayr, Kosaraju, and Lambert compute this decom-
position by successive refinements of the structure until the condition is fulfilled,
by which time the existence of a run becomes trivial.

The reader is referred to the original articles of Kosaraju [1982] and Lam-
bert [1992], and to the excellent accounts by Müller [1985], Reutenauer [1990],
and Leroux [2010] for examples and details on the KLMST decomposition. Here
we shall keep the description at an informal level, and see how the decomposition
algorithm works in the case of Example 5.2 without entering its details.

5.2.1. MarkedWitness Graph Sequences. We fix the VASS V = ⟨Q, d, T ⟩
under consideration. Let us first complete N with a top element ω and write
Nω

def= N ⊎ {ω} for the result; also let ω + z = z + ω = ω for all z in Z.
Awitness graph is a finite strongly connected directed graphG = (S,E)with

vertices S ⊆ Q×Nd
ω , and labelled edgesE ⊆ S×T ×S, such that the edge labels

from T are consistent with the vertices from S. This means that, if (s, t, s′) is an
edge in E with transition t = (q,a, q′) from T as label, then s = (q,u) for some
u in Nd

ω and s′ = (q′,u + a). Note that these conditions together imply that all
the vertices in the graph share the same set I ⊆ {1, . . . , d} of ω-components.

A marked witness graph M = (G, cin, sin, cout, sout) is further endowed with
distinguished input and output vertices sin and sout from S, along with input and
output constraints cin and cout taken from Q × Nd

ω , such that for all 1 ≤ i ≤ d,
sin(i) ̸= ω implies cin(i) = sin(i), and similarly for the output vertex and con-
straint. In other words, sin and cin agree on their finite components. This entails
that I in the set of ω-components of cin is a subset of I the set of ω-components
of sin, and similarly Iout ⊆ I .

Finally, a marked witness graph sequence ξ is a sequence

(5.1) ξ = M0, t1,M1, . . . , tk,Mk

alternating marked witness graphs M0, . . . ,Mk and transitions t1, . . . , tk taken
from T . Let us write Mj = (Gj , c

in
j , s

in
j , c

out
j , soutj) and tj = (qj ,aj , q

′
j) for all j.

It is also required that, for all 1 ≤ j ≤ k, coutj−1 = (qj ,uj) for some uj and
cinj = (q′j ,u

′
j) for some u′

j . In such a sequence, cin0 is the source and coutk is the
target.

58 5. REACHABILITY IN VECTOR ADDITION SYSTEMS

q0, ω, ω, ω q1, ω, ω, ωq0, 1, 0, 1 q1, 2, 2, 1

t1 : (1, 1,−1)

t2 : (−1, 0, 1)

t3 : (1, 0, 0)

t5 : (0, 0, 0)

t4 : (0,−1, 0)

Figure 5.4. The initial marked witness graph sequence ξ0 = M0.

Figure 5.4 displays a marked witness graph for the VASS of Example 5.2,
with input constraint (q0, 1, 0, 1) on the input vertex (q0, ω, ω, ω) and output con-
straint (q1, 2, 2, 1) on the output vertex (q1, ω, ω, ω); this is the initial marked wit-
ness graph for the decomposition algorithm when attempting to decide whether
(q1, 2, 2, 1) is reachable from (q0, 1, 0, 1).

5.2.2. An Example of a KLMST Decomposition. The KLMST decompo-
sition algorithm builds a sequence Ξ0,Ξ1,Ξ2, . . . of finite sets of marked wit-
ness graph sequences. At step n, it checks whether all the sequences ξ in Ξn are
perfect (in the sense of Lambert [1992], or equivalently fulfil the θ-condition of
Kosaraju [1982]) and stops if this is the case; then either Ξn is empty and the al-
gorithm answers ‘not reachable’, or Ξn is not empty and the algorithm answers
‘reachable’.

If however some sequence ξ from Ξn is not perfect, then it is decomposed into
a finite set of marked witness graph sequences dec(ξ)—which is possibly empty.
Then we let

(5.2) Ξn+1
def= (Ξ \ {ξ}) ∪ dec(ξ)

and the algorithm proceeds to the next step.
The perfectness condition comprises two sub-conditions, along with the cor-

responding ways of decomposing marked witness graph sequences when the sub-
conditions are violated. We are going to illustrate these two sub-conditions in
the upcoming §5.2.2.1 and §5.2.2.2, in the case of Example 5.2, and starting from
Ξ0 = {ξ0}.

5.2.2.1. Flow Constraints. Consider a path from the source to the target in the
graph of Figure 5.4: denoting by zj the number of times transition tj is used along
this path for j ∈ {1, . . . , 5}, we can see that

(5.3) z3 = z5 + 1 .

Consider now a run in the VASS of Figure 5.2, which follows a path in the marked
witness graph of Figure 5.4 from (q0, 1, 0, 1) to (q1, 2, 2, 1), i.e. with overall effect
(1, 2, 0). Then, considering the effect of these transitions for each coordinate i in
{1, 2, 3},

(5.4)
z1 + z3 = z2 + 1 ,

z1 = z4 + 2 ,

z1 = z2 .

The system of equations (5.3–5.4) requires z3 = 1 and z5 = 0; z1, z2 and z4 are
on the other hand unbounded.

5.2. THE DECOMPOSITION ALGORITHM 59

q0, ω, ω, ωq0, 1, 0, 1 q0, ω, ω, ω q1, ω, ω, ω q1, ω, ω, ω q1, 2, 2, 1

t1 : (1, 1,−1)

t2 : (−1, 0, 1)

t3 : (1, 0, 0)

t4 : (0,−1, 0)

Figure 5.5. The next marked witness graph sequence ξ1 = M ′
0, t3,M

′
1.

This shows that the marked witness graph sequence ξ0 of Figure 5.4 is too
permissive, allowing to follow paths that do not bring the source of the sequence
to its target. We therefore decompose it, using the fact that t3 must be employed
exactly once and that t5 is never employed: dec(ξ0) = {ξ1} where the new se-
quence ξ1 is depicted in Figure 5.5; it contains two marked witness graphs M ′

0

and M ′
1 connected by a single occurrence of transition t3.

In general, flow constraints are expressed using two systems of equations built
from the sequence ξ. One system ensures that there exists a solution to Kirchhoff’s
Laws when considering the finite values in cinj and coutj ; if not, then dec(ξ) = ∅
because no run enforcing these constraints can exist. The second system ignores
these finite values and allows to check that there exist solutions with

• unbounded number of occurrences of each transition in
∪

j Ej—if not
the offending marked graph is unfolded finitely many times up to the
bound, as in the example—and

• unbounded values can instantiate the ω’s in the input and output con-
straints cinj and coutj —if not we replace these ω’s by finite values below
the bound.

The checks can be carried in polynomial time in the size of ξ, while the extracted
bounds in case of a decomposition are at most exponential in this size. See for
instance [Leroux, 2010, Section 3] for a detailed exposition.

5.2.2.2. Pumpability. Amarkedwitness graphM is forward pumpable if there
exist runs in the VASS following paths of M and starting from the input ver-
tex which, when applied to the input constraint, allow to ‘pump’ arbitrarily high
values in the (necessarily common) components labelled ω in the vertices of the
graph.

On the one hand, M ′
0 in Figure 5.5 is not forward pumpable: any run of the

VASS of Figure 5.2 starting from (q0, 1, 0, 1) and using only t1 and t2 can indeed
reach arbitrarily high values on the second component, but the first and third
components are bounded.

On the other hand, M ′
1 is forward pumpable, but not backward pumpable:

starting from (q1, 2, 2, 1) and applying t4 in reverse allows to reach arbitrarily
high values on the second component, but the first and third components are
again bounded.

Again, the decomposition algorithmwill observe that the current markedwit-
ness graph sequence over-approximates the possible behaviours of the VASS, and
refine M ′

0 and M ′
1 using their bounded components. Propagating the flow con-

straints, we obtain the final marked witness sequence depicted in Figure 5.6. This

60 5. REACHABILITY IN VECTOR ADDITION SYSTEMS

q0, 1, ω, 1

q0, 2, ω, 0

q0, 0, ω, 2

q0, 1, 0, 1 q0, 1, ω, 1 q1, 2, ω, 1 q1, 2, ω, 1 q1, 2, 2, 1

t1 : (1, 1,−1)t2 : (−1, 0, 1)

t2 : (−1, 0, 1) t1 : (1, 1,−1)

t3 : (1, 0, 0)

t4 : (0,−1, 0)

Figure 5.6. The final marked witness graph sequence ξ2 = M ′′
0 , t3,M

′′
1 .

sequence is perfect, and captures in some sense1 all the runs from (q0, 1, 0, 1) to
(q1, 2, 2, 1) in the VASS of Example 5.2.

In general, forward and backward pumpability reduce to instances of the place
boundedness problem on the marked witness graph under consideration, which
can be solved in EXPSPACE [e.g. C17]. If pumpability fails, the bounded values
can be computed in practice using the coverability tree construction of Karp and
Miller [1969], with Ackermannian upper bounds [C19, Section VII-C]. See again
[Leroux, 2010, Section 3] for a detailed exposition.

5.2.3. Termination. The termination of the KLMST decomposition algo-
rithm relies on a ranking function r mapping marked witness graph sequences
to elements of a well-order, and ensuring r(ξ) > r(ξ′) whenever ξ′ belongs to
dec(ξ) [Kosaraju, 1982]. More precisely, the ranking function r associates to ξ a
multiset of triples of natural numbers, one triple for each marked witness graph
in the sequence. These triples consist of

(1) |I|, the number of ω-components of the marked witness graph,
(2) |E|, the number of transitions of the marked witness graph, and
(3) |I in|+ |Iout|, the number of ω-components in the input and output con-

straints.
This results for the sequences ξ0, ξ1, and ξ2 of our example in the multisets

(5.5)
r(ξ0) = {(3, 5, 0)} ,

r(ξ1) = {(3, 2, 3), (3, 1, 3)} ,

r(ξ2) = {(1, 4, 1), (1, 1, 1)} .

Let us consider the lexicographic ordering over N3; finite multisets of triples in
N3 are then well-ordered using the ordering of Dershowitz and Manna [1979].

We can see the KLMST algorithm as building in general a forest of marked
witness graph sequences, with the elements of Ξ0 as its finitely many roots, and
where each imperfect marked witness graph sequence ξ is the parent of the se-
quences in dec(ξ). The ranking function r then shows that the trees in this forest
are of finite height; since dec(ξ) is finite for all ξ, they are also of finite branching
degree, hence the trees are finite by Kőnig’s Lemma and the algorithm terminates.

1It represents exactly the downward closure of the set of runs from (q0, 1, 0, 1) to (q1, 2, 2, 1);
see the Decomposition Theorem of [C8] and Section 6.4.2, which might also help the reader build
an intuition about marked witness graph sequences and the KLMST decomposition algorithm.

5.3. COMPLEXITY UPPER BOUND 61

5.3. Complexity Upper Bound

Hopefully, the reader has now some intuition about the KLMST decomposi-
tion algorithm. The key point for complexity considerations is the termination
argument by a ranking function explained in Section 5.2.3: we know that any se-
quence ξ0, ξ1, ξ2, . . . of marked witness graph sequences with ξn+1 ∈ dec(ξn) is
finite since
(5.6) r(ξ0) > r(ξ1) > r(ξ2) > · · ·
is a decreasing sequence in the well-order of multisets of triples of naturals. In
order to bound the complexity of the KLMST decomposition algorithm, we are
going to bound the length L of such sequences. We shall relate this length with
the order type of the ranking function.

5.3.1. AnOrdinalRanking Function. Theorder type ofmultisets of triples
of natural numbers isωω3 [Dershowitz andManna, 1979], andwe can equivalently
see the ranking function r of Section 5.2.3 as ranging over ordinals below ωω3 : the
ranks in (5.5) then become

(5.7)

r(ξ0) = ωω2·3+ω·5,

r(ξ1) = ωω2·3+ω·2+3 + ωω2·3+ω+3,

r(ξ2) = ωω2+ω·4+1 + ωω2+ω+1.

This is where we can refine the results from [C8]. In the ranking function
defined in Section 5.2.3, the first component of the triples is bounded by d, and
the third by 2d. Thus the order type of the ranking function is actually ωω·(d+1).
To see this, define the rank of a single marked witness graph M with edge set E,
ω-components I , and input and output ω-components I in and Iout by

r(M) def= ω · |I|+ (2d+ 1) · |E|+ |I in|+ |Iout|(5.8)
and the rank of a marked witness graph sequence by

r(M0, t1,M1, . . . , tk,Mk)
def=

⊕
0≤j≤k

ωr(Mj)(5.9)

where ‘⊕’ denotes the natural sum over ordinals (see Appendix A.1.1.1). This
results in the ordinal ranks

(5.10)
r(ξ0) = ωω·3+7·5 = ωω·3+35,

r(ξ1) = ωω·3+7·2+3 + ωω·3+7+3 = ωω·3+17 + ωω·3+10,

r(ξ2) = ωω+12 + ωω+8

for the multisets of (5.5) instead of the ordinal ranks of (5.7).

5.3.2. Applying the Length Function Theorems. If we provide an initial
norm n ≥ d + 1 and a control function g for sequences like (5.5), we will obtain
by Theorem 3.5 on page 25 an
(5.11) L def= gωω·(d+1)(n)

bound on their lengths. Regarding the initial norm, the maximum of the sizes of
the initial sequences in Ξ0 will do, and is bounded by the size of the reachability
instance, which is certainly at least d + 1. For the control function, let us first

62 5. REACHABILITY IN VECTOR ADDITION SYSTEMS

note that Nr(ξ) ≤ ∥ξ∥ for any reasonable definition of the size ∥ξ∥ of a marked
witness graph sequence ξ. Thus we will bound the size of the marked witness
graph sequences ξ′ in dec(ξ) compared to that of ξ. This is done formally in [C8,
Section IX-C], where a control function

(5.12) g(x) def= Hωd+1
(e(x))

for an elementary function e is shown. Let us examine how this control function
is obtained.

5.3.2.1. Controlling Decompositions for Flow Constraints. In the case of the
flow conditions of §5.2.2.1, ∥ξ′∥ ≤ 2p(∥ξ∥) for some polynomial p, as it is con-
structed based on the solution to a polynomial-sized system of equations derived
from ξ.

5.3.2.2. Controlling Decompositions for Pumpability. In the case of the pump-
ing conditions of §5.2.2.2, the blow-up can be bounded using Theorem 3.15 from
page 30. Indeed, the size of ξ′ can be bounded by ∥ξ∥ · Bd where B bounds the
maximal finite values in a coverability tree construction à la Karp andMiller [1969]
applied to the marked witness graph M = ((S,E), cin, sin, cout, sout) under con-
sideration.

As shown in [C19, Section VII-C], these values can be analysed by considering
the length of bad sequences over the nwqo (S ×Nd) · d with maximal order type
ωd · |S|d. The sequences are controlled with initial norm c def= ∥cin∥ or c def= ∥cout∥
depending on whether we are checking forward or backward pumpability, and
by the function f(x) def= x + ∥T∥ representing how fast the values can grow
in the VASS. Choosing h(x) def= x + ∥T∥d = H∥T∥d(x) fits the conditions of
Theorem 3.15, and Equation (3.13) then provides a bound

B ≤ hω
d·|S|d(cd) = (H∥T∥d)ω

d·|S|d(cd) ≤ Hωd·∥T∥|S|d2(cd)(5.13)

by Equation (3.12). Letting p(∥ξ∥) def= max(∥T∥|S|d2, cd),

B ≤ Hωd+1
(p(∥ξ∥)) .(5.14)

By Lemma 4.4 and assuming d ≥ 2, ∥ξ′∥ ≤ ∥ξ∥ · Bd ≤ Hωd+1
(e(∥ξ∥)) for some

elementary function e as advertised in (5.12).
5.3.2.3. Fast-Growing Complexity Bounds. The bound in (5.11) also provides

a bound gL(n), i.e. of L iterations of the function g, on the size of the marked
witness graph sequences constructed by the KLMST decomposition algorithm.
Thus we have a bound on the space complexity of a non-deterministic version
of the algorithm, which explores the decomposition tree until it finds a perfect
marked witness graph. Note that we neglect here the various algorithmic over-
heads of testing for perfectness—this is in EXPSPACE—and of actually building the
decompositions, because Lemma 4.4 allows us to hide all these in the elementary
function e of (5.12).

By Equation (3.13) and because n ≥ d+ 1, this yields a bound of

(5.15) gL(n) = gω
ω·(d+1)

(n) ≤ gω
ω2

(n)

using the Hardy hierarchy on the space complexity of this algorithm. By Theo-
rem 4.6 on page 42, and because g in (5.12) is in Fd+1, or Fω when d is part of
the input, we obtain an Fω·(d+1) upper bound when d is fixed, and a ‘quadratic
Ackermann’ Fω2 upper bound in general, as announced in Theorem 5.1.

