
HAL Id: tel-01665015
https://theses.hal.science/tel-01665015v2

Submitted on 29 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods to evaluate accuracy-energy trade-off in
operator-level approximate computing

Benjamin Barrois

To cite this version:
Benjamin Barrois. Methods to evaluate accuracy-energy trade-off in operator-level approximate com-
puting. Computer Arithmetic. Université de Rennes, 2017. English. �NNT : 2017REN1S097�. �tel-
01665015v2�

https://theses.hal.science/tel-01665015v2
https://hal.archives-ouvertes.fr


ANNÉE 2017

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Traitement du Signal et Télécommunications

École doctorale MathSTIC

présentée par

Benjamin BARROIS

préparée à l’unité de recherche IRISA – Equipe CAIRN – UMR 6074
Institut de Recherche en Informatique et Système Aléatoires

Université de Rennes 1 - ENSSAT Lannion

Methods to
Evaluate
Accuracy-Energy
Trade-Off in
Operator-Level
Approximate
Computing

Thèse soutenue à Rennes
le 11 Décembre 2017
devant le jury composé de :

To BE DEFINED
/ Président

Marc DURANTON
Expert International au CEA LIST, Saclay / Rapporteur

Alberto BOSIO
Maître de Conférences HDR à l’Université de Montpellier,
LIRMM / Rapporteur

Daniel MENARD
Professeur à l’INSA Rennes / Examinateur

Arnaud TISSERAND
Directeur de Recherche CNRS, Lab-STICC / Examinateur

Anca MOLNOS
Chercheur au CEA LETI, Grenoble / Examinatrice

Olivier SENTIEYS
Professeur à l’Université de Rennes 1 / Directeur de thèse





Remerciements

Mes premiers remerciements vont à mon directeur de thèse Olivier Sentieys, qui a cru en
moi dès le master et m’a permis d’effectuer cette thèse. C’est appuyé par son expérience que
j’ai pu produire les différents travaux présentés dans ce document et m’intégrer dans les riches
communautés propres aux domaines de ces travaux.

Un grand merci à tous ceux qui ont collaboré aux différentes publications de cette thèse.
Un grand merci tout d’abord à Rengarajan Ragavan pour avoir accueilli mes contributions à
ses travaux, ainsi qu’à tous ceux ayant contribué aux miens : Olivier Sentieys tout d’abord,
Karthick Parashar, Daniel Menard, et Cédric Killian.

Merci aux rapporteurs Marc Duranton et Alberto Bosio pour la relecture de ce docu-
ment. Merci également à tous les membres du jury, Daniel Menard et Anca Molnos, avec
lesquels j’ai eu le privilège de riches échanges scientifiques et humains au travers de l’ANR
Artefact, Arnaud Tisserand, avec qui je regrette de ne pas avoir pu plus travailler pour toutes
les connaissances d’arithmétique matérielles qu’il aurait pu m’apporter, et encore une fois Oli-
vier Sentieys.

Un grand merci aux financements de l’Université de Rennes 1, grâce auxquels j’ai pu vivre
décemment pendant ces 1187 jours de travail intense.

Un immense merci à l’équipe CAIRN pour son accueil et ce cadre fantastique de travail,
toujours dans la bonne humeur, que ce soit à Lannion ou à Rennes. Des remerciements tous
particuliers (dans le désordre) à Nicolas S., Pierre, Mickaël, Hamza, Baptiste, Christophe, Ga-
briel, Karim, Audrey, Nicolas R. et Joel, pour les bons moments à la fois dans les murs de
CAIRN et à l’extérieur. Un grand merci à Angélique et Nadia pour leur grande tolérance dans
les deadlines, très appréciables quand on est très légèrement tête-en-l’air.

Un tendre merci à mes parents de m’avoir toujours soutenu et d’avoir toujours été présents
malgré la distance. Une mention spéciale pour ma mère, qui m’a donné le courage de me battre
contre moi-même tout au long de cette thèse en vaincant cancer sur cancer.

Le plus grand des remerciements va à celle qui partage ma vie et m’a soutenu depuis le
premier jour de cette entreprise, dans les bons et mauvais moments, et sans l’amour de qui rien
de tout cela n’aurait été possible. Tendre merci Juliana, et merci d’avance pour ta présence dans
les nombreuses nouvelles aventures qui suivront et qui ne seraient rien sans toi.



1

Abstract

During the past decades, significant improvements have been made in computational perfor-
mance and energy efficiency, following Moore’s law. However, the physical limits in sili-
con transistor size are forecast to be reached soon, and finding ways to improve the energy-
performance ratio has become a major stake in research and industry. One of the ways to
increase energy efficiency is the modification of number representations and data size used for
computations. Today, double precision floating-point computation is a standard. However, it
is now admitted that an important amount of applications could be computed using less ac-
curate representations with no or very small impact on the application output quality. This
paradigm, recently termed as Approximate Computing, has emerged as a promising approach
and has become a major field of research to improve both speed and energy consumption in
embedded and high-performance computing systems. Approximate computing relies on the
ability of many systems and applications to tolerate some loss of quality or optimality in the
computed result. By relaxing the need for fully precise or completely deterministic operations,
approximate computing techniques allow substantially improved energy efficiency.

In this thesis, the error-performance trade-off relaxing the accuracy in basic arithmetic op-
erators is addressed. After a study and a constructive criticism of the existing ways to perform
approximate arithmetic operations, methods and tools to evaluate the cost in terms of error and
the impact in terms of performance using different arithmetic paradigms are presented. First,
after a quick description of classical floating-point and fixed-point arithmetic, a literature study
of approximate operators is presented. Different techniques to create approximate adders and
multipliers are highlighted by this study, as well as the problem of very variable nature and
amplitude of the errors they induce in computations. Second, a system-level scalable technique
to estimate fixed-point error leveraging Power Spectral Density (PSD) is presented. This tech-
nique considers the spectral nature of the quantization noise filtered across the system, leading
to much higher accuracy in error estimation than PSD-agnostic methods, and lower complex-
ity than classical propagation of error mean and variance across the whole system. Then, the
problem of analytical estimation of the error of approximate operators is addressed. The variety
in their behavior and logic structure makes the existing techniques either with high complex-
ity, leading to high memory or computational cost, or with low estimation accuracy. With
the Bitwise-Error Rate (BWER) propagation, we find a good compromise between estimation
complexity and accuracy. Then, a pseudo-simulation technique based on approximate oper-
ators for Voltage Over-Scaling (VOS) is presented. This technique allows for VOS errors to
be estimated using high-level simulation instead of extremely long and memory-costly SPICE
transistor-level simulations.

Another contribution is a comparative study between fixed-point and approximate oper-
ators. To achieve this, an error and performance open-source estimation framework, called
ApxPerf, was developed. Embedding VHDL and C representations of several approximate
operators, ApxPerf automatically estimates speed, area and power at gate-level of these op-
erators, as well as their accuracy with several error metrics. The framework can also easily
evaluate the error involved by approximate operators on complex applications, and thus pro-
vide application-related metrics. In this study, we showed that, even if approximate opera-
tors can have more interesting stand-alone performance than fixed-point operators, fixed-point
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arithmetic provides much higher performance and important energy savings when applied to
real-life applications, thanks to much smaller error and data width. The last contribution is a
comparative study between fixed-point and floating-point paradigms. For this, a new version of
ApxPerf was developed, which adds an extra-layer of High Level Synthesis (HLS) achieved
by Mentor Graphics Catapult C or Xilinx Vivado HLS. ApxPerf v2 uses a unique C++ source
for both hardware performance and accuracy estimations of approximate operators. The frame-
work comes with template-based synthesizable C++ libraries for integer approximate operators
(apx_fixed) and for custom floating-point operators (ct_float).

The second version of the framework can also evaluate complex applications, which are
now synthesizable using HLS. After a comparative evaluation of our custom floating-point
library with other existing libraries, fixed-point and floating-point paradigms are first compared
in terms of stand-alone performance and accuracy. Then, they are compared in the context of
K-Means clustering and FFT applications, where the interest of small-width floating-point is
highlighted.

The thesis concludes in the strong interest of reducing the bit-width of arithmetic oper-
ations, but also in the important issues brought by approximation. First, the many integer
approximate operators published with promising important energy savings at low error cost,
seem not to keep their promises when considered at application level. Indeed, we showed that
fixed-point arithmetic with smaller bit-width should be preferred to inexact operators. Finally,
we emphasize the interest of small-width floating-point for approximate computing. Small
floating-point is demonstrated to be very interesting in low-energy systems, compensating its
overhead with its high dynamic range, its high flexibility and its ease of use for developers and
system designers.



Résumé en Français

Au cours de ces dernières décennies, des améliorations significatives ont été faites en termes
de performances de calcul et de réduction d’énergie, suivant la loi de Moore. Cependant, les
limites physiques liées à la réduction de la taille des transistors à base de silicium sont en
passe d’être atteintes et le solutionnement de ce problème est aujourd’hui l’un des enjeux ma-
jeurs de la recherche et de l’industrie. L’un des moyens d’améliorer l’efficacité énergétique est
l’utilisation de différentes représentations des nombres, et l’utilisation de tailles réduites pour
ces représentations. Le standard de représentation des nombres réels est aujourd’hui la virgule
flottante double-précision. Cependant, il est maintenant admis qu’un important nombre d’ap-
plications pourrait être exécuté en utilisant des représentations de précision inférieure, avec
un impact minime sur la qualité de leurs sorties. Ce paradigme, récemment qualifié de calcul
approximatif ou approximate computing en anglais, apparaît comme une approche promet-
teuse et est devenu l’un des secteurs de recherche majeurs visant à l’amélioration de la vitesse
de calcul et de la consommation énergétique pour les systèmes de calcul embarqués et de haute
performance. Le calcul approximatif s’appuie sur la tolérance de beaucoup de systèmes et ap-
plications à la perte de qualité ou d’optimalité dans le résultat produit. En relâchant les besoins
d’extrême précision de résultat ou de leur déterminisme, les techniques de calcul approximatif
permettent une efficacité énergétique considérablement accrue.

Dans cette thèse, le compromis performance-erreur obtenu en relâchant la précision des cal-
culs dans les opérateurs arithmétiques de base est traité. Après l’étude et une critique construc-
tive des moyens existants d’effectuer de manière approximée les opérations arithmétiques de
base, des méthodes et outils pour l’évaluation du coût en termes d’erreur et l’impact en termes
de performance moyennant l’utilisation de différents paradigmes arithmétiques sont présentés.
Tout d’abord, après une rapide description des arithmétiques classiques que sont la virgule flot-
tante et la virgule fixe, une étude de la littérature des opérateurs approximatifs est présentée.
Les principales techniques de création d’additionneurs et multiplieurs approximatifs sont sou-
lignées par cette étude, ainsi que le problème de la nature et de l’amplitude très variable des
erreurs induites lors des calculs les utilisant. Dans un second temps, une technique modulaire
d’estimation de l’erreur virgule fixe s’appuyant sur la densité spectrale de puissance est pré-
sentée. Cette technique considère la nature spectrale du bruit de quantification filtré à travers
le système, menant à une précision accrue de l’estimation d’erreur comparé aux méthodes mo-
dulaires ne prenant pas en compte cette nature spectrale, et d’une complexité plus basse que la
propagation classique des moyenne et variance d’erreur à travers le système complet. Ensuite,
le problème de l’estimation analytique de l’erreur produite par les opérateurs approximatifs est
soulevé. La grande variété comportementale et structurelle des opérateurs approximatifs rend
les techniques existante beaucoup plus complexes, ce qui résulte en un fort coût en termes de
mémoire ou de puissance de calcul, ou au contraire en une mauvaise qualité d’estimation. Avec
la technique proposée de propagation du taux d’erreur binaire positionnel, un bon compromis
est trouvé entre la complexité de l’estimation et sa précision. Ensuite, une technique utilisant
la pseudo simulation à base d’opérateurs arithmétiques approximatifs pour la reproduction des
effets de la VOS est présentée. Cette technique permet d’utiliser des simulations haut niveau
pour estimer les erreurs liées à la VOS en lieu et place de simulations SPICE niveau transistor,
extrêmement longues et coûteuses en mémoire.
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Une étude comparative entre virgule fixe et operateurs approximatifs constitue une contri-
bution supplémentaire. Pour cette étude, un outil libre d’estimation d’erreur et de performance
a été développé, ApxPerf. Embarquant des représentations en C et en VHDL d’un certain
nombre d’opérateurs approximatifs, ApxPerf estime de manière automatisée la vitesse, la
surface et la puissance, simulée au niveau portes logiques, ainsi que leur précision en se basant
sur plusieurs métriques complémentaires. ApxPerf permet également d’évaluer de manière
simple l’erreur induite par l’utilisation d’opérateurs approximatifs sur des applications com-
plexes, en fournissant des résultats basés sur des métriques pertinentes dans le contexte de
l’application. Cette étude montre que, bien que les opérateurs arithmétiques soient capables de
meilleures performances comparés aux opérateurs virgule fixe lorsqu’ils sont comparés de ma-
nière atomique, l’arithmétique virgule fixe produit de bien meilleurs résultats en terme d’erreur
et d’importants gains énergétiques dans un contexte applicatif, grâce notamment à une erreur
équivalente obtenue avec des tailles de données bien inférieures.

L’ultime contribution de cette thèse est l’étude comparative entre les paradigmes virgule
fixe et virgule flottante. Pour cela, une nouvelle version d’ApxPerf a été développée, ajoutant
une couche supplémentaire de synthèse haut niveau (HLS), assurée par Catapult C de Mentor
Graphics ou Vivado HLS de Xilinx. La seconde version d’ApxPerf ne prend plus en entrée
qu’une unique source C++ servant à la fois pour l’estimation des performances matérielles et
en termes d’erreur des opérateurs approximatifs. Cette nouvelle version embarque une biblio-
thèque synthétisable d’opérateurs approximatifs basée sur des templates C++, apx_fixed,
ainsi qu’une bibliothèque synthétisable d’opérateurs virgule flottante simplifiés, ct_float.
Des applications complexes sont également incluses, synthétisables par HLS. Après une éva-
luation comparative de ct_float et d’autres bibliothèques existantes, les arithmétiques vir-
gule fixe et virgule flottante sont tout d’abord comparées en terme de performance matérielle
brute, puis en terme de performance et d’erreur dans le contexte de la classification K-Means et
de la transformée de Fourier rapide (FFT), où les intérêts et inconvénients des nombre flottants
de petite taille sont soulignés.

La thèse conclut sur le fort intérêt lié à la réduction de la taille des opérations arithmétiques,
mais aussi des problèmes apportés par cette approximation. En premier lieu, les nombreux
opérateurs entiers publiés promettant d’importants gains en énergie avec un faible coût d’erreur
ne semblent pas tenir leurs promesses lorsqu’ils sont considérés dans un contexte applicatif. En
effet, il a été montré dans cette thèse que l’utilisation de l’arithmétique virgule fixe avec des
tailles de données réduites donnait de meilleurs résultats. L’arithmétique flottante a quant à
elle démontré pouvoir être intéressante même dans les systèmes à faible énergie, compensant
son surcoût par sa forte dynamique, sa grande flexibilité et sa facilité d’utilisation pour les
développeurs et les concepteurs de systèmes.
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Introduction

Handling The End Of Moore’s Law

In the History of computers, huge improvements in calculation accuracy have been made in
two ways. First, the accuracy of computations was gradually improved with the increase of
the bit width allocated to number representation. This was made possible thanks to technology
evolution and miniaturization, allowing a dramatical growth of the number of basic logic el-
ements embedded in circuits. Second, accurate number representations such as floating-point
were proposed. Floating-point representation was first used in 1914 in an electro-mechanical
version of Charles Babbage’s computing machine made by Leonardo Torres y Quevedo, the
Analytical Engine, followed by Konrad Zuse’s first programmable mechanical computer em-
bedding 24-bit floating-point representation. Today, silicon-based general-purpose processors
mostly embed 64-bit floating-point computation units, which is nowadays standard in terms of
high-accuracy computing.

At the same time, important improvements of computational performance have been per-
formed. The miniaturization, besides allowing larger bit-width, also allowed considerable ben-
efits in terms of power and speed, and thus energy. CDC 6600 supercomputer created in 1964,
with its 64K 60-bit words of memory, had a power consumption of approximatively 150 kW
for a computing capacity of approximatively 500 KFLOPS, which makes 3.3 floating-point
operations per Watt. In comparison, best 2017’s world’ supercomputer Sunway TaihuLight
in China with its 1.31 Pbytes of memory, announces 6.05 GFLOPS/W [5]. Therefore, in forty
years, the supercomputers energy efficiency has improved by roughly 2E9, following the needs
of industry. These impressive progresses were achieved according to Moore’s law, who fore-
cast in 1965 [6] an exponential growth of computation circuit complexity, depicted in Figure 1
in terms of transistor count, performance, frequency, power and number of processing cores.
From the day it was stated, this law and its numerous variations have outstandingly described
the evolution of computing, but also the needs of the global market, such as computing is now
inherent to nearly all possible domains, from weather forecasting to secured money transac-
tions, including targeted advertising and self-driving cars.

However, many specialists agree on Moore’s Law to end in a very near future [7]. First of
all, the gradual decrease of the size of silicon transistors is coming to an end. With a Van Der
Waals radium of 210 pm, today’s 10 nm transistors are less than 50 atoms large, leading new
issues at quantum physics scale, as well as increased current leakage. Then, the 20th century
has known a steady increase of clock frequency in synchronous circuit, which represent the
overwhelming majority of circuits, helping the important gain in performance. However, the

9
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Figure 1 – 45 years of microprocessor trend data, collected by M. Horowitz, F. Labonte, O.
Shacham, K. Olukotun, L. Hammond, and C. Batten and completed by K. Rupp

beginning of the third millennium has seen a stagnation of this frequency, enforcing perfor-
mance to be found in parallelism instead, single-core disappearing in favor of multi/many-core
processors.

Technology being pushed to its limits and a new cutting-edge physical-layer technology
not appearing to arrive soon, new ways have to be found for computing to follow the needs.
Moreover, with a strong interest of industry into energy-critical embedded systems, energy-
efficiency is sought more than ever. Specialists are anticipating a future technological revolution
brought by the Internet Of Things (IOT), with a fast growth of the number of interconnected au-
tonomous embedded systems [8, 9, 10]. As said above, a first performance improvement can be
found in computing parallelism, thanks to multi-core/multi-thread superscalar or VLIW proces-
sors [11], or GPU computing. However, not all applications can be well parallelized because of
data dependencies, leading to moderate speed-up in spite of an important area and energy over-
head. A second modern way to improve performance is the use of hardware accelerators. These
accelerators come in mainstream processors, with hardware video encoders/decoders such as
for x264 or x265 codecs, but also in Field-Programmable Gate Arrays (FPGAs). FPGAs con-
sist in a grid of programmable logic gates, allowing reconfigurable hardware implementation.
In addition of general-purpose Look-Up Tables (LUTs), most FPGAs embed Digital Signal
Processing blockss (DSPs) to accelerate signal processing computations. Hybrids embedding
processors connected to an FPGA, embodied by Xilinx Zynq family, are today a big stake
for high-performance embedded systems. Nevertheless, hardware and software co-design still
represents an important cost in terms of development and testing.
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Approximate Computing or Playing with Accuracy for Energy Effi-
ciency

This thesis focuses on an alternative way to improve performance/energy ratio, which is re-
laxing computation accuracy to improve performance, as well in terms of energy/area for low-
power systems, but also in terms of speed for High Performance Computing (HPC). Indeed,
for many reasons, many applications can tolerate some imprecision for various reasons. For
instance, having a high accuracy in signal processing applications can be useless if the input
signals are noisy, since the least significant bits in the computation will be only applied on
the noisy part of the signal. Also, some applications such as classification do not always have
golden output and can tolerate a set of satisfying results. Therefore, it is useless to perform
many loop iterations to get an output which can be considered as good enough.

Various methods applied at several levels are possible to relax the accuracy to get per-
formance or energy benefits. At physical layer, voltage and frequency can be scaled beyond
the circuit tolerance threshold with potential important energy of speed benefits, but with ef-
fects on the quality of the output that may be destructive and hard to be managed [12, 13]. At
algorithmic level, several simplifications can be performed such as loop perforation or mathe-
matical functions approximations. For instance, trigonometric functions can be approximated
using COordinate Rotation DIgital Computing (CORDIC) [14] with limited number of itera-
tions, and complex functions can be approximated by interval using simple polynomials stored
in small tables. The choice and management of arithmetic paradigms also allows important
energy savings while relaxing accuracy.

In this thesis, three main paradigms are explored:

• customizing floating-point operators,

• reducing bit-width and complexity using fixed-point arithmetic, which can be associated
to quantization theory,

• and approximate integer operators, which perform arithmetic operations using inaccurate
functions.

Floating-point arithmetic is often associated to high-precision computing with important
time and energy overhead compared to fixed-point. Indeed, floating-point is today the most
used representation of real numbers because of its high dynamic and high precision at any
amplitude scale. However, because of more complex operations than for integer arithmetic and
the complexity of the many particular cases handled in IEEE 754 standard [15], fixed-point is
nearly always selected when low energy per operation is aimed at. In this thesis, we consider
simplified small-bitwidth floating-point arithmetic implementations leading to better energy
efficiency.

Fixed-point arithmetic is the most classical paradigm when it comes to low-energy comput-
ing. In this thesis, it is used as a reference for comparisons with the other paradigms. A model
for fixed-point error estimation leveraging Power Spectral Density (PSD) is also proposed.
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Finally, approximate arithmetic operators using modified addition and multiplication func-
tions are considered. Many implementations of these operators were published this past decade,
but they have never been the object of a complete comparative study.

After presenting literature about floating-point and fixed-point, a study of state-of-the-art
approximate operators is proposed. Then, models for error propagation for fixed-point and ap-
proximate operators are described and evaluated. Finally, comparative studies between approx-
imate operators and fixed-point on one side, and fixed-point and floating-point on the other
side, leveraging classical signal processing applications. More details on the organization of
this document are given in the next section.

Thesis Organization

Chapter 1 Approximate computing in general is presented, followed by a deeper study on
the different existing computing arithmetic. After a presentation of classical floating-point and
fixed-point arithmetic paradigms, state-of-the-art integer approximate adders and multipliers
are presented to give an overview of the many existing techniques to lower energy introducing
inaccuracy in computations.

Chapter 2 A novel technique to estimate the impact of quantization across large fixed-point
systems is presented, leveraging the noise Power Spectral Density (PSD). The benefits of the
method compared to others is then demonstrated on signal processing applications.

Chapter 3 A novel technique to estimate the error of integer approximate operators error
propagated across a system is presented in thus chapter. This technique, based on Bitwise Error-
Rate (BWER), first uses training by simulation to build a model, which is then used for fast
propagation. This analytical technique is fast and requires less space in memory than other
similar existing techniques. Then, a model for the reproduction of Voltage Over-Scaling (VOS)
error in exact integer arithmetic operators using pseudo-simulation on approximate operators
is presented.

Chapter 4 A comparative study of fixed-point and approximate arithmetic is presented
in Chapter 4. Both paradigms are first compared in their stand-alone version, and then on
several signal processing applications using relevant metrics. The study is performed using
the first version of our open-source operator characterization framework ApxPerf, and our
approximate operator library apx_fixed.

Chapter 5 Using a second version of our framework ApxPerf embedding a High Level
Synthesis (HLS) frontend and our custom floating-point library ct_float, a comparative
study of fixed-point and small-width custom floating-point arithmetic is performed. First, the
hardware performance and accuracy of both operators are compared in their stand-alone ver-
sion. Then, this comparison is achieved in K-means clustering and Fast Fourier Transform
(FFT) applications.
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Trading Accuracy for Performance in
Computing Systems

In this Chapter, various methods to trade accuracy for performance are first listed in Section 1.1.
Then, the study is centered on the different existing representations of numbers and the archi-
tectures of the arithmetic operators using them. In Section 1.2, floating-point arithmetic is de-
veloped. Then, Section 1.3 presents fixed-point arithmetic. Finally, a study of state-of-the-art
approximate architectures of integer adders and multipliers is presented in Section 1.4.

1.1 Various Methods to Trade Accuracy for Performance

In this section, the main methods to trade accuracy for performance are presented. First, VOS is
discussed. Then, existing algorithm-level transformations are presented. Finally, approximate
arithmetic is introduced, to be further developed in Sections 1.2, 1.3, and 1.4 as the central
element of this thesis.

1.1.1 Voltage Overscaling

The power consumption of a transistor in a synchronous circuit is linear with the frequency and
proportional to the square of the voltage applied. For a same load of computations, decreasing
frequency also increases computing time and the energy is the same. Thus, it is important to
mostly exploit the voltage to save as much energy as possible. Nevertheless, decreasing voltage
implies more instability in the transitions of the transistor, and this is why in a large majority of
systems, the voltage is set above a certain threshold which ensures the stability of the system.
Lowering the voltage under this threshold can cause the output of the transistor to be stuck to
0 or 1, compromising the integrity of the realized function.

One of the main issues of VOS is process variability. Indeed, two instances A and B of a
same silicon-based chip are not able to handle the exact same voltage before breakdown, a given
transistor in A being possibly weaker than the same in B, mostly because of Random Dopant
Fluctuations (RDF) which are a major issue in nanometer-scale Very Large Scale Integration
(VLSI). However, with the important possible energy gains brought by VOS, its mastering is

13
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an important stake which is widely explored [12, 13]. Low-leakage technologies like Fully
Depleted Silicon On Insulator (FDSOI) allow RDF to impact much less near-threshold com-
puting variability. Despite technology improvements, near-threshold and sub-threshold com-
puting needs error-correcting circuits, coming with an area, energy and delay overhead which
needs to be inferior to the savings. In [16], a method called Razor is proposed to monitor at
low cost circuit error rate to tune its voltage to get an acceptable failure rate. Therefore, the
main challenge with VOS is its uncertainty, the absence of a general rule which would make
all instances of an electronic chips equal towards voltage scaling, which make manufacturers
generally turn their backs to VOS, preferring to keep a comfortable margin above the threshold.

In next Subsections 1.1.2 and 1.1.3, accuracy is traded for performance in a reproducible
way, with results which are independent from hardware and totally dependent from the pro-
grammer/designer’s will, and thus more likely to be used in the future at industrial scale.

1.1.2 Algorithmic Approximations

A more secure way than VOS to save energy is achieved by algorithmic approximations. In-
deed, modifying algorithm implementation to make them deliver their results in less cycles or
using less intensively costly functions potentially leads to important savings. First, the approx-
imable parts of the code or algorithm must be identified, i.e. the parts where the gains can be
maximized despite a moderate impact on the output quality. Various methods for the identi-
fication of these approximable parts are proposed in [17, 18, 19]. These methods are mostly
perturbation-based, meaning errors are inserted in the code, and the output is simulated to
evaluate the impact of the inserted error. As all simulation-based methods, these methods may
not be scalable to large algorithms and only consider a limited number of perturbation types.
Once the approximable parts identified by an automatized method or manually, depending on
the kind of algorithm part to approximate (computation loops, mathematical functions, etc),
different techniques can be applied.

One of the main techniques for reducing the cost of algorithm computations is loop perfo-
ration. Indeed, most signal processing algorithms consist in quite simple functions repeated a
high number of times, e.g. for Monte Carlo simulations, search space enumeration or iterative
refinement. In these three cases, a subset of loop iterations can simply be skipped, yet returning
good enough results [20]. Using complex mathematical functions such as exponentials, loga-
rithms, square roots or trigonometric functions is very area, time and energy-costly compared
to basic arithmetic operations. Indeed, accurate implementations may require large tables and
long addition and multiplication-based iterative refinement. Therefore, in applications using
intensively these mathematical functions, releasing accuracy for performance can be source of
important savings. A first classical way to approximate functions is polynomial approxima-
tion, using tabulated polynomials representing the function in different ranges. In the context
of approximate computing, iterative-refinement based mathematical approximations are also
very interesting since they allow loop perforation discussed previously. Reducing the number
of iterations can be applied to CORDIC algorithms, very common for trigonometric function
approximations [14]. Several efficient approximate mathematical functions were proposed for
specialized hardware such as FPGAs [21] or Single Instruction Multiple Data (SIMD) hard-
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ware [22].

1.1.3 Approximate Basic Arithmetic

The level of approximation we focus on in this thesis is the approximation of basic arithmetic
operations, which are addition, subtraction and multiplication. These operations are the base
for most functions and algorithms in classical computing, but also the most energy-costly com-
pared to other basic CPU functions such as register shifts or binary logical operators, meaning
that a gain in performance or energy on these operations automatically induces an important
benefit for the whole application. They are also statistically intensively used in general-purpose
CPU computing: in ARM processors, ADD and SUB instructions are the instructions the most
used after LOAD and STORE. The approximation of these basic operators is explored along
two different angles in this thesis. On the one hand, approximate representations of numbers
is discussed, more precisely the approximate representation of real numbers in computer arith-
metics, using floating-point and fixed-point arithmetic. On the other hand, approximate com-
puting using modified functions for integer arithmetical functions of addition, subtraction and
multiplication is explored used in fixed-point arithmetic and compared to existing methods.

Approximations using floating-point arithmetic are discussed in Section 1.2, approxima-
tions using fixed-point arithmetic in Section 1.3 and approximate integer operators are pre-
sented in Section 1.4.

1.2 Relaxing Accuracy Using Floating-Point Arithmetic

Floating-point (Floating-Point (FlP)) representation is today the main representation for real
numbers in computing, thanks to a potentially high dynamic, totally managed by the hardware.
However, this ease of use comes with relatively important area, delay and energy penalties. FlP
representation is presented in Section 1.2.1. Then, FlP addition/subtraction and multiplication
are described in Section 1.2.2. Ways to relax accuracy for performance in FlP arithmetic is then
discussed in Section 1.2.3.

1.2.1 Floating-Point Representation for Real Numbers

In computer arithmetic, the representation of real numbers is a major stake. Indeed, most pow-
erful algorithms are based on continuous mathematics, and their accuracy and stability is di-
rectly related to the accuracy of the number representation they use. However, in classical
computing, an infinite accuracy is not possible since all representations are contained in a fi-
nite bit width. To address this issue, having a number representation as accurate for very small
numbers and very large numbers is important. Indeed, large and small numbers are dual, since
multiplying (resp. dividing) a number by another large number is equivalent to dividing (resp.
multiplying) by a small number. Giving the same relative accuracy to numbers whatever their
amplitude is can only be achieved giving the same impact to their most significant digit. In
decimal representation, this is achieved with scientific notation, representing the significant
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value of the number in the range [1, 10[, weighted by 10 elevated to a certain power. FlP rep-
resentation in radix-2 is the pendant of the scientific notation for binary computing. The point
in the representation of the number is "floating" so the representative value of the number (or
mantissa) represents a number in [1, 2[, multiplied by a power of 2. Given an M -bit mantissa,
a signed integer exponent of value e, often represented in biased representation, and a sign bit
s, any real number between limits defined by M and E the number of bits allocated to the
exponent e can be represented with a relative step depending on M by:

(≠1)s ◊ m
M≠1

.m
M≠2

m
M≠3

· · · m
1

m
0

◊ 2e.

With this representation, any number under this format can be represented using M +E+1 bits
as showed in Figure 1.1. A particularity of binary FlP with a mantissa represented in [1, 2[ is
that its Most Significant Bit (MSB) can only be 1. Knowing that, the MSB can be left implicit,
freeing space for one more Least Significant Bit (LSB) instead.

𝑒3 𝑒2 𝑒1 𝑒0 𝑚5 𝑚4 𝑚3

Exponent MantissaSign

𝑚6 𝑚2 𝑚1 𝑚0𝑠

Figure 1.1 – 12-bit floating-point number with 4 bits of exponent and 7 bits of mantissa

Nevertheless, automatically keeping the floating point at the right position along compu-
tations requires an important hardware overhead, as discussed in Section 1.2.2. Managing sub-
normal numbers (numbers between 0 and the smallest positive possible representable value),
the values 0 and infinity also represent an overhead. Despite this additional cost, FlP represen-
tation is today established as the standard for real number representation. Indeed, besides its
high accuracy and high dynamic, it has the huge advantage of leaving the whole management
of the representation to the hardware instead of leaving it to the software designer, significantly
diminishing developing and testing time. This domination is sustained by IEEE 754 standard,
last revised in 2008 [15], which sets the conventions for floating-point number possible repre-
sentation, subnormal numbers management and the different cases to be handled, ensuring a
high portability of programs. However, such a strict normalization implies:

• an important overhead for throwing flags for the many special cases, and even more
important overhead for the management of these special cases (hardware or software
overhead),

• and a low flexibility in the width of the mantissa and exponent, which have to respect the
rules of Table 1.1 for 32, 64 and 128-bit implementation.

As a first conclusion, the constraints imposed to FlP representation by IEEE 754 normaliza-
tion imply a high cost in terms of hardware resource, which highly counterbalance its accuracy
benefits. However, as discussed in Section 1.2.3, taking liberties with FlP can significantly
increase the accuracy/cost ratio.
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Precision Mantissa Exponent Max decimal Exponent
width width exponent bias

Single precision 24 8 38.23 127
Double precision 53 11 307.95 1023

Quadruple precision 113 15 4931.77 16383

Table 1.1 – IEEE 754 normalized floating-point representation

1.2.2 Floating-Point Addition/Subtraction and Multiplication

As discussed later in Section 1.3, integer addition/subtraction is the simplest arithmetic opera-
tor. However, in FlP arithmetic, it suffers from a high control overhead. Indeed, several steps
are needed to perform the FlP addition:

• First, the difference of the exponents is computed.

• If the difference of the exponents is superior to the mantissa width, the biggest number
is directly issued (this is the far path of the operator – one of the numbers is too small
to impact the addition).

• Else, if the difference of the exponents is inferior to the mantissa width, one of the inputs’
mantissas must be shifted so bits of same significance are facing each other. This is the
close path, by opposition with the far path.

• The addition of the mantissas is performed.

• Then, rounding is performed on the mantissa, depending on the dropped bits and the
rounding mode selected.

• Special cases are then handled (zero, infinity, subnormal results), and the output sign.

• Then, mantissa is shifted so it represents a value in [1, 2[, and the exponent is modified
depending on the number of shifts.

FlP addition principle is illustrated in Figure 1.2 taken from [23]. More control can be needed,
depending on the implementation of the FlP adder and the specificities of the FlP represen-
tation. For instance, management of the implicit 1 implies to add 1s to the mantissas before
addition, and an important overhead can be dedicated to exception handling.

For cost comparison, Table 1.2 shows the performance of 32-bit and 64-bit FlP addition,
using ac_float type from Mentor Graphics, and 32-bit and 64-bit integer addition using ac_int
type, generated using the HLS and power estimation process of the second version of Apx-
Perf framework described in Section 4.1, targeting 28nm FDSOI with a 200 MHz clock and
using 10, 000 uniform input samples. FlP addition power was estimated activating the close
path 50% of the time. These results show clearly the overhead of FlP addition. For 32-bit ver-
sion, FlP addition is 3.5◊ larger, 2.3◊ slower and costs 27◊ more energy than integer addition.
For 64-bit version, FlP addition is 3.9◊ larger, 1.9◊ slower and costs 30◊ more energy. The
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Figure 1.2 – Dual-path floating-point adder [23]

Area Total Critical Power-Delay
(µm2) power (mW) path (ns) Product (fJ)

32-bit 653 4.39E≠4 2.42 1.06E≠3ac_float
64-bit 1453 1.12E≠3 4.02 4.50E≠3ac_float
32-bit 189 3.66E≠5 1.06 3.88E≠5ac_int
64-bit 373 7.14E≠5 2.10 1.50E≠4ac_int

Table 1.2 – Cost of FlP addition vs integer addition



Relaxing Accuracy Using Floating-Point Arithmetic 19

overhead seems to be roughly linear with the size of the operator, and the impact of numbers
representation is highly impacting the performance. However, it is showed in Chapter 5 that
this high difference shrinks when the impact of accuracy is taken into account.

FlP multiplication is less complicated than addition as only a low control overhead is neces-
sary to perform the operation. Input mantissas are multiplied using a classical integer multiplier
(see Section 1.3), while exponents are simply added. At worse, a final +1 on the exponent can
be needed, depending on the result of the mantissas multiplication. The basic architecture of
a FlP multiplier is described in Figure 1.3 from [23]. Obviously, all classical hardware over-
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Figure 1.3 – Basic floating-point multiplication [23]

heads needed by FlP representation are necessary (rounding logic, normalization, management
of particular cases). Table 1.3 shows the difference between 32-bit and 64-bit floating-point
multiplication using Mentor Graphics ac_float and 32-bit and 64-bit fixed-width1 integer mul-
tiplication using ac_int data type, with the same experimental setup than discussed before for
the addition.

A first observation on the area shows that the integer multiplication is 48% larger than
FlP version for 32-bit version, and 37% larger for 64-bit version. This difference is due to the
smaller size of the integer multiplier in the FlP multiplication, since it is limited to the size of
the mantissa (24 bits for 32-bit version, 53 bits for 64-bit version). Despite the management
of the exponent, the overhead is not large enough to produce a larger operator. However, if the
overhead area is not very large, 32-bit FlP multiplication energy is 11◊ higher than the integer
multiplication energy, while 64-bit version is 37◊ more energy-costly. It is interesting to note
that the difference of energy consumption between addition and multiplication is much more
important for integer operators than for FlP. For 32-bit version for instance, integer multiplica-

1An operator is considered as fixed-width when its output has the same width as its inputs. In the considered
multiplication case, half of the output LSBs is truncated.
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Area Total Critical Power-Delay
(µm2) power (mW) path (ns) Product (fJ)

32-bit 1543 8.94E≠4 2.09 1.87E≠3ac_float
64-bit 6464 6.56E≠3 4.70 3.08E≠2ac_float
32-bit 2289 6.53E≠5 2.38 1.55E≠4ac_int
64-bit 8841 1.84E≠4 4.52 8.31E≠4ac_int

Table 1.3 – Cost of floating-point multiplication vs integer multiplication

tion consumes 4.7◊ more energy than integer addition, while this factor is only 1.4◊ for 32-bit
FlP multiplier compared to 32-bit FlP adder. Therefore, using multiplication in FlP computing
is relatively less penalizing than for integer multiplication, typically used in Fixed-Point (FxP)
arithmetic.

1.2.3 Potential for Relaxing Accuracy in Floating-Point Arithmetic

There are several possible opportunities to relax accuracy in floating-point arithmetic to in-
crease performance. The main one is simply to use word-length as small as possible for the
mantissa and the exponent. With normalized mantissa in [1, 2[, reducing the word-length cor-
responds to pruning the LSBs, which comes with no overhead. Eventually, rounding can be
performed at higher cost. For the exponent, the transformation is more complicated if it is rep-
resented with a bias. Indeed, if e is the exponent width, an implicit bias of 2e ≠ 1 applies to
the exponent in classical exponent representation. Therefore, reducing the exponent to a width
eÕ means that a new bias must be applied. The original exponent must be added 2e

Õ ≠ 2e (< 0)
before pruning MSBs, implying hardware overhead at conversion. The original exponent must
represent a value in

Ë
≠2e

Õ≠1 + 1, 2e

Õ≠1

È
to avoid overflow. In practice, it is better to keep a con-

stant exponent width to avoid useless overhead and conversion overflows which would have a
huge impact on the quality of the computations, even if they are scarce.

