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“Il est certains esprits dont les sombres pensées

Sont d’un nuage épais toujours embarrassées ;

Le jour de la raison ne le saurait percer.

Avant donc que d’écrire, apprenez à penser.

Selon que notre idée est plus ou moins obscure,

L’expression la suit, ou moins nette, ou plus pure.

Ce que l’on conçoit bien s’énonce clairement,

Et les mots pour le dire arrivent aisément.”

Nicolas BOILEAU (1636-1711)
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Executive control relates to the human ability to monitor and flexibly adapt behavior

in relation to internal mental states. Specifically, executive control relies on evaluating

action outcomes for adjusting subsequent action.

Actions can be reinforced or devaluated given affective value of outcomes, notably in

basal ganglia and medial prefrontal cortex. Additionally, outcomes convey information

to adapt behavior in relation to internal beliefs, involving prefrontal cortex. Accordingly,

action outcomes convey two major types of value signals: (1) Affective values, represent-

ing the valuation of action outcomes given subjective preferences and stemming from

reinforcement learning; (2) Belief values about how actions map onto outcome contin-

gencies and relating to Bayesian inference. However, how these two signals contribute

to decision remains unclear, and previous experimental paradigms confounded them. In

this PhD thesis, we investigated whether their dissociation is behaviorally and neurally

relevant.

We present several behavioral experiments dissociating these two signals, in the form of

probabilistic reversal-learning tasks involving stochastic and changing reward structures.

We built a model establishing the functional and computational foundations of such

dissociation. It combined two parallel systems: reinforcement learning, modulating

affective values, and Bayesian inference, monitoring beliefs. The model accounted for

behavior better than many other alternative models.

We then investigated whether beliefs and affective values have distinct neural bases us-

ing fMRI. BOLD signal was regressed against choice-dependent and choice-independent

beliefs and affective values. Ventromedial prefrontal cortex (VMPFC) and midcingulate

cortex (MCC) activity correlated with both choice-dependent variables. However, we

found a double-dissociation regarding choice-independent variables, with VMPFC en-

coding choice-independent beliefs, whereas MCC encoded choice-independent affective

values. Additionally, activity in lateral prefrontal cortex (LPFC) increased when de-

cision values (i.e. mixture of beliefs and affective values) got closer to each other and

action selection became more difficult.

These results suggest that before decision, VMPFC and MCC separately encode beliefs

and affective values respectively. LPFC combines both signals to decide, then feeds

back choice information to these medial regions, presumably for updating these value

signals according to action outcomes. These results provide new insight into the neural

mechanisms of decision-making in prefrontal cortex.
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Le contrôle exécutif de l’action fait référence à la capacité de l’Homme à contrôler et

adapter son comportement de manière flexible, en lien avec ses états mentaux internes.

Il repose sur l’évaluation des conséquences des actions pour ajuster les choix futurs.

Les actions peuvent être renforcées ou dévaluées en fonction de la valeur affective des

conséquences, impliquant notamment les ganglions de la base et le cortex préfrontal

médian. En outre, les conséquences des actions portent une information, qui permet

d’ajuster le comportement en relation avec des croyances internes, impliquant le cortex

préfrontal. Ainsi, les conséquences des actions portent deux types de signaux : (1)

Une valeur affective, qui représente l’évaluation de la conséquence de l’action selon les

préférences subjectives, issue de l’apprentissage par renforcement ; (2) Une valeur de

croyance, mesurant comment les actions correspondent aux contingences externes, en

lien avec l’inférence bayésienne. Cependant, la contribution de ces deux signaux à la

prise de décision reste méconnue. Dans cette thèse, nous avons étudié la pertinence de

cette dissociation aux niveaux comportemental et cérébral.

Nous présentons plusieurs expériences comportementales permettant de dissocier ces

deux signaux de valeur, sous la forme de tâches d’apprentissage probabiliste avec des

structures de récompense stochastiques et changeantes. Nous avons construit un modèle

établissant les fondations fonctionnelles et computationnelles de la dissociation. Il com-

bine deux systèmes en parallèle : un système d’apprentissage par renforcement modulant

les valeurs affectives, et un système d’inférence bayésienne modulant les croyances. Le

modèle explique mieux le comportement que de nombreux modèles alternatifs.

Nous avons ensuite étudié, en IRM fonctionnelle, si les représentations dépendantes et

indépendantes du choix des croyances et des valeurs affectives avaient des bases neurales

distinctes. L’activité du cortex préfrontal ventromédian (VMPFC) et du cortex mid-

cingulaire (MCC) corrèle avec les deux variables dépendantes du choix. Cependant,

une double-dissociation a été identifiée concernant les représentations indépendantes du

choix, le VMPFC étant spécifique des croyances alors que le MCC est spécifique des

valeurs affectives. En outre, l’activité du cortex préfrontal latéral augmente lorsque les

deux valeurs de décision sont proches et que le choix devient difficile.

Ces résultats suggèrent qu’avant la décision, le cortex préfrontal ventromédian (VMPFC)

et le cortex mid-cingulaire (MCC) encodent séparément les croyances et les valeurs

affectives respectivement. Le cortex préfrontal latéral (LPFC) combine les deux signaux

pour prendre une décision, puis renvoie l’information du choix aux régions médianes,

probablement pour actualiser les deux signaux de valeur en fonction des conséquences

du choix. Ces résultats contribuent à élucider les mécanismes cérébraux de la prise de

décision dans le cortex préfrontal.
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suis-je ravie d’avoir de nombreux remerciements à exprimer !
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Burle, Christian Lorenzi, Mathias Pessiglione et Emmanuel Procyk.

Je remercie l’Ecole Normale Supérieure de Lyon de m’avoir permis de faire de longues

études et de m’avoir financée pendant mon doctorat. Je remercie les nombreux volon-
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Decision-making is a critical feature for survival, in a permanently evolving environ-

ment. In humans, decisions are considered to be the ultimate expression of free will and

voluntary behavior. Human behavior is characterized by an important flexibility and

adaptability, two elements which allow humans to realize their internal goals through

the decisions they make. This flexible adaptability is crucial especially given that ev-

eryday decisions take place in ever-changing environments. Accurately evaluating the

value of choice options at stake is therefore critical. In this PhD work, we investigated

the outcome evaluation mechanisms underlying free choice in sequential decisions, two

features that are close to real-life choices.

For centuries, philosophers, psychologists and economists have tempted to access our

internal world through the means of introspection and the study of behavior. In the

past decades, functional magnetic resonance imaging has revolutionized the study of

human brain mechanisms. Despite providing only correlational evidence, it is a non

invasive method allowing to investigate the neural bases of certain cognitive processes

or variables. One of the key feature of this PhD work lies in the complementary contri-

butions of experimental and computational approaches to the study of choice cerebral

mechanisms.

Decisions manifest themselves through actions but can be dissociated from them. De-

cisions owe their existence to mental processes hidden within the brain foldings. It

seems now established that human medial prefrontal cortex is a key hub in the decision-

making network. However, a structural and functional refinement remains to be elabo-

rated. Combining modern approaches such as behavioral psychophysics, computational

modeling and neuroimaging, it is now possible to investigate the neural mechanisms

underlying decision-making, in order to determine the hidden variables that link per-

ceived outcomes to actions. These hidden variables, which govern subjects’ decisions,

constitute the interface between the real world and its mental representation.





Chapter 1

Human Decision-Making and

Prefrontal Function

My PhD work falls within the general framework of human prefrontal executive function,

with a focus on value-based decision-making.

1.1 Prefrontal cortex subserves central executive function

Executive control relates to the human ability to monitor and adapt behavior in relation

to internal mental states (Miller and Cohen, 2001 [1]). Indeed, human subjects are able

to not respond only to immediate stimuli, in an automatic manner, but also to respond

to stimuli in relation to internal goals and beliefs, in an adaptive and flexible manner.

Thus, executive control refers to a set of functions giving humans their aptitude to

react not only automatically to external events, but also regarding inner thoughts and

intentions, which manifest themselves through desires, objectives and beliefs. These

functions are qualified as central as they are involved in our perception of ourselves

as autonomous and responsible agents, with voluntary intentions. Finally, executive

functions are associated with the notion of consciousness. In humans, prefrontal cortex

subserves central executive function (Figure 1.1).

1.1.1 Early insights into prefrontal cortex functions: the contribution

of lesion studies

Originally, executive control was considered as a set of abilities such as planning, organi-

zation and goal-directed behavior, that are implicated a lot in daily life: decision-making,

1
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Figure 1.1: Prefrontal cortex subserves human central executive function (lateral
view, wikipedia image).

reasoning, social interactions, etc. Historically, the first insights into prefrontal function

came from a memorable patient named Phineas Gage. Following a serious accident in

1848, Gage survived but was injured in both frontal lobes. Consequently, he sustained

temporary behavioral and personality changes (e.g. more impulsivity), along with social

skills modifications, directly relating for the first time personality traits with a specific

brain region change. The case was later re-studied using modern techniques (Damasio

et al., 1994 [2]). Damasio and colleagues confirmed that the deep changes in Phineas

Gage’s personality were related to damage in both left and right anterior parts of PFC,

causing deficit in rational decision-making and emotion processing.

More broadly, patients with prefrontal cortex lesions appear to have general motor, sen-

sory and memory functions preserved, but are seriously impaired in real-life functioning

(Shallice and Burgess, 1991 [3]). In two real-life settings tasks, Shallice and Burgess

reported 3 patients cases for which they showed deficits in prefrontal function implying

an inability to switch between tasks [3]. This result was replicated by other research

groups (Rubinstein et al., 1994 [4]). Patients had difficulty interrupting ongoing behav-

ior to execute a different course of action, as well as going back to the original course

of action afterwards. This dysexecutive syndrome can present with two main clinical

pictures, with variations according to the spatial extent of lesions and to the patient’s

life history. (1) The hypoactive form is characterized by a lack of initiative, apathy,

inertia, and difficulty making decisions. (2) The hyperactive form is characterized by

impulsivity, inappropriate behavior, lack of insight on one’s own behavioral outcomes,

and frequent change of goals. This supports the view that prefrontal cortex subserves

auto-regulation and action control abilities.
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A more recent review by Szczepanski and Knight (2014) [5] provides a finer charac-

terization of prefrontal lesions regarding the functional specificities of each subregion.

In particular, Azuar and colleagues demonstrated that LPFC regions’ integrity was

necessary to exert cognitive control. Furthermore, the posterior regions integrity was

necessary for the most anterior regions to exert such control (Azuar et al., 2014 [6]).

These lesion studies are particularly interesting since they provide causal relationships

between brain area and function, whereas fMRI provides correlative data.

1.1.2 Prefrontal cortex neuroanatomy, cytoarchitecture and neuro-

physiology

The frontal lobes are particularly developed in humans compared to other species. They

form a third of the brain surface and correspond to its most anterior part, incorporating

both hemispheres. In this section, we present prefrontal cortex subdivisions according

to anatomical landmarks. Functional subdivisions will be discussed in the next section.

Prefrontal cortex is delineated caudally by motor cortex. Premotor cortex and supple-

mentary motor area (SMA) are usually not considered part of prefrontal cortex. Gyri and

sulci, giving the human brain its characteristic folded appearance, constitute anatomical

landmarks to decompose prefrontal cortex into distinct subparts. However, a decompo-

sition based on Brodmann areas, which is not inconsistent with gyri and sulci, is more

often used.

Brodmann areas (BA) give subregions delineation given cytoarchitecture, which refers

to the cellular properties of the neural networks composing the different cortical layers.

This classification is therefore based on the apparent structural organization of the

cortex: number and thickness of cortical layers, dendritic arborization, etc. Figure 1.2

display the Brodmann areas composing prefrontal cortex.

The lateral part of prefrontal cortex comprehends, from rostral to caudal: BA 47 (OFC,

ventrally); BA 10 (frontal pole, the most anterior part); BA 46 and BA 9 (roughly

corresponding to dorsolateral PFC); BA 8, including frontal eye field (Figure 1.2). On

the left hemisphere, BA 44 and BA 45 (inferior frontal gyrus) correspond to Broca

area, an area necessary for speech production, that is triggered during semantic tasks,

semantic working memory and retrieval, as well as phonological and syntactic process-

ing. The medial part comprises BA 24 (ventral anterior cingulate), BA 25 (subgenus,

governing amygdala, insula and hippocampus), BA 32 (dorsal anterior cingulate) and

BA 33 (pregenual cingulate). Here, I would like to emphasize the importance of these

anatomical landmarks to study functionality. Indeed, usually computational models and
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medial view

lateral view

Figure 1.2: Prefrontal cortex includes Brodmann areas 8, 9, 10, 11, 12, 24, 25, 32, 33,
44 and 45 (Broca), 46 and 47. These delineations are based on cytoarchitecture (image

from Traite de neuropsychologie clinique by Lechevalier and colleagues, 2008).

neuroimaging do not take into account anatomical bases to elucidate brain subregions’

function.

Neurotransmitters and connectivity. Cortical layers are composed of excitatory

and inhibitory neurons, that have long distance reciprocal projections with the rest of

the cortex. Prefrontal cortex presents high intrinsic connectivity, as well as extrinsic con-

nectivity with other brain regions. All neuromodulators types are present in prefrontal

cortex (Fuster, 1988 [7]). Specifically, dopamine and norepinephrine, thought to mediate

learning (Collins and Frank, 2012 [8]), are found in higher concentrations than in other

brain regions. Prefrontal cortex also has glutamatergic projections to the limbic system,

e.g. amygdala and hippocampus, which are modulating emotional and memory-related

responses, as well as neurons projecting to the thalamus and hypothalamus. Mutual

connections i.e. that feed the PFC and that the PFC feeds involve sensory areas and

posterior associative areas, making prefrontal cortex a center of convergence for various

sensory inputs.

The connections pattern was originally investigated using tracers injection in non-human

primates (Petrides and Pandya, 2002 [9]). Today, diffusion tensor imaging (DTI) allowed

to uncover part of these tracks (Croxson et al., 2005 [10]) and dress parallels with non-

human primates functional regionalization.
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1.1.3 Prefrontal cortex in non-human primates and other species

We will see in the next chapters that a lot of what we know about brain structure and

function derive from the contribution of animal studies. Although my PhD work con-

cerns the human brain, this section is a complement concerning animal brain anatomy.

Non-human primates brain share homologies with human brain regions (Wise et al.,

2008 [11]), as shown in Figure 1.3. In rats, the homology of structures with human pre-

frontal cortex is still debated, however the spatial distribution of cortical layers suggests

homologies between rodents and primates (regarding granular areas, up to layer IV). Re-

garding OFC, neural activity and connectivity is largely shared between rats, primates

and humans (Preuss, 1995 [12]). Despite a smaller size for OFC in rats, causing less

ability to handle complex cognitive tasks as compared to primates, lesions in this area

lead to the same dysfunction pattern across species in tasks with reversal learning and

with reward devaluation (Stalnaker et al., 2015 [13]).

Human Macaque Monkey Rat

Figure 1.3: The human brain share homologies with other species (reproduced from
Wise et al., 2008).

Medial area and cingulate sulcus share equivalent functional homologies between humans

and macaque monkeys (Procyk et al., 2014 [14]). More precisely, the term anterior cin-

gulate cortex (ACC) corresponds to different parts of the mid-cingulate sulcus according

to different studies. Within the cingulate sulcus, we can distinguish the most anterior

part (ACC), followed by the midcingulate cortex (MCC) also referred to as dorsal ACC

(dACC). Furthermore, certain human subjects have an additional cingulate sulcus which

is dorsal to the first one, named paracingulate sulcus (Petrides et al., 2012 [15]; Amiez

et al., 2013 [16]).
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In monkeys, the cingulate cortex presents similar cytoarchitectonic subparts, except for

BA 32 which seems specific to humans (Vogt, 2009a [17]). Also, there is no paracingulate

sulcus in monkeys. However, the most anterior part, corresponding to BA10, remains

more developed in humans and seems to comprise cognitive processes that are specific

to humans. Macaques contribution to neuroscience research involves local field potential

(LFP) and unitary extracellular electrophysiology recordings, in behaving animal. How-

ever, this approach is not restricted to animals anymore. Recent studies start to use the

same type of electrophysiology recordings in humans, with epileptic patients implanted

with intracranial electrodes (Bonini, Burle et al., 2014 [18]).

1.1.4 Prefrontal cortex development and evolution during lifetime

In humans, prefrontal cortex is the last brain area to mature. Its development starts

early in fetal life, in parallel with sensory and motor regions development, but is not over

at birth and keeps growing during childhood and adolescence, up to 20 years old. The

prefrontal endogenous circuits, driven by sensory stimulations, develop mostly during

prenatal life, while the “cognitive” circuit appears at 7-12 months old. The maximal

number of synapses and the complete maturation of certain cortical layers take place

during the first few years of life (Gazzaniga, Chapter 2, 2009 [19]). At that moment,

the number of synapses is much higher than in adults. The presence of extra-synapses

allows to selectively stabilize certain functional circuits more than others, in response

to various environmental stimuli and experiences, through intense pruning of supernu-

merary synapses. Synaptic connectivity exhibits initial exuberant production followed

by gradual pruning (4-6 years old), with synapses density decreasing. The adult brain

is then much less plastic.

Our faculty of judgment and decision is thus not complete until the prefrontal cortex is

fully set up. Myelinization is not over until the second decade of life. Its development

particularly depends on the amount and nature of exposure to stimuli, particularly to

social stimuli, that are often complex and ambiguous. Blakemore’s team has shown that

prefrontal cortex in relation with social cognition keeps developing until late adolescence

(Blakemore, 2010 [20]). These changes in behavior and cognitive skills are accompanied

by changes in brain structure and in grey matter volume, regarding for example medial

prefrontal cortex (Blakemore, 2008 [21]). Sense of self and relational reasoning also

expand during adolescence (Dumontheil et al., 2010 [22]). Thus, executive function,

which underlie our faculty of judgment and our sense of responsibility is not complete

until the age of 18-20 years old. In the next section, we will now describe diseases arising

as a consequence of PFC dysfunction.
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1.1.5 Neuropsychiatric diseases involving prefrontal cortex dysfunc-

tion

Besides vascular lesions, many neuropsychiatric disorders in humans involve specific

prefrontal deficits.

Obsessive-compulsive disorder. Patients with obsessive-compulsive disorder (OCD)

display dysfunctional activity in orbitofrontal cortex, causing less behavioral flexibility

(Chamberlain et al. 2008 [23]), as well as abnormal fronto-striatal loops functioning.

OCD also involves basal ganglia dysfunction, leading to compulsive and repetitive be-

haviors (Baxter et al., 1992 [24]).

Addiction. Original addiction studies have focused on the reward circuit deficits in

subcortical regions, such as ventral tegmental area. However, a growing body of ev-

idence, coming from neuroimaging studies, revealed a key involvement of prefrontal

cortex in drug addiction (Goldstein and Volkow, 2011 [25]), with an abnormal cognitive,

motivational and emotional functions regulation. These studies indicated a decrease

in cognitive control and in self-control in general, and a decrease of the ability to in-

hibit drives, characterized by a self-awareness lowering in intoxication periods (Baler

and Volkow, 2006 [26]). Specifically, orbitofrontal and anterior cingulate cortices dys-

function implies over-saliency of stimuli related to addiction and under-saliency of other

reinforcers.

Schizophrenia. In schizophrenia, post-mortem studies revealed a reduced brain vol-

ume, in particular in PFC and hippocampus, accompanied with abnormal cellular

size, dendritic density and neural distribution. At the cellular and molecular levels,

schizophrenic brain exhibits abnormal synaptic pruning during adolescence and early

adulthood, corresponding to the symptoms onset. At the cognitive level, perceptual

decision-making in schizophrenic patients is characterized by an over-dependence on

prior expectations, despite sensory evidence being in contradiction with their prior ex-

pectations (Blackwood et al., 2001 [27]). This tendency to base decision on less evidence

than healthy subjects has been termed “jump-to-conclusion” bias (Moritz et al., 2005

[28]). More precisely, Jardri and Deneve proposed a hierarchical neural network explain-

ing circular belief propagation (Jardri and Deneve, 2013 [29]). This circular belief prop-

agation results in abnormal interaction between top-down and bottom-up information

(Fletcher and Frith, 2008 [30]). Their model explained schizophrenic patients’ inflexible

beliefs (Woodward et al., 2008 [31]) as well as their overconfidence in front of probabilis-

tic choices. Moreover, the over-reliance on prior expectations hypothesis is supported by

several data sets (Barbalat, Rouault et al., 2012 [32]; Chambon et al., 2011 [33]). Lastly,

Barbalat and colleagues tested schizophrenic participants in a task involving top-down
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cognitive control and maintenance of information from past events. Participants with

schizophrenia had increased episodic control but had impaired contextual control (Bar-

balat et al., 2009 [34]). In addition, schizophrenic patients were impaired in effective

connectivity within different lateral prefrontal cortex subparts, leading to a top-down

control disconnection (Barbalat et al., 2011 [35]).

Historically, studying patients have provided some insight about the PFC functional

roles. We will review in the next section the main theories of PFC functional architecture.

1.2 Functional and anatomical organization: main theories

of prefrontal cortex function

In this section, we describe the proposed functions for the principal subregions of human

prefrontal cortex. Roughly, human prefrontal cortex is organized around three main axes

(Figure 1.4):

Motivational control (medial)

Emotional 
control 

(ventral)

Cognitive 
control 
(dorsal)

Figure 1.4: Prefrontal cortex and action control (coronal slice).

• Motivational control, which refers to drives, underlying voluntary action.

• Cognitive control, which refers to rules and choices.

• Emotional control, which refers to preferences.

Here, the term “control” refers to processes that are not automatic but controlled re-

sponses. First, we will see that dorsolateral prefrontal cortex (Figure 1.5) is responsible

for top-down cognitive action control, while ventrolateral prefrontal cortex is related to

motor inhibition and updating action plans. Next, we will see that ventromedial and

orbitofrontal cortices (Figure 1.5) are heterogeneous brain regions, involved in particu-

lar in the outcomes and goods valuation, and in the values and emotions integration.
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The following part will be dedicated to dorsomedial and cingulate cortices, implicated

in motivation and performance monitoring. Finally, we will discuss the most influential

accounts proposed to underlie frontopolar cortex, the most anterior part of the human

brain.

Figure 1.5: Main anatomical subdivisions within prefrontal cortex (reproduced from
Szczepanski and Knight, 2014).

1.2.1 Lateral prefrontal cortex and hierarchical cognitive control

Lateral prefrontal cortex is implicated in goal-directed behavior. As such, it imple-

ments the behavioral adjustments that the medial PFC indicates, maintaining represen-

tations despite interference from distractors or irrelevant events until a goad is achieved.

Lateral PFC is able to inhibit spontaneous responses before a motor action is executed.

Lateral PFC is more activated following error trials, providing evidence for an increase

in cognitive control for subsequent trials. As such, lateral PFC implements cognitive

control adjustments.

Koechlin and colleagues have demonstrated a hierarchy in cognitive control within lateral

prefrontal cortex, according to the information level. Here information is understood in

the sense of Shannon information theory. At the sensory level, control is implemented

in lateral premotor cortex, to select responses to stimuli (Koechlin et al., 2003 [36]).

Certain neurons in lateral premotor encode planning an impeding movement and motor

preparation. At the contextual level, caudal lateral PFC regions subserve control, in

relation to external contextual cues associated with stimuli. Critically, contextual control

is only engaged when current task contingencies require it (Collins and Frank, 2013

[37]). Finally, episodic control is implemented in rostral lateral PFC areas, given past

behavioral episodes or internal goals, controlling more caudal regions in a “cascade”

model. Top-down control is thus implemented according to a hierarchy in information

processing and map onto a hierarchy in functional brain regions (Figure 1.6).
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Figure 1.6: The cascade model of top-down cognitive control within lateral PFC
(reproduced from Koechlin et al., 2003).

Rules implementation. In line with the notion of cognitive control, lateral PFC is in-

volved in rule-based normative behavior. For example, Ruff and colleagues were able to

increase or decrease compliance to social normative rules in humans, when manipulating

right lateral PFC using transcranial direct current stimulation (tDCS) (Ruff et al., 2013

[38]). Behavioral rules neural substrates are found in lateral PFC in match-to-sample

tasks. Ventrolateral PFC maintains rule representations to implement rule-based be-

havior (Sakai and Passingham, 2003 [39], 2006 [40]). Lateral PFC is not involved in

encoding simple stimulus/reward rules but is necessary to encode more abstract high

level rules and behavioral strategies (Bunge et al., 2005 [41]; Genovesio et al., 2005 [42]).

Working memory. The working memory concept refers to the ability to maintain

relevant information to perform a task at hand, in the short-term, at a more abstract

level than sensory information processing. This temporary information maintenance

allows learning, comprehension and reasoning (Baddeley, 2010 [43]). Working memory

is more about function than about contents. It includes an attentional focus mechanism,

which consists of a bottleneck, meaning that only a limited amount of information can be

handled at the same time (Oberauer, 2002 [44]; Oberauer and Kliegl, 2006 [45]). This

mechanism allows to select sets or representations by determining priorities between

various informations. Working memory function is critically dependent on lateral PFC

(Levy and Goldman-Rakic, 1999 [46]), for instance for overcoming interfering stimuli.

In summary, lateral PFC is highly specialized regarding its anatomy and function. It

has an integrative and adaptive role in a range of executive control behaviors, including

retention, information manipulation and retrieval to achieve long-term goals, via action

planning (Fuster, 2001 [47]), as well as response inhibition and rules implementation.
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Ventrolateral PFC is involved in active information retrieval and selection, whereas

dorsolateral PFC is rather involved in very controlled processes.

1.2.2 Ventromedial prefrontal cortex and orbitofrontal cortex

These two adjacent regions are sometimes similarly labelled in neuroimaging studies.

Anatomically, they correspond to the two most ventral regions of medial PFC, associated

with emotional/affective control (Figure 1.5).

Primarily, a large body of evidence supports the idea that ventromedial prefrontal cortex

(vmPFC) and adjacent orbitofrontal cortex (OFC) encode “economic” value of goods

or stimuli (Padoa-Schioppa and Assad, 2006 [48]; Lebreton et al., 2009 [49]; Prevost,

Pessiglione et al., 2010 [50]; see Clithero and Rangel, 2013 for a review [51]). In neu-

roimaging experiments, vmPFC activity correlated with a “common currency” value for

different types of goods (Chib et al., 2009 [52]) as well as with subjects’ willingness to

pay for food items (Plassmann et al., 2007 [53]).

However, we will see in the next chapter that reward value is a loosely defined con-

cept (O’Doherty, 2014 [54]; Jessup and O’Doherty, 2014 [55]). Given the studies, it

encompasses as far as reward identity, reward saliency, reward probability, etc.

Other pieces of evidence support a crucial role for vmPFC to make value-based inferences

rather than simply retrieving values. For example, in a probabilistic reversal learning

task under fMRI, vmPFC activity was found to be rather consistent with abstract hidden

states inferences than with a reinforcement learning model (Hampton et al., 2006 [56]).

Moreover, using neuronal recordings in rats, Jones and colleagues elegantly demonstrated

that OFC is critically implicated to compute inferred values for decision (Jones et al.,

2012 [57]). However, Roy and colleagues argued that vmPFC does not encode value per

se, but encodes an “affective meaning” that is constructed from value. This affective

meaning would be constructed from value by using other conceptual information, in

order to give value its meaning in terms of behavior (Roy et al., 2012 [58]).

Despite a growing number of experimental studies implicating OFC in a large variety of

computations (value, prediction errors, and their assignment to distinct causes: credit

assignment (Walton, Behrens et al., 2010 [59], 2011 [60]), stimulus/outcome associa-

tions encoding ...), the exact role of OFC remains unclear (Stalnaker et al., 2015 [13];

Rudebeck and Murray, 2014 [61]). One of the most influential accounts to date for

explaining OFC function across various datasets views OFC a “cognitive map of task

space” (Wilson et al., 2014 [62]). OFC would encode the definition of a map of the

current task-sets space, allowing for unlearning of old rules to set up new ones, and for
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guiding behavior in the case of fictive learning (i.e. imagining outcomes that have never

been encountered before, simulating possible outcomes, etc). It relies on the definition

and position within a state space. Therefore, simple learning is still possible without

OFC but as soon as the task requires more abstract inference, OFC remains necessary.

Thus, OFC would acquire and maintain associative representations to guide behavior,

in relation with hippocampus and striatum, to which it is connected.

We presented here briefly the main theories of ventromedial and medial orbitofrontal

cortices, but the details and alternative theories regarding value processing in these

regions will be presented in Chapter 2.

1.2.3 Dorsomedial prefrontal cortex and cingulate cortex

Dorsomedial prefrontal cortex (dmPFC) is a key node in the prefrontal network for

decision-making and action control. In primates, it corresponds to the areas BA8m,

BA9m and BA10m (medial parts). Its ventral limit corresponds to the named anterior

cingulate cortex (ACC) and, more posterior, to the midcingulate cortex. The term

anterior cingulate cortex (ACC) corresponds to different parts of the mid-cingulate sulcus

according to different studies. Within the cingulate sulcus, we can distinguish the most

anterior part (ACC), followed by the midcingulate cortex (MCC) also referred to as

dorsal ACC (dACC) (Vogt et al., 2005 [63]; Procyk et al., 2014 [14]). These regions are

found to be recruited in a huge number of situations, e.g. emotion processing, learning,

motivation, error detection, reward processing, action/outcome evaluation and decision-

making (Devinsky et al., 1995 [64]). We will discuss the main influential accounts of

dorsomedial and cingulate functions.

Error Monitoring. dmPFC is implicated in error detection and subsequent behavioral

adjustment. One of the main results refers to the error-related negativity (ERN), an

evoked potential that appears when the subject realized he/she made an error. The

source in which ERN originates seems to be in dmPFC (Gehring et al., 1993 [65]; Holroyd

et al., 2002 [66]). The ERN signal (Figure 1.7) is part of event-related brain potential

that is generated when subjects made errors in psychophysics experiments. The ERN

signal is thought to drive learning, although some people learn more from their errors

while other people learn more from positive feedbacks (Frank et al., 2005 [67]). A more

recent study using source localization precised the origin of ERN rather in premotor

area/SMA, while the error-related positivity (ERP) was localized in ACC (caudal, BA24)

(Herrmann et al., 2004 [68]).

However, this region might not selectively respond to errors but also monitors both cor-

rect and incorrect feedbacks. Specifically, Roger and colleagues showed that an anterior



Chapter 1. Human Decision-Making and Prefrontal Function 13

Figure 1.7: The Error-Related Negativity, elicited by the feedback apparition, is
stronger for incorrect trials (reproduced from Holroyd et al., 2002).

part of the cingulate area was associated with correct outcomes, suggesting a common

generator for correct and incorrect responses, with signal amplitude varying according

to correctness (Roger et al., 2010 [69]).

A recent study also implicates SMA in error detection and online correction (Spieser

et al., 2015 [70]). Using EMG, Spieser and colleagues were able to identify a role for

SMA in inhibiting errors and correcting them before a motor response was provided. In

addition, they were able to prevent impulsive errors using tDCS (Spieser et al., 2015

[70]).

Conflict theory. When and how is cognitive control recruited in lateral PFC? In a

series of papers, Botvinick and colleagues proposed that ACC activity increases when

conflict between competing responses arises i.e. when there is a conflict in information

processing, thus generating the need for more cognitive control (Botvinick et al., 2001

[71], 2004 [72]; Shenhav et al., 2014 [73]). More precisely, conflict may arise when the

subject has to override a predetermined response, or when visual stimulus and motor

response directions are incongruent. Flanker task and Stroop effect are examples of

experimental set-ups causing conflict; even if eventually no error is made. Conflict also

arises when responses are underdetermined (many possibilities), thus generating higher

activity in ACC. Thus, ACC is recruited in tasks where there is a high demand for

cognitive control, the level of which would be regulated by an interaction medial/lateral

PFC. A meta-analysis of datasets identifying conflict (Barch et al., 2001 [74]) revealed

that not only ACC but mainly MCC and sometimes even dmPFC were recruited when

the task at hand triggered conflict (Figure 1.8).
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Figure 1.8: Plot of cingulate activations related to conflict with various response
modalities, from a literature review (reproduced from Barch et al., 2001).

However, many datasets have now put into question conflict theory. In particular,

Burle and colleagues showed that competition between responses was not required for

interference to happen. The ERN signal duration was related to the time necessary to

“correct” partial errors arising, lasting up to the moment that the error was “corrected”

(Burle et al., 2008 [75]). Moreover, Burle and colleagues showed that the engagement

of executive control was not directly related to the amount of conflict, as measured by

electromyographic recordings (Burle et al., 2005 [76]).

Motivational control. In line with the role of dmPFC and ACC in regulating cogni-

tive control engagement, it has been proposed that dorsal regions of the cingulate cortex

are responsible for the motivation for action and the notion of “wanting” something,

regulating the level of lateral PFC subparts recruitment. Varying monetary incentives

via visual cues, Kouneiher and colleagues demonstrated two motivational control levels

within medial PFC, mapping onto cognitive control levels within lateral PFC and “en-

ergizing” them (Kouneiher et al., 2009 [77]). More precisely, activity in pre-SMA was

associated with contextual motivation, whereas episodic motivation triggered dACC ac-

tivity.

Mentalizing. dmPFC is a key node in the mentalizing network and is implicated in

social cognition (Eickhoff et al., 2014 [78]). Mentalizing refers to the capacity to under-

stand the mind of others, for example by maintaining representation of their preferences

(Kang et al., 2013 [79]). Mentalizing also relies on temporo-parietal junction (TPJ)

and posterior cingulate cortex (PCC). In a task designed to trigger altruistic behavior,

Waytz and colleagues found that dmPFC activity predicted both monetary donations

to other people and time dedicated to help others (Waytz et al., 2012 [80]).
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Exploration and Foraging. Should I stay or should I go? Ecological decision-making

comprehends a trade-off between sticking into the same environment (exploitation) or

looking for new choice options (exploration). Exploring critically engages ACC. In

macaque monkeys, neurons within dACC encode relative evidence in favor of forag-

ing i.e. switching to another source of potential rewards (Hayden et al., 2011 [81]).

These neurons fired at each decision to stay, up to a certain threshold from which the

animal switched (Figure 1.9).

Figure 1.9: The firing rate in dACC neurons increased with time spent in a food
patch, up to a certain threshold triggering patch leaving and exploration (reproduced

from Hayden et al., 2011).

The threshold limit for foraging was dependent on travel time, modeling the necessary

time to move to a new option. This travel time represents a “cost” associated with for-

aging. In humans, in a task involving evidence seeking to make reward-based decisions,

anterior cingulate activity increased when subjects sampled more evidence as compared

to when they engaged in a decision (Furl and Averbeck, 2011 [82]). Similarly, Kolling

and colleagues designed a fMRI paradigm in which human subjects had to trade-off

exploiting a current set of choice options, or exploring a new environment with a new

set of choice options, but sustaining a cost for this foraging (Kolling et al., 2012 [83]).

They revealed that the ACC/dACC encoded the foraging cost, as well as the foraging

environment mean value. However, certain authors have contested this result, arguing

that dACC rather represented choice difficulty, which was confounded with foraging

value (Shenhav et al., 2014 [73]).

Thus, exploration implicates a notion of cost. Leaving a current patch of resources for

another location is accompanied with some uncertainty and with some cost (e.g. travel
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cost). This aspect relates to the conflict, i.e. an increased cognitive cost when there is

conflictive information to process.

Action-outcome predictor. It could be that the ACC and dmPFC are not specifically

involved in error detection but more generally encodes outcomes or stimulus/outcome

links. Indeed, Matsumoto and colleagues recorded neurons in MCC that fire for specific

action-outcome combinations, evoking an action plan or selecting actions among several

possibilities in relation to a goal (Matsumoto et al., 2003 [84]). A theoretical work that

could unify the variety of previous findings regarding medial PFC, especially gathering

the error monitoring and conflict accounts, proposes that the medial PFC acts as an

action/outcome predictor, evaluating the discrepancy between predicted and obtained

outcomes, irrespective of outcome valence (Alexander and Brown, 2011 [85]). The medial

PFC is viewed as an action/outcome predictor, detecting mismatch between predicted

and real outcome. The proposed model represents multiple action/outcome associations

at the same time. It then measures the surprise generated by the feedback, which

reflects the discrepancy between actual and observed outcome, regardless of outcome

value. Thus, the medial PFC would signal the unexpected non-occurrence of predicted

events. The model is able to account for and reinterpret a range of experimental findings

regarding ACC and MCC function, such as error monitoring, conflict, action values

prediction, etc. (Silvetti et al., 2013 [86]).