5.4. RELATED WORK & PERSPECTIVES 63

Remark 5.5. Recall from Chapter 4 that the following complexity classes are
different: ‘quadratic Ackermann’ complexity Fω2 , which as we just saw contains
VASS reachability, ‘double Ackermann’ complexity Fω·2, which is for instance the
complexity of coverability in ν-Petri nets [C5], ‘Ackermann plus one’ complex-
ity Fω+1, and ‘composed Ackermann’ complexity 2-Fω , which corresponds to
problems solvable in time bounded by the Ackermann function composed with
itself once (see §4.1.2.2). The underlying functions of the Hardy hierarchy that
define these complexity classes are respectively

• Hωω2

, which eventually dominates Hωω·k for every k,
• Hωω·2 , which eventually dominates Hωω+k for every k,
• Hωω+1 , which eventually dominates Hωω ·k for every k, and
• Hωω ·2 = Hωω ◦Hωω , which is the composition of the Ackermann func-

tion with itself.
There is a considerable complexity jump between each one of these classes, and
they should not be confused with each other.

5.4. Related Work & Perspectives

There is a considerable literature surrounding the computational complexity
of the VASS Reachability Problem and of several related problems, drawing a com-
plex landscape of results. I give here a somewhat partial account of the current
literature, summarised in Table 5.1. The main question, about how tight the Fω2

upper bound of Theorem 5.1 might be is discussed in Section 5.4.1. Given the lack
of a definitive answer on the complexity of VASS Reachability, it is also natural
to consider simpler problems, which I discuss in Section 5.4.2. The few known
results and many open problems related to Reachability in VASS extensions are
then quickly mentioned in Section 5.4.3; some of those questions will be further
discussed in the next chapter.

5.4.1. Tightness. Facing a galactic upper bound like Fω2 , it is natural to ask
how tight it is. It seems very likely that it is not tight; to the best of our knowl-
edge, the problem might very well be EXPSPACE-complete: the best complexity
lower bound is indeed the following 1976 result of Lipton already mentioned in
Section 4.3.1 (see also the presentation given by Esparza [1998]).

Theorem 5.6 (Lower Bound Theorem; Lipton, 1976). VASS Reachability is
EXPSPACE-hard.

This leaves a gigantic gap between EXPSPACE and Fω2 . Nevertheless, the up-
per bound is obtained with a specific algorithm, the KLMST decomposition al-
gorithm, which—due to its reliance on coverability trees—is known to require at
least an Ackermannian time in the worst case [Müller, 1985], i.e. there is an Fω
lower bound for that particular algorithm. Hence, besides the main open question
about the exact complexity of the reachability problem, there is a possibly easier
open question about the complexity of the KLMST decomposition algorithm, with
a smaller complexity gap between Fω and Fω2 .

5.4.1.1. Language Inclusion Problems. In fact, the KLMST decomposition al-
gorithm solves much more than just reachability, and we can justify the Fω lower

64 5. REACHABILITY IN VECTOR ADDITION SYSTEMS

bound. Indeed, the final computed decomposition Ξn contains a lot of informa-
tion about the ‘set of executions’ from c to c′,2 allowing in particular to reason
about the set of sequences σ ∈ T ∗ such that c σ−→V c′.

An appropriate context here is the one of labelled VASS, i.e. when the VASS
V = ⟨Q, d, T, ℓ,Σ⟩ is further equipped with a labelling function ℓ:T → Σ∗ into
some finite alphabet Σ—which is lifted to a homomorphism from T ∗ to Σ∗—, and
one can define its reachability language

(5.16) L(V, c, c′) def= {ℓ(σ) ∈ Σ∗ | c σ−→V c′} .

The language emptiness problem then asks, given V and two configurations c, c′, if
L(V, c, c′) = ∅; this is the complement of the reachability problem and it is decid-
able. By contrast, the language inclusion problem asks, given two VASS V1,V2 and
four configurations c1, c′1, c2, c′2, whetherL(V1, c1, c

′
1) ⊆ L(V2, c2, c

′
2). Like most

behavioural quasi-orders onVASS, it is an undecidable problem [Jančar, 2001], and
this was one of the first VASS problems to be shown undecidable [Hack, 1975].

Habermehl, Meyer, andWimmel [2010] have shown that, once the KLMST de-
composition algorithm has terminated, one can compute in polynomial time from
the resulting decompositionΞn a regular expressionEΞn denoting the downward-
closure of L(V, c, c′) with respect to subword embedding ≤∗ (c.f. Section 2.1.2):
(5.17) L(EΞn) = ↓L(V, c, c′) .
Thus the following variant of the language inclusion problem is decidable:

Problem (Downward VASS Language Inclusion).
instance: Two VASS V1,V2 and four configurations c1, c′1 ∈ ConfsV1

and
c2, c

′
2 ∈ ConfsV2

.
question: Is ↓L(V1, c1, c

′
1) ⊆ ↓L(V2, c2, c

′
2)?

While decidable, this problem was proven ACKERMANN-hard by Zetzsche [2016];
the conclusion is that any algorithm for VASS Reachability that computes a sim-
ilar decomposition will require at least Fω time. One should therefore look for
new algorithms; note that reachability only needs to find some execution wit-
nessing reachability, while downward language inclusion needs to account for all
the possible such executions.

5.4.1.2. Inductive Presburger Invariants. Leroux has invented in 2010 a new,
very simple algorithm for VASS Reachability based on inductive Presburger in-
variants. The initial proof relied on the KLMST decomposition, but Leroux [2011]
then re-proved the correctness of this new algorithmwithout referring to it, yield-
ing an compact, and self-contained decidability proof for VASS Reachability.

While the new algorithm is considerably simpler than the KLMST decompo-
sition algorithm, it is also more difficult to analyse, as it consists of two semi-
decision procedures and its 2011 proof relies on non-constructive arguments. It
should however be possible to extract complexity upper bounds from the 2010
proof based on the KLMST decomposition, but as mentioned above this decom-
position has at least Ackermannian worst-case size.

5.4.2. Restrictions. Due to the considerable difficulty of both the decidabil-
ity proofs themselves and of proving any upper bounds, it is natural to consider
‘simpler’ variants of the VASS Reachability Problem.

2See the Decomposition Theorem in [C8] and Section 6.4.2 for a formal viewpoint.

5.4.RELATED
W

O
RK

&
PERSPECTIVES

65

Table 5.1. The complexity of a few VASS problems.

Problem Lower bound Upper bound
Reachability EXPSPACE [Lipton, 1976] Fω2 [Th. 5.1]
Reversible Reachability EXPSPACE [Lipton, 1976] EXPSPACE [Leroux, 2013]
Coverability EXPSPACE [Lipton, 1976] EXPSPACE [Rackoff, 1978]
Dim-2 Reachability, binary encoding PSPACE [Fearnley and Jurdziński, 2015] PSPACE [Blondin et al., 2015]
Dim-1 Reachability, binary encoding NP [Subset Sum] NP [Haase et al., 2009]
Dim-2 Reachability, unary encoding NL [STCON] NL [Englert et al., 2016]
Language Inclusion undecidable [Hack, 1975; Jančar, 2001]
Downward Language Inclusion ACKERMANN [Zetzsche, 2016] Fω2 [Th. 5.1 + Habermehl et al., 2010]

Table 5.2. Reachability in VASS extensions; all the lower bounds already hold for the (top-down) coverability problem.

Problem Lower bound Upper bound
VASS with one zero test EXPSPACE [Lipton, 1976] decidable [Bonnet, 2013; Reinhardt, 2008]
Branching VASS TOWER [J4] open
Pushdown VASS TOWER [Lazić and Totzke, 2017] open
Unordered Data Petri Nets ACKERMANN [Lazić and Totzke, 2017] open

66 5. REACHABILITY IN VECTOR ADDITION SYSTEMS

5.4.2.1. Related Problems. The best known variant is arguably the Coverabil-
ity Problem (c.f. Section 2.3.3), where one asks instead for the existence of a con-
figuration c′′ such that c →V c′′ and c′′ ≥ c′ for the product ordering over con-
figurations. The proof of Lipton [1976] for the EXPSPACE-hardness of reachabil-
ity in Theorem 5.6 already applies to coverability, and the problem was shown
to be in EXPSPACE by Rackoff [1978]. Coverability suffices for many algorith-
mic applications, and unlike the reachability, there are several implementations,
with increasing success at solving it on large practical instances [e.g. Blondin
et al., 2017b; Esparza et al., 2014; Geffroy et al., 2016; Kaiser et al., 2014].

Manymore decision problems on VASS have been shown EXPSPACE-complete
based on the techniques of Rackoff [e.g. Atig and Habermehl, 2011; Demri, 2013;
Leroux et al., 2013; Rosier and Yen, 1986; C17]. Notably, the following reversible
reachability problem is also EXPSPACE-complete [Leroux, 2013].

Problem (Reversible VASS Reachability).
instance: A VASS V and two configurations c and c′ in ConfsV ,
question: Can both c →∗

V c′ and c′ →∗
V c?

The proof for the EXPSPACE upper bound by Leroux [2013] combines insights
from both Rackoff [1978] and the KLMST decomposition algorithm. Adapting
these ideas to prove tighter upper bounds for the KLMST decomposition algo-
rithm seems promising, but has not been successful so far.

5.4.2.2. Fixed Dimension. A natural way of restricting the reachability prob-
lem is to fix the dimension. The Fω·(d+1) upper bound of Theorem 5.1 in dimen-
sion d is rather unsatisfactory, as it assumes d ≥ 2, and is hopelessly high: for
instance, in dimension one with a binary encoding of weights, VASS Reachability
isNP-complete [Haase et al., 2009]—this is a subcase of reachability in one-counter
automata.

In the 2-dimensional case, Hopcroft and Pansiot [1979] were the first to show
decidability by proving that the reachability set from a given initial configuration
c was effectively semilinear, i.e. that one could compute for each state q a repre-
sentation of the set of vectors u such that c →∗

V (q,u) as a finite union of linear
sets

(5.18) L(b, {p1, . . . ,pn}) def= {b+ λ1p1 + · · ·+ λnpn | λ1, . . . , λn ∈ N}

defined by a base b in Zd and a finite set of periods pj in Zd—equivalently, these
sets are definable in Presburger arithmetic FO(Z,+,≤). Howell, Rosier, Huynh,
and Yen [1986] then showed that this construction was in 2-NEXP and improved it
to obtain a 2-EXP algorithm. This left a gap with theNP-hardness proven by Rosier
and Yen [1986] the same year. The lower boundwas improved to PSPACE-hardness
by Fearnley and Jurdziński [2015], and finally Blondin, Finkel, Göller, Haase, and
McKenzie [2015] closed the complexity gap with a PSPACE upper bound.

These bounds hold with a binary encoding of the weights of the input VASS.
As mentioned in Remark 5.3, the choice of a binary or unary encoding has an
influence in fixed dimension, and Englert, Lazić, and Totzke [2016] further refined
the analysis of Blondin et al. [2015] to show that reachability is NL-complete in
dimension 2 when assuming a unary encoding.

The upper bounds in dimension 2 in [Blondin et al., 2015; Englert et al., 2016]
are technical feats relying on fine geometric analyses of the effect of semilinear

5.4. RELATED WORK & PERSPECTIVES 67

path schemes [Leroux and Sutre, 2004]witnessing the semilinearity of reachability,
i.e. regular expressions of the form

(5.19) v0w
∗
1v1 · · ·w∗

kvk

for some finite sequences v0, w1, v1, . . . , wk, vk of transitions in T . However,
Hopcroft and Pansiot [1979, Lemma 2.8] showed that there exists a 3-dimensional
VASS with a non-semilinear reachability set, so this approach does not readily
generalise to higher dimensions.

5.4.3. Extensions. The decidability of the reachability problem for VASS is
an intricate result, and undecidability is never very far. This section is an opportu-
nity to see how far the Decidability Theorem can be pushed, but also to advertise
for a few open problems.

5.4.3.1. Zero Tests. A zero test is a special type of transition t = (q, zeroi, q′)
where i ranges over {1, . . . , d}, allowing a step (q,u)

t−→ (q′,u) if u(i) = 0.
Allowing unrestricted zero tests yields a Minsky machine, with an undecidable
reachability problem already in dimension two—even coverability is undecidable
on such systems.

However, reachability in VASS extended with the ability to test a single com-
ponent for zero—for instance always the first component—remains decidable. It
still remains decidable if several components can be tested with a hierarchical
policy: component i1 can be freely tested for zero, but i2 can only be tested for
zero in configurations where the i1th component is zero, and i3 only in configura-
tions where both the i1th and i2th components are zero, etc. [Bonnet, 2013; Rein-
hardt, 2008]. The complexity of reachability in these models is widely open; the
best known lower bound is still Lipton’s EXPSPACE-hardness, and no upper bound
is known.

5.4.3.2. Recursion and Nesting. Motivated by the need to model distributed
systems with some recursive behaviour, there is a variety of VASS extensions that
include recursion in some manner, and differing on the (sometimes subtle) way in
which they allow interactions between recursion and the integer components. For
instance, nested counter systems [Decker et al., 2014; Decker andThoma, 2016; Lo-
mazova and Schnoebelen, 2000] act on finite multisets of finite multisets of … of
finite multisets of states as configurations, allowing to model hierarchical com-
putations, but have an undecidable reachability problem. On the other hand, the
process rewrite systems of Mayr [2000] perform prefix rewrites on terms of a pro-
cess algebra, and generalise in a sense both VASS and pushdown systems, but still
enjoy a decidable reachability problem—with unknown complexity.

Pushdown VASS. One natural way to extend VASS to handle recursion is to add
new push and pop operations acting on a pushdown stack with a finite stack al-
phabet. Note that this generalises VASSwith a single zero test, since the particular
component tested for zero could be implemented as a stack with a distinguished
bottom-of-stack symbol. The decidability of reachability is currently open, but
here at least we have better lower bounds: Lazić and Totzke [2017] showed in-
deed the problem to be TOWER-hard.

Alternating Branching VASS. A different way of adding a pushdown stack to
a VASS is to let it store vectors from Nd on its stack. The system can then add a
vector a from Zd to the vector u currently on top of the stack. The key question

68 5. REACHABILITY IN VECTOR ADDITION SYSTEMS

is which semantics to employ when popping u and pushing multiple vectors, say
u1 and u2, to the top of the stack. For instance, if we allow to duplicate the vector
u so that u = u1 = u2, then we obtain the model of alternating VASS [e.g. C9],
which have an undecidable reachability problem.

A very interesting case occurs when we split u nondeterministically into u1

and u2 such that u = u1 +u2. This model of branching VASS was introduced by
Rambow [1994] in computational linguistics, and independently rediscovered on
several occasions since [see the survey in C21]. The decidability of the reachabil-
ity problem for branching VASS is a major open problem, that we further discuss
in Section 6.4. As with pushdown VASS, althoughwe do not knowwhether reach-
ability is decidable, we have again a TOWER lower bound [J4].

5.4.3.3. Data. The model of data nets of Lazić, Newcomb, Ouaknine, Roscoe,
and Worrell [2008] extends Petri nets with the ability to manipulate data from
some infinite domain D. Different variants exist, all with an undecidable reach-
ability problem, except for one case: unordered data Petri nets, where the system
can only manipulate data as pure names through equality and disequality con-
straints. In more concrete terms, the configurations of such a system no longer
carry a single vector from Nd, but a finite multiset of them, padded with infin-
itely many 0’s. Transitions nondeterministically select some (bounded) number
of such vectors u1, . . . ,uk, and apply some translations a1, . . . ,ak from Zd to
each one. The decidability of the reachability problem for this model is open,
with an ACKERMANN lower bound proven by Lazić and Totzke [2017].

CHAPTER 6

Perspectives

The techniques presented in this thesis provide a comprehensive set of tools
for studying the computational complexity of algorithms relying on wqos for
their termination: lower bounds through weak implementations of Hardy-style
computations (Section 4.2), upper bounds using length function theorems for bad
controlled sequences (Chapter 3), and suitable complexity classes for the non-
elementary complexities usually encountered in this setting (Section 4.1). We
have seen how these techniques can be applied to the safety verification of lossy
counter machines, where they allow to prove the Fω-completeness of the cover-
ability problem (Theorems 4.8 and 4.9); this is the simplest case among the cov-
erability problems solved using this standard toolbox (see Table 4.1). As an addi-
tional application of these techniques, we have been able to derive the first known
complexity upper bounds for VASS Reachability in Chapter 5, a long-standing
open question for this central problem with numerous ramifications in logic, au-
tomata, process calculi, etc. [see I2, Section 5].

I have already pointed to a number of open issues at the end of each chapter,
two of which I recall next in Sections 6.1 and 6.2. However, some of the most
interesting perspectives connected to thework in this thesis deal with ideals; those
have already proven useful in several algorithmic applications of wqos, which I
shall describe in Sections 6.3 and 6.4.