A second way to improve computation at inferior cost is to play with the implicit bias of
the exponent. Indeed, increasing the exponent width increases the dynamic towards infinity,
but also the accuracy towards zero. Thus, if the absolute maximum values to be represented are
known, the bias can be chosen so it is just large enough to represent these values. This way,
the exponent gives more accuracy to very small values, increasing accuracy. However, using a
custom bias means that the arithmetical operators (addition and multiplication) must consider
this bias in the computation of resulting exponent, and the optimal bias along computation may
diverge to ≠Œ. To avoid this, if the original 2e ≠ 1 exponent bias is kept, exponent bias can be
simulated by biasing the exponents of the inputs of each or some computations using shifting.
For the addition, biasing both inputs adding 2ein to the exponent implies that the output will
also be represented biased by 2ein . For the multiplication, the output will be biased by 2ein+1.
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Keeping an implicit track of the bias along computations allows to know any algorithm output
bias, and eventually to perform a final rescaling of the outputs.

Finally, accuracy can be relaxed in the integer operators composing FlP operators, i.e. the
integer adder adding mantissas in FlP addition close path, and the integer multiplier in the
FlP multiplication. Indeed, they can be replaced by the approximated adders and multipliers
described in Section 1.4 to improve performance relaxing accuracy. However, as the most part
of the performance cost is in control hardware more than in integer arithmetic part, the impact
on accuracy would be strong for a very small performance benefit. The same approximation
can be applied on exponent management, but the impact of approximate arithmetic would be
huge on the accuracy and is strongly unadvised.

More state-of-the-art work on FlP arithmetic is developed in Section 5.1, more particularly
on HLS using FlP custom computing cores.

1.3 Relaxing Accuracy Using Fixed-Point Arithmetic

Aside from FlP, a classical representation for real numbers is Fixed-Point (FxP) representation.
This Section presents generalities about FxP representation in Section 1.3.1, then presents the
classical models for quantization noise in Section 1.3.2. Finally, hardware implementations of
addition and multiplication are respectively listed and discussed in Sections 1.3.3 and 1.3.4.

1.3.1 Fixed-Point Representation for Real Numbers

In fixed-point representation, an integer number represents a real number multiplied by a fac-
tor depending on the implicit position of the point in the representation. A real number x is
represented by the FxP number x

FxP

represented on n bits with d bits of fractional part by the
following equation:

x
FxP

=
---x ◊ 2d

---
r

◊ 2≠d,

where |·|
r

is a rounding operator, which can be implemented using several functions such as
the ones of Section 1.3.2. The representation of a 12-bit two’s complement signed FxP number
with a 4-bit integer part is depicted in Figure 1.4.

𝑥11 𝑥10 𝑥9 𝑥8 𝑥7 𝑥5𝑥6 𝑥4 𝑥3

22 21 20 2−1 2−2 2−3 2−4 2−5

Integer part Fractional part

−23

𝑥2 𝑥1 𝑥0

2−7 2−82−6

Figure 1.4 – 12-bit fixed-point number with 4 bits of integer part and 8 bits of fractional part

In two’s complement representation, the MSB has a negative weight, such as a binary
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number x
bin

= {x
i

}
iœ[0,n≠1]

represents the integer number x
int

the following way:

x
int

= x
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≠2n≠1
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Therefore, the two’s complement n-bit FxP number represented by x
FxP

with d-bit fractional
part is worth:

x
FxP

= x
int

◊ 2≠d

= x
n≠1

◊
1
≠2n≠d≠1

2
+

n≠2ÿ

i=0

x
i

◊ 2i≠d.

1.3.2 Quantization and Rounding

Representing a real number in FxP is equivalent to transforming a number represented on an
infinity of bits to a finite word-length. This reduction is generally referred as quantization of a
continuous amplitude signal. Using a FxP representation with a d-bit fractional part implies
that the step between two representable values is equal to q = 2≠d, referred as quantization
step. The process of quantization results in a quantization error defined by:

e = x
q

≠ x, (1.1)

where x is the original number to be quantified and x
q

the resulting quantified number.

Quantization of continuous amplitude signal is performed differently depending on the
rounding mode chosen. Several classical rounding modes are possible:

1. Rounding towards ≠Œ (RD). The infinity of bits dropped are not taken into considera-
tion. This results in a negative quantization error e and is equivalent to truncation.

2. Rounding towards +Œ (RU). Again, the infinity of bits dropped are not taken into con-
sideration, and the nearest superior representable value is selected. This is equivalent to
adding q to the result of the truncation process.

3. Rounding towards 0 (RZ). If x is negative, the number is rounded to +Œ. Else, it is
rounded to ≠Œ

4. Rounding to Nearest (RN). The nearest representable value is selected – if the MSB of
the dropped bits is 0, then x

q

is obtained by rounding to ≠Œ (truncation) – else x
q

is
obtained by rounding towards +Œ. The special value where the MSB of the dropped part
is 1 and all the following bits are 0 can lead whether to rounding up or down depending
on the implementation. Choosing one or another case does not change anything in the
error distribution in the case of continuous amplitude signal, which is also the case for
discrete case, as said below.
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(a) Quantization error distribution for rounding to-
wards ≠Œ

(b) Quantization error distribution for rounding to-
wards +Œ

(c) Quantization error distribution for rounding to
nearest

Figure 1.5 – Distribution of continuous signal quantization error for rounding towards ±Œ and
rounding to nearest

The quantization error produced by rounding towards ±Œ and to nearest discussed above
are depicted in Figure 1.5. RZ method has a varying quantization error distribution depending
on the sign of the value to be rounded. As described in [24] and [25], the additional error due
to the quantization of a continuous signal is uniformly distributed between its limits ([≠q, 0]
for truncation, [0, q] for rounding towards +Œ and [≠q/2, q/2] for rounding to nearest) and
statistically independent on the quantized signal. Therefore, the mean and variance of the error
are perfectly known in these cases and are indexed in Table 1.4. Thanks to its independence
to the signal, quantization error can be seen as an additive uniformly distributed white noise
q such as depicted in Figure 1.6. This representation of quantization error is the base of FxP
representation error analysis discussed in the next Chapter.

Figure 1.6 – Representation of FxP quantization error as an additive noise

The previous paragraphs describe the properties of the quantization of a continuous signal.
However, in FxP arithmetic, it is necessary to reduce the bit width along computations to avoid
a substantial growth of the necessary resources. Indeed, as discussed in Section 1.3.4, an integer
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multiplication needs to produce an output which width is equal to the sum of its inputs to get
a perfectly accurate computation. However, the LSBs of the result are often not significant
enough to be kept, and so a reduction of data width must be performed to save area, energy and
time. Therefore, it is often necessary to reduce a FxP number x

1

with d
1

-bit fractional part to
another FxP number x

2

with d
2

-bit fractional part, where d
2

< d
1

. This reduction leads to a
discrete quantization error distribution, depending on the number of bits dropped d

b

= d
1

≠d
2

.
This distribution is still uniform for RD, RU and RN rounding methods, but has a different
bias. Moreover, for RN method, this bias is not 0, and depends on the direction of rounding
chosen when the MSB of the dropped part is 1 and all the other dropped bits 0. This can lead
to divergences when accumulating a large number of computations.

(a) Conventional rounding

(b) Convergent rounding

Figure 1.7 – Comparison of quantization error distribution of conventional rounding and con-
vergent rounding

To overcome this possible deviation, Convergent Rounding to Nearest (CRN) was pro-
posed in [26]. When the special case cited above is met, the rounding is once performed toward
+Œ, and once towards ≠Œ. This way, the quantization error distribution gets centered to zero.
Figure 1.7 shows the effect of CRN on the error distribution compared to simpler RN. On Fig-
ure 1.7a, the discrete uniform distribution of RN method has a negative bias of q

2

1
2≠d

b

2
. As

the highest error occurs for the special in between case, distributing this error using alterna-
tively RD and RU paradigms balances the error, lowering by half the highest negative error and
moving its impact to a new spike removing the bias as showed on Figure 1.7b. However, this
compensation slightly increases the variance of the quantization error.

The values of the mean µ
e

and variance ‡2

e

of RD, RU, RN and CRN rounding methods
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are listed in Table 1.4. As a reminder, RZ method is mixing RD and RU, and thus the final
distribution of error strongly depends on the distribution of the signal around 0.

Continous Amplitude Discrete Amplitude

µ
e

‡2

e

µ
e

‡2

e

RD ≠ q

2

q

2

12

≠ q

2

1
1 ≠ 2≠d

b

2
q

2

12

1
1 ≠ 2≠2d

b

2

RU q

2

q

2

12

q

2

1
1 ≠ 2≠d

b

2
q

2

12

1
1 ≠ 2≠2d

b

2

RN 0 q

2

12

q

2

1
2≠d

b

2
q

2

12

1
1 ≠ 2≠2d

b

2

CRN 0 q

2

12

0 q

2

12

1
1 ≠ 2≠2d

b

+1

2

Table 1.4 – Mean and variance of quantization error depending on the rounding method and
type of signal

The implementation of rounding methods discussed above depend of two parameters. In-
deed, when quantizing x

1

with d
1

-bit fractional part to x
2

with d
2

-bit fractional part, where
d

2

< d
1

, only the following information is needed:

• the round bit, which is the value of the bit indexed by d
1

≠ d
2

≠ 1 of x
1

,

• and the sticky bit, which is a logical or applied to the bits {0, ..., d
1

≠ d
2

≠ 2} of x
1

.

The extraction of round and sticky bits is illustrated in Figure 1.8. The horizontal stripes in
x

1

correspond to the round bit, and the tilted stripes to the bits implied in the computation of
the sticky bit. Here, both are worth 1, and the rounding logic outputs 1, which can correspond
to RU, RN, or CRN. The possible functions performed by the different rounding functions
which can be implemented in rounding logic block of Figure 1.8 are listed in Table 1.5. It is
important to notice that for RD method, the value of round and sticky bits have no influence on
the rounding direction. For RN method, if the default rounding direction is towards +Œ when
round/sticky bits are 1/0, then the value of the sticky bit does not influence the rounded result.
If it is up, the sticky bit has to be considered. Therefore, some hardware simplifications can be
performed for RD and RN (down case) methods, by just dropping the unused bits.
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Figure 1.8 – Example of quantization and rounding of a 10-bit fixed-point number to a 6-bit
fixed-point number

Round Sticky RD RU RN CRNbit bit

0 0 ≠ ≠ ≠ ≠

0 1 ≠ + ≠ ≠

1 0 ≠ + Always ≠ Alternatively
or always + ≠ and +

1 1 ≠ + + +

Table 1.5 – Rounding direction depending on the value of round and sticky bits
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1.3.3 Addition and Subtraction in Fixed-Point Representation

The addition/subtraction in FxP representation is much simpler than the one of FlP described
in Section 1.2.2. Indeed, FxP arithmetic is entirely based on integer arithmetic. Adding two
FxP numbers can be performed in 3 steps:

1. Aligning the points of the two numbers, shifting one of them (software style) or driving
their bits to the right input in the integer adder (hardware design style).

2. Adding the inputs using an integer adder.

3. Quantizing the output using methods of Section 1.3.2.

In this section, we will consider the addition (respectively subtraction) of two signed FxP num-
bers x and y with a total bit width of resp. n

x

and n
y

, a fractional part width of d
x

and d
y

and
an integer part width of m

x

= n
x

≠ d
x

and m
y

= n
y

≠ d
y

. In the rest of this chapter, a n
x

-bit
FxP number x with m

x

-bit integer part will be noted x(n
x

, m
x

).

To avoid overflows or underflows, the output z(n
z

, m
z

) of the addition/subtraction of x and
y must respect the following equation:

m
z

= max (m
x

, m
y

) + 1. (1.2)

Moreover, an accurate addition/subtraction must also respect:

d
z

= max (d
x

, d
y

) . (1.3)

The final process for FxP addition of x(6, 2) and y(8, 3) returning z(9, 4) then quantized to
z

q

(6, 4) is depicted by Figure 1.9. For the subtraction x ≠ y, the classical way to operate is to
compute y

Õ = ≠y before performing the addition x + y
Õ . In two’s complement representation,

this is equivalent to performing y
Õ = y + 1, where y is the binary inverse of y. The inversion

is fast and requires small circuit, and adding 1 can be performed during the addition step of
Figure 1.9 (after shifting) to avoid performing one more addition for the negation.

As a first conclusion about FxP addition/subtraction, the cost of the operation mostly de-
pends on two parameters: the cost of shifting the input(s), and the efficiency of integer addition.
From this point, we will focus on the integer addition, which represent the majority of this cost.

The integer addition can be built from the composition of 1-bit additions, taking each three
inputs – the input bits x

i

, y
i

and the input carry c
i

and returning two outputs – the output sum
bit s

i

and the output carry c
i+1

. This function is realized by the Full Adder (FA) function of
Figure 1.10 which truth table is described in Table 1.6.

The simplest addition structure is the Ripple Carry Adder (RCA), built by the direct com-
position of FAs. Each FA of rank i takes the input bits and the input carry of rank i. It returns
the output bit of rank i and the output carry of rank i + 1, which is connected to the following
full adder, resulting in the structure of Figure 1.11. This is theoretically the smallest possible
area for an addition, with a complexity of O (n). However, this small area is counterbalanced
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Figure 1.9 – Fixed-point addition process of x(6, 2) and y(8, 3) returning z(9, 4) quantized to
z

q

(6, 4)

Figure 1.10 – One-bit addition function –
Full adder (or compressor 3:2)

x
i

y
i

c
i

c
i+1

s
i

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 1.6 – Full adder truth table
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Figure 1.11 – 8-bit Ripple Carry Adder (RCA)

by a high delay also in O (n), while the theoretical optimum is O (log n) [27]. Therefore, RCA
is only implemented when area budget is critical.

A classical improvement issued from the RCA is the Carry-Select Adder (CSLA). The
CSLA is composed of elements containing two parallel RCA structures, one taking 0 as input
carry and the other taking 1. When the actual value of the input carry is known, the correct
result is selected. This pre-computation (or prediction) of the possible output values increases
speed, which can reach at best a complexity of O (

Ô
n) when the variable widths of the basic

elements are optimal, while more than doubling the area compared to classical RCA. An 8-bit
version of CSLA is depicted in Figure 1.12, with basic blocks of size 2-3-3 from LSB to MSB.
Therefore, the resulting critical path is 3 FAs and 3 multiplexers 2-1, from input carry to output
carry, instead of 8 FAs for RCA. It is important to note that CSLA structure can be applied to
any addition structure such as the ones described below, and not only RCA, which can lead to
better speed performance.

Figure 1.12 – 8-bit RCA-based Carry-Select Adder (CSLA) with 2-3-3 basic blocks

As already stated, the longest path in the adder starts from the input carry (or the input
LSBs) and ends at the output carry (or output MSB). Therefore, propagating the carry across the
operator as fast as possible is a major stake as long as high speed is required. It can whether be
done duplicating hardware like for CSLA, but it can also be achieved by prioritizing the carry
propagation. In FA design, the output is computed together with the output carry. In Carry-
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Lookahead Adder (CLA) design, carry propagation is performed by an independent circuit
so the carries at the MSBs position do not need to wait for all outputs of inferior rank to be
computed to be available. For this, two peculiar values need to be calculated at each bit position:
the generate and propagate bits g

i

and p
i

defined by:

p
i

= x
i

ü y
i

,

g
i

= x
i

· y
i

.
(1.4)

Using these values obtained with very small circuitry, the carry of rank i is extracted from the
carry of previous rank by the following relation:

c
i

= g
i≠1

‚ (c
i≠1

· p
i≠1

) . (1.5)

Then by recurrence, any carry signal can be deduced knowing any carry signal of inferior rank
and all propagate and generate bits of intermediate rank. The addition output bit z

i

is then
simply deduced by the following relation:

z
i

= p
i

ü c
i

. (1.6)

For instance, knowing c
i

, the four following carries are defined by the equations:

c
i+1

= g
i

‚ (c
i

· p
i

) ,

c
i+2

= g
i+1

‚ (g
i

· p
i+1

) ‚ (c
i

· p
i

· p
i+1

) ,

c
i+3

= g
i+2

‚ (g
i+1

· p
i+2

) ‚ (g
i

· p
i+1

· p
i+2

) ‚ (c
i

· p
i

· p
i+1

· p
i+2

) ,

c
i+4

= g
i+3

‚ (g
i+2

· p
i+3

) ‚ (g
i+1

· p
i+2

· p
i+3

) ‚ (g
i

· p
i+1

· p
i+2

· p
i+3

)
‚ (c

i

· p
i

· p
i+1

· p
i+2

· p
i+3

) .

(1.7)

The direct translation of these equations into hardware leads to faster carry generation com-
pared to RCA, but also leads to an important area overhead.

However, parallel prefix adders, which are based on CLA paradigm, show better area per-
formance. The main idea is to propagate g and p bits to get equivalent couples (pÕ, gÕ) which
turns the computation of any c

i

in Equation 1.5 independent of c
i≠1

, so we finally get:

c
i

= gÕ
i≠1

,

z
i

= pÕ
i

ü c
i

= pÕ
i

ü gÕ
i≠1

,

(1.8)

and so all outputs can be computed in parallel. This equivalent representation is obtained thanks
to a series of 4:2 compressors, extracting an equivalent couple (pÕ

i

, gÕ
i

) from couples (p
i

, g
i

) and
(p

j

, g
j

) where j < i, performing:

pÕ
i

= p
j

· p
i

,

gÕ
i

= g
i

‚ (g
j

· p
i

) .
(1.9)

The details and mathematical proof of this method are available in [28]. The use of this (p, g)
4:2 compressor has led to the creation of several parallel prefix adders, such as the Brent-Kung
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Adder (BKA) and the Kogge-Stone Adder (KSA) [29], respectively depicted for their 16-bit
versions by Figures 1.13 and 1.14. The parallel adders are the fastest adders with a delay com-
plexity of O (log n), but with a superior area (2n ≠ log

2

(n) ≠ 2 compressors for BKA and
n log

2

(n) ≠ n + 1 compressors for KSA but with lower fan-out).

Figure 1.13 – 16-bit BKA. Red-striped square converts (x
i

, y
i

) to (p, g) (Equation 1.4) and
blue-striped square converts (p, g) to z

i

(Equation 1.8). Circles represent (p, g) compressors.

As a conclusion about integer adders used for FxP addition, several addition structures
exist. This section only presents the main principles, many other instances based on these prin-
ciples do exist, many being described in [28]. What is important to observe is that integer adders
have an area of minimum complexity O(n) and time complexity O(log n). However, both these
complexity cannot be achieved by a same structure. Reaching the minimum time complexity
implies parallelism and so larger area, whereas the smallest area implies longer critical path and
so higher delay. In the next section, the carry-save addition method is presented in the context
of summand grid reduction in multiplication. This is why it was not handled in this section.

1.3.4 Multiplication in Fixed-Point Representation

As for addition, FxP multiplication is performed by integer multiplication. Unlike addition, no
alignment of the inputs is necessary. Given the multiplication of two FxP numbers x(m

x

, d
x

)
and y(m

y

, d
y

), the result z(m
z

, d
z

) must respect for its integer part:

m
z

= m
x

+ my (1.10)

to avoid under/overflows. Moreover, if there must be no loss of accuracy, the fractional part
must also respect:

d
z

= d
x

+ dy. (1.11)
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Figure 1.14 – 16-bit KSA. Red-striped square converts (x
i

, y
i

) to (p, g) (Equation 1.4) and
blue-striped square converts (p, g) to z

i

(Equation 1.8). Circles represent (p, g) compressors.

Thus, for the accurate multiplication of n-bit inputs, a 2n-bit result is returned. Therefore, com-
pared to addition where only 1 more bit is necessary, multiplication is a potential source for
high resource needs downstream, which definitely justifies the necessity of quantizing numbers
along computations, as presented in Section 1.3.2.

Integer multiplication can be split in two phases – generation of summand grid, and sum-
mand grid addition, leading to the scheme showed in Figure 1.15. Compared to higher-base,

Figure 1.15 – General integer multiplica-
tion principle applied on 6-bit input

Figure 1.16 – General visualization of 6-
bit multiplication summand grid

binary multiplication is much simpler. Indeed, only two values are possible for all summands,
0 or the value of the multiplicand, which can leads to major simplifications. Indeed, the gen-
eration of each line of the summand grid of an n-bit multiplier can be performed by n 2-to-1-
multiplexers selecting whether the input bits are x

i

or 0, controlled by the value of the bit y
j

corresponding to the current line. Therefore, the most expensive part of the multiplier in terms
of resources is the carry-save reduction of the summand grid to reduce it to a final addition.
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The summand grid can be visualized by an n/2-stage triangle, as showed on Figure 1.16. The
reduction of the tree is achieved by several stages of FA and Half Adder (HA), until only two
lines are left. A HA can be seen as a simplified FA (see Section 1.3.3) with only two inputs
instead of three. A HA is built with only two logic gates instead of five for FA. FAs perform a
3-2 compression illustrated by Figure 1.17 and HAs a 2-2 transformation as in Figure 1.18.

Figure 1.17 – Full adder compression
– requires 5 gates

Figure 1.18 – Half adder transforma-
tion – requires 2 gates

Thus, the complexity of the multiplier in terms of speed and area depends on how the sum-
mand grid reduction is organized. Different classical methods to build reduction trees exist in
the literature, most famous ones being Wallace tree [30] and Dadda tree [31]. Wallace tree
reduces the partial product bits as early as possible, whereas Dadda tree reduces them as late
as possible. This leads to two different kinds of architectures, Wallace tree being the fastest,
whereas Dadda tree implementation is smaller. Figure 1.19 shows the difference between Wal-
lace and Dadda trees in a 5-bit multiplier context. Wallace tree requires 9 FAs and 3 HAs (51
gates) before final 8-bit addition, whereas Dadda tree needs 8 FAs and 4 HAs (48 gates).

(a) Wallace Tree (b) Dadda tree

Figure 1.19 – Wallace and Dadda trees schemes applied to 5-bit multiplication summand grid
reduction. The dashed rectangle corresponds to final 8-bit addition. Both require three stages,
but Wallace tree takes 51 gates while Dadda tree only requires 48.

Computing multiplications based on partial product reduction such as with Wallace or
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Dadda trees is a good compromise between speed and area. Indeed, only a few reduction
stages are necessary for the reduction before the final addition (2 stages for 8-bit multipli-
cation, 6 stages for 16-bit and 8 stages for 32-bit), which represents an acceptable overhead.
Tree multipliers have a delay complexity in O(log n).

A particular sort of tree multiplier is the array multiplier. It is made with one-sided Carry-
Save Adder (CSA) reduction tree (less efficient than distributed trees), which makes it slower
(O(n)) and theoretically larger than previously discussed multipliers. And the final computa-
tion is performed by a RCA, which is the slowest possible adder as discussed in Section 1.3.3.
However, it is very interesting in VLSI design thanks to its regularity which implies small
wires ensuring a compact layout. This regularity also implies fine-grained pipelining possibili-
ties. Figure 1.20 is a 6-bit signed array multiplier. The signed version is obtained using modified
Baugh-Wooley two’s-complement technique which consists in inverting the MSBs of all partial
products except the last one which has all its bits inverted except the MSB. On Figure 1.20,
AFA (resp. AHA) corresponds to a FA (resp. HA) whose inputs x

i

and y
i

are combined by an
AND cell, NFA corresponds to a FA which inputs x

i

and y
i

are combined by a NAND cell.

Figure 1.20 – 6-bit signed array multiplier – AFA (resp. AHA) corresponds to a FA (resp. HA)
which inputs x

i

and y
i

are combined by an AND cell, NFA corresponds to a FA which inputs
x

i

and y
i

are combined by a NAND cell. AHA and AFA structure are depicted in Figure 1.21.

Previously discussed multipliers are fast but their area is important. E.g, array multiplier area
complexity is O

!
n2

"
, whereas it is possible to reach an O(n) complexity with a sequential

multiplier such as the one presented on Figure 1.22. An n-bit sequential multiplier needs a
n-bit right-shift register for input y controlling a multiplexer selecting x or 0. The output of
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𝑥𝑖
𝑦𝑗 HA

(a) Structure of AHA

𝑥𝑖
𝑦𝑗 FA

(b) Structure of AFA

Figure 1.21 – Structures of AHA and AFA

the multiplexer is then accumulated in the MSB half of another register shifting one bit right at
each new addition. Therefore, the whole computation is only performed by an adder which can
be one of the several presented in Section 1.3.3, chosen whether for delay or area performance.

Figure 1.22 – Sequential multiplier – boxes hatched in grey are right-shift registers

In this section, several ways to manage computation time or area of the summand grid were
presented. However, improvements can be done upstream in order to reduce the initial size of
the summand grid. The most classical and efficient way is to apply modified Booth encoding
on y. In Radix-4 Booth encoding, y is encoded so only Ân/2Ê + 1 lines in the summand grid
are generated instead of n. However, this implies circuitry overhead for the encoding. Indeed,
n-bit y operand needs to be transformed into Ân/2Ê + 1 actions to perform on x for partial
product generation. These actions consists in a multiplication of x by an element of the set
{≠2, ≠1, 0, 1, 2}, which translates into 0 to 2 left shifts during the partial products generation,
as well as possible negation. The decision of the corresponding action is driven by the rules of
Table 1.7.

Higher radix encoding such as Radix-8 Booth encoding do exist, but increasing the radix
leads to much higher encoding complexity and a high cost due to a more important number of
shifts or dense wiring of input bits x

i

, which tend to cancel the benefits of the reduction of the
number of partial products. However, Radix-4 or Radix-8 Booth encoding techniques tend to
be faster than classical Radix-2 multiplication, especially for large bit widths, which imply a
large summand grid.
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y
i

y
i≠1

y
i≠2

YÂi/2Ê Operation
0 0 0 0 +0
0 0 1 1 +x
0 1 0 1 +x
0 1 1 2 +2x
1 0 0 ≠2 ≠2x
1 0 1 ≠1 ≠x
1 1 0 ≠1 ≠x
1 1 1 0 +0

Table 1.7 – Radix-4 modified Booth encoding – Y
j

is a radix-4 number which is not repre-
sented in the encoded. Only the corresponding operation is performed during partial product
generation.

In this section, several multiplication techniques and optimizations were presented. Their
efficiency strongly depends on the techniques used to generate and reduce the summand grid.
Generally, for an n-bit multiplication, tree multiplication is O(log n) fast, with or without
Booth encoding, whereas array multiplier is O(n) fast and sequential multiplier O(n log n)
fast. However, the sequential multiplier has an area in O(n) and the array multiplier in O(n2),
whereas Wallace or Dadda tree multipliers have an intermediate area. Array multiplier, despite
being the largest and not the fastest, has compact layout possibilities and fine-grained pipelin-
ing possibilities. The following section present approximate operators which try to overcome
the limitations of addition and multiplication complexity, often taking the previously presented
operators as a work basis.

1.4 Relaxing Accuracy Using Approximate Operators

In Section 1.3, hardware integer addition and multiplication were presented in the context of
FxP arithmetic. These operators are accurate, meaning they always return a mathematically
correct value. However, many applications do not need calculations to be perfectly accurate
since a degraded output can be tolerated. This is why these past decades, many researchers tried
to break performance limitations of accurate arithmetic by proposing an important number of
approximate operators. Section 1.4.1 presents a collection of previously published approximate
adders and Section 1.4.2 presents some multipliers.

1.4.1 Approximate Integer Addition

If adders are the most basic arithmetic operators, they nevertheless are intensively used in all
applications. Moreover, they are also directly used in some multiplier architectures and in many
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Figure 1.23 – Probability for the longest carry chain of a 64-bit adder to be inferior to x as a
function of x

implementations of more complex functions, such as exponential, logarithms, functions using
CORDIC algorithm, etc. Improving their latency, area or power consumption is therefore a
big stake for all arithmetic operator design field. For an n-bit adder, optimal delay complexity
is O (log n) and area complexity O (n) [27]. It is thus impossible to find perfectly accurate
adders getting below these complexities. For breaking these barriers, approximate adders were
created. This section presents a non-exhaustive list of them.

As stated in Section 1.3.3, the critical path of an n-bit addition is located between the input
LSBs (considering the adder has no input carry) and the z

n

output, which can be considered as
the adder’s output carry. Therefore, the best source of improvements in addition is based on the
ability to break the path of this critical carry chain. Indeed, most of the time during addition, the
whole carry chain is unused and yet limiting the frequency of the adder and spending energy
in glitch. It is showed in [32] that the probability for a series of n coin tosses, the longest run
of heads that does not exceed x is the series A

n

(x), defined by:

A
n

(x) =
I

2n if n Æ x,q
0ÆjÆx

A
n≠1≠j

(x) otherwise.
(1.12)

Using this series, the longest carry chain with respectively a probability of 99% and 99.99%
is given by Table 1.8. E.g. for a 256-bit adder, the longest propagation of a carry will be 20
bits with only 0.01% chance for it to be longer. It can also be noticed that the probability for
the longest carry chain not to exceed a given x has a fast growth, as illustrated by Figure 1.23,
which shows the probability for the longest carry chain for a 64-bit adder to be inferior or equal
to x as a function of x. This probability explicitly shows that cautiously breaking carry chains
only causes few chances for the result to be false. However, breaking a long carry chain is
likely to cause a strongly erroneous output since an error with the weight of the MSBs of the
carry chain can be performed. A balance must therefore be found between the occurrence of
errors and their amplitude. Given an adder of width n, the probability of having a correct result
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Bitwidth Longest run of 1’s Longest run of 1’s
with 99% probability with 99.99% probability

64 11 17
128 12 18
256 13 20
512 14 21
1024 15 22
2048 16 23

Table 1.8 – Bounds on the longest run of 1’s with high probability

limiting the carry chain to x is given by:

P (n, x) =
3

1 ≠ 1
2x+2

4
n≠x≠1

, (1.13)

which also has a fast growth with x.

1.4.1.1 Sample Adder, Almost Correct Adder and Variable Latency Speculative Adder

In [33], S.-L. Lu proposes the Sample Adder, which will be denoted as Lu’s Parallel Adder
(LPA) from this point. Based on the previous remarks about the potential of breaking the carry
chains, an LPA of width n is parameterized by k, the maximum width of the transmitted carry
chain. Based on the structure of a parallel prefix adder, the LPA is made of k rows of k-bit
carry-chain computing blocks (or inferior to k for boundary blocks) applied on propagate and
generate circuits. The output carry of each block is transmitted to the corresponding rank, and
the final sum is computed along with the corresponding sum bit. The example of a 16-bit LPA
with k = 4 is represented in Figure 1.24. First, a conversion of (x

i

, y
i

) to (p, g) is performed,
and carries values are computed in parallel. Finally, the sum bits x

i

, yi and the computed carries
c

i

are added to get the output sum bit at each position. The structure of LPA makes it delay
constant for a given k, independently from n. The author claims the adder to be faster and
smaller than KSA and Han-Carlson Adder (HCA), with a constant delay complexity in O(k)
and an area complexity in O(n).

A functionally similar adder denoted as Almost Correct Adder (ACA) is proposed in [34].
Indeed, the same principle of limiting the transmitted carry chain to a same k for each position
is used. However, the implementation is different. To understand it, the kill bit must be added
to generate-propagate scheme, giving Equations 1.14. The kill signal is set when both inputs
are 0. When this situation occurs, an hypothetical input carry can not be transmitted.

p
i

= x
i

ü y
i

,

g
i

= x
i

· y
i

,

k
i

= (¬x
i

) · (¬y
i

) .

(1.14)
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Figure 1.24 – 16-bit Sample Adder (LPA) with k = 4 – Red-striped square converts (x
i

, y
i

) to
(p, g) (Equation 1.4) and green-striped square converts sum bit x

i

ü yi and c
i

to output z
i

.

Considering k
i

, we get:

c
i

=

Y
_]

_[

0 if k
i

= 1,
1 if g

i

= 1,
c

i≠1

otherwise (p
i

= 1).
s

i

= a
i

ü b
i

ü c
i≠1

.

(1.15)

Using Equations 1.15, a matrix recursion can be found to express c
i

as a function of any of its
carry predecessors:

A
c

i

1

B

=
A

p
i

g
i

0 1

B A
c

i≠1

1

B

= M
i

A
c

i≠1

1

B

, and by recursion,
A

c
i

1

B

= M
i

M
i≠1

· · · M
i≠k+2

M
i≠k+1

A
c

i≠k

1

B

.

(1.16)

Therefore, knowing the adder output carry c
n+1

implies propagating, generating or killing car-
ries from first carry c

0

, performing n ≠ 1 simple binary matrix products (performed operations
are only logical OR and AND). ACA proposes to reduce this chain by limiting this series of
matrix products to a given number, taking into account the low probability for the existence of
a long carry chain. For instance, a 32-bit operator with a maximum considered carry chain of 8
taken into account for each output bit calculation will produce incorrect results only for cases
where the longest carry chain should be greater to 8, which occurs for only 2.4%.

To summarize, an n-bit ACA with x-bit restricted carry chain will have to consider n≠x+1
carry chains of size x instead of a single n ≠ 1-bit carry chain. However, successive x-bit carry
chains have x ≠ 1 bits recovering with their direct neighbour carry chains. As a consequence,
an organization for a fast calculation of carry chains matrix M

i:i≠x+1

is possible as showed in
Figure 1.25, where it is applied to a 16-bit ACA with 6-bit carry chains. M

i:i≠x+1

is the matrix
product

r
x≠1

j=0

M
i≠j

. By construction, an n-bit ACA with a k-bit considered carry chain has
an area complexity O (n log k) and a time complexity O (log k). In [32], it is showed that the
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Figure 1.25 – Distribution of calculations for carry propagation matrix products [34]

expectation for the longest chain of ones for an n-bit sequence is log n ≠ 2/3, which in our
case makes k proportional to log n for equal performance. Therefore, the final complexity of an
n-bit ACA is O (n log log n) for space complexity, which is near-linear even for relatively high
values of n, and O (log log n) for time complexity. Hence, the theoretical space complexity
limit for accurate adder is nearly reached, whereas time complexity is exponentially beaten, so
ACA can be considered as a fast approximate adder.

As previously mentioned, LPA and ACA produce the same function with different hardware
layout. Figure 1.26 sums up the effect of approximation on the output on an 8-bit LPA or ACA
with k = 2. Each colored rectangle takes the inputs considered in the computation of the
corresponding output bit(s). Most approximate adders can have their function fully described
by this type of figure, except for particular ones such as ETAI described in Section 1.4.1.2 or
configurable adders such as AC2A mentioned in Section 1.4.1.3.

+

Figure 1.26 – Consideration of carries in LPA and ACA output computation for an 8-bit adder
with k = 2 – Each color shows the inputs considered in the computation of the corresponding
output bit.

Figure 1.27 shows the error maps for 8-bit ACA for k = 2 and k = 4 in log scale. The error
map is the amplitude of error given all possible combinations of inputs x (input 1) and y (input
2). The white zones correspond to the inputs leading to no error, i.e. the inputs implying a carry
chain inferior to k. As expected, k = 4 leads to scarcer error than k = 2. The error map is
here represented using FxP-represented inputs with a 1-bit integer part. The theoretical highest
possible error is therefore equal to 2 ≠ q = 2 ≠ 21≠n. For LPA and ACA, it is interesting to see
that the error map seems to be fractal, which shows the structural different between the nature
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of their error and the uniform nature of quantization noise issued by FxP.

(a) n = 8, k = 2 (b) n = 8, k = 4

Figure 1.27 – Error maps of 8-bit LPA and ACA adders for different values of k – White zones
correspond to accurate calculations.

As pointed out, the ACA adder proposes high benefits in terms of delay with small area sacrifice
compared to classical accurate adders. Moreover, it is possible to choose the deepness of the
approximation by selecting the length of the maximal considered carry chain for each output
bit. As reducing this length is source of error, an architecture going against the first interest of
approximate computing is proposed in [34], the Variable Latency Speculative Adder (VLSA).
This adder is totally accurate, but based on ACA. The method consists in the following steps:

1. calculate the sum using an (n, k) ACA, choosing k such as a relatively low number of
errors occurs,

2. detect if an error has occurred, i.e. if a carry chain is bigger than k, and

3. if an error occurred, correct the sum in order to obtain an exact result.

This method, which provides a correct adder with variable latency from one unit to two, is only
interesting if the sum of the ACA and the error recovery system does not exceed an equivalent
state-of-the-art adder. An error recovery system which uses a maximum of the ACA structure to
detect and correct the error is proposed in [34]. The error detection mechanism has to consider
all chains of length k + 1 instead of k for the ACA. This leads to an O(log n) time complexity,
which is higher than (n, k) ACA time complexity, but still more efficient than a traditional
adder by two thirds according to the author. The correction system is an n/k-bit Carry Look-
Ahead (CLA) block, which returns carries that were missed by the ACA because of a too
long carry chain. This mechanism has about the same time-efficiency than the corresponding
ACA, so the critical path will be the error detection mechanism. The schematic of the resulting
architecture is given in Figure 1.28.
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Figure 1.28 – Hardware implementation of VLSA [34]

Tests comparing ACA, ACA with error detection, ACA with error detection and recovery
and a traditional fast adder provided by DesignWare are provided by [34]. ACA adders are
optimally sized for an accuracy of 99.99% following Table 1.8 values. Results are showed on
Figure 1.29. For ACA with no error detection and recovery, we can see a clear benefit in de-
lay compared to traditional adder. They are both near-linear, but the proportional coefficient is
much smaller for ACA. In terms of area, ACA is about 25% smaller than the traditional adder.
For the ACA with error recovery, it can be noticed that it is nearly as fast as a traditional fast
adder. Though, the error correction only occurs for 0.01% of computations. The average delay
of corrected ACA is 0.9999 multiplied by the error detection delay, which is about 2/3 of the
traditional adder according to first graph of Figure 1.29. In terms of area, the ACA and its error
recovery are together about 1.5◊ larger than an optimal exact adder, but its complexity is linear.

To conclude about ACA:

• ACA takes advantage of deep carry propagation scarcity.

• It performs scarce errors depending on its design, but with a potential high amplitude,
especially when a carry chain is incompletely considered on a bit of high significance.

• It has a near-linear delay even for high values of n, with a very low proportional coeffi-
cient compared to a fast adder.

• It covers a 25% smaller area compared to this same fast adder.

• Its structure allows efficient error detection and correction as proposed by VLSA struc-
ture, which constitutes a variable latency accurate adder.

In many more recent papers, ACA is still used as a reference for comparison with other ap-
proximate operators. Error detection and error correction proposed by VLSA can easily be
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Figure 1.29 – Delay and area results for ACA with different bitwidth [34]

applied to any other approximate operator, and is a very interesting accurate structure for sys-
tems which can allow variable number of cycles for an operation. In this context VLSA can be
seen as a 2-cycle addition, which can nearly always be bypassed in 1 cycle.

1.4.1.2 Error-Tolerant Adders

Between 2009 and 2010, Zhu proposed four approximate adders:

• Error-Tolerant Adder type I (ETAI) [35],

• Error-Tolerant Adder type II (ETAII)[36],

• Error-Tolerant Adder type II Modified (ETAIIM) [36], and

• Error-Tolerant Adder type IV (ETAIV) [37].

In [35], the first Error-Tolerant Adder (ETA) is presented, then referred as ETAI in the
subsequent iterations [36, 37]. Its principle is simple: the most significant part (MSB side) of
the adder is an accurate adder, and the least significant part (LSB side) is approximated with
Algorithm 1. The inputs x

i

and y
i

of the approximate part are read from their MSB. When both
are equal to 1, the calculations are stopped and all bits from rank i to the LSB are set to 1. This
mechanism is depicted in Figure 1.30.