In summary, the dACC/MCC is engaged when switching away from the current course

of action or from a default behavior (Boorman et al., 2013 [87]).

1.2.4 Frontopolar cortex

Frontopolar cortex, sometimes called frontal pole (BA 10), corresponds to the most

anterior part of the brain and is phylogenetically the most recent part. It is associated

with high level control. Patients with lesions in this area usually perform poorly in open-

ended or novel environments or in environments with unusual structure or attentional

demand, while being able to carry out normally tasks that are supposedly requiring

general PFC function. We review here the main theories examining frontopolar cortex

function.

The gateway hypothesis: switch between “in” and “out” modes. An at-

tentional theory suggest that BA 10 arbitrates between an internal mode (“stimulus-

independent”), in which the subject is focused on her own thoughts and intentions, and

an external mode (“stimulus-oriented”), in which she responds to environmental stimuli

(Burgess et al., 2007 [88]). Indeed, this area is required when the subject is attending to

her own mental states (Frith and Frith, 2003 [89]). According to this theory, frontopolar
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cortex might not support costly complex cognitive computations, as opposed to other

subparts of prefrontal cortex, but arbitrates between different attentional modes.

Monitoring of alternative courses of action. Frontopolar cortex is involved in

“branching” control, meaning that it maintains information about a pending task that

is interrupted while another task is performed (Hyafil and Koechlin, 2007 [90]). The arbi-

tration between dedicating cognitive resources to a current task and retrieving a pending

task is based on future expected reward associated with each task. This branching con-

trol enables to put aside a current task while performing another task and to go back to

it afterwards, hence allowing for multitasking (Koechlin et al., 1999 [91]). This function

enables humans to maintain long-term goals while being able to respond to immediate

stimuli or environmental demands.

Frontopolar cortex was also shown to be involved in exploration of alternative actions

(Daw et al., 2006 [92]). In Daw and colleagues’ experiment, subjects had to choose

between four bandits providing stochastic rewards, with the average reward for each

bandit continuously drifting across the experiment, thus triggering the need for constant

exploration of alternative bandits. Daw and colleagues found the frontopolar cortex to

be recruited selectively for exploratory trials, corresponding to trials in which subjects

sampled a different bandit that the one they thought had the highest expected value.

Consistently, Boorman and colleagues found that frontopolar cortex tracked the relative

advantage of the alternative option, in a probabilistic learning task (Boorman et al.,

2009 [93]). This theory is further supported by recent results regarding the monitoring

of alternative task-sets reliabilities in frontopolar cortex, in a task involving learning,

creating and adjusting behavioral task-sets (Donoso et al., 2014 [94]).

Metacognitive evaluation. Gray matter volume in the frontal pole has been shown

to correlate with metacognitive abilities, i.e. the capacity to evaluate one’s own per-

formance (Fleming et al., 2010 [95]). In a perceptual decision-making task followed by

confidence ratings, Fleming and colleagues revealed that across individuals, the better

the introspective accuracy, irrespective of objective performance, the larger the gray

matter volume in anterior PFC. However, the reliability of these metacognitive judg-

ments also involves dorsolateral PFC and cingulate cortex (Fleming et al., 2012 [96]).

1.2.5 Conclusion

We have reviewed in this first chapter the most influential theories explaining prefrontal

cortex functional architecture. We have highlighted that the critical feature of prefrontal

executive control lies in its evaluation function: error monitoring, action outcome mon-

itoring, alternative courses of action monitoring. These monitoring processes (medial
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PFC up to frontopolar) confer to prefrontal cortex its ability to subsequently adjust im-

mediate and future action (lateral PFC). The monitoring function that PFC subserves

is at the core of human adaptability, allowing us to behave flexibly, not only reacting

to external stimuli but acting in relation to internal mental states. Accordingly, execu-

tive control relies on evaluating action outcomes to adjust immediate and future action.

However, action outcomes may convey several types of value signals. In the next chapter,

we will focus on the affective value of action outcomes.



Chapter 2

Affective values in human

decision-making

Action outcomes can convey a positive or a negative value, in the form of rewards and

punishments. Therefore, action outcomes transfer an affective value that is going to

influence choices in return. Here, affective value is understood as reward amplitude,

which we could also have named “rewarding value”. Unlike its common meaning, the

term affective here refers to the motivational properties of outcomes for action, rather

than the emotional properties. In this chapter, we will focus on the notion of affective

value of rewards and how it drives learning and decision-making, from psychological,

theoretical and cerebral points of view.

2.1 Affective values: psychological and theoretical aspects

2.1.1 The notion of affective value, based on rewards and punishments

The concept of affective value is a behaviorally relevant one. It is thought to generate

motivation and to drive action. Broadly, animals seek positive rewards (O’Doherty,

2014 [54]). It also relates to the notion of pleasure and pleasantness that we experience,

anticipate or even imagine (Berridge and Robinson, 2003 [97]). This could be measured

by agreeableness or desirability subjective reports. Importantly, affective values are not

binary. They can vary parametrically and continuously. In behavioral economics, value

refers to the notion of utility (expected utility/experienced utility). Economic value

corresponds to the quantity that an agent tends to maximize. It is used to examine

consumer behavior. Finally, the concept of value is at the core of subjective preferences,

19
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that can be elicited with binary choices, although expression of subjective preferences

often depart from rationality (Kahneman and Tversky, 1979 [98]).

We can distinguish primary rewards (e.g. food, sex) that have a physiological meaning

from secondary rewards that convey a more abstract value signal, for example money.

However, it remains difficult to separate pure value from components that support the

construction of a value signal upstream.

2.1.2 Expected utility theory and prospect theory

Facing a choice between two items, subjects compute a subjective value, via a valua-

tion process, and choose the highest of both values. Choice psychology often observed

departures from rationality (Tversky and Thaler, 1990 [99]). Facing twice the same

choice, subjects do not always choose the same item. Despite detected inconsistency, it

seems hard for participants to resolve it, even if they aim at showing internal coherence

(Tversky and Kahneman, 1981 [100]). This internal inconsistency, namely, cognitive

dissonance, leads participants to try to match their choices so as to respect internal

consistency with themselves, otherwise resulting in psychological discomfort (Festinger,

1962 [101]; Izuma et al., 2010 [102]; Salti et al., 2014 [103]). Expected utility theory

states that subjects aim maximizing expected utility, which corresponds to maximizing

subjective value and subsequent satisfaction obtained from goods or rewards.

Several mathematical functions have been used to describe choice between items of sim-

ilar expected utility. A first possibility would be to systematically choose the item with

the highest expected utility: the maximum among all subjective affective values. How-

ever, this possibility does not account for the fact that subjects sometimes choose the

lowest of two options, in order to explore alternative options. Another possibility is to

introduce stochastic choice with the softmax function (Figure 2.1). The softmax function

is a way to model the choice probability according to the subjective value of two items

in a binary choice setting. One item or action is stochastically selected according to

the difference between each item’s expected utility (Luce, 1977 [104]). The inverse tem-

perature parameter regulates the sigmoid slope, and the amount of exploratory choices.

Exploratory choices correspond to the proportion of choices in which the lowest valued

of two actions is occasionally preferred. A large inverse temperature corresponds to

almost deterministic choices, whereas a small inverse temperature corresponds to more

noisy, and at the extreme, more random choices.

Prospect theory adds a few concepts to expected utility theory, to explain apparent

biases and inconsistencies in choice, especially in risky prospects. In particular, prospect

theory states that choice is dependent on:
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Figure 2.1: The softmax function is a way to model the choice probability according
to the subjective value of two items in a binary choice setting (arbitrary value units).

• Framing effects. Subjects’ response is dependent on the problem formulation.

Two problems that are identical in terms of expected utility will lead to signifi-

cantly different choices according to whether they are framed as gains or losses.

Other authors have identified that choices are also dependent on the visual presen-

tation of the gains at stake in experimental settings, for example whether money

is depicted as digits or as piles of coins (Sharp et al., 2012 [105]).

• Loss aversion. The loss of a particular amount is more aversive than the gain of

the same amount is rewarding (Tom et al., 2007 [106]).

• Probability distortions. Subjects tend to overestimate the probability of very

unlikely events, while underestimating the probability of very certain events, re-

sulting in an inverse sigmoid distortion of probabilities representation.

In our fMRI study, we tested the prospect theory model, which is very general, to

explain participants’ choices. Eventually, we found that it fitted less parsimoniously the

behavioral data than other alternative models (see Chapters 7 and 8). So, we have seen

that economic value of goods or items, understood here as “affective” value, is driving

choice, as expressed according to subjective preferences. We will describe in the next

section the psychological theories of how these values are driving our behavior.

2.1.3 Rewards are driving learning: pavlovian and instrumental con-

ditioning

Conditioning theories were first studied in animals. If an action triggers a positive

outcome as a consequence, the animal will tend to repeat that action. On the contrary,

if an action leads to a negative outcome, the agent will tend to avoid it in the future.
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Thus, action outcomes drive learning through affective value signals. Positive outcomes

will generally elicit subsequent approach behavior, whereas negative outcomes will elicit

subsequent avoidance behavior.

Historically, Pavlov (1849-1936) observed that if a neutral irrelevant stimulus was paired

with a behaviorally meaningful stimulus that elicited a response (unconditioned or ’re-

flex’ response), after a number of repetitions, the neutral stimulus alone was sufficient

to elicit the response. This phenomenon was termed classical (or pavlovian) condition-

ing. The concomitance of the association between the neutral (conditioned) and the

behaviorally meaningful (unconditioned) stimuli elicits response learning (Figure 2.2).

Figure 2.2: Pavlovian conditioning (source: http://schoolworkhelper.net/).

A few decades later, Thorndike (1874-1949) law of effect described the idea that a

positive outcome will increase the probability of that action to occur again in the same

situation. Unlike his predecessors, Thorndike believed that before the first reinforcer,

the chosen actions were random, until the moment that, by chance, the animal finds a

relevant action. After a number of repetitions, the animal was able to identify faster

the relevant action to perform. Building on this work, Skinner (1904-1990) and the

wave of behaviorists described operant (or instrumental) conditioning. Operant condi-

tioning is defined as strengthening or weakening of association between a stimulus and

an action given reinforcement obtained. As opposed to classical pavlovian conditioning,

instrumental conditioning implicates the production of an action by the agent, not juste

passive association between external stimuli. Moreover, Skinner provided detailed quan-

titative analysis regarding the time or the number of trials and errors that an animal

executed before an appropriate behavior was learnt. Although he did not ignore the
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influence of internal variables that could drive learning but are inaccessible to obser-

vation, he focused on the link between environmental stimuli and external, measurable

behavior, without investigating the underlying internal mental representations.

Conditioning can generalize across other stimuli that share features with the neutral

conditioned stimuli. The conditioned response can thus extend for example to stimuli

with similar sensory properties. Nevertheless, the conditioned response appears in a spe-

cific situation and its generalization is limited. Another interesting trait of conditioning

is its capacity of extinction. If the conditioned stimulus is presented a lot without the

unconditioned stimulus that originally elicited a response, then the conditioned response

might disappear. Thus, conditioning is reversible. But the reinforcer effect can be per-

sistent. For example, subjects with addiction keep being sensitive to reinforcers, even if

they report them to be no longer “valuable” rewards. Given the animal’s behavior after

extinction, we can distinguish goal-directed vs. habitual behavior. Usually, habits

arise after a long temporal sequence with many repetitions of the behavior. In habits,

it is the association between conditioned stimulus and response which mainly drives ac-

tion. Consequently, after extinction, the animal would keep reproducing the actions that

led to reinforcement. By contrast, in goal-directed behavior, it is the outcome affective

value that drives action. Consequently, after extinction, the animal would gradually

stop the actions that previously led to reinforcement, since they are no longer followed

by a rewarding outcome.

Today, behaviorism have contributed to the cognitive behavioral therapies development.

These therapies aim at dealing with the observable behavioral symptoms rather than

focusing on internal mental states that might generate the symptoms. By manipulating

the conditioning between stimuli and responses through reinforcement or extinction,

these therapies have proven efficient to address adaptive problems such as anxiety or

phobias.

2.1.4 Reinforcement learning computational models

The conditioning and behaviorism psychology has been formalized mathematically with

reinforcement learning theories. This set of learning algorithms originally came from the

machine learning field (Bishop, 2006 [107]; Sutton and Barto, 1998 [108]). Computa-

tional models of reinforcement learning provide a normative framework of how an agent

can learn action affective value by interacting with the environment. Computational

models of reinforcement learning are based on the concept of prediction error, which

measures the discrepancy between the expected and the actual action outcome value

(Rescorla and Wagner, 1972 [109]). As stated in Rescorla rule, the action affective value
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Vt that led to an outcome rt is updated according to:

Vt+1 = Vt + α(rt − Vt), (2.1)

in which α is the learning rate, modulating the degree to which the prediction error rt−Vt
affects the chosen action value Vt. If α is high, recent outcomes matter more. At the

extreme, if α = 1, the action expected value Vt reduced to the last outcome value, rt. If α

is low, recent outcomes little modify the chosen action expected value Vt, and therefore

a larger reward history for estimating that action value is taken into account. Thus,

the agent learns the value Vt by experience, sampling from the environment through

trial and error. Reinforcement learning as formulated above consists of a trial by trial

continuous update, not sensitive to temporal blocks within learning or to the possible

higher-order structures of the environment in which learning occurs. It is referred to as

model-free reinforcement learning.

Sutton and Barto elaborate on this to allow information diffusion across contiguous time

points, in the form of the temporal difference learning algorithm. Temporal difference

algorithm includes a temporal discounting parameter that model the reinforcer deval-

uation with time (Sutton and Barto, 1998 [108]). In simple words, according to this

algorithm, predictions are tuned to formulate more precise predictions about the future,

with the discounting parameter modulating the impact of rewards across different time

points. Yet, if the next state t+1 does not depend on the chosen action at t, the discount

factor is unnecessary and the prediction error can be written as above. Another form of

reinforcement learning algorithms is Q-learning, in which the value Vt corresponds to a

state-action value and not only to an action value as in temporal difference learning. Its

extension, the SARSA algorithm, is similar but differs regarding the control strategy.

While Q-learning assumes an optimal policy for action selection at the next state and

subsequent action values update, in SARSA the value of the actual chosen action is used

for updating.

As opposed to behaviorism that only focuses on observable behavior (actions), rein-

forcement learning includes the notion of internal hidden variables, i.e. action value or

state/action values, that shape observable behavior.

2.1.5 Model-based and model-free reinforcement learning

Model-based reinforcement learning includes a notion of internal state, that will be fur-

ther developed in the next chapter. So far, the learning policies described above are

comprised in what is called model-free reinforcement learning. It is based on learning

“cached values” of the environment by trial and error, without any prior assumptions
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about the environment structure. By contrast, model-based reinforcement learning in-

cludes a state model of the environment structure (“tree search”), which is an explicit

representation of the world, on which learning is based. The agent learns on the basis of

this internal states representation, without the need to sample every possible action, as

opposed to model free RL. In practice, model based RL can rapidly becomes intractable,

because of the huge number of possible states. But solutions have been proposed for

example, pruning a number of states (a “branch of the tree”).

Model-based and model-free RL differ according to their sensitivity to reward devalu-

ation (Daw et al., 2005 [110]). In model-based RL, the outcome affective value back-

propagates to all actions that have led to that particular terminal state where an outcome

was obtained. In model-free RL, reward devaluation only affects the choice of the action

that was the most proximal to the outcome, independently of the other states crossed

beforehand. In that case, the reward devaluation effects will be slower. In a number of

situations, the model-free system is faster and more efficient.

However, having the two systems in parallel is advantageous. It enables trading-off the

habitual model-free system inflexibility, and the model-based system, more flexible but

associated with a higher computational cost (Daw et al., 2005 [110]). Each system can be

used in circumstances in which it is the most accurate. The arbitration between model-

based and model-free reinforcement learning systems remains controversial (Dezfouli et

al., 2013 [111]). Some have proposed that arbitration between both systems relies on

their respective uncertainties, on each trial (Daw et al., 2005 [110]). Other authors have

suggested the existence of a “responsibility signal” associated with each task-set driving

behavior. A task-set is defined by the representation of a stimulus/action/outcome

mapping. Choice is then controlled by the weighted average of the responsibility signals

(Doya et al., 2002 [112]; Samejima and Doya, 2007 [113]). However, the latter proposal

implies a task-set selection at each trial, whereas humans rather tend to adopt a default

behavior and switch to exploration only when necessary. Behavioral (Figure 2.3) and

neural hallmarks of both systems have been identified in the brain, implicating ventral

striatum and lateral prefrontal cortex (Glascher et al., 2010 [114] ; Daw et al., 2011

[115]).

Conclusion. We have reviewed the main psychological observations and computational

theories underlying affective values processing. Pavlovian and instrumental conditioning

revealed how affective values conveyed by rewards and punishments shape learning and

subsequent choices, in animals and in humans. We have then seen that mathematical

models of reinforcement learning provide a normative framework for describing the com-

putations supporting learning from affective values, centered on the notion of prediction
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Figure 2.3: Subjects’ behavior appears to be in-between model-based and model-free
reinforcement learning predictions (reproduced from Daw et al., 2011).

error. In the next section, we will examine how these learning mechanisms based on

affective values are implemented in the brain.

2.2 Affective values: cerebral aspects

How are affective values represented in the brain? Several cortical and subcortical areas

are implicated in rewards affective value processing.

2.2.1 Basal ganglia

2.2.1.1 Subcortical basal ganglia anatomy

Basal ganglia refer to a set of subcortical nuclei (Figure 2.4). It comprises dorsal and

ventral striatum (putamen and caudate nucleus), substantia nigra pars compacta (SNc)

and pars reticulata (SNr), ventral tegmental area (VTA), internal and external globus

pallidus (GPi, GPe), thalamus, hypothalamus and subthalamic nuclei.

Figure 2.4: Basal ganglia anatomy (coronal slice) (reproduced from Adam, 2013).
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These structures are connected to the neocortex via fronto-striatal loops (Haber, 2003

[116]) and are present in many species. Basal ganglia are involved in motor control

and reward learning, through three main neurotransmitters projections (γ-aminobutyric

acid (GABA), dopamine and glutamic acid). Dysfunction of dopamine direct or indirect

pathways can lead to movement control disruption, for example in Tourette syndrome,

Parkinson and Huntington diseases.

2.2.1.2 Electrophysiology and pharmacology studies show reward predic-

tion error in dopamine neurons

Reward prediction errors representations were identified in dopamine neurons in the

basal ganglia, using electrophysiological recordings in primates (Schultz et al., 1997 [117],

1998 [118]). Schultz and colleagues described a population of neurons that fire more

with reward unexpected occurrence, less with reward unexpected non-occurrence, as

compared to a baseline firing rate corresponding to reward expected occurrence (Figure

2.5).

Figure 2.5: Midbrain dopamine neurons encode reward prediction errors (reproduced
from Schultz et al., 1997).
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Such a pattern is interpreted as coding the reward prediction error rt − Vt as described

in the previous section with reinforcement learning algorithms. Parametric activity of

these dopamine neurons modulates cortical regions, which in turn integrate prediction

errors to form future predictions. In addition to prediction error signal, Fiorillo and

colleagues identified a neural response sensitive to the amount of uncertainty, also in

dopamine neurons (Fiorillo et al., 2003 [119]).

Further evidence comes from Parkinson patients studies with pharmacological dopamine

manipulation. Patients with Parkinson disease usually receive medication to enhance

the dopaminergic system, either in the form of dopamine agonists or in the form of

levodopa which will be transformed into dopamine in the brain. Although these drugs

generally improve motor symptoms, they convey side-effects regarding executive control

and learning from positive and negative feedbacks. Frank and colleagues showed that

Parkinson patients receiving levodopa were better at learning from rewards than from

punishments, probably through reinforcing direct pathway (Frank et al., 2004 [120]).

By contrast, without levodopa, Parkinson patients were better at learning from pun-

ishments. Therefore, the authors demonstrate that dopamine level modulates learning,

from both positive and negative outcomes, in a dynamic way. Palminteri and colleagues

replicated and extended these results in the case of subliminal learning (cues are not con-

sciously perceived) and in the case of patients with Tourette syndrome, which present

an inverse pattern regarding dopamine and motor deficits as compared to Parkinson

patients (Palminteri et al., 2009 [121]).

2.2.1.3 The contribution of neuroimaging studies

Evidence from non-human primate electrophysiology and pharmacological manipula-

tions in humans was strengthened by neuroimaging data in humans. Combining pri-

mary rewards (erotic images) and secondary, more abstract rewards (amounts of money),

Sescousse and colleagues revealed a common network for affective values processing, im-

plicating the ventral striatum and midbrain, as well as other cortical regions (Sescousse

et al., 2010 [122]).

Further imaging results came from the first model-based fMRI studies. For example,

O’Doherty and colleagues scanned human subjects while performing a Pavlovian and

an instrumental task to obtain juice reward. Reward prediction errors neural correlates

were found in ventral striatum, comprising nucleus accumbens and ventral putamen

(O’Doherty et al., 2004 [123]). Using a reinforcement learning algorithm, they found

that the dorsal striatum was engaged only with instrumental conditioning.
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Model-based fMRI. Essentially, this method allows to identify regions that specifically

correlate with a model’s variable (O’Doherty et al., 2007 [124]). Rather than solely iden-

tifying locations, model-based fMRI informs about the cerebral implementation of the

cognitive mechanisms that a computational model describes. The trial-to-trial variables

are extracted from a computational model. Then, the variables are regressed against

BOLD signal to identify voxels in which brain activity significantly correlates with each

of the variables. We will be using the model-based fMRI approach in this thesis.

Going back to the basal ganglia contribution in representing affective values, the dopamine

effects on learning from rewards and punishments via the basal ganglia have been tested

in healthy human subjects. More precisely, Pessiglione and colleagues investigated the

behavioral effects of two drugs modulating dopamine, enhancing dopamine production

and a dopamine antagonist (Pessiglione et al., 2006 [125]). Using model-based fMRI

in a learning paradigm, the authors reveal that the drugs differentially modulated the

prediction error amplitude in ventral striatum. They excluded an effect of drugs on

general mood or reaction times. Consequently, they observed at the behavioral level

that subjects treated with dopamine enhancer better learn to choose to obtain posi-

tive outcomes, as compared with subjects treated with dopamine antagonist. However,

regarding negative outcomes avoidance, there was no drug-induced modulation.

2.2.2 Medial prefrontal cortex

Monkey neurophysiology and human fMRI data support the affective values encoding

primarily in vmPFC and adjacent medial OFC. A vast body of evidence, from both elec-

trophysiology and neuroimaging studies, supports the idea that ventromedial prefrontal

cortex (vmPFC) and adjacent medial OFC encode “economic” value of goods or stimuli

(Padoa-Schioppa and Assad, 2006 [48]; Lebreton et al., 2009 [49]; Prevost, Pessiglione

et al., 2010 [50]; see Clithero and Rangel, 2013 for a review [51]).

Moreover, Padoa-Schioppa and Assad recorded neurons in OFC that encode the eco-

nomic value of juices that the monkey chooses to consume, irrespective of the action

performed to receive them (Padoa-Schioppa and Assad, 2006 [48]). Similarly, Trem-

blay and Schultz recorded neurons in central OFC responding to the relative value of a

juice, independently of the juice actual sensory properties (Tremblay and Schultz, 1999

[126]). Converging evidence in animal thus revealed that medial OFC appears to encode

rewards affective values.

In humans, in a task involving ratings of stimuli affective value, followed by choices

between stimuli to generate expression of subjective preferences, Lebreton and colleagues

isolated a “brain valuation system” comprising ventromedial prefrontal cortex, ventral
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striatum, posterior cingulate and hippocampus (Figure 2.6, Lebreton et al., 2009 [49]).

Critically, the valuation system was active even when valuation of stimuli was irrelevant

for the task at hand.

Figure 2.6: The brain valuation system encoding value assigned to images (reproduced
from Lebreton et al., 2009).

This network, in particular the vmPFC, was found in several other studies involving

valuation (Boorman et al., 2009 [93]; Clithero and Rangel, 2013 [51], Bartra et al., 2013

[127]). For example, Plassmann and colleagues designed an economic task evaluating

subjects’ willingness to pay for food items. To evaluate their willingness to pay, the

authors used a Becker-DeGroot-Marshak auction, an economic procedure established to

reveal the economic value that subjects attribute to items. They identified that vmPFC

encoded subjects’ willingness to pay for food items. Here economic value is understood

in the sense of affective value, in terms of subjective preferences. Similarly, Chib and

colleagues found that vmPFC encoded a value signal on a common scale regardless

of the nature of the item that was evaluated (Chib et al., 2009 [52]), supporting the

idea that the brain valuation system operates across domains [49]. Medial PFC is also

implicated in the construction of a value signal from previously estimated values, along

with the hippocampus, supporting the possibility of imagining outcomes (Barron et al.,

2013 [128]).

More precisely, other authors have attempted to precise the exact nature of the value

computations performed in vmPFC and adjacent OFC. Bouret and Richmond recorded

neurons in ventromedial prefrontal and orbitofrontal cortex of behaving monkeys (Bouret

and Richmond, 2010 [129]). They found that neurons in both regions encoded the value

of task events. However, they revealed that vmPFC was crucial for internally driven

values (e.g. self-initiated action), whereas OFC was critical for externally driven values,

based on presented visual cues. Using neuronal recordings in rats, Jones and colleagues

elegantly demonstrated that the OFC is crucially involved when inferring values for

decision (Jones et al., 2012 [57]). In addition, Roy and colleagues argued that the vmPFC

does not encode value per se, but encodes an “affective meaning” that is constructed

from value. This affective meaning would be built from “pure” value by using other
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conceptual information, in order to give value its meaning in terms of behavior (Roy et

al., 2012 [58]).

vmPFC/medial OFC thus appears to encode a general affective value signal, whether it

be a “decision value”, “feedback experienced value”, “goal value” or “anticipated value”.

vmPFC critically represents an option value when a decision is made to engage with this

option (Kolling et al., 2012 [83]). However, we will see in the next section that other

pieces of evidence rather support a role in abstract-state value encoding in vmPFC.

Another recent account proposed that the OFC would be responsible for credit assign-

ment i.e. attribute outcomes to specific causes (Walton et al., 2010 [59], 2011 [60]).

More precisely, the OFC would be specifically involved for linking feedback value to a

particular stimulus in a stream of choices performed over time. The authors examined

macaque monkeys’ choices before and after focal OFC lesions (lateral OFC). The ani-

mals had to decide between three options, ruling out the possibility that their choices

would simply reflect perseveration or lack of flexibility (Walton et al., 2010 [59]). The

authors argue that the OFC is especially key to guide contingent learning. It does so

by selectively attributing an outcome to a particular chosen option alone, and not to

options that have been selected simultaneously or close in time.

Despite a growing number of experimental studies implicating OFC in a large variety

of computations (value, prediction errors, and their assignment to distinct causes, stim-

ulus/outcome associations encoding ...), the exact role of OFC remains controversial

(Stalnaker et al., 2015 [13]; Rudebeck and Murray, 2014 [61]). One of the most influ-

ential accounts to date for explaining OFC function across various datasets views OFC

a “cognitive map of task space” (Wilson et al., 2014 [62]). OFC would encode the def-

inition of a map of the current task-sets space, allowing for unlearning of old rules to

set up new ones, and for guiding behavior in the case of fictive learning (i.e. imagining

outcomes that have never been encountered before, simulating possible outcomes, and

so on). It relies on the definition and position within a state space. Therefore, simple

learning is still possible without OFC but as soon as the task requires more abstract

inference, OFC remains necessary. Thus, OFC would acquire and maintain associative

representations to guide behavior, in relation with hippocampus and striatum, to which

it is connected.

The cingulate cortex is also implicated in value representation for value-based decision-

making. In a reward learning task in monkeys, Matsumoto and colleagues found mo-

tor/reward contingencies represented in certain medial PFC neurons, separately of visu-

al/motor or visual/reward contingencies representations (Matsumoto et al., 2003 [130]).

They recorded cells in the dorsal bank of the ACC that fire to the delivery of juice re-

ward. Based on rewards affective value, monkeys were able to select the most rewarding
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stimulus, with neurons in medial PFC thought to underlie this goal-directed behavior.

Similarly, Amiez and colleagues found that ACC responses were correlated with the ex-

pected quantity of juice, after manipulating the juice probability and amount (Amiez et

al., 2006 [131]). The cingulate cortex, especially its anterior part, also responds to the

valuation of social information, which is probably rewarding itself (study in monkeys

with ACC lesion: Rudebeck et al., 2006 [132]; study in humans with fMRI: Behrens et

al., 2008 [133]).

More broadly, ACC neurons appear to encode post-decision variables (Cai and Padoa-

Schioppa, 2012 [134]), whereas OFC neurons appear to encode both pre-decision and

post-decision variables (Padoa-Schioppa and Assad, 2006 [48]). Another discrepancy

between ACC and OFC neurons regards whether value comparison occurs at the level

of stimuli (goods) or at the level of actions (motor). In a simple reinforcement task with

choice between stimuli or between motor actions, Camille and colleagues examined the

behavior of humans subjects with focal lesions centered on dACC or OFC (although for

certain subjects damage extended up to preSMA and SMA (Camille et al., 2011 [135]).

They revealed that OFC neurons damage implied an inability to sustain the correct

choice of stimuli but not of actions (following positive feedback reception). By contrast,

damage in dACC led to an inability to sustain the correct choice of actions but not of

stimuli (still following positive feedback reception). Similarly, in rats and non-human

primates, learning based on stimuli vs. on values can also be distinguished (Ostlund and

Balleine, 2007 [136]; Rudebeck et al., 2008 [137]).

Therefore, vmPFC, medial and lateral OFC as well as ACC and dACC form a network

implicated in general valuation. Through their connections with premotor and motor

systems, these prefrontal regions allow the value comparison process to be converted

into an action.

2.2.2.1 Pain and punishments neural correlates

Are negative affective signals such as pain or monetary losses encoded in the same

brain regions as positive rewards? Principally, brain responses to negative outcomes are

found in insula, MCC and ACC, as well as in thalamus and second somatosensory cortex

(Peyron et al., 2000 [138]). More precisely, affective negative value generated by physical

pain triggers cingulate activation, generating subsequent cognitive, emotional and motor

responses. Using monetary gains and losses, Palminteri and colleagues demonstrate a

role for anterior insula in representing the negative affective value of stimuli. Studying

learning in patients with brain tumors and patients with Huntington disease, they also
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highlight a role for the dorsal striatum in learning to avoid punishments (Palminteri et

al., 2012 [139]).

Affective value signals are thus not restricted to ventral regions such as vmPFC.

2.2.3 Conclusion

The combination of behavioral approaches, theoretical models from machine learning

and engineering with electrophysiology and imaging studies allowed to understand how

subjects learn from rewards, through the affective value that rewards convey. We have

seen that a brain network comprising ventral striatum, vmPFC and adjacent medial

OFC, PCC and insula supports the valuation of stimuli, items or actions. These affective

values representations drive subsequent choices (e.g. dorsal striatum).

Rewards also convey other types of value signals. We have examined the neural

substrates of affective values processing and reinforcement learning. However, rewards

may convey other types of value signals (O’Doherty, 2014 [54]), such as reward identity,

reward sensory features, reward saliency, etc., that is, other signals that are not pure

value. In the next chapter, we will focus on the informational value conveyed by rewards,

allowing subjects to perform inferences. These inferences about states are at the core of

reasoning and decision-making subserved by prefrontal cortex.





Chapter 3

Inferences in human

decision-making

Action outcomes convey informational values to adapt behavior in relation to inter-

nal mental states. Using informational values, humans are able to perform inferences

about states, giving them reasoning capacities and their ability to flexibly adjust their

behavior, according to both external contingencies and internal mental states. In this

chapter, we will focus on inferential processes that are based on informational values,

from psychological, theoretical and cerebral points of view.

3.1 Inferential processes: psychological and theoretical as-

pects

While humans seem quite rational in their daily life experiences, they often depart from

optimality in empirical tests probing for rationality in the sense of formal logic (e.g.

Wason’s selection task). To explain this discrepancy, tools from the machine learning

and artificial intelligence research fields have been imported into cognitive and computa-

tional neuroscience in the past few years. The general approach is to “reverse-engineer”

the mind, viewing reasoning and learning problems as “computational problems and

[viewing] the human mind as a natural computer evolved for solving them” (Tenenbaum

et al., 2011 [140]). Here, the notion of inferential processes is not understood in terms

of formal logic, but is viewed as probabilistic solutions to a number of concrete prob-

lems that humans face. In particular, prior knowledge is usually accompanied by some

inherent uncertainty. Priors are not an absolute truth from which one can reason, as

compared to premises in formal logic. The theory of Bayesian rationality was devel-

oped to re-interpret the apparent irrationality of human choices as compared to formal

35
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logic (Oaksford and Chater, 2009 [141]). In essence, Oaksford and Chater argue that a

number of cognitive problems that the brain faces are too complex and therefore compu-

tationally intractable. Complex problems put a too high demand on cognitive resources,

in terms of memory or processing capacities. But, humans are able to learn very com-

plex models, that they could not possibly be pre-wired for (Pouget et al., 2013 [142]).

Rather, Oaksford and Chater suggest that the brain has evolved with cheaper and more

efficient solutions to face complex problems: heuristics. A heuristic is a method which

does not guarantee to be optimal but is good enough for immediate goals. Therefore,

the authors have proposed that the human cognitive system build probabilistic mod-

els that are approximate but sufficient [141]. Humans thus seem to use a qualitative

probabilistic reasoning, enabling them to deal with real-world uncertain and complex

problems. More formally, three structural levels of uncertainty about probabilities can

be distinguished. The terminology used to refer to them varies (Yu and Dayan, 2005

[143]; Payzan-LeNestour and Bossaerts, 2011 [144]).

• “Risk”, or “noise”, or “expected uncertainty”. Even if all the probabilities are

known, there is a residual hazard. In other words, even after learning all task

parameters, in tasks in which reward is probabilistically delivered, there is a re-

maining uncertainty at each trial about whether a reward will actually be received

or not.

• “Ambiguity”. This uncertainty level refers to the fact that probabilities can evolve

through time. Reward probabilities need to be learnt and estimated through ac-

tively sampling the environment. Humans are particularly averse to this type of

uncertainty [144].

• “Jumps”, or “ignorance”. This uncertainty level refers to an abrupt and unpre-

dictable change in external contingencies, such as reversals in learning paradigms.

Following the change, the contingencies can reverse to a previously encountered

environment, or switch to new contingencies that were never encountered before.

This uncertainty level relates to situations in which the agent does not even know

the space of all possible states.

The three levels correspond to (1) uncertain, (2) changing and (3) open-ended envi-

ronments respectively. Expected and unexpected uncertainty have been used to refer

to either levels (1) and (2) [143] or levels (2) and (3) [144]. In experiments, humans

are not able to accurately discriminate between these structural levels of uncertainty

(Payzan-LeNestour and Bossaerts, 2011 [144]).
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3.1.1 Probabilistic models of learning and reasoning

The brain relies on inductive systems for learning. An inductive system is a form of

reasoning which proposes general laws on the basis of few particular observations, in

a probabilistic way. It means that the generalization is not necessary true, unlike in

deductive reasoning, but is assumed to be true after a number of repeated observations.

