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1. Introduction

In this thesis I discuss the application of statistical optics to radiation produced at synchrotrons.
We focus on second order coherence phenomena. Second order coherence allows us to calculate
coherence properties and the mean intensity.

Synchrotron radiation (SR) has witnessed an enormous growth in the last decades because
of its applicability to multidisciplinary applied science. The history of SR goes through several
generations of synchrotron radiation sources. The first generation in the 1960’s used storage rings
dedicated to high energy physics and produced the SR in parasitic mode. Many experimental
techniques started to be used and the popularity of this new method to produce radiation grew
in the scientific community. The high impact in applied science drove the community to build
storage rings dedicated exclusively to the production and use of SR. This is the second gener-
ation, characterised by a high brilliance or brightness (emitted power per unit solid angle and
source size). A new way of increasing the brilliance was implemented: the insertion device, or
magnets that make the electrons oscillate strongly, thus boosting their acceleration and there-
fore their emission. A next generation of machines (third generation) were built incorporating
large straight sections necessary to install multiple insertion devices. The ESRF was the first
of the three largest third generation sources in the world (ESRF, APS and Spring8). A high
increase in brilliance was provided by combining the high flux emitted by the insertion devices
and by reducing the source size and divergence by limiting the electron emittance. The small
vertical emittance (4 pm at ESRF) as compared with the 1000 times larger horizontal emittance
lead to relatively high coherence of the radiation that was at the origin of many experimental
techniques that are standard today. Examples of this techniques are X-ray photon correlation
spectroscopy (XPCS)[I], coherent diffraction imaging (CDI)[2, B] and ptychography[4, 5]. The
current third generation of synchrotrons is now continued in two different new facilities: X-ray
free electron lasers (XFELs), based on linear accelerator technology, and the so-called “diffraction
limited storage rings”, circular storage rings where the electron horizontal emittance is lowered to
a level comparable to the present vertical emittance. These new facilities target experiments that
exploit the X-ray beam coherence, like X-ray photon correlation spectroscopy, coherent diffrac-
tion imaging, or ptychography. In all new facilities or upgrades of the existing ones, the keyword
“coherence” is omnipresent. We look to the upgrade of the existing facilities, like the EBS (Ex-
tremely Brilliant Source) at the ESRF, aiming at building a storage ring of 150 pm emittance (as
compared with the present one of 4 nm) that will boost the X-ray brilliance and the coherence
properties.

In this context of the ESRF upgrade and the construction of the new storage ring EBS it
is important to perform accurate calculations and quantitative evaluation of the parameters
related to X-ray coherence in new storage rings. These parameters can be extracted from the
cross spectral density (CSD), a complex function of costly evaluation but containing most of the
information we need about coherence. It is not only necessary to evaluate this function for the
source, but to propagate it along the optical elements of the beamline. This thesis proposes a new
practical and manageable way to compute the CSD and to propagate it along the beamline using
standard wave optics methods. The key point is the decomposition of the CSD in its coherent
modes. Although the idea is well known in statistical optics, this thesis shows how to do this
calculation numerically for synchrotron sources. Once the CSD is decomposed one can propagate
each mode like any coherent field along the beamline and construct the CSD at any point of the



beamline. From this CSD one can extract the usual parameters like coherence lengths, spectral
degree of coherence, spectral density (mean intensity in frequency representation), etc. But not
only: the decomposition into coherent modes gives more practical information that is not directly
visible even if the CSD is known. It permits the accurate calculation of the mode spectrum,
or how the radiation is distributed into the different coherent modes. In this way, it will be
shown that a fully coherent source contains only one mode, a quite coherent source like the EBS
has most of its radiation distributed along few modes (that can be a few hundreds) and a quite
incoherent source will typically have an almost flat mode spectrum. The study of how the mode
spectrum is changed by the beamline is fundamental for designing new beamlines. We will show
quantitatively, for example, how coherence increases when closing a pinhole, a well known method
to improve the beam characteristics in experiments exploiting coherence. The maximisation of
the intensity fraction carried by the first coherent mode, using optical elements, is the main task
of the designer of a beamline for coherent applications. The method presented here will allow for
quantitative practical studies that may impact in the design and constructions of more efficient
beamlines. Moreover, the numerical description of the undulator cross spectral density in terms
of its coherent modes opens a new door for theoretical and practical investigations of how partial
coherent X-ray beams interact with samples.

In the second chapter of this thesis we review fundamental concepts of statistical optics like the
mutual coherence function, the cross spectral density, the fundamental relation between source
fluctuation, the Wolf equation and the propagation of the cross spectral density through optical
elements. These statistical phenomena are rooted in the physics of deterministic optics and we
review those concepts needed for the understanding of this thesis. Additionally, we present some
parts of accelerator physics and insertion devices needed for the understanding of coherence in
synchrotrons. It is precisely the statistical fluctuations of the electrons in the synchrotron storage
ring that determines the coherence properties of the X-ray radiation.

We will derive in Chapter [3] the significant fundamental theoretical results for statistical optics
applied to synchrotron radiation. These are the brightness convolution theorem by Kim[7] and
the theory developed by Geloni et al.[8]. Our derivation is slightly different from the originals and
more verbose. In particular we will put strong emphases on explaining the underlying physical
ideas behind the formulas. This will lead to a discussion regarding the position of the straight
section at which the brightness convolution can be performed and what kind of requirements the
electron beam and undulator should fulfill to be valid for the convolution theorem in the given
form.

The main goal of this thesis is the development of a practical algorithm to calculate and propa-
gate the cross spectral density. Additionally we want to emphasize an awareness on electron beam
parameters that enter in the calculation of X-ray emission calculations. For today’s computers
the storage of the cross spectral density in a naive way is very memory demanding because it is
a four-dimensional function. The memory requirements can easily attain several terabytes which
in consequence requires a big computer cluster. It is for this reason that I decided to perform
a coherent mode decomposition that results in a comparably small number of coherent modes.
These modes can be stored and propagated much more efficiently. The assumption that a small
number of modes are sufficient to accurately calculate all coherence properties was motivated by
the Gaussian Schell-model approximation.

After having established the theoretical description we present an algorithm to numerically
determine the cross spectral density under not too restrictive assumptions. Several coherent
mode decompositions for synchrotron undulators are performed. The decompositions result in a
relatively small number of coherent modes for ESRF-EBS settings. The total memory requirement
is reduced to a few gigabytes. Finally these modes are propagated using standard wavefront
propagation methods.



We present (Chapter |5)) some applications like source studies for varying electron parameters
such as the transverse electron beam settings, the energy spread and a comparison of a model
imaging beamline of the current ESRF storage ring and the upgraded ESRF-EBS for varying
aperture sizes. We made a compatibility study with a Gaussian Schell-model approximation and
an analytical approximation[8] and what we call a separation approximation.

We close this thesis with some ideas for future research and a summary.

The thesis is accompanied by the Coherent Modes for Synchrotron Light (comsyl)[9] open source
software package.
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Figure 2.1.: Overview of the theory discussion.

2. Fundamental theory

In this chapter we develop the theory relevant for this thesis. We review briefly concepts from
electron storage ring physics, some synchrotron radiation emission physics, concepts of physical
optics and the basics of statistical optics. We combine these theories in chapter [3] to develop
the theory of statistical optics for synchrotrons. There we follow Kim’s ideas for his brightness
convolution theorem|[7] and the theoretical considerations of Geloni et al. for emission in storage
rings[§].

2.1. Beam dynamics in storage rings

This section is meant to give a brief overview of accelerator physics for synchrotron storage
rings. In calculations of the synchrotron emission the description of the electron beam is often
oversimplified even though it is essential to completely describe the statistical character of the
emission. We will present the electron beam parameters related to our synchrotron emission
calculations in some detail.

2.1.1. Functional principle of synchrotrons

A synchrotron consists of an accelerating part and a storage ring. The accelerating part is usually
the combination of a linear accelerator and a booster ring (see Fig. [2.2]).

Linear accelerator
| 300.\1CI'

Storage ring

Figure 2.2.: Schematic sketch of a typical synchrotron design.



The underlying physical force for the acceleration and deflection of the electrons is the Lorentz-
Force. The equation of motion for a free electron is:

p:—e<E+pr>, (2.1)
7mo
here p is the electron’s momentum, E is the external electric field, v is the Lorentz factor, mg is
the electron mass and B is the external magnetic field. An electron gun creates bunches of free
electrons. Inside the linear accelerator (LINAC) these electrons are accelerated by pulsed electric
fields (traveling waves) to a few hundred MeV. The linear geometry is useful to minimize the
energy losses due to synchrotron radiation. To create high flux hard X-ray emission an electron
energy of a few GeV is desirable. In order to attain this electron energy the electrons are injected
into the booster. The booster is a circularlike shaped accelerator and the electrons now follow
a circularlike trajectory. To change the direction of propagation of the electrons the so called
bending magnets are used. Deflection of highly relativistic electrons is normally performed with
magnetic fields because for comparable electric and magnetic field strengths the second term
in the Lorentz force (Eq. becomes much bigger due to the high velocity of the electrons.
Often the bending magnet is a dipole magnet. The mathematical description of dipole magnets is
comparably simple and additionally it is possible to fabricate real dipole magnets that reproduce
these ideal theoretical values to a high precision. Highly relativistic electrons passing through a
dipole magnet change their trajectory roughly by a deflection angle 0:

0=0.3- lm[m]%, (2.2)
where [,,, is the length of the bending magnet, B is the magnetic field, E is the electron’s energy.
The deflection angle depends on the electron energy and less energetic electrons will be bent
stronger than electrons with higher energy. This effect results in a phenomenon called dispersion,
in which the orbit depends on the energy. Additionally, because of the finite length of the bending
magnets there is focusing due to edge fringe fields.
To keep the electrons focused around a design orbit quadrupole magnets are installed. Again,
quadrupoles can be produced to a high degree of precision in reality. They have a scalar potential:

V(z,y) = —gzy, (2.3)

where z and y are the horizontal and vertical spatial coordinate, respectively and ¢ is the so
called field gradient. Their magnetic field is therefore

B, = gy; By = gx. (2.4)

The effect of a quadrupole can be understood in analogy to lenses in ray optics. A lens in ray
optics deflects a ray proportional to its distance from its optical axis. This results in a focusing of
a bundle of parallel rays into a single point. The magnetic field of quadruples has the same effect
on electrons, i.e. a deflection proportional to the distance of the electron to the quadrupole axis.
Because the Lorentz force is the cross product of the electron direction and the magnetic field, the
electrons are focused in either the horizontal or vertical plane and defocused in the other plane.
The sign of the field gradient g determines in which plane the quadrupole will focus. For electrons
g < 0 focuses in the horizontal plane and g > 0 focuses in the vertical plane. The former is called
a focusing quadrupole and the latter a defocusing quadrupole. To arrive at a net focusing in both
planes one can put a focusing quadrupole followed by a defocusing quadrupole in some distance.
This principle of alternating gradient focusing is called strong focusing. The concept is similar to



the focusing with a Kirkpatrick-Baez mirror in optics. The simplest magnetic cell employing this
concept is the FODO cell which starts with half a focusing quadrupole followed by free space of
length [, a defocusing quadrupole followed by another free space of length [ and ending with half
a focusing quadrupole. The FODO cell is easy to implement. In a ring these magnetic cells are
usually repeated to form a lattice. The FODO lattice is the starting point for many accelerator
lattices, including booster rings, synchrotron storage rings and particularly for particle colliders.

Electrons moving through an accelerator ring constantly lose energy because of synchrotron
radiation. In the bending magnets the electrons are accelerated and according to Maxwell’s
equations they will radiate emission. If an electron loses too much energy its trajectory will end
in the vacuum chamber wall. In the so called radio frequency cavities the electrons are accelerated
and energy loss is compensated. The RF-cavities create strong oscillating electric fields. The idea
is to create an accelerating electric field in the exact moment an electron passes the cavity. If an
electron does not arrive in the right moment it may even be deaccelerated. This timing creates
a RF-bucket structure. Only electrons that arrive at the correct RF phase get accelerated. This
distribution has the form of moving buckets which explains the name RF-buckets.

Over time the electrons gain energy in the booster and therefore the fields of the magnets and
the RF-cavity must be constantly adjusted. Once the target energy of a few GeV is reached the
electrons are injected into the storage ring.

In the storage ring the electrons are no longer accelerated and the electron energy is not fur-
ther increased. In the storage ring the RF-cavity serves for recharging the energy lost due to
synchrotron radiation and also to provide longitudinal focusing which gives rise to synchrotron
oscillations. The electrons remain in the storage ring for several hours. Their lifetime is de-
termined by scattering with residual gas atoms, vacuum chamber interactions and intrabunch
electron scattering (mainly by, i.e. Touschek effect). Over time more and more electrons get lost.
New electrons are then injected from the booster to replace the lost electrons and a continuous
operation over several days of the synchrotron is achieved. Extra straight sections are added
which serve mainly to supply space for RF cavities or for insertion devices. The insertion devices
are specially designed successions of magnets and serve in synchrotrons mainly for the creation
of intense X-ray radiation. At the positions of the bending magnets and of the insertion devices
the beamlines can be installed. Optical elements in the beamlines transport the emission to the
sample position where the experiments are performed.

A consequence of the emission of the synchrotron radiation is the damping of the spatial
electron distribution inside the RF-bucket’s acceptance. Due to emission the electrons tend
to lose transverse momentum but they regain energy only in the longitudinal channel because
the acceleration of the RF-cavity is in the longitudinal direction. This process is called radiation
damping. On the other hand emission of a photon is a stochastic effect. Combined with dispersion
this leads to longitudinally and transverse growth. In synchrotrons this leads to a tendency to
widen the transverse distribution of the electrons. This effect is called quantum excitation.

Assuming the orbit is stable an equilibrium between radiation damping and quantum excitation
will be achieved. This process can be modelled as a stochastic diffusion using the Fokker-Planck
equation for the electron distribution or the Langevin equation for single electrons. Its solution
is a six dimensional Gaussian electron phase space density. The phase space density describes
the spatial and divergence distribution of the electrons as well as the deviation for the ideal
momentum and the longitudinal distribution.

The phase space density can be calculated numerically using software such as Accelerator
Toolkit(AT)[I0] or Strategic Accelerator and Design(SAD)[II] to name only two. We point
out that for our work the stochastic behavior described by this distribution is of fundamental
importance. 1t is this fluctuation that leads to the phenomena of partial coherence. It is therefore
justified to spend some words on it on the following pages.



2.1.2. Single electron dynamics

In classical mechanics an electron is completely described by its three spatial components and its
three momenta. In beam dynamics this is expressed slightly different. One defines the ideal orbit
of an electron. In this definition some non-ideal phenomena such as scattering on residual gas atom
and electron energy fluctuations are neglected. The description of the electron is then in terms of
horizontal z and vertical y transverse spatial, horizontal 2’ and vertical 3’ transverse divergence,
particle momentum deviation § and the longitudinal position s. The particle momentum deviation
is defined as 0 = (p —po)/po where pg is the ideal particle momentum. The six-dimensional phase
space of the electrons describes the transverse coordinates of an electron having a momentum
deviation § from the ideal momentum and a longitudinal displacement s from its longitudinal
origin. The longitudinal origin lies on some point of the ideal orbit. A six-dimensional phase
space vector is given by:

8]

R\

(2.5)

w o E

In linear beam dynamics the change of the phase space state of an electron in a storage ring
within one turn can be described with the one-turn transfer matrix M:

u(l+C) = M(Du(l) (2.6)

here [ is the evolution variable and C' is the circumference of the ring. For simple or idealized
beam optics, such as combinations of ideal dipoles and quadrupoles, analytical forms for M
are known[27]. In practical cases M is calculated more accurately numerically with computer
codes like AT or SAD. These calculations can simulate RF-cavities and can therefore account for
radiation damping.

We can calculate the particle energy 7 in units of mgc? from the ideal particle momentum pq
and the particle momentum deviation d:

po(l+46
v =1+ (p/(moc))? = (moc> = (1+0) =79+ (2.7)
where we used the fact that the electrons are ultra relativistic.

The full statistical description of the electrons in the beam is given by a distribution around
the ideal orbit which we discuss in the next section.

2.1.3. Electron phase space distribution

The electron phase space distribution is the probability density describing an electron in the
electron beam. It is of central importance for our statistical optics theory for synchrotrons. We
may consider different distributions whose s-origin lies on different points of the ideal orbit.
Whenever we speak about density in this section we mean the electron phase space density.

Let p denote the density. The probability P to find an electron inside a region T in the
transverse x — y plane having longitudinal variation smaller than sg, divergence smaller than D
and momentum deviation smaller than Jp is given by the integral of the density:

P:/da:dy/ ds/ dx/dy// ds p(z, 2’ y,y,0,s). (2.8)
T [—s0,s0] D [—d0,90]



Like every multidimensional probability density the integral over the full configuration is equal
to 1. Physically this means that the electron is somewhere having some momentum.

We may also consider marginals. If we want to know if the electron is in some spatial region
T X [—so, So] having any momentum deviation and any divergence we integrate Eq. over the
three-dimensional divergence and momentum deviation subspace. Because we integrate over an
entire subspace this integral must be 1 and the probability is:

P:/da:dy/ ds p(z,y,s). (2.9)
T [—s0,s0]

For synchrotron storage rings to a good approximation the density can be described as a six-

dimensional Gaussian:
1

1 _
plu) = m exp <—2uTZ 1u> , (2.10)

here ¥ is the second order covariance matrix. The covariance matrix depends on the longitudinal
position s. The elements of the covariance matrix o;; are the covariances of the random variables

i,j € {:E;-'El,y, 3/757 5} 045 = COV(Za]) (211)

and we define
(XS {xaxlvyvylaév 8} L0 = /04 (212)

The covariance matrix ¥ is the solution[12] of:
MDEOMDT + B(1) = 2(1) (2.13)

here B is the diffusion matrix that models the quantum excitation and M should account for
radiation damping.

For the calculations in this thesis we are mainly interested in the elements of the inverse of the
covariance matrix M. We will denote its elements by m;; or in matrix notation:

Myxr Mgy Mey Mgy Mgs  Mgs
Myry  Mygrgr Myry Mgy Mgrs Migls
Myz  Myzr Myy My Mys Mys
My'z Myrg Myly  Mylyr Myrs Myls
Mz My Mgy Mgy M5 Mes
Mgy Mgy Mgy Mgy  Mgs Mg

(2.14)

The ¥ matrix is always positive definite and symmetric. The surfaces of constant density are
ellipsoids (see Fig. [2.3)).

Synchrotron storage rings are often designed to have small couplings between longitudinal and
transverse degrees of freedom. These couplings can not be completely eliminated everywhere but
regions with very low couplings can be designed in which we consider the coupling negligible.

In what follows we establish a notation we will use throughout this thesis for the approxima-
tions we may use.
If there are negligible couplings between the longitudinal bunch size and the other beam param-
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Figure 2.3.: Side view(left) and front view(right) of three constant density surfaces (red, yellow,
blue) for a three dimensional Gaussian. Exemplary depicted is the 3D spatial sub-
space of the full 6D Gaussian density. We want to stress the fact that the spatial
electron beam distributions for electron bunches is often much smaller in the vertical
than in horizontal direction. The horizontal direction is usually much smaller than

the longitudinal direction.

eters one may define the 5 x 5 matrix:

Myz Mgy’ Mgy Mgy Mg
Myl Mygly! mx’y mx’y’ My’ §
Ms = | Myg  Myyr  Myy My  Mys (2.15)

my/y/ my/(g
mss

My My/ar Myly
Mys  Mgrs Mys  Myls

Together with the reduced phase space vector u:

S

(2.16)

[~}
Il
<

<

(o9

we may define the five-dimensional phase space density:

1 1
7 exp (—2'&TM5'&> . (2.17)

(@) =
o (27)3 4/ det M; "

The five-dimensional phase space density ps will be important in our discussion of statistical
optics of synchrotron emission in storage rings in chapter The total electron phase space

density is then approximately:

p(u) ~ ps5(u) \/;7 exp (—280?) (2.18)

with 052 = my,.

10



We note that the dispersion function 7 is a transverse to longitudinal coupling. The approximation
is good for achromatic lattices, in which the dispersion is minimized.

If there are no couplings of transverse and longitudinal dimension the M matrix takes a simpler
form:

Maz Mgy Mgy Mgy 0 0
Myrg  Mgigr  Mgry Mgy 0 0
Mo |Twe My Mgy Mgy 0 0 (2.19)
My Myrgr Myry My 0 0
0 0 0 0 mgss Mss
0 0 0 0 Mss Meas |

This form can be decoupled into a transverse part M, and longitudinal part M

Myxr Mgy Mey Mgy
Mt Myt et MMt Miytay! m m
MJ_ _ z'x 'z 'y ) : MH _ 9 ds (220)
Myz  Mygr Myy MMy Mss  Mgs
my/x mylxl my/y my/y/
and M is the direct sum of the transverse and longitudinal part:

M:MJ_@M”. (2.21)

If additionally the coupling between horizontal direction = and vertical direction y can be ne-
glected Eq. becomes:

Mayz Mgy 0 0

M, = |t M 0 0 (2.22)
0 0 Myy My
0 0 Myry  My'y!

In this case we may further separate the transverse M matrix into a horizontal and a vertical M
matrix:

m m ’ _ m TNy _
M, = xx zx' | _ Ea: 1; My _ Yy vy | — Ey 1 (223)
Mgty Myl ’my/y my/y’

and
M, = M, & M,. (2.24)

In this approximation we may define horizontal and vertical emittances by:
(2.25)

We remark that this separation is in general not true everywhere and may be correct only ap-
proximately at some special positions of the ring. Some of these points are discussed in section

2.1.0

A more general definition of the emittances for coupled dynamics is given by €, = %tr(GaZ)
with a € {1,2,3} whereby tr denotes the trace and G, are the so called invariants that depend
on the eigenfunctions of the one-turn transfer matrix M. The presentation of this formalism is,
however, out of the scope of this thesis but can be found in [13].

11



2.1.4. Twiss parameters

When the dynamics are horizontally and vertically uncoupled and in the absence of dispersion
it is possible to express the three independent elements of the symmetric 2x2 in terms of the so
called Twiss parameters 7, a, 3. The emittance is related to the Twiss parameters as follows:

i€ {z,y}: e = (ni* + 2q4ii’ + B;i"?) (2.26)

where the average value is taken over the electron beam distribution. Theoretically the vertical
emittance may be as small as 107'3m but in reality it is about one percent of the horizontal
emittance due to couplings between horizontal and vertical degrees of freedom. The relation
between the Twiss parameters and the reduced ¥; matrices are:

Y =€ [ pi _O‘Z} . (2.27)

Yo v
In this formalism the beam size of an assumed Gaussian beam is calculated as
o\ (s) = v/eBi(s). (2.28)

The p-functions can be numerically calculated from the one-turn transfer matrix M. Let M;
be the one-turn transfer matrix for dimension ¢ at longitudinal position s:

Ci S;
M; = [C’f S’] (2.29)
The S-functions at position s are given by the solution of:
C? —25;C; S? Bi
—CZ‘C{ SZCZ/ + CZS; —SiSz{ -7 a; | =0 (2.30)
cr —28!C! S12 Vi

here 7 denotes the identity matrix.
The p-functions are often plotted like in Fig. [2.4] For the Twiss parameters one has always:

Bivi — a2 = 1. (2.31)

The a-function is the derivative of the S-function: «; = —% i(s).

2.1.5. Deformation of the phase space density

In a free drift, i.e. in the absence of magnetic fields, the Twiss parameters change as a function
of the longitudinal coordinate s as follows:

B(s) = Bo — 2sap + 705,
a(s) = ag — $70, (2.32)
v(s) =0,

where [y, ag,yo are the Twiss parameters at the beginning of the drift space, i.e. s = 0. In a
free drift the velocities of the electrons do not change. This is seen from the constancy of v. The
linear change of a reflects a uniform rotation of the phase space ellipse. The reasoning is that
slower and faster electrons are separated during the drift. Some examples of phase space density
ellipse transformations are illustrated in Fig. [2.5

12
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Figure 2.4.: Lattice plot for the EBS-ESRF standard cell taken from the Orange-Book[].

The Eq. describes the relation between the beam size and the S-function. The position of
minimum beam size in a free drift section is called the beam waist (in a drift section). The size
of the beam envelope decreases first until it reaches its minimum size at the waist position and
increases afterwards. Since « is the derivative of the S-function the waist can only be located at
positions where « vanishes. It follows from Eq. that the waist is located at:

Qg

Swaist = - (2.33)

2.1.6. Distinguished points for undulator calculations

Usually synchrotrons have straight sections between FODO like cells. These sections provide
place for insertion devices or diagnostics tools. In the middle of the straight section a symmetry
point can be found in which the beta functions acquire their minimum value and « vanishes. This
implies 0., = o,y = 0. Furthermore we assume that there is no coupling between the vertical
and horizontal dimensions due to the storage ring design and that the longitudinal and transverse
couplings Vanis}ﬂ because of low dispersion in the straight section. The transverse density ps, at
the symmetry point takes then the simple form:

1 i
pSp(x7x,7y7y/) = H GXP <_2> (234)
ic{x,2'y,y'} 20‘2’

27701-2

with o, 2 — my; because M| is a pure diagonal matrix. This position is interesting because under
additional approximations and if an undulator is placed with its center at the symmetry point
two theoretical simplifications fall together: one for the electron beam and one for the radiation
produced by an undulator (see [g]).

In reality, however, this will often not be the case; if for instance several undulators are placed
in a single straight section. Depending on the number and the length of the undulator, none of

!'We will later discuss that weak couplings of the longitudinal spatial coordinate to the transverse coordinates
do not change the result.
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Figure 2.5.: Two examples of possible changes of the surface of constant density for a 2D Gaussian
in dependence of the longitudinal position in the ring. Depicted are the rotation of
the ellipse(left) and rotation and simultaneous shrinking of one dimension(right).
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them may be centered at the symmetry point.
As a first correction we may therefore assume couplings between position and momentum in each
dimension. In this case the transverse density p; takes the form

1 1 T 1
pi(z, 2y, y) = exp (—2[m,x’]Mx [w,} - §[y,y’]My [y,D . (2.35)
(2m)2 \/det M; " det M, ! J

2.1.7. The ESRF-EBS upgrade

The ESRF Extremely Brilliant Source(EBS) is the on-going source upgrade of the ESRF lattice.
In different stages the upgrade is planned to last until 2022. One of the main objectives is to reduce
the horizontal emittance by at least a factor of 30[6]. The new lattice will have vertical emittance
and energy spread comparable to the current lattice. The aim is to create brighter synchrotron
radiation with improved coherence properties. This will allow smaller photon beam foci, thus
coherence-based techniques like CDI, ptychography and XPCS will profit from increased flux.
From the technical point of the view the bending magnets in the current double bend achromats
lattice will be replaced by multiple but less strong bending magnetics. These kinds of lattices are
called multi-bend achromats[I4]. The splitting of the bending magnet into smaller magnets will
reduce the total dispersion of the storage ring which in consequence leads to the desired reduction
of emittance.

The aim of this thesis is the development of an algorithm that allows the simulation of the
statistical properties of the synchrotron emission for the purpose of beamline design. In order
to be applicable to beamline design studies, this algorithm has to run on modern computers in
reasonable computation time. This algorithm can help beamline designers in the conception of
their beamlines and it allows the usage of the shutdown time during the physical upgrade of the
storage ring for the plannings of the beamline such that they are conceptually ready once the
upgrade is finished.

2.1.8. The beam settings used throughout this thesis
The electron beam settings used within this thesis are tabulated in Table.

Symmetry point:

Name ‘ oz [um) ‘ ol [urad] ‘ oylpm] ‘ o, [purad] ‘ Energy spread o

ESRF-EBS | 27.2 5.2 3.4 1.4 0.95-1073
High beta | 387.8 10.3 3.5 1.2 1.06-1073
Low beta | 37.4 106.9 3.5 1.2 1.06 - 1073

Finite alpha:

oz [m] ‘ ol [urad] ‘ 0o [pmirad] ‘ oy[pm] ‘ o, [urad] ‘ oyy [prad] ‘ Energy spread oy
306 | 44 | -142 | 38 | 14 | -14 | 095-107°

Table 2.1.: Electron beam settings used for the calculations in this thesis. The symmetry point
settings are given in terms of the standard deviations[6]. The finite alpha settings
for the ESRF-EBS lattice are given in terms of the standard deviations and the el-
ements of the covariance matrix that were extracted from internal data provided by
the Accelerator Source Division of the ESRF.
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2.2. Synchrotron radiation

This section describes the main characteristics of the synchrotron radiation (power, spectral and
angular distribution) starting from basic concepts. We review the physics of some of the most
important devices for synchrotrons: bending magnets and insertion devices. Both are used to
produce X-ray radiation. While the main role of bending magnets is to keep the electrons on
their orbit; the insertion devices are specifically dedicated to produce high flux.

2.2.1. Power emitted by accelerated charged particles

Synchrotron radiation is the electromagnetic radiation emitted by accelerated charged particles.
In circular accelerators, the particles are moving in a non-rectilinear trajectory (cf Fig. ,
therefore they are centripetally accelerated. Most of practical results of the synchrotron radiation
can be obtained using classical electrodynamics (see for instance [17]).

The power radiated by a non-relativistic accelerated charge is given by the Larmor formula.
For an electron, the power emitted is [17]:

1 2
P c - o] (2.36)

~ 67 e
where e is the electron charge, c¢ is the speed of light, and v is the acceleration. The direction
distribution of the radiation is given by:

dP e2

.12 .92
—_— = 0 2.37
dQ (477)2C360 ”'UH sin ( )

where (2 is the solid angle and 6 is the angle between the acceleration vector and the observation
direction. If the particle moves along a circular trajectory with curvature radius R (||0]|* =
(v2/R)? = R?w*), there is no radiation along the radial direction, and the directional map of
radiated power looks like a donut with axis in the radius of curvature and no hole inside. The
radiation of a non-relativistic electron has a dipole nature, and the power emitted looks like a
torus (see figure [2.6p).

The Larmor formula is not invariant under Lorentz transformation, which preserves the con-
stancy of the speed of light when changing from one reference system to another. Therefore, the
Larmor formula is not valid for relativistic particles, in particular for ultrarelativistic particles
like electrons circulating in storage rings at velocities close to that of the light.

A generalized Larmor formula can be obtained from the Maxwell equations using covariance
arguments. This generalized formula shows[I7] that the contribution to the total radiation of the
linear component of the particle acceleration (i.e., in the direction of v) is negligible compared
to the contribution of the normal (centripetal) component (due to the curved trajectory). For a
relativistic charge moving in a circular trajectory with the radiated power is:

B 1 62654’)/4
- 6m €0 R2

(2.38)

where 3 is v/c and v is the Lorentz factor for the electron (y = (1 — 2)~1/2. In practical units
v~ 1957E[GeV]).
An uniform magnetic field B in a circular electron storage ring forces an electron to describe a
circular trajectory. The radius of curvature is:
p _ moBye

R:7:
eB eB

(2.39)
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Acceleration

Figure 2.6.: Radiation pattern of electrons in a circular orbit. The left diagram shows the pattern
for non-relativistic electrons predicted by Joseph Larmor. The left diagram shows
the pattern for highly relativistic electrons: the radiation is concentrated in a narrow
cone; the spectrum also extends to very high frequencies. Pictures taken from [I§].

which is expressed in practical units as:
R[m| ~ 3.3356 E[GeV]|/B[T]. (2.40)
The energy radiated by an electron in a storage ring along one turn is the product of the

radiated power multiplied by the time the electron takes for performing a complete revolution.
We obtain:

203 .4
oB =50
3e0 R

(2.41)

In circular accelerators, this is the lost energy that has to be supplied by the RF-cavity in
order to keep the electron energy constant. We remark the fast growth of losses when the
electron energy increases. It is proportional to the fourth power of the energy. The radiation
power depends strongly on the mass of the radiating particle which scales like 1/m* at a given
total energy v = mc?. For protons, the emitted power compared to electrons of the same energy
is P,/P. = (me/myp)* = (1/1834)* = 8.8 - 1014

This equation can be written in practical units for ultra-relativistic electrons g ~ 1:

E[GeV]?

E = 88.471
SE[keV] = 88.4715 R

(2.42)

This result describes a single electron. When multiplied by the storage ring current I one
obtains the total radiated power in a single turn:

PlkW] = E[keV]I[A]. (2.43)
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Figure 2.7.: Left: Universal G function for bending magnet spectrum (Eq. [2.47). Right: Spec-
trum of the ESRF bending magnet (Eq. [2.48).

2.2.2. Spectral distribution of synchrotron radiation emitted by ultra-relativistic
electrons

The power radiated by a charged particle moving in a circular path was obtained by Schott[19]
before synchrotron radiation was known. The equation is known as Schott formula and is valid for
all values of particle velocity, thus including relativistic electrons. Following [20] the differential
radiation in a solid angle df) = sin 8dfd¢ is given by a sum of harmonics with the form:

C€2ﬁ2
2m R2

where 6 is the radiation angle and v is the harmonic number (v = w/wy with w the radiation
frequency and wy the electron frequency of rotation) and J and J’ the Bessel functions.

dP(v,0) =

v? {cot? 0.J2 (vBsin0)B%J 2 (vBsin6) } dQ, (2.44)

In the case of ultra-relativistic electrons|20], the Bessel functions can be replaced by their
asymptotic form so the radiated power by a singular electron in a circular orbit is approximately:

2
dP(v,0) = 6;§R2 2 {€2K22/3 (%63/2) + € cos? 0K12/3 <%€3/2) } s, (2.45)

where € = 1 — 32sin? 6 and K are the Bessel functions of the third kind. This can be integrated
over the 47 solid angle into the well known equation:

662 3
Py = 22V g () (246
where -
G = Ks(x)dx 2.47
W=y [ KW (2.47)

and y is the ratio of the emitted radiation frequency w over the critical frequency w. = (3/2)v3wo =
3v3¢/(2R) thus y = w/w. = vwo/we. This function is shown in Fig. In practical units, the
photon critical energy is e.[keV] = 2.2183E[GeV]3/R[m).

Converting power in number of photons per second in a given energy bandwidth (typically
0.1% of the photon energy), considering the emission of an electron over an given arc (typically 1
mrad) and multiplying by the total number of electrons given by the electron current we obtain:
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2
N[photons/s/0.1%bw/mrad] = 9v/3 102 h;C3E[G€V]I[A]G1(w/wc) ~

2.4605 1013 E[GeV]I[A]G1(w/w,)

(2.48)

Fig. shows the spectrum for the ESRF bending magnet. The critical frequency w,. divides
the power spectrum in two parts each one with one half of the total power. Numerical calculations
show that the maximum in the spectrum G(y) is attained at y ~ 1/3.

2.2.3. Polarization properties

The asymptotic version of the Schott’s formula including polarization components (Eq. [2.45) can
be written[20]:

2
ce v v
AP(v,0) = s (oK, (563/2) + lyecos” 0K (563/2) }aa, (2.49)
where lo and I3 are the parameters describing polarization (horizontal linear polarization or o-
polarization: lo = 1;l3 = 0, vertical linear polarization or m-polarization: lo = 0;l3 = 1, circular
polarization: ly = +l3 = 1/1/(2)).

The integration over the angles and frequencies leads to:

7 1
Wy=W (<3413, (2.50)
8 8
That means that 7/8 of the total power is o-polarized (i.e. the electric vector lies in the orbit
plane) and 1/8 of the total intensity is m-polarized (electric vector is perpendicular to the orbit
plane). This proportion varies with the wavelength.

2.2.4. Angular distribution

The angular dependence of the radiations at a particular photon frequency is given by Eq. [2.49]
For a given photon energy, the radiation is symmetrical with respect of the ¢ angle (measured
with respect to the plane of the orbit, the complementary of 6 in Eq. [2.49). The width of this
distribution reduces when the photon energy increases.

Integration over the frequency of Eq. results in [20]:
ce2y5/2

AW () = 2w R?

f(&)dQ, (2.51)

where we used a reduced angle £ = vy cos ~ v, and the function:

7 2 5¢2 2 48
(1 + 52)5/2 l2 + 16(1 +€2)7/2 l3 + 71'\/3(1 + 52)

(&)= 16 5 l2l3 (2.52)

from where the angular distribution for all polarization states can be obtained. The total power
can be calculated adding the o (lo = 1,13 = 0) plus the m-polarization components (I = 0,13 = 1).
Fig. [2.8] shows the f function for o and 7 polarization. The result looks similar to a Gaussian
with standard deviation o¢ = 0.608 [21].