ETAI is made for fast approximation. Its goal is to round up the result as fast as possible
when a generate signal is met in the approximate part, i.e. both input bits are 1. In this way,
the carry which should have been generated towards the MSB is compensated at best by max-
imizing the lower weight bits that have not been treated yet, that is to say all the bits from the
carry generation to the LSB. The propagation of these 1s to the right is performed by a control
block which was designed for propagating the information as fast as possible when the two-1s
case occurs, using a control signal. This block is composed of two types of sub-blocks:

• Control Signal Generating Cells of type I (CSGCI), which takes as inputs a couple
(a

i

, b
i

) and the output control signal of rank i + 1 noted CTL
i+1

, and
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Algorithm 1 Computation of ETAI approximate part
i Ω MSB_inac Û index of the inaccurate part MSB
two_ones Ω False
while i >= 0 and two_ones = False do

if x
i

= 1 and y
i

= 1 then
two_ones Ω True
z

i

Ω 1
else

z
i

Ω x
i

‚ y
i

end if
end while
while i Ø 0 do

z
i

Ω 1
i Ω i ≠ 1

end while

1 0 1 1 0 0 1 1
0 1 1 0 1 0 0 1

1 0 0 1 1 0 1 0
0 0 0 1 0 0 1 1+

1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1

accurate part inaccurate part

Starting
point

Op. direction Op. direction
MSB LSB

All bits set to "1"Classical operation

Figure 1.30 – Principle of ETAI
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Figure 1.31 – ETAI control block [35]

Block Output value CTL
i

CSGCI CTL
i+1

‚ (x
i

· y
i

)
CSGCII CTL

i+1

‚ CTL
i+k

‚ (x
i

· y
i

)

Table 1.9 – Logical equations of CSGC type I and II

• Control Signal Generating Cells of type II (CSGCII), which is similar to CSGCI, but
takes in addition as input another control signal of rank i + k, where k is fixed at design
time.

CSGCII allows for the control signal to be short-circuited. This way, for an n+m-bit ETAI(n, m)
with n-bit accurate part and m-bit approximate part, the critical 1s propagation is k + 1 < m,
where k is the spacing between two CSGCII in the control block. The architecture of the con-
trol block is graphically described in Figure 1.31, for a 20-bit approximate part ETAI. CSGCI
and CSGCII are simple logic blocks easily described by their binary logic in Table 1.9.

Once the control bits are generated/propagated for the whole approximate part, calculations
are performed by a carry-free addition block, composed of a logic function called Modified
XOR (MXOR) and presented at transistor-level logic in [35]. Studying the truth table of this
new logic block reveals that it actually is a 3-input OR gate. Hence, each output z

i

of the
approximate part is given by z

i

= MXOR(x
i

, y
i

, z
i

) = x
i

‚ y
i

‚ CTL
i

.
The accuracy of ETAI is studied introducing Minimum Acceptable Accuracy (MAA) and

Acceptance Probability (AP). MAA is a fixed value defining what is the desired minimum
accuracy compared to an exact computation for the result, expressed as a percentage. AP is
the probability for a given MAA to be reached by the operator. Simulation results are given
by Figure 1.32. The first graph is obtained for several 16-bit ETAIs with 104 simulation sets of
inputs, the second one has unknown simulation size parameters, but all ETAIs are designed with
an approximate part representing 75% of the adder width. For 99% of MAA, ETAI(8, 8) gives
quite a high AP (about 99%), but when the approximate part length grows, AP dramatically
drops when MAA increases. The second graph shows that for small operators, a difference
of 1% on the MAA provokes a high drop in AP. For longer operators, the difference of AP
for different MAA gets tinier. Errors performed by an ETAI(n, m) can be high in amplitude
(nearly 2m≠1). ETAI is an adder which often performs errors, often with a low amplitude
but sometimes with relatively high amplitude. Moreover, it has very bad performance for the
addition of low amplitude numbers.
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Figure 1.32 – ETAI accuracy simulation results [35]

Simulation results for the timing and delay performance of ETAI compared to most clas-
sical accurate adders are given in Table 1.12 [37] for 0.18µm CMOS process, for a 100 MHz
frequency. In this table, CSK refers to Carry-Skip Adder (see [28]). The details about the size
of these adders is not given. 100 sets of inputs were used for simulation, which is a bit low for
giving an average of all different possible reactions of ETAI. These results give advantage to
ETAI towards classical correct adders on this metric, with Power-Delay Product (PDP) savings
up to more than 80% compared to carry-select implementation. Once again, results must be
moderated, since the experimental conditions are not very clear (including size of adders, size
of approximate part, value of CSGCII spacing parameter k).

Another fast approximate adder, ETAII, is presented in [36]. The structure of this adder
is based on the same idea as LPA and ACA previously presented, i.e. shortening carry prop-
agation paths. Indeed, carry propagation chain is cut in more little sub-chains of equal size.
But contrary to ACA, every output bits do not take the same input propagated carry chain size.
In the structure of ETAII given Figure 1.33, it can be noticed that each sub-block of size X
is calculated using an exact adder, but taking into account only the carries generated inside
and the propagated output carry of its predecessor carry generator sub-block. For carry gen-
eration, CLA blocks are implemented and for the sum generator, classical RCAs are used to
minimize area. Well-designing the ETAII is entirely about finding the proper size for the carry
propagation chains. The author studied the AP of 32-bit ETAII given different carry generator
blocks sizes m. The results are available in Table 1.10. Simulations were led using 104 sets of
inputs, which is quite low again for the adder width, so the results must be taken with caution.
For a 32-bit adder, a high AP can be reached for a high MAA with quite a low carry chain
length. E.g., more than 97% of tested inputs lead to an accuracy superior to 99% compared
to the accurate value. Contrary to ETAI, ETAII has no relative accuracy disparity comparing
low amplitude and high amplitude input sets. Simulation in [36] showed that AP for a given
MAA is similar for ETAII whatever the range of inputs is, at least for n/m = 4. Comparison
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Figure 1.33 – Hardware implementation of ETAII [36]

MAA (%)
X 1 2 4 8 16

100 0.0118 0.2204 0.8306 0.9961 1.0
99 0.5238 0.7927 0.9725 0.9985 1.0
98 0.5419 0.8075 0.9795 0.9985 1.0
97 0.5534 0.8119 0.9815 0.9995 1.0

Table 1.10 – AP as a function of MAA and carry propagation block size for 32-bit ETAII

of accuracy between an ETAI (with unknown parameters) and a 32-bit ETAII with 4-bit carry
propagation block is given by the author. For instance, for a 99% MAA and inputs in the integer
range J0, 28K, ETAII presents a 97% AP against only 52% for ETAI.

In order to improve ETAII accuracy, a modified version is proposed in [36], the ETAIIM.
Indeed, ETAII has a periodic structure, with the same substructure for high significance and
low significance output bits, which makes it give as much importance to LSB part than to MSB
part, which is generally unwise. In order to give more importance to MSB, ETAIIM takes the
same structure as ETAII, but with a longer carry propagation chain for most significant bits.
Figure 1.34 represents a 32-bit ETAIIM, with 4-bit carry propagation for all LSB and a 12-bit
MSB carry propagation chain. Such a structure induces a longer critical path, corresponding
to this longer carry chain and the corresponding sum generator. In this way, the previously de-
scribed ETAIIM has a 99.9% AP for a 99% MAA against 97.0% AP for the same MAA for
the corresponding ETAII. Hardware simulations results are presented in Table 1.12 [37], com-
paring classical correct adders to ETAII and ETAIIM. The only difference between ETAII and
ETAIIM is the delay which is 64% higher for ETAIIM, but both operate with the same power.

ETAIV is presented in [37]. Its principle is the same as ETAII and ETAIIM, shortening
the carry chain. However, ETAIV presents longer carry chains than ETAII and ETAIIM for an
identical delay, in exchange for a higher energy cost. Each carry generator block is divided into
two parts:
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Figure 1.34 – Hardware implementation of ETAIIM

• the LSB carry generator is strictly identical than the one met in ETAII and ETAIIM and

• the MSB carry generator is composed of two parallel carry generator blocks: one taking
value 0 (GND) as input carry, the other taking 1 (VDD). In this way, the two exhaustive
possibilities for the concerned partial carry propagation are calculated. The good one is
chosen thanks to a 2-bit multiplexer controlled by the LSB carry generator output carry.

The partial block diagram of ETAIV is depicted in Figure 1.37. The author performed sim-
ulations on 104 sets of inputs and accuracy results are given in Table 1.11, where X represents
the number of bits of each sum generator (and thus each carry generator). ETAIV provides
better results in terms of AP for a given MAA than ETAII (considering the same block size X).

+

Figure 1.35 – Consideration of carries in ETAIV output computation for an 8-bit adder with
X = 2 – Each color shows the inputs considered in the computation of the corresponding
output bit.

The error maps for 16-bit ETAIV with respectively blocks of width X = 2 and X = 3 are
depicted in Figure 1.36. For X = 2, triangular patterns are clearly visible, corresponding to ar-
eas where error is less. Generally, the error is quite high since many carries are not transmitted.
For X = 3, the errors seem more homogeneous and with lower amplitude in average.
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(a) n = 16, X = 2 (b) n = 16, X = 3

Figure 1.36 – Error maps of 16-bit ETAIV for different values of X
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Figure 1.37 – Hardware implementation of ETAIV

MAA (%)
X 1 2 4 8 16

100 0.0430 0.4136 0.9136 0.9985 1.0
99 0.6466 0.8848 0.9917 1.0 1.0
98 0.6695 0.9063 0.9966 1.0 1.0
97 0.6749 0.9127 0.9976 1.0 1.0

Table 1.11 – AP as a function of MAA and x for 32-bit ETAIV



50 Chapter 1

Type Power
(mW)

Delay
(ns)

PDP
(pJ)

Transistor
(count)

PDP ◊
transistor

count
RCA 0.22 4.04 0.89 896 797
CSK 0.46 2.90 1.33 1728 2298
CSL 0.60 3.06 1.84 2176 4004
CLA 0.51 2.37 1.21 2208 2672
ETAI 0.13 2.29 0.30 1006 302
ETAII 0.24 0.85 0.20 1372 274

ETAIIM 0.24 1.39 0.33 1372 453
ETAIV 0.25 1.03 0.26 1444 375

Table 1.12 – Simulation results for Error-Tolerant Adders [37]

Hardware simulation results for ETAIV are given in Table 1.12. Because of its longer crit-
ical paths, ETAIV needs slightly more power than ETAII and ETAIIM and has a 21% greater
delay. The authors also show by simulation that the design has a good accuracy even for low
amplitude inputs. It is a good alternative to ETAIIM, if a little amount of area can be traded for
delay reduction.

With ETAI, ETAII and their modified versions ETAIIM and ETAIV, four subsequent ap-
proximate adders are proposed. ETAI is original by its reversed carry-propagation approxima-
tion, but is very inaccurate and has very poor performance for low amplitude inputs. However,
it is a very low energy adder thanks to its low delay. ETAII, ETAIIM and ETAIV have a very
different nature from ETAI, but they are very close the one from the others in their principle.
The most accurate is ETAIV, followed by ETAIIM and ETAII. However, the fastest is ETAII,
then ETAIV and ETAIIM. ETAII is the most energy-efficient, ETAIV coming second. The
four operators have linear area complexity, but ETAI is the smallest, followed by ETAII and
ETAIIM tied, not far from ETAIV. However, the authors compare these operators to some clas-
sical adders, but not to state-of-the-art fast adders such as KSA [29] or Ladner-Fischer Adder
(LFA) [38].

1.4.1.3 Accuracy-Configurable Approximate Adder

In [39], Kahng proposes an Accuracy-Configurable Adder (AC2A). This operator is able to
perform additions on different levels of accuracy on an unique implementation using a series
of error correction systems which can be activated or deactivated thanks to power gating tech-
niques. The approximate part of an n-bit AC2A is composed of n/k ≠ 1 recovering k-bit exact
adders, whose only the MSB part is kept for the final result, as illustrated by Figure 1.38.
Hence, errors are generated only when a carry is not propagated to the input of one of these
sub-adders. As a functional point of view, AC2A resembles ETAIV, except that the sub-blocks
recover by a half instead of 2/3 and that the accuracy is tunable at run time on AC2A. The
approximate computation part has a delay complexity of

O (log
2

k + 1) ,
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+

Figure 1.38 – Consideration of carries in AC2A output computation for an 8-bit adder with
k = 2 – Each color shows the inputs considered in the computation of the corresponding
output bit.

k = 2 k = 2 k = 3 k = 4 k = 5
delay 0.5 0.65 0.75 0.83 0.89
area 0.87 1.05 1.12 1.15 1.12

dynamic power 0.44 0.68 0.84 0.95 1.00
pass rate 0.554 0.829 0.942 0.982 0.995

Table 1.13 – Estimated parameters of the approximate computation part of a 16-bit AC2A
relatively to a conventional 16-bit CLA

an area complexity of
O ((n ≠ 2k) (log

2

k + 1)) ,

and a dynamic power complexity of

O
1
(n ≠ 2k) (log

2

k + 1)2

2
.

This means delay complexity beats the optimal delay for an accurate adder, whereas area com-
plexity is slightly above the optimal accurate adder. Estimations of minimal delay, area, dy-
namic power and pass rate (1 ≠ error rate) as a function of the value of k for the approximate
computation part of a 16-bit AC2A compared to a conventional CLA is given in Table 1.13. For
k Æ 6, the proposed computation part is more power-efficient than the classical CLA in terms
of dynamic power, but its area is larger when k Ø 2. It can thus be assumed that its static power
is superior to the one of CLA. When k decreases, the minimal delay of the proposed operator
decreases, but the error rate increases because of the induced larger number of unconsidered
propagated carries. Therefore, a trade-off must be found between delay and pass rate.

To characterize AC2A approximate part more completely, two metrics are used in [39]:

ACC
amp

= 1 ≠ |R
c

≠ R
e

|
R

c

, and (1.17)

ACC
inf

= 1 ≠ B
e

B
w

, (1.18)

where R
c

and R
e

are the respective values of the correct and approximate results, B
e

the
number of erroneous bits in the approximate results and B

w

the output bit-width. Therefore,
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CLA LPA AC2A ETAI ETAIIM
area (µm2) 910 1356 923 876 678
delay (ps) 280 210 200 200 260

pass rate (%) 100 99.2 94.1 10.0 97.0
ACCamp 1.000 0.998 0.997 0.999 0.999
ACCinf 1.000 0.999 0.993 0.694 0.996

EDC area overhead (%) N.A. 75 28 N.A. 15

Table 1.14 – Comparison of 16-bit AC2A approximate part with k = 4 with CLA and other
approximate adders

ACC
amp

measures the relative amplitude of the error, 1.0 representing a perfect accuracy and
the value decreasing with the error. ACC

inf

represents the proportion of correct bits, 1.0 repre-
senting a correct output bit sequence. Considering these metrics, comparisons of 16-bit AC2A
approximate part with k = 4, ETAI [40] and ETAIIM [36] described in Section 1.4.1.2,
LPA [33] described in Section 1.4.1.1 and an accurate CLA are given in Table 1.14. In this
table, EDC stands for error detection and correction system. The best delay is obtained for
AC2A and ETAI, but ETAI is 38% less area-costly than AC2A. However, ETAI pass rate and
ACC

inf

are very low. In terms of area, AC2A is beaten by ETAIIM, which is also more accurate
considering ACC

amp

and ACC
inf

metrics and pass rate, but with a delay overhead of 30%. LPA
is nearly as fast as AC2A and also more accurate, but as it is based on a parallel prefix struc-
ture, its area is superior by 47%. The required area overhead for error detection and correction
is 75% for LPA, whereas it is only 28% for AC2A and 15% for ETAIIM. Error detection and
correction method is discussed below. A first conclusion from these results is that AC2A is a
fast adder with a good balance between accuracy and area.

Figure 1.39 [39] gives comparative results for AC2A adder, using the metrics ACC
amp

and
ACC

inf

, varying voltage from 0.6V to 1.0V . In these graphs, AC2A is refered to as ACA adder
(not to be confused with Almost-Correct Adder [34]), and Lu’s adder refers to LPA [33],
both presented in Section 1.4.1.1. AC2A shows an interesting resistance to VOS. Indeed, for
ACC

amp

metric, only ETAI achieves a better resistance, but it has extremely bad results with
ACC

inf

metric, whereas AC2A beats every other tested operator, closely followed by ETAIIM.
What can be concluded is that AC2A has a shorter critical path than the tested adders, and
ensures a good accuracy in terms of error amplitude as well as a low Bit Error Rate (BER).

As mentioned before, AC2A calculation errors occur when at least one of the sub-adder
should have taken an input carry. Knowing this, detecting an error can be performed with a
very little overhead. Correction can then be performed by transmitting the lost carry or carries
to the concerned sub-adders. Just as VLSA (see Section 1.4.1.1), the entire error correction
could be performed with additive cycles, but with only a small area overhead since most of
the design is re-used for correction. However, unlike VLSA, AC2A proposes a configurable
accuracy. Indeed, the periodical structure of the error correction system allows several levels of
correction, so that an erroneous result can be partially corrected. For this, a pipelined correction
design is proposed, following the principle showed in Table 1.15. During the first cycle, the
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Figure 1.39 – Accuracy vs power for AC2A and other approximate adders under VOS
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approximate calculation is performed. Then, each following cycle is dedicated to the successive
correction of each sub-adder, from the second one counting from the LSB. By power-gating
each partial error correction systems, different levels of accuracy can then be targeted. By
design, calculation and correction cycles have the same theoretical maximum delay.

Cycle S
3

S
2

S
1

S
0

1 7 7 7 3
2 7 7 3 3
3 7 3 3 3
4 3 3 3 3

Table 1.15 – Error correction cycles in a 4-block AC2A – Checkmarks means the output of
block S

i

is accurate after j cycles, crosses that it is inaccurate.

An example of the previously described structure is developed in [39] taking a 32-bit AC2A
composed of 4 8-bit sub-adders. With such a structure, four modes can be applied:

• mode-1: no power-gating, the whole pipeline is active, and the produced result is exact,

• mode-2: only stage 4 is power-gated, only the most significant bits sub-adder is not
corrected,

• mode-3: stage 3 and 4 are power-gated, only one sub-adder is corrected, which is the
second one from the LSB,

• mode-4: stage 2, 3 and 4 are power-gated, and so only the approximate calculation is
performed with no error correction.

Comparisons of the accuracy reached by these modes using ACC
amp

and ACC
inf

metrics, as
well as power and power reduction compared to a conventional pipelined adder are give in
Table 1.16. The conventional pipelined adder refers to an exact adder where the calculation
is regularly performed by pipelining the calculation using its sub-adders. Therefore, the 32-
bit conventional pipelined adder used as a reference also has four pipeline stages, each stage
performing one-fourth of the total calculation, contrary to the proposed pipeline where the
whole approximate calculation is performed on the first pipeline step. In mode-1, the conven-
tional pipelined adder is more energy efficient than AC2A, but when using approximate modes
2 to 4, energy saving raises from 12.4 to 51.6%, with a relatively small loss of accuracy. Ac-
curacy results of the 32-bit pipelined AC2A on SPEC 2006 benchmarks [41] detailed in [39],
present generally good accuracy for every mode, even using mode-4. In this mode, ACC

amp

is
superior to 0.99 for every test and above 0.95 for ACC

inf

.
In order to show the advantage of configurability in terms of power, the same benches are

run with a dynamic configuration of the accuracy. Even if it is not specified in [39], it can be
assumed that the operating modes were chosen thanks to a succession of simulations and con-
figuration optimizations and so there is no auto-control system. The final configurations insure
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Configuration ACCamp
(max)

ACCinf
(max)

Total power
(mW)

Power
reduction

mode-1 1.000 1.000 5.962 -11.5%
mode-2 0.998 0.960 4.683 12.4%
mode-3 0.991 0.925 3.691 31.0%
mode-4 0.983 0.900 2.588 51.6%

Table 1.16 – Accuracy and power consumption of 4-stage pipelined 32-bit AC2A as a function
of the active mode and comparison with conventional pipelined adder

that 0.99 Æ ACC
amp

Æ 1.00 for the first series of tests and 0.95 Æ ACC
inf

Æ 1.00 for the sec-
ond. Results in [39] show that the proposed 32-bit AC2A leads to an average of 30.0% power
savings with the ACC

amp

objective (44.5% at best) and 35.8% average power savings with the
ACC

inf

objective (47.1% at best) on SPEC 2006 benchmarks.

As a conclusion, AC2A proposes a pipelined accuracy-configurable adder with good accu-
racy performance and with potentially important energy savings thanks to partial power gating
applied on the error-correction system. However, accuracy configuration must be done offline
and so programming effort is increased. In terms of power consumption, AC2A is quite near
to ETAI performance, which is intermediately energy-efficient (see Section 1.4.1.2), but with
a much better accuracy in terms of information accuracy, meaning the number of correct bits
produced. However, AC2A has two main drawbacks:

• error correction is gradually performed from the least significant sub-adders, and

• changing the error correction efficiency at run time implies a modification on the num-
ber of cycles for an addition, and variable-latency instructions are generally difficult to
handle in an instructions pipeline.

Discarding these drawbacks, AC2A coupled with a good configuration can lead to important
energy savings with a relatively low loss of accuracy or information.

1.4.1.4 Gracefully-Degrading Adder

This section presents a quality-configurable approximate adder denoted as Gracefully-Degrading
Adder (GDA) [42]. In comparison to AC2A [39] presented in Section 1.4.1.3, GDA is meant to
be an approximate adder with a better accuracy, reached with less effort. Indeed, as showed in
Table 1.15, each AC2A additive correction cycle leads to better correction, the first correction
cycle correcting LSB bringing much less accuracy improvement than the last one, correcting
MSB. Both GDA and AC2A can reach the same maximum quality with the same effort, but the
optimized operator is able to reach a very good quality with a dramatically reduced amount of
effort when compared to the original one.

The proposed GDA is based on a structure very similar to ETAIV [37] described in Sec-
tion 1.4.1.2. Indeed, the adder is divided into smaller chained adders whose input can be
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switched whether to the upstream sub-adder output carry or to the output of a carry-in pre-
diction block thanks to a multiplexer. For an n-bit GDA divided in four n/4-bit sub-adders,
with X = (X

3

, X
2

, X
1

, X
0

) and Y = (Y
3

, Y
2

, Y
1

, Y
0

), both are n/4-bit subsets of inputs, and
Z = (Z

3

, Z
2

, Z
1

, Z
0

), n/4-bit subsets of outputs, the structure of the corresponding GDA is
given in Figure 1.40. The configuration of GDA consists in setting up the multiplexers. If the

3210

Figure 1.40 – Structure of proposed n-bit GDA composed of 4 n/4-bit sub-adders

upstream sub-adder output carry is chosen, then a bigger sub-adder is virtually used, causing
longer delay in return for a higher accuracy. In order to obtain a faster operator, it is then better
to choose carry-in prediction blocks as sub-adders input. To be prevented from an important
loss of accuracy, these blocks need to predict the input carry efficiently and with the shortest
possible delay, and imperatively strictly inferior to the adder unit.

Proposed carry-in prediction is based on a hierarchical scheme. Indeed, in order to have a
fast and accurate prediction, many LSBs have to be considered, more precisely more than the
length of the proposed GDA adder units. To achieve that, prediction computation needs to be
parallelized. As for ACA (see Section 1.4.1.1), prediction is based on propagate and generate
signals p

i

and g
i

, which define a recursive formula for the calculation of the carry value c
i+1

:

p
i

= a
i

ü b
i

,
g

i

= a
i

· b
i

,
c

i+1

= g
i

‚ (p
i

· c
i

().
(1.19)

By developing the previous equations and by assuming the longest carry chain cannot exceed
t, the expression of the carry signal c

i

is then

c
i

= g
i≠1

‚ (p
i≠1

· g
i≠2

) ‚ · · · ‚
Q

a
i≠t+1Ÿ

j=i≠1

p
j

R

b · g
i≠t

‚
Q

a
i≠tŸ

j=i≠1

p
j

R

b · c
i≠t

. (1.20)

Using Equation 1.12 in Section 1.4.1, we can prove that for a 32-bit adder, the probability for
the longest carry-chain to exceed 8 is 2.43%. Therefore, assuming taking the 8 preceding bits
into account for carry prediction is acceptable, the expression of the carry signal becomes

c
i

= cÕ
i

‚
1r

i≠4

j=i≠1

p
j

2
· cÕ

i≠4

, with
cÕ

i
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) ‚ · · · ‚
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(1.21)
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Moreover, cÕ
i≠4

will propagate to c
i

only if

i≠4Ÿ

j=i≠1

P
j

= 1. (1.22)

These equations lead to the hierarchical prediction scheme of Figure 1.41, where two 4-bit
groups are watched in parallel before considering the condition showed by Equation 1.22 using
AND gates.

Carry-in
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𝑐𝑖−4
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𝑝𝑖−1: 𝑝𝑖−4

𝑐𝑖′ 𝑐𝑖

Figure 1.41 – GDA hierarchical prediction scheme

Based on this hierarchical prediction scheme, another level of configurability can be intro-
duced. Indeed, following the scheme proposed by Figure 1.42, the number of preceding bits
considered in the prediction can be set by a series of multiplexers, with a step determined by
the deepness of carry-in prediction blocks. For instance, the number of carries which can be
considered is whether 4, 8, . . ., 4 ◊ k, where k is the number of implemented unitary carry-in
prediction blocks. This structure gives a high number of possibilities for the granularity of the
reconfigurability and on the parallelism of the carry-in prediction.
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Figure 1.42 – GDA reconfigurable prediction scheme

To conclude about its structure, GDA proposes two levels of configuration:

• by its possibility to select the use of carry-in prediction or exact adding between each
sub-adder, and

• by its possibility to select the deepness of carry-in prediction when this mode is active.
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By structure, GDA offers fine-grained control for the level of error that can be tolerated at its
output, and potentially offers a good prediction of carry despite an important area penalty for
control.

In [42], the authors give very complete comparative simulation results of 32-bit GDA com-
pared to exact adders, RCA and CLA, and other approximate adders, Variable Latency Carry
Select Adder (VLCSA-1) [43] and LPA [33] described in Section 1.4.1.1, leveraging worst-
case-error, error rate and average error. Results are given in Table 1.17. All simulations are
based on one million randomly-generated inputs, so they have to be taken with caution, espe-
cially worst-case error. All adders are static, meaning AC2A and GDA are not generated using
their reconfigurable version, the configuration is set before implementation. M

A

corresponds
to the mode AC2A is operating such as described in Table 1.16. For the test and for each mode,
AC2A was implemented in a non-pipelined version in order to get fair area and delay mea-
surements. M

B

and M
C

are the parameters for GDA. M
B

indexes the number of bits for each
sub-adder (respectively 4, 8, 12 or 16) and M

C

the number of prediction bits (respectively 4,
8, 12 or 16). From this point and for the rest of this section, AC2A

i

will denote AC2A on
mode M

A

= i, and GDA
(i,j)

will denote GDA on mode (M
B

, M
C

) = (i, j). When com-
paring all exact adders, RCA, CLA, AC2A

4

and GDA
(4,4)

, the two last exact adders achieve
a better delay than the classical others, but with an important area and power overhead. For
instance, GDA

(4,4)

is 42.3% faster than RCA, but with 44.5% area overhead and twice the
operating power. Compared to AC2A

4

, GDA
(4,4)

occupies 66.45% more area and consumes
7.97% more power, but is 5.93% faster. It shows than nor AC2A

4

neither GDA
(4,4)

are only
efficient in terms of delay in their exact version.

Accuracy-configurable implementation of AC2A and GDA are compared in Table 1.18,
showing the area for each reconfigurable operator, as well as the power and delay corresponding
to all their operating modes. Delayú corresponds to the delay when applying voltage scaling
for each operator and each mode in order to have the same power consumption as the highest,
occurring for GDA

(1,4)

. In their reconfigurable versions, it can be observed that GDA costs
19.43% less area than AC2A. In accurate mode, GDA is only 0.90% slower than AC2A because
of the higher number of multiplexers in the critical path. Results from Table 1.17 and Table 1.18
highlight the benefits of GDA compared to AC2A for an equivalent power (Delayú rows in
Table 1.18) and for each of the three metrics considered. Figure 1.43 shows the benefits of
GDA, selecting the optimal accuracy configuration for each of these metrics:

• AC2A worst-case error is compared to GDA
(1,1)

, GDA
(2,1)

, GDA
(3,1)

, GDA
(4,1)

and
GDA

(4,4)

.

• AC2A error rate is compared to GDA
(1,1)

, GDA
(1,2)

, GDA
(1,3)

, GDA
(1,4)

and GDA
(4,4)

.

• AC2A average error is compared to GDA
(1,1)

, GDA
(2,2)

, GDA
(3,3)

and GDA
(4,4)

.

In conclusion, the slight delay overhead in GDA structure allows significative reductions of
the error, contrary to AC2A. However, it has to be kept in mind that each of the curves of
Figure 1.43 does not represent the entirety of GDA but only the optimal points. This means for
instance that the ideal configuration for optimizing worst-case error is not the same for error
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RCA CLA VLCSA-1 LPA
Area (µm2) 1184 1736 2686 2321
Power (W ) 2.407E-05 3.106E-05 5.054E-05 3.668E-05
Delay (ns) 7.88 5.40 1.24 0.83

WCE 0 0 269,488,128 2,215,641,344
ER 0 0 16.6715% 32.2528%
AE 0 0 7,906,556 45,247,362

AC2A
MA 1 2 3 4

Area (µm2) 2200 2416 2632 2848
Power (W ) 4.209E-05 4.692E-05 4.977E-05 5.259E-05
Delay (ns) 1.44 1.78 2.11 2.44

WCE 269,488,128 269,484,032 268,435,456 0
ER 16.7344% 11.6149% 6.0388% 0
AE 8,352,852 8,352,848 8,351,497 0

GDA
(MB, MC) (1, 1) (1, 2) (1, 3) (1, 4)
Area (µm2) 1501 1597 1677 1741
Power (W ) 3.940E-05 4.383E-05 4.623E-05 4.793E-05
Delay (ns) 1.44 1.78 2.11 2.44

WCE 269,488,128 268,439,552 268,435,456 268,435,456
ER 16.7344% 0.8873% 0.0453% 0.0027%
AE 8,352,852 509,152 33,690 2,215

(MB, MC) (2, 1) (2, 2) (2, 3) (2, 4)
Area (µm2) 1577 1625 1689 1753
Power (W ) 4.329E-05 4.567E-05 4.773E-05 4.952E-05
Delay (ns) 2.19 2.48 2.86 3.14

WCE 16,843,008 16,777,216 16,777,216 16,777,216
ER 8.8746% 0.3761% 0.0232% 0.0018%
AE 523,985 31,614 1,954 67

(MB, MC) (3, 1) (3, 2) (3, 3) (3, 4)
Area (µm2) 1596 1628 1660 1708
Power (W ) 4.437E-05 4.597E-05 4.703E-05 4.840E-05
Delay (ns) 2.93 3.22 3.51 3.85

WCE 1,048,832 1,048,576 1,048,576 1,048,576
ER 5.9984% 0.1922% 0.0122% 0.0016%
AE 32,886 2,015 128 17

(MB, MC) (4, 1) (4, 2) (4, 3) (4, 4)
Area (µm2) 1615 1631 1663 1711
Power (W ) 4.552E-05 4.631E-05 4.735E-05 4.871E-05
Delay (ns) 3.68 3.97 4.26 4.55

WCE 65,536 65,536 65,536 0
ER 3.0964% 0.1884% 0.0116% 0
AE 32,029 123 8 0

Table 1.17 – Comparison between 32-bit GDAs and exact and approximate static adders [42]
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AC2A
Area (µm2) 3119

MA 1 2 3 4
Power (W) 4.261E-05 4.882E-05 5.289E-05 5.696E-05
Delay (ns) 2.15 2.90 3.67 4.45
Delayú (ns) 1.64 2.49 3.39 4.42

GDA
Area (µm2) 2513
(MB, MC) (1, 1) (1, 2) (1, 3) (1, 4)
Power (W) 4.679E-05 4.777E-05 5.327E-05 5.733E-05
Delay (ns) 1.58 2.01 2.41 2.82
Delayú (ns) 1.31 1.69 2.24 2.82
(MB, MC) (2, 1) (2, 2) (2, 3) (2, 4)
Power (W) 4.590E-05 4.900E-05 5.065E-05 5.245E-05
Delay (ns) 2.49 2.87 2.96 3.11
Delayú (ns) 2.02 2.47 2.63 2.85
(MB, MC) (3, 1) (3, 2) (3, 3) (3, 4)
Power (W) 4.742E-05 4.953E-05 5.031E-05 5.120E-05
Delay (ns) 3.41 3.78 3.88 4.03
Delayú (ns) 2.85 3.29 3.42 3.61
(MB, MC) (4, 1) (4, 2) (4, 3) (4, 4)
Power (W) 4.879E-05 4.981E-05 5.057E-05 5.149E-05
Delay (ns) 4.33 4.70 4.80 4.95
Delayú (ns) 3.71 4.11 4.25 4.46

Table 1.18 – Accuracy-configurable implementation of AC2A and GDA [42]
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Figure 1.43 – Error vs delay for an identical power consumption for GDA and AC2A [42]

rate or average error. Therefore, there is no optimal configuration for GDA considering all
metrics at the same time, and so GDA accuracy has to be configured knowing the prior metric
to take into consideration.

1.4.1.5 Addition Using Approximate Full-Adder Logic

All the approximate adders previously described leverage modifications in addition function,
always cutting off in different ways carry propagation, except for ETAI (see Section 1.4.1.2).
In this section, the adders are built considering modifications in the Full Adder (FA) function.
As developed in Section 1.3.3, FA function is the basic cell the most used in binary addition
since it produces a 1-bit addition.

Several possible modifications of the FA celle are proposed in [44], and more particularly
on the Mirror Adder (MA) circuit implementing FA logic (see Figure 1.44a). Indeed, being
able to remove transistors in a FA cell modifying as little as possible its binary logic function
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can potentially induce high benefits in terms of speed, area, and energy savings, because of the
omnipresence of this cell in numerous adder designs.

First, transistors are removed one by one from the conventional MA to find a configuration
where all sets of input x, y and c

in

give in as many cases as possible the good set of out-
puts z and c

out

. The best result according to the author was obtained removing 8 transistors,
which leads to the resulting circuit of Figure 1.44b. Then, the final Approximate Mirror Adders
(AMAs) are designed following a series of observations about FA truth table:

• The Approximate Mirror Adder type 1 (AMA1) is based on the observation that z = c
out

for 6 cases out of 8. Therefore, the z calculation part is suppressed and z is set to c
out

using a buffer in order to limit capacitance for latency and/or power efficiency purpose.
AMA1 transistor view is showed on Figure 1.44c. A 44.5% area gain is observed by
AMA1 towards traditional MA.

• The Approximate Mirror Adder type 2 (AMA2) is based on the observation that for 6
cases out of 8, cout = x is verified (or c

out

= y by symmetry). Therefore, an inverter is
used on x to calculate c

out

from simplified MA of Figure 1.44b, producing the transistor
view in Figure 1.44d. A 41.2% area gain is observed by AMA2 towards traditional MA,
which is nearly as good as AMA1 thanks to its shorter critical path.

• The Approximate Mirror Adder type 3 (AMA3) is obtained from AMA2. In AMA2,
there are 3 errors for z in its truth table. The idea of AMA3 is to reduce dependency
between c

in

and z. A good way to do it is to force z = y. Structuring the adder this way
also insures c

out

to be correct when z is correct. AMA3 is 66.7% smaller than traditional
MA, which is much better than AMA1 and AMA2, but it comes at a cost of a much
higher approximation.

Truth tables of AMA1, AMA2 and AMA3 are given in Table 1.19. They show that AMA1
globally generates less errors than AMA2, and AMA2 less than AMA3. Obviously, the case
when each of these errors occurs is very important for the global accuracy. For instance, it is
potentially more costly in terms of error to accidentally generate a carry on c

out

than not to
propagate a carry that should have been propagated or than to give the wrong result to z, since
the error is possibly propagated to a higher significance output bit.

Because of the potential high amplitude errors that can be generated by chaining AMA,
AMA-based approximate adders cannot be exclusively used in approximate adders designs to
reach an acceptable output minimal accuracy. That is why the author only presents designs
where only the LSB part is made of AMAs. In [44], the MSB part is composed of conventional
exact FA cell instances forming a RCA. The adders produced this way are denoted as IMPrecise
Adder for low-power Approximate CompuTing (IMPACT). However, in general, it is possible
to use any of the accurate adder structures presented in Section 1.3.3. The designs of AMAs
being fixed, the only way to modify accuracy is to modify the number of approximated LSBs.
In [44], image processing tests are performed with different approximated LSB lengths and
compared to FxP truncation method in terms of Peak Signal-to-Noise Ratio (PSNR), power
and area savings towards exact method. Results for Discrete Cosine Transform (DCT) and
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Figure 1.44 – Original and approximate MA transistor view – A and B inputs refer to x and y
in the notations of this document, while Sum output refers to z.

Inputs Acc. outputs Approximate outputs
x y c

in

z c
out

z
1

c
out1 z

2

c
out2 z

3

c
out3

0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0
0 1 0 1 0 0 1 0 0 1 0
0 1 1 0 1 0 1 1 0 1 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 1 0 1 1 1
1 1 1 1 1 0 1 1 1 1 1

Table 1.19 – Truth tables of accurate and approximate MA cells – Shaded cells indicate design
logic errors.
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Figure 1.45 – DCT/IDCT test results for IMPACT – The savings are relative to a 20-bit accurate
RCA

Inverse Discrete Cosine Transform (IDCT) for 7, 8 and 9 approximated LSBs are given in
Figure 1.45, where a DCT-8/IDCT-8 process is applied to 12,288 vectors from the classical
image processing image Lena. This process is composed of 8 additions for the computation
of each output pixel, all operations are performed on 20 bits. The circuit voltages are set to
a minimum in such a way the only allowed errors are functional and not due to VOS. More
information about these operating voltages can be seen in Table III of [44]. It can be noticed
that operating voltages for all AMAs and truncated adders are very similar so the results are
quite fair.

Results of Figure 1.45 show that AMA3 is the most accurate in terms of PSNR, followed
by AMA2, AMA1 and finally truncation. Truncation being the worse is not surprising since it
virtually sets all LSBs to 0, but the order of accuracy using the three different AMAs would
be expected to be the opposite since 1 corresponds to the slightest approximation and 3 to
the largest one. However, no other accuracy metric is used so the nature of the performed
error is unknown, though we could suspect the AMAss to perform a salt-and-pepper noise
because of the nature of their design. Moreover, using 20-bit adders on an 8-bit image brings
question about their legitimacy. In terms of power, truncation is obviously more efficient than
AMA-based adders, but IMPACT shows a good power efficiency, especially for a high number
of approximated LSBs. The most power efficient is AMA3, followed by AMA1 or AMA2
depending on the situation. For area results, truncation does not appear. A good estimation of
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truncation area savings can be performed considering that for x truncated LSBs on a 20-bit
adder, the benefits in terms of area are x

20

◊ 100 in percents. Therefore, we can assume area
savings for 7, 8 and 9 LSBs truncation are respectively 35%, 40% and 45%, which is about
25% as high as AMA3, partially explaining energy savings results. However, results show that
area savings are twice as high for AMA3 than for AMA2 and AMA1, which are quite similar.
Further results implementing MPEG video compression are given in [44] and tend to confirm
the results obtained for DCT/IDCT experiment.

