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giaires. Remy, Quentin, Handriyanti et Florent ont tous contribué à cette thèse en réalisant des
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Résumé étendu

1. Introduction

Le dernier rapport du GIEC [IPCC, 2013] dresse un bilan alarmant du changement climatique et de

ses conséquences non seulement sur le système hydro-climatique mais aussi, plus généralement, sur

l’ensemble des systèmes naturels ou socioéconomiques que comporte notre planète et qui sont de près

ou de loin liés au climat. Face à ce constat, la communauté internationale s’est mobilisée, notam-

ment lors de la dernière conférence des parties à Paris (COP21) [United-Nations, 2015]. L’objectif

principal fixé par l’accord engage les pays signataires à réduire leurs émissions de gaz à effet de

serre afin de limiter la hausse de la température à 1.5°C par rapport aux niveaux préindustriels. Un

des bras de levier possible pour cette décarbonisation profonde de notre société consiste à accélérer

“l’électrification” des systèmes énergétiques utilisant jusqu’ici des sources d’énergie fossiles. Cepen-

dant, il est également nécessaire de transformer nos modes de production d’électricité et d’augmenter

la part d’énergie renouvelable.

Le système terrestre offre un large panel de sources d’énergie propres et inépuisables. On peut

citer, par exemple, la géothermie et les énergies marines. D’autres contributions proviennent de

l’exploitation du système hydro-climatique et rassemblent les énergies, hydro-électrique, photovoltäıque

et éolienne. Ces trois sources, ci-après rassemblées sous l’acronyme (CRE - Climate Related Energy)

sont déjà largement exploitées en Europe grâce aux ressources importantes mises en évidences par de

nombreuses études [Von Bremen, 2010; Vautard et al., 2014]. Cependant, l’intégration directe de ces

énergies dans le système de production électrique est entravée par leurs fortes fluctuations résultant

des variations hydrométéorologiques à différentes échelles spatio-temporelles. Il devient alors difficile

de répondre à la demande énergétique, par ailleurs aussi soumise à de fortes variations liées, pour

certaines, aux fluctuations météorologiques (chauffage et climatisation). Plus la part de CRE est im-

portante, plus ce problème d’inadéquation temporelle entre production et demande devient critique

et difficile à gérer sans l’intervention de systèmes de stockage ou de sources d’énergie d’appoint.

Cette thèse a pour objectif de contribuer à l’évaluation de la faisabilité hydrométéorologique d’un

système de production électrique uniquement basé sur les CRE. En particulier, les problèmes multi-
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échelles d’inadéquation entre production et demande liés aux conditions hydrométéorologiques sont

étudiés en Europe. Ces travaux ont contribué au projet Européen COMPLEX qui regroupe commu-

nauté scientifique et parties prenantes et vise à répondre aux nombreuses questions soulevées par la

transition de l’Europe vers une société faiblement émettrice en gaz à effet de serre.

2. Cadre d’étude, hypothèses et résultats en climat passé récent

Cette étude est menée sur 12 régions européennes réparties de manière homogène sur le continent afin

de capter les variations spatiales des conditions hydro climatiques. Nous nous plaçons dans un cadre

volontairement caricatural et anhistorique, reposant sur différentes hypothèses dont les principales

sont les suivantes :

• Chaque région est autonome énergétiquement et “isolée” du reste des régions européennes. La

demande énergique locale est entièrement satisfaite par la production régionale.

• L’ensemble de la production est renouvelable et basée de surcroit sur les seules énergies pilotées

par la météorologie (énergies hydro-électrique, photovoltäıque et éolienne).

• Afin de se libérer des questions de ressource et de se focaliser sur les fluctuations liées aux con-

ditions hydro-climatiques, la production énergétique moyenne est supposée égale à la demande

moyenne sur l’ensemble de la période d’étude.

Pour nos analyses, nous avons mis en place une châıne de modélisation complète permettant

la conversion de données météorologiques en données de production et demande électrique. Cette

chaine a été appliquée sur l’ensemble des régions d’étude. Les données météorologiques utilisées en

entrée de la chaine sont des données issues d’observations [Haylock et al., 2008 ; Müller et al., 2015]

ou de pseudo observations [Vautard et al., 2014] extraites au pas de temps journalier entre 1983

et 2012 pour les 12 régions européennes. Un modèle hydrologique conceptuel proposé par [Schaefli

et al., 2005] est utilisé pour générer 30 ans de séries journalières de débit régional. La conversion des

variables hydrométéorologiques en production électrique journalière est faite via l’utilisation de mod-

èles conceptuels de production basés sur des équipements génériques (ferme solaire, ferme éolienne,

centrale hydroélectrique au fil de l’eau). Les séries de demande énergétique sont produites à l’aide

d’un modèle simple dépendant uniquement de la température de l’air et prenant en compte l’effet de

l’utilisation de système de chauffage et de climatisation.

L’analyse des séries régionales de production et de demande met en avant les fortes différences d’une

source d’énergie à l’autre et entre régions européennes. La production solaire fluctue majoritairement

à l’échelle saisonnière en suivant les modifications de la durée du jour. La production éolienne varie

à plus haute fréquence et sa saisonnalité est moins marquée, en particulier dans les terres. Les

caractéristiques des séries d’hydroélectricité sont fortement dépendantes de la région. Les zones de

plaine connaissent un maximum de production hivernal alors que les régions montagneuses voient la

production atteindre un pic en début d’été grâce à fonte du stock de neige. Enfin, les fluctuations de

demande énergétique simulée sont limitées par rapport à celles des séries de production.

L’analyse climatologique et mono-variée de chacune des sources d’énergie prise séparément donne

une vision imparfaite de leur facilité d’intégration car elle ne prend pas en compte les éventuelles
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covariabilités entre production et demande. L’étude a donc été complétée grâce à l’évaluation du taux

de pénétration (PE), introduit par [François et al., 2016]. PE est un critère synthétique comparant

production et demande énergétique au pas de temps journalier et intégrant cet écart sur toute la

période d’étude (ici 1983-2012). Pour un système idéal où la production est en moyenne égale à la

demande (en moyenne sur 30 ans dans le cas présent), PE varie entre 0 et 100% ; 100% représentant

l’adéquation temporelle parfaite entre production et demande.

Les résultats montrent la difficulté qu’ont les CREs à répondre seules à l’ensemble de la demande.

Pour l’éolien, les taux de PE sont situés autour de 70% avec une forte homogénéité spatiale partout

en Europe. Les résultats sur le photovoltäıque et l’hydroélectricité sont plus variables d’une région

à l’autre mais des taux de PE très faibles sont parfois observés (eg. Solaire - Scandinavie - 55% ;

Hydro - Méditerranée - 60%). Le foisonnement des sources est un facteur possible pour améliorer

l’intégration des CREs. Dans l’étude de François et al., 2016, nous montrons comment un mix

énergétique associant l’hydroélectricité, le photovoltäıque et l’éolienne permet d’augmenter le taux

de pénétration régional, jusqu’à un mix optimal atteignant 80 à 90% suivant les régions.

En complément à cette analyse, nous regardons aussi les périodes, particulièrement probléma-

tiques, qui souffrent simultanément d’une faible production et d’une forte demande énergétique. Par

analogie avec les sécheresses hydrologiques, nous définissons les sécheresses énergétiques comme des

périodes pour lesquelles le taux journalier de demande satisfaite est en dessous d’un certain seuil.

Nous étudions ensuite les caractéristiques de ces périodes de sécheresse en terme de fréquence an-

nuelle et de durée moyenne pour chacune des régions d’études, des sources d’énergie et pour le mix

optimal proposé par [François et al., 2016]. Les résultats associés sont présentés sur la Fig.1 pour

3 des 12 régions tests et pour un des 4 seuils des sécheresses retenus, ici 50%. Les caractéristiques

des sécheresses sont très variables d’une source d’énergie à l’autre. Les sécheresses éoliennes sont

particulièrement fréquentes mais de relativement courte durée (2 à 5j en moyenne). En revanche,

il y a peu de sécheresse d’hydroélectricité mais ces évènements peuvent être particulièrement longs,

jusqu’à 100j en moyenne (Scandinavie - hiver ; Méditerranée - été). Les sécheresses photovoltäıques

ont, quant à elles, des caractéristiques intermédiaires. Une fois encore, on peut noter la forte diminu-

tion du nombre de jours en condition de sécheresse énergétique lorsque les 3 sources d’énergie sont

combinées, prouvant qu’il est possible d’arriver à des systèmes de production d’électricité plus fiables

grâce au foisonnement des sources.
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Figure .1 – Caractéristiques des sécheresses énergétiques. Nombre annuel moyen d’épisodes de sécher-
esse énergétique en fonction de leur durée moyenne. Les résultats sont présentés pour le seuil
PE<50% et pour l’hydro-électricité (bleu), le photovoltäıque (rouge), l’éolien (orange) et le mix
région optimal (vert). L’échelle de couleur donne la proportion totale de jours en condition de
sécheresse.
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Nous avons enfin évalué l’impact d’autres facteurs d’intégration (surdimensionnement, échanges

d’énergie inter-régions, systèmes de stockage) sur les taux de pénétration et les sécheresses énergé-

tiques. Dans la majorité des cas, l’utilisation de ces facteurs associée au foisonnement des sources

mène à un système de production beaucoup plus fiable (PE souvent proche de 100%, rares et courtes

sécheresses énergétiques).

3. Développement d’une méthode de descente d’échelle multivariée

Les résultats présentés précédemment s’appuient sur les 30 années du climat passé récent. Le

climat est cependant connu pour fluctuer à des échelles temporelles plus grandes du pluriannuel au

multi-décennal. De plus, dans un contexte de changement climatique, une modification des diverses

variables météorologiques qui pilotent les CRE est probable. Afin d’étendre l’étude précédente à

l’ensemble des 20ème et 21ème siècles, nous avons développé une méthode de descente d’échelle mul-

tivariée permettant de régionaliser l’information météorologique basse résolution issue de réanalyses

climatiques et de modèles de climat. En effet, les données de ces simulations, ne peuvent pas être

utilisées pour les études d’impact telles que celle réalisée ici : les données sont souvent biaisées et

leur résolution spatiale est par ailleurs souvent comprise entre 1 et 3° de latitude, ce qui est n’est pas

suffisant pour la génération de séries régionales de production et de demande énergétique pertinentes

pour notre étude.

La méthode de descente d’échelle que nous avons mise en place pour cette étude est basée sur

les analogues atmosphériques. Cette méthode statistique s’appuie sur les liens physiques existants

entre les situations météorologiques synoptiques et les variables météo locales [Lorenz, 1969]. Elle

a été largement explorée dans le passé pour la génération de séries locales de précipitation ou de

température [Obled et al., 2002; Chardon et al., 2014]. Bien que facile d’implémentation, la méthode

des analogues nécessite un effort important pour sa paramétrisation, notamment pour le choix des

variables météo de grande échelle (prédicteurs) et pour celui des domaines spatiaux utilisés pour

l’identification des jours analogues. De plus, le cadre spécifique de notre étude introduit d’autres

contraintes en termes de cohérence physique entre les variables météo locales des scenarios régionaux

générés.

La méthode des analogues que nous avons développée permet la génération de scenarios météorolo-

giques multivariés sur nos 12 régions d’étude [Raynaud et al., 2016]. Nous comparons deux implé-

mentations possibles de la méthode:

• “Analogues Communs”: Un seul jeu de prédicteurs - optimisé pour chaque région, est retenu

pour toutes les variables. Dans cette configuration, les dates analogues retenue pour un jour

de prédiction donné sont les mêmes pour toutes les variables à prédire.

• “Analogues spécifiques”: Chaque variable météorologique locale dispose de ses propres pré-

dicteurs optimaux, optimisés de nouveau pour chaque région indépendamment.

Ces deux approches ont été comparées sur la période 1983-2012 pour laquelle l’information météorolo-

gique de grande échelle (réanalyses ERA-Interim) et les observations locales sont disponibles simul-

tanément. La cohérence physique entre variables est garantie par la méthode “Analogues Communs”
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mais les scénarios météo locaux sont sous-optimaux. A l’inverse, de meilleures performances mono-

variées sont obtenues avec la méthode “Analogues Spécifiques” pour la prédiction de chaque variable

locale. Les scénarios multivariés résultent cependant de dates analogues a priori différentes d’un

prédictant à l’autre conduisant à une cohérence physique inter-variable dégradée.

L’exploration des nombreuses combinaisons de prédicteurs/domaines d’analogie pour chacune des

approches a permis d’identifier une configuration intermédiaire garantissant d’une part de bonnes

performances de prédiction pour chacune des variables locales et d’autre part des corrélations inter-

variables pertinentes. Le modèle final, baptisé SCAMP (Sequential Constructive atmospheric Ana-

logue for Multivariate weather Prediction) et présenté au Tab.1, combine l’approche “Analogues

Communs” pour 3 variables (température, précipitation et rayonnement) et une approche “Ana-

logues Spécifiques” pour le vent. Le premier niveau d’analogie est toujours basé sur les formes et

gradients de géopotentiel à divers niveaux de référence. Une second prédicteur (humidité près du

sol) vient ensuite effectuer une sous-sélection d’analogues pour les températures, les précipitations et

le rayonnement. Enfin une correction de la température locale basée sur la température de grande

échelle est faite. L’approche est robuste puisque cette paramétrisation optimale est identique pour

toutes nos régions d’étude ; seule la position/forme du domaine d’analogie varie d’une région à l’autre.

Table .1 – Caractéristiques de la descente d’échelle analogue multivarié SCAMP. HGT - Géopoten-
tiel, T - Température, Td - Température du point de rosée.

Predictand Méthode analogue Predicteur 1 Predicteur 2

Temperature Commune HGT500 & HGT1000 T-Td (2m) & T850 (correction)

Vent Spécifique HGT1000 -

Precipitation Commune 0HGT500 & HGT1000 T-Td (2m)

Rayonnement Commune HGT500 & HGT1000 T-Td (2m)

4. Etude des co-fluctuations basse fréquence des CRE en climat passé

L’application de SCAMP aux réanalyses climatiques ERA20C proposées par l’ECMWF [Poli et al.,

2013] a permis de générer 111 années (1900-2010) de production et demande énergétique sur nos

12 régions test. L’étude des séries brutes permet tout d’abord d’identifier des tendances de diminu-

tion de la demande (Europe entière) et de la production hydro-électrique (régions méditerranéennes).

L’analyse des fluctuations basse fréquence autour de ces tendances ou du signal moyen permet de met-

tre en évidence les fortes différences qui existent d’une source d’énergie à l’autre. Les énergies solaire

et éolienne ne fluctuent de modérément à l’échelle multi-décennale. En revanche l’hydroélectricité

subit de fortes variations qui peuvent atteindre 15% d’une décennie à l’autre. Ces caractéristiques des

séries de production se répercutent directement sur les fluctuations basse fréquence des taux de péné-

tration et des caractéristiques des sécheresses énergétiques. Pour toutes les régions, l’hydroélectricité

est la source d’énergie la moins fiable à l’échelle multi-décennales avec des taux de PE subissant des

variations pouvant atteindre 15% (Fig.2) et des durées moyennes de sécheresse pouvant doubler d’une

décennie à l’autre.

L’analyse des corrélations entre l’Oscillation Nord Atlantique (NAO - [Trigo et al., 2002]), l’Oscilla-

tion Atlantique Multi-décennale (AMO - [Enfield et al., 2001]) et les séries annuelles de pénétration a

permis de mettre en évidence les liens existants entre ces indices climatiques et les CRE. Les relations
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Figure .2 – Variations multi-décénales du taux de pénération (PE - %). Chroniques sur 10 ans glissants
du taux de PE associé à l’hydro-électricité (bleu), le photovoltäıque (rouge), l’éolien (orange) et le
mix région optimal (vert) entre 1900 et 2010. Les résultats sont présentés pour trois régions: la
Norvège, l’Allemagne et l’Andalousie.

les plus fortes sont sans conteste celles liant la NAO aux différents taux de PE. Les phases positives de

NAO sont associées à des anomalies positives de production éolienne et hydroélectrique, des anoma-

lies négatives de demande et de production solaire en Europe du Nord. L’inverse est observé pour

les régions méditerranéennes.

5. Projections futures

La dernière partie de cette thèse présente les résultats obtenus en climat future. SCAMP a été

appliqué à une sélection de modèles climatiques issus du CMIP5 pour deux scénarios d’émissions

(RCP45 et RCP85). Pour chacun de ces modèles, des séries régionales météorologiques ont été pro-

duites et analysées entre 1950 et 2100. L’analyse des scenarios générés met en avant des tendances

similaires pour tous les GCMs et toutes les régions d’études : Une augmentation de la température

et des radiations solaires et une diminution du vent et des précipitations. Ces tendances sont plus

marquées pour le scenario RCP8.5. Ces résultats ont été confrontés aux nombreuses études déjà

existantes sur l’Europe, en particulier Jacob et al., 2014.

Figure .3 – Comparaison des scénarios futurs de précipitation entre EURO-CORDEX et SCAMP.
Changements de precipitation annuelle simulés (%) par EURO-CORDEX (carte) entre 1971-2000
et 2071-2100 pour le RCP85 (Extrait et adapté de Jacob et al., 2014). Changements simulés avec
SCAMP et un des modèles de climat selectionnés, ici HadGEM2-CC (pastilles).
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La comparaison a permis de mettre en évidence la probable non-pertinence de nos scenarios de

précipitations, en particulier en Scandinavie, où une forte hausse des précipitations moyennes est

attendue dans les décennies à venir (Fig.3).

Nous terminons notre étude par une évaluation de SCAMP en climat futur afin d’identifier les

possibles raisons menant des scenarios de précipitation erronés. Pour cela, les différentes hypothèses

utilisées dans la méthode analogue sont testées dans un cadre dit “modèle-parfait” où des modèles

de climat régionaux issus des dernières simulations EURO-CORDEX fournissent à la fois les pré-

dicteurs et chroniques de précipitations régionales. Il en ressort une probable modification du lien

entre prédicteur de grande échelle et précipitations locales pour des conditions météorologiques forte-

ment modifiées par le changement climatique. Ces résultats laissent la porte ouverte à de possibles

adaptations de la méthode analogue (ex : autres prédicteurs) ou à l’utilisation d’autres méthodes de

descente d’échelle afin de poursuivre l’étude des co-fluctations des CREs en climat futur.

xiii





Contents

Remerciements v
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ChapterI
Toward a Green Economy: The

contribution of renewables

1. From Climate Change awareness to sustainability

1.1. Fifth IPCC report: Last assessments of the current global

warming

Since its creation in 1988, the Intergovernmental Panel on Climate Change 1 (IPCC) has promoted

and led studies on Global Warming, its consequences on the climate system and on possible mitigation

strategies to curb it. A lot of effort is put into attributing the current changes in temperature to

human activities [Stocker et al., 2009; Christidis et al., 2010; Ring et al., 2012; Imbers et al., 2013].

The main difficulty comes from the necessity to separate the climate change contribution to the

observed modifications of climate from the natural variability of this complex system [Fogt et al.,

2009; Swanson et al., 2009]. The fifth IPCC report [Bindoff et al., 2013], sums up the findings from

these numerous studies and comes to the following conclusions about the recent changes in mean

surface temperature:

• There is a high probability (90-100%) that the increase in green house gas concentration due

to anthropogenic activities is responsible for more than half of the observed increase in global

mean surface temperature.

• The natural variability of the climate system cannot account for the observed increase in tem-

perature (probability > 99%).

1https://www.ipcc.ch/index.htm
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For other components of the climate system, the impact of Global Warming is not certain but

still very likely. It is the case for the cryosphere for which both glaciers and Artic sea ice diminution

are probably due to Climate Change [Stroeve et al., 2012; Marzeion et al., 2014] and contributed

to the global mean sea level rise [Church et al., 2013]. The important changes at a global scale of

both tropospheric and oceanic temperatures impact the entire atmospheric system and likely modify

the atmospheric circulation [Graff and LaCasce, 2012]. As a consequence, local climate conditions

are also experiencing fluctuating trends and changes in characteristics. Precipitation, and also the

whole water cycle, are examples of local conditions becoming impacted by global warming: Despite

the large spatial and temporal variability of these hydro-meteorological parameters, recent findings

indicate that part of their modifications can also be attributed to climate change [Tapiador, 2010;

Trenberth, 2011; Scheff and Frierson, 2012].

Another concern is related to extreme weather events which are expected to increase in both

occurrence and intensity due to global warming. For temperature extremes, there is a high probability

(>90%) that climate change is responsible for their increasing number and magnitude [Rahmstorf

and Coumou, 2011; Christidis et al., 2011]. More uncertainty exists for extreme precipitation events.

However, an increasing number of studies have concluded that anthropogenic activities have been a

major contributing factor to the observed changes [Min et al., 2011; Westra et al., 2013].

1.2. International agreements on Climate Change

Over the past decade, the growing body of evidence that Global Warming is caused by human

activities has led to a consensus among scientists and politicians. The climate sceptics, calling climate

change a hoax because of a single and short cold event, are still getting to much attention but are

becoming more marginal.

The first major step toward a sustainable society was made in 1997 with the Kyoto Protocol1. In

the first phase of the agreement, 37 industrialized countries decided to reduce their greenhouse gas

emissions by 5% compared to the level of 1990. Thereafter, some of them, including the European

Union, committed to increase the reduction target to 18%. However, since then, the following

agreements have failed to convince the main emitters of greenhouse gas (USA, China...) to participate

in a transition toward a global green economy.

The year 2015 marks a major milestone for a global cooperation to counter climate change and

its future negative impacts on our society. In December 2015, the 21st session of the Conference

of the Parties2 (COP21) resulted in 181 signatories to the Paris agreement. It details higher level

requirements to the reduction of greenhouse gas emissions in order to mitigate the impacts of climate

change. [United-Nations, 2015]:

• Limit the global increase in mean temperature to 1.5°C above pre-industrial levels.

• Adapting their commitments every 5 years to ensure that the 1.5°C target will be achieved.

• Moving toward a balance between anthropogenic emissions by sources and removals by sinks

of greenhouse gases by 2050.

1http://unfccc.int/kyoto protocol/items/2830.php
2http://www.cop21.gouv.fr/
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• Limiting the risks of loss and damages related Climate Change (extreme events, sea level rise)

and their impacts on our society.

• Providing financial support to developing countries which are more vulnerable to Climate

Change and cannot meet the 1.5°C goal by themselves.

A decarbonisation of the economy can be done efficiently by taking various measures and actions.

Improving the energy efficiency can contribute to a global reduction of the energy load. European

countries recently agreed on an energy efficiently target of 27% or greater by 2030 1. The electrification

of fossil based systems such as means of transport (e.g. electric cars) could also significantly lower

green house gas emissions. However, it implies that the electricity production would no longer rely

on fossil fuels (petroleum, gaz or coal). Nowadays, the energy sector contributes to 35% of the total

anthropogenic emissions [Change, 2014]. Thus, the development of renewables is the keystone to

curb the part of green house gas emissions related to electricity generation.

The range of renewable energy sources that could be developed to reduce GHG emissions is wide.

Some of them take advantage of the large amount of available marine energy (tidal and wave power)

[Shields, Payne, et al., 2014]. Geothermal energy is also widely used in countries where it is plentiful

and easily accessible (e.g. 25% of the total electricity production in Iceland2). The use of biomass for

electric power generation is now contemplated and developped in several country [Szarka et al., 2013].

Another family of renewables makes use of hydro-meteorological variables which can be converted into

electricity, gathering solar power, wind power and hydro power. The increasing number of renewable

energy power plants developed in the past 20 years has significantly reduced the cost of these energy

sources and strengthened their competitiveness [Arent et al., 2011]. However, the current level of

equipment in the world is not sufficient to meet the objectives of the 2015 Paris agreement [Guivarch

and Hallegatte, 2011] and some further efforts will be required.

The majority of renewables presented previously (marine, solar, run-of-the-river hydro and wind

power) are subject to strong temporal variations, they are often referred to as variable renewable

energy (VRE). Conversely, biomass and geothermal power are controllable sources and can be har-

nessed when needed. In the following study, we will solely consider run-of-the-river (RoR) hydro,

wind and solar power. To avoid any misunderstanding and exclude non-weather-driven intermittent

sources, these three energy sources will be refereed to as Climate-Related Energy (CRE).

2. Climate-Related Energy

2.1. CRE resources

The quantity of renewable energy at global scale is considerable ; potentially able to supply

several times the current global demand [Hoogwijk and Graus, 2008]. CRE resource has been widely

evaluated from global to regional scales proving its abundance [De Vries et al., 2007; Adams and

Keith, 2013]. Numerous studies aimed to identify hot spots in Europe for solar and wind power

(Fig.I.1), with results supporting the development of new power plants [Von Bremen, 2010; Vautard

1https://ec.europa.eu/energy/en/topics/energy-efficiency
2http://www.nea.is/geothermal/
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et al., 2014; Jerez et al., 2015]. They demonstrated that numerous possibilities exist to diversify and

increase the green energy share in the European electricity production.

(a) (b)

Figure I.1 – Ressources in wind speed and solar radiation in Europe. Average wind speed (m/s)
in Europe (a) and annual resource of global radiation (kWh/m2/year) that can be used by PV
converters (b) from 2000 to 2007. Extracted and adapted from Von Bremen, 2010.

The numerous mountain ranges and the wide-spread European river network has also encouraged

the development hydro power plants and storage systems. Besides the conventional hydro power

associated to large water reservoirs, Run-of-the-River and small hydro power plants will also play

an important role in the next decades by continuing to increase the share of energy from renewable

sources [ESHA, 2012; Lazzaro and Botter, 2015; Gallagher et al., 2015; François et al., 2016].

Unfortunately, quantifying the current resources in renewable energy is not sufficient to assess

to the extent to which the different sources can be integrated in the global power supply system.

Being driven by local meteorological conditions, CRE varies greatly in time and space. It results in a

very uneven electricity production which is, on average, substantially below the maximum potential

output. The temporal inconsistency of CRE generation and gap between supply and demand becomes

a major obstacle to the direct use of these renewables. This issue is particularly important for power

supply systems which have a large share of CRE sources. A deliberate over-sizing of power plants

does not suffice for getting rid of this imbalance when a single CRE source is harnessed [François

et al., 2016].

2.2. Variability of CRE

2.2.1. Intermittence

All CRE sources fluctuate at various time scales from hourly to multidecadal periods. Wind

power is mainly fluctuating at a weekly time scale resulting from large atmospheric patterns and

the alternation/succession of low and high pressure systems. However, it is also characterised by a

strong diurnal cycle (diurnal sea/land breeze) and a large variability due to turbulence [Albadi and

El-Saadany, 2010; Graabak and Korp̊as, 2016]. Even larger climate oscillations, such as the North

Atlantic Oscillation, impact wind speed and the associated power generation [Ely et al., 2013]. Fig.I.2

(extracted and adapted from Graabak and Korp̊as, 2016) presents, as an illustration, the different

time scales of wind power variations. Using hourly wind reanalysis data from 1950 to 2013, this figure
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shows the mean annual cycle of capacity factor1 in Scotland (blue curve) together with the mean

global production. It also presents the maximum and minimum hourly/annual values. The strong

intermittence of wind at small time scales results in important variations of hourly wind power (from

0 to 93% capacity factors). Seasonal and inter-annual variations also greatly contribute to the total

fluctuations of wind power (capacity factor from 10 to 50% and from 22 to 35% respectively). The

final mean wind power production represents only, 27% of the potential electricity production with

the level of equipment in Scotland.

Figure I.2 – Multi-scale time variation of wind power. Mean annual cycle of capacity factor in Scotland
(blue curve), global average value (blue dash line), maximum (red) and minimum (black) hourly
(dash lines) and annual (solid lines) values. Based on hourly wind reanalysis data from 1950 to
2013 derived from the NCEP reanalysis data. Extracted and adapted from Graabak and Korp̊as,
2016.

Solar power is also known to fluctuate over a variety of time periods from minutes (variations

in cloud cover) to seasons and decades (variations in earth inclination and solar activity). Large

weather patterns are also a dominant driver, imposing several consecutive sunny or overcast days.

Consequently the intermittence of this energy source is large and results from a combination of

contributions from various time scales [Graabak and Korp̊as, 2016; Von Bremen, 2010].

River discharge and the associated hydro power mostly vary on longer periods. For most rivers, the

seasonality of river flow is strong and classically determines the dimensioning and the management

of reservoirs [Basso and Botter, 2012]. Multi-annual and decadal scales also play a key role to low

frequency fluctuations of hydro power [Uvo and Berndtsson, 2002].

Considering that part of the energy load is also fluctuating according to both human activities

and weather conditions [Isaac and Van Vuuren, 2009], the discordance between high energy load and

peak power production could lead to unsatisfied energy demand.

1ratio of actual power generation output of a power plant to its maximum potential output
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2.2.2. Extreme

Extreme events are also a threat to electricity production. During strong winter storms or flood

events, wind and hydro power plants have to be shut down to preserve their integrity. These events

should become more numerous and stronger in the next decades [Leckebusch et al., 2008; Makkonen

et al., 2007]. Similarly, when river discharge is lower than a given threshold, no hydro power can be

generated to preserve the integrity of the riverbed and its ecosystem. Extreme temperature events

also greatly impact the energy demand. Long and intense cold waves result in several days of high

energy load. These periods can also be associated to low solar irradiance (winter) and low wind speed

making it difficult to meet the energy demand.

2.2.3. Low frequency fluctuations

In addition to extreme events, climate also fluctuates at multidecadal time scales, impacting all

hydro-meterological drivers of CRE sources. For instance, multidecadal variations on river dicharge

and their impacts on hydro power have been largely studied in various regions worldwide [Enfield

et al., 2001; Nalley et al., 2016]. CRE sources and their associated power generation also presents

low-frequency fluctuations. Few studies assessed the long-period variability of renewables, among

which Jourdier, 2015 for wind power in France. An accurate estimation of the resources in renewable

energy cannot be made without taking into account these fluctuations which shape the mean potential

production over several consecutive years.

2.2.4. Effect of Climate Change on CRE

In sec.1.1 we discussed some of the expected consequences of Global Warming on climate. These

modifications will, without doubt, impact the green energy sources and their characteristics. Over

the past decade, the number of studies attempting to estimate the effects of Climate Change on wind

and solar resources is continuously increasing [Fant et al., 2016; Segal et al., 2001]. In Europe, the

first outcomes of future wind power assessments indicate some modifications in both mean annual

resources and inter-annual variability [Tobin et al., 2015; Reyers et al., 2016]. Similarly, solar power

resource should undergo some changes in Europe with more potential for electricity production in

the south-eastern part of the continent [Bartók, 2010].

There is more concern about some possible variability of the hydro power resource. For some

European countries, this energy source represents a large part of the electricity production (17% for

France, and almost 99% for Norway1). The join effects of warmer temperatures and modifications

in precipitation could strongly impact river discharge. Many studies highlighted the strong future

decrease in hydro power resource in Southern Europe and for the Alpine power plants [Lehner et al.,

2005; Schaefli et al., 2007]. The diminution of snow-pack in Scandinavia is also expected to modify

the mean water resource and its seasonality.

The modifications of hydro-meteorological variables in a climate change context should not only

impact the mean resources in renewable energy but also its spatio-temporal variations. Moreover,

the co-variations between energy sources could also undergo important changes and lead to less or,

in some instances, more synergy.

1http://www.statkraft.com/energy-sources/hydropower/
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3. Integrating factors of CRE sources

The intermittence and variability of the different CRE sources is a major hindrance to their rapid

and efficient contribution to the global power supply system. A number of different integration factors

can be used to tackle these issues.

3.1. Storage

Storage systems have proved their ability to balance the temporal variability of renewables. Reser-

voirs have been developed for decades to provide hydro power when needed and not suffer from the

strong seasonality of river discharge. These reservoirs can also be used to store the overproduction

from other CRE sources thanks to pumped storage systems [Rehman et al., 2015]. The recent techno-

logical breakthroughs on batteries make the storage of intermittent energy sources conceivable [Chen

et al., 2009; Beaudin et al., 2010; Luo et al., 2015]. Several past studies assessed the support of

solar and wind power storage to meet the electricity demand. They all concluded that the develop-

ment of additional storage capacities would efficiently balance the strong variability of these sources

[Rasmussen et al., 2012; Steinke et al., 2013; Weitemeyer et al., 2015].

3.2. Multiple contributions

3.2.1. Energy mix

Betting on multiple energy types to tackle the high variability of single sources has gained currency

over the past few years. It consists in taking advantage of the possible complementarity between

wind, solar and hydro power. Many regional initiatives in Northern America aimed to combine

several sources (wind-hydro, wind-solar) and proved that it could significantly reduce the risk of

power shortage [Denault et al., 2009] and help to meet a large part of the future energy demand

[Budischak et al., 2013]. Energy mixes involving even more sources (biomass, geothermal) lead to

more dependable systems and reduce their reliance on fossil fuels as backup energy [Mason et al.,

2010]. In Europe, recent attempts to combine solar and wind power [Von Bremen, 2010] demonstrated

that an optimal mix can be found to minimize the variance of imbalances between production and

energy load. However, the optimal mix depends on the time scale of interest. Furthermore, François

et al., 2016 showed that even higher energy demand can be met by including hydro power in the

energy mix (increase ranging from 1 to 8% depending on the region considered).

3.2.2. Spatial integration

We previously discussed the disparities in energy resources that exist from one region to another.

This variability can be turned into an advantage by performing a spatial integration which consists of

gathering electricity production and energy load from different regions. Thanks to this method, part

of the local variability of CRE sources can be balanced. It gets more and more efficient with wider in-

tegrations which gather contributions from various regions which have different hydro-meteorological

conditions.

9



Chapter I. Toward a Green Economy: The contribution of renewables

For instance, several European studies analysed the currently urealistic, but still instructive, case

known as the ”European copper plate” for which power can be shared at a European scale without

losses due to electricity transmission. Steinke et al., 2013 demonstrated that the spatial integration of

an energy supply based only on a mix of solar and wind power could increase the amount of satisfied

energy demand from 40 to 80%. Von Bremen, 2010 came to a similar conclusion with an increase by

50% of the grid power generation - energy load adequacy. The so called ”super-grid” has already been

widely studied [Bogdanov and Breyer, 2016; Xydis, 2013]. It proved that taking advantage of the

complementarity between regions is an efficient tool for the integration of renewables in the energy

supply system.

3.3. Some other options

The concept of ”smart-grid” has been recently introduced and consists in managing the energy

demand and adjusting it to the electricity production. Using a two way exchange of electricity and

information between utilities and consumers [Fan et al., 2013], it contributes to making the power

grid more reliable and efficient. Indeed, rescheduling the functioning of some non-critical household

electrical goods for instance, can significantly reduce the peak demand. The information provided to

costumers also helps them to manage their electricity bill and thus to lower their contribution to the

total energy load [Goulden et al., 2014].

Another option to meet a larger proportion of energy demand consists in deliberately oversizing

some power plants. Rasmussen et al., 2012 proved that an average wind and solar power production

slightly higher than the average energy load (from 1 to 3%) leads to a conceivable 100% renewable

European energy system when combined with some storage and a hydro power backup. Despite the

financial cost that such a method implies, it is an efficient tool to balance moderate lack of wind or

solar power due to slight wind or to the limited day length in winter.

4. Research objectives

4.1. The COMPLEX project

This PhD thesis contributes to the FP7 COMPLEX1 project. This collaboration of 17 European

partners aims to answer some key questions about the European transition to a low carbon society.

It involves both scientific and stakeholder communities to tackle the various physical, technical and

socio-economic issues related to this transition.

The main objective of this thesis is to complement previous studies on CRE sources in Europe.

We will focus on climate variability and provide some further assessments of its impacts on the ease of

integration of CRE sources. The adequacy between energy production and load being the keystone of

an efficient integration of renewables, this work will not only account for the variability of each CREs

sources taken independently but also on the co-variations between them and the energy demand.

1http://owsgip.itc.utwente.nl/projects/complex/
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4.2. Outline and goals

Based on the numerous studies described previously and on their associated outcomes, this work

aims to address some issues related to the integration of renewables in Europe:

⇒Variability and complementarity of renewables

In the first part of this thesis we will assess the feasibility, in terms of hydro-meteorological

conditions, of a 100% renewable energy supply in Europe based on CRE sources (solar, wind and

run-of-the-river hydro power). To delve deeper into this issue, we will develop and use a simple

but complete simulation chain named CRE-Mix, which converts meteorological observations into

proportions of satisfied energy demand. It involves an hydrological model and conversion models of

weather/hydro data into electricity production and energy load. For a selection of European regions,

we will evaluate the ability of each CRE source to meet the energy demand. We will also focus on

the assessment of the duration and frequency of problematic sequences of days for which this energy

demand remains unsatisfied. CRE-Mix also makes assessing the effects of some integration factors

possible (Storage, energy mix, over-sizing and spatial integration).

⇒ Low-frequency fluctuations of CRE sources

In Part III, we will describe in detail the downscaling method, hereafter referred to as SCAMP

(Sequential Constructive Atmospheric Analogues for Multivariate weather Predictions), that has been

developed and evaluated to generate physically consistent multi-variate and regional weather series.

SCAMP was then used in Part IV to downscale the recently released climate reanalysis of the

20th century and generate long regional series of CRE sources hydro-meteorological drivers. After

converting them into energy production series, the multidecadal variability of renewables and its

dependence on climate fluctuations is assessed.

⇒ Future trends and modifications of CRE sources in a Climate Change context

The last part of this work aims to assess the possible modifications of the variability of CRE

sources and of their adequacy with the energy demand. Using SCAMP and a set of climate models

issued from the fifth phase of the Coupled Model Inter-comparison Project1 (CMIP5), regional series

of CRE hydro-meteorological drivers will be generated for the whole 21th century. Their trends and

changes due to Global Warming will be analysed and compared to the results of similar studies. The

outcome of this comparison highlights the difficulties that SCAMP has in simulating relevant future

series of precipitation. In the last chapter we attempt to identify some possible reasons for this failure

using SCAMP in a perfect-model approach and Regional Climate Models (RCM) simulations.

1http://cmip-pcmdi.llnl.gov/
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ChapterII
Hydroclimatic and energy regimes

This study relies on a suite of models using meteorological variables as input data. It simulates

time series of renewable power generation and energy demand. These simulations should draw a

correct picture of the hydro-climatic variability in Europe and enable the assessment of its effects on

the variations of renewables. Many simplifying assumptions have been made to reach a compromise

between reasonable modelling complexity and satisfactory simulations:

H1 The studied power supply system only relies on CRE sources. The different electricity produc-

tion models are only weather-driven and based on generic equipments (generic RoR station,

wind farm and photovoltaic power station). This also applies to the energy demand model,

which uses a unique ”consumer profile” and depends only on meteorological conditions.

H2 Our main interest resides in the variability of renewables due to climate fluctuations. Therefore,

the absolute value of power generation and the underlying level of equipment (number of wind

turbines, solar and hydro power plants) is not crucial. The sizing of renewable power stations

(c.f. Chap.III) is time-invariant, region-dependent and guarantees a balance between mean

electricity production and energy load for a 33-year reference period.

H3 In order to take on board the spatial variability of climate conditions in Europe, the following

analysis is performed on 12 test areas spread over the whole continent. All of them are square

regions which do not respect administrative borders. The hydro-climatic regime is assumed to

be relatively homogeneous within each region.

H4 Regions are located at the upstream part of river basins, thus avoiding stream flow contributions

from large rivers crossing them. Then, the simulated hydro-power only results from local river

discharge and from the underlying regional hydro-meteorological variability.

H5 Electricity production and energy load series are analysed at a regional scale, assuming a perfect

power transmission within each region. This simplifying hypothesis implies that local power
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generation and energy demand can be brought face to face even when coming from different

locations.

H6 All time scales are determining factors for the assessment of the ease of integration of CRE

sources. However, we will only focus on their temporal variations going from daily to multi-

decadal time scales. We will disregard the sub-daily fluctuations. It implies that some daily

storage systems can balance the high-frequency variations in electricity production and demand.

H7 All models (hydrological and conversion models) have a unique and constant parametrisation for

all test regions. These parameters are coming either from the literature (electricity production

models) or from a global optimisation using observations (hydrological model, energy load

model).

Each component of this suite of models will be described in detail in a logical order from mete-

orology to electricity production. The associated characteristics of meteorological, hydrological and

power series will also be discussed in turn.
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1. Climate conditions and meteorological regimes

1. Climate conditions and meteorological regimes

1.1. Definition and geographical features of the test regions

12 regions in Europe and Maghreb are targeted in this study. Their boundaries are presented on

Fig.II.1. Each of them is identified thanks to two letters, these IDs will be used thereafter. The spatial

distribution of these regions gives a balanced coverage of the European continent. The represented

latitudes range from 35° (Tunisia - TU) to 64° (Finland - FI). Similarly, Galicia (GA) and Romania

(RO) give the minimum and maximum longitudes, 9°W and 29°E respectively.

Moreover, the topography greatly changes between regions. Some of them, located in plains, have

a limited altitude difference between their highest and lowest points (England - EN, Belarus - BE,

Finland - FI). On the opposite, Italy (IT), Andalusia (AN) and Greece (GR) contain major mountain

ranges and the highest points often exceed 2500m in altitude. The main geographical features are

gathered in Tab.II.1.

This variety of topography and positioning within Europe induces strong differences in climate

conditions and hydro-meteorological regimes.

Figure II.1 – Test regions boundaries and regional IDs.

1.2. Climate conditions

The climate conditions greatly change from one Euroepan region to the other. Peel et al., 2007

proposed a global and updated climate classification. Their results in Europe and Northern Africa

are presented on Fig.II.2. 4 out of the 5 main world climate classes are represented in Europe.

Maghreb and part of the Iberian Peninsula experience an arid climate. The remainder of the

Mediterranean basin has a temperate climate with dry and hot summer. Western Europe (France,

British Isles, Benelux and Western Germany) are mostly influenced by the Atlantic Ocean giving a
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Chapter II. Hydroclimatic and energy regimes

Table II.1 – Geographical features of the 12 studied regions

Region ID Mean latitude (°) Mean longitude (°) Min altitude (m) Max altitude(m) Mean altitude (m)

EN 53.75 -1.625 0 720 130

NO 62 9.25 0 2290 1010

FI 62.5 25.5 60 270 140

FR 46.25 0.875 5 940 220

GE 50.25 10.75 0 1010 390

BE 53.5 27.125 100 360 180

GA 42.25 -7.375 0 2140 720

IT 46.5 11.625 1 3640 810

RO 46.5 24.5 170 2160 620

AN 38 -3.5 110 2730 800

TU 35.875 9.875 0 1340 290

GR 39.5 21.75 0 2710 610

temperate, moist climate with relatively warm summer. Central and Eastern Europe have a typical

continental climate with cold and long winter whereas warm conditions return during summer. For

higher latitudes (Scandinavia), summer remains chilly. Finally the numerous and high mountain

ranges in Europe, whose climate has been classified as ”Polar”, are characterised by frequent and

heavy snowfall in winter and a recurrent diurnal convection cycle in summer leading to a broad panel

of possible weather conditions across the year.

Figure II.2 – Climate classification in Europe and Northern Africa. Extracted and adapted from
Peel et al., 2007. B=Arid, C=Temperate, D=Cold, E=Polar, W=Desert, S=Steppe, T=Tundra,
F=Frost, s=Dry Summer, f=Without Dry Season, h=Hot, k=Cold, a=Hot Summer, b=Warm
Summer, c= Cold Summer
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1.3. Meteorological regimes

1.3.1. Meteorological datasets

The most ancient meteorological records for temperature in Europe date back to the 17th century.

Unfortunately, it is only since the second half of the 20th century that weather stations started

multiplying and offering a more complete coverage of the European continent. For some other

variables, the historical records are even shorter (wind, sun radiation) and the density of stations

does not give accurate information on their spatio-temporal variations.

To meet the requirements of many studies in need of a global spatial and temporal coverage, grid-

ded weather reanalysis data have been developed. For temperature and precipitation, the density of

stations suffices to build such a dataset from on-site measurements. Satellite-based observations of

sun radiation, available since the 80s, provide increasingly accurate information on weather condi-

tions. They lent support to on-site measurements and helped developing sun radiation gridded data.

Unfortunately, neither weather stations nor satellite data can be directly used to produce satisfac-

tory wind speed gridded data over a long period of time. Consequently, wind pseudo-observations,

obtained from regional atmospheric models, are frequently used as a substitute for ”real”observations.

Here, we present the different datasets which were used as observations (or pseudo-observations)

to describe the recent past climate conditions in Europe.

1.3.1.a. Temperature and precipitation: ECAD

As part of the EU-FP6 ENSEMBLE and ECA& D (European Climate Assessment & Dataset)

projects [Haylock et al., 2008], observed weather time series were collected and converted into gridded

data using a three-steps methodology similar to universal kriging. A description of the the gridding

methodology can be found in Haylock et al., 2008; Hofstra et al., 2008. Five daily variables (minimum,

maximum and mean temperature, precipitation and sea level pressure) are available on a 0.25° grid

from 1952 and cover the entire Europe, Turkey and part of Maghreb.

