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Résumé en Français 
 

 Le fluor F2 a été isolé pour la première fois par Henri Moissan en 1886, et ceci a marqué 
le début de l’ère moderne de la chimie du fluor. Cependant, il a été utilisé essentiellement pour la 
métallurgie jusque dans les années 1950. Avec la découverte de la formidable augmentation de 
l’activité biologique du fluorouracile grâce à l’introduction d’un atome de fluor, il a fait son 
entrée en chimie médicinale.1 

Depuis, son utilisation en chimie pharmaceutique ainsi qu’en agrochimie s’est 
démocratisée. De nombreux produits pharmaceutiques et phytosanitaires contiennent du fluor. 
Il est ainsi reconnu qu’aujourd’hui environ 20% des produits pharmaceutiques2 et 30% des 
molécules agrochimiques contiennent au moins un atome de fluor. Par exemple, l’agent anti-
inflammatoire Celecoxib (Pfizer), l’antidépresseur Fluoxetine (Prozac®, Eli Lilly), le fongicide 
Bixafen (Bayer CropScience) et l’herbicide Fludioxonil (Syngenta) comportent du fluor sous 
forme de substituants trifluoromethyl, difluoromethyl et gem-difluoro. 
 

 
Figure 1: Molécules pharmaceutiques et agrochimiques contenant du fluor 

 
Très peu présent dans les produits naturels3 (seulement une quinzaine de produits 

naturels contenant du fluor ont été recensés à ce jour), l’introduction de fluor dans des 
molécules biologiquement actives est essentiellement faite par la main de l’homme. Ainsi, il a été 
et il est toujours très important de développer des méthodes permettant l’introduction d’atomes 
de fluor afin d’étendre les voies d’accès à de nouveaux composés fluorés d’intérêt thérapeutique 
ou phytosanitaire. 

 
Les propriétés de l’atome de fluor permettent d’altérer le comportement des molécules 

dans un milieu biologique. Il est l’élément le plus électronégatif du tableau périodique 
(électronégativité de 4.0 sur l’échelle de Pauling), il est donc compréhensible qu’il influe sur la 
distribution électronique des molécules.4 

De plus, le fluor possède un faible rayon de van der Waals (1.47Å), ce qui fait de lui le 
deuxième plus petit élément après l’atome d’hydrogène. Il est situé entre l’hydrogène (1.20 Å) et 
l’oxygène (1.52 Å). Ainsi, il peut substituer un atome d’hydrogène ou une fonction hydroxy tout 
en conservant un volume comparable dans le site actif, mais en changeant les propriétés de la 
molécule. 
 

Grâce à ces particularités, les substituants fluorés influent sur les activités biologiques des 
molécules. Tout d’abord, sa grande électronégativité entraîne une diminution des pKa des 
fonctions voisines.5 De plus, sa présence sur des noyaux aromatiques augmente la lipophilie des 
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molécules.5 Substituer un atome d’hydrogène par un atome de fluor peut également permettre 
d’augmenter la stabilité métabolique d’un composé. En effet, la liaison C-F est haute en énergie 
(116 kcal·mol-1), et n’est pas sujette à l’oxydation métabolique in vivo.6 Ainsi, il découle de ces 
nombreux facteurs que la fluoration de molécules bioactives augmente leur biodisponibilité.  
 

En ce qui concerne les hétérocycles, on peut aisément affirmer que ceux-ci sont très 
importants en sciences de la vie. En effet, un grand nombre de molécules hétérocycliques sont 
impliquées dans des processus biologiques. Par exemple, on retrouve des hétérocycles dans les 
vitamines, les bases nucléiques, ainsi que les neurotransmetteurs (Figure 2). 
 

N

N

NH2

N
S

OH

Vitamine B1

(Thiamine)

N

NN
H

N

NH2

Adénine Sérotonine

NH2

H
N

HO

 
Figure 2: Produits naturels hétérocycliques impliqués dans des processus biologiques 

  
En conséquence, les chimistes médicinaux s’inspirant de la nature, de nombreux principes 

actifs de molécules pharmaceutiques et agrochimiques comportent des hétérocycles. En 2007, 
71 molécules du top 100 des médicaments les plus vendus aux Etats-Unis comprenaient un 
building block hétérocyclique.7 

 
Il est certain que les composés hétérocycliques sont essentiels pour la recherche 

pharmaceutique et phytosanitaire et que les substituants fluorés ont des effets bénéfiques sur 
l’activité biologique de certains composés. Ainsi, on peut imaginer que la combinaison composés 
hétérocycliques/substituants fluorés pourra mener à des molécules présentant une activité 
encore supérieure. 

Il existe de nombreuses méthodes pour la préparation de composés hétérocycliques 
portant un seul atome de fluor ou un groupement trifluorométhyl.8 Par contre, les voies d’accès à 
d’autres groupements plus « exotiques » tel que le trifluorométhoxy ou le difluorométhyl sont 
beaucoup moins courantes.9 Il est donc nécessaire d’effectuer une recherche constante pour 
développer des méthodologies efficaces et adaptables à une échelle industrielles pour la 
synthèse de composés hétérocycliques portant des substituants fluorés originaux. 

 
Dans cette optique, nous nous sommes intéressés à deux types d’hétérocycles : les 

pyridines et les pyrazoles, qui sont parmi les hétérocycles aromatiques les plus représentés en 
chimie du vivant.10 Notre but était de développer des voies synthétiques vers des building blocks 
hétérocycliques fluorés en peu d’étapes, et idéalement transposables à grande échelle.  

 
Le travail de recherche a été divisé en trois projets. Le premier a porté sur l’extension 

d’une méthodologie déjà décrite par notre groupe. Lors d’une étude précédente, une voie d’accès 
à des trifluorométhoxy pyridines a été développée, et leur fonctionnalisation a mené à une 
librairie de building blocks portant des acides carboxyliques, des amines et des halogènes. Afin 
de valoriser ce travail, nous avons préparé un analogue trifluorométhoxylé d’une molécule 
biologiquement active connue afin de comparer les activités biologiques, et nous avons préparé 
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un building block hautement fonctionnalisable. Enfin, nous avons voulu étendre la méthodologie 
à d’autres hétérocycles : les pyrazoles. 

Le second projet a consisté en le développement d’une voie d’accès à des pyridines portant 
des groupements fluorés mixtes : chlorodifluorométhoxy (OCF2Cl) et dichlorofluorométhoxy 
(OCFCl2). 

Lors d’un troisième projet, nous avons mis au point la synthèse de pyrazoles comprenant 
deux substituants fluorés différents en position 3 et 5 du cycle. Nous avons pu libérer la position 
4 ainsi que l’atome d’azote afin de pouvoir préparer des building blocks qui peuvent être 
fonctionnalisés sur ces positions avec n’importe quel substituant sur demande. 

 

1. Hétérocycles trifluorométhoxylés 
 

1.1. Analogue trifluorométhoxylé de l’Imidaclopride 
 

L’Imidaclopride 1 et la Thiaclopride 2 (Figure 3) sont des insecticides phares de la société 
Bayer CropScience. Ces molécules de la famille des néonicotinoïdes ont une forte affinité pour 
les récepteurs cholinergiques (nAChRs) situés dans le système nerveux central des insectes. Ils 
bloquent ces récepteurs, entraînant la paralysie et la mort des insectes.  

 

 
Figure 3: Structures de l’Imidaclopride et de la Thiaclopride 

 
Contrairement à la nicotine, ces composés ont très peu d’affinité pour les récepteurs 

cholinergiques des mammifères, et cette sélectivité les rend très attractifs pour l’agrochimie. Ces 
deux molécules présentent le même motif chloro-pyridine, et diffèrent de par la nature du 
second hétérocycle et de la fonction azotée terminale. 

Le groupement trifluorométhoxy a été surnommé « pseudo-halogène »,11 ceci étant dû à 
ses propriétés lipophiles et électroattractrices qui sont comparables à celles d’un atome de 
chlore ou de fluor. Ainsi, nous avons voulu préparer un analogue trifluorométhoxylé de ces 
molécules afin d’étudier l’influence de la substitution de l’atome de chlore par un groupement 
trifluorométhoxy sur l’activité biologique des molécules. 

Notre travail s’est limité à la préparation du précurseur de ces molécules, la pyridine 6 qui, 
par couplage avec l’hétérocycle correspondant, permet la préparation de l’Imidaclopride 1 et de 
la Thiaclopride 2 (Figure 4). Le composé chloré 6 peut être obtenu par chloration de l’alcool 
terminal de 5, qui lui-même est préparé par réduction de l’acide nicotinique 4. Enfin, l’acide 
nicotinique 4 peut être synthétisé à partir de la 2-chloro-6-trifluorométhoxy pyridine 3 en 
utilisant la méthode précédemment développée par notre groupe. 
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Figure 4: Schéma rétrosynthétique de la synthèse de l’OCF3-Imidaclopride 1 

 
Cette molécule a été synthétisée en partant de la 6-chloro-2-trifluorométhoxy pyridine 3 

dont on protège la position 3 avec un groupement triméthylsilyle (Schéma 1). On procède 
ensuite à une lithiation suivie d’un piégeage avec CO2 solide afin d’obtenir l’acide 5 
correspondant avec un rendement de 50%. On effectue par la suite une déchloration catalysée 
par le palladium sur charbon en présence d’ammonium formiate, puis une réduction de l’acide 
avec BH3 dans le THF pour obtenir l’alcool primaire 7. Enfin, une chloration de cet alcool en 
présence de chlorure de mésyle et de triéthylamine dans le dichlorométhane conduit au produit 
désiré  8.  
 

 
Schéma 1: Synthèse de la pyridine 8 

 

Après une optimisation des étapes de réduction et de chloration de l’alcool primaire nous 
avons pu obtenir le précurseur de l’Imidaclopride et de la Thiaclopride avec un rendement 
global de 12.5% sur 5 étapes. Ce précurseur a été envoyé sur le site de Bayer CropScience à 
Monheim afin d’effectuer la dernière étape de couplage pour obtenir les analogues 
trifluorométhoxylés 10 et 11 des deux insecticides (Figure 5).  

 

 
Figure 5: OCF3-Imidaclopride et Thiaclopride 

 
Enfin, des tests biologiques in vitro sur des récepteurs cholinergiques et in vivo sur Myzus 

Persicae, le puceron vert du pêcher, ont été effectués. Malheureusement, il se trouve que les 
analogues trifluorométhoxylés ont présenté une activité biologique beaucoup moins importante 
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que les insecticides chlorés. Dans ce cas-là, l’activité biologique a été diminuée, mais il ne faut 
pas conclure que l’utilisation d’un groupement trifluorométhoxy aura cette influence à chaque 
fois. Ici, il se peut qu’il ait diminué l’affinité de la molécule pour les récepteurs biologiques, mais 
dans un autre cas son introduction aura un effet positif. 

 

1.2. Trifluorométhoxy “Magic Pyridine” 
 

La “Magic Pyridine” ou 2,3-dichloro-5-trifluorométhyl pyridine 12 est un building block 
très important car elle est hautement fonctionnalisable. En effet, ses positions 4 et 6 peuvent 
être atteintes via une métallation en présence d’un organolithien, et la position 2 étant chlorée, 
elle peut être fonctionnalisée par SNAr. Enfin, les deux atomes de chlore peuvent être soit utilisés 
pour la fonctionnalisation, soit éliminés via une déchloration pallado-catalysée. 
 

 
Figure 6: “Magic Pyridine” 12 

 
 Nous nous sommes donc intéressés à la préparation d’une version trifluorométhoxy de ce 
building block, qui, offrant de nombreuses options pour la fonctionnalisation, pourrait être 
utilisé pour synthétiser des principes actifs contenant un motif trifluorométhoxy pyridine. 
 
 Ainsi, nous avons pensé que le building block 19 (Figure 7) pourrait être synthétisé en 
utilisant la méthode développée au laboratoire pour la préparation de trifluorométhoxy 
pyridines à partir du composé hydroxylé 16. Celui-ci n’étant pas commercial, il peut être préparé 
à partir de la pyridine iodée 15 selon une séquence de borylation/oxydation. La pyridine 15 
peut être obtenue en soumettant l’amino pyridine 14 à des conditions de Sandmeyer, et enfin, 
l’amino pyridine 14 serait préparée par réduction de la fonction nitro de 13. 
 

 
Figure 7: Schéma rétrosynthétique de la préparation de la OCF3-« Magic Pyridine » 

 
 Nous avons donc soumis la pyridine 13 à la voie de synthèse que nous avions imaginée 

(Schéma 2). La réduction du groupement nitro a été effectuée en présence de Fe et HCl avec 85% 
de rendement. Une diazotation en présence de nitrite de sodium suivie par un piégeage avec de 
l’iodure de potassium a conduit à la 2,3-dichloro-5-iodo pyridine 14 avec un rendement élevé de 
82%. Enfin, une séquence de borylation/oxydation en conditions basiques a permis d’isoler 
l’hydroxy pyridine 16 avec 90% de rendement.  
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Schéma 2: Synthèse de la trifluorométhoxy “Magic Pyridine” 19 

 
Finalement, nous avons soumis 16 à une séquence d’alkylation/chlorodésulfuration/ 

fluoration afin d’obtenir la pyridine 19 en 20% de rendement sur deux étapes. Cette séquence 
consiste en une O-alkylation en présence de thiophosgène pour conduire au 
chlorothionoformiate 17 qui n’est pas isolé. Celui-ci est directement soumis à une chloration 
pour donner le composé 18, puis une fluoration en présence de trifluorure d’antimoine et de 
pentachlorure d’antimoine en quantité catalytique conduit au produit final 19. 

 
Ainsi, nous avons pu développer une voie d’accès rapide et efficace à ce composé 

hautement fonctionnalisable, tout en utilisant la séquence d’alkylation/chlorodésulfuration/ 
fluoration développée par notre groupe. 
 

1.3. 5-OCF3 Pyrazoles 
 
Dans cette troisième partie, les travaux portent sur la synthèse de 5-OCF3 pyrazoles. Le but 

étant de construire des building blocks fonctionnalisables par la suite, nous avons décidé de 
nous intéresser à la synthèse de pyrazoles comportant des groupements fonctionnels variés et 
modifiables. A ce jour, aucune synthèse de trifluorométhoxy pyrazoles n’a été décrite. 

 
Il avait précédemment été décrit par notre groupe12 qu’il était possible, en utilisant la 

méthode développée par T. Hiyama13 sur des composés aliphatiques et aromatiques, de 
construire un groupement –OCF3 en position 4 d’un pyrazole (Schéma 3). Le 4-hydroxy pyrazole  
20 a été transformé par construction d’un groupement dithiocarbamate en présence de 
thiophosgène de et de thiométhanolate de sodium pour obtenir 21. Ensuite, ce pyrazole a été 
soumis à des conditions de fluoration oxydante en présence de HF/pyridine 70% et de  
N,N-dibromohydantoïne afin d’obtenir le 4-trifluorométhoxy pyrazole 23 en 44% de rendement 
après une débromation réductrice en présence de zinc. 
 

 
Schéma 3: Préparation d’une 4-OCF3 pyrazole 
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Etant donné les rendements modérés de ces deux étapes, nous avons décidé de nous 

intéresser à la synthèse de 3- et 5- trifluorométhoxy pyrazoles. Notre but étant de préparer des 
building blocks non fonctionnalisés, nous avons commencé notre étude avec des 5-hydroxy 
pyrazoles non fonctionnalisés. Or, nous avons réalisé que la N-alkylation était préférée à  
l’O-alkylation dans le cas de ces composés. Nous avons donc décidé d’introduire un substituant 
sur le cycle, et nous avons opté pour les halogènes. Nous pensions ainsi pouvoir construire un 
thiocarbamate et procéder à sa fluoration, puisque cette méthode avait fait ses preuves pour la 
préparation de 4-OCF3 pyrazoles. 

Les pyrazoles de départ sont synthétisés en faisant réagir la N-méthylhydrazine 24 sur le 
diéthyl (éthoxyméthylène)malonate14 25 en présence de carbonate de potassium dans l’eau avec 
83% de rendement (Schéma 4). L’hétérocycle est ensuite bromé en présence de  
N-bromosuccinimide sans solvant15 avec un rendement de 92%. Enfin, le but était de convertir le 
groupement hydroxy en   -OCF3.  

 

 
Schéma 4: Synthèse de 5-trifluorométhoxy pyrazoles fonctionnalisés 

 

La voie de synthèse décrite ici représentait l’intérêt de donner accès à des pyrazoles 
fonctionnalisés portant des groupements N-protecteurs variés grâce à la première étape de 
synthèse. L’étape de fluoration n’a donné aucun résultat, malgré tous nos efforts (Schéma 5). 
Nous avons essayé plusieurs réactions de fluoration sans jamais toucher au but.  

 

 
Schéma 5: Essais de fluoration de pyrazoles 

 

Nous avons donc décidé d’abandonner ce projet au profit d’un autre plus prometteur en 
termes de résultats. Il serait surement plus judicieux de préparer ces building blocks via des 
produits de départ comprenant déjà le groupement trifluorométhoxy. 
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2. Pyridines α-Fluoro Ethers 
 

Il existe très peu de méthodes décrites dans la littérature permettant la préparation 
d’aromatiques comprenant un groupement –OCFCl2 ou –OCF2Cl. C’est pourquoi nous nous 
sommes intéressés à la préparation de tels groupements sur des pyridines, ce qui n’a jamais été 
décrit. 

 

2.1. –OCF2Cl Pyridines 
 

En 1992, Hiyama13 a décrit une réaction de synthèse de groupements trifluorométhoxy 
sur des alkyles (Schéma 6) : désulfuration/fluoration oxydante. Cette réaction a été décrite pour 
la première fois sur des pyridines par notre groupe.16  

 

 
Schéma 6: Réaction d’Hiyama 

 
Nous avons directement soumis les chlorothionoformiates à ces conditions afin de voir si 

on pouvait s’arrêter au groupement chlorodifluorométhoxy (Schéma 7). Après plusieurs essais, 
nous avons pu obtenir les molécules voulues avec des rendements satisfaisants, avec la synthèse 
d’un groupement –OCF2Cl inédite sur de telles molécules, puisque l’insertion sélective de deux 
atomes de fluor est très délicate. 

 

 
Schéma 7: Synthèse de –OCF2Cl pyridines 

 

Afin de diminuer les quantités de réactifs utilisés, nous avons optimisé les conditions 
réactionnelles, et nous avons finalement pu préparer les chlorodifluorométhoxy pyridines en 
présence de 20 équivalents de HF/pyridine et de 3 équivalents de DBH. 
 

HF/Py (20 eq)
DBH (3.0 eq)

DCM,
-78 °C to rt
overnight

NCl

1. NaOH, H2O

2. C(S)Cl2, DCM
OH

NCl

O

S

Cl

NCl

OCF2Cl

57-72%  
Schéma 8: Préparation de chlorodifluorométhoxy pyridines 

 
Afin d’étudier la réactivité de ces molécules, nous avons procédé à une métallation de la 

2-chloro-3-chlorodifluorométhoxy pyridine 25 en présence de Lithium diisopropyl amine (LDA) 
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suivie d’une carboxylation avec CO2 afin d’obtenir l’acide carboxylique 26 correspondant 
(Schéma 9).  

 

 
Schéma 9: Carboxylation d’une –OCF2Cl Pyridine 

 

2.2. –OCF2Cl Pyridines 
 

Nous avons également étudié la synthèse sélective d’un groupement dichlorofluoro- 
-méthoxy. L’idée ici était de substituer sélectivement un atome de chlore par un atome de fluor 
sur un groupement trichlorométhyl éther, ce qui avait été décrit sur des trichlorométhoxy 
benzènes.17 

Après optimisation de la réaction, cette insertion d’un seul atome de fluor a été observée 
avec un très bon rendement (Schéma 10) en présence de (HF)3/Et3N, alors qu’aucune réaction 
n’a eu lieu avec HF/pyridine. 

 

NCl

OCCl3
HF/Py (40 eq)

TA NCl

OCFCl2

NCl

Et3N/(HF)3 (40 eq)

90 °C, 1-7d
72 - 84%

NCl

OCCl3 OCFCl2

 
Schéma 10: Synthèse de dichlorofluorométhoxy pyridines 

 

 Encore une fois, il est important de souligner la nouveauté de cette réaction, puisqu’elle 
n’avait jamais été réalisée sur un hétérocycle auparavant, et qu’aucune réaction connue ne 
permet l’insertion sélective d’un atome de fluor. 
 

3. 3,5-Bis(fluoroalkyl) Pyrazoles 
 

Dans le cadre de ce projet, nous avions pour but de développer un accès à des pyrazoles 
comprenant deux groupements fluorés différents, ce qui est très peu décrit dans la littérature. Il 
existe quelques exemples de pyrazoles comprenant deux groupements fluorés en position 3 et 5 
de l’hétérocycle, et ces deux groupements sont toujours identiques sauf dans le cas d’un brevet.18 
Celui-ci décrit la synthèse de 5-trifluorométhyl pyrazoles dont la position 3 est un groupement 
méthyle ou un groupement aldéhyde qui est fluoré en présence de trifluorure de diethylamino 
sulfure (DAST) pour donner respectivement un groupement –CFH2 ou –CF2H.19 
 

Deux stratégies ont été pensées : la première était de partir d’un building-block qui serait 
fluoré lors d’une étape de la synthèse, et la dont dernière étape serait la cyclisation (Schéma 11). 
Cela permettrait d’avoir une grande diversité de produits finaux, puisque l’introduction du 
nombre d’atomes de fluor se ferait à volonté à partir de produits chlorés ou bromés. 
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Schéma 11: Première stratégie pour la synthèse de 3,5-bis(fluoroalkyl) pyrazoles 

 
Dès les premiers essais, nous avons rencontré de nombreux problèmes lors de la 

bromation ou de la chloration des produits en vue de faire une fluoration. Dans le cas de la 
bromation de l’énone non cyclisée, nous obtenions dans différentes conditions un mélange 
inséparable des produits monobromé et dibromé. Dans celui du pyrazole protégé, il ne nous a 
jamais été possible d’observer une quelconque bromation, aussi bien en présence de NBS/AIBN 
que de dibrome (Schéma 12). 
 

 
Schéma 12 : Tentatives de bromation de précurseurs et de pyrazoles protégés 

  
Nous avons finalement décidé d’abandonner cette première voie et de se tourner vers la 

seconde stratégie de synthèse. Les essais ont été menés en parallèle, et celle-ci s’est révélée plus 
prometteuse. Elle consiste en l’utilisation d’ α,α-Fluoroalkyl Amino Reagents (FAR). Ce sont des 
amines perfluorées couramment utilisées dans la fluoration d’alcools et de groupements 
carbonylés (Schéma 13).20 

 

 
Schéma 13 : Réactifs FAR 

 
Mais il a récemment été découvert que ces réactifs, notamment la 1,1,2,2-tetrafluoroethyl-

N,N-dimethylamine (TFEDMA), peuvent également servir à l’introduction d’un groupement 
difluorométhyl (Schéma 14). 21  
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Schéma 14 : Utilisation de TFEDMA pour l’introduction d’un groupement fluoré 

 
Ici, on peut voir que la TFEDMA activée par le trifluorure de bore peut être attaquée par 

l’énaminone afin de former une énaminone fluorée après élimination d’une molécule d’acide 
fluorhydrique. Celle-ci sera elle-même attaquée par l’hydrazine afin de former la pyrazole 
fluorée désirée en un mélange inséparable de deux isomères. 

 
Dans ce projet, notre but était d’utiliser un acétoacétate comprenant déjà un groupement 

fluoré à la base afin de pouvoir synthétiser des pyrazoles portant deux groupements différents 
aux positions 3 et 5 du cycle (Schéma 15). 

 

 
Schéma 15 : Synthèse de 3,5-bis(fluoroalky)l pyrazoles 

 
Après optimisation des conditions réactionnelles, nous avons pu obtenir des rendements de  

29 à 85% pour l’étape de cyclisation en fonction de l’hydrazine et de l’acétoacétate fluoré 
utilisés. De plus, celle-ci se fait de manière totalement régiosélective, et l’unique régioisomère 
formé est le 3-CHF2-5-Rf pyrazole. 

 
Dans les étapes suivantes, nous souhaitions trouver un moyen de saponifier et 

décarboxyler l’ester présent en position 4. Nous avons donc effectué la saponification de l’ester, 
et les acides carboxyliques ont été obtenus avec de très bons rendements allant de 90 à 99%. Par 
contre, l’étape de décarboxylation des pyrazoles nous a posé beaucoup plus de problèmes. En 
effet, nous avons commencé par des conditions classiques (HCl, EtOH), et n’avons observé que la 
dégradation des produits. Nous avons donc essayé plusieurs conditions décrites dans la 
littérature22 : Catalyses Ag2CO3/AcOH, AgOAc/K2CO3, Cu/quinoléine, CuI/NMP, Cyclohénone / 
Cyclohexanol, et une réaction tandem décarboxylation / bromation en présence de NBS et de 
NaHCO3. Toutes ces procédures ont conduit soit à la dégradation soit à une récupération totale 
du produit de départ. 
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Finalement, une décarboxylation décrite par Goossen et al.22d sur des composés 
aromatiques en présence d’une quantité catalytique de Cu2O (5 mol%) et de  
1,10-phénanthroline (10 mol%) dans un mélange de NMP-quinoléine (3 :1) nous a permis 
d’obtenir les produits décarboxylés avec des rendements allant de 50 à 88% (Schéma 16).  
 

N
N

F2HC

Rf

R

COOEt

NaOH (3éq)

EtOH, TA
2h

N
N

F2HC

Rf

R

COOH

Cu2O/Phen.

NMP/Quin.
160°C, 16h

N
N

F2HC

Rf

R
90-99% 50-88%

N
N

F2HC

CF3

PhOMe

TFA
90 °C, 16h

N
N
H

F2HC

CF3

45-72%  
Schéma 16 : Décarboxylation et N-déprotection des pyrazoles fluorés 

 
Malgré ce succès, nous avons observé la dégradation des pyrazoles comprenant un 

substituant –CF2Cl, et la saponification n’a pas fonctionné sur les N-H pyrazoles. C’est pourquoi 
nous avons travaillé sur les N-tBu pyrazoles afin de les déprotéger après l’étape de 
décarboxylation. Cette déprotection a été effectuée avec succès sur deux produits (Schéma 16) 
avec des rendements de 46 et 72%. 

 
En conclusion,  nous avons travaillé sur deux types d’hétérocycles : les pyrazoles et les 

pyridines. Ces travaux nous ont permis de développer des vois d’accès faciles, rapides et 
adaptables à grande échelles à des pyridines et des pyrazoles comportant plusieurs 
groupements fluorés. 

Tout d’abord, nous avons pu valoriser la méthode qui avait précédemment été développée 
au laboratoire pour la synthèse de trifluorométhoxy pyridines. Pour ce faire, nous avons préparé 
des analogues trifluorométhoxylés de l’Imidaclopride et de la Thiaclopride. Ceci nous a permis 
d’évaluer l’influence de la substitution de l’atome de chlore par un groupement trifluorométhoxy 
sur l’activité biologique de la molécule. Dans ce cas, l’activité a été diminuée par la présence du 
trifluorométhoxy, mais il est certain que dans d’autres cas il pourra avoir une influence positive. 
Nous avons également mis au point une voie de synthèse de  la trifluorométhoxy « Magic 
Pyridine », ce qui permettra son utilisation pour la préparation de produits biologiquement 
actifs. 

Dans un second projet, nous avons développé une méthode pour la construction de 
groupements chlorodifluorométhoxy et dichlorofluorométhoxy sur des pyridines. Ceci a été fait 
en une ou deux étapes à partir des hydroxy pyridines commerciales avec de bons rendements. 

Enfin, nous avons mis au point une voie d’accès à des pyrazoles portant deux groupements 
fluorés différents aux positions 3 et 5 du cycle. La régiochimie de la cyclisation est contrôlée, 
avec l’obtention d’un seul régioisomère. De plus, le développement d’une séquence de 
saponification/décarboxylation nous a permis d’accéder aux pyrazoles non substitués en 
position 4, ce qui ouvre de nombreuses possibilités en vue d’une fonctionnalisation ultérieure. 

Ainsi, nous avons pu donner de nouveaux outils de synthèse pour la préparation de 
composés biologiquement actifs comportant des pyrazoles ou des pyridines fluorés. 
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1.1. General information 

1.1.1. Discovery of fluorine 

 “The whole world admired the exceptional experimental skills with which you have isolated 

and studied fluorine, this ferocious animal among the elements.” Pr. P. Klason, president of the 
Royal Swedish Academy told Henri Moissan when he received his Nobel Prize in November 
1906. 
 On the 28th of June, 1886, Henri Moissan had performed the first isolation of fluorine (F2).1 
In a U-tube platinum apparatus at low temperature (-50 °C), a solution of hydrogen fluoride and 
potassium bifluoride (KHF2) was electrolysed. A colourless gas was observed at the anode of the 
electrolyser, which was identified as fluorine.2 
 This represented the first step towards modern fluorine chemistry. After that discovery, 
fluorine was mostly used for metallurgy purposes, and mostly metallic fluorides have been 
studied.  
  
 Organofluorine chemistry emerged in the mid 1950’s, with the discovery of antitumoral 
properties of fluoro-uracil and the drastic improvement of the biological activity of corticoids by 
introduction of a fluorine atom.3 These were the first proofs that the presence of a single fluorine 
atom could have a profound influence onto the behaviour of molecules in a biological 
environment.  
 Despite this remarkable discovery, organofluorine chemistry was not developed until the 
1970’s. This might be due to the fact that medicinal chemists are often inspired by nature, and 
that one of the few natural fluorinated compounds was fluoroacetic acid. Given that it is a 
powerful poison, one can understand that it was not inspiring.4 

1.1.2. Fluorine in nature 

 Natural organic compounds bearing fluorine are rare, compared to the chlorinated, 
brominated and iodinated ones which can be found in nature.5 To give an order of comparison, 
ca. 3000 natural products have been reported to contain halogens, and only ca. 13 have been 
reported to contain fluorine.  
 Even if fluorine is the 13th most abundant element in the Earth’s crust (much more than 
chlorine and bromine), it is mostly found as minerals which are insoluble in water. This induces 
that fluorine is not available to living organisms, hence it cannot be found in numerous natural 
products.6 
 Among fluoroorganic compounds, the most famous is certainly fluoroacetate 1, which has 
been identified in 1943 (Figure 1.1). It is present at low concentrations in a wide variety of 
plants, and can be found at high concentrations in 35 species of plants, mostly in the south 
hemisphere, which are known as fluoroacetate-accumulating plants.5 

 
Figure 1.1: Fluorinated natural products 
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 Fluoroacetate is converted in vivo in (2R, 3R)-fluorocitrate 2, therefore many plants which 
contain fluoroacetate also contain 2, which also presents acute toxicity. The seeds of a shrub 
found in western Africa, Dichapetalum toxicarum, are frequently the origin of livestock losses. 
The responsible poison in these seeds has been found to be ω-fluorooleic acid 3. 
 
 Nucleocidin 4 has been isolated from a bacterium, Streptomyces calvus, found in an Indian 
soil sample. D. O’Hagan and coworkers studied the bacterium Streptomyces cattleya which 
secretes fluoroacetate when grown in presence of fluoride anions. Its ability to synthesise 
fluorinated compounds was demonstrated, and the enzyme 5’-fluoro-5’-deoxyadenosine 
synthase (5’-FDAS) was isolated (Scheme 1.1).7  
 

 
Scheme 1.1: Fluorination of S-adenosyl-L-methionine (SAM) 

 
 5’-FDAS is responsible for the catalysis of the formation of C-F bonds: S-adenosyl-L-
methionine (SAM) has been fluorinated in presence of 5’-FDAS and fluoride anions, releasing  
L-methionine and 5’-fluoro-5’-deoxyadenosine (5’-FDA). 
 
 Given the very little occurrence of fluorinated compounds in nature, methods for 
producing fluorinated molecules have been and are currently developed by man. Research for 
the construction of various types of fluorinated substituents is very important, especially when 
one realises that introduction of fluorine into agrochemical and pharmaceutical candidates has 
become common. 

1.2. Fluorine in agrochemistry and pharmaceutical 

chemistry 

 Indeed, numerous agrochemical and pharmaceutical ingredients contain one or more 
fluorine atoms. It can be found as a single fluorine atom, a trifluoromethyl group and more 
scarcely as a trifluoromethoxy or a difluoromethyl substituent for instance. 
 
 Because of its properties, fluorine is often used in agrochemical research (Figure 1.2). 
Several insecticides present fluorinated substituents: the pro-insecticide Chlorfenapyr (BASF) 
contains a pyrrole core bearing a trifluoromethyl substituent. Fipronil (BASF) contains a 
trifluoromethyl sulfinyl pattern, and Tefluthrin (Syngenta) also presents a trifluoromethyl and a 
perfluorobenzyl substituent. The fungicide Bixafen (Bayer CropScience) contains a pyrazole 
pattern bearing a difluoromethyl group, and the herbicide Fludioxonil (Syngenta) a 
benzodioxole moiety bearing a gem-difluoride. 
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Figure 1.2: Pesticides bearing fluorinated substituents 

 
 In addition, the introduction of a fluorinated substituent is commonplace in 
pharmaceutical research, during structure-activity relationship studies (Figure 1.3). This has 
been the case of the anti-inflammatory agent Celecoxib (Pfizer) and the “block buster” 
Fluoxetine (Eli Lilly, Prozac®) used for the treatment of obsessive-compulsive disorder and 
bulimia. Similarly, Efavirenz (Bristol-Myers Squibb, Sustiva®), a non-nucleoside reverse 
transcriptase inhibitor used in the treatment of patients with HIV, contains a trifluoromethyl 
group attached to a stereogenic centre.8 
 

 
Figure 1.3: Pharmaceuticals bearing fluorinated substituents 

 
 The few examples showed here are far to be exhaustive. Indeed, fluorinated molecules find 
applications in the treatment of cardiovascular diseases, in antipsychotic drugs, as well as in the 
treatment of diabetes and hypercholesteremia.9  
 Fluorine is also found in the field of medical imaging. Its radioactive isotope is used in 
positron emission tomography (PET imaging). Radiolabelling of molecules with 18F allows, 
among other applications, medical diagnosis as a non-invasive imaging technique.  For example, 
PET imaging using [18F]fluoro-2-deoxy-D-glucose ([18F]-FDG, Figure 1.3) allows the detection of 
several types of human tumours.10 
 
 To conclude, fluorinated molecules are a very important class of compounds, as they 
represent ca. 20% of all marketed pharmaceuticals. This is even more important in the 
agrochemical area, as around 30% of all marketed active ingredients contain at least one 
fluorine atom.11 
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1.3. Properties of fluorine 

 “Fluorine leaves nobody indifferent; it inflames emotion, be that affections or aversions. As a 

substituent it is rarely boring, always good for a surprise, but often completely unpredictable.”12 
 What is so exciting about fluorine? What causes its influence onto the biological properties 
of a molecule? 
 
 First of all, fluorine is the most electronegative of all the elements (4.0, Pauling scale). This 
has a great influence on the electron distribution in a molecule. Hence, its electronic effects are 
numerous: it stabilises α-carbocations and destabilises β-carbocations, it can have +M and +I 
effects in aromatic rings.13 But the high electronegativity of fluorine is more importantly 
demonstrated by its effect on the acidity of vicinal functional groups.14 
 In addition, fluorine has a small van der Waals radius (1.47 Å), situated between that of 
hydrogen (1.20 Å) and oxygen (1.52 Å): it is the second smallest element after hydrogen. Hence, 
it can replace a hydrogen atom or a hydroxy group, as its volume is not much different. 
 These two physical properties of the fluorine atom involve several consequences onto the 
physicochemical properties of molecules that are useful in the design of bioactive molecules. 

1.4. Influence of fluorine on bioactive molecules 

1.4.1. Influence on the pKa 

 As fluorine is the most electronegative element, its effects on the acidity of vicinal 
functional groups can be profound. The pKa of a neighbouring basic or acidic function can 
decrease of several log units.15 For instance, the pKa’s of acetic acid and its fluorinated analogues 
decrease with the introduction of fluorine atoms (Table 1-1). The same kind of influence has 
been shown onto basic groups, which present lower basicities with the presence of fluorine. 
 

Entry Acid pKa 
1 CH3COOH 4,76 
2 CH2FCOOH 2,59 
3 CHF2COOH 1,24 
4 CF3COOH 0,23 

Table 1-1: Acidities of fluorinated acetic acids 

 
 This can be very useful for the design of drugs and agrochemicals, as the change of a pKa 
can have influence onto the binding affinity of a molecule and its pharmacokinetic properties. 
Indeed, a basic function can be crucial for the binding of a molecule to an enzyme, but it can also 
limit its bioavailability due to its non-ability to go through cells membranes. Hence, the presence 
of a fluorine atom can help in decreasing the basicity of a functional group while keeping its 
affinity for the active site of the enzyme. 

1.4.2. Effects on molecular lipophilicity 

 It is popular that fluorine increases the lipophilicity of molecules. However, this is only 
true when the fluorinated group is incorporated onto aromatic rings and/or next to atoms 
capable of π-bonding, as it decreases lipophilicity when introduced into saturated alkyl groups.16  
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 A study of the influence of the replacement of a hydrogen atom by a fluorine atom on ca. 
300 compounds revealed that the lipophilicities of the fluorinated molecules are roughly 
increased by 0.25 log units.15 

 Lipophilicity is a key parameter in medicinal chemistry. Low lipophilic substrates cannot 
go through cell membranes, thus cannot reach the active site of the enzyme. But highly lipophilic 
molecules can stay trapped into the lipid core or present reduced solubility limiting their 
bioavailability.8 Hence, the introduction of fluorine must be submitted to a “fine-tuning” in order 
to find a good compromise. 

1.4.3. Metabolic stability 

 Metabolic stability represents a challenge in a lot of drug discovery projects.15 Bioactive 
molecules are submitted to changes in vivo, and they are metabolised prior to elimination by the 
living organism. Enzymes contained in Cytochrome P450 are responsible for most of the 
oxidative metabolism of bioactive molecules. Oxidation at strategic positions reduces their 
lipophilicity what facilitates their clearance.8 

 

 The C-F bond presents a high energy (116 kcal·mol-1), and this can be exploited in order to 
enhance the metabolic stability of a molecule.13 Therefore, substitution of a metabolically labile 
position with a fluorine atom can increase bioavailability. 
 
 However, this might cause problems in case the molecule is too stable. For instance, 
during the development of Celecoxib (Figure 1.3), the lead compound presented a very long half-
life. Replacement of the fluorine atom of the phenyl ring (Figure 1.4) by a less metabolically 
stable methyl group reduced the half-life to an acceptable level.14  
 

 
Figure 1.4: Reduction of the metabolic stability of Celecoxib 

1.4.4. Steric effects and molecular conformation 

 Due to its van der Waals volume between that of hydrogen and oxygen, fluorine can mimic 
a hydrogen atom or a hydroxy substituent. Indeed, it will occupy the same volume at receptor 
sites, hence the binding of the molecule to the enzyme will not be dramatically changed.  
 As an example, the hydroxy function in the fungicide Flutriafol 5 (Syngenta) was replaced 
by a fluorine atom.13 Some bioactivity was retained, even if it was reduced (Figure 1.5). 
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Figure 1.5: Replacement of a hydroxy group with fluorine 

 
 In addition, the trifluoromethyl group is believed to present quite the same van der Waals 
volume as an isopropyl group,13,17 or twice that of a methyl group. Finally, the effect of fluorine 
substitution can be difficult to predict. For instance, methoxy benzene adopts a planar 
conformation when there is no ortho substituent. In the case of trifluoromethoxy benzene, most 
of the time a twisted conformation is preferred, and the dihedral C-C-O-C angle is ca. 90° (Figure 
1.6). 
 

 

Methoxy benzene

 

Trifluoromethoxy
benzene  

Figure 1.6: Preferred conformation of methoxy and trifluoromethoxy benzenes 

1.5. Importance of heterocycles 

 Heterocycles are an exceedingly important class of compounds: they represent more than 
half of all known organic compounds.18 Their importance is not only due to their abundance, but 
also to their significance in the chemical and the biological fields. Many natural products and 
most of the molecules involved in natural processes contain heterocyclic structures: vitamins, 
enzymes, nucleic bases, neurotransmitters, etc (Figure 1.7). 
 

 
Figure 1.7: Natural heterocyclic-products involved in biological processes 

 
 Heterocyclic natural products have been used as drugs for centuries. For instance, South 
American natives already used cinchona bark before arrival of the Spanish colonists. It was 
brought to Europe by Jesuits around 1640, and has been widely used as an anti-malarial agent. 
But it was only in 1820 that quinine was isolated as the active ingredient.19  
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Figure 1.8: Natural alkaloids used as drugs and pesticides 

 
 Quinine is an isolated example, but numerous natural products have been used as drugs 
for centuries, mainly alkaloids isolated from plants: morphine, codeine, atropine, etc. (Figure 
1.8).  Similarly, natural products have also been used in agriculture: nicotine has been used as an 
insecticide. 
 
 These heterocycles are widely spread across natural products because they are able to be 
involved in a wide range of reaction types.18 Due to the presence of the heteroatom, they can 
behave as acids or bases, depending on the medium. In addition, some of them can be the target 
of electrophilic reagents, whereas others are able to undergo nucleophilic attack. Some 
heterocycles will be readily oxidised and able to resist reduction, and it will be the contrary with 
others. Finally, all of these properties, depending on the electronic distribution into the 
heterocycle, will influence the biological activity of heterocyclic molecules. 
 
 As the aim of chemists is to produce compounds which are active in vivo, the easiest way 
to do this is to mimic nature. Hence, heterocycles are widely represented among synthetic 
bioactive compounds. As an example, in 2007, among the top 100 best selling drugs in the US, 71 
contained a heterocycle.19 In addition, the same kind of trend can be observed in agrochemistry.  
 As an edifying example, some of the biggest commercial products contain heterocyclic 
structures.20 The cholesterol reducer Atorvastatin (Lipitor®, Pfizer), used to prevent 
cardiovascular diseases is the best-selling drug in the US and is a heterocyclic compound (Figure 
1.9). Similarly, the broad-spectrum fungicide Azoxystrobin (Amistar®, Syngenta) contains a 
heteroaromatic ring. 
 

 
Figure 1.9: Pharmaceuticals and agrochemicals containing heteroaromatics 

 
 Finally, we can claim that heterocycles are widespread among biologically active 
molecules and that agrochemical and pharmaceutical research could not do without this class of 
compounds. More precisely, heteroaromatic structures such as pyridines, pyrazoles and 
pyrimidines are numerous and present interesting properties.13 
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1.6. Objectives 

 Having realised the importance of heterocyclic compounds in agrochemical and 
pharmaceutical research, it appears clearly that providing synthetic methods for such 
compounds bearing novel substituents is very important.  
 In addition, we have detailed the several properties that the presence of a fluorine atom 
can confer to a molecule. Indeed, fluorine can increase lipophilicity of the molecule, it can block 
metabolically labile positions, it influences the pKa of vicinal functional groups, and it can change 
the conformation of a molecule, and thus influence its binding onto the active sites of enzymes. 
 
 As heterocycles have proven to have biological activity, the introduction of fluorine can 
enhance this activity. In order to be able to join the advantages of heterocyclic structures and of 
fluorine, developing methods for the preparation of heterocyclic compounds bearing diversely 
fluorinated substituents is essential. 
 
 Approaches allowing the preparation of heterocyclic molecules bearing a single fluorine 
atom or a trifluoromethyl group have been widely studied.21 There is a critical need of novel 
accesses to less common fluorinated substituents in order to provide a wider panel of 
fluorinated heterocycles for the preparation of active ingredients. As an example, the 
trifluoromethoxy and difluoromethyl substituents are scarcely described on heterocycles.21, 22  
 
 The two possible approaches towards heteroaromatic fluorinated building blocks consist 
in (1) the construction of the fluorinated substituent on the heterocycle and (2) cyclisation 
leading to the heterocycle using fluorinated precursors. When the fluorinated group is 
constructed onto the heterocycle, issues are often brought by the fluorinating reagent, which is 
either expensive and scarcely available, or not suitable for a scale-up. When fluorinated 
precursors are used the usual issue is regioselectivity, as cyclisations can often occur through 
several pathways and one has to find a way to control it. 
 
 Hence, our objective has been to investigate several approaches for the preparation of 
heteroaromatic building blocks bearing fluorinated substituents. Our aim was to develop 
efficient and straightforward methods providing the building block in a few steps from the 
commercially available substrate. Ideally, the methods would be scalable, and readily 
transposable to an industrial scale. The research work has been divided in three different 
projects, consisting in the study of two kinds of compounds of agrochemical and pharmaceutical 
interest: pyrazoles and pyridines. 
 The obtention of trifluoromethoxy pyridines and a study of their reactivity have led to a 
library of trifluoromethoxy pyridines bearing carboxylic acids, amines and halogens.23 In a first 
chapter, we will detail the research work that has been done is the continuation of this method. 
The aim was to valorise this method preparing trifluoromethoxy analogues of known important 
compounds bearing a pyridine core. The second aim of this part has been to develop an efficient 
access to 3- and/or 5-trifluoromethoxy pyrazoles. 
 
 In a second chapter, we will detail a study of the preparation of pyridines bearing mixed 
chloro/fluoro methyl ethers. We will present the several approaches we have studied and the 
chosen method for the preparation of –OCF2Cl and –OCFCl2 pyridines. 
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 The last chapter is dedicated to the development of an efficient approach towards 
pyrazoles bearing two different fluorinated substituents at the 3- and 5-positions. We will 
discuss the several approaches we have studied, and explain the choice of the most efficient 
method. Finally, we will detail how we investigated the obtention of the unsubstituted pyrazoles 
at the 4-position and at the nitrogen atom in order to provide an access to nude  
3,5-bis(fluoroalkyl) pyrazoles with potential for further functionalisation. 
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 Among the heteroaromatic building blocks which can be found in agrochemical and 
pharmaceutical ingredients, pyridines and pyrazoles are widely represented. The access to their 
fluorinated derivatives has been extensively investigated during the last decades, as the 
properties of fluorine can dramatically influence the bioactivity of a molecule.1 
 In order to explore the full potential of fluorine, a lot of substitution patterns are still to 
explore. Indeed, the most common fluorinated substituents on these heteroaromatic building 
blocks are a single fluorine atom or a trifluoromethyl group, and less common fluorinated 
substituents are still complicated to access. Among them, the trifluoromethoxy group is 
becoming more and more important in agrochemical and pharmaceutical research.2 According 
to the 14th edition of the Pesticide Manual,3 only five registered agrochemicals contain a 
trifluoromethoxy group (Figure 2.1).  Among them, the fungicide Thifluzamide (Dow), the 
insecticide Triflumuron (Bayer CropScience), and the herbicide Flucarbazone-sodium 
(Syngenta) include a -OCF3 substituent, but on the aromatic part of the molecule, and never on 
the heteroaromatic moiety. 
 

 
Figure 2.1 : Pesticides bearing a –OCF3 substituent 

 
 The same conclusion can be drawn for pharmaceuticals. Indeed, Riluzole (Sanofi Aventis), 
a drug treating amyotrophic lateral sclerosis and Celikalim, a drug preventing cardiovascular 
diseases contain a trifluoromethoxy substituent, but not on their heteroaromatic part (Figure 
2.2). 
 

 
Figure 2.2: Pharmaceuticals bearing a –OCF3 substituent 

 
 Given the importance of such pyrazole and pyridine building-blocks and the novel 
properties that a trifluoromethoxy group could confer to them, it is conceivable that developing 
a general method for their obtention would be very important for the synthesis of new bioactive 
molecules. 
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2.1. Properties of the trifluoromethoxy substituent 

 It has been explained earlier that the advantage of introducing fluorinated compounds 
into a molecule is due to its electron-withdrawing properties and to its short van der Waals 
radius. This influences the biological properties of molecules such as lipophilicity, pKa and 
preferred conformation. What about the –OCF3 group? 
 
 We have already stated that comparison of trifluoromethoxy benzene and methoxy 
benzene showed that they adopt different conformations. Indeed, anisole adopts a planar 
conformation when there is no ortho substituent, whereas the trifluoromethoxy group is twisted 
of ca. 90° compared to the aromatic ring in trifluoromethoxy benzene.4 
 Similar conclusions have been drawn with the X-Ray single crystal analysis of several 
trifluoromethoxy pyridines (Figure 2.3). 
 

 
Figure 2.3: X-Ray crystal structures of OCF3-pyridines 

 
 When the trifluoromethoxy substituent is at the 3-position of the pyridine ring, the 
trifluoromethoxy is perpendicular to the pyridine plane. In contrast, when it is at the 2-position, 
it is coplanar with the pyridine ring.5 
 

Entry Atom/group 
Pauling 

electronegativity 
Hydrophobicity 

π 

1 H 2,1 0 
2 F 4 0,14 
3 Cl 3 0,71 
4 Br 2,8 0,86 
5 I 2,5 1,12 
6 CH3 2,3 0,56 
7 tert-Butyl 2,3 1,98 
8 CF3 3,5 0,88 
9 OCH3 2,7 -0,02 

10 OCF3 3,7 1,04 
11 SCF3 - 1,44 
12 Ph - 1,96 
13 SF5 - 1,23 

Table 2-1: Electronegativities and Hydrophobic parameters for several substituents 

 
 In terms of electronic properties, the trifluoromethoxy group is more electronegative and 
lipophilic than the methoxy group. It presents a high hydrophobic substituent parameter,6 
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situated between that of a CF3 and a SCF3 group (Table 2-1, entries 8, 10 and 11). In contrast, it is 
far more hydrophobic than halogens (fluorine and chlorine, entries 2 and 3). Thus, it has the 
ability to increase lipid solubility of molecules. 
 
 A closer look to the electron-withdrawing properties (Table 2-1) of the trifluoromethoxy 
group (entry 10) shows that it is comparable to chlorine or fluorine (entries 2 and 3). In 
addition, we can outline that it is also more electronegative than the methoxy group (entry 9). 
Thus, it can be predicted that due to the presence of the three fluorine atoms, the electron-
withdrawing properties the –OCF3 group influences the electronic distribution of molecules. In 
addition, the presence of the oxygen and the possibility of delocalisation of its lone-pair 
electrons makes that the trifluoromethoxy substituent can be considered as a π-donating 
substituent.  
 
 Detailed studies on benzoic acids and phenols bearing a trifluoromethoxy substituent7 
showed that the pKas were decreased. These electron-withdrawing properties are comparable 
to those of a chlorine atom. Finally, the trifluoromethoxy group present similar electronic 
properties to those of a chlorine or a fluorine atom.8 In addition, studies on the pKa of 
trifluoromethoxy pyridines5 revealed that similar conclusions could be drawn. Indeed, 
calculations showed that the pKa of 2- and 3-OCF3 pyridines were comparable to those of fluoro, 
chloro and trifluoromethyl pyridines. 
 
 Hence, the trifluoromethoxy substituent has been called a super-7b and a pseudo-halogen9 
because of the similar electronic properties it confers to molecules compared to fluoro and 
chloro substituents. 

2.2. State of the art 

 The literature reveals several methods for the introduction of trifluoromethoxy groups 
and most of them have been detailed in a recent review by F. R. Leroux et al.10 The proportion of 
aromatic trifluoromethyl ethers is much higher than that of aliphatic trifluoromethyl ethers, and 
very few methods report on the synthesis of the latter ones. In addition, approaches for the 
preparation of trifluoromethoxy heteroaromatics are still very rare. For instance, syntheses of 
trifluoromethoxy pyridines are scarce, and the synthesis of trifluoromethoxy pyrazoles has still 
not been reported. 