As a conclusion, IMPACT are power-efficient approximate adders, but their accuracy com-
pared to truncation still needs to be tested on legitimate experimental settings, which is done in
Chapter 4.

1.4.1.6 Approximate Adders by Probabilistic Pruning of Existing Designs

In previous sections, all proposed adders were original designs. However, the existence of a
deep literature about integer arithmetic raises the following question: is it possible to take
any adder circuit and automatically transform it to an approximate one? The answer of
this question is addressed in [45]. The idea is to prune iteratively little parts of a design in order
to trade accuracy for area, power, and potentially delay. Of course, pruned elements must not
be chosen randomly, and so strategies are leveraged.

Two parameters are considered for design pruning – activity and significance. Indeed,
power consumption is proportional to activity, therefore it is more interesting for a high-
activity-driven gate to be removed uppermost. For arithmetic operators, each output is twice
as significant as its direct less significant bit, and so an error occurring at its position has twice
as much impact on the output error as an error on this neighbor. Assuming this, every transis-
tor, gate, or group of gates can be assigned a cost function which is the value of its activity
multiplied by its significance. This way, they can be sorted in an increasing order to generate a
priority list for pruning. The cost functions can also be modified considering all operator out-
puts have the same weigth. However, we will only get interested in weighted output since this
is the most common situation in signal processing.

For automated design, an error target must be given as a parameter. In [45], two error
parameters are allowed in the framework:

• Error Rate = Number of erroneous computations

Total number of computations

.

• Relative Error Magnitude = 1

‹

q
‹

k=1

|z
k

≠z

Õ
k

|
x

k

, where ‹ is the number of possible sets
of inputs, zk the accurate output for a given input set k and zÕ

k

the output for the same
input case considering the pruned design.

Once the error nature chosen and the target defined, probabilistic pruning optimization process
follows the flowchart given in Figure 1.46.

In [45], the method is applied to parallel-prefix adders, which is convenient as they are
defined by a grid of base cells (see Section 1.3.3), and thus probabilistic pruning is easy to
be applied considering each of these parallel-prefix base cells to be the unitary block for the
method. Figure 1.47 shows the results for a pruned 16-bit Kogge-Stone adder with a -20 dB
relative error accuracy goal. For this adder, activity increases with the considered level of the
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Activity 
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Prune the circuit elements 
on the path of the lowest
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

Compute error estimation 
(analyze or simulation)

Error > 
Target 
Error ? 

Undo last 
pruning

Initial design Final design

Yes

No

Figure 1.46 – Flowchart for probabilistic pruning optimization process [45]

Figure 1.47 – 16-bit Weighted-Pruned Kogge Stone Adder (WPKSA) – The original KSA is
depicted in Figure 1.14 in Section 1.3.3.

parallel-prefix graph, while the significance logically increases from LSB to MSB on each
level. Thus, cells are pruned from the lower right corner to the upper left corner. It can be seen
that to reach the ≠20 dB relative error, 10 cells were pruned on a total of 49, which represents
more than 20% area saving.

Probabilistic pruning method on several classical adders such as RCA, CSA, KSA, HCA,
LFA is applied in [45]. All error estimations were obtained by functional simulation, whose
number of sets of inputs is unknown. Analytical method was used to compute activity estima-
tion, assuming each input has a 0.5 activity. Globally, the best benefits in the Energy-Delay-
Area (EDA) product are 2◊-7.5◊ compared to the original adder, with a relative error of re-
spectively 10% and 10≠6%, these best results being obtained for KSA and HCA. Results about
these adders are given in Figure 1.48. The most important gains are obtained on delay, thanks
to shorter critical paths. Despite a lack of detailed results, we can assume by interpolating the
points of the result curves that quite an important benefit can be observed even when trading a
few amount of accuracy. As an example, for a 10≠2 relative error, a factor of more than 3◊ is
reached for the relative EDA.
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Figure 1.48 – Probabilistic pruning results for Kogge-Stone and Han-Carlson adders [45]

The main issue with this method is the use of mean relative error as a target, which does not
prevent the operator from performing high amplitude errors. As an example, Weighted-Pruned
Kogge-Stone Adder (WPKSA) presented on Figure 1.47 can perform an error on its MSB for
a certain number of sets of inputs, causing an extremely high error, which cannot be tolerated
depending on the considered application.

The list of approximate adders presented in Section 1.4.1 is far from exhaustive, many
others exist in literature. However, the ones presented here are representative of the general
trend of approximate adders. Most are derived from classical adders, with different ways to
cut carry chains and accelerate carry propagation. Some designs come with error detection
and correction circuits, leading to another kind of approximate adders, the configurable adders,
which can take different accuracy targets at run time. Finally, an interesting automated method
for approximate circuit generation stands out from the crowd [45], applied on adders in the
original paper but which can be applied to any signal processing circuit. Next section presents
a subset of the literature for approximate multipliers.

1.4.2 Approximate Integer Multiplication

In this section, a subset of literature dealing with approximate multipliers is developed. As seen
previously in Section 1.3.4, the most important part of the multiplication structure is the reduc-
tion of the summand grid, performed with adders (generally CSA). Therefore, a high quantity
of different multipliers can be derived using the approximate adders such as the ones presented
in previous section. In this document, we will try to highlight more original multipliers lever-
aging more creative ideas from which they can benefit.
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Figure 1.49 – Two’s-complement signed 6-bit AAMI structure

1.4.2.1 Approximate Array Multipliers

In this section, three versions of approximate array multipliers are presented. As a reminder, ac-
curate array multipliers are presented in Section 1.3.4. A 6-bit two’s-complement signed array
multiplier is depicted in Figure 1.20. Accurate array multipliers are not the fastest neither the
smallest multipliers. However, their periodic structure has a compact hardware layout, thanks
to short wiring, and allows for efficient pipelining. This advantage makes array multiplier one
of the most used in embedded System on Chip (SoC). The three Approximate Array Multiplier
(AAM) of this section are Fixed-Width Multipliers (FWMs), meaning that if their inputs are of
with n, their output is also of width n, instead of 2n, as it should be to be perfectly accurate.
Only the n MSBs are kept. In practice, most multipliers are FWMs as data width is generally
constant in processing units.

The first AAM will be denoted by Approximate Array Multiplier I (AAMI) and was pro-
posed in [46]. As the two others described below, the idea is to prune the least significant cells,
i.e. the ones responsible for the computation of the non-kept output LSBs. The resulting two’s-
complement signed operator is given in Figure 1.49. More than the half of the base cells were
pruned, and the diagonal AFAs were changed into AHAs since they have one less input in
AAMI version. The mathematical calculation of the error bias is given in [46]. The author also
showed that the bias and the variance of the error are linear with the size of the AAMI.

The basic pruning proposed by AAMI was then improved in [47] with Approximate Array
Multiplier II (AAMII) presented below and in [48] with Approximate Array Multiplier III
(AAMIII). AAMII adds to AAMI a correction circuit on the diagonal to reduce the bias of error.
This correction circuit is made with very few gates, since it is composed of n very simple cells
on the diagonal. The first one is an AND gate, followed by n ≠ 2 AAO cells composed of two
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Figure 1.50 – Two’s-complement signed 6-bit AAMII structure

(a) AAO cell (b) AA cell (c) ND-ND cell

Figure 1.51 – AAO, AA and ND-ND cells

AND gates and an OR gate disposed as on Figure 1.51a, and the last one is a combination of
two AND gates as on Figure 1.51b. In the original paper, only an unsigned operator is designed.
However, as mentioned in Section 1.3.4, two’s-complement signed multiplier can be obtained
by simply negating the MSBs of the n ≠ 1 first partial products of the summand grid and
negating the whole last partial product except for the MSB. The resulting two’s complement
signed multiplier is depicted in Figure 1.50.

Table 1.20 [47] gives accuracy results comparing AAMI and AAMII using its maximal
absolute error AE

max

, and the AP for a given MAA, this metric being explained in Sec-
tion 1.4.1.2. These results show that AAMII has a much lower maximal error than AAMI
thanks to bias reduction circuit, and the maximal error is increasing slower when the size of
the multiplier increases. AP is also much higher for AAMII, and the difference between both
multiplier designs seems to increase with MAA. As an example, for a 16-bit multiplication,
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Multiplier Error metric n = 4 n = 8 n = 12 n = 16
AAMI AEmax

32 1,536 40,960 917,540
AAMII 16 512 8,196 196,608
AAMI AP for 26.2% 50.8% 90.1% 98.9%
AAMII MAA = 99% 94.1% 79.3% 94.8% 99.4%
AAMI AP for 26.2% 39.1% 33.0% 35.2%
AAMII MAA = 99.99% 94.1% 74.6% 62.1% 77.9%

Table 1.20 – Accuracy comparison of AAMI and AAMII [47]

77.9% of outputs will be less than 0.01% far from the expected results, against only 35.2% for
AAMI.

To conclude about AAMII, this second version achieves much better performance in terms
of maximal error as well as in term of acceptance probability, with a very small area and delay
overhead. AAMII also has an area which is nearly half of the classical non-fixed-width array
multiplier, but slightly more important than AAMI.

A third amelioration of the signed version of the AAM, referred as AAMIII, is proposed
in [48]. As AAMII, the idea is to lower the bias induced by the operator truncation, but more
effectively. To reach an optimal efficiency, a method to make a fixed-width array multiplier with
reduced maximum error, average error and error variance with no overhead for the correction
circuit compared to AAMII is presented. The minimization of the bias is exclusively performed
by feeding the array multiplier’s diagonal with AND and NAND gates (instead of OR gates
in AAMII) and adjusting using a constant input on the last FA line. In order to find the most
effective configuration, an exhaustive search of the bias is first performed.

For a given set of inputs (x
i

, y
j

),
i,jœJ0,n≠1K then the best error correction term towards

AAMI structure C
t

can be written as [48]

C
t

=
n≠2ÿ

i=1

Èa
n≠i≠1

b
i

Íq

n≠i≠1 + ÂKÊ (1.23)

with

ÈT Íq

k =
I

T, if q
k

= 0
T , if q

k

= 1 (1.24)

where the value of K depends on the inputs value. The first part of the correction term given
by Equation 1.23 can be achieved by inserting simple AND and NAND gates on the AAMI
diagonal. When these gates are set, then the only way to affect multiplication result is to set the
input bit on the last FA line to 0 or 1. When this value is set to a given value p œ {0, 1}, then,
two correction term cases occur depending on the inputs, given by

C
t

=

Y
__]

__[

n≠2q
i=1

Èa
n≠i≠1

b
i

Íq

n≠i≠1 + ÂpÊ , if ◊ < n

n≠2q
i=1

Èa
n≠i≠1

b
i

Íq

n≠i≠1 + ÂpÊ , if ◊ = n
(1.25)
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and K
◊=n

where

◊ =
n≠1ÿ

i=0

Èa
n≠i≠1

b
i

Íq

n≠i≠1 (1.26)

Therefore, the values of q
k

, k œ J0, n ≠ 1K need to be fixed so the compensation offset defined
by the last line input is as near as possible of p œ {0, 1} in the first case of Equation 1.25,
and p in the second case. To determine this case, an exhaustive search is performed, testing all
combinations of (q

0

, . . . , q
n≠1

) for all input combinations in order to determine the best value
of K

◊<n

and K
◊=n

to minimize the bias for each combination. Figure 1.52 [48] shows the
example of an exhaustive search of K

◊<n

and K
◊=n

for a 6-bit multiplier. Once this exhaustive
search performed, then the nearest case from K

◊<n

= 0or1 and K
◊=n

= K
◊<n

is determined.
This case defines which combination of q

k

is chosen, and what is the optimal value of the last
line input bit. On Figure 1.52, the vertical red line shows the index of the optimal values of
K

◊<n

and K
◊=n

.
After exhaustive experimentation, the author analytically shows that for any n-bit multiplier

the optimal configuration is always:

• q
0

= q
n≠1

= 1 and ’k œ J1, n ≠ 2K, q
k

= 0, and

• Last line input = 1 for n high enough (case-by-case simulation is needed for low val-
ues).

Taking that into account, the author gives the structure of a signed 8-bit AAMIII, as showed
on Figure 1.53. FA, AFA, NFA and A cells are previously described cells. ND-ND cell is
composed of two NAND gates, disposed as on Figure 1.51c.
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Figure 1.53 – 8-bit signed AAMIII structure

Applying the method described above, AAMIII from width 4 to 12 are generated and com-
pared with the two previous versions in [48]. The accuracy results in terms of maximum error
E

M

, average error µ
e

and variance of error ‡2

e

are given in Table 1.21. In this table, only signed
versions of the three AAMs versions were studied. There are slight benefits with AAMIII in
terms of maximal error comparing to AAMII, but the relative gains decreases when the width
of the operator increases. However, the benefits in terms of mean and variance of the error,
and therefore in terms of power of error, are very important and increase with the width of the
operator. E.g, for a 12-bit operator, the power of error is reduced by 52.0% comparing AAMIII
to AAMII, which is a huge gain considering there is no area overhead, as showed in Table 1.22.
For larger operators, all AAMs area ratio decreases towards 0.5 and so the area overheads of
AAMII and AAMIII towards AAMI become negligible.

The error maps of 4-bit, 8-bit and 16-bit AAMIII are visible on Figure 1.54. On these
error maps, four squared areas are clearly visible. The lower-left square, corresponding to low-
amplitude inputs, returns low amplitude error. The three other squares perform globally much
higher error, with patterns which need to be different depending on the operator’s width.

We can then conclude about AAMs that:

• AAMI has brought an interesting way to reduce by a factor of 2 the area of an n-bit
fixed-width parallel multiplier, removing the least significant part of the operator.

• AAMII has proposed an improvement of AAMI by adding simple cells on the operator
diagonal.
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Multiplier Error metric n = 4 n = 6 n = 8 n = 10 n = 12
AAMI

E
M

33 193 1,281 6,145 32,769
AAMII 21 107 515 2,403 10,979
AAMIII 17 89 441 2,105 9,785
AAMI

µ
e

6.96 41.01 188.29 906.40 3,842.06
AAMII 7.20 37.27 170.46 736.62 3,065.25
AAMIII 5.17 24.07 105.96 456.14 1,907.36
AAMI

‡2

e

39.80 788.45 22,959.01 416,043 9,204,493
AAMII 28.24 537.70 10,158.54 190,805 3,417,020
AAMIII 17.63 320.65 6,031.32 112,079 1,973,508

Table 1.21 – Accuracy comparison of signed AAM versions I, II and III [48]

(a) n = 4 (b) n = 8

(c) n = 16

Figure 1.54 – Error maps of 4-bit, 8-bit and 16-bit AAMIII
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Multiplier n = 4 n = 6 n = 8 n = 10 n = 12
AAMI 0.555 0.536 0.527 0.522 0.518
AAMII 0.608 0.569 0.550 0.5540 0.533
AAMIII 0.608 0.569 0.550 0.5540 0.533

Table 1.22 – Area ratio comparing to original parallel adder for AAM versions I, II and III [48]

• AAMIII has proposed an optimized modification of the diagonal cells in order to set the
approximate operator bias to its minimum, achieving great gains in terms of accuracy
with no area overhead.

As a consequence, AAMIII designing method is a very efficient way to build an approximate
n-bit fixed-width array multiplier with a nearly-50% area reduction.

1.4.2.2 Error-Tolerant Multiplier

The Error-Tolerant Multiplier (ETM) [35] is inspired from the principle of ETAI [40] studied
in Section 1.4.1.2. Indeed, it is composed of two parts:

• the MSB part, which is a conventional accurate multiplier, and

• the LSB part, which is designed for very fast approximation.

For the accurate MSB part, as an n ◊ n multiplier has a O(n2) area complexity, dividing the
accurate part digits number by a factor k insures a k2 area saving. Therefore, the benefit of
reducing the accurate multiplication part is much bigger than for adders. For the approximate
LSB part, an approximation resembling ETAI, described by Algorithm 1 page 44: the inputs
of the approximate part are read from MSB to LSB, performing a logical OR until two 1s are
met on the same position i. When this happens, all outputs from i down to 0 are set to 1. An
illustration of the process is showed in Figure 1.55.

ETM also embeds a system detecting if the MSB part of the inputs has at least one bit
worth 1. This way, if there is no 1 (meaning it is a low amplitude multiplication), then the
accurate multiplier is used for the multiplication of the LSB part. This way, the calculation
is 100% accurate with no overhead on the design area, except for multiplexing the inputs.
Therefore, contrary to ETAI, ETM performs well for low amplitude inputs. The system view
of ETM can be seen on Figure 1.56. For a good use of this system, the accurate and approximate
parts lengths of the multiplier need to be of equal width.

The LSB approximation part is achieved the same way as ETAI thanks to a control block
(see Figure 1.31). The only difference is that all sub-blocks are CSGCI blocks (see Sec-
tion 1.4.1.2), meaning the control signal is not propagated as fast as for ETAI. This choice
is probably due to the fact that the approximation part is faster than the accurate multiplication
part, and so there is no need to reduce the delay on the control block which would imply an
area and power overhead. The accurate multiplication is performed by an array multiplier of
size n/2.
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Figure 1.55 – Example of ETM multiplication process [35]
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Figure 1.56 – Structure of a 12-bit ETM [35]
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Figure 1.57 – Accuracy evaluation by simulation for ETM [35]

The evaluation of accuracy is performed using AP for a given MAA in [35]. This metric
is presented in Section 1.4.1.2. Figure 1.57 presents the results for a MAA range from 90% to
99%, using ETM of input width from 4 to 20 bits. We can suppose these ETM have the same
lengths n/2 for their accurate and approximate parts. Results were obtained by simulation of
65, 000 sets of inputs for the 20-bit multiplier, and 6, 500 for the others. Such a choice can be
discussed, the number of points being objectively too low to ensure all approximation cases
to be met. On the graph, what can first be noticed is that small-width ETMs have a very low
accuracy, with only less than 20% AP for a 95% MAA for 8-bit ETM for instance. For larger
operators such as 16-bit or 20-bit, AP seems stable above 90% MAA, but the 16-bit AP curve
dramatically decreases after 97%. Results for lower MAA can be found in [35]. To conclude
about accuracy, the ETM model seems quite well adapted to large operators, small ones often
generating high errors relatively to their computing range. For a 99% MAA, 20-bit ETM seems
to be the minimal operator for a 90% AP. Of course, the interest of large widths in approximate
computing is questionable. Answers are given in Chapter 4.

Design simulations were performed on 0.18 µm CMOS process with a 10 MHz frequency.
The comparison was made between a conventional 12-bit array multiplier and a 12-bit ETM
with 6-bit accurate part and 6-bit approximate part. Power and delay were reported for five sets
of inputs, the PDP of the five corresponding operations are given in Figure 1.58. The detailed
results are given in [35]. These results show that energy consumption strongly depends on the
inputs. On the five tested sets of inputs, energy consumption of ETM is 75% to 90% lower than
the conventional 12-bit multiplier, though we could regret the very low number of performed
tests. Looking at detailed test results, we can see there is nearly no improvement in calculation
delay, whereas power improvement is quite important. In terms of area, the 12-bit ETM covers
491 µm2 whereas parallel multiplier covers 1028 µm2, which is more than twice. Since a
12-bit array multiplier is roughly four times as large as its 6-bit version, this means that the
approximation part has an area overhead nearly equivalent to the exact part area.

To conclude about this operator, ETM proposes a n-bit approximate multiplication using a
n/2-bit accurate multiplier, that can be used for the MSB part or LSB part of the computation
depending on the input range. This allows for high energy and area savings, with quite good
accuracy results for large-width operators. Once again, using a unique scalar metric does not
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Figure 1.58 – PDP for 12-bits ETM and array multiplier [35]

give details about the nature of the error, but this operator, by nature, can perform high ampli-
tude errors in a small number of worst-case input sets. It can be noticed that ETM has an area
which is comparable to the area of an AAM version II or III (see Section 1.4.2.1), but ETM is
an n ◊ n æ 2n multiplier whereas APMs are only n ◊ n æ n. However, this does not ensure
at all that ETM is more accurate than the best of them (AAMIII), and more tests would need to
be performed to determine its accuracy.

1.4.2.3 Approximate Multipliers using Modified Booth Encoding

As discussed in Section 1.3.4, modified Booth encoding allows the number of partial product
of the summand grid to be importantly reduced. Usual Radix-4 encoding divides the number
of partial products by two for an even input width. As the critical part of a multiplier is the
carry-save reduction of the partial products, using modified Booth encoding is a good potential
for area, delay and power saving. Therefore, in the context of approximate multipliers in low-
power applications, using this technique as a starting point is a potentially efficient way to save
energy.

In [49], the authors present a fixed-width Booth multiplier with a simple error-correction
system. In FxP context, fixed-width multipliers are obtained by truncating the LSB half part
of the multiplication output. A classical approximation for fixed-width multipliers consists in
removing the LSB half part of the partial products and to compensate the induced bias by
removing an adapted constant. In [49], error compensation is performed by keeping a few
recombined cells of the most significant column of the LSB part. Therefore, the usual constant
output bias is replaced by an input-dependent bias.

To determine how error-compensation cells should be recombined, the authors studied
–

n≠1

, the number of carries generated at rank n ≠ 1 as a function of —, the sum of ones in
summand grid at rank n ≠ 1. The author statistically determines that the best choice to mini-
mize the error is to have –

n≠1

= —. Therefore, every rank n ≠ 1 cell in summand grid is kept
without any recombination. The resulting summand grid is given by Figure 1.59. From this
point, the column of rank n ≠ 1 in the summand grid will be referred as LP

major

(Low Part,
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Y
i

X
sel

2X
sel

NEG

≠2 0 1 1
≠1 1 0 1
0 0 0 0
1 1 0 0
2 0 1 0

Table 1.23 – Equivalence between Radix-4 modified-Booth-encoded symbol Y
i

and control
bits in partial product generation

major position) and all the lower significance elements LP
minor

(Least significant Part, minor
position). The most significant part which corresponds to the n bits which are always kept for
fixed-width multipliers output calculation will be referred as MP (Most significant Part, ma-
jor position). The proposed 8-bit multiplier has 46% less gates than the accurate equivalent.
In [49], accuracy results are given in terms of Signal-to-Noise Ratio (SNR). For a 16-bit mul-
tiplier, the SNR is 76.64 dB. More detailed results about this multiplier are respectively given
in [50] and [51], reported in Tables 1.25, 1.28 and 1.30, and denoted as Fixed-width modified-
Booth-encoded Multiplier version I (FBMI).

Another fixed-width Booth multiplier with input-dependent error correction, denoted here
as Fixed-width modified-Booth-encoded Multiplier version II (FBMII), is proposed in [50]. In
FBMII, only the Booth encoder control outputs are considered for error correction. The idea is
to perform a statistical approximation of the carries generated by the truncated part in function
of the coded input to be able to design a well-adapted error compensation system. Radix-4
modified Booth-encoding is determined by radix-4 symbols Y

i

. For the generation of a given
partial product pp

i,j

, the value of input x
j

and bits X
sel

, 2X
sel

and NEG at determined by Y
i

from Table 1.23 are used, and the resulting generation circuit is depicted in Figure 1.60. To get
1-bit statistics on the encoded multiplier instead of the 3 bits representing a symbol Y

i

, Y Õ
i

is
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Figure 1.60 – Partial product generation

defined as

Y Õ
i

=
I

1 if Y
i

”= 0
0 otherwise. (1.27)

Therefore, for a given chain of symbols {Y
i

}
iœLP

, the corresponding chain of bits {Y Õ
i

}
iœLP

can be obtained with a very small area and delay overhead performing logical OR as

Y Õ
i

= X
sel,i

| 2X
sel,i

. (1.28)

Then, statistics on the chain of bits {Y Õ
i

}
iœLP

must be performed in order to find the best way to
estimate carries generated in LP group. For this, S

LP

, the sum of all weighted partial products
of LP group, is introduced and defined as

S
LP

=
ÿ

0Æ2i+j<n≠1

p
i,j

22+2i+j≠n. (1.29)

Indeed, a good estimation of S
LP

for a given input allows to inject in MP part a good correct-
ing bias. For this, the exact carries of LP

major

are propagated and the carries of LP
minor

are
estimated. S

LP

minor

is defined the same way as S
LP

but restricted to LP
minor

.
First, a method leveraging exhaustive simulation is proposed in [49]. The idea is to list

all occurrences of all possibilities for {Y Õ
i

}
iœLP

minor

and to calculate the rounded statistical
mean of S

LP

minor

for each of these occurrences. E.g., for n = 10, there are 108 ways to obtain
{Y Õ

i

}
iœLP

minor

= 1, 0, 1, 1. Amongst these 108 sequences, 52 verify {E [S
LP

minor

]}
r

= 1
and 56 verify {E [S

LP

minor

]}
r

= 2, where {·}
r

is rounding operation. Therefore, the best
compensation of the truncated carries generated by LP

minor

is 2. As {E [S
LP

minor

]}
r

always
is between 0 and 2, two carries must be transmitted to LP

major

, following rules of Table 1.24.
For n = 10, the Karnaugh map representations of a_carry

0

and a_carry
1

as a function of
{Y Õ

i

}
iœLP

minor

are given by Figure 1.61. The logic for the carry generation can be determined
from this map and is given by

a_carry
0

= Y Õ
3

| Y Õ
2

| Y Õ
1

| Y Õ
0

a_carry
0

= Y Õ
3

Y Õ
2

(Y Õ
1

| Y Õ
0

) | Y Õ
1

Y Õ
0

(Y Õ
3

| Y Õ
2

) (1.30)

This circuit can be implemented using 8 basic logic gates. The relation between the value of
the chain of bits {Y Õ

i

}
iœLP

minor

and the value E [S
LP

minor

] is given by

E [S
LP

minor

] = 2≠1

n/2≠2ÿ

i=0

Y Õ
i

. (1.31)
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Rounded value a_carry0 a_carry1
0 0 0
1 1 0
2 1 1

Table 1.24 – Representation of approximate carry values
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Figure 1.61 – Karnaugh map representation of approximate carry for n = 10

Then, the value of the carry to propagate on LP
major

is obtained by rounding. As {Y Õ
i

}
iœLP

minor

can only be 0 or 1, the maximal value for the propagated carry is
)
2≠1 (n/2 ≠ 1)

*
r

, and so the
number of binary approximated carries N

a_carry

is always Ân/4Ê.

A methodology for the error correction system can then be derived:

1. For an n-bit FBMII, the number of approximated carries is N
a_carry

= Ân/4Ê, denoted
as a_carry

0

, a_carry
1

, . . . , a_carry
Na_carry≠1 .

2. ’i œ J0, N
a_carry

≠ 1K, a_carry
i

= 1 …
A

n/2≠2q
i=0

Y Õ
i

B

Æ (2i + 1).

3. Approximate carry circuit is designed by defining the compensation carry logic, e.g.
using a Karnaugh map.

Using this method, accuracy results are given in [50] in terms of error mean and variance for
n = 10 and n = 12, showed in Table 1.25. Rounded and Truncated respectively refer to
a rounding and truncation of the output of the original accurate multiplier. FBMII proposes a
better accuracy than its predecessor FBMI, but also beats truncation despite its nearly-50% area
savings. With the proposed method, for bigger multiplier size, the overhead of this approximate
carry generation procedure, denoted as Approximate Carry Generation Procedure version I
(ACGPI), becomes too impacting in terms of area and delay, and is not suitable. To face that,
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Multiplier Error metric n = 10 n = 12
Rounded

µ
e

4.87E≠4 1.22E≠4
Truncated 9.66E≠4 2.43E≠4

FBMI 1.22E≠3 3.21E≠4
FBMII 6.28E≠4 1.63E≠4

Rounded

‡2

e

8.01E≠8 4.51E≠9
Truncated 3.17E≠7 1.99E≠8

FBMI 8.22E≠6 5.21E≠7
FBMII 1.94E≠7 1.33E≠8

Table 1.25 – Accuracy comparison for FBMI and FBMII using ACGPI

the author proposes another approximate carry generation procedure denoted as Approximate
Carry Generation Procedure version II (ACGPII):

1. {Y Õ
i

}
iœLP

minor

is divided in groups of 3, the last group being of size 1, 2 or 3 depending
of the set size.

2. Each group bits are summed using a FA (or HA or a wire for the last group).

3. At each FA output, the carry signal c is an approximate carry, and the sum signal s is
summed with the ones from the other groups.

4. The process is repeated until only one sum signal is left.

5. Finally, 1 is added to the last adder.

With ACGPII, original ACGPI is slightly modified by a new higher level approximation,
but the sum of the generated carries remains the same, just as showed for n = 8 in Table 1.26.
The design for n = 32 is given in Figure 1.62. With only 7 FA and 1 HA, the ACGPII represents
a very low overhead in term of area. Moreover, with only three levels, it only adds a small delay
to the critical path.

A comparison of delays and areas using ACGPI and ACGPII for different operator sizes
is provided in Table 1.27. For n <= 10, ACGPI is better in both domains than ACGPII, in
addition to be more accurate by construction in the estimation of the carries. When the operator
size grows, ACGPII gets much more efficient in delay and area. Indeed, for a 32-bit FBMII,
ACGPII is 78% faster than ACGPI for 56% area benefit.

Delay and area comparisons of FBMI and FBMII using ACGPII were performed in [50].
They show that their performance is nearly the same, with a slight advantage for FBMII/ACGPII
on delay for all sizes and also on area from n = 14. Using Synopsys tools, FBMI and FBMII
show very similar power consumption at least for n = 10 and n = 12, with a bit more than 60%
of the power consumption of an ideal fixed-width Booth multiplier, meaning a complete Booth
multiplier with output truncation or rounding. Accuracy comparisons between rounding, trun-
cation, FBMI and FBMII using ACGPII are given for n = 16 and n = 20 by Table 1.28. They
show that proposed FBMII/ACGPII significantly beats both truncation and FBMI in terms of
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ACGPI ACGPII
YÕ

2YÕ
1YÕ

0 a_carry0 a_carry1 a_carry0 a_carry1
0 0 0 0 0 0 0
0 0 1 1 0 0 1
0 1 0 1 0 0 1
0 1 1 1 0 1 0
1 0 0 1 0 0 1
1 0 1 1 0 1 0
1 1 0 1 0 1 0
1 1 1 1 1 1 1

Table 1.26 – Approximate carry signals generated by ACGPI and ACGPII for n = 8
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Figure 1.62 – Approximate carry generation circuit using ACGPII for n = 32

Delay (ns) Area (# of NAND gates)
n ACGPI ACGPII ACGPI ACGPII
10 4.48 6.24 10 11
12 7.21 6.06 22 15
14 7.94 6.21 31 20
16 10.25 7.56 43 23
18 10.78 7.56 55 27
32 18.23 10.20 189 60

Table 1.27 – Comparison of delay and area of ACGPI and ACGPII [50]
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Multiplier Error metric n = 16 n = 20
Rounded

µ
e

7.51E≠6 4.63E≠7
Truncated 1.47E≠5 9.02E≠7

FBMI 1.92E≠5 1.15E≠6
FBMII 1.07E≠5 6.35E≠7

Rounded

‡2

e

1.96E≠11 8.08E≠14
Truncated 7.96E≠11 3.21E≠13

FBMI 1.92E≠10 8.24E≠13
FBMII 6.38E≠11 2.44E≠13

Table 1.28 – Accuracy comparison for FBMI and FBMII using ACGPII

error mean and variance. As a matter of fact, FBMII/ACGPII has a mean square error which is
68.1% inferior to FBMI for n = 16 and 69.8% for n = 20.

To conclude about FBMII, this fixed-width Booth multiplier proposes much better perfor-
mance than FBMI with no area, power or delay overhead, thanks to improved error compen-
sation systems which are ACGPI and ACGPII. The first one consists in a statistical analysis of
the carries generated in the truncated part in function of the Booth-coded value of the input,
whereas the second one is an approximate version of the first one, allowing a dramatic reduc-
tion of the theoretical correction circuit size and delay.

In [51], Juang proposes a fixed-width Booth multiplier with a very low cost error correction
system, based on the estimation of LP

minor

bits of the summand grid in function of LP
major

bits values. For more convenience, the proposed multiplier will be denoted as Fixed-width
modified-Booth-encoded Multiplier version III (FBMIII). This section presents the methodol-
ogy for an 8-bit FBMIII as well as accuracy and area comparisons for different sizes of FBMIII
and previously described multipliers.

To design an 8-bit FBMIII, LP
minor

levels need to be discriminated like showed on Fig-
ure 1.63. The four level weighted symbol strings of LP

minor

are denoted as w, x, y and z, and
can be expressed as

w =
6q

i=0

2i≠7pp
0,i

,

x =
4q

i=0

2i≠5pp
1,i

,

y =
2q

i=0

2i≠3pp
2,i

,

z = 2≠1pp
3,0

.

(1.32)

As a reminder, each symbol pp
i,j

is in the set {≠1, 0, 1}. The idea of FBMIII error correction
is to find the relation between LP

major

bits and these symbolic strings. For this, the best values
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Figure 1.63 – LP
minor

level discrimination for the design of FBMIII
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Their best representative is their mathematical mean. q
2

mathematical mean can be decom-
posed as

E [q
2

] =
1ÿ

k=≠1

q
2,k

◊ P (pp
2,3

= k) . (1.34)

where q
2,k

is the optimally correcting value of q
2

for a given k. P (pp
2,3

= k) can be easily
computed for any value of k assuming that each multiplier binary input is equiprobable. Ta-
ble 1.29 gives the probabilities for all pp

i,j

to be worth k in LP . Assuming these data, the
calculation of E [y|pp

2,3

= 1] is

E [y|pp
2,3
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] + 2≠3 ◊ E [pp
2,0

]
= 2≠1 ◊ (1/2) + 2≠2 ◊ (1/2) + 2≠3 ◊ (1/2)
= 0.4375.

(1.35)

Therefore, as y = q
2,k

◊ k, the best value for q
2,1

is 0.4375. The same computation and
reasoning for k = ≠1 and k = 0 respectively gives q

2,≠1

= ≠0.4375 and q
2,0

œ R. As q
2,0

can
take any value, 1 is chosen in an arbitrary manner. By injecting these three q

2,k

in Equation 1.34
as well as probability values of Table 1.29, then E [q

2

] is given by

E [q
2

] = 0.4375 ◊ (3/16) + 0.4375 ◊ (3/16) + 1 ◊ (5/8)
= 0.7890625 (1.36)

Therefore, q
2

= 1 is chosen as the approximated coefficient for y. The same process is applied
for q

1

and q
3

, and finally we get

q
1

= 0, q
2

= 1, q
3

= 1. (1.37)
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Partial products pi,j = ≠1 pi,j = 0 pi,j = +1
pi,0 1/8 3/4 1/8
p0,j 1/4 1/8 5/8

Others 3/16 3/16 5/8

Table 1.29 – Value of P (pp
i,j

= k) in LP
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Figure 1.64 – 8-bit FBMIII schematized structure

Perfectly knowing w, x, y and z as a function of all inputs would lead to the following
compensation value:
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Approximating w, x, y and z using q
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In spite of taking into consideration both LP
major

and LP
minor

, the computation of the com-
pensation value CV

app

is not more complex than the compensation value of FBMI which only
took LP

major

into account for compensation, and so better compensation performance can
be expected. Indeed, for CV

app

to be applied, adding pp
2,3

and pp
3,1

does not need any ex-
tra gates, and

%
2≠1 (pp

0,7

+ pp
1,5

)
&

can be performed with two AND gates. The global FB-
MIII can be mapped as in Figure 1.64, where RFA blocks are Redundant Full-Adder blocks
and C block is the partial correction block for the appliance of the two partial compensa-
tions

%
2≠1 (pp

0,7

+ pp
1,5

)
&
. pp

k,i..j

refers to the partial symbolic string from pp
k,i

to pp
k,j

and
pp

B,i..j

refers to the Booth-encoded multiplier output from rank i to rank j.
The author gives comparisons of accuracy between the truncated output version of the

fixed-width Booth multiplier and FBMI presented above, in terms of absolute error mean and
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Multiplier Error metric n = 6 n = 8 n = 10 n = 12
Truncated

µ|e|

22 91 371 1,506
FBMI 23 107 477 2,052

FBMIII 24 104 449 1,925
Truncated

‡2

e

236 4,083 67,576 1,104,876
FBMI 290 6,247 125,055 2,341,510

FBMIII 234 4,287 73,647 1,280,361

Table 1.30 – Accuracy comparison for FBMI and FBMIII

error variance. These metrics for a given n-bit operator denoted as op are defined as:
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BB
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(1.40)

where Z
op

is the result of the operation X ◊ Y performed by the operator op. Accuracy results
are given in Table 1.30. In terms of absolute error mean, it can be noticed that FBMIII achieves
slightly better performance than FBMI, but has an error variance which is twice as small. In
terms of error power, an 8-bit FBMIII is 14.7% more efficient than its FBMI equivalent, and
23.9% for their 12-bit versions. FBMIII accuracy benefits towards FBMI seem to increase with
the size of the operator. However, FBMIII is slightly beaten by truncation in term of accuracy.
This is still good performance taking into account that FBMIII saves a 44% area compared
to an 8-bit truncated-output fixed-width Booth multiplier and 49% compared to a 12-bit one.
More results about area are detailed in [51] as well as more tests comparing FBMI and FBMIII
on image processing tests, confirming FBMIII to be more accurate on several metrics such
as root mean square error, SNR and PSNR. Therefore, FBMIII proposes better global perfor-
mance than FBMI on many metrics, with a smaller error correction system.

In this section, three fixed-width Booth operators with error correction system were pre-
sented:

• FBMI [49] proposes a low-cost error-compensation system, considering only LP
major

.

• FBMII [50] proposes a higher-cost error-compensation system, only based on the value
of the input multiplier, but taking it entirely into account (LP

major

+ LP
minor

). This
higher cost allows to strongly beat FBMI in terms of accuracy, and even the basic fixed-
width Booth multiplier obtained by truncation of the output. Compared to its summand
grid, FBMII error compensation system is still small, and so it represents a very interest-
ing fixed-width Booth multiplier.

• FBMIII [51] has the lowest-cost error-compensation system, which has even smaller cost
than FBMI’s LP

major

consideration. Moreover, it has better performance than FBMI, but
does not beat output truncation method as FBMII does.
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Figure 1.65 – DRUM input unbiasing process. Step 1: original input. Step 2: selecting the k
non-zeros MSBs. Step 3: unbiasing. Greyed cells represent the virtual value of dropped bits.

To conclude, FBMII seems to be the most efficient fixed-width Booth operator in terms of
accuracy, though FBMIII proposes a lower-cost error compensation. In terms of delay, the
compensation system overhead for the three presented operators is nearly negligible compared
to the cost of the carry-save partial product reduction. Therefore, for the best accuracy, FBMII
should be given high priority, and FBMIII should be chosen only if area is the critical resource.

1.4.2.4 Dynamic Range Unbiased Multiplier

In [52], a novel approximate multiplier referred as Dynamic Range Unbiased Multiplier (DRUM)
is inspired from floating-point multiplication. As a reminder, FlP multiplication process is de-
scribed in Section 1.2.2. Indeed, the idea of DRUM with n-bit inputs is to use an accurate
multiplier of size k < n, shifting the n-bit inputs in a way that the input MSBs of the multi-
plier are fed with the most significant one of each input. This way, no effort is wasted in the
multiplication uselessly processing "high significance zero ◊ zero".