This dataset provides a complete and regular coverage of Europe. However, it must be underlined

that it is not temporally and spatially homogeneous. Indeed, as shown in Fig.II.3, the density and

length of the observed time series change greatly from one country to another. It probably leads to

an underestimation of precipitation for mountainous regions (Alps, Pyrenees...) where this variable

has a strong spatial variability and elevation dependency. Precipitation and temperature data were

directly extracted from this dataset from 1983 to 2012. Daily temperature range was also computed

from minimum and maximum temperature series.

1.3.1.b. Sun radiation: Heliosat (SARAH)

On-site solar radiation measurements are relatively scarce and their associated time series are

often short. Thus, no gridded dataset using weather stations such as the one developed in the ECA&

D project could be built for this variable. Nevertheless, since the early 80s, satellite measurements

have helped bridging this gap.

The Surface Solar Radiation Data Set - Heliosat (SARAH) was selected to provide daily surface

sun radiation data for the 12 regions of this study. This dataset, based on measurements from
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Figure II.3 – Locations of the weather stations used in the ECA& D project (grey dots). Test regions
(black squares).

the geostationary Meteosat satellites, extends from 1983 to 2013. It has a rather high resolution

(0.05° grid). Due to the high angle of incidence from geotationnary satellites toward high latitudes,

measurements are expected to be more accurate near the Equador. A detailed evaluation is available

in Müller et al., 2015. The comparison with ground measurements at a selection of stations, including

several European ones (France, Spain, Netherlands, Germany, UK, Switzerland, Estonia), proved the

relevance of these satellite data. The uncertainty associated to these data is of the same order of

magnitude as the one of ground-based measurements.

1.3.1.c. Wind speed: Pseudo-observations using the WRF model

Surface observations of wind speed suffer from the same limitations as solar radiation ones. It

would be difficult to build correct regional series of this variable for some of our studied areas where

weather stations are rare or relatively new. The only gridded dataset of wind speed that exist

are usually outputs of dynamical downscaling methods from regional climate models. The obvious

advantage of these data is that they provide a continuous temporal and spatial coverage. However,

their quality (realistic and accurate wind speed) is not guaranteed and has to be evaluated. Indeed,

regional models often suffer from large biases. Even if wind is usually one of the most accurately

simulated variables (unlike thermodynamic ones), the coarse European topography in the model

prevents it from simulating local effects, especially in mountainous regions. In this study, we use

wind outputs from the WRF model forced by the ERA-INTERIM reanalysis data [Vautard et al.,

2014]. The resolution is about 50km and data are available on a 3h time step.

We performed an evaluation of the model outputs comparing them with some available wind

stations. The associated analysis and results are presented in Appendix.A. All in all, this evaluation

highlighted uneven performances of the WRF model in Europe. Despite a good consistency between

observed and simulated wind series over plains, the rather low resolution for the current model set-up

leads to poorer results in mountainous areas. Using these simulations in this study has the advantage
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1. Climate conditions and meteorological regimes

of guaranteeing a complete coverage of the tested regions but some of our results must be analysed

with caution. This is especially the case when a region contains a high mountain range such as the

Italian (IT), the Norwegian (NO) and the Romanian (RO) test areas.

1.3.2. Meteorological regimes
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Figure II.4 – Climatological seasonal cycles of temperature, precipitation, wind and sun radiation
for the 12 test regions. Cycles were computed using the meteorological data described in
sec.1.3.2 from 1983 to 2012 (30-day moving average). Information about both median cycles
(dark blue line) and 10th-90th percentiles ranges (light blue shading) is provided.

To complement the information provided in sec.1.2, Fig.II.4 presents the seasonal median cycles

of meteorological predictands (30-day moving average) for the 12 test regions and based on the

datasets described previously. It highlights the spatial variations of climate conditions in Europe.
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Chapter II. Hydroclimatic and energy regimes

Additionally, the blue shading also gives an assessment of the inter-annual variability (10th and 90th

percentiles).

Temperature cycles vary in two different ways across Europe. Firstly, temperature is obviously

higher in southern regions leading to a translation of cycles toward higher temperature values from

North to South. The contrast between oceanic and continental climates induces also a gradual

transition from western regions to central European ones. In GA, FR and EN, winter is relatively

mild and summer reasonably hot. Conversely, BE and RO experience some intense cold waves in

winter while summer can be sweltering sometimes. The inter-annual variability of temperature is also

larger for these last regions, especially in winter, revealing an alternating of freezing and relatively

mild cold seasons.

Precipitation exhibits 3 main types of annual cycle in Europe. In EN, GE, NO, and to a lesser

extent in FR, there is a weak seasonality in precipitation (constant median cycles and 10th-90th

percentiles ranges). In the Mediterranean basin (AN, TU, GR), rainfall is rare and most days are

dry. Some more humid winters occur in these regions but they are relatively infrequent. GA has the

more pronounced seasonal cycle and inter-annual variability in precipitation. In this region, summer is

dry but more humid conditions return from September. The variability in winter precipitation is high

with a large 10th-90th percentiles range from September to May. For continental/mountainous regions

(BE, FI, RO, IT), the seasonality of precipitation is inverted with a peak precipitation during summer,

indicating numerous and strong convective weather disturbances. The inter-annual variability is also

higher in summer. In these regions (plus NO and FI), most of the late autumn - early spring

precipitation is solid, leading to snow accumulation.

Wind seasonality has homogeneous characteristics across Europe with higher but also more vari-

able wind speed values in winter. However, the distance of a region from the Atlantic Ocean or

the Mediterranean determines the amplitude of the seasonal cycle with fewer differences from sum-

mer to winter in continental regions. One can also notice that the average wind speed is higher in

North-western Europe where most atmospheric low pressure systems circulate.

Solar radiation is mostly driven by the Earth inclination and day duration. Logically, the ampli-

tudes of the seasonal cycles are higher in Northern Europe than for Mediterranean regions. Moreover,

the inter-annual variability is rather different from one region to the other. The 10th-90th percentiles

range is larger from winter to early summer in FR and GA. For Mediterranean regions (AN, TU and

GR) the inter-annual variability is weak but slightly higher in winter. Conversely, more variability

in solar radiation is observed in summer for all other regions.

In conclusion, the 4 meteorological drivers of river discharge, CRE sources and of the weather-

dependent part of energy load manifest strong seasonal and regional variations in Europe. These

fluctuations are expected to strongly influence all power series and lead to a variety of characteristics

in our 12 test regions.
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2. Hydrological regimes

2. Hydrological regimes

2.1. Hydrological modelling

To go from weather to discharge, we use a simple conceptual hydrological model inspired from

what is proposed by Schaefli et al., 2005. Its structure is illustrated in Fig.II.5.

The snow module simulates the whole spatio-temporal dynamic of snow pack. It uses, on one hand,

a temperature threshold to convert precipitation into rainfall and snowfall and on the other hand, a

classic degree-day method for snow-melt. Part of the resulting equivalent precipitation (Peq) is then

intercepted by plants and trees. The potential evapo-transpiration (PET) model gathers information

on the atmospheric state (Temperature amplitude, wind, humidity and sun radiation) and converts it

into PET using the Penman Monteith equation [Monteith, 1965]. The combination of these two first

outputs (PET and Peq) leads to a first loss of water through the actual evapo-transpiration (ET1).

Then, the remaining part of Peq is split up and contributes to infiltration into the upper ground

layer S1 and to a quick hydrological response through run-off. This first ground layer is also subject

to evapo-transpiration (ET2). Water percolation from S1 supplies the deep ground layer which

consists of two sub-reservoirs. The deeper one, S3, drives the slow hydrological response of the basin.

The regional discharge is obtained summing the contributions of all grid cells (no flow routing is

performed). In a first approximation, we assume that the region is small enough to make the routing

time from any grid cell to the region outlet shorter than one day.

This simple model must be seen as a hydrological filter simulating a realistic regional hydrological

cycle and taking into account most of the non-linear processes converting precipitation into river

discharge (interception by vegetation, snow-pack, several components of ground storage...). It gives

a simplified representation of snow-pack dynamics and of both slow and rapid-flow components of

discharge. Moreover, we decided to use a single set of parameters for all regions. It makes the

model simulations only sensible to the different meteorological regimes and to the geomorphological

characteristics of each region. With such choices, one cannot expect the model to give entirely

satisfactory discharge simulations on any region considered individually. However, its relatively

simple structure leads to correct simulations of river discharge for the 12 regions.

The calibration/validation of the model was performed using a stepwise technique for all 12 regions

simultaneously. We do not detail this process here. Some supplementary information can be found

in Appendix.B.
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Figure II.5 – Hydro model structure and functioning. P (Precipitation), T (Temperature), W(Wind
speed), RH(Near-surface relative humidity), SI (Solar Irradiance), Peq (Equivalent precipitation),
PET (Potential evapo-transpiration), Peff (Runoff contribution of precipitation), Pinf (Infiltra-
tion), ETi (Evapo-transpiration), Si (Current storage), Simax (Storage capacity of soil reservoir)
Ki (Time constant), Qtot (Outlet discharge).

2.2. Hydrological regimes in Europe

Using the hydrological model described in Sec.2.1 and the observed weather data of Sec.1.3.2, the

discharge time series were computed for the 12 test regions from 1983 to 2012. Fig.II.6 presents

the resulting climatological seasonal cycles of river discharge. They can be classified into two main

hydrological regimes:

24



2. Hydrological regimes

• For most regions (GA, AN, FR, EN, TU, GE, GR) river discharge values reach a maximum in

winter whereas low flows are generally observed from July to early September. This is typical

of the pluvial regime. The dry and hot summer season, as part of the Mediterranean climate

characteristics, results in extremely low discharge values or even dry rivers in AN TU, and GR.

The inter-annual variability (10th-90th percentiles range) is larger in winter for these regions

(and in GA as well). It is rather constant across the year for the others.

• NO, IT and to some extent FI, present discharge cycles which are characterised by a main peak

in river discharge in spring due to snow-melt and a secondary one in late autumn resulting from

large precipitation amounts. The snow-melt related peak has a large inter-annual variability.

For these regions, the low-flow period occurs in winter when most of precipitation is solid (snow

accumulation).

• The two remaining regions, BE and RO, seem to have more complex regimes. No clear peak in

discharge can be seen. These discharge cycles have a very weak seasonally compared to what

has been described for the other European regions.

Figure II.6 – Climatological seasonal cycles of discharge in the 12 test regions. Cycles were computed
using the hydro model described in II.5. Input data are taken from the datasets described in
Sec.1.3.2 from 1983 to 2012 (30-day moving average). Information about both median cycles
(dark blue line) and 10th-90th percentiles ranges (light blue shading) is provided.
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Chapter II. Hydroclimatic and energy regimes

3. Power generation

3.1. Weather-Energy conversion models

The weather and hydrological data presented previously are converted into power generation series

using the simple models described hereafter.

3.1.1. Solar power

As proposed by Perpinan et al., 2007, solar power generation is driven by Eq.II.1. It depends on

two meteorological variables: global solar irradiance SI and, to a lesser extent, air temperature T.

All the other parameters are constants. This simple conversion model does not take into account

the orientation of solar panels and their inclination is set to 0°. Finally, in order to make the solar

power series directly comparable between regions, the solar panels area is set to 104m2 for all regions,

corresponding to a nominal power of 1MWp under standard test conditions (i.e. 1MW for a solar

irradiance of 1000 W.m2, with a spectrum similar to sunlight hitting the earth’s surface (standard

airmass) and hitting the positioned solar cells perpendicularly. The standard temperature is set to

Tc,STC=25°C).

PPV(t) = µal ·A · r · SI(t) · [1− µ · (T (t)− Tc,STC)− µ · C · SI(t)] (II.1)

Where

• PPV : Power generation from a photovoltaic generator (W )

• µal: Power losses coefficient due to the transition from direct to alternative current (dimension-

less)

• µ: Temperature-dependent efficiency reduction factors (dimensionless)

• A: Surface area of the PV array 104 ·m2

• r: Efficiency under standard conditions (dimensionless)

• SI: Global solar (W.m2) irradiance

• T : Air temperature (°C)

• Tc,STC : cell temperature (25°C) corresponding to standard test conditions [Duffie and Beckman,

1991]

• C: Radiation-dependent efficiency reduction factors (dimensionless)

3.1.2. Wind power

The instantaneous wind power generation equation is presented on Eq.II.3. To trigger the turbine

rotation, a minimum wind speed is necessary (vin). Then, wind power is proportional to the cube of

wind speed. For wind values higher than vnom the power production is limited to Pnom, the nominal

power. For strong wind (> vout), the production has to be shut down to avoid damages to the turbine.
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3. Power generation

pw(t) =



0 if w(t) < win

1
2 · ρ · (w(t)− win)3 if win ≤ w(t) < wnom

Pnom if wnom ≤ w(t) < wout

0 if wout < w(t)

(II.2)

Where

• pw: Instantaneous power generation from the wind turbine

• ρ: air density. ρ = 1.225kg.m2

• w: instantaneous wind speed at 80m (m · s−1)

In order to convert daily wind speed into wind power, Eq.II.3 needs to be adapted. To do so, we

use an estimation of the probability density function of the infra-daily wind speed fW which depends

on daily wind speed W. Then the daily wind power generation Pw(W ) is given by the convolution

of this function with the instantaneous power curve p(w). We estimate this integral Pw(W ) using

a set of daily wind speed values and the 3h data coming from the WRF model (sec.1.3.1.c). Daily

wind speed values range from 0 to 35m · s−1. Finally, fW was estimated using the Weibull density

function. Fig.II.7 illustrates the initial (instantaneous) and final (daily) conversion curves. For more

details, see François et al., 2016.

Pw(W) =

∫ ∞
0

fW (w) · p(w) · dw (II.3)

Where

• Pw(W ): Daily power generation from the wind turbine (Watt)

• fW : Probability density function of the infra-daily wind speed. Function of the daily wind

speed

• w: instantaneous wind speed (m · s−1)

Wind data are available at 10m. An estimate of wind speed at 80m (chosen as turbine height)

is obtained with a classic scaling relationship presented in Eq.II.4. This simple relationship uses a

roughness-dependent scaling factor set to 1
7 . Wind speed is supposed to be homogeneous on the

whole propeller.

W80m(t) = W10m(t) · (H80m

H10m
)
α

(II.4)

Where

• W80m: wind speed at 80m (m · s−1)

• W10m: wind speed at 10m (m · s−1)

• H: altitude (here 80m or 10m)

• α: roughness-dependent scaling factor. Here set to 1
7 (dimensionless)

3.1.3. Run-of-the-river hydro-power

Run-of-the-river (RoR) hydroelectricity can make a significant contribution to the total hydro

power generation. Actually, it represents 26% of the total hydroelectric production in France, 24% in

Italy and 26% in Switzerland. As run-of-the-river hydro power is directly related to discharge, it is
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Figure II.7 – Daily and instaneneous wind power curves. Instantaneous wind power curve as a function
of instantaneous wind speed (blue). Modelled daily power curve as a function of mean daily wind
speed (red). win, wnom, wout represent respectively the cut-in, nominal and cut-out instantaneous
wind speed values

very sensible to hydro-meteorological fluctuations. In this study, we not take into account any water

storage reservoirs in order to isolate the most weather-related part of hydro power production.

To estimate RoR hydro power from river discharge, we use a classic conversion function (Eq.II.5)

using the water head (H) which represents the altitude difference between the current grid cell and

the lowest point of the region. Since no water routing is done in our simple hydrological model, we

assume that the regional hydro power generation can be estimated summing the contribution of all

grid cells.

Ph(t) = rh · ρ · g ·H ·Q(t) (II.5)

Where

• Ph: Power generation from the hydro-electric generator (Watt)

• rh: Standard efficiency of the generator

• ρ: liquid water density. ρ = 1000kg.m2

• g: gravitational acceleration. g = 9.81m3.s−1

• H: Water head (m)

• Q: River discharge (m3.s−1)

As for wind power, some discharge thresholds determine the final hydro power generation. Hydro-

electricity can only be produced when river discharge is greater than a given threshold Qmin which

represents the minimum flow that should not be diverted to preserve the integrity of the river bed

and its ecosystems. The design flow Qd is the maximum discharge that can be converted into power.

This parameter depends on the size and characteristics of the hydro-power plant. Finally, Qmax, the

upper discharge threshold, gives the discharge value above which it is not possible to produce hydro

power due to high-flows. Qmin, Qd and Qmax, have been set to the 95th, 25th and 2nd percentiles
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3. Power generation

of discharge values. Those choices are based on some previous studies [Hänggi and Weingartner,

2012]. The final equations, defining the actual hydro power generation from these 3 thresholds, are

presented in Eq:II.6.

Ph(t) =



0 if Q(t) < Qmin

rh · ρ · g ·H · (Q(t)−Qmin) if Qmin ≤ Q(t) < Qd

rh · ρ · g ·H · (Qd −Qmin) if Qd ≤ Q(t) < Qmax

0 if Q(t) > Qmax

(II.6)

Where

• Ph: Power generation from the hydro-electric generator (Watt)

• rh: Standard efficiency of the generator

• ρ: liquid water density. ρ = 1000kg.m2

• g: gravitational acceleration. g = 9.81m3.s−1

• H: Water head (m)

• Q: River discharge (m3.s−1)

• Qmin: Minimum discharge for power generation (m3.s−1)

• Qmax: Maximum discharge for power generation (m3.s−1)

• Qd: Design discharge (m3.s−1)

3.1.4. Energy load

Energy load depends on both meteorological and socio-economic parameters. On a daily basis,

the energy consumption peaks twice, in the morning (7-8am) and in the late afternoon (5-7pm).

Similarly, energy load usually drops during week-ends and school holidays. In the ”real world”,

this variable exhibits low frequency fluctuations and trends resulting from various factors related to

economy, demography and/or political choices (electricity price, energy efficiency...). Here, we only

take into account weather-related factors: Our energy load model is only driven by temperature.

In this way, results from different regions are easily comparable whatever the population or their

economic development.

To develop this simple model, national load data, available since 2006, have been downloaded from

the ENTSOE1. Before being used, these data have been preprocessed in order to remove trends or

break points due to changes in population or to the 2008 economic crisis (which created a drop in

electricity consumption for some country). The detailed methodology applied for the standardisation

of load data can be found in Pustitrarini, 2015.

Fig.II.8, also extracted and adapted from Pustitrarini, 2015, presents the national standardized

daily energy load values as a function of daily temperature. There is a strong relationship between

energy demand and air temperature for all European regions. Despite rather large differences be-

tween regions, three distinct temperature intervals appear with 1) decreasing energy load with higher

temperature from -30 to 15°C, 2) rather constant energy load from 15 to 20°C and 3) increasing daily

1https://www.entsoe.eu/db-query/country-packages/production-consumption-exchange-package
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Figure II.8 – Relationship between daily energy load and temperature. Daily standardized energy
load (dimensionless) as a function of temperature for each country (color classes). The global
piecewise linear model, corresponding to three linear regressions from -30 to 15°C, from 15 to
20°C and from 20 to 40°C is presented in black.

energy load for temperature higher than 20°C. As before, we decided to develop a unique temperature-

load conversion model for our 12 regions. A global piecewise linear model, corresponding to three

linear regressions using all data below 15°C, from 15 to 20°C and above 20 C has been applied and is

also presented on Fig.II.8. Eq.II.7 presents this simple model. The piecewise linear function takes on

board heating systems for temperature lower than 15°C and air conditioning when then mean daily

temperature exceeds 20°C.

D =


acold · T + bcold if T < 15°C with acold = −0.02 T−1 and bcold = 1.31

1 if 15°C ≤ T ≤ 20°C

ahot · T + bhot if T > 20°C with ahot = −0.01 T−1 and bhot = 0.79

(II.7)

Where D is the standardized energy load and T the air temperature (°C).

To illustrate how this stepwise linear function is going to impact the regional energy load series

depending on their climate characteristics, Fig.II.9 presents the seasonal and annual density func-

tion of temperature for three representative regions (NO, GE, AN). In NO, winter and late/early

autumn/spring are cold. Large energy load values are expected from heating systems. Summer is

generally mild and do not require air conditioning. The same comments apply to GE despite less

extreme temperature values in winter and a few days for which air conditioning is going to impact the

daily energy load in summer. Conversely, in AN, winter is generally not cold enough to significantly

increase the regional energy load. However, air conditioning systems are coming into play for most

summer days and a large proportions of autumn ones. All in all, the seasonal variations and the
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Figure II.9 – Regional temperature probability distributions and temperature-demand model.
Piecewise linear function for converting daily temperature (x-axis - Celsius degrees) into energy
demand (y-axis, left, dimensionless). The seasonal and annual distributions of daily temperature
(DJF-blue, MAM-green, JJA-ref, SON-orange) are also displayed.

regional differences of temperature will have repercussions on the energy load series and lead to a

variety of characteristics.

3.2. Power generation and energy load regimes

The conversion models presented previously were used to simulate regional series of power gener-

ation and energy load from 1983 to 2012 in Europe. Undoubtedly, it is not possible to discuss the

absolute values of production and energy demand as a result of the simplifications and normalizations

applied in all models (same parametrisation in the hydrological model, same level of equipment in the

energy weather-conversion models, no dependence to population density and/or development level

in the energy load equations). However, the relative differences between regions are expected to be

realistic. Fig.II.10 presents the mean daily power generation for the three CRE sources together with

the mean daily energy load.

Despite its dependence on discharge, the potential for run-of-the-river hydro power generation is

much higher in mountainous regions where a high elevation difference provides a large water head.

Thus, IT clearly stands out from the crowd. Hydro power is much smaller but still significant

compared to other regions for GA and NO. Despite their high mean altitudes, AN, GR and RO do

not have high electricity production values due to relatively low discharge.

Wind power production is emboldened over flat regions close to the sea (i.e. where wind has not

eased off because of the ground roughness yet). North-Western Europe is consequently the place

where the higher production values can be found. The preferential mid-latitude cyclones pathway

guarantees strong and frequent wind over EN and NO. However, the Tunisian coast also seems to

experience significant wind leading to a rather high wind power production.

Solar power depends mainly on latitude. The North-South gradient in production is strong with

values almost twice higher in TU than in FI. For regions at the same latitude (e.g FR-RO, EN-BE),

higher productions are achieved in the East as a likely consequence of less cloudy conditions on

average for continental climate.
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Chapter II. Hydroclimatic and energy regimes

There is a SW-NE oriented gradient of weather-driven energy load in Europe. The long and tough

winter in northern continental regions results in large energy demand values in FI, NO and BE.

Despite the contribution of air-conditioning in summer, southern Europe and Maghreb still have the

lowest values of climate-related energy demand. These regional differences are a direct consequence

of the seasonal probability density functions discussed in sec.3.1.4 for Fig.II.9.
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Figure II.10 – Regional mean daily power generation and energy demand. Spatial pattern of mean
simulated power generation (MW) and of weather-related energy load (dimensionless). Mean
values were computed using the whole 1983-2012 period.

Mean daily production hides the seasonal and inter-annual variations of CRE sources. Fig.II.11

shows the regional seasonal cycles of power productions and energy load. These cycles have been

standardized using the regional daily mean production values presented in Fig.II.10.

The hydro power cycles mainly correlate with the river discharge ones (cf. Fig. II.6). However,

the snowmelt-related high flows in IT and NO have been cut off as a result of discharge values often

exceeding Qd or Qmax during the snow-melt period. These two regions, together with RO, have a

peak in hydro power production in summer whereas this season is generally a low production period

elsewhere. Following the Earth axial tilt, solar power is obviously lower in winter. Cycles are more

pronounced in northern Europe where day length varies the most across the year. Wind power

seasonality is weaker than for the other CRE sources. However, regions at a reasonable distance

from the Atlantic Ocean have more wind power potential in winter, resulting from higher wind speed

values. Finally, the energy load cycles are relatively flat, especially in FR and GA where both summer

and winter are mild. Nevertheless a peak in energy demand is noticeable in winter in north-eastern

Europe whereas Mediterranean regions consume more power from June to September.
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Figure II.11 – Seasonality in electricity production and energy load. Standard mean seasonal cycles
of power generation for solar (red), wind (orange), hydro (blue) energy sources. Standard mean
seasonal cycle energy demand (black). Cycles were computed using a 30-day moving window
and the whole period of observations (1983-2012). The standardisation was performed by diving
the initial cycles by the mean productions over the entire 1983-2012 period
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Chapter II. Hydroclimatic and energy regimes

Tab.II.2 gives the inter-annual coefficients of variability of the three CRE sources and of energy

demand. Hydro power changes greatly from one year to another in all regions. The lower coefficients

in NO and IT could result from the effect of the snow-pack dynamics. Wind power and solar power

coefficients of variation, range from 0.06 to 0.14 and from 0.02 to 0.10, respectively. The inter-annual

variability is stronger in Northern Europe as a likely consequence of the North-Atlantic-Oscillation

(NAO). Finally, energy load does not vary much from one year to the other.

By way of conclusion, the previous results indicate that:

• Energy load exhibits unquestionably the smallest variability, either in terms of seasonality or

inter-annual fluctuations.

• Solar power presents a large seasonality but a very small inter-annual variability

• Hydro power is characterized by both high seasonality and the highest inter-annual variability.

• Regarding wind power, both seasonality and inter-annual variability are moderate.

Table II.2 – CREs and energy load inter-annual coefficient of variability

Region ID Hydro Power Wind Power Solar Power Energy Load

EN 0.22 0.11 0.06 0.01

NO 0.15 0.14 0.07 0.01

FI 0.21 0.12 0.10 0.02

FR 0.28 0.06 0.06 0.01

GE 0.26 0.08 0.06 0.01

BE 0.26 0.09 0.06 0.02

GA 0.23 0.08 0.05 0.01

IT 0.15 0.07 0.04 0.01

RO 0.27 0.10 0.06 0.01

AN 0.32 0.07 0.03 0.01

TU 0.34 0.09 0.02 0.01

GR 0.29 0.07 0.03 0.01
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ChapterIII
Penetration rate of CRE sources and

energy droughts

The ease of integration of CRE sources depends on their spatio-temporal fluctuations and on their

temporal match with the energy load. In this chapter we will evaluate the ability of single CRE

sources to meet the demand.

Previously, we discussed the inter-sources and inter-regional disparities which exist in Europe.

These differences can be turned to our advantage if one contemplates the possibility of a multi-

sources, pan-European integration of renewables. We will illustrate how the integration CRE sources

could be improved, making use of these possible complementary contributions. We will use an

evaluation criterion quantifying the mean balance between power generation and energy load.

The mean percentage of satisfied demand is a relevant measurement. However, it does not inform

on more problematic events for which an energy source is not able to meet the demand for a long

period. Using a daily measurement of satisfied energy load, we will define sequences of energy shortage

and analyse how their characteristics (duration, frequency of occurrence) vary between sources and

regions. Finally, the impact of storage, over-sizing, spatial integration and multi-sources on the

global percentage of satisfied demand and on these problematic events will be assessed. It gives

a first evaluation of the contributions of these tools to a more relevant integration of intermittent

renewables in Europe.
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Chapter III. Penetration rate of CRE sources and energy droughts

1. Single energy sources

1.1. Penetration rate

1.1.1. Definition

The daily amount of power that a renewable power plant produces is not a sufficient measurement

of its relevance. Actually, this evaluation criterion does not take into account the temporal mismatch

that exist between electricity production and energy load. Eq.III.1 defines the global penetration

rate definition (PE) which will be used to assess the ability of each CRE source to fulfil the energy

demand. This measurement quantifies the percentage of energy load that is met by the considered

energy source production. It sums up, over the entire period of interest (1983-2012 in or case),

the daily unsatisfied energy load and compares it to the total demand. In this evaluation, the daily

oversupply that may occur, is lost. As a result, PE ranges from 0 to 100%, this last value representing

the ideal configuration for which there is a perfect match between daily power generation and energy

load.

The higher the level of equipment, the easier it gets to fulfil the energy load. The relationship

between level of equipment and penetration rate has been illustrated in François et al., 2016. To free

ourself from this dependence and to characterize only the effects of the temporal mismatch between

power generation and energy load on PE, the power production Pi(t) has been standardised. For all

regions and energy sources, the power generation time series are scaled using the ratio between mean

energy load 〈D(t)〉 and mean power generation 〈Pi(t)〉 over the entire 1983-2012 period. Thus, the

33-yr standardised electricity production is equals to the total 1983-2012 energy demand.

PE = (1−
∑
max(D(t)− Pi(t) · 〈D(t)〉

〈Pi(t)〉 , 0)∑
D(t)

) · 100

= (1−
∑
max(D(t)− pi(t), 0)∑

D(t)
) · 100

(III.1)

Where

• PE(t): Penetration rate of energy source i

• D(t): Energy load

• Pi(t): Power production of energy source i

• pi(t): Standardized power production of energy source i

• 〈Pi(t)〉: Mean production from 1983 to 2012

• 〈D(t)〉: Mean energy load from 1983 to 2012
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Figure III.1 – Global Peneration rate (%) for the three single energy sources in Europe. Computed
from 1983 to 2012.

1.1.2. Mean penetration rate in Europe

The penetration rate of all single energy sources is presented in Fig.III.1. Results are very uneven

from one source to the other:

• Hydro power gives low penetration rates (<60%) in Mediterranean regions as a likely conse-

quence of the co-occurrence of low discharge and high energy load due to air conditioning in

summer. The highest penetration rates are found from EN to BE (>75%). For Scandinavian

regions, the match between energy load and power generation decreases again as a result of

high energy load but relatively low hydro power generation in winter.

• No clear spatial patter exists for wind power. The regional penetration rates range from 70 to

80%. These values are higher than the ones of hydro power in southern Europe.

• There is a strong North-South gradient in solar power penetration. In northern regions, PE

values are rather low (<60%). In the Mediterranean basin, summer months gather both high

energy demand (air conditioning) and maximum electricity production from photovoltaic power

stations leading to PE values exceeding 80%.

From these first results, one can notice the inter-sources complementarity that may exist for some

regions. In TU, for instance, the high penetration rate achieved using solar can probably balance the

low value associated to hydro power. Similarly hydro and wind power can complement each other in

FI and NO and compensate for the match between energy load and solar power series.

1.2. Energy droughts

1.2.1. Definition

For a given energy source, the penetration rate estimates the mean daily proportion of satisfied

energy demand. Thus, it quantifies the long-term match between energy generation and energy load.

It does not inform on the chronology of days for which the production does not meet the energy

demand. More precisely, it does not inform on the occurrence of long lasting sequences of both

power shortage and high energy load. In this section, we will present the concept of energy droughts,

following the classic definition of hydrological droughts used for long lasting sequences of days with

extreme low river discharge values [Hannaford et al., 2011].
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Chapter III. Penetration rate of CRE sources and energy droughts

A first approach would be to define energy droughts considering only low power generation se-

quences. However, in order to take into account energy demand, we define energy droughts as

uninterrupted sequences of days characterized by concomitant low power production and high energy

load. Here, we focus on another aspect of the production/demand balance issue, exploring the critical

asynchronism between them. These problematic sequences can result from various situations: very

low power generation vs. moderate demand ; moderate power generation vs. high demand ; low

power generation vs. high energy load. This criterion disregards periods for which both electric-

ity production and energy demand are low, which are considered as non-critical. We will estimate

the statistical characteristics (duration, frequency of occurrence) of energy droughts for the different

energy sources and test regions in Europe.

To perform this analysis, we consider time series of daily satisfaction rate (SA) which quantifies

the day-to-day percentage of energy load which can be met by the daily electricity production. SA is

a similar measure to PE. It gives a daily estimation of the mismatch between energy load and power

generation rather an integrated one over long periods (Eq:III.2):

SA(t) = (1−
max(D(t)− Pi(t) · 〈D(t)〉

〈Pi(t)〉 , 0)

D(t)
) · 100

= (1− max(D(t)− pi(t), 0)

D(t)
) · 100

(III.2)

Where

• SA(t): Daily satisfaction rate of energy source i

• D(t): Energy load

• Pi(t): Power production of energy source i

• pi(t): Standardized power production of energy source i

• 〈Pi(t)〉: Mean production from 1983 to 2012

• 〈D(t)〉: Mean energy load from 1983 to 2012

Energy droughts, as hydrological or agro-meteorological droughts [Vidal et al., 2012], are fully

determined by the chronology of weather conditions. Many different methods are used to characterize

hydro-related droughts. The usual estimated features are the frequency of occurrence, the intensity

and the duration of droughts sequences. Consequently, it is necessary to decide on a relevant threshold

(usually related to discharge values in hydrology) which separates normal conditions from droughts.

In the following analysis, an energy drought sequence is defined as one or several consecutive days

for which SA is lower than a given threshold. In order to consider different droughts intensities,

we use 4 different thresholds of satisfied demand (100%, 80%, 50% and 20%). The 100% threshold

corresponds to a simple case for which the daily energy load is not fully satisfied by the power

generation. The 20% threshold corresponds to what could be called ”extreme mismatch events”.

Usually, the term of ”droughts” is reserved to extreme events. It would be more accurate to speak of

periods of ”under-production” for the less restrictive SA thresholds (100, 80 and 50%) and limit the
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1. Single energy sources

usage of ”energy droughts” to the most severe one (20%). However, for the sake of simplicity, the

same terminology is used for all thresholds.

1.2.2. Droughts characteristics

Fig.III.2 presents the droughts characteristics for all regions, single energy sources and thresholds.

The frequency of occurrence of drought sequences (y-axis, mean number of sequences per year) is

plotted against the mean drought duration (x-axis, in days). The proportion of days (%) undergoing

drought conditions is also presented via the background color scale. For a given energy source,

the drought characteristics corresponding to different SA thresholds (dots of the same color) are

connected in a logical order from 100% (corresponding to the higher proportion of days under drought

conditions) to 20%.

• Hydro-power droughts are not frequent but have large mean durations (from 20 days in FR to

80 days in NO). In GR, TU, AN and GA, the droughts characteristics are not much impacted

by the satisfaction rate threshold. Anywhere else in Europe, both droughts number and mean

droughts duration decrease with lower thresholds (i.e. severe droughts are less frequent and

have a smaller duration). However, in NO and IT, going from the 100% threshold to the 80%

one, induces a provisional increase in mean drought duration. This result comes from the

removal of short and weak droughts giving the upper hand to long duration ones.

• For most regions (except in Scandinavia), solar-power related drought sequences consists of days

with very low satisfaction rates. As a consequence, lowering the SA threshold reduces their

mean duration, cutting days off at the starting and ending points of the sequences, but leaves

the mean number of droughts unchanged. There seems to be a clear relationship between solar

power droughts and latitude: On one hand, GR, TU and AN have few and short periods of SA

rates below 20%, and on the other hand, droughts in FI and NO have the same characteristics

whatever the SA threshold.

• Wind power droughts are rather short (never exceeding 5 days) but numerous (From 10 to 60

sequences per year depending on the SA threshold). Similarly to solar power droughts, lowering

the SA threshold first reduces the mean droughts duration. It is only with the 20% satisfaction

rate that the frequency of occurrence also drops.

Following the seasonality of mean power generation series, energy droughts characteristics change

in the course of the year. Naturally, they are much less numerous and long for seasons with higher

mean production (e.g. solar power - summer). The seasonal characteristics of energy droughts are

presented on Fig.III.3 for the three CRE sources and three representative regions.

Wind power droughts have a weak seasonality. Both mean droughts durations and numbers

are similar from one season to the other. Conversely, the intra-annual variations of solar power

droughts are strong: the simultaneity between low solar power production and high energy demand

due to heating systems, in winter, leads to much longer droughts in NO and GE. There are very few

events (NO, GE and most regions) or even no solar droughts (AN and all Mediterranean regions) in

summer. The seasonality of hydro power droughts is highly region-dependent. In Scandinavia and

high-mountain regions, the accumulation of snow in winter results in low winter and early spring

discharge. Consequently, hydro power cannot balance the energy demand during the cold season
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Figure III.2 – Droughts characteristics associated to different SA threshold. Mean number of drought
episodes versus mean drought duration. Results are displayed for hydro-power (blue), solar-
power (red), wind-power (orange). The points associated to different thresholds but from the
same energy source have been connected in a logical order from 100% to 20%. The color scale
gives the mean annual number of days experiencing droughts conditions.
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and the associated droughts sometimes last for the whole 3-month period. Regions located in plains

and close to the Mediterranean suffer from low hydro power production combined with high energy

demand due to air conditioning in summer. It often results in a single but extremely long energy

drought sequence from June to August.
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Figure III.3 – Seasonality in droughts characteristics. Seasonal mean number of drought episodes versus
mean drought duration associated to the 50% SA threshold. Results are displayed for hydro-
power (blue), solar-power (red), wind-power (orange). The color scale gives the mean annual
number of days under droughts conditions. Dot=Winter, Square=Spring, Triangle=Summer,
Diamond=Autumn.

This analysis reveals that energy droughts have various characteristics from one power source to the

other. Hydro power droughts are long but relatively infrequent whereas wind power ones are numerous

but never exceed a week. Solar power droughts characteristics are intermediate. Furthermore, the

seasonality is particularly strong for both solar and hydro power droughts but it is rather limited for

wind power ones.

Drought characteristics have a strong spatial consistency in Europe. In most cases, both duration

and frequency of occurrence of energy droughts are similar from one region to the neighbouring one,

especially for the 100% and 80% SA thresholds.

2. Multi-sources

The PE rates associated single CRE sources can be quite low (e.g. solar power - Scandinavia,

hydro power - Mediterranean basin, cf. Fig.III.1) and some long period of energy generation/load

mismatch often occur (e.g. hydro power, cf. Fig.III.2). In this section, we investigate how combining

different energy sources could improve their integration in Europe.

2.1. Inter-sources correlations

As a first step in evaluating the complementarity between renewables in Europe, we analyse the

Spearman correlation between seasonal series of power generation and energy load. It highlights the

synchronism/asynchronism between sources and hence their potential counterbalance at a seasonal

time scale.
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Chapter III. Penetration rate of CRE sources and energy droughts

The regional Spearman correlation coefficients between CRE sources are presented on Fig.III.4

for both winter and summer months. In addition, this figure presents the correlation coefficients

between power generation and energy load series. On one hand, high anti-correlations between CRE

sources are desirable as they would guarantee some asynchronism between production series. Then,

seasons of weak power generation from one energy source may be balanced by another source. On

the other hand, and whatever the energy source, the higher the correlation with the energy demand,

the better.

Generally speaking, there is a strong spatial consistency between the correlation coefficients ob-

tained for neighbouring regions. In winter and for all regions (except TU, IT, GR), wind and hydro

power are always positively correlated and thus likely cannot complement each other. Moreover, these

two energy sources are not synchronized with the energy demand and cannot efficiently balance it at

seasonal scale. On the other hand, solar power seems much more relevant: It has not only negative

correlation coefficients with the other energy sources, but also positive ones with the energy demand.

However, this result must be looked at in context as solar radiation is very low in winter in northern

regions.

In the three remaining regions (TU, IT, GR), the conclusions are more heterogeneous. The

correlation coefficients between wind power and energy demand are positive for all of them. In TU,

hydro power and energy demand are also correlated and the coefficient between solar power and the

energy demand is negative.

In most cases, summer correlation coefficients are similar to winter ones. Nevertheless, some

noteworthy changes in sign exist for correlation coefficients between energy demand and all energy

sources in EN, NO and FI. On the other hand, the synergy of renewable with the energy load

undergoes a reversal in summer.

Analysing correlation coefficients at a seasonal scale is a first but coarse approximation of what

could be a relevant combination of energy sources in our 12 test regions. Indeed, it does not inform

on the daily complementarity between sources and hence, on their conjoint ability to fulfil the energy

load. Using the penetration rate defined in Sec.1.1.1, we will now present how this criterion can be

optimised combining all three hydro, wind and solar power sources.

2.2. Optimal mixes: Definition and penetration rates

Hydro, solar and wind power exhibit different characteristics at all time scales. Thus, considering

a mix of those sources rather than single univariate ones is expected to reduce the variability of power

generation and to increase its match with energy load.

Following François et al., 2016, we now explore how PE and energy droughts characteristics can

be improved mixing CRE sources. To go from univariate power generation to energy mix, we use

three sharing coefficients representing the proportion of each energy source in the final mix (Hydro

power: sH ; Wind power: sW ; Solar power: sH). These coefficients fulfil the following condition:

sPV + sW + sH = 1. Then, a daily power generation series Pmix is computed following Eq.III.3.
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Figure III.4 – Regional inter-energy sources and energy-demand Spearman correlation coeffi-
cients. Non-significant correlation coefficients (95% confidence interval) are highlighted with a
cross symbol.

We will consider all possible combinations of energy sources, testing all values of each sharing

coefficient from 0 to 1. It includes the usual univariate options (e.g sPV = 1, sW = sH = 0) but also

the bivariate combinations (e.g sPV = 0.5, sW = 0.5, sH = 0) and trivariate series (e.g sPV = 0.33,

sW = 0.33, sH = 0.33).

Pmix(t, sPV , sW , sH) = sPV · pPV (t) + sW · pW (t) + sH · pH(t) (III.3)

Where

• Pmix(t): Power production from the energy mix

• pi(t): Standardized production of energy source i

• si: Sharing coefficient of energy source i

Various indicators could be used to measure the relevance of all possible energy mixes. We use

here the penetration rate defined previously (Eq.III.1). Comparing the Pmix series associated to all

possible sPV -sW -sH , the optimal sharing coefficients are the ones maximizing PE.

Here, we present the penetration rates of all possible energy mixes for the 12 European test

regions. The optimal CRE combinations, regarding this criterion, and their associated penetration

rates are also discussed. These results and figures are have been published in François et al., 2016

(Appendix.C).

First, Fig.III.5 illustrates, as an example, the penetration rates obtained with all possible CRE

combinations in GA. The optimal mix is identified with a black dot. The three dash lines show how
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Chapter III. Penetration rate of CRE sources and energy droughts

to find the three sharing coefficients from the maximum penetration rate point. In the current case,

it corresponds to sPV = 0.45, sW = 0.1 and sH = 0.45. From this graph, the univariate penetration

rates associated to the three energy sources can also be found at vertices. In GA, for instance,

investing on hydro power seems to be the most relevant single-energy option. Finally, the triangle

sides give the penetration rates of the bi-variate energy scenarios. For wind-solar power mixes for

instance (i.e. sH = 0), the best mix is reached combining 40% of wind power and 60% of solar power.

In GA, the optimal bivariate mix is achieved for a hydro-wind power mix (sW = 0, sH = 0.5 and

sW = 0.5, bottom side).
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Figure III.5 – CRE penetration rates (%) for all possible wind/solar/hydro power combinations
in Galicia. The energy production is supposed to be only based on CRE sources. The bottom
axis gives the share of solar power (sPV %), the left one the share of hydro power (sH %),
and the right one the share of wind power (sW %). Red, black and blue bullets correspond
respectively to a 100% solar, 100% wind and 100% hydro mix scenario. Horizontal gray lines
show mixes with the same wind share. 60° increasing (resp. decreasing) gray lines shows mixes
with the same solar power share (resp. hydro power share). The black dot corresponds to the
optimal mix, i.e. the mix giving the highest penetration rate. The dash lines indicate the sharing
coefficient of this optimal mix. Extracted and adapted from François et al., 2016

We discuss now the results for all 12 test areas and the inter-regional variability of the optimal

energy mix. On Fig.III.14 are displayed the penetration rates of all energy sources combinations

in Europe. Firstly, one can see that the maximum penetration rate is not constant across the

continent. There is a NE-SW gradient with values going from 80% in FI to 90% in AN and 92% in

GR. Similarly, the three sharing coefficients also vary in a logical way between regions. From the

Mediterranean basin (GR, TU, AN) to western continental Europe (GA, FR, GE), hydro and solar

power share most of the electricity production out and the contributions of wind turbines range only

from 10 to 20%. Two regions, IT and RO, have a rather balanced distribution of power production

between sources. In northernmost regions sPV drops, reaching only 5% in BE. These low values

of sPV are balanced with higher hydro power contributions in BE, EN and FI. Finally, NO is the

only region where sW prevails over the other sharing coefficients. The optimal regional coefficients

and their associated penetration rates are summed up in Tab.III.1. In the following study, they

will be referred to as the ”optimal mixes 1” (OM1). Many past studies focused on combining solar

and wind power [Denault et al., 2009; Von Bremen, 2010]. The analysis performed by François et

al., 2016 and presented here proved that introducing a third energy source (run-of-the-river hydro
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2. Multi-sources

power) significantly improves the penetration rate. Thus, regarding our evaluation criterion, a multi-

sources integration of renewable energy in Europe leads to a more efficient energy supply system. It

contributes to achieving a better synergy between energy generation and power load.

To further compare single sources, bi- and trivariate energy mixes, we will also evaluate the regional

energy combination proposed by Von Bremen, 2010 and hereafter refered to as OM2. Based only

on wind and solar power, this optimal energy share has been computed minimizing the variability

of energy load residuals (load minus production) at the European scale. Gridded data of electricity

production in Europe have been used in an unlimited cross-border power transmission context. In

this configuration, the entire European continent has been considered as a whole, allowing also a

spatial balance. The detailed methodology can be found in Von Bremen, 2010. We will use the best

sharing coefficients corresponding to the optimised daily residual load (OM2): sPV =0.6 and sW=0.4.