2.2.1. Preparation of trifluoromethyl ethers 

2.2.1.1. Nucleophilic fluorination 

 Several methods have been detailed for the preparation of trifluoromethoxy groups, most 
of them using nucleophilic fluoride reagents for the introduction of fluorine.  
 
 The first method for the synthesis of aromatic trifluoromethyl ethers was reported in 
1955 by L. M. Yagupol’skii.11 Starting from substituted electron-deficient anisoles, chlorination 
with PCl5 and chlorine at elevated temperatures proceeded smoothly (Scheme 2.1). However, in 
the case of non-substituted anisole, chlorination of the aromatic ring was preferred to radical 
chlorination of the methoxy group.  
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Scheme 2.1: Chlorination/fluorination sequence developed by Yagupol’skii 

 
 Subsequent displacement of chlorine by fluorine was performed either with anhydrous HF 
or with antimony trifluoride (Swart’s reagent) in presence of catalytic antimony pentachloride 
in 20-80% yield, depending on the substitution pattern of the anisole.12 Unsubstituted anisole 
could be converted into the corresponding trichloromethyl ether by photochlorination in 
tetrachloromethane at reflux in presence of chlorine.13 
 
 More recently, A. E. Feiring reported on the direct conversion of phenols into 
trifluoromethoxy-substituted aromatics.14 Heating the starting material with anhydrous HF and 
boron trifluoride in tetrachloromethane in a closed pressure vessel provided the desired 
trifluoromethyl ethers in 10-70% yield (Scheme 2.2). 
 

 
Scheme 2.2: Direct trifluoromethoxylation of phenols 

 
 However, this reaction cannot be performed on substrates which present substituents 
capable of hydrogen-bonding at the ortho position to the hydroxy group.  
 
 N. N. Yarovenko et al. described the obtention of trichloromethoxy benzene from phenol 
via chlorothionoformate 7 (Scheme 2.3). Subsequent fluorination with Swart’s reagent in 
presence of catalytic antimony pentachloride led to the corresponding trifluoromethoxy 
compound in a good 71% yield.12a 
 

 
Scheme 2.3: Obtention of trifluromethoxy benzene via chlorothionoformate 7 

 
 It was shown that direct fluorination of chlorothionoformates can be performed with 
molybdenum hexafluoride.15 The main disadvantage of this method is the high percutaneous 
toxicity of the chlorothionoformate 7. 
 
 In 1964, W. A. Sheppard showed that the synthesis of aryl trifluoromethoxy compounds 
was possible by an in situ acylation/fluorination sequence. The fluorination of fluoroformates 8 
was carried out with sulphur tetrafluoride at 160 °C (Scheme 2.4).16 
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Scheme 2.4: Fluorination of fluoroformates 

 
 The fluoroformates were not isolated, and this one-pot procedure provided the 
trifluoromethoxy compounds in moderate to good yields. Once again, it can be underlined that 
the reaction proceeds more readily with electron-deficient aromatics. In addition, the process 
implies the use of highly toxic fluorophosgene 9 which represents an important drawback. 
 
 To conclude, we detailed several methods for the preparation of trichloromethyl ethers 
and their fluorination. Displacement of the chlorine atoms by fluorine with nucleophilic fluoride 
reagents has proven to be very efficient, and different methods using phenols or anisoles as 
starting materials have been developed. However, their applicability to aromatics bearing 
electron-withdrawing groups narrows the scope of the reaction but avoids aromatic ring 
chlorination. It can also be noticed that using highly toxic reagents or intermediates can be a 
problem. In addition, harsh conditions in terms of temperatures can be an issue with some 
substrates. 

2.2.1.2. Fluorodesulphurisation approaches 

 More recently, T. Hiyama et al. developed the synthesis of trifluoromethyl ethers from  
S-methyl dithiocarbamates (xanthogenates).17 The latter underwent an oxidative 
desulphurisation-fluorination in presence of N,N-dimethyl-1,3-dibromohydantoin (DBH) and a 
large excess of 70% HF/pyridine (40-80 equivalents), which led to the corresponding 
trifluoromethyl ethers in moderate to very good yields (Scheme 2.5). 
 

 
Scheme 2.5: Oxidative desulphurisation-fluorination of xanthogenates 

 
 To prevent bromination of the aromatic ring, only the necessary 3 equivalents of DBH for 
the formation of the trifluoromethoxy substituents should be used. In the case of aromatics 
bearing an alkoxy group, one more equivalent was necessary in order to complete the reaction. 
For example, the 4-benzyloxyphenyl xanthate was converted into 4-benzyloxy-3-bromo-1-
trifluoromethoxy benzene in presence of 4 equivalents of DBH and 80 equivalents of 
HF/pyridine (Scheme 2.5). 
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 The dithiocarbamates 10 were also fluorinated with tetrabutylammonium dihydrogen-
trifluoride and N-bromosuccinimide to form difluoro(methylthio)methyl ethers 11 in moderate 
yields (Scheme 2.6).  
 

 
Scheme 2.6: Formation of difluoro(methylthio)methyl ethers 

 
 The compounds 11 could then be transformed into the corresponding trifluoromethyl 
ethers in moderate yields using the previous reaction conditions with only one equivalent of 
DBH. For this step, bromination of the phenyl ring occurred in presence of 2 equivalents of DBH 
in the case of the 4-benzyloxyphenyl xanthogenate as it had been observed for the formation of 
the trifluoromethoxy compound. 
 In presence of 5 equivalents of N-bromosuccinimide and 40 equivalents of 50%  
HF/pyridine, secondary trifluoromethyl ethers were prepared from S-methyl dithiocarbamates 
(Scheme 2.7).18 Using the same substrates with 70% HF/pyridine (20 equivalents) and N-
iodosuccinimide, the –OCS2Me group was displaced by a fluorine atom. 
 

OCS2Me

OCF3

F

50% HF-py (40 eq)
NBS (5 eq)

DCM,
-78 °C to 0 °C, 0.5h

70% HF-py (20 eq)
NIS (3 eq)
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-42 °C to 0 °C, 1h

70%

21%

 
Scheme 2.7: Control of the reaction of fluorination or trifluoromethoxylation 

 
 The postulated mechanism of oxidative desulphurisation-fluorination is based on the 
oxidation of sulphur by one of the electrophilic bromine atoms of DBH (Figure 2.4). It generates 
the cationic species 12 which then undergoes nucleophilic attack of a fluoride to form a C-F 
bond. A second reaction of an electrophilic bromine atom with the sulphur atom followed by 
nucleophilic attack of a fluoride anion yields the isolated difluoro(methylthio)methyl ether 11. 
Subsequent oxidation/fluorination sequence on the difluoro compound provides the desired 
trifluoromethyl ether 13. 

 
Figure 2.4: Mechanism for the oxidative fluorodesulphurisation 
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 In 1999, S. Rozen and coworkers disclosed that the oxidative desulphurisation-
fluorination sequence was applicable using bromine trifluoride as the source of electrophilic 
bromine and nucleophilic fluoride.19 Several aliphatic compounds were successfully synthesised 
in excellent 78-90% yields. 
 
 As a conclusion, we can claim that oxidative fluorodesulphurisation methods are very 
efficient approaches for the preparation of trifluoromethoxy compounds. The mild reaction 
conditions are a real advantage of this method, the reaction can indeed be applied to various 
aliphatic and aromatic substrates without altering them. However, the use of either a huge 
excess of HF/pyridine or the very toxic bromine trifluoride make this method difficult to scale-
up. 

2.2.1.3. Electrophilic trifluoromethyl reagents 

 More recently, there has been a real breakthrough in study of trifluoromethyl-transfer 
reagents.20,21 It should be mentioned that the term “electrophilic trifluoromethyl transfer 
reagent” does not imply the fact that “CF3+” cations can be found in solution, but that 
nucleophilic entities can attack at the electrophilic CF3 carbon to create a Nu-carbon bond. 
  
 T. Umemoto reported on the synthesis of trifluoromethyl ethers via the use of  
O-(trifluoromethyl)dibenzofuranium salts22 and their preparation. These compounds are 
unstable above -90 °C, and must be prepared in situ at -100 °C by photochemical cyclisation of  
2-(trifluoromethoxy)biphenylyl-2’-diazonium salts 14 (Scheme 2.8). 
 

tBu F3CO

N2

SbF6

h

DCM
-100 °C to -90 °C

45min

tBu

SbF6

O

CF3

14  
Scheme 2.8: Preparation of dibenzofuranium salts 

 
 A study of the reactivity of 2-tert-butyl-O-(trifluoromethyl)dibenzofuranium 
hexafluoroantimonate  14 revealed that trifluoromethyl ethers could be prepared in very good 
yields from alcohols in presence of a base in dichloromethane at -90 °C (Scheme 2.9). 
 

tBu
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O

CF3

14

R-OH
(iPr)2NEt

DCM,
-90 °C to -10 °C
3h

tBu

O

R-OCF3
R = nC10H21, 82%

Ph, 75%

 
Scheme 2.9: Umemoto’s oxonium reagent as –CF3 transfer reagent 

 
 This method allows the synthesis of aliphatic and aromatic trifluoromethyl ethers under 
mild conditions, but the stability and tedious preparation of the dibenzofuranium salts limit 
further applications. 
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 More recently, A. Togni et al. described the use of hypervalent iodine reagents as 
electrophilic –CF3 transfer agents. Their preparation has been detailed,23 and their reactivity 
towards numerous types of nucleophiles (C-, O-, S-, N- and P- nucleophiles) has been studied, 
revealing a broad scope of application. Among the several reagents that have been studied, two 
of them revealed to be the most active (Figure 2.5).  
 

 
Figure 2.5: Togni’s trifluoromethyl transfer reagents 

 
 3,3-Dimethyl-1-trifluoromethyl-1,3-dihydro-1,2-benzodioxole 15 has been mostly used to 
form S-, N-, P- and C-CF3 bonds, whereas 1-trifluoromethyl-1,2-benzodioxol-3(1H)-one 16 has 
been essentially used for the formation of O-CF3 bonds, and in a few cases for the formation of  
P-CF3 bonds.21 
 The trifluoromethylation of several aliphatic alcohols has been accomplished in low to 
good yields (Scheme 2.10), by reaction with 16 and one equivalent of zinc bis(triflimide) 
(Zn(NTf)2).24 However, so far this reagent does not allow the synthesis of aromatic and 
heteroaromatic trifluoromethoxy derivatives. 
 

 
Scheme 2.10: Trifluoromethylation of aliphatic alcohols with 16 

 
 This efficient method using mild reaction conditions makes of Togni’s reagent a reagent of 
choice for sensitive substrates. However, the protocol requires a large excess of alcohol which 
can be an issue.  
 Several aromatic substrates have been studied for trifluoromethylation with 16,25  
and the results revealed that O-trifluoromethylation was in competition with aromatic 
trifluoromethylation. Among all the tested phenols, only 2,4,6-trimethylphenol led to  
O-trifluoromethylation product 18 in a low 15% yield under optimum reaction conditions 
(Scheme 2.11). In addition, the reaction was very messy. 
 

 
Scheme 2.11: Trifluoromethylation of 2,4,6-trimethylphenol with 16 
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 Togni’s reagent has proven to have a high reactivity towards several nucleophiles for the 
formation of trifluoromethyl ethers, particularly aliphatic alcohols which are the most difficult to 
obtain.26 However, reactions with aromatic substrates are at an early stage, and do not represent 
a suitable method for O-trifluoromethylation of phenols. 

2.2.1.4. Nucleophilic trifluoromethoxy transfer reagents 

 Several methods for the preparation of trifluoromethyl ethers via nucleophilic –OCF3 
transfer reagents have been reported recently. As it has been pointed out for “CF3+”,  
“-OCF3” anions do not exist in solution, and must be stabilised by voluminous counter-ions in 
order to avoid their facile decomposition into fluoride and fluorophosgene. 
 
 Firstly, “-OCF3” anions have been generated from fluorophosgene in presence of 
tris(dimethylammonium) difluoro trimethylsilicate in THF at -78 °C.27 They proved to be able to 
react with bromides and triflates to provide trifluoromethyl ethers.28 However, this method 
requires the use of highly toxic fluorophosgene in large amounts and under pressure.  
  
 Very recently, an alternative with the use of trifluoromethyl trifluoromethanesulfonate 21 
(TFMT) for the generation of trifluoromethoxide salts has been proposed.  
 
 Independently and simultaneously, A. A. Kolomeitsev et al. and B. R. Langlois and 
coworkers reported on the preparation of such salts from various fluoride or difluoro 
triphenylsilicate salts and TFMT (Scheme 2.12).29,30 Unlike other triflates, TFMT cannot be 
considered as a “-OCF3” transfer reagent by reaction with hard nucleophiles. As they usually 
attack on the harder electrophilic site of TFMT, which is the sulphur atom, fluoride anions were 
employed. Hence, nucleophilic trifluoromethoxide anions are released along with fluoride 
triflate (Scheme 2.12). 
 The use of bulky counter-ions such as tris(dimethylamino) sulfonium, dihydro 
imidazolium and cesium(I),30 silver(I) and tetrabutylammonium29 avoids the decomposition of 
the anion and allows its use as a nucleophilic OCF3-transfer agent. 

 
Scheme 2.12: Preparation of trifluoromethoxide salts 

 
 The trifluoromethoxide anion is prepared in-situ, and A. A. Kolomeitsev showed that 
subsequent reaction with the aliphatic triflate 30 provided the corresponding trifluoromethyl 
ether 31 in moderate to very good yields, depending on the counter-ion. 
 

 
Scheme 2.13: Trifluoromethoxylation of 30 according to Kolomeitsev 
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 The reaction has been extended to other substrates such as electron-rich benzyl bromides 
and aliphatic iodides, still in very good yields. However, its application onto nitro- and chloro- 
aromatic substrates led to fluorination by SNAr with 81 to 87% yield.  
 Interestingly, formation of the aryne 33 from Kobayashi’s reagent 32 and subsequent 
trifluoromethoxylation in presence of the complex 22 provided a mixture of trifluoromethoxy 
benzene 34 and fluorobenzene 35 with 72% yield in a 85:15 ratio (Scheme 2.14). 
Trifluoromethoxylation of the corresponding naphthalene reagent has also been performed in 
63% yield.30 
 

 
Scheme 2.14: Trifluoromethoxylation of arynes 

 
 B. R. Langlois et al. observed the same kind of reactivity for tetrabutylammonium and 
silver(I) trifluoromethoxide salts 29 and 28. Preparation of trifluoromethyl ethers from 
aliphatic bromides has been performed in moderate to very good yields (Scheme 2.15). 29 
 

Q OCF3

MeCN, -30 °C to rt

Q = nBu4N, 29 R = PhCH2, 75%
Ph(CH)2CH2, 53%
PhC(O)CH2, 41%
PhC(O), 100%
PhCH(Me), 11%
2-cyclohexene, 40%

R-Br R-OCF3

Q = Ag, 28 R = PhCH2, 100%
Ph(CH)2CH2, 57%
PhC(O)CH2, 47%
PhC(O), 92%
PhCH(Me), 74%
2-cyclohexene, 44%  

Scheme 2.15: Use of Langlois’s silver(I) and nBu4N trifluoromethoxide salts 

 
 In addition, several aliphatic iodides have also been converted into trifluoromethoxy 
compounds by reaction with 28 and 29 in 33 to 85% yield. As a general tendency, silver(I) salt 
28 led to trifluoromethyl ethers in higher yields than tetrabutylammonium salt 29. 
 Finally, chlorides underwent trifluoromethoxylation in presence of the silver salt 28. 
Although yields were moderate (Scheme 2.16), this proves that these reagents are powerful 
tools for nucleophilic trifluoromethoxy transfer onto aliphatic substrates. 
 

 
Scheme 2.16: Trifluoromethoxylation of chlorides by 28 

  
 These methods proved to be very efficient for the preparation of trifluoromethyl ethers 
from aliphatic halides, but the reaction is limited to bench-scale as TFMT is quite expensive. 
Looking for an alternative, B. R. Langlois et al. demonstrated that in-situ formation of the 
trifluoromethoxide salt 29 by reaction of tetrabutylammonium difluorotriphenylsilicate (TBAT) 
36 with 2,4-dinitro(trifluoromethoxy) benzene 37 was possible.31  
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Scheme 2.17: Formation of trifluoromethoxide salts via 37 

 
 Nucleophilic attack of fluoride onto the electron-poor trifluoromethoxy benzene leads to 
release of a trifluoromethoxide anion and the formation of 2,4-dinitro-1-fluoro benzene 38 via 
an aromatic nucleophilic substitution (Scheme 2.17). Subsequent addition of various aliphatic 
bromides led to the corresponding trifluoromethyl ethers in low to good yields (Scheme 2.18). 
 

 
Scheme 2.18: Preparation of trifluoromethyl ethers via 37 

 
 In consequence, this alternative does not work as with TFMT to generate the 
trifluoromethoxide salts, but it avoids its expensive use. 
 
 In 2011, T. Ritter et al. reported on a silver-mediated trifluoromethoxylation of aryl 
boronic acids and aryl stannanes.32 On the same principle, a tris(dimethylamino)sulfonium 
trifluoromethoxide salt 24 (TAS-OCF3) is generated in situ by reaction of TFMT with 
tris(dimethylamino) sulphonium difluorotrimethyl silicate (TASF). Treatment of aryl stannanes 
with 24, silver(I) hexafluorophosphate (AgPF6) and F-TEDA-PF6 in a 1:3 THF/acetone mixture at 
-30 °C led to the corresponding aryl trifluoromethyl ethers in very good yields (Scheme 2.19). 
 5-Trifluoromethoxy-N-Boc indole has been prepared in 72% yield, making this protocol 
one of the rare trifluoromethoxylations of heteroaromatic structures, even if the fluorinated 
substituent is located on the aromatic moiety. In addition, this process is mild enough for the 
preparation of trifluoromethoxy analogues of natural products, such as a morphine derivative 
(59% yield) and amino acids (N-boc-4-OCF3-L-phenylalanine methyl ester has been obtained in 
75% yield). 
 

 
Scheme 2.19: Silver-mediated trifluoromethoxylation of aryl stannanes 

 
 The preparation of aryl trifluoromethoxy compounds has also been obtained from boronic 
acids. In this case, an aryl silver complex is firstly formed by reaction of the aryl boronic acid 
with AgPF6 in presence of sodium hydroxide (Scheme 2.20). Subsequent addition of the 
trifluoromethoxide salt 24 and the additive F-TEDA-PF6 led to the desired compounds in 64 to 
76% yields. 
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Scheme 2.20: Silver-mediated trifluoromethoxylation of aryl boronic acids 

 
 Finally, this synthesis presents a lot of advantages and is very efficient, but the uses of the 
expensive additive F-TEDA-PF6 and of TFMT represent a drawback. 
 
 In conclusion, these methods which have been developed only very recently, are very 
interesting for the preparation of aliphatic and aromatic trifluoromethyl ethers. However, the 
synthesis of aromatic substrates leads to fluorination of the aromatic ring unless in the case of a 
silver-mediated protocol. But this reaction is impossible to scale-up, as TFMT and F-TEDA-PF6 
are very expensive. In addition, an alternative to the use of trifluoromethyl triflate has been 
found with 2,4-dinitrotrifluoromethoxy benzene, which can be scaled-up.  

2.2.1.5. Radical trifluoromethoxylation 

 A few years ago, S. Rozen reported that the addition of trifluoromethyl hypofluorite 
(F3COF) to olefins led to the formation of aliphatic trifluoromethyl ethers via a radical 
mechanism.33 However, the use of aromatic substrates only led to fluorination of the phenyl ring. 
 Very recently, W. Navarrini et al. described the trifluoromethoxylation of aromatic 
compounds by trifluoromethyl hypofluorite via a radical mechanism.34 The reported results 
showed that trifluoromethyl ethers were obtained in a mixture with the fluorinated compounds, 
and conversions of the starting materials were never complete (Scheme 2.21). 
 

 
Scheme 2.21: Reaction of aromatic substrates with FOCF3 

  
 Despite the interesting properties of trifluoromethyl hypofluorite, its high toxicity and the 
fact that it is a potential explosive are major drawbacks for further investigations. 

2.2.2. Synthesis of trifluoromethoxy aromatic substrates 

 In 2010, our group reported the first modular preparation of trifluoromethoxy 
pyridines.5, 35 Firstly, construction of the S-methyl dithiocarbamate 40 has been performed in 
72% yield from 2-chloro-5-hydroxy pyridine 39 (Scheme 2.22) by deprotonation with sodium 
hydroxide followed by alkylation with thiophosgene and sodium methanethiolate. Then, a 
desulphurisation-fluorination sequence has been applied with 80 equivalents of HF/pyridine in 
presence of 4.5 equivalents of DBH and provided 2-chloro-5-trifluoromethoxy pyridine 41 in 
56% yield. 
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Scheme 2.22: Oxidative fluorodesulphurisation sequence applied to pyridines 

 
 The huge excess of HF/pyridine used during the fluorination step limited the scale-up, so 
another approach has been studied. It consisted in the O-alkylation of 2,6-dichloro-5-hydroxy 
pyridine 42 by dibromodifluoromethane to lead to the corresponding –OCF2Br derivative 43. 
Subsequent introduction of the third fluorine atom with SbF3 in presence of catalytic SbCl5 
provided 2,6-dichloro-5-trifluoromethoxy pyridine 44 in 20% yield over two steps (Scheme 
2.23). 
 

 
Scheme 2.23: O-alkylation with freons 

  
 Once again, this method was not suitable for a scale-up, as freons have been recently 
classified as ozone-depleting substances. In addition, the low overall yield was a drawback. 
 
 Thus, another approach was investigated, based on N. N. Yarovenko’s observation that 
phenyl chlorothionoformate 712a can be submitted to chlorination to form trichloromethoxy 
benzene. It was successfully applied to pyridines (Scheme 2.24): chloro-hydroxy pyridines 
underwent O-alkylation with thiophosgene, and subsequent chlorination led to the 
trichloromethoxy compounds in 50 to 79% yield.  
 

 
Scheme 2.24: chlorodesulphurisation-fluorination sequence 

 
 The trichloromethoxy compounds were successfully converted into the corresponding 
trifluoromethyl ethers by reaction with antimony trifluoride and catalytic antimony 
pentachloride in 50 to 64% yield, depending on the position of the trifluoromethoxy substituent 
on the heteroaromatic ring. 
 It has to be noticed that the presence of the chlorine atom at the α-position to the pyridine 
nitrogen atom is crucial, as any of the detailed reactions occur in its absence, or when it is not at 
the 2-position. The presence of another halogen atom (fluorine or bromine) led to degradation 
of the starting material during the fluorination step. 
 The reactivity of these new trifluoromethoxy pyridines has been studied. By means of 
organometallic reagents, the building blocks bearing a trifluoromethoxy substituent at the 2-, 3- 
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and 4-positions have been regioexhaustively functionalised with carboxylic acids, amines, and 
halogen substituents.10 
 To the best of our knowledge, this approach is the only general method providing 
trifluoromethoxy heteroaromatic compounds which is straightforward and suitable for an 
industrial scale.  
 
 A few other literature examples describe the synthesis of heteroaromatic trifluoromethyl 
ethers, but they are only performed on selected substrates. They use Hiyama’s oxidative 
desulphurisation-fluorination sequence36 or O-alkylation with freons (difluorodibromomethane 
and chlorodifluoromethane) and subsequent introduction of the third fluorine atom,37 or 
formation of trichloromethyl ethers followed by fluorination.38 

2.2.3. Conclusion 

 We have detailed the existing methods for the preparation of trifluoromethyl ethers. 
Several methods have been developed, and trifluoromethoxy aromatic and aliphatic compounds 
are now easily accessible. 
 
 Among them, nucleophilic fluorinations represent one of the most widely used methods 
for the preparation of aromatic derivatives. The fluorination can be performed onto 
trichloromethyl ethers, fluoroformates or directly from phenols in presence of carbon 
tetrachloride.  
 The oxidative desulphurisation-fluorination sequence developed by T. Hiyama represents 
a good alternative under mild conditions for the construction of the trifluoromethoxy 
substituent. It has proven to be efficient on aliphatic and aromatic substrates. Later, S. Rozen 
proved that this could be performed in presence of bromine(III) trifluoride. However, the 
fluorinating reagent is used in large excess, and it is highly toxic. 
 More recently, protocols of electrophilic trifluoromethylation have been developed, based 
on CF3-transfer agents. T. Umemoto used trifluoromethyl dibenzofuranium salts which proved to 
be efficient for the trifluoromethylation of aromatic and aliphatic alcohols. However, these 
reagents are unstable above -90 °C and must be prepared in situ by photochemical ring-closure 
which makes their use quite tedious and not suitable for a scale-up. A. Togni reported on the use 
of hypervalent iodine(III) reagents for the transfer of electrophilic trifluoromethyl groups. This 
allowed the preparation of several alkyl trifluoromethoxy compounds in good yields, but the 
reagent revealed to be unselective towards phenols which provided a mixture of O- and  

C-trifluoromethylation. 
 The development of novel nucleophilic trifluoromethoxy transfer reagents provided a new 
tool for the preparation of trifluoromethyl ethers. It is based on the release of a 
trifluoromethoxide anion, followed by trapping by bulky counter-ions to form 
trifluoromethoxide salts avoiding its decomposition into fluorophosgene and fluoride. 
Subsequent addition on substrates bearing leaving groups such as halogens and triflates 
provides the corresponding trifluoromethyl ethers. A. A. Kolomeitsev and B. R. Langlois 
successfully applied this to aliphatic substrates, but failed to prepare aromatic compounds 
which underwent fluorination of the aromatic ring via a SNAr mechanism.  
 Very recently, T. Ritter et al. developed a silver-mediated version of this reaction which 
allowed the access to aromatic trifluoromethoxy compounds from stannanes and boronic acids. 
The mild reaction conditions are suitable for sensitive substrates, but the high prices of the 
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reagents, especially TFMT which is only commercially available at bench scale, are the main 
drawback. 
 A few examples deal with the preparation of aliphatic trifluoromethyl ethers by reaction 
with trifluoromethyl hypofluorite. A recent description of the use of this reagent onto aromatic 
substrates has been reported, but the reaction is not selective. In addition, FOCF3 is highly toxic 
and a potential explosive. 
 Only few references report in details the synthesis of trifluoromethoxy heteroaromatic 
compounds. A chlorodesulphurisation-fluorination sequence has been developed on several 
pyridine building-blocks, and it can be scaled-up. 
 
 With this overview of the recent literature, one can notice that the methods for the 
preparation of heteroaromatic building blocks bearing a trifluoromethoxy substituent are still 
scarce. Thus, the development of such methods is very important in order to provide new tools 
to synthetic chemists for the discovery of new pharmaceuticals and agrochemicals. With this aim 
in mind, we have used the chlorodesulphurisation-fluorination approach for the synthesis of 
molecules of biological interest, and we have investigated the synthesis of pyrazoles bearing a 
trifluoromethoxy substituent. 

2.3. Towards a trifluoromethoxy analogue of Imidacloprid 

 Imidacloprid 45 and Thiacloprid 46 are systemic insecticides which belong to the class of 
neonicotinoids (Figure 2.6). They exhibit a high affinity for insect nicotinic acetylcholine 
receptors (nAChRs), which are located in the central nervous system of insects. In presence of 
Imidacloprid, these receptors are overstimulated and hence blocked, resulting in paralysis and 
subsequent death of the insects.  
 

 
Figure 2.6: Imidacloprid and Thiacloprid structures 

 
 Compounds 45 and 46 are active on numerous insects, but were primarily used as 
aphicides. Due to its broad range of bioactivity, Imidacloprid is one of the key insecticides of 
Bayer CropScience, and represents the most widely used insecticide in the world. Contrary to 
nicotine which is not selective, all the molecules from this class, including Imidacloprid and 
Thiacloprid have a low affinity for mammalian nAChRs, and that high selectivity makes them 
very attractive for agrochemical applications.  
 
 These molecules present the same pyridine core with a chlorine atom at the  
2-position, and an azole moiety bearing a nitrogen-rich substituent (Figure 2.6). The only 
difference between the two molecules is that the azole core is an imidazoline bearing a 
nitroamine substituent in compound 45, and a thiazolidine bearing a cyanamide substituent in 
compound 46. 
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Figure 2.7: Trifluoromethoxy analogues of 47 and 48 

 
 Having developed an access to trifluoromethoxy pyridines, we were interested in the 
synthesis of trifluoromethoxy analogues 47 and 48 of Imidacloprid and Thiacloprid 45 and 46 
(Figure 2.7).  Given that the trifluoromethoxy substituent can be considered as a pseudo-
halogen, replacing the pyridine chlorine atom with a trifluoromethoxy group would allow the 
comparison of biological activities. 

2.3.1. Synthesis of 3-chloromethyl-6-trifluoromethoxy pyridine 

 In order to access both compounds 47 and 48 (Figure 2.7), the synthesis of only one 
trifluoromethoxy pyridine was necessary. Indeed, Imidacloprid can be obtained by a simple 
deprotonation of the nitrogen atom of 58 and nucleophilic substitution of the chlorine atom of 
56 (Scheme 2.25). 
 

 
Scheme 2.25: Retrosynthetic analysis of OCF3-Imidacloprid 47 and OCF3-Thiacloprid 48 

 
 Compound 56 could be synthesised by chlorination of the primary alcohol in presence of 
thionyl chloride, and the primary alcohol 55 could be accessed via reduction of the 2-
trifluoromethoxy nicotinic acid 54 with lithium aluminum hydride (LAH). Given the 
methodology around the synthesis of trifluoromethoxy pyridines and their functionalisation 
which had been previously developed in our laboratory,16 the access to 2-trifluoromethoxy 
nicotinic acid 54 was easy from 2-chloro-6-trifluoromethoxy pyridine 51.  
 
 Starting with 2-chloro-6-hydroxy pyridine 49, the preparation of the chlorothionoformate 

and subsequent chlorination in presence of chlorine in chloroform at room temperature yielded 
the corresponding trichloromethyl ether 50 in 60% yield (Scheme 2.26). Subsequent 
fluorination in presence of antimony trifluoride and catalytic antimony pentachloride provided 
2-chloro-6-trifluoromethoxy pyridine 51 in 53% yield. 
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NCl OCCl3NCl OH

1. NaOH 5%
2. CSCl2 (1 eq), CHCl3

0 °C to rt, 2 h

3. Cl2
CHCl3, rt, 24h

NCl OCF3

SbF3 (2 eq)
SbCl5 (0.2 eq)

140 °C, 3h

60% 53%
49 50 51  

Scheme 2.26: Preparation of 2-chloro-6-trifluoromethoxy pyridine 51 

 
 Now that we had prepared the trifluoromethoxy pyridine 51, we wanted to access  

5-chloromethyl-2-trifluoromethoxy pyridine 56. The position 3 of the pyridine 51 was protected 
with a TMS group by metallation with lithium diisopropyl amide (LDA) and subsequent trapping 
with trimethylsilyl chloride (TMSCl, Scheme 2.27). Synthesis of the nicotinic acid 53 was 
performed by deprotonation with lithium tetramethyl piperidide (LiTMP) followed by trapping 
with carbon dioxide and direct deprotection of the TMS group in 50% yield.  
 

 
Scheme 2.27: Synthesis of 57 via reduction with LAH 

 
 Palladium-catalysed dechlorination to afford the 2-trifluoromethoxy nicotinic acid 54 was 
performed with 76% yield and reduction of the carboxylic acid into the corresponding primary 
alcohol 55 occurred with 30% yield, affording the desired product in a very small amount (8% 
yield over 5 steps). Unfortunately, chlorination of the alcohol 55 in presence of thionyl chloride 
did not provide the target product 56. Although it was present according to the 1H NMR 
spectrum, we were not able to isolate it. 
 Hence, after this first attempt, we had to solve two problems: the reduction had to be 
improved, and we had to find a way to isolate product 56 after chlorination.  
 
 In order to increase the overall yield, we tried to prepare the aldehyde 59 instead of the 
nicotinic acid 53 (Scheme 2.28). Indeed, this could allow us to avoid the reduction of the 
nicotinic acid 54, as the reduction of the aldehyde should be possible during the catalytic 
reductive dechlorination. Therefore, the position 3 of the 6-chloro-2-trifluoromethoxy pyridine 
51 was protected by a trimethylsilyl group under the same conditions. On the second step of the 
synthesis, metallation of the 5-position of the pyridine ring using LiTMP and trapping with DMF 
afforded the corresponding aldehyde 59 in 60% yield.  
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Scheme 2.28: Preparation of 55 via the aldehyde 59 

 
 We performed the combined reduction of the aldehyde 59 into the primary alcohol 60 and 
the dechlorination in presence of Pd/C and ammonium formate. The product 60 was not 
isolated and brought directly to the next step. Deprotection of the TMS substituent with TBAF 
occurred, as the presence of the desired product was confirmed by 1H NMR. However, a lot of 
byproducts had been formed, and we could not isolate 55.  
 
 Therefore, we had to find an alternative approach in order to obtain the chloromethyl 
trifluoromethoxy pyridine 56 in a reasonable yield. We decided to optimise the first approach by 
changing the means of reduction and chlorination, instead of modifying completely the strategy. 
 

2-Trifluoromethoxy nicotinic acid 54 was synthesised from 6-chloro-2-trifluoromethoxy 
pyridine 51 (Scheme 2.27). In the previous attempts to synthesise this molecule, the problem 
was to find a convenient way to reduce the acid in a satisfying yield and to perform its 
chlorination in order to obtain the desired product 56.  
 

MsCl, Et3N

DCM, 0 °C to rt N OCF3

Cl

N OCF3

HOOC

N OCF3

HOBH3·THF

THF, 0 °C to rt

54 55 56
56% 70%

 
Scheme 2.29: Optimised conditions for the reduction and the chlorination steps 

 
The reduction of the acid into the corresponding primary alcohol was performed with 56% 

yield using previously described conditions with BH3·THF39 on a nicotinic acid. The expected 
chlorinated product 56 was obtained by an in situ mesylation-chlorination described on a 
secondary alcohol40 with 56% yield. Therefore, we could obtain the desired product with 12.5% 
overall yield over five steps. 

2.3.2. Conclusion 

 In conclusion, we found appropriate reaction conditions for the obtention of  
3-(chloromethyl)-5-trifluoromethoxy pyridine 56. The desired product was synthesised in five 
steps from 2-chloro-6-trifluoromethoxy pyridine 51 in 12.5% overall yield. Optimising the 
reaction conditions allowed us to improve the reduction and the chlorination steps in order to 
afford the product in reasonable amounts. 
 Finally, this chlorinated building block was sent to Bayer CropScience in Monheim, where 
they performed the couplings with the imidazoline 57 bearing a nitroamine substituent and the 
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thiazolidine 58 bearing a cyanamide substituent to afford Imidacloprid 47 and Thiacloprid 48 
(Scheme 2.30). 
 

 
Scheme 2.30: Preparation of OCF3-Imidacloprid 47 and Thiacloprid 48 

 
 In vitro tests on nicotinic acetylcholine receptors (or nAChRs), and in vivo on Myzus 

Persicae, which is the green peach aphid have been performed. Unfortunately, the synthesised 
trifluoromethoxy analogues of Imidacloprid and Thiacloprid revealed a lower biological activity 
than their chlorinated counterparts. Even if in this case the biological activity was decreased by 
the presence of a trifluoromethoxy group, in other cases it could enhance it. Still, this test 
showed that the presence of this substituent had an influence on its binding to the biological 
receptor. 

2.4. Synthesis of trifluoromethoxy “Magic Pyridine” 

2.4.1. Around “Magic Pyridine” and its utilities 

 “Magic Pyridine” is the 2,3-dichloro-5-trifluoromethyl pyridine. This building-block is very 
important, especially for the design of bioactive molecules. Indeed, as it is highly 
functionalisable, it presents many options for the addition of electrophiles and nucleophiles 
(Figure 2.8).  
 

 
Figure 2.8: Magic Pyridine 61 

 
 For instance, the 2-position can be functionalised with an amino group by a palladium-
catalysed amination or by nucleophilic aromatic substitution of the chlorine atom by a bromine 
atom, followed by a bromine-lithium exchange to functionalise it. The 4-position can be 
metallated with LDA, and subsequently functionalised with a carboxylic acid, a halogen or an 
amine. By protection of this position with a TMS group for example; the 6-position can then be 
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reached by metallation and subsequent trapping with any electrophile.5 The 3-position can 
remain chlorinated, or it can be freed via a reductive palladium-catalysed dechlorination with 
palladium on charcoal. 
 
 “Magic Pyridine” 61 is part of the synthesis pathway of the fungicide Fluopyram 65 
(Figure 2.9). Fluopyram 65 can be prepared by peptide coupling between the amine 63 and  
2-trifluoromethyl benzoic acid 64. The amine itself can be obtained by a saponification 
/decarboxylation sequence followed by reduction of the nitrile function of 62. Nucleophilic 
aromatic substitution of the chlorine atom of 61 at the 2-position by cyano acetate can lead to 
the pyridine 62. 
 

 
Figure 2.9: Retrosynthetic analysis of Fluopyram 65 with “Magic Pyridine” 61 

  
 Hence, we thought that developing a methodology for the preparation of a 
trifluoromethoxy “Magic Pyridine” could be interesting. The wide variety of possibilities that this 
building-block presents can provide many options for the preparation of novel active 
ingredients containing a pyridine core.  
 
 Trifluoromethoxy “Magic Pyridine” 72 has already been described, but the reaction 
pathway was long and tedious.37a,41 2,3-Dichloro-5-nitro pyridine 66 had to be previously 
prepared, as it was not commercially available at the time.  We will not detail this here, and will 
focus on the synthesis of 2,3-dichloro-5-trifluoromethoxy pyridine 72 from 66.  
 

 
Scheme 2.31: Koch’s synthesis of 2,3-dichloro-5-trifluoromethoxy pyridine 72 

 
 Reduction of the nitro group of 66 in presence of iron(0) and HCl led to the aminopyridine 
67 with 85% yield. Then, diazotation of the amine 67 in presence of sodium nitrite and 
fluoroboric acid followed by addition of acetic anhydride provided the acetylated compound 68 
in 46% yield. Subsequent deprotection of the alcohol occurred in 96% yield, and the alcohol 69 
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underwent O-alkylation in presence of chlorodifluoromethane (F22) with 79% yield. The 
difluoromethoxy pyridine 70 was then chlorinated under UV activation to provide the 
chlorodifluoromethoxy pyridine 71. Finally, introduction of the third fluorine atom by reaction 
with antimony trifluoride in presence of catalytic antimony pentachloride led to the desired 
trifluoromethoxy pyridine 72 in 75% yield. Hence, 2,3-dichloro-5-trifluoromethoxy pyridine 72 
was prepared from 2,3-dichloro-5-nitro pyridine in six steps. 
 
 Given the difficulty and the sometimes low yields of this synthesis, we wanted to propose a 
shorter alternative to this process. In addition, this could valorise the two-step protocol we had 
developed for the synthesis of trifluoromethoxy pyridines from hydroxy derivatives.35  

2.4.2. Preparation of 2,3-dichloro-5-trifluoromethoxy pyridine 

 In order to improve the access to the 2,3-dichloro-5-trifluoromethoxy pyridine 72, we had 
imagined two pathways. The first one was based on the “halogen dance” (Figure 2.10).42  
2,3-Dichloro-5-trifluoromethoxy pyridine 72 could be obtained from the 5-hydroxy compound 
69 via the chlorodesulphurisation-fluorination sequence we had developed. The hydroxy 
function could be introduced performing a borylation-oxidation sequence on 73. 2,3-dichloro-5-
iodopyridine 73 would itself be the product of an iodine migration from the 4-position to the  
5-position of the pyridine ring, and compound 74 could be obtained after deprotonation of  
2,3-dichloro pyridine 75 and trapping with iodine.  
 

 
Figure 2.10: Migration pathway to trifluoromethoxy “Magic Pyridine” 72 

 
 This sequence includes five steps from the commercially available 2,3-dichloro pyridine 
75. Except for the fluorination step, we could anticipate good yields, as metallation of pyridines 
using lithium reagents has been widely studied.43 
 
 The second pathway we had imagined was in fact an improvement of the one described 
earlier (Scheme 2.31). We envisaged the construction of the trifluoromethoxy group of 72 from 
5-iodo pyridine 73 as in the “migration pathway”. In this case, 2,3-dichloro-5-iodopyridine 73 
could be obtained from 2,3-dichloro-5-amino pyridine 67 via a Sandmeyer reaction. Contrary to 
what was described by V. Koch et al.,41 we decided to synthesise the 5-iodo pyridine 73 instead 
of preparing the hydroxy compound immediately because of the low yields obtained. Finally, the 
amino pyridine 67 could be prepared by reduction of the 5-nitro pyridine 66 which is now 
commercially available. 
 

 
Figure 2.11: Diazotation pathway to trifluoromethoxy “Magic Pyridine” 72 
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 This pathway also contains five steps, but we could not predict the outcome of the 
diazotation/iodination and the fluorination steps. Nevertheless, we investigated both 
approaches simultaneously in order to compare their efficiency. 

2.4.2.1. Migration approach 

 The first step consisted in the iodination of 2,3-dichloro pyridine 75 at the 4-position, 
which was successfully performed by deprotonation with LDA followed by addition of iodine 
with 82% yield (Table 2-2). Unfortunately, the second step which consisted in the migration of 
the iodine atom to the position 5 did not occur. 
 

 
 

Entry Base Equiv. 
Metallation 

time 
Observations 

1 LDA 1,2 2h No desired product observed 
2 LDA 1,2 4h " 
3 LDA 1,5 2h " 
4 LiTMP 2 2h " 

Table 2-2: Conditions for iodine migration 

 
 We could observe that the nature of the base, the metallation time and the number of base 
equivalents had no influence on the outcome of the reaction. Hence, we decided to abandon this 
route and to focus on the other one. 

2.4.2.2. Diazotation approach 

The second synthetic path to “Magic Pyridine” was already partly described, but we tried to 
improve it. Starting from the commercially available 2,3-dichloro-5-nitro pyridine 66, the first 
step was the reduction of the nitro group in presence of iron(0) and HCl, which afforded the 
amino pyridine 77 with 85% yield (Scheme 2.32).  
 

 
Scheme 2.32: Preparation of 72 via the diazotation approach 

 
 The amine 67 was converted to the iodo-compound 73 via the diazonium salt, yielding 

82%. The product underwent a borylation and oxidation to provide the desired hydroxy 
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pyridine 69 with 90% yield, using oxone® as the oxidizing agent under basic conditions44 
instead of 56% when using hydrogen peroxide under acidic conditions. 

 Finally, O-alkylation with thiophosgene followed by the chlorodesulphurisation-
fluorination sequence provided the final 2,3-dichloro-5-trifluoromethoxy pyridine 72, but only 
in 20% yield from the hydroxy compound 69. This represented a 12.5% yield over five steps. 

2.4.3. Conclusion 

 The aim of this project was to develop a straightforward and efficient access to  
2,3-dichloro-5-trifluoromethoxy pyridine 72 in order to open an access to a great variety of 
potentially active molecules containing a trifluoromethoxy pyridine core. We have successfully 
managed to isolate the final building block 72 in 12.5% yield over five steps. 
 
 The first approach failed, as we could not perform the iodine migration. An improved 
version of the synthesis of this building-block has been developed. The low yield of the 
chlorodesulphurisation-fluorination sequence is the weakness of our approach, as the overall 
yield has not been increased. However, this sequence made our approach shorter than the one 
previously described, and we improved the outcome of the Sandmeyer reaction via an iodination 
followed by a borylation/oxidation sequence performed in high yields. 
 
 It should be noticed that according to the Montreal protocol, the use of Freon 22 will be 
prohibited by 2020. Hence, the method we have developed is more suitable for the synthesis of 
2,3-dichloro-5-trifluoromethoxy pyridine 72. Finally, we can claim that we could develop an 
efficient access to this building block, which can be adaptable to an industrial scale. 

2.5. Towards 5-trifluoromethoxy pyrazoles 

 The methodology developed by our team was very efficient and straightforward for the 
synthesis of trifluoromethoxy pyridines, providing many options for their functionalisation. We 
decided to construct such a fluorinated group on pyrazoles. 

2.5.1. Introduction and objectives 

 Our group showed that the construction of a trifluoromethoxy group onto a pyrazole was 
possible.45 Starting from 4-hydroxy pyrazole 79, the xanthogenate 80 was prepared in 49% 
yield, and an oxidative desulphurisation-fluorination onto the S-methyl dithiocarbamate 80 
provided the 4-trifluoromethoxy pyrazole 82 (Scheme 2.33). However, the pyrazole was 
brominated on the aromatic ring during the fluorination step. 
 

 
Scheme 2.33: Synthesis of a 4-trifluoromethoxy pyrazole 
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 The pyrazole 81 was not isolated, and underwent readily a reductive debromination in 
presence of zinc(0), which led to the 4-trifluoromethoxy pyrazole 82 in 44% yield. This is the 
very first report on the synthesis of a trifluoromethoxy pyrazole. Hence, we wanted to 
investigate this in order to develop a general method for the synthesis of trifluoromethoxy 
pyrazoles. 
 
 We started by studying the literature for the synthesis of 4-hydroxy pyrazoles bearing a  
N-protecting group which could be deprotected later, as the phenyl one was not. However, we 
found that the methods for the preparation of unsubstituted 4-hydroxy pyrazoles are scarce and 
essentially concern the synthesis of N-phenyl pyrazoles. Hence, we realised that preparation of 
4-hydroxy pyrazoles should be more efficient by the use of trifluoromethoxylated precursors, 
and we decided to study 3- and 5-trifluoromethoxy pyrazoles. 
 
 The aim was to try to construct a trifluoromethoxy group at the 3- or 5-position of the 
pyrazole ring. We decided to start the study with 5-trifluoromethoxy pyrazoles, as the 
preparation of 3-OCF3 pyrazoles is similar. Ideally, the pyrazole would be unsubstituted at the  
3- and 4-positions in order to provide many options for further functionalisation by means of 
organometallic reagents. Furthermore, we wanted to obtain N-H pyrazoles to be able to 
functionalise the nitrogen atom with any group on demand. 
 For the construction of the trifluoromethoxy group, two options were selected: on one 
hand, we could use the oxidative desulphurisation-fluorination which had successfully provided 
4-OCF3 pyrazoles. On the other hand, we could apply the alkylation/chlorodesulphurisation/ 
fluorination sequence which had been successfully developed by our group on pyridines.5, 35 

2.5.2. Oxidative fluorodesulphurisation approach 

 As our first aim was to provide an access to 5-OCF3 pyrazoles which were unsubstituted at 
the 3- and 4- positions, we started with the preparation of 5-hydroxy pyrazoles. Indeed, we had 
to find a way to perform O-alkylation on these pyrazoles in order to prepare the xanthogenate 
before the fluorination step. Several methods exist in order to afford 5-hydroxy pyrazoles, but 
few of them allow an access to pyrazoles which are not functionalised.  

2.5.2.1. Preparation of 5-(S-methyl) dithiocarbamate pyrazoles 

 We found two convenient protocols in the literature. The first attempt consisted in the 
synthesis of pyrazoles by reaction of methyl hydrazine on diethyl (ethoxymethylene)malonate46 
83 and subsequent saponification and decarboxylation to afford the corresponding N-methyl  
5-pyrazolone 84 (Scheme 2.34). The yields were around 60% over two steps.  
 

 
Scheme 2.34: Synthesis of unsubstituted 5-pyrazolone 
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 Then, a more convenient one-step procedure was tried: it consisted in the reaction of 
hydrazine with methyl trans-3-methoxyacrylate 8547 in methanol and gave the desired pyrazole 
84 in 90% yield. This method gives an access to several pyrazolones bearing different  
N-protecting groups. 
  
 The next step was to try an O-methylation in order to synthesise the xanthogenate 86. 
Several attempts were done, first using the described conditions for pyridines (Scheme 2.35), 
but this method revealed to be inefficient.  
 

 
Scheme 2.35: Attempt of construction of the xanthogenate on 84 

 
 As the acidity of the proton of the hydroxy pyrazole 84 might be lower than the one of 

hydroxy pyridines, we decided to do a screening of several conditions in order to obtain the 
desired product (Table 2-3). We trapped the anion with methyl iodide instead of thiophosgene 
for the optimisation of the conditions. Neither the solvent nor the base had an influence on the 
outcome of the reaction. Indeed, according to 1H NMR, we only afforded the N-methylation 
product 87. 

 

 
Entry Base Solvent Trapping reagent Observations 

1 MeONa MeOH MeI Complete conversion 
2 K2CO3 DMF MeI Complete conversion 
3 NaH MeOH MeI Complete conversion 
4 NaH DMF MeI Complete conversion 

Table 2-3: Attempts of O-alkylation of 5-pyrazolone 84 

  
 In order to favour O-alkylation over N-alkylation, we decided to introduce a substituent at 
the 3-position of the pyrazole. Hence, we chose to prepare 3-methyl and 3-halogeno pyrazoles as 
they had been reported in the literature to undergo O-alkylation. 48, 49  
 

 
Scheme 2.36: Preparation of 88 and of the xanthogenate 89 

 
 1,3-Dimethyl-5-hydroxy pyrazole 88 was obtained by reaction of methyl hydrazine with 
ethyl acetoacetate in 92% yield50 (Scheme 2.36). O-alkylation in presence of thiophosgene and 
sodium methane thiolate to prepare the dithiocarbamate 89 provided the desired product in 
very low yields. Given that the nature of the base and the solvent did not influence the yield, and 
that we had not obtained enough material to try a fluorination, we decided to concentrate our 
efforts on 3-halogeno pyrazoles. 
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 We focused again on Hiyama’s method in order to obtain the 5-trifluoromethoxy 
pyrazoles. We found a convenient route to 3-chloro pyrazoles, which had been reported to 
undergo O-alkylation in presence of isopropyl iodide and potassium carbonate in DMF with 73% 
yield.49 We applied this protocol to our compounds and decided to prepare simultaneously the 
chlorinated and the brominated compounds (Scheme 2.37). 
 

 
Scheme 2.37: Synthesis of 3-halogeno pyrazoles 91 

 
  The pyrazolone 90 was synthesised by reaction of methyl hydrazine with diethyl 
(ethoxymethylene)malonate in presence of potassium carbonate with 83% yield. The pyrazole 
ring was then chlorinated with N-chlorosuccinimide to afford 91a with 89% yield, but we were 
not able to convert it to the corresponding xanthogenate 92a. 
 In consequence, we prepared the brominated derivative 91b by reaction with NBS. In 
addition, a bromine atom would be more useful for further functionalisation of the pyrazole ring 
after construction of the trifluoromethoxy group. The bromination of the ring was successfully 
performed in 92% yield, and subsequent reaction with thiophosgene and sodium methane 
thiolate provided the xanthogenate 92b in 17% yield. Despite the low yield, the reactivity was 
enhanced compared to 3-methyl pyrazoles.  
 

N
N OH

F2HC
1. NaOH, H2O

2. C(S)Cl2, CHCl3
3. NaSCH3, H2O
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20%93 94  
Scheme 2.38: Construction of the xanthogenate 94 

 
 Simultaneously, we had received 1-methyl-3-difluoromethyl-5-hydroxy pyrazole 93 from 
Bayer CropScience (Scheme 2.38). The presence of an electron-withdrawing-group might have a 
positive influence on the outcome of the reaction. We decided to try the construction of the 
xanthogenate substituent on this compound in order to compare the yields. Thus, 93 was 
deprotonated with sodium hydroxide, and subsequent addition of thiophosgene followed by 
sodium methane thiolate provided compound 94 in 20% yield.  
 