6.1. Complexity of VASS Reachability

The most important open question is arguably the exact complexity of VASS
Reachability. Our Fω2 complexity bound certainly beats not having any upper
bound at all, but it leaves a gigantic gap with the EXPSPACE lower bound of Lip-
ton [1976]. As pointed in Section 5.4.1, a possibly easier question is to close the
complexity gap for the KLMST decomposition algorithm, between Fω and Fω2 ;
this would also allow to prove tight bounds for the Downward VASS Language
Inclusion Problem.

Perspective. Show an ACKERMANN upper bound on the size of the KLMST
decomposition.

6.2. Parameterised Bounds

The bounds in Theorems 4.8 and 4.9 for LCM Coverability do not quite match
when the number of counters is fixed. A similar issue arises with the upper
bounds for lossy channel machines parameterised by the size of the alphabet,
analysed in [C14]. The outcome is that there are no examples of ‘natural’ de-
cision problems for most of the intermediate complexity classes (Fα)α. Refined

69

70 6. PERSPECTIVES

upper bound analyses seem required to close these gaps and prove for instance
the F|C|-completeness of LCM Coverability with a fixed number of counters.

Tightening such enormous complexity bounds might seem of purely theo-
retical interest. These are worst-case complexity bounds, with arguably very lit-
tle bearing on the running time of the actual algorithms when run on practical
instances coming from abstractions of real programs and protocols [e.g. Kaiser
et al., 2014, 2017]. But the question is likely to involve a deeper understanding of
how counters, and more generally resources, interact in a system: can we finely
capture these interactions through a better parameterisation than just the number
of counters? Classical work in implicit complexity theory should be an inspira-
tion here [e.g. Bellantoni and Cook, 1992; Kristiansen and Niggl, 2004], and might
even lead to tractable bounds for the systems arising in practice [see Ben-Amram
and Kristiansen, 2012; Brázdil et al., 2017; Zuleger, 2017, for recent related work].

Perspective. Invent parameterisations of counter machines leading to tight
parametric bounds and tractable upper bounds on practical instances.

6.3. Algorithmic Applications of Ideals

Let us consider again Backward Coverability from §2.3.3.2. The algorithm
relies on two main properties of wqos:

• the Ascending Chain Condition, which ensures the constructed sequence
of upwards-closed sets is finite, and

• the Finite Basis Property, which allows us to finitely represent upwards-
closed sets and manipulate them algorithmically.

Dually, a wqo is also equivalently characterised by the Descending Chain Condi-
tion: any descending sequence D0 ⊇ D1 ⊇ D2 ⊇ · · · of downwards-closed sub-
sets eventually stabilises. Hence, provided we could represent these downwards-
closed subsets finitely, we could rely on this dual condition for termination. The
right objects for this are ideals.

6.3.1. Ideals. An ideal of a qo ⟨A,≤⟩ is a downwards-closed and directed
subset I ⊆ A, where this last condition ensures that I is non-empty and that,
given any x ∈ I and y ∈ I , there exists z ∈ I with x ≤ z and y ≤ z. We
write Idl(A) for the set of ideals of A. For instance, {0, . . . , 4} and the whole
of N are ideals of N; in fact, regarding the former, ↓x for x ∈ A is always an
ideal of A, and called a principal one. While ideals are well-known objects in
order theory, their application to verification problems is quite recent: they have
been popularised in a series of articles initiated by Finkel and Goubault-Larrecq
[Blondin et al., 2017a; Finkel and Goubault-Larrecq, 2009, 2012a] on a forward
alternative to the backward coverability algorithm.

A related notion is the following. A downwards-closed subset D of ⟨A,≤⟩
is irreducible if and only if it is non-empty, and for any two downwards-closed
subsets D1, D2 such that D ⊆ D1 ∪D2, D is contained in D1 or in D2 already;
equivalently, D is non-empty and cannot be written as the union of two proper,
downwards-closed subsets.

Fact 6.1 (Bonnet, 1975, Lemma 1). Let D be a downwards-closed subset of a
qo. The following are equivalent:

(1) D is an ideal;

6.3. ALGORITHMIC APPLICATIONS OF IDEALS 71

(2) D is directed;
(3) D is irreducible.

Ideals are especially useful when ⟨A,≤⟩ is a wqo: for one thing, when A
is countable, Idl(A) is then also countable [Bonnet, 1975, Theorem 1], and fur-
thermore any downwards-closed subset has a decomposition as a finite union of
ideals. Recall that a qo has the finite antichain property (is FAC) if all its antichains
are finite.

Fact 6.2 (Bonnet, 1975, Lemma 2). A qo is FAC if and only if every downwards-
closed subset is a finite union of ideals.

Thanks to Fact 6.2, any downwards-closed set has a representation using
finitely many ideals. Furthermore, by Fact 6.1, there is a unique minimal such
decomposition, which we call the canonical ideal decomposition ofD. Should we
manage to find effective representations of wqo ideals, this will provide us with
algorithmic means to manipulate downward-closed sets. This last endeavour is
the subject of [Finkel and Goubault-Larrecq, 2009; Goubault-Larrecq et al., 2017].
Not only do most of the wqos mentioned in Section 2.1.2 (and several more) come
with finite ideal representations, but furthermore these representations can be
manipulated algorithmically: the inclusion relation I ⊆ J , and the canonical de-
compositions ofA, of ↓x, of I∩J , and ofA\↑x can all be computed for elements x
and ideals I, J of A.

6.3.2. A Dual Backward Coverability Algorithm. As an example of ap-
plication of ideals, one can formulate a dual of the Backward Coverability Al-
gorithm relying on ideals and the Descending Chain Condition. This allows to
prove upper bounds in some cases where the approach through controlled bad
sequences has proven inconclusive; for instance, the set of configurations of a
VASS is Q × Nd, and this is isomorphic to that of a lossy counter machine, thus
the bounds one can extract fromTheorem 3.15 for the backward coverability algo-
rithm are the same for both formalisms. However, coverability is ACKERMANN-
complete in LCM but only EXPSPACE-complete in VASS.

Consider an instance of the Coverability Problem on a system ⟨S,→,≤⟩ and
two configurations s, t ∈ S. We compute instead the limit of the sequence

S \ ↑t = D0 ⊇ D1 ⊇ · · · where Dn+1
def= Dn ∩ Pre∀(Dn)(6.1)

using the universal predecessor set
Pre∀(D) def= {s ∈ S | ∀s′ ∈ S, (s → s′ =⇒ s′ ∈ D)} .(6.2)

This dual algorithm requires effective ideal representations and predecessors. It
computes exactly the complementsDn = S \Un of the elements in the sequence
defined by Equation (2.9), and therefore terminates after the same number of steps.
Thus it might seem that we have not gained anything by considering this variant.

It turns out however that considering the dual algorithm sometimes allows
to exhibit ‘monotonicity’ invariants on the sets Dn, from which tighter upper
bounds can be derived. In joint work with Lazić [W1], we have shown how to de-
rive the EXPSPACE upper bound for VASS Coverability, together with the upper
bounds of Table 6.1, in a generic manner. The known bounds for these prob-
lems were adaptations of Rackoff’s ad-hoc analysis for VASS Coverability [Demri
et al., 2013; C9; J4]. We further show in [C5] a new upper bound for a variant of

72 6. PERSPECTIVES

Table 6.1. The complexity of Coverability in more families of WSTS.

WSTS Complexity Reference
Bottom-up Branching VASS 2-EXP-c. [Demri et al., 2013; W1]
Top-down Alternating VASS 2-EXP-c. [C9; W1]
Top-down Branching VASS TOWER-c. [J4; W1]
ν-Petri nets Fω·2-c. [C5]

data nets called ν-Petri nets. All the lower bounds in Table 6.1 rely on counter
interfaces, which were presented succinctly in Section 4.3.1.

6.3.3. BeyondWell-Quasi-Orders. Ideals also appear in two extensions of
wqos and well-structured transition systems.

The first one is to consider Noetherian spaces. A topological space is Noe-
therian if there are no infinite descending chains C0 ⊋ C1 ⊋ · · · of closed sets.
This generalises well-partial-orders with the Alexandroff topology, which defines
closed sets as the downwards-closed ones; however not every Noetherian space is
the Alexandroff topology of a wpo. The notion of well-structured transition sys-
tems has been extended by Goubault-Larrecq [2007, 2010] to work on Noetherian
spaces with a continuity condition instead of compatibility as defined in (2.6). For
instance, polynomial automata as used by Benedikt et al. [2017] fall within this
extended setup, while the complexity of their equivalence problem was analysed
using the techniques mentioned just before in Section 6.3.2.

The second one is to work with FAC quasi-orders. As seen in Fact 6.2, all we
need in order for finite ideal decompositions to exist is the absence of infinite
antichains. Blondin et al. [2017c] have accordingly proposed a generalisation of
well-structured transition systems based on FAC quasi-orders and the usual com-
patibility condition. While the backward coverability procedure does not always
terminate on such systems (as the ascending chain condition does not hold), Cov-
erability is nevertheless still decidable (under effectiveness conditions), thanks to
two semi-decision procedures, one of which amounting to finding a downwards-
closed forward invariant: a downwards-closed set containing the source configu-
ration s and closed under the transition relation →; this relies on ideal decompo-
sitions to enumerate candidate downwards-closed sets.

Perspective. Design techniques for analysing the computational complexity
of algorithms relying on Noetherian spaces and FAC orders.

Incidentally, there are relatively few examples of problems and classes of sys-
tems that can be tackled through Noetherian spaces and FAC orders, but not
through classical WSTS algorithms, and this seems worth developing.

6.4. Reachability in VASS Extensions

We have seen a number of VASS extensions where the decidability of the
reachability problem is still open in Table 5.2, where Branching VASS are of spe-
cial importance. Ideals provide a potential attack to these problems, through ex-
tensions of the Decomposition Theorem proven with Leroux in [C8].

6.4. REACHABILITY IN VASS EXTENSIONS 73

6.4.1. Branching VASS Reachability. Branching vector addition systems
with states (BVASS) form a natural extension of VAS invented independently in
several fields (see [C21] for a survey, in particular of the linguistic applications).
The reachability problem for BVASS is a notorious open problem in theoretical
computer science [Bojańczyk, 2014]. Several communities have indeed arrived
to the same roadblock: it is equivalent to provability in multiplicative exponen-
tial linear logic [de Groote et al., 2004]—the sole fragment of propositional lin-
ear logic with unknown decidability status, open since 1990—it was also defined
independently in computational linguistics [Rambow, 1994], cryptographic pro-
tocol verification [Verma and Goubault-Larrecq, 2005], verification of APIs for
distributed computing [Bouajjani and Emmi, 2013], and a slight extension of it
is also equivalent to satisfiability of data logics for XML processing [Jacquemard
et al., 2016] and observational equivalence of functional program in ML [Cotton-
Barratt et al., 2017]; finally, it has the dubious honour of having an incorrect pub-
lished decidability proof [Bimbó, 2015]. While decidability is open, we know how-
ever that the problem has non-elementary complexity [J4]. Regarding fixed di-
mensions, only dimension 1 is known to be decidable [Figueira et al., 2017; Göller
et al., 2016].

6.4.2. Ideal Decomposition of the Set of Executions. A very promising
angle of attack to the problem is provided by the DecompositionTheorem in [C8].
This theorem shows that the celebrated algorithms for reachability in VASS devel-
oped in by Mayr [1981], Kosaraju [1982], and Lambert [1992] can be understood
as computing a finite ideal decomposition of the downward-closure of the set of
executions of a VASS.

Formally, we see an execution (q0,u0)
t1−→V (q1,u1)

t2−→V · · · tn−→V (qnun)
from c0

def= (q0,u0) to cn
def= (qn,un) in a VASS V as a triple (c0, σ, cn) where σ is

the sequence of triples ((qi,ui), ti+1, (qi+1,ui+1))0≤i<n. Therefore an execution
is an element of PreRuns def= Confs× (Confs×T ×Confs)∗×Confs. This set is nat-
urally endowed with a well-quasi-odering ⊴ using Dickson’s and Higman’s lem-
mata [Jančar, 1990], and we can consider the downward-closure ↓RunsV(c0, cn)
of the set of executions from c0 to cn. By facts 6.1 and 6.2, this downwards-closed
set has a unique finite decomposition into ideals.

Theorem 6.3 (Decomposition Theorem; C8). The KLMST decomposition algo-
rithm computes a representation for the ideal decomposition of ↓RunsV(c0, cn).

The main ingredients of the proofs of Mayr, Kosaraju, and Lambert can be
recast in this light: the manipulated ‘marked witness graph sequences’ turn out to
be representations for ideals of a specific shape, the decomposition algorithm is an
abstraction refinement loop that gets closer and closer to the desired downward-
closure, and the termination criterion is an instance of adherence membership.
This last condition, of a topological flavour, asks whether there exists executions
of the system arbitrarily close to the limit denoted by the ideal, and is shown to
be equivalent to the perfectness (aka θ) condition described in Section 5.2 for the
ideals represented by marked witness graph sequences.

In a general setting, adherence membership can be formulated for finitely rep-
resented subsets X ⊆ A of a wqo ⟨A,≤⟩,—e.g. RunsV(c0, cn) ⊆ PreRuns in the
Decomposition Theorem, which is represented by the VASS V and the configura-
tions c0 and cn—and finitely represented ideals I .

74 6. PERSPECTIVES

Problem (Adherence Membership).
instance: A subset X ⊆ A over a wqo ⟨A,≤⟩ and an ideal I of A.
question: Is I adherent toX , i.e. does there exist a directed subset∆ ⊆ X

such that I = ↓∆?

A connection between adherence membership and computing downward-
closures was exhibited in [C4]: under effectiveness assumptions, the problem of
computing downward-closures of subsets X of A and the one of deciding ad-
herence membership are Turing-equivalent [C4, Proposition 16]. However, these
effectiveness assumptions do not hold in the case of VASS executions, and one
can show that adherence membership is undecidable for VASS executions and
arbitrary ideals of PreRuns [C8, Theorem V.2]. Nevertheless, this provides an
essential insight into what the KLMST decomposition is really performing; a cru-
cial point in the DecompositionTheorem is that we only need to handle the rather
specific ideals that arise during the decomposition, which are ideals represented
by marked witness graph sequences.

Extending this approach to handle the branching executions of BVASS is a
very challenging endeavour, but at least we have now a general framework in
which we can attack the problem.

Perspective. Extend the framework of the Decomposition Theorem to solve
BVASS Reachability.

As related problems, the decidability of reachability is also open in unordered
data Petri nets and pushdownVASS, and could be approached from the same angle
(c.f. Table 5.2). In fact, the decidability proof of Reinhardt [2008] for VASS with
a single zero test or hierarchical zero tests also seems approachable with these
techniques. In turn, this approach motivates further investigations of the basic
properties, finite representations, and algorithmics of ideals and of the adherence
membership problem.

APPENDIX A

Technical Appendix

A.1. Ordinals

From a set-theoretic perspective, an ordinal is an equivalence class of well-
orders up to order isomorphism. We also employ ordinals, or rather ordinal terms
denoting ordinals, in order to define subrecursive functions in Section 3.2.

A.1.1. Ordinals Terms. Ordinals in ε0 can be canonically represented as
ordinal terms α abstract syntax in Cantor normal form

α = ωα1 + · · ·+ ωαp(CNF)

with exponents α > α1 ≥ · · · ≥ αp. We write as usual 1 for the term ω0 and ω
for the term ω1. Grouping equal exponents yields the strict form

α = ωα1 · c1 + · · ·+ ωαp · cp

with α > α1 > · · · > αp and coefficients 0 < c1, . . . , cp < ω. The ordinal ε0, i.e.
the least solution of ωx = x, is the supremum of the ordinals presentable in this
manner.

A.1.1.1. Operations on Ordinal Terms. Thanks to the bijection between ordi-
nal terms in CNF and ordinals below ε0, the usual ordinal operations can also
be expressed ‘syntactically’ on ordinal terms. Later we will use terms as repre-
sentatives for isomorphism classes of well orders with order types below ε0. We
therefore include these syntactic characterisations here for the sake of complete-
ness.

The ordinal ordering has a syntactic characterisation for ordinal terms in CNF:
α =

∑p
i=1 ω

αi < β =
∑m

j=1 ω
βj if and only if there exists 1 ≤ j ≤ m such that

αi = βi for all 1 ≤ i < j and either j ≤ p and αj < βj or j > p.
The direct sum α + β of two ordinals can also be defined on their CNFs α =∑p

i=1 ω
αi and β =

∑m
j=1 ω

βj : thanks to the associativity of +, it suffices to
consider ωαp +ωβ1 , which is already in CNF if αp ≥ β1, and is otherwise equated
with ωβ1 . For instance ω2 + ω + ω3 = ω2 + ω3 = ω3; note that the direct
sum is not commutative. Similarly, the direct product α · β of α =

∑p
i=1 ω

αi and
β =

∑m
j=1 ω

βj can be defined thanks to left distributivity as
∑m

j=1 α ·ωβj , where
in turn α ·ωβj = ωα1+βj if βj > 0 and α ·1 = α otherwise. For instance 2 ·ω = ω
and (ω+2) ·ω = ω2; note that direct products are neither commutative nor right
distributive.