To understand qualitatively the synchrotron radiation emission we may use basic concepts of
the Lorentz transformation. The radiation emitted by non-relativistic electrons has dipole nature.
The spatial distribution of the radiation emitted from ultra-relativistic electrons is of different
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Figure 2.8.: The f function (Eq.[2.52) for o and 7 polarization (results have been normalized to
the total value at y¥ = 0)

nature. We showed the quantitative calculations in the frame of the classical electrodynamics.
Basic relativistic principles motivate that the radiation by ultra-relativistic electrons is confined
in a narrow cone. In fact, if we assume that the radiation is observed at an angle 1)’ respect to
the direction of the velocity of the electron in a reference frame where the observer is at rest then
the angle ¢ at which the radiation is observed in the laboratory frame can be found from the law

of velocity addition:
V1 — 32siny/
1+ Bcosyy

Considering that the maximum power associated with dipolar radiation is at ¢/ = 7/2, we
obtain

sin(y) = (2.53)

2
sing ~ 0 ~ /1 - 52 = mzjc =L (2.54)

The synchrotron radiation for photon energies around the critical energy E. from an electron
moving at a relativistic speed is concentrated within a narrow cone centred in the instantaneous
direction of electron motion, and forward directed as shown in Fig. 2.6pb.
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2.3. Synchrotron radiation devices

In the following sections we give a brief overview of the devices used in a synchrotron to create
X-ray emission. The presentation is largely based on [22, [23].

2.3.1. Electron trajectories

We present the geometries and the electron trajectories of the devices for the production of
emission in synchrotrons.

2.3.1.1. Bending magnets

The simplest and most common realization of bending magnets is the dipole magnet. Idealized
a dipole magnet has a constant vertical magnetic field

B = (0,B,,0). (2.55)
The general equation of motion for an electron in a magnetic field is:

d _

= —e(v x B). (2.56)

here p is the electron momentum, v its velocity and B the magnetic field. For a dipole magnet
we therefore have:

— g
p=eB, | 0 (2.57)
Uz
with
Uy
v= v | (2.58)
Vg

Ideally the electron enters the dipole magnet without initial transverse velocity. With this as-
sumption the trajectory is given by:

pcos(wp(t —to)) + o
r(t) = 0 (2.59)
psin(wy(t — tg)) + so

with wy, = efi and p = g—j The trajectory describes a circle in the z-s plane. During the motion

the electron radiates and the radiation follows the general characteristics discussed in the previous
section, i.e. it is very collimated and highly polarized.

2.3.1.2. Insertion devices: wigglers and undulators

Modern synchrotrons use wigglers and undulators to create particular intense X-ray radiation.
The name insertion device stems from the fact that the first devices of these kinds where used
in particle colliders and these devices could be inserted or removed when they where needed to
create synchrotron radiation. Ideally an insertion device for the purpose of synchrotron radiation
creation should have negligible influence on the beam dynamics, i.e. it should not introduce extra
deviations of the particle trajectory or velocity outside the insertion device. In equations this is
approximately expressed as [ ds'B(s’) = 0 and [ ds [ ds'B(s’) = 0. Theoretically the description
of wigglers and undulators are rather similar. Undulator are wigglers with many oscillations and
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Figure 2.9.: Schematic illustration of a bending magnet, a wiggler and an undulator.

|

generally shorter period length. We restrict our discussion to planar vertical insertion device, i.e.
the magnetic field vector lies in a vertical plane.

The schematic view of a planar wiggler and a planar undulator is depicted in Fig. We
will restrict our presentation to the idealized cases of an arrangement of alternating magnets that
create a perfect sinusoidal magnetic field in the vertical direction. This magnetic field leads to
a sinusoidal trajectory in the horizontal plane. In the derivation that follows, we follow strongly
the ideas given in [22] 23]. For a vertical planar wiggler the magnetic field is ideally given by:

B = (O,Bcos (27r;> ,0) (2.60)

where A, is the insertion device period length. With this magnetic field the transverse velocities

are given by:
e

vp(s) = — /S ds'By(s), (2.61)

yme J_o

vy(s) = — / ds' B, (s). (2.62)

Coyme oo
The trajectory can then be derived from the integral over the velocity.
In the case at hand we arrive at the velocity:

Kc | < s >
Vy = —sin | 2m— |,
Y Au (2.63)

vy = 0.
with the deflection parameter or undulator number K:

eB)\()
2mme

~ 93.3729B[T)| Ay [m). (2.64)

22



The undulator number can be viewed as the amplitude of transverse velocity oscillations in units

of 1/7.
The trajectory is then a sine:

2(s) = — K o <2w;> . (2.65)

27y u

We remark that the given magnetic field is an idealization and that field error inhomogeneities and
edge effects are totally ignored[27]. Computer codes like the Synchrotron Radiation Workshop
(SRW)[24] may include this effects numerically either from theoretical models or experimentally
measured data.

2.3.2. Emission by an electron following an arbitrary trajectory
Single electron radiation can be calculated using the Lienard-Wiechert potentials[17]:

(&

CI)(’I", t) =
47T60 Hr - R(T)H ret (2 66)
A(r,t) = ev(7) '
’ drmeg [lr — R(7) |||,
with the retarded time 7: R
roy TR0 (2.67)
c

where r is the observation point and R is the electron position.
In the frequency domain the potentials become:

) = o [ gl e R o)

T )
ireo ) [r =R 268
M= o [ an S RO/
dege J_o lr — R(7)||
The electric field in frequency domain can be derived from the potentials:
E(r,w)=-Vo(r,w) + iwA(r,w). (2.69)
The electric field becomes:
iew nx[(n—7)x7# c (n—7) ] e
E(R,w) = ww(t=nr/c) gy 2.70
(B,w) 4meey / [ (1 —7n)? * Y?R (1 —7n)? ¢ (2:70)

where 7(t) is the electron trajectory and n(t) = R —r(t)/||R — r(t)|| is the unit vector pointing
from the particle to the observation point. In the ultra-relativistic limit the second term is usually
negligible and one arrives at:

B = 2 | [P emoa e

We remark that far field approximations to this formula are known which make the integral signifi-
cant easier. Additionally, for undulators the big number of periods allow further approximations|g].
These analytical approximations lead to rather complicated expressions that involve integrals
which can not be solved in closed form. Additionally, they impose extra constraints, e.g. on the
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Figure 2.10.: Typical emission spectra of a bending magnet(left), a wiggler(right) and an undu-
lator(bottom). For the undulator at about every multiple of 8keV one can see the
spectral peaks at the energies of the harmonics of this undulator.

form of the magnetic field or the distance of the observer. On the other hand, computer codes like
SRW[24] or pySRU[25] can solve Eq. and Eq. directly without particular computational
difficulties. In the scope of this thesis we decided therefore to calculate the radiation directly
by Eq. 2.71] because from the numerical perspective the approximations mentioned before do not
add notable computational benefit but add unnecessary constraints.

2.3.3. Emission spectra

The emission spectra of a bending magnet and a wiggler look rather similar. They consist
of one bump that reaches its maximum and decrease afterwards (see Fig. top). For an
undulator instead the spectrum has several peaks that correspond to the undulator harmonics (see
Fig. bottom). The peaks are approximately equidistant. The peaks of the undulator emission
can be understood from the harmonics of the electron motion in the undulator[26]. Because of
the Lorentz space time transform the electron moving through the undulator experiences in its
reference frame a periodic electromagnetic field with a period A, = A, /v and therefore radiates
at a frequency w( = 2mey/Ay. In the laboratory frame the frequency transforms as:

!
“o

wo =4 + 262

(2.72)

where 6 is the angle of emission measured from the undulator axis. Higher harmonics of the elec-
tron motion result in a frequency multiplication n in the rest frame and equally in the laboratory
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Figure 2.11.: Variation of the 2m long ESRF ul8 undulator radiation for different K numbers.
For large K the undulator spectrum approaches the wiggler spectrum.

frame: .
nw

1+ ~262°
This result can be corrected for the decrease of the mean electron velocity along the undulator
axis and results in:

(2.73)

Wnp =

4mey? 1
n Z .
Au 14 55 44202

Wy, = (2.74)
For large undulator numbers K the undulator spectrum approaches a wiggler spectrum (see
Fig. [2.11]). For fixed undulator number K and variation of the primary slit size, i.e. the accep-
tance, the spectrum changes. The sharp spectral peaks smear out and other spectral maxima
close to the harmonic energies are found. We will call these maxima fluz mazima (see Fig.[2.12)).
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Variation of primary slit size W
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Figure 2.12.: Emission spectrum of a 2m long ESRF ul8 undulator with K = 1.68. The quadratic
shaped primary slit is varied in size W. With increasing slit size the spectral peaks
are smeared out. For large slit sizes the maximum of the integrated flux does not
coincide with the resonance energy.

2.3.4. The undulator settings used throughout this thesis

The undulators used throughout this thesis are tabulated in Table. All the undulators are
planar undulators with their magnetic fields directed along the vertical direction. We use always
an electron beam energy of £ = 6.04 GeVH The first harmonic of all the undulators lies at
Ey = 7982 eV. The energy of the n-th harmonic is then E,, 1 = n - Ey. In practice one uses
only the odd harmonics (1, 3, 5, ...) because the even harmonics (2, 4, 6, ...) have impractical
intensity distribution, i.e. no on-axis radiation, and more complicated polarization properties.

Close to each harmonic one finds an energy of maximum flux which does not coincide with
the harmonic energy. We use Egmax = 7920 eV for the first maximum of the flux and Foyax =
23893 eV for the third maximum of the flux.

Name vertical K | period length [mm] ‘ length [m]
ESRF ul8 1m 1.68 18 1
ESRF ul8 2m 1.68 18 2
ESRF ul8 4m 1.68 18 4

Table 2.2.: Undulator settings used for calculations in this thesis. All the undulators are planar
vertical undulators.

1Strictly for the ESRF-EBS it would be E = 6.00GeV .
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2.4. Optics for synchrotron beamlines

In the previous section we established the equations to calculate the single electron emission
for wiggler and undulator radiation. Because of the linearity of the Maxwell equations we may
construct the electric field created by an electron bunch using these formulas and summing up the
single electron emissions. Hence, we are able to theoretically calculate the emission of a bunch at
some distance from the undulator exit plane. For practical purposes we would now be interested
to model the free space propagation of the electric field of the radiation, i.e. how the synchrotron
emission is transported from a plane to another in vacuum. Additionally, we are interested in the
effect of apertures and the effect of focusing elements of a synchrotron beamline. These elements
already allow to model in a simplified way the most important optical elements of a beamline.

We will review the underlying theory to model the before mentioned effects and present the
techniques used in practise.

2.4.1. Wave optics

We restate briefly the derivation of the Fresnel and Fraunhofer diffraction equations. We follow
the ideas given in [35] 30].

2.4.1.1. Propagation of radiation in free space

Let E(r,w) be the electric field that satisfies the Helmholtz equation:
(A +EHE(r,w) =0. (2.75)

here k is the wavenumber and w is the frequency. In general the propagation of F(r,w) in vacuum
can be described with the knowledge of the Green’s function G for the wave equation

(A+ k2) G(r,ro) = —4md(r —rop). (2.76)

For any Green’s function G that satisfies the same continuity requirements as E(r,w) the

Green’s identity
. oY 09
/V PAY — PAp = /SdS <¢8n 8n> (2.77)

where V is a continuous volume, S its closed surface, 6% is the differentiation along the inward
normal, states:

(2.78)

/VdV (E(r,w)AG — GAE(r,w)) = _/ 0GP

 as (E(r,w)aG - GE(’"’“)> .

The left hand side of Eq. can be evaluated using the Helmholtz equation Eq. and the
defining property of a Green’s function Eq.

/ AV (B(r,w)AG — GAE(r,w)) = / AV (B(r,w)(—Am)5(r — 1)) = —4rE(ro,w)  (2.79)
1% 1%

Together with Eq. this leads to the final propagation formula:

Elro,w) = % /S ds (E(r,w)gi - ngg;‘*’)) . (2.80)

Theoretically the evolution of the electric field for every optical element could be modeled if
an appropriate Green’s function can be found. In practice the Green’s function is unknown. We
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integration contour W

Figure 2.13.: Illustration of the contour integration for the Fresnel Kirchhoff diffraction theory.
The contour consists of the opening A, the part of the sphere W and the area of
the aperture that connect A and W.

will however apply this formalism to the propagation in free space and derive with its help the
Fresnel and Fraunhofer diffraction formulas.
With the special choice of a Green’s function:

G(s) = (2.81)

one arrives at the integral theorem of Helmholtz and Kirchhoff:

Ero,w) = ﬁ /SdS {E(r,w); <€k> _ eikSW} (2.82)

S S

where r( is any point within S. This theorem expresses E(rg,w) through the values of E(r,w)
and its derivation of its inward normal 9, F(rg,w) on the surface S. The choice of G can be
motivated by the Huygens-Fresnel principle, i.e. every point of a wave-front may be seen as the
source of a spherical wave and these spherical waves interfere mutually. This general integral
theorem is however more complicated then Fresnel assumed.

We can apply the integral theorem to the case of a monochromatic wave from a point source:

ezkr

E(r,w)=A (2.83)

r
at point ro that gets diffracted at an opening A whereas the opening size is considered large
compared to the wavelength but small compared to the distance between opening and r( (see
Fig. [2.13). We want to know E(rp,w) for points that have a much larger distance than the
opening size of the aperture. Additionally, we assume that in the opening A the wave and its
directional derivation are unchanged by the present of the aperture around the opening, i.e.
they are the same as if there was no aperture. Furthermore we assume that both the wave
and its directional derivation are zero on the aperture. These are reasonable assumptions but
nonetheless assumptions. The integration surface is then closed with an infinitely extended sphere
W in forward direction. The contributions from the infinitely large surface W go to zero and we
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are lead to the Fresnel-Kirchhoff diffraction formula:

; ik(r+s)
_% ds €
o\ )4

E(ro,w) = [cos(n,r) — cos<n7r0>]} . (2.84)

rs

where (-,-) denotes the scalar product and n is the normal vector of the integration surface. The
integration surface S reduced to the part of the aperture A.

For all the used arguments it is not necessary to chose A as a plane. If A is chosen to be a
spherical surface of very large radius of curvature then one can approximate cos(n,r) = 1 and

arrives at:
A ik(r+s)
E(ro,w) = —— [ dS { c

_ﬁ A rs

(14 cos(x))} (2.85)

with
X =7— (n,ro). (2.86)

This formula corresponds to the Huygens-Fresnel principle, where each point of the aperture A
becomes a source of a spherical wave. The formula allows us to identify the inclination factor of
Fresnel’s theory:

K(y) = —%(1 + cos(x)) (2.87)

For x = 0 the inclination factor resembles the result of Fresnel’s theory. However in general x # 0
and the results differ. In particular K (%) # 0. The non-monochromatic case can be derived from
this monochromatic result by means of Fourier analysis.

To model an extended source we use in Eq. the special choice of E(r,w):

E(r,w) = A(r)e (2.88)

with a magnitude function A in the opening A. This choice has a well-defined direction at every
point in the aperture: 0, F(r,w) = —ikA(r) cos(n,r) and it may be applied if an extended source
is significantly further away than the wavelength. The only real difference to the previously given
derivation is that A(r) was constant. We may therefore follow similar mathematical manipulations
and we arrive at:

i iks

B(ro.w) = —55 AdS{A(r)eS (cos(n,r>—cos<n,r0>)}. (2.89)

We point out that in the close vicinity of the opening A these formulas are in general invalid
and the pure boundary value problem must be solved.

If, additionally the extended source and the point at r¢ are both much further away from the
opening 4 than the size of the opening A then the scalar products in Eq. will always give a
very small angle and the cosines in Eq. can be approximated by 1 and —1, respectively and
we rewrite Eq. [2.89] as:

Elro,w) = — / S A(r)eihs (2.90)
ZA A
with
§* = (z —az)* + (y — a,)? + 2 (2.91)

here z,y, z are the coordinates of r¢ and a,, a, are the coordinates in the opening. The distance s
practically equals z for all changes over the opening. We could therefore safely replace the factor
1/s in the integrand by 1/z and may pull it out from the integral. The complex phase factor on
the other hand is much more sensitive and in its argument we can not simply replace s by z. We
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therefore rewrite s as:

_ 2 _ 2
s ayf14 TSt W a)” (2.92)
22
The square root can be expanded into a Taylor series:
v 0?2 VP

Depending on the highest order used of this expansion one arrives at the Fresnel diffraction
equation or the Fraunhofer diffraction equation.

2.4.1.2. Fresnel diffraction equation
The expansion of Eq. to first order is:

O G a“”)t; (v — ) (2.94)

And Eq. takes the form of the Fresnel diffraction equation:

(&

ikz .
E(ro,w) = 1~ /A dagda, A(r)es: (=02) +w=ay)) (2.95)

or in vector notation with 7 = [z, y]?:

ikz ke
B, 2 w) = / dr' A(r!)e 1) (2.96)
A

1AZ

This approximation is often referred to as near field approximation.

2.4.1.3. Fraunhofer diffraction equation

If linear terms in Eq. are sufficient one arrives at:

o= o _ Tz T Yay (2.97)
z
and the Fraunhofer diffraction equation:
B(F, 2,w) e / dr' A(r')e= =7 (2.98)
Z,w) = EAA )
T IAZ A

This regime is often called far field approximation.

The Fresnel number: 4
F=— 2.99

where A is the area of the aperture and d is the distance of the screen from the aperture, can give
an indication whether to use the near field or the far field approximation. For cases with F' > 1
the Fresnel formula should be used while for F' < 1 the Fraunhofer formula should be sufficient.

We point out that even in 30 m distance from the undulator the emission may often still require
treatment in the near field approximation because the wavelength of X-rays is several orders of
magnitude smaller than for visible light.
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Helmholtz equation (Eq. 2.74)| | Green's identity (Eq. 2.76)|

|Integral theorem of Helmholtz and Kirchoff (Eq. 2.81)|

Fresnel Kirchoff diffraction formula (Eq. 2.83)| |Fresnel diffraction formula (Eq. 2.95)| |Fraunh0fer diffraction formula (Eq. 2.97)|

Figure 2.14.: Overview of the diffraction formulas

2.4.1.4. Summary of this section

In this section we derive the Fresnel diffraction formula Eq. and the Fraunhofer diffraction
formula Eq. (see also Fig. for a schematic overview).

The Helmholtz equation together with Green’s identity and an appropriate Green’s function
lead to the integral theorem of Helmholtz and Kirchhoff (Eq. . From the integral theorem
with the special choice E(r,w) = A(r)e”*" (Eq. we can derive the two diffraction formulas
by a Taylor expansion of the distance s between the aperture coordinates and the observation point
ro in Eq. The Fresnel diffraction formula keeps quadratic terms in the spatial coordinates
ro. It can be used in the near-field and far-field region. The Fraunhofer diffraction formula
keeps only linear terms in the spatial coordinates rg and is valid only in the far-field. For X-ray
radiation the namings of near- and far-field can be a bit misleading. The names stem from visible
light wavelengths but the wavelengths of X-rays are much shorter such that a distance of several
meters can still be in the near-field region for hard X-ray radiation. An indication whether to use
the Fresnel diffraction formula or the Fraunhofer diffraction formula is given by the wavelength
dependent Fresnel number F' given by Eq.

2.4.2. Optical elements in thin elements approximation

In practice many X-ray optical elements are modeled in thin element approximation. The effect
of an optical element on the electric field is considered by multiplication with a complex transfer
function 7"

E'(r,w) =T(W)E(r,w). (2.100)

The transfer function has the general form:
T(w) = A(w)e®®) (2.101)

where A is a real function called the amplitude transfer function and ® is the phase transfer
function. The amplitude transfer function models the absorption of the element and the phase
transfer function the change of optical path length. The name of this approximation stems from
the fact that light rays that enter an optical element exit the optical element at the same position
in this approximation.

In this approximation an ideal lens is given by A(w) = 1 and ®(w) = —&(2?/f, +y?/f,). Here f,
and f, are the horizontal and vertical focal lengths. An ideal absorber is modelled with ®(w) =0
and A(w) < 1. In particular an aperture is a an ideal absorber with A(w) = 0.

2.4.3. Numerical propagation and computational limitations

In principle wave optics is a very accurate theory. In practice, computational limitations arise.
It is not clear how to practically calculate arbitrary thick elements in the near field. The formula
for the Fresnel propagation Eq. can be read as a convolution with the Fresnel kernel. The
convolution theorem states that a convolution becomes a simple multiplication in Fourier space.
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One of the most sophisticated numerical algorithm is the Cooley-Tukey Fast Fourier Transform
(FFT) algorithm[28]. The Cooley-Tukey FFT algorithm is the basis of many other algorithms
which are often simply referred to as FFT. All the FFT algorithms have in common that they
can perform numerically very efficiently the discrete Fourier transform which can be used to
approximate the continuous Fourier transform. The convolution of the Fresnel kernel can therefore
be very efficiently calculated using FFT-based convolutions. If a convolution is performed on the
basis of the Fourier transform which itself is approximated by a discrete Fourier transform one
very important pitfall has to be considered: the discrete Fourier transform is inherently periodic
and the convolution may be accidentally approximated numerically by a circular convolution.
A circular convolution may mix effects from the boundary into the result. This can lead to
completely wrong results. It depends a bit on the implementation of the convolution algorithm
but in most cases it must be guaranteed that the input factors of the calculation are given on
a grid that is large enough to not mix in boundary effects. This is often accomplished by the
so called zero-padding, which means that the input factor is just extended by zeros outside its
support. Effects of optical elements like apertures and ideal lenses can be approximated by
thin elements, which among other elements, are available in SRW. We will adopt the notion
of wavefront used in SRW[29]. The wavefront is the electric field in a given plane along the
beamline or at a virtual position before the beamline. Throughout this thesis we only use the
Fresnel propagation, apertures and ideal lenses. In SRW for every optical element of a beamline
the numerical grid must be specified. This is a rather time consuming part because at least for
the inexperienced user all these grid settings have to be converged. The grid settings include the
grid size in meters and the step width of the grid. For instance, if the optical element is a slit
often a lot of grid points must be used. The same is true if the wavefront is strongly focused.
Sometimes the grid size must be increased to account for zero padding and to allow for sufficient
low frequency contributions. Keeping the grid size constant and decreasing the step width, i.e.
increasing the number of grid points, will account for higher frequencies contributions.

Furthermore the memory demand can become significant. A single ultra-relativistic electron
creates an electric field that can be treated in paraxial approximation[30]. As a consequence a
term

ikz02
e 2 (2.102)

appears in the angular representation of the created electric field. With increasing z this term
leads to fast phase oscillations in dependence of 6 because k > 1 for X-rays[3I]. In view of
numerical wavefront calculations this requires in general a tight sampling grid to store the fast
phase oscillations. We stress the fact that phase information are very important for wave optics.
One illustrative example is the phase retrieval algorithm[33]. Some strategies[29] 32] are known
to factor out this fast oscillating term with radius of curvature R which leads to a smoothed
factor that can be stored more easily (see Fig. . Further propagation can then be performed
partially analytical and partially numerical. Successive propagation along a beamline must even-
tually update the radius of curvature of the phase function. This, however, only works if the
wavefront was not significantly distorted from its initial spherical/parabolic shape. To relax the
memory restrictions at least a bit one could implement a parallelized convolution algorithm and
distribute the required memory for the wavefront propagation over many computers. Unfortu-
nately, SRW does not possess a parallelization for the purpose of wavefront propagation.
In practice mirror errors become more and more important. When mirrors are illuminated par-
tially coherent their height errors can lead to speckles.
By date, accurate simulations for these effects are actively researched.
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real field analytical smooth
description remainder

Figure 2.15.: Illustration of a strategy to reduce the memory consumption of wavefronts created
by ultrarelativistic electrons.

2.5. Statistical optics

We have seen in the chapter of insertion devices that we can calculate the electric field created
by an electron given its trajectory. Furthermore once we know it in a plane we may propagate
it through optical elements, e.g. a slit, and we will see the diffraction of a slit. Where does
incoherence enter in this description? There is none because everything is deterministic. What
happens if we had two electrons? Let the second electron position at the entrance of the insertion
device be shifted transverse relative to the position of the first electron. What is the radiation
in this case? Well, because of the superposition principle we would, under the assumption of no
magnetic field variation in the insertion device, get just the sum of the initial field plus the shifted
field (see Fig. . Again, no stochastic. Everything is deterministic. We still see something
like an interference pattern. We may repeat this process many times for electrons distributed
following a Gaussian distribution and we get a single well defined deterministic electric field.
Now, let us imagine we do not know the exact position of the electron but only probabilities of an
electron being there. As an example let us consider that an electron with probability 0.9 enters
on the ideal orbit and that with a probability of 0.1 an electron electron enters shifted laterally.
What is the electric field in this experiment? Is there a deterministic electric field? In fact the
uncertainty in the knowledge of the electron position transfers to the uncertainty of the electric
field. The electric field became a so called random function, i.e. we can only say with a probability
of 0.9 the field looks like this and with a probability of 0.1 like that. The situation described is
actually quite close to synchrotron reality. In Fig. we illustrate in each plot the radiation
created by a sample of two-hundred electrons. For the creation of these plots we used SRW,
a realistic Gaussian distribution (ESRF-EBS at the symmetry point) and a realistic undulator
(ESRF ul8 2m). The very small sampling was chosen intentionally to highlight the statistical
nature of the electron emission created by an electron bunch. In these plots the statistical nature
is manifested in the different shape of the emission in each plot. A typical bunch has of the
order 109 electrons and some statistical convergence is expected, such that the emission of every
bunch should look alike. On the other hand in the most general case the sampling follows a six-
dimenslional distribution. If the convergence is reached in every dimension equally “fast” there
are 106 =~ 50 samples per dimension. We saw in the previous chapter that the electrons are
statistically distributed following a Gaussian distribution. It is exactly this statistics that leads
to stochastics in the radiation. In general finding the random function of the electric field is a
very difficult task. However, in many situations the knowledge of the mean intensity is interesting
in its own right. We will review here some results of second order coherence theory that can be
used to describe the evolution of the mean intensity along a synchrotron beamline.
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Figure 2.16.: Deterministic addition of single electron emissions of the 2m long ESRF ul8 undu-
lator at 7m from the undulator exit plane. The ideal on-axis emission is summed
with single or double initial shifts or inclinations. The resulting intensity is depicted
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Figure 2.17.: Very small sample(200 electrons) of a synchrotron radiation bunch from a 2m long

ESRF ul8 undulator at 7m from the undulator exit plane. Every sample looks

different. This sampling is intentionally chosen a way too small to illustrate the
random idea. A full sampling of all the electrons in the bunch would not show any
visible change in these intensity plots.
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2.5.1. Second order coherence

In practice one is often interested in the mean intensity of some statistically fluctuating intensity
distribution. The intensity can be deduced from the electric field by

I(r,t) = E*(r,t)E(r, ) (2.103)

the mean intensity I is the average value of all fluctuations, realizations or what is usually called
an ensemble:

I(r,t) = (E*(r,t)E(r,t)) (2.104)

ens

where (-)* indicates complex conjugation. In the process of determining the intensity the phase is
lost. The laws that describe the propagation of radiation rely on the knowledge of the phase and
they can in general not be applied without it. We know therefore no direct way to propagate the
mean intensity further through a beamline. If we however define the mutual coherence function:

[(ry,ti,re,t2) = (E*(r1,t1) E(r2,t2)) s » (2.105)

phase information are kept and we explain later how this quantity can be propagated on the
grounding of the laws of wave optics. Furthermore the mean intensity is included in I':

I(r,t) =T(r t,rt). (2.106)

The theory is called second order coherence because we consider only second order correlations
of the electric fields. A phenomenological description of coherence is often the manifestation of
interference pattern. We point out that the knowledge of I describes second order coherence
completely. In particular as long as we are only interested in the mean intensity of a radiation
ensemble the knowledge of I' is sufficient for a full description.

A process is called wide-sense stationary if its average value is time independent and its mutual
coherence function depends not on two time variables ¢1, ¢y but only on the difference 7 of the
two time variables.

If the fluctuation ensemble is stationary, at least in the wide sense, we may define the cross
spectral density W as the frequency-time Fourier transform of the mutual coherence function:

W(’l"l,’l‘z,w) :/ dr F(’l"l,’l'g,T)eiWT. (2.107)
0

For r1 = r9 one defines the spectral density as:

S(r,w) = W(r,rw)| (2.108)

The spectral density is the energy per unit time[34].

Additionally we define the equal time correlation function J:
J = F(’I‘l,’r‘z,’r = 0) (2.109)

which is also called the mutual intensity function.
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2.5.2. Second order source fluctuations

In this section we will highlight the origin of the radiation ensemble. If we look at the inhomo-
geneous wave equations for the electric field we find that we have to solve

1 02
where () is some charge density. Whatever physically meaningful choice of () may be, as long as
Q) is a deterministic function, i.e. not a random function, the solution F will be a deterministic
function as well.

But how does the situation change if the source density is a random function? We will not
address the general question to determine the random functions of the electric field but restrict our
discussion to second order source fluctuations from which we will be able to derive the mutual
coherence function I'. For mathematical simplicity we take E, () to be analytical signals, i.e.
their real and imaginary parts are related by a Hilbert transform and hence they are also analytic
functions. Following [I5], we may then look at the complex conjugate of Eq.

1 02
so we arrived at a differential equation for the complex conjugate of F and of ). We therefore
have two independent differential equation that we can combine:

1 62 1 82 * 2 Mk
A= aae ) (B @ ) EYrut)Elra ) = (4n)°Q (. 0)Qlr2 ). (2112)

For every choice of Q) and Q* one obtains a solution to this partial differential equation. Taking
the ensemble average on the right hand side therefore induces an ensemble average on the left
side:

A 1 62 A 1 02 5
ry gait% To Cﬁait% F(rl,tl,"'Q,tQ) = (47T) FQ(rl,tl,"'Q,tQ) (2113)
with
PQ(Tl,tl,Tg,tz) = (Q*(rlvtl)Q('r?? t2)>ens : (2114)

If the source is stationary, at least in the wide sense, then only the time difference 7 is relevant:

A Lo A Lo r = (47)’T 2.115
T1 7?@ T2 7?@ (1‘1,‘)"2,7') _( 77) Q(rl,r?vT)' ( . )

Similar as in the derivation of the Helmholtz equation from the wave equation we can make a
Fourier transform to the frequency representation and we arrive at the Wolf equation:

(Al + k2)(A2 + k2)W(r1,r2,w) = (47T)2WQ(’I‘1,’I'2). (2116)

The Wolf equation may, similar to the Helmholtz equation in the deterministic case, be taken as
the starting point for studies of fields generate by a steady-state primary source in vacuum.

Because of the similarity in the formulas, the Wolf equation is basically the tensor product
of the Helmholtz equation, one may expect similar formulas for the propagation of the electric
field in wave optics and the propagation of the cross spectral density in statistical optics. This is
indeed true and we will see this in the next section.
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2.5.3. Propagation formulas

The knowledge of the mutual coherence function or the cross spectral density allows us to de-
termine the average intensity or the spectral density, respectively. We would however like to
propagate the ensemble as a whole through a beamline, very much like we can do with electric
fields. Since the Wolf equations take the form of a tensor product version of the Helmholtz
equations one expects for the propagation something like a tensor product of the electric field
propagators. We will see that this is indeed the case. As discussed in section given the appro-
priate Greens function G a known electric field £ may be propagated through an arbitrary optical
system. This includes cases of free space propagation and possible transmission through thick
optical elements according to Eq. The integral operator in Eq. may also be rewritten
as an integral operator with kernel:

E'(r) = /dr’h(r,r’)E(r’) (2.117)

where E’ is the propagated electric field and the kernel h is the so called impulse response function.

If the kernel A is a deterministic function we may use the same argumentation of bringing in
the ensemble average as we used when we discussed the source. This leads to

I'(ri,t1,79,t2) = /d’r’lalr’2 h*(r1,7))h(ro, mo)T(r), t1,15, t2) (2.118)

here I is the propagated mutual coherence function.

If the field is at least wide sense stationary we get similarly for the cross spectral density:

Wi(ri,ra,w) = [ dridrt 0 (s, h(ra i W04, ) (2.119)

In conclusion, in contrast to the mere mean intensity the mutual coherence function or the
cross spectral density can be propagated through an optical set up. Phase information necessary
for the propagation of the mean intensity or the spectral density are present.

To deduce the propagated intensity we derive the equation:
I'(r,t) = /dr’ld'r’Q h*(r ) ) h(r, v (r), t, 75, t). (2.120)

In Fresnel approximation Eq. the propagation formula for the cross spectral density takes

the form:
1

T 22
We stress the fact that both formulas Eq. [2.118 and Eq. 2.120] sum up all possible pairs of rq

and 7o (see Fig. [2.18). In general it is not sufficient to sum up only a subset, i.e. to keep one of
the r fixed.

ik ! 2_ _ 2
W (r1,72,w) / it drly W (r1,ma,w)es: (I rill =lire=rs ) (2.121)
A

2.5.4. Complex degree of coherence and longitudinal coherence length

We introduce the notion of complex degree of coherence and of longitudinal coherence length
with the help of two examples.

The general formalism of statistical optics can be used to describe the interference of two waves
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Figure 2.18.: Every point on the image plane is the superposition of all possible two points pairings
on the source plane.

F1 and Es. The average intensity of the sum of the two waves is:

1={|B: + Bf)
- <\E1\2>en8 + <|E2|2>em + (ETE3) s + (E1E3) s - (2.122)
=1 + I+ 2Re (E} Ey)

ens *

Let us apply the interference equation Eq. to the case of a partially coherent wide-sense
stationary optical wave E that illuminates two pinholes at position r; and ro on an opaque
screen (see Fig.[2.19). Let a be half the distance between the two holes. Because of the wide-
sense stationarity the mutual coherence function takes the form: I'(ry,r9,7) = (E1(t)*Ea(t + 7)).
From the two pinholes the light is diffracted in the form of spherical waves. The interference of
these two spherical waves is observed on a plane in distance d. The observation plane is placed
sufficiently far away to allow the application of the Fresnel approximation. The two diffracted
waves are then proportional to:

d 2
E](T,t) x FE (Tl,t — 7_‘_ (SL’+Q) )
2dc
d 2 (2.123)
T —a
EQ(’I‘,t) O(E(‘T‘Q,t—Qdc >
with 7 = [z,y,d]”. The difference in time delays encountered by the two waves is:
2 2
—(x — 2
Tw:(m—i—a) (x —a) _ 20z (2.124)

2dc de

Let us further assume that the intensity at the two pinholes is approximately equal to Iy. The
interference equation Eq. [2.122| takes the form:

I(r) =2Io (1 + |y(r1,72, 72)| cos ¢2) (2.125)

where

B L(ry,ry, 1)
\/F(Tl,’rl, T)F(r27 T2, T)

is the complex degree of coherence and ¢, = arg (y(ri,r2,7;)) its phase. This formula describes

the famous Young’s experiment (see Fig. [2.19)).

(2.126)

’Y(’rh ro, T)
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d >
Double f)inhole Screen

Figure 2.19.: Illustration of Youngs experiment to probe the mutual coherence function.

Figure 2.20.: Ilustration of a very small subset of possible locations of two holes. The position
of any of the hole can be chosen independent of the other.

The complex degree of coherence «v has the property
0 S "7(7’1,””2,7’” S 1. (2127)

One defines

complete coherence for |y| =1
partial coherence for 0 < |y| <1 (2.128)

complete incoherence for |y| =0

for the pair of points r1,7s.

Let us consider another case. We add a partially coherent wide-sense stationary wave to a
replica of itself delayed by the time 7. From the interference equation Eq. [2.122| we derive:

I(r) =2Iy (1 + Rey(r,r,7)). (2.129)

This set up can be realized with the help of a Michelson interferometer (see Fig. or a
Mach-Zehnder Interferometer.

Traditionally one can define the longitudinal coherence time for quasi-monochromatic light with

bandwidth Aw by:

AT Aw <1 (2.130)
respectively
1
AT, ~ —. 2.131
e Aw (2.131)
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Figure 2.21.: Illustration of Michelson interferometry.

This gives rise to a longitudinal coherence length
le = cAT.. (2.132)

It is an experimental fact that in a Michelson interferometer fringes are visible as long as the
time delay 7 is smaller than about the coherence time, or equivalently, the optical path length
difference is smaller than the coherence length. This can be explained with the superposition of
fringes/rings with different periodicity that wash out each other if the period length differences
approach the coherence length. Note, however, that in the general case of non monochromatic
light other phenomena may appear (cf. the chapter on “Effects of spatial coherence on the
spectrum of radiated fields” in [I5]).

One alternative definition[I5] is based on the mutual coherence function I'. More precisely it
is the normalized root mean square of the self-coherence function, i.e. 7y = ro:

B fTQF(T,T,T)dT
- [T(r,r,7)dr

(AT(r))? (2.133)

We stress the fact, that unless the mutual coherence function can be factorized in a spatial and
a temporal part, this defines a coherence time that depends on the spatial position.

2.5.5. Coherent mode decomposition

In this section we present the theoretical motivation behind the numerical algorithm developed
in this thesis.

It can be shown[I5] that for fixed frequency w the cross spectral density W is bounded

/d‘rld’l‘g |W(r1,r2,w)]2 < 00 (2.134)
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Hermitian:
W(re,ri,w) = W(ri,ra,w) (2.135)

and non negative definite:

/d’l‘ld’l‘g W(T‘l,’l”g,w)f*(’l‘l)f(’l‘Q) Z 0 (2.136)

for every square integrable function f. In other words W is a non-negative, Hermitian Hilbert-
Schmidt kernel according to Mercer’s theorem W can always be expressed in the form of:

W(r,ro,w) =Y Ap(w)®}(r1,w) P (re, w) (2.137)

here \,, are eigenvalues and ®,,(r,w) eigenvectors of the Fredholm integral operator that is defined
by the homogeneous Fredholm integral equation of the second kind:

Aw(f) = Af (2.138)

with

Aw(f) :/dﬁ W (ry,r2,w)f(r1). (2.139)

We want to call Ay the cross spectral density operator (associated to ). The eigenvalues
An are non-negative because W is non-negative definite. And the Hermiticity ensure that there
is at least one non-zero eigenvalue. Without loss of generality the eigenvalues can be assumed to
be in decreasing order and the eigenvectors can be assumed to be orthonormal.