 Finally, the substituent of the pyrazole ring did not have an important influence on the 
outcome of the reaction, as the yield was not improved by the presence of the difluoromethyl 
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group. It should be noticed that the conversion of the hydroxy pyrazoles to the 
chlorothionoformates was in each case complete. Hence, in our case, the problem came from the 
reactivity of sodium methane thiolate towards 5-pyrazolones. We decided to test fluorination 
conditions on the brominated and the difluoromethylated compounds. Indeed, if the fluorination 
step was successful, we could study the influence of other parameters later in order to optimise 
the O-alkylation step. 

2.5.2.2. Towards 5-trifluoromethoxy pyrazoles 

 Hence, we performed oxidative fluorodesulphurisation conditions on the 3-bromo and  
3-difluoromethyl dithiocarbamates 92b and 94. Those conditions had been applied for the 
preparation of 4-trifluoromethoxy pyrazole45 and use 80 equivalents of HF/pyridine and 4.5 
equivalents of N,N-dibromohydantoin in dichloromethane (Scheme 2.39). 
 
 Unfortunately, these reaction conditions led to very messy reaction mixtures. We could 
observe the bromination of the pyrazole ring in the case of the 3-CHF2 pyrazole 94. Many 
byproducts were formed in the two cases and changing the reaction time and the temperature of 
the fluorination step did not influence the outcome of the reaction.  
 
 In conclusion, this route was inadaptable to the preparation of 5-trifluoromethoxy 
pyrazoles, so we had to find an alternative. As we had realised that the conversion of hydroxy 
pyrazoles to the corresponding chlorothionoformates was total, we decided to investigate this 
route. 
 

 
Scheme 2.39: Attempts of trifluoromethoxylation of compounds 92b and 94 

2.5.2.3. Reactivity of chlorothionoformates  

 Deprotonation of 5-hydroxy pyrazoles with a base and subsequent addition of 
thiophosgene leads to chlorothionoformates quantitatively. As we had to find an alternative, we 
decided to study the reactivity of chlorothionoformates under Hiyama’s conditions. In this case, 
we could obtain the corresponding chlorodifluoromethyl ethers, on which the third fluorine 
atom could subsequently be introduced (Scheme 2.40). 
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Scheme 2.40: Proposed fluorination of chlorothionoformates 

 
 Consequently, we decided to apply this route to 3-bromo-5-hydroxy pyrazole 97. Several 

reaction conditions were tried for the fluorination step (Table 2-4), and this led either to total 
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recovery of the starting material (entries 1 to 3) or to very messy reaction mixtures (entries 4 
and 5).  

 
We think that if fluorination occurred, the synthesised products were not stable enough to 

be isolated properly. Finally, the oxidative fluorodesulphurisation conditions revealed to be 
inappropriate for the preparation of chlorodifluoromethyl and trifluoromethyl ethers at the  
5-position of pyrazoles. 
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Entry Eq. of DBH Temperature Time Observations 

1 3 0 °C 2h / 

2 3 0 °C to rt overnight / 

3 4.5 0 °C 2h / 

4 4.5 0 °C 4h Not interpretable 

5 4.5 0 °C to rt overnight Not interpretable 
Table 2-4: Attempts of fluorination of chlorothionoformate 97 

  

 As all the conditions we had studied had been unsuccessful, we chose to change the 
strategy completely, and to perform a chlorodesulphurisation-fluorination sequence on 
pyrazoles.  

2.5.3. Chlorodesulphurisation-fluorination sequence 

 We thought that we could use the alkylation/chlorodesulphurisation/fluorination 
sequence developed on pyridines.5 We had already developed an access to the 
chlorothionoformate 97. During the chlorination step, there is a risk of chlorination of the 
electron-rich pyrazole ring when all the positions are not functionalised. Therefore, we 
investigated several chlorination and bromination methods in order to obtain the halogenated 
compounds 99a and/or 99b under milder conditions than the use of gaseous chlorine (Scheme 
2.41). 
 

 
Scheme 2.41:  Access to O-alkylated pyrazoles 

 
 We tested several halogenating reagents (Table 2-5), and realised that the nature of the 
halogenating reagent had no influence on the outcome of the reaction (entries 1, 2, 5 and 6). 
Increasing the temperature and changing the solvent (entries 1, 3 and 4) did not lead to 
conversion of the starting material. Unfortunately, none of these methods provided the desired 
trihalogeno methyl ethers, and we always recovered the starting material. 
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Entry Halogenating agent Temperature Solvent Time Observations 

1 NBS -75 °C to rt CHCl3 16h Total recovery of 97 

2 NCS " " " “ 

3 NBS " CH2Cl2 16h “ 

4 NBS 85 °C / 16h “ 
5 Trichloroisocyaniuric acid Reflux CHCl3 16h “ 

6 Br2 rt CCl4 3 days “ 

Table 2-5: Reaction conditions for the obtention of the pyrazoles 99a and 99b 

 

  We then decided to perform the chlorination step under the conditions described for 
pyridines. The chlorothionoformate pyrazole 97 was dissolved in chloroform without further 
purification after the alkylation step, and the solution was saturated with gaseous chlorine twice. 
A change of the colour of the solution and total disappearance of the starting material were 
observed. Two products had been formed, and after purification we could isolate the 
trichloromethyl ether 99a, but only in 6% yield. The major product being the pyrazole 100 

(Scheme 2.42) obtained in 38% yield.  
 

 
Scheme 2.42: Chlorination of the thioniochloroformate 97 with chlorine 

 
 Surprisingly, the chlorination of the N-methyl substituent had occurred, and the O-alkyl 
group had been eliminated. The formation of 100 proved that the alkyl group introduced onto 
the 5-hydroxy pyrazole can be removed in presence of nucleophilic halogens. The reaction was 
carried out again, but saturating the solution only once with gaseous chlorine. After one night, 
the major product isolated was the trichloromethyl ether 99a with 47% yield. 
 
 After obtention of this chlorinated pyrazole, we performed a chlorine/fluorine exchange 
using antimony trifluoride and a catalytic amount of antimony pentachloride at 150 °C.5 But the 
high temperatures needed for this reaction only led to decomposition of the pyrazole. We 
decreased gradually the fluorination temperature until 100 °C, and we observed every time a 
complete degradation of the starting material. Attempts to perform the fluorination in presence 
of milder reagents such as HF/pyridine or HF/triethylamine led to total recovery of the starting 
material. 
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 We concluded that these reaction conditions were not suitable for the preparation of  
5-OCF3 pyrazoles. As we had tried all the convenient approaches that had been reported for the 
preparation of aryl trifluoromethoxy derivatives, we decided to abandon this project. 

2.5.4. Conclusion and perspectives 

 In conclusion, despite all the efforts put into the study of various approaches we were not 
able to prepare and isolate 5-OCF3 pyrazoles. The study started on the basis that  
4-trifluoromethoxy pyrazoles had been obtained by oxidative fluorodesulphurisation on the 
corresponding xanthogenate.45 We thought that the xanthogenate could be constructed onto  
5-hydroxy pyrazoles and that subsequent fluorination under Hiyama’s conditions could lead to 
5-OCF3 pyrazoles. 
 
 However, when we tried to construct the xanthogenate substituent on 5-hydroxy 
pyrazoles, we either obtained N-methylation, or low O-methylation yields. Variations around the 
pyrazole substitution pattern did not afford the dithiocarbamates above 20% yield. Even though 
the obtention of the pyrazole xanthogenates was not satisfactory, we performed oxidative 
fluorodesulphurisation on the 3-difluoromethyl and 3-bromo compounds. Unfortunately, this 
did not lead to the trifluoromethyl ethers but to complex reaction mixtures. 
 
 Hence, as the conversion of 3-bromo-5-hydroxy pyrazole into chlorothionoformate was 
complete, we studied its reactivity under “Hiyama-like” conditions. This could lead to  
5-chlorodifluoromethyl ethers, and open an access to 5-trifluoromethoxy pyrazoles. Once again, 
this either led to complete recovery of the starting material or to messy reaction mixtures with 
no detection of the desired product, depending on the reaction conditions. 
 
 Finally, as oxidative desulphurisation-fluorination conditions were not applicable to  
5-hydroxy pyrazoles, we decided to change the strategy. We chose to apply an 
alkylation/chlorodesulphurisation/fluorination sequence that had been developed on pyridines 
for the obtention of trifluoromethyl ethers. In order to achieve this, we had to find a way to 
obtain trichloro or chlorodibromo methyl ethers from chlorothionoformates in order to perform 
a halogen/fluorine exchange on these substrates. After several attempts, we could obtain  
5-trichloromethoxy pyrazoles by chlorination with gaseous chlorine in 47% yield. However, 
fluorination with a SbF3/SbF5 mixture proved to be too harsh for the substrates and led to 
degradation of the trichloromethoxy pyrazoles. Changing the fluorination reagent for 
HF/pyridine and HF/triethylamine led to complete recovery of the starting material. 
 
 In conclusion, all the experiments we have performed showed that the obtention of 5-OCF3 
pyrazoles was not possible under the conditions we had chosen. This might be due to the 
sensitivity of these substrates, which degraded under harsh conditions. The fail of this method 
could also be explained by a lack of stability of the formed trifluoromethyl ethers. Indeed, we 
observed the elimination of the alkyl group during the formation of the trichloromethoxy 
compound, when chlorine was used in a large excess. There could be a similar reaction in 
presence of fluorine, and partial elimination of the alkyl group, leading to the complex mixtures 
we observed. 
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 When we studied the synthesis of 5-trifluoromethoxy pyrazoles, the obtention of aromatic 
trifluoromethyl ethers from stannanes and boronic acids in presence of silver(I) 
hexafluorophosphate (AgPF6) and F-TEDA-PF6 and TAS·OCF3 had not been reported yet. It could 
be interesting to apply these conditions to pyrazoles in order to see if this mixture is efficient for 
the preparation of 5-trifluoromethoxy pyrazoles (Scheme 2.43). 
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NaHCO3 (2 eq)
THF/acetone 1:3,
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Scheme 2.43: Possible approaches towards 5-trifluoromethoxy pyrazoles 
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 The development of synthetic methods for the preparation of diversely fluorinated 
heteroaromatic building blocks is very important for life-sciences oriented research. In the past 
decades, many methods have been reported for the preparation of pyridine building blocks 
bearing fluorinated substituents,1,2 most of which are a single fluorine atom and/or a 
trifluoromethyl substituent. Fewer methods for the preparation of pyridines bearing 
perfluoroalkyl groups are reported (CnF2n+1, n>1). 
 More recently, the preparation of pyridines containing emerging fluorinated groups has 
attracted a lot of attention. Among them, the introduction of difluoromethyl3 and 
trifluoromethoxy4 groups onto pyridines has been described and these building blocks will find 
an application in the design of new bioactive agents. As these fluorinated substituents are 
scarcely described, their potential influence on biological activity remains unexplored. 
 Fluorinated methyl ethers are present in agrochemicals and pharmaceuticals (Figure 3.1), 
as it has been detailed in the previous chapter. For instance, Riluzole (Sanofi-Aventis) contains a 
trifluoromethoxy substituent, the plant growth regulator Primisulfuron-methyl (Ciba Geigy) a 
difluoromethyl ether, and the anaesthetic Sevoflurane (Abbott Laboratories) a 
monofluoromethoxy group.  
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Figure 3.1: Bioactive compounds bearing fluorinated methyl ethers 

 
 In contrast, mixed chloro/fluoro methyl ethers have been scarcely described. These 
fluorinated groups have been considered as intermediates for the preparation of 
trifluoromethoxy5 and difluoromethoxy6 substituents for a long time, as chlorine-fluorine 
exchange is the most widely used method for the synthesis of fluorinated molecules.7 Recently, 
they have attracted interest as they might confer unprecedented biological activities to 
molecules.  

 
Figure 3.2: Bioactive molecules containing an –OCF2Cl group 

 
 Molecules containing an -OCF2Cl have been reported to have potential anti-cancer 
activity8,9 for IM-023911 and insecticidal properties10 for 101 (Figure 3.2). OCF2Cl- and OCFCl2-
containing methyl ethers have been described as anaesthetic agents.11 However, these 
fluorinated methyl ethers are constructed onto aromatic molecules and in the literature the 
references concerning heteroaromatic compounds remain scarce. Preparing OCF2Cl- and OCFCl2-
containing heteroaromatics still constitutes a challenge. Therefore, we decided to study the 
possibility of constructing such fluorinated substituents on pyridines.  
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3.1. State of the art 

3.1.1. Preparation of –OCF2Cl and –OCFCl2 aromatic compounds 

 All the methods reporting the preparation of mixed chloro/fluoro methyl ethers consist in 
fluorination of chlorinated precursors. 
 In 1979, A. E. Feiring described the preparation of 2,3-dichloro chlorodifluoromethoxy 
benzene 103 by reaction of 2,3-dichloro phenol 102 in presence of tetrachloromethane and in-

situ fluorination with anhydrous HF.12 Here, the aim was to obtain trifluoromethyl ethers, so 
hydrogen fluoride was used in a large excess in presence of boron trifluoride. The 
chlorodifluoromethoxy compound 103 was obtained as a side-product and as a mixture with the 
trifluoromethoxy benzene 104 (Scheme 3.1). 
 

 
Scheme 3.1: Obtention of chlorodifluoromethyl ethers from phenols 

 
  Conversion of phenols into –OCF2Cl groups has also been described by O-alkylation with 
diphosgene followed by fluorination with HF,13 and by O-alkylation with CHClF2 followed by 
photochlorination.14 However, these products were described as side-products in the 
preparation of trifluoromethoxy compounds. 
 
 More recently, A. Pascual and coworkers reported the preparation of 
chlorodifluoromethoxy benzophenones.15 The p-anisyl acyl chloride 106 was converted into the 
trichloromethoxy compound 107 in presence of PCl5 and gaseous chlorine (Scheme 3.2). 
Fluorination in presence of anhydrous HF at -20 °C led to the insertion of two fluorine atoms 
generating the corresponding chlorodifluoromethoxy compound 108a.  
 

 
Scheme 3.2: Preparation of –OCF2Cl benzophenone 109 

 
 The acyl fluoride 108b was simultaneously generated and was submitted without 
isolation to electrophilic aromatic substitution in presence of chlorobenzene and boron 
trifluoride to provide the benzophenone 109 in 69% yield from 108a and 108b as a 98:2 
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mixture of the -OCF2Cl and -OCF3 derivatives. In addition, this method is scalable and the 
insertion of only two fluorine atoms is controlled performing the reaction at low temperature. 
 
 The preparation of chlorodifluoromethoxy benzenes by chlorination of difluoromethyl 
ethers has been studied by A. I. Shipilov et al.16 This study has shown that the initiation of the 
reaction has a huge influence on its outcome. Indeed, difluoromethyl ethers did not undergo 
chlorination in presence of PCl5, but under radical conditions. The difluoromethoxy benzene 110 
provided the corresponding –OCF2Cl compound 111 in better yields by UV-initiated 
chlorination, and the yields depended on the intensity of the UV irradiation (Scheme 3.3). 
 

 
Scheme 3.3: Chlorination of aromatic difluoromethyl ethers 

  
 The conversion of trichloromethoxy benzene 112 into –OCF2Cl is also possible by 
nucleophilic fluorination in liquid HF under pressure in presence of catalytic antimony 
pentachloride.17 Depending on the temperature, difluorination or trifluorination have been 
observed, providing either chlorodifluoromethoxy or trifluoromethoxy benzenes 111 and 34 
(Scheme 3.4). The reaction provided the same result in absence of antimony pentachloride at 
50 °C for one hour. 
 

OCCl3 OCF2ClHF (4 eq)
SbCl5 (0.02 eq)

10 bars, 30 °C
2h

95%

OCF3

97 : 3

112 111 34  
Scheme 3.4: Fluorination of trichloromethoxy benzene with HF/SbCl5 

 
 These reaction conditions are selective and provide the chlorodifluoromethoxy benzene 
111 in very good yields and are scalable, but they necessitate a safety equipment at a laboratory 
scale. 
 
 S. Rozen et al. reported that aryl and alkyl chlorodifluoromethyl ethers could be prepared 
by reaction of chlorothionoformates with bromine trifluoride.18 Deprotonation of alkyl primary 
alcohols with triethylamine followed by O-alkylation with thiophosgene led to the 
chlorothionoformates 113a to 113e (Scheme 3.5). Subsequent fluorination in presence of two 
equivalents of bromine trifluoride provided the chlorodifluoromethoxy compounds 114a to 
114e in 60 to 80% yield.  
 Similarly, phenols 115a to 115f were converted into the chlorodifluoromethoxy 
compounds 116a to 116f in 40 to 80% yield. Adding three equivalents of bromine trifluoride led 
to formation of the –OCF2Cl products along with bromination of the aromatic ring. Despite its 
efficiency, this method has proven to be only applicable to aromatic substrates containing strong 
electron-withdrawing groups, and forces the use of highly toxic bromine trifluoride. 
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Scheme 3.5: Preparation of –OCF2Cl compounds by fluorination of chlorothionoformates with BrF3 

 
 The same research group described the preparation of the corresponding difluoromethyl 
ethers by reduction of the chlorodifluoromethoxy substituent under radical conditions.6 This 
was only described once on an aromatic compound and the nitro group had to be reduced into 
the amino function before the dechlorination step was performed (Scheme 3.6). 
 

 
Scheme 3.6: Reductive preparation of difluoromethoxy compounds 

 
 More recently, the preparation of a pyridine-bromine trifluoride complex and its use as a 
fluorinating reagent has been reported.19 In a similar reaction, chlorodifluoromethoxy 
compounds are synthesised from the corresponding chlorothionoformates with the Py.BrF3 
complex. Using this reagent, the preparation of aromatic chlorodifluoromethoxy compounds was 
performed with no side-bromination on the aromatic ring, and it has even been performed on an 
aromatic substrate bearing an electron-donating group (Scheme 3.7). 
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O S
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CFCl3
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Ar = 4-ClPh, 80%

4-iPr-Ph, 80%

 
Scheme 3.7: Fluorination of aromatic chlorothionoformates with Py.BrF3 

 
 In 2006, L. Saint-Jalmes reported on the preparation of various aromatic mixed  
chloro/fluoro methyl ethers and thioethers.20 This method was more applicable to a laboratory 
scale, as it described the selective chlorine/fluorine exchange on trichlorinated precursors with 
HF/pyridine and HF/triethylamine (Scheme 3.8).  
 

 
Scheme 3.8: Controlled insertion of fluorine by reaction with HF/Py and HF/Et3N 
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 Trichloromethoxy benzene 112 provided chlorodifluoromethoxy benzene 111 in 97% 
yield with 40 equivalents of HF/pyridine, and dichlorofluoromethoxy benzene 117 in 93% yield 
with 40 equivalents of HF/triethylamine. This method presents the main advantage of using 
milder reagents such as HF/pyridine and HF/triethylamine instead of anhydrous HF. 
 
 To the best of our knowledge, only one other method has been reported for the obtention 
of dichlorofluoromethoxy aromatic compounds.21 O-alkylation of phenol with carbonothioic 
chloride fluoride 118 (Scheme 3.9) provided the fluorothionoformate 119, which was 
chlorinated in presence of gaseous chlorine to obtain the corresponding dichlorofluoromethoxy 
benzene 117 in 80% yield. 
 

 
Scheme 3.9: Chlorination of fluorothionoformate 119 

 
 Despite its great efficacy, this method presents the drawback that very toxic and difficult-
to-handle products are used, and that 118 is not commercially available. 
  
 Overviewing all the detailed methods, we can conclude that nucleophilic fluorination is a 
key step for the obtention of mixed chloro/fluoro methyl ethers. The preparation of 
chlorodifluoromethoxy compounds has been widely described, whereas the 
dichlorofluoromethoxy ones were only reported twice by mono-fluorination of the 
corresponding trichloromethoxy compound in presence of HF/triethylamine and by 
chlorination of a fluorothionoformate. 

3.1.2. Preparation of –OCF2Cl heteroaromatic compounds 

 The synthesis of heteroaromatic structures bearing mixed chloro/fluoro methyl ethers has 
scarcely been reported, and concerns OCF2Cl-pyridines. The first reference described22 the 
obtention of the pyridine 71 via O-alkylation of the hydroxy pyridine 69 with CHClF2 (Freon 22) 
in 79% yield and subsequent photochlorination with 57% yield (Scheme 3.10). 
 

 
Scheme 3.10: Preparation of 2,3-dichloro-5-OCF2Cl pyridine 

 
 This has been reported to work only on chlorinated pyridines, as the alkylation step did 
not occur in the absence of chloro-susbtituents.4 The same sequence applied to 2,6-dichloro-3-
hydroxy pyridine 69 provided the final product 71 in comparable yields (Scheme 3.11). 
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Scheme 3.11: Preparation of 2,6-dichloro-3-OCF2Cl pyridine 

 
 Recently, the obtention of an –OCF2Cl pyridine has been described via nucleophilic 
fluorination with antimony trifluoride in presence of catalytic antimony pentachloride.23  
2-Chloro-5-hydroxy pyridine 39 was converted into the trichloromethoxy pyridine 122 (Scheme 
3.12) by O-alkylation with thiophosgene and chlorination with gaseous chlorine in 21% yield. 
Subsequent fluorination led to the desired chlorodifluoromethoxy pyridine 123 in 83% yield. 
 

 
Scheme 3.12: Fluorination of the trichloromethoxy pyridine 122 with SbF3 

 
 Surprisingly, the fluorination provided only the difluorinated product 123, which has been 
described to be very difficult to isolate in pure form.24 Indeed, fluorination under these 
conditions usually leads to an unseparable mixture of the mono-, di- and trifluorination 
products. Nevertheless, this method proved to be very efficient, as the fluorination yield is 
excellent. 
  
 To the best of our knowledge, no method for the preparation of dichlorofluoromethyl 
ethers onto heteroaromatic compounds has yet been reported. 

3.2. Objectives 

 In conclusion, almost all the described methods for the preparation of aromatic and 
aliphatic chlorodifluoromethyl ethers involve nucleophilic fluorination of the chlorinated 
precursor. The source of nucleophilic fluoride can be anhydrous HF, with sometimes addition of 
a Lewis acid such as antimony pentachloride or boron trifluoride. It can also be bromine 
trifluoride, which has provided chlorodifluoromethoxy arenes bearing strong electron-
withdrawing groups and electron-rich -OCF2Cl benzenes when used as a complex with pyridine. 
Finally, milder reagents such as HF/pyridine can be used for the preparation of 
chlorodifluoromethoxy-substituted aromatic compounds.  
 An alternative to nucleophilic fluorination allows the synthesis of these building blocks:  
O-alkylation with CHClF2 (Freon 22) followed by photochlorination provides the corresponding 
aromatic chlorodifluoromethyl ether.  
 
  In contrast, only two methods have been described for the preparation of 
dichlorofluoromethoxy benzene. This compound was obtained by fluorination of 
trichloromethoxy benzene in presence of HF/triethylamine and by chlorination of 
fluorothionoformate. 
 
 The construction of -OCF2Cl and –OCFCl2 groups onto heteroaromatic structures has been 
less studied. The preparation of chlorodifluoromethoxy pyridines has been described by 
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chlorination of difluoromethyl ethers and by fluorination of trichloromethoxy compounds in 
presence of antimony trifluoride and catalytic antimony pentachloride. However, the first 
method includes the use of Freon 22 which has limited commercial availability, and the second 
one often leads to an inseparable mixture of mono-, di- and trifluorinated products. To the best 
of our knowledge, dichlorofluoromethoxy-substituted heteroaromatic compounds have never 
been reported. 
 
 To conclude, we realised that there were very few existing methods for the preparation of 
mixed chloro/fluoro methyl ethers of heteroaromatic compounds and that they could be 
dramatically improved. Thus, we decided to study the preparation of such compounds, as they 
could be useful for the synthesis of molecules with potential biological activity. In some cases, 
they also could open a new access to trifluoromethoxy-functionalised heteroaromatic structures. 
A detailed study on the preparation of trifluoromethoxy pyridines has recently been described 
by our group,4 which revealed the high interest in pyridines, present in numerous bioactive 
compounds.25 Therefore, we decided to study the preparation of mixed chloro/fluoro methyl 
ethers on pyridines. 
 
 As a starting point, the previous study on trifluoromethoxy pyridines had provided an 
access to chlorothionoformates and to trichloromethoxy pyridines (Scheme 3.13) in moderate to 
very good yields from commercially available hydroxy pyridines. We decided to use these 
intermediates for the preparation of dichlorofluoro- and chlorodifluoro methyl ethers on 
pyridines. Thus, we decided to work with chlorinated pyridines, as they undergo O-alkylation 
readily. In addition, the presence of chlorine on the pyridine ring would not be an issue, as it can 
be easily removed by palladium-catalysed dechlorination (see chapter 2). 
 

 
Scheme 3.13: Access to chlorothionoformates and trichloromethoxy pyridines from hydroxy pyridines 

 
 In 1992, T. Hiyama et al. described and oxidative desulphurisation-fluorination which led 
to aliphatic and aromatic trifluoromethoxy compounds.26 These conditions had successfully 
been adapted to pyridine substrates (Scheme 3.14).4  
 

 
Scheme 3.14: Obtention of 41 under oxidative fluorodesulphurisation conditions 

 
 We chose to apply the oxidative desulphurisation-fluorination conditions to 
chlorothionoformates. This would allow us to control the insertion of fluorine, which is not the 
case when fluorination is performed on trichloromethoxy-substituted substrates with antimony 
trifluoride. 
 
 Another convenient approach was to adapt the reaction conditions described by L. Saint-
Jalmes20 on aromatic compounds, and to use them on pyridines in order to access mixed  
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chloro/fluoro methyl ethers. We decided to study the reactivity of trichloromethoxy pyridines 
towards HF/pyridine and HF/triethylamine. Thus, we could either obtain chlorodifluoro- or 
dichlorofluoromethoxy compounds (Scheme 3.15). 
 

 
Scheme 3.15: Two possible pathways for the obtention of –OCF2Cl and –OCFCl2 pyridines 

 
 Therefore, we had selected two possible pathways for the synthesis of 
chlorodifluoromethoxy pyridines, and one for dichlorofluoromethoxy pyridines. We started our 
investigation with the oxidative fluorodesulphurisation. 

3.3. Oxidative fluorodesulphurisation 

 The aim was to adapt the reaction conditions which had been described for the 
preparation of trifluoromethoxy pyridines from the corresponding S-methyl dithiocarbamate, 
which were different from Hiyama’s conditions for aliphatic and aromatic substrates. The 
conversion of chloro hydroxy pyridines into chlorothionoformates was complete in each case, so 
we did not have to optimise this step. Finally, we decided to study the reactivity of 2-chloro-5-
hydroxy pyridine 39 and to improve the reaction conditions on this substrate. 
 
 2-Chloro-5-hydroxy pyridine 39 was submitted to O-alkylation with thiophosgene in 
presence of aqueous sodium hydroxide in 94% yield (Scheme 3.16). Because 
chlorothionoformates have a high percutaneous toxicity they were isolated, but were not 
purified further, as crude 13C and 1H NMR showed that the conversion was complete and that the 
product was pure enough to be used for the next step. 
 

 
Scheme 3.16: Preparation of chlorodifluoromethoxy pyridine 123 via 40 

 
 The chlorothionoformate 40 underwent fluorination readily with eighty equivalents of 
HF/pyridine in presence of 4.5 equivalents of N,N-dibromohydantoin in dichloromethane to 
yield the chlorodifluoromethoxy pyridine 123 with 88% yield. No trace amounts of the –OCF3 
byproduct have been detected. 
 
 Given this positive result, we decided to optimise the reaction conditions. Indeed, the large 
amount of HF/pyridine which is used under these conditions considerably limits the scale-up of 
the reaction. Thus, we decreased the amount of HF/pyridine used for the reaction, as well as the 
equivalents of DBH used (Table 3-1). 
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 Decreasing the amount of HF/pyridine from 80 equivalents to 40 equivalents did not have 
a great influence on the yield of the reaction (entries 1 and 2). In contrast, lowering to 20 and 10 
equivalents of HF/pyridine had a detrimental effect on the yield (entries 3 and 5) and increased 
the reaction time. 
 

NCl

O S

Cl

HF/Py, DBH

DCM NCl

OCF2Cl

40 123  
 

Entry HF/pyridine DBH 
Reaction 

time 
Yield Observations 

1 80 eq 4.5 eq 2h 88% / 
2 40 eq 4.5 eq 2h 92% / 
3 20 eq 4.5 eq 4h 76% / 
4 20 eq 3.0 eq 4h 72% / 
5 10 eq 4.5 eq 12h 57% / 
6 10 eq 2.0 eq 12h 56% / 
7 5 eq 4.5 eq 4 days / Uncomplete conversion  

Table 3-1: Optimisation of the fluorination of chlorothionoformate 40 

 
 With only 5 equivalents of HF/pyridine, the conversion was not complete after four days 
(entry 7).  Lowering the amount of DBH from 4.5 to 3.0 or 2.0 equivalents had no influence on 
the outcome of the reaction (entries 3 to 6).  
 Finally, we decided to use 20 equivalents of HF/pyridine, and 3.0 equivalents of DBH. 
Indeed, despite a diminished efficiency (entries 4 vs 2), it was the best compromise between the 
amount of reagent used and the yield. 
 
 In order to study the scope of the reaction, we decided to perform it with several hydroxy 
pyridines (Table 3-2).  The chlorodifluoromethoxy pyridines 123, 124 and 125 were obtained 
in 57 to 72% yield in one step from the corresponding hydroxy pyridines. 
 

HF/Py (20 eq)
DBH (3.0 eq)

DCM,
-78 °C to rt
overnight

NCl

1. NaOH, H2O

2. C(S)Cl2, DCM
OH

NCl

O

S

Cl

NCl

OCF2Cl

57-72%  
 

Entry Substrate No Yield 

1 
 

123 72% 

2 
 

124 69% 

3 
  

125 57% 

Table 3-2: Preparation of –OCF2Cl pyridines via chlorothionoformates 

 
 With the optimised reaction conditions, we could decrease the amount of reagents used 
during the fluorination step. In this way, we developed an efficient and selective access to 
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chlorodifluoromethoxy pyridines in one step from the commercially available hydroxy 
compounds. 
  
 In order to access building blocks for further studies, one of these pyridines was submitted 
to metallation with LDA followed by trapping with carbon dioxide affording the carboxylic acid 
126 (Scheme 3.17) with 58% yield. 
 

 
Scheme 3.17: Carboxylation of chlorodifluoromethoxy pyridine 124 

 
 This metallation reaction led to the desired carboxylic acid 126 in a moderate yield. This 
allowed us to show that these compounds could be accessed via a metallation reaction, and thus 
be used as building blocks for further synthesis. However, in order to obtain better yields the 
reaction conditions should be optimised changing the base or increasing the metallation time. 
Due to lack of time, these studies could not be performed. 
 
 To conclude, we developed an efficient synthesis of chlorodifluoromethoxy pyridines in 
one step from the commercially available hydroxy substrates. Functionalisation with a 
carboxylic acid was performed in low to moderate yields. The reactivity of these substrates 
could be further studied by functionalisation with other substituents such as amines and 
halogens in order to allow their use for the preparation of bioactive molecules as shown 
previously by our group with trifluoromethoxy pyridines. 

3.4. Fluorination of trichloromethoxy pyridines 

 The second aim of this project was to study the reactivity of trichloromethoxy pyridines 
towards mild fluorinating agents: HF/pyridine and HF/triethylamine. As we had started the 
previous study with 2-chloro-5-hydroxy pyridine 39, we decided to use the same substrate for 
the optimisation of the reaction conditions. The corresponding trichloromethyl ether 122 was 
prepared in one step with 73% yield by O-alkylation with thiophosgene and subsequent 
chlorination with gaseous chlorine (Scheme 3.18), in accordance with the method developed by 
our group.4 
 

 
Scheme 3.18: Preparation of 2-chloro-5-trichloromethoxy pyridine 122 

 
 Once we had prepared the trichloromethyl ether 122, we started the study of its 
reactivity. The first reagent we tested was HF/pyridine. Unfortunately, the substrate revealed to 
be inert towards this reagent (Scheme 3.19). We could not heat above 40 °C because according 
to its MSDS, HF/pyridine is not stable above 50 °C, and total recovery of the starting material 
was observed. 
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NCl

OCCl3 HF/Py (40 eq)

rt to 40 °C,
3 to 24h

NCl

OCFCl2

122 127  
Scheme 3.19: Attempt of fluorination of 122 with HF/pyridine 

 
 We then performed the reaction with HF/triethylamine (Table 3-3), which is known to be 
less reactive than HF/pyridine but more stable at higher temperatures.20 At room temperature, 
no reaction was observed (entry 1). When the temperature was gradually increased (entries 2 
and 3) still no conversion was observed. Finally, at 90 °C for 24 h, the conversion into the 
dichlorofluoromethoxy compound 127 was complete (entry 4), and it was isolated with 84% 
yield.  
 
 The reaction was monitored by GC-analysis, and we observed a clean conversion to the 
monofluoromethyl ether. No byproduct was formed, and this was confirmed when we isolated 
the product. Therefore, thank to the use of HF/triethylamine, we could perfectly control the 
insertion of a single fluorine atom into the trichloromethoxy group. As outlined before this is 
rare, as generally the first and second fluorine introductions onto –CCl3 derivatives are fast and 
the third is the rate-determining step.17a 
 

 
 

Entry Temperature Reaction time Yield 

1 rt 24 h / 

2 40 °C 12 h / 

3 60 °C 12 h / 

4  90 °C 24 h 84% 

Table 3-3: Optimisation of the fluorination of 122 with HF/triethylamine 

 
 Now that the reaction conditions had been optimised and that a good yield had been 
reached, the reaction was performed with two other substrates in order to study its scope (Table 
3-4). We prepared dichlorofluoromethoxy pyridines 127, 128 and 129 bearing the fluorinated 
substituent at the 2- and 3-position of the aromatic ring in good 72 to 84% yields.  
 The mixed chlorine/fluorine methyl ethers were prepared in two steps from the 
commercially available hydroxy compounds, in moderate to good 43 to 62% overall yields.  
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Entry 
Starting 
material 

Chlorination 
yield 

Fluorination 
time 

Final product No 
Fluorination 

yield 

1 
 

73% 24h 
 

127 84% 

2 
 

56% 48h 
 

128 76% 

3 
  

63% 7 days 
  

129 72% 

Table 3-4: Preparation of dichlorofluoromethyl ethers in two steps from the hydroxy pyridines 

 

3.5. Conclusion 

 The literature that has been detailed showed that several methods for the preparation of 
mixed chloro/fluoro methoxy substituents onto aromatic compounds have been reported. Most 
of these methods consist in chlorine/fluorine exchange using nucleophilic fluorinating agents 
such as anhydrous HF, antimony trifluoride, bromine trifluoride, HF/pyridine and 
HF/triethylamine. O-Alkylation of hydroxy compounds leading to the difluoromethyl ether and 
subsequent chlorination to obtain the corresponding chlorodifluoromethoxy derivatives has 
also been reported. But this method using Freon 22 is not suitable because of its high global 
warming potential, which limits its commercial availability. 
 In contrast, the preparation of heteroaromatic structures bearing such fluorinated groups 
has been scarcely described. In each case, the product is an isolated example, and no general 
method has been reported. The aim of this project was to develop an access to pyridine building 
blocks bearing chlorodifluoromethyl and dichlorofluoromethyl ethers.  
 
 We first focused on applying Hiyama’s oxidative fluorodesulphurisation conditions to a 
pyridine bearing a chlorothionoformate substituent. This provided the chlorodifluoromethoxy 
pyridine 123 in a good yield. After optimisation of the reaction conditions in order to reduce the 
amount of reagents used, the chlorodifluoromethoxy pyridines 123, 124 and 125 were 
prepared in 57 to 72% yield. This was performed in one step from the commercially available 
hydroxy compounds. Finally, a carboxylation of these compounds was carried out in 58% yield. 
 Afterwards, we studied the reactivity of trichloromethoxy pyridines towards HF/pyridine 
and HF/triethylamine. We could perform the selective monofluorination with HF/triethylamine 
at 90 °C towards dichlorofluoromethoxy pyridines 127, 128 and 128 in 72 to 84% yield.  The 
final fluorinated methyl ethers were obtained in two steps with 43 to 62% yield from the 
starting hydroxy pyridines. 
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 Hence, we provided an efficient, straightforward and selective access to 
chlorodifluoromethoxy and dichlorofluoromethoxy-substituted pyridines in one or two steps 
from commercially available starting materials. The fluorination steps have been performed in 
fair yields, and this represents the first general route to heteroaromatic compounds bearing this 
kind of fluorinated substituents. 
 
 This could lead to other fluorinated substituents: trifluoromethoxy compounds could be 
obtained by fluorination, and difluoromethoxy or fluoromethoxy substituents could be prepared 
via a reductive dechlorination under radical conditions (Scheme 3.20). 
 

N

OCFCl2

NCl

OCF2Cl

Cl

Bu3SnH

AIBN

Bu3SnH

AIBN N

OCFH2

NCl

OCF2H

Cl  
Scheme 3.20: Reduction of mixed chloro-/fluoro methyl ethers 

 
 Another outlook is the study of the reactivity of these building blocks. Their selective 
functionalisation by means of organometallic methods as demonstrated by our group on similar 
derivatives would allow the preparation of building blocks for agrochemical or pharmaceutical 
ingredients. 
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4.1. State of the art 

 The synthesis of fluoroalkyl pyrazoles has attracted considerable interest during the last 
decades. Indeed, their potential enhanced biological properties make them very attractive for 
the preparation of pharmaceutical and agrochemical ingredients.1 Pyrazoles bearing a 
fluorinated group are present in numerous marketed bioactive molecules such as the fungicide 
Penthiopyrad (Mitsui chemicals) and Celecoxib (Pfizer), an anti-inflammatory agent (Figure 4.1).  

 

 
Figure 4.1: Examples of bioactive fluoroalkyl pyrazoles 

 
 Several methods are described in the literature to prepare fluoroalkyl pyrazoles. Most of 
them consist in the use of fluorinated precursors and subsequent cyclisation. These fluorinated 
building blocks can be submitted to cyclocondensation with hydrazines to give the desired 
compounds (e.g., 1,3-diketones, α,β-unsaturated ketones, enaminones), or to 1,3-dipolar 
cycloadditions in the presence of diazomethane. Another way to obtain fluorinated pyrazoles is 
the construction of the fluoroalkyl group on the pyrazole ring.  
 It can also be noticed that the introduction of a single fluorine atom or a trifluoromethyl 
substituent have been widely studied, whereas the synthesis of difluoromethyl-substituted 
derivatives is scarcely described.1 The most common perfluoroalkyl derivatives are those in 
which the fluorinated substituent is a trifluoromethyl group. In 2009, J. F. Sanz-Cervera et al. 
published a review on recent advances in the synthesis of pyrazoles, and a whole chapter is 
dedicated to the synthesis of trifluoromethylated pyrazoles.2 
 In agrochemistry, difluoromethyl pyrazoles represent a huge interest. Indeed, if they 
present a carbonyl function at the 4-position, they are key intermediates for the synthesis of 
carboxamide compounds (Figure 4.2). Pyrazole-carboxamides belong to the class of  
succinate-dehydrogenase inhibitors (SDHI) fungicides. Three major agrochemical companies 
recently marketed molecules from this class of fungicides, which shows the importance of the 
difluoromethyl pyrazole pattern.  
 

 
Figure 4.2: Pyrazole-carboxamides bearing a difluoromethyl substituent 

 
 In this context, we will first summarize the existing methods allowing the introduction of 
difluoromethyl substituents on pyrazole rings. 
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4.1.1. Synthesis of pyrazoles bearing one fluorinated group 

4.1.1.1. From 1,3-diketones 

Among the existing methods for the synthesis of pyrazoles, the use of diketones is 
widespread. Indeed, many of them are commercially available, and when it is not the case, their 
synthesis is possible via a pseudo-Claisen condensation.  

This pathway is commonly used for the synthesis of Celecoxib analogues3. These 
molecules belong to the class of non-steroidal anti-inflammatory agents, and are 
cyclooxygenase-2 (COX-2) inhibitors. The pattern includes a pyrazole core, with aromatic 
substituents at the 1- and 5-positions, and a fluorinated substituent at the 3-position (Figure 
4.3). 

 

 
Figure 4.3 : Common pattern for COX-2 inhibitors 

 
The cyclisation of 1-fluoroalkyl-3-aryl propanediones with aryl hydrazines leads to highly 

functionalised compounds in one step. The use of 1-difluoromethyl-3-aryl 1,3-diketones for the 
synthesis of pyrazoles has proven to be very efficient.4 Indeed, several aromatic derivatives can 
be used, and the cyclisation yields are modest to very good (Scheme 4.1).  

 

 
Scheme 4.1: Use of 1-CHF2-3-aryl-1,3-propanedione 

 
However, no regioselectivity issue is discussed, despite the well known problems of the 

reaction of hydrazines with 1,3-diketones.5 It is also interesting to note that for this process the 
1,3-diketones have to be prepared previsouly, not always in very good yields. 

 
Similarly, T. Norris et al. described the synthesis of 3-CHF2 pyrazoles6 from the reaction of 

1,3-diketones and aryl hydrazines (Scheme 4.2). When the reaction is carried out in isopropanol 
at 85 °C for one to five days under neutral conditions, depending on the nitrogen-substituent, 
either the formation of 3- and 5- difluoromethyl pyrazoles 132a and 133a (72% and 25% yield, 
respectively), or the formation of 3-difluoromethyl-5-hydroxy pyrazoline 130b (87% yield) 
along with 3-difluoromethyl pyrazole 132b (12%) has been observed. 

 
The challenge working under neutral conditions is thus the regioselective formation of the 

hydroxy pyrazoline 130 and secondly its dehydration. Better results were obtained when 
10mol% of concentrated H2SO4 were added to the reaction mixture. No un-dehydrated 
intermediates 130 and 131 have been observed, and the 3-/5- isomer ratios are of 97:3 and 
99:1 depending on the aryl hydrazine. In addition, similar yields were obtained (93 and 98% 
respectively). 
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Scheme 4.2 : Synthesis of 3-CHF2 pyrazoles by T. Norris et al. 

 

In order to explain this, the authors postulate different dehydration rates between both 
hydroxy pyrazolines 130 and 131 (Scheme 4.3). As previously explained by J. Elguero et al.,5a 
due to the electron withdrawing properties of the fluoroalkyl substituent, the second 
dehydration step is disfavoured when the hydroxy group is at the α-position to the -CHF2-group 
compared to the other isomer. 
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Scheme 4.3 : Formation of one predominant regioisomer due to dehydration rates 

 
Nevertheless, and certainly with the aim of synthesizing COX2-inhibitors (Celecoxib 

analogues), the study only refers to aryl hydrazines and aryl-fluoroalkyl 1,3-diketones in which 
the carbonyl groups have very different reactivities. 

These conclusions were confirmed by F. Gosselin et al., who observed that the addition of 
50mol% of 10N HCl to the medium improves the regioselectivity.7 Ratios from 86:14 to 99.8:0.2 
for the 3-CFH2/5-CHF2 isomers have been observed. The yields are fair to excellent, between 60 
and 98% depending on the diketone and the hydrazine used (Scheme 4.4). Once again, the study 
only refers to aryl hydrazines, and aryl-fluoroalkyl 1,3-diketones. 

 

 
Scheme 4.4 : Influence of acidic medium on the regiochemistry 

 

More recently, P. Langer and V. Iaroshenko reported on the synthesis of various bicyclic 
heterocycles (pyrazolo-, imidazolo-, pyrrolo- and thiazolo-pyridines) bearing a -CF2Cl group on 
the pyridine moiety.8 The authors converted the -CF2Cl group into a -CF2allyl or -CF2H 
substituent by means of radical reactions initiated by AIBN with, respectively, Bu3Sn(allyl) or 
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Bu3SnH. Fair to good yields were obtained, depending on the nature of the heterocycle and its 
substitution pattern. Only a few examples concerning monocyclic heteroaromatic structures like 
pyrimidines and pyrazoles have been reported. 

 

ClF2C R2

OO

ClF2C

O

OEt

N
N

R1

ClF2C

R1NHNH2

EtOH, reflux

or AcOH, 20 °C

R2

Bu3SnH, AIBN,

Benzene,
80 °C, 18h

N
N

R1

HF2C

R2

For R1 = Ph, R2 = H

28%

R1 = H, Ph, Me, pNO2Ph

R2 = H, Me

0-94%

134

135

136 137

 
Scheme 4.5 : Radical reduction of the -CF2Cl group into -CF2H 

 
The synthesis starts with chlorodifluoromethyl 1,3-diketones 134 and enone 135 

affording the corresponding pyrazoles 136 (Scheme 4.5). The conversion of the -CF2Cl group 
into -CF2H was only performed onto a N-phenyl pyrazole and led to the desired product 137 in a 
poor 28% yield. 

 
To conclude this access route, some efficient methods have been developed to synthesise 

pyrazoles bearing a difluoromethyl group starting from 1,3-diketones. But regioselectivity 
remains an important issue because it cannot be predicted before the preparation of the 
heterocycle, even if some very good results have been obtained in isolated cases. 

4.1.1.2. From α,β-unsaturated ketones 

Given the unpredictable nature of heterocyclisations using 1,3-diketones, other routes 
towards difluoromethyl pyrazoles have been investigated. α,β-Unsaturated ketones appeared to 
be a convenient solution, as a great variety of them is accessible bearing an ethoxy methylene or 
a dialkylamino methylene fragment and have mainly been reported in patent applications. 

  
The first synthesis of ethyl difluoromethyl pyrazole carboxylate which has been reported 

starts from ethyl difluoro acetoacetate 138 which is converted into ethyl 2-(ethoxymethylene)-
4,4-difluoro-3-oxobutanoate 139.9 The desired product 140 was obtained after cyclisation with 
hydrazine in a good 74% yield, but no information was given about the regioselectivity (Scheme 
4.6). 
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Scheme 4.6 : First described synthesis from α,β-unsaturated ketones 
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However, the difficult access to ethyl difluoroacetoacetate 138 at that time and the lack of 
regioselectivity of the cyclisation with hydrazine made the product rather expensive. Hence, 
there was a need to find a better alternative for the synthesis of pyrazoles, or to improve the 
existing process. When the cyclisation was carried out in acetone10 at room temperature instead 
of ethanol, the yield was increased to 94% with complete regioselectivity (Scheme 4.6). 
 

Fluorinated enones can be obtained by reaction of difluoroacetyl chloride with ethyl vinyl 
ether.11 No yields are reported, but a side product 142 is obtained along with the desired enone 
141 in a 70:30 ratio (Scheme 4.7). After cyclisation with methyl hydrazine, a 72:28 mixture of 3- 
and 5- isomers 143a and 143b has been observed. Further bromination of the heterocycle can 
allow functionalisation at the 4-position of the pyrazole ring. 
 

N
N

F2HC

N
N CHF2

72 : 28

O

F2HC Cl

O

-10 °C, 30min
then 22 °C, 19h

F2HC

O

OEt F2HC

O

OEt

OEt

70 : 30

MeNHNH2

AcOH
rt, 19h

76%

141 142 143a 143b  
Scheme 4.7 : Starting from difluoroacetyl chloride 

 
The reductive defluorination of trifluoromethyl enone with activated magnesium and 

trimethylsilyl chloride12 and subsequent cyclisation with methyl hydrazine afforded the ethyl 
difluoromethyl-4-carboxylate pyrazole 140 in 70% yield. The 3-CHF2 isomer 140a has been 
obtained in a 94:6 ratio with the 5-difluoromethyl isomer 140b (Scheme 4.8). 
 

 
Scheme 4.8 : Reductive defluorination followed by cyclisation 

 
M. Braun and J. Jaunzems recently developed an original access to difluoromethyl 

pyrazoles.13 It consists in the cycloaddition of chlorodifluoromethyl enone 144 with methyl 
hydrazine followed by metal-catalysed reductive dechlorination of the -CF2Cl substituent 
(Scheme 4.9).  

 

 
Scheme 4.9 : Catalytic dechlorination of the chlorodifluoromethyl substituent 

 
The cyclisation was performed in a fluorinated solvent (Solkane®) in 64% yield and the 

product was obtained in a 85:15 ratio between the 3- and 5-chlorodifluoromethyl isomers 145a 

and 145b. It is interesting to note that the reduction of the -CF2Cl substituent was performed 
under different conditions: Zn/CsF in EtOH/water 9:1 (97% yield), 20% Pd/C (1mol%) in 
presence of Borax (79% yield), and with Raney-Ni and Rh/Al2O3 catalysts, but in the last two 
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cases the product 140 was formed along with the reduced -CH3 product. This approach provides 
an alternative to rather expensive difluoromethyl starting materials, but the yields and 
regiochemistry should be improved to make it competitive. 
 

Di(alkyl)amino acrylates 146 are widely used, and the introduction of the fluorinated 
substituent can be done by reaction with difluoromethyl acyl fluoride to provide the desired 
adduct 147 (Scheme 4.10). Addition of methyl hydrazine to the dimethylamino adduct 147 
affords the desired 3-difluoromethyl pyrazole 140 in 85% yield.14 The regioselectivity is rather 
good: the 3- and 5-difluoromethyl isomers 140a and 140b are obtained in a 91:9 ratio.  

 

 
 

 
Scheme 4.10 : Use of acylfluorides and dimethylamino acrylates 

 
The yield and selectivity of this method can be improved15 by the use of the piperidinyl 

derivative 148, the addition of potassium fluoride for the preparation of the fluorinated enone, 
and the lower temperature for the cyclisation step. The starting material is commercially 
available, but it is synthesised on demand involving very high prices. 

 
Although these one-pot syntheses of 3-CHF2 pyrazoles are rather efficient, their main 

drawback is the use of very toxic and volatile acyl fluorides. 
 

In order to have a better control on the regiochemistry of the reaction, the protection of 
hydrazines with a benzylidene group has been successfully studied,16 and cyclisation provided 
the 3-difluoromethyl isomer 140a as a single product in 90% yield (Scheme 4.11). 
 

 
Scheme 4.11 : Cyclisation using benzylidene  hydrazones 

 
In a similar manner, hydrazine hydrate was transformed into dibenzaldazine by reaction 

with two equivalents of benzaldehyde (Scheme 4.12), and then methylated in presence of 
dimethyl sulphate to yield 149 in 89% (one-pot).17 The conversion into the aminal 150 in a 
basic medium followed by cyclocondensation with the difluoromethyl enone yielded the desired  
3-difluoromethyl pyrazole-4-carboxylate 140a as a single isomer. 
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A very elegant one-pot procedure from the hydrazine to the saponified pyrazolic acid was 
performed in 64% yield, which is remarkable given the number of steps. Nevertheless, the 
process is quite tedious and an easier method would be preferable.17 

 

 
Scheme 4.12 : Cyclisation via dibenzaldazine 

 
It should be mentioned that all the methods detailed here are based on the utilisation of 

difluoromethyl α,β-unsaturated ketones. Hence, they require a commercial access to the main 
starting material for their preparation: difluoroacetic acid or ethyl difluoroacetate.  

4.1.1.3. From β-keto esters 

 Surprisingly, only one approach was detailed for the use of β-keto esters to obtain 
fluoroalkyl hydroxy pyrazoles. β-Keto esters are known to react with hydrazines to give the 
corresponding hydroxy pyrazoles,18 but once again, the regioselectivity is an issue as two 
regioisomers can be formed.  