The natural sum α ⊕ β of two ordinals with CNFs α =
∑p

i=1 ω
αi and β =∑m

j=1 ω
βj can be defined as ωγ1 + · · ·+ ωγp+m where the exponents γ1 ≥ · · · ≥

γp+m are a reordering of α1, . . . , αp, β1, . . . , βm. Their natural product α ⊗ β is⊕
1≤i≤p,1≤j≤m ωαi⊕βj . Unlike the direct operations, the natural operations are

75

76 A. TECHNICAL APPENDIX

commutative and distributive: (ω2 + ω)⊕ ω3 = ω3 + ω2 + ω, 2⊗ ω = ω · 2, and
(ω + 2)⊗ ω = ω2 + ω · 2.

A.1.1.2. Computing Order Types. The order types o(A,≤A) of the well orders
⟨A,≤A⟩ we already mentioned in this document are well-known: o([d],≤) =
d, o(N,≤) = ω, o(A × B,≤lex) = o(B,≤B) · o(A,≤A), and o(M(A),≤m) =

ωo(A,≤A).
By extension, we also write o(x,≤) for the ordinal term in o(A,≤) associated

to an element x in A. Formally, this is the order type of the restriction of A to
elements no larger than x: o(x,≤) def= o({y ∈ A | x ̸≤ y},≤). For instance in
⟨Nd,≤lex⟩, o((n1, . . . , nd),≤lex) = ωd−1 · n1 + · · ·+ ω · nd−1 + nd.

A.1.2. Maximal Order Types. De Jongh and Parikh [1977] extend the no-
tion of order types to wpos ⟨A,≤⟩:

(A.1) o(A,≤) def= sup{o(A,⪯) | ⪯ is a linearisation of ≤} .

This is called the maximal order type of ⟨A,≤⟩, since de Jongh and Parikh show
that there always exists a linearisation ⟨A,⪯⟩ that reaches this order type, i.e.
‘sup’ can be replaced by ‘max’ in (A.1) (Blass and Gurevich [2008] also call this
the stature of ⟨A,≤⟩). The notion extends to wqos by considering the associated
quotient wpos.

The maximal order types of the wqos used in this document can be com-
puted using o(Q,=) = |Q| for Q finite, o(A ⊔ B,≤⊔) = o(A,≤A)⊕ o(B,≤B),
o(A × B,≤×) = o(A,≤A) ⊗ o(B,≤B) [de Jongh and Parikh, 1977]. Regarding
Higman’s Lemma and Kruskal’s Theorem, the maximal order types were com-
puted by Schmidt [1979], while the case of Robertson and Seymour’s GraphMinor
Theorem is still unsettled—but see [Van der Meeren, 2015] for recent advances.

Maximal order types provide a measure of the ‘strength’ of wqos. They might
however conceal some important distinctions; for instance o(Nd,≤×) = ωd =
o(Nd,≤lex).

A.2. Subrecursive Functions

A.2.1. Monotonicity Properties. Assume h is monotone and inflationary.
Then both hα and hα are monotone and inflationary [see Cichoń and Tahhan
Bittar, 1998; Schwichtenberg and Wainer, 2012; L1]. However, those hierarchies
are not monotone in the ordinal indices: for instance,Hω(x) = 2x+1 < 2x+2 =
Hx+2(x) although ω > x+ 2.

Some refinement of the ordinal ordering is needed in order to obtain mono-
tonicity of the hierarchies. Define for this the pointwise ordering ≺x at some x in
N as the smallest transitive relation such that

α ≺x α+ 1 , λ(x) ≺x λ .(A.2)

The relation ‘β ≺x α’ is noted ‘β ∈ α[x]’ in [Schwichtenberg and Wainer, 2012,
pp. 158–163]. The ≺x relations form a strict hierarchy of refinements of the ordi-
nal ordering <:

(A.3) ≺0 ⊊ ≺1 ⊊ · · · ⊊ ≺x ⊊ · · · ⊊ < .

A.2. SUBRECURSIVE FUNCTIONS 77

As desired, our hierarchies are monotone for the pointwise ordering [Cichoń and
Tahhan Bittar, 1998; Schwichtenberg and Wainer, 2012; L1]:

β ≺x α implies hβ(x) ≤ hα(x) and hβ(x) ≤ hα(x) .(A.4)
A.2.1.1. Ordinal Norms. Recall the ordinal norm defined in Equation (3.4): the

norm of an ordinal as the maximal coefficient that appears in its associated CNF,
i.e. if α = ωα1 · c1 + · · ·+ ωαp · cp with α1 > · · · > αp and c1, . . . , cp > 0, then

Nα def= max{c1, . . . , cp, Nα1, . . . , Nαp} .

The relation between ordinal norms and the pointwise ordering is that [Schwicht-
enberg and Wainer, 2012; L1]

β < α implies β ≺Nβ α .(A.5)
Together with (A.3) and (A.4), this entails the following statement.

Lemma A.1 (Eventual Majoration). Let β < α be two ordinals and h be a
monotone inflationary function. Then, for all x ≥ Nβ, hβ(x) ≤ hα(x) and
hβ(x) ≤ hα(x).

References

Abdulla, P.A. and Jonsson, B., 1996. Verifying programs with unreliable channels.
Information and Computation, 127(2):91–101. doi:10.1006/inco.1996.0053. Cited
on pages 15 and 17.

Abdulla, P.A., Čerāns, K., Jonsson, B., and Tsay, Y.K., 2000. Algorithmic analysis of
programs with well quasi-ordered domains. Information and Computation, 160
(1–2):109–127. doi:10.1006/inco.1999.2843. Cited on pages 1, 2, 9, 15, and 17.

Abdulla, P.A., 2010. Well (and better) quasi-ordered transition systems. Bulletin
of Symbolic Logic, 16(4):457–515. doi:10.2178/bsl/1294171129. Cited on page 15.

Abdulla, P.A., Mayr, R., Sangnier, A., and Sproston, J., 2013. Solving par-
ity games on integer vectors. In Proceedings of Concur 2013, volume 8052
of Lecture Notes in Computer Science, pages 106–120. Springer. doi:10.1007/
978-3-642-40184-8_9. Cited on page 7.

Abriola, S., Figueira, S., and Senno, G., 2015. Linearizing well-quasi orders and
bounding the length of bad sequences. Theoretical Computer Science, 603:3–22.
doi:10.1016/j.tcs.2015.07.012. Cited on pages 32 and 33.

Alechina, N., Bulling, N., Demri, S., and Logan, B., 2016. On the complex-
ity of resource-bounded logics. In Proceedings of RP 2016, volume 9899
of Lecture Notes in Computer Science, pages 36–50. Springer. doi:10.1007/
978-3-319-45994-3_3. Cited on page 7.

Alias, C., Darte, A., Feautrier, P., and Gonnord, L., 2010. Multi-dimensional rank-
ings, program termination, and complexity bounds of flowchart programs. In
Proceedings of SAS 2010, volume 6337 of Lecture Notes in Computer Science,
pages 117–133. Springer. doi:10.1007/978-3-642-15769-1_8. Cited on page 31.

Alur, R. and Dill, D.L., 1994. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235. doi:10.1016/0304-3975(94)90010-8. Cited on page 1.

Arnold, A. and Latteux, M., 1978. Récursivité et cones rationnels fermés par inter-
section. CALCOLO, 15(4):381–394. doi:10.1007/BF02576519. Cited on page 17.

Atig, M.F. and Habermehl, P., 2011. On Yen’s path logic for Petri nets. Interna-
tional Journal of Fundations of Computer Science, 22(4):783–799. doi:10.1142/
S0129054111008428. Cited on page 66.

Bellantoni, S. and Cook, S., 1992. A new recursion-theoretic characterization of
the polytime functions. Computational Complexity, 2(2):97–110. doi:10.1007/
BF01201998. Cited on page 70.

Ben-Amram, A.M., 2002. General size-change termination and lexicographic de-
scent. InThe Essence of Computation, volume 2566 of Lecture Notes in Computer
Science, pages 3–17. Springer. doi:10.1007/3-540-36377-7_1. Cited on pages 26

79

http://dx.doi.org/10.1006/inco.1996.0053
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.2178/bsl/1294171129
http://dx.doi.org/10.1007/978-3-642-40184-8_9
http://dx.doi.org/10.1007/978-3-642-40184-8_9
http://dx.doi.org/10.1016/j.tcs.2015.07.012
http://dx.doi.org/10.1007/978-3-319-45994-3_3
http://dx.doi.org/10.1007/978-3-319-45994-3_3
http://dx.doi.org/10.1007/978-3-642-15769-1_8
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/BF02576519
http://dx.doi.org/10.1142/S0129054111008428
http://dx.doi.org/10.1142/S0129054111008428
http://dx.doi.org/10.1007/BF01201998
http://dx.doi.org/10.1007/BF01201998
http://dx.doi.org/10.1007/3-540-36377-7_1

80 REFERENCES

and 31.
Ben-Amram, A.M. and Kristiansen, L., 2012. On the edge of decidability in

complexity analysis of loop programs. International Journal of Fundations of
Computer Science, 23(7):1451–1464. doi:10.1142/S0129054112400588. Cited on
page 70.

Ben-Amram, A.M. and Genaim, S., 2014. Ranking functions for linear-constraint
loops. Journal of the ACM, 61(4:26). doi:10.1145/2629488. Cited on page 13.

Benedikt, M., Duff, T., Sharad, A., and Worrell, J.B., 2017. Polynomial automata:
Zeroness and applications. In Proceedings of LICS 2017 . IEEE. doi:10.1109/
LICS.2017.8005101. Cited on pages 4, 33, and 72.

Bertrand, N. and Schnoebelen, Ph., 2013. Computable fixpoints in well-structured
symbolic model checking. Formal Methods in System Design, 43(2):233–267.
doi:10.1007/s10703-012-0168-y. Cited on page 17.

Bimbó, K., 2015. The decidability of the intensional fragment of classical linear
logic. Theoretical Computer Science, 597:1–17. doi:10.1016/j.tcs.2015.06.019.
Cited on page 73.

Blass, A. and Gurevich, Y., 2008. Program termination and well partial orderings.
ACM Transactions on Computational Logic, 9(3). doi:10.1145/1352582.1352586.
Cited on pages 31 and 76.

Blondin, M., Finkel, A., Göller, S., Haase, C., and McKenzie, P., 2015. Reachability
in two-dimensional vector addition systems with states is PSPACE-complete. In
Proceedings of LICS 2015, pages 32–43. IEEE. doi:10.1109/LICS.2015.14. Cited
on pages 6, 65, and 66.

Blondin, M., Finkel, A., and Goubault-Larrecq, J., 2017a. Forward analysis for
WSTS, part III: Karp-Miller trees. In Proceedings of FSTTCS 2017 , Leibniz Inter-
national Proceedings in Informatics. LZI. To appear. Cited on page 70.

Blondin, M., Finkel, A., Haase, C., and Haddad, S., 2017b. The logical view on
continuous Petri nets. ACM Transactions on Computational Logic, 18(3:24):1–
28. doi:10.1145/3105908. Cited on pages 2 and 66.

Blondin, M., Finkel, A., and McKenzie, P., 2017c. Well behaved transition systems.
Logical Methods in Computer Science, 13(3:24):1–19. doi:10.23638/LMCS-13(3:
24)2017. Cited on page 72.

Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., and Segoufin, L., 2011.
Two-variable logic on data words. ACM Transactions on Computational Logic,
12(4:27):1–26. doi:10.1145/1970398.1970403. Cited on pages 5 and 53.

Bojańczyk, M., 2014. Some open problems in automata and logic. ACM SIGLOG
News, 1(2):3–12. doi:10.1145/2677161.2677163. Cited on page 73.

Bonfante, G., Cichoń, A.E., Marion, J.Y., and Touzet, H., 2001. Algorithms with
polynomial interpretation termination proof. Journal of Functional Program-
ming, 11:33–53. Cited on page 31.

Bonnet, R., 1975. On the cardinality of the set of initial intervals of a partially
ordered set. In Infinite and finite sets: to Paul Erdős on his 60th birthday, Vol. 1,
Colloquia Mathematica Societatis János Bolyai, pages 189–198. North-Holland.
Cited on pages 70 and 71.

http://dx.doi.org/10.1142/S0129054112400588
http://dx.doi.org/10.1145/2629488
http://dx.doi.org/10.1109/LICS.2017.8005101
http://dx.doi.org/10.1109/LICS.2017.8005101
http://dx.doi.org/10.1007/s10703-012-0168-y
http://dx.doi.org/10.1016/j.tcs.2015.06.019
http://dx.doi.org/10.1145/1352582.1352586
http://dx.doi.org/10.1109/LICS.2015.14
http://dx.doi.org/10.1145/3105908
http://dx.doi.org/10.23638/LMCS-13(3:24)2017
http://dx.doi.org/10.23638/LMCS-13(3:24)2017
http://dx.doi.org/10.1145/1970398.1970403
http://dx.doi.org/10.1145/2677161.2677163

REFERENCES 81

Bonnet, R., 2013.Theory ofWell-Structured Transition Systems and Extended Vector-
Addition Systems. Thèse de doctorat, ENS Cachan. Cited on pages 65 and 67.

Bouajjani, A. and Emmi, M., 2013. Analysis of recursively parallel programs.
ACM Transactions on Programming Languages and Systems, 35(3:10):1–49. doi:
10.1145/2518188. Cited on page 73.

Brázdil, T., Jančar, P., and Kučera, A., 2010. Reachability games on extended
vector addition systems with states. In Proceedings of ICALP 2010, volume
6199 of Lecture Notes in Computer Science, pages 478–489. Springer. doi:
10.1007/978-3-642-14162-1_40. Cited on page 7.

Brázdil, T., Chatterjee, K., Kučera, A., Novotnỳ, P., and Velan, D., 2017. Efficient
algorithms for checking fast termination in VASS. arXiv:1708.09253 [cs.LO].
Cited on page 70.

Bresolin, D., Della Monica, D., Montanari, A., Sala, P., and Sciavicco, G., 2012.
Interval temporal logics over finite linear orders: The complete picture. In
Proceedings of ECAI 2012, volume 242 of Frontiers in Artificial Intelligence and
Applications, pages 199–204. IOS. doi:10.3233/978-1-61499-098-7-199. Cited on
page 2.

Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., and Piterman, N., 2016. T2:
temporal property verification. In Proceedings of TACAS 2016, volume 9636
of Lecture Notes in Computer Science, pages 387–393. Springer. doi:10.1007/
978-3-662-49674-9_22. Cited on page 13.

Buchholz, W., Cichoń, E.A., and Weiermann, A., 1994. A uniform approach to
fundamental sequences and hierarchies. Mathematical Logic Quaterly, 40(2):
273–286. doi:10.1002/malq.19940400212. Cited on pages 3, 24, 25, and 31.

Buchholz, W., 1995. Proof-theoretic analysis of termination proofs. Annals of Pure
and Applied Logic, 75(1–2):57–65. doi:10.1016/0168-0072(94)00056-9. Cited on
page 31.

Chambart, P. and Schnoebelen, Ph., 2008. The ordinal recursive complexity of
lossy channel systems. In Proceedings of LICS 2008, pages 205–216. IEEE. doi:
10.1109/LICS.2008.47. Cited on pages 4, 41, and 49.

Cichoń, E.A., 1993. Termination orderings and complexity characterisations.
In Proof Theory, pages 171–194. Cambridge University Press. doi:10.1017/
CBO9780511896262.008. Cited on pages 24, 25, and 31.

Cichoń, E.A. and Tahhan Bittar, E., 1998. Ordinal recursive bounds for Hig-
man’s Theorem. Theoretical Computer Science, 201(1–2):63–84. doi:10.1016/
S0304-3975(97)00009-1. Cited on pages 3, 21, 23, 24, 32, 76, and 77.

Clote, P., 1986. On the finite containment problem for Petri nets. Theoretical Com-
puter Science, 43:99–105. doi:10.1016/0304-3975(86)90169-6. Cited on page 32.

Colcombet, T., Daviaud, L., and Zuleger, F., 2014. Size-change abstraction
and max-plus automata. In Proceedings of MFCS 2014, volume 8634 of
Lecture Notes in Computer Science, pages 208–219. Springer. doi:10.1007/
978-3-662-44522-8_18. Cited on page 26.