The associated penetration rates are presented in Tab.III.1. As expected, there are (from 1 to 8%)

lower than for OM1.
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Figure III.6 – CRE penetration rate (%) as a function of the wind/solar/hydro mix for all 12
European regions. See Fig.III.5 for caption details. Extracted and adapted from François
et al., 2016
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Chapter III. Penetration rate of CRE sources and energy droughts

Table III.1 – Optimal energy sharing coefficients and regional penetration rates (%) for OM1
(wind/solar/hydro and OM2 (wind/solar).

Region ID OM1 OM2

sPV sW sH PEOM1 sPV sW PEOM2

EN 0.2 0.15 0.65 88

0.4 0.6

80

NO 0.15 0.50 0.35 82 78

FI 0.15 0.35 0.5 80 72

FR 0.45 0.15 0.4 88 83

GE 0.35 0.15 0.5 87 80

BE 0.05 0.3 0.65 82 76

GA 0.45 0.1 0.45 89 84

IT 0.3 0.35 0.35 85 84

RO 0.25 0.35 0.4 82 80

AN 0.5 0.1 0.4 90 86

TU 0.4 0.2 0.4 89 87

GR 0.45 0.1 0.45 92 87

2.3. Optimal mixes: Effects on energy droughts

The results presented in Sec.2.2 proved the relevance of combining multiple power sources to fulfil

the energy demand. However, this ”climatological” analysis does not account for the energy droughts

defined previously.

To assess the effect of a multi-sources integration on energy droughts, Fig.III.7 shows for three

representative regions and three of our droughts thresholds (100, 50 and 20%), the droughts charac-

teristics of all single sources (hydro, wind and solar power) and mixes (OM1 and OM2). In addition to

the mean duration and frequency of these droughts, the 10th and 90th percentiles provide information

on the inter-annual variability.

The first significant result on this figure is that mixing energy sources has a positive effect on

the most severe droughts. Indeed, the number and duration of severe droughts (SA ≤ 20%) are

significantly lessened by the combinations of CRE sources. Droughts sequences become rare and

short-lasting or even non-existent (AN - OM1). Considering the 50% SA threshold, OM1 leads to

a slight reduction of both number and frequency of energy droughts for most regions. However,

these improvements are less clear in Scandinavia (here NO). OM2 also gives weaker enhancements

compared to OM1. Finally, the number of days for which the balance between energy load and

electricity production is negative (100% threshold) remains unchanged, whatever the region. The

duration and frequency of these underproduction periods depend on the regional sharing coefficients

and are generally a compromise between the characteristics of all single sources involved in the energy

mix.

The assessment of inter-annual variations of energy droughts is a key element to quantify the risks

associated to renewable sources. Strong fluctuations from one year to the other could be hidden

when considering only the mean characteristics. The moderate 10th-90th percentiles intervals for

solar and wind power prove that these sources have a rather small inter-annual variability in droughts
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2. Multi-sources

characteristics. Conversely, following the strong inter-annual fluctuations of river discharge, droughts

duration and number vary greatly for hydro power. Mixing energy sources, despite a reduction of

mean droughts number and duration, does not necessarily result in a reduction of the inter-annual

variability, especially when hydro-power comes into play (OM1).
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Figure III.7 – Effect of using multi-sources on energy droughts. Mean number of drought episodes
versus mean drought duration associated to the 100, 80 and 50% SA thresholds. Results are
displayed for hydro-power (blue), solar-power (red), wind-power (orange), OM1 (green) and
OM2 (grey). The color scale gives the mean annual number of days under droughts conditions.
The vertical and horizontal bars give the 10th and 90th percentiles of mean annual drought
duration and number of drought sequences.

In addition to the mean and 10th-90th percentiles range, the annual maxima of droughts duration

have been computed for all regions, sources and mixes. As an illustration, the associated results are

presented (for NO, GE and AN) on Fig.III.8.

From a univariate point of view, the longest duration of hydro power droughts can change greatly

from one year to the other, with differences exceeding 100 days in most regions. For solar power, the

maximum annual drought duration seems to be mainly driven by day length. Consequently, it has

a limited inter-annual variability. Finally, the mismatch between wind power and energy demand

never exceeds two weeks and is relatively homogeneous in time and space.
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Chapter III. Penetration rate of CRE sources and energy droughts

The longest droughts associated to energy mixes are generally shorter than the ones of single CRE

sources. OM1 often gives the best results but its inter-annual variability is rather high.
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3. Spatial integration

As a second method to combine renewables in Europe, we will now assess how a spatial integration

can help building a more reliable energy supply system.

Similarly to what has been presented for the multi-source approach, we will first use inter-region

correlations to highlight some possible complementarity. Subsequently, we will evaluate the effects

of a spatial integration on both penetration rates and energy droughts.

3.1. Inter-regions correlations

3.1.1. Seasonal correlation coefficients

As a consequence of the natural spatial variations of climate, electricity production series from

non-neighbouring regions could complement one another. Firstly, using univariate inter-regions cor-

relation coefficients of seasonal series, we coarsely evaluate the spatial synchronism of energy sources

within Europe. Results are presented on Fig.III.9 for winter and summer seasons separately. For

each sub-plot, the arrangement of regions is optimised in order to cluster correlation coefficients of

the same sign.

• Winter

Only a few regions couples show anti-correlated hydro power series in winter. Nonetheless, high

levels of seasonal production in Scandinavian regions (FI and NO) could balance low ones in

souther Europe (AN-GR-GA and GR-GA-RO-FR). GA and GE but also BE and AN also seem

complementary.

Winter wind power generation is more region-dependent, leading to numerous anti-correlated

couples of regions. NO, GA, and AN are all involved in 5 possible regional combinations and

thus could balance seasons of low productions from many of other regions. GR and FI also
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3. Spatial integration

take part in 4 anti-correlated region couples.

12 combinations of regions have a significant anti-correlation in winter solar power generation.

GR and NO are brought to the forefront once again with respectively 5 and 4 negative corre-

lations.

Considering energy load, most European regions are significantly correlated and no relevant

combination of region can be established.

• Summer

The number of significant positive or negative correlation coefficients drops in summer. It is

more difficult to find a seasonal balance between regions. Only two couples are slightly anti-

correlated for summer hydro power: AN-EN and TU-EN. It is pretty much the same for wind

power with only NO being negatively correlated with FR and GE, or EN and GR balancing

each other. More possible combinations of regions exit for solar power. They generally bring

face to face one northern region (NO, FI or BE) with a Mediterranean one (TU, AN, IT).

Contrary to what has been said in winter, some significant inter-regions anti-correlation coef-

ficients can be found for summer energy load. Almost all the associated combinations involve

the electricity demand in EN which is negatively correlated to TU, AN, IT, FR and GA.

3.1.2. Combining regions

These results suggest that groups of regional energy generation or load series, with on one hand

significant intra-group correlations, and on the other hand significant inter-groups anti-correlation,

exist in Europe. Such groups of regions would present an attractive complementarity and would

make the integration of CRE sources easier.

Some conceivable options are presented on Fig.III.9, on maps highlighting two possible comple-

mentary groups of regions. These combinations have been built with a simple automatic stepwise

algorithm which uses the inter-regional correlation coefficients discussed previously to construct 2

complementary groups of regions as large as possible. The process abides to the following rules:

• It considers successively each couple of region from the highest anti-correlation coefficient to

the lowest.

• The highest anti-correlation determines to starting point of the process and thus, the first

member of each group.

• The integration of an additional couple of regions is validated if there is a configuration for

which each region is:

– In its own group:

i. correlated or non-significantly correlated with the other regions

– In its complementary group:

i. anti-correlated with at least one region

ii. anti-correlated or non-significantly correlated with all the others

The groups sizes and the regions making them up are very uneven from one energy source to the

other and also change from winter to summer. The most interesting results are for winter hydro and

solar power which involve respectively 8 and 9 regions and have balanced groups. In any other case,
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Chapter III. Penetration rate of CRE sources and energy droughts

the total number of regions is much smaller (Hydro and wind power, JJA) or else there is a strong

disequilibrium between the sizes of the two groups (Wind power, DJF ; energy demand JJA). It

should be noted that, due to the restrictive requirement of the stepwise construction, not all couples

showing anti-correlated series are included. Considering the summer energy load for instance, GE

has been excluded, despite its anti-correlation with AN, due to its positive correlation with IT, FR

and GA.

The previous analysis confirmed that a balance between renewables can be found using the partial

complementarity between European regions at seasonal time scale. However, it is necessary to go

further and assess the impact of this spatial integration on penetration rates and energy droughts.

3.2. Spatial aggregation: Functionning and penetration rate

Integrating the whole European continent in a single energy supply system would likely increase

the production/load match and thus lower the frequency and duration of energy droughts. We now

explore here these possible improvements.

We use a European energy mix gathering the electricity production and energy load from all 12

regions. We assume that there is no power loss due to energy transmission from one region to the

other. This simple ”copper plate” hypothesis has already been used in some previous works such as

in Von Bremen, 2010. Eq.III.4 presents how the European power integration was performed. The 12

regional power and energy load time series, used in the previous sections (i.e all normalised to 1), are

simply summed up. The European production and load time series are then used to calculate both

PE and SA as following:

PEEuro = (1−
∑
max(DEuro(t)− pi,Euro(t), 0)∑

DEuro(t)
) · 100

Where

• PEEuro: European penetration rate of energy source i

• DEuro(t) =
Europe∑

D(t): European energy load

• pi,Euro(t) =
Europe∑

pi(t): European power production with energy source i

A comparison between the PE rates of independent regions (average of 12 regional PE rates) and

of the ”European copper plate” is presented in Tab.III.2. For all energy sources and mixes, using the

complementarity between regions improves the match between production and load. However the

magnitude of these changes is uneven from one source to the other. Solar power does not benefit

much from the spatial integration. This variable suffers from a strong spatial synchronism of low

production periods which are mainly driven by day length. Hydro power, wind power and OM1

exhibit a large improvement of their penetration rates (+8%). It now reaches 94% for OM1, proving

the efficiency of both multi-sources and spatial integration to build a reliable energy supply system.

The PE rate of OM2 has also been increased but only by 5% due to the large proportion of solar

power in this mix.
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Figure III.9 – Inter-regions correlation coefficients for the three CRE sources and energy demand.
Non-significant correlation coefficients (95% confidence interval) are highlighted with the cross
symbol.
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Chapter III. Penetration rate of CRE sources and energy droughts

Table III.2 – Penetration rate (PE) at a European scale considering independent regions (average of the 12
regional PE) and an European perfect grid. Results are presented for all energy sources and
mixes.

Energy source PE (%) - Independent regions PE (%) - European grid

Hydro 73 91

Wind 69 87

Solar 73 74

OM1 86 94

OM2 81 87

3.3. Spatial aggregation: Effects on energy droughts

On Fig.III.10 are presented the droughts characteristics of both regional and European series

associated to the 50% SA threshold for all energy sources and mixes.

• There are rather few regional hydro power droughts but their durations range from 15 to 80

days on average. Integrating at a European scale greatly reduces the mean drought duration

to a week. The number of occurrence also drops to one sequence per year.

• Wind power droughts have very similar characteristics from one region to the other with about

50 2-day long episodes per year. The spatial integration helps to balance the European energy

load and leads to much fewer droughts episodes (' 10).

• Spatially integrating solar power production reduces the number of energy droughts. However,

the remaining ones are long lasting and their mean duration exceed a month. In most European

regions, energy droughts occur in winter and are driven by day length. Logically, they are mostly

synchronised. Southern regions (AN, TU, GR), which have a moderate day length annual cycle,

are not able to balance the low solar power production in northern Europe.

• Considering the energy mix OM2, gathering both solar and wind power at a European scale

moderately improves the droughts attributes.

• Including also hydro power (OM1), leads to very short and rare drought episodes. Their

frequency drops to 0.1, meaning that several years can flow by between two drought sequences.

This very last result proves that the more integrated electricity production series are (i.e multi-

variate and at a European scale), the better for reducing the drought hazard.

In conclusion, these results demonstrate the efficiency of the spatial integration to increase PE

and limit the risks associated to energy droughts. For all sources and mixes (except solar power)

all the evaluation criteria are improved. The ones of OM1, which rely on all energy sources (hy-

dro/wind/solar), are particularly satisfactory, encouraging to use both methods of integration, spatial

and multi-sources.
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Figure III.10 – Effect of a spatial integration on drought characteristics. Mean number of drought
episodes versus mean drought duration associated to the 50% SA rate threshold. Results
are displayed for hydro-power (blue), solar-power (red), wind-power (orange), OM1 (green)
and OM2 (grey). The color scale gives the mean annual number of days under droughts
conditions. Light colors correspond to regional droughts while dark ones are associated to
European droughts.

4. Storage

4.1. Functioning ans penetration rates

The intermittence of CRE sources and the mismatch that exists between them and energy load

either leads to over or underproduction. Storage systems, such as water reservoirs (for hydro power)

and batteries, are another option to balance low production values with the energy surplus from

previous days. As mentioned in Chap.I, many past studies explored this option for the integration

of renewables. In this subsection, we assess the effects of energy storage on the penetration rates of

all energy sources and mixes. We will also focus on energy droughts and on the possible lowering of

their mean frequency and duration.

We consider 4 different storage systems with different storage capacities corresponding respectively

to 1, 7, 30 and 90 days of mean energy load (Eq.III.4.a). The energy transfer from and toward the

storage system is done on a daily basis. Depending on both current electricity production and energy

load, the storage system either fills up or runs out (Eq.III.4.c). When necessary and possible, it

supports the daily power generation and helps to meet the daily energy load (Eq.III.4.d).
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(a) Smax = λ · 〈D(t)〉

(b) ∆(t) = Pi(t)−D(t)

(c) S(t) =

 min(S(t− 1) + ∆(t), Smax) if ∆(t) > 0

max(S(t− 1) + ∆(t)), 0) if ∆(t) < 0

(d) SA(t) =


1 if ∆(t) > 0

1 if ∆(t) < S(t− 1)

1− ∆(t)+S(t−1)
D(t) if ∆(t) > S(t− 1)

(III.4)

Where

• D(t): Daily energy load

• 〈D(t)〉: Mean daily energy load from 1983 to 2012

• λ ∈ {1, 7, 30, 90}: dimensioning

• Pi(t): Daily energy generation

• ∆(t): Power mismatch

• S(t): Storage level

• SMax: Maximum storage capacity

• SA(t): Daily satisfaction rate

The changes in PE using storage systems of different sizes are presented on Fig.III.11. Note that

these simplified systems do not account for the energy loss due their limited technical efficiency.

Both solar and hydro power are weakly sensible to small storage capacities (1 and 7 days). It is

only using a 30-day or 90-day based storage that a large increase in penetration rate is noticeable.

This result is consistent with the previous analysis revealing that PE has a strong seasonality for

both hydro and solar power. In southern regions (AN, TU, IT, GR) a solar based energy supply

paired with a large storage capacity (90-day) achieves penetration rates close to 100%. On the other

hand, 90% PE rates are barely reached with a seasonal storage of hydro power in Scandinavia and

in the Mediterranean basin.

Wind power penetration rates increase quickly and from the daily-based storage capacity. PE

values greater than 90% are already reached with a 7-day based storage system. The seasonal

storage gives an almost perfect match between energy generation and energy load.

OM1 and OM2 had much higher global penetration rates than single energy sources when no

storage was used. Logically, the increase in PE due to the introduction some storage is more gradual.

However it still leads to PE values close to 100% for a seasonal capacity. In some regions (FI, BE,
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RO), when a weekly to a seasonal storage capacity is used, it is also interesting to note that the single

wind power source gives better penetration rates than OM1 and OM2.
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Figure III.11 – Effects of storage on global penetration rate. Results are displayed for hydro-power
(blue), solar-power (red), wind-power (orange), OM1 (green) OM2 (grey). The storage capacity
varies from 0 to 90-day (cf. Eq.III.4).

4.2. Storage: Effects on energy droughts

Fig.III.12 presents the effect of storage on the energy droughts attributes.

In most regions, hydro power droughts are persistent. Small size storage systems do not lead to

a significantly reduction of droughts severity. Nevertheless, the seasonal based size (λ = 90) is more

efficient and lowers both duration and number of drought sequences. The same comments can be

made about solar power. However, regions in northern Europe still suffer from long and numerous

solar power droughts even with large storage systems. Conversely, these critical periods are almost

all removed in IT, AN, TU and GR.

For all three wind power, OM1 and OM2, storage systems help reducing the number of drought

episodes. Only a few of them remain with λ = 90. When large storage are involved, results are

very similar for OM1 and the univariate solar or wind power sources (FI, BE, RO, AN, TU). The

hydro power contributions in the tri-variate energy mixes slightly limit the positive effects of storage

systems for OM1.
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Figure III.12 – Effect of storage on droughts characteristics. Mean number of drought episodes versus
mean drought duration associated to the 50% SA threshold. Results are displayed for hydro-
power (blue), solar-power (red), wind-power (orange), optimal mix (green) and wind-solar
European mix (grey). The points associated to the same energy source but to different storage
capacities have been connected in a logical order from from λ = 1 to λ = 90. The color scale
gives the mean annual number of days under droughts conditions.
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5. Over-sizing

5.1. Functioning ans penetration rates

Previously, we performed a standardization of the electricity production series considering a bal-

ance between mean production and mean energy load over the 1983-2012 period. Hence, we implicitly

chose and fixed the power plants dimensions. Deliberately over-sizing the power stations is another

option that can be used to increase the penetration rate of CREs and reduce the duration and number

of drought sequences.

Eq.III.5 shows how the penetration rate computation is modified when changing the size of power

plants. The µ coefficient varies from 1 (no over-sizing) to 2 (double power production).

PE = (1−
∑
max(D(t)− µ · pi(t), 0)∑

D(t)
) · 100

(III.5)

Where

• PE(t): Penetration rate of the energy source i

• D(t): Energy load

• µ ∈ {1, 1.1, 1.2, 1.5, 2}: Over-sizing coefficient

• pi(t): Standardized power production with energy source i

The penetration rates associated to the different over-sizing coefficients are presented on Fig.III.13

for all regions, all energy sources and mixes. Generally speaking, the increase in PE is gradual

and very similar for all energy sources/mixes. Doubling the equipment size leads to 15% higher

penetration rates. The ranking between sources is usually not changed. The highest PE values are

always found for OM1 and exceed 95%. It should be noted that, for µ > 1.2, the penetration rates

associated to wind power often increase more rapidly than with the other energy sources (GA, AN,

IT, TU, NO and GR).

5.2. Oversizing: Effects on energy droughts

Hydro power droughts are very faintly sensitive to the power plant size. Even for µ = 2, neither

the mean duration nor the number of droughts are significantly lowered. Low SA periods appear to

be severe and associated to very low daily SA values that cannot be balanced by adding more power

conversion equipments. Similarly, solar power droughts are weakly modified by larger power plants

in the most northern regions (EN, NO, FI and BE). However, their mean duration is lowered with

large equipments (µ ≥ 1.5) in central and western Europe. Their numbers drop for Mediterranean

regions. Low SA periods associated to wind power are rather brief. Thus, increasing the number of

wind turbines mainly impacts the number of droughts. This effect is more noteworthy for southern

regions. Finally, combining CRE sources on one hand and over-sizing their associated power plants

57



Chapter III. Penetration rate of CRE sources and energy droughts

An

Ga

En

Fr

No
Fi

Ge

Be

Ro
It

Tu

Gr

Oversizing coefficient

P
E

 (
%

)

Legend

1 1.1 1.2 1.5 2

100

90

80

70

60

Figure III.13 – Effect of over-sizing on penetration rate. Results are displayed for hydro-power (blue),
solar-power (red), wind-power (orange), OM1 (green) OM2 (grey). The over-sizing coefficient
varies from 1 to 2 based (cf. Eq.III.5).

on the other hand, efficiently lowers the number of energy droughts. The tri-variate mix (OM1) is

again the best choice for limiting low SA periods.

All in all, this assessment of the contribution of over-sized power plant to a more reliable integration

of renewables in Europe showed that it is a rather efficient tool. However, it is necessary to increase by

50 to 100% the equipment size to reach significant improvements of both penetration rates and energy

droughts characteristics. Even so, for some variables, over-sizing fails to reduce both frequency and

duration of energy droughts (Hydro power ; solar power - EN-NO-FI-BE). It is only when combined

with a multi-sources approach that most of these problematic periods are counterbalanced.
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Figure III.14 – Effects of over-sizing on energy droughts characteristics. Mean number of drought
episodes versus mean drought duration associated to the 50% SA threshold. Results are dis-
played for hydro-power (blue), solar-power (red), wind-power (orange), optimal mix (green)
and wind-solar European mix (grey). The points associated to different oversized power plant
but from the same energy source have been connected in a logical order from µ = 1 to µ = 1.5.
The color scale gives the mean annual number of days under drought conditions.
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Overview

In the two previous chapters, we presented the components and analysed the outputs of a suite

of models simulating CRE power production from weather observations (wind solar and RoR hydro

power). Combining an hydrological model, weather-energy and temperature-load conversion models,

it simulates the spatio-temporal fluctuations of electricity production and energy load resulting from

the hydro-climatic variability. Based on these simulations, we explore for 12 European regions how

several integration methods could take advantage of this spatio-temporal variability.

Hydro-climatic and renewables variability in Europe

The analysis of meteorological data, issued from gridded observations (temperature, precipi-

tation, sun radiation) or reanalysis from regional dynamic models (wind speed), highlighted the

strong spatial and temporal fluctuations of the CRE meteorological drivers.

These important variations are logically transmitted to the associated CRE sources. All time scales

(from daily to inter-annual periods) are impacted and there are also some large disparities between

European regions. These results suggest that some integration factors should be used to improve

the ability of CRE sources to meet the energy demand.

The integration of renewables

We used two criteria to evaluate the energy supply-load match and the possible improvements

obtained with a selection of integration methods. First, we considered the penetration rate (PE)

which quantifies the global proportion of satisfied energy demand. Then, we introduced the concept

of energy droughts, defined as a sequence of one or several consecutive days for which the percent-

age of daily satisfied load is lower than a given threshold. The frequency and duration of these

problematic sequences were compared for all CRE sources and integration options. These analyses

led to the following conclusions:

• Hydro and solar power give uneven and region-dependent penetration rates in Europe, ranging

from less than 60% to more than 80%. Their associated energy droughts are long lasting,

especially for hydro power and have strong seasonal and inter-annual variations.

• Wind power penetration rates are very similar between regions but limited (75%). The energy

droughts related to this source last less than a week but are also particularly numerous. Wind

power is weakly sensible to seasonal and inter-annual fluctuations.

• Combining CRE sources considerably improves the penetration rate. The regional PE values

associated to the optimal mix range from 80 to 92% and are significantly higher than for

single sources. The proportion of each energy source in the optimal mix changes a lot from

one region to the other, with a larger contributions of solar power in the Mediterranean basin

and of hydro power in northern and central Europe. However, it must be emphasised that

the energy mix only accounts for the temporal adequacy between electricity production and

energy load and not for the absolute resources in CRE. A multi-sources mix greatly reduces

both number and duration of the most severe energy droughts (SA < 50%)
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• Integrating CRE sources and energy load at a European scale increases the global penetration

rate by 8% for hydro power, wind power and OM1 (3-sources mix). It has weak effects on

solar power and OM2 (solar-wind mix) due to a strong seasonality and spatial synchronism

of solar radiation at a continental scale.

• Storage systems can contribute to a more reliable renewable integration. However, large

storage capacities (up to 3 months of mean daily load) are required if one wants to balance

the strong seasonality in both PE and energy droughts of hydro and solar power.

• Deliberately over-sizing regional power plants to balance the intermittence of CRE sources

gives moderate and gradual improvements in penetration rate. It does not lead to a reduction

of the duration and frequency of energy droughts, except if this method is combined with an

energy mix approach.
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ChapterIV
Downscaling methods

Since the development of numerical weather prediction models (NWP), global circulation models

(GCM) and climate reanalysis datasets, downscaling methods have been used to bridge the gap

between large scale and regional weather conditions. Indeed, the low spatial/temporal resolution and

the coarse surface topography of some climate models, prevent them from solving explicitly small

scale processes such as convection. As a consequence of these limitations, large biases often exist in

the models outputs. Thermodynamic variables such as precipitation and cloud cover are particularly

affected, as they result from complex and fine-scale processes. For most impact studies, information

about local weather conditions is required to drive other models (e.g hydrological models, energy

conversion models) or to taking into account the small scale variations of meteorological parameters.

All downscaling methods assume that synoptic meteorology affects regional conditions and use

this strong interdependence to predict local meteorological parameters. These methods can be used

to perform a temporal downscaling (going from daily to hourly data for instance) or a spatial one

(determining the weather at a specific station or increasing the spatial resolution over a limited area).

In this chapter, we present the main hypothesis and the functioning of the most classic downscaling

methods, either dynamical or statistical. We will particularly focus on the analogue method which

has been selected for the purpose of this thesis.
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1. Dynamical downscaling

Dynamical downscaling consists in using Regional Climate Models (RCMs) over a limited area.

RCM have a much higher resolution (classically raging from 10 to 50km) than GCMs and are conse-

quently able to reproduce smaller scale phenomena. Fig.IV.1 illustrates how a RCM is nested within

the global model grid. For non-spectral regional models, only a few large scale cells are used to force

its simulations at the domain boundaries. In the inner part, no synoptic information is assimilated

and the model is entirely free.

The main advantage of using RCMs for weather and climate downscaling is that it gives spatially

and temporally consistent information. RCMs simulations are based on physics equations for synoptic

and larger scale phenomenon. However, these models still include a large number of parametrisations

to take on board micro-scale and some meso-scale processes. They can still suffer from relatively

large biases and often need to be calibrated and/or post-processed (e.g. bias correction) so that

their outputs can be used in impact studies (e.g. in Hagemann et al., 2011; Teutschbein and Seibert,

2012). Dynamically downscaled climate reanalysis datasets and future scenarios from GCM also

require large computing resources. Despite the wide range of possibilities offered by clusters and

computing grids, the large number of GCMs, members and Representative Concentration Pathways

(RCPs) still makes running an RCM with all possible forcing data a demanding task.

Dynamical downscaling has been widely developed and used in past decades either from individual

initiatives or as part of collaborative projects. In a climate change framework, the PRUDENCE

project (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change

risk and Effects) was the first collaboration that aimed to produce high resolution scenarios from GCM

data over Europe. The ENSEMBLE project (ENSEMBLE-based predictions of climate change and

their impacts) took over from 2004 to 2009. It aimed to ”help inform researchers, decision makers,

businesses and the public by providing them with climate information obtained through the use of

the latest climate modelling and analysis tools”. The multi-model approach used in this project also

enabled the assessment uncertainty regarding climate scenarios. The outcomes of the project have

been published in a large number of specific international publications [Déqué et al., 2005; Christensen

and Christensen, 2007; Blenkinsop and Fowler, 2007; Boberg et al., 2009] and in a final report [Linden,

2009]. The European branch of the CORDEX project (COordinated Regional climate Downscaling

EXperiment), supports the development of numerous downscaled climate scenarios using 10 different

RCMs and a large variety of GCMs and RCPs as input data. Simulations are performed at 0.11°or

0.44° resolution for a domain covering the entire European continent and the Mediterranean basin.

The production of regional scenarios in the frame of EURO-CORDEX is still ongoing but many of

them are already available for use or presented in publications [Jacob et al., 2014; Kotlarski et al.,

2014].

2. Statistical methods

As an alternative to dynamical downscaling, statistical approaches have been widely used in recent

years. Despite the initial effort that has to be made for their construction, they allow users to
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Figure IV.1 – Nesting of a Regional Climate Model (RCM) into a Global Circulation Model
(GCM). The black grid corresponds to the RCM. The red grid, belonging to the GCM, is
used as boundary conditions to drive the RCM. The others nodes (red dots) are not used as
forcing data. Initial globe picture from Google Maps.

downscale without too much computational effort, a large amount of climate data. They are based

on the strong connections that exist between large scale meteorological information and regional

weather. The establishment of these relationships requires a long historical period for which both

synoptic weather and local observations are available. After identifying which large scale variables

are the most relevant for the prediction of local weather (i.e the ones having the strongest predictive

skills for the local variables of interest) on this historical period, local meteorological parameters can

be estimated for past and future decades from GCMs or climate reanalysis datasets. In statistical

downscaling studies, these optimal large scale variables are called predictors while the local weather

parameters that have to be predicted are referred to as predictands.

The simple implementation of statistical downscaling should not detract attention from the as-

sumptions that have to be made to use these methods in a climate change context. Indeed, it is

assumed that the GCMs predictors are of good quality and that they carry the climate change sig-

nal. Moreover, to be relevant under different climate conditions, the relationships between predictors

and predictands must be stationary. Some statistical method such as the analogue method (described

in the following section), also use the historical predictands database to generate future regional se-

ries. In consequence, this approach makes the hypothesis that the past probability distributions of

predictands are still relevant in a warmer climate. These different assumptions will be examined in

the last chapter of this manuscript.

There are three main categories of statistical downscaling methods:

• Weather generators are used to construct, via a stochatic generation process, single or multi-

sites time series of predictands based on the distributional properties of observed data. These
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characteristics, and consequently the weather generator paramatrisation, are usually deter-

mined on a monthly or seasonal basis to take seasonality into account. They can also be

estimated for different families of atmospheric states, often reffered to as weather types. A

state of the art of the most common methods which have been used for the downscaling of

precipitation (single or multi-site) is presented in Wilks and Wilby, 1999 and more recently in

Maraun et al., 2010. More recent publications gather detailed reviews of some sub-categories of

weather generators ([Ailliot et al., 2015] - hierarchical models). An increasing number of studies

also focus on the generation of multivariate downscaled series of predictands [Steinschneider and

Brown, 2013; Srivastav and Simonovic, 2015]. However, the development of weather generators

and their calibration using observed distributions can become tricky when several sites and/or

predictands are involved. The spatial and multivariate cross correlations are not systematically

well represented and the weather generator often has to be adapted.

• Transfer functions directly exploit the statistical link between predictors and predictands. Var-

ious functions can be used to model this relationship from a predictor-predictand simple linear

regression [Goyal, Ojha, et al., 2010] to Generalized Linear Model [Pulquério et al., 2015] and

non-linear regression such as Generalized Additive Model [Vrac et al., 2007] and more com-

plex ones [Olsson et al., 2001]. The method enables the adaptation and the interpolation of the

predictands simulations to predictors values that would exceed the historical range. Various pre-

dictands have been downscaled using regressions such as temperature and precipitation[Jeong

et al., 2012], radiation and evapo-transpiration [Fealy and Sweeney, 2008], wind speed [Kirch-

meier et al., 2014] and even extreme precipitation indices [Hertig et al., 2014]. However, using

transfer functions simultaneously for several predictands and/or sites becomes a tough task if

one wants to preserve spatial and cross-predictands correlations.

• The last family of statistical downscaling methods is based on weather classification [Willems

and Vrac, 2011; Goodess and Palutikof, 1998]. The information on the synoptic atmospheric

state, enclosed in the chosen set of predictors, is used to identify similar large-scale situations in

the historical database. The observed local weather on these meteorologically similar days are

then assumed to be relevant predictands values on the target day. The additional requirement

of these downscaling approaches, compared to weather generators or transfer functions, is that

the historical database must be long enough to represent the full variety of possible synoptic

weather patterns. When the historical database is first scanned in order to perform a clustering

of synoptic situations, the method is based on weather types. In this case, each target day is

assigned to one group and all predictands values within this group are considered as plausible

local scenarios. An extension of this method, which does not use weather classes, consists in

1) identifying the most similar large-scale situations to the target day in the whole archive and

2) using their associated local observations of predictand as plausible predicted values. It is

referred as the analogue method.

Using statistical downscaling methods, the relationship between synoptic information and local

weather that we take advantage of is not univocal. For the same large scale atmospheric state,

several values of predictand are plausible. Indeed, some mesoscale or even smaller phenomena also

come into play and affect local weather conditions. The best illustration of this small scale variability
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is probably the example a typical summer day in a mountain area. A local storm driven by mountain

breeze results in strong temperature and precipitation gradients over a short distance. For the same

synoptic conditions, this local storm is equally likely to affect two neighbouring valleys. It is possible

to take into account the small scale variability of local weather with ensemble or probabilistic versions

of downscaling methods. Using the weather classification approach, it consists in selecting several

days from the same weather class. Using an analogue method, the ensemble prediction of any target

day is obtained from the k-nearest analogues and not only from the best one.

3. Zoom in on the Analogue method

3.1. Functioning and state-of-the-art

As part of the statistical downscaling methods group, the analogue approach hypothesises that

local weather parameters are steered by synoptic meteorology. A set a relevant large scale predictors

is used to describe synoptic weather conditions. Fig.IV.2 illustrates how local weather predictions

are generated. From the atmospheric state vector, characterizing the synoptic weather of the target

day, analogues are identified in the available climate archive. Then, the analogue method makes the

assumption that similar large scale conditions have the same effect on local weather. The key element

of the analogue method is that it does not require making assumption on the probability distributions

of predictands. This is a noteworthy advantage for predictands, such as precipitation, which have a

non-normal distribution with a mass in zero. However, resampling observations induces a restriction

of the range of predicted values. This can be problematic in a climate change context and will likely

lead to erroneous projections if large scale climatic conditions undergo strong modifications.

Since the description of the concept of analogy by Lorenz, 1969, the analogue method has gained

popularity over time, for climate or weather downscaling. Table.IV.1 sums up, over the 5 last years,

a selection of studies which used the analogue method. Many regions worldwide are represented but

most of these studies focused on mid-latitudes areas, where the relationship between synoptic and

local weather is often more robust. Nervertheless, Hwang and Graham, 2013 and Farajzadeh et al.,

2015 applied this method in humid and dry sub-tropical zones respectively. Surmaini et al., 2015

even used analogues in Java, where tropical conditions prevail. Many studies also focused on the

mediterranean area. Their main findings have been gathered and summed up by Jacobeit et al.,

2014.

Initially focusing on precipitation and temperature downscaling, analogues are increasingly used

for other local variables such as wind, humidity or even more complex indices related to wild fire

[Abatzoglou and Brown, 2012; Casanueva et al., 2014]. They put emphasis either on efficiently

reproducing the predictands time series or on accurately simulating the occurence and intensity of

extreme events (e.g. in Horton et al., 2012).

These studies are addressing a wide range of questions from past climate variability to future

scenarios. They also focused on the operational forecasting of predictands, extreme events or more

complex weather-driven phenomena, such as flood [Marty et al., 2012; Marty et al., 2013], wild fire

and agricultural production [Surmaini et al., 2015].
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Table IV.1 – Selection of recent studies (last 5 years) using the analogue method for downscaling. The table
gathers the test regions, the predictands, the predictors and the main objectives of these studies.
Pr-Precipitation ; T-Temperature ; WS-Wind Speed; ET-Evapo-transpiration ; Tmin-Minimum
Temperature ; Tmax-Maximum Temperature ; EPT-Equivalent Potential Temperature ; DIV-
Horizontal Divergence ; VV-Vertical Velocity, SLP-Sea Level Pressure ; LCL-Lifting Condensation
Level ; Q-Specific humidity ; QFX-Module of Moisture Flux ; TTI-Totals Total Index ; RH-
Relative humidity; Z-Geopotential, U-Zonal Wind ; V-Meridional Wind ; SKT-Surface Skin
Temperature; TCW-Total Column Water ; PW-Precipitable Water ; VOR-Vorticity

Reference Studied
region Predictand(s) Predictor(s) Prediction

type Context

Caillouet et al.,
2016

France Pr, T
T925, T600, Z500, Z1000,
VV850, PW, RH850, T2m
(Common)

Probabilistic
20th century reconstruc-
tion

Daoud et al., 2016 SE France Pr EPT, DIV, VV Probabilistic
probabilistic quanti-
tative precipitation
forecasting

Dayon et al., 2015 France Pr
Pr, SLP, T2m, LCL,
QFX850, TTI, Q850

Deterministic
Transferability in future
climate

Surmaini et al.,
2015

Western Java Pr U850, V850 Probabilistic
Drought prediction and
impact on rice paddies

Chardon et al.,
2014

France Pr Z500, Z1000, RH850 Probabilistic
Spatial transferability of
analogue dates

Casanueva et al.,
2014

Spain, Croatia

Fire Weather
Index, Physiolog-
ical Equivalent
Temperature,

SLP, T2m, R850, Q850,
T850, U850 and V850,
Z500 (Predictand-specific)

Deterministic

Comparison of down-
scaling method on past
decades + future trend
of FWI and PET

Farajzadeh et al.,
2015

Mid-West of
Iran

CLIMDEX Indices
(T, Pr)

HGT700, T700, U700,
V700, HGT850, T850,
U850, V850, Pr, Tx, Tn
(Predictand-specific)

Deterministic
Comparison with sev-
eral other downscaling
methods

Gutmann et al.,
2014

Western US Pr Coarsened Pr Probabilistic
Comparison with other
downscaling method for
hydrological purpose

Mart́ın et al., 2014
Ireland, Den-
mark, Germany

WS SLP Probabilistic
Wind power production
estimation

Pierce et al., 2014 Western US Pr, T
Large-scale Pr and T
(Predictand-specific)

Deterministic
Produce consistent field
of Pr an T for hydrolog-
ical purposes

Charles et al., 2013 SE Australia Pr SLP, V850, Pr Deterministic
Downscaling of GCM
(historical period)

Hwang and Gra-
ham, 2013

Florida Pr
Coarse-scale bias-
corrected Pr

Deterministic
GCM downscaling. Fo-
cus on spatial-temporal
correlation.

Radanovics et al.,
2013

France Pr
T925, Z1000, VV850,
RH850xTCW

Probabilistic
Spatially coherent pre-
cipitation

Valero et al., 2014 Spain Daily wind gusts Z1000 Probabilistic
Forecasting strong wind
gusts

Horton et al., 2012 Swiss Alps Pr Z500, Z1000, RH Probabilistic
Local precipitation
forecasting. Extreme
events.

Tian and Martinez,
2012

South-Eastern
USA

ET Large-scale ET Both
Comparison of two ana-
log methods

Abatzoglou and
Brown, 2012

Western US
Tx Tn T, Td, WS,
Pr (Predictand-
specific)

Predictands at low resolu-
tion

Probabilistic WildFire prediction

Marty et al., 2012
Cevennes -
France

Pr Z500, Z1000, PW, RH850 Probabilistic Flash flood forecasting
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Synoptic weather   
= PREDICTOR(s)  

Local weather   
= PREDICTAND(s)  

Figure IV.2 – Principles of the analogue method. From the synoptic weather of the target day, analogues
are identified within the available climate archive. The local weather on these analogue days are
then used as weather scenarios for the target day.

3.2. The choice of the predictors set

The keystone of an effective downscaling with analogues lies in a relevant choice of predictors.

The most pertinent large scale information is expected to depend on the predictand, the climate

conditions over the test region and possibly on the season. Two main branches about the choice

of the predictors set exist. The first one consists in using the large-scale values and/or fields of

predictand as predictors. This can be done, for instance, comparing the precipitation fields from

GCMs with the coarsened ones from observations [Gutmann et al., 2014]. Consequently, it assumes

that two similar synoptic precipitation patterns give similar local rainfall (or snowfall) amounts. This

choice has been made for other variables such as temperature [Pierce et al., 2014], evapotranspiration

[Tian and Martinez, 2012], dew point temperature and wind speed [Abatzoglou and Brown, 2012].

The second option for the choice of predictors takes advantage of some other meteorological pa-

rameters whose large scale features drive the predictand of interest. Classically, these parameters are

also expected to be better simulated than low-resolution predictands, as synoptic and larger scale

phenomena are explicitly modelled (no parametrisation) by GCMs. Geopotential, sea level pressure

and zonal/meridional components of wind are widely used, as they inform on air flow direction and

on the positions of low and high pressure systems. Other dynamic predictors such as vertical ve-

locities and divergence help locating fronts and are often picked up as predictors for downscaling

of precipitation [Caillouet et al., 2016; Daoud et al., 2016]. Thermodynamic variables usually pro-

vide additional support, bringing information on the atmosphere water content through relative and

specific humidity, total column water or precipitable water.
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3.3. The small scale variability using analogues

The analogue method can be used in different ways to generate local series of predictands. If

one is only interested in building a single daily prediction or regional series, the procedure consist

in selecting only the best analogue of each target day. In this case, the downscaling method is

deterministic (e.g in Farajzadeh et al., 2015; Pierce et al., 2014).

As the relationships between predictors and predictands are not univocal, the same large scale

state can result in several local weather conditions from the intervention of small scale atmospheric

processes. In order to take on board this source of variability, the analogue method can be used in

a probabilistic or ensemble way. It is probabilistic when the observations associated to the k-nearest

analogues are used to estimate, for each target day, the probability distributions of predictands [Bon-

tron, 2004; Daoud et al., 2016; Chardon et al., 2014; Horton et al., 2012]. An ensemble of stochastic

predictions is obtained when randomly selecting multiple analogue days from the k-nearest analogues

sample and using the associated observations to generate multiple and equi-probable downscaled se-

ries of predictands [Lafaysse et al., 2014]. In the following downscaling application, we selected this

approach, as it offers the possibility of working with an ensemble of regional series and of quantifying

the contribution of small scale variability to the global fluctuations of climate.

4. Statistical multivariate downscaling

4.1. Tackling the multivariate issue

The simultaneous generation of time series associated to several predictands is not straightforward

when using statistical downscaling methods. Contrary to RCMs, which guarantee the physical consis-

tency between local meteorological variables, statistical methods are often optimised in a predictand

specific way.

Weather generators have usually tackled the multivariate issue performing first a downscaling of pre-

cipitation and conditioning the other variables to this prediction [Abdulharis et al., 2010; Fatichi et

al., 2011]. Yet, some weather generators account for the inter-dependency between local predictands

[Steinschneider and Brown, 2013; Srivastav and Simonovic, 2015] but require an accurate knowledge

of the covariation between these variables. It is often difficult to assess these relationships from

observations and subsequently to take them into account in the model.

Copula can be used to adapt transfer functions for the simulation of correct inter-variable correla-

tions [Alaya et al., 2014] but this method still needs to be further explored. Some regression-based

methods also handled multivariate downscaling by combining univariate predictors-predictand re-

lationships with a stochastic component which aims to reproduce the co-variations between local

variables [Khalili et al., 2013]. This was also done to obtain correct multi-sites or temporal correla-

tions in [Mezghani and Hingray, 2009]. In spite of everything, these methods require a large amount

of preliminary work to ensure correct interdependence between variables.

Weather classification and analogue methods offer a simple way of generating consistent multivariate

series: For a given target day, if all predictands are sampled from the same analogue, their physical

consistency is automatically guaranteed. Several studies used this approach to ensure the relevance
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of their multivariate predictions (e.g. in Boé et al., 2006; Lafaysse et al., 2014, or Abatzoglou and

Brown, 2012 for minimum, maximum and dew point temperatures). However, to use such a method,

it is necessary to find a set of relevant common predictors to avoid a deterioration of the prediction

skills.

4.2. Motivation and requirements for this study

In the context of the integration of renewables, climate reanalysis datasets and GCMs can help

characterising both low frequency variations and future trends of CRE sources. Downscaling methods

are required to generate scenarios of meteorological drivers at a relevant spatial scale.

The main challenge to take up is that the downscaled regional series must guarantee both relevant

probability distributions of predictands and correct inter-variables correlations. In this way, power

production coming from different energy sources can be compared and analysed simultaneously (cf.

Chap.III). As mentioned previously, building a multi-variate linear regression for downscaling is an

arduous task. Thus, our choice leaned in the direction of the analogue method. This method requires

some preliminary effort on the choice of predictors. Thus, we will explore for the 12 test regions,

the setting up of a multivariate downscaling, using the analogue method. We will look for the

best configuration regarding both prediction skills and inter-predictands consistency. The associated

results have been published in Raynaud et al., 2016, Int. J. Climatology. This article is presented

in the following chapter. The outcomes of this study lie in the development of SCAMP (Sequential

Constructive Atmospheric Analogues for Multivariate weather Predictions). SCAMP is a hybrid

analogue downscaling method based on multiple analogue sub-models. It is able to generate accurate

multivariate predictions of local predictands. SCAMP is used in Chap.VI to explore the past climate

variability of the 20th century and in Chap.VIII/IX to generate future scenarios of local weather

conditions.
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1.1. Abstract

The present study compares the multivariate predictions of daily temperature, temperature range,

precipitation, surface wind and solar radiation of a single-model analogue approach with an original

multi-model analogy over 12 regions in Europe and Maghreb. Both approaches are based on two-

level analogue models where atmospheric predictors are either dynamic or thermodynamic. In the

multi-model approach, independent analogue models with predictand-specific predictors are used. In

the single-model one, a unique analogue model and its associated set of predictors is applied to all

predictands.

Testing numerous large scale predictors, we first identify the best predictor sets for each modelling

strategy. Those obtained for the single-model approach are significantly different from those of the

predictand-specific models. This is especially the case for local temperature and wind speed. Both

methods perform similarly for precipitation, temperature range and radiation.