 

 
Scheme 4.13 : From difluoromethyl acetoacetate 

 
 It has been shown19 that in presence of an acid (acetic or formic acid), the regioselectivity 
of the cyclisation is total in favour of the 3-difluoromethyl-5-hydroxy pyrazole 93 (Scheme 
4.13). The reaction was carried out in methyl-tert-butyl ether at room temperature. In the 
described process, all reagents are commercially available, and the cyclisation yields are high 
(>90%). 

4.1.1.4. From perfluoro acetylenes 

 Acetylenic carbonyl derivatives can be considered as equivalent to enones. Their use in the 
synthesis of pyrazoles is less common, and fluoroalkyl acetylenes are most often used in  
1,3-dipolar cycloaddition reactions with diazomethane.20 No such process is described for the 
synthesis of difluoromethyl pyrazoles. Instead, β-acetylenic ketones and β-acetylenic esters have 
been used for cyclocondensations with hydrazines to provide respectively difluoromethylated 
pyrazoles and hydroxy pyrazoles. 
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 The first reference21 reporting on the synthesis of 3-difluoromethyl pyrazoles from 
acetylenes describes a cyclisation in benzene by azeotropic removal of water in good yields 
(Scheme 4.14).  
 The mechanism can imply two pathways: either the nucleophilic attack of hydrazine on 
the carbonyl function of 151 or via a Michael-type addition followed by ring closure and 
aromatisation to form the pyrazole 152. Given that the reaction has only been performed with 
hydrazine, the mechanism has not been identified.  

 

 
Scheme 4.14 : Use of β-keto acetylenes 

 
 The reaction of acetylenic esters for the preparation of 3- and 5-hydroxy pyrazoles has 

been detailed by B. C. Hamper et al.22 Depending on the solvents and temperatures, 3- and/or  
5-difluoromethyl isomers can be obtained. When the reaction is performed in a 1:1 mixture of 
methanol and water at 0 °C, the ratio 154 a/b is 35:65 (entry 4), whereas in dichloromethane at 
25 °C, the 154 a/b ratio is 5:95, with unchanged yields (Table 4-1). 

 

 
 

a/b Ratios 
Entry Rf R1 

H2O/CH3OH a CH2Cl2 b 
Yield (%) c 

1 C2F5 CH3 98:2 98:2 98 
2 CF3 CH3 94:6 71:29 80 
3 CF2Cl CH3 95:5 95:5 79 
4 CF2H CH3 35:65 5:95 d 22 e 
5 CF3 tert-butyl 0:100 / n. d. 

a MeOH/H2O 1:1, 0 °C. b -78 °C. c Except as noted, yields from isolated products 154 of the reaction in 
methanol/water. d 25 °C. e Isolated yield obtained from the reaction in dichloromethane. 

Table 4-1: Use of acetylenic esters 

 
 As this study has been made on different fluorinated substituents, the results obtained 
show that, in a 1:1 mixture of methanol and water, the amount of 3-Rf isomer increases when 
the electron-withdrawing properties and the size of the fluorinated substituent decrease. The 
regioselectivity is only totally controlled with a trifluoromethyl substituent and a bulky alkyl 
group on the hydrazine (entry 5). 

4.1.1.5. By introduction of the fluorinated group via the hydrazine 

Another way towards difluoromethyl pyrazoles is via the introduction of a fluorinated 
substituent on the hydrazine itself to form the corresponding hydrazone. One of the significant 
advantages of this approach is a better control of the regioselectivity during the cyclisation step. 

 
In this perspective, M. Bowden et al. chose to use methyl difluoroacetate 155 to introduce 

the fluorinated substituent instead of the acetylene.23 After reaction with hydrazine (Scheme 
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4.15) the obtained hydrazide 156 was methylated exclusively at the NH2 position in presence of 
Pt/C, H2, and dimethyl formamide in 36% yield. 

 

 
Scheme 4.15 : Use of difluoromethyl acetate 

 

Cyclisation occurs by reaction with ethyl propargylate in DMF to form the desired  
3-difluoromethyl pyrazole 140a. No yield is given for this step but the regioselectivity is total. 

 
Similarly, the difluoromethyl methyl ketone 157 can be converted into the hydrazone 158 

and subsequently cyclised under Vilsmeier-Haack conditions24 to yield 1-methyl-3-
difluoromethyl-4-carbaldehyde 159 in 53% yield as a single isomer (Scheme 4.16).  
 

 
Scheme 4.16 : Use of 1,1-difluoroacetone 

 
This product can be further oxidised to the carboxylic acid in presence of H2O2 and sodium 

hydroxide, and thus be used in the formation of carboxamides. 
 

 These strategies present several advantages: they provide only one isomer of 
difluoromethyl pyrazoles, and the starting materials (difluoromethyl acetate and 
difluoroacetone) are commercially available at reasonable prices. But the main weakness is the 
relatively low yields, and these processes can difficultly be used on an industrial scale. 

4.1.1.6. From Chromones 

The research group of V. Ya. Sosnovskikh reported on the reactivity of fluorinated 
chromones, which can lead to fluorinated pyrazoles by ring transformation.25 Chromones can be 
compared to “hidden” aryloxy enones, and they react readily with hydrazine to give fluoroalkyl 
pyrazoles bearing an aryl group at the 3-position. 

  
This study is mostly focused on trifluoromethyl pyrazoles, but a few examples with 

difluoromethyl substituents have been mentioned (Scheme 4.17). The desired pyrazoles have 
been obtained in moderate to good yields, depending on the substituent on the aromatic ring.  
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Scheme 4.17 : Reactivity of fluorinated chromones 

 
The reactivity of fluoroacyl chromones towards several hydrazines has also been studied 

(Scheme 4.18). In two examples, difluoromethyl starting materials 160 exclusively yielded the  
3-difluoromethyl isomer 161 by reaction with methyl hydrazine in reasonable 70% (R = H) and 
74% (R = Cl) yields. 
 

 
Scheme 4.18 : Reactivity of fluoroacyl chromones 

 
This method opens an access to already functionalised difluoromethyl pyrazoles in 

moderate to good yields.  

4.1.1.7. By fluorination on the pyrazole ring 

 When fluorinated starting materials are not easily accessible, an alternative is the 
construction of the fluorinated substituent on the heteroaromatic structure. Ideally, this step 
should present high yields and mild conditions since pyrazoles are quite sensitive substrates. 
 DAST (diethylaminosulfur trifluoride) usually employed for the conversion of alcohols and 
aldehydes into fluoroalkyl and difluoroalkyl compounds26 has been used for this purpose on 
pyrazoles.27 Pyrazolic aldehydes 162 have been converted into the difluoromethyl substituent 
163 with DAST in 62% yield (Scheme 4.19). 
 

 
Scheme 4.19 : Fluorination of pyrazolic aldehydes with DAST 
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This method does not require the preparation of fluorinated precursors, but necessitates a 
reasonable synthetic pathway towards the pyrazolic aldehyde before fluorination. 
 
 Another option for the synthesis of difluoromethyl substituents on pyrazoles is the 
displacement of chlorine atoms using nucleophilic fluorination reagents. The reaction conditions 
have been found to be ideal with the use of a selective and mild fluorinating reagent such as 
triethylamine trishydrofluoride (TREAT-HF).  

In this context, the regioselective synthesis of the 3-dichloromethyl pyrazole 165 from the 
enaminone 146 has been described28 (Scheme 4.20). Its conversion into the corresponding 
chlorinated dimethylamino acetoacetate 164 by reaction with dichloromethyl acetyl chloride 
was achieved in high yield. Subsequent cyclisation with methyl hydrazine in toluene led to the 
desired 3-dichloromethyl-4-carboxylate pyrazole 165a along with its 5-dichloromethyl isomer 
165b in a 94:6 ratio, and in a good 83% yield. 

 

 
Scheme 4.20 : Fluorination of dichloromethyl pyrazole with TREAT-HF 

 
The dichloromethyl pyrazole 165 was finally fluorinated in presence of TREAT-HF in 87% 

yield. The synthesis of the difluoromethyl pyrazole 140 was also reported using directly 
difluoromethyl acetyl chloride, but this led to lower yields, and to a mixture of 3/5 isomers in a 
89:11 ratio. 

In 2009, O. C. Kappe proposed a microwave-assisted fluorination29 of similar substrates. 
The highly polar properties of TREAT-HF proved to be compatible with microwave irradiation, 
and the fluorination of 165 was completed within five minutes at 250 °C in 69% yield. However, 
the desired product was formed along with ca. 10% of the saponification product. The use of 
methoxymethyl(dimethylamino) acrylate30 instead of ethyl(dimethylamino) acrylate led to a 
lower yield for the cyclisation step, and a comparable fluorination yield.  
  

A similar method has been employed later,31 starting from the dichloroacetyl chloride 166, 
which yields 63% of the ethoxy enone 167 by reaction with ethyl vinyl ether (Scheme 4.21).  
Unfortunately, neither the yields nor the 3-/5-dichloromethyl isomer ratio were reported. 
Fluorination with TREAT-HF provided the desired pyrazole 143a in 51% yield.  
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Scheme 4.21 : Cyclisation of dichloromethyl ethoxy enone 167 

  
 The fluorination of the dichloromethyl group of pyrazoles using TREAT-HF, either by 
thermal heating or microwave-assisted has proven to be very efficient. This represents a good 
alternative to the construction of the heterocycle with fluorinated precursors. However, the 
pyrazole moiety has to be compatible with the fluorination conditions. 

4.1.1.8. Via the use of FAR 

 In the bibliographic data which has been detailed until now, several methods for the 
construction of difluoromethyl pyrazoles have been outlined. Most of them use fluorinated 
precursors, which are derivatives of difluoro acetic acid: esters, acyl chlorides or acyl fluorides. 
Additional possibilities are nucleophilic fluorinations: utilisation of chlorinated derivatives and 
subsequent reaction with TREAT-HF and fluorination of aldehydes using DAST. 
 Another approach has been developed employing polyfluorinated amines, also called FAR 
(fluoroalkyl amino reagents). This class of reagents is commonly used for the fluorination of 
alcohols and activated carbonyls. More precisely, the use of 1,1,2,2-tetrafluoroethyl 
dimethylamine (TFEDMA) has been widely studied. We will discuss this topic more thoroughly 
in a following paragraph (4.1.4). 

 
C. Wakselman et al. showed that by reaction with BF3, this reagent can be activated32 

(Scheme 4.22). Thus, under these conditions, the ammonium salt of TFEDMA 168 can be 
considered as an electrophilic difluoromethyl-transfer reagent, and has been used for this 
purpose in the synthesis of difluoromethylated pyrazoles.  
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Scheme 4.22: Activation of TFEDMA 

   
It appeared in the literature33 that the ammonium salt 169 of TFEDMA can be attacked by 

methyl methoxyacrylate to give the corresponding adduct 170 (Scheme 4.23). Addition of 
methyl hydrazine to the reaction mixture yields the desired pyrazole 171 (68%) in a 87:13 
mixture of the 3-CHF2 and the 5-CHF2 isomers respectively.  

 

 
Scheme 4.23 : Reaction of TFEDMA with methoxy acrylate 

 
S. Pazenok et al.34 also reported on the use of TFEDMA 168. After activation with 

BF3(OEt2) it reacted with dimethylamino acrylate 146 affording the intermediate 172. 
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Cyclisation with methyl hydrazine led to 3- and 5-difluoromethyl pyrazoles 140a and 140b in 
86% yield. It has to be outlined that the regiochemistry has been increased from 87:13 for the 
methoxy acrylate to 92:8 for the dimethylamino acrylate (Scheme 4.24). 

 

 
Scheme 4.24 : Use of TFEDMA with the dimethylamino acrylate 146 

 
This approach is very versatile as other FAR can be used either to introduce a 

chlorofluoromethyl group or a 1,2,2,2-tetrafluoroethyl substituent at the position 3 of the 
pyrazole (Scheme 4.25).34 
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Scheme 4.25 : Use of other FAR 

 
Although the cyclisation yield with Yarovenko’s reagent is not given and the 

regioselectivities are not specified, this method is one of the most efficient and straightforward. 
Indeed, the fluorinated precursors are commercially available, and do not need any 
transformation before being used for the preparation of fluoroalkyl pyrazoles.  

 
In order to enhance the regioselectivity of the cyclisation step, the reaction of the 

dimethylamino acrylate with a methyl hydrazone can be performed35 (Scheme 4.26). It is 
coupled with the introduction of the fluorinated group via TFEDMA 168 to give the desired  
3-difluoromethyl pyrazole 140a in a high 94% yield and as the only regioisomer. 

 

 
Scheme 4.26 : Coupling of TFEDMA with a methyl hydrazone 

  
 Having detailed all the principal methods for the obtention of 3-difluoromethyl pyrazoles, 
we can summarize that among these processes, most of them are using derivatives of 
difluoroacetic acid, others involve nucleophilic fluorinating reagents, or FAR. On a practical point 
of view, methods using DAST or chromones could difficultly be brought to an industrial scale. 
Most of the described synthetic pathways using 1,3-diketones provide highly functionalised 
pyrazoles. Difluoromethyl pyrazole building blocks can be produced in high yields, but the 
regioselectivity of the cyclisation reactions remains a challenge. 
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4.1.2. Synthesis of pyrazoles bearing two fluorinated groups 

 The synthesis of pyrazoles bearing two fluorinated groups is far less described, and is also 
more developed for -CF3 derivatives. However, some approaches have been developed, as  
3,5-bis(fluoroalkyl) pyrazoles represent an important pattern for bioactive molecules.36  

4.1.2.1. 3,5-Bis(fluoroalkyl) pyrazoles 

Most of the reports found in the literature describe the synthesis of  
3,5-bis(trifluoromethyl) pyrazoles 173 from 1,3-bis(trifluoromethyl) diketone.37,5b They are 
either obtained by [2+3] cycloaddition followed by dehydration in ethanol or isopropanol at 
reflux, or by microwave irradiation (Scheme 4.27). A few patents and only one journal article38 
describe the obtention of 3,5-bis(difluoromethyl) pyrazole 174 starting from symmetrical  
1,3-difluoromethyl diketone. 

 

 
Scheme 4.27: Synthesis of symmetrical 3,5-bis(fluoroalkyl) pyrazoles 

 
To the best of our knowledge, only one protocol for the synthesis of unsymmetrical  

3,5-bis(fluoroalkyl) pyrazoles has been reported.36b First, the 5-CF3-substituted pyrazole 175 is 
synthesised from 1,3-diketone 176 in five steps (Scheme 4.28).  

 

 
Scheme 4.28: Preparation of 5-trifluoromethyl intermediates and their fluorination 
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Subsequently, the hydroxymethyl group at the 3-position of pyrazole 175 is transformed 
into a -CFH2 in 81% yield. It can also be oxidised under Swern conditions to yield 53% of 
aldehyde 177, which is transformed into a -CF2H group in presence of DAST to form pyrazole 
178 (no yield is given for the conversion of the aldehyde) (Scheme 4.28).  

 

This method is very efficient, and presents good yields for the fluorination steps. However, 
the main drawback is the tedious preparation of the alcohol 175 and aldehyde 177. Indeed, this 
multistep synthesis presents restrictive stages, and the yields are not always given. 

4.1.2.2. 3,4-Bis(fluoroalkyl) pyrazoles 

 Some syntheses are reported for 3,4-fluoroalkyl pyrazoles 180 by reaction of perfluoro-2-
methylpent-2-ene39 179 (Scheme 4.29). Depending on the hydrazine, the N-substituent can be 
fluorinated or not, and sometimes its deprotection occurs during the cyclisation to give the free 
N-H pyrazoles. But among all these references, none of them details the presence of a 
difluoromethyl substituent at any position of the pyrazole ring. 

 

 
Scheme 4.29: 3,4-Bis(perfluoroalkyl) pyrazoles 

 
 After having examined all literature references, we can claim that a straightforward, 
reproducible and efficient method for the synthesis of pyrazoles bearing two fluorinated groups 
is severely missing. The development of such a tool would be very useful for the synthesis of 
new active ingredients, as we have seen before that the pyrazole core is present in numerous 
agrochemical and pharmaceutical compounds. 

4.1.3. Synthesis of pyrazoles bearing three fluorinated groups 

 Only one recent literature reference mentions the synthesis of pyrazoles bearing three 
fluorinated substituents40 (Scheme 4.30). 
 

 
Scheme 4.30 : Synthesis of 3,4,5-Tris(trifluoromethyl) Pyrazole 

 
 3,4,5-Tris(trifluoromethyl) pyrazole 183 was synthesised by cyclisation of the fluorinated  
1,3-diketone with hydrazine. Subsequent protection of the nitrogen atom followed by 
metallation in presence of butyllithium, trapping with carbon dioxide and deprotection led to 
the carboxylic acid 182. Finally, fluorination of the carboxylic function with sulphur 
tetrafluoride in presence of HF afforded 3,4,5-tris(trifluoromethyl) pyrazole 183 in 80% yield. 
The multistep synthesis presents an overall yield of 36% over five steps. It can be scalable, and 
brought to industrial scale. 
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 We can conclude that methods for the synthesis of pyrazoles bearing more than one 
fluorinated substituent are very rare, and that the ones existing are almost impossible to scale 
up, mainly because of their cost. Furthermore, only one method depicts the preparation of 
pyrazole building blocks containing different fluoroalkyl substituents. At the beginning of our 
study, there was a real need for a new straightforward method for the synthesis of pyrazoles 
bearing two different fluorinated substituents.  
 
 Fluoroalkyl amino reagents are commonly used as fluorinating reagents. Their use, more 
precisely the use of 1,1,2,2-tetrafluoroethyl dimethylamine (TFEDMA) as difluoromethyl-
transfer reagent has showed to be very efficient. The regioselectivity can be controlled, and high 
cyclisation yields have been observed.  

4.1.4. α,α-Fluoroalkyl Amino Reagents (FAR) 

 FAR are selective fluorinating agents, commonly used for the synthesis of alkyl fluorides 
and gem-difluorides by reaction with alcohols and activated carbonyls. A wide variety of FAR 
have been developed, but the most commonly used are Yarovenko’s and Ishikawa’s reagents, as 
well as 1,1,2,2-tetrafluoroethyl dimethylamine (TFEDMA).  
 In 1959, N. N. Yarovenko and M. A. Raksha41 introduced the first FAR 184 (Figure 4.4), 
then R. V. Lindsey and coworkers reported on the preparation of TFEDMA42 168, and finally  
N. Ishikawa developed his own reagent 185 in 197943. 
 

 
Figure 4.4 : Fluoroalkyl Amino Reagents 

  
These reagents are very similar, and their preparation is quite trivial.44 They are 

commonly prepared by reaction of the corresponding fluoro-olefin with dimethylamine. 
TFEDMA derives from the cheap tetrafluoroethylene 186 (TFE), whereas Ishikawa’s and 
Yarovenko’s reagents derive respectively from the more expensive hexafluoropropene and 
chlorotrifluoroethylene (Scheme 4.31). 

 

 
Scheme 4.31 : Synthesis of TFEDMA 

 
For TFEDMA, the reaction is performed with no solvents, yields are almost quantitative, 

and the reaction involves no side product. In contrast to the reaction of tetrafluoroethylene 186 
(TFE) with diethylamine which is performed at high temperatures affording many byproducts 
and a moderate yield (ca. 60%), dimethylamine reacts readily and cleanly with TFE at low 
temperatures. FAR react violently with water to give the corresponding amide 187 and two 
molecules of HF (Scheme 4.31). 

TFEDMA and Ishikawa’s reagent are stable at room temperature, when stored protected 
from moisture. In contrast, Yarovenko’s reagent has to be prepared freshly before its use. For 
these reasons, among FAR, TFEDMA is the most practical and cheapest reagent. It is very 
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attractive for industrial purposes, as a fluorinating agent or as a difluoromethyl-transfer reagent, 
for the synthesis of pharmaceutical and agrochemical fluorinated intermediates. We will now 
focus on the reactivity of this reagent. 

4.1.4.1. Uses as fluorinating reagent 

a. Fluorination of alcohols 

TFEDMA reacts readily with alcohols to yield the corresponding alkyl fluorides. It is 
important to notice that the reaction with primary alcohols has to be performed at elevated 
temperatures, whereas secondary and tertiary derivatives are much more reactive.45  

The reactivity of a wide range of alcohols has been studied, and the results show that 
primary alcohols are fluorinated in moderate to good yields (Scheme 4.32), and very selectively: 
no formation of byproducts has been observed. The reaction can be carried out in inert solvents 
such as dichloromethane, chloroform, ethers and acetonitrile, or without any solvent. The 
substrates can be linear primary alcohols, phenyl ethanol and propanol, benzyl alcohol, and 
fluoroalcohols. 

 

 
Scheme 4.32 : Fluorination of primary alcohols 

  
In the case of benzyl alcohol 188, the product 189 is formed along with benzyl ether 190 

in a 84:16 ratio. This side product 190 does not appear anymore when the alcohol is slowly 
added to the reaction mixture.  

Secondary and tertiary alcohols have higher reactivities towards TFEDMA, thus reaction 
conditions are usually milder with these substrates. However, the reaction is less selective: 
olefin byproducts due to water elimination are often observed (Table 4-2).  
 

 
 

Entry R R' R'' Solvent Fluoride/olefin ratio Major olefin formed 

1 C5H11 CH3 H CCl4 65:35  

2 C4H9 CH3 CH3 CCl4 55:45 
 

3 C4F9(CH2)2 CH3 H / 97:3  

4 C4F9(CH2)2 CH3 CH3 / 78:22 
 

5 H(CF2)2 CH3 CH3 / 0:100 (47% yield) 
 

6 H(CF2)4 CH3 CH3 / 0:100 (71% yield) 
 

Table 4-2 : Fluorination of secondary and tertiary alcohols 
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We can remark that the major olefins formed are internal ones. We can also point out that 
the reactivity of TFEDMA towards secondary and tertiary alcohols is comparable to Yarovenko’s 
and Ishikawa’s reagents.41,43 In general, TFEDMA is less selective for these substrates than 
sulphur tetrafluoride and DAST. For instance reaction of TFEDMA with tertiary fluoroalcohols, 
only leads to olefins (entries 5 and 6).  
 Similarly, cyclic alcohols can also be fluorinated in presence of TFEDMA. They react 
rapidly and at low temperatures to yield a mixture of the dehydrated product and the 
corresponding fluoride.  
 

 
Scheme 4.33 : Fluorination of cyclic alcohols 

 
 Depending on the size of the carbocycle, the olefin/fluoride ratios vary significantly. Five 
and seven member rings 191 and 193 are less prone to dehydration and provide fluorinated 
products in majority. For cyclohexanol 192, cyclohexene is the major product. The reaction of 
cyclooctanol 194 produces an almost equal mixture of fluorinated and dehydrated compounds. 
The reaction is carried out at low temperature to minimize the amount of olefin, but its 
formation cannot be avoided. 
 When the cyclic alcohol cannot undergo dehydration, the fluorination is straightforward. 
Indeed, the reaction of 1- and 2-adamantanol with TFEDMA provides the desired fluoro 
adamantanes in 85 and 97% yield respectively. 
  
 It is postulated that the mechanism of fluorination of alcohols in presence of TFEDMA is a 
two-step process. The first step is the formation of 195 by addition of the alcohol on TFEDMA 
(Scheme 4.34). The second step consists in the decomposition of 195 and formation of the amide 
187 and the fluoride 196.  
 

 
Scheme 4.34: Mechanism of TFEDMA-assisted fluorination of alcohols 

 
 N. Lui and coworkers reported on the fluorination of chiral (R)- and (S)-methyl lactates 
197 in presence of TFEDMA (Scheme 4.35). This reaction yields chiral 2-fluoropropionates 198 
in high yields. The high enantiomeric excesses (96-97% ee)46 prove that the inversion of 
configuration is total. 
 

 
Scheme 4.35 : Enantioselective fluorination of alcohols 
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As fluorination of optically active alcohols by TFEDMA has been reported to proceed with 
inversion of configuration, the carbon-fluorine bond is reasonably thought to be formed via a 
SN2 process.  
 

To conclude, it has been outlined that TFEDMA is a selective and effective reagent for the 
fluorination of alcohols. Primary alcohols react at high temperatures in a selective manner. As 
for secondary and tertiary alcohols, their reactivity is higher, but the reaction is much less 
selective with the formation of olefin side products.  

b. Fluorination of activated carbonyl groups 

TFEDMA can also be used for the fluorination of carbonyl compounds. The reactivity of the 
reagent towards ketones, aldehydes and carboxylic acids allows the fluorination of these 
substrates to some extent. 

In the case of carboxylic acids, FAR are convenient reagents. TFEDMA reacts with 
carboxylic acids and sulfonic acids at ambient temperature to give the acyl and sulfonyl 
fluorides44 199 and 200 in good to excellent yields (Scheme 4.36). 
 

 
Scheme 4.36 : Fluorination of acids 

  
Perfluoro-octanoic acyl fluoride 199 and naphthalene-2-sulfonic fluoride 200 were 

prepared in 75% and 99% yield by reaction with TFEDMA at room temperature for two or six 
hours. Generally, TFEDMA is less active with carbonyl functions than SF4 and DAST. 
Nevertheless, the preparation of difluorides is possible with activated substrates at elevated 
temperatures.45  
 

 
Scheme 4.37 : Fluorination of carbonyl compounds 

 
Hence, propionyl aldehyde 201 was converted into the corresponding difluoromethyl 

compound 202 in 60% yield,44 but the unactivated 2-adamantone 203 did not react with 
TFEDMA (Scheme 4.37). 
 The reaction of 1,3-diketones with TFEDMA has also been the subject of a study.  
1,3-diketones44  yielded 42 to 63% of the desired difluorides 204a, 204b and 204c in presence 
of TFEDMA at 50 to 80 °C for 6h (Scheme 4.38). Since TFEDMA does not react with unactivated 
ketones, V. A. Petrov et al. studied its reactivity towards linear and cyclic β-dicarbonyls.47  
 

 
Scheme 4.38 : Fluorination of 1,3-pentadione 
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The reaction was performed on a few substrates, and showed moderate yields. The 
supposed mechanism is comparable to the one for the fluorination of alcohols. The oxygen of the 
enol tautomer 205 attacks the electrophilic carbon of TFEDMA to form the adduct 206 (Scheme 
4.39).  
 

 
Scheme 4.39 : Mechanism for the fluorination of 1,3-diketones 

 
The intermediate 206 is then fluorinated via 1,4-addition of fluoride, and subsequent 

elimination of acetamide 187 provides enone 207. Another nucleophilic attack of fluoride on the 
double bond induces the formation of the desired β,β-difluoro ketone 204a. Although free 
hydrogen fluoride is represented on the scheme, it is likely to be complexed to the amide 187 in 
solution. 

4.1.4.2. Introduction of a fluorinated substituent  

The use of TFEDMA as a fluorinating agent has been reported, and several methods for its 
application have been developed. 

 
In 2008, S. Pazenok et al. described that ethyl difluoro acetoacetate 138 can be prepared 

from ethyl acetate in presence of TFEDMA and a base.48 The reaction was achieved in good 
yields, depending on the base (Scheme 4.40). 

 

 
Scheme 4.40 : Synthesis of difluoro acetoacetate via TFEDMA 

 
Recently, V. A. Petrov et al. detailed the reaction of TFEDMA with 1,3-diketones. However, 

when the reaction was then attempted on cyclic diketones,47 acylation rather than fluorination 
occurred (Scheme 4.41). 
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Scheme 4.41 : Acylation of cyclic 1,3-diketones 

 
Indeed, depending on reaction conditions, electrophiles can be attacked either by the 

carbon or by the oxygen atom of 208. During the reaction of TFEDMA with cyclic 1,3-diketones 
at room temperature, the only observed product was the acylation product 209. Thus, in this 
case, TFEDMA can be considered as a difluoroacetyl transfer reagent. 

The reaction mechanism is different from the one postulated for the fluorination of linear 
diketones. It consists in the nucleophilic attack of the carbon of 208a at the electrophilic carbon 
of TFEDMA (Scheme 4.42).  

 

 
Scheme 4.42: Mechanism for the acylation with TFEDMA 

 
Given that a new carbon-carbon bond has been formed, and unlike with linear substrates, 

elimination of the amide is not possible. Hence, it is likely that the iminium cation 210 is 
hydrolysed during aqueous workup. The equilibrium is then displaced to the formation of the 
iminium 210, and the reaction leads to the acylation product 209a.  

In order to prove that the carbon which is active is the one between the two carbonyl 
groups, an experiment with the cyclic 1,3-diketone 208e bearing a methyl substituent at the  
2-position was performed (Scheme 4.41). The lack of reactivity and total recovery of the starting 
material represented an evidence that this carbon is involved into the mechanism. 

 
Earlier, C. Wakselman et al. showed that TFEDMA is able to acylate aromatic substrates.32 

Indeed, the action of boron trifluoride makes it an electrophilic reagent which can undergo 
electrophilic aromatic substitution. Reaction with dimethyl aniline 211 yields 45% of the 
corresponding acylated product 212 (Scheme 4.43). 

Furthermore, TFEDMA has attracted a lot of interest in the last few years as it can be used 
as a difluoromethyl-transfer reagent. Its importance for the synthesis of difluoromethylated 
pyrazoles has been outlined and detailed earlier. 
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Scheme 4.43 : Acylation of aromatic substrates 

 
All the literature which has been detailed here confirms that TFEDMA is a versatile 

reagent which can be used for several purposes: fluorination of alcohols, acids, activated 
carbonyls, or introduction of a fluorinated substituent. To a certain extent, its reactivity as a 
difluoromethyl-transfer reagent represents important possibilities for further investigation. 

4.1.5. Objectives 

In the first part, we have detailed the several existing methods for the synthesis of 
difluoromethyl pyrazoles bearing one, two and three fluorinated substituents. Difluoromethyl 
pyrazoles can be synthesised from fluorinated 1,3-diketones, enones, β-keto esters, acetylenes 
and chromones. The fluoroalkyl substituent can be introduced via the reaction of hydrazines 
with carbonyl derivatives followed by cyclisation, or via the use of TFEDMA as a difluoromethyl 
transfer reagent. Although scarcely reported, the construction of the fluorinated group on the 
pyrazole ring is possible by conversion of chlorinated derivatives in presence of TREAT-HF. 

Pyrazoles bearing more than one fluorinated substituent are hardly described, and only 
one method reports on the synthesis of unsymmetrical pyrazoles. As a matter of fact, the 
synthetic approach for pyrazole precursors is tedious, which makes the access to  
3,5-bis(fluoroalkyl) products very difficult. Numerous methods have been developed for 
pyrazoles bearing one fluorinated substituent, whereas 3,5-(bis)fluoroalkyl pyrazoles are 
scarcely described. 

Besides, the regioselectivity of the cyclisation step remains an issue, even if a few methods 
allow its control. Among them, the protection of methyl hydrazine as a hydrazone before 
cyclisation provides good results, but is not compatible with the concept of atom economy.  

  
In a second part, the reactivity of TFEDMA has been detailed, and showed a wide range of 

possibilities. It can be used for the fluorination of alcohols, acids and activated carbonyls, as well 
as for the introduction of fluorinated substituents into molecules. The latter possibility presents 
many opportunities for investigation. Indeed, using TFEDMA for the introduction of a 
fluorinated moiety can lead to products bearing either a difluoromethyl or a difluoroacetyl 
substituent, but this has not been described extensively. In addition, its facile and low-cost 
preparation from tetrafluoroethylene makes it a reagent of choice for further industrial 
applications. 

 
A careful study of the literature revealed that there is a crucial lack of straightforward, 

regioselective and reproducible methods for the synthesis of pyrazoles bearing two fluoroalkyl 
substituents at the 3- and 5- positions. A process allowing the access to this class of compounds 
via a short synthetic pathway in high yields would be very useful for the preparation of new 
active ingredients. For instance, these pyrazole building blocks could confer enhanced biological 
properties by replacement in known bioactive molecules.  
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Given that literature did not provide satisfying procedures, we were intrigued by the 
possibility of opening a new route to unsymmetrical 3,5-bis(fluoroalkyl) pyrazoles. The main 
idea was to design a straightforward and versatile method, which could be customized to lead to 
any fluorinated substituent on demand. After considering several synthetic pathways, two 
principal strategies emerged. They should allow the differentiation of the fluorinated 
substituents, and the route should be short enough to be competitive. 

 
The first one consisted in the use of α,β-unsaturated ketones. As it has been demonstrated, 

the cyclisation of these compounds leads to pyrazoles in very good yields. Since it is one of the 
most common routes to pyrazoles, the reactivity of enones towards hydrazine is well described, 
thus predictable, and the regioselectivity can be controlled. The idea was to use fluorinated 
enones to synthesise 3,5-disubstituted pyrazoles. The second fluorinated substituent would be 
introduced later by a bromination/fluorination sequence (approach A, Figure 4.5), either on the 
enone precursor or on the cyclised pyrazole (approach B). 

 The advantage of this route is the easy access to fluorinated enones 213, which has 
already been reported. For instance, the trifluoromethyl enone 213a can be obtained in very 
good yields by reaction of 2-methoxy propene with trifluoromethyl acyl chloride or 
trifluoroacetic anhydride.49 Therefore, we have chosen this approach as a starting point to 
prepare the enones 213 bearing a methyl group at one end, and a fluoroalkyl substituent at the 
other end (Figure 4.5).  

 

 
Figure 4.5 : First strategy for the synthesis of 3,5-bis(fluoroalkyl) pyrazoles 

 
From this enone, the strategy exhibits many possibilities. The aim was to introduce 

bromine atoms on the methyl substituent and ensuing bromine-fluorine exchange, to open an 
access to difluoromethylated compounds. The bromination is therefore a key step of this 
synthesis.  

Two approaches emerged: the first one, approach A, was based on working on the 
bromination of the enone 213 and subsequent cyclisation followed by fluorination to lead to the 
desired pyrazole 214. Approach B consisted in direct cyclisation of enone 213 followed by 
bromination and bromine-fluorine exchange onto the cyclised pyrazole leading to the final 
compound 214. 
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The second strategy was based on the use of TFEDMA as a difluoromethyl-transfer 

reagent. As it has been described, TFEDMA is a convenient reagent for the synthesis of  
3-difluoromethyl pyrazoles (Scheme 4.24). If a fluorinated precursor is used, the access to  
3,5-bis(fluoroalkyl) pyrazoles can be developed.  

It is known that fluorinated β-keto esters can be easily deprotonated in the presence of 
weak bases, and that the activation of TFEDMA by reaction with boron trifluoride makes it a 
good electrophile. By nucleophilic attack, a difluorinated enone adduct 215 could be formed, and 
subsequent cyclisation could lead to the desired 3,5-bis(fluoroalkyl) pyrazoles (Scheme 4.44). 
  

 
Scheme 4.44: Use of TFEDMA on β-keto esters 

 
 The synthetic path leads to a fluorinated dimethylamino acrylate 215, and this class of 
compounds has demonstrated a good reactivity towards hydrazines. Once again, the method can 
provide fluorinated substituents on demand. Indeed, several fluorinated acetoacetates are 
commercially available or can be easily synthesised by Claisen condensation. Moreover, the use 
of other FAR having the same reactivity (Yarovenko or Ishikawa’s reagents) supplies further 
possibilities for the second fluorinated substituent. 
 
 These two approaches could allow the preparation of 3,5-bis(fluoroalkyl) pyrazoles in a 
few steps, avoiding the tedious synthetic pathways that had been reported before. Both 
synthetic approaches have been investigated, and we will now present our results.   

4.2. Fluorination of alkyl pyrazoles 

 At the beginning of our study, we decided to start with trifluoromethyl enones, as their 
reactivity and preparation are widely described in the literature. In addition, such starting 
materials are commercially available and among the cheapest fluorinated starting materials. The 
first step of our synthetic route, which was the synthesis of 1,1,1-trifluoro-4-methoxypent-3-en-
2-one 213a, had been reported by reaction of trifluoroacetic acyl chloride with 2-methoxy 
propene 216 by I. I. Gerus et al.50 We applied this process to trifluoroacetic anhydride with 
success, and the pure fluorinated enone was obtained in 97% yield (Scheme 4.45). 
 

 
Scheme 4.45 : Synthesis of 1,1,1-trifluoro-4-methoxypent-3-en-2-one 
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 The approach consisting in bromination followed by fluorination of the enone precursor 
was immediately put aside. Indeed, fluorinated compounds tend to be more volatile than their 
alkyl counterparts. We thought that a molecule such as 213, containing two fluorinated 
substituents, would be very difficult to handle. Approaches A and B were investigated 
simultaneously.  
 The bromination of the synthesised enone 213 had been described, so we tried to 
reproduce this procedure. The aim was to obtain the mono and dibrominated products in order 
to synthesise two pyrazoles bearing a difluoro or a monofluoromethyl substituent in addition to 
the trifluoromethyl group. In parallel, direct cyclisation of the trifluoromethyl enone followed by 
bromination was tried in order to construct the second fluorinated group directly on the 
pyrazole ring (Scheme 4.46). 
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Scheme 4.46 : Two envisaged synthetic pathways 

4.2.1. Towards 3-halogenoalkyl pyrazoles 

 Having the trifluoromethyl enone 213a in hand (Scheme 4.47), we started with the 
approach B (Scheme 4.46). We performed the cyclocondensation in presence of hydrazine 
hydrate in ethanol at reflux to yield 92% of the desired pyrazole 217. Subsequent protection in 
presence of Boc2O, triethylamine and DMAP provided the N-Boc pyrazole 218 in 96% yield. The 
latter could then be used for halogenation tests (bromination and chlorination). 
 

 
Scheme 4.47 : Synthesis of N-Boc pyrazole 218 from 213a 

  
 Halogenation of methyl pyrazoles has been reported several times in the literature by 
different processes. It should be noticed that dihalogenation of methyl pyrazoles has never been 
described. Halogenation reactions can be performed in presence of bromine, as well as under 
radical conditions initiated by AIBN in presence of N-bromo or N-chloro succinimide (NBS or 
NCS).  
 However, bromination of methyl pyrazoles containing a fluorinated substituent has only 
been described twice.51 It has been performed in carbon tetrachloride, in presence of NBS either 
on a N-phenyl pyrazole initiated by benzoyl peroxide at reflux for 21h or on a N-methyl pyrazole 
initiated by AIBN at reflux for 30 minutes.  
 
 As the product in the second example had a substitution pattern closer to ours, we decided 
to try to reproduce these conditions on our compound (Table 4-3). The first tested conditions 
were exactly the ones described earlier. As only 33% conversion was observed on the crude 
NMR spectrum, we tried to improve the conditions. The conversion had to be total, as the 
brominated product and the starting material are obtained in an unseparable mixture.  
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Entry 
Halogenating 

agent 
Eq 

NXS 
Eq AIBN Concentration Reaction time Observations 

1 NBS 1,15 0,1 0,16 M 12h 33% conversion 
2 NBS 1,5 0,1 0,8 M 6h 40% conversion 
3 NBS 1,8 0,1 0,72 M 6h 40% conversion 
4 NBS 2,3 0,1 0,16 M 12h 5 spots on TLC 
5 NBS 1,15 0,1 + 0,1 0,16 M 24h Degradation 
6 NBS 1,15 0,1 0,32 M 12h 50% conversion 
7 NBS 1,2 0,1 0,72 M 12h Degradation 
8 NBS 1,2 0,1 1,44 M 12h Degradation 
9 NBS 1,2 0,1 0,72 M 4h 50% conversion 

10 NBS 1,2 0,1 0,75 M 3h 45% conversiona 

11 NCS 1,2 0,1 0,72 M 6h 5 spots on TLC + SM 
            a Reagent used: N-methyl pyrazole  

Table 4-3 : Conditions for the halogenation of the 3-methyl-5-trifluoromethyl pyrazole 

 
 We realised that increasing the number of equivalents of NBS (entries 2, 3 and 4), 
influenced the conversion, and when we reached 2.3 equivalents the reaction became very 
messy. A second addition of radical initiator after one night at reflux (entry 5) only led to 
degradation of the starting material. Increasing the concentration of the reaction mixture gave 
better results (entries 6, 7 and 8) at first, but when the mixture was too concentrated the 
starting material was degraded.  
 Finally, the best conversions were observed with relatively higher concentrations and 
shorter reaction times (entry 9) or lower concentrations and longer reaction times (entries 1 
and 6). The substituent on the nitrogen atom had no influence on the reaction rate (entry 10), 
and the use of NCS instead of NBS produces an uninterpretable result (entry 11). 
 
 Several reaction conditions were tested, always leading to either degradation of the 
starting material or to an unseparable mixture of starting material and brominated compound. 
As we obtained no encouraging results, we decided to concentrate our efforts on the option of 
performing a bromination on the enone precursor before cyclisation (approach A, Scheme 4.46). 

4.2.2. Synthesis of brominated enones 

 Given that the strategy of bromination of the cyclised pyrazole did not provide positive 
results, we started to investigate the bromination of the fluorinated enone 213a. The aim was to 
be able to perform a mono and a di-bromination on the methyl substituent of the enone. Both 
procedures have been described,52 but as the results could not be reproduced, we had to 
optimise the reaction conditions. 
 According to the literature, the reaction was carried out by slow addition of 1 equivalent of 
bromine onto a 1,1,1-trifluoro-4-methoxypent-3-en-2-one 213a solution in dichloromethane at 
room temperature (Scheme 4.48). Subsequent quenching with pyridine at -10 °C provided the 
desired product in excellent yields.  
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Scheme 4.48 : Mono and dibromination conditions according to M. A. P. Martins et al. 

 
 When we performed the reaction on the same scale a 86:14 mixture of the desired product 
219a and the dibrominated byproduct 219b was obtained in 88% yield (Table 4-4). 
 

 
 

Entry Eq. Br2 
Reaction 

time 
Yield 

219a/219b  

Ratios 

1 1 2h / 86:14 

2 1,2 2h / 71:29 
3 0,9 2h 90% 100:0 
4 2 3h / 27:73 
5 2,5 3h / 16:84 

Table 4-4 : Optimisation of the bromination of 213a 

 
 When we used 0.9 equivalents of bromine, we could isolate the desired monobrominated 
enone in 90% yield (entry 3). We also wanted to synthesise the dibrominated compound in 
order to access the difluoromethyl pyrazole. Unfortunately, our attempts to perform the 
dibromination failed completely. Even when we tried to force the reaction conditions (entry 5) 
using 2.5 equivalents of bromine, we observed a mixture of mono and dibrominated products 
219a and 219b on the crude NMR spectra. As this mixture was unseparable by column 
chromatography or by distillation, we decided to perform a bromination of the isolated mono 
brominated product 219a (Scheme 4.49).  
 

 
Scheme 4.49 : Attempt of bromination of the brominated fluoroenone 219a 

 
 One equivalent of bromine was added dropwise over 1.5 h onto the brominated enone 
219a in solution in dichloromethane at room temperature. After quenching with one equivalent 
of pyridine at -10 °C, the crude NMR spectrum showed a 44:56 mixture of mono and dibromo 
products. 
 As we had successfully isolated the mono brominated enone 219a, we tried thus to 
condense it with hydrazine in order to perform a fluorination on the bromo methyl pyrazole.  
5-Bromo-1,1,1-trifluoro-4-methoxypent-3-en-2-one 219a was diluted in ethanol and heated to 
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reflux for 3h in presence of 1.3 equivalents of hydrazine hydrate (Scheme 4.50). The reaction 
was messy, and many byproducts were formed. The hydrazine and the solvent had no influence 
on the outcome of the reaction. No improvement was observed with the use of methyl hydrazine 
and/or methanol instead of ethanol. 
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Scheme 4.50 : Attempts of cyclisation of the brominated fluoroenone 219a 

 
 The cyclocondensation seems to be disfavoured when the methyl group is brominated due 
to the bulkiness and the electronic influence of the bromine atom. Given these unsuccessful 
results, we decided to concentrate our efforts on the “TFEDMA strategy”. 

4.3. Synthesis of 3,5-bis(fluoroalkyl) pyrazoles via the use of 

TFEDMA 

4.3.1. Preparation of 3,5-bis(fluoroalkyl) pyrazoles 

 We started our studies with the addition of β-keto esters on TFEDMA. Once again, the 
trifluoromethyl derivative (ethyl trifluoroacetoacetate) was chosen for the optimisation of the 
reaction as it is commercially available, and among the cheapest fluorinated acetoacetates. The 
synthesis of the adduct 215 and its isolation will help us to confirm the reaction pathway in 
accordance with the one we had envisaged. 
 When TFEDMA was added onto ethyl trifluoroacetoacetate 220 and potassium fluoride in 
acetonitrile, no desired product 215a was detected (Scheme 4.51) and the starting material was 
completely recovered. We decided to use boron trifluoride in order to activate TFEDMA. 
 

 
Scheme 4.51 : Reaction of ethyl trifluoroacetoacetate 220 with TFEDMA 

 
 When TFEDMA was previously activated with BF3(OEt2) and added onto ethyl 
trifluoroacetoacetate in presence of potassium fluoride, the formation of the adduct 215a was 
observed, along with the byproduct 221 (Table 4-5). 
 
 In dichloromethane (entry 1), no reaction was observed, probably due to the fact that 
activated TFEDMA is not soluble in this solvent. We thus changed for DMF and DMAc, which led 
to the disappearance of the starting material but the reaction was very messy and the results 
were uninterpretable (entries 2 and 3). In acetonitrile, we could observe the formation of the 
desired adduct 215a along with a side product 221 (entries 4, 5 and 6). 
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Entry Solvent Reaction time Temperature Observations 

1 DCM overnight rt No reaction 

2 DMF overnight rt 
Observation of a side product,  

no desired product 
3 DMAc overnight rt No desired product, uninterpretable 
4 MeCN overnight rt Mixture  220/215a/221  36:21:43 
5 MeCN 1h 0 °C Mixture  220/215a/221 10:68:22 
6 MeCN 3h -30 °C Mixture 220/215a/221  8:75:17 

Table 4-5 : Optimisation of the formation of adduct 215a 

  
 The dimethyl amino α,β-unsaturated ester 221 is the result of the loss of the 
trifluoroacetyl group. A similar reaction has been reported,53 where the attack of deprotonated 
trifluoro acetoacetate onto an aldehyde provided the α,β-unsaturated ester 222 (Scheme 4.52). 
The postulated mechanism implies attack of the base at the electrophilic carbon of the 
trifluoroacetyl group, and this induces the elimination of trifluoroacetate and the formation of 
the α,β-unsaturated ester 222. 
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Scheme 4.52 : Possible mechanism for trifluoroacetyl elimination described by Suman et al. 

 
 Given that our adduct is very similar to this one, we can imagine that the fluoride anions in 
solution are nucleophilic enough to attack the electrophilic carbonyl group, leading to the 
formation of the α,β-unsaturated ester 221 after elimination of the trifluoroacetyl group. 
 

 
Figure 4.6: Possible mechanism for the formation of the byproduct 221 

 
 In order to avoid this side reaction, we carried the reaction out in acetonitrile and we 
decreased the temperature, which led to improved 215a/221 ratios (entries 5 and 6). The best 
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result was obtained when the reaction was performed at -30 °C for 3h (entry 6) which provided 
a 220/215a/221 ratio of 8:75:17. Besides, the reaction must be performed in a completely dry 
reaction medium, as TFEDMA and its activated form are very sensitive to the presence of water 
and decompose immediately to form the corresponding amide 187. 
 
 Given that the adduct 215a is rather unstable, every attempt to isolate it failed. In 
consequence, we decided to employ it directly in the cyclisation with hydrazine. Performing the 
adduct formation under optimised conditions, hydrazine was added onto the reaction mixture. 
Several attempts were necessary before good yields were reached (Table 4-6). 
 
 First, the adduct 215a had been prepared and stirred overnight at room temperature. The 
methyl hydrazine or hydrazine hydrate (entries 1 and 2) were added to the mixture and stirred 
for 24h at room temperature. The desired pyrazoles 223a and 223b were obtained in 31% and 
20% yields (entries 1 and 2). The regioselectivity was completely controlled, as we only 
observed the formation of 3-difluoromethyl-5-trifluoromethyl pyrazoles. 
 Others experiments were performed with the same reaction times, unless specified. 
Methyl hydrazine was chosen to optimise the reaction. Different inorganic bases (entry 3) or 
reversing the order of addition (entry 9) did not lead to the desired product. Decreasing 
gradually the temperature of addition from room temperature to -30 °C (entries 4 to 8) led to 
lower yields. Heating the mixture to 90 °C for 3h after hydrazine addition led to no product 
formation at all (entry 9). 
 

 
 

Entry R Eq. Base 
T °C  

hydrazine 
addition 

T °C  
reaction 

Yield (%) Observations 

1 H 1,2 KF (3eq) rt rt 31 / 
2 CH3 1,2 KF (3eq) rt rt 20 / 

3 CH3 1,2 Cs2CO3 (3eq) rt rt / 
No desired product 

observed 
4 CH3 1,2 KF (3eq) 0 °C rt 16 / 
5 CH3 1,2 KF (3eq) -30 °C rt 9 / 
6 CH3 1,5 KF (3eq) 0 °C  rt 18 / 
7 CH3 1,5 KF (3eq) -10 °C rt 10 / 
8 CH3 1,2 KF (2eq) -30 °C rt 9 Slightly acidic medium 

9 CH3 1,2 KF (3eq) -30 °C 90 °C / 
Reverse addition and 3h at 
reflux, no desired product 

observed 
Table 4-6 : Optimisation of the cyclisation step 

  
 We could conclude that the number of equivalents of hydrazine has no influence on the 
yield (entry 6), and that a slightly acidic medium did not favour cyclisation (entry 8).  
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 Finally, after having studied the influence of various parameters in order to improve the 
yield of the reaction, we thought that the low yields could be due to a lack of reactivity of the 
adduct 215a. Therefore, addition of an azaphilic lewis acid should help us to increase its 
reactivity and thus reach higher yields (Figure 4.7). 
 

 
Figure 4.7 : Use of an azaphilic Lewis acid 

 
 The addition of an azaphilic Lewis acid shall increase the electrophilicity of the carbon α to 
the -NMe2 group and facilitate the Michael-type addition of hydrazine onto our adduct.  
 Several Lewis acids have been classified54 according to their preferences for oxygen or 
nitrogen (selectivity), and their activity (yield). We selected some of them and we tested them 
during the cyclisation step (Table 4-7). FeCl3 is described as a very active and mildly selective 
Lewis acid, CuCl2, Cu(OTf)2 and CuCl as very selective for nitrogen and mildly active, and finally 
Yb(OTf)3 as the most selective but weakly active Lewis acid.  
 The formation of the adduct 215a was performed under the previously described 
conditions (Table 4-5). The Lewis acid was added onto the adduct in situ and stirred for 
10 minutes at -30 °C. Methyl hydrazine was then added onto the reaction mixture, and stirred 
from -30 °C to room temperature overnight. 
 

 
 

Entry Lewis Acid Eq. Yield Observations 

1 / / 20% No Lewis acid in the reaction medium 
2 CuCl2 1 27% / 

3 CuCl2 1 / 
Overnight at rt then 1h at 80 °C in 

MW. Disappearance of 223b after MW 
irradiation. 