To reduce the approximation, inputs are unbiased before multiplication. As only a subset
of k bits is extracted from the inputs, all the less significant bits are virtually set to 0, causing
an error which is always in the same direction. To prevent this, the LSB of the k bits extracted
for multiplication is set to 1. The process applied on each input for unbiasing is depicted in
Figure 1.65. Once the inputs extracted and unbiased, the accurate k-bit multiplication is per-
formed. Finally, the result is shifted so the output of k-bit multiplication is expressed with its
legitimate significance. The corresponding structure of DRUM is depicted in Figure 1.66 [52].

First, leading-zero detection is performed on each input to get the position of the first one
in k-bit multiplication. Then, after input unbiasing, k-bit multiplication is performed. Finally,
the result is shifted using the sum of the leading-zero detection values of the inputs. Designing
DRUM is therefore about finding a good compromise for k. Decreasing k value by 1 diminishes
the size of the effective multiplier, but increases the size of the multiplexers of Figure 1.66, and
the L0D needs to be able to count one potential more leading zero. Also, the final maximal
shifting is increased by 1. Generally, decreasing k decreases area but may increase delay. To
keep the benefit of using leading-zero detection, the inputs must be unsigned. Therefore, a
signed version of DRUM must unsign the inputs using two’s complement transformation be-
fore being applied, and manage the sign of the output depending on the sign of the inputs,
which can be achieved with a small overhead.

Using Synopsys Design Compiler and Mentor Graphics Modelsim with 65-nm standard
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Figure 1.66 – Structure of DRUM. L0D stands for Leading-zero-Detector, used to select the
bits to be effectively multiplied and to perform the final shift.

cell libraries, area and power for 16-bit DRUM as a function of k are depicted in Figure 1.67 [52].
These simulations show that substantial reductions in area and power are reached. For 16-bit
DRUM with k = 3, more than 80% of area and more than 90% of power are saved with re-
spect to a 16-bit accurate multiplier – the structure of the reference multiplier being unknown.
For k = 8, nearly 50% area and power are saved. The intermediate k values seem to show
near-linear savings.

These savings need to be put in relation with the errors being performed. In [52], four error
metrics are explored, all relative to the accurate result. If the relative error referred as RE is
defined by

RE = Z ≠ Ẑ

Z
, (1.41)

where Z is the exact result of 16-bit multiplication X ◊ Y and Ẑ the result of the same multi-
plication using DRUM, the four error metrics explored are defined by
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where Max
RE

is the maximum relative error, MA
RE

the mean absolute relative error, µ
RE

the
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Figure 1.67 – Area and power benefits of 16-bit DRUM relatively to 16-bit accurate multi-
plier [52] – DRUMk refers to 16-bit DRUM using k-bit multiplier.

Metric
k 3 4 5 6 7 8

MaxRE (%) 56.25 26.56 12.86 6.31 3.1 1.54
MARE (%) 11.90 5.89 2.94 1.47 0.73 0.37
µRE (%) 2.08 0.53 -0.14 -0.04 0.01 0.01
‡RE (%) 14.75 7.26 3.61 1.80 0.90 0.45

Table 1.31 – Error results for 16-bit DRUM for k between 3 and 8 – Error metrics are defined
by Equations 1.42.

mean relative error (or relative error bias), and ‡
RE

the standard deviation of the relative error.
S represents the set of all possible inputs and N

S

the width of this set. It is important to notice
that all these metrics are relative to the accurate output, as this is the family of metrics which is
the most reliable when speaking about FlP-like error. Indeed, as the multiplier is "sliding" on
the inputs, the error performed is always relative to the amplitude of the inputs. Table 1.31 gives
the values of these metrics for the same 16-bit versions of DRUM as the ones of Figure 1.67.

As expected, the error is larger when k is smaller. For k = 3, maximum relative error
reaches 56%, which is high but much smaller than most approximate operators which can have
error propagated to their MSB in case of broken carry chain. Thanks to the unbiasing method,
error bias is very low and lowers when k increases. The general amplitude of error, represented
by MA

RE

and ‡
RE

is generally low.
As a conclusion, DRUM operator shows interesting area and power benefits, leveraging

FlP multiplication style applied to fixed-significance data. As an example, for a 16-bit DRUM
with k = 6, more than 60% area is saved and more than 70% of the power, while the error
stays very tight. Indeed, the error bias is nearly zero, while the mean absolute relative error is
1.47% only, with a maximum at 6.31%. DRUM approximate operator is a scarce example of
approximate operator with important savings and producing often-erroneous but low-amplitude
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error outputs instead of producing scarce high-amplitude error. This is confirmed by error maps
visible in Figure 1.68.

(a) n = 8, k = 2 (b) n = 8, k = 4

(c) n = 8, k = 6

Figure 1.68 – Error maps of 16-bit DRUM with different k

1.4.3 Final Discussion on Approximate Operators in Literature

In this chapter, besides classical floating-point and fixed-point paradigms, a subset of approx-
imate operators were described, all chosen for being different the ones from the others and
basing their designs on different techniques of integer addition and multiplication. The list
dressed in this chapter is far from exhaustive but tried to cover the main stakes of approximate
operators. The study of the existing literature also concludes in a more bitter observation: most
presented operators do not come with enough results about their impact on real-life application.
Some of them only come with stand-alone results using convenient metrics hiding high error
spikes, and others are tested on applications too simple to make definitive conclusions. In this
document, we intend to provide methods, tools and conclusions about the general advantages
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and drawbacks of these operators which are all different the ones from the others.
It is also important to note that all the approximation techniques presented in this chapter

are not exhaustive, though they are the main ones and lay the foundation for the remainder of
this thesis. A more complete survey of existing approximation techniques at many levels can
be found in [53]. The high number of existing techniques, which are enabled at different levels,
from algorithm design to the physical layer, will need by the future to be unified in a single
general technique allowing to take advantage of the best of each through cross-level design.
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Chapter 2

Leveraging Power Spectral Density in
Fixed-Point System Refinement

The first contribution of this thesis, after literature study and comparison of approximate opera-
tors in the previous chapter, is a novel method for system-level optimization in FxP arithmetic.
This work led to a paper in the DATE’16 conference [1].

2.1 Motivation for Using Fixed-Point Arithmetic in Low-Power
Computing

Signal processing applications popularly use fixed-point data types for implementation. The
choice of fixed-point data types is driven usually by cost constraints such as power, area and
timing. The objective of fixed-point refinement during the design process is to make sure that
chosen data types are precise enough to achieve the expected quality of computation while min-
imizing the cost constraint. The acceptable lower quality of computation is because either there
are error correction mechanisms explicitly defined as a part of the system or that the user per-
ception defines the lower bound on the quality of output or both. For instance, video CODECs
such as H.264 popularly used for wireless transmission allow a certain amount of errors on the
channel, which can be corrected by error-resilience [54] or because the human eye is insensi-
tive to some errors [55]. All these layers of error resilience mean that using approximations for
concerned computations could represent significant gain of area, time and/or energy. A clas-
sical way to approximate a computation process is to use fixed-point arithmetic. Indeed, the
representation of fractional numbers by integers insures faster and more energy-efficient arith-
metical computations as discussed in previous chapter, and the design of the operators requires
meaningfully less area. The most important drawback of using an approximated arithmetic is
the need for managing the induced computation errors. The errors with fixed-point data types
are classified into two types arising from finite precision on one hand and finite dynamic range
on the other. Although the impact of errors due to violation of finite dynamic range is more
pronounced, these errors can be mitigated by techniques such as range analysis using affine
arithmetic, interval arithmetic or more complex statistical techniques such as [56]. In spite of
allowing for good dynamic range, the lack of precision causes errors that are perceived as bad

93
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quality of computation. In case of wireless applications, this can be measured as Bit-Error-Rate
(BER), in image and signal processing as Signal-to-Quantization-Noise Ratio (SQNR), and, in
general, as quantization noise power. Measuring the impact of finite precision on the output
quality of computation is discussed in this Chapter.

Commercial tools for performing fixed-point accuracy include C++ fixed-point libraries
(e.g. ac_fixed from Mentor Graphics used with Catapult-C, or sc_fixed from SystemC)
or the Matlab fixed-point design toolbox. These tools are primarily based on facilitating FxP
simulation with user-defined word-lengths using software FxP constructs and libraries. Al-
though very useful, evaluation by simulation can be very time consuming. The time required
for FxP evaluation grows in proportion with the number of FxP variables and also the number
of input sample size.

Using the analytical approach for accuracy evaluation, the noise power is obtained by eval-
uating a closed-form expression as a function of the number of bits assigned to various signals
in the system. This approach requires a one-time effort for arriving at the closed-form expres-
sion for a given system. These analytical techniques can be handy but are generally limited in
applicability to linear and some types of non-linear systems (referred to as smooth operations).
The analytical technique evaluates the first two moments of the quantization noise sources and
propagates it through the Signal Flow Graph (SFG) from all noise sources to the system output.
On relatively small systems, the evaluation of path functions can be accomplished manually.
As the system complexity grows, it would require automation support. And possibly for very
large systems, the automation could also prove painstakingly slow. Therefore, several divide
and conquer approaches have been proposed [57, 58] to overcome the apparent complexity of
large systems which respectively suffer from loss of information or enumerating all paths in
the graph.

With the method described in this chapter, we provide an alternative analytical accuracy
evaluation approach for use with hierarchical techniques to be applied on LTI systems. This
technique captures the information associated with the frequency spread of quantization noise
power by sampling its PSD. We show how such information can be used for breaking the
complexity of evaluating quantization noise at the output of large signal processing systems.
Contributions brought by our work are as follows:

• quantifying the accuracy of the proposed technique based on PSD propagation and

• demonstrating its high scalability at system level resulting from linear time complexity.

The rest of this chapter is organized as follows. Section 2.2 reviews analytical methods
for accuracy analysis at the algorithm level of errors due to finite arithmetic effects in systems
using fixed-point arithmetic. In Section 2.3, the proposed estimation method based on PSD
is introduced and developed for general systems. Finally, in Section 2.4, two representative
signal-processing benchmarks are chosen to showcase the efficiency of the proposed method.

2.2 Related work on accuracy analysis

The loss in accuracy due to finite precision imposed by fixed-point numbering format has been
evaluated using several metrics. The most common among them are the error bounds and the
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Mean Square Error (MSE). While the first metric is used to determine the worst case impact,
the MSE is an average case metric very useful in tuning the average performance of the system
under consideration in terms of its energy and timing. Although the finite precision accuracy
must be compared with infinite precision (or arbitrary precision) numbers, it is impossible to
do so while simulating using a computer. So, the IEEE double-precision floating-point format,
whose dynamic range and precision are several orders of magnitude higher compared to typical
fixed-point word lengths, is considered as the reference for all comparison purposes and may
be referred as infinite precision in what follows.

In the literature, the MSE is the mean square value of the differences between computa-
tions by fixed-point system and the reference system implementation extracted as showed on
Figure 2.1 and is also referred to as quantization noise power. This is a scalar quantity and it
changes as a function of the FxP word-length. Evaluation of quantization noise power at the
output of a fixed-point system is either performed by simulation-based technique or using an-
alytical techniques. Simulation-based techniques are universal and can be made use of as long
as there are enough computational resources. By the nature of it, simulation-based techniques
take longer time and are subjected to the input stimulus bias.

Figure 2.1 – Extraction of the mean square error of a fixed-point system

Analytical techniques, on the other hand, provide a closed-form expression for calculating
the quantization noise power as a function of FxP word-lengths. However, they are limited due
to their dependence upon the following properties [59]:

1. Quantization noise and the signal are uncorrelated.

2. Quantization noise at its source is spectrally white.

3. Effect of a small perturbation at the input of the operation generates a linearly propor-
tional perturbation at the output of the operation.

The first two properties pertain to the quantization noise source under conditions defined in
the Pseudo-Quantization Noise (PQN) model, the statistics of the noise and signal are uncorre-
lated and even though the signal itself may be correlated in time, the noise signal is uncorrelated
in time [59]. The independent and uniform nature of this noise was already discussed in Sec-
tion 1.3.2. The representation of quantization error as an additive uniformly distributed white
noise is depicted by Figure 1.6.

The third property relates to the application of “perturbation theory” [60]. It is possible to
propagate quantization noise through as long as the function defined by the operation can be
linearized. Consider a binary operator whose inputs are x and y and the output is z. If the input
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signals be perturbed by b
x

and b
y

to obtain x and y respectively, the output is perturbed by
the quantity b

z

to obtain z. In other words, as long as the fixed-point operator is smooth, the
impact of small perturbations at the input translates to perturbation at the output of the operator
without any change in its macroscopic behavior. In the realm of perturbation theory, the output
noise b

z

is a linear combination of the two input noises b
x

and b
y

such as

b
z

= ‹
1

b
x

+ ‹
2

b
y

(2.1)

where ‹
1

, ‹
2

are obtained from a first-order Taylor approximation [60] of the continuous and
differentiable function f :

z = f(x, y) (2.2)

ƒ f(x, y) + ˆf

ˆx
(x, y).(x ≠ x) + ˆf

ˆy
(x, y).(y ≠ y).

Therefore, the expression of the terms ‹
1

and ‹
2

are given as

‹
1

= ˆf

ˆx
(x, y) ‹

2

= ˆf

ˆy
(x, y). (2.3)

Following the third property of quantization noise enumerated above, a further assumption for
Equation 2.1 to hold true is that the noise terms b

x

and b
y

are uncorrelated with one another. It
has to be noted here that the terms ‹

1

and ‹
2

can be time varying. This method is not limited
to binary operations only. In fact, this method can be applied at the functional level with any
number of inputs and outputs and to all operators on a given data path in order to propagate the
quantization noise from all error sources to the output.

When above conditions hold true, the output quantization noise power of the system is
obtained by linear propagation of all quantization noise sources [61] as
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where E [·] is the expectation function, b
y

is the error signal associated with its corresponding
system output signal y. The system under consideration consists of N

e

fixed-point operations
and the ith operation is generating quantization noise b

i

with mean and standard deviation µ
i

and ‡
i

. Figure 2.2a illustrates this noise propagation. The terms K
i

and L
ij

are constants and
depend on the path function h

i

from the ith source to the output y and are calculated as
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Hierarchical techniques for evaluation of quantization noise power have been proposed [62, 57]
to overcome the scalability concerns associated with fixed-point systems. In this approach, the
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system components are evaluated one at a time and then combined by superposition at the
output (Figure 2.2b, blind propagation of µ

i

, ‡2

i

). If simulation-based technique is used for
evaluation of quantization noise power at the output, the hierarchical evaluation process helps
parallelize simulation of each of the components. When employing analytical technique such
as the one in Eq. 2.4, the number of paths required to be evaluated is reduced dramatically.
This reduction is very interesting from the design automation perspective. The paths are bro-
ken around the system component boundaries and each component can be evaluated separately
thereby reducing the burden of semantic analysis. However, it has to be borne in mind that
the application of the technique in Equation 2.4 requires that the quantization noise satisfies
the three properties enumerated above and also that the noise signals are always uncorrelated,
which is often false and can cause severe errors. The method in this chapter addresses this prob-
lem and suggests a technique that exploit the information hidden in the PSD of the quantization
noise [59, 63] signal to achieve very accurate estimates.
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Figure 2.2 – Comparison of noise parameters propagation using traditional flat, PSD agnostic
and proposed PSD methods
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2.3 PSD-based accuracy evaluation

It is clear from the state of the art that there exists two types of limitations to the existing accu-
racy evaluation techniques. While the analytical technique reduces the simulation time greatly,
its preprocessing time can grow exponentially requiring to employ hierarchical techniques such
as [57]. However, these techniques introduce the problem of inaccuracy by approximating error
quantities with just mean and variance. This is especially true in cases when large systems are
broken down to smaller sub-systems for analysis. For illustration, consider the system shown
in Figure 2.2b. The system S consists of several sub-systems marked as Op

1...5

. The noise
generated at the output of each system, correspondingly marked as b

1...5

, is propagated (blue
arrows) through several parts of the system for calculation of the moments of error at the sys-
tem output. Suppose there are memory elements in Op

1

and Op
2

, propagation of noise b
1

and
b

2

(say) through Op
3

by just using the first two moments of the quantization noise (as described
in the previous section) can lead to errors in estimates at the output of Op

3

which can further
be amplified by Op

5

all the way to output O. Similarly, the path through Op
4

also influences
the error of the estimate through Op

5

leading to very large error margins for O. In order to
analytically arrive at the moments of the system output, additional information pertaining to
quantization noise at points of convergence of two or more noise paths is required. We refer to
the methods that do not consider PSD information (such as [62]) as PSD-agnostic methods. In
this section, we propose a technique which efficiently makes use of the PSD of the quantization
noise for evaluating the error at the output of a system and which is scalable both in terms of
accuracy and system size.

2.3.1 PSD of a quantization noise

A large signal processing system can be divided into a number of sub-systems, each character-
ized by its transfer function. The transfer function defines the magnitude and phase relationship
of the path for input signals of different frequencies. Since our interest is only the noise power,
we ignore the phase spectrum and consider only its magnitude spectrum or the PSD. With the
knowledge of the PSD distribution of the input and the system PSD profile, it is possible to
calculate the PSD of the output. The PSD S

xx

(F ) of a signal x at any normalized frequency F
is defined as the Fourier transform (F {·}) of the autocorrelation function of x as

S
xx

(F ) = F {x(n) ⇧ xú(n + m)} , (2.7)
S

xx

(F ) = F {x} ⇧ F {x}ı = |F {x}|2 . (2.8)

With the knowledge of the PSD of x, the MSE and the mean of x is obtained by summing up
the power in each frequency component as

E
Ë
x2

È
=

⁄
1

≠1

S
xx

(F ) dF = µ2 + ‡2

S
xx

(0) = µ2. (2.9)

The PSD of the quantization noise generated by a fixed-point data type with d fractional bits
is (as discussed in Section 2.2) white, except for F = 0, which depends on mean. By dis-
cretizing the PSD into N

PSD

regular bins including the DC component, the PSD of a generated
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quantization noise b
x

is given by:

S
b

x

(F ) =
I

1

NPSD
‡2 if F ”= 0,

µ2 if F = 0.
(2.10)

where mean and variance µ and ‡2 for both truncation and rounding modes with d bits is as
given in [59].

2.3.2 PSD propagation across a fixed-point LTI system

In the method developed in this chapter, we will focus on linear and time-invariant (LTI) sys-
tems, which constitute the major part of signal processing systems. An LTI system can be
represented by a signal flow graph (SFG) composed of boxes corresponding to sub-systems
defined by their impulse response and delimited by additive quantization noise sources such as
the one described in Section 2.2. The proposed PSD evaluation method then consists of three
steps:

1. Detect cycles in SFG and break them to obtain an equivalent acyclic SFG that can be
used for noise propagation using classical SFG transformations [64]. An example of
SFG breaking is issued by Figure 2.3. Given the original cyclic SFG of Figure 2.3a, the
loop generated by H

3

loopback is flattened as showed on Figure 2.3b.

2. The discrete PSD of each signal processing block and of the additive noise associated
with the input signal is calculated on N

PSD

points.

3. The noise PSD parameters are propagated from inputs to outputs, using Equations 2.11
and 2.14.

Let x be the input of a system of impulse response h. Then the output y is obtained by the
convolution operation (ú) of x and h as y = x ú h. In the Fourier transform domain it can be
written as Y = X ⇧ H where Y = F {y}. Following this, the output PSD S

yy

(F ) is obtained
as [63]

S
yy

(F ) = S
xx

(F ) ⇧ ÎH(F )Î2. (2.11)

where ÎH(F )Î is the magnitude response of the system h.
In any signal processing system, the quantization noise sources from various inputs con-

verge in at either an adder or a multiplier. Considering the LTI subset, multiplications are noth-
ing but multiplication with constants and hence correspond to linear scaling factors for noise
powers. In the case of adders, if the sum of two quantities x and y is obtained as z = x + y,
then S

zz

(F ) is given by

S
zz

(F ) = S
xx

(F ) + S
yy

(F ) + S
xy

(F ) + S
yx

(F ), (2.12)

where S
xy

(F ) is obtained using the cross-correlation spectrum of x and y and is obtained as

S
xy

(F ) = F {x(n) ⇧ yú(n + m)} . (2.13)
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Figure 2.3 – SFG cycle breaking process example

Also, S
yx

(F ) is obtained as the complex conjugate of S
xy

(F ). Indeed, if x and y are uncor-
related, the cross-correlation is rendered zero and S

zz

(F ) is simply the sum of S
xx

(F ) and
S

yy

(F ).

S
zz

(F ) = S
xx

(F ) + S
yy

(F ). (2.14)

The complexity of propagating PSD parameters through the system essentially depends on the
number of discrete points N

PSD

. The total time for evaluation of the PSD parameters can be
split into two parts: first, ·

pp

corresponding to the preprocessing stage which involves evaluat-
ing the N

PSD

-point Fourier transform of transfer function of the sub-systems with complexity
O{Nlog(N)}; second, the actual time required for evaluation ·

eval

which is O{N} from Equa-
tions 2.11 and 2.14. ·

eval

is required for evaluating the accuracy for various inputs and can be
repeatedly performed without any preprocessing say N

eval

times. Since the time spent on pre-
processing is a one-time effort, the actual evaluation time is dominated by the ·

eval

which is
linear with N

PSD

.

2.4 Experimental Results of Proposed PSD Propagation Method

In this section, the proposed method is evaluated using a three-step approach. First, we show
experimentally that the estimates obtained by proposed PSD technique are close to simulation.
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Then, we present the impact of choosing the number N
PSD

to capture PSD information on
the accuracy as well as the execution times of the proposed approach. Finally, we also discuss
the improved accuracy in estimation and compare it with the result obtained by PSD agnostic
method.

All experiments are performed using Matlab R2014b. The MSE deviation E
d

is chosen as
the metric for comparison in all these experiments. It is calculated as

E
d

= E
#
err2

sim

$ ≠ E
#
err2

est

$

E
#
err2

sim

$ , (2.15)

where E
#
err2

sim

$
is the output error power obtained by simulation and E

#
err2

est

$
is obtained

by proposed analytical estimation. From this metric, an accuracy equivalent to less than one
bit corresponds to the range E

d

œ (≠75%, 300%), which can be trivially proven considering
the error power relative to two successive word-lengths. Beyond these limits, the estimation is
unmistakably not suitable for the fixed-point refinement process as the finally selected word-
length would not meet the maximum error requirements. In the following sections, we first
present the experiments and provide a discussion of the results obtained.

2.4.1 Experimental Setup

2.4.1.1 Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) Filters

The first experiment consists in evaluating the PSD of a single Finite Impulse Response (FIR)
and Infinite Impulse Response (IIR) filter blocks as described in Section 2.3. The quantized
input signal is propagated through the chosen filter and the output quantization noise power is
measured by simulation and by the proposed PSD method. The error in estimates of the noise
power E

d

is obtained on a total of 147 FIR and 147 IIR filters obtained by attributing different
functionalities (bandpass, low-pass and hi-pass), various taps involving memory elements be-
tween 16 and 128 taps for FIR filters and from 2 to 10 taps for IIR filter. Simulation is run on
106 inputs and PSD estimation is performed on 1024 samples.

2.4.1.2 Frequency Domain Filtering

The system described in Figure 2.4 is a frequency domain band-pass filter. It consists of a 16-
tap low-pass FIR filter H

hp

followed by a frequency-domain filter, composed of a 16-point
FFT block, a multiplication by the 16 coefficients of a high-pass FIR filter H

lp

and an inverse
FFT. The frequency domain filter applies the filter using the popular overlap save method.
Simulations are carried out on a set of 107 input samples.

2.4.1.3 Daubechies 9/7 Discrete Wavelet Transform

A 2-level Daubechies 9/7 Discrete Wavelet Transform (DWT) pair which forms the basis
of many modern image and video codecs such as JPEG-2000, H.264 is shown in Figure2.5.
For this experiment, 196 grayscale images extracted from USC-SIPI and RPI-CIPR image
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Figure 2.4 – Band-pass frequency filtering scheme

databases and from Brodatz texture images [65] used generally for evaluating JPEG2000 com-
pression algorithms. Two levels of sub-band decomposition are performed on the sample im-
ages using the hierarchical signal flow graph. For the encoder, the first level of filtering and
downsampling is applied on rows and the second one on columns. The second level coding is
applied on the low-pass components (x

ll

). Symmetrically, the decoder first performs upsam-
pling and filtering is applied on columns followed by the second upsampling and filtering on
the rows. For this experiment, fractional word-lengths d of all variables are set to the same
value and are varied across 8 ≠ 32 bits in steps of 4 and N

PSD

is set to 1024.
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Figure 2.5 – 1-level DWT coder and decoder
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2.4.2 Validation of the Approach for LTI Systems

The min, max and absolute mean of E
d

for FIR and IIR filters are given in Table 2.1.

FIR filters IIR filters
min(E

d

) ≠0.37% ≠19.4%
max(E

d

) 0.37% 31.2%
mean(|E

d

|) 0.11% 9.44%

Table 2.1 – Relative error power estimation statistics E
d

In the case of FIR filters, E
d

is contained within an absolute value of 0.37% in comparison
with simulation. In the case of IIR filters, Ed bounds are higher because of their recursive
nature and the high filter orders tested. FIR and IIR filters result in an average absolute E

d

of respectively 0.11% and 9.44%, showing a generally very accurate estimation. For both, the
accuracy is anyway largely less than one-bit equivalent. Moreover, classical flat estimation [61]
applied to the same filters gives the exact same results in terms of E

d

, showing their strict
equivalence on an elementary filtering block.

Figure 2.6 presents the results for the two other experiments when the number of fractional
bits are changed between 8 and 32 bits with a maximum deviation in error of only about 10%.
The maximum error in estimate is by far too small to have an impact on the final optimization.

Figure 2.6 – E
d

versus fractional bit-width d

2.4.3 Influence of the Number of PSD Samples

The proposed PSD estimation method achieves very good accuracy with a large number of
sampling PSD samples. However, as discussed in Section 2.3.2, a larger number of N

PSD

sam-
ples increases the evaluation time. Therefore, it would be of interest to know the impact of
finding out how this choice affects the estimation accuracy. To observe this, in both examples
chosen in this section, the fixed-point error is obtained by both simulation and the proposed
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PSD method with different values of N
PSD

in powers of 2 ranging from 16 to 1024. In this
example, fractional bit-width d is uniformly set to 32 for all signals. Output error power devia-
tion E

d

value for this experiment is plotted in Figure 2.7 versus N
PSD

. As expected, increasing
the number of PSD samples leads to an improvement of E

d

. For N
PSD

= 16, E
d

is slightly
inferior to ≠8% for the frequency filtering system, and slightly superior to 1% for the DWT
system. Then, both curves tend to a value inside ±1%. The accuracy obtained is better than
the sub-one-bit objective. The accuracy of estimates obtained using the proposed method is a
function of the system complexity.

2.4.4 Comparison with PSD-Agnostic Methods

The deviation of the error estimates between the proposed and the PSD agnostic method is
presented in Table 2.2. The max error is obtained with N

PSD

= 16 and min error is obtained
with N

PSD

= 1024. In all cases, it can be observed that the PSD agnostic method is much
more erroneous than even the maximum error obtained using the proposed technique. It has to
be noted that for the DWT example, the PSD agnostic method renders an error of 610%. The
PSD agnostic method is 4.5◊ worse off in its estimate for frequency filtering, and 554◊ for
DWT. For the best case, these values raise respectively to 3.5 103◊ and 6.7 104◊.

Figure 2.7 – E
d

versus number of PSD samples NPSD

Proposed Proposed PSD
PSD method PSD method agnostic

(max accuracy) (min accuracy) method
Freq. Filt. ≠8.40% ≠0.87% 29.5%
DWT 9/7 1.10% 0.90% 610%

Table 2.2 – Comparison of E
d

between PSD agnostic method and proposed PSD method

Time spent on this estimation is usually another critical resource. Figure 2.8 gives the time
of output error estimation using the proposed PSD method versus N

PSD

. With N
PSD

= 16 the
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proposed method requires about one millisecond in case of both experiments. With more PSD
samples, the time taken by frequency filtering example grows slower than Daubechies DWT
example owing to its small size. A speed-up factor of 3 ≠ 5 orders of magnitude compared to
simulation is obtained in both cases even for the highest value of N

PSD

.
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Figure 2.8 – Execution time in seconds and speed up for frequency filtering and DWT systems
versus the number of PSD samples

2.4.5 Frequency Repartition of Output Error

Another interesting feature inherent to the proposed estimation method is to know the fre-
quency repartition of errors, which is relevant for refinement of fixed-point signal process-
ing systems, and which is not estimated with conventional methods. Indeed, the classical flat
method is not able to give any clue about the frequency repartition of the error, which is a
capital information in signal processing. E.g, for image compression for instance, accuracy is
more likely to be relaxed in low frequencies than in high ones, human vision being less sen-
sible to slight variations of colors than in tiny details. The proposed PSD estimation is able
to give the frequency repartition of this error in a very precise and fast way. Figure 2.9 gives
a visual comparison between the PSDs of output error obtained by intensive simulation and
PSD method on 1024 samples for a 2-level Daubechies DWT encoding and decoding, with all
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data fractional parts set to 12 bits. Black to white values represent log-normalized low to high
errors. The center of the image represents low frequencies, while the borders represent the high
ones. These visual representations show that proposed method achieves a very good estimation
of frequency repartition of the output error, taking only a few milliseconds with PSD method
whereas simulation on 72 grayscale images has taken several hours of computation using Mat-
lab. Such a fast and accurate information can be used for refining the system word-lengths to
reach a better output quality, basing the refinement not only on output error intensity but also
on what frequency repartition is best for the application. Using PSD method, different versions
of the application can be evaluated in terms of error frequency repartition to allow for code
transformations leading to less impact in the relevant frequency bands. Frequency repartition
information can then be modified by allowing the introduction of errors in one or several given
parts of the system to identify.

(a) Simulation (b) PSD estimation

Figure 2.9 – Output frequency repartition of the fixed-point error after DWT encoding and
decoding

2.5 Conclusions about PSD Estimation Method

This chapter described the characterization and propagation of quantization noises in a fixed-
point signal processing system using its power spectral density. This method is applied at block
level, which dramatically reduces the complexity of fixed-point system evaluation when com-
pared to classical flat estimation method. It therefore leads to a significant speed up for accuracy
evaluation, going from 3 to 5 orders of magnitude when compared to Monte-Carlo simulation
in tested examples. Results demonstrate that the proposed estimation method leveraging spec-
tral information achieves a less than one-bit accuracy with a large margin. They also show that
complexity-equivalent PSD-agnostic techniques evaluate the accuracy with large errors. The
proposed PSD technique also allows the observation of useful frequential properties of the out-
put error that could not be achieved with conventional scalar methods. This work was published
at DATE’16 conference [1].
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Fast Approximate Arithmetic
Operator Error Modeling

In this chapter, techniques based on propagation of Bit-Error Rate (BER) are presented. First,
the bitwise-error rate propagation method is proposed and applied to approximate operators.
This method allows for fast analytical propagation of approximate operators error, with low
memory cost. The model is trained by simulation and converges fast. Then, attempts to use
approximate operators for the simulation of Voltage Over-Scaling (VOS) effects are discussed.

3.1 The Problem of Analytical Methods for Approximate Arith-
metic

As pointed out in Chapter 1, Section 1.4, many different approximate operators do exist. Most
adders rely on different ways to break the carry chain, like LPA, ACA, ETA version II to IV, and
most multipliers by pruning the partial products to simplify the summand grid reduction, such
as AAM version I to III and Fixed-width modified-Booth-encoded Multiplier (FBM) version I
to III. Only a few examples such as ETAI or DRUM use strongly different techniques. Amongst
these operators, some are configurable at run time like AC2A and GDA.

We discussed in Chapter 2 the importance of optimizing a computing system so the opera-
tors with the lowest cost meeting accuracy requirements are used so no time, area and/or energy
is uselessly spent. For FxP error, modeling the error as an additive uniform white noise allows
an efficient propagation of the mean and variance of the noise [24, 25]. However, the nature
of approximate operators error is very different from FxP noise. To account for this specifity,
Figure 3.1 shows the error maps of several different 8-bit approximate operators previously
mentioned. All error maps take as a reference an 8-bit exact adder. The uniform nature of 4-
bit reduction FxP noise illustrates with a very regular striped-pattern on the error map 3.1a,
whereas all the others are very different. ACA error map 3.1b shows a fractal behavior, with
nested error triangles. AAM error map 3.1c has four areas with very different error amplitude
and patterns. Finally, DRUM error map 3.1d, with its floating-point-like behavior, has an error
pattern which is transformed depending on the amplitude of the inputs.

107
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(a) 8-to-4-bit quantization (b) 8-bit ACA, k = 2

(c) 8-bit AAM (d) 8-bit DRUM, k = 4

Figure 3.1 – Error maps of 8-bit FxP quantization process and approximate operators. 8-to-4-
bit quantization illustrates the regularity of the uniform error repartition of FxP arithmetic. The
error maps of the three other approximate operators illustrate that the nature of their error is far
more complex.
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All these differences between Approximate (Apx) operators and FxP, and between different
Apx operators themselves, make it hard to find pure analytical models to estimate their impact
on the output error of an application. The only efficient way to estimate their impact is therefore
simulation. Hybrids between analytical models and simulation, referred as pseudo-simulation,
have been developed, but they are inefficient because often heavier and less accurate than sim-
ulation. In [66], an analytical propagation of the error Probability Density Function (PDF) of
approximate operators is proposed. It leverages modified interval arithmetic, representing and
propagating the PDF of signal, signal error and operators error by sets of intervals. This method
allows fast simulation compared to Monte Carlo simulation. However, the method has a major
limitation. Indeed, the model for the propagation of error PDF, which is specific to each oper-
ator, potentially costs a lot of memory. Indeed, given 2 input error PDFs with k intervals each,
k2 resulting values must be kept in memory. However, to be accurate, k must be large enough
to be representative of the real error PDF. For an n-bit value, a perfect accuracy for the rep-
resentation of a corresponding error PDF must have k = 2n. Therefore, for a 32-bit operator,
a perfect accuracy would require 22ú32 = 264 values to be stored, that is 1019. Of course, a
much lower value must be chosen for k, which implies important approximations in the PDFs,
and also in the model of propagation. Therefore, this model is likely to diverge quite fast along
propagations, or to be memory-hungry.

In the next section a proposition of a lighter model to propagate the Bitwise-Error Rate
(BWER) caused by approximate operators is presented.

3.2 Bitwise-Error Rate Propagation Method

This section presents the Bitwise-Error Rate (BWER) propagation method. First, the main prin-
ciple of BWER propagation method is described. Then, the data structure used for propagation
and the training algorithm are discussed. Finally, the propagation algorithm is described.

3.2.1 Main Principle of BWER Propagation Method

BWER propagation method is an analytical method which consists in estimating the output
BWER of a system composed of approximate integer operators. BWER is defined as the BER
associated to each bit position of a binary word. Given an n-bit binary word x = {x

i

}
iœJ0,n≠1K,

BWER is the vector BWER(x) = {p
i

}
iœJ0,n≠1K composed of n real numbers in range [0, 1]

corresponding to the probability p
i

for x
i

to be erroneous. Given an approximate operator Op
whose inputs are x and y of width n and whose output is z of width m, BWER propagation
method aims at determining analytically the output BWER vector, knowing both input BWER
vectors such as depicted on Figure 3.2. Then, considering a network of approximate operators,

Figure 3.2 – Propagation of BWER across an operator
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the BWER vectors can be propagated operator by operator from the inputs, considered as ac-
curate, to the outputs. To be time-efficient, the propagation must be simulation-free and so the
model must be completely analytic.

3.2.2 Storage Optimization and Training of the BWER Propagation Data Struc-
ture

To propagate BWER across an operator, a BWER transfer function must be built. For this, the
impact of an error at any bit position of both inputs on any bit of the output must be determined.
Let e

x,i

be the event “The i-th position bit of x is erroneous”. Considering n-bit inputs x and
y, let the vector

E
x,y,err_id

= {e
y,n≠1

, e
x,n≠1

, e
y,n≠2

, e
x,n≠2

, . . . , e
y,1

, e
x,1

, e
y,0

, e
x,0

} (3.1)

be the event “x and y to have all their bits erroneous”. In this notation, err_id is the integer
value represented by the binary word E

x,y,err_id

where the event e
x,i

is represented by 1 and
the opposite event e

x,i

is represented by 0, read left to right from MSB to LSB. E.g, if x and y
are 2-bit inputs, E

x,y,3

represents the event vector {e
y,1

, e
x,1

, e
y,0

, e
x,0

}, and E
x,y,6

represents
{e

y,1

, e
x,1

, e
y,0

, e
x,0

}. For inputs of width n, there are 4n possible event vectors, E
x,y,0

being
the vector for which all input bits are correct, and E

x,y,4

n≠1

being the one for which all input
bits are erroneous, which is Equation 3.1. From this point, these vectors will be referred as
Error Event Vectors (EEVs).

Therefore, to know the impact of an error on any input bit for n-bit inputs on m-bit output,
the set of probabilities must be determined and stored:

P (e
z,j

|E
x,y,i

)
iœJ0,4

n≠1K,jœJ0,m≠1K (3.2)

This set has a size of m◊4n real numbers. The cost for storing this data in memory considering
single-precision floating-point representation is given by Table 3.1 for different operations. It

Operation n m Storage
8-bit addition 8 9 2.4 MB

8-bit multiplication 8 16 4.2 MB
16-bit addition 16 17 292 GB

16-bit multiplication 16 32 550 GB

Table 3.1 – Storage Cost of BWER Propagation Full Data Structure

is clear that storing such an amount of data is not scalable, even for small bit-width such as
16-bit. Moreover, the time that would be needed to train such a volume of data would also be
huge. Therefore, reductions of this data structure are necessary.

First, for arithmetic operators, the output bits of significance j only depend of input bits
of significance i Æ j. This already allows for an important reduction in the required storage.
Indeed, the number of data needed to be stored is now (m ≠ n + 1

3

)4n ≠ 1

3

instead of m ◊ 4n,
as the set of conditional probabilities to be stored of Equation 3.2 is now:

P (e
z,j

|E
x,y,i

)
iœJ0,4

min(j,n)≠1K,jœJ0,m≠1K (3.3)
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As an example, for 16-bit addition, 22 GB are necessary instead of the previous 292 GB. In
spite of a 92% memory reduction, this is still too high to be decently implemented.

The previous reduction implies no approximation. However it is possible to reduce dra-
matically the size of the data structure, allowing a small amount of inaccuracy. For this, the
hypothesis that any output bit of significance j only depends at most on the input bits of sig-
nificance i œ Jj ≠ k + 1, jK, where k is arbitrary. With this method, the set of conditional
probabilities of Equation 3.3 becomes:

P (e
z,j

|E
x,y,i

)
iœJ0,4

min(j,k)≠1K,jœJ0,m≠1K (3.4)

This approximation is legitimated by two facts:

1. As already stated, the probability for a carry chain to be long is very small [32]. There-
fore, a low significance input bit only has an impact on a much higher significance output
bit in a very small minority of cases.

2. A vast majority of approximate arithmetic operators are based on cutting carry propaga-
tions to a certain limitation l. Therefore, choosing k > l even induces no approximation
at all.