We will call the eigenvectors ® of the cross spectral density operator coherent modes. Follow-
ing the naming convention of the spectral theory in mathematics we will call the set of eigenvalues
spectrum of the cross spectral density, mode spectrum or simply spectrum.

An important remark is that the coherent mode decomposition is not a four-dimensional basis
set expansion but a decomposition into a tensor product of two-dimensional factors. In this
context we want to mention that in view of the Moore-Aronszajn theorem[37] the cross spectral
density W can be seen as the reproducing kernel of the Hilbert space H:

”H:{feLQ

> |<f’f:l>|2 < oo} (2.140)

here (-,-) denotes the canonical scalar product.

It can be shown that the coherent modes satisfy the Helmholtz equation[I5]. In view of this
analogy we will speak of mode intensity as the intensity of the coherent mode if this mode was
an electric field. The eigenvalues of the expansion can be seen as the part of the spectral density
carried by the associated coherent mode.

2.5.6. Optimal spectral density approximation in terms of coherent modes

In the following we want to show that the coherent mode decomposition can be used to con-
struct an optimal finite dimensional approximations in view of the spectral density. With an
n-dimensional approximation we mean an approximation F' of the cross spectral density W such
that:

e F' has all the properties of W, i.e. Hermiticity, non-negativity, boundness.
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e the associated integral operator Ap has rank n.
e the operators Ay and Ap are equal for all vectors of the range of Ap.

Let us define W™ as the the m-dimensional truncation of W by:

m—1
W =3 " X (w) @ (11, w) Dy (12, w). (2.141)

n=0

We claim that there is no m-dimensional approximation A such that:
tr(A) > tr (W<m>). (2.142)

Physically the trace of the cross spectral density is the spectral density. Because F' fulfils
the requirements of Mercer’s theorem it may be represented in terms of its eigenvalues 3, and
eigenfunctions f,. Because of Ap(z) = Aw(z) the function f, is eigenfunction of Ay with
eigenvalue A\, (). The trace of a finite dimensional Hermitian operator is the sum of its eigenvalues
and it follows:

m—1 m—1
() =Y Ay <Y A= tr(W(m)) (2.143)
n=0 n=0
by construction of W (™) because {A0,- .-, Am—1} are positive and the largest eigenvalues in mag-

nitude. That proves that there is no m-dimensional approximation with trace larger than the
trace of the m-dimensional truncation W™ of the cross spectral density

2.5.7. Complete spatial coherence in terms of coherent modes

In [I5] it is stated that for a given frequency w an ensemble is completely coherent if and only if
the cross spectral density is of the form:

W(’l"l,’l"g,w) = U*(rl,w)U('rg,w) (2.144)

with '
U(r,w) = /S(r,w)e?r) (2.145)

here (3 is a real phase factor. Furthermore U is a solution of the Helmholtz equation.

Contrary to the presentation in [15] the description of the cross spectral density in this thesis will
be mainly based on coherent modes. We derive therefore a complete coherence characterisation in
terms of coherent modes: For a given frequency w an ensemble is completely coherent if and
only if the cross spectral density consists of a single coherent mode. The implication a
single coherent mode has the form of a completely coherent cross spectral density is readily seen
with U = v/Ag®p. For the other implication we use the Fredholm integral equation:

Aw (@) = \D. (2.146)

Since the ensemble is fully coherent we can make use the form of W given by Eq. [2.144;

/d’l‘1 U*('rl,w)U('rQ,w)@(rl,w) = )\<I>('r2,w) (2147)

!Condition [2.142 could be the link between coherent modes and the modes recovered from ptychography
experiments in [4] because the coherent modes are orthogonal and minimize the total spectral density and these
are the constraints of the ptychography reconstruction algorithms.
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ﬁ Wide sense stationarity + Fourier transform h

Mutual coherence function I'(r,r,,t;,t,) (Eq. 2. 105)| |Cross spectral density W(r,,r,,0) (Eq. 2.107)|

Mean intensity I(r;,r,.t,.t;) (Eq. 2.106) | | [Spectral density S(r,r;,0) (Eq. 2.108)|

Complex degree of coherence y(r,r,t;,t,) (Eq. 2.126) | |Spectral degree of coherence pu(r;,r,,0) (Eq. 2.15 1)|

[Propagation of T'(r;.r,,t,.t,) (Eq. 2.118)| | [Propagation of W(r,,r,,0) (Eq. 2.119 or Eq. 2.158)|

Figure 2.22.: Overview of the second order correlation theory quantities in time and in frequency
representation.

which can be rewritten as:

U(ra, ) (U, ®) = AD(rs, w). (2.148)

Since A and the scalar product are scalars every possible coherent mode must equal U up to a
scalar. Hence the sole coherent mode is

U

o=
U]

(2.149)

and a single mode is always orthogonal.

The sum of all eigenvalues equals the total spectral density S. We use this observation to define
mode occupations d,:

An

In the complete coherent case only dy = 1 and all other d; equal zero. The sum of the mode occu-
pations always equals 1. We want to call the so normalized mode spectrum mode distribution.

d, = (2.150)

2.5.8. Spectral degree of coherence

The spectral degree of coherence p is defined as the normalization of the cross spectral density
W

W(rl,rg,w)
\/W(rl,rl,w)W(rg,rg,w)'

(2.151)

/.1,(')"1,7'2, w) =

From Young’s experiment the definition in Eq. [2.128 were motivated.

We show that complete coherence and complete incoherence can also be expressed in terms of
the spectral degree of coherence. The partially coherent case is then situated between these two
limits.

Similar to Eq. a field is completely coherent if and only if the absolute value of the
spectral degree of coherence p assumes its maximum value 1 for all r; and r3. To see this we
assume first that the field is completely coherent. The cross spectral density consists then of one

mode only:
W = )\CI)*(Tl)(I)(TQ). (2.152)
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We insert this form into the definition:

’ N )\(I)* 7‘1 (I)* ’l"1 (I)(’I‘g)
A|®(r)| \<I> (ro ! “ 10| B(ry)]

’M(’I"l,’l‘g, ) =1. (2.153)
Controversy, if the spectral degree of coherence takes only values of magnitude 1 we see from the

definition:
W(ry,ry,w)W(ry,ro,w) = [W(ry,re,w)|?. (2.154)

Using the coherent mode representation this is rewritten as:

(Z /\n|<I>n(r1)]2> (Z )\m\@n(rz)|2> = XA @ (r1) P (r2) O (r1) B, (r2).  (2.155)

Because of the orthonormality of the modes the integration of this equation over 1 and ro gives:

2
(Z )\n> => A% (2.156)

Since the eigenvalues A are non-negative the equality can only hold if there is only a single coherent
mode. This implies that the field is completely coherent. The Eq. can be seen in analogy to
the criteria in quantum statistics that for a pure state the trace of the density operator squared
must equal to one. Because the left hand side which corresponds to the trace of the density
operator equals always one.

The case of complete incoherence can be seen directly from the definition of the cross spectral
density (Eq. because the mutual coherence function and the cross spectral density are
Fourier conjugated. If the mutual coherence function I' is zero for all time delays 7 so will be the
cross spectral density for all frequencies w and vice versa.

2.5.9. Propagation of the cross spectral density in terms of coherent modes

The propagation of the cross spectral density can be accomplished by the propagation of its
coherent modes. The modes are propagated just like ordinary electric fields. From the practical
point of view this property is probably the most advantageous in particular if the source is rather
coherent and consists therefore only of a few modes.

With the decomposition given by Eq. [2.137] the propagation formula Eq. [2.119|takes the form:

"(r1,r9,w ZA /drgdrg B (11,77 ®F (r1, w)h(re, rh) @, (1, w) (2.157)

which can be rewritten as:

W' (11,0 Z/\ ) (1 (r1,w)) ", (ra, w) (2.158)

with

Pl (r,w) = /dr’ h(r,r)®,(r,w). (2.159)

The coherent mode is propagated like an electric field in Eq.
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Figure 2.23.: Plot of the fraction of the eigenvalues A\o/\,, for a Gaussian Schell-model with dif-
ferent fractions 8 = 04/0s.

2.5.10. Gaussian Schell-model

In this section we present one of the few known models for a cross spectral density that possesses
an analytically known coherent mode decomposition.

A Schell-model[15] is given in terms of the cross spectral density:

Wz, z2,w) = \/S(x1,w)\/S(x2,w)g(z0 — 21,w) (2.160)

where S is the spectral density.
A Gaussian Schell-model is a Schell-model with spectral density S:

2

S(z,w) = A%(w) exp <_2032;(w)> (2.161)

and spectral degree of coherence g:

g(:v,w)zexp< o ) (2.162)

a 202 (w)

In a Gaussian Schell-model, like in every Schell-model, only the difference between two points is
relevant for the spectral degree of coherence.

The eigenvalues and coherent modes are given by [38| 39]:

™

(w) +b(w) + c(w) ) : <a(a)) +0(w) + c(w) > "

M) =50) (5
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and

clw 1/4
D, (z,w) = \/% (2 7(7 )> exp (—c(w)z?) Hy(z1/2¢(w)). (2.164)

Here, H, is the physicists’ Hermite polynomial of order n, a(w) = 1/(40%(w)), b(w) = 1/(20§(w)),
and ¢(w) = [az(w)? 4 2a,(w)by(w)]Y/2. The functions ®,, of Eq.[2.164] are also known as Hermite
functions of order n with argument xv/2c [38]. Some coherent modes are depicted in Fig. m

The fraction of the first eigenvalue with the n-th eigenvalue is:

n 1
i* _ : ] (2.165)
0 1+/3(c5) + Bw)y/1 + (Z)
with
Blw) = 2@ (2.166)

In our numerical setting we are more interested in the number of modes needed to find a
good representation of the cross spectral density with a few coherent modes. A good description
will incorporate almost the entire spectral density. Therefore we derive with the help of the
geometrical series the fraction of spectral density incorporated by the first NV modes:

N

ZN_l N
§ — )\ w)?2 w)?2 )\
n=0 "1 1+ 6(2) + ﬂ(w> 1+ 6(4) 0

The spectral density fraction F' can be solved for the number of modes N to incorporate that
fraction:

log(1 — F
N = ol = F) (2.168)
)
From the spectral density fraction F' we can also derive the mode occupation:
dyp = Fpy1 — Fy. (2.169)

A two-dimensional model can be constructed as the product of a horizontal model x and vertical
model y, with W(ry,ro,w) = Wa(w1, 22,0) Wy (y1,92, W), Aim(w) = AF(W)An (W), Pyn(r,w) =
OF (z,w) P (y,w), and F = F, F,.

For the sake of readability we may define for a fixed frequency the cross spectral density:

W (z1,22) = A2 exp (— i ) exp ( 75 > exp <—W> . (2.170)

2 T 452 2
4ot 4ot 204

A special class of Schell-models are the quasi-homogeneous sources. Quasi-homogeneous sources
are characterised by a slowly varying spectral density S(r,w) and a fast varying function g(r,w),
i.e. on the scale on which ¢ varies significantly the spectral density is almost constant. A Gaussian
Schell-model is quasi-homogeneous if o5 > o,.
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Figure 2.24.: First normalized coherent modes of the Gaussian Schell model with larger horizontal
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Figure 2.25.: Fraction of the spectral density incorporated by the first n modes(left) and mode
distribution(right) for a Gaussian Schell-model with varying 8 = 04/0s.

2.5.11. Gaussian processes

We present here an important class of stochastic processes. Although the theory of stochastic
processes is underlying many phenomena in statistical optics we could until this point avoid
mentioning it. So far, the only knowledge we needed from the field of statistics was the ensemble
average, which is implicitly based on stochastic processes. It is outside of the scope of this thesis
to give a complete introduction of the theory of stochastic processes. Nevertheless the theory is
well established and can lead to interesting interpretations as we will see in the next section.
Here we just restate some definitions and try to motivate their consequences.

A continuous stochastic process is Gaussian if for every finite set of indices t1, ..., t, the random
variable

Xty oot = (X1,...,Xp) (2.171)

is a multivariant Gaussian random variable.
This definition is suited for problems that do not need the description of complex variables. In
our case we work with electric fields that are usually described with complex variables. The
transition from a real Gaussian process to a complex stochastic process is straightforward: a
complex Gaussian stochastic process is a complex random process whose real and imaginary part
is a jointly Gaussian random process. In general, however, complex Gaussian processes can have
very different behavior than a real Gaussian process.

By contrast the next class of complex random processes we present has very close analogies to
real Gaussian processes[40]. For its definition we need to define one of its building blocks first:

An n-dimensional circularly-symmetric Gaussian Z is an n-dimensional complex Gaussian with
the property that for all phase angles ® € R the distribution of Z and Ze'® are the same. For a
zero mean complex Gaussian, an alternative characterisation of circularly symmetry is that the
pseudo-covariance matrix:

M =(22) (2.172)

is equal to zero.

The important consequence of this definition is that similar to the case of a real Gaussian the
probability density function of Z is described solely in terms of its mean value and its covariance
matrix:

S = (Z22%). (2.173)
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The probability density function of a n-dimensional circularly-symmetric Gaussian is given by:

f2(2) = wndit(z)e_(z_m*z e, (2.174)
This is a simpler form than for a general complex Gaussian and a consequence of the vanishing
of the pseudo-covariance M for a circular symmetric random variable.
We come now to the stochastic process we are interested in most in view of storage ring undu-
lator radiation:
A circularly-symmetric Gaussian process is a complex Gaussian stochastic process with the prop-
erty that for every finite set of indices t1,...,t, the random variable

Ztyotn = (215, Zn) (2.175)

is a multivariant circularly-symmetric Gaussian random variable.

2.5.12. Interpretation of the coherence length for zero mean circularly-symmetric
Gaussian processes

In this section we establish a clear physical interpretation of the spectral degree of coherence and
the complex degree of coherence for a circularly-symmetric Gaussian random process. To the
best of the authors’ knowledge, a similar interpretation has not been published elsewhere. Let
us consider an ensemble that is a complex zero mean circularly-symmetric Gaussian process. Let
us further assume we know it in a plane. Like in Young’s experiment we would like to know the
correlation between two pinholes at r; and at ro. Now, because the process is circularly-symmetric
and Gaussian the induced random variable Z = (Z,, Z,,) from the index set T' = {ry,r2} is a two-
dimensional circularly-symmetric Gaussian random variable. The covariance of the two random
variables equals the cross spectral density at these points[40]:

Cov(Zr,, Zry) = (E*(r1,w)E(rs,w)) = W(r1,r2,w). (2.176)

Because the process has zero mean, is circularly-symmetric and Gaussian its probability density
function is Gaussian and given by Eq.[2.174] The covariance matrix ¥ is a Hermitian 2 x 2 matrix.
Its elements are the cross spectral density W at r; and r2[40]:

_ (W(ri,r,w) W(rr,w)
E_<W(T2,’I‘1,w) W(’I"Q,’I‘Q,w) ’ (2'177)

For a circularly-symmetric Gaussian the conditional probability ra|r; of measuring a value y
at r2 given a value x at 1 is[40]:

2
W ) )

e (1) e i (2.178)
rairs (Yl2) = 55 —exp | ~ 2 :
2|71 27r(77,2|r1 20r2|r1

with
1
Oy = 5 W (r2,72,0) (1 - \u(r1,rz,w)l2) (2.179)

here p is the spectral degree of coherence.
In the derivation of this equation we used the fact that W (rq,rs,w) can be expressed in terms of
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Figure 2.26.: Illustration of a thought experiment. Similar to Young’s experiment two pinholes
are located in a plane. The value x at the pinhole at r; is known, for instance due
to a measurement. The conditional probability distribution for the value y at the
hole at r9 is sketched.

the spectral degree of coherence:

W(’I‘l,’l‘g,w) = ,u(rl,rg,w)\/W(rl,'rl,w)W(rg,rg,w). (2180)

The equation [2.178| allows the interpretation of the spectral degree of coherence p as a quadratic
scaling factor of the standard deviation of the conditional probability (see Fig. .

One can do analog for the degree of coherence. To write the same in words: given the value x
at pinhole r; the distribution of r is Gaussian. Its standard deviation depends quadratically on
the magnitude of the spectral degree of coherence. Its expectation value depends linearly on the
value z, the spectral degree of coherence and the ratio between the spectral densities at the two
points.

In the case of complete coherence the Gaussian degrades and no fluctuation exist at ro, i.e.
given the value at r; the value is surely determined at rs.

In the case of complete incoherence the value fluctuates independently with the width of the
spectral density at rs. In between the Gaussian is narrowed from complete incoherence to com-
plete coherence.

In conclusion in the case of a zero mean circularly-symmetric Gaussian process the spectral
degree of coherence determines the standard deviation of the conditional probability between two
positions. It allows therefore a physical clear interpretation. The knowledge of the value at hole
r1 restricts the fluctuation at other holes depending on their correlation with the hole at r;.
Note that these arguments can equally be applied to the mutual coherence function I' to get
analog results in the time domain.

2.6. Summary

In this chapter we discuss the comprehensive theory necessary for this thesis.

We start with some accelerator physics and explain the principle functioning of electron storage
rings. The statistics of the electrons in the storage ring can be described by a Gaussian electron
phase space distribution Eq. with the covariance matrix . The covariance matrix can be
calculated numerically with accelerator physics software codes. In the calculations in this thesis
we are mainly interested in the elements m;; of the inverse of the covariance matrix M as we
define in Eq. In section [2.1.6| we introduce the two points in the straight section at which
we will perform calculations in this thesis: the symmetry point and the finite alpha position. We
define the electron beam settings used in this thesis in section [2.1.8
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We discuss general synchrotron radiation characteristics and special devices for the production
of intense X-ray radiation, the so called insertion devices, in section and In this thesis
we will use only undulator insertion devices. We describe how their emission can be calculated
from the electron trajectory which in turn is related to the magnetic field of the insertion device.
In this thesis we will calculate the undulator emission numerically with SRW|[24]. We define the
notions of resonance energy, flur mazima as well as the undulator settings we will use in this
thesis in section 2.3.4]

We review the theory of physical optics in view of synchrotron applications in section 2.4, We
derive the Fresnel diffraction formula from the Helmholtz equation and the Green’s identity and
we discuss how optical elements in thin element approximation affect the electric field. In section
2.4.3| we mention how the Fresnel propagation can be implemented numerically in terms of FFT
based convolutions and some difficulties arising in combination with these implementations. We
introduced the notion of wavefront that is used by SRW and which means the electric field in a
plane along or before the beamline.

In section [2.5] we introduce the statistical optics concept of second order coherence theory.
We point out that the source fluctuations are fundamental for the coherence properties of the
emission. We define several important quantities of second order coherence theory. An overview
of these quantities is depicted in Fig. 2.:22] For the rest of this thesis the most important of
them are: the cross spectral density W (Eq. , the cross spectral density operator Ay
(Eq. , the spectral degree of coherence u (Eq. and the spectral density S (Eq. .
We introduced the coherent mode decomposition of the cross spectral density in Eq. which
gives a representation of the cross spectral density in terms of eigenvalues A, and coherent modes
®,,. The coherent mode decomposition is the theoretical basis of the algorithm we present in
chapter [l We define the mode spectrum of the cross spectral density as the set of its eigenvalues;
the mode occupation d, in Eq. as the n-th eigenvalue normalized by the sum of all the
eigenvalues; mode distribution as the set of all mode occupations and the mode intensity as the
intensity of a coherent mode if it was an electric field. In section [2.5.6] we show that there is
no finite dimensional representation of the cross spectral density that incorporates more spectral
density than a coherent mode representation of the same dimension. We discuss that the emission
is completely coherent if and only if the cross spectral density consists of a single mode in section
We mention how the cross spectral density can be propagated along a synchrotron beamline.
Given a propagation kernel h the propagation of the cross spectral density can be described by
Eq. or in terms of its coherent modes (Eq. . We introduce the Gaussian Schell-model
in Eq. that possesses an analytical decomposition into coherent modes and we discuss
properties of its mode spectrum. The Gaussian Schell-model will serve as an important test case
for the algorithm in chapter

Finally, we discuss in section that for a circularly-symmetric Gaussian random process
the spectral degree of coherence u can be interpreted as a quadratic scaling factor of the standard
deviation of the conditional probability.

52



3. Statistical optics for synchrotrons

In the previous chapter we reviewed the fundamentals of statistical optics in a general fashion.
In this chapter we apply it to the radiation of synchrotrons. We restrict our discussion mainly
to undulator radiation because undulators are nowadays the most used source for experiments
exploiting high coherence. We present a formula to calculate the cross spectral density under non
restrictive assumptions. We follow Kim’s idea of the brightness convolution theorem[7] and the
theoretical considerations of Geloni et al.[§]. During the derivations we try to be verbose and to
highlight the most important underlying physical ideas.

3.1. The brightness convolution theorem

As stated in the previous section the cross spectral density W describes second order coherence
completely. Its knowledge would allow us to describe the spectral density of the radiation ensemble
and its propagation through a beamline. The brightness convolution theorem states: Let Ej
be the electric field produced by a reference electron that traveled some trajectory (see Fig. ,
let the electrons be statistically independent and let the magnetic field variations over the electron
beamsize be negligible. The cross spectral density is then given by:

W(ry,ro,w) = N, / drdf p(r,0)e™T2"T) Bt (1) —r w)Eo(ry — r,w) (3.1)

here N, is the number of electrons per bunch, p is the electron phase space electron density, k is
the wavenumber, 6 the angle of the electrons.

The theorem is called brightness convolution theorem because the initial paper is mainly in-
terested in the Wigner function, which is also called brightness or brilliance in the synchrotron
community. On the other hand some authors prefer to define the brightness as a single number
extracted from the Wigner function[I6]. The Wigner function in frequency representation and
the cross spectral density are related by a spatial Fourier transform and what we state here is
basically the real-space representation of the last line of the derivation of the brightness convolu-
tion theorem given in the original paper[7]. The theorem allows us to actually calculate the cross
spectral density from which the entire second order correlations of the system are derived.

The reference electric field Ey can be calculated numerically or approximated with analytical
formulas[§]. Usual analytical formulas for undulators will, however, only work for undulators

(i cd
-t s — Reference

emission E,
il dd

Figure 3.1.: Illustration of an electron entering the undulator on axis. It follows a reference
trajectory and creates a reference emission FEj.
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Figure 3.2.: The reference electron (red arrow) enters the undulator and follows a reference tra-
jectory. Electrons can enter relative to the reference electron with a spatial shift
(r;,0) (green), with an initial angle (0,8;) (violet) or with an initial shift and an an-
gle (r;,0;) (blue). The on-axis electron is colored orange because the red and violet
arrow start from it.

with a large number of periods IV > 1 and may neglect some effects like edge effects. Statistical
independence of the electron is naturally given in today’s synchrotron storage rings in which
electron-electron and electron-photon interaction is practically none existing. In free electron
lasers this condition is seriously violated due to the SASE microbunching of the electrons. The
last condition of negligible magnetic field variations over the electron beamsize can be fulfilled to
a good accuracy in real undulators. If, however, focusing elements are used inside the undulator
this assumption can no longer be held.

Because of the theorem’s central importance for our algorithm and also for the physical under-
standing of coherence properties of storage ring radiation we redo the derivation of the theorem
in a different way and add some enlightening comments. Additionally we will discuss at which
positions of the storage ring the theorem can be applied.

The underlying idea of the theorem is a simple analytical relation between the reference
electric field Fy and the electric field produced by the i-th electron in the bunch F;
in particular planes in the storage ring. One of these planes is called the virtual source and is
often assumed to be in the middle of the undulator. The mentioned relation is then integrated
over all electrons in the bunch and leads to Eq. Even though it is complicated to solve the
integral given in Eq. the problem becomes much easier than the calculation of every single
electron emission. This is particularly true for numerical approaches, which we want to follow
in this thesis. Instead of the computational expensive need to calculate the trajectory and the
emission of every electron in the bunch, only a single reference emission Ey has to be calculated
numerically and the remaining single electron emissions are deduced in a simple fashion.

In what follows we will discuss this relation between the emission of the reference electron Ej
and the emission of the i-th electron E; in all detail. In the original paper[7] equation (22) relates
the reference emission and the emission of the i-th electron in angular representation:

~

E;() = e*ti=r) £y (9 — 0;) (3.2)

here k is the wavenumber, r; is the relative shift of the i-th electron to the reference electron,
0; is the relative angle at the virtual source plane of the i-th electron (see Fig.|3.2) and ¢; is the
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arrival time at the virtual source.

The implication of Eq. may become clearer if we state it equivalently in real-space:

Ei(r) = eketitbilr=rd) gy (p — ;). (3.3)

The physical meaning of this relation can be understood if we propagate E; in free space by a
distance z with the Fresnel propagator (Eq. [2.96]):

ikz

/ — € ik(cti+0¢(r’f'ri)) ! an. ﬁ _ 2 /
E;(r) o /6 Eo(r' — ;) exp <2Z(7' )" ) dr
zk(z-l—ct ik
= /Eo exp (2 [(r—r; —u)® + 220iu]> du

ezk(z-l—ctl)

= oxp <2k [220;(r ) /Eo exp < ik [(r —r; —u)® — 220;(r —7; —u)]) du
IAZ
ik(z-i—cti—f—ﬂi(r—ri))
_ ¢ : exp ( ik 202> /EO exp < ik (r—ri—u-— Gi)z) du
IAZ 2z

Zk(Z—l—Ctz—l-az ('I‘—’I‘i —30? k;
_ ¢ , i /Eo(u) exp <;(r —ri—u— zﬂi)2> du
z

¥
(3.4)
where we substituted: u =1’ —r;.
This can be rewritten as:
E{(r) = ™ E)(r — (ri + 26,)) (3.5)
with a real phase function ®;(r):
Difr) =k (cti + 0i(r — 1) — %e?) . (3.6)

We conclude that according to the relation given in Eq. the propagated reference field Ey’
and the propagated field of the i-th electron E! is relatively shifted by the sum of the spatial shift
r; and the inclination z0; multiplied by a complex factor that depends on the specific electron.
For our purposes we will only we interested in correlation expressions of the form E}(r1)E;(r2)
for which the situation becomes even more handy:

(EX(r1)) El(ry) = 021 (B* (r) — (r; + 20,))) Eo' (ro — (r; + 26;)). (3.7)

In view of these correlation expressions the emissions of the reference electron and of the i-th
electron are related due to the sum of a shift and an inclination as well as a plane wave phase
factor that depends on the i-th electron angle and the coordinates 1, ro at which the correlation
is evaluated.

At no point we imposed the non negativity of z and we may define virtual sources with the
property that a virtual electric field from a virtual sources propagated by z reproduces the real
electric field.

So far we have discussed the consequences of Eq. we will now present why this formula
reflects the storage ring situation. First we will discuss how the trajectories of the reference
electron and the i-th electron are related. Afterwards we will discuss how the relation of their
trajectories reflects in the relation of their emissions. Finally we will conclude that Eq.
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describes the resulting correlation expression.

We consider first the situation for an electron entering the undulator with a finite spatial shift
r; # 0 but zero relative angle 8; = 0. The requirements of the brightness convolution theorem
guarantees that the electron is subjected to the same magnetic field as the reference electron. In
consequence the trajectory of the i-th electron will be the same trajectory as the trajectory of
the reference electron but globally shifted by r; (see Fig. top).

For an electron with zero relative shift r; = 0 but finite relative angle 6; # 0 the trajectory
of the i-th electron will essentially be the reference trajectory on top of an uniform motion with
slope 6; in units of the speed of light (see Fig. bottom). This is again due to the condition
that the magnetic field variation over the electron beamsize is negligible. A constant drift of the
electron is added to the trajectory of the reference electron. This can be seen from the equation of
motion (Eq. . For simplicity we assume the magnetic field is directed only along the vertical
axis y:

dp .
== —eBy(v x é). (3.8)
here ¢, is the unit vector pointing in the vertical direction. This is rewritten as:
dp R ; , .
i —eBy(v65 — vs€y) = eByuséy — eByuyés. (3.9)

with the unit vectors é, and és; along the x and s direction, respectively. The first term is
identically to the one of the reference electron whose velocity is directed purely along the s
direction. The second term is due to the extra initial velocity in the horizontal x direction at
the entrance plane of the undulator. The second term produces a force along the longitudinal s
direction. This force is very small on the scale of the momentum in s direction because v,/c ~
107% < vs/c ~ 1. Hence the motion of the electron that enters with an initial inclination
is essentially the motion of the reference electron on top of the initial uniform motion in the
transverse direction r (t) = (vy€; + vyéy)t.

A combination of finite relative shift r; # 0 and finite relative angle §; # 0 results in a trajectory
that is shifted relative to the reference trajectory and superimposed with a constant drift.

Let us now discuss how these shifts and drifts translate to the emission of the i-th electron.

From Eq. 2.71] one can conclude that a trajectory shifted by r; simply produces an emission
that is shifted by r;:

EZ(T) = EQ(T — ’l"i). (310)

In the case of an extra constant drift the trajectory gets an extra uniform linear motion r, (t) =
cf;t with #, = 0. The angular representation of Eq. i.e. its Fourier transform from real-
space to angle representation, reveals that due to the extra constant drift relative to the reference
field there is an extra plane wave phase factor in the real-space representation of the emission of
the ¢-th electron. Because the axis of inclination lies at the origin of the undulator entrance plane
we arrive due to geometric consideration at the inclination z8; of the emission on an observation
screen in distance z from the undulator entrance. The emission of an electron with finite angle
is therefore:

Ei(r) = M7 By (r — 28;). (3.11)

Combining the two cases one arrives at:
El(r) = eikeirEo('r - Tr; — 202) (3.12)

and correlation expressions take exactly the form of Eq.
Summarizing we have seen that an electron entering the undulator with a spatial offset r; and
an angle 6; creates on a screen in distance z the field E; as given in Eq. Hereby z is the
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Figure 3.3.: Schematic illustration of the effect of an initial spatial offset or an initial inclination of
an electron at the entrance plane of the undulator. The red electron is the reference
electron. The green electron enters with a spatial shift r; (top) or an inclination 8;
(bottom). The produced radiation is shifted transverse by r; and 20;, respectively.
It turns out that z = d. Additionally, in the case with initial inclination (bottom),
one has an extra phase factor relative to the reference emission and the emission in
that case is the same as the reference emission if the screen is rotated. This concept
is the root of the convolution theorem.
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distance from the undulator entrance plane to the observation plane. We may bring Eq. in
the form of Eq. because in view of correlation expression they are identical. Reading Eq.
in the inverse direction we can define a virtual source. In this virtual source Eq. holds. The
virtual source has no direct physical meaning but after propagation by z it describes the real
situation. In what follows the usage of the virtual source, in which z = 0, makes the resulting
integral much simpler. We exploit hereby that the summation of single electron emission and free
space propagation of the emission commute.

We have established how the initial condition of the i-th electron reflect in the description of
its emission in terms of the reference emission Fy. The total electric field of the electron bunch
at the virtual source will be the summation of the electrons in the bunch:

E(r)= > Ei(r). (3.13)

i€bunch

The cross spectral density at the virtual source is then

(E*(r)E(r2))ens = Y Ef(r1)E;(rs)
i,j€ens (314)
= N, / drdeeiko(”_“)p(r,O)Eo*(n —r)Eo(re —r).

The summation of the cross terms i # j averages to zero for most synchrotron applications.
Geloni et al.[8] dedicated a long discussion based on electron beam statistics to this summation.
For now we will just state the result and we will follow and slightly modify their argumentation
in the next section. With Eq. we arrived at the brightness convolution theorem Eq.

Earlier we said that the choice z = 0 makes the calculation much simpler. Let us now discuss
why this is the case. For z = 0 the dependence of € is only found in the electron phase space
density p and in the complex exponential in Eq. while for any choice z # 0 an extra 6
dependence appears inside the arguments of the reference electric fields Ey. The choice z = 0
makes further analytical work with numerically given reference electric fields Fy possible. It will
reduce the four-dimensional integral to a two-dimensional integral for all practical cases. It is
this analytical reduction of two dimensions of integration that allows us to think of practical
numerical applications based on the brightness convolution theorem.

So far we neglected the energy spread of the electron, i.e. electrons arriving at the undulator
entrance have a statistically distributed energy. From Eq. Eq. together with Eq.
it can be seen that the emission depends on the electron energy. On the other hand all the
arguments used in the discussion of the relation between a reference field Fy and the field of the
i-th electron E;, that both have the same electron energy, were free of any energy dependence. In
a more general discussion in the next section we will see that the summation Eq. additionally
averages to zero cross terms arising from electrons with different kinetic energies. The brightness
convolution theorem can there be enhanced to account for energy spread:

W (r1,72,w) = N, / dodrdd p(r,0,8)e™T T E*(r) — 7, w,8)Ey(rs — 7, w,6). (3.15)

Here we adopted the notion used in electron beam dynamics to express the electron phase space
density in terms of the momentum deviation § which is related to the energy + by Eq.
From the nature of the convolution theorem, i.e. it imitates spatial offsets and initial inclina-
tions of an electron entering the undulator, follows that the electron phase space density
of the undulator entrance plane is a natural choice for the convolution, i.e. for the
definition of the virtual source position. This can be deduced from a thought experiment.
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Imagine we put a screen in some distance d from the undulator entrance plane. The emission
intensity of an electron entering the undulator on-axis with an initial angle ; will we shifted
by z6; relative to the reference electron’s emission intensity. The value of z is considered to be
unknown (see Fig. bottom). We may determine z by a linear regression because the shift of
the emission intensity z0; is a linear function of 8; and z is its slope. The so obtained z will define
the position of the virtual source. According to our earlier discussion we expect z = d. This
prediction is numerically simulated and verified in section for the undulators we use in this
thesis.

In other works, however, the virtual source is often chosen too lie in the middle of the undulator.
In this case the analytical expressions for the undulator radiation in resonance approximation
become simpler and the field at the center of the undulator is real [§]. The phase space distribution
is then taken from the unperturbed ring, i.e. it is assumed that the undulator has no significant
effect on the electron beam dynamics inside the undulator [41]. Due to the design of undulators the
electron phase space distribution outside the undulator will certainly not be changed significantly
by the presence of the undulator (not the case for damping wigglers). Inside the undulator, locally,
there could however be changes of the electron phase space distribution. This local deviation of
the electron’s phase space configuration from its free space propagation is numerically investigated
and discussed in section [£.2.5] for the undulators used in this thesis.
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3.2. Statistical considerations for emission from electron bunches

In this section we will discuss some statistical properties of undulator radiation in synchrotron
storage rings. One of our main observations will be the validity of the summation in Eq. for
all photon frequencies of practical interest. Geloni et al. show in [8] that for storage ring undulator
radiation the second-order field correlation function in frequency domain can be separated into
two functions. One function depends only on a frequency difference and the other one depends
only on the spatial coordinates and one frequency coordinate. In order to do this they assume
an electron density that can be separated into a purely transverse and purely longitudinal part.
In practice this may only be approximately possible. In general the electron beam does not
obey a separation in transverse and longitudinal parts. Borrowing largely the same arguments
we show that the before mentioned separation remains possible for a Gaussian shaped electron
phase distribution (see section that has weak couplings between the longitudinal bunch size
and the other beam parameters.

Implicitly the following discussion describes on a more concrete level that even though two
electrons, and therefore their emissions, are independent their sum is correlated. To see this we
calculate the covariance. Let E7 and E5 be the emissions of two single electrons and let their
emission be uncorrelated, i.e. Cov(E;, E2) = 0. Their sum however is correlated:

COV(El + FEy, Eq + EQ) = COV(El, El) + COV(EQ, EQ) + QCOV(Eh EQ) #0. (3.16)

The second-order field correlation function in frequency representation of the electric field of
an electron bunch describes the second order statistics. It is given by:

Fw(Z,Tl,TQ,W1,CU2) = <E;(’l"1, wl)Eb(r2>w2)>ens (317)

where Ej is the electric field of a bunch and the average has to be taken over the ensemble. The
ensemble average over a function w is given by:

(), = [ du puu)utw) (3.18)

here pg is the six dimensional electron phase space density and u = (x,2',y,y,9,s) is a vec-
tor of the phase space. As discussed in section for many cases a multivariant Gaussian is
a good approximation for the phase space density. The random variables z,x’,y,v’, d, s follow
the electron beam phase space distribution. In general they can not be considered independent.
While storage rings are usually designed such that vertical and horizontal coupling in the straight
section should be very small the coupling between position and momenta away from a symmetry
point is non zero due to finite derivatives of the beta functions.

The total electric field of a bunch can be written as:

Ny
By(r,w) =Y _ E(iin,7,w) exp(iwty) (3.19)

where Ny is the number of electrons in the bunch, ¢, is the arrival time at some fixed position of
the undulator and @ is the reduced phase space vector defined in Eq.