The generalization go beyond the available observations, but remains accompanied with

some uncertainty. This inductive capacity is thought to be based on the human ten-

dency to look for regularities (Yu and Cohen, 2009 [145]). Inductive learning allows

both children and adults to generalize knowledge on the basis of very few observations

(Tenenbaum et al., 2011 [140]; Collins and Frank, 2013 [37]). For example, learning an

abstract concept or a word meaning requires to generalize from sparse and uncertain

information (Griffiths et al., 2010 [146]). In this review, Griffiths and colleagues de-

fend the top-down approach of probabilistic models to understand cognition, as opposed

to a bottom-up connectionist approach, which studies neural networks and looks at the

emerging properties they present. The top-down approach enables that qualitatively dif-

ferent types of representations can be used for learning in different domains. Moreover,

the probabilistic models top-down approach allows to integrate pieces of information

such as verbal instructions, and to swiftly adapt learning consequently. In contrast, a

bottom-up connectionist model would have difficulty rearranging rapidly for including

information such as a verbal instruction. Therefore, probabilistic models of cognition

describe human inductive learning and reasoning through Bayesian inference [140].

3.1.2 Bayesian inference

The core of probabilistic reasoning, involved for instance in solving inductive problems,

is expressed in Bayes rule:

p(h|d) ∝ p(d|h)p(h) (3.1)

with p(h|d) corresponds to the posterior, i.e. the probability (belief) that the hypothesis

(h) is true given the data (d). The posterior is actually a probability distribution over

all hypotheses, after observing the data. It represents how likely is each hypothesis after

observing the data. Next, p(h) corresponds to the prior distribution over all hypotheses

before observing the data. It captures the degree to which the agent is biased towards one

hypothesis or the other beforehand, independently of observing the data (i.e. inductive

biases). Finally, the likelihood p(d|h) is the probability of observing the data knowing

that the hypothesis h is true. It represents how well the hypothesis h fits the data. Note:

here the constant term p(d), global probability of observing the data is not shown. It

permits that the posterior probabilities sum to 1 (Figure 3.1).
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Figure 3.1: Illustrative example of Bayesian inference to compute a posterior belief
predicting where the tennis ball is going to fall, combining prior expectations with

sensory evidence (likelihood) (reproduced from Wolpert, 2013).

Thus, the Bayesian framework explicits the way in which evidence can be incorporated

into prior knowledge in causal learning. The prior and posterior probability distributions

represent the degree of belief in a statement. Importantly, the Bayesian approach sees

probabilities as a scalar interpretation of a degree of knowledge, of confidence in favor

of a hypothesis. The Bayesian approach is fruitful when data are rare or sparse, and

is less sensitive to data volatility. A number of learning problems can be explained as

Bayesian inferences, such as language acquisition (Goldwater et al., 2009 [147]), prop-

erty induction (Kemp et al., 2009 [148]), causal attribution from observations, etc. It

allows generalization. For example regarding language acquisition, children ability to ex-

trapolate word meaning and language structure largely outstrips the available evidence

they have (Xu and Tenenbaum, 2007 [149]). Regarding causal learning, observations of

events co-occurrence are constrained by abstract prior knowledge. Indeed, the sensory

evidence observed (likelihood) is often noisy and uncertain (e.g. ambiguous speech signal

or Figure 3.2).

Therefore, prior knowledge appears essential for constraining the decision problem. This

abstract knowledge can be learnt from experience and used for subsequently acquiring

more specific knowledge (Tenenbaum et al., 2011 [140]).

Another proposal by Friston and colleagues describes inferential problems under the free

energy minimization principle (Friston et al., 2013 [150]). The concept of free energy is

a measure of statistical probability distributions. It comes from thermodynamics and

refers to the difference between a system’s energy and entropy (i.e. the amount of energy
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Figure 3.2: In real-world decisions, the sensory evidence (likelihood) available to
update beliefs using Bayesian inference can be noisy and ambiguous.

directly available for producing work). The system can be a biological organism or organ,

e.g. the brain, which changes to minimize its free energy (Helmholtz, 1860; Friston et

al., 2006 [151]), allowing to react to changes in the environment. Its internal models

could have been selected within a population, with heritable priors. More precisely,

action selection is viewed as an active inference problem, in which the agent chooses the

action that minimizes free energy (Friston et al., 2006 [151]). Simply put, minimizing free

energy comes back to minimizing the distance (Kullback-Leibler divergence) between two

probability distributions, the exact and approximate posteriors. Action is then sampled

from posterior beliefs about control. Therefore, selection is not based on action values,

it is free energy minimization that is driving choice, and values arise as a consequence

of choice (Friston, 2010 [152]). The states that are more frequently occupied become

more valuable. Active inference and free energy minimization have been developed

mostly in the context of perceptual decision-making. Exact Bayesian inference cannot

be realized for being computationally intractable, but approximate Bayesian inference

can be performed, leading to bounded rationality. Beliefs entail a notion of precision, to

balance the influence of prior (biases) and sensory evidence (likelihood).

3.1.3 Possible limits of the Bayesian approach.

One of the main limits of the Bayesian approach is that it hypothesizes that the system

can have an exhaustive representation of all possible states on which Bayesian inference

is subsequently performed. This is expressed in the constant term used for normalization

in Bayes rule, which supposes that the states full partition is known. This is rarely the

case in real life open-ended environments. Nevertheless, Bayesian inferential learning is

efficient when the generative model i.e. the state space structure is known. Notably,

there is a difference between inferential processes and model-based reinforcement learn-

ing. Although model-based RL includes a notion of state, in model-based RL there is no
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Bayesian inference, no learning of the structure. In model-based reinforcement learning,

the state space structure within which learning is effected is supposed to be known.

Other lines of evidence suggest that real-world learning problems present too many

dimensions so that simple Bayesian inferences cannot be computationally performed.

Indeed, stimuli present various sensory dimensions, or sometimes unrelated events coin-

cidentally co-occur, without a link to be learnt. In a recent study, Niv and colleagues

showed that a statistically optimal Bayesian model did not explain behavior on a multi-

dimensional RL task. More generally, attention has to be directed to specific dimensions

of our senses that are specifically relevant for learning (Niv et al., 2015 [153]; Geana and

Niv, 2015 [154]). Moreover, since Bayesian inference presents a high computational

cost, it is unlikely that the whole human brain entirely operates as a Bayesian system

(Eckstein et al., 2004 [155]). Model-free reinforcement learning should be preferred in

situations in which the Bayesian approach does not provide much extra value. For

efficiency, the brain must trade-off cost and performance (O’Reilly et al., 2012 [156]).

In some cases, inferential processes permit the extrapolation of outcomes to unchosen

option(s). This fictive learning infers what would have been the outcome had the choice

been different. The phenomenon of learning from unchosen actions, namely, counter-

factual learning, for example leads humans to experience regret (Coricelli et al., 2005

[157]; Coricelli and Rustichini, 2009 [158]). Counterfactual information reinforces the

dependence on context (frame of reference) for evaluating rewards and punishments

(Palminteri et al., 2015 [159]).

3.1.4 Application of Bayesian inference models to learning and decision-

making

A recent work in our team proposed an inferential model to explain how humans learn,

adjust, create and retrieve behavioral strategies in changing, variable and open-ended

environments (Collins and Koechlin, 2012 [160]). Here, “behavioral strategy” is under-

stood as “task-set” i.e. a representation of a mapping between stimulus, action and

outcome.

The PROBE model [160] responds to a main inferential problem: in real life open-ended

environments, the range of possible behavioral strategies can expand infinitely. In that

case, optimal Bayesian inference is described by Dirichlet process mixtures, such that it

rapidly becomes intractable. This computational complexity has shaped the inferential

processes evolution in prefrontal cortex. The PROBE model constitutes a biologically

plausible approximation of Dirichlet process mixtures, which accounts for the human
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executive function limits. It combines reinforcement learning, limited Bayesian inference

and hypothesis testing to arbitrate between adjusting, switching and creating task-sets.

The PROBE model [160] proposes that human executive function consists of a mon-

itoring system of each task-set reliability i.e. the posterior probability of the task-set

currently being the most accurate one to guide decisions. On the basis of the outcomes

received using a certain task-set’s predictions, the task-set’s reliability is inferred. Abso-

lute reliability is then assessed using hypothesis testing. If the task-set is more reliable

than unreliable, it is chosen to drive action selection. While it remains more reliable

than unreliable, it is maintained to guide choices (exploitation phase). By contrast, if

the task-set is more unreliable than reliable, the decision-maker switches to the use of

another task-set. This switch marks the beginning of an exploration phase. Entering

an exploration phase, the decision-maker can either retrieve a task-set from the work-

ing memory buffer, or temporarily create a new task-set. The new task-set creation is

partly under long-term memory influence, which records the frequency of past use of each

task-set for action selection. The newly created task-set can then be either confirmed or

discarded, according to its success in accurately predicting outcomes. Once a task-set is

retrieved or confirmed, going back to an exploitation phase, it is adjusted online through

reinforcement learning. Lastly, the working memory buffer capacity appears to be lim-

ited to the monitoring of about three task-sets simultaneously. However, inter-individual

variations were observed, regarding individual working memory capacity, and regarding

subjects’ tendency to exploit vs. explore [160].

Therefore, the PROBE model relies on Bayesian inference for hypothesis-testing. Indeed,

the choice of the task-set driving action selection is based on testing the current task-

set absolute reliability. The notion of reliability refers to the degree of belief of being

in a particular state of the world. Reliability measures how much the current task-

set matches the current external contingencies, in other words, what is the best task-

set to exploit now. Formally, reliability corresponds to the degree of belief about

how actions map onto outcome contingencies. This belief allows to monitor and

adapt behavior in relation to internal mental states. Monitoring processes define the

dynamic evaluation of a series of mental representations maintained in working memory,

that subsequently drive behavior. Monitoring sometimes also refers to the attentional

processes towards working memory content, which make possible this online evaluation

(Schraw, 1998 [161]).

Conclusion. We have seen that the Bayesian framework provides a convincing theoret-

ical account to explain human learning. Probabilistic models of cognition explain how

humans are able to make Bayesian inference and generalize from limited experience.

Qualitative probabilistic reasoning enables humans to deal with real-world uncertain
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and complex problems. Therefore, humans do not only learn and decide on the basis

of observed rewards but use prior knowledge to guide their decisions. Prior knowledge

variability across people might explain why medical or law facts can be differentially in-

corporated, and explain why, although facing the same evidence, different people would

make different decisions. In the next section, we will examine the neural mechanisms

subserving inferential processes.

3.2 Inferential processes: cerebral aspects

What are the brain regions underpinning Bayesian inference and reasoning abilities in

humans?

3.2.1 Model-based neuro-imaging

Behrens and colleagues analytically developed a Bayesian model which consist of the

optimal behavior in a probabilistic reversal learning task (Behrens et al., 2007 [162]).

This study nicely introduces the notion of environment volatility. In their task, subjects

had to make a decision between two options providing stochastic rewards. The most

frequently rewarded option reversed from time to time, often (volatile period) or rarely

(stable period). The proposed Bayesian model learns online the reward probabilities

associated with each option, and infers in parallel the rate of reward probability changes,

i.e. volatility. The volatility itself is controlled by an additional parameter. At each

trial, action is stochastically selected according to the largest of the two option values

(reward probability x reward magnitude). According to the Bayesian model, the agent

is learning online all task variables (Figure 3.3).

Figure 3.3: Graphical description of the Bayesian model including volatility-related
modulation (reproduced from Behrens et al., 2007).

Neural correlates of the inferential model were found in vmPFC and PCC for action

values, whereas the volatility was found to be encoded in ACC, dorsally, specifically
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during the time period following feedback reception [162]. Critically, subjects were able

to modulate their learning rate given the environment volatility. In volatile periods, of

high uncertainty, subjects gave more importance to the recent past outcomes. However,

in more stable periods, subjects took into account a larger reward history. Therefore,

Bayesian inference enables to modulate the weight given to each new piece of information.

Similarly, Donoso and colleagues analyzed the PROBE model (Collins and Koechlin,

2012 [160]) neural implementation using a model-based fMRI approach (Donoso et al.,

2014 [94]). The model architecture is further described in the previous section. They

revealed neural correlates of the actor task-set reliability in vmPFC and perigenual ACC,

whereas the reliabilities of alternative task-sets (best and second-best alternatives) were

found in bilateral frontopolar cortex (Figure 3.4).

Figure 3.4: Neural correlates of reliability signals according to the PROBE model
(reproduced from Donoso et al., 2014).

In addition, dACC identifies when the actor task-set turns unreliable, prompting an

exploration period, with the retrieval of a previous task-set or the creation of a probe

task-set that will be later confirmed or discarded. Moreover, the dACC implication

in provoking exploration has been shown before, in the context of foraging decisions.
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Neuronal recordings in macaque monkeys showed that dACC activity increased up to

a certain threshold, that triggered the decision to leave a food patch to explore other

resources, in a mechanism that resembles drift-diffusion models (Hayden et al., 2011

[81]).

In addition, ventral striatum was identified to respond to confirmation events, meaning

the validation of a recently created task-set to guide decisions (Donoso et al., 2014 [94]).

Importantly, the region was identified thanks to specific algorithmic events predicted

by the PROBE model (confirmation events), that could not have been located in time

otherwise. This is a piece of evidence showing that vmPFC activity was consistent with

an inferential model.

However, we have seen in the previous chapter that vmPFC is also responsible for

encoding the affective value of stimuli driving choices. Therefore, is vmPFC activity

more consistent with an abstract-state-based model than with an affective value-based

model?

3.2.2 A role for vmPFC in inference

A convincing piece of evidence came from an elegant study by Hampton and colleagues

(Hampton et al., 2006 [56]). Using model-based fMRI, the authors tested whether

vmPFC activity was better explained by a state-based inferential model or by a rein-

forcement learning model. In their probabilistic reversal learning task, subjects had to

choose between two stimuli, for which the reward contingencies were anti-correlated.

The task was quite hard because soon after subjects identified the “good” option to

choose, the two options reversed. The intuitive prediction corresponds to the following

reasoning. After a negative outcome reception or a series of negative outcomes, subjects

more often switched to the other option. When subjects decide to switch, reinforcement

learning and state-based model make different predictions. If subjects use a reinforce-

ment learning model, the value of the newly chosen option should be low, because it was

low the last time the subject chose it and subsequently abandoned it. By contrast, if

subjects use a state-based model, the value of the newly chosen option should be high,

because the subject inferred the underlying task structure. She has inferred that the two

options are anti-correlated (if one is low, the other is high), so when she abandoned a

low-valued option, she knows that the value of the newly chosen option should be high.

The authors observed that qualitatively, BOLD activity in vmPFC was rather consistent

with a state-based model (Figure 9.1). We will see that our results are in line with these

data. However, their protocol limit lies in the use of binary rewards (win/lose); they did

not parametrically modulate rewards (no notion of affective value).
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Figure 3.5: In switch trials (red lines), fMRI activity in vmPFC was rather consistent
with a state-based model (belief values) than with a reinforcement learning model

(affective values) (reproduced from Hampton et al., 2006).

3.2.3 The medial PFC functional architecture in decision-making

Taken together, these data challenge the original view of medial PFC as the more ventral

the more affective, the more dorsal the more “cognitive” (Bush et al., 2000 [163]). Indeed,

we have just seen that the ventral part of medial PFC (vmPFC) activity was consistent

with inferential models, based on abstract state-based inferences or reliability signals

computed through Bayesian inference. However, we have also seen in the previous

chapter that the vmPFC activity encoded subjective affective values, as supported by a

large number of empirical studies in animal and humans. Similarly, we have discussed

the dACC role in Bayesian inference. For example, dACC is involved in inferring when

to switch to an alternative course of action, or exploring. However, we have seen in

the previous chapter that dACC are also involved in the processing of affective primary

value signals such as pain, and general emotional experience. Moreover, other authors

have challenged the original view of “ventral affective” vs. “dorsal cognitive”, gathering

evidence that both vmPFC and dACC are involved in regulating affective responses

(Etkin et al., 2011 [164]; Shackman et al., 2011 [165]).

The medial PFC functional organization regarding decision-making thus remains un-

clear. Rather, the experimental evidence available up to now suggests a ventral/dorsal

functional architecture in medial PFC regarding “stay” decisions vs. “switch” decisions.

Broadly, vmPFC would be engaged when a decision to stay is made: exploiting the

same option, monitoring the current state, in the default mode network, etc. In con-

trast, dACC, would be recruited when a decision to switch is made: leave a default

option, switch task-set, explore, etc. (Boorman et al., 2013 [87]). vmPFC would encode

the tendency to repeat choices while dACC would be engaged when leaving a default

behavior.

Conclusion. In this section, we scrutinized the cerebral bases of Bayesian inference in

human decision-making. Several brain networks support the implementation of proba-

bilistic models of cognition, which allows humans to cope with uncertain and complex
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learning and decision-making problems. More generally, dACC seems to be engaged

when a decision to switch is about to be made: leave a default option, switch choices,

explore... Brain inferential systems thus would allow to rapidly detect a reversal or a

change in environmental contingencies and implement the necessary adaptations, in a

rapid and flexible manner. By contrast, choice models based on affective values present

a continuous but slower adaptation, and cannot flexibly switch to a new behavior as

soon as a change in external contingencies is identified (Keramati et al., 2011 [166]).

The ability to flexibly react and adapt action in relation to internal mental states is at

the core of human prefrontal executive function.



Chapter 4

Research question

We have seen that executive control relates to the human ability to monitor and flexibly

adapt behavior in relation to internal mental states, crucially implicating prefrontal

cortex. Specifically, executive control and decision-making rely on evaluating action

outcomes to adjust immediate and future action (Chapter 1).

Actions can be reinforced or devaluated according to the outcomes affective value,

through conditioning, as formalized in reinforcement learning theories. A large body

of neural data from rats, monkeys and humans involves notably basal ganglia and me-

dial prefrontal cortex in affective values processing (Chapter 2).

In addition, action outcomes convey information to adapt behavior in relation to in-

ternal beliefs, relying on Bayesian inference. Inferential mechanisms are subserved by

prefrontal cortex and allow learning and generalizing from outcomes through belief up-

dating (Chapter 3).

Accordingly, we have been working on the idea that action outcomes convey two major

types of value signals:

• Affective values, representing the action outcomes valuation according to sub-

jective preferences, and stemming from reinforcement learning. Here, affective

value is understood as reward magnitude. Unlike its common meaning, the term

affective here refers to the motivational properties of outcomes for action, rather

than emotional properties.

• Belief values, about how actions map onto outcome contingencies, and relating

to Bayesian inference.

To our knowledge, previous experimental paradigms have confounded these two types

of value signals. Indeed, in natural settings, obtaining rewards of high affective value
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usually informs about more appropriate choices. In other words, receiving a rewarding

outcome naturally increases the belief that the chosen action was the most appropriate

one. However, how these two signals contribute to decision-making remains unclear. In

this PhD work, we investigate whether this dissociation is behaviorally meaningful, and

whether the two signals, beliefs and affective values, have distinct neural bases.

To address this question, we developed a series of behavioral experiments in tandem

with computational modeling and functional magnetic resonance imaging in healthy

human subjects. More precisely, the key feature of the probabilistic reversal-learning

tasks presented here was to decorrelate affective values from belief values using stochas-

tic and changing reward structures. We built a computational model that establishes

the functional and computational foundations of such dissociation. The model com-

bines two parallel systems: reinforcement learning, dealing with affective values, and

Bayesian inference, dealing with belief values. The model better accounted for sub-

jects’ behavior than many other alternative models. Critically, neural data revealed

a double-dissociation between ventromedial prefrontal cortex and midcingulate cortex

(MCC) regarding choice-independent effects, with ventromedial prefrontal cortex being

specific of beliefs while midcingulate cortex was specific of affective values.

Concretely, we present in Chapters 5 and 6 three data sets corresponding to three vari-

ants of a behavioral study (Protocol A). In Chapters 7 and 8, we present two pilot studies

and an fMRI study (Protocol B). Chapter 9 concludes with a general discussion of the

results, in light of the recent literature regarding prefrontal cortex and decision-making.



Chapter 5

Protocol A: Decorrelate affective

value from information of

outcomes

We present a series of three probabilistic reversal learning tasks, involving stochastic and

changing reward structures, aiming at dissociating affective values from belief values of

action outcomes.

5.1 Experiment 1

In a first experiment, we manipulated stochastic and changing reward distributions to

de-correlate reward affective value from belief value.

5.1.1 Experimental design

Subjects had to make a decision between two stimuli (Figure 5.1). After choice, they

received an outcome among the possible values 1, 2, 5, 8 and 9 Euros. Stimuli were

simple shapes (circle or square) or letters (A or B).

Each of them represented a one-armed bandit. A one-armed bandit corresponds to a

slot machine which delivers rewards probabilistically. Crucially, one of the two bandits

triggered on average a higher amount of reward (6.23 Euros vs. 3.77 Euros per trial).

The two-armed bandit were anti-correlated (Figure 5.2). Without any sensory cues, the

mapping between stimuli and bandit shifted after an unpredictable number of trials.

This transition from an episode to the next one was called a reversal.
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STIMULI
500 ms

8€

FEEDBACK
1000 ms

INTER-TRIAL 
INTERVAL

DECISION WINDOW
max 1500 ms

ONE TRIAL
3000 ms

Figure 5.1: Probabilistic reversal learning task: trial structure and timing.

The key feature of the experiment was the reward distributions underlying each bandit.

Critically, we designed, by perturbing an exponential distribution, a bimodal reward

distribution (Figure 5.2) in which the affective value of reward was no longer correlated

with the correctness (i.e. choosing the highest rewarded bandit on average).
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Figure 5.2: Reward distributions underlying each bandit.

The intuition behind the “trick” of the experiment was the following. Receiving 2 Euros

had a low affective value but informed about having chosen the highest rewarded bandit

(= better choice on the long run). By contrast, receiving 8 Euros had a high affective

value but informed about having chosen the lowest rewarded bandit (= worse choice

on the long run). Receiving 5 Euros was uninformative. Finally, receiving 9 Euros (re-

spectively 1 Euro) was highly informative about having chosen the highest (respectively
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lowest) rewarded bandit i.e. consistency between affective and informational values in

the case of 9 and 1 Euros outcomes. The distribution and value scale were chosen to

maximize the differences between the predictions of a RL (Rescorla-Wagner rule) model

and a Bayesian model. The models will be described in the next section.

Subjects were asked to learn which of the two stimuli was the highest rewarded bandit,

knowing that the best of the two stimuli could change over time, and to respond in order

to win as much money as possible.

Each subject completed two sessions, which differed only in the first 5 minutes. In one

session, participants were primed to use reinforcement learning, whereas in the other

session, participants were primed to use Bayesian inference. We designed these “primes”

assuming that they would modulate subjects’ strategies.

For the “RL prime”, the reward distribution was an exponential-like distribution (Figure

5.3). On this kind of distribution, ideal reinforcement and ideal Bayesian learner would

perform equally well. Given the cognitive cost of setting up a Bayesian strategy, which

is more sophisticated, we expected subjects to use a simple and more parsimonious

reinforcement learning strategy on this prime.
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Figure 5.3: Reward distributions underlying each bandit during “RL prime”.

For the “Bayesian prime”, reward distributions for both bandits were uniform i.e. ran-

dom distribution of all possible outcome values (Figure 5.4). In other words, there

was no good or bad choice and both bandits were strictly equivalent. We hypothesized

that there will not be motivational problems since it was only on the first five minutes.

Because no structure could be inferred on this distribution, and because reinforcement
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learning would be inefficient, we expected subjects to rather try a Bayesian strategy on

such a distribution (e.g. try to find a pattern or a structure in the task).
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Figure 5.4: Reward distributions underlying each bandit during “Bayesian prime”.

Because of this “priming”, there was no training on the bimodal distribution. In the end,

this “priming” manipulation towards a particular strategy did not significantly modulate

subjects behavior on the subsequent bimodal distribution. Therefore I will focus in the

rest of the chapter on analyzing subjects’ behavior on the bimodal distribution.

At the end of both sessions, an informal debriefing was done with each participants.

After comments from their own initiative, subjects were asked, among other questions,

whether they used a particular strategy or rule to respond, and whether they noticed any

regularities or organization within the experiment. The original debriefing is provided

in Appendix A.

5.1.2 Randomization

The task was fully counterbalanced and pseudo-randomized. Each stimulus appeared

an equal number of times in a random order. Each stimulus was associated to a motor

action (key on computer keyboard) as many times as to the other action. The highest

rewarded bandit was associated to a stimulus as many times as to the other stimulus.

Each session included 40 episodes (= 39 reversals), an episode being a cluster of trials

using the same stimulus/bandit association. Episodes could have various lengths (either

16, 22, 26, 30 or 36 trials. The frequency of each episode length apparition followed a

Gaussian centered at 26 trials. Overall, each session included 1040 trials, 104 trials on
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prime and 936 trials on bimodal distribution. The order of sessions and the stimuli set

(circle/square or A/B) used for each session were counterbalanced across subjects.

5.1.3 Experiment presentation

All stimuli were presented using PsychToolBox [167] and appeared on a uniform black

background as shown in Figure 5.1. Each session was divided by four breaks. The

five parts thus formed were roughly equally long, but subjects were told that there was

no particular meaning to the moment of the break apparition, such as they would not

infer any rule or pattern related to the breaks. Each trial lasted 3000 ms. Stimuli

were displayed during 500 ms but subjects could respond within 1500 ms after stimuli

apparition. If they did not respond within 1500 ms, the trial was lost. They had to

respond by pressing one of two computer keys. 100 ms after they respond, feedback was

given: the value of the obtained reward was displayed in the center of the screen during

1000 ms. Finally, a 400 ms inter-trial interval separated each of the trials.

5.1.4 Participants

25 healthy individuals (12 males, aged 18-25 years) with normal or corrected-to-normal

vision, no general medical, neurological, psychiatric or addictive history were recruited

in Paris, France through an internet database (http://expesciences.risc.cnrs.fr/). They

all gave written informed consent (approved by the French National Ethics Committee)

during a medical interview with our on-site physician for their participation in two

behavioral sessions which took place on two separate days (yielding 1040 trials over

approximately 52 minutes of testing per session). Subjects were paid 40 Euros. They

received written instructions about the task and were instructed that payoffs could vary

according to their own performance, to hopefully maintain a high enough motivation

along the whole session.

5.1.5 Statistical analysis

Behavioral analyses were performed under MATLAB R2011a. Based on a performance

at chance level during the “RL prime”, we excluded two subjects. Data from all re-

maining subjects (N = 23) were pooled for behavioral analyses. We checked whether no

effects of prime, of order of sessions, of age, of sex, of years of education were observed.

Choice proportion of the highest rewarded bandit was calculated for each participant

over the course of an episode and averaged across subjects (Figure 6.1). Moreover, we

computed the choice proportion of the highest rewarded bandit per episode to investigate
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whether there was a progression in performance over the whole experiment (Figure 6.2).

Also, we compared the performance between first half and second half of experiment,

assuming that subjects might have better established a response strategy on the second

half of experiment.

Theoretical simulations (not shown) revealed that, on the best tuning of this particular

bimodal reward distribution, an ideal Bayesian learner (i.e. with optimal parameters

and no decision noise on action selection) would get on average more reward than a

reinforcement learner. According to the following intuitive reasoning, we hypothesized

that RL and Bayesian learning will be distinguishable on this task. Consider a subject

who picked the lowest rewarded bandit on a given trial, for which she obtained 8 Euros.

(1) If she performed according to RL on the task, integrating only reward affective value

(i.e. reward magnitude), she would wrongly assume that she chose the highest rewarded

bandit, since reward magnitude was high. Therefore, she should choose the same bandit

again on the next trial. (2) If she performed according to Bayesian inference on the task,

she was able to infer the reward distribution behind each bandit and use it to respond.

So, she understood that she picked the lowest rewarded bandit, even though she locally

got a high-magnitude reward. Therefore, she would switch bandit on the next trial.

Thus, we hypothesized that computing the switch/stay behavior after a reward of 8

Euros (and, symmetrically, of 2 Euros) would allow us to discriminate between subjects

who did or did not infer the underlying task structure. Essentially, we computed the

stay trials proportion after each obtained reward, averaged over all subjects (Figure

6.3). Furthermore, we reproduced this stay/switch analysis comparing between first

and second half of sessions, to investigate possible meta-learning of the task structure

over the course of a session. Also, we compared stay/switch behavior between the onset

of an episode (just after a reversal) and end of episode, under the hypothesis that after

a reversal, subjects might use simpler strategies (RL) whereas at the end of an episode,

i.e. in a more stable period, they might use more sophisticated strategies (Bayesian).

However, the above intuitive reasoning about the task was based on only the previous

outcome. Indeed, the learning rate parameter fits in RL models (see below) confirmed

that subjects based their choices not only on the previous outcome but taking into

account a larger reward history.

5.1.6 Computational modeling

To establish the functional and computational foundations of the dissociation between

affective and informational values, we examined and developed mathematical models of
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learning and decision. The aim of such cognitive modeling is to understand the mechanis-

tic computations underlying behavior, i.e. hidden variables that are not directly visible

in behavioral data. We emphasize the importance of testing various realistic alternative

models, that are challenging candidate models. A model accuracy in explaining subjects’

behavior is always relative. The selected model is the best only among a limited number

of candidate models, which are never exhaustive.

5.1.6.1 Reinforcement learning model

We studied each participant’s trial-to-trial choices by a reinforcement learning model

[109]. This model hypothesizes that expected values Qt for each bandit were learnt from

observations of rewards using the following equations.

Standard RL model. In the standard RL version, only the Q value of the chosen

action was updated, according to:

Qt+1 =

{
Qt + α(rt −Qt) receiving a reward rt for chosen action

Qt for unchosen action,
(5.1)

in which α was a learning rate parameter. At the beginning of each session, Q values

were initialized at their mean value (5 Euros), given subjects had no reason to prefer any

of the two stimuli. Fitting the initial Q values as a free parameter did not significantly

improve the model. Importantly, the RL model consisted in a continuous trial-by-trial

update; it assumed no task structure, specifically, no structure related to the reversals.

Normalized RL model. In the normalized RL version, both chosen and unchosen Q

values were updated at each time step, according to:

Qt+1 =

{
Qt + α(rt −Qt) receiving a reward rt for chosen action

Qt + α(10− rt −Qt) for unchosen action,
(5.2)

More precisely, the normalized RL assumed that if a reward rt was received, choosing

the other option would have led to a reward of 10 Euros−rt, knowing that the reward

scale was centered on 5 Euros; Implicitly, this model assumed an underlying structure

in the task, which was that the two bandits would be opposite. But it assumed no

structure related to reversals.

5.1.6.2 Bayesian inference model

The underlying generative model of the task (Figure 5.5) corresponded to the statistically

optimal model. It consisted of a hidden Markov model i.e. all variables of the current
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state depended only on the previous state; there was no backward inference. The task

of the decision-maker was to figure out the hidden state.

z1 z2 z3 zt zt+1

r1 r2 r3 rt rt+1a1 a2 a3 at at+1

Figure 5.5: Experiment 1, 2 and 3: Generative model of the task. zt: underlying
hidden state; at: action performed; rt: reward received.

According to this Bayesian model, the agent maintained a belief about how stimuli

mapped onto reward distributions (stimulus/bandit mapping). Choice was stochastically

selected according to the belief p(zt+1 = 1|at, rt) (see paragraph Action selection). After

choice, a feedback was observed and led to two inference steps.

(1) The belief was updated with given feedback received rt and given reward distributions

p(rt|zt = 1) and p(rt|zt = 0) presented in Figure 5.2 according to Bayes rule:

p(zt = 1|a1:t−1, r1:t−1) ∝ p(rt|zt = 1)× p(zt = 1|a1:t−1, r1:t−1)

p(zt = 0|a1:t−1, r1:t−1) ∝ p(rt|zt = 0)× p(zt = 0|a1:t−1, r1:t−1) (5.3)

With both expressions at hand, these probabilities were normalized to achieve p(zt =

1| . . . ) + p(zt = 0| . . . ) = 1.

(2) The volatility ν corresponded to the probability that the hidden state had changed:

p(zt+1|zt). A transition step was performed using volatility:

p(zt+1 = 1|at, rt) = (1− ν)× p(zt = 1|at, rt) + ν × p(zt = 0|at, rt) (5.4)

An analogous expression holds for p(zz+1 = 0| . . . ).

Furthermore, the volatility ν was constant across trials, meaning that the volatility did

not vary across trials, whether close or far from reversals.

At the beginning of each session, beliefs were initialized at their mean value (0.5, un-

biased ideal observer), given subjects had no reason to prefer any of the two stimuli.

Fitting the initial belief as a free parameter did not significantly improve the model.

The weakness of this Bayesian model was that it assumed that the decision-maker had

knowledge of the reward distributions (unlike the Bayesian model presented in the next
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section that learnt trial-by-trial the reward distributions). In practice, there was a train-

ing beforehand, and fits were reproduced on the second half of trials to ensure subjects

had enough time to sample and learn the reward distributions.

Importantly, the Bayesian model used knowledge of the task structure i.e. the reward

distributions underlying each bandit, in order to adapt faster when a reversal occurred.

5.1.6.3 Bayesian inference model with online learning

The above Bayesian model had knowledge of the reward distributions beforehand and

use them to learn the stimulus/bandit mapping. By contrast, this Bayesian model

learnt online the reward distributions, meaning that, it had to learn in parallel (1) the

stimulus/bandit mapping and (2) the reward distributions. To simplify the learning

problem, we approximate the model by including only forward inference. The model

learned the reward distributions from the space of all possible distributions, with an

exponential-like prior on distributions. There was no backward revision on the previous

trials history. The free parameters were still β and ε for softmax and ν (volatility).

5.1.6.4 Decay model

In addition, we implemented a version of the above Bayesian model with online learning

with a temporal decay, to consider possible memory loss during reward distributions

learning. There was an additional decay parameter on distributions that exponentially

degraded learning over past trials. The decay parameter was allowed to vary across

subjects but was assumed to be constant over a session. We tested two versions of this

decay: one in which the decay affected multiplicatively the belief and one in which the

decay affected exponentially the belief. None provided significantly better fits than the

equivalent model without decay. Furthermore, the decay parameter was very close to 1,

meaning that adding a decay did not provide a better explanation of behavior. Both the

Bayesian inference model with online learning and the Decay model poorly explained

subjects’ choices, and therefore will not be displayed (paired t-test against Standard RL,

all p < 10−5).

5.1.6.5 Mixed model

This model consisted of a mixture of the above RL and Bayesian systems, with a weight

parameter ω arbitrating between them. It thus included more free parameters (learning

rate, volatility, weight) than each system (RL or Bayesian) alone.
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The relevant quantity for choice was thus:

ω Qt + (1 - ω) log(pt)

We allowed ω to vary across subjects and across sessions, but we assumed it to be con-

stant throughout the experiment. ω could represent a measure of individual variability,

according to participants’ preferred reliance on Bayesian or RL system.

Repetition bias. We reproduced each of the above models with an additional param-

eter: a repetition bias modeling the tendency to stick with the previous action. For

example, for reinforcement learning, after update, expected Q values for each action

were simply modified according to:{
Qt,chosen = Qt,chosen + repetitionbias

Qt,unchosen = Qt,unchosen − repetitionbias,
(5.5)

This was motivated after observing that subjects switched less than what models would

predict (see Results section).

5.1.6.6 Action selection

A general strategy for action selection was to stochastically select an action at according

to the standard softmax rule (Luce, 1977 [104]), with parameters β and ε:

p(at = 1) =
ε

2
+ (1− ε) eβV al1t

eβV al1t + eβV al2t
, (5.6)

with V al1t and V al2t being the expected values for choosing option 1 and option 2

respectively, and β the softmax inverse temperature, allowing for exploration towards

the lower-valued action. The optimal strategy is obtained when β tends towards infinity.

In that case, the subject would pick, at each trial, the option with the largest expected

value. The term with ε modeled the lapses proportion (e.g. trials with very short

reaction times), with 1
2 being the probability of random choice.

