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le 13 décembre 2017

devant le jury composé de :
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Résumé en Français

Les procédures cliniques mini-invasives se sont largement étendues durant
ce dernier siècle. La méthode traditionnellement utilisées pour traiter un
patient a longtemps été de recourir à la chirurgie ouverte, qui consiste à
faire de larges incisions dans le corps pour pouvoir observer et manipuler
ses structures internes. Le taux de succès de ce genre d’approche est tout
d’abord limité par les lourdes modifications apportées au corps du patient,
qui mettent du temps à guérir et peuvent entrainer des complications après
l’opération. Il s’ensuit également un risque accru d’infection dû à l’exposition
des tissues internes à l’environnement extérieur. Au contraire, les procédures
mini-invasives ne requièrent qu’un nombre limité de petites incisions pour
accéder aux organes. Le bien-être général du patient est donc amélioré grâce
à la réduction des douleurs post-opératoires et la limitation de la présence
de larges cicatrices. Le temps de rétablissement des patients est également
grandement réduit [EGH+13], en même temps que les risques d’infection
[GGSea14], ce qui conduit à de meilleurs taux de succès des opérations et
une réduction des coûts pour les hôpitaux.

Lorsque la chirurgie ouverte était nécessaire avant l’introduction de l’ima-
gerie médicale, diagnostique et traitement pouvaient faire partie d’une seule
et même opération, pour tout d’abord voir les organes et ensuite planifier et
effectuer l’opération nécessaire. Les rayons X ont été parmi les premiers
moyens découverts pour permettre l’obtention d’une vue anatomique de
l’intérieur du corps sans nécessiter de l’ouvrir. Plusieurs modalités d’imagerie
ont depuis été développées et améliorées, parmi lesquelles la tomodensito-
métrie (TDM) [Hou73], l’imagerie par résonance magnétique (IRM) [Lau73]
et l’échographie [WR52] sont maintenant largement utilisées dans le domaine
médical.

Au-delà des capacités de diagnostic accrues qu’elle offre, l’imagerie médi-
cale a joué un rôle important dans le développement de l’approche chirur-
gicale mini-invasive. Observer l’intérieur du corps est nécessaire au succès
d’une intervention chirurgicale, afin de voir les tissus d’intérêt et la posi-
tion des outils chirurgicaux. De part la nature même de la chirurgie mini-
invasive, une ligne de vue directe sur l’intérieur du corps n’est pas possible
et il est donc nécessaire d’utiliser d’autres moyens d’observation visuelle,
tels que l’insertion d’endoscope ou des techniques d’imagerie anatomique.
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RÉSUMÉ EN FRANÇAIS

Chaque technique a ses propres avantages et inconvénients. Les endoscopes
utilisent des caméras, ce qui offre une vue similaire à un œil humain. Les
images sont donc faciles à interpréter, cependant il n’est pas possible de
voir à travers les tissus. À l’opposé, l’imagerie anatomique permet de vi-
sualiser l’intérieur des tissus, mais un entrainement spécifique des médecins
est nécessaire pour l’interprétation des images obtenues. La tomodensito-
métrie utilise des rayons X, qui sont des radiations ionisantes, ce qui limite
néanmoins le nombre d’images qui peuvent être acquises afin de ne pas ex-
poser le patient à des doses de rayonnement trop importantes [SBA+09].
L’équipe médicale doit également rester en dehors de la salle où se trouve
le scanner pendant la durée d’acquisition. D’un autre côté l’IRM utilise des
radiations non-invasives et fournit également des images de haute qualité,
avec une grande résolution et un large champ de vue. Cependant ces deux
modalités imposent de sévères contraintes, telles qu’un long temps nécessaire
pour obtenir une image ou un équipement coûteux et encombrant qui limite
l’accès au patient. Dans ce contexte l’échographie est une modalité de choix
grâce à sa capacité à fournir une visualisation en temps réel des tissus et
des outils chirurgicaux en mouvement. De plus, elle est non-invasive et ne
requière que des scanners légers et des sondes facilement manipulables.

Des outils longilignes sont souvent utilisés pour les procédures mini-
invasives afin d’être insérés à travers de petites incisions réalisées à la surface
du patient. En particulier les aiguilles ont été utilisées depuis longtemps pour
extraire ou injecter des substances directement dans le corps. Elles procurent
un accès aux structures internes tout en ne laissant qu’une faible marque dans
les tissus. Pour cette raison elles sont des outils de premier choix pour une
invasion minimale et permettent d’atteindre de petites structures dans des
régions profondes du corps. Cependant les aiguille fines peuvent présenter un
certain niveau de flexibilité, ce qui rend difficile le contrôle précis de leur tra-
jectoire. Couplé au fait qu’une sonde échographique doit être manipulée en
même temps que le geste d’insertion d’aiguille, la procédure d’insertion peut
rapidement devenir une tâche ardue qui requière un entrainement spécifique
des cliniciens. En conséquence, le guidage robotisé des aiguilles est devenu
un vaste sujet de recherche pour fournir un moyen de faciliter l’intervention
des cliniciens et augmenter la précision générale de la procédure.

La robotique médicale a pour but de manière générale de concevoir et
contrôler des systèmes mécatroniques afin d’assister les cliniciens dans leur
tâches. L’objectif principal étant d’améliorer la précision, la sécurité et la
répétabilité des opérations tout en réduisant leur durée [TS03]. Cela peut
grandement bénéficier aux procédures d’insertion d’aiguille en particulier,
pour lesquelles la précision est bien souvent cruciale pour éviter les erreurs
de ciblage et la répétition inutile d’insertions. L’intégration d’un système
robotique dans les blocs opératoires reste un grand défi en raison des con-
traintes cliniques et de l’acceptation du dispositif technique par le personnel
médical. Parmi les différentes conceptions qui ont été proposées, certains sys-
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MOTIVATIONS CLINIQUES

tèmes présentent plus de chances de succès que d’autres. De tels systèmes
doivent offrir soit une assistance au chirurgien sans modifier de manière sig-
nificative le déroulement de l’opération soit des bénéfices clairs à la fois sur la
réussite de l’opération et sur les conditions opératoires du chirurgien. C’est
le cas par exemple des systèmes d’amélioration des images médicales ou de
suppression des tremblements ou encore des systèmes télé-opérés. Pour les
procédures d’insertion d’aiguille, cela consisterait principalement à fournir
un monitoring en temps réel du déroulement de l’insertion ainsi qu’un sys-
tème robotique entre le patient et la main du chirurgien servant à assister le
processus d’insertion. À cet égard, un système robotique guidé par échogra-
phie est un bon choix pour fournir une imagerie intra-opératoire en temps
réel et une assistance pendant l’opération.

Motivations cliniques

Les aiguilles sont largement utilisées dans une grande variété d’actes médi-
caux pour l’injection de substances ou le prélèvement d’échantillons de tissus
ou de fluides directement à l’intérieur du corps. Alors que certaines procé-
dures ne nécessitent pas un placement précis de la pointe de l’aiguille, comme
les injections intramusculaires, le résultat des opérations sensibles dépend
grandement de la capacité à atteindre une cible précise à l’intérieur du corps.
Dans la suite nous présentons quelques applications pour lesquelles un ciblage
précis et systématique est crucial pour éviter des conséquences dramatiques
et qui pourraient grandement bénéficier d’une assistance robotisée.

Biopsies pour le diagnostic de cancer

Le cancer est devenu une des causes majeures de mortalité dans le monde
avec 8.2 millions de décès dus au cancer estimés à travers le monde en 2015
[TBS+15]. Parmi les nombreuses variétés de cancer, le cancer de la prostate
est l’un des plus diagnostiqués parmi les hommes et le cancer du sein parmi
les femmes, le cancer du poumon étant aussi une cause majeure de décès
pour les deux. Cependant la détection précoce des cancers peut améliorer
la probabilité de succès d’un traitement et diminuer le taux de mortalité.
Indépendamment du type de tumeur, la biopsie est la méthode de diagnos-
tic traditionnellement utilisée pour confirmer la malignité de tissus suspects.
Elle consiste à utiliser une aiguille pour prélever un petit échantillon de
tissu à une position bien définie à des fins d’analyse. Le placement précis
de l’aiguille est d’une importance capitale dans ce genre de procédure afin
d’éviter une erreur de diagnostic due au prélèvement de tissus sains autour
de la région suspectée. Les insertions manuelles peuvent donner des résul-
tats variables qui dépendent du clinicien effectuant l’opération. Le guidage
robotique de l’aiguille a donc le potentiel de grandement améliorer les per-
formances des biopsies. Un retour échographique est souvent utilisé, par

iii



RÉSUMÉ EN FRANÇAIS

exemple pour le diagnostic du cancer de la prostate [KSH14]. La tomod-
ensitométrie est également un bon choix pour le cancer du poumon et un
système robotique est d’une grande aide afin de compenser les mouvements
de respiration [ZTK+13]. Les systèmes robotiques peuvent également être
utilisés afin de maintenir et modifier la position des tissus pour aligner une
tumeur potentielle avec l’aiguille, particulièrement dans le cas de biopsies du
cancer du sein [MSP09].

Curiethérapie

La curiethérapie a prouvé être un moyen efficace pour traiter le cancer de la
prostate [GBS+01]. Elle consiste à placer de petits grains radioactifs dans
la tumeur à détruire. Cette procédure nécessite le placement précis et uni-
forme d’une centaine de grains, ce qui peut prendre du temps et requière une
grande précision. Les conséquences d’un mauvais placement peuvent être
dramatiques par la destruction de structures sensibles alentours, comme la
vessie, le rectum, la vésicule séminale ou l’urètre. L’insertion est habituelle-
ment effectuée sous échographie trans-rectale, ce qui peut permettre d’utiliser
un système robotisé pour accomplir des insertions précises et répétées sous
guidage échographique [HBLT12] [SSK+12] [KSH14]. L’IRM est également
couramment utilisée et fait l’objet de recherche pour une utilisation avec un
système robotique [SAIF16].

Cancer du foie

Après le cancer du poumon, le cancer du foie est la cause majeure de
décès dus au cancer chez l’homme, avec environ 500000 décès chaque année
[TBS+15]. L’ablation par radiofréquence est la principale modalité thérapeu-
tique utilisée pour effectuer une ablation de tumeur du foie [LCPC09]. Une
sonde d’ablation, apparentée à une aiguille, est insérée dans le foie et génère
de la chaleur pour détruire localement les tissus. Guider précisément la
sonde sous guidage visuel peut éviter la destruction inutile de trop de tis-
sus. Les biopsies du foie peuvent également être effectuées en utilisant des
aiguilles de ponction percutanée [GN99]. Utiliser un guidage robotisé sous
modalité échographique pourrait permettre d’éviter de multiple insertions
qui augmentent les saignements hépatiques et peuvent avoir de graves con-
séquences.

Contributions

Dans cette thèse nous traitons du contrôle automatique d’un système robo-
tique pour l’insertion d’une aiguille flexible dans des tissus mous sous guidage
échographique. Traiter ce sujet nécessite de considérer plusieurs points. Tout
d’abord l’interaction entre l’aiguille et les tissus doit être modélisée afin
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CONTRIBUTIONS

de pouvoir prédire l’effet du système robotique sur l’état de la procédure
d’insertion. Le modèle doit être capable de représenter les différents aspects
de l’insertion et être à la fois suffisamment simple pour être utilisé en temps
réel. Une méthode de contrôle doit également être conçue pour permettre
de diriger la pointe de l’aiguille vers sa cible tout en maintenant la sécurité
de l’opération. Le ciblage précis est rendu difficile par le fait que les tissus
biologiques peuvent présenter une grande variété de comportements. Guider
l’aiguille introduit aussi nécessairement une certaine quantité de dommages
aux tissus, de telle sorte qu’un compromis doit être choisi entre le succès du
ciblage et la réduction des dommages. Les mouvements physiologiques du
patient peuvent également être une source importante de mouvement de la
région ciblée et doivent aussi être pris en compte pour éviter d’endommager
les tissus ou l’aiguille. Finalement la détection fiable de l’aiguille dans les im-
ages échographiques est un pré-requis pour pouvoir guider l’aiguille dans la
bonne direction. Cependant cette tâche est rendue difficile par la faible qual-
ité de la modalité échographique. Afin de relever ces défis, nous apportons
plusieurs contributions dans cette thèse, qui sont :

• Deux modèles 3D de l’interaction entre une aiguille flexible à pointe
biseautée et des tissus mous. Ces modèles sont conçus pour permettre
un calcul en temps réel et fournir une représentation 3D de l’ensemble
du corps de l’aiguille pendant son insertion dans des tissus en mouve-
ment.

• Une méthode d’estimation des mouvements latéraux des tissus en util-
isant uniquement des mesures disponibles sur le corps de l’aiguille.

• Une méthode de suivi d’aiguille flexible dans des volumes échogra-
phiques 3D qui prend en compte les artefacts inhérents à la modalité
échographique.

• La conception d’une approche de contrôle pour un système robotique
insérant une aiguille flexible dans des tissus mous. Cette approche
a été développée de manière à être facilement adaptable à n’importe
quels composants matériels, que ce soit le type d’aiguille, le système
robotique utilisé pour le contrôle des mouvements de l’aiguille ou la
modalité de retour utilisée pour obtenir des informations sur l’aiguille.
Elle permet également de considérer des stratégies de contrôle hy-
brides, comme la manipulation des mouvements latéraux appliqués à
la base de l’aiguille ou le guidage de la pointe de l’aiguille exploitant
une géométrie asymétrique de cette pointe.

• La validation ex-vivo des méthodes proposées en utilisant diverses
plateformes expérimentales et différents scénarios afin d’illustrer la flex-
ibilité de notre approche de commande pour différents cas d’insertion
d’aiguille.
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Organisation de la thèse

Le contenu de chaque chapitre de cette thèse est à présent détaillé dans la
suite.

Chapitre 1: Nous présentons le contexte clinique et scientifique dans lequel
s’inscrit cette thèse. Nous définissons également nos objectifs principaux et
présentons les différents défis associés. Le matériel utilisé dans les différentes
expériences effectuées est également présenté.

Chapitre 2: Nous présentons une vue d’ensemble des modèles d’interaction
aiguille/tissus. Un état de l’art des différentes familles de modèles est tout
d’abord fourni, avec un classement des modèles selon leur complexité et
leur utilisation prévue en phase pre-opératoire ou intra-opératoire. Nous
proposons ensuite une première contribution sur la modélisation 3D d’une
aiguille à pointe biseautée, qui consiste en deux modèles numériques pou-
vant être utilisés pour des applications en temps-réel et offrant la possibilité
de considérer le cas de tissus en mouvement. Les performances des deux
modèles sont évaluées et comparées à partir de données expérimentales.

Chapitre 3: Nous traitons le problème du suivi du corps d’une aiguille
incurvée dans des volumes échographiques 3D. Les principes généraux de
l’acquisition d’images échographiques sont tout d’abord décrits. Ensuite
nous présentons une vue d’ensemble des algorithmes récents de détection et
de suivi utilisés pour la localisation du corps de l’aiguille ou seulement de sa
pointe dans des séquences images échographiques 2D ou 3D. Nous proposons
ensuite une nouvelle contribution au suivi 3D d’une aiguille en exploitant les
artefacts naturels apparaissant autour de l’aiguille dans des volumes 3D.
Finalement nous proposons également une méthode de mise à jour de notre
modèle d’aiguille en utilisant les mesures acquises pendant l’insertion pour
prendre en compte les mouvements latéraux des tissus. Le modèle mis à jour
est utilisé pour prédire la nouvelle position de l’aiguille et améliorer le suivi
de l’aiguille dans le prochain volume 3D acquis.

Chapitre 4: Nous nous concentrons sur le sujet principal de cette thèse
qui est le contrôle robotisé d’une aiguille flexible insérée dans des tissus
mous sous guidage visuel. Nous dressons tout d’abord un état de l’art sur
le guidage d’aiguilles flexibles, depuis le contrôle bas niveau de la trajectoire
de l’aiguille jusqu’à la planification de cette trajectoire. Nous présentons en-
suite la contribution principale de cette thèse, qui consiste en une approche
de contrôle pour le guidage d’aiguille qui a la particularité d’utiliser plusieurs
stratégies de guidage et qui est indépendante du type de manipulateur robo-
tique utilisé pour actionner l’aiguille. Les performances de cette approche de
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contrôle sont finalement illustrées au travers de plusieurs scénarios expéri-
mentaux ex-vivo utilisant des caméras ou l’échographie 3D comme retour
visuel.

Chapitre 5: Nous considérons le problème des mouvements du patient
pendant la procédure d’insertion d’aiguille. Nous présentons d’abord une
vue d’ensemble des techniques de compensation de mouvement pendant
l’insertion d’une aiguille. Notre approche de contrôle introduite dans le
chapitre 4 est ensuite étendue et nous exploitons la méthode de mise à jour
de modèle proposée dans le chapitre 3 afin de se charger de l’insertion d’une
aiguille dans des tissus subissant des mouvements latéraux. Nous fournissons
les résultats expérimentaux obtenus en utilisant notre approche de contrôle
pour guider l’insertion d’une aiguille dans un fantôme constitué de tissus
mous en mouvement. Ces expériences ont été réalisées en utilisant plusieurs
modalités de retour d’information, fournies par un capteur d’efforts, un cap-
teur électromagnétique et l’échographie 2D.

Conclusion: Finalement nous concluons cette thèse et présentons des per-
spectives pour de possibles extensions et applications.
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Chapter 1

Introduction

Minimally invasive procedures have greatly expanded over the past century.
The traditional way to cure a patient has long been to resort to open surgery,
which consists in making a large cut in the body to observe and manipulate
its intern parts. The success rate of such an approach is first limited by
the heavy modifications made to the body, which take time to heal and
can lead to complications after the surgery. There is also a greater risk of
subsequent infections due to the large exposure of the inner body to the
outside environment. On the contrary, minimally invasive procedures only
require a limited number of small incisions to access the organs. Therefore,
this improves the overall well-being of the patient thank to reduced post-
operative pain and scarring. The recovery time of the patient is also greatly
reduced [EGH+13] along with the risk of infections [GGSea14], resulting in
higher success rates of the operations and a cost reduction for the hospitals.

When open surgery was necessary before the introduction of medical
imaging, diagnosis and treatment could be two parts of a same interven-
tion, in order to first see the organs and then plan and perform the required
surgery. X-rays were among the first tools discovered to provide an anatom-
ical view of the inside of the body without needing to open it. Several imag-
ing modalities have since been developed and improved for medical purposes,
among which computerized tomography (CT) [Hou73], magnetic resonance
imaging (MRI) [Lau73] and ultrasound (US) [WR52] are now widely used in
the medical domain.

Beyond the improved diagnosis capabilities that it offers, medical imaging
has played an important role in the development of the minimally invasive
surgery approach. Viewing the inside of the body is necessary for successful
surgical interventions, in order to see the tissues of interest and the position of
the surgical tools. Due to the nature of minimally invasive surgery, a direct
view is not possible and it is thus necessary to use other means of visual
observation, such as endoscope insertion or anatomical imaging techniques.
Each technique has its own advantages and drawbacks. Endoscopes use
cameras, which offer the same view as a human eye. The images are thus
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easy to interpret, however it is not possible to see through the tissues. On
the other hand, anatomical imaging allows a visualization of the inside of
the tissues, but a specific training of the physicians is required in order to
interpret the images. CT imaging uses X-rays, which are ionizing radiations,
therefore limiting the number of images that can be acquired in order not to
expose the patient to a too high amount of radiations [SBA+09]. The medical
staff should also remain outside the scanner room during the acquisition. On
the other hand MRI makes use of non-invasive radiations and also provides
high quality images, with high resolution and large field of view. However
they impose severe constraints, such as a long time to acquire an image or
an expensive and bulky scanner that limits the access to the patient. In this
context, ultrasonography is a modality of choice for intra-operative imaging,
due to its ability to provide a real-time visualization of tissues and tools in
motion. Additionally, it is non-invasive and requires lightweight scanners
and portable probes.

Slender tools are often used for minimally invasive procedures in order
to be inserted through narrow incisions made at the surface of the patient.
In particular, needles have been used since long times to extract or inject
substances directly inside the body. They provide an access to inner struc-
tures while leaving only a very light wound in the tissues. For this reason
they are tools of first choice for minimal invasiveness that can allow reach-
ing small structures in deep regions. Thin needles can however exhibit a
certain amount of flexibility, which makes accurate steering of the needle
trajectory more complicated. Coupled to the handling of an US probe at
the same time as the needle insertion gesture, the insertion procedure can
become a challenging task which requires specific training of the clinician.
Consequently, robotic needle steering has become a vast subject of research
to ease the intervention of the clinician and to improve the overall accuracy
of the procedure.

Medical robotics in general aims at designing and controlling mechatron-
ics systems to assist the clinicians in their tasks. The main goal is to im-
prove the accuracy, safety and repeatability of the operations and to reduce
their duration [TS03]. It can greatly benefit the needle insertion procedures
for which accuracy is often crucial to avoid mistargeting and unnecessary
repeated insertions. However, the integration of a robotic system in the
operating room remains a great challenge due to clinical constraints and ac-
ceptance of the technical device from the medical staff. Among the many
designs that have been proposed, some systems have better chances of being
accepted. Such systems should either assist the surgeon without requiring a
lot of modifications of the clinical workflow or should procure clear benefits
for both the success of the operation and the operating conditions of the
surgeon. This is for example the case of imaging enhancement and tremor
cancellation systems, or of tele-operated systems. For needle insertions pro-
cedures, this would mainly consists in providing a real-time monitoring of the
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state of the insertion as well as a robotic system between the patient and the
hand of the surgeon assisting at the insertion process. In this context, an US-
guided robotic system is a great choice to provide real-time intra-operative
imaging and assistance during the operation.

1.1 Clinical motivations

Needles are widely used in a great variety of medical acts for the injection of
substances or the sampling of fluids or tissues directly inside the body. While
some procedures do not require an accurate placement of the needle tip, such
as intramuscular injections, the results of sensitive operations highly depend
on the ability to reach a precise location inside the body. In the following
we present some applications for which systematic accurate targeting is cru-
cial to avoid dramatic consequences and which could greatly benefit from a
robotic assistance.

1.1.1 Biopsy for cancer diagnosis

Cancer has become one of the major cause of death in the world with 8.2
million cancer deaths estimated worldwide in 2015 [TBS+15]. Among the
many types of cancers, prostate cancer is the most diagnosed cancer among
men and breast cancer among women, with lung cancer being a leading cause
of cancer deaths for both. However early detection of cancer can improve
the chance of success of cancer treatment and diminish the mortality rates.
Whatever the kind of tumor, biopsies are the traditional diagnostic method
used to confirm the malignancy of suspected tissues. It consists in using a
needle to get a small sample of tissues at a defined location for analysis pur-
poses. The accurate placement of the needle is of paramount importance in
this procedure to avoid misdiagnosis due to the sampling of healthy tissues
surrounding the suspected lesion. Freehand insertions can give variable re-
sults depending on the clinician performing the operation. Therefore, robotic
needle guidance under visual feedback has the potential to greatly improve
the performances of biopsies. Ultrasound feedback is often used, as for exam-
ple for the diagnostic of prostate cancer [KSH14]. Computerized tomography
(CT) is also a good choice for lung cancer diagnosis and a robotic system is
of great help to compensate for breathing motions [ZTK+13]. Robotic sys-
tems can also be used to maintain and modify the position of the tissues to
align a suspected tumor with the needle, especially for breast cancer biopsy
[MSP09].

1.1.2 Brachytherapy

Brachytherapy has proven to be an efficient way to treat prostate cancer
[GBS+01]. It consists in placing small radioactive seeds in the tumors to
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destroy. The procedure requires the accurate uniform placement of about
a hundred seeds, which can be time consuming and require great accuracy.
The consequence of misplacement can be dramatic due to the destruction of
surrounding sensitive tissues like bladder, rectum, seminal vesicles or urethra.
The insertion is usually performed under transrectal ultrasound, which can
allow the use of robotic systems to perform accurate and repetitive insertions
under ultrasound (US) guidance [HBLT12] [SSK+12] [KSH14]. Magnetic
resonance imaging (MRI) is also commonly used and is the subject of research
to explore its use together with a robotic system [SAIF16].

1.1.3 Liver cancer

Liver cancer is the major cause of cancer deaths after lung cancer among
men with about 500000 deaths each year [TBS+15]. Radiofrequency ab-
lation is the primary therapetic modality to perform liver tumor ablations
[LCPC09]. An electrode needle is inserted in the liver and generates heat
to locally destroy the tissues. Accurately guiding the needle under image-
guidance can help avoiding unnecessary tissue destruction. Liver biopsies
can also be performed using percutaneous punction needles [GN99]. Per-
forming robotic ultrasound (US) guidance could avoid multiple insertions
that increase hepatic bleeding and can have dramatic consequences.

1.2 Scientific context

Reaching a specific region in the body without performing open surgery is a
challenging task that has been a vast subject of research and developments
over the past decades. Many robotic designs have been proposed to achieve
this goal. In the following we present a non-exhaustive overview of these
different technologies as well as various kinds of sensor modalities that have
been developed and used to provide feedback on the medical procedure. We
then define where we positioned the work presented in this thesis relative to
this context.

1.2.1 Robotic designs

Continuum robots: These systems are snake-like robots consisting of a
succession of actively controllable articulations, as can be seen on Fig. 1.1a.
They offer a large control over their whole shape and can be used to perform
many kinds of operations. Many varieties of designs are possible and the
study of such robots is a vast field of research by itself [Wal13][BKRC15].
However their design and control are often complex and their diameter is
usually larger than standard needles, which limit the use of such system in
practice.
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(a) (b)

Figure 1.1: Example of (a) continuum robot (taken from [CMC+08]) and
(b) concentric tubes (taken from [WRC09]).

Concentric tubes: This kind of robots, also known as active cannulas,
is a special kind of continuum robots which consist of a telescopic set of
flexible concentric pre-curved tubes that can slide and rotate with respect to
each other [WJ10]. Each tube is initially maintained inside the larger tubes
and the insertion of such device is performed by successively inserting each
set of tubes and leaving in place the outermost tubes one after another, as
seen on Fig. 1.1b. They offer additional steering capabilities compared to
flexible needles due to the pre-curved nature of each element, while main-
taining a relatively small diameter. Furthermore, once the tubes have been
deployed, rotation of the different elements allows for controlled deforma-
tions of the system all along its body. Although the design can be limited to
only one pre-curved stylet placed in an outer straight tube, as was proposed
in [OEC+05], some other designs are possible to enable an additional control
of the curvature of each tube [CRA16]. As continuum robots, the modeling
and control of such systems remain quite complex [DLIB10] [BLH+16].

Needle insertion devices: Many robotic systems have been designed for
the insertion of traditional needles and particularly for asymmetric tip nee-
dles. Several kind of asymmetries are possible, as illustrated on Fig. 1.2.
These needles tend to naturally deviate from a straight trajectory, such that
the rotation around their shaft plays an important role. Many needle in-
sertion systems have been proposed, all being a variant of the same design
consisting of one linear stage for the insertion and one rotative stage for nee-
dle rotation along and around its main axis [WMO05], as depicted in Fig. 1.3.
They are usually designed for a specific kind of intervention, such as prostate
interventions under ultrasound (US) imaging [YPZ+07] [HBLT12]. Special
robots have also been designed to be compatible with the limitations imposed
by computerized tomography (CT) scanners [MGB+04], magnetic resonance
imaging (MRI) scanners [MvdSK+17] or both [ZBF+08].
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Figure 1.2: Illustration of several kinds of needle tip.

Figure 1.3: General concept of a needle insertion device (taken from
[WMO05]).

Active needles: Alternatively, many designs have been proposed to re-
place traditional needles and provide additional control capabilities over their
bending. A needle made of multiple segments that can slide along each other
was designed such that the shape of the tip can be modified during the in-
sertion [KFRyB11]. A 1 degree of freedom (DOF) actuated needle tip was
designed such that it can act as a pre-bent tip needle with variable angle be-
tween the shaft and the pre-bent tip [AGL+16]. A similar tendon-actuated
needle tip with 2 DOF was also used to allow the orientation of the tip
without rotation of the needle around its axis [RvdBvdDM15]. Additional
considerations about tip designs can be found in [vdBvGDvdD14]. These
needle designs allows a high controllability of the tip trajectory, however,
in addition to the increased complexity of the needle itself, they require a
special system to be able to control the additional DOF from the needle
base.

A combination of different methods can also be made as was done in
[SMR+15], where using a succession of cable driven continuum robot, con-
centric tubes and beveled-tip needle increases the reachable space and final
accuracy of the targeting.
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(a) (b) (c)

Figure 1.4: Example of special designs of the needle tip: (a) multi-segment
needle (taken from [KFRyB11]), (b) one degree of freedom active pre-bent
tip (taken from [AGL+16]) and (c) two degrees of freedom active prebent tip
(taken from [RvdBvdDM15]).

1.2.2 Sensor feedback

In order to be used for needle insertion assistance, a robotic system should
be able to monitor the state of the insertion. Therefore, feedback modal-
ities have to be used to provide some information on the needle and the
tissues. The choice of the sensors is an important issue that has to be taken
into account from the beginning of the conception of the system. Indeed,
they should either be directly integrated into the system or they can pose
compatibility issues in the case of external modalities. In the following we
provide an overview of some feedback modalities currently used or explored
for needle insertion procedures.

Shape feedback: The shape of the entire needle can be reconstructed
using fiber Bragg grating (FBG) sensors. This kind of sensor consists in
several optic fibers integrated in the needle. The light propagates differently
in these fibers depending on the curvature of the fiber at certain locations,
such that the curvature of the needle can be measured and used to retrieve
its shape [PED+10]. This kind of sensor requires a special design of the
needle, since the fibers need to follow the same deformations as the needle
does.

An electromagnetic (EM) tracker can also be used for the tracking of the
position and orientation of a specific points of the needle, which is typically
the tip. They provide a great accuracy on the measures and currently avail-
able trackers are small enough such that they can fit directly in standard
needles.

Real-time imaging modalities: Feedback on the needle position is not
sufficient for needle insertions since the position of the targeted region must
also be known. Using an imaging modality can provide a visual feedback
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on the position of both the needle and the target. Ultrasound (US) is the
modality of choice for real-time imaging due its fast acquisition rate of 2D
or 3D images, good resolution and safety. Special 2.5D US transducers are
also the subject of current research to enable a direct detection and display
of the needle tip in a 2D US image, even when the tip is outside the imaging
plane of the probe [XWF+17]. However, these transducers are currently not
commonly available. A limiting factor of US in general is the low quality of
the images due to the intrinsic properties of US waves.

On the other hand, computerized tomography (CT)-scan or magnetic
resonance imaging (MRI) are used for manual insertions thanks to the high
quality of their images and the large field of view that they offer. However,
as stated previously, this kind of imaging method can not be used directly for
real-time image-guided robotic needle insertion, due to their large acquisition
time. They can still be used for non real-time tele-operated robotic control,
by alternating between insertion steps and imaging steps, however a single
needle insertion can take more than 45 minutes. Tissue motions between
two acquisitions is also an issue that requires additional real-time sensors
to be compensated for, such as force sensors [MDG+05] or optical tracking
[ZTK+13].

On the contrary CT fluoroscopy can be used to acquire real-time images.
However, in manual needle insertion this exposes the clinician to a high dose
of noxious radiations. This can be avoided by wearing unpractical special
shielding or by using a remotely controlled insertion system [SPB+02]. How-
ever the patient is still exposed to the high amount of radiations necessary
for real-time performances.

Fast MRI acquisition have also recently been explored to perform image-
guided needle insertion [PvKL+15]. Decreasing the image size and quality,
a 2D image could be acquired with a sufficient resolution every 750 ms.
By comparison, the US modality can provide a full 3D volume with similar
resolution within the same acquisition time, and 2D US is much faster.

Force feedback: Force sensors can be used to measure the forces applied
to the needle and tissues. Force sensing can be useful to monitor the state
of the insertion, for example by detecting the perforation of the different
structures that the needle is going through [OSO04]. It can also be used with
tele-operated robotic systems to provide a feedback to the clinician [PBB+09]
or compensate for tissue motion [JMBG11]. Any kind of force sensors can
be used with the US modality, however compatibility issues have to be taken
into account for the design of sensors compatible with CT [KPM+14] or MRI
[GCBB08].
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1.2.3 Objectives

The objective of this thesis is to focus on the robotic steering of traditional
flexible needles. These needles are already widely available and used in
clinical practice. Moreover they do not require specific hardware, contrary
to other special robotic designs, which requires dedicated control hardware
and techniques. The idea is then to provide a generic formulation of the
different concepts that we introduce, such that our work can be adapted
to several kinds of needle tip and rigidity. In this context, the control of
the full motion of the needle base should thus be performed, such that it
is not limited to flexible beveled-tip needles but can also be used to insert
rigid symmetric tip needles. The formulation should also stay as much as
possible independent of the actual robotic system used to perform the needle
steering. This choice is motivated by the fact that it would ease the clinical
acceptance of the method and could be applicable to several robotic systems
and medical applications.

Another objective is to focus on the insertion under ultrasound (US)
guidance, motivated by the fact that it is already used in current medical
practice and does not require any modification of the needle to provide a
real-time feedback on its whole shape. For the development and validation
of our work, we try to keep in mind some clinical constraints related to the
set-up and registration time, which should be as small as possible. Sev-
eral other modalities have also to be explored, such as force feedback and
electromagnetic (EM) feedback, which can easily be implemented alongside
traditional needles and the US modality.

1.3 Challenges

In order to fulfill our objective of performing the ultrasound-guided control
of a robotic system for the insertion of a flexible needle in soft tissues, several
challenges needs to be addressed. We describe these different challenges in
the following.

Interaction modeling: First, the control of the insertion of a flexible
needle with a robotic system requires a model of the interaction between
the needle and soft tissues. The effect of the inputs of the robotic insertion
system on the needle position and effective length have to be modeled as well.
The model should be complete to represent the whole body of the needle in
3D as well as the influence of the tip geometry on its trajectory. It should
also be generic enough so that it can be easily adaptable to several kinds
of needles. Since it is used for intra-operative purposes, it should be able
to represent the current state of the insertion, taking into account the effect
of potential motions of the tissues on the deformation of the needle. While
complex and accurate models of the needle and tissues exist, the complexity
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of the modeling must remain reasonable such that real-time performances
can be achieved.

Needle control: The control of the trajectory of a flexible needle is a
challenging task in itself. The complex interaction of the needle with the tis-
sues at its tip and along its shaft is difficult to completely predict, especially
because of the great variety of behaviors exhibited by biological tissues. Ac-
curately reaching a target requires then to take into account and to exploit
the flexibility of the needle and the motion of the tissues. The safety of the
operation should also be ensured to avoid excessive damage caused by the
needle onto the tissues. This is a difficult task since inserting the needle
necessarily introduces a certain amount of tissue cutting, and steering the
needle can only be achieved through an interaction of the needle with the
tissues.

Tissue motion: Many needle insertion procedures are not performed un-
der general anesthesia. As a consequence, physiological motions of the pa-
tient can not always be controlled. Patient motions can have several effects
on the needle insertion. First it introduces a motion of the targeted region,
which should be accounted for in order to avoid mistargeting. The trajec-
tory of a flexible needle could also be modified by tissue motions. During
manual needle insertion, clinicians can directly see the motion of the skin
of the patient and feel the forces applied on the needle and tissues, such
that they can easily follow the motions of the patient if needed. A robotic
system should also be able to adapt to some motions of the patient while
inserting the needle to avoid threatening the safety of the operation. This
point represents a great challenge due to the limited perception available for
the robotic system.

Needle detection: Accurate localization of the needle in ultrasound (US)
images is a necessary condition to be able to control the state of the insertion.
The low quality of US images is a first obstacle to the accurate localization
of the needle tip. It can greatly vary depending on the tissues being observed
and the position of the needle relatively to the US probe. Using 3D US has
the advantage that the whole shaft of the needle can be contained in the
field of view of the US probe, which is not the case with 2D US. However,
even in 3D US the needle is not equally visible at all points due to specific
artifacts that can come from the surrounding tissues or from the needle itself.
Even if the 3D volume acquisition is relatively fast, the position of the needle
in the volume can still greatly vary due to the motion of the patient or of
the probe between two acquisitions. Overall needle localization using US
feedback represents a challenging task that is still an open issue that has to
be addressed.

10



1.4. CONTRIBUTIONS

1.4 Contributions

In order to address the challenges mentioned previously, we present several
contributions in this thesis, which are:

• two 3D models of the interaction between a flexible needle with a bevel
tip and soft tissues. The models are designed to allow real-time pro-
cessing and to provide a 3D representation of the entire needle body
during the insertion in moving tissues;

• a method to estimate the lateral motions of the tissues using only the
measures available on the needle;

• a method for tracking a flexible needle in 3D ultrasound volumes taking
into account the artifacts inherent to the ultrasound modality;

• the design of a framework for the control of a robotic system holding
a flexible needle inserted in soft tissues. The framework is designed to
be easily adaptable to any hardware components, whatever the needle
type, the robotic system used for the control of the needle motion or the
feedback modality used to provide information on the needle location.
It can also provide hybrid control strategies like manipulation of the
lateral motions of the needle base or tip-based steering of the needle
tip;

• the ex-vivo validations of the proposed methods using various experi-
mental platforms and scenarios in order to illustrate the flexibility of
the framework in performing needle insertions.

The contributions on the topic of an hybrid control strategy used to steer
a flexible needle under visual feedback were published in an article in the
proceedings of the International Conference on Robotics and Automation
(ICRA) [CKB16a]. The contributions on the topic of needle modeling and
tissue motion estimation using visual feedback were published in an article
in the proceedings of the International Conference on Intelligent Robots and
Systems (IROS) [CKB16b].

1.5 Experimental context

Experiments presented in this thesis were primarily conducted on the robotic
platform of the Lagadic team at IRISA/Inria Rennes, France. Others were
also conducted at the Surgical Robotics Laboratory attached to the Univer-
sity of Twente, Enschede, the Netherlands. This offered the opportunity to
test the genericity of our methods using different experimental setups. We
present in this section the list of the different equipments that we used in
the different experiments presented all along this thesis.
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The general setup that we used is made up of four parts: a needle at-
tached to a robotic manipulator, several homemade phantoms simulating
soft tissues, a set of sensors providing various kinds of feedbacks and a work-
station used to process the data and manage the communications between
the different components.

1.5.1 Robots

Two different kinds of needle manipulation systems were used.

• The Viper s650 and Viper s850 from Omron Adept Technologies, Inc.
(Pleasanton, California, United States) are 6 axis industrial manipu-
lators, depicted on Fig. 1.5a. The robots communicate with the work-
station through a FireWire (IEEE 1394) connection. They were used
to hold and actuate the needle or to hold the 3D ultrasound (US)
probe. They were also used to apply motions to the phantom in order
to simulate patient motions.

• The UR3 and UR5 from Universal Robots A/S (Odense, Denmark) are
6 axis table-top robot, depicted on Fig. 1.5b. Both robots were con-
nected to a secondary workstation and communicated through Eth-
ernet using Robot Operating System (ROS) (Open Source Robotics
Foundation, Mountain View, USA). UR3 was used to hold and ac-
tuate an insertion device described in the following. UR5 is a larger
version of UR3 and was used to apply a motion to the phantom.

We also used a 2 degrees of freedom needle insertion device (NID),
visible in Fig. 1.5b, designed at the Surgical Robotics Laboratory
[SHOM15], which controls the insertion and rotation of the needle
along and around its axis. A Raspberry Pi 2 B (Raspberry Pi foun-
dation, Caldecote, United Kingdom) along with a Gertbot motor con-
troller board (Fen logic limited, Cambridge, United Kingdom) were
used to control the robot through pulse-width-modulation (PWM).
Motor encoders were used to measure the position and rotation of the
needle, allowing to know its effective length that can bend outside the
NID. The NID was connected to the end effector of the UR3 through
a plastic link, as can be seen on Fig. 1.5b, allowing the control of the
3D pose of the NID with the UR3.

1.5.2 Needles

We summarize the characteristics of the different needles used in the experi-
ments in Table 1.1. Pictures of the needles and zoom on the needle tips can
be seen in Fig. 1.6.
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(a) Viper s650 on the left
and Viper s850 on the right

(b) UR5 holding a gelatin phantom on the
foreground and needle insertion device
attached to the UR3 on the background

Figure 1.5: Pictures of the robotic systems used for the experiments.

Table 1.1: Characteristics of the needles used in the experiments. The
lengths are calculated from the base of the needle holder to the needle tip.
Needle type Chiba biopsy needle Chiba biopsy stylet
Reference Angiotech MCN2208 Aurora Needle 610062
Young’s modulus 200 GPa 200 GPa
Outer diameter 22G (0.7 mm) 23.5G (0.55 mm)
Inner diameter 0.48 mm 0.5 mm
Length (cm) 12.6 from 0.8 to 10.8
Tip type Chiba Chiba
Tip angle 25◦ 25◦

Needle type Chiba biopsy stylet Greene biopsy stylet
Reference Angiotech MCN2208 Angiotech ISN1915
Young’s modulus 200 GPa 200 GPa
Outer diameter 26sG (0.48 mm) 19G (0.97 mm)
Inner diameter 0.0 0.0
Length (cm) 14.6 10.8
Tip type Chiba Trocar tip
Tip angle 25◦ 15◦
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(a) Needles
with needle

holder

(b) Zoom on needle tips

Figure 1.6: Picture of the needles used for the experiments. From left to
right: Greene biopsy stylet, Chiba biopsy needle, Chiba biopsy stylet.

1.5.3 Visual feedback systems

We used two different modalities to provide a visual feedback on the needle
and phantom position. Cameras were used for the evaluation of the perfor-
mances of the control framework and ultrasound (US) probes were used to
validate the framework using a clinical modality.

We used two Point Grey FL2-03S2C cameras from FLIR Integrated Imag-
ing Solutions Inc. (formerly Point Grey Research, Richmond, BC, Canada),
which are color cameras providing 648 x 488 images with a frame rate up
to 80 images per second. Each camera was coupled with a DF6HA-1B lens
from Fujifilm (Tokyo, Japon), which has a 6 mm focal length with manual
focus. The cameras send the acquired images to the workstation through a
FireWire (IEEE 1394) connection. This system was used only with translu-
cent gelatin phantoms to enable the observation of the needle for validation
purposes. Both cameras and a gelatin phantom can be seen in Fig. 1.7. A
white screen monitor or a piece of paper were used to offer a uniform back-
ground behind the phantom that facilitates the segmentation of the needle
in the images.

Two different US systems were used for the experiments. We used a
4DC7-3/40 convex 4D US probe (see Fig. 1.8a) from BK Ultrasound (previ-
ously Ultrasonix Medical Corporation, Canada), which is a wobbling probe
with frequency range from 3 MHz to 7 MHz, transducer radius of 39.8 mm
and motor radius of 27.25 mm. This probe was used with a SonixTOUCH
research US scanner from BK Ultrasound (see Fig. 1.8b). The station allows
an access to raw data via an Ethernet connection, such as radio frequency
data or pre-scan B-mode data.

We also used a 7CF2 Convex Volume 4D/3D probe (see Fig. 1.8c) from
Siemens AG (Erlangen, Germany), which is a wobbling probe with frequency
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Figure 1.7: Picture of the stereo camera system and one gelatin phantom
used for the experiments.

(a) BK Ultrasound
4DC7 3D probe

(b) BK Ultrasound
SonixTOUCH station

(c) Siemens
7CF2 3D probe

(d) Siemens Acuson
s2000 station

Figure 1.8: Picture of the ultrasound components used for the experiments.

range from 2 MHz to 7 Mhz, transducer radius of 44.86 mm and motor radius
of 14.84 mm. This probe was used with an Acuson S2000 US scanner from
Siemens (see Fig. 1.8d). This station does not give access to raw data nor
online access to transformed data. Pre-scan 3D US volumes can be retrieved
offline using the digital imaging and communications in medicine (DICOM)
format. Nevertheless, 2D images were acquired online using a USB frame
grabber device from Epiphan Video (Ottawa, Ontario, Canada) connected
to the video output of the station.

1.5.4 Force sensors

We used a Nano 43 force torque sensor from ATI Industrial Automation
(Apex, USA), which is a six-axis sensor measuring forces and torques in all
3 Cartesian directions with a resolution of 1.95 mN for forces and 25 µN.m
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(a) ATI force/torque sensor (b) Aurora
tracker

(c) Aurora field generator

Figure 1.9: Picture of the electromagnetic tracking system and force sensor
used for the experiments.

for torques. The sensor was placed between the UR3 robot and the needle
insertion device to measure the interaction efforts exerted at the base of the
needle, as depicted in Fig. 1.9a.

1.5.5 Electromagnetic tracker

We used an Aurora v3 electromagnetic (EM) tracking system from Northern
Digital Inc. (Waterloo, Canada), which consists in a 5 degrees of freedom
EM sensor (see Fig. 1.9b) placed in the tip of the needle and an EM field
generator (see Fig. 1.9c). The system is used to measure the 3D position
and axis alignment of the needle tip, with an position accuracy of 0.7 mm
and an orientation accuracy of 0.20◦, at a maximum rate of 65 measures per
second.

1.5.6 Phantoms

Different phantoms were used for the experiments. Porcine gelatin was used
in all phantoms, either alone or while embedding ex-vivo biological tissues.
We used either porcine or bovine liver as biological tissues. The gelatin and
tissues were embedded in transparent plastic containers of different sizes.
Various artificial targets were also embedded in some phantoms, in the form
of raisins or play-dough spheres of different sizes, ranging from 4 mm to
8 mm.

1.5.7 Workstations

All software developments were made using the C++ language. We used
the ViSP library [MSC05] as a basis for the majority of the control frame-
work, image processing, graphics user interface and communications. CUDA
library was used for optimization of the post-scan conversion of 3D ultra-
sound volumes with a Nvidia GPU. Eigen library was used for fast matrix
inversion for the needle modeling.
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For the experiments performed in France we used a workstation running
Ubuntu 14.04 LTS 64-bit and equipped with a Intel R© Xeon R© E5-2620 v2
@2.10GHz × 6 CPU, 32 GB memory and a NVIDIA R© Quadro R© K2000
GPU.

For the experiments performed in the Netherlands we used a personal
computer running Fedora 24 64-bit and equipped with a Intel R© CoreTM i7-
4600U @2.10 Ghz × 4 CPU and 16GB memory.

1.6 Thesis outline

In this chapter we presented the clinical and scientific context of this thesis.
We defined our general objective as being the robotic insertion of a flexible
needle in soft tissues under ultrasound (US) guidance and we described the
associated challenges. A list of the equipments used in the various experi-
ments presented in this thesis was also provided.

The remaining of this manuscript is organized as follows.

Chapter 2: We present an overview of needle-tissue interaction models. A
review of different families of models is first provided, with a classification of
the models depending on their complexity and intended use for pre-operative
or intra-operative purposes. We then propose a first contribution on the 3D
modeling of a beveled-tip needle interacting with soft tissues consisting of
two numerical models that can be used for real-time applications and offering
the possibility to consider the case of moving tissues. The performances of
both models are evaluated and compared through experiments.