We insert Eq. into Eq. and arrive at:
Ny
Ly(ry,ro,wi,wy) = Z (E* (Un, 11, w1) E(tm, T2, w2) exp(i(watm — witn)))ens - (3.20)

n,m
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This can be written as a diagonal and off-diagonal summation:

Ny
Fw(rl,TQ,CUl7(J.)2) = Z <E*(an,T1,W1)E('&n,T2,WQ) eXp(itn(OJQ — wl))>ens

n

(3.21)

Ny
+ ) (B (@i, 1, w1) exp(—iwitn)) s (B (lim, T2, w2) exp(iwatm)) s -
n#m

In the last cross term summation we used the fact that electrons in storage rings are independent
of each other. That allows us to write the mean of the product as a product of means. If the
electrons are correlated the cross term summation may become dominant with respect to the
diagonal summation because it scales with the number of particles Squaredlﬂ

For brevity, let us define the function 7'
T(ﬂ,wl,WQ) = E*(d,rl,wl)E(ﬂ,m,wg) (322)
as well as
Aw = wy — wy (3.23)

and

j@) = mgp (3.24)
B

with 8 € {z,2',y,v,0}.

In the following we perform only the time average of the first term of Eq. The time average
is equivalent to the longitudinal average because the relative arrival time of ultra-relativistic
electrons in the bunch is ¢ = s/c with s being the longitudinal deviation of the electron from the
ideal electron:

(T exp (itn (w2 — W1))) eps
- 1/da T(&,wl,wz)/ds po(th; 5) exp (izA”>

c
C o 5 s? Lo Aw (3.25)
= m/du T (4, wr,ws)ps(w) /ds exp <_%‘3> exp ((—j(u) + zc> s)
0-3 2 ~ ~ ~ c~ 20—3 O—g L~
= Cexp (—262Aw > /d'u, T (u,wi,ws)ps(w) exp (](u) > + ZQ—CAw j(u)>

with a constant C = ¢~ (o5 det M5 '/ det Mg ') and with 052 = ms.

For many practical purposes the Gaussian with argument Aw can be approximated by a delta
function. With a typical bunch length o, of a few millimeters the Gaussian will limit the difference
wavevector Ak to 3 -103m~!. At a photon energy of E = 8 keV the wavenumber is about
4 -10"%m~!, That means radiations with energy differences below AE = 8 meV are considered
equal. For experiments with an energy resolution larger than 10~% the exponential in front of
the integral may become relevant. We restrict our following discussions to those cases where
the radiation frequencies in questions and the resolution of the used monochromator are much
larger than c/os. One example would be a 8 keV emission, a silicon (111) monochromator
(Aw/w ~ 10~*) with a bunch length of 1 mm.

!This is the situation in X-ray free electron lasers (XFEL) where the electrons in a XFEL are correlated because
they are coordinated by the emission and the cross term summation leads to coherent synchrotron radiation.
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The term:

0.2 0.2
exp <(j(ﬁ)223 +i->Aw j(ﬂ)) (3.26)
can be rewritten as:
1 ~T3r ~ .Ug L~
exp <2u Msu> exp <chw ](U)) (3.27)
with:
mgs MypsMy's  MxsMys  MgsTy/s MysM§s
N My sMys mi’s Myt sMys Mgl sMy/ s MyrsMes
M = 0'3 MysMys  MysMy!s mzs My sy’ MysMss | - (328)
Myt sMgs My sMyrs Ty MMy g mzls Mgyt sM§s
MmesMys  MesMMyrs  MesMys  MgsTyl 5 m<253

As discussed, Aw is limited by 3¢/os. This implies that as long as 30, - j(u) < 1 the exponential
phase factor may be approximated with 1. The typical horizontal bunch size, for instance, is
smaller than 1 mm. If the vertical coupling m, is much smaller than 10° the approximation is
surely justified in the horizontal direction.

In what follows we want always assume that the s-coupling is sufficiently weak to approximate
the complex phase function by one.

The integral over 4 in Eq. can then be interpreted as the ensemble average of the effective
electron phase space distribution:

5s(@) = ps (@) exp (uTJ\Zu) — exp (aT(M5 + J\Z)a) . (3.29)
Similarly we can evaluate the mean value of E:

(E(ty,w) exp(iwty))

ens

— % / div E (i, w) / ds pe(u, s) exp (Zzw) (3.30)

0'? w2 - - - O Wy . .
= Cexp (—2 (Z) > /d'u, E(u,w)ps(u) exp (j(u) o; +ios (E> ](u)) .
The mean value is zero unless: c
w<3—. (3.31)

Os

For a bunch length in the millimeter length scale all frequencies larger than 10'2Hz, i.e. infrared
emission, lead to a suppression of the mean value. If the bunch length becomes significant
smaller, like in XFEL microbunches, the term may become significant. For all frequencies that
are higher than infrared frequencies the random process of the electric field is a zero mean process.
The ensemble average over the off-diagonal summation in Eq. therefore becomes zero for
synchrotron storage rings.

We assume that for all electron energied'ly, in the electron bunch and for all relevant frequencies
w the emission at frequency w is approximately equal to the emission at w + Aw because Aw is
relatively small. In formulas we assume that for all dw € [w — Aw,w + Aw] the condition:

E(’rkufyn) ~ E(r7w+5w77n) (332)

is fulfilled.
Under this assumption together with the condition of sufficiently weak coupling of the lon-

'Electron energy v and electron momentum deviation & are related by Eq.
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gitudinal bunch position to the other random variables the equation Eq. takes the simple
form:

Ly(ry,ro,w) =Ty (r1,re, w,w) = Ny (T'(0, w,w)) (3.33)

ens

In the limit of the viewpoint of a monochromator with a resolution below:

Aw 3c

~
~

w oW

(3.34)

the function I'y, can be interpreted as the cross spectral density W of the undulator radiation of
one bunch.

In this approximation the bunch length does not influence the coherence properties apart from
making the process wide sense stationary.

In [8] Geloni et al. show that under an assumption to the statistics of the electron beam
the synchrotron undulator radiation is a Gaussian random process. Their assumption is that the
arrival time ¢,, of the electron is statistically independent of the spatial offset r,, and divergence r/,.
They do not discuss the energy spread but the generalization to energy spread is straightforward,
i.e. t, must additionally be independent of the electron energy -, or momentum deviation d,,
respectively. In general this assumption is not true for a Gaussian electron beam. Two Gaussian
random variables are independent if and only if they are uncorrelated. But the elements 0,3 with
B € {x,2',y,y,0} of the covariance matrix ¥ are in general not all zero. This implies that there
is a correlation between the arrival time ¢,, and the other random variables of the electron beam.

If the bunch length is sufficiently long the condition of independence of the arrival time to the
other electron beam parameters can, however, be relaxed. The total electric field of a bunch Ej is
the sum of independent and identically distributed random variables F,, because in a synchrotron
storage ring the electrons are all independent and identically distributes. From the central limit
theorem in its complex version follows that Ej(u,w,t) is Gaussian distributed. In what follows
we will show that Ej is a zero mean circularly-symmetric Gaussian for all frequencies of interest.
We already showed that Ej has zero mean. According to section it remains to show that
the pseudo-covariance:

M(’I"l,W1,’r2,WQ) = <E(1"1,OJ1)E(T2, (,UQ» (335)

vanishes for all frequencies of interest. We may basically do the same calculation as for the cross
spectral density. The only significant changes are that 1" in Eq. becomes:

T'('&,wl,wz) = E(ﬂ,rl,wl)E(’&,’f‘g,WQ) (336)

and that expressions of the form wy — w; become wy + w1. The Gaussian in front of the integral
in Eq. with Aw’ = wy +ws will suppress the pseudo-covariance for all frequencies of interest.

We may conclude that for a Gaussian electron beam and for all frequencies of interest the
undulator storage ring radiation is a zero mean circularly-symmetric Gaussian process. Our
results from the discussion in section may be applied to undulator storage ring radiation.
The spectral degree of coherence can then be interpreted as a measure for the width of the
conditional probability between two positions.
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3.3. Calculation of the cross spectral density for undulators in storage
rings

In this section we will calculate the cross spectral density with the Eq. for a general electron
phase space distribution in Gaussian approximation. We will exploit that certain Gaussian inte-
grals can be solved analytically. A naive integration of Eq. would be practically impossible
even on modern computers. We exploit the very important observation that two dimensions of
the four-dimensional integral can be performed analytically. The remaining two dimension of
integration still pose a fair numerically problem but can be performed on today’s computers and
we present results of these integration later in this thesis. The general formula for a general five-
dimensional Gaussian leads to rather unhandy expressions. We will therefore present two different
levels of approximations with which we work throughout the thesis: the symmetry point, where
the Twiss parameter alpha is zero, and the finite alpha approximation.

3.3.1. The general case

Let us start with the general case. We apply the brightness convolution theorem derived in
section using the storage ring electron phase space distribution ps as discussed in the previous
section. Hereby, as long as the coupling between the longitudinal bunch extension and the other
dimensions is not too strong it can be accounted for by an effective electron phase space density
as defined in Eq. We can insert the electron phase space distribution and rewrite Eq.

W(riy,re,w) - /dédr Ej(ry —r,w)Ep(ra —r,w) f(r,Ar) (3.37)
)24/ det(M,
with:
Ar=ry—1r (3.38)
and
T
1 2!
f(r,Ar) = /dr’ exp —i[a:,x’,y,y’,é] eMse |y | +ikr'Ar | . (3.39)
y/
0

with 7 = [z,y]T and ' = [2/,9']T. Note that we adopted the ' notation for # which is commonly
used in accelerator physics.

The observation is that f(r,Ar) can be calculated analytically. In order to do this we will use
the central formula for calculations of Gaussian integrals occurring in quantum field theory. From
[43] p.103 we know:

/ dv exp (—;UTAQH— ij> — (20)N/2/det (A1) exp (;jTA1j> (3.40)

for any invertible symmetric matrix A and any vector j.

We will perform the integral in Eq. by treating z,y,d as parameters and using Eq. for
the coordinates z’,1/.

As a preparation we make some definitions:
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The M “projections” to the x —y and 2’ — 1/ spaces:

MP = | ez May] Mp/ — |Ma'a’ Maly’
— : —
Myz  Myy Myrgr Myly |

and:
1

my/y/ —my/x/
mx/x/my/y/ _ Qmm’y’ —mx/y/ mx/x/ |

-1
M) =

The simple shift vectors:

Mgl * T~ Mgty Mys - O M5 - 0
Sp/xy:— T ry y:|‘8p5:|: 0 :|‘Sp/5:|: z'd :|

My = T+ Myry - Y|’ Mys -0’ Myys - 0

e The combined shift vectors:

Spr = 8pigy + 8prs
Spisy = 8pis + kAT

The shift matrix:

Mgty Mgy
My'z My'y

SP/ = — I: :| Wlth SP/ |:§:| :SP/wy.

With these definitions we can write Eq. [3.39 as:

fr,Ar) = exp (~ 72267 exp <—; [, 4] MP[ } (sp;) { D
/d'r’ exp (—; [, y'] Mpr B:] + (spr + ikAr)T L/])

The last integral can be calculated using Eq.
F(r, Ar) =27 /det(M7}) exp (—?52)
1 T T
RN

exp (;(sp, kAR M s + zk:Ar))

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

Notice that the last exponential in Eq. has a ”hidden” z,y dependence through sps. In our
final step we factorize out the z,y dependence. For the moment let us only consider the argument

of the last exponential in Eq.
1
2(31:/ + ikAr)T My (spr + ikAr)

= (SP’ Ty + 3P’57’) M};/l (SP’xy + 3P’5r>

N RN RN -

[(SP’xy)TM];/lsP’my + (3P’67~)T (Mlgll + (M;/l)T) Spiay + (Sp/(sr)TM];,lsp/(;r] .

[(SP’xy)TMjgllsP’a:y + (SP’xy)TMlgllsP’cir + (SP’(ST)TMjgllsP’acy + (SP’(ST)TM];}SP’(ST]

(3.48)
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Using the shift matrix Eq. to rewrite spr,, the previous equation takes the form:

1
5 <8p/ + ikAT)TMI;/l (Sp/ + ZkA’l")

. (3.49)

=5 [[1‘79} ((Sp)"Mp'Spr) [ﬂ +2(spror)” (Mp!'Spr) B] + ('SPQST)TM};/ISP/&T] :

This leads finally to:

m 1 _
W("'h'r% ) %(52> exp <2(8P15T)TMP,18P157.) X

det(M / 05 e
277' \/det P/
1 _ -
/d’l" exp (—ZTT (Mp — (Sp/)TMP,ISp/) ’l"> exp (((SP(;)T + (SPIJT)TMP,ISP/) ’I")
x Ey(r1 —r,w)Ep(ra —r,w).

(3.50)
Note that the 7; and r2 dependence is given through the electric field expressions Ej(r; —r,w)
and Ey(ry —r,w) as well as the Ar dependence of sprs,.

3.3.2. The approximations used in this thesis

The general formula [3.50]is rather unhandy and difficult to calculate numerically. For the rest of
this thesis we will discuss only two approximations: the symmetry point case and the finite alpha
case which have been defined in section 2.1.6

3.3.2.1. Symmetry point of the straight section (Twiss alpha equals zero)
In this approximation Eq. takes the much simpler form:

N\/ x K2Az? kK2Ay?
W(ry,re,w) = - myym5 /d5 %52) exp (— = - y>

2mm/x/ me/y/

(3.51)

/dr exp <—%x2 — %yﬂ) Eo* (r1 —r,w) Ey (ra —7r,w).

Numerically it is much more favorable to write this formula in terms of convolutions: Set for
every ri:

Mg m .
hr, (1) = exp (—TJZQ - %gf) Ey* (r1 —r,w). (3.52)

Then Eq. can be written as

N Mg Mo 55 2A 2 QA 2
W(’I‘l,?"g, ) m myym6 /d5 5 >6Xp (k v *k y)

2mx/x/ Zmy/yl

(3.53)
{hrl * Eo} (1"2).

here * denotes a convolution. To calculate the full cross spectral density one needs therefore
number of grid points (all possible values of r1) two-dimensional convolutions.

3.3.2.2. Finite Twiss alpha

Additionally to the non zero parameters of the symmetry point case we will consider finite o,
and finite oy,/, i.e. couplings between the spatial coordinates and the divergence. This implies
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that 8P6 =8pr§g = 0 and mac’y = my’m — ma)’y’ — my’x’ =0.

k2 A2 k2 A2
W('l"l,’l"z,(,d) = C/d5 exp (—@52> exp | — z _ Y %
2 me/x/ me/y/

N N :
/dr exp <—;:1:2 — 7yy2 —1kAr > Ey (r1 —r,w)Ey(re —r,w)

(3.54)

mﬁl’ x
ms.s

€T
m“;y/

my/y/

(3.55)

with
N \/(mxa:m;r’zr’ - mm$’2>(myymy’y’ — Myy’ )m55

C= 3
(271') 2, /mx/x/my/y/

and
2
Mgy!
Ny =mg, —

Mata! (3.56)

2

MVaas

_ vy
Ny—myy_m”'
y'y

For later numerical application in this thesis, the following mathematically equivalent form will

be more favorable:
k2 A2 k2 A2
2 me/x/ 2my/y/
Mgyl (3.57)
/dr he, (1) Ep (r2 —7,w) exp (—ikrg !% ])
my/yl y
here
N X 7=
hy, () = exp <—2zx2 _ 2yy2> Ep* (r1 —r,w)exp <ik5r1 [Wy]> (3.58)
my’y’

is a function parametrized by 1. This no longer has the form of a convolution. We may conclude
that in the limits m,,» < my, and my,y < my,, the symmetry point approximation is usable.
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3.3.3. The case of a Gaussian wavefront

If we approximate the undulator electric field Ey by a Gaussian wavefront:

2 2

x
Eo(r) = Aexp <_232 - 2ys?> (3.59)
x Y

and if we neglect energy spread the integration in Eq. can be performed analytically. The
parameters s, and s, are often fitted to the central cone of a single electron emission. In our
discussion we will restrict ourselves to the special cases of the symmetry point (Eq. and the
finite alpha case (Eq. . The first case will turn out to be Gaussian Schell-model the second
will be a simple modification. For Gaussian Schell-models analytical solutions are known (see

. 2161,

The Gaussian wavefront approximation will serve as an important test case for the algorithm
in chapter

3.3.3.1. At a symmetry point

Let us first focus only on the spatial part of Eq. i.e. the part that is integrated. The
divergence part will be considered afterwards.

For a Gaussian wavefront vertical dimension x and horizontal dimension y factorizes and it suffices
to consider only the one dimensional case.

For the sake of readability let us define the difference coordinate and the sum coordinate:

Ax =21 — 2o

(3.60)
X =x1+x9

The horizontal part of W (rq,re,w) takes the form:

W, = A2/da; exp (— r ) exp <—(x1 )"+ (w2 = x)Q) (3.61)

2 2
20% 2s%

with 0,2 = mg,. The products can be rearranged:

2 1 v)2 2
_ _ _e= 5 X) _ Az
W,=A /da: exp ( 20%) exp < 2(@)232 exp 152

20 (3.62)
2 < Aw2> /d ( x? ) (z—3X)?
=A%exp | —— rzexp|—=—= |exp [ ——="— 1.
452 o2 2(?)25%
This may be rewritten as:
Az? 1 X? (r — pxy)?
W, = A% exp <—> exp| —————— /da: exp <—0> (3.63)
v 452 802+ 352 202,
with
2. 1.2 1 2
Oy * §Sx §X c 0y
Oy = || 05— and = (3.64)
> 02+ 352 o 02+ 352
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The standard Gaussian integration of Eq. gives:
Az? 1 X2
W, = /2102 A? — —— . 3.65
» = \/ 2705, A% exp 12 exp S0+ %8% ( )

For the spectral width we therefore have:

ol® =24/02 + %s% (3.66)

The divergence part of Eq. contributes an extra exponential factor

exp ( Az’ ) (3.67)

2Mmyyr g

According to the addition rules for Gaussian sigmas this leads finally to a correlation sigma:

21 11 1 §2
() _ _ZTr T
057 = {| — 253 (3.68)

One may do the same for the vertical direction y and the complete cross spectral density function
in Gaussian wavefront approximation is

W(ri,re) = Wa(z1, 22)Wy(y1, y2)- (3.69)

In order to relate Eq. and Eq. to the standard form of the Gaussian Schell-model
Eq. [2.170, we can rewrite W, in the form:

Wy (21, 22) =C exp (—a(z1 — 1‘2)2) exp (—b(z1 + 332)2) (3.70)

with some constant C and inverse standard deviations a, b. This can be rearranged to the standard
form of a Gaussian Schell-model:

Wa(z1,22) =C exp (—az] — ax3 + 2ax1z9 — ba; — brj — 2bz122)

(—a(z? + 23)) exp (=b(z? + 23)) exp (—2z172(b — a))
=C exp (—(a — b)( ) (22 + 23 — 23122)) exp (—Qb(z:% + x%))
(—(a —b)(z1 — 2)?) exp (—2b(2] + 23))

¢
P (3.71)

=C exp

1/2

which gives the correlation sigma o, = (2(a — b))~/? and spectral sigma oy = (4b)~/2.

3.3.3.2. Modification for the finite o case

As seen in Eq. the main difference on the level of the formulas between the finite alpha case
to the symmetry point case Eq. is the presence of an extra complex exponential. The integral

in Eq. becomes:
_ 2
/dw exp (—(:C/;EJ)) exp (—ivx) (3.72)

2020

with
v=E,Az (3.73)
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here is FE; = k(mgy /Mmyr,). The integral yields:

A 2
\/2mod, exp (—%2) exp (—iEyAxpyy) (3.74)

1
(05304 ‘Ea:’

with

Oq —

(3.75)

The resulting extra exponential with Az in the argument can be account for with an adjustment
of the correlation sigma:

(3.76)

The spectral sigma ng) remains unchanged.

This is no longer a Gaussian Schell-model because of the extra complex phase (a Gaussian Schell-
model is always real). However, the complex phase function depends on (z1—x2)(z1+22) = 23+23
only, i.e. there are no cross terms between 1 and x9. The coherent modes @/, for the Gaussian
Schell-model like model can therefore be expressed with the help of the coherent modes of the
Gaussian Schell-model ®,, given by Eq.

@), () = exp(i(psa? + pyy?)) ®n(x) (3.77)
with frequencies p,:
_ibo (3.78)
Pa = 02+ 552 '

The vertical dimension is similar.
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3.4. Complete coherence

We will show that a synchrotron undulator cross spectral density is complete coherent if and if
the electron phase space density p is a delta function. Let us describe the cross spectral density

in the form of Eq.

W('rl, To, w) = Z pg(ui)Eo*(ui, r, w)EO(ui, r, w). (3.79)

u;

here u; are the phase space vectors defined in Eq. Clearly if the density is a delta function
then the cross spectral density is single moded and therefore complete coherent. We will show now
that if the electron phase space density is not a delta function then the cross spectral density is
not single moded and hence not complete coherent. For mathematical simplicity we assumed that
there are many but only a finite number of possible configurations for the electrons in the beam.
Furthermore let us assume that all single electron emissions Ey(u;,w) are linear independent
from each other. This assumption is likely fulfilled because different electron configurations
will produce different single electron emissions. If the fundamental relation of the brightness
convolution theorem holds, at least to a good approximation, this assumption is fulfilled.
We show in the following that Ay is not single moded and hence not completely coherent. First
we show that we can create nonzero vectors. Afterwards we show that every two of these vectors
are linear independent. From this will follow that the range of Ayy is at least two-dimensional
and therefore Ay is not single moded. For brevity we will not explicitly write the frequency
dependence.
We define for any configuration u; with pg(u;) # 0:

2
a; == Aw (Eo(uj, 7)) =pe(u;)Eo(uj,r) || Eo(u;)||* +
S p6(ui) Eo(ui, r) (o (us), Eo(u;)) (3.80)
i#]
which is not zero because pg(u;) and the norm are positive and it is a summation of linear

independent vectors. For j # k the vectors a; and ay, are linear independent because there is no
[ such that

aj — Bay, =(|| Eo(u;)||* — B{Eo(u;), Eo(ur)))pe(u;) Eo(u;, )+

k (3.81)
((Eo(uk), Eo(u;)) — B Eo(ur)||”)ps(ur) Eo(ug, ) + . ..

equals zero. The first coefficient determines 8 = || Eo(u;) 12 /(Ey (u;), Eo(ug)). Which implies that
the second coefficient is:

|| Eo(u)) || || Eo(w)||?
(Eo(uj), Eo(ug))

After Cauchy-Schwarz the second coefficient is zero only for linear dependent Ej;, Ej,. But all E;
are linear independent and therefore the second coefficient is not zero. Thus there exists no
such that a; = Bay.

This proves that in the range of Ay, there are at least two linear independent vectors which
requires two coherent modes for its representation and the cross spectral density W does therefore
not represent a completely coherent ensemble.

— (Eo(uk), Eo(u;)). (3.82)
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3.5. Summary

In this chapter we develop a theory for the calculation of the cross spectral density for emission
devices in a storage ring.

We start with the brightness convolution theorem developed by Kim [7]. We derive the theorem
in a different manner and add extra comments. The foundation of the theorem is the relation
between initial conditions of the electrons at the wirtual source and shifts of their produced
emission relative to a reference emission Fy. The virtual source is a virtual plane in or before
the undulator that reproduces the real electron emission outside the undulator if the electric field
is propagated by a given distance. At the virtual source the relation between initial electron
conditions and emission shift is given by Eq. [3.3] We identify the natural position of the virtual
source to be the undulator entrance plane.

In the derivation of the brightness convolution theorem a summation over all possible second
order correlations of the single electron emissions is performed in Eq. In [8] Geloni et al.
devoted a detailed study to this summation. In the original paper the arrival time of the electrons
and the other beam parameters were assumed to be independent. In section we slightly
enhance their discussion and we show that for weak-couplings between longitudinal electron
position s and the other electron beam parameters their result remains valid. Also in [§] it
was mentioned that storage ring emission is a Gaussian random process. We add that the process
is even circularly-symmetric and that the results from section can be applied to storage
ring emission, i.e. the spectral degree of coherence u can be interpreted as a quadratic scaling
factor of the standard deviation of the conditional probability between two positions.

In section we derive from the brightness convolution theorem with the five-dimensional
electron phase space density ps (see Eq. and the assumption of weak couplings to the
longitudinal electron position s the general equation for the calculation of the cross spectral
density of storage ring emission (Eq. in brightness convolution theorem approximation. We
applied this formula to the special cases of the symmetry point (Eq. and the finite alpha
position (Eq. . In section we applied these formulas to an initial Gaussian reference
emission Fy and we arrive at a Gaussian Schell-model source or Gaussian Schell-model like source,
respectively. These cases will serve as important test cases for the algorithm developed in chapter
M4l

Finally in section [3.4] we mention that in the brightness convolution theorem approximation
the emission is completely coherent if and only if the electron phase space distribution pg is a
delta function.
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4. Numerical coherent mode decomposition
algorithm

The application of second order coherence theory to the design of synchrotron beamlines re-
quires the propagation of the cross spectral density W along the beamline. Because of the
four-dimensional nature of the cross spectral density W this a computational heavy task. Alone
the memory requirement of the full cross spectral density W can easily reach several terabytes
for realistic problems. Additionally, to propagate the cross spectral density one has to perform
a four-dimensional integral of the type of Eq. which is computational rather difficult and
may only be performed on large computer clusters.

In this chapter two different algorithms that I implemented are presented. These algorithms
calculate numerically the cross spectral density for an synchrotron undulator source and its de-
composition into coherent modes. In general for undulator emission a limitation to a small number
of relevant modes is expected. In our applications the number of coherent modes is usually limited
to a few hundred up to a few thousand. Storage and propagation of the cross spectral density can
then be realized in terms of its coherent modes (see section and the required computational
power for these tasks is drastically reduced.

The first algorithm is a straightforward discretization of the full representing matrix of the
cross spectral density operator Ay (Eq. . In the following we will call this method the
matrix method. The drawback of the matrix method is that it needs a lot of memory. And
basically all interesting applications become impractical to calculate.

To allow the calculation of real applications I developed another method that performs the
decomposition much more memory-efficient in two steps. We will refer to this method as the
two-step method. The two-step method exploits the Gaussian nature of the electron beam and
can calculate the decomposition under some not too restrictive assumptions. The matrix method
is simpler and therefore the likelihood of implementation errors is lower. In the beginning I
developed the matrix method but because of its impractical nature I looked for a more practical
solution. The experience and insight gained during the development of the matrix method allowed
me to develop the two-step method. In this thesis we use the matrix method exclusively to test
the two-step method. We start first with implementations without energy spread to keep the
initial problem as simple as possible. We add the energy spread calculation in section We
discuss the possible change of the coherent modes and the mode spectrum due to propagation
and the possibility to perform a second diagonalization after the propagation in section The
technical complexity of the algorithms makes it necessary to perform extensive tests. These tests
include benchmarking against the Gaussian Schell-model, which has analytical solutions, and
tests against the SRW multielectron sampling for the spectral density and selected points of the
spectral degree of coherence.
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4.1. Numerical eigendecompositon: the matrix method

In this section we describe the implementation of the numerical eigendecomposition of the cross
spectral density into its coherent modes. We will calculate the full representing matrix of the cross
spectral density operator Ay in an unbiased basis set, i.e. a basis set without prior assumptions.
The drawback of this method is the high demand of memory and the connected limitation of
applicability to practical problems. In section[4.4)an alternative method is presented that typically
requires much less memory, such that interesting problems can be addressed.

4.1.1. Numerical representation of the cross spectral density operator

In chapter [3] we established expressions for the cross spectral density W. Here we want to
numerically perform the coherent mode decomposition. As mentioned in section there is a
duality between the cross spectral density and its induced nuclear integral operator:

AW/HHH

4.1
Awlflir) = [ ey Wersrae i) -y
here H is the W induced reproducing Hilbert space.

Standard eigensolver software take a matrix and numerically approximate its eigenvalues and
eigenvectors. In order to use them we have to translate our integral operator to a matrix acting on
C™. The usual technique to do this is to take some finite dimensional subspace A of H for which
a basis {b,} is known and expand in A the restriction Ay of Ay on A. The hope is then that
if A approximates well H then ;1; will approximate Ay well. For many problems reasonable
basis sets can be suggested and the evaluation of the integral operator may be numerically cheap.
In our case a priori no coercive basis set is known. The best candidate may be well scaled
Hermite functions because they are the coherent modes of the Gaussian Schell-model. However,
the expansion of Ay into a Hermite function basis set is still expensive to do and an additional
parameter, the scaling parameter of the Hermite functions, is introduced. Let {b,} be a well
approximating orthonormal basis of H. To expand Ay in {b,} we have in general to perform
3n? two dimensional integrals integrals:

Anm = /d’l‘g b:(’l"Q) /d’l‘l W(rl,rg)bm(rl) (4.2)
which in Dirac notation is written:
Apm = (bn| Aw |bm) - (4.3)

From this equation 2n? integrations are evident and note that for the calculation of W (Eq.
without energy spread an additional two-dimensional integration must be performed.

Since a priori a good basis set is not securely known and we did not want to add any bias we
decided to take a two-dimensional step function basis. In numerical calculations the functions
are only known on a finite number of grid points. The distance between neighboring grid points
is often equidistant but this is in general not necessary. Let G = {g;;} be some equidistant
two-dimensional grid of [—h, h] X [—v,v] where h and ¢ are non negative and supposed to cover
horizontally and vertically the typical relevant range at the virtual source. Typical values for h
and v range from a few microns to a few hundred microns and typical we choose a few hundred
grid points N, N, in each direction. A grid point g;; has then horizontal position z; and vertical
position y;. The collection of vectors r;; are supposed to point to the grid point g;;. Let P
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Figure 4.1.: Illustration of the basis set used for the expansion. Upper left: On the interval
0 to 1 four step function basis functions are depicted. They have no overlap and
are therefore orthogonal. Furthermore they are normalized. The step functions are
therefore orthonormal. Upper right: schematic illustration of two dimensional step
functions. A two dimensional domain is covered with two dimensional step functions.
Every color represents a different basis function. The functions take constant values
on “their color” and are zero for all other colors. Their integral is normalized to
1. Bottom left: a function is expanded in a step function basis set. Bottom right:
the same function is expanded in a refined basis set, i.e. more basis functions. The
expansion is more accurate.

be a countable partition of the virtual source consisting of identical rectangles {rect,} that are
centered at the grid points g;;. Furthermore let I : {1,..., N - Ny} — {1,...,Np} @ {1,..., Ny}
be a bijective index mapping that maps a 1d partition index to an index pair of the grid G. A
two-dimensional step function basis is then given by:

1 if n
b(r) = {h it r € rect (4.4)

0 otherwise

where the normalization constant h is the same for all basis functions and is chosen such that b,
has norm one. This kind of basis sets are then orthonormal because if n # m then b,b,, have no
overlap and therefore the integral of their product is zero (see Fig. [4.1)).

The quality of the approximation of this basis set depends on the fineness of the grid. The
basis functions sample the function. If the grid would be infinitely fine the b,, would approximate
delta functions. In that limit the described step function basis set is complete.

Let us introduce a single parameter to increase or decrease the number of grid points. We call
this parameter the sampling factor s. It will be important throughout this thesis. Given an
equidistant grid G a sampling factor of s = 1 means just the initial grid. A sampling factor of
s = 2 means that in each of the two dimensions between every two points of the initial grid an
extra point is added that lies in the middle of this two points (see also Fig. bottom for the
associated basis set refinement). For general values of s the size of the grid is kept but the number
of equidistant grid points in each dimension is multiplied by s. The total number of grid points
scales therefore quadratically with s. We will use the sampling factor to describe the increase of
grid points and hence the quality of the approximation. In a physical picture one can imagine
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a plane with rectangular aperture that is moved to probe the plane like it is done in Young’s
experiment.

Why do we use this basis set? Other basis sets may need some proper numerical scaling. The
Hermite functions for instance, must be adjusted for rapid convergence such that the support of
the first Hermite functions coincides with relevant ranges of the function to expand. This gives
raise to an extra scaling parameter we want to avoid. We find that the sampling factor is more
straightforward to understand and to control. Furthermore the calculation and the expansion
into high order Hermite functions may become numerically unstable or at least difficult because
the evaluation of high order polynomials is necessary. Additionally, there are some claims that
the Hermite functions are the coherent modes of our cross spectral density or, at least, are close to
them. To avoid any bias to the numerical result we do not to start to start from these functions.
And probably the most important reason to choose a step function basis is that it adapts rather

natural to the equation for W (Eq. or (Eq.3.57)) because:
Apm = /dm by, (r2) /d"'l W(r1,r2)bim(r1) = W(rr(m), T1n))- (4.5)

So the knowledge of W gives immediately rise to its representing matrix in the step function
basis. The symmetry point case Eq. allows the usage of convolutions for the calculation of
Ay which can be implemented efficiently on computers with FFT based methods. A disadvan-
tage of this basis set is its scaling. If high precision is needed the grid must be refined. To refine
the grid we increase the sampling factor s. As already mentioned the grid scales quadratically
with s. The representing matrix scales quadratically with the basis set size. In consequence the
representing matrix scales to the fourth power with the sampling factor s. This explains the vast
memory exhaustion with increase of the sampling factor in this method.
The most difficult technical part is the recasting of the equations on the paper into a form that is
compatible with the interface of standard eigensolver software. The central role in this translation
takes the inder mapping I that maps a two-dimensional domain to a one-dimensional enumera-
tion of basis functions. The choice of the index mapping I is theoretically free in the limits of
being bijective. For performance reasons, however, the mapping should be as fast as possible and
any expensive bookkeeping should be avoided. The canonical choice for I is therefore the same
mapping used by the programming language to flatten two-dimensional arrays and the inverse
I~! is the ravel operation. On most modern computers two-dimensional arrays are flattened to
and raveled from continuous chunks like it is illustrated in Fig.

Being aware of this mapping the calculation of A can exploit vectorization and the calculation
becomes sufficiently efficient.

Once the Hermitian representing matrix A is known we may find its eigenvalues and eigenvec-
tors. The eigenvectors are the coeflicient vectors of the eigenfunctions of W in the step function
basis. By construction the coherent modes {®;} of W are related to the eigenvectors {ej} of A

by: .
Dp(riy) = Eek[ffl(l}j)]- (4.6)

here [-] indicates the component of the vector.

4.1.2. Numerical eigensolver

Once the representing matrix in a given basis is known we use numerical eigensolvers to ap-
proximate the eigenvectors of the matrix. In general normalized eigenfunctions are free up to a
global phase. For our problem we use an iterative eigensolver. Iterative eigensolver in contrast
to full diagonalization are designed to calculate only a few eigenvectors while full diagonalization
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Figure 4.2.: Illustration of the memory mapping of a two-dimensional array. Each color sym-
bolizes a different one-dimensional part of the full two-dimensional array. Top: a
two-dimensional array is mapped to a continuous chunk. Bottom: a continuous
chunk is mapped to a two-dimensional array.

techniques are optimised to calculate all eigenvectors. We know that the cross spectral density
operator is positive and nuclear. Furthermore we know that for a Gaussian wavefront the operator
takes the form of a Gaussian Schell-model whose eigenvalues decay exponentially. Additionally,
we expect that there is only a small number of dominant coherent modes in the limit of high
coherence. We are therefore not interested to calculate all eigenvectors and are satisfied with
a small subset of all eigenvectors. Therefore we use an iterative eigensolver. Likewise to full
diagonalization techniques, iterative techniques do not always converge. Prominent problems
are ill conditioned matrices and in the case of iterative eigensolver matrices with rather uniform
eigenvalue spectrum pose extra difficulties.

For our purpose we use the mature software package SLEPc [44] 45| [46] that is based on
PETSc[47, 48, 49]. It provides an iterative solver optimized for sparse matrices and has a python
interface. The package allows the definition of custom matrix-vector multiplications. In the
SLEPc realm this is called Shell-free form and we will adopt this notion in the following. Later
in section when we discuss the two-step method we will see why an iterative solver with the
possibility of user defined matrix-vector multiplication is even more useful.

By default we use the Krylov-Space based methods krylov-schur or arnoldi implemented in
SLEPc. Roughly speaking the Arnoldi method creates a m-dimensional subspace of the range
of the matrix and assumes that this subspace is a good approximation to the n dimensional
eigenspace of the matrix. Here m is often of the order of 2n. Once the Krylov-Space is created
a basis of it is known which can be diagonalized using full diagonalization techniques like a
QR decomposition. The last step is to apply the transformation matrix from the n-dimensional
eigenspace back to the initial space. The krylov-schur method is based on the arnoldi method
but advanced further and uses an effective and robust restarting scheme that reduces memory
requirements.
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Figure 4.3.: Schema of the decomposition algorithm: Coherent modes for synchrotron light (com-
syl). The algorithm itself is written in python. It delegates the computational expen-
sive numerical work to software packages written in high performances languages.

4.1.3. The complexity of the implementation

The open source Coherent modes for synchrotron light (comsyl)[9] code implements the algorithms
developed in this thesis.