5.1.7 Fitting procedure

The fitting procedure objective was to find the set of free parameters that best fitted

each subject’s behavioral data. The number and nature of parameters depended on

each particular model. For adjusting the models’ free parameters to the behavioral data

(subject’ choices), we maximized the model log-likelihood (LLH):
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LLH =
∑

t log(pt)

Where pt was the probability that the model would have chosen the same action as the

subject at trial t. Model fitting was done on all trials pooled from both sessions, which

was justified given there was no evolution of behavior over the course of the experiment

as shown in Figure 6.2. Further details about fitting procedure are provided in

the next Chapter. Notably, we reproduced fits including only the second half of trials

for each session, under the hypothesis that subjects had then reached a stable regime.

This was especially critical for the Bayesian model, that included knowledge of reward

distributions beforehand, which was unrealistic since subjects had no prior knowledge

about the reward distributions and had to learn them by experience. However, they

must have learnt them relatively rapidly because fits on the second half results were

similar to what was obtained when including all trials, and the order of models in model

comparison was not significantly changed.

5.1.7.1 Model selection

A crucial point in modeling is models comparison. Indeed, we could imagine a model

that has a very high likelihood but that is not capturing well what subjects are doing.

By contrast, a model with a large number of parameters could capture very well what

subjects are doing, but is actually over-fitting the data (Hawkins et al., 2004 [168]). To

prevent from this possibility, we evaluated both qualitative and quantitative measures for

each model. We emphasize the importance of presenting qualitative models simulations

to give an idea of the model behavior and to support its relevance for explaining the

participants data.

5.1.7.2 Quantitative measures

The log-likelihood obtained for each fit gave an index of how well the model predicts the

subject’s choices. However, for a given model, the higher the number of free parameters

added, the higher the log-likelihood, but it can be an artificial increase. To take into

account the model complexity, we used the Bayesian Information Criterion (BIC) and

the Akaike Information Criterion (AIC). These criteria take into account both goodness

of fit and parsimony.

BIC = – 2 LLH + k ln(n)

AIC = 2 k – 2 LLH
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with k the number of free parameters in the model. The BIC penalizes more the extra

parameters because it accounts for the number of observations n (here, number of trials)

used to fit the data. Quantitative measures can be misleading though, as log-likelihood

overweighs low probability actions into the global calculation. Therefore, the following

measures were also critical to examine whether the model qualitatively predicted the

subject’s choices.

5.1.7.3 Qualitative measures

Crucially, we assessed whether our models qualitatively reproduced subjects’ behavior.

To that aim, model simulations were performed. Taking the fitted parameters of each

subject, the model was run as if it was a subject. It was then possible to study its choices

sequence similarly as for participants (cf. Statistical Analyses). To assess whether model

choices were consistent with subjects’ choices, two behavioral measures were examined.

We reproduced for each model’s simulation the learning curves computed in Figure 6.1

as well as the stay/switch proportion following reception of each outcome as shown in

Figure 6.3. Simulations provided a visual index of the model accuracy.

Another way of qualitatively comparing models was to look directly at fits instead of

simulations. To do that, for each trial, the probability that the model would have

made the same choice as the subject must be plotted. This measure was dependent on

subjects’ choices. Fits are not shown in this thesis because they were less sensitive than

simulations in order to compare models.

5.2 Experiment 2

The second behavioral experiment was the same as the first one but instead of choosing

between two stimuli, subjects had to choose between two tasks. We hypothesized that a

higher level of abstraction (i.e. tasks instead of stimuli), subjects might rely on Bayesian

inference rather than on reinforcement learning.

5.2.1 Experimental design

Stimuli were simple letters (e.g. A, e, n, D). At each trial, a stimulus appeared (Figure

5.6). Subjects were instructed to choose to perform either the discrimination task con-

sonant/vowel or the discrimination task upper case/lower case, using four response keys

(consonant, vowel, upper case, lower case).
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STIMULUS
500 ms

2€

FEEDBACK
1000 ms

INTER-TRIAL 
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max 1500 ms
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3000 ms

N

Figure 5.6: Trial structure and timing.

There was a highest rewarded task and a lower rewarded task (Figure 5.7), with the

same reward distributions as Experiment 1. “Primes” at the beginning of each session

were removed since they did not affect performance. So each subject did only one session

for Experiment 2.
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Figure 5.7: Reward distributions underlying each task.

Without any sensory cues, the highest and lowest rewarded tasks shifted after an un-

predictable number of trials (reversals). Subjects had to learn which of the two tasks

was the highest rewarded task, knowing that the best of the two tasks could change over

time, and to respond in order to win as much as possible. Whatever the chosen task,

in case the motor action was incorrect, the subject received 0 Euro (e.g. choice of the

consonant/vowel task but response on the “consonant” key whereas the stimulus was a

vowel).
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Subjects underwent incremental training to gradually familiarize with the various ex-

periment aspects. More precisely, they first trained separately on each task, doing the

consonant/vowel categorization task and the upper case/lower case categorization task,

receiving binary feedback (correct/incorrect). Then, they did a task version in which

the choice between task was cued (the color of the letter stimulus indicated the task to

perform), still receiving binary feedback (correct/incorrect). Therefore, subjects could

handle the mapping between the four possible responses and the buttons. Finally, they

trained on the actual experiment, freely choosing between the two tasks, and receiving

parametric rewards drawn from 5.7.

5.2.2 Randomization, Experiment presentation and Participants

Each of the four types of stimuli (consonant upper case, consonant lower case, vowel

upper case, vowel lower case letter) appeared an equal number of times in a random

order. The four response keys location were counterbalanced across subjects. Critically,

the highest rewarded distribution was associated to a task as many times as to the

other task. We tested 24 new participants under the same recruitment conditions as in

Experiment 1.

5.2.3 Statistical analysis and modeling

Statistical analysis and modeling were strictly similar to what was done for Experiment

1 with stimuli.

5.3 Experiment 3

The third task consisted of a control experiment to investigate whether the observed

effects were dependent on the value scale we originally chose.

5.3.1 Experimental design

We modified the experiment value scale according to Figure 5.8. The reward distribution

remained with the same probabilities, but with different outcome values: 1, 3, 5, 7 and

9 euros.

The Experiment 1 paradigm was re-used, i.e. choice between two stimuli. The “primes”

at beginning of session were kept for consistency with Experiment 1, even if they provided



Chapter 5. Protocol A: Decorrelate affective value from information of outcomes 63

no interesting effect. So each subject did two sessions, as in Experiment 1. Therefore we

were able to compare Experiment 1 and Experiment 3 modifying only the value scale,

everything else being equal.
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Figure 5.8: Reward distributions underlying each bandit, with modified value scale.

The trial structure and timing was similar to that of Experiment 1 (Figure 5.9).

STIMULI
500 ms

9€

FEEDBACK
1000 ms

INTER-TRIAL 
INTERVAL

DECISION WINDOW
max 1500 ms

ONE TRIAL
3000 ms

Figure 5.9: Trial structure and timing.

We tested 13 new participants under the same recruitment conditions as in Experiment

1.
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5.3.2 Statistical analysis and modeling

Statistical analysis and modeling were strictly similar to what was done for Experiment

1 with stimuli.



Chapter 6

Protocol A: Results and

Discussion

We present the behavioral and modeling results of a series of three probabilistic reversal-

learning tasks, involving stochastic and changing reward structures, aiming at dissoci-

ating affective from informational values of action outcomes.

6.1 Experiment 1

In this first experiment, we investigated whether subjects use affective and/or belief

values of rewards to guide their decisions.

6.1.1 Experiment 1: Behavioral Results

Figure 6.1 represents the choice proportion of the highest rewarded bandit plotted

against time after a reversal, averaged over 23 subjects.

Learning curves in Figure 6.1 showed that after a reversal, subjects were able to learn

to choose the highest rewarded bandit (all trials, both sessions pooled). After 5-10 trials

following a reversal, they reached an asymptotic level around 75%. On average, they

chose the highest rewarded of the two bandits in 69.4% of trials.

In addition, no progression over the course of sessions was observed. An ANOVA with

factor EPISODE NUMBER and subjects as repeated measures revealed no significant

effect of episode number (p = 0.63). Indeed, Figure 6.2 shows that subjects did not tend

to choose more and more the highest rewarded bandit as the session progressed.

65
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Figure 6.1: Experiment 1: Learning curves representing choice proportion of the
highest rewarded bandit after a contingencies reversal. Subjects’ behavior (N = 23) is
displayed in black, with shaded area representing the standard error of the mean. The

horizontal line represents chance level (50%).
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Figure 6.2: Experiment 1: Choice proportion of the highest rewarded bandit per
episode, showing subjects’ progression throughout the session (averaged across both

sessions). Error bars: standard error of the mean, N = 23 subjects.
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We observed a slightly lower general performance when subjects started with the session

with “Bayesian prime”. However, we observed an important inter-individual variability,

both in the fits and in the behavior. Compared with previous experiments conducted

within the team, informal debriefing revealed that subjects seemed very troubled with

the experiment, reporting for example: “Was it possible to learn the best option or was

it just random?” or “I thought the best shape changed every 5 trials” or “I was not able

to identify any logic”. We interprete this confusion in relation to the counter-intuitive

bimodal reward distributions. Note: no subject was excluded on the basis of the informal

debriefing. Only one subject was excluded for performing at chance level.

Additionally, we examined in Figure 6.3 the proportion of trials in which subjects stayed

on the same choice according to the outcome received at previous trials. More precisely,

we hypothesized that computing the switch/stay behavior after a reward of 8 Euros (and,

symmetrically, of 2 Euros) would allow us to discriminate between subjects who did or

did not infer the underlying task structure (cf. reasoning in Experiment 1 Methods).

If subjects were only sensitive to reward magnitudes, we should have observed that the

higher the obtained reward, the higher the stay proportion, the more the subject would

repeat the same choice on the next trial. By contrast, if subjects had inferred the reward

distributions underlying each bandit, they would have switched more after reception of 1

or 8 Euros than after reception of 2 or 9 Euros, as predicted by a Bayesian model (Figure

6.4). We observed that subjects did not switch more after gain of 8 Euros compared to

gain of 2 or 5 Euros, as revealed in Figure 6.3. Consistently, the lowest stay proportion

was observed after reception of the lowest outcome (1 Euro), while the highest stay

proportion was observed after reception of the highest outcome (9 Euros).
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Figure 6.3: Experiment 1: Stay/switch trials proportion given reward received. Error
bars: standard error of the mean, N = 23 subjects.
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This behavioral pattern was rather consistent with a RL model. To further examine the

cognitive mechanisms underlying the observed behavior, we examined several computa-

tional models.

6.1.2 Experiment 1: Modeling Results

Generally, average subjects’ behavior lay between RL and Bayesian simulations as shown

in Figure 6.4. Learning curves simulations showed that all models were able to re-learn,

after a reversal, to choose the highest rewarded bandit. Both standard and normalized

RL models adapted slower when a reversal occurred (red and brown curves in left panel

Figure 6.4), and were slower to reach the asymptote. As predicted, Bayesian model

simulations showed a significantly higher propensity to switch after receiving 8 Euros

than subjects, since the model inferred that 8 Euros was likely to be a hallmark of the

lowest rewarded bandit (blue curve in right panel in Figure 6.4).
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Figure 6.4: Experiment 1: Learning curves representing choice proportion of the
highest rewarded bandit after a contingencies reversal (left panel) and stay/switch tri-
als proportion given reward received (right panel). Subjects’ behavior is displayed in
black and models’ simulations are displayed in color. The horizontal line in left panel
represents chance level (50%). Error bars and shaded area represent the standard error

of the mean, N = 23 subjects.

The slight drop in Stays proportion after receiving 8 Euros compared to after receiving

5 Euros was reproduced in Standard RL simulations (Figure 6.4). However, none of the

models alone was able to qualitatively capture subjects’ behavior.



Chapter 6. Protocol A: Results and Discussion 69

The mixed model better captured subjects’ behavior than either RL or Bayesian model

separately, both qualitatively as shown in simulations in Figure 6.5 and quantitatively

in model comparison (Figure 6.6). The mixed model (best fit) explained significantly

better the behavior than the Standard RL model (second-best fit) (paired t-test on LLH:

p < 0.01, on BIC: p < 0.02, and on AIC: p < 0.01), despite having two additional free

parameters compared to the Standard RL model.

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial number after contingencies reversal

C
ho

ic
e 

pr
op

or
tio

n 
of

 th
e 

hi
gh

es
t r

ew
ar

de
d 

ba
nd

it

1 2 5 8 90.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

St
ay

s 
pr

op
or

tio
n

Reward received at previous trial (Euros)

Subjects
Standard RL

Mixed

Figure 6.5: Experiment 1: Learning curves representing choice proportion of the
highest rewarded bandit after a contingencies reversal (left panel) and stay/switch tri-
als proportion given reward received (right panel). Subjects’ behavior is displayed in
black and models’ simulations are displayed in color. The horizontal line in left panel
represents chance level (50%). Error bars and shaded are represent the standard error

of the mean, N = 23 subjects.

Nevertheless, the mixed model had a different behavior just after a reversal (left panel

in Figure 6.5) and the pattern for stay/switch given reward received at previous trial

was also different (right panel in Figure 6.5). The best-fitting mixed model parameters

are provided in Table 6.1.

Parameters Description Mean S.E.M.

β Inverse temperature in softmax 10.3 6.0

volatility Volatility in Bayesian system 0.20 0.05

ε Lapses rate in softmax 0.11 0.02

learning rate Learning rate in RL system 0.74 0.04

ω Weight between the two systems in decision 0.55 0.07

Table 6.1: Best-fitting mixed model parameters. Mean and standard error of the
mean (S.E.M.) across subjects (N = 23) are provided.
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Figure 6.6: Experiment 1: Models selection, fixed effects analysis. LLH, BIC and
AIC, summed across subjects (N = 23) are presented for each model: Standard RL

(red), Normalized RL (brown), Bayesian (blue) and Mixed (purple).

In particular, volatility was overestimated (average: 0.20) compared to its real value

(reversal frequency: 0.04). Consistently, the fitted learning rate was relatively high

(mean value across subjects: 0.74). The distribution of the weight parameter ω mixing

RL and Bayesian did not have a clear mode (Figure 6.7). It means that ω might not

have a relevant meaning regarding each system contribution to decision (RL/Bayesian),

but probably just reflected different types of subjects.

Repetition bias. Since the subjects overall stayed more than the models, we added

a repetition bias modeling the tendency to repeat previous choice (“stickiness”). We

can then better reproduce the stays proportion after each reward received (right panel,

Figure 6.8). The mixed model qualitatively fits both the subjects’ learning curves and

stays proportion. With the repetition bias, the mixed model still fitted better quantita-

tively the data than the Standard RL (paired t-test on BIC: p < 0.05). However, simply

adding a repetition bias is not very satisfactory in terms of explanatory power.

Lastly, the Bayesian model that learnt online reward distributions along with trial-by-

trial learning of the stimulus/bandit contingencies did not account for subjects’ behavior,

neither in terms of qualitative simulations nor of quantitative criteria (paired t-tests on

LLH, BIC and AIC compared to all other models: all p < 10−5). A possible explanation

for this poor result would be the model’s complexity, with a lot of variables to monitor,

probably associated with a high cognitive load.
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Figure 6.7: Experiment 1: Distribution of the fitted weight parameter within the
group. Left panel represents raw data in the form of ω i.e. the contribution of the RL

system. Right panel: same data after log transformation, with a gaussian fit.

6.1.3 Experiment 1: Discussion

In terms of quantitative criteria, the best fit at the group-level was the mixed model.

The mixed model provided slightly better results but we think it did not considerably

improve our understanding of subjects’ behavior in the task, compared to what predicted

the Standard RL model. A few subjects’ behavior remained unexplained. The behavior

of these few subjects was much more consistent with the Bayesian model than with

the RL. However, it could be that these few participants simply learned a heuristic rule,

noticing the association 8/1 Euros with the lowest bandit vs. 9/2 Euros with the highest

bandit, and apply it efficiently. These particular subjects’ behavior was not satisfactorily

explained, but need to be further looked in the light of the next series of experiments.

Fitted volatility in the Bayesian and in the Mixed model was overestimated compared

to its real value. This result has been consistently observed across different paradigms

in our team. A possible explanation could be that this parameter would be a second

order estimate. Consequently, subjects had more difficulty estimating it, or perceived

the environment as more volatile or more uncertain than it was in reality. In our task,

there were two main sources of uncertainty. On the one hand, expected uncertainty, as

termed by Bossaerts and colleagues [144] [160], relates to noisy feedback even though the

subject chose the highest rewarded bandit. On the other hand, unexpected uncertainty

relates to the presence of contingencies reversal, that subjects could not anticipate.
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Figure 6.8: Experiment 1: Learning curves representing choice proportion of the
highest rewarded bandit after a contingencies reversal (left panel) and stay/switch trials
proportion given reward received (right panel). Subjects’ behavior is displayed in black
and models’ simulations are displayed in color: Standard RL (red), Normalized RL
(brown), Bayesian (blue) and Mixed (purple). All models included a repetition bias
modeling the tendency to reproduce previous choice. The horizontal line in left panel
represents chance level (50%). Error bars and shaded are represent the standard error

of the mean, N = 23 subjects.

More broadly, it seems that subjects did not deal with a continuous reward scale, but

transform each parametric outcome into a binary outcome i.e. map rewards onto a

dichotomous feedback scale, such as “success/failure” or “good/bad”. Indeed, in our

task, the brain seemed unable to manage a distribution in which reward probability

was not correlated with reward magnitude. A possible working hypothesis is that the

brain would include an interface transforming continuous parametric rewards into bi-

nary outcomes, with a threshold to be defined, and then would decide to stay or switch

options given the obtained reward was below of above the threshold. This dichotomous

hypothesis differs from a RL in the sense it accounts for the notion of switch, which is

a discrete event, whereas updates in a RL are continuous. This hypothesis of reward

binarizing will not be investigated further in this thesis, but possible neural systems im-

plementing such a dichotomous model could involve the basal ganglia, being implicated

in value-based learning, whereas the prefrontal cortex could perform Bayesian inference

on binary states extracted from continuous values. vmPFC could be a candidate for

being at the interface.
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Finally, the predominance of affective values in decision in our task, rather than beliefs

about states, might be explained from an evolutionary point of view. Perhaps the brain

architecture has been selected for strongly attributing values to stimuli or objects. So it

could be that we would obtain different results for a choice between motor actions or a

choice between tasks or task-sets, as compared to a choice between stimuli. We further

investigated this hypothesis in Experiment 2, in which choice between tasks replaced

choice between stimuli. We hypothesized that at a higher hierarchical level of repre-

sentations, a higher degree of abstraction (i.e. tasks instead of stimuli), affective values

might be less salient and subjects would be less sensitive to pure reward magnitude. We

expected this second experiment to favor the emergence of Bayesian learning.

6.2 Experiment 2

The second behavioral experiment was the same as the first one but instead of choosing

between two stimuli, subjects had to choose between two tasks. We hypothesized that

at a higher level of abstraction, i.e. tasks instead of stimuli, subjects might rely more

on inferential systems than on pure reinforcement learning.

6.2.1 Experiment 2: Behavioral Results

Unexpectedly, behavior was very similar to what was observed for a choice between

stimuli in Experiment 1. Learning curves in Figure 6.9 showed that after a reversal

subjects were able to adapt and learn to choose the highest rewarded task, eventually

reaching a plateau around 75%. General performance was slightly lower than in Exper-

iment 1, with 5 subjects out of 24 performing at chance level, that were removed from

the following analyses. Despite training, the experiment was highly demanding in terms

of cognitive load (learning of 2 tasks, 4 response buttons, mapping of tasks onto reward

distributions ...).

A slight progression of performance over the course of episodes was observed in Ex-

periment 2 (Figure 6.10). An ANOVA with factor EPISODE NUMBER and subjects

as repeated measures revealed a trend effect of episode number (p = 0.06). However,

subjects remained less performant overall than in Experiment 1. Indeed, on average,

they chose the highest rewarded of the two bandits in 65.8% of trials.

As found in Experiment 1, the lower the reward received, the more the subjects switched

on the following trial (Figure 6.11). Notably, no significant difference in switch pro-

portion was observed after reception of 5, 8 or 9 Euros. However, the average stay
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Figure 6.9: Experiment 2: Learning curves representing choice proportion of the
highest rewarded task after a contingencies reversal. Subjects’ behavior is displayed
in black and models’ simulations are displayed in color. The horizontal line represents

chance level (50%). Shaded area: standard error of the mean, N = 19 subjects.
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Figure 6.10: Experiment 2: Evolution of the choice proportion of the highest rewarded
task over the course of the experiment. Error bars: standard error of the mean, N =

19 subjects.
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proportion was not significantly different after reception of 2, 5, 8 and 9 Euros, but

was significantly higher than after reception of 1 Euro. This dichotomy supports the

hypothesis of outcomes “binarization” proposed in Experiment 1 discussion.
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Figure 6.11: Experiment 2: Stay/switch trials proportion given reward received.
Error bars: standard error of the mean, N = 19 subjects.

These behavioral measures will be used to compare models in the next section.

6.2.2 Experiment 2: Modeling Results

Modeling results generally replicated what was observed for a choice between two stim-

uli in Experiment 1. Models simulations presented in Figure 6.12 indicated that qual-

itatively, all Standard RL, Normalized RL, Bayesian, and Mixed model captured the

subjects’ learning curves (left panel), especially just after a reversal. However, subjects

stayed on the same choice more than what models predicted (right panel), meaning that

neither model could not be totally accurate. In particular, subjects were far from the

Bayesian model predictions.

Nevertheless, the mixed model provided the best fit in terms of quantitative criteria

(Figure 6.13). In particular, the mixed model better fitted the behavior than all other

models in terms of LLH and AIC (paired t-tests, all p < 0.02). However, as opposed to

Experiment 1, the mixed model was not significantly better than the second-best fitting

model (Standard RL) in terms of BIC (paired t-test, p = 0.27). The BIC is a more

conservative criterion than AIC (cf. Methods).

In summary, Experiment 2 results were similar to Experiment 1 although Experiment 2

was slightly more difficult.
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Figure 6.12: Experiment 2: Learning curves representing choice proportion of the
highest rewarded task after a contingencies reversal (left panel) and stay/switch trials
proportion given reward received (right panel). Subjects’ behavior is displayed in black
and models’ simulations are in color. The horizontal line in left panel represents chance

level (50%). Error bars: standard error of the mean, N = 19 subjects.

6.2.3 Experiment 2: Discussion

Experiment 2 data did not support our original hypothesis i.e. the level of tasks instead

of stimuli, more abstract, would favor the emergence of Bayesian inference. It seems

that the brain had much difficulty dealing with bimodal distributions in which affective

values and belief values were not correlated.

None of the tested computational models revealed a satisfactory description of behavior,

although the standard RL provided the most convincing and parsimonious fit. It could

be that when the task is difficult and demanding in terms of cognitive load, subjects go

back to simpler and robust behavior such as RL.

6.3 Experiment 3

In this third experiment, we investigated whether the observed effects were dependent

on the particular reward scale that we used in Experiment 1.
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Figure 6.13: Experiment 2: Models selection. LLH, BIC and AIC, summed across
subjects (N = 19) are presented for each model: Standard RL (red), Normalized RL

(brown), Bayesian (blue) and Mixed (purple).

6.3.1 Experiment 3: Behavioral Results

We observed a similar behavior as in Experiment 1, with the same qualitative pattern

for learning curves (Figure 6.14). After a reversal, subjects were able to re-learn which

bandit was the highest rewarded one, and reached an asymptotic level above 80%. On

average, they chose the highest rewarded of the two bandits in 74.6% of trials, thus better

performing on this more balanced reward scale (1-3-5-7-9 Euros) than on Experiment 1

reward scale (1-2-5-8-9 Euros).

No progression of performance over the course of episodes was observed in Experiment

3 (Figure 6.15). An ANOVA with factor EPISODE NUMBER and subjects as repeated

measures revealed no significant effect of episode number (p = 0.19).

We then examined the stay proportion (stick with the same choice) as a function of the

reward received at previous trial (Figure 6.16). This behavioral measure revealed that

the higher the reward received, the more the subjects persevered with the same stimulus

on the next trial, as observed in Experiment 1.
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Figure 6.14: Experiment 3: Learning curves representing choice proportion of the
highest rewarded bandit after a contingencies reversal. Subjects’ behavior is displayed
in black and models’ simulations are displayed in color. The horizontal line represents

chance level (50%). Shaded area: standard error of the mean, N = 12 subjects.
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Figure 6.15: Experiment 3: Evolution of the choice proportion of the highest rewarded
bandit over the course of the experiment (averaged over both sessions). Error bars:

standard error of the mean, N = 12 subjects.
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6.3.2 Experiment 3: Modeling Results

Models simulations provided the same qualitative pattern for each model as for Ex-

periments 1 (Figure 6.17). In particular, RL models adapted slower when a reversal

occurred.
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Figure 6.17: Experiment 3: Learning curves representing choice proportion of the
highest rewarded bandit after a contingencies reversal (left panel) and stay/switch tri-
als proportion given reward received (right panel). Subjects’ behavior is displayed in
black and models’ simulations are displayed in color. The horizontal line in left panel
represents chance level (50%). Error bars: standard error of the mean, N = 12 subjects.
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Moreover, quantitative criterion (i.e. LLH, BIC and AIC) led to similar model selec-

tion as for Experiment 1, with the mixed model better explaining data than any other

alternative models (all p < 0.005, Figure 6.18).
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Figure 6.18: Experiment 3: Models selection. LLH, BIC and AIC, summed across
subjects (N = 12) are presented for each model: Standard RL (red), Normalized RL

(brown), Bayesian (blue) and Mixed (purple).

However, as in Experiments 1 and 2, models simulations presented in Figure 6.17 showed

that neither Standard RL, Normalized RL, Bayesian, nor Mixed model fully captured

the subjects’ behavior.

6.3.3 Experiment 3: Discussion

In Experiment 3, we replicated the results of Experiment 1 using different reward dis-

tributions. We concluded from Experiment 3 that the particular value scale neither

impacted qualitatively the behavior nor quantitatively the model selection.

6.4 Experiments 1, 2 and 3: Conclusion

Taken together, these results support the hypothesis of a psychological process convert-

ing continuous outcomes into binary states, as proposed in Experiment 1 Discussion.
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Subjects do not seem able to detect the task structure i.e. the bimodal reward distribu-

tions, and were unable to use it to respond efficiently.

Grouping these three behavioral experiments’ results, the mixed model remains globally

the best-fitting model. However, it does not provide a much more satisfactory expla-

nation of behavior than a standard reinforcement learning model, simpler and more

parsimonious. In other words, the discrimination between the mixed model and the

Standard RL remained unclear. Therefore, to further investigate whether the mixed

model could truly be a reliable explanation of subjects’ choices, we next developed an-

other paradigm.





Chapter 7

Protocol B: Integration of beliefs

and affective values in

decision-making

7.1 Probabilistic reversal-learning task

7.1.1 Paradigm

The task aims at separating two conceptual dimensions of rewards: the affective value

and the informational value. The affective value refers to the subjective value, experi-

enced over a continuous axis of subjective preferences. By contrast, the informational

value is a more abstract concept, and refers to the information carried by the reward

about choice’s reliability. We addressed the question of how informational and affective

values are integrated, and of how information-carrying values influence the subject’s

behavior.

Subjects carried out a decision-making task, repeatedly choosing between two stimuli

(two shapes: a square and a diamond). The potential rewards to be possibly won were

displayed in the centre of the shapes before each choice (Figure 7.1; shapes are colored

for clarity but were white during the actual experiment).

Subjects were instructed to maximize gains, knowing that:

- One of the two shapes led to obtain a reward more frequently than the other one;

- The shape that most frequently led to obtain the proposed reward could reverse from

time to time. Reversals structure is displayed in Figure 7.2.

83
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Figure 7.1: Probabilistic reversal learning task: Trial structure.
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Figure 7.2: Probabilistic reversal learning task: Reversals structure.

The reward could be either received (xt = 1, with probability 0.8), or not received (xt

= 0, with probability 0.2). In other words, each shape could have two possible states:

frequently rewarded (with probability 0.8) or not frequently rewarded (with probability

0.2) (see Generative model of the task in Appendix D). Additionally, in case the reward

was received (xt = 1, with probability 0.8), it could be either the proposed reward

(rt with probability 0.5) or a close one (rt + 1 with probability 0.25 or rt – 1 with

probability 0.25) (not shown in Figure 7.1). Based on the results of two behavioral

pilot tasks, this possible small discrepancy between the reward proposed and the reward

received was introduced in order to have a good balance between the use of rewarding
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values and informational values by subjects. Otherwise, the outcome would have been

perceived simply binary (gain or loss of the proposed reward), providing no emphasis

on parametric affective value.

Crucially, we manipulated the reward distributions underlying each state, in order to

modulate the link between proposed rewards and states. Proposed rewards associated

with each shape were drawn among five possible values: 2, 4, 6, 8 and 10 Euros. Three

experimental conditions were consequently established (Figure 7.3):

• Correlated Values condition Higher proposed rewards were correlated with

the most frequently rewarded state (0.8). In this condition, it meant that choosing

higher proposed rewards was better on average. In other words, higher rewards

occurred more in the most frequently rewarded state. Proposed rewards were

drawn from an exponential-like distribution with γ = 0.13 (see Generative model

of the task in Appendix D).

• Random Values condition For each shape, rewards were randomly drawn among

the five possible values (γ = 0, flat distribution). This consisted of a baseline con-

dition. As rewards were randomly drawn, they conveyed no information about

the underlying state to which the shapes were associated. In other words, pro-

posed rewards carried no cue about which shape was the most frequently rewarded

state. The Random Values condition actually corresponds to the task presented

by Behrens and colleagues, 2007 [162].

• Anti-correlated Values condition Conversely to the Correlated Values con-

dition, higher rewards were correlated with the least frequently rewarded state

(0.8). It meant that higher rewards occurred more often with the least frequently

rewarded state. In other words, lower rewards occurred more often in the most

frequently rewarded state. Rewards were drawn from an exponential-like distribu-

tion with γ = – 0.13. In this condition, there was thus a conflict between proposed

rewards and states.

In the Correlated Values condition alone, it was not possible to tell apart both affective

and informational values, since both varied in the same direction. On a given trial,

both proposed rewards were drawn separately for each shape. Therefore, there was

no statistical link between the two proposed rewards on a given trial. Moreover, the

exponential reward distribution slope, γ, was set such that:

1) The most and least frequently rewarded options were not flipped in the anti-correlated

condition. More precisely, the state with the global highest expected value corresponded

to the most frequently rewarded state on average. It means that, on average, it was still
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Figure 7.3: Probabilistic reversal learning task: Reward distributions for the three
experimental conditions: correlated values, random values, anti-correlated values.

worth to choose the most frequently rewarded state (the one with probability 0.8 of

leading to a reward), even though it was proposing lower rewards. In other words, in

all conditions, and in particular in the anti-correlated values condition, the Pascalian

utility was still maximum for the most frequently rewarded state.

2) Rewards with low probability of occurrence (at one extreme of the distribution) were

not too low so that they still regularly appeared.

Two pilot studies were conducted before this protocol was run under fMRI

(respectively 25 subjects and 12 subjects), which allowed to adjust the task

design. Different participants underwent the two pilot experiments and the fMRI ex-

periment to avoid meta-learning.

All stimuli and feedbacks were presented using PsychToolBox (Brainard, 1997 [167]) and

appeared on a uniform black background (Figure 7.1). Subjects underwent 400 trials

per session. Each session was divided in four runs, roughly equally long (see Breaks

below).

7.1.2 Design and Randomization

The task was carefully designed so that there were no low-level biases in the results.

Otherwise, subjects tend to infer patterns when there are regularities or sequences in
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the local history of trials (Gaissmaier and Schooler, 2008 [169]; Yu and Cohen, 2009

[145]).

Episodes

A sequence of trials in between two reversals is called an episode. Each session consisted

of 20 episodes so 19 reversal events. Episodes were either 16, 20, 24 or 28 trials long.

Episodes order was pseudo-randomized on half a session: 16, 16, 16, 16, 20, 20, 20, 24, 24,

28, with each quarter of session including exactly the same number of trials. Overall,

four possible episodes lengths sequences (sequences A, B, C, D, see Table 7.1) were

used. Within subject, the episodes lengths sequence was different for each condition.

Episodes lengths sequences were co-controlled with condition and with execution order

of conditions.

Stimuli

According to the design, when the most frequently rewarded shape was chosen, a reward

was given 80% of the time. When the least frequently rewarded shape was chosen, a

reward was given 20% of the time. For each shape, the probability of obtaining a

reward switched between 0.8 (most frequently rewarded shape) and 0.2 every episode.

Within each episode, the proportion 0.8/0.2 for each shape was controlled, but because

episodes had small finite lengths, approximations were made when necessary and fully

counterbalanced across episodes. Within each session, all first and second trials following

a reversal were controlled for respecting the 0.8/0.2 balance too. The shape that started

the session as being the most frequently rewarded shape was counterbalanced between

conditions and between subjects. Nature and position of both shapes were pseudo-

randomized within each episode such that:

- Each shape (square or diamond) was the most frequently rewarded shape as often as

the other one;

- The left-positioned shape was the most frequently rewarded shape as often as the

right-positioned one.

Reward distributions

Reward distributions (Figure 7.3) determined, for each shape, the proportion of proposed

rewards (2, 4, 6, 8, 10 Euros) displayed before each choice. For all three conditions, re-

ward distributions were pseudo-randomized within episode. Because episodes had finite
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small episodes lengths, approximations in reward distributions were made when nec-

essary and fully counterbalanced across episodes. All first trials following a reversal

were controlled for respecting the reward distribution too. Rewards were drawn sepa-

rately for each shape so that the two proposed rewards associated with each shape were

statistically independent.

Sessions

Subjects underwent the three experimental conditions in three fMRI sessions, with ex-

ecution order of conditions counterbalanced across subjects (6 possible permutations,

Table 7.1). Male/female participants were counterbalanced with episodes sequence, as

well as with execution order of conditions (Table 7.1).

Condition/Sequence First fMRI session Second fMRI session Third fMRI session

Participant 1 1A 2B 3C

Participant 2 1A 3B 2C

Participant 3 2A 1B 3C

Participant 4 2A 3B 1C

Participant 5 3A 1B 2C

Participant 6 3A 2B 1C

Participant 7 1C 2A 3D

Participant 8 1C 3A 2D

Participant 9 2C 1A 3D

Participant 10 2C 3A 1D

Participant 11 3C 2A 2D

Participant 12 3C 1A 1D

Participant 13 1B 2D 3A

Participant 14 1B 3D 2A

Participant 15 2B 1D 3A

Participant 16 2B 3D 1A

Participant 17 3B 1D 2A

Participant 18 3B 2D 1A

Participant 19 1D 2C 3B

Participant 20 1D 3C 2B

Participant 21 2D 1C 3B

Participant 22 2D 3C 1B

Participant 23 3D 1C 2B

Participant 24 3D 2C 1B

Table 7.1: Participants were counterbalanced for execution order of conditions (1,2,3)
and episodes lengths sequence (A,B,C,D).

Therefore all subjects were homogeneously represented regarding each condition and

each episodes sequence.
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Breaks

Each session consisted of four runs, interrupted by three breaks. Break duration was

up to the subject. The break pseudo-randomly happened two, four or six trials before

the end of the run’s last episode. Breaks positions were counterbalanced across sessions

and across subjects, independently of the other constraints. Subjects were instructed

that there was no particular meaning to the moment of break apparition; such that they

could not infer any rule or pattern related to the breaks. At each break, the average gain

per trial was displayed as well as a “score to beat”, for motivational purposes. The score

to beat was the performance of a Bayesian model slightly degraded, but the subject was

actually told that it was the average score of the best participants so far.

7.1.3 Trial Structure and Jittering

Each trial lasted on average 8100 ms (Table 7.2). Stimuli were displayed for 2500

ms during which subjects could respond at any moment, pressing one of two response

buttons within the machine. The stimuli presentation duration, 2500 ms, was calibrated

based on the two pilot studies. If participants did not respond within 2500 ms, the trial

was lost. Jitters were introduced to temporally decorrelate the various events: stimuli

presentation, choice, feedback. As soon as a response was provided, the chosen option

remained on the screen until and during feedback was provided. After a first jitter

(mean 2.1 s, range 0.1-4.1 s), feedback was provided during 1000 ms: the value of the

obtained reward was displayed in the screen centre if the trial was gained, or 0 Euros

was displayed otherwise. A black screen separated each of the trials (second jitter, mean

2.5 s, range 0.5-4.5 s). Chosen shape, obtained reward and reaction time were recorded

for each trial.