We next assess the ability of both approaches to simulate physically coherent multivariate weather

scenarios. With the single-model method, weather scenarios are obtained for each prediction day

from observations sampled simultaneously on one analogue day. The physical consistency between

variables is thus automatically fulfilled each day. This allows the single-model method to reproduce

well the observed inter-predictand correlations, especially the significant correlations between radia-

tion and precipitation and between radiation and temperature range. These results suggest a hybrid

analogue model using a single-model for radiation, temperature range and precipitation, combined

with a univariate approach for wind. Two options are proposed for temperature for which either the

predictand-specific method or a single-model approach with an additional correction are conceivable.

This hybrid approach leads to a possible compromise between reasonable univariate prediction skills

and realistic inter-predictands correlations, both classically required for many impact studies.
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1.2. Introduction

Characterizing and understanding the impact of climate variability on regional environmental

systems has received increasing attention in different fields of Geosciences, such as Hydrology, Agro-

forestry or Ecology. Other domains such as Green Energy are also coming into play as a result of the

massive development of renewables. In addition, numerous regional studies aim to assess the future

long-term effects of climate change resulting from anthropogenic forcing [IPCC, 2013]. Other studies

focus on past decades or on the 20th century to better describe and understand the multi-decadal

variations which are characteristic of Climate internal variability [Kuentz et al., 2014]. Toward this

goal, global reanalysis of the Earth system for the whole 20th century [Compo et al., 2011; Poli et al.,

2013] and general circulation models (GCM) are used and provide useful information on weather at

synoptic scale. However, their coarse spatial resolution prevents them from simulating relevant local

weather conditions credibly. Consequently, reanalysis data and GCM outputs are of limited use for a

number of regional studies without adjustments. Downscaling and bias correction methods are used

to tackle the scale issue and many of them have been developed in the recent decades (see review of

Maraun et al., 2012).

Using GCM or reanalysis data as boundary conditions, dynamic downscaling allows simulation of

climate conditions over a limited spatial domain with a higher resolution of typically a few dozen

kilometres [Jakob et al., 2006]). Dynamical downscaling models offer physical, spatial and temporal

consistency between simulated local variables. However, some of their outputs such as precipitation

or incoming solar radiation often suffer from large biases resulting from the parametrizations re-

quired to simulate sub-grid atmospheric processes. Dynamical models classically also require a large

computational effort when a large ensemble is downscaled. This is particularly the case for the last

CMIP5 project which gathers control, historical and future climate ensemble members of numerous

GCMs. This also applies to the reanalysis datasets of the 20th century for which multiple members

are available to characterize the uncertainty in the reconstructions.

Statistical downscaling models (SDMs) are an alternative for constructing local weather conditions

from large scale simulations with lower computational cost. SDMs are simpler and easily imple-

mentable models based on the often strong physical relationships that exist between some large scale

atmospheric parameters and local weather variables. Different SDMs have been developed in recent

decades, including weather generators and so-called ”perfect prog” approaches such as transfer func-

tions and analogue methods [Maraun et al., 2012]. They are used to generate regional weather series

from GCMs outputs [Hanssen-Bauer et al., 2005; Timbal et al., 2009; Lafaysse et al., 2014], to recon-

struct past weather conditions from atmospheric reanalysis data [Wilby and Quinn, 2013; Kuentz et

al., 2015] or to produce probabilistic weather forecasts from weather forecasting models [Obled et al.,

2002; Marty et al., 2012]). Other applications such as weather generation [Buishand and Brandsma,

2001; Yiou, 2014] and detection/attribution of climate trends can also benefit from SDMs [Vautard

and Yiou, 2009; Stott et al., 2016]. They have also been used to detect problematic climate condi-

tions in vulnerability analyses [Steinschneider and Brown, 2013]. Most SDMs have been developed

for the simulation of precipitation and temperature time series as main hydrometeorological drivers.

In recent years, SDMs often include additional meteorological variables such as relative humidity,

wind speed, potential evaporation, solar radiation and extreme temperatures [Timbal et al., 2009;

Fealy and Sweeney, 2008]. These parameters are useful for impact studies which are sensitive to the
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variability of hydrometeorological variables. In a multivariate simulation framework, a key challenge

is the generation of weather scenarios that are relevant from both statistical and physical point of

views, as regards 1) space-time variability of individual predictands and 2) space-time covariability

between predictands. An accurate multivariate covariability simulation is, for instance, a critical

requirement for impact studies in snow dominated areas where river discharge, avalanches but also

landslides and ground stability are strongly influenced by the joint effects of elevation, precipitation

and temperature [Jakob et al., 2006; Jomelli et al., 2007]. The covariability between weather variables

is also decisive for wildfires whose triggering ingredients are related to hydrometeorological drought

conditions prior to the ignition and favourable weather conditions such as wind during an active

fire [Abatzoglou and Brown, 2012]. Inter-variable covariability has also recently become a critical

issue for the integration of intermittent energies (e.g. wind, small hydro, solar) which are a growing

fraction of electricity sources as part of the ongoing transition to a low carbon economy [François

et al., 2016].

Among the large panel of SDMs, the analogue method [Lorenz, 1969] is frequently selected for down-

scaling purposes. It gained popularity with a number of studies such as those of Zorita et al., 1995;

Guilbaud and Obled, 1998; Timbal and McAvaney, 2001. It is easy to implement and often shows

satisfactory prediction skills. Analogue models have been widely applied for precipitation and tem-

perature downscaling in various regions [Timbal et al., 2003; Wetterhall et al., 2005]. They have also

been used in recent years for other meteorological variables such as wind [Valero et al., 2014; Mart́ın

et al., 2014], radiation [Abatzoglou and Brown, 2012], surface humidity and evapotranspiration [Tim-

bal et al., 2009; Tian and Martinez, 2012].

In the analogue method, analogues, which are days that are similar to the current target day, are

identified in the historical database. To draw up a list of days with similar conditions, we use a daily

state vector characterizing the current atmospheric circulation and state. Similarity is measured in

terms of distance between the daily state vector of the target day and those of all other days. This

state vector is classically composed of a set of large scale atmospheric predictors over some relevant

spatial domain. Typically, a single day is drawn from the set of the k-most similar analogues and the

local surface weather observations of that day are then used as weather scenario for the target day

[Lafaysse et al., 2014].

A major advantage of the analogue method is that it does not require restrictive assumptions con-

cerning the joint distribution of the different predictands. When a single analogue model is applied to

a multivariate set of predictands, meaning that the same set of predictors (atmospheric variables and

analogy domains) is used for all predictands, all surface weather variables are sampled simultaneously

from historical record available for a given analogue day and used as the prediction. The resulting

multivariate scenarios are then physically realistic and consistent and the simulated weather variables

are bound to reproduce the correlations between the variables. This single analogue model strategy

has been applied in several previous works such as Boé et al., 2006; Abatzoglou and Brown, 2012;

Steinschneider and Brown, 2013; Lafaysse et al., 2014.

However, the best atmospheric predictors for identifying analogues most likely depend on the re-

gion, the predictand and the season of interest [Cavazos and Hewitson, 2005; Timbal et al., 2009;

Chardon et al., 2014]. If a single analogue model is used to predict all predictands at all sites, that

is, if a unique set of predictors is retained for all variables and sites, predictions are likely to be

sub-optimal in comparison to individual models for individual variables and sites [Radanovics et al.,
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2013; Chardon et al., 2014]. As an alternative to the single-model approach, multivariate predictions

can be obtained from a suite of predictand-specific analogue models, each of them having its own

predictors. With that approach, an analogue model is built for each single predictand based on the

most relevant large scale predictors and their associated optimal spatial domains. The models are

therefore optimal for each site and variable individually. The main drawback is that the physical

consistency of the surface weather conditions is not guaranteed.

The present study proposes to explore and compare the generation of multivariate weather scenar-

ios with these two different analogue downscaling approaches, the single and the predictand-specific

model strategies. In order to ensure that results are representative of a large zone of the European

continent, the analysis is performed for 12 regions of Europe and Maghreb. Five daily weather vari-

ables at the surface are targeted: precipitation, wind speed, temperature, temperature range and

solar radiation. The two approaches are compared in their prediction skills for individual predictand

and their ability to reproduce observed inter-predictands covariability.

The methods, data and regions tested are presented in Sec1.3. Sec.1.4 explores for each predictand

the dependence of prediction skill on the predictors set and the region of interest. It also compares

the ability of the two modelling approaches to reproduce the observed inter-predictand covariations.

The respective advantages and drawbacks of the two methods are discussed in Sec.1.5.

1.3. Models and Data

1.3.1. Data

We use five daily surface variables (temperature, temperature range, wind speed, solar radiation

and precipitation) for 12 regions in Europe and Maghreb (Fig.II.1). A large panel of possible cli-

matic conditions are represented with 1) a West-East gradient going from climates influenced by the

Atlantic Ocean to continental climates in Eastern Europe and 2) a South-North gradient from sub-

tropical and Mediterranean climates to a subarctic one. Some regions also include major mountain

ranges (Norwegian and Italian regions for instance) with frequent and heavy snowfall in winter and a

recurrent diurnal convection cycle in summer leading to a broad panel of possible weather conditions

across the year.

Daily time series of predictands are extracted for the 1983-2012 period from three different datasets.

Temperature, temperature range and precipitation data are taken from the European Climate As-

sessment & Dataset (ECA&D) available at a 0.25°resolution for the whole Europe [Haylock et al.,

2008]. ECA& D data have been obtained by kriging of observations from meteorological stations.

Observations of solar radiation are rare at the surface but estimates of solar radiation are available

from satellites products since the mid-80s. Time series of solar radiation are here taken from the

Surface Solar Radiation Data Set - Heliosat (SARAH) available at a 0.05°resolution for the 1983 -

2012 period and for a large region of the globe (±65°longitude, ±65°latitude). The dataset has been

evaluated on a group of weather stations including several ones in Europe for daily and monthly time

series and proves to be capable of producing relevant estimation of incoming solar radiation at the

Earth’s surface [Riihelä et al., 2015; Müller et al., 2015].

Surface time series of observed wind speed are scarce and usually cover rather short periods. For
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many regions considered here, few wind stations were available and complete from 1983 to 2012. In

a number of regional studies for which wind is a variable of interest, wind speed estimates are often

taken from the outputs of regional climate models forced by some global atmospheric reanalysis [Jerez

et al., 2015]. In the present case, wind data are extracted from regional simulations performed using

the WRF model forced by ERA-INTERIM [Vautard et al., 2014]. Wind speed data are available on

a 3h time step for a 50x50 km grid over the whole 1983-2012 period.

For all predictands, the gridded data described previously were converted into regional series of daily

means averaging the values of all grey cells presented on Figure 1.

Thirteen daily atmospheric predictors were selected in this study to respond to the wide range of

meteorological conditions of the twelve selected regions. The selection gathers most predictors con-

sidered in previous studies over Europe [Hanssen-Bauer et al., 2005; Wetterhall et al., 2005; Horton

et al., 2012]. They were extracted from the ERA-Interim dataset [Dee et al., 2011] for the 1983-2012

period (0.75°grid). They include dynamic predictors (1000, 700 and 500hPa geopotential heights,

vertical velocities in mid-troposphere at 600hPa), thermal fields (air mass temperature at 850hPa

and sea surface temperature) and predictors related to the atmospheric water content (relative hu-

midity at various levels, total column water, ”distance to saturation” with T-Td where T and Td

are respectively air and dew point temperatures at two meters). This very last predictor can be

considered as similar to the near-surface relative humidity which is not a parameter directly available

in the ERA-Interim database. All predictors, initially available on a 6-hour time step were converted

into daily mean.

1.3.2. Multivariate modelling strategies based on two-level analogue models

In the following, we describe the two modelling strategies discussed previously. For the first one,

a suite of predictand-specific models is used with a separate set of predictors for each single local

variable. The second is a single-model method using the same set of predictors for all predictands.

For both modelling strategies, we use two-level analogue models. Following Obled et al., 2002, the

first analogy level is always based on dynamic predictors to guarantee similar large scale circulation

patterns for all the predictions of a given target day. Conversely, the second analogy level is based on

regional thermodynamic predictors. Step by step, this procedure builds a description of the weather

situation by 1) determining to which weather type, in terms of positions of lows and highs and in-

tensity of gradients, the target day belongs to and 2) what are the thermodynamics characteristics

over the target region and its surroundings. This stepwise analogue approach has been widely used

in recent years [Marty et al., 2012; Horton et al., 2012; Radanovics et al., 2013; Chardon et al., 2014].

In practice, the selection of the analogues and the generation of local weather scenarios for a given

target day consists of several consecutive steps. A seasonal filter, based on a 30-day moving window,

is first applied in order to extract days that belong to the same period of year. The 100 best analogue

days are then identified among those candidates according to the first analogy level predictors. The

30 most similar analogue dates with respect to the predictors of the second analogy level (Tab.V.1)

are then selected within this 100 dates subset. The number of analogs selected for the first and the

second level results from the previous work of Daoud et al., 2016. Finally, 50 multivariate time series

covering the whole 1983-2012 period are generated using a random selection for each target day of

one of its analogue days (sampling with replacement of the 30 best analogues). For each analogue
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date, the value of the predictands of interest in the observations archive is used as local scenario for

the target day. The identification of the best analogue dates uses in turn two different analogy scores.

The Teweles-Wobus score (TWS) proposed by Teweles and Wobus, 1954 is used for the first analogy

level. This score has been found to lead to higher performances than a more classic Euclidian distance

[Guilbaud and Obled, 1998; Wetterhall et al., 2005]. It quantifies the similarity between two geopo-

tential fields comparing their spatial gradients. It allows selecting dates that have the most similar

spatial patterns in terms of atmospheric circulation at a given (or several) geopotential level(s). The

root-mean-square error (RMSE) is applied as the performance metric for the second analogy level,

for any other predictor.

1.3.3. Predictor sets and spatial analogy domains

As mentioned previously, the best predictors set is expected to depend on the predictand and on

the region considered. Let us first consider the case of the predictand-specific modelling approach.

For a given predictand and a given region, the search for the best predictor set is carried out over

two steps. For the first analogy level, we compare the prediction skill of models either based on a

single geopotential height (at 1000, 700 or 500 hPa) or on a combination of the 1000 and 500hPa

levels (HGT500 provides information on the general meteorological situation while more intense and

smaller lows and highs can be distinguished at 1000hPa). Once the best option is identified, we then

look for the best thermodynamic predictor at the second analogy level.

The best spatial domain used to compute the analogy score is also expected to be predictand- and

region- dependent [Chardon et al., 2014]. Optimizing the limits of the spatial analogy domain can

be done using different methods. A possible technique consists in a stepwise spatial extension of an

initial elementary spatial domain in one of the 4 cardinal directions until a maximum in prediction

skill is reached. As shown by Chardon et al., 2014, this optimization process is not very efficient as a

number of different spatial domains usually lead to very similar prediction skill scores. Additionally,

the process often leads to local optima and results are very dependent on the initial position of the

elementary domain [Radanovics et al., 2013]. To tackle this issue, another approach was followed (see

1.6.1 for details). For each combination of region, predictand and predictor, it consists of comparing

the prediction skills obtained for a large number of analogue models based on different analogy do-

mains. For this purpose, we consider different analogy domain types with different shapes and sizes

(e.g. 9 different types in a configuration where a single geopotential height is used as predictor), and

for each of them, we search for its optimal positioning over Europe. Hence, predictions are made and

evaluated for all possible centres of the analogy domain within a large geographical area including

the target region. Then, the most skilful configuration in terms of shape, size and positioning is

retained as the best analogue model for the region-predictand-predictor combination considered.

When two-level analogy models are considered, this process is carried out successively for both lev-

els. The best analogy domain (size, shape, positioning) obtained for the second analogy level is thus

conditional on the results obtained for the first analogy level. A global optimization process, where

all parameters are optimized in one single step for both analogy levels, would likely be preferable.

Its technical implementation is however not straightforward and it would have been moreover highly

time consuming [Horton et al., 2012]. Thus, it was not considered here. In this optimization process,

the prediction skill for the considered predictand is assessed using the Continuous Ranked Probabil-
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ity Skill Score (CRPSS) calculated from the 50 time series realizations simulated for the 1983-2012

period. The CRPSS (V.1) is based on the Continuous Ranked Probability Score calculated on a daily

time step as described by Brown, 1974 and Matheson and Winkler, 1976.

CRPSS = 1−
CRPSanalogue
CRPSclim

(V.1)

Where CRPSanalogue is the Continuous Ranked Probability Score obtained with the analogue pre-

diction and where CRPSclim is the Continuous Ranked Probability Score obtained with a reference

prediction model. This reference is defined as a climatology based on all calendar days around the

target day with a temporal extent set to ± 30 days. As a consequence, the CRPSS is normalized

allowing comparison of the prediction skill obtained for different predictands and regions. The opti-

mal CRPSS value is equal to one and a negative value indicates that the analogue model has a lower

skill than the climatology

This optimisation process allows to identify the best predictor set for each predictand individually.

As shown in the following section, the best predictor set (predictor variable and analogy domain)

varies from one predictand to the other.

This optimisation process was also applied in the single-model strategy. Yet, in this case, a unique

set of predictor is used for all 5 predictands and the performance of the model has to be assessed

based on its multivariate prediction skill. It is evaluated with the average value of the univariate

prediction skills scores obtained for each of the 5 local variables respectively (Eq.V.2). Thus, the best

single-model reaches a compromise between the prediction skill scores of the different predictands.

CRPSSall =
1

5
· (CRPSSTemp + CRPSSPrecip + CRPSSRadiation + CRPSSWind + CRPSSTx−Tn)

(V.2)

1.4. Results

We first present the results obtained with the predictand-specific strategy. Results for the single-

model method follow. In both cases, skill scores are first described for predictions obtained at the

first analogy level. They are next presented for predictions resulting from the entire analogue chain

using both analogy levels.

1.4.1. Predictand-specific analogue models

Fig.V.1 presents the CRPSS obtained for each predictand and region at the first analogy level

using the 4 selected predictors (single geopotential heights and combination of 500 and 1000hPa).

The rankings of the different predictors are also displayed with numbers ranging from 1 (for the best

predictor) to 4 (for the poorest). The results are discussed in turn for each of the five predictands

(precipitation, wind speed, radiation, temperature and temperature range). Furthermore, Fig.V.2

compares the prediction skill scores obtained with the combined HGT500 & 1000hPa predictor and
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with the single geopotential level predictors.

For wind, the best predictor is the geopotential height at 1000hPa for all regions with rather high

CRPSS values ranging from 0.4 to 0.6. This result is mainly due to the close relationship existing

between wind near the surface and local gradient of geopotential in the low troposphere. The best

analogy domain is always the smallest one as another consequence of this link (e.g. δLon = 6°;
δLat=6°when the square shape is selected). The best scores are obtained for regions influenced by

the Atlantic and for regions prone to few interactions between topography and the geostrophic wind

component. The 500hPa geopotential is less relevant for surface wind and does not provide useful

information. Introducing this level in a combination with HGT1000 leads to an important score

decrease, whatever the location (Fig.V.2).

For precipitation, solar radiation, temperature range and temperature, the best prediction skills

are obtained from the combination of the two levels of geopotential, HGT500 and HGT1000. They

are significantly smaller than for wind, highlighting that dynamic circulation is a weaker predictor for

these variables. Nevertheless, the scores still range from 0.27 to 0.37 for temperature, from 0.15 to

0.41 for temperature range, from 0.12 to 0.22 for solar radiation and from 0.21 to 0.46 for precipita-

tion. In fairly all cases, the best analogy domains combine the largest spatial domain for HGT500 and

the medium one for HGT1000 (eg. δLon = 16°; δLat=16°for HGT1000 and δLon = 22°; δLat=22°for

HGT500 if the square shape is the most relevant). Temperature and temperature range are better

simulated in southern Europe with CRPSS greater than 0.3. No clear spatial structure of the score

can be seen for radiation and precipitation. However, Tunisia stands out with much lower scores

compared to the other regions. This is a consequence of the high prediction skills of the climatology

in this region where most days are dry and sunny. Finally, these results highlight that, when using

a single geopotential height as predictor, the lower (in the troposphere) the information, the better

the prediction skill for precipitation, radiation and temperature range (Fig.V.2). This is not the case

for temperature which is better simulated using HGT500 and HGT700 rather than HGT1000.

Fig.V.3 presents the boxplots of CRPSS gains obtained for all regions introducing different second

level predictors. For each predictand, the first level analogy is carried out with the previously identi-

fied best predictors (i.e. HGT1000 for wind and HGT1000+HGT500 for precipitation, temperature,

temperature range and radiation). For temperature, air mass temperature at 850hPa as second anal-

ogy predictor boosts the CRPSS with an increase ranging from 0.12 to 0.20. TCW comes after with

a mean CRPSS increment equals to 0.1. CRPSS gains are much smaller but still significant for SST

and humidity parameters close to the surface (T-Td and RH1000). They drop for all other predictors.

A roughly identical hierarchy of prediction skills between predictors is obtained for precipitation and

wind, although the CRPSS gains are much smaller for the latter. The mid-troposphere vertical ve-

locities lead to the highest CRPSS increase. This predictor actually allows locating large scale fronts

and disturbances which concentrate most of the precipitation and potentially stronger winds. The

low and mid-troposphere humidity parameters T-Td, RH700, RH1000 and their combined use also

lead to a rather high CRPSS gain. They bring information about clouds and water vapor from possi-

ble different origins (fronts, stratocumulus or stratus under high...). As for TWC, this predictor can

be indirectly related to precipitation amounts through precipitable water. Consequently it gives a

83



Chapter V. Multivariate analogue dowsncaling

HGT500HGT700HGT1000 HGT500 & HGT1000
0.50

0.20

0.30

0.40

0.20

0.30

0.40

0.35

0.25

0.15

4
4

4

444

4

4

4

4

44

3
3

3

333

3

3

3

3

33

1
1

1

111

1

1

1

1

11

2
2

2

222

2

2

2

2

22

4
4

4

444

4

4

4

4

44

2
3

3

333

3

3

3

3

33

3
2

2

222

2

2

2

2

22

1
1

1

111

1

1

1

1

11

3
3

4

444

4

4

4

4

44

2
4

3

333

3

3

3

2

33

4
2

2

222

2

2

2

3

22

1
1

1

111

1

1

1

1

11

2
2

1

224

2

3

4

3

33

3
3

2

332

3

2

2

2

22

4
4

4

443

4

4

3

4

44

1
1

3

111

1

1

1

1

11

4
4

4

444

4

4

4

4

44

3
3

2

333

3

3

3

3

23

2
2

3

222

2

2

2

2

32

1
1

1

111

1

1

1

1

11

0.20

0.40

  
  
T
x
 -

T
n

  
  
  
  
  
  
  
  
T
E

M
P

E
R

A
T
U

R
E

  
  
  
  
  
  
  
 R

A
D

I
A

T
I
O

N
  
  
  
  
  
 P

R
E

C
I
P

I
T
A

T
I
O

N
  
  
  
  
  
  
  
 W

I
N

D

0.34

0.30

0.26

0.30

Figure V.1 – Predictand specific models. Prediction skill scores obtained with the predictand-specific models
at the first level of analogy (12 regions, 5 predictands). The CRPSS values are given by the
bubbles colours (with a predictand specific colour scale shown on the left side). For a given
predictand and a given region, the numbers give the rankings of predictors (1 : best predictor,
4: poorest).
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Table V.1 – List of predictors tested in first and second levels of analogy

Analogy Level Predictor name Altitude or geopotential height

Level 1 Geopotential height (HGT)

1000 hPa

700 hPa

500 hPa

500 hPa & 1000 hPa

Level 2

Relative Humidity

1000 hPa

850 hPa

700 hPa

400 hPa

700 hPa & 1000 hPa

Total Column Water -

Vertical Velocity (VV) 600 hPa

Sea Surface Temperature (SST) -

Air Temperature (T850) 850 hPa

Temperature-Dew point temper-
ature difference (T-Td)

2 m

HGT500 HGT700 HGT1000

−0.15

−0.10

−0.05

0.00

0.05

0.10

Wind

HGT500 HGT700 HGT1000

−0.15

−0.10

−0.05

0.00

0.05

0.10

Temperature

HGT500 HGT700 HGT1000

−0.15

−0.10

−0.05

0.00

0.05

0.10

Precipitation

HGT500 HGT700 HGT1000

−0.15

−0.10

−0.05

0.00

0.05

0.10

−0.15

−0.10

−0.05

0.00

0.05

0.10

HGT500 HGT700 HGT1000

Radiation

Tx-Tn

Figure V.2 – Predictand specific models. CRPSS gains (when positive) or losses (when negative) when using a
single geopotential level predictor instead of a combined 500 + 1000hPa predictor. Each boxplot
gather changes in CRPSS obtained with the 12 test regions.
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first estimation of possible rainfall amounts when weather conditions are favourable for the triggering

of precipitation and without taking into account the influence of more complex phenomena such as

convergence. Despite that, it does not provide much information and it is much less relevant than

all low level humidity parameters. The same assessment can be made for wind. Indeed, from the

inner structure of fronts, high and mid-level humidity can be drawn far ahead from the area at the

surface where precipitation and stronger winds occur. Moisture at low altitudes is in consequence

often more relevant. Finally, thermic predictors (T850 and SST) are not very informative.

Solar radiation is mainly dependant on rainy or overcast days for which the atmosphere is closer

to saturation. It explains the rather high CRPSS increase obtained for both solar radiation and

precipitation when T-Td and to a lesser extent RH1000 is used as second level predictor. A much

lower gain is achieved with the other predictors. Temperature range has a predictors ranking rather

similar to radiation with the lowest levels of relative humidity being the most informative. Following

the same reasoning as for radiation, these predictors provide information on cloudy and/or rainy

days for which the temperature does not follow a classic diurnal cycle. Contrary to the results for

temperature, T850 does not impact significantly the prediction scores of daily temperature range.

SST used as a predictor for precipitation gives some noteworthy results. Although this variable is

classically expected to be an important ingredient for some meteorological phenomena such as intense

precipitation, it was found to bring some (small) CRPSS gain for temperature but not for the other

predictands. This result was quite homogeneous among the twelve regions whatever their distance to

the sea. SST is known to impact indirectly many of the other predictors tested at both analogy levels.

Its information could thus be already included. Moreover, in spite of the water vapour SST provides

to the atmosphere every day, it also mainly impacts the low-frequency variability of precipitation and

can be considered as poorly related to its daily variations [Cattiaux et al., 2009].

The best predictors at the second analogy level were expected to be regionally dependent. Fig.V.4

presents maps of CRPSS gains achieved for four selected second level predictors. Their ranks among

the 10 possible large scale variables are given as well (1 still indicating the best predictor). Some

notable spatial patterns of CRPSS increase and of predictors rankings appear.

As mentioned previously, T850 is by far the best second level predictor for temperature whatever

the region. Nevertheless, its prediction skill is stronger for regions far from the influence of the At-

lantic Ocean. TCW, as second best predictor, shows large spatial differences with higher CRPSS

gains for northern regions. For radiation, the best scores are mostly achieved with T-Td and to a

less extend with RH1000 & RH700. For each predictor clear dependencies on the latitude and the

distance to the Atlantic Ocean are discernible with smaller gains in central Mediterranean and conti-

nental European regions. The relative humidity at 400hPa is in most cases weakly informative with

the remarkable exception of Tunisia. This region has numerous cloud-free days on one hand, and on

the other one, greater proportions of high altitude clouds than low and mid-troposphere ones as a

consequence of its subtropical and Mediterranean climate. The 400hPa relative humidity is the most

relevant second-level predictor to catch the occurrence of cirrus and other high level clouds. This

could explain the relatively high performances of this predictor but this hypothesis would require

further investigation to be validated.

The CRPSS of temperature range are mainly improved by T-Td and the lowest levels of relative
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Figure V.3 – Predictand specific models. CRPSS gains obtained with the introduction of different predictors
in a second analogy level. Each boxplot gathers changes in CRPSS obtained with the 12 test
regions.

humidity. No obvious spatial pattern can be seen on the associated maps.

For both wind and precipitation, vertical velocities, despite their good ranking as a whole, have also

some regional dependency. Predictions of precipitation are more accurate using this predictor in

Scandinavian regions together with Germany and Italy. Yet, the combination of RH1000 and RH700

gives the best results in the South-eastern regions and Andalusia.

No clear spatial pattern can be put forward for wind, whatever the second level predictor. Further-

more, most of the associated CRPSS gains are small compared to what is achieved for the four other

predictands.

For each couple of region and predictand, the best combinations of first and second level predictors

are summed up in Tab.V.2. As highlighted previously, despite some exceptions and differences in

CRPSS gains from one region to another, the best sets of predictors present a rather important

spatial homogeneity over the whole European domain. For radiation and temperature, all regions

have the same set of large scale variables with a combination HGT500 and HGT1000 at level one and

T-Td or T850 at level 2 respectively. Both wind and precipitation also show a homogeneous selection

of first level predictors over the entire continent (HGT1000 and HGT500+1000 respectively), but

two predictors share out the 12 regions at the second analogue level. However, in the wind speed
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case, the CRPSS gains associated to these two predictors (T-Td and VV600) are similar and low.

For precipitation, VV600 does not lead to significantly better CRPSS gains than T-Td except in

Norway and Finland. Finally, the temperature range seems to have higher regional differences on the

secondary predictor with T-Td being voted in for North Western Europe whereas various levels of

relative humidity are picked for the other regions. All in all, despite a large panel of climates across

Europe, the same large scale data could be used to predict efficiently local meteorological variables.

1.4.2. Single analogue models

As mentioned in Sec.1.3, single analogue models have been optimised (predictor, analogue do-

main) following the same process as for the single-predictand approach but used the multivariate

prediction skill as optimisation score. To make both predictand-specific and single-model approaches

comparable, we present here the univariate prediction skills of the single-model approach obtained

with different predictor sets.

In the single-model approach, the optimal predictor set is not found to depend on the region

(Tab.V.2). It always gathers HGT500 and HGT1000 for the first analogy level and T-Td for the

second one. Responding to the results obtained with the predictand-specific models, T-Td is actu-

ally the only predictor having a positive and significant impact on the CRPSS for all predictands

(T-Td is almost always among the 4 best predictors as shown in Fig.V.4). Thus, the predictor set

based on HGT500, HGT1000 and T-Td provides the best combination of information needed by each

regional variable.

For most predictands, the prediction skills achieved with the best single analogue model is signif-

icantly lower than the ones obtained with the predictand-specific method. Fig.V.5 presents the

CRPSS differences between both approaches.

For temperature, CRPSS decreases make sense because the single-model does not use information

on low troposphere temperature anymore but only information on its distance to saturation. De-

creases present also strong spatial contrasts, with higher drops in Eastern Europe. The further the

region is from the Atlantic Ocean, the smaller the differences between the two methods.

CRPSS losses range from 0.07 to 0.12 for wind. The differences are here due to the introduction of

the geopotential height at 500hPa in the first analogy level. As already discussed, this information

is irrelevant for wind speed at 10m whose variability relies on low troposphere geopotential gradient.

CRPSS losses are slightly smaller in South Eastern Europe.

For radiation, all single and predictand-specific models have the same set of predictors whatever the

location. However, some very small differences in CRPSS can be seen for some regions. It is only

due to the slight shifts in the position of the analogy domains from the predictand-specific case to

the single-model one. The same comments can be made for temperature range for which T-Td was

already selected for 5 out of 12 regions in a predictand-specific approach. This predictor still gives a

large improvement of the CRPSS for the other test areas. There are more regional variabilities for

precipitation. For regions where VV600 was selected as the best second level predictor in the precip-

itation specific models, CRPSS losses are significant, especially in Scandinavia. Nevertheless, for any

other region, the best second level predictor, namely RH1000 & RH700 provide similar information
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Table V.2 – List of predictors selected at first and second levels of analogy in a predictand-specific approach
for each region and each predictand together with results of single-models (multivariate).
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Figure V.5 – Single models. CRPSS losses when a single analogy model is used instead of each predictand-
specific model. The single analogy model is region specific.

as T-Td. CRPSS decreases are therefore small to very small in most configurations (e.g. in Tunisia,

Greece and Romania).

1.4.3. Inter-predictands correlations

The comparisons in the previous section show that significant drops in prediction skill occur

when using the single-model approach rather than the predictand-specific one. It is particularly

true for wind and temperature which cannot be efficiently simulated without their specific large

scale predictors. Thus, the predictand-specific approach is potentially more appealing. However,

the physical consistency of multivariate predictions in this configuration is potentially degraded in

comparison to the single-model approach.

We further assess the ability of the two strategies to simulate multivariate predictions with correct

temporal correlations between predictands. For each pair of predictands (e.g wind-precipitation), we

estimate the Pearson correlation coefficient first from observed time series (or pseudo-observed for

wind), and then from the predicted time series (generated from either the predictand-specific or the

single-model strategies). For each predictand, the seasonal component is removed before estimation

using a 30-day moving climatology.

Simulated correlations are presented as a function of observed correlations for winter and summer

seasons on Fig.V.6. The X,Y extents of dots (or rectangles) correspond to the 95% confidence

intervals of observed and simulated correlation coefficients respectively. The closer to the 1:1 bisector
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a dot is, the better the performance of the model to reproduce the ”observed” correlation. When

the confidence intervals of a given configuration (region, season and downscaling model) include the

1:1 bisector, the simulated correlation can be considered as a good estimate of the observed one. As

expected, this is achieved by the single-model approach for fairly all predictands pairs in all regions

and for all seasons. A noticeable exception is for the ”temperature-radiation” pair in winter. The

predictand-specific approach yields contrasting results. It fails to reproduce observed correlations

for most configurations except those where temperature is involved. With this approach, observed

correlations are globally underestimated (the blue dots and rectangles are nearly always between the

x-axis and the 1:1 bisector). If it exists, the seasonal change in correlation sign is however rather well

reproduced (e.g. for all pairs involving temperature).

Generally, the single-model approach performs thus better than the predictands-specific one for most

pairs of predictands, whatever the region and the season. Considering the 95% confidence intervals,

the differences in performance between both approaches are particularly high for the pairs of variables

for which T-Td was found to be a good second-level predictor in a predictand-specific approach (i.e.

precipitation, radiation and temperature-range). This applies also in winter to wind/precipitation,

wind/radiation, wind/Tx-Tn and Tx-Tn/temperature in most regions. The differences between both

approaches are much lower but still important for the other configurations except for the pairs

involving temperature. In these cases, both approaches show rather similar performances in one or

both seasons. The unique configuration for which the predictand-specific method outperforms the

single-model one is the temperature/radiation pair in winter.

1.5. Discussion and Conclusions

1.5.1. Toward a hybrid downscaling approach

As shown Sec.1.4.1, predictand-specific models lead to higher CRPSS for the univariate prediction

of all surface variables. For temperature and wind, their prediction skills are much higher than that

achieved using the single-model approach. On the other hand, a suite of predictand-specific models

is not able to correctly simulate the correlation observed between some predictands pairs, especially

the three involving precipitation, radiation and temperature range.

These complementary results suggest that a hybrid approach could gather the advantages of both

single and predictand-specific models.

In Sec.1.4.3, we discussed the correlation coefficients of the predictands pairs involving wind. The

single model approach presented slightly better results for the correlations between wind/radiation

and wind/temperature range. However, the important CRPSS drop (of about 0.1) obtained for wind

prediction tips the scales in favour of a wind specific model. The wind specific model could only rely

on the first analogy level (with a single HGT1000 predictor), as the second level of analogy does not

lead to significant CRPSS gains.

For precipitation, radiation and temperature range, the single-model approach is much better at

reproducing the inter-predictand correlations. Luckily, the CRPSS between the single-model and

the predictand-specific models are very similar for the three predictands (apart for precipitation in

the Scandinavian regions). Consequently, a single-model seems to be a reasonable choice for these

variables (a 2 level model with HGT500+1000 for the first level and T-Td for the second).
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Figure V.6 – Scatterplots of seasonal Pearson correlations for each predictands couple in reference data (X axis)
and in downscaled regional series (Y-axis). Blue colour (light grey in the black and white version
of the paper) corresponds to downscaled time series obtained with predictand specific models and
red colour (dark grey in the black and white version) refers to downscaled time series obtained with
the single analogue models. Correlations are obtained from times series of daily variables for all
days in the winter season (winter (DJF) correlations, ellipses symbols) and for all days in summer
season (summer (JJA) correlations, rectangle symbols). The size of a given ellipse (respectively
rectangle) corresponds to the 95% confidence interval of the correlation coefficient estimation.
Each confidence interval is obtained via MonteCarlo simulations (for observations, the confidence
interval is obtained from the 2.5th and 97.5th percentiles of correlation coefficients estimated
from 10000 multivariate time series, generated from observed time series using bootstrapping
with replacement. Confidence intervals of correlation for multivariate downscaled series (with
either the predictand specific models or the single models) are obtained in the same way.
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For temperature, the predictand-specific approach gives much higher CRPSS (about +0.14). How-

ever, the single-model approach reproduces some inter-variables correlations much better, especially

for the temperature/radiation pair in summer and for the temperature/temperature range pair in

winter. No entirely satisfying modelling option seems possible. Giving priority to the univariate

prediction skill (and thus choosing a predictand-specific approach) would be detrimental to the re-

production of some correlations involving temperature and vice versa.

To tackle this temperature issue, we evaluated an additional modelling approach similar to the one

presented in [Kuentz et al., 2015]. This method uses temperature predictions made by the single-

model approach which are corrected according to some large scale temperature information thereafter.

More precisely, for each prediction, the correction factor applied to the temperature predictions of

the single-model approach is the difference between the large scale values of T850 on the target day

and on analogue one. For instance, considering that the 850hPa temperature is 8°on the target day

and its current analogue is much warmer with 10.5°, the local temperature prediction at the surface

is lowered by 2.5°. This approach is expected to modify at the same time the temperature prediction

skill and all inter-variable correlations involving temperature. It actually achieves CPRSS scores

similar to those of the predictand-specific approach for all regions, thus outperforming the single-

model approach (Fig.V.7). It also allows good reproduction of inter-variable correlations for most

seasons and regions and for both temperature/wind and temperature/precipitation pairs (Fig.V.8).

In the ”temperature-temperature range” case, observed correlations are slightly underestimated but

the distances to the 1:1 bisector are small and in all cases much more reasonable than those of the

predictand-specific approach. Additionally corrections do not significantly worsen the correlations

simulated with the single-model approach. The acceptability of the hybrid model with correction

is more questionable in the ”temperature-radiation” case where the distances to the 1:1 bisector are

rather high, especially in winter, thus calling for further model refinements.

0.25

0.35

0.45

Best T-specific models Single models Single models + correction

0.370.330.41
0.42 0.37 0.41

0.45 0.38 0.48
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0.45 0.42 0.460.48 0.33 0.47

Figure V.7 – Temperature correction. Final CRPSS for the temperature predictand of T-specific models (based
on HG500 & HGT1000 and T850 predictors), single models (based on HG500 & HGT1000 and
T-Td predictors) and single models to which is applied a correction of temperature (the correction
is based on large scale 850hPa temperature difference between the target day and the analogue
one).

94



1. IJOC publication

0.5

0.5

Reference Correlation

0.5-0.5 0

0.5

0

Temperature ~ Radiation

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

0.5-0.5 0

0.5

0

-0.5

●
●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

Temperature ~ Tx-Tn

Reference Correlation

C
o
rr

e
la

ti
o
n
 a

ft
e
r 

D
o
w

n
sc

a
li
n
g

C
o
rr

e
la

ti
o
n
 a

ft
e
r 

D
o
w

n
sc

a
li
n
g

C
o
rr

e
la

ti
o
n
 a

ft
e
r 

D
o
w

n
sc

a
li
n
g

C
o
rr

e
la

ti
o
n
 a

ft
e
r 

D
o
w

n
sc

a
li
n
g

Reference CorrelationReference Correlation

0.5

0

-0.5

0.5-0.5 0

Temperature ~ Wind

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0

-0.5

-0.5 0

Temperature ~ Precipitation

Figure V.8 – Scatterplots of seasonal Pearson correlations between temperature and the three other predic-
tands in reference data (X axis) and in downscaled regional series (Y-axis). Blue (light grey):
downscaled time series obtained with predictand specific models; red (dark grey): downscaled
time series obtained with the single analogue models; white: downscaled series obtained from the
single analogue models with a correction of temperature. See Fig.V.6 for captions details.

1.5.2. Some limits and perspectives

The main features of this hybrid downscaling model are summarized in Tab.V.3. As highlighted

from the different results presented above, this model seems satisfactory in Europe for simulating

physically consistent multivariate weather scenarios with reasonable prediction skills for all predic-

tands. For a given local variable, there are few differences in the final sets of predictors from one

region to another. Thus, the model could rely on the same large scale information for the entire

continent without damaging the prediction skills too much. Of course, these results were obtained

for a few regions and some spatial disparities may be revealed with a continuous spatial scanning of

local weather conditions in Europe. Furthermore, the reasonable prediction scores achieved across

the continent may significantly differ in other parts of the world. These results are probably non-

transferable and the associated prediction skills would be lower particularly where local weather
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Table V.3 – Proposition of combination of predictand-specific and single models compromising requirements
of having high CRPSS and relevant inter-variables Pearson correlations.

Predictand Downscaling type Predictors Level 1 Predictor Level 2

Temperature Single models
HGT500 T-Td

HGT1000 (T850 used for correction)

Wind Wind-specific HGT1000 -

Precipitation Single models
HGT500

T-Td
HGT1000

Radiation Single models
HGT500

T-Td
HGT1000

Tx-Tn Single models
HGT500

T-Td
HGT1000

conditions are driven by small scale atmospheric processes such as convection in tropical zones.

Another issue is related to the hybrid dataset supporting these analyses. Gridded observations

were available for temperature, precipitation and radiation but not for wind for which model data

were used as pseudo-observation instead. Wind outputs from numerical models have the strong

advantage to produce pseudo-observations which are continuous over large spatial domains where

few or in some cases no wind measurements exist. They are however obviously not an ideal surrogate

to observations. In the present case, the medium resolution of WRF simulations induces for instance

a rough representation of the European topography and consequently of its local effects on wind

speed and direction. When compared to observations from the ISD-LITE data base [Smith et al.,

2011], WRF wind is found to give a reasonable estimate of surface wind for a number of locations in

Europe [Vautard et al., 2014]. In the present work, the covariability obtained between the WRF wind

simulations and the other weather observations, used as a reference for inter-variable correlations,

can be however rather different from the actual one. This limitation is mainly affecting mountainous

areas as presented in Annex.A. Consequently, our results involving wind must be put into perspective

for regions that suffer from the rough WRF topography. The dependence of the results to the model

or to its parametrisation would be worth investigating in the future. A more accurate analysis could

also be achieved with a higher resolution model.

All in all, our work highlights the necessary compromise that has to be agreed on between good

prediction skills and relevant reproductions of the inter-variable correlations. If such an analogue

based model has to be developed and applied, the most relevant model configuration is expected to

be highly dependent on the type of application for which the weather scenario will be used. The final

hybrid-model with correction that we propose here sacrifices some inter-variables correlations (e.g.

wind-TxTn and wind-radiation in summer) in order to achieve much higher CRPSS. Room for model

improvement obviously exists. An option could be a complete optimization of the method, on the

individual prediction skill for each variable and on the reproduction of covariability between variables

simultaneously. Similarly other or additional predictors could be included in the predictor sets.

Finally, the number of analogues dates retained for the prediction was set arbitrary to the optimal

numbers found for precipitation prediction by Daoud et al., 2016. Re-optimising these numbers for

each predictand could also lead to some further improvements. The hybrid approach with correction

would allow generating relevant regional scenarios of multivariate weather for the last decades or

century based on the recent atmospheric reanalyses. Following for instance Kuentz et al., 2015
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and Lafaysse et al., 2014, it would allow exploring the multiscale variability of a number of regional

hydrometeorological variables resulting from the large scale variability of climate. Another application

could be the generation of regional weather scenarios until the end of the 21st century using GCMs

data. Such an application raises different issues which were not considered in the present work.

First, the quality of the selected predictors in the climate models is not guaranteed. GCMs do not

necessary correctly simulate all predictors and this would have to be checked [Timbal et al., 2009].

In our case, a good performance of climate models is expected for the geopotential fields shapes

but not necessarily for the thermodynamic predictors, either at the surface (e.g T-Td) or at given

geopotential levels. Secondly, the temporal transferability of the model is also questionable. To be

applied in a changing climate context, the physical relationship between predictands and predictors

has to be assumed stationary. This assumption does not probably hold or would require further

validations. In our case, the first analogy level is only based on shapes and gradients of geopotential

fields. This is obviously in favour of the relevance of these predictors in a warmer climate. Similarly,

using T850 as a correction factor rather than as a classic secondary predictor should prevent from

being limited by the range of observed values of this large scale parameter. Finally, T-Td, which could

be assimilated to a relative humidity predictor, would be less sensitive to a changing climate than

other water content parameters such as specific humidity or TCW. In any case, the selection of the

best predictors for a climate change application would require evaluating the temporal transferability

of the model. If such an evaluation is rather impossible to carry out from observations as they do not

cover the whole range of possible future climates, it can be carried out in ”perfect model” framework

as proposed by Dayon et al., 2015.