4 CuCl2 0.2 16% / 
5 CuCl2 5 13% / 
6 CuCl 1 / No DP observeda 
7 FeCl3 1 / No DP observeda 
8 Yb(OTf)3 0.2 13% / 
9 Cu(OTf)2  1 22% / 

10 TiCl4 1 / No DP observeda 
                 aDP = desired product 

Table 4-7 : Study of the influence of Lewis acids on the cyclisation step 
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 The results obtained emphasise that addition of 1 equivalent of CuCl2 allowed us to reach 
27% yield (entry 2) instead of 20% under the previous cyclisation conditions (entry 1). Addition 
of 0.2 or 5 equivalents of copper(II) chloride (entries 4 and 5) lowered the yield, and addition of  
1 equivalent of copper(II) chloride and subsequent heating in the microwave oven (entry 3) led 
to degradation of the desired product. When we introduced one equivalent of FeCl3 into the 
reaction mixture, no desired product was detected. This might be due to the strong oxidative 
properties of this complex. Ytterbium(III) and copper(II) triflates did not improve the yield 
compared to CuCl2 (entries 9 and 10). It has to be noticed that the addition of Lewis acids did not 
change the regioselectivity of the reaction, as the same regioisomer was obtained under these 
conditions. 
 In order to compare the results, we also tested titanium tetrachloride as an oxophilic 
Lewis acid. Unfortunately, no product was detected in presence of one equivalent of this 
complex. To conclude, the only positive effect of azaphilic Lewis acids observed was in presence 
of copper(II) chloride.  
 
 At this point, although we had slightly increased the yield, the results were not 
satisfactory. So far, only one factor had not been modified in the optimisation study. The base 
had only been changed once (Table 4-6), and only inorganic bases had been used.  
 A possible explanation for the low yields of the cyclisation could be the use of potassium 
fluoride. Indeed, for the formation of the adduct, ethyl trifluoroacetoacetate was mixed with  
3 equivalents of potassium fluoride. This means that during deprotonation of the β-keto ester, 
two molecules of HF were released (Scheme 4.44), and that the reaction medium was slightly 
acidic. Hence, we thought that using an organic base which could in addition trap the HF that 
was released during cyclisation could increase the yield.  
 In addition, the literature reports in same cases on the synthesis of pyrazoles from  
β-keto esters or α,β-unsaturated ketones under basic conditions. In this case, the most common 
organic bases are amines.33,55 Consequently, we chose to perform the reaction in presence of 
pyridine, which could deprotonate the fluorinated β-keto esters and simultaneously play the 
role of trapping reagent for HF. 
 Hence, the reaction was performed with ethyl trifluoroacetoacetate. First, TFEDMA was 
activated with BF3(OEt)2, and it was added onto ethyl trifluoroacetoacetate and dry pyridine in 
MeCN at -30 °C (Scheme 4.53). After one night at room temperature, methyl hydrazine was 
added onto the reaction mixture, and it was stirred for one day to afford the desired  
3-difluoromethyl-5-trifluoromethyl pyrazole 223b in 63% yield. 
 

F

F

F

F

NMe2

1. BF3(OEt2) (1 eq), DCM
then MeCN, rt

2. Trifluoro acetoacetate (1 eq),
Pyridine (3 eq)
-30 °C to rt, overnight

3. Methyl Hydrazine (1.5 eq),
rt, 24h
MeCN

N
N

HF2C COOEt

CF3

63%

223b

 
Scheme 4.53 : Optimised conditions for the cyclisation from ethyl trifluoroacetoacetate 

 
 In this way, we had been able to triple the cyclisation yield. The reaction was working well, 
and now that we had reached a reasonable yield we decided to perform the reaction on several 
fluorinated acetoacetates in order to study the scope of the reaction. Hence, we accomplished 
the reaction with commercially available ethyl difluoro-, trifluoro- and pentafluoroethyl- 
acetoacetates 138, 220, 224 and synthesised ethyl chlorodifluoroacetoacetate 225 by Claisen 
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condensation.56 We also studied different hydrazines in order to compare their reactivity 
towards the adducts we had synthesised: hydrazine hydrate, methyl, phenyl and tert-butyl 
hydrazines (Table 4-8). 
 

 
 

Entry Number Rf R Yield 

1 223a CF3 Ha 67% 
2 226a CF2H Ha 29% 
3 227a CF2Cl Ha 63% 
4 228a C2F5 Ha 46% 
5 223b CF3 CH3 63% 
6 226b CF2H CH3 39% 
7 227b CF2Cl CH3 72% 
8 228b C2F5 CH3 83% 
9 223c CF3 Phenyl 67% 

10 226c CF2H Phenyl 43% 
11 227c CF2Cl Phenyl 53% 
12 228c C2F5 Phenyl 85% 
13 223d CF3 tert-Butylb 53% 
14 226d CF2H tert-Butylb 30% 
15 228d C2F5 tert-Butylb 33% 

                           a Reagent: hydrazine hydrate b Reagent: tBuNHNH2.HCl 

Table 4-8 : Scope of the cyclisation reaction 

  
 A careful observation of the obtained results leads to the conclusion that the reaction is 
substrate-dependent. The 3-difluoromethyl pyrazoles 223a to 228d are obtained in moderate to 
very good yields: from 29 to 85% depending on the fluorinated alkyl group and the hydrazine 
employed. 
  
 The influence of the hydrazine is obvious. Indeed, lower yields have been obtained with 
tert-butyl hydrazine and hydrazine hydrate than with methyl and phenyl hydrazines. It has to be 
noticed here that tert-butyl hydrazine and hydrazine are not used pure: tert-butyl hydrazine is a 
hydrochloride salt and hydrazine is used as a hydrate. This might have an influence on the 
reactivity.  
 The first results obtained with tert-butyl hydrazine hydrochloride afforded the pyrazoles 
223d and 228d in 16% and 33% yield, respectively. Quenching the hydrochloride in presence of 
potassium hydroxide (1 equivalent) in methanol before cyclisation significantly increased the 
yield (entry 13). However, due to lack of time, this could not be tested for the cyclisation of 228d 

and 226d. 
 
 Furthermore, it should be noticed that the nature of the fluorinated acetoacetate also has 
an influence on the cyclisation yields. The trifluoromethyl-substituted starting material 220 

provided the more consistent results, as yields are between 53 and 67%. Mostly, difluoromethyl-
substituted acetoacetate 138 led to lower yields (between 29 and 43%), and pentafluoroethyl 
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acetoacetate 224 to higher yields (between 33 and 85%). In consequence, we can point out that 
the general tendency is that the yields increase with the electron-withdrawing properties and 
the size of the fluorinated substituent. 
 
 Finally, neither the nature of the hydrazine nor the starting fluorinated acetoacetate has 
an influence of the regioselectivity of the cyclisation reaction, as the desired pyrazoles are 
always obtained as a single 3-difluoromethyl regioisomer. 
 
 To conclude, we can say that we developed a straightforward method for the synthesis of 
ethyl 3,5-bis(fluoroalkyl)-4-carboxylate pyrazoles 223a to 228d bearing two different 
fluorinated groups. Despite the low yields for the 3,5-bis(difluoromethyl) pyrazoles 226, the 
method is applicable to several fluorinated groups and scalable. In addition, it allows obtaining 
pyrazoles bearing different fluoroalkyl substituents at the 3- and 5-positions in a one-step 
process, which had never been described. Only a multi-step synthetic approach has been 
reported for the preparation of such products.36b 

4.3.2. Towards 4-unsubstituted pyrazoles 

 In order to enlarge the scope of functionalisation of these pyrazole building blocks, we 
wanted to transform the carboxylate at the 4-position of the pyrazole ring. With this purpose in 
mind, we investigated several reaction conditions for the obtention of pyrazole carboxylic acids 
and their decarboxylation towards 4-unsubstituted pyrazoles (Scheme 4.54). 
 

 
Scheme 4.54 : Synthetic path for the obtention of 4-H pyrazoles 

 
 Indeed, the carboxylic acids could allow the coupling for the formation of amides, the 
transformation into a cyano group or nucleophilic substitutions by reduction to the primary 
alcohol and subsequent chlorination. The obtention of the free 4-position could lead to other 
functionalised pyrazoles by means of organometallic reagents. 

4.3.2.1. Saponification and decarboxylation at the 4-position 

 First, we had to find mild reaction conditions for the decarboxylation due to the sensitivity 
of the pyrazole ring. 
 
 We started with the study of common saponification conditions with 3 equivalents of 
sodium hydroxide (aqueous solution) in ethanol at room temperature. Fortunately, these 
conditions provided the desired carboxylic acids in very high yields (Table 4-9). All 
saponification yields were almost quantitative, and the obtained products were all crystalline 
and did not need any further purification. This made this method very practical, straightforward 
and adaptable to scale-up. 
 However, saponification of the free N-H pyrazoles did not occur, and in every case the 
starting material was completely recovered. At this point, we decided to work with tert-butyl 
pyrazoles as the N-tBu group can be deprotected under strong acidic conditions. Developing an 
access to 3,5-difluoroalkyl pyrazoles having a free nitrogen atom was very important for us. 
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Indeed, this can provide further options for a functionalisation of the pyrazole nitrogen on 
demand. 
 

 
 

Entry Number R Rf Yield 

1 229b CH3 CF2H 97% 
2 230b CH3 CF3 98% 
3 231b CH3 CF2Cl 90% 
4 232b CH3 C2F5 97% 
5 229c Phenyl CF2H 98% 
6 230c Phenyl CF3 94% 
7 231c Phenyl CF2Cl 99% 
8 232c Phenyl C2F5 98% 
9 229d tert-Butyl CF2H 97% 

10 230d tert-Butyl CF3 94% 
11 232d tert-Butyl C2F5 99% 
Table 4-9 : Saponification of ethyl 4-carboxylate pyrazoles 

 
 After having optimised the saponification step and obtained all desired pyrazoles in high 
yields, we wanted to perform the decarboxylation of these compounds in order to access the 
corresponding 4-H pyrazoles. We thought that this step would be easily achieved, but it revealed 
to be problematic.  
 To the best of our knowledge, only one reference reports on the decarboxylation of 
pyrazoles bearing fluoroalkyl groups.57 G. Daidone et al. described the decarboxylation of a  
3-trifluoromethyl pyrazole with 30% yield by heating it to its melting point for 5 minutes. 
Unfortunately, applying these conditions to our products led to total degradation. Then, we 
began applying common decarboxylation conditions which were described on pyrazoles.  
 Decarboxylation in presence of HCl is one of the mostly reported conditions. We tried 
different concentrations, solvents and temperatures on our compounds. This led either to total 
recovery of the starting material or its degradation (Table 4-10). 
 

 
 

Entry Conc. HCl Solvent Temperature Observations 

1 1M (3 eq) H2O rt then reflux 3h No reaction 
2 1M (3 eq) H2O/EtOH 3:1 reflux 3h No reaction 
3 6M H2O/EtOH 3:1 reflux overnight No reaction 
4 12M MeCN reflux overnight No reaction 
5 12M H2O 1h 130 °C MW Degradation of SM 

Table 4-10 : Attempts of decarboxylation in presence of HCl 

 
 Considering these negative results, we decided to try to perform a tandem 
saponification/decarboxylation approach.58 The principle of the sequence was a saponification 
in presence of sodium hydroxide followed by acidification of the reaction medium with 
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concentrated HCl and subsequent decarboxylation in a water/ethanol 4:1 mixture under 
microwave irradiation (Scheme 4.55).  
 

 
Scheme 4.55 : Tandem saponification/decarboxylation 

 
 Heating the first step in the microwave oven under basic conditions, a total conversion of 
the ester 223b into the carboxylic acid 230b was observed. After acidification of the reaction 
medium, we completely recovered the starting material: the ethanol present in the mixture led 
to esterification of the pyrazole carboxylic acid. The procedure was repeated without ethanol, 
and it led to complete degradation of the starting material. 
 As saponification of the ester can occur under acidic conditions, we tried to heat the 
carboxylate 223b in H2SO4 (20% wt) for 10 minutes at 200 °C under microwave irradiation. 
Once again, this led to complete degradation of the starting material (Scheme 4.56).  
 

N
N

HF2C

CF3

COOEt

N
N

HF2C

CF3

H2SO4 (20%)

200 °C, 10 min MW

223b  
Scheme 4.56 : Acid-promoted tandem reaction 

 
 These results indicate that milder conditions for the decarboxylation of these pyrazoles 
are required, as strong acidic conditions only degraded the starting materials. A decarboxylation 
has been reported on 4-hydroxy-L-proline in cyclohexanol and in presence of catalytic 
cyclohexenone (14 mol%) without epimerisation of the asymmetric carbon.59 Hence, we applied 
these reaction conditions to our pyrazole carboxylic acids, and observed no reaction. We 
repeated the procedure in presence of a stoichiometric amount of cyclohexenone, and we still 
could not detect any formation of a new product (Scheme 4.57). Even when the reaction was 
stirred for 24h at reflux, no conversion of the starting material was observed, so we abandoned 
this method. 
  

 
Scheme 4.57 : Reaction conditions in presence of cyclohexenone 

 
 In order to be sure that we did not lose the product of decarboxylation because of 
volatility we decided to try a tandem decarboxylation/electrophilic bromination described for 
pyrazolo-pyridines60 and in one case for a pyrazole61 bearing alkyl substituents.  
 The presence of the bromine atom on the desired pyrazole could have several advantages: 
it decreases the volatility of the product, and allows further functionalisation of the building 
block. The pyrazole carboxylic acid was heated in presence of NaHCO3 and N-bromosuccinimide 
in DMF at 120 °C for 3h (Scheme 4.58).  
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Scheme 4.58 : Decarboxylation/electrophilic bromination conditions 

 
 We performed the reaction in a sealed tube in order to avoid any loss of the product due to 
its volatility. We detected a small amount of the desired product by GCMS, along with several 
unidentified byproducts and a very low conversion of the starting material. When the reaction 
mixture was heated for 24h, we still did not reach total conversion of the starting material. 
Therefore, we had to find another approach. 
 
 Several metal-promoted decarboxylation reactions have been recently developed, and we 
decided to test some of them. So far, none of these reactions have been tested on pyrazoles. 
Mostly silver and copper salts have been employed with additives like potassium carbonate, 
phenanthroline, acetic acid, etc. Generally high boiling-point solvents such as DMF, DMSO, NMP 
and quinoline have been used (Table 4-11).62-66 
 

 
 

Entry Metal Catalyst Additive Solvent T °C Reaction time Observations 

1 CuO (1 eq) / DMF 160 16h No reaction 

2 CuO (1 eq) / DMF 220 3h 
Microwave irradiation, no 

reaction 

3 Cu (6 eq) / NMP 180 3h No reaction 

4 Cu (7 eq) / Quinoline 240 3h No reaction 

5 CuI (6 eq) / NMP 180 3h No reaction 

6 
Ag2CO3 

(10mol%) 
AcOH (5mol%) DMSO 120 3h MW, no reaction 

7 
AgOAc 

(10mol% 
K2CO3 

(15mol%) 
NMP 120  16h No reaction 

8 AgOAc (1 eq) K2CO3 (1.5 eq) NMP 120 16h No reaction 

9 
MgCl2.6H2O (1 

eq) 
/ DMF 160 16h No reaction 

10 
Cu2O 

(5mol%) 
Phenanthroline 

(10mol%) 
NMP/quinoline 

3:1  
160 16h 

Complete conversion and 
detection of the desired 

product in GCMS 

Table 4-11 : Metal-promoted conditions for the decarboxylation 

 
 As copper salts are known to promote decarboxylations,62 we tried to carry the reactions 
out in presence of copper(I) oxide, copper(II) oxide, copper(0) and copper(I) iodide in 
stoichiometric amounts (entries 1 to 5). In NMP or DMF as a solvent, even under harsh 
conditions (entry 2 and 4), no reaction has been observed. 
 I. Larrosa et al. have reported on the decarboxylation of several heteroaromatic 
compounds in presence of a catalytic amount of silver carbonate and acetic acid in DMSO.63 
Although no pyrazoles were described, we decided to test these conditions on our compounds 
(entry 5). Unfortunately, when we performed the reaction at 120 °C under microwave 
irradiation for 3h, the starting material was completely recovered. 
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  It is known that protodecarboxylation of various aromatic carboxylic acids can occur in 
presence of a silver acetate/potassium carbonate catalytic system.64 This has been described on 
electron-rich and electron-poor aromatic systems, and a few examples regarding the 
decarboxylation of heteroaromatic systems can be found. Once again, no pyrazoles have been 
studied. Nevertheless, we applied these conditions to our products. The reaction was 
accomplished in presence of 10 mol% of silver acetate and 15 mol% of potassium carbonate in 
NMP at 120 °C for 16 h, but no reaction was observed (entry 7). Repeating the procedure in 
presence of a stoichiometric amount of the catalyst and 1.5 equivalent of potassium carbonate 
had no influence on the outcome of the reaction (entry 8).  
 As magnesium chloride has proven to promote decarboxylation on natural products,65 we 
used the described conditions on our fluorinated pyrazoles. The reaction was carried out in DMF 
at 160 °C for 3 h with 1 equivalent of magnesium (II) chloride hexahydrate (entry 9). Even after 
prolonged reaction time, no reaction was observed. 
  
 Finally, after having tried almost all decarboxylation reactions described in the literature, 
we decided to use a copper(I) oxide/phenanthroline catalytic system in NMP/quinoline 3:1 as 
solvent recently reported by Goossen et al.66 The pyrazolic acid was stirred in this solvent 
mixture with 5 mol% of Cu2O and 10 mol% of phenanthroline at 160 °C for 16 h (entry 10). The 
desired product was now detected in GCMS as the major product and with complete conversion. 
  
 The reactivity of 3,5-bis(fluoroalkyl) pyrazoles regarding their decarboxylation caused 
numerous problems, but finally with the above approach we found a way to obtain the desired 
products. Nevertheless, purification of the decarboxylated 3,5-bis(fluoroalkyl) pyrazoles 
required many efforts. 
 
 As it has been specified earlier, the synthesised products are very volatile, and we had to 
isolate them from the reaction mixture. When we tried the isolation of the desired product 
directly by distillation under reduced pressure of the reaction mixture, we obtained a mixture of 
the product along with NMP and quinoline. As most of the products were nitrogen-containing 
molecules, we were able to extract them with an aqueous acidic medium. The organic phase had 
to be thoroughly washed, as the boiling points are close to the one of NMP. Diethyl ether, used 
for the extraction, had to be distilled at atmospheric pressure with a Vigreux column, and the 
product was finally distilled under reduced pressure to be obtained in pure form. In a few cases, 
a small amount of quinoline and/or diethyl ether was still detectable after purification. 
 
 Nevertheless, the isolation of the desired products in moderate to good yields was 
achieved (Table 4-12). No general tendency concerning the substitution pattern of the 
fluorinated pyrazoles on the outcome of the reaction can be observed. Heavier pyrazoles, such as 
N-phenyl pyrazoles (entries 4 and 5) provided the desired decarboxylated products in excellent 
yields. In contrast, N-methyl pyrazoles (entries 1 to 3) afforded generally lower yields except for 
the bis-difluoromethyl pyrazole. Finally, N-tert-butyl derivatives were obtained in good yields 
(entries 6 to 8). 
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Entry Number R Rf Yield (%) 

1 233b CH3 CHF2 78 
2 234b CH3 CF3 50 
3 235b CH3 C2F5 63 
4 233c Phenyl CHF2 87 
5 234c Phenyl CF3 84 
6 235c Phenyl C2F5 88 
7 233d tert-Butyl CHF2 64 
8 234d tert-Butyl CF3 83 
9 235d tert-Butyl C2F5 46a 

                      aYield of the corresponding N-H pyrazole (see text) 

Table 4-12 : Copper-catalysed decarboxylation of 3,5-bis (fluoroalkyl) pyrazoles 

 
 Surprisingly, the 5-pentafluoroethyl pyrazole 232d (entry 9) underwent deprotection 
during the saponification step, which was not observed with other N-tert-butyl pyrazoles. We 
could thus obtain the N-H pyrazole 235d in a moderate 46% yield, but in only one step from the  
N-tert-butyl compound 232d. In conclusion, the major difficulty in this synthesis is the high 
volatility of the products and the precautions that have to be taken. The conversions are total in 
each case. 
 

 When the same decarboxylation was performed on 5-CF2Cl derivatives, the results were 
quite different. Indeed, for methyl derivatives, the conversion was not complete, and we were 
not able to isolate the products which had been formed. For N-phenyl compounds, the 
conversion was complete, but we could detect the formation of a lot of byproducts. We were not 
able to isolate pure products and given that the reaction was very messy, we did not try further 
experiments to decarboxylate these pyrazoles as we had already tried many procedures which 
had not given any positive results.  
 
 To conclude, we have been able to develop an efficient method for the synthesis of  
3,5-bis(difluoromethyl) pyrazoles. Unfortunately, we were not able to perform the 
decarboxylation of 5-CF2Cl pyrazoles. However, this three-step pathway leading to pyrazoles 
building-blocks having the 4-position free is straightforward and more efficient than the method 
which had been developed earlier.36b Furthermore, the reaction conditions which are used are 
scalable, and thus can be suitable for an industrial application. But to broaden the scope of our 
method, we wanted to develop an access to these building blocks bearing no protecting group on 
the nitrogen atom. 

4.3.2.2. Obtention of N-H pyrazoles 

 In order to obtain N-H pyrazoles, the use of a tert-butyl group appeared to be a suitable 
approach. Indeed, the compounds can be easily purified as they are less volatile. Additionally, 
they readily undergo the saponification and the decarboxylation steps. Therefore, developing an 
access to N-H pyrazoles was essential, as afterwards any substituent could be introduced at the 
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nitrogen atom, and the design of new active ingredients containing 3,5-fluoroalkyl pyrazoles 
would be much easier to customise. 
 The literature contains numerous procedures for the deprotection of tert-butyl groups on 
pyrazoles, but only one is described on a pyrazole bearing a fluorinated substituent.67 Most of 
the procedures concern bicyclic pyrazoles: pyrazolo-pyridines or pyrazolo-pyrimidines. 
 The deprotection is mainly carried out in a strong acidic medium (formic or trifluoroacetic 
acids), and frequently at elevated temperatures. The procedure which had been applied to a 
fluorinated pyrazole was in formic acid as solvent, at 90 °C for one hour. Therefore, we 
submitted N-tert-butyl-3-difluoromethyl-5-trifluoromethyl pyrazole 234d to this protocol. 
 
 Different temperatures have been tested, starting from room temperature (Table 4-13). 
But even heating at 90 °C for 4 h did not lead to the deprotection of the pyrazole, and the starting 
material was completely recovered (entries 1 and 2). 
 

 
 

Entry Acid Eq. Additive Solvent Temperature 
Reaction 

time 
Observations 

1 HCOOH / / HCOOH rt 16h No reaction 
2 HCOOH / / HCOOH 90 °C 4h No reaction 
3 TFA 3 / DCM rt 5 days No reaction 
4 TFA 3 / DCM 50 °C 16h No reaction 
5 TFA 30 / DCM 50 °C 1h No reaction 
6 TFA 30 / DCM 50 °C 16h No reaction 
7 TFA / / TFA rt 16h No reaction 
8 TFA / / TFA 90 °C 16h Degradation  
9 TFA / PhOMe (3 eq) TFA 90 °C 16h Complete conversion  

Table 4-13: Reaction conditions for the deprotection of N-tert-butyl pyrazoles 

 
 Afterwards, the acidic medium has been changed for trifluoroacetic acid. It was reported 
that it can either be used as a reagent in solution in dichloromethane, as the solvent, or in 
presence of anisole.68 The first attempts were carried out in dichloromethane (entries 3 to 6). 
With 3 equivalents of TFA at room temperature, then heating to 50 °C overnight, and with 
30 equivalents of TFA at 50 °C overnight, we entirely recovered the starting material. 
 Therefore, TFA has been used as the solvent at room temperature (entry 7), and again no 
reaction occurred. When the reaction mixture was heated at 90 °C overnight, the starting 
material degraded to produce a black residue (entry 8). When the reaction was carried out in 
presence of 3 equivalents of anisole in TFA and heated at 90 °C overnight (entry 9), we observed 
complete conversion of the starting material, and only a slight coloration of the reaction mixture. 
GCMS indicated the presence of the desired deprotected product, of anisole and of  
para-tert-butyl anisole. After purification, the desired deprotected pyrazole 236 was obtained in 
76% yield (Scheme 4.59). 
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Scheme 4.59: Deprotection of tert-butyl pyrazole 234d in presence of TFA and anisole 

 
 We performed this procedure on the 3,5-bis(difluoromethyl pyrazole), and after one night 
in presence of 3 equivalents of anisole, in TFA at 90 °C, GCMS showed similar results. 
Unfortunately, the desired deprotected pyrazole could not be isolated from the reaction mixture. 
Nevertheless, we could observe total conversion of the starting material to the desired product.  
 
 In summary, we were able to isolate two N-deprotected pyrazoles, and to deprotect one 
without isolation of the final product. We could open an access to unsymmetrical  
3,5-bis(fluoroalkyl) N-H pyrazoles via an efficient and cheap method that uses commercially 
available starting materials. Unfortunately, we could not isolate the chlorodifluoromethyl 
derivatives, which did not undergo decarboxylation in presence of Cu2O and phenanthroline.  

4.3.3. Mechanistic aspects and regiochemistry 

 As it has been underlined before, the cyclisation step towards ethyl 4-carboxylate 
pyrazoles is completely regioselective. Indeed, with every hydrazine used (N-methyl, N-phenyl 
or N-tert-butyl) and every fluorinated substituent, the only regioisomer which has been detected 
was the 3-difluoromethyl-5-fluoroalkyl pyrazole. 
 
 The regiochemistry of the reaction can be guided by two principal factors:  
 

• On one hand, the nucleophilicity of the nitrogen atoms of the hydrazines plays an 
important role. For alkyl hydrazines, the nitrogen bearing the alkyl group is believed to be more 
nucleophilic than the other one and attacks first. For aryl hydrazines, the –NH2 is supposed to be 
more nucleophilic than the one bearing the aryl group.5 Thus, when one uses alkyl and aryl 
hydrazines, a different regiochemistry should be observed. 
 

• On the other hand, the electrophilicity of the carbon influences the outcome of the 
reaction. In our case, two sites can be potentially attacked. A 1,2-attack of the hydrazine onto the 
carbonyl bearing the fluoroalkyl substituent or a 1,4-“Michael-type addition” on the carbon 
bearing the difluoromethyl group. Then, depending on the hydrazine nucleophilicity, two 
different regioisomers can possibly be detected. 
 

 
Figure 4.8: Possible nucleophilic attacks of hydrazines 

 
 In the case of the formation of ethyl 1-methyl-3-CHF2-5-CF3-4-carboxylate pyrazole 223b, 
when we interpreted the NMR spectra of our experiments, we realised that only one regioisomer 
had been formed during the cyclisation. First of all, the 1H NMR spectrum revealed only one 
regioisomer of compound 223b. The 13C NMR spectrum showed that the carbon of the  
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N-methyl group undergoes a coupling with the fluoroalkyl group which is at the 5-position of the 
pyrazole ring to form a quadruplet (Figure 4.9, 4JC-F = 3.3 Hz). Hence, we deducted that the 
trifluoromethyl group was at the 5-position. In the other case, the N-methyl group’s signal would 
have been a triplet. 
 

 
 

 
 

Figure 4.9: 13C NMR of compound 223b 

 
 Although these observations confirmed undoubtedly the regiochemistry of our 
compounds, we were able to perform a single crystal X-ray analysis of the carboxylic acid 230b 
(Figure 4.10), which confirmed our claims: the formed regioisomer is the 3-difluoromethyl-5-
trifluoromethyl isomer. 
 Similar results were obtained for all other compounds, when the N-substituent was a 
methyl, a tert-butyl or a phenyl, as well as with any fluorinated substituent. In almost all cases, 
we could observe C-F coupling of the substituent at the nitrogen with the adjacent fluoroalkyl 
group in 13C NMR, with a characteristic coupling pattern. We concluded that the only 
regioisomers are those bearing the difluoromethyl substituent from TFEDMA at the 3-position of 
the pyrazole ring. 

N
N

HF2C COOEt

CF3

CH3

223b
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Figure 4.10: ORTEP diagram of compound 230b 

  
 In addition, we could compare the 13C NMR shifts of the –CHF2 carbon, and of the aromatic 
carbon bearing the CHF2 group (C-3). We can observe that for compounds having the same  
N-substituent, similar shifts are observed for both –CHF2 and C-3 carbons (Table 4-14). For 
instance, for N-methyl pyrazoles (entries 1 to 4), the -CHF2 carbon has a shift of ca. 109 ppm, and 
the aromatic one of ca. 145.5 ppm. Similarly, the C-F couplings are identical.  
 

 
 

Entry Compound Rf R 
Shift -CHF2 

(ppm) 
JC-F (Hz) 

Shift C-3 
(ppm) 

2JC-F (Hz) 

1 223b CF3 CH3 109,0 237,9 145,7 25,6 

2 226b CF2H CH3 109,1 237,6 145,3 24,9 

3 227b CF2Cl CH3 109,1 237,8 145,3 25,7 

4 228b C2F5 CH3 109,1 238,1 146,1 25,6 

5 223c CF3 Ph 109,2 238,4 146,7 26,2 

6 226c CF2H Ph 109,4 238,2 146,6 25,3 

7 227c CF2Cl Ph 109,3 238,4 146,5 26,3 

8 228c C2F5 Ph 109,4 238,6 147,6 25,8 

9 223d CF3 tBu 109,9 236,7 141,9 27,8 

10 226b CF2H tBu 109,9 237,3 143,4 25,5 

11 228d C2F5 tBu 110,0 237,2 142,8 27,3 
Table 4-14 : 13C NMR shifts of 3-CHF2 Pyrazoles 

 
 All –CHF2 carbons have comparable shifts, i.e. similar electronic environments. If we 
compare the shifts of the two –CHF2 carbons of compound 226b (Figure 4.11), we can see that 
one carbon has a shift of 109.1 ppm, and the other one has a shift of 107.2 ppm. Thus, by analogy 
with compound 223b, we deduce that the 3-CHF2 carbon has a shift of 109.1 ppm, and that the  
5-CHF2 carbon has a shift of 107.2 ppm.  
 As the regiochemistry of compound 223b (entry 1) has been confirmed by X-Ray 
crystallography, we can conclude that all pyrazoles probably have the same regiochemistry. 
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Figure 4.11: 13C NMR shifts of 226b 

 
 These observations concerning the regiochemistry allowed us to postulate the following 
reaction mechanism. As shown earlier, the resulting heterocycle can be obtained by nucleophilic 
attack of one of the nitrogen atoms of the hydrazine onto one of the two electrophilic carbons of 
the enone entity, which implies four possible regioisomers.  
 
 One has to keep in mind that the most nucleophilic nitrogen of methyl hydrazine is the one 
bearing the methyl group.5 Then, the first mechanism envisaged involves firstly the nucleophilic 
attack of the NHMe group of methyl hydrazine onto the adduct 215a. This adduct can either 
undergo a Michael-addition or a direct nucleophilic addition onto the trifluorocarbonyl 
substituent. 
 
 In the first case, when the most nucleophilic nitrogen of methyl hydrazine attacks the 
Michael-acceptor, cyclisation leads to the 3-CF3-5-CF2H isomer, after elimination of 
dimethylamine and water.  
 

 
Figure 4.12: Mechanism of the Michael-addition of –NHMe onto the adduct 

 
 However, this isomer is not the one we observed (Figure 4.12), and we can conclude that 
the mechanism of the cyclisation does not involve a Michael-addition of the NHMe onto the 
adduct. 
 The other option is the direct attack of the NHMe group on the trifluoromethyl carbonyl 
group (Figure 4.13). As in this case, the hydrazone cannot be formed, this should give rise to the 
corresponding hydroxy pyrazoline 239 after attack of the NH2 on the “Michael-acceptor” 215a. 
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Figure 4.13: Mechanism of the attack of –NHMe onto the trifluoromethyl carbonyl 

 
 Dehydration then leads to the isomer we have isolated. However, previous literature5 
dealing with the mechanism for pyrazoles formation reported that usually a dehydration leading 
to elimination of the hydroxy group next to the trifluoromethyl substituent is disfavoured, and 
that most of the time the hydroxy pyrazoline is the isolated product. In our case, we never 
observed the formation of this pyrazoline, but this pathway cannot be totally excluded, as this 
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pyrazoline might be formed and undergo elimination of water very quickly despite the literature 
precedents. 
 
 As these two approaches did not lead to satisfying conclusions, we considered the 
pathway via attack of the NH2 substituent of methyl hydrazine. Once again, this can lead to  
1,2-attack on the trifluoromethyl carbonyl group, or attack on the Michael-acceptor. In the first 
case, the attack of the NH2 substituent directly onto the trifluorocarbonyl group would lead to 
the formation of the corresponding hydrazone 240 and loss of a molecule of water. Subsequent 
cyclisation by attack of the NHMe group on the “Michael-acceptor” would provide the  
3-trifluoromethyl-5-difluoromethyl isomer (Figure 4.14).  
 

 
Figure 4.14: Mechanism of the attack of –NH2 on the trifluorocarbonyl 

 

 Hence, we can conclude that in our case, the cyclisation pathway does not proceed via the 

formation of the hydrazone on the trifluorocarbonyl substituent of adduct 215a. Examining the 
last possibility led to the conclusion that this mechanism was the most plausible of all. Indeed, 
the Michael-addition of the NH2 nitrogen on the adduct would provoke the formation of the 
desired isomer after elimination of dimethylamine and water (Figure 4.15). 
 

 
Figure 4.15: Plausible mechanism via Michael-addition of –NH2 onto the adduct 

 
 Furthermore, a similar reaction has been reported by M. A. P. Martins et al. who observed 
the formation of a pyrazole by reaction of tert-butyl hydrazine with an enaminodiketone.69 They 
postulate the addition of the NH2 nitrogen of the tert-butyl hydrazine onto the Michael-acceptor. 
Subsequent elimination of dimethylamine and cyclisation with elimination of water provided the 
desired pyrazole. Comparable regioselectivity was observed, and as in our case, the formation of 
only one regioisomer was detected. 
 
 Given all this corroborating information we could conclude on a possible mechanism for 
the formation of the 3,5-bis(fluoroalkyl) pyrazoles as single isomers. The most plausible 
pathway is via the NH2 nitrogen Michael-addition on the adduct 215a followed by cyclisation 
and elimination of water to provide the desired pyrazole (Figure 4.16). This would be satisfying 
for the reactivity of N-phenyl hydrazine, in which the NH2 nitrogen is the most nucleophilic one. 
Regarding N-tert-butyl hydrazine, this mechanism is also the most plausible for steric hindrance 
reasons. 
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Figure 4.16: Postulated mechanism for the synthesis of 3,5-bis(fluoroalkyl) pyrazoles 

 
 However, doubts are still present concerning the N-methyl hydrazine, as the NHMe 
nitrogen atom is believed to be the most nucleophilic one. The results obtained allowed us to 
eliminate two pathways that led to the wrong isomer. The one which occurs should either be the 
attack of the NHMe nitrogen onto the trifluoromethyl carbonyl with rapid dehydration of the 
final product 239 (Figure 4.13) or the Michael-addition of the NH2 nitrogen on the adduct 215a. 
In order to elucidate this reaction pathway, it is necessary to characterise the products of 
addition 241 (Figure 4.15) or 238 (Figure 4.13).  
 
 To conclude, we can claim that 13C NMR and single crystal X-ray diffraction analyses 
allowed us to undoubtedly determine the regiochemistry of the isomer formed during the 
cyclisation step. These observations allowed us to postulate a reasonable mechanism. We 
observed complete regioselectivity in all cases, which is not usually the case.69 The mechanism is 
still not clear for the reaction of N-methyl hydrazine, but it leads to the same isomer as for the 
other hydrazine derivatives.  

4.4. Conclusion and perspectives 

 At the beginning of our project, only one existing method for the synthesis of 
unsymmetrical 3,5-bis(fluoroalkyl) pyrazoles had been reported. Starting with the use of 
TFEDMA and commercially available fluorinated β-keto esters, we developed a practical method 
for the synthesis of 3,5-bis(fluoroalkyl) pyrazoles allowing further scale-up. Our investigations 
resulted in the development of a direct and efficient access to these building blocks. Despite the 
problems encountered during our studies, we could reach our goal with almost all derivatives.  
 
 Thus, we could firstly perform and optimise the cyclisation step in order to obtain several 
N-substituted fluoroalkyl pyrazoles in moderate to very good yields, and observe the influence 
of the size and the electron-withdrawing properties of the fluorinated group on the yield. The 
optimised reaction conditions provided the desired pyrazoles regioselectively. The results 
allowed us to postulate a reasonable reaction mechanism for the formation of these 
buildingblocks. 
 Then, a suitable protocol for the saponification of the ethyl carboxylate derivatives was 
found which gave very good yields. However, the reaction conditions were not convenient for  
N-H pyrazoles, and we had to circumvent this lack of reactivity by synthesising N-tert-butyl 
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pyrazoles and deprotect them afterwards. Theferore, we were able to access pyrazoles with no 
substituent at the 4-position after decarboxylation.  
 Various conditions have been tested before the optimum protocol i.e. Cu2O (5 mol%) and 
phenanthroline (10 mol%) in a 3:1 mixture of NMP and quinoline, promoted decarboxylation in 
moderate to good yields. During this reaction, we realised that the volatility was the major factor 
that had an influence on the yield. However, 5-chlorodifluoro pyrazoles did not undergo 
decarboxylation in any of the tested conditions. 
 Finally, we could access N-H pyrazoles by deprotection of the tert-butyl N-substituent in 
presence of TFA and anisole. These conditions were adapted to 3-CHF2-5-CF3 and 3,5-bis(CHF2) 
pyrazoles 233d and 234d, even if the 3,5-bis(CHF2) deprotected pyrazole was not isolated. 
Moreover, we could obtain 3-CHF2-5-C2F5 pyrazole 235d which was deprotected during the 
decarboxylation step. It allowed the economy of one step, which is an advantage despite the 
moderate 46% yield. 
 
 The method which has been developed during this investigation provided an efficient and 
straightforward access to diversely (fluoroalkyl) substituted pyrazoles. We could open an access 
to unsymmetrical 3,5-bis(fluoroalkyl) pyrazoles bearing an ethyl carboxylate, a carboxylic acid 
or no substituent at the 4-position of the pyrazole ring. Moreover, the good reactivity of the 
TFEDMA-acetoacetate adducts towards hydrazines allows the synthesis of several N-substituted 
pyrazoles. This pathway presents a wide range of possibilities for the synthesis of pyrazole 
building blocks, thus the possibility of a fine tuning for the preparation of new bioactive 
ingredients. This work has been filed on two patent applications. 
 
 Given the encouraging results we obtained during this study, we imagined that other FAR 
could be used for the synthesis of pyrazoles. This could give another dimension to the choice of 
the fluorinated group at the 3-position of the pyrazole ring. We could then introduce a  
-CHFCF3 group if we use Ishikawa’s reagent or a -CHFCl substituent with the Yarovenko-Raksha 
reagent (Scheme 4.60). 
 

 
Scheme 4.60: Use of other FAR in the synthesis of 3,5-bis(fluoroalkyl) pyrazoles 

 
 In order to broaden the scope of synthetic applications of the TFEDMA-β-keto ester adduct 
215a, we had a close look to the literature. We found a lack of existing methods for the 
preparation of several heteroaromatic building blocks bearing two different fluorinated 
substituents. Interestingly, the dimethylamino adducts could have a good reactivity towards 
hydroxylamine for the preparation of isoxazoles, as well as towards urea and thiourea for the 
synthesis of pyrimidines (Figure 4.17). These studies are currently under investigation in our 
group. 
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Figure 4.17: Outlook for the synthesis of various heteroaromatic structures 
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 The importance of fluorine in life-sciences oriented research has been outlined, because 
fluorine dramatically influences the reactivity and bioavailability of active ingredients. The aim 
of synthetic chemists is thus to open new routes to fluorinated compounds. The large use of 
heterocycles in agrochemistry as well as in pharmaceutical research requires a constant 
improvement of the existing methods for the preparation of heterocycles bearing fluorinated 
substituents. Thus, developing accesses to heterocyclic building blocks with high potential for 
further functionalisation is essential. 
 
 In this manuscript, we have detailed the development of an access to two kinds of 
heteroaromatic structures: pyridines and pyrazoles. In the first chapter, value has been added to 
the previously reported method for the preparation of trifluoromethoxy pyridines.  
 Preparing trifluoromethoxylated analogues of the well-know insecticides Imidacloprid 
and Thiacloprid proved that these building blocks could be used for the preparation of active 
ingredients (Figure 5.1).  
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Figure 5.1: Trifluoromethoxy analogues of Imidacloprid and Thiacloprid 

 
 Even though the biological tests showed lower activities for these compounds compared 
to the chlorinated ones, this will not mean that OCF3-derivatives are in general less active. This 
simply proved that –OCF3, frequently called a pseudo-halogen, implied a drastic change of 
activity from chlorine to trifluoromethoxy. Therefore, we can expect that in another case 
replacing a substituent by a trifluoromethoxy could have a positive effect on the biological 
activity of the compound. 
 
 The preparation of the “OCF3-Magic Pyridine” represented a big challenge (Figure 5.2). 
This pyridine is very useful for synthetic chemists because it is highly functionalisable and thus 
provides many options for a structure-activity relationship study.  
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Figure 5.2: OCF3-Magic Pyridine 

 
 The existing method described the use of CHF2Cl as an O-alkylating agent. Subsequent 
photochlorination and insertion of the third fluorine atom led to the trifluoromethoxy 
compound. By applying our alkylation/chlorodesulphurisation/fluorination method for the 
synthesis of “OCF3-Magic Pyridine”, we improved the synthesis of this building block reducing 
the number of steps. 
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 A study on the preparation of 5-trifluoromethoxy pyrazoles was performed, and despite 
several attempts, we could not reach the desired compound. The aim here was to prepare an 
unsubstituted pyrazole, but we realised that N-alkylation was preferred over O-alkylation on 
these compounds. We tried to perform O-alkylation on pyrazoles bearing a methyl or a halogen 
on the aromatic ring, and this provided slightly better results.  
 

 
Scheme 5.1: Different approaches for the preparation of 5-OCF3 pyrazoles 

 
 Finally, we realised that oxidative fluorodesulphurisation conditions were not suitable for 
this kind of pyrazole (Scheme 5.1), so we tried to obtain pyrazoles from the 5-trichloromethoxy 
compound 99a. This method did not provide any positive results and we decided to abandon 
this project. 
 
 In a second chapter, we detailed the development of a synthetic route towards 
chlorodifluoromethoxy and dichlorofluoromethoxy pyridines. This was inspired by the 
previously developed access to trifluoromethoxy pyridines, which had opened an access to 
trichloromethoxy pyridines based on chlorothionoformates as starting point of our synthetic 
routes (Scheme 5.2). 
 

 
Scheme 5.2: Preparation of –OCF2Cl and –OCFCl2 pyridines 

 
 Chlorodifluoromethoxy pyridines have been obtained selectively in one step from the 
hydroxy compounds with fair 57 to 72% yields. Fluorination occurred under oxidative 
fluorodesulphurisation conditions, and the reaction conditions have been optimised with the 
intention of reducing the amount of HF/pyridine and DBH used.  
 Dichlorofluoromethoxy pyridines have been prepared selectively via fluorination of the 
trichloromethoxy compounds in two steps from the commercially available hydroxy compounds 
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with good 72 to 84% yields. The fluorination step was performed in presence of 
HF/triethylamine, with a perfect control of the insertion of a single fluorine atom. 
 An outlook for this project could be the preparation of difluoro- and fluoro-methyl ethers 
by reductive dechlorination under radical conditions. 
 
 In the third chapter, we detailed our study on the preparation of 3,5-bis(fluoroalkyl) 
pyrazoles. On one hand, after a careful study of the existing methods for the synthesis of  
3-difluoromethyl pyrazoles, we realised that very few methods allowed the preparation of these 
compounds in good yields and in a totally regioselective way. On the second hand, we were 
attracted by the use of TFEDMA as a difluoromethyl-transfer reagent. Indeed, its low cost and 
the fact that the regioselective preparation of 3-difluoromethyl pyrazoles with this reagent had 
been reported were two big advantages. 
 
 Thus, we used TFEDMA for the introduction of a difluoromethyl group onto an 
acetoacetate already bearing a fluorinated substituent (Scheme 5.3). This led to the adduct 215a 
which could be cyclised in presence of hydrazine to provide the pyrazoles 223a to 228d in 29 to 
85% yields, depending on the acetoacetate and the hydrazine. In addition, we realised that the 
cyclisation was completely regioselective, as the only regioisomer formed was the 3-CHF2-5-Rf 
pyrazole in each case. 
 

 
Scheme 5.3: Synthesis of 3,5-bis(fluoroalkyl)-4-carboxylate pyrazoles 

 
 13C NMR spectroscopy and a single-crystal X-Ray analysis allowed us to identify the 
regioisomer which had been formed, and to postulate a reasonable mechanism for the 
cyclisation step.  
 
 The aim was to develop an access to 4-unsubstituted pyrazoles, so we found a suitable 
approach for a saponification/decarboxylation sequence (Scheme 5.4). Saponification occurred 
under basic conditions using three equivalents of sodium hydroxide in ethanol in almost 
quantitative yields.  
 

 
Scheme 5.4: Saponification/decarboxylation sequence 

 
 Decarboxylation of the pyrazoles has been performed in presence of Cu2O and 
phenanthroline, in a 3:1 NMP/quinoline mixture at 160 °C overnight. 4-Unsubstituted products 
have been obtained in 50 to 88% yield, depending on the N-substituent and on the 5-fluorinated 
substituent. However, with 5-CF2Cl pyrazoles, the decarboxylation did not occur. 
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 Unfortunately, N-H pyrazoles had not undergone saponification, so we had to find a way to 
isolate 4-unsubstituted 3,5-bis(fluoroalkyl)pyrazoles which were also unsubstituted at the 
nitrogen atom. Indeed, these building blocks are very important, as they allow any 
functionalisation at the 4-position and at the nitrogen atom for a structure-activity relationship 
study. These pyrazoles were accessed by deprotection of tert-butyl pyrazoles under strong 
acidic conditions (TFA) in presence of anisole (Scheme 5.5). Pyrazole 236 was isolated in 76% 
yield, and the 3,5-bis(CHF2) pyrazole was deprotected but we were unable to isolate it. 
 

 
Scheme 5.5: Deprotection of N-tert-butyl 3-CHF2-5-CF3 pyrazole 

 
 The positive results of this study led to further applications. Indeed, there is a lack of 
existing methods for the preparation of isoxazoles and pyrimidines bearing two different 
fluorinated groups. Hence, a study is under development in our group in order to use the 
TFEDMA/β-keto ester adduct for the preparation of these building blocks. 
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6.1. General methods 

Starting materials, if commercial, were purchased and used as such, provided that 
adequate checks (melting ranges, refractive indices and gas chromatography) had confirmed the 
claimed purity. When known compounds had to be prepared according to literature procedures, 
pertinent references are given. Air- and moisture-sensitive materials were stored in Schlenk 
tubes. They were protected by and handled under an atmosphere of argon, using appropriate 
glassware. Diethyl ether, toluene and tetrahydrofurane were dried by distillation from sodium 
after the characteristic blue colour of sodium diphenyl ketyl (benzephenone-sodium “radical-
anion”) had been found to persist. Dichloromethane was dried by distillation from calcium 
hydride. N,N-Dimethyl formamide (DMF) was dried by distillation from magnesium sulphate and 
stored over molecular sieve (4Å). Acetonitrile was purchased dry from Aldrich and stored over 
molecular sieve (4Å). Melting ranges (mp) given were found to be reproducible after 
recrystallisation, unless stated otherwise (“decomp.”), and are uncorrected. Ethereal or other 
organic extracts were dried by washing with brine and then by storage over sodium sulphate. 
Water was twice distilled and passed through a Millipore apparatus. Thin-Layer 
chromatography (TLC) was carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates 
were visualised with UV light or iodine. Column chromatography was carried out on a column 
packed with silica-gel 60N spherical neutral size 63-210 μm. The solid support was suspended in 
hexanes and, when all air bubbles had escaped, was washed into the column. When the level of 
the liquid was still 3 – 5 cm above the support layer, the dry powder, obtained by adsorption of 
the crude mixture to some 25 mL of silica and subsequent evaporation of the solvent, was 
poured on top of the column. 1H and 13C nuclear magnetic resonance (NMR) spectra were 
recorded at 400 or 300 and 101 or 75 MHz, respectively. 19F NMR was recorded at 282 MHz. 
Chemical shifts are reported in δ units, parts per million (ppm) and were measured relatively to 
the signals for residual deuterated solvents or to tetramethylsilane (TMS).  Coupling constants 
(J) are given in Hz. Coupling patterns are abbreviated as, for example, s (singlet), d (doublet), t 
(triplet), q (quartet), tq (triplet of quartets), qt (quartet of triplets), m (multiplet), and brs (broad 
singlet). Gas chromatography monitoring was performed with HP 6890 Series apparatus, 
capillary column HP-5 (5% phenylmethylsiloxane), FID detector (250 °C), with the following 
program: 60 °C for 3 minutes, 30 °C/minute until 300 °C, 300 °C for 5 minutes, injector (230 °C). 
Butyllithium and tert-butyllithium were used as solutions in hexanes or pentane and their 
concentrations were determined following the Wittig-Harborth double titration method1 ((Total 
base) – (Residual base after reaction with 1,2-dibromoethane)). Organometallic reagents were 
usually checked by Gilman tests 1 (all organolithiums) and 2 (only for alkyllithiums).2 
 

                                                             
1 G. Wittig, G. Harborth Ber. Dtsch. Chem. Ges. 1944, 77, 315-325. 
2 H. Gilman, J. Swiss J. Am. Chem. Soc. 1940, 62, 1847-1849. 
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6.2. Trifluoromethoxy-Imidacloprid 

2-Chloro-6-trichloromethoxy pyridine (50) 

 

 
 
Thiophosgene (4.5 g, 3.0 mL, 39 mmol, 1 equiv.) in dichloromethane (24 mL) was added 
dropwise to a solution of 2-chloro-6-hydroxypyridine (5.0 g, 39 mmol) in aqueous sodium 
hydroxide (5%, 34 mL) at 0 °C. The reaction mixture was vigorously stirred for 2 h at 0 °C before 
being extracted with dichloromethane (3 x 20 mL). The combined organic layers were washed 
with 1M HCl (20 mL) and water (20 mL) and dried with sodium sulphate before being 
evaporated. The crude product was taken up in chloroform (40 mL) and the reaction mixture 
was then saturated with chlorine at 25 °C until the reaction mixture began to warm up. After 2 h 
at 25 °C, excess chlorine was again added until a yellow solution was obtained. After 24 h at 
25 °C, excess chlorine was removed with a stream of argon and the solution was concentrated. 
The crude pale yellow oil was distilled under reduced pressure to afford pure 2-chloro-6-
trichloromethoxy pyridine (5.7 g, 23 mmol, 60%) as a colourless oil which crystallised on 
standing (b.p. = 80–82 °C, 1 mbar). 1H and 13C NMR were in accordance with the literature (B. 
Manteau PhD Thesis, Université de Strasbourg, 2009). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.70 (t, 1 H, J = 7.9 Hz, H-4), 7.19 (d, 1 H, J = 7.7 Hz, H-5), 
7.02 (d, J = 8.1 Hz, 1 H, H-3) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 151.8 (C), 149.0 (C), 141.7 (CHarom), 122.2 (CHarom), 
112.7 (CHarom), 109.1 (OCCl3) ppm. 
 