Chapter 3: We address the issue of tracking the body of a curved needle
in 3D US volumes. The general principles of the acquisition process of US
images and volumes are first described. Then we present an overview of
recent detection and tracking algorithms used to localize the whole needle
body or only the needle tip in 2D or 3D US sequences. We then propose
a new contribution to 3D needle tracking that exploits the natural artifacts
appearing around the needle in US volumes. Finally we also propose a
method to update our needle model using the measures acquired during the
insertion to take into account lateral tissue motions. The updated model is
used to predict the new position of the needle and to improve needle tracking
in the next acquired US volume.

Chapter 4: We focus on the core topic of this thesis which is the robotic
steering of a flexible needle in soft tissues under visual guidance. We first
provide a review of current work on flexible needle steering, from the low level
control of the needle trajectory to the planning of this trajectory. We then
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present the main contribution of this thesis, which consists in a needle steer-
ing framework that has the particularity to include several steering strategies
and which is independent of the robotic manipulator used to steer the needle.
The performances of the framework are illustrated through several ex-vivo
experimental scenarios using cameras and 3D US probes as visual feedback.

Chapter 5: We consider the issue of patient motions during the needle
insertion procedure. An overview of motion compensation techniques during
needle insertion is first presented. We further extend our steering framework
proposed in chapter 4 and we exploit the model update method proposed in
chapter 3 in order to handle needle steering under lateral motions of the tis-
sues. We provide experimental results obtained by using the proposed frame-
work to perform needle insertion in a moving soft tissue phantom. These
experiments were performed using several information feedback modalities,
such as a force sensor, an electromagnetic tracker as well as 2D US.

Conclusion: Finally we provide the conclusion of this dissertation and
present perspectives for possible extensions and applications.
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Chapter 2

Needle insertion modeling

This chapter provides an overview of needle-tissue interaction models. The
modeling of the behavior of a needle interacting with soft tissues is useful
for many aspects of needle insertion procedures. First it can be used to
predict the trajectory of the needle tip, before inserting the real needle.
This can be of great help to the clinicians in order to find an adequate
insertion entry point that optimizes the chances of reaching a targeted region
inside the body, while reducing the risks of damaging other sensitive regions.
Secondly, using thinner needles allows decreasing the patient pain and the
risk of bleeding [GP07]. However, the stiffness of a thin needle is greatly
reduced and causes its shaft to bend during the insertion. This makes the
interaction between the needle and tissues more complex to comprehend
by the clinicians, since the position of the needle tip is not directly known
from the position and orientation of the base, contrary to rigid needles. The
introduction of a robotic manipulator holding the needle and controlling
its trajectory can be of great help to unburden the operator of the needle
manipulation task. This removes a potential source of human error and
leaves the clinicians free to focus on other aspects of the procedure [APM07].
Needle-tissue interaction models are a necessity for the usage of such robotic
systems, in order to know how they should be controlled to modify the needle
trajectory in the desired way.

In the following, we first provide an review of needle-tissue interaction
models. We address the case of kinematic models (section 2.1), which only
consider the trajectory of the tip of the needle, and the case of finite element
modeling (section 2.2) that can completely model the behavior of the nee-
dle and the surrounding tissues. Then we present mechanics-based models
(section 2.3) used to represent the body of the needle without modeling all
the surrounding tissues. We further extend on this topic and propose two
new 3D models of a needle locally interacting with soft tissues (section 2.4).
Finally, in section 2.5 we compare the trajectories of the needle tip obtained
with both models to the trajectories obtained during the insertion of a real
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needle. The work done using both models were published in two articles
presented in international conferences [CKB16a] [CKB16b].

2.1 Kinematic modeling

During the insertion of a needle, a force is applied to the tissues by the needle
tip to cut a path in the direction of the insertion. In return the tissues apply
reaction forces to the needle tip and the direction of this forces depends on
the geometry of the tip, as illustrated in Fig. 2.1.

In the case of a symmetric needle tip, the lateral forces tends to negate
each other, leaving only a force aligned with the needle. The needle tip
trajectory then follows a straight line when the needle in inserted. However
when the needle tip has an asymmetric shape, as for example in the case of
a beveled or pre-curved tip, inserting the needle results in a lateral reaction
force. The needle trajectory bends in the direction of the reaction force. The
exact shape of the trajectory depends on the properties of the needle and
tissues. The stiffness of the needle introduces internal forces that naturally
act against the bending of the shaft. The deformations of the tissues also
creates forces all along the needle body, which modify its whole shape.

Kinematic modeling is used under the assumption that the tissues are
stationary and no lateral motion is applied to the needle base, such that
the different forces are directly related to the amount of deflection observed
at the tip. The value of all these forces are ignored in this case and only
the trajectory of the tip is represented from a geometric point of view. The
whole needle shaft is ignored as well and the insertion and rotation along
and around the needle axis are assumed to be directly transmitted to the tip.
This way the modeling is limited to the motion of the tip during the insertion
or rotation of the needle. Note that this kind of representation is limited to
asymmetric geometries of the tip, since a symmetric tip would only produce
a straight trajectory that does not require a particular modeling.

Kinematic modeling of the behavior of a needle during its insertion was

Figure 2.1: Illustration of the reaction forces applied to the needle tip by
the tissues depending on the tip geometry. A symmetric tip, on the right,
induces symmetric reaction forces. An asymmetric tip, on the left, induces
asymmetric reaction forces which can modify the tip trajectory.
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(a) Unicycle model (b) Bicycle model

Figure 2.2: Illustration of the 2D unicycle and bicycle models associated with
an asymmetric tip needle inserted in soft tissues. Models are overlaid on a
beveled tip needle (top) and on a pre-curved tip needle (bottom). Blue and
red arrows represent the translation and rotation of the wheels, respectively.
Note that the two wheels on the bicycle model are fixed with respect to each
other, such that a rotation motion is naturally created during the translation
if φ 6= 0, contrary to the unicycle model for which the rotation has to be
added artificially.

first proposed by Webster et al. [WIKC+06] using the two non-holonomic
models of unicycle and bicycle.

Unicycle model: The 2D unicycle consists in modeling the tip as the
center of a single wheel that can translate in one direction and rotate along
another normal direction, as illustrated in Fig. 2.2a. During the needle
insertion, the needle tip is assumed to follow a circular trajectory. The ratio
between the translation and rotation is fixed by the natural curvature Knat

of this circular trajectory and depends on the needle and tissue properties
such that 

ẋ = vins cos(θ)
ẏ = vins sin(θ)

θ̇ = Knat vins,
(2.1)

where x and y are the coordinates of the wheel center, i.e. the needle tip, θ
is the orientation of the wheel and vins is the insertion velocity.

Bicycle bicycle: The 2D bicycle model uses two rigidly fixed wheels at
a distance Lw from each other, such that the front wheel lies on the axis
of the rear wheel and is misaligned by an fixed angle φ, as illustrated in
Fig. 2.2b. The point representing the needle tip lies somewhere between the
two wheels, at a distance Lt from the rear wheel. In addition to the rotation
and the velocity in the insertion direction observed with the unicycle model,
the tip is also subject to a lateral translation velocity, directly linked to the
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distance Lt. The trajectory of the tip is then described according to
ẋ = vins

(
cos(θ)− Lt

Lw
tan(φ) sin(θ)

)
ẏ = vins

(
sin(θ) + Lt

Lw
tan(φ) cos(θ)

)
θ̇ = tan(φ)

Lw
vins,

(2.2)

where x and y are the coordinates of the needle tip, θ is the orientation of
the rear wheel and vins is the insertion velocity. This model is equivalent
to the unicycle model when the tip is at the center of the rear wheel, i.e.
Lt = 0.

Rotation around the needle axis: The rotation around the needle axis
is also taken into account in kinematic models. They were first mainly used
in the 2D case, such that the needle tip stays in a plane [RMK+11]. The
tip can then only describe a curvature toward the right or the left, such
that a change of direction corresponds to a 180◦ rotation of a real 3D needle.
The tip trajectory is thus a continuous curve made up of a succession of arcs.
However, a better modeling of the needle insertion is achieved by considering
the 3D case, where the rotation along the needle axis is continuous. In this
case the orientation of the asymmetry fixes the direction in which the tip
trajectory describes a curve during the needle insertion. This can lead to a
greater variety of motions, such as helical trajectories [HAC+09].

Discussion: Kinematic modeling is easy to implement since it needs few
parameters and is not computationally expensive. However the relationship
between the model parameters and the real needle behavior is difficult to
model since they depend on the needle geometry and tissue properties. In
practice these parameters are often identified after performing some prelim-
inary insertions in the tissues. Since this is not feasible in practice for real
surgical procedures, online estimation of the natural curvature of the tip tra-
jectory can be performed, for example by using a method based on a Kalman
filter as proposed by Moreira et al. [MPAM14].

It can also be observed that the trajectories obtained with both unicycle
and bicycle models are limited. For example they are continuous when a
rotation without insertion is performed between two insertion steps. The
two successive parts of the trajectory are tangent if the unicycle model is
used and are not tangent if the bicycle model is used. However, both models
fail to describe the trajectory of a pre-bent needle, for which a translational
offset is also added when the needle is rotated. Hence modifications have to
be made to account for the fact that the tip is not aligned with the axis of
the rotation [RKA+08].

Another point is that kinematic models do not take into account the
interaction between the body of the needle and the tissues. The shaft is
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assumed to exactly follow the trajectory of the needle tip and has no influence
on this trajectory. This assumption can only hold if the needle is very flexible
and the tissues are stiff, such that the forces due to the bending of the
needle are small enough to cause very little motion of the tissues. The
tissues must also be static, such that they do not modify the position of the
needle during the insertion. These assumptions are easy to maintain during
experimental research work, but harder to maintain in clinical practice due
to patient physiological motions and variable tissue stiffness. An extension
of the bicycle model that takes into account additional lateral translations of
the needle tip is possible [FKR+15]. This allows a better modeling of the tip
motion, but it requires additional parameters that need to be estimated and
can vary depending on the properties of the tissues, which limits its practical
use.

2.2 Finite element modeling

Finite element modeling (FEM) is used to model the whole tissue and needle.
In addition to the effect of the needle-tissue interaction on the needle shape,
the resulting deformations of the tissues are also computed. The method con-
sists in using a finite set of elements interacting with each other, each element
representing a small region of interest of the objects being modeled, as can
be seen on Fig. 2.3a. This allows the modeling of the needle deformations as
well as the motion of a targeted region in the tissues, due to the needle inter-
action or due to external manipulation of the tissues [THA+09][PVdBA11].
This requires a description of the geometry of the tissues and the needle as
well as a certain amount of physical parameters for all of them that depends
on the chosen complexity of the mechanical model.

In general the computational complexity of such models is high when
compared to other modeling methods. The time required for the compu-
tations increases with the level of details of the model, i.e. the number

(a) 2D tissue fracture (b) 3D organ modeling

Figure 2.3: Illustration of finite element modeling (taken from
(a) [ODGRyB13] and (b) [CAR+09]).
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of elements used to represent each object, and the number and complexity
of the phenomena taken into consideration. Modeling the exact boundary
conditions and properties of real in vivo objects, such as different organs
in the body, is also a challenging task. This makes FEM hard to use for
real-time processing without dedicated hardware optimization and limits its
use to pre-planning of needle and target trajectories [AGPH09][HPCE15].
However, it offers a great flexibility on the level of complexity, which can be
chosen independently for the different components in the model. We provide
in the following a short overview of different models that can be used for the
needle and the tissues.

Needle: Various complexity can be chosen for the needle model. A 1D
beam model is often used under various forms. It can for example be a
rigid beam [DS03], a flexible beam [DS05a] or a succession of rigid beams
linked by angular springs [GDS09][HHZ11]. The needle geometry can also
be modeled entirely in 3D to accurately represent its deformations and the
effect of the tip geometry [MRD+08][YTS+14].

Tissues: Tissues can also be modeled with different levels of complexity,
ranging from a 2D rectangular mesh with elastostatic behavior [DS05a] to
3D mesh with real organ shape [CAR+09] (see Fig. 2.3b) and dynamic non-
linear behavior [TW14].

The complexity of the interactions between the needle and the tissues can
also vary. In addition to interaction forces due to the lateral displacements
of the needle, tangential forces are often added as an alternation between
friction and stiction along the needle shaft [DGM+09], introducing a highly
non-linear behavior. The complexity of the tissue cutting at the needle tip
and along the needle shaft can also greatly vary. It usually involves a change
in the topology of the model [CAK+14], which can be simple to handle if the
needle is modeled as a 1D beam [GSS11] or more complex when using a 3D
modeling of the needle and non-linear fracture phenomenon in the tissues
[ODGRyB13][YTS+14].

2.3 Mechanics-based modeling

Mechanics-based models are used to model the entire needle shaft of the
needle and its interactions with the surrounding tissues. The needle is thus
often modeled as a 1D beam with a given flexibility that depends on the
mechanical properties of the real needle. On the other hand, the tissues are
not entirely modeled as is done with finite element modeling (FEM) but only
the local interaction with the needle is taken into account.
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(a) Model using virtual springs (b) Model using a continuous load

Figure 2.4: Illustration of mechanics-based models of needle-tissue interac-
tion using either virtual springs or a continuous load.

Bernoulli beam equations: A first way to model the interaction between
the needle shaft and the tissues is to use a set of discrete virtual springs placed
along the shaft of the needle, as was done in 2D by Glozman et al. [GS07].
The needle is cut into multiple flexible beams and virtual springs are placed
normal to the needle at the intersection of the beam extremities, as depicted
in Fig. 2.4a. Knowing the position and orientation of the needle base and the
position of the springs, the shape of the needle can be computed using the
Bernoulli beam equations for small deflections. Concerning the interaction
of an asymmetric needle tip with the tissues, a combination of axial and
normal virtual springs can also be used to locally model the deflection of the
tip [DZP15].

Instead of using discrete springs, the Bernoulli equations can also be
applied when the needle-tissue interaction is modeled using a distributed
load applied along the needle shaft [KFR+15], as illustrated in Fig. 2.4b.
This allows a continuous modeling of the interaction along the needle shaft,
resulting in a smoother behavior compared to the successive addition of
discrete springs.
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Energy-based method: An energy-based variational method can also be
used, instead of directly using the Bernoulli equations to solve the needle
shape. This method, known as the Rayleigh-Ritz method and used by Misra
et al. [MRS+10], consists in computing the shape of the needle that min-
imizes the total energy stored in the system. It has been shown that this
energy is mainly the sum of the bending energy stored in the needle, the
deformation energy stored in the tissues and the worksthat are due to tis-
sue cutting at the tip and the insertion force at the base. This method
can be combined with different models of the interaction of the needle with
the tissues, as long as a deformation energy can be computed. For exam-
ple, a combination of virtual springs along the needle shaft and continuous
load at the end of the needle can be used [RAM12]. Different methods are
also available to define these continuous loads. They can be computed de-
pending on the distance between the needle and the tissues, as a continuous
version of the virtual springs. In this case the position of the tissues can
be taken depending on a previous position of the needle shaft [MRS+10] or
tip [KFR+15]. The continuous load can also directly be estimated online
[WLZS13].

The two methods stated above can also be used along with pseudo-
continuous models of the needle instead of the continuous one. In this case
the needle is modeled using a succession of rigid rods linked by angular
springs which are used to model the compliance of the needle [GDS09]. Such
a model is more simple since the parameters to describe its shape only consist
in the angles observed between successive rods, without requiring additional
parameters for the shape of these rods.

Dynamic behavior: The different models presented in this section mainly
allow modeling the quasi-static behavior of a needle inserted in the tissues.
The dynamics of the insertion can also be modeled by adding a mass to the
needle beams, some visco-elastic properties to the elements modeling the
tissues and a model of friction along the shaft [YPY+09][KRU+16]. The
friction mainly occurs during the insertion of the needle, nevertheless it has
been shown that a rotation lag between the needle base and the needle tip
could also appear [ROC09]. Hence a model of torsionnal friction and needle
torsion can be added when the needle rotates around its axis [SLOC14]. How-
ever, as stated in previous section 2.1 for kinematic models, each additional
layer of modeling requires the knowledge or estimation of new parameters,
in addition to the increased computational complexity. Hence, the number
of modeled phenomena that can be included depends on the intended use of
the model: a high number for offline computations, hence approaching FEM
models, or a reduced number to keep real-time capabilities, like kinematic
models.
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2.4 Generic model of flexible needle

In this section we describe and compare two models that we propose for the
3D modeling of a flexible needle with an asymmetric tip interacting with
moving soft tissues. These models were designed to provide a quasi-static
representation of the whole body of the needle that can be used in a real-time
needle steering control scheme. They both use a 1D beam representation for
the needle and a local representation for the tissues to keep the computational
cost low enough. The first model is inspired from the virtual springs approach
presented in section 2.3. This approach is extended to 3D and is used with
the addition of a reaction force at the needle tip to take into account an
asymmetric geometry of the tip. The second model is a two-body model
where the needle interacts with a second 1D beam representing the cut path
generated by the needle tip in the tissues.

Note that we use 3D models to account for all the phenomena occurring
in practice. It would be possible to maintain the trajectory of the needle
base in a 2D plane using a robotic manipulator, however, the motions of the
tissues occur in all directions and can not be controlled. Therefore the body
of a flexible needle can also move in any direction, such that 3D modeling is
necessary.

2.4.1 Needle tissue interaction model with springs

We describe here the first model that we propose and which is inspired from
the 2D virtual springs model used in [GS07].

Interaction along the needle shaft: The interaction between the needle
and the tissues is modeled locally using n 3D virtual springs placed all along
the needle shaft. We define each 3D spring, with index i ∈ [[1, n]], using 3
parameters: a scalar stiffness Ki, a rest position p0,i ∈ R3, and a plane P i

that contains p0,i (see Fig. 2.5). The rest position p0,i of the spring with
index i corresponds to the initial location of one point of the tissues when
no needle is pushing on it. The plane P i is used to define the point of the
needle pN,i ∈ R3 on which the spring with index i is acting. Each time
the model needs to be recomputed, the plane P i is redefined such that it
is normal to the needle and passes through the rest position p0,i. This way
the springs are only used to model the normal forces F s,i ∈ R3 applied on
the needle shaft, without tangential component. We use an elastic behavior
to model the interaction between the needle and the tissues, such that the
force exerted by the spring on the point pN,i can be expressed according to

F s,i = −Ki(pN,i − p0,i). (2.3)

The stiffness Ki of each spring is computed such that it approximates a
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Figure 2.5: Illustration of the mechanical 3D model of needle-tissue interac-
tion using virtual springs and a reaction force at the tip.

given stiffness per unit length KT such that

Ki = KT li, (2.4)

where li is the length of the needle that is supported by the spring with
index i. This length li can vary depending on the actual distance between
the points pN,i−1, pN,i and pN,i+1. For simplicity we consider here that the
tissue stiffness per unit length KT is constant all along the needle. However
it would also be possible to change the value of KT depending on the depth
of the spring in the tissues and therefore consider the case of inhomogeneous
tissues or variable tissue geometry.

The needle is then modeled by a succession of n+ 1 segments such that
the extremities of the segments lay on the planes P i of the virtual springs,
except for the needle base that is fixed to a needle holder and the needle tip
that is free. Each segment is approximated in 3D using a polynomial curve
cj(l) of order r so that

cj(l) = M j [ 1 l . . . lr ]T , (2.5)

where j ∈ [[1, n + 1]] is the segment index and cj(l) ∈ R3 is the position
of a point of the segment at the curvilinear coordinate l ∈ [0, Lj ], with Lj
the total length of the segment. The matrix M j ∈ R3×(r+1) contains the
coefficients of the polynomial curve.
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Figure 2.6: Illustration of the reaction forces applied on each side of the
bevel (depicted on the right). Point O corresponds to the end of the 3D
curve representing the needle. The current velocity of the needle tip vt
defines the angle β in which the cutting occurs in the tissues.

Interaction at the tip: The model defined so far is sufficient to take into
account the interaction with the tissues along the needle shaft. However the
specific interaction at the tip of the needle still needs to be added.

We represent all the normal efforts exerted at the tip of the needle with an
equivalent normal force F tip and an equivalent normal torque T tip exerted
at the extremity of the needle, just before the beginning of the bevel. In
order to model a beveled tip, these force and moment are computed using a
model of the bevel with triangular loads distributed on each side of the tip,
as proposed by Misra et al. [MRS+10].

Let define α as the bevel angle, b as the length of the face of the bevel, a
as the length of the bottom edge of the needle tip and β as a cut angle that
indicates the local direction in which the needle tip is currently cutting in the
tissues as depicted in Fig. 2.6. Note that the point O in Fig. 2.6 corresponds
to the last extremity of the 3D curve used to represent the needle. The
equivalent normal force F tip and torque T tip exerted at the point O can be
expressed as

F tip =

(
KT b

2

2
tan(α− β) cosα− KTa

2

2
tanβ

)
y, (2.6)

T tip =

(
KTa

3

6
tanβ − KT b

3

6
tan(α− β)

(
1− 3

2
sin(α)2

))
x, (2.7)

where x and y are the axis of the tip frame {Ft} as defined in Fig. 2.6.

Tip orientation around the shaft: We assume that the orientation of
the base frame {Fb} (see Fig. 2.5) is known and that the torsional bending of
the needle can be neglected. The first assumption holds if the needle holder
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can provide a feedback on its pose, which is usually the case for robotic
needle manipulation. The second assumption however can be debated since
it has been shown that stiction along the needle can introduce a lag and an
hysteresis between the base and tip rotation [AKM13]. However inserting the
needle is usually sufficient to break the stiction and reset this lag [ROC09].
Hence we assume that the orientation of the tip frame {Ft} around the
tip axis can directly be computed from the base orientation and the needle
shape.

Computation of the needle shape: In order to maintain adequate conti-
nuity properties of the needle, second order continuity constraints are added,
namely defined as

cj(Lj) = cj+1(0), (2.8)
dcj
dl

∣∣∣∣
l=Lj

=
dcj+1

dl

∣∣∣∣
l=0

, (2.9)

d2cj
dl2

∣∣∣∣
l=Lj

=
d2cj+1

dl2

∣∣∣∣
l=0

. (2.10)

The total normal force F j at the extremity of the segment j can be
calculated from the sum of the forces exerted by the springs located from
this extremity to the needle tip, so that

F j = Πj

F tip +
n∑
k=j

F s,k

 , (2.11)

where Πj stands for the projection onto the plane Pj . The projection is
used to remove the tangential part of the force and to keep only the normal
component. This normal force introduces a constant shear force all along
the segment and using Bernoulli beam equation we have

EI
d3cj
dl3

(l) = −F j , (2.12)

with E the needle Young’s modulus and I its second moment of area. Note
that in the case of a radially symmetric needle section the second moment
of area is defined as

I =

∫∫
Ω
x2dx dy, (2.13)

where the integral is performed over the entire section Ω of the needle. For
a hollow circular needle, I can be calculated from the outer and inner diam-
eters, dout and din respectively, according to

I =
π

64
(d4
out − d4

in). (2.14)
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Finally the moment due to the bevel force gives the following boundary
condition:

EI
d2cn+1

dl2

∣∣∣∣
l=Ln+1

= T tip × z, (2.15)

where T tip is the torque exerted at the tip defined by (2.7) and z is the axis
of the needle tip frame {Ft} as defined in Fig. 2.6.

In practice we expect real-time performances for the model, so the com-
plexity should be as low as possible. We use here third order polynomials
(r = 3) to represent the needle such that each polynomial curve is represented
by 12 coefficients. It is the lowest sufficient order for which the mechanical
equations can directly be solved. From a given needle base pose and a given
set of virtual springs, the shape of the needle can then be computed. The
needle model is defined by 12 × (n + 1) parameters, corresponding to the
polynomial segments coefficients. The continuity conditions provide 9 × n
equations. The fact that the segments extremities have to stay in the planes
defined by the springs adds n equations and the springs forces in the planes
define 2 × n equations. The base position and orientation give 6 additional
boundary equations. The tip conditions also give 6 equations due to the tip
force and tip moment. So the final shape of the needle is solved as a linear
problem of 12× (n+ 1) unknowns and 12× (n+ 1) equations.

Insertion of the needle: During the insertion, springs are added regularly
at the tip to account for the new amount of tissues supporting the end of
the needle. Once the last segment of the needle reaches a threshold length
Lthres, a new spring is added at the tip. The rest position of the spring is
taken as the initial position of the tissue before the tip has cut through it,
corresponding to point A in Fig. 2.6.

The next section presents a second model that we propose, where the
successive springs are replaced by a continuous line. A different method is
used to solve the needle parameters, allowing a decoupling between the num-
ber of elements used to represent the needle and the tissues. The behavior
and performances of the two models will be evaluated and compared in the
section 2.5.

2.4.2 Needle tissue interaction model using two bodies

In this section we model the interaction between the needle and the tissues
as an elastic interaction between two one-dimensional bodies.

Needle and tissues modeling: One of the bodies represents the needle
shaft and the other one represents the rest position of the path that was cut
in the tissues by the needle tip during the insertion (see Fig. 2.7). Note that
the needle body (depicted in red in Fig. 2.7) actually represents the current
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CHAPTER 2. NEEDLE INSERTION MODELING

shape of the path cut in the tissues, while the tissue body (depicted in green
in Fig. 2.7) represents this same cut path without taking into account the
interaction with the needle, i.e. the resulting shape of the cut after the needle
is removed from the tissues. Both bodies are modeled using polynomial spline
curves c, such that

c(l) =

n∑
i=1

ci(l) , l ∈ [0, L] , (2.16)

ci(l) = χi(l) M i


1
l
...
lr

 , (2.17)

where c(l) ∈ R3 is the position of a point at the curvilinear coordinate l,
L is the total length of the curve, M i ∈ R3×(r+1) is a matrix containing the
coefficients of the polynomial curve ci and χi is the characteristic function of
the curve, that takes the value 1 on the definition domain of the curve and 0
elsewhere. Parameters n and r represent respectively the number of curves
of the spline and the polynomial order of the curves. Both can be tuned to
find a trade-off between model accuracy and computation time.

In the following we add the subscripts or superscripts N and T on the
different parameters to indicate that they respectively corresponds to the
needle and tissues.

Computation of the needle shape: For simplicity we assume that the
tissues have a quasi-static elastic behavior, i.e. the force exerted on each
point of the needle is independent of time and proportional to the distance
between this point and the rest cut path. This should be a good approxi-
mation as long as the needle remains near the rest cut path, what should
be ensured in practice to avoid tissue damage. We note KT the interaction
stiffness per unit length corresponding to this interaction. Given a segment
of the needle between curvilinear coordinates l1 and l2, the force exerted on
it by the tissues can thus be expressed as

F (l1, l2) = −KT

∫ l2

l1

cN (l)− cT (l)dl. (2.18)

It has been shown in previous work [MRS+09] that the quasi-totality of
the energy stored in the needle-tissue system consists in the bending energy
of the needle EN and the deformation energy of the tissues ET . We use the
Rayleigh-Ritz method to compute the shape of the needle which minimizes
the sum of these two terms.
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2.4. GENERIC MODEL OF FLEXIBLE NEEDLE

Figure 2.7: Illustration of the whole needle insertion model (left) and zoom
on the tip for different tip geometries (right). Needle segments are in red
and the rest position of the path cut in the tissues is in green. New segments
are added to the cut path according to the location of the cutting edge of
the tip.

According to the Euler-Bernouilli beam model, the bending energy EN
of the needle can be expressed as

EN =
EI

2

∫ LN

0

(
d2cN (l)

dl2

)2

dl, (2.19)

where E is the Young’s modulus of the needle, I is its second moment of area
(see the definition in (2.13)) and LN is its length. By tuning the parameters
E and I according to the real needle, both rigid and flexible needles can be
represented by this model.

The energy stored in the tissues due to the needle displacement can be
expressed as

ET =
KT

2

∫ LT

0

∥∥cN (Lfree + l)− cT (l)
∥∥2
dl, (2.20)

where Lfree is the length of the free part of the needle, i.e. from the needle
base to the tissue surface, and LT is the length of the path cut in the tissues.

We add the constraints imposed by the needle holder, which fix the needle
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base position pb and direction db, so that

cN (0) = pb, (2.21)
dcN

dl
(0) = db. (2.22)

Continuity constraints up to order two are also added on the spline coeffi-
cients

cNi (li) = cNi+1(li), (2.23)

dcNi
dl

∣∣∣∣
l=li

=
dcNi+1

dl

∣∣∣∣∣
l=li

, (2.24)

d2cNi
dl2

∣∣∣∣
l=li

=
d2cNi+1

dl2

∣∣∣∣∣
l=li

, (2.25)

where li is the curvilinear coordinate along the needle spline corresponding
to the end of segment cNi and the beginning of segment cNi+1.

In order to take into account the length of the tip, which can be long
for example for pre-bent tips or beveled tips with small bevel angle, the tip
is modeled as an additional polynomial added to the last extremity of the
needle spline, as can be seen on Fig. 2.7. The corresponding terms are added
to the bending energy (2.19) and tissue energy (2.20).

The system is then solved as a minimization problem under constraints,
expressed as {

min
m

EN + ET

Am = b,
(2.26)

wherem is a vector stacking all the coefficients of the matricesM i and with
matrix A and vector b representing the constraints (2.21) to (2.25).

Tip orientation around the shaft: Similarly to the previous model (see
section 2.4.1), we assume that there is no lag between the tip rotation and
the base rotation along the needle shaft. This way the orientation of the
tip can be computed from the orientation of the base and the shape of the
needle. A more complex modeling of the torsional compliance of the needle
could however be necessary in the case of a pre-bent tip needle for which the
shape of the tip could cause a higher torsional resistance.

Insertion of the needle: As the needle progresses in the tissues and the
length of the cut path increases, we update the modeled rest cut path by
adding new segments to the spline curve. Each time the model is updated, if
the needle was inserted more than a defined threshold Lthres, a new segment
is added such that its extremity corresponds to the location of the very tip

34



2.5. VALIDATION OF THE PROPOSED MODEL

of the needle, i.e. where the cut occurs in the tissues. This way the model
can take into account the specific geometry of the needle tip. In the case
of a symmetric tip, the cut path will stay aligned with the needle axis. On
the other hand it will be shifted with respect to the center line of the needle
shaft when considering an asymmetric tip, as is depicted in Fig. 2.7, leading
to the creation of a force that will pull the needle toward the direction of the
cut.

It can be noted that external tissue deformations can be taken into ac-
count with this kind of modeling. Indeed, deformations of the tissues created
by external sources, like tissue manipulation or natural physiological motions
(heartbeat, breathing, . . . ), induce modifications of the shape and position
of the rest cut path. This, in turn, changes the shape of the needle via the
interaction model. External tissue motions will be further studied in the
section 3.5 of the next chapter.

Another advantage of this model is that the number of polynomial curves
of the needle spline is fixed and is independent of the number of curves of
the tissue spline. This leads to a better control over the computational
complexity of the model compared to the virtual springs approach presented
in section 2.4.1, for which the number of parameters to compute increases
as the needle is inserted deeper into the tissues. This is an important point
for the use of the model in a real-time control framework.

In the next section we compare the performances of both models in terms
of accuracy of the obtained tip trajectories and computation time.

2.5 Validation of the proposed model

In this section we compare the performances of the models defined previously
in terms of accuracy of the representation of the needle behavior. We com-
pare the simulated trajectories of the needle tip obtained with both models to
the real trajectories of a needle inserted in soft tissues under various motions
of the needle base. We first describe the experiments performed to acquire
the trajectories of the base and tip of the needle and then we provide the
comparison of these trajectories to the ones generated using both models.

Experimental conditions: We use the needle insertion device (NID) at-
tached to the end effector of the UR3 robot to insert the Aurora biopsy needle
in a gelatin phantom, as depicted in Fig. 2.8. The needle is 8 cm outside
of the NID and its length does not vary during the insertion. The position
of the needle tip is tracked and recorded using the Aurora electromagnetic
(EM) tracker embedded in the tip and the field generator. The pose of the
needle base, at the tip of the NID (center of frame {Fb} in Fig. 2.8), is
recorded using the odometry of the UR3 robot. The phantom has a Young
modulus of 35 kPa and is maintained fixed during the experiments.
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Figure 2.8: Picture of the setup used to acquire the trajectory of the tip of a
real needle inserted in a gelatin phantom. The frame attached to the needle
base is denoted by {Fb}.

Experimental scenarios: Different trajectories of the needle base are per-
formed to test the models in any possible direction of motion. The different
insertions are performed at the center of the phantom, such that they do
not cross each other. We use 12 different insertion scenarios and repeat each
scenario 3 times, leading to a total of 36 insertions. Each scenario is decom-
posed as follows. The needle is first placed perpendicular to the surface of
the phantom such that the tip barely touches the surface. Then the needle is
inserted 1 cm in the phantom, by translating the robot along the needle axis.
Then a motion of the needle base is applied before restarting the insertion
for 5 cm. The applied motion is expressed in the frame of the needle base
{Fb}, depicted in Fig. 2.8, and is one of the following

• No motion (straight insertion)

• Translation of 2 mm or -2 mm along x axis

• Translation of 2 mm or -2 mm along y axis

• Rotation of 3◦ or -3◦ around x axis

• Rotation of 3◦ or -3◦ around y axis

• Rotation of 90◦, -90◦ or 180◦ around z axis

An example of the measured tip trajectories for each type of base motions
can be seen in solid lines in Fig. 2.9 to 2.13. The tip position is expressed in
the initial frame of the tip, at the surface of the phantom.
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Translation along x axis in the needle base frame {Fb}
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Figure 2.9: Tip position obtained when a translation is applied along the x
axis of the base frame between two insertion steps along the z axis. Measures
are shown with solid lines, virtual springs model with long-dashed lines and
two-body model with short-dashed lines.

Translation along y axis in the needle base frame {Fb}
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Figure 2.10: Tip position obtained when a translation is applied along the y
axis of the base frame between two insertion steps along the z axis. Measures
are shown with solid lines, virtual springs model with long-dashed lines and
two-body model with short-dashed lines.

Generation of model trajectories: In order to generate the different
trajectories of the needle tip using both models, we first set their parameters
according to the physical properties of the needle. The needle length is set
to 8 cm and the other parameters are set according to the properties of the
Aurora needle given in Table 1.1. The polynomial order of the curves is set
to r = 3 for both models and the length threshold defining the addition of a
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Rotation around x axis in the needle base frame {Fb}
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Figure 2.11: Tip position obtained when a rotation is applied around the x
axis of the base frame between two insertion steps along the z axis. Measures
are shown with solid lines, virtual springs model with long-dashed lines and
two-body model with short-dashed lines.

Rotation around y axis in the needle base frame {Fb}
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Figure 2.12: Tip position obtained when a rotation is applied around the y
axis of the base frame between two insertion steps along the z axis. Measures
are shown with solid lines, virtual springs model with long-dashed lines and
two-body model with short-dashed lines.

virtual spring or tissue spline segment is set to Lthres = 1 mm. The length
of the needle segments for the two-body model is set to 1 cm, resulting in
a total of n = 8 segments. We recall that the number of segments for the
virtual springs model varies with the number of springs added during the
insertion.

One tip trajectory is then generated for both models and each experiment
by applying the motion of the base that is recorded during the experiment to
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Rotation around z axis in the needle base frame {Fb}
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Figure 2.13: Tip position obtained when a rotation is applied around the z
axis of the base frame between two insertion steps along the z axis. Measures
are shown with solid lines, virtual springs model with long-dashed lines and
two-body model with short-dashed lines.

the base of the model. The value of the model stiffness per unit length KT

of both models is optimized separately such that the final error between the
simulated tip positions and the measured tip positions is minimized. Since
the insertions are performed in the same phantom and at similar locations,
the same value of KT is used for all experiments. The best fit is obtained
with KT = 49108 N.m−2 for the two-body model and KT = 56868 N.m−2

for the virtual springs model.
It can be observed in Fig. 2.9 to 2.13 that the tip trajectories measured

for similar base motions in symmetric directions are not symmetric. This is
due to a misalignment between the axis of the NID, in which are performed
the motions, and the real axis of the needle. This misalignment corresponds
to a rotation of 1.0◦ around axis

[
0.5 0.86 0

]T in the base frame {Fb}.
Similarly an orientation error of 4.1◦ is observed between the orientation of
the NID around the needle axis and the orientation of the bevel. A correction
is thus applied to the needle base pose measured from the robot odometry
to obtain the pose that is applied to the modeled needle base.

An example of the simulated tip trajectories for each type of base motions
can be seen in Fig. 2.9 to 2.13, with long-dashed lines for the virtual springs
model and short-dashed lines for the two-body model.

Results: We can observe that both models follow the global behavior of the
needle during the insertion. Let us first focus on the effect of the asymmetry
of the beveled tip.

We can see that during an insertion without lateral base motions, the
deviation due to the bevel is well taken into account, as for example in
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Fig. 2.9b. We observe the same kind of constant curvature trajectories that
are usually obtained with kinematic models. However it can also be seen that
during the first few millimeters of the insertion, a lateral translation of the
tip occurs, which does not fit the constant curvature trajectory appearing
later. This effect is due to the fact that the bevel is cutting laterally while the
needle body is not yet embedded in the gelatin. The reaction force generated
at the bevel is thus mostly compensated by the stiffness of the needle, which
is low due to the length of the needle. This effect can usually be reduced in
practice by using a sheath around the body of the flexible needle, such that
it can not bend outside the tissues [WMO05]. However in a general case,
this kind of effect is not taken into account by kinematic models, while it
can be represented using our mechanics-based models.

Let us now consider the influence of lateral base motions on the behavior
of the needle. We can see that the tip trajectory is modified in the same
manner for both models and follows the general trajectory of the real needle
tip. Therefore both models can be used to provide a good representation of
the whole 3D behavior of a flexible needle inserted in soft tissues. This is a
great advantage over kinematic models, which do not consider lateral base
motions at all.

Concerning the accuracy of the modeling, some limitations seem to ap-
pear when the base motion tends to push the surface of the bevel against the
tissues. This is for example the case for a positive translation along the y axis
of the base frame (green curves in Fig. 2.10b) or a negative rotation around
the x axis (blue curves in Fig. 2.11b). In these cases both models seem to
amplify the effect of the base motions on the following trajectory of the tip.
However this could also be due to the experimental conditions. A small play
between the needle and the NID could indeed cause an attenuation of the
motion transmitted to the needle base.

Accuracy comparison: Let us now compare to each other the perfor-
mances of both models in terms of accuracy. The absolute final error between
the tip positions simulated by the models and the tip positions measured dur-
ing the experiments are summarized in Fig. 2.14, Mean values are provided
across the 3 insertions performed for each scenario. The average position
error over the insertion process is provided as well in Fig. 2.15. The average
is taken over time and across the 3 insertions performed for each scenario.

We can see that the two-body model provides in each scenario a better
modeling accuracy on the trajectory of the needle tip. While both models
tends to give similar results in the general case, the virtual springs model
seems to particularly deviate from the measures when rotations around the
needle axis are involved. This is also clearly visible in Fig. 2.13a. Several
reasons may be invoked to explain this result. First it is possible that the
discrete nature of the springs has a negative effect on the modeling accu-
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Figure 2.14: Absolute final error between the position of the simulated needle
tip and the measured position of the real needle tip. For each type of base
motions, the mean and standard deviation are calculated using the final
position error across 3 different insertions performed in the phantom.

racy compared to a continuous modeling of the load applied on the needle
shaft. However we believe that this effect is not predominant here since the
thresholds chosen for both models (distance between successive springs in
one case and length of the segment added to the cut path spline in the other
case) were the same and had small values compared to the curvature of the
needle. The second possible reason is that the model to compute the force
and torque at the needle tip is not the best way to represent the interaction
with the tissues. Indeed, the computation of the continuous loads applied
on the sides of the tip does not take into account the real 3D shape of the
tip, which has a circular section. The force magnitude is also independent
of the orientation of the bevel, which might not be true during the rotation
of the needle around its axis, leading to a wrong orientation of the tip when
the insertion restarts.

Computation time comparison: Let us finally compare the time re-
quired to compute both models depending on the number of elements used
to represent the tissues, i.e. the number of springs for the virtual springs
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Figure 2.15: Average absolute error during the whole insertion between the
position of the simulated needle tip and the measured position of the real
needle tip. For each type of base motions, the mean and standard deviation
are calculated over the whole length of the insertion and across 3 different
insertions performed in the phantom.

model and the number of tissue spline segments for the two-body model. The
computation times are acquired during a simulation of the needle insertion
using the same parameters as in the previous experiments. The results are
depicted in Fig. 2.16.

It is clearly visible that the number of virtual springs increases the com-
putation time, as could be expected from the fact that the number of needle
parameters to compute directly depends on the number of springs. On the
contrary the number of tissue spline segments of the two-body model does
not have a significant influence on the computation time since the number of
parameters of the needle spline is fixed and chosen independently. This is a
clear advantage of the two-body model since the computation time can then
be independent of the state of the insertion and can also be tuned beforehand
to obtain the desired real-time performances.

In conclusion, we will use the two-body model in the following of the ex-
periments, because it can provide an accurate estimation of the 3D behavior
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Figure 2.16: Computation time needed to get the shape of the needle from
the base pose and position of the tissue model (virtual springs or spline
segments).

of the needle and can be used for real-time processing due to its determin-
istic computation time. It is also easier to adapt to different kinds of tip
geometry and the motion of the tissue spline can be used to model external
displacement of the tissues.

2.6 Conclusion

We presented a review of needle-tissue interaction models separated into
three categories corresponding to different cases of use. Typically, kinematic
models ignore the interaction of the needle body with the surrounding tissues
and only consider the trajectory of the needle tip. Hence they are computa-
tionally inexpensive and are well adapted for real-time control of the insertion
of needles with asymmetric tips. On the other side, complete models of the
needle and tissues based on finite element modeling offer an accurate but
complex modeling of insertion procedures. They usually require far more re-
sources, which limits their use to applications where real-time performances
are not a priority, such as needle insertion pre-planning or surgical training
simulations.

In-between these two categories are mechanics-based models, which uses
local approaches to model the full behavior of a needle being inserted in soft
tissues while keeping aside the full modeling of the tissues. They provide
a more complete modeling than kinematic models while maintaining good
performances for a real-time use. In section 2.4 we have proposed two 3D
mechanics-based models that give a good representation of the 3D behavior
of a needle during its insertion is soft tissues. In particular, the two-body
model that we designed offers a good accuracy for all kinds of motions applied
to the base of the needle. Its complexity can also be chosen and is constant
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during the insertion, which allows tuning the required computation time to
achieve desired real-time performances. Therefore we will use this model as
a basis for a real-time needle steering framework in chapter 4.

In this chapter we only considered the case of stationary tissues, while
our model can also handle moving tissues by modifying the position of the
curve representing the tissues (rest cut path). Contrary to the motions of the
needle base, which can be controlled by the robotic manipulator, the motions
of the patient can not be controlled. Therefore an information feedback
is necessary to estimate these motions and update the state of the model
accordingly. Visual feedback is usually used in current practice to monitor
the whole needle insertion procedure and provide a way to see both the needle
and a targeted region. Hence we will focus on this kind of feedback in order to
design an update method for our model. In particular, 3D ultrasound (US)
can provide a real-time feedback on the whole shape of the needle, which
can be used to ensure that our model stays consistent with the real state of
the insertion procedure. A first step is to design an algorithm to extract the
localization of the needle body in the US volumes, which is a great challenge
in itself, due to the low quality of the data provided by the US modality.
This will be a first point of focus of the next chapter 3. The performances of
needle tracking algorithms in terms of accuracy and computation time can
be greatly improved by using a prediction of the needle location. Therefore
we will also use our model for this purpose, since we have shown that it could
predict the trajectory of the needle with a good accuracy.
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Chapter 3

Needle localization using
ultrasound

In this chapter we focus on the robust detection and tracking of a flexible
needle in 3D ultrasound (US) volumes. In order to perform an accurate real-
time control of a flexible needle steering robotic system, a feedback on the
localization of the needle and the target is necessary. The 3D US modality is
well adapted for this purpose thanks to its fast acquisition compared to other
medical imaging modalities and the fact that it can provide a visualization
of the entire body of the needle. However the robust tracking of a needle in
US volume is a challenging task due to the low quality of the image and the
artifacts that appear around the needle. Additionally, even though intra-
operative volumes can be acquired, the needle can still move between two
volume acquisitions due to its manipulation by the robotic system or the
motions of the tissues. A prediction of the needle motion can thus be of
a great help to improve the performances of needle tracking in successive
volumes.

We first provide in section 3.1 several points of comparison between the
imaging modalities that are used in clinical practice to perform needle inser-
tions and we motivate our choice of the 3D US modality. We then describe
the principles of US imaging and the techniques used to reconstruct the final
2D images or 3D volumes in section 3.2. We present in section 3.3 a review
of the current methods used to detect and track a needle in 2D or 3D US. We
then propose a new needle tracking algorithm in 3D US volumes that takes
into account the natural artifacts observed around the needle. We focus
on the estimation of the motions of the tissues in section 3.5 and propose a
method to update the needle model that we designed in the previous chapter
using different measures available on the needle. Tests and validation of the
method are then provided in section 3.6. The updated model is then used
to improve the performances of the needle tracking across a sequence of US
volumes.
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The work presented in this chapter on the model update from visual
feedback was published in an article presented in international conference
[CKB16b].

3.1 Introduction

Needle insertion procedures are usually performed under imaging feedback
to ensure the accuracy of the targeting. Many modalities are available,
among which the most used ones are magnetic resonance imaging (MRI),
computerized tomography (CT) and ultrasound (US). In the following we
present a comparison of these modalities on several aspects that has led us
to consider the use of the US modality instead of the others.

Image quality: The main advantage of MRI and CT is that they provide
high contrast images of soft tissues in which the targeted lesion can clearly be
distinguished from the surrounding tissues. On the other side, the quality of
US images is rather poor due to the high level of noise and interference phe-
nomena. However MRI and CT are sensitive to most metallic components,
that creates distortions in the images. The presence of a metallic needle in
their field of view is thus a source of artifacts that are disturbing for MRI
[SCI+12] or CT [SGS+16] when compared to US artifacts [RSGC14]. This
alleviates the main drawback of the US modality.

Robotic design constraints: MRI and CT have additional practical lim-
itations compared to US imaging, since their scanners are bulky and require
a dedicated room. These scanners are composed of a ring inside which the
patient is placed for the acquisition, which reduces the workspace and ac-
cessibility to the patient for the surgical intervention. This adds heavy con-
straints on the design of robotic systems that can be used in these scanners
[MGB+04] [ZBF+08], in addition to the previously mentioned incompatibil-
ity with metallic components, that can even cause security issues in the case
of MRI.

On the other side, US probes are small, can easily be moved by hand and
the associated US stations are easily transportable to adapt to the workspace.
Additionally they do not pose particular compatibility issues and can thus
be used with a great variety of robotic systems.