Cook, B., Podelski, A., and Rybalchenko, A., 2006. Termination proofs for systems
code. In Proceedings of PLDI 2006. ACM. doi:10.1145/1133981.1134029. Cited

http://dx.doi.org/10.1145/2518188
http://dx.doi.org/10.1145/2518188
http://dx.doi.org/10.1007/978-3-642-14162-1_40
http://dx.doi.org/10.1007/978-3-642-14162-1_40
http://arxiv.org/abs/1708.09253
http://dx.doi.org/10.3233/978-1-61499-098-7-199
http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://dx.doi.org/10.1002/malq.19940400212
http://dx.doi.org/10.1016/0168-0072(94)00056-9
http://dx.doi.org/10.1109/LICS.2008.47
http://dx.doi.org/10.1109/LICS.2008.47
http://dx.doi.org/10.1017/CBO9780511896262.008
http://dx.doi.org/10.1017/CBO9780511896262.008
http://dx.doi.org/10.1016/S0304-3975(97)00009-1
http://dx.doi.org/10.1016/S0304-3975(97)00009-1
http://dx.doi.org/10.1016/0304-3975(86)90169-6
http://dx.doi.org/10.1007/978-3-662-44522-8_18
http://dx.doi.org/10.1007/978-3-662-44522-8_18
http://dx.doi.org/10.1145/1133981.1134029

82 REFERENCES

on page 14.
Cook, B., See, A., and Zuleger, F., 2013. Ramsey vs. lexicographic termination

proving. In Proceedings of TACAS 2013, volume 7795 of Lecture Notes in Com-
puter Science, pages 47–61. doi:10.1007/978-3-642-36742-7_4. Cited on page 13.

Cotton-Barratt, C., Murawski, A., and Ong, L., 2017. ML and extended branching
VASS. In Proceedings of ESOP 2017 , volume 10201 of Lecture Notes in Computer
Science, pages 314–340. Springer. doi:10.1007/978-3-662-54434-1_12. Cited on
page 73.

Courant, N. and Urban, C., 2017. Precise widening operators for proving ter-
mination by abstract interpretation. In Proceedings of TACAS 2017 , volume
10205 of Lecture Notes in Computer Science, pages 136–152. Springer. doi:
10.1007/978-3-662-54577-5_8. Cited on page 13.

Crespi-Reghizzi, S. andMandrioli, D., 1977. Petri nets and Szilard languages. Infor-
mation and Control, 33(2):177–192. doi:10.1016/S0019-9958(77)90558-7. Cited
on page 53.

Decker, N., Habermehl, P., Leucker, M., and Thoma, D., 2014. Ordered navigation
on multi-attributed data words. In Proceedings of Concur 2014, volume 8704
of Lecture Notes in Computer Science, pages 497–511. Springer. doi:10.1007/
978-3-662-44584-6_34. Cited on page 67.

Decker, N. and Thoma, D., 2016. On freeze LTL with ordered attributes. In Pro-
ceedings of FoSSaCS 2016, volume 9634 of Lecture Notes in Computer Science,
pages 269–284. Springer. doi:10.1007/978-3-662-49630-5_16. Cited on pages 4,
49, and 67.

de Groote, Ph., Guillaume, B., and Salvati, S., 2004. Vector addition tree automata.
In Proceedings of LICS 2004, pages 64–73. IEEE. doi:10.1109/LICS.2004.51. Cited
on page 73.

de Jongh, D.H.J. and Parikh, R., 1977. Well-partial orderings and hierarchies.
Indagationes Mathematicae, 39(3):195–207. doi:10.1016/1385-7258(77)90067-1.
Cited on pages 1, 29, and 76.

Delzanno, G., Raskin, J.F., and Van Begin, L., 2001. Attacking symbolic state ex-
plosion. In Proceedings of CAV 2011, volume 2102 of Lecture Notes in Com-
puter Science, pages 298–310. Springer. doi:10.1007/3-540-44585-4_28. Cited
on page 2.

Delzanno, G., Sangnier, A., and Zavattaro, G., 2010. Parameterized verification of
ad hoc networks. In Proceedings of Concur 2010, volume 6269 of Lecture Notes in
Computer Science, pages 313–327. Springer. doi:10.1007/978-3-642-15375-4_22.
Cited on page 33.

Demri, S., 2013. On selective unboundedness of VASS. Journal of Computer and
System Sciences, 79(5):689–713. doi:10.1016/j.jcss.2013.01.014. Cited on page 66.

Demri, S., Figueira, D., and Praveen, M., 2016. Reasoning about data repetitions
with counter systems. Logical Methods in Computer Science, 12(3:1):1–54. doi:
10.2168/LMCS-12(3:1)2016. Cited on pages 5 and 53.

http://dx.doi.org/10.1007/978-3-642-36742-7_4
http://dx.doi.org/10.1007/978-3-662-54434-1_12
http://dx.doi.org/10.1007/978-3-662-54577-5_8
http://dx.doi.org/10.1007/978-3-662-54577-5_8
http://dx.doi.org/10.1016/S0019-9958(77)90558-7
http://dx.doi.org/10.1007/978-3-662-44584-6_34
http://dx.doi.org/10.1007/978-3-662-44584-6_34
http://dx.doi.org/10.1007/978-3-662-49630-5_16
http://dx.doi.org/10.1109/LICS.2004.51
http://dx.doi.org/10.1016/1385-7258(77)90067-1
http://dx.doi.org/10.1007/3-540-44585-4_28
http://dx.doi.org/10.1007/978-3-642-15375-4_22
http://dx.doi.org/10.1016/j.jcss.2013.01.014
http://dx.doi.org/10.2168/LMCS-12(3:1)2016
http://dx.doi.org/10.2168/LMCS-12(3:1)2016

REFERENCES 83

Demri, S., Jurdziński, M., Lachish, O., and Lazić, R., 2013. The covering and
boundedness problems for branching vector addition systems. Journal of Com-
puter and System Sciences, 79(1):23–38. doi:10.1016/j.jcss.2012.04.002. Cited on
pages 71 and 72.

Dershowitz, N. andManna, Z., 1979. Proving termination with multiset orderings.
Communications of the ACM, 22(8):465–476. doi:10.1145/359138.359142. Cited
on pages 11, 26, 60, and 61.

Dickson, L.E., 1913. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. American Journal of Mathematics, 35(4):413–422.
doi:10.2307/2370405. Cited on pages 3 and 11.

Ding, G., 1992. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16
(5):489–502. doi:10.1002/jgt.3190160509. Cited on page 33.

D’Osualdo, E., Ong, L., and Tiu, A., 2017. Deciding secrecy of security protocols
for an unbounded number of sessions: The case of depth-bounded processes.
In Proceedings of CSF 2017 . IEEE. To appear. Cited on page 32.

Englert, M., Lazić, R., and Totzke, P., 2016. Reachability in two-dimensional unary
vector addition systems with states is NL-complete. In Proceedings of LICS
2016, pages 477–484. ACM. doi:10.1145/2933575.2933577. Cited on pages 6, 65,
and 66.

Esparza, J. and Nielsen, M., 1994. Decidability issues for Petri nets — a survey.
Bulletin of the EATCS, 52:244–262. Cited on page 53.

Esparza, J., 1998. Decidability and complexity of Petri net problems — an in-
troduction. In Proceedings of Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science, pages 374–428. Springer. doi:
10.1007/3-540-65306-6_20. Cited on pages 53 and 63.

Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., and Niksic, F., 2014.
An SMT-based approach to coverability analysis. In Proceedings of CAV 2014,
volume 8559 of Lecture Notes in Computer Science, pages 603–619. Springer.
doi:10.1007/978-3-319-08867-9_40. Cited on pages 2 and 66.

Esparza, J., Ganty, P., Leroux, J., and Majumdar, R., 2017. Verification of popula-
tion protocols. Acta Informatica, 54(2):191–215. doi:10.1007/s00236-016-0272-3.
Cited on page 53.

Fairtlough, M.V.H. and Wainer, S.S., 1992. Ordinal complexity of recur-
sive definitions. Information and Computation, 99(2):123–153. doi:10.1016/
0890-5401(92)90027-D. Cited on page 5.

Fairtlough, M.V.H. and Wainer, S.S., 1998. Hierarchies of provably recursive
functions. In Handbook of Proof Theory, volume 137 of Studies in Logic and
the Foundations of Mathematics, chapter III, pages 149–207. Elsevier. doi:
10.1016/S0049-237X(98)80018-9. Cited on pages 5, 23, 24, 36, 37, 41, and 50.

Fearnley, J. and Jurdziński, M., 2015. Reachability in two-clock timed automata
is PSPACE-complete. Information and Computation, 243:26–36. doi:10.1016/
j.ic.2014.12.004. Cited on pages 65 and 66.

Figueira, D., 2012. Alternating register automata on finite words and trees. Logical
Methods in Computer Science, 8(1:22). doi:10.2168/LMCS-8(1:22)2012. Cited on

http://dx.doi.org/10.1016/j.jcss.2012.04.002
http://dx.doi.org/10.1145/359138.359142
http://dx.doi.org/10.2307/2370405
http://dx.doi.org/10.1002/jgt.3190160509
http://dx.doi.org/10.1145/2933575.2933577
http://dx.doi.org/10.1007/3-540-65306-6_20
http://dx.doi.org/10.1007/3-540-65306-6_20
http://dx.doi.org/10.1007/978-3-319-08867-9_40
http://dx.doi.org/10.1007/s00236-016-0272-3
http://dx.doi.org/10.1016/0890-5401(92)90027-D
http://dx.doi.org/10.1016/0890-5401(92)90027-D
http://dx.doi.org/10.1016/S0049-237X(98)80018-9
http://dx.doi.org/10.1016/S0049-237X(98)80018-9
http://dx.doi.org/10.1016/j.ic.2014.12.004
http://dx.doi.org/10.1016/j.ic.2014.12.004
http://dx.doi.org/10.2168/LMCS-8(1:22)2012

84 REFERENCES

page 2.
Figueira, D., Lazic, R., Leroux, J., Mazowiecki, F., and Sutre, G., 2017. Polynomial-

space completeness of reachability for succinct branching VASS in dimen-
sion one. In Proceedings of ICALP 2017 , volume 80 of Leibniz Interna-
tional Proceedings in Informatics, article 119, 14 pages. LZI. doi:10.4230/
LIPIcs.ICALP.2017.119. Cited on page 73.

Finkel, A., 1987. A generalization of the procedure of Karp and Miller to well
structured transition systems. In Proceedings of ICALP 1987 , volume 267
of Lecture Notes in Computer Science, pages 499–508. Springer. doi:10.1007/
3-540-18088-5_43. Cited on page 15.

Finkel, A., 1994. Decidability of the termination problem for completely specifi-
cied protocols. Distributed Computing, 7(3):129–135. doi:10.1007/BF02277857.
Cited on page 15.

Finkel, A. and Schnoebelen, Ph., 2001. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1–2):63–92. doi:10.1016/
S0304-3975(00)00102-X. Cited on pages 1, 2, 9, 15, and 17.

Finkel, A. and Goubault-Larrecq, J., 2009. Forward analysis for WSTS,
part I: Completions. In Proceedings of STACS 2009 , volume 3 of Leibniz
International Proceedings in Informatics, pages 433–444. LZI. doi:10.4230/
LIPIcs.STACS.2009.1844. Cited on pages 70 and 71.

Finkel, A. and Goubault-Larrecq, J., 2012a. Forward analysis for WSTS, part II:
Complete WSTS. Logical Methods in Computer Science, 8(3:28). doi:10.2168/
LMCS-8(3:28)2012. Cited on page 70.

Finkel, A. and Goubault-Larrecq, J., 2012b. The theory of WSTS: the case of com-
plete WSTS. In Proceedings of Petri Nets 2012, volume 7347 of Lecture Notes
in Computer Science, pages 3–31. Springer. doi:10.1007/978-3-642-31131-4_2.
Cited on page 15.

Fischer, P.C., Meyer, A.R., and Rosenberg, A.L., 1968. Counter machines and
counter languages. Mathematical Systems Theory, 2(3):265–283. doi:10.1007/
BF01694011. Cited on page 45.

Floyd, R.W., 1967. Assigning meaning to programs. In Proceedings of Mathemati-
cal Aspects of Computer Science, volume 19 of Proceedings of Symposia in Applied
Mathematics, pages 19–32. AMS. Cited on page 12.

Fraigniaud, P., Rajsbaum, S., and Travers, C., 2016. Minimizing the number of
opinions for fault-tolerant distributed decision using well-quasi orderings. In
Proceedings of LATIN 2016, volume 9644 of Lecture Notes in Computer Science,
pages 497–508. Springer. doi:10.1007/978-3-662-49529-2_37. Cited on page 32.

Friedman, H.M., 2001. Long finite sequences. Journal of Combinatorial Theory,
Series A, 95(1):102–144. doi:10.1006/jcta.2000.3154. Cited on page 32.

Ganian, R., Hliněný, P., Nešetřil, J., Obdržálek, J., Ossona de Mendez, P., and Ra-
madurai, R., 2012. When trees grow low: Shrubs and fast MSO1. In Proceedings
of MFCS 2012, volume 7464 of Lecture Notes in Computer Science, pages 419–430.
Springer. doi:10.1007/978-3-642-32589-2_38. Cited on page 33.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.119
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.119
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1007/BF02277857
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1844
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1844
http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.1007/978-3-642-31131-4_2
http://dx.doi.org/10.1007/BF01694011
http://dx.doi.org/10.1007/BF01694011
http://dx.doi.org/10.1007/978-3-662-49529-2_37
http://dx.doi.org/10.1006/jcta.2000.3154
http://dx.doi.org/10.1007/978-3-642-32589-2_38

REFERENCES 85

Ganty, P. and Majumdar, R., 2012. Algorithmic verification of asynchronous pro-
grams. ACMTransactions on Programming Languages and Systems, 34(1:6):1–48.
doi:10.1145/2160910.2160915. Cited on pages 5 and 53.

Geffroy, T., Leroux, J., and Sutre, G., 2016. Occam’s Razor applied to the Petri net
coverability problem. In Proceedings of RP 2016, volume 9899 of Lecture Notes
in Computer Science, pages 77–89. Springer. doi:10.1007/978-3-319-45994-3_6.
Cited on pages 2 and 66.

Geffroy, T., Leroux, J., and Sutre, G., 2017. Backward coverability with pruning
for lossy channel systems. In Proceedings of SPIN 2017 , pages 132–141. ACM.
doi:10.1145/3092282.3092292. Cited on page 2.

Genest, B., Muscholl, A., Serre, O., and Zeitoun, M., 2008. Tree pattern rewriting
systems. In Proceedings of ATVA 2008, volume 5311 of Lecture Notes in Computer
Science, pages 332–346. doi:10.1007/978-3-540-88387-6_29. Cited on page 32.

Geeraerts, G., Raskin, J.F., and Van Begin, L., 2005. Expand, enlarge and check…
made efficient. In Proceedings of CAV 2005, volume 3576 of Lecture Notes in
Computer Science, pages 394–407. Springer. doi:10.1007/11513988_38. Cited on
page 2.

German, S.M. and Sistla, A.P., 1992. Reasoning about systems with many pro-
cesses. Journal of the ACM, 39(3):675–735. doi:10.1145/146637.146681. Cited
on page 53.

Geser, A., 1990. Relative Termination. Ph.D. Thesis, Universität Passau. doi:
10.18725/OPARU-2427. Cited on page 14.

Gischer, J., 1981. Shuffle languages, Petri nets, and context-sensitive grammars.
Communications of the ACM, 24(9):597–605. doi:10.1145/358746.358767. Cited
on page 53.

Göller, S., Haase, C., Lazic, R., and Totzke, P., 2016. A polynomial-time algorithm
for reachability in branching VASS in dimension one. In Proceedings of ICALP
2016, volume 55 of Leibniz International Proceedings in Informatics, article 105,
13 pages. LZI. doi:10.4230/LIPIcs.ICALP.2016.105. Cited on page 73.

Goubault-Larrecq, J., 2007. On Noetherian spaces. In Proceedings of LICS 2007 ,
pages 453–462. IEEE. doi:10.1109/LICS.2007.34. Cited on page 72.

Goubault-Larrecq, J., 2010. Noetherian spaces in verification. In Proceedings
of ICALP 2010, volume 6199 of Lecture Notes in Computer Science, pages 2–21.
Springer. doi:10.1007/978-3-642-14162-1_2. Cited on page 72.

Goubault-Larrecq, J., Halfon, S., Karandikar, P., Narayan Kumar, K., and Schnoe-
belen, Ph., 2017. The ideal approach to computing closed subsets in well-quasi-
orderings. In preparation. Cited on page 71.

Greibach, S.A., 1978. Remarks on blind and partially blind one-way multi-
counter machines. Theoretical Computer Science, 7(3):311–324. doi:10.1016/
0304-3975(78)90020-8. Cited on page 56.

Grzegorczyk, A., 1953. Some classes of recursive functions. Rozprawy Matematy-
czne, 4. Cited on page 5.