Choosing an arbitrary k reduces the storage cost to

(m ≠ k + 1
3)4k ≠ 1

3
real numbers. Table 3.2 gives the corresponding memory cost as a function of k for 16-bit ad-
dition and multiplication. For 16-bit addition, the data structure size is reduced from 292 GB

Operator Original 1st 2nd Reduction
Reduction k = 10 k = 8 k = 6 k = 4 k = 2

16-Add 292 GB 22 GB 31 MB 2.4 MB 186 kB 14 kB 980 B
16-Mul 550 GB 280 GB 93 MB 6.3 MB 431 kB 29 kB 1.9 kB

Table 3.2 – Storage Cost of BWER Propagation Data Structure for 16-bit Addition and Multi-
plication Depending on Reduction Method

to 2.4 MB for instance with k = 8, limiting the consideration of input LSBs to a horizon of 8,
turning the storage of the data structure to a decent value. Moreover, knowing the parameters
of each considered operator, k can be minimized so there is no approximation in the model.
E.g, for ACA

16

(5), taking k = 6 can be chosen with no compromise, requiring only 186 kB
of storage.

Once k is selected, the model needs to be trained offline. Monte Carlo simulation with fault
injection is used for this, using functional model of the operator in C++, from the approximate
operator library of ApxPerf 2.0 [2]. The extraction process of an observation of the EEV
E

z

corresponding to an observation of an input EEV E
x,y

is depicted in Figure 3.3. x and y
inputs are randomly picked using Monte Carlo simulation, and the accurate operation Op

Acc

is
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performed to obtain the corresponding exact output z = z
j

jœJ0,m≠1K. In parallel, random faults
are injected in x and y performing an XOR with fault injection vectors. These fault injection
vectors produce the 2n-bit observation F

x,y

of an EEV E
x,y

. The approximate operation Op
Apx

is then fed with the generated faulty inputs x̂ and ŷ, returning ẑ. Finally, the m-bit bitwise-error
observation vector F

z

= {f
z,j

}
jœJ0,m≠1K of an EEV E

z

= {e
z,j

}
jœJ0,m≠1K is extracted from ẑ

and z by an m-bit XOR.

Figure 3.3 – Extraction of Binary Error Event Vectors for BWER Model Training

The conditional probability of Equation 3.4 can be estimated by the ratio between the num-
ber of observations of the event e

z,j

when the corresponding EEV E
x,y,i

is simultaneously
observed, referred as (f

z,j

= 1|F
x,y,i

), and F
x,y,i

the total number of observations of E
x,y,i

:

P (e
z,j

|E
x,y,i

) ©
q

l

(f
z,j

= 1|F
x,y,i

)
lq

l

(F
x,y,i

)
l

. (3.5)

Figure 3.4 presents an example of how are trained the corresponding conditional probabilities
after one iteration of training. The inputs and output are both 4-bit and k = 2. First, looking at
the blue part, after approximate operation, the output LSB is not faulty. Therefore, f

z,0

= 0.
As x̂

0

was not faulty and ŷ
0

was faulty, the corresponding observation of input EEV is F
x,y,2

.
Thus, following Equation 3.5, the estimation of P (e

z,0

|E
x,y,2

) is modified by increasing the
denominator by 1. Then, looking at the yellow part of Figure 3.4, the output observation is
f

z,1

= 1, meaning the output is erroneous. As k = 2, input ranks 1 and 0 are observed together.
The corresponding observation (0, 1, 1, 0) is F

x,y,6

. P (e
z,1

|E
x,y,6

) is modified increasing the
numerator by 1 (faulty output) and increasing the denominator by 1. The operation is repeated
at significance position 2 (green part) and 3 (red part), each time observing 2k = 2 input error
vector bits.

Following this method, the conditional probability data structure has m elements updated at
each new training cycle. Finally, after a sufficient number of training cycles (discussed in Sec-
tion 3.3.1), the model is trained and ready for propagation, which is discussed in the following
section.

3.2.3 BWER Propagation Algorithm

The propagation of BWER is performed the following way. Given two BWER inputs B
x

=
{b

x,i

}
iœJ0,n≠1K and B

y

= {b
y,i

}
iœJ0,n≠1K and the equivalent conglomerate vector

B
x,y

= {b
y,n≠1

, b
x,n≠1

, b
y,n≠2

, b
x,n≠2

, . . . , b
y,1

, b
x,1

, b
y,0

, b
x,0

} . (3.6)



Results of the BWER Method on Approximate Adders and Multipliers 113
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0 1 1 0

𝐹𝑥,𝑦

𝐹𝑧

𝐹𝑥,𝑦,2𝐹𝑥,𝑦,6𝐹𝑥,𝑦,13𝐹𝑥,𝑦,7

𝑓𝑧,0𝑓𝑧,1𝑓𝑧,2𝑓𝑧,3
Figure 3.4 – Example of Conditional Probabilities Training for n = 4, m = 4 and k = 2

The output BWER B
z

= {b
z,j

}
jœJ0,m≠1K is then determined by

b
z,j

=
4

min(j,k)≠1ÿ

i=0

—
i,j

P (e
z,j

|E
x,y,i

) , (3.7)

where —
i,j

is the probability of the event vector E
x,y,i

to be true at significance j knowing
B

x,y

, referred as P
j

(E
x,y,0

| B
x,y

). Let the partial input BWER b
x,3

, b
y,3

, b
x,4

, b
y,4

given by
Table 3.3. Let an approximate adder trained with k = 2. To determine b

z,4

(similarly for other

b
y,4

b
x,4

b
y,3

b
x,3

0.21 0.14 0.17 0.05

Table 3.3 – Partial Input BWER for the Example

b
z,i

), —
i,4

must be known for i œ J0, 15K. —
6,4

is calculated from Table 3.3 the following way:

—
6,4

= P
4

(E
x,y,6

| B
x,y

)
= P (e

y,4

, e
x,4

, e
y,3

, e
x,3

)
= 0.21 ◊ (1 ≠ 0.14) ◊ (1 ≠ 0.17) ◊ 0.05
= 7.49E≠3

This operation has then to be iterated and summed for all other 15 values i to determine b
z,4

,
and again for all j in J0, m ≠ 1K.

3.3 Results of the BWER Method on Approximate Adders and
Multipliers

This section presents results about the BWER propagation method. These results were pro-
duced a few days before the redaction of this part of the document and are consequently not yet
published. First, the convergence speed of the trained data structure is studied in Section 3.3.1.
Then, results concerning stand-alone approximate adders and multipliers and tree structures of
adders are given considering inputs with a maximal activity.
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3.3.1 BWER Training Convergence Speed

As developed previously in Section 3.2.2, one of the main interests of BWER propagation
method is the reasonable memory cost of the trained structure. However, the method can only
be suitable if the training time is not too important. In this Section, we evaluate the convergence
speed of BWER training.

To evaluate the convergence speed, three approximate adders and two approximate multi-
pliers were used. The adders are ACA, ETAIV and IMPACT, described in Section 1.4.1. The
multipliers are AAMIII, denoted as AAM in the rest of this section, and DRUM described in
Section 1.4.2. They were all tested with input/output widths between 8 and 16 using multi-
ple configurations, with values of k in BWER method in {2, 4, 6, 8}, leading to 374 different
experiment parameters. In this experiment, the reference of the final BWER trained structure
are the values obtained after 108 random value draws. The experiment was performed using
374 cores of IRISA’s computing grid IGRIDA, each instance of the experiment being com-
puted on a single-core for correct time analysis. IGRIDA computing grid embeds 1700 cores
leveraging Intel Xeon CPUs. All implementations are done in C++, using approximate library
apx_fixed described in the next chapter.

The results of training convergence speed are depicted in Figure 3.5. The experiments show
that the training time relative to the number of random training samples is independent of k on
a same processor. Therefore, a single curve for elapsed time is depicted on the figure in dotted
red, which is the mean of the curves for all 374 experiments. The elapsed time is linear with
the number of training samples. On this experiment, the 108 training samples took about 35
minutes for each experiment in average. The blue curves represent the mean distance of the
training values from the reference for each k. As a reminder, the values in the data structure are
probabilities and thus they are in [0, 1].

A first observation of the curves shows that the convergence speed of the training clearly
depends on k. The smaller k, the faster the convergence. For k = 2, the mean distance of the
estimation from the reference gets under 10≠2 between 20, 000 and 50, 000 training samples,
which represents only 0.5 ≠ 1.2 seconds of training. For k = 8, getting as near from the
reference as 10≠1 takes about 1, 000, 000 training samples, which represents a training time
of 22 seconds. Indeed, when k is small, the training structure is very small, and the elements
of the structure are likely to be activated by a random input with a high probability. When k
is large, however, each element of the structure has very few chances to be activated by the
drawn number. This is why the number of random inputs necessary to have a sufficient number
of activations for all elements of the data structure to estimate the BWER probabilities grows
very fast with the value of k. From now on, all BWER estimation structures used are trained
on 108 input samples.

3.3.2 Evaluation of the Accuracy of BWER Propagation Method

As mentioned in Section 3.2.3, the trained structure of BWER propagation method is built to
work for inputs with maximum activity at each bit position. In this section, all presented results



Results of the BWER Method on Approximate Adders and Multipliers 115

Figure 3.5 – Convergence of BWER Training in Function of k

are produced in these conditions, meaning –
j

in Equation 3.9 is always worth 0.5. Two ex-
periments are presented in this section. First, results on single stand-alone operators are given,
using the same approximate operators as the ones described in the previous section. Finally,
results on tree of operations for the same approximate operator instance are given. Figure 3.6
shows the example of this structure, made of three stages. This tree structure is considered to
represent typical data-flow graphs used in signal processing applications and is used to see how
the model propagates in this structure. Even if the model can be accurate for one operator alone,
the interest of analytical models is in their use for application-level error estimation, which is
not considered in the models currently published in the literature for approximate operators.

To evaluate the efficiency of the BWER method, the mean distance

D
B

= 1
n

n≠1ÿ

i=0

---B̂(i) ≠ B(i)
--- , (3.8)

is used, where B(i), i œ J0, n ≠ 1K is the reference output BWER of a given operator of output
width n and B̂(i), i œ J0, n ≠ 1K is the output estimated by the model. The first experiment
without considering the activity of the inputs is the verification of the model on stand-alone
operators. For this experiment and all the other experiments to come in this section, all simu-
lations for the reference are run on 107 input samples. For the estimation time, the analytical
propagation is averaged on at least 5 seconds of repeated experiments.
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Figure 3.6 – Tree Operation Structure with Three Stages

An example of estimation and simulation output BWER vector is shown in Figure 3.7 for
a 12-bit approximate adder ACA with carry chains limited to x = 2, and a parameter k = 4
for the BWER propagation method. In this specific case, the estimation is very near from the
reference simulation. There are no errors occurring on the first 3 bits, which is normal for an
ACA with x = 2. Then, the error probability increases with the bit significance, as expected.
Other cases may show different results, depending on the value of k. E.g, if k Ø x in ACA,
then at least one LSB causing error at a higher significance is not taken into account. In this
case, the estimation is not accurate. Therefore, it is important to find the optimal value of k to
minimize the memory needed and the training time while keeping the best possible accuracy
in the estimation.

Figure 3.8a shows the evolution of D
B

with k for 16-bit ACA as a function of x. As
expected, when k < x, the estimation is bad. Then, the quality of estimation improves when
k approaches x. However, when k gets larger than x, the estimation gets worse again. This
is due to the number of training samples, which is the same for all k in our experiment. As
showed in Section 3.3.1, the training process converges slower when k is larger. Therefore,
when k > x, as there is no improvement in the accuracy of the model compared to k = x, the
slowest convergence is source of inaccuracy. Thus, the optimal value of k in this case is k = x,
which is the best balance between accuracy and required training samples.

Figure 3.8b shows the evolution of D
B

with k for 16-bit IMPACT as a function of the num-
ber of MSBs computed with an exact adder Nacc. For IMPACT, the results are different than
for ACA. Indeed, in IMPACT, every output bit depends on every input bit of lower significance.
Therefore, for all k < n , there is a lack of information in the model. It is interesting to see
that for IMPACT, when the number of accurate MSB computations gets larger, the accuracy
of the estimation gets worse off, until a certain value of k for which the lack of samples used
for training the model compensates for the increase of the information taken into account. This
tendency is quite opposed to what could be expected and needs to be investigated in the future
for better comprehension.
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Figure 3.7 – BWER Estimation and Simulation Results for Stand-Alone ACA with x = 2 and
k = 4

AAM and DRUM multipliers results are respectively given in Figures 3.8c and 3.8d. A first
observation on the error shows that globally, the accuracy of the estimation is worse off than
for adders. Indeed, there is a main difference between adders and multipliers. In adders, the
output bit of significance i is strongly dependent on the input bits of significance i, and then
less and less dependent on the input bits of significance i ≠ 1, i ≠ 2, i ≠ 3, . . . , 0. Therefore,
when k is high enough, the absence of information on the inputs of rank i ≠ k ≠ 1, . . . , 0
represents a small accuracy penalty. However, for an n-bit multiplier with n even, the output
bit of significance n ≠ 1 is as dependent on the inputs of significance n ≠ 1 as on the input bits
of significance 0. However, when k < n, the input bit of significance 0 is not reached by the
estimation, leading to potentially bad accuracy. In Figure 3.8c for AAM results, as AAM has
no parameter, each curve represents the bit-width of the multiplier. The smaller the multiplier,
the better the estimation. For all AAM widths, increasing k always leads to better accuracy as
expected, except for 8-bit AAM with k = 8, which is worse than k = 6. Indeed, as only the
most significant half of multiplication is taken into account in AAM, this means that for each
bit j at the output no partial product implying input significance 0 is operating at weight j.
Therefore, when switching from k = 6 to k = 8, only one more significant bit instead of two
is taken into account, which is not enough to counterbalance the fact that the training was less
efficient for k = 8, thus leading to a lower accuracy. The same phenomenon can be observed
for DRUM on Figure 3.8d when the floating multiplier is only 2-bit or 4-bit large.

Figure 3.9 presents the value of D
B

metric of adders for different number of stages in the
tree configurations described in Figure 3.6. For each figure, the number of stages varies between
two and four, and the output error refers to the output of the last stage. For each configuration of
approximate operators, the value of k giving the best results in the previous stand-alone estima-
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(a) ACA – Adder (b) IMPACT – Adder

(c) AAM – Multiplier (d) DRUM

Figure 3.8 – Evolution of estimation error D
B

with k for different configurations of 16-bit
approximate stand-alone adders and multipliers
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tion is used. For ACA on Figure 3.9a, for x = 6, the estimation becomes less accurate with the
number of stages, which is what could be expected. However, for the other configurations, the
opposite is observed, i.e., more stages lead to better estimation accuracy. This is actually due
to the high BWER of the approximate adder configuration, which leads to a maximal BWER
at nearly all positions after a high number of stages. As the BWER propagation model also es-
timates a maximal BWER, not because of a high accuracy but because of a saturation effect,
the estimation becomes very good. However, this is only a side effect of the bad performance
induced by using several layers of ACA.

(a) ACA – Adder (b) IMPACT – Adder

Figure 3.9 – Evolution of estimation error D
B

with k for different configurations of 16-bit
approximate adders with different number of stages

3.3.3 Estimation and Simulation Time

As the BWER propagation method is analytical, it is made for fast accuracy evaluation. In
this section, the execution time of the method is evaluated. Table 3.4 gives the time spent for
the BWER propagation method to evaluate ACA, IMPACT, AAM and DRUM in their 8-, 12-
and 16-bit versions. For each bitwidth, the training is obtained taking the average of several
different parameters of all approximate adders and multipliers, except for AAM which takes
no parameter. All simulations are run on 107 points. All estimations are repeated during at least
5 seconds and the total time is divided by the number of repetitions. All computations were
run on IGRIDA computing grid composed of different models of Intel Xeon processors. As the
computing grid is heterogeneous, the evaluation may vary if one processor or another is used,
and this must be considered in the analysis of results of Table 3.4.

BWER propagation time roughly oscillates between 500µs and 18ms for addition, and be-
tween 800µs and 42ms for multiplication for stand-alone operators. In a larger system, the
propagation time has to be multiplied by the number of operators. In comparison, 107 simula-
tions take between 26s and 129s. This makes a huge difference when the operation has to be
performed on complete systems and repeated many times, which is the case in an incremen-
tal system optimization process where many configurations of approximate operators must be
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Estimation time Simulation time

ACA
8 0.447 ms 80.3 s
12 10.8 ms 80.2 s
16 15.7 ms 80.7 s

IMPACT
8 0.564 ms 129 s
12 12.6 ms 97.7 s
16 17.5 ms 85.2 s

AAM
8 18.8 ms 25.9 s
12 25.1 ms 35.8 s
16 42.7 ms 81.8 s

DRUM
8 0.766 ms 73.1 s
12 25.3 ms 70.6 s
16 42.4 ms 121 s

Table 3.4 – BWER Propagation and Simulation Time of Stand-Alone Approximate Operators
– Simulation is run on 107 input samples

considered.

3.3.4 Conclusion and Perspectives

In the previous Sections, BWER propagation model principle, its convergence speed and some
results on operators or tree of operators were presented. The existing literature and the results
show how difficult it is to build strong general error propagation models for approximate op-
erators. First, their many different natures make the accuracy of the models very dependent on
each of the structures, and a good estimation accuracy on ACA for instance could give bad re-
sults on an adder like IMPACT (and vice versa). Then, their errors often containing scarce and
very high amplitude peaks, it is very hard to evaluate this with analytical models smoothing
these phenomena.

Another limitation of the BWER propagation method is that it is only suitable if all inputs
are uniformly distributed on their whole dynamic, which means they have a maximal activity.
Indeed, BWER does not carry any information about the activity at any position. If this hy-
pothesis is not true, then the results must be weighted by information about activity. Let –

j

the
probability for the output bit z

j

of an operator to be worth 1. Then, the output BWER in these
conditions can be approximated by

b
z,j

= 2–
j

4

min(j,k)≠1ÿ

i=0

—
i,j

P (e
z,j

|E
x,y,i

) . (3.9)

Indeed, if the input MSB are mostly worth 0 instead of equally 0 or 1, the output BWER on
the MSBs will be proportionally lower. Thus, knowing the probability of input bits to be 1 at
each position, these probabilities need to be propagated analytically across the operators along
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with BWER propagation. In practice, the simplest way is to use the analytical propagation
of these probabilities across exact operators (adders and multipliers). The propagation of the
probability of the output bits to be worth 1 across an adder can be trivially calculated composing
their propagation across a full adder. Their propagation across a multiplier is calculated on the
composition of additions in the partial product reduction. The output probability of a bit to
be worth 1 analytically obtained this way is then weighted by the initially computed BWER
at the output of the operator. Indeed, as approximate operators are erroneous by nature, they
can generate bit flips that can totally modify the value of activity when compared to an exact
operator. If –

Õ
j

is the probability for the output of an exact operator to have its j-th bit worth 1,
then we approximate –

j

(see Equation 3.9) as

–
j

= –
Õ
j

◊ (1 ≠ b
z,j

) + b
z,j

◊
1
1 ≠ –

Õ
j

2
. (3.10)

The question of using BWER for propagation is also contestable. Indeed, few significant
signal processing metrics are possibly deducible from it. However, the objective of this section
is to point out the interest of basing the analytical error estimation on models trained using sim-
ulated values of approximate adders, as it is the only way to catch their many different natures.
Also, the interest of finding ways to reduce the storage cost of the models while sacrificing
a minimum of estimation accuracy has been highlighted by the use of k in the training and
the propagation method. In the future, methods derived from BWER training and propagation
could be developed leveraging other metrics for the propagation and more efficient storage
compression methods. Indeed, as discussed in Section 3.3.2, important data are likely to be
lost, especially in multipliers, when choosing bad parameters for the model.

After many unsuccessful attempts and a deep study of the literature, a more general conclu-
sion about modeling approximate operators error is that there seem not to be better method than
Monte Carlo simulation. Indeed, simple models always suffer from high imprecision which
does not allow them to be used in real system design process, while complex models giving
reasonably good results always come with a high storage or computational cost approaching the
cost of Monte Carlo simulation. Moreover, simulating approximate operators can be done with
a potentially good computational efficiency. Indeed, most of them are essentially a composition
of small exact adders or multipliers. When computing using a CPU, it is therefore possible to
use the integer arithmetic units to accelerate the computations using high-level code instead of
heavier gate-level descriptions. There also are good opportunities to use HLS on the approxi-
mate operators code to simulate them on FPGA, accelerating computation using DSPs. In the
next section, pseudo-simulation leveraging approximate operators is used for the reproduction
of VOS effects.
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3.4 Modeling the Effects of Voltage Over-Scaling (VOS) in Arith-
metic Operators

In Section 1.1.1, functional approximation leveraging VOS is discussed. In this section, a
method to reproduce the effects of VOS on arithmetic operators using models based on ap-
proximate operators is discussed. As for BWER method developed above, it is based on model
training applied to BER at each significance position of an operator.

Voltage scaling has been used as a prominent technique to improve energy efficiency in dig-
ital systems, scaling down supply voltage effects in quadratic reduction in energy consumption
of the system. Reducing supply voltage induces timing errors in the system that are corrected
through additional error detection and correction circuits. A class of circuit-level approxima-
tion is achieved by applying dynamic voltage and frequency scaling aggressively to an accurate
operator. Due to the dynamic control of voltage and frequency, timing errors due to scaling can
be controlled flexibly in terms of trade-off between accuracy and energy. This method is re-
ferred as Voltage Over-Scaling (VOS). It has the potential to unlock the opportunities of higher
energy efficiency by operating the transistors near or below the threshold. VOS-based approx-
imate operators can be used when error-resilient applications are considered.

Despite its high efficiency in terms of energy savings, sub-threshold VOS has important
drawbacks. First, the process variability makes its effects hard to predict in a general way
since two instances of a same chip are likely to behave differently. Second, besides on-chip
measurements or transistor-level simulation simulation, there is no suitable method able to
give a prediction of these effects. On-chip measurements is costly in terms of human resource,
and observing at wire level the effects of VOS is impossible – adding hardware at that level
would modify the nature of what is intended to observe. Transistor-level simulation (such as
SPICE), on the other hand, is accurate. However, the computational resources and simulation
time necessary for large system observation are prohibitive.

In this section, we intend to reproduce the effects of VOS at arithmetic operator scale,
leveraging approximate operators. This allows for much faster and low-resource simulation,
while keeping satisfying accuracy compared to the reality. For this, we propose a new model-
ing technique that is scalable for large-size operators and compliant with different arithmetic
configurations. The proposed model is accurate and allows for fast simulations at the algo-
rithm level by imitating the faulty operator with statistical parameters. We also characterize
the basic arithmetic operators using different operating triads (combination of supply volt-
age, body-biasing scheme and clock frequency) to generate models for approximate operators.
Error-resilient applications can be mapped with the generated approximate operator models to
achieve better trade-off between energy efficiency and error margin. In our experiments using
28nm FDSOI technology, we achieve maximum energy efficiency of 89% for basic operators
like 8-bit and 16-bit adders at the cost of 20% Bit Error Rate (ratio of faulty bits over total bits)
by operating them in near-threshold regime.
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3.4.1 Characterization of Arithmetic Operators

In this section, characterization of arithmetic operators is discussed for voltage over-scaling
based approximation. Characterization of arithmetic operators helps to understand the be-
haviour of the operators with respect varying operating triads. Adders and Multipliers are the
most common arithmetic operators used in datapaths. In this work different adder configura-
tions are explored in the context of near-threshold regime.

Figure 3.10 – Proposed Design Flow for Arithmetic Operator Characterization

Fig. 3.10 shows the characterization flow of the arithmetic operators. Structured gate-level
HDL is synthesized with user-defined constraints. The output netlist is then simulated at tran-
sistor level using SPICE (Simulation Program with Integrated Circuit Emphasis) platform by
varying operating triads (V

dd

, V
bb

, T
clk

), where V
dd

is supply voltage, V
bb

is body-biasing volt-
age, and T

clk

is clock period. In ideal condition, the arithmetic operator functions without any
errors. Also, EDA tools introduce additional timing margin in the datapaths during Static Tim-
ing Analysis (STA) due to clock path pessimism. This additional timing prevents timing errors
due to variability effects. Due to the limitation in availability of design libraries for near/sub-
threshold computing, it is necessary to use SPICE simulation to understand the behaviour of
arithmetic operators in different voltage regimes. By tweaking the operating triads, timing er-
rors e are invoked in the operator and can be represented as

e = f(V
dd

, V
bb

, T
clk

) (3.11)

Characterization of arithmetic operator helps to understand the point of generation and propa-
gation of timing errors in arithmetic operators. Among the three parameters in the triad, scaling
V

dd

causes timing errors due to the dependence of operator’s propagation delay t
p

on V
dd

, such
as

t
p

= V
dd

.C
load

k(V
dd

≠ V
t

)2

(3.12)

Body-biasing potential V
bb

is used to vary the threshold voltage (V
t

), thereby increasing the
performance (decreasing t

p

) or reducing leakage of the circuit. Due to the dependence of t
p

on V
t

, V
bb

is used solely or in tandem with V
dd

to control the timing errors. Scaling down V
dd

improves the energy efficiency of the operator due to its quadratic dependence to total energy.
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E
total

= V 2

dd

.C
load

. Mere increase in T
clk

does not reduce the energy consumption, though it
will reduce the total power consumption of the circuit

P
total

= –.V 2

dd

.
1

T
clk

.C
load

(3.13)

Therefore, T
clk

is scaled along with V
dd

and V
bb

to achieve high energy efficiency.

Characterization of Adders Adder is an integral part of any digital system. In this section,
two adder configurations Ripple carry adder (RCA) and Brent-Kung adder (BKA) are charac-
terized based on circuit level approximations. Ripple carry adder is a sequence of full adders
with serial prefix based addition. RCA takes n stages to compute n-bit addition. In worst case,
carry propagates through all the full adders and makes it longest carry chain adder configu-
ration. Longest carry chain corresponds to the critical path of the adder, based on which the
frequency of operation is determined. In contrast, Brent-Kung adder is a parallel prefix adder.
BKA takes 2 log

2

(n≠1) stages to compute n-bit addition. In BKA, carry generation and prop-
agation are segmented into smaller paths and executed in parallel.

Behaviour of arithmetic operator in near/sub-threshold region is different from the super-
threshold region. In case of an RCA, when the supply voltage is scaled down, the expected
behaviour is failure of critical path(s) from longest to the shortest with respect to the reduction
in the supply voltage. Fig. 3.11 shows the effect of voltage over-scaling in 8-bit RCA. When
the supply voltage is reduced from 1V to 0.8V, MSBs starts to fail. As the voltage is further re-
duced to 0.7V and 0.6V more BER is recorded in middle order bits rather than most significant
bits. For 0.5V V

dd

, all the middle order bits reaches BER of 50% and above. Similar behaviour
is observed in 8-bit BKA shown in Fig. 3.12 for v

dd

values of 0.6V and 0.5V. This behaviour
imposes limitations in modelling approximate arithmetic operators in near/sub-threshold using
standard models. Behaviour of arithmetic operators during voltage over-scaling in near/sub-
threshold region can be characterized by SPICE simulations. But SPICE simulators take long
time (4 days with 8 cores CPU) to simulate exhaustive set of input patterns needed to charac-
terize arithmetic operators.

3.4.2 Modelling of VOS Arithmetic Operators

As stated previously, there is a need to develop models that can simulate the behavior of faulty
arithmetic operators at functional level. In this section, we propose a new modelling technique
that is scalable for large-size operators and compliant with different arithmetic configurations.
The proposed model is accurate and allows for fast simulations at the algorithm level by imi-
tating the faulty operator with statistical parameters.

As VOS provokes failures on the longest combinatory datapaths in priority, there is clearly
a link between the impact of the carry propagation path on a given addition and the error issued
from this addition. Figure 3.13 illustrates the needed relationship between hardware operator
controlled by operating triads and statistical model controlled by statistical parameters P

i

. As
the knowledge of the inputs gives necessary information about the longest carry propagation
chain, the values of the inputs are used to generate the statistical parameters that control the
equivalent model. These statistical parameters are obtained through an off-line optimization
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Figure 3.11 – Distribution of BER in output bits of 8-bit RCA under voltage scaling
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Figure 3.13 – Equivalence Between Faulty Hardware Operator and Equivalent Functionally
Faulty Operator

process that minimizes the difference between the outputs of the operator and its equivalent
statistical model, according to a certain metric. In this work, we used three accuracy metrics to
calibrate the efficiency of the proposed statistical model:

• Mean Square Error (MSE) – average of squares of deviations between the output of the
statistical model x̃ and the reference x̂:

MSE(i) = 1
n

nÿ

i=1

(x̂
i

≠ x̃
i

)2 . (3.14)

• Hamming distance – number of positions with bit flip between the output of the statistical
model x̃ and the reference x̂:

d
ham

(i) =
N≠1ÿ

j=0

(x̂
i,j

ü x̃
i,j

) . (3.15)

• Weighted Hamming distance – Hamming distance with weight for every bit position
depending on their significance:

d
w_ham

(i) =
N≠1ÿ

j=0

(x̂
i,j

ü x̃
i,j

) .2j . (3.16)

Proof of Concept: Modelling of Adders In the rest of the section, we develop a proof of
concept by applying VOS on different adder configurations. All the adder configurations are
subjected to VOS and characterized using the flow described in Fig. 3.10. Fig. 3.14 shows
the design flow of modelling VOS operators. As shown in Fig. 3.13 rudimentary model of the
hardware operators is created with the input vectors and the statistical parameters. For the given
input vectors, output of both the model and the hardware operator is compared based on the
defined set of accuracy metrics. The comparator shown in Fig. 3.14 generates signal to noise
ratio (SNR) and Hamming distance to determine the quality of the model based on the accuracy
metrics. SNR and Hamming distance are fed back to the optimization algorithm to further fine
tune the model to represent the VOS operator.

In the case of adder, only one parameter P
i

for the statistical model is used and is defined
as C

max

, the length of the maximum carry chain to be propagated. Hence, given the operating
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Figure 3.14 – Design flow of modelling of VOS operators

parameters (T
clk

, V
dd

, V
bb

), where V
dd

is supply voltage, V
bb

is body-biasing voltage, and T
clk

is the clock period, and a couple of inputs (in
1

, in
2

), the goal is to find C
max

, minimizing the
distance between the output of the hardware operator and the equivalent modified adder. This
distance can be defined by the above listed accuracy metrics. Hence, C

max

is given by:

C
max

(in
1

, in
2

) = Argmin
Cœ[0,N ]

Îx̂ (in
1

, in
2

) , x̃ (in
1

, in
2

)Î

where Îx, yÎ is the chosen distance metric applied to x and y. As the search space for char-
acterizing C

max

for all sets of inputs is potentially very high, C
max

is characterized only in
terms of probability of appearing as a function of the theoretical maximal carry chain of the
inputs, denoted as P

1
C

max

= k|Cth

max

= l
2

. This way, the mapping space of 22N possibilities
is reduced to (N + 1)2/2. Table 3.5 gives the template of the probability values needed by the
equivalent modified adder to produce an output.

Table 3.5 – Carry propagation probability table of modified 4-bit adder

C
max

Cth

max 0 1 2 3 4

0 1 P (0|1) P (0|2) P (0|3) P (0|4)
1 0 P (1|1) P (1|2) P (1|3) P (1|4)
2 0 0 P (2|2) P (2|3) P (2|4)
3 0 0 0 P (3|3) P (3|4)
4 0 0 0 0 P (4|4)

The optimization algorithm used to construct the modified adder is shown in Algorithm 2.
When the inputs (in

1

, in
2

) are in the vector of training inputs, output of the hardware adder
configuration x̂ is computed. Based on the particular input pair (in

1

, in
2

), maximum carry



128 Chapter 3

chain Cth

max

corresponding to the input pair is determined. Output x̃ of the modified adder with
three input parameters (in

1

, in
2

, C) is computed. The distance between the hardware adder
output x̂ and modified adder output x̃ is calculated based on the above defined accuracy metrics
for different iterations of C. The flow continues for the entire set of training inputs.

Algorithm 2 Optimization Algorithm
P (0 : N

bit_adder

| 0 : N
bit_adder

) Ω 0
max_dist Ω +Œ
C

max_temp

Ω 0
for variable in

1

, in
2

œ training_inputs do
x̂ Ω add_hardware(in

1

, in
2

) Cth

max

Ω max_carry_chain(in
1

, in
2

)
for variable C œ Cth

max

down to 0 do
x̃ Ω add_modified(in

1

, in
2

, C)
dist Ω Îx̂, x̃Î
if dist <= max_dist then

dist_max Ω dist
C

max_temp

Ω C
end if

end for
P (C

max_temp

|Cth

max

) + +
end for
P (: | :) Ω P (: | :)/size(training_outputs)

Once the offline optimization process performed, the equivalent modified adder can be used
to generate the outputs corresponding to any couple of inputs in

1

and in
2

. To imitate the exact
operator subjected to VOS triads, the equivalent adder is used in the following way:

1. Extract the theoretical maximal carry chain Cth

max

which would be produced by the exact
addition of in

1

and in
2

.

2. Pick of a random number, choose the corresponding row of the probability table, in the
column representing Cth

max

, and assign this value to C
max

.

3. Compute the sum of in
1

and in
2

with a maximal carry chain limited to C
max

.

For the experiments, the equivalent modified adder used is ACA, presented in Section 1.4.1.1.
As a reminder, for an n-bit ACA parameterized by k, each output sum bit is calculated consid-
ering only the k previous input carries. This approximated operator is therefore chosen as its
effects represent quite well the effects of VOS, with errors occurring on the critical path, i.e.
the carry chain. Therefore, the control parameter used in the optimization of the model is the
value of k. Figure 3.15 shows the estimation error of model of different adders based on the
above defined accuracy metrics. SPICE simulations are carried out in 43 operating triads with
20K input patterns. Input patterns are chosen in such a way that all the input bits carry equal
probability to propagate carry in the chain. Figure 3.15a plots the SNR of 8- and 16-bit RCA
and BKA adders. MSE distance metric shows higher mean SNR, followed by Hamming dis-
tance and weighted Hamming distance metrics. Since MSE and weighted Hamming distance
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Figure 3.15 – Estimation Error of the Model for Different Adders and Distance Metrics

are taking the significance of bits into account, their resulting mean SNRs are higher than for
the Hamming distance metric. Figure 3.15b shows the plot of normalized Hamming distance
of all the four adders. In this plot, MSE and Hamming distance metrics are almost equal, with
a slight advantage for non-weighted Hamming distance, which is expected since this metric
gives all bit positions the same impact. Both the 8-bit adders have same behavior in terms of
the distance between output of hardware adder and modified adder. On the other hand, 16-bit
RCA is better in terms of SNR compared to its BKA counterpart. These results demonstrate
the accuracy of the proposed approach to model the behavior of operators subjected to VOS in
terms of approximation.

This method was presented in [3], along with error versus energy SPICE simulations under
VOS. In these results, important energy savings are performed using VOS, with no or limited
errors on the output. Figure 3.16 shows the results obtained for different voltage triads on a 16-
bit RCA. The link between the intensity of error, represented here as BER and energy savings
is clearly established, as well as the many possible tuning knobs. This emphasizes the need for
models such as the one presented here, so tuning a faulty circuit does not take days to weeks.

However, the method presented in this section has the main drawback to depend on sim-
ulations results to be trained. As these simulations are extremely long, only 20,000 simulated
points at best could be used for this model training, which is very low and does not ensure ro-
bustness of the generated outputs. Moreover, it is still hard to test the accuracy of this method on
more complex systems, since transistor-level SPICE simulations has prohibitive computational
time and memory cost.
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Figure 3.16 – BER and Energy for Different VOS Triads Applied to 16-bit RCA

3.4.3 Conclusion

As a conclusion for this chapter, approximate computing error modeling is a very complex
task. Today, there is still no real suitable method for analytical propagation of errors at the
application level as it exists for FxP arithmetic. Indeed, existing techniques always come with
a major drawback – the accuracy of the estimation always has to be traded for memory or
computational cost. There are two main reasons for this:

1. The output error strongly depends on the inputs. A variation of 1 bit in an input can easily
switch between a perfectly accurate result to an error with the amplitude of the MSB.

2. And, as stated and developed in Chapter 1, the countless approximate operators of dif-
ferent natures make general rules hard to be found.

In the BWER propagation method proposed in Section 3.2, a solution implying reasonable
memory cost with very fast error estimation after model training was proposed. However, as it
is limited to BWER, only a limited number of metrics can be extracted, and the lack of accuracy
in the estimation makes it not scalable to large systems.

What was finally observed along the many attempts during the development of this thesis
and the reading of literature about integer approximate operators is that, when accuracy of error
estimation is sought, Monte Carlo simulation is often the best solution. First, it is easier to
extract any metric from the results, and especially metrics relative to an application. Moreover,
the particularity of approximate operators is that, to be energy efficient, they have to remain
quite simple and can often be represented by series of additions. Therefore, their functions can
often be efficiently coded using integer functions supported by all CPUs so they execute very
fast and therefore Monte Carlo simulations can remain efficient.
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In this chapter, we also showed that approximate operators functions could be useful to
represent complicated physical phenomena such as VOS faults, combining them to estimate
these faults using Monte Carlo simulation.

In the next chapter, FxP and approximate operators paradigms are compared in terms of
raw error and hardware performance, as well as in terms of error and performance regarding
real-life signal processing applications. For this, only Monte Carlo simulation is used, so that
the study is not dependent on the accuracy variations of models.
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Chapter 4

Approximate Operators Versus
Careful Data Sizing

In Chapter 1, fixed-point (FxP) and approximate (Apx) operators paradigms were presented.
In Section 1.3, FxP arithmetic is presented as well as quantization error. Classical techniques
for FxP refinement as well as PSD propagation method are presented in Chapter 2. Error man-
agement of Apx operators and their issues are discussed in Chapter 3. In this chapter, both
arithmetic paradigms are compared.

On the one hand, FxP arithmetic is relying on the use of accurate integer operators, inac-
curacy being induced by quantization process, mostly at arithmetic operators outputs. On the
other hand, approximate operators rely on inaccurate designs inducing errors by nature. There-
fore, this chapter compares data sizing to functional approximation.

For this, an open-source hardware performance (area, delay, power, energy) and accuracy
characterization framework was developed during the thesis related to this document. This
framework allows fast, accurate and user-friendly simulation-based area, delay and power esti-
mation of approximate arithmetic operators in a general meaning – FxP, floating-point (FlP) or
Apx operators such as presented in Chapter 1. It comes with built-in approximate adders and
multipliers libraries, real-life applications benchmarks, and very complete scripts for results
processing. The framework is presented in Section 4.1. The raw comparison between FxP and
Apx paradigms is presented in Section 4.2. Finally, the performance of both are compared in
signal processing applications in Section 4.3.

4.1 APXPERF: Hardware Performance and Accuracy Characteri-
zation Framework for Approximate Computing

This section presents ApxPerf, which is the open-source hardware performance and accu-
racy characterization framework developed during the thesis. Two versions were developed.
The first one, based on Bash and Matlab scripts and taking VHDL for hardware performance
evaluation and C++ for error evaluation, is presented in Section 4.1.1. The second one, written

133
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with Python3, adds an HLS layer so only a unique C++ source is needed for both functional
and hardware simulation.

4.1.1 APXPERF– First Version

The first version of ApxPerf, presented in [1], is a framework dedicated to approximate
arithmetic operators characterization. It is composed of a hardware characterization part and
an accuracy characterization part.