1.6. Appendix S1. Identification of the best analogy window for a

given predictand / region configuration

For each combination of predictand and region, the analogue model with the best prediction skill is

searched for among a large number of analogy models. They are characterized by their predictors set

and their associated analogy windows (shape, size and positioning). We here describe the procedure

used to identify the best analogy window for a given predictor.

1.6.1. Size and shape of the analogy window

When a single geopotential height is used as predictor (either 500, 700 or 1000hPa), 9 different

analogy window types, with 3 different shapes (rectangular shape with a EW orientation, with a NS

orientation and square shape) and 3 different sizes for each shape (small, medium and large with,

for instance, extensions of 6°, 12°and 22.5°for the square shape) were tested. For the configuration

where both 500 and 1000hPa are used as predictors, we additionally considered 6 other options

for which where the analogy windows at 1000hPa are twice smaller than the ones at 500hPa. For

secondary predictors, we only tested the 3 smallest analogy domains (with 2 rectangular and one

square shapes) as a consequence of the much smaller information of thermodynamic predictors to be

captured compared to the one of HGT.
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a b c 

d 

Figure V.9 – Scanning process used to identify the best position of a given analogy domain (large rectangle)
with fixed shape and size for a given large scale predictor (e.g. HGT1000 predictor with a 4.5°
Lon ·9° Lat extent). The skill score obtained with each analogy domain is plotted on the skill
score map (map d) at the grid cell which coordinates corresponds to those of the central point
of the analogy domain (see e.g. the scores obtained successively for three consecutive steps of
the scanning process with three different domains represented respectively in maps a, b and c).
The best position of the analogy domain, ie the one that maximizes the prediction skill score,
corresponds to the dark orange pixel on the colour map d

1.6.2. Optimal positioning of the analogy window

For each predictor, predictand, and target region, a given analogy window type is evaluated at all

possible positioning over Europe in order to find the one that leads to the best prediction skill. For

the first analogy level, the geographical area under scanning largely covers the European continent

(longitudes from -60°to +60°East, latitudes from +15°to +85°North) in order to catch some large

meteorological patterns that are far from the target region but might still influence it. For all second

level predictors except SST, the geographical area under scanning is much smaller (15°in longitude

and latitude) and is centred on the target region as most of the predictors are thermodynamic.

Fig.V.9 illustrates the process retained to optimize the positioning of a given analogy window. All

central points of the analogy domain that are possible according to the ERA-Interim grid (grey grid)

are considered in turn and used for the prediction of the current predictand (e.g. precipitation) in the

target region (central bold square). For a chosen size and shape, the scanning procedure consists in

placing the analogy window at a corner of the scanning area, and computing the associated skill score.

The window is then shifted according to the predictor dataset grid and the skill score is computed

once again. The procedure is repeated until the whole scanning area is evaluated. The best position

of the analogy window is simply the one maximizing the skill score. For all region, predictand and

predictor combinations, the most skilful shape and size of the analogy window is finally kept. This

process was carried out successively for both analogy levels.
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Figure V.10 – The seventeen maritime domains used for the sea surface temperature predictor. For each target
region and each predictand variable, the domain retained for SST as predictor is the domain
that gives the best CRPSS score of the prediction.

For SST, we more simply tested the predictive skills of 17 analogy domains corresponding respec-

tively to different zones of the Atlantic Ocean and of the Mediterranean, the Baltic, the Black and

the North Seas (Fig.V.10). The domains have been constructed to gather information from areas as

homogeneous as possible (eg. Bay of Biscay, Aegean Sea, North Sea, northern and southern Baltic

Sea...).

2. Complementary evaluation

In Sec.1, we proposed a hybrid analogue downscaling method (SCAMP) that compromise sat-

isfactory prediction skills and inter-predictand correlations in our 12 test regions. It combines a

predictand-specific model for wind and a common set of predictors for precipitation, temperature,

radiation and temperature range (c.f. Tab.V.3). Here, we provide some complementary information

on the parametrisation of SCAMP. We also perform an additional evaluation of the seasonal cycles

and inter-annual variability of simulated predictands.

2.1. Regarding the analogy domains

Previously, we discussed the procedure of optimisation of the analogy domains. The final windows

used in the hybrid downscaling approach (Tab.V.3) are presented in Fig.V.11.

Firstly, the downscaling of precipitation, temperature and radiation is done using the combination of

HGT500 and HGT1000. For all regions, the most relevant choice consists of a large window at 500hPa

and a medium one at 1000hPa, which catch both mid-troposphere large meteorological patterns and

smaller structures near the surface. The windows orientation often attaches more importance to the

meridian gradient of geopotential (except in RO, AN, TU and GR where both component are equally
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represented). The analogy windows are generally well-centred on the target regions. However they

have a slight tendency to gather more information south-westward.

Wind is downscaled with its own set of predictors. A single level of analogy, using HGT1000 as

predictor, seems to be sufficient to have relevant series of regional wind. For all regions, the smaller

analogy windows give, by far, the best results. Like for the HG500-HGT1000 combination described

previously, most windows are West-East oriented or with a square shape. They are also well centred

over the target region, underlying again the strong relationship between local wind and geopotential

gradient.

For the second level of analogy, only small windows were tested. Here again, the optimal windows

have either a square shape or are West-East oriented. In some cases, the window is not centred on

the region of interest and tends, when it is possible, to get information about near-surface humidity

over the Ocean or the Mediterranean sea (GA, AN, TU and GR).

2.2. Multi-scale variability of downscaled series

The evaluation presented in Sec.1 proved that SCAMP is able to simulate accurate daily values of

univariate predictand and correct inter-predictands correlations. However, some further validation

of the predictands series are required to ensure that both simulated hydrological and power gener-

ation series will have correct and relevant characteristics for this study. We illustrated in Chap.II

and Chap.III that the inter and intra-annual variations of CRE sources are a key element to the

integration of renewables in Europe. To complement the previous evaluation of the hybrid down-

scaling method on this point, we will present the seasonal cycles and annual time series of the four

meteorological drivers (precipitation, temperature, wind, sun radiation). In addition, the same in-

formation will be provided for hydrological cycles and the inter-annual variability of river discharge

which shape the hydro power generation. It also constitutes another way of validating the inter-

predictands co-variations as physically inconsistent multivariate weather scenarios would result in

inaccurate hydrological simulations. This complementary evaluation was performed for all 12 re-

gions, 4 meteorological predictands and simulated river discharge. We only present an inner group

of the associated results for 3 representative regions (NO, GE and AN).

Fig.V.12 shows the mean annual time series of daily observed (or pseudo-observed - Wind speed)

predictands from 1983 to 2012. The simulated mean annual series (blue line) and the dispersion

between downscaled series (10th and 90th percentiles of the 50 regional scenarios - blue shade) are

also presented.

• For all regions the annual variations of precipitation are well simulated by the hybrid down-

scaling method. Unusual dry or wet years are equally well reproduced. The inter-scenarios

dispersion is rather constant for the entire period and seems to be more important (about

0.5mm/day) in Northern regions.

• The performances of the downscaling method are remarkable for temperature. Whatever the

region and its associated climatic conditions, simulated yearly variations in temperature always

agree with observed ones. The 50 downscaled scenarios are very similar to each other and the

small scale dispersion is weak.
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Figure V.11 – Final analogy domains used in the multi-variate downscaling method optimised and presented in
Sec.1. The predictors used for the simultaneous downscaling of Precipitation, Temperature and
Radiation are: HGT500 (dark blue), HGT1000 (blue) and T-Td (green). Wind is downscaling
independently thanks to HGT1000 (red).
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• The confrontation between observed and simulated wind series proved that the downscaled

wind has a correct inter-annual variability whatever the region of interest. However, it also

highlights a small positive bias in wind speed (of about 0.3m · s−1 maximum) in north-western

European regions (EN and NO being the most affected).

• Sun radiation inter-annual variability is well simulated by the hybrid downscaling. The 50

regional scenarios are close to each other and their dispersion usually represents from 5 to 10%

of the observed mean daily sun radiation.

• Finally, river discharge shows a higher inter-scenarios dispersion as a direct consequence of the

results presented for precipitation. However, the simulated mean annual discharge is of the

right magnitude and both low and high flow years are correctly simulated.

High and low daily values of predictands are also an important feature that must be accurately

simulated by the hybrid downscaling method. Indeed, they indirectly drive the occurrence of en-

ergy droughts or determine how much energy can be stored when storage systems are used for the

integration of renewables (c.f. Chap.III).

We compare the seasonal cycles of 10th and 90th percentiles of daily predictands values (30-day

moving window) from observations (blue and red lines) and simulated series (green and brown lines)

on Fig.V.13. The dispersion between downscaled scenarios, representing the small scale variability

(c.f. Chap.IV), is also illustrated thanks to the green and orange color shades. This figure also gives

an evaluation of the seasonality of predictands in the simulated series. Results are only presented for

NO, GE and AN. Similar comments are also valid for the median cycles of predictands and for other

regions.

• The seasonal cycles of precipitation percentiles are correctly reproduced after downscaling.

Both simulated and observed 10th percentiles are always at 0mm/day. Similarly, the simulated

90th percentile cycles also have a relevant seasonality, even for regions having a severe dry

season (AN).

• The simulated seasonality of temperature is in perfect agreement with observations. Both low

and high temperature values have correct annual variations.

• For all regions, the observed 10th and 90th percentiles cycles associated wind speed reach their

maximum during winter. Simulated series have the same characteristics. However, despite an

almost perfect reproduction of the upper part of the wind distribution, the 10th percentile is

slightly overestimated in NO and GE. It reveals that the positive bias discussed on Fig.V.12 is

not seasonal and is a consequence of an under-sampling of low wind speed values.

• Annual cycles of sun radiation are rather well simulated by our downscaling method. Nonethe-

less, some imprecisions exist with a slight underestimation of the 10th percentile in spring in

NO and in early summer in AN. SCAMP also tends to flatten the 90th percentile cycles, over-

estimating the number of high sun radiation values during inter-seasons, especially in southern

Europe.

• Finally, the seasonality of river discharge is accurately simulated for both percentiles. Down-

scaled low discharge periods, either in late winter (NO) or summer (GE and AN) agree with the

observed series. In spring, the peak in discharge for snow-dominated catchments has a correct

timing even if it is slightly underestimated in the simulated scenarios.
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Figure V.12 – Mean annual values of predictands from 1982 to 2012 in observed series (black) and
downscaled ones (blue). The inter-scenarios dispersion is display thanks to the light blue
shade. The media scenario is displayed in dark blue.

All in all, this complementary evaluation proved that SCAMP is largely able to simulated relevant

downscaled series of predictands in terms of daily (10th and 90th percentiles), seasonal (seasonal

cycles) and inter-annual variability (annual time series). Using its downscaled simulations seems

satisfactory for generation of relevant series of regional power generation.
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Figure V.13 – Seasonal cycles of 10th and 90th percentile of daily predictands values from observed
series (respectively in red and blue) and downscaled ones (respectively in orange
and green). The inter-scenarios dispersion is display thanks to the color shading.
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Overview

A complete and efficient integration of CRE sources in Europe cannot be done without assessing

their past long-term fluctuations and their future trends in a climate change context. Climate

reanalysis datasets and GCMs provide meteorological data at low resolution and need to be adapted

before being used for the generation of regional series of power production and energy demand.

Downscaling methods are usually used to bridge the gap between spatial scales. However, the

demanding set of objectives of this study imposes that the downscaled outputs meet the following

requirements:

• Relevant daily values of local weather variables

• Correct inter-variables correlations

• Accurate multi-scale fluctuations of weather variables

With such characteristics, the downscaled multivariate weather series should lead to correct

regional power generation scenarios and ensure that co-variations between CREs sources are accu-

rately simulated.

Among the numerous existing downscaling methods, the analogue approach seems to be suit-

able for the simulation of multivariate regional weather series. It requires few assumptions and

prior knowledge on the inter-variables relationships. Indeed, sampling simultaneously all variables

from the same analogues leads automatically to physically consistent scenarios. However, such an

approach runs the risk of deteriorating the univariate skills of the analogue method unless a common

set of relevant large scale predictors can be found for all local variables.

We explored, for the 12 test European regions, the possibility of constructing a multivariate

analogue downscaling method that would meet the previous requirements. Testing a large number

of possible predictors (dynamic and thermodynamic), we compared the performance in terms of

prediction skills and inter-variable correlations of predictand-specific and single (i.e. common to all

variables) analogue methods. The results call for a hybrid downscaling, SCAMP, which combines:

• A wind-specific analogue downscaling (based on geopotential gradients at 1000hPa)

• A common model for precipitation, radiation, temperature and temperature range (based on

geopotential gradients at 500 and 1000hPa and near-surface humidity)

• A post-correction of local temperature (based on large scale near-surface temperature).

The evaluation of the downscaled series of temperature, precipitation, wind, sun radiation

and simulated discharge, proved that SCAMP is able to provide relevant meteorological drivers

for our study. Energy generation series, computed from the outputs of this analogue method are

expected to exhibit correct characteristics in terms of spatio-temporal fluctuations and inter-sources

co-variations.
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LOW FREQUENCY VARIATIONS:

RECONSTRUCTION OF THE 20TH

CENTURY CLIMATE
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ChapterVI
The 20th century climate

Climate is known to fluctuate on various time scales from inter-annual to multidecadal periods.

Low frequency variations of climate are likely to impact many sectors including agriculture and

power production. In Africa, these fluctuations are responsible for long and severe droughts leading

to disastrous harvests during long periods [Rodŕıguez-Fonseca et al., 2015; Stige et al., 2006; Omondi

et al., 2012]. In North America and Europe, their effects on the hydrological cycle and snow-pack

have been largely evaluated [Enfield et al., 2001; Irannezhad et al., 2015; Nalley et al., 2016; Hertig

et al., 2015].

Low frequency variations are expected to affect CRE sources and their associated power gener-

ation. Consequently, the balance between electricity production and energy load is also likely to

fluctuate over long periods. In this section, we aim to analyse how meteorological drivers and energy

generation series fluctuated in the course of the 20th century. The resulting low frequency fluctuations

of penetration rates and characteristics of energy droughts will bring information about the reliability

of the analysis performed in Chap.III. It will also illustrate the risks associated to assessing the ease

of integration of CRE sources over a relatively short period.

With the recent development and release of climate reanalysis datasets of the 20th century, it is

now possible to analyse globally the low frequency variations of a variety of meteorological variables.

In this study, these datasets provide gridded data of the large scale predictors required in the hybrid

analogue downscaling method presented in Part III. SCAMP was used to reconstruct the regional

multivariate weather time series in our 12 test zones. Subsequently, long series of river flow, power

generation and penetration rate were generated and analysed in terms of low frequency fluctuations.
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1. Reconstruction of the 20th century regional climate

conditions

Several 20th century reanalysis datasets of the Earth System have been developed in the last few

years. As part of the ERA-Clim project1 and following the generation of the ERA40 and ERA-Interim

datasets, which start respectively in 1957 and 1979, the ERA20C climate reanalysis was produced by

the ECMWF. It extends from 1900 to 2010 and has a 1.125° grid (approximately 125 km horizontal

resolution). Contrary to the previous datasets, the 4D-Var daily assimilation method only includes

surface pressure and surface marine wind data [Poli et al., 2013]. Despite the increasing number of

observations during the 20th century, assimilating only pressure and wind data should guarantee on

one hand a partial temporal homogeneity of this dataset and on the other hand a correct atmospheric

circulation. However, other thermodynamic parameters, for which no supporting information based

on observations is assimilated, could suffer from large biases.

The reconstruction of the 20th century regional climate conditions using SCAMP implies extracting

all large scale predictors from the ERA20C dataset. In the hybrid downscaling approach that we

presented in Chap.V, the second analogy level is based on near surface humidity. SCAMP also

requires a post-correction based on large-scale 2m temperature. The questionable quality of these

two thermodynamic variables in ERA20C could lead to irrelevant downscaled series of predictands.

The assimilation system used in ERA-Interim is much more complete. It includes a large panel of

thermodynamic observations. In the following section, we will compare the large scale predictors

from ERA20C with the ones from ERA-Interim in order to highlight some possible biases. We will

also assess the repercussion of these potentially lower quality data on the reconstruction of regional

climate.

1.1. ERA20C large-scale predictors: evaluation and correction

1.1.1. Correction of predictors

Fig.VI.1 presents the seasonal cycle of T-Td in ERA20C and in ERA-Interim for three representa-

tive regions (NO, GE and AN). For all regions, large biases exist. In northern regions, the shapes of

the seasonal cycles are consistent between the two datasets but ERA20C systematically overestimates

the low troposphere moisture (i.e. underestimation of T-Td values). On the opposite, near surface

humidity is always underestimated in Mediterranean regions, especially in summer. The amplitude

of the seasonal cycles is also too pronounced in these regions. For some locations (e.g. in GE) the

sign of the bias changes from winter to summer due to the limited amplitude of T-Td seasonal cycles

in ERA20C. These inadequacies between ERA-Interim and ERA20C databases are weaker but still

significant for temperature (not shown).

The variety of bias features and their high magnitudes emphasise the necessity of correcting

thermodynamic predictors. A bias correction of GCMs outputs is classically applied in climate

impact studies (e.g. Ines and Hansen, 2006; Piani et al., 2010; Hagemann et al., 2011). However, the

1http://www.era-clim.eu/
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correction of multiple variables/predictors is generally not satisfactory. Indeed, a multivariate bias

correction is likely to deteriorate the cross-correlations between the corrected variables. Nevertheless,

using raw data as inputs of impact models is often considered to be even less relevant, especially when

the studied system is non-linear. Thus, we chose to perform a correction of both T-Td and T in

ERA20C before using these data as large scale predictors. Many correction methods exist from the

simple delta change approach to more complex ones such as linear scaling, power transformation and

distribution mapping [Teutschbein and Seibert, 2012].

Distribution mapping is also referred to as quantile-quantile correction (Q-Q correction). It is

based on the comparison between observed and simulated cumulative distribution functions. It

consist in identifying and correcting the bias associated to each simulated percentile so that the

corrected CDF fits the observed one. Here, we applied a Q-Q correction using ERA-Interim data as

reference.

To tackle the change in bias sign and magnitude across the year, the correction is performed

separately for the four seasons. The Cumulative Distribution Functions (CDF) are computed on a

regional basis mixing the data from all grid cells within the analogy domains used in SCAMP (cf.

Part III Fig.V.11, T-Td - green window, T - red window). In England, for instance, all grid points of

the ERA-Interim and ERA20C datasets within the green windows are used to compute the reference

and uncorrected CDFs of T-Td. The results of this regional correction approach are similar to the

ones of a local correction method, for which all grid cells are considered and corrected independently.

The corrected cycles of T-Td are presented on Fig.VI.1. The seasonal Q-Q correction is able to

balance the imprecisions of ERA20C.
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Figure VI.1 – Raw versus corrected ERA20C thermodynamic predictors. Mean seasonal cycle of T-Td
in ERA-Interim (red) and ERA20C (blue) for 3 of the 12 test regions. The first row corresponds
to the uncorrected data for ERA20C. The second one presents the results of a seasonal Q-Q
correction. The cycles have been computed over the 1983-2012 period.
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1.1.2. Effects on downscaled data

Region weather series of the 20th century have been generated with both uncorrected and cor-

rected predictors from ERA20C. Significant differences between the associated downscaled data are

obtained, especially for temperature and precipitation. They directly impact the simulated hydro-

meteorological and energy variables. Fig.VI.2 illustrates these differences on simulated river discharge

in NO, GE and AN. The reference cycles (black curves) have been obtained simulating river discharge

with observed data while the blue ones are associated either to corrected or uncorrected ERA20C

input data. The blue shade represents the dispersion between the 50 simulated discharge cycles issued

from the ensemble of downscaled weather scenarios.

The reference seasonal cycles of discharge are poorly reproduced using uncorrected weather data.

In regions where snow-pack has a strong influence on river flow (e.g NO), the peak in simulated

discharge is always overestimated and late compared as a consequence of a temperature bias. The

simulated cycles after correction of predictors are much more consistent with the reference ones. In

other regions, the bias in discharge obtained with the uncorrected data is mainly due to smaller

rainfall amounts. Downscaled precipitation and discharge are generally underestimated from early

summer to early winter in central/western Europe and during spring and autumn in Mediterranean

regions. These biases in discharge in southern Europe are also reduced after correction.

Apart for some specific and rare cases (e.g. in GE, with winter flow becoming slightly overesti-

mated after correction) removing the predictors biases in ERA20C leads to a much more accurate

reproduction of the reference variables. Thus, the following results and evaluations of the 20th cen-

tury climate will be only based on the downscaled weather variables resulting from the corrected

ERA20C input data.

2. Low frequency fluctuations

2.1. Hydro-meteorological variables

The internal variability of climate and its low frequency fluctuations have impacted weather con-

ditions in Europe in the course of the 20th century. With an increasing influence since the 1950s,

Climate Change came into play and contributed to the final hydro-meteorological series. The main

objective of this chapter is to assess the low-frequency temporal variability of weather variables under

”stationary” climate conditions. Performing such an analysis based on the 20th century observations

is not straightforward as climate change likely resulted in long-term trends from some meteorological

variables. A preliminary consideration for a robust variability analysis consists in identifying and

characterising these possible trends.

2.1.1. Linear trends

Separating the climate change signal from the natural variability of climate is not an easy task,

especially when the natural variability is large with respect to the magnitude of change [Deser et

al., 2012]. Depending on the meteorological variable and on the region, the onset and the trend
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Figure VI.2 – Raw versus corrected ERA20C predictors: impact on simulated hydrological cycles.
Mean annual cycle of discharge in observed series (black) and after downscaling with ERA20C
(blue). The first row corresponds to the uncorrected data for ERA20C. The second one presents
the results after a seasonal Q-Q correction of the T-Td predictor. The cycles have been computed
over the 1983-2012 period.

characteristics can change greatly. In this analysis, we chose to search only for simple linear trends

in the series. Restricting ourself to this unique and simple trend type is obviously not optimal for

temperature, as global warming has experienced a drastic acceleration for the last 30 years. A robust

analysis would require testing also non-linear trend models. However, for the sake of simplicity, only

linear trend models have also been applied to temperature series.

Trends are looked for over the entire period, from 1900 to 2010. Statistically significant trends are

identified using the 95% confidence interval (Student’s t-test). When a significant trend is detected, it

is removed from the time series before performing the analysis on low-frequency variations. Fig.VI.3

presents the regression coefficients of the linear trend fit for all four hydro-meteorological variables.

It leads to the following main conclusions:

• River discharge series exhibit positive trends for latitudes higher than 45° and negative ones

elsewhere. However, the slope coefficients are significant for only five regions (NO, BE, GE,

IT and TU). The Tunisian region presents the strongest negative trend with a drop of 30% in

mean daily river flow, from 1900 to 2010.

• The ERA20C downscaled series indicate an increase in temperature during the 20th century

for the whole European continent. In AN, the simulated temperature has increased by +1.1°C
over the whole 111-year period.
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• For 11 out of 12 test regions, simulated wind presents a significant increase since 1900 (Up to 6%

in EN). This result is quite surprising. To our knowledge, no such trend has been established by

previous observation-based studies for Europe. Actually, similar (or even stronger) trends exist

in the large scale wind speed data from ERA20C. All regions and seasons are concerned but

the British Isles seem to be more impacted especially in spring and autumn (+3m · s−1 in 110

years). Considering the resolution of ERA20C, the increase in wind speed is due, for the most

part, to a stronger geostrophic wind component. It can result either from stronger gradients

(i.e. deeper lows and stronger high pressure systems) or from a modification of the synoptic

circulation. Such changes could be physically consistent and relevant but some additional tests

seem necessary to check that they are not an artefact from the assimilation system. Indeed, only

marine wind and sea level pressure observations are assimilated in ERA20C. Their increasing

number from 1900 to 2010 could lead to more pronounced pressure features at the end of the

simulation period.

• Finally, according to the downscaled simulations, Southern Europe got more sun radiation at

the end of the 20th century. No significant linear trend is found for northern and central Euro-

pean regions.

2.1.2. Low frequency fluctuations

The fluctuations of downscaled weather variables and simulated river discharge from 1900 to 2010

are presented on figure Fig.VI.4 for 3 out of 12 regions (NO, GE, AN). To facilitate the compari-

son between variables and regions, the figure displays the 10-yr moving average series of anomalies

obtained by subtracting the 111-yr mean value to the initial series. Red and blue colours discrimi-

nate between positive and negative anomalies around the long-terms trend identified in the previous

section.

The duration and intensity of positive and negative phases change from one variable to the other.

Temperature has rather long and sometimes strong (up to ± 0.8°C) anomalies. A synchrony between

some regions is manifest (e.g. NO and GE, negative long-duration anomaly from 1950 to 1990).

However, one must recall that the last 30 years have undergone global warning and that the linear

trend removal did not take its acceleration since 1980 into account. Wind variations have a limited

duration (10-15 years max) and a maximum amplitude of 1.5 m.s−1. These results are in agreement

with the ones presented for France in Jourdier, 2015. Few anomalies last more than 20 years, indicating

that wind speed mainly fluctuates at smaller time scales. For both radiation and river discharge, the

characteristics of the anomalies seem to change greatly not only from one event to the other but also

between regions. Some long duration negative phases occurred (e.g. GE, Discharge, 1920-1960 ; AN,

Radiation, 1930-1970) while brief (10 to 20 years) oscillations can be seen in some other cases (NO,

Discharge ; GE, Radiation). The amplitude of the anomalies is very weak for radiation (±4W ·m2,

less than 3% of the mean annual radiation) and large for river discharge (up to about 10%).
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Figure VI.3 – 20th century trend in annual hydro-meteorological drivers. Slope coefficients (colors) of
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2.2. Electricity production

The low frequency variations of climate directly impact the renewable power generation. Thus,

wind, solar and hydro power together with energy demand are also expected to fluctuate at a multi-

decadal time scale.

To illustrate these variations, the hydro-meteorological time series of the 20th century and the

weather-energy conversion models presented in Chap.II are used to simulate both power generation

energy load series. In order to focus only on climate-related fluctuations, the different parametri-

sations of all conversion models are kept constant over the whole simulation period. Hence, the

relationship between hydro-meteorological drivers and energy generation/load are assumed to be

invariant in time from 1900 to 2010.
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Figure VI.4 – Multidecadal variations of hydro-meteorological drivers. 10-yr moving average series of
standardized discharge, temperature, wind and radiation in 3 out of the 12 test regions. Blue
(respectively red) color highlights positive (respectively negative) low-frequency fluctuations
around then mean value (0) or around the statistically-significant linear trend.
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2.2.1. Trend in production/demand

The close relationships between meteorological drivers and power generation/load lead to similar

trends in both types of series. We discuss here the main results and the associated figure is presented

in Appendix.D:

• As a direct consequence of the changes in simulated discharge, the simulated hydro power

resource has decreased in Mediterranean regions (significant negative trends in GA, AN and

TU). It has risen in Scandinavia (significant in NO and BE).

• As a result of an increasing simulated wind speed, wind power has increased significantly from

1900 to 2010 in all regions.

• Simulated solar power has significantly increased in South western Europe (TU, AN, GR, GA,

IT, FR and EN).

• At an annual time scale, the simulated energy demand has been relatively constant (appart from

a slight negative trend in EN, FR and GA). However, this result hides some seasonal disparities.

In winter and spring, negative trends are detected but they are generally not significant. On

the other hand, Fig.VI.5 presents the slope coefficients of linear regression applied to summer

and autumn series. It highlights two opposite contributions in Europe. Firstly, there is a drop

in energy load in autumn for north western regions due to a delay in the arrival of colder

temperature (less heating systems). In summer and in most regions, an increasing frequency

of heat waves leads to more simulated electricity consumption due to air conditioning.
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Figure VI.5 – 20th century trend in summer an autumn energy load. Slope coefficients (colors) of a
linear regression on summer and autumn energy load (yr−1) for the 12 European test regions.
Non-significant linear trends (95% confidence interval) are highlighted with a cross symbol.

2.2.2. Low frequency fluctuations

Low frequency fluctuations of power generation series are highly dependent on the characteristics

of their meteorological drivers. We just present, for illustration, the low-frequency fluctuations of

power series in NO (Fig.VI.6). The following comments are valid for all 12 test regions. In order to

compare the intensity of anomalies from on source to the other, we present the relative variations

compared to the average regional production from 1900 to 2010.
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Chapter VI. The 20th century climate

• It clearly appears that hydro power undergoes the strongest fluctuations in terms of intensity

and duration of anomalies. In this particular case, the differences between positive and negative

phases reach 15% and they can exceed 30% in other regions (not shown).

• Jourdier, 2015 highlighted the strong multidecadal variations of wind power generation in

France. Here, these fluctuations are also significant (2 to 5%), but much smaller than the

ones of RoR hydro power.

• Solar power also exhibits very weak variations (1 to 2%).

• Finally, the low-frequency fluctuations of temperature have limited effect on energy load. The

intensity of anomalies never exceed 3% and is slightly more pronounced in northern Europe

(not show).

The combination of these various characteristics in low-frequency fluctuations of energy sources

and energy load is likely to affect the penetration rate. We will now focus on this parameter and

evaluate the reliability, in terms of multidecadal stability of PE rate, of each CRE source and of

OM1.
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Figure VI.6 – Multidecadal variations of energy generation. 10-yr moving average series of relative
change in hydro, wind, solar power and energy load in NO. Blue (respectively red) color highlights
positive (respectively negative) low-frequency fluctuations around then mean value (0) or the
linear trend when it is statistically significant.
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2. Low frequency fluctuations

2.3. Penetration rates and energy droughts

2.3.1. Long-term trend

In Chap.III, the ability of single energy sources and of energy mixes to meet the energy demand was

evaluated on a 30 year period (1983-2012) via the penetration rate (PE, Eq.III.1). This criterion is

estimated comparing a power generation series (either from a single source or a mix) with the energy

load one. For the PE analysis, power generation series are normalized so that the mean productions

equal the mean load over the entire period of interest (1983-2012 in Chap.III). In this way, it only

accounts for the temporal production/demand mismatch and not for the level of equipment.

As shown in Chap.III.5, the penetration rate is greatly affected by the level of equipment. In other

words, it largely depends on the ratio between mean electricity production and mean energy load over

the considered period. In this analysis of the 20th century, we also assume invariant climate-energy

relationships (i.e constant level of equipment and temperature-to-demand links). Thus, we only focus

on the effects of the low frequency variability of climate on PE.

As highlighted in previous sections, There are some strong low frequency fluctuations in both

production and energy load. These fluctuations will likely impact the PE time series and lead to

important differences from one decade to the other. However, variations in PE could also result

from a long-term change in the power generation/load match driven by climate change. Indeed, the

simulated fluctuations in PE for 20th century strongly emphasise their dependence on the long-term

trends of electricity production series. As mentioned in Sec.2.1.1, some of those trends (wind) are

also likely resulting from a temporal heterogeneity in the input weather data (geopotential - ERA20C

dataset). The predominance of the trend signal in some series makes the analysis of PE low frequency

fluctuations potentially misleading.

A possibility to get rid of (or at least reduce) the trends contributions is to remove the long term

trends in all meteorological variables series and to use the corrected data as inputs of the weather-

energy conversion models. However, this is a rather demanding task, which necessitates re-running

all ERA-20C regional energy scenarios. We adopted another method to solving this issue: For each

CRE source, we scale the daily production time series with a coefficient assumed to vary linearly

with time. The rate of change of this coefficient is estimated so that the mean average production

roughly fits the mean average load in the course of the 20th century. Obviously, this method is

not optimal but it should lead to a reasonable estimate of the low-frequency variations of PE. The

coefficients associated the three single CRE sources are presented for NO, GE and AN in Fig.VI.7.

For all regions, the scaling coefficients of wind power are decreasing from 1900 to 2010. It is relatively

constant for solar power. More regional disparities exist for the coefficient associated to hydro power

with on one hand, a strong rise in Southern Europe and on the other hand, constant or decreasing

coefficients elsewhere.

2.3.2. Low-frequency fluctuations

The 1101-year long time series of de-trended penetration rates are presented on Fig.VI.8, for all

energy sources and mixes and for NO, GE and AN. Firstly, despite various characteristics in term of

119



Chapter VI. The 20th century climate

1900 1940 1980

0.8

0.9

1.0

1.1

1.2

Norway

year
1900 1940 1980

0.8

0.9

1.0

1.1

1.2

Germany

year
1900 1940 1980

0.8

0.9

1.0

1.1

1.2

Andalucia

year

Figure VI.7 – Scaling coefficients used to guarantee a constant electricity production from 1900
to 2010 (based on a 30-yr moving average) for hydro-power (blue), solar-power (red), wind-
power (orange) and OM1 (green). These coefficients are used to remove the trend signal in the
penetration rate series and only consider the 10-yr period fluctuations.

low-frequency fluctuations, the ranking of energy sources does not change in the course of the 20th

century. OM1 is always the unquestionable best options regarding the mean penetration rate.

Low frequency fluctuations in PE must be taken into account to decide on the size of CRE power

plants. Basing it on an estimation of PE rates using a limited period could result in an under or

over-sizing. Regarding this criterion, the different energy sources and mix are not equivalent. Solar

power is always the most reliable energy. Indeed, its associated regional PE series are almost constant

over the whole period and their low frequency variations are limited. The same comment applies to

wind power which does not fluctuate much around its mean penetration rate. The strong variations

of hydro power prevent it from being a reliable energy sources at a multidecadal scale. Let us take

the example of hydro power in NO. Estimating the PE rate of this energy source from 1960 to 1980

leads to an underestimation of its mean value and thus to a costly over-sizing. On the other hand,

considering the 1990-2010 period which presents a positive anomaly in PE, the associated hydro

power plant would be too small to adequately meet the energy load on ”normal” or negative anomaly

periods. Finally, the results of OM1 are uneven from one region to the other and depend on the

proportion of each single energy source in the regional energy mix.
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Figure VI.8 – Multidecadal variations in global penetration rate (PE - %). 10-year moving average
de-trended series of PE for hydro-power (blue), solar-power (red), wind-power (orange) and OM1
(green) from 1900 to 2010. Results are presented for NO, GE and AN.
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England
D

iff
e

re
n

ce
 in

 P
e

n
e

tr
a

tio
n

 r
a

te
 (

%
)

H W S Mix H W S Mix H W S Mix

Norway Finland

France

D
iff

e
re

n
ce

 in
 P

e
n

e
tr

a
tio

n
 r

a
te

 (
%

)

Germany Belarus

H W S Mix H W S Mix H W S Mix

Galicia

D
iff

e
re

n
ce

 in
 P

e
n

e
tr

a
tio

n
 r

a
te

 (
%

)

Italy Romania

H W S Mix H W S Mix H W S Mix

Andalucia

Energy Source

D
iff

e
re

n
ce

 in
 P

e
n

e
tr

a
tio

n
 r

a
te

 (
%

)

H W S Mix

Tunisia

Energy Source
H W S Mix

Greece

Energy Source
H W S Mix

30

15

0

-15

-30

30

15

0

-15

-30

30

15

0

-15

-30

30

15

0

-15

-30

30

15

0

-15

-30

30

15

0

-15

-30

30

15

0

-15

-30

30

15

0

-15

-30

30

15

0

-15

-30

30

15

0

-15

-30

30

15

0

-15

-30

●●●●
●
●●●
●

●

●●●●●
●●
●●
●

●●●●●●●●●●

●●●
●

●

●
●●●

●

●●●●●●●

●

●

●

●●
●
●●
●
●
●●

●
●●●●●●●●●●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●●
●

●
●●●●●●●●●
● ●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●●

●

●
●
●●●●
●
●●● ●●●●●

●●●●
●

●●
●

●
●
●
●
●●● ●●

●

●
●●
●●●

●
●●●●●●●
●●● ●●●●●●●●●●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●
●

●
●●●●●●●●
●
● ●●●●●●●●●●

●

●
●

●

●

●

●
●
●

●

●
●

●

●●●●●●

●

●●●●●●
●
●●● ●●●●●●●

●●● ●

●●
●
●
●
●

●
●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●

● ●●
●
●
●●

●

●●
●

●●●●

●

●●●●● ●●●●●●●●●● ●●●●●
●●●●
●

●
●

●
●●
●

●
●
●

●

●
●

●

●●

●

●
●●

●

●●●●●●●●●● ●●●●●●●●●●

●
●

●●
●
●
●

●●
●

●
●

●

●

●
●

●●●● ●●
●●
●
●
●●●
● ●●●●●●●●●● ●●

●●●
●
●●
●
●

●
●●●
●

●

●
●●

●
●●●●
●
●●●●● ●●●●●●●●●

●
●●●
●●
●●
●
●

●

30

15

0

-15

-30

Figure VI.9 – Multidecadal variations in the estimation of PE (%). Each dot corresponds to the mean
PE value associated to a given 10-year period compared to the reference one (2001-2010). The
box-plots illustrate the total dispersion computed from the 50 downscaled series from the 10
decades of the 1900-2000 period compared to the 50 reference ones from 2001 to 2010. Results
are displayed for hydro-power (blue), solar-power (red), wind-power (orange) and OM1 (green).
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Chapter VI. The 20th century climate

These Multidecadal fluctuations are also highlighted on Fig.VI.9, which shows for all regions and

energy sources/mix, the differences in penetration rate from all 10-year sub-period of the 20th century

to a reference period (2001-2010). Each dot corresponds to the mean value associated to a given 10-

year period and the box-plots illustrate the total dispersion computed from the 50 downscaled series

of all 11 decades of the 1900-2010 period. This information quantifies the risks associated to the

evaluation of the penetration rate of an energy source based on a short period (10 years).

In all regions, the percentage of satisfied demand using solar power does not depend on the 10-year

sub-period choice. Differences in penetration rate never exceed 2%. Using a short period to estimate

the mismatch between wind power and energy load is rather reasonable for most regions. However,

the penetration rates seem to be more impacted by low frequency variations in EN and NO, resulting

in an over or under-estimation of about 7% for some decades.

Hydro power undergoes strong Multidecadal fluctuations. Assessing its ability to meet the energy

demand on a few years leads to high risks of under or over-estimation. For a given 10 year period,

there is also a strong inter-scenarios dispersion, resulting in total differences reaching 30% in some

regions (TU, GR, FI, BE). Italy stands out of the crowd; weak differences in penetration rate exist

from on decade to the other for this region.

Finally, mixing different energy sources leads to important differences between the 10-yr based

estimations of PE, especially for regions where hydro power prevails in OM1. The total dispersion

even exceeds the sum of the contributions from hydro, solar and wind power in some regions (IT,

RO). All in all, despite the appeal of combining different energy sources to fulfil a larger part of the

energy demand, the Multidecadal variability of energy mixes should not be underestimated.

2.3.3. Energy droughts
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Figure VI.10 – Multidecadal fluctuations of energy droughts characteristics. Mean number of drought
episodes versus mean drought duration. Results are displayed for hydro-power (blue), solar-
power (red), wind-power (orange), OM1 (green) and OM2 (grey). Each dot correspond to a 10
years sub-period of the 1900-2010 one.

Due to the relatively short period for which weather observations are available, we did not account

for the low-frequency fluctuations of the energy droughts in Part II. Estimating accurately both mean

duration and frequency of the droughts episodes is an important step toward a relevant and efficient

renewable power supply. Thus, we round off our analysis of the multidecadal variations of green
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2. Low frequency fluctuations

electricity production in Europe, assessing how energy droughts characteristics have changed in the

course of the 20th century. The results are presented on Fig.VI.10 for NO, GE and AN, and for all

energy sources and mixes. Each dot corresponds to a given 10-year sub-period.

Following the results discussed previously for PE, the number of wind and solar power drought

sequences and their mean durations do not fluctuate much from one decade to the other in the

simulated series. Logically, the same comment is valid for OM2, combining only these two energy

sources. The duration of drought episodes associated to hydro power varies greatly in some regions.

It ranges, for instance, from 50 to 100 days in NO. Consequently, the risk of energy shortage for hydro

power should be evaluated on long periods. Ultimately, the number of drought episodes related to the

OM1 also changes and can be three times higher from one decade to the other in some regions (e.g.

from 5 to 15 sequences per year in GE). However, these relatively high variations are counterbalanced

by the much lower frequency and duration of drought events compared to single energy sources.
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ChapterVII
Large scale oscillations of the climate

system: effects on renewables

In Chap.III and Chap.VI we showed that all climate variables fluctuate at various time scales

from inter-annual to multidecadal periods. These fluctuations are sometimes driven by large scale

oscillations in sea surface temperature or sea level pressure. El Nino-Southern Oscillation (ENSO)

[Ropelewski and Halpert, 1986] has an unquestionable impact on both temperature and precipitation

amounts in a number of regions worldwide. The Atlantic Mutidecadal Oscillation (AMO) [Enfield

et al., 2001] and the North Atlantic Oscilation (NAO) determine respectively the long-term and the

inter-annual variability of the European climate [Trigo et al., 2002; Rogers, 1997; Hurrell and Van

Loon, 1997]. We examine how the low frequency variability of weather and energy variables can be

related to such large scale climate phenomena.

1. Presentation of the Climate indices

Some climate fluctuations are known to be driven by large-scale or global oceanic and atmospheric

oscillations. The ENSO (El Nino-Southern Oscillation), which consists of fluctuations of the Ocean

temperature in the equatorial Pacific [Ropelewski and Halpert, 1986], has a strong impact on both

temperature and precipitation patterns in many regions worldwide. However, its influence on the

European climate is less certain [Scaife, 2010] even if some studies highlighted several connections

[Brönnimann, 2007].

The Atlantic Ocean temperature also fluctuates on a multidecadal scale [Enfield et al., 2001]. The

AMO index is computed as the area-weighted average temperature over the Northern Atlantic (0° to
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Chapter VII. Large scale oscillations of the climate system: effects on renewables

70°N). It has an approximate period of 70 years and its influence on the European climate has been

proven in winter [Rodwell et al., 1999].

The atmospheric patterns of the northern Atlantic, despite their fixed average locations (Azores

High, Iceland Low), switch positions from daily to annual scales. This oscillation, known as the North

Atlantic Oscillation (NAO) [Hurrell and Van Loon, 1997], influences greatly the European climate,

especially in winter [Trigo et al., 2002; Rogers, 1997]. The NAO index quantifies the anomaly in

position and intensity of the usual north Atlantic pressure patterns1.

Using the long time series (starting in the 19th century), provided by the NOAA2, we analyse the

correlation between two of these indices (AMO and NAO) with the regional hydro-meteorological

series. We aim to confirm the results of past studies focusing on the impact of these natural oscillations

on the European climate and to extend them to CRE sources.

The annual time series of AMO and NAO indices from 1900 to 2010 are presented on Fig.VII.1.

Both series have a high inter-annual variability, with consecutive years of strong opposite anomalies

often observable. However, the long-term variations of the AMO index (70-year period) already ap-

pear on the annual data. It is highlighted on the 10-yr moving average series. Conversely, no clear

periodicity in long-term variations of the NAO index can be identified. Stronger and numerous years

with a positive NAO index occurred until 1960 but more variability exists since then. Some past

studies also suggested that the AMO could impact the NAO, particularly in winter [Rodwell et al.,

1999]. The Spearman correlation coefficients, computed on annual series, proved that a significant

anti-correlation (-0.26) exists between both indices. Nevertheless, large disparities between seasons

have been found with anti-correlation in winter and spring (-0.19 and -0.45 respectively) but no sig-

nificant correlation coefficients for other seasons.

2. Correlation with hydro-meteorological parameters

Fig.VII.2 and Fig.VII.3 present the regional Spearman correlation coefficients between the two

climate indices (NAO and AMO respectively) and the annual series of surface weather variables in

winter, summer and for the whole year.

• Firstly, one can notice that the correlation coefficients are low and often not statistically sig-

nificant in summer for all variables and most regions. Nevertheless, there is a weak negative

correlation between the NAO and summer wind, radiation and discharge in Europe.

• Following the results of previous studies, a positive phase of the NAO leads to a warmer year

and particularly a warmer winter for northern European regions. Conversely, Mediterranean

regions experience temperature colder than usual. The same dipole exists for wind speed with

positive correlations (stronger wind with NAO+) for latitude higher than 50° . The warmer

and windier conditions for a positive NAO index are associated with a succession of weather

1A description of how monthly and annual time series of NAO index have been computed is available on the NOAA
website http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily ao index/history/method.shtml

2http://www.esrl.noaa.gov/psd/data/climateindices/list
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Figure VII.1 – Time series of NAO and AMO. Annual and 10-yr moving averaged series of North Atlantic
Oscillation (NAO) and Atlantic Multidecadal Oscillation(AMO) from 1900 to 2010. Positive
(respectively negative) phases are displayed in blue (respectively red).

disturbances, in northern Europe. Logically, solar radiation is lower than usual whereas dis-

charge increases as a consequence of more precipitation and less snow accumulation (in winter

for Scandinavian regions).

The surface temperature of the Atlantic Ocean also impacts the European climate. The correla-

tion coefficients between the AMO and continental temperatures are high and positive in summer,

especially in Western Europe. In winter, the correlation sign changes and positive phases of the AMO

are generally associated to colder winter seasons.