Gulwani, S., 2009. SPEED: Symbolic complexity bound analysis. In Proceedings
of CAV 2009 , volume 5643 of Lecture Notes in Computer Science, pages 51–62.

http://dx.doi.org/10.1145/2160910.2160915
http://dx.doi.org/10.1007/978-3-319-45994-3_6
http://dx.doi.org/10.1145/3092282.3092292
http://dx.doi.org/10.1007/978-3-540-88387-6_29
http://dx.doi.org/10.1007/11513988_38
http://dx.doi.org/10.1145/146637.146681
http://dx.doi.org/10.18725/OPARU-2427
http://dx.doi.org/10.18725/OPARU-2427
http://dx.doi.org/10.1145/358746.358767
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.105
http://dx.doi.org/10.1109/LICS.2007.34
http://dx.doi.org/10.1007/978-3-642-14162-1_2
http://dx.doi.org/10.1016/0304-3975(78)90020-8
http://dx.doi.org/10.1016/0304-3975(78)90020-8

86 REFERENCES

Springer. doi:10.1007/978-3-642-02658-4_7. Cited on page 31.
Haase, C., Kreutzer, S., Ouaknine, J., andWorrell, J., 2009. Reachability in succinct

and parametric one-counter automata. In Proceedings of Concur 2009 , volume
5710 of Lecture Notes in Computer Science, pages 369–383. Springer. doi:10.1007/
978-3-642-04081-8_25. Cited on pages 65 and 66.

Habermehl, P., Meyer, R., and Wimmel, H., 2010. The downward-closure of Petri
net languages. In Proceedings of ICALP 2010, volume 6199 of Lecture Notes in
Computer Science, pages 466–477. Springer. doi:10.1007/978-3-642-14162-1_39.
Cited on pages 64 and 65.

Hack, M.H.T., 1975. Decidability questions for Petri nets. Ph.D. Thesis, MIT. Cited
on pages 64 and 65.

Higman, G., 1952. Ordering by divisibility in abstract algebras. Proceedings of the
London Mathematical Society, 3(2):326–336. doi:10.1112/plms/s3-2.1.326. Cited
on pages 1, 3, and 11.

Hirokawa, N. and Moser, G., 2008. Automated complexity analysis based on
the dependency pair method. In Proceedings of IJCAR 2008, volume 5195
of Lecture Notes in Computer Science, pages 364–379. Springer. doi:10.1007/
978-3-540-71070-7_32. Cited on page 31.

Hofbauer, D., 1992. Termination proofs bymultiset path orderings imply primitive
recursive derivation lengths. Theoretical Computer Science, 105(1):129–140. doi:
10.1016/0304-3975(92)90289-R. Cited on page 31.

Hopcroft, J.E. and Pansiot, J.J., 1979. On the reachability problem for 5-
dimensional vector addition systems. Theoretical Computer Science, 8:135–159.
doi:10.1016/0304-3975(79)90041-0. Cited on pages 54, 56, 66, and 67.

Howell, R.R., Rosier, L.E., Huynh, D.T., and Yen, H.C., 1986. Some complex-
ity bounds for problems concerning finite and 2-dimensional vector addition
systems with states. Theoretical Computer Science, 46:107–140. doi:10.1016/
0304-3975(86)90026-5. Cited on page 66.

Jacquemard, F., Segoufin, L., and Dimino, J., 2016. FO2(<,+1,∼) on data trees,
data tree automata and branching vector addition systems. Logical Methods in
Computer Science, 12(2:3). doi:10.2168/LMCS-12(2:3)2016. Cited on page 73.

Jančar, P., 1990. Decidability of a temporal logic problem for Petri nets. Theoreti-
cal Computer Science, 74(1):71–93. doi:10.1016/0304-3975(90)90006-4. Cited on
pages 6 and 73.

Jančar, P., 2001. Nonprimitive recursive complexity and undecidability for Petri
net equivalences. Theoretical Computer Science, 256(1–2):23–30. doi:10.1016/
S0304-3975(00)00100-6. Cited on pages 41, 64, and 65.

Jančar, P., 2008. Bouziane’s transformation of the Petri net reachability problem
and incorrectness of the related algorithm. Information and Computation, 206
(11):1259–1263. doi:10.1016/j.ic.2008.06.003. Cited on page 53.

Jouannaud, J.P. and Lescanne, P., 1982. Onmultiset orderings. Information Process-
ing Letters, 15(2):57–63. doi:10.1016/0020-0190(82)90107-7. Cited on page 11.

Kaiser, A., Kroening, D., and Wahl, T., 2014. A widening approach to multi-
threaded program verification. ACM Transactions on Programming Languages

http://dx.doi.org/10.1007/978-3-642-02658-4_7
http://dx.doi.org/10.1007/978-3-642-04081-8_25
http://dx.doi.org/10.1007/978-3-642-04081-8_25
http://dx.doi.org/10.1007/978-3-642-14162-1_39
http://dx.doi.org/10.1112/plms/s3-2.1.326
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1016/0304-3975(92)90289-R
http://dx.doi.org/10.1016/0304-3975(92)90289-R
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/0304-3975(86)90026-5
http://dx.doi.org/10.1016/0304-3975(86)90026-5
http://dx.doi.org/10.2168/LMCS-12(2:3)2016
http://dx.doi.org/10.1016/0304-3975(90)90006-4
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1016/j.ic.2008.06.003
http://dx.doi.org/10.1016/0020-0190(82)90107-7

REFERENCES 87

and Systems, 36(4:14):1–29. doi:10.1145/2629608. Cited on pages 2, 66, and 70.
Kaiser, A., Kroening, D., and Wahl, T., 2017. Lost in abstraction: Monotonicity

in multi-threaded programs. Information and Computation, 252:30–47. doi:
10.1016/j.ic.2016.03.003. Cited on pages 2 and 70.

Kanovich, M.I., 1995. Petri nets, Horn programs, linear logic and vector
games. Annals of Pure and Applied Logic, 75(1–2):107–135. doi:10.1016/
0168-0072(94)00060-G. Cited on pages 7 and 53.

Karp, R.M. and Miller, R.E., 1969. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195. doi:10.1016/S0022-0000(69)80011-5. Cited
on pages 56, 60, and 62.

Ketonen, J. and Solovay, R., 1981. Rapidly growing Ramsey functions. Annals of
Mathematics, 113(2):27–314. doi:10.2307/2006985. Cited on pages 3, 32, and 50.

König, B. and Stückrath, J., 2017. Well-structured graph transformation systems.
Information and Computation, 252:71–94. doi:10.1016/j.ic.2016.03.005. Cited on
page 33.

Kopylov, A.P., 1995. Decidability of linear affine logic. In Proceedings of LICS 1995,
pages 496–504. IEEE. doi:10.1109/LICS.1995.523283. Cited on page 7.

Kosaraju, S.R., 1982. Decidability of reachability in vector addition systems. In
Proceedings of STOC 1982, pages 267–281. ACM. doi:10.1145/800070.802201.
Cited on pages 5, 6, 53, 54, 57, 58, 60, and 73.

Kreisel, G., 1952. On the interpretation of non-finitist proofs–Part II. Journal of
Symbolic Logic, 17(1):43–58. doi:10.2307/2267457. Cited on page 31.

Kripke, S.A., 1959. The problem of entailment. In Proceedings of ASL 1959 , Journal
of Symbolic Logic, page 324. doi:10.2307/2963903. Abstract. Cited on page 7.

Kristiansen, L. and Niggl, H., 2004. On the computational complexity of im-
perative programming languages. Theoretical Computer Science, (1–2):139–161.
doi:10.1016/j.tcs.2003.10.016. Cited on page 70.

Kroening, D., Sharygina, N., Tsitovich, A., and Wintersteiger, C.M., 2010. Termi-
nation analysis with compositional transition invariants. In Proceedings of CAV
2010, volume 6174 of Lecture Notes in Computer Science, pages 89–103. Springer.
doi:10.1007/978-3-642-14295-6_9. Cited on page 14.

Kruskal, J.B., 1960. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s Con-
jecture. Transactions of the American Mathematical Society, 95(2):210–225.
doi:10.2307/1993287. Cited on page 11.

Kruskal, J.B., 1972. The theory of well-quasi-ordering: A frequently discovered
concept. Journal of Combinatorial Theory, Series A, 13(3):297–305. doi:10.1016/
0097-3165(72)90063-5. Cited on pages 1 and 10.

Lambert, J.L., 1992. A structure to decide reachability in Petri nets. Theoretical
Computer Science, 99(1):79–104. doi:10.1016/0304-3975(92)90173-D. Cited on
pages 5, 6, 53, 54, 57, 58, and 73.

Lasota, S., 2009. EXPSPACE lower bounds for the simulation preorder between a
communication-free Petri net and a finite-state system. Information Processing
Letters, 109(15):850–855. doi:10.1016/j.ipl.2009.04.003. Cited on page 7.

http://dx.doi.org/10.1145/2629608
http://dx.doi.org/10.1016/j.ic.2016.03.003
http://dx.doi.org/10.1016/j.ic.2016.03.003
http://dx.doi.org/10.1016/0168-0072(94)00060-G
http://dx.doi.org/10.1016/0168-0072(94)00060-G
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.2307/2006985
http://dx.doi.org/10.1016/j.ic.2016.03.005
http://dx.doi.org/10.1109/LICS.1995.523283
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.2307/2267457
http://dx.doi.org/10.2307/2963903
http://dx.doi.org/10.1016/j.tcs.2003.10.016
http://dx.doi.org/10.1007/978-3-642-14295-6_9
http://dx.doi.org/10.2307/1993287
http://dx.doi.org/10.1016/0097-3165(72)90063-5
http://dx.doi.org/10.1016/0097-3165(72)90063-5
http://dx.doi.org/10.1016/0304-3975(92)90173-D
http://dx.doi.org/10.1016/j.ipl.2009.04.003

88 REFERENCES

Lazić, R., Newcomb, T., Ouaknine, J.O., Roscoe, A.W., and Worrell, J.B., 2008. Nets
with tokens which carry data. Fundamenta Informaticae, 88(3):251–274. Cited
on page 68.

Lazić, R., Ouaknine, J.O., and Worrell, J.B., 2016. Zeno, Hercules and the Hydra:
Safety metric temporal logic is ACKERMANN-complete. ACM Transactions on
Computational Logic, 17(3:16). doi:10.1145/2874774. Cited on pages 41 and 50.

Lazić, R. and Totzke, P., 2017. What makes Petri nets harder to verify: Stack
or data? In Concurrency, Security, and Puzzles - Essays Dedicated to An-
drew William Roscoe on the Occasion of His 60th Birthday, volume 10160 of
Lecture Notes in Computer Science, pages 144–161. Springer. doi:10.1007/
978-3-319-51046-0_8. Cited on pages 50, 65, 67, and 68.

Lee, C.S., Jones, N.D., and Ben-Amram, A.M., 2001. The size-change principle
for program termination. In Proceedings of POPL 2001, pages 81–92. ACM.
doi:10.1145/360204.360210. Cited on page 26.

León Sánchez, O. and Ovchinnikov, A., 2016. On bounds for the effec-
tive differential Nullstellensatz. Journal of Algebra, 449:1–21. doi:10.1016/
j.jalgebra.2015.10.009. Cited on page 33.

Lepper, I., 2001. Derivation lengths and order types of Knuth-Bendix
orders. Theoretical Computer Science, 269(1–2):433–450. doi:10.1016/
S0304-3975(01)00015-9. Cited on page 31.

Leroux, J. and Sutre, G., 2004. On flatness for 2-dimensional vector addition sys-
tems with states. In Proceedings of Concur 2004, volume 3170 of Lecture Notes in
Computer Science, pages 402–416. Springer. doi:10.1007/978-3-540-28644-8_26.
Cited on page 67.

Leroux, J., 2010. The general vector addition system reachability problem by Pres-
burger inductive invariants. Logical Methods in Computer Science, 6(3):1–25.
doi:10.2168/LMCS-6(3:22)2010. Cited on pages 57, 59, 60, and 64.

Leroux, J., 2011. Vector addition system reachability problem: a short self-
contained proof. In Proceedings of POPL 2011, pages 307–316. ACM. doi:
10.1145/1926385.1926421. Cited on pages 6 and 64.

Leroux, J., 2013. Vector addition system reversible reachability problem. Logical
Methods in Computer Science, 9(1:5). doi:10.2168/LMCS-9(1:5)2013. Cited on
pages 65 and 66.

Leroux, J., Praveen, M., and Sutre, G., 2013. A relational trace logic for vector
addition systems with application to context-freeness. In Proceedings of Con-
cur 2013, volume 8052 of Lecture Notes in Computer Science, pages 137–151.
Springer. doi:10.1007/978-3-642-40184-8_11. Cited on page 66.

Leroux, J. and Schnoebelen, Ph., 2014. On functions weakly computable by Petri
nets and vector addition systems. In Proceedings of RP 2014, volume 8762
of Lecture Notes in Computer Science, pages 190–202. Springer. doi:10.1007/
978-3-319-11439-2_15. Cited on page 49.

Lincoln, P., Mitchell, J., Scedrov, A., and Shankar, N., 1992. Decision problems for
propositional linear logic. Annals of Pure and Applied Logic, 56(1–3):239–311.
doi:10.1016/0168-0072(92)90075-B. Cited on page 7.

http://dx.doi.org/10.1145/2874774
http://dx.doi.org/10.1007/978-3-319-51046-0_8
http://dx.doi.org/10.1007/978-3-319-51046-0_8
http://dx.doi.org/10.1145/360204.360210
http://dx.doi.org/10.1016/j.jalgebra.2015.10.009
http://dx.doi.org/10.1016/j.jalgebra.2015.10.009
http://dx.doi.org/10.1016/S0304-3975(01)00015-9
http://dx.doi.org/10.1016/S0304-3975(01)00015-9
http://dx.doi.org/10.1007/978-3-540-28644-8_26
http://dx.doi.org/10.2168/LMCS-6(3:22)2010
http://dx.doi.org/10.1145/1926385.1926421
http://dx.doi.org/10.1145/1926385.1926421
http://dx.doi.org/10.2168/LMCS-9(1:5)2013
http://dx.doi.org/10.1007/978-3-642-40184-8_11
http://dx.doi.org/10.1007/978-3-319-11439-2_15
http://dx.doi.org/10.1007/978-3-319-11439-2_15
http://dx.doi.org/10.1016/0168-0072(92)90075-B

REFERENCES 89

Lipton, R.J., 1976. The reachability problem requires exponential space. Technical
Report 62, Department of Computer Science, Yale University. Cited on pages 4,
6, 50, 53, 63, 65, 66, 67, and 69.

Löb, M.H. and Wainer, S.S., 1970. Hierarchies of number theoretic functions,
I. Archiv für Mathematische Logik und Grundlagenforschung, 13:39–51. doi:
10.1007/BF01967649. Cited on pages 5, 32, 36, 37, and 41.

Lomazova, I.A. and Schnoebelen, P., 2000. Some decidability results for nested
Petri nets. In Proceedings of PSI 1999 , volume 1755 of Lecture Notes in Com-
puter Science, pages 208–220. Springer. doi:10.1007/3-540-46562-6_18. Cited
on page 67.

Mayr, E.W., 1981. An algorithm for the general Petri net reachability problem.
In Proceedings of STOC 1981, pages 238–246. ACM. doi:10.1145/800076.802477.
Cited on pages 5, 6, 53, 54, 56, 57, and 73.

Mayr, E.W. and Meyer, A.R., 1981. The complexity of the finite containment
problem for Petri nets. Journal of the ACM, 28(3):561–576. doi:10.1145/
322261.322271. Cited on page 4.

Mayr, R., 2000. Process rewrite systems. Information and Computation, 156(1–2):
264–286. doi:10.1006/inco.1999.2826. Cited on page 67.

Mayr, R., 2003. Undecidable problems in unreliable computations. Theoretical
Computer Science, 297(1–3):337–354. doi:10.1016/S0304-3975(02)00646-1. Cited
on page 15.

McAloon, K., 1984. Petri nets and large finite sets. Theoretical Computer Science,
32(1–2):173–183. doi:10.1016/0304-3975(84)90029-X. Cited on pages 3 and 32.

Meyer, A.R. and Ritchie, D.M., 1967. The complexity of loop programs. In Proceed-
ings of ACM ’67 , pages 465–469. doi:10.1145/800196.806014. Cited on pages 5
and 36.

Meyer, A.R., 1975. Weak monadic second order theory of successor is not
elementary-recursive. In Proceedings of Logic Colloquium 1972–73, volume
453 of Lecture Notes in Mathematics, pages 132–154. Springer. doi:10.1007/
BFb0064872. Cited on page 5.

Meyer, R., 2008. On boundedness in depth in the π-calculus. In Proceedings
of IFIP TCS 2008, volume 273 of IFIP AICT, pages 477–489. Springer. doi:
10.1007/978-0-387-09680-3_32. Cited on page 32.

Milner, R., 1990. Operational and algebraic semantics of concurrent processes. In
Handbook of Theoretical Computer Science, volume B, chapter 19, pages 1201–
1242. Elsevier. doi:10.1016/B978-0-444-88074-1.50024-X. Cited on page 15.