The complexity of the implementation is rather high. For the matrix method the memory usage
can quickly reach several hundreds gigabytes and a low number of terabytes of RAM. Already
the memory requirement makes a pure parallel implementation necessary. Of course this amount
of data must also be calculated and that requires equally a lot of CPU power and some level of
performance optimized programming.

The code is written in python but in a way that only a small fraction of the execution time is
actually spent in python routines. When using python the development time is often drastically
reduced compared to the same development in high performance languages like C/C++. Calcu-
lations are wherever possible performed with numpy, scipy or SLEPc. Parallelization is based on
MPI. All three codes are C or C++ based compiled codes and are only interfaced to python.

When doing numerical calculations on this scale the knowledge of memory layout and vector-
ization is very helpful and can lead to significant speed gains or losses if done incorrectly. One
can easily lose 1000 times memory bandwidth if incompatible memory layouts are employed.

The largest speed ups are, however, gained on the algorithm level. Using convolutions where
possible or approximations where meaningful. The grid size during the decomposition must be
properly adjusted to avoid unphysical numerical boundary artifacts (see also the discussion in
section . In practice the grid must be large enough to convolve the spatial part of the
electron phase space density and the reference single electron emission.

The implementation is in general complicated and in particular due to the parallel and per-
formance optimized nature, intensive and time consuming tests were necessary and performed.
These tests are discussed in the next section.

The algorithm is written in modern programming paradigms like object orientated program-
ming and to some degrees test driven development. Some compromises in the design, as this
is often the case in high performance computing, had to been made in order to not degraded
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the performance of the calculation. External libraries like SRW for the calculation of the single
electron reference emission Ejy or SLEPc for the diagonalization are well isolated and may be
easily replaced by other implementations. An overview of the code structure is given in Fig. [4.4
The most important classes of the current implementation are mentioned in Table.
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Figure 4.4.: Overview of the code structure. The coloring and its meaning is the same as in

Table.
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Structure

Class name

Purpose

Control

ElectronBram
Undulator
PhaseSpaceDensity

SigmaMatrix
AutocorrelationSimulatorConfiguration

AutocorrelationSimulator

Models electron beam settings.
Models undulator settings.
Models the electron phase space
density.

Models the sigma matrix.
Models all configuration settings
for the algorithm: lattice,
undulator, grid settings,
sampling factor,. . .

Controls the calculation.

Wavefront

Wavetiront
WavefrontBuilder

Models a wavefront.
Creates a wavefront. Uses SRW
and converts its output to a

Wavefront.
Calculation MatrixBuilder Creates a ParallelMatrix.
AutocorrelationMatrixBuilderStrategy | Implements the calculation of the
representing matrix (matrix method).
Choices are convolution or direct
integration for finite alpha.
ParallelVector Implements a distributed vector.
ParallelMatrix Implements a distributed matrix.
DistributionPlan Defines how ParallelVector and
ParallelMatrix are distributed.
AutocorrelationOperator Spatial cross spectral density
operator (two-step method).
DivergenceOperator Cross spectral density operator
(two-step method).
Diagonalization | Eigenmoder Diagonalizes and creates Twoform.

EigenmoderStrategy
EigenmoderSeparation

Twoform

TwoformVectors

Implements an eigensolver. By
default it is SLEPc.

Diagonalizes for a supposedly
separable cross spectral density.
Should be named Modes or
TensorProduct. Carries eigenvalues,
TwoformVectors and grid settings.
Carries the coherent modes.

Cross spectral
density

AutocorrelationFunction
AutocorrelationInfo

AutocorrelationFunctionPropagator

Models the cross spectral density.
Calculation log, used configuration,
needed times, used CPUs, ...
Propagates a AutocorrelationFunction
along a SRW beamline.

Figure 4.5.: The most important classes of the current implementation.
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4.2. Tests of the matrix method

Because of the complexity of the algorithm’s implementation intensive tests have been made to
guarantee its well functioning. For all our tests we use the corresponding ESRF-EBS settings
defined in and the undulators defined in section The configuration files to calculate
the tests are listed in the appendix.

First we present the verification of the fundamental relation of the brightness convolution the-
orem Eq. i.e. the relation between the initial condition of an electron entering the undulator
and the shift of its emission relative to the emission of an electron entering on-axis with velocity
vector directed exactly along the longitudinal coordinate. We verify this for all the undulators
used throughout this thesis, i.e. the ESRF ul8 1m, 2m and 4m long undulators.

A question arises how to judge the equalness of two cross spectral densities and when two
decompositions can be considered approximately equal. We will address this question and develop
a comparison criteria suited for numerical evaluation in section [4.2.2]

Afterwards we present tests for Dirac delta shaped electron beams and we compare the numer-
ically obtained eigenvalues and coherent modes to the theoretical results for an initial Gaussian
wavefront (see section . We test both cases: an electron beam at the symmetry point and
an electron beam with finite alpha.

To show the numerical agreement with the theory we used grid settings deceived from real
application that will be discussed in chapter[5l A discussion about convergence in dependence of
the grid and convergence tests can be found there.

The numerical results of all our test agree to a high precision to the theoretical predictions.

4.2.1. Verification of the relation between the initial electron condition and the
radiation shift

In this section we verify numerically one of the fundamental proposition of the brightness con-
volution theorem and therefore of our algorithm: the relation between initial conditions of a
single electron at the virtual source and its produced field relative to a reference electric field, i.e.
Eq.

Computer codes like pySRU[25] or SRW[24] allow us to specify the initial conditions of an
electron entering an undulator and to calculate its emission. We performed all the calculations
with pySRU and SRW and got basically identical results. The results presented here are based on
calculations performed with pySRU. We verify Eq. for realistic spatial offsets r; and angles 0;
of the ESRF-EBS lattice as defined in section2.1.8l The offsets are chosen to cover three standard
deviations of the spatial electron beam distribution and angular beam distribution, respectively.

Like always in this thesis we use the ESRF ul8 undulator settings defined in section with
undulators of Im, 2m and 4m length. The calculations are performed at their resonance energy
likewise given in section [2.3.4]

From the theory we expect that the emission FE; shifts by an offset r; with respect to a reference
emission if the electron enters the undulator with an offset r; with respect to the reference electron
in the virtual source plane, i.e. we expect F;(r) o< Eo(r —r;) (see Fig. top).

For everything that follows we extract the relative shift A between the emission from the
reference electron Fy and the emission from the shifted electron F; with the help of the correlation
function:

C(h) = |Eo(r)| |Ei(r + h)]. (4.7)

We looked for the peak of the correlation function C, i.e. we looked for that A, that maximizes
C. The so found h,,q, is then considered as our shift A.
Since the results produce plots that just give the same ideal straight line for all undulators
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Undulator length [m] ‘ Distance screen [m)] ‘ Horizontal fit [m] ‘ Vertical fit [m]

1 3.5 4.57 4.57
1 4.5 5.58 5.58
1 5.9 6.58 6.57
1 6.5 7.58 7.58
2 4.0 6.09 6.08
2 5.0 7.09 7.08
2 6.0 8.09 8.08
2 7.0 9.09 9.08
4 5.0 9.09 9.06
4 6.0 10.09 10.06
4 7.0 11.09 11.05
4 8.0 12.08 12.05

Table 4.1.: Fitted slopes for the shifts depicted in Fig.

and all screen distances we spare the plots and conclude that numerical simulations confirm the
one to one relation between spatial shift in the virtual source plane and the shift of the emitted
emission.

For initial electron angles 6; we theoretically assume that the emission is shifted relative to the

reference emission by:
A =20, (4.8)

where z is the distance between the virtual source plane and the observation screen (see Fig.
bottom). The plots Fig. show very good linear dependence between initial angle and shift.
We performed regressions from which we determined z and the distance z is the position of the
virtual source.

The slopes taken from the regressions are found in table The fitted values agree very
well with the prediction and the R? value of all regressions takes the maximal possible value
of R = 1 within numerical precision. We note that pySRU like SRW applies an extra offset
before the undulator entrance plane to account for possible fringe fields and for the magnetic field
termination, i.e. the field integrals of the undulator should be zero to have no net effects on the
electron dynamic and the magnetic field should go to zero smoothly. In pySRU this offset has a
size of five period lengths and in SRW it is two period lengths. In our case of the ESRF ul8 this
gives an extra of 0.09 m. The horizontally and vertically fitted values in Table. must therefore
be read like:

0.09m +u; +d = zp5 (4.9)

with u; = {1m, 2m, 4m}+0.018m because the undulators in our calculations have only full periods
and d is the distance of the observation screen measured from the undulator exit.

We find a very good agreement with the theoretical assumption and furthermore determine that
the virtual sources lies at the position where the electron initial conditions are applied.
This is in good agreement with the theoretical prediction discussed in The agreement is valid
for all the undulators used in this thesis and at different screen positions. We conclude that the
brightness convolution theorem can be safely applied for the undulators used throughout this
thesis and the ESRF-EBS electron beam settings.
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Figure 4.6.: Shifts of the single electron emission as a function of the initial angle of the electron
at the undulator entrance plane for all the undulators used in this thesis at their
resonance energy (see section [2.3.4)). The observation screen is placed in distance d
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4.2.2. A criteria for numerical comparison

In order to judge the quality of a result the question naturally arises if two results are equal and
if they are not exactly equal how a similarity can be defined.

An easy criteria for equalness would be: two decompositions are equal if they have the same
eigenvalue spectrum and the same coherent modes. This could be reformulated as two cross
spectral density operators are equal if they have the same eigenvectors and the same diagonal
representation in it. This strict definition has a small problem because even orthonormalized
eigenvectors are only determined up to a factor of magnitude one. Every eigenvector can be
multiplied by a constant of magnitude one and the the set of eigenvectors remains orthonormal.
The numerical eigensolver has therefore the freedom to return at each application an eigenvector
that differs by a constant of magnitude one. Depending on the used algorithm this happens in
practice. Certainly if all the eigenvalues have pairwise relative error smaller than one percent
and all the modes have pairwise difference norm of less than one percent the two cross spectral
densities will be similar but what does this tell us quantitatively? Using the triangle inequality
some quantitative statements may be easily derived but their estimates remain weak and rely
on the overlap matrix that may become ill-conditioned for higher modes. Furthermore between
two similar but different operators degeneracy leads to different representations of an associated
eigenspace. These problems become more severe for higher modes. It can in principle be treated
but that takes additional care and computational time. Furthermore, if we compare to a real
analytically result we may never completely approach it numerically due to discretization errors.
Different coherent modes may change the cross spectral density which is the sum of all its modes
but it may be already numerically converged in the sense that for the numerical propagation
of the cross spectral density function it is not important to know the exact analytical coherent
modes.

In essence we look for a criteria that tells us that for all points of our interest:
Vri,ry s [W(rnra,w) — W(r,r,w)| <C <1 (4.10)

i.e., for two different cross spectral densities the pointwise difference between W and W' is smaller
than a small constant that is independent of the concrete choice of points. This could be done
numerically but depending on the grid size and the number of modes a full comparison for all
pairs of points could take very significant numerical resources because for every point the modes
must be summed up at that points. For moderate grid sizes of 250 x 100 and a few hundred
modes the time needed can be of the order of days.

Suppose we could show that:

(/drg

for every f with norm one.

Since we are interested in the pointwise difference at r1 and 7o let us test the difference with a
constant function f of small finite support centered at r; in a small environment around r1. The
function f shall have norm equal to 1. One example of such a f would be a normalized two-
dimensional step function that we typically use in our basis in this thesis. With such a function
the inequality becomes:

NI

/ dr' (W — W)(r, ) £ ()

2
) <cC (4.11)

(/dr;uw—w')(rl,r;)f); <c (4.12)

The remaining integral goes over the entire two-dimensional space but we may restrict it to a
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finite region Bs(ra), like a rectangle, around 7. Since the integrand is positive the inequality still
holds because we sum up less:

1
/ dry (W = W(r,m)|? ) <c (4.13)
Bs(r2)

We may choose the sphere B arbitrary small and therefore probing the difference at the two
points 1 and r9 because the integral will approach a typical value of the difference in that sphere
times the area of the sphere.

In our numerical setting, in which we want to compare two cross spectral densities on a grid,
we may discuss much more practical arguments. Let us chose Bs(r2) to be the same rectangular
as we used for our two-dimensional step function centered at ro. If we compare two different grids
we chose Bg to correspond to the finer grid. The implicit approximation of the step function basis
set assures that the difference between the two cross spectral densities is constant over the area
of Bs and Eq. becomes:

VR|(W = W) (r1,m)| < C (4.14)

which is rewritten as:

(W = W)(ry,r)| < (4.15)

e

So, the difference for every pair of points is uniformly bounded by C/v/h.
It remains the question to find this C.
Let us define the difference cross spectral density operator D:

(AW AW/)[f] /d’l"l [Z)\ q) 7‘1 ZA/ @/* 7‘1 q)/ ( ) f(’l"l). (416)

It turns out that the largest eigenvalue in magnitude of D is exactly C because Eq. is the
2 induced operator norm which is equal to the largest eigenvalue in magnitude[50, [51]. This
norm is called operator norm. Using our infrastructure we may look for that largest eigenvalue
quickly. We use a Shell-free implementation that evaluates this operator directly by integrating
the modes of the two cross spectral densities. Thus finding small eigenvalues of D defined in
Eq. implies small pointwise errors between W and W'.
Let us define the notions of errors we want to use in this thesis. An absolute error Az of a
quantity x is given by:
Az = ||Texact — || - (4.17)

With a relative error dz of a quantity = we mean:

5z — Texact — | (4.18)

”mexact ||

where the norm is appropriately chosen. For the cross spectral density operator Ay, it is the
operator norm, for a coherent mode it is the L? norm and for an eigenvalue it is the absolute
value.

In summary we want to compare two cross spectral densities and we will use our numerical
infrastructure to look for the largest eigenvalue C of the difference operator D given by Eq.
This eigenvalue, which can also be called the operator norm, gives a boundary for the point-
wise absolute error of the difference between the two cross spectral densities W and W’ which
is independent of the chosen pair of points. To pass from here to something like a relative error
the absolute pointwise difference should be divided by a representative value of W that is inde-
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pendent of the chosen set of points. In this thesis we are not so much interested in the exact
quantitative meaning of the operator norm but mainly by its trend when the sampling factor s
of our calculations is increased. The operator norm will help us to identify convergence of our
calculations. In general we will mainly use relative errors for our comparison purposes which are
independent of any normalization.

4.2.3. The test case of a Dirac-delta electron beam

Intensity of initial wavefront Intensity of first mode
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Figure 4.7.: Upper left: normalized intensity of the initial reference single electron emission at
the virtual source. Upper right: normalized intensity of the first mode of the decom-
position. Bottom left: horizontal cuts of the intensities. Bottom right: vertical cuts
of the intensities.

Let us define the five-dimensional electron phase space density to be a delta function

ps(r,0,7) = C 4(r)5(8)d(y — ) (4.19)

with a constant C > 0 and the ideal electron energy ~g. For the sake of readability we use
the electron energy < instead of the electron momentum deviation. They are linearly related
by Eq. and the substitution in the integration is straightforward. This electron phase space
density describes a thin electron beam.
Putting this electron phase space density into the brightness convolution theorem (Eq. |3.15)
gives: _
W(rl,m,w) =C- E()>|< (1"1, w, "y()) Eo (1‘2, w, "}/0) . (4.20)

with a constant C. This is the form of a single moded cross spectral density function. We arrive
up to a constant at one coherent mode which is essentially the initial wavefront Ey. We tested
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this case with our algorithm. The first mode of the decomposition incorporates the spectral
density within numerical precision. In agreement with the theoretical prediction the first mode
reproduces the initial wavefront (see Fig. [4.7)).

4.2.4. The test case of an initial Gaussian wavefront

We tested the matrix method for an initial Gaussian wavefront:
22
Ey(r) = Aexp (_7‘1 - y) (4.21)

with s, = sy, = 2.85um. The values of s, and s, were taken from a fit to the emission cone
of the first harmonic of the ESRF ul8 2m long undulator at the virtual source. We did these
calculations because we can compare the numerically obtained eigenvalues and coherent modes
against the theoretical result of section In a real application of the algorithm the initial
wavefront Fy is given by the numerically calculated undulator emission.

We use the electron beam settings defined in section [2.1.8] and the undulator settings given in

section [2.3.4]

In the case of the symmetry point the relative errors of the first twenty and some higher order
eigenvalues are written in Table. The relative error for the eigenvalues is always smaller than
1.0 - 107%. The relative error for the coherent modes is at most 3.8 - 107°. The relative error
in operator norm is 4.1 - 107° for the first 100 modes. Hereby with for the first 100 modes we
mean that the truncated cross spectral density W0 that consists only of the first 100 modes
defined in Eq. was used for the comparison. The truncation is for performance purposes
and should not change significantly compared to truncations with more considered modes due to
the exponential decrease of the mode spectrum in our calculations, i.e. higher modes become less
and less important.

For the finite alpha case, i.e. off the symmetry point, we have the Hermite function based
modes and the Gaussian Schell model eigenvalues as we discussed in [3.3.3] The relative errors
of the eigenvalues and coherent modes are written in Table. The relative error is always
smaller than 2.3 - 10~ for the eigenvalues. The relative error for the coherent modes is at most
3.8 -107%. The computation of the decomposition with finite alpha is much slower because the
cross spectral density has to be calculated without the usage of convolutions. The calculation for
the symmetry point case took 40 minutes on 80 CPU cores. The calculation for the finite alpha
case took 1 day and 10 minutes on 35 CPU cores, hereby the integration in the finite alpha case
was performed with a more coarse grid(sampling factor s = 1.5) than the grid of the symmetry
point calculation(sampling factor s = 2.5). The scaling is essentially to the fourth power with
the sampling factor s. To attain higher precision we would have consumed significantly more
numerical resources. It is therefore not surprising that the relative errors for the finite alpha case
are higher. However we still consider that the result shows very good agreement between the
analytical equations and the numerical result. In section [£.4] we present a much more economic
algorithm for the decomposition. That method can then calculate the finite alpha case to a higher
precision in even less time. The relative error in operator norm is 3.6-10~% for the first 100 modes.

Overall the algorithm demonstrates high numerical agreement with the theory. Superficially
the algorithm performs worse for the finite alpha case but this is probably due to the reduced
grid fineness. The agreement is nevertheless clear. We do not show it here, but one can observe
the general trend that with an increase in the sampling factor s goes a decrease of the relative
errors. But these settings are significantly more computational expensive and we do not see any
further clarification given the computational investment.
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Symmetry point: Finite alpha:

# mode An oA dmode # mode An oA dmode
1169-108129-10°[1.9-107° 1159-10845-10°[4.4-1071
216.2-10%|34-107°]21-107° 2153-10% | 54-107° | 3.9-107*
3155-10%(39-107°|25-107° 3147-10%]6.2-107°|35-107*
4149-10% | 45-107° | 2.8-107° 4142-10%|7.0-107° | 3.1-107*
51| 4.4-10%|5.0-107° | 3.2-10°° 51(38-102]7.8-107°]28-1074
6]39-10%|55-107° | 3.5-107° 6|34-10%|85-107° | 2.5-107*
7135-10°216.0-107° | 3.6-107° 7130-1021]9.2-107°]23-1074
8131-10%(6.6-107°|3.7-107° 8127-10%]9.9-107° | 2.0-107*
9]28-10%|7.1-107°|3.7-107° 9]24-10%{1.1-107*| 1.8-107*

10 | 2.5-10% | 7.6-107° | 3.8-107° 1022-108|1.1-107* | 1.7-107*
11 (23-10%[9.3-107° | 88-1076 11121-108|13-107*|22-107*
12 12.2-10% [ 81-107° | 3.7-107° 12119-108 | 12-107* | 1.5-107*
13121-10%[9.8-107°[9.0-1076 13/18-108|13-107*|21-107*
14 [ 2.0-10% | 86-107° | 3.7-107° 14|17-10812-107*|1.3-107*
15[19-108 [ 1.0-107* | 9.6-1076 15116-108 | 1.4-107* [ 1.9-107*
16 [ 1.8-10% [ 9.1-107° | 3.6-107° 16 | 1.5-108 | 1.3-107* | 1.2-107*
17 [ 1.7-108 [ 1.1-107* | 1.0-107° 17 15-108 | 1.5-107* | 1.6 -10~*
18 | 1.6-10% | 9.6-107° | 3.5-107° 18 1.4-108 [1.3-107* | 1.1-107*
19 (15-108 [1.1-107* | 1.2-107° 19 13-108|16-107*|1.5-107*
20| 1.4-10% | 1.0-107* | 34-107° 20| 1.3-10%|14-107*]1.0-107°4
30| 81-107 | 1.2-107% | 2.7-10°° 30 72-107|1.6-107* | 1.2-107%
40 | 5.5-107 | 1.7-107* | 3.4-107° 40 | 5.1-107 | 1.7-107* | 5.5-107°
50 | 3.8-107 | 1.7-107* | 4.0- 1076 50 | 3.4-107 | 2.3-107% | 44-107°
100 | 8.7-10% | 2.4-10* | 1.0-107 100 | 8.2-10 | 2.3-107* | 2.0-107°
Mode distribution Mode distribution
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Table 4.2.: Eigenvalues and relative errors between the numerical result and the analytical equa-
tions of section for the eigenvalues and the coherent modes at the symmetry
point(left) and for finite alpha(right). Their numerically calculated mode distribu-
tions are plotted in the bottom.

89



Intensity of mode 0

Intensity of mode 1

50 ‘ ‘ ‘ 1.0 50 : : : 1.0
E 0.8 El 0.8
325 - - 325 - -
=1 =1
S 0.6 S 0.6
g o0~ - b g o - - h
= 04 = 04
3+ [+
3 g
5-25 - — 5_25 - .

g 02 g 0.2

-50 . . . 0.0 50 . . . 0.0

-50 -25 0 25 50 50 25 0 25 50
Horizontal position [m] Horizontal position [um]
Intensity of mode 2 Intensity of mode 3

50 ‘ ‘ ‘ 1.0 50 . . . 1.0
E 0.8 E 0.8
325 - — 3_25 - .
=1 =
£ 0.6 S 0.6
2o - - T 2o - s - b
= 04 = 04
[+ s~}
= 9
5-25 - — 5,25 - .

g 02 g 0.2

-50 ‘ ‘ ‘ 0.0 50 ! ! ! 0.0

-50 25 0 25 50 -50 25 0 25 50
Horizontal position [Jum] Horizontal position [um]
Intensity of mode 6 Intensity of mode 10

50 : : : 1.0 50 : : : 1.0
E 0.8 E 0.8
325 - - 325 B
= =
S 0.6 S 0.6
g 0 - s> B 30 — B
[=¥ (=¥
— 0.4 _ 0.4
] ]

3 9
g= o2 g= o2
> - = .
-50 ‘ ‘ ‘ 0.0 50 . . . 0.0
-50 25 0 25 50 -50 25 0 25 50
Horizontal position [Jum] Horizontal position [um]
Intensity of mode 11 Intensity of mode 12

50 ‘ ‘ ‘ 1.0 50 : : : 1.0
E 0.8 El 0.8
325 - - 325 - -
=1 =]

S 0.6 S 0.6
FEISE B EEEREEREEREERE 4 2 0L - - |

=3 =3 - —

—~ 0.4 fla 0.4
3+ [+

S 9

5-25 — — 5_25 - .

g 02 g 0.2

-50 . . . 0.0 50 ! ! ! 0.0

-50 -25 0 25 50 -50 25 0 25 50

Horizontal position [um]

Horizontal position [Jum]

Figure 4.8.: Some coherent modes of the symmetry point test case. The modes are chosen such
that the character of the small parameters in the vertical dimension become visible.
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Figure 4.9.: Some coherent modes of the finite alpha test case. The modes are chosen such that
the character of the small parameters in the vertical dimension become visible.
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Figure 4.10.: Plot of the horizontal trajectory of an electron in a 1m long ESRF ul8 undulator.
The electrons enters with an initial horizontal angle 6, = 1.56 - 107°. The total
trajectory is depicted left and a zoom around the undulator center is right. The
dashed vertical line indicates the center position of the undulator.

4.2.5. Investigation of the assumption that the undulator does not change the
electron beam distribution

In this section we investigate numerically the assumption that at the position of the center of
the undulator the electron beam phase space distribution is the same for the storage ring with
undulator as for the storage ring without the undulator. The considerations of this section concern
directly only the electron trajectories.

We calculate numerically with pySRU the spatial coordinates and the velocities of the electron
at the center of the undulator. As undulators settings we use all the undulators used in this
thesis, i.e. the ESRF ul8 undulators of 1m, 2m and 4m length defined in section [2.3.4. The
electron initial conditions are varied in a similar way as in section i.e. the initial conditions
are varied over a range of three standard deviations of the spatial and divergence ESRF-EBS
beam settings defined in section [2.1.8] The results of the simulations are compared to a free
space propagation of an electron:

Tcenter = T0 + V0 - tcenter (422)

where rcenter is the transverse electron position at the center of the undulator, rg is the initial
position at the undulator entrance, vg = cfy is the initial velocity and teepzer is the time it takes
the electron to travel to the center of the undulator. The idea is depicted in Fig. for the case
of a Im long ESRF ul8 undulator with initial vertical angle and no spatial shift. The undulator
magnetic fields are all taken in symmetric configuration, i.e. symmetric to the y-axis.

We find that the maximal deviation between the vertical offsets and the velocities are negligible.
They attain at most a fraction of microns which is small compared to typical scales of microns for
the spatial coordinate and microns for the velocity in units of the speed of light ¢ (see Table. .
The horizontal offset, however, reaches deviations of 0.4um which may be not easily negligible.
The horizontal shift is basically independent of the initial condition.

Based on this calculation we come to the conclusion that the assumption that the undulator
does not change the electron beam distribution may be checked from undulator to undulator and
maybe a correction is appropriate if the undulator virtual source is chosen to be in the center of
the undulator.
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Undulator | Az [um] | Ay [um] | Az [prad] | Ay in [urad]
ul8 1m 0.4 1.6-1072 [ 2.0-107° |6.3-1073
ul8 2m 0.4 6.4-1073120-10° [ 1.3-1072
ul8 4m 0.4 25-107%2]20-10° |25-1072

Table 4.3.: Maximal deviation of the electron phase space coordinates after a free drift and a
pySRU simulation for ESRF-EBS initial conditions.

Theoretically one can correct for a fixed spatial shift s of the electron beam phase distribution
that is independent of the electron initial condition by shifting the reference emission Ey:

Eo(r) = Eo(r —s) (4.23)

because Eq. takes the form:
W(ry,ro,w) = Ne/dédrdG p(r,0,0)e* T Ey*(r) —r — 5,w,8)Eg(ro — 1 — 8,w, 0). (4.24)

and the shift of the reference electric field is equivalent to the shift of the spatial dimension of
the electron phase space distribution:

W(ry,ro,w) = Ne/dédrda p(r,0,0)e AT Ey* (ry —r,w,8)Eo(re — r,w, d). (4.25)

with
ﬁ(raea 6) - p(r - 8707 6) (426)

However, through out this thesis we do not apply this correction and for our algorithm we
will always define the virtual source to be at the undulator entrance plane.

4.3. Propagation and rediagonalization

In section we discussed the propagation of the cross spectral density in terms of its coherent
modes. The propagation includes free space propagation in vacuum and propagation or trans-
mission through optical elements and apertures. With the algorithm described in the previous
chapter we can determine numerically the coherent modes. The coherent modes may now be
propagated with any wavefront propagation code available. In this work we mainly used the Syn-
chrotron Radiation Workshop (SRW)[24] for the propagation of the coherent modes. With SRW
the Fresnel propagation of a wavefront can be calculated efficiently using FFT based calculations
of convolutions. The discussion of chapter applies to the usage of SRW.

If somewhere in the beamline the modes are subjected to a propagation operator that does
not commute with the cross spectral density operator Ay, then the new cross spectral density
operator will have different eigenvectors, i.e. different coherent modes. This is a result known from
quantum mechanics or more generally from operator theory. Apart from this even if two operators
A and B commute the composition AB will in general have a different eigenvalue spectrum than
A or B, i.e. a propagation operator will in general change the eigenvalue spectrum.

As an example, imagine an ideal one to one imaging beamline set up (see Fig. . Here the
beamline produces a one to one image of the center of the undulator. We subsequently reduce
the size of the final aperture which results in a cutting of the undulator center image. In [4]
they performed this experiment in the framework of ptychography reconstruction of modes of
the cross spectral density. They measure that a reduction of the slit size reduces the number
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Figure 4.11.: Illustration of an ideal one to one imaging beamline of the center of the undulator
with an aperture in the image plane of the lens. The primary slit is widely opened
and the vertical and horizontal focal length of the lens is 18 m.

of modes, i.e. that the mode occupations of the first modes become larger and larger while the
mode occupations of higher modes decrease. This can also be expected from the theory because
the reduction of the aperture size removes fluctuations or cleans the ensemble. This is illustrated
in a very simplified fashion in Fig. [£.12] We expect that the reduction of the aperture size results
in a smaller number of relevant coherent modes and an overall reduction of the spectral density.
This application will be considered in more detail in chapter [5

To actually calculate this application we need to rediagonalize the cross spectral density after
the propagation. To archive this numerically we propagate the modes to the image plane of the
lens where we subject them to the aperture. Now we could, similar to the initial decomposition,
create the representing matrix in the stepfunction basis. However, we may also just implement
the action of the integral operator directly in terms of the coherent modes:

Awlf)(r) = / A W (s, m0, @) £ ) = 3 Aau(r) / dr1 @7 (r1) £ (r1). (4.27)

The number of modes N is usually limited by a few hundreds or a few thousands. If the grid
of the mode is large and the number of modes is small, it is much more economic in terms of
memory to evaluate Eq. directly than to build the representing matrix whose size is the
square of the size of the mode grid. For this implementation the numerical eigensolver needs
to support user defined matrix-vector operations. The idea to avoid the full calculation of the
representing matrix is driven by the aspects of sparse iterative eigensolver techniques, which are
often based only on matrix-vector products. Full diagonalization implementations often favor
dense matrix-matrix operations that must be optimized differently on today’s computers. We use
again the solver package SLEPc. It is optimized for sparse eigenvalue problems and offers the
possibility to provide user defined matrix-vector multiplications (Schell-free form).

It is clear that we have to face the same index mapping problem due to operator discretization
as discussed in the eigendecomposition section [{.1] and we use the same mapping here as we used
in that section.
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Figure 4.12.: Oversimplified illustration of cutting of different modes. After the slit the cut modes
are all similar.

4.4. Numerical eigendecompositon: the two-step method

As it turns out the decomposition method presented so far, while correct and giving correct
results, becomes rather quickly impractical due to the unfavorable scaling of the representing
matrix with the sampling factor s. For high emittance lattices this method can not be used.
A converged result requires many high resolution modes because these modes differ from each
other on a small spatial scale compared to the electron beam size. Furthermore, apart from the
immense memory demand to construct the representing matrix all the matrix elements have to
be calculated. In the case of the symmetry point approximation this may be efficiently done with
a convolution. For the more general finite alpha case this is not possible and the calculation of
the matrix becomes much slower and practically impossible for these dense grids. In summary
not many real problems can be calculated with the matrix method.

We present here a method of divide-and-conquer type. It calculates the coherent modes in
two steps. First the cross spectral density is calculated as if there was no divergence. This can
be made directly with Krylov subspace methods and convergence is usually reached after 2n
“divergence less” cross spectral density operator actions where n is the number of desired spatial
modes ;. We use the notion spatial because only the spatial part of the electron phase space
density contributes to their creation. We underline the fact that the spatial modes must not be
very similar to the final coherent modes. This depends strongly on the divergence. Once we
have the spatial modes we apply the action of the divergence, again directly by application of
Krylov-subspace methods. The discretization and index mapping explained in section |4.1| remains
unaltered and is addressed the same way.

We mainly discuss the finite alpha case from which the symmetry point case follows as a special
case.

Let us review equation Eq. that calculates the cross spectral density for finite alpha. We
want to neglect all constants and, for now, the energy spread integration and the exponential
outside the integral. The exponential outside the integral depends only on the electron beam’s
divergences. The integral that is left depends only on the spatial part of the electron beam.
We call this part of the cross spectral density the spatial cross spectral density W, because
it neglects any effects of electron beam divergence. We can say that the spatial cross spectral
density is up to constants the zero divergence limit of the cross spectral density. In this section
when we speak of full cross spectral density W we mean the cross spectral density W in order
to distinguish it from the spatial cross spectral density Ws. The spatial cross spectral density W
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has all the properties of the full cross spectral density and takes the form:

mzz/ T
Ws(r1,re,w) = /drhr1 (r) Ep (r2 — r,w) exp (—z‘kzrg [T#fy';/ ]) (4.28)
my/y/
here
Noz2 N\ . R v
hy, (1) = exp ( . yQy > Ey* (r1 —r,w)exp (zk:'rl [nﬂ“’yy”/ ]) (4.29)
my/y/

is a function parametrized by r1. For the full notation refer to section [3.3.2.2l This form was
intentionally stated in its numerically useful form. It depends only on r and depends parametric
on r1. We will shortly discuss why this is of tremendous numerical value.

Let us consider the spatial cross spectral density operator Af;, in more detail:

Ay 1)) = / dry Wi(r1,2) f(r1)

- / dry / dr he, (r) Eo (ro —7,w) exp (—i/ﬁ"z [%;D flry) (4.30)

my/y/

m ./

Daal g
= /d’r Eo (re —r,w)exp (—ik:rg [%y]) /d'rlhrl (r) f(r1)

vy

here we interchanged the integration order. We may rewrite this as

A5 [f](r) = / dr Ep (rs — 7, w) exp (—im [%z ) BIf|(r) (4.31)
with the operator B
BN = [ drite, ) 5000, (4.32)

Here something noteworthy happened. Because we interchanged the integration order we may
actually calculate the action of the spatial cross spectral density operator by the calculation of
two times number of grid points two-dimensional integrals. This is computationally much more
favorable than the case of the full cross spectral density W.

Let us discuss why the full case is numerically less favorable. In the full case there is an extra
exponential in front of the spatial cross spectral density W. This factor could not be taken out of
the integral defining the integral operator B. This implies that the analogue of B from Eq.
would take the modified form By, in the full case:

Bl f(r7) = /dn exp <_ Koy —21)® Ky — y1)2> e ) ), w33)

me/x/ me/y/

This modified By depends not only on r but also on ry. In the zero divergence case of the
spatial cross spectral density the integral operator B can be calculated and stored in memory,
i.e. it can be reused for every ro. To understand the dimension of the numerical difference: the
full Bg depends on two two-dimensional spatial coordinates and for every pair of points r, 7o
a two-dimensional integral must be calculated. This gives in total number of grid points square
two-dimensional integrations. The effort to calculate By, for a given f is therefore of the same
order as to calculate the full representing matrix. This is often an practically unsolvable problem
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and our intention was exactly to avoid the calculation and storage of the full representing matrix.
On the other side the operator B in the zero divergence case depends only on 7. It can be easily
stored in memory because it has the same size in memory as a single coherent mode and it requires
only number of grid points two-dimensional integrations for a given f.

So far we realized that we can calculate the spatial cross spectral density that neglects any
influence of the electron beam divergence. This can be done numerically rather efficient with
the help of Krylov-methods. But in general the divergence can not be neglected because its
contribution is often very important. We will therefore account for the electron beam divergence
in a second step as follows:

Since the spatial cross spectral density has all the properties of a cross spectral density we
may perform a coherent mode decomposition. Having the decomposition of the spatial cross
spectral density we have spatial eigenvalues A} and modes ®;. The spatial integral in Eq.
may be expressed in terms of these eigenvalues and coherent modes, i.e. in its coherent mode
representation:

KAz k2Ay?

2mx/x/ me/y/

W (r1,r2,w) = Cexp <— ) 3 (@5 (r1) B (ra). (4.34)

here C is a constant. The associated cross spectral density operator takes the form:

E2Az?  k2Ay?

2m$/$/ 2my’y’

Awlflirs) =€ Y xiir) [ drowo (- )@ @)

The integral in Eq. is in fact a convolution of a Gaussian with the product of a spatial
coherent mode with f. The separability of the Gaussian convolution kernel can be exploited to
speed up the numerical calculation. To evaluate the full action of the operator Ay, additionally
number of coherent modes n convolutions per action have to be performed.

The big advantages of this two-step method is that it basically only needs the
memory for the spatial and the final coherent modes. Depending on the grid size this
may still be several gigabytes or even a few hundred gigabytes. Software packages like SLEPc
distribute the modes across computer nodes so that these problems can be practically calculated
on small sized clusters.

We point out that this method becomes an approximation if the first step does not reproduces
the spatial cross spectral density completely, i.e. if the first step does not calculate sufficient
spatial modes. However, this can be controlled by the sum of the spatial eigenvalues because
the operator is nuclear and the sum of its eigenvalues equals the trace of the operator which can
be independently and efficiently calculated using a convolution.