The hardware characterization part is based on VHDL specifications of the operators. Given
an approximate operator VHDL code, the code is parsed to the clock and reset signals, as well
as the two inputs and the output. The parameters of the approximate operator, which must
be resolved at compile time, are set up using generic variables. The VHDL source is then
compiled along with linked hardware libraries provided by the user using Synopsys Design
Compiler and a gate-level design is produced. Area and delay are extracted from PrimeTime
reports. Then, a VHDL benchmark is generated, automatically interfaced with the operator
to be characterized. The benchmark is then run using Modelsim from Mentor Graphics. A
VCD file containing all the transitions at every gate interface with a default 1ps granularity is
generated. Finally, the VCD and SDF files and the technology libraries are passed to Synopsys
PrimeTime, which produces a very accurate time-based estimation of dynamic and static power
of the circuit.

In parallel, a C source of the same operator is given to a C++ framework. The function
parameters (composed of the operator inputs and output and the parameters of the operator)
are parsed and a test-bench is generated. Then, the simulation is run. An important number of
metrics are returned by the simulation:

• Mean Square Error (MSE),

• Mean Absolute Error (MAE),

• Mean Absolute Relative Error,

• Error Rate,

• Bit Error Rate (BER),

• Bitwise Error Rate (BWER),

• Acceptance Probability (AP) given a Minimum Acceptable Accuracy (MAA),

• Minimum and Maximum Error,

• Mean of Error (or error bias),

• Power Spectral Density (PSD) of error, and

• Probability Density Function (PDF) of error.
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Hardware and accuracy simulations are run taking uniformly distributed inputs on the
whole range of the operator to be tested. Accuracy simulations are optimized for parallel execu-
tion with OpenMP for a high speed-up when used on a multicore machine. The overall scheme
of the first version of ApxPerf is depicted in Figure 4.1.

HDL Simulation C Simulation

Veri cation

Data Fusion

Operator HDL
Description

RTL Synthesis

Gate-Level Sim.

Power Estimation

Random
Inputs

Operator C/C++
Code

Func. Simulation

Extraction of
Error Metrics

Performance and Error Metrics Results

Figure 4.1 – First version of APXPERF

The framework comes with built-in C and VHDL versions of the following approximate
operators:

• Almost-Correct Adder (ACA, see Section 1.4.1.1),

• Error-Tolerant Adder Version IV (ETAIV, see Section 1.4.1.2),

• IMPrecise Adder for low-power Approximate CompuTing (IMPACT, see Section 1.4.1.5),

• Approximate Array Multiplier III (AAMIII, see Section 1.4.2.1), and

• FxP adders and multipliers with various sizes.

ApxPerf framework also embeds several signal processing applications, only for the
accuracy evaluation part – Fast Fourier Transform (Fast Fourier Transform (FFT)), K-Means
clustering algorithm, JPEG encoding and motion compensation filter for High Efficiency Video
Codec (HEVC). These applications are further described in Section 4.3.

The first version of ApxPerf was used for all the results in this Chapter. However, the
second version, described in the next section, brings many improvements, mostly thanks to
HLS and the usage of C++ templates for the parameterization of operators and simulations.
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4.1.2 APXPERF– Second Version

The second version of ApxPerf so far brings an extra-layer of high level synthesis. In this
version, whose framework is described in Figure 4.2, only one source is needed for both hard-
ware and accuracy estimation, written in C++.
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Figure 4.2 – Second version of APXPERF

The HLS and the simulations are performed by Mentor Graphics CatapultC. During HLS,
the Register Transfer Level (RTL) representation of the input source is generated. Then, a sec-
ond compilation pass is ensured by Design Compiler to get a gate-level representation. The
gate-level representation is then passed again to CatapultC for Modelsim simulation and verifi-
cation using integrated SystemC Verify framework. Thanks to this framework, the same C++
test bench as for accuracy estimation is used for both hardware verification and generation of
the VCD files for PrimeTime power estimation. This way, the statistical distribution of the
generated test bench, which can be uniform or random with tunable parameters, is ensured to
be the same for hardware performance and accuracy characterizations.

The accuracy estimation part returns the same error metrics as for the first version of Apx-
Perf described in the previous Section. The main novelty is the possibility to add any error
metric to the error estimation as a plugin, with no need to modify the framework kernel. An-
other main evolution is the replacement of Bash and Matlab scripts by Python. This second
version is consequently more portable. Moreover, except for the hardware characterization part
requiring Mentor Graphics and Synopsys tools, the whole error estimation part, from simula-
tion to results management, is not linked to any third-party software. The management of gen-
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erated results and the generation of figures are performed using Numpy and Matplotlib pack-
ages of Python. An execution trace of ApxPerf v2 characterization for 32-bit ct_float
(see Chapter 5) is given by Listing 4.1.

Another important improvement in the framework is the integration of hardware perfor-
mance characterization in embedded signal processing applications. At the time of writing this
thesis, only K-means clustering and FFT were adapted from ApxPerf v1.

Finally, the code of the approximate operators were replaced by a template-based C++
synthesizable library called apx_fixed, based on Mentor Graphics AC Datatypes v3.7 under
license Apache 2.0. This library included in ApxPerf v2 features:

• synthesizable operator overloading:

– unary operators: unary ≠, !, ++, ≠≠,
– relational operators: <, >, <=, >=, ==, !=,
– binary operators: +, + =, ≠ ≠ =, ú, ú= replaced by the approximate operators se-

lected in the template values in the apx_fixed instance declaration (see example
below), <<, <<=, >>, >>=, and

– assignment operator from/to an other instance of apx_fixed.

• non-synthesizable operator overloading:

– assignment operator from/to C++ native datatypes (float, double),
– output operator << for easy display and writing in files.

apx_fixed variables are represented by a fixed-point value which width, integer part
width, rounding et wrapping modes (inherited from ac_fixed) are parameterized in template
as well as the name and parameters of the approximate operators to be used in additions and
multiplications.

A use case of apx_fixed library is given by Listing 4.2. In this example, the result of the
operation out = x ◊ y + z is computed. x and z are 8-bit integer numbers with 2-bit integer
part in FxP representation, denoted as (8, 2). y has (10, 5) representation and the output out
is represented on (7, 2). In line 14, the apx_fixed variables are initialized casting double
precision floating-point values. The nearest representable value is set for each variable. E.g, x
is set from 0.13236. As it only has 6-bit fractional part, its value is 0.125 (00.001000 in binary
representation). In line 18, the operation is performed. Thanks to operator overload, the first
operation x ◊ y is performed using the approximate multiplier given in the template of x type
declaration (first operand), which is classical fixed-point multiplication. As x and y are (8, 2)
and (10, 5), the implicit result is stored in a number with representation (18, 7) according to
the rules discussed in Section 1.3.4. Then the implicit result is added to z. The sum of (18, 7)
and (8, 2) representations returns an implicit (19, 8) according to Section 1.3.3. The addition
is performed using ACA(18, 3) based on template values and the size of inputs. Finally the
result is casted to the (7, 2) number out. For this, the bits from position 6 to 12 of the result
are extracted and put in out after truncation (because of the directive AC_TRN in out type
apx3_t). This computation is fully synthesizable. During hardware optimization, the paths
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Listing 4.1 – Execution trace of APXPERF v2 characterization for 32-bit CT_FLOAT

==================================================================
========================= ApxPerf2.0 =========================
==================================================================
Extraction of user configuration... Done.

Operator information:
Operator name: AddCtFloat
Operator type: adder
Inputs size: 32 bits
Output size: 32 bits
Parameters: N_exponent = 8 N_mantissa = 24 Q_mode = CT_RD

Clock period: 5 ns
Reset kind: synchronous
Technology target: 28nm FDSOI
Number of hardware simulation samples: 25000
Number of error simulation samples: 100000000

Copy of framework to temporary folder... Done.
Instrumentation of C++ source operator parameters... Done.
Search for custom hardware performance estimation test bench "sc_testbench.cpp"...

Not found.
Search for custom error estimation test bench "err_testbench.cpp"... Not found.
Automated generation of missing test bench(es)...
- Detection of input and output types... Done.

Input type: ct_float<8,24,CT_RD>
Output type: ct_float<8,24,CT_RD>

- Instrumentation of hardware performance estimation test bench input generation...
Done.

- Compilation of hardware performance estimation test bench input generation... Done.
- Generation of hardware performance estimation test bench inputs... Done.
- Instrumentation of hardware performance estimation test bench... Done.
- Instrumentation of error estimation test bench... Done.
Compilation of error estimation test bench... Done.
Execution of error estimation test bench... Done.
Copy of error estimation results to results folder... Done.
Instrumentation of Catapult C script... Done.
Execution of Catapult C script... Done.
Instrumentation of Design Compiler script... Done.
Detection of a previous compilation of technology libraries... Done.
Execution of Design Compiler script... Done.
Instrumentation of SystemC Verify makefile... Done.
Compilation of SystemC Verify flow... Done.
Preparation of technology libraries for Modelsim... Done.
Instrumentation of Modelsim script for VCD generation... Done.
Execution of SystemC Verify flow... Done.
Instrumentation of PrimeTime script... Done.
Execution of PrimeTime script... Done.
Save of compiled technology libraries for next executions... Done.
Copy of gate-level VHDL, experiment parameters, reports and logs to results directory

... Done.
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Listing 4.2 – APX_FIXED use case
1 #include<cstdlib>
2 #include"apx_fixed.h"
3 using namespace std;
4
5 int main(void) {
6 // Declaration of types (optional)
7 typedef apx_fixed<8,2,true,ac_q_mode::AC_TRN,ac_o_mode::

AC_WRAP,apx_add::USE_ACA,3,-1,-1,-1,-1,apx_mul::
USE_MULFXP,-1,-1,-1,-1,-1> apx1_t;

8 typedef apx_fixed<10,5,true,ac_q_mode::AC_TRN,ac_o_mode::
AC_WRAP,apx_add::USE_ACA,3,-1,-1,-1,-1,apx_mul::
USE_MULFXP,-1,-1,-1,-1,-1> apx2_t;

9 typedef apx_fixed<7,2,true,ac_q_mode::AC_TRN,ac_o_mode::
AC_WRAP,apx_add::USE_ACA,3,-1,-1,-1,-1,apx_mul::
USE_MULFXP,-1,-1,-1,-1,-1> apx3_t;

10
11 // Declaration of variables
12 double x_d = 0.13236, y_d = -1.54351, z_d = 0.75498;
13 double out_d;
14 apx1_t x = x_d; apx2_t y = y_d; apx1_t z = z_d;
15 apx3_t out;
16
17 // Double precision operation (non-synthesizable)
18 out_d = x_d * y_d + z_d;
19
20 // Approximate operation (synthesizable)
21 out = x * y + z;
22
23 // Displaying
24 cout << "accurate:\t" << x_d << " * " << y_d << " + " <<

z_d << " = " << out_d << endl;
25 cout << "approximate:\t" << x << " * " << y << " + " << z

<< " = " << out << endl;
26
27 return EXIT_SUCCESS;
28 }
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leading to the generation of the bits 13 to the MSB 18 would be pruned, as well as the bits
from the LSB to bit position 5 because truncation does not consider them. As a matter of fact,
changing rounding and overflow mode respectively to saturation and rounding-to-nearest in
the template declarations would increase accuracy and hardware cost. Finally, line 25 gives the
example of the overloading of output operator << in apx_fixed. The code outputs given
below reflects the successive casts and approximations.
accurate: 0.13236 * -1.54351 + 0.75498 = 0.550681
approximate: 0.125 * -1.5625 + 0.75 = 0.53125

The syntax developed in apx_fixed library allows for fast and easy development and
testing of approximate arithmetic kernels. The software flexibility of C++ and the efficiency of
HLS tools allow for complex circuits to be produced and simulated with benchmarks, whose
generation is easy to be fully automatized thanks to the overloading of type casting. A custom
synthesizable floating-point library embedded by ApxPerf v2 called ct_float is described
in the last chapter of this thesis.

4.2 Raw Comparison of Fixed-Point and Approximate Operators

In this section, the results of the raw comparison between FxP and Apx operators are presented.
They were all obtained using the first version of ApxPerfdescribed in Section 4.1.1 and were
published in DATE’17 conference [2].

A first comparison of FxP and Apx operators consists in measuring the difference in their
accuracy with regards to a performance metric (energy, area, delay). For this, approximate
adders ACA, ETAIV and IMPACT and approximate multipliers AAMIII and FBMIII (respec-
tively denoted as AAM and FBM in this section), described in Chapter 1, were compiled and
tested with a number of bits varying from 2 to 32 and all possible combinations of parameters.
FxP operators (i.e. classical integer adders and multipliers) were tested in the same way, with
all possible combinations of input and output size (inputs from 2 to 32, outputs from 2 to 32 for
the adders and 2 to 64 for the multipliers). All power results are given for a clock frequency of
100 MHz. With ApxPerf v1, Design Compiler (2013.03) was used for RTL synthesis with
a 28nm FDSOI technology library, Modelsim (10.3c) for gate-level simulation and PrimeTime
(2013.12) for power analysis. Simulation and power analysis are performed on 105 random in-
put samples. The extraction of error metrics based on the C description was computed on more
than 107 random inputs.

Results for adders are presented on Figure 4.3 and provide MSE versus power, area, delay,
and PDP. For the sake of clarity, results are here only presented for 16-bit input operators.
16-bit output is considered as the correct adder and used as reference. Truncated and rounded
FxP adder outputs vary from 15 to 2 bits (from left to right). For approximate adders, results
are given by varying: the number of approximated LSBs (M ) and types of FA for IMPACT, the
maximal size of carry chain (P ) for ACA, and the block size (X) for ETAIV.

What can be first noticed is that in terms of power consumption and design area, FxP op-
erators are better than Apx operators for a same MSE, except for very-low accuracy. However,
in terms of delay, most approximate operators are faster, but they cannot reach the same level
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Figure 4.3 – Direct comparison of 16-bit-input fixed-point and approximate adders regarding
MSE
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Figure 4.4 – Direct comparison of 16-bit-input fixed-point and approximate adders regarding
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MUL
t

(16, 16) AAM (16) FBM (16)
Power (mW) 0.273 0.359 0.446
Delay (ns) 0.91 1.23 0.57
PDP (pJ) 0.249 0.442 0.446

Area (µm2) 805.2 665.5 879.5
MSE (dB) ≠89.1 ≠87.9 ≠9.63
BER (%) 23.4 27.7 27.9

Table 4.1 – Direct comparison of 16-bit-input and output fixed-point and approximate multi-
pliers

of accuracy when more than 8 bits are kept for the fixed-point output. In terms of energy, the
PDP of FxP adders is quite near from approximate ones when less than 8 output bits are kept.
However, ACA and IMPACT are able to spend less energy without sacrificing much accuracy.

In some applications, all output bits have the same weight on the error. Therefore results
on BER metric are presented on Figure 4.4 for the same adders than previously. Approximate
operators achieve very good BER performance when compared to fixed-point operators. Con-
sidering the power and area, truncated and IMPACT adders perform similarly for any fixed
BER. However, for delay and energy per addition, most approximate operators perform signif-
icantly better truncated or rounded FxP operators. When not considering bit significance in the
operands, FxP operators are penalized by the suppression of part of their output bits, implicitly
forcing them to zero.

Results for the multipliers are presented in Table 4.1. The 16 to 32 integer multiplier is
considered as the correct multiplier for accuracy reference. As AAM and FBM multipliers
are fixed-width operators (16-bit inputs and output), comparison results are provided only for
the truncated FxP multiplier with 16-bit output (MUL

t

(16, 16)). Fixed-width MUL
t

truncated
multiplier reaches the best accuracy, and consumes least power. Although MUL

t

is slower
than FBM, its energy per multiplication (PDP) is 44% better than both approximate operators.
FBM is 37% faster than MUL

t

and AAM is 17% smaller. However, FBM is extremely MSE
inaccurate, with 7 orders of magnitude more erroneous results than fixed-point. Both AAM and
FBM are worse than MUL

t

by about 19% for BER metric.

As a conclusion for this operator-level performance analysis of various approximation
schemes, fixed-point operators perform better when considering the MSE metric representa-
tive of signal processing applications, while approximate adders show good BER performance.
However, the importance of output bit-width was not taken into account in this results. Indeed,
when the bit-width is reduced, as in truncated or rounded operators, the amount of data to
transfer to load and store operator inputs and output is consequently reduced. This shortening
in bit-width has a major impact on energy consumption and must be considered for real-life ap-
plication. Thus, although inexact and truncated-or-rounded operators seem to reveal the same
gross performance, selecting the second one will allow to decrease energy cost by avoiding the
transfer and memory storage of useless erroneous bits.
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4.3 Comparison of Fixed-Point and Approximate Operators on
Signal Processing Applications

In this Section, the effect of fixed-point and approximate adders and multipliers is evaluated
on different real-life applications, leveraging relevant and adapted metrics. Considered appli-
cations include Fast Fourier Transform (FFT), JPEG image encoding, motion compensation
filtering in the context of High-Efficiency Video Coding (HEVC) decoding, and K-means clus-
tering.

4.3.1 Fast Fourier Transform

As a classical computation kernel used in many signal processing or communication applica-
tions, FFT is relevant for this study. ApxPerf v1 provides an instrumented, tunable FFT ker-
nel. This sections presents results on a 32-sample Radix-2 FFT computed on 16-bit input/output
data. In a first experiment, only the adders are considered. The total energy to compute the FFT
is estimated by:

PDP
F F T

=
N

addÿ

i=1

PDP
add,i

+
N

mulÿ

i=1

PDP
mul,i

(4.1)

where N
add

and N
mul

are the total of additions and multiplications, respectively. Figure 4.5
shows PDP

F F T

as a function of output Peak Signal-to-Noise Ratio (PSNR). PSNR is the
maximal power of the output signal divided by the MSE, i.e:

PSNR(x)[dB] = 10. log
C

max(x2)
MSE(x)

D

. (4.2)

The exact multipliers used alongside the modified adders are optimally sized according to the
adder bit-width, so they are not source of error. For any accuracy constraint, FxP adders (trun-
cation or rounding) notably dominate approximate adders. This supremacy could be explained
by two factors: the relative energy cost of multipliers with regards to adders and the need for
less operand size for the multiplier when reducing the accuracy of additions. This figure also
shows the great potential of energy reduction when playing with accuracy of the fixed-point
operators. A first conclusion here is that reducing the FxP adder size provides a smaller en-
tropy of the data processed, transported and stored, than keeping the same bit-width along the
computations but containing errors in data since computations rely on approximate operators.
The same experiment is performed using 16-bit AAM and FBM multipliers and a 16-bit trun-
cated FxP multiplier, while keeping 16-bit exact adders. Table 4.2 shows that AAM and FxP
multipliers differ only by 6 dB of of accuracy. However, AAM consumes 78% more energy that
reduced-precision fixed-point equivalent. Results on the FFT comfort the conclusion of Sec-
tion 4.2. Providing results with both approximate adders and multipliers in the same simulation
will not lead to a different conclusion.

4.3.2 JPEG Encoding

The second application is a JPEG encoder, representative of the image processing domain. The
main algorithm of this encoder is the Discrete Cosine Transform (DCT). To obtain an approx-
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Figure 4.5 – Power Consumption of FFT-32 Versus Output PSNR Using 16-bit Approximate
Adders

MUL
t

(16, 16) AAM (16) FBM (16)
PSNR (dB) 53.88 59.66 ≠18.14
PDP (pJ) 55.43 92.49 93.26

Table 4.2 – Accuracy and Energy Consumption of FFT-32 Using 16-bit Fixed-Width Multipli-
ers

imate version of the encoder, DCT operations are computed using fixed-point or approximate
operators. The quality metric to compare the exact and the approximate versions of the JPEG
encoder is the Mean Structural Similarity (MSSIM) [67], which is representative of the human
perception of image degradation. This metric results in a score between [0, 1], 1 representing
a perfect quality. To obtain Figure 4.6, the DCT energy consumption is compared for all pre-
sented approximate adders, as well as for fixed-point versions. The algorithm is applied with an
encoding effort of 90% on the image Lena. As observed for the FFT, the fixed-point versions
of the algorithm are much more energy efficient than for approximate operators, mostly thanks
to the bits dropped during the calculation.

It is important to notice that the nature of the error generated by approximate operators (few
high amplitude errors in general) is very problematic in the context of image processing. Fig-
ures 4.7 shows Lena with four different approximations in the DCT encoding. On Figure 4.7a,
the additions are replaced by a 16-bit accurate adder with the output truncated to 10 bits. On
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Figure 4.6 – Power Consumption of DCT in JPEG Encoding Versus Output MSSIM Using
16-bit Approximate Operators

Figure 4.7b, the additions are performed with a 16-bit ACA with x = 2, meaning the carries are
limited to a consideration of the two previous LSBs. On Figure 4.7c, the additions are replaced
by a 16-bit ETAIV made of 4-bit blocks. Finally, Figure 4.7d is generated using 16-bit IMPACT
with 8-bit exact addition and 8-bit approximate addition using approximation number 3 (see
Section 1.4.1.5). The best visual result clearly occurs for the fixed-point addition. The result
of IMPACT adder is also quite good thanks to its 8-bit accurate adder on the MSB part, but as
showed above, its larger output implies an important energy overhead. Moreover, some visual
artefacts are present in sharp details. For ETAIV, the image is quite degraded with horizontal
and vertical lines giving a noisy appearance to the image. For ACA, strong artefacts are visible
everywhere.

4.3.3 Motion Compensation Filter for HEVC Decoder

HEVC is the new generation of video compression standard. Efficient prediction of a block
from the others requires fractional position Motion Compensation (MC) carried-out by inter-
polation filters. These MC filters are modified using fixed-point and approximate operators to
test their accuracy and energy efficiency. Previously described MSSIM metric is used to deter-
mine the output accuracy of the filter on a classical signal processing image. Table 4.3 gives
the energy spent by the MC filter replacing all its additions by adders producing an MSSIM
of approximately 0.99. In their 16-bit version, ACA and ETAIV can only reach respectively
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ators
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0.96 and 0.98. In any case, and as discussed above, the multiplier overhead provokes an energy
consumption which is 4.6 times superior for the approximate version than for the truncated FxP
version. For multiplier replacement, Table 4.3 shows that both 16-bit AAM and FBM produce
an accuracy similar to fixed-width truncated FxP multiplier. Moreover, replacing multipliers by
FBM in the MC filter do not lead to an important energy overhead, which makes it competitive
considering that its delay is 37% inferior to MUL

t

(16, 16) according to Table 4.1. However,
AAM suffers from an important energy overhead.

MSSIM Adder Min. Mult. Total
Energy (pJ) Energy (pJ) Energy (pJ)

ADD
t

(16, 10) 99.29% 1.39E≠2 4.39E≠2 0.898
ACA(16, 12) 96.45% 1.54E≠2 2.49E≠1 4.20
ETAIV(16, 4) 98.02% 1.30E≠2 2.49E≠1 4.17

IMPACT(16, 6, 3) 99.67% 1.00E≠2 2.49E≠1 4.12

Table 4.3 – Accuracy and Energy Consumption of Distance Computation for HEVC Filter
Using 16-bit Input Adders

MSSIM Multiplier Min. Adder Total
Energy (pJ) Energy (pJ) Energy (pJ)

MUL
t

(16, 16) 99.918% 2.49E≠1 1.83E≠2 3.77
AAM(16) 99.909% 4.42E≠1 1.83E≠2 6.48
FBM(16) 99.907% 2.54E≠1 1.83E≠2 3.85

Table 4.4 – Accuracy and Energy Consumption of Distance Computation for HEVC Using
16-bit Input Multipliers

4.3.4 K-means Clustering

The last experiment presented in this section is K-means clustering. Given a bidimensional
point cloud, this algorithm classifies them finding centroids and assigning each point to the
cluster defined by the nearest centroid. At the core of K-means clustering is distance compu-
tation. More details about K-means clustering are given in Section 5.3.1. For the experiment,
5 sets of 5.103 points of data were generated around 10 random points with a Gaussian dis-
tribution. The accuracy metric is the success rate, from 0 to 1, representing the proportion of
points classified in the correct cluster. Table 4.5 presents the success rate and energy spent in
distance computation replacing the exact adders by fixed-point and approximate versions. For
truncated fixed-point version, the energy spent in multiplication is inherently inferior to ap-
proximate, thanks to the reduction of bit-width, leading to a total energy reduction by more
than half for a success rate of 99%, and even by nearly 10 for a success rate of about 86%.
Table 4.6 shows K-means clustering classification success rate and energy spent in distance
computation performing multiplication using 16-bit input FxP and approximate multipliers.
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Success Adder Min. Mult. Total
Rate Energy (pJ) Energy (pJ) Energy (pJ)

ADD
t

(16, 11) 99.14% 1.55E≠2 9.36E≠2 2.03E≠1
ACA(16, 12) 99.10% 1.54E≠2 2.49E≠1 5.13E≠1
ETAIV(16, 4) 99.43% 1.30E≠2 2.49E≠1 5.11E≠1

IMPACT(16, 6, 3) 99.67% 1.00E≠2 2.49E≠1 5.08E≠1
ADD

t

(16, 8) 86.00% 1.27E≠2 2.40E≠2 6.06E≠2
ACA(16, 8) 86.06% 9.85E≠3 2.49E≠1 5.08E≠1

ETAIV(16, 2) 63.25% 7.00E≠3 2.49E≠1 5.05E≠1
IMPACT(16, 10, 1) 87.29% 1.26E≠2 2.49E≠1 5.11E≠1

Table 4.5 – Accuracy and Energy of Distance Computation for K-means Clustering Using 16-
bit Input Adders for Different Success Rates

AAM achieves similar accuracy than fixed-width truncated accurate multiplier, with 99% clas-
sification success rate. However, it presents an energy overhead of 75%. FBM achieves very
poor performance for K-means, with only 10% success, which is equivalent to prune 12 output
bits of a FxP multiplier.

Success Multiplier Min. Adder Total
Rate Energy (pJ) Energy (pJ) Energy (pJ)

MUL
t

(16, 16) 99.84% 2.49E≠1 1.83E≠2 5.15E≠1
AAM(16) 99.43% 4.42E≠1 1.83E≠2 9.02E≠1
FBM(16) 10.27% 2.54E≠1 1.83E≠2 5.27E≠1

MUL
t

(16, 4) 10.87% 2.04E≠1 1.24E≠3 4.09E≠1

Table 4.6 – Accuracy and Energy of Distance Computation for K-means Clustering Using 16-
bit Input Multipliers

In spite of the theoretical competitiveness of approximate operators, their advantages are
likely to be lost at application level. Indeed, at the difference of fixed-point operators, accuracy
reduction is obtained by simplifying the operator structure but not by reducing the operator out-
put bit-width. This reduces the energy of the considered operator, but does not have a positive
impact on the other operators, as it is the case for fixed-point.

4.4 Considerations About Arithmetic Operator-Level Approximate
Computing

In this Chapter, two types of hardware approximation were compared: fixed-point arithmetic
relying on truncated and rounded accurate operators with careful data sizing, and approximate
operators. A direct comparison using the ApxPerf framework showed that both techniques
are competitive, depending on the observed error and performance metrics.
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However, stepping back observing some state-of-the-art applications showed that using
approximate operators often leads to an important overhead since the designed architecture
manipulates larger data containing in average more erroneous useless information bits. Ap-
proximate operators output showing high error entropy compared to quantized exact output for
which all the error is virtually contained in dropped bits, the error generated by approximate op-
erators may have a huge impact in downstream operations using their output. Mathematically,
it is always preferable to propagate many low significance errors (symbolized by dropped bits
in fixed-point paradigm) than scarcer high significance errors. Indeed, in most approximate
operators proposed in literature, the probability for high significance errors to occur is never
negligible, leading to errors with amplitudes as high as the represented dynamic.

More generally, it has been shown that comparing the raw performance of operators does
not necessarily reflect their performance in a given application context. Hence, a major stake
for hardware approximation is now to be considered at a higher level to take more parameters
into consideration, leveraging relevant error metrics. An effort must also be made in the re-
search for more efficient approximate multipliers, since they are responsible for the majority of
power consumption in computation-intensive applications. However, considering approximate
operators in embedded processors to replace or enhance their integer arithmetic unit might still
be a good option, since processor data size is fixed and cannot be application specific.

After a conclusion in favor of fixed-point compared to functional approximate arithmetic
operators, the studies lead in next chapter drop approximate operators to compare fixed-point
and custom floating-point paradigms.



Chapter 5

Fixed-Point Versus Custom
Floating-Point Representation in
Low-Energy Computing

In Chapter 4, we compared classical fixed-point arithmetic with operator-level approximate
computing. The general conclusion was the superiority of fixed-point arithmetic thanks to lower
error entropy making error more robust to deterioration in propagation.

In this Chapter, fixed-point arithmetic is compared to custom floating-point arithmetic. As
a reminder, fixed-point arithmetic is presented in Section 1.3 and floating-point arithmetic in
Section 1.2. To perform this comparison, the study was led using the second version of Apx-
Perf, described in Section 4.1.2. This version embeds a synthesizable custom floating-point
library called ct_float presented in Section 5.1 and developed in the context of this thesis.
In this section, ct_float is compared to other custom floating-point libraries to first show
its efficiency. Then, stand-alone fixed-point and floating-point paradigms are compared in Sec-
tion 5.2 to appreciate their differences in terms of accuracy and hardware performance. Finally,
in Section 5.3, both representations are compared on signal processing applications, K-means
clustering and FFT, leveraging relevant metrics.

5.1 CT_FLOAT: a Custom Synthesizable Floating-Point Library

The second version of ApxPerf framework was presented in Section 4.1.2. It allows for fast
and user-friendly hardware characterization of approximate operators written in C++ thanks
to HLS, leveraging Catapult C, Design Compiler, ModelSim and PrimeTime, and error char-
acterization thanks to C++ benchmarks. As mentioned in Section 4.1.2, ApxPerf v2 comes
with built-in approximate operators libraries such as apx_fixed containing approximate in-
teger adders and multipliers in fixed-point representation. This section presents ct_float,
the main operator library of ApxPerf v2.
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5.1.1 The CT_FLOAT Library

ct_float is the template-based synthesizable C++ custom library embedded into ApxPerf
v2 used in this Chapter. There exist two versions of it:

• a first version based on Mentor Graphics ac_int datatype, made for Catapult HLS but
also stand-alone error estimation and

• a second version based on Xilinx Vivado HLS integer library ap_int made for Xilinx
FPGA target using Vivado.

Both versions are provided in the same source code and activated through C++ pre-compiler
directives. The implementation of ct_float, as for apx_fixed, features:

• Synthesizable operator overloading:

– unary operators: unary ≠, !, ++, ≠≠,
– relational operators: <, >, <=, >=, ==, !=,
– binary operators: +, + =, ≠ ≠ =, ú, ú=, <<, <<=, >>, >>=, and
– assignment operator from/to another instance of ct_float.

• Non-synthesizable operator overloading:

– assignment operator from/to C++ native datatypes (float, double),
– output operator << for easy display and writing in files.

Other built-in functions allow easy manipulation of floating-point values, such as test functions
to get information about the extreme representable values for a given floating-point representa-
tion, to know if a given value is representable, etc. The declaration of an instance of ct_float
requires three template parameters:

1. the exponent width e,

2. the mantissa width m, and

3. the rounding mode used in arithmetic operators and changes of representation. Currently,
four rounding modes are available, given by Table 1.5 in Chapter 1.

The value of mantissa width m includes the implicit 1 (see below). The representation also
includes a sign bit. Therefore, the total number of bits in memory is equal to e + m.

As mentioned above, two synthesizable operators are available: addition and multiplica-
tion. Unlike apx_fixed, the output representation of these operators is not determined to be
prevented from under/overflows. Indeed, if the inputs are on (e

1

, m
1

) and (e
2

, m
2

) representa-
tion, the output representation (e

o

, m
o

) is given by:
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If the rounding modes of both inputs are different (discouraged), then the first one parsed in the
C++ code is selected.

ct_float representation and arithmetic operators were created to remain simple for en-
ergy efficiency yet minimally secured, thanks to the combination of several choices. First,
ct_float mantissa is represented in [1, 2[ with an implicit 1. This allows a 1-bit accu-
racy benefit in general. However, subnormal numbers are not handled, which implies that a
certain range of numbers are not representable around 0. The exponent is represented in a bi-
ased representation. The bias is not customizable for the moment and is set at the center of
the exponent range like in IEEE 754 representation. Using biased representation instead of
two’s-complement results in simpler exponent value comparisons, which are omnipresent in
arithmetic operators.

An important choice is that no flag bits are returned. In general, such flags are returned
to indicate zero-case or subnormal cases for further management. However, these flags imply
more bits to transfer in hardware (generally two), and the pipeline may be broken during the
management of the corresponding special cases, leading to extra-energy consumption. In return
for not raising zero-case flag, the number zero is directly managed by the arithmetic operators.
For this, the value 0 must be representable. To represent 0, the nearest representable negative
value from 0 is used. One representable value is sacrificed, but it does not imply any change
in comparison operators for instance. A slight overhead is then necessary in the arithmetic
operators to detect the 0 value at the input. For the addition/subtraction, if one of the inputs is
worth 0, the second is selected. No extra-delay is implied since a simple short path may exist in
parallel to the original adder. At the addition/subtraction output, the special value representing
zero must be issued when the computed output mantissa is a vector of 0, leading to a slight
control overhead. It is also insured that only two strictly opposed added values can issue 0.
For the multiplication, 0 detection at the input returns 0 value, which only implies a very small
overhead. It is insured that only a multiplication by 0 can return 0.

As subnormals are not representable by ct_float, the output is always saturated to the
smallest absolute possible representable value with the same sign. Towards infinity, the opera-
tors do not under/overflow. Saturation to the highest absolute representable value of same sign
is returned.

The combination of these choices implies a slight overhead in the operators which is not
spent in external hardware management. The local management implies less data stored or
long-distance transferred, which represents global energy savings.

A use case of ct_float is given by Listing 5.1. In this example, an FIR filter is applied
to random data. First, on line 9, an array of ct_float is initialized with the impulse response
of the filter. The coefficients are parsed to 16-bit ct_float with e = 7 and m = 9. Then,
input and output signals x and y are declared on line 13. Random inputs are generated in dou-
ble representation, parsed to ct_float(7, 9) and stored in array x. The random generation
presented in this example is not synthesizable. Then, the synthesizable FIR filter is applied.
Additions and multiplication are overloaded with the operators developed in ct_float li-
brary. Finally, the resulting FIR filter is displayed using display operator << overloading.
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Listing 5.1 – Synthesizable CT_FLOAT FIR filter
1 #include<cstdlib>
2 #include<ctime>
3 #include"ctfloat.h"
4 using namespace std;
5
6 #define N_FIR 9
7 #define N_DATA 50
8
9 ct_float<7, 9, CT_RD> h[N_FIR] = { -1.55107884796477e-18,

-0.0226639854595526, 1.04697822237622e-17,
0.273977082565524, 0.497373805788057, 0.273977082565524,
1.04697822237622e-17,

10 -0.0226639854595526, -1.55107884796477e-18 };
11
12 int main(void) {
13 ct_float<7, 9, CT_RD> x[N_DATA], y[N_DATA - N_FIR];
14
15 srand(time(NULL));
16
17 // Generation of uniform random data in [-1,1] - not

synthesizable
18 for (int i = 0; i < N_DATA; i++) {
19 x[i] = ((double) rand() / (double) RAND_MAX);
20 x[i] = (rand() % 2) ? x[i] : -x[i];
21 }
22
23 // Filtering - synthesizable
24 for (int i = 0; i < N_DATA - N_FIR; i++) {
25 y[i] = x[i] * h[N_FIR - 1];
26 for (int j = 1; j < N_FIR; j++) {
27 y[i] += x[i + j] * h[N_FIR - j - 1];
28 }
29 }
30
31 //Displaying result - not synthesizable
32 cout << "FIR Filter impulse response:" << endl;
33 for (int i = 0; i < N_FIR; i++) {
34 cout << h[i] << endl;
35 }
36 cout << endl;
37
38 cout << "Outputs:" << endl;
39 for (int i = 0; i < N_DATA-N_FIR; i++) {
40 cout << y[i] << endl;
41 }
42
43 return EXIT_SUCCESS;
44 }
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The execution of Listing 5.1 results in:

FIR Filter impulse response:
-1.54838e-18 -0.022644 1.04626e-17 0.273438 0.49707 0.273438

1.04626e-17 -0.022644 -1.54838e-18
Outputs:
0.169434 -0.0915527 -0.0427246 0.464844 0.509766

0.0458984 0.0330811 0.582031 0.789062 0.388672
-0.14209 -0.325195 0.0435791 0.535156 0.435547
-0.0112305

ApxPerf also comes with a random number generation library. This simplifies the gen-
eration of integer and floating-point values, using uniform or normal distributions with user-
selected parameters. Several functions are available to guarantee that the generated random
values are in the range of the representable values of the considered integer, fixed-point or
floating-point operator.

For custom floating-point operators such as ct_float, it is also possible to generate
couple of inputs which guarantee the activation of the close path of addition (see Section 1.2.2)
with a given probability. It is important to have this path activated for a certain percentage of
input couples to perform fair Monte Carlo time-based dynamic power estimation, as it is the
most energy-costly computingnpath of the addition. However, when performing totally Monte
Carlo simulation using inputs uniformly distributed on the whole range of the representable
value of a floating-point operator, the close path only has a very low probability to be activated.
Therefore, it is important to consider this feature in the generation of random inputs.

In the next section, stand-alone performance of ct_float facing other custom floating-
point libraries is evaluated, using ApxPerf and its random number generation library.

5.1.2 Performance of CT_FLOAT Compared to Other Custom Floating-Point Li-
braries

Reconfigurable architectures like FPGA are more and more used in many domains. The most
recent and impacting example is the FPGA chip found in Apple’s iPhone 7 and suspected to
be used for artificial intelligence [68]. These conditions illustrate the interest of customizable
floating-point architectures. Indeed, combining the ease of use of floating-point representation
associated to low-energy small data width make these architectures very promising for the
future of reconfigurable architectures. The past years have hosted the creation of several cus-
tomizable floating-point libraries.

Mentor Graphics, in its synthesizable C++ libraries AC Datatypes [69], proposes the cus-
tom floating-point class ac_float. Based on the fixed-point library ac_fixed, ac_float
allows for light floating-point computation, thanks to simple operators. The mantissa in the
representation is not normalized and has no implicit 1. This allows for easy management of
subnormals, but induces a potential loss of accuracy in computations. The mantissa is repre-
sented in signed two’s complement, so the sign information is contained in the mantissa instead
of using an extra sign bit. However, there is no benefit to this choice since two’s complement
represents a loss of 1 bit of precision compared to unsigned representation. The choice of
two’s complement representation on the mantissa also turns comparison operator more com-
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plex. Moreover, many cases are not handled such as zero or infinity. ac_float also supports
custom exponent bias, but managing the exponent bias comes with an overhead.

ct_float, presented in Section 5.1.1 and embedded in ApxPerf, offers a balance be-
tween computational safety and simplicity. Inspired by ac_float, it is written in C++ for
HLS. Two versions of ct_float do exist, one based on Mentor Graphics ac_int data type,
made for Mentor Graphics Catapult C, and the other one based on ap_int data type from
Xilinx, used in Vivado for FPGA targets.