Acquisition time: The acquisition time of MRI and CT is typically long
compared to US and makes them unsuitable for real-time purposes. Using
non real-time imaging requires to perform the insertion in many successive
steps, alternating between image acquisitions and small insertions of the
needle, as classically done with MRI [MvdSvdH+14] or CT [SHvK+17]. In
addition to the increased duration of the intervention, patients are often
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asked to hold their breath during the image acquisition to avoid motion blur
in the image. Therefore, discrepancies arise between the real position of the
needle and the target and their position in the image because of the motions
of the tissues as soon as the patient restarts breathing. For these reasons,
real-time imaging is preferred and can be achieved using the US modality.
High acquisition rates are usually obtained with 2D US probes, as tens of
images can typically be acquired per second. A 3D image, corresponding to
an entire volume of data, can also be acquired at a fast rate using matrix
array transducers or at a lower frame rate using more conventional motorized
3D US probes.

In conclusion, US remains the modality of choice for real-time needle
insertion procedures [CJB06]. Hence in the following of this chapter we
will focus on the detection and tracking of a needle using the US feedback
acquired by 3D probes. In the next section we present the general principles
of US imaging.

3.2 Ultrasound imaging

3.2.1 Physics of ultrasound

Ultrasound (US) is a periodic mechanical wave with frequency higher than
20 kHz that propagates by producing local changes of the pressure and posi-
tion in a medium. The principle of US imaging is to study the echos reflected
back by the medium after that an initial US pulse has been sent.

Wave propagation: Most imaging devices assume that soft tissues behave
like water, due to the high proportion of water they contain. The speed c
of US waves in liquids can be calculated according to the Newton-Laplace
equation

c =

√
K

ρ
, (3.1)

whereK is the bulk modulus of the medium and ρ its density. Although vari-
ations of the local density of the tissues introduce variations of the speed of
ultrasound, it is most of the time approximated by a constant c =1540 m.s−1.
When the wave encounters an interface between two mediums with different
densities, a part of the wave is reflected back while the rest continues prop-
agating through the second medium. The amplitudes of the reflected and
transmitted waves depend on the difference of densities. This is the main
phenomenon used in US imaging to visualize the variations of the tissue
density.
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Figure 3.1: Illustration of the reconstruction of an ultrasound (US) scan line
from the delay of propagation of the US wave. A first interface is encountered
after a time t1 and a second one after time t2 > t1. A part of the US wave
reaches back the transducer after a total time of 2t1 and a second part after
2t2. The distance of the first and second interfaces from the transducer are
then computed as ct1 and ct2, respectively.

Image formation: An US transducer consists in an array of small piezo-
electric elements. Each element can vibrate according to an electric signal
sent to them, creating an US wave that propagates through the medium
in the form of a localized beam. Each beam defines a scan line on which
the variation of the tissue density can be observed. The elements also act
as receptors, creating an electric signal corresponding to the mechanical de-
formations applied to them by the returning echos. These electric signals
are recorded for a certain period of time after a short sinusoidal pulse was
applied to an element, giving the so-called radio frequency signal.

Considering an interface that is at a distance d from the wave emitter,
an echo will be observed after a time

T =
2d

c
, (3.2)

corresponding to the time needed by the pulse to propagate to the interface
and then come back to the transducer. The position corresponding to an
interface can thus directly be calculated from the delay between the mo-
ment the US pulse was sent and the moment the echo was received by the
transducer, as illustrated in Fig. 3.1. The radio frequency signal can then
be transformed into a suitable form for an easy visualization of the tissue
density variations along each scan line.

Acquisition frequency: The acquisition frequency depends on the num-
ber of piezoelectric elements np and the desired depth of observation do, i.e.
the length of the scan lines. The radio frequency signals corresponding to
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each scan line must be recorded one after another in order to avoid mixing
the echos corresponding to adjacent scan lines. The time Tline required to
acquire the signal along one scan line is given by

Tline =
2do
c

. (3.3)

The total time Tacq of the 2D image acquisition is then

Tacq = npTline. (3.4)

A typical acquisition using a transducer with 128 elements and an acquisition
depth of 10 cm would take 16.6 ms, corresponding to a frame rate of 60
images per second. This is a fast acquisition rate that can be considered
real-time for most medical applications.

Image resolution: The axial resolution of the US imaging system is the
minimum distance between two objects in the wave propagation direction
that allows viewing them as two separate objects in the image. This di-
rectly corresponds to the wavelength of the wave propagating in the medium.
Wavelength λ and frequency f are directly related to each other by the speed
of the wave according to

λ =
c

f
. (3.5)

Therefore a higher axial resolution can be achieved through a higher fre-
quency. Standard US systems usually use a frequency between 1 MHz and
20 MHz, corresponding to an axial resolution between 1.54 mm and 77 µm.

The lateral resolution is the minimum distance between two objects per-
pendicular to the wave propagation direction that allows viewing them as two
separate objects in the image. A threshold value for this resolution is first
set by the distance between the different scan lines, which depends on the ge-
ometry of the transducer. For linear transducers, the piezoelectric elements
are placed along a line, such that all scan lines are parallel and the thresh-
old directly corresponds to the distance between the elements. For convex
transducers, the elements are placed along a circular surface, such that the
scan lines are in a fan-shape configuration and diverge from the transducer,
as illustrated in Fig. 3.2. The threshold thus corresponds to the distance
between the elements at the surface of the transducer but then grows with
the depth due to the increasing distance between the scan lines. Hence, this
configuration allows a larger imaging region far from the transducer, but at
the expense of a resolution decreasing with the depth.

However another factor that determines the real lateral resolution is the
width of the US beam. This varies with depth and depends on the size of
the piezoelectric elements and the wave frequency. The wave focuses into a
narrow beam only for a short distance from the emitter, called the near zone
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Figure 3.2: Illustration of the configuration of the piezoelectric elements
(red) on linear and convex ultrasound transducers.

Figure 3.3: Illustration of the effect of US beam width on the lateral and out
of plane resolution of an US probe. Piezoelectric elements are represented
in red and only a linear transducer is depicted here.

or Fresnel’s zone. Then the wave tends to diverge, leading to a wide beam
in the far zone or Fraunhofer’s zone, as illustrated in Fig. 3.3.

The width of the beam in the near zone is proportional to the size of the
piezoelectric element, while the length of the zone decreases with this size.
The length of the near zone can be increased by using a higher frequency. The
lateral resolution is also often modified by using several adjacent elements
with small delays instead of only one at a time. This generates a beam
focused at a specified depth, but also causes the far zone width to increase
faster after the focus depth.

Similarly, an out of plane resolution can be defined, which determines
the actual thickness of the tissue slice that is visible in the image. This
resolution also varies with depth depending on the size of the piezoelectric
elements and the frequency, as illustrated in Fig. 3.3. An acoustic lens is
often added to the surface of the probe to focus the beams at a given depth.
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Observation limitations: Other factors can modify the quality of the
received US wave.

Attenuation: The viscosity of soft tissues is responsible for a loss of
energy during the US wave propagation [Wel75]. This loss greatly increases
with the wave frequency, such that a trade-off has to be made between the
spacial resolution and the attenuation of the signal.

Speckle noise: Due to the wave characteristics of US, diffraction and
scattering also occur when the wave encounters density variations in the
tissues that have a small size compared to its wavelength. The US beam
is then reflected in many directions instead of one defined direction. This
results in textured intensity variations in the US images known as speckle
noise, as can be seen in Fig. 3.1. While it has sometimes been used for
tissue tracking applications as in [KFH07][KFH09], speckle noise is generally
detrimental to a good differentiation between the different structures in the
tissues, such that filtering is often performed to reduce its intensity.

Shadowing: At the level of an interface between two media with very
different densities it can be observed that the US wave is almost entirely
reflected back to the transducer. The intensity of the transmitted signal is
then very low, such that the intensity of the echos produced by the structures
that are behind the interface are greatly reduced. This causes the appearance
of a shadow in the US image that greatly limits the visibility of the structures
behind a strong reflector. This can be seen on the bottom of the US image
in Fig. 3.1, which is mostly dark due to the presence of reflective interfaces
higher in the image.

Particular artifacts can also appear around a needle due to its interaction
with the US wave. These artifacts can greatly affect the appearance of the
needle in 2D or 3D US images, such that they should be taken into account
to accurately localize the needle. This kind of artifacts will be the focus of
section 3.3.1.

Now that we have seen the principles of US signals acquisition, we de-
scribe in the following how the acquired data are exploited to reconstruct
the final image or volume.

3.2.2 Reconstruction in Cartesian space

The radio frequency signal acquired by the piezoelectric elements must be
converted into a form that is suitable for the visualization of the real shape
of the observed structures in Cartesian space. This conversion should take
into account the natural attenuation of the ultrasound (US) signal during its
travel in the tissues as well as the geometric arrangement of the different scan
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lines. We describe in the followings the process that is used to transform the
radio frequency signal into a 2D or 3D image.

3.2.2.1 Reconstruction of 2D images

We first consider the case of a reconstructed 2D image, called B-mode US
image.

The signal is first multiplied by a depth-dependent gain to compensate
for the attenuation of the US signal during its travel through the tissues.
The amplitude of the signal is then extracted using envelop detection. This
removes the sinusoidal shape of the signal and only keeps the part that
depends on the difference between the density of the tissues. The signal is
then sampled to enable further digital processing. The sampling frequency
is chosen to respect the Nyquist sampling criterion, i.e. it should be at least
twice as much as the frequency of the US wave. This frequency is typically
of 20 MHz or 40 MHz for current 2D US probes. A logarithmic compression
of the level of intensity is then usually applied to the samples to facilitate
the visualization of high and low density variations on the same image. The
samples can be stored in a table with each line corresponding to the samples
of a same scan line. The resulting image is called the pre-scan image.

The samples need then to be mapped to their corresponding position in
space to reconstruct the real shape of the 2D slice of tissue being observed,
which constitute the post-scan image. Let Ns be the number of samples
along a scan line and Nl the number of scan lines. Each sample can be
attributed two indexes i ∈ [[0, Ns − 1]] and j ∈ [[0, Nl − 1]] corresponding to
their placement in the pre-scan image, with j the scan line index and i the
sample index on the scan line. The shape of the reconstructed image depends
on the geometry of the arrangement of the piezoelectric elements. For linear
probes, the piezoelectric elements are placed on a straight surface, such that
the scan lines are parallel to each other. In this case the coordinates x and
y of a sample in the post-scan image (see Fig.3.4) can directly be calculated
with a scaling and offset such that

x = Lsi, (3.6)

y = Lp

(
j − Nl − 1

2

)
, (3.7)

where Ls is the physical distance between two samples on a scan line and
Lp is the distance between two piezoelectric elements of the transducer. The
physical distance Ls between two samples on a scan line depends on the
sampling frequency fs such that

Ls =
c

fs
. (3.8)
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Figure 3.4: Illustration of 2D post-scan conversion for linear (top) and convex
(bottom) transducers.

For a convex probe with radius R, the physical position of a sample in
the probe frame can be expressed in polar coordinates (r, θ) according to

r = R+ Lsi, (3.9)

θ =
Lp
R

(
j − Nl − 1

2

)
. (3.10)

This can be converted to Cartesian coordinates using

x = r cos(θ), (3.11)
y = r sin(θ). (3.12)

In practice the post-scan image is defined in Cartesian coordinates with
an arbitrary resolution, such that the mapping should actually be done the
opposite way. Each pixel (u, v) in the image corresponds to a physical posi-
tion (x, y) in the imaging plane of the probe such that

u =
x− xmin

s
, (3.13)

v =
y − ymin

s
, (3.14)

where (xmin, ymin) is the position of the top left corner of the image in the
probe frame, as depicted in Fig. 3.4, and s is the pixel resolution of the
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image. The value of each pixel is computed by finding the value in the pre-
scan image at position (i, j) corresponding to the physical position (x, y).
For linear probes this is computed according to

i =
x

Ls
, (3.15)

j =
Nl − 1

2
+

y

Lp
, (3.16)

while for convex probes it results in

i =

√
x2 + y2 −R

Ls
, (3.17)

j =
Nl − 1

2
+

atan2(y, x)R

Lp
. (3.18)

In practice this process gives non-integer values for i and j, while the
pre-scan data are only acquired for integer values of i and j. Therefore an
interpolation process is necessary to compute the actual value Ipost(u, v) of
the pixel in the post-scan image Ipost from the available values in the pre-scan
image Ipre. Different interpolation techniques can be used:

• Nearest neighbor interpolation: the pixel value is taken as the value of
the closest prescan sample:

Ipost(u, v) = Ipre([i], [j]), (3.19)

where [.] denotes the nearest integer operator. This process is fast but
leads to a pixelized aspect of the post-scan image.

• Bi-linear interpolation : the pixel value is computed using a bi-linear
interpolation between the four closest neighbors:

Ipost(u, v) = (1−a)(1−b) Ipre(bic ,bjc )

+ a (1−b) Ipre(bic+ 1,bjc )

+(1−a) b Ipre(bic ,bjc+1)

+ a b Ipre(bic+ 1,bjc+1),

(3.20)

with a = i− bic, (3.21)
b = j − bjc, (3.22)

and where b.c denotes the floor operator. This process provides a
smoother resulting image while still remaining relatively fast to com-
pute.

• Bi-cubic interpolation : the pixel value is computed using a polynomial
interpolation between the 16 closest neighbors. This process provides a
globally smoother resulting image and keeps a better definition of edges
than bi-linear interpolation. However it involves longer computation
times.
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3.2.2.2 Reconstruction of 3D volumes

The 2D US modality only provides a feedback on the content of a planar zone
in the tissues. In order to visualize different structures in 3D, it is necessary
to move the US probe along a known trajectory and reconstruct the rela-
tive 3D position of the structures. In the case of needle segmentation, it is
possible that only a section of the needle is visible, when the needle is perpen-
dicular to the imaging plane. In this case it is difficult to know exactly which
point along the needle corresponds to this visible section. Even when a line is
visible in the image, it is possible that the needle is only partially visible and
partially out of the imaging plane. It can lead to erroneous conclusions about
the real position of the needle tip, which could lead to dramatic outcomes if
used as input for an automatic needle insertion algorithm. To alleviate this
issue, automatic control of the probe position can be performed to maintain
the visibility of the needle in the image [CKM13][MGE16]. However this is
not always possible if the needle shaft does not fit into a plane due to its
curvature, which is often the case for the flexible needles that we use in the
following.

Three-dimensional US probes have been developed to provide a visual
feedback on an entire 3D region of interest [HZ17]. This way entire 3D struc-
tures can be visualized without moving the probe. Two main technologies
are available: matrix array transducers and motorized transducers.

Matrix array transducers: This technology is a 3D version of the clas-
sical 2D transducers. It uses a 2D array of piezoelectric elements placed on
a surface instead of only one line. Similarly to 2D probes, the 3D matrix
probes can be linear or bi-convex depending on whether the surface is pla-
nar or curved. They also provide the same fast acquisition properties, with
a volume acquisition rate that is proportional to the number of elements of
the array. However, due to the complexity of manufacturing, current probes
only have a limited number of piezoelectric elements in each direction com-
pared to 2D transducers, which limits the resolution and field of view that
can be achieved.

Motorized transducers: Also known as wobbling probes, these probes
consist in a classical 2D US transducer attached to a mechanical part that
applies a rotational motion to it. A series of 2D US images are acquired
and positioned into a volume using the known pose of the transducer at
the time of acquisition. In the following we consider the case of a sweeping
motion such that the imaging plane of the transducer moves in the out of
plane direction. In this case, the resolution of the volume is different in all
directions. It corresponds to the resolution of the transducer in the imaging
plane, while the resolution in the sweeping direction depends on the frame
rate of the 2D transducer and the velocity of the sweeping. The acquisition
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rate is also limited by the duration of the sweeping motion, such that a
trade-off has to be made between the resolution in the sweeping direction
and the acquisition rate. Since an indirect volume scanning is made, some
motion artifacts can appear in the volume, due to the motion of the tissues
or the probe during the acquisition.

Similarly to the 2D case, a post-scan volume with arbitrary voxel res-
olution can be reconstructed from the acquired pre-scan data. Each voxel
(u, v, w) in the post-scan volume corresponds to a physical position (x, y, z)
in the probe frame, such that

u =
x− xmin

s
, (3.23)

v =
y − ymin

s
, (3.24)

w =
z − zmin

s
, (3.25)

where (xmin, ymin, zmin) is the position of the top left front corner of the
reconstructed volume in the probe frame and s is the voxel resolution of the
image. The value of each voxel is computed by finding the value in the pre-
scan image at position (i, j, k) corresponding to the physical position (x, y, z).
It should be noticed that the center of the transducer does usually not lie
on the axis of rotation of the motor, such that all acquired scan lines do not
cross at a common point, which increases the complexity of the geometric
reconstruction of the volume.

We define Rm the radius of the circle described by the center point on the
transducer surface during the sweeping. The position (x, y, z) of a point in
space will be defined with respect to the center of rotation Om of the motor,
which is fixed in the probe frame, while the center of the transducer Ot can
translate, as depicted in Fig. 3.5. This leads to

x = (r cos(θ)−R+Rm) cos(φ), (3.26)
y = r sin(θ), (3.27)
z = (r cos(θ)−R+Rm) sin(φ), (3.28)

where r and θ are the polar coordinates of the sample in the transducer
frame and φ is the current sweeping angle of the motor (see Fig 3.5). The
volume can be reconstructed by assuming that equiangular planar frames are
acquired. However, since the scan lines are acquired one after another by the
transducer, the sweeping motion introduces a small change in the direction
of successive scan lines. Therefore the scan lines are not co-planar and some
motion artifacts can appear in the reconstructed volume. In order to avoid
these artifacts, we reconstruct the volume using the exact orientation of the
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Figure 3.5: Illustration of 3D post-scan conversion for a convex transducer
wobbling probe.

scan lines, such that r, θ and φ can be computed according to [LK11]:

r = R+ Lsi, (3.29)

θ =
Lp
R

(
j − Nl − 1

2

)
, (3.30)

φ = εδφ

(
k +

j

Nl
− NfNl − 1

2Nl

)
, (3.31)

where Nf is the number of frames acquired during one sweeping motion, δφ
is the angular displacement of the transducer between the beginning of two
frame acquisitions and ε is equal to 1 if the sweeping motion is performed in
the positive z direction and −1 in the negative one.

Finally the position (i, j, k) in the pre-scan data corresponding to the
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physical position (x, y, z) in the probe frame can be calculated according to

i =
r −R
Ls

, (3.32)

j =
Nl − 1

2
+
R

Lp
θ, (3.33)

k =
NfNl − 1

2Nl
− j

Nl
+ ε

φ

δφ
, (3.34)

with r =

√(
R−Rm +

√
x2 + z2

)2
+ y2, (3.35)

θ = atan2
(
y,R−Rm +

√
x2 + z2

)
, (3.36)

φ = atan2(z, x). (3.37)

As in the 2D case, voxel interpolation is necessary. The same techniques
can be used: nearest neighbor interpolation still requires only one voxel while
tri-linear interpolation requires 8 voxels and tri-cubic interpolation requires
64 voxels. Due to the high number of voxels and the increased dimension
of the interpolation, the conversion to post-scan can be time consuming and
often requires hardware optimization to parallelize the computations and
achieve reasonable timings.

Once the US volume has been reconstructed, the different structures
present in the tissues can then be observed. In particular, the real 3D shape
of a needle can be detected in Cartesian space.

3.3 Needle detection in ultrasound

Robust needle tracking using ultrasound (US) has the potential to make
possible robotic needle guidance. Due to the high density of a metallic
needle, a strong echo is generated, such that the needle appears as a very
bright line in US images. However detecting a needle in US images is still a
challenging task due to the overall noisy nature of the images.

In this section we present the common factors that may hinder a detection
algorithm, as well as an overview of current ultrasound-based methods used
for the detection and tracking of a needle in 2D or 3D US image feedback.

3.3.1 Ultrasound needle artifacts

We describe here several phenomena that are typically observed in ultra-
sound (US) images and that are specific to the presence of a needle in the
field of view of the probe [RSGC14]. These phenomena creates artifacts that
can limit the performances of a needle detection algorithm. An illustration of
the different artifacts is shown in Fig. 3.6 and a picture of a needle observed
in 3D US can be seen in Fig. 3.7.
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Figure 3.6: Illustration of several phenomena leading to the appearance of
needle artifacts in ultrasound images: needle reverberation artifact, side
lobes (blue arrows) artifact and reflection out of the transducer.

Reflection: The direction in which a US beam is reflected at an interface
between two media with different densities depends on the angle of incidence
of the wave on the interface. In some cases the beam can be reflected lat-
erally such that the echo never returns to the transducer [RSGC14]. This
effect reduces the visibility of the needle when the insertion direction is not
perpendicular to the propagation of the US wave. This can be particularly
visible with convex probes, for which the beam propagation direction is not
the same at the different locations on the image, resulting in a variation of
the intensity of the observed needle. This effect can be reduced by using
echogenic needles with a surface coating that reflects the US beam in mul-
tiple directions. Special beam steering modes are also available on certain
US probes, for which all elements of the transducer are activated with small
delays to create a wave that propagates in a desired direction. This can be
used to enhance the visibility of the needle when its orientation is known, as
was done in [HNP14].

Reverberation/Comet tail artifact: The high difference between the
density of the needle and the density of soft tissues induces a high reflection
of the US wave at the interface. This occurs on both sides of the needle and
in each direction, such that a part of the wave can be reverberated multiple
times between the two walls of the needle. Multiple echos are subsequently
sent back to the transducer with a delay depending on the distance between
the walls and the number of reflections inside the needle. Since the image
is reconstructed using the assumption that the distance from the probe is
proportional to the time needed by the wave to come back to the transducer
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Figure 3.7: Two orthogonal cross sections of a 3D ultrasound (US) volume
showing the artifacts present around a needle. The needle is in the plane
of the picture on the left and the right picture shows a cross section of the
needle. In both images the US wave is coming from the left.

(see (3.2)), the echos created by the reflections inside the needle are displayed
as if they came from an interface located deeper after the needle. Hence a
comet tail artifact can be observed in a cross-sectional view of the needle,
due to the appearance of a bright trailing signal following the real position
of the needle.

Beam width/Side lobes artifact: Due to the width of the US beam, it
is possible that the needle is hit by several beams corresponding to different
scan lines. This results in a needle that apparently spreads laterally and is
larger than its real diameter. Similarly, the piezoelectric elements can emit
parasitic side beams in addition to the main beam. The amplitude of the
wave in the side beams is usually smaller than the amplitude of the main
beam, which limits the influence that they have on the final image due to
the attenuation in the tissues. However, strong reflectors like a needle may
reflect the quasi-totality of the side beams, creating strong echos coming
back to the transducer which are interpreted as returning from the main
beam during the reconstruction of the image. This creates further lateral
spread of the apparent position of the needle, as can be seen in Fig. 3.7.
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3.3.2 Needle detection algorithms

Many image processing techniques have been proposed over the last decade
to detect a needle in 2D or 3D ultrasound (US) images. Needle detection
in 2D US is challenging because of the missing third dimension. The needle
can be only partially visible and it is not always possible to ensure that it
is entirely in the imaging plane. On the opposite, while the data acquired
by a 3D US probe usually require some processing to be visualized in a
comprehensible way by a human operator, they can easily by used directly
by a computer process to detect the 3D shape of the needle. However it
usually requires more computation due to the increased dimension of the
image.

Tracking algorithms have also been proposed to find the position of the
needle across a sequence of images. These algorithms usually use a detec-
tion algorithm that is applied on each newly acquired image. The result is
enhanced by using a temporal filtering of the output of the detection algo-
rithm, typically a Kalman filter, or a modification of the detection algorithm
to take into account the position of the needle in the previous images.

In the following we present an overview of the general techniques that are
used for needle tracking in 2D or 3D. Needle detection algorithms generally
follow the same order of steps performed on the image:

• a pre-filtering of the image to enhance the needle visibility and remove
some noise,

• a binarization of the image to select a set of potential points belonging
to the needle,

• a shape fitting step to find the final localization of the needle.

Image pre-filtering: Smoothing of the image is often performed to filter
out the speckle noise that is present in the image. This process also reduces
the sharpness of the edges, which can be detrimental to find the bound-
aries of the needle. Median filtering is sometimes preferred to achieve noise
smoothing while keeping a good definition of the edges.

In order to enhance the separation between the bright needle and the
dark background, a modification of the pixel intensity levels can then be
used. This can be achieve in many ways, such as histogram equalization
[PZdW+14] or exponential contrast enhancement [WRS+16]. In the case
where the needle is co-planar with the imaging plane and a guess of its
orientation is known, a specific filter can be used to enhance the visibility of
the linear structures with a given orientation. For example an edge-detector
can be used in a given direction [OEC+06]. Gabor filtering is also often used
in 2D [KB14] or in 3D [PZdW+14].
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Image binarization: A threshold is applied to the pre-processed image
to keep only the points that have a good probability of belonging to the
needle. Otsu’s thresholding method can be used to automatically find an
optimal threshold that separates two classes of intensities [Ots79]. However
this method can yield poor performances if the background itself has several
distinct levels of intensity. This can occur on non-filtered images when low
reflective structures, with a black appearance, are present within normal tis-
sues, with a gray appearance. Therefore the value of the threshold is mostly
tuned manually to a pre-defined value or such that a certain percentage of
the total number of point is kept, which can introduce a great variability in
the performances of the algorithms.

In [NS10] needle tracking is performed using the difference between two
successive US images. The resulting image presents a bright spot at the
location where the needle tip progressed in the tissues, allowing to obtain a
small set of pixels corresponding to the position of the needle tip after the
thresholding process. However this method can only be used if the probe
and the tissues are stationary, such that the motions in the images are only
due to the needle.

Doppler US imaging is used to display the velocity of moving tissues
instead of their density variations. Therefore, it can be used to naturally
reduce the number of structures with the same intensities as the needle by
applying fast vibrations to the needle. An active vibrator attached near the
base of the needle is used in [AFO14] to produce these vibrations. The ro-
tation of the needle around its axis is used in [MPT15] to create the same
amount of motion all along the needle, avoiding the attenuation of the vi-
brations along the needle shaft that can be observed when using a vibrator
at the needle base.

Needle shape fitting: Given a set of segmented needle points, a first deci-
mation is often performed to remove obvious outliers. This typically involves
morphological transformations, like a succession of erosions and dilatations,
to remove the groups of pixels that are too small to possibly represent a
needle. Fusion with Doppler US modality can also be used to get additional
information in the needle location and remove outliers. Many methods can
then be used to find the position of the needle depending on its configuration
in the image.

When using a 2D US probe, the needle can first be perpendicular to
the imaging plane, such that only a section of the shaft is visible and can
be tracked. In [WRS+16] the set of pixels corresponding to the measured
needle section is used as the input for a Kalman filter to estimate the point
of the set that represents the real center of the needle cross section.

The comet tail artifact exhibited by the needle can also be exploited
to find the needle position. In [VAP+14] and [AVP+14] needle tracking is
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achieved by using the Hough transform applied to the pixel set to find the
best line fitting the tail of the artifact. The center of the needle is then taken
as the topmost extremity of the line and translated by a length corresponding
to the radius of the needle. A similar process is used in [SRvdB+16] where
Fourier descriptors are used to find the center of the needle in the comet tail
artifact.

In the case where the needle shaft is in the imaging plane of a 2D probe
or the field of view of a 3D probe, line detection algorithms are used to find
the best fit of the needle. A Hough transform is used in [OEC+06] to find
the best group of points that fits a linear shape and remove all of the other
outliers. A polynomial fitting is then performed with the remaining points
to find the final shape of the needle.

A now wide-spread method for line or polynomial fitting is the Random
Sample Consensus (RANSAC) algorithm. The principle of the algorithm is
to take a random sample of points and to build a polynomial fitting from this
sample. The quality of the sample is assessed by the total number of points
of the set that fits the obtained polynomial. The process is repeated many
times and the fitting containing the maximum of points is taken as the result
of the needle detection process. This algorithm is quite robust to outliers
since a polynomial fitting from a sample containing outliers is likely to fit
poorly to the real inliers. Such an algorithm was used in 2D US in [KB14]
after a Gabor filtering and Otsu’s automatic thresholding. It can also easilly
be applied to 3D US, as done in [UKLC10] after applying a simple threshold.
Due to the stochastic nature of the algorithm, there is no guaranty that the
final result of the algorithm contains only inliers, and inconsistent results can
be obtained if the algorithm does not run for a sufficient amount of time.
The algorithm can be made faster and more consistent by minimizing the
number of outliers present in the initial set of points. This can for example
be done by using a needle enhancing pre-filtering like a 3D Gabor filter
[PZdW+14]. For needle tracking in a US sequence, a temporal filtering can
be used to filter the output of the RANSAC algorithm and to predict a region
of interest in which the needle should lie. A Kalman filter was used for 3D
needle tracking in [CKM13] and improved with a mechanics-based model to
predict the motion of the needle between two acquisitions in [MPT16].

Direct approach: Some approaches use directly the image intensity to
localize the needle without relying on a prior thresholding of the image. For
example, projective methods consist in calculating the integral of the image
intensity along a curve that represents an underlying model of the object
sought in the image. The curve with the highest value for the integral is
selected as the best representation. The most known projective method is
the Hough transform, which uses straight lines as the model. The generalized
Radon transform, using polynomials, can be used to track a needle in a 3D
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US volume, as performed in [NP08]. Due to the high number of possible
configurations for the model in the image, projective methods are highly
computationally expensive, especially in 3D. In [OEC+06] detection rays
are first traced perpendicular to an estimation of the needle direction and
an edge detector is run along each ray to only keep one pixel along each
ray. This way the set of possible pixels belonging to the needle has a fixed
and relatively small size. The Hough transform is then use to find a line
approximation fitting the maximum of points. A polynomial fitting is finally
performed to find the best shape of the needle.

The pixel intensities can also be used directly with template matching
to provide a fast tracking of the needle tip, as is done in [KSAB16]. An
artificial neural network is used in [RG14] to directly compute for each pixel
in a region of interest the probability that this pixel belongs to the needle.

A particle filter is used in [CKN15] to locate a needle in 3D US. Each
particle consists in a 3D polynomial curve that is directly projected in the 3D
US volume. The probability that a particle corresponds to the real needle in
the volume is computed using the sum of the intensities of the voxels along
the curve and an additional term for the tip detection.

In the following section, we present the needle tracking algorithm that
we use in order to take into account the different points mentioned previ-
ously. We choose a direct approach to avoid the tuning of a threshold for a
segmentation step, and we use a method that only considers a limited set of
points in the image in order to keep a reduced computational complexity.

3.4 Intensity-based needle tracking

In this section we present the tracking algorithms that we designed to localize
the 3D position of the needle shaft using stereo cameras or 3D ultrasound
(US). Both algorithms use directly the intensity value of the pixels or voxels
located near the previous position of the needle to find its new best position.
Their local behavior allows for fast computations while using directly the
intensities make them independent of the quality of a prior segmentation of
potential points belonging to the needle. We first present the tracking using
stereo cameras and then we focus on the design of the algorithm to track a
needle in 3D US volumes.

3.4.1 Tracking with camera feedback

We present here the algorithm that we designed to track the 3D shape of a
needle embedded in a translucent gelatin phantom using two stereo cameras.
Since cameras are not clinically relevant to observe a needle embedded in real
tissues, it will be used for the validation of other aspects of the insertion,
such as the control of the needle trajectory. The experimental conditions are
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Figure 3.8: Illustration of the reconstruction of a 3D point from its position
observed in two images acquired by two different cameras. The red dots
represent the 2D position of the object seen in both images and the green
dot is the estimation of the 3D position of the object.

thus optimized such that the algorithm can provide an accurate and reliable
measure of the needle position. A uniform background is provided such that
the needle is clearly visible in the images. We describe in the following the
different steps allowing the measure of the 3D position of the needle from
the 2D images acquired by the cameras.

Camera registration: The two cameras are placed orthogonally to each
other to provide a 3D feedback on the position of the needle and the phan-
tom. The intrinsic parameters of each camera are first calibrated using the
ViSP library [MSC05] and a calibration grid made of circles. These pa-
rameters comprise the position of the optical center in the image, the ratio
between the focal length and the size of a pixel as well as two parameters
to correct for radial distortion of the image. Once these intrinsic parameters
are known, a mapping can be determined between each object in the image
and a corresponding line in 3D space on which the object is supposed to
lie. The relative pose between the cameras (translation and rotation) is then
calibrated using the same calibration grid viewed by both cameras [MUS16].
Any object observed in both images at the same time can be mapped to two
different lines in space using the intrinsic parameters. The position of the
object in 3D space can then be estimated by finding the closest point to the
two lines, as illustrated on Fig. 3.8. The 3D accuracy of this tracking system,
calculated from the size of the pixels and the distance of the needle from the
cameras, is approximately 0.25 mm around the location of the needle.

During the insertion procedure it can also be necessary to express the
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result of the needle tracking in the frame of the needle manipulator. In
order to register the position of the stereo acquisition system in the frame
of the needle manipulator, the needle is first moved in the field of view of
the cameras to a set of different positions known thanks to the manipulator
odometry. The needle is then detected in the images and a new set of
positions of the needle in the frame of the stereo cameras is computed. Point
cloud matching between the two sets of needle positions is then used to
find the pose of the stereo acquisition system in the frame of the needle
manipulator. Then the needle tracking algorithm can directly provide a
measure of the position of the needle in the frame of the needle manipulator.

Needle detection in 2D images: We use a gradient-based tracking al-
gorithm to track the needle seen in each image. The needle shape is ap-
proximated in the image with a third order polynomial curve defined by four
equi-spaced control points.

After the tracking has been initialized and a new image has been acquired,
a line is drawn for each control point such that it is normal to the previous
polynomial curve and passes by the control point. The two edges of the
needle shaft are found as the points corresponding to the maximum and
minimum values of the gradient along the normal line. The new position of
the control point is taken as the center between these two edges. A Kalman
filter is used to temporally smooth the position of each control point to
avoid abrupt changes than may correspond to a bubble or another object
with sharp edges near the control point.

A new polynomial curve is then computed from the new positions of the
control points. An edge detection is finally performed along a line tangent
to the extremity of the curve to find the new position of the needle tip.

3D needle reconstruction: After the tracking as been done in each im-
age, two 2D polynomial curves are available, which correspond to the pro-
jection of the 3D needle on the images. Several points are sampled along
one of the 2D curves and then matched to their corresponding point on the
2D curve in the second image, using the intrinsic parameters of the cameras
and their relative pose. A 3D point is then reconstructed from each pair of
matching 2D points along the needle (see Fig. 3.8). Finally the 3D needle is
reconstructed by fitting a 3D polynomial curve to the set of 3D points.

The new 3D needle curve is then projected back onto each image to
initialize the tracking in the next images. This allows a further smoothing
of the motion of the 2D curves in the images and provides a way to recover
if one of the 2D tracking in the image partially fails.
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3.4.2 Iterative tracking using ultrasound needle artifacts

We describe here the new tracking algorithm that we use to track a flexible
needle in 3D ultrasound (US) volumes. We first mention different points
that drove us toward the development of the algorithm and then we present
the algorithm itself.

Needle artifacts: The presence of a needle in the field of view of an
US probe leads to strong echos reflected back to the transducer due to the
high difference of density between the needle and the tissues. This results
in a bright region observed in the reconstructed US volume. Therefore a
majority of needle tracking algorithms are designed to find the location of
the needle in the middle of a bright zone. However the bright signal observed
around the needle can mostly be due to US artifacts, like reverberation
artifacts or lateral resolution degradation due to side lobes and beam width,
as was presented in section 3.3.1. The effects of lateral resolution degradation
are usually symmetric, such that the needle can effectively be found in the
center of the bright zone in the lateral direction. However in the beam
propagation direction, only the first received echo corresponds to the first
wall of the needle, while subsequent echos are either due to the second wall
or reverberations inside the needle. Therefore the real position of the center
of the needle is located just after the first echo and not in the center of the
bright signal. Detecting the needle in the center of the bright zone would
result in an erroneous estimation of the real position of the needle. For this
reason the algorithm that we propose in the following is optimized to take
into account such artifacts.

Segmentation: Some algorithms first perform a segmentation of the US
volume to isolate the voxels that are likely to belong to the needle. A second
algorithm, typically a Random Sample Consensus (RANSAC) algorithm,
is then used to find among those voxels the largest set that fits the best a
predefined geometrical model of the needle shape. Hence the performances of
this second algorithm highly depend on the quality of the segmentation step,
both in terms of accuracy and processing time. However the segmentation of
the needle is also usually heavily dependent on a threshold that determines if
a given voxel belongs or not to the needle. A too high value of the threshold
may lead to ignore some parts of the needle that are less bright than the rest,
due to shadowing from other structures or a too large angle of incidence with
the US beam. On the contrary, with a low value of the threshold too many
voxels may be included, belonging to bright structures, background noise or
needle artifacts. In practice the best tuning of the threshold may depend on
the actual content of the volume, which can change over time during a same
operation. In order to avoid these issues, we use directly the intensity of the
voxels without prior segmentation step.
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Computation time: In order to perform real-time control, the tracking
algorithm should be able to provide an estimation of the position of the
needle than is not too outdated with the real position of the needle. The ac-
quisition and reconstruction of a 3D US volume in Cartesian space already
introduces a delay, such that any further delay should be reduced to the
minimum. Time consuming algorithms, like projective algorithms, usually
perform heavy computations on a large set of voxels. These approaches are
usually optimized using parallelization to achieve good timing performances.
However this require specialized hardware, which can increase the cost of a
needle tracking system. On the opposite, local algorithms only consider a
limited set of voxels in the vicinity of an initial guess of the needle position.
This initial guess is then refined iteratively until the new position of the
needle is found. The actual result of such methods depends on their initial-
ization, however they can perform with great speed and accuracy when the
initial guess is not too far from the real needle. By exploiting only the data
in a small region, they also ignore most outliers present in the volume, like
other linear structures that could be mistaken for a needle by a global detec-
tion algorithm. Therefore in the following we choose to use a local approach
to perform needle tracking.

Iterative tracking using needle artifacts: In order to address the dif-
ferent points mentioned previously, we propose to detect the position of the
shaft of the needle in 3D US using a local iterative algorithm that directly
uses the voxels intensities and takes into account the artifacts that are spe-
cific to the needle.

The algorithm is initialized around a 3D polynomial curve that represents
a prediction of the needle body position in the US volume. The curve is
defined by N control points equi-spaced along the curve. Several polynomial
curve candidates are then sampled all around the first one by displacing each
of the control points by a given step in the directions normal to the needle.
Five positions are thus generated for each control points, leading to a total
of 5N curve candidates. The best curve is selected among the candidates
to maximize a cost function calculated from the voxels intensities. The
algorithm is then repeated around the new selected curve, until no better
curve can be found around the current best one. In the following we note ci
the polynomial curve candidates, with i ∈ [[1, 5N ]], and V (ci(l)) the intensity
of the voxel at position ci(l), with l the curvilinear coordinate along the
curve.

In order to take into account the different points mentioned previously,
the cost function J(ci) associated to a curve ci is defined as follows

J(ci) = J3(ci)

∫ L

0
(J1(l) + J2(l)) dl, (3.38)

where L is the length of the curve ci and J1, J2, J3 are different sub-cost
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Figure 3.9: Illustration of the sub-cost functions used for the local tracking
algorithm. The voxel intensities in the dark blue box should be low, so
they are subtracted from sub-cost J1 (see eq.(3.39)), while the ones in the
orange box should be high and are added to J1. Similarly, voxels in the green
boxes are added to the sub-cost J2 (see eq.(3.41)). Once the needle has been
tracked laterally by maximizing the total cost function J (see eq.(3.38)), a
research of the tip is performed along the tangent at the extremity of the
needle to maximize the function J4. The voxel intensities in the light blue
box are subtracted from J4 (see eq.(3.44)) while the ones in the yellow box
are added.

functions. Figure 3.9 provides an illustration of the different sub-cost func-
tions used in the algorithm.

J1 is used to detect the first wall of the needle in the beam propagation
direction and to place the curve at a distance corresponding to the radius of
the needle under this edge:

J1(l) =−
∫ 0

−Ld
w(s) V (ci(l) + (s− rN ) d(l)) ds (3.39)

+

∫ Ld

0
w(s) V (ci(l) + (s− rN ) d(l)) ds,

where Ld defines the amount of voxels taken to perform the integrals, w is
a weighting function used to give more importance to the voxels near the
center of the integration zone, d(l) ∈ R3 is the beam propagation direction
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at needle point ci(l) and rN denotes the radius of the needle expressed in
voxels. We used a triangular profile for w, defined such that

w(s) =


Ld+s
L2
d

if − Ld < s < 0
Ld−s
L2
d

if 0 ≤ s < Ld

0 otherwise

. (3.40)

J2 is used to promote the curves that are laterally centered in the bright
zone, i.e. bright portions that spread in a normal direction to the US beam

J2(l) =

∫ Ln

−Ln
w(s) V (ci(l) + s n(l)) ds, (3.41)

where Ln defines the amount of voxels taken to perform the integral, and
n(l) ∈ R3 is a unit vector normal to the needle curve and beam propagation
direction at the needle point ci(l) defined such that

n(l) =
d(l)× dci

dl
(l)∥∥∥∥d(l)× dci

dl
(l)

∥∥∥∥ . (3.42)

The parameters Ld and Ln can be tuned to set the number of voxels
taken into account around the curve candidates. Low values can be used
to decrease the computations but the algorithm becomes more sensitive to
noise in the volume. On the contrary, high values increase the computation
time but introduce a better filtering of the noise. A trade-off can be achieved
by choosing intermediate values corresponding to the expected dimensions
of the cross section of the needle.

Finally J3 is used to penalize curves with high curvatures that may result
from fitting adjacent background noise

J3 =
ε

ε+ 1
L

∫ L
0

∥∥∥∥d2ci
dl2

(s)

∥∥∥∥ ds

(3.43)

where ε is a parameter used to define a curvature threshold from which the
curvatures are penalized.

Tip tracking: Once the curve has been laterally fitted, the location of the
needle tip pt is sought in the alignment of the extremity of the best curve
cbest to maximize the following cost function

J4 =

∫ 0

−Lt
w(s) V

(
pt + s

dcbest
dl

(L)

)
ds (3.44)

−
∫ Lt

0
w(s) V

(
pt + s

dcbest
dl

(L)

)
ds,
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where Lt defines the amount of voxels taken to perform the integral. The
parameter Lt can be tune similarly to Ld and Ln to find a trade-off between
computational cost and sensitivity to noise.

Due to the local and iterative nature of the algorithm, its performances
in terms of timing and detection accuracy depend on the quality of the ini-
tialization of the needle position. With a proper initialization, the algorithm
can perform fast and fit the exact shape of the needle. This can for example
be obtained by using a model-based estimation of the needle motion between
two acquisitions of the US volume. The tracking and timing performances
of the algorithm are evaluated in the next section.

3.4.3 Experimental validation

We propose to illustrate the performances of our needle tracking algorithm
in 3D ultrasound (US) during the insertion of a needle. We compare the
tracking result with an algorithm that uses the Random Sample Consensus
(RANSAC) algorithm after an intensity-based binarization of the volume, in
order to show the limitations that can appear with such algorithm.

Experimental conditions: We use the wobbler probe and US station
from BK Ultrasound to record a sequence of US volumes during the insertion
of the Angiotech biopsy needle in a gelatin phantom. The needle is inserted
using the Viper s650 and the US probe is held and maintained fix by the
Viper s850 such that it is normal to the insertion direction, as depicted in
Fig. 3.10.

The acquisition parameters of the US probe are set to acquire 31 frames
during a sweeping motion with an angle of 1.46◦ between successive frames.
Due to the strong reflectivity of the walls of the container and the low atten-
uation in gelatin, a reverberation of the US wave occurs between the surface
of the probe and the opposite wall. The acquisition depth is set to 15 cm,
which is larger than the container, in order to remove the artifacts created

Figure 3.10: Picture of the setup used to acquire volume sequences of needle
insertions in a gelatin phantom. The Viper s650 robot holds the needle on
the left and the Viper s850 robot holds the probe on the right.
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by this reverberation from the region where the needle is in the volume.
This results in the acquisition of one volume every 900 ms and a maximal
resolution of 0.3 mm × 1 mm × 2 mm at the level of the needle, which
is approximately 5 cm away from the probe. The spacial resolution of the
post-scan volume is set to 0.3 mm in all directions and linear interpolation is
used for the reconstruction. A focus length of 5 cm is set for the transducer
to obtain a good effective resolution near the needle. The needle is inserted
slowly at 1 mm.s−1 such that the needle position is only slightly different
between two volumes.

Tracking algorithm: We compare our intensity-based tracking algorithm
to the result obtained with a tracking using RANSAC algorithm. For our
algorithm, we set the size of the integration regions Ld, Ln and Lt to 10
voxels (see (3.39), (3.41) and (3.44)), corresponding to a distance of 3 mm
around the needle. A manual initialization of both tracking algorithms is
performed in the first volume after the needle as been inserted 1.5 cm in
the phantom. The threshold for the volume binarization necessary for the
RANSAC algorithm is chosen just after the initialization. The maximum
intensity level along the needle is computed and the threshold is set to 80%
of this value. The robustness of the RANSAC algorithm is increased by
rejecting obvious outliers during the sampling process, which are identified
if the length of the detected needle is lower than 90% of the length of the
needle detected in the previous volume.

Results: Both algorithms can track the needle without failing in a se-
quence of 3D US volumes. However they yield different shapes of the tracked
needle at the different steps of the insertion. We detail these differences in
the following.

Limited needle intensity: Figure 3.11 shows two cross sections of a
volume acquired near the beginning of one insertion. Due to the location
and orientation of the needle with respect to the probe, a great part of the
US beam reflected by the needle shaft does not return to the transducer,
resulting in a low intensity along the needle. On the contrary, the needle
tip is more visible and some strong reflections also occur near the surface.
Hence, after applying a threshold to the image for the RANSAC algorithm,
only the tip and the artifacts due to the insertion point remains. The needle
tip can still be found thank to the rejection of short fitting curves in the
RANSAC algorithm, without which the best linear fit would be the artifact
in this case. However the result does still overfit the artifact, leading to a
global tracking that does not correspond to the real shape of the needle. On
the other hand, our algorithm can accurately fit the shape of the needle in
spite of the low intensity along the needle shaft.
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Figure 3.11: Tracking of the needle at the beginning of the insertion. The
needle tracked using the proposed algorithm is represented in green and the
needle tracked using the RANSAC algorithm is represented in red. Due to
the large incidence angle with the ultrasound beam, the intensity along the
needle shaft is reduced. Thresholding the image for the RANSAC algorithm
yield only the needle tip and the strong reflections near the surface, leading
to inaccurate needle shaft detection. On the contrary, taking all voxels into
account leads to a better detection of the edges of the needle.

73



CHAPTER 3. NEEDLE LOCALIZATION USING ULTRASOUND

This shows that using a threshold to binarize the volume does not allow
an adaptation to the variations of intensity along the needle. On the op-
posite, taking into account all levels of intensities allows exploiting all the
information available on the edge of the needle, leading to a better tracking.
Let us now consider the cases where higher intensities are available along the
needle shaft and not only at the needle tip.