To estimate the calculation effort let us assume we need as many spatial modes to converge
the spatial operator as we wish to have coherent modes in the end. Let N, be this number of
requested coherent modes and let N, be the number of grid points. For the first step the Krylov-
subspace based method will perform about 2N,, times 2N, two-dimensional integrals giving
a total of 4N, N, two-dimensional integrals. The second step will perform N, convolutions
per action for about 2N, actions so in total 2N?2 convolutions. If we consider a FFT based
convolution roughly as N, two-dimensional integrals we end up with a total of 2N, Ny (2 + Np,)
two-dimensional integrals. The full matrix method would need Ng two-dimensional integrals
plus N,,, matrix-vector products that are effectively a two-dimensional integral, giving a total of
Ng2 + N, two-dimensional integrals. The scaling with Ny is linear for the two-step method and
quadratic for the matrix method. If Ny, > N,,, as in the case of high-emittance lattices where IV,
is of the order of a few hundred thousands and NV, is of the order of a few thousands, the two-step

97



methods is not only more memory efficient, and therefore feasible at all, but also performs a lot
fewer calculations.

As a final remark we point out that in the special case of the symmetry point the spatial cross
spectral operator can be calculated efficiently with the usage of convolutions. The second step
which is usually computationally more demanding remains, however, unchanged.

Concerning the level of complexity of the implementation, it is even a bit higher than for the
matrix method. Everything we discussed in view of the complexity of the matrix method in
section applies to the two-step method as well. The implementation of the two-step method
requires parallel and performance optimized programming. The reason is again the large memory
need and the large amount of calculations that can not be handled by a single state of the art
computer. Parallel and optimized programming gives more space for implementation errors and
the development must be made very careful and tested extensively. While the matrix method
has only one step, the two-step method consists of two-steps. The two-step method has therefore
more potential for implementation errors and development and testing required more time.

4.5. Tests and comparison of the two-step method
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Figure 4.13.: Decomposition using the two-step method algorithm with a delta shaped electron
beam. The initial wavefront is recovered from the first mode of the decomposition.

The two-step method is even more complicated to implement than the matrix method. Addi-
tionally, it must be guaranteed that the first step is sufficiently converged. While the equations of
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the two-step method look reasonable the matrix method appears to be more straightforward and
therefore more trustworthy. We performed all the tests we did for the matrix method likewise
with the two-step method. Additionally, we tested the the two-step methods against the matrix
method. The following pages contain therefore a rather long list of test results.

To arrive at a good numerical convergence for the test case of a delta shaped electron beam one
requires a more dense sampling than it is needed for the matrix method. Nevertheless the initial
wavefront is recovered (see Fig. . Additionally, we compare the matrix method and the
two-step method for ESRF-EBS lattice settings and ESRF ul8 2m long and 4m long undulators.
We always find high numerical agreement between the two methods and their implementations.
This adds extra confidence to both methods because even though the two methods are based on
the same physics the implementations and their equations are rather different and offer many
possibilities for implementation bugs. Like for the tests of the matrix method in section we
used grid settings that showed to perform well in real applications. The sampling factor is usually
s = 2.5. A detailed discussion of convergence issues can be found in the applications chapter
We start the discussion with the presentation of the comparison to the analytical results for an
initial Gaussian wavefront:

EO("') = AeXp —@ — @ (436)
T Yy

with s, = s, = 2.85um. As in section the values of the parameters s, and s, are taken from a
fit to the central cone of the first harmonic of an 2m long ESRF ul8 undulator. For the symmetry
point settings the relative errors of the eigenvalues and coherent modes are written in Table.
The relative error is at most 1.6 - 107> for the eigenvalues and at most 3.2 - 1075 for the coherent
modes. The relative error in operator norm is 5.8 - 1076 for the first 100 modes.

In contrast to the matrix method this method can perform the decomposition in practical
times and even to a higher precision for the finite alpha case as well. The calculations here were
performed with a sampling factor of s = 2.5 whereas the finite alpha tests for the matrix method
were performed only with a sampling factor of s = 1.5. Although the precision was increased
this method took less calculation time and used less memory. The two-step method calculation
took 18 hours and 5 minutes on 28 CPU cores whereas the related calculation in the matrix test
section took 24 hours and 6 minutes on 35 CPU cores. The relative errors of the eigenvalues
and coherent modes are written in Table. 1.4l The relative error is at most 1.8 - 10~% for the
eigenvalues and at most 3.8- 1074 for the coherent modes. The relative error in operator norm is
3.0 -107* for the first 100 modes.

Let us now compare the two methods directly. For an initial Gaussian wavefront the two
methods agree to the theoretical result and they will therefore also agree among each other. It
is however theoretically possible that they agree less among each other than to the theoretically
result. Our results show that this is not the case, i.e. the agreement between the two methods
is very good. All the relative errors are at most 6.2 - 1070 (see Table. . The comparisons is
only made for the symmetry point case because in the finite alpha case the calculations were, as
already discussed, made at different sampling settings.

We enlarge our test cases to some real applications. We compare numerical results for ESRF-
EBS lattice with a 2 meter and a 4 meter long ESRF ul8 undulator. The calculations are
performed at their first harmonics and the convergence parameter (sampling factor s = 2.5) is
taken from the application chapter

For the symmetry point the relative errors are written in Table. [£.6] The relative error is at
most 4.3 - 107° for the eigenvalues for both undulators and is at most 1.1 - 10~ for the coherent
modes. The relative error in operator norm is 3.2-107% (2m) and 4.9-10~7 (4m) for the first 300
modes.

For the finite alpha case and both undulators the relative error of the eigenvalues is at most
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Symmetry point:

Finite alpha:

# mode An oA dmode # mode An oA omode
1169-10%[3.7-1076|2.3-10°6 1/62-108]25-107°[3.8-10*
2162-10%|4.3-1076]2.0-1076 256-10%{3.0-107°|34-107*
3155-10% | 5.0-1076]1.9-1076 315.0-10%(35-107°|3.1-107¢
4149-10% | 5.5-107%| 1.7-10° 4145-10% | 4.0-107° | 2.8-107*
5(44-1021(6.1-107% | 1.7-1076 5(41-10%|45-107°|25-107¢
6]39-10% |66-1076|1.6-1076 6| 3.7-10%(5.0-107°]22-107¢
7135-10%|71-1076% | 1.7-10°6 7133-10%|55-107° | 2.0-107*
8131-10% | 76-1076]1.9.-10°6 8130-10%|59-107°| 1.8-107*
9]28-10%|80-107%|2.1-1076 91]27-10%(64-107°|1.7-107%

10 [ 2.5-108 | 8.3-1076 | 2.3.1076 10 [24-108[69-107° | 1.5-107*
11 2.3-108199-1076 [ 1.4-10°6 11 (23-10% | 75-107° | 21-107*
12 [ 22-108 | 8.7-1076 | 2.4.1076 12 122-108 | 74-107° | 1.3-107*
1321-108 | 1.1-107° | 1.2-107 13]21-10% [ 8.0-107° | 1.9-107*
14 [ 2.0-108 [ 9.0-1076 | 2.6-1076 14[19-108 | 78-107° | 1.2-107*
15(19-108 [ 1.1-107® | 1.1-1076 15(19-108% [ 85-107° | 1.7-10~*
16 [ 1.8-10%8 [ 9.3-1076 | 2.8.1076 16 [ 1.7-10% [ 83-107° | 1.1-107*
17 [ 1.7-108 [ 1.2-107° | 1.0- 1076 17 [ 1.7-108 [ 9.0-107° | 1.5-10~*
18 | 1.6-108 | 9.5-1076 | 2.9.106 18 [ 1.6-10% | 8.7-107° | 1.0-107*
19 (15-108 [ 1.2-107® [ 9.1-1077 19 [15-108[95-107° | 1.4-10~*
20| 1.4-10%{9.7-10°% | 3.0-10°6 20| 1.4-10%{9.2-107° | 9.0-107°
30 |81-107 [ 1.0-107° | 3.2-10°6 30| 85-107 | 1.2-107* | 1.9-107¢
40 | 5.5-107 | 1.1-107° | 8.4-107 40 | 5.9-107 | 1.3-107* | 4.4-107°
50 | 3.8-107 | 1.6-107° | 1.1-1076 50 | 4.2-107 | 1.5-107* | 3.9-107°
100 | 8.7-10% | 1.5-107® | 5.0-107° 100 [ 1.1-107 [ 1.8-107* | 1.2-107°
Mode distribution Mode distribution
0.07 \ T T T 0.06 I T T T
0.06 ~ - 0.05 7 i
0.05 j\ .
\ 0.04 - | B
§ 0.04 - \\ | g
% \\ g- 0.03 - | -
S 003 |\ a S
© 0.00 \\ © 0.02 - -
0.01 - ~— i 0.01 - \\\ i

Number of mode

50

Number of mode

50

Table 4.4.: Relative errors between the analytical and numerical result for the eigenvalues and
coherent modes with an initial Gaussian wavefront using the two-step method at the
symmetry point(left) or with finite alpha(right) and their mode distributions(bottom).
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# mode oA dmode
1/62-107° [ 85.-10°™
211.8-107* | 6.0-10"1
3143-1071% ] 23.10713
4134-107"% ] 1.6-10713
516.2-1071% | 3.3.10°13
6| 1.2-10713 | 5.7.10713
7125-10713 | 1.1-10712
815.3-10713 | 2.0-10712
9|11-10712| 3.2-10712
10| 2.0-1072 | 55-10712
1119.0-10716 | 5.1-10714
12 13.6-1072 | 83-10712
13133-107 | 86-10714
14 |64-1072 | 1.3-107 1
15(89-1074 | 2.2.10713
16| 1.1-107 | 1.9.1071
171 24-1078 | 5.6-10713
18| 1.8-1071 | 2.8.107 11
1962-1078 | 1.2-10712
20 29-1071 | 3.8-1071¢
30| 25-10710 | 1.8.10710
40 | 2.3-10712 | 1.7.10712
50 | 6.2-10719 | 2.1.10710

100 | 9.5-1072 | 1.9-10712

Table 4.5.: Relative errors for the eigenvalues and the coherent mode between the matrix and the

two step method for a Gaussian wavefront.

3.6 - 1075 for the eigenvalues and it is at most 9.9 - 10~7 for the coherent modes (see Table. .
The relative error in operator norm is 2.8 - 1076 (2m) and 6.9-10~7 (4m) for the first 300 modes.

The results of the two methods are in very good agreement. The results could be even further
improved if higher sampling factors s were used. But we do not consider this necessary given the
extra consumption of computational resources. We may conclude that both methods are identical

in the limits of numerical precision.
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ESRF ul® 2m:
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Table 4.6.:

102

=
=
5
&

oA

dmode

0.07

0.06

0.05

0.04

0.03

0.02

0.01

© 00 N Tk W -

O e O R el e S S R
S © 00O Ui W +—= O

30
40
50

100

43-1078
5.2-1078
83-1078
1.2-1077
1.5-1077
1.9-1077
2.3-1077
2.8-1077
3.4-1077
41-1077
2.7-1077
5.2-1077
3.6-1077
6.2-1077
5.0-1077
7.6-1077
6.6-1077
9.2.1077
8.4-1077
1.1-1076

2.5-1076
3.5-1076
8.1-1076
4.3-107°

8.9-1078
1.2-1077
1.6-10"
2.1-1077
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ESRF ul® 4m:
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Relative errors of the eigenvalues and the coherent modes between the matrix and

the two-step method for the ESRF-EBS lattice at a symmetry point and an ESRF
ul8 undulator of 2m length(left) or 4m length(right) and their mode distributions
(bottom).
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Table 4.7.: Relative errors of the eigenvalues and the coherent modes between the matrix and the
two-step method for the ESRF-EBS lattice with finite alpha for the ESRF ul8 undu-
lator of 2m length(left) and 4m length(right) and their mode distributions (bottom).
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4.6. Addition of energy spread

Until now the presented implementations only calculated the cross spectral density for the ideal
electron energy. In reality the electron beam consists of electrons with different energies. This
circumstance is called energy spread. If we calculate the cross spectral density at the resonance
frequency of the ideal electron the electric field produced by the electrons with different energies
will be off resonance but will still contribute. To account for this effect we have to sum the
contributions of electrons with different energies weighted by their statistical appearance. Let
W, (r1,72,w) be the cross spectral density for an electron energy . From Eq. or from Eq.
combined with a linear substitution (see Eq. we find the cross spectral density with energy
spread:

W(ry,ro,w) = /dv Py (V)W (11,12, W) (4.37)

where p, is the probability distribution that an electron has energy . In our implementation
this integral is replaced by a sum:

W(rlar%w) ~ Z h pW(’Yi)W%‘ (T17r27w) (4'38)

where h is the constant integration step width. The weight can be put into the initial electric

field used in Eq.
Eo(vi) = \/py(7i) Eo(vi)- (4.39)

With this implementation the energy spread case is reduced to the sum of several weighted
ordinary cases:

Wiryro.w) ~ b W, (r,r,w). (4.40)

The algorithm samples energies over a range of three standard deviations of the energy spread
os. The energy point sampling to discretize the integral is equidistant and the number of energy
points used have to be configured in the configuration file of the calculation. We do not set a
fixed value here.

For this implementation of the energy spread only minor adjustments to the algorithm are
necessary. Extensive tests can be avoided because the energy spread calculation builds on the well
tested algorithm for the calculation without energy spread. The matrix method that calculates
the full representing matrix is basically unchanged because it works on the new full matrix, which
just takes longer to calculate. The two-step method calculates the action of the total cross spectral
density operator Ay (see Eq. for all weighted fields directly. In both cases the effort for
the calculations scales linearly with the number of energy integration points.

4.6.1. Tests of the eigendecomposition with energy spread

We have not developed an analytical test case for the energy spread calculations. But we may
at least do consistency checks between the matrix method and the two-step method. If both
methods agree implementation errors become less likely.

With both methods we performed calculations for ESRF-EBS lattice settings as defined in
section with energy spread at the symmetry point for the 2m and 4m long ESRF ul8
undulators as defined in The algorithm samples always over three standard deviations of
the energy spread os and in these tests we used 61 energy sampling points.

The sampling factor s = 2.5 was again taken from convergence considerations presented in the
application chapter [5| The relative errors of the eigenvalues and coherent modes are written in
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Table. For both undulators the relative error for the eigenvalues is at most 3.8 - 107>, The
relative error for the modes is at most 2.2 - 1076, The relative error in operator norm is 2.2 - 10~°
(2m) and 3.3 - 1079 (4m) for the first 300 modes. The first sixteen coherent modes of the ESRF
ul8 2m long undulator with ESRF-EBS lattice settings are depicted in Fig. and Fig.
The purpose of this section is only to test the algorithm. The consequence of the variation of the
energy spread will be discussed in chapter

We conclude that both implementations are identical within numerical precision.
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The normalized intensities of the first eight coherent modes of the ESRF ul8 2m
long undulator with ESRF-EBS lattice settings at the symmetry point with energy

spread.
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Figure 4.15.: Continuation of the normalized intensities of the coherent modes starting from the
ninth mode for the ESRF ul8 2m long undulator with ESRF-EBS lattice settings
at the symmetry point with energy spread.
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Table 4.8.: Relative errors for the eigenvalues and coherent modes between the matrix and the
two-step method for the ESRF-EBS lattice with energy spread for an ESRF ul8
undulator of 2m length(left) or 4m length(right).
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Figure 4.16.: Simple 1:1 imaging beamline of the undulator center with an ideal lens. The primary
slit is widely opened. The vertical and horizontal focal lengths are 18m.

4.7. Comparison to SRW

We close this chapter with the demonstration of the propagation of the modes calculated with
the two-step method. To simulate statistical phenomena, like partial coherence, SRW offers a
multielectron calculation. The initial conditions of an electron entering the undulator are sampled
according to a Gaussian electron phase space distribution. The emission of each electron is
averaged. This method can calculate the spectral density or selected points of the cross spectral
density. The full cross spectral density would be too big for practical usage of this method.
One drawback of this method is, that like any other Monte Carlo method, one never knows
when the result is finally converged. On the other hand memory consumption is rather low,
parallelization over each electron is straightforward and unlike the brightness convolution theorem,
no requirements to the undulator magnetic field are necessary.

Since our expertise in modelling beamlines with FFT based techniques is limited we opted for
a simple beamline. For our comparison we choose the simple beamline depicted in Fig. [4.16]

The spectral density is once calculated from the propagated coherent modes and once calculated
with the SRW multielectron sampling. For this spectral density comparison we used the 2m and
4m ESRF ul8 undulators and the ESRF-EBS settings at the symmetry point, with finite alpha
or with energy spread. Some comparisons are plotted in Fig.

To compare the FWHM of the spectral densities a fit on a finer grid was made. We remark that
the SRW multielectron method is a Monte Carlo approach and that small fluctuations around
the exact value are therefore always possible. The FWHM of the vertical and horizontal cut
coincide within the error range (see Table. . We choose the error range to be the step width
of the grid of the SRW sampling. The SRW sampling were performed on coarser grids than the
coherent mode decomposition and mode propagation. The reason for the reduced step width was
the saving of computational resources. At least with the settings we used for SRW and since
we wanted to have some certainty that the results were converged, the SRW calculations took
already several days. If we had set the same grid settings for the SRW calculation we used for the
decomposition we would have needed several weeks for the calculations. The grid sizes (H x V)
of the wavefront at the final observation plane were of the order 180 x 60 for SRW and 1764 x 294
for the coherent modes.

The spectral degree of coherence for a horizontal and a vertical cut calculated from the propa-
gated coherent modes and calculated by the SRW multielectron sampling is plotted in Fig. |[4.18
If SRW performs a spectral degree of coherence calculation it creates either a vertical cut or a
horizontal cut of the four-dimensional spectral degree of coherence. In a vertical cut the hor-
izontal coordinates of r1 and ro are fixed to zero and only the vertical coordinates are varied.
This results in a two-dimensional set of values. In a horizontal cut the vertical coordinates of r
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Figure 4.17.: Normalized spectral density from propagated modes (left) and from SRW multielec-
tron sampling (right) at the image plane of the beamline Fig. for ESRF-EBS
settings at a symmetry point with the 2m (top) and the 4m (bottom) ESRF ul8
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Symmetry point:

Vertical [um)]

Horizontal [um)

Finite alpha:

Symmetry point with finite energy spread:

Table 4.9.: FWHM of the propagated spectral density for a simple beamline (Fig. ) using
coherent modes and SRW multielectron sampling with the 2m or 4m long ESRF ul8
undulators with ESRF-EBS settings at a symmetry point, with finite alpha or at a

and ro are set to zero and only the horizontal coordinates are varied. In order to not introduce
further possible sources of errors or an additional approximation we compare these cuts directly
to the cuts of our cross spectral density in coherent mode representation. For this comparison
the SRW multielectron calculation was performed with doubled resolution for several weeks. The
horizontal cuts agree very well for the SRW method and the coherent mode decomposition. The
vertical cuts agree essentially as well. Minor difference are though visible. The origin of the
slight difference could be the underlying approximations of the brightness convolution theorem

Undulator || from modes SRW from modes SRW
2m || 12.49+£0.6 | 12.494+1.6 | 66.07+0.6 | 65.94 £ 1.6
4m || 16.13+0.7 | 16.27£2.2 || 69.72+0.7 | 69.06 + 2.2
Vertical [um)] Horizontal [um)
Undulator || from modes SRW from modes SRW
2m || 11.97+£0.7 | 11.97+1.6 | 72.58 +£0.7 | 72.45+ 1.6
4dm || 15.62+0.7 | 15,88+ 1.7 || 74.40+0.7 | 73.75 £ 2.2

Vertical [pum)]

Horizontal [um)

Undulator || from modes SRW from modes SRW
2m || 12.234+0.7 | 12.10+2.2 || 66.07+£0.7 | 66.07 1.5
4m || 15.35+0.7 | 15.624+ 1.7 || 69.97+0.7 | 69.06 £ 1.7

symmetry point with energy spread.

or statistical fluctuations of the SRW Monte Carlo based sampling.
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4.8. Summary

In this chapter we present two algorithms for a numerical coherent mode decomposition of the
cross spectral density for undulator storage ring emission. We restrict ourselves to the symmetry
point and the finite alpha positions in the straight section defined in section[2.1.6] For the creation
of the single electron emission and the propagation to the virtual source we use SRW.

We start with the matriz method that discretizes the cross spectral density operator Ay in a
step function basis set (Eq. . We introduced the sampling factor as a measure for the density
of numerical grid points in section

The discretization is followed by an iterative diagonalization. We use SLEPc[46] for this pur-
pose. The implementation of the algorithms is called Coherent Modes for Synchrotron Light
(comsyl). It is open source and available at [9]. A brief overview of the structure of the code is
depicted in Fig. [4.4 The most important classes are mentioned in Table. The implemen-
tations are parallel and performance optimized. This implies a rather high complexity of the
implementations that had to be tested intensively. We present tests for a Dirac delta shaped
electron beam and for a reference Gaussian wavefront, whose result can be calculated analyti-
cally. The agreement with the theoretical predictions is very good. Additionally we test in section
that the undulators we use in this thesis follow the fundamental relation of the brightness
convolution theorem between the initial condition of the electron entering the undulator and the
shift of its emission given by Eq. In section we discuss for the undulators used in this
thesis if they change the electron beam phase space density at their center. We find that they
introduce a constant spatial shift of the density at the undulator center. For our algorithm this
has no consequences because we define the virtual source to lie always at the undulator entrance
plane.

In section we discuss that the propagation of the cross spectral density may change its
spectrum and its coherent modes. With Eq. we show how a cross spectral density that is
represented in modes can be decomposed directly in terms of these modes, i.e. how to avoid the
construction of the full representing matrix.

The drawback of the matrix method is that it requires a lot of memory and computational
resources. It scales essentially with NgNz? where N, N, are the numbers of grid points in the
x and y dimension, respectively. Typical sizes for N, and N, can easily reach a few hundred up
to a few thousand. In the latter case the memory requirements would reach several thousand
terabytes. To reduce the memory requirements of the matrix method we present the two-step
method that first performs a coherent mode decomposition for a zero divergence electron beam
and based on this decomposition performs a second decomposition that takes the divergence into
account. The memory requirement for our undulator applications is drastically reduced to about
4Ny NyN,, where N,, is the number of requested coherent modes. This allows the calculation of
higher harmonics or higher emittance rings where N, N, > N,,. Just like the matrix method we
test the two-step method for a delta shaped electron beam and a reference Gaussian wavefront.
In section we add the contributions from the electron beam energy spread.

Finally in section 4.7] we compare the decomposition to some results obtained by SRW multi-
electron Monte Carlo sampling for the spectral density and for some selected points of the cross
spectral density because SRW can neither calculate the full spectral density nor the mode spec-
trum or the coherent modes. All the tests show very good agreement given the fact that different
methods and approximations are used for the calculations.
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5. Applications

In this chapter we present some applications of the decomposition algorithm and a propagation
of the cross spectral density.

First we discuss the influence of the undulator harmonic number and the undulator length on
the number of coherent modes, coherence length and the required computational time. In this
chapter we use the the notion of coherence length for the FWHM of the spectral degree of
coherence i where 1 is fixed at the origin and 5 is varied. This discussion may support design
decisions whether a certain undulator is useful for a given beamline that exploits coherence. The
discussion is accompanied with a detailed convergence test.

Afterwards we present a virtual experiment similar to the experiment performed in [4] for the
current ESRF and the future ESRF-EBS lattice settings with an ESRF ul8 undulator of 2m
length.

Then the changes of the mode spectrum for a variation of energy spread settings, the effect of
finite alpha and the effect of a scaling of all electron beam settings are presented. These kind of
calculations are suitable to support storage ring design decisions.

As a final application we compare some exact numerical decompositions to other approxima-
tions: the Gaussian Schell-model approximation, a separation approximation and an analytical
approzimation proposed by Geloni et al.[8]. Similar or other approximations have been discussed
in [59, 60, [61), 62]. These approximations are much faster than the coupled exact calculation and
thus finding suitable approximation could be of great value for practical calculations.

The presented results are based on more than one thousand calculations to ensure convergence.
Throughout this chapter only the two-step method is used for the numerical decomposition. The
lattice settings are given in section and the undulator settings are found in section [2.3.4]
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5.1. Dependence of the mode spectrum on undulator length and
number of harmonic

In this section we investigate the convergence for all the different undulators used in this thesis
and at different harmonics as well as at some photon energies for maximum flux. As lattice we use
the ESRF-EBS settings without energy spread. Energy spread is turned off to save computation
time. The coherent mode decompositions are performed at the undulator entrance plane.

We converge the calculations by increasing the sampling factor s (see its definition in section
. The total number of grid points scales quadratically with the sampling factor. The factor
s = 1 refers to the sampling factor 1.0 of the SRW calculation of the single electron reference
emission Ey. In chapter 4| we compared numerical coherent mode decompositions on the same
numerical grid. Here during the convergence test an extra difficulty arises in the comparison
of two calculations. The different sampling factors define different numerical grids. In order to
calculate the error in the operator norm (see section we interpolate the higher resolution
to the coarser resolution and we compare these two calculations. This reduction may introduce
an extra error and the so obtained error in operator norm may be overestimated. Our discussion
focuses therefore on the trend of convergence with increasing sampling factor rather than its
quantitative value. One consequence is however strictly deducible: if the error in operator norm
is small then in any case the two calculations are close.

The plots in Fig. (left) show the general convergence trend in operator norm. We plot the
mean of the relative error of the first 150 eigenvalues oA = (1/150) 32149 6\, in Fig. (right) as
well. The eigenvalues converge very fast. Basically s = 1.0 is already sufficient. For the operator
norm and the first harmonic there is a jump between the sampling factor 1.0 and 1.5 but overall
the relative error of less than 1.5-10 is very small. For the third harmonic the jump is between
1.5 and 2.0 and for the fifth it is between 1.0 and 1.2. In general higher harmonics are more
difficult to converge.

A larger number of coherent modes is needed for incorporating 95% of the spectral density
for shorter undulator and for higher harmonics. The mode spectrum broadens with decreasing
undulator length and increasing harmonic number (see Table. . In this sample the lowest
number of modes for taking 95% of the spectral density into accounting is 131 for the first
harmonic of the 4m undulator and the largest number is about 5000 for the fifth harmonic of the
1m undulator. It looks like the smaller cone of the single electron emission leads to an increase
of the number of coherent modes. It could be that in the case where all the information of the
single electron emission are encoded on a smaller length scale fluctuations of the electron beam
that were negligible for a larger single electron emission cone become more significant. This could
in consequence lead to a degradation of coherence.

With L being the undulator length and X = A/27 being the reduced wavelength Geloni et
al.[8] define at the middle of the undulator \/A/L as the radiation diffraction angle and VAL as
the radiation diffraction size. The characteristic transverse range in the far field is then given in
units of the radiation diffraction angle. Likewise the characteristic transverse range at the virtual
source placed at the middle of the undulator is given in units of the radiation diffraction size (see
also [23], 52] for similar definitions). Furthermore Geloni et al. express the characteristic scales
of the electron beam size and divergence in these units:

2
o
N; =+
AL
e (5.1)
D; =~
AL

where i € {z,y}. Large values of N; and D; imply that the electron beam properties dominate
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Figure 5.1.: Behavior of the operator error norm (left) and the mean relative error of the first 150
eigenvalues (right) for harmonics 1, 3, 5 for the ESRF ul8 undulators (1m, 2m, 4m)

at ESRF-EBS lattice settings.
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Number of modes:

Undulator H‘ 1. harmomc 3.harmonic | 5.harmonic H 1. ﬂux max | 3.flux max
1m 2406 5080 1845
2m 154 490 1550 605

FWHM horizontal spectral degree of coherence in um:

Undulator H‘ 1. harmonlc ‘ 3.harmonic | 5. harmomc H 1. ﬂux max | 3.flux max
1m 3.0 2.7
2m 3.3 2.7
4m 3.5 2.7

FWHM vertical spectral degree of coherence in pm:

Undulator H‘ 1.harmonic | 3.harmonic 5.harmonic H 1. ﬂux max | 3.flux max
1m 11.1 5.1 4.1
2m 21.0 7.2 11 0 4.8
4m 30.0 9.5 11.0 5.3

Table 5.1.: Number of modes to cover 95% of the spectral denisty and horizontal and vertical
FWHM of the spectral degree of coherence.

over the single electron emission. On the contrary small values of V; and D; indicate that single
electron emission features become more dominant. In Table. 5.2l the D and N numbers for the
used undulators and photon energies at ESRF-EBS settings are listed. The numbers increase
with increasing photon energy, i.e. electron beam properties become more dominant.

We can also see from Table. that at the resonances a higher number of coherent modes
is accompanied with a decrease of the coherence length. Moreover for the 2m and 4m long
undulator at photon energies of the first and third lux maximum the number of coherent modes
is higher than for the associated resonant case and accordingly the coherence lengths are reduced.
Surprisingly, for the 1m undulator the number of coherent modes is smaller for the energies of
the flux maxima than for the resonance cases while the coherence length is still smaller than in
the resonant case.

Depending on the undulator length and the photon energy the FWHM of the spectral density
of our calculations are between 64 — 74um in the horizontal direction and between 10 — 22um in
the vertical direction. We can conclude from Table. E.1] that at least for the first harmonic the
undulator emission is not quasi-homogeneous because the spectral density varies in both directions
over the coherence length. Consequently the requirements of the (generalized) van Cittert-Zernike
theorem|[15], [42] are not fulfilled and the theorem can not be used to describe the cross spectral
density in the limit we are mainly interested in, i.e. the limit of rather high coherence. For
higher photon energies the coherence lengths decrease while the spectral density stays rather
constant and possibly for high enough photon energies the emission becomes quasi-homogeneous
but coherence properties will be poor for these energies.

The convergence of the 1m long undulator was practically more difficult than the convergence
of 2m or 4m long undulators. Because of the large number of involved coherent modes the
calculations were rather long (several days). And if the settings were not sufficiently tight the
calculations had to be remade. A method to estimate a priori the needed number of coherent
modes has not yet been developed. It can therefore take some tries to find good initial settings
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N D

Undulator | Energy || Horizontal | Vertical Horizontal | Vertical
1m Eomaz 3.0-108 | 47-107' | 1.1-10° |7.8-10°°
Ey 3.0-10' |47-107'| 1.1-10° |7.8-1072

Eomaz 9.0- 10" 1.4-10° 3.2-10° |23-107!

E, 9.1-10! 1.4-10° 3.2-100 | 24-1071

E, 1.5-10% 2.4-10° 54-10° | 39.10°1

2m Eomaz 1.5-101 |23-107t| 22-10° |1.6-107t
Ey 1.5-101 | 23.107% | 22-10° | 1.6-107"

Eomaz 45-108 | 70-107' || 6.5-100 |4.7-107"

Fy 45-101 | 70-107'| 6.6-10° | 4.8-107!

E, 7.5-10! 1.2-10° 1.1-10 | 79-107!

4m Eomaz 74-10° [12-107t | 43-10° |3.1-1071
Ey 75-100 [1.2-107t | 44-10° |3.2-107!

Eomax 2.2-10' |[35-107t | 1.3-10' |9.5-107!

Es 2.2-10" | 35-107'| 1.3-10% |9.5-107!

E, 3.7-10 | 59-1071 || 2.2-10! 1.6-10°

Table 5.2.: N and D numbers (see Eq. for the used undulators and photon energies at ESRF-
EBS lattice settings.

which then have to be converged by increasing the sampling factor s. The modes of the spatial
cross spectral density of the first step of the two-step method was targeted to cover more than
99.5% of the spatial spectral density. With a fixed mode number the coverage of the spatial
cross spectral density decreased slightly while the sampling factor s was increased. For the higher
harmonics of the 1m long undulator and the highest used sampling factor the coverage is more
about 99.0% of the spatial spectral density. Furthermore, for the higher harmonic cases of the
1m long undulator that result in a larger number of coherent modes, the number of modes to
incorporate 95% of the spectral density is more sensitive to the sampling factor than for the cases
with fewer coherent modes. This is due to the fact that the mode spectra have an exponential
shape. Additionally, for the cases of a large number of coherent modes the coverage of the spatial
spectral density in the first step of the two-step method becomes more important for the final
number of coherent modes to incorporate 95% of the spectral density due to propagation of error.
On the other side the coherence length should not be affected strongly by the tails of the mode
spectra of the spatial cross spectral density or the tails of the mode spectra of the cross spectral
density because their contributions to the spectral degree of coherence p are small.

It is also interesting to see the calculation times for the different undulators and harmonics
Table. 5.3l We see the same relation as for the number of coherent modes. Shorter undulators
and higher harmonics need more computational time. This is explained by the increasing number
of needed modes. The shortest calculation took 13 CPU hours and the longest took 9888 CPU
hours.

Undulator H‘ 1. harmonlc 3.harmonic ‘ 5.harmonic H 1. ﬂux max | 3.flux max
1m 2688 9888 2649
2m 85 2550 13 42
4m 91 330 49

Table 5.3.: Calculation times in CPU core hours to produce the spectra for Table.
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Figure 5.2.: Mode distribution for the 2m ESRF ul8 undulator at its first harmonic for ESRF-
EBS and current ESRF lattice parameters at the undulator entrance plane.

5.2. Comparison of the current lattice and the ESRF-EBS lattice

In this section we compare the current lattice to the future ESRF-EBS lattice. The calculations
for the current lattice are rather expensive because the emittance of the current lattice is orders
of magnitude larger than for the new lattice (see section [2.1.7]). This requires a larger grid. The
scaling is essentially linear with the grid size. A single calculation for the current lattice (both
low and high beta) takes about 2 days on 4 nodes of the ESRF oar cluster. We restrict our
discussion therefore to one case only: the ESRF ul8 2m undulator at its first harmonic. We
discuss simulations at the virtual source, i.e. the undulator entrance plane, and after propagation
through a 1:1 imaging beamline consisting of an ideal lens followed by an aperture that is varied
in size (see Fig. 4.11]).

Lattice || N, | N, | Ds D,
ESRF-EBS || 1.5-10' | 2.3-10~! 2.2 1.6-1071
High beta | 3.0-103 | 2.5-107! 8.6 1.2-107!
Low beta || 2.8-10' | 2.5-107! || 9.2-10% | 1.2-107!

Table 5.4.: N and D numbers (see Eq. for the used lattice settings and the 2m long ul8
undulator at the first harmonic.

5.2.1. At the virtual entrance plane

Lattice ‘ Number of modes
EBS 165
high beta 3164
low beta 2724

Table 5.5.: Number of modes to cover 95% of the spectral density.
With the virtual source positioned at the entrance plane of the undulator we find the mode

spectra of Fig. In Table. the number of coherent modes necessary to cover 95% of
the spectral density is listed. We see that the new lattice needs 15 times less modes than the
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Figure 5.3.: Change of the spectral degree of coherence and the increase of the coherence length
(FWHM of the vertical and horizontal cuts) due to propagation in free space from
the undulator entrance(left) to 15m from the undulator exit(right). Note the change
of scale.

current lattice. We expect these numbers to be undulator and photon energy dependent. For
the high beta case the occupation of the first mode dy is 3.8 - 1073, for low beta it is slightly
lower: 3.4-1073 and for the ESRF-EBS settings it is an order of magnitude larger: 7.0 - 1072
The number of numerical grid points of these calculations at the virtual source in the horizontal
and vertical direction are: 3651 x 145 (high beta), 1367 x 597 (low beta) and 491 x 327 (ESRF-
EBS). As already mentioned, all the calculations were performed with the two-step method. To
do the same calculations with the matrix method one would need 4 terabytes of RAM just for
the representing matrix plus all the memory that is needed by the eigensolver and the coherent
modes. The two-step method on the other hand used in total only about 150 gigabytes.
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Figure 5.4.: Occupation (left) and spectral density fraction(right) of the first mode for a given slit
size (VxH in pm) after additional 2m propagation. The fraction is calculated with
respect to the spectral density at the undulator virtual source. Values for slit sizes
smaller than 5 x 5 should be viewed with care.

5.2.2. Propagation and rediagonalization

With the 1:1 imaging beamline (see Fig. we image the center of the 2m long 118 undulator
for the first harmonic with ESRF-EBS lattice settings and with the current high beta and low beta
lattice settings. The primary slit is opened widely and should basically accept all the radiation.

Let us first see how the coherence length changes by free space propagation. At 15 meters from
the undulator exit, i.e. before the primary slit, the change of the spectral degree of coherence by
free space propagation is depicted in Fig. [5.3] The coherence length at the undulator entrance
plane and at 15 m, 20 m and 25 m distance measured from the undulator exit are listed in
Table. The changes of the coherence length from 15m to 25m appear to be linearly related.

Position ‘ Horizontal [pum] ‘ Vertical [pm]

Source 7.5 18.0
15m 36.0 240.0
20m 46.0 316.0
25m 56.0 390.0

Table 5.6.: Change of the coherence length due to free space propagation. Listed are the lengths
at the virtual source and at 15m, 20m and 25m measured from the undulator exit.

Let us now come to the end of the beamline. The final slit of the beamline in Fig. is placed
close to the lens focus and is varied in size. It is followed by another short free space propagation
that is the final position of the beamline. At this position we perform another coherent mode
decomposition. We see that the spectral density at this position concentrates into fewer modes,
i.e. the first mode occupation increases (Fig. left).