2-Chloro-6-trifluoromethoxy pyridine (51) 

 

 
 

2-Chloro-6-trichloromethoxy pyridine (5.9 g, 24 mmol, 1 equiv.) was added dropwise at 120 °C 
to a mixture of SbF3 (8.7 g, 48 mmol, 2 equiv.) and SbCl5 (1.4 g, 0.60 mL, 4.8 mmol,  
0.2 equiv.) and the mixture was stirred for 3 h at 140 °C. GC monitoring indicated 100% 
conversion and disappearance of the -OCF2Cl byproduct. The mixture was then cooled to room 
temperature and dissolved in dichloromethane (100 mL). The solution was washed with 2M HCl 
(150 mL) and the aqueous layer was extracted with dichloromethane (2 x 50 mL). The combined 
organic layers were dried over sodium sulphate and the solvent was evaporated at atmospheric 
pressure. The crude product was distilled under reduced pressure to afford pure 2-chloro-6-
trifluoromethoxy pyridine (2.5 g, 13 mmol, 53%) as a colourless oil (b.p. = 42–44 °C, 20 mbar). 
1H and 13C NMR were in accordance with the literature (B. Manteau PhD Thesis, Université de 
Strasbourg, 2009). 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.67 (t, 1 H, J = 7.9 Hz, H-4), 7.18 (d, 1 H, J = 7.7 Hz, H-5), 
6.87 (d, 1 H, J = 8.0 Hz, H-3) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 155.6 (C), 149.3 (C), 142.0 (CHarom), 122.2 (CHarom), 
119.8 (q, JC-F = 262.1 Hz, OCF3), 111.1 (CH) ppm. 
 

2-Chloro-6-(trifluoromethoxy)-5-(trimethylsilyl)pyridine (52) 

 

 
 
Butyllithium (1.56 M in hexanes, 5.7 mL, 8.9 mmol, 1.1 equiv.) was added dropwise at 0 °C to a 
solution of diisopropylamine (0.90 g, 1.2 mL, 8.9 mmol, 1.1 equiv.) in THF (15 mL). A solution of 
2-chloro-6-(trifluoromethoxy)pyridine (1.6 g, 8.1 mmol, 1 equiv.) in THF (5 mL) was added 
dropwise at -78 °C, and the reaction mixture was stirred for 2 h at this temperature. 
Chlorotrimethylsilane (1.0 g, 8.9 mmol, 1.1 equiv.) was then added dropwise and the mixture 
was allowed to reach 25 °C before being neutralised with water (20 mL) and extracted with 
diethyl ether (3 x 10 mL). The combined organic layers were dried over sodium sulphate and 
concentrated in vacuo. The crude product was distilled under reduced pressure to afford pure  
2-chloro-6-(trifluoromethoxy)-5-(trimethylsilyl)pyridine (1.5 g, 5.5 mmol, 68%) as a colourless 
oil (b.p. = 89–93 °C, 14 mbar). 1H NMR was in accordance with the literature (B. Manteau PhD 
Thesis, Université de Strasbourg, 2009). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.78 (d, 1 H, J = 7.6 Hz, H-3), 7.22 (d, 1 H, J = 7.6 Hz, H-4), 
0.34 (s, 9 H, SiMe3) ppm.  
 

2-Chloro-6-trifluoromethoxy nicotinic acid (53) 

 

 
 

Butyllithium (1.56 M in hexanes, 3.7 mL, 5.7 mmol, 1.1 equiv.) was added dropwise at 0 °C to a 
solution of 2,2,6,6-tetramethylpiperidine (0.8 g, 1.0 mL, 5.7 mmol, 1.1 equiv.) in THF (10 mL).  
A solution of 2-chloro-6-(trifluoromethoxy)-5-(trimethylsilyl)pyridine (1.4 g, 5.2 mmol, 1 equiv.) 
in THF (5 mL) was added dropwise at -78 °C, and the reaction mixture was stirred for 2 h at this 
temperature. The mixture was then poured onto an excess of freshly crushed dry ice before 
being treated with an aqueous solution of sodium hydroxide (5%, 10 mL). The resulting aqueous 
layer was collected, washed with diethyl ether (10 mL), and acidified to pH = 1 by dropwise 
addition of 6M HCl (4 mL). After extraction with ethyl acetate (3 x 10 mL), the combined organic 
layers were dried over sodium sulphate and evaporated. The crude oil was treated with 
tetrabutylammonium fluoride (1M in THF, 5.7 mL, 5.7 mmol, 1.1 equiv.) for 20 h at 25 °C. The 
mixture was then neutralised by addition of 2M HCl (10 mL) and extracted with ethyl acetate  
(3 x 10 mL). The combined organic layers were dried over sodium sulphate and evaporated to 
afford pure 2-chloro-6-(trifluoromethoxy) nicotinic acid (0.92 g, 3.7 mmol, 70%) as a colourless 
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powder. 1H NMR was in accordance with the literature (B. Manteau PhD Thesis, Université de 
Strasbourg, 2009). 
 
1H NMR (CD3OD, 300 MHz, 25 °C): δ = 8.44 (d, 1H, J = 8.3 Hz, H-4), 7.21 (d, 1 H, J = 8.3 Hz, H-5) 
ppm. 
 

6-Trifluoromethoxy nicotinic acid (54) 

 

 
 

Palladium (10% on charcoal, 2.1 g, 2.0 mmol, 10 mol%) was added at 25 °C with stirring to a 
solution of 2-chloro-6-trifluoromethoxy nicotinic acid (4.8 g, 20 mmol, 1 equiv.) and ammonium 
formate (2.5 g, 40 mmol, 2 equiv.) in methanol (40 mL). The reaction mixture was stirred for 
16 h at room temperature before being filtered on celite, the filtrate was concentrated and the 
residue was taken up in ethyl acetate (50 mL). The organic layer was washed with  
2M HCl (2 x 20 mL) and water (20 mL). The organic layer was dried over sodium sulphate and 
evaporated in vacuo to afford pure 6-(trifluoromethoxy) nicotinic acid (3.2 g, 15 mmol, 76%) as 
a colourless powder. 1H NMR was in accordance with the literature (B. Manteau PhD Thesis, 
Université de Strasbourg, 2009). 
 
1H NMR (CD3OD, 300 MHz, 25 °C): δ = 8.91 (d, 1 H, Jm = 2.3 Hz, H-2), 8.48 (dd, 1 H, Jo = 8.4,  
Jm = 2.3 Hz, H-4), 7.24 (d, 1 H, Jo = 8.4 Hz, H-5) ppm. 
 

(6-(Trifluoromethoxy)pyridin-3-yl)methanol (55) 

 

 
 
Method A: LiAlH4 (1M in THF, 1.47 mL, 1.47 mmol, 1.5 equiv.) was added dropwise to  
6-trifluoromethoxy nicotinic acid (207 mg, 1.00 mmol, 1 equiv.) in solution in THF (5 mL) at 
0 °C. The reaction mixture was stirred overnight at room temperature, and at 55 °C for 3 h. It 
was quenched with saturated ammonium chloride (5 mL) and the aqueous layer was extracted 
with dichloromethane (3 x 10 mL). The combined organic layers were dried with sodium 
sulphate and the solvent was distilled off. The crude product was purified by column 
chromatography on silica gel with pentane/diethyl ether (7:3 to 1:1) as eluent, which afforded 
55 (60.0 mg, 0.310 mmol, 31%) as a colourless oil. 
 
Method B: BH3.THF (1M in THF, 36 mL, 36 mmol, 5 equiv.) was added dropwise to the  
6-trifluoromethoxy nicotinic acid (1.5 g, 7.3 mmol, 1 equiv.) in solution in THF (25 mL) at 0 °C. 
The reaction mixture was stirred 30 min at this temperature, and allowed to reach room 
temperature overnight. It was quenched with methanol (25 mL), diluted with diethyl ether  
(100 mL) and the organic layer was washed with brine (2 x 100 mL). The combined organic 
layers were dried with sodium sulphate and the solvent was distilled off. The crude product was 



Experimental Section 

Confidential Bayer CropScience 151 

purified by column chromatography on silica gel with pentane/diethyl ether (6:4 to 3:7) as 
eluent, which afforded 55 (1.0 g, 5.0 mmol, 70%) as a colourless oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.28 (d, J = 2.4 Hz, 1 H, H-2), 7.82 (dd, 1 H, Jo = 8.4 Hz,   
Jm = 2.4 Hz, H-4), 7.03 (d, 1 H, J = 8.4 Hz, H-5), 4.73 (s, 2H, CH2), 2.36 (brs, 1H, -OH) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 156.5 (C-6), 146.7 (C-2), 139.7 (C-4), 135.6 (C-3), 120.6 (q, 
JC-F = 259.2 Hz, OCF3), 62.1 (CH2) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -56.7 ppm. 
 
HRMS (ESI Positive) for C7H7F3NO2 [M+H]: calcd. 194.043; found 194.044. 
 
3-(Chloromethyl)-6-(trifluoromethoxy) pyridine (56) 

 

 
 

Mesyl chloride (0.28 mL, 0.42 g, 3.6 mmol, 1.5 equiv.) was added dropwise to a solution of  
(6-(trifluoromethoxy)pyridin-3-yl)methanol (0.50 g, 2.4 mmol, 1 equiv.) in dichloromethane  
(8 mL) in presence of triethylamine (0.60 g, 5.7 mmol, 2.4 equiv.) at 0 °C. The reaction mixture 
was allowed to reach room temperature overnight. It was then poured into a saturated solution 
of sodium hydrogen carbonate (10 mL). The aqueous layer was extracted with dichloromethane 
(3 x 15 mL) and washed with water (2 x 10 mL). The combined organic layers were dried over 
sodium sulphate and the solvent was distilled off. The crude product was purified by column 
chromatography on silica gel with pentane/diethyl ether (9:1) as eluent, which afforded 56 

(0.31 g, 1.4 mmol, 56%) as a pale yellow oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.32 (d, 1 H, J = 2.4 Hz, H-2), 7.85 (dd, 1 H, Jm = 2.4 Hz,  
Jo = 8.4 Hz, H-4), 7.03 (d, 1 H, J = 8.4 Hz, H-5), 4.59 (s, 2H, CH2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 156.5 (C-6), 147.4 (C-2), 140.6 (C-4), 131.6 (C-3), 120.0 (q, 
OCF3, JC-F = 260.1 Hz), 42.0 (CH2) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -56.6 ppm. 
  
MS (EI): m/z = 211.1 [M+], 176.0 [M+-Cl]. 
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6.3. Trifluoromethoxy “Magic Pyridine” 

2,3-Dichloro-4-iodo pyridine (74) 

 

 
 

Butyllithium (1.59 M in hexanes, 14.1 mL, 22.4 mmol, 1.1 equiv.) was added dropwise at 0 °C to a 
solution of diisopropylamine (2.30 g, 3.20 mL, 22.4 mmol, 1.1 equiv.) in THF (20 mL). A solution 
of 2,3-dichloro pyridine (3.00 g, 20.4 mmol, 1 equiv.) in THF (10 mL) was added dropwise at  
–75 °C, followed after 2 h by a solution of iodine (6.22 g, 24.5 mmol, 1.2 equiv.) in THF (12 mL). 
The reaction mixture was allowed to reach 25 °C before being diluted with diethyl ether  
(60 mL). The organic layer was washed with a saturated aqueous solution of sodium sulphite  
(2 x 30 mL), water (15 mL) and brine (15 mL). The combined organic layers were dried over 
sodium sulphate prior to concentration. The crude product was recrystallised from methanol to 
afford pure 2,3-dichloro-4-iodo pyridine (4.54 g, 16.7 mmol, 82%). 1H NMR in accordance with 
the literature (K. Snegaroff, T. T. Nguyen, N. Marquise, Y. S. Halauko, P. J. Harford, T. Roisnel, V. E. 
Matulis, O. A. Ivashkevich, F. Chevallier, A. E. H. Wheatley, P. C. Gros, F. Mongin Chem. Eur. J. 
2011, 17, 13284 – 13297.). 
 

1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.90 (d, 1H, J = 5.1 Hz, H-6), 7.74 (d, 1H, J = 5.1 Hz, H-5) 
ppm.  
 
2,3-Dichloro-5-amino pyridine (67) 

 

 
 

Iron (11.5 g, 207 mmol, 4 equiv.) was added portionwise to 2,3-dichloro-5-nitro pyridine (10.0 g, 
52.0 mmol, 1 equiv.) diluted  in a 4:1 ethanol/HCl mixture (50 mL). The reaction mixture was 
heated to reflux for 1 h. The reaction mixture was allowed to reach room temperature and 
adjusted to pH = 8 with a 5% aqueous solution of sodium hydrogen carbonate (500 mL). Ethyl 
acetate (500 mL) was added and the reaction mixture was filtered through celite. The organic 
layer was washed with water (2 x 150 mL), brine (2 x 150 mL), dried over sodium sulphate and 
evaporated under vacuum to afford pure 2,3-dichloro-5-amino pyridine (7.10 g, 44.0 mmol, 
85%) as a  white solid. 1H and 13C NMR in accordance with the literature (V. Koch, S. Schnatterer 
Synthesis 1990, 499-501.). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.75 (d, 1H, J = 2.7 Hz, H-6), 7.10 (d, 1H, J = 2.7 Hz, H-4), 
3.87 (brs, 2H, NH2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 142.7 (C-5), 137.4 (C-2), 134.2 (C-6), 130.1 (C-3), 124.1 (C-
4) ppm.  
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2,3-Dichloro-5-iodo pyridine (73) 

 

 
 

To a solution of 2,3-dichloro-5-aminopyridine (10.0 g, 61.7 mmol, 1 equiv.) in HBF4 (100 mL) 
and water (100 mL) was added dropwise a solution of sodium nitrite (6.40 g, 92.6 mmol,  
1.5 equiv.) in water (50 mL) at -5 °C. After 20 min, a solution of potassium iodide (20.5 g, 123 
mmol, 2 equiv.) in water (55 mL) was added, and the reaction mixture was stirred for one hour 
at -5 °C. Solid potassium carbonate was added until the pH of the reaction mixture reached 10. 
The aqueous layer was extracted with ethyl acetate (3 x 200 mL), the combined organic layers 
were washed with saturated sodium sulphate (2 x 100 mL) and water (100 mL) before being 
dried over magnesium sulphate and evaporated under vacuum. The brownish crude product 
was purified by column chromatography on silica gel with cyclohexane/ethyl acetate (100:0 to 
98:2) as eluent, which afforded the title compound (13.8 g, 50.6 mmol, 82%) as an orange solid, 
m.p. [56.9-57.4] °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.50 (d, 1H, J = 2.1 Hz, H-6), 8.08 (d, 1H, J = 2.1 Hz, H-4) 
ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 153.2 (C-6), 148.9 (C-2), 146.1 (C-4), 131.5 (C-3), 90.2 (C-5) 
ppm.  
 
HRMS (ESI Positive) for C5H3Cl2IN [M+H]: calcd. 273.869; found 273.869. 
 
2,3-Dichloro-5-hydroxy pyridine (69) 

 

 
 

Butyllithium (1.60 M in hexanes, 13.2 mL, 21.1 mmol, 1.1 equiv.) was added dropwise at  
-78 °C to a solution of 2,3-dichloro-5-iodo pyridine (5.00 g, 18.3 mmol, 1 equiv.) in THF  
(500 mL). After 5 min, triisopropyl borate (17.2 g, 21.1 mL, 91.5 mmol, 5 equiv.) was added 
dropwise and the reaction mixture was allowed to reach room temperature. At 0 °C, oxone  
(11.3 g, 18.3 mmol, 1 equiv.) and 60 mL of a saturated aqueous solution of sodium hydrogen 
carbonate were added. The reaction mixture was stirred for 30 min at this temperature, and 
allowed to reach room temperature over 1 h. A saturated solution of sodium thiosulfate  
(125 mL) was added dropwise, and the aqueous layer was extracted with ethyl acetate  
(3 x 50 mL). The combined organic layers were dried over magnesium sulphate and evaporated 
under reduced pressure. The crude product was purified by column chromatography on silica 
gel with cyclohexane/ethyl acetate (7:3 to 1:1) as eluent, which afforded 2,3-dichloro-5-hydroxy 
pyridine (2.70 g, 16.6 mmol, 90%) as a white solid. 1H and 13C NMR were in accordance with 
the literature (V. Koch, S. Schnatterer Synthesis 1990, 499-501.). 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ = 10.82 (brs, 1H, OH), 7.94 (d, 1H, J = 2.7 Hz, H-6), 7.49 (d, 1H, 
J = 2.7 Hz, H-4) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 153.9 (C2), 136.6 (C5), 135.9 (C6), 128.7 (C3), 125.7 (C4) 
ppm.  
 
2,3-Dichloro-5-trifluoromethoxy pyridine (72) 

 

 
 

Thiophosgene (4.6 g, 3.0 mL, 40 mmol, 1 equiv.) in chloroform (24 mL) was added dropwise at 
0 °C to a solution of 2,3-dichloro-5-hydroxy pyridine (6.4 g, 40 mmol) in aqueous sodium 
hydroxide (5%, 34 mL). The reaction mixture was vigorously stirred for 12 h at room 
temperature before being extracted with chloroform (3 x 20 mL). The combined organic layers 
were washed with water (20 mL) and dried over sodium sulphate before being filtered. The 
filtrate was then saturated with chlorine at 25 °C until the reaction mixture began to warm up. 
After 2 h at 25 °C, excess chlorine was again added until a yellow solution was obtained. After 
24 h at 25 °C, excess chlorine was removed with a stream of argon and the solution was 
concentrated to afford 2,3-dichloro-5-trichloromethoxy pyridine (9.3 g, 33 mmol, 83%). The 
crude pale yellow oil was directly added dropwise at 120 °C to a mixture of SbF3 (12 g, 66 mmol, 
2 equiv.) and SbCl5 (2.0 g, 0.9 mL, 6.6 mmol, 0.2 equiv.) and the mixture was stirred for 5 h at 
150 °C. GC monitoring indicated 100% conversion and disappearance of the -OCF2Cl byproduct. 
The mixture was then cooled to 0 °C and dissolved in dichloromethane (100 mL). The solution 
was washed with 2M HCl (100 mL) and the aqueous layer was extracted with dichloromethane 
(2 x 50 mL). The combined organic layers were dried with sodium sulphate and the solvent was 
distilled off. The crude product was distilled under reduced pressure to afford pure 2,3-chloro-5-
trifluoromethoxy pyridine (1.5 g, 6.5 mmol, 20%) as a colourless oil (b.p. 65–68 °C, 13 mbar). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.29 (d, 1H, J = 2.1 Hz, H-6), 7.49 (dd, 1H, JH-H = 2.7 Hz,  
JH-F = 0.6 Hz, H-4) ppm.  
 

13C NMR (CDCl3, 75 MHz, 25 °C): δ = 147.4 (C-2), 144.8 (C-5), 140.2 (C-6), 131.5 (C-4), 131.1  
(C-3), 120.3 (q, JC-F = 259.2 Hz, OCF3) ppm. 
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -58.5 ppm. 
 
HRMS (ESI Positive) for C6H3Cl2F3NO [M+H]: calcd. 231.954; found 231.954. 
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6.4. Towards 5-trifluoromethoxy pyrazoles 

Ethyl 1-methyl-5-oxo pyrazole-4-carboxylate (90) 

 

 
 

To a solution of methyl hydrazine (3.5 g, 3.9 mL, 76 mmol, 1 equiv.) in water (300 mL) with 
K2CO3 (11 g, 76 mmol, 1 equiv.) was added dropwise diethyl (ethoxymethylene)malonate (16 g, 
15 mL, 76 mmol, 1 equiv.). The reaction mixture was heated to reflux for 3 h. At room 
temperature, the aqueous layer was extracted with ethyl acetate (3 x 50 mL). The aqueous layer 
was then adjusted to pH = 2 with concentrated hydrochloric acid and extracted with ethyl 
acetate (3 x 100 mL). These combined organic layers were washed with water (150 mL) and 
dried over sodium sulphate before being filtered and evaporated in vacuo to afford pure ethyl  
1-methyl-5-oxo pyrazole-4-carboxylate (11 g, 63 mmol, 83%) as a white solid. 1H NMR was in 
accordance with the literature (L. F. Tietze, T. Brumby, M. Pretor, G. Remberg J. Org. Chem. 1988, 
53, 810-820.). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.59 (s, 1H, Harom), 4.32 (q, 2H, J = 7.1 Hz, CH2), 3.67 (s, 3H, 
N-CH3), 1.36 (t, 3H, J = 7.2 Hz, CH3) ppm. 
 
1-Methyl-1H-pyrazol-5-one (84) 

 

 
 
Method A:  
Methyl hydrazine (0.50 g, 11 mmol, 1.1 equiv.) was added dropwise to diethyl 
(ethoxymethylene)malonate (2.2 g, 10 mmol, 1 equiv.) in methanol (7 mL), and the reaction 
mixture was heated to reflux for 4 h. The solvent was evaporated, and the resulting solid washed 
with diethyl ether (3 x 10 mL). After being dried, the crude mixture was dissolved with KOH 
(1.7 g, 30 mmol, 3 equiv.) in a water/ethanol 1:1 mixture (10 mL). The resulting red solution 
was heated at 100 °C for 2 h and allowed to cool to room temperature and then 0 °C. 12M HCl 
was added dropwise until the pH reached 1, and the reaction mixture was heated at 100 °C 
overnight. The solvent was evaporated to dryness, and the KCl/product mixture was washed 
several times with ethyl acetate (5 x 20 mL). The filtrate was dried over sodium sulphate and 
evaporated in vacuo to afford pure 1-methyl-1H-pyrazol-5-one (0.6 g, 6.0 mmol, 60%) as a 
colourless solid. 1H NMR was in accordance with the literature (L. F. Tietze, T. Brumby, M. Pretor, 
G. Remberg J. Org. Chem. 1988, 53, 810-820.). 
 
Methob B:  
Methyl hydrazine (1.5 g, 33.0 mmol, 1.1 equiv.) was added to methyl 3-methoxyacrylate (3.5 g, 
30 mmol, 1 equiv.) in methanol (3 mL), and the mixture was heated to reflux for 1 h. The solvent 
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was evaporated in vacuo, and the resulting solid was recrystallised from diethyl ether to afford 
pure 1-methyl-1H-pyrazol-5-one (2.7 g, 27 mmol, 90%) as a white solid. 1H and 13C NMR were in 
accordance with the literature (G. A. Eller, W. Holzer Molbank 2006, M464.). 
 
1H NMR (CD3OD, 300 MHz, 25 °C): δ = 7.65 (s, 2H, CH2), 5.75 (s, 1H, CH), 3.75 (s, 3H, N-CH3) ppm.  
 
13C NMR (CD3OD, 75 MHz, 25 °C): δ = 157.7 (CH2), 136.1 (CH), 91.9 (CO), 32.7 (N-CH3) ppm.  
 
1,3-Dimethyl-1H-pyrazol-5-ol (88) 

 

 
 

Ethyl acetoacetate (10 g, 10 mL, 80 mmol, 1 equiv.) was added dropwise to a solution of  methyl 
hydrazine (3.7 g, 4.2 mL, 80 mmol, 1equiv.) in methanol (40 mL) cooled to 0 °C. The reaction 
mixture was stirred overnight at room temperature. The solvent was evaporated under reduced 
pressure to afford pure 1,3-dimethyl-1H-pyrazol-5-ol (8.6 g, 76 mmol, 95%) as a slightly yellow 
solid. 1H and 13C NMR were in accordance with the literature (J. Gonzalez, T. M. Jewell, A. Linton, 
T. H. Tatlock, K. Ruddock PCT Int. appl. WO 2006018725 (Pfizer Inc., 2006)). 
 
1H NMR (DMSO-d6, 300 MHz, 25 °C): δ = 10.64 (brs, 1H, OH), 5.11 (s, 1 H), 3.38 (s, 3 H, N-CH3), 
2.00 (s. 3 H, CH3) ppm.  
 

13C NMR (DMSO-d6, 75 MHz, 25 °C): δ = 155.3 (C-5), 145.5 (C-3), 87.0 (C-4), 32.0 (N-CH3), 13.6 
(CH3) ppm. 
 
S-Methyl 1,3-dimethyl-1H-pyrazol-5-dithiocarbamate (89) 

 

 
 

Method A: Thiophosgene (2.1 g, 1.4 mL, 18 mmol, 1 equiv.) in chloroform (15 mL) was added 
dropwise at 0 °C to a solution of 1,3-dimethyl-1H-pyrazol-5-ol (2.0 g, 18 mmol) in aqueous 
potassium hydroxide (5%, 20 mL). The reaction mixture was then vigorously stirred overnight 
at room temperature before being extracted with chloroform (3 x 10 mL). The combined organic 
layers were washed with water (10 mL), and were dried with sodium sulphate before being 
filtered. To a 21% solution of sodium methanethiolate in water (6.5 mL, 22 mmol, 1.1 equiv.) 
was added the filtrate at 25 °C, and the reaction mixture was vigorously stirred at this 
temperature for 20 h. The aqueous layer was extracted with dichloromethane  
(3 x 30 mL) and the combined organic layers were dried over sodium sulphate and evaporated 
under vacuum. The crude product was purified by chromatography on silica gel with 
cyclohexane/ethyl acetate (9:1) as eluent, which afforded 89 (0.20 g, 1.1 mmol, 6%) as a yellow 
oil.  
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Method B: To 1,3-dimethyl-1H-pyrazol-5-ol (2.0 g, 18 mmol, 1 equiv.) in THF (10 mL) was added 
dropwise to a suspension of sodium hydride (60% in mineral oil, 1.1 g, 27 mmol,  
1.5 equiv.) in THF (10 mL) at 0 °C. The reaction mixture was stirred for 45 minutes and 
thiophosgene (2.1 g, 1.4 mL, 18 mmol, 1 equiv.) in chloroform (15 mL) was added dropwise at 
0 °C. The reaction mixture was stirred overnight at room temperature. It was quenched with 
dropwise addition of water (15 mL) before being extracted with chloroform (3 x 10 mL). The 
combined organic layers were washed with water (10 mL), and were dried over sodium 
sulphate before being filtered. The filtrate was added to a 21% solution of sodium 
methanethiolate in water (6.5 mL, 22 mmol, 1.1 equiv.) at 25 °C and the reaction mixture was 
vigorously stirred 20 h. The aqueous layer was extracted with dichloromethane (3 x 30 mL) and 
the combined organic layers were dried over sodium sulphate and evaporated under reduced 
pressure. The crude product was purified by chromatography on silica gel with 
cyclohexane/ethyl acetate (9:1 to 3:7) as eluent, which afforded 89 (0.25 g, 1.3 mmol, 7%) as a 
yellow oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 5.80 (s, 1 H, Harom), 3.59 (s, 3 H, N-CH3), 2.68 (s, 3 H,  
S-CH3), 2.25 (s, 3 H, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 212.6 (C=S), 147.1 (C3, C5), 94.9 (CH), 34.6 (N-CH3), 20.4  
(S-CH3), 14.5 (CH3) ppm. 
 
Ethyl 3-chloro-5-hydroxy-1-methyl-1H-pyrazole-4-carboxylate (91a) 

 

 
 

N-Chlorosuccinimide (2.0 g, 15 mmol, 2.5 equiv.) was combined with Ethyl 1-methyl-5-oxo 
pyrazole-4-carboxylate 90 (1.0 g, 5.9 mmol, 1 equiv.) and the mixture was heated at 85 °C 
overnight. The reaction temperature was lowered to 60 °C and the mixture was taken up in 
tetrachloromethane (15 mL) and washed twice with saturated aqueous sodium carbonate  
(2 x 10 mL), followed by water (10 mL) and brine (10 mL). The organic layer was dried over 
magnesium sulphate and filtered. The solvent was evaporated in vacuo to provide pure ethyl  
3-chloro-5-hydroxy-1-methyl-1H-pyrazole-4-carboxylate (1.1 g, 5.3 mmol, 89%) as a yellow oil. 
1H NMR was in accordance with the literature (M. A. Hanagan, T. P. Selby, P. L. Sharpe, R. B. 
Sheth, T. M. Stevenson PCT Int. Appl. WO 2005070889 (Dupont De Nemours and company, 
2005)). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 4.35 (m, 2H, CH2), 3.40 (s, 3H, N-CH3), 1.32 (t, 3H, CH3) ppm.  
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Ethyl 3-bromo-5-hydroxy-1-methyl-1H-pyrazole-4-carboxylate (91b) 

 

 
 

N-Bromosuccinimide (26.2 g, 147 mmol, 2.5 equiv.) was combined with Ethyl 1-methyl-5-oxo 
pyrazole-4-carboxylate 90 (10.0 g, 59.0 mmol, 1 equiv.) and the mixture was heated at 90 °C for 
4.5 h. The reaction temperature was lowered to 60 °C, the mixture was taken up in 
tetrachloromethane (150 mL) and washed twice with saturated aqueous sodium carbonate  
(2 x 100 mL), followed by water (100 mL) and brine (100 mL). The organic layer was dried over 
magnesium sulphate and filtered, and the solvent was evaporated in vacuo to provide pure ethyl 
3-bromo-5-hydroxy-1-methyl-1H-pyrazole-4-carboxylate (14.1 g, 56.2 mmol, 96%) as an orange 
oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 4.40-4.28 (m, 2H, CH2), 3.41 (s, 3H, N-CH3), 1.32 (t, 3H,  
J = 7.2 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 166.7 (COOEt), 160.0 (C5-OH), 134.4 (C-4), 64.9 (CH2), 55.4 
(C-3), 32.5 (N-CH3), 13.9 (CH3) ppm.  
 
HRMS (ESI positive) for C7H8BrN2NaO3 [M+Na]: calcd. 269.961; found 269.962. 
 
Ethyl 3-bromo-1-methyl-5-(methylthiocarbonothioyloxy)-1H-pyrazole-4-carboxylate 

(92b) 

 

 
 

Ethyl 3-bromo-5-hydroxy-1-methyl-1H-pyrazole-4-carboxylate(2.5 g, 10 mmol, 1 equiv.) in THF 
(5 mL) was added dropwise to a suspension of sodium hydride (60% in mineral oil, 0.6 g, 
15 mmol, 1.5 equiv.) in THF (5 mL) at 0 °C. The reaction mixture was stirred for 45 min and 
thiophosgene (1.2 g, 0.82 mL, 10 mmol, 1 equiv.) in THF (8 mL) was added dropwise at 0 °C. The 
reaction mixture was stirred overnight at room temperature. It was quenched by dropwise 
addition of water (8 mL) before being extracted with chloroform (3 x 5 mL). The combined 
organic layers were washed with water (10 mL), and were dried over sodium sulphate before 
being filtered. The filtrate was added to a 21% solution of sodium methanethiolate in water 
(3.7 mL, 11 mmol, 1.1 equiv.) at 25 °C, and the reaction mixture was vigorously stirred for 20 h. 
The aqueous layer was extracted with dichloromethane (3 x 15 mL) and the combined organic 
layers were dried over sodium sulphate and evaporated under reduced pressure. The crude 
product was purified by chromatography on silica gel with cyclohexane/ethyl acetate (9:1 to 
2:8) as eluent, which afforded 92b (0.62 g, 1.7 mmol, 17%) as a brown oil which crystallised on 
standing. 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ = 4.16 (q, 2H, J = 7.2 Hz, CH2), 3.60 (s, 3H, N-CH3), 2.63 (s, 3H, 
S-CH3) 1.20 (t, 3H, J = 7.2 Hz, CH3) ppm. 
 

13C NMR (CDCl3, 75 MHz, 25 °C): δ = 211.4 (C=S), 159.9 (C=O), 148.4 (C-5), 126.8 (C-3-Br), 102.9 
(C-4), 60.4 (CH2), 35.5 (N-CH3), 20.6 (S-CH3), 14.1 (CH3) ppm. 
 
MS( EI): m/z = 291 [M-SCH3],  
 

Ethyl 3-bromo-1-methyl-5-(trichloromethoxy)-1H-pyrazole-4-carboxylate (99a) 

 

 
 

Ethyl N-methyl-3-bromo-5-hydroxy pyrazole-4-carboxylate (10.0 g, 40.2 mmol, 1 equiv.) in THF 
(20 mL) was added dropwise to a suspension of sodium hydride (60% in mineral oil, 2.43 g, 
60.3 mmol, 1.5 equiv.) in THF (20 mL) at 0 °C. The reaction mixture was stirred for 45 min and 
thiophosgene (5.30 g, 3.75 mL, 48.2 mmol, 1.2 equiv.) in THF (30 mL) was added dropwise at 
0 °C. The reaction mixture was stirred overnight at room temperature. It was quenched by 
dropwise addition of water (20 mL) before being extracted with chloroform (3 x 30 mL). The 
combined organic layers were washed with water (30 mL), and were dried over sodium 
sulphate before being filtered and evaporated under vacuum. The crude product was taken up in 
chloroform (90 mL) and the reaction mixture was saturated with chlorine at 25 °C until the 
reaction mixture began to warm up. After 24 h at 25 °C, excess chlorine was removed with a 
stream of argon and the solution was concentrated. The crude pale yellow oil was purified by 
chromatography on silica gel with cyclohexane/ethyl acetate (95:5) as eluent, which afforded 
99a (6.93 g, 18.8 mmol, 47%) as a yellow oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 4.29 (q, 2H, J = 7.2 Hz, CH2), 3.88 (s, 3H, N-CH3), 1.35 (t, 3H, 
 J = 7.2 Hz, CH3) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 160.5 (C=O), 145.6 (C-5), 127.1 (C-3-Br), 114.3 (OCCl3), 
105.8 (C-4), 61.3 (CH2), 37.8 (N-CH3), 14.3 (CH3) ppm. 
 
HRMS (ESI positive) for C8H8BrCl3N2NaO3 [M+Na]: calcd. 386.868; found 386.868. 
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3-Difluorometyl-1-methyl-5-(methylthiocarbonothioyloxy)-1H-pyrazole (94) 

 

 
 

Thiophosgene (1.6 g, 1.0 mL, 14 mmol, 1 equiv.) in chloroform (10 mL) was added dropwise at 
0 °C to a solution of N-methyl-3-difluoromethyl-5-hydroxy pyrazole 93 (2.0 g, 14 mmol) in 
aqueous sodium hydroxide (5%, 12 mL). The reaction mixture was then vigorously stirred for 
2 h at room temperature before being extracted with chloroform (3 x 10 mL). The combined 
organic layers were washed with water (10 mL), and dried over sodium sulphate before being 
filtered. The filtrate was added to a 21% solution of sodium methanethiolate in water (4.6 mL, 
15 mmol, 1.1 equiv.) at 25 °C, and the reaction mixture was vigorously stirred for 2 days. The 
aqueous layer was extracted with dichloromethane (3 x 15 mL) and the combined organic layers 
were dried over sodium sulphate and evaporated under reduced pressure. The crude product 
was purified by chromatography on silica gel with cyclohexane/ethyl acetate (8:2) as eluent, 
which afforded 94 (0.69 g, 2.7 mmol, 20%) as a yellow oil.  
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.58 (t, 1H, JH-F = 56.3 Hz, CHF2), 6.25 (s, 1H, H), 3.69 (s, 3H, 
N-CH3), 2.70 (s, 3H, S-CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 212.0 (C=S), 147.41 (C-5), 144.96 (t, 2JC-F = 30.1 Hz, C-3), 
111.3 (t, JC-F = 237.4 Hz, CHF2), 93.4 (C-4), 35.5 (N-CH3), 20.4 (S-CH3) ppm.  
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6.5. Pyridines bearing –OCFCl2 and –OCF2Cl 

substituents 

2-Chloro-5-(chlorothionoformate) pyridine 

 

 
 
Thiophosgene (1.1 g, 9.3 mmol, 1.2 equiv.) in dichloromethane (5 mL) was added dropwise at 
0 °C to a solution of 2-chloro-5-hydroxy pyridine (1.0 g, 7.7 mmol) in aqueous sodium hydroxide 
(5%, 7.5 mL, 1.2 equiv.). The reaction mixture was vigorously stirred for 12 h at room 
temperature until the pH of the aqueous phase reached 1. It was then diluted with water  
(10 mL) and extracted with dichloromethane (3 x 10 mL). The combined organic layers were 
washed with water (20 mL) and dried over sodium sulphate before evaporated to afford the 
desired product (1.5 g, 7.3 mmol, 94%) as a brownish solid. The product was not isolated for 
toxicity reasons. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.25 (d, 1H, Jm = 2.8 Hz, H-6), 7.50 (dd, 1H, Jo = 8.7 Hz,  
Jm = 2.8 Hz, H-4), 7.42 (d, 1H, Jo = 8.7 Hz, H-3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 185.2 (C=S), 150.1 (C-5), 149.6 (C-2), 142.9 (C-6), 133.2  
(C-4), 125.3 (C-3) ppm.  
 
2-Chloro-6-(chlorothionoformate) pyridine 

 

 
 
Thiophosgene (10.7 g, 93.0 mmol, 1.2 equiv.) in dichloromethane (50 mL) was added dropwise 
at 0 °C to a solution of 2-chloro-6-hydroxy pyridine (10.0 g, 77.2 mmol) in aqueous sodium 
hydroxide (5%, 75.0 mL, 1.2 equiv.). The reaction mixture was vigorously stirred for 12 h at 
room temperature until the pH of the aqueous phase reached 1. It was then diluted with water 
(50 mL) and extracted with dichloromethane (3 x 50 mL). The combined organic layers were 
washed with water (50 mL) and dried over sodium sulphate before evaporated to afford the 
desired product (11.9 g, 57.2 mmol, 74%) as a brownish solid. The product was not isolated for 
toxicity reasons. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.85 (t, 1H, J = 7.9 Hz, H-4), 7.36 (d, 1H, J = 7.8 Hz, H-3), 7.07 
(d, 1H, J = 7.9 Hz, H-5) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 183.8 (C=S), 158.6 (C-6), 150.0 (C-2), 142.6 (C-4), 124.2  
(C-3), 114.7 (C-5) ppm.  
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2-Chloro-3-(chlorothionoformate) pyridine 

 

 
 
Thiophosgene (10.7 g, 93.0 mmol, 1.2 equiv.) in dichloromethane (50 mL) was added dropwise 
at 0 °C to a solution of 2-chloro-6-hydroxy pyridine (10.0 g, 77.2 mmol) in aqueous sodium 
hydroxide (5%, 75.0 mL, 1.2 equiv.). The reaction mixture was vigorously stirred for 12 h at 
room temperature until the pH of the aqueous phase reached 1. It was then diluted with water 
(50 mL) and extracted with dichloromethane (3 x 50 mL). The combined organic layers were 
washed with water (50 mL) and dried over sodium sulphate before evaporated to afford the 
desired product (15.8 g, 76.0 mmol, 99%) as a yellow solid. The product was not isolated for 
toxicity reasons. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.39 (dd, 1H, Jo = 4.7 Hz, Jm = 1.6 Hz, H-6), 7.60 (dd, 1H,  
Jo = 8.0 Hz, Jm = 1.6 Hz, H-4), 7.40 (dd, 1H, Jo1 = 8.0 Hz, Jo2 = 4.8 Hz, H-5) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 183.5 (C=S), 148.0 (C-3), 147.0 (C-2), 143.7 (C-5), 132.0 
(CHarom), 114.7 (CHarom) ppm.  
 
2-Chloro-5-chlorodifluoromethoxy pyridine (123) 

 

 
 
To a suspension of N,N-dibromohydantoin (18.5 g, 64.8 mmol, 4.5 equiv.) in dry 
dichloromethane (45 mL) at -78 °C was added 70% HF/pyridine (7.50 mL, 288 mmol, 20 equiv.) 
and the reaction mixture was stirred for 30 minutes. 2-Chloro-5-(chlorothionoformate) pyridine 
(3.00 g, 14.4 mmol, 1 equiv.) in dichloromethane (20 mL) was added to the reaction mixture. 
The cooling bath was removed, and the reaction mixture was allowed to reach room 
temperature overnight. The reaction mixture was diluted with dry diethyl ether (50 mL) and 
cooled to 0 °C. It was quenched with an aqueous saturated NaHCO3 solution (100 mL) and then 
solid NaHCO3 until the red colour disappeared. The aqueous phase was extracted with 
dichloromethane (3 x 50 mL). The combined organic layer were washed with 1M HCl 
(3 x 50 mL), water (50 mL), dried over sodium sulphate and evaporated at atmospheric 
pressure. The crude material was purified by column chromatography on silica gel with 
pentane/diethyl ether (10:0 to 7:3) as eluent to afford pure 2-chloro-5-chlorodifluoromethoxy 
pyridine (2.40 g, 11.0 mmol, 76%) as a colourless liquid.  
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.27 (d, 1H, Jm = 2.5 Hz, H-6), 7.49 (dd, 1H, Jo = 8.7 Hz,  
Jm = 2.9 Hz, H-4), 7.32 (d, 1H, J = 8.7 Hz, H-3) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 149.4 (C-2), 146.0 (t, JC-F = 2.1 Hz, C-5), 143.2 (t, JC-F = 1.3 Hz, 
C-6), 131.9 (CH arom), 125.1 (CHarom), 125.1 (t, JC-F = 290.2 Hz, CF2Cl) ppm. 
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19F NMR (CDCl3, 282 MHz, 25°C): δ = -26.9 ppm. 
 
HRMS (ESI positive) for C6H4Cl2F2NO [M+H]: calcd. 213.963; found 213.965. 
 

2-Chloro-6-chlorodifluoromethoxy pyridine (125) 

 

 
 
To a suspension of N,N-dibromohydantoin (18.5 g, 64.8 mmol, 4.5 equiv.) in dry 
dichloromethane (45 mL) at -78 °C was added 70% HF/pyridine (7.50 mL, 288 mmol, 20 equiv.) 
and the reaction mixture was stirred for 30 minutes. 2-Chloro-6-(chlorothionoformate) pyridine 
(3.00 g, 14.4 mmol, 1 equiv.) in dichloromethane (20 mL) was added to the reaction mixture. 
The cooling bath was removed, and the reaction mixture was allowed to reach room 
temperature overnight. The reaction mixture was diluted with dry diethyl ether (50 mL) and 
cooled to 0 °C. It was quenched with an aqueous saturated NaHCO3 solution (100 mL) and then 
solid NaHCO3 until the red colour disappeared. The aqueous phase was extracted with 
dichloromethane (3 x 50 mL). The combined organic layer were washed with 1M HCl (3 x 50 
mL), water (50 mL), dried over sodium sulphate and evaporated at atmospheric pressure. The 
crude material was purified by column chromatography on silica gel with pentane/diethyl ether 
(10:0 to 7:3) as eluent to afford pure 2-chloro-5-chlorodifluoromethoxy pyridine (1.80 g,  
8.10 mmol, 57%) as a slightly yellow liquid.  
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.27 (d, 1H, Jm = 2.5 Hz, H-6), 7.49 (dd, 1H, Jo = 8.7 Hz,  
Jm = 2.9 Hz, H-4), 7.32 (d, 1H,  Jo = 8.7 Hz, H-3) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 149.4 (C-2), 146.0 (t, JC-F = 2.1 Hz, C-5), 143.2 (t, JC-F = 1.3 Hz, 
C-6), 131.9 (CH arom), 125.1 (CHarom), 125.1 (t, JC-F = 290.2 Hz, CF2Cl) ppm. 
  
19F NMR (CDCl3, 282 MHz, 25°C): δ = -25.8 ppm. 
 
HRMS (ESI positive) for C6H4Cl2F2NO [M+H]: calcd. 213.964; found 213.964. 
 
2-Chloro-3-chlorodifluoromethoxy pyridine (124) 

 

 
 
To a suspension of N,N-dibromohydantoin (18.5 g, 64.8 mmol, 4.5 equiv.) in dry 
dichloromethane (45 mL) at -78 °C was added 70% HF/pyridine (7.5 mL, 288 mmol, 20 equiv.) 
and the reaction mixture was stirred for 30 minutes. 2-Chloro-3-(chlorothionoformate) pyridine 
(3.00 g, 14.4 mmol, 1 equiv.) in dichloromethane (20 mL) was added to the reaction mixture. 
The cooling bath was removed, and the reaction mixture was allowed to reach room 
temperature overnight. The reaction mixture was diluted with dry diethyl ether (50 mL) and 
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cooled to 0 °C. It was quenched with an aqueous saturated NaHCO3 solution (100 mL) and then 
solid NaHCO3 until the red colour disappeared. The aqueous phase was extracted with 
dichloromethane (3 x 50 mL). The combined organic layer were washed with 1M HCl (3 x 50 
mL), water (50 mL), dried over sodium sulphate and evaporated at atmospheric pressure. The 
crude material was purified by column chromatography on silica gel with pentane/diethyl ether 
(10:0 to 7:3) as eluent to afford pure 2-chloro-5-chlorodifluoromethoxy pyridine (2.10 g,  
10.0 mmol, 70%) as a slightly yellow liquid.  
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.33 (dd, 1H, Jo = 4.7 Hz, Jm = 1.5 Hz, H-6), 7.80 (dd, 1H,  
Jo = 8.2 Hz, Jm = 1.5 Hz, H-4), 7.33 (dd, 1H, Jo1 = 8.2 Hz, Jo2 = 4.3 Hz, H-5) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 147.5 (C-6), 145.0 (C-2), 143.3 (t, JC-F = 1.9 Hz, C-3), 130.9  
(t, JC-F = 1.3 Hz, C-4), 125.4 (t, JC-F = 292.6 Hz, CF2Cl), 123.4 (C-5) ppm. 
  
19F NMR (CDCl3, 282 MHz, 25°C): δ = -26.1 ppm. 
 
HRMS (ESI positive) for C6H4Cl2F2NO [M+H]: calcd. 213.963; found 213.963. 
 
2-Chloro-3-chlorodifluoromethoxy isonicotinic acid (126) 

 

 
 
Butyllithium (1.56 M in hexanes, 3.3 mL, 5.2 mmol, 1.1 equiv.) was added dropwise at 0 °C to a 
solution of diisopropylamine (0.52 g, 0.73 mL, 5.2 mmol, 1.1 equiv.) in THF (8 mL). A solution of 
2-chloro-3-chlorodifluoromethoxy pyridine (1.0 g, 4.7 mmol, 1 equiv.) in THF (2.5 mL) was 
added dropwise at -78 °C, and the reaction mixture was stirred for 3 h at this temperature. The 
mixture was then poured onto an excess of freshly crushed dry ice before being treated with an 
aqueous solution of sodium hydroxide (5%, 10 mL). The resulting aqueous layer was collected, 
washed with diethyl ether (10 mL), and acidified to pH = 1 by dropwise addition of 6M HCl  
(4 mL). After extraction with ethyl acetate (3 x 10 mL), the combined organic layers were dried 
with sodium sulphate and evaporated to afford pure 2-chloro-6-chlorodifluoromethoxy 
isonicotinic acid (0.70 g, 2.7 mmol, 58%) as a slightly yellow powder, m.p. 162-163 °C. 
 
1H NMR (CD3OD, 300 MHz, 25 °C): δ = 8.51 (d, 1H, J = 4.9 Hz, H-6), 7.78 (d, 1H, J = 4.9 Hz, H-5) 
ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 165.4 (COOH), 149.8 (CHarom), 148.3 (CIVarom), 141.4  
(t, JC-F = 2.0 Hz, C-4), 139.6 (CIVarom), 127.3 (t, JC-F = 292.9 Hz, OCF2Cl), 125.2 (CHarom) ppm. 
  

HRMS (ESI negative) for C7H2Cl2F2NO3 [M-H]: calcd. 255.937; found 255.938. 
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2-Chloro-5-trichloromethoxy pyridine (122) 

 

 
 
2-Chloro-5-(chlorothionoformate) pyridine (3.00 g, 14.4 mmol, 1 equiv.) was diluted in 
chloroform (30 mL). The solution was saturated with chlorine at 25 °C until the reaction mixture 
began to warm up. After 2 h at 25 °C, excess chlorine was again added until a yellow solution 
was obtained. After 24 h at 25 °C, excess chlorine was removed with a stream of argon and the 
solution was concentrated to afford pure 2-chloro-5-trichloromethoxy pyridine (2.62 g, 
10.5 mmol, 73%) as a yellow oil. 1H and 13C NMR were in accordance with the literature (B. 
Manteau PhD Thesis, Université de Strasbourg, 2009). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.41 (dd, 1H, Jm = 3.0 Hz, H-6), 7.71 (dd, 1H,  Jo = 8.7 Hz,  
Jm = 3.0 Hz, H-4), 7.38 (d, 1H, Jo = 8.7 Hz, H-3) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 149.3 (C-5), 147.8 (C-2), 144.1 (C-6), 132.7 (CH arom), 125.2 
(CHarom), 112.2 (CCl3) ppm. 
 
2-Chloro-6-trichloromethoxy pyridine  

 

NCl OCCl3  
 
2-Chloro-6-(chlorothionoformate) pyridine (3.0 g, 14 mmol, 1 equiv.) was diluted in chloroform 
(30 mL). the solution was saturated with chlorine at 25 °C until the reaction mixture began to 
warm up. After 2 h at 25 °C, excess chlorine was again added until a yellow solution was 
obtained. After 24 h at 25 °C, excess chlorine was removed with a stream of argon and the 
solution was concentrated to afford pure 2-chloro-6-trichloromethoxy pyridine (2.0 g,  
8.1 mmol, 56%) as a yellow oil. 1H and 13C NMR were in accordance with the literature (B. 
Manteau PhD Thesis, Université de Strasbourg, 2009). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.72 (t, 1H, J = 7.9 Hz, H-4), 7.22 (d, 1H, J = 7.8 Hz, H-3), 7.05 
(d, 1H, J = 7.9 Hz, H-5) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 151.9 (C-5), 149.0 (C-6), 141.7 (C-2), 122.2 (C-4), 113.0  
(C-3), 112.6 (CCl3) ppm.  
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2-Chloro-3-trichloromethoxy pyridine  

 

 
 
2-Chloro-3-(chlorothionoformate) pyridine (10 g, 48 mmol, 1 equiv.) was diluted in chloroform 
(100 mL). The solution was saturated with chlorine at 25 °C until the reaction mixture began to 
warm up. After 2 h at 25 °C, excess chlorine was again added until a yellow solution was 
obtained. After 24 h at 25 °C, excess chlorine was removed with a stream of argon and the 
solution was concentrated to afford pure 2-chloro-3-trichloromethoxy pyridine (7.5 g, 30 mmol, 
63%) as a yellow oil. 1H and 13C NMR were in accordance with the literature (B. Manteau PhD 
Thesis, Université de Strasbourg, 2009). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.35 (dd, 1H, Jo = 4.7 Hz, Jm = 1.6 Hz, Harom), 8.05 (dd, 1H, 
Jo = 8.2 Hz, Jm = 1.5 Hz, Harom), 7.35 (dd, 1H, Jo1 = 8.2 Hz, Jo2 = 4.7 Hz, H-5) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 147.2 (C-6), 145.5 (C-3), 145.4 (C-2), 130.6 (CHarom), 123.0 
(CHarom), 112.0 (CCl3) ppm. 
 