STIMULUS Jitter ISI FEEDBACK Jitter ITI

2.5 s 2.1 s on average 1 s 2.5 s on average

Table 7.2: Trial structure and timing.

Jitters were pseudo-randomly drawn from a uniform distribution such that within a run

average jitter was close to mean value 2.1 or 2.5 s. They were also controlled for all

first and second trials following reversal, assuring that no timing bias emerge around

reversals. However, jitters were controlled within run but not controlled within episode.



Chapter 7. Protocol B: Integration of beliefs and affective values in decision-making 90

7.1.4 Participants

25 healthy individuals (13f/12m, aged 20–25 years) were recruited in Paris, France

through an internet database (http://expesciences.risc.cnrs.fr/). They all gave writ-

ten informed consent (approved by the French INSERM Ethics Committee) throughout

a short medical interview, during which the following conditions of were assessed by a

MD:

• No neurological or psychiatric history (head trauma, epilepsy)

• No attentional or memory disorder

• No dyslexia

• No chronic disease

• No medication (except contraception)

• Normal or corrected-to-normal vision, no fatigue in front of a screen or ophthalmic

migraines

• No drug consumption, in particular during the week preceding the experiment, no

alcohol consumption 24 hours before the experiment

• Being right-handed with right-handed parents and right-handed siblings (to get

rid of lateralized motor activations in fMRI data)

• No tattoo, no metallic objects in the body (piercing, hearing aid, dental cavity

filling, brace, pacemaker, prosthesis, screws)

• No students in psychology, neuroscience or cognitive science (being possibly bi-

ased).

They participated in three fMRI sessions that took place on three separate days. Each

session was separated from another from one day to eight days. Subjects received writ-

ten minimal instructions about the task and were instructed that payoffs could vary

according to their own gains during the task. More precisely, they were told they would

receive a minimal amount plus a bonus calculated on their performance during 2% of

the trials randomly selected. This manipulation ensured that they would treat each

single trial with equal involvement, and hopefully maintain a high enough motivation

along the whole session. However in the end, all participants received 240 Euros for

their participation in the three sessions.
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7.1.5 Training

After receiving written instructions (original document provided in Appendix B, in

French) and before entering the MRI, subjects performed a short training on the task,

on the specific condition of the session. The training design was the same as in the real

experiment. It included 50 trials, which corresponded to three episodes/two reversals.

7.1.6 Debriefing

An informal debriefing took place after the last session (original document provided in

Appendix C). After possible comments from their own initiative, subjects were asked,

among other questions, 1) whether they noticed any differences between the three con-

ditions, and 2) whether they tended to make their decisions rather according to values

or to shapes (stimuli).

7.2 Behavioral Analyses

All statistical analyses were performed under MATLAB R2011a and SPM8 (Wellcome

Department of Imaging Neuroscience, Institute of Neurology, London, UK).

7.2.1 Learning Curves

Two learning curves (Figure 8.1) were studied:

• Choice proportion of the most frequently rewarded shape, averaged over subjects

and over episodes, and plotted against trial number after a reversal

• Choice proportion of shape with highest expected value, averaged over subjects

and over episodes, and plotted against trial number after a reversal. In this kind

of economic task, expected value is defined as the probability of obtaining the

proposed reward x magnitude of the proposed reward. If subjects were optimal,

they would choose, at each trial, the shape with the highest expected value.

The first episode of each session was removed, because it did not consist of an actual

reversal. Corresponding fMRI data will be removed too.

We also examined the distribution of choices given the proposed rewards before choice,

independently of which shape was the most frequently rewarded one (only given the

proposed rewards). The results are provided in Figure 8.2.
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At this point, three subjects were removed from the original group for performing at

chance level, with stereotypical behaviors; for example, choosing systematically the high-

est of the two proposed rewards, totally ignoring the shapes. Figure 7.4 showed that

these three subjects did not improve their performance over the course of an episode.
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Figure 7.4: Subjects falling below the diagonal did not improve their performance
over the course of a behavioral episode.

Finally, reaction times were plotted against trial after a reversal and compared across

conditions.

7.2.2 Logistic Regressions

We performed behavioral logistic regressions over the choices sequence (dependent vari-

able), in order to scrutinize what variables contributed to choice. Possible explanatory

variables were:

• Theoretical probability of being rewarded for each shape (0.8/0.2)

• Proposed rewards displayed before choice
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• Subsequent expected values associated with each shape (probability of obtaining

the proposed reward multiplied by proposed reward)

• Reward received at previous trial (parametric)

• Binary feedback (rewarded/not rewarded) at previous trial

• Chosen and unchosen proposed rewards at previous trial (in relation to possible

counterfactual thinking and regret)

Logistic regressions were performed in full variance analysis, meaning that common

variance between regressors will be washed out. The observed remaining contribution

of each regressor was thus specific to each regressor. In other words, it means that

changing the regressors order did not change the results. All regressors were z-scored

before entering the regression, meaning that the relative contribution of each can be

compared. Two subjects were removed from the logistic regressions for being group

outliers i.e. their only significant contributive regressor was the previous trial outcome.

7.3 Computational Modeling

To establish the functional and computational foundations of the dissociation between

affective and informational values, we examined and developed mathematical models of

learning and decision. The aim of such cognitive modeling is to understand the mech-

anistic computations underlying behavior, i.e. hidden variables that are not directly

visible in behavioral data. We emphasize the importance of testing various realistic

alternative models. The model accuracy in explaining subjects’ behavior is always rel-

ative. The selected model is best only among a limited number of candidate models,

which are never exhaustive.

The generative model of the task in Figure 7.5 corresponds an optimal Bayesian model

and is formally discussed in Appendix D. The following sections describe both a Bayesian

inference model, corresponding to the generative model of the task (Figure 7.5), and a

potential Reinforcement Learning model.

7.3.1 First class of models

No treatment of the informational value of rewards presented before choice

Reinforcement learning model. According reinforcement learning algorithms (Sut-

ton and Barto, 1998 [108]), a “Q value” i.e. average expected value for each option was
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Figure 7.5: Generative model of the task: zt: underlying hidden state; r
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proposed rewards before choice; at: action performed; xt: feedback observed.

maintained. More precisely, the chosen Q value was updated at each trial according to a

prediction error modulated by a learning rate α, in accordance with the Rescorla-Wagner

rule [109]. The unchosen Q value was not updated:

Q
(j)
t+1 =

{
Q

(j)
t + α(xtr

(j)
t −Q

(j)
t ) if at = j,

Q
(j)
t otherwise,

(7.1)

for j ∈ {0, 1}, with learning rate α, with xt = 1 if the subject was rewarded with rt, and

xt = 0 otherwise.

We implemented a slightly modified version of the classic Rescorla rule to allow fair

comparison of this standard RL model with more sophisticated models. We did not

simply implement action selection on the current expected returns Q
(j)
t+1. Indeed, in our

protocol, the potential rewards to gain were displayed before each choice. Therefore, to

take into account the influence of the proposed rewards displayed before each choice, we

biased the current expected returns by:

Q̃
(j)
t = wr

(j)
t + (1− w)Q

(j)
t (7.2)

then perform action selection on the basis of these biased expected returns. The bias

corresponded to a “what if” step that is only performed for action selection but not

taken into account for inference.

Hence, this model included two free parameters: the learning rate α and the bias w over

current Q values, as described above. At the beginning of each session, Q values were

initialized at their mean value (6 Euros). Fitting the initial Q values as a free parameter

did not significantly improve the model. Importantly, this RL model consisted in a

continuous trial-by-trial update; it assumed no task structure, specifically, no structure

related to the reversals.
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Normalized Reinforcement learning model. Building on the classic RL model

above, the normalized RL model updates both chosen and unchosen Q values at each

trial. More precisely, the normalized RL assumed that:

- If no reward was given, a reward would have been given for choosing the other option

- If a reward were given, choosing the other option would have led to no reward.

Implicitly, this model assumed an underlying structure in the task, which was that the

two options would be opposite. But it did not assume either any structure related to

reversals.

Bayesian model with no processing of the informational value – This model

was a particular sub-case of the Bayesian model described in the next section, in which

one step was omitted (the belief update by the informational values conveyed by pro-

posed rewards before decision). This model was necessarily sub-optimal because it was

blind to the three experimental conditions, which corresponded to three different reward

distributions.

7.3.2 Second class of models

Treatment of the informational value of rewards presented before choice

The following models were based on the classic economic assumption of utility maximiza-

tion (Kahneman andTversky, 1984, 1979 [170]; [98]). In our task, optimal choice was

to choose the option with the largest expected utility. Computing an expected utility

corresponded to the optimal combination of information about probabilities and about

rewards. This class of models theoretically adapted faster when a reversal occurred,

thanks to the use of the informational values carried by proposed rewards before choice.

Bayesian model. More precisely, the Bayesian model monitored a belief about how

shapes mapped onto outcome contingencies (i.e. in this task, which shape was the

most frequently rewarded one). A key feature of this second class of models was that

informational value from the proposed rewards presented before choice was extracted

and used to update the belief before choice (as a likelihood in a Bayesian framework). An

expected value was then computed for each shape: belief multiplied by proposed reward.

After choice, a binary feedback (win/lose) was extracted from the received outcome and

used to update the belief using Bayes rule. A volatility parameter ν determined the

reversals frequency between shapes, meaning that the hidden state underlying shapes

changed with probability ν. Formal description and inferences steps of this Bayesian

model are provided in Appendix D.
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Hence, this Bayesian model included the following free parameters:

- Volatility ν; since episodes lengths were pseudo-randomized, volatility was assumed to

be constant across the experiment.

- Probability q of obtaining a reward for having chosen the most frequently rewarded

shape. In our experimental design, q was set equal to 0.8. In other words, once an

option was chosen, feedback was provided probabilistically (q or 1-q) given the chosen

option.

- Slope γ of the exponential distribution used to generate proposed rewards at each trial,

separately for each of the three experimental conditions. Values from the experimental

design were γ random = 0 for condition random, γ correlated = 0.13 for condition cor-

related and γ anti-correlated = - 0.13 for condition anti-correlated. In our case, γ = 0

indicated that the proposed rewards were uninformative about the hidden state (condi-

tion random), γ > 0 implied that choosing higher rewards was overall more profitable

(condition correlated), and γ < 0 implied that choosing lower rewards was overall more

profitable (condition anti-correlated). These generative parameters were chosen based

on the two pilot studies of the task, so that the distributions were neither too difficult

nor too obvious.

At the beginning of each session, beliefs were initialized at their mean value (0.5): sub-

jects had no reason to prefer one of the two shapes at the beginning. We checked that

fitting the initial belief as a free parameter did not significantly improve the model.

Distortions model. Prospect theory (Kahneman and Tversky, 1984 [170]) states that

subjects’ choices are based on maximizing an expected value (= expected utility) and

that subjects’ deviations from rationality can be explained by distortions in their in-

ternal probabilities and rewards representations (Tversky and Kahneman,1974 [171];

Kahneman and Tversky, 1979 [98]). In our task, these two dimensions were at stake.

Specifically, each shape was associated with: (1) a certain probability of leading to a

reward; (2) a proposed reward to be potentially gained. Therefore, we built on the above

Bayesian model, modifying only the beliefs and the proposed rewards by distortions. All

possible types of distortions were examined (concave, convex, sigmoid, inverse sigmoid)

as Zhang and Maloney formalized them [172], separately for beliefs and for proposed

rewards. The addition of distortions resulted in four more free parameters: slope and

fixed point for probabilities, slope and fixed point for rewards.
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7.3.3 Third class of models

Treatment of the informational value of rewards presented before choice but no expected

value computation

Mixed model: beliefs system and affective value systems. In this model, choice

was made over a mixture of beliefs (Bayesian inference system) and affective values (RL

system), but not in the form of an expected value computation. Instead of computing

an explicit expected value, choice was based on a combination of two systems:

- A reinforcement learning system, processing the rewards affective value, as described

in our first class of models;

- A Bayesian inference system, processing the proposed rewards informational value, by

building beliefs about states (which shape was the ’correct’ one, i.e. the most likely to

lead to obtain a reward), as described in our second class of models.

According to this model, a belief about how shapes map onto outcome distributions and

an affective value were combined to make a decision (Figure 7.6). More precisely, the

belief was a prior belief from the past. When subjects observed the proposed rewards

before choice, their prior belief was revised by the information value conveyed by pro-

posed rewards (likelihood in a Bayesian framework). In parallel, the affective value was

the sum of reinforcement value from previous trials and proposed rewards at decision

time. Subjects made a decision by combining these two systems, and subsequently ob-

served an outcome. Given this outcome, the beliefs were updated by Bayes rule, while

the affective values were updated by standard reinforcement learning (Figure 7.6).

The mixed model contained the free parameters of a RL model and the free parameters of

a Bayesian model, as described above. Additionally, it encompassed a weight parameter

ω arbitrating between the belief system (Bayesian) and affective values system (RL).

Given the high-dimensional parameters landscape to adjust to data, we ensured our

fitting procedure was reliable (see section Fitting procedure below).

Mixed model: expected values (Bayesian) and affective values (RL). Impor-

tantly, we checked that a mixed model combining (1) an expected value (belief multiplied

by proposed rewards) from a Bayesian system and (2) a reinforcement values from a RL

system consistently fitted less well the behavior than the previous mixed model.

7.3.4 Action selection

A general strategy for action selection was to stochastically select an action at according

to the softmax policy (Luce, 1977 [104]), with parameters β and ε:
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Figure 7.6: Schematic representation of the computations performed by the mixed
model combining a beliefs system and an affective values system. Details are provided

in the main text.

p(at = 1) =
ε

2
+ (1− ε) eβV al1t

eβV al1t + eβV al2t
, (7.3)

with V al1t and V al2t being the expected values for choosing option 1 and option 2

respectively, and β the softmax inverse temperature, allowing for exploration towards

the lower-valued action. The optimal strategy is obtained when β tends towards infinity.

In that case, the subject would pick, at each trial, the option with the largest expected

value. The term with ε models the lapses proportion, with 1
2 being the random choice

probability. After fitting procedure (see below), we obtained large values of β and low

values of ε for the mixed model, meaning that the mixed model was a reliable predictor

of subjects’ actions.

7.3.5 Fitting procedure

The fitting procedure objective is to find the set of free parameters that best fits each

subject’s data. The number and nature of parameters depended on each particular

model. For adjusting the parameters to the behavioral data (here, subject’ choices), we

maximized the model log-likelihood (LLH):

LLH =
∏
t log(pt)

Where pt is the probability that the model would have chosen the same action as the

subject at trial t.
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Log-likelihood was relevant in our case as it is a sensitive measure, as compared to

least-squares minimization for example, and also because it equally takes into account

all actions.

Parameters were individually adjusted, because we assumed different subjects could

have different learning rates, different distortions... Although it has been shown that in

certain cases parameters could vary across time (Khamassi et al., 2013 [173]), reflecting

online adjustments, here we did not aim at describing the precise learning dynamics.

Therefore, we made the approximation of constant parameters during a session. Even

if certain parameters could evolve through time, our parameters were supposed to rep-

resent individual features, which might be related to each subject’s particular neuro-

physiology. The parameters number and nature of the best-fitting model are provided

in Table 8.1. For each subject, all three conditions were fitted as a whole, but certain

parameters varied across the three conditions (reward distribution slope γ in Bayesian

model) whereas all other parameters remained constant across the three conditions (e.g.

volatility). Only one weight parameter was used to fit the three conditions. Having three

different weight parameters did not significantly improved the model (see Results).

Various methodologies were considered to find the set of parameters that best fitted the

data. For models with few free parameters, all procedures were generally able to converge

towards the best set of parameters. By contrast, for high-dimensional parameters spaces,

the problem was more complex.

Grid search. A first possibility was to explore a grid by taking a finite number of

discrete values for each parameter. Then, for each parameters combination, the log-

likelihood was calculated and the maximum log-likelihood was retained. This method

presented two main drawbacks. On the one hand, it allowed exploration of only discrete

parameter values, whereas all of them could take continuous values. On the other hand,

as the number of parameters increased, the calculation time exponentially increased (the

curse of dimensionality).

Gradient ascent. Another possibility was to use a gradient ascent. The MATLAB

Optimization Toolbox contains several tools to find the maximum of constrained non-

linear multivariable functions, by calculating partial derivatives of the function. Here

the function was our model’s log-likelihood, with multiple parameters. For any starting

point, this mathematical procedure was able to converge to the closest, local maximum

log-likelihood and provided the best set of parameters associated with this likelihood. In

that case, the exploration was continuous, but the main problem was that the algorithm

could be stuck in a local maximum and not find the global maximum, even when tuning

the algorithm’s options.
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Slice sampling. Eventually, we used a slice sampling procedure. This method has

a high computational cost but it presents advantages for high-dimensional parameters

space (Bishop, 2006 [107], chapter 11.4). It allows for checking a posteriori the vari-

ance and the shape of each parameter posterior distribution. This constitutes a way of

evaluating the parameters estimation accuracy, and ensuring that the whole parameters

landscape was explored. More precisely, 100,000 samples were drawn and an additional

gradient ascent was performed on the best sample (Optimization Toolbox, MATLAB).

Using three different starting points drawn from uniform distributions for each parame-

ter, and drawing 200,000 samples for each starting point, provided the same fit quality.

A posteriori, cross-correlation diagrams were drawn for each parameter and for each

model, to check that the samples were independent enough from each other. Generally,

it is assumed that 10 times n independent samples are necessary to obtain an accurate

parameter’s average estimation. For illustrative purposes, Figure 7.7 shows an example

of such diagram for all parameters, for an example subject. Each line corresponds to a

parameter. We can see that starting from n = 3,000 here, samples were independent

enough. In that case, 30,000 samples would thus be sufficient for parameters estimation

to be accurate. However, we kept the same number of samples (100,000) for all subjects

and all models for consistency. The fact that the samples were independent enough

ensures that the parameters average estimate was reliable.
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Figure 7.7: Cross-correlation diagram.

Additionally, parameters were plotted by pairs, grouping all samples (cloud plots in

Figure 7.8). The closer together the dots are in the cloud, the narrower the posterior
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variance was for each parameter. An illustrative example of a relatively good estimation

for an example subject is displayed in the left panel, whereas an example of two pa-

rameters whose posterior distributions were partly linked is displayed in the right panel

(Figure 7.8).
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Figure 7.8: Pairs of parameters’ samples. The closer together the clouds of dots are,
the narrower the posterior variance for each parameter is.

Another confirmation is the log-likelihood evolution across all samples. Figure 7.9 dis-

plays three examples of results for an example subject. An example of good convergence

is illustrated in the left panel. After a burn-in phase (removed), the log-likelihood sta-

bilized close to its maximum value, with oscillations around this maximum (unimodal

distribution). An example of a bimodal distribution is illustrated in the middle panel. It

means that the log-likelihood oscillated between two modes with no clear unique maxi-

mum. Finally, an example of non-convergence is illustrated in the right panel. It means

that there was probably another mode that was not reached yet.
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Figure 7.9: Log-likelihood evolution through all samples during slice-sampling pro-
cedure. Left panel: Example of good convergence. Middle panel: Example of bimodal

distribution. Right panel: Example of non-convergence.

With that procedure, we were thus able to identify, for each model, the free parameters

set that best fitted the subjects’ behavioral data. The next step was to select the best

model among several alternative models, in terms of both fit goodness and parsimony.
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7.3.6 Model selection

A crucial point in modeling is model comparison. Indeed, we could imagine a model

that has a very high likelihood but that is not capturing well what subjects are doing.

By contrast, a model with a large number of parameters could capture very well what

subjects are doing, but is actually over-fitting the data (Hawkins et al., 2004 [168]). To

prevent from this possibility, we evaluated both qualitative and quantitative measures

for each model. We emphasize the importance of presenting models simulations to give

an idea of the model qualitative behavior and to support its relevance for explaining the

participants data.

7.3.6.1 Quantitative measures

The log-likelihood obtained for each fit gave an index of how well the model predicts the

subject’s choices. However, for a given model, the higher the number of free parameters

added, the higher the log-likelihood, but it can be an artificial increase. To take into

account the model complexity, we used the Bayesian Information Criterion (BIC) and

the Akaike Information Criterion (AIC).

BIC = – 2 LLH + k ln(n)

AIC = 2 k – 2 LLH

with k the number of the model free parameters. The BIC penalizes more the extra

parameters because it accounts for the number of observations n (= number of trials)

used to fit the data. Quantitative measures can be misleading though, as log-likelihood

overweighs low probability actions into the global calculation. Therefore, the following

measures were also critical to examine whether the model qualitatively predicted the

subject’s choices.

7.3.6.2 Qualitative measures

Crucially, we assessed whether our models qualitatively reproduced subjects’s behavior.

To that aim, model’s simulations were performed. Taking the fitted parameters of each

subject, the model was run as if it was a subject. It was then possible to study its choices

sequence similarly as for participants (cf. Behavioral Analyses). In particular, two

behavioral measures were examined. First, we reproduced for each model’s simulation

the learning curves computed in Figure 8.1:
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• Choice proportion of the most frequently rewarded shape

• Choice proportion of shape with highest expected value

Moreover, the Figure 8.2 showing the choice proportion of each proposed reward was

reproduced for model’s simulations, again to assess whether model’s choices were con-

sistent with subjects’ choices.

7.4 Neuroimaging

We investigated whether the two systems (beliefs and affective values) in our best-fitting

computational model had distinct neural bases using functional MRI.

7.4.1 fMRI acquisition

fMRI volumes were acquired on a 3T Siemens Trio at the Centre de Neuroimagerie

de Recherche (CENIR) within the hospital La Pitié Salpêtrière in Paris. Acquisition

parameters were TR = 2 s, TE = 25 ms, 431 repetitions per run, 4 runs of 14’28 based

on the longest run duration. 39 slices of 2 mm thickness were acquired by sequential-

descending order, flip angle 75◦, with slice number 39 as reference slice. Before the

first trial, 2 TR of baseline recording were acquired, to allow for slice-timing correction

(see Pre-processing below). EPI were 30◦ tilted to minimize signal drop around the

orbitofrontal cortex (Deichmann et al., 2003 [174]). For acquisition voxel size was 2.5 x

2.5 x 2.5 mm3. The experiment was projected on a mirror settled on a 32-channels head

coil. Subjects provided their responses through two MRI-compatible response buttons,

one in each hand. In addition, T1 anatomical images as well as FieldMaps were acquired.

Diffusion Tensor Images were also recorded for the purpose of later comparing classic

DTI sequences vs. DTI multiband sequences; nevertheless, no anatomical connectivity

analysis is provided in this thesis.

7.4.2 fMRI pre-processing

Data were preprocessed using SPM8 (Wellcome Department of Imaging Neuroscience,

Institute of Neurology, London, UK). Images were first reoriented such as the origin

corresponds to the anterior commissure. Inverse coordinates (up, right, forward) were

recorded. Below are listed the procedures in the order in which they were performed.

Slice-timing correction (temporal correction) – The purpose of this correction was

to have a Gaussian distribution of noise in the data. Between two volumes, an interline
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acquisition was added and then it was considered that all were acquired at the same

time. This correction can be particularly critical to perform Dynamic Causal Modeling.

Realignment and motion correction (spatial correction) – All displacements su-

perior to 1 mm were corrected, taking the first image as a reference point, by doing a

rigid transformation containing three translations (x, y, z) and three rotations (pitch,

roll, yaw). Six movement regressors were thus extracted and will be used as non-interest

regressors in the GLM. These movement variations have to remain low enough; move-

ments up to 3-5 mm or 3-5◦ were accepted, otherwise images were checked by hand.

Segmentation and spatial normalization – The anatomical image T1 was normal-

ized into white matter, grey matter and cerebrospinal fluid. The same normalization

applied to the T1 was applied to all functional images.

Co-registration – This step aims at linking the functional images (T2) to the anatom-

ical image (T1) in the same space. The mutual information diagram should be less

scattered after this correction (illustrated in Figure 7.10).

!

Figure 7.10: Preprocessing: coregistration. The mutual information diagram was less
scattered after this step.

Spatial normalization – The purpose of this non-rigid deformation is to link functional

images to a template brain. This was the way we are able to compare activations

between subjects, despite inter-individual brain morphology variability. We applied all

the calculated deformations to take back all the functional series to a template. The

normalized data voxel size was 3 x 3 x 3 mm.

Smoothing – This correction is supposedly the most efficient one. It diminishes the

noise by averaging the signal in each voxel by a Gaussian kernel according to the signal

intensity in adjacent voxels. Then the average signals look more alike: a strong effect in

one voxel will be less intense after smoothing but its spatial extension will increase. This

refinement is reasonable since the activities of two adjacent voxels are very correlated,

and two adjacent regions might have a functional similarity. Besides, the vascular system

is quite “blurred”. Finally, the spatial smoothing extent has to be carefully chosen since

a too large filter could result in activations outside the brain! Here we chose Full Width

at Half Maximum = 6 mm (Gaussian kernel width).
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At this point, one additional subject was removed from the group because of excessive

head movement (up to 25 mm in translation and 5◦ in rotation). Despite correction

some frontal cortex voxels were missing. Consequently, all following fMRI maps were

obtained for 21 subjects.

7.4.3 fMRI: Model-based approach

A presentation of the model-based approach is illustrated in Figure 7.11. The compu-

tational model was our access to brain mechanisms not directly visible in the behavior.

Using fMRI allowed us to probe the biological implementation of our best-fitting com-

putational model.
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Figure 7.11: A schematic illustration of the model-based approach.

The model-based approach interest is to provide a mechanistic explanation (computa-

tions, representations) of the behavior, not only an information of localization within

the brain. Indeed, it can probe not only whether experimental conditions vary but also

how and why they vary (Mars et al., 2012). The model-based fMRI can answer difficult

questions for the model-free approach, such as the task information neural encoding, or

how specific brain signals modulate model parameters.

7.4.4 fMRI: General Linear Model

A General Linear Model (GLM) was conducted to analyze the fMRI data. A first-level

analysis was performed using model-based fMRI (O’Doherty, 2007 [175]). Essentially,

this method allows to identify regions that specifically correlate with a model’s variable.

Rather than solely identifying locations, model-based fMRI informs about the cerebral
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implementation of the cognitive mechanisms that our best-fitting computational model

(mixed model) described. In short, this model described decision-making as a mixture

of two systems (Figure 8.18):

• A belief system, that processed probabilities of obtaining a reward

• A reinforcement learning system, that processed affective values

Figure 7.12: Best-fitting mixed model included both a belief system and an affective
value system that were combined to make a decision.

First, we examined the neural correlates of decision values i.e. mixture of beliefs and

affective values (GLM1). Critically, we then addressed the question whether these two

systems had distinct neural bases (GLM2). Further dissociations within each system

were investigated in GLM3.

More precisely, two main regressors of interest were incorporated: STIMULUS and

FEEDBACK, each including several parametric modulations that are detailed below.

All three conditions were pooled into the GLMs, since the differences between conditions

were captured by the computational model. Stimulus and feedback events at each trial

were modeled as a Dirac (Event-related design). Modeling events as a 2-seconds block

produced similar parametric maps.

Crucially, a full variance analysis was performed (sometimes named “unique variance

analysis”). Specifically, we deactivated the default SPM option that orthogonalized the

parametric modulators in the order they appear. Consequently, all common variance

between modulators was placed in the residuals. Therefore, the observed activations were

specific to each parametric modulator. However, certain parametric modulators were

manually orthogonalized (Gram-Schmidt orthogonalization) before they were entered

into SPM (details below). All parametric modulators were z-scored before they were

entered into SPM. Lapses (absence of response) were modeled in two separate regressors

(lapses at onset stimulus, subsequent absence of feedback at onset feedback). Across

subjects, lapses consisted on average of 0.6% of all trials. Regressors of no interest

included six movement parameters from the realignment procedure, as well as a regressor

modeling each run.
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7.4.4.1 GLM1: Decision Values

The following parametric modulations corresponding to variables from our best-fitting

computational model were included:

STIMULUS - onset of stimuli apparition. Given fMRI temporal resolution, we cannot

be sure that this onset precisely captured decision time, but it covered at least part of

the decision time window.

• Parametric modulation 1: Decision value chosen – decision value unchosen

• Parametric modulation 2: (Decision value chosen – decision value unchosen)2,

orthogonalized with Parametric modulation 1

FEEDBACK - onset of feedback apparition. Parametric modulations corresponding

to variables from our computational model were included:

• Parametric modulation 1: Belief chosen (before feedback reception)

• Parametric modulation 2: Reward received, associated with chosen shape (which

could be either chosen reward or 0 euros)

• Parametric modulation 3: Reward chosen (proposed reward that was chosen, be-

fore outcome is revealed), orthogonalized with Parametric modulation 2

• Parametric modulation 4: Binary feedback (xt in the model; coding win vs. lose),

orthogonalized with Parametric modulation 2 and 3

In particular, at stimulus onset, we regressed a linear effect (Decision value chosen

- decision value unchosen) and a quadratic effect ((Decision value chosen - decision

value unchosen)2, orthogonalized on the linear effect), under the following interpretative

hypotheses.

Positive Linear Effects. A brain region showing a positive linear effect as in Figure

7.13 corresponds a region that is more activated when relative chosen value is higher.

This corresponds to the pattern of a region encoding expectations associated with chosen

shape (action outcome expectation).

Negative Linear Effects. A brain region showing a negative linear effect as in Figure

7.14 is a region in which activity decreases when relative chosen value increases, which

might reflect the evidence accumulation process for decision or the unchosen option value

encoding.
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Figure 7.13: Pattern of a region showing a positive linear effect, which was interpreted
as encoding expectations associated with chosen shape.
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Figure 7.14: Pattern of a region showing a negative linear effect, which was interpreted
as reflecting the evidence accumulation process for decision.

Positive Quadratic Effects. A brain region showing a positive quadratic effect as in

Figure 7.15 is a region that is more activated when chosen and unchosen values are far

from each other. This parametric modulator codes for the difference between the two

option values, irrespective of choice. This pattern corresponds to a region that encodes

pre-choice preferences (unsigned by choice), or a post-choice confidence signal (i.e. the

further the values from each other, the higher the confidence in choice).
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Figure 7.15: Pattern of a region showing a positive quadratic effect, which was inter-
preted as encoding pre-choice preferences.

Negative Quadratic Effects. A brain region showing a negative quadratic effect as in
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Figure 7.16 is a region that is more activated when chosen and unchosen values are close

to each other. Therefore such a region would be more activated when choice becomes

more difficult, corresponding to choice difficulty encoding, uncertainty or would be a

region performing action selection.
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Figure 7.16: Pattern of a region showing a negative quadratic effect, which was
interpreted as a region performing action selection.

Critically, linear effects were signed by choice i.e. choice-dependent, whereas quadratic

effects were unsigned by choice i.e. choice-independent.

7.4.4.2 GLM2: Dissociation belief system/affective values system

The following parametric modulations corresponding to variables from our best-fitting

computational model were included:

STIMULUS - onset of stimuli apparition.

• Parametric modulation 1: Belief chosen – Belief unchosen (after update by infor-

mational values)

• Parametric modulation 2: (Belief chosen – Belief unchosen)2 (after update by

informational values), orthogonalized with Parametric modulation 1

• Parametric modulation 3: Q chosen – Q unchosen (after bias by proposed rewards

presented before choice)

• Parametric modulation 4: (Q chosen – Q unchosen)2 (after bias by proposed re-

wards presented before choice), orthogonalized with Parametric modulation 3

FEEDBACK - onset of feedback apparition. The same parametric modulations were

included for GLM1, GLM2 and GLM3.
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The above interpretative hypotheses for positive and negative linear and quadratic effects

still stand for GLM2 and GLM3.

Importantly, we controlled the consistency of brain activations when including additional

parametric modulations coding for:

• Parametric modulation: Reaction times

• Parametric modulation: Stay/Switch, according to whether the subject sticked

with the same choice or switched choice as compared with the previous trial

We also examined the shape of reaction times as a function of belief chosen, a variable

extracted from our best-fitting computational model. To do that, we binned the data

using two different methods:

(1) Bins with fixed bounds but variable number of events per bin. We sorted trials with

increasing chosen belief and split them into 10 bins of equal size (from 0 to 1 by steps of

0.1). This resulted in a variable number of trials per bin because in learning paradigms

as ours, there is a sampling asymmetry given that subjects more often chose the shape

with the higher belief.

(2) Bins with variable bounds but fixed number of events per bin. We sorted trials with

increasing chosen belief and we split them into about 10 bins of about 100 trials per bin,

which resulted in bins with bounds of variable size.

7.4.4.3 GLM3: Further dissociation within each system

The following parametric modulations corresponding to variables from our best-fitting

computational model were included:

STIMULUS - onset of stimuli apparition.

• Parametric modulation 1: Prior belief chosen – Prior belief unchosen (before up-

date by informational values)

• Parametric modulation 2: (Prior belief chosen – Prior belief unchosen)2 (before

update by informational values), orthogonalized with Parametric modulation 1

• Parametric modulation 3: Informational Value associated with chosen proposed

reward – Informational Value associated with unchosen proposed reward. Informa-

tional value is the quantity by which beliefs are updated when proposed rewards

to gain are displayed before choice (likelihood in the Bayesian system)
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• Parametric modulation 4: (Informational Value associated with chosen proposed

reward – Informational Value associated with unchosen proposed reward)2, or-

thogonalized with Parametric modulation 3

• Parametric modulation 5: Q chosen – Q unchosen

• Parametric modulation 6: (Q chosen – Q unchosen)2, orthogonalized with Para-

metric modulation 5

• Parametric modulation 7: Chosen proposed reward – unchosen proposed reward

• Parametric modulation 8: (Chosen proposed reward – unchosen proposed reward)2,

orthogonalized with Parametric modulation 7

FEEDBACK - onset of feedback apparition. The same parametric modulations were

included for GLM1, GLM2 and GLM3.

Notably, in all GLM, replacing the quadratic regressors by absolute values instead of

squares led to very similar results.

Importantly, the results consistency was assessed when including additional paramet-

ric modulations: reaction times (Grinband et al., 2008 [176]) and stay/switch trials.

Variance inflation factor (VIF) was calculated for each parametric modulation to

ensure collinearity between all parametric modulations was small enough (Fair et al.,

2006 [177]).

Accordingly, quadratic effects were unsigned by choice, so they would reflect pre-choice/choice-

independent variables. On the contrary, linear effects were signed by choice, so they

would rather reflect post-choice/choice-dependent variables.

All parametric models were regressed against BOLD signal. Beforehand, BOLD signal

was convolved with the hemodynamic response function to model the activations (in-

trinsic autocorrelations modeled as autoregressive noise of order 1, high-pass filter with

cut-off = 128 s). This first-level analysis was performed for each subject individually.

Second-level parametric maps were then obtained for each contrast after a smoothing

with a kernel of 8 mm width, for the whole group (21 subjects). Significance thresh-

old was set at p < 0.005: this threshold corresponded to a correction for the whole

frontal lobe, region with a strong a priori. Despite this uncorrected threshold, it should

be highlighted that analysis was performed in full variance, meaning the activations

that remained significant were truly selective of each parametric modulator (common

variance was placed in the intercept).
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7.4.5 Regions of Interest (ROI)

Second-level maps were then computed to identify specific clusters correlating with each

parametric modulation. β coefficients were extracted to estimate the correlation strength

in a given cluster, taking a sphere of radius 13 mm centered on the ROI peak voxel.

Notably, we checked that we obtained very similar statistics whether we averaged either

all voxels of the cluster or voxels from a small sphere (diameter = 10 - 20 mm) defined

around the cluster peak voxel. Coordinates of the peak voxel in each ROI were given

using Montreal Neurological Institute (MNI) atlas. The associated labels were checked

using the neuroanatomy data provided in the Duvernoy atlas.