Artifact fitting: Figure 3.12 shows three cross sections of a volume
acquired in the middle of the insertion process. This time a part of the needle
is almost normal to the beam propagation direction, such that a strong echo
is reflected and results in a clearly visible bright region. Reverberation and
side lobes artifacts are clearly visible in this case. The algorithm based on
RANSAC tends to center in the middle of the bright region, which mainly
contains reverberation artifacts. The resulting tracking is thus shifted with
respect to the real position of the needle shaft. On the contrary our algorithm
can fit to the first echo produced by the needle.

Conclusion: These experiments have shown that our intensity-based track-
ing algorithm allows taking into account needle artifacts, created by rever-
beration or beam width, to accurately detect the position of the needle body
in 3D US volumes. Using directly the voxels intensities allows adapting to
variations of intensities along the needle shaft. This point is important for
real applications since the needle intensity may vary due to different phe-
nomena, such as reflection outside of the transducer or shadowing from other
structures. Therefore, this tracking algorithm will be used in the following
for all experiments performed under 3D US feedback.

Nevertheless, we tested the tracking using a slow insertion speed such that
the needle motion was small between two acquisitions. The local tracking
could then perform smoothly. In practice it is possible that motions with
greater amplitude occur between two acquisitions, either due to a faster
manipulation of the needle base or due to some movements of the tissues
induced by physiological motions of the patient. The first point can be
addressed by using a model that can predict the new position of the needle
after a given motion has been applied to its base, like the model that we
proposed in the previous chapter 2. The second point, however, requires
to estimate the motions of the tissues, which will be the focus of the next
section.
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Figure 3.12: Tracking of the needle in the middle of the insertion. The needle
tracked using the proposed algorithm is represented in green and the needle
tracked using the RANSAC algorithm is represented in red. Reverberation
artifact is visible along the needle shaft in the beam direction (approximately
x axis) resulting in a comet tail that can be seen in the needle cross section
view (xz view). Side lobes artifacts normal to this direction can also be seen
on each side of the needle (along the z axis). Some parts of these artifacts
are included in the binarized volume after thresholding, resulting in a biased
tracking with the RANSAC algorithm. On the contrary, the tracking taking
artifacts into account fits the first echo and ignores the reverberation artifact.
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3.5 Tissue motion estimation

During needle insertion, physiological motions of the patient, like breathing,
can induce a displacement of the tissues around the needle. This can modify
the needle shape and the future trajectory of the needle tip. The effect of
lateral tissue motions is all the more important when using flexible needles.
Such needles indeed tend to follow the motions of the tissues without ap-
plying a lot of resistance. The modification of the future trajectory is also
amplified when the part of the needle that is outside of the tissue is long,
mainly at the beginning of the insertion. Therefore the interaction model
needs to be updated online in order to account for such tissue motions and
be able to provide a good estimation of the current state of the insertion.

In this section we present the method that we propose and have validated
to update the model. The state of the tissue model presented in previous
chapter (section 2.4.2) is estimated using an unscented Kalman filter (UKF).
We first give a general presentation of Bayesian filtering and the formulations
of particle filters and UKF. In a second part we provide more details to ex-
plain how we adapted the UKF to different kinds of available measurements
including needle position feedback, provided by visual or electromagnetic
tracking, and force feedback.

3.5.1 Multimodal estimation

3.5.1.1 Bayesian filtering

In this section we present and develop the general principles of Bayesian
filtering that leads to the design of the unscented Kalman filter (UKF) and
particle filter (PF). In the following sections and chapters, the UKF will be
used for state estimation and applied to the case of needle-tissue interaction
modeling.

System modeling: Bayesian filtering is a general approach used to esti-
mate the state of a system given some observations of this system. The first
step is to provide a model of the evolution of the state of the system over
time. Let consider a system that can be fully parameterized at each instant
using a state vector x ∈ RNx containing Nx state variables. The system can
also be controlled using an input vector u ∈ RNu containing Nu components.
The evolution of the system can generally be modeled with a state equation
such that

xk+1 = fk(xk,uk,wk), (3.45)

where k represents the time index, wk ∈ RNw is a process noise of dimension
Nw with covariance matrixQk ∈ RNw×Nw and fk : RNx×RNu×RNw → RNx
is a function to model the deterministic behavior of the system.
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Let y ∈ RNy be a vector of Ny measures on the system such that

yk = hk(xk,uk,νk), (3.46)

where νk ∈ RNν is a measurement noise of dimension Nν with covariance
matrix Rk ∈ RNν×Nν and hk : RNx × RNu × RNν → RNy is a function
representing the deterministic measurement model.

General principles: Bayesian filtering consists in estimating the probabil-
ity density function (pdf) p(xk|yk, . . . ,y0) of the current state knowing the
current and past measurements. In the following we slightly develop the com-
putations that are used to provide a recursive estimation of p(xk|yk, . . . ,y0).

It can be shown using Bayes law that we have the following relationship:

p(xk|yk, . . . ,y0) =
p(yk|xk,yk−1, . . . ,y0) p(xk|yk−1, . . . ,y0)

p(yk|yk−1, . . . ,y0)
, (3.47)

where p(yk|xk,yk−1, . . . ,y0) is the pdf of the current measure knowing the
current state of the system and the past measures, p(xk|yk−1, . . . ,y0) is
the pdf of the current state of the system knowing the past measures and
p(yk|yk−1, . . . ,y0) is the pdf of the current measure knowing the past mea-
sures.

First it can be seen that the denominator p(yk|yk−1, . . . ,y0) does not
depend on xk and is thus equivalent to a scaling factor for p(xk|yk, . . . ,y0).
Since the integral of a pdf is always equal to 1, it is sufficient to compute
and normalize the numerator, so that this scaling factor does not need to
be computed and can be dropped. In addition, in order to simplify the
derivation of the recursive filter, it is assumed that the system follows a first
order Markov process, i.e. the state xk of the system at time k only depends
on the previous state xk−1 and is independent of the other states before that
time. Using this assumption and the observation equation (3.46) we get the
simplification

p(yk|xk,yk−1, . . . ,y0) = p(yk|xk). (3.48)
It can also be noted that p(xk|yk−1, . . . ,y0) can be further developed

using the chain rule:

p(xk|yk−1, . . . ,y0) =

∫
p(xk|xk−1)p(xk−1|yk−1, . . . ,y0)dxk−1, (3.49)

where p(xk|xk−1) is the pdf of the current state knowing the previous state of
the system and p(xk−1|yk−1, . . . ,y0) is the pdf of the previous state knowing
the past measures.

Finally we get the recursive formula

p(xk|yk, . . . ,y0) ∝ p(yk|xk)p(xk|yk−1, . . . ,y0) (3.50)

∝ p(yk|xk)
∫
p(xk|xk−1)p(xk−1|yk−1, . . . ,y0)dxk−1.

(3.51)
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Figure 3.13: Illustration of the principle of Bayesian filtering

An graphical illustration of this equation is provided in Fig. 3.13.
In practice p(xk−1|yk−1, . . . ,y0) is known from the previous step of the

recursive method, p(xk|xk−1) can be estimated using the evolution model
(3.45) and p(yk|xk) can be estimated using the the measurement model
(3.46). Hence most Bayesian filters proceed in two steps: a prediction step,
where a prediction of the state is made based on the previous estimate, i.e.
p(xk|yk−1, . . . ,y0) is computed using (3.49), and an update step, where the
new measure is integrated to correct the prediction, i.e. p(xk|yk, . . . ,y0) is
computed using (3.50).

Implementations: There exists many families of Bayesian filters that use
different methods to get the estimations of the different pdfs and perform the
prediction and update steps. For an overview of Bayesian filters we invite
the reader to refer to [vdMdFDW00] or [Che03].

The family of the particle filters uses a finite set of samples to approxi-
mate the pdf. This allows a good estimation of the pdfs but requires more
computational resources, especially for a high dimensional state space.

The family of the Kalman filters (KFs) uses the Gaussian approximation,
i.e. all the pdfs are Gaussian. This greatly reduces the computations but
may lead to approximations when the real pdfs are highly non-Gaussian.
Figure 3.14 shows an illustration of these different approximations.

In the following we briefly focus on particle filtering before detailing more
thoroughly the Kalman filters.
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Figure 3.14: Illustration of the pdf approximations used by Kalman filters
(KF) and particle filters (PF).

3.5.1.2 Particle filter

The principle of the particle filters (PFs) is to use a large set of Np weighted
samples Xi, called particles, to approximate the different pdfs. The weights
wi associated to each particle are a representation of the likelihood of the
particle and are defined such that

∑Np
i=1wi = 1. A pdf g(x) of a random

variable x is thus approximated as

g(x) ≈
Np∑
i=1

wi δ (x−Xi) (3.52)

where δ is the Dirac delta function. Using this approximation, the pdfs in
(3.51) are reduced to finite sums. The main advantage of the PF is that it can
be used with non-linear systems as well as non-Gaussian pdfs. However its
performance depends on the number of particles used in the approximations.
A high number of particles is usually required to obtain a good accuracy,
especially when considering high dimensional state spaces, which increases
its required computational load. Many variants of the PF exist depending
on the method used to sample and update the particles [Che03].

On the contrary, Kalman filters offer a reduced complexity and are de-
terministic since they do not rely on a random sampling process. Therefore
we will use these kind of filters in the following.

3.5.1.3 Kalman filters

Let develop the case of the KFs a bit further. Under the Gaussian assump-
tion, each pdf can be entirely characterized using only their mean µ and
covariance matrix P , such that they take the form

p(x) =
1√

(2π)Nx |P |
e−

1
2

(x−µ)TP−1(x−µ), (3.53)
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with |P | the determinant of P and .T the transpose operator. An estimate of
the state at the end of each step can directly be built using the mean of the
state pdf and the covariance matrix gives the uncertainty on this estimate. In
the following we note x̂k|k−1 and P x,k|k−1 the mean and covariance matrix,
respectively, of the pdf of the state at the end of the prediction step, and
x̂k and P x,k the same at the end of the update step. We also introduce the
prediction of the measures at the end of the prediction step ŷk.

It can be shown that the update step can be reduced to

x̂k = x̂k|k−1 +Kk(yk − ŷk), (3.54)

P x,k = P x,k|k−1 −KkP ỹ,kK
T
k , (3.55)

Kk = P xy,kP
−1
ỹ,k, (3.56)

where Kk ∈ RNx×Ny is called the Kalman gain, P xy,k ∈ RNx×Ny is the
covariance matrix between xk and yk, and P ỹ,k ∈ RNy×Ny is the covariance
of the innovation ỹk = yk − ŷk.

Different versions of KFs can be derived depending on the method used
to propagate the pdfs through the evolution and observation equations. For
completeness we briefly describe the most known classical KF and extended
Kalman filter (EKF) before detailing the UKF.

Kalman filter and extended Kalman filter: For both KF and EKF,
the propagations of the pdfs are done by directly propagating the means
through the system equations, (3.45) and (3.46), and the covariance matrices
through a linearized version of the equations. The prediction step is thus
computed according to

x̂k|k−1 = fk(x̂k−1,uk−1,0), (3.57)

P x,k|k−1 = F k−1P x,k−1F
T
k−1, +W k−1Qk−1W

T
k−1 (3.58)

ŷk = hk(x̂k|k−1,uk,0), (3.59)

where F k =
∂fk
∂x

∣∣∣
x=x̂k

∈ RNx×Nx , (3.60)

W k =
∂fk
∂w

∣∣∣
x=x̂k

∈ RNx×Nw . (3.61)

The update step is performed as stated previously in (3.54) and (3.55) with
the values

P xy,k = P x,k|k−1H
T
k , (3.62)

P ỹ,k = HkP x,k|k−1H
T
k +GkRkG

T
k , (3.63)

where Hk =
∂hk
∂x

∣∣∣
x=x̂k|k−1

∈ RNy×Nx , (3.64)

Gk =
∂hk
∂ν

∣∣∣
x=x̂k|k−1

∈ RNy×Nν . (3.65)
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The difference between the KF and EKF is that the KF makes the addi-
tional assumptions that the system is linear, while the EKF can be used with
non-linear systems. This way no linearization is required for the KF, which
reduces the computational complexity and makes it easy to implement. In
this case the system equations become

xk+1 = F kxk +Bkuk +W kwk, (3.66)
yk = Hkxk +Dkuk +Gkνk, (3.67)

with Bk ∈ RNx×Nu and Dk ∈ RNy×Nu .

Unscented Kalman filter: The UKF proposed by Julier et al. [JU97] is
a sample-based KF hence approaching from a PF. It uses a small number
of weighted state samples, called sigma points, to approximate the Gaussian
pdfs. The propagation of the pdfs through the system is done by propagating
the sigma points in the system equations. The advantage of this method is
that it does not linearize the equations around one point but instead propa-
gates the sigma points through the non-linearities. This way the propagation
can be achieved with a higher order of approximation than with the EKF
in the case of a highly non-linear system [WVDM00] while also being less
computationally demanding than PF.

In the case of a numerical model for which the linearization in the EKF
can not be done analytically, the UKF requires similar computations as the
EKF. Therefore, due to its better performances and simplicity, we will use
the UKF to update our numerical interaction model instead of the other
filters presented previously. We develop its principle a bit further in the
following.

Augmented state: Usually, the process and observation noises, w and
ν, are incorporated with the state x in an augmented state xa ∈ RNx+Nw+Nν

such that

xa =

 x
w
ν

 , P a
x =

 P x P xw P xν

P xw Q Pwν

P xν Pwν R

 (3.68)

with P xw ∈ RNx×Nw the covariance between the state and process noise,
P xν ∈ RNx×Nν the covariance between the state and the measurement
noise and Pwν ∈ RNw×Nν the covariance between the process noise and the
measurement noise. Under this form, the UKF allows taking into account
non-linear incorporation of correlated noises. For simplicity of notation and
computation, we assume in the following that the process and measure-
ment noises w and ν are independent additive noises. This way P xw = 0,
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P xν = 0, Pwν = 0 and the system equations take the form

xk+1 = fk(xk,uk) +wk, (3.69)
yk = hk(xk,uk) + νk, (3.70)

This simplification allows us to follow the UKF steps using only the state x
instead of the augmented state xa.

Prediction and update steps: At each iteration, a set of 2Nx + 1
sigma points Xi, i ∈ [[0, 2Nx]], is sampled from the current state pdf according
to the weighted unscented transform, so that

X0 = x̂k−1,
Xi = x̂k−1 + (

√
NxαP x)i , i = 1, . . . , Nx,

Xi = x̂k−1 − (
√
NxαP x)i−Nx , i = Nx + 1, . . . , 2Nx,

(3.71)

where α is a positive scaling factor than is used to control the spread of
the sigma points and ()i denotes the ith column of a matrix. Using a large
value for α leads to wide spread sigma points and a small value leads to
sigma points close to each other. Tuning this parameter may be difficult as
it should depend on the shape of the non-linearity that is encountered. Close
sigma points may be equivalent to a linearization of the non-linearity while
spread sigma points may be too far from the non-linearity of interest, which
may lead to a reduced quality of the filtering in both cases.

The prediction step is performed by propagating each sigma point through
the evolution equation (3.69):

Xi ← fk−1(Xi,uk−1) i = 0, . . . , 2Nx. (3.72)

The mean x̂k|k−1 and covariance matrix P x,k|k−1 of the Gaussian pdf associ-
ated to the new propagated set can then be computed using weighted sums
along the new propagated sigma points:

x̂k|k−1 =

2Nx∑
i=0

W
(m)
i Xi, (3.73)

P x,k|k−1 = Q+

2Nx∑
i=0

W
(c)
i (Xi − x̂k|k−1)(Xi − x̂k|k−1)T , (3.74)

with W
(m)
0 =

(α2 − 1)

α2
, (3.75)

W
(c)
0 =

(α2 − 1)

α2
+ 3− α2, (3.76)

W
(m)
i = W

(c)
i =

1

4α2
, i = 1, . . . , 2Nx. (3.77)
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Figure 3.15: Illustration of the unscented Kalman filter

For the update step, a corresponding estimate of the measures Yi is then
associated to each sigma point using the measure equation (3.70):

Yi = hk(Xi,uk) , i = 1, . . . , 2Nx. (3.78)

The standard update step ((3.54)-(3.56)) is finally performed to obtain
the final estimate of the new state mean and covariance. The different terms
are estimated as weighted sums along the sigma points:

ŷk =

2Nx∑
i=0

W
(m)
i Yi, (3.79)

P xy,k =

2Nx∑
i=0

W
(c)
i (Xi − x̂k|k+1)(Yi − ŷk)T , (3.80)

P ỹ,k = R+

2Nx∑
i=0

W
(c)
i (Yi − ŷk)(Yi − ŷk)T . (3.81)

An illustration of the different steps of the UKF is provided in Fig. 3.15.

Discussion: As a side remark, it can be noted that all the operations
performed in the KFs assumes that the variables lie in a vector space. In
the case where one of the variables lies in a manifold that does not reduce
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Figure 3.16: Illustration of the unscented Kalman filter on manifolds.

to a vector space, the vector operations, such as addition or multiplication
by a matrix, lose their signification. The Gaussian pdfs are also harder
to define on manifolds. This can typically be the case when considering
orientations in the state space or measurements space. In that case we use
the manifold version of the KFs as described for the UKF by Hauberg et al.
[HLP13]. This method basically consists in mapping the variables (sigma
points or their associated measure estimates) to a tangent space at some
point of the manifold using the logarithm map. This way all the linear
operations developed previously can be used on this tangent space, which is
a vector space. Note also that the covariance matrices only make sense on
the tangent space. Once the calculations have been performed, the resulting
estimates of the state or measures can be mapped again on the manifold
using the exponential map. At each prediction step the tangent space of the
state manifold is taken at the current state estimate x̂k, corresponding to
the center sigma point X0. The remaining sigma points are sampled in this
tangent space according to (3.71). Similarly, at each update step the tangent
space of the measure manifold is taken at the measure estimate of the center
sigma point Y0 = hk(X0,uk). The measures associated to each sigma point
are then all mapped to this tangent space. The covariance matrices can then
be computed using (3.80) and (3.81) by replacing in the equations the sigma
points and measure estimates by their corresponding mapping on the tangent
spaces. An illustration of the logarithm and exponential map as well as the
different steps of the UKF on manifold spaces can be found in Fig. 3.16.

Now that the general formulation of the UKF has been presented, next
section develops how we make use of it to update the state of our needle-
tissue interaction model.
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3.5.2 Tissue motion estimation using unscented Kalman fil-
ter

In this section we present how we use the unscented Kalman filter (UKF) to
estimate the tissue motions and update our needle-tissue interaction model
presented in section 2.4.2. We will consider two kinds of measurements:
measurements on the geometry of the needle, such as position or direction
of some point of the needle shaft, and measurements of the force and torque
exerted at the base of the needle. The method is described in such a way
that it is independent of the method actually used in practice to provide
the measurements. Position and direction feedback can for example be pro-
vided by an electromagnetic (EM) tracker placed somewhere inside the nee-
dle or through shape reconstruction using fiber Bragg grating [PED+10].
It can also be provided by a needle detection algorithm that runs on some
visual feedback; the visual feedback itself can be of various nature, as for
example a sequence of 2D or 3D images provided by cameras [BAPB13], ul-
trasound [KSAB16], computerized tomography [HGG+13] or magnetic reso-
nance imaging [PvKL+15]. We do not consider the case where the position
of the tissues is directly provided, for example by using an EM tracker or a
visual marker placed on the tissue surface. Although the method could also
be used with such measures, it poses additional issues that will be observed
and discussed later in section 3.6.2.

3.5.2.1 Evolution equation

Let define the state of the UKF as the position x ∈ R3 of the tissues in the
two-body model. We take this state as the position of the extremity of the
tissue spline near the tissue surface and expressed in the world frame {Fw},
as illustrated in Fig. 3.17.

In the case where prior information is known on the tissue motions, this
can be included in the evolution model by choosing an adequate function fk
in (3.45). For example a periodic model of breathing motion [HMB+10] can
be used when needle insertion is performed near the lungs and the patient
is placed under artificial breathing, leading to

xk = a+ b cos2n

(
πtk
T

+ φ

)
, (3.82)

where T is the period of the motion, a ∈ R3 is the initial position, b ∈ R3 is
the amplitude of the motion, φ ∈ R is the phase of the motion, n ∈ N is a
coefficient used to tune the shape of the periodic motion and tk is the time.

Using a model for tissue motions has the advantage that the process
noise in the filter can be tuned with lower values of uncertainties in the
covariance matrix, leading to an overall better smoothing of the measures.
It can also be used to provide a prediction of the future position of the
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Figure 3.17: Illustration of the two-body model and definition of the state x
considered for the unscented Kalman filter (UKF).

tissues. However, if the model does not fit the real motion, it may lead
to poor filtering performances. In most situations, the exact motion of the
tissues is not known and additional parameters to estimate need to be added
to the state, such as the motion amplitude b, the period T or the phase φ.
This, however, adds a layer of complexity to the model and can induce some
observability issues if the number of measurements is not increased as well.

In clinical practice, patients are rarely placed under artificial breathing
or even general anesthesia for needle insertion procedures such a biopsies.
Breathing motion can then be hard to model perfectly since it may have
amplitude or frequency varying over time. It may also happen that the
patients suddenly hold their breath or simply move in a way that is not
expected by the model. In this case the prediction can be far from the
reality and may cause the state estimation to diverge.

In order to take into consideration the previous remarks and be able to
account for any kind of possible motions, we choose a simple random walk
model. This offers great flexibility but at the expense of reduced prediction
capabilities on the tissue motions. The corresponding evolution equation can
be written as

xk+1 = xk +wk. (3.83)

The advantage of this form is that the equation is linear and the noise
is additive. This way it is not required to use the unscented transform to
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perform the prediction step, which reduces to

x̂k|k−1 = x̂k−1, (3.84)

P x,k|k−1 = P x,k−1 +Qk−1. (3.85)

The sigma points can then be sampled using x̂k|k−1 and P x,k|k−1 for the
update step that we describe in the following.

3.5.2.2 Measure equation

One advantage of the UKF is that we can use our interaction model to pro-
vide a numerical way to compute the measure function hk without analytic
formulation. We consider the case where the needle is constantly held by a
needle holder that provides a pose feedback of its end effector thanks to me-
chanical odometry. The pose of the needle base in the model is thus regularly
updated using this feedback during the insertion. This way, even without
tissue motions, it is possible that the shape of the needle changes. Therefore
the function hk relating the estimated state to the measurements can greatly
vary between two successive update steps and provides some prediction of
the measures.

Needle position: Let first consider the case where the measurements con-
sist in a set of points belonging to the needle. Let define a set ofM points pj ,
j ∈ [[1,M ]], located at some given curvilinear coordinates lj on the needle.
In that case the measure vector can be written as

y =

 p1
...
pM

 . (3.86)

From the model of the needle, the estimates p̂j of the measured needle points
can be computed according to

p̂j = cN (lj), (3.87)

where we recall that cN is the spline curve representing the needle in the
model. Note that it is possible to change the dimension of the measure
vector y and the curvilinear coordinates lj depending on the measures that
are available. For example if a needle tracking algorithm is used, points
can be added when and where the needle is clearly visible in the image,
while fewer points may be available when and where the needle is almost
not visible. The dimensions of the measurement noise vector νk and its
covariance matrix Rk will also vary accordingly.
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Needle direction: In some cases the direction of the body of the needle at
some given curvilinear coordinates ld can also be measured. This is typically
the case when using a 5 degrees of freedom EM tracker embedded in the tip
of the needle. In that case the measure vector can be written as

y = d =

 dx
dy
dz

 , (3.88)

where d ∈ S2 is a unit vector tangent to the body of the needle at the
curvilinear coordinates ld and S2 denote the unity sphere in R3. From the
model of the needle, the estimates of the needle body direction at curvilinear
coordinate ld can be computed according to

d̂ =
dcN (l)

dl

∣∣∣
l=ld

. (3.89)

In that case, since S2 is not a vector space, we need to use the version
of the UKF on manifold that was discussed in section 3.5.1.3. The tangent
space of S2 is taken at the measure estimate Y0 associated to the center
sigma point. In this particular case the logarithm map of a measure point
Yi is the angle-axis rotation vector θu representing the rotation between Y0

and this measure point. This can be computed using

LogY0(Yi) = θu, (3.90)

with u =
Y0 × Yi
‖Y0 × Yi‖

, (3.91)

θ = atan2(‖Y0 × Yi‖,Y0.Yi), (3.92)

where × denotes the cross product between two vectors, u is the axis of
the rotation and θ is the angle between the two vectors Y0 and Yi. The
exponential map of an angle-axis rotation vector θu in the tangent space is
obtained by rotating Y0 according to this rotation vector, such that

ExpY0(θu) = cos(θ)Y0 + sin(θ)u× Y0. (3.93)

Efforts at the needle base: Let us now consider the measures of the
force and the torque exerted at the needle base. Since our needle model does
not take into account any axial compression or torsion, it can not be used
to provide estimates of the axial force and torque exerted on the base. So
we only consider the measures of the lateral forces and torques, which are
sufficient to estimate the lateral motions of the tissues. The corresponding
measure vector can be written as

y =

[
f b
tb

]
. (3.94)
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where f b ∈ R2 is the lateral force exerted at the base of the needle and
tb ∈ R2 is the lateral torque exerted at the base of the needle. From the
model of the needle, the estimates of the force f̂ b and torque t̂b can be
computed according to the Bernoulli equations

f̂ b = EI
d3cN (l)

dl3

∣∣∣
l=0

, (3.95)

t̂b = EI
d2cN (l)

dl2

∣∣∣
l=0
× z, (3.96)

where we recall that E is the Young’s modulus of the needle, I is the second
moment of area of a section of the needle, cN is the spline curve representing
the needle in the model and z is the axis of the needle base.

Update step: A complete measure vector first needs to be chosen as a
combination of the different measurements defined previously, as for example
a vector stacking the force measures provided by a force sensor and the
position and direction measures provided by an electromagnetic tracker.

Let us now describe how is performed the update step at each new ac-
quisition of the measures. The state of the whole needle-tissue model is
first saved at the moment of the acquisition. The sigma points Xi are then
sampled using (3.71) around the estimate of tissue position obtained at the
prediction step. A new needle-tissue model is then generated for each sigma
point and the position of each spline cT representing the position of the tis-
sues is modified according to the sigma point Xi. The new needle shape of
each model is then computed and the estimates of the measures Yi can be
generated from the model as defined previously in (3.87), (3.89), (3.95) or
(3.96).

Since the actual spread of the sigma points depends on the covariance
P x,k|k−1, it can happen that a high uncertainty leads to unfeasible states.
For example if the distance between the current state estimate and one of the
sigma points is greater than the length of the needle, it is highly probable that
the model of the needle corresponding to this sigma point can not interact
with the model of the tissues anymore. Such sigma point should thus be
rejected to avoid failure of the computation of the model or at least avoid
irrelevant estimates of the measures. Therefore the value of α is tuned at
each update step to avoid such numerical issues (see (3.71)). A small value
α = 10−3 is chosen as the default, as is typically done in a lot of works
using the UKF [WVDM00]. We then adaptively reduce the value of α when
needed such that the sigma points do not spread further than 1 mm from
the current estimated position of the tissues.

The new state estimate and state covariance can finally be updated ac-
cording to the update step equations defined previously ((3.54)-(3.56) and
(3.79)-(3.81)). Finally the position of the whole tissue spline in the model is
updated according to the value of x̂k computed by (3.54).
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Now that we have described a method to estimate the position of the
tissues from measures provided on the needle, we propose in the following to
use this method and assess its performances in different experiments.

3.6 Tissue update validation

In this section we present different experimental scenarios to evaluate the
performances of our tissue motion estimation algorithm using the unscented
Kalman filter. We first present the results obtained using the effort feedback
provided by a force sensor and the position feedback on the needle tip pro-
vided by an electromagnetic tracker. Then we consider the case of position
feedback on the needle shaft provided by cameras. Finally we estimate the
position of the tissues using the position feedback provided by a 3D ultra-
sound probe and use this estimation to improve the robustness of the needle
tracking algorithm.

3.6.1 Update from force and position feedback

We consider in this section the update of the model using the force and
torque feedback on the needle base as well as the position and direction
feedback on the needle tip.

Experimental conditions: The setup used in these experiments is de-
picted in Fig. 3.18. We use the needle insertion device (NID) attached to the
UR3 robot. The Aurora biopsy needle with the embedded electromagnetic
(EM) tracker is placed inside the NID and inserted in a gelatin phantom.
The UR5 robot is used to apply a known motion to the phantom. The ATI
force torque sensor is used to measure the interaction efforts exerted at the
base of the needle and the Aurora EM tracker is used to measure the position
and direction of the tip of the needle.

We use the two-body model presented in section 2.4.1 with polynomial
needle segments of order r = 3 to represent the part of the needle that is
outside of the NID, from the frame {Fb} depicted in Fig. 3.18 to the needle
tip. We fix the length of the needle segments to 1 cm, resulting in n = 1
segment of 8 mm when the needle is retracted to the maximum inside the
NID and n = 11 segments with the last one measuring 8 mm when the
needle is fully outside. The stiffness per unit length of the model is set to
35000 N.m−2 and the length threshold to add a new segment to the tissue
spline is set to Lthres = 0.1 mm.

Registration: Registration of the position of the EM tracking system in
the frame of the UR3 robot is performed before the insertions. The needle
is moved at different positions and two sets of positions are recorded, one
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Figure 3.18: Experimental setup used to validate the performances of the
tissue motion estimation algorithm when using force feedback at the base of
the needle and position feedback at the needle tip.

given by the UR3 odometry and one given by the EM tracker. Point cloud
matching between the two sets is then used to find the pose of the EM
tracking system in the frame of the UR3.

The force torque sensor is used to measure the interaction efforts between
the needle and the tissues. Since the sensor is mounted between the UR3
robot arm and the NID, it also measures the effect of the gravity due to
the mass of the NID. Therefore the effect of gravity must be removed from
the measures in addition to the sensor natural biases to obtain the desired
measures. Note that we only apply small velocities and accelerations to the
NID during our experiments and for this reason we choose to ignore the
effects of inertia on the force and torque measurements. The details of the
force sensor registration can be found in Appendix A.

Experimental scenario: The force and EM data were acquired during
the experiments on motion compensation that will be presented later in the
thesis. In this section we only take into account the different measurements
that were acquired during those experiments and we do not focus on the
actual control of the needle that was performed. During those experiments,
a known motion was applied to the phantom with the UR5 while the needle
was inserted at constant speed with the NID. The UR3 was controlled to
apply a lateral motion to the whole NID to avoid tearing the gelatin or
breaking the needle.
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Update method: The length of the needle model is updated during the
insertion to correspond to the real length of the part of the needle that is
outside the NID, measured from the full length of the needle and the current
translation of the NID. The pose of the simulated needle base is updated
using the pose of the UR3 and the rotation of the needle inside the NID.

The position of the modeled tissues is estimated using our update algo-
rithm based on the unscented Kalman filter (UKF) presented in section 3.5.2.
In order to determine the contribution of each component, in the following
we consider three update cases: one using only the force and torque feedback
at the needle base, one using only the position and orientation feedback of
the needle tip and the last one using all the measures. In each case the
different measures are stacked in one common measure vector that is then
used in the UKF. The estimations for each kind of measures are computed
as described in previous section 3.5.2.2, i.e. using (3.94) to (3.96) for the
force and torque feedback, (3.86) and (3.87) for the position feedback and
(3.88) to (3.93) for the orientation feedback.

For each method, we consider that the measurements are independent,
such that the measurement noise covariance matrix R in the UKF (used
in (3.81)) is set as a diagonal matrix. The value of each diagonal element
is set depending on the type of measure: (0.7)2 mm2 for the tip position,
(2)2 (◦)2 for the tip orientation, (0.2)2 N2 for the force and (25)2 (mN.m)2

for the torque. These values are chosen empirically, based on the sensors
accuracy and the way they are implemented in the setup. The process noise
covariance matrix Q (used in (3.74)) is also set as a diagonal matrix with
diagonal elements set to (0.2)2 mm2.

Results on the filtering of the measures: We first compare the differ-
ence between the measured quantities and their values estimated using the
model updated by the UKF. An example of tip positions obtained during one
of the experiments is shown in Fig. 3.19 as well as the absolute estimation
errors on the tip orientation in Fig. 3.20.

We can see that the tip position and orientation are better estimated
when using only the tip measurements, while using only the force and torque
feedback tends to introduce a drift in the estimation that increases with the
depth of the needle tip in the gelatin. This could be expected because of
the flexible nature of the needle. Near the tissue surface the pose of the
needle base has a great influence on the needle shape. On the other hand,
the shape of a flexible needle is progressively determined by its interaction
with the tissues as it is deeper inserted. The interaction force near the tip of
the needle tends to be damped by the tissues and have little influence on the
force measured at the needle base. Then, the more the needle is inserted,
the less information about the needle tip is provided by the force and torque
measured at the needle base.
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Figure 3.19: Example of tip position measured and estimated using three
different combinations of feedback for the update algorithm: force and torque
feedback (FT, red), tip position and orientation feedback (PO, green) and
feedback from all sources (FT+PO, blue).
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vectors) between the measured tip direction and the estimated one using
three different combinations of feedback for the update algorithm: force and
torque feedback (FT, red), tip position and orientation feedback (PO, green)
and feedback from all sources (FT+PO, blue).
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Figure 3.21: Example of forces measured and estimated using three differ-
ent combinations of feedback for the update algorithm: force and torque
feedback (FT, red), tip position and orientation feedback (PO, green) and
feedback from all sources (FT+PO, blue).

Force and torque measures are respectively shown in Fig. 3.21 and 3.22.
We can observe that even when using only the force and torque feedback,
the estimated measures of the torque does not seem to fit the real measures
as well as expected. This can be explained by the low value of the torque
measures compared to the value of the variance that was set in the UKF, such
that the torque is almost not taken into account for the estimation in this
case. The low value of the measures can be explained by the experimental
conditions. Indeed, the needle can slide in and out the NID to modify its
effective length, meaning that the effective base of the needle is not fixed to
the NID. This introduces a play between the needle and the NID that causes
a dead-zone in which torques are not transmitted correctly.

On the other side, we can observe that the force is correctly estimated
when using only the force and torque feedback, while some errors can appear
when using only the tip position and orientation feedback. This can be
explained as previously by the fact that the position of the tip provides little
information on the force at the base once the needle is inserted in the tissues.

Overall it can be observed that using all the measures to perform the
update provides a trade-off between the fitting of the different measures by
the model.
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Figure 3.22: Example of torques measured and estimated using three dif-
ferent combinations of feedback for the update algorithm: force and torque
feedback (FT, red), tip position and orientation feedback (PO, green) and
feedback from all sources (FT+PO, blue).

Results on the tissue motion estimation: Finally let us compare the
estimation of the position of the tissues to the measure provided by the
odometry of the robot moving the phantom. The estimated and measured
positions are shown in Fig. 3.23. It can be seen that the overall shape of
the tissue motion is well estimated. However, some lag and drift in the
estimation can be observed for all combinations of the measures.

In the case of the force measurements, the lag can be due to the play
between the needle and the NID. Indeed, the tissues have to move from
a certain amount and displace the needle before any force can actually be
transmitted to the NID and be measured. This issue could be solved, along
with the problem of torque measurement mentioned previously, by using a
needle manipulator that provides a better fixing to the needle.

In the case of the tip position measurements, the drift can be due to
modeling errors on the shape of the spline curve simulating the path cut
in the tissues. Indeed, the extremity of this spline is progressively updated
according to the position of the simulated needle tip during the insertion.
However, modeling errors can lead to an incorrect shape of the spline, such
that the estimation of the rigid translation of the tissues can not be done
properly. A first solution could be to allow some deformations of the spline
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Figure 3.23: Example of tissue motions measured and estimated using three
different combinations of feedback for the update algorithm: force and torque
feedback (FT, red), tip position and orientation feedback (PO, green) and
feedback from all sources (FT+PO, blue).

once it has been created, however this would introduce many additional
parameters that need to be estimated. This can create observability issues
and may require additional sensors, which is not be desirable in practice.
Another solution would be to directly use the position feedback provided on
the needle tip to update the extremity of the spline. This solution will be
explored in the following when using visual feedback on the entire needle
shaft.

Conclusions: We have seen that the update of the position of the tissues
in our model could be done using a method based on the UKF with mea-
sures provided by force and torque feedback at the needle base and/or EM
position feedback on the tip. Both modalities could provide good results
by themselves such that it may not be required to use both at the same
time. However they provide different kinds of information that may be used
for different purposes, such as accurate targeting for the EM tracker and
reduction of the forces applied on the tissues for the force sensor.

An additional advantage of using the force sensor is that it does not
require a specific modification of the needle, contrary to the EM tracker that
must be integrated into the needle before the insertion and removed before
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injecting something through the lumen of the needle.
Nevertheless, neither of them can provide a feedback on the position of a

target in the tissues, such that an additional modality is required for needle
insertion procedures.

On the contrary, medical imaging modalities can provide a feedback on
a target as well as the position of the needle. Therefore in the next section
we focus on the estimation of the tissue motions in our model by using the
position feedback provided by an imaging modality.

3.6.2 Update from position feedback

In this section, we propose to test our tissue motion estimation method to
update our interaction model using a 3D position feedback on the needle
shaft. We focus here on the visual feedback provided by cameras to validate
the algorithm. However it could be adapted to any other imaging modalities
that can provide a measure of the needle localization, as will be done with
3D ultrasound (US) in the next section.

In the following we present the experiments that we performed to assess
the quality of the model update obtained using the measures of the positions
of several points along the needle. The performances are compared in terms
of accuracy of the simulated tip trajectory and estimated motions of the
tissues.

Experimental conditions: The setup used for these experiments is de-
picted in Fig. 3.24. The Angiotech biopsy needle is attached to the end
effector of the Viper s650 and inserted in a gelatin phantom embedded in a
transparent plastic container. The needle is inserted in the phantom with-
out steering, i.e. the trajectory of the base of the needle simply describes a
straight vertical line. Lateral motions are applied manually to the phantom
during the insertion.

Visual feedback is obtained using the stereo cameras system. The whole
needle shaft is tracked in real-time by the image processing algorithm de-
scribed previously in section 3.4.1. The position of the phantom is measured
from the tracking of two fiducial markers with four dots glued on each side
of the container [HCLL89] (see Fig. 3.24 and Fig. 3.27).

We use the two-body model presented in section 2.4.1 with polynomial
needle segments of order r = 3. We fix the length of the needle segments to
1 cm, resulting in a total of n = 13 segments and the last segment measuring
0.6 mm. The stiffness per unit length of the model is set to 3200 N.m−2 and
the length threshold to add a new segment to the tissue spline is set to
Lthres = 0.1 mm.

Model update: We propose to compare five different methods to represent
the needle and to update the spline curve representing the path cut in the
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Figure 3.24: Experimental setup used to validate the performances of the
tissue motion estimation algorithm when using the visual feedback provided
by two cameras to detect the position of the needle body.

tissues in our model, as described in the following:

• Method 1: the needle is modeled as a straight rigid needle.

• Method 2: the needle is modeled using the two-body flexible needle
model. The extremity of the tissue spline is updated using the cutting
edge of the modeled bevel, as was described in the definition of the
model in section 2.4.2.

• Method 3: similar to method 2, except that the extremity of the tissue
spline is updated using the visual feedback instead of the model of
the bevel. The segment is added to link the last added segment to
the current position of the real needle tip measured from the camera
visual feedback. However the position of the whole tissue spline is not
modified during the insertion.

• Method 4: similar to method 2 with the addition of the proposed
update algorithm based on unscented Kalman filter (UKF) to estimate
the position of the tissue spline from the measured position of the
needle.

• Method 5: similar to method 3 with the addition of the proposed
update algorithm based on UKF to estimate the position of the tissue
spline from the measured position of the needle.

For each method, the position of the simulated needle base is updated
during the insertion using the odometry of the robot. For methods 4 and
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5, we use the positions of several points along the needle as input for the
update algorithm (as described by (3.86) and (3.87) in section 3.5.2.2). The
points are extracted 5 mm from each other along the 3D polynomial curve
obtained from the needle tracking using the cameras.

The measurement noise covariance matrix R in the UKF is set as a
diagonal matrix with diagonal elements equal to (0.25)2 mm2, corresponding
to the accuracy of the stereo system used to get the needle points. The
process noise covariance matrix Q is set as a diagonal matrix with diagonal
elements equal to (0.1)2 mm2.

Experimental scenario: Five insertions at different locations in the phan-
tom are performed. The needle is first inserted 1 cm in the phantom to be
able to initialize the needle tracking algorithm described in section 3.4.1. The
insertion is then started, such that the needle base is only translated along
the needle axis. The phantom is moved manually along different trajectories
for each insertion, such that the motions have an amplitude up to 1 cm in
the x and y directions of the world frame {Fw}as depicted in Fig. 3.24.

Results: We present now the results obtained during the experiments. We
first consider the accuracy of the simulated tip trajectories and evaluate the
effect of the update rate on this accuracy. The quality of the estimation of
the motions of the tissues is then assessed and we discuss some limitations
of the modeling.

Comparison of tip trajectories: We first compare the tip trajecto-
ries obtained with the different model update methods. The average absolute
position error between the measured and simulated needle tips calculated
over time and across the different experiments is summarized in Fig. 3.25
and Table 3.1. An example of measured and simulated tip positions ob-
tained during one experiment is shown in Fig. 3.26. Figure 3.27 shows the
corresponding pictures of the needle acquired with the cameras at differ-
ent steps of the insertion. The tissue spline corresponding to each model is
overlaid on the images at each step.

It is clearly visible from the simulated tip trajectories that updating
the model while taking into account the motions of the tissues is crucial to
ensure that the model remains a good representation of the real needle. It
can also be observed from the mean absolute error over all the experiments
in Fig. 3.25, that the more the model is updated, the better it fits the reality.
However we can see that method 3 yields poor results since only the extremity
of the tissue spline is updated by adding new segments that fit the measured
positions of the tip. Since the lateral position of the spline is not updated
to account for tissue motions, the resulting shape of the spline does not
correspond to the reality, as can be seen on Fig. 3.27 (blue curve). On the
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Figure 3.25: Mean over time and across five experiments of the absolute
error between the real and modeled tip position obtained for the different
update methods and two different update rates.

Table 3.1: Mean over time and across five experiments of the absolute error
between the real and modeled tip position obtained for the different update
methods and two different update rates.

Absolute position error (mm)
Update rate 30 Hz 1 Hz
Method 1 5.9±3.9 5.9±3.9
Method 2 6.1±3.0 6.1±3.0
Method 3 2.1±1.6 1.9±1.5
Method 4 0.6±0.3 0.9±0.5
Method 5 0.4±0.2 0.7±0.5

contrary, modifying the whole position of the spline in addition to the update
of its extremity allows taking into account the lateral motions of the tissues,
as is done with methods 4 and 5.

These results illustrate that a feedback on the needle is a necessity during
insertion procedures. Indeed, a pre-operative planning would not be suffi-
cient to predict the real trajectory of the flexible needle, as is illustrated by
the trajectories of the non-updated models (method 1 and 2). Therefore,
the association of the needle model and update algorithm that we propose
proves to be a good method to accurately represent the current state of the
insertion process.

However, 3D medical imaging modalities typically have an acquisition
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Figure 3.26: Example of measured and simulated positions of the needle tip
during an insertion in gelatin while lateral motions are applied to the phan-
tom. Five different models and update methods are used for the needle tip
simulations. The measured tissue motions are shown in (a), the different tip
positions in (b) and the absolute error between the measured and simulated
tip positions in (c).
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Figure 3.27: Two orthogonal views of a sequence acquired during a needle
insertion in gelatin. Different models and update methods are used for the
needle tip simulations. Method 1: rigid needle; method 2: flexible needle;
method 3: flexible needle with extremity of the tissue spline updated from the
measured tip position; method 4: flexible needle with tissue spline position
updated with lateral tissue motion estimation; method 5: flexible needle with
tissue spline updated with lateral tissue motion estimation and extremity
from the measured tip position. The tissue spline of the different models are
overlaid on the images as colored lines. Method 1 does not have any cut
path and methods 2, 3, 4 and 5 are depicted in green, blue, red and yellow,
respectively. The real needle can be seen in black, although it is mostly
recovered by the tissue splines associated with methods 4 and 5. Overall
only the tissue splines of method 4 and 5 can follow the real shape of the
path cut in the gelatin.
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time that is longer than the framerate of the cameras used in these experi-
ments, such that the update can only be performed at a lower rate. Hence,
we propose to compare the results obtained using two different update rates
for the update methods that use the visual feedback (methods 3, 4 and 5).

Effect of update rate: In order to simulate a slower imaging modality,
like the 3D US that we will use in the following, we set the update rate to
1 Hz, meaning that the update of the tissue spline is performed only once
every second. However, the update of the position of the needle base from the
robot odometry is still performed at the fast rate available with the robot.

The resulting error between the measured and simulated needle tip tra-
jectories during the example experiment can be seen in Fig. 3.28. The average
tip position errors calculated over time and across the different experiments
are also summarized in Fig. 3.25 and Table 3.1. As expected, a higher up-
date rate (30 Hz) provides better results than a lower update rate (1Hz),
since more measures can be taken into account to estimate the position of
the tissues. However, regularly updating the model even at a low rate still
allows a good reduction of the modeling errors that occurred between two
acquisitions, such that we can expect good results from the algorithm with
3D US.

Estimation of tissue motions: Now that we have illustrated the im-
portance of updating the interaction model to ensure a good modeling of the
needle during the insertion procedure, we propose to evaluate the perfor-
mances of the update algorithm to see if it can actually be used to estimate
the real motions of the tissues.

The position of the phantom is obtained by the tracking of the fiducial
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Figure 3.28: Example of absolute error between the measured and simu-
lated positions of the needle tip when using an update rate of 1 Hz for the
estimation of the tissue motions.
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Figure 3.29: Example of tissue motions measured and estimated using the
update method 4 with the position feedback obtained from cameras. Two
update rates are compared: (a) fast update rate corresponding to the acqui-
sition with cameras, (b) slow update rate simulating the acquisition with 3D
ultrasound. Overall the estimations follow the real motions of the tissues.

markers placed on the container, as can be seen in Fig. 3.27. The measured
positions of the tissues during the previous insertion example are presented
in Fig. 3.29 along with the estimation provided by the method 4. The results
using the slower update rate are also shown.

Overall the update method allows the tracking of the motions of the
tissues and similar results are observed for both high and low update rates.
This can also be observed in Fig. 3.27, on which it is visible that the updated
tissue splines from method 4 and 5 follows the motion of the tissues around
the needle. We further discuss the quality of the estimation in the following.