For the other variables, no systematic relationship can be established, particularly in winter, for

which many correlation coefficients are not statistically significant. Moreover important regional

differences exist. For instance, the results for winter discharge are very uneven with a change in

correlation sign from one region to the neighbouring one. Yet, some spatial consistency is noticeable

with, for instance, positive correlation coefficients in Mediterranean regions in summer and from EN

to TU at an annual time scale. Annual discharge also has slight but significant anti-correlation with

the AMO index in Eastern Europe. A negative correlation between summer/annual wind speed and

the AMO is detectable for a majority of regions. The same comment is valid for to radiation. Finally,

a positive winter correlation between radiation and the AMO index exist in Western Europe.

3. Relationships with CRE sources and energy load

The correlation coefficients between the climate indices and regional power generation series can

almost be directly deduced from the ones presented for their hydro-meteorological drivers. For this

reason, the associated figures are only presented in Appendix.D. We summarize here the main results:
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Figure VII.2 – Connections between the NAO and meteorological drivers. Spearman correlation co-
efficients between the NAO index and regional series of temperature, wind, radiation and dis-
charge. Non-significant correlation coefficients (95% confidence interval) are highlighted with
the cross symbol. Results are displayed for annual, winter and summer data.

Winter

• Positive NAO phases result in higher wind and hydro power in Northern Europe but lower

production values in the Mediterranean basin

• The energy demand is lower in most regions during positive anomalies of the NAO except in

AN and TU.

• The electricity production from solar panels is generally lower for NAO+ in north-eastern

Europe. A positive correlation exists for some other regions especially AN and GA.
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Figure VII.3 – Connections between the AMO and meteorological drivers. Spearman correlation
coefficients between the AMO index and regional series of temperature, wind, radiation and
discharge. Non-significant correlation coefficients (95% confidence interval) are highlighted with
the cross symbol. Results are displayed for annual, winter and summer data.

• The correlation coefficients between the AMO and energy generation/load are weak and often

not statistically significant. No spatial pattern is noticeable.

Summer

• The relationships between the NAO and energy generation/load are weaker in summer. The

correlation coefficients are either not significant or slightly negative (energy load and wind

power).
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• Small but significant positive correlations exist between the AMO and hydro power in North-

eastern Europe. There is a negative correlation from GR and TU to FR.

• For Solar/Wind power, the correlation coefficients assocated to both climate indices are also

low. Regrading solar power, they are positive in most region. In the case of wind power, one

can notice a weak opposition between western and eastern Europe with a positive correlation

in AN, GA and EN and a negative one in Scandinavia, BE, TU and GR.

• Energy load presents a much higher correlation with the AMO than all CRE sources. In

summer, the correlation coefficients are negative for northern regions (EN, NO, FI) and positive

for all southern regions. Note also than some significant correlations also exist in spring and

autumn (not shown). Correlation coefficients between the AMO and spring energy load are

negative in EN, FR, GA and AN, positive elsewhere. There is more spatial homogeneity in

autumn with positive correlations for most regions (apart from TU and AN).

4. Relationships with annual PE and energy droughts

4.1. Annual PE

The connections between the NAO and the penetration rates of CREs sources has been presented

by François, 2016 (Fig.5) on a 30-yr period. We extend part of this study to the entire 20th century,

giving a more robust evaluation.

The relationships between the penetration rates of CRE sources and their meteorological drivers

is less straightforward. However, the same spatial patterns of correlation with the NOA/AMO

are emphasised again. Hence, we only summarise the main results (see the associated figure in

Appendix.D):

• Correlation coefficients between the NAO and summer penetration rates and between the AMO

and winter PE are weak and often not significant.

• For wind and hydro power, higher winter penetration rates occur during positive phases of the

NAO in northern Europe but during negative phases in Mediterranean regions.

• The spatial pattern of correlations between the winter NAO and solar PE is similar to the

ones of wind and hydro power PE but with opposite signs: Negative correlation coefficients in

Northern Europe, positive ones in Mediterranean regions.

• The most significant correlation between the AMO and summer penetration rates are found in

eastern Europe for wind power (negative correlations) and in Mediterranean regions for hydro

power (negative correlations).

4.2. Energy droughts

We performed the same analysis on the annual duration and frequency of occurrence of energy

droughts, defined in Chap.III. In many cases, no spatial pattern emerges or most of the correlation

coefficients are not significant. We only present here the most noteworthy results.
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4. Relationships with annual PE and energy droughts

The Spearman correlation coefficients between climate indices and annual drought frequency series

are presented on Fig.VII.4. A mentioned previsouly, correlations are generally weak and few spatial

consistency exists. However, a stronger relationship is found between the NAO and wind power

droughts which are less numerous in Northern Europe during positive phases of NAO.
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Figure VII.4 – Connections between the NAO/AMO and energy droughts frequency in winter.
Spearman correlation coefficients between the NAO/AMO index and regional series of energy
droughts frequency in winter. Non-significant correlation coefficients (95% confidence interval)
are highlighted with the cross symbol

No significant correlation between the AMO and mean annual droughts duration could be high-

lighted. Fig.VII.5 only presents the winter correlation of these series with the NAO (no significant

correlation in summer). Once again, the most noteworthy result is associated to wind power with

long energy droughts in the Mediterranean and shorter one in Scandinavia during NAO+ phases.

Significant positive correlations also exist for hydro power in FI and BE and for solar power in Iberian

peninsula (GA and AN).
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Figure VII.5 – Connections between NAO and energy droughts duration in winter. Spearman cor-
relation coefficients between the NAO index and regional series of energy droughts duration in
winter. Non-significant correlation coefficients (95% confidence interval) are highlighted with
the cross symbol
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Chapter VII. Large scale oscillations of the climate system: effects on renewables

Overview

The two previous chapters aimed to illustrate and quantify the low-frequency fluctuations of

weather, electricity production and penetration rate series. Using the recently released ERA20C

climate reanalysis from the ECMWF and the multivariate analogue method developed in Part III

(SCAMP), downscaled regional weather series were generated from 1900 to 2010. A bias correction

based on the quantile-mapping method was necessary for some predictors (T-Td and Temperature)

to ensure relevant and correct hydro-meteorological simulated series.

• For all regions, simulated temperature and discharge have strong and long-lasting multidecadal

anomalies. Conversely, low-frequency fluctuations are rather limited and short lasting for wind

indicating that this variable varies at shorter time scales. Solar radiation can be lengthy but

their magnitude are weaker and never exceed 3W ·m2.

• The variations of hydro-meteorological variables directly impact the power generation and

energy load series. Consequently, hydro power undergoes strong fluctuations in all European

regions with anomalies lasting several decades and generally being from 5 to 20% higher (or

lower) than the mean production. Wind and solar power have more reasonable multidecadal

variations. The strong and lengthy fluctuations of temperature have a rather limited impact

energy load (fluctuation below 3%).

• The analysis of penetration rate fluctuations confirmed the important variations of hydro

power compared to the other energy sources. Its penetration rate should be evaluated on

long periods to avoid irrelevant power plant dimensions and recurrent over/under-production

periods. Moreover, attention should be paid to hydro-power droughts characteristics which

present strong multidecadal fluctuations in both frequency and duration. Finally, when the

share of hydro-power in an energy mix is high, the resulting energy and penetration series

suffer from similar low-frequency variations.

We also explored the possible relationships between hydro-meteorological/energy/penetration

series and two climate indices known to influence the European climate. The North Atlantic Os-

cillation (NAO) and the Atlantic Multidecadal Oscillations (AMO) strongly impacts the hydro-

meteorological drivers. The most noticeables connections are:

1) NAO+ leading warmer, winder, cloudier and rainier conditions in Northern Europe while the

opposite anomalies exist in Mediterranean regions.

2) AMO+ resulting in warmer summer temperature over the entire continent.

These results impact directly energy/load and penetration series but the connections with both

the NAO and the AMO get weaker (lower correlation coefficients). However, wind power PE rates

and energy droughts characteristics remain strongly related to the NAO in winter.
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Part V

EXPLORING FUTURE REGIONAL

CLIMATE: SCENARIOS AND LIMITS

OF THE ANALOGUE METHOD
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ChapterVIII
The 21st century climate using analogues

The ongoing global warming and its effects on local meteorology will likely modify the character-

istics of regional power generation time series. Many studies already assessed the possible impacts

of climate change on the hydro-meteorological drivers of CRE sources or on the mean ressources in

renewables (e.g. in Jerez et al., 2015; Reyers et al., 2016; Segal et al., 2001; Tobin et al., 2015).

However, the mean electricity productions are not sufficient to evaluate the possible future changes

in CRE sources. Indeed, they do not describe the modification of the match between production and

demand. To perform such an evaluation, regional multivariate time series, with accurate co-variations

are required.

In this chapter we will use SCAMP to downscale large scale simulations from a selection of climate

models, generated as part of the last CMIP phase [Taylor et al., 2012]. These GCMs have been used

to simulate the past and current climate (historical runs) and its future evolution until 2100. Four

Representative Concentration Pathways (RCP), corresponding to different scenarios of greenhouse gas

emissions, force these climate simulations from 2005. We will here focus on the RCP4.5 and RCP8.5

scenarios. This GHG emissions peak in 2040 in the RPC4.5 case while they keep on increasing until

2100 in the more pessimistic RCP8.5 [Taylor et al., 2012].

After evaluating and sometimes correcting the large scale predictors from the selected GCMs, the

downscaled series of predictands will be compared with each other. Moreover, the relevance and

agreement of these downscaled simulations with the findings of similar studies will be assessed.
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Chapter VIII. The 21st century climate using analogues

1. GCMs presentation

1.1. Description of CMIP5 smilations

In 2008, the World Climate Research Programme (WCRP) agreed to promote a 5th phase of the

Coupled Model Inter-comparison Project (CMIP)1. This project aimed to coordinate and gather

climate simulations from numerous research centres worldwide. All these simulations follow a set of

common rules in order to be comparable and to bring useful information about the three following

questions:

• How can GCMs can efficiently reproduce and predict both past and future climate conditions?

• What are the uncertainties related to these simulations and what are the reasons for the wide

range of different simulations using similar model forcings.

• What are the reasons for the strong model differences in the feedbacks between clouds and the

carbon cycles?

A detailled description of the CMIP5 framework and of the associated climate simulations is

provided by Taylor et al., 2012.

In this study, we selected and extracted data from 4 GCMs for which all the large scale variables

used as predictors in SCAMP were available, that is to say: HGT500, HGT1000, T-Td and T.

However, for most GCMs, the geopotential height is not extrapolated when its value is lower that the

surface elevation in the model. In Europe, HGT1000 is not available over the highest mountain ranges

(e.g Alps, Scandinavian mountains). Moreover, the deepest low pressure systems often have negative

HGT1000 leading to more missing values. To tackle this issue, we replaced the HGT1000 predictor

by the pressure at sea level (PSL) which gives a very similar information, in terms of gradients and

positions of highs and lows. The dew point temperature (Td) is a variable which is usually not

provided as part of the GCMs outputs. The near-surface relative humidity (RHS), available for all

models, was used to computed Td and construct T-Td (second-level predictor of SCAMP), following

Lawrence, 2005.

The general characteristics of the selected GCMs are presented in Tab.VIII.1. 3 of them are

European models and the last one has been developed in Japan. All of them have 3 members for

the historical run giving a more detailed and accurate description of the simulated past climate

conditions. Apart from the IPSL-CM5A-MR model, multiple runs have been used for one of the

RCPs: 3 members with RCP8.5 for MIROC and HadGEM, 3 members with RCP4.5 for MPI-ESM.

Table VIII.1 – Characteristics of the selected General Circulation Models

Historical RCP

Country Model Resolution Members From-To RCP Members From-To

France IPSL-CM5A-MR 2.5°-1.25° 3 1850-2005 4.5|8.5 1|1 2006-2100

UK HadGEM2-CC 1.875°-1.25° 3 1950/60/60-2005 4.5|8.5 1|3 2006-2099

Japan MIROC5 1.4°-1.4° 3 1850-2009 4.5|8.5 1|3 2006-2100

Germany MPI-ESM-MR 1.9°-1.9° 3 1950-2005 4.5|8.5 3|1 2006-2100

1cmip-pcmdi.llnl.gov/cmip5
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1. GCMs presentation

1.2. Evaluation and correction of predictors

Historical climate simulations are only constrained with non-meteorological forcing (GHG emis-

sion, solar radiation...) and thus cannot be considered as climate reanalysis datasets. However, they

are supposed to efficiently simulate the past climate conditions and the statistical properties of atmo-

spheric variables for any region of interest. Yet, the low resolution of these models and the numerous

parametrisations that are involved in the simulations could result in large inaccuracies or biases. As

an illustration, we will present the simulated humidity predictors (T-Td) and HGT500 fields of some

of the selected GCMs.

The seasonal cycles of T-Td in ERA-Interim and in the HadGEM2-CC model are presented on

Fig.VIII.1 for NO, GE and AN. The cycles have been computed using the data from 1979 to 2005

(largest common period) and gathering all three historical members of each GCM. It allows us to

partly free ourself from the low-frequency fluctuations in the GCMs and to use a 27x3 year period to

describe the simulated past climate. In all regions, T-Td cycles are poorly simulated by the GCMs

(biased shapes and amplitudes). In most cases (apart from Scandinavian regions, here NO), summer

moisture is too low but winter is too humid. Applying the same quantile-mapping seasonal bias

correction as for ERA-20C in Part IV partly remove these large biases. Even if the cycles shapes

are not entirely corrected (e.g in Germany with a lower peak in summer), the range of T-Td values

is much more consistent with the ERA-Interim data. As explained in Chap.VI, performing a bias

correction on predictors is not entirely satisfying. However, this correction seems necessary before

downscaling the GCMs simulations.

Unlike ERA20C, no surface wind or pressure observations are assimilated in GCMs making the

simulated atmospheric circulation potentially biased. Thus, we also performed a comparison of the

PSL and HGT500 fields between the selected GCMs and ERA-Interim. Firtly, Fig.VIII.2 presents

the mean seasonal (winter and summer) biases in HGT500 for all GCMs. Most of the following

comments are valid for PSL. For all models, the biases are generally stronger in winter. Both MPI

and IPSL models present a strong negative bias in 500hPa geopotential height located over the British

Isles. There is a better agreement between HadGEM2, MIROC and ERA-Interim with weak negative

biases mainly located in western or central Europe. However, these two models are less consistent

with the climate reanalysis data in summer. This is particularly the case of MIROC whose mean

geopotential height is overestimated over Scandinavia. No significant bias between MPI, IPSL and

ERA-Interim can be seen in summer. All in all, the characteristics of the GCMs biases in HGT500

are very model and season-dependent.

The mean seasonal bias in geopotential height or sea level pressure does not give information on

the origin of these differences. They could come either from deeper of weaker pressure features in

the model or from a bias in the atmospheric circulation and in the usual trajectory of mid-latitude

cyclones. To estimate the extent to which GCMs are able to accurately simulate the atmospheric

circulation over Europe, we performed an Empirical Orthogonal Functions (EOF) analysis (also

known as Principal Components analysis). EOFs identify the spatial modes of variability (ie, the

most characteristic spatial patterns) and quantify their contributions to the total variablity of weather

patterns. This method has been widely used to characterise the atmopheric circulation or to establish
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Figure VIII.1 – T-Td bias in HadGEM2-CC. Mean seasonal cycle of T-Td in ERA-Interim (red) and
HadGEM-CC model (blue) for 3 of the 12 test regions. The first row corresponds to the
uncorrected data for HadGEM-CC. The second one presents the results of a seasonal Q-Q
correction. The cycles have been computed over the 1979-2005 period.
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Figure VIII.2 – Bias in mean seasonal 500hPa geopotentiel height for the four selected GCMs over
the 1979-2005 period. Results are presented for both winter (DJF) and summer (JJA).

a classification of synoptic situations into weather types [Esteban et al., 2006; Huth et al., 2008; Beck

and Philipp, 2010; Bower et al., 2007; Hurrell and Deser, 2015; Lafaysse et al., 2014; Boe, 2007].
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1. GCMs presentation

A detailed description of the functionning and developpment of an EOF analysis can be found in

Von Storch and Zwiers, 2001; Bjornsson and Venegas, 1997.

We performed an EOFs analysis on an enlarged European domain. The boundaries of this domain

have been set such as all the analogy domains used for HGT500 and PSL in SCAMP would be

included, that is to say: 23.25°W-42.75°E / 24°N-69°N. As an illustration of the spatial bias in the

GCMs, we present on Fig.VIII.3 a comparison between the first three EOFs in MPI-ESM and in ERA-

Interim. Winter and summer have been considered separately to account for a possible seasonality

in bias.

Regarding the winter reference modes in ERA-Interim, 41% of the total variance is explained by

westerlies (NAO). The second mode consists of a strong anomaly located over the British Isles and

represents 28% of the variability. Finally the third mode (14%) is characterised by a W-E dipole with

one anomaly located over the Atlantic Ocean and the other one in central Europe. The MPI-ESM

model has difficulties to simulate accurately the winter westerlies. The positions of the anomalies

are shifted south-westward and they account for only 32% of the total variance. EOF2 and EOF3

are relatively well simulated in the model but their order is reversed (EOF3 is more frequent than

EOF2). EOF3 is also slightly shifted in the MPI-ESM model giving a NO-SE dipole.

In summer, the first mode (33%) consists of an anomaly in geopotential height located over the

North Sea. A new dipole (British Isles vs Scandinavia) comes next and represents 26% of the

total summer variability. Finally, the third EOF presents two anomalies of the same sign over the

Atlantic and in Western Russia while an opposite one is located in Northern Atlantic. Both order

and associated explained variance of the three reference summer EOFs are well simulated by the

MPI-ESM model. However some imprecisions exist in the location and intensity of the anomalies

(eg. weak maximum in EOF2 shifted south-westward).

Speaking generally, the spatial bias in EOF modes is very model-dependent and changes greatly

from one season to the other. This comment is in agreement with some previous studies [Lafaysse

et al., 2014]. It is not possible to make general comments that are valid for all the GCMs selected in

this study. We presented the results associated the MPI-ESM model to illustrate the magnitude of

the biases and how they could affect the global atmospheric circulation in GCMs. Yet, performing a

spatial correction of HGT500 and PSL in our climate simulation is far from being straightforward.

To our knowledge, no satisfactory bias correction method have been developed and evaluated for the

correction of multivariate spatial fields from GCMs. Such a correction would require, on one hand to

modify the spatial structure of the inaccurate simulated EOFs modes and, on the other hand to adjust

the explained variance of each of these modes. The development of a relevant correction method,

which would not worsen the first analogy level of SCAMP based on shapes and gradients of HGT500

and PSL, is beyond the scope of this study. Moreover, the reference EOFs from ERA-Interim have

been computed on a relatively short period (from 1979 to 2005) giving more uncertainty to their

estimation. Considering all these limitations and difficulties, no correction of SLP and HGT500 from

the selected GCMs was made before downscaling.
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Figure VIII.3 – Comparison between the first three EOFs of 500hPa geopotential height in the
MPI-ESM and in ERA-Interim. Results are presented for both winter (DJF) and summer
(JJA).

2. Downscaled future climate

2.1. Future trends and modifications

Using SCAMP and the corrected GCMs data, daily series of regional predictands were generated

from 1960 to 2100. We will first present the time series associated to the HadGEM2-CC model. The

results obtained with this model are similar to the ones of the three other GCMs.
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2. Downscaled future climate

The 20-year moving averaged series of predictands from the downscaled simulations of the HadGEM2-

CC model are presented on Fig.VIII.4, for three representative regions (NO, GE and AN). It gathers

all runs (historical, RCP4.5 and RCP8.5) and members. The dark line represents the median down-

scaled scenario and the inter-scenarios dispersion (90th and 10th percentiles distance) is shown thanks

to the color shading.

For temperature, the increase begins at the starting date of the historical time series in all regions.

In the first half of the 21st century the RCP8.5 and RCP4.5 are very similar. They move apart from

2050 with the RCP4.5 temperature still increasing but more reasonably. Conversely, all RCP8.5

members present a continuous and strong rise until the end of the 21st century. These results are

consistent with GHG emissions peaking in 2040 in the RPC4.5 case while they keep on increasing for

RCP8.5. For all regions and runs, the inter-scenarios dispersion is small (90th and 10th percentiles

distance <0.5°C). All members (historical and RCP8.5) are also very consistent with each other

(distance between median downscaled scenarios < 1°C).

Both precipitation and wind are expected to decrease in the course of the 21st century according to

the HadGEM2 model. However, the large inter-downscaled scenarios and inter-members dispersion

gives lower confidence in the amplitude of the decrease. Moreover, in most cases, it is not possible to

discriminate between the RCP45 and RCP85, as their time series do not diverge significantly, even

at the end of the century.

Finally, and despite the still large small scale variability, the trends are less questionable for

radiation. Sun radiation is expected to increase significantly especially for the RCP8.5. Such as for

temperature, the RCPs split after 2050 and there is a stabilisation of the radiation series with the

RCP4.5.

From a spatial point of view, Fig.VIII.5 shows the absolute changes from the 1970-2000 period to

the 2070-2100 one. The downscaled weather series associated to the RCP85 are presented for all the

selected GCMs. When several members are available (HadGEM2, MIROC), the displayed change is

the mean value from all three members. For precipitation, wind and radiation the relative change

is also indicated. Generally speaking, there is a strong agreement between the downscaled series

obtained with the 4 selected GCMs. However, some spatial disparities or difference in the magnitude

of the change are noticeable.

All GCMs simulations downscaled with SCAMP agree on an important increase in temperature

until the end of the 21th century. The strongest changes are obtained for the HadGEM2 model which

gives up to +7°C in IT and RO. On the other hand, the smallest changes are given by MPI with a

maximum rise of +4°C. However, this model only has a single member for the RCP8.5 giving less

reliability to its results. The spatial structure of change in downscaled temperature is very similar

from one GCM to the other. Regions close to the Atlantic Ocean would experience a more reasonable

increase while Mediterranean regions and central Europe get a much warmer climate.

The approximately same comments are valid for regional precipitation. Everywhere in Europe,

downscaled precipitation projections present an almost systematic decrease in annual precipitation.

These drops can reach from -40 to -50% in some cases (IPSL, RO-GR ; HadGEM, IT-RO-BE ;

141



Chapter VIII. The 21st century climate using analogues

1950 2000 2050 2100

5

6

7

8

9

10

11

Norway

1950 2000 2050 2100

10

12

14

16

Germany

1950 2000 2050 2100

19

20

21

22

23

24

25

Andalucia

1950 2000 2050 2100

2.0

2.2

2.4

2.6

2.8

3.0

1950 2000 2050 2100

1.5

2.0

2.5

3.0

1950 2000 2050 2100

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1950 2000 2050 2100
5.2

5.4

5.6

5.8

6.0

6.2

1950 2000 2050 2100
4.2

4.4

4.6

4.8

5.0

5.2

5.4

1950 2000 2050 2100

4.1

4.2

4.3

4.4

4.5

4.6

4.7

1950 2000 2050 2100

120

125

130

135

Year
1950 2000 2050 2100

160

170

180

190

Year
1950 2000 2050 2100

230

235

240

245

250

Year

T
e
m
p
e
ra
tu
re

P
re
ci
p
it
a
ti
o
n

W
in
d

R
a
d
ia
ti
o
n

(°
C
)

(m
m
)

(m
/
s)

(W
/
m
²)

Figure VIII.4 – Time series of predictands from downscaled HadGEM2-CC. 20-year moving averaged
series of predictands from the downscaled simulations of the HadGEM2-CC model, including all
run (historical, RCP4.5 and RCP8.5) and members, and for three representative regions (NO,
GE and AN). The dark lines represent the median downscaled scenario and the inter-scenarios
dispersions (90th and 10th percentiles distance) are shown thanks to the color shading.

MIROC, IT-RO). The Atlantic regions (GA, EN, NO) are again showing less significant changes

while south-eastern Europe undergo much rarer rainfall.
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2. Downscaled future climate

Generally speaking, all 4 downscaled GCM simulations seem to indicate that wind speed is going

to decrease in Europe. However, these changes are weak. The most significant results is for TU,

where all models agree on a reduction of wind speed from 4 to 6%.

The regional changes in downscaled radiation are once again very similar in the selected GCMs,

apart from the MPI model which presents lower values. Near-surface sun radiation increases during

the 21st century. In addition to regions close to the Ocean, for which less modifications are expected,

the Mediterranean basin also shows moderated changes.

Some of these results are consistent with other studies focusing on the effect of global warning

on the European climate. This is the case for temperature which is expected to strongly increase

until the end of the century under the RCP8.5 [Rogelj, 2013; Harris et al., 2010]. Heat waves and

extreme hot temperature will also become more frequent and intense [Ballester et al., 2010a; Ballester

et al., 2010b; Kjellström et al., 2007; Schär et al., 2004]. The downscaled future wind speed in our

12 test regions also follows the results of some past study, suggesting a decrease in wind speed in

Mediterranean regions [Tobin et al., 2015]. However, all GCM-SCAMP chains indicate a global

decrease in precipitation for the whole European continent. These results are not always consistent

with the outcomes of several recent studies.

2.2. The case of precipitation

Many climate change studies have not only focused on the likely temperature increase but also

on its possible effect on precipitation [Tapiador, 2010; Trenberth, 2011]. Despite a more complex

context related to the variability of precipitation on many temporal and spatial scales, there is a

growing consensus on what can be expected for Europe in the next decades. The last IPCC report

[IPCC, 2013] already suggested that most GCMs from CMIP5 agreed on two opposite precipitation

trends in Europe (RCP8.5): An increasing scarcity of rainfall in the Mediterranean basin on one

hand, and a strong rise in annual precipitation in Scandinavia on the other hand. From western to

central Europe, the uncertainty is higher and there is less confidence in the limited trends proposed

by the models [IPCC, 2013; Jacob et al., 2014].

Many regional studies, using dynamically downscaled GCMs data came to the same conclusion

on annual or seasonal precipitation [May, 2008; Ruosteenoja et al., 2007; Tapiador, 2010; Jacob et

al., 2014]. Some additional work on intense precipitation (which was not evaluated in this study)

indicate an increase of both frequency and intensity of extreme events [Fowler et al., 2007; Kyselỳ and

Beranová, 2009; Madsen et al., 2014]. Supporting the developpement of numerous downscaled climate

scenarios, EURO-CORDEX gave a more robust assessment of the future change in precipitation for

Europe. The high resolution simulations (0.11°or 0.44°) issued from 10 regional models gave a more

accurate spatial evaluation of these trends. Fig.VIII.6, extracted and adapted from Jacob et al., 2014,

presents the multi-model change in precipitation in Europe between 1971-2000 and 2071-2100 for the

RCP4.5 and RCP8.5. For both scenarios, the increase in precipitation is robust and significant in

Central Europe, Scandinavia and in the British Isles (RCP85). Similarly, there is a high confidence

in the drop in annual precipitation for the Mediterranean basin with the most pessimistic RCP. The

projected changes in annual precipitation reach +30% with the RCP8.5 in Scandinavia and -20% in

AN, TU and GR.
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Figure VIII.5 – Absolute change in annual mean of predictands from the 1970-2000 period to the
2070-2100 one. The results associated to the RCP85 are presented for all the selected GCMs.
When several members are available (HadGEM2, MIROC), the displayed change is the mean
values from all three members. For Precipitation Wind and Radiation the relative change is
also indicated.

This wide agreement on future trends in precipitation for Europe makes the results of our down-

scaled scenarios questionable. For all our 12 regions and 4 GCMs, SCAMP predicts a reduction in

annual precipitation. Thus, it seems that the downscaling method, optimised for past and current

climate conditions, fails to simulate accurately the regional series of precipitation. Despite the likely

correct results for temperature and wind speed, it is not possible to use SCAMP to produce the
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2. Downscaled future climate

(a) (b)

Figure VIII.6 – EURO-CORDEX results on European precipiation changes. Projected changes of
total annual precipitation (%) for 2071-2100 compared to 1971-2000, for RCP4.5 (a) and
RCP8.5 (b) scenarios. Hatched areas indicate regions with robust and/or statistical significant
change. Extracted and adapted from Jacob et al., 2014.

multivariate scenarios of predictands we are interested in. Moreover, few studies on the projected

change in sun radiation exist. We also have little confidence in the pan-European increase in sun

radiation suggested by our downscaled series. Indeed, there are some common atmospheric mecha-

nisms between precipitation and cloud cover. It is very probable that our results on radiation are

similarly biased.

In the next chapter, we will try to identify some possible reasons of this inability of SCAMP to

simulate relevant precipitation series under climate change conditions.
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ChapterIX
SCAMP under Climate Change: The

precipitation issue

In Chap.VIII, SCAMP was used to generate regional series of surface weather variables for a

selection of GCMs until 2100. For temperature and wind, the simulated trends and changes were

in good agreements with previous studies. However, the results associated to precipitation are more

questionable for many European regions. SCAMP predicts a drop in annual precipitation for the

whole continent whereas most past studies agreed on an strong increase of this variable for all regions

except in the Mediterranean basin [Jacob et al., 2014].

Here, we attempt to identify some of the reasons for the inability of SCAMP to simulate relevant

precipitation projections. Using a perfect-model approach, described hereafter, we evaluate and

analyse some key features that could contribute to this issue.

1. Statistical downscaling methods and future scenarios

Statistical downscaling methods take advantage of the strong relationship between synoptic at-

mospheric conditions and local weather. A number of studies worldwide have used those links to

generate downscaled projections of regional weather [Boé et al., 2006; Lafaysse et al., 2014; Willems

and Vrac, 2011]. The application of downscaling methods for future projections relies on 4 main

hypotheses that have to be accepted to guarantee the relevance of region scenarios [Musy et al.,

2014].

H1 The large scale predictors are accurately simulated in the selected datasets.

First and foremost, the quality of input data to the downscaling method must be ensured. If

a GCM is unable to simulate correctly the selected predictors (statistical distributions, multi-
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Chapter IX. SCAMP under Climate Change: The precipitation issue

scale spatio-temporal variability, inter-variables co-variations), one cannot expect the associated

downscaled projections to be relevant. This idea is often referred to as the ”Garbage-in, garbage-

out”(GIGO 1) concept, coming for the field of computer sciences but transferable to many other

applications, especially to hydro-meteorology.

In Chap.VIII, we evaluated the ability of a selection of GCMs to simulate all the predictors

involved in the downscaling of precipitation. The associated results highlighted the large biases

in atmospheric circulation and in thermodynamic parameters. In such cases, a correction of

GCMs outputs is classically performed for climate impact studies (e.g. Ines and Hansen, 2006;

Piani et al., 2010; Hagemann et al., 2011). This was done for T-Td in order to ensure that

the ranges of predictors values are comparable in both GCMs and reanalysis datasets. On

the other hand, as the analogy of geopotential is based on shapes and gradients, HGT500

and PSL fields from GCMs were not modified. None of these options is entirely satisfactory.

Indeed, performing a bias correction could deteriorate the predictors-predictand relationship

while no correction could prevent from finding close analogues. It is likely that the biases in the

predictors set partly contribute to the inconsistency of our precipitation scenarios. However,

there are probably some other elements that come into play. To free ourselves from the bias

contribution, we use SCAMP in a perfect-model approach. It consists in extracting both

predictands and predictors from the outputs of unique general circulation or regional climate

model. Then, analogues are searched for in the ”climate model world”. We will describe in

details the functioning of SCAMP in a perfect-model approach together with the selected data

in Sec.2.

H2 The selected predictors have a strong physical relationship with the predictands of

interest and their predictive skills are strong

In Part III, a lot of effort has been put into building a multivariate analogue downscaling that

guarantees both good predictive skills and correct inter-variable correlations. The final predic-

tors set is a combination of HGT500, HGT1000 and T-Td. For precipitation, selecting T-Td

rather than VV600 or a combination of relative humidity at 700 and 1000hPa, does not lead an

important drop in predictive skills. The additional evaluation of seasonality and inter-annual

variability confirmed the relevance of the multi-variate predictors for the simulation of regional

precipitation. Therefore, H2 appears to be valid under current climate conditions.

In the following, we will assume that this hypothesis is also valid in a perfect model approach,

meaning that the predictors set has a strong predictive skill for precipitation ”in the climate

model world”. This hypothesis can be partly evaluated by comparing the raw simulated pre-

cipitation from the model with the outputs of SCAMP in perfect-model approach for past

decades.

H3 The selected predictors carry the climate change signal and gather enough infor-

mation to describe its effects on predictands

Climate Change is expected to impact not only local weather parameters but also synoptic

meteorological features [Graff and LaCasce, 2012]. The optimal predictors set which has been

identified in SCAMP from observations, has a strong predictive skill for precipitation. However,

1https://www.techopedia.com/definition/3801/garbage-in-garbage-out-gigo
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the information on synoptic meteorology that the predictors bring, may not be enough to assess

how climate change will impact this variable in the future. There is no evaluation method that

can satisfactorily confirm that the simulated changes in the predictors set will suffice to catch

the change in precipitation that will occur in the coming decades. We will partly address this

question with the perfect model approach, by comparing the long-term trends from raw RCMs

data and from reconstructed precipitation series. In addition, we will present how the simulated

HGT500 and T-Td change from past climate conditions to the late 21st century. As SCAMP is

based on the analogue method, we will check that the future (2070-2100) ranges of simulated

predictors/predictand values do not exceed the past ones (before 2000). If this condition is not

fulfilled, SCAMP can have difficulties to find close analogues or to sample relevant precipitation

values.

H4 The strong predictors-predictand relationships are still relevant and not modified

by climate change

As mentioned for H2, the statistical relationship that has been established between HGT500,

HGT1000, T-Td and precipitation is valid under past/current climate conditions. However,

strong modifications of the climate system can result in a modification or a simple rupture of

the predictor-predictand relationship. Another set of predictors could then be more relevant in

a much warmer climate.

To highlight some possible modifications of the predictors-predictand relationship, we propose

to compare two different ways of using SCAMP in a perfect-model approach. The first one,

named SCAMP-FX, mimics the classic SCAMP and reconstructs the entire series of precip-

itation, looking for analogue dates on a fixed period (late 20th century). The second one,

SCAMP-MV, consists in adapting the positioning of the archive period to the target day by

using a moving temporal window. We will discuss in detail the differences between these meth-

ods in the next section.

Precipitation can have different origins. Fronts and synoptic disturbances mostly result in

stratiform precipitation. Convective processes are smaller scale phenomena which can bring

a large contribution to the total precipitation amount, especially in summer. The large scale

predictors of SCAMP have been selected to optimise the prediction of total precipitation. How-

ever, the predictors-predictand relationship could be different for the stratiform and convective

contributions. Consequently, we will evaluate, for one of the GCM-RCM chain, some possible

modifications of predictors-convective and predictors-stratiform precipitation relationships by

using both SCAMP-FX and SCAMP-MV.

2. Perfect-model approach

2.1. Description of the method

The perfect model approach consists in applying SCAMP in the ”GCM/RCM world”. All physical

processes (either simulated or parametrised) in climate models and all their meteorological outputs

are considered as representative of the climate system. Of course, this modelling is incomplete and
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many phenomena are roughly simulated or even not taken into account. However, since the perfect

model method involves data from a unique model and no observations, no bias correction is required.

When using SCAMP, the perfect model approach implies that all predictors and predictands are

extracted from the climate model (GCM-RCM chain in our particular case). For a given target day,

analogues are searched for within a variety of simulated large-scale situations from the climate model.

Similarly to what was done with observations, we define a model archive which sets the first and last

dates that can be used as analogues. Then, the predicted values are simply the precipitation data

simulated by the RCM on the selected analogue dates. Such a method has been already applied, for

instance, by Dayon et al., 2015 to test the transferability of an analogue downscaling of precipitation

in France. In their study, the authors generated a single time series by using the daily nearest

analogues. Here, we will use the ensemble analogue approach, already presented for SCAMP in

Chap.IV3.3, which consists in generating multiple downscaled series from the 30 nearest analogues

identified for each prediction day.

We now describe the two different versions of SCAMP that will be used in the following analysis.

2.1.1. SCAMP-FX

SCAMP-FX (SCAMP-Fixed archive), uses a 30-yr long fixed archive period to identify analogue

dates and reconstructs the entire series of precipitation until 2100. This archive extends from 1970 to

1999 as illustrated in Fig.IX.1.a. This first method mimics the downscaling of GCMs with SCAMP

in Chap.VIII for which the archive period is constrained by the observations availability from 1983

to 2012.

2.1.2. SCAMP-MV

In SCAMP (resp. SCAMP-FX), the local weather conditions of a given target day are recon-

structed using analogues and their associated observed (resp. simulated) values of predictands from

a past reference period. Consequently, the range of possible predictions is limited to what has been

observed (resp. simulated) in the past. Moreover, the predictors-predictand relationship used to

downscale precipitation remains constant for the entire simulation period and is imposed by the

archive period.

SCAMP-MV (SCAMP-Moving archive) makes use of the availability of simulated precipitation

data for the whole 21th century and proposes an adaptive archive period which is always centred on

the target day. In order to compare its results to SCAMP-FX and to depend only on the positioning

of the archive and not its length, analogues dates are also searched for within a 30-yr period (±15

years around the target day), as illustrated on Fig.IX.1.b. SCAMP-MV guarantees that all analogues

are selected in a climatically homogeneous period. If the predictors-predictand relationship is mod-

ified but still relevant under warmer conditions, this method is expected to accurately simulate the

fluctuations and the long-term trends of precipitation series.
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2. Perfect-model approach

Figure IX.1 – Comparative diagrams of SCAMP-FX (fixed archive) and SCAMP-MV (adaptive
moving archive) for the reconstruction of precipitation series in perfect model approach.

2.2. Data

Three GCM-RCM chains, developed as part of the EURO-CORDEX project, were selected as in-

put data of SCAMP-FX and SCAMP-MV (cf. Tab.IX.1). They involve two of the GCMs already used

in Chap.VIII (IPSL-CM5A-MR and MIROC5). We also performed this analysis for both RCP4.5

and RCP8.5. In order to mimic the simulations of SCAMP presented in Chap.VIII, the predictors

data from the selected RCMs are spatially degraded from their initial resolution (0.11 or 0.44°) to a

0.75° grid, corresponding to the spatial resolution of ERA-Interim. We worked with HGT500, PSL

151



Chapter IX. SCAMP under Climate Change: The precipitation issue

(which replaces HGT1000) and HURS (near surface relative humidity) which gives a very similar in-

formation to T-Td. The daily regional series of precipitation are computed by averaging precipitation

fields within the regions boundaries illustrated in Fig.II.1.

In the following analysis, some figures will only present the results associated to IPSL-WRF.

The good agreement between the 3 GCM-RCM chains makes all comments based on this single chain

pretty much transferable to all the other selected models. Similarly, a combination of regions NO-AN,

NO-FI-BE or FI-AN is often used to illustrate the most noteworthy outcomes of this analysis. Finally,

the changes in precipitation are often stronger for the RCP8.5. We will present the downscaled

simulations issued from this scenario to make their analysis easier.

In addition to the classic precipitation data, the convective part of daily precipitation has also

been downloaded for the IPSL-CM5A-MR & WRF331F chain. As small scale processes related

to convection cannot be explicitly solved by RCMs due to their spatial resolution, this variable

results from the activation of the convection parametrisation. Gathering both total and convective

precipitation, we can separate the convective from the stratiform contributions and highlight some

possible modifications of predictors-predictand relationship for both of them.

Table IX.1 – Characteristics of the selected GCM-RCM chains

GCM RCM Resolution RCP From-To (hist + RCP)

IPSL-CM5A-MR RCA4 0.11° 4.5|8.5 1970-2100

IPSL-CM5A-MR WRF331F 0.11° 4.5|8.5 1951-2100

MIROC5 RCA4 0.44° 4.5|8.5 1951-2100

3. Results

3.1. Predictors and Predictands samples

In Sec.1, we mentioned that one hypothesis made when using statistical downscaling methods

for future projections is that the selected predictors carry enough information on climate change

to describe its effects on the predictand of interest (H3). Even if it is not possible to verify this

statement as there is still a lot of uncertainty related the modifications due to global warming, we

propose, as a first step, to compare the simulated characteristics of predictors between two periods:

1970-1999 and 2070-2099.

The first analogy level in SCAMP is only based on shapes and gradients of geopotential. Fig.IX.2

compares the simulated spatial modes of variability, of past and future winter atmospheric circulation

in IPSL-WRF, thanks to an EOF analysis. For this model, the three first simulated modes under

past climate conditions are still prevailing for the 2070-2099 period. They explain most of the spatial

variability in HGT500 fields for both past (83%) and future (85%) periods. However, some important

changes are noticeable in proportions of explained variance and positioning of the different anomalies.

EOF1 is responsible for a similar percentage of simulated HGT500 variability for both periods but

the centring of the associated anomalies is shifted earthward. The North Atlantic - central Europe

dipole in past EOF2 is also shifted eastward at the end of the 21th century. Moreover, the percentage

of explained variance drops from 29 to 15% making this pattern third EOF in the future. Finally,
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simulated past westerlies (EOF3) have a very similar structure from past to future climate conditions

but are much more frequent (from 13 to 33% of explained variability). The IPSL-WRF model seems

to simulate changes in atmospheric circulations mainly due to some modifications of the frequencies

of past atmospheric regimes. The same type of comments can be made for PSL, other seasons and

other GCM-RCM chains (not shown). However, despite some modifications of the main EOFs and

some changes in their ranking, the search for relevant HGT500-PSL analogues for the 21st century

seems possible, at first sight.
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Figure IX.2 – Simulated change in HGT500 first EOFs. Comparison between the first three winter
EOFs of 500hPa geopotential height in the IPSL-WRF chain from the 1970-1999 period to the
2070-2099 one.

Relative humidity takes part in the statistical downscaling for the second analogy level of SCAMP-

FX (and SCAMP-MV). Fig.IX.3 presents the simulated probability density functions of this predictor

for both past and future periods, the IPSL-WRF model and two representative regions (NO, AN). In

Scandinavia, the model simulates more humid conditions at the end on the 21th century. Conversely,

the opposite change can be seen in Mediterranean regions (here AN). Despite these modifications in

distribution shape, the ranges of both past and future simulated humidity are similar. Thus, it also

seems possible to find relevant analogues based on HURS.
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Figure IX.3 – Simulated change in HURS. Comparison between the probability density functions of 2m
relative humidity in the IPSL-WRF chain from the 1970-1999 period to the 2070-2099 one.
Results are presented for NO and AN.
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Similarly to predictors, a drastic change in daily precipitation distribution (predictand) can de-

teriorate the performances of the analogue method. Indeed, using SCAMP, the range of predictions

is constrained by the sample of precipitation values from the archive period. Fig.IX.4 illustrates the

differences between past and future simulated cumulative distribution functions for the IPSL-WRF

chain in NO and AN. Once again, Scandinavian and Mediterranean regions experience opposite sim-

ulated changes. High values of daily precipitation become more frequent in NO but rarer in AN.

Nevertheless, the range of precipitation values is similar between past and future periods (e.g. in

NO, only 9 daily precipitation values of the 2070-2099 period exceed the maximum precipitation

from the 1970-1999 one). As a consequence, the reference precipitation sample (fixed archive) used

in SCAMP-FX is not necessarily a limiting factor and all simulated future precipitation values can

potentially be reconstructed.

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Norway

Daily precipitation (mm)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Andalucia

Daily precipitation (mm)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Figure IX.4 – Simulated change in precipitation. Comparison between the empirical Cumulative Distri-
bution Functions of precipitation in the IPSL-WRF chain from the 1970-1999 (blue) period to
the 2070-2099 one (red). Results are presented for NO and AN.

3.2. Analogy Scores

In Sec.3.1, we highlighted the modifications of both predictors and predictands in the RCM-GCM

chains. Despite similar HGT500/PSL modes and comparable ranges of HURS values, it could be

difficult to find as many relevant analogues (in terms of analogy scores) in the future as for a past

period. Fig.IX.5 presents the 20-yr moving average series of analogy scores (TWS at level 1 and

RMSE at level 2) with SCAMP-FX in FI and AN for the IPSL-WRF chain. In both regions the

median value of the 1st analogy score (ie. related to geopotential) remains constant with SCAMP-

FX over the whole simulation period. The similarity between a given target day and its associated

analogues (based on HGT500 and PSL) is as good in the future as under past atmospheric conditions.

Likewise, the RMSE is mostly stable from 1960 to 2100 for both regions with a slight increase at

the very end of the series. However, this modification is moderate and limited to the last 30 years

of simulation. All in all, for this set of predictors and analogy scores, it seems that the ”quality” of

atmospheric analogues is not significantly deteriorating in the course of the 21st century.
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Figure IX.5 – Time series of analogy scores. 20-yr moving average series of analogy scores for both analogy
levels (median) using SCAMP-FX (blue) in the IPSL-WRF model. The distance between the
10th and the 90th percentile of scores values is given thanks to the color shading. Results are
presented for NO and AN. As a reminder: A perfect analogy is achieved for TWS=0 (identical
HGT500/PSL fields) and RMSE=0 (same large-scale humidity).

3.3. Comparison between SCAMP-FX and SCAMP-MV

In this section, we explore some possible modifications of the predictors-predictand relationship

which could deteriorate the prediction of precipitation in a climate change context (Hypothesis H4

from Sec.1). We use the two versions of SCAMP (SCAMP-FX and SCAMP-MV) presented in Sec.2.