To avoid circularity, we ensured that the ROI definition was made on an independent

analysis (Kriegeskorte et al., 2009 [178]). To that aim, a leave-one-out procedure was

used to extract β in ROI. More precisely, second-level maps were re-estimated for n-1

subjects and β were extracted for the last remaining subject in ROI defined from this

n-1 second-level map. The procedure was repeated for each of the n subjects, and β

of all subjects were then averaged. Thus, the ROI definition was independent on the

statistical analysis made within the ROI. However, we noted that here the obtained

statistics did not differ much if we did not use the leave-one-out procedure. The main

reason was probably that ROI contained quite similar voxels when defined on 21 vs. 20

subjects.

Another possibility to avoid circularity is thus to use ROI coordinates defined from an

independent dataset, using previously published data or meta-analyses (e.g. Sescousse

et al., 2013 [179]).

A between-subjects analysis was then performed to examine whether there was a link

between the activation strength in a ROI and the value of the mixed model’s free pa-

rameter ω that weighs the contribution of the belief system in the decision. For each

subject, the β in a ROI was plotted against the fitted value of ω and correlation was

tested. We report here only the significant correlations; because of the intrinsic noise

in fMRI, it is to be noted that it is generally difficult to obtain such correlations when

working with human fMRI data.

Comparison of the distribution of beliefs and affective values from trial to

trial.

This comparison purpose was to rule out the possibility that affective values varied

more rapidly from trial to trial than beliefs (or the converse). Indeed, if it had been the

case, the neural dissociation that we observed between choice-independent beliefs and

choice-independent affective values could have been related to a rather stable variable
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vs. a rapidly changing variable. We extracted, for each subject, the mean of the squared

difference between relative chosen belief at t and relative chosen belief at t− 1, and the

mean of the squared difference between relative chosen affective value at t and relative

chosen affective value at t−1. We then tested whether there was a significant difference

between the two (paired t-test). The differences were squared because the direction of

the variation between t and t− 1 did not matter, we were only interested in the amount

of variability from trial to trial. We also checked with the median instead of the mean

to rule out effects due to outliers.

7.4.6 3D Bins analysis

Univariate analysis showed statistically significant quadratic effects, for both beliefs and

affective values, in specific clusters (see Results). The aim of the binning analysis” was to

be able to visualize the quadratic effects actual shape in the BOLD signal, in a separate

analysis.

This was especially delicate because in learning paradigms such as ours, subjects ob-

viously tended to choose more often the highest of two beliefs/affective values. Conse-

quently, we had an asymmetry; we had fewer trials in which (chosen – unchosen value)

was negative (Figure 7.17)). On the positive part of the graph 7.17, linear and quadratic

effects will be almost indistinguishable (fMRI being too noisy). By contrast, on the neg-

ative part of the graph 7.17, we will be able to distinguish between linear and quadratic

effects, but we had fewer data points for this part.

Value chosen − unchosen

BO
LD

 a
ct
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ity

Figure 7.17: Schematic example graph with both linear and quadratic effects coex-
isting. There was an asymmetry between the left and the right part of the graph, due
to the fact that, in learning paradigms, subjects typically chose more often the most

valued of two options.

In each voxel, BOLD signal was dependent on both beliefs and affective values. There-

fore, the trials were sorted and binned according to both beliefs and affective values, on

a two-dimensional grid (Figure 7.18). The boundaries of each bin were constant. As

a result, we had a various number of events per bin. Beliefs and affective values were
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z-scored before sorting and building the bins. The onsets of trials falling in each bin

were then collected and a first level analysis was performed to estimate an average brain

activity β for each bin and each voxel. From this 3D plot, data was then projected

on each dimension, in order to see the signal evolution either according to beliefs or

according to affective values. To that aim, we averaged on each dimension, by basically

marginalizing over each dimension alone. The mean and the standard error of the mean

were calculated across bins. On this raw data, we fitted a degree-2 polynomial. Finally,

we de-trended the data according to this polynomial fit in order to observe linear and

quadratic terms separately. It means that on Figure 7.18, the sum of the curve “linear”

and “quadratic” corresponded to the “overall” effect. The purpose of this bins analy-

sis was to actually visualize the linear and quadratic effects that were detected in the

second-level parametric maps.

In this bins analysis, we did not take into account inter-subjects effects. It was a fixed-

effects analysis: all subjects were pooled when building the bins. Error bars correspond

to the standard error of the mean across bins.

Note: We imposed the same boundaries for the bins for all subjects. Another possibility

would have been to bin by quantiles, i.e. impose an identical number of events per bin.

Consequently, bins boundaries and bin sizes would have been variable across subjects.

This possibility can only be implemented when building one-dimensional bins.
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Figure 7.18: Schematic explanation of the 3D bins analysis. Each bar height repre-
sents the number of trials falling in that bin. Details are provided in the main text.





Chapter 8

Protocol B: Results

8.1 Behavior

In a probabilistic reversal-learning task, healthy human subjects had to decide between

two shapes representing two underlying states, one of which was more frequently re-

warded than the other one. The proposed rewards to gain for each shape were displayed

before each choice. Crucially, we manipulated the reward distributions underlying each

shape to dissociate beliefs from affective values, in three experimental conditions.

8.1.1 Learning curves

The upper panels learning curves in figure 8.1 show the choices proportion of the most

frequently rewarded shape, plotted against trial number after a reversal. The choice

frequency of the most frequently rewarded shape increased with after a contingencies

reversal. First, we observed that after 5-10 trials after a reversal, subjects learnt which

shape was the most frequently rewarded one. Participants reached an asymptotic behav-

ioral performance (mean correct responses: 74.1%). After a reversal, subjects re-learnt

from scratch to identify the most frequently rewarded shape, and eventually reached a

probability-matching level (asymptote around 80%, figure 8.1).

The lower panel learning curves in figure 8.1 show the choices proportion of the shape

with the highest expected value, plotted against trial number after a contingencies re-

versal. The choice frequency of the shape with highest expected value increased after

a reversal. Differences at the asymptote were found between the three conditions. The

asymptotic choice proportion of the highest expected value option at the plateau was

higher on condition correlated than in condition random than in condition anti-correlated

(paired t-test comparing plateau trials 9-16: condition anti-correlated vs. others: both

117
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p < 10−3, condition correlated vs. random at trend p < 0.048). If subjects were optimal,

they would have chosen the shape with the highest expected value 100% of the time, in

all conditions. This was not the case. As it is usually found in this kind of economic task,

subjects were suboptimal (Trommershauser et al., 2008 [180]). Moreover, they departed

from optimality differently in the three conditions. This provides evidence that sub-

jects were sensitive to the informational value of proposed rewards that we differentially

manipulated across conditions.

In the condition anti-correlated, the asymptotic level was higher for choice proportion of

the most frequently rewarded shape than for the choice proportion of shape with highest

expected value (p < 10−4, paired t-test comparing plateau trials 9-16) (rightmost panels

in figure 8.1). This result suggests that subjects favor accuracy, “being right”, identifying

the “correct” shape, rather than pure reward maximization. It seems that subjects acted

as if they were trying to ignore rewarding values ; and focus only on probabilities (i.e.

shapes). In the condition anti-correlated, they seemed to use the informational value

carried by rewards and chose accordingly more often the shape associated with lower

proposed rewards. Critically, the task was designed such that in all conditions, choosing

the most frequently rewarded shape was always better on average.

8.1.2 Rewards

Figure 8.2 shows the proportion of time that each proposed reward was selected, re-

gardless of the shape with which it was associated. As expected, in the condition corre-

lated, the higher the proposed reward, the more often subjects selected it (Figure 8.2).

Furthermore, in the condition random, rewards presented before choice were randomly

drawn and carefully pseudo-randomized. So, if subjects were relying only on shapes,

they should have chosen each proposed reward (2, 4, 6, 8, 10 Euros) with the same

frequency on average. Essentially, if subjects were relying only on shapes, the orange

line on figure 8.2 would have been flat. However, in condition random, we observed that

subjects more often chose the highest of both proposed rewards (orange line in Figure

8.2), meaning that subjects were sensitive to the proposed reward magnitudes. The

asymmetry between condition correlated and condition anti-correlated (yellow curve in

Figure 8.2) also illustrates this sensitivity to reward magnitude i.e. affective value. The

choice proportion of 6 Euros, the central value, did not vary across conditions. There-

fore, subjects were sensitive to proposed rewards in their decisions. They did not base

their decisions only on shapes. This behavioral measure will be used next to compare

models.
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Figure 8.1: Learning curves. Upper panel: Choice proportion of most frequently
rewarded shape, for the three experimental conditions. Left: condition correlated.
Middle: condition random. Right: condition anti-correlated. Lower panel: Choice
proportion of shape with highest expected value, for the three experimental conditions.
Shaded area represents the standard error of the mean across subjects (average over

reversals and over subjects (N = 22)).

8.1.3 Logistic regressions

We then investigated which possible variables could influence choice, using a logistic

regression. This logistic regression was performed with a full variance analysis, meaning

that each effect was truly specific to each regressor, while the common variance between

regressors was removed. Therefore, it means that the order in which the regressors are

presented does not matter. Moreover, all regressors were z-scored before entering the

regression, meaning that the relative contribution of each can be compared. Figure 8.3

plots the subjects’ propensity to choose the square shape according to various proto-

col variables. Critically, regressors were incrementally added; and likelihoods of each

regression, taking into account the number of degrees of freedom, were compared.

• We show that the probability of the shape being rewarded influenced choice in all

conditions (conditions anti-correlated and random: p < 10−3, condition correlated
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Figure 8.2: Choice proportion of R euros when proposed, regardless of shapes, for
the three experimental conditions. Error bars represent the standard error of the mean

(N = 22 subjects).
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Figure 8.3: Logistic regression investigating the relative contribution of different pro-
tocol’s variables to choice. Blue: probability associated with square shape; red: pro-
posed rewards before decision; grey: expected value associated with each shape; yellow:

reward received at previous trial. * p < 0.05, *** p < 0.005.
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at trend: p = 0.057). This means that subjects were indeed looking for the most

frequently rewarded shape.

• The proposed rewards before choice had a differential contribution across condi-

tions. So, if the proposed rewards were processed only as affective values, i.e. 2

Euros is 2 Euros in any condition, we would not have observed a differential ef-

fect. This differential effect was related to subjects using the informational value

conveyed by proposed rewards before choice.

Importantly, no subject verbally reported detecting any differences between the

three conditions, even when explicitly asked. However, they differentially used the

proposed rewards:

- Condition random: Rewards carried no information but subjects were slightly

biased towards the highest proposed rewards. Red bars show the size of the baseline

effect of pure affective value (Figure 8.3).

- Condition correlated: Subjects were more driven towards high proposed rewards

than in condition random. The difference between the two proposed rewards was

more important in the condition correlated than in the condition random (p =

0.029).

- Condition anti-correlated: Subjects were less driven towards high proposed re-

wards than in condition correlated (p = 0.021).

Thus in conditions correlated and anti-correlated, subjects had the capacity to ex-

tract information contained in the proposed rewards to drive their choices. In other

words, in the condition random, the proposed rewards had a small influence on

choice, which represented a pure affective value baseline effect of proposed rewards

before choice. A large effect was present in the condition correlated, which means

that participants were more driven by proposed rewards when these proposed re-

wards were consistent with probabilities associated with shapes. Interestingly, in

our pilot studies, in the condition anti-correlated, proposed rewards had an effect

but in the opposite direction compared to the condition correlated, and of lower

amplitude. Here, the same effect cumulated with the baseline pure affective value

effect that was visible in the condition random resulted in no significant influence

of proposed rewards for the condition anti-correlated.

Overall, this result provides evidence that subjects extracted information from pro-

posed the rewards before choice. The proposed rewards thus influenced subjects’

decisions.

• Surprisingly, expected values (probabilities associated with shapes times proposed

rewards) showed no significant contribution to choice (all p > 0.4). Participants
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did not compute an expected value per se; they combined probability with pro-

posed reward in a different manner, not explicitly calculating expected values. We

checked statistically that adding the expected values did not significantly improve

the logistic regression (paired t-tests on BIC: p < 10−20).

• All regressions consistently showed a significant influence of the reward received

at previous trial on the current choice (all p < 10−5).

Remark: The regression constant term was almost null except in the condition

anti-correlated, in which more things might be going on (e.g. inhibitory processes).

When the reward received rt−1 at previous trial was replaced by coding a binary feed-

back (rewarded/not rewarded, xt−1) at previous trial, we observed the same pattern of

regressors contribution (Figure 8.4).
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Figure 8.4: Logistic regression investigating the relative contribution of different pro-
tocol’s variables to choice. Blue: probability associated with square shape; red: pro-
posed rewards before decision; grey: expected value associated with each shape; yellow:

binary feedback at previous trial i.e. rewarded/not rewarded.

A 7 by 3 ANOVA with factors REGRESSORS (probability, the two proposed rewards,

the two expected values, the reward received at previous trial and the constant term) and

CONDITION (correlated, random, anti-correlated) revealed a significant main effect of

REGRESSORS (F = 58.3, p < 0.001), but no main effect of CONDITION (F = 2.08,

p = 0.15) and no significant interaction between REGRESSORS and CONDITION (F

= 1.16, p = 0.34). Although the interaction was not significant when including all

regressors, post hoc tests revealed a significant difference across conditions regarding

the difference between the two proposed rewards’ effects (red bars in Figure 8.3, F =

5.16, p = 0.02). All other effects did not significantly vary across conditions (all p >

0.1).
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Conclusion. Both probability associated with shape and proposed rewards influenced

choice, but not in the form of a computation of an expected value. Importantly, it is the

concomitance of the three experimental conditions, in which we modulated the reward

distributions underlying each state, that permitted to dissociate the affective value from

the information carried by proposed rewards.

8.1.4 Stay/Switch trials

The stay trials frequency, i.e. trials in which subjects chose the same shape as in the

preceding trial is plotted as a function of the reward received at previous trial (Figure

8.5). Consistently with results from Protocol A, we observed a binary behavior, in

which subjects tended to switch more after no reception of a reward, as compared to

after reception of any other reward.
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Figure 8.5: Stay trials frequency given reward received at previous trial.

8.1.5 Reaction times

Originally, we expected that reaction times will be higher in conditions correlated and

anti-correlated compared to condition random, because in condition random, proposed

rewards carried no informational value to process. In that sense, the conditions corre-

lated and anti-correlated were richer. However, no significant difference was observed

between the three conditions (paired t-tests, all p > 0.5). A slight but not significant

increase in reaction times was observed following a reversal.
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8.2 Modeling

8.2.1 First class of models

A first class of models that do not extract informational values from the proposed rewards

before choice did not explain the subjects’ behavior, as shown in model simulation

plotted over subjects’ average behavior (Figures 8.6 and 8.7). Mathematical description

of Standard RL and Normalized RL models is provided in the Methods section and in

Appendix D. These models were based on a continuous trial-by-trial update of option

values and were blind to the task structure and reversals. Critically, the learning curve

slope was smaller for the Standard RL model simulations as compared to subjects’

behavior. It means that the Standard RL model adapted slower when a reversal occurred

(left panel, Figure 8.6).
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Figure 8.6: Simulations (N = 1000) of the Standard RL model (red) plotted over
subjects’ behavior (N = 22). Error bars represent the standard error of the mean.

The Normalized RL model corresponds to a RL model but with update of both chosen

and unchosen option values. It hypothesizes that subjects make counterfactual inferences

about the unchosen shape. Model details are provided in the Methods section. In fact,

the normalized RL model was not able to capture subjects’ behavior neither, especially

in the condition anti-correlated, as shown in simulations in Figure 8.7. Even though the

Normalized RL model performed above chance level, it remained less good than subjects

in the condition anti-correlated, even at the asymptote (Figure 8.7). This result means

that subjects did not make the inference that if they did not obtain a reward when

choosing a shape, they would have obtained a reward should they have chosen the other
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shape. This was not a trivial result because participants could have formed incorrect

beliefs about the task in such binary choice settings.
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Figure 8.7: Simulations (N = 1000) of the Normalized RL model (brown) plotted
over subjects’ behavior (N = 22). Error bars represent the standard error of the mean.

Moreover, this first class of models (Standard RL, Normalized RL and others not shown)

all explained the behavior significantly less well than many other alternative models, in

terms of LLH, AIC and BIC as shown in Figure 8.13.

8.2.2 Second class of models

This second class of models stems from the Bayesian model of the task formally described

in Appendix D which constitutes the statistically optimal behavior. More precisely, in

this kind of economic decision-making task, optimal behavior consists in maximizing an

expected value (probability of obtaining a reward multiplied by reward magnitude). This

Bayesian model monitors a belief about how shapes map onto outcome contingencies

(i.e. in this task, a belief about which shape is the most frequently rewarded one). A key

feature of this second class of models is that the informational value from the proposed

rewards presented before choice is extracted and used to update the belief before choice.

Informational value conveyed by proposed rewards constitutes a likelihood in a Bayesian

framework. An expected value is then computed for each shape: belief multiplied by

proposed reward, and subjects (soft)maximize these expected values to choose. After

choice, a binary feedback (win/lose) is extracted from outcome and used to update the
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belief using Bayes rule. Simply put, if a positive outcome is received, the belief that the

chosen shape is the most frequently rewarded one will increase.

The second class of models better fitted subjects’ behavior than the first class of models

(Figure 8.13 and simulations Figure 8.8), which was evidence that participants not only

processed rewards for their pure affective value, but also extracted informational value

from proposed rewards at decision time. But on the rightmost panel in Figure 8.8, we

could see that the Bayesian model simulations did not reproduce the participants choices

pattern in the condition anti-correlated (yellow curve in rightmost panel in Figure 8.8).

0 5 10 150

0.2

0.4

0.6

0.8

1
RANDOM

0 5 10 150

0.2

0.4

0.6

0.8

1
CORRELATED

m
os

t f
re

qu
en

tly
 re

w
ar

de
d 

sh
ap

e

0 5 10 150

0.2

0.4

0.6

0.8

1
ANTI−CORRELATED

0 5 10 150

0.2

0.4

0.6

0.8

1

Trial number after contingencies reversal
0 5 10 150

0.2

0.4

0.6

0.8

1

sh
ap

e 
w

ith
 h

ig
he

st
 e

xp
ec

te
d 

va
lu

e

0 5 10 150

0.2

0.4

0.6

0.8

1

2 4 6 8 100.2

0.3

0.4

0.5

0.6

0.7

0.8

Proposed reward
C

ho
ic

e 
pr

op
or

tio
n 

of
 R

 e
ur

os
 w

he
n 

pr
op

os
ed

Subjects
Bayesian 

Condition Correlated
Condition Random
Condition Anti-Correlated

Subjects

Bayesian 

C
ho

ic
e 

pr
op

or
tio

n 
of

C
ho

ic
e 

pr
op

or
tio

n 
of

Figure 8.8: Simulations (N = 1000) of the Bayesian model (blue) plotted over subjects’
behavior (N = 22). Error bars represent the standard error of the mean.

Nevertheless, subjects’ apparent sub-optimality, as observed in learning curves (bottom

panel in Figure 8.1), could be due to a misperception of actual probabilities and rewards,

in the form of distortions in subjects’ probability and reward representations. Therefore

it could be that subjects did compute an expected value, but with distorted probability

and distorted rewards; hence a seemingly suboptimal behavior. The distortions idea

have been popularized in economy with the prospect theory (Kahneman and Tversky,

1979 [98]; Kahneman, 1984 [170]; Trommershauser et al., 2008 [180]). We fitted such a

distortions model on our behavioral data, including all possible types of distortions for

both probabilities and rewards (concave, convex, sigmoid, inverse sigmoid and absence

of distortion), as formalized by Zhang and Maloney, 2012 [172]. This distortions model

simulations displayed in Figure 8.9 well reproduced the pattern of subjects’ behavior. In

essence, the distortions model corresponds to the Bayesian model described by Behrens
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and colleagues [162], although no volatility level is included since the volatility did not

vary in our paradigm (see Chapter Methods).
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Figure 8.9: Simulations (N = 1000) of the distortions model (green) plotted over
subjects’ behavior (N = 22). Error bars represent the standard error of the mean.

The distortions model provided a good description of the data, and was able to capture

the participants choices pattern. In particular, the distortions model captured the differ-

ential effect across conditions at the learning curves asymptote (Figure 8.9). However,

this model raises two issues. First, it does not explain the psychological/cerebral source

of these distortions. More precisely, it does not give a mechanistic explanation for why

would subjects distort their probability and reward representations. Furthermore, the

distortions that we obtained after fitting were contrary to what has been reported in

the literature (Figure 8.10). On the one hand, we found no significant distortion on

rewards, whereas rewards are usually flattened with increasing magnitude (Dehaene et

al., 2009 [181]). On the other hand, we found a sigmoid distortion on probabilities,

whereas probabilities deformation is usually an inverse sigmoid (Kahneman and Tver-

sky, 1979 [98]: low probabilities generally tend to be overweighted; intuitive example

being overestimating the probability of winning the lottery).

Instead, we propose that subjects do not compute expected values per se, as predicted

by the Bayesian and distortions models, but combine beliefs about shape and proposed

rewards in a different manner.
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Figure 8.10: Fitted distortions in distortion model. Subjects tended to deform their
probabilities estimates in a binary manner, opposed to what has been reported in the

prospect theory.

8.2.3 Third class of models

The third class of models does not compute expected values but rather linearly combines

beliefs and affective values to make a decision. In these models, choice was made over

a mixture of beliefs (Bayesian inference system) and affective values (RL system), but

not in the form of expected value computation. Further description of these models is

provided in the methods section, let us focus on the main model in the third class: the

mixed model.

According to the mixed model, a belief about how shapes map onto outcome distribu-

tions and an affective value are combined to make a decision (Figure 8.11). More pre-

cisely, the belief was a prior belief from the past. When subjects observed the proposed

rewards before choice, the prior belief was revised by the informational value conveyed

by proposed rewards (likelihood in a Bayesian framework). On the other hand, the af-

fective value was the sum of a reinforcement value from previous trials and the proposed

reward displayed before each choice. Subjects made a decision by combining these two

systems. They subsequently observed an outcome. Given this outcome, the beliefs were

updated by Bayes rule, while the affective values were updated by reinforcement learning

(Figure 8.11).

The mixed model simulations revealed that it was a very good predictor of subjects’

behavior, as exposed in Figure 8.12. The mixed model reproduced behavioral patterns

of both learning curves and choice of proposed rewards.

In this mixed model, the fitted weight ω in the mixture of the two systems was in favor

of the belief system (mean ω = 0.25, Table 8.1). In other words, after averaging over

subjects, choice was made on a mixture of 75% belief and 25% affective value. This
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Figure 8.11: Schematic representation of the computations performed by the best-
fitting mixed model. Details are provided in the main text.
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Figure 8.12: Simulations (N = 1000) of the best-fitting mixed model (purple) plotted
over subjects’ behavior (N = 22). Error bars represent the standard error of the mean.
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means that the Bayesian inference system was predominant in decision, but including a

slight role for the affective values from the RL system. Subjects tended to favor accuracy,

“making the right choice”, over pure reward maximization. Therefore, this third class of

models can also be seen as Bayesian inference models monitoring beliefs but marginally

biased by reinforcement affective values. However that we do not make any strong claim

related to this parameter ω, because its value might be dependent on particular task

settings.

Among this third class of models, we were able to rule out two other alternative models:

- Importantly, a particular sub-case of these mixed models with only a Bayesian system

monitoring beliefs and without a reinforcement learning system was significantly a less

good predictor of subjects’ behavioral data (p < 0.01, paired t-test on BIC).

- Mixed models making a decision using a combination of (1) an expected value (belief

times proposed rewards) from a Bayesian system and (2) reinforcement values from a

RL system systematically fitted less well the behavior (p < 0.00001, paired t-test on

BIC).

8.2.4 Model selection

In this section, we report quantitative criteria allowing for model comparison. However,

we emphasize the importance of presenting qualitative models simulations, as in the

above figures, to support a model relevance.

All classes of models were quantitatively compared in Figure 8.13, by summing LLH,

BIC and AIC over all participants (fixed effects analysis). As described in the Methods

section, the Akaike Information Criterion (AIC) is a measure of a relative statistical

model’s quality, trading-off goodness of fit (LLH) and parsimony (number of degrees

of freedom, i.e. number of free parameters here). The Bayesian Information Criterion

(BIC) also takes into account the number of free parameters, but additionally includes

a factor penalizing for number of observations (i.e. number of trials here).

By looking only at behavioral simulations (Figure 8.9 and 8.12), we were not able arbi-

trate between our second class of models (distortions model, based on prospect theory)

and our third class of models (mixed model, with no computation of expected value per

se). Qualitatively, learning curves evolution was well reproduced in both classes of mod-

els. Quantitatively however, the mixed model interpretation was significantly favored, as

shown in Figure 8.13. The mixed model better and more parsimoniously fitted subjects’

behavioral data (random effects analysis, Figure 8.14, paired t-tests, LLH: p = 0.058,
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Figure 8.13: Full model comparison shows that the mixed model best fitted the
subjects’ behavioral data (fixed effects analysis).

BIC: p < 0.005, AIC: p < 0.05). Moreover, our mixed model provides a mechanistic

explanation of computations underlying choice, not only a psychological description.
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Figure 8.14: Comparison of the two best-fitting models in terms of relative Log-
likelihood, Bayesian Information Criterion and Akaike Information Criterion, as com-
pared to a baseline model consisting of only a belief system (random effects analysis).

*** p < 0.005, * p < 0.05.

However, the distortions model and the mixed model are not necessarily contradictory

accounts. Indeed, the sigmoid distortion observed on probabilities in the distortions
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model means that subjects had a binary perception of probabilities (a “good” shape

and a “bad” shape). This was fully consistent with the predominance of the belief

system in the mixture in the mixed model. This indicates that the belief about how

shapes mapped onto reward distributions mattered more than rewards (affective value)

in decision.

8.2.5 Best-fitting mixed model parameters

Table 8.1 shows the mean and standard error of each free parameter adjusted to subjects’

behavioral data. Further description and role of each parameter was provided in the

Methods section. Overall, average fitted parameters were coherent with the task design

parameters. Volatility was slightly overestimated (average: 0.16) compared to its real

value (reversals frequency: 0.05). This result has been consistently observed across

different paradigms in our team. A possible explanation could be that this parameter

could be a second order estimate. Consequently, subjects had more difficulty estimating

it, or perceived the environment as more volatile or more uncertain than it was in reality.

Parameters Description Mean S.E.M.

β Inverse temperature in softmax 44.2 9.4

volatility Volatility in Bayesian system 0.16 0.03

ε Lapses rate in softmax 0.02 0.01

q Probability of obtaining a reward (0.8 in design) 0.74 0.03

γ correlated Slope of the reward distribution in condition correlated 0.041 0.048

γ random Slope of the reward distribution in condition random -0.005 0.003

γ anti-correl. Slope of the reward distribution in condition anti-corr. -0.095 0.060

learning rate Learning rate in RL system 0.72 0.08

w Bias towards the current proposed reward in RL 0.28 0.07

ω Weight between the two systems in decision 0.25 0.05

Table 8.1: Best-fitting mixed model parameters. Mean and standard error of the
mean (S.E.M.) across subjects (N = 22) are provided. Weight ω corresponds to the

weight of the affective values in decision.

In addition, we observed that the average fitted weight favored the belief over the affec-

tive values in the decision. Indeed, we found after fitting ω = 0.25 on average, with ω <

0.1 for more than a third of subjects. The actual distribution of the weight parameter

within the group (N = 22 subjects) is provided in Figure 8.15.

Although subjects probably used various strategies to solve the task, we did not observe

a multimodal distribution with clear distinct groups of subjects emerging. The mean of

the weight parameter thus seems representative of the group. The predominance of the

belief system appears robust across subjects. Nonetheless, the relative contribution of

each system in the mixture must not be over-interpreted. It probably depends on the
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Figure 8.15: Distribution of the fitted weight parameter within the group. Left panel
represents raw data in the form of 1-ω i.e. the contribution of the belief system. Right

panel: same data after log transformation, with a gaussian fit.

particular task design and, more generally, on the current ecological situation at hand

(e.g. volatility, gains at stake).

Importantly, when we fitted three weight parameters for the three conditions instead of

one, the model’s BIC was not improved (p = 0.26). Moreover, the three fitted weights

were not different from each other (all p > 0.08).

Finally, fits of the inverse temperature β and lapses rate ε of the model’s ε-softmax

resulted in high values for β and low values for ε (Table 8.1). This provides further

evidence that our best-fitting mixed model had a good explanatory power.

8.2.6 Informational Values

The only free parameter allowed to vary across the three experimental condition was γ,

the slope of the reward distributions. Importantly, these free parameters (γ correlated,

γ random, γ anti-correl.) fitted on the behavioral data were able to capture the actual

reward distributions tendency imposed by the experimental design; with γ correlated

being positive, γ random being close to zero and γ anti-correl. being negative (Figure

8.16 and Table 8.1).

γ anti-correlated was significantly different from γ correl. and from γ random (both p <

0.05), when parameters were fitted on the second half of trials of each session. When the

fit was done including all trials, they remained marginally significant (γ correlated vs. γ

anti-correl., p = 0.06). This just means that it took more time than the training before
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Figure 8.16: Fitted values of the free parameter γ for each experimental condition:
γ correlated, γ random and γ anti-correl.. Fitted values were able to capture actual

design values.

each session to subjects to infer the reward distributions shape in each experimental

condition. In addition, if the informational value update before decision in the Bayesian

system was removed from the model, we observed a significant qualitative difference

between the subjects’ learning curves and the model’s simulations (Figure 8.17). This

was evidence that the informational value (likelihood) update was a crucial step in the

model, even if the effect sizes were small in the fitted parameters (Figure 8.16).

Moreover, if we imposed the same parameter for the three conditions instead of three

different free parameters, or if we imposed γ correlated = γ anti-correl. (two parameters

instead of three), the model fitted significantly less well.

8.2.7 Conclusion

According to the mixed model, decision-making appears to result from a linear mixture

of two independent systems, rather than an explicit computation of expected values

(multiplicative). Beliefs (Bayesian system) and affective values (RL system) were com-

bined to make a decision. Converging evidence showed that both the belief and the

affective values systems contribute to choice. Nevertheless, both the distortions model

and the mixed model have a similar explanatory power, with a similar LLH. The deci-

sion values in both models are close, but their internal variables differ. The distortions

model remains a good descriptor of the data but had more free parameters. The mixed

model is simpler. Therefore, it will be used to examine brain activations.
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Figure 8.17: Simulations (N = 1000) of the mixed model with removal of the infor-
mational value update in the Bayesian system (purple) plotted over subjects’ behavior
(N = 22). The model does not capture subjects’ behavior, showing that the update of
the belief by the informational value of proposed rewards is a critical part of the model.

Error bars represent the standard error of the mean.

8.3 Neuroimaging

We then used functional MRI to investigate how the belief system and the affective

values system interact in the brain. Specifically, we examined whether the belief system

and the affective value system had distinct neural bases. Principally, we will focus on

describing activations in the frontal lobes. BOLD signal was regressed against choice-

dependent (linear) and choice-independent (quadratic) representations of both beliefs

and affective values. Critically, the quadratic effect was orthogonalized on the linear

effect (Further details are provided in the Methods section). All the following second-

level parametric maps were thresholded at p < 0.005 uncorrected, and for a cluster size

of minimum 10 voxels. This threshold corresponds to a correction for the whole frontal

cortex, region with a strong a priori, which consists of about a third of the brain. We

describe below activations at stimulus onset, covering decision time window.

8.3.1 GLM1: Decision Values

We first examined the decision values neural correlates (Figure 8.18).
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Figure 8.18: Best-fitting mixed model includes both a belief system and an affective
value system that are combined to make a decision.

8.3.1.1 Choice-dependent effects

We observed choice-dependent effects in two main regions within medial prefrontal cor-

tex.

Positive linear effects in vmPFC. We found a positive linear effect in ventromedial

prefrontal cortex (vmPFC), extending into anterior PFC BA 10 (peak voxel at MNI

coordinates [-9, 53, -5], T = 9.21). In others words, vmPFC activity correlated posi-

tively with the relative chosen decision value (Figure 8.19). Such a positive linear effect

means that vmPFC activity increased when relative chosen decision value increased,

which could reflect expectations associated with the chosen shape (action outcome ex-

pectation).
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Figure 8.19: Positive linear effect of decision values in vmPFC. Left panel: parametric
map thresholded at p < 0.005, c > 10 voxels, MNI peak voxel coordinates are indicated
in brackets. Right panel: Effect size. Error bars correspond to the standard error of

the mean, 21 subjects. a.u.: arbitrary units.

Negative linear effects in MCC. We found a negative linear effect in midcingulate

cortex (MCC/dACC) (peak voxel at MNI coordinates [9, 20, 46], T = 11.60), including

voxels falling into SMA. MCC activity correlated negatively with the relative chosen

decision value (Figure 8.20). In other words, MCC activity decreased when relative

chosen decision value increased. This pattern could reflect encoding of the unchosen

decision value.
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Figure 8.20: Negative linear effect of decision values in MCC. Left panel: parametric
map thresholded at p < 0.005, c > 10 voxels, MNI peak voxel coordinates are indicated
in brackets. Right panel: Effect size. Error bars correspond to the standard error of

the mean, 21 subjects. a.u.: arbitrary units.

Critically, both ventral (vmPFC) and dorsal (MCC) parts of medial prefrontal cor-

tex thus exhibited choice-dependent representations of decision values. These linear

representations being signed by choice, they consist of post-choice representations (or

concomitant to choice). Importantly, we reproduced here the classic effect of value encod-

ing/chosen value expectation usually found in vmPFC in a number of studies (Lebreton

et al., 2009 [49]; Plassmann et al. 2007 [53]; Chib et al., 2009 [52]).

8.3.1.2 Choice-independent effects

Positive quadratic effects in vmPFC and MCC. We showed choice-independent

representations in both MCC (posterior, MNI peak coordinates: [0, 14, 37], T = 3.72)

and vmPFC (large cluster in with voxels in posterior and medial orbital gyri and in

anterior cingulate cortex; two main peaks: [0, 11, -14], T = 4.65 and [0, 41, 1], T =

4.22) as presented in Figure 8.21. Such a positive quadratic effect means that MCC and

vmPFC activity increased when both chosen and unchosen decision values were far from

each other, and activity was less intense when both chosen and unchosen decision values

were close to each other.

Such a U-shaped pattern could reflect pre-choice preferences encoding, unsigned by

choice. Alternatively, it could reflect an encoding of confidence about choice, i.e. more

activity when the two decision values were far from each other so when the choice was

easier. More precisely, the reasoning behind a confidence signal interpretation would be

the following. When the two values, chosen and unchosen are far from each other, sub-

jects would be more certain about their choice (be it certain they made the right choice

or certain they made the wrong choice). On the contrary, when the two values are close

to each other, subjects would be quite uncertain about their choice, and consequently
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Figure 8.21: Positive quadratic effect of decision values in vmPFC and MCC. Left
panel: parametric map thresholded at p < 0.005, c > 10 voxels, MNI peak voxel
coordinates are indicated in brackets. Right panel: Effect sizes. Error bars correspond

to the standard error of the mean, 21 subjects. a.u.: arbitrary units.

confidence should be low. In other terms, in that case, confidence would correspond

to the absolute (i.e. quadratic) difference between chosen and unchosen values. How-

ever, further data shown in the next section rather support an interpretation in terms

of choice-independent preferences than in terms of confidence.

Negative quadratic effect in lateral PFC. A brain region showing a negative

quadratic effect corresponded to a region that was more activated when both decision

values chosen and unchosen were close to each other, so when choice was more difficult.

When we regressed decision values, we found a negative quadratic effect in lateral pre-

frontal cortex, bilaterally (Figure 8.22). The right activation (MNI peak coordinates:

[39,53,13], T = 5.62) covered a large region from the dorsal part up to frontopolar cor-

tex, while the left activation (MNI peak coordinates: [-39,59,4], T = 3.72) was smaller.

Thus, lateral PFC activity increased when both chosen and unchosen decision values

were close to each other, i.e. when action selection was more difficult. Such a pattern

characterizes a region performing action selection.