2-Chloro-5-dichlorofluoromethoxy pyridine (127) 

 

 
 
2-Chloro-5-trichloromethoxy pyridine (2.00 g, 8.10 mmol, 1 equiv.) was mixed with HF/Et3N  
(17.6 mL, 108 mmol, 40 equiv.) and heated to 90 °C for 24 h. The reaction mixture was diluted 
with dry diethyl ether (50 mL) and cooled to 0 °C. It was quenched with an aqueous saturated 
NaHCO3 solution (100 mL) and then solid NaHCO3 until the pH of the aqueous phase reached 7. 
It was adjusted to pH = 9 with an aqueous NaOH solution (10%, 20 mL). The aqueous phase was 
extracted with diethyl ether (3 x 30 mL). The combined organic layers were washed with 1M HCl 
(3 x 30 mL), water (30 mL), dried over sodium sulphate and evaporated at atmospheric 
pressure. The crude material was purified by column chromatography on silica gel with 
pentane/diethyl ether (10:0 to 7:3) as eluent to afford pure 2-chloro-5-dichlorofluoromethoxy 
pyridine (1.63 g, 6.82 mmol, 84%) as a colourless oil.  
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.39 (d, 1H, Jm = 2.9 Hz, H-6), 7.62 (dd, 1H, Jo = 8.7 Hz, 
 Jm = 2.9 Hz, H-4), 7.40 (d, 1H, Jo = 8.7 Hz, H-3) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 149.4 (C-2), 147.0 (d, JC-F = 0.9 Hz, C-5), 143.6 (d,  
JC-F = 1.6 Hz, C-6), 132.4 (d, JC-F = 1.3 Hz, C-4), 125.0 (C-3), 123.6 (d, JC-F = 312.7 Hz, CFCl2) ppm. 
  
19F NMR (CDCl3, 282 MHz, 25°C): δ = -8.5 ppm. 
 
HRMS (ESI positive) for C6H4Cl3FNO [M+H]: calcd. 229.934; found 229.932. 
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2-Chloro-6-dichlorofluoromethoxy pyridine (128) 

 

 
 
2-Chloro-6-trichloromethoxy pyridine (2.43 g, 9.50 mmol, 1 equiv.) was mixed with HF/Et3N  
(20.7 mL, 127 mmol, 40 equiv.) and heated to 90 °C for 48 h. The reaction mixture was diluted 
with dry diethyl ether (50 mL) and cooled to 0 °C. It was quenched with an aqueous saturated 
NaHCO3 solution (100 mL) and then solid NaHCO3 until the pH of the aqueous phase reached 7. 
It was adjusted to pH = 9 with an aqueous NaOH solution (10%, 20 mL). The aqueous phase was 
extracted with diethyl ether (3 x 30 mL). The combined organic layers were washed with 1M HCl 
(3 x 30 mL), water (30 mL), dried over sodium sulphate and evaporated at atmospheric 
pressure. The crude material was purified by column chromatography on silica gel with 
pentane/diethyl ether (10:0 to 7:3) as eluent to afford pure 2-chloro-5-dichlorofluoromethoxy 
pyridine (1.73 g, 7.20 mmol, 76%) as a slightly yellow oil.  
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.77 (t, 1H, J = 7.9 Hz, H-4), 7.30 (d, 1H, J = 7.7 Hz, Harom), 
7.05 (d, 1H, J = 8.1 Hz, Harom) ppm. 
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 156.9 (d, 3JC-F = 2.0 Hz, C-6), 149.2 (C-2), 142.0 (CHarom), 
122.5 (CHarom), 121.7 (d, JC-F = 312.7 Hz, CFCl2), 112.5 (d, 4JC-F = 1.9 Hz, C-5) ppm. 
  
19F NMR (CDCl3, 282 MHz, 25°C): δ = -9.1 ppm. 
 
HRMS (ESI positive) for C6H4Cl3FNO [M+H]: calcd. 229.935; found 229.934. 
 
2-Chloro-6-dichlorofluoromethoxy pyridine (129) 

 

 
 
2-Chloro-3-trichloromethoxy pyridine (3.00 g, 12.0 mmol, 1 equiv.) was mixed with HF/Et3N 
(26.4 mL, 162 mmol, 40 equiv.) and heated to 90 °C for 7 days. The reaction mixture was diluted 
with dry diethyl ether (50 mL) and cooled to 0 °C. It was quenched with an aqueous saturated 
NaHCO3 solution (100 mL) and then solid NaHCO3 until the pH of the aqueous phase reached 7. 
It was adjusted to pH = 9 with an aqueous NaOH solution (10%, 20 mL). The aqueous phase was 
extracted with diethyl ether (3 x 30 mL). The combined organic layers were washed with 1M HCl 
(3 x 30 mL), water (30 mL), dried over sodium sulphate and evaporated at atmospheric 
pressure. The crude material was purified by column chromatography on silica gel with 
pentane/diethyl ether (10:0 to 7:3) as eluent to afford pure 2-chloro-3-dichlorofluoromethoxy 
pyridine (2.00 g, 8.83 mmol, 72%) as a slightly yellow oil.  
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 8.37 (dd, 1H, Jo = 4.7 Hz, Jm = 1.5 Hz, Harom), 7.80 (dt, 1H, 
Jo = 8.2 Hz, Jm = 1.6 Hz, Harom), 7.35 (dd, 1H, Jo1 = 8.2 Hz, Jo2 = 4.3 Hz, H-5) ppm. 
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13C NMR (CDCl3, 75 MHz, 25 °C): δ = 147.3 (C-6), 145.2 (d, JC-F = 0.9 Hz, C-3), 144.4 (C-2), 131.0 
(d, JC-F = 2.1 Hz, C-4), 123.7 (d, JC-F = 314.9 Hz, CFCl2), 123.1 (C-5) ppm. 
  
19F NMR (CDCl3, 282 MHz, 25°C): δ = -6.6 ppm. 
 
HRMS (ESI positive) for C6H4Cl3FNO [M+H]: calcd. 229.935; found 229.935. 
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6.6.  (3,5)-Bis(fluoroalkyl) pyrazoles 

1,1,1-Trifluoro-4-methoxypent-3-en-2-one (213a) 

 

 
 
Trifluoroacetic anhydride (9.1 g, 6.1 mL, 43 mmol, 1 equiv.) in dry dichloromethane (20 mL) was 
added to 2-methoxypropene (3.6 g, 50.0 mmol, 1.15 equiv.) and pyridine (4.5 g, 57 mmol, 
1.3 equiv.) in dry dichloromethane (40 mL) at 0 °C. The reaction mixture was stirred for 4 h at 
0 °C and diluted with dichloromethane (75 mL). The organic layer was washed with water  
(3 x 30 mL), 1M HCl (3 x 30 mL), and brine (30 mL), dried over sodium sulphate and evaporated 
in vacuo. The crude material was purified by distillation under reduced pressure to afford pure  
1,1,1-trifluoro-4-methoxypent-3-en-2-one (7.0 g, 42 mmol, 97%) as a yellow liquid. 1H NMR was 
in accordance with the literature (K. V. Tarashenko, O. V. Manoylenko, V. P. Kukhar, G.-V. 
Röschenthaler, I. I. Gerus Tetrahedron Lett. 2010, 51, 4623-4626.). 
 
1H NMR (CDCl3 , 300 MHz, 25 °C): δ = 5.68 (s, 1H, Hvinylic), 3.80 (s, 3H, OCH3), 2.41 (s, 3H, CH3) 
ppm.  
 
3-Methyl-5-trifluoromethyl-1H-pyrazole (217) 

 

 
 
Hydrazine hydrate (2.7 g, 55 mmol, 1.3 equiv.) was added to 1,1,1-trifluoro-4-methoxypent-3-
en-2-one (7.0 g, 42 mmol, 1 equiv.) in ethanol (21 mL). The reaction mixture was heated to 
reflux during 2 h then allowed to cool to room temperature and evaporated in vacuo. The 
resulting crude product was taken up in isopropyl ether (40 mL) and evaporated under reduced 
pressure to afford pure 3-methyl-5-(trifluoromethyl)-1H-pyrazole (5.8 g, 39 mmol, 92%) as a 
slightly yellow solid. 1H NMR was in accordance with the literature (M. A. P. Martins, D. N. 
Moreira, C. P. Frizzo, K. Longhi, N. Zanatta, H. G. Bonacorso J. Braz. Chem. Soc. 2008, 19, 1361-
1368.). 
 
1H NMR (CDCl3 , 300 MHz, 25 °C): δ = 6.31 (s, 1H, Harom), 2.33 (s, 3H, CH3) ppm.  
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tert-Butyl 3-methyl-5-trifluoromethyl-1H-pyrazole-1-carboxylate (218) 

 

 
 
3-Methyl-5-(trifluoromethyl)-1H-pyrazole (2.0 g, 13 mmol, 1 equiv.) was diluted in acetonitrile 
(20 mL) with triethylamine (1.5 g, 15 mmol, 1.1 equiv.) and 4-dimethylaminopyridine (0.32 g, 
2.7 mmol, 0.2 equiv.) at 0 °C. Di-tert-butyl dicarbonate dissolved in acetonitrile (10 mL) was 
added to the reaction mixture, and it was stirred overnight at room temperature. Acetonitrile 
was evaporated in vacuo and the crude mixture was taken up in dichloromethane (50 mL). The 
organic layer was washed with water (30 mL), and the aqueous layer was acidified to pH = 1 
with 1M HCl. The organic layer was washed again with the acidified aqueous layer, with brine 
(30 mL), dried over magnesium sulphate and the solvent was evaporated to afford pure tert-
butyl 3-methyl-5-trifluoromethyl-1H-pyrazole-1-carboxylate (3.0 g, 12 mmol, 92%) as a yellow 
oil. The title compound was obtained as a 93:7 ratio between the 3-methyl and the 5-methyl 
isomers (NMR ratios), only the major compound is described.  
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.37 (s, 1H, Harom), 2.56 (s, 3H, CH3), 1.66 (s, 9H, Boc-CH3) 
ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 147.8 (C=O), 145.3 (CIVarom), 144.96 (q, 2JC-F = 38.6 Hz, 
CIVarom), 120.6 (q, JC-F = 269.7 Hz, CF3), 107.0 (q, 3JC-F = 1.7 Hz, CHarom), 86.5 (CIVtBu), 27.8 
(tBuCH3), 14.5 (CH3) ppm. 
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -64.3 ppm. 
 
HRMS (ESI positive) for C10H13F3N2NaO2 [M+Na]: calcd. 273.082; found 273.084. 
 
5-Bromo-1,1,1-trifluoro-4-methoxypent-3-en-2-one (219a) 

 

 
 
Bromine (2.1 g, 0.74 mL, 13 mmol, 0.9 equiv.) was added over 30 min to 1,1,1-trifluoro-4-
methoxypent-3-en-2-one (2.5 g, 15 mmol, 1 equiv.) in dry dichloromethane (120 mL) at 0 °C and 
stirred for 2 h. Pyridine (1.1 g, 13 mmol, 0.9 equiv.) was added at 0 °C and stirred for 30 minutes 
before water was added (100 mL). The aqueous phase was extracted with dichloromethane  
(2 x 50 mL), the combined organic layers were dried over sodium sulphate and evaporated 
under reduced pressure to afford the title compound (3.3 g, 13 mmol, 90%) as a brown-orange 
oil. 1H NMR was in accordance with the literature (M. A. P. Martins, A. P. Sinhorin, A. Da Rosa, A. 
F. C. Flores, A. D. Wastowski, C. M. P. Pereira, D. C. Flores, P. Beck, R. A. Freitag, S. Brondani, W. 
Cunico, H. G. Bonacorso, N. Zanatta Synthesis 2002, 2353-2358.). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 5.74 (s, 1H, Hvinylic), 4.45 (s, 2H, CH2Br), 3.88 (s, 3H, OCH3) 
ppm.  
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Ethyl 4-chloro-4,4-difluoro-3-oxobutanoate (225) 

 

 
 
Butyllithium (1.53 M in hexanes, 52.3 mL, 80.0 mmol, 2 equiv.) was added dropwise at 0 °C to a 
solution of diisopropylamine (8.16 g, 11.3 mL, 80.0 mmol, 2 equiv.) in diethyl ether (30 mL). A 
solution of dry ethyl acetate (7.06 g, 80.0 mmol, 2 equiv.) in diethyl ether (5 mL) was added 
dropwise at –78 °C, followed directly by a solution of ethyl chlorodifluoro acetate (6.29 g, 
40.0 mmol, 1 equiv.) in diethyl ether (4 mL). The reaction mixture was stirred for 4 h at this 
temperature, and quenched with a saturated ammonium chloride solution (50 mL) before being 
allowed to reach room temperature. The aqueous phase was extracted with diethyl ether (3 x 
30 mL). The combined organic layers were washed with 1M HCl (50 mL), brine (50 mL) and 
dried with sodium sulphate prior to concentration. Distillation under reduced pressure afforded 
pure title compound (5.83 g, 28.9 mmol, 72%) as a slightly yellow liquid (b.p. = 94-97 °C, 
93 mbar). 1H NMR was in accordance with the literature (T. Kitazume, M. Asai, T. Tsukamoto, T. 
Yamazaki J. Fluorine Chem. 1992, 56, 271-284.). The desired product was obtained in a mixture 
between the keto form (isomer a) and the enol form (isomer b). 
 

ClF2C

O O

O ClF2C

OH O

O

isomer a isomer b  
 
1H NMR (CDCl3 , 300 MHz, 25 °C): δ = 12.02 (brs, 0.5H, -OH), 5.58 (s, 0.5H, Hvinylic), 4.33-4.24 
(m, 2H, CH2), 3.78 (s, 1H, CH2), 1.36-1.27 (m, 3H, CH3) ppm.  
 
Ethyl 2-(2-chloro-2,2-difluoroacetyl)-3-(dimethylamino)-4,4-difluorobut-2-enoate (215c) 

 

 
 

BF3(OEt2) (0.1 mL, 1.0 mmol, 1 equiv.) was added to a solution of TFEDMA (0.1 mL, 1.0 mmol, 
1 equiv.) in dry dichloromethane (1 mL) under Argon in a Teflon flask. The solution was stirred 
for 15 min at room temperature, and dichloromethane was removed under reduced pressure. 
The mixture was taken up in dry deuterated acetonitrile (1 mL).  In another Teflon flask, ethyl  
4-chloro-4,4-difluoroacetoacetate (0.2 g, 1.0 mmol, 1 equiv.) was added to a solution of 
potassium fluoride (0.2 g, 3.0 mmol, 3 equiv.) in dry deuterated acetonitrile (2 mL) and stirred at 
room temperature for 15 min. At -30 °C, the content of the first flask was added dropwise, and 
the reaction mixture was then analysed by 1H and 13C NMR spectroscopy. The title compound 
was obtained in a 2:1 mixture (1H NMR) with ethyl 3-(dimethylamino)-4,4-difluorobut-2-enoate. 
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1H NMR (CD3CN, 300 MHz, 25 °C): δ = 6.36 (t, 1H, JH-F = 53.2 Hz, CHF2), 4.21 (q, 2H, J = 7.2 Hz, 
CH2), 3.07 (t, 3H, 5JH-F = 1.2 Hz, NMe), 2.95 (t, 3H, 5JH-F = 1.2 Hz, NMe), 1.26 (t, 3H, J = 7.2 Hz, 
CH3) ppm.  
 
13C NMR (CD3CN, 75 MHz, 25 °C): δ = 185.3 (F2ClC-CO), 164.9 (CO), 161.7 (t, 2JC-F = 25.1 Hz,  
CIV-NMe2), 119.4 (t, JC-F = 304.3 Hz, CF2Cl), 108.1 (t, JC-F = 244.4 Hz, CHF2), 98.1 (t, 3JC-F = 4.8 Hz, 
CIV), 61.9 (CH2), 35.0 (N-Me2), 13.3 (CH3) ppm.  
 

 
 
1H NMR (CD3CN, 300 MHz, 25 °C): δ = 6.65 (t, 1H, JH-F = 51.9 Hz, CHF2), 5.70 (s, 1H, CH), 4.31 (q, 
2H, J = 7.1 Hz, CH2), 3.91 (t, 3H, 5JH-F = 0.8 Hz, NMe), 3.22 (t, 3H, 5JH-F = 1.2 Hz, NMe), 1.31 (t, 3H,  
J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CD3CN, 75 MHz, 25 °C): δ = 171.3 (CO), 163.4 (t, 2JC-F = 21.3 Hz, CIV-NMe2), 110.5 (t,  
JC-F = 246.7 Hz, CHF2), 91.1 (t, 3JC-F = 4.4 Hz, CIV), 61.2 (CH2), 36.4 (N-Me2), 13.3 (CH3) ppm. 
 
Ethyl 1-methyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylate (223b) 

 

 
 
Method A:  
BF3(OEt2) (0.62 mL, 5.0 mmol, 1 equiv.) was added to a solution of TFEDMA (0.59 mL, 5.0 mmol, 
1 equiv.) in dry dichloromethane (5 mL) under Argon in a Teflon flask. The solution was stirred 
for 15 min at room temperature, and dichloromethane was removed under reduced pressure. 
The mixture was taken up in dry acetonitrile (5 mL).  In another Teflon flask, ethyl  
4,4,4-trifluoroacetoacetate (0.73 mL, 5.0 mmol, 1 equiv.) was added to a solution of potassium 
fluoride (0.88 g, 15 mmol, 3 equiv.) in 10 mL of dry acetonitrile and stirred at room temperature 
for 15 min. At -30 °C, the content of the first flask was added dropwise, and the reaction mixture 
was stirred at -30 °C for 2 h and allowed to reach -10 °C over one hour. Methyl hydrazine 
(0.32 mL, 6.0 mmol, 1.2 equiv.) was added dropwise at -30 °C, the cooling bath was removed and 
the reaction mixture was stirred at room temperature overnight. The solution was filtered and 
evaporated under reduced pressure. The crude material was purified by column 
chromatography on silica gel with pentane/diethyl ether (9:1 to 8:2) as eluent to afford the pure 
title compound 223b (0.29 g, 1.1 mmol, 21%) as a yellow oil. 
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Method B:  
BF3(OEt2) (6.2 mL, 50 mmol, 1 equiv.) was added to a solution of TFEDMA (5.9 mL, 50 mmol, 
1 equiv.) in dry dichloromethane (50 mL) under Argon in a Teflon flask. The solution was stirred 
for 15 min at room temperature, and dichloromethane was removed under reduced pressure. 
The mixture was taken up in dry acetonitrile (50 mL). In another Teflon flask, ethyl  
4,4,4-trifluoroacetoacetate (9.2 g, 50 mmol, 1 equiv.) was added to a solution of pyridine (12 mL, 
150 mmol, 3 equiv.) in dry acetonitrile (100 mL) and stirred at room temperature for 15 min. At 
-30 °C, the content of the first flask was added dropwise, and the reaction mixture was stirred at 
-30 °C for 2 h and allowed to reach room temperature overnight. Methyl hydrazine (3.9 mL, 
75 mmol, 1.5 equiv.) was added dropwise at room temperature and the reaction mixture was 
stirred for 24 h. The solution was evaporated under reduced pressure and taken up in diethyl 
ether (100 mL). The organic phase was washed with HCl 1M (3 x 50 mL), brine (50 mL), dried 
over sodium sulphate and evaporated at atmospheric pressure. The crude material was purified 
by column chromatography on silica gel with pentane/diethyl ether (10:0 to 8:2) as eluent to 
afford the pure title compound 223b (8.5 g, 31 mmol, 63%) as a yellow oil. 
 

1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.00 (t, 1H, JH-F = 54 Hz, CHF2), 4.37 (q, 2H, J = 7.2 Hz, CH2), 
4.12 (s, 3H, N-CH3), 1.37 (t, 3H, J = 7.2 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 160.2 (CO), 145.7 (t, 2JC-F = 25.6 Hz, CIVarom), 133.2 (q,  
2JC-F = 40.3 Hz, CIVarom), 119.0 (q, JC-F = 271.2 Hz, CF3), 114.4 (CIVarom), 109.0 (t, JC-F =  237.9 Hz, 
CHF2), 61.9 (CH2), 40.8 (q, 4JC-F = 3.2 Hz, N-CH3), 13.8 (CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -57.6 (CF3), -116.4 (CHF2) ppm. 
 
C9H9F5N2O2 (272): calcd. (%) C 39.72, H 3.33, N 10.29; found C 39.03, H 3.33, N 10.26. 
 
Ethyl 1-methyl-3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylate (226b) 

 

 
 
BF3(OEt2) (1.24 mL, 10.0 mmol, 1 equiv.) was added to a solution of TFEDMA (1.20 mL, 
10.0 mmol, 1 equiv.) in dry dichloromethane (10 mL) under Argon in a Teflon flask. The solution 
was stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (10 mL).  In another Teflon flask, ethyl 
4,4-difluoroacetoacetate (1.03 mL, 10.0 mmol, 1 equiv.) was added to a solution of pyridine  
(1.60 mL, 20.0 mmol, 2 equiv.) in dry acetonitrile (20 mL) and stirred at room temperature for 
15 min. At -30 °C, the content of the first flask was added dropwise, and the reaction mixture 
was stirred at -30 °C for 2 h and allowed to reach room temperature overnight. Methyl 
hydrazine (0.790 mL, 15.0 mmol, 1.5 equiv.) was added dropwise at room temperature the 
reaction mixture was stirred for 24 h. The solution was evaporated under reduced pressure and 
taken up in diethyl ether (25 mL). The organic phase was washed with HCl 1M (3 x 20 mL), brine 
(20 mL), dried over sodium sulphate and evaporated at atmospheric pressure.  The crude 
material was purified by column chromatography on silica gel with pentane/diethyl ether (10:0 
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to 8:2) as eluent to afford the pure title compound 226b (0.840 g, 3.31 mmol, 33%) as a 
colourless oil which crystallised on standing, m.p. 53-54 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.48 (t, 1H, JH-F = 52.6 Hz, CHF2), 7.04 (t, 1H, JH-F = 53.8 Hz, 
CHF2), 4.38 (q, 2H, J = 7.1 Hz, CH2), 4.12 (s, 3H, N-CH3), 1.39 (t, 3H, J = 7.2 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 161.1 (CO), 145.3 (t, 2JC-F = 24.9 Hz, CIVarom), 138.2 (t,  
2JC-F = 24.1 Hz, CIVarom), 112.9 (m, CIVarom), 109.1 (t, JC-F =  237.6 Hz, CHF2), 107.2 (t,  
JC-F =  236.3 Hz, CHF2), 61.5 (CH2), 39.6 (t, 4JC-F = 3.1 Hz, N-CH3), 13.9 (CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -117.00 (d, JF-H = 53.8 Hz, CHF2), -117.04 (d, JF-H = 52.6 Hz, 
CHF2) ppm. 
 
C9H10F4N2O2 (254): calcd. (%) C 42.53, H 3.97, N 11.02; found C 42.50, H 4.05, N 11.18. 
 
Ethyl 1-methyl-3-difluoromethyl-5-chlorodifluoromethyl-1H-pyrazole-4-carboxylate 

(227b) 

 

 
 
BF3(OEt2) (1.24 mL, 10.0 mmol, 1 equiv.) was added to a solution of TFEDMA (1.20 mL, 
10.0 mmol, 1 equiv.) in dry dichloromethane (10 mL) under Argon in a Teflon flask. The solution 
was stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (10 mL).  In another Teflon flask, ethyl  
4-chloro-4,4-difluoroacetoacetate (2.00 g, 10.0 mmol, 1 equiv.) was added to a solution of 
pyridine (2.42 mL, 30.0 mmol, 3 equiv.) in dry acetonitrile (20 mL) and stirred at room 
temperature for 15 min. At -30 °C, the content of the first flask was added dropwise, and the 
reaction mixture was stirred at -30 °C for 2 h and allowed to reach room temperature overnight. 
Methyl hydrazine (0.79 mL, 15.0 mmol, 1.5 equiv.) was added dropwise at room temperature 
the reaction mixture was stirred for 24 h. The solution was filtered and evaporated under 
reduced pressure. The crude material was purified by column chromatography on silica gel with 
pentane/diethyl ether (10:0 to 8:2) as eluent to afford pure ethyl 1-methyl-3-difluoromethyl-5-
chlorodifluoromethyl-1H-pyrazole-4-carboxylate (2.07 g, 7.18 mmol, 72%) as a colourless 
liquid. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.97 (t, 1H, JH-F = 53.9 Hz, CHF2), 4.37 (q, 2H, J = 7.1 Hz, CH2), 
4.10 (t, 3H, 5JH-F = 2.2 Hz, N-CH3), 1.38 (t, 3H, J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 160.3 (CO), 145.3 (t, 2JC-F = 25.7 Hz, CIVarom), 137.5 (t,  
2JC-F = 33.3 Hz, CIVarom), 119.9 (t, JC-F = 288.8 Hz, CF2Cl), 112.7 (CIVarom), 109.1 (t, JC-F = 237.8 Hz, 
CHF2), 61.8 (CH2), 40.6 (t, 4JC-F = 4.6 Hz, N-CH3), 13.7 (CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -47.9 (CF2Cl), -116.7 (d, JF-H = 53.9 Hz, CHF2) ppm. 
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HRMS (ESI positive) for C9H9ClF4N2NaO2 [M+Na]: calcd. 311.018; found 311.018. 
 

Ethyl 1-methyl-3-difluoromethyl-5-pantafluoroethyl-1H-pyrazole-4-carboxylate (228b) 

 

 
 
BF3(OEt2) (1.24 mL, 10.0 mmol, 1 equiv.) was added to a solution of TFEDMA (1.20 mL, 
10.0 mmol, 1 equiv.) in dry dichloromethane (10 mL) under Argon in a Teflon flask. The solution 
was stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (10 mL).  In another Teflon flask, ethyl 
4,4,5,5,5-pentafluoroacetoacetate (1.75 mL, 10.0 mmol, 1 equiv.) was added to a solution of 
pyridine (2.42 mL, 30.0 mmol, 3 equiv.) in dry acetonitrile (20 mL) and stirred at room 
temperature for 15 min. At -30 °C, the content of the first flask was added dropwise, and the 
reaction mixture was stirred at -30 °C for 2 h and allowed to reach room temperature overnight. 
Methyl hydrazine (0.790 mL, 15.0 mmol, 1.5 equiv.) was added dropwise at room temperature 
the reaction mixture was stirred for 24 h. The solution was evaporated under reduced pressure 
and taken up in diethyl ether (50 mL). The organic phase was washed with HCl 1M (3 x 30 mL), 
brine (30 mL), dried over sodium sulphate and evaporated at atmospheric pressure. The crude 
material was purified by column chromatography on silica gel with pentane/diethyl ether (10:0 
to 8:2) as eluent to afford pure ethyl 1-methyl-3-difluoromethyl-5-pentafluoroethyl-1H-
pyrazole-4-carboxylate (2.42 g, 7.52 mmol, 75%) as a colourless liquid. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.00 (t, 1H, 2JH-F = 53.9 Hz, CHF2), 4.35 (q, 2H, J = 7.1 Hz, 
CH2), 4.10 (t, 3H, 5JH-F = 2.2 Hz, N-CH3), 1.35 (t, 3H, J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 160.2 (CO), 146.1 (t, 2JC-F = 25.6 Hz, CIVarom), 131.1 (t,  
2JC-F = 29.6 Hz, CIVarom), 118.6 (qt, 1JC-F = 287.1 Hz, 2JC-F = 37.7 Hz, CF2CF3), 116.3 (CIVarom), 
109.98 (tq, 1JC-F = 192.0 Hz, 2JC-F = 41.7 Hz, CF2CF3), 109.1 (t, JC-F = 238.1 Hz, CHF2), 61.9 (CH2), 
41.0 (t, 4JC-F = 4.3 Hz, N-CH3), 13.8 (CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -83.7 (CF2CF3), -109.5 (CF2CF3), -116.8 (d, JF-H = 53.9 Hz, 
CHF2) ppm. 
 
HRMS (ESI positive) for C10H9F7N2NaO2 [M+Na]: calcd. 345.044; found 345.046. 
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Ethyl 3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylate (223a) 

 

 
 
Method A:  
BF3(OEt2) (0.31 mL, 2.5 mmol, 1 equiv.) was added to a solution of TFEDMA (0.30 mL, 2.5 mmol, 
1 equiv.) in dry dichloromethane (2.5 mL) under Argon in a Teflon flask. The solution was 
stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (2.5 mL).  In another Teflon flask, ethyl 
4,4,4-trifluoroacetoacetate (0.37 mL, 2.5 mmol, 1 equiv.) was added to a solution of potassium 
fluoride (0.44 g, 7.5 mmol, 3 equiv.) in dry acetonitrile (5 mL) and stirred at room temperature 
for 15 min. The content of the first flask was added dropwise, and the reaction mixture was 
stirred at room temperature overnight. Hydrazine hydrate (0.15 mL, 3.0 mmol, 1.2 equiv.) was 
added dropwise and the reaction mixture was stirred at room temperature for 24 h. The 
solution was filtered and evaporated under reduced pressure. The crude material was purified 
by column chromatography on silica gel with pentane/diethyl ether (9:1 to 7:3) as eluent to 
afford pure ethyl 3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylate (0.20 g, 
0.77 mmol, 31%) as a yellow oil which crystallised on standing. 
 

Method B:  
BF3(OEt2) (2.7 mL, 22 mmol, 1.1 equiv.) was added to a solution of TFEDMA (2.6 mL, 22  mol, 1.1 
equiv.) in dry dichloromethane (20 mL) under Argon in a Teflon flask. The solution was stirred 
for 15 min at room temperature, and dichloromethane was removed under reduced pressure. 
The mixture was taken up in dry acetonitrile (20 mL). In another Teflon flask, ethyl  
4,4,4-trifluoroacetoacetate (2.9 mL, 20 mmol, 1 equiv.) was added to a solution of pyridine (4.8 
g, 60 mmol, 3 equiv.) in dry acetonitrile (40 mL) and stirred at room temperature for 15 min. 
The content of the first flask was added dropwise, and the reaction mixture was stirred at room 
temperature overnight. Hydrazine hydrate (1.5 mL, 30.0 mmol, 1.5 equiv.) was added dropwise 
and the reaction mixture was stirred at room temperature for 24 h. The solution was evaporated 
under reduced pressure and taken up in diethyl ether (50 mL). The organic phase was washed 
with HCl 1M (3 x 30 mL), brine (30 mL), dried over sodium sulphate and evaporated at 
atmospheric pressure. The crude material was purified by column chromatography on silica gel 
with pentane/diethyl ether (9:1 to 7:3) as eluent to afford the pure title compound 223a (3.4 g, 
13 mmol, 66%) as a yellow oil which crystallised on standing, m.p. 63-64 °C. 
 

1H NMR (CDCl3, 300 MHz, 25 °C): δ = 11.07 (brs, 1H, NH), 7.22 (t, 1H, JH-F = 53.5 Hz, CHF2), 4.39 
(q, 2H, J = 6.9 Hz, CH2), 1.38 (t, 3H, J = 6.9 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 160.4 (CO), 142.2 (t, 2JC-F = 18.3 Hz, CIVarom), 142.2 (q,  
2JC-F = 32.0 Hz, CIVarom), 119.7 (q, JC-F = 268.1 Hz, CF3), 111.7 (CIVarom), 107.4 (t, JC-F = 237.5 Hz, 
CHF2), 62.0 (CH2), 13.7 (CH3) ppm.  

 

19F NMR (CDCl3, 282 MHz, 25°C): δ = -62.5 (CF3), -117.1 (d, JF-H = 53.5 Hz, CHF2) ppm. 
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C8H7F5N2O2 (258): calcd. (%) C 37.22, H 2.73, N 10.85; found C 37.27, H 2.91, N 10.61. 
 
Ethyl 3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylate (226a) 

 

 
 
Method A:  
BF3(OEt2) (1.85 mL, 15.0 mmol, 1 equiv.) was added to a solution of TFEDMA (1.76 mL, 
15.0 mmol, 1 equiv.) in dry dichloromethane (15 mL) under Argon in a Teflon flask. The solution 
was stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (15 mL).  In another Teflon flask, ethyl 
4,4-difluoroacetoacetate (1.55 mL, 15.0 mmol, 1 equiv.) was added to a solution of potassium 
fluoride (2.61 g, 45.0 mmol, 3 equiv.) in dry acetonitrile (30 mL) and stirred at room 
temperature for 15 min. At -30 °C, the content of the first flask was added dropwise, and the 
reaction mixture was stirred at -30 °C for 2 h and allowed to reach room temperature overnight. 
Hydrazine hydrate (1.10 mL, 22.5 mmol, 1.5 equiv.) was added dropwise and the reaction 
mixture was stirred at room temperature for 24 h. The solution was filtered and evaporated 
under reduced pressure. The crude material was purified by column chromatography on silica 
gel with pentane/diethyl ether (9:1 to 7:3) as eluent to afford pure ethyl  
3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylate (0.370 g, 1.54 mmol, 10%) as a colourless 
solid. 
 

Method B:  
BF3(OEt2) (2.7 mL, 20 mmol, 1 equiv.) was added to a solution of TFEDMA (2.6 mL, 20 mmol, 
1 equiv.) in dry dichloromethane (20 mL) under Argon in a Teflon flask. The solution was stirred 
for 15 min at room temperature, and dichloromethane was removed under reduced pressure. 
The mixture was taken up in dry acetonitrile (20 mL).  In another Teflon flask, ethyl  
4,4-difluoroacetoacetate (3.3 g, 20 mmol, 1 equiv.) was added to a solution of pyridine (4.7 g, 
60 mmol, 3 equiv.) in dry acetonitrile (40 mL) and stirred at room temperature for 15 min. At  
-30 °C, the content of the first flask was added dropwise, and the reaction mixture was stirred at 
-30 °C for 2 h and allowed to reach room temperature overnight. Hydrazine hydrate (1.5 mL, 
30.0 mmol, 1.5 equiv.) was added dropwise and the reaction mixture was stirred at room 
temperature for 24 h. The solution was evaporated under reduced pressure and taken up in 
diethyl ether (50 mL). The organic phase was washed with 1M HCl (3 x 30 mL), brine (30 mL), 
dried over sodium sulphate and evaporated at atmospheric pressure.  The crude material was 
purified by column chromatography on silica gel with pentane/diethyl ether (9:1 to 7:3) as 
eluent to afford the pure title compound 226a (1.5 g, 5.8 mmol, 29%) as a colourless solid,  
m.p. 88-89 °C. 
 

1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.15 (t, 2H, JH-F = 53.6 Hz, CHF2), 4.39 (q, 2H, J = 7.1 Hz, CH2), 
1.39 (t, 3H, J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 161.1 (CO), 143.8 (t, 2JC-F = 23.1 Hz, CIVarom), 111.6 
(CIVarom), 108.2 (t, JC-F = 238.4 Hz, CHF2), 61.7 (CH2), 13.9 (CH3) ppm.  
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19F NMR (CDCl3, 282 MHz, 25°C): δ = -117.3 (d, JF-H = 53.6 Hz, CHF2) ppm. 
 
MS (ESI positive): m/z = 263.04 [M+Na]. 
 
HRMS (ESI positive) for C8H8F4N2NaO2 [M+Na]: calcd. 263.041; found 263.043. 
 
Ethyl 3-difluoromethyl-5-chlorodifluoromethyl-1H-pyrazole-4-carboxylate (227a) 

 

 
 
BF3(OEt2) (0.62 mL, 5.0 mmol, 1 equiv.) was added to a solution of TFEDMA (0.59 mL, 5.0 mmol, 
1 equiv.) in dry dichloromethane (5 mL) under Argon in a Teflon flask. The solution was stirred 
for 15 min at room temperature, and dichloromethane was removed under reduced pressure. 
The mixture was taken up in dry acetonitrile (5 mL).  In another Teflon flask, ethyl 4-chloro-4,4-
difluoroacetoacetate (1.0 g, 5.0 mmol, 1 equiv.) was added to a solution of pyridine (1.2 g,  
15 mmol, 3 equiv.) in dry acetonitrile (10 mL) and stirred at room temperature for 15 min. At  
-30 °C, the content of the first flask was added dropwise, and the reaction mixture was stirred at 
-30 °C for 2 h and allowed to reach room temperature overnight. Hydrazine hydrate (0.37 mL, 
7.5 mmol, 1.5 equiv.) was added dropwise and the reaction mixture was stirred at room 
temperature for 24 h. The solution was evaporated under reduced pressure and taken up in 
diethyl ether (20 mL). The organic phase was washed with 1M HCl (3 x 10 mL), brine (10 mL), 
dried over sodium sulphate and evaporated at atmospheric pressure.  The crude material was 
purified by column chromatography on silica gel with pentane/diethyl ether (9:1 to 7:3) as 
eluent to afford pure ethyl 3-difluoromethyl-5-chlorodifluoromethyl-1H-pyrazole-4-carboxylate 
(0.66 g, 2.4 mmol, 48%) as a slightly yellow oil which crystallised on standing, m.p. 78-79 °C. 
 

1H NMR (CDCl3, 300 MHz, 25 °C): δ = 11.62 (brs, 1H, NH), 7.25 (t, 2H, JH-F = 53.5 Hz, CHF2), 4.41 
(q, 2H, J = 7.1 Hz, CH2), 1.41 (t, 3H, J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 160.6 (CO), 146.3 (t, 2JC-F = 32.3 Hz, CIVarom), 142.7 (t,  
2JC-F = 29.3 Hz, CHF2), 121.3 (t, JC-F = 287.3 Hz, CF2Cl), 110.8 (CIVarom), 109.1 (t, JC-F = 240.2 Hz, 
CHF2), 62.0 (CH2), 13.6 (CH3) ppm.  

 

19F NMR (CDCl3, 282 MHz, 25°C): δ = -49.6 (CF2Cl), -116.8 (d, JF-H = 53.5 Hz, CHF2) ppm. 
 
C8H7ClF4N2O2 (274.6): calcd. (%) C 35.00, H 2.57, N 10.20; found C 35.22, H 2.67, N 9.95. 
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Ethyl 3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-carboxylate (228a) 

 

 
BF3(OEt2) (1.24 mL, 10.0 mmol, 1 equiv.) was added to a solution of TFEDMA (1.20 mL,  
10.0 mmol, 1 equiv.) in dry dichloromethane (10 mL) under Argon in a Teflon flask. The solution 
was stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (10 mL).  In another Teflon flask, ethyl 
4,4,5,5,5-pentafluoroacetoacetate (1.75 mL, 10.0 mmol, 1 equiv.) was added to a solution of 
pyridine (2.42 mL, 30.0 mmol, 3 equiv.) in dry acetonitrile (20 mL) and stirred at room 
temperature for 15 min. At -30 °C, the content of the first flask was added dropwise, and the 
reaction mixture was stirred at -30 °C for 2 h and allowed to reach room temperature overnight. 
Hydrazine hydrate (0.740 mL, 15.0 mmol, 1.5 equiv.) was added dropwise at room temperature 
the reaction mixture was stirred for 24 h. The solution was evaporated under reduced pressure 
and taken up in diethyl ether (30 mL). The organic phase was washed with 1M HCl (3 x 20 mL), 
brine (20 mL), dried over sodium sulphate and evaporated at atmospheric pressure. The crude 
material was purified by column chromatography on silica gel with pentane/diethyl ether (10:0 
to 7:3) as eluent to afford pure ethyl 3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-
carboxylate (1.43 g, 4.60 mmol, 46%) as a colourless oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 12.69 (brs, 1H, N-H), 7.26 (t, 1H, JH-F = 53.5 Hz, CHF2), 4.40 
(q, 2H, J = 7.1 Hz, CH2), 1.39 (t, 3H, J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 160.6 (CO), 141.8 (t, 2JC-F = 25.9 Hz, CIVarom), 141.1 (t,  
2JC-F = 31.7 Hz, CIVarom), 118.7 (qt, 1JC-F = 286.6 Hz, 2JC-F = 36.3 Hz, CF2CF3), 113.2 (CIVarom), 110.1 
(tq, 1JC-F = 252.9 Hz, 2JC-F = 39.5 Hz, CF2CF3), 107.5 (t, JC-F = 238.8 Hz, CHF2), 62.0 (CH2), 13.6 (CH3) 
ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -83.2 (CF2CF3), -110.1 (CF2CF3), -117.2 (d, JF-H = 53.5 Hz, 
CHF2) ppm. 
 
HRMS (ESI positive) for C9H7F7N2NaO2 [M+Na]: calcd. 331.029; found 331.031. 
 
Ethyl 1-phenyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylate (223c) 

 

 
 
BF3(OEt2) (2.5 mL, 20 mmol, 1 equiv.) was added to a solution of TFEDMA (2.4 mL, 20 mmol, 
1 equiv.) in dry dichloromethane (20 mL) under Argon in a Teflon flask. The solution was stirred 
for 15 min at room temperature, and dichloromethane was removed under reduced pressure. 
The mixture was taken up in dry acetonitrile (20 mL). In another Teflon flask, ethyl  
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4,4,4-trifluoroacetoacetate (2.8 mL, 20 mmol, 1 equiv.) was added to a solution of pyridine  
(4.7 g, 60 mmol, 3 equiv.) in dry acetonitrile (40 mL) and stirred at room temperature for 
15 min. At -40 °C, the content of the first flask was added dropwise, and the reaction mixture 
was stirred at -40 °C for 2 h and allowed to reach room temperature overnight. Phenyl hydrazine 
(3.0 mL, 30 mmol, 1.5 equiv.) was added dropwise at room temperature and the reaction 
mixture was stirred 24 h. The solution was evaporated under reduced pressure and taken up in 
diethyl ether (50 mL). The organic phase was washed with 1M HCl (3 x 30 mL), brine (30 mL), 
dried over sodium sulphate and evaporated at atmospheric pressure. The crude material was 
purified by column chromatography on silica gel with pentane/diethyl ether (9:1) as eluent 
followed by recrystallisation from hexane to afford pure ethyl 1-phenyl-3-difluoromethyl-5-
trifluoromethyl-1H-pyrazole-4-carboxylate (4.5 g, 13 mmol, 67%) as a colourless solid,  
m.p. 58-59 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.55-7.42 (m, 5H, N-Ph), 7.05 (t, 1H, JH-F = 53.7 Hz, CHF2), 
4.42 (q, 2H, J = 7.1 Hz, CH2), 1.40 (t, 3H, J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 160.3 (CO), 146.7 (t, 2JC-F = 26.2 Hz, CIVarom), 138.8  
(N-CIV Phenyl), 133.8 (q, 2JC-F = 40.1 Hz, CIVarom), 130.4 (CH Phenyl), 129.3 (CH Phenyl), 125.9 
(CH Phenyl), 118.6 (q, JC-F = 271.9 Hz, CF3), 115.0 (CIVarom), 109.2 (t, JC-F =  238.4 Hz, CHF2), 62.0 
(CH2), 13.8 (CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -56.8 (CF3), -117.3 (CHF2) ppm. 
 
C14H11F5N2O2 (334): calcd. (%) C 50.31, H 3.32, N 8.38; found C 50.34, H 3.40, N 8.51. 
 

Ethyl 1-phenyl-3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylate (226c) 

 

 
 
BF3.OEt2 (2.6 mL, 22 mmol, 1.1 equiv.) was added to a solution of TFEDMA (2.7 mL, 22 mmol, 
1.1 equiv.) in dry dichloromethane (20 mL) under Argon in a Teflon flask. The solution was 
stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (20 mL).  In another Teflon flask, ethyl 
4,4-difluoroacetoacetate (3.3 g, 20 mmol, 1 equiv.) was added to a solution of pyridine (4.7 g, 
60 mmol, 3 equiv.) in dry acetonitrile  (40 mL) and stirred at room temperature for 15 min. At  
-40 °C, the content of the first flask was added dropwise, and the reaction mixture was stirred at 
-40 °C for 2 h and allowed to reach room temperature overnight. Phenyl hydrazine (3.0 mL,  
30 mmol) was added dropwise at room temperature and the reaction mixture was stirred 24 h. 
The solution was evaporated under reduced pressure and taken up in diethyl ether (50 mL). The 
organic phase was washed with 1M HCl (3 x 30 mL), brine (30 mL), dried over sodium sulphate 
and evaporated at atmospheric pressure. The crude material was purified by column 
chromatography on silica gel with pentane/diethyl ether (9:1) as eluent followed by 
recrystallisation from hexane to afford pure ethyl 1-phenyl-3,5-bis(difluoromethyl)-1H-
pyrazole-4-carboxylate (3.0 g, 9.4 mmol, 47%) as a colourless solid, m.p. 54-55 °C. 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.57-7.51 (m, 5H, N-Ph), 7.44 (t, 1H, JH-F = 52.5 Hz, CHF2), 
7.13 (t, 1H, JH-F = 53.7 Hz, CHF2), 4.43 (q, 2H, J = 7.1 Hz, CH2), 1.43 (t, 3H, J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 161.2 (CO), 146.6 (t, 2JC-F = 25.3 Hz, CIVarom), 139.0  
(N-CIV Phenyl), 138.9 (t, 2JC-F = 24.8 Hz, CIVarom), 130.1 (CH Phenyl), 129.1 (CH Phenyl), 125.9 
(CH Phenyl), 113.8 (CIVarom), 109.4 (t, JC-F = 238.2 Hz, CF2H), 106.9 (t, JC-F =  238.4 Hz, CHF2), 61.8 
(CH2), 14.0 (CH3) ppm.  
  
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -114.3 (d, JF-H = 52.5 Hz, CHF2), -117.7 (d, JF-H = 53.7 Hz, 
CHF2) ppm.  
 
HRMS (ESI positive) for C14H12F4N2NaO2 [M+Na]: calcd. 339.073; found 339.075. 
 
Ethyl 1-phenyl-3-difluoromethyl-5-chlorodifluoromethyl-1H-pyrazole-4-carboxylate 

(227c) 

 

 
 
BF3(OEt2) (2.6 mL, 22 mmol, 1.1 equiv.) was added to a solution of TFEDMA (2.7 mL, 22 mmol, 
1.1 equiv.) in dry dichloromethane (20 mL) under Argon in a Teflon flask. The solution was 
stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (20 mL).  In another Teflon flask, ethyl  
4-chloro-4,4-difluoroacetoacetate (4.0 g, 20 mmol, 1 equiv.) was added to a solution of pyridine 
(4.7 g, 60 mmol, 3 equiv.) in dry acetonitrile  (40 mL) and stirred at room temperature for 
15 min. At -40 °C, the content of the first flask was added dropwise, and the reaction mixture 
was stirred at -40 °C for 2 h and allowed to reach room temperature overnight. Phenyl hydrazine 
(3.0 mL, 30 mmol) was added dropwise at room temperature and the reaction mixture was 
stirred 24 h. The solution was evaporated under reduced pressure and taken up in diethyl ether 
(50 mL). The organic phase was washed with 1M HCl (3 x 30 mL), brine (30 mL), dried over 
sodium sulphate and evaporated at atmospheric pressure. The crude material was purified by 
column chromatography on silica gel with pentane/diethyl ether (9:1) as eluent followed by 
recrystallisation from hexane to afford pure ethyl 1-phenyl-3-difluoromethyl-5-
chlorodifluoromethyl-1H-pyrazole-4-carboxylate (3.7 g, 11 mmol, 53%) as a colourless solid, 
m.p. 70-71 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.55-7.45 (m, 5H, N-Ph), 7.03 (t, 1H, JH-F = 53.7 Hz, CHF2), 
4.42 (q, 2H, J = 7.1 Hz, CH2), 1.41 (t, 3H, J = 7.2 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 160.5 (CO), 146.5 (t, 2JC-F = 26.3 Hz, CIVarom), 138.9  
(N-CIV Phenyl), 138.3 (t, 2JC-F = 32.7 Hz, CIVarom), 130.3 (CH Phenyl), 129.2 (CH Phenyl), 126.2 
(CH Phenyl), 119.5 (t, JC-F = 290.0 Hz, CF2Cl), 115.6 (CIVarom), 109.3 (t, JC-F = 238.4 Hz, CHF2), 62.0 
(CH2), 13.9 (CH3) ppm.  
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19F NMR (CDCl3, 282 MHz, 25 °C): δ = -46.6 (CF2Cl), -117.3 (CHF2) ppm.  
 
C14H11ClF4N2O2 (350.7): calcd. (%) C 47.95, H 3.16, N 7.99; found (%) C 47.86, H 3.20, N 7.73. 
 
Ethyl 1-phenyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-carboxylate (228c) 

 

 
 
BF3(OEt2) (2.5 mL, 20 mmol, 1.8 equiv.) was added to a solution of TFEDMA (2.4 mL,  
20 mmol, 1.8 equiv.) in dry dichloromethane (20 mL) under Argon in a Teflon flask. The solution 
was stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (20 mL).  In another Teflon flask, ethyl 
4,4,5,5,5-pentafluoroacetoacetate (3.5 mL, 12 mmol, 1 equiv.) was added to a solution of 
pyridine (2.7 g, 35 mmol, 3 equiv.) in dry acetonitrile (40 mL) and stirred at room temperature 
for 15 min. At -40 °C, the content of the first flask was added dropwise, and the reaction mixture 
was stirred at -40 °C for 2 h and allowed to reach room temperature overnight. Phenyl hydrazine 
(2.0 mL, 20 mmol, 1.8 equiv.) was added dropwise at room temperature and the reaction 
mixture was stirred 24 h. The solution was evaporated under reduced pressure and taken up in 
diethyl ether (50 mL). The organic phase was washed with 1M HCl (3 x 30 mL), brine (30 mL), 
dried over sodium sulphate and evaporated at atmospheric pressure. The crude material was 
purified by column chromatography on silica gel with pentane/diethyl ether (9:1) as eluent 
followed by recrystallisation from hexane to afford pure ethyl 1-phenyl-3-difluoromethyl-5-
pentafluoroethyl-1H-pyrazole-4-carboxylate (3.7 g, 9.7 mmol, 85%) as a beige solid,  
m.p. 93-94 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.58-7.35 (m, 5H, N-Ph), 7.04 (t, 1H, JH-F = 53.8 Hz, CHF2), 
4.40 (q, 2H, J = 7.1 Hz, CH2), 1.38 (t, 3H, J = 7.2 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 165.8 (CO), 147.6 (t, 2JC-F = 25.8 Hz, CIVarom), 138.7  
(N-CIV Phenyl), 135.1 (q, 2JC-F = 40.4 Hz, CIVarom), 130.6 (CH Phenyl), 129.4 (CH Phenyl), 125.9 
(CH Phenyl), 118.4 (qt, 1JC-F = 287.5 Hz, 2JC-F = 37.5 Hz, CF2CF3), 116.4 (CIVarom), 109.6 (tq,  
1JC-F = 255.3 Hz, 2JC-F = 41.6 Hz, CF2CF3), 109.4 (t, JC-F = 238.6 Hz, CHF2), 62.1 (CH2), 13.7 (CH3) 
ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -83.6 (CF2CF3), -107.1 (CF2CF3), -117.3 (CHF2) ppm. 
 