Limitations of the model: Some tracking errors can still be observed
on the position of the tissues when updating the model. They can be due
to the accumulation of errors in the shape of the tissue spline, as was also
discussed in previous section 3.6.1 when using force and position feedback.
The same solution that was proposed could also be used here, consisting
in updating the whole shape of the tissue spline instead of only its global
translation. However, it is very likely to see observability issues appearing,
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Figure 3.30: Example of tissue motions estimated using the update method
4 with the position feedback obtained from cameras. At the beginning of
the insertion (blue zone from t = 2.5s to t = 4.5s), the needle base is moved
laterally such that a tearing occurs at the surface of the gelatin. This creates
an offset in the estimation of the motions of the tissues.

due to the fact that different shapes of the tissue spline can lead to similar
needle shapes.

Additional phenomena can explain the tracking errors, such as the non-
linear properties of the tissues on which we briefly focus in the following.
During some other of our experiments, some large lateral motions were ap-
plied to the base of the needle, such that the needle was cutting laterally in
the gelatin and a tearing appeared at the surface. In this case the needle is
moving inside the tissues without external motion of the tissues. The results
of the tissue motion estimation using the update method 4 in this case are
shown in Fig. 3.30. The tearing of the gelatin occurred at the beginning of
the insertion, from t = 2.5s to t = 4.5s. We can see that the model is auto-
matically updated according to the measures of the needle position, so that
a drift appears in the estimated position of the tissues. Once the needle has
stopped cutting laterally in the gelatin (at t = 4.5), the needle is embedded
anew in the tissues. This is equivalent to changing the rest position of the
cut path associated to the real needle and this is what is actually represented
by the tissue spline of the updated model. Hence the following motions of
the tissues are well estimated by the update algorithm, although the drift
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remains.
Even if the tearing of the tissues is less likely to appears in real biological

tissues, this example shows that our model and update method can lead
to a wrong estimation of the real position of the tissues due to unmodeled
phenomena. However, it can also be noted that if the simulated position of
the tissues was updated according to an external position feedback on the
real tissues, for example by tracking a marker on the surface of the tissues,
the resulting state of the model would poorly fit the position of the real
needle. On the contrary, our update algorithm using the position of the
needle allows the model to fit the measures provided on the needle and to
remain consistent with the way it locally represents the tissues. This can be
seen as an advantage of the method since the goal of our model is to give a
good estimation of the local behavior of the needle without modeling all the
surrounding tissues.

Conclusions: From the results of these experiments we can conclude that
the method that we proposed to update the state of our model based on the
UKF allows taking into account the effect of tissue motions on the shape of
the needle.

We have also seen that the non-linear phenomena occurring in the tissues,
such as a lateral cutting by the needle, can have a great impact on the
quality of the estimation of the real position of the tissues. In practice, real
tissues are less prone to tearing than the gelatin used in the experiments
and the needle will also be steered to avoid such tearing, however the hyper-
elastic properties of real biological tissues may induce a similar drift in the
estimation. Therefore, in the followings the update algorithm will not be
used as a way to measure the exact position of the tissues but only as a
way to keep the model in a good state to represent the local behavior of the
needle.

We could also see that the method provides a good update even when
considering the low acquisition rate that is available with a slower, but still
real-time, imaging modality, such as 3D US. Hence, in the next section we
use the update method as a way to increase the modeling accuracy of the
needle insertion, such that it can be used as a prediction tool to improve the
tracking of a needle in 3D US volumes.

3.6.3 Needle tracking in 3D US with moving soft tissues

In this section we propose to combine the model update method based on
unscented Kalman filter (UKF) that was designed in section 3.5.2 with the
needle tracking algorithm in 3D ultrasound (US) proposed in section 3.4.2.
This combination is used to provide a robust tracking of a needle in a se-
quence of 3D US volumes during an insertion in moving tissues.
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In the previous section we used the visual feedback provided by cameras
to track the needle and update the needle model to take into account the
lateral motions of the tissues. However, the position of the tracking system
was registered beforehand in the frame of the robotic needle manipulator by
observing the needle in the acquired images, as described in section 3.4.1.

In the case of a 3D US probe, a similar registration of the pose of the
probe would require many insertions of the needle in the tissues to be able
to observe its position in the US volume. This is not possible in a clinical
context, in which multiple insertions should be avoided and where the reg-
istration process should be simple and not time consuming. Therefore, we
propose to use a fast registration method performed directly at the beginning
of the insertion procedure.

In the following we present the results of the experiments that we per-
formed to assess the performances of the tracking method combining our
contributions.

Experimental conditions: The Angiotech biopsy needle is used and at-
tached to the end effector of the Viper s850. The insertion is done vertically
in a gelatin phantom embedded in a transparent plastic container. The con-
tainer is fixed to the end effector of the Viper s650, which is used to apply a
known motion to the phantom.

We use the 3D US probe and US station from BK Ultrasound to grab
online 3D US volumes. The US probe is fixed to the same table on which the
phantom is placed, such that it is perpendicular to the needle insertion direc-
tion and remains in contact with the phantom. The acquisition parameters
of the US probe are set to acquire 31 frames during a sweeping motion with
an angle of 1.46◦ between successive frames. The acquisition depth is set to
10 cm, resulting in the acquisition of one volume every 630 ms and a maxi-
mal resolution of 0.3 mm × 1 mm × 2 mm at the level of the needle, which
is approximately 5 cm away from the probe. The spacial resolution of the
post-scan volume is set to 0.3 mm in all directions and linear interpolation
is used for the reconstruction.

Tracking method: We use the tracking algorithm proposed in section 3.4.2
that exploits US artifacts to track the needle in the acquired sequence of US
volumes. For each new volume acquisition, the tracking is initialized using
three different methods described in the following:

• Method 1: the tracking is initialized from the position of the needle
tracked in the previous volume. No model of the needle is used in this
case.

• Method 2: the tracking is initialized using the projection of the needle
model in the 3D US volume. We use the two-body model presented in
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section 2.4.2 with polynomial needle segments of order r = 3. We fix
the length of the needle segments to 1 cm, resulting in a total of n = 13
segments and the last segment measuring 0.6 mm. The stiffness per
unit length of the model is set to 3200 N.m−2 and the length threshold
to add a new segment to the tissue spline is set to Lthres = 0.1 mm.

The model is updated between two volume acquisitions using only the
odometry of the Viper s850 to defined the position of the simulated
needle base.

• Method 3: the same process as method 2 is used, except that the
model is updated with the method presented in section 3.5.2 to take
into account the motions of the tissues. Similarly to the experiments
performed in previous section with camera feedback, we use the po-
sitions of several points separated by 5 mm from each other on the
needle body as inputs for the UKF.

The measurement noise covariance matrix R in the UKF is set with
diagonal elements equal to (2)2 mm2 and the process noise covariance
matrix Q with diagonal elements equal to (3)2 mm2.

Note that the needle model is defined in the frame of the robot, since
the position of the simulated base is set according to the robot odometry. A
registration between the US volume and the robot is thus necessary for the
update method in order to convert the position of the needle body tracked
in the volume to the robot frame.

Registration: We describe here the registration method that we use to
find the correspondence between a voxel in a 3D US volume and its real
location in the needle manipulator frame. The US volumes are first scaled
to real Cartesian space by using the size of a voxel, which is known from the
characteristics of the probe and the process used to convert pre-scan data
into post-scan data (as explained in section 3.2.2.2).

In order to be in accordance with our objective of a reduced registration
time and complexity, we use a fast registration method that can be used
directly at the beginning the insertion procedure. After an initial insertion
step, the part of the needle that is visible in the acquired US volume is man-
ually segmented, giving both tip position and orientation. The pose of the
volume is then computed by matching the measured tip position and orien-
tation to the position and orientation obtained from the needle manipulator
odometry and the needle model. The manual needle segmentation is also
used for the initialization of the needle tracking algorithm.

Note, however, that this method provides a registration accuracy that
depends on the quality of the manual needle segmentation.
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Experimental scenario: We perform 10 straight insertions of 10 cm at
different locations in the gelatin phantom with an insertion speed of 5 mm.s−1.
The needle is first inserted 1 cm in the phantom and manually segmented in
the US volume to initialize the different tracking algorithms and register the
probe pose. The insertion is then started at the same time as the motion
applied to the phantom.

For each experiment, a similar 1D lateral motion is applied to the con-
tainer such that the phantom always stays in contact with both the table
and the US probe. The motion follows a profile m(t) similar to a breathing
motion [HMB+10], expressed as

m(t) = b cos4(
π

T
t− π

2
), (3.97)

where t is the time, b is the magnitude of the motion, set to 1 cm, and T
is the period of the motion, set to 5 s. The insertion is performed for a
duration of 18 s, roughly corresponding to 4 periods of the motion and the
acquisition of 29 volumes.

Results on tip tracking: An example of the positions of the tip tracked
during one experiment using the different methods is shown in Fig. 3.31,
along with the ground-truth acquired by manual segmentation of the needle
tip in the volumes. Figure 3.32 shows the result of the needle tracking
algorithms in two orthogonal cross sections of the volume near the end of
the insertion.

We can observe that tracking the needle without any a priori information
on the needle motion occurring between two volume acquisitions (method 1)
leads to a failure of the tracking as soon as the beginning of the insertion.
The tracking get stuck on the artifact appearing at the surface of the gelatin,
due to the fast lateral velocity of the tissues as well as the low visibility of
the needle at the beginning of the insertion. We can see that the tracking
is able to follow the motion of the tissues (z axis in Fig. 3.31) since the
artifact moves with the phantom. However the length of the inserted part
of the needle is not provided to the algorithm, so that it stays at the surface
without taking into account the insertion motion, as can be seen in Fig. 3.32.

On the contrary, using the needle model to initialize the tracking allows
taking into account the length of the needle that is currently inserted, such
that both methods 2 and 3 provide a good estimation of the tip position
along the y axis. However, when the model is only updated at its base
(method 2), the tracking mostly fails due to the wrong lateral location of the
initialization that does not take into account the motions of the tissues. We
can see that the tracking is rather inconsistent in this case. Sometimes the
tracking recovers the correct location of the needle when it is near the model,
as can be seen in Fig. 3.31 from volume 13 to 16 (green curve); and when the
tissues move far from their initial position, the tracking is initialized near
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Figure 3.31: Position of the tip in the 3D ultrasound volume obtained by
manual segmentation and using different needle tracking methods. The in-
sertion is performed along the y axis of the probe while the lateral motion
of the tissues is applied along the z axis. One tracking method is initialized
without model of the needle (blue), one is initialized from a model of the
needle that does not take into account the motions of the tissues (green) and
one is initialized from a model updated using the tissue motion estimation
algorithm presented in section 3.5.2 (red).

other structures or artifacts, such that it fails to find the needle, as is the
case in Fig. 3.32.

On the other hand, updating the model according to the tracked position
of the needle (method 3) allows taking into account the motions of the tissues.
This way, the prediction of the needle localization in the following volume is
of good quality and the tracking algorithm can accurately find the position
of the needle. Overall the combination of the tracking algorithm with the
updated model allows a good tracking of the needle tip with a mean accuracy
of 3.1 ± 2.5 mm over the volumes sequences of all the insertions.
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(a) xy view (b) zy view

Figure 3.32: Illustration of the needle tracking in two orthogonal cross sec-
tions of a 3D ultrasound volume acquired near the end of the insertion. The
result of the tracking initialized without model is represented by the blue
curve, the tracking initialized from a non updated model by the green curve
and the tracking initialized from an updated model by the red curve. With-
out information on the needle motion (blue curve), the tracking fails and get
stuck on an artifact occurring at the surface of the tissues (blue arrow). Up-
dating only the needle base leads to a initialization of the tracking around
another bright structure that is tracked instead of the real needle (green
curve). Taking into account the tissue motions allows a better initialization
between two acquisitions, such that the tracking can find the needle (red
curve).
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Figure 3.33: Position of the tissues measured from the robot odometry and
estimated by the model update algorithm using the feedback on the needle
position in the 3D ultrasound volumes (method 3).

Results on tissue motion estimation: As a final consideration, let us
have a look at the estimated position of the tissues in the updated model that
is provided in Fig. 3.33. We can see that the overall motions of the tissues are
well estimated by the algorithm. However, we can observe a delay between
the estimation and the measures. Although a part of this delay may be
introduced by the filtering effect of the UKF, it is most probably due to the
delay introduced by the acquisition time required to obtain the final 3D US
volume. This issue could be solved by taking into account the known time
required by the system to reconstruct the volume from the data acquired by
the US transducer.

We can also observe a slight drift of the estimation during the insertion.
This can be due to the accumulation of modeling errors that can arise because
of some local tearing of the gelatin when the phantom moves far from its
initial position. It can also come from the fast registration method that
we used in these experiments, which can introduce a difference between the
real position of the needle and the measured position reconstructed from the
tracking in the volume.

These observations confirm the fact that has already been discussed in
previous section, namely that updating the position of the tissues in the
model should only be used as a way to get a good representation of the
needle by the model and not an accurate measure of the tissue position.

Conclusions: We provided a method for improving the robustness of the
tracking of a flexible needle in 3D US volumes when the tissues are subject
to lateral motions. Using a mechanics-based model allows a prediction of
the motions of the needle tip and shaft due to the motions of the needle
manipulator between two volume acquisitions. The prediction can then be
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used to provide a good initialization of an iterative needle tracking algorithm.
Finally, updating the model thanks to the result of the tracking allows taking
into account the motions of the tissues and improves the modeling accuracy
and the subsequent prediction.

The quality of the prediction of the needle location could even be further
improved by using a fast information feedback to update the modeled posi-
tion of the tissues between consecutive volume acquisitions. This could be
done using a force sensor or an electromagnetic tracker, as we have demon-
strated in section 3.6.1. However, an imaging modality remains a necessity
to achieve the steering of the needle toward a target.

3.7 Conclusion

In this chapter, we started by a brief comparison of the imaging modalities
traditionally used to perform needle insertions. From this we chose to focus
on the ultrasound (US) modality and we presented the general principles of
US imaging as well as the way to reconstruct 2D images or 3D volumes that
can then be exploited. We also covered the case of several artifacts that are
specific to the presence of a needle in the field of view of the US probe.

A review of current detection and tracking methods used to localize a
needle from 2D or 3D US feedback was then provided. We proposed a first
contribution in this field consisting in an iterative algorithm that exploits
the artifacts observed around a needle to accurately find the position of its
whole body in a 3D US volume. The performances of the algorithm were
illustrated through an experimental validation and a comparison to another
state-of-the-art algorithm.

Then we considered the case of a change of position of the tissues due
to motions of the patient. We presented the concepts of Bayesian filtering
and proposed an algorithm based on an unscented Kalman filter to update
the state of the interaction model that we developed in chapter 2 using
the different measures available on the needle. We have shown through
various experimental scenarios that the update method could be used with
several kinds of information feedback on the needle, such as force feedback,
electromagnetic position feedback or visual position feedback, in order to
take into account the lateral motions of the tissues. We then proposed to
fuse our two contributions into one global method to mutually improve both
tracking performances in 3D US and insertion modeling accuracy.

Good localization of the needle and accurate modeling of the insertion
are two important keys to provide an image-guided robotic assistance during
an insertion procedure. Now that we have addressed these two points and
have proposed a contribution for both of them, we will focus in chapter 4 on
the design of a control framework for robotic needle insertion under visual
guidance.

113



CHAPTER 3. NEEDLE LOCALIZATION USING ULTRASOUND

114



Chapter 4

Needle steering

In this chapter we address the issue of steering a flexible needle inserted
in soft tissues. The goal of a needle insertion procedure is to accurately
reach a targeted region embedded in the body with the tip of the needle.
Achieving this goal is not always easy for clinicians due to the complex
behavior exhibited by a thin flexible needle interacting with soft tissues.

Robot assisted needle insertion can then be of great help to improve
the accuracy of the operation and to reduce the necessity of repeated inser-
tions. In chapter 2 we presented different ways of modeling the insertion of
a flexible needle in soft tissues. In particular we have seen that kinematic
and mechanics-based models offer a reasonable computational complexity
that makes them suitable for real-time processing and control of a robotic
system.

In the following, we first provide in section 4.1 a review of current tech-
niques used to steer different kinds of needles using a robotic system. Then
we present different methods in section 4.2 used to define the trajectory
that the needle tip must follow to reach a target and avoid obstacles. In sec-
tion 4.3 we propose a new contribution consisting in a generic needle steering
framework for closed-loop control of a robotic manipulator holding a flexible
needle. This framework is based on the task function framework and can be
adapted to steer different kinds of needles. It is formulated such that dif-
ferent kinds of sensing modalities can be used to provide a feedback on the
needle and the target. We finally describe different experimental scenarios in
section 4.4 that we use to assess the performances of our steering framework.

Parts of the work presented in this chapter on the steering framework
were published in two articles presented in international conferences [CKB16a]
[CKB16b].
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4.1 Steering strategies

In this section we present a review of current techniques used to control the
trajectory of the tip of a needle inserted in soft tissues. The techniques used
to reach a target in soft tissues while avoiding other sensitive regions can be
gathered into three main families.

• Tip-based steering methods use a needle with an asymmetric design of
the tip to create a deflection of the tip trajectory when the needle is
inserted into the tissues without any other lateral motion of its base.

• Base manipulation methods on the contrary use lateral translation and
rotation motions of the needle base during the insertion to modify the
trajectory of the needle tip.

• Lastly, tissue manipulation is a special case in the sense that no needle
steering is actually performed. Instead it uses deformations of the
surrounding tissues to modify the position of the target and obstacles.

We present each steering family in further detail in the following.

4.1.1 Tip-based needle steering

As described in the section on kinematic modeling 2.1, it can be observed
that the presence of an asymmetry of the needle tip geometry, such as a
bevel, leads to a deviation of the needle trajectory from a straight path,
as illustrated in Fig. 4.1a. Considering this effect as a drawback, clinicians
usually rotate the needle around its axis during the insertion to cancel the
effect of the normal component of the reaction force created at the needle tip.
This allows the trajectory of the needle tip to follow a straight line. However
many research works have been conducted over the last two decades to use
this effect as an advantage to steer the needle tip, leading to the creation of
the tip-based steering strategies [APM07] [vdBvGDvdD14].

Tip-based needle steering consists in controlling the orientation of the
lateral component of the reaction force at the tip to face a desired direction.
The behavior of the needle tip can usually be accurately modeled using
kinematic models [WIKC+06]. Needles used for tip-based control typically
have a small diameter and are made of super-elastic alloys, such as Nitinol,
to decrease the needle rigidity and to increase the influence of the tip force
on the needle trajectory. This allows getting closer to the assumption that
the needle is very flexible with respect to the surrounding tissues, which is
required for the validity of kinematic models (see section 2.1).

The control of the insertion of such needles is often limited to the insertion
of the needle along its base axis and the orientation of the needle around this
axis. Different control strategies have been developed to steer the needle tip
using only these two degrees of freedom (DOF). A constant ratio between
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the rotation and insertion velocities of the needle can be used to obtain an
helical trajectory [HAC+09]. A low ratio leads to a circular trajectory with
curvature corresponding to the natural curvature of the needle insertion. A
high ratio leads to an almost straight trajectory.

Duty-cycling: The duty cycling control strategy, first tested in [EPKR06]
and later formalized in [MEFR07], consists in using alternatively only the two
extreme cases of the helical trajectories: pure insertion of the needle (max-
imal curvature of the trajectory) and insertion with fast rotation (straight
trajectory). The resulting trajectory of the needle tip can be approximated
by an arc of a circle with an effective curvature Keff that can be tuned
between 0 and the maximal curvature Knat. It has been shown that the
relation between Keff and the duty cycle ratio DC between the length of
the phases could be approximated by a linear function [MEFR07]:

DC =
Lrot

Lrot + Lins
, (4.1)

Keff = (1−DC)Knat, (4.2)

where Lins and Lrot are the insertion lengths corresponding respectively to
the pure insertion phase and the insertion phase with fast rotation. Simi-
larly, in the case of a constant insertion velocity, the duty-cycle DC can be
computed from the duration of each phase instead of their insertion length.

This method has first been used only in 2D, using an integer number of
full 2π rotations during the rotation phase [MEFR07]. It was later extended
to 3D by adding an additional angle of rotation before the insertion phase
to orient the curve toward the desired direction [WLR13]. A 3D kinematic
formulation was also proposed by Krupa [Kru14] and Patil et al. [PBWA14].
Duty-cycling control has also been extensively used in its 2D or 3D versions
over the past decade, associated with various needle insertion systems, needle
tracking algorithms and methods to define the trajectory of the tip (see for
example [vdBPA+11] [BAP+11] [PBWA14] [CKN15] [MPT16]). Trajectory
planning will be covered in next section 4.2.

Duty-cycling control presents some drawbacks that have to be addressed.
First the natural curvature Knat must be known to compute the duty-cycle
DC. This parameter is difficult to determine in practice and may even vary
with the insertion depth, such that an online estimation can be required
[MPAM14]. It may also not be possible to continuously rotate the nee-
dle along its axis. This is for example the case when using cabled sensors
attached to the needle, such as electromagnetic trackers or optic fibers em-
bedded in the needle. The duty cycling control has to be adapted in this case
to alternate the direction of the rotation around the needle shaft [MSSO14].

The effect of the bevel angle on the needle insertion has been studied in
artificial [WMO05], ex-vivo [MWRO10] or in-vivo [MMVV+12] tissues. It
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has been observed that it has a direct effect on the amount of deflection of the
needle tip from a straight path. However the curvature of the tip trajectory
is very low in biological tissues, which can limit the interest of using the
duty-cycling control in clinical practice. The natural curvature of the needle
can be increased by using a needle with a prebent [AGL+16] or precurved
tip [VDBDJVG+17]. However this is not suitable for duty-cycling control
since it also increases the damage done to the tissues during the rotation of
the needle.

Special design: Particular mechanical designs of the needle have been pro-
posed to control the force created at the needle tip. Swaney et al. [SBGW13]
designed a specific flexure based needle tip to offer the high curvature of a
prebent-tip needle during insertion while keeping the reduced tissue damage
of a beveled-tip needle during rotations.

Active tips were also designed to allow a modification of the lateral force
intensity and orientation without using rotation of the needle around its axis.
Burrows et al. [BLRyB15] use a needle made of multiple segments that can
slide along each other, thus modifying the shape of the tip of the needle.
Shahriari et al. [SRvdB+16] use a tendon-actuated needle tip with 2 DOF,
which acts as a pre-bent tip with a variable tip angle and orientation.

The main drawbacks of tip-based steering are that the tip trajectory can
only be modified by inserting the needle and that the amplitude of the ob-
tained lateral motions is relatively small in real clinical conditions. Although
special designs have been proposed to offer improved steering capabilities,
these needles are still unsuitable for a fast and low cost integration into clini-
cal practice. However, other steering methods can be used to steer traditional
needles, as we will see in the following.

4.1.2 Needle steering using base manipulation

Base manipulation consists in controlling the needle tip trajectory using an
adequate control of the 6 degrees of freedom (DOF) of the needle base. In
the case of a symmetric tip needle, changing the trajectory of the needle tip
from a straight path requires bending the needle and pushing laterally on
the tissues, as illustrated in Fig. 4.1b. This is the natural way clinicians use
to steer a needle when holding it by its base.

Pioneer work on robotic control of a needle attached by its base to a
robotic manipulator was performed by DiMaio et al. [DS05b]. The flexibility
of the needle and its interaction with soft tissues was modeled using 2D
finite element modeling (FEM) and was used to predict the motion of the
needle tip resulting from a given needle base motion. The model was used
to compute the trajectory of the needle base that would result in the desired
tip trajectory. Due to the computational complexity of the FEM, only pre-
planning of the needle trajectory was performed and the actual insertion was
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Figure 4.1: Illustration of the different kinds of flexible needle steering meth-
ods: (a) tip-based steering of a needle with asymmetric tip (b) base manipu-
lation of a needle with symmetric tip (c) base manipulation of a needle with
asymmetric tip.

performed in open-loop control. Closed-loop needle base manipulation was
performed under fluoroscopic guidance by Glozman and Shoham [GS07] and
later under ultrasound guidance by Neubach and Shoham [NS10]. The 2D
virtual springs model was used in both cases to perform a pre-planning of the
needle trajectory that also minimizes the lateral efforts exerted on the tissues.
Additionally, this mechanics-based model enabled real-time performance and
was used in the closed-loop control scheme to ensure that the real needle tip
follows the planned trajectory.

Despite being among the first work on robotic needle steering, base ma-
nipulation has been the subject of little research these past years compared
to the amount of work on tip steerable needles. This can mainly be explained
by the fact that bending the needle and pushing on the tissues to control
the lateral motion of the tip can potentially induce more tissue damage than
only inserting the needle. The efforts required to induce significant lateral
tip motion also rapidly increase as the needle is inserted deeper into the
tissues. This can limit the use of base manipulation to superficial targets.

However it can also be noted that the 2 DOF used in tip-based control
(translation and rotation along and around the needle axis) can also be
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controlled using base manipulation. Therefore it is also possible to use a base
manipulation framework to perform tip-based steering of a needle with an
asymmetric tip, as illustrated in Fig. 4.1c. Using only tip-based control, the
needle base can only translate in one insertion direction and it is not possible
to compensate for any lateral motions of the tissues that may arise from
patient motion. On the contrary, using all 6 DOF of the needle base offers
the advantage of keeping additional DOF if necessary. Therefore, due to its
ability to handle both symmetric and asymmetric tips, base manipulation
in the general sense is the steering method that we choose to explore in the
following.

4.1.3 Tissue manipulation

Tissue manipulation consists in applying deformations on the internal parts
of the tissues by moving one [THA+09] or multiple points [MSP09][PVdBA11]
of the surface of the tissues. This kind of control requires an accurate finite
element modeling (FEM) model of the tissues, which is difficult to obtain
in practice due to parameter estimation. The computational load of FEM
is also an obstacle for real-time use, limiting it to pre-planning of the inser-
tion procedure, which further enhances the need for an accurate modeling.
This technique has only been used so far to align the target with a large
rigid needle and no work has been conducted to explore the modification
of the trajectory of a flexible needle. In addition, it can be observed that
the motion of the tissue surface has a little influence on the motion of deep
anatomical structures: tissue manipulation can then only be used to move
superficial targets. Shallow targets are not the only kind of targets that we
want to cover in our work, therefore we do not consider tissue manipulation
in the following.

4.2 Needle tip trajectory

In section 4.1, we presented different methods to control the motion of the
tip of a needle being inserted in soft tissues using a robotic manipulator.
Once a type of needle and an associated control scheme has been chosen to
control the needle tip, a strategy needs to be chosen to define the motion to
apply to the needle tip. Two approaches are generally used, which are path
planning and reactive control.

The path planning approach uses some predictions of the behavior of
the system and tries to find the best sequence of motions that needs to be
applied to fulfill the general objective. On the contrary, the reactive control
approach only relies on the current state of the system and intra-operative
measures to compute the next motion to apply.
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4.2.1 Path planning

Path planning is used to define the entire trajectory that needs to be followed
by the needle tip to reach the target. This approach requires a model of
the needle insertion process to predict the effect of the control inputs on
the tip trajectory. It is mostly used in tip-based steering, for which the
unicycle model (see section 2.1) can be used because of its simplicity and
computational efficiency.

Planning the natural trajectory: Duindam et al. [DXA+10] planned
the trajectory of the needle while considering a stop-and-turn strategy, thus
alternating between rotation-only phases and insertion-only phases. Three
insertion steps were considered, leading to a tip trajectory following three
successive arcs with constant curvature. The best duration of each phase,
i.e. the length of each arc, was computed such that the generated trajectory
reached the target.

Hauser et al. [HAC+09] exploited the helical shape of the paths obtained
when applying constant insertion and rotation velocities to the needle. The
best velocities were computed by selecting the helical trajectory that allowed
the final tip position to be the closest to the target. A model predictive
control scheme was used, in which the best selected velocities are applied for
a short amount of time and the procedure is repeated until the target has
been reached.

Rapidly-exploring random tree (RRT): Among the many existing
path planning algorithms, the RRT algorithm [LK99] has been widely used
in needle steering applications. This probabilistic algorithm consists in ran-
domly choosing multiple possible control inputs and generating the corre-
sponding output trajectories. The best trajectory is then chosen and the
corresponding control inputs are applied to the real system. The RRT can
be used in many ways, depending on the underlying model chosen to relate
the control inputs to the output tip trajectory.

The first use of RRT for 3D flexible needle insertion planning was done
by Xu et al. [XDAG08]. The kinematic model of the needle with constant
curvature was used to predict the motion of the needle tip for given insertion
and rotation velocities. Due to the constant curvature constraint the control
inputs were limited to a stop-and-turn strategy. However, a lot of trajectories
had to be generated before finding a good one: the algorithm was then slow
and could only be used for pre-operative planning of the insertion.

The introduction of the duty-cycling control allowed dropping the con-
stant curvature assumption and consider the possibility of controlling the
effective curvature of the tip trajectory. This simplified the planning and
online intra-operative replanning could be achieved in 2D [BAP+11] and 3D
[PA10][BABP14]. The RRT was also used with 2D finite element model-
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ing instead of kinematic modeling to provide a more accurate offline pre-
operative planning that takes into account the tissue deformations due to
the needle insertion [PVdBA11].

Planning under uncertainties: Since planning methods always rely on
the predictions given by a model of the needle, inaccuracy of the model can
diminish the performances of the planning if they are not taken into account.
Stochastic planning methods have been proposed to consider uncertainties
on the motion of the tip.

Park et al. [PKZ+05] used a path-of-probability approach, where a
stochastic version of the kinematic model is used to compute the proba-
bility density function of the final position of the needle tip. This is then
used to generate an set of tip trajectories that can reach the target.

Alterowitz et al. [ASG08] used a stochastic motion roadmap to model the
probability to obtain a given 2D pose of the needle tip starting from another
tip pose. The optimal sequence of control inputs was then computed from
the map to minimize the probability to hit an obstacle and to maximize the
probability to reach the target. Fuzzy logic was also proposed as a way to
cope with incertainty in the control inputs [LP14].

Even when modeling the uncertainty, unpredicted tissue inhomogeneities
or tissue motions can greatly modify the trajectory of the tip or the geom-
etry of the environment. Using pre-operative planning usually requires the
use of reactive control during the real procedure to ensure that the planned
trajectory can be accurately followed. Planning can be used to not only
plan a feasible trajectory but also to design an optimal controller that can
take into account the uncertainties on the model and the intra-operative
measures during the procedure. In [vdBPA+11] a linear-quadratic Gaussian
(LQG) controller was designed to robustly follow the trajectory that was
pre-planned using RRT. The controller could take into account the current
state uncertainty to minimize the probability to hit an obstacle. Sun and Al-
trerovitz [SA14] proposed to take into account the sensor placement directly
during the design of the planning and LQG controller, in order to minimize
the uncertainty on the tip location along the planned trajectory. This way,
obstacles could be avoided without having to pass far away from them to
ensure avoidance.

Online re-planning: Online re-planning of the trajectory can also be used
instead of considering uncertainties in a model. By regularly computing a
new trajectory that takes into account the current state of the insertion,
the control can directly compensate for modeling uncertainties [BAPB13]
[PBWA14]. This offers the good prediction capabilities of the planning ap-
proach while maintaining a good reactivity to environment changes, which is
one of the motivations behind the research on fast planning algorithms that
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could work in real-time.
However, online re-planning is only possible when using simplified models

like kinematic models. In the case of base manipulation control, the whole
shape of the needle needs to be modeled, limiting the use of such model
to pre-operative planning. Reactive control can then be used during the
insertion to adapt to the changes in the environment.

4.2.2 Reactive control

Reactive control consists in using only a feedback on the current state of the
system to compute the control inputs to apply. This kind of control usually
uses inverse kinematics to compute the control inputs to obtain a desired
output motion. If the approach does not rely on an accurate modeling of the
system, it uses closed-loop control to compensate for modeling errors.

Reactive control with tip-based control: In the case of beveled-tip
needles, sliding control can be used to control the bevel orientation during
the insertion such that the bevel cutting edge is always directed toward the
target. The advantage of this method is that it does not rely on the pa-
rameters of an interaction model with the tissues. Rucker et al. [RDG+13]
demonstrated that an arbitrary accuracy could be reached with this method
by choosing an appropriate ratio between insertion and rotation velocities.
Sliding control have proven its efficiency with many feedback modalities,
such as electromagnetic (EM) tracker [RDG+13], fiber Bragg grating (FBG)
sensors [AKM13], ultrasound (US) imaging [ARRM13][FRS+16] or comput-
erized tomography (CT)-scan fused with EM tracking [SHvK+17]. For this
reason, we will include it in our control framework in the following section 4.3.

Reactive control can also be used to intra-operatively compensate for de-
viations from a trajectory that has been planned pre-operatively by another
planning algorithm. Sliding control can for example be adapted to follow
keypoints along the planned trajectory instead of directly pointing toward
the target [AVP+14]. The linear-quadratic Gaussian (LQG) control frame-
work can also be used to take into account modeling errors and measure
noise during the insertion [KC09].

Since reactive control is expected to work in real-time, kinematic models
are most often used. However such models are only applicable for needle
with asymmetric tips whereas base manipulation must be use in the case of
a symmetric tip needle.

Reactive control with base manipulation: The first robotic needle
insertion procedure using base manipulation [DS05b] proposed to use vec-
tor fields to define the trajectory that needed to be followed by the needle
tip. The needle and tissues were modeled using 2D finite element modeling
(FEM) and the vector field was attached to the tissue model, such that tissue
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deformations also induced a modification of the vector field. An attractive
vector field was placed around the target and repulsive ones were placed
around obstacles, defining in each point of the space the desired instanta-
neous velocity that the needle tip should follow. Inverse kinematics was
computed from the current state of the model to find the local base motion
that generates the desired tip motion. This was only performed in simula-
tion and then applied in open-loop to a real needle due to computational
complexity of the FEM.

Mechanics-based models were also used with closed-loop feedback us-
ing fluoroscopic [GS07] or US [NS10] imaging, allowing the intra-operative
steering of a flexible needle toward a target.

Reactive control using visual feedback: Visual servoing is a kind of
reactive control based on visual feedback. The method computes the control
inputs required to obtain a desired variations of some visual features defined
directly in the acquired images. In [Kru14] and [CKN15] it was used to
control the needle trajectory using 3D US imaging and the duty-cycling
method. This approach offers a great accuracy and robustness to modeling
errors due to the fact that the control is directly defined in the image. It is
also quite flexible since many control behaviors can be obtained depending
on the design of the visual features that are chosen. For these reasons we
choose visual servoing as a basis for our needle steering framework and we
will describe its principles in more detail in the following section 4.3.1.

4.3 Needle steering framework

This section presents our contribution to the field of needle steering in soft
tissues. We propose a generic control framework that can be adapted to
control the different degrees of freedom of a robotic system holding any kind
of needle shaped tool with symmetric or asymmetric tip geometry.

The proposed approach is based on visual servoing [ECR92], which con-
sists in controlling the system to obtain some desired variations of several
features defined directly in an image, such as for example the alignment of
the needle with a target in an ultrasound image. In order to offer a frame-
work that can be adapted to many kinds of information feedback and that is
not limited to visual feedback, we propose a formulation that uses the task
function framework [SELB91], which is the core principle used in visual ser-
voing. This way a single control law can be used to integrate the information
on the needle and the target provided by several kinds of modalities, such
as electromagnetic tracking, force feedback, medical imaging or fiber Bragg
grating shape sensors.

In the following we first present the fundamentals of the task function
framework in section 4.3.1 and the stability aspects of the control in sec-
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tion 4.3.2. We then describe in section 4.3.3 how we apply this framework to
the case of needle steering by using the mechanics-based needle models that
we proposed in section 2.4. Finally we present in section 4.3.4 the design of
several task functions that can be used in the framework to steer the needle
tip toward a target while maintaining a low amount of deformations of the
tissues.

Experimental validation of the framework in the case of visual feedback
will be described in section 4.4.

4.3.1 Task function framework

A classical method used to control robotic systems is the task function frame-
work [SELB91], that we describe in the following.

General formulation: We consider a generic control vector v ∈ Rm con-
taining the m different input velocities that are available to control the sys-
tem. This vector can typically contain the velocity of each joint of a robotic
arm or the six components of the velocity screw vector of an end-effector.
We note r ∈ Rm the position vector associated to v, i.e. the position of
the joints or the pose of the end-effector. In the task function framework, a
task vector e ∈ Rn is defined and contains n scalar functions that we want
to control. In image-based visual servoing these tasks usually correspond to
some geometrical features extracted from the images. At each instant the
variations of the tasks can be expressed as

ė(t,v) =
de

dt
=
∂e

∂t
+
∂e

∂r
v. (4.3)

The term
∂e

∂t
represents the variations over time of the tasks that are not

due to the control inputs. The tasks are linked to the control inputs by the
Jacobian matrix J ∈ Rn×m defined as

J =
∂e

∂r
. (4.4)

Let define ėd the desired value for the variation of the task functions.
In all the following developments, the subscript .d will be used to describe
the desired value of a certain quantity. The best control vector that allows
fulfilling the tasks can be computed as

v = J+

(
ėd −

∂e

∂t

)
, (4.5)

where + stands for the Moore-Penrose pseudo-inverse operator [Pen55].
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The variation
∂e

∂t
is usually not directly available and an estimation

∂̂e

∂t

is necessary to compute v = J+

(
ėd −

∂̂e

∂t

)
. For simplicity, in the following

we consider the case where
∂e

∂t
= 0, which is usually associated to a static

case where only the control inputs v have an action on the environment.
This leads to the control law

v = J+ėd, (4.6)

which is the main control law that we will use in the experiments.

Tasks and inputs priorities: When n < m, there are more degrees of
freedom (DOF) than the number of tasks to fulfill. If the tasks are in-
dependent, i.e. the rank of J is equal to the number n of tasks, then
there are infinite solutions to exactly fulfill all the tasks. In this case the
Moore-Penrose pseudo-inverse gives the solution with the lowest euclidean
norm. If the components of the input vector are not homogeneous, for ex-
ample containing both translational and rotational velocities, the euclidean
norm may actually have no physical meaning. A diagonal weighting matrix
M ∈ Rm×m can be used in this case to give specific weights to the different
components:

v = M−1(JM)+ėd . (4.7)

Different methods of Jacobian normalization used to tune the weights of the
matrix have been summarized by Khan et al. [KAW15].

When n > m, there are not enough DOF to control the different tasks
independently. The same thing happens if the rank of J is lower than n,
meaning that some of the tasks are not independent. A diagonal weighting
matrix L ∈ Rn×n can then be used in these cases to give specific weights to
the different tasks depending on their priority. Hence,

v = (LJ)+L−1ėd . (4.8)

Both weighting matrices can also be used to deal with dependant tasks in
an underdetermined system, leading to the weighted pseudo-inverse [Eld82]
expressed as

v = M−1(LJM)+L−1ėd . (4.9)

Note however that the weighted pseudo-inverse only achieves a trade-off
between tasks, meaning that even high-priority tasks may not be exactly
fulfilled.
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Hierachical stack of tasks: Absolute priority can be given to some tasks
using hierarchical stack of tasks [SS91]. In that case, each set of tasks with a
given priority is added successively to the control output such that they do
not disturb the previous tasks with higher priority. This is done by allowing
the contribution of low priority tasks to lie only in the null space of the
higher priority tasks. The control output that is obtained after adding the
contributions of the tasks from priority level 1 to i (1 being the highest
priority) is given by

vi = vi−1 + P i−1 (J iP i−1)+ (ėi,d − J ivi−1) , (4.10)

where J i is the Jacobian matrix corresponding to the task vector ei contain-
ing the tasks with priority level i, ėi,d still denotes the desired value of ėi
and P i is the projector onto the null space of all tasks with priority levels
from 1 to i.

For example, using only 2 priority levels, the control law thus becomes

v = J+
1 ė1,d + P 1 (J2P 1)+ (ė2,d − J2J

+
1 ė1,d

)
. (4.11)

An illustration of the hierarchical stack of tasks using this formulation can
be seen in Fig. 4.2a.

Singularities: One issue when using task functions is the presence of sin-
gularities. Natural singularities may first arise when one of the tasks be-
comes singular, meaning that the rank of the Jacobian matrix is lower than
the number n of tasks. Algorithmic singularities can also arise when tasks
with different priorities become dependent, i.e. when J iP i−1 becomes sin-
gular even if J i is not. While the pseudo-inverse is stable exactly at the
singularity, it leads to numerical instability around the singularity. This is
easily illustrated using the singular value decomposition of the matrix:

J =

min(n,m)∑
i=0

σiuiv
T
i , (4.12)

where the ui form an orthonormal set of vectors of Rn, the vi form an
orthonormal set of vectors of Rm and σi are the singular values of J . The
pseudo-inverse of J is then computed as

J+ =

min(n,m)∑
i=0

τiviu
T
i with τi =

{
σ−1
i if σi 6= 0
0 if σi = 0

. (4.13)

The matrix J is singular when at least one of the σi is equal to zero. In
this case the pseudo-inverse can still be computed since it sets the value of
τi to zero instead of inverting the singular value σi. However in practice
the matrix is almost never exactly at the singularity because of numerical
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(a) Classical hierarchical formulation (b) Singularity robust formulation

Figure 4.2: Illustration of the task function framework in the case of two
near incompatible tasks (n = 2) and a control vector with two components
vx and vy (m = 2). Each Ei is the set of control inputs for which the task i
is fulfilled. Each Si is the input vector obtained using a single task i in the
classical formulation (4.6). C is the input vector obtained using both tasks
in the classical formulation (4.6). The same input vector C is obtained using
the hierarchical formulation (4.11). Each Ri is the input vector obtained
using the singularity robust formulation (4.14) when the task i is given the
highest priority. The contributions due to tasks 1 and 2 are shown with blue
and red arrows, respectively, when the task 1 is given the highest priority
and with green and yellow arrows, respectively, when the task 2 is given the
highest priority.

inaccuracies. Around the singularity, the matrix is ill conditioned and one
of the σ−1

i becomes very large, leading to very large velocity outputs, which
are not desirable in practice.

Algorithmic singularities can be avoided by using the singularity robust
formulation for the control law [Chi97]:

vi = vi−1 + P i−1J
+
i ėi,d. (4.14)

While this method entirely removes algorithmic singularities, it leads to dis-
tortions of the low priority tasks, even when they are almost independent
of the higher priority ones. An illustration of the hierarchical stack of tasks
using this formulation can be seen in Fig. 4.2b.

In order to reduce the effect of singularities on the control outputs,
damped least squares pseudo-inverse [DW95] has been proposed using a dif-
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ferent formulation of (4.13). Then

τi =
σi

σ2
i + λ2

, (4.15)

where λ is a damping factor. This method requires the tuning of λ and
many methods have been proposed to limit the task distortions far from the
singularity while providing stability near the singularity.

4.3.2 Stability

The task function framework is typically used to perform visual servoing,
in which a visual sensor is used to provide some visual information on the
system. The control of the system is performed by regulating the value of
some visual features s ∈ Rn, directly defined in the visual space, toward
desired values s∗ ∈ Rn. A typical approach is to design the task functions to
regulate the visual features s toward the desired values with an exponential
decay, such that

e = s− s∗, (4.16)
ėd = −λse, (4.17)

where λs is a positive control gain that tunes the exponential decrease rate
of the task vector e. In this particular case the control law (4.6) becomes

v = −λsJ+e. (4.18)

In practice the real Jacobian matrix J can not be known perfectly be-
cause it depends on the real state of the system. An approximation Ĵ needs
to be provided to the controller, such that the real control law becomes

v = −λsĴ
+
e. (4.19)

Using this control law, it can be shown that the system remains locally
asymptotically stable as long as the matrix JĴ

+
verifies [CH06]

JĴ
+
> 0. (4.20)

Note that this stability condition is also difficult to check since the real J
is not known. However this condition is usually verified in practice if the
approximation Ĵ provided to the controller is not too coarse.

In the following we describe how we adapt the task function framework
to the problem of needle steering and we present the method that we use to
compute the estimation of the Jacobian matrix Ĵ corresponding to a given
task vector.
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4.3.3 Task Jacobian matrices

In the two previous sections we have presented the fundamentals of the task
function framework. We now present how we adapt it to perform the control
of a needle insertion procedure.

As was presented in section 4.1.2, we choose to use the base manipulation
method to control the 6 degrees of freedom (DOF) of the needle base. The
generic input vector v that was defined in the task function framework (see
beginning of section 4.3.1) is thus taken as the velocity screw vector vb ∈ R6

of the needle base, containing three translational and three rotational veloc-
ities.

We consider in this section that a task vector e ∈ Rn has been defined
to control the variations of a specific set of features s ∈ Rn related to the
needle. These features can for example consist in the position of a point
along the needle shaft or the orientation of a beveled tip. The exact design
of the different tasks to perform a successful needle insertion will be covered
in detail in the following section 4.3.4.

In order to use the task function framework, an estimation of the Jacobian
matrices associated to each task must be provided all along the insertion
process. We propose to compute online numerical approximations of these
matrices using the mechanics-based models that we defined in section 2.4.
We assume that the features s can be computed from the model and we use
a finite different approach to compute the numerical approximations.

Let r ∈ SE(3) be the vector representing the current pose of the base
of the needle model. We note Js ∈ Rn×6 the Jacobian matrix associated to
the feature vector s such that

Js =
∂s

∂r
. (4.21)

Since the state of the model is computed from r and we assume that s
can be computed from the model, then s directly depends on r. The finite
difference approach consists in computing the value of s taken for several
poses ri spread along each direction around the current pose r. Due to
the non-euclidean nature of SE(3), we use the exponential map Expr to
compute each ri according to

ri = Expr(δtvi), (4.22)

where δt is a small time step and vi ∈ R6 is a unit velocity screw vector
corresponding to one DOF of the needle base. vi represents then a trans-
lation along one axis of the base frame for i = 1, 2, 3 and vi represents a
rotation around one axis of the base frame for i = 4, 5, 6. Figure 4.3 shows
an illustration of the frames corresponding to each ri.

Using the first order of the Taylor expansion we then have

s(ri) ' s(r) + δtJsvi. (4.23)
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Figure 4.3: Illustration of the different needle base poses used to estimate
the Jacobian matrices associated to the different features.

Since each vi corresponds to only one DOF of the base, each column Js,j
of the Jacobian matrix (j = 1, . . . , 6) can then be approximated using the
forward difference approximation

Js,j =
s(rj)− s(r)

δt
. (4.24)

For more accuracy, we use instead the second order central difference ap-
proximation, although it doubles the number of poses for which s needs to
be evaluated:

Js,j =
s(rj)− s(r−j)

2δt
, (4.25)

with r−j = Expr(−δtvj). (4.26)

Note that s can also lie on a manifold, for example when evaluating the
Jacobian corresponding to the pose of a point along the needle shaft. In this
case the logarithm map Logs(r) to the tangent space should be used and
leads to

Js,j =
Logs(r) (s(rj))− Logs(r) (s(r−j))

2δt
. (4.27)

Note that δt should be chosen as small as possible to obtain a good ap-
proximation of the Jacobian but not to small to avoid numerical precision
issues.