Fig.IX.6 presents the 20-yr moving average series of simulated regional precipitation in the RCM

and after downscaling by using both SCAMP-FX and SCAMP-MV. We present the simulations

associated to all GCM-RCM chains forced by the RCP8.5 and to regions in north-eastern Europe (i.e.

where the strongest increase in precipitation is expected by the end of the 21st century). For a given

GCM-RCM chain, SCAMP-FX and SCAMP-MV are forced by the same large scale information.

Thus, the two methods are directly comparable and expected to presents similar high frequency

fluctuations of precipitation. On the other hand, if the predictors-predictand relationship is valid,

these variations should also follow the raw data from the GCM-RCM chain.

For both SCAMP versions, Fig.IX.6 highlights some bias between reference and downscaled pre-

cipitation series even during the ”historical” period. Even if bias is a classic issue when using the

analogue method [Young, 1994; Chardon et al., 2014], one should recall that both predictors set and

analogy domains have been optimised in SCAMP by using observations and large scale reanalysis

data of the late 20th century. Each RCM has its own physics (equations, parametrisations) which

describes the real atmospheric system but suffers from numerous imperfections. Hence, it would be

necessary to re-optimise at least the positioning and dimension of the analogy domains. Moreover,
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for some regions, the dimensions of the analogy windows associated to HGT500 had to be reduced

as they were exceeding the RCMs boundaries. Non-optimal analogy windows could also result in a

large bias as highlighted by several past studies (e.g. Chardon et al., 2014). In this study, our main

interest is on the temporal fluctuations of precipitation. This systematic bias does not impact our

analysis.

Despite some regional differences in precipitation amount, all RCMs agree on a large increase in

mean daily precipitation for all regions in north-eastern Europe. SCAMP-FX is able, in a few cases

to simulated part of this rise (NO, IPSL-RCA4 ; FI, MIROC-WRF). However, it generally greatly

underestimates or fails to reproduce the long-term trends. The mismatch between RCM data and

these reconstructed series gets more critical from the 2050s leading to differences exceeding 20% in

some regions (BE, IPSL-RCA4 ; BE, IPSL-WRF). These results emphasise the inability of SCAMP-

FX to simulate relevant series of precipitation when the European climate conditions have been

modified by global warming. From the beginning of the simulation period to the 2000s, SCAMP-

MV gives similar results to the ones of SCAMP-FX. However, for all models and regions the two

curves move apart rapidly afterwards. The reconstructed precipitation series of SCAMP-MV, which

adapts the archive period for the analogue days search, greatly correlate with the raw RCM data.

SCAMP-MV is able to accurately simulate both low frequency fluctuations of precipitation and long

term-trends resulting from climate change.

3.4. Predictive skills of the predictors set under Climate Change

The ability of SCAP-MV to reproduce the long-term trend and the low frequency fluctuations of

precipitation is not sufficient to prove the relevance of the predictors set for future decades. Indeed, a

simple moving-climatology model, which would use the same archive periods as SCAMP-MV, would

definitely be able to catch these types of modification. Nevertheless, SCAMP-MV can provide a

first assessment the predictive skills of the predictors set in a much warmer climate when looking

at high frequency fluctuations (from daily to inter-annual) in the reconstructed series. Fig.IX.7

presents the annual series of precipitation anomalies from the raw MIROC-RCA4 data and after

downscaling with SCAMP-MV. These anomaly series have been constructed by subtracting the low

frequency fluctuations (30-yr moving average) of the RCM precipitation data to both initial RCM

and downscaled series. The filtering does not remove the bias in the SCAMP-MV simulations, which

is still visible for some regions (TU, AN), but it makes the comparison between the high frequency

fluctuations of both reference and simulated series directly possible and much easier.

For all regions and the entire simulation period, there is a strong consistency between SCAMP-

MV and the RCM. Both chronology and magnitude of the positive/negative anomalies in annual

precipitation are accurately reproduced by the downscaling method. The Spearman correlation

coefficients between the reference and simulated series range from 0.75 (TU) to 0.92 (GA). Therefore,

the ability of SCAMP-MV to simulate accurately the inter-annual variability of precipitation does

not change in the course of the 21st century.

From these results, it appears the predictors set has a strong predictive skill for the whole 21st

century. Hence, the discordance between the simulations of SCAMP-FX and SCAMP-MV suggests
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Figure IX.6 – Time series of simulated precipitation (mm). 20-yr moving average series of regional
precipitation in RCM (back curve) and after downscaling (median scenario) with SCAMP-FX
(blue) and SCAMP-MV (red). The distance between the 10th and the 90th percentile is given
thanks to the color shading. Results are presented for all RCMs in NO, FI and BE.

that the predictors-predictand relationship is gradually but continuously modified in the course of

the 21st century, explaining the poor performances of SCAMP-FX.

3.5. Convective and stratiform precipitation

To further investigate the origins of the increasing discrepancy between SCAMP-FX and the

RCM precipitation series, we apply the previous methodology to convective (Pc) and stratiform

precipitation (Ps) for one of the GCM-RCM chain presented previously (IPSL-WRF). In practice,

only total and convective precipitation are available as classic outputs of RCMs. The daily stratiform

precipitation series can be directly generated from a simple difference (Eq.IX.1). Thus, we separate

the part of precipitation amount due to convection from the stratiform one, related to synoptic

fronts or non-convective orographic processes. Convective and stratiform precipitation series are

then reconstructed in turns with both SCAMP-FX and SCAMP-MV by using the same methodology

as for total precipitation in the previous section.
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Figure IX.7 – Precipitation inter-annual variability (mm) from MIROC-RCA4 and after downscal-
ing with SCAMP-MV. Annual series of precipitation anomalies from the raw MIROC-RCA4
(black) data and after downscaling with SCAMP-MV (red). These anomaly series have been
constructed subtracting the low frequency fluctuations (30-yr moving average) of the RCM pre-
cipitation data to both initial RCM and downscaled series. The distance between the 10th and
the 90th percentile is given thanks to the color shading.
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Ps = P− Pc (IX.1)

Where

• P: Total precipitation

• Pc: Convective precipitation

• Ps: Stratiform precipitation

Results will be presented only for two regions, one in Scandinavia (FI) and one in the Mediter-

ranean (AN), illustrating two major and different types of precipitation regimes in Europe. The

shares of convective/stratiform precipitation is radically different between these two regions. In the

”GCM-RCM world”, convective precipitation represents approximately 30% of the total amount in

FI whereas it is about 50% in AN. Although both RCPs have been run, we will only focus on the

RCP8.5 for which the strongest modifications in precipitation exist.

3.5.1. Precipitation amount

On Fig.IX.8 are presented the 20-yr moving average series of regional stratiform/convective precip-

itation in the IPSL-WRF model and after reconstruction with both SCAMP-FX and SCAMP-MV. In

northern regions, IPSL-WRF simulates an increase in both stratiform and convective precipitation.

Conversely, these two variables are expected to decrease strongly in AN.

In AN and FI and for both precipitation types, SCAMP-MV reproduces rather well the trend and

low frequency fluctuations of the reference series. However, the simulated series get smoother for

future decades and SCAMP-MV has more difficulties to simulate high frequency variations. Even if

a similar evaluation as the one presented in Sec.3.4 would be necessary, it seems that the predictors-

predictand relationship is weaker in the future for both Ps and Pc.

The results associated to SCAMP-FX demonstrate its inability to simulate either convective or

stratiform precipitation changes in FI. Downscaled and reference precipitation amount diverges from

2000. In AN, SCAMP-FX seems to be more consistent with the IPSL-WRF convective precipitation,

but the stratiform contribution is poorly reproduced. The conclusion for Pc and Ps is similar to the

one of total precipitation: for both precipitation types, the predictors-predictand relationship seems

to change under climate change.

3.5.2. Frequency of occurrence and intensity

In a warmer climate, both number of rainy days and precipitation intensity can be modified. To go

one step further and understand better the reasons for the increasing discrepancy between initial and

reconstructed RCM precipitation series, we analyse the ability of SCAMP-FX (and SCAMP-MV) to

simulate the temporal evolution of intensity and frequency of ”wet days”. This analysis is performed

separately for both convective and stratiform precipitation. We use a 1mm precipitation threshold

to discriminate between wet and dry days. Consequently, wet days do not account for weak regional

precipitation and very local events (the regional precipitation still being below 1mm). The associated

results are presented on Fig.IX.9.
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Figure IX.8 – Simulated change in convective and stratiform precipitation (mm). 20-yr moving
average series of regional stratiform (Ps) and convective (Pc) precipitation in RCM (back curve)
and after downscaling (median scenario) using SCAMP-FX (blue) and the SCAMP-MV (red).
The distance between the 10th and the 90th percentile is given thanks to the color shading.
Results are presented for the IPSL-WRF model in FI and AN.

In FI, representing regions in North-eastern Europe, the frequency of occurrence of Ps and Ps

is increasing in the model. This modification is relatively well simulated by both SCAMP-FX and

SCAMP-MV. On the other hand, the mean intensity of wet days should also rise, especially for the

stratiform part. In this case, SCAMP-FX fails to reproduce this increase, leading to the large bias

in global precipitation described previously.

In AN, the bias seems to have a different origin. The frequency of occurrence of both convective

and stratiform precipitation drops in the RCM raw data (-40%). SCAMP-FX is only able to simulate

the modification associated to the stratiform contribution and presents a rather constant number of

convective days. Considering the intensity of wet days, SCAMP-FX is able to simulate the right

trends (reduction for Pc and no trend for Ps) but cannot reproduce low frequency fluctuations of any

precipitation type (eg. positive anomalies for PRS from 2000 to 2060).

All in all, this analysis highlights the likely radical modifications in the triggering and intensity of

convective/stratiform precipitation in the course of the 21st century, leading to important biases for

SCAMP-FX. In north-eastern Europe, the reconstructed series have a relevant number of wet days

but the associated precipitation intensities are too low for both precipitation types in the future. In

the Mediterranean, the most critical issue is the number of days for which convective precipitation is

significant (>1mm). It remains roughly constant with SCAMP-FX while it drops for the raw model

data.
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Figure IX.9 – Simulated change in convective and stratiform precipitation characteristics. 20-
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3.6. Conclusion on this analysis

The previous results are obtained from the application of SCAMP in a perfect model approach.

Therefore, their relevance is not guaranteed in a ”real world” context (ie. using observations). How-

ever, they give some reasonable insight into the reasons for the discrepancy between SCAMP outputs

and the results of numerous other studies [Jacob et al., 2014]. Moreover, there is a strong consistency

between the results from the multiple GCM-RCMs used here. It also gives more confidence in the

transferability of these conclusions to the issue highlighted in Chap.VIII for the ”classic” SCAMP

downscaling.

As a conclusion, we present the main outcomes of this analysis and some reasons that can con-

tribute to the inconsistent precipitation projections presented in Chap.VIII:

1. The large scale predictors from the selected GCMs and required in SCAMP suffer from large

biases which probably contribute to the inaccurate precipitation predictions. However, the

perfect-model approach, which allows us to free ourself from these biases, proved that they

cannot be the only contributors to the inconsistent simulations. Indeed, reconstructed series

with SCAMP-FX present the same inability of simulating long-term changes in precipitation

in a climate change context.

2. When analogue dates are identified based on HGT500/PSL and near-surface relative humidity,

the ”quality” of the analogues (in terms of analogy scores) seems to be constant in the course of

the 21th century. The characteristics/distributions of both predictors and predictand are mod-

161



Chapter IX. SCAMP under Climate Change: The precipitation issue

ified by climate change but most future fields (HGT/PSL) or values (HURS and Precipitation)

can be re-sampled from a past period. The precipitation issue does probably not result from

the predictors or predictand samples.

3. Conversely to SCAMP-FX, a moving archive (SCAMP-MV) leads to relevant trend, low fre-

quency fluctuations and more importantly accurate inter-annual variations of precipitation.

Therefore, we can put forth the hypothesis that the predictors set still have strong predictive

skills under future climate conditions but also that the predictor-predictand relationship is

gradually modified for future decades.

4. Both convective and stratiform contributions to total precipitation are modified in the selected

RCM for the coming decades. The issue of SCAMP-FX, which is likely transferable to SCAMP

in Chap.VIII, is due to the mean precipitation intensity of wet days in Northern Europe and

to their frequency of occurrence for Mediterranean regions.
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Overview

In this part, we aimed to assess the effects of climate change on the co-variations of CRE

sources and on their consistency with the energy demand. Using SCAMP and a selection of GCMs

issued from the CMIP5, regional projections of CRE meteorological drivers were generated for the

21st century. The associated series present a large increase in mean temperature for all regions (up

to 7°C with the RCP8.5), a lessening of mean wind speed, more solar radiation and finally a drop in

mean regional precipitation for the coming decades. This last result on precipitation runs counter

to the findings of multiple studies focusing on European future climate scenarios [Jacob et al., 2014].

It gives little confidence in the ability of SCAMP to simulate relevant precipitation projections in

a much warmer climate.

Using statistical downscaling method for future scenarios requires making some strong assump-

tions on predictors, predictands and on their statistical relationship:

H1 The large scale predictors are accurately simulated in the selected datasets.

H2 The selected predictors have a strong physical relationship with the predictands of interest

and they predictive skills are strong.

H3 The selected predictors carry the climate change signal and gather enough information to

describe its effects on predictands.

H4 The strong predictors-predictand relationship is still relevant and not modified by climate

change.

We proposed to partly explore the validity of these hypotheses by using SCAMP in a perfect

model approach. It consists in reconstructing the precipitation time series from a selection of

RCMs by looking for analogues in the ” climate model world” and using the associated simulated

precipitation as local predictions. We introduced two different versions of SCAMP which either use

a fixed past archive period for the analogue identification (SCAMP-FX) or a moving one (SCAMP-

MV) for which the starting and ending date of the archive depend on the target day. SCAMP-MV

gives an evaluation of the relevance of the predictors set under future climate conditions.

This analysis suggests that the predictors-predictand relationship is changing in the course of

the 21st century but that the selected predictors set still has strong predictive skills. Moreover,

we separated the convective and stratiform contributions to the total simulated precipitation and

showed that, for future decades:

- The daily intensities of convective and stratiform precipitation are underestimated in Northern

European regions.

- The number of convective days is over-estimated for Mediterranean regions.

-The predictors-predictand relationship seems to change for both convective and stratiform precip-

itation.
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1. Main outcomes of this thesis

1. Main outcomes of this thesis

The integration of renewables in regional electric power systems will be one of the main challenges

of the coming decades. The multi-scale variations of climate strongly impact some of these renewable

energy sources and make their integration not straightforward.

This thesis proposed to study the ease of integration of climate-related-energy (CRE) sources in

Europe (solar, wind and RoR hydro power). To perform this analysis, we developed a suite of models,

named CRE-Mix, able to convert weather conditions into power generation and energy load series.

CRE-Mix also assesses the temporal mismatch between production and demand.

Additionally, in order to extend this work to the entire 20th and 21th centuries, we set up a statis-

tical downscaling method (SCAMP) capable of providing physically-consistent multivariate weather

series from climate reanalysis or climate models data. We present here the main outcomes of these

analyses, focusing on the multi-scale fluctuations of CRE sources and on their possible contribution

to a sustainable electricity supply in Europe.

1.1. Variability and the ease of integration of CRE sources in Europe

The variety of European hydro-climatic conditions is large. The hydro-meteorological drivers of

CRE sources (temperature, wind, solar radiation and river discharge) vary greatly at multiple time

and space scales. It results in large temporal weather-driven fluctuations of solar, wind and RoR

power series. The study of the 20th century climate also showed that the inter-annual and low

frequency fluctuations driven by large atmospheric/oceanic patterns play a key role for all energy

sources and should not be neglected, especially for RoR hydro power.

Then we evaluated the ease of integration of single energy sources by using two criteria measuring

the temporal match between electricity generation and energy load series. The first one, referred

to as the penetration rate (PE), quantifies the proportion of energy demand that is fulfilled over a

long period. Then, we focused on the characteristics of low energy production periods which are

defined as one or several consecutive days for which the proportion of satisfied demand is bellow a

given threshold. By analogy with hydrological droughts, we referred to these problematic periods as

”energy droughts”. The analysis is carried out in turn for 12 European regions, firstly by assuming a

complete disconnection between them (i.e no inter-regions exchange of electricity).

Assuming a balance between mean production and mean energy load (over a 30-yr reference

period), the intermittency of single CRE sources and demand time series leads to the following

results:

• The global penetration rate is generally limited and the proportion of satisfied demand rarely

exceeds 80%. The most problematic cases are for solar power in Northern Europe and for hydro

power in Mediterranean regions with PE < 60%. Moreover, the large low-frequency fluctuations

of hydro power lead to important changes in PE from one decade to the other.

• Low production periods and energy droughts have various characteristics from one CRE source

to the other. For hydro power these periods are infrequent but very long lasting. Conversely,
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they never exceed a few days but are very numerous for wind power. Low production periods

and energy droughts have intermediate characteristics for solar power.

The strong variability of CRE sources, imposed by hydro-climatic conditions, prevents them from

providing an efficient and reliable energy supply. However, some integrating factors exist and can

improve the supply-demand balance. Among the large panel of possible methods, we tested the

potential improvements associated to: 1) Combining different CRE sources 2) Performing a spatial

integration allowing, regions to complement each other 3) Introducing storage facilities of different

capacities 4) Deliberately over-sizing power plants.

These integrating factors all proved, to varying degrees, their ability to reduce the temporal mis-

match between electricity production and energy demand and to lower both duration and frequency

of low production periods and energy droughts:

• Combining energy sources leads to much higher regional PE rates ranging from 80 to 92%. The

droughts associated to regional energy mixes are rare and short-lasting.

• Spatially integrating power and load series increases to proportion of satisfied demand for

both hydro and wind power sources. The strong seasonality and spatial homogeneity of solar

production series lead to limited improvements for solar power.

• Small storage systems can balance the high frequency variations of wind power and significantly

increase its ability of meet the energy demand. Much larger storage systems are necessary to

achieve similar improvements with both solar and hydro power.

• For all CRE sources, oversized power plants moderately improve the production-demand bal-

ance.

Finally, combining two of the previous integrating factors (e.g. Energy mix & Storage, Energy

mix & Spatial integration) leads to a much more reliable CRE system with high penetration rates

and rare energy droughts.

1.2. Multi-variate downscaling with the Analogue method

The extension of the previous study to the entire 21st century and to future scenarios cannot

be done without some adaptations. Indeed, the spatial resolution of climate reanalysis data and of

climate models is not sufficient to use directly their outputs as regional weather scenarios. Among

the various existing downscaling approaches, we chose the Analogue method, which already proved

it ability to generate relevant meteorological scenarios. It is also easily implemented and can be

adapted for the generation of multivariate weather data.

Analysis the co-variations of CRE sources, requires producing regional weather series which, on

one hand, accurately simulate the local conditions, and on the other hand guarantee the physical

consistency between the downscaled variables.

Using the ERA-Interim data, we developed and optimised a multi-variate downscaling method,

named SCAMP (Sequential Constructive Atmospheric Analogues for Multivariate weather Predic-
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tions), which meets these requirements. It is based on a common analogue model (geopotential at

500 and 1000hPa and near surface relative humidity T-Td) for precipitation, solar radiation and

temperature and an independent analogue model (geopotential at 1000hPa) for wind.

SCAMP is able to reproduce regional observed series with good predictive skills for all predic-

tands. Seasonal cycles and inter-annual variability are also accurately simulated. The comparison of

observed and simulated inter-variables correlations proved that the downscaled scenarios are physi-

cally consistent.

The application of SCAMP for the reconstruction of the 20th century regional weather series

allowed us to highlight the low frequency variability of CRE resources resulting from the multidecadal

fluctuations of climate. These long-term variations are rather negligible for solar power, energy load

and to a lesser extent for wind power. Conversely, large multidecadal fluctuations exist for hydro

power.

Applying SCAMP to several Global Circulation Models (GCM) gave questionable results. On

one hand, the downscaled scenarios of wind and temperature are very consistent with other studies

focusing on these variables. On the other hand, the regional projections of precipitation indicate

drier conditions at the end of the 21st century for all test regions in Europe, including Scandinavia.

This result is in disagreement with many recent studies projecting wetter conditions in northern and

central Europe in a climate change context. Thus, SCAMP simulations for precipitation could not

be used to extend the previous study to the coming decades.

In order to identify some possible reasons for the inapplicability of SCAMP in the context of

this study, we proposed to use it in a perfect model approach and to reconstruct precipitation series

from a selection Regional Climate Models (RCM). Such an application does not guarantee that its

outcomes are valid ”in the real world” but it allows us to make some fair hypotheses on the analogue

downscaling issue. The associated outcomes are the followings:

• In the ”RCMs world”, the downscaled series of precipitation suffer from the same problem with

a large decrease for all European regions. They are in disagreement with raw precipitation data

from the selected RCMs.

• Both predictors and predictands characteristics are modified from past to future decades but

the ranges of values and of possible weather situations are similar.

• It seems possible to find relevant analogues for future decades (constant analogy scores)

• The comparison of a classic SCAMP method, having a fixed archive (SCAMP-FX) with another

one adapting the archive period to the target day (SCAMP-MV), indicates that the predictors

set is still relevant in the future. However, the predictors-predictand relationship changes in

the course of the 21st century.
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2.1. Improving some components of CRE-Mix

The suite of chains developed as part of this study (CRE-Mix), gives a first assessment of the ease

of integration of some renewables in Europe. It is based on a set of simplifying assumptions which

only take into account the effects of hydro-climatic variability. Consequently, it puts aside many other

determining factors in the fluctuations of CRE sources such as, for instance, the technical limitations

for the installation of new equipments and the non-climate-related fluctuations of energy demand.

However, CRE-Mix includes several modules that allow for storage, energy sources combinations and

electricity transmission between regions.

For most of the components of CRE-Mix, the multiple simplifying assumptions leave room of

improvement. We present some the most noteworthy developments that could contribute to a more

realistic model:

• Into order to focus our analysis only on the CRE fluctuations and not to depend on the absolute

electricity production values, simulated power series were normalized, assuming that mean

production equals mean energy demand for a long reference period of 33 years. This assumption

implicitly implies that the regional level of equipment is high enough to meet the energy load.

For some energy sources and regions, such a statement is likely not realistic. In FI or BE, for

instance, a balance between hydro power and energy demand would require numerous and large

power plants to overcome the regional small water head (limited max-min altitude difference).

In TU, the limited water resources from rivers also make the use of hydro power for electricity

production difficult. The regional population density also influences the mean energy demand

and its effect on the production-demand balance has not been taken into account in CRE-Mix.

• The parametrisation of the hydrological model and all weather-energy conversion models is

unique for all European regions. It draws a picture of the regional differences in CRE due

to spatial fluctuations of climate. A more realistic option would consist in taking on board

some more regional specificities. For instance, Fig.II.8) proves that some large differences in

the temperature-demand relationship exist from one region to the other. They could be easily

included by considering region-specific models. The hydrological model used in this study could

also benefit from a regional parametrisation if one in interested in producing accurate discharge

simulations.

• The assessment of hydro power potential from river discharge is not straightforward. Conversely

to solar and wind power, this energy sources is not fully distributed and is only concentrated

along the river network. Moreover, the local hydro power production depends on the hydro-

meteorological conditions affecting the whole upstream area and is also strongly impacted by

past weather conditions (initial soil moisture, snow pack, etc.)

In CRE-Mix, the assessment of hydro power is performed only for the RoR contribution (no

reservoir) and avoiding water transfer from neighbouring catchments (test regions located at the

upstream part of river basins). In many respects, RoR hydro power is, by itself, an interesting
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CRE source which is becoming increasingly developed. Moreover, the storage module in CRE-

Mix can be seen as a modelling of small to medium scale reservoirs that can balance the hydro

power variability from daily to seasonal scale. Nonetheless the contribution of large reservoirs

to the total hydro power production is large for some regions (e.g in NO) and can be used to

balance the variations of river discharge over several years. Taking these reservoirs into account

is complicated. It would require 1) working on real river basins 2) assessing the current regional

equipments in water reservoirs 3) Considering their multiple other uses, such as irrigation water

management or flood mitigation. Such models have already been developed and studied for

some specific locations (e.g. [François, 2013]) but their application to other reservoirs/regions

is demanding and not straightforward.

2.2. Inter-regions complementarity

As one of the possible integrating factors that can improve the electricity supply-demand balance,

we tested the effect of a spatial integration of CRE sources at a European scale. This first step toward

the analysis of spatial complementarity proved that European regions can complement each other.

However, this integration was performed for the ideal grid configuration, known as the European

copper plate. It assumes that a regional electricity production can be used instantaneously to meet

the energy demand in another region without losses related to energy transmission. This strong

assumption likely leads to a smoothing of both demand and production series and to an overestimation

of the penetration rates.

A possible improvement consists in including in CRE-Mix a schematic representation of the Eu-

ropean electrical grid that would take into account some of the limitations related to electricity

transmission. To go further and place ourself in a more realistic situation, the spatial complemen-

tarity could also be analysed only between neighbouring regions, for which the electricity exchange

is easily conceivable.

2.3. Low frequency fluctuations and trends in the 20th century

climate series

The analysis of low-frequency variations of CRE sources necessitated using climate reanalysis

data of the 20th century. The associated outcomes are very informative on the connections between

CRE sources and some large scale climate indices (NAO, AMO). It also gives an assessment of the

climate-related risks from the new point of view. As a complement to this work, on could evaluate

the possible inter-regional synchronism between low-frequency fluctuations of CRE courses.

However, an extensive study would require to separate accurately the internal variability of climate

from the climate change signal. In this study, we handled trends in a very simple way, testing only for

linear changes in the time series. As mentioned in this thesis, some other trend models are probably

more relevant, especially for temperature. Moreover, both ERA20C data and the reconstructed series

of wind speed indicate positive and significant trends in mean annual wind speed in Europe. Some

additional tests must be set up to check if this issue is only an artefact of the increasing number of

wind/pressure assimilated data in the course of the 20th century, in ERA20C. This could be done

171



using some other climate reanalysis data such as the 20CR reanalysis [Compo et al., 2011] from

NOAA or some (rare) long series of observed wind speed. Then, the significant trends in weather

series should be removed before generating CRE sources and PE time series, in order not suffer from

their contributions in the multidecadal variability assessment.

Another rather different but interesting way of characterising the low frequency fluctuations of

CRE sources would be to downscale the pre-industrial runs of multiple GCMs which are supposed

to be representative of stationary climate conditions.

2.4. SCAMP in a climate change context: some possible application

The downscaling of GCMs with SCAMP gave regional precipitation series in disagreements with

most studies focusing on future trends in precipitation, in Europe. Using a perfect model approach,

we showed that these differences are probably due to a modification of the predictor-predictand

relationship for future decades ; not only for total precipitation but also for both convective and

stratiform contributions. However, it appears that the predictors set still have good predictive skills

as long as analogues are searched for within a climatologically homogeneous period.

As a result, SCAMP (with its current parametrisation) cannot be used to generate future series

of precipitation in a classic way, using observations which are only representative of the current

climate conditions. Some other predictors could be added in the analogue model (for example the

ones proposed by Dayon et al., 2015: TTI - Totals Total Index) to improve the ability of SCAMP to

simulate the modifications imposed by climate change. However, it would require optimising (analogy

windows) and evaluating (skill scores, inter-variables correlations) this new set of predictors.

Nevertheless, SCAMP has some potential application in a climate change context. RCMs give sce-

narios of regional meteorological variables that could be used for an analysis of CREs co-fluctuations.

However, they do take the small scale variability of local variables into account. As mentioned in

Chap.IV, the analogue method gives an estimation of this source of variability when selecting sev-

eral analogue dates for the same target day. In this whole study, we used 50 downscaled series of

predictands to take this contribution on board. Applying SCAMP in a perfect model approach (cf.

Chap.IX) and using a moving archive period to look for analogues (SCAMP-MV), is able to gen-

erate a set local scenarios from a single deterministic RCM simulation. As presented in Chap.VIII

(e.g. Fig.VIII.4), the small scale variability obtained with such a re-sampling approach is not negli-

gible. It would be interesting to apply SCAMP-MV to RCMs in order to take its contribution into

consideration.

2.5. Extension to other continents

Most of the concepts and modelling choices of CRE-Mix, developed as part of the COMPLEX

project and for an European study, could be applied to other regions worldwide. It would give an

assessment of the ease of integration of CRE sources in other countries and provide some guidelines to

policy makers, private companies and local communities, interested in developing renewable energy.

For some developing countries, which still suffer from a limited electrical grid, CRE-Mix can estimate
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2. Some perspectives for further research

the local CRE resources and find the optimal energy mix which could be used to meet the energy

demand and improve the local electricity access.

However, as mentioned previously, some further improvements should be made to CRE-Mix if

hydro power has to contribute to the energy mix. For instance, the hydrological model presented in

this thesis, has been optimised for European hydro-climatic conditions and is probably not able to

simulate relevant river discharge for very different catchments/weather conditions. Estimating hydro

power in other regions could rely on site-specific and already existing hydrological models. Several

models having a global coverage have been proposed in recent years. These models do not give a

perfect representation of local hydrological systems but likely lead to a first reasonable estimate of

the regional hydrological regimes.

Finally, the downscaling method proposed in this study is also partly applicable to other regions.

We have high hopes that SCAMP would be relevant for any mid-latitude test area but its perfor-

mances should be evaluated anyway. Its transferability to sub-tropical and tropical zones is much

more questionable and the current set of predictors is likely to be sub-optimal as a consequence of

radically different atmospheric processes.

173



174



BIBLIOGRAPHY

175





Bibliography

Abatzoglou, J. T. and Brown, T. J. [2012]. “A comparison of statistical downscaling methods suited for wildfire

applications”. International Journal of Climatology. Vol. 32. no. 5, pp. 772–780.

Abdulharis, A, Khan, M., Chhabra, V., Biswas, S., Pratap, A., et al. [2010]. “Evaluation of LARS-WG for

generating long term data for assessment of climate change impact in Bihar.” Journal of Agrometeorology.

Vol. 12. no. 2, pp. 198–201.

Adams, A. S. and Keith, D. W. [2013]. “Are global wind power resource estimates overstated?”: Environmental

Research Letters. Vol. 8. no. 1, p. 015021.

Ailliot, P., Allard, D., Monbet, V., and Naveau, P. [2015]. “Stochastic weather generators: an overview of
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Grenoble, France.

179



Bibliography

François, B [2016]. “Influence of winter North-Atlantic Oscillation on Climate-Related-Energy penetration in

Europe”. Renewable Energy. Vol. 99, pp. 602–613.

François, B, Hingray, B, Raynaud, D, Borga, M, and Creutin, J. [2016]. “Increasing climate-related-energy

penetration by integrating run-of-the river hydropower to wind/solar mix”. Renewable Energy. Vol. 87,

pp. 686–696.

Gallagher, J., Styles, D., McNabola, A., and Williams, A. P. [2015]. “Current and future environmental balance

of small-scale run-of-river hydropower”. Environmental science & technology. Vol. 49. no. 10, pp. 6344–

6351.

Goodess, C. M. and Palutikof, J. P. [1998]. “Development of daily rainfall scenarios for southeast Spain using a

circulation-type approach to downscaling”. International Journal of Climatology. Vol. 18. no. 10, pp. 1051–

1083.

Goulden, M., Bedwell, B., Rennick-Egglestone, S., Rodden, T., and Spence, A. [2014]. “Smart grids, smart

users? The role of the user in demand side management”. Energy research & social science. Vol. 2,

pp. 21–29.

Goyal, M. K., Ojha, C. S. P., et al. [2010]. “Evaluation of various linear regression methods for downscaling of

mean monthly precipitation in arid Pichola watershed”. Natural Resources. Vol. 1. no. 01, p. 11.

Graabak, I. and Korp̊as, M. [2016].“Variability Characteristics of European Wind and Solar Power Resources-A

Review”. Energies. Vol. 9. no. 6, p. 449.

Graff, L. S. and LaCasce, J. [2012]. “Changes in the extratropical storm tracks in response to changes in SST

in an AGCM”. Journal of Climate. Vol. 25. no. 6, pp. 1854–1870.
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“Hydrométrie et hydrologie historiques du bassin de la Durance”. La Houille Blanche-Revue internationale

de l’eau. no. 4, pp. 57–63.

Kuentz, A., Mathevet, T, Gailhard, J, and Hingray, B [2015]. “Building long-term and high spatio-temporal

resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric

reanalyses: the ANATEM model”. Hydrology and Earth System Sciences. Vol. 19. no. 6, pp. 2717–2736.
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AppendixA
Evaluation of the WRF wind simulations.

Based on Raynaud et al., 2016

We performed a complementary evaluation of the model outputs comparing them with available

wind stations. The observed series have been collected from the ECA& D and ISD-Lite databases. A

total number of 137 stations with data available, at least partially, from 1983 to 2012 were selected.

The geographical distribution of the stations is very uneven from one region to the other but all of

them are represented. Similarly, the length of the series varies greatly between stations, going from

a few months to the whole 1983-2012 period. At each location, the observed time series has been

compared to the corresponding grid point from the WRF outputs. Firstly, the correlation coefficients

were computed for all four seasons separately. Results for winter and summer are presented on

Fig.A.1. For both seasons, strong differences in correlation from one region to the other can be

seen. WRF simulations are greatly correlated with observations for regions located in plains (EN,

GE, BE, FI, FR) with values exceeding 0.8. On the opposite, wind in mountainous regions is not

as well simulated and the correlation coefficients are often below 0.5. Some seasonal disparities are

also noticeable with higher correlations in winter at all sites. Fig.A.1 also presents the model bias.

In most cases, slight positive biases exist with values ranging from 0 to 2 m · s−1. However, stronger

differences between the WRF and on-site observations can be seen for some regions (NO and II),

especially in winter. Speaking generally, the model outputs are more consistent with observations in

summer with bias values close to 0.

Since the present study focuses on co-variations between climate-related energies, it is essential to

check that inter-variables correlations are equally well reproduced using the WRF model. Using the

temperature, precipitation and radiation data described previously, correlation coefficients between

wind speed and the three other predictands have been computed for both observed and simulated

series. The results are presented on A.2 as a function of the altitude difference between weather
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Figure A.1 – Correlation coefficients (a)-(b) and bias (c)-(d) of wind speed data from the WRF model compared
to on-site observations at wind stations. Results are displayed for winter and summer seasons.
All available weather stations are used regardless of their time series length which goes from a
few months for some of them to the entire 1983-2012 period.

stations and their corresponding grid cells in the WRF model. For all pairs of variables, there

is a clear relationship between the ability of WRF to simulate relevant inter-variables correlation

coefficients and the accuracy of the topography in the model. For most stations, there are good

agreements between observations and simulations for altitude differences below 50m. For higher

values, WRF correlation coefficients tend to diverge from the observed ones and the confidence in

the model simulations drops rapidly. The results are generally better in winter.
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Figure A.2 – Ability of the hybrid WRF-observation dataset to reproduce correlations coefficients between
variables. Results are presented in terms of inter-variable correlation difference where the ref-
erence correlation is that obtained between observations (for wind and the other variable) and
where the simulated correlation is that obtained between WRF wind data and observations for
the other variables (e.g. radiation). Difference in correlation is presented as a function of the
difference in altitude between the station considered and the associated grid point from the WRF
model. Results are displayed for winter (dots) and summer months (square). The size of each
symbol is proportional to the length of the observed time series at the station of interests
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Appendix A. Evaluation of the WRF wind simulations. Based on Raynaud et al., 2016
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AppendixB
Calibration of the hydrological model

For the calibration of the hydrological model, discharge data were collected from the Global Runoff

Data Center (GRDC1) and from other research centres23. Unfortunately, data were available for only

6 out of our 12 regions. Therefore, the choice was made to look for an unique parametrisation for all

regions, based on the calibration of the hydrological model for this subgroup. This parametrisation

should lead to reasonable discharge simulations in all our European test areas.

Tab.B.1 presents the number of discharge stations used in each region, together with the total

upstream area associated to the discharge measurements. One can notice the very uneven represen-

tation of the test regions. In some cases (EN, NO), the total upstream area corresponds to less than

20% of the surface area considered in the model (40000km2). In GE and RO, the data also gather

information from catchments in the surroundings of the test regions, giving total upstream area over

40000km2.

Table B.1 – Regional characteristics of the stations used for the calibration of the hydrological model

Region Nb of Stations Total upstream area

EN 7 2000 km2

FR 15 27000 km2

FI 6 33000 km2

NO 5 4500 km2

GE 7 75000 km2

RO 7 56000 km2

1http://www.bafg.de/GRDC
2http://www.ceh.ac.uk
3www.ymparisto.fi
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Appendix B. Calibration of the hydrological model

The calibration was performed in a very simple way:

1. For each region, a specific-discharge (qobs) time series was computed for each sub-catchment

(discharge divided by the upstream area). Then, a ”regional” specific-discharge qobs,r series was

generated by averaging the qobs time series associated to each available station.

2. For each region, a Nash efficiency coefficient [Nash and Sutcliffe, 1970] is then computed by

comparing the observed regional time series qobs,r with the simulated one qsim,r.

3. A ”European” Nash coefficient (mean value of regional coefficients) is finally used to optimise

the parameters of the hydrological model (K1, K2, Kr, S1, and degree-day method for snowmelt,

cf. Fig.II.5). Thus, the same set of parameters is used for all regions.

The comparison between ”observed” and simulated seasonal cycles of discharge is presented on

Fig.D.5. The cycles have been normalised using the regional mean ”observed” discharge. For the

majority regions (EN, GE, FR and NO), the simulated cycles are consistent with the observed ones.

Some biases exit but both shape and amplitude are rather well simulated, even where complex

processes are involved (e.g, NO, snowmelt-related peak). The results are less satisfactory in FI

an RO (no early spring peak in RO, bias in autumn and winter in FI). The limited quality and

representativeness of discharge series may be one reason for these inaccurate simulations, especially

in RO. Another potential reason is the rough representation of the regional hydrological systems: In

FI, there are some large lakes, which reduce the temporal variability and the seasonality of discharge.

The hydrological model considered in this study does not take their effect into account.
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Figure B.1 – Comparison between observed and simulated discharge (mm/day). Normalised seasonal
cycles of discharge from observations (blue) and using the hydological model (black).
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Abstract 
 

The penetration rate of Climate Related Energy sources like solar-power, wind-power and 

hydro-power source is potentially low as a result of the large space and time variability of 

their driving climatic variables. Increased penetration rates can be achieved with mixes of 

sources. Optimal mixes, i.e. obtained with the optimal share for each source, are being 

identified for a number of regions worldwide. However, they often consider wind and solar 

power only.  

Based on 33 years of daily data (1980-2012) for a set of 12 European regions, we re-

estimate the optimal mix when wild run-of-the-river energy is included in the solar/wind mix. 

It is found to be highly region dependent but the highest shares are often obtained for run-of-

the-river, ranging from 35% to 65% in Belarus and England. High solar shares (>40%) are 

found in southern countries but solar shares drop to less than 15% in northern countries. Wind 

shares range from 10 to 35% with the exception of Norway where it reaches 50%. These 

results put in perspective the optimal 60% - 40% wind/solar mix currently used for Europe. 

For all regions, including run-of-the-river in the mix allows increasing the penetration rate of 

CREs (from 1 to 8 percentage points). 

Key words: Climate-Related Energy, Penetration, Energy mix, Complementarity 

1. Introduction 
 

Installed capacity of Climate Related Energy (CRE), i.e. solar-power, wind-power and 

hydro-power, is growing quickly across Europe. A new goal of 27 % of renewable share by 
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2030 has been defined by the EU (European Council, 2014). For some European countries 

such as Austria, Spain, Norway or Sweden, this objective is already achieved (Sturc, 2012). 

On the other hand, the European Climate Foundation states that 100 % renewable is an 

objective to be achieved by 2050 (ECF, 2010). This scenario is physically realistic even at the 

global scale since the technical potential of renewable energies covers several times the 

energy demand (Hoogwijk and Graus, 2008). However, it is well-known that this available 

potential is not equally distributed over space (von Bremen, 2010). In Europe, solar power 

potential is much higher in Southern countries than in the Northern ones. For wind power, it is 

the opposite with higher potential in the north and along the shores. Lehner et al., (2005) show 

that the space distribution of hydropower potential relates with the mountain ranges in 

Europe: higher is the altitude, the higher the hydropower potential. Heide et al., (2010) 

illustrated that Europe could take advantage of combining different CREs allowing a limited 

use of conventional power. 

Even though it is not yet clear what will look like such a 100 % renewable energy mix, 

solar and wind energy sources are expected to be important contributors. The main reason is 

that, contrary to biomass, their weather driving variables (i.e. wind, solar irradiance and 

temperature) are exploitable everywhere in Europe (Steinke et al., 2013).  

For a 100 % scenario at the European scale, von Bremen (2010) shows that the mix 

composed by 60 % of wind and 40 % of  Photo-Voltaic (PV) minimizes the monthly energy 

balance variance which governs the balancing costs related to energy transport and storage. 

The hourly energy balance variance is however minimized with a lower share of solar due to 

its diurnal cycle. Heide et al., (2010) show that even if a certain rate of fossil-nuclear still 

remains in activity (for instance covering lower than 50 % of the energy demand on average), 

the optimal share between wind and solar would not differ significantly. Heide et al., (2011) 

find that oversizing solar and wind power capacities modifies the optimal mix minimizing the 

storage requirement. Following these studies, Weitemeyer et al., (2015) show that the highest 

penetration rate is obtained in Germany for a wind power share ranging from 60 to 80 %. 

In some ways, hydropower is never explicitly included in the mix computation but 

considered as a storage facility. Indeed, large hydropower storage is used for balancing 

production and load mismatches. In this sense, the term of ‘blue battery’ is used when 

referring to the huge energy storage capacity provided by Scandinavian or Alpine reservoirs 

(Piria and Junge, 2013). Less attention is paid to small run-of-the-river power (hereafter 

denoted as RoR power), even if the amount of energy produced is important in several places. 

In Italy for instance, small run-of-the-river hydropower plants (i.e. with a power capacity 

lower than 3 MW) provide 22 % of the annual hydropower energy which reached 

45,823 GWh in 2011, i.e. about 24 % of the electricity consumption (GSE, 2011). In 

Switzerland, 26 % of the generated power is generated by run-of-the river power plants (BFE, 

2013). Even though RoR potential is already significant in Europe, new RoR power plants are 

under-construction or planned. For instance, an increase of about 33 % of small RoR power 

capacity is under-study in Scotland (Sample, 2015). 

In Northern Italy, the challenge of integrating run-of-the river power into the combination 

with solar energy source starts to be investigated (François et al., 2016). Different degrees of 

complementarity are obtained, depending on the hydrological regime of the considered 

catchments (snow- or rainfall-dominated regimes) and on the time scales (e.g. hourly, 

monthly). 

This study investigates how the use of RoR hydropower coming from uncontrolled river 

flows may increase the global penetration of climate related energies under the hypothesis that 

only solar, wind and RoR power are used to meet the demand. We use a benchmark set of 12 

regions spread across Europe and covering a wide variety of climates. Neither storage nor 

transport among regions is considered in this study. 
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The paper is organized as follows: The description of the study areas and the databases are 

given in Section 2. The analysis framework is detailed in Section 3. Results are presented in 

Section 4. Section 5 concludes and gives some outlooks for future research directions. 

2. Study areas and dataset used 
 

Figure 1 locates the different areas selected for this study. In the following, although the 

areas do not match country border, they will be referred for convenience with country or 

region names. As the surface area of each domain is roughly 40,000km² (Table 1), we assume 

that they are large enough for being representative of the in-situ climate, both in terms of 

weather variable average and time variability. These domains are chosen for two main 

reasons. First, they represent a variety of climates in Europe moving along two climatic 

gradients: the north-south gradient mainly explores changes from Scandinavian to 

Mediterranean hydro-climatic regime. The west-east gradient explores changes from oceanic 

to continental climate. Second, they correspond to watershed heads. There is therefore no 

contribution of upstream areas to river flow within the considered domain and the whole 

hydropower production that can be harvested within the domain does only depend from runoff 

production within the domain. 

Hydro-meteorological data used to assess energy production and demand for the 1980-

2012 period are obtained from different observational datasets and models. Daily temperature 

and precipitation data come from the European Climate Assessment & Dataset (ECAD, 

Haylock et al., 2008) with a 0.25° space resolution. 

 In the present study, wind and solar radiation data are pseudo-observations obtained from 

climate simulations with the Weather Research and Forecasting Model when forced with 

large scale atmospheric fields from the ERA-Interim atmospheric reanalyses (hereafter noted 

as WRF, Vautard et al., 2014). Wind power generation is estimated at a daily time step from 

mean daily wind speed with a daily production function identified in a preliminary step from 

3 hourly wind speed data (see Section 3).  