However, with this concentration into fewer modes the intensity of the first mode, i.e. its
eigenvalue, is reduced. This is seen from Fig. M(right) where the ratio of the first mode intensity
to the spectral density at the virtual source is depicted. We trade statistical purity or coherence for
spectral density. The ESRF-EBS lattice performs best. It has the largest first mode occupation
and the largest fraction of the first mode intensity ot the spectral density at the virtual source.
The high beta lattice has a larger occupation of the first mode than the low beta lattice but a
smaller fraction of the spectral density in its first mode. This is probably due to the fact that
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Figure 5.5.: Normalized spectral density(top) and the first four coherent modes propagated by
2m after a 5um x 5um sized final slit for ESRF-EBS(left column), ESRF high beta

(center column) and ESRF low beta (right column) lattice settings.
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the final aperture cuts more of the emission in the high beta case than in the low beta case.

A technical limitation arises for slits smaller than 5um x bum and their results should be
considered with care. For slit sizes smaller than 5um x 5um the resulting modes can no longer
be propagated with SRW because we have too few grid points left. Theoretically one could redo
the calculation with a finer resolution but the propagation of the modes through the beamline
becomes impossible. SRW is not parallelized over a single wavefront propagation and at some
positions in the beamline our modes are in this resolution already at the edge of the currently
possible because of single CPU memory limitation (about 10gb). This is in particular true for
higher order coherent modes that have large spatial extend. One could think of interpolating the
propagated modes in the final slit but this would need a lot of careful studies of the probable
form of the mode in the slit and we did not follow this route to avoid biased results.

In Fig. 5.5 we show the propagated modes after the slits, i.e. at the final position of the
beamline.
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5.3. Effects of the energy spread on the mode spectrum

In this section we are interested in the consequences of the energy spread on the width of the
mode spectrum. We use ESRF-EBS lattice settings and the usual ESRF ul8 undulator of 1, 2
or 4 meter lengths at their first harmonic.

The ESRF-EBS energy spread is varied according to:

(05) =055 (5.2)

with
s€{0.0,0.2,04,...,1.0,...,1.8,2.0} (5.3)

whereas the transverse beam parameters are kept fixed. The energy integration was performed
with 27 points.

We observe that the total number of coherent modes to incorporate 95% of the spectral density
as well as the occupation of the first mode dgy for the 1m long undulator is barely changed whereas
for the 4m long undulator there are relatively large changes. The mode occupation varies barely
for the 1m long undulator and becomes slightly less compact with increasing energy spread for
the 4m long undulator (see Fig. [5.6).
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Figure 5.6.: Number of modes for 95% of the spectral density(left) and mode distribution(right)

for a linear variation of the energy spread with ESRF ul8 undulators (1m, 2m, 4m)
and ESRF-EBS lattice settings(s = 1.0).
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straight section

iy s—

before center center

Figure 5.7.: Illustration of the different placements of the undulators in the straight section. One
undulator is placed with its entrance at the center (black) and the other is placed
with its entrance at a position with finite alpha (blue).

5.4. Consequences of finite alpha on the mode distribution

In this section we compare an ESRF ul8 2m long undulator with its entrance placed at different
positions in the storage ring. We use the ESRF-EBS lattice settings. One calculation is performed
with the entrance of the undulator at the symmetry point and one calculation is performed with
the entrance of the undulator 1m before the symmetry point (see Fig. [5.7).

We find that the total number of coherent modes to incorporate 95% of the spectral density
and the coherence lengths are barely changed Table. This is also true for the shape of the
spectra Fig. at the virtual source and after a propagation through the ideal one to one imaging

beamline Fig.

Undulator entrance at Number modes | Coherence length [pm]
Horizontal | Vertical

symmetry point 154 7.8 20.6

1m before symmetry point 163 8.6 21.3

Table 5.7.: Comparison of the number of coherent modes to incorporate 95% of the spectral
density for ESRF-EBS lattice settings with an ESRF 118 undulator of 2m length.

We discuss only the 2m long undulator because finite alpha calculations are about 10 times
slower than those performed at the symmetry point. The reason for the increase of calculation
time is that convolutions can no longer be used for the calculation of the coherent modes.

128



Mode distribution at virtual source

Mode distribution after propagation
0.08 T T T 0.08 T T T
entrance at symmetry point ——— entrance at symmetry point
\“ entrance 1m before symmetry point X “‘ entrance 1m before symmetry point X
| |
0.06 {+ 0.06 [+ i
| |
= ‘\‘ = ‘\
S % g X
g ool E \
g 0.04 rl b % 0.04 - | b
o | o \
o \ o \
O X O X
\ \
0.02 = 0.02 - X
X
Mok x&x&
0 o0 . o ?< .
0 50 100 150 200 0 50 100 150 200
Number modes

Number modes
Figure 5.8.: Comparison of the mode spectrum for the ESRF ul8 2m long undulator with entrance

slits placed at waist and 1m before the waist at the virtual source(left) and after
propagation through the beamline Fig. (right).
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5.5. Variation of electron beam parameters

In this section we investigate the influence of the variation of the electron beam parameters on
the coherent mode spectrum. For this we use again the first harmonic of the ESRF ul8 2m long
undulator. Starting from the transverse electron beam settings and roughlyE] the energy spread
of the new ESRF-EBS lattice we multiply each of these parameters by a scalar proportional to
M with 0.1 < M < 28. More precisely we use the electron beam settings (o;)" with:

M
for i € {x, 2, y,y/,0} : (03) = —

That means that the parameters are changed homogeneously by M/20. In particular M = 20
corresponds transverse to the ESRF-EBS settings and the energy spread is its initial value o5 =
0.89 - 1072, The choice of parameters was based on the idea to find the onset from a single
mode to several modes. Additionally, we performed a similar variation were we followed basically
the same schema but kept the energy spread o5 constant and varied only the transverse beam
settings. The energy integration was performed with 27 points. The results for both variations
are illustrated in Fig.

One can see from these simulations that a homogeneous reduction by 0.01/20 leads basically
to a single mode in this approximation. Mind however that for beam parameters of that size
other physical effects that were neglected in our approximations could become significant (e.g.
electron-electron-interactions). From the difference between the two series we can see that the
energy spread is not very dominant but it cannot be neglected.

In the case in which all parameters are varied we arrive at a single coherent mode. On the other
hand in the case where only the transverse beam settings are reduced and the energy spread is
kept fixed the first mode intensity still carries at most only 93% of the spectral density. This is
consistent with section because the electron phase space density does not approach a delta
function in the electron energy dimension.

! Accidentally the ESRF-EBS energy spread was assumed to be o5 = 0.89 - 1072 instead of o5 = 0.95-1073. In
view of the computational resources invested into all the calculations and its convergence tests and given the small
difference and the fact that we are mainly interested in very small electron beam settings, we decided to accept
this small difference.
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5.6. Comparison to some approximations

In this section we compare some exact numerical calculations to some approximations. The ap-
proximations are the Gaussian Schell-model (GSM), an analytical approximation that exploits
the large emittance of third generation synchrotrons proposed by Geloni et al.[8] as well as what
we will call the separation approximation. All approximations have in common that they sepa-
rate the horizontal and vertical dimensions which reduces the numerical complexity enormously.
Because of this separation the computational cost in these approximations is drastically reduced.
We present first the theory of the Gaussian Schell-model approximation and the theory of the
separation approximation. We will then present the results of their application. Afterwards we
introduce the equations of the analytical approximation which are followed by the results of its
application.

5.6.1. The Gaussian Schell-model approximation

A Gaussian Schell-model (Eq. [2.170)) is defined by the three free parameters A, o, and o4. The
normalization constant A can be determined from the value at the origin:

W(0,0) = A% (5.5)

A fit to the trace can be used to determine the spectral width oy:

W (z,2) = A2exp <— v ) . (5.6)

202
Knowing the spectral width oy a fit to the other diagonal determines the correlation width o:

Wz, —) = A2 exp (-552) exp <— %ﬁ;) . (5.7)

s

We mind that the Gaussian Schell model is always real and its spectral density must be Gaus-
sian. For a Gaussian Schell model it is necessary that the cross spectral density W separates into
a horizontal and a vertical part. If this is not the case then the cross spectral density can not be
described in terms of a Gaussian Schell-model.

5.6.2. The separation approximation

Here we present a separation approximation that is universal in the sense that if the cross spectral
density is separable into a purely vertical and a purely horizontal part then it is reproduced by
the following approximation. We will therefore call this approximation the separation approx-
imation.

We will call a cut of a function along a dimension the values of that function along that
dimension whereas the variables of the other dimension are constant.

For any functiorE] of four parameters W(x1,y1,x2,y2) that can be separated into the product
of two functions of two parameters f, g:

W(x17?/173327y2) = f(3317$2)9(y1, ?/2) (58)

we show that f and g can up to constant be recovered from cuts along the horizontal and vertical
dimension and that the product of these cuts reproduce W.

Lwhich is not zero everywhere on its horizontal or vertical cut,
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Setting x1 = x2 = 0 or y; = y2 = 0 we derive three equations:

a) W(0,y1,0,y2) = f(0,0)g(y1,y2)
b) W(x1,0,22,0) = f(z1,22)g(0,0) (5.9)
c) W(0,0,0,0) = £(0,0)g(0,0)

The first two equations determine f and g up to a constant. It remains only to find these
constants.

To find these constants we note that the equation c¢) establishes a relation between the product
of the two constants. Solving equation a) and b) for f and gE], respectively, and multiplication of
f and g yields:

W(07 Y1, 07 yQ)W(xla 07 z2, 0) _ W(07 Y1, 07 yg)W($1, 07 x2, 0)
£(0,0)g(0,0) W (0,0,0,0)

W(x17y17$27y2) = (510)

in the last line we used equation c).
Summarizing the product of the cuts divided by W at zero reproduce W.
Because f and g are independent(separated) the coherent modes of W are the product of the
coherent modes of f and g:
[z, y) = f[f(n)(x)glg(n)(y) (5.11)

and the eigenvalues are:
Ap = )‘If(n))‘lg(n) (5.12)

here Ir(n) and I4(n) are index functions that order the product of the eigenvalues of f and g in
descending order a function of n.

5.6.3. Results for the Gaussian Schell-model approximation and the separation
approximation

We determine f and g (Eq. from two-dimensional cuts of the exact cross spectral density W.
Afterwards we perform coherent mode decompositions for f and ¢ and build from the product of
their modes the coherent modes, i.e. we perform the separation approximation.

We tested this process with a Gaussian wavefront reference electric field at the symmetry point
and at the finite alpha position 1m away from it and we could to good numerical precision recover
the theoretically predicted Gaussian Schell-model (see section . The relative errors for the
eigenvalues and modes were of the order 1075. The relative errors in operator norm for the first
150 modes, i.e. W = W(150) (Eq. , were of the order of 1076, The restriction to 150 modes
was made purely for performance reasons. The small errors show that the idea of the separation
approximation works.

We apply the separation approximation to the EBS and current lattice calculations made
with an 2m long ul8 undulator at the first harmonic. We test the constructed W from the
separation approximation on its horizontal and vertical cuts against the exact calculation and we
get high numerically agreement. The relative error in operator norm between the exact calculation
and the separation approximation increase with the number of considered modes m (see Wwm)
(Eq. 2.141)). The error lies at about 0.05 for EBS and between 0.05 — 0.35 for high and low
beta (see Fig. [.10). While the relative error is smaller for the ESRF-EBS lattice its absolute
error is larger. The relative error of the eigenvalues lies between 1072 — 10! (EBS), 107° — 1073
(high beta) and at about 5-1072 (low beta). The trend of increasing errors with increasing mode

1£(0,0) and ¢(0,0) can not be zero unless the entire cut is zero.
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Figure 5.10.: Relative error in operator norm(top left), absolute error in operator norm(top right),
relative error of the eigenvalues (bottom left) and relative error of the coherent
modes(bottom right) for the separation approximation applied to the ESRF-EBS
and the current ESRF lattice settings with a 2m long ul8 undulator at the first
harmonic.

number is also true for the relative errors of the coherent modes for the high and low beta cases.
For the ESRF-EBS settings the error alternates. It takes values between 2-1072—6-10"2 (EBS),
1-1072 —5-1072 (high beta) and 5- 1073 — 4-10~2 (low beta). In general we can observe that
the lowest order modes are not badly approximated but higher order modes are approximated
worse. Some selected modes, partially of even higher order than 20, are depicted in Fig. [5.12
In particular higher order modes may change shape and are no longer orthogonal to the exact
coherent modes. It is not difficult to find points, that do not lie on one of the cuts, with a relative
error above 1. For the ESRF-EBS settings the situation is similar and maybe even slightly worse.
The differences start larger and increases faster.

We equally apply the Gaussian Schell-model (GSM) approximation, i.e. we fit the Gaussian
Schell-model parameters as described in section to numerically calculated values of the cross
spectral density. The GSM approximation used in this thesis is therefore from its nature a fit and
not a modelling of the cross spectral density. The relative error in operator norm lies between 2
to 3 for the current ESRF lattice and at about 0.3 for the ESRF-EBS lattice. The relative error
of the coherent modes varies mainly between 0.2 and 0.6 for the first 20 modes. For the current
ESRF lattice the relative error of the eigenvalues is rather constant over the first 20 modes and

134



Error in operator norm Absolute error in operator norm

4.0e+00 : : : : : 4.0e+07 : : : : :
EBS + EBS +
E 350400 |- high beta - E 35e+07 [ high beta -
1) low beta  * S low beta  *
=
5 3.0e+00 - B 5 30ev07 - L, N .
w ¥ % % % % % ©
5 2.5e+00 B T 2.5e+07 -
(=¥ (=¥
o o
2 2.0e+00 - - £ 2.0e+07 -
- B
5] e
E 1.5e+00 [ e 5 1.5e+07 | g
$ b ¥ X ¥ ¥ * *
]
2 1.0e+00 | . 35 1.0e+07 | .
T Q
—_— 172}
] =]
& 50e-01 [ B < 5.0e+06 - B
+ o+ o+ 4+ + +
0.0e+00 . . . . . 0.0e+00 . . . . .
100 200 300 400 500 100 200 300 400 500
Number of modes considered Number of modes considered
Error of the eigenvalues Error of the modes
1.0e+00 [ : : : - 1.0e+00 . . .
F EBS + 1 EBS +
§ r high beta 1 high beta
= 1.0e01 P low beta  * 3 L goe01 - * lowbeta * |
> o *
= L + + g
g ><xxxxxx*xxxf$**§kx¥x*
2 10002 1 x J P
o [ L+ + 4 + £ 6.0e-01 - .
= I + T o +
o= 1.0e-03 - — :6 +
o L + 4 =
= I 3 40001 - ¥ 7
g o ¥ K ox ¥ f**** **x*% *
@ 1.0e-04 - > + * *
) F - 1 k= + ot
5=}
= b o A Ty
= 2.0e-01 - + N
= 10005 - E oS * T
2 i ] -
1.0e-06 . . . 0.0e+00 . . .
0 5 10 15 20 0 5 10 15 20
Number of mode Number of mode

Figure 5.11.: Relative error in operator norm(top left), absolute error in operator norm(top right),
relative error of the eigenvalues (bottom left) and relative error of the coherent
modes(bottom right) for the Gaussian Schell-model approximation applied to the
ESRF-EBS and the current ESRF lattice settings with a 2m long ul8 undulator at
the first harmonic.

about 0.006(high beta) and and 0.02(low beta). For ESRF-EBS settings the relative error is
mainly between 0.003 and 0.05. The error in operator norm is worse for the Gaussian Schell-
model approximation than for the separation approximation. For the eigenvalues the errors are
similar for high and low beta but the Gaussian Schell-model approximation performs better for
EBS settings. The relative error of the coherent modes is an order of magnitude worse for the
Gaussian Schell-model approximation.

In conclusion we find that the separation approximation leads to (significant) differences for
the current as well as for the future ESRF-EBS lattice. On the other hand, however, we find that
even for the ESRF-EBS lattice with and without energy spread at the first and third harmonic
the cross spectral density on selected cuts (one hole fixed at origin (r; = 0, ro = r), symmetric
displacement (r; = r3)) are very well approximated by the separation approximation (see Figures
[5.14} 15.15} [5.16] |5.17} [5.18). The notion hole is chosen in analogy to Young’s experiment where
the mutual coherence function is probed with pinholes. The cuts are chosen to see if the cross
spectral density is translation invariant. At least on these two cuts the results indicate translation
invariance. This remains essentially true also for the propagated cross spectral density (see
Fig. [5.19). The spectral density is equally approximated very well (see Fig. . Surprisingly
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Figure 5.12.: Comparison of the intensity of the exact coherent modes (left) with the intensity of
modes from separation(right).
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Figure 5.13.: Separation of the initial wavefront at the virtual source, i.e. the undulator
entrance plane, for the first harmonic(top) and first flux maximum(bottom)

even for very low electron beam parameter configurations such as for a homogeneous scaling of all
ESRF-EBS beam parameters by M /20 with M = 1 (see Eq. the separation approximation
performs equally well (see Fig. [5.20).

The Gaussian Schell-model approximation works well for the horizontal dimension but under-
estimates the vertical cut at the first harmonic. The situation becomes worse for the highest flux
photon energy or the reduced emittance case (see Figures [5.20, [5.22] [5.23). In these cases the
separation approximation still performs very well but the shape deviates from a Gaussian and
the Gaussian Schell-model becomes inadequate

Similar to the separation of cross spectral density we can separate the reference single electron
undulator emission Ej used in the calculation of the cross spectral density (Eq. or (Eq. .
At the wvirtual source the separation of the single electron emission intensity is quite good for the
first harmonic as well as for the flux maximum (see Fig. [5.13)). This could explain the good
agreement of the separation approximation because a separable single electron emission allows
the separation of the cross spectral density as can be see from Eq. or Eq. This good
agreement of the separation approximation may change for electron beams that have coupling
between the horizontal and vertical dimension.
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Figure 5.14.: Comparison of the normalized cross spectral density in Gaussian Schell-model and
separation approximation for the ESRF 2m ul8 at the 1.harmonic.
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Figure 5.15.: Comparison of the normalized cross spectral density in Gaussian Schell-model and
separation approximation for the ESRF 2m ul8 at the 3.harmonic.
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Figure 5.16.: Comparison of the normalized cross spectral density in Gaussian Schell-model and
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Figure 5.17.: Comparison of the normalized cross spectral density in Gaussian Schell-model and

separation approximation for the ESRF 4m ul8 at the 3.harmonic.
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M /20 with M =1 as in Eq. [5.4).



Spectral density (exact)

100 - - - 1.0
El 0.8
3 50 - ,
=
9 0.6
=1
g o0 | — .
= 0.4
<
g
£ 50 - ,

g 0.2

-100 : : : 0.0

-100 -50 0 50 100
Horizontal position [um]
Spectral density (horizontal cut)
1 5
//\ separation
08 - j ¢ i
P
¥
P
2z 0sf f 4
g 7
g / \
= o4l / \\ 4
02 F / \ i
0 L
-149 75 0 75 149

Figure 5.21.:

Horizontal dimension [um]

Vertical position [um]

Intensity

Spectral density (separation)

100 : : : 1.0
0.8
50 -
0.6
0 - | T
0.4
50 B
02
-100 ‘ ‘ ‘ 0.0
-100 -50 0 50 100
Horizontal position [um]
Spectral density (vertical cut)
1 . 7
,’ \ exact
‘\‘ \‘ separation
08 1 8
||
i
0.6 - |1 4
F X
[
|
| |
04 (. R
A
oA
02 ,’ X =
7
0 1
-50 -0 50 99

-99

Vertical dimension [um]

Comparison of the spectral density for the ESRF-EBS lattice and the separation

approximation.

145



One hole fixed at the origin (exact) One hole fixed at the origin (separation)

25 : : : 1.0 25 : : : 1.0
E E
0.8 0.8
2 s L - 2 s | .
= =
S 5
‘3 0.6 3 0.6
2 =
s . : o . |
S 0.4 S 0.4
= =
=125 - E 125 | -
= 0.2 5 0.2
> >
25 | | | 0.0 25 ‘ ‘ ‘ 0.0
25 -12.5 0 12,5 25 25 -12.5 0 12,5 25
Horizontal dimension [um] Horizontal dimension [um]
One hole at the origin (horizontal cut) Symmetric displacement (horizontal cut)
1.0 T T 1.0 T T
2 exact 2 /ﬁ; exact
2 % separation 2 o * separation
S \ GSM - = 5 [ GSM  x
= 08 [ *\ 4 B 08 f [ % i
g g .
2 | 2 [
@ LA 2 [
2 x| 2 x|
o 05 \ = o 05+ \ -
S /‘ 5 | ]
51 | % v f *
= = ¥ (
g \ g r
o 02F * 4 o 02 | & 4
E E Foool
2 2 ’ \
=} =} 4 y/
< 00 L < 00 X
25 12 0 12 25 25 12 0 12 25
Horizontal dimension [m] Two times horizontal dimension [um]
One hole at the origin (vertical cut) Symmetric displacement (vertical cut)
1.0 ‘ ) ‘ 1.0 ‘ ‘
? exact ? A exact
2 )f separation < 2 \f separation
3 GSM % 3 roA GSM  x
= 08| = 08 yj \ _
= = J X
I @ | \
2, o, ”7 i
2 \ 2 [ 1
o 051 S 05 # " B
=4 e
o o / \
g g /
e < 7
S >
o 02| o 02| 4
= E
2 2 # »
2 2
RS X,
< 0.0 < 0.0 o ! *
25 12 0 12 25 25 12 0 12 25
Vertical dimension [Jum] Two times vertical dimension [m]

Figure 5.22.: Comparison of the normalized cross spectral density in Gaussian Schell-model and
separation approximation for the ESRF 2m ul8 at the first spectral maximum.
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Figure 5.23.: Comparison of the normalized cross spectral density in Gaussian Schell-model and
separation approximation for the ESRF 4m ul8 at the first spectral maximum.
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Figure 5.24.: Comparison of the normalized cross spectral density in Gaussian Schell-model and
separation approximation for the ESRF 2m ul8 at the third spectral maximum.
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Figure 5.25.: Comparison of the normalized cross spectral density in Gaussian Schell-model and
separation approximation for the ESRF 4m ul8 at the third spectral maximum.
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5.6.4. The analytical separation approximation

In [8] Geloni et al. proposed an analytical approximation of the cross spectral density (equations
56-58 in the original paper). The description decouples the horizontal and vertical degrees of
freedom for third generation synchrotrons. The underlying idea is to exploit the horizontal
emittance that is large compared to the size of the singe electron emission at the virtual source.
The approximation assumes the virtual source to be at the middle of the undulator. The middle
of the undulator itself is supposed to lie at the symmetry point of the straight section. This
allows the application of the resonance approximation for the single electron undulator emission
and the symmetry point approximation for the electron beam phase space density.
They define:

K2 K2
pr— —_— - '1
Agr=Jo <4+2K2> /1 (4+2K2> (5:13)

and for i € {z,y}:

11 + 12
2 (5.14)
Ai =11 — i

1 =

where K is the undulator K value, Jy and J; are the Bessel functions of the first kind of order
0 and 1, respectively.
The approximated cross spectral density takes the form:

KweAJJ

2
S ) W, A )Wy (5, 8. (5.15)

W(ry,ro,w) = <

with the horizontal cross spectral density:

W (z, Az, w) = \/N?mexp <—(A$;2D””> exp <—£\Z> (5.16)

and the vertical cross spectral density:

N 1 [« Ay)2D
Wy(yaAyaw) 25 N €xp <—(;y>
Yy

< Jooeo (<25 o (fo+ [£]1) v (- [5]])

To(a) = % (7r _ 2/0(1 dtsjr;(t)> (5.18)

and D;, N; are defined in Eq.

(5.17)

with

5.6.5. Results for the comparison with the analytical approximation

The analytical approximation assumes the virtual source to lie in the middle of the undulator. Our
algorithm performs the decomposition with the virtual source at the entrance of the undulator.
In order to compare the two descriptions we propagate our decomposition to the center of the
undulator. For our algorithm we use ESRF-EBS finite alpha electron beam settings that are
1m away from the symmetry point. Thus at the center of the undulator the electron beam
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Figure 5.26.: Normalized spectral density of the exact calculation and the analytical approxima-
tion for a 2m ul8 ESRF undulator.

follows ESRF-EBS symmetry point settings. It should be noted, however, that for finite alpha
settings at the undulator entrance the electron beam distribution at the center of the undulator
is horizontally spatially shifted as discussed in section [4.2.5] This shift might have a influence
on the quantitative result. We compare only the ESRF ul8 2m long undulator because the only
finite alpha settings we use in this thesis are 1m away from the symmetry point.

We built the cross spectral density from the Eq. and performed numerically a coherent
mode decomposition. In what follows we present the results of the comparison with the exact
calculation.

The description of the horizontal part of the separated cross spectral density in analytical ap-
proximation is a Gaussian Schell-model. We discussed this approximation already in the previous
section. In this section the approximation performs slightly worse than in the previous section.
In the previous section the parameters of the Gaussian Schell-model were determined by a fit
to the exact calculation. In this section they are calculated directly from analytical expressions.
The shift of the electron beam distribution at the center of the undulator that we discussed in
the previous paragraph, might be related to this.

In the vertical dimension the analytical approximation shows extra oscillations which are absent
in the exact calculation (see Fig. |5.27). The occupation of the first mode is overestimated by
the analytical approximation by about 20% (Fig. and the extend of the total distribution
is smaller than in the exact calculation.

The comparisons of the spectral degree of coherence show again extra oscillations which are
consequences of the extra oscillations of the cross spectral density (see Fig. . The support
of the analytical results is a bit smaller than that of the exact calculations but they are of the
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Figure 5.27.: Comparison for the normalized cross spectral density with the analytical approxi-
mation for a 2m ul8 ESRF undulator for the mode spectrum and the normalized
cross spectral density.

same order of magnitude.
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5.7. Summary

In this chapter we apply the coherent mode decomposition algorithm to some applications.

We investigate how the mode spectrum and the coherence length changes as a function of the
undulator length and the photon energy. We define the coherence length as the FWHM of the
spectral degree of coherence y where 71 is fixed to the origin and ro is varied. We find that the
number of coherent modes decreases and the coherence length increases for longer undulators and
that the mode number increases and the coherence length decreases with higher harmonics. The
calculations at photon energies corresponding to the maximum flux give smaller coherence length
than the calculations at the resonance.

We imitate and idealize an experiment given in [4] where a one to one image of the undulator
center is subjected to an aperture. The aperture size is reduced and the mode spectrum is
investigated. Closing the aperture reduces the spectral density but narrows the mode spectrum
and increases the coherence.

We investigate the effect of a variation of the energy spread. For this we keep the transverse
electron beam settings fixed and vary only the energy spread of the ESRF-EBS settings. We find
that a reduction of the energy spread does not change the mode spectrum of the ESRF ul8 1m
long undulator at the first harmonic much but that the changes for the 2m and 4m long ESRF
ul8 undulators become more relevant.

The effect of a finite Twiss alpha is investigated for a 2m long ESRF ul8 undulator. The
undulator is once placed with its entrance plane 1m before the symmetry point and once at the
symmetry point. The finite alpha calculation are at least ten times slower than the symmetry
point calculation because no convolutions can be used in their calculations. Because of the big
computation requirements we only inspect the 2m long undulator. There is a change in the mode
spectrum and in the coherence lengths but it is not large.

We calculate the change of the mode spectrum for a variation of transverse electron beam
settings with fixed energy spread and with decreasing energy spread. We see that the mode
spectrum collapses to a single mode if both the transverse electron beam settings and the energy
spread is drastically reduced. If the energy spread is kept fixed and only the transverse electron
beam settings are decreased then the occupation of the first mode reaches at most only 93%.
This is in agreement with the results of section because the energy dimension of the electron
phase space distribution does not approach a d—function.

We compared the exactly calculated coherent modes to a Gaussian Schell-model (GSM) ap-
proximation, the separation approximation and an analytical approximation given by Geloni et
al. [8]. A fit to a Gaussian Schell-model shows large errors in the operator norm and in the
coherent modes. The error for eigenvalues is fair. Selected cuts of the Gaussian Schell-model
fitted cross spectral density show differences to the exact calculation. The errors become worse
for smaller electron beam parameters. For the separation approximation the situation is better.
The relative error in operator norm is still about 0.05 for ESRF-EBS lattice settings and the
modes from the separation approximation are different from the coherent modes. The eigenval-
ues are approximated worse by the separation approximation than by the Gaussian Schell-model
approximation. However, all the quantities we were interested in: spectral density, vertical and
horizontal cuts of the cross spectral density for one hole fixed (r;y = 0, ro = r) and symmetric
displacement (r; = r2) show very good agreement with the exact calculation. The analytical
approximation performs qualitatively good but the cross spectral density has extra oscillations
in the vertical direction that are absent in the exact calculation.

The separation approximation seems to be a good and quick numerical approximation for
beamline design purposes and should be executable even on ordinary computers.
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6. Possible future research and developments

In the this chapter we briefly present some possible ideas for future research and further devel-
opment of the algorithm or its implementation.

Sampling of the cross spectral density

The cross spectral density W could be calculated numerically with Monte Carlo techniques. The
electrons of a bunch are sampled and the ensemble average is approximated numerically:

W(’I"l,’l‘g,w) = <E*(T1,W)E(T2,w)> (6.1)

ens *

Afterwards the cross spectral density can be passed to the decomposition algorithm. The so
obtained cross spectral density would be subjected to the same memory limitations as the matrix
method discussed in section The brightness convolution theorem would be circumvented and
this allows the calculation of magnetic structures that have a varying magnetic field over the
dimension of the electron beam size. A disadvantage however would be the non deterministic
nature, i.e. one does not know when the calculation is converged.

Effects of the alighment of undulators

It would be interesting to model and investigate the emission that is produced by two undulators.
Does a variation of the gap between the undulators change the coherence properties? Is there a
optimal gap?

Additionally, one can inspect the consequences of the undulator alignment, i.e. what is the effect
on the mode distribution and the coherence length if the undulator entrance plane is spatially
shifted or tilted.

Furthermore in real life there are fluctuations in the power supply of the magnets causing
magnetic field fluctuations and there are vibrations of the optical elements in a beamline. The
influence of these fluctuations on the radiation could be investigated.

Extension for polarized electric fields

The brightness theorem is only formulated for one polarization. A deterministic field can be
described with a well defined field vector and in free space the two dimensions of vibration can be
decomposed into a parallel and perpendicular coordinate system. The situation changes in the
statistical case in which random phasors are added and the direction of the field vector becomes
itself a random function. To describe this kind of phenomenas for quasi monochromatic light the
mutual intensity function J is no longer a scalar function but a matrix the so called 2x2 equal
time coherence matrix:

(ELEy)
(EjE)

(ELEy)
(EJEy)

ens

J(r1,72.7) = ens | (6.2)

ens ens
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Furthermore one can define a degree of polarization P:

p= [1 - éi‘f;)ﬁ (6.3)

where P = 0 means completely unpolarized(natural light) and P = 1 means total polarization.

As discussed in section[3.2]under the given conditions the cross spectral density is the uncoupled
sum of single electron emission cross spectral densities. It follows directly the knowledge of the
diagonal elements of the frequency representation of the coherency matrix. It remains only
to think of the off-diagonal elements. Very likely, they can be calculated analogous with the
brightness convolution theorem Eq. where one of the reference fields is replaced by the
o-polarization of the reference field and the other reference field is replaced by the m-polarization:

Waﬂ'(rla T2, CU) = Ne / d')/d’l"do p(lra 0> 7)6iko(r2_rl)E0:‘;(r1 -ruw, W)Eoﬂ'(r2 -ruw, ’7) (64)

But this should be discussed more thoughtfully.

Automatic detection of tuning or precision parameters

A pure technical improvement of the algorithm could be the detection of suitable configuration
parameters. In the current implementation suitable grid sizes for the reference single electron
emission and the cross spectral density at the virtual source must be manually specified. For the
well functioning of the algorithm it is crucial to calculate completely the single electron emission,
i.e. all its important features. This means that the grid of the reference single electron emission
must be sufficiently large. In the current implementation this is named the exit slit wavefrontﬂ
Additionally, the virtual source grid must be specified. The grid must be large enough to allow
the application of a FFT based numerical convolution of the electron phase space density with
the single electron emission that was back-propagated to the virtual source. In the current
implementation this parameter is called source wavefront.

During the choice of these parameters it is important to avoid artificial boundary effects from the
numerical convolution. Until this stage we wanted to have full supervision of the configuration
settings to avoid unnecessary error sources. It should however be rather straightforward to
implement an algorithm to adjust safe grid settings. Furthermore in the current implementation
one has to adjust the number of demanded coherent modes before the start of the calculation.
Given the fair agreement for the eigenvalues of the Gaussian Schell-model approximation one
could estimate roughly the number of coherent modes on the basis of a Gaussian Schell-model
approximation prediction (see Eq. . On top of this the calculations must be converged.
It is probably more subtle to do this automatically. One could investigate if there are some
criteria that can guess a priori a converged sampling factor s. The guess would be dependent on
the wavelength of the emission and the parameters of the electron beam. These parameters are
dominant in the definition of two rather independent grids that must simultaneously converge.

Extension to take into account further electron beam coupling

The thesis and the implementation of the algorithm are restricted to the symmetry point case
and the finite alpha case. Other couplings are neglected (see section [2.1.6). The extension to

Lstrictly, it is the wavefront a few meters away from the undulator exit slit.
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these cases does not pose any theoretical problem as long as the coupling of the longitudinal
electron position to the other beam parameters is sufficiently weak. This is already discussed
in chapter The extension of the algorithm to more general cases should not be too difficult.
During development we intentionally kept the complexity of the algorithm as low as possible and
focused on the most easy applications first. Now, it would be a good time to advance to more
general applications.

In a first step Eq. could be applied to the case where there is no coupling of the electron
energy to any other random variable. The finite alpha case can be extended to this case. The
implementation would then need to calculate:

exp (ikArMy' Spir) (6.5)

for matrices M 13,1, Spr that may now have finite off-diagonal elements. The presence of off-
diagonal elements couple the z-component of Ar to the y-component of r. The implementation
can be adapted to this case with no significant performance loss. However, the complexity in-
creases because the possible values of the complex exponential are stored in memory for perfor-
mance reasons. In this adaption more exponentials would need to be stored.

Afterwards one could implement Eq. in its most general form. In that case additionally
sprs and 8prs. may be not zero. This leads to an extra electron energy dependent exponential
factor in the integration:

exp ((a(sprs, 8pror, 0),7)) (6.6)

with a vector values function a(sprs,sprs.,d). The performance and the memory requirements
should not be significantly impacted by this enhancement. Possibly, the separation approximation
may perform worse for a fully coupled beam.

Another related topic that could be researched are the consequences of non Gaussian shaped
electron beams on the X-ray emission properties.

Perturbation theory

We have seen in section that the separation approach performs surprisingly well. Improve-
ments may still be possible or even necessary depending on the application. One can hope that
the perturbation to the exact solution is small. A possible route to improve the result would be
the application of standard perturbation theory from quantum mechanics[53]. In terms of the
associated cross spectral density operators, we may define:

V = ApRet — AP (6.7)
as a supposedly small perturbation. The first order corrections to the n-th eigenvalue is then
)‘7(11) = (0, VO,). (6.8)

A quick test of the application of the Rayleigh-Schrédinger perturbation theory to the results
of the separation approximation show that at least the eigenvalues are in even better agreement
(see Fig. left). We did however not test the eigenfunctions. For the Gaussian Schell-model
that was fitted to the exact calculation as described in section [5.6.1} the first order corrections
actually increases the relative error (see Fig. right).
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Figure 6.1.: Relative errors of the first order corrections to the eigenvalues for the separation

approximation(left) and the fitted Gaussian Schell-model approximation(right). The
calculations relate to ESRF-EBS settings without energy spread and an ESRF ul8
undulator of 2m length at its first harmonic. While the first order correction improves
the eigenvalues in the case of the separation approximation, it worsens the agreement
in the fitted Gaussian Schell-model approximation.

Gaussian statistics

In section we explained that for frequencies that are relevant to us, i.e. X-ray frequencies, the
undulator storage ring emission is a zero mean circularly-symmetric Gaussian random process.
In a finite dimensional case its probability density would be described by Eq.

1 72*2_12
fZ(Z) = me . (69)
The covariance matrix ¥ is related to the cross spectral density W':
1 /ReW —ImW
=3 (Im W ReW ) ' (6.10)

If a coherent mode representation of W is known the covariance matrix can be expressed in terms
of the coherent modes. It would be interesting to clarify the relation of the coherent modes to
the eigenfunctions of the integral operator associated to fz. Furthermore it would be interesting
to look for links and possible input from other physical disciplines like statistical mechanics[54],
statistical quantum mechanics[55] or the path integral formalism of quantum mechanics[43] in
which the role of the covariance matrix we use in this thesis is usually replaced by the Hamiltonian
of the system. An interesting question would be if an analogue of the Boltzmann factor can be
defined for a circularly-symmetric Gaussian emission ensemble.
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7. Summary

The context of this thesis is the study of the partial coherence in synchrotron beams produced
by ultra low emittance storage rings, like the ESRF-EBS ring under construction. As main
objectives we had the understanding, application and development of the underlying physics and
the implementation of computer tools able to calculate the relevant parameters.