8.3.2 GLM2: Dissociation belief system/affective values system

We then tested whether there were dissociated neural correlates for the belief system

and the affective values system (Figure 8.18). Crucially, the analysis was performed

in unique variance, meaning that the shared variance was removed and the remaining

observed variance in the following second-level maps was truly selective of each system.
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Figure 8.22: Negative quadratic effect of decision values in lateral PFC left (-39,59,4)
and right (39,53,13), MNI coordinates. Left panel: parametric map thresholded at p <
0.005, c > 10 voxels. Right panel: Effect sizes. Error bars correspond to the standard

error of the mean, 21 subjects. a.u.: arbitrary units.

8.3.2.1 Choice-dependent effects

Positive linear effects. As expected from previous studies (Plassmann et al. 2007

[53], Hampton et al., 2006 [56]), vmPFC activity correlated positively with both the

relative chosen belief (MNI peak coordinates: [-9, 50, -5], T = 7.09) and the relative

chosen affective value (MNI peak coordinates: [6, 26, -8], T = 5.52). Indeed, vmPFC

activity increased when chosen belief and chose affective value increased, which reflected

expectations associated with the chosen shape (action outcome expectation in terms of

beliefs and in terms of affective values) (Figure 8.23).

In addition, for affective values, a positive linear effect was found in bilateral hippocam-

pus (left: MNI peak coordinates: [-33, -16, -14], T = 8.20, right: MNI peak coordinates:

[30, -19, -11], T = 4.68), suggesting that hippocampus is also involved in representing

the expectations associated with chosen shape. This result is in line with a study by

Lebreton and colleagues (Lebreton et al., 2013 [182]) showing that the hippocampus is

involved in the valuation of imagined expected rewards. In our case, the likely inter-

pretation is that once an action was chosen, subjects were anticipating the associated

outcome.

Negative linear effects. As shown in Figure 8.24, MCC activity linearly varied nega-

tively with both relative chosen belief (MNI peak coordinates: [3, 17, 52], T = 6.80) and

relative chosen affective value (MNI peak coordinates: [3, 23, 46], T = 5.15). In other

terms, MCC activity decreased when chosen belief and chosen affective value increased.

The identified clusters extend dorsally, also including voxels of SMA and of dmPFC

(BA9). The insula also correlated negatively with both relative chosen belief (left: MNI

peak coordinates in inferior frontal gyrus: [-30, 23, -2], T = 6.17 and right: MNI peak

coordinates in BA47: [33, 26, 12], T = 7.31) and relative chosen affective value (left:
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Figure 8.23: Positive linear effects in vmPFC for both relative chosen belief and
relative chosen affective value.

Left panel: Axial brain slices with activations (thresholded at p < 0.005, voxel-wise,
uncorrected) corresponding to relative chosen belief (blue) and relative chosen affective
value (red) superimposed on anatomical template. x is brain slice MNI coordinate.
Right panel: Effect sizes for relative chosen belief (blue) and relative chosen affective
value (red) averaged over voxels from a sphere of radius 13 mm centered on the activa-
tion peak. a.u. arbitrary units. Error bars correspond to s.e.m across subjects. **p <

0.01.

MNI peak coordinates: [-30, 20,1], T = 4.07 and right: MNI peak coordinates: [33, 20,

-2], T = 5.17). In addition, frontopolar cortex correlated negatively with both relative

chosen belief (MNI peak coordinates: [-39, 59, -5], T = 3.01) and relative chosen affec-

tive value (left: MNI peak coordinates: [-36, 53, 10], T = 3.60 and right: MNI peak

coordinates: [30, 56, 19], T = 4.03).

Therefore, no dissociation was found in vmPFC and MCC between beliefs system and

affective values system regarding choice-dependent linear effects. In addition, we sys-

tematically observed stronger activations with the beliefs, which is consistent with our

mixed model fitting showing that beliefs contributed more in the mixture.

However, we found a dissociation regarding choice-independent effects.
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Figure 8.24: Negative linear effects in MCC for both relative chosen belief and relative
chosen affective value.

Left panel: Axial brain slices with activations (thresholded at p < 0.005, voxel-wise,
uncorrected) corresponding to relative chosen belief (blue) and relative chosen affective
value (red) superimposed on anatomical template. x is brain slice MNI coordinate.
Right panel: Effect sizes for relative chosen belief (blue) and relative chosen affective
value (red) averaged over voxels from a sphere of radius 13 mm centered on the activa-
tion peak. a.u. arbitrary units. Error bars correspond to s.e.m across subjects. **p <

0.01.

8.3.2.2 Choice-independent effects

Positive quadratic effects. We observed a double dissociation between MCC and

vmPFC. Surprisingly, vmPFC was specific to beliefs while MCC was specific to affective

values.

• vmPFC (MNI peak coordinates: [-3, 44, -17], T = 4.34) activity increased when

both beliefs were far from each other, and decreased when they were close to each

other. By contrast, affective values did not modulate vmPFC activity regarding

positive quadratic effects. Although negative results should be interpreted with

much caution, we found no other frontal region for the positive quadratic effect of

relative chosen belief.

• MCC (MNI peak coordinates: [0, 26, 40], T = 4.14) activity increased when both

affective values were far from each other, and decreased when they were close to

each other. By contrast, beliefs did not modulate MCC activity regarding positive
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quadratic effects (Figure 8.25). Although negative results should be interpreted

with much caution, we found no other frontal region for the positive quadratic

effect of relative chosen affective value. The MCC cluster identified here was rather

dorsal, i.e. in the midcingulate gyrus (dACC), with part of the voxels falling in

BA32. Furthermore, certain human subjects have an additional cingulate sulcus

which is dorsal to the first one and named paracingulate sulcus (Petrides et al.,

2012 [15]; Amiez et al., 2013 [16]). I must acknowledge that I have not taken

into account the variable presence of this paracingulate sulcus across subjects

when performing fMRI analysis. fMRI activations were averaged over subjects

and mapped onto a template brain.
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Figure 8.25: Double-dissociation MCC/VMPFC regarding choice-independent
(quadratic) brain activations.

Left panel: 3D rendering of parametric brain activations correlating with relative chosen
belief2 (blue) and relative chosen affective value2 (red) thresholded at p < 0.005 (voxel-
wise, uncorrected). Coordinates (x,y,z) of activation peaks are from MNI space. Right
panel: Effect sizes for relative chosen belief2 (blue) and relative chosen affective value2

(red) averaged over voxels from a sphere of radius 13 mm centered on the activation
peak. a.u. arbitrary units. Error bars correspond to s.e.m. across subjects (N = 21).

**p < 0.01.

Besides, we observed a slight intra-individual correlation between the effect size (regres-

sion coefficient) of the positive quadratic effect of relative chosen belief in the vmPFC
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and the weight attributed to the belief in the decision, as measured by the parameter ω

from our best-fitting mixed model (Figure 8.26).
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Figure 8.26: Scatterplot of the correlation between the effect size for the relative
chosen belief2 in vmPFC and the fitted weight parameter attributed to the belief in
the decision from the best-fitting mixed model. Each dot corresponds to one subject.
vmPFC ROI is defined from the second-level parametric map of the relative chosen

belief positive linear effect.

Therefore, MCC encoded unsigned preferences in terms of affective values, whereas

vmPFC encoded unsigned preferences in terms of beliefs, irrespective of choice. The

implication of MCC in representing choice-independent affective values is in line with a

lesion study in monkeys showing that the cingulate was necessary to integrate reinforce-

ment values of food rewards over time, maintaining action/outcome history (not just

detect errors in a single trial) (Kennerley et al., 2006 [183]).

In our protocol, since there was a double dissociation, it is more likely that the observed

quadratic effects reflect unsigned choice-independent preferences rather than a confi-

dence signal about choice. Indeed, confidence should be a post-choice global signal, not

dissociated. In other words, we would expect a confidence signal to be signed by choice,

occurring concomitantly or after choice. However, the positive quadratic effect observed

in vmPFC for the belief could contribute upstream to the construction of a confidence

signal. This point will be further discussed in Chapter 9.

Notably, in regions showing linear effects (ROI defined from the second-level linear effects

maps), we find again present the quadratic effects. In addition, when the quadratic
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parametric modulations were not orthogonalized on the linear parametric modulations,

we found only a quadratic effect and no linear effect in vmPFC. In MCC, both linear

and quadratic effects were maintained.

Negative quadratic effects. We found in lateral PFC a negative quadratic effect only

for the belief system (left: MNI peak coordinates: [-36, 59, -5], T = 4.93, right: MNI

peak coordinates: [36, 56, -8], T = 6.82) (Figure 8.27), covering a large region from

BA8/BA46 up to frontopolar cortex (BA10). However, our model fitting showed that

the belief system contributed more in the mixture. Indeed, the weight of the affective

values system contribution in the mixture was ω = 0.25 on average, with ω < 0.1 for

more than a third of subjects. Therefore, we propose that this negative quadratic effect

was more likely related to global decision values, supporting a role for lateral PFC in

performing action selection.
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Figure 8.27: Involvement of lateral PFC in action selection.
Left panel: axial slice of parametric brain activations negatively correlating with relative
chosen belief2 (blue) thresholded at p < 0.005 (voxel-wise, uncorrected). z is brain slice
MNI coordinate. Right panel: Effect sizes for relative chosen belief2 for left and right
lateral PFC clusters, averaged over voxels from a sphere of radius 13 mm centered
on the activation peak. a.u. arbitrary units. Error bars correspond to s.e.m. across

subjects (N = 21). **p < 0.01, ***p < 0.005.

Controlling for reaction times. We checked that the quadratic effects were main-

tained despite the inclusion of an additional parametric modulation coding for reaction

times. All brain activations were maintained, in particular the double-dissociation be-

tween beliefs and affective values regarding choice-independent effects in vmPFC and

MCC respectively. The only difference was that the clusters, at the same threshold,

contained slightly less voxels (54 voxels instead of 99 for the MCC cluster, 797 voxels

instead of 862 for the vmPFC cluster). Reaction times monotonically decreased with
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both belief chosen and decision value chosen (Figure 8.28). The higher the belief, the

faster the subject decided. Yet, reaction times are a good proxy of choice difficulty.

Importantly, reaction times did not scale quadratically with belief chosen. Therefore,

we could rule out an interpretation of the quadratic effects simply in terms of choice dif-

ficulty. Figure 8.28 nicely illustrates the impact of the sampling method for binning the

data, as further explained in the Methods section. There were two possibilities to build

one-dimensional bins. On the one hand, bins could be constructed with fixed boundaries

of the same size, resulting in a different number of events per bin (top panels, Figure

8.28). On the other hand, bins could be constructed with quantiles including the same

number of events per bin, but resulting in bins with variable boundaries (bottom panels,

Figure 8.28).
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Figure 8.28: Reaction times monotonically decreased as a function of belief cho-
sen (left panels) and decision value chosen (right panels). Two sampling methods for
building the bins are illustrated. Bins could be either constructed using intervals with
fixed boundaries but a variable number of trials per bin (top panels) or with variable

boundaries but the same number of trials per bin (bottom panels).

Controlling for stay/switch trials. We checked that the quadratic effects were

maintained despite the inclusion of an additional parametric modulation coding for

stay/switch trials, according to whether the subjects picked the same shape as in the

previous trial or not. All brain activations were maintained, in particular the double-

dissociation between beliefs and affective values regarding choice-independent effects in
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vmPFC and MCC respectively. However, the clusters, at the same threshold, contained

less voxels (82 voxels instead of 99 for the MCC cluster, 64 voxels instead of 862 for the

vmPFC cluster). Here, it seems that there was shared variance between the belief and

the stay/switch parametric modulation. In fact, a similar vmPFC cluster was found to

correlate with “stay” trials. This result is consistent with the interpretation that the

belief system monitors the current state. In addition, the vmPFC cluster previously

found to correlate linearly positively with the relative chosen affective value was almost

absent (28 voxels left), maybe also in relation with stay trials.

Controlling for both reaction times and stay/switch trials. We checked that

the quadratic effects were maintained despite the inclusion of two additional parametric

modulations. One coded for reaction times and the other coded for stay/switch trials,

according to whether the subjects picked the same option as in the previous trial or

not. Critically, the presence of a double-dissociation between beliefs and affective values

regarding choice-independent effects was maintained. The vmPFC and MCC clusters,

however, at the same threshold, contained less voxels (47 voxels instead of 99 for the

MCC cluster, 41 voxels instead of 862 for the vmPFC cluster). Otherwise, the same

modifications were observed as when controlling for stay/switch trials only. Obviously,

activations generally become smaller with the growing number of parametric modula-

tions.

Notably, all reported activations were maintained despite methodological

choices. When β coefficients (effect sizes) were extracted on a small sphere centered

on the peak voxel of the cluster instead of averaged over all voxels of the cluster, the

obtained statistics were very similar. Moreover, it should be emphasized that the β

extraction of effect sizes was done in a ROI defined from an independent analysis, using

a leave-one out procedure. Lastly, the role of the full variance analysis (sometimes called

“unique variance analysis”) is to be highlighted. All GLM were run in full variance

analysis, meaning that observed variance for each parametric modulator was specific.

The global shape of the activations as presented with the bins analyses was dependent

on the sampling procedure, as explained in detail in the Methods section. However, we

checked that the activations shape was qualitatively similar whatever the method used

for binning the data.

Remarkably, when we replaced our quadratic regressors by regressors coding absolute

values instead of squares, we reproduced all the effects. So it could be a U-shaped

effect as well as a V-shaped effect. Therefore, we do not push the interpretation of

quadratic effects beyond a simple effect of absolute value, meaning, unsigned by choice.
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To sum up, linear effects (signed by choice) more probably corresponded to choice-

dependent, post-choice signals, whereas quadratic effects (unsigned by choice) more

probably corresponded to choice-independent, pre-choice signals.

Conclusion. Taken together, these results suggest the following architecture for the

integration of beliefs and affective values in human decision-making (Figure 8.29). Before

decision, vmPFC and MCC separately encode beliefs and affective values respectively,

as supported by the double-dissociation between vmPFC and MCC regarding choice-

independent signals. Lateral PFC combines both signals to decide. In return, lateral

PFC feeds back choice information to these medial regions, presumably for updating

these value signals according to action outcomes, hence choice-dependent representations

in both vmPFC and MCC.

Figure 8.29: Interaction between lateral and medial PFC in decision-making. Before
decision, vmPFC and MCC separately encode representations for the belief system and
the affective values system respectively. Both components are then transferred to the
lateral PFC which combine them to make a decision. After choice, lateral PFC sends
back choice information to the medial regions, which in turn updates representations

within the two systems.

8.3.3 Replication of results in an independent analysis

To visualize linear and quadratic effects in the functional data, we sorted trials in a

2D-grid according to two dimensions: belief and affective value. Details about the bins

construction are provided in the Methods section. Essentially, mean brain activity was

estimated in each bin. Critically, in MCC and vmPFC ROIs defined from parametric
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maps of positive quadratic effects in GLM2, we observed linear and quadratic effects

consistent with the statistics obtained for GLM2 second-level parametric maps. (Figure

8.30). Positive linear effects were found in vmPFC for both belief and affective value.

Negative linear effects were found in MCC for both belief and affective value. A positive

quadratic effect was specifically found in vmPFC for belief, and specifically found in

MCC for affective value.
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Figure 8.30: Bins analysis in ROIs defined from positive quadratic effects paramet-
ric map. In an independent analysis, we reproduced choice-dependent and choice-
independent representations of both beliefs and affective values in our two main regions
of interest, MCC (left) and vmPFC (right). Dashed lines show the best polynomial fit

of degree 2. Error bars represent s.e.m. across bins (all subjects pooled).

Importantly, when we reproduced this analysis using ROIs defined from parametric maps

associated with linear effects instead of quadratic effects, we observe very similar shapes

of the brain responses (Figure 8.31). Thus, the quadratic effects were present in the

signal even in ROIs isolated using linear effects parametric maps.

8.3.4 GLM3: Further dissociation within each system

Finally, we tested whether there were distinct neural correlates for the four quantities

involved in the mixed model to compute decision values (Figure 8.11). BOLD signal
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Figure 8.31: Bins analysis in ROIs defined from linear effects parametric maps. In an
independent analysis, we reproduced choice-dependent and choice-independent repre-
sentations of both beliefs and affective values in our two main regions of interest, MCC
(left) and vmPFC (right). Dashed lines show the best polynomial fit of degree 2. Error

bars represent s.e.m. across bins (all subjects pooled).

was regressed against linear and quadratic effects of (1) Beliefs, (2) Informational values

of proposed rewards (likelihood), (3) Reinforcement values and (4) Affective value of

proposed rewards, in unique variance, meaning that the observed activations in the

following second-level maps was again truly selective of each variable.

8.3.4.1 Dissociation within the affective values system: Reinforcement val-

ues (historical) vs. Affective values of proposed rewards (current

trial)

The affective values system in our mixed model was composed of two variables: Re-

inforcement values, which are the historical variables learnt by reinforcement learning

across trials, and Affective values of proposed rewards, which are the potential rewards

to gain displayed before each choice.
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Regarding choice-independent effects, we found a positive quadratic effect of Reinforce-

ment values in lateral orbitofrontal cortex (MNI peak coordinates: [39, 38, -17], T =

3.47) (Figure 8.32).

OFC
y = 38 mm

OFC
x = 39 mm

Figure 8.32: Within the affective values system, lateral OFC encoded choice-
independent reinforcement values. Coronal and sagittal slices of parametric brain ac-
tivations positively correlating with relative chosen reinforcement value2 thresholded
at p < 0.005 (voxel-wise, uncorrected). Coordinates of brain slices correspond to the

activation peak (MNI space).

8.3.4.2 Dissociation within the Bayesian system: Prior belief (historical)

vs. Informational values (current trial)

Similarly, the Bayesian system in our mixed model was composed of two variables: Prior

beliefs, which are the historical variables learnt from the past, and Informational values

of proposed rewards (likelihood), which are extracted from proposed rewards displayed

before each choice.

Regarding choice-independent effects, we found a positive quadratic effect of Informa-

tional values of proposed rewards in precentral gyrus (MNI peak coordinates: [39, -16,

40], T = 3.76) (Figure 8.33).

8.3.5 Activations at feedback time

At feedback time, the dissociation between the two value systems was less clear. Here,

we report the main findings at the feedback reception onset, with a focus on frontal

lobes activity.

We observed that vmPFC activity correlated positively with the reward received. We

also found a positive effect of reward received in bilateral putamen and pallidum, as

observed in previous studies of value-based learning and decision-making. In addition,

dACC correlated negatively with reward received.
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Figure 8.33: Brain implementation of informational values from proposed rewards
extracted at decision time in pre-central gyrus.

Left panel: coronal and sagittal slices of parametric brain activations positively correlat-
ing with relative chosen informational value2 thresholded at p < 0.005 (voxel-wise, un-
corrected). Coordinates of brain slices correspond to the activation peak (MNI space).
Right panel: Effect size, averaged over voxels from a sphere of radius 13 mm centered
on the activation peak. a.u. arbitrary units. Error bars correspond to s.e.m. across

subjects (N = 21). **p < 0.01.

We observed a large vmPFC cluster correlating positively with the belief chosen, as

well as a bilateral temporal activation. ACC, MCC and frontopolar cortex (bilateral)

correlated negatively with belief chosen, as well as bilateral insula. Dorsolateral PFC

(bilateral) also correlated negatively with belief chosen.





Chapter 9

General Discussion

In this PhD work, we addressed the question of how beliefs and affective values conveyed

by rewards contribute to decision-making.

We presented several behavioral experiments dissociating these two signals, in the form

of probabilistic reversal-learning tasks involving stochastic and changing reward struc-

tures. We built a model establishing the functional and computational grounds of such

a dissociation. It combines two parallel systems: (1) reinforcement learning, modulat-

ing affective values, and (2) Bayesian inference, monitoring beliefs. The model better

accounted for behavior than many alternative models.

We then investigated whether beliefs and affective values have distinct neural bases

using fMRI. We showed that VMPFC and MCC activity correlated with both choice-

dependent beliefs and affective values. However, we found a double dissociation regard-

ing choice-independent variables. VMPFC encoded choice-independent beliefs, while

MCC encoded choice-independent affective values. Additionally, activity in LPFC in-

creased when decision values (i.e. mixture of beliefs and affective values) got closer to

each other and action selection became more difficult.

Taken together, these results suggest that before decision, VMPFC and MCC encode

beliefs and affective values respectively. LPFC combines both signals to make a decision,

then feeds back choice information to these medial regions, presumably for updating

these two signals according to action outcomes.

We will first discuss the functional interpretation of our computational mixed model and

its limits. We will then come back to the imaging results and discuss especially the role

of ventromedial prefrontal cortex, as well as the meaning of the quadratic effects that

we found.

153
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9.1 Modeling

9.1.1 Distortions

9.1.1.1 Differences with prospect theory

Behavioral economics investigate how subjects combine probabilities and values. In

a typical experiment (Kahneman, 1984 [170]), subjects undergo a choice between two

gambles, for which they know the probability and gain at stake. In such a situation, the

optimal choice would be to compute an expected value (probability times reward) for

each gamble, and choose the gamble of highest expected value. Usual prospect theory

results by Kahneman and Tversky showed that human subjects’ choices generally depart

from optimality. In this framework, they typically tend to overweight small probabilities,

even if such outcomes are rare, and underweight large probabilities, resulting in a S-

inverse shaped distortion function (Kahneman and Tversky, 1979 [98]).

However, the level of description here is different from that of neuroscience. Behavioral

economics and psychology describe the existing biases and departures from optimality

in economic decision-making, but do not investigate the underlying brain mechanisms

producing such outputs.

At first sight, the fact that we observed distortions on probabilities that were sigmoidal

could seem puzzling, in contradiction with Kahneman and Tversky primary results.

However, there were two major differences between our protocol and the prospect the-

ory framework. First, in our experiment, probabilities, in the form of beliefs about

how actions map onto reward contingencies, were implicit. They had to be estimated

from experience. Subjects did not have an explicit knowledge of probabilities. On the

contrary, in characteristic prospect theory experiments, subjects typically had to choose

between two gambles with an explicit knowledge of probabilities and reward values at

stake (Kahneman and Tversky, 1979, 1974 [98] [171]). Consequently, a second differ-

ence was related to the uncertainty level. While in prospect theory gambles, subjects

had a perfect knowledge of the probabilities at stake, in our protocol subjects had to

estimate probabilities directly from experience, by trial-by-trial sampling. Therefore,

subjects’ probability estimates in our task were accompanied by some uncertainty, with

some noise in the underlying brain representations, since neuronal computations are not

perfect (Beck et al., 2012 [184]).

The fact that subjects tend to overweight small probabilities when these are directly

experienced has actually been documented before (Hertwig et al., 2009 [185]). In this
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study, Hertzig and colleagues noticed that choices from described probabilities consid-

erably differed from choices from experienced probabilities. In particular, they found

an underweighting of small probabilities when decisions were made from experienced

probabilities, consistent with the sigmoid-like distortion that we found.

In another study, Tobler and colleagues (Tobler et al., 2008 [186]) even reported various

distorted perception of experienced probabilities depending on the brain region. More

precisely, they found in dorsolateral PFC an overweighting of small probabilities and an

underweighting of large probabilities, while ventral PFC regions displayed the opposite

representations. However, their paradigm involved valuation without choice; the absence

of decision might have led to different results.

Yet, even if distortions do not explain what happens in the brain, they remain a useful

tool at the behavioral level. In a clinical context, distortions have been used to study

the rewards perception in pathological gambling, and more generally, in addictions.

Patients with addiction display a higher discount rate and a stronger preference for

immediate rewards (Michalczuk et al., 2011 [187]). Distortions are also a tool to study

the probabilities perception in the context of decision-making under risk (Sharp et al.,

2012 [105]).

9.1.1.2 Sub-optimality and efficient coding

Even though distorting probability representations might seem suboptimal, Summer-

field and colleagues proposed that such an underweighting of small probabilities when

decisions are made from experience, related to extreme or rare events, could actually

be understood as optimal in terms of efficient coding (Summerfield et al., 2015 [188]).

Down-weighting of low probability events would allow more robust coding. In terms of

computational resources, it is not efficient to dedicate energy to encode very rare events

that will almost never be encountered. Efficient coding thus explains why rare events

are not represented: it is not optimized in terms of computational resources to represent

rare events. In other words, efficient coding allows optimal and appropriate allocation

of cognitive resources. It allows more adequate coding of the information relevant for

decision, given the statistics of the current environment. Further mathematical details

about how specific encoding of extreme events can actually be seen as rational were

provided by Lieder et al., 2014 [189].

Similarly, coding expected values i.e. a product is more computationally demanding

in terms of resources than coding a sum. According to the mixed model, probabilities

about states (belief) and rewards (affective values) are linearly combined. Indeed, the

mixed model (linear) was a significantly better fit than the Bayesian model alone or the
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distortions model (both multiplicative). In other words, we found that a linear com-

bination better explained subjects’ behavior than a multiplicative combination. Our

mixed model thus constitutes a simplification of the computation, as compared to a

more costly computation of expected values, thus optimizing resources. It suggests that

subjects tended to simplify the task, as compared to an optimal agent. We cannot for-

mally exclude that they simplify the task due to performing hundreds of trials, but still,

this simplification has an interest, since computing a sum demands less computational

resources than computing a product i.e. expected value.

9.1.2 Predominance of the belief system

Our mixed model fit revealed that the belief system, which is a monitoring system,

is predominant for guiding choice. Choice can be biased by affective values when the

affective values significantly depart from the belief.

The distortions model fit revealed that probabilities were distorted in a sigmoid fashion.

Subjects tended to underweight lower probabilities while overweighting higher probabili-

ties. It means that they had a propensity to accentuate their representations in a binary

manner: correct vs. incorrect action, with little parametric modulation. It means that

to maintain expected values, expected values had to be distorted. We can abstract from

distortions with the mixed model, more simple. The shape of the fitted distortions was

actually consistent with the mixed model fits, which predicted a larger contribution of

beliefs than affective values in the mixture for decision.

Therefore, we do not formally exclude the distortions model but we think of it as a

different level of description. Regardless of the brain, the distortions model consists of a

good description of behavior. However, the mixed model is a simpler model. Moreover, it

provides a psychological origin for the distortions. In other words, it gives a mechanistic

explanation of why distortions arise: two concurrent systems act in parallel to guide

decision-making.

Importantly, according to both the mixed model and the distortions model, the belief

system, based on hidden states, consistently remains predominant in the decision. This

constant predominance of beliefs in the mixture suggests that the system is intrinsically

built this way. It allows to base decisions on stable representations, continuing across

trials. Relying mainly on a belief allows more stability, as compared to recalculating

expected values at each trial.

Lastly, the mixed model makes a decision based on a mixture of variables from the

two systems at each trial. Although this is a good average description, it is possible



Chapter 9. General Discussion 157

though that in certain trials, choice was based on belief, whereas in other trials, choice

was based on affective values. There could be an alternation between the two systems

over the course of trials, rather than a similar relative contribution of both systems in a

mixture occurring at each individual trial. For example, we could hypothesize that after

a reversal, subjects would rely more on the affective values system. In contrast, at the

plateau of a behavioral episode, meaning a period of relative stability, subjects would

rely on the Bayesian system. In a perceptual decision-making task, Summerfield and

colleagues found such an alternation of two systems driving decisions (working memory

vs. Bayesian) according to the trial position relative to the reversal (Summerfield et

al., 2011 [190]). A finer refinement of our model over time could allow to test these

possibilities.

9.1.3 Interaction between the belief system and the affective value

system: a hierarchy?

We believe that our best-fitting mixed model, which consists of a mixture of two systems

for decision-making, is a reasonable approximation of the real variables calculated in the

brain. Critically, we replicated the mixed model supremacy to explain behavior across

two different protocols, and with three experimental variants for each protocol (about

25 subjects each). However, there are two possible interpretations for this mixture, re-

garding the nature of the interaction between the two systems, the belief system and

the affective values system. A first interpretation is that the belief and the affective

value systems are combined into a single decision value, via a summation. An alterna-

tive interpretation is that there is a hierarchy behind the mixture, with two successive

decisions. However, our study alone does not allow to disentangle these two possibilities.

How do the Bayesian system and the affective values system actually interact?

An interesting avenue for future research would be to investigate whether there is a

hierarchy between the two systems in the mixed model. Hierarchical brain systems have

been described previously in the literature. For example, a hierarchy in information

processing for cognitive control was described within human lateral prefrontal cortex

(Koechlin et al., 2003 [36]). We could hypothesize that the affective values system (RL)

would act as a default, insuring learning in a great number of situations (Doll et al., 2012

[191]). The beliefs system (Bayesian) would be recruited only in necessary situations, for

example when the environment is more uncertain and/or more complex, subsequently

requiring more cognitive control.

The alternative hypothesis in terms of hierarchy would be that the beliefs system would

be the predominant one. The observed predominance of the beliefs in the mixture
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supports the latter interpretation. In that case, while being slightly biased by the

affective values system in decision, subjects would mainly rely on prefrontal function

to find which is the more appropriate action to select in a given situation, evaluating

to what extent the current behavior matches external contingencies. In situations with

a large uncertainty or a high volatility, the prefrontal system would take control to

infer the most appropriate action to select. Nevertheless, this might stand only until

a certain level of complexity. In complex and uncertain situations, there is a limit in

terms of cognitive load subjects are able to handle (Oberauer, 2002 [44]; Collins and

Koechlin, 2012 [160]). In too complex/cognitively demanding tasks, subjects might go

back to simpler strategies, such as pure model-free reinforcement learning.

9.1.4 Difference with model-based/model-free reinforcement learning

In model-free RL, subjects learn stimulus/action pairs by directly experiencing them in

the external environment. By contrast, in situations in which it is beneficial to include

a knowledge of the task’s contingencies structure, subjects were able to develop internal

model-based representations, thus improving learning efficiency (Hampton et al., 2006

[56]; Behrens et al., 2007 [162]). In this framework, arbitration between model-based

and model-free RL systems was based on the computation of each system’s uncertainty

(Daw et al., 2005 [110]). As discussed in the introduction, in a two-stage probabilistic

decision-making task, subjects’ behavior appears intermediate between model-based and

model-free RL systems (Dezfouli and Balleine, 2013 [192]).

At first sight, this distinction between model-based and model-free RL resembles our

mixed model. Indeed, a parallel could be drawn here between our affective values sys-

tem and model-free learning, and between our beliefs system and model-based learning.

However, there is a fundamental difference between our mixed model account and the

model-based/model-free RL account. Specifically, in model-based RL, the model is used

to calculate expected rewards. Expected rewards are computed based on the model’s

states representation. Model-based expected rewards are then mixed with the expected

rewards from the model-free system. In contrast, the model’s states representation in

our mixed model is used to calculate a degree of belief about the mapping between states

and outcomes. The belief in our mixed model is used for inferential reasoning, not for

computing expected rewards.

In addition, a limit of the model-based/model-free approach is that as soon as the number

of states and the number of stimulus/action pairs increases, model-based reinforcement

learning becomes intractable.
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9.1.5 Prefrontal cortex: a not yet optimized system?

We consistently observed, across the various behavioral experiments presented here, that

subjects are sub-optimal. They behave irrationally as compared to a statistically opti-

mal agent. More precisely, they are suboptimal in the sense that they do not maximize

expected reward. In other words, their choices do not maximize expected value. This

sub-optimality in value-based decision-making has been reported many times (Payzan-

LeNestour and Bossaerts, 2011 [144]). It could be due to the fact that the prefrontal

system is phylogenetically very recent (Teffer and Semendeferi, 2012 [193]). Prefrontal

cortex functional architecture is shaped by very recent evolution, in complex social envi-

ronments, possibly explaining why it is less well optimized as compared to other systems.

For example, the visual system functioning is well explained by optimal Bayesian models

of perception (e.g. Kersten and Yuille, 2003 [194]). The visual system is much older in

phylogenetic evolution, which can explain the fact it is so well optimized. By contrast,

the prefrontal system is much more recent.

In addition, the central executive system faces very diverse problems, of high complexity.

There is a huge variety of tasks that the prefrontal cortex deals with: planning, social

interactions, task-switching, arbitrating for cognitive resources allocation, etc. It is

recruited when peripheral systems are no longer efficient. Facing such a diversity of

tasks, it is thus impossible for the prefrontal system to be optimal for this, since it

would be computationally intractable, too demanding in terms of cognitive resources.

By contrast, the visual system is well adapted and optimized for one particular task only

(e.g. visual detection).

These two arguments might explain why subjects behave sub-optimally in decision-

making tasks.

9.1.6 Beliefs, affective values, and stability of representations

We provided evidence supporting the idea that action outcomes convey two types of

value signals: affective values and belief values. We revealed that choice-independent

representations of beliefs and affective values are encoded in vmPFC and MCC respec-

tively.

A possible alternative interpretation would be that vmPFC would encode a relatively

stable variable over the course of a behavioral episode (belief), whereas MCC would

encode a less steady variable, changing more rapidly from trial to trial (affective value).

This alternative interpretation is in line with recent results by Tsetsos and colleagues

(Tsetsos et al., 2014 [195]). The authors showed representations in vmPFC (rostral)



Chapter 9. General Discussion 160

when a decision was deferred to later, i.e. a stable, long-term maintenance of values

relevant for decision. In contrast, the dACC, equivalent to our MCC cluster, was acti-

vated when subjects committed to a choice in the current trial, i.e. variables relevant to

decision in the short term. Thus, in that framework, representations in MCC were less

stable.

To examine this alternative “stable/less stable” interpretation as compared to our “be-

lief/affective value” interpretation, we tested whether in our experiment, affective values

varied more rapidly from trial to trial than beliefs. For each subject, we calculated the

absolute difference between the belief at trial t and at trial t+ 1, and compared it to the

absolute difference between the affective value at t and at t + 1. We used the absolute

difference because we were not interested in the direction but in the amount of variation

from trial to trial. We showed that, from trial to trial, affective values estimates were

marginally less steady than beliefs estimates (paired t-test across subjects: p = 0.045).

In fact, in our reversal-learning task, the belief associated with each shape was quite

constant between two reversals. After a reversal, subjects stabilized their belief about

which shape is the most frequently rewarded one, until the next reversal.

In addition, when we include an additional parametric modulation coding for stay/switch

trials, the positive quadratic effect of affective values in MCC remained present. Yet,

coding a switch is coding a short-term event. This rules out the possibility that MCC

would simply encode the short-term evidence in favor of a switch. Rather, this re-

sult supports our interpretation of MCC encoding a choice-independent affective value

representation.

However, the notion of belief in our model refers to a belief about how actions map onto

outcome contingencies. It relates to internal mental states. Therefore, perhaps subjects

build a belief about how their actions match the current external contingencies only

in relatively stable environments, for the long run. Indeed, the notion of belief relates

to a higher-order structure based on hidden states. Beliefs might not be involved in

overly variable and uncertain environments. Indeed, if contingencies are permanently

changing, it is not relevant to build a belief. More broadly, it could be that the notion

of belief, based on abstract hidden states, would be intrinsically more stable.

9.2 Imaging results: understanding the role of vmPFC and

MCC

Using fMRI, we found choice-dependent representations of beliefs and affective values in

both vmPFC and MCC. We revealed that choice-independent representations of beliefs
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and affective values were dissociated, encoded in vmPFC and MCC respectively.

9.2.1 vmPFC and reliability signals

In our team, during the last few years, a mathematical theory of task-sets monitoring in

open-ended and changing environments has been developed, based on reliability signals

inferred from past outcomes (“PROBE model”, Collins and Koechlin, 2012 [160]). The

reliability signal associated with the current behavioral task-set was found to be encoded

in vmPFC (Donoso et al., 2014 [94]).

The concept of belief in the present model is very similar to the notion of reliability in

the PROBE model framework [160] [94]. Essentially, it relates to the subjects’ ability to

infer how well their behavior matches current external contingencies, i.e., how good their

representations are predictive. These belief/reliability signals are then used to monitor

behavior in relation to internal mental states, and to infer when external contingencies

have changed, in order to subsequently switch behavior if necessary. This ability to

flexibly adapt to the current environmental situation is at the core of prefrontal function.