Moreno Socías, G., 1992. Length of polynomial ascending chains and primitive
recursiveness.Mathematica Scandinavica, 71(2):181–205. doi:10.2307/24492715.
Cited on page 32.

Müller, H., 1985. The reachability problem for VAS. In Advances in Petri Nets
1984, volume 188 of Lecture Notes in Computer Science, pages 376–391. Springer.
doi:10.1007/3-540-15204-0_21. Cited on pages 6, 57, and 63.

Nash-Williams, C.St.J.A., 1963. On well-quasi-ordering finite trees. Mathematical
Proceedings of the Cambridge Philosophical Society, 59(4):833–835. doi:10.1017/

http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1007/3-540-46562-6_18
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.1145/322261.322271
http://dx.doi.org/10.1145/322261.322271
http://dx.doi.org/10.1006/inco.1999.2826
http://dx.doi.org/10.1016/S0304-3975(02)00646-1
http://dx.doi.org/10.1016/0304-3975(84)90029-X
http://dx.doi.org/10.1145/800196.806014
http://dx.doi.org/10.1007/BFb0064872
http://dx.doi.org/10.1007/BFb0064872
http://dx.doi.org/10.1007/978-0-387-09680-3_32
http://dx.doi.org/10.1007/978-0-387-09680-3_32
http://dx.doi.org/10.1016/B978-0-444-88074-1.50024-X
http://dx.doi.org/10.2307/24492715
http://dx.doi.org/10.1007/3-540-15204-0_21
http://dx.doi.org/10.1017/S0305004100003844

90 REFERENCES

S0305004100003844. Cited on page 11.
Omri, E. and Weiermann, A., 2009. Classifying the phase transition threshold

for Ackermannian functions. Annals of Pure and Applied Logic, 158(3):156–162.
doi:10.1016/j.apal.2007.02.004. Cited on page 41.

Ouaknine, J.O. and Worrell, J.B., 2007. On the decidability and complexity of
Metric Temporal Logic over finite words. Logical Methods in Computer Science,
3(1:8). doi:10.2168/LMCS-3(1:8)2007. Cited on page 2.

Petri, C.A., 1962. Kommunikation mit Automaten. Ph.D. Thesis, Universität Bonn.
Cited on page 56.

Podelski, A. and Rybalchenko, A., 2004. Transition invariants. In Proceedings
of LICS 2004, pages 32–41. IEEE. doi:10.1109/LICS.2004.1319598. Cited on
pages 11 and 14.

Pouzet, M. and Sobrani, M., 2003. The order type of the collection of finite
series-parallel posets. Discrete Mathematics, 265(1–3):189–211. doi:10.1016/
S0012-365X(02)00580-0. Cited on page 33.

Rackoff, C., 1978. The covering and boundedness problems for vector ad-
dition systems. Theoretical Computer Science, 6(2):223–231. doi:10.1016/
0304-3975(78)90036-1. Cited on pages 4, 65, 66, and 71.

Rambow, O., 1994. Multiset-valued linear index grammars: imposing dominance
constraints on derivations. In Proceedings of ACL 1994, pages 263–270. ACL
Press. doi:10.3115/981732.981768. Cited on pages 68 and 73.

Rathjen, M., 2006. The art of ordinal analysis. In Proceedings of ICM 2006, vol-
ume 2, pages 45–69. European Mathematical Society. Cited on page 50.

Reinhardt, K., 2008. Reachability in Petri nets with inhibitor arcs. In Proceedings
of RP 2008, volume 223 of Electronic Notes inTheoretical Computer Science, pages
239–264. doi:10.1016/j.entcs.2008.12.042. Cited on pages 65, 67, and 74.

Render, E. and Kambites, M., 2009. Rational subsets of polycyclic monoids and
valence automata. Information and Computation, 207(11):1329–1339. doi:
10.1016/j.ic.2009.02.012. Cited on page 53.

Reutenauer, C., 1990. The mathematics of Petri nets. Masson and Prentice. Cited
on page 57.

Ritchie, R.W., 1965. Classes of recursive functions based onAckermann’s function.
Pacific Journal of Mathematics, 15(3):1027–1044. doi:10.2140/pjm.1965.15.1027.
Cited on page 41.

Robertson, N. and Seymour, P.D., 2010. Graph minors. XXIII. Nash-Williams’
immersion conjecture. Journal of Combinatorial Theory, Series B, 100(2):181–
205. doi:10.1016/j.jctb.2009.07.003. Cited on page 11.

Rosa-Velardo, F., 2017. Ordinal recursive complexity of unordered data nets. In-
formation and Computation, 254(1):41–58. doi:10.1016/j.ic.2017.02.002. Cited
on pages 3, 4, 32, 41, and 49.

Rosier, L.E. and Yen, H.C., 1986. A multiparameter analysis of the boundedness
problem for vector addition systems. Journal of Computer and System Sciences,
32(1):105–135. doi:10.1016/0022-0000(86)90006-1. Cited on page 66.

http://dx.doi.org/10.1017/S0305004100003844
http://dx.doi.org/10.1017/S0305004100003844
http://dx.doi.org/10.1016/j.apal.2007.02.004
http://dx.doi.org/10.2168/LMCS-3(1:8)2007
http://dx.doi.org/10.1109/LICS.2004.1319598
http://dx.doi.org/10.1016/S0012-365X(02)00580-0
http://dx.doi.org/10.1016/S0012-365X(02)00580-0
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.3115/981732.981768
http://dx.doi.org/10.1016/j.entcs.2008.12.042
http://dx.doi.org/10.1016/j.ic.2009.02.012
http://dx.doi.org/10.1016/j.ic.2009.02.012
http://dx.doi.org/10.2140/pjm.1965.15.1027
http://dx.doi.org/10.1016/j.jctb.2009.07.003
http://dx.doi.org/10.1016/j.ic.2017.02.002
http://dx.doi.org/10.1016/0022-0000(86)90006-1

REFERENCES 91

Sacerdote, G.S. and Tenney, R.L., 1977. The decidability of the reachability problem
for vector addition systems. In Proceedings of STOC 1977 , pages 61–76. ACM.
doi:10.1145/800105.803396. Cited on pages 5 and 56.

Schmidt, D., 1979. Well-partial orderings and their maximal order types. Habilita-
tionsschrift, Heidelberg. Cited on pages 33 and 76.

Schnoebelen, Ph., 2002. Verifying lossy channel systems has nonprimitive re-
cursive complexity. Information Processing Letters, 83(5):251–261. doi:10.1016/
S0020-0190(01)00337-4. Cited on pages 2, 4, 15, 35, 43, and 49.

Schnoebelen, Ph., 2010a. Revisiting Ackermann-hardness for lossy counter ma-
chines and reset Petri nets. In Proceedings of MFCS 2010, volume 6281 of
Lecture Notes in Computer Science, pages 616–628. Springer. doi:10.1007/
978-3-642-15155-2_54. Cited on pages 4, 15, 35, 41, 43, and 49.

Schnoebelen, Ph., 2010b. Lossy counter machines decidability cheat sheet. In
Proceedings of RP 2010, volume 6227 of Lecture Notes in Computer Science, pages
51–75. Springer. doi:10.1007/978-3-642-15349-5_4. Cited on page 15.

Schwichtenberg, H. and Wainer, S.S., 2012. Proofs and Computation. Perspectives
in Logic. Cambridge University Press. Cited on pages 23, 50, 76, and 77.

Simpson, S.G., 1988. Ordinal numbers and the Hilbert basis theorem. Journal of
Symbolic Logic, 53(3):961–974. doi:10.2307/2274585. Cited on page 50.

Steila, S., 2016. Terminating via Ramsey’s Theorem. Ph.D. Thesis, Universitá degli
Studi di Torino. Cited on pages 31 and 32.

Turing, A.M., 1949. Checking a large routine. In Proceedings of EDSAC 1949 ,
pages 67–69. Cited on pages 11, 12, and 13.

Urquhart, A., 1990. The complexity of decision procedures in relevance logic. In
Truth or Consequences: Essays in honour of Nuel Belnap, pages 61–76. Kluwer.
doi:10.1007/978-94-009-0681-5_5. Cited on page 7.

Urquhart, A., 1999. The complexity of decision procedures in relevance logic
II. Journal of Symbolic Logic, 64(4):1774–1802. doi:10.2307/2586811. Cited on
pages 4, 7, 15, 32, 35, 41, 43, and 49.

Van der Meeren, J., 2015. Connecting the TwoWorlds: Well-partial-orders and Ordi-
nal Notation Systems. Ph.D.Thesis, Universiteit Gent. Cited on pages 33 and 76.

Vardi, M.Y., 2009. From philosophical to industrial logics. In Proceedings of ICLA
2009 , volume 5378 of Lecture Notes in Computer Science, pages 89–115. Springer.
doi:10.1007/978-3-540-92701-3_7. Cited on page 1.

Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A., and Raskin,
J.F., 2015. The complexity of multi-mean-payoff and multi-energy games. Infor-
mation and Computation, 241:177–196. doi:10.1016/j.ic.2015.03.001. Cited on
page 7.

Verma, K.N. and Goubault-Larrecq, J., 2005. Karp-Miller trees for a branching
extension of VASS. Discrete Mathematics and Theoretical Computer Science, 7
(1):217–230. Cited on page 73.

Wainer, S.S., 1970. A classification of the ordinal recursive functions. Archiv
für Mathematische Logik und Grundlagenforschung, 13(3):136–153. doi:10.1007/
BF01973619. Cited on pages 36, 37, and 41.

http://dx.doi.org/10.1145/800105.803396
http://dx.doi.org/10.1016/S0020-0190(01)00337-4
http://dx.doi.org/10.1016/S0020-0190(01)00337-4
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1007/978-3-642-15349-5_4
http://dx.doi.org/10.2307/2274585
http://dx.doi.org/10.1007/978-94-009-0681-5_5
http://dx.doi.org/10.2307/2586811
http://dx.doi.org/10.1007/978-3-540-92701-3_7
http://dx.doi.org/10.1016/j.ic.2015.03.001
http://dx.doi.org/10.1007/BF01973619
http://dx.doi.org/10.1007/BF01973619

92 REFERENCES

Wainer, S.S., 1972. Ordinal recursion, and a refinement of the extended Grzegor-
czyk hierarchy. Journal of Symbolic Logic, 37(2):281–292. doi:10.2307/2272973.
Cited on page 23.

Weiermann, A., 1994. Complexity bounds for some finite forms of Kruskal’s
Theorem. Journal of Symbolic Computation, 18(5):463–488. doi:10.1006/
jsco.1994.1059. Cited on pages 3, 31, 32, and 33.

Weiermann, A., 1995. Termination proofs for term rewriting systems by lexico-
graphic path orderings imply multiply recursive derivation lengths. Theoretical
Computer Science, 139(1–2):355–362. doi:10.1016/0304-3975(94)00135-6. Cited
on page 31.

Wies, T., Zufferey, D., and Henzinger, T.A., 2010. Forward analysis of
depth-bounded processes. In Proceedings of FoSSaCS 2010, volume 6014
of Lecture Notes in Computer Science, pages 94–108. Springer. doi:10.1007/
978-3-642-12032-9_8. Cited on page 32.

Zetzsche, G., 2016. The complexity of downward closure comparisons. In Pro-
ceedings of ICALP 2016, volume 55 of Leibniz International Proceedings in Infor-
matics, article 123, 14 pages. LZI. doi:10.4230/LIPIcs.ICALP.2016.123. Cited on
pages 64 and 65.

Zuleger, F., 2017. Ranking functions for vector addition systems. arXiv:1710.10292
[cs.LO]. Cited on page 70.

http://dx.doi.org/10.2307/2272973
http://dx.doi.org/10.1006/jsco.1994.1059
http://dx.doi.org/10.1006/jsco.1994.1059
http://dx.doi.org/10.1016/0304-3975(94)00135-6
http://dx.doi.org/10.1007/978-3-642-12032-9_8
http://dx.doi.org/10.1007/978-3-642-12032-9_8
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.123
http://arxiv.org/abs/1710.10292

List of Publications

Invited Papers

[I1] Leroux, J. and Schmitz, S., 2016. Ideal decompositions for vector addi-
tion systems. In Proceedings of STACS 2016, volume 47 of Leibniz Inter-
national Proceedings in Informatics, article 1, 13 pages. LZI. doi:10.4230/
LIPIcs.STACS.2016.1.

[I2] Schmitz, S., 2016. Automata column: The complexity of reachability in
vector addition systems. ACM SIGLOG News, 3(1):3–21. doi:10.1145/
2893582.2893585. Cited on pages 53, 54, and 69.

[I3] Schmitz, S., 2014. Complexity bounds for ordinal-based termination. In
Proceedings of RP 2014, volume 8762 of Lecture Notes in Computer Science,
pages 1–19. Springer. doi:10.1007/978-3-319-11439-2_1. Cited on pages 3,
9, 11, 19, 24, 25, and 53.

[I4] Schmitz, S. and Schnoebelen, Ph., 2013. The power of well-structured sys-
tems. In Proceedings of Concur 2013, volume 8052 of Lecture Notes in Com-
puter Science, pages 5–24. Springer. doi:10.1007/978-3-642-40184-8_2. Cited
on pages 9, 19, 35, and 43.

Journal Papers

[J1] Schmitz, S., 2016. Implicational relevance logic is 2-ExpTime-complete.
Journal of Symbolic Logic, 81(2):641–661. doi:10.1017/jsl.2015.7. Cited on
pages 2 and 7.

[J2] Chambart, P., Finkel, A., and Schmitz, S., 2016. Forward analysis and model
checking for trace bounded WSTS. Theoretical Computer Science, 637:1–29.
doi:10.1016/j.tcs.2016.04.020.

[J3] Schmitz, S., 2016. Complexity hierarchies beyond Elementary. ACM Trans-
actions on Computation Theory, 8(1:3):1–36. doi:10.1145/2858784. Cited on
pages 3, 5, 33, 35, 36, 39, 40, 41, 42, 45, and 49.

[J4] Lazić, R. and Schmitz, S., 2015. Non-elementary complexities for branching
VASS, MELL, and extensions. ACM Transactions on Computational Logic, 16
(3:20):1–30. doi:10.1145/2733375. Cited on pages 2, 4, 7, 32, 50, 65, 68, 71,
72, and 73.

[J5] Haase, C., Schmitz, S., and Schnoebelen, Ph., 2014. The power of priority
channel systems. Logical Methods in Computer Science, 10(4:4):1–39. doi:
10.2168/LMCS-10(4:4)2014. Cited on pages 4, 32, 35, 41, 43, and 49.

93

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.1
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.1
http://dx.doi.org/10.1145/2893582.2893585
http://dx.doi.org/10.1145/2893582.2893585
http://dx.doi.org/10.1007/978-3-319-11439-2_1
http://dx.doi.org/10.1007/978-3-642-40184-8_2
http://dx.doi.org/10.1017/jsl.2015.7
http://dx.doi.org/10.1016/j.tcs.2016.04.020
http://dx.doi.org/10.1145/2858784
http://dx.doi.org/10.1145/2733375
http://dx.doi.org/10.2168/LMCS-10(4:4)2014
http://dx.doi.org/10.2168/LMCS-10(4:4)2014

94 LIST OF PUBLICATIONS

[J6] Héam, P.C., Nicaud, C., and Schmitz, S., 2010. Parametric random gen-
eration of deterministic tree automata. Theoretical Computer Science, 411
(38–39):3469–3480. doi:10.1016/j.tcs.2010.05.036.

[J7] Schmitz, S., 2010. An experimental ambiguity detection tool. Science of
Computer Programming, 75(1–2):71–84. doi:10.1016/j.scico.2009.07.002.

Conference Papers

[C1] Colcombet, Th., Jurdziński, M., Lazić, R., and Schmitz, S., 2017. Per-
fect half-space games. In Proceedings of LICS 2017 . IEEE. doi:10.1109/
LICS.2017.8005105. Cited on page 7.

[C2] Bérard, B., Haar, S., Schmitz, S., and Schwoon, S., 2017. The complexity of
diagnosability and opacity verification for Petri nets. In Proceedings of Petri
Nets 2017 , volume 10258 of Lecture Notes in Computer Science, pages 200–
220. Springer. doi:10.1007/978-3-319-57861-3_13.

[C3] Baelde, D., Lunel, S., and Schmitz, S., 2016. A sequent calculus for a
modal logic on finite data trees. In Proceedings of CSL 2016, volume 62
of Leibniz International Proceedings in Informatics, article 32, 16 pages. LZI.
doi:10.4230/LIPIcs.CSL.2016.32.

[C4] Goubault-Larrecq, J. and Schmitz, S., 2016. Deciding piecewise testable sep-
arability for regular tree languages. In Proceedings of ICALP 2016, volume 55
of Leibniz International Proceedings in Informatics, article 97, 15 pages. LZI.
doi:10.4230/LIPIcs.ICALP.2016.97. Cited on page 74.