Now that we have defined a method to compute numerical approxima-
tions of the Jacobian matrices from our numerical needle model, we focus in
the following section on the design of different task functions to control the
needle insertion.
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4.3.4 Task design for needle steering

An important issue to control the behavior of the needle manipulator using
the task function framework is the design of the different task functions
stacked in the task vector e. In this section we consider the specific case
of the needle insertion procedure where a needle is held by its base. The
general objectives that we want to fulfill are first the control of the needle
tip trajectory to reach a target and then the control of the deformations of
the needle and the tissues to avoid safety issues. The main point of the task
function formulation is then to hide the complexity of the control of the base
motions and to translate it into the control of some easily understandable
features.

Each elementary task requires three components: the definition of the
task function (see for example (4.16)), the computation of the Jacobian ma-
trix associated to the task and the desired variation of the task function (see
for example (4.17)). The difficulty is that many different task functions can
be designed to fulfill a same general objective. It is also preferable that the
dimension of the task vector remains as small as possible. This way we can
avoid under-actuation of the system, where the tasks are not exactly fulfilled,
and also decrease the probability of incompatibility between different tasks.

In the following we first cover the design of the tasks that can be used
for the steering of the needle tip toward a target and we then focus on the
design of the tasks that can be used to avoid tearing the tissues or breaking
the needle.

4.3.4.1 Targeting tasks design

The first and main objective to fulfill in an insertion procedure is that the
needle tip reaches a target in the tissues. In this section we propose different
task vectors that can be used to control the tip trajectory in order to reach
the target and we present their different advantages and drawbacks. We first
start with general task vectors that give a full control over the tip trajectory
and then we successively present simpler ones that control only individual
aspects of the tip trajectory. The first task vectors can be used with any
kind of needle tips, while the last task vector is more specific to beveled tips.

We recall here that the subscript .d is used to define the desired value of
a quantity.

Tip velocity screw control: A first idea is to directly control the motion
of the tip via its velocity screw vector vt ∈ R6. We denote J tip ∈ R6×6 the
Jacobian matrix between vt and vb, such that

vt = J tip vb, (4.28)

where the screw vectors are defined in their respective frames {Ft} and {Fb}
as illustrated on Fig. 4.4. Note that J tip is computed using the finite differ-
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Figure 4.4: Illustration of different geometric features that can be used to
define task functions for the general targeting task.

ence method defined on a manifold that was defined by (4.27) in section 4.3.3.
This Jacobian matrix will be used as a basis for the other tasks in the follow-
ing since it entirely describes the relation between the motion of the needle
base and the motion of the needle tip.

This relation can then directly be inverted according to (4.6) to allow the
control of the desired tip motion vt,d, such that

vb = J+
tip vt,d. (4.29)

One advantage of this control is that it translates the control problem from
the needle base to the needle tip. It can thus allow an external human
operator to directly control the desired motion of the tip vt,d without having
to consider the complex interaction of the flexible needle with the tissues.

However one drawback is that it constraints the six control inputs, mean-
ing that no additional task can be added. Subsequently, in the case of the
design of an autonomous control of the tip trajectory, the design of the de-
sired variations of the tip motion vt,d should take into account its effect on
the whole behavior of the needle to avoid unfeasible motions that would dam-
age the tissues. This can thus be as difficult to design as directly controlling
the motions of the needle base.
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However the tip screw vector can be written as vt =

[
vt
ωt

]
, with vt ∈ R3

the translational velocity vector and ωt ∈ R3 the rotational velocity vector.
In the following we propose different ways to separate the components of
vt to obtain a task vector of lower dimension that is still adequate for the
general targeting task and allows the addition of other task functions.

Tip velocity control: A first solution that is better than the one pro-
posed in previous paragraph is to limit the task vector to the control of the
translational velocities vt of the tip. The corresponding Jacobian matrix is
then

Jvt =
[
I3 03

]
J tip, (4.30)

where I3 and 03 are the 3 by 3 identity and null matrices, respectively, and
J tip was defined in (4.28).

This relation can also be directly inverted according to (4.6) to allow the
control of the desired tip translations vt,d, such that

vb =
([
I3 03

]
J tip

)+ vt,d. (4.31)

The main advantage of this control is that it allows a direct control of the tip
trajectory and keeps some free degrees of freedom (DOF) to add additional
task functions. This can also easily be adapted to follow a trajectory defined
by a planning algorithm or to give the control of vt,d to an external human
operator.

In the case of an autonomous controller, a way to reach the target is to
fix the desired variations of the task vector such it goes toward the target
with a fixed velocity vtip. Noting pt =

[
xt yt zt

]T the position of the
target in the needle tip frame {Ft} (see Fig. 4.4), we have

vt,d = vtip
pt
‖pt‖

. (4.32)

Note that this is the main targeting task design that we use in the dif-
ferent experiments to test our framework. In practice pt can be computed
from the tracking of the needle tip and the target using any modality that
allows this tracking, such as for example an imaging modality and an elec-
tromagnetic tracker.

One drawback of this task vector when it is used alone is that it does not
explicitly ensure that the needle actually aligns with the target. It is thus
possible that the tip translates in the direction of the target while the tip
axis goes further away from the target, resulting in a motion of the needle
shaft that is cutting laterally in the tissues. However, since this task vector
does not constrains all the DOF of the base, an additional task function can
be added to explicitly solve this issue, for example a safety task function that
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limits the cutting of the tissues (as will be designed later in section 4.3.4.2).
Alternatively, another targeting task vector can also be designed to directly
ensure that the needle aligns with the target. This is what we propose to
explore in the following.

Minimal set of targeting task functions: We propose to solve the two
issues caused by the targeting task vectors that were designed in the previous
paragraphs. The issue with the first task vector controlling the whole tip
motion is that it constrains all the DOF of the needle base, such that no
other task functions can be added. The second task vector controlling only
the tip translations solves this issue but does not ensure that the needle
aligns with the target.

Therefore we propose to decompose the general targeting task into the
two fundamental actions that allow reaching the target: inserting the needle
and orienting the needle tip axis toward the target.

Each action can be achieved using only one scalar task function. In the
following we first present a task function to control the insertion of the needle
and then we present two possible task functions to control the orientation of
the needle tip axis.

Needle insertion: The insertion of the needle can easily be con-
trolled using only the velocity vt,z of the needle tip along its axis (z axis
of the tip frame {Ft} depicted in Fig. 4.4). The associated Jacobian matrix
Jvt,z ∈ R1×6 can then be expressed as

Jvt,z =
[

0 0 1 0 0 0
]
J tip, (4.33)

where J tip was defined in (4.28).
The desired insertion velocity vt,z,d can then be set to a positive constant

vtip (that was defined in (4.32)) during the insertion and can be set to zero
once the target has been reached, such that

vt,z,d =

{
vtip if zt > 0
0 if zt ≤ 0

, (4.34)

where we recall that zt is the distance from the tip to the target along the
needle tip axis.

Needle tip axis orientation: Orienting the needle tip axis toward the
target can first be achieved by minimizing the angle θ between the needle tip
axis and the axis defined by the tip and the target, as illustrated on Fig. 4.4.
This angle can be expressed as

θ = atan2

(√
x2
t + y2

t , zt

)
, (4.35)
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where we recall that xt, yt and zt are the components of the position pt of
the target in the tip frame {Ft} depicted in Fig. 4.4.

The Jacobian matrix Jθ ∈ R1×6 corresponding to this angle can be
expressed as

Jθ =



− xt cos2(θ)

zt
√
x2
t + y2

t

− yt cos2(θ)

zt
√
x2
t + y2

t√
x2
t + y2

t

(x2
t + y2

t + z2
t )

yt√
x2
t + y2

t

− xt√
x2
t + y2

t
0



T

J tip, (4.36)

where J tip was defined in (4.28).
Aligning the needle axis with the target can then be achieved by regu-

lating the value of θ toward zero, such that

θ̇d = −λθ θ, (4.37)

where λθ is a positive control gain that tunes the exponential decrease rate
of θ.

Alternatively the distance d between the needle tip axis and the target
can also be used as a feature to minimize in order to reach the target (see
Fig. 4.4). This distance and the corresponding Jacobian matrix Jd ∈ R1×6

can be expressed as

d =
√
x2
t + y2

t , (4.38)

Jd =
[
−xt

d −yt
d 0 ytzt

d −xtzt
d 0

]
J tip, (4.39)

where J tip was defined in (4.28).
Regulation of d toward zero can also be achieved using

ḋd = −λd d, (4.40)

where λd is a positive control gain that tunes the exponential decrease rate
of d.

The different task functions can then be stacked together and used in
(4.6), which leads to the following two possible control laws

vb =

[
Jvt,z
Jθ

]+ [vt,z,d
θ̇d

]
, (4.41)

or vb =

[
Jvt,z
Jd

]+ [vt,z,d
ḋd

]
. (4.42)
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Both control laws allow the automatic steering of the needle tip toward the
target, while letting several free DOF of the needle base to perform other
tasks at the same time.

Giving the control of vt,z along with θ̇d or ḋd to an external human op-
erator would be less intuitive than the direct control of the tip translations
defined by (4.31). The exact trajectory of the tip would be harder to handle
in this case due to the non-intuitive effect of θ̇d or ḋd on the exact tip trajec-
tory. However, it could be possible to give only the control of the insertion
speed vt,z to the operator and let the system handle the alignment with the
target.

Additionally, in the case of an autonomous controller using (4.34) along
with (4.37) or (4.40), an adequate tuning of the insertion velocity vtip and the
gain λθ or λd is required. If the gain is too low with respect to the insertion
velocity, the needle tip does not have enough time to align with the target
before it reaches the depth of the target. The gain should thus be chosen
large enough to avoid mistargeting if the target is initially misaligned.

Tip-based control task functions: All the previously defined task vec-
tors control in some way one of the lateral translations or rotations of the
needle tip. They can thus be used with symmetric or asymmetric tip ge-
ometries. However, the advantage of a needle with an asymmetric tip is
that the tip trajectory can also be controlled during a pure insertion using
only the orientation of the asymmetry, without direct control of the lateral
translations.

In the case of a beveled-tip, the lateral force created at the tip during the
insertion is directly linked to the bevel orientation. Orientation of the bevel
toward the target can then be achieved by regulating the angle σ between
the target and the orientation of the bevel cutting edge around the needle
axis, as depicted in Fig. 4.4. This angle and the corresponding Jacobian
matrix Jσ ∈ R1×6 can be expressed according to

σ = atan2(yt, xt)−
π

2
, (4.43)

Jσ =
[ yt
d2
−xt
d2

0 xtzt
d2

ytzt
d2

−1
]
J tip, (4.44)

where d was defined by (4.38) and J tip in (4.28).
Regulation of σ toward zero can also be achieved using

σ̇d = −λσ σ, (4.45)

where λσ is a positive control gain that tunes the exponential decrease rate
of σ.

A smooth sliding mode control will however be preferred, as was done in
[RDG+13], to rotate the bevel as fast as possible while it is not aligned with
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the target. This is equivalent to define a maximum rotation velocity ωz,max
in (4.45) and to use a relatively high value for λσ, such that

σ̇d =

{ −ωz,max sign(σ) if |σ| ≥ ωz,max
λσ

−λσ σ if |σ| < ωz,max
λσ

. (4.46)

Tip-based control can thus be performed by stacking this task function
with the insertion velocity task function defined by (4.33) and (4.34) and use
them in (4.6), which leads to the following control law

vb =

[
Jvt,z
Jσ

]+ [vt,z,d
σ̇d

]
. (4.47)

This control law allows the automatic steering of the needle tip toward the
target by using the asymmetry of the needle tip and also let several free DOF
of the needle base to perform other tasks at the same time.

The direct control of both vt,z and σ̇d can be given to an external human
operator to perform the insertion. Alternatively, it could also be possible to
give only the control of the insertion speed vt,z to the operator and let the
system automatically orient the bevel toward the target.

In the case of an autonomous controller using (4.34) and (4.46), an ade-
quate tuning of the insertion velocity vtip with respect to the rotation velocity
ωz,max is necessary to ensure that the bevel can be oriented fast enough to-
ward the target before the needle tip reaches the depth of the target. This
can usually be achieved by setting a high value ωz,max [RDG+13].

Conclusion: We have presented several task vectors that could be used
in a control law to achieve the steering of the needle tip toward a target.
Each task vector uses a different strategy, such as the control of the tip
velocity, the alignment of the tip axis with the target or the orientation of
the asymmetry of the needle tip toward the target.

Most of the task vectors do not constrain all of the available DOF of the
needle base, such that they can be used in combination with one another or
with other task functions to achieve several objectives at the same time. In
particular, the orientation of the bevel of a beveled-tip can be used alongside
the control of the lateral translations or rotations of the tip in order to
increase the targeting performances of the controller. This will be explored
in the experiments presented in section 4.4.

The deformations of the needle and the tissues should also be controlled
during the insertion, especially when using the control of the lateral trans-
lations of the tip, which can only be achieved by bending the needle and
pushing on the tissues. Therefore, in the next section we focus on the design
of additional task functions in order to ensure the safety of the insertion
procedure.
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4.3.4.2 Safety tasks design

The tasks defined in the previous section are used to control the trajectory
of the needle tip. However they do not take into account other criteria that
may be relevant to ensure a safe insertion of the needle. Two main points
need to be taken into account for the safety of the insertion procedure.

First the lateral efforts exerted on the tissues should be minimized to
reduce the risks of tearing, which would go against the general concept of
minimally invasive procedure. The second point is to avoid breaking the
needle, for obvious safety reasons. Both points can be viewed as a same
objective since breaking the needle will only occur if large efforts are applied
on the tissues.

In order to address these two points, we propose in the following three
task functions that can be used in combination with the targeting task vec-
tors of previous section using one of the control schemes defined in sec-
tion 4.3.1 by (4.6), (4.10) or (4.14). The first task is designed toward the
control of the deformations of the tissues, the second one toward the control
of the deformations of the needle and the third one to achieve a trade-off
between the two. An experimental comparison of the performances obtained
with each task function will then be provided later in section 4.4.1.2.

Surface stretch reduction task: It can be noted that tissue tearing has
the greatest probability to appear near the surface of the tissues. Indeed,
this occurs when the skin has already been fragilized by the initial cut of
the needle and when less surrounding tissues are present to maintain their
cohesion.

A first solution to avoid tearing the surface of the tissues is to ensure that
the body of the needle remains close to the initial position of the insertion
point. This can be achieved by reducing the relative lateral position δ ∈ R2

on the tissue surface between the current position of the needle cN (Lfree)
and the initial position of the insertion point cT (0), as illustrated on Fig. 4.5
(note that we choose to take the notations cN , cT and Lfree that were
introduced in the definition of the two-body model in section 2.4.2).

This task and the associated Jacobian matrix can then be expressed
according to

δ = P s

(
cN (Lfree)− cT (0)

)
, (4.48)

Jδ = P s
∂cN (Lfree)

∂r
= P sJLfree , (4.49)

where P s ∈ R2×3 is an orthogonal projector onto the tissue surface and
JLfree ∈ R3×6 is the Jacobian matrix linking the variations of the position
of the needle point at the curvilinear coordinate Lfree to the variations of
the needle base pose r.
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Figure 4.5: Illustration of the geometric features used for the safety task
functions. Note that the representation is here limited to a 2D case, however
in the general case the angle γ is defined in the plane containing the needle
base axis z and the initial insertion point cT (0).

Regulation of δ toward zero can be achieved using the classical law

δ̇d = −λδ δ, (4.50)

where λδ is a positive control gain that tunes the exponential decrease rate
of δ.

Alternatively the scalar distance δ can also be directly used to decrease
the dimension of the task:

δ = ‖δ‖, (4.51)

Jδ =
δT

δ
Jδ, (4.52)

δ̇d = −λδ δ, (4.53)

where λδ is a positive control gain that tunes the exponential decrease rate of
δ. Note that this formulation introduces a singularity when δ = 0. However,
it can be shown that the local asymptotic stability of the system remains still
valid [MC10]. From a numerical point of view, it can also be noted that δ

T

δ
is always a unit vector for δ 6= 0, such that Jδ does not introduce arbitrary
large values near δ = 0. Therefore in the following we will use the scalar
version of the task for the reduction of the tissue stretch at the surface.
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Needle bending reduction task: A solution to avoid breaking the nee-
dle is to ensure that the needle remains as straight as possible. However
maintaining the needle strictly straight is not possible since needle bending
is necessary to steer the needle tip, either from lateral base motion or by
using the natural curvature at the needle tip.

We propose to use the bending energy of the needle as a quantity to
minimize. This energy can be computed from the needle models presented
in section 2.4. As defined in (2.19), the energy is given by

EN =
EI

2

∫ LN

0

(
d2cN (l)

dl2

)2

dl,

where we recall that E is the Young’s modulus of the needle, I is the second
moment of area of the needle section and cN is the spline curve of length
LN representing the shape of the needle.

The corresponding Jacobian matrix JEN ∈ R1×6 can then be computed
from the model using the method described by (4.25) in section 4.3.3

JEN =
∂EN
∂r

. (4.54)

Regulation of EN toward zero can by achieved using the classical law

ĖN,d = −λEN EN , (4.55)

where λEN is a positive control gain that tunes the exponential decrease rate
of EN .

Needle base alignment task: Limiting the distance between the needle
and the initial position of the insertion point does not ensure that the needle
is not bending outside of the tissues. Similarly, once the needle has been
inserted, reducing the bending of the needle does not ensure that the needle
is not pushing laterally on the surface of the tissues. In order to avoid pushing
on the tissues near the insertion point and to also limit the bending of the
needle outside the tissues, the needle base axis can be maintained oriented
toward the insertion point. This can be viewed as a remote-center-of-motion
around the initial insertion point, in the case where this one is not moving,
i.e. if no external tissue motions occur.

We propose to achieve this goal by regulating toward zero the angle γ
between the needle base z axis and the initial location of the insertion point
cT (0), as illustrated on Fig. 4.5. This way the needle base axis should also
follow the insertion point in the case of tissue motions that are not due to
the interaction with the needle.

Noting x0, y0, and z0 the coordinates of the initial position of the insertion
point cT (0) in the needle base frame {Fb} (see Fig. 4.5), the angle γ and the
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associated Jacobian matrix can be expressed according to

γ = atan2

(√
x2

0 + y2
0, z0

)
, (4.56)

Jγ =



− x0 cos2(γ)

z0

√
x2

0 + y2
0

− y0 cos2(γ)

z0

√
x2

0 + y2
0√

x2
0 + y2

0

(x2
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0 + z2
0)

y0√
x2

0 + y2
0

− x0√
x2
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0

0
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T

. (4.57)

Regulation of γ toward zero can by achieved using the classical law

γ̇d = −λγ γ, (4.58)

where λγ is a positive control gain that tunes the exponential decrease rate
of γ.

Conclusion: In this section we have defined three different task functions
that can be used to control the deformations of the needle or tissues dur-
ing the insertion. These task functions can be combined together with a
targeting task using the task function framework in order to obtain a final
control law that allows reaching a target with the needle tip while ensuring
the safety aspect of the insertion procedure.

In the following section we propose to test in different experimental sce-
narios the whole needle steering framework that we designed. Several com-
binations of the task vectors defined in sections 4.3.4.1 and 4.3.4.2 will be
explored as well as the different formulations used to fuse them into one
control law as described in section 4.3.1.

4.4 Framework validation

In this section we present an overview of the experiments that we conducted
to test and validate our proposed needle steering framework. We first use
the stereo cameras to obtain a reliable feedback on the needle localization
in order to test the different aspects of the framework independently from
the quality of the tracking. We then perform insertions under 3D ultrasound
visual guidance using the tracking algorithm that we proposed in chapter 3.
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4.4.1 Insertion under camera feedback

In this section we propose to evaluate the performances of our framework
when using the visual feedback provided by the stereo camera system pre-
sented in section 1.5.3. In all the experiments the stereo camera system is
registered and used to retrieve the position of the needle shaft in the tissues
using the registration and tracking methods described in section 3.4.1.

We first present experiments that we performed to combine our frame-
work with the duty-cycling control technique described in section 4.1.1. We
then compare the performances obtained during the needle insertion when
using the different safety task functions that were defined in section 4.3.4.2.
Finally we propose to test the robustness of the method to modeling errors
introduced by lateral motions of the tissues.

4.4.1.1 Switching base manipulation and duty-cycling

We first propose to use both base manipulation and tip-based control to
insert a needle and reach a virtual target. Tip-based control allows a fine
control of the tip trajectory, however the amplitude of the lateral tip motions
that can be obtained is limited, such that the target can be unreachable
if it is not initially aligned with the needle axis. On the contrary, using
base manipulation allows a better control over the lateral tip motions at
the beginning of the insertion, however the effect of base motions on the tip
motions is reduced once the needle tip is inserted deeper in the tissues.

In the following we use an hybrid controller that alternates between
duty-cycling control (see section 4.1.1) and base manipulation using our task
framework (see section 4.3) in order to accurately reach a target that may
be misaligned at the beginning of the insertion.

Experimental conditions: In these experiments, the Angiotech biopsy
needle is actuated by the Viper s650. The insertion is done in a gelatin
phantom embedded in a stationary transparent plastic container. Visual
feedback is obtained using the stereo cameras system and the whole needle
shaft is tracked in real-time by the image processing algorithm described in
section 3.4.1. A picture of the setup is shown in Fig. 4.6.

A virtual target to reach is defined just before the beginning of the inser-
tion such that it is located at a predefined position in the initial tip frame.
We use the virtual springs model presented in section 2.4.1 with polynomial
needle segments of order r = 3. The stiffness per unit length of the model is
set to 10000 N.m−2 for these experiments and the length threshold to add a
new virtual spring is set to Lthres = 2.5 mm. The rest position of a newly
added spring (defined as p0,i in section 2.4.1) is set at the position of the
tracked needle tip in order to compensate for modeling errors. The pose of
the needle base of the model is updated using the odometry of the robot.
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Figure 4.6: Picture of the setup used to test the hybrid base manipulation
and duty-cycling controller.

Control: We use either base manipulation using the task function frame-
work or duty-cycling control depending on the alignment of the target with
the needle tip axis. Duty-cycling is used when the target is almost aligned
and only small modifications of the tip trajectory are needed. Base manipu-
lation is used when larger tip motions are necessary to align the needle with
the target.

Base manipulation control: We use three tasks to control the needle
manipulator and we fuse them using the singularity robust formulation of
the task function framework, as defined by (4.14) in section 4.3.1. Each task
is given a different priority level such that it does not disturb the tasks with
higher priority. The tasks are defined as follows.

• The first task with highest priority controls the tip translational veloc-
ity vt, as defined by (4.30) and (4.32). We set the insertion velocity to
1 mm.s−1. Note that we choose this task over the tip alignment tasks
defined in (4.41) and (4.42) because it does not require the tuning of
an additional gain.

• The second task with medium priority controls the bevel orientation
via the angle σ, as defined by (4.43), (4.44) and (4.46). The maximal
rotation speed ωz,max is set to 60◦.s−1 and the gain λσ is set to 4

3 (see
(4.46)) such that the maximal rotation velocity is used when the bevel
orientation error is higher than 45◦.
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• The third task with lowest priority is used to reduce the mean defor-
mations of the tissues δm, which we compute here from the virtual
springs interaction model according to

δm =
1

Lins

n∑
i=1

liδi, (4.59)

where Lins is the current length of the needle that is inserted in the
tissues, n is the current number of virtual springs, δi is the distance
between the needle and the rest position of the ith virtual spring, i.e.
the virtual spring elongation, and li is the length of the needle model
that is supported by this virtual spring. The Jacobian matrix Jδm
corresponding to δm is numerically computed from the model using the
method described by (4.25) and the desired variation of δm is computed
as

δ̇m,d = −λδm δm, (4.60)

with the control gain λδm set to 1.

The final velocity screw vector vb applied to the needle base is then computed
according to

vb = J+
vtvt,d + P 1J

+
σ σ̇d − λδmP 2J

+
δm
δm, (4.61)

with P 1 = I6 − J+
vtJvt , (4.62)

P 2 = I6 −
[
Jvt
Jσ

]+ [
Jvt
Jσ

]
, (4.63)

where I6 is the 6 by 6 identity matrix.

Duty-cycling control: We use duty-cycling control when the target is
almost aligned with the needle tip axis. This is detected by comparing the
angle θ between the target and the tip axis (as defined in (4.35)) with the
maximum angle θDC obtained during one cycle of duty-cycling. This angle
corresponds to the angle obtained during a cycle with only insertion (duty-
cycle ratio DC = 0), such that

θDC = KnatLDC . (4.64)

where Knat is the natural curvature of the needle tip trajectory during the
insertion and LDC is the total insertion length of a cycle, set to 3 mm in
this experiment. If θ < θDC , the needle would overshoot the current desired
direction in less than a cycle length. In that case it is better to reduce the
effective curvature Keff of the tip trajectory such that it aligns with the
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desired direction, i.e using

Keff =
θ

LDC
, (4.65)

DC = 1− θ

LDCKnat
(4.66)

The total rotation of the needle during each rotation phase is set to 2π + σ,
where σ is the angle between the target and the bevel as defined in (4.43),
such that the bevel is oriented in the target direction before starting the
translation phase.

Experimental scenarios: Four experiments are performed with a same
phantom to validate our method.

At the beginning of each experiment, the needle is placed such that it
is normal to the surface of the gelatin and its tip slightly touches it. The
insertion point is shifted between the experiments in a way that the needle
can not cross a previous insertion path. The needle is first inserted 7 mm
in the gelatin to allow the manual initialization of the tracking algorithm in
the images. Then the insertion procedure starts with an insertion speed of
1 mm.s−1 and is stopped when the target is no more in front of the needle
tip.

Open-loop insertion toward an aligned target: In the first exper-
iment, a virtual target is defined before the beginning of the insertion such
that it is aligned with the needle and placed at a distance of 8 cm from the
tip. A straight insertion along the needle axis is then performed in open-
loop control. Fig. 4.7a shows the view of the front camera at the end of the
experiment and Fig. 4.8a shows the 3D lateral distance between the needle
tip axis and the target. Note that the measure presents a high level of noise
at the beginning of the insertion. This is first due to the noisy estimation of
the needle direction at the beginning of the insertion since the visible part
of the needle is small. Second, the needle tip is far from the target at the
beginning of the insertion, which amplifies the effect of the direction error on
the lateral distance. We can see that the target is missed laterally by 8 mm
at the end because of the natural deflection of the needle. This experiment
justifies that needle steering is necessary to accurately reach a target even if
it is correctly aligned with the needle axis at the beginning of the procedure.

Tip-based control with a misaligned target: In a second exper-
iment, the target is shifted 1 cm away from the initial tip axis and such
that a 135◦ rotation is necessary to align the bevel toward the target. The
duty-cycling control is used alone for this experiment. Fig. 4.7b shows the
view of the front camera at the end of the experiment and Fig. 4.8b shows
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(a) Straight insertion and
initially aligned target

(b) Duty-cycling control
and initially shifted target

(c) Hybrid control and
initially aligned target

(d) Hybrid control and
initially shifted target

Figure 4.7: Final views of the front camera at the end of 4 insertions with
different controls. The crosses represent the target. (a) Straight insertion
with an initially aligned target: the target is missed due to tip deflection.
(b) Duty-cycling control with a target shifted 1 cm away from the initial
needle axis: duty-cycling control is saturated and the target is missed due
to insufficient tip deflection. The target can be reached in both cases using
the hybrid control framework ((c) aligned target and (d) shifted target).
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(d) Hybrid control and
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Figure 4.8: Measure of the lateral distance between the needle tip axis and
the target during 4 insertions with different controls. (a) Straight insertion
with an initially aligned target: the target is missed due to tip deflection.
(b) Duty-cycling control with a target shifted 1 cm away from the initial
needle axis: duty-cycling control is saturated and the target is missed due to
insufficient tip deflection. The target can be reached in both cases using the
hybrid control framework ((c) aligned target and (d) shifted target). In each
graph, the purple sections marked "DC" correspond to duty-cycling control
and the red sections marked "BM" correspond to base manipulation.

the 3D lateral distance between the needle tip axis and the target. After
the first rotation, the duty-cycling controller is saturated and only performs
pure insertion phases. We can see that the lateral alignment error decreases
during the insertion. However the natural curvature of the needle is not
sufficient to compensate for the initial error and the target is finally missed
by 5 mm. This experiment justifies that base manipulation is necessary to
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Table 4.1: Final lateral position error between the needle tip and the target
for different insertion scenarios.

Final lateral error (mm)
Straight insertion and aligned target 7.6

Duty-cycling and shifted target 4.9
Hybrid control and aligned target 0.6
Hybrid control and shifted target 0.1

accurately reach a misaligned target with a standard needle or that a needle
offering higher curvature needs to be used.

Hybrid control: Two other experiments were performed with the same
initial target placements (one aligned target and one misaligned target) and
using the hybrid controller with both base manipulation and duty-cycling.
Figure 4.7c and 4.7d show the view of the front camera at the end of the
experiments and Fig. 4.8c and 4.8d show the 3D lateral distance between the
needle tip axis and the target. We can see that the controller allows reaching
the target with a sub-millimeter accuracy in both cases.

Table 4.1 shows a summary of the final lateral targeting error between
the tip and the target. The error in the needle direction was under 0.25 mm
in each experiment, which corresponds to the accuracy of the vision system.
These experiments show that using base manipulation in addition to tip-
based steering allows a larger reachable space compared to the sole use of
tip-based control methods.

In addition, we can observe that the controller rarely switched to duty-
cycling, has can be seen in Fig. 4.8c and Fig. 4.8d. This is due to the small
natural curvature of the needle tip trajectory obtained for this association
of needle and phantom. In this case it may not be necessary to reduce the
curvature of the needle tip trajectory. We could just orient the bevel edge
toward the target, as is done by the second task of the base manipulation
controller, and avoid the high number of rotations required to perform duty-
cycling control. However duty-cycling control should still be used when using
a more flexible needle, and more especially if the tip trajectory is defined by
a planning algorithm that allows non-natural curvatures.

A second observation concerns the oscillations in the lateral error that ap-
pear during the duty-cycling control in Fig. 4.8c and 4.8d. These oscillations
are due to a small misalignment between the axis of rotation of the robot
and the actual axis of the needle. This misalignment introduces some lateral
motions of the needle during the rotation phases, which in turn modify the
needle tip trajectory. From a design point of view, it shows that the accuracy
of the realization of a needle steering mechanical system can have a direct
effect on the accuracy of the needle steering. Furthermore, depending on the
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frame in which the observation is made, a lateral motion of the needle base
can be seen as a motion of the phantom, so that this oscillation phenomenon
confirms the fact that tissue motions is an important issue for an open loop
insertion procedure. This effect is likely to have a greater importance when
using relatively stiff needles, for which base motion have a significant effect
on the tip motion. On the contrary it should have a lower impact when using
more flexible needles, so that duty-cycling control is better suited for very
flexible needles.

Conclusion: We have seen that combining both base manipulation and
tip-based control during a visual guided robotic insertion allows a good tar-
geting accuracy in a large reachable space. This validate the fact that using
additional degrees of freedom of the needle base can be necessary to ensure
the accurate steering of the needle tip toward a target.

We also observed that duty-cycling control was actually not really adapted
to our experimental setup due to the low natural curvature of the tip tra-
jectory during the insertion. Therefore in the following we do not use duty-
cycling control anymore but we only orient the cutting edge of the bevel
toward the target, such that the full curvature of the needle tip trajectory is
used.

As a final note, we observed during the experiments that the third task
used to reduce the deformations of the tissues had almost no influence on the
final velocity applied to the needle base. This is due to the singularity robust
formulation and the fact that the task is near incompatible with the first
task with high priority. The contribution of the third task was then greatly
reduced after the projection in the null space of the first task. Therefore we
do not use this formulation in the followings and we use instead the classical
formulations defined by (4.6) or (4.10).

4.4.1.2 Safety task comparison

We propose here to compare the performances obtained when using the dif-
ferent safety tasks that we defined in section 4.3.4.2.

Experimental conditions: In these experiments, the Angiotech biopsy
needle is actuated by the Viper s650. The insertion is done in a gelatin
phantom embedded in a stationary transparent plastic container. Visual
feedback is obtained using the stereo cameras system and the whole needle
shaft is tracked in real-time by the image processing algorithm described in
section 3.4.1. A raisin is embedded in the gelatin 9 cm under the surface
and used as a real target. A picture of the setup is shown in Fig. 4.9.

We use the two-body model presented in section 2.4.2 with polynomial
needle segments of order r = 3. We fix the length of the needle segments
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Figure 4.9: Picture of the setup used to test the performances of the different
safety tasks.

to 1 cm, resulting in a total of n = 13 segments and the last segment mea-
suring 0.6 mm. A soft phantom is used in these experiments, such that
the stiffness per unit length of the model is set to 1000 N.m−2. The length
threshold to add a new segment to the tissue spline is set to Lthres = 0.1 mm.
The pose of the needle base of the model is updated using the odometry of
the robot.

Control: We use three tasks for the control of the needle manipulator and
we fuse them using the classical formulation of the task function framework,
as defined by (4.6) in section 4.3.1. The different tasks are defined as follows.

• The first task controls the tip translational velocity vt, as defined by
(4.30) and (4.32). We set the insertion velocity vtip to 5 mm.s−1.

• The second task controls the bevel orientation via the angle σ, as de-
fined by (4.43), (4.44) and (4.46). The maximal rotation speed ωz,max
is set to 60◦.s−1 and the gain λσ is set to 10 (see (4.46)) such that the
maximal rotation velocity is used when the bevel orientation error is
higher than 6◦.

• The third task is one of the three safety tasks defined in section 4.3.4.2:
reduction of the tissue stretch δ at the surface ((4.51), (4.52) and
(4.53)), reduction of the needle bending energy EN ((2.19), (4.54) and
(4.55)) or reduction of the angle γ between the needle base axis and
the insertion point ((4.56), (4.57) and (4.58)). The control gain for
each of these tasks (λδ, λEN or λγ) is set to 1.
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The final velocity screw vector applied to the needle base vb is then computed
according to

vb =

 Jvt
Jσ
J3

+ vt,dσ̇d
ė3,d

 , (4.67)

where J3 is the Jacobian matrix corresponding to the safety task (either Jδ,
JEN or Jγ) and ė3,d is the desired variation for the safety task (either δ̇d,
ĖN,d or γ̇d).

Note that the desired variations of the two first tasks are computed from
the measures of the target and tip position using the visual feedback. On
the contrary, the desired variations of the safety tasks are computed from
the needle interaction model.

The controller is stopped once the needle tip reaches the depth of the
target. We choose here to give the same priority level to each task, such
that the control should give a trade-off between good targeting and safety of
the procedure. However, the total task vector is here of dimension 5 while
we have 6 degrees of freedom available, such that all tasks should ideally be
able to be fulfilled.

Experimental scenarios: Five insertions are performed for each kind of
safety task. The needle is placed perpendicular to the tissue surface before
the beginning of the insertion. Initial insertion locations are chosen such
that they are sufficiently far away from the previous insertions, leading to an
initial misalignment with the target up to 1.7 cm. The needle is first inserted
1 cm into the phantom to manually initialize the tracking algorithm. Pictures
of the initial and final state of one experiment are shown in Fig. 4.10. In the
following we compare the values taken by each of the three physical quantities
defined for the third task during the experiments, namely the tissue stretch
at the surface, the needle bending energy and the angle between the needle
base axis and the insertion point. These values are recorded from the state
of the model during the insertions.

Targeting: Let us first look at the targeting performances of the method.
The lateral distance between the needle tip axis and the target was measured
during the insertions and is shown in Fig. 4.11. As stated previously this
measure is noisy at the beginning of the insertion due to the distance between
the needle tip and the target. The mean value of the final lateral targeting
error across the five insertion procedures is summarized in Fig. 4.12.

The target could be reached in all cases with an accuracy of less than
2 mm, which demonstrates the good performances of our steering method.
Similar targeting performances are obtained when reducing the surface tissue
stretch or reducing the needle bending energy. Aligning the needle base with
the insertion point further decreases the targeting error. However this result
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(a) Initial state, Front camera (b) Initial state, side camera

(c) Final state, front camera (d) Final state, side camera

Figure 4.10: Views of the front and side cameras at the beginning and end
of one experiment. The green line represents the needle segmentation and
the target set for the controller is represented by the red cross.
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Figure 4.11: Measure of the lateral distance between the needle tip axis and
the target during the insertions. Each graph shows a set of five insertions
performed using one specific kind of safety task. Measures are noisy at the
beginning of the insertion due to the distance between the needle tip and
the target.
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Figure 4.12: Mean value of the final distance between the needle tip axis and
the target. The mean is taken across the five experiments for each kind of
safety task.
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Figure 4.13: Value of the distance between the needle and the initial position
of the insertion point at the tissue surface during the insertions. Each graph
shows a set of five insertions performed using one specific kind of safety task.

should be interpreted with caution and may be due to statistical variance,
as the targeting error is indeed close to the diameter of the needle (0.7 mm)
and the visual system accuracy (0.25 mm).

Surface tissue stretch: Let us now consider the effect of the tasks on the
tissue stretch δ at the surface. The value of δ for each experiment is shown
in Fig. 4.13. The mean value of δ over time and across the five insertion
procedures is summarized in Fig. 4.14 for each active task.

As expected, actively reducing the surface stretch effectively reduces the
surface stretch compared to the other safety tasks. On the other hand reduc-
ing the bending of the needle introduces a higher stress to the tissue surface.
This can be explained by the fact that keeping the needle straight outside of
the tissues requires that the internal shear force applied to the needle at the
tissue surface is small. This is only possible if the integral of the force load
applied to the needle in the tissues is near zero. Since the needle tip needs
to be steered laterally to reach the target, some load is applied to the tissues
near the tip. An opposing load is thus necessary near the tissue surface to
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Figure 4.14: Mean value of the distance between the needle and the initial
position of the insertion point at the tissue surface. The mean is taken over
time and across the five experiments for each kind of safety task.

drive the integral of the load to zero, leading to a deviation of the needle
shaft from the initial position of the insertion point.

An intermediate between these two behaviors seems to be obtained when
aligning the needle with the initial position of the insertion point. This could
be expected since orienting the needle base tends to move the needle body
toward the same direction, i.e. toward the insertion point, hence reducing
the surface stretch. However bending of the needle outside of the tissues
is still possible due to the interaction with the tissues, creating a certain
amount of stretch at the surface.

Needle bending energy: Let us now look at the effect of the tasks on
the bending energy EN stored in the needle. The value of EN for each
experiment is shown in logarithm scale in Fig. 4.15. The mean value of EN
over time and across the five insertion procedures is summarized in Fig. 4.16
for each active task.

As expected, actively reducing the bending energy effectively reduces the
energy compared to the other safety tasks. On the other hand reducing the
tissue stretch at the surface requires a higher needle bending. This can be
explained by the fact that steering the needle tip laterally while keeping the
needle near the insertion point results in a force load applied by the tissues
only on one side of the needle. Needle bending outside of the tissues is thus
necessary to be able to obtain this load.

As seen previously for the surface tissue stretch, aligning the needle with
the initial position of the insertion point seems to provide an intermediate
between these two behaviors. This could be expected since orienting the
needle base axis toward the insertion point tends to straighten the part of
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Figure 4.15: Value of the energy of bending stored in the needle during the
insertions. Each graph shows a set of five insertions performed using one
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10−7

10−6

10−5

10−4

N
ee
d
le

b
en
d
in
g
en
er
gy

(J
)

Safety task

Bending energy of the needle

Surface stretch reduction
Bending energy reduction
Base axis / insertion point angle reduction
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the needle that is outside of the tissues, hence reducing the overall bending
energy. However the needle can still bend near the surface and inside the
tissues to perform the targeting task.

An additional observation can be made on the behavior of the needle
bending reduction task. Once the needle has been inserted in the tissues
and some natural deflection appeared, moving the needle base only provides
a limited way of changing the shape of the needle inside the tissues. This
creates a non-zero floor value under which the bending energy cannot be re-
duced without removing the needle from the tissues. From the task function
point of view, when the floor value is reached the corresponding task Jaco-
bian matrix becomes incompatible with the task controlling the insertion.
A singularity occurs in this case, leading to some instabilities that increases
the needle bending, as could be observed in some experiments (for example
the blue curve on Fig. 4.15b). This behavior indicates that using this task
is not suitable to increase the safety of the control.

Base axis insertion point angle: Let finally consider the effect of the
tasks on the angle γ between the needle base axis and the initial position of
the insertion point. The value of γ for each experiment is shown in Fig. 4.17.
The mean value of γ over time and across the five insertion procedures is
summarized in Fig. 4.18 for each active task.

As expected, actively reducing the angle between the base axis and the
insertion point effectively reduces this alignment error when compared to the
other safety tasks. As discussed previously, reducing the tissue stretch at the
surface requires bending the part of the needle that is outside the tissues to
fulfill the targeting task. Since the needle is constrained to pass by the initial
position of the insertion point, this bending can only be achieved by rotating
the needle base to put it out of alignment, resulting in a higher value of γ.
Similarly, we have seen that reducing the bending of the needle introduces a
stretch of the tissues at the surface to achieve the targeting task. Since the
needle body is aligned with the needle base axis due to the reduced bending,
then the base can not be aligned with the insertion point.

It can also be observed during all the experiments that the features as-
sociated to the safety tasks tend to increase near the end of the insertion,
as visible in Fig. 4.13a and 4.17c. A small increase of the lateral distance
near the end can also be observed in Fig 4.11. Since the task functions are
designed to regulate these features toward zero, this effect indicates an in-
compatibility between the safety and targeting tasks. The total Jacobian
matrix defined in (4.67) is then close to singularity, such that the compu-
tation of the pseudo-inverse introduces some distortions. The hierarchical
formulation (4.10) of the task function framework could be used instead of
the classical formulation (4.6) to choose which task should have the priority
in this case. This point will be explored later in section 4.4.2.
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Figure 4.17: Value of the angle between the needle base axis and the initial
position of the insertion point at the tissue surface during the insertions.
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Conclusion: Through these experiments we have confirmed that steering a
flexible needle in soft tissues requires a certain amount of tissue deformations
and needle bending. Trying to steer the needle while actively reducing the
deformations at the surface of the tissues can only be achieved by bending
the needle. Trying to reduce the amount of bending during the steering can
only be achieved through deformations of the tissue surface. Keeping the
needle base aligned with the initial position of the insertion point seems to
allow needle steering while procuring a trade-off between tissue deformations
near the surface and needle bending outside the tissues.

In conclusion, the last method should be preferred in general to reduce
both the needle and the tissues deformations. The task reducing the tissue
stretch at the surface can be used if the needle is not too flexible, such
that it does not bend too much outside of the tissues. On the contrary, the
task reducing the needle bending should be avoided since it introduces some
stability issues in addition to the deformations of the tissues.

4.4.1.3 Robustness to modeling errors

We now propose to evaluate the robustness of the base manipulation frame-
work towards modeling errors and tissue motions.

Experimental conditions: In these experiments, the Angiotech biopsy
needle is actuated by the Viper s650. The insertion is done in a gelatin phan-
tom embedded in a transparent plastic container. The phantom is moved
manually during the first half of the insertion. Visual feedback is obtained
using the stereo camera system and the whole needle shaft is tracked in real-
time by the image processing algorithm described in section 3.4.1. The setup
is similar to the previous section and can be seen in Fig. 4.9.

A virtual target is defined just before the beginning of the insertion such
that it is 8 cm under the tissue surface and 4 mm away from the initial needle
axis. This target is fixed in space and does not follow the motions applied
to the phantom, hence simulating a moving target from the point of view of
the needle which is embedded in the phantom.

We use the two-body model presented in section 2.4.2 with polynomial
needle segments of order r = 3. We fix the length of the needle segments to
1 cm, resulting in a total of n = 13 segments and the last segment measuring
0.6 mm. The stiffness per unit length of the model is set to 3200 N.m−2 and
the length threshold to add a new segment to the tissue spline is set to
Lthres = 0.1 mm.

Control: We use two tasks for the control of the needle manipulator and
we fuse them using the classical formulation of the task function framework,
as defined by (4.6) in section 4.3.1. The tasks are defined as follows.
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• The first task controls the tip translational velocity vt, as defined by
(4.30) and (4.32). We set the insertion velocity vtip to 2 mm.s−1.

• The second task controls the bevel orientation via the angle σ, as de-
fined by (4.43), (4.44) and (4.46). The maximal rotation speed ωz,max
is set to 60◦.s−1 and the gain λσ is set to 10 (see (4.46)) such that the
maximal rotation velocity is used when the bevel orientation error is
higher than 6◦.

The final velocity screw vector applied to the needle base vb is then computed
according to

vb =

[
Jvt
Jσ

]+ [vt,d
σ̇d

]
. (4.68)

The controller is stopped once the needle tip reaches the depth of the target.

Experimental scenarios: We perform four insertions using the controller
defined previously. For each experiment, the phantom is manually moved
laterally with respect to the insertion direction with an amplitude of up to
1 cm. During two of the insertions, the interaction model is updated using
only the pose of the needle manipulator. During the two other insertions,
the model is also updated with the UKF-based update algorithm defined
in section 3.5. We use the position feedback version of the algorithm by
measuring the position of needle points separated by 5 mm along the needle
shaft. The process noise covariance matrix is set with diagonal elements
equal to 10−8 m2 and the noise covariance matrix with diagonal elements
equal to (2.5× 10−4)2 m2.

Results: The lateral distance between the needle tip axis and the target is
shown in Fig. 4.19, either measured using the needle tracking (Fig. 4.19a) or
estimated from the needle model (Fig. 4.19b). An example of the final state
of two models, one updated and one not updated, during a single insertion
is shown in Fig. 4.20.

We can see that when the position of the tissue model is not updated,
the needle model does not fit to the real needle. However the target can
be reached with sub-millimeter accuracy in all cases, in spite the fact that
an inaccurate model is used in some cases. This shows that an accurate
modeling of the current state of the insertion is not necessary to obtain
estimates of the Jacobian matrices which can maintain the convergence of
the control law, as previously expressed by (4.20). The task controller proves
to be robust to modeling uncertainties thanks to the closed-loop feedback
compensating for the errors appearing in the Jacobian matrices. Nevertheless
it can be noted that updating the model is necessary if this one must be used
for prediction of the needle tip trajectory.
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Figure 4.19: Lateral distance between the needle tip axis and the target
during a controlled insertion of the needle while lateral motions are applied
to the phantom. (a) distance measured using the tracking of the needle, (b)
distance estimated using the needle model. Two insertions are performed
without update of the model to account for tissue motions (blue and green
lines) and two insertions are performed while the model is fully updated (red
and black lines).

Furthermore, the fact that the phantom is moving while the target is
not moving introduces an apparent motion of the target with respect to the
needle tip. The designed targeting tasks shows good targeting performances
by compensating for this target motion thank to the closed-loop nature of
the control.