In line with our imaging results, another study reported that vmPFC activity was rather

consistent with an abstract state-based inferential model (beliefs) than with a reinforce-

ment learning model (affective values) (Hampton et al., 2006 [56]). In a probabilistic

reversal-learning task under fMRI, subjects had to choose between two stimuli, for which

the reward contingencies were anti-correlated. The task was quite hard because soon

after subjects identified the “good” option to choose, the two options reversed. After a

negative outcome, or a series of negative outcomes, subjects more often switched options.

Hampton and colleagues reasoned that when subjects decide to switch, a reinforcement

learning model and a state-based model would make different predictions. On the one

hand, if subjects use a reinforcement learning model, the value of the newly chosen op-

tion should be low, because it was low the last time the subject chose it and subsequently

abandoned it. On the other hand, if subjects use a state-based model, the value of the

newly chosen option should be high, because the subject inferred the underlying task

structure. He inferred that the two options are anti-correlated (if one is low, the other

is high), so when he abandoned a low-valued option, he knows that the value of the

newly chosen option should be high. The authors observed that qualitatively, BOLD

signal in vmPFC was rather consistent with a state-based inferential model than with a

reinforcement learning model (Figure 9.1).

Lastly, we provided here fMRI data, which is only correlative. With model-based fMRI,

we search for regions in which brain activity correlates with specific variables. To evi-

dence the vmPFC causal responsibility in belief modulation, we could use transcranial



Chapter 9. General Discussion 162

Figure 9.1: In switch trials (red lines), fMRI activity in vmPFC was rather consistent
with a state-based model (belief values) than with a reinforcement learning model

(affective values) (reproduced from Hampton et al., 2006).

magnetic stimulation (TMS). TMS consists in externally applying magnetic impulses.

Consequently, the activity of neurons under the magnetic field is modified. Another

possibility would be to examine the behavior of patients with a focal lesion in vmPFC.

Nonetheless, other methodological limits arise with TMS or lesion studies. In particular,

the connectivity between the target brain region and other areas is also modified.

9.2.2 vmPFC and the default mode network

We observed that the vmPFC represented choice-independent belief. vmPFC is a central

node of the default mode network and is involved in the monitoring of internal mental

states and mentalizing (Esposito et al., 2006 [196]; Fransson, 2006 [197]; Gusnard et al.,

2001 [198]). The default mode network is thought to mediate the attentional engagement

towards internally or externally oriented tasks. This view is consistent with our finding

that vmPFC monitors a belief about how actions map onto current external outcome

contingencies, in line with reports that anterior PFC arbitrates between “in” and “out”

attentional modes (Burgess et al., 2007 [88]).

9.2.3 vmPFC and the notion of value

We have seen in chapter 3 that vmPFC encodes subjective affective values, as supported

by a large number of empirical studies in both animals and humans. Importantly, we

replicated in our dataset the classic effect of chosen value encoding in vmPFC (Plass-

mann et al., 2007 [53], Chib et al., 2009 [52]). This was found in a number of neu-

roeconomics studies, using primary rewards as well as secondary rewards (reviewed in

Clithero and Rangel, 2013 [199] and in Sescousse et al., 2013 [179]). In these studies,

it is possible that the positive linear effect reported for chosen values was masking an

effect that was actually quadratic. Indeed, to our knowledge, both linear and quadratic

effects were not modelled within the same analysis. With our full variance analysis, we
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were able to separate activations selective to linear and to quadratic effects respectively,

and we showed that vmPFC activity was rather consistent with a quadratic effect of the

belief.

Moreover, quadratic effects associated with value have been reported before (Padoa-

Schioppa and Assad, 2006 [48]).

Figure 9.2: Pattern of neurons encoding the juice chosen value (reproduced from
Padoa-Schioppa and Assad, 2006).

Certain neurons in OFC (area 13m in monkeys) encode the chosen value of juice dis-

played a typical quadratic pattern (Figure 9.2). These neurons fired more when the

chosen and unchosen juice values were far from each other and less when they were

close, independently of visuomotor contingencies. In this study, the concept of value

corresponds to the notion of affective value in our terminology, with juice acting as a

primary reward. So, the OFC neurons quadratic activity pattern in Figure 9.2 is very

likely to correspond to that of the lateral OFC cluster that we found for reinforcement

affective values (GLM3). Although Padoa-Schioppa and Assad’s paradigm did not in-

volve learning, there could have been a reinforcement effect due to the high number

of trials that the monkeys performed. Consistently with previous studies probing the

role of OFC, the lateral OFC cluster that we observed for the quadratic expansion of

reinforcement affective values could have a role in imagining/inferring future outcome,

as reinforcement affective values corresponds to the average expected value anticipated.

In addition, in certain previous studies, the concept of value was sometimes not precisely

defined (O’ Doherty, 2014 [54]). Outcome value has been confounded for example with

outcome identity (Klein-Flügge et al., 2013 [200]), outcome sensory properties, outcome

predictive information, outcome informational value (Jessup and O’Doherty, 2014 [201]),

outcome saliency in terms of attentional effects (Kahnt et al., 2014 [202]). This could

explain why quadratic effects have not been emphasized before, probably being hidden

behind linear effects due to asymmetric sampling.

Salience account. Lastly, we can rule out an interpretation in terms of salience for

the quadratic effects reported here, under the following argumentation. The concept of
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salience or saliency refers to stimuli drawing attentional resources and able to enhance

perceptual, cognitive or emotional processing of these stimuli. It also refers to the stimuli

motivational properties for action (Kahnt et al., 2014 [202]). One could interpret the

quadratic effect of value reported here as a salience effect. Indeed, very high valued

outcomes or very low valued outcomes are likely to engage more attentional resources.

However, the quadratic effect reported here is a function of value chosen minus unchosen.

So, if participants had to choose between 10 Euros and 10 Euros as proposed rewards, the

trial overall salience would be high. In contrast, if participants had to choose between 2

Euros and 2 Euros as proposed rewards, the scene general salience would be low. But in

both cases, the quantity value chosen minus unchosen would be the same. Therefore,

the quadratic effect of value and saliency were unrelated in our paradigm, which allows

us to rule out an interpretation in terms of salience.

9.2.4 vmPFC and the notion of confidence

We found a quadratic U-shaped effect of belief in vmPFC, which means that vmPFC

activity increased at the extreme of the belief scale, whereas vmPFC activity was the

lowest in the middle. We argued that this effect might rather reflect unsigned pre-choice

preferences, irrespective of choice, rather than a post-choice confidence signal. Indeed,

we expected confidence to be a post-choice global signal, not dissociated. However,

confidence signals in vmPFC have been reported in previous studies (De Martino et al.,

2012 [203]). In a choice task between two food items followed by subjective confidence

reports in having made the best decision, De Martino and colleagues viewed confidence

as the absolute difference between two accumulators at decision time [203].

Whereas the idea that confidence is a second-order construct is supported by several

studies, the exact underlying computation of confidence remains unclear. For instance,

confidence has been viewed as a read-out of the noise in the decision process (De Mar-

tino et al., 2012 [203]), or including action information (Fleming et al., 2015 [204]), or

automatically arising (Lebreton et al., 2015 [205]). In a recent study, Lebreton and col-

leagues revealed quadratic U-shaped effects of confidence in vmPFC, in a series of tasks

involving subjective ratings (Lebreton et al., 2015 [205]). More precisely, they elegantly

revealed that following ratings of pleasantness, probability, age or desirability of stimuli,

a U-shaped signal encoding confidence was automatically found in vmPFC (Figure 9.3).

The confidence signal in vmPFC was present even in the absence of explicit confidence

reports and even if it was not required for the current task. It could not be explained

by either saliency or valuation accounts.
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Figure 9.3: Quadratic effects of confidence observed in vmPFC elicited with a desir-
ability rating task (left panel) and a probability rating task (right panel) (reproduced

from Lebreton et al., 2015).

Our results are in line with this study. Yet, the authors did not dissociate the concept

of belief and the concept of affective value. Indeed, they considered that being accurate

(belief) in a judgment is valuable (affective value) in itself. Another difference between

our paradigm and theirs was the presence/absence of choice, even if a rating could

be considered as a choice, mapping internal subjective preferences to an external scale

for report. However, specifically in the case of pleasantness and desirability ratings,

which both include an aspect of affective value as we conceptualized it in our work, the

conjunction with confidence signal revealed that the vmPFC cluster was accompanied

by a more dorsal cluster, which fits very well with the MCC U-shaped cluster observed

for affective values in our study.

Therefore, it could be that the quadratic signals we observed might not be confidence

per se. Rather, it might be a signal contributing upstream to the construction of a

confidence measure. Metacognition refers to humans’ ability to evaluate and monitor

their own behavior, linking objective performance to subjective confidence (Fleming

and Dolan, 2012 [96]). The U-shaped signals we observed could thus support the brain

implementation of metacognitive processes.

9.2.5 MCC and the affective values representation

Our data revealed a positive quadratic effect of affective values in the midcingulate cor-

tex. MCC activity was higher when chosen and unchosen affective values were far from

each other, and lower when they were close. Our result is in line with previous studies

showing that MCC, and adjacent ACC, are found to be involved in the processing of

affective primary value signals such as pain, and overall emotional experience (Peyron et

al., 2000 [138]). Moreover, the anterior MCC is involved in regulating affective responses

in general (Etkin et al., 2011 [164]; Shackman et al., 2011 [165]).
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Taken together, our and others’ data challenge the historical view of medial PFC as the

more ventral the more affective, the more dorsal the more “cognitive” (Bush et al., 2000

[163]).

9.3 General Conclusion

In this PhD work, we provided experimental evidence that action outcomes convey two

major types of value signals: belief values and affective values, which subsequently drive

decision-making. Using behavioral paradigms, computational modeling and fMRI, we

showed that both beliefs and affective values influenced subjects’ choices, in a distinct

manner.

In our fMRI paradigm, healthy human subjects had to decide between two shapes rep-

resenting two underlying states, one of which was more frequently rewarded than the

other one. The proposed rewards to obtain for each shape were displayed before each

choice. Crucially, we manipulated the reward distributions underlying each shape to dis-

sociate both signals. Logistic regressions analyses revealed that (1) Subjects extracted

information from proposed rewards presented before choice, indicating that proposed

rewards presented as cues influenced subjects’ belief, rather than being processed purely

as affective values and (2) Both beliefs and affective values influenced subjects’ choices,

but without expected values computation.

We built a computational model establishing the functional dissociation between beliefs

and affective values. It integrates two parallel systems: (1) Reinforcement learning, deal-

ing with affective values, and (2) Bayesian inference, dealing with beliefs. Importantly,

the model describes decisions as a linear mixture of beliefs and affective values. It fitted

behavioral data better and more parsimoniously than many other alternative models.

We then investigated how the belief and the affective value systems interact in the brain

using fMRI. In particular, we tested whether beliefs and affective values have distinct

neural bases. BOLD signal was regressed against linear and quadratic effects of both

value signals, to dissociate between choice-dependent (linear) and choice-independent

(quadratic) representations. We found choice-dependent representations in ventromedial

prefrontal cortex and midcingulate cortex, for both beliefs and affective values. Presum-

ably, they reflect expectations associated with chosen and unchosen shapes. Critically,

we found a double-dissociation regarding choice-independent representations, with ven-

tromedial prefrontal cortex encoding choice-independent preferences in terms of beliefs,

whereas midcingulate cortex encoded choice-independent preferences in terms of affec-

tive values. Lastly, lateral prefrontal cortex showed a negative quadratic effect, meaning
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that it was more activated when both decision values (i.e. combination of belief and

affective value) were close to each other. Such a pattern suggests that lateral prefrontal

cortex performs action selection.

A key feature of this PhD work lies in the complementary contribution of experimental

and modeling approaches to the study of human decision-making. Taken together, these

results suggest the following neural architecture underlying value-based decision-making

in prefrontal cortex. Before decision, vmPFC and MCC separately encode beliefs and

affective values respectively, as supported by the double-dissociation between vmPFC

and MCC regarding choice-independent signals. Lateral PFC combines both signals

to make a decision. In return, lateral PFC feeds back choice information to the medial

regions, presumably for updating these value signals according to action outcomes, hence

choice-dependent representations in both vmPFC and MCC. These results precise how

the various prefrontal cortex subparts interact during human decision-making.





Appendix A

Informal debriefing for the first

series of behavioral experiments

Remarques ?

Comment avez-vous trouvé l’expérience : long/court, facile/difficile ? perturbante ? Si

oui, pourquoi ? Qu’est-ce qui vous a perturbé ?

Avez-vous utilisé une stratégie particulière pour répondre ?

Avez-vous repéré des régularités, une organisation particulière dans l’expérience ?

Avez-vous utilisé une règle en particulier après chaque type de récompense : 1, 2, 5, 8

ou 9 Euros ?

Lorsque vous pensiez avoir identifié la meilleure option, a quel type de récompense vous

attendiez-vous ?

Y avait-il une valeur de récompense a partir de laquelle vous considériez que la tache

que vous étiez en train de faire n’était plus la bonne ?

Quelles valeurs de récompense considériez-vous (virtuellement) équivalentes ?

Avez-vous repéré tous les combien d’essais, après combien d’essais la meilleure des deux

options changeait ?

Autres remarques ?
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Appendix B

Instructions for fMRI experiment

Consignes

Un losange et un carré s’affichent à l’écran. Au centre de chaque forme est indiquée

la valeur que vous êtes susceptibles de gagner en choisissant cette forme. Vous devrez

choisir l’une de ces deux options: Pour choisir l’option de gauche, appuyez sur la touche

j. Pour choisir l’option de droite, appuyez sur la touche k. Une fois votre choix effectué,

deux cas possibles : Soit vous gagnez la valeur indiquée dans la forme que vous avez

choisie ; alors il apparâıtra au centre de l’écran le montant que vous remportez pour cet

essai (1 à 11 Euros) Soit vous ne gagnez rien ; alors il apparâıtra au centre de l’écran 0

Euro Si vous ne répondez pas dans le temps imparti, l’essai est considéré comme perdu.

N’appuyez sur une touche qu’une seule fois par essai : seule la première réponse est prise

en compte.

Exemple d’essai :

2 €6 €

?

Gain pour 
l’option choisie

Pas de gain pour 
l’option choisie

En cas de non 
réponse

6 € 6 €6 € 0 €

L’une des deux formes conduit plus fréquemment à obtenir une récompense, mais celle-ci

changera de temps en temps au cours de l’expérience. A vous faire le choix, à chaque

essai, qui vous rapportera le plus d’argent.
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Vous allez réaliser un entrâınement de 5 minutes sur le jeu avant d’entrer dans l’IRM.

Avez-vous des questions ?

Consignes supplémentaires

PAUSES L’expérience s’interrompra plusieurs fois au bout d’un certain temps pour

vous laisser le temps de vous reposer. L’expérience se décompose en quatre blocs de 14

minutes chacun. Il n’y a aucun lien entre la survenue d’une pause et le déroulement de

l’expérience. Après une pause, l’expérience reprend son cours, donc n’oubliez pas ce que

vous faisiez avant la pause.

Vous devrez garder la tête fixe et immobile pendant chaque bloc. Nous

mesurerons la position de votre tête dans le scanner au début de chaque bloc.

Merci de ne pas parler de l’expérience à des personnes qui la passeront après vous : nous

nous intéressons à tester des personnes sans a priori sur l’expérience.

BONUS Votre bonus sera calculé sur la base de ce que vous gagnerez pendant l’expérience.

Nous sélectionnerons au hasard 2% des essais de chaque session pour calculer votre

bonus.

Avez vous envie de passer aux toilettes avant de commencer ?

Avez vous d’autres questions au sujet de l’expérience ?
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Informal debriefing following the

last fMRI session

Remarques ?

Comment avez-vous trouvé l’expérience : long/court, facile/difficile ? perturbante ? Si

oui, pourquoi / qu’est-ce qui vous a perturbé ?

Avez-vous utilisé une stratégie particulière pour répondre ?

Avez-vous remarqué quelque chose de différent entre les 3 sessions ?

Avez-vous repéré des régularités, une organisation particulière dans l’expérience ?

Avez-vous utilisé une règle en particulier après chaque type de récompense : 1, . . . , 11

Euros ?

Avez-vous basé vos décisions plutôt sur les formes ou sur les valeurs affichées dans les

formes ?

Quelles valeurs de récompense considériez-vous (virtuellement) équivalentes ?

Avez-vous repéré tous les combien d’essais, après combien d’essais la meilleure des deux

options changeait ?

Avez-vous basé vos décisions sur les formes ou sur les valeurs ?

- Pour condition 1 :

- Pour condition 2 :

- Pour condition 3 :
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Generative model of the fMRI

task

The task aims at distinguishing how information and value are integrations, and how

information-carrying value influences the subjects’ behavior. The task corresponds to

the Bayesian model discussed below. The text describes both Bayesian inference and

a potential Reinforcement Learning model. This formal description of the model was

written by Dr Jan Drugowitsch, who collaborated with us on the modeling part of the

project.

D.1 Task Description

The task consists of a sequence of hidden states, z1, z2, . . . , zt ∈ {0, 1}, and it is the

subject’s task to maximize his/her overall reward. The generative model of the task is

presented in Figure D.1. In each trial t the subject can choose between two options, 0

and 1, and it is the subject’s task to choose the options that corresponds to the current

hidden state, zt. The subject receives information about the hidden state through two

cues. On one hand, two rewards, r
(0)
t and r

(1)
t are presented to the subject before each

choice. On the other hand, after the subject’s choice, he/she receives feedback xt ∈ {0, 1}
about the choice, which causes the reward associated with the choice to be given (xt = 1)

or not given (xt = 0).

The structure that determines the above variables is as follows. The hidden state changes

with volatility probability ν, such that

p(zt+1|zt) =

{
1− ν if zt+1 = zt(no switch)

ν otherwise (switch).
(D.1)
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z1 z2 z3 zt zt+1

x1 x2 x3 xt xt+1

r
(1)
1 , r

(0)
1 r

(1)
2 , r

(0)
2 r

(1)
3 , r

(0)
3 r

(1)
t , r

(0)
t r

(1)
t+1, r

(0)
t+1

a1 a2 a3 at at+1

Figure D.1: Generative model of the task: zt: underlying hidden state; r
(1)
t , r

(0)
t :

proposed rewards before choice; at: action performed; xt: feedback observed.

The rewards are drawn from some distribution p(r
(0)
t |zt) and p(r

(1)
t |zt), where r

(0)
t is

the reward for choosing the option associated with zt = 0, and r
(1)
t denotes the option

associated with zt = 1. A simple approach to specify this distribution is to choose

p(r
(0)
t |zt) ∝

{
exp(γ(r

(0)
t − r̄)) if zt = 0,

exp(−γ(r
(0)
t − r̄)) otherwise,

(D.2)

p(r
(1)
t |zt) ∝

{
exp(γ(r

(1)
t − r̄)) if zt = 1,

exp(−γ(r
(1)
t − r̄)) otherwise,

(D.3)

where r̄ denotes the mean reward. In this case, γ = 0 indicates that the reward is

uninformative about the hidden state, γ > 0 implies that choosing the high reward is

better, and γ < 0 implies that choosing a low reward is better.

Once an action has been chosen, feedback is provided probabilistically according to

p(xt = 1|zt, at) =

{
q if zt = at (correct action),

1− q otherwise (wrong action),
(D.4)

and p(xt = 0|zt, at) = 1 − p(xt = 1|zt, at). Thus, the task has the three parameters, ν,

γ, and q.

D.2 Bayesian inference, known parameters

D.2.1 Inference

Assuming that the parameters ν, γ, and q are known, Bayesian inference of the hidden

state is performed as follows. Assume we have inferred the belief p(zt = 1|r(0)
1:t−1, r

(1)
1:t−1, a1:t−1, x1:t−1),

which equals 1− p(zt = 0|r(0)
1:t−1, r

(1)
1:t−1, a1:t−1, x1:t−1). We observe the proposed rewards

r
(0)
t and r

(1)
t and want to update our belief accordingly. This update is performed by
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Bayes rule, resulting in

p(zt = 1|r(0)
1:t , r

(1)
1:t , a1:t−1, x1:t−1) ∝ p(r

(0)
t |zt = 1)p(r

(1)
t |zt = 1) (D.5)

×p(zt = 1|r(0)
1:t−1, r

(1)
1:t−1, a1:t−1, x1:t−1)

∝ eγ(r
(1)
t −r

(0)
t )p(zt = 1|r(0)

1:t−1, r
(1)
1:t−1, a1:t−1, x1:t−1).

The expression for p(zt = 0| . . . ) is analogous, with the likelihood replaced by eγ(r
(0)
t −r

(1)
t ).

With both expressions at hand, these probabilities can be normalized to achieve p(zt =

1| . . . ) + p(zt = 0| . . . ) = 1. Note that the mean reward now becomes irrelevant, as

the only thing that matters in the likelihood is the difference between the two observed

rewards.

After either option has been chosen, feedback xt is observed. This allows us to again

update the belief by Bayes rule, resulting in

p(zt = 1|r(0)
1:t , r

(1)
1:t , a1:t, x1:t) ∝ p(xt|zt = 1, at)p(zt = 1|r(0)

1:t , r
(1)
1:t , a1:t−1, x1:t−1)(D.6)

∝ qxtat+(1−xt)(1−at)(1− q)xt(1−at)+(1−xt)at

×p(zt = 1|r(0)
1:t , r

(1)
1:t , a1:t−1, x1:t−1),

where the likelihood of zt = 1 is q if either the feedback is positive (xt = 1) if at = 1

has been choosen, or negative (xt = 0) if at = 0 has been chosen, and 1 − q oth-

erwise. The expression for p(zt = 0| . . . ) is similar, with the likelihood replaced by

qxt(1−at)+(1−xt)at(1− q)xtat+(1−xt)(1−at), such that the belief is again easily normalised.

The belief computed so far is held at the end of trial t, after proposed rewards have

been observed, an action has been performed, and feedback has been given. In order to

compute the belief at the beginning of the next trial, t + 1, we need to use the belief

transition mass function p(zt+1|zt) to get

p(zt+1 = 1|r(0)
1:t , r

(1)
1:t , a1:t, x1:t) =

∑
zt∈{0,1}

p(zt+1 = 1|zt)p(zt|r(0)
1:t , r

(1)
1:t , a1:t, x1:t)(D.7)

= (1− ν)p(zt = 1|r(0)
1:t , r

(1)
1:t , a1:t, x1:t)

+νp(zt = 0|r(0)
1:t , r

(1)
1:t , a1:t, x1:t).

An analogous expression holds for p(zz+1 = 0| . . . ).

D.2.2 Action selection

Optimal action selection in the Bayesian model depends on the expected reward for either

option. For choosing option 1, for example, this option in according to the current belief



Appendix D. Generative model of the fMRI task 178

expected to be correct (that is, rewarded) with probability

p(xt = 1|at, r(0)
1:t , r

(1)
1:t , a1:t−1, x1:t−1) =

∑
zt∈{0,1}

p(xt = 1|at = 1, zt)p(zt|r(0)
1:t , r

(1)
1:t , a1:t−1, x1:t−1)

= qp(zt = 1|r(0)
1:t , r

(1)
1:t , a1:t−1, x1:t−1)

+(1− q)p(zt = 0|r(0)
1:t , r

(1)
1:t , a1:t−1, x1:t−1). (D.8)

A similar expression holds for choosing option 0. Thus, the expected rewards for choosing

either option are

〈r〉at=0 = r
(0)
t (q(1− p(zt = 1| . . . )) + (1− q)p(zt = 1| . . . )) , (D.9)

〈r〉at=1 = r
(1)
t (qp(zt = 1| . . . ) + (1− q)(1− p(zt = 1| . . . ))) . (D.10)

The subject chooses optimally if

at =

{
1 if 〈r〉at=1 > 〈r〉at=0,

0 otherwise.
(D.11)

An alternative action selection strategy is to perform stochastic action selection accord-

ing to

p(at = 1) =
ε

2
+ (1− ε) eβ〈r〉at=1

eβ〈r〉at=0 + eβ〈r〉at=1
, (D.12)

with parameters β and ε.

D.2.3 Contributions to action selection

Assuming stochastic action selection with ε ≈ 0, we can write the action probability in

terms of the log-odds `t = β(〈r〉at=1 − 〈r〉at=0) as

p(at = 1) =
1

1 + e−`t
, (D.13)

which is the logistic sigmoid. This allows us to use logistic regression to test the predic-

tions of the Bayesian model on how observables influence action selection.

At first, let us substitute for the 〈r〉’s to find

`t = β(1− q)r(1)
t − βqr

(0)
t + β(r

(0)
t + r

(1)
t )(2q − 1)p(zt = 1| . . . ), (D.14)
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with partial derivatives

∂`t

∂r
(0)
t

= β(1− q) + β(2q − 1)p(zt = 1| . . . ) > 0, (D.15)

∂`t

∂r
(1)
t

= −βq + β(2q − 1)p(zt = 1| . . . ) < 0, (D.16)

∂`t
∂p(zt = 1| . . . )

= β(r
(0)
t + r

(1)
t )(2q − 1) > 0, (D.17)

where the inequalities are due to 0 ≤ p(zt| . . . ) ≤ 1, q > 1
2 , and r

(0)
t + r

(1)
t > 0. This

shows that the log-odds of choosing action 1 increases strictly with r
(1)
t , decreases strictly

with r
(0)
t , and increases strictly with p(zt = 1| . . . ). Note, however, that these relations

do not take into account how the observed reward influences p(zt = 1| . . . ).

To determine the influence of rewards on p(zt = 1| . . . ), let us first observe that

p(zt = 1| . . . ) =
eγ∆rt p̃t

eγ∆rt p̃t + e−γ∆rt(1− p̃t)
=

1

1 + e
−(2γ∆rt+log

p̃t
1−p̃t

)
, (D.18)

where ∆rt = r
(1)
t − r

(0)
t and p̃t = p(z+ t = 1|r(0)

1:t−1, r
(1)
1:t−1, a1:t−1, x1:t−1). This shows that

p(zt = 1| . . . ) is a logistic sigmoid in 2γ∆rt + log p̃t
1−p̃t , and therefore strictly increasing

in this quantity. As a result, p(zt = 1| . . . ) increases if γ(r
(1)
t − r

(0)
t ) > 0 and decreases

otherwise. Thus, in the case of γ > 0 it is increasing in r
(1)
t and decreasing in r

(0)
t ,

consistent with the log-odds `t. On the other hand, if γ < 0, then it is decreasing in r
(0)
t

and increasing in r
(1)
t , opposing the direct dependency of `t on the reward. This shows

that the currently observed rewards influence action selection both when updating the

belief and when computing the expected reward. The direction in which they influence

the belief update depends on the sign of γ. With respect to expected reward, they

influence the log-odds always increasingly in r
(1)
t and decreasingly in r

(0)
t .

This analysis also reveals that `t is strictly increasing in p(zt = 1| . . . ), which in turn is

by Eq. (D.18) increasing in the belief p̃t before the current rewards have been observed.

This monotonicity is preserved by the transition step Eq. (D.7), a fact we use as basis

to investigate how reward and feedback in previous trials influences action selection in

the current trial.

Considering first feedback, Eq. (D.6) can be re-written as the sigmoid

(
1 + e

−
(
I(at−1=xt−1) log q

1−q
+I(at−1 6=xt−1) log 1−q

q
+log

p(zt−1=1|... )
1−p(zt−1|... )

))−1

, (D.19)

where I(a) is the identifier function that returns I(a) = 1 if a is true and I(a) = 0

otherwise. Observing that due to q > 1
2 we have log q

1−q > 0 and log 1−q
q < 0, we can see
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that if action at−1 = 1 was chosen, positive past feedback, xt−1 = 1 increases `t, whereas

negative past feedback, xt−1 = 0 decreases `t. Analogously, if action at−1 = 0 was chosen,

negative past feedback, xt−1 = 0 increases `t, whereas positive past feedback, xt−1 = 1

decreases `t, as one would intuitively expect. Due to the monotonicity of sequential

belief updates, this also applies to all feedbacks given before t− 1. Thus, qualitatively,

the log-odds, `t is increasing in ηx,t−n(−1)I(at−n 6=xt−n) for all n > 0, where ηx,t−n is some

positive scalar.

The influence of past reward on `t is derived similarly. First, we re-write Eq. (D.5) for

trial t− 1 as the logistic sigmoid(
1 + e

−
(

2γ∆rt−1+log
p̃t−1

1−p̃t−1

))−1

, (D.20)

which is increasing in γ∆rt−1 = γ(r
(1)
t−1 − r

(0)
t−1). Therefore, if γ > 0, `t is increasing in

r
(1)
t−1 and decreasing in r

(0)
t−1. Conversely, if γ < 1, `t is decreasing in r

(1)
t−1 and increasing

in r
(0)
t−1. Due to the monotonic belief update, this also applies to reward past t−1. Thus,

qualitatively, the log-odds, `t, is increasing in ηr,t−n(−1)I(γ<0)(r
(1)
t−n−r

(0)
t−n) for all n > 0,

where ηr,t−n is again some positive scalar.

In summary, we can write the log-posterior approximately as the sequence

`t = −η0r
(0)
t + η1r

(1)
t +

t−1∑
n=1

ηx,t−n(−1)I(at−n 6=xt−n) + (−1)I(γ<0)
t−1∑
n=1

ηr,t−n(r
(1)
t−n − r

(0)
t−n),

(D.21)

where all ηx,t−n’s and ηr,t−n’s are positive, and η0 and η1 are positive if γ > 0 and might

be either positive or negative if γ < 0.

D.3 Reinforcement learning

D.3.1 Inference

Assume that we maintain the expected returns in Q
(0)
t for choice 0, and in Q

(1)
t for choice

1. Reinforcement learning does not provide any mechanism per se to include promised

rewards, as provided in our task. Thus, they will only considered during action selection.

To update the expected returns, we combine both reward and feedback, and update only

the expected return of the chosen action. This return is updated with the given reward

if the feedback was positive, or reward 0 if the feedback was negative. This results in
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the update equation

Q
(j)
t+1 =

{
Q

(j)
t + α(xtr

(j)
t −Q

(j)
t ) if at = j,

Q
(j)
t otherwise,

(D.22)

for j ∈ {0, 1}, with learning rate α.

D.3.2 Action selection

We could perform action selection by ε-softmax on the current expected returns. How-

ever, this option would not take into account information about the rewards that are

currently displayed. In order to consider these, we can bias the current expected returns

by Q̃
(j)
t = Q

(j)
t + w(r

(j)
t − Q

(j)
t ), and then perform the action based on these biased

returns. This results in the stochastic choice

p(at = 1) =
ε

2
+ (1− ε) eβ((1−w)Q

(1)
t +wr

(1)
t )

eβ((1−w)Q
(0)
t +wr

(0)
t ) + eβ((1−w)Q

(1)
t +wr

(1)
t )

, (D.23)

with parameters ε, β, and w. The bias corresponds to a “what if” forward step that is

only performed for action selection and not taken into account for inference.

D.3.3 Contributions to action selection

To decompose the action probability, we assume ε ≈ 0 such that the log-odds, `t =

log(p(at = 1)/p(at = 0)) can be written as

`t = βwr
(1)
t − βwr

(0)
t + β(1− w)Q

(1)
t − β(1− w)Q

(0)
t . (D.24)

Using Eq. (D.22) to substitute for Q
(0)
t and Q

(1)
t we find that these log-odds can be

expressed by

`t = βwr
(1)
t − βwr

(0)
t

+(−1)1−at−1β(1− w)αxt−1r
(at−1)
t−1

+β(1− w)(1− α)at−1Q
(1)
t−1 − β(1− w)(1− α)1−at−1Q

(0)
t−1. (D.25)

This shows that, according to reinforcement learning, only the reward r(at−1) correspond-

ing to the previously chosen option at−1 influences the current choice at. Furthermore,

by the pre-factor (−1)1−at−1 it influences the log-odds positively if at−1 = 1, and nega-

tively otherwise. The discounting of the previous Q-values also depends on the choice

in the previous trial.
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We go a further step backwards in time by taking the above expression and re-substituting

Eq. (D.22) for Q
(0)
t−1 and Q

(1)
t−2. This yields the more complex expression

`t = βwr
(1)
t − βwr

(0)
t

+(−1)1−at−1β(1− w)αxt−1r
(at−1)
t−1

+(−1)1−at−2β(1− w)(1− α)at−2at−1+(1−at−2)(1−at−1)αxt−2r
(at−2)
t−2

+β(1− w)(1− α)at−1+at+2Q
(1)
t−2 − β(1− w)(1− α)(1−at−1)+(1−at−2)Q

(0)
t−2,(D.26)

which shows a qualitatively similar dependency on past reward. If we continue re-

substituting Eq. (D.22) we reach the final expression, which is given by

`t = βwr
(1)
t − βwr

(0)
t

+β(1− w)α
t−1∑
n=1

(−1)1−at−n(1− α)at−n
∑n−1

j=1 at−j+(1−at−n)
∑n−1

j=1 (1−at−j)xt−nr
(at−n)
t−n

+β(1− w)(1− α)
∑t−1

j=1 at−jQ
(1)
1 + β(1− w)(1− α)

∑t−1
j=1(1−at−j)Q

(0)
1 , (D.27)

where Q
(0)
1 and Q

(1)
1 are the initial Q-values. Note that the complex pre-factor to

xt−nr
(at−n)
t−n is required to take into account the whole sequence of α-weighted updates

in Eq. (D.22).

Overall, if we ignore the influence of the initial Q-values, the log-odds is decomposed

into

`t = βwr
(1)
t − βwr

(0)
t +

t−1∑
n=1

ηt−n(−1)1−at−nxt−nr
(at−n)
t−n , (D.28)

with non-negative contribution weights

ηt−n = β(1− w)α(1− α)at−n
∑n−1

j=1 at−j+(1−at−n)
∑n−1

j=1 (1−at−j), (D.29)

that depend on the sequence of chosen actions. This shows again that, according to the

reinforcement learning model, only rewards associated with the chosen action should

have an influence on future action selection.

We used logistic regressions to test the influence of the various protocol variables on

choice.

Formally, the Bayesian model predicted that choice should only depend on the following

variables: r
(1)
t and r

(0)
t , the proposed rewards before choice at time t, all pairs of proposed

rewards before choice at all previous trials, r
(1)
t−n and r

(0)
t−n, previous binary feedback

obtained (win or loose), xt−n, and the initial beliefs (mathematical demonstration is

described in Appendix D). A pure model-free logistic regression (Figure D.2) showed a
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contribution of reward received at previous trial to choice (last bar in condition anti-

correlated), after accounting for all the above variables (up to t-1 ). This significant

effect of previous reward obtained violated the Bayesian model predictions, in which no

explicit influence of previous reward was included (Figure D.2).
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Figure D.2: Logistic regression violating the predictions of a pure Bayesian model.

Formally, deriving the Standard RL model (details in Appendix D), choice should de-

pend only on r
(1)
t and r

(0)
t , the rewards presented before choice, on all the previous

received rewards and on initial Q values. In the condition anti-correlated, we found a

significant contribution of unchosen previous reward to current choice (last bar), even

when accounting for all the above variables (up to t-1 ). This formally violated pure RL

predictions (Figure D.3).
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Figure D.3: Logistic regression violating the predictions of a pure RL model.
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las Franck, and Chlöé Farrer. Mentalizing under influence: abnormal dependence

on prior expectations in patients with schizophrenia. Brain, 134:3728–3741, 2011.

[34] Guillaume Barbalat, Valerian Chambon, Nicolas Franck, Etienne Koechlin, and
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[129] Sébastien Bouret and Barry J Richmond. Ventromedial and Orbital Prefrontal

Neurons Differentially Encode Internally and Externally Driven Motivational Val-

ues in Monkeys. Journal of Neuroscience, 30(25):8591–8601, June 2010.

[130] Kenji Matsumoto, Wataru Suzuki, and Keiji Tanaka. Neuronal correlates of goal-

based motor selection in the prefrontal cortex. Science, 301(5630):229–232, July

2003.
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