FloPoCo (for Floating-Point Cores, but not only) is a generator of arithmetic cores [70].
Also based on C++, it has its own synthesis engine and directly returns VHDL. More than
simple arithmetic operators, it is able to generate optimized floating-point computing cores
performing complex arithmetic expressions. In this Section, we will only get interested in
FloPoCoś custom floating-point addition and multiplication. The main difference of FloPoCo’s
floating-point representation is the extra 2-bit exception field transported in data. Like for
ct_float subnormals are not handled by FloPoCo. Unlike ac_float both ct_float
and FloPoCo do not support custom exponent bias.

Other alternatives such as VFLOAT [71, 72] or OptiFEX [73] do exist but are not taken
into account in the study led in this chapter. VFLOATproposes IEEE 754-2008 compliant
customizable computing cores for existing FPGA. OptiFEX generates floating-point comput-
ing cores targeting FPGA like FloPoCo.

Table 5.1 recapitulates the different known properties of ac_float, ct_float and
FloPoCo floating-point representation. In this table, the number of additional bits in the
representation is taking for reference a representation with implicit 1 in the mantissa and with
one bit of sign in the representation. For an equal general accuracy, ac_float needs one more
bit on the mantissa than ct_float and FloPoCo. However, with its 2-bit exception field,
FloPoCo has the representation requiring the largest width, but also the highest computing
reliability.

The hardware performance comparison process for ac_float, ct_float and FloPoCo
is as follows. All operators are characterized for an Application Specific Integrated Circuit
(ASIC) target in 28nm FDSOI @ 1.0V, 25C. All designs are generated with a clock of 200
MHz. As ac_float and ct_float are compatible with ApxPerf v2, this framework
is used to perform the hardware performance characterization process. For time-based power
analysis, the random inputs generated for adder/subtracter characterization are ensuring an ac-
tivation of the close path for at least 50% of the computations. For FloPoCo, VHDL files of
the operators and test benches are generated using Stratix IV target and disabling all possible
hardware acceleration which could allocate DSPs blocks used in FPGAs. Then, the design is
compiled using Design Compiler, characterized using FloPoCo’s generated benchmark in
ModelSim, and power is estimated using PrimeTime. However, to our knowledge, the bench-
mark generated by FloPoCo does not insure any proportion of activation of the close path,
so the time-based estimated dynamic power could be underestimated. FloPoCo’s benchmark
top design does not consider the input and output data registers, whereas ApxPerf generated
benchmark does. This grossly represents about 5 to 10% underestimation in the total power for
FloPoCo operators, which has to be kept in mind for the analysis of results. All operators are
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AC_FLOAT CT_FLOAT FLOPOCO

Custom exp.
3 7 7bias

Mantissa
7 3 3Implicit 1

Zero and inf.
7 7 3exception flags

Zero and inf.
7 3 7internal handling

Subnormal
7 7 3exception flag

Subnormal
3 7 7internal handling

Additional bits +1 +0 +2in representation

Table 5.1 – Main Properties of Custom Floating-Point Libraries AC_FLOAT, CT_FLOAT and
FLOPOCO

generated so they execute in 1 cycle. It may not be the most efficient implementation because
of possible glitches, but it is a good starting point for a fair comparison.

To estimate the energy spent per operation, we also introduce a fair metric, which is the
total energy spent before stabilization. Indeed, in literature, energy per operation is often
estimated whether:

• using the total energy per clock cycle, or

• using Power-Delay Product (PDP), which is the multiplication of the average dynamic
power of the operation.

In the first case, a fair comparison between two different operators is strongly dependent on
their difference of slack. Indeed, let us imagine two operators op

1

and op
2

which have the same
size and the same static power. if op

1

stabilizes twice as fast as op
2

with a same dynamic power,
then we would naturally tend to say that E (op

1

) = 1

2

◊E (op
2

). However, with the total energy
per clock cycle metric, E (op

1

), if the slack is high, then op
1

and op
2

will seem to have very
close energy per operation, which is indeed false. With the PDP metric, the static power is not
considered. Therefore, if op

1

and op
2

have very different static power, which is true if they do
not have quite equivalent area, then the energy per operation will be too much in favor of the
larger operator.

To be perfectly fair, the energy per operation must consider the whole energy (static and
dynamic) spent before stabilization such as depicted in Figure 5.1. Considering the average
static power Ps, the average dynamic power Pd, the critical path delay Tcp, the clock period
Tclk and the number of latency cycles Nc, the total energy spent before stabilization Eop is

Eop = Ps ◊ Tcp ◊ Nc + Pd ◊ Tclk. (5.2)
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Figure 5.1 – Representation of the Power Spent by a Circuit in One Cycle. The area of the red
polygon represents the total energy spent before stabilization. E

s

is the static energy and E
d

the dynamic energy.

Using Equation 5.2 implies that both static energy and dynamic energy are considered. More-
over, increasing the clock period on a same circuit should give the exact same energy per
operation since increasing Tclk will proportionally decrease the average dynamic power Pd

given by the tool (since integrated on a proportionally longer time), while not modifying nei-
ther the static power nor the operator critical path. Therefore, the proposed energy estimation
metric gets rid of both the issues of the classical previously described metrics. Also, taking the
number of cycles like in Equation 5.2 for pipelined operators into consideration provides a fair
comparison between operators having a different number of cycles. Indeed, let consider two
operators op

1

and op
2

, where op
2

is the same circuit as op
1

but pipelined in 2 cycles (instead
of 1 for op

1

). Flip-flops excluded, both the circuits are the same. The energy overhead brought
by flip-flops in op

2

is to some extent compensated by the smaller fan-outs in the circuit. This
means that dynamic power of op

1

and op
2

are very close. However, if the pipeline is efficiently
chosen, the critical path of op

2

should be twice as small as op
1

. Considering this hypothesis, the
energy per operation of both op

1

and op
2

should be the same. This is translated by Equation 5.2
by compensating the division of Tcp with the number of cycles Nc.

As a conclusion, with Equation 5.2, we have a measure of the energy per operation which
can be considered as robust to:

• modification of the slack due to different clock periods, and

• pipelining the operator.

With this metric, different operators, operating in slightly different conditions of frequency and
pipelining can be legitimately compared. From this point, the total energy spent before sta-
bilization metric is used each time energy per operation is mentioned.

For the custom floating-point comparative study, half-precision and single-precision floating-
point were tested. Half-precision corresponds to an exponent represented on 5 bits and a man-
tissa on 11 bits. Single-precision has an 8-bit exponent and a 24-bit mantissa. Both addition/-
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subtraction and multiplication were tested on each of these precisions. The results of the com-
parative studies for 16-bit (resp. 32-bit) addition/subtraction (resp. multiplication) are given in
Tables 5.2, 5.4, 5.3 and 5.5. The two last lines of the tables refer to the relative performance
of ct_float towards ac_float (resp. FloPoCo) (e.g., ct_float area is 2.15% higher
than ac_float).

Area (µm2) Critical Total Energy per
path (ns) power (mW) operation (pJ)

AC_FLOAT 312 1.44 1.84E≠1 9.07E≠1
CT_FLOAT 318 1.72 2.13E≠1 1.05
FLOPOCO 361 2.36 1.84E≠1 9.06E≠1

CT_FLOAT/AC_FLOAT +2.15% +19.4% +15.4% +15.7%
CT_FLOAT/FLOPOCO -11.8% -27.0% +15.7% +15.8%

Table 5.2 – Comparative Results for 16-bit Custom Floating-Point Addition/Subtraction with
Fclk = 200MHz

Area (µm2) Critical Total Energy per
path (ns) power (mW) operation (pJ)

AC_FLOAT 488 1.18 2.15E≠1 1.05
CT_FLOAT 389 1.13 1.76E≠1 8.59E≠1
FLOPOCO 361 1.52 1.34E≠1 6.50E≠1

CT_FLOAT/AC_FLOAT -20.4% -4.24% -18.2% -18.2%
CT_FLOAT/FLOPOCO +7.68% -25.6% +31.7% +32.1%

Table 5.3 – Comparative Results for 16-bit Custom Floating-Point Multiplication with Fclk =
200MHz

At first sight, the three custom floating-point libraries give results in the same order of
magnitude. For 16-bit addition/subtraction, ct_float is 15% more energy-costly than both
ac_float and FloPoCo, despite being as large as ac_float and 12% smaller than
FloPoCo. The fastest 16-bit adder/subtracter is ac_float, followed by ct_float, which
is 19% slower but 27% faster than FloPoCo. All performance are slightly in favor of ac_floatfor
16-bit addition/subtraction.

For 16-bit multiplication, ac_float is beaten by both ct_floatand FloPoCo. FloPoCo’s
multiplier is the smallest and with the lowest energy consumption. However, ct_float is
25% faster but consumes 32% more energy. However, it must be kept in mind that there are
registers in the inputs and outputs of ct_float and ac_float which are not present for
FloPoCo, so the real gap should be narrower.

32-bit addition/subtraction shows very similar energy for ac_float, ct_float and
FloPoCo. Indeed, ct_float is 9% worse than ac_float and 4% better than FloPoCo.
Again, FloPoCo is the slowest operator, ct_float being 27% faster.

The energy of 32-bit multiplication is strongly in favor of ct_float, which saves more
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Area (µm2) Critical Total Energy per
path (ns) power (mW) operation (pJ)

AC_FLOAT 678 2.49 4.46E≠1 2.21
CT_FLOAT 720 2.84 4.86E≠1 2.41
FLOPOCO 772 4.10 5.05E≠1 2.51

CT_FLOAT/AC_FLOAT +6.06% +14.1% +8.92% +9.12%
CT_FLOAT/FLOPOCO -6.85% -30.8% -3.69% -4.15%

Table 5.4 – Comparative Results for 32-bit Custom Floating-Point Addition/Subtraction with
Fclk = 200MHz

Area (µm2) Critical Total Energy per
path (ns) power (mW) operation (pJ)

AC_FLOAT 1, 689 2.19 1.02 5.03
CT_FLOAT 1, 469 2.30 5.84E≠1 2.70
FLOPOCO 2, 890 3.20 1.03 5.07

CT_FLOAT/AC_FLOAT -13.0% +5.02% -42.8% -46.3%
CT_FLOAT/FLOPOCO -49.2% -28.2% -43.3% -46.8%

Table 5.5 – Comparative Results for 32-bit Custom Floating-Point Multiplication with Fclk =
200MHz

than 45% more energy than both ac_float and FloPoCo. ct_float is the 13% smaller
than FloPoCoand 49% smaller than FloPoCo. However, ac_float is 5% faster.

In conclusion, ac_float, ct_float and FloPoCo addition/subtraction and multipli-
cation are quite competitive the one towards the others. Though they all have different features
(implicit 1 or not, particular cases management, etc.), they all are quite close in terms of perfor-
mance. Nevertheless, FloPoCo generally produces the largest and slowest operators, but not
always with the highest energy consumption. This can be explained by the fact that ac_float
and ct_float operators are generated by a different software than FloPoCoand therefore
the basic integer arithmetic operators architecture used may not be the same. Also, the values
of the inputs for power estimation are generated differently for ac_float and ct_float on
one side, and FloPoCo on the other side, thus activating differently the far and close paths
during simulations. However, the main interesting conclusion of this study is to show that the
proposed custom floating-point library ct_float competes with the other existing libraries
and gives slightly comparable performance results.

In the following section, ct_float is used as a reference for the comparison with fixed-
point arithmetic, first in stand-alone versions, and then leveraging classical signal processing
applications.
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5.2 Stand-Alone Comparison of Fixed-Point and Custom Floating-
Point

Because of the different nature of floating-point and fixed-point errors, this section only com-
pares them in terms of area, delay, and energy. Indeed, floating-point error magnitude strongly
depends on the amplitude of the represented data. Low-amplitude data have low error magni-
tude, while high amplitude data have much higher error magnitude. Floating-point error is only
homogeneous considering relative error. Oppositely, fixed-point has a very homogeneous er-
ror magnitude, uniformly distributed between well-known bounds. Therefore, its relative error
depends on the amplitude of the represented data. It is low for high amplitude data and high
for low amplitude data. This duality makes these two paradigms impossible to be atomically
compared using the same error metric. The only interesting error comparison which can be per-
formed is to use these two representations in the same application, which is done in Section 5.3
on FFT and K-means clustering.

The study in this section and in the rest of this chapter is performed using ApxPerf v2
as mentioned before, and with the ct_float library for custom floating-point. A 100 MHz
clock is set for designing and estimating performance. All the other parameters and targets
are the same as for previous section. Energy per operation is estimated using detailed power
results given by PrimeTime at gate level. and is estimated using the metric described in previous
Section by Equation 5.2.

In this section, 8-, 10-, 12-, 14- and 16-bit fixed-width operators are compared. For each
of these bit-widths, several versions of the floating-point operators are estimated with different
exponent widths. 25.103 uniform couples of input samples are used for each operator character-
ization. The random generation embedded by ApxPerf v2 insures that 25% of the floating-
point adder inputs activate the close path of the operator, which has the highest energy by
nature. Adders and multipliers are all tested in their fixed-width version, meaning their number
of input and output bits are the same. The output is obtained using truncation of the result.

Figure 5.2 (resp. Figure 5.3) shows the area, delay and energy of adders (resp. multipliers)
for different bit-widths, relative to the corresponding fixed-point operator. FlP

N

(k) represents
N -bit floating-point with k-bit exponent width. As discussed above, floating-point adder has an
important overhead compared to fixed-point adder. For any configuration, results show that area
and delay are around 3◊ higher for floating-point. As a consequence, the higher complexity of
the floating-point adder leads to 5◊ to 12◊ more energy per operation.

Results for the multipliers are very different. Indeed, floating-point multipliers are 2-3◊
smaller than for fixed-point. Indeed, the control part of floating-point multiplier is much less
complicated than for the adder. Moreover, as multiplication is applied only on the mantissa,
the multiplication is always applied on a smaller number of bits for floating-point than for
fixed-point. Timing is also slightly better for floating-point, but not as much as area since an
important number of operand shifts may be needed during computations. The impact of these
shifts has an important impact on the energy per operation, especially for large mantissas. This
brings floating-point to suffer an overhead of 2◊ to 10◊ on the energy per operation.

For a good interpretation of these results, it must be kept in mind that, in a fixed-point
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Figure 5.2 – Relative Area, Delay and Energy per Operation Comparison Between Fixed-Point
and Floating-Point for Different Fixed-Width Adders
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Figure 5.3 – Relative Area, Delay and Energy per Operation Comparison Between Fixed-Point
and Floating-Point for Different Fixed-Width Multipliers

application, data shifting is often needed at many points in the application. The cost of shifting
this data does not appear in the preliminary results presented in this section. However, for
floating-point, data shifting is directly contained in the operator hardware, which is reflected in
the results. Thus, the important advantage of fixed-point showed by Figures 5.2 and 5.3 must
be tempered by the important impact of shifts when applied in applications.

5.3 Application-Based Comparison of Fixed-Point and Custom Floating-
Point

In this section, floating-point and fixed-point operators are compared in the context of their
use in applications. Indeed, as stated below, they have very different error nature and thus their
error can not be legitimately compared in the previous stand-alone comparison. First, both
paradigms are compared using the K-Means clustering algorithm in Section 5.3.1, these results
were published in [4]. Then, FxP and FlP operators are compared on the FFT algorithm in Sec-
tion 5.3.2. These results are issued from the work of Romain Mercier during an undergraduate
internship at IRISA.



164 Chapter 5

5.3.1 Comparison on K-Means Clustering Application

This section describes the K-means clustering algorithm and gives the comparative results for
FxP and FlP. First, the principle of K-means method is described. Then, the specific algorithm
used in this case study is detailed.

5.3.1.1 K-Means Clustering Principle, Algorithm and Experimental Setup

K-means clustering is a well-known method for vector quantization, which is mainly used
in data mining, e.g. in image classification or voice identification. It consists in organizing
a multidimensional space into a given number of clusters, each being totally defined by its
centroid. A given vector in the space belongs to the cluster in which it is nearest from the
centroid. The clustering is optimal when the sum of the distances of all points to the centroids
of the cluster they belong to is minimal, which corresponds to finding the set of clusters S =
{S

i

}
iœ[0,k≠1]

satisfying

arg min
S

kÿ

i=1

ÿ

xœS

i

Îx ≠ µ
i

Î2 , (5.3)

where µ
i

is the centroid of cluster S
i

. Finding the optimal centroids position of a vector set
is mathematically NP-hard. However, iterative algorithms such as Lloyd’s algorithm allow us
to find good approximations of the optimal centroids by an estimation-maximization process,
with a linear complexity (linear with the number of clusters, with the number of data to process,
with the number of dimensions and with the number of iterations).

The iterative Lloyd’s algorithm [74] is used in our case study. It is applied to bidimen-
sional sets of vectors in order to have easier display and interpretation of the results. From now,
we will only refer to the bidimensional version of the algorithm. Figure 5.4 shows results of
K-Means on a random set of input vectors, obtained using double-precision floating-point com-
putation with a very restrictive stopping condition. Results obtained this way are considered as
the reference golden output in the rest of the paper.

The algorithm consists of three main steps:

1. Initialization of the centroids.

2. Data labelling.

3. Centroid position update.

Steps 2 and 3 are iterated until a stopping condition is met. In our case, the main stopping
condition is when the difference of the sums of all distances from data points to their cluster’s
centroid between two iterations is less than a given threshold. A second stopping condition
is the maximum number of iterations, required to avoid the algorithm getting stuck when the
arithmetic approximations performed are too high to converge. The detailed algorithm for one
dimension is given by Algorithm 3. Input data are represented by the vector data of size N

data

,
output centroids by the vector c of size k. The accuracy target for stopping condition is defined
by acc_target and the maximum allowed number of iterations by max_iter. In our study,
we use several values for acc_target, and max_iter is set to 150, which is never reached in
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Algorithm 3 K-Means Clustering (1 Dimension)
Require: k Æ N

data

err Ω +Œ
cpt Ω 0
c Ω init_centroids(data)
do Û Main loop

old_err Ω err
err Ω 0
c_tmp[0 : k ≠ 1] Ω 0
min_distance Ω +Œ
for d œ {0 : N

data

≠ 1} do
min_distance Ω +Œ
for i œ {0 : k ≠ 1} do Û Data labelling

distance Ω distance_comp(data[d], c[i])
if distance < min_distance then

min_distance Ω distance
labels[d] Ω i

end if
end for
c_tmp[labels[d]] Ω c_tmp[labels[d]] + data[d]
counts[labels[d]] Ω counts[labels[d]] + 1
err Ω err + min_distance

end for
for i œ {0 : k ≠ 1} do Û Centroids position update

if counts[i] ”= 0 then
c[i] Ω c_tmp[i]/counts[i]

else
c[i] Ω c_tmp[i]

end if
end for
cpt Ω cpt + 1

while (|err ≠ old_err| > acc_target) ‚ (cpt < max_iter)
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Figure 5.4 – 2-D K-means Clustering Golden Output Example, Obtained Using Floating-Point
Double-Precision

practice.

The impact of fixed-point and floating-point arithmetic on performance and accuracy is
evaluated considering the distance computation function distance_comp, defined by:

d Ω (x ≠ y) ◊ (x ≠ y). (5.4)

The computation is written this way instead of using the square function in order to let the
HLS determine the intermediate types, thanks to C++ native types overloading implemented in
ct_float and ac_fixed, which are used for floating-point and fixed-point implementation,
respectively. All the other parts of the computations are implemented using double-precision
floating-point, and their contribution to the performance cost is not evaluated. Using a whole
approximate K-means application would require these operations to be approximated the same
way as distance computation. However, as distance computation is the most complex part of
the algorithm and as it is the deepest operation in the inner loops, its impact on accuracy and
performance is the most critical.

In the 2D case, the distance computation becomes

d Ω (x
0

≠ y
0

) ◊ (x
0

≠ y
0

) + (x
1

≠ y
1

) ◊ (x
1

≠ y
1

), (5.5)

which is equivalent to 1 addition, 2 subtractions, and 2 multiplications. However, as distance
computation is cumulative on each dimension, the hardware implementation relies only on
1 addition (accumulation), 1 subtraction, and 1 multiplication.
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The experimental setup is divided into two parts: accuracy and performance estimation.
Accuracy estimation is performed on 20 data sets composed of 15.103 bidimensional data sam-
ples. These data samples are all generated in a square delimited by the four points {±Ô

2, ±Ô
2},

using Gaussian distributions with random covariance matrices around 15 random mean points.
Several accuracy targets are used to set the stopping condition: 10≠2, 10≠3, 10≠4. The reference
for accuracy estimation is IEEE-754 double-precision floating-point. Figure 5.4 is an example
of a typical golden output for the experiment. The error metrics for the accuracy estimation are:

• the Mean Square Error of the resulting cluster Centroids (CMSE), and

• the classification Error Rate (ER) in percents, which is defined as the proportion of points
not being tagged by the right cluster identifier.

The lower the CMSE, the better the estimated position of centroids compared to golden output.
Energy estimation is performed using the first of these 20 data sets, limited to 20.103 iterations
of distance computation for time and memory purposes. As data sets were generated around
15 points, the number of clusters researched is also set to 15. Performance and accuracy of
the K-Means clustering experiment, from input data generation to result processing and graphs
generation, is fully available in the open-source ApxPerf v2 framework, which is used for
the whole study.

5.3.1.2 Experimental Results on K-Means Clustering

Section 5.2 showed that fixed-point additions and multiplications consume less energy than
floating-point for the same bitwidth. However, these results do not yet consider the impact of
the arithmetic on accuracy. This section details the impact of accuracy on the bidimensional
K-means clustering algorithm.

A first qualitative study on the K-Means clustering showed that, to get correct results (no
artifacts), floating-point data must have a minimal exponent width of 5 bits in distance compu-
tation (smaller exponents are too inaccurate in low distance computations) and fixed-point data
a minimal number of 3 bits for its integer part. Thus, all the following results use these two
parameters. Area, latency and energy of distance computed by Equation 5.5 are provided. The
total energy of the application is defined as

E
K-means

= E
dc

◊ (N
it

+ N
cycles

≠ 1) ◊ N
data

, (5.6)

where E
dc

is the energy per distance computation calculated from the data extracted with Apx-
Perf, N

it

the average number of iterations necessary to reach K-means stopping condition,
N

cycles

the number of stages in the pipeline of the distance computation core (automatically
determined by HLS), and N

data

the number of processed data per iteration.
Results for 8-bit and 16-bit FlP and FxP arithmetic operators are detailed in Table 5.6,

with stopping condition set to 10≠4. For the 8-bit version of the algorithm, several interesting
results can be highlighted. First, the custom floating-point version is twice as large as fixed-
point version and floating-point distance computation consumes 2.44◊ more energy than fixed-
point. However, the floating-point version of K-means converges in 8.35 cycles on average
against 14.9 cycles for fixed-point. This makes floating-point version for the whole K-means
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ct_float
8

(5) ct_float
16

(5) ac_fixed
8

(3) ac_fixed
16

(3)
Area (µm2) 392.3 1148 180.7 575.1

Ncycles 3 3 2 2
Edc (nJ) 1.23E≠4 5.99E≠4 5.03E≠5 3.25E≠4

Nit 8.35 59.3 14.9 65.1
EK-means (nJ) 38.24 1100 23.90 644.34

CMSE 1.75E≠3 3.03E≠7 1.85E≠2 3.28E≠7
Error Rate 35.1 % 2.94 % 62.3 % 0.643 %

Table 5.6 – 8- and 16-bit Performance and Accuracy for K-Means Clustering Experiment

algorithm consuming only 1.6◊ more energy than fixed-point. Moreover, floating-point version
has a huge advantage in terms of accuracy. Indeed, CMSE is 10◊ better for floating-point and
ER is 1.8◊ better. Figures 5.5a and 5.5b show the output for floating-point and fixed-point 8-
bit computations, applied on the same inputs than the golden output of Figure 5.4. A very neat
stair-effect on data labelling is clearly visible, which is due to the high quantization levels of the
8-bit representation. However, in the floating-point version, the positions of clusters centroid is
very similar to the reference, which is not the case for fixed-point.

For the 16-bit version, all results are in favor of fixed-point, floating-point being twice
bigger and consuming 1.7◊ more energy. Fixed-point also provides slightly better error results
(2.9% for ER vs. 0.6%). Figures 5.5c and 5.5d show output results for 16-bit floating-point and
fixed-point. Both are very similar and nearly equivalent to the reference, which reflects the high
success rate of clustering.

The competitiveness of FlP over FxP on small bit-widths and the higher efficiency of FxP
on larger bit-widths is confirmed by Figure 5.6 depicting energy vs. classification error rate.
Indeed, for different accuracy targets (10≠{2,3,4}), only 8-bit floating-point provides higher ac-
curacy for a comparable energy cost, while 10- to 16-bit fixed-point versions reach an accuracy
equivalent to floating-point with much lower energy. The stopping condition does not seem to
have a major impact on the relative performance.

5.3.2 Comparative Results on Fast Fourier Transform Application

In the previous section, a comparative study between fixed-point and custom floating-point
was performed on K-means. We showed that, contrary to what could be expected, floating-
point was very competitive for small bit-width, besides being easier to manage due to its high
flexibility. In this section, a similar study is performed on the Fast Fourier Transform (FFT). The
error study, generation and analysis of results were performed by undergraduate intern Romain
Mercier. The hardware performance estimation part was obtained using ApxPerf v2. The
original study also included approximate integers operators, which will not be discussed here
since a study on approximate operators in FFT has already been done in Section 4.3.1.

The implementation of the studied FFT is Radix-2 Decimation-In-Time (DIT) FFT, which
is the most common form of the Cooley-Tukey algorithm [75]. For the hardware estimation,
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(a) ct_float8(5) (b) ac_fixed8(3)

(c) ct_float16(5) (d) ac_fixed16(3)

Figure 5.5 – K-Means Clustering Outputs for 8- and 16-bit floating-point and fixed-point with
Accuracy Target of 10≠4

only the core of computation of the FFT is considered, i.e. the computation of:

X
k

= E
k

+ e≠ 2fii

N

kO
k

X
k+

N

2
= E

k

≠ e≠ 2fii

N

kO
k

. (5.7)

This leads to the hardware implementation of 6 additions/subtractions and 4 multiplications.
For each version of the FFT, all constants and variables are represented with the same pa-
rameters (same bit-width, same integer part width for FxP, same exponent width for FlP). The
absence of over/underflow for FxP version is ensured. For FlP version, the repartition of the ex-
ponent and mantissa widths is chosen for giving the smallest error after exhaustive search. For
hardware performance estimation, only FFT-16 was characterized. The error metric used for
the study of error is the Mean Square Error (MSE) at the output compared to double-precision
floating-point FFT.

Energy per operation related to error for FFT-16 is depicted in Figure 5.7. On the x-axis,
the energy derived from Equation 5.2 of the computing core of FFT is given in pJ. On the y-
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Figure 5.6 – Energy Versus Classification Error Rate for K-Means Clustering with Stopping
Conditions of 10≠4 (Top), 10≠3 (Center) and 10≠2 (Bottom)
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Figure 5.7 – Fixed-Point and Floating-Point Energy per Operation vs MSE for FFT-16 for
Different Bit-Widths

axis, the MSE is represented in dB. The best error-energy trade-off is best when approaching
the bottom-left corner. For each curve, each point going from the top left to the bottom right
represents an increase of two in the bit-width.

In this experiment, the advantage is clearly in favor of fixed-point. Indeed, for any identical
bit-width, fixed-point outperforms floating-point in terms of energy and accuracy. As already
showed in Section 5.2, floating-point operations, additions in particular, are much more ex-
pensive than fixed-point in return for an increased accuracy on larger dynamic. However, FFT
output quality is not as dependent on accuracy on a dynamic as large as for K-means clustering
for instance. This makes floating-point even less accurate than fixed-point at equal bit-width,
because of a smaller significant part, mantissa for floating-point, all bits for fixed-point. In-
deed, in the experiment, the exponent takes 7 bits of the total width, which are not assigned to
more accuracy on the significant part. Another interesting point is the data points presenting an
energy peak, which are occurring for 12-, 18- and 28-bit floating-point and 22-bit fixed-point.
These peaks are most probably due to differences of implementation in the HLS process. E.g,
larger adder or multiplier structures may have been selected by the tool to meet constraint of
delays, leading to energy overhead.

5.4 Conclusion and Discussion about the use of Fixed-Point and
Floating-Point arithmetic for Energy-Efficient Computing

A raw comparison of floating-point and fixed-point arithmetic operators gives an advantage in
area, delay and energy efficiency for fixed-point. However, the comparison on a real application
like the K-means clustering algorithm provides interesting features to custom floating-point
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arithmetic. Indeed, for K-means, contrary to what would have been expected, floating-point
arithmetic tends to show better results in terms of energy/accuracy trade-off for very small
bit-widths (8 bits in our case). However, increasing this bit-width still leads to an important
area, delay and energy overhead of floating-point. The most interesting results occur for 8-bit
floating-point representation. With only 3 bits of mantissa, which corresponds to only 3-bit
integer adders and multipliers, the results are better than 8-bit fixed-point integer operators.
This is obviously due to the adaptive dynamic offered by floating-point arithmetic at operation
level, whereas fixed-point has a fixed dynamic which is disadvantageous for low-amplitude
data and distance calculation. However, non-iterative algorithms should be tested to know if
small floating-point keeps its advantage.

Floating-point representation showed its limitations on the FFT experiment. Indeed, the
significant bits of the mantissa sacrificed to the exponent represent a penalty in an application
whose output quality is not as dependent on a high accuracy on enhanced dynamic as the K-
means clustering is. However, the gap between fixed-point and floating-point in this context
could probably be narrowed with different architecture choices, such as exponent bias and
subnormal numbers support. Nevertheless, these features would come with inevitable area,
delay and energy overheads.

From a hardware-design point of view, custom floating-point is costly compared to fixed-
point arithmetic. Fixed-point benefits from free data shifting between two operators, as outputs
of one operator only need to be connected to the inputs of the following in the datapath. How-
ever, from a software-design point of view, shifts between fixed-point computing units must
be effectively performed, which leads to a non-negligible delay and energy overhead. Oppo-
sitely, floating-point computing units do not suffer from this overhead, since data shifting is
implemented in the operators and managed by the hardware at runtime. Thanks to this feature,
floating-point exhibits another important advantage which is the ease of use, since software
development is faster and more secured.

Hence, in the aim of producing general-purpose low-energy processors, small-bitwidth
floating-point arithmetic can provide major advantages compared to classical integer opera-
tors embedded in microcontrollers, with a better compromise between ease of programming,
energy efficiency and computing accuracy.



Conclusion

To face the predicted end of Moore’s Law, this thesis proposes to look into approximate ar-
chitectures. Indeed, it has been showed that most applications can be computed with relaxed
accuracy without affecting their output quality, or with a tolerable degradation. Several levels
of architectural approximations are possible, listed in Chapter 1. In this thesis, the opportuni-
ties to save energy using approximate arithmetic are highlighted. They concern floating-point,
fixed-point, and approximate integer adders and multipliers. In this document, four main contri-
butions were proposed. First, to our knowledge, there was no existing critical and comparative
study of existing approximate arithmetic operators considering an equivalent number of refer-
ences, so the first Chapter of this document can constitute a base.

Two techniques for the estimation of the output error of approximate systems were pro-
posed, making the second main contribution. Concerning fixed-point systems, a fast and scal-
able method leveraging the spectral shape of error was described in Chapter 2. This technique
has the same accuracy as statistical propagation techniques, but with much lower complexity in
the analytical model construction. The development and results of this new approach were pre-
sented in [1]. In the first part of Chapter 3, a technique based on bitwise-error rate propagation
was proposed for approximate operators. Compared to others, this technique is a good com-
promise between memory cost and accuracy. However, the very different natures of existing
approximate operators make it very hard to find generally good models. After exploring a high
number of solutions, the conclusion is that no model approaches the accuracy of Monte Carlo
without equaling or exceeding its complexity. Contrary to fixed-point paradigm, it seems that
approximate arithmetic operators can not be safely be used without preliminary simulations.

A third contribution was to use error behavior of approximate operators to estimate the
effect of VOS on accurate operators. Indeed, simulating VOS requires transistor-level simula-
tion, which is extremely long and memory-costly. Using combinations of approximate opera-
tors trained on real data allows for fast estimation of the effects of VOS in systems too large to
be simulated. This contribution was published in [3].

Finally, two comparative studies of existing approximate paradigms, supported by the cre-
ation and usage of our open-source framework ApxPerf, constitute the fourth contribution.
First, fixed-point and approximate operators are compared. In their stand-alone versions, both
are quite competitive. As most approximate operators are based on shortening the carry chains,
they are generally fast and they generate scarce but high amplitude error, depending on their
parameters. In opposition, fixed-point always generate errors because of quantization at the
output, but this error is always small and well characterized. Therefore, they have quite simi-
lar error in average, whereas approximate operators tend to be faster thanks to shorter critical
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path. However, our study showed that when comparing both paradigms in real signal process-
ing applications, fixed-point is much better for two reasons. Firstly, its error entropy is minimal,
only standing in the dropped bits which are the LSBs. Therefore, the propagation of this error
across the system leads to a contained amplification. On the contrary, high-entropy approxi-
mate operator error potentially occurring at any bit significance leads to drastically important
amplification effects, and the application output may be strongly degraded. Secondly, dropping
bits at the output of fixed-point operators instead of keeping the same bit-width during com-
putations for approximate operators has an effect which had never been pointed out until now,
which is the need for smaller downstream operators and for less memory. These two reasons
make quantization by far superior to operator-level approximation. The only reason why ap-
proximate operators could be considered is for constant bit-width processing like in CPUs and
when computation must necessarily be faster than what fixed-point can offer. This study was
published in [2].

The second study puts face-to-face fixed-point arithmetic and floating-point arithmetic in
the context of low-energy computing. Generally, floating-point is associated to high accuracy
computing, but with important hardware cost. In our study, we consider small-width floating-
point across our custom library ct_float. After a comparison between different existing
custom floating-point libraries showing that ct_float is competitive, we use this library
combined with ApxPerf to evaluate its cost facing fixed-point. In their stand-alone versions,
floating-point addition/subtraction is as expected much more costly than fixed-point. For mul-
tiplication, the gap is tight as floating-point uses smaller integer multiplier and as the control
overhead in floating-point multiplier is reasonably small. Two applications were used to evalu-
ate the real overhead of floating-point. In K-means clustering, small floating-point in surpris-
ingly competitive with fixed-point. Indeed, K-means requires accurate computations both for
small and large distance, which are advantaging floating-point thanks to its high accuracy on
larger dynamic than fixed-point. In the context of FFT, whose quality is less impacted by in-
accuracy on small amplitude signals, fixed-point strongly outperforms floating-point. Indeed,
the large dynamic of floating-point does not bring enough improvement in this case to com-
pensate for its overhead. As a conclusion, small-width floating-point competitiveness in terms
of energy-error ratio is strongly dependent on the application. Nevertheless, despite a generally
higher energy consumption for floating-point compared to fixed-point, its ease of use makes it
very interesting for fast development. Having a CPU embedding small bit-width floating-point
processing units could be very interesting for general-purpose low-power computing. The study
on K-means clustering application was published in [4].

The work constituting this thesis comes with the following conclusions:

• Approximate operators error degradation across a system is difficult to estimate effi-
ciently when excluding Monte Carlo simulation. However, approximate operators can
be used to reproduce the effects of physical phenomena such as VOS.

• If stand-alone approximate arithmetic operators are generally competitive, they show
important limitations when used in real-life signal processing applications compared to
classical fixed-point.
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• Floating-point energy cost is able to compete with fixed-point when used in applications
that require accuracy at different amplitude scales. In this context, using floating-point
for low-energy computing has to be considered.

This thesis also opens-up new perspectives. Firstly, it has been showed that in general,
using approximate operators leads to important errors. Therefore, there is a strong need to
find new approximate operators with better error performance. Some of them are on a good
track. With DRUM approximate multiplier for instance, no high amplitude errors can be per-
formed, as it is based on floating-point paradigm applied to a fixed representation. The idea of
mixing fixed-point and floating-point paradigms is a good idea for speed, though it imposes
the storage of many useless zeros in the LSBss. Other operators like the GDA approximate
adder propose runtime-configurable approximate adders, which shows interest in the context
of energy-autonomous embedded devices that may need to run in different levels of power con-
sumption depending on the remaining stored energy and the amount of energy being harvested.
Finally, the concept of exact adders based on error-corrected approximate operators proposed
by VLSA deserves to be further investigated.

Secondly, models for approximate operators error propagation need to be developed, though
we concluded in this study that their various natures are an impediment to the good performance
of general models. In our mind, new models should consider the nature of the approximation
performed on each operator. Therefore, the general model would be an aggregation of several
models, and the one that adapts best to a considered approximate operators would be selected
when needed.

Finally, floating-point paradigm for low-energy computing has a high potential for new
research. First, the best compromise between control overhead and accuracy should be investi-
gated in this context, for instance the management of subnormals. The question if the accuracy
benefits from supporting these low amplitude numbers is important enough to compensate for
the hardware overhead. The customization of the exponent bias also has to be investigated.
With a constant bias, adding one more bit in the exponent increases the dynamic as much to-
wards infinity than towards zero. However, it is not interesting to have a dynamic which is too
large towards infinity, since resources could be allocated to even better accuracy around zero.
Nevertheless, introducing a fully parameterizable bias would bring an important memory and
control overhead. A solution might be to have several possible predefined biases that could be
used to operate at different amplitude scales with moderated overhead. The interest of handling
particular cases such as under/overflows also needs to be investigated. Once all these investi-
gations, the structure of a low-energy small-bit-width processing unit should be proposed with
innovative features. For instance, if exponent management is faster, it could be possible to use
a single exponent management unit for two mantissa management units to save area.

All these opportunities should be considered for future research and the proposition of
new energy-efficient architectures, which are a major stake to overcome the predicted end of
Moore’s Law.
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AMA2 Approximate Mirror Adder type 2. 62–65, 192
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ETAIIM Error-Tolerant Adder type II Modified. 43, 47, 48, 50, 52, 192

ETAIV Error-Tolerant Adder type IV. 43, 47–50, 55, 114, 135, 140, 146, 192, 197
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Abstract

The physical limits being reached in silicon-based computing, new

ways have to be found to overcome the predicted end of Moore’s

law. Many applications can tolerate approximations in their com-

putations at several levels without degrading the quality of their

output, or degrading it in a acceptable way. This thesis focuses

on approximate arithmetic architectures to seize this opportunity.

Firstly, a critical study of state-of-the-art approximate adders and

multipliers is presented. Then, a model for fixed-point error propa-

gation leveraging power spectral density is proposed, followed by

a model for bitwise-error rate propagation of approximate oper-

ators. Approximate operators are then used for the reproduction

of voltage over-scaling e�ects in exact arithmetic operators. Lever-

aging our open-source framework ApxPerf and its synthesizable

template-based C++ libraries apx_fixed for approximate opera-

tors, and ct_float for low-power floating-point arithmetic, two

consecutive studies are proposed leveraging complex signal process-

ing applications. Firstly, approximate operators are compared to

fixed-point arithmetic, and the superiority of fixed-point is high-

lighted. Secondly, fixed-point is compared to small-width floating-

point in equivalent conditions. Depending on the applicative condi-

tions, floating-point shows an unexpected competitiveness compared

to fixed-point. The results and discussions of this thesis give a fresh

look on approximate arithmetic and suggest new directions for the

future of energy-e�cient architectures.