Conclusions: From these results, we have good reasons to expect good
targeting performances when using 3D ultrasound (US) volume as feedback,
even if the probe pose is not accurately estimated and causes the model to
be updated from inaccurate measures. The close-loop control may be able to
ensure good targeting as long as the desired values for the tasks are computed
in the same image space, i.e. both needle and target are detected using the
same US volume. In the following section we present additional experiments
to see if this intuition can be confirmed.
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(a) Front camera (b) Side camera

Figure 4.20: State of two needle models overlaid on the camera views at
the end of a needle insertion. The blue cross represents the virtual target.
Yellow and blue lines are, respectively, the needle and tissue spline curves
of a model updated using only the pose feedback of the needle manipulator,
such that the position of the tissue spline (blue) is not updated during the
insertion. Red and green lines are, respectively, the needle and tissue spline
curves of a model updated using the pose feedback of the needle manipulator
and the visual feedback, such that the position of the tissue spline (green) is
updated during the insertion.

4.4.2 Insertion under US guidance

In previous sections we tested our steering framework using cameras to track
the needle in a translucent phantom. If cameras offer a good accuracy, in
clinical practice the needle is inserted in opaque tissues, making cameras
unusable for such procedure. In this section we propose to test if the frame-
work can be used in practice using a clinically relevant imaging modality.
We present experiments performed using 3D ultrasound (US) as the visual
feedback to obtain the 3D position of the body of the needle. We mainly
focus our study on the targeting accuracy and also consider the effect of
setting different priority levels for the different tasks.

Experimental conditions: In these experiments, the Angiotech biopsy
needle is actuated by the Viper s650. Two phantoms are used, one gelatin
phantom and one phantom with a porcine liver embedded in gelatin. We

163



CHAPTER 4. NEEDLE STEERING

Figure 4.21: Pictures of the experimental setup used for the validation of the
framework with 3D ultrasound (US) imaging. The whole setup is depicted
on the picture on the right using the phantom with porcine liver embedded
in gelatin. A zoom on the interface between the US probe and the gelatin
phantom is shown on the left.

use the 3D US probe and station from BK Ultrasound to grab online 3D US
volumes. The US probe is fixed to the end effector of the Viper s850 and
maintained fixed in contact with the phantom. The needle is inserted from
the top of the phantom while the probe is set to the side of the phantom,
as illustrated in Fig. 4.21. A thin plastic film is set to replace one side
of the plastic container, allowing a soft contact between the probe and the
phantom such that the US waves can propagate through the phantom. The
whole needle shaft is tracked in each volume using the tracking algorithm
described in section 3.4.2. A virtual target is manually defined before the
beginning of the insertion.

The acquisition parameters of the US probe are set to acquire 31 frames
during a sweeping motion with an angle of 1.46◦ between successive frames.
The acquisition depth is set to 15 cm, resulting in the acquisition of one
volume every 900 ms. The needle is around 4 cm from the probe transducer
for each experiment, which leads to a maximum resolution of 0.85 mm in the
insertion direction and 0.3 mm × 1.72 mm in the other lateral directions.
A focus length of 5 cm is set for the transducer to obtain a good effective
resolution near the needle.

We use the two-body model with polynomial needle segments of order
r = 3. We fix the length of the needle segments to 1 cm, resulting in a total
of n = 13 segments and the last segment measuring 0.6 mm. The stiffness
per unit length of the model is set to 1000 N.m−2 and the length threshold
to add a new segment to the tissue spline is set to Lthres = 0.1 mm.

Control: We use three tasks for the control of the needle manipulator
and we fuse them using the hierarchical formulation of the task function
framework, as defined by (4.10) in section 4.3.1. Each task is given a different
priority level such that it does not disturb the tasks with higher priority. The
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tasks are defined as follows.

• The first task controls the tip translational velocity vt, as defined by
(4.30) and (4.32). We set the insertion velocity vtip to 1 mm.s−1.

• The second task controls the bevel orientation via the angle σ, as de-
fined by (4.43), (4.44) and (4.46). The maximal rotation speed ωz,max
is set to 60◦.s−1 and the gain λσ is set to 10 (see (4.46)) such that the
maximal rotation velocity is used when the bevel orientation error is
higher than 6◦.

• The third task is the safety task used to reduce the tissue stretch at
the surface δ, as defined by (4.51), (4.52) and (4.53). The control gain
λδ is set to 1.

Two sets of priority levels are tested. In the first set, the two targeting
tasks (first and second tasks) have the same priority and the safety task
(third task) has a lower priority. The final velocity screw vector vb applied
to the needle base is then computed according to

vb =

[
Jvt
Jσ

]+ [vt,d
σ̇d

]
+ P 1 (JδP 1)+

(
δ̇d − Jδ

[
Jvt
Jσ

]+ [vt,d
σ̇d

])
, (4.69)

with P 1 = I6 −
[
Jvt
Jσ

]+ [
Jvt
Jσ

]
, (4.70)

where I6 is the 6 by 6 identity matrix.
In the second set the safety task has the highest priority and the two

targeting tasks have the same lower priority. The final velocity screw vector
vb is then computed according to

vb = J+
δ δ̇d + P 2

([
Jvt
Jσ

]
P 2

)+([vt,d
σ̇d

]
−
[
Jvt
Jσ

]
J+
δ δ̇d

)
, (4.71)

with P 2 = I6 − J+
δ Jδ. (4.72)

Experimental scenario: Four insertions are performed in the gelatin
phantom and four insertions in the porcine liver embedded in gelatin. For
each type of phantom two insertions are performed using a higher priority
for the targeting tasks as defined by (4.69) and two insertions are performed
using a higher priority for the safety task as defined by (4.71).

For each experiment, the needle is first placed perpendicular to the sur-
face of the phantom with its tip slightly touching the surface. This position
allows the initialization of the needle model and the tissue surface model
using the current pose of the needle holder. The needle is then inserted
1.5 cm in the tissues and a 3D US volume is acquired. The needle tracking
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algorithm is initialized by manually segmenting the insertion point and the
needle tip in the volume. A virtual target point is manually chosen in the
volume between 5 cm and 10 cm under the needle.

The pose of the probe is initialized separately for each experiment using
the registration method described in section 3.6.3. The needle tracking algo-
rithm defined in section 3.4.2 is also initialized at the same time. Then the
chosen control law is launched and stops when the tip of the tracked needle
reaches the depth of the target.

Results: We first discuss the targeting performances obtained for the dif-
ferent experiments and then we discuss the effect of the priority order on the
realization of the safety task.

Targeting performances: The lateral distance between the axis of
the measured needle tip and the target during the insertions are shown in
Fig. 4.22. Two cross sections of the US volume acquired at the end of the
insertion for each combination of phantom and control law are depicted in
Fig. 4.23.

We can see that the target can be reached in each case with a final lateral
targeting error below 3 mm, which comes close to the maximal accuracy of
the reconstructed US volumes. The priority order does not seem to have a
significant impact on the final targeting error, although slightly larger errors
could be observed for the insertions in gelatin when the safety task was set
to the highest priority.

During these experiments we choose to update the needle model using
only the pose feedback of the needle manipulator; no update of the position
of the tissue spline is used to compensate for the modeling errors introduced
by the constant stiffness per unit length set in the model. This confirms that
the targeting performances are quite robust to modeling approximations.

The registration of the probe pose performed at the beginning of the
insertion is also quite inaccurate, especially concerning the orientation of the
probe. Indeed, it depends on the quality of the manual segmentation of the
part of the needle that is initially visible in the US volume. Since this needle
part is initially short and the resolution of the volume is limited, it is difficult
to manually segment the correct orientation of the needle. Nevertheless, since
the inputs of the targeting tasks are provided using directly the position of
the target in the frame of the needle tip tracked in the volume, the target can
still be accurately reached. This way these experiments have demonstrated
that the exact pose of the probe is not required by the steering framework
to achieve good targeting performances.

Safety task performances: Let us now look at the safety task that
was added to minimize the tissue deformations at the surface. The placement
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Figure 4.22: Measure of the lateral distance between the needle tip axis and
the target during the insertions. Insertions are performed either in gelatin
phantom or in porcine liver embedded in gelatin. Highest task priority is
given to either the targeting or the safety tasks.

of the probe on the side of the phantom is such that the top surface of the
tissues is visible in the US volumes. Hence we can measure the stretch
at the surface of the tissues during the insertions. The initial position of
the insertion point is recorded at the initialization of the needle tracking
algorithm. The surface stretch is then measured as the distance between
this initial position and the current position of the tracked needle at the
surface.

Note that in a general clinical context it is not always possible to see the
insertion point at the tissue surface due to the configuration of the probe
with respect to the insertion site. This is the reason why we do not use this
measure as an input of the safety task but use the model estimation instead.
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(a) Gelatin, targeting tasks
with highest priority

(b) Gelatin, safety task
with highest priority

(c) Porcine liver, targeting tasks
with highest priority

(d) Porcine liver, safety task
with highest priority

Figure 4.23: Cross sections of an ultrasound volume at the end of the inser-
tion for different experimental conditions. The result of the needle tracking
is overlaid as a red curve and the interaction model is projected back in
the two cross sections with the needle spline in blue and the tissue spline in
yellow. The target is shown as a red cross. The green dashed lines indicates
the surface of the tissues.
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Figure 4.24: Distance between the needle shaft and the initial position of
the insertion point at the surface during the insertions. The graphs show
the value of the distance measured in the acquired ultrasound volume or es-
timated from the model. Insertions are performed either in gelatin phantom
or in porcine liver embedded in gelatin. Highest task priority is given to
either the targeting or the safety tasks.

The measured surface stretch during the insertions is shown in Fig. 4.24
along with the corresponding value estimated from the model. Let first re-
mark that the measured and model estimated values seems to follow the
same general tendencies, although they are not really fitting. The fitting
error can easily be explained by two factors. First of all it can be the con-
sequence of modeling errors, introduced by non-linearities of the phantom
properties such as the natural non-linearity of the liver or some amount of
tearing on the surface of the gelatin. It may also be due to the accuracy of
the measure of the surface stretch, which is limited by the volume resolution

169



CHAPTER 4. NEEDLE STEERING

and the fact that a lot of artifacts appear at the tissue surface, deteriorating
the quality of the tracking algorithm around this zone.

As expected, we observe that the surface stretch of the model is well
regulated to zero when the safety task is set to the highest priority. The
measured deformations are also reduced, even if this is less visible from the
measures done with the biological tissues.

On the other hand, when the targeting tasks have the priority, more
surface stretch tends to be observed. This indicates that the safety task is
not always compatible with the targeting tasks, such that its contribution
to the control law is sometimes damped by the hierarchical formulation due
to the projection on the null space of the targeting tasks (see (4.69)).

Since the task compatibility itself does not depend on the different levels
of priority, this incompatibility should be observed as well when the priorities
are inverted. However this is not the case, as we have seen previously that
the good targeting performances do not seem to be affected by a higher pri-
ority safety task. This shows that the safety task is sometimes incompatible
with only one component of the targeting tasks, corresponding to the lateral
translations of the tip. When the safety task has the lowest priority, it is
simply damped whenever it becomes incompatible with the control of the
lateral translations. But when the safety task has the highest priority, only
the control of the lateral translations is damped, keeping the components
corresponding to the tip-based control to ensure the good targeting.

Conclusions: We have seen than our needle steering framework could be
used to accurately reach a target in soft tissues using 3D US as visual feed-
back. A safety task can also be added using the hierarchical stack of tasks
formulation in order to reduce the tissue deformations. Overall, we could see
that setting the highest priority to the safety task provides a better control
over the deformations of the tissues, while it does not really affect the good
targeting performances of the controller.
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4.5 Conclusion

In this chapter we presented a review of current flexible needle steering meth-
ods used to accurately reach a targeted region in soft tissues. We focused on
the two main approaches using either lateral motions of the needle base to
control the motions of the tip or using only the natural deflection generated
by an asymmetric tip during the insertion. Then, we provided an overview
of different strategies used to define the trajectory that must be followed by
the needle tip.

We proposed a contribution consisting of a steering framework that allows
the control of the 6 degrees of freedom of the base of a flexible needle to
achieve several tasks during the insertion. Two main tasks were considered:
a targeting task to achieve a good steering of the tip toward a target and a
safety task to reduce the efforts applied to the needle and the tissues. This
framework is also generic enough to integrate both steering approaches using
lateral base manipulation and tip-based control in the targeting task.

We then evaluated the performances of the framework through several
experiments using a closed-loop visual feedback on the needle provided ei-
ther by cameras or by the 3D ultrasound modality. These experiments
demonstrated the robustness of the control framework to modeling errors
and showed that it could achieve a good targeting accuracy even after some
motions of the tissues occurred. Several ways to fulfill the safety task were
compared and it was found that aligning the needle base with the insertion
point during the insertion could provide a trade-off between needle bending
and deformations of the tissues.

Overall the framework proved to be able to allow the accurate steering
of the tip of the needle toward a target while ensuring low deformations of
the tissues. However we only considered virtual targets that were fixed in
space and the reduction of the deformations of the tissues was only assessed
in stationary tissues. In order to adress these two points, in chapter 5 we
will consider the compensation of external motions of the tissues during
the needle insertion. The control framework will be extended to cope with
moving tissues and to integrate force feedback in the control law.
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Chapter 5

Needle insertion with tissue
motion compensation

In chapter 4 we proposed a framework to steer a beveled-tip flexible needle
under visual guidance. This framework uses all 6 degrees of freedom of the
needle base to provide increased targeting performances compared to only
using the natural deflection of the beveled-tip. It also allows other tasks to
be fulfilled at the same time, such as ensuring the safety of the insertion
procedure for the patient. In particular the efforts exerted by the needle
on the tissues should be reduced to the strict minimum to avoid further
damage caused by the needle. However these efforts can not only be due to
the manipulation of the needle but they may also be due to the motions of
the tissues themselves.

In this chapter we focus on the compensation of such motions of the
tissues during the insertion of a needle. The effect of tissue motions on the
performances of the needle tracking has already been covered in chapter 3
and we will focus on tracking the motions of a real target in this chapter.
We also propose further adaptations of the steering framework designed in
chapter 4 to decrease the risks of tearing the tissues due to the lateral tissue
motions. We will consider the case of force feedback to perform the steering
with motion compensation.

The chapter is organized as follows. In section 5.1, we first present some
possible causes of tissue motions and an overview of current available tech-
niques that may be used for motion compensation. We then propose some
extensions of our control framework in section 5.2 to handle motion com-
pensation via visual feedback or force feedback. The tracking of a moving
region of interest using the ultrasound (US) modality will be the focus of
section 5.3. Finally in section 5.4 we report the results obtained using the
proposed framework to perform needle insertions in moving ex-vivo tissues
using 2D US together with electromagnetic tracking as position feedback as
well as force feedback for motion compensation.
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5.1 Tissue motion during needle insertion

Tissue motion is a typical issue that arises during needle insertion procedures.
When the procedure is performed under local anesthesia it is possible that
the patient moves in an unpredicted manner. In that case, general anesthesia
can be needed to reduce unwanted motions [FEMW05]. Whatever the chosen
anesthesia method, physiological motions of the patient still occur, mainly
due to natural breathing. Motion magnitude greater than 1 cm can be
observed in the case of insertions performed near the lungs, like lung or liver
biopsies [HMB+10].

A first consequence of tissue motions is that the targeted region is moving.
This can be compensated for by using real-time visual feedback to track the
moving target and a closed-loop control scheme to insert the needle toward
the measured position of the target. Target tracking using visual feedback
is further discussed in the next section 5.3.

Another point of concern in current works on robotic assisted procedures
is that the needle is fixedly held by a mechanical robotic system. In the
case of base manipulation control, a long part of the needle is outside of
the tissues at the early stage of the insertion. Tissue motions can then
induce a bending of this part of the needle and modify the orientation of the
needle tip. This can greatly influence the resulting tip trajectory, especially
if the insertion was planned pre-operatively for an open-loop insertion. In
the case of tip-based control, the robotic device is often maintained close to
the tissue surface to avoid any bending and buckling of the flexible needle
outside the tissues. Hence the needle cannot really bend or move laterally,
inducing direct damage to the tissues if the lateral motions of the tissues are
large. Motion compensation is thus necessary to limit the risks of tearing the
tissues. Many compensation methods exist and have been applied in various
cases.

Predictive control: Predictive control can be used to compensate for
periodic motions, like breathing. In this case, the motions of the tissues are
first estimated using position feedback and then used to predict the future
motions such that they can then be compensated for.

Cameras and visual markers can be used to track the surface of the body
as was done by Ginhoux et al. [GGdM+05]. However this does not provide
a full information on what is happening inside the body and anatomical
imaging modalities can be used instead. For example, Yuen et al. [YPV+10]
used 3D ultrasound (US) for beating heart surgery to track and predict the
1D motions of the mitral annulus in the direction of a linear surgical tool.
The main drawback of this kind of predictive control is that the motion is
assumed to be periodic with a fix period. This can require placing the patient
under artificial breathing, which is usually not the case for classical needle
insertions. In the last example, motion compensation of the beating heart
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was actually performed using a force sensor located between the tissues and
the tip of the surgical tool. The motion estimation provided by the visual
feedback was only used as a feed-forward to a force controller.

Force feedback: Force control is another method used to perform motion
compensation. For needle insertion procedures, a separate force sensor was
used by Moreira et al. [MAM15] to estimate the tissue motions in the inser-
tion direction. The estimated motion was used to apply a periodic velocity
to the needle in addition to the velocity used for the insertion.

Impedance or admittance controls are also often used to perform motion
compensation since tissue damage can directly be avoided by reducing the
force applied to the tissues. This usually requires to first model the dynamic
behavior of the tissues. Many models have been proposed for this purpose
[MZLP14]. Atashzar et al. [AKS+13] attached a force sensor directly to a
needle holder. The force sensor was maintained in contact with the surface
of the tissues during the insertion, allowing the needle holder to follow the
motions of the tissues. While axial tissue motions could be accurately com-
pensated for, lateral tissue cutting may still occur in such configuration since
the tissues can slip laterally with respect to the sensor. The force sensor can
also be directly attached between the manipulator and the needle, as was
done by Cho et al. [CSK+15][KSKK16]. This way, lateral tissue motions
could be compensated for. Motion compensation in the insertion direction
is however difficult to perform in this case. Indeed, the insertion naturally
requires a certain amount of force to overcome the friction, stiction or tissue
cutting forces, such that it is difficult to separate the effect of tissue motions
from the necessary insertion forces.

Since cutting the tissues in the insertion direction is necessary during the
needle insertion procedure, we choose to focus only on lateral tissue motions.
These lateral motions are also likely to cause more damage due to a tearing of
the tissues. In order to be able to adapt to any kind of lateral motions, such
as unpredictable patient motions, in the following we do not consider the
case of predictive control. Instead we propose to adapt the needle steering
framework that we defined in chapter 4, such that it can incorporate force
feedback in a reactive control to compensate for tissue motions.

5.2 Motion compensation in our task framework

In this section we present an extension of the needle steering framework that
we proposed in section 4.3 in order to enable motion compensation. We only
consider the case of lateral motion compensation to avoid tissue tearing.
Compensation in the insertion direction is less critical in our case since it
only has an effect at the tip of the needle, which is already controlled by a
task designed in section 4.3.4.1 to reach the target.
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Motion compensation can easily be integrated in our needle steering
framework by adding a task to the controller. In the following, we first
discuss the use of the safety tasks than we designed in section 4.3.4.2 and
then we propose a new task design to use the force feedback provided by a
force sensor.

Geometric tasks: A lateral motion of the tissues is equivalent to moving
the rest position of the path cut by the needle in the tissues (see section 2.4.2
for the definition of this path), which also modifies the initial position of
the insertion point. The safety tasks designed previously to provide a safe
behavior of the insertion in stationary tissues can thus directly be used to
perform motion compensation.

The task designed to minimize the distance between the insertion point
and the needle shaft can naturally compensate for the tissue motions since
the needle shaft remains close to the insertion point.

The task designed to align the needle base with the insertion point will
also naturally follow the tissue motions. In this case it is possible that the
needle base only rotates to align with the moving insertion point but does
not translate. However, if the needle base does not translate while the tissues
are moving laterally then the needle tip deviates from its desired trajectory.
In this case, motion compensation can be obtained using the combination
of the safety task with a targeting task that controls the lateral motions of
the tip, such as the tip translations or the alignment of the tip axis with the
target.

The task designed to minimize the bending of the needle will also be sen-
sitive to tissue motions. Indeed, if the needle is in a state of minimal bending
energy, then an external motion of the tissues introduces an additional bend-
ing of the needle that the task will compensate. However, this task should
not be used for stability reasons, as was discussed in section 4.4.1.2.

The main issue concerning the implementation of these safety tasks is
that the initial rest position of the insertion point must be known. Since this
point can not be observed directly, an estimation is required, for example
using the model update method that we proposed in section 3.5.2, such that
it gives a correct estimation of the real state of the tissues. However, as was
discussed in section 3.6, an exact estimation of the position of the tissues
is difficult to obtain due to their non-linear properties and the modeling
approximations.

Therefore, we propose instead to use force feedback, which directly pro-
vides a measure of the interaction of the needle with the tissues and does
not rely on a good estimation of the tissue position.

Force feedback: The ultimate goal of the motion compensation is to re-
duce the lateral efforts exerted by the needle on the tissues in order to avoid
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the tearing of the tissues. A task can then directly be designed to minimize
these efforts.

In practice it is hard to measure directly the forces applied on the tissues
at each point of the needle, as it would require a complex design to place force
sensors all along the needle shaft. The forces could be retrieved indirectly
by using the full shape of the needle and its mechanical properties. This
would require integrated shape sensors in the needle, like fiber Bragg grating
(FBG) sensors [PED+10], or an imaging modality allowing a full view of
the needle. Viewing the whole needle is not possible with ultrasound (US)
imaging since it is limited to the inside of the tissues. It could be possible
to use 3D computerized tomography (CT) or magnetic resonance imaging
(MRI), however their acquisition time is too slow to be used for real-time
control.

The ideal case would be to measure the forces at only one location of the
needle, so that it is not required to use special modifications of the needle
itself. It can be noted that in a static configuration the total force exerted
at the base of the needle corresponds to the sum of the forces exerted along
the needle shaft. Inertial effects can usually be ignored in practice because
of the low mass of the needle, such that the static approximation is valid in
most cases. Therefore minimizing the lateral force exerted at the base of the
needle should also reduce the efforts exerted on the tissues. Therefore in the
following we propose to design a task for our steering framework in order to
minimize this lateral force.

Lateral force reduction task: Let us define the lateral component
f l ∈ R2 of the force exerted on the needle base. As mentioned previously,
we ignore the axial component since it is necessary for the insertion of the
needle. The task Jacobian Jf ∈ R2×6 and the desired variations ḟ l,d of the
task are defined such that

ḟ l = Jf vb, (5.1)

ḟ l,d = −λff l, (5.2)

where λf is a positive control gain that tunes the exponential decrease rate
of f l and we recall that vb is the velocity screw vector of the needle base.

The task Jacobian is computed from the interaction model using the finite
difference method (4.25) presented in section 4.3.3. The lateral force can
directly be computed as the shear force applied at the level of the needle base.
Using the two-body model defined in section 2.4.2, this can be expressed as

f l = EI
d3cN (l)

dl3

∣∣∣
l=0

, (5.3)

where we recall that E is the Young’s modulus of the needle, I is its second
moment of area and cN is the spline curve representing the needle.
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This task will be used in the followings to perform motion compensation
when a force sensor is available to provide a measure of the interaction force
at the base of the needle.

However, motion compensation during a needle insertion procedure is not
limited to the reduction of the damage done to the tissues. In order to obtain
good targeting performances while the tissues are moving, the motions of the
target should also be measured. Therefore, in the following we focus on the
tracking of a moving target using an imaging modality.

5.3 Target tracking in ultrasound

In all previous experiments we only considered the case of virtual targets.
However, in practice, the needle should be accurately steered toward a real
target. The target can be moving, either due to physiological motions of the
patient or due to the effect of the insertion of the needle on the tissues. In
this section we present a tracking algorithm that we developed to follow the
motion of a moving spherical target in 2D ultrasound images.

5.3.1 Target tracking in 2D ultrasound

We use a custom tracking algorithm based on the Star algorithm [FA89] to
track the center of a circular target in 2D ultrasound (US) images. This
kind of tracking has proved to yield good performances for vessel tracking
[GSM+07]. The process of the tracking algorithm is described in Alg. 1 and
illustrated in Fig. 5.1 and we detail its functioning in the following.

Template matching: This kind of techniques is widely used in image
processing in general and consists in finding a patch of pixels in an image that
corresponds the best to another reference patch. Many similarity criteria
can be used to assess the resemblance between two patches, like the sum of
square differences, the sum of absolute differences or the normalized cross
correlation, each having their pros and cons.

The reference patch can also be defined in two main ways. The first one
consists in extracting a patch in the previous image at the location of the
object. This way the object can be tracked all along the image sequence
even if its shape changes. However the accumulation of errors can cause
the tracking to drift. The second one is to take a capture of the object of
interest at the beginning of the process and keep it as a reference. This allows
avoiding drifts but the tracking can fail if the object shape is changing.

In our case we first apply a template matching between two successive
images to get a first estimation of the target motion. This is represented by
the TEMPLATE_MATCHING function in Alg. 1. We chose here to take the
sum of square differences as similarity measure because it is fast to compute
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Algorithm 1: Target tracking: initialization is performed manually
by selecting the target center pcenter and radius r in the image as well
as the number N of rays for the Star algorithm. A square pixel patch
Ipatch centered around pcenter is extracted for the template matching.

Ipatch, pcenter, r,N ← INITIALIZE_TRACKING();
while Tracking do

I ← ACQUIRE_IMAGE();
pcenter ← TEMPLATE_MATCHING(I, Ipatch);
E ← ∅;
for i ∈ [0, N − 1] do

θ ← 2πi
N ;

Ray ← TRACE_RAY(pcenter, 2r, θ)


Star algorithm;

pedge ← EDGE_DETECTION(Ray);
E ← E ∪ pedge;

end
pcenter, r ← CIRCLE_FITTING(E);
Ipatch ← EXTRACT_REFERENCE_PATCH(I, pcenter);

end

and usually yields good matching. The possible drift will be canceled by the
following step of the algorithm, which is the Star algorithm.

Star algorithm: We use the Star algorithm to refine the tracking and to
remove the drift obtained with successive template matching by exploiting
the a priori shape of the target. The Star algorithm is initialized around
the center of the target estimated by the template matching. Angularly
equidistant rays are then projected from the target center (see Fig. 5.1).
The length of each ray is chosen such that it is higher than the diameter of
the target to ensure that each ray is crossing a boundary of the target. An
edge detector is run along each ray to find these boundaries. Contrary to
the boundaries of a vessel which are almost anechoic, we consider here an
hyperechoic target.

Using a classical gradient-based edge detector as was done for the needle
tracking in camera images (section 3.4.1), false edge detection could arise
due to noise and inhomogeneities inside the target. To reduce this effect, we
find the boundary along each ray as the point which maximizes the difference
between the mean intensities on the ray before and after this point. Finally
a circle fitting is performed on the detected boundaries to find the center of
the target as illustrated in Fig. 5.1. This new estimation of the target center
is used to extract a new reference path for template matching and the whole
process is repeated for the next image.
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Figure 5.1: Illustration of the Star algorithm used for the tracking of a
circular target in 2D ultrasound. The blue dot is an initial guess of the
target center from which rays are projected (blue lines). The estimation of
the target center (green cross) is obtained using circle fitting (green circle)
on the detected boundaries along each ray (yellow dots).

Both steps of the algorithm are complementary. Template matching
can be used to find the target in the whole image if necessary; however
its performances are degraded by noise and intensity variations, which cause
a drift over time. On the contrary, the Star algorithm can find the real center
of the target and adapt to noise, changes of intensity and, up to a certain
extend, to changes of the shape of the target. However it requires that the
initial guess of the center lies inside the real target in the image. Template
matching is thus a good way to provide this first initialization. Overall this
tracking algorithm is relatively robust and can be used to track a moving
target in 2D US images, in spite of speckle noise or shape variations. It can
also easily be adapted to track a 3D spherical target in 3D US volumes.

5.3.2 Target tracking validation in 2D ultrasound

In this section we provide the results of experiments performed to validate
the performances of the tracking algorithm that we developed in previous
section.

Experimental conditions: The UR5 robot is used to move a gelatin
phantom with embedded play-dough spherical targets. We use the 3D wob-
bling probe and the ultrasound (US) station from Siemens to acquire the
2D US images. A cross section of the volume is selected to be displayed
on the screen of the station such that it contains the target and is normal
to the probe axis (US beam propagation direction). The screen of the US
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scanner is then transferred to the workstation using a frame grabber. The
acquisition parameters of the US probe are set to acquire 42 frames during a
sweeping motion with an angle of 1.08◦ between successive frames. The field
of view of each frame is set to 70◦ and the acquisition depth is set to 10 cm,
resulting in the acquisition of one volume every 110 ms. The targets are
between 24 mm and 64 mm from the probe transducer in the experiments,
which leads to a maximum resolution of the US image between 0.45 mm ×
0.73 mm and 0.70 mm × 1.49 mm.

Experimental scenario: A 3D translational motion is applied to the
phantom to mimic the displacement of the liver during breathing [HMB+10].
The applied motion m(t) has the following profile:

m(t) = a+ b cos4(
π

T
t− π

2
), (5.4)

where a ∈ R3 is the initial position of the target, b ∈ R3 is the magnitude
of the motion and T is the period of the motion. The magnitude of the
motion is set to 7 mm and 15 mm respectively in the horizontal and vertical
directions in the image, which corresponds to a typical amplitude of motion
of the liver during breathing [HMB+10]. No motion is set in the out of
plane direction. The period of the motion is set to T = 5s. After manual
initialization, the tracking is performed for a duration of 30 s corresponding
to 6 periods of the motion.

Results: The position of the tracked target is compared with the ground-
truth obtained from the odometry of the UR5 manipulator. An example of
the evolution of the target position is shown in Fig. 5.2 and the corresponding
tracking in the US images is shown in Fig. 5.3.

It can be observed that the position of the tracked target follows the
position of the real target with a latency of about 450 ms. This delay is
introduced by the successive steps of the acquisition and tracking process:
the sweeping motion of the transducer to acquire the pre-scan US data,
the conversion of the volume to Cartesian space, the extraction of the slice
to display on the screen, the transfer of the image to the workstation and
finally the tracking process. The sweeping takes around 110 ms and the
mean tracking time is 300 µs, which indicates that the remaining latency
should mostly be due to the post-scan conversion and the frame grabbing.

In order to access the quality of the tracking algorithm, the actual posi-
tioning accuracy is measured by adding a delay to the ground truth signal.
The mean tracking errors over time between the delayed ground-truth and
the measures are summarized in Table 5.1. Sub-millimeter accuracy is ob-
tained, which is is sufficient for most medical applications.

We can also observe that the tracking accuracy is lowered by the dis-
tance of the target from the probe. This is due to two factors mentioned in
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Figure 5.2: Illustration of the performance of the target tracking algorithm.
The motion described by (5.4) is applied to the gelatin phantom with a period
T = 5s. The global mean tracking error is 3.6 mm for this experiment.
However it reduces to 0.6 mm after compensating for the delay of about
450 ms introduced by the data acquisition.

Table 5.1: Summary of the performance of the target tracking algorithm in
2D ultrasound (US) images. The initial 3D position of the target in the US
probe frame is indicated for each experiment. The error is calculated as the
mean over time of the absolute distance between the position of the target
obtained by the tracking and by the robot odometry. The error is calculated
after compensating for the delay introduced by the image acquisition.

Target position (mm) Error Mean# x y z (mm) (mm)
1 -17.5 4.9 64.4 0.9 ± 0.5

0.7 ± 0.7
2 -18.3 4.9 44.0 0.7 ± 0.6
3 -13.5 11.6 24.3 0.6 ± 0.4
4 -18.4 7.5 54.2 0.7 ± 0.6
5 -30.6 10.9 34.3 0.6 ± 0.4

section 3.2. First we use a convex wobbling probe, which means that the
distance between the different US beams increases as they get further away
from the transducer. Additionally each beam also tends to widen during
their propagation due to the diffusion phenomenon. Overall the resolution
of the 2D image extracted from the 3D volume naturally decreases when its
distance from the probe increases. This confirms that the algorithm yields
excellent tracking performance and is only limited by the resolution of the
acquisition system. Hence we use this algorithm in the following to perform
needle insertion toward real moving targets.
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(a) t = 1s (b) t = 2s

(c) t = 3s (d) t = 4s

Figure 5.3: Illustration of a target tracking in ultrasound images using the
Star algorithm in a gelatin phantom. A motion is applied to the phantom
to simulate a liver moving due to breathing. The blue lines represent the
detection rays of the Star algorithm, the yellow dots are the detected bound-
aries along the rays and the green circles are the result of a fitting to the
boundaries.

5.4 Motion compensation using force feedback

In previous sections we have defined a way to use force feedback in our
needle steering framework as well as a method to track a moving target in
2D ultrasound (US) images. Therefore, in this section we present the results
of experiments that we conducted to test our control framework in the case
of a needle insertion performed under tissue motions.

5.4.1 Force sensitivity to tissue motions

We first propose to compare the sensitivity of the force measurements de-
pending on the configuration of the needle. Two configurations are mostly
used to perform robotic needle insertions. The first one is mainly used to
performed base manipulation and consists in holding the needle by its base,
leaving a part of the body of the needle outside the tissues during the in-
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Figure 5.4: Picture of the setup used to compare the force exerted at the
needle base using different configurations for the insertion.

sertion. The second configuration is mainly used to performed tip-based
steering. The needle is then usually maintained in an insertion device such
that only the part outside of the device can bend. The device is placed near
the surface such that the needle is directly inserted inside the tissues, with
no intermediate length left free to bend between the device and the tissues.

In the following we perform needle insertions using different configura-
tions and compare the interaction forces measured at the base of the needle.

Experimental conditions: We use the needle insertion device (NID) at-
tached to the UR3 robot arm. The biopsy needle with the embedded electro-
magnetic (EM) tracker is placed inside the NID and is inserted in a gelatin
phantom. The ATI force torque sensor is used to measure the interaction
efforts exerted at the base of the needle. A picture of the setup is shown in
Fig. 5.4.

The position of the EM tracking system is registered in the frame of
the UR3 robot before the experiments using the method that was presented
in section 3.6.1. The force torque sensor is also calibrated beforehand to
remove the sensor biases and the effect of the weight of the NID in order
to reconstruct the interaction forces applied to the base of the needle (see
Appendix A).

A fixed virtual target is defined just before the beginning of the insertion
such that it is at a fixed position in the initial frame of needle tip.

We use the two-body model presented in section 2.4.2 with polynomial
needle segments of order r = 3 to represent the part of the needle that is
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outside of the NID, from the frame {Fb} depicted in Fig. 5.4 to the needle tip.
We fix the length of the needle segments to 1 cm, resulting in n = 1 segment
of 8 mm when the needle is retracted to the maximum inside the NID and
n = 11 segments with the last one measuring 8 mm when the needle is fully
outside of the NID. We use a rather hard phantom, such that we set the
stiffness per unit length of the model to 35000 N.m−2. The length threshold
to add a new segment to the tissue spline is set to Lthres = 0.1 mm.

The length of the needle model is updated during the insertion to corre-
spond to the real length of the needle, measured from the full length of the
needle and the current translation of the needle inside the NID. The pose of
the needle base of the model is updated using the pose of the robot and the
rotation of the needle around its axis inside the NID.

Redefinition of control inputs and tasks: Using this setup, the control
inputs consist of the velocity screw vector vUR ∈ R6 of the end-effector of
the UR3 plus the 2 velocities vNID ∈ R2 of the NID. Hence, we define the
control vector vr ∈ R8 of the whole robotic system as

vr =

[
vUR
vNID

]
. (5.5)

In the following we assume that vUR is expressed as the velocity screw
vector of the frame of the tip of the NID, corresponding to the frame {Fb}
depicted in Fig. 5.4.

In order to use our steering framework based on task functions with
this system, the Jacobian matrices associated to the different tasks that we
defined in sections 4.3.4 and 5.2 need to be modified to take into account
the additional degrees of freedom (DOF) of the NID. The Jacobian matrix
J ∈ Rn×8 associated to a task vector e ∈ Rn of dimension n is now defined
such that

ė = Jvr. (5.6)

Note that we still use our needle model and the method defined in sec-
tion 4.3.3 to compute the Jacobian matrices. However, the method is adapted
to add the two additional DOF of the NID.

For simplicity, in the followings we will keep the same notations that
we used in sections 4.3.4 and 5.2 for the Jacobian matrices of the different
tasks. We will also refer to the equations presented in these sections for the
definitions of the tasks.

Insertion configurations and control laws: We compare three different
insertion configurations, as depicted in Fig. 5.5.

The first two configurations are used to simulate the case of a needle
held by its base. The needle is fully outside of the NID and no control of the
translation stage inside the NID is performed, which is equivalent to having
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Figure 5.5: Illustration of the three different configurations used to insert the
needle. The needle insertion device (NID) is shown in black and the needle
is the green line. For configurations 1 and 2, the needle is fully outside
and does not slide any further in the NID. For configurations 3, it starts
fully inside and can slide in the NID. No constraints is added on the external
motion of the NID for configuration 1, while remote center of motion (RCM)
is applied around the insertion point for configurations 2 and 3. Additionally,
no translations of the tip of the NID is allowed for the third configuration.

a 10.8 cm long needle held by its base. A remote center of motion around
the insertion point is added for the configuration 2.

For the third configuration, the tip of the NID (center of frame {Fb} in
Fig. 5.4) is set in contact with the surface of the phantom and the needle is
initially inside the NID. The insertion is then performed using the translation
stage of the NID, resulting in a variable length of the part of the needle that
is outside the NID. A remote center of motion is also added around the tip
of the NID.

We use several tasks to define the control associated to each configura-
tion and we fuse them using the classical formulation of the task function
framework, as defined by (4.6) in section 4.3.1. Four tasks are common to
all configurations and are defined as follows.

• The first task controls the insertion velocity vt,z of the needle tip, as
defined by (4.33) and (4.34). We set the insertion velocity vtip to
3 mm.s−1.

• The second task controls the bevel orientation via the angle σ, as de-
fined by (4.43), (4.44) and (4.46). The maximal rotation speed ωz,max
is set to 180◦.s−1 and the gain λσ is set to 10 (see (4.46)) such that
the maximal rotation velocity is used when the bevel orientation error
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is higher than 18◦.

• The third task controls the alignment angle θ between the needle tip
and the target, as defined by (4.35), (4.36) and (4.37). The control
gain λθ is set to 1. Due to the stiffness of the phantom and the high
flexibility of the needle, this task can rapidly come close to singular-
ity once the needle is deeply inserted. In order to avoid high control
outputs, this task is deactivated once the needle tip has been inserted
2 cm. Given the insertion velocity and the gain set for this task, this
gives enough time to globally align the needle with the target such that
tip-based control tasks (first and second tasks) are then sufficient to
ensure a good targeting.

• The fourth task is used to remove the rotation velocity ωUR,z of the
UR3 around the needle axis. Indeed, we can observe that this rotation
has the same effect on the needle as the rotation stage of the NID.
However, using the UR3 for this rotation would result in unnecessary
motions of the whole robotic arm, which could pose safety issues for
the surroundings.

Therefore we add a task to set ωUR,z to zero. The Jacobian matrix
Jω

UR,z
∈ R1×8 and the desired value ω

UR,z,d associated to this task are
then defined as

Jω
UR,z

= [0 0 0 0 0 1 0 0], (5.7)

ω
UR,z,d = 0. (5.8)

For the first two configurations, an additional task is added to remove the
translation velocity vNID of the needle inside the NID. The Jacobian matrix
Jv

NID
∈ R1×8 and the desired value v

NID,d associated to this task are then
defined as

Jv
NID

= [0 0 0 0 0 0 1 0], (5.9)

v
NID,d = 0. (5.10)

The final control vector vr,1 ∈ R8 for the first configuration is then
computed according to

vr,1 =


Jvt,z
Jσ
Jθ

[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]


+ 

vt,z,d
σ̇d
θ̇d
0
0

 . (5.11)

For the second configuration, a task is added to align the needle base with
the initial position of the insertion point at the surface of the phantom, such

187



CHAPTER 5. NEEDLE INSERTION WITH TISSUE MOTION
COMPENSATION

that there is a remote center of motion. This task is defined via the angle γ
between the needle base axis and the insertion point, as defined by (4.56),
(4.57) and (4.58). The final control vector vr,2 ∈ R8 for this configuration is
then computed according to

vr,2 =



Jvt,z
Jσ
Jθ
Jγ

[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]



+ 

vt,z,d
σ̇d
θ̇d
γ̇d
0
0

 . (5.12)

Finally, a remote-center-of-motion is applied at the insertion point for
the third configuration. Since the tip of the NID is directly located at the
insertion point, this is achieved by adding a task to remove the translation
velocity vUR ∈ R3. The Jacobian matrix Jv

UR
∈ R3×8 and the desired value

v
UR,d associated to this task are then defined as

Jv
UR

= [I3 03×5], (5.13)

v
UR,d = 0, (5.14)

where I3 is the 3 by 3 identity matrix and 03×5 is the 3 by 5 null matrix.
The final control vector vr,3 ∈ R8 for this configuration is then computed
according to

vr,3 =


Jvt,z
Jσ
Jθ

[0 0 0 0 0 1 0 0]
[I3 03×5]


+ 

vt,z,d
σ̇d
θ̇d
0
0

 . (5.15)

Experimental scenario: The needle is first placed perpendicular to the
surface of the tissues such that its tip barely touches the phantom surface.
Then a straight insertion of 8 mm is performed, corresponding to the minimal
length of the needle that remains outside the NID when the needle is fully
retracted inside it. This way the tip of the NID is just at the level of the
phantom surface for the third configuration. This is also done with the two
other configurations such that the initial length of needle inside the phantom
is the same for every experiment. The virtual target is initialized such that it
is 7 cm in the insertion direction and 1 cm in a lateral direction with respect
to the needle axis. Four insertions are performed for each configurations,
using the four cardinal directions to initialize the lateral target position.
The controller is then started and stopped once the needle tip reaches the
depth of the target.
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Figure 5.6: Mean value of the absolute lateral force exerted at the base of
the needle. The mean is taken over time and across the four experiments for
each configuration.

Results: We measure the interaction force exerted at the base of the nee-
dle, i.e. in the frame {Fb} depicted in Fig 5.4, during each experiment. The
mean value of the absolute lateral force is summarized for each insertion
configuration in Fig. 5.6.

We can see that when the NID is near the surface of the tissues, it induces
an increase in the amount of force exerted at the needle base compared to
the case where the needle base is far from the tissues. This could be expected
since the motion of the needle shaft near the needle base is directly applied
to the tissues when the whole needle is inserted. In the opposite case the
motion can be absorbed by some amount of bending of the needle body
outside the tissues.

Hence, in the followings, we choose to insert the needle using the third
configuration to increase the sensitivity of the force measurements to the
needle and tissue motions, which should be beneficial for the model update
algorithm as well as for the compensation of the tissue motions.

5.4.2 Needle insertion with motion compensation

We present here the results of the experiments performed to test the perfor-
mances of our framework during an insertion with lateral tissue motions.

Experimental conditions: The setup used to hold and insert the needle
is the same as in section 5.4.1. The ATI force torque sensor is still used to
measure the force applied to the base of the needle and the Aurora electro-
magnetic (EM) tracker is used to measure the position and direction of the
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Figure 5.7: Picture of the setup used to perform needle insertions toward a
target embedded in an ex-vivo bovine liver while compensating for lateral
motions of the phantom.

tip of the biopsy needle. The UR5 robot is used to apply a known motion
to a phantom. Two phantoms are used, one with porcine gelatin and one
with a bovine liver embedded in the gelatin. Artificial targets made of play-
dough are placed in the gelatin phantom and inside the liver. The Siemens
ultrasound (US) probe is used to acquire 2D US images using the same con-
figuration as in the experiments performed in section 5.3.2. The position
of the target is tracked in the image as explained in section 5.3. The tip
of the needle insertion device (NID) is positioned near the phantom surface
to maximize the sensitivity of the force measurements to tissue motions. A
picture of the setup is shown in Fig. 5.7.

We use the two-body model presented in section 2.4.2 with polynomial
needle segments of order r = 3 to represent the part of the needle that is
outside of the NID, from the frame {Fb} depicted in Fig. 5.7 to the needle
tip. We fix the length of the needle segments to 1 cm, resulting in one
segment of 8 mm when the needle is retracted to the maximum inside the
NID and 11 segments with the last one measuring 8 mm when the needle is
fully outside. We use a rather hard phantom, such that we set the stiffness
per unit length of the model to 35000 N.m−2. The length threshold to add
a new segment to the tissue spline is set to Lthres = 0.1 mm.

The length and the pose of the base of the needle model are updated using
the odometry feedback from the UR3 robot and the NID. The position of the
tissue spline in the model is also updated using the force feedback and the EM
feedback as input for the update algorithm that we defined in section 3.5.2.
The performances of the update algorithm during these experiments have
already been described in section 3.6.1. Figure 5.8 summarizes the whole
setup and algorithms used for these experiments.
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Figure 5.8: Block diagram representing the experimental setup and control
framework used to perform needle insertions in a moving phantom. The
UR5 robot applies a motion to a phantom. The position of the target is
tracked in ultrasound images. Measures from the force torque sensor and
electromagnetic (EM) tracker are used to update the needle-tissue interaction
model. The model and all measures are used by the task controller to control
the UR3 and the needle insertion device in order to steer the needle tip
towards the target while compensating for tissue motions.
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Control: As explained in section 5.4.1, we consider here the input velocity
vector vr of the whole robotic system defined by (5.5).

We use three targeting tasks, one motion compensation task and two
additional tasks for the control of the system and we fuse them using the
classical formulation of the task function framework, as defined by (4.6) in
section 4.3.1. The different tasks are defined as follows.

• The first task controls the insertion velocity vt,z of the needle tip, as
defined by (4.33) and (4.34). We set the insertion velocity vtip to
3 mm.s−1.

• The second task controls the bevel orientation via the angle σ, as de-
fined by (4.43), (4.44) and (4.46). The maximal rotation speed ωz,max
is set to 180◦.s−1 and the gain λσ is set to 10 (see (4.46)) such that
the maximal rotation velocity is used when the bevel orientation error
is higher than 18◦.

• The third task controls the alignment angle θ between the needle tip
and the target, as defined by (4.35), (4.36) and (4.37). The control
gain λθ is set to 1. Due to the stiffness of the phantoms and the high
flexibility of the needle, this task can rapidly come close to singular-
ity once the needle is deeply inserted. In order to avoid high control
outputs, this task is deactivated once the needle tip has been inserted
2 cm. Given the insertion velocity and the gain set for the task, this
gives enough time to globally align the needle with the target such that
tip-based control tasks (first and second tasks) are then sufficient to
ensure good targeting.

• The fourth task is the safety task and it is chosen to reduce the lateral
force f l applied to the base of the needle, as defined by (5.1) and (5.2).
The control gain λf is set to 2.5.

• The fifth task is used to remove the rotation velocity ωUR,z of the UR3
around the needle axis, as was discussed in section 5.4.1. It is defined
by (5.7) and (5.8).

• The sixth task is used to remove the translation velocity vUR,z of the
UR3 along the needle axis. For similar reasons as the previous task,
we can observe that this translation is redundant with the insertion of
the needle by the NID. However, translating the UR3 in this direction
could drive the NID into the tissues, which should be avoided for safety
reasons.