C15H11F7N2O2 (384): calcd. (%) C 46.88, H 2.88, N 7.29; found (%) C 46.84, H 3.00, N 7.11. 
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Ethyl 1-tert-butyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylate (223d) 

 

 
 
BF3(OEt2) (2.7 mL, 22 mmol, 1.1 equiv.) was added to a solution of TFEDMA (2.5 mL, 22 mmol, 
1.1 equiv.) in dry dichloromethane (20 mL) under Argon in a Teflon flask. The solution was 
stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (20 mL).  In another Teflon flask, ethyl 
4,4,4-trifluoroacetoacetate (2.8 mL, 20 mmol, 1 equiv.) was added to a solution of pyridine  
(7.1 g, 90 mmol, 4.5 equiv.) in dry acetonitrile (40 mL) and stirred at room temperature for  
15 min. At -40 °C, the content of the first flask was added dropwise, and the reaction mixture 
was stirred at -40 °C for 2 h and allowed to reach room temperature overnight. tert-Butyl 
hydrazine hydrochloride (3.7 g, 30 mmol, 1.5 equiv.) was added to a solution of potassium 
hydroxide (1.7 g, 30 mmol, 1.5 equiv.) in methanol (10 mL) and stirred at room temperature for 
30 min. This mixture was then added to the reaction medium at room temperature and the 
resulting reaction mixture was stirred 24 h. The solution was evaporated under reduced 
pressure and taken up in diethyl ether (50 mL). The organic phase was washed with 1M HCl  
(3 x 30 mL), brine (30 mL), dried over sodium sulphate and evaporated at atmospheric pressure. 
The crude material was purified by column chromatography on silica gel with pentane/diethyl 
ether (9:1) as eluent to afford pure ethyl 1-tert-butyl-3-difluoromethyl-5-trifluoromethyl-1H-
pyrazole-4-carboxylate (3.3 g, 11 mmol, 53%) as a yellow oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.80 (t, 1H, JH-F = 54.0 Hz, CHF2), 4.37 (q, 2H, J = 7.1 Hz, CH2), 
1.70 (s, 9H, tBu), 1.36 (t, 3H, J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 161.5 (CO), 141.9 (t, 2JC-F = 27.8 Hz, CIVarom), 131.5 (q,  
2JC-F = 40.6 Hz, CIVarom), 119.3 (q, JC-F = 270.7 Hz, CF3), 116.9 (CIVarom), 109.9 (t, JC-F = 236.7 Hz, 
CHF2), 66.0 (N-CIV tBu), 62.0 (CH2), 29.9 (q tBu, 5JC-F = 2.4 Hz, CH3), 13.8 (CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -53.3 (CF3), -114.4 (d, JF-H = 54.0 Hz, CHF2) ppm. 
 
HRMS (ESI positive) for C12H15F5N2NaO2 [M+Na]: calcd. 337.095; found 337.097. 
 
Ethyl 1-tert-butyl-3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylate (226d) 

 

 
 
BF3(OEt2) (2.7 mL, 22 mmol, 1.1 equiv.) was added to a solution of TFEDMA (2.5 mL, 22  mol, 
1.1 equiv.) in dry dichloromethane (20 mL) under Argon in a Teflon flask. The solution was 
stirred for 15 min at room temperature, and dichloromethane was removed under reduced 
pressure. The mixture was taken up in dry acetonitrile (20 mL).  In another Teflon flask, ethyl 
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4,4-difluoroacetoacetate (3.3 g, 20 mmol, 1 equiv.) was added to a solution of pyridine (7.1 g, 
90 mmol, 4.5 equiv.) in dry acetonitrile (40 mL) and stirred at room temperature for 15 min. At  
-40 °C, the content of the first flask was added dropwise, and the reaction mixture was stirred at 
-40 °C for 2 h and allowed to reach room temperature overnight. tert-Butyl hydrazine 
hydrochloride (3.7 g, 30 mmol, 1.5 equiv.) was added to a solution of potassium hydroxide 
(1.7 g, 30 mmol, 1.5 equiv.) in methanol (10 mL) and stirred at room temperature for  
30 minutes. This mixture was then added to the reaction medium at room temperature and the 
resulting reaction mixture was stirred at room temperature for 24 h. The solution was 
evaporated under reduced pressure and taken up in diethyl ether (50 mL). The organic phase 
was washed with 1M HCl (3 x 30 mL), brine (30 mL), dried over sodium sulphate and 
evaporated at atmospheric pressure. The crude material was purified by column 
chromatography on silica gel with pentane/diethyl ether (9:1) as eluent to afford pure ethyl  
1-tert-butyl-3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylate (1.8 g, 6.0 mmol, 30%) as an 
orange oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.71 (t, 1H, JH-F = 52.9 Hz, CHF2), 6.97 (t, 1H, JH-F = 54.0 Hz, 
CHF2), 4.37 (q, 2H, J = 7.1 Hz, CH2), 1.71 (s, 9H, tBu), 1.39 (t, 3H, J = 7.1 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 161.9 (CO), 143.4 (t, 2JC-F = 25.5 Hz, CIVarom), 137.9 (t,  
2JC-F = 24.8 Hz, CIVarom), 114.5 (CIVarom), 109.9 (t, JC-F = 237.3 Hz, CHF2), 106.8 (t, JC-F = 238.3 Hz, 
CHF2), 65.3 (N-CIV tBu), 61.5 (CH2), 30.0 (t, 5JC-F = 3.4 Hz, tBu CH3), 14.0 (CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -111.5 (CHF2), -116.0 (CHF2) ppm. 
 
HRMS (ESI positive) for C12H16F4N2NaO2 [M+Na]: calcd. 319.104; found 319.104. 
 
Ethyl 1-tert-butyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-carboxylate 

(228d) 

 

 
 
BF3(OEt2) (2.7 mL, 22 mmol, 1.1 equiv.) was added to a solution of TFEDMA  
(2.5 mL, 22 mmol, 1.1 equiv.) in dry dichloromethane (20 mL) under Argon in a Teflon flask. The 
solution was stirred for 15 min at room temperature, and dichloromethane was removed under 
reduced pressure. The mixture was taken up in dry acetonitrile (20 mL).  In another Teflon flask, 
ethyl 4,4,5,5,5-pentafluoroacetoacetate (4.7 g, 20 mmol, 1 equiv.) was added to a solution of 
pyridine (4.7 g, 60 mmol, 3 equiv.) in dry acetonitrile (40 mL) and stirred at room temperature 
for 15 min. At -40 °C, the content of the first flask was added dropwise, and the reaction mixture 
was stirred at -40 °C for 2h and allowed to reach room temperature overnight. tert-Butyl 
hydrazine hydrochloride (3.7 g, 30 mmol, 1.5 equiv.) was added to the reaction mixture and was 
stirred at room temperature overnight. The solution was evaporated under reduced pressure 
and taken up in diethyl ether (50 mL). The organic phase was washed with 1M HCl (3 x 30 mL), 
brine (30 mL), dried over sodium sulphate and evaporated at atmospheric pressure. The crude 
material was purified by column chromatography on silica gel with pentane/diethyl ether (9:1) 
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as eluent to afford pure ethyl 1-tert-butyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-
carboxylate (2.4 g, 6.6 mmol, 33%) as a colourless oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.83 (t, 1H, JH-F = 54.1 Hz, CHF2), 4.35 (q, 2H, J = 7.1 Hz, CH2), 
1.69 (s, 9H, tBu), 1.34 (t, 3H, J = 7.2 Hz, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 161.2 (CO), 142.8 (t, 2JC-F = 27.3 Hz, CIVarom), 130.0 (q,  
2JC-F = 31.0 Hz, CIVarom), 118.6 (qt, 1JC-F = 287.8 Hz, 2JC-F = 38.3 Hz, CF2CF3), 118.5 (CIVarom), 110.8 
(tq, 1JC-F = 258.1 Hz, 2JC-F = 41.0 Hz, CF2CF3), 110.0 (t, JC-F = 237.2 Hz, CHF2), 67.6 (N-CIV tBu), 62.0 
(CH2), 30.5 (t, 5JC-F = 3.6 Hz, CH3 tBu), 13.7 (CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -80.7 (CF2CF3), -100.8 (CF2CF3), -115.5 (d, JF-H = 54.1 Hz, 
CHF2) ppm. 
 
HRMS (ESI positive) for C13H15F7N2NaO2 [M+Na]: calcd. 387.091; found 387.091. 
 
1-Methyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylic acid (230b) 

 

 
 
To a solution of ethyl 1-methyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylate  
223b (0.50 g, 1.8 mmol, 1 equiv.) in ethanol (3 mL) was slowly added a 8M aqueous solution of 
sodium hydroxide (0.70 mL, 3 equiv.). The reaction mixture was stirred at room temperature for 
3 h until completion of the reaction. The solvents were evaporated and the crude solid obtained 
was taken up in water (10 mL). The aqueous layer was extracted with diethyl ether (10 mL), and 
acidified to pH = 1 with 1M HCl before being extracted with ethyl acetate (3 x 10 mL). The 
combined organic layers were dried over sodium sulphate and evaporated under reduced 
pressure to afford pure 1-methyl-5-trifluoromethyl-3-difluoromethyl-1H-pyrazole-4-carboxylic 
acid (0.44 g, 1.8 mmol, 98%) as a yellow solid, m.p. 116-117 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.08 (t, 1H, JH-F = 53.5 Hz, CHF2), 4.16 (s, 3H, N-CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 165.5 (CO), 146.7 (t, 2JC-F = 18.8 Hz, CIVarom), 134.4 (q,  
2JC-F = 30.8 Hz, CIVarom), 118.8 (q, JC-F = 202.5 Hz, CF3), 112.9 (CIVarom), 108.7 (t, JC-F =  177.0 Hz, 
CHF2), 41.1 (q, 4JC-F = 2.3 Hz, N-CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -57.9 (CF3), -117.3 (d, JF-H = 53.5 Hz, CHF2) ppm. 
 
C7H5F5N2O2 (244): calcd. (%) C 34.44, H 2.06, N 11.48; found (%) C 34.44, H 2.19, N 11.13. 
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1-Methyl-3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylic acid (229b) 

 

 
 
To a solution of ethyl 1-methyl-3,5-difluoromethyl-1H-pyrazole-4-carboxylate 226b (0.50 g, 2.0 
mmol, 1 equiv.) in ethanol (3 mL) was slowly added a 8M aqueous solution of sodium hydroxide 
(0.75 mL, 3 equiv.). The reaction mixture was stirred at room temperature for 2 h until 
completion of the reaction. The solvents were evaporated and the crude solid obtained was 
taken up in water (10 mL). The aqueous layer was extracted with diethyl ether (10 mL), and 
acidified to pH = 1 with 6M HCl before being extracted with ethyl acetate (3 x 10 mL). The 
combined organic layers were dried over sodium sulphate and evaporated under reduced 
pressure to afford pure 1-methyl-3,5-difluoromethyl-1H-pyrazole-4-carboxylic acid (0.44 g, 
2.0 mmol, 97%) as a colourless solid, m.p. 131-132 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 12.16 (brs, 1H, COOH), 7.48 (t, 1H, JH-F = 52.4 Hz, CHF2), 7.08 
(t, 1H, JH-F = 53.6 Hz, CHF2), 4.16 (s, 3H, N-CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 166.9 (CO), 146.4 (t, 2JC-F = 25.1 Hz, CIVarom), 139.2 (t,  
2JC-F = 24.4 Hz, CIVarom), 111.5 (CIVarom), 108.8 (t, JC-F = 238.1 Hz, CHF2), 106.9 (t, JC-F = 237.0 Hz, 
CHF2), 39.9 (t, 4JC-F = 3.1 Hz, N-CH3) ppm.  

 

19F NMR (CDCl3, 282 MHz, 25°C): δ = -117.1 (d, JF-H = 52.6 Hz, CHF2), -117.3 (d, JF-H = 53.7 Hz, 
CHF2) ppm. 
 
C7H6F4N2O2 (226): calcd. (%) C 37.18, H 2.67, N 12.39; found C 37.19, H 2.84, N 12.00. 
 
1-Methyl-3-difluoromethyl-5-chlorodifluoromethyl-1H-pyrazole-4-carboxylic acid (231b) 

 

 
 
To a solution of ethyl 1-methyl-3-difluoromethyl-5-chlorodifluoromethyl-1H-pyrazole-4-
carboxylate 227b (0.50 g, 1.7 mmol, 1 equiv.) in ethanol (3 mL) was slowly added a 8M aqueous 
solution of sodium hydroxide (0.65 mL, 3 equiv.). The reaction mixture was stirred at room 
temperature for 2 h until completion of the reaction. The solvents were evaporated and the 
crude solid obtained was taken up in water (10 mL). The aqueous layer was extracted with 
diethyl ether (10 mL), and acidified to pH = 1 with 6M HCl before being extracted with ethyl 
acetate (3 x 10 mL). The combined organic layers were dried over sodium sulphate and 
evaporated under reduced pressure to afford pure 1-methyl-3-difluoromethyl-5-
chlorodifluoromethyl-1H-pyrazole-4-carboxylic acid (0.36 g, 1.4 mmol, 80%) as a colourless 
solid, m.p. 111-112 °C. 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ = 12.15 (brs, 1H, COOH), 7.07 (t, 1H, JH-F = 53.6 Hz, CHF2), 4.15 
(t, 3H, 5JH-F = 2.1 Hz, N-CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 165.8 (CO), 146.4 (t, 2JC-F = 25.3 Hz, CIVarom), 138.9 (t,  
2JC-F = 33.6 Hz, CIVarom), 119.6 (t, JC-F = 289.4 Hz, CF2Cl), 111.15 (CIVarom), 108.8 (t, JC-F = 238.4 
Hz, CHF2), 41.0 (t, 4JC-F = 4.9 Hz, N-CH3) ppm.  

 

19F NMR (CDCl3, 282 MHz, 25°C): δ = -48.1 (CF2Cl), -117.2 (d, JF-H = 53.6 Hz, CHF2) ppm. 
 
C7H5ClF4N2O2 (260.6): calcd. (%) C 32.27, H 1.93, N 10.75; found C 32.53, H 2.13, N 10.38. 
 
1-Methyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-carboxylic acid (232b) 

 

 
 
To a solution of ethyl 1-methyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-carboxylate 
228b (0.50 g, 1.6 mmol, 1 equiv.) in solution in ethanol (3 mL) was slowly added a 8M aqueous 
solution of sodium hydroxide (0.60 mL, 3 equiv.). The reaction mixture was stirred at room 
temperature for 3 h until completion of the reaction. The solvents were evaporated and the 
crude solid obtained was taken up in water (10 mL). The aqueous layer was extracted with 
diethyl ether (5 mL), and acidified to pH = 1 with 6M HCl before being extracted with ethyl 
acetate (3 x 10 mL). The combined organic layers were dried over sodium sulphate and 
evaporated under reduced pressure to afford pure 1-methyl-3-difluoromethyl-5-
pentafluoroethyl-1H-pyrazole-4-carboxylic acid (0.44 g, 1.5 mmol, 97%) as a colourless solid, 
m.p. 138-139 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 11.16 (brs, 1H, COOH), 7.09 (t, 1H, JH-F = 53.6 Hz, CHF2), 4.15 
(t, 3H, 5JH-F = 2.4 Hz, N-CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 165.2 (CO), 147.2 (t, 2JC-F = 25.2 Hz, CIVarom), 132.5 (t,  
2JC-F = 29.8 Hz, CIVarom), 118.5 (qt, 1JC-F = 287.0 Hz, 2JC-F = 37.5 Hz, CF2CF3), 114.6 (CIVarom), 109.9 
(tq, 1JC-F = 258.0 Hz, 2JC-F = 41.7 Hz, CF2CF3), 108.8 (t, JC-F = 238.6 Hz, CHF2), 41.4 (t, 4JC-F = 4.8 Hz, 
N-CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -83.2 (CF2CF3), -108.9 (CF2CF3), -116.8 (d, JF-H = 53.6 Hz, 
CHF2) ppm. 
 
C8H5F7N2O2 (294): calcd. (%) C 32.67, H 1.71, N 9.52; found C 32.82, H 1.86, N 9.30. 
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1-Phenyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylic acid (230c) 

 

 
 
To a solution of ethyl 1-phenyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylate  

223c (3.0 g, 9.0 mmol, 1 equiv.) in solution in ethanol (15 mL) was slowly added a 8M aqueous 
solution of sodium hydroxide (3.4 mL, 3 equiv.). The reaction mixture was stirred at room 
temperature for 3 h until completion of the reaction. The solvents were evaporated and the 
crude solid obtained was taken up in water (40 mL). The aqueous layer was extracted with 
diethyl ether (20 mL), and acidified to pH = 1 with 6M HCl before being extracted with ethyl 
acetate (3 x 30 mL). The combined organic layers were dried over sodium sulphate and 
evaporated under reduced pressure to afford pure 1-phenyl-3-difluoromethyl-5-
trifluoromethyl-1H-pyrazole-4-carboxylic acid (2.6 g, 8.4 mmol, 94%) as a colourless solid,  
m.p. 154-155 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 11.53 (brs, 1H, COOH), 7.58-7.44 (m, 5H, N-Phenyl), 7.15 (t, 
1H, JH-F = 53.5 Hz, CHF2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 165.8 (CO), 147.6 (t, 2JC-F = 25.8 Hz, CIVarom), 138.7  
(N-CIV Phenyl), 135.1 (q, 2JC-F = 40.4 Hz, CIVarom), 130.6 (CH Phenyl), 129.4 (CH Phenyl), 125.9 
(CH Phenyl), 118.4 (q, JC-F = 272.3 Hz, CF3), 114.3 (CIVarom), 108.9 (t, JC-F =  239.0 Hz, CHF2) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -56.8 (CF3), -117.8 (CHF2) ppm. 
 
C12H7F5N2O2 (306): calcd. (%) C 47.07, H 2.30, N 9.15; found C 47.24, H 2.40, N 8.89. 
 
1-Phenyl-3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylic acid (229c) 

 

 
 
To a solution of ethyl 1-phenyl-3,5-(bis)difluoromethyl-1H-pyrazole-4-carboxylate 226c (2.6 g, 
8.2 mmol, 1 equiv.) in ethanol (15 mL) was slowly added a 8M aqueous solution of sodium 
hydroxide (3.1 mL, 3 equiv.). The reaction mixture was stirred at room temperature for 3 h until 
completion of the reaction. The solvents were evaporated and the crude product obtained was 
taken up in water (40 mL). The aqueous layer was extracted with diethyl ether (20 mL), and 
acidified to pH = 1 with 6M HCl before being extracted with ethyl acetate (3 x 30 mL). The 
combined organic layers were dried over sodium sulphate and evaporated under reduced 
pressure to afford pure 1-phenyl-3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylic acid (2.3 g, 
8.1 mmol, 99%) as a colourless solid, m.p. 169-170 °C. 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.59-7.49 (m, 5H, N-Phenyl), 7.43 (t, 1H, JH-F = 52.3 Hz, 
CHF2), 7.16 (t, 1H, JH-F = 53.5 Hz, CHF2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 166.3 (CO), 147.4 (t, 2JC-F = 25.5 Hz, CIVarom), 139.8 (t,  
2JC-F = 24.9 Hz, CIVarom), 138.8 (N-CIV Phenyl), 130.3 (CH Phenyl), 129.2 (CH Phenyl), 125.9 (CH 
Phenyl), 112.3 (t, 3JC-F = 3.5 Hz, CIVarom), 109.0 (t, JC-F = 238.7 Hz, CHF2), 106.6 (t, JC-F =  239.2 Hz, 
CHF2) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -113.4 (CHF2), -117.0 (CHF2) ppm. 
 
C12H8F4N2O2 (288): calcd. (%) C 50.01, H 2.80, N 9.72; found C 50.28, H 3.04, N 9.59. 
 

1-Phenyl-3-difluoromethyl-5-chlorodifluoromethyl-1H-pyrazole-4-carboxylic acid (231c) 

 

 
 
To a solution of ethyl 1-phenyl-3-difluoromethyl-5-chlorodifluoromethyl-1H-pyrazole-4-
carboxylate 227c (3.0 g, 8.6 mmol, 1 equiv.) in solution in ethanol (15 mL) was slowly added a 
8M aqueous solution of sodium hydroxide (3.2 mL, 3 equiv.). The reaction mixture was stirred at 
room temperature for 3 h until completion of the reaction. The solvents were evaporated and 
the crude solid obtained was taken up in water (40 mL). The aqueous layer was extracted with 
diethyl ether (20 mL), and acidified to pH = 1 with 6M HCl before being extracted with ethyl 
acetate (3 x 30 mL). The combined organic layers were dried over sodium sulphate and 
evaporated under reduced pressure to afford pure N-phenyl-3-difluoromethyl-5-
chlorodifluoromethyl-4-carboxylic acid pyrazole (2.7 g, 8.5 mmol, 99%) as a colourless solid, 
m.p. 155-156 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.57-7.47 (m, 5H, N-Phenyl), 7.12 (t, 1H, JH-F = 53.5 Hz, 
CHF2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 165.9 (CO), 147.4 (t, 2JC-F = 25.8 Hz, CIVarom), 139.8 (t,  
2JC-F = 33.0 Hz, CIVarom), 138.9 (N-CIV Phenyl), 130.5 (CH Phenyl), 129.3 (CH Phenyl), 126.2 (CH 
Phenyl), 119.2 (t, JC-F = 290.6 Hz, CF2Cl), 112.1 (CIVarom), 108.9 (t, JC-F =  239.0 Hz, CHF2) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -46.9 (CF2Cl), -117.8 (CHF2) ppm. 
 
C12H7ClF4N2O2 (322.6): calcd. (%) C 44.67, H 2.19, N 8.68; found C 44.83, H 2.34, N 8.32. 
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1-Phenyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-carboxylic acid (232c) 

 

N
N

HF2C

C2F5

Ph

COOH

 
 
To a solution of ethyl 1-phenyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-carboxyate 
228c (3.0 g, 7.8 mmol, 1 equiv.) in solution in ethanol (15 mL) was slowly added a 8M aqueous 
solution of sodium hydroxide (3.0 mL, 3 equiv.). The reaction mixture was stirred at room 
temperature for 3 h until completion of the reaction. The solvents were evaporated and the 
crude solid obtained was taken up in water (40 mL). The aqueous layer was extracted with 
diethyl ether (20 mL), and acidified to pH = 1 with 6M HCl before being extracted with ethyl 
acetate (3 x 30 mL). The combined organic layers were dried over sodium sulphate and 
evaporated under reduced pressure to afford pure N-phenyl-3-difluoromethyl-5-
pentafluoroethyl-4-carboxylic acid pyrazole (2.7 g, 7.6 mmol, 98%) as a colourless solid,  
m.p. 187-188 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.60-7.37 (m, 5H, N-Phenyl), 7.14 (t, 1H, JH-F = 53.6 Hz, 
CHF2) ppm.  
 
13C NMR (CD3OD, 75 MHz, 25 °C): δ = 164.0 (CO), 148.6 (t, 2JC-F = 25.6 Hz, CIVarom), 141.4  
(N-CIV Phenyl), 133.4 (CH Phenyl), 133.1 (t, 2JC-F = 29.1 Hz, CIVarom), 131.7 (CH Phenyl), 130.0 
(CH Phenyl), 120.6 (qt, 1JC-F = 287.6 Hz, 2JC-F = 37.9 Hz, CF2CF3), 120.1 (CIVarom), 112.3 (t,   
JC-F =  236.4Hz, CHF2), 112.1 (tq, 1JC-F = 262.5 Hz, 2JC-F = 40.5 Hz, CF2CF3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -83.5 (CF2CF3), -107.1 (CF2CF3), -117.9 (CHF2) ppm. 
 
C13H7F7N2O2 (356): calcd. (%) C 43.84, H 1.98, N 7.86; found C 44.02, H 2.10, N 7.62. 
 
1-tert-Butyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-carboxylic acid (230d) 

 

N
N

HF2C

CF3

COOH

 
 
To a solution of ethyl 1-tert-butyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole-4-
carboxylate 223d (2.5 g, 7.9 mmol, 1 equiv.) in solution in ethanol (15 mL) was slowly added a 
8M aqueous solution of sodium hydroxide (3.0 mL, 3 equiv.). The reaction mixture was stirred at 
room temperature for 3 h until completion of the reaction. The solvents were evaporated and 
the crude solid obtained was taken up in water (40 mL). The aqueous layer was extracted with 
diethyl ether (20 mL), and acidified to pH = 1 with 6M HCl before being extracted with ethyl 
acetate (3 x 30 mL). The combined organic layers were dried over sodium sulphate and 
evaporated under reduced pressure to afford pure 1-tert-butyl-3-difluoromethyl-5-
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trifluoromethyl-1H-pyrazole-4-carboxylic acid (2.2 g, 7.5 mmol, 94%) as a yellow solid,  
m.p. 126-127 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.92 (t, 1H, JH-F = 53.8 Hz, CHF2), 1.74 (s, 9H, tBu) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 166.8 (CO), 142.9 (t, 2JC-F = 26.9 Hz, CIVarom), 132.9 (q, 2JC-F = 
41.1 Hz, CIVarom), 119.1 (q, JC-F = 271.1 Hz, CF3), 115.1 (CIVarom), 109.5 (t, JC-F = 237.5 Hz, CHF2), 
66.7 (N-CIV tBu), 29.9 (q, 5JC-F = 2.5 Hz, CH3 tBu) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -54.0 (CF3), -116.0 (CHF2) ppm. 
 
HRMS (ESI negative) for C10H10F5N2O2 [M-H]: calcd. 285.066; found 285.0.67. 
 
1-tert-Butyl-3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylic acid (229d) 

 

 
 
To a solution of ethyl 1-tert-butyl-3,5-bis(difluoromethyl)-1H-pyrazole-4-carboxylate 226d 
(3.40 g, 11.5 mmol, 1 equiv.) in solution in ethanol (23 mL) was slowly added a 8M aqueous 
solution of sodium hydroxide (4.30 mL, 3 equiv.). The reaction mixture was stirred at room 
temperature overnight until completion of the reaction. The solvents were evaporated and the 
crude solid obtained was taken up in water (40 mL). The aqueous layer was extracted with 
diethyl ether (20 mL), and acidified to pH = 1 with 6M HCl before being extracted with ethyl 
acetate (3 x 30 mL). The combined organic layers were dried over sodium sulphate and 
evaporated under reduced pressure to afford pure 1-tert-butyl-3,5-bis(difluoromethyl)-1H-
pyrazole-4-carboxylic acid (3.00 g, 11.2 mmol, 97%) as a pink solid, m.p. 159-160 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.72 (t, 1H, JH-F = 52.7 Hz, CHF2), 7.06 (t, 1H, JH-F = 53.7 Hz, 
CHF2), 1.75 (s, 9H, tBu) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 167.3 (CO), 144.5 (t, 2JC-F = 25.3 Hz, CIVarom), 138.8 (q,  
2JC-F = 25.1 Hz, CIVarom), 113.0 (CIVarom), 109.4 (t, JC-F = 237.7 Hz, CF2H), 106.5 (t, JC-F = 238.8 Hz, 
CHF2), 65.9 (N-CIV tBu), 30.0 (t, 5JC-F = 3.5 Hz, CH3 tBu) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -112.5 (CHF2), -117.4 (CHF2) ppm. 
 
HRMS (ESI negative) for C10H11F4N2O2 [M-H]: calcd. 267.076; found 267.076. 
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1-tert-Butyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-carboxylic acid (232d) 

 

 
 
To a solution of ethyl 1-tert-butyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole-4-
carboxylate 228d (2.0 g, 5.5 mmol, 1 equiv.) in solution in ethanol (10 mL) was slowly added a 
8M aqueous solution of sodium hydroxide (2.0 mL, 3 equiv.). The reaction mixture was stirred at 
room temperature for 3 h until completion of the reaction. The solvents were evaporated and 
the crude solid obtained was taken up in water (40 mL). The aqueous layer was extracted with 
diethyl ether (20 mL), and acidified to pH = 1 with 6M HCl before being extracted with ethyl 
acetate (3 x 30 mL). The combined organic layers were dried over sodium sulphate and 
evaporated under reduced pressure to afford pure 1-tert-butyl-3-difluoromethyl-5-
pentafluoroethyl-1H-pyrazole-4-carboxylic acid (1.8 g, 5.4 mmol, 99%) as a yellow solid,  
m.p. 97-98 °C. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 11.4 (brs, 1H, COOH), 7.01 (t, 1H, JH-F = 53.9 Hz, CHF2), 1.78 
(s, 9H, tBu) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 166.5 (CO), 143.9 (t, 2JC-F = 26.3 Hz, CIVarom), 131.5 (q,  
2JC-F = 31.0 Hz, CIVarom), 120.0 (qt, 1JC-F = 288.1 Hz, 2JC-F = 38.1 Hz, CF2CF3), 117.4 (CIVarom), 110.6 
(tq, 1JC-F = 258.7 Hz, 2JC-F = 41.2 Hz, CF2CF3),  109.5 (t, JC-F = 237.9 Hz, CHF2), 68.3 (N-CIV tBu), 30.6 
(t, 5JC-F = 3.7 Hz, CH3 tBu) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -80.3 (CF2CF3), -100.4 (CF2CF3), -116.3 (d, JF-H = 53.9 Hz, 
CHF2) ppm.  
 
HRMS (ESI negative) for C11H10F7N2O2 [M-H]: calcd. 335.064; found 335.065. 
 
1-Methyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole (234b) 

 

 
 
A Schlenk tube was charged the carboxylic acid 230b (2.1 g, 8.6 mmol, 1 equiv.), Cu2O (65 mg, 
0.45 mmol, 5mol%), and 1,10-phenanthroline hydrate (176 mg, 0.90 mmol, 10mol%) NMP  
(15 mL), quinoline (5 mL), and H2O (2 drops) were added via syringe. The vessel was sealed, and 
the resulting mixture was stirred at 160 °C overnight. It was then diluted with Et2O (30 mL) and 
water (30 mL). The organic layer was washed with 1M HCl (4 x 30 mL), brine (30 mL), dried 
over sodium sulphate and the solvent was distilled off over a Vigreux column at atmospheric 
pressure. The crude material obtained was purified by distillation under reduced pressure to 
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afford 1-methyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole (0.85 g, 4.3 mmol, 50%) as a 
colourless liquid (b.p. = 45-46°C, 27 mbar). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.84 (s, 1H, Harom), 6.66 (t, 1H, JH-F = 55 Hz, CHF2), 4.02 (s, 
3H, N-CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 145.6 (t, 2JC-F  = 30 Hz, CIVarom), 133.3 (q, 2JC-F = 39.6 Hz, 
CIVarom), 119.5 (q, JC-F = 267.2 Hz, CF3), 110.3 (t, JC-F = 233.2 Hz, CHF2), 105.2 (q, 3JC-F = 2.0 Hz, 
CHarom), 38.3 (q, 4JC-F = 1.6 Hz, N-CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -61.5 (CF3), -113.0 (CHF2) ppm. 
 
HRMS (ESI positive) for C6H6F5N2 [M+H]: calcd. 201.045 found 201.045.  
 
1-Methyl-3,5-bis(difluoromethyl)-1H-pyrazole (233b) 

 

 
 
A Schlenk tube was charged with the carboxylic acid 229b (2.0 g, 8.9 mmol, 1 equiv.), Cu2O (65 
mg, 0.45 mmol, 5mol%), and 1,10-phenanthroline hydrate (176 mg, 0.90 mmol, 10mol%). NMP  
(15 mL), quinoline (5 mL), and H2O (2 drops) were added via syringe. The vessel was sealed, and 
the resulting mixture was stirred at 160 °C overnight. It was then diluted with Et2O (30 mL) and 
water (30 mL). The organic layer was washed with 1M HCl (4 x 30 mL), brine (30 mL), dried 
over sodium sulphate and the solvent was distilled off over a Vigreux column at atmospheric 
pressure. The crude product obtained was purified by distillation under reduced pressure to 
afford 1-methyl-3,5-bis(difluoromethyl)-1H-pyrazole (1.3 g, 6.9 mmol, 78%) as a colourless 
liquid (b.p. = 78-80°C, 28 mbar). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.73 (t, 1H, CHF2, JH-F = 53.4 Hz), 6.69 (s, 1H, Harom), 6.66 (t, 
1H, CHF2, JH-F = 54.9 Hz), 4.01 (s, 3H, N-CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 145.6 (t, CIVarom, 2JC-F = 30.0 Hz), 136.5 (t, CIVarom,  
2JC-F = 26.6 Hz), 110.6 (t, CHF2, JC-F = 234.1 Hz), 108.2 (t, CHF2, JC-F = 236.5 Hz), 104.7 (m, CHarom), 
38.1 (s, N-CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -112.5 (CHF2, JF-H = 54.9 Hz), -113.7 (d, JF-H = 53.3 Hz, CHF2) 
ppm. 
 
HRMS (ESI positive) for C6H7F4N2 [M+H]: calcd. 183.054 found 183.055.  
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1-Methyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole (235b) 

 

 
 
A Schlenk tube was charged with the carboxylic acid 232b (2.0 g, 6.8 mmol, 1 equiv.), Cu2O (49 
mg, 0.34 mmol, 5mol%), and 1,10-phenanthroline hydrate (135 mg, 0.68 mmol, 10mol%). NMP  
(12 mL), quinoline (4 mL), and H2O (2 drops) were added via syringe. The vessel was sealed, and 
the resulting mixture was stirred at 160 °C overnight. It was then diluted with Et2O (30 mL) and 
water (30 mL). The organic layer was washed with 1M HCl (4 x 30 mL), brine (30 mL), dried 
over sodium sulphate and the solvent was distilled off over a Vigreux column at atmospheric 
pressure. The crude material was purified by distillation under reduced pressure to afford  
1-methyl-3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole (1.07g, 4.28 mmol, 63%) as a 
colourless liquid (b.p. = 53-54°C, 28 mbar). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.84 (s, 1H, Harom), 6.67 (t, 1H, JH-F = 54.8 Hz, CHF2), 4.05 (s, 
3H, N-CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 146.0 (t, 2JC-F = 30.1 Hz, CIVarom), 131.2 (t, 2JC-F = 28.9 Hz, 
CIVarom), 118.5 (qt, 1JC-F = 285.7 Hz, 2JC-F = 37.3 Hz , CF2CF3), 110.2 (t, JC-F = 234.8 Hz, CHF2), 109.8 
(tq, 1JC-F = 252.7 Hz, 2JC-F = 40.6 Hz, CF2CF3), 106.9 (brs, CHarom), 39.2 (brs, N-CH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -84.4 (CF2CF3), -111.1 (CF2CF3), -113.0 (d, JF-H = 54.8 Hz, 
CHF2) ppm. 
 
HRMS (ESI positive) for C7H6F7N2 [M+H]: calcd. 251.042; found 251.042. 
 
1-Phenyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole (234c) 

 

 
 
A Schlenk tube was charged with the carboxylic acid 230c (2.0 g, 6.5 mmol, 1 equiv.), Cu2O (47 
mg, 0.33 mmol, 5mol%), and 1,10-phenanthroline hydrate (131 mg, 0.66 mmol, 10mol%). NMP 
(12 mL), quinoline (4 mL), and H2O (2 drops) were added via syringe. The vessel was sealed, and 
the resulting mixture was stirred at 160 °C overnight. It was then diluted with Et2O (30 mL) and 
water (30 mL). The organic layer was washed with 1M HCl (4 x 30 mL), brine (30 mL), dried 
over sodium sulphate and the solvent was evaporated at atmospheric pressure. The crude 
material was purified by column chromatography on silica gel with pentane/diethyl ether (95:5) 
as eluent to afford pure 1-phenyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole (1.4 g, 
5.5 mmol, 84%) as a colourless oil. 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.55-7.48 (m, 5H, phenylH), 7.07 (brs, 1H, Hpyrazole), 6.78 
(t, 1H, JH-F = 54.6 Hz, CHF2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 146.9 (t, 2JC-F = 30.5 Hz, CIVpyrazole), 138.4 (s, N-CIVphenyl), 
134.2 (q, 2JC-F = 40.0 Hz, CIVpyrazole), 130.0 (s, CHphenyl), 129.3 (s, CHphenyl), 125.7 (s, 
CHphenyl), 119.2 (q, JC-F = 269.4 Hz, CF3), 110.4 (t, JC-F = 235.1 Hz, CHF2), 106.4 (brs, 
CHpyrazole) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -58.4 (CF3), -112.9 (d, JF-H

 = 54.6 Hz, CHF2) ppm. 
 
HRMS (ESI positive) for C11H8F5N2 [M+H]: calcd. 263.061; found 263.060. 
 
1-Phenyl-3,5-bis(difluoromethyl)-1H-pyrazole (233c) 

 

 
 
A Schlenk tube was charged with the carboxylic acid 229c (2.0 g, 6.9 mmol, 1 equiv.), Cu2O (50 
mg, 0.35 mmol, 5mol%), and 1,10-phenanthroline hydrate (137 mg, 0.69 mmol, 10mol%). NMP 
(12 mL), quinoline (4 mL), and H2O (2 drops) were added via syringe. The vessel was sealed, and 
the resulting mixture was stirred at 160 °C overnight. It was then diluted with Et2O (30 mL) and 
water (30 mL). The organic layer was washed with 1M HCl (4 x 30 mL), brine (30 mL), dried 
over sodium sulphate and the solvent was evaporated at atmospheric pressure. The crude 
material was purified by column chromatography on silica gel with pentane/diethyl ether 
(100:0 to 95:5) as eluent to afford pure 1-phenyl-3,5-(bis)difluoromethyl-1H-pyrazole (1.5 g, 
6.0 mmol, 87%) as a colourless oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.54-7.46 (m, 5H, N-Phenyl), 6.97 (s, 1H, CHarom), 6.76 (t, 
1H, JH-F = 54.8 Hz, CHF2), 6.61 (t, 1H, JH-F = 53.4 Hz, CHF2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 147.4 (t, 2JC-F = 30.2 Hz, CIVarom), 138.2 (N-CIV Phenyl), 137.8 
(t, 2JC-F = 30.3 Hz, CIVarom), 129.62 (CH Phenyl), 129.60 (CH Phenyl), 125.1 (CH Phenyl), 110.7 (t, 
JC-F = 234.8 Hz, CHF2), 107.9 (t, JC-F =  236.6 Hz, CHF2), 104.8 (s, CHarom)ppm.  
 
19F NMR (CDCl3, 282 MHz, 25 °C): δ = -110.6 (CHF2), -112.2 (CHF2) ppm. 
 
HRMS (ESI positive) for C11H9F4N2 [M+H]: calcd. 245.070; found 245.070. 
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1-Phenyl-3-difluoromethyl -5-pentafluoroethyl-1H-pyrazole (235c) 

 

 
 
A Schlenk tube was charged with the carboxylic acid 232c (2.0 g, 5.6 mmol, 1 equiv.), Cu2O (40 
mg, 0.28 mmol, 5mol%), and 1,10-phenanthroline hydrate (111 mg, 0.56 mmol, 10mol%). NMP  
(12 mL), quinoline (4 mL), and H2O (2 drops) were added via syringe. The vessel was sealed, and 
the resulting mixture was stirred at 160 °C overnight. It was then diluted with Et2O (30 mL) and 
water (30 mL). The organic layer was washed with 1M HCl (4 x 30 mL), brine (30 mL), dried 
over sodium sulphate and the solvent was evaporated at atmospheric pressure. The crude 
material was purified by column chromatography on silica gel with pentane/diethyl ether (95:5) 
as eluent to afford pure 1-phenyl -3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole (1.5 g, 
4.9 mmol, 88%) as a colourless oil. 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 7.54-7.43 (m, 5H, phenylH), 7.03 (brs, 1H, Hpyrazole), 6.76 
(t, 1H, JH-F = 54.6 Hz, CHF2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 147.4 (t, 2JC-F = 30.4 Hz, CIVpyrazole), 139.1 (s, N-CIVphenyl), 
132.4 (t, 2JC-F = 28.1 Hz, CIVpyrazole), 130.2 (s, CHphenyl), 129.1 (s, CHphenyl), 126.7 (s, 
CHphenyl), 118.5 (qt, 1JC-F = 286.3 Hz, 2JC-F = 36.8 Hz, CF2CF3), 110.4 (t, JC-F = 235.3 Hz, CHF2), 
109.5 (tq, 1JC-F = 252.0 Hz, 2JC-F = 40.4 Hz, CF2CF3), 107.5 (brs, CHpyrazole) ppm. 
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -83.9 (CF2CF3), -107.1 (CF2CF3), -113.0 (d, JF-H = 54.6 Hz, 
CHF2) ppm. 
 
HRMS (ESI positive) for C12H8F7N2 [M+H]: calcd. 313.058; found 313.058. 
 
1-tert-Butyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole (234d) 

 

 
 
A Schlenk tube was charged with the carboxylic acid 230d (2.0 g, 7.0 mmol, 1 equiv.), Cu2O (51 
mg, 0.35 mmol, 5mol%), and 1,10-phenanthroline hydrate (134 mg, 0.70 mmol, 10mol%). NMP  
(15 mL), quinoline (5 mL), and H2O (2 drops) were added via syringe. The vessel was sealed, and 
the resulting mixture was stirred at 160 °C overnight. It was then diluted with Et2O (30 mL) and 
water (30 mL). The organic layer was washed with 1M HCl (4 x 30 mL), brine (30 mL), dried 
over sodium sulphate and the solvent was evaporated at atmospheric pressure. The crude 
material was purified by distillation under reduced pressure to afford 1-tert-butyl-3-
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difluoromethyl -5-trifluoromethyl-1H-pyrazole (1.4 g, 5.6 mmol, 83%) as a colourless liquid  
(b.p. = 68-69°C, 32 mbar). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.94 (brs, 1H, Harom), 6.68 (t, 1H, JH-F = 54.8 Hz, CHF2), 1.69 
(s, 9H, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 143.5 (t, 2JC-F = 30.4 Hz, CIVarom), 132.7 (q, 2JC-F = 40.1 Hz, 
CIVarom), 119.9 (q, JC-F = 268.9 Hz, CF3), 110.8 (t, JC-F = 233.9 Hz, CHF2), 108.0 (q, 3JC-F = 3.8 Hz, 
CHarom), 64.2 (s, CIVtBu), 29.8 (q, 5JC-F = 2.1 Hz, tBu CH3) ppm.  
 ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = = -55.6 (CF3), -112.3 (d, JF-H = 54.9 Hz, CHF2) ppm. 
 
HRMS (ESI positive) for C9H12F5N2 [M+H]: calcd. 243.092 found 243.094. 
 
1-tert-Butyl-3,5-bis(difluoromethyl)-1H-pyrazole (233d) 

 

 
 
A Schlenk tube was charged with the carboxylic acid 229d (3.0 g, 11.2 mmol, 1 equiv.), Cu2O (86 
mg, 0.60 mmol, 5mol%), and 1,10-phenanthroline hydrate (238 mg, 1.20 mmol, 10mol%). NMP  
(27 mL), quinoline (9 mL), and H2O (3 drops) were added via syringe. The vessel was sealed, and 
the resulting mixture was stirred at 160 °C overnight. It was then diluted with Et2O (50 mL) and 
water (50 mL). The organic layer was washed with 1M HCl (4 x 50 mL), brine (50 mL), dried 
over sodium sulphate and the solvent was evaporated at atmospheric pressure. The crude 
material was purified by distillation under reduced pressure to afford 1-tert-butyl-3,5-
bis(difluoromethyl)-1H-pyrazole (1.6 g, 7.2 mmol, 64%) as a colourless liquid (b.p. = 90-91 °C, 
24 mbar). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 6.96 (t, 1H, JH-F = 54.4 Hz, CHF2), 6.82 (brs, 1H, Harom), 6.68 
(t, 1H, JH-F = 55.0 Hz, CHF2), 1.67 (s, 9H, CH3) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 143.9 (t, 2JC-F = 30.1 Hz, CIVarom), 137.2 (t, 2JC-F = 29.7 Hz, 
CIVarom), 111.1 (t, JC-F = 233.5 Hz, CF2H), 108.4 (t, JC-F = 236.9 Hz, CHF2), 105.5 (t, 3JC-F  = 4.5 Hz, 
CHarom), 62.6 (s, CIVtBu), 30.0 (s, tBuCH3) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -110.2 (d, JF-H = 54.5 Hz, CHF2), -112.5 (d, JF-H = 55.0 Hz, 
CHF2) ppm. 

 

HRMS (ESI positive) for C9H13F4N2 [M+H]: calcd. 225.102; found 225.101. 
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3-Difluoromethyl-5-pentafluoroethyl-1H-pyrazole (235d) 

 

 
 
A Schlenk tube was charged with the tBu-protected pyrazole carboxylic acid 232d (1.0 g, 3.0 
mmol, 1 equiv.), Cu2O (22 mg, 0.15 mmol, 5mol%), and 1,10-phenanthroline hydrate (60 mg,  
0.30 mmol, 10mol%). NMP (6 mL), quinoline (2 mL), and H2O (2 drops) were added via syringe. 
The vessel was sealed, and the resulting mixture was stirred at 160 °C overnight. It was then 
diluted with Et2O (10 mL) and water (10 mL). The organic layer was washed with 1M HCl  
(4 x 10 mL), brine (10 mL), dried over sodium sulphate and the solvent was evaporated at 
atmospheric pressure. The crude material was purified by distillation under reduced pressure to 
afford 3-difluoromethyl-5-pentafluoroethyl-1H-pyrazole (0.31 g, 1.3 mmol, 44%) as a colourless 
solid (b.p. = 63-65°C, 55 mbar). 
 
1H NMR (CDCl3, 300 MHz, 25 °C): δ = 11.87 (brs, 1H, NH), 6.87 (brs, 1H, Harom), 6.80 (t, 1H,  
JH-F = 54.7 Hz, CHF2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 141.5 (brs, CIVarom), 139.5 (brs, CIVarom), 118.4 (qt,  
1JC-F = 285.4 Hz, 2JC-F = 37.3 Hz, CF2CF3), 109.9 (tq, 1JC-F = 252.2 Hz, 2JC-F = 40.1 Hz, CF2CF3), 108.4 (t, 
JC-F = 238.2 Hz, CHF2), 104.9 (brs, CHpyrazole) ppm. 
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -85.1 (CF2CF3), -113.5 (CF2CF3), -113.8 (d, JF-H = 54.7 Hz, 
CHF2) ppm. 
 
HRMS (ESI positive) for C6H4F7N2 [M+H]: calcd. 237.026 found 237.026. 
 
3-Difluoromethyl-5-trifluoromethyl-1H-pyrazole (236) 

 

 
 
A mixture of 1-tert-butyl-3-difluoromethyl-5-trifluoromethyl-1H-pyrazole 234d (0.10 g, 0.41 
mmol, 1 equiv.), anisole (0.13 g, 0.14 ml, 1.2 mmol, 3 equiv.) and trifluoroacetic acid (2 ml) was 
stirred and heated to 90 °C for 16 h. The reaction mixture was cooled to ambient temperature, 
neutralised by the addition of a solution of sodium hydroxide (8.4 g, 0.21 mol) in water  
(30 mL) until pH = 8. The aqueous layer was extracted with diethyl ether (3 x 30 mL). The 
combined organic layers were washed with brine (30 mL), dried over sodium sulphate and the 
solvent was evaporated at atmospheric pressure. The crude material was purified by column 
chromatography on silica gel with pentane/diethyl ether (gradient 10:0 to 5:5) as eluent to 
afford pure 3-difluoromethyl-5-trifluoromethyl-1H-pyrazole (0.47 g, 2.5 mmol, 76%) as a 
colourless solid, m.p. 72-73 °C. 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ = 13.38 (brs, 1H, N-H), 6.84 (s, 1H, Harom), 6.79 (t, 1H,  
JH-F = 54.7 Hz, CHF2) ppm.  
 
13C NMR (CDCl3, 75 MHz, 25 °C): δ = 141.1 (brs, CIVarom, C-1 and C-3), 120.1 (q, JC-F = 268.8 Hz, 
CF3), 108.3 (t, JC-F = 238.2 Hz, CHF2), 103.6 (d, 3JC-F = 1.6 Hz, CHarom) ppm.  
 
19F NMR (CDCl3, 282 MHz, 25°C): δ = -62.3 (CF3), -114.2 (CHF2) ppm. 
 
HRMS (ESI positive) for C5H4F5N2 [M+H]: calcd. 187.029; found 187.029. 
 



Experimental Section 

Confidential Bayer CropScience 200 

6.7. Single Crystal Analysis Data 

 
230b 

 

Crystal data 

C7H5F5N2O2 F(000) = 488 

Mr = 244.13  

Triclinic, P  Dx = 1.812 Mg m−3 

Hall symbol: -P 1  

a = 7.9652 (7) Å Mo Kα radiation, λ = 0.71073 Å 

b = 8.6230 (8) Å Cell parameters from 2478 reflections 

c = 14.1843 (12) Å θ = 2.7–27.8° 

α = 77.877 (2)° µ = 0.20 mm−1 

β = 73.801 (2)° T = 173 K 

γ = 75.338 (2)° Plate, colourless 

V = 894.84 (14) Å3 0.35 × 0.16 × 0.05 mm 

Z = 4  

 

Data collection 

Bruker APEX-II CCD  
diffractometer 

4316 independent reflections 

Radiation source: sealed tube 3009 reflections with I > 2σ(I) 

triumph Rint = 0.018 

Detector resolution: pixels mm-1 θmax = 28.1°, θmin = 2.5° 

φ and ω scans h = −10 9 

Absorption correction: multi-scan  
sadabs 

k = −11 11 
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Tmin = 0.934, Tmax = 0.990 l = −18 17 

7894 measured reflections  

 

Refinement 

Refinement on F2 
Secondary atom site location: difference 
Fourier map 

Least-squares matrix: full 
Hydrogen site location: inferred from 
neighbouring sites 

R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained 

wR(F2) = 0.114 
w = 1/[σ2(Fo2) + (0.0502P)2 + 0.4238P]  
where P = (Fo2 + 2Fc2)/3 

S = 1.02 (Δ/σ)max < 0.001 

4316 reflections Δρmax = 0.32 e Å−3 

293 parameters Δρmin = −0.31 e Å−3 

0 restraints Extinction correction: none 

constraints Extinction coefficient: 

Primary atom site location: structure-
invariant direct methods 

 

 
 
 



 

 



 

 



 

 

 
Florence GIORNAL 

Novel Access to Heteroaromatic 
Building Blocks bearing Diversely 

Fluorinated Substituents 

 

 

Résumé 

Dans un contexte où il est préférable de limiter les quantités de principes actifs, aussi bien dans les 
médicaments que dans les produits phytosanitaires, il est important de développer des produits dont 
l’activité biologique est augmentée. Pour ce faire, il est possible d’utiliser des hétérocycles 
aromatiques contenant des groupements fluorés. Ainsi, nous nous sommes intéressés au 
développement de voies d’accès à des building blocks hétéroaromatiques portant divers 
groupements fluorés afin de fournir de nouvelles possibilités pour la préparation de composés 
d’intérêt thérapeutique et phytosanitaire. Trois projets ont été réalisés, et ont résulté en la 
préparation efficace de pyridines comportant des groupements trifluorométhoxy, 
chlorodifluorométhoxy et dichlorofluorométhoxy. Une voie de synthèse régiosélective de  
3,5-bis(fluoroalkyl) pyrazoles a également été mise au point. Tous ces méthodes de synthèse ont 
été développées de manière à obtenir les produits en peu d’étapes à partir de produits commerciaux 
et sont transposables à grande échelle. 

Mots Clés : Hétérocycles aromatiques, Fluor, Activité Biologique, building blocks 

 

Résumé en anglais 

The current trend is to lower the amounts of active ingredients used, in pharmaceutical chemistry 
and in agrochemistry. Therefore, it is important to produce molecules which are more biologically 
active. It is known that heterocycles are bioactive, and that fluorine can enhance this activity. With 
this aim in mind, we have taken an interest in the development of heteroaromatic building blocks 
bearing diversely fluorinated substituents in order to provide new options for the preparation of 
bioactive compounds. Three projects have resulted in the opening of new synthetic routes towards 
pyridines bearing trifluoromethoxy, chlorodifluoromethoxy and dichlorofluoromethoxy substituents. A 
regioselective method for the preparation of 3,5-bis(fluoroalkyl) pyrazoles has also been developed. 
All these routes have been studied with the aim of obtaining the building blocks in a few steps from 
commercially available products and are transposable to an industrial scale. 

Keywords: Aromatic Heterocycles, Fluorine, Bioactivity, building blocks 

 