Gathering long time series of runoff observations for unregulated watersheds is also 

challenging, if not impossible in populated areas. Only seven water discharge time series 

could actually be obtained for seven out of twelve regions thanks to the Global Runoff Data 

Center (GRDC, 1999). Unregulated runoff are thus obtained via simulation, for each grid cell 

of each region with a distributed version of the GSM-Socont hydrological model (Schaefli et 

al. 2005). This model simulates the snowpack dynamic (snow accumulation and melt), water 

abstraction from evapotranspiration, slow and rapid components of river flow from infiltrated 

and effective rainfall respectively. It uses daily precipitation, temperature, and wind speed 

from above cited databases. A unique set of parameters is used for all regions. It was 

calibrated from comparisons of simulations and GRDC discharge data.  

Observed electricity demand data are obtained from the European Network of 

Transmission Systems Operators of Electricity (ENTSOE, https://www.entsoe.eu/home/). 

Data are however only available from 2006. Tunisia and Belarus are not members of the 

ENTSOE network; and, to our knowledge, there is no auxiliary database available for these 

two countries. We therefore also reconstructed electricity demand time series for all regions 
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and for the whole analysis period (back to 1980) with a climate-driven demand model 

developed from regions and periods with observations (Section 3). 

3. Study framework 
 

This section describes the computation of the different elements needed in our analysis: i) 

the power time series obtained from PV solar, wind and RoR, ii) the energy load time series 

and iii) the penetration rate for a given energy mix. Power generation from solar, wind and 

RoR are computed for each grid cell i and are then summed for each region. For the sake of 

simplicity, we assume that all grids have the same power capacity, i.e. the same level of 

equipment for each energy source. We further assume that each region is autonomous: there is 

no energy import/export with neighboring regions. We consider energy mixes based on solar 

photovoltaic, wind and RoR hydro only. In other words, we assume that the regional demand 

can be only satisfied (or not) with the production obtained within the region from these three 

energy sources. The study framework is applied to the 12 regions presented on Figure 1. 

Solar power (photovoltaic) 

The solar power generation from a photovoltaic generator (PPV) at a given time t and from 

the grid cells indexed by i depends on the global solar irradiance Ieff (Wm
-2

) and the air 

temperature Ta (°C) (Hanif et al. 2012) through the following expression (Perpiñan et al., 

2007):  

 𝑃𝑃𝑉(𝑡) = ∑ 𝐵 𝐼𝑒𝑓𝑓(𝑡, 𝑖)(1 − 𝜇 (𝑇𝑎(𝑡, 𝑖) − 𝑇𝑐,𝑆𝑇𝐶) − 𝜇 𝐶 𝐼𝑒𝑓𝑓(𝑡, 𝑖))

𝑖

, 1  

with B a constant production parameter, defined as the product of the surface area of the PV 

array (m²) by the generator and invertor efficiencies (%), and with µ and C respectively the 

temperature and the radiation dependent efficiency reduction factors (%). Tc,STC (°C) is the 

photovoltaic cell temperature corresponding to standard test conditions (Duffie and Beckman, 

1991).  

Wind power 

Figure 2 presents a sketch of a wind power curve giving the power produced by a 1 MW 

power capacity windmill PW for a given wind speed u (m s
-1

). This relationship is nonlinear. 

Below a given threshold (e.g. 3 m s
-1

), the wind speed is not sufficient to enable the power 

generation. Above this threshold, the power generation increases like the power 3 of the wind 

speed up to a second threshold from which the maximum wind turbine efficiency is reached 

(e.g. 13 m s
-1

). Above a third threshold (e.g. 25m s
-1

), the power generation has to be stopped 

in order to avoid any damages on the wind turbine. The nominal power curve needs to be 

adapted to estimate the power generation from daily average wind speed values using the 

infra-daily probability density distribution of wind speed values. 

If the probability density function of the infra-daily wind speed pUm is known for a daily 

average Um (m s
-1

), the wind power generation for the corresponding day is given by the 

convolution of this function with the instantaneous power curve W(u) (W). 
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𝑃𝑊(𝑈𝑚) = ∑ ∫ 𝑝𝑈𝑚(𝑢, 𝑖)𝑊(𝑢)𝑑𝑢,

∞

0𝑖

 

2  

with PW(Um) the daily wind-power (W) obtained for the daily average wind speed Um , with u 

the instantaneous wind speed (m s
-1

). 

In our study, we evaluated this integral over a set of average daily wind Um classes from 0 

to 35 m s
-1

 with 1 m s
-1

 step. The infra-daily variability required to evaluate this integral was 

obtained from the 3 hour time step data available from the WRF model for each day. A 

Weibull density function was finally used to model the empirical distribution 

functions  𝑝𝑈𝑚(𝑢, 𝑖) . The resulting wind power curve  𝑃𝑊(𝑈𝑚) , allowing estimating daily 

production from mean daily wind speed is given in Figure 2. The 80 meter altitude wind 

speed time series used for computing wind power time series were estimated from 10 meter 

altitude WRF wind speed following the scaling equation: 

 
𝑢1 = 𝑢2 (

ℎ1

ℎ2
)

𝛼

, 
3  

with u1 and u2 the wind speeds (m s
-1

) at the altitude h1 and h2 (m). α is an air friction 

coefficient chosen equal to 1/7 (no dimension) (Johnson, 1985). 

Run-of-the-river power generation 

Run-of-the-river power is derived from the energy of falling water along the river 

network. For a given region, the production is first computed for each grid cell. We consider 

that the power at a given time t is generated from a fraction of the river flow diverted from the 

natural river bed following:  

 𝑃𝑅𝑜𝑅(𝑡) =  ∑ 𝜂𝐻𝑔ℎ𝜌 𝑞(𝑡, 𝑖)

𝑖

, 4  

where PRoR is the power delivered by the plant generator (kW), 𝜂𝐻  the efficiency of the 

generator (%), 𝑞  the water flow through the turbine (m
3
s

-1
), g the acceleration of gravity 

(=9.81 m
 
s

-2
), 𝜌 the water density (=1000 kg m

-3
), ℎ the failing height (m). h is simply defined 

as the difference between the cell altitude and the minimum altitude of the region.  

Note that we here fully disregard the structure of the hydrographic network within the region, 

which in reality determines where rivers flow and where RoR power can be harnessed. For 

any given cell and whatever its location regarding the river network, we actually consider that 

all the runoff it produces will be harnessed along its path to the outlet of the region. Though 

this crude simplification, we expect that the sum of the production from each cell is a good 

indicator for what could be the regional hydropower generation, in terms of temporal 

organization especially. 

As illustrated by the Figure 3, the generation is bounded by three characteristic flows 

corresponding to technical and environmental constraints. The design flow Qd is the 

maximum river discharge that can be diverted to the power plant. The minimum flow Qmin is 

defined as the lowest acceptable flow. It can be either constant or variable in time. The 

maximum flow Qmax is the upper limit beyond which the production is interrupted to prevent 

any potential damages to the power plant. As discussed by Hänggi and Weingartner (2012), 
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Qmin, Qd and Qmax, depend on the purpose of the hydropower plant. In this study, values of 

Qmin, Qd and Qmax, are constant in time and fixed equal to the 95
th

, 25
th

 and 2
nd

 percentiles of 

the natural flows. Those values are usual for RoR power plant operated in a network of other 

power plants (Hänggi and Weingartner, 2012).  

Energy load 

As illustrated by François et al. (2016), the energy load may be modeled regarding the 

meteorological variables (e.g. outside temperature, cloud cover, humidity, etc.) and various 

socio-economic factors implying, for instance, lower consumptions during weekends and 

holidays. In this study, we assume that the climate driven part of the energy load can be 

estimated as a function of temperature only. We also disregard the influence of the socio-

economic factors; all days are simulated as week days (i.e. the energy load model does not 

account for the difference between weekdays, weekends and holiday periods). This choice has 

the advantage to facilitate the interpretation, making comparable the results obtain over the 

different regions (which do not otherwise have the same holidays for instance). For the same 

reason, a same daily demand model is used for all regions. It is based on a piecewise linear 

regression aiming to represent needs for heating (respectively cooling) when the air 

temperature decreases below (resp. increases above) a given heating (resp. cooling) threshold. 

The model reads: 

 

 

{

𝐿(𝑡) = 𝑎𝑇𝐻𝑒𝑎𝑡
× [𝑇𝐻𝑒𝑎𝑡 − 𝑇(𝑡)] + 𝑏   𝑖𝑓 𝑇(𝑡) < 𝑇

𝐻𝑒𝑎𝑡

𝐿(𝑡) =  𝑏        𝑖𝑓 𝑇𝐻𝑒𝑎𝑡 < 𝑇(𝑡) < 𝑇𝐶𝑜𝑜𝑙      

𝐿(𝑡) = 𝑎𝑇𝐶𝑜𝑜𝑙
× [𝑇(𝑡) − 𝑇𝐶𝑜𝑜𝑙] + 𝑏   𝑖𝑓 𝑇(𝑡) > 𝑇

𝐶𝑜𝑜𝑙
,

 

5  

where L is the simulated energy load (Wh) THeat and TCool are the heating and cooling 

thresholds (°C), aTheat (Wh °C
-1

), aTCool (Wh °C
-1

) and b (Wh) are model parameters. 

Parameters were estimated from regions and periods with available demand data.  

Energy mix and penetration rate PE 

For each energy source and each region, the power generation time series generated from 

previous models is normalized sothat the temporal mean production equals the temporal mean 

energy load over the 1980-2012 period: 

 
𝑝(𝑡) =

𝑃(𝑡)

〈𝑃(𝑡)〉
〈𝐿(𝑡)〉, 

6  

with P the energy generated from one energy sources in one given region (Wh), L the in situ 

energy load (Wh) and p the normalized energy production (Wh). 〈 〉 is the temporal mean 

operator. For a given region, an energy mix scenario can be generated using a weighted sum 

of the three normalized power time series obtained for each of the three energy sources, 

respectively: 

 𝑃𝑚𝑖𝑥(𝑡, 𝛾) =  𝛾[𝑠𝑃𝑉𝑝𝑃𝑉(𝑡) + 𝑠𝑊𝑝𝑊(𝑡) + 𝑠𝑅𝑜𝑅𝑝𝑅𝑜𝑅(𝑡)], 7  

where Pmix is the energy generated from the energy mix (Wh), pPV, pW and pRoR are the 

normalized time series of solar (photovoltaic), wind and run-of-the river power (Wh), and sPV, 

sW, sRoR the related sharing coefficients (no dimension). As mentioned earlier, we only 
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consider these three different energy sources to supply the energy load L, so the sum of the 

sharing coefficients sPV, sW, sRoR equals 1. The factor 𝛾 (no dimension) represents the average 

CRE production factor and corresponds to the ratio between the energy produced by the 

energy mix and the energy demand over the considered period: 

 〈𝑝(𝑡)〉 =  𝛾 〈𝐿(𝑡)〉. 8  

 It equals 1 when the mean energy production fits the mean energy load. It is greater 

than 1 when the mean inter-annual production exceeds the mean inter-annual load. This 

coefficient, further referred to as the average CRE production factor, allows exploring 

scenarios of over under- (respectively over-) production. In the following, we explored all 

scenarios of energy mix with sharing coefficients sPV, sW, and sRoR  ranging respectively from 0 

to 1 with a regular step of 0.05. We additionally explored over and under production scenarios 

with average production factor ranging from 0 to 3. 

Several definitions have been proposed for the penetration rate of a considered CRE. 

In this study we define the penetration as the percentage, over the full 1989-2012 period, of 

the total energy load that is instantaneously supplied  by the CRE mix. We compute its value 

from daily time series. For a given value of the average CRE production factor 𝛾 , the 

penetration rate PE (%) is given by: 

 
𝑃𝐸(𝛾) = [1 −  

∑(𝑚𝑎𝑥[𝐿(𝑡) − 𝑃𝑚𝑖𝑥(𝑡, 𝛾), 0])

∑ 𝐿(𝑡)
]  × 100, 

9  

where max [ ] is the maximum operator. In other words, the penetration rate corresponds to 

the percentage of the instantaneous load that can be satisfied by the mix, on average, without 

any storage or backup facility. In the present analysis, the maximum possible value of the 

penetration ratio is 100%. When 𝛾 equals 1, a penetration ratio equal to 100 % would be 

obtained for a configuration where the temporal organization of the load is exactly the same 

than that of the production. If the temporal organization of the production and the load differ, 

such a ratio is obtained when the production exceeds the load at any time and can only be 

obtained with an average CRE production factor 𝛾  higher than 1. In the following, the 

penetration function will refer to the function PE(𝛾), defined with PE values obtained for 

different values of 𝛾. 

4. Results  
 

Seasonal opposition between wind and solar power 

Solar power presents in all regions a similar seasonal pattern with a high production 

period during the summer (Figure 4). The patterns have larger amplitude in Northern areas 

like Norway and Finland due to the important daylight time changes along the years. The 

consequence for these regions is twofold: i) an almost nil solar generation during winter while 

it remains significant over this period in Southern regions such as Andalucía, Greece and 

Tunisia; ii) on the opposite, longer daylight times during summer with a solar power 

production higher than in the Southern areas. The envelope curves shown Figure 4 and the 

coefficients of variation (hereafter denoted as CV) reported in Table 2 illustrate how the time 
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variability of solar power decreases with decreasing the latitude (CV of daily data ranging 

from 0.89 to 0.35, Table 2). 

As shown by several past studies over Europe (e.g. von Bremen, 2010; Heide et al., 2010, 

2011), seasonal wind power pattern is anti-correlated with the seasonal solar power pattern 

(Figure 4). On average, high wind power generation is observed during winter and low 

generation during summer. Wind power seasonality is more important in the Northern regions 

than in the Southern ones. Contrary to solar power, wind power time variability is more 

homogeneous in space (CV ranging from 0.77 to 0.92, Table 2). 

Singularity of run-of-the river power variability 

Run-of-the river power seasonal patterns result from precipitation seasonality and snow 

pack dynamics. The latter is influenced by both the altitude and the latitude. As a result, the 

spatial variability of the seasonal pattern is more pronounced for RoR power than for wind 

and solar power. RoR seasonal patterns in regions with either high altitudes or located at high 

latitudes show important production during the snowmelt period from spring to early summer. 

Conversely, the production is lower during winter, when the main fraction of the precipitation 

is solid and runoff is low. For other regions, where the hydrological regime is rainfall 

dominated, the RoR seasonal patterns follow more or less the rainfall seasonality, with, in this 

part of the world, higher values during winter (e.g. France, Germany, Spain). In both regimes, 

the integrating effect of the hydrological cycle makes the RoR high frequency time variability 

smoother than for solar and wind power (CV of daily data ranging from 0.35 to 0.55, Table 

2). 

Load fluctuations and correlation with the CREs 

 As described in Section 2, the climate driven part of energy load is expected to be 

sensitive to high and low temperatures. As illustrated on Figure 4, the magnitude of the 

average seasonal patterns for the different CRES out-ranges the one observed for the energy 

load. Daily energy load variability is very low for all regions. This highlights that climate 

driven part of the energy load is weak regarding its average. Looking at the CV, the load 

seems roughly 3 to almost 20 times less variable than the different CRE power generation 

considered (Table 2). The ratio between the CV values of the CRE power and the load 

depends on the region and the energy source (Table 2). It is maximum for wind power in the 

Southern region (where the energy load time variability is low and the wind power variability 

is high).  

In addition, power generation from the different CREs is poorly correlated with the energy 

load. The wind-load correlation is almost nil for all regions and represents less than 4 % of 

explained variance in all areas but for Italy where it represents 10 % of explained variance 

(Table 3). The solar-load correlation is negative for all regions except for the southernmost 

areas (i.e. Andalucía and Tunisia) where summer demand relating with cooling out-ranges 

demand for heating during winter. In Southern areas such as Greece, Galicia, Andalucía and 

Tunisia, the correlation is low with less than 15% of explained variance. The anti-correlation 

is more significant for the other regions even though the explained variance remains lower 

than 50 %. RoR-load anti-correlation appears to be significant in the areas where the 

hydrological regime is snow-melt dominated as Norway and Italy (around 50 % of explained 

variance for both regions). On the opposite, in areas where the hydrological regime is driven 

by precipitation seasonality with high flow period during winter (e.g. Germany and France), 

the correlation is positive but not significant (16 and 14 % of explained variance respectively). 
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Variability of the penetration of solar, wind, and RoR power 

Figure 5 shows penetration functions for Italy, Galicia and Norway and for solar, wind 

and RoR power. For low production factors (i.e. from 0 to 0.4), the daily power generation 

from all CREs never exceed the daily energy demand (not shown). In such a case, there is no 

waste of energy and the penetration rate equals the factor 𝛾. When increasing the power 

capacity, i.e. increasing the 𝛾 factor, the power generation can exceed the energy load during 

some time periods. If no storage facility is available, the fatal generation is next wasted or 

simply not produced by shutting down the plants for security reasons. As a consequence, the 

penetration rate becomes lower than the average CRE penetration. For very high values of 𝛾, 

the penetration rate of a given CRE reaches a sill corresponding to the configuration where 

the generation is always higher than the load.  

The penetration rate function can be significantly different for one energy source to 

another (Figure 5). In Galicia for instance, wind penetrates the least and RoR penetrates the 

most. This difference in penetration cannot come from a difference in correlation. Indeed in 

Galicia, the three considered CREs are uncorrelated with the energy load (15, 1 and 3 % of 

explained variance respectively for solar, wind and RoR hydro power, Table 3). However, we 

note that the CRE penetration rates are ordered regarding the time variability of the CRE 

power generation (illustrated with the CV on Table 2). In other words, the time variability of 

the CRE generation looks like the main driver of the penetration rate in Galicia. This result is 

due to the almost nil time variability of the energy load (CV = 0.05). It would not be valid 

anymore if the load were fluctuating with a similar magnitude than the CRE power. In such a 

case, a high correlation would be required for matching the demand. 

In Figure 5, we additionally note that the penetration rate also differ from one region to 

another. As discussed previously, wind power penetrates the least in Galicia but the most in 

Norway. Solar power penetrates the least in Norway but the most in Italy. It is interesting to 

note that in Italy solar and RoR powers have similar time variability in term of CV (i.e. 0.5 

and 0.51 respectively). However, we observe a higher penetration rate for solar than for RoR 

power, especially for high CRE production factor 𝛾. This might be explained looking at the 

significant anti-correlation of RoR with the energy load (r=-0.71). In such a case, it seems 

such a significant anti-correlation (50 % of explained variance) handicaps the RoR power 

penetration. Solar power penetration seems less handicapped by a lower anti-correlation 

(r=0.51, 26 % of explained variance). 

Similar situation is also noted in Norway where wind penetrates more than RoR hydro 

power while its time variability is higher (CV = 0.79 for wind and CV = 0.55 for RoR power). 

Again, RoR power penetration seems limited by its anti-correlation with the energy which, in 

addition is significant (48 % of explained variance) while wind power is positively correlated 

with the load, even though this correlation is not significant (4 % of explained variance). As a 

first conclusion, we can note that, considering a low variable energy load (Table 2), time 

variability of CRE power generation seems to be the main driving factor of the penetration 

rate. This penetration rate is however modulated by the correlation between load and 

generation, especially when the latter is significant. 

Looking now at the optimal mix suggested by past studies such as the one of von Bremen 

(2010), namely 40 % of solar power and 60 % of wind power, we note that the penetration of 

this mix exceeds the penetration rates obtained with a single energy source (Figure 5). This 

results from lower time variability of the generation produced by the mix (Table 2) and from 

the reduced anti-correlation obtained from solar power (Table 3). 
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Increasing penetration with RoR hydropower integration 

We now focus on the 100 % generation scenario (i.e. considering an average CRE 

production factor 𝛾 equal to 1). Figure 6 shows the penetration rate for each possible mix 

among wind, solar and RoR hydro power in Galicia. It highlights that in this region, the 

penetration rate increases when integrating RoR hydropower with solar and wind. The black 

arrow in Figure 6 goes from the optimal wind-solar power mix to the optimal wind-solar-RoR 

power mix. The orientation of the arrows indicates whether RoR replaces more solar than 

wind power, or conversely. An angle between the arrow and the horizontal axis (i.e. the axis 

showing a constant share of wind power) lower than 30°, means that RoR hydro power 

substitutes more solar power than wind power (and conversely when this angle is greater than 

30°). For instance, Figure 6 shows for Galicia that the optimal integration of RoR hydro 

power would replace more wind than solar power.  

Similar triangle plots are presented for all regions in Figure 7. We first note that the 

optimal wind-solar mix penetrates more in Southern than in Nordic Europe. Table 4 gives the 

penetration rates obtained with the “optimal” wind-solar mix for the different regions. These 

optimal shares maximize the penetration rate and thus differ from the one obtained by von 

Bremen (2010) the latter being obtained minimizing the monthly residual load variance (the 

von Bremen optimal share was also obtained considering Europe as a whole and for a much 

smaller time period). We note that the optimal share obtained for each region may have higher 

time variability than the one suggested by von Bremen (2010), as it is the case for Finland for 

instance. However in such a case, the optimal share allows to limit the significant anti-

correlation brought by solar power (see CV and correlation coefficient Tables 2-4). 

Not surprisingly, the optimal combination of wind and solar power seems correlated in 

space. In other words, the optimal mixes observed at two neighbor regions are more similar 

than the ones observed for two regions located at the two edges of a climate transect. Thanks 

to its low time variability, the share of solar power is high in Southern Europe, such as 

Greece, Galicia, Andalucía and Tunisia (i.e. sPV > 60 %). It is lower in Northern Europe (sPV < 

40 % for Norway and Finland) where wind power is more favorable (indeed, in Northern 

countries solar power is highly variable and significantly anti-correlated with the energy 

load). 

When integrating RoR hydropower, the global penetration rate increases for all regions 

(Table 4). The lowest penetration increase is observed for Italy and Tunisia (+1 %) and the 

highest for England and Germany (+8 %). The benefit from integrating RoR power into the 

power mix actually depends on the different complementarity in time between RoR 

hydropower and wind and solar power, i.e. the way RoR power integration may decrease the 

time variability of the power generation and to improve the correlation with the energy load. 

As a result, the optimal share of RoR hydropower into the energy mix differs from one region 

to another. However, it is always a significant fraction of the energy mix, ranging from 35 % 

(Norway and Italy) to 65 % (England and Belarus).  

Such high share coefficients might be surprising since RoR power in Belarus and England 

are either anti-correlated or not correlated at all with the energy load (r=-0.57 and r = -0.01 for 

Belarus and England respectively). However, RoR power variability in time is much lower 

than for solar and wind power in these regions (see CV values on Table 2). This highlights 

that the penetration rate increase results from a trade-off between making closer the time 

variability of the generation and the load and improving the generation-load correlation. 
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RoR hydropower integration also modifies the relative weight of wind and solar energies 

within the mix as shown Figure 7 and Table 4. In Belarus, the solar power is almost left out 

the mix (its contribution goes from 45 to 5 % when integrating RoR). Wind power decreases 

significantly in Southern Europe (i.e. in Greece, Galicia and Andalucía). Two regions with 

roughly the same optimal wind-solar share can also move to two different optimal mixes 

when integrating hydropower. This is the case for France and Italy: RoR hydropower 

integration decreases wind power share by 25 % in France and by 5% only in Italy. 

5. Conclusion  
 

At the European scale, several past studies looked at the potential advantages of 

combining solar and wind power. Other renewable energies such as biomass and hydropower 

were considered, either directly or not, as storage facilities able to balance the mismatches 

between load, wind and solar power generation. The literature shows that the optimal share 

between wind and solar power varies according to the time scale. For Europe and at daily time 

scale, it is usually considered as a mix composed by 60 % of wind power and 40 % of solar 

power. In this study, we integrated run-of-the-river (RoR) power with solar and wind power.  

We analyze RoR power integration over 12 different regions in order to take into account 

a wide range of climatic conditions in Europe. The penetration rates, defined as the percent of 

energy load directly supplied by the CRE power generation (i.e. without any storage 

requirement for balancing) is computed for all the possible combination of the three 

considered CREs. Taking into account a 100 % renewable scenario (i.e. an average CRE 

generation factor 𝛾 =1), we show that RoR power integration increases the overall CRE 

penetration (ranging from +1 to +8 percentage points, Table 4). Increasing penetration rate 

actually appears to result from a trade-off between i) decreasing the difference in time 

variability between generation and load, and ii) improving the generation-load correlation 

(which often means limiting the anti-correlation coming from either solar or RoR hydro 

power). 

The optimal solar-wind-RoR mixes show a high rate of RoR power for all regions (from 

35 to 65 %). One could rightly point out that such a high share of RoR hydropower is not 

realistic in some areas, for both technical and economic reasons. However, our results show 

that i) it is worth integrating even a small amount of RoR hydropower into a solar-wind mix 

since the penetration always increase and ii) it is possible to optimize the RoR hydropower 

integration for each climate region by ‘replacing’ more solar or wind power contribution. 

Our work is based on a number of assumptions, data and modelling choices, which 

potentially lead to some uncertainty in our results and interpretations. If a comprehensive 

uncertainty analysis was obviously out of the scope of the study, the following uncertainty 

sources are nevertheless worth being mentioned. A first difficulty concerns the dataset of 

hydro-meteorological observations required for the analysis. In the present case, a number of 

needed time series have been derived from weather pseudo-observations downscaled with the 

WRF regional model. Such data present of course limitations, for some types of 

meteorological events and/or in specific areas especially, where atmospheric processes are 

classically poorly simulated (e.g. convective and orographic precipitation, wind fields in 

mountainous regions). Conversely to observed data, pseudo-observations are however 

available at high space – time resolution. They are moreover complete over rather long 
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periods of time, even in regions with no observations, which is obviously a strength. As they 

are downscaled from the ERA-Interim atmospheric reanalyses, using these data instead of 

observed ones (when available) is finally not expected to drastically impact the results, 

especially in terms of temporal organization (and next co-fluctuations) of the different energy 

sources. In all cases, improved analyses of climate driven energy sources will be possible in 

the next decades, owing to the ongoing progresses in regional climate modelling which will 

allow producing more reliable reanalyses of meteorological variables for a number of region 

worldwide.  

Another potentially critical source of uncertainty lies in the different models used to 

convert weather variables into energy load and power production. Better parametrizations and 

modelling schemes are obviously possible for more relevant simulations. The choice of a 

same parametrization for all studied regions could be for instance relaxed. The way runoff is 

harnessed for hydropower production could include information on the topological structure 

of the hydrographic network within each region. Further works should explore how such 

model refinements could influence our results, but the main conclusions of our work are not 

expected to drastically change. For instance, a major assumption made along this study was to 

consider that a fraction of the electricity consumption was temperature sensitive (see equation 

5). This is not necessarily true for some European countries where heating needs are supplied 

by biomass burning or gas, for instance. When the present study is carried out with a constant 

energy load instead of a temperature sensitive one, results are rather unchanged. For all 

regions very similar ‘triangles’ and very similar optimal mixes are obtained (changes by few 

percent points only for the optimal mixes).  

Future works should also consider few additional questions. The first relate to the RoR 

power integration for other time scales than daily. Von Breman (2010) show that the optimal 

solar-wind mix depends on the considered time scale (it goes from 20 % of solar power at 

hourly time scale to 40 % at monthly time scale). One can easily guess that RoR power would 

be also valuable at sub-daily time scales especially for smoothing the well-known high time 

variability of wind and solar power at those scales. The space integration is also an important 

question. Steinke et al. (2013) divided Europe in several ‘copper plates’, meaning that there 

are no energy transport losses within each region. They show that the sizes of these cooper 

plates implies different strategies in term of oversizing CRE power capacity, storage and 

backup facilities requirement. The approach used in this study is similar since each region is 

autonomous and considered as a cooper plate. Analyzing the effect of the grid extension at the 

regional scale (i.e. the size of each region/cooper plate) and at the European scale (i.e. 

allowing energy transport from one region to another), on the penetration rate and the 

corresponding optimal strategies of CRE mix would help stakeholders to design future 

network.  

Storage facilities also matters. Weitemeyer et al. (2015) show that storage facilities 

increase the penetration of the 60 % wind 40 % solar mix in Germany. The increase amplitude 

however depends on the storage distribution (centralized with high efficiency vs distributed 

with lower efficiency). It would be worth analyzing such an increase for different climatic 

conditions than Germany and for different energy mixes, including RoR. Large time scales 

(i.e. monthly, yearly, decades) are also important. François et al. (2016) highlight that 

variability at larger time scales is a good proxy of the storage required for balancing. For these 

large time scales, variability of RoR might differ regarding the precipitation variability in 

Europe. Succession of either wet or dry years should be critical for the share of RoR power 

within the energy mix, and needs to be investigated. Such study would for instance benefit of 

the new large-scale reanalysis data (Compo et al., 2011). Large time scale study also 
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highlights the need to account for climate change impact on weather variable driving both the 

CRE generation and the energy load (François et al., 2014a). 
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Figure 1: Map of the 12 regions selected across Europe and North Africa with their name used in 

this study. This selection explores two climate transects, the first one going from the Northern regions 

(Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from 

the oceanic climate (England, France, Galicia) to the continental one (Romania, Belarus).  
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Figure 2: Sketch of the wind power curve. The blue curve is the nominal windmill power curve 

illustrating the different wind speed thresholds governing power generation. The red curve is the 

modified daily power curve according to the 3 hour time scale resolution and the statistical distribution 

of sub-daily wind velocities. 

 

 

 

Figure 3: Flow duration curve and characteristic discharges used to simulate power generation 

from the run-off-the-river plant. Qmin, Qmax are the minimum and maximum discharge above which 

and below which the generation has to be stopped. Qd is the design flow. The ligh gray area represents 

the design volume used for the considered power plant generation. 
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Figure 4: Normalized inter-annual average cycle of CRE power generation (solar- (red), wind- 

(black) and RoR hydro- (blue) power) and load (green) in each studied region over the period 1980-

2012 (see equation 6 for the normalization procedure); For information only, light shaded areas show 

the distance between the 25
th
 and 75

th
 percentiles of the variable obtained for the 1980-2012 period for 

each calendar day; the x-axis gives the initial letters of the months of the year; the value of each 

variable on the y-axis is given in percentage of the average load. 
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Figure 5: Evolution of the penetration rate PE with the average CRE generation factor 𝛾 for a) 

Galicia, b) Italy and c) Norway and for solar (red), wind (black), hydro (blue) CREs and the von 

Bremen optimal mix (60% wind, 40% solar, orange) 
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Figure 6: CRE penetration rate (%) for all wind/solar/hydro mix configurations in Galicia when a 

100 % CRE production scenario is considered (the average CRE generation factor for the 1980-2012 

period is 𝛾=1). The x-axis gives the share of solar power (sPV [%]), the left axis gives the share of RoR 

power (sRoR [%]), and the right axis gives the share of wind power (sW [%]). Red, black and blue 

bullets correspond respectively to a 100% solar, 100% wind and 100% hydro mix scenario. Horizontal 

gray lines show mix with the same wind share. 60° increasing (resp. decreasing) gray lines show mix 

with the same solar power share (resp. RoR power share). The black square corresponds to an equal 

share of each energy source. The white dot corresponds to the optimal mix, i.e. the mix giving the 

highest penetration rate. The black arrow shows the shift of the optimal CRE share and of the 

corresponding penetration rate when replacing a fraction of solar and wind power by RoR hydro 

power. It goes from the optimal wind-solar mix to the optimal wind-solar-RoR mix. The orientation of 

the arrows indicates what RoR replaces more wind than solar or conversely. For instance, a horizontal 

arrow indicates that RoR only replaces solar power (with no change in the wind rate). Conversely, an 

angle of 60° between the arrow and the wind axis indicates that RoR only replaces wind power (with 

no change in the solar rate). 
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Figure 7: CRE penetration rate (%) as a function of the wind/solar/hydro mix for all 12 European 

regions. See Figure 6 for caption details.  
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Table 1: Location (Latitude, Longitude limits), size and elevation (average [min, max]) of the 12 

regions  

Region Lat Min (°) Lat Max (°) Lon Min (°) Lon Max (°) Area (km²) Elevation (m a.s.l.) 

Finland 61.625 63.375 23.625 27.375 37465 137 [84 – 207] 

Norway 61.125 62.875 7.375 11.125 38091 952 [171 – 1660] 

Belarus 52.625 54.375 25.625 28.625 38610 176 [116 – 287] 

England 52.875 54.625 -3.125 -0.125 38381 133 [0 – 450] 

Germany 49.375 51.125 9.375 12.125 38047 379 [174 – 619] 

France 45.375 47.125 -0.375 2.125 37405 217 [44 – 784] 

Italy 45.625 47.375 10.375 12.875 37234 1348 [2 – 2701] 

Romania 45.625 47.375 23.125 25.875 40957 675 [253 – 1410] 

Greece 38.625 40.375 20.625 22.875 37564 666 [74 – 1411] 

Galicia 41.375 43.125 -8.625 -6.125 40039 683 [79 – 1496] 

Andalucia 37.125 38.875 -4.625 -2.375 38362 813 [228 – 1964] 

Tunisia 34.875 36.875 8.875 10.875 40073 306 [19 – 880] 

 

  

 

 

 Table 2: Coefficient of variation (CV) of the daily power time series from each CRE (CV = 

standard deviation / mean) and for the von Bremen solar/wind optimal mix (von Bremen, 2010). CV 

of daily energy load in last column. Numbers within brackets give the ratio values between CV from 

each CRE and the load ‘s CV.  

Region PV Power Wind Power Hydro Power 60% wind 40% solar Energy load  

Finland 0.89 (6) 0.88 (6) 0.55 (3) 0.58 (4) 0.16  

Norway 0.84 (7) 0.79 (7) 0.60 (5) 0.46 (4) 0.12  

Belarus 0.70 (5) 0.83 (6) 0.43 (3) 0.52 (4) 0.14  

England 0.73 (8) 0.79 (9) 0.36 (4) 0.48 (5) 0.09  

Germany 0.65 (6) 0.92 (8) 0.55 (5) 0.52 (5) 0.11  

France 0.57 (7) 0.90 (11) 0.60 (8) 0.51 (6) 0.08  

Italy 0.50 (6) 0.87 (11) 0.51 (6) 0.51 (6) 0.08  

Romania 0.53 (4) 0.92 (8) 0.46 (4) 0.55 (5) 0.12  

Greece 0.45 (8) 0.86 (14) 0.41 (7) 0.48 (8) 0.06  

Galicia 0.54 (11) 0.91 (18) 0.53 (11) 0.51 (10) 0.05  

Andalucía 0.41 (8) 0.92 (18) 0.40 (8) 0.54 (11) 0.05  

Tunisia 0.35 (9) 0.77 (19) 0.35 (9) 0.47 (12) 0.04  

Appendix C. Hydro, wind and solar power mix in Europe: François et al., 2016

218



 

Table 3: Pearson correlation coefficient between daily power and daily energy load; values in bracket 

give the percentage of explained variance, computed as the squared value of the correlation 

coefficient). 

Region PV Power Wind Power Hydro Power 60% wind 40% solar 

Finland -0.65 (42 %) 0.05 (< 1 %) -0.32 (10 %) -0.36 (13 %) 

Norway -0.58 (34 %) 0.21 (4 %) -0.69 (48 %) -0.21 (4 %) 

Belarus -0.69 (48 %) 0.07 (< 1 %) -0.57 (32 %) -0.30 (9 %) 

England -0.61 (37 %) 0.12 (1 %) -0.01 (< 1 %) -0.25 (6 %) 

Germany -0.65 (42 %) 0.13(2 %) 0.40 (16 %) -0.19 (4 %) 

France -0.57 (32 %) 0.08 (< 1 %) 0.37 (14 %) -0.17 (3 %) 

Italy -0.51 (26 %) 0.32 (10 %) -0.71 (50 %) 0.12 (1 %) 

Romania -0.67 (45 %) 0.09 (< 1 %) -0.60 (36 %) -0.17 (3 %) 

Greece -0.35 (12 %) 0.19 (4 %) 0.20 (4 %) 0.07 (< 1 %) 

Galicia -0.39 (15 %) 0.02 (< 1 %) 0.18 (3 %) -0.13 (2 %) 

Andalucía 0.11 (1 %) -0.09 (< 1 %) -0.29 (8 %) -0.06 (< 1 %) 

Tunisia 0.21(4 %) -0.07 (< 1 %) -0.04 (< 1 %) 0.00 (< 1 %) 

 

 

 

Table 4: Optimal shares and corresponding CV, correlation coefficient r and penetration rate PEopt for 

a wind / solar mix and for a wind / solar / hydro mix. Shares are given for solar (SPV), wind (SW) and 

RoR (SRoR) power for the 12 regions. The numbers in brackets give the penetration increase when 

integrating RoR hydro power into the solar/wind mix. 

 Wind-Solar mix Wind-Solar-RoR mix 

Region SPV (%) SW (%) CV r PEopt (%)  SPV (%) SW (%) SRoR (%) CV r PEopt (%)   

Finland 35 65 0.60 -0.30 74 15 35 50 0.42 -0.38 80 (+6)   

Norway 40 60 0.46 -0.21 80 15 50 35 0.38 -0.35 82 (+2)  

Belarus 45 55 0.50 -0.37 77 5 30 65 0.37 -0.45 82 (+5)  

England 45 55 0.46 -0.32 80 20 15 65 0.27 -0.29 88 (+8)  

Germany 50 50 0.46 -0.33 79 35 15 50 0.30 -0.06 87 (+8)  

France 60 40 0.40 -0.41 82 45 15 40 0.28 -0.17 88 (+6)  

Italy 60 40 0.39 -0.11 84 30 35 35 0.35 -0.3 85 (+1)  

Romania 55 45 0.45 -0.35 80 25 35 40 0.38 -0.45 82 (+2)  

Greece 65 35 0.33 -0.14 86 45 10 45 0.20 -0.09 92 (+6)  

Galicia 60 40 0.39 -0.30 84 45 10 45 0.25 -0.2 89 (+5)  

Andalucía 75 25 0.34 0.04 86 50 10 40 0.24 -0.13 90 (+4)  

Tunisia 75 25 0.31 0.14 88 40 20 40 0.27 0.06 89 (+1)  
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AppendixD
Supplementary figures for Part IV
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Figure D.1 – 20th century trend in annual CRE sources and energy load. Slope coefficients (colors)
of a linear regression on hydro, solar, wind power (MW.yr−1) and energy load (yr−1) for the 12
European test regions. Non-significant linear trends (95% confidence interval) are highlighted
with the cross symbol. When it is relevant, the relative change from 1900 to 2010 is displayed.
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Figure D.2 – Connections between the NAO and CRE sources/energy load. Spearman correlation
coefficients between the NAO index and regional series of hydro, wind, solar power and energy
load. Non-significant correlation coefficients (95% confidence interval) are highlighted with the
cross symbol. Results are displayed for annual, winter and summer data.
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Figure D.3 – Connections between the AMO and CRE sources/energy load. Spearman correlation
coefficients between the AMO index and regional series of hydro, wind, solar power and energy
load. Non-significant correlation coefficients (95% confidence interval) are highlighted with the
cross symbol. Results are displayed for annual, winter and summer data.
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Figure D.4 – Connections between the NAO and penetration rates of CRE sources. Spearman
correlation coefficients between the NAO index and PE regional series associated to hydro, wind
and solar power. Non-significant correlation coefficients (95% confidence interval) are highlighted
with the cross symbol. Results are displayed for annual, winter and summer data.
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Figure D.5 – Connections between the AMO and penetration rates of CRE sources. Spearman
correlation coefficients between the AMO index and PE regional series associated to hydro, wind
and solar power. Non-significant correlation coefficients (95% confidence interval) are highlighted
with the cross symbol. Results are displayed for annual, winter and summer data.
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Variabilité hydro-climatique et intégration d’énergies renouvelables en Europe: Eval-
uation multi-échelle de l’équilibre production-demande pour différentes sources et com-
binaisons d’énergies

Dans un contexte de changement climatique, l’intégration des énergies renouvelables aux systèmes électriques est
un enjeu majeur des décennies à venir. Les énergies liées au climat (photovoltäıque, éolien et hydro-électricité) peuvent
contribuer à une réduction des émissions de gaz à effet de serre. Cependant, elles sont fortement intermittentes et la
production électrique associée peine à répondre à la demande. Cette étude vise à évaluer la faisabilité météorologique
du développement d’un système de production électrique basé sur les sources d’énergie liées au climat (CRE - Climate-
Related Energy). Nous considérons uniquement leurs variations spatiotemporelles et supposons un équilibre entre
production et demande moyennes. Nous avons développé CRE-Mix, une châıne de modèles permettant de convertir les
variables météorologiques en chroniques énergétiques. Cet outil permet l’estimation des fluctuations spatiotemporelles
de production et de demande énergétiques résultant de la variabilité hydro-climatique. Pour une sélection de régions
en Europe, nous évaluons la facilité d’intégration des CRE en fonctions de leur cohérence temporelle avec la demande.
Pour chaque source d’énergie et de multiples mix énergétiques nous estimons successivement (i) le taux de pénétration
moyen (PE), qui quantifie la proportion de demande satisfaite sur une longue période et (ii) les caractéristiques des
périodes de faible pénétration pour lesquelles le taux journalier de demande satisfaite reste bas pendant plusieurs jours
consécutifs. Les résultats montrent que les systèmes basés sur une seule source ont du mal à répondre à la demande
et souffrent de longues périodes de faible PE, en raison de leur variabilité temporelle. Cependant, une combinaison
d’énergies, l’utilisation de systèmes de stockage ou l’échange d’énergie entre régions, permettent d’augmenter fortement
la fiabilité des CRE (PE proche de 100% et rares/courtes périodes de faible pénétration).

Cette étude, basée sur 30 ans, a été étendue à l’ensemble de XXème siècle afin d’évaluer les fluctuations basse
fréquence des CRE résultant de la variabilité interne du climat. De longues chroniques régionales de production et
de demande ont été générées grâce au développement d’une méthode de descente d’échelle statistique basée sur les
analogues atmosphériques (SCAMP). Cet outil génère des scenarios météorologiques multivariés physiquement co-
hérents. Les résultats montrent que les variations basse fréquence des CRE sont influencées par les grandes oscillations
océano-climatiques. De plus, on montre que les variations multi-décennales de l’hydro-électricité sont particulièrement
importantes avec notamment une différence en PE supérieure à 15% d’une décade à l’autre et des périodes de faible
pénétration aux caractéristiques très irrégulières. Enfin, nous évaluons la pertinence de systèmes électriques basés sur
les CRE en climat futur. SCAMP permet de produire des scenarios régionaux de variables météorologiques à partir des
modèles climatiques issus des simulations CMPI5. Pour les précipitations, les tendances simulées par SCAMP sont en
désaccord avec de nombreuses études. L’application de SCAMP en ”modèle parfait” semble indiquer que le lien entre
les situations atmosphériques de grande échelle et les précipitations totales, mais également convectives et stratiformes,
change en climat futur.

Hydro-climatic variability and the integration of renewable energy in Europe. Multi-
scale evaluation of the supply-demand balance for various energy sources and mixes.

In the context of climate change, the integration of renewables in electric power systems is one of the main challenges
of the coming decades. Climate-Related-Energy sources (CRE - solar, wind and hydro power) can contribute to
reduce the greenhouse gas emissions. However, they exhibit large spatio-temporal fluctuations and the associated
intermittent electricity generation often leads to an incomplete supply-demand balance. This study aims to evaluate
the meteorological feasibility of developing an electric power system that would only rely on CRE sources. We focus
on the multi-scale spatio-temporal fluctuations of these renewables by assuming a balance between mean electricity
production and mean energy load. We develop and use CRE-mix, a suite of models able to convert meteorological
conditions into CRE time series. It gives an assessment the spatio-temporal fluctuations of power production and
energy demand, resulting from the multi-scale hydro-climatic variability. For a set of European regions, we assess the
ease of integration of CRE sources, regarding their temporal consistency with energy demand. For each CRE source
and multiple CRE mixes, we consider in turn (i) the mean penetration rate (PE), which quantifies the proportion of
satisfied demand over a long period and (ii) the characteristics of low penetration periods, defined as sequences of days
for which the penetration rate is lower than a given threshold. This study proves that single CRE sources have difficulty
to meet the energy demand and suffer from long low penetration periods, due to their multi-scale temporal variations.
However, using some integrating factors (multi-sources, storage systems, inter-regions electric power transmission),
efficiently improves the reliability of CRE-based power systems with PE rates close to 100% and rare low penetration
periods.

These analyses, based on a 30-yr period, are extended to the entire 20th century in order to assess the low frequency
fluctuations of CRE sources resulting from the internal variability of climate. Long regional series of production and
demand, were generated thanks to the development of a statistical downscaling method based on atmospheric analogues
(SCAMP). It simulates physically-consistent multivariate series of meteorological parameters. The results demonstrate
that these fluctuations are related to some large scale oceano-climatic oscillations. Moreover, the multi-decennial
variations of hydro power are particularly large: changes in PE rates exceeding 15% from one decade to the other and
uneven energy droughts characteristics. Finally, we evaluate the relevance of the CRE sources under future climate
conditions. SCAMP is used to produce downscaled projections of meteorological drivers of CRE sources for the 21st

century from a selection of CMIP5 climate models. The resulting scenarios for precipitation are not consistent with
other studies focusing of the future modifications of this variable in Europe. The application of SCAMP in a perfect-
model approach seems to indicate that the large-scale-meteorology/local-precipitation relationship is changing in the
course of the 21st century, for all total, convective and stratiform precipitation.
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