[C5] Lazić, R. and Schmitz, S., 2016. The complexity of coverability in ν-Petri
nets. In Proceedings of LICS 2016, pages 467–476. ACM. doi:10.1145/
2933575.2933593. Cited on pages 4, 50, 63, 71, and 72.

[C6] Hofman, P., Lasota, S., Lazić, R., Leroux, J., Schmitz, S., and Totzke, P., 2016.
Coverability trees for Petri nets with unordered data. In Proceedings of FoS-
SaCS 2016, volume 9634 of Lecture Notes in Computer Science, pages 445–461.
Springer. doi:10.1007/978-3-662-49630-5_26.

[C7] Jurdziński, M., Lazić, R., and Schmitz, S., 2015. Fixed-dimensional energy
games are in pseudo-polynomial time. In Proceedings of ICALP 2015, vol-
ume 9135 of Lecture Notes in Computer Science, pages 260–272. Springer.
doi:10.1007/978-3-662-47666-6_21. Cited on page 7.

[C8] Leroux, J. and Schmitz, S., 2015. Demystifying reachability in vector ad-
dition systems. In Proceedings of LICS 2015, pages 56–67. IEEE. doi:
10.1109/LICS.2015.16. Cited on pages 6, 53, 54, 60, 61, 62, 64, 72, 73, and 74.

[C9] Courtois, J.B. and Schmitz, S., 2014. Alternating vector addition sys-
tems with states. In Proceedings of MFCS 2014, volume 8634 of Lec-
ture Notes in Computer Science, pages 220–231. Springer. doi:10.1007/
978-3-662-44522-8_19. Cited on pages 4, 7, 68, 71, and 72.

[C10] Schmitz, S., 2014. Implicational relevance logic is 2-ExpTime-complete. In
Proceedings of RTA-TLCA 2014, volume 8560 of Lecture Notes in Computer
Science, pages 395–409. Springer. doi:10.1007/978-3-319-08918-8_27. Su-
perseded by [J1].

http://dx.doi.org/10.1016/j.tcs.2010.05.036
http://dx.doi.org/10.1016/j.scico.2009.07.002
http://dx.doi.org/10.1109/LICS.2017.8005105
http://dx.doi.org/10.1109/LICS.2017.8005105
http://dx.doi.org/10.1007/978-3-319-57861-3_13
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.32
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.97
http://dx.doi.org/10.1145/2933575.2933593
http://dx.doi.org/10.1145/2933575.2933593
http://dx.doi.org/10.1007/978-3-662-49630-5_26
http://dx.doi.org/10.1007/978-3-662-47666-6_21
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1007/978-3-662-44522-8_19
http://dx.doi.org/10.1007/978-3-662-44522-8_19
http://dx.doi.org/10.1007/978-3-319-08918-8_27

CONFERENCE PAPERS 95

[C11] Lazić, R. and Schmitz, S., 2014. Non-elementary complexities for branching
VASS, MELL, and extensions. In Proceedings of CSL-LICS 2014, article 61,
10 pages. ACM. doi:10.1145/2603088.2603129. Superseded by [J4].

[C12] Haase, C., Schmitz, S., and Schnoebelen, Ph., 2013. The power of pri-
ority channel systems. In Proceedings of Concur 2013, volume 8052 of
Lecture Notes in Computer Science, pages 319–333. Springer. doi:10.1007/
978-3-642-40184-8_23. Superseded by [J5].

[C13] Boral, A. and Schmitz, S., 2013. Model checking parse trees. In Proceedings
of LICS 2013, pages 153–162. IEEE Press. doi:10.1109/LICS.2013.21.

[C14] Karandikar, P. and Schmitz, S., 2013. The parametric ordinal-recursive com-
plexity of Post embedding problems. In Proceedings of FoSSaCS 2013, vol-
ume 7794 of Lecture Notes in Computer Science, pages 273–288. Springer.
doi:10.1007/978-3-642-37075-5_18. Cited on pages 4, 49, and 69.

[C15] Bertsch, E., Nederhof, M.J., and Schmitz, S., 2013. On LR parsing with selec-
tive delays. In Proceedings of CC 2013, volume 7791 of Lecture Notes in Com-
puter Science, pages 244–263. Springer. doi:10.1007/978-3-642-37051-9_13.

[C16] Haddad, S., Schmitz, S., and Schnoebelen, Ph., 2012. The ordinal re-
cursive complexity of timed-arc Petri nets, data nets, and other enriched
nets. In Proceedings of LICS 2012, pages 355–364. IEEE Press. doi:10.1109/
LICS.2012.46. Cited on pages 4, 35, 41, 43, 49, and 50.

[C17] Blockelet, M. and Schmitz, S., 2011. Model-checking coverability graphs
of vector addition systems. In Proceedings of MFCS 2011, volume 6907 of
Lecture Notes in Computer Science, pages 108–119. Springer. doi:10.1007/
978-3-642-22993-0_13. Cited on pages 60 and 66.

[C18] Schmitz, S. and Schnoebelen, Ph., 2011. Multiply-recursive upper bounds
with Higman’s Lemma. In Proceedings of ICALP 2011, volume 6756 of
Lecture Notes in Computer Science, pages 441–452. Springer. doi:10.1007/
978-3-642-22012-8_35. Cited on pages 3, 19, 24, 25, 27, 29, and 32.

[C19] Figueira, D., Figueira, S., Schmitz, S., and Schnoebelen, Ph., 2011. Ack-
ermannian and primitive-recursive bounds with Dickson’s Lemma. In Pro-
ceedings of LICS 2011, pages 269–278. IEEE Press. doi:10.1109/LICS.2011.39.
Cited on pages 3, 14, 19, 26, 31, 32, 42, 53, 60, and 62.

[C20] Chambart, P., Finkel, A., and Schmitz, S., 2011. Forward analysis and
model checking for trace bounded WSTS. In Proceedings of Petri Nets 2011,
volume 6709 of Lecture Notes in Computer Science, pages 49–68. Springer.
doi:10.1007/978-3-642-21834-7_4. Superseded by [J2].

[C21] Schmitz, S., 2010. On the computational complexity of dominance links in
grammatical formalisms. In Proceedings of ACL 2010, pages 514–524. ACL
Press. Cited on pages 4, 68, and 73.

[C22] Héam, P.C., Nicaud, C., and Schmitz, S., 2009. Random generation of de-
terministic tree (walking) automata. In Proceedings of CIAA 2009 , vol-
ume 5642 of Lecture Notes in Computer Science, pages 115–124. Springer.
doi:10.1007/978-3-642-02979-0_15. Superseded by [J6].

http://dx.doi.org/10.1145/2603088.2603129
http://dx.doi.org/10.1007/978-3-642-40184-8_23
http://dx.doi.org/10.1007/978-3-642-40184-8_23
http://dx.doi.org/10.1109/LICS.2013.21
http://dx.doi.org/10.1007/978-3-642-37075-5_18
http://dx.doi.org/10.1007/978-3-642-37051-9_13
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1007/978-3-642-22993-0_13
http://dx.doi.org/10.1007/978-3-642-22993-0_13
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1007/978-3-642-21834-7_4
http://dx.doi.org/10.1007/978-3-642-02979-0_15

96 LIST OF PUBLICATIONS

[C23] Schmitz, S., 2007. Conservative ambiguity detection in context-free gram-
mars. In Proceedings of ICALP 2007 , volume 4596 of Lecture Notes in Com-
puter Science, pages 692–703. Springer. doi:10.1007/978-3-540-73420-8_60.

[C24] Schmitz, S., 2006. Noncanonical LALR(1) parsing. In Proceedings
of DLT 2006, volume 4036 of Lecture Notes in Computer Science, pages 95–
107. Springer. doi:10.1007/11779148_10.

[C25] Fortes Gálvez, J., Schmitz, S., and Farré, J., 2006. Shift-resolve parsing:
Simple, linear time, unbounded lookahead. In Proceedings of CIAA 2006,
volume 4094 of Lecture Notes in Computer Science, pages 253–264. Springer.
doi:10.1007/11812128_24.

Workshop Papers

[W1] Lazić, R. and Schmitz, S., 2015. The ideal view on Rackoff’s coverability
technique. In Proceedings of RP 2015, volume 9328 of Lecture Notes in Com-
puter Science, pages 1–13. Springer. doi:10.1007/978-3-319-24537-9_8. Cited
on pages 4, 71, and 72.

[W2] Gardent, C., Parmentier, Y., Perrier, G., and Schmitz, S., 2014. Lexical
disambiguation in LTAG using left context. In Proceedings of LTC 2011,
volume 8387 of Lecture Notes in Computer Science, pages 67–79. Springer.
doi:10.1007/978-3-319-08958-4_6.

[W3] Schmitz, S., 2011. A note on sequential rule-based POS tagging. In Proceed-
ings of FSMNLP 2011, pages 83–87. ACL Press. Short paper.

[W4] Schmitz, S. and Le Roux, J., 2008. Feature unification in TAG derivation
trees. In Proceedings of TAG+9 , pages 141–148.

[W5] Schmitz, S., 2008. An experimental ambiguity detection tool. In Pro-
ceedings of LDTA 2007 , volume 203(2) of Electronic Notes in Theoretical
Computer Science, pages 69–84. Elsevier Science Publishers. doi:10.1016/
j.entcs.2008.03.045. Superseded by [J7].

French Conference Papers

[F1] Schmitz, S. and Le Roux, J., 2008. Calculs d’unification sur les arbres de déri-
vation TAG. In Proceedings of TALN 2008, pages 320–329. French version
of [W4].

Thesis

[T1] Schmitz, S., 2007. Approximating Context-Free Grammars for Parsing and
Verification. Ph.D. Thesis, Université de Nice - Sophia Antipolis.

Research Reports

[R1] Schmitz, S., 2006. Modular syntax demands verification. Technical Report
I3S/RR-2006-32-FR, Laboratoire I3S, Université de Nice - Sophia Antipolis
& CNRS.

http://dx.doi.org/10.1007/978-3-540-73420-8_60
http://dx.doi.org/10.1007/11779148_10
http://dx.doi.org/10.1007/11812128_24
http://dx.doi.org/10.1007/978-3-319-24537-9_8
http://dx.doi.org/10.1007/978-3-319-08958-4_6
http://dx.doi.org/10.1016/j.entcs.2008.03.045
http://dx.doi.org/10.1016/j.entcs.2008.03.045

LECTURE NOTES 97

Preprints

[P1] Džamonja, M., Schmitz, S., and Schnoebelen, Ph., 2017. On thewidth of FAC
orders, a somewhat rediscovered notion. arXiv:1711.00428 [math.LO].

Lecture Notes

[L1] Schmitz, S. and Schnoebelen, Ph., 2012. Algorithmic aspects of wqo theory.
Lecture notes, ESSLLI 2012, 108 pages. Cited on pages 4, 9, 19, 30, 35, 43, 76,
and 77.

https://arxiv.org/abs/1711.00428

Algorithmic Complexity of Well-Quasi-Orders

Abstract. This document is dedicated to the algorithmic complexity of well-
quasi-orders, with a particular focus on their applications in verification, where
they allow to tackle systems featuring an infinite state-space, representing for
instance integer counters, the number of active threads in concurrent settings,
real-time clocks, call stacks, cryptographic nonces, or the contents of communi-
cation channels.

The document presents a comprehensive framework for studying such com-
plexities, encompassing the definition of complexity classes suitable for problems
with non-elementary complexity and proof techniques for both upper and lower
bounds, along with several examples where the framework has been applied suc-
cessfully. In particular, as a striking illustration of these applications, it includes
the proof of the first known complexity upper bound for reachability in vector
addition systems and Petri nets.

Key words. Well-quasi-order, verification, infinite-state system, fast-growing
complexity, vector addition system, Petri net.

Complexité algorithmique des beaux pré-ordres

Résumé. Ce document est consacré à l’étude de la complexité algorithmique des
beaux pré-ordres, et se concentre particulièrement sur leurs applications en vérifi-
cation, où ils permettent de raisonner sur des systèmes dotés d’une infinité d’états,
car modélisant des variables à valeurs entières, un nombre de processus actifs
non borné dans un contexte concurrent, des horloges à valeurs réelles dans un
contexte temporisé, des piles d’appels de programmes récursifs, des nonces cryp-
tographiques, ou encore des canaux de communication.

Le document présente un cadre théorique pour l’étude de telles complexités,
qui inclut la définition de classes de complexité adaptées pour des problèmes de
complexité non élémentaire, et des techniques pour établir des bornes supérieures
ou inférieures de complexité, ainsi que des exemples pour lesquels ce cadre a pu
être appliqué avec succès. En particulier, un exemple frappant de telles applica-
tions est celui du problème d’accessibilité dans les systèmes d’addition de vecteurs
et les réseaux de Petri, pour lequel ce cadre fournit la première borne supérieure
connue.

Mots clefs. Beaux pré-ordres, vérification, système infini, complexité à crois-
sance rapide, système d’addition de vecteurs, réseau de Petri.

	Acknowledgements I acknowledge the institutional and financial support of ENS Paris-Saclay, CNRS, Inria, ANR, the Leverhulme Trust, the University of Warwick, and the University of Warsaw.
	Chapter 1. Introduction
	1.1. General Context
	1.1.1. Verification of Infinite-state Systems
	1.1.2. A Game Changer: Well-Structured Systems
	1.1.3. Tools and Practical Applications
	1.1.4. The Complexity Question

	1.2. Contributions
	1.2.1. Techniques for Upper Bounds
	1.2.2. Techniques for Lower Bounds
	1.2.3. Complexity Classes
	1.2.4. A Challenge: the Complexity of VASS Reachability
	1.2.5. Other Contributions

	Chapter 2. Well-Quasi-Orders & Applications
	2.1. Basic Definitions
	2.1.1. Well-Quasi-Orders
	2.1.2. Examples

	2.2. Application: Program Termination
	2.2.1. Ranking Functions
	2.2.2. Quasi-Ranking Functions

	2.3. Application: Well-Structured Transition Systems
	2.3.1. Formal Definition
	2.3.2. Example: Lossy Counter Machines
	2.3.3. Verifying WSTS

	Chapter 3. Length Function Theorems
	3.1. Controlling Bad Sequences
	3.1.1. Normed wqos
	3.1.2. Controlled Sequences
	3.1.3. Length Functions

	3.2. Subrecursive Hierarchies
	3.2.1. Fundamental Sequences and Predecessors
	3.2.2. Hardy and Cichoń Hierarchies

	3.3. Length Functions for Ordinals
	3.3.1. Residuals and a Descent Equation
	3.3.2. Upper Bounds

	3.4. Length Functions for Dickson's Lemma
	3.4.1. Polynomial Normed wqos
	3.4.2. Reflecting Normed wqos
	3.4.3. Maximal Order Types
	3.4.4. Upper Bounds

	3.5. Related Work & Perspectives
	3.5.1. Length Functions for Ordinals
	3.5.2. Length Functions for Well-Quasi-Orders
	3.5.3. Further Applications
	3.5.4. Perspectives

	Chapter 4. Fast-Growing Complexity
	4.1. Complexity Classes Beyond ELEMENTARY
	4.1.1. The Extended Grzegorczyk Hierarchy
	4.1.2. The Fast-Growing Complexity Hierarchy
	4.1.3. Example: LCM Coverability is in ACKERMANN

	4.2. Lower Bounds Through Hardy Computations
	4.2.1. Hardy-like Computations
	4.2.2. Weak Computation in Lossy Counter Machines
	4.2.3. Lower Bound

	4.3. Related Work & Perspectives
	4.3.1. Lower Bounds Through Counter Objects
	4.3.2. Provability in Theories of Arithmetic

	Chapter 5. Reachability in Vector Addition Systems
	5.1. Basic Definitions
	5.1.1. Vector Addition Systems with States
	5.1.2. Closely Related Models

	5.2. The Decomposition Algorithm
	5.2.1. Marked Witness Graph Sequences
	5.2.2. An Example of a KLMST Decomposition
	5.2.3. Termination

	5.3. Complexity Upper Bound
	5.3.1. An Ordinal Ranking Function
	5.3.2. Applying the Length Function Theorems

	5.4. Related Work & Perspectives
	5.4.1. Tightness
	5.4.2. Restrictions
	5.4.3. Extensions

	Chapter 6. Perspectives
	6.1. Complexity of VASS Reachability
	6.2. Parameterised Bounds
	6.3. Algorithmic Applications of Ideals
	6.3.1. Ideals
	6.3.2. A Dual Backward Coverability Algorithm
	6.3.3. Beyond Well-Quasi-Orders

	6.4. Reachability in VASS Extensions
	6.4.1. Branching VASS Reachability
	6.4.2. Ideal Decomposition of the Set of Executions

	Appendix A. Technical Appendix
	A.1. Ordinals
	A.1.1. Ordinals Terms
	A.1.2. Maximal Order Types

	A.2. Subrecursive Functions
	A.2.1. Monotonicity Properties

	References
	List of Publications