Therefore we add a task to set vUR,z to zero. The Jacobian matrix
Jv

UR,z
∈ R1×8 and the desired value v

UR,z,d associated to this task are
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then defined as

Jv
UR,z

= [0 0 1 0 0 0 0 0], (5.16)

v
UR,z,d = 0. (5.17)

The final control vector vr at the beginning of the insertion is then computed
according to

vr =



Jvt,z
Jσ
Jθ
Jf

[0 0 0 0 0 1 0 0]
[0 0 1 0 0 0 0 0]



+ 

vt,z,d
σ̇d
θ̇d
ḟ l,d
0
0

 . (5.18)

Once the needle tip reaches 2 cm under the initial tissue surface, vr is
then computed according to

vr =


Jvt,z
Jσ
Jf

[0 0 0 0 0 1 0 0]
[0 0 1 0 0 0 0 0]


+ 

vt,z,d
σ̇d
ḟ l,d
0
0

 . (5.19)

The inputs of the targeting tasks are computed using the target position
measured from the tracking in US images and the pose of the needle tip
measured from the EM tracker. The input of the safety task is computed
from the lateral force applied at the needle base that is measured from the
force sensor.

Registration: The position of the EM tracking system is registered in
the frame of the UR3 robot before the experiments using the method that
was presented in section 3.6.1. The force torque sensor is also calibrated
beforehand to remove the sensor biases and the effect of the weight of the
NID in order to reconstruct the interaction forces applied to the base of the
needle. The details of the sensor calibration and the force reconstruction can
be found in Appendix A.

In order to accurately reach the target, its position must be known in the
frame of the needle tip, such that the inputs of the targeting tasks can be
computed. An initial registration step is thus required to find the correspon-
dence between a pixel in a 2D US image and its real location in a common
frame with the EM tracker, which is the UR3 robot frame in our case.

The pose of the 3D US probe is first registered beforehand in the UR3
robot frame using the following method. The needle is inserted at different
locations near the surface of the phantom and two sets of the positions of
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the needle tip are recorded, one using the needle manipulator odometry and
needle model, and the other one using a manual segmentation of the needle
tip in acquired 3D US volumes. Point cloud matching between the two sets
is then used to find the pose of the US probe in the frame of the UR3 robot.
The drawback of this method is that it is not clinically relevant, since many
insertions are required before starting the real insertion procedure. However,
for a clinical integration the pose of the probe could be measured using an
external positioning system, such as an EM tracker fixed on the probe or
through the tracking of visual markers with an optical localization system.

Before the beginning of each needle insertion, the acquisition of 3D US
volumes is launched and a plane normal to the probe axis is selected to be
displayed on the US station screen. This plane is chosen such that it contains
the desired target for the insertion. The position of the image in space is
then calculated from the probe pose and the distance between the probe and
the image, available using the US station. Each image can finally be scaled
to real Cartesian space by using the size of a pixel, which is also known using
the measurement tool available in the US station.

Experimental scenario: Five insertions are performed in each phantom.
At the beginning of each experiment the image plane displayed on the US
station is selected to contain the desired target. The tracking algorithm is
manually initialized by selecting the center of the target and its diameter in
the image. The needle is initially inside the NID. An initialization of the
insertion is performed by moving the tip of the NID to the surface of the
tissues, such that the 8 mm of the needle that remain outside the NID are
inserted into the tissues.

The update algorithm, needle insertion and tissue motions are then started
and are stopped once the needle tip has reached the depth of the target. The
motion applied to the phantom is similar to the motion used for target track-
ing validation defined by (5.4) in section 5.3.2. The amplitude of the motion
is set to 15 mm and 7 mm in the x and z direction of the world frame {Fw}
depicted in Fig. 5.7, respectively. Several values of the period of the motion
are used, between 10 s and 20 s, as recapped in Table 5.2.

Results: An example of the position of the needle tip measured with the
EM tracker and the position of the tracked target during an insertion in the
liver phantom can be seen in Fig. 5.9b. We can see that both the needle and
the target follow the motions of the tissues shown in Fig. 5.9a. The needle
tip is steered toward the target and reaches it at the end of the insertion.
The corresponding tracking sequence is represented in Fig 5.10 and we can
see the needle reaching the target from the right. Another tracking sequence
corresponding to an insertion in gelatin is shown in Fig 5.11, on which we
can see the needle more clearly than in biological tissues.
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Figure 5.9: Measures during an insertion in a bovine liver embedded in
gelatin: (a) Measure of the tissue motion from the UR5 odometry, (b) mea-
sure of the needle tip position from the electromagnetic tracker and measure
of the target position from the tracking in 2D ultrasound, (c) measure of the
lateral force exerted on the base of the needle. Overall the target can be
reached and the lateral motion of the tissues is compensated such that the
lateral force remains low.
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(a) t=1s (b) t=6.3s

(c) t=9.2s (d) t=13.7s

Figure 5.10: Target tracking in ultrasound images during a needle insertion
in a bovine liver embedded in gelatin. The boundaries of the target are not
always clearly visible. The needle being inserted can slightly be seen coming
from the right.

After each insertion we record a 3D US volume of the final state of
the insertion. The targeting error is calculated by manual segmentation of
the needle tip in the volume. The target center is retrieved automatically
using a 3D variant of the same Star algorithm used for the target tracking
(see section 5.3.1). An example of a slice extracted from a final volume in
gelatin is depicted in Fig. 5.12, showing that the center of the target can be
accurately reached.

Table 5.2 gives a recap of the initial position of the targets in the initial
frame of the needle tip and the absolute lateral errors obtained at the end of
each experiment. We can see that the target can be reached with an accuracy
under 4 mm in all cases. This can be sufficient in clinical applications to reach
medium sized tumors near moving structures. We can note that we choose
to not compensate for the latency introduced by the acquisition system.
Indeed, this latency will mostly be unknown during a real operation and can
also vary depending on the chosen acquisition parameters, such as the field
of view and the resolution of the scanning. This point could be addressed if
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(a) t=1s (b) t=6.3s

(c) t=9.2s (d) t=13.7s

Figure 5.11: Target tracking in ultrasound images during a needle insertion
in a gelatin phantom. The needle can be seen coming from the right.

Table 5.2: Summary of the conditions and results of the insertions performed
in a gelatin phantom and a bovine liver embedded in gelatin. Different
periods T are used for the motion of the phantom. The target location in
the initial tip frame is indicated for each experiment. The error is calculated
as the absolute lateral distance between the needle tip axis and the center
of the target at the end of the insertion. The mean and standard deviation
of the error for each kind of phantom are presented separately.

Target position (mm) Error Mean errorPhantom T (s) x y z (mm) (mm)

Gelatin

20 2.0 3.8 68.9 1.9

1.2 ± 0.8
20 1.8 0.8 57.8 0.7
15 1.9 -3.6 57.9 0.3
10 -2.3 -3.9 57.1 2.2
10 -7.2 0.5 57.8 0.9

Liver

10 -1.2 -3.4 42.5 1.7

2.5 ± 0.7
10 -0.8 3.5 42.2 2.3
10 4.6 -0.3 39.7 2.9
10 5.1 6.0 40.1 2.0
10 1.1 6.0 39.8 3.5
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Figure 5.12: Slice extracted from a 3D ultrasound volume acquired at the
end of an insertion in the gelatin phantom. The needle is coming from the
right and the needle tip is shown with a red cross. The line on the left
corresponds to a wooden stick used to maintain the spherical target during
the conception of the phantom.

higher accuracy is required for a specific application.
The mean targeting error is also higher in biological tissues than in

gelatin. Several factors may explain this observation. The main reason
is certainly that the tracking of the target is more challenging in this case.
The target is less visible and the level of noise is increased in the image due
to the texture of the tissues, as can be seen when comparing Fig. 5.10 and
5.11. This also limits the accuracy of the detection of the target center in
the final 3D US volume. The evaluation of the final targeting accuracy is
thus subject to more variability. The inhomogeneity of the tissues can also
be a cause of deviation of the needle tip from its expected trajectory. How-
ever the tip-based targeting task orienting the bevel edge toward the target
should alleviate this effect.

Motion compensation: Finally, let consider the motion compensation
aspect during the insertion. Due to the proximity of the NID with the surface
of the phantom, the lateral forces measured at the needle base are very similar
to the forces applied to the tissues. During all the experiments, we observed
that these forces were maintained under 0.5 N, which was sufficiently low to
avoid significant tearing of the tissues. Note that we did not perform full
insertions without the motion compensation to compare the forces obtained
in this case. However, we could observe during preliminary experiments that
applying a lateral motion to the phantom while the needle is inserted in the
tissues and fixed by the NID results in a large cut in the gelatin and also
damages the needle. A small amount of tearing could still be observed at
the surface of the gelatin when the motion compensation was performed,
essentially due to the natural weakness of the gelatin and the cutting effect
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when the needle is inserted while applying a lateral force. Nevertheless, it
can be expected that real biological tissues are more resistant and would not
be damaged in this case.

Figure 5.9a and 5.9c show a representative example of the motions of
the tissues and the lateral forces measured during an insertion in the bovine
liver. Two phases can clearly be distinguished on the force profile. During
the first 6 seconds, some fast variations of the force can be observed. This
corresponds to the phase where all tasks are active using (5.18). The robotic
system is thus controlled to explicitly align the needle tip axis with the target
while reducing the applied force. Since the target is initially misaligned, a
lateral rotation is necessary, which naturally introduces an interaction with
the phantom. Fast motion of the system are thus observed, resulting from
the interaction between the alignment and motion compensation tasks. After
the tip alignment task has been deactivated, all remaining tasks in (5.19) are
relatively independent, since inserting and rotating the needle does not in-
troduce significant lateral forces. This results in a globally smoother motion,
where the needle is simply inserted while the lateral motion of the NID nat-
urally follows the motion of the phantom. Therefore motion compensation
is clearly achieved in this case.

Conclusions: These experiments confirm that, when the needle has a great
level of flexibility, lateral motion of the needle should only be performed at
the beginning of the insertion to align the needle with the target. It allows
a fast and efficient way to modify the needle trajectory without having to
insert the needle, which could not be possible by exploiting only the natural
deflection of the tip. However once the needle is inserted deeper in the
tissues, the motion of the base has only a low effect on the tip trajectory
compared to its effect on the force applied to the surface of the tissues.
Alternating between several tasks depending on the state of the insertion
has thus proved to be a good way to exploit the different advantages of
each task while reducing their undesirable effects. These experiments also
demonstrate that motion compensation can be performed at the same time
as the accurate steering of the needle tip toward a target. Here we use only
a first order control law for the force reduction task, which proves to be
sufficient to yield good motion compensation. A more advanced impedance
control could be used to obtain even better results and to reduce even further
the applied lateral force [MZLP14].

Overall this set of experiments also demonstrates the great flexibility of
our control framework. It shows that the framework can be used in a new
configuration, where the needle is not held by its base but is instead inserted
progressively in the tissues using a dedicated device. It has also proven to
be able to maintain the same general formulation and adapt to 2D US, EM
sensing and force feedback.
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5.5 Conclusion

In this chapter we provided an overview of motion compensation techniques
that can specifically be used to follow the motions of soft tissues. We then
showed that the framework we proposed in chapter 4 could be easily adapted
to provide motion compensation capabilities in addition to the needle steer-
ing. We then proposed a tracking algorithm that can follow a moving target
in 2D ultrasound images. The performances of this algorithm were validated
through experiments showing that it could achieve good tracking up to the
resolution provided by the image. Finally we demonstrated the great flexibil-
ity of our global framework at handling multiple kinds of feedback modalities
and robotic systems through experiments performed in a multi-sensor con-
text and using a system dedicated to needle insertion. We showed that it
allows fusing the steering of the tip of a needle with the compensation of lat-
eral motions of the tissues. Results obtained during experimental insertions
in moving ex-vivo biological tissues demonstrated that good performances
can be obtained for both tasks performed at the same time, which consti-
tute a great contribution toward safe and accurate robotic needle insertion
procedures.
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Conclusions

In this thesis we covered several aspects of robotic needle insertion under
visual guidance. In Chapter 1 we first presented the clinical and scientific
context of this work and the challenges associated to this context. In Chap-
ter 2 we provided a review on the modeling of the interaction between a
needle and soft tissues. We then proposed two 3D models of the insertion
of a beveled tip needle in soft tissues and compared their performances. In
Chapter 3 we addressed the issue of needle localization in 3D ultrasound (US)
volumes. We first provided an introduction to US imaging and an overview
of needle tracking algorithms in 2D and 3D US images. We proposed a 3D
tracking algorithm that takes into account the natural artifacts that can be
observed around the needle location. We used our needle model to improve
the robustness of the needle tracking and proposed a method to update the
model and take tissue motions into account. In Chapter 4 we first presented
a review of techniques used to control the trajectory of a needle during its
insertion and to define the trajectory that must be followed by the needle
tip. We then proposed a needle steering framework that is based on the
task function framework used to perform visual servoing. The framework
allows a great flexibility and can be adapted to different steering strategies
to control several kinds of needles with symmetric or asymmetric tips. We
then validated our framework through several experimental scenarios using
the visual guidance provided by cameras or a 3D US probe. In Chapter 5
we considered the case of patient motions during the needle insertion and
provided an overview of methods that can be used to compensate for these
motions. We then extended our steering framework to handle motion com-
pensation using force feedback. We finally demonstrated the flexibility of
our framework by performing needle steering in moving soft tissues using a
dedicated needle insertion robot in a multi-sensor context.

In the following we draw some conclusions concerning needle modeling,
ultrasound visual feedback, needle steering under ultrasound guidance and
compensation of tissue motions during needle insertion. Finally we present
some perspectives for future developments of our work.
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Needle modeling

We first focused on the modeling of the behavior of a flexible needle being
inserted in soft tissues. Fast and accurate modeling of the interaction phe-
nomena occurring during the insertion of a needle is a necessity for the control
of a robotic system aiming at the assistance of the insertion procedure. We
have seen that models based on kinematics are efficient and allow fast and re-
active control. However their efficiency often comes at the cost of a limitation
of the phenomena that they can take into account. On the contrary, almost
every aspect of an insertion can be described using finite element modeling,
from the deformations of the needle to the complex modifications that it
can create on the tissues. Nevertheless this complexity can only be obtained
through heavy parameterization that requires accurate knowledge of bound-
ary conditions and time consuming computations. A trade-off should thus
be found to take into account the main interaction phenomena and to keep a
low level of complexity to stay efficient. Mechanics-based models offer such
compromise by reducing their computation requirement while still being a
realistic representation of the reality. In this thesis we proposed a 3D flexible
needle model that is simple enough to yield real-time performances, while
still being able to take into account the deformations of the needle body due
to its interaction with the moving tissues at its tip and all along its shaft.

Ultrasound visual feedback

A second requirement for the development of a robotic system usable in
clinical practice is its ability to monitor the state of the environment on
which it is acting. For needle procedure assistance this means knowing the
state of the needle and of the tissues. Visual feedback is a great way to
deal with this issue by mean of the dense information it can provide on the
environment. Additional conditions should also be fulfilled on the nature of
the provided images. A great quality of the image is only useful if it can be
obtained frequently. On the contrary, images provided at a fast rate can only
be used if they contain exploitable information. To this end, the ultrasound
(US) modality is one of the best choice since it can provide real-time 2D or
3D relevant data on a needle and its surrounding tissues. Extracting this
information in a reliable way is however a great challenge due to the inherent
properties of this modality. We have shown a review of the different artifacts
that can appear in US images as well as current techniques used to localize
a needle in these images. In order to be used in the context of a closed-
loop control of a robotic system, needle detection algorithms should be fast
and accurate. We contributed to this field by proposing a needle tracking
method that directly exploits the artifacts created by the needle to find the
location of its whole body in 3D US volumes. Ensuring the good consistency
of the tracking between successive volumes can be achieved by modeling
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the expected behavior of the needle. The modeling of the current state of
the needle interaction with the tissues can also be improved by exploiting
the measures available on the needle. Therefore we fused our contributions
by proposing a method to update our interaction model from the measures
provided by several sensors and to use the model to improve the quality of
the needle tracking.

Needle steering under ultrasound guidance

Once a good model of the insertion process is available along with a reliable
measure of the needle location, the closed-loop robotic control of the insertion
can be performed. We first reviewed the current techniques available to
steer a needle in soft tissues and the different strategies used to define the
trajectory of the tip. In order to remain as close as possible from a possible
clinical application, we chose to focus on the steering of standard needles and
did not consider the case of special designs. Two main methods are usually
used in the literature to steer the needle, either manipulating the needle by
its base, like usually done by the clinicians, or by exploiting an asymmetry
of the tip to deflect the needle from a straight path during the insertion.
In order to stay generic, we designed a control framework to manipulate
the needle by its base and also to exploit the asymmetry of the tip. This
framework also directly uses our previous contribution on needle modeling
by using the model in real-time to compute the motions to apply to the
base of the needle allowing specific motions of the needle tip. We performed
several validation experiments to assess the performances of our framework in
needle insertions performed under visual feedback. In particular we showed
that the approach is robust to modeling errors and can adapt to tissue or
target motions.

Tissue motion compensation during needle insertion

We addressed the topic of the compensation of the patient motions during
a needle insertion procedure. The body of a patient may be moving dur-
ing a medical procedure for several reasons, the most common ones being
physiological motions which can hardly be avoided. Tissue motions can have
several impacts on the results of a needle insertion procedure. The first one
is that the targeted region inside the body is moving. This point should
be taken into account by tracking the target and adapt the control of the
needle trajectory accordingly. The steering framework that we proposed was
already capable of handling this first issue and we complemented it with a
target tracking algorithm in ultrasound images. The second important issue
concerns the safety of the insertion, which can be compromised if the robotic
system is not designed to follow the motions of the patient. In order to ad-
dress this issue, we proposed an adaptation of our steering framework to be
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able to perform motion compensation using either visual feedback or force
feedback. We demonstrated the performances of our method by performing
the insertion of a flexible needle in ex-vivo moving biological tissues, while
compensating for the tissue motions. Overall, the results of our experiments
confirmed that our global steering framework can be adapted to several kinds
of robotic systems and can also integrate the feedback provided by several
kinds of sensing modalities in addition to the visual feedback, such as force
measurements or needle tip pose provided by an electromagnetic tracker.

Perspectives

We discuss here several extensions and further developments that could be
made to complement the current work in terms of technical improvements
and clinical acceptance. Both aspects are linked since driving this work
toward the operating room requires to first identify the specific needs and
constraints of the medical staff, and then translate them into theoretical and
technical constraints. In the following we address the limitations that were
already mentioned in this manuscript as well as new challenges arising from
specific application cases.

Needle tracking

Speed of needle tracking: We presented a review of needle tracking
techniques in ultrasound (US) images and volumes. In order to be usable,
automatic tracking of the needle should be fast, such that it gives a good
measure of the current state of the insertion. Hence efficient tracking algo-
rithms are a first necessity to achieve this goal, which is why we proposed a
fast tracking algorithm. However, independently of the chosen tracking algo-
rithm, current works are mostly using 3D volumes reconstructed in Cartesian
space. Since the reconstruction of a post-scan volume from pre-scan acquired
data requires some time, it introduces a delay in the acquisition. This is a
first obstacle for a fast control of the needle trajectory since the needle has
to be inserted slowly to ensure that the visual feedback is not completely
out of date once available. The time of conversion can be reduced using spe-
cific hardware optimization, however a simple solution would be to directly
use the pre-scan data to track the needle. While conversion of the whole
post-scan volume remains desirable to provide an easy visualization for the
clinician, it is not necessary for a tracking algorithm. The needle could
be tracked in the pre-scan space and then converted in Cartesian space if
needed. Taking a step further, it can be noted that acquiring the pre-scan
volume also takes time. Tracking of the needle could be done frame by frame
during the wobbling process to provide 2D feedback on the needle section
directly once available.
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Reliability of needle tracking: In order to be usable for a control ap-
plication in a clinical context, the tracking of the needle should be reliable.
Reliability in the case of tracking in 3D US is challenging because of the over-
all low quality and the artifacts present in the image, which is the reason
why we proposed a method to account for needle artifacts. In general, even
for the human eye, it can be difficult to find the location of the needle in a
given US volume when other bright linear structures are present. Temporal
filtering is usually applied to reduce the size of the region in which to search
the needle. In our case we used a mechanical model of the needle to predict
the position of the needle in the next volume and we updated the model to
take into account tissue motions. However large tissue motions or an external
motion of the US probe can cause a large apparent motion of the needle in
the volume which is not taken into account by the temporal filtering, result-
ing in a failure of the tracking. Following the motion of the other structures
around the needle could be a solution to ensure the spacial consistency of the
tracked needle position. Tracking the whole tissues could be a solution, for
example by using methods based on optical flow [TSJ+13]. Deep learning
techniques could also be explored since they show ever improving promising
results for the analysis of medical images [LKB+17].

Active tracking: An accurate tracking of the needle location in the US
volume is very important for the good proceedings of the operation. Servo-
ing the position of the US probe could be a good addition to increase the
image quality and ease the tracking process. A global optimization of the
US quality could be performed [CKN16]. A control scheme could also be de-
signed to take into account the needle specific US artifacts, such as intensity
dropout due to the incidence angle, and to optimize the quality of the image
specifically around the needle [CKM13].

Needle steering

Framework improvement: The needle insertion framework based on
task functions that we proposed can be extended in many ways. First we
did not directly consider the case of obstacle avoidance. This could be easily
added by the design of a specific avoidance task or by using trajectory plan-
ning to take into account sensitive regions [XDA+09]. A higher level control
over the tasks priority should also be added to adapt the set of tasks to
the many different situations that can be encountered [MC07]. For example
targeting tasks could be deactivated in case a failure of the needle tracking
has been detected. A specific task could be designed to take the priority in
this case and to move the needle in such a way that it can easily be found
by the tracking algorithm.
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Active model learning: In our control framework we used a mechanics-
based model of the needle to estimate to local effect of the control inputs on
the needle shape. We proposed a method to update the local model of the
tissues according to the available measures. A first improvement would be
to explore the update of other parameters as well, like the tissue stiffness.
However it is possible that the model does not always accurately reflect the
real interaction between the needle and tissues, mainly due to the complex
nature of biological tissues. A model-less online learning of the interaction
could be explored, using the correlation between the control motions applied
to the needle and its real measured effect on the needle and tissue motions.
The steering strategy could also be modified to optimize this learning process,
for example by stopping the insertion and slightly moving the needle base in
all direction to observe the resulting motions of the needle tip and target.

Clinical integration

Before integrating the proposed framework into real clinical workflow, many
points needs to be taken into account and discussed directly with the clinical
staff.

System registration: A first requirement for a good integration into the
clinical workflow is that the system should be easy to use out-of-the-box,
without requiring time consuming registration before each operation. In
the case where the insertion is done using 3D ultrasound (US) to detect
both the needle and the target in a same frame, we have proposed a simple
registration method to estimate the pose of the US probe in the frame of
the needle manipulator. The method only requires two clicks of the oper-
ator through a GUI and is necessary anyway to initialize the tracking of
the needle. We showed that this was sufficient to achieve good targeting
performances thanks to the robustness of the control method, however the
estimation of the motions of the tissues proved to be more dependent on an
accurate registration. An online estimation of the probe pose could be used
to refine the initial registration. This may require additional sensors, such as
fiber Bragg grating sensors integrated into the needle [PED+10], to be able
to differentiate between the motion that is due to the tissues or the probe.
In clinical practice the US probe is also unlikely to stay immobile during the
whole procedure. This can for example be because it is manually held by the
clinician or because the field of view of the probe is too narrow and it has to
be moved to follow the needle and the target. Online estimation would also
be an advantage in those cases, and sensors could provide a direct feedback
on the probe pose, like electromagnetic trackers or external cameras. A spe-
cific mechanical design could also be used to mechanically link the probe to
the needle manipulator [YPZ+07]. In this case the probe pose is known by
design and a registration step is unnecessary.
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Tele-operation: The method we have proposed so far was aimed at per-
forming a fully automated needle insertion. This nowadays still remains a
great factor of rejection among the medical community. However the clin-
ician can easily be integrated into the framework. A first possibility is to
consider the robot as an assistant which can perform some predefined au-
tomated tasks, such as a standby mode, during which only tissue motion
compensation is performed, and an insertion mode, during which the needle
is automatically driven toward the target. The clinician would only have to
select the set of tasks currently being performed. This way the global flow
of the operation would still be controlled by a human operator while the low
level complex fusion of the tasks would be handled by the system. How-
ever this only leaves a partial control to the clinician on the real insertion
procedure. A second possibility is to give a full control to the clinician over
one of the tasks and let the others to the system. For example the clinician
can control the trajectory of the needle tip while the robot transparently
handles the orientation of the bevel and motion compensation. A haptic
interface could be used to provide a guidance on the optimal trajectory to
follow to avoid some predefined obstacles and reach the target. Other kinds
of haptic feedback could also be explored, as for example a feedback on the
state of the automatic tasks performed by the system or the compatibility
of the clinician’s task with the other tasks. A visual feedback could also be
provided to the clinician such that the control of the tip trajectory could
be defined directly in the frame of a screen instead of the frame of the real
needle.

Clinical validation: We have shown that our steering framework could
be adapted on several robotic systems. In order to go toward clinical integra-
tion, repeatability studies have to be conducted in biological tissues to assess
the robustness of the method with a specific set of hardware components.
These studies should be repeated for each envisioned set of hardware and
the performances should be evaluated in accordance with the exact applica-
tion that is considered. Performance requirements can indeed be different
for each application, as for example in moving lung biopsies and prostate
brachytherapy.

Long-term vision: Finally, one can believe that fully autonomous surgeon
robots will one day become reality. Contrary to a human surgeon, robotic
systems are not limited to two hands and two eyes. They can have sev-
eral dexterous arms that perform manipulations with more accuracy than
a human. They can also integrate many feedback modalities at once, al-
lowing a good perception of many different aspects of their environment.
This is currently not enough to provide them with a good understanding of
what is truly happening in front of them and the best action that should
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be performed. However, with the ever improving performances of artificial
intelligence, it may be possible in the future that robotic systems have a
better comprehension and adaptability to their environment. They could
then be able to chose and perform with great efficiency the adequate task,
as for example a medical act, that is the best adapted to a current situation
taken in its globality. Before reaching this state, systems and techniques
should first be developed that can autonomously perform narrow tasks with
the best efficiency, such as a needle insertion. These could then be connected
together to form a generic expert system.
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Appendix A

Force sensor calibration

This appendix presents the registration process and the computation method,
used in the experiments of chapters 3 and 5, to retrieve the interaction forces
and torques applied at the base of the needle without the gravity component
due to the mass of the needle insertion device.

The force f ∈ R3 measured by the sensor can be expressed according to

f = fext +mdg + bf , (A.1)

where md is the mass of the needle insertion device (NID), g ∈ R3 is the
gravity vector, bf ∈ R3 is the sensor force bias and fext ∈ R3 is the rest
of the forces applied to the sensor, with each vector defined in the sensor
frame. The torque t ∈ R3 measured by the sensor can be expressed similarly
according to

t = text + cd ×mdg + bt, (A.2)

where × denotes the cross product operator, cd ∈ R3 is the position of the
center of mass of the NID, bt ∈ R3 is the sensor torque bias and text ∈ R3 is
the rest of the torques applied to the sensor, with again each vector defined
in the sensor frame. Note that fext and text correspond to the contribution
of the interaction forces and torques that we want to measure.

Let define gw the gravity vector expressed in the world reference frame
and wRf ∈ SO(3) the rotation from the world frame to the force sensor
frame such that

g = wRT
f gw, (A.3)

gw =

 0
0

−9.81

 . (A.4)

During the insertion procedure, the contribution of the gravity and the
biases can be removed depending on the pose of the NID to isolate the
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interaction forces. Then,

fext = f −md
wRT

f gw − bf , (A.5)

text = t− cd ×md
wRT

f gw − bt. (A.6)

The interaction forces f b ∈ R3 and torques tb ∈ R3 applied to the base
of the needle can then be expressed in the needle base frame according to

fb = − fRT
b fext, (A.7)

tb = − fRT
b (text − fT b × fext), (A.8)

where fRb ∈ SO(3) and fT b ∈ R3 are, respectively, the rotation and trans-
lation from the sensor frame to the needle base frame. In practice only the
orientation wRe ∈ SO(3) of the end effector of the UR3 is known thanks to
the robot odometry such that wRf is actually computed according to

wRf = wRe
eRf , (A.9)

where eRf ∈ SO(3) is the rotation from the end effector to the sensor frame.
Parameters eRf , fRb and fT b are constants and only depend on the known
geometry of the plastic links between the UR3, force torque sensor and NID.

A registration step needs to be performed to estimate the biases bf and
bt and the mass parameters of the NID, md and cd. A set of N forces fi
and torques ti, i ∈ [[1, N ]], are measured at different known orientations of
the UR3 robot end effector, while no interaction with the tissues is present.

Noting gi the gravity vector associated to ith orientation of the UR3 end
effector, bf and md can first be computed to minimize the cost function Jf
defined as

Jf =
N∑
i=1

‖fi −mdgi − bf‖2 , (A.10)

which leads after calculations to

md =

∑N
i=1

(
fi − 1

N

∑N
j=1 fj

)T
gi∑N

i=1

(
gi − 1

N

∑N
j=1 gj

)T
gi

, (A.11)

bf =
1

N

N∑
i=1

(fi −mdgi) . (A.12)

Then bt and cd can be computed to minimize the cost function Jt defined
as

Jt =

N∑
i=1

‖t− cd ×mdg − bt‖2 , (A.13)
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which leads after calculation to

cd =
1

md

 N∑
i=1

AT
i

Ai −
1

N

N∑
j=1

Aj

−1  N∑
i=1

AT
i

ti − 1

N

N∑
j=1

tj

 ,

(A.14)

bt =
1

N

N∑
i=1

(ti −mdAicd) , (A.15)

with Ai =

 0 gi,z −gi,y
−gi,z 0 gi,x
gi,y −gi,x 0

 , (A.16)

where gi,x, gi,y and gi,z are the components of gi.
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P ỹ,k Covariance matrix of the innovation for Bayesian filtering

Pwν Covariance matrix between the process and measure noise vectors for
Bayesian filtering

P x,k|k−1 Covariance matrix of the state vector after the prediction step for
Bayesian filtering

P x,k Covariance matrix of the state vector after the update step for Bayesian
filtering

P xν Covariance matrix between the state and the measure noise vectors
for Bayesian filtering

P xw Covariance matrix between the state and the process noise vectors
for Bayesian filtering

P xy,k Covariance matrix between the state and the measure vectors for
Bayesian filtering

P x Covariance matrix of the state vector for Bayesian filtering

Q Covariance matrix of the process noise for Bayesian filtering

Qk Covariance matrix of the process noise at time index k

R Covariance matrix of the measurement noise for Bayesian filtering

Rk Covariance matrix of the measurement noise at time index k

tb Lateral torque exerted at the base of a needle

u Axis of a rotation associated to the angle-axis rotation vector θu

u Control input vector for Bayesian filtering
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uk Control input vector at time index k

w Process noise vector for Bayesian filtering

W k Process noise matrix of a linearized system for Kalman filtering

wk Process noise vector at time index k

x State vector for Bayesian filtering

x, y, z Generic axes of a frame

xa Augmented state for unscented Kalman filtering

xk State vector at time index k

y Measure vector for Bayesian filtering

yk Measure vector at time index k

δ Dirac delta function

δφ Angular displacement of the ultrasound transducer of a wobbling
probe between the beginning of two frame acquisitions

ε Binary variable indicating the direction of sweeping of the ultrasound
transducer of a wobbling 3D probe

d̂ Estimated unit vector tangent to a point along a needle

f̂ b Estimated lateral force exerted at the base of a needle

p̂j Estimated position of a point along a needle

t̂b Estimated lateral torque exerted at the base of a needle

x̂k State estimate after the update step for Bayesian filtering

x̂k|k−1 State estimate after the prediction step for Bayesian filtering

ŷk Measure estimate after the prediction step for Bayesian filtering

λ Wavelength of an ultrasound wave

b.c Floor operator

Xi Particle for a particle filtering or sigma point for unscented Kalman
filtering

Yi Measure vector associated to a sigma point for unscented Kalman
filtering
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φ Angle between the center and current orientation of the ultrasound
transducer of a 3D wobbling probe

φ Phase of the tissue motion for the breathing motion profile

ρ Mass density of a medium

θ Angle of a rotation associated to the angle-axis rotation vector θu

ỹk Innovation vector for Bayesian filtering

× Cross product operator between two vectors

{Fb} Frame of the needle base

{Ft} Frame of the needle tip

{Fw} Fixed reference frame associated to a robot

atan2(y, x) Multi-valued inverse tangent operator

b Amplitude of the 1D tissue motion for the breathing motion profile

c Speed of sound in soft tissues 1540 m.s−1

d Distance between an interface in the tissues and the ultrasound trans-
ducer

do Acquisition depth of an ultrasound probe

f Frequency of an ultrasound wave

fs Sampling frequency of the radio-frequency signal

g Generic probability density function

Ipost Post-scan image

Ipre Pre-scan image

J Cost function used for the needle tracking

J1, J2, J3, J4 Sub-cost functions used for the needle tracking

K Bulk modulus of a medium

k Time index for Bayesian filtering

L Length of a polynomial curve

ld Curvilinear coordinate of point along the needle

Ld, Ln, Lt Lateral integration distances for the needle tracking sub-costs
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lj Curvilinear coordinate of point along the needle

Lp Distance between two piezoelectric elements along an ultrasound trans-
ducer

Ls Distance between samples along a scan line

M Number of points along the needle taken as measures for unscented
Kalman filtering

m 1D breathing motion profile applied to the tissues

N Number of control points defining the polynomial curve for the needle
tracking

n Coefficient tuning the shape of the motion for the breathing motion
profile

n Number of segments in a spline of the two-body model

Nν Dimension of the measurement noise vector for Bayesian filtering

Nf Number of frames acquired during a sweeping motion of the ultra-
sound transducer of a 3D wobbling probe

Nl Number of scan lines

Np Number of particles of a particle filter

np Number of piezoelectric elements of an ultrasound transducer

Ns Number of samples acquired along a scan line

Nu Dimension of the control input vector for Bayesian filtering

Nw Dimension of the process noise vector for Bayesian filtering

Nx Dimension of the state vector for Bayesian filtering

Ny Dimension of the measure vector for Bayesian filtering

p Generic probability density function

R Radius of curvature of a convex transducer

r Polynomial order of spline segments

Rm Radius of the circular trajectory described by the ultrasound trans-
ducer of a 3D wobbling probe

rN Radius of the needle expressed in voxels in an ultrasound volume
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s Scaling factor between physical space and pixel space of a post-scan
image

T Period of the motion for the breathing motion profile

T Propagation time needed by an ultrasound wave to come back to the
transducer

t Generic time

tk Time corresponding to time index k for the breathing motion profile

Tacq Acquisition time of the radio-frequency signal along all scan lines of
an ultrasound probe

Tline Acquisition time of the radio-frequency signal along one scan line of
an ultrasound probe

V Post-scan volume

w Weighting function

wi Weight associated to a particle of a particle filter

W
(c)
i Weight for the computation of the covariance for unscented Kalman

filtering

W
(m)
i Weight for the computation of the mean for unscented Kalman filter-

ing

Chapter 4

.+ Matrix Moore-Penrose pseudo-inverse operator

.d Subscript used to indicate the desired value of a quantity

03 3 by 3 null matrix

δ Vector between the rest position of the insertion point and the needle
point at the surface of the tissues

ωt Rotational velocity of the needle tip

cN Spline curve representing the needle

cN (Lfree) Point of the needle spline crossing the surface of the tissues in the
two-body model

cT Spline curve representing the rest position of the path that has been
cut in the tissues by the needle tip
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cT (0) Point of the tissue spline at the surface of the tissues in the two-body
model, corresponding to the rest position of the insertion point

Expr Exponential map from the tangent space of a manifold taken at a
vector r

e Task vector

ei Task vector with priority level i

I3 3 by 3 identity matrix

I6 6 by 6 identity matrix

J Generic Jacobian matrix relating the variation of the task vector with
respect to the control inputs

Jδ Jacobian matrix associated to the distance between the rest position
of the insertion point and the needle point at the surface of the tissues

Jγ Jacobian matrix associated to the angle between the needle base axis
and the rest position of the insertion point

Jσ Jacobian matrix associated to the angle between the bevel cutting
edge and a target

Jd Jacobian matrix associated to the distance between the needle tip
axis and a target

Js Jacobian matrix associated to a feature vector s

Jδm Jacobian matrix associated to the mean deformation of the tissues
along the needle shaft

Jvt Jacobian matrix associated to the translational velocity of the needle
tip

Jvt,z Jacobian matrix associated to the translational velocity of the needle
tip along its axis

Jθ Jacobian matrix associated to the angle between the needle tip axis
and a target

JEN Jacobian matrix associated to the bending energy stored in the needle

JLfree Jacobian matrix associated to the needle point at the surface of the
tissues

J tip Jacobian matrix associated to the velocity screw vector of the needle
tip
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Logr Logarithm map to the tangent space of a manifold taken at a vector r

L Left weighting matrix for the weighted pseudo-inverse

M Right weighting matrix for the weighted pseudo-inverse

P i Orthonormal projector onto the nullspace of the tasks with priority
level greater of equal to i

P s Orthonormal projector onto the surface of the tissues

pt Position of a target in the frame of the needle tip

r Position vector associated to the control inputs of the system, such
as robot joints or end-effector pose

ri Pose of the needle base used for the finite difference method

s Feature vector associated to a task vector e

ui Left-singular vector for singular value σi

v Control input vector of a robotic system

vb Velocity screw vector of the needle base

vi Right-singular vector for singular value σi

vi Unit velocity screw vector associated to component i of the needle
base velocity screw vector

vt Velocity screw vector of the needle tip

x, y, z Generic axes of a frame

δt Time step for the computation of the finite difference method

δ Distance between the rest position of the insertion point and the
needle point at the surface of the tissues

δm Mean deformation of the tissues along the needle shaft

γ Angle between the needle base axis and the rest position of the inser-
tion point

λs Positive control gain

λ Tuning parameter for the damped least squares pseudo-inverse

λδ Positive control gain for the task associated to the distance between
the rest position of the insertion point and the needle point at the
surface of the tissues

261



LIST OF SYMBOLS

λγ Positive control gain for the task associated to the angle between the
needle base axis and the rest position of the insertion point

λσ Positive control gain for the task associated to the angle between the
bevel cutting edge and a target

λθ Positive control gain for the task associated to the angle between the
needle tip axis and a target

λd Positive control gain for the task associated to the distance between
the needle tip axis and a target

λδ Positive control gain for the task associated to the vector between the
rest position of the insertion point and the needle point at the surface
of the tissues

λδm Positive control gain for the task associated to the mean deformation
of the tissues along the needle shaft

λEN Positive control gain for the task associated to the bending energy
stored in the needle

ωz,max Maximal rotation velocity around the needle axis

σ Angle between the bevel cutting edge and a target

σi Singular value of a matrix

τi Singular value of the pseudo-inverse of a matrix

vt Translational velocity of the needle tip

vt,z Translational velocity of the needle tip along its axis

vtip Scalar insertion velocity of the needle tip

θ Angle between the needle tip axis and a target

θDC Angle of rotation of the tip during one cycle of duty-cycling control

Ĵ Estimation of the Jacobian matrix J

{Fb} Frame of the needle base

{Ft} Frame of the needle tip

{Fw} Fixed reference frame associated to a robot

atan2(y, x) Multi-valued inverse tangent operator

d Distance between the needle tip axis and a target
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DC Duty cycle in duty-cycling control

EN Bending energy stored in the needle

i Level of priority of a task

Keff Effective curvature of the trajectory of an asymmetric needle tip dur-
ing duty-cycling control

Knat Natural curvature of the trajectory of an asymmetric needle tip

LN Length of the spline curve representing the needle model

LDC Insertion length of a cycle during duty-cycling control

Lfree Length of the needle that is outside the tissues

Lins Length of the insertion phase in duty-cycling control

Lrot Length of the rotation phase in duty-cycling control

Lthres Threshold length before the addition of a tissue spline segment in the
two-body model

Lthres Threshold length between the addition of two successive virtual springs

m Dimension of the control input vector

n Dimension of the task vector

n Number of segments in a spline of the two-body model

r Polynomial order of spline segments

t Generic time

x0, y0, z0 Components of the rest position of the insertion point in the frame
of the needle base

xt, yt, zt Components of the position of a target in the frame of the needle
tip

Chapter 5

.d Subscript used to indicate the desired value of a quantity

03×5 3 by 5 null matrix

a Initial position of the tissues for the breathing motion profile

b Amplitude of the tissue motion for the breathing motion profile
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cN Spline curve representing the needle

e Task vector

f l Lateral force exerted at the base of the needle

I3 3 by 3 identity matrix

J Generic Jacobian matrix relating the variation of the task vector with
respect to the control inputs

Jγ Jacobian matrix associated to the angle between the needle base axis
and the rest position of the insertion point

Jσ Jacobian matrix associated to the angle between the bevel cutting
edge and a target

Jf Jacobian matrix associated to the lateral force exerted at the base of
the needle

Jω
UR,z

Jacobian matrix associated to the rotation velocity of the robot
around the needle axis

Jv
UR,z

Jacobian matrix associated to the translation velocity of the tip of
the needle insertion device along the needle axis

Jv
UR

Jacobian matrix associated to the translation velocity of the tip of
the needle insertion device

Jvt,z Jacobian matrix associated to the translational velocity of the needle
tip along its axis

Jv
NID

Jacobian matrix associated to the Translation velocity of the trans-
lation stage of the needle insertion device

Jθ Jacobian matrix associated to the angle between the needle tip axis
and a target

m Breathing motion profile applied to the tissues

vr Control inputs vector of the robotic system consisting of the UR3
robot and the needle insertion device

vNID Control inputs vector of the needle insertion device

vUR Control inputs vector of the UR3 robot

x, y, z Generic axes of a frame

γ Angle between the needle base axis and the rest position of the inser-
tion point
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λγ Positive control gain for the task associated to the angle between the
needle base axis and the rest position of the insertion point

λσ Positive control gain for the task associated to the angle between the
bevel cutting edge and a target

λθ Positive control gain for the task associated to the angle between the
needle tip axis and a target

λf Positive control gain for the task associated to the lateral force exerted
at the base of the needle

ωz,max Maximal rotation velocity around the needle axis

ωUR,z Rotation velocity of the robot around the needle axis

σ Angle between the bevel cutting edge and a target

vUR,z Translation velocity of the tip of the needle insertion device along the
needle axis

vUR Translation velocity of the tip of the needle insertion device

vt,z Translational velocity of the needle tip along its axis

vtip Scalar insertion velocity of the needle tip

vNID Translation velocity of the translation stage of the needle insertion
device

θ Angle between the needle tip axis and a target

{Fb} Frame of the needle base

{Ft} Frame of the needle tip

{Fw} Fixed reference frame associated to a robot

E Needle Young’s modulus

I Second moment of area of the needle section

Lthres Threshold length before the addition of a tissue spline segment in the
two-body model

n Dimension of the task vector

n Number of segments in a spline of the two-body model

r Polynomial order of spline segments

T Period of the motion for the breathing motion profile
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t Generic time

Appendix

bf Force bias of the force sensor

bt Torque bias of the force sensor

cd Position of the center of gravity of the needle insertion device

f Force measured by the force sensor

f i Force measurements at different poses of the robot

f ext Component of the force measured by the force sensor that is not
induced by gravity or sensor biases

g Gravity vector expressed in the force sensor frame

gi Gravity vector expressed in the force sensor frame for the different
poses of the robot

gw Gravity vector expressed in the world frame

t Torque measured by the force sensor

ti Torque measurements at different poses of the robot

text Component of the torque measured by the force sensor that is not
induced by gravity or sensor biases

Jf , Jt Cost functions to minimize for the force sensor calibration

md Mass of the needle insertion device

N Number of poses of the robot for which measurements are acquired

eRf Rotation matrix from the frame of the end-effector of the robot to
the force sensor frame

fRb Rotation matrix from the force sensor frame to the needle base frame

fT b Translation vector from the force sensor frame to the needle base
frame

wRe Rotation matrix from the world frame to the frame of the end-effector
of the robot

wRf Rotation matrix from the world frame to the force sensor frame
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Mathematical sets

N Set of positive integer numbers

R Set of real numbers

S2 Sphere of unit vectors of R3

SE(3) Special Euclidean group in R3: Set of rigid transformations in R3

SO(3) Set of rotations in R3
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Résumé

Le guidage robotisé d’une aiguille a été le sujet de nombreuses recherches
ces dernières années afin de fournir une assistance aux cliniciens lors des
procédures médicales d’insertion d’aiguille. Cependant le contrôle précis et
robuste d’un système robotique pour l’insertion d’aiguille reste un grand défi
à cause de l’interaction complexe entre une aiguille flexible et des tissus ainsi
qu’à cause de la difficulté à localiser l’aiguille dans les images médicales.

Dans cette thèse nous nous concentrons sur le contrôle automatique de
la trajectoire d’une aiguille flexible à pointe biseautée en utilisant la modal-
ité échographique comme retour visuel. Nous proposons un modèle 3D de
l’interaction entre l’aiguille et les tissus ainsi qu’une méthode de suivi de
l’aiguille dans une séquence de volumes échographiques 3D qui exploite les
artefacts visibles autour de l’aiguille. Ces deux éléments sont combinés afin
d’obtenir de bonnes performances de suivi et de modélisation de l’aiguille
même lorsque des mouvements des tissus sont observés. Nous développons
également une approche de contrôle par asservissement visuel pouvant être
adaptée au guidage de differents types d’outils longilignes. Cette approche
permet d’obtenir un contrôle précis de la trajectoire de l’aiguille vers une
cible tout en s’adaptant aux mouvements physiologiques du patient. Les ré-
sultats de nombreux scénarios expérimentaux sont présentés et démontrent
les performances des différentes méthodes proposées.

Abstract

The robotic guidance of a needle has been the subject of a lot of research
works these past years to provide an assistance to clinicians during medical
needle insertion procedures. However, the accurate and robust control of a
needle insertion robotic system remains a great challenge due to the complex
interaction between a flexible needle and soft tissues as well as the difficulty
to localize the needle in medical images.

In this thesis we focus on the ultrasound-guided robotic control of the
trajectory of a flexible needle with a beveled-tip. We propose a 3D model of
the interaction between the needle and the tissues as well as a needle track-
ing method in a sequence of 3D ultrasound volumes that uses the artifacts
appearing around the needle. Both are combined in order to obtain good
performances for the tracking and the modeling of the needle even when
motions of the tissues can be observed. We also develop a control framework
based on visual servoing which can be adapted to the steering of several kinds
of needle-shaped tools. This framework allows an accurate placement of the
needle tip and the compensation of the physiological motions of the patient.
Experimental results are provided and demonstrate the performances of the
different methods that we propose.