In the first part of this thesis we develop a theory for statistical optics for storage ring radiation.
It is based on the brightness convolution theorem by Kim[7] and on the subtle but very important
theoretical contributions from Geloni et al.[§]. We derive their formulas in a slightly different way
or in more a detailed form.

We emphasize the importance of the description of the electron beam stochastic for the coher-
ence properties of storage ring emission. We observe that for weak coupling of the longitudinal
electron position to the other beam parameters the bunch length is a free parameter in view of
coherence properties.

We build our description of statistical optics around coherent modes. We show that an ensemble
is completely coherent if and only if its coherent mode decomposition is a single mode. Geloni
et al.[8] mentioned that the synchrotron storage ring emission is a Gaussian random process. We
add that the process has zero mean and is circularly-symmetric. In consequence we can give the
spectral degree of coherence a physical interpretation in terms of Gaussian shaped conditional
probability densities.

We developed and implemented an algorithm that calculates the coherent mode decomposition
of the cross spectral density for a given wavelength. It can be applied to electron beams with
finite Twiss alpha and with energy spread. We implemented two algorithms. The first version
solves the Fredholm equation in a two-dimensional step function basis set. Because of its mem-
ory requirements high undulator harmonics or current lattices with high emittances can not be
calculated. To reduce the memory requirements we developed the two-step method that solves
the problem first for an electron beam with zero divergence and adds the effects of the divergence
in a second step. The algorithms use the eigensolver library SLEPc. The implementations of the
algorithms are open source and can be found at [9].

We present extensive tests of the algorithms. They include a d—function shaped electron
beam, a Gaussian single electron reference electric field, whose results are analytically known,
and comparisons to SRW Monte Carlo samplings.

We apply the algorithm to some particular cases. We determine how many modes are necessary
to incorporate 95% of the spectral density and how the spectral degree of coherence changes. We
find that the energy spread adds extra coherent modes. This effect is negligible for current
lattices but for the ESRF-EBS lattice it accounts for a significant fraction of the total modes.
Shorter undulators and higher harmonics increase the number of modes. A comparison between
an undulator placed at a point with finite alpha and at a symmetry point shows no significant
differences. A reduction of the ESRF-EBS beam parameters show a decrease of the mode numbers
until they reach a single mode. We simulate a simple 1:1 imaging beamline with an aperture in
the image plane. A reduction of the aperture size changes the eigenvalue spectrum to fewer and
fewer modes that is paid with a decrease of flux. We present a comparison of the calculated
cross spectral density with a Gaussian Schell-model, an analytic approximation and a separation
approximation. Although there are not negligible errors between the exact calculation and the
separation approximation we come to the conclusions that the separation approximation might
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be a good and quick approximation that allows the calculation on portable computers.
We end the thesis with some ideas for future research.
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Configuration files

The configuration files for testing the decomposition methods are located in the configuration
subdirectory compare_methods. The subdirectorys waist_resonance correspond to tests without
energy spread, waist to tests with energy spread and alpha to tests with finite alpha but without
energy spread. Configurations with gaussian in their file name indicate the usage of a Gaussian
as a single electron reference emission Ej.

Some directories for application configurations files are mentioned in Table

Folder Content
compare_lattice Comparison between ESRF-EBS and the current ESRF lattice.
compare_undulator Investigation of different undulator settings (1m, 2m, 4m)

for the ESRF-EBS lattice.

compare_energy_spread | Investigation of an energy spread variation.
compare_dream Investigation of fictive lower emittance lattices.
high_flux Investigations for photon energies at the flux maxima.

Table .1.: Subdirectories with configuration files.
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Summary(short)

In view of the recent raising interest in partially coherent X-ray radiation produced by ultra
low emittance storage rings we present a theoretical study and a numerical algorithm for the
coherent mode decomposition of undulator emission in storage rings. A numerical description of
the undulator cross spectral density in terms of its coherent modes opens a new door for theoretical
investigations of coherence properties and for beamline design. The description in coherent modes
is much more memory efficient than the naive storage of the cross spectral density. Based on the
theoretical work of Kim and Geloni et al. we develop a statistical optics theory for synchrotron
radiation which is the basis for the algorithm. We highlight the importance of the electron beam
parameters for the coherence of the emission. We apply our algorithm to some problems in order
to investigate the change of coherence properties as a function of electron beam or undulator
parameters.
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A. Résumé en francais

Dans cette these, je discute ’application de 'optique statistique au rayonnement qui est produit
aux synchrotrons. Nous nous concentrons sur la cohérence du deuxieme ordre. La cohérence du
deuxieme ordre nous permet de calculer les propriétés de la cohérence et 'intensité moyenne.

Le rayonnement synchrotron a connu une croissance énorme au cours des dernieres décennies
en raison de son applicabilité a la science appliquée multidisciplinaire. L’histoire du rayonne-
ment synchrotron passe par plusieurs générations de sources synchrotron. Dans les années 1960
la premiere génération du synchrotron a utilisé des anneaux de stockage dédiés a la physique
des hautes énergies et a produit le rayonnement synchrotron en mode parasite. Des nombreuses
techniques expérimentales ont été développés et cette nouvelle méthode de production de rayon-
nement est devenu populaire dans la communauté scientifique. L’impact sur la science appliquée a
mené la communauté a la construction des anneaux de stockage dédiés exclusivement a la produc-
tion et I'utilisation du rayonnement synchrotron. C’est la deuxiéme génération du synchrotron,
caractérisée par un haut brillance ou luminosité (puissance émise par unité d’angle et taille de
source). Une nouvelle fagon d’augmenter la brillance a été implémenté : I’élément d’insertion ou
«<insertion devices. Les éléments d’insertion ont des aimants qui font vibrer fortement les électrons
ce qui en conséquence augment leur accélération et alors leur émission. Une autre évolution de
la génération de la machine (troisieme génération) ont été développé. La troisieme génération a
des grandes sections droites (straight sections) qui peuvent étre utiliser pour Uinstallation des
plusieurs insertion devices. Entre les trois plus grandes sources de troisieme génération au monde
(ESRF, APS et Spring8), 'ESRF était le premier synchrotron qui a fonctionné. Une haute aug-
mentation de brillance a été fournie en combinant le flux élevé émis par les insertion devices et
en réduisant la taille et la divergence de la source, c’est a dire en limitant ’émittance d’électrons.
La petite émittance verticale (4pm a 'ESRF) par rapport aux 1000 fois plus grande émittance
horizontale a conduit a une cohérence de la radiation relativement élevée. La cohérence de la
radiation était a la base de nombreuses techniques expérimentales qui sont standard aujourd’hui.
Des exemples de ces techniques sont : X-ray photon correlation spectroscopy (XPCS) [I], coherent
diffraction imaging (CDI) [2] 3] et ptychography [4, [5]. La génération actuelle des synchrotrons
est maintenant continuée dans deux directions différentes : les X-ray free electron lasers (XFEL),
basés sur la technologie d’accélérateur linéaire, et les anneaux de stockage circulaires, dites «dif-
fraction limited storage ringss> ou l’émittance horizontale des électrons est abaissé a un niveau
comparable a ’émittance verticale actuelle. Ces nouvelles installations visent aux expériences qui
exploitent la cohérence du faisceau de rayons X, comme X-ray photon correlation spectroscopy,
coherent diffraction imaging ou ptychographie. Dans tout les nouvelles synchrotrons ou des mises
a jour de celles qui existent déja, le mot-clé «cohérence> est omniprésent. Nous regardons la mise
a jour des installations existantes, comme 'EBS (Extremely Brilliant Source) a 'ESRF. L’EBS
vise a créer un anneau de stockage avec une émittance de 150 pm (par rapport au présent de 4
nm) qui stimulera la brillance des rayons X et les propriétés de la cohérence.

Dans le cadre du mettre a jour 'ESRF et la construction d’un nouvel anneau de stockage, il
est important d’effectuer des calculs précis et des évaluations quantitatives des parametres liés
a la cohérence des rayons X. Ces parametres peuvent étre extraits de la densité spectrale (cross
spectral density). La densité spectral est une fonction complexe dont ’évaluation est cotteuse. Par
contre la densité spectral contient la plupart des informations sur la cohérence dont nous avons
besoin. Il n’est pas seulement nécessaire d’évaluer cette fonction pour la position de la source,
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mais de la propager le long des éléments optiques de la ligne de faisceau. Cette these propose une
nouvelle fagon pratique et faisable pour le calcul de la densité spectrale et de la propager le long
de la ligne de faisceau. Pour la propagation nous utilisons des méthodes optiques standard. Notre
point clé est la décomposition de la densité spectral dans ses modes cohérents. Bien que l'idée
soit bien connue dans la domaine de I'optique statistique, cette thése montre comment effectuer
ce calcul numériquement pour les sources de synchrotron. Une fois que la densité spectrale est
décomposée, on peut propager chaque mode cohérent comme n’importe quel champ cohérent le
long de la ligne de faisceau et on peut construire la densité spectrale a n’importe quel point de la
ligne de faisceau. Avec cette densité spectrale, on peut déterminer les parametres habituels comme
les longueurs de cohérence, le degré spectral de cohérence, I'intensité moyenne en représentation
de fréquence, etc. Mais on peut faire méme plus : la décomposition en modes cohérents donne
des informations plus pratiques qui ne sont pas directement visibles dans la densité spectrale.
La décomposition permet le calcul précis du spectre des modes, ou comment le rayonnement
est distribué dans les différents modes cohérents. De cette facon, il sera démontré qu'une source
entierement cohérente ne contient qu’un seul mode, une source assez cohérente, comme I’EBS,
a la plupart de ses rayonnements répartis sur quelques modes (peut-étre quelques centaines) et
une source assez incohérente aura généralement un spectre de mode presque uniforme. L’étude
de la fagon dont le spectre de mode est modifié par la ligne de faisceau est fondamentale pour la
conception de nouvelles lignes de faisceau. Par exemple, nous montons quantitativement comment
la cohérence augmente lors de la fermeture d’une ouverture, une méthode bien connue pour
améliorer les caractéristiques du faisceau dans les expériences qui exploitent la cohérence. La
maximisation de la fraction d’intensité portée par le premier mode cohérent, a ’aide d’éléments
optiques, est la tache principale du concepteur d’une ligne de faisceau pour des applications
cohérentes. La méthode présentée ici permettra des études pratiques quantitatives qui pourraient
avoir un impact sur la conception et les constructions de lignes de faisceau plus efficaces. En
outre, la description numérique de la densité spectrale de I'ondulateur en termes de ses modes
cohérents ouvre une nouvelle porte pour des recherches théoriques et pratiques. Un exemple serait
comment les faisceaux de rayons X cohérents partiels interagissent avec les échantillons.

Le but principal de cette these est le développement d’un algorithme pratique pour calculer
et propager la densité spectrale. De plus, nous voulons souligner I'influence des parametres du
faisceau d’électrons qui entrent dans les calculs des émissions de rayons X. Pour les ordinateurs
d’aujourd’hui, le stockage de la densité spectrale d’une maniére naive est tres exigeant en mémoire
car il s’agit d’une fonction a quatre dimensions. Les exigences de mémoire peuvent facilement
atteindre plusieurs téraoctets, ce qui nécessite en conséquence un grand cluster informatique.
C’est pour cette raison que j’ai décidé d’effectuer une décomposition en mode cohérent qui aboutit
a une représentation de la densité spectral avec relativement peu de modes cohérents. Ces modes
peuvent étre sauvegardés et diffusés beaucoup plus efficacement. L’hypothese selon laquelle un
petit nombre de modes est suffisant pour calculer avec précision toutes les propriétés de cohérence
a été motivée par I’approximation du modele Gaussian Schell.

La these est accompagnée par un logiciel Coherent Modes for Synchrotron Light (comsyl) [9]
qui est source ouvert.

Dans ce qui suit, nous présentons un bref résumé de chaque chapitre.

Dans le chapitre 2, nous discutons la théorie nécessaire pour cette these.

Nous présentons les concepts fondamentaux de l'optique statistique. Ces phénomenes statis-
tiques sont basés sur la physique de I'optique et nous présentons les concepts nécessaires pour la
compréhension de cette these. En outre, nous présentons un peu de la physique des accélérateurs
et un peu de la théorie des éléments d’insertions. Ce sont les fluctuations statistiques des électrons
dans 'anneau de stockage synchrotron qui déterminent les propriétés de cohérence du rayonne-
ment X.
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Nous expliquons le principe de fonctionnement des anneaux de stockage d’électrons. Les électrons
sont accélérés aux vitesses ultra-relativistes et conservés dans l'anneau de stockage. Les struc-
tures magnétiques comme aimants dipolaires et quadruples guident les électrons le long des an-
neaux de stockage. Les électrons perdent énergie due a 1’émission de rayonnement synchrotron.
L’énergie perdue est rechargée par des cavités HF. L’émission du rayonnement synchrotron est
un phénomene statistique et conduit par conséquent a des statistiques d’électrons dans I’anneau
de stockage. Ces statistiques électroniques peuvent étre décrites par une densité de probabilité
gaussienne dans 'espace de phase (Eq. avec la matrice de covariance Y. La matrice de cova-
riance peut étre calculée numériquement avec un logiciels dédiée a la physique des accélérateurs.
Dans les calculs de cette theése, nous sommes principalement intéressés par les éléments m;; de
I'inverse de la matrice de covariance M comme nous les définissons dans Eq. Dans la section
nous présentons les deux positions dans la section droite (straight section) auxquelles nous
effectuons les calculs dans cette these : Le <symmetry point> et la position <finite alpha>. Nous
définissons le paramétres de faisceau d’électrons utilisé dans cette these dans la section [2.1.8

Nous discutons des caractéristiques générales du rayonnement synchrotron et des dispositifs
spéciaux pour la production de rayons X intenses, les «insertion devices>, dans la section et
Dans cette these, nous n’utilisons que des insertion devices de type d’ondulateur. Un ondu-
lateur planaire est une structure magnétique qui crée approximativement un champ magnétique
sinusoidal dans un plan. Un électron qui entre dans un ondulateur planaire effectue une trajec-
toire sinusoidale dans un plan perpendiculaire au plan du champ magnétique. Le rayonnement
qui est crée est plutot intense et collimaté. Nous décrivons comment ’émission peut étre calculée
a partir de la trajectoire des électrons qui est liée a la champ magnétique précis du insertion
device. Dans cette these, nous calculons ’émission d’ondulateurs numériquement avec SRW [24].
Nous définissons les notions de énergie de résonance, flur mazimum ainsi que les parametres
d’ondulateur que nous utilisons dans cette thése dans la section [2.3.4]

Nous présentons la théorie de 'optique physique en vue des applications de synchrotron dans
section Nous dérivons la formule de diffraction de Fresnel, I’équation de Helmholtz et nous
discutons comment les éléments optiques dans I'approximation des éléments minces (thin ele-
ment approximation) affectent le champ électrique. Dans la section nous mentionnons com-
ment le propagateur de Fresnel peut étre implémenté numériquement en termes de convolutions
basés sur la transformation de Fourier rapide (FFT) et certaines difficultés reliées a ce type des
implémentations. Nous introduisons la notion de front d’onde qui est utilisé par SRW et qui
signifie le champ électrique dans un plan le long ou avant de la ligne de faisceau.

Dans la section [2.5] nous présentons la cohérence du deuxieme ordre ce qui est un concept de
la théorie d’optique statistique. Nous soulignons que les fluctuations de source sont fundamental
pour les propriétés de la cohérence de I’émission. Nous définissons plusieurs quantités importants
de la théorie de la cohérence du deuxieme ordre. Un résumé de ces quantités est donné dans
Fig. Pour cette these, les quantités les plus importants sont : la densité spectrale (cross
spectral density)W (Eq. , lopérateur de densité spectrale Ay (Eq. , le degré spectral
de cohérence p (Eq. et la densité spectrale de puissance S (Eq. [2.108). Nous introdui-
sons la décomposition en modes cohérents de la densité spectrale dans Eq. 2.137] qui donne une
représentation de la densité spectrale en termes de valeurs propres A, et modes cohérents ®,,. La
décomposition en modes cohérents est la base théorique de ’algorithme que nous présentons dans
le chapitre [dl Nous définissons le spectre de mode de la densité spectrale comme 1’ensemble de ses
valeurs propres; le occupation des modes d,, dans Eq. comme le n-eme valeur propre nor-
malisée par le somme de toutes les valeurs propres ; distribution des modes comme ’ensemble des
occupations de tous les modes et le ["intensité du mode comme l’'intensité d’un mode cohérent.
Dans la section [2.5.6] nous montrons qu’il n’y a aucune représentation de la densité spectrale
de dimension finie qui incorpore plus de densité spectrale de puissance que la représentation en
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modes cohérents avec la méme dimension finie. Dans la section nous discutons que 1’émission
est completement cohérente si et seulement si la densité spectrale se decompose d’un seul mode.
Nous mentionnons comment la densité spectrale peut étre propagée le long d’une ligne de fais-
ceau d’'un synchrotron. Compte tenu d’'un noyau de propagation h, la propagation de la densité
spectrale peut étre décrite par Eq. ou en termes de ses modes cohérents (Eq. . Nous
présentons le modéle Gaussian Schell dans Eq. qui possede une décomposition analytique
en modes cohérents et nous discutons les propriétés de son spectre de mode. Le modele Gaussien
Schell sert de cas de test importants pour notre algorithme qui est décrit dans le chapitre [

Nous discutons dans la section [2.5.12| que pour un processus aléatoire gaussien avec une symétrie
circulaire le degré spectral de cohérence u peut étre interprété comme un facteur échelle quadra-
tique de I'écart-type de la probabilité conditionnelle.

Nous dérivons dans chapitre |3| les résultats théoriques fondamentaux pour 'optique statistique
appliquée au rayonnement synchrotron. Ce sont le théoréme de la convolution de la brillance, qui
a été développé par Kim [7], et la théorie développée par Geloni et al. [§]. Notre dérivation est
légerement différente des originaux et plus détaillée. Nous mettons particulierement ’accent sur
I’explication des idées physiques sous-jacentes dans les formules. Cela conduit & une discussion
concernant la position de la section droite a laquelle la convolution de la brillance peut étre
effectuée et aux exigences du faisceau d’électrons et de 'ondulateur.

Nous commencons par le brightness convolution theorem développé par Kim [7]. Nous dérivons
le théoréeme d’une maniere différente et ajoutons des commentaires supplémentaires. Le fondement
du théoreme est la relation entre les conditions initiales des électrons a la source virtuelle et les
changements de leur émission produite par rapport a une émission de référence Ejy. La source
virtuelle est un plan virtuel dans ou avant I’ondulateur qui reproduit I’émission réelle d’électrons
en dehors de I'ondulateur si le champ électrique est propagé a une position dehors I'ondulateur. A
la source virtuelle, la relation entre les conditions d’électrons initiales et le changement d’émission
est donnée par Eq. Nous identifions le position naturelle de la source virtuelle étant le plan
d’entrée de l’ondulateur. En outre, le théoreme exige I'indépendance statistique des électrons qui
est naturellement donné dans un anneau de stockage et que la modification du champ magnétique
du insertion device est négligeable.

Dans la dérivation du théoreme de la convolution de la brillance, on effectue une sommation sur
toutes les corrélations possibles de deuxieme ordre des émissions d’électrons dans Eq. Dans
[8] Geloni et al. ont consacré une étude détaillée a cette sommation. Entre autres parametres,
leur dérivation exploite la résolution du monochromateur afin de conclure que la densité spectrale
est stationnaire au sens faible. Dans 'original, il est supposé que le temps d’arrivée des électrons
et les autres parametres du faisceau d’électrons étaient indépendants. Dans la section [3.2] nous
améliorons légerement leur discussion et nous montons que pour les couplages faibles entre la
position longitudinale d’électron s et les autres parametres du faisceau d’électrons, le résultat de
Geloni et al. reste valide. Aussi dans [§], il est mentionné que I’émission de "anneau de stockage
est un processus aléatoire gaussien. Nous ajoutons que le processus a une symétrie circulaire.
En conséquence les résultats de section peuvent étre appliqués a I’émission de ’anneau de
stockage, c’est-a-dire que le degré spectral de cohérence p peut étre interprété comme un facteur
échelle quadratique de I’écart-type de la probabilité conditionnelle entre deux positions spatiales.

Dans la section [3.3] nous dérivons du théoréme de convolution de la brillance avec la densité
spatiale en cinq dimensions des électrons ps (voir Eq. et avec ’hypothese de couplages faibles
a la position d’électron longitudinale s I’équation générale pour le calcul de la densité spectrale de
I’émission de I'anneau de stockage Eq. dans ’approximation du théoreme de la convolution
de la brillance. Nous appliquons cette formule aux cas spéciaux du symmetry point (Eq. et
a la position finite alpha (Eq. . Dans la section nous appliquons ces formules & une
émission de référence gaussienne Ej et nous arrivons a une source Gaussian Schell. Ces cas sont
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de cas de test importants pour l'algorithme développé dans le chapitre

Dans la section |3.4] nous mentionnons que dans I'approximation du théoreme de la convolution
de la brillance, I’émission est completement cohérente si et seulement si la densité de probabilité
pe dans 'espace des phases est une fonction de Dirac.

Apres avoir établi la description théorique, nous présentons au chapitre 4 un algorithme pour
déterminer numériquement la densité spectrale sous des hypotheéses qui ne sont pas trop restric-
tives. Plusieurs applications des decompositions en modes cohérents pour les ondulateurs d’un
synchrotron sont réalisées. Pour les parametres d’ESRF-EBS les décompositions entrainent un
nombre de modes cohérents relativement petit. La mémoire totale requise est réduite a quelques
gigaoctets. Enfin, ces modes sont propagés a ’aide de méthodes de propagation standard.

Nous présentons deux algorithmes numériques pour la décomposition en modes cohérents de la
densité spectrale pour I’émission de I’anneau de stockage de 'ondulateur. Nous nous limitons aux
deux positions de la section droite : le symmetry point et la position finite T'wiss-alpha qui sont
définis dans la section Nous utilisons SRW pour la création de I’émission d’un seul électron
et pour la propagation de son champ électrique vers la source virtuelle.

Nous commencons par la méthode <«matriz> qui discrétise 'opérateur de densité spectrale Ay
dans une base des fonctions constantes par morceaux (Eq. . Dans la section nous intro-
duisons le factor d’échantillonnage comme mesure de la densité des points de la grille numérique.

La discrétisation est suivie d’une diagonalisation itérative. Pour cela nous utilisons SLEPc [46].
L’implémentation des algorithmes s’appelle Coherent Modes for Synchrotron Light (comsyl). 11
est source ouvert et disponible sur [9]. Un bref apergu de la structure du code est donné dans
Fig. Les classes les plus importantes sont mentionnées dans Table. Les implémentations
sont paralleles et optimisées. Cela implique une complexité des implémentations assez élevée qui
doivent étre testées de maniere intensive. Nous présentons des tests pour un faisceau d’électrons
en forme de fonction delta de Dirac et pour un champ électrique de référence qui est gaussien.
Dans le deuxiéme cas les résultats numériques peuvent étre comparés a des résultants analytiques.
L’accord avec les prédictions théoriques est tres bon. En outre, nous testons dans la section |4.2.1
que les ondulateurs que nous utilisons dans cette these obéirent la relation fondamentale du
théoreme de convolution de la brillance entre 1’état initial de I’électron entrant dans I’ondulateur
et le décalage de son émission donné par Eq. Dans la section [£.2.5] nous discutons pour tous les
ondulateurs utilisés dans cette these si elles modifient la densité de ’espace des phases du faisceau
d’électrons a leurs centres. Nous constatons que les ondulateurs introduisent un déplacement
spatial constant de la densité a leurs centres. Pour notre algorithme, cela n’a pas de conséquences
parce que nous définissons toujours que la source virtuelle est sur le plan d’entrée de I’ondulateur.

Dans la section [£.3] nous discutons que la propagation de la densité spectrale peut changer
son spectre et ses modes cohérents. Avec Eq. nous montons comment une densité spectrale
qui est représentée dans ses modes peut étre décomposée directement en termes de ces modes,
c’est-a-dire comment éviter la construction de la matrice complete qui représente I'opérateur de
la densité spectrale dans la base de dimension finie.

L’inconvénient de la méthode matrix est qu’il nécessite beaucoup de mémoire et de ressources
informatiques. Il est essentiellement égal a N§N§ alors que N, N, sont les nombres de points
de grille dans la dimension z et y. Les tailles typiques pour N, et NN, peuvent facilement at-
teindre quelques centaines jusqu’a quelques milliers. Dans ce dernier cas, les besoins en mémoire
atteindraient plusieurs milliers de téraoctets. Pour réduire les besoins en mémoire de la méthode
matrix, nous présentons la méthode en deux pas qui effectue d’abord une décomposition en modes
cohérents pour un faisceau d’électrons avec une divergence égal a zéro et, sur la base de cette
décomposition, effectue une seconde décomposition qui prend en compte la divergence. L’exi-
gence de mémoire pour nos applications est considérablement réduite a environ 4N, N, Ny, alors
que N, soit le nombre de modes cohérents demandés. Cela permet de calculer des harmoniques
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supérieures ou des anneaux avec des émittances plus élevés. Tout comme la méthode matrix, nous
testons la méthode en deux pas pour un faisceau d’électrons en forme de fonction delta de Dirac
et pour un champ électrique de référence en forme de gaussien. Dans la section [4.6] nous ajoutons
les contributions de la dispersion d’énergie du faisceau d’électrons.

Enfin, dans la section [4.7, nous comparons la décomposition & certains résultats obtenus par
SRW multielectron Monte Carlo échantillonnage pour la densité spectrale de puissance et pour
certains points sélectionnés de la densité spectrale parce que SRW ne peut ni calculer la densité
spectrale compléete ni le spectre des modes ou les modes cohérents. Tous les tests montrent un
tres bon accord étant donné que différentes méthodes et approximations sont utilisées pour les
calculs.

Dans le chapitre 5, nous appliquons l’algorithme de décomposition en modes cohérents a
quelques applications. Nous étudions comment le spectre de mode et la longueur de cohérence
changent en fonction de la longueur de I'ondulateur et de 1’énergie du photon. Nous définissons
la longueur de cohérence comme la largeur a mi-hauteur du degré spectral de cohérence u alors
que 71 soit fixé a lorigine et r9 soit varié. Nous constatons que le nombre de modes cohérents
diminue et que la longueur de cohérence augmente pour les ondulateurs plus longs. En plus le
nombre de mode augmente et la longueur de cohérence diminue avec les harmoniques supérieures.
Les calculs font avec les énergies de photons correspondant au flux maximal donnent une plus
petite longueur de cohérence que les calculs a I’énergie de résonance.

Nous imitons et idéalisons une expérience donnée dans [4] ot une image du centre de 'ondu-
lateur est soumise a une ouverture. La taille de I'ouverture est réduite et le spectre du mode est
étudié. La fermeture de 'ouverture réduit la densité spectrale de puissance, mais en méme temps
réduit le spectre de mode et augmente la cohérence.

Nous étudions l'effet d’une variation de la dispersion d’énergie du faisceau d’électrons. Pour
cela, nous maintenons les parametres transversaux du faisceau d’électrons fixés et ne modifions
que la dispersion d’énergie de PTESRF-EBS. Nous constatons qu’une réduction de la dispersion
d’énergie ne modifie pas gravement le spectre de mode de 'ESRF ul8 1m ondulateur pour le
premier harmonique. Cela change pour les ondulateurs ESRF ul8 de 2m et 4m ou le spectre de
mode change plus fort.

L’effet d'un Twiss alpha fini est étudié pour un ondulateur ESRF ul8 2m. L’ondulateur est
placé soit avec son plan d’entrée 1 m avant le point de symétrie ou au point de symétrie. Le
calcul aven un alpha fini est au moins dix fois plus lent que le calcul au point de symétrie car
aucune convolution ne peut pas étre utilisée dans leurs calculs. En raison des grandes exigences
des ressources informatique, nous inspectons seulement I'ondulateur avec une longueur de 2 m.
Il y a un changement dans le spectre des modes et dans les longueurs de cohérence, mais il n’est
pas important.

Nous calculons la variation du spectre de mode pour une variation des parametres transversaux
du faisceau d’électrons avec une dispersion d’énergie fixe ou une diminution de la dispersion
d’énergie. Nous voyons que le spectre de mode s’effondre en un seul mode si les parametres
du faisceau d’électrons transversaux et la dispersion d’énergie sont considérablement réduits.
L’occupation du premier mode atteint au maximum seulement 93 % si la dispersion d’énergie est
maintenue fixée au valeur de 'EBS et seuls les parametres transversaux du faisceau d’électrons
sont réduits. Ceci est en accord avec les résultats de la section [3.4] car la dimension de la dispersion
d’énergie de la distribution d’espace des phases n’est pas une fonction delta de Dirac.

Nous comparons les modes cohérents exactement calculés a un modele Gaussian Schell (GSM),
a l’approximation de séparation et a une approximation analytique donnée par Geloni et al. [§].
Une comparaison avec un modele Gaussian Schell montre de grandes erreurs dans la norme de
I'opérateur et dans les modes cohérents. L’erreur de valeurs propres n’est pas grande. Les erreurs
deviennent pires pour des parametres de faisceau d’électrons plus petits. Pour ’approximation
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de séparation I'erreur relative dans la norme de I'opérateur est encore d’environ 0.05 pour les pa-
rametres de PTESRF-EBS. Les modes de approximation de séparation sont différents des modes
cohérents exacts. Les valeurs propres sont approximativement pires que les valeurs propres ob-
tenues avec 'approximation du modele Gaussian Schell. Cependant, tous les quantités qui nous
intéressent : densité spectrale de puissance, coupure verticale et horizontale de la densité spectrale
pour quelques points spéciaux montrent un tres bon accord avec le calcul exact. L’approximation
analytique produit des résultat qualitativement correct, mais la densité spectrale présente des
oscillations supplémentaires dans la direction verticale qui sont absentes dans le calcul exact.

L’approximation de séparation semble étre une bonne et rapide approximation numérique. Cela
peut étre utile pour la conception de la ligne de faisceau et devrait étre exécutable méme sur les
ordinateurs ordinaires.

Au chapitre 6, nous présentons quelques idées pour des recherches futures et des développements
ultérieurs. La premiere idée est ’échantillonnage de la densité spectrale avec les méthodes de
Monte Carlo. Evidemment, cela ne peut étre fait que pour des cas simples en raison de 'immense
consommation de mémoire. Par contre, les exigences du théoreme de convolution de la brillance
sont évitées. La densité spectrale pourrait ensuite étre décomposée en modes cohérents et I’analyse
spectrale pourrait étre appliquée.

Une autre idée est I’étude des effets de 'alignement de I'ondulateur. Comment sont les propriétés
du faisceau de photons et surtout les propriétés de cohérence changés si 'ondulateur est mal
aligné. Un désalignement pourrait étre une petite inclinaison ou un petit décalage de ’entrée
de Tondulateur par rapport & sa position de conception idéale. En outre, il serait intéressant
d’étudier 'effet de deux ondulateurs dans une section droite. S’il y a deux ondulateurs, il y a un
écart particulier entre les deux. Est-ce qu’il y a peut-étre un écart optimal 7

Dans cette these, notre discussion se limite & un faisceau de photons parfaitement polarisé hori-
zontalement. Dans la réalité, le faisceau de photons est polarisé et certaines expériences exploitent
la polarisation du rayonnement et modifient la polarisation. Il serait intéressant de modéliser les
lignes de faisceau de ces expériences. Dans ce cas-la, le composant horizontal de la densité spec-
trale n’est pas suffisante et il faut calculer la matrice de cohérence (Eq. [6.2).

La mise en oeuvre actuelle de I'algorithme nécessite une configuration manuelle de plusieurs
parametres d’entrée et de précision. Le logiciel serait plus facile a utiliser si quelques parametres
pourraient étre détectés ou réglés automatiquement.

La mise en oeuvre actuelle considére uniquement le couplage de Twiss-alpha finis de faisceau
d’électrons et suppose aucun autre couplage entre tous les autres parametres de faisceau. En
particulier on suppose que les dimensions horizontale et verticale sont découplées. Une théorie
plus générale est développée dans cette these mais n’est pas encore mise en oeuvre dans le logiciel.
Tout d’abord, nous voulions une mise en oeuvre qui couvre les cas les plus importants et soit le plus
simple possible. D’autres couplages augmenteront la complexité de la mise en oeuvre et réduiront
la vitesse. Cependant, ce serait un bon moment pour ajouter des couplages supplémentaires.

Nous voyons qu’au moins pour un faisceau d’électrons horizontalement et verticalement découplé,
lapproximation de séparation peut conduire a de bons résultats approximatifs (voir la section
5.6.2). Peut-étre que la théorie standard de perturbation de la mécanique quantique pourrait
encore améliorer I'approximation. Un test (voir la section @ montre que au moins les valeurs
propres deviennent meilleures.

En tant que derniere idée, nous proposons d’étudier les liens vers d’autres disciplines de la phy-
sique statistique. Nous avons discuté dans cette these que le rayonnement de I’anneau de stockage
du synchrotron suit les statistiques gaussiennes. D’autres théories physiques sont également basés
sur les statistiques gaussiennes. Il serait intéressant de voir si des quantités physiques d’autres
théories ont un pendentif dans notre théorie. Par exemple, une question pourrait étre : existe-t-il
un <facteur de Boltzmanns> dans notre théorie ?
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Nous finissons avec un bref résumé qui dit :
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Le contexte de cette these est I’étude de la cohérence partielle dans les faisceaux syn-
chrotron produits par les anneaux de stockage de basse émittance, comme 'ESRF-EBS.
L’objectif principal est la compréhension et ’application de la physique sous-jacente pour
I'implémentation et le développement d’outils de calcul. Nous développons d’abord une
théorie de 'optique-statistique pour les radiations émisses par des anneaux de stockage
qui est basée sur le théoreme de Kim et sur les contributions de Geloni et al. Nous uti-
lisons ces formules d’une maniére détaillée et légerement différente. Nous insistons sur
I'importance des parametres stochastiques des faisceaux d’électrons pour décrire les pro-
priétés de cohérence. Nous observerons que la longueur du paquet des électrons n’affecte
pas les propriétés de la cohérence s’il y a un couplage faible entre la position longitudinal
de I’électron et ses autres parametres. Nous avons construit une description de 'optique
statistique pour ’émission synchrotron liée aux modes cohérents. Nous voyons qu’un
ensemble est completement cohérent si et seulement si ses modes cohérents se réduisent
a un seul mode. Geloni et al. mentionnent que 1’émission d’un synchrotron est un proces-
sus stochastique gaussien. Nous ajoutons qu’il a une moyenne nulle et il est symétrique
circulaire. En conséquence nous pouvons donner une interprétation physique au degré
de cohérence spectrale en termes de densité de probabilité conditionnée de forme gaus-
sienne. Nous avons développé et implémenté un algorithme qui calcule la décomposition
de la densité spectrale en modes cohérents. Il peut étre appliqué a un faisceau d’électrons
avec un parametre Twiss-alpha fini et une dispersion d’énergie. Nous avons implémenté
deux versions de ’algorithme. La premiere résout ’équation de Fredholm dans une base
de fonctions constantes par morceaux. Les calculs pour les hautes harmoniques d’un on-
dulateur et pour des émittances relativement larges demandent une trop grande mémoire
pour étre calculées. Pour réduire la mémoire requise, nous avons développé une méthode
en deux pas. On résout d’abord I’équation pour un faisceau d’électron de divergence
nulle, puis on ajoute les effets de la divergence dans un second temps. Nous présentons
des tests approfondis qui incluent une distribution des électrons du type fonction delta
de Dirac, des champs électriques gaussiens dont les résultats analytiques sont connus,
ainsi qu’une comparaison avec des résultats Monte Carlo produits par SRW. Nous appli-
quons cet algorithme sur un nombre de cas particuliers. Nous déterminons combien de
modes sont nécessaires pour inclure 95% de la densité spectrale et comment le degré de
cohérence spectrale change. Nous trouvons que la dispersion d’énergie ajoute des modes
cohérents. Cet effet est négligeable pour des anneaux courants mais pour 'ESRF-EBS
elle ajoute des nouveaux modes. Des ondulateurs plus courts et des plus hautes harmo-
niques augmentent le nombre de modes. Une comparaison entre un ondulateur placée
dans un point avec alpha fini et dans un point symétrique ne montre pas de différences
significative. Une réduction artificielle de I’émittance du anneau ESRF-EBS montre un
décroit du nombre de mode jusqu’a arriver a un seul mode. Nous avons simulé une ligne
de lumiere simplifiée focalisant 1 : 1. Une réduction de la taille de I'ouverture change les
valeurs propres du spectre vers des modes de plus en plus petits ce qui entraine aussi une
réduction du flux. Nous présentons une comparaison entre la densité spectrale calculée
avec 'approximation Gauss-Shell, approximation analytique et 'approximation de la
séparation. Bien qu’il n’y a pas d’erreurs négligeables entre le calcul exact et ’approxi-
mation de la séparation, nous concluons que cette derniere peut étre une bonne et rapide
solution permettant des calculs sur des ordinateur portables. Nous terminons cette these
par des idées sur de futures recherches.